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ABSTRACT 

A general treatment of the elastodynamics of failure in a 

prestressed elastic continuum is given, with particular emphasis on the 

geophysical aspects of the problem. The principal purpose of the study 

is to provide a physical model of the earthquake phenomenon, which 

yields an explicit description of the radiation field in terms of source 

parameters. 

The Green's tensor solution to the equations of motion in a medium 

with moving boundaries is developed. Using this representation theorem, 

and its specialization to the scalar case by means of potentials, it is 

shown that material failure in a continuum can be treated equivalently 

as a boundary value problem or as an initial value problem. The initial 

value representation is shown to be preferable for geophysical purposes, 

and the general solution for a growing and propagating rupture zone is 

given. 

The energy balance of the phenomenon is discussed with particular 

emphasis on the physical source of the radiated energy. It is also 

argued that the flow of energy is the controlling factor for the 

propagation and growth of a failure zone. Failure should then be 

viewed as a generalized phase change of the medium. 

The theory is applied to the simple case of a growing and propa­

gating spherical failure zone . The model is investigated in detail 

both analytically and numerically. The analysis is performed in the 

frequency domain and the radiation fields are given in the form of 

multipolar expansions. The necessary theorems for the manipulation of 
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such expansions for seismological purposes are proved, and their use 

discussed on the basis of simple examples. 

The more realistic ellipsoidal failure zone is investigated. The 
\ 

static problem of an arbitrary ellipsoidal inclusion under homogeneous 

stress of arbitrary orientation is solved. It is then shown how the 

analytical solution can be combined with numerical techniques to yield 

more realistic models. 

The conclusion is that this general approach yields a very flexible 

model which can be adapted to a wide variety of physical circumstances. 

In spite of the simplicity of the model, the predicted radiation field 

is rather complex; it is discussed as a function of source parameters, 

and scaling laws are derived which ease the interpretation of observed 

spectra. Preliminary results in the time domain are also shown. It is 

concluded that the model can be compared favorably both with the 

observations, and with results obtained from purely numerical models. 
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GENERAL INTRODUCTION 

The branch of Seismology covered by the general denomination of 

"earthquake modeling" has received considerable impetus during the last 

decade. The reasons are several. One of the principal reasons is that 

the earthquake phenomenon, although not yet thoroughly understood, has 

lost a lot of the aura of mystery which surrounded it in the past. In 

particular, the theory of plate tectonics provides a broad frame in 

which earthquakes find a natural place. Except for some intraplate 

events, and for those events which are associated with volcanism, most 

shallow earthquakes can be explained in a gross sense as a manifestation 

of the relative motions of the plates. Similarly deep focus earthquakes 

may, in general, be associated with downgoing slabs at trenches. 

Another impetus was given to this line of research by the advent 

of underground nuclear explosions, and the possibility that such tests 

might trigger a seismic event. Also, the necessity of being able to 

discriminate between underground explosions and spontaneous seismic 

events made it necessary to try and characterize earthquakes more 

completely than by their magnitude only. Finally, the more accurately 

earthquakes are modeled, the better we understand their mechanism, and 

thus the greater our chances are to eventually predict their occurrence. 

Because earthquakes occur spontaneously, they should give us some 

information about the physical conditions under which they occur. This 

includes-, for example, information about the thermodynamic state of 

earth materials, and about the state of stress of the Earth in earth­

quake zones. How much of this information can be retrieved from 



-2-
observations of the radiation field depends on how well parameters such 

as rupture size, rupture velocity, etc., can be estimated. It also 

depends on how well the rupture phenomenon is understood. For that 

reason, it is desirable to construct a model of an earthquake which 

depends explicitly on the parameters of interest , and which is flexible 

enough to be adaptable to a wide range of situations . Two main classes 

of models can be found in the seismological literature: kinematic models 

and dynamic models. 

The most popular of the kinematic models is the dislocation model 

(e.g., Haskell, 1964; Savage, 1966): a displacement dislocation is 

created along the rupture surface, with a time history which is 

arbitrarily chosen and is hopefully at least approximately correct. 

Although very convenient to use, these models lack what may be the most 

fundamental property of an earthquake: its spontaneity . In addition, 

they lead to a representation in which the energy radiated emanates 

from a surface (the rupture boundary). The same is true of the widely 

used two dimensional model of Brune (1970), wherein a stress dislocation 

is created along the fault surface. 

In contrast, elastodynamic relaxation models (e.g., Archambeau, 

1964) take full advantage of the spontaneity of the phenomenon. The 

only assumption is then that the material is in an initial state of 

stress, and that rupture takes place in a given region. Such models 

lead to a representation where the radiated energy comes explicitly 

from where it was stored in the first place, that is, from the stressed 

material surrounding the rupture zone. Because elastodynamic models 

lead to a more complicated mathematical formulation, their development 



-3-

has not been as rapid as for simpler models, and their use is not as 

widely spread. 

In the present study we shall investigate some fundamental 

properties of the various models, with particular emphasis on elasto-

dynamic relaxation models. 

The principal contribution of this work to the field of earthquake 

seismology is that a general, self-consistent formulation of the seismic 

source problem is constructed which encompasses all of ,the general model 

classes (Chapter I). We can then compare the various models, and show 

in what sense they are fundamentally equivalent, in spite of their 
, 

different mathematical treatments ' (Chapter II). We can further assess 

the trade-off between the degree of convenience offered by these models, 

and the capability that they possess to approximate various realistic 

physical situations, and also give a precise evaluation of the approxi-

mat ions involved. 

The question of the energy released by an earthquake is discussed 

in detail, and, more specifically, we discuss the problem of where this 

energy finds its source (Chapter III). The energetics of the failure 

phenomenon are introduced as particularly important to a more profound 

understanding of the physical processes involved. We propose that 

material failure can be regarded as a generalized phase transformation 

of the medium, so that rupture propagation is essentially controlled 

by the conservation equations of continuum mechanics, suitably 

generalized to allow for the presence of discontinuities. We also 

suggest that the problem of incipient failure in a continuum could be 

treated in a similar frame. 
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A complete treatment of the elastodynamic source model is then 

given for a particular geometry--that of a spherical rupture (Chapter IV). 

This includes an extensive investigation of the properties of the 

radiation field predicted by this model. The analysis is performed in 

the spectral domain, and the dependence of the radiation spectra on 

the source parameters is obtained on the basis of both analytical and 

numerical results (Chapters IV and VII). It is argued that , in spite 

of the particular geometry that we adopted, this model provides us with 

a "standard" against which observations can be compared and thus inter­

preted, and also against which other models can be tested . These 

include, for example, simpler models of the dislocation type, as well 

as more realistic models derived by a combination of analytical and 

numerical techniques. To obtain such a "standard" model constitutes, of 

course, the principal motivation for a thorough investigation. The 

attractiveness of analytical solutions, especially for the study of the 

most general properties of the model,leads us to justify sacrificing 

geometrical realism for a greater mathematical tractability. The 

spherical model also serves to illustrate the use of general multipolar 

representations of the radiation field. A special effort is made to 

develop the necessary mathematical tools for the manipulation of multi­

polar fields in seismological applications, and we also indicate how 

time domain information (e.g., synthetic seismograms) can be retrieved 

from them (Chapter V). 

The model is generalized to include a more realistic geometry-­

thst of an ellipsoidal rupture zone (Chapter VI). Particularly 

interesting in this respect is the illustration of how the analytical 
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approach may be combined with numerical techniques, both by necessity 

and for reasons of convenience. This combination opens the possibility 

of constructing very sophisticated models, which might take into 

account some of the complications encountered in physical situations 

(e.g., geological structure, complicated rupture geometries, etc.) . 

The final contribution of this study consists of a number of 

useful results which were proved in the context of this particular 

problem, but possess greater generality. Such results include the 

Green's tensor solution to the equations of motion of an elastic 

continuum with moving boundaries , and transformation theorems for 

multipolar expansions under rotation and translation of the coordinate 

system. Further, the complete static solution to the problem of an 

arbitrary ellipsoidal inclusion embedded in a matrix subjected to a 

uniform stress of arbitrary orientation is given in Chapter VI. The 

results should find applications in fields other than geophysics as 

well. In this context a large number of identities between ellipsoidal 

harmonics and elliptic functions were proved and are given in Appendices. 

Of course, such a work cannot be expected to be the final word on 

the problem. Indeed, as usual, it seems that more questions are raised 

for each question which is answered, more doors opened for each door 

closed. In view of the results that we obtained in this study, let us 

briefly focus on some of the issues raised which would constitute a 

natural extension of our research. 

The most challenging, because the least understood, of these 

problems is to try and develop a fairly general theory of material 

failure valid for phenomena on a scale comparable to that of an 
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earthquake. We suggest that an approach using the thermodynamic theory 

of materials with memory of Coleman (1964) might be quite fruitful, 

when combined with the ideas presented in Chapter III. At the same 

time, one should keep in mind that such a continuum theory should be 

tied with the observations of rock mechanics, in particular, concerning 

rock dilatancy in the context of earthquake prediction (e.g., Whitcomb 

et al., 1973) 

Another promising aspect of elastodynamic source theory is con­

cerned with the further construction of realistic models obtained by 

coupling numerical near-source calculations with the analytical 

treatment. This can be done by the methods proposed in the present 

study. Comparison of the theoretically predicted radiation field with 

the observations, both in the spectral domain and in the time domain, 

should yield invaluable information on the physical processes involved 

in an earthquake. The recovery of this information need not be done 

by trial and error, since a number of inversion techniques have been 

developed in geophysics (e.g., Jordan, 1972). However, the "seismic 

source inverse problem" has yet to be formulated in the general case. 

Only by combining a better understanding of the failure phenomenon 

with a realistic modeling method can we hope to sort out the complex 

information hidden in the observed radiation field. Of critical 

importance in the long range is the determination of the absolute state 

of stress of the Earth. Possible applications to the seismic prediction 

problem, to the driving mechanism of plate tectonics, etc., come to 

mind immediately and need not be discussed ·here. The literature quoted 

here, altough by no means comprehensive, should be helpful in that respect. 
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Chapter I 

GREEN'S TENSOR SOLUTIONS IN ELASTODYNAMICS 

Introduc tion 

The equations controlling the flow of a continuum--in particular 

the conservation equations--are nonlinear. In fact most materials, 

especially those commonly encountered in Earth Sciences, do not behave 

linearly. For example, many of the phenomena associated with the theory 

of Plate Tectonics are anelastic, and diastrophic phenomena can hardly 

be described by a linear mechanism. On the other hand, the fact 
• 

remains that when undergoing small strains, the rocks constituting the 

crust and mantle of the Earth behave elastically to a good approximation. 

This prompted Sir Harold Jeffreys to challenge the suggestion that 

mantle rocks behave viscously: 

"I am not suggesting that rocks behave as perfectly elastic 
even under small stresses; it appears that under any stress 
some elastic afterworking and hysteresis occur. What I say 
is that 1) at numerous points the facts are contrary to 
what we should expect if viscous flow was of dominating 
importance; 2) they are at no point contrary to what we 
should expect if the rocks at great depths have a non-zero 
strength and flow is negligible unless the stress-differences 
exceed the strength; and 3) the latter hypothesis leads 
directly to explanations of many of the outstanding facts." 
(The Earth, 5th edition, 1970, p. 431). 

Thus, whereas the very phenomenon of rock fracture is not elastic, its 

effects on the surrounding material and, in particular, the radiation 

of seismic waves can be adequately described within the framework of 

linearized elasticity. 

Furthermore, because of the difficulties usually met in solving 
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nonlinear problems, and because the mathematical theory of linear 

equations is well developed, one tries in general to linearize a complex 

problem in order to obtain at least approximate solutions. Certainly 

the advent of high speed digital computers, in association with the 

development of sophisticated numerical techniques gives us now the 

capability of finding solutions to very nonlinear problems; but these 

methods provide the investigator with the numerical answer to a specific 

question. The dependence of this answer on the various p·arameters of 

the problem must then be found through a tedious, and often costly, 

parameter study. Linear problems are more likely to lend themselves to 

analytical investigations. One of their major advantages is that the 

principle of superposition of solutions can often be applied in one 

form or another. 

The concept of Green's tensor solutions (or Green's function 

solutions in the scalar case) is a mere generalization of the principle 

of superposition for linear problems. Morse and Feshbach (1953) use the 

terminology of influence function, in analogy with electrostatic theory. 

The analog in filter theory is the impulse response of a filter. The 

basic idea is as follows: If a fixed observer knows the effect of an 

impulsive point source as a function of the position of this source, he 

can evaluate the effect of a distributed source by decomposing it into 

a juxtaposition (in space and time) of weighted impulsive point sources, 

and then superposing their effects. The superposition will be done by a 

summation in the discrete· case, and an integration in the continuous 

case. 

Green's tensor solutions have been widely used in elastostatics and 
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elastodynamics (e.g., Love, 1927). Their introduction in seismology 

has been mainly associated with the application of dislocation theory 

to the modelling of earthquakes (e.g., Stekete, 1958; Maruyama, 1963; 

Haskell, 1964). We shall show in this chapter how this formalism 

permits us to isolate the effects of driving forces, of boundary condi­

tions, and of initial values. The case of moving boundaries with known 

evolution is a generalization of the classical treatment. This 

extension will be found particularly useful in the subsequent chapters 

for the description of a growing rupture zone. For this purpose it was 

necessary to generalize Reynolds' transport theorem in a continuum to 

the case of moving boundaries. This is done in Appendix 1, and the 

results are given in the first section of this chapter. 

From the generalized transport theorem we first obtain the usual 

conservation equations of continuum mechanics. Conservation conditions 

at flow discontinuities are also obtained in this manner for moving 

discontinuities. These conditions reduce to the Rankine-Hugoniot 

equations when the discontinuity is a shock front in a fluid. The 

conservation equations are generally nonlinear and can be satisfied by 

very general flows in the continuum. Their linearization in the case 

of a linearly elastic material is a well known procedure and will not 

be dwelt upon. 

The remainder of the chapter is devoted to the development of 

Green's tensor solutions in elastodynamics. It is shown how the 

generalized Green's theorem for the theory of elasticity--proved in 

section I-2--leads to a formal Green's tensor solution, and how initial 

and boundary conditions are then explicitly used in this solution 
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(section 1-3). Finally, the scalar case (wave equation) is briefly 

discussed. 

Cartesian tensor notation is used throughout ; so is Einstein's 

summation convention. Conservation equations will be given both in 

vector and in component form . 

The proof of Green's theorem, in section 1-2, is carried out in 

what may seem superfluous det.ail: The rationale behind this is that we 

hope to be able to generalize these results in future work, to include 

more complex geometries such as Riemanian geometry. However, this does 

not appear to be very easy, and lies beyond the scope of the present 

work. We hope that the details presented here may provide some insight 

into the difficulties ahead. 



-11-

I-I Transport theorem and conservation equations 

Reynolds' transport theorem, proved in Appendix 1, furnishes an 

expression for the material time derivative of the volume integral of a 

flow function. Given a continuous flow in a continuum, of velocity Y , 

and a continuous function of the flow F(x,t)-- F can be any tensorial 

function--then we have 

~fF dv 
dt 

Vet) 
= f [:! + F 'V • YJ dv 

Vet) 

= f u! + 'V • (F Y) ] dv 

Vet) 

(I-I-I) 

Here Vet) is an arbitrary volume of the continuum moving with the flow. 

Vet) is bounded by a closed surface Set) ,which is a material surface 

(see Appendix 1), and we may apply Gauss' theorem and write 

~fF dv 
dt 

Vet) 

y. n da 

Here Ii is the outward unit normal vector to Set) 

(1-1-2) 

The theorem (1-1-2) is generalized in Appendix 1 to the case 

where the flow and the function F have a discontinuity across an 

internal boundary of the medium moving with the velocity U If E(t) 

denotes the portion of this internal boundary lying within Vet) ,the 

generalized transport theorem reads 
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(FV)] dv + I [F(V-U) 
E (t) 

(1-1-3) 

The notation 

across E(t) 

[F] E is used to represent the jump of the function F 

The boundary E(t) may represent a shock front or a 

phase boundary, and a positive unit normal A may be defined arbitrar-nE 

ily. We shall assume without loss of generality that U· n E is 

positive. The jump [F] E is then the difference between the limiting 

values of F when E is approached from its positive and negative 

sides successively. 

Note that the presence of the third term in (1-1-3) is required 

in order to satisfy boundary conditions on E This term disappears 

if E is not a discontinuity, for the jump appearing in the integrand 

vanishes in that case. This term also disappears if on both sides of 

E(t) the vector V- U is tangential to E in this circumstance there 

is no transport of F across the discontinuity. 

The transport theorem can then be used to derive the conservation 

equations. It is shown in Appendix 1 that if a quantity F is 

conserved, then at all points of the continuum where the flow is regular 

we have 

dF + F V • V = k(x, t) 
dt x 

(1-1-4) 
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aF + V • (FV) = k(x,t) at (1-1-5) 

Here k(x,t) is the (local) rate of production (or destruction) of F 

It is thus a volumic source density of F and represents the effects of 

sources or sinks of F present in the medium. 

In addition, along surfaces of discontinuity, the conservation 

theorem takes the form of the jump condition 

(1-1-6) 

Here kE(xE,t) is a surficial density of source of F on the discon­

tinuity. Note that if the volumic source density is of the form 

k = V • K then at a discontinuity E the surficial density kE must 

include a term of the form [K' nE] E (see Appendix 1). The source 

terms on the right-hand sides of equations (1-1-4) to (1-1-5) are 

additive and thus when several mechanisms occur which generate F 

their effects can be considered separately. We now turn to some special 

forms taken by these equations in particular cases. In all cases we 

shall formulate the conservation equations so that they may be directly 

compared to the general forms (1-1-4) to (1-1-6) 

I-I-a) Conservation of mass 

Since one always assumes in continuum mechanics that no mass is 

either created or destroyed, the conservation of mass may be expressed 
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by direct application of (1-1-4) If P is the density of the 

material , we have, away from discontinuity 

o (1-1-7) 

This is the continuity equation. At a discontinuity, (1-1-6) becomes 

(1-1- 8) 

which is the standard jump condition of shock wave theory. 

Note that, by virtue of (1-1-7) ,if the quantity F is of the 

form F = pG ,where G is termed the "density of F ," then 

dF + F V • V 
dt 

and (1-1-4) becomes 

dG 
P dt = k(X,t) 

d(pG) + pG V .V 
dt 

This relation will prove useful in many cases. 

I-I-b) Conservation of linear momentum 

dG 
P dt 

(1-1-9) 

Here we assume that Cauchy's stress principle holds: The inter-

action of the material lying outside a volume V with the material 

within V may be represented by the tractions acting on the boundary 
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s of v , with outer normal ~ 

n Thus if T is the stress tensor , 

the tractions acting on S are t = T· n ,where the dot product on the 

right-hand side is taken to mean the contraction Tijnj The 

conservation of linear momentum is expressed by equating the rate of 

change of p to the forces acting upon the material . Using the form 

of equation (1-1-4) we have 

pLv 
dt 

dCpV) + 'V • (pV®V) = p f + 'V • T at • (1-1-10) 

Here f is the body force density, and the symbol ® is used to denote 

the tensoria1 outer product, so that V0V is a symmetric dyadic. In 

component form, (1-1-10) reads 

dV
i p-= 

dt 
+ (pViV.) . = 

J ,J 

This is the equation of motion for a continuum. 

(1-1-11) 

At a discontinuity E(t) carrying no externally applied surficial 

force density, (1-1-6) yields 

(1-1-12) 

or, in component form 

(1-1-13) 
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For the case of a fluid , where is the Kronecker 

delta, and (1-1-13) reduces to the usual jump condition encountered in 

shock wave t heor y in fluids. 

I-I- c) Conservation of angular momentum 

We are only concerned here with non-polar media , for which Newton's 

third law holds in its strong form . In other words , we assume that no 

body couples are present. If t his were the cas e , the medium would have 

t o be treated as a Cosserat c ontinuum, (see, e.g . , Malvern , 1969, for a 

more ex tensive discussion and a bibliography on the theory of multipolar 

media) . Then we express the conservation of angular momentum by 

equating the rate of change of p r x V to the moment of all the forces 

present, with respect to the origin 

write, away from discontinuities 

r is the position vector We 

P ~t (r x V) = ~ t (p r x V) + 'i/ • [p(r x V) 0Vl = p r x f + 'i/ • (r xT) 

(1-1-14 ) 

where, by a s l ight abuse of notation, we define by r x T the 

antisymmetrized tensor product Eijk Xj Tik ,since no confusion can 

arise. The symbol E
ijk 

represents the usual permutation tensor 

defined by 

= 0 if any two of (i,j , k) are equal 

1 if (i,j,k) is an even permutation of (1,2 , 3) 

-1 if (i,j,k) is an odd permutation of (1,2,3) , 
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In component form (1-1-14) becomes 

a 
at (PEijkXjVk) + (PEijkXjVkVl),l = PEijkXjfk + (EijkXjTlk),l 

(1-1-15) 

Noting that dr 
dt 

, and , we can write the left-hand 

side of (1-1-14) as P r x ~~ ,and replace it by use of the equation 

of motion (1-1-10) (1-1-14) becomes then 

rx (V oT) = V 0 (rxT) 

or, in component form 

But, because xj,l = 0jl this reduces to = 0 or 

o (I-1-16) 

This is the usual result for non-polar media: the conservation of 

angular momentum, away from discontinuities, requires the skew-symmetric 

part of the stress tensor to vanish. The stress tensor is thus 

symmetric. 
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At a discontinuity E(t) , carrying no externally applied surface 

force density or surface couple density, we have, by direct comparison 

with . (1-1-6) 

(1-1-17) 

or 

(I-I-IS) 

This condition has to be satisfied at discontinuities of the flow if 

angular momentum is to be conserved. 

I-I-d) Conservation of energy 

The kinetic energy density is 1. pV· V . we denote the internal 
2 ' 

energy density by pu, where u is the specific internal energy of the 

medium (per unit mass). The total energy density pE = pu + ! p V • V 
2 

is conserved. This is expressed by use of the first law of thermodynam-

ics. Casting the equation in the general form (1-1-4) ,we have, away 

from discontinuities, 

P dE = ~(PE) + 'V. (pE V) 
dt at 

p f· V + ph + 'V • (V· T - q) 

(1-1-19) 

Here h is the heat source density, q is the heat flux vector, and 

V·T indicates the contraction In component form, 

(1-1-20) 
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At a discontinuity L devoid of any externally applied surface 

forces and of surface heat source density, (1-1-6) special izes to 

[PE(V-U)' ill:] I: 
; [( V·T - q) • ill:] I: (1-1-21) 

or • 

~E(Vi - Ui ) ni] 
; [(V.T .. - q.) n~ 

J ~J ~ I: 
I: 

• (1-1-22) 

This is the condition prevalent across discontinuities of the flow. It 

allows for transformation of internal energy into kinetic energy across 

the boundary and vice versa. In fact the quantities hand q may be 

generalized to include other forms of energy as well (e.g., electro-

magnetic energy; see Malvern, 1969). The condition (1-1-22) prevails 

even if energy is transformed from one form into another across I: 

If the state of the material is known, along with the flow, within 

two regions of the medium separated by a discontinuity I: ,and if the 

conditions are satisfied for the conservation of mass and momentum, then 

equations (1-1-19) and (1-1-21) can be (theoretically) solved for 

11 , the velocity of the boundary. One has to know the quantity of 

pE liberated (or absorbed) at the crossing of I: This is the 

generalized form of the problem of Stephan, discussed by Carslaw and 

Jaeger (1959, Chapter XI). The problem is greatly simplified if the 

medium is at rest. O'Connell and Wasserburg (1972) solve an analogous 

problem. We shall come back to this particular problem in Chapter III . 

If we isolate the kinetic energy term on the left-hand side of 

(1-1-19) we get 1 P ~(V'V) 
2 dt 

; pV' dV 
dt 

By use of the equation 
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of motion (I-l-11) this reduces to V' [p f + 1/ • T ] It is more 

convenient to evaluate this quantity in component form . We have 

pV . fi + V . Ti . . 
~ J J, ~ 

pV .f . + (V. Ti .) i - D . . Ti . 
~ ~ J J, ~J J 

where is the deformation tensor defined by Dij = V(i , j) 

is thus the symmetric part of Vi . 
,] 

and if we write 

then the skew symmetric tensor Qij is the vorticity tensor. 

By combination of (I-1-19) and (I-1-23) and using the 

definition of total energy, we obtain 

P du = d{QU) + 1/ . (pu V) D: T + ph - 1/ • q 
dt dt 

or 

p du = d{QU) + (puV i) i = DijTij + ph - qi,i dt dt , 

(I-1-23) 

(I-1-24 ) 

(I-1-25) 

(I-1-26) 

This is the usual "energy equation" (e.g., Malvern, 1969). We nrust 

note , however, that this is not a conservation equation because pu 

the internal energy , is not a conserved quantity . Therefore, we cannot 

write a jump condition analogous to (I-1-6) in that case . Carslaw 

and Jaeger point out that (I-1-26) is merely the differential equation 

of conduction of heat in a moving medium (Carslaw and Jaeger, 1959 , 

p. 13) . The appropriate equation to be used at discontinuities is 
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(1-1-22) , because the total energy is indeed a conserved quantity. 

The term on the right-hand side of (1-1-26) represents the 

energy dissipated by internal deformation of the medium. It can be 

evaluated if a specific constitutive equation is assumed to hold for 

the medium under consideration. For example, in the case of a viscous 

fluid T i · = -POi' + n .. 
J J 1J 

where is the viscous stress, then 

(1-1-27) 

the dissipation function. We shall not discuss here the forms of 

various constitutive equations of interest . 

Let us consider the jump condition (1-1-22) in greater detail. 

If the flow velocity V is continuous, then by (1-1-8) the density 

P is continuous, and by (1-1-13) the tractions across E are 

continuous. Then the kinetic energy terms on the right-hand sides of 

(1-1-22) do not give any contribution to the jump, and we get 

But because the specific volume is continuous across· E , the jump in 

the internal energy reduces to the jump in enthalpy . The interpreta-

tion is clear if E is a phase boundary: is then the latent 

heat of transformation (per unit mass) This latent heat is 

understood in an algebraic sense, and corresponds to the transformation 

of material from the state on the positive side to the state on the 
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nega tive side of 1: · We write 

pi (V-U) • = - (1-1-28 ) 

This reduces to the boundary condition use by Carslaw and Jaeger for the 

solution of Stephan's problem. For a medium at rest , and in the one 

dimensional case, (1-1-28) reduces indeed to 

(1-1-29) 

Another special case of interest is that where V - U is tangent 

to the surface 1: Then (1-1-22) yields 

(I-I-3D) 

where the ti's are the components of traction on 1: The obvious 

interpretation is that the jump in the normal heat flux balances the 

work done by the tractions on E --in particular, frictional work. 

I-I-e) The entropy equation 

Let us assume that the continuum admits a caloric equation of 

state of the form 

(1-1-31) 

where u is the specific internal energy, s the specific entropy, 
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and the y 's 
i 

are a set of thermodynamic state variables. We assume 

that the medium is homogeneous , so that the functional dependence 

(1-1-31) is the same for all particles. Defining the thermodynamic 

temperature by T = (au) 
as y and the thermodynamic tensions by 

Y = (~) 
i aYi s 

then for reversible processes we have the Gibbs relation 

The Y ' s 
i 

du = T ds + Yid:y. 
- 1. • 

are sometimes referred to as generalized forces , and 

as generalized displacements. 

(I-1-3 2) 

Of special interest to uS will be the case of the elastic solid , 

then 

I 
(1-1-33) 

where G
ij 

is the elastic stress tensor, and where is the 

infinitesimal strain tensor. For an inviscid fluid, this reduces to 

du = 'r d s - P dv (1-1-34) 

where p is the pressure and v the specific volume. 

The general theory can be found for example in Truesdell and 

Toupin (1960), and a succinct exposition in Malvern (1969). In the 

absence of viscosity or any nonlinear phenomena, elimination of u 

between (1-1-33) and (1-1- 25) yields 
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ds 
pT d t = ph - V • q (1-1-3 5) 

away from discontinuities . 

For the 'Case of a viscous fluid the dissipation function 4> 

(defined in 1-1-27) appears on the right-hand side and we have 

ds 
pT dt ~ 4> + ph - V • q (1-1-36) 

This is the entropy equation. 

However, the second law of thermodynamics yields the Clausius -

Duhem inequality 

q 
T 

(1-1-37) 

This inequality means that the rate of increase of entropy is greater 

than or equal to its rate of input in any arbitrary volume (see Malvern, 

1969). Combining (1-1-36) and (1-1-37) we get 

, , (1-1-38) 

for which it is sufficient to assume (Truesdell and Noll, 1965) 

4> > 0 
(1-1-39) 
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In order to sa tisfy the second of these inequalities, we shall assume a 

constitutive equation of the form 

Xi·T . J , J 
(1-1- 40 ) 

This is the law of heat conduction in an anisotropic medium (Carslaw 

and Jaeger, 1959). We shall further assume that the conductivity tensor 

Xij satisfies the Onsager reciprocal relation Xij = Xji (e.g., 

Malvern, 1969) and that the matrix X
ij 

is positive (Landau and 

Lifchitz, 1967) . 

If we go back to the caloric equation of state, it follows from 

(1-1-31) and the definitions leading to (1-1-32) that the tempera-

ture is a function of the thermodynamic state T = T(s'Yi) 

assume that this relation is invertible, then s = s(T'Yi) 

But 

ds (as) dT + (as_\ dY i 
dt = aT Yi dt 3YJr crt 

As an example, we treat the case of an elastic solid, then 

ds = (as) dT + (as \ deij 
dt aT eij dt aei / T dt 

(as) ct 0 
aeij T = K.r ij 

If we 

Thus 

(1-1-41) 

where C is the specific heat at constant volume, ct the coefficient 
v 
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of thermal expansion, and ~ the isothermal compressibility 

coef ficient (e . g. Landau and Lifchitz, 1967) Further 

= V .. 
~,~ 

, so that the combination of (1-1-35) , (1-1-40) 

and (1-1-41) yields 

pC dT + aT V 
v dt ~ i , i 

(1-1-42) 

the equation of heat conduction in an elastic solid. This equation takes 

various forms when derived for different materials (Stokesian fluids, 

etc ... ) and when different state variables are chosen. We shall refer 

the reader to the literature for the various cases usually encountered, 

since the example (1-1-42) suffices for our present purposes. 

Similarly we shall not discuss here the equations of thermo-

elasticity, since they require a choice of constitutive equations and 

thus a specialization of the material . 
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1-2 Green's theorem and the elastic operator 

The general equation of motion in a continuum (equation 1-1-11) 

exhibits a nonlinear term of the form (pV.V . ) .. --the convective term. 
~ J ~J 

For that reason, flow solutions to boundary value and initial value 

problems cannot be expressed by superposition of a particular solution 

to the inhomogeneous equation and the general solution of the homo-

geneous equation, ~ fortiori by a Green's function or a Green's tensor 

solution. In the other hand, for the case of an elastic continuum 

undergoing infinitesimal strains, equation (1-1-11) is usually 

linearized. The (vector) wave equation so obtained can then be solved 

by determining its Green's tensor for the problem at hand. 

Discussion of Green's tensor and Green's tensor solution will be 

the object of section 1-3. However, we need before hand to derive the 

generalized Green's theorem for the elastic operator. 

Let us denote the cartesian coordinates of a particle in an elastic 

medium with respect to an arbitrary (cartesian) reference frame by 

Xi' i = 1,2,3, The displacement of this particle away from its 

reference--in general, equilibrium--position is represented by the 

vector U (x,t) ,of components ui(x,t) , i - 1,2,3 

By linearization of the equation of motion (1-1-11) we obtain 

(1-2-1) 

Since we want to solve (1-2-1) for the u 's 
i 

, we must relate the 

stress tensor Tij to the displacement through some constitutive 

equation. The infinitesimal strain tensor 1s given by 
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e . . 
~J 

(1-2- 2 ) 

and the generalized Hooke's law then reads 

a . . 
~J 

(1-2-3 ) 

where denotes the elastic stress tensor. 

If the cartesian tensor Cijk£ --the elastic tensor- -satisfies the 

symmetry conditions 

(1-2-4) 

then (1-2-3) reduces to 

(1-2-5) 

We can therefore rewrite (1-2-1) as 

(1-2-6) 

If we now consider the time t as a fourth coordinate, so that the 

ordered couple (X,t) is in fact the order quadruplet (xl ,x2,x3 ,x4) 

we can extend the three dimensional Euclidean space in which 
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displacements are measured into a four-dimensional Euclidean space. We 

should note here that we are not defining a space-time in the 

relativistic sense, that is, we do not assume a Lorentz metric. Time 

is still considered in a Newtonian sense. 

We shall make the convention that Latin indices (i,j, . •• ) take 

values 1,2,3 ,while Greek indices (a,S, ... ) take values 1,2,3,4 

By keeping a Newtonian notion of time , we cannot allow any 

arbitrary transformation of the coordinate system. In fact, time has 

to be independent of the spatial coordinates and we must restrict the 

orthogonal coordinate transformations to those of the form 

x = A oXo + B 
a a"" a 

(I-2-7) 

Here the space-like part of the matrix is orthogonal and 

represents an orthogonal transformation of the space coordinates, but 

where a is a scalar and 0a4 the Kronecker 

delta. In other words, the only time transformations allowed here are 

translations of the origin and changes of scale. Under these specific 

restrictions we seek to rewrite (I-2-6) in the form 

(c u ) - pf aSyo y,o ,S - a 

It is sufficient for this purpose to define 

array C
aSYo 

by 

u = f = 0 4 4 

(I-2-8) 

, and the 
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C = - Cijkt aflyo for a,fl,y,o = 1,2,3 

ci4k4 c4i4k 
= P 0ik (I-2-9) 

caflyo 0 otherwise 

Thus Ca flY 0 possesses the symmetries 

(I-2-l0) 

similar to (I - 2-4) will transform as 

cartesian tensors under transformations of the type (I-2-7). But we 

must emphasize again that these are not the most general orthogonal 

coordinate transformations on the four-dimensional Euclidean space that 

we have just constructed, and Caflyo will not be a cartesian tensor on 

that space in general. 

Except for the fact that (I-2-8) has to be linear, there are no 

restrictions on the C aflyo and they may be functions of the coordinates. 

Equation (I-2-8) is a very compact form for the equations of motion, 

we rewrite it as 

(I-2-11) 

This defines a vector value~, second order linear differential operator, 
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which, when applied to a space-like vectOr U yields a space-like 

:vector p f Defining 

we have 

or 

£?'u 

pf 
CL 

pf 

(1-2-12) 

(1-2-:13) 

(1-2-14) 

We shall henceforth call ~ the elastic operator. (Kupradze, 1963 , 

defines the "elastic operator" in an analogous fashion in the frequency 

domain). Stakgold (1968) shows how the definition of such operators 

can be extended to include differentiations in a distributional sense. 

In fact, one can define the operation of .£?' on a space-like tensor . 

If W is a space-like tensor (1. e., without any time-like component), 

it satisfies 

(1-2-15) 

Then ~W is a space-like tensor given by the contraction 

~ W , where other conventions can be chosen as to which 
I-lCL CL S ... A 

subscript is to be contracted. 

Now, given a time-dependent spatial volume Vet) bounded by a 

surface Set) , and a time interval [t
l
,t

2
) , we can define a four­

volume Q in the space-time. Given two space-like vectors u(x
CL

) 
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and V (x
a

) ,the integral 

(1 - 2-16) 

defines an inner product of the two vectors. Further (u, U)" is · 

positive and vanishes only with u = 0 , and the triangular inequality 

holds 

(1-2-17) 

so that this inner product may be used to define a norm on the space. 

In addition, because the space is flat , the integral of a tensor 

is a tensor, and we can define the quantity 

(1-2-18) 

where G
ik 

is a space-like tensor, so that the quantity defined is a 

space-like vector. If G
ik 

is a two-point tensor Gik(X,X' ) ,we 

have to specify the variable of integration on the right-hand side of 

(1-2-18) : 

x' f Gik(X,X' ) 
4 

(G ,u)" = ui(x' ) d x' 

" (1-2-19) 
x 

(G ,u)" = f Gik(x,X' ) 
4 u i (x) d x 

" 
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The first definition yields a vector function of x ,and the second 

one a vec tor func tion of x I If G (x, x') is synnnetric in x and 

x' ,then clearly both definitions are completely equivalent. 

To define the formal adjoint .5!' * of the operator !i! , we 

proceed as in the scalar case (e.g., Stakgold, 1968), and compute 

~,V)n by an integration by parts. We have 

(1-2-20) 

To integrate by parts, we simply note that, 

(1-2-21) 

But because of the synnnetry properties (1-2-10) 

(1-2-22) 

However, the indices ~ ••• o are dummy indices and can be renamed, thus 

-v C U :-u C v 
~,B yo~B y,o ~,B aBYo y,o (1-2-23) 

But by simple comparison with (1-2-21) 

- u eVE u (C v ) - (u C v ) a,B aBYo y,o ~ ~BYo y,o ,B ~ ~Byo y,c ,S (1-2-24) 
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Combining equations (1-2-21) through (1-2-24) we finally get 

v (C u ) = u (C v ) + (v C u - u C v ) a aSYo y,o,S a aSyo y,o ,S a aSyo y,o a aSYo y,o ,S 

and, by replacing (1-2-25) in (1-2-20) 

c.2"u, v) 
it 

= / [u (C Q ,v,) Q + (v C Q ,U • a a.,yu y,u ,., a a.,yu y,u 
it 

(1-2-25) 

u C v d ] 
4 

a aSyo y,o),s x 

(1-2-26) 

Therefore we can define the formal adjoint ~. by rewriting this as 

/J d 4x 
S,S 

it 

(1-2-27) 

J S is the bilinear concomitant of u and V , and (1-2-27) is the 

sought generalization of Green's theorem. From (1-2-26) it is evident 

that Sf'*= Sf' we say that .sf is formally self adjoint. 

It is important at this point to note that J
S 

has a time-like 

component . We recall that in (1-2-7) we had to restrict the allowable 

coordinate transformations on our space-time. In fact, the array J S 
would not in general transform as the components of a vector under the 

most general orthogonal mapping in the four-dimensional space-time. 

For this reason, we shall treat time as a special coordinate, and write 
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(1-2-28) 

Gauss' theorem is readily applicable to the first integral on the right-

hand side of this equation, we have 

f J d3x i,i 
V(t) 

(1-2-29) 

Here we have distinguished between S(t) , the external boundary of 

V(t) , and E(t) , representing all internal boundaries. If E(t) 

presents a surface of discontinuity of the fields U and V , or of 

the operator ~ , then the integration will have to be taken on both 

sides of this discontinuity. In such a case jumps can be defined in 

the same manner as in Appendix 1 or in section I-I. The array n
i 

represent the components of the (space-like) outer unit normal to the 

various boundaries. The geometry is described on figure 1-2-1. 

We can expand the product Jjnj 

_ u t(v) v t(u) 
ii - i1. 

and write 

(1-2-30) 
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A A 

,n,£= np l:+(t2) 

(D) 

Figure 1-Z-1 . Geometry of the four-volume n . xi and ~ are 

spatial coordinates, x4 is the time coordinate. The geometry is 

shown (in two dimensions) at times tl and t z . 
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where t~u), t~v) are the tractions on the boundaries associated with 
~ ~ 

the displacement fields U and V respectively. With reference to 

figure (I-2-1) we may thus write 

!J .. 
~,~ 

n 

. (I-2-31) 

The last term in (I-2-28) can be evaluated separately . Using the 

definition (I-2-9) for the coefficients we have 

f (I-2-32) 

Vet) 

The volume integral may now be evaluated by using the generalized 

transport theorem proved in Appendix 1 (equation A-1-14), conveniently 

recast in the form 

f a 
at 

3 1 d x - lU n da 

V (t) V (t) S(t)+l":(t) 

(I-2-33) 

Here the bracket is the same as the one appearing in the integrand on 

the right-hand side of (I-2-32), and can be thought of as a function 



-38-

of the flow since it is a function of both position and time which can 

be attached to each particle in the medium. U is the velocity of the 

boundary over which the surface integral is taken . 

Combining (I-2-27) ,(I-2-31) (I-2-32) and (I-2-33) 

we have the generalization of Green's theorem in the form 

f 

f [
u t(v) 

i i 
S(t)+L(t) 

[ 
aUi 

pv - - ­
i at 

S(t)+L(t) 

f ( 
aUi aVi) 3 

pv .- - pu -- d x dt i at i at 
Vet) 

n da 

(I-2-34 ) 

Here we have extended the definition of a jump to the case of external 

boundaries, where the value of a jump is simply the limiting value of 

the quantity under consideration when the boundary is approached from 

the inner side. 

Equation (I-2-34) can be compacted by noting that the linearized 

form of the jump condition (I-l-13) is 

t (U)] = 0 (I-2-35) 
i E 

Making use of this relation in (I-2-34) yields 
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f (1-2-36) 

V(t) 

The last integral in this equation has to be understood as a Stieltjes 

integral, that is, it is of the form Jt
2 dF 

tl 

where 

If the functional F is continuous, the last term reduces to 

We shall see in the next section that the terms involving surface 

integrals on the right-hand side of (1-2-34) are useful in solving 

boundary value problems. Similarly the last term, involving a volume 

integral is particularly useful in solutions to initial value problema. 

In elastostatics, time is absent from equatIon (I-2-34) and 
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this equation reduces to Betti's formula (e.g., Kupradze, 1968 , or Ben ­

Menahem and Singh, 1968). 

In concluding this section, we note that the time coordinate could 

be handled in the same way as spatial coordinates up to equation 

(1-2-27) The reasons why we subsequently gave it as separate treat-

ment stem mainly from the Newtonian notion of time that we kept 

throughout. The analysis presented here can undoubtedly be extended 

to other geometries (e . g . , pos sibly to relativistic problems), for 

linearized problems . There are, however, theoretical subtleties and 

difficulties : for instance, how should one define the time-like 

components of the strain tensor? These problems lie outside the scope 

of the present work; attempts at their solutions will be undertaken in 

the future. 
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1-3 Green's tensor solutions to the linearized equation of motion in 

an elastic medium 

The linearized equation of motion in an elastic medium, which we 

wrote in the last section as 

(1-3- 1 ) 

is to be solved for U(xa ) ,if the operator .£7 and the body force 

density f are known. In addition to satisfying equation (1-3-1) 

the solution U will, in general, be required to satisfy boundary 

conditions and initial conditions. We shall denote symbolically these 

conditions by 

.!!#u = b (1-3-2) 

This equation is to be satisfied on the boundary an of the domain n . 

!if is an operator, b is a given vector function on an We 

shall represent symbolically homogeneous conditions by 

.!Jfu = 0 (1-3-3) 

We shall always assume that (1-3-2) and (1-3-3) represent proper 

conditions and that no incompatibility arises from them. 

Because of the linearity of the problem, the general solution to 

equation (1-3-1) can be written as the sum of any particular solution 
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and of the general solution to the homogeneous equation 

(1-3-4) 

We shall show in this section that the Green's tensor solution achieves 

precisely that goal. In a first step we shall define Green's tensor 

and show the system it satisfies; then by recasting (1-3-1) in 

integral form we shall derive the Green's tensor solution formally, and 

last we shall discuss it. For simplicity we assume the coefficients 

C
aSy6 

to be independent of time. 

i) Green's tensors 

We suppose that equation (1-3-1) is to be solved within a four-

dimensional volume n Given an arbitrary point X within the 
o 

domain n , we say that the space-like tensor 

is a fundamental solution of the operator 2 , with pole at Xo 

if it is any solution of the equation 

(I-3-5) 

where the space-like tensor 6ae is given by 
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(1-3-6) 

Here 6( x - x ) is the (four-dimensional) Dirac delta distribution. 
o 

Clearly gaS will present a singularity at X=X 
o 

, and ther ef or e 

will have to satisfy (1-3-5) in a distributional sense, (see e.g., 

Stakgold, 1968, for a more complete discussion of distributional 

solutions) . The normalization factor 4rr was introduced because it 

is convenient in the scalar case of potential theory (see e . g., Morse 

and Feshbach, 1953, chapter 7; see also Courant and Hil bert , 1966, for 

a discussion of the scalar case). 

But for boundary conditions requirements, gaS(X;Xo) is the a 

component of displacement in the medium at X caused by an impulsive 

force in the direction at X 
o 

For this reason we shall call X 
o 

the source point and X the receiver (or observer's) point. 

In a similar fashion one defines fundamental solutions of the 

(£7 * 
adjoint operator ~ by 

(1-3-7) 

In order to generalize the notion of adjointness, we have to discuss 

the effects of initial and boundary conditions. Morse and Feshbach 

(chapter 7) give a general discussion of the problem; we shall restrict 

ourselves to the essential points. 
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pf 
ex 
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(I-3-8) 

with homogeneous boundary conditions. (This system is to be distin-. 

guished from equation (I-3-1) .) Following Stakgold (1968), we call 

V the set of all twice differentiable functions u that satisfy 

the conditions $u ~ 0 Let V* be the set of all twice 

differentiable functions V such that 

( ..:i"'u,V) (u, .!Z'!*v ) (I-3-9) 

Then from the results of section I-2, the fields V have to sstisfy 

n;,.*V a set of conditions ~ ~ 0 

adjoint system is then 

We saw earlier that if 

pf 
ex 

self-adjoint. If, furthermore, V 

termed the adjoint conditions. The 

(I-3-10) 

, the operator !t! is formally 

V* and .9! = .91* 
then the system (1-3-8) is said to be self-adjoint. 

We can now define the Green I s tensor G Q (X ; X ) 
ex" 0 

for the 

completely iru1omogeneous problem 



pf 
a 
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(1-3-11) 
; 

it is the fundamental solution of Jt? satisfying the corresponding 

homogeneous conditions, that is 

(1-3-12) 

Similarly the adjoint Green's tensor is defined by 

(1-3-13) 

The most fundamental property of the Green's tensor is the reciprocity 

relation which we now prove. 

From the definitions (1-3-12) and (1-3-13) we have 

(1-3-14) 

where the inner product is taken with respect to x (cf. section 1-2) . 

But if we write 

U' G (x'x)-
../, ay ctfl ' 0 

I1
Q
(X;X) 

a" 0 
, 
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and use the definition of liaS given by (1-3-6) , we can rewrite 

(1-3-14) as 

Since Xl is arbitrary, we have 

(1-3-15) 

This is the reciprocity relation. If the system (1-3-12) is self-

adjoint, we have 

(1-3-16) 

and, in that case, Green's tensor is symmetric in X and Xo 

In the general case, physical problems are not self-adjoint, and 

symmetry relation (1-3-16) is not satisfied. One has then to use the 

general reciprocity relation (1-3-15) However, for problems in the 

mechanics of continuous media, it is customary to make an additional 

physical assumption, namely that the causality principle has to be 

satisfied. The effect of this assumption is to reduce the class of 

acceptable solutions to those for which time flows in a particular 
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direction. Io/e shall now see how it affects the Green's tensor: The 

Green's tensor is usually required to be "causal" (e.g., Morse and 

Feshbach, 1953). For macroscopic events it is reasonable to assume that 

the flow of time is unidirectional, so that if an impulse source occurs 

at t no effect should be felt anywhere at an earlier time t < t 
o 0 

Here again time plays a special role, and we write x = (r ,t) 

where r is the spacelike part of the vector position X Then for 

a causal Green's tensor 

G Q ( r , t; r ,t ) _ 0 for t < t 
ClIJ 0 0 a 

(1-3-17) 

We observe immediately that the causal Green's tensor does not satisfy 

(1-3-16) since one side of the equation or the other vanishes identi-

cally if t f t o 
However, since we assumed the coefficients CaByo 

to be independent of time, equation (1-3-1) does not imply any 

directionality of time. Therefore, by reversing the flow of time while 

exchanging source and receiver, we can obtain a reciprocity relation of 

the form 

G Q( r ,t; r ,t ) 
ctlJ 0 0 

r , 
o 

- t . r - t) 0' , (1-3-18) 

By comparison of (1-3-18) and (1-3-15) ,one sees therefore that 

the causal Green's tensor satisfies 

t ) = G Q ( r, - t; r , -t ) 
o <XIJ 0 0 

(1-3-l9) 
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~ch is the result of Morse and Feshbach (1953). 

One sees at this point that the causality requirement has rather 

profound consequences on the nature of the Green's tensor (and thus on 

the solution). Its symmetry in the time coordinate is fundamentally 

different from its symmetry in the space coordinates. This means that 

when a condition is imposed upon a solution along a time-like part of 

an (such as an initial value condition), then since (1-3-16) cannot 

be satisfied, the problem is not self-adjoint. Stakgold (1968) points 

out that initial value problems are never self-adjoint. 

The general reciprocity relation (1-3-15) is very useful for the 

solution of source problems. So far we have always assumed that the 

operator Y was applied at the receiver point X All operations 

were carried with respect to the coordinates xa However, the 

intuitive notion of a Green's function solution, as expressed in the 

introduction to this chapter, calls for the superposition of the effects 

of all sources. One thus expects to integrate these effects over the 

source coordinates. For this reason we wish to find the equations 

G Q(X; X) 
a" 0 

and as a function of the source satisfied by 

coordinates. If we define 

(1-3-20) 

as the operation of over u at , then from (1-3-15) we 

see that 
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!lI *o G = 0 
(1-3-21 ) 

and 

(1-3-22 ) 

are the systems satisfied, where all operations are carried on the 

source coordinates. 

The system (1-3-21) is that needed for a formal derivation of the 

Green's tensor solution, which we present next. 

ii) Green's tensor solution 

The system (1-3-11) must be satisfied everywhere in n in 

particular, at any point we have 

in n, 
(1-3-23) 

b (X ) 
o on an. 

Further the Green's tensor Gye(X; '(0) satisfies (1-3-21) as shown 

above. We wish to apply the generalized Green's theorem (1-2-36) to 

the solution u (xo) and the fundamental solution Gye(X; '(0) 

For this purpose we need a few preliminary remarks. 
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Firs t, just as is the component of displacement 

generated at " by an impulsive force acting at )Co in the th 
m 

direction, similarly the space-like tensor 

(I-3-24 ) 

will be the (i,j) component of stress associated with this displace-

ment. 

Next, if we assume that the Green's tensor is causal--that is, 

for t < t -- then the upper limit on the time 
o 

integrals appearing in (I-2-36) can be changed to + 
t > t An 

upper bound + t is used instead of t to insure that the integration 

be performed over the closed interval [tl,tl ,in particular allowing 

t ~ t 
o 

(Clearly all operations will be carried with respect to the 

source coordinates, the receiver coordinates acting as parameters.) 

For simplicity we shall assume that t ~ 0 
1 

Third, by reference to the systems (I-3-21) and (I-3-23) ,and 

by the definition of the tensor ~aS given in (I-3-6) we have 

and 

(~o u ) G d 4x(o) ~ 
. . ay y as f 

Q 
• (I-3-25) 



-51-

Last, because the tensor GaB and the vectors u and f 
a a are 

all purely space-like, we may now restrict the range of the indices to 

(1,2,3) and thus use Latin subscripts . 

Then, applying Green's theorem in the form (1- 2-36) , we obtain in 

component form 

4rru (X) 
m [ pf. (X ) G1JIl. (X 

fl ~ 0 

dt 
o f { (Uij + 

S (t )+1: (t ) 
o 0 

f 
V (t ) 

o 

(
pu aGim _ 

i at 
o 

aU i ) d3x(o) 
pG im at 

o 

(1-3-26) 

Here according to the conventions of section 1-2, S (t ) 
o 

represents the 

external boundary of Vet ) o and l: (t ) 
o 

an internal surface of discon-

tinuity oriented by an arbitrary choice of its unit normal direction . 

The jump notation [F] E represents the difference between the 

limiting values of F when l: is approached from the positive and 

negative side successively. On an external boundary the jump will be 

taken as the value of F when S is approached from within V We 

must emphasize again that all operations appearing in the various 

integrands of (1-3-26), including the computation of the stress 
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tensor, are performed with respect to the source coordinates. 

For convenience let us rewrite (I-3-26) as 

47fu (X) = 47fu(P) + 47fu(b) + 47fu(i) 
m m m m (I-3-27) 

We shall refer to (I-3-26) as the formal Green's tensor solution to 

the elastic problem. At this point we have not made explicit use of 

the boundary conditions in systems (I-3-2l) and (I-3-23) ,and 

(I-3-26) is an integral equation in u if G is given as a 

fundamental solution . 

To understand the nature and mechanics of Green's tensor solutions , 

we shall now analyze the formal equation (I-3-26) in greater detail . 

Two important questions are raised : 1) if u satisfies (I-3-26) 

does it satisfy the linearized equation of motion (I-3-l) ? and 

2) how are the boundary conditions satisfied by use of this formalism? 

To answer these questions, let uS operate with Sf? at the 

receiver point X on both sides of (I-3-27) Because in (I-3-26) 

X is treated as a parameter, the operation of the elastic operator 

can be carried directly on the integrands . The only function depending 

on X is the Green's tensor and we know that 

Thus we can operate with ( ".'" ~. successively on the three terms that 

make up the right-hand side of (I-3-27). Operating on the f irst te rm, 
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one gets immediately 

pf (1-3-28) 

This shows that u(p) is a particular solution of the inhomogeneous 
m 

equation. We therefore expect the additional terms to satisfy the 

homogeneous equation. From equation (1-3-26) it is clear that u(p) 
m 

is a weighted superposition of fundamental solutions, or impulse 

responses, where the weighting function is the body force distribution. 

This observation has led in various cases to the terminology of 

"influence function" to denote the Green's function, in particular in 

connection with electrostatic theory (e.g., Morse and Feshbach, 1953). 

We may note at this point that if the boundary conditions imposed 

upon the solution in system (1-3-23) are homogeneous, then since the 

Green's tensor satisfies the adjoint system, by definition (b) 
u 

m 
and 

(i) 
u 

m 
vanish identically and u (X) = u (p) (:X) 

m m 
Their presence is 

thus intimately related to the presence of inhomogeneous conditions. 

Furthermore, when the body force density f vanishes identically, 

only )b) and (i) are present , and must therefore satisfy the u m m 

homogeneous equation. 

We now turn our attention to the second term in (1-3-27) 

namely u(b) From equation 
m 

(1-3-26) 

(b) 

we see that the application 

of S/' at the point X upon u 
m 

will yield a non- zero answer 

only if )C belongs to a boundary (external or internal) of the volume 

V(t ) 
o 

Thus 
(b) 

u 
m 

satisfies the homogeneous equation 

at every point within the valume Veto) Since the integration is 
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performed over all the boundaries of Vet ) 
o 

, the boundary conditions 

imposed on u and on the Green's tensor can be used explicitly to 

compute 
(b) 

u 
m 

For brevity we shall confine our discussion to the 

two fundamental kinds of boundary conditions usually encountered in 

elastic problems. We shall use the terminology of Kupradze (1963). 

For boundary value problems of the first kind, the displacement 

jump 
[

u. ( r ,t )11 
1 0 0 JJ is specified. The Green's t ensor 

Set )H(t ) 
o 0 

then satisfies the adjoint homogeneous condition 

and we have 

41Tu (b) (X) 
m 

X)] 
o Set )+l:(t ) 

o 0 

dt 
o 

= 0 

3G im 
p ~ 

o 

where the integrand is known, so that we can compute 

(I-3-29) 

Similarly for boundary value problems of the second kind, the quantity 

is to be specified on the boundary. Then the 

Green's tensor satisfies the adjoint homogeneous condition 

on the boundary and we have in that case 



dt 
o 

-55-

Here again the integrand is known. 

(1-3-30) 

Thus we see that by using the boundary conditions imposed upon t he 

Green's tensor we have deleted all unknown quantities from the inte-

grand in the second term of (1-3-26) (Mixed boundary cond itions 

can be handled in an identical fashion.) However, this does not 

furnish a complete answer to the question raised above. Does the field 

u (b) (X) take the correct boundary value as the point X approaches 
m 

the boundary? The answer to this question is difficult t o obtain. 

Morse and Feshbach (1953) present a rather heuristic discussion for 

the scalar case. Kupradze (1963), working in the frequency domain, 

proves that it is true for the elastic equation in the case of 

stationary boundaries and of an homogeneous isotropic matrix with 

homogeneous isotropic inclusions. He uses the theory of multidimen-

sional singular integral equations, and obtains the answer as a 

consequence of generalized Tauberian theorems. For our present 

purposes we shall assume the answer to be true, without proof. A 

complete proof for the case of growing boundaries remains an out-

standing problem of the theory. 

In a last step we discuss the last term 
(i) 

u 
m 

It was pointed 

out in section 1-2 that this term is to be understood in the sense of 

a Stieltjes integral , that is 



where 

41Tu (i) 
m =I

t+ 

F (t) = 
m 0 
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dF (t ) 
m 0 

, 

so that we need only take into account such times t where 
o 

F (t ) 
o 

presents a discontinuous behavior. For the sake of simplicity we shall 

assume that F is continuous on 
m 

41Tu (i) (X) = 
m 

+ [o,t],sothat 

F (0) 
m 

(1-3-31) 

However, we assumed the Green's tensor to be causal so that it vanishes 

+ at to = t along with its derivative. Thus 

41TU(i) (X) = 
m f t aUi 

pG -­im at 
V(o) 0 

1m aG o J 
pU i ato 

t =0 o 

(1-3-32) 

It is now apparent that 
(i) 

u 
m 

depends explicitly on the initial 

conditions of the problem. Furthermore, if we apply the operator ~ 

at X throughout, it can be applied directly on the integrand on the 

right-hand side, and operates only upon the Green's tensor. The delta 

function and its derivative a 
- o(t - t ) at 0 

are thus 
o 

generated, and U(i) is a solution of the homogeneous equation 
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t = t = 0 
o Here again, when the initial 

conditions are specified, the integrand of (1-3-32) is known. 

Thus, whereas the formal Green's function solution (1-3-26) is 

in the form of an integral equation in u (multidimensional, and 

singular, as pointed out by Kupradze, 1963), when boundary and initial 

conditions are specified, all unknown terms disappear from the various 

integrands. Then the solution u (X) 
m 

is obtained by simple evaluation 

of the integrals; this combination of the formal Green's tensor 

solution with the limiting conditions is called the Green's tensor 

solution of the problem. 

iii) Discussion 

Having just derived the formal Green's tensor solution, we are 

now faced with the next logical step which is to construct the Green's 

tensor itself. Unfortunately, in most cases we shall not be able in 

general to take that step! 

The existence and the dyadic nature of the Green's tensor are 

discussed, for example, by Morse and Feshbach (1953, chapters 7 and 11). 

But because there are two wave velocities in an homogeneous isotropic 

elastic medium--the compressional and shear wave velocities--the 

determination of the Green's tensor for particular problems is often 

extremely arduous, or impossible. Morse and Feshbach (chapter 11) 

present a general formalism by which the Green's tensor can theoreti-

cally be obtained. In practice, even if it can be found, its use in 

computing the solution is often cumbersome and will necessitate 

numerical integration techniques. 
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For inhomogeneous media, the questions of existence and uniqueness 

of the solution to elastic problems have been investigated by Kupradze 

(1963). Working in the frequency domain , this author shows that the 

elastic boundary value problem has a unique solution in a composite 

medium (made up of an homogeneous isotropic matrix containing homo­

geneous isotropic inclusions). This is done for a variety of boundary 

conditions at the boundary between matrix and inhomogeneitie s . By use 

of the Green's tensor formulation he shows the complete equivalence of 

the elastic boundary value problem with the solution of a multidimen-

sional singular integral equation analogous to (1- 3-26) Finally , 

he describes how to obtain the solution by a numerical s cheme. Kupradze 

restricts himself to monochromatic stationary sources. Thus fo r 

separable sources (Archambeau, 1968) , the transient problem can be 

solved by a s imple convolution in the time domain, or a multiplication 

in the frequency domain. For nonseparable sources, such as t he 

sources presented in Chapter IV, one has to expand the radiation field 

in multipolar form and use a different excitation function f or each 

multipole, since the multipole coefficients are independent f unctions 

of frequency (Archambeau, 1968). 

For the case of anisotropic media the problem becomes even more 

complex. There are three real wave velocities in aeolotropic media 

(e .g ., Love , 1927) . Further , these wave velocities are func tions of 

the direction of propagation. Lifchitz and Rosentsveig (1947) derive 

the Green's tensor for the equations of static equilihrium 1. 0 a n 

aeolotropic medium and point out that even in this par ticul ar cas e , th e 

result is ve r y complicated . 
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A large number of quest.ions, on the other hand, can be answered 

without specific knowledge of the Green's tensor. In Chapter II, we 

shall show how the formalism leading to the formal Green's tensor 

solution permits us to investigate general , but fundamental, properties 

of the radiation field generated by a seismic source . However, a few 

additional properties of the Green's tensor can be discussed noW. 

Because it is the only practical case of interest, we shall assume for 

the remainder of this section that the material within V(t) is 
o 

homogeneous. In that case the Green's tensor satisfies 

C _ 3 __ 3_ G = A (I-3-33) 
crSye 3xa 3xe y~ cr~ 

Two observations can be made about (I- 3-33). First, we note that for 

the infinite domain the equation is invariant under translation and 

the Green's tensor is function only of (X - Xo) We can thus 

choose the origin of coordinates at the source point Xo The 

second observation is then that the right-hand side is an homogeneous 

function of the receiver's coordinates, of degree -4, since 

-4 e (a X) = a e (X) Thus since the left-hand side is a linear 

combination of second derivatives of G ,we can state that: for 
crll 

the infinite homogeneous domain, the Green's tensor is a homogeneous 

* function of degree -2 of the relative coordinates x 
Ct 

Now the Green's tensor for the infinite domain and that for any 

particular problem both are fundamental solutions of the elastic 

operator with pole at X . Therefore, they differ only by a regular 
o 
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solution of the homogeneous equation . This means in particular that 

for a · homogeneous medium, any Green's tensor behaves asymptotically as 

the Green's tensor for the inf ini te domain as I X - Xo I + 0 

One especially important case is that where the medium is further 

simplified and is assumed to be homogeneous and isotropic. We shall 

denote the Green's tensor for the infinite domain in that case by 

r as (X; :Xo) and because of its particular importance, we shall often 

refer to it as the fundamental solution for the unlimited isotropic 

homogeneous medium. In view of the foregoing discussion, it is worth-

while to enumerate several particular properties of raS ' in 

particular: 

1) r is a homogeneous function of degree -2 of the relative 

coordinates " (0) 
xa = xa - xa 

2) Because of the isotropy, r depends, in fact, on 

" and on t = t - t ; furthermore, 
o 

raS = rSa (e.g., Maruyama, 1963). 

3) Any Green's tensor in a homogeneous isotropic medium may 

be written 

(1-3-34) 

where is a regular solution of the homogeneous 

equstion (e.g., Morse and Feshbach, chapter II, 1953). 

4) Any Green's tensor in a homogeneous isotropic medium will 
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behave asymptotically as r a e in the vicinity of the 

pole Xo (e.g., Kupradze, 1963). 

5) When expressed in the frequency domain, it reduced in 

the limit of zero frequency to the classical Somigliana 

tensor of elastostatics (e.g., Ben Menahem and Singh, 

1968). 

For completeness, let us give r
mk 

explicitly (e . g., Maruyama, 1963) . 

* * r
mk 

(r ,t ) 1 {(l ) 1/ Iv s 
= p r * ,mk r * Iv 

p 

+.!..... 
* r 

* T o(t + T) dT 

+0 .!.....[.!.....o(t*+r*)] 
mk * V2 V r s 

s 

(1-3-35) 

where V and V are the P-wave and S-wave velocities respectively. 
p s 

The most important of the properties enumerated above is the third 

one. Indeed, rae represents the impulse response of the unlimited 

medium, and in any limited domain, for I X - xol small enough, the 

response is intuitively expected to be the same (cf. property 4). 

However, rae will not satisfy the proper boundary conditions to 

qualify as a Green's tensor . The perturbation gae is introduced 

precisely so that G
ae 

should satisfy the required boundary conditions. 

Since rae is known, the perturbation can be obtained for geometries 
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with sufficient symmetry as an eigenfunction expansion. If the 

perturbation can be shown to be small, it can also be obtained by a 

perturbation series (see any textbook on scattering theory for that 

purpose). 

In seismic source theory we shall be concerned with an infinite 

medium containing an internal boundary of small dimensions, such as a 

small cavity. If )(0 is not on this boundary, gaS then represents 

the field superposed onto raS to account for the presence of the 

boundary; it represents the scattered field. 

Methods for constructing the Green's tensor GaS largely depend 

on the particular problem at hand. We shall enumerate a few: 

1) Solution of an integral equation 

2) Method of images 

3) Eigenfunction expansion 

4) Transform methods 

5) Mapping in the complex plane 

6) Perturbation methods 

A description of these various techniques would obviously take us too 

far from the goals of this discussion. We shall, therefore, refer the 

reader to the literature, where abundant examples can be found for 

scalar cases in particular (e.g., Stakgold, 1968; Morse and Feshbach, 

1953; Courant and Hilbert, 1937; Maruyama, 1963; Haskell, 1964). A 

large number of solutions to the elastic problem in a half-space have 

also been compiled by Johnson (1973). 
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1-4 Green's function solution to the scalar wave equation - Potentials . 

We shall consider in this section the particular case of a 

homogeneous isotropic elastic medium. In this case, the tensor Cijk~ 

depends only on the Lame constants A and ~ The equation of motion 

(1-2-11) becomes then 

(I-4-l) 

We now define four scalar potentials Xa 1, ••• ,4 in the usual 

fashion 

X 4 = u~,~ (I-4-2) 

so that i = 1,2,3 are the cartesian components of the rotation 

vector potential, and X
4 

is the dilatation. Then, by taking 

successively the curl and the divergence of (I-4-l), we find that these 

potentials satisfy the scalar wave equations 

where 

1 

c = V 
i s 

i = 1,2,3 , and c = V 
4 p 

V 
s 

s- and P-wave velocities. The forcing term is given by 

(I-4-3) 

and V are the 
p 
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q. = ~ ~i ' k fk . 
~ m2 J oJ 

i = 1,2,3 , and 

s 

The Green's function solution to the scalar wave equation is then 

obtained by exactly the same procedure as was used in sections 1-2 

and 1-3. The generalized Green's theorem for the wave operator 

[] = ~ __ a __ V2 can be written in a form parallel to (1-2-36) 
c 2 at 2 

+ 1 
CT 

-i~ .+-h~u.)n.]da , ,1 C at 1 1 

( 1-4-4) 

Further, the Green's function G(r,t;r,t) a 0 0 
satisfies the equation 

r ) o(t - t ) 
o 0 

(1-4-5) 

By combination of (1-4-4) and (1-4-5) and noting that the wave 
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operator is formally self-adjoint, we obtain the formal Green's 

function solution in a form analogous to (1-3-26) 

411 X (r, t) 
CI 

dt 
o f ( t) G (t t ) d 3x(o) 

q r , r, ; r o ' 0 
CI 0 0 CI 

dt 
o 

V(t ) 
o 

f 
S(t )+E(t ) o 0 

f 
V(t ) 

o 

- X (" G + -h- :GCI u)~ CI 0 CI C at 
CI 0 

G 
CI 

dt o 

(1-4-6) 

In the case of stationary boundaries this result reduces to the usual 

form of the formal Green's function solution (e.g., Morse and Feshbach, 

1953). The discussion of the effects of boundary values and initial 

values is completely parallel to the discussion presented in section 

1-3 and will not be repeated here. 

Just as in the case of the vector wave equation, the last term in 

(1-4-6) is to be understood in the sense of a Stieltjes integral . 

Its evaluation in specific cases will be presented in Chapter II. 
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Conclusions 

We have shown in this chapter how the generalized transport 

theorem leads to both the usual conservation equations in continuum 

mechanics, and to the various "jump" conditions to be satisfied at 

flow discontinuities. The same theorem was applied again to derive 

the final form of Green's theorem in linear elasticity ; thus it was 

used specifically in the formulation of the formal Green's tensor 

solution in elastodynamics. We now have a powerful tool to solve a 

wide variety of elastodynamic problems. The specific solution will be 

obtained if the Green's tensor can be found. When this is not the 

case, the nature and the properties of the solution may still be 

investigated in many instances, by use of this formalism. Specific 

applications will be found in the subsequent chapters. 

However, we must point out a limitation of the present theory: 

the velocity U of the boundary E ,appearing in (I-3-26) and 

(I-4-6) has been supposed known, and is treated as a parameter of 

the problem (instead of an unknown) . As was pointed out in section 

I-I when we discussed the conservation of energy, the problem of 

solving for U is fundamentally an energy problem, and can be 

described as the generalized problem of Stephan. Caslaw and Jaeger 

(1959) point out that it is a nonlinear problem even in the simplest 

case of one-dimensional heat conduction. This means that it does not 

afford a Green's function solution . In fact, only the linearized heat 

conduction equation, in a medium with stationary boundaries, can be 

solved using a Green's function. This is done in various textbooks 

(e.g., Stakgo1d, 1968). 
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We shall therefore be obliged either to assume the evolution of 

the boundaries to be known, or to determine this evolution on the 

basis of another criterion, independent of the Green's function 

formalism. A more complete discussion of this question will be given 

in Chapter III . 
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Chapter II 

FAILURE AS AN INITIAL AND BOUNDARY VAlUE PROBLEM 

Introduction 

The purpose of this chapter is to link some of the physical 

characteristics of a failure process in a prestressed medium with 

appropriate mathematical formulations of the problem. In particular , 

we shall emphasize the fundamental similarities as well as differences 

between initial value and boundary value problems. An apparently 

rather trivial result is that, for a problem with a unique solution, 

two different mathematical formulations are totally equivalent. 

However, for reasons of simplicity or convenience, one is often led to 

make some approximations in computing the solutions. Obviously, it is 

desirable to make those approximations which afford some physical 

justification, rather than arbitrary ones. Thus, by choosing the 

adequate mathematical formulation and by making well founded approxima­

tions , it is possible to emphasize a particular physical characteristic 

of the phenomenon at the expense of another one. For example, we shall 

be able to exhibit in a simple fashion the effect of a bounded pre­

stressed zone, but in order to achieve simplicity we shall neglect the 

scattered fields generated by the rupture zone itself: we shall make 

the source "transparent . " 

The spontaneous (or induced) failure of an elastic material can 

be basically modelled by the creation of a new (internal) boundary 

within the medium. Appropriate boundary conditions are then required 
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along this boundary. For this reason one is easily led to treat the 

elastic radiation problem as a boundary value problem. The simplest 

kinematical representation of the radiation field is then obtained by 

specify ing the displacement time function on the rupture boundary. 

This method leads to the dislocation representation widely used in the 

seismological literature (e . g., Haskell, 1964 ; Aki, 1967; Savage, 1966) . 

A dynamical approach consists of specifying traction conditions on the 

rupture boundary. For example, if the shear tractions are to vanish, 

one can apply on the boundary a set of tractions cancelling exactly 

those generated by the prestress (e.g . , Burridge and Alterman, 1972) . 

This method is particularly appropriate to the modelling of an under­

ground explosion by creation of a pressurized cavity (e.g . , Haskell, 

1967) . 

But a third approach--also a dynamical one--is to recognize that 

the introdu c tion of the rupture changes the equilibrium configuration 

of the medium so that, upon creation of the rupture zone, the medium 

finds itself away from equilibrium . This approach clearly leads to an 

initial value formulation of the radiation problem, where the medium 

evolves dynamically towards i ts new equilibrium configuration ac cording 

to the elastic equations of motion (e . g., Archambeau, 1964; Randall, 

1966). 

We shall see in this chapter how and under what conditi ons the 

three approaches described are equivalent . We shall also point out 

their res pect i ve merits and drawbacks. For these purposes the Green t 8 

tensor formalism developed in the preceeding chapter will prove 

particularly convenient. 
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Our approach will be to consider first the elementary mass­

spring system in order to clarify the ideas proposed a bove. The next 

step will be to generalize the results to the case of instantaneous 

failure in a three-dimensional elastic medium ; at tha t point we shall 

discuss the possible approximations and simplifications. The 

extension of the theory to the case of a growing rupture zone will be 

made by use of scalar potentials. Finally, we shall investigate in 

greater detail the static limit of the problem . 

11-1 Mechanics of the spring-mass system 

Figure 11-1-1 describes the elementary mechanical system 

constituted by a mass m suspended to a massless spring of constant 

k We denote by x
f 

the equilibrium position of the mass under 

its own weight and by xi the new equilibrium position it takes when 

force F = k(x
i 

- x
f

) = kL is applied. 

Let us consider the elementary dynamical problem of the evolution 

of the system for positive time t , if the force F is s uppressed 

instantaneously at time t = 0 The origin of the x-axis is 

understood to be chosen at the extremity of the unloaded spring, but 

the problem is evidently independent of this origin so that we can 

define the following relative displacements: y is measured with 

respect to x
f 

,and z is measured with respect to xi Clearly 

the problem can be expressed in terms of y only or in terms of z 

only. The geometry is described on figure 11-1-1 . The mass m 

starting from the position x i at t = 0 would end up at pOSition 
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X
f 

if there was any dissipation in the system; however, we shall 

ignore dissipative phenomena here . 

i) Solution for the displacement y 

Consider the relative displacement y For t < 0 , it is 

constantly equal to L , and in the presence of any dissipation y 

would vanish after a long time. We are thus led to solve the initial 

value problem 

{

my 

yeO) = L 

ky 
(II-l-l) 

which is the natural formulation of the plucked spring problem . 

Taking the Laplace transform of the equation we have 

(II-l-2) 

where the initial value appears explicitly as a forcing term . From 

(11-1-2) we have 

y 
pL , 

and taking the inverse transform we obtain the solution 

yet) = L cos (~~ t) (Il-l-3) 
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(a) (b) 

o 

x -f--- -
+F 

x 

X· _, ___ m 

+F 

x 

Figure II-I -I. The mass-spring system . a) initial value formulation, 
b) boundary value formulation. x is the displacement with initial 
value x i and final value xf y and z are relative displacements , 

measured from x
f 

and x i respective l y . 
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ii) Solution for the displacement z 

The relative displacement z vanishes identically for t < 0 

and would converge to -L after a long time in the presence of any 

amount of dissipation. For positive time z satisfies the equation 

mz = -kz -kL. H(t) (II-l-4) 

where H(t) is a step function. In other words, the problem can be 

solved equally well by applying instantaneously, at time t = 0 ,a 

force -F which cancels the force F From this point of view we 

have a boundary value problem wherein a force is applied at the 

boundary z = O. Taking the Laplace transform of (II-l-4) we get 

or 

2_ k p z = 
m 

z kL 
mp 

-kL/m z = ---;;:"'-"'---
2 

p(p + kim) 

and, taking the inverse transform 

(II-l-5) 

(II-1-6) 
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~ we note that yet) - z(t) ~ L at all times, we see that (11-1-3) 

and (11-1-6) represent the same motion of the mass as a function of 

time and the two solutions are identical. 

This elementary example shows the duality of the two points of 

view. If we choose the final equilibrium displacement x
f 

as the 

reference state for the problem, then the natural formulation to use is 

that of an initial value problem; on the other hand, if the chosen 

reference is the initial displacement xi ' then the natural formula­

tion is that of a boundary value problem. One could also suggest a 

trivial third point of view, where the experimenter would guess the 

proper motion of the mass m , and impose it artifically, but this 

kinematical guess is of no physical interest. 

We shall now generalize these simple ideas to the three-dimensional 

elastic problem. The problem treated above is really an elementary 

one, and its understanding poses no great challenge. On the other hand , 

a three-dimensional problem is not as easy to conceive and to 

comprehend. However, there is no fundamental difference between the· 

concept of a one-dimensional elastic problem, and that of a three­

dimensional problem. The main difficulty arises from the complexity 

of the analysis involved due, in part~ to the fact that a three­

dimensional problem depends on a greater ~umber of parameters. But 

the basic attacks available are identical in nature to those des.cribed 

in this section. One of them will give rise to an initial value 

problem and will correspond to a stress relaxation phenomenon, another 

one will give rise to a boundary value problem, where forces are being 

applied on the rupture boundary. 
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11-2 Instantaneous failure in a prestressed elastic medium 

We now turn to the description of a rupture phenomenon occurring in 

an elastic medium. A more complete discussion of the failure mechanism 

itself will be found in Chapter III. For our present purposes it is 

sufficient to assume that the material lying inside a closed surface E 

within the medium undergoes some transformation through which its 

physical properties are abruptly changed. To fix the ideas we may assume 

that within the rupture zone the material becomes unable t o sustain 

shear stress. Other assumptions could be made which depend on the 

particular physical mechanism one wishes to model . The treatment given 

in this section is quite general and may be easily adapted to a wide 

variety of cases. We can thus formulate the problem as follows. 

Consider a body made of an elas tic homogeneous isotropic medium, 

bounded by a surface S (for the case of an unbounded medium, S 

recedes to infinity). We assume that this body is in a state of stress. 

The prestress cri~) is not assumed to have been generated by elastic 

loading of the body from some unstressed state, but is only required to 

satisfy, at all points, the static equations of equilibrium with some 

body force density fi 

(0) cr ... + pf
i ~J,J 

a , 

as well as some suitable boundary conditions on S 

surface, then on S 

(11- 2-1) 

If S is a free 
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(0) 

~ n. 
J 

o (11-2-2) 

We can further describe the configuration of the body by a displacement 

field 
(0) 

u. 
~ 

(which could be arbitrarily defined to be zero everywhere) . 

The virtual closed surface E shown on figure 11-2-1 represents the 

boundary of the rupture zone before failure. 

Let us now assume that failure occurs instantaneously within E at 

some instant of time which we may choose as t = 0 without loss of 

generality. To fix the ideas we shall consider the case where a cavity 

is created with boundary E More complex cases with various rheolo-

gies of the material inside E may be handled in a similar fashion. 

After an infinite time, the body will reach a new state of equilibrium 

characterized by the fields and If we assume that, to 

first order, the density of externally applied body forces is left 

unchanged in the process (this is true to first order, for infinitesimal 

strains), then we have 

G(l) + pf = 0 
ij,j i 

(1) 
D .. n. o 
~ J 

(11-2-3) 

on Sand E. 

The final field 
(1) 

G .. 
~J 

must satisfy new boundary conditions on E 

whereas G~~) was only required to satisfy the equilibrium conditions 
~J 

there, since E was not a physical boundary. 

We now make the important assumption that the material outside E 
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Figure 11-2-1. Geometry of failure inside a body of volume V and 
surface S a) before failure, b) after failure. 
L is the failure surface. 
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goes from its initial equilibrium state to its final equilibrium state 

elastically. This implies that the relative static fields 

* (0) (1) a . . a .. a . . 1.J 1.J 1.J 
(II-2-4) 

* (0) (1) 
u. u. u. 1. 1. 1. 

are now related by the constitutive equation of linearized elasticity--

Hooke's law. By subtraction of (II-2-l) and (II-2-3) we s ee that 

* a .. 
1.J , j 

0 

* a ij n. 0 on S , 
J 

* (0 ) on E a ij n. a ij nj . 
J 

The evolution of the dynamic fields u i ( r , t) 

(II-2-5) 

and a . . ( r , t) will 
1.J 

be governed by the equations of motion for the medium. However, in 

order to apply the linearized elastic equations of motion, one must use 

fields for which Hooke's law is valid. By comparison with the spring-

mass problem discussed in the previous section, we are led to define the 

dynamic relative fields 

Yi = 
(1) u - u
i i 

(II- 2-6) 

Tij a .. _ a(l) 
1.J ij 
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and 

= - (0) 
z. U . U. 

1 1 1. 

(II-2- 7) 

t .. G .. 
_ G(O) 

1J 1.J . ij 

The evolution of the medium for t > 0 can then be described by either 

one of the two s ys tems: 

, .. . 
1J ,J 

'ij n. 0 on S , 
J 

(1I-2-8) 

'ij n. = 0 on l: , 
J 

* Yi(r,O) = ui (r ); yi(r,oo) 0 

or 

2 
a Zi 

t i · . 
at2 J,J 

t ij nj = 0 on S , 
(1I-2-9) 

t ij nj 
(0 ) 

G
ij n. on 

J 
l: , 

* zi(r , O) 0 z. ( r,oo) 
1 

= -u
i 
(r ) 

The displacements Yi 
and z. behave quite analogously to the displace-

1 

ments Y and Z encountered in the mass-spring problem of section II-I. 

From (1I-2-8) the displacement Yi is clearly the solution of an 
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initial value problem. From (II-2-9) we see that has an initial 

value of zero, but is caused by the application of tractions 

on the boundary E As in the mass-spring problem, and 

* differ only by a constant since Yi - zi = ui so that the analogy is 

complete. 

To investigate the differences between the two formulations in a 

more precise manner, we use the formal Green ' s function solution 

(1-3-26) ,specialized to the case of an instantaneous rupture with no 

initial particle velocit y. Making use of the boundary and initial 

conditions in (11-2-8) and (11-2-9) and noting that the vo lume V 

is independent of time for t > 0 (see figu r e 11-2-1), we get 

411Y (r, t) 
m 

= 4 (S) 
11Ym 

and similarly 

41TZ (r, t) = -ft+ 
m 

0 

_ ~t+ 

dt 
o 

+ 4 (E) 
11Ym + 4 (i) 

11Ym 

dt f Gijm zi nj 0 
S 

dto 1 (Gim 
(0) 

°ij 
E 

da(o) 

- Gijm Zi) n . 
J 

(II-2-10) 

da (0) 
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4'lTZ (8) + 4'lTz (1: ) 
m m (II-2-11 ) 

So far G. (r , t ; r , t) may be any fundamental solution of t he 
lID 0 0 

equations of motion and (11-2-10) and (11-2-11) can be considered to 

be integral equations in y and Z respectively . However, for G
im 

to be the Green's tensor for the problem, it has to sat isfy the foll owi ng 

adjoint boundary conditions 

In that 

and 

G .. n . 
~Jm J 

o on Sand 1: 

case we obtain immediately the following solutions 

4 (i) fp * aGo 
d

3
x 

(0 ) 
4'lTY 

~m = '!Tym = Ui~ m t =0 
V 0 

0 

+ 
4'lTZ 4(l:) -fot dtoJ 

(0 ) d (0) = 'lTZ GimGij nj a m m 
1: 

(II-2-l2) 

(II- 2-13) 

(II-2-l4) 

These two equations corroborate precisely the claims made earlier about 

the respective properties of the solutions. In particular , Y depends 
m 

exclusively upon its initial value : at time t = 0 the medium finds 

itself away from equilibrium and starts evolving towards its equilibrium 

configuration. Following Archambeau (1964, 1968) we say that Ym is 
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the solution to a stress relaxation problem, and we shall call and 

Tij the "relaxation fields." On the other hand , z represents the 
m 

(0) 
response of the medium to a set of tractions - Oij nj suddenly appl ied 

at t = 0 along the surface E For this r eason, we shall refer to 

it as the "stress-pulse" solution. 

Finally, when the surface E is taken to the limit in which i t 

envelopes zero volume, so that it is in fact made up of two sides E+ 

and E , then we can treat E as a surface of discontinui t y in 

displacement. In that case, from the formal Green's tensor solution 

(1-3-26) we see that (11-2-14) becomes 

(II- 2-lS ) 

where the jump figuring in the integrand could be obtained from knowledge 

of the Green's tensor. However, with this particular geometry, the 

natural boundary condition for the solution is expressed by the continu-

ity of tractions If one uses then a Green's tensor 

Him satisfying the adjoint condition 
[

H .. n
j

] = a , then the 
l.Jm E 

formal Green's tensor solution yields the integral equation in z 
m 

(II-2-l6) 

We recognize in (II-2-l6) the usual formula yielding the displacement 

field due to a Somigliana dislocation. This last equation is only 
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useful if the displacement jump [Zi] L can be guessed, or observed. 

The use of dislocation theory has been widely used in seismology (e . g ., 

Maruyama, 1963), but analytical computations are simple only in t he case 

of a Volterra dislocation, where the displacement jump i s constant over 

L For more complex problems, one usually resorts to numerical 

techniques, where a relatively complex dislocation is modelled by 

juxtaposition of several "elementary" Volterra dislocations (e.g ., 

Trifunac, 1973; Alewine and Jungels, 1973). This amounts to a discret i ­

zation of the source, and can also be achieved by use of a finite 

element method for example (e.g., Jungels, 1973). 

The solutions (11-2-13) (11-2-14) and (11-2-16) are exact , 

provided that the Green's tensor can be found. But, as we pointed out 

in section 1-3, such cases are rare, and therefore one resorts to 

approximations. These approximations are discussed in the next section. 
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LL-3 Discussion of the solutions, and approximations 

In order to evaluate the possible approximations to the solutions 

given in the preceding sections, we first write the Green's tensor as 

G. 
:un 

(II-3-l) 

in accordance with the discussion of section I-3. Here f . is again 
:un 

the Green's function for the infinite domain, and the two other terms 

are regular solutions of the homogeneous equations of motion which 

satisfy certain boundary conditions. We required in equations (ll-2-l2) 

that the Green's tensor satisfy the following condition 

o on Sand 1: 

We therefore see that sufficient conditions for this to be satisfied ar e 

a2 (8) (8) gim 

at
2 9ijm,j 

(U-3-2) 

(8 ) { 
- Y ijm n. on S • J 

9 ijm n. 
J 

0 on L 

and, similarly 
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a2 (l.:) 
gim (l.:) 

at
2 9 ijm , j 

(II-3-3) 

(l.:) { -
0 on S 

9 ijm n. 
J Yijm n. on l.: 

J 

Here again, and are regular everywhere in V Following 

the same argument, in the case where L envelopes no vo lume, since the 

tractions 

appearing in 

Y n are continuous, we may write the Green's tensor 
ijm j 

(II-2-16) as 

H. 
lin 

(II-3-4) 

We now seek to answer the following question: Is it a reasonable 

approximation to use directly r. 
lin 

--which is known--in the solutions 

(II-2-13) (11-2-14) and (11-2-16) ,instead of G
im 

or Him 

which are considerably more difficult to get? In other words, when can 

we ignore the effects of 

mation involved? 

The effect of 

and 
(S) 

g1m , and what is the approxi-

is simpler to discuss. This term represents 

the effects of the external boundary of V Thus, if we ignore it, 

the solution obtained will not contain the waves reflected from S 

the surface waves along S ,and the free oscillations of the body 

within S In fact, when the radiation emanating from the source 

region is known, such contributions to the displacement fid.d may I", 
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evaluated separately by a number of well developed techniques (e.g., 

ray theory, mode theory). Further, for theoretical source investigations 

the body is generally taken to be unbounded and S recedes to infinity; 

in that case 
(S) 
g~ does not have to be introduced. In that case also 

the boundary condition at infinity must be a Sommerfeld radiation 

condition, with no incoming waves from infinity; this condition will be 

satisfied if we use r~ for the Green's function. From now on we 

shall choose this to be the case. 

Discussion of is somewhat more subtle. We shall treat 

separately the three different approaches--dislocation, stress-pulse, 

and relaxation sources--by order of increasing complexity. 

i) Dislocation sources 

From equation (11-3-1) ,we see immediately that there is no 

approximation involved in using r~ for the Green's tensor in the 

dislocation solution (11-2-16) provided that the volume V is 

unbounded. This is a known result (e.g., Maruyama, 1963) . Thus the 

dislocation solution provides an exact and accurate representation of the 

radiation field generated by a known history of displacement along an 

internal surface. The obvious drawback is that the history of slip is 

not known. It will depend on a large number of physical parameters upon 

which we have little or no control . 

The multitude of published investigations which use dislocation 

theory in earthquake modeling makes it superfluous for us to discuss in 

detail the variety of possible dislocation models and their properties. 

The most popular model is that of a Volterra dislocation where a 
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displacement jump, constant over the whole surface of the dislocation, 

is created with a given time history. This time history is usually 

chosen to be a variation of a ramp function. A step function in time 

will intuitively yield an asymptotically correct solution at very low 

frequencies for roost physical problems . 

A relatively complete account of the results obtained from such 

models may be obtained from Maruyama (1963), Haskell (1964), and Savage 

(1966). Richards (1973) studies a more complex problem with a dis­

location along an elliptic plane crack with friction. In this case, the 

displacement jump is a function of both the position on the crack surface, 

and of time. It is therefore a dynamical Somigliana dislocation (e.g., 

Maruyama, 1963). Alewine and Jordan (1973) show how the static 

dislocation theory can be coupled with numerical inversion techniques to 

explain the observations of "zero-frequency seismology ." Finally, 

Jungels (1973) and Jungels and Frazier (1973) present a completely 

numerical approach to the problem, using a finite element method. 

The principal success of dislocation theory in seismology is that 

its results may be put in a simple form. Also, dislocation sources 

can be easily investigated by use of point force equivalents, as 

discussed by Maruyama (1963) and Burridge and Knopoff (1964). This 

method furnishes a powerful method to model, to a first order approxi­

mation, gross properties of the radiation fields. 

We shall see below the implications involved in using a Somigliana 

dislocation, where the (variable) jump in displacement is created 

instantaneously. We shall further show that this is equivalent to 

solving approximately an initial value problem (relaxation source). 
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ii) Stress-pulse sources 

First of all, in the case of an infinite domain, the solution to 

the stress-pulse problem given in (II-2-11) reduces to the term 

Denoting by Gim the Green's function to the problem, we have 

411z 
m 

G. cr~~) n
J
. da(o) 

lJIl ~J 

(l:) 
z 
m 

(II-3-5) 

where the second equality is obtained by use of (11-2-11). 

As was pointed out earlier the second equality in (II-3-5) defines 

an integral equation, since the displacement z figures both on the 
m 

left-hand side and in the integrand. The extra term appearing in the 

integrand when one uses rim comes from the fact that this tensor does 

not satisfy the proper boundary conditions (II-2-l2) on E It is 

easy to see that one cannot, in general, neglect this extra term since 

in the limit where E encloses zero volume, this term gives the 

solution, in the form of a dislocation solution. The first term 

does not give any contribution to the integral over L + E + 

because it is continuous across the crack. One also sees that the 

Green's tensor G
im 

must have a non-vanishing jump across L f or the 

first integral to take non-zero value in that case. But since rim 

is continuous, this jump must come from the contribution 

according to (II-3-l) It is thus clear that cannot be 
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ignored and one may not use rim ,but rather one must determine the 

exact Green's tensor for the problem to use in the stress-pulse solution 

(11-2-14) 

The stress-pulse approach has been adopted by several authors 

because of its intuitive simplicity . However, these authors did not, in 

general, use directly the Green's tensor formalism. 

The problem of a stress-pulse applied on the surface of a spherical 

cavity was treated by Jeffreys (1931) and his results are given also in 

Bullen (1963). For the case of a zero-volume rupture, Burridge and 

Halliday (1971) use a method derived from the Cagniard-de Hoop technique. 

The stress-pulse approach allows them to introduce dry friction Oft the 

fault surface in a relatively straightforward manner. However, they 

restrict their investigation to a two-dimensional situation. Richards 

(1973) extended such results to the case of a growing elliptic crack. 

Burridge and Alterman (1972) solved the problem of the self-similar 

growing spherical cavity by expanding the solution in a complete set of 

tensor spherical functions. These techniques yield solutions which are 

exact--or asymptotically exact in the high frequency 1imit--and they 

could, in fact, be used to generate the Green's tensor for the problem 

at hand. 

Perhaps the most popular version of the stress-pulse approach is 

that of Brune (1970). This author constructed a simple two-dimensional 

model to study the generation of shear wave radiation by strike-slip 

motion. In that case the equations of motion take a very simple form 

very close to the rupture surface and can be integrated to compute the 

displacement in a vanishingly thin layer along that surface . The model 
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then reduces to a dislocation model and can be treated as such. 

iii) Relaxation sources 

If we use rim in the relaxation solution (11-2-10) , we get, 

for t > 0, 

4rry 
m 

4rr/E) + 4 (i) 
m 'llYm dt!Yi · y · o Jm 1. 

E 

* 3r im 
p ui a;­

o 
t =0 

o 

da(o) 
nj 

(II-3-6) 

This is an integral equation in Ym But we know that if G
im 

is the 

Green's tensor, so that G
ijm 

nj = 0 on 

dv(o) 

t =0 
o 

, then 

(II-3-7) 

Thus, the use of the infinite domain Green's tensor in (11-3-7) is 

equivalent to approximating 
(i) 

Ym 

seek to understand the nature of the terms 

in (II-3-6) We therefore 

and in order to 

* evaluate the approximation . We know that Y
i 

= zi + u
i 

' which permits 

us to write 

4 (E) 
'llYm Y ( * ) (0) 

ijm u i + zi nj da . (Il-3-8) 
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( i) 
Ym may be obtained by using (11- 2-11) in this equation, we have 

and now replacing z by y -
m m 

+ 
4 (i) * -fot 41Tu 1TYm m 

+ -fot 

* 

* u we get m 

d t o! (0) 
r im0ij 

L 

dto! * Yijmu i 
L 

da(o) 
nj 

n. da(o) 
J 

n. da(o) 
J 

(II-3-9) 

Since u does not depend on t ime, we see that the approximate solution 
m 

(i) 
Ym is to t all y equivalent to a superposition of a " stress-pulse" field 

and a dislocation field . When L envelopes zero volume, only the 

* dis l ocation field survives . Further, since u i is time independent, in 

that case, 
(i) 

Ym is the field generated by the instant aneous creation 

at time t = 0 of a Somigliana dislocation along L In addition, 

(II-3-8) shows that , in that case, 
(E) 

Ym represents that component of 

the radiation field which is specifically due to the departure from 

instantanei t y in the creation of the dislocation. 

We have thu s proved that in the case of a very thin r uptur e "n ne , 
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the field Y
m 

is the superposition of 1) the radiation field caused by 

the instantaneous creation of a Somigliana dislocation, and 2) a term 

which represents the additional radiation due to departures from 

instantaneity in the creation of the final displacement jump [u~l)] 
This result holds for an instantaneous rupture occurring in an infinite 

domain. If envelopes a non-zero volume, then the field 

contains, in addition, the radiation field caused by a stress-pulse 

applied instantaneously on E These observations permit us to see in 

even greater detail the relationships between the three approaches 

considered in this section, and also to push the argument further, albeit 

in a somewhat more heuristic fashion. 

From the definition (11-3-6) ,the presence of the surface E 

manifests itself in the field 
(i) 

Ym only through the initial displace-

ment is thus the radiation field that would be observed 

* if the medium were given an initial displacement u i ,in the absence 

of E The reason why the additional field y(E) must be introduced 
m 

is precisely the continuous presence of E during the relaxation process. 

Thus, 

(E) 
Ym 

and E 

(i) 
Ym is the direct field generated by stress relaxation, and 

can be thought of as the field due to the interaction of 
(i) 

Ym 

it is the scattered field that contains all the waves that 

are reflected, trapped, etc •.. , by E 

We shall define as a transparent source one which does not interact 

with the dynamic fields in its vicinity . In other words, when ignoring 

and thus approximating we are in effect making 

the rupture zone transparent. With reference to scattering theory, this 

is justified for waves with a wavelength greater than the source width , 
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and in particular in the long period limit . 

The stress relaxation phenomenon may thus be described heuristically 

as follows. Consider an instantaneous rupture occurring at t = 0 in a 

stressed medium. A particle in this medium, located at some distance 

from the source, will not "know" about the rupture until a time such 

that elastic waves have reached it (whence the necessity of using a 

causal Green's tensor) . At that time, the material point will "learn" 

that rupture has occurred, and therefore that it is away from its 

equilibrium position, and proceed to evolve towards it. In that process 

it will interact with the neighboring points and radiate elastic energy. 

The superposition of all the elementary fields thus generated will 

constitute the total radiation field due to the rupture, in a manner 

similar to that implied by Huyghens' principle. Part of the radiation 

will be directed towards the rupture surface and interact with it, thus 

creating a feedback to the rupture process: it is this interaction 

which is ignored when one makes the source transparent. We understand 

from this heuristic concept the reason why is expr ess ed as a 

volume integral . In this approach, the seismic radiation has its source 

in the prestressed volume surrounding the rupture zone, not on the 

rupture surface. 

This is not to say that this model does not involve a fault 

(Randall, 1966): the rupture zone and the physical processes involved 

in the rupture manifest themselves in a very precise and clear fashion 

* through the initial value u
i This initial field will depend both On 

the nature of the rupture mechanism, and also on the initial state of 

stress of the medium before rupture. 
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This last observation leads to the concept of a localized source 

region. The Earth is a finite body and is certainly not stressed 

uniformly. Even if we ignore the interaction of the radiation fields 

with the free surface (reflec tions , etc . • . ), it is not necessary to 

model the Earth by an unbounded prestressed body . The calculation of 

the initial value * u
i 

in a finite body is possible but is often a 

cumbersome one; such a calculation is hardly warranted in v iew of the 

many other approximations involved. In this work we shall resort to 

* the following very crude approximation: u i is computed for an infinite 

body, and then the volume integration is simply truncated at some 

distance from the rupture zone . This method is obviously not accurate, 

but will give us a qualitative idea of what to expect if the prestress 

zone is limited in size. A more complete discussion will be given in 

Chapter IV. 

We have described three approaches to the instantaneous problem 

and have shown how they are really equivalent. Two of them--dislocation 

and stress-pulse--correspond to a boundary source on the rupture surface. 

The third one--relaxation--treats the source as a volume source, in 

which the radiated energy comes specifically from the region where it 

was stored before rupture, i.e., from the medium surrounding the failure 

zone. 

Boundary sources are often advantageous because of their r elative 

simplicity . However, we shall adopt in this study the relaxation model , 

in spite of its greater analytical complications, because it is related 

more directly to the physical phenomena associated with failure, and 

because the initial state of the medium is explicitly present in the 



-95-

solution. 

The relaxation model was adopted by Archambeau (1964, 1968) to 

model the seismic radiation caused by a sudden phase change within a 

prestressed medium. Randall (1966) attacks this problem from a somewhat 

more geometrical point of view. For the simple spherical geometry these 

authors get similar results (Randall, 1973). Both authors make use of 

the Green's function for the infinite domain, and thus assume the source 

to be transparent. Archambeau (1964) generalized the theory to include 

growing and propagating ruptures, and specialized the results to model 

the tectonic release associated with underground explosions in tectoni­

cally stressed regions. (Archambeau, 1964, 1971; Archambeau and Sammis, 

1970) . However, for ruptures which do not grow self-similarly, 

Archambeau's attack leads to rather cumbersome algebra. Some of the 

work presented in the following chapters will yield results similar to 

his, but in a simpler analytical form. We shall also present in 

Chapter IV a new attack on the problem of a propagating rupture, which 

yields more complete results. 



-96-

11-4) The case of a tillle--dependent boundary 

We now turn our attention to a phenomenon of slightly greater 

complexity. Instead of assuming that the cavity considered in the 

previous section is created instantaneously at t = 0 , we shall let it 

grow at a finite rate . 

Following Archambeau (1964, 1968, 1971), we shall make use of the 

potentials defined in section 1-4; these are the cartesian components of 

rotation and the dilatation . We shall compute them from the relaxation 

field Ym discussed in 'the previous sections. We denote by X anyone 

of these potentials, by c the wave velocity associated with it, then, 

by the formal Green's function solution (1-4-6) and by virtue of the 

discussion in the previous section, the relaxation field is given by 

4lTX (r, t) 
d 

dt 
o f 

V (t ) 
o 

[ 
ar _ r lx. ] d (0) 

X at at v 
o 0 

• 

(Il-4-1) 

Here r is the scalar Green's function for the wave equation in an 

infinite domain. 

As pointed out earlier , the right-hand side of (11-4-1) is to be 

understood as a Stieltjes integral. Our present purpose is to evaluate 

this integral. 

In the case of an instantaneous rupture, the result is immediate: 

* X is a potential of the field Ym ' and if X is the corresponding 

potential of the field * u 
m 

, then 
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41TJ( 
1 

=2 fx* ar 
at 

o 
(II-4-2) 

c v 

But the difference field * u 
m 

t =0 
o 

is defined as 
(0) 

u 
m 

(1) 
- u 

m 
J where 

(1) 
u 

m 

is the final equilibrium field. The relaxation field is measured 

relative to (1) 
u 

m 
For a growing rupture zone 

(1) 
u 

m 
is a function 

of the source time during the rupture process, and a constant afterwards . 

Thus for all source times t earlier than T , the duration of the 
o 0 

rupture process, * u is a function of 
m 

* , and so is X 

Archambeau (1968, 1971) suggested that a continuously growing 

rupture zone may be construed as the limiting case of a succession of 

elementary instantaneous ruptures. We shall make use of a s1IDilar idea 

here by studying the effect of an infinitesimal rupture increment when 

it is added to a finite rupture. 

Let us suppose that we know how to compute the solution up to some 

At that time the potential has the value x (r,t
l

) 

If the rupture would stop at tl ' then X would be measured, for 

t > tl ' relative to the equilibrium configuration associated with 

V(t
l

) , and would be given at all times t > tl by 

1 
2 

c 

r ~ ] dv(o) 

o t =t 
o 1 

(II-4-3) 

In other words, we would have the solution of an initial value problem, 
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£x (t ) 
a t 1 being created at 

However, we know that in a short interval at
1

, the rupture would grow 

and the volume would become V(t
l 

+ a t
l

) Let us approximate this 

growth to first order by an instantaneous elementary additional rupture 

occurring at tl Then the left-hand side of (11-4-3) would change 

for two reasons . First the state with respect to which the relative 

field X is measured has to be changed to the equilibrium field 

associated ~ith Vet + at
l

) But this is a simple change of origin 

(c.f. the mass-spring system) and does not represent a radiated fie ld , 

but rather a static field. We need not concern ourselves with this at 

the moment. Second, the initial value X( t
l

) ,appearing in the 

integrand on the right-hand side, has to be increased by 

at
l 

t =t 
o 1 

while the initial velocity h 
at o t =t 

o 1 

is unchanged, since 

it does not depend on the reference state. The fact that the initial 

velocity does not undergo a sudden change is important because it means 

that the rupture phenomenon is spontaneous and that no impulse is 

imparted to the medium during the elementary rupture. We thus see that, 

to first order in at 

+ 

* + h­
a t 

o t =t 
o 1 

at
l 
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The second term on the right-hand side corresponds to the (static) 

change in equilibrium values mentioned above, so that the sum of the two 

first , terms represents the dynamic fields existing at tl measured 

relative to the equilibrium state valid at The third term is 

the additional contribution to the radiation field due to the incremen-

tal rupture, expressed relative to the same equilibrium state. Thus, 

(II-4-4) may be rewritten 

1 
2 

41TC 
[EL af ] dv(o) + O(et ) 

ato at;Jt =t 1 
o 1 

, (1I-4-5) 

which is valid for t > tl + et
l 

and for observer's points r exterior 

to V(t
l 

+ et
l

) ,and where the fields are reckoned with respect to the 

equilibrium state associated with V(t
l 

+ et
l

) But the right-hand 

side does not depend on the reference state since only the derivative 

* .£x... 
at 

o 
appears; similarly, the left-hand side does not depend on the 

reference state either, since it is unchanged when one adds a constant 

to X Therefore, taking the limit e t
l 

7 0 , and using the 

definition of a derivative we get 

1 
=--2 

41TC 

, (1I-4-6) 
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which is independent of the reference state. This equation is valid for 

fixed t , for fixed r E V(t
l

) , and for any tl such that 

The meaning of (II-4-6) is somewhat subt l e and deserves comment: 

this equation gives the parametric dependence of the dynamic field 

x(r,t) upon the elapsed rupture duration tl For a rupture occurring 

at a finite rate , and of total duration T 
o 

, the derivative on the 

left-hand side vanishes identically for tl > To Thus by integration 

with respect to tl of (II-4-6) we get 

x (r, t) 
1 jmin(t, To) 

= C + --2 dt
l 41[c 

o 

(Il-4-7) 

where C is an integration constant to be determined. The second term 

on the right-hand side is the dynamic field referred to the equilibrium 

field which the medium would reach if the rupture were stopped in its 

configuration at time t But the logical reference state is that 

which is associated with the final rupture configuration 

This allows us to determine the constant C , which is 

* * C = X (r,To) - X (r,t) 

(at t = T ) 
1 0 

Note that C vanishes for t > T 
- 0 

Note also that tl 1s just a 

dummy variable in (II-4-7) , so that the {inal result is 
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* * x(r,t) = x (r,T ) - X (r,t) 
o 

1 it + -- H(T - t ) 
4 

2 0 0 
7[c 

o 

dt 
o J 

Vet ) o 

* ~~ dv(o) 
at at o 0 

• (U-4-S) 

This reduces, for t > T 
- 0 

, to t he result of Archambeau (1972). 

One sees immediately t hat (II-4-S) reduces to (11-4-2) in the 

case of an instantaneous rupture at t = 0 Indeed, in that case, we 

* * * have X (r,t) = X (r)H(t) and thus ~ * a t = X (r) o (t) ~ so that the 

integrand in (II-4-S) is a delta distribution in time, at . t = 0 
o 

This remark leads to the following interesting interpretation of , 

(U-4-S) If (11-4-2) is construed as an "impulse rupture" solution, 

then the solution (11-4-8) can be thought of as the convolution of 

this elementary solution with the "growth function" of the rupture zone. 

The solution (II-4-S) is the one which we shall evaluate in 

Chapter IV in a case of a growing and propagating spherical rupture. 
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11-5 An equivalence theorem in the static case 

We have shown so far the equivalence of three basic approaches to 

the dynamical source problem. This equivalence holds under fairly 

general circumstances. In this section we shall examine in greater 

detail, in the static limit and under more restrictive circumstances, 

the equivalence between relaxation and dislocation models. Here again 

we shall use the Green's tensor formalism, but we shall use specifically 

the static Green's tensor, so that both source time and receiver time 

disappear from the formal Green's tensor solution (1-3-36). 

Consider an infinite domain filled with a homogeneous isotropic 

material (1) ,except for an inhomogeneity bounded by a closed surface 

E ,filled with an homogeneous isotropic elastic material (2) We 

assume the inhomogeneity to be . bonded to the matrix, and for simplicity 

we assume also that any intrinsic elastic field associated with this 

inhomogeneity can be linearly superposed to the solution of an elastic 

problem in this composite medium . This is a good assumption in the 
• . 

limit of infinitesimal strain theory. The intrinsic fields would be 

those· directly associated with the inhomogeneity, and thus those present 

in the composite in the absence of any external loading. 

Our present purpose is to investigate ·the effect of the inhomo-

geneity on the fields generated by external loading of the composite. 

Clearly, if the superposition principle described above holds, then we 

need only cQusider the case where a state of no strain and no stress 

throughout the composite material exists. We shall use such a state as 

a natural reference state. 

Eshelby (1957) presented a solution fot the elastic fields inside, 
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and ~ediately outside an inhomogeneity, as well as the fields at large 

di stances . Kuprad ze (1963) attacked the problem by using Green ' s tensors 

and the theory of multidimensional integral equations . We shall combine 

the relatively simple approach of Eshelby with t he Green 's tensor 

formalism developed in Chapter I. 

Let us load the composite by, say, a set of body forces applied 

outside the inhomogeneity , and let 0 (1) 
ij and 

(1) 
ui be the elastic 

fields generated within the material (1) --outside the inhomogeneity--

and and the fields generated in the material (2) -- i nside 

the inhomogeneity. Because the inhomogeneity is bonded to the ma trix , 

then if n is the outer normal to E we must hsve 

(1) (2) 

° ij nj = 
° ij n. 

J 

(II-S-l) 

(1) 
u

i 
= 

(2) 
u

i 
on l: , 

which expresses continuity of tractions and displacements across l: 

(if the material (2 ) is a liquid, then only the normal component of 

displacement should be considered). Let 0 (0) 
ij and be the fields 

that would be generated throughout the space in the absence of the 

inhomogeneity. Here if we wish to think of 0 (0) 
ij . 

as the prestress 

considered in the former sections, we must point out that the problem 

has been specialized to the case where the prestress is created purely 

(0) 
elastically, so that 0 . . 

~J 
and are related via Hooke's law. The 

fields 0(0) 
ij and uio) are continuous everywhere. 
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r(2) be the static Green's tensors for the infinite 
im 

domain valid for materials (1) and (2) respectively. Then 

(II-S-2) 

where V is the whole domain. Similarly, if V(l) is the domain 

external to the inhomogeneity, and V(2) the domain filled by it, then 

41Tu(l) 
m 

and 

41TU (2) 
m 

= . r pf r(l)dv(O) -1 (r(l) 0(1) 
J(l) i im im ij 
V E 

Yo (1) (1») d (0) 
- ijm u i nj a 

(II-S-3) 

(II-5-4) 

These last two equations, when coupled with the boundary conditions 

(11-5-1) form a system of coupled integral equations to be solved for 

(1) 
u 

m 
and 

(2) 
u 

m 

Let us perform the following fictional operations (cf. Eshelby, 

1957). 

1) Remove the !nhomogeneity--material (2) --from its 

(1) 
in the composite, while applying tractions 0ij nj 

the wall of the cavity thus created, so that the 

material outside stays in equilibrium. 

site 

on 
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2) Cut a piece of material (1) such that, when tractions 

(1) 
G .. n. are applied on its boundary, it takes exactly 

1J J 

the shape of the cavity. 

3) Insert this piece of material (1) into the cavity; 

tractions are now continuous again across L ,so 

that we have equilibrium. We have thus transformed the 

inhomogeneity into an inclusion. The space is now 

filled with material (1) everywhere. 

Let 
(1) 

v m be the displacement field inside the inclusion, it is given 

by 

(1) 
G~ (11-5-5) 

The displacement outside the inclusion is still (1) 
u 
m The 

tractions are continuous everywhere, but the displacements cannot be 

continuous, since the continuous solution of the equations of equili-

brium in an infinite domain, filled with material (1) ,under the 

load pf
i

, is given by 

(1) thus expect that u 
m 

(0) 
u 

m 

and 

, which is different from 
(1) 

u 
m 

vel) . do not take the same value on 
m 

We 

and thus ~ is a surface of discontinuity for the displacement: a 

dislocation surface . 

Before we can state the complete equivalence theorem, we still 

have to prove that the difference field * (0) 
u = u m m 

(1) 
- u m 

outside the 

inclusion can be expressed as a static dislocation solution. Hence-

forth, we shall denote by ~+ the internal side of ~ and by ~ 
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its external side, since n is the outward normal (see figure 11-5-1) . 

The displacement jump is given by 

= 1m v (1) 
r+l: m 

+ 

Further, since the displacement 

have 

(2) 
u 

m 

(1) 
u 

m 

matches 
(1) 

u 
m 

on 

(II-5-6) 

, we also 

(II-5-7) 

which permits to evaluate the jump from the knowledge of two interior 

solutions. 

Let us evaluate the dislocation field 

41Tu(d) 
m 

(II-5-8) 

for points lying outside the inclusion. From (11-5-6) we have 

= - f y(l) vel) 
ijm i 

l: 

da (0) + f y(l) u (1) n da (0) 
nj ijm i j 

l: 

(II-5-9) 

We can apply Gauss' theorem to the first integral which we denote by 

I ; we get 
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v (I) 
u~)-(materiall) 

(2) 
um (material 2) 

or 
v (I) 
m 

Figure II-5-l. Static fields associated with failure within a closed 

surface E V(l) is the volume occupied · by a matrix of material (1). 

V(2) is the volume of the failure filled with material (2) u(l) 
m 

and u(2) are the static displacement fields in the matrix and inclu­
m 

sion respectively. 

of material (1) 

When the inclusion is replaced by a 

the static displacement field inside 

suitable body 

E becomes v(l) 
ill 
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I = f (y(~) V(l») . da(o) 
(2) iJm i ,J 

V 

But we know that 

( y (~) v (1») . = 
iJm i ,J 

y(l) v (1) + y(l) (1) 
ijm, j i ijm Vi,j 

and also, in the static case 

°(1) = 
)' ijm,j 

so that 

-4110 . 
1lD 

o ( r - r ) 
o 

, 

1= ( [-411o
im
. ocr _ r) vel) + yO (1) (1)] d (0) .II 0 i ijm Vi,j v 

V (2) 

For r outside V(2) ,the first term in the integrand does not bring 

any contribution to the integral. Furthermore, from Hooke's law (or 

equivalently by the Rayleigh-Betti theorem), we have 

I 

where 

1 °(1) 
(2) r im,j 

V 

is the stress tensor associated with Since there 
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are no body forces within we have 

I = r (r~l)t(l)) . dv(o) 
{(2) lID ij ,J 

t (1) 
ij, j = 0 and thus 

We can now use Gauss' theorem, and recalling that, on E 

t
el) 
ij nj 

= G(l) 
ij nj we have 

I = [ 0 (1) (1) da(o) 
" rim Gij nj 

Substituting (11-5-10) into (11-5-9) yields 

47TU (d) 
m 

= -
_ yO (1) (1)) 

ijm ui 

(II-5-l0) 

(II-5-11) 

Now if we note that the volume integral in (11-5-2) needs only to be 

computed over Vel) since there are no body forces within V(2) • then 

by subtraction of (11-5-3) and (11-5-2) and compsrison with 

(11-5-11) we see that 

(1) 
u 

m 
(0) 

- u m 
* = u 
m 

, 

which completes the proof . We thus hsve the following theorem: 

The perturbation to the elsstic fields in a stressed 

(II-5-l2) 
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~edium, due to the presence of an elastic inhomogeneity, can 

be represented as the field of a Somigliana dislocation, the 

dislocation surface being the boundary of this inhomogeneity. 

In the limiting case where L envelopes a vanishingly small volume, 

L consists of two sides Ll and L2 

(II-S-8) 

Since (1) 
v 

m 
is continuous 

inside the integral in 

41Tu(d) = 
m Yo (1) [ (1)] 

ijm u i 

reduces to 

(1) da (0) 
nj (II-S-13) 

which is the classical dislocation field (see e.g., McGinley, 1969). 

Here the jump is taken as the difference between the limiting values of 

(1) 
u 

m 
and , and is the positive normal to 
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Conclusion 

We have used in this chapter the theory of Green's tensor solutions 

developed in Chapter I, to investigate the fundamental properties of 

three approaches to the seismic source problem. At no point did we need 

to know the Green's tensor itself . In fact, in section 11- 3, we were 

able to discuss the approximations involved in using an approximate 

Green's tensor: that for the infinite domain. 

The relaxation model, corresponding to the Bolution of an initial 

value problem, is the one we shall use in Chapters IV and VI for 

particular rupture geometries. We have shown how to compute the solution 

in the case of a growing and propagating rupture. This choice of approach 

is based on the fact that the relaxation model depends explicitly on 

physical parameters of interest, for example, the rheology of the 

material in the failure zone, the prestress existing before rupture, 

etc ... We shall see later in specific cases how rupture length, rupture 

velocity, size of the prestressed region (1. e., "relaxation radius"), 

and other similar physical parameters affect the radiation fields. 

As was pointed out in .the introduction to this chapter, the equiva­

lence of the various attacks may seem to be a rather trivial concept. 

However, our analysis showed that some of the detailed aspects of this 

equivalence are rather subtle. In particular, the equivalence of a 

boundary source and of a volume source is somewhat difficult to grasp 

intuitively. From this point of view, when modeling an earthquake, the 

choice of approach should be made according to which approximations one 

wishes to make. 
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Chapter III 

THE ENERGY OF A STRESS RELAXATION SOURCE 

Introduction 

Before going to the evaluation of specific source models , which 

will be done in Chapters IV and VI , we sti ll have to discuss another 

general aspect of the rupture phenomenon: its energ e tics. We saw in 

Chapter I that the equations governing the flow of energy in a 

continuum are nonlinear and thus cannot be solved by a Green's functi on 

technique. This is one of the main difficulties encount er ed in energy 

problems. Another difficulty stems from the fact that the basic 

failure mechanisms for geologic materials are not very well known. 

Most of the work in that domain has been concentrated around the 

determination of static or quasi-static rupture conditions at the time 

of incipient rupture. Failure ~riteria such as a Von Mises criterion, 

involving a comparison of the state of stress of the material and of 

its "strength," have been developed mainly in view of metallurgical 

studies. These criteria can be extended to Earth materials and mee t with 

reasonable success in explaining experimental data (e.g., Mogi, 19 71). 

If such a criterion is adopted and generalized to the dynamic catie, the n 

one only needs to know the dynamic state of stress of the materia l at 

every point in order to predic t where it fails. This is the basis for 

Griffith's (1921) early work on crack propagation, and for much of the 

later work. The rupture is then statically controlled by the stress 

concentration factors prevailing in the vicinity of crack tips, and 
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dynamically the energy balance is obtained by equating the energy flux 

into the crack tip to the rate of absorption of energy in the form of 

surface energy (see e.g . , Freund, 1972). Since for a frictionless 

crack, the stress has a singularity at the tip (e.g., Ida, 1972), and 

since no material has infinite strength, such a crack must grow under 

any loa~. Ida (1973) shows how this problem can be circumvented by 

appropriate choices of boundary conditions and fracture criterion. In 

particular, there must be friction between the faces of the crack. For 

example, Ida and Aki (1972) obtain the seismic source time function for 

a propagating longitudinal shear crack under these conditions. (See 

Ida, 1973, for an exposition of the theory and a bibliography.) 

Experimental considerations have led many authors to suggest 

that stick-slip rupture is an adequate model for earthquakes. This is 

supported by laboratory experiments (e.g., Brace and Byerlee, 1966; 

Byerlee and Brace, 1968; Scholz, et al., 1972). The stick slip model 

calls, in general, for both a static friction and a lower dynamic one, 

but experiments show that friction is time dependent for most materials 

(e.g., Scholz, et al., 1972). This suggests that nonlinear phenomena 

such as creep may be of importance, in particular ahead of the rupture 

front. Ida (1973) proposes a theoretical model in which such phenomena 

can be taken into account. This points out the need for a yield 

criterion as well as a fracture criterion. Mogi (1971) proposes such 

criteria . Thus by allowing for anelastic flow of the material under 

certain stress conditions, the range of possible failure modes can be 

enlarged to contain brittle fracture, ductile fracture, or only 
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creep-like flow (see Malvern, 1969, for a discussion). 

We do not intend to provide a comprehensive discussion of all the 

work done in this area; the bibliographies of the various publications 

mentioned above should, hopefully, enable the reader to trace the 

major part of the geophysical research in this field. 

Because the occurrence of material failure depends on the notion of 

material strength in the models mentioned above, it essentially depends 

exclusively on the state of stress of the material. Therefore, rupture 

propagation in these models will be controlled by the propagation of 

stress waves, that is, by the equations of motion for the material. 

Thus for longitudinal shear cracks, in simple cases, the rupture velocity 

equals the shear velocity of the material (e . g., Burridge and Halliday, 

1971). By generalizing the crack-tip model with cohesive forces intro­

duced by Barenblatt (1958), Kostrov (1966) and Ida (1972, 1973) 

found that rupture propagation can occur either in a smooth or in a 

"bumpy" mode, depending on the boundary conditions on the crack and on 

the amount of creep taking place ahead of the tip. 

But all the considerations mentioned so far point to the fact that 

rupture initiation and rupture propagation are fundamentally energy 

problems. Therefore, the energy equation should really be considered 

in solving such problems. This would also be more appropriate for the 

relaxation model that we have adopted . Then, instead of defining a 

kinematical coefficient of friction on a crack boundary, one would have 

to specify the rheology of the material within the failure zone, ;Hld 

study the dynamic flow of energy in the vicinity of the rupture 
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boundary . The methods and equatLons of Chapter I are then the 

appropriate ones to use. 

In such an approach, the rupture boundary is to be treated as a 

propagating phase boundary. The rupture process is thus an activated 

process, where the energy density at which transformation can occur 

plays the role of the material strength, and the energy absorbed in 

the transformation ("latent heat") plays a role analogous to the surface 

energy usually considered. Further, any anelastic work done inside the 

rupture zone or Lmmediately outside will play the role of frictional 

work on the surface of a crack or the work done against internal 

friction ahead of the crack tip. Because of the complexity of the 

problem and the nonlinearity of the equations, we shall not be able to 

find analytical solutions, and the theory will have to be applied through 

numerical approaches; but this is the case anyway for the usual crack 

propagation problems (e.g., Ida, 1973). 

In this chapter we shall propose such a line of attack; but we 

shall first examine the global energy balance in the relaxation source 

model, and discuss the source of the energy available for both failure 

and radiation phenomena. The concept of seismic efficiency will be 

introduced in the usual fashion (e.g., Wyss, 1970; Scholz, et aI., 

1972) . 



-116-

111-1 Global energy balance for a relaxation source 

Throughout thLs sectLon, we shall assume that 1) the stress fLelds 

are related to the dLsplacement by Hooke's law, and 2) that there exists 

a positive quadratic form of the strains W , the elastic energy 

density, which may be written 

(III-I-I) 

Here a~ is the elastic stress tensor associated with the strain 

We shall adopt the same notation as in section 11-5. 

Consider a finite elastic body made up of material (1) , of 

elastic constants (1) 
Cijk~ , bounded by a surface S and occupying a 

volume V This body may be stressed by one or several of the 

following mechanisms. 

1) Applying given surface tractions on all or part of S 

2) Applying body forces to the material within V 

3) Specifying surface displacements on all or part of S 

and maintaining these displacements by rigid grips. 

4) Existence of internal stresses. 

e~ . 

It is not necessary for our present purposes to develop the theory 

of internal stresses. We shall refer the reader to Eshelby (1956) for 

a clear and simple explanation. It suffices here to state that these 

stresses are the Hookean stresses associated with that part of the 

strain which does not satisfy the compatibility equations. Such inter~ 

nal stresses can be created by the presence of dislocations or similar 
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detects in the material. 

We stated in Chapter II that material failure in a continuum can be 

thought of as a sudden phase change of the medium, occurring in a 

limited region. This can mean a phase change in the usual sense if, for 

instance, shear melting occurs (e.g., Griggs and Handin, 1960) . For 

deep earthquakes, rapid phase transformation of a medium initially in a 

metastable thermodynamical state has been suggested as a possible earth­

quake mechanism (e.g., Archambeau, 1968). But we can extend this idea 

to the case where the material is finely broken into a "fault gouge." 

A continuum representation of such granular or powdery material can be 

obtained from standard observations in soil mechanics. 

The macroscopic properties of a medium with a high density of 

microscopic cracks are different from those of the uncracked medium. 

When failure occurs on a scale sufficiently large so as to generate an 

earthquake, the material does not fail along a simple crack. Instead, 

a zone is created where grains are disjointed along their boundaries, 

and where a high density of cracks is generated on a microscopic scale. 

Thus, within the rupture zone, the macroscopic behavior of the medium 

is changed. In other words, even upon failure of virgin material, the 

phenomenon may be represented by a generalized change of phase of the 

medium. In come cases, for example, the material can be taken to go 

upon failure to some elastoplastic phase. 

In this section we are concerned with the global energy balance of 

the phenomenon, and this will be controlled by the long-term--i.e., 

static or quasi-static--mechanical properties of the material, both 

within and without the failure region. The dynamical behavior of the 
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phenomenon will depend on the thermomechanical and thermodynamical 

equations controlling the propagation of the phase boundary . These 

aspects of the question will be discussed in section 111-3. If we 

assume the new phase to be purely elastic for the purposes of investi-

gating the global energy balance of the phenomenon, then we shall obtain 

an upper bound to the energy released in the relaxation process since 

the anelastic effects and plastic work will be ignored. The greater 

energy change will be obtained when the material in the failure region 

loses all rigidity and thus becomes a liquid . In fact, if the material 

failure mode is that described above wherein grains are separated and 

disjointed by creation of a large number of microscopic cracks, then 

one does not expect this new phase to be capable of sustaining much 

shear stress: Granular material in the failure zone will set in a 

fashion similar to roller bearings, and then ease the relative displace-

ment of the two sides of the rupture zone. Furthermore, if shear 

melting does occur, then it is certainly a good approximation to assume 

a drastic fall in rigidity of the material upon failure. 

We shall therefore consider the following problem: Let 

(0) (0) 
e. , ul.' be the elastic fields generated within the volume V by 

l.J 

any of the mechanisms (1-4) operating in a region V(l) of V 

Suppose now that in a volume V(2) of this body, bounded by the closed 

surface E the medium is transformed into a material (2) , with 

elastic constants 
(2) 

Cijk2 (see figure 111-1-1). 

Following the description given in Chapter II, the body, whIch Is 

now a composite, goes to a new equilibrium field. We a>lsume th" iuhomo-

geneity within 

Let ag) 
to be bonded to the matrix occupy Ing V (1) 

be the new equilibrium fields In 
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Singularities 
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Uj 

Figure 111-1-1. Geometry of a body 
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-120-

and 
(2) 

e .. 
1J 

those present within V(2) Then, on the 

boundary ~ we have 

a~l) n. = 
(2) 

a .. n. 
1J J 1J J 

(IIl-1-2) 

(1) 
u. = 

(2) 
u. 

1 1 

We can now evaluate the total change of ener gy of the body caused by the 

phase change. The change in elastic potential energy is 

1 f [(2) 
2 (2) aij 

1 + -
2 

V 

f [a(l) 

( 1) i j 
V 

(O)J e
ij 

dv 

(III- 1-3) 

In addition the wor k done by external ly app l ied forces in the a l teration 

process is ~1. if the phenomenon occurs at constan t l oad, where 

(IlI- 1-4) 

so that the total change in energy is 

(Il I-l-S) 
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Let us first derive a different expression for ~Eet Archambeau 

(1972) argues that the energy which would be released within V(2) is 

probably not really liberated,but absorbed in the rupture process. On 

these grounds, he ignores the first integral in (III-1-3) Then, 

* defining outside the rupture zone, and e .. 
~J 

and 

* u
i 

in a similar fashion, one gets 

The two last terms in the integrand give identical contributions to the 

integral, a consequence of the Rayleigh-Betti theorem,so we may write 

f [ * (0) ] 0i' - 20ij (1) J 
V 

1 
= 

2 f [0(0)+0(1)] 
(1) ij ij 

V 

(III-1-6) 

Recall that so that 

(III-l-7) 

Substituting (III-1-7) into (III-1-6) ,we can apply Gauss' theorem, 



and also make use of 

(0) 
a ' j . 

1. ,] 

Then we have 

(1) 
a . . . 

l.J ,] 
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= \ 0 in V(2) 

I-pf. in Vel) 
1. 

+f 
a(O) +0(1) 

* 
f a(o) +0(1) 

Mel." 
ij ij da - ij ij 

2 ui nj 2 
l: S 

- ~l) * pf
i u . dv 

1. 

V 

However, if tractions are specified on S ,then 

* and if the displacement is specified, then u = 0 
i 

(III-I-B) 

* u i nj da 

(III-1-9) 

, so that in all 

cases, we get, by combination of (111-1-9) and (III-1-4) 

(III-l-lO) 

This provides an estimate of the energy released by relaxation. This 
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result was obtained in a slightly different fashion by Archambeau (1972). 

~E has the form of a dislocation energy (e.g., Steketee, 1958), 

which is not surprising in view of the equivalence theorem proved in 

section 11-5. In fact, we see that ~E is given by the work of the 

mean tractions between initial and final state, working through the 

change in displacement on E We could have derived (111-1-10) 

directly from the results of section 11-5, since the only difference 

occurs in the material within V(2) ,the elastic energy of which 

we ignored anyway. 

Furthermore, in the case where E envelopes zero volume, then we 

can write approximately 

M o:A<o><u> 

where A is the "fault" area, < a > the mean stress and < u > the 

mean displacement jump across E This approximate expression is the 

, one used, for instance, by Wyss (1970) to estimate the energy released 

by faulting. We must point out, however, that this approximation can 

be made only if the rupture is a simple one, where the mean stress and 

the displacement jump are smooth functions over E and where the mean 

value theorem may be applied. Jungels (1973) showed that for a realis­

tic fault model computed by a finite element method, this approximation 

is not,in general, a very good one. 

Another interesting result is obtained if one does not ignore the 

first term on the right-hand side of (III-1-3) 
I 

Let us first 
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transform (III-1-3) by rewriting it as 

1 M =­eX 2 

(1) 
e .. 
~J 

(1) 
- G .. 

~J 

By use of Hooke's law, and substituting (IIl-1-7) into this equation, 

we get, after applying Gauss' theorem 

1 
2 

/ (C~~k) 0 - C~~k) 0) e~2) e.(~) dv 
(2) ~J Tv ~J Tv ~J ItTv 

V 
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Because of the boundary conditions on E ,the integrals over E 

cancel each other, and we have 

lllie.e 1 f (e(l) _ e(2) ) (2) (0) = - dv 2 (2) ijH ijk~ eij ~~ 
V 

+.! f (a~~) - a~;»)( u~l) + uiO») n. da (IlI-l-ll) 2 J 
S 

An alternate form for lllie.e may be obtained by applying directly 

(III-1-7) and Gauss' theorem to (III-1-3) Then 

=+.! 
2 ~l) V 

Here we also used (III-1-8) in the first integral. 

(III-1-12) 

We can now discuss the effects of the various loading mechanisms 

mentioned at the beginning of this section. Following Eshelby (1957) we 

define the interaction energy between the inhomogeneity and the pre-

stress as 

= - 1 f 1(1) ,(2») (2) 
2 (2) \ei.1k~ - Cl.1kt e lJ 

V 

(0) 
ck,q, dv 
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a} If the body is stressed by means of a body force density within 

Vel) and/or known prescribed tractions on S ,then, combining 

(111-1-12) and (111-1-4) and using the equilibrium equations 

(III-1-7) , we have 

lIE = 

Further , from (III-I-H) 

Thus 

1 
= --LlE 

2 W and thus 

(III-l-l3) 

We see that when the prestress is generated by externally applied forces, 

then during the relaxation process,work is done by these forces and 

half the work done goes to increase the internal energy of the body. 

b) If the body is prestrained by imposing a known displacement u
i 

on 

the surface S ,and by clamping S in rigid grips, then from 

(III-I-II) we get 

a(O») u n da 
- ij i j (III-l-l4) 
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But, from (111-1-12) we also have 

(0) ) 
- °ij (1l1-1-1S) 

Further, 6Ew vanishes in that case, thus , by combination of (111-1-14) 

and (1l1-1-1S) 

(1l1-1-16) 

and the total change in internal energy is precisely the interaction 

energy in that case. 

c) The case when the body is subject to internal stresses is a little 

more subtle. We assumed earlier that the sources of internal stresses 

are all within Vel) Let us consider a closed surface S' 

surrounding E ,but such that the (singular) sources of internal 

stresses lie outside S' (figure 111-1-2). Then the "body" can be 

taken to be the composite material within S' The analysis proceeds 

as before and we can use (111-1-11) and (111-1-12) provided that we 

replace S by S' in these equations. This insures that the volume 

within S' is free of singularities, and the homogeneous equations of 

equilibrium are thus satisfied everywhere within S' Then from 

(Il1-1-11) 
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S' 

• 

• 

" n 

• 

" n 

Singularities 

Figure 111-1-2. Replacement of the surface S by a new surface Sf 
such that no singularities are present within Sf 
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10 (1) _ oCO») ( (1) + CO») 
~ ij ij ui ui 

n. da 
J 

n da 
j 

(III-1-17) 

(III-I-IS) 

Expanding the integrand in (111-1-17) , and then using the Ray1eigh-

Betti theorem and comparing with (111-1-18) yields as in case b) 

(III-1-19) 

Equations CIII-1-13) (111-1-16) , and (111-1-19) allow us to 

discuss which circumstances are favorable to the occurence of 

spontaneous rupture. This is done in the next section . 
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111-2 Discussion: The energy available for elastic radiation 

We have studied in the last section the energy liberated by a 

relaxation source for four different loading mechanisms. Of course, in 

the Earth, several such competing mechanisms will, in general, be 

present simultaneously. If the stresses and strains generated by two 

such mechanisms are small enough so that they can be superposed 

linearly, then the total elastic energy i s 

E(1+2) E(l) + E(2) + E~(1,2) , (III-2-l) 

where E(l) is the elastic energy present when only the first loading 

mechanism is present, E(2) is associated with the second mechanism, 

and E~nt(1,2) is the interaction energy given by Eshelby (1956) 

(2) + 0(2) 
e ij ij 

When three mechanisms are present then 

(1») e
ij 

dv 

E(1+2+3) = E(1+2) + E(3) + E~(1+2,3) 

= E(l+3) + E(2) + E~(l+3,2) 

E(2+J) + gel) + E~nt(2+3, 1) 

(III-2-2) 

(I f1-2-3) 
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By comparison of (III-2-3) and (III-2-1) one easily sees that, in 

the presence of N loading mechanisms 

E(l+2+ .•• +N~ E(l) + E(2) + ..• + E(N) + E~(1,2, ... ,N) 

(III-2-4) 

where the interaction energy may be written 

E ~(l, 2, ... ,N) E~(1,2) + E~nt(1+2,3) + ••. 

+ E~[1+2+ ... +(N-l),N] ( III-2-S) 

The order of application of the different loads does not matter in 

(III-2-5) --see equation (III-2-3) --, so that any permutation of this 

order may be chosen to compute the interaction energy. Thus we could 

easily generalize the analysis presented in the former section to the 

case of several competing mechanisms. 

For the sake of simplicity, however, let us consider the various 

situations presented in section III-l separately. 

Two main results emerge from section III-l: 1) The amount of 

energy liberated in the relaxation process, if the prestress is given, 

is independent of the loading mechanism and is E~nt ,the interaction 

energy between the prestress and the inhomogeneity; but 2) the source 

of this energy is different for different loading mechanisms. More 

specifically two cases arise. If the prestress is generated by fixing 



-132-

the displacement on the boundary of the body, or if it is due to a 

distribution of sources of internal stress, then the change of energy 

equals the change in elastic energy. In such a case one really has a 

relaxation phenomenon, where the total strain energy in the body 

decreases in the process, as a fraction of it is liberated. On the 

other hand, if the same prestress is generated by an adequate distri­

bution of externally applied body forces or surface tractions, then the 

strain energy changes by the same amount, but increases rather than 

decreases. Then the work done by the external mechanism (change of its 

potential energy) is twice this amount , so that eventually the same 

total amount of energy is liberated. In this last instance, the 

liberated energy finds its source in the work done by the external 

loading mechanism. 

This provides a ready explanation for the paradox raised by 

Steketee (1958). Using Connoletti's theorem, this author considered 

the energy balance in the creation of a dislocation in a prestressed 

medium. Using the fact that the dislocation energy is independent of 

the pre-existing stress state of the body, and arguing that the 

natural boundary condition to be applied at the surface of the Earth is 

that of a free surface, with constant and vanishing tractions, Steketee 

finds that the total internal energy of the Earth increases in all 

cases . This is a rather disquieting conclusion, but not a surprising 

one since it merely states that it takes energy to create a dislocation . 

The sou n:e of this energy is where the problem Ill's . 1 f the loading 

mechanism is taken to be a body force density (such as gravitational 
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forcea), then from our analysis, the internal energy of the material 

surrounding the rupture will indeed be increased. The total gravita­

tional energy will then be decreased, half of this energy being used to 

increase the strain energy, the other half being "liberated." Part of 

the "liberated" energy is available for radi ation, and part of it is 

dissipated in irreversible processes connected with failure and 

deformation. 

On the other hand, internal deformation caused, for instance, by 

plate motion is more likely to be the source of the prestress. The 

highly stressed zones in the Earth that are associated with earthquakes 

appear to be confined to limited regions, as evidenced by the very 

distribution of earthquakes. Thus if the rupture occurs, say, within 

the thickness of a plate , or of a downgoing slab at a trench , then one 

can argue that the "body" to be considered for the analysis is that 

plate or slab, and not the Earth as a whole. If we envision the prestress 

to be due to a distribution of tractions acting on the boundary of this 

"body," then we cannot expect these tractions to be held constant during 

an earthquake. In fact, one rather expects the static displacements 

associated with the earthquake to vanish rather quickly with dist ance 

outside the slab . It appears then that a good approximation to the 

boundary conditions is to fix the displacements rather than the trac tions 

on the boundary of a region surrounding the event. According to this 

argument, it is clear from our analysis that true stress relaxation must 

occur, and that the elastic energy of the slab decreases in the process . 

Another point of view is to consider the state of prestress in the 

Earth to be due to internal causes. Then the slab considered above is 
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subject to internal stresses. If the sources of internal stress are 

thought to lie in the surrounding material, whatever they may be (e.g. , 

convection), then the surface of the slab plays the role of the surface 

S' shown on figure 111-1-2, and again our analysis predicts that elastic 

energy is liberated. 

Another consideration yet may help clarify the situation: the 

phenomenon that we seek to describe is really a local one. Take t he 

extreme case of a large body which would be prestressed by application 

of constant tractions t . on all or part of its boundary. Let failure 
~ 

take place in a localized region within this body. Then we proved that 

the elastic energy of the body will increase because of the work done 

by the loading mechanism. But it is clear that the tractions ti 

cannot start doing work until inf ormation has been propagated from the 

rupture zone to the boundary Of the body. This informa tion will be 

carried by elastic waves, which transport energy. Clearly the energy 

of these waves does not find its source in the work done by the tractions 

t. , but in the strain energy released momentarily in the source region. 
~ 

Thus because an earthquake is always a localized phenomenon in the 

Earth , it is always a good assumption to model it as a stress relaxation 

phenomenon. Except for the possible work done by body forces such as 

gravitational ones, the seismic energy emanating from the source region 

finds its origin in the release of strain energy. Of course, at any 

point the Earth will have to readjust its configuration, albeit 

infinitesimally, but information about the rupture is carried by the 

seismic r adiation field, and this field has a localized source, of 

limited dimensions. 
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TQe effect of gravitational forces can be illustrated by the 

following trivial example. Suppose an object is dropped onto the 

surface of the Earth with no initial velocity, then,upon impact,the 

potential energy of this object has been transformed into kinetic energy. 

TQis energy is then partly transformed into strain energy stored in the 

ground supporting the object, and partly into radiation of elastic waves. 

Not until the elastic waves have reached it will a point in the Earth 

adjust to the new situation. This very simple example illustrated how 

locally, gravitational potential energy can be transformed into seismic 

energy. In the case of an earthquake, one can see intuitively how the 

work done by gravitational forces can contribute to the seismic radiation , 

particularly in the case of dip-slip faulting--of course, in pure strike­

slip faulting, the particle motion occurs along equipotential surfaces, 

and no work is done by or against gravity. 

Jungels (1973) used a numerical (finite element) method to construct 

a realistic model of the San Fernando earthquake of February 9, 1971. 

His findings corroborate the preceeding discussion, but also show that 

realistic situations can be quite complicated. The first important 

point to be realized is that the energy balance problem has to be solved 

by first isolating a region R surrounding the earthquake zone. The 

essential criterion for delineating the region R is to require that 

most of the energy liberated in the form of radiation find its source 

within R The transfer of energy between R and the rest of the 

Earth will take place through the radiation field. We have just argued 

that this energy comes essentially from two possible sources in R 

th e release of strain energy and the possible work of gravitational 
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forces within R 

Observations of both s.tat.ic and dynamic fields suggest that most 

of the radiated energy cOllIes fro:m a limited region surrounding the 

rupture zone. This will be true, in particular, if the strain energy 

density released by the event outside R ,and the work done by 

gravitational forces outside R , are small. Certainly the San Fernando 

earthquake did little to release the strain energy stored even 100 km 

away, let alone, say, in South America. Two criteria may be used to 

determine the dimension of the region R If the prestress is thought 

to be a rather localized field around the event, the R should be 

essentially taken to englobe the prestressed zone; if the prestress is 

thought to be large on a much larger scale, then the characteristic 

dimension of R should be taken to be about the longest wave length 

under study. 

Thus, Jungels, for example, proceeded to systematically investigate 

the various situations described above: 

1) When the tractions were kept constant on the boundary of the 

region R , then the strain energy in R was increased. 

2) When the displacements were held constant, then the elastic 

energy was decreased. 

3) However, when gravitational forces were included in the model, 

Jungels found that the work done by them could be significant. In fact, 

for this particular earthquake, energy was expended in work done against 

gravity, so that the radiation field contained less energy than could 

have been expected from simple relaxation. 

But more importantly, it was shown that the rupture geometry, the 
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failu.re process, the presence of a free surface, and the inhomogeneous 

nature of t~e crust could cause" the faulting to be exceedingly complex. 

Strain energy could be increased locally, and decreased elsewhere, and 

sim~ar1y for gravitational energy. The energy underwent a complete 

redistribution in a very complicated f ashi on, and only the global 

balance appeared in the form of radiation leaving the region R 

One must therefore keep in mind that, not one, but several of the 

possible loading mechanisms enumerated in section 111-1 can act in such 

an event, and there is no insurance that one of them might be more 

important than the others. 

Another aspect of the question is worth mentioning at this point: 

we pointed out earlier that even if a body is prestressed by appl i cation 

of constant surface tractions on its boundary, then the radiation field 

associated with localized f ailure of the material within this body is 

generated by a dynamical stress relaxation mechanism. This is true if 

the points of application of the external loads are far enough from the 

rupture itself. Eventually the surface tractions will do some work and 

finally cause the strain energy to increase, but not until the radiated 

waves have reached their points of application. Now if the body is 

limited in size, so that surface tractions are applied at close 

proximity of the failure zone, then the loading device will start doing 

work during the relaxation process, and thus create a feedback to the 

rupture phenomenon. This can be the case in laboratory expe riments 

(e .g., Scholz, et a1., 1972) where a small sample is prestres se d by 

applying a constant load on its boundary, and where the failure zone has 

dimensions comparable to those of the sample. In such cases, work will 
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be done by the loading apparatus during the failure process, and the 

elastic energy of the sample could increase as t h e rupture propagates . 

If this is the c ase, then energy is transferred continuously t o the 

sample, and the rupture may be "driv en" by the loading mechanism . As a 

consequence of this , one does not expect the rupture phenomenon to stop 

until the potential energy of the sample and that of the loading 

apparatus have been sufficiently decreased. 

On the other hand, if the boundary of the sample is r igidl y clamped 

so as to fix the displacements, then the only energy available f or 

failure is that stored as strain energy in the sample itself . In such a 

case elastic energy is liberat ed, and one can see how, a f ter suff ic ient 

stress relaxation, enough energy could have been r ele as ed s o that the 

rupture would not propagate f ur ther. Of course, the f a i lu r e c r i t e r i on 

must be applied point-wise, as we shall see, and stress concentra tions 

in localized regions will be most important; but this observation must 

be kept in mind when designing an experimental device to study material 

failure, especially if one wishes to reach conclusions about the 

mechanism of earthquakes. 

We have discussed so far the origin of "liberated" ene r gy under 

various circumstances; we still have to discuss which fo rm this energy 

takes. Clearly, some of this energy is to be radiated in the form of 

elastic waves; the question is: how much of it? Eshelby (1956) proposes 

that, i n the quasi-static case, all the energy available appears in the 

form of surface energy , wherein the opening of a crack absorbs an energy 

proportional to the crack surface created. This is the basis for 

Griffith's (1921) solution to the crack propagation problem. Furthermore, 



-139-

if friction is introduced between the two faces of a crack , energy will 

be dissipated (e . g . , into heat) , which equals the frictional work of the 

tractions across the crack. If creep occurs ahead of the c rack tip 

before rupture (e.g., Ida, 1973), then some energy will be absorbed by 

this phenomenon in the form, say, of plastic work . Barenblatt (1958) 

considers the work which has to be done against intermolecular cohesive 

f orces at the crack tip during crack formation. Cherry (1973) assumes 

a specific constitutive equation to evaluate the energy dissipated in 

plastic work numerically. Further, it is difficult to believe tha t an 

earthquake behaves as a single crack of enormous size. I n fact, s urfa ce 

observa tions show a large number of secondary cracks of r a th e r small 

size. The energy radiated by these small fractures will be carr ied by 

very high fre quency waves which are likely to be very rapidly attenua ted, 

and thus this energy will be dissipated very close to the failure zone 

or within the failure zone itself. 

Then one realizes that, of all the "liberated" energy, much will be 

absorbed by the rupture phenomenon itself, and only a f r action of it will 

be radiated away and not all of it will be transmitted ve r y fa r. The 

ratio n = E / 6E of the seismic energy to the total energy ava ilable 
s 

defines the seismic efficiency factor of the rupture. Furthe r, the 

observed energy at teleseismic distances has been further affecte d by 

the travel path of the waves, and the ratio n should be de f ined as a 

function of frequency. 

The seismic efficiency factor n plays therefore the role of 

a partition coefficient for the "liberated" energy . >Hanks and Thatcher 
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(1972) . ~ow that it cannot be determined from the knowledge of the 

r&diation field only, but that one needs either additional information 

or additional assumptions in order to evaluate it. 

The foregoing discussion clearly ties material failure and rupture 

propagation problems to the energetics of the phenomenon . It is thus 

only natural to approach these problems from the point of view of energy 

considerations. We shall propose and outline such an approach in the 

next section. 
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111-3 Failure as an energy problem 

Since the early work of Griffith (1921) and its generalization by 

Sack (1946), much attention has been devoted to crack problems, both 

static and dynamic. Most of this work was done in the context of 

metallurgical applications (e.g., Yokobori, 1965). The publications of 

Ida (1972, 1973) summarize well how the theory of crack propagation can 

be used in geophysics. The major problem associated with friction free 

longitudinal shear cracks stems from the stress singularity arising near 

the tip for the elastic solution. No material can sustain infinite 

stresses and the crack grows under any load. Kostrov (1966), and Ida 

(1972, 1973), show how crack propagation is governed both by the 

fracture criterion at the tip, and by the boundary conditions to be 

satisfied on the crack surface. Ida shows how stress singularities may 

be avoided, and how various conditions yield different regimes in the 

crack propagation. The propagation may be smooth or bumpy, and approaches 

the shear wave velocity after a long time. The bumpy propagation is 

observed in the case of a high frictional resistance to slippage along 

the crack; the propagation is smooth in the case of low friction, and 

also if a large amount of creep is allowed at the crack tip. The 

author identifies the two regimes with brittle and ductile behavior 

respec tively. 

Freund (1972) expresses the overall dynamic energy balance at the 

tip of a moving crack in the two dimensional case, and summarizes the 

results obtained by this approach. The main result consists of an 

expression of the ene rgy releoHe rate at the crack tip as a function or 

the elaHtic field of tile moving crack. TltiH 1s done by equat.Lng the 
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energy flux into the crack tip to some fracture energy. 

The ideas that we outline below, albeit rather tersely, take the 

point of view that the energetics of the phenomenon constitute the 

critical aspect of the problem, and must yield a formulation that 

emphasizes the physical processes involved. 

Since we are interested in a continuum representation of the 

failure phenomenon, and in view of the arguments made above that failure 

can be viewed as a generalized phase change of the material, the 

pertinent equations to be solved are those of section 1-1. ~eca11 that 

these equations include the conservation equations representing the 

conservation of mass, of linear and angular momentum, of energy, and 

also the C1ausius-Duhem inequality, expressing the second law of thermo­

dynamics. These are precisely the equations enumerated by Truesdell 

(1965) . 

Since we are in the presence of a material discontinuity L ' , we 

must also include as boundary conditions the jump conditions developed 

in section 1-1. These are the conditions which control the evolution of 

L As pointed out in section 1-1, the critical equation needed in 

order to evaluate the velocity U of L (see Chapter I, or Appendix 1) 

is the energy jump condition 

(III-3-1) 

Here Vi is the material velocity, qi the heat flux vector, and E 

the total energy density. (It is the total energy which is conserved.) 
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(111-3-1) is a boundary condition to be met on L by the flow 

solutions on both s.ides of it. If the boundary velocity U is given 

as a parameter, then by solving the flow equations on both sides of L 

one can determine from (III-3-1) the quantity of pE which is 

absorbed (or liberated) as a unit mass of material traverses L (that 

is, undergoes the phase transition). For our present purpose, on the 

other hand, this equation must be solved for U We must therefore 

state the problem as follows: 

Having specified the state of the material on both sides of L 

we first solve the flow equations (transport of mass and momentum) in 

the two regions separated by L , as a function of the parameter U 

We then specify the amount of total energy density pE which is 

absorbed or liberated upon crossing L The problem is now to find a 

value of V such that the solutions of the energy equations on both 

sides of L be matched exactly on L by the boundary condition 

(III-3-1). In short, all the flow equations of section I-l have to be 

solved simultaneously in the two regions bounded by L , and the 

boundary velocity V is then determined by requiring that the appropri-

ate jump conditions be satisfied. This is obviously a complicated 

problem. 

The simplest problem of this type is the problem of Stephan 

(Carslaw and Jaeger, 1959; O'Connell and Wasserburg, 1972) and, even in 

• 
the simplest case, the problem is nonlinear --see section I-l. This 

means that analytical solutions may be found only in very particular 

situations, and also, that the problem does not afford a Green's 

function solution. Thus, the problem will have to be solved numerically , 
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in most cases (e. g., Cherry ~ a1., 1973). 

The material properties on both sides of E may be specified via 

suitable constitutive equations. There are no a priori restrictions 

imposed on these equations except for the following principles which 

hold for so-called simple materials (e.g., Truesdell, 1965): 

1) The principle of determinism: causes operate only through 

their histories so that, in general, present effects are 

due to past and present causes. 

2) Principle of equipresence: "a quantity present as an 

independent variable in one constitutive equation is so 

present in all." 

3) Principle of local action: effects at a given point depend 

only on causes occurring in some neighborhood of thill 

point. 

4) Principle of material frame-indifference: the quantities 

present in the conservation equations have intrinsic 

meaning, independent of the observer, and two observers 

see the same material properties. 

5) Principle of entropy growth: the Clausius-Duhem inequality 

must be satisfied in all cases. 

A complete discussion of these principles lies outside the scope of 

this chapter and the reader is referred to Truesdell (1965), for 

example, for a remarkably clear and concise presentation. 

We also need to know the quantity of E which is absorbed (or 

liberated) at the crossing of E It includes several terms. The 

jump in kinetic energy will be obtained by solving the equations of 
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conservation of mass and momentum on both sides of L and satisfying 

the boundary conditions on L Similarly, that part of the energy 

jump which is due to reversible processes, for example, the jump in 

elastic energy, does not pose any particular difficulty once constitutive 

equations have been chosen. 

Much more delicate, on the other hand, is the estimation of 

irreversible phenomena. These include irreversible work done on the 

material, as well as thermal phenomena. We are talking here about 

irreversible processes involved in transporting a particle from one 

side of L to the other side, and not about dissipation and heat 

conduction leading to internal entropy production away from L (these 

can be estimated independently). 

It is intuitively clear that there must be a complex interdependence 

between the physical nature of these irreversible processes and the 

boundary velocity. Several regimes may in fact occur: for example, for 

a slowly propagating failure, transfer of energy by diffusion mechanisms 

(e.g., heatflow, diffusion of point defects and crystal dislocations) 

can be critical, while kinetic energy terms may be neglected. On the 

other hand, Yokobori (1965) points out that little plastic work is done 

in the case of a rapid propagation of a brittle rupture. In that case, 

the propagation is more likely controlled by momentum transfer. Using 

the excitation of free oscillations of the Earth, Dziewonsky and Gilbert 

(1973) show evidence that two very different regimes of failure may 

take place successively during a seismic event; more particularly, two 

deep South American earthquakes were preceded by a slow compressive 

phase, with essentially no high frequency radiation. Possible creep 
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events taking place prior to earthquakes would fall in the same category 

of phenomena. 

Since an elaborate discussion of such processes should be rather 

involved and quite lengthy, we shall simply write 

(I II-3-2) 

where we have isolated the work done reversibly. The second term 

contains both reversible and irreversible thermal effects, as well as 

irreversible mechanical effects. It reduces to the latent heat of phase 

change in the simplest case (see Chapter I). 

For shallow earthquakes, this term can be estimated approximately 

as follows: Suppose that the generalized phase present in the failure 

zone is formed of a highly cracked material , to the point where the 

medium is essentially granular . Then i f ~ is the new surf ace density 

(per unit mass) created upon failure, £ the surface energy per unit 

area, and s the surface plastic work per unit area (e.g., Yokobori, 

1965), we have 

(III-3-3) 

Now, if we denote the grain size by 4 ,the surface created is 

proportional to -1 
4 , so that the work done to finely grind the 

material becomes very large, and less energy is available for radiation. 

Of course the finest grain size is not expected to be reached immediately 
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upon failure, since further irreversible work of this type must occur 

inside the failure zone, which can be taken into account through the 

constitutive equations. 

It should be noted in that respect that if gaseous or liquid 

material permeates the cracked medium, the surface tension is decreased 

(e.g., Yokobori, 1965). The work done in (111-3-3) is thereby 

lessened, increasing the chances of runaway rupture . This aspect is 

particularly interesting because of its obvious connection with the 

dilatancy-diffusion model of earthquake prediction (e.g., Whitcomb 

et al., 1973) 

For deep earthquakes, the shear melting hypothesis proposed by 

Orowan (1960) and Griggs and Handin (1960) suggests that true phase 

change takes place, which can be treated by standard procedures (e.g., 

Ida, 1970). Using the "local equilibrium" theory, this author shows 

that a small pocket of molten material embedded in a non-hydrostatically 

stressed solid evolves into a thin sheet, and suggests that this could 

initiate the shear melting process. 

As we saw in Chapter I, when no density jump occurs, and when the 

kinetic energy is continuous across ~ ,then the jump in internal 

energy reduces to the latent heat of phase change. Thus the ideas 

developed above constitute in a formal sense a generalization of 

Stephan's problem, and one sees how the concept of latent heat has to 

be generalized to model the failure phenomenon as a generalized phase 

transformation. 

The ideas which we have advanced so far allow for a solution to 

the failure propagation problem, once failure has been initiated; 
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nothing has been said, however, about the phenomenon of incipient 

rupture. This aspect of the question has been investigated in rather 

great detail from the microscopic point of view. Treatment of the 

nucleation problem, and its connection with the theory of crystal dis­

locations can be found, for example, in Yokobori (1965), along with an 

extensive bibliography. Clearly, because it takes into account the 

physical nature of crystalline materials, this treatment must be kept in 

mind when constructing a continuum mechanical failure criterion. 

The stress-strain curve for many materials may often be separated 

into two parts. Figure 1II-3-la shows an idealized curve where two 

regimes of material flow occur in succession as the load increases. The 

segment OA represents a perfectly elastic regime where the strain i~ 

fully recoverable, whereas the segment AR represents a purely pia~tic 

regime, in which the material is unable to sustain any further increment 

of stress, and flows in such a way so as to keep the stress level 

constant. The plastic strain thus generated is no longer recoverable, 

and the area of the rectangle ABCD is the plastic work done when the 

strain increases from B to C Rupture occurs at the point R 

Since plastic yield is primarily associated with deviatoric stresses, we 

may ignore, to first order, the hydrostatic stresses. A more complete 

description of the phenomenon and a comparison to experimental results 

can be found in any textbook on the subject. 

On the basis of this idealized behavior, Cherry, et al. (1973) use 

the following rupture criterion in numerical calculations: the material 

is treated elastically up to the yield point A This yield point is 

usually determined by a Von Mises criterion, or, equivalently, it is 
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Figure 111-3-1. a) Stress-strain curve for an elastoplastic material. 
OAR and O'A'R' are two possible regimes corresponding to different 
loading conditions. A and A' are yield points; Rand R' are 
rupture point s . b) Internal energy associated with 1) elastic defur­
mations caused by the deviatoric stresses, and 2) plastic wurk, as a 
f unction of strain. 
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CD) 
11 

P 
reached when a level of the internal elastic energy associated 

with the deviatoric stresses is attained (figure III-3-lb). The 

material is then treated plastically afterwards, and a specified amount 

of plastic work CD) 
- u 

P 
is required before rupture occurs. 

The criterion can obviously be changed at will so as to use, say , 

the curves OA'R' The geometry depicted in figure 111-3-1 might 

correspond, for example, to two different strain rates. In that case 

OA 'R ' would correspond to a higher strain rate than OAR This is 

not unreasonable since it is known experimentally that the yield stress 

T increases with the strain rate . The path OA'R ' could also corres­
p 

pond to a lower temperature than OAR, since temperature effects can be 

traded off with strain rate effects (e.g., Yokobori, 1965). The 

additional assumption which we make in this figure is that the internal 

energy associated with 1) the deviatoric elastic strains and 2) the 

plastic work, reaches a specified value at rupture . This is also an 

acceptable simplification, since the more brittle the rupture (e.g., 

OA'R' ), the less plastic deformation is observed before it (see e.g., 

Yokobori, 1965). 

Such a rupture criterion based on energy, although it is very 

simplified, and would have to be checked against observations presents 

several advantages. 

First of all, it can be applied point-wise, which is realistic, and 

rather convenient in numerical work. Furthermore, it would provide a 

natural tie with the dynamical concepts discussed earlier: 
CD) 
~ is the 

energy level required before phase transformation can occur at all. 

Third, it can be generalized t o i nclude more sophlsticuted ,ii tuut Lu/lt; : 



-151-

Coleman (1964) developed the theory of thermodynamics of simple materials 

with fading memory. This theory assumes very general constitutive 

relations for the material, which satisfy the principles mentioned 

earlier. More particularly, the stress, the internal energy, the entropy, 

and the heat flow are functionals of the deformation and temperature 

histories of the medium. The heat flux depends also on the present 

temperature gradient. The concept of fading memory is adopted as a 

principle which states that effects of the distant past are less 

important than those of the recent past. More specifically, the present 

state of the material depends strongly on recent deformations and 

temperature changes, but is practically independent of deformations and 

temperature changes which took place long ago. This results in a 

different material behavior under rapid deformations than under slow 

deformations. These circumstances have obvious applications in Earth 

sciences, where the long-term deformations associated with tectonics, 

or with isostatic rebound constitute one regime, while rapid deformations 

caused, for instance, by seismic events call for a different material 

behavior. 

The problem obviously needs to be thought out very carefully; for 

example, if the material goes through a phase change, so that the new 

phase possesses a different memory function, then we are faced with the 

situation of a material having a memory, but no past. This idea is 

certainly worth further investigation, and could yield very useful 

results. Such work will be undertaken in the future. 
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Conclusion 

The treatment of the energy balance for a seismic source model of 

the relaxation type, as given at the beginning of this chapter, clarifies 

the question of where the radiated energy finds its source. Particularly 

important is the realization that the radiation field serves to carry 

energy from the vicinity of the source to other points in the Earth. It 

serves, in particular, to redistribute the gravitational potential energy . 

Thus, while the seismic radiation comes essentially from the release of 

tectonic elastic energy, one is forced to take into account the work of 

gravitational body forces in the source region since it does contribute 

to the radiation field. 

It is proposed that the detailed energetics of the phenomenon can 

be used to help model the dynamic failure process. Failure can be 

thought of as a generalized phase change of the material, and the 

evolution of the failure boundary is then controlled by the energy 

transport equations. In addition, an energy criterion can be devised to 

determine the occurrence of incipient failure. 

This approach presents great potential, since it should lead to a 

more physical representation of earthquakes, in as far as it allows for 

the modeling of a completely spontaneous phenomenon, depending only on 

the thermodynamic state of the medi~ and its constitutive equations. 

Finally, the thermodynamic theory of simple materials with fading 

memory is particularly attractive in this context because of the broad 

range of time scales encountered in geophysics. Very long time scales 

apply to problems such as the recurrence of earthquakes, deformations of 

the crust by tectonic loading, isostatic rebound, etc., and, in that 
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case, viscous and plastic behavior of earth material cannot be ignored. 

On the contrary, wave propagation problems in the Earth can be treated 

by assuming a quasi-elastic behavior of the medium under rapid 

deformation . 
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Chapter IV 

THE GROWING AND PROPAGATING SPHERICAL RUPTURE 

The representation theorems developed in Chapters I and II are qui te 

general in nature since they only assume that the material retains its 

elastic properties up to the failure point. In particular, no assumption 

was made as to the rupture geometry , or as to the rupture propagation 

mode. It is clear, however, that these representation theorems will 

yield analytical solutions for the radiation field only in very special 

cases, and even then, under further simplifying assumptions. Any attempt 

to model accurately a realistic situation has to be handled via numerical 

techniques. 

This is not to say that it is ludicrous to consider analytical 

solutions, even at the cost of oversimplifying the problem. On the 

contrary, we would like to emphasize their importance in terms of 

obtaining a basic understanding of the phenomenon. Whereas a numerical 

approach enables the investigator to handle simultaneously many parame­

ters --including local heterogeneities in the material--it also prevents 

him from isolating the individual effects of these parameters; the more 

numerous the parameters are, the more difficult, the lengthier, and the 

costlier it is to conduct a parameter study. On the other hand, when 

constructing a model which can be investigated analytically, one often 

has to limit the free parameters to 1) those which lead to tractable 

analys.is and 2) those which are deemed necessary for a reasonably 

complete representation of the phenomenon. 
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In modelling the relaxation source, one has to know the rupture 

geometry as a function of time, the rheology of the material within the 

failure zone, the intensity and orientation of the prestress, and a 

measure of the localization of the prestress. 

The geometry that lends itself best to an analytical treatment is 

that of a spherical rupture zone . This is obviously an excellent 

configuration if one wishes to model the tectonic effects of an under­

ground explosion (e.g., Archambeau, 1972), but it does not conform to 

one's intuitive idea of the geometry of a fault zone. However, if an 

underground nuclear explosion is detonated in a prestressed medium, then 

in addition to the direct field caused by the cavity overpressure, one 

observes an anomalous radiation field. Whereas the direct "explosion 

field" has a completely symmetric (monopole) radiation pattern, the 

anomalous field exhibits a quadrupolar radiation pattern (e.g., Lambert 

et al., 1972). A quadrupole is typically the radiation pattern of a 

double-couple, which is the widely accepted point force representation 

of an earthquake (e.g., Burridge and Knopoff, 1964). In fact, this 

anomalous radiation led Aki et al., (1969) to suggest that an earthquake 

was triggered by the BENHAM underground nuclear event. Archambeau and 

Sammis (1970) and Archambeau (1972) showed that the simple stress 

relaxation caused by the presence of the explosion generated cavity is 

sufficient to explain the anomalous part of the radiation (see also 

Lambert et al., 1972). One can thus say that the anomalous radiation o f 

an undergound nuclear explosion is "earthquake like,"justifying the 

suggestion that the radiation field generated by an earthquake can be 

adequately modelled even with a spherical geometry (e.g., Archambeau , 
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1964, 1968). In addition, several authors have presented arguments 

supporting the idea that deep earthquakes may be caused by a large scale 

rapid phase change of the material, which could be due to metastabl e 

thermodynamic initial conditions (see e.g . , Archambeau, 1964 f or a 

discussion). In that case the s pherical geometry could very well be a 

good approximation to the real failu re zone configuration. A much better 

approximation would be obtained by adopting an ellipsoidal rupture zone . 

Such a case will be considered in Chapter VI, but the analysis bec omes 

very cumber some and there is little reason to believe that the gross 

properti es of the radiation field should be strongly dependent on the 

rupture geometry. In fact, physical experience, and field obs ervations-­

which lead in particular to fault plane solutions--show that the basic 

radiation pattern of the radiation from an earthquake is a double couple. 

Thus any model should exhibit this feature, and this condition has to be 

satisfied independently of the choice of geometry. We shall see how it 

is so for the spherical rupture, and how rupture propagation effects 

alter this conclusion at high frequency. 

The question of the rheology of the material within the rupture 

zone is to be considered next. If one wishes to model an underground 

nuclear explosion, then there i& little argument t h at the material loses 

its rigidity inside a spherical region surrounding the detonation point: 

the shatter zone. Archambeau and Sammis (1970) and Archambeau (1972) 

present a detailed model of the radial variation of ma terial behavior 

a round the explosion cavity. We shall refer the reader to the ir work 

for a more complete discussion . 

Earthquake modeling is somewhat more subtle. Many authors are in 
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favor of the stick slip model for shallow earthquakes, and thus friction 

could playa significant role. On the other hand, we argued in 

Chapter III that the cushion of granular material-the "fault gouge"-­

generated inside the rupture zone, probably has a very reduced resistance 

to shear motion, compared with the surrounding material, the grains 

composing this material acting in a way analogous to roller bearings. 

Further, if friction were high, and the confining pressure high also--a s 

would be the case for a moderately deep earthquake--then one expects the 

energy dissipated by friction to generate a lot of heat in a localized 

zone, and possibly shear melting could occur (e.g., Griggs and Handin, 

1960; Ida, 1970). Using arguments along those lines, and taking into 

account the possibility of fluid flow if the medium is porous, as well 

as the possibility of material dehydration under suitable thermodynami­

cal conditions, Archambeau (1968) concludes that boundary conditions 

corresponding to vanishing shear strength in the rupture zone are 

appropriate. This may lead to some concern that oscillatory relative 

motions ("overshoot") between the two sides of the failure zone might 

occur under these circumstances (e.g., Molnar et al., 1973). However, 

under the definition of source transparency given in Chapter II, we have 

shown in section 11-3 (equation 11-3- 9) that the instantaneo us 

relaxation source model is equivalent, in an infinite space, to the 

instantaneous creation of a Somigliana dislocation with a step funcU.on 

time history, plus an instantaneous stress step pulse on the rupture 

boundary. There is, therefore, no overshoot in that case, and growth 

and propagation effects should not alter this conclusion. (The local 

nature of the prestressed zone, however, can lead to apparent 
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"overshooting," as will be shown in this chapter.) 

Of course, the shear resistance of the material may not vanish 

completely in the rupture zone as non-elastic effects are likely to be 

important. In fact, a frequency dependent shear resistance could very 

well take place; these could be modelled as viscoplastic effects, but 

the only circumstance in which analytical solutions can easily be 

obtained is when the material inside the rupture zone is treated as 

elastic with small non-vanishing rigidity. Such an approxima tion is 

dynamically justified inasmuch as viscoelastic or viscoplastic materials, 

or for that matter any material with fading memory (e.g., Coleman, 1964) , 

behave quasi- elastically when submitted to very rapid deformations, such 

as those encountered during the failure phenomenon. More complex models, 

including more general constitutive equations, would have to be treated 

numerically. Tn this chapter we shall assume that the shear strength of 

the medium vanishes upon rupture. As we pointed out in Chapter III, 

this assumption leads to the most efficient relaxation process, and 

thus since energy dissipation in non-elastic phenomena is ignored, we 

shall get an upper bound to the radiated energy. If the rheology of the 

material within the failure zone were viscoelastic, then one would have 

to introduce frequency dependent effective elastic moduli. The energy 

spectrum thus obtained would be somewhat different; more energy would be 

radiated at long periods, for which the effective rigidity would be 

small, and less energy at high frequencies for which the erEet:tlve 

rigidity would be higher. 

Growth and propagation of the failure region will be treated by us e 

of the results given in section 11-4. However, when thes e phenomena 

occur, one loses the spherical symmetry, inasmuch, as the instantaneous 
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reference frame in which this symmetry is preserved moves with the 

failure zone . If the spherical rupture undergoes self-similar growth--

a case appropriate to the modelling of an explosion--then a constant 

immovable reference frame can be used (e.g., Archambeau and Sammis, 1970). 

If there is propagation as well as growth, then a moving coordinate 

system with origin at the instantaneous center of symmetry has t o be 

introduced, in which the initial val ue fields take a rather simple f orm . 

But the radiation field is best repr es ented in a fixed coordinate system, 

with its origin chosen, say, at the point of init ial rupture--the 

hypocenter. Two approaches are then available: 

First, the dynamic part of the problem can be entirely handled in 

the fixed coordinate system. One must then express the initial value 

fields in that frame, and this can be done by use of the addition theorem 

for solid harmonics (see section IV-l). This is the attack chosen by 

Archambeau (1964, 1968). It calls for approximations made early in the 

solution of the problem, and leads to relatively simple results . The 

treatment given in section IV-2 is essentially similar t o Archambeau ' s, 

but the results are cast in a much simpler form than his, and asymptotic 

behavior of the radiation spectrum can be studied quite ea sily. 

The second attack consists of evaluating the dynamic field in the 

moving reference frame, and of finding its expression in the fixed 

r eference frame by continuous , time-varying translation of the 

coordinates. This method calls for the addition theorem for spherical 

waves, proved in Appendix 9. With this method the approxima t ions a re 

not made until a fairly advanced stage of the analysis. The re~ul ts are 

slightly more accurate when this approach Is used, but t ake a somewhat 
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mO.re complicated form. We shall show that the asymptotic behavior of 

the radiation spectra are the same whether one method is used or the 

other. This supports our contention that the gross features of these 

spectra are reasonably well predicted by our model. 

One limitation to the propagation of the rupture zone is imposed by 

our ambition to treat the problem analytically. Healing phenomena are 

rather difficult to consider analytically other than by a pure kinematic 

representation, such as the one provided by a dislocation model. The 

stress concentration around a spherical failure zone is tractable only 

if the sphere is embedded in an homogeneous medium, which is not the case 

if this sphere is found at one extremity of a zone having failed and 

then healed. Indeed, there exists then a static deformation of the 

medium in that zone which will interact with the sphere and greatly 

complicate the analysis. Furthermore, there is not even any insurance 

that healing occurs when static equilibrium has already been reached. 

In fact the material can "freeze" in the rupture zone while relaxation 

is still in progress. In order to avoid such complications we shall 

assume that no healing occurs, and that, once a material point has 

failed, it stays within the rupture zone during the total duration of 

rupture. 

Specification of the prestress is essential in the relaxation 

source model. Since we are mainly interested in failure mechanisms 

associated with the deviatoric stress tensor--in particular, failure 

under shear--we shall ignore here the effects of the lithos tatic 

pressure. This Ls an approximation, especially in the case of an 

expLosion, where a definite cavity is created, but then one can treat 
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this question in connection with the radiation field caused by t he over­

pressure in the cavity . In the case of an earthquake, t he lithos tatic 

pressure may 'have two ef fects: the first one i s a dir ec t effect 

associated with a possible change in specific volume of the materi a l 

upon failure (see Randall , 1964). The second one is essentially a 

second order effect, taking place a t very high pressures ; then elast ic 

waves must be treated as small deformations superposed on large 

deformations. Dahlen (1973) investigated the effect of pressure on 

a dislocation source. 

We shall consider hereafter the case of a medium prestressed i n 

pure shear only. In fact, for reasons of simplicity, we shall assume 

that only the off diagonal elements of the stress tensor G
ij 

are non-

zero, when expressed in a natural coordinate system of the source. Such 

a natural reference frame is one where the z-axis points in the direction 

of rupture propagation. This does not reduce the generality of the 

solution since the transformation of the radiation field under change o f 

the reference frame can be found afterwards (this is done in Chapter V). 

Much more important is the parameter specifying the site of the 

stressed zone. We have already argued several times (section 11-3, 

section 111-2) that the Earth is finite in size, and is certainly not 

adequately modeled by a uniformly stressed infinite space. Furthermore, 

earthquakes are confined to relatively narrow zones, and this suggests 

that the prestress is high enough only over limited regions. On 

intuitive grounds, one expects that the dimension of the prestressed 

regions might have a definite effect upon the shape of the radiation 

spectrum. In particular, one expects essentially two characteristic 
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wave lengths to appear in the spectrum, one of them related to the 

characteristic dimension of the rupture itself, and the other one 

related to the characteristic dimension of the prestressed zone. 

Following Archambeau (e.g., 1964), we shall designate the characteristic 

dimension of the prestress zone by R 
s 

, and s hall call it the r e l axa-

tion radius. It is important to realize beforehand tha t R 
s 

i s a very 

physical parameter, even though we shall investigate its e ff ects through 

a mathematical approximation . R is the radius beyond which the static 
s 

stress change due to failure is negligible . In other words, we may 

assume that the initial value fields vanish very fast outside R 
s 

The reasons why one should expect significant stress changes to 

occur onl y in a finite region have been enumerated before: the Earth is 

finite in size, and high stresses are apparently confined to limited 

regions; the proximity of the free surface, or of heterogeneities, are 

additional reasons; also measured static strain changes seem to be 

confined to the vicinity of the event (e.g., Jungels, 1973; Jungels and 

Frazier, 1973). 

This concept is especially important for relaxation source models, 

because such models lead to volume sources (Chapter II). Stress pulse 

models or displacement dislocation models do not allow any convenient 

introduction of R 
s 

The effect of the relaxation radius is essentially 

to limit the volume of the source: All the radiated energy finds its 

source within R 
s 

An observer standing outside the relaxation zone 

is completely outside the source region, and can encapsulate it in a 

"black box" inside which all the radiation generating phenomena occur. 

An observer standing within the relaxation zone is inside the source 
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region, and we shall show that in that case, it is meaningless for him 

to speak of "far field " radiation, because stress relaxation takes place 

everywhere around him. 

The mathematical approximation that we shall choose in order to 

introduce R is as follows: " If the prestress is approximately 
s 

uniform in the vicinity of the f ailure zone , then , in that vicinity the 

initial value can adequately be computed a s if the medium filled the 

whole space, and were homogeneously stressed. This is a good static 

"near field" approximation. But we know that physically , because of , 

inhomogeneities (or because of the proximity of a free surface) , the 

prestress, and therefore the initial value, vanishes quickly outside t he 

radius R We shall approximate the initial value fields up to the 
s 

distance R from the origin by those computed for the infinite space , 
s 

and we shall truncate them at R 
s 

Archambeau and Sammis (1970) show 

that even in the case of an infinite space, most of the energy released 

comes from within a distance of less than five source dimensions from 

the rupture zone. Therefore we approximate a smooth decay of the initial 

value fields by an abrupt truncation. This will clearly lead to an 

overestimation of the radiation fields. The important aspect is that 

we have chosen here a mathematical approximation to a real physical 

situation. 

Of course, a special case of interest is that where R 
s 

is taken 

to be infinite. This was suggested by Randall (1973, a, b) to be the 

only correct choice for 

used above. But taking 

R 
s 

R 
s 

, on the basis of the mathematical approach 

infinite constitutes a very different kind 

of approx imation: one then has an exact mathematical formulat ion of an 
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unphysical problem. The approximation of the Earth by an infinite 

homogeneously prestressed medium is of a physical nature, and although 

it leads to a convenient exact mathematical formulation of the problem , 

we consider that this is not desirable. Our philosophy is to choose an 

approximate mathematical solution in a likely physical situation over an 

exact mathematical solution to an unphysical problem. 

We shall see in this chapter, and also in Chapter VII, that the 

size of the relaxation strongly affects the shape of the theoretical 

displacement spectrum: It is intuitively clear that the largest wave 

length efficiently radiated by the source will be connected with R 
s 

A source region of limited size will be a rather inefficient long-period 

radiator, and thus one expects the displacement spectral amplitude to 

decrease at long enough periods, except if 

We shall show that the only case where 

R 
s 

R 
s 

is taken to be infinite. 

can usefully be taken 

to be infinite arises when the observer stands inside the relaxation 

zone. This can easily be explained by the fact that such an observer 

lies within the source region (as would any observer if R 
s 

is infinite). 

Such an observer cannot speak in a meaningful way of long-period far-f ield 

radiation. Although it is possible to mathematically define such a 

concept, its physical significance is not clear: The fact is that an 

observer lying within the source region will always observe source near-

field effects at long enough periods. The mathematically defined far-

field radiation (that is, that part of the field which decays with 

distance as l/r) can only be compared with the observations for wave 

lengths short compared to the distance between source and observer. If 

the far-field is to have meaning at longer periods, then the observer 
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must recede away from the rupture zone accordingly ; however, since R 
s 

must be finite for the reasons given above, the observer must eventually 

find himself beyond R 
s 

, and the finiteness of the relaxa t i on zone 

can no longer be neglected. A particul arly interesting result is that 

this mathematically defined far-field radiation possesses a spectrum 

identical in shape with that predicted from the usual dislocation models 

for which the displacement jump history is a step f unction in time 

(e.g., Aki, 1967). This is not surprising in view of the equivalence 

that we proved in that case in section 11-3. Further discussions of 

these aspects of the question will be found in this chapter, and also 

in Chapter VII. 

The organization of this chapter will be as follows : 

In the first section we shall formulate the problem and define the 

various variables to be considered. The potentials introduced in 

section 1-4 will be used throughout, as well as the results of section 

11-4. 

The two next sections will be devoted to solving the radiation 

problem by the two attacks described above respectively . In each case , 

asymptotic behavior of the spectra will be discussed, along with the 

effects of the various parameters . The multipolar representation of the 

radiation fields introduced by Archambeau (1964) will be used throughout . 

Finally, a discussion of the displacement spectra and of other 

useful source characteristics will be given in a last section . 
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IV-I Formulation of the problem 

i} The potential solution in the frequency domain 

Our ultimate goal is to obtain the displacement u
i 

at every poin t 

in the medium, as a funct ion of time , or equivalently as a function of 

frequency. But rather than manipulating the complicated Green's tens or 

solution developed in Chapters I and II, we choose to cons i der t he four 

scalar potentials Xu a = 1, ... ,4 defined in section 1- 4 , namely 

i 1,2,3 

(IV-I-I ) 

The potentials Xi i 1,2,3 are the cartesian components of the 

rotation vector potential, even though we shall use a spherical coordi-

nate system; is the dilatation . These scalar potentials satisfy 

wave equations. 

The theory of stress relaxation sources was developed in Chapter I I, 

and it was shown that , for a transparent source, the relative dynamic 

fields, measured with respect to the final equilibrium fields were given 

by 

X (r, t) 
u 

* * X (r, T ) 
U 0 

X (r,t) a 

+ - - H(T -t ) 1 it 
20 0 

4'IIc a 0 

dt 
() 

f 
V( t ) 

o 

* a ar 
Xa __ C! (//0) 

;) tilt 
( IV- 1-2) 

o 0 
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* Rexe Xa is the initial value field, which is a funct ion of the sour ce 

time t < T fo r a growing rupture zone . c is the wave velocity o 0 a 

associated with the potential Xa and r is the infinite s pac e a 

Green's function for the wave equation satisfied by Xa 

c . = V 
~ s 

i 1, 2,3; c
4 

V 
P 

We have 

(IV-1- 3) 

where V and V are the S-wave and the P-wave velocities, 
s p 

r espectively. Also (Morse and Feshbach, chapter 7) 

* * oCr Ic - t ) a r (r,t;r ,t ) = ----'*:'----a 0 0 
(IV-1-4 ) 

r 

* Here r = Ir-rol is the distance between source point and observer's 

* point, and t t-t o 
* It is clear, since r > 0 

* vanishes for t negative so that we have a causal Green 's function 

(cf. section 1-3). 

In most cases, that is except for e x treme near-field studies, the 

observer will be concerned about times greater than T 
o 

, the total 

rupture duration . In such a case (IV-1-2) takes a simpler form and , 

using (IV-1-4) we may write 

f
T 

1 0 

41TC
2 
a 0 

dto f 
V( t ) 

o 
(IV-1-5) 
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This is the expression used hy Archambeau (e.g., 1972) . For time 

t < T the analysis shown in this chapter can be duplicated by using a 

(IV-1-2) ,and the results become more complicated. 

It is convenient at this point to take the Fourier transform with 

respect to t of both sides of (IV-1-5) so as to work in the 

frequency domain. We def ine 

-iwt 
e dt (IV-1-6) 

so that 

x (r,t) = 12 f-t<x>5( (r,w) e iwt dw 
a TI a 

-00 

(IV-l-7) 

We shall concern ourselves only with points r at large enough 

distances from the rupture zone so that xa(r, t) vanishes for t < T 
o 

and that (IV-1-5) is then a valid representation at all times for such 

points. 

Since t is only a parameter on the right-hand side of (IV-1-5) 

we can apply the transformation (IV-1-6) to both sides of this equation, 

and use the following relations 

o 
ot o 
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and 

* -iwt 
o 1+00 a [* * J 

- -<Xl at oCr Ica, - t ) 
-iwt 

e dt i w e 
-ik r a, 

e 

where the wave number k is equal to w/c 
a, a, 

The solution may therefore be written in the frequency domain as 

* iT f * -ik r 
. 0 -iwt ax a, 

dv (O) 
Xa, (r ,w) 

l.W 0 
dt 

a, e (IV-I-B) 
47Tc

2 e 
at * 0 

Vet ) 
0 r 

a, 0 
0 

Now the volume V(t) is the volume lying outside the rupture zone 
o 

itself, and within the relaxation radius R 
s 

We consider a spherica l 

coordinate system with origin a t the point of incipient rupture and 

polar axis along the direction of propagation of the rupture (see 

figure IV-I- I) . Then (IV-I-B) becomes 

. J27T J7T l.W2 d~o sin e de 
4TIc 0 0 

a, 0 0 

* * -ik r 
aXN e a, 2 

u. -=--_.,--_ r d r 
at" * 0 0 o r 

( IV-1-9) 
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This equation gives us the potential solution in the frequency domain , 

provided that we can perform the integrations. 

ii) Geometry of the rupture 

The geometry of the rupture is described in figure IV-I-I. The 

fundamental coordinate system, hereafter called the source coordinate 

system has its origin 0 at the point of incipient rupture. The source 

spherical coordinates are 

sphere of variable radius 

r 
o 

R(t ) 
o 

~o 8 o The failure zone is a 

centered on the z axis at a distance 

d(t ) 
o 

The constraint that no healing occurs can then be written 

d 
dt 

o 

d(t ) < R(t ) 
o 0 

> 0 

for all t o 
(IV-l-lO) 

Another coordinate system, hereafter called the moving system, is 

defined in order to take advantage of the spherical symmetry of the 

source. It has its origin at the center 0' of the rupture, and is 

obtained from the source system by a translation d(t ) 
o 

along the z 

axis. The relaxation zone is taken to be the inside of a sphere with 

center at 0 and of radius R 
s 

The point P is an arbitrary observer's point, with coordinates 

r 8 ~ in the source system; the point Q is an arbitrary 

source point. 

If one wishes to model an explosion, then no propagation occurs and 
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r 
8 
4> 

r 
8 
4> 

.~~--~~---+---r~----~ .. y' 

Yo 

Figure IV-I-I. Geometry for a propagating spherical rupture of radius 
R(t) . 0 is the origin of the source system, 0' the origin of the 

o 
moving system . Q is a source point,and P the observer's point. 
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d(t) is taken to vanish for all source times t o 0 
For an earthquake 

with unilateral rupture propagation one may choose d(t ) = R(t ) 
o 0 

at a l l 

times so that the rupture front propaga t es with the rupture velocity 

d V = 2 --- R(t) ,while no motion of the boundary occurs at the point 
R dt 0 

o 

of incipient rupture. It is intuitively clear that after a finite 

propagation most of the stress relaxation will occur ahead of the 

rupture front, while little energy will be radiated from the vicinity of 

the hypocenter . With this particular geometry t he propagation effects 

will then be the strongest . We shall assume V < V R - s 

If one is interested in studying the radiation field f rom a small 

rupture zone propagating rapidl y, it is possible to consider the case 

where d( t ) 
o 

grows faster than R(t ) 
o 

One has to remember, however, 

that the permanent deformation present i n the "healed" part of the 

rupture may have been ignored . Since this is essentially a static effect, 

such a model is not strictly appropriate for long periods; but since 

most of the relaxation occurs in the vicinity of the rupture front, this 

model yields approximately valid results at high frequency, provided 

that one removes from the solution the energy radiat ed from the "tail" 

of the rupture . 

The geometry described on figure IV-l-l is thus quite flexible and 

will permi t us to model a reasonably wide variety of situations . 

iii) Computation of the initial value 

* For each source time to ,the potential Xa i s a harmonic 

function and may be expanded in solid harmonics (e.g ., Archambeau, 

1968), that is, in the moving system, at to 
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m • P (cos e') 
n 

(IV-l-ll) 

The perturbation to the elastic fields in an inf i nite medium under homo-

geneous stress at infinity caused by a liquid spherical inclusion can 

be calculated by a variety of methods. Archambeau (1964) used the 

solution given by Landau and Lifschitz (1951), who found the displacement 

solution as a combination of biharmonic functions. When the prestress 

is a pure shear at infinity, Archambeau was able to show that only the 

quadrupolar term (n=2) is in fact present in (IV-l-ll) , so that 

1 

(IV-1-12) 

and the (static) coefficients and are given by 
t 

t The coefficients given by Archambeau in his publications prior to 1973 
have to be divided by -2 for a = 1,2,3, they are correct for a = 4. 
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_3cr Co)/2 
23 

--<J(o) /2 
12 

_cr(o) /4 
23 

3crCo ) /2 0 /0) /4 
5 I Cl--<J) -0 a4 cr] 

13 13 
a(a) (t ) R3 Ct ) 2m 0 ].l (7-5cr) 0 

0 cr(0)/2 cr(o) /2 
23 12 

0 cr(o) 
13 

0 

(IV-i-B) 

and 

0 0 0 (0)/4 
13 

51 (1-0)-0a40 ] 0 0(0) /2 _0(0)/4 

b(a) (t ) R3(t ) 
12 23 

2m 0 ].l(7-50) 0 
_cr(o) /2 0 0 13 

0 0(0) 
23 

0(0) /2 
12 

(IV-1-14) 

Here the quantities (0) 
O •. 

1J 
are the components of the homogeneous 

prestress, chosen to be pure shear in this case. 

In order to isolate the time dependence of these coefficients we 

write 

a (a) (t ) 
2m 0 

b (a) (t ) 
2m 0 

( IV-i-iS) 
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TIle expansion (IV-1-12) holds in the moving coordinate system . 

The azimuthal dependence exhibited by this expansion of the static 

fields must essentially be that of the very long period radiation, fo r 

which propagation effects are not expected to be very strong; we 

therefore see, since only the quadrupole term is excited, that the long 

period radiation pattern must be essentially quadrupole, which is in 

agreement with the observations. 

Note that for geometries other than spherical, one does not expec t 

only the harmonics of degree 2 to be excited, especially close to the 

rupture zone; but for r' sufficiently large, because of the radial 

dependence of the solid harmonics, one expects the quadrupole to 

dominate in all cases. 

The solutions given in the next sections assume that the rupture 

velocity V
R 

is less than or equal to the wave velocity ca 

clear that for a supersonic rupture velocity, the rupture may be 

considered to be instantaneously created. In particular, if 

v < V < V the problem is to be treated differently for the s R p 

It is 

rotation potentials and for the dilatation. We shall not treat such 

J 

cases explicitly; Archambeau (1972) presents a discussion of the 

subject, in the context of explosion modelling. 
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IV-2 Archambeau's method of solution 

The first approach to the dynamical problem as described in the 

introduction to this chapter, .consists of evaluating the dynamic solution 

(IV-1-9) in the source coordinate system. This is the attack adopted 

by Archambeau (1964). The results which we shall obtain in this section 

are of somewhat simpler appearance and of greater generality than 

Archambeau's results, and reduce to these results in specific 

circumstances. 

i) Translation of the static fields 

The first step we have to take is to find an expression for the 

* initial value fields Xa in the source coordinate system. We know that 

in the moving sys tem we have 

(IV-2-1) 

where only the term for n=2 is present, and where the coefficients 

a(a )(t) 
nm 0 

and b(a)(t) 
. nm 0 

are given by (IV-1-14) 

The coordinate transformation that we wish to perform is a simple 

translation, of amplitude -d(to) ,along the polar axis. In that 

translation the azimuthal angle ~' does not change so that ~ =~' o 

Then from Hobson (1931, p. 140) we have the following addition theorem 



m P (cos e ') 
n 

(r,)n+1 r o 

1 
n+1 
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t (n-m+s)! 
s=O (n--m)! s! 

which converges uniformly with respect to r 
o 

for r > d (t ) 
o 0 

(IV-2-2) 

Substituting (IV-2-2) into (IV-2-1) , where we need keep only 

the term n=2 

f: 
2 

L 
s=O m=0 

1 
3 

r 
o 

(s+2-m) ! 
(2-m)! s! 

(IV-2-3) 

This equation may be transformed by defining £ s+2 and by using 

(IV-1-14) ; we get 

where the coefficients 

r 
o 

and b' (a) 
2m are given by 

(IV-2-4) 

(IV-1-14) 
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and are time independen t . Note that only the harmonics of degree > 2 -
are present; in particular for d(t ) = 0 , one must keep only the term 

0 

for Rr2 in (IV-2-4) This is the case for a purely expanding 

(non-propagating) spherical rupture, appropriate for the modeling of an 

underground explosion in a stressed medium. 

The equation (IV-2-l) is merely a particular case of (IV-2-4) 

where a sum over t reduces to its first term. Recall that (IV-2-4) 

is only valid for r > d(t ) This means that the use of this o 0 

expansion restricts the possible volume of integration in (IV-1-9) 

However, as shown on figure IV-2-l , the forbidden region, delineated 

by horizontal stripes is a region where the material is presumably 

already relaxed, so that one does not make a large error in ignoring 

the energy radiated from it. In fact, one would rather avoid including 

any part of the rupture zone itself from the volume of integration, and 

one is thus led to restrict the volume of integration to the exterior 

of the sphere of radius d( t ) + R( t ) 
o 0 

passing through the rupture 

front. One argument in favor of this choice is that most of energy 

radiated comes from the vicinity of the rupture front, while the energy 

ignored (that emanating from the vertically striped region) is likely to 

be absorbed by the inelastic, nonlinear processes of rupture. 

Numerical calculations (Chapter VII) show that if the volume of 

integration is restricted to the exterior of a sphere centered at 0 

and of radius R such that d(t) < R (t ) < d(t ) + R(t) , then 
o 0 - 0 0 0 0 

th.e rate of convergence of the solution improves notably when Ro is 

chosen close to the upper bound of this range. But we then found 
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Figure IV-2-1. The sphere of center 0' and radius R(t) 
o 

z 

is the 

rupture zone. The rupture front propagates at the velocity VR 
The initial value volume integral can be taken external to the sphere 
of radius VRto ,or to the sphere of radius d(t

o
) 
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that the final result is rather insensitive to R 
o For our present 

purposes, we shall choose the upper bound of this inequality, and if 

V
R 

is the propagation velocity of the rupture front--hereafter called 

the rupture velocity--then the volume of integration is restricted to 

the exterior of the sphere of radius VRtO 

ii) Evaluation of the radiation fields 

In view of the discussion presented above, the radiation field given 

by equation (IV-1-9) takes the form 

X (r ,w) 
a 

'f' sin e de 
_ iw 121T d'" i7T 
4
2000 7Tc 
a 0 0 

* * -ik r aX a 
a .:::e'--7""""_ r 2 d r 

at * 0 0 o r 
( IV-2-5) 

We shall now evaluate the integrals appearing in (IV-2-5) Two 

cases arise : either the observer's point lies within the relaxation 

zone, and r < R 
s 

, or it lies beyond R 
s 

For convenience we shall 

consider the former instance first, then the results thus obtained may 

be easily adapted to the latter case . 

Let US first replace the Green's function appearing in the integrand 

by its usual spherical wave expansion (e.g., Morse and Feshbach, 1953). 
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We have 

* jA (k r ) -ik r a. 0 
h (2) (k r) 

A a. 
a. 00 

e -ik L (21..+1) PA(cos y ) 
* a. r 1..=0 

~L)(k r ) j A (ka.r ) A a. 0 

where the upper pair of Bessel functions are to be used when 

(IV-2-6) 

r > r 
o 

and the lower pair when r < r 
o 

Here the angle y is t he angle 

between the vectors r and (e.g., Stratton, p. 407) a nd we have 

(Stratton, p. 408) 

A 
PI.. (cos y) L 

k=O 

(IV-2-7) 

where 0ko is the usual Kronecker delta. We also have the integral 

relation (Stratton, p. 407) 

j 21T { 1T 
o J 0 PI.. (cos y) P~ (cos 

(

COS 

e ) 
o 

sin 

~ P~(cos 
21..+1 

e) 
(

COS 1l<P 

sin 1l<P 

sin e 
o 

dB 
o 

d<p 
o 

(IV-2-8) 
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The radial integral in (IV-2-S) can be split in the form 

Then by substituting the appropriate expansion (IV-2-6) into each of 

* these integrals, replacing the initial field Xa by its expression 

given in (IV-2-4) and making use of the orthogonality property 

(IV-2-8) , we obtain the radiation field in the form 

~ ~ P~(cos 6) 

(IV-2-9) 

The coefficients £A2m 



(a) 
£A2Jn (r ,w) 

(a) 
£B'lm (r,w) 

.1'0 e -Uuto d 
dt 

o 
o 

and 

(a) 
£C2m (r,w) 

, (a) 
a

2m 

b' (a) 
2m 

, (a) 
a

2m 

(a) b I (a) £D 2m (r,w) 2m 
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k
2 

(£4Il)! a 
('i-:-2) ! (2-m)! c 

a 

k 2 
(£-rn2 ! LX 

(£-2) ! (2-m) ! c 
a 

JRS £+1 
d£-2(t )] (L) h (2) (k r ) 

o r £ a 0 
o 

r 

2 
r dr 

o 0 
dt 

o 

(IV-2-10) 

2 
r dr 

o 0 
dt 

o 

(IV-2-11) 

For the case of an expanding, non-propagating sphere ("explosion" 

model), the spherical symmetry is preserved, and thus only the t erm 

£=2 survives in (IV-2-9) (IV-2-10) and (IV-2-11) 

If the observer's point lies outside the relaxation zone then we 

have R < r 
s 

; in that case only the coefficients 

are present, and the upper bound of the integral over 

must he changed to R 
s 

r 
o 

and 

in (IV-2-10) 
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In spite of its symmetrical appearance, the solution (IV-2-9) is 

not particularly convenient since the coefficients depend on r , the 

hypocentral distance of the observer. A more convenient form for 

computation can be obtained by ' evaluating the integrals in (IV-2-l0) 

and (IV-2-11). 

The following closed f orms are evaluated i n Appendix 2--equations 

CA-2-2) and (A-2-3) 

lab (r ) -( £+1) j £ (k r ) 
2 j £-l (ka a) j£_l(kab) 

( IV-2-l2) r dr = 
0 a 0 0 0 

ka a 
£-1 k b£-l 

a 

f.b 
(r )-( £+1) h (2) (k r ) 2 

h (2) (k a) h(2)(kb) 
dr £-1 a £-1 a (IV-2-13) r £-1 k b £-l 0 £ a 0 0 0 k a 

a a 

Inserting thes e f ormulae into (IV-2-l0) and (IV-2-1l) yields 

(a ) 
£A2m (r, w) 

(a ) 
£B2m (r,w) 

. i To e -iwt 

o 

o d 
dt 

o 

, (a) 
a

2m 

b I (a) 
2m 

k£ 
{ £-m~ ! a 

(£- 2) ! (2-m)! c a 

(IV-2-l4) 
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(a) 
~c2m (r,w) 

(a) .R?2m (r, w) 

d 
dt 

o 

, ( a) 
a

2m 

b' ( a) 
2m 
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k~ 
~~-m2 ! a 

(~-2)! (2-m) ! Co: 

[ 

(2) (2) ] ~-2 h~_l(k r .) h£--l(k R ) 
d (t)] a _ 0: S 

o (k r)£--l (k R )~-l 
a a s 

dt 
o 

( IV-2 - l 5) 

In the case where R < r 
s 

, the coefficients and 

vanish identically and r must be replaced by R 
s 

in (IV- 2-l4) 

One sees therefore that the only integrals left to evaluate are 

1(1) ( w) 
~ 

1(2) (w) 
~ 

and, in the case R < r 
s 

d 
dt o 

d 
dt o 

( 1V-2- l6) 

dt 
o 

, 

(1V-2-l7) 
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d 
dt 

o 

dt 
o 

(IV-2-l8) 

The last integral 

If R(t) 
o 

is obviously a linear combination of 

and d(t) 
o 

are taken to be polynomials of t 
o 

then these integrals are linear combinations of functions having the 

general form 

and 

(IV-2-l9) 

where v and ~ are half integers. Such functions are evaluated in 

closed form in Appendix 2, in the case where v = n+l/2 and where ~ 

varies from -n+1/2 to n+3/2 This would limit the possible choice 

of growth and propagation functions for the source. In addition, the 

closed form derived in Appendix 2 was found to be poorly behaved for 

numerical computation. The integral (IV-2-l9) can also be expanded 

in a series of generalized hypergeometric functions (Luke, 1969) but 

the algebra is extremely cumbersome and will be omitted here. 

The integral Iil ) (w) clearly has the form of a finite FourJ e r 

transform. is also of this form, except that k = (Die 
Ci. Ci. 

appears 
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in the argument of the apherical Beaael function . Neverthel ess , for a 

fixed value k 
a 

, one can evaluate this integral as a finit e Fourier 

transform, as a function of W , and set W = k c aa in the result. 

~s approach was found to be, by far, the most efficient for numerical 

applications. Filon's method of numerical integration (e.g. , Al exander , 

1963) proved particularly appropriate to compute t he Fourier transform 

numerically . 

We can now combine the r-dependent terms i n (IV-2-l4) and 

(IV-2-l5) and make use in (IV-2-9) of the Wrons kian r el a tion 

(Abramovitz, 1964) 

j n(kr) h(2) (kr) 
Iv t -l 

i 
- k 2r2 

This allows us to write the solution in the form 

X (r, w) a 

(IV-2-20) 

(IV-2-2l) 
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where the various coefficients are now independent of r We shall 

call them "mul t ipole coefficients;" they are given by 

A(a)(w) 
R.m 

B(a) (w) 
R.m 

and 

c(a) (w) 
R.m 

v(a) (w) 
R.m 

where 

E(a) (w) 
R.m 

F (a) (w) 
R.m 

, (a) a
Zm kR. 

{R.-m2 ! a 
(R.-Z) ! (Z-m) ! ca 

b' (a) 
Zm 

h (Z) (k R ) 
R.- l a s = --'--='--.=..,.;:;..".. 

(k R ) R.-l 
a s 

, (a) a
Zm 

b' (a) 
Zm 

, 

{R.-m2 ! 
(R.-Z) ! (Z-m) ! 

1(2) (w) 
R. if 

1(3)(w) 
R. if 

kR. 
I(l)(w) 

R. 
a 

c a 
0 

r < R s 

r > R 
s ' 

(1V-2-ZZa) 

( 1V-2-ZZb) 

1£ r < R s 

1£ r > R 
s 

(IV-Z-ZZc) 

We notice. however. that the last term in (IV-Z-Zl) does not 

represent a traveling wave. It emerges from the time dependence of the 

initial value field as it is created. To see this one just has to note 

that this term is merely the Fourier transform of the initial 

value field given by (IV-Z-4) 
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Because x a (r,t) was defined originally as the relative field, 

measured from the final equilibrium state of the medium, by subtracting 

the initial value from it one gets the radiation field which is, in 

fact, observed and measured experimentally. This was discussed in 

Chapter II. Thus the final solution for the dynamic field above takes 

the form 

X Cr , w) a 

where the multipole coefficients are given by (IV-Z-ZZ) 

iii) Discussion 

The solution (IV-Z-Z3) gives the scalar potentials 

(IV-Z-Z3) 

in the 

form of multipolar expapsions. It is clear that the source model under 

consideration is not a separable source (Archambeau, 1968): one cannot 

in general separate the frequency dependence and the spatial dependence 

of the fields algebraically. Furthermore, if more than one multipole 

is present, the radial variation cannot be separated from the angular 

dependence by factorization. Archambeau (1968) pointed out that, in 

general, the multipole coefficients are linearly independent fun c tions 

of frequency. 

In the case of a non-propagating rupture, d(t ) 
o 

vanish es 
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identically and only the term for i=2 is present in the expansion 

(IV-2-23) The field is then pure quadrupole; this is the result 

obtained by Archambeau and Sammis (1970) and Archambeau (1964, 1972) for 

the tectonic release due to an explosion in a prestressed medium. 

Randall (1966) also found a pure quadrupole radiation in the case of 

the instantaneous creation of the rupture (V = (0) 
R 

As shown by 

Archambeau (1972), this is a particular case of the general situation 

presented here, and one adequate to model a cavity growing faster than 

the P~ave velocity. Archambeau proposed a two-stage model for the 

purpose of modeling an underground nuclear explosion, where the velocity 

of expansion V
R 

is greater than the P-wave velocity in the first 

stage, and then drops to a subsonic velocity in the second stage. We 

refer the reader to his publications for a detailed description of the 

model. 

The fact that the non-propagating spherical rupture generates a 

pure quadrupole radiation is in complete agreement with the observations 

of the anomalous radiation from underground nuclear explosions (e.g., 

Lambert, Flinn and Archambeau, 1972). The pure quadrupole radiation 

pattern corresponds to a double couple point source and is also found 

in association with simple Volterra dislocation models of earthquakes 

(e.g., Randall, 1971). The higher order multipoles appearing in 

(IV-2-23) are excited only if d(t ) 
o 

is non-zero; in other words, the 

presence of multipoles of degree greater than 2 is intimately associated 

with rupture propagation phenomena, and the departure from self similar 

rupture growth. 

For separable sources, rupture propagation effects can be 
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introduced by use of a propagation function (e.g., Ben Menahem, 1961; 

Haskell, 1964). These effects can be understood intuitively by analogy 

with the . usual Doppler effects; ·. One expects them to affect waves with 

a waye length comparable to, or smaller than, the total source 

dimension. In other words, propagation effects will be most evident 

in the high frequency part of the radiation spectrum. Archambeau (1964, 

1968) showed how the multipoles of degree greater than 2 distort the 

radiation pattern at high frequency, while they have a negligible effect 

at long periods. The numerical results given in Chapter VII exhibit the 

same behavior: the radiation pattern is almost pure quadrupole at low 

frequencies, while more energy is radiated in the direction of rupture 

propagation than in the opposite direction at high frequencies. 

The solution (IV-2-23) simplifies itself in two extreme cases of 

interest. Those are 1) 

multipole coefficients 

X (r ,w) ex 

r > R 
s 

and 

and 2) 

V(a) 
£'m 

R 
s 

00 In both cases the 

vanish identically and we have 

(IV-2-24) 

The only difference comes in the computation of the multipole coeffi-

cients A(a) and B(a) by equation (IV-2-22a) In the first 
£,m £,m 

instance the integral Ii3) must be used, and in the second instance, 

Ii2) is the proper choice. 

We shall show below that these two cases lead to radically 

different behaviors of the radiation spectra at long-period, particularly 
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in the far-field approximations. As we pointed out in the introduction 

to this chapter, the two cases . mentioned above correspond 1) to a 

mathematical approximation of the real physical situation, and 2) to an 

exact mathematical representation of an approximate physical situation. 

We feel that, although neither ' case may precisely model the real 

phenomenon, it is probable that the truth lies somewhere between the 

two extremes. Thus the two extreme spectral shapes obtained in this 

fashion ("peaked" spectrum, and "flat" spectrum, as we shall see) should 

bracket the range of possible observations. The first case corresponds 

to the model proposed and investigated by Archambeau (e.g., 1964), the 

second one was advocated by Randall (1973) and also by a number of other 

investigators using dislocation models. Unfortunately, to this date, 

field observations have not been obta ined which would be of high 

enough quality to allow a clear choice between the two models (Molnar 

et al, 1973); however, it seems very likely, in view of our previous 

comments, that there is no clear-·cut choice. 

iv) ASymptotic behavior of the potential spectra. 

The principal advantage of having an analytical solution for the 

radiation spectrum is that one can obtain the asymptotic behavior of 

this spectrum in a number of limiting cases. Such cases include the 

very high frequency limit, as well as the very low frequency limit of 

the spectrum. In addition, at low frequencies--that is, at long 

periods--we shall distinguish between near-field and far-field approxi­

mations. These approximations take into account the decay with distance 

of the spectral amplitude. 
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In this section we. shall only consider the spectra of the various 

potentials X ; the extension .of . these results to the displacement 
ct 

spectra w1ll be made in .section IV-4. 

a) Ki,gh frequency behavior 

This case is the simplest to investigate. It is shown in 

Appendix 4 that, if R(t ) 
o 

and d(t ) 
o 

both are linear in , which 

is the case for the model considered here, then the following results 

hold in the case 

for w » 1 

R » V T 
s R 0 

1(1) = O(l/w) 
£ 

1(2) 
£ 

O(l/w
Hl

) 

1(3) = O(l/w
Hl

) 
£ 

. 

Further, in that case, for any finite value of r , we have 

(IV-2-25) 

k r » 1 
ct 

am! k R » 1 
CL s 

Thus the following asymptotic relations hold 

'V Re (i Hl (IV-2-26a) 

(IV- 2-26b) 



h(2) (kR ) 
t-l a s 

(k R ) R,-l 
a s 
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-ik. R 
R, .a s 

'V i ·-"e_· __ ,,-

(k R }.Q. 
as · 

(IV-2-26c) 

By comparison of (IV-2-22a) and (IV-2-22b) and by use of (IV-2-25) 

and (IV-2-26) we see that dle only term in (IV-2-23) which is 

important at high frequencies is the first one, if R 
s 

with respect to the rupture dimensions. We have then 

A (a ) (w) 
.Q.m 

B(a) ( w) 
Rm 

= O(l/w) , 

is large enough 

(IV-2-27) 

and thus by use of (IV-2-26b) the spectral amplitude for the potentials 

has the following high frequency asymptotic behavior: 

for w» 1 • (IV-2-28) 

It is interesting that this result is independent of the relaxation 

radius R 
s 

This corresponds physically to the fact that, at high 

frequency, most of the energy is radiated from a small region surrounding 

the rupture zone, of characteristic dimension comparable to the wave 

length under consideration. Thus one does not expect the high frequency 

side of the radiation spectrum to be sensitive to R 
s 

Another important aspect is that the results shown in (IV-2-25) 

assume specifically that both R(t ) 
o and d( to) are linear in 
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For more complex ruptures, an "acceleration" phase could occur at the 

beginning of the rupture, and thus R(t ) 
o 

complicated functions of the source time 

and 

t o 

d(t ) o could be more 

However the analysis 

becomes rather complicated in such cases, so that numerical methods 

have to be used. Multipole fields of all degrees are contributing to 

the high frequency radiation, and their relative excitations could well 

depend on the detailed character of the rupture propagation. For the 

model investigated here, the convergence of the multipolar expansion 

is controlled by that of the addition theorem (IV-2-2) which is not 

particularly rapid. However, it can be noted that, because of our 

HI choice of volume of integration a factor of 1/2 appears in the 

integral (see Appendix 4). This means that the multipole 

coefficients become eventually exponentially small with increasing ~ 

It was found from numerical calculations that convergence is very 

rapid for ~ > 10 However, even if the series is truncated at a 

lower degree, most of the characteristics of the radiation fields can 

be obtained with sufficient accuracy, as long as One does not try to 

compute these fields at too high frequencies (see Chapter VII). 

Of course, as one can expect on simple intuitive grounds, the 

term "high frequency" must be defined in relation to the rupture 

dimension. We shall see that a convenient convention is to consider 

as high frequencies those for which the wave length is comparable to 

or smaller than the characteristic dimension of the rupture. 

The last observation which we may make about the high frequency 

radiation is that it exhibits an ampl.l_tude decay with distance 

proportional to llr --see equation (IV-2-26b). This corresponds to 
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our qe,finition of the far-field radiation,. given below. It is not 

s.urprising that there should not be . any significant near-field high 

frequency radiation since . practically any observer will be several wave 

lengths away from the source at .such frequencies. High frequency near-

field effects can only be obse:rVedextremely close to the source. 

b) Long-period behavior 

The long-period limit corresponds to w« 1 ,but since 

the Hankel functions and the Bessel functions in (IV-2-25) have 

= wr/c a for argument, one must take into account hypocentral dis-

tance r of the observer. We shall thus make the following definitions: 

1) The (unqualified) long-period limit corresponds to w« 1 

2) The long-period limit in the far-field approximation is 

defined by 

w « 1 and k r » 1 a . 

3) The long-period limit in the near-field approximation is 

defined by 

w « 1 and k r « 1 • a 

These definitions covrespond to the usual ones in use in electromagnetic 

theory (e.g., Stratton, 1941) and in seismology (e.g., Haskell, 1964). 

One sees immediately that the very long period far-field radiation can 

only have physical meaning for extremely large distances. However, 

because of the following asymptotic forms for k r » 1 
CL 
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-ik r 

h (2) (k r) .Hl ex 
'V 

e 
£ ex l. kr 

ex 
(IV-2-30) 

'V Re (iHl 

-ik r 

) a. 
j £ (kexr) 

e 
k r 

ex 

one may wish to choose another definition for the far-field radiation: 

it is that part of the field which shows an amplitude decay with 

distance as l/r This second definition allows us to define the 

"far-field" radiation at any frequency and any distance, but it is a 

purely mathematical definition, which ignores the physical concept of 

"far-field." 

The "near-field" asymptotic behavior, on the other hand, should be 

observed at any finite distance r ,provided that one considers long 

enough periods. 

We shall consider successively the case of an observer lying outside 

the relaxation zone and then that of an observer lying within R 
s 

, and 

in each case we sha ll sepa rate near-field and far-field behaviqr. 

ex) r > R ,near-field approximation 
s 

In that case, from Appendix 4, equation (A-4-l0) ,we have 

for W« 1 

3 
I£(W) t o 

d 
dt 

o 

(IV-2-3l) 
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Thus, from the expression for themultipole coefficients (IV-2-22) 

A (a ) (w) a' (a) 
kH2 R-£m 2m fTo [ 

'" 
. CRr-m) ! .. a2 R- ! 

] dt ( R--2) ! (2411) ! 2c (2 R-) ! 0 

B(a} (w) b' (a) 
a 

0 

R-m 2m 

Further, in the near-field , k r « 1 and the dominant term in the a 

Hankel function is 

h (2) (k r) 
R- . a HI 

r 
(IV-2-33) 

Using the results (IV-2-32) and (IV-2-33) in the potential solution 

(IV-2-24) ,we get the following asymptotic behavior 

for w « 1 and k r « 1 • 
a 

(IV-2-34) 

The spectral density for the potentials vanishes in the (static) 

limit of zero frequency. A static offset would yield an asymptotic 

behavior as (l/w) There is, therefore, no permanent change in the 

dilatation and rotation outside R ,which is the correct result since 
s 

this argument was used to introduce R 
s 

in the first place: the stress 

relaxation taking place outside the relaxation zone was assumed to be 
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negligible. 

Further, the multipolar field of degree £ is proportional to 

I £+1 
W r , and r must be reasonably large (r > R ) 

s 
>' thus we see 

that the radiation field is dominated by the lowest degree multipoles, 

in particular by the quadrupole. In other words, the long-period 

radiation is essentially that of a double couple. 

B) r > R ,far-field approximation 
s 

Equations (IV-2-3l) and (IV-2-32) still hold in that case, 

but we have now k r »1 so that a 

We see, then, that the partial field associated with the multipole of 

degree £ will have an asymptotic behavior as 
HI 

W as W + 0 

Clearly, only the lowest degree multipole,the quadrupole, dominates at 

long periods and we have 

Ix (r,w) I a 
for w« 1 and k r » 1. a 

(IV-2-35) 

As we pointed out, this "far-field" term may be isolated mathematically 

even for values of rand w where it is not dominant. One must then 

keep in mind that it does not bear any relation to the observations. 

Of course, in that case again, no static offset is observed. 
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y ) r < R ,near-field appr. oximation 
· 5 

This case is slightly more complicated. We have w« 1 ,and 

k r « 1 , so that from Appendix 4~quations (A-4-8) and (A-4-9)-­
a 

and also 

1 
k r a 

k R, R, 
ar 

'" -1-· 3-·..:::5:...... -•• -·~(-2R,~--1-:-) 

Then, from (IV-2-22) we have 

A ( a ) (w) 
R,m 

Bea) (w) 
R,m 

,(a ) 
a

2m 

b' (a) 
2m 

(IV-2-36) 

(IV-2-37) 

(IV-2-38) 

(IV-2-39) 

(IV-2-40) 

so that, with reference to the general solution (IV-2-23) ,we have, 

for w« 1 
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From the .definition (IV-2-22) . we . also have 

c(a ) Cw) , (a) 
R.m 

a
2m 

'\, 
(£-m2 ! R3(T ) 

( £-2) ! (2-m) ! 0 

Vea l (w) 
£m 

b' (a) 
2m 

-1 
O(w ) • 

d£-2(T ) 
0 

This last equation deserves further discussion. 

(IV-2-41) 

(IV-2-42) 

If R is small enough (or if k is small enough, for any finite 
s a 

value of R) then we have k R « 1 and the Hankel function in 
s a · s 

(IV-2-41) must be approx~ated using the asymptotic form (IV-2-38) 

In that case 

1'\..-

, (a) 
a

2m 

V ( a ) (w) b ,(a) 
R.m 2m 

i(£-m)! (2£-2)! 3 £-2 
- - - 2£-1 R ('0) d (To) 

(£-2)! (2-m)! (£-1)! 

(IV-2-43) 
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Then, with reference to the solution (IV-2-23) we have 

O(w) (IV-2-44) 

This term may be thus ignored compared to the one given by (IV-2-4l) 

We noted earlier that this is equivalent to taking R = 00 
s 

, as can be 

seen directly from (IV-2-43) 

On the other hand, if 

then we must use 

R 
s 

is large enough so that 

in (IV-2-42) We find in that case that 

k R »1 
a s 

R, 
O(w) • (IV-2-45) 

Again this term may be ignored, when compared to (IV-2-4l) 

Thus if the observer finds himself inside the relaxation zone, the 

near-field spectrum of the observed radiation is insensitive to R 
s 

very long periods and the spectrum behaves as if 

that case we have 

R were infinite. 
s 

at 

In 

Ix (r,w) I a 
for w« 1 and k r « 1 • 

a (IV-2-46) 
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This long-period spectral .behavior corresponds in the time domain 

to a non~anishing static offset . (cOmpare with the Fourier transform of 

. -1 a step function in time , which. is -].W ) • In fact, noting that 

. -1 
we find that the coef ficient of the term in -J.W for the asymptotic 

form of the potential spectrum 

(£-m) ! 
(£-2)! (2-m)! 

X (r , w) 
a 

* 

is 

which we immediately identify with - xa (r"o) as given in (IV-2- 4) 

Again this result was to be expected, since the initial value fields 

* Xu were computed for an infinite domain (R = (0) 
s 

and have then been 

truncated at R 
s 

We have therefore obtained a consistency check for 

our calculations. 

One must remember at this point that the solution for x (r,w) that 

we ob tained in (IV-2-23) is only valid 1) for r > d(, ) 
. 0 

points such that no information has propagated to them at , 
o 

and 2) for 

, that is, 

grossly for r > V , 
P 0 

This constrains r to be relatively large in 

the static limit shown above, so that the term of lowest degree--the 

quadrupole term--will again be the dominant one. Furthermore, in the 
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static limit, higher degree multipoles are present only because the 

f inal rupture zone is not .centeredat the hypocenter, but at a distance 

d(T) along the z-axis of the source system. In the moving s ystem 
o 

(figure IU:-l-l), in the final position at To the static field is pure 

quadrupole. The offset position of the rupture zone in its final 

configuration is thus the reasOn for the presence of higher degree 

multipoles , and this effect dies rapidly with distance . 

0. ) r < R , far-field approximation 
s 

This limit is obtained when w « 1 and k r » 1 
ex 

since 

we have r < R 
s 

, this also means k R » 1 
ex s 

We can therefore use 

the approximations 

-ik R 
ex s 

h (2) (k R ) '" i R. _e:--::--_ 
R.-l ex s k R ex s 

The asymptotic behavior of the multipole coefficients are still given by 

(IV- 2-40) and (IV- 2-42) , and w.e may write, f or kR » 1, 
ex s 
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c(a) (w) A (a) (w) 
R-m . R-m 

-i.R. C2R-}! -ik. R 
a s 

(IV-2-47) 'V 

2R-R-!(kR)R-
e 

V(a) ( w) B ea) (w) . a s 
R-m R-m 

Because the multipole coefficients and are proportional to 

R-
w , we need only consider the lower values of R- ,in particular, 

the quadrupole term R-=2 Then the proportionality factor in 

(IV-2-47) is which is very small. 

Therefore, here again, we can ignore the term in j R- (ka r) in the 

gene ral solution (IV-2-23) ,provided that indeed 

kR >kr»l 
a s a 

In other words, the "far-field" approximation can only have physical 

meaning within the relaxation zone if one considers frequencies such 

that simultaneously 

w « I and k R > k r » I . 
a s a 

In that case, just as in the near-field approximation, the spectral 

behavior is insensitive to R 
s 

and one may take R 
s 

to be infinite. 

Furthermore, by use of (IV-2-40) and of the asymptotic behavior for 

the Hankel function given above, we find that the multipole of degree R, 

yields a partial field which behaves as R--l 
w at low frequencies. Thus 
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only the lowest degree multipole (the quadrupole) is important and 

Ix (r,w) I a 
O(w) for w « 1 and k r » 1 • a (IV-2-48) 

If R is kept finite and if one tries to isolate mathematically 
s 

the part of the radiation field which decays as l/r , the results do 

not present, in general,any simple asymptotic behavior as w tends 

towards zero. This is not a disturbing fact since we just argued that 

such results do not have any relation to the physics of the phenomenon. 

On the other hand, if R 
s 

is taken to be infinite in the first place--

although this is not desirable, as we pointed out earlier--then any 

observer point is within the relaxation zone, and a mathematical "far-

field" term may be defined everywhere, which decays with distance as 

l/r Its asymptotic behavior is then given again by (IV-2-48) 

Again, this term may be usefully compared with the observations only if 

k r » 1 , that is, at large distances from the rupture. 
a 

We may thus summarize the long-period behavior of the potential 

spectra in the f ollowing table for Ixa(r,w) I 

kqr <<; 1 ,"near-fie ld" 

k r » 1 , "far-field" 
l1 

r <; R 
s 

O( w) 

r > R 
s 

O( w) 

ClY- 2-49) 
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In all cases . the field is dominantly quadrupole at long periods. 

Further, we have shown. that when the observer is within the relaxation 

zone, the spectrum is insensitive to R 
s 

This was true at high 

frequencies also, so that, when . r < Rs ,the phenomenon is adequately 

modeled mathematically by takirigthe results valid for R 
s 

infinite. 

Clearly this is not true for r > R . 
s 

Thus , two cases arise from our model, either the observer is 

clearly outside the source region, and R 
s 

the observer is inside the source region and 

is to be chosen finite, or 

R 
s 

may be taken to be 

infinite. From (IV-2-49) one sees that these two cases give rise to 

drastically different spec tral behavior for the potentia l s . The 

corresponding behavior of the displacement spectra will be considered 

in section IV-4. 

The method described in this section was used by Archambeau in 

several publications (e.g . , Archambeau, 1964, 1968, 1972). However, 

Archambeau considered only the case where the relaxation zone is kept 

finite and the observer is outside of it. We see now that this case 

.represents only part of the solution, and that the position of the 

observer with respect to the relaxation zone has a rather drastic 

effect on the predicted radiation field. 

It still remains to be seen whether any of the global characteris-

tics discussed above, in particular, the asymptotic behavior of the 

potential spectra--and, by inference--of the displacement spectra (see 

section IV-S) depend on the approximations made in computing the 

solution. More specifically, we should make sure that the approxi-

mations shown on figure IV-2-l are not critical. For this purpose, 



-208-

we develop in the next section a more complicated solution , which does 

not require these approximations . 

The results presented above are those that we shall use in 

Chapter VII for numerical applications. We shall see that even this 

very simple model depends on enough parameters so that the predicted 

r adiation f ield is, in fact , quite complex . 
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rY-3 A general method of solution for propagating ruptures 

The .method of solution presented in the last section required that 

* we express the initial value fields Xu in the source coordinate 

system. For that reason, we had to approximate the volume Vet ) o 
, and 

ignored a portion of the· source volume in the vicinity of the hypocenter 

o (see figure IV-2-1). 

There are several reasons in favor of performing the analysis in 

the moving coordinate system of figure IV-l-l rather than in the source 

system. The first one is that the rupture zone exhibits the greatest 

symmetry in the moving system, of origin 0' the center of the 

* spherical rupture. As a corollary, the initial value fields Xa have a 

much simpler analytical expression in that frame than in the source 

system. Second, the source volume V( t ) 
o 

is defined to be external to 

the rupture zone itself, and, in the moving system, can easily be 

defined by r' > R(t ) 
o 

The volume integration can then be performed 

easily, and without approximation . Third, this methOd will enable us 

to compute the radiation fields even very close to the source, provided 

that we use the correct Green's function solution. 

We shall present in this section the solution for the case of a 

growing and propagating spherical rupture. The solution, eventually 

expressed in the source system, is obtained by continuous translation of 

the reference frame along the z-axis, just as before, but the operation 

is performed on the dynamic fields rather than on the initial value 

(static) fields. We shall use the addition theorem for spherical wave 

functions proved in Appendix 9, and specialized in section V-3 to 

multipolar expansions. 
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i) Formulation of the problem 

As. we showed in section IV-l, · for times t greater than T 
o 

total rupture duration, the dynamic potential solution is given by 

* * -ik r 
• 0 -iwt a 

, the 

1T f oXa d)o) X (r, w) = 4:2 0 
dt e (IV-3-l) e at * 

. a 0 

V(t ) 0 r a 0 
0 

The source volume V(t) is that volume lying outside the rupture 
o 

zone at t 
o 

, and within the relaxation radius R 
s 

Our purpose is 

now to evaluate the volume integral in (IV-3-l) in the moving 

coordinate system. The geometry is described on figure IV-3-l. For 

simplicity we shall choose the relaxation zone to be the interior of a 

sphere of radius R 
s 

, entered at 0' , the center of the rupture . 

This means that the relaxation zone propagates along with the rupture. 

If R is large enough compared to d(T) ,one does not expect this 
s 0 

to have any strong effect on the solution. Furthermore, it is rather 

des~rable to take the relaxation zone to propagate along with the 

rupture, especially if the prestress is inhomogeneous. In such a 

situation one expects that the efficiency of the stress relaxation 

phenomenon will be a function of the source time t 
o 

Further, since 

the size of the rupture itself varies with time, the region in which 

significant stress relaxation takes place can be expected to vary in 

size with t 
o 

in this section. 

We shall therefore take Rs to be a function of to 

This seems to complicate the situation a little. We saw in the 
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preceding section that dle results are different for an observer point 

lying within the relaxation zone, and one lying outside of it. We are 

n~ faced with the possibility of having an observer lying inside R 
s 

during part of the total rupture duration, and outside R 
s 

the rest of 

the time. This complication can theoretically be handled by separating 

the interval fO,T o] into several subintervals during which the 

observer point is inside (or outside) 

solutions for these subintervals. 

R and by superposing the 
s 

For simplicity we shall consider in this section only the two 

fundamental cases where the observer point is 1) inside R (t ) 
s 0 

all o < t < T o 0 
or 2) outside R (t ) 

s 0 
for all o < t < T o 0 

for 

The 

adaptation of the results so obtained to more general cases may lead to 

rather complicated algebra, but does not present any theoretical 

difficulty. 

The initial fields may be expressed very simply in the moving 

system and were found to be given by (e.g., equation IV-1-12) 

,3 
r o 

2 

L 
m=O 

The static coefficients 

through (IV-l-1S). Here 

,(a) 
a 2m 

r' 
o 

and 

El' 
o 

b' ( a ) 
2m 

are given by 

(IV-3-2) 

(IV-l-13) 

and <P ' 
o 

are the spherical 

coordinates of a source point Q in the moving system (see figure 

IV-3-l). 
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Figure IV-3-1. Coordinate systems used for the propagating rupture. 
o is the origin of the source system, 0' the origin of the moving 
sys t em. Q is an arbitrary source point, P the observer's point. 
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Further, the spherical wave .expansion of the Green's function in 

(IV-3-1) is 

* 
j A (k r') h( 2)(k ') 

-ik r a 0 A a r 

a 00 

e -ik L (2),.+1) PA(cos y') 
* a 

r ),.=0 

jA (kar') h (2) (k r ') 
A a 0 

where the upper pair of Bessel functions is to be used if 

(IV-3-3) 

r' > r' 
o 

and the lower pair if r ' < r' 
o 

The angle y' is measured between 

the vec tors r' and r' ,and we have 
o 

P
A 

(cos y) 
A 

" (2 0 ) (J,.-k)! pk( 8') pk( 8') 
~ - ko (A+k)! A cos A cos 0 
k=O 

cos k(¢' - ¢~) . 

(IV-3-4) 

Thus, in the moving system, the problem may be formulated instantane-

ously at time t exactly as in section IV-2 for the case of a non­
o 

propagating rupture ("explosion" model). 

By simple adaptation of the methods of section IV-2, we obtain in 

the case where r' < R (t) for all t 
s 0 0 
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f * 00 2 
* -ik r 3 

dXo, a 
dv (o) 

dR (to) L L (-ika ) 
e 

(H+l) at * dto Vet ) a r a 
R,=o m=Q 

j1f 121f • [a' (a) cos mcp '. + b' ( a ) 
2m Co 2m 

o a 

. { 

• sin e ' de ' dCP ' 
a a a 

h(2) (k r') 
R, a a 

r' 
a 

dr' 
a (IV-3-S) 

We can now apply the orthogonality property (IV-2-8) and use the 

closed form integrals given in Appendix 2--equations (A-2-2) and 

(A-2-3) • We have 

121f (1f 
a Jo PR, (cos Y) P~(cos 

41f ..m 
2H1 K R, (cos 

6') 
a 

e') 

( 

cos mcp~) 

sin mcp' 
o 

(

COS mcp ') 

sin mcp' 

sin e' de ' dCP' = 
000 
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which may be. substituted into (IV-3-5) We get 

f 
Vet ) 

o 

* aXa 
at 

o 

-ik r 
ct 

e 

* r 

* 2 

L (-47Tikct) [a2~ct) cos m<p ' + b2~ct) sin m<p ] 
m=O 

dR3
(t ) 

• ~(cos e ') 0 
2 dt 

j1(kctR(t
O
)) 

kctR(to) o 

(IV-3- 6) 

Here we have left out the wronskian term in -i/(k r,)3 
ct , for the same 

reasons as given before--e.g., equation (IV-2-21): This term does not 

represent a travelling wave, but is the Fourier transform of the initial 

value fields. 

If the observer's point is outside the relaxation zone, then the 

last bracket in (IV-3-6) must be replaced by 

} . (IV- 3-7) 

From (IV-3-6) we recognize one of the results obtained in the previous 

section--in the coordinate system with origin at the center of the 

rupture zone, the radiation field is instantaneously pure quadrupole. 

We now have to suhstitute (IV-3-6) into (IV-3-1) by first exp r essing 
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theyo1ume integral (IV-3-6) in terms of the source coordinates r 

e cp 

The·. transformation that .we . wish to perform is a translation of 

magnitude~ d(t) along the z-axis. Let us denote this transformation 
o 

by Jct} o In such a translation, the azimuthal angle cP is left 

unchanged, so that we may write· .. 

m=O 

jl(kaR(to») 
k R(t ) a 0 

Here the quantity ,9( to) [f( r') ] is a function of r 

} 
(IV-3-8) 

(IV-3-8) is the solution that we must now evaluate, and recast in 

the form of a multipolar expansion. For an observer external to the 

relaxation zone, the bracket in the integrand of (IV-3-8) must be 

replaced by 
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(IV-3-9) 

ii) Evaluation of the solution 

The quantities which we must operate on with the transformation 

~t) are of the form o 

4n(2+m)! e-im<P Z (k r') -~(8' ~ ') 
5(2-m) ! 2 et. '1: 2 , 'I' , 

(IV-3- l0) 

with Z2 representing either j2 or h~2) 

We prove in Appendix 9 a general addition theorem for spherical 

wave functions, and specialize it to the case of a simple translation 

along the z-axis. These results are then used in section V-3 to 

investigate the transformation of a multipolar expansion under such a 

translation. The result which we want to use here will thus be proved 

in Chapter V--equation (V-3-4) For r > d(t) and for a transla­
o 

tion of amplitude -d(to) ,we have 

Z (k r') ym(8' <P ') = ~ 
n et. n' L.J 

Rr=O 

It +n l 

2: Cl(v,t ln,m) 

v=1 t-nl 

(IV-3-11) 
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WQere 

• ( .Q, V mO l n m) (JI. V 0 0 I n 0) • (IV-2-l2) 

The coefficients appearing on the right-hand side of (IV-3-12) are 

Clebsch-Gordan coefficients. 

A similar formula may be derived for the case r < d(t ) o ; we 

shall not investigate this case here since it corresponds to an extreme 

near-field situation, and shall refer the reader to Appendix 9 and 

section V-3 for the derivation of the corresponding results. 

Using (IV-2-10) and (IV-2-11) we get 

(_l)m J 41T(2+m)! 
, 5(2-m)! 

00 

~ 
JI.=O 

H2 

~ cl (v,Jl.I2,m) 

v=IJI.-21 

• j (k d(t » (_l)m J (2J1.+l) ( JI.-m)! Zn(kNr) ~(cos 8) 
v Ct 0 , 41T(JI.+m)! ~ ~ ~ 

(IV-3-13) 

This last equation gives us the result of the operation Yct) o on 

We can now substitute (IV-3-13) into (IV-3-9), 

and write the solution in the form of a multipolar expansion: 
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co min(2, 2) 

xa(r,w) = LL m 
p 2 (cos 9) 

£;=0 m=O 

(IV-3-l4) 

Here the multipole coefficients are given by 

A (a) (w) ,(0:) 
£m 

a
2m H2 k2 

0: L (-1) v+l iv+2 {2V+l) PH1) 
c 

B (0:) (w) b' (0:) 
0: 

v= 12-21 
RAn 2m 

.~ ( 2~) !(2+m)! (2 v mOl 2 m)(2 v 0 0 1 2 0) • 
(2+m) ! (2~) ! 

5 

/2) (w) 
v 

/3) (w) 
v ' 

(IV-3-l5) 

where J(2)(W) is to be used if the observer's point is inside the 
V 

relaxation zone for all times o. < t < T 
- 0 - 0 

and J(3)(W) is to be 
V 

used if r > R (t) for all t such that 0 < t < T so 0 0- 0 
Similarly 

the coefficients c(a) and V(a) are given by 
2m 2m 
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ci~) (eil) 
, (q) a
2m k 2 ,H2 

. a L (_l)v+liv+£ ~2V+12 (2,H12 
c 5 

VCa) Cw) b' (a) 
a 

v=I£-21 
tm 2m 

J(4)(w) if r < R (t ) . 
V s 0 

C~) ! (2-hn) ! 1 1 
(9..-t:m) ! (2-,m)! (£ V m 0 2 m) (£ V 0 0 2 0) • 

( IV-3-16) 

The functions J (2 )(w) 
\! 

J
(3 )(w) and J(4)(W) are integrals which 
V V 

are given by 

and 

J(2) (w) 
V 

J(3) (w) 
V 

J(4) (w) 
V 

= (lO 

• 0 

= flo 

0 

dt o 

-iwto dR3 [ j I CkaR) _ j I CkaRs) ] 
e dt k R k R 

o a a s 

-iwt 3~2) (k R ) 
o dR a s 

jv(kad) dt e dt kR 
0 a s 

(IV-3-17) 

j (k d) dt 
V a 0 

(IV-3-18) 

0 
(IV-3-19) 

In the above expressions, R d and R are all functions 
s 

of t 
o 

If R is a constant (independent of t) ,then the 
s 0 
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integral is simplified by bringing the Hankel function outside 

the integral. We write 

I{2)(k R ) 
J(4} ( w) = --=.,_-,a~s_ J(l) ( w) 

'J kR 'J a s 

with 

3 
J(l) ( w) 

'J 
dR . (k d) dt J'J a dt 

o 
(IV-3- 20) 

o 

In that case also, J(3) (w) 
'J 

is a linear combination of and /2) . 
'J 

For reasons of simplicity we shall take R 
s 

to be constant throughout 

the remainder of this section. 

iii) Discussion 

The solution (IV-3-l4) is of the same form as that obtained in 

section IV-2 r e~cept for the fact that the terms ~O and £=1 are 

now present . These terms correspond to a monopole and a dipole field 

respectively. In terms of point force equivalents they correspond 

respectively to an isotropic dilatational (or compressional) nucleus 

of stra"in, and to a single couple. 

This is a somewhat startling result since 1) a monopole radiator 

corresponds to an "explosion-like" component of radiation (e.g . , 

Archambeau, 1972) and the reason for its appearance here is not 

intuitively obvious since we assumed the prestress to be pure shear , 
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and since we did not take into account a possible density change in the 

rupture zone; and 2) a single couple point force does not lead to the 

conservation of angular momentum (e,g., Burridge and Knopoff, 1964). 

Let us first note that the appearance of all multipoles different 

f~qm the quadrupole ( ~=2) occurred when we applied the addition theorem 

(IY-3-11) In other words, for an expanding, non-propagating sphere 

we obtain here again a pure quadrupole radiation. In fact, we can 

easily satisfy ourselves that, in that case, the results obtained are 

identical with those obtained in section IV-2 . 

The excitation of the monopole and dipole terms, as well as the 

multipoles of degree greater than two is thus intimately associated with 

the propagation of the rupture. But sinc e observations support the 

fact that the radiation field should be dominantly quadrupole in nature, 

at low frequencies, an important check of the validity of our model 

is then to show that it possesses this property. This is done below 

from long-period asymptotic expressions. Further, since conserva-

tion of angular momentum was inherently assumed in the basic formulation 

of the problem, the net angular momentum carried by the dipole term must 

be counterbalanced by the angular momentum carried by all other multi-

poles of odd degree. Unf ortunately, this is quite difficult to show 

ana l ytically, and cumbersome to show numerically. 

The solution (IV-3-14) is suitable for numerical computations, 

although it is more complicated than the solution obtained in section 

IV-2 . H i h · I J
v
(I),(2),(3)(W) ere aga n t e ~ntegra s may be evaluated 

numerically as finite Fourier transforms, by use of Filon's method of 

integration 
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The Clebsch-Gordan coefficients appearing in (IV-3-l5) and 

(IV-3-16) may be evaluated by a number of well-known .techniques found 

in textbooks on quantum mechanics (e , g.,Edmonds , 1957), in particular 

through recursion relations . However, we note that the second of these 

coefficients vanishes identically unless t +v+2 is even . This means 

that the sum over V in (IV-3-15) or (IV-3-l6) reduces t o the three 

terms 

v V v t +2 

We can then transfoDn these coefficients into 3-j coefficients by the 

relation (Edmonds, 1957) 

(IV-3-2l) 

so that the only coeff icients which we need compute are of the form 

V 2 V = It-2 1 , ~ , t +2 

, with 

0 
m 0,1,2 . m -m 

(IV-3-22) 

A table of closed forms for these nine coefficients is given in 
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Appendix 10 . . 

iv) AsYJilptotic behavior of the : potential spectra 

The· -Various asymptotic cases . that we shall investigate now are 

identical to those discussed in the previous section. Therefore, we 

shall not describe in detail their .meaning, and range of validity, but 

shall refer the reader back . to . section IV-2 for a discussion. 

Asymptotic forms for the integrals and are 

discussed in Appendix 4, both in the high frequency and low frequency 

limi.ts. We assume R s 
to be independent of 

a) High frequency behavior 

t o 

In that case, from Appendix 4 we have, for w » 1 ,and 

ass uming ilia t R(t ) 
o and 

/1) (w) 
V 

J(2) (w) 
v 

J(3) ( w) 
\) 

and thus, from (IV-3-20) 

J( 4) (w) 
\) 

d(t ) 
o are linear in 

(IV-3-23) 

(IV-3-24) 
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Therefore the multipole coefficients C~) and Vi:) are negligible with 

respect to and and the high frequency spectral content of 

the radiation field is insensitive to R 
s From (IV-3-1S) and 

(IV-3-23) we see that the multipole coefficients behave as 

large values of w , and since 

for w » 1 , 

we have 

-1 
w for 

for w » 1 (IV-3-2S) 

This result is identical to the one obtained in section IV-2, equation 

(IV-2-28) We shall not repeat the discussion presented at that time. 

The relative importance of the monopole and dipole terms to the 

other multipoles is rather difficult to evaluate analytically. We shall 

comment on this on the basis of numerical results in Chapter VII. 

Because the addition theorem (IV-3-11) holds for r > d(t ) 
·0 

we can expect the solution to converge rather well at large distances 

from the source. However, a detailed discussion of the convergence rate 

will not be attempted here: it depends on the size of the multipole 

coefficients (IV-3-1S) ,which is quite difficult to investigate. 
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b) . Long-period behavior 

We shall consider here the same cases as in section IV-2 . 

ex) r > R 
s 

, near-field approximation 

This case corresponds to w« 1 and kar « 1 

Appendix 4 we have 

J(3) (w) 
\i 

dR3(t ) 
---O-dt 

dt 0 
o 

Then from 

(IV-3-26) 

Thus from (IV-3-lS) ,for £ > 2 the multipole coefficients will be 

controlled by the term \i = £-2 ,and 

(IV-3-27) 

For the dipole ~ 1 ,and the dominant behavior is obtained for 

\i = 1 , thus 

(IV-3-28) 
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For the . monopole ~ = 0 , and the only value taken by V is V 2 

so that 

Furthermore, in the near field 

h~2) (kJ) I'V 

fv u. 2~~! 
i(2~)! 

k Hl 
a 

Hl 
r 

CIV-3-29) 

(IV-3-30) 

Thus in the multipolar expansion (IV-3-l4) the monopole field behaves 

asymptotically as 5 
w , the dipole field behaves as 3 

w , and the 

multipole fields of higher degree behave as w Therefore 

O(w) for w« 1 and k r « 1 • 
a (IV-3-3l) 

In addition, because of the radial dependence of the multipole fields 

shown in (IV-3-30) , and because r > R 
s 

term to dominate here again. 

8) r > R 
s 

, far-field approximation 

, we expect the quadrupole 

This case is identical with a) , except that we have 

k r »1 so that a 
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(IV-3-32) 

By comparison of (IV-3-3~ and CIV-3-27) through (IV-3-29) , we 

see immediately that the asymptotic behavior is obtained for t = 2 

and 

Ix (r,w) I a 
for w« 1 and k r » 1 _ (IV-2-33) 

a 

The far-field radiation is controlled by the quadrupole at long periods. 

y) 

k r « 1 
a 

/1) (w) 'V 
\! 

r < R , near-field approximation 
s 

This approximation corresponds to the limits w« 1 and 

From Appendix 4 we have in that case 

3J(2) (w) 'V 
\! 1- 3 - 5 ...• (2\1+1) 

dt 
o 

Then, following the same reasoning as in the case a) , we obtain 

A (a) A (a) 
00 1m 

D(w
4

) = D(w
3

) (IV-3-34) 

B(a) Bea) 
00 1m 
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and 

= Q(WR.) for R. > 2 (IV-3-35) 

TIQe asymptotic behavior for the coefficients and V~) is easily 

obtained by multiplication of (IV-3-34) and CIV-3-35) by the factor 

h( 2)(k R )/k R 
1 ' a s a s 

TIQeir contribution will be the largest in the case 

whe re k R « 1 since then 
a s 

so that 

CCa) 
00 

VCa) 
00 

and 

rv i 
k 3R 3 

a s 

O(W) 

V(a ) 
1m 

0(1) (IV-3-36) 
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for Q. > 2 • (IV-3-37) 

Now the coefficients and are associated with the 

Hankel function 

h ~ 2) (kar ) '" --;;""i _i .;....( 2_i..:...) _! --;;-:--:-
'" 2 i! (k r)H1 

a 

(IV-3-38) 

and the coefficients and are associated with the Bessel 

function 

(IV-3-39) 

By comparison of the results (IV-3-34) through (IV-3-39) we see 

that 1) the terms associated with the Bessel function ji(kar) are 

negligible at long periods for all degrees i 2) the monopole and 

dipole terms associated with the Hankel function h (2) (k r) 
i a vanish as 

W -+ 0 ; and 3) the terms proportional to h(2)(k r) 
Q. a for Q. > 2 

behave asymptotically as -1 
for W « 1 Thus W 

Ix (r,w) I = 0(w-1) a 
for w« 1 and k r « 1 • 

a 
(IV-3-40) 
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and this result is insensitive . to . R 
s 

Furthermore, let us recall that the fundamental Green's function 

solution (IV-3-1) which we· started from, is only valid for t > T 
o 

it wil1 . thuS yield correct results only for (roughly) r > V T 
P 0 

. Also 

the addition theorem for spherical wave functions CIV-3-11) requires 

Thus the particular . results derived here hold only for r 

relatively large, and from the· radial dependence present in CIV-3-38) 

one sees that the quadrupole . term becomes more and more predominant as 

r increases. 

At very short distances, the quadrupole will not be predominant 

any more; but in such cases our analysis is no longer valid and the 

correct Green's function solution for t < T should be used (see 
o 

section IV-1) 

0) r < R 
s 

far-field approximation 

The only difference with the case y) is that now we assume 

kR >kr»l 
a s a 

The results (IV-3-34) and (IV-3-35) still hold, 

but we now have 

CCa) A Cex) 
-ik R tm RIll a s 

-e 
(IV-J-41) 

(k R ) 2 
VCa) BCa) a s 

RIll RIll 

and 
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-ik. r 
. .Q, + 1 ..:;e-:-_

Ct
_ 

'" l. k r 
Ct 

[ 

-ik r 

'" Re i.Q,+le Ct 
kt 

Ct 
] . 

Clearly the Bessel function terms may be neglected. Furthermore the 

behavior of the spectrum is controlled again by the quadrupole term and 

we have 

O(w) for w« 1 and k r » I • 
a (IV-3-42) 

We have therefore proved that in all cases, the solution obtained 

in this section has the same asymptotic behavior as the solution 

obtained in section IV-2. This provides at least a partial check on the 

correctness of our approach and of our results. Further, we have shown 

that except possibly in the close vicinity of the rupture zone, the 

radiation field is dominantly quadrupole at long periods. In particular, 

the monopole and dipole fields are negligible at low frequencies. The 

same holds at very high frequencies, as we saw earlier. Also, just as 

in section IV-2, none of the limiting cases we just discussed is 

sensitive to R , so that when the observer's point lies within the 
s 

relaxation zone, we can again take R = 00 

s 

It is very difficult to characterize the spectra at intermediate 

frequencies other than by numerical calculations. Such calculations 
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,«:i1l be. undertaken in Chapter VII. However, since most of the 

ohservational work concerns displacement spectra, we still have to show 

how to obtain the displacements from the potentials. This is done in 

the next section. 
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IY-4} The displacement spectra 

T~e dynamic solutions Whi~we obtained in t~e previous sections 

were given in terms of potentials. However, seismological observations 

do not yield t~e dilatation or rotation potentials as a function of 

time. ~emeasured quantities are t~e displacement, velocity or 

acceleration fields, depending on the instrument used. Mainly for 

that reason most of the observational work in seismology or in earth­

quake engineering has been concerned 1) with displacement spectra 

(e.g., Ben-Menahem ~ al , 1965; Molnar, 1971; Wyss, 1970; Linde and 

Sacks, 1972; Hanks and Thatcher, 1972; Hanks and Wyss, 1972; Tucker and 

Brune, 1973; Niazi, 1973; etc.); or 2) with displacement as a function 

of time (e.g., Berckhemer and Jacob, 1968; Helmberger and Wiggins, 1971; 

Mitchell and Helmberger, 1973; Burdick and Helmberger, 1973; Usami et al, 

1970, etc.); or 3) with the velocity and acceleration fields, both in 

the time domain and in the spectral domain (e.g., Trifunac and Hudson, 

1971; Hanks, 1972; Trifunac, 1973; etc . ). 

Similarly, and for the same reasons, theoretical investigations 

have been oriented towards the interpretation and the prediction of 

these fields (e.g., Archambeau, 1964, 1968; Haskell, 1966; Randall, 1966; 

Savage, 1966; Aki, 1967; Brune, 1970; Burridge and Halliday, 1971; Ida 

and Aki, 1972; Cherry et a1., 1973; Dahlen, 1973). 

We shall, therefore, devote this section to the derivation of the 

displacement spectra from the potential spectra obtained in the previous 

sections . Velocity and acceleration spectra may be readily obtained 

from the displacement by simple differentiation with respect to time. 

Asymptotic limits will be discussed much along the same pattern as we 
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follo~ed for the potential apectra. This will allow us to discuss the 

r ange of possible spectral shapes allowed by our model, and thus to 

complete the discussion of source representations initiated in 

Chapter II . In particular, we shall emphasize the long-period 

asymptotic behavior of the displacement spectra, and clarify one of the 

controversial topics of seismology: is the displacement spectrum "flat" 

a t long periods (e.g . , Aki, 1967 ; Brune, 1970) or is it peaked (e.g., 

Archambeau, 1968, 1972)? In addition we shall present a short dis cussion 

of the phase spectra, sca ling laws and seismic moments associated with 

our source model. 

i ) Evaluation of the displacement spectra 

The potentials Xa that we used in the former sections were the 

cartesian components of the rotation vector potential 

Q. 
1. 

i 1,2,3, 

and the dilatation 

e = 

We showed in section 1-4 how the wave equations satisfied by these 

potentials were derived by taking the curl and divergence of the 

equations of motion in an elastic medium. It is easy to show tha t the 

displacement spectrum is then given by (e . g., Archambeau, 1968) 



ti(r ,w) = - 1 ~ 
2 v 8(r ,w) 
k 

p 

Here, the wave numbers k 
p 

k 
p w/V 

p 
k 

s 
w/V 

s 
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2 ~ 
+2 v xO(r,w) 

k 
s 

and k 
s 

are 

(IV-4-l) 

(IV-4-2) 

where V and V are respectively the P-wave and S-wave velocities 
p s 

of the medium. 

Archambeau (1964) derived the analytical expressions for the 

... 
components of the vector U in orthogonal curvilinear coordinates with 

arbitrary metric coefficients. We must here again emphasize that 

Q. i = 1,2,3 represent the cartesian components of 0 in a chosen 
1 

reference frame. 

Since the potential solutions derived in sections IV-2 and IV-3 

were obtained by use of spherical coordinates, and since these spherical 

coordinates appear explicitly as independent variables in the multi-

polar expansions, it is logical and convenient to use the spherical 

components of -' 
U Furthermore, longitudinal and transverse waves 

separate naturally in spherical coordinates. The first term in 

(IV-4-l) represents the P~ave radiation and the second term represents 

the S-wave radiation. But we shall see that while this separation is a 

valid one in the far-field, it is purely mathematical in the near-field , 

and is not very convenient in that case. The analytical expressions 

for the spherical components -u 
r 

of the displacement 
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...., 

vector u are rather complicated and are given in Appendix 5. We shall 

not reproduce them here in their totality, but the far-field components 

will be useful to us in this section. They are obtained in the limit 

kr>kr»l 
s p 

-v 
I ae 

- k2 3r" 
p 

...., - ] anI an2 
[ sin <P -- - cos <P --ar ar 

[cos e cos <p 

..., 
an2 

cos e sin <P ar- -

(IV-4-3) 

(IV-4-4) 

(IV-4-5) 

Indeed, one can see from Appendix 5, equations (A-5-2a,b,c), that all 

the other terms appearing in those equations have an additional factor 

of l/r attached to them, and thus are negligible in the far-field. 

We note that only the radial derivatives of the various potentials (in 

fact, their far-field approximations) survive in the far-field. This 

is a useful observation: since all potentials have similar multipolar 

expansions, we can see immediately that all components of displacement 

will have roughly similar spectral shapes in the far-field. We need, 

therefore, only study one of them. 

Also, the P~ave displacement is purely radial in that case and 

the S~ave displacement is purely transverse. This corresponds to the 
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usual notions of longitudinal and transverse waves. The e component 

of displacement may also be called the SV-wave and the ~ component 

the SH- wave, but these definitions are purely arbitrary in an homo-

geneous space, and are only useful when the waves encounter an interface 

between two different materials. 

The displacement components in other coordinate systems, such as 

cartesian or cylindrical coordinates may be obtained directly from 

general formulae given by Archambeau (1964) . However, it is 

considerably more convenient to operate on the vector '" U , as shown in 

Appendix 5 . Its spherical components are the easiest to obtain , and 

components in other coordinate s ys t ems can then be obtained by the 

standard methods of vectorial analysis . 

For obvious reasons of simplicity we shall consider only one 

component of motion to discuss the cnaracter of the displacement spectra. 

The simplest case is the radial component of the P-wave . As pointed 

out above , the other components will exhibit similar properties. We 

have 

- (p) 
u 

r 

.y 

1 ae --
k2 ar 

p 

where the radial derivative of the dilatation is taken without 

(IV-4-6) 

approximation in this case . From the results of Appendix 5, combined 

with those of sections IV-2 and IV- 3, we can write 
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00 2 

u(p) (r w) 
r ' L L-

£=0 m=O 

[ A(4) cos m¢ + B(4) sin m¢] 
£m £m 

+ [ £j£-l (kpr) - ( £+1) ji!i (kpr)] lei:) cos m¢ + Vi:) sin m¢] }. 
(IV-4- 7) 

It is immediately obvious from Appendix 5 that the other components of 

displacement, particularly for the S-waves, will have even more compli-

cated expressions. 

The velocity and acceleration spectra can immediately be obtained 

by differentiation with respect to time. With reference to our choice 

of Fourier transforms as shown in equations (IV-1-6) and (IV-1-7) 

we have for the velocity 

..., 
v (r ,w) 

• .-..1 
-~wu(r , w) (IV-4- 8) 

and , similarly, for the acceleration 

'it (r,w) 
2", 

-w u(r ,w) (IV-4-9) 

Thus the kinetic energy spectrum is 
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K(r, w) 
1 ~ = - v. v 
2 (IV-4-l0) 

This represents the energy flux at r as a function of frequency. The 

total energy radiated through a sphere of radius r is 

f 27T (7Tfoo 
E = 0 Jo 0 K(r,w) dw 

2 
r sin e de d<p (IV-4-11) 

The total energy flux at any given point is given by 

K(r) = 100 

K(r ,w) dw (IV-4-l2) 

We require it to be finite everywhere: This constraint will be used to 

place an upper bound on the displacement amplitude spectral density in 

the various limits considered below. These limits will be the same as 

those considered for the potential spectra in sections IV-2 and IV-3. 

In all these limiting cases we found that the asymptotic behavior was 

insensitive to R 
s 

This means that only the terms involving 

and need be considered both at high frequency and at low 

frequencies. 

ii) High frequency asymptotic behavior 

We just pointed out that the total energy flux must be finite at 
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every point. From (IV-4-12) this requires that 

as w -+ 00 , 

a. < -1 . 

This in turn generates the constraint 

Iv(r,w) I as w-+ oo , 

B < -0.5 

Or, from (IV-4-8) 

lii(r,w)t asw-+ oo , 

y < -1.5 

As an example, let us consider the radial component 

(IV-4-7) We have 

-(p) 
u 

r 

(IV-4-13) 

(IV-4-14) 

(IV-4-15) 

given by 

And we saw in sections IV-2 and IV-3 that the dominant mu1tipole 

coefficients at high frequencies were and and that 
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they behaved asymptotically as -1 
W Thus 

lu (r,w) I 
p 

for w» 1 (IV-4-l6) 

The same behavior should hold for the other components of displacement. 

However, as pointed out in Appendix 4 this asymptotic result holds as 

long as VR < Vs < Vp ,and we also know (e.g., Archambeau, 1972) that 

sonic or supersonic rupture velocities yield a spectral behavior of 

at high frequency. Thus if the rupture velocity V
R 

approaches the 

shear wave velocity v s , we expect the spectrum to decrease as -3 w 

- 2 w 

only for very high frequencies . Numerical calculations show that when 

V
R 

approaches v 
s 

, the S-wave spectrum decreases as -2 w 

rather large frequency band before it eventually steepens to 

over a 

-3 w 

Also the multipole fields of higher degree are important at high 

frequencies, and affect the spectral shape differently at different 

azimuths, because of interferences between the various fields. The net 

result is that the observed high frequency behavior of the amplitude 

spectrum may be given by 

for w» 1 • 

(IV-4-l7) 

a < -2 

and the value a = -3 given by (IV-4-l6) is to be understood in a 

gross average sense. 

iii) Long-period asymptotic behavior 

In order for the total energy flux to be finite at every point , we 
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need 

K(r,W) as w-+O I 

(IV-4-l8) 

-1 < ex 

This means that we require 

Iii (r , w) I as w -+ 0 , 

(IV-4-l9) 

- 1. 5 < S • 

Further, we note that S takes the value -1 if the displacement 

presents a net (static) change as a function of time (cf. the Fourier 

transform of a step function H(t) , which is . -1 
-1W ). 

We shall adopt the same pattern of discussion as we did in the 

previous sections. But we already know from our study of the potential 

spectra that we need only consider the quadrupole term, and also that 

the results are insensitive to R 
s 

The analysis will be performed 

on the component u(p) , in which we only keep the Hankel function 
r 

for JI, = 2 From the results of the previous sections we can 

summarize the behavior of the multipole coefficients and 

in the following table 

term 
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r < R r > R 
s s 

k r « 1 O(w2) O(w 4) 
p 

(IV-4-20) 

k r »1 O(w
2

) O(W
4

) p 

The corresponding table for the factor 

may be written as follows 

r < R r > R 
s s 

k r « 1 p 
o (w-5) O(W-5) 

(IV-4-21) 

k r » 1 O(w-2) O(W-2) 
p 

By combination of (IV-4-20) and (IV-4-21) and by comparison 

with (IV-4-7) we obtain the following table of asymptotic behavior 

for lu~p)(r,w) I 



k r « l , "near-field" 
p 

k r »l ,"far-field" 
p 
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r < R s 

0(1) 

r > R s 

(IV-4-22) 

Identical results hold for the other components of displacement, as can 

be shown numerically (see Chapter VII) . 

A puzzling result, at first sight, is the near-field behavior for 

r < R 
s 

Clearly the restriction (IV-4-19) is violated, and it seems 

that the energy flux is unbounded in that case. This is also the result 

obtained by Randall (1972) for the case of a stationary rupture and 

\~ith R = 00 
s 

(On that basis, Randall attempts to define a "long-

period corner frequency.") A similar result would be obtained by 

expressing the Green's tensor * * rmk(r ,t ) 

(I-3-35)--in the frequency domain. 

given in Chapter I--equation 

The answer to this puzzle is that one cannot physically separate a 

P-wave and an S-wave in the near-field: the two waves merge in that 

case into one single pulse, especially at long periods. The separation 

which we suggested in equation (IV-4-1) is purely mathematical and 

does not bear any relation to the physical situation and to the 

observations. 

The correct quantity tha.t we should consider in that case is 

lu(p) + u(s) I 
r r 

It may be shown analytically, although with great 

difficulty, that the mathematically defined "P-wave" and "S-wave" 

cancel each other exactly at long periods and that in such a case 
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for w« I (IV-4-23) 

and similarly for the e and ~ components. 

We shall omit the proof here; more importantly, however, this 

cancellation should and will be obtained numerically as well. This will 

obviously provide an exceedingly useful check on the correctness and 

accuracy of our numerical calculations. 

iv) Discussion: "peaked" and "flat" spectra 

As we said earlier, one of the main interests of analytically 

evaluating asymptotic forms for the various spectra considered in this 

chapter is that they will provide a check on eventual numerical 

calculations. But they also give us preliminary information on the 

general shape of the amplitude spectra predicted by the model. For 

instance, we see that while the high frequency side of the displacement 

spectrum is quite the same in most cases considered above, the spectral 

shape at long periods may be very different under different circumstances 

as shown in (IV-4-22) 

It is usual in seismology to plot the logarithm of the amplitude 

spectral density against the logarithm of frequency. For that reason 

the asymptotic behavior 0 (wCJ. ) is said to have a "slope" of CJ. This 

is a convenient phraseology and we shall use it here. 

For example, we found that the amplitude spectrum has a slope of 

-3 at very high frequencies. This is an asymptotic limit and our 
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analysis did not predict when it should be reached. As we pointed out, 

the average slope is controlled by the rupture velocity for the S- wave 

spectrum, and is also azimuthally dependent because of interferences 

between the multipole fields of various degrees; in particular, it could 

be steeper at certain azimuths, and less steep in other directions. 

Furthermore, Archambeau (1972) shows that this slope becomes -2 for a 

supersonic rupture velocity, such as might occur in the case of an 

underground explosion. 

These results may be compared with the slope of -2 obtained from 

simple dislocation models (e.g., Aki, 1967). Brune (1970) also obtained 

a slope of -2 for his model . 

Observations yield a rather wide range of high frequency slopes, 

although the value -2 appears to be roughly adequate in many cases 

(e.g., Hanks and Thatcher, 1972; Hanks and Wyss, 1972). There is no 

real discrepancy here since the term "high frequency" should be defined 

as that frequency range for which the wave length is very much smaller 

than the source dimensions so that the predicted asymptotic behavior 

may not be observable in most cases. Further, at such high frequencies 

the observed spectrum must be corrected for instrument response, the 

effects of attenuation must be take~ into account, and the spectral 

amplitude becomes comparable to that of the seismic noise (e.g . , Tucker 

et al., 1973). These effects all add up to rather uncertain spectral 

amplitudes. Of course, the critical test will be to try and match the 

model against the observations, and this requires computing a complete 

spectrum, so that we shall defer a more complete discussion until later. 

However, we may already point out that a rupture velocity 
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v ~ 0.9 V is high enough to yield a slope of -2 for the S-spectrum 
R s 

over much of the observable frequency range. On the other hand, we 

shall also show that our model-predicted slope of -3 would provide a 

ready interpretation of a large body of data obtained by plotting the 

body wave magnitude ~ against the surface wave magnitude 

many events. 

M 
s 

fur 

The long-period near-field behavior does not generate a l o t o f 

argument, mostly because of observational difficulties, and also because 

a slope of -1 is readily explainable in terms of a net sta tic offs e t 

in displacement. Static and quasi-static displacement studies fall 

outside the scope of this discussion, and are generally treated by a 

variety of numerical methods (e.g . , Alewine and Jungels, 1973; Alewine, 

1973). In addition, most of the available near-field strong motion 

data were gathered for engineering purposes and were high-pass filtered 

with a cut-off frequency of about 0.1 hz (e.g., Trifunac and Hudson, 

1971; Trifunac, 1973). 

Much more controversial is the long-period spectral behavior in 

the far-field. The results in (IV-4-22) show that if the observer is 

i nside t he relaxation zone, the long-period spectral amplitude has a 

s lope of 0 ,and similarly , if the observer is outside the relaxation 

zone, the slope is 2 The former case yields a spectral shape which 

is flat at long periods; in the latter case, however, the spectrum must 

clearly exhibit at least one maximum and is therefore peaked. We saw 

earlier that the first behavior is insensitive to R and that, for 
s 

practical purposes, R may be taken to be infinite in that case. 
s 

In 

the second case, however, the size of the relaxation zone has a definite 
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effect on the shape of the spectrum. Quantitative results will have to 

be obtained numerically, but it is clear on intuitive grounds that the 

finiteness of the relaxation zone will only be felt at periods long 

enough so that the wave length is comparable to R ,so that the s 

predicted slope of 2 will only be observed at such periods. (See 

also the next section for the analytical treatment in a particular 

case.) 

"Flat" spectra are typically obtained on the basis of dislocation 

models in which the time dependence of the displacement jump is chosen 

to be a step function or some variation of it (e.g., Aki, 1967; Savage, 

1966). Such is also the case for Brune's (1970) model. This is 

consistent with the equivalence theorem proved in Chapter IV, between 

such models and a relaxation source in an unbounded medium. 

In contrast, Archambeau (1964, 1968) proposed a relaxation source 

model in which R was kept finite and the observer was outside R s . s 

he predicted on that basis a marked peak in the far-field displacement 

spectrum. In an effort to reconcile the various models, Randall (1973) 

suggested that it is erroneous to keep R 
s 

finite, and by making the 

relaxation zone extend to infinity, obtained the same behavior as we do 

for r < R 
s 

It would be superfluous for us to repeat here the arguments 

concerning the introduction of a finite relaxation zone. This was done 

in the introduction to this chapter. It is essential, however, to 

comment on the interpretation of body wave spectra. 

Much of the interpretation of such spectra in terms of various 

source parameters is based on their low frequency end, and more 
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specifically on the fact that the spectrum is flat at long periods and 

exhibits a "corner" at some intermediate frequency. The spectral level 

in the flat portion is thus assumed to be about the same as it is at the 

corner frequency (e.g., Brune, 1970; Hanks and Wyss, 1972; Wyss and 

Molnar, 1972). We just saw that this holds when r < R For the 
s 

case r > R 
s , the spectrum presents a peak instead of a corner; but 

the peak level is identical to the corner level provided that 

large enough (i.e., a few rupture lengths). In other words, if 

R 
s 

R 
s 

large enough, the finiteness of the relaxation zone will affect the 

is 

spectrum only at frequencies lower than the corner or peak frequency. 

is 

Thus the interpretations based on this spectral level should be correct 

whether the spectrum is indeed flat or not. This will be discussed in 

greater detail in Chapter VII. 

But this leaves a fundamental question unanswered: is R 
s 

to be 

chosen finite or infinite? And, if 

relation to the size of the rupture? 

R 
s 

is finite, what is its size in 

The answer may only be obtained on the basis of reliable 10ng­

period data. As pointed out by Linde (1971), such data are rather 

difficult to obtain. In fact, Linde argues that mOst problems associated 

with their obta~ent, such as correction for instrument response, and 

limitations in the time series ana1ysis--truncation, detrending, noise 

contamination--all contribute to an overestimate of the long-period 

spectral level. Therefore a seemingly flat spectrum might really be 

peaked. 

Linde and Sacks (1972) found indications of a spectral peak in 

their analysis of South American deep earthquakes. ' This Buggest!! a 
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finite relaxation zone. On the other hand, the excellent study of 

S-wave spectra by Tucker and Brune (1973) for aftershocks of the 

San Fernando earthquake shows that the spectra for these events may be 

quite flat over a relatively broad frequency range. Their observations 

were gathered at close range, and one may speculate that the assumption 

r < R might apply in that case. 
s 

Hanks and Wyss (1972) showed that the body-wave spectra of three 

shallow earthquakes could be interpreted in terms of flat spectra, and 

showed how such an interpretation can be used to estimate source para-

meters. However, in most cases, their data could also be interpreted 

in terms of peaked spectra. This is also true of many of the body-wave 

spectra of the San Fernando earthquake computed by Wyss and Hanks (1972). 

On the other hand, some of the averaged spectra for deep earthquakes 

gathered by Wyss and Molnar (1972) require a relatively wide spectral 

peak--a decade in frequency--if one wishes to interpret them in terms 

of peaked spectra. 

In the absence of a +arge bOdY of data pertaining to a wide class 

of different events, which would prohibit a dual interpretation, we 

shall take the position that there is no clear cut choice for R The 
8 

two cases r < R 
s 

(or R = 00 ) 
s 

and r > R which we investigated in 
s 

this chapter represent two possible extreme situations, and the truth 

probably lies between these two extremes. In other words, we feel that 

the two extreme spectral shapes--f1at spectrum and peaked spectrum--

bracket the range of possible observations. The figures of Chapter VII 

give a more quantitative description of this range. 

Molnar et a1. (1973) show that a flat spectrum corresponds to a 
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unipolar far-field dis.placement pulse in the time domain (one for which 

t he displacement in any direction does not change sign as a function of 

time). A peaked spectrum corresponds in tum to a pulse which is not 

unipolar. In terms of a dislocation model, a unipolar pulse can only 

be generated if the time derivative of the displacement dislocation jump 

does not change sign ( i.e . , in the absence of "overshoot"). This fact 

is entirely consistent with the equivalence theorem between relaxation 

sources and dislocation sources shown in Chapter II in the case 

R 
s 

co since we predict a flat spectrum in that case. We argued 

then that no overshoot occurs for transparent sources. The spectrum is 

peaked in the case r > R s but the fact that the far- field displace-

ment pulse is therefore not unipolar does not mean that "overshooting" 

takes place in that case. Rather , it means that the equivalence theorem 

does not hold any more; one can still find (probably with great 

difficulty) an equivalent dislocation source generating the same 

radiation field in that case, but the displacement jump of this 

equivalent dislocation will no longer represent the true displacement 

on the rupture boundary. As proven by Molnar et al., this equivalent 

dynamic dislocation will exhibit an overshoot, but we cannot conclude 

that there is physical overshoot. 

We see , therefore, that the model that we propose in this chapter 

is very flexible, and that a broad range of possible spectral shapes 

may be interpreted in terms of it. For completeness, we shall discuss 

next some other aspects of the solution which require a more 

quantitative knowledge of the spectral amplitude. 
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IV-5) Phase spectra, scaling laws, moments 

We shall discuss in this section a number of miscellaneous topics 

concerning the radiation fields obtained earlier in this chapter. Since 

the discussion necessitates that we compute more complete expressions 

for the displacement spectrum, we shall center it around a very 

particular example. 

We shall assume a symmetrically expanding rupture ("explosion-like"); 

we also assume that only the component of the prestress is 

present. Thus, from (IV-1-13) the only non-zero static coefficient 

for the dilatation is 

5(1-20) 0(0) 
13 

jl(7-50) 
(IV-5-1) 

Furthermore, we have a pure quadrupole field in that case. Taking the 

results of section IV-2 we have 

I(2)(W) for r < R 
2 

2 s 

A (4) (w) , w (IV-5-2) 
21 a 21 3" 

V 
1(3) (w) p for r > R 

2 s 

We shall take R(to) = VRto ,and define L = R(To) as the 

characteristic dimension of the rupture (its final radius). Then, from 

Appendix 4, we have 



and 

1(3) (w) 
2 
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for w -+ 0 (IV-5-3) 

for w-+O (IV-5-4) 

Then by using the various results of section IV-4 and the expression 

(IV-4-7) for the radial component of the P-wave, we obtain the 

following low frequency limits 

a) 

b) 

c) 

r > R 
s 

r > R 
s 

-(p) u 
r 

r < R s 

-(p) 
u 

r 

, far-field 

, near-field 

27i a'2l 
'\, ----:c

2
.".O-=.=-

, far-field 

, L3 a 2l '\, -- -- e 
2 V r 
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-ik r 
p 

3 2 -ik r 
L w e p 

V3 
r 

p 

L3 

sin 28 cos cp • 

-- sin 28 cos cp 
4 wr 

sin 28 cos cp • 

(IV-5-5) 

(IV-5-6) 

(IV-5-7) 
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( IV-5-8) 

This last equation yields the mathematically defined P-wave in the near-

field , and should really be combined with the corresponding S~ave 

component as we showed earlier. But we shall only use it to define a 

frequency range where the near-field effects become important , 

As shown in Appendix 4, the high frequency spectrum is more 

complicated and the solution does not lend itself to convenient 

asymptotic expansion . According to equation (A-4-8) we may write 

or 

1(2) ( w) 
2 

1(2) ( w) 
2 

3V3 WL/V 

=--p.J P 
aw3 

o 

-il;t '( t) dt e t J l 

3 wL/V 
~ f p -il;t 

3 e 
8w 

o 

[
Sin t ] t - cos t 

where I; = Vp/VR is greater than one. 

(IV-5-9) 

dt , (IV-5-l0) 

It is pointed out in Appendix 4 that the integral in (IV-5-l0) 

has no limit, but stays finite as w + ~ Archambeau (1972, equation 

5-8) investigates precisely this integral, but did not find any 

convenient analytic form for it either. His series expansion in terms 
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of hypergeometric functions is only convenient for low frequencies. 

Just as in Appendix 4, we write 

where X is a fixed number, chosen large enough so that t jl(t) may 

be approximated by - cos t in the second of these integrals. Then 

WL/Vp i(l-s) X 
+ ~~e~ ______ ~ ____ -~e~ ____ ___ 

2 l-s 

i(l-s) 

-i(l+s) wL/V -i(l+r) X 
i e p -e S 
2 ~------~l+-s--~-------- ] . 

(IV-5-11) 

Now the first term in the bracket is a number that depends only on s 

and thus on the rupture velocity VR in particular, it does not 

depend on the frequency W However, on account of the parity of the 

function to be integrated in (IV-5-l0) ,we can investigate this 

integral further. Let us designate by K the integral on the right-

hand side of (IV-5-l0) We have 



-257-

wL/V 

2Re(K) =1 p e -il;;t 

-WL/V 
P 

[
Sin t ] t - cos t dt 

As w goes to infinity, we recognize that this integral converges to 

the sum of distributions 

2Re(K) I H(I;;+l) - H(I;;-l) - 0(1;;+1) - 0(1;;-1) 
w+oo 

(IV-5-11) 

so that, for I;; > 1 ,the real part of K tends to zero. On the other 

hand, we have 

WL/V 

f p [sin t ] Im(K) = - sin I;;t t - cos t . dt 

o 

As w tends to infinity, the first term tends to the sine transform of 

of sin t 
t 

and the second term can be evaluated by two successive 

integrations by parts. We get 

1 
Im(K) I - - Ln 

w+oo 2 I@I 
1;;-1 

1 [ wL wL ( - -- sin - sin - + I;; cos 
2 1 V VR I;; - p 

wL . V cos 
P 

(IV-5-l2) 
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It is not our purpose to discuss here the nature of the convergence in 

those various cases. It is sufficient to point out that we have a 

singularity for s = 1 ,which is consistent with the fact that our 

solution is no longer valid when the rupture propagates at sonic velocity. 

For that reason, the above proof does not achieve complete rigor. 

Nevertheless, we can see that the dependence of the high frequency 

spectral level on the rupture length is weak: both in (IV-5-ll) and 

(IV-5-l2) L appears only in the argument of trigonometric functions, 

and thus does not affect the average amplitude of On the 

other hand, we note that rupture velocity is an important parameter at 

high frequency, and that it affects the spectral amplitude in a very 

complex fashion. 

i) The phase spectrum 

Niazi (1973) computed the phase spectrum as well as the amplitude 

spectrum for the body waves of a number of earthquakes. Little work has 

been done on this aspect of the problem, in particular for relaxation 

source models. Ben-Menahem (1962) shows that the phase spectrum should 

be a decreasing function of frequency for a moving source. 

From (IV-5-7) and (IV-5-9) we see immediately that, in the near-

field, the phase is ± n/2 ,depending on the sign of the radiation 

pattern coefficient. This agrees with the fact that the Fourier 

transform of a step function is imaginary. 

The far-field phase spectrum is more interesting, since it 

corresponds to teleseismic observations, as well as high frequency 

observations. Of course, the dominant term will be -wr/V 
p 

, as we can 
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see from (IV-5-6) and (IV-5-8) This term is easily recognized as 

the phase of a wave travelling over the distance r , and can be 

deleted from the solution. 

It is more difficult to evaluate analytically the initial phase at 

the source, and more particularly its frequency dependence. This initial 

phase is controlled by the multipole coefficients Aim(w) and Bi m(w) 

and thus by 1(2) (w) 
i 

and In the long-period limit, we can 

expand these integrals for small w and find, for the quadrupole term 

(IV-5-13) 

and 

(IV-5-14) 

Thus we find that, in the far-field, the long-period phase is 0 or 

TI --depending on the sign of the radiation pattern coefficient--and that 

it decreases with increasing frequency. The derivative of the phase 

with respect to w, at the source, has dimension of time and is called 

the group delay at the source (e.g., Archambeau et al., 1965; Alexander, 

1965) . We shall denote it by t (w) 
g 

This group delay comes in 

explicitly in the theory of mode separation for surface waves 

(Alexander, 1963). If it is large, it should be noticeable in body 

wave observations as well. From (IV-5-13) and (IV-5-14) we see 

that, if R 
s 

is large with respect to L , then in both cases 
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for w« 1 (IV-S-lS) 

We take the convention that tg is positive if it is indeed a delay, 

as is the case here. The numerical factor in (IV-S-lS) is dependent 

on the specific history of growth chosen for the source; that is, on 

the functional form of R(t) in particular. o 

At high frequencies, we showed that becomes pure imaginary, 

and thus its phase does not depend on frequency any more, so that 

t (w) + 0 as w + 00 
g 

(IV-S-16) 

The group delay at the source is therefore not a constant function of 

w The immediate conclusion is that our source model is a dispersive 

radiator. More specifically, the radiation is inversely dispersed, 

according to the seismological terminology: the high frequency part of 

the wave train travels ahead of the long-period part. 

This requires a physical interpretation or, at least, a heuristic 

explanation. For a growing rupture, the major part of the long-period 

energy will be radiated during the last stages of the phenomenon, that 

is, when the rupture has reached its maximum size. On the other hand, 

the high frequency radiation emanates essentially from the vicinity of 

the rupture front and the source is an efficient high frequency 

radiator even during the early stages of the phenomenon. One therefore 

expects intuitively the long-period radiation to be delayed with respect 
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to the high frequency radiation, and the delay should be of the order of 

the total rupture duration, as shown in (IV-5-lS) 

The long-period group delay can be quite large: for a 20 km rupture 

and a rupture velocity of 2 km/s., it approaches 10 seconds. This is 

consistent with the datra obtained by Niazi (1973). Burdick (personal 

communication, 1973) also finds delays of this order. If this 

phenomenon yields different delays for P-waves and S-waves over signifi-

cant frequency bands, then this could be a source of complications in 

the interpretation of seismic data, in particular, travel time data 

which might have to undergo a sizeable ''base-line correction." However, 

further investigations of this particular aspect of the problem will 

have to be undertaken before any significant conclusion can be reached: 

for instance, alteration of the phase spectrum by attenuation effects 

could be important. 

Similar results hold for the S-waves; the radiation pattern and 

static coefficients are then different, but, for reasons of homogeneity, 

v 
p 

must clearly be replaced by v 
s 

This elementary treatment does not cover all the characteristics 

of the phase spectrum. Niazi (1973) notes that bilateral ruptures have 

a phase spectrum different from that of unilateral ruptures. Savage 

(1966) points out that the source geometry (i.e., very long faults 

versus nearly circular faults) may also be a significant parameter. 

Introduction of multipole fields of higher degrees will complicate the 

global phase spectrum. In particular, there may be some fine structure 

of the spectrum, as suggested by Niazi's (1973) data, and azimuthal 

effects will then be taken into account. A numerical investigation will 
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be undertaken in Chapter VII. 

ii) Scaling laws 

Aki (1967) attempted to define scaling laws for the seismic spectrum 

in order to facilitate the interpretation of seismological data. 

The asymptotic forms (IV-S-S) through (IV-S-8) permit us to 

derive also a number of such scaling laws which will be found useful. 

Figure IV-S-I shows a sketch of the various asymptotes given by these 

equations, and thus gives us a rough idea of the global shape for the 

amplitude spectrum. 

The most trivial of the scaling laws is given by the fact , 
a
2l 

which is proportional to the prestress. This is a very general result: 

the spectral amplitude is directly proportional to the prestress. 

We have seen in the former section that, provided R 
s 

is large 

enough, the displacement spectrum is "flat" at long periods, at least 

in some frequency band. For this reason, it has become customary in 

seismology to talk about a corner frequency w o 
, which is a frequency 

separating the high frequency side from the low frequency side of the 

spectrum in a gross sense (see figure IV-S-I). However, we have been 

unable to obtain a simple asymptotic expression for the spectral density 

at high frequency. Furthermore, there is no insurance that an approxi-

mation which holds at very high frequency is still adequate at inter-

mediate frequency. We shall therefore obtain an approximation to 

in the following fashion: 

I (2) 
i 

The ascending series for spherical Bessel functions converge very 

well even for arguments of moderate size. We therefore replace jl(t) 
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by its ascending power series in (IV-S-9) , integrate term by term, and 

use the following high frequency result 

Then by regrouping terms we obtain 

3iVRV L -iurr 
1(2) (w) 'V --7--"-P- e 0 

2 2 
w 

Replacing the spherical Bessel function by its asymptotic term we 

eventually get 

3V V
2 

R P 
3 

w 
for w » 1 . (IV-S-l7) 

There is no analytical proof that the procedure truly yields an 

asymptotic series, but this result is in remarkable agreement with 

numerical calculations. Equating (IV-S-l7) with the long-period 

asymptotic value (IV-S-3) , we find that the corn~r frequency is then 

given by 

3 
w o 

= (IV-S-l8) 

Comparison of (IV-S-l8) with numerically calculated spectra showed 
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Figure IV-5-l. Schematic representation of the displacement amplitude 
spectrum based on asymptotic forms. When R is finite and the 

s 
observer is outside R ,a peaked spectrum is predicted. 
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that it gives an excellent measure of the corner frequency for P-wave 

spectra. The same formula was found to hold for S-spectra if one 

replaces v 
p 

by v 
s 

The formula was also found to give good results 

in the case of a unilateral rupture, even in the presence of higher 

degree multipoles . In such a case L represents the rupture length, 

and not the final radius (recall that L = VRTo)' We note that 

(IV-S-18) predicts a corner frequency occurring at a lower frequency 

for the S-spectrum. This is consistent with the observations (e.g . , 

Hanks, 1972). 

Similarly, by taking the intersection of (IV-S-18) and (IV-S-4) 

we can get a "peak frequency" which is given by 

S 
W = 

P 

lOV
R

V4 
P (IV-S-19) 

This formula is to be used when the spectrum is truly peaked, in 

particular, when R 
s 

is small. The difference between P and Speak 

f requencies is slightly more pronounced in that case . In the case where 

R is relatively large one can define a new characteristic frequency 
s 

WI (see figure IV-S-l), associated with the size of the relaxation 

zone . By comparison of (IV-S-3) and (IV-S-4) we find 

(IV- S-20) 
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is a measure of the peak width. The 

peak width is a decade in frequency if w o 
In the case where 

v = V /2 ,we get by comparing (IV-5-l8) and (IV-5-20) 
R P 

R '" 20L s 

Of course, this does not mean that the spectrum will be exactly flat 

over a decade, since we extrapolated the asymptotes to arrive at this 

result. But it is clear that if R is about ten rupture dimensions, 
s 

the peak amplitude is a good approximation of the "flat level" 

amplitude. 

It is worth noting at this point that R 
8 

can easily be much 

greater than L for small events, but that this cannot be the case for 

large earthquakes, so that the spectra for small events can be quite 

flat in the far-field while those for large events must be peaked. 

However, the free surface of the Earth is usually not further than one 

rupture length or less away from the failure zone of great earthquakes, 

and such earthquakes are often multiple events (e.g . , Wyss and Brune, 

1967), and the problem is more complicated in such cases. 

Finally, the intersection of the far-field and near-field 

asymptotes at long periods yields a frequency w2 at which near-field 

effects become important: 

v 
w '" 2.1 --.E 2 r (IV-5-2l) 
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will be an order of magnitude in frequency if 

r ::: 20L 

The geometrical relationships between these various quantities is shown 

on figure IV-5-l. Thus the corner frequency w o 
given by (IV-5-l0) 

leads to a tradeoff between VR and L for purposes of interpretation 

if the wave velocity is known. This was pointed out by Berckhemer and 

Jacob (1968). Similarly, from (IV-5-l8) and (IV-5-20) the measure 

of the peak width yields a tradeoff between R ,L, and 
s 

If A is the peak amplitude (or flat level), we see from (IV-5-8) p 

that it does not depend on the rupture velocity. Thus, at constant 

prestress, the long-period level is proportional to L3 and for 

events smaller than a certain size, the surface wave magnitude is a 

measure of the rupture dimensions. 

On the other hand, we pointed out earlier that the high frequency 

asymptote is independent of L but is strongly dependent on V
R 

thus for events larger than a certain size, the spectral amplitude at 

1 hertz will be independent of L Within these restrictions, the 

body wave magnitude of such events is a measure of the rupture velocity. 

It is easy to see from their definition that the ratio of the 

coefficients is proportional to Therefore, the 

ration siP of the long-period spectral amplitudes given by (IV-5-7) 

is proportional to 

(e.g., Hanks, 1972). 

V3/V3 
p s 

This is confirmed by the observations 
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All the scaling laws described here were obtained from the asymptotes 

in a very particular situation. Of course, because of higher degree 

multipoles, and because of the radiation pattern modulation, they will 

only hold in an average sense. However, we shall see that they are 

upheld by numerical calculations. 

iii) Moments 

Archambeau (1964, 1968) shows that the general theory of tensorial 

moments used in electromagnetic theory (e.g., Jackson, 1962) may be 

adapted to elastodynamic theory as well. However the expressions that 

he gives are rather complicated and cumbersome to use, so that we shall 

not duplicate them here. 

The notion of multipole moments is essentially a long wave length 

concept (e.g., Stratton, 1941). For our model, however, a seismic 

moment can be usefully defined only where the (static) initial value 

fields do not vanish, that is, inside the relaxation zone. Then by 

using (IV-S-8) and the usual expression for the seismic moment, we 

get, for a Poisson solid 

M=60'IT L3 (0) 
23 °13 (IV-S-22) 

This is the expression given by Aki and Tsai (1972) and obtained by 

Randall (1973) for the case R 
s 

00 Now, because we have shown that 

"flat-level" and "peak-level" are the same for our model, provided that 

R is not too small, it is clear that the seismic moment can be 
s 
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obtained from the peak level as well. Thus our model does not require a 

reinterpretation of published data: Inside the relaxation zone, the 

long-period level is used much in the same way as it is for dislocation 

sources, and outside the relaxation zone, the peak level must be used 

to get the same result. 
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Conclusion 

The elastodynamic relaxation source model presented in this chapter 

is a specialized case of the very general class of models presented in 

Chapter II. It is a volume source as opposed to the usual boundary 

source models such as dislocation and stress pulse models. The 

radiation field is obtained as the solution to an initial value problem 

as opposed to a boundary value problem. The very concepts behind this 

model and the more classical models are thus different. The equivalence 

of the various source models was shown in Chapter II, and confirmed in 

this chapter on the basis of a particular example. However, whereas 

boundary source models implicitly assume the rupture phenomenon to 

take place in an infinite homogeneous space, our model permits us to 

introduce explicitly an additional parameter of the source: the size 

of the prestressed region in which rupture takes place. This parameter 

was first introduced by Archambeau (1964, 1968). Because Archambeau 

considered only the case of an observer external to the relaxation 

zone, he predicted a peaked displacement spectrum in the far-field. 

This contrasted with the flat spectrum predicted, in particular, by 

dislocation models. The results of this chapter permit us to pinpoint 

the fundamental similarities and differences between the two model 

types, and to determine exactly the cause of this discrepancy. In 

fact, we confirmed this discrepancy while at the same time reconciling 

the various models. 

This chapter contains a detailed study of a growing and propagating 

spherical rupture model; we can summarize the conclusions as follows: 
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The critical parameter controlling the shape of the displacement 

amplitude spectrum is the position of the observer with respect to the 

relaxation zone. If the observer is inside the relaxation zone, the 

far-field displacement spectrum is flat at long periods, and the 

relaxation radius may be chosen to be infinite for practical purposes. 

If the observer is outside the relaxation zone, a spectral peak will 

be observed in the far-field. The argument as to whether the far-field 

spectrum is flat or peaked is thus now shifted to a physical argument: 

For any particular event , what is the size of the relaxation zone in 

relation to that of the rupture zone and to the hypocentral distance of 

the observer? This is a much more satisfying question because it bears 

directly on the physical conditions in the vicinity of the event. 

The near-field is only important at long periods and causes the 

spectrum to have a slope of -1 at such periods. On the other hand, 

the high frequency slope is independent of R 
s 

and of other source 

parameters, and is equal to -3 Multipole fields of higher degree 

become important at intermediate to high frequencies, but their effects 

must be evaluated numerically. The phase spectrum is asymptotically 

constant at high frequency and a quas i-linearly decrea sing fun c tion of 

fr equency at l ong per iods . 

A most important aspect of this study is that the interpretation 

of observations based on the spectral levels in the vicinity of the 

peak frequency (peaked spectrum) or of the corner frequency (flat 

spectrum) is relatively model independent. Thus many of the concepts 

developed on the basis of dislocation models, for example, and most of 

the observa tional work found in the seismological literature retain 



-272-

their value, in the light of our model. In fact, we have shown how 

the various source models proposed earlier may be reconciled. 

The theory presented in this chapter may be adapted to include 

more complex as well as more realistic situations. We shall show in 

Chapter VI how to treat analytically the case of a fairly general 

ellipsoidal rupture. But in as far as analytical models can hardly 

take into account the complexities of a real phenomenon, one can also 

use this theory in connection with finite difference or finite element 

numerical techniques. The multipole coefficients can then be computed 

.numerically for very complicated rupture geometries, and also for 

very general rheological properties of the material within the failure 

zone. Further investigations along these lines will be undertaken in 

the future. 

Some numerical applications of the spherical rupture model will 

be presented in Chapter VII. We shall then discuss the spectral 

characteristics of the displacement field in more detail, especially 

at intermediate frequencies. 
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Chapter V 

USE OF MULTIPOLAR RADIATION FIELDS iN SEISMOLOGY 

Introduction 

We have used in the previous chapter the theory of multipolar 

representations of an elastodynamic radiation field. This provides, in 

fact, an equivalent point source representation of the source (e.g., 

Archambeau, 1968, 1972), especially in view of the fact that multipole 

fields can be generated by various nuclei of strains and their deriva­

tives (e.g., Randall, 1971; Turnbull, 1973). Further, inasmuch as 

spherical wave functions form a complete set (e.g., Morse and Feshbach, 

1953), any radiation field which is not pathological affords a 

multipolar expansion. In addition, if the source of radiation is 

bounded in extent, the fields outside a closed surface surrounding the 

source region will afford an expansion in outgoing waves only (incoming 

waves will be required if a scatterer is found at some distance from the 

source). 

These properties of multipolar expansions, along with uniqueness 

theorems, have been used extensively in electro~gnetic radiation theory 

(e.g., Stratton, 1941). The elastodynamic problem, as treated on the 

basis of a fairly simple model in Chapter IV, is complicated by the 

fact that the source is a volume source, the extent of which is not 

necessarily well known. An electromagnetic antenna is a well defined 

source; the relaxation zone defined in Chapter IV will not, in general, 

have a sharply defined boundary, and any attempt to model it will 

necessarily involve some approximations. 
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Nevertheless, the use of multipolar expansions permits us to extend 

the notion of equivalent seismic sources mentioned in Chapter II in a 

somewhat more axiomatic fashion. Given two sources of limited spatial 

extent, we can always enclose them in a "black box," and worry only 

about the radiation field emerging from this "black box." We shall say 

that the two sources are equivalent if the two observed radiation fields 

have the same multipolar expansion with respect to the same origin. Now 

two multipolar expansions with respect to two distinct origins and 

related by the addition theorem of Appendix 9 are obviously equivalent, 

so that one cannot, in general, obtain a unique physical interpretation 

of the phenomena occurring inside the "black box." Further interpreta­

tion requires, therefore, that one use other information. This 

information can be extraneous, such as field Observations of a fault, 

or it can be present in the multipolar expansion, but hidden in such a 

way that it is difficult to extract: The hypocenter of the earthquake 

can be located from time domain information such as first arrival times 

at an array of stations. If the hypocenter is used as origin to compute 

a multipolar expansion, there is a good chance that the expansion will 

be simpler (as it is for the model of the previous chapter). If any 

other origin is used, the multipolar expansion so obtained will contain 

the necessary information to locate the hypocenter but the location will 

be rather difficult to perform. 

This chapter will be concerned with the manipulation and use of 

multipolar radiation fields for seismological purposes. We shall not 

make any assumption about the physical nature of the source, nor shall 

we assume any particular source model. We shall only assume that the 
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radiation field is known in the form of a multipolar expansion in a 

given coordinate system. Without loss of generality we can take this 

coordinate system to be a natural reference frame of the rupture, 

labelled "source system" in Chapter IV. The z-axis is oriented along 

the direction of propagation, and the y-axis may then be chosen to lie 

in the fault plane. 

On the other hand, wave propagation problems can be best treated 

in a coordinate system where the z-axis is along the local vertical. 

This reference frame may also be a cartesian system, or a cylindrical 

one, or yet a spherical one. We shall define in this chapter a 

"geographical" reference frame, where the z-axis is along the upward 

vertical, the x-axis is arbitrarily chosen in a northerly direction, 

and the y-axis points therefore to the west. Such a frame is reasonably 

convenient for wave propagation problems. These problems include the 

propagation of body waves in the Earth, according to ray theory (e.g., 

Julian and Anderson, 1968), or generalized ray theory (e.g., Gilbert 

and Helmberger, 1972). They also include the propagation of surface 

waves in a layered Earth model (e.g., Harkrider, 1963). The excitation 

of free oscillations of the Earth can also be treated by use of such a 

frame. 

We shall address ourselves essentially to the problem of represent­

ing the radiation fields in a new coordinate system when they are known 

in the source system. In the first section the operation will be 

performed on the displacement vector fields, and is rather simple. The 

next two sections will be concerned with the transformation of a 

multipolar expansion under rotation and translation of the reference 
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frame. Finally, we shall present a very succinct discussion concerning 

the use of potentials other than the dilatation and rotation. 

Because no use is made in seismology of left-handed systems, we 

shall confine ourselves to proper transformations. 
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V-I Elementary transformations of the displacement fields 

We saw in Chapter IV how to obtain displacement spectra from 

potential spectra, and this operation may be performed in the source 

system S As shown in figure V-I-I, a ray can be defined in the 

geographical frame G by its azimuth q, (G) 
A and its take-off angle 

The take-off angle is usually measured from the downward vertical 

direction so that LA = TI - eiG
) The point A is taken to be on the 

focal sphere of unit radius so that the vector oA has geographical 

components 

, (V-I-I) 

, (G) 
zA - cos LA 

The first problem is now to find the spherical coordinates of A 

in the source system. This is easily done if one knows the orthogonal 

transformation matrix T transforming the system G into the system 

S This matrix is given in Appendix 7, both in terms of "fault 

orientation parameters"--strike, dip, and plunge angles--and in terms 

of Euler angles. Then the cartesian coordinates of A in the source 

system are given by 
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Figure V-l-l. Specification of a ray by its azimuth 

off angle TA in the geographical coordinate system. 

<p (G) 
A 

West 

ray 

and take-



-279-

r· (S) x
A 

(G) 
x

A 

(S) 
YA T* (G) 

YA (V-1-2) 

(S) 
zA 

(G) 
zA 

T* where denotes the transposed (and therefore the inverse) of T 

The spherical coordi nates of A in the source system are then trivially 

obtained as 

8 (S) -1 (S) 
A 

cos zA 

cos -1 (xiS) P -1) 
(V-1- 3) 

if 
(S) > 0 YA , 

<j> (S) 
A 

21T -
-1 (s) -1) if 

(S) 
< 0 , cos xA P YA 

where 

Knowing the spherical coordinates of A in the source system, we can 

easily get the spherical components of the displacement fields at A 

in the s ource s ystem, where the fields are given by multipolar 

expansions. These components are 

are computed in Appendix 5. 

(S) 
u 

r 
and 

(S) 
u<j> , and 
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The spherical components of displacement at A in the geographical 

frame are then obtained by a sequence of three rotations: (5) 
u 

r . , 

and are transformed successively into the cartesian components 

of displacement in the source system by a rotation of matrix ~l 

these are in turn transformed into the cartesian components in the 

geographical frame by the rotation of matrix T finally the 

components (G) (G) 
and 

(G) 
are obtained through a rotation u Us Ucp r 

of matrix ~2 Thus we have 

(G) u~s)l u r 

(G) 
Us M2 T ~l uiS)J (V-1-4) 

(G) (5) 
ucp Ucp 

If we define 

sin e cos cp cos S cos cp -sin cp 

~ ( S , CP ) sin S sin cp cos S sin cp cos cp 

cos S -sin S o 

(V-1-5) 

then we have 
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Ml M (siS) ,<piS») 

(V-1-6) 

M2 M*(siG) ,<piG») 

Clearly the second one of these matrices can equally well be expressed 

in terms of the take-off angle LA It is also evident that the 

radial component of displacement is left unchanged under the rotation 

of reference frame, so that (V-1-4) 

In the far-field approximation, 

yields 

(G) 
u 

r 

and is measured along the ray. Similarly 

(G) 
u 

r 
(S) = u 
r 

is the P-wave displacement, 

is the SV displacement 

and 
(G) u<p the SH displacement, and these components are measured 

perpendicular to the ray, in two orthogonal directions. All the 

operations described above can be performed in the frequency domain on 

the various spectral components, which must obviously contain both 

amplitude and phase information. 

Given the displacement on the focal sphere in the frequency 

domain, and given a layered Earth model for which the ray path can be 

calculated as a function of take-off angle, then the displacement 

spectrum at the emergence point B of the ray can be written as 

u(:B, w) ~AB(W) • u(A,w) (V- l-7) 

Here ~AB(W) is the transfer function of the ray. It contains the 

integrated effects of both geometrical spreading and attenuation in each 
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layer (e.g., Julian and Anderson, 1968). Note that for the same take-off 

~ 

vector OA the rays are different for P and S waves, and also that 

longitudinal and shear waves undergo different attenuation, so that the 

transfer function must be defined for each ray and each component of 

displacement . Conversely, at fixed emergence point B ,the record is 

composed of a number of body phases having each a different path in the 

Earth and a different take-off angle at the source. It must also be 

emphasized here that the transfer function is complex and that its phase 

contains both the phase shift as a function of distance for a travelling 

wave, and the phase shift due to attenuation (e.g., Futterman, 1962). 

Failure to take into account the phase shift due to attenuation in 

(V-1-7) would yield a non-causal signal at the receiver point B in 

the time domain. 

Through equation (V-1-7) ,one obtains the radial and/or 

transverse components of displacement along the ray at B The spectra 

for the actual components of ground motion can be derived by the 

reflection and refraction coefficients at the free surface. They are 

obtained as solutions to the Zoppritz equations (e.g., Richter, 1958), 

and are given in Appendix 6. Further multiplication of the spectra by 

the transfer function of a chosen instrument and Fourier transformation 

into the time domain yields a theoretical seismogram. Each body phase 

can be treated separately in the same fashion, provided that the proper 

take-off angle and ray transfer function are used in each case. 

Generalized ray theory may be applied in a similar fashion. In 

such a treatment, the source is handled via a "source-function," 

suitable for far-field representations (e.g., Burdick and Helmberger, 
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1973). Because a multipolar expansion does not represent in general a 

separable source, the source function is different for each generalized 

ray; and the radiation pattern effects cannot be represented by a 

simple multiplication factor. The simplest way to get the source 

function for a particular generalized ray is to compute the far-field 

approximation of the displacement (or of a potential) at some distance 

r 
o 

from the source in the direction of the ray, and then divide it by 

-ik r 
e a °lk r 

a 0 
The procedure is quite lengthy, however, and some 

attempts should be made to incorporate multipolar sources in the 

analytical theory of generalized rays. 

An interesting aspect of the source problem which may be discussed 

in the frame of ray theory arises for shallow events (and, in particular, 

for underground explosions). As shown on figure V-1-2, the wave train 

observed at teleseismic distances will then be quite complicated as it 

will contain waves reflected from the free surface. Let us consider 

more particularly the P-wave train. For such a shallow source, it 

contains the direct P-wave, the reflected wave pP ,and the converted 

wave sP The time delays between these different phases may be 

derived from elementary geometrical arguments. 

At high frequencies, for which the wave length is small compared 

to the depth h ,three separate arrivals will be observed; in fact, 

the difference in arrival times provides a convenient measure of the 

focal depth (e .g. , Richter, 1958). On the other hand, for long enough 

periods, the three waves will be essentially blended into one. Now, 

the incidence of pP upon the free surface is very nearly normal for 
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Free surface 

h 

F 

pP 
sP 

P 

Figure V-I-2. Generation of pP and sP rays by interaction with a 
free surface. F is the focus, located at depth h 
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teleseismic distances so that the reflection coefficient approaches -1 

If the radiation in the direction FP is comparable in amplitude and 

phase to the direct P radiation, then pP will nearly annihilate P 

at long periods. The long period spectral content of the first arrival 

train at teleseismic distances may then be controlled by sP 

especially since the long-period amplitude is grossly an order of 

magnitude larger for the S-wave than for the P-wave. 

We already know that the long-period radiation patterns for the 

various fields are quadrupole in nature. It is thus not difficult to 

see that the efficiency of the phenomenon will depend on the orientation 

of the quadrupole with respect to the free surface. In particular, the 

ray FQ to be considered on figure V-1-2 is an SV ray in the geographi­

cal frame and its radiation pattern is to be determined by taking into 

account the orientation of the rupture and that of the prestress through 

the methods described above. Thus for an underground nuclear explosion 

detonated in a highly sheared material, with a shear plane normal to 

the surface, the phenomenon can be very efficient (Archambeau, 1973, 

personal communication). On the other hand, the orientation of the 

focal mechanism for the San Fernando earthquake of 1971 is such that 

this phenomenon is unlikely to occur in that case (Hanks, 1973, personal 

communication). In fact, for this particular case, the ray FQ 

corresponds to a node of the SV radiation pattern. 

Finally, let us recall that one can easily obtain the cartesian and 

cylindrical components of displacement from the spherical components. 

This is done in Appendix 7, and will not be repeated here. 
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The cylindrical components of displacement will also be given in 

section V-4, in the case where the potentials are given by cylindrical 

multipolar expansions . 

The discussion presented in this section assumes essentially that 

ray theory is applicable; in other words, it breaks down in the vicinity 

of caustics and also at very long periods. Where ray theory is not 

valid, one must resort to other methods of solution of wave propagation 

problems (e.g . , asymptotic ray theory, mode theory). Discussion of 

such questions lies beyond the scope of the present treatment. 
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V-2 Transformation of multipolar expansions under rotation of the 

coordinate system 

As was pointed out in the introduction to this chapter, it is 

sometimes more convenient to manipulate the radiation fields described 

in Chapter IV in their multipolar form. This is true in particular when 

solving a wave propagation problem by use of the mode theoretic 

representation. For a propagating source (see Chapter IV) the natural 

spherical coordinate system to be used has a polar axis oriented along 

the direction of rupture propagation. But many wave propagation 

problems will be most easily solved in a spherical coordinate system 

with polar axis along the local vertical (e.g., Gilbert and Helmberger, 

1972), or in a cylindrical coordinate system when use is made of a flat 

Earth approximation (e.g., Harkrider, 1970). 

These circumstances raise the following question: knowing the 

multipolar representation of the radiation fields in a particular 

coordinate system, what is the equivalent representation in a new 

coordinate system, obtained by rotation of the first one? A solution 

to this problem was obtained by Y. Sate (1950). Unfortunately, Sato's 

solution is somewhat bulky and certainly cumbersome for use in numerical 

applications. In addition, the published solution suffers from numerous 

misprints and possibly some confusion in the definition of the Legendre 

associated functions (Hobson, 1931; Ferrers, 1877). Indeed, the product 

of two rotations inverse to each other will generally not yield the 

original multipolar expansion if Sate's results are used in their 

published form. 

In this section we shall obtain a very simple solution as a direct 
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appli.cation of group theory. We shall use representations of the 

rotation group described by Gel'fand et al.(1963), and used by Burridge 

(1969) and Phinney and Burridge (1973). The notation used for ultra-

spherical functions is that of Gel'fand, and Jacobi polynomials will be 

introduced in the notation of Erdelyi (1953). Edmonds (1957) uses a 

similar approach to describe the transformation of angular momentum 

under finite rotations. 

An arbitrary rotation of the coordinate system can be represented 

by three Euler angles 0 < ~ l < 2n o < e < n and 

These angles are described on figure V-2-~ We have 

used here Gel'fand's choice for the line of nodes (L) that is, the 

new x-axis after the vertical rotation of angle ~l Edmonds uses 

the new y-axis The expression of these Euler angles in terms of the 

usual "geological" fault orientation parameters--strike, dip, plunge--

is derived in Appendix 7, and will not be reproduced here. 

We call the original (source) system S ,and the rotated 

(geographical) system G Let r 
s IPs e be the usual 

s 

spherical coordinates in the system S ,then from the results of 

Chapter IV, the multipolar expansion of a scalar potential of the 

radiation field is 

00 

x (r ,w) 
s =~ 

n=O 

h (2) (kr ) 
n s 

n 
~ [A (w) cos m~ + B (w) sin m~ ] 
~ nm s nm s 
m=O 

• ~(cos e ) 
n s 

(V-2-l) 
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Figure V-2-l. Definition of Euler angles. The rotations of angles 
~l e ~2' are performed successively. (L) is the line 

of nodes, axis of the rotation e 
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Here A (w) and B (w) are themu1tipo1e coefficients. We can 
nm nm 

rewrite this expansion in the more convenient form 

co 

X(rs'w) = L h (2) (kr ) 
n s 

n 

L 
n=O m=-n 

where ymca , ~ ) is the normalized spherical function given by 
n · s s 

ym(a ,~ ) 
n s s 

(n - m,) ! 
(n + m)! 

~ 2n+1 1" im~s pm( a ) ---- e cos 
2 ~ n s 

-m p . (cos a ) n . s 

(V-2-2) 

(V-2-3) 

-m Here P (~) is the normalized associated Legendre function (e.g., 
n 

t -411 m-m 
Jahnke and Emde, 1945), satisfying P (~) = (-1) P (~) . Then the 

n n 

coefficients An(w) are obtained by identificqtion of (V-2-1) and 
m 

(V-2-2) ; we get 

t The definition of p-m( ) 
n ~ given by Jahnke and Emde (p. 114) can 

hardly be correct since it is in conflict, for m = 0 ,with the 

recursion relation given just below (cf . Appendix 5) . 
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J (n+.m)! 

" (n-m)! 

2 ~ 'IT A 2n+l no 

for m > 0 • 

for m o . 

for m < O. 

(V-2-4) 

Let US now denote by R both the rotation transforming the system S 

into the system G and the matrix representing this rotation in S 

That is, the components in G of a vector V known in S are given 

by 

In particular, if are the basis vectors of S and G 

th R <s the <th en . ik ~ ~ component of in the G system. By 

definition the functions yffi(8,¢) form the canonical basis in the 
n 

space of spherical functions of the nth degree. In this space the 

rotation R is represented by an operator TR In the canonical 

basis this operator is represented by an n x n matrix; we denote the 

(m, k) element of this matrix by ynk 
n 

, adopting the notation in use 

in the geophysical literature (Phinney and Burridge, 1973). 

The inner product of two spherical function~ f and h , of 
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is def ined by 

< f,h > =~2TI)(TI f(8, ¢) h(8,¢) sin 8 d8 d¢ (V- 2-S) 

where h(8, ¢) is the complex conjugate of h( 8 , ¢). With respect to the 

inner product the transformation TR is then unitary, that is 

< f,h > 

The analytical form of rmk 
is derived by Gel'fand (1963); 

n 

changing his notation slightly, we have 

-iin~ 
~ 2 mk 

e P (cos 8 ) e 
-ik~ 

1 (V-2-6) 
n n 

where the functl.· ons pmkn (11 ) 11 d l' d h i 1 f t' ~ are ca e genera l.ze sp er ca unc l.ons 

by Gel'fand, and are related very closely to ultraspherical functions 

(Erdelyi, 1953) ; they are computed in Appendix 8 and are given below . 

Burridge (1969) and Phinney and Burridge (1973) make use of such 

functions to define generalized spherical harmonics. Since TR is 

unitary , then 
n k 2 L IP: (cos 8 ) I = 1 (Gel'fand, 1963) . 

m=-n 

Since (V-2-6) is the expression of in the canonical basis 

yn(8,¢) 
n 

, we can now operate with T R on the expansion (V-2-2) to 

get 
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CV-2-7) 

n+O m=~n 

where 

n 

G:Cw) = L t: Cq,l, e , q, 2) A~(w) • (V-2-8) 

k=-n 

To complete the transformation we rewrite (V-2-8) as 

co 

L 
n=O 

t [Cnm(W) cos m<PG + Dnm(W) sin m<pG ] 

m=O 

The new multipole coefficients are then given by 

c (w) nm 

C (w) 
no 

D (w) 
nm 

; ~ 2n~l G~(w); D (w) no o 

(V-2-9) 

for m > O. 

for m = O. 

for m > O . 

(V-2-10) 
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These coefficients are those of the multipolar expansion in the new 

coordinate system. 

We still have to express the ultraspherical functions in closed 

form, in order to apply (V-Z-6) The derivation is made in 

Appendix 8, and the result is 

s -j . 
(].l-l) - (].l+l)J (V-Z-ll) 

where the following definitions hold 

S Im+kl s 1 
n - Z(a.+S) 

t 
1 

t = n + -(a.-S) + Z 

All these quantities are integers. The formula (V-Z-ll) is then 

particularly easy to use since it is merely a polynomial. It yields 

good results, especially for low n From the discussion in 

Chapter IV, we are rarely interested in computing more than a few 

multipoles, and (V-Z-ll) is more than adequate. For larger degrees 

and orders, Edmonds (1957) gives recursion relations which are easy to 

use. The reader should be cautioned, however, that Edmonds' choice of 

Euler angles is slightly different from ours • 
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The adaptation of Edmonds' results does not pose any major theoretica l 

problem . 

Because of the unitarity of the operator TR , the coefficients 

appearing in (V-Z-8) correspond to the inverse rotation of Euler angles 

TI - ~ Z e and TI - ~ 
1 

In other words, we can write 

(V-Z-lZ) 

That this property should be satisfied constitutes a useful check on 

numerical calculations. Another important check is that, for each n 

the power should be conserved under rotation, that is 

(V-Z-l3) 

This result expresses the intuitive fact that the relative excitation of 

the various multipoles is unchanged by rotation of the coordinate system. 

This is not the case for a translati on as we shall see in the next 

section. 
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Y~3 Tranatormation of multipolar expansions under translation of 

the coordinate system 

The necessity to be able to express a multipolar expansion in a 

new coordinate system obtained from the original one by pure translation 

arose in Chapter IV. This is particularly useful to study propagating 

ruptures, where the most convenient coordinate system is chosen 

according to the symmetry of the rupture zone, and moves along with the 

rupture. Then a fixed reference frame is needed to solve wave propaga­

tion problems. 

The theorem needed for this purpose is an addition theorem for 

spherical waves. Sato (1950) proved such a theorem in the case of a 

translation along the polar axis. His results are given in the form of 

recursion relations which can be easily coded on a high speed numerical 

machine. A more general theorem was derived by Friedman and Russek 

(1954) for an arbitrary translation . Ben-Menahem (1962) used their 

results to obtain an elegant operational form for the theorem. 

Unfortunately, there is an error in Friedman and Russek's results, which 

is pointed out in Appendix 9. In this appendix, we derive the theorem 

in a general form, and show how it reduces to Miller's (1964) results 

for the case of standing waves. Miller attacked the problem from the 

point of view of group theory; we adapted the method of Friedman and 

Russek, and used some classical results of quantum mechanics given by 

Edmonds (1957). 

Let S be the original system, and T the new system obtained by 

translation of vector d = (d,ed' ~d) 

write 

Then as in section V-2 we 
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(V-3-l) 

where the coefficients An(w) are given by (V-2-4) 
m 

Because the 

general addition theorem is quite complicated and would lead to rather 

cumbersome algebra, and because we have seen in section V-2 how to 

operate a rotation of the coordinate system, we need only consider here 

a translation along the polar axis of S In that case ¢d can be 

taken to be zero, and 8
d 

is 0 or TI 

with 

Then according to the results of Appendix 9, we have for 

h(2)(kr) ym(8 ,¢ ) 
n s n s s 

n+v 
L C

l 
(v,~ln,m) 

i=ln-v I 

• j (kd) h(2)(kr ) ~(8 ¢) 
v ~ T ~ T' s ' 

• ( ~ v mOl n m) ( ~v 0 0 I n 0) , 

r > d 
T 

(V-3-2) 

(V-3-3) 

where € = cos 8
d 

and we have used the fact that ¢T = ¢s The 

coefficients appearing on the right-hand side of (V-3-3) are 
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Clebsch-Gordan coefficients . . The coefficient.C
l 

vanishes unless 

t +n+v is even, m < t ,and It-nl < V < t+n Thus the inner sum is 

a finite one, and it is possible to interchange the order of summation 

and to reorder the terms so that 

00 

h(Z)(kr ) ~(e , ct> ) = L 
n s n s s t=o 

(V-3-4) 

We observe that the order m is left unchanged in such a translation. 

This makes the analysis much more tractable. The series (V-3-4) 

converges uniformly with respect to r
T 

provided that r > d 
T 

If 

we suppose that the series in (V-3-l) converges uniformly with respect 

to r in the same region, then by cOroPining these two equations we 
s 

can write 

00 n 

L L 
t =o m=-n 

rt(w) h(Z)(kr ) --ID(e ~) 
m t T Yt T' ~T 

and the new multipole coefficients are given by 

00 t+n 
L L An(w) C

l 
(v,tln,m) j (kd) • 

n=o v= [I-n I m '.I 

, (V-3-S) 

(V-3-6) 

In Chapter IV, we encountered the case where only one value of n 
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Cn=<2) . was present in the initial expansion (V-3-l) In that case, 

there is no convergence problem since we have only a finite sum in 

(V-3-6) For the case where r T < d ,the same analysis can be easily 

duplicated by interchanging the roles of 1'T and d from the beginning 

(see Appendix 9). 

It is clear that a translation does not preserve the power con­

tained in a multipole of a given degree. This is intuitively 

understandable since a translation does not preserve spherical symmetry. 

In fact, if a pure double-couple source is expanded in the coordinate 

system satisfying its symmetry, the expansion will be a pure quadrupole. 

But if it is a shallow source and we want to expand it in a geocentric 

system, it is obvious that a large number of very high order multipoles 

will be necessary to represent it: When seen from the center of the 

Earth this source is very localized, and seems like a singularity at 

the surface. 
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V-4 Use of displacement potentials 

The introduction of the dilatation 8 = X 
4 

, and of the rotation 

vector potential n = (Xl'X2 ,X
3

) was made essentially to reduce the 

elastodynamic problem to the solution of wave equations. We saw that 

these potentials may be given in terms of multipolar expansions such as 

n 

Xa,(r,w) L 
n=O ~ h(2) (k r) 

n a. 
m= 

[

(a.) 
Anm cos m<jJ + sin m<jJ ] 

m 
p (cos 8). 

n 

(V-4-l) 

However, for wave propagating problems in plane stratified media (e.g., 

Ewing, Jardetsky and Press, 1957), one uses, in general, a cylindrical 

coordinate system with polar axis normal to the stratification. Let 

p <jJ, z be the cylindrical coordinates, then, by using the results 

of Sato (1950), Archambeau (1964) and Harkrider and Archambeau (1973) 

show that the cylindrical multipolar expansion corresponding to (V-4-l) 

is 

Xa, (p,<jJ, z;w) 
(a.) , ] 

cos m<jJ + Bnm sin m<p 

ct> . f J (kp) P ill (\.I /k ) 
ill n a. a. 

o 

-iv I z I a. 
_e ____ k dk (V-4-2) 

where k is a wave number and where 
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(2 2r
/2 

k -k if k < k 
a a 

\I (V-4-3) a 

.~2 2r
/2 

-1 k -k if k > k a a 

Here -m 
P denotes Hobson's definition of the associated Legendre 

n 

functions and we have 

Then the multipole coefficients appearing in (V-4-2) are given by 

A (a) , A(a) 
nm 

(_1)2n-nn (fzr)m+n 
nm .n (V-4-4) 1 

k 
(a) , a 

Sea) B 
nm nm 

The displacement components in cylindrical coordinates are then derived 

by Archambeau (1964) and found to be 
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aXl 
<p -- + sin 

az 

a 
sin <p - + 

ap 

a 
<p - + sin 

ap 

, 

(V-4-S) 

On the other hand, wave propagation problems in layered media are best 

handled via the following implicitly defined displacement potentials 

(e.g., Harkrider, 1964) 

a2 - -aljil 1Ji 2 1 alJi3 -up =-+ +---
ap ap az p d<P 

1 a~l 1 a
2 

1Ji 2 dlJi3 (V-4-6) u<p = ---+- - -- , 
p a<p p dZ d<P ap 

a~l 2 -
a~l 2 - d 1Ji 2 2 

~2 ~2 u =-+ 2 + k =-+ k . z az dZ s az 
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Here (V-4-2) was used in the last equation. By simple identification 

of (V-4-S) and (V-4-6) one sees immediately that 

1/11 
1 
Z- X4 
k 

P (V-4-7) 

1/13 
2 

=-X 
k2 3 

s 

These potentials are called the dilatational and SH potentials 

respectively, and their multipolar expansions may be found trivially 

from (V-4-7). The SV potential 1/12 may then be found by comparing the 

last equation in (V-4-6) and the last equation in (V-4-S); this yields 

2 -
k 1/12 (V-4-8) 

Thus the SV displacement potential is, in fact--up to a multiplicative 

factor--the z component of the curl of the rotation vector potential 

n This last relation will yield the multipolar expansion for 1/1 2 

The algebra may be found in Harkrider and Archambeau (1973), in the 

context of the generation of Rayleigh waves by a buried multipolar source 

in a layered medium. 

It is clearly possible to develop a large number of possible 

applications for multipolar sources, but each application is best 

handled in the context of a specific problem and we shall limit our 

discussion to the brief description given above. 
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Conclusion 

Each one of the four sections of this chapter has been concerned 

with a specific application of multipolar sources. Although the 

discussion was rather confined to specific operations, suitable 

combinations of these various operations provide us with a very flexible 

tool which should find numerous applications in seismology. 

We want to emphasize again the generality of the types of sources 

considered here. Since no mention is made in this chapter of the 

specific physical nature of the source mechanism, it is clear that the 

methods presented above may be used to handle a broad range of different 

source models. These include separable and non-separable sources. 

explosions, earthquakes, any of the models discussed in Chapter II, as 

well as numerically modeled sources. The only constraint is that one 

should be able to find a multipolar expansion for the radiation field. 

This constraint may be a very stringent one for analytical models, but 

is not very severe for numerical models. Numerical models using finite 

difference or finite element techniques are mostly useful to perform the 

complex near-source calculations. The dynamic fields may then be 

computed at an array of poiqts, and then expanded in multipoles by 

numerical integration and by use of the orthogonality properties of the 

various multipoles. Once the multipolar expansion is known, the methods 

described in this chapter can be used to study the propagation of the 

dynamic fields away from the source region . 
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Chapter VI 

THE ELLIPSOIDAL RUPTURE 

Introduction 

The major properties of elastodynamic sources were described in 

Chapter IV on the basis of a rather simple geometry: that of a spherical 

rupture. We argued then that this model should be excellent for the 

case of underground explosions, and should exhibit most of the desired 

features to model adequately spontaneous phenomena such as earthquakes. 

Nevertheless, there is no question that a spherical geometry does not 

even approximate the geometry of the failure zone for shallow earth­

quakes; and, even for deep earthquakes, the idea of a spherical failure 

zone with a radius of several kilometers is somewhat disquieting. For 

that reason we shall attempt to investigate in this chapter the case of 

an ellipsoidal rupture zone. This does not invalidate the arguments 

and conclusions presented in Chapter IV. Instead, the results obtained 

for the spherical case will play a fundamental role insofar as they 

give us some insight into the problem, and therefore give us an idea of 

what results we should expect from the ellipsoidal model. This insight 

should in turn be of great help when we seek a convenient mathematical 

formulation of the results. 

Archambeau (1964) made some attempts to solve the problem of an 

ellipsoidal elastodynamic source. However, his attack leads to rather 

inconvenient algebraic expressions, which lack symmetry. The main 

difficulty encountered is not theoretical since the theory presented in 

Chapter II does not require any assumptions about the geometry of the 
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problem. Rather, one is faced with the difficulty of having to 

manipulate extremely large algebraic equations. Another difficulty 

arises from the fact that the problem is to be solved by use of 

ellipsoidal coordinates, and that harmonic functions must therefore be 

expanded in terms of Lame products. The literature is somewhat 

confusing on the subject of Lame's equation. As pointed out by Arscott 

(1964), there are five different forms used for the equation itself, 

and there is no standard notation. We shall use the Jacobian form of 

the equation (e.g., Erdelyi, 1953). Most of the standard results 

concerning Lame's equation and its solutions, as well as the Jacobi 

elliptic functions can be found in Erdelyi (1953), Whittaker and Watson 

(4th Edition, 1969), Arscott (1964). Additional references are Hobson 

(1931) and Jahnke and Emde (1945). The reader will find in the above 

references extensive bibliographies about the original research papers 

on the subject . 

The problem of the static ellipsoidal inclusion in a stressed 

matrix was investigated by Eshelby (1957), who gives solutions valid 

innnediately outside the ellipsoid, and also asymptotic solutions at 

large distances. Sadowsky and Sternberg (1949) determined the stress 

concentration around an arbitrary ellipsoidal cavity in the case where 

the principal stress directions at infinity coincide with the principal 

axes of the ellipsoid. Robinson (1951) extended their results to 

include the case of an elastic inhomogeneity under thermal stresses. 

These cases are not appropriate for our purposes, however, since one 

expects the material to fail under shear during an earthquake, so that 

the principal axes of the ellipsoid do not coincide with the principal 
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stress directions. Turnbull (1973) adapted Archambeau's (1964) method 

of solution to the case of an ellipsoidal cavity under shear. However, 

he does not use uniformized ellipsoidal coordinates, so that his 

solution holds only for problems with a large degree of symmetry. We 

shall give the solution for the case of an arbitrary, triaxial 

ellipsoidal elastic inclusion embedded in an infinite space, under a 

stress homogeneous at infinity, but with arbitrary relative orientation 

of the principal stress directions and the principal axes of the 

inclusion. 

This represents a formidable algebraic problem and we shall not 

give all the details of the solution. However, a large number of 

useful relations between Jacobi elliptic functions will be given in 

Appendices. We shall also give a flow chart of the solution algorithm 

which will hopefully permit the interested reader to reconstruct the 

line of reasoning. The method is essentially the same as the one 

adopted by Sadowsky and Sternberg (1949) and the reader may find it 

helpful to read their publication beforehand, since they treat a simpler 

problem. 

The dynamic problem is even more complicated. First of all, since 

we are in the presence of a volume source (see Chapter II) we should 

know the initial value fields at every point around the failure zone 

and we should also be able to perform a volume integration over the 

relaxation volume, just as in Chapter IV. In addition, in order to find 

a multipolar expansion of the source, one needs to expand the Green's 

fUllc tion to the Helmholtz equation in wave functions. Very little is 

kno~l about ellipsoidal wave functions (Arscott, 1964), so that the 
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most promising approach is to try and express both the static and 

dynamic solution in a spherical coordinate system. We have made little 

progress in that direction at this point, so that we shall confine 

ourselves to a description of possible methods of solution and to a 

discussion of the problems which are likely to arise. 

In an effort to strike a reasonable middle ground between terseness 

and completeness, we shall confine the discussion to the minimum 

necessary for the solution of the problem at hand, but at the same time 

shall attempt to define each new quantity or symbol as it appears, 

without relying too heavily on the literature . 
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VI-l Elastic fields associated with an elastic triaxial ellipsoidal 

inclusion 

We consider in this section an arbitrary triaxial ellipsoidal 

inclusion, filled with elastic material, and embedded in an infinite 

homogeneous elastic matrix. The problem is to find the (static) elastic 

fields everywhere when an homogeneous stress field is applied at infinity, 

with arbitrary orientation relative to the inclusion. 

Such a boundary value problem is much easier to solve if the 

boundary of the inclusion is a coordinate surface. Therefore, we shall 

use ellipsoidal coordinates (e.g., Sadowsky and Sternberg, 1949). 

i) Ellipsoidal coordinates 

Consider a cartesian system with axes along the principal axes of 

the ellipsoidal inclusion. In that frame the surface of the inclusion 

can be represented by the equation 

222 
~+L+~= 1 

2 b2 2 a c 
(VI-I-I) 

where a b c are the principal axes of the ellipsoid and we 

can assume, without loss of generality, 

a>b>c>O (VI-1-2) 

Then the equation 
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222 
~ + ~ + _z_ = 1 (VI-1-3) 
a

2+e b
2+e c

2+e 

represents a triply orthogonal family of confocal quadrics parameterized 

by 8 Thus the equation 8 8
0 

represents one of the following 

quadrics 

if 
2 

< 8 Ellipsoid, -c 

if _b 2 < 8 < 2 
Hyperboloid of sheet, -c one 

if 2 < 8 < _b 2 Hyperboloid of sheets, -a two 

if 8 < 2 Imaginary quadric • -a 

The values 222 8 = -a , .,.b , -c correspond to degenerate quadrics (e.g. , 

cones, foca l e llipse). If we solve (VI-1-3) for 8 , we obtain a 

cubic equation, and for each point (x,y,z) not belonging to any of the 

degenerate quadrics, this equation always has three roots, one in each 

of the intervals described above (e.g., Hobson, 1931). Thus, through 

each point pass three mutually orthogonal quadrics, corresponding to 

The three roots in e may be used as curvilinear 

coordinates. However, these roots can only be expressed in terms of 

2 2 2 x , y , z , so that the eight apices of a cube centered at the origin 

and with edges parallel to the axes have the same curvilinear coordinates. 

In order to generate uniformized coo~dinates (e.g., Erdelyi, 1953) we 

define the following moduli 
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(VI-1-4) 

o < k, k' < 1 • 

The quantities k and k' will be the modulus and complementary 

modulus of Jacobi elliptic functions and will be referred to in those 

terms hereafter. 

Let us introduce the following shorthand notation for the Jacobi 

elliptic function of modulus k and argument s 

(VI-l-5) 

The properties of Jacobi elliptic functions are extensively discussed by 

Whittaker and Watson (1927) ,the most important one being their 

periodicity. If we define 

-1/2 -1/2 
(1_t2) (l_k2t 2) dt (VI-1-6) 

and K' in a similar fashion, then 

s has periods 4K 2iK' 4K+4iK' • s 
c r. has periods 4K 4iK' 2K+2iK' • 

, 

dz.: has periods 2K 4iK' 4K+4iK' • 
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We can n~ define the three coordinates a, e, y implicitly by (e.g . , 

Erdelyi, 1953). 

8
1 

2 2 
= -(ac ) (bs ) , a a 

82 
2 2 

= -(ace) (bs S) , 

83 
2 2 

= -(acy) (bSy) 

These relations are invertible, and one can in fact establish the 

following correspondence (e.g . , Sadowsky and Sternberg, 1949) 

x = Ian s s ss a y 

Ian y = -k'" c cSc , a y 

z = im 
kk' da dsdy 

2 . 2 1/2 
where m = (a -b ) 

(VI-l-l) 

These equations establish a one-to-one mapping between the triplets 

(x,y ,z) and (a ,S,y) a, S,y are the uniformized ellipsoidal curvi-

linear coordinates that we shall use throughout this chapter. Because 

of the periodicity of the Jacobi elliptic functions we can restrict 

their range to 

iK' < a < K+iK' , 

K < e K+2iK', 

o < y < 4K 
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Furthermore the first octant corresponds to the range 

iK' < a < K+iK' , 

K < S < K+iK' , 

o < y < K • 

The quadrics at constant a are confocal ellipsoids. We shall define 

the boundary of the inclusion by a = a o Note that the value 

a = K+iK' represents the focal ellipse. Similarly the limiting values 

for Sand y represent degenerate quadrics. By analogy with spherical 

coordinates a represents the radial coordinate, S the latitudinal 

one, and y the longitudinal one. 

If we define the square of the differential arc length by 

(VI-1-8) 

then the metric coefficients are given by 

h 1 
hS 

i h -1 
= = 

a kin qs'ly kin qa'ly y kin qaqS 

(VI-1-9) 

where 

(2 2 yl2 (s~-s~r/2 (2 2 y/2 
qa = s -s qs = qy sa-sS • S y 

(VI-l-lO) 
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The angle between the unit vectors 

h 
ox __ 1 oa 

cos(a,x) = a oa h ox . 
a 

a and 

Similarly the gradient operator is given by 

A 

X is given by 

(VI-1-11) 

(VI-1-12) 

We shall also make use of similar formulae valid for orthogonal curvi-

linear coordinates. Such formulae are given, for example , by Morse and 

Feshbach (1953). 

ii) Potential solutions to the equation of equilibrium 

We are seeking solutions of the el astic equations of equilibrium 

o (VI-1-13) 

such that lul= O(ra ) at large distances, with a < -2 (e.g . , 

Archambeau, 1964). Here a represents the Pqisson ratio of the elastic 

medium . We shall use the general solution of Boussinesq 

2].1 u = \7 (<P+r-w) - 4(1-a)w (VI-1-14a) 

where the scal ar potential ¢ , and the cartesian components 
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w ,wand w of the vector potential CA) are all harmonic functions. x y z 

Following Sadowsky and Sternberg, we seek the solution as a super-

position of elementary solutions of the four types 

<P w w w 
x y z 

1) w 0 0 0 

2) 0 X 0 0 

3) 0 0 y 0 

4) 0 0 0 z 

(VI-1-14b) 

If we write Laplace's equation in the form 

, 

and look for normal solutions of the form 

U(a.,S,y) A(a.) B(S) C(y) , (VI-1-15) 

then, by the usual method of separation of variables, we find that A, 

B, and C all satisfy Lame's equation. In Jacobian form, this equation 

reads 

d
2
A(z) [ 2 2 ] 

dz2 - - n(n+l) k Sz - h A(z) o , (VI-1-16) 
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where nand h are separation constants. Discussion of the properties 

and periodicities of the solutions of this equation can be found, for 

example, in Arscott (1964). Without entering into the details, let us 

note that if n is a non-negative integer, there are 2n+1 values of 

.h for which (VI-I-16) admits solutions with periods 4K and 4iK' 

We shall also call them Lame functions of the first kind, and of degree 

n Let A(Z) be such a function. If B(S) and C(y) both are 

Lame functions of the first kind, their product will be called an 

ellipsoidal surface harmonic. 

If A(a) is also a Lame function of the first kind, then the Lame 

product (VI-I-15) is regular inside any ellipsoid a = a 
o 

, and is 

called an ellipsoidal internal harmonic . Lame products which are 

regular outside a = a 
o 

are called ellipsoidal externaI harmonics. In 

such a case A(a) must be a Lame function of the second kind, defined 

by the integral relation 

A (z) 
n 

(VI-I-I7) 

so that it vanishes at infinity. 

In the future we shall denote the L~ functions of the first kind 

by lower case symbols, and the Lame functions of the second kind by 

capital letters. Note that if we choose the normalization factor WA 

to be 

, (VI-I-IS) 
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then we have 

A ea ) 
n 0 

A ea ) 
n 0 

eVI-1-l9) 

Furthermore, it is easy to show that, in that case 

A'ea) A ea ) - A ea ) A'(a ) non 0 non 0 
(VI-1-20) 

so that, for this particular normalization, WI.. is the wronskian of 

A and A ,computed at ao n n We shall always assume this to be the 

case in the future. 

The ellipsoidal harmonics possess completeness and orthogonality 

properties similar to those of the spherical harmonics. In particular, 

functions defined on the surface of an ellipsoid may be expanded in 

ellipsoidal surface harmonics; functions defined and regular inside the 

ellipsoid may be expanded in ellipsoidal internal harmonics; and 

functions defined and regular outside may be expanded in ellipsoidal 

external harmonics. 

iii) Displacements and stresses in ellipsoidal coordinates 

The elastic fields inside the ellipsoidal inclusion will be sought 

in the form of a superposition of elementary solutions of the type 

(VI-1-14) ,and the harmonic potentials will then be expanded in 

ellipsoidal internal harmonics. Similarly, following Sadowsky and 

Sternberg (1949) we shall obtain the fields outside the inclusion by 
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extending the fields at infinity everywhere, and then superposing 

elementary solutions (VI-1-14) where external harmonics are then used. 

The boundary conditions to be met are as follows: The external 

fields should match the applied fields at infinity, and there should be 

continuity of the displacements and the tractions on the surface of the 

inclusion a = a 
o This assumes that the inclusion does not generate 

any intrinsic fields and is consistent with the discussion of Chapter II. 

Let 
(0) , 
xx 

(0) 
, .. . , lZX be the cartesian components of the homo-

geneous stress applied at infinity. Then the ellipsoidal components of 

the stress field-which we shall call the "prestress"_-are given by 

(Love, 1927) 

2n i T(o) + 2i m ,(0) 
a a zx aaxy 

, 

+ (m n +n m ) 'z(yO) + (nNiQ+iNnQ) 'z(X
O
) as a" S "'IJ "' IJ 

, (VI-l-21) 

and the other components are obtained by circular permutation of the 

indices a S Y. The direction cosines la' is , . .. etc., are given by 



.t = 
0. 

m 
0. 

n = 
0. 

-is c dad 
a 0. f.l Y 
k'q q S X 

.t = 
S 

n = 
S 
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.f. = y 

m = y 

n = y 

-So.ssclx 
qo.qs 

(VI-1-22) 

Similarly, by simple integration, the displacement associated with the 

prestress is, up to a rigid body displacement 

(0) 
u = x 

and similar expressions hold for 

components are then 

(0) 
u 

y 
and 

u(o) =.t u(o) + m u(o) + UN uz(O) 
0. a x o.y '" 

(0) 
u 

z 

(VI-1-23) 

The ellipsoidal 

(VI-1-24) 
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Equations (VI-1-21) and (VI-1-24) . allows us to express the fields 

that would be present in the absence of any inclusion, in terms of 

ellipsoidal coordinates. 

We also need to b~ able to compute the various fields associated 

with the four types of elementary solutions (VI-1-14b) 

a) Solutions of the first kind 

Then, with reference to (VI-1-14) we have <p W , W = 0 

and 

(VI-1-25) 

u~ and u 
y 

are obtained by cyclic permutation of t~e indices. The 

stress is obtained by use of the general expressions valid in arbitrary 

curvilinear coordinates (Love, 1927). Sadowsky and Sternberg (1949) 

give the following expressions 

(VI-1-26) 

and the other components are obtained by cyclic permutations of a, ~, 

y 
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b) Solution of the second, third and fourth kind 

In that case cp = 0 , and W = xi , for example, then we have 

2]1 UN h [x ax _ (3-4v) ax x] 
u u au au (VI-l-27) 

The other components are obtained by replacing u by 8 or y the 

components for solutions of the third and fourth kind are obtained in 

a similar fashion, by replacing the couple (x,X) by (y,Y) or (z,Z) 

respectively (note that x, y, z, are given by (VI-l-7». The stress 

components have been c~puted by Sadowsky and Sternberg (1949) and are 

[ 

ah 2 ax ] ax 
hu ----'! x - 2hu - -

au au au 

[ 

2 ax ax 2 ax ax 2 ax ax ] 
+ 2v h - - - h - - - ~ - -

u au au B aB aB . ay ay 

_ (l-2v) h h [ax ax + ax ax] • 
B y ay aB as ay 

(VI-1-28) 
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Again, the other stress components, and those for solutions of the third 

and fourth kind are obtained through suitable cyclic permutations of 

(a,S,y) (x,y,z) and (X,Y,Z) 

iv) Formulation of the problem 

We are now in a position to replace the potentials W, X, Y, Z by 

suitable Lame products. First of all, by careful comparison of the 

prestress field (VI-1-21) and the solutions (VI-1-26) and (VI-1-28) 

as well as the associated displacements, it can be shown that only Lame 

functions of degree 0, 1, 2 are to be used. This is consistent with 

the results obtained in the spherical case (see section IV-I). These 

Lame functions are,in the notation of Erdelyi (1953) 

1 

c d = 0 z z z 

.e. 
z 

d 
z 

s d z z 

s c z z 

s 
z 

= m 
z 

2 
EC2 = n 

z 

(VI-1-29) 

where we define our own simplifying notation. Here PI and P2 are 

constants given by 

1 1 (VI-I-3D) 
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Functions of the type Ecm are even functions of 
n 

z - K, and functions 

of the type Es
m 

are odd functions of n z - K, where K is given by 

(VI-1-6) Further properties of these functions can be found in 

Arscott (1964) or Erdelyi (1953) We shall use below the notation 

defined in (VI-1-29) which will considerably simplify the algebra. 

Note that the symbols .e. , m , n z z z have been redefined in (VI-1-29) . 

There is little danger of confusion with the direction cosines (VI-1-22) 

since these direction cosines will not be used again. 

The solutions (VI-1-26) and (VI-1-28) should also exhibit the 

same periodicities and symmetries as the prestress (VI-1-2l) (e.g., 

Sadowsky and Sternberg, 1949). A systematic, but lengthy survey of all 

s ymme tries of the Lame functions reveals that because of the arbitrary 

relative orientation of the prestress and the inclusion, the only help-

ful symmetry is the following 

(x,y,z) 

y -+ y + 2K 

and then 

T -+ T 
aa aa 

______________ -.~ (-x,-y,-z) 

S -+ 2K + 2iK' - S 

T -+ T 
ay ay 

T -+ T 
yy yy 
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Using this symmetry, we find that the only Lame products which are 

acceptable for the various potentials are the following: 

a) For W , Cm
2 

is a convenient homogeneity factor) 

Internal harmonics External harmonics Solution number 
2 2 

m m a 1 

2 2 
m i i fl m L i Si 11 

a y a y 

2 m~ mSm 12 m m mSm a Y a Y 

2 2 13 m n nSn m N nSn a y a y 

2 2 14 m 0 0s o m 0 0so a y a y 

2 
m Pa PSPy 

2p 
m yP SPy 

15 

b) For X, Y, Z , (m is a convenient homogeneity factor) 

Internal harmonics External harmonics Solution number 

X Y Z 

ffida dSdy mDa ds \ 2 5 8 

msa s Ssy mSaSSSy 3 6 9 

mca c S
Cy mCa c Scy 4 7 10 

We are therefore in the presence of 30 elementary solutions (15 external 

solutions and 15 internal solutions). If and 
(N) 

u , N = 1, ... ,15 

indicate the 15 external stress and displacement solutions, and 
(N) 

cr 
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and yeN) , N = 1, •.. ,15 , indicate the 15 internal solutions, then 

the boundary conditions--continuity of tractions and disp1acements--

on the boundary a = a may be written as 
. 0 

(0) + 
laS 

(0) 
lay + 

15 

L: ~ l;~) = 
N=l 

15 

L ~ l~~) = 
N=l 

15 

L ~ l~~) = 

N=l 

15 

L ~ u~N) = 
N=l 

15 

L: ~ u~N) = 
N=l 

15 

L 
N=l 

15 
"B cr(N) 
£.oJ N as 
N=l 

15 

" B cr(N) 
£.oJ N ay 
N=l 

15 

" B v(N) 
£.oJ N a 
N=l 

15 

L 
N=l 

15 
"B (N) 
£.oJ N Vy 
N=l 

These equations must be identically satisfied in 

, 

• 

(Vr-1-31) 

Sand y for a = a . o 
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v) Reduction of the system 

The system (VI-1-3l) possesses 30 unknowns. This number is 

immediately reduced to 29 if one notices that the internal elementary 

solution associated with the coefficient Bl is identically zero. Thus 

B = 0 
1 

and y for 

The system (VI-1-3l) must be satisfied identically in 8 

Ct = Ct o This means that each independent function of 

and y appearing on both sides of each boundary condition equation 

8 

gives rise to a separate equation, obtained by equating its coefficient 

on the left-hand side with its coefficient on the right-hand side. 

The developed forms of these equations are given in Appendix 11. 

The necessary identities to reduce these equations and the list of 

independent functional dependences on 8 and y emerging in (VI-1-3l) 

are given in Appendix 12. One obtains a redundant system of 39 equations 

for 29 unknowns, which is extremely lengthy to write, but does not 

present any fundamental difficulty. This system is compatible and 

separates very conveniently into four subsystems, as described in 

Appendix 12. Some of the elementary solutions proposed above are found 

to be linearly dependent on the others. Thus coefficients Bll B12 

B
15 

are found to vanish . We get three systems of five 

equations and five unknowns, corresponding each to a pure shear loading 

at infinity. There is a separate system for each of the components 

(0) 
T , 

zx 
(0) 

T 
xy 

(0) 
T yz 

In addition, we obtain a system of nine 

equations and nine unknowns, where the only prestress components 

appearing are the diagonal components. These systems are given below 

in matrix form. The constants cr and ~ are the Poisson ratio and the 
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rigidity of the matrix, respectively, cr' and ~' are those of the 

inclusion. All the functions of ex appearing in these equations, 

including the wronskians such as w s , are to be evaluated at a = a o 

For simplicity, we have defined the function IT = sed in these 
a ex ex ex 

systems. In the case where the inclusion should be filled with a 

liquid, the systems are greatly simplified. For a pure shear prestress, 

a liquid inclusion behaves to first. order as a cavity, since we did not 

take into account the perturbation of the boundary. For the diagonal 

stress components, the fluid pressure can be taken into account very 

easily by introducing it on the right-hand side of (VI-1-35) below. 

In the case where the inclusion is in fact a cavity, no internal 

solution should be present and the coefficients Bi , i=1, ... ,15 all 

vanish. However, when we have a liquid inclusion, the system is 

reduced by application of the following rules: 

a) Expressions of the form (1-a')/~' are unbounded and the 

corresponding coefficient must accordingly be set to zero. 

b) Expressions of the form (1-2cr')/~' must simply be replaced by 

their limiting value as ~'+ 0 and cr' + 1/2 , which is l/A' 

where A' is the bulk modulus of the liquid. 

These rules are easily applied below. 
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TQe system to be solved for the case of diagonal stress component 

is much more complicated. We write it in matrix form as 

Me d (VI-1-35) . 

Here e represents the vector of 9 unknown coefficients 

The vector d appearing on the right-hand side has the following 

components 

_LIT ,(0) 
2 a xx 

d = - L II ,(0) 
2 2 a yy 

o o 

and 
[ 

(0) 1 (0)] + t:. 
'yy - k2 'zz 2(1+0) 

The matrix M is given here by rows: 

First row 

o 

d = L IT ,(0) 
3 2 a zz 
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~6 is obtained from M
15 

by changing PI into P
2 

(l-cr') II a 

Second row 

M
26 

is obtained from M
25 

cr'II a. 

Third row 

o 

~9 

and ~ into n 
a a. 
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d(/-a [ ( 2 2 1) 2 ( 2 2)] M = -- P (P -1) 3k 5 - - + P d c-5 
35 5 c 1 1 a PI 1 a a a a a 

M36 can be obtained from M35 

= -a'II a 

Fourth row 

M =W 
41a 

W 

M45 
= p2 -.! + 

1 ~ a 

o 

Fifth row 

M51 = 0 

M55 
W~ 

PI y- + 
a 

o 

M42 = 

. 2 
2P

1
5 II a a 

M52 = 0 

2P 1 IIa 

0 M43 = W M44 = Wd c 

W 2 
M46 = p2 ~ + 2P 25 II 2 n a a a 

M53 W M54 k
2
W c d 

W 

M56 = P ~ + 
2 n 2P 2IIa 

a 

o 



Sixth row 

M61 = 0 

WR, 
M65 =-+ R, 

CL 

Seventh row 

~1 = 0 

Eighth row 

M62 = W 
s 

c d 
2P ~ 

1 s M66 
a 

(I-a) W 
s 

o 
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M63 = W M64 c 

W c d 
=....!!+ 2P ~ 

n 2 s 
CL a 

(I-a) W 

l!.:L =- ]1' (1-2a') 

(I-a) W 
c 

k
4

W 
d 

c 

6 -' -k ~(1-2a') 
]1' 

2 
-k (I-a) Wd 

_ ]1-]1' 
Maa - 7 (1-2a') 

4~ k ,(1-2a') 
]1 



Ninth raw 

o 

M = -P 1 95 1 ex 

o 
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-P n 2 ex 

L (1-20') 
11 ' 

1-20 2 
k (1-20) 

_k2} (1-20') 

In the case where we have a cavity, then the system reduces to the 

upper left 6 x 6 subsystem, and the coefficients B3 ,B7 ' BS 

vanish. 

In order to be able to compute all the terms in the above systems, 

we still need expressions for the various wronskians appearing in the 

matrix elements. These wronskians are given in Appendix 13. The 

results of Appendix 13, together with the expression sn ex = aim 
o 

(cf. Sadowsky and Sternberg, 1949), are sufficient to compute all of the 

terms in these systems. Clearly, the analytical solution of the systems 

given above is not convenient, and one must resort to a numerical 

solution for the coefficients Ai and Bi However, a few aspects 

of the problem can be discussed at this point. 

vi) Discussion 

The systems (VI-1-32) through (VI-1-35) permit us to compute 

the elastic fields at every point in the medium. The first remark we 

wish to make about these systems concerns the fields inside the inclusion. 
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Since the coefficients B1 ' B4 ' B12 ' B13 ' B14 ' and B15 
do not 

appear in the solution, then the only Lame products contributing to the 

fields inside the ellipsoid are those appearing in the expression for 

the prestress (VI-1-21) Recalling that we assumed the prestress to 

be uniform, we see that the stress is uniform inside the inclusion. 

This is in agreement with the results of Eshe1by (1957). The fact that 

we did not assume this to hold from the beginning, but instead proved 

it independently as a result of our ana1ysis,constitutes a favorable 

check of our solution. Furthermore, if the material inside the inclusion 

is chosen to be identical to the material constituting the matrix, .it 

can easily be shown that 1) all the coefficients Ai ' i=1, ... ,15 

vanish, and 2) the coefficients Bi that do not vanish are identical to 

the coefficients of the Lame products appearing in (VI-1-21) In 

other words, there is no perturbation to the prestress field outside the 

inclusion, and the field inside the inclusion is found to be identical 

to the prestress, as should indeed be expected. 

We can see from (VI-1-32) through (VI-1-35) that the solution 

for the coefficients Ai and Bi depend on the prestress, the elastic 

properties of the matrix and the inclusion, and the moduli k and k' 

These moduli may in turn be written in terms of the aspect ratios 

P1 = pia and P = clb 2 
of the ellipsoid. By comparison with equations 

(VI-1-25) through (VI-1-28) and with the definition of the Lam€ 

products used here, we note that 1) the stress concentrations in the 

vicinity of the inclusion do not depend on its absolute size, but only 

on its shape, but 2) the displacement field depends on the parameter 

m ,which is a measure of the size of the inclusion. As pointed out 
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by Sadowsky and Sternberg (1949), the first of these conclusions is 

characteristic of all problems of this type. The second conclusion is 

intuitively correct. 

In the case of a liquid inclusion, we pointed out earlier that 

expressions of the form (l-cr')/~' are unbounded, so that the corres-

ponding coefficient must be set to zero in the above systems. Applying 

this rule to systems (VI-1-32) through (VI-1-34) ,we see that no 

fields are generated inside the inclusion (in particular, no pressure 

is generated in the fluid) when the prestress is pure shear at infinity. 

Thus a liquid inclusion behaves as a cavity under pure shear. This 

result stems from the fact that we ignored perturbations to the boundary 

of the inclusion, and applied the boundary conditions (VI-1-3l) on the 

boundary a = a of the unstressed inclusion. This is correct to first 
o 

order and is in agreement with the results of Eshelby (1957). This 

author shows how to calculate the average elastic properties of a 

material containing a dilute distribution of ellipsoidal inclusions. 

Using Eshelby's results, Anderson, Minster and Cole (1973) showed that 

for liquid inclusions, the shear properties of the composite material 

do not depend, to first order, on the bulk modulus of the liquid. 

Examination of (VI-1-35), on the other hand, shows that the 

quantity (1-2a')/~' appears in this system. This quantity must be 

replaced by l/A' in the case of a liquid inclusion, where A' is the 

bulk modulus of the liquid. Therefore, the system (VI-1-35) does not 

simplify appreciably in that case, and the solution depends on A' 

This is consistent with the results of Anderson, Minster and Cole (1973). 

Robinson (1951) investigated the deformation of the inclusion when the 
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pres.tress tensor is diagonal, and found that the ellipsoid is deformed 

into a new ellipsoid in that case. This holds also when thermoelastic 

effects are taken into account. 

One last special case is easily discussed: in the case of an 

ellipsoidal cavity, the system (VI-1-35) reduces to its upper left 

6 x 6 subsystem. There is here a discrepancy, since Sadowsky and 

Sternberg (1949) found a system of 5 equations and 5 unknowns in that 

case. Specifically, these authors claim that the elementary solution 

with coefficient ~3 is not linearly independent from the others. We 

should, therefore, be able to reduce our 6 x 6 subsystem further. Now 

the tirst three equations of (VI-1-35) must be independent since 

their right-hand sides contain and respectively. 

Thus the fourth, fifth and sixth equations must be those which are 

linearly dependent. However, we have been unable so far to find any 

vanishing linear combination of these equations. Similarly, repeated 

efforts to show any linear dependence between the elementary displacement 

solutions with coefficients AI' A3 ' A7 ' A8 ' All ' and A13 have 

also failed. Sadowsky and Sternberg have shown their solution to reduce 

to the correct results in the limiting cases of spheroidal and spherical 

cavities; although this does not constitute absolute proof of the 

correctness of their results, there is here a suggestion that the system 

(VI-1-35) is incompletely reduced and could be further reduced to an 

8 x 8 system. The discrepancy between Sadowsky and Sternberg's results 

and ours may be related to another discrepancy pointed out in Appendix 13 . 

Our expressions for the wronskians WR, and W (a ssociated with the n 
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coefficients All and Al3 ) are not reconcilable with their 

expression for the Lame function of the second kind L a After care-

ful checking of our analysis, we feel that our results are error free, 

but, of course, we shall need further verifications before we can reach 

a definitive conclusion. 

Further verifications of the solution presented in this section 

should include a thorough study of various limiting geometries, such as 

spheroidal and spherical geometries. However, this is not an easy task 

to perform analytically, and it is best to compare numerical results 

for this purpose. We shall attempt to do so in future work. 

We need not point out here the many possible uses of the solution 

presented in this section. We refer the reader to the Engineering 

literature for this purpose. In the context of the present study, the 

static solution given above yields the initial value fields ne.eded to 

investigate a relaxation source with ellipsoidal rupture geometry. 

This is the first step towards a dynamical solution, discussed in the 

next section. 
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VI-2 The dynamic ellipsoidal rupture 

As we pointed out in the introduction to this chapter, we shall not 

give here the complete dynamical solution to the elastodynamic source 

with ellipsoidal geometry. We shall confine ourselves in this section 

to a discussion of possible ways of attacking the problem. 

First of all, it is clear that the results of Chapter II are 

applicable here as well. Much of the discussion of Chapter IV also 

retains its validity. For example, since we wish to make the rupture 

zone transparent, we only need to know the initial value fields outside 

the rupture zone. Thus we need only consider the elementary solutions 

with coefficients A. , i=1, ... ,15 
l. 

obtained in the previous section. 

Similarly the question of whether the material inside the rupture 

retains any rigidity can be discussed just as it was in Chapter IV. We 

recall that a finite rigidity may be used to model approximately the 

high frequency pehaviorof the material. We also recall that the 

energy release process is most efficient when the rupture zone is a 

zone of vanishing rigidity. The discussion concerning the size of the 

relaxation zone also retains its validity and will not be repeated here. 

As shown in Chapters II and IV, the only problem that needs to be 

solved is the case of the instantaneous rupture. Growing and propa-

gating ruptures can then be treated, for example, just as in section 

IV-3. The major difficulty which we are now confronted with is a 

mathematical one. Let us separate the problem into two major steps. 

i) Dilatation and rotation potentials 

We saw in Chapter IV that there are considerable advantages in 
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reducing the elastodynamic problems to the solution of scalar wave 

equations by means of potentials. These potentials were the cartesian 

components Xl X2 X3 of the rotation vector potential, and the 

dilatation 

By taking successively the curl and divergence of the static 

initial displacement fields given in the form 

* 2~ u = V(q, + r· ... ) -4(1-0) ... (VI-2-l) 

Archambeau (1964) showed that the initial values for rotation and 

dilatation potentials are 

* 8 -2 (1-20) V .... , 

-2(1-0) V x ... 

(VI-2-2) 

• (VI-2-3) 

We note that only the Boussinesq potential ... is involved. From the 

previous section, we know its car~esian components as combinations of 

Lame products. In fact, only ellipsoidal harmonics of degree one are 

present in ... We have 

Wx = m[A2DadSdy + A3Sa S SSy + A4Ca CSCyJ 

W = mlAsDadSdy + A6Sa S SSy + A7Ca CSCyJ y 

W mlA8DadSdy + A9Sa s 8s y + AlOCacr{cy J • z 

(V l -2-4) 
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In order to perform the differentiations in (VI-2-2) and (VI-2-3) 

we can either find the ellipsoidal components of w by means of a 

relation similar to (VI-1-24) and then apply the operator 1/ in the 

form (VI-1-12); or we may differentiate the Lame products of (VI-2-4) 

with respect to the cartesian coordinates by use of the chain rule. The 

algebra is rather complicated and will be omitted here. The necessary 

formulae to carry out the differentiations may be found in Appendix 12. 

(Recall that we need to compute the cartesian components of n.) 

ii) Solution of the initial value problem 

The most difficult part of the solution lies in computing the 

Green's function solution presented in Chapters II and IV. Let us 

* suppose that we know the initial values Xu a=1, ••. ,4 in the form 

of (finite) series of ellipsoidal harmonics. Then in order to follow 

the method used in Chapter IV one needs to expand the Green's function 

to Helmholtz' equation in a series of ellipsoidal wave functions. To 

our knowledge, such a result is not known. In fact, Arscott (1964) 

points out how little is known about ellipsoidal wave functions, so 

that this approach, although the most natural one, does not look very 

promising. 

Since we know how to solve the problem in spherical coordinates, 

it is reasonable to try and express the initial value fields in terms 

of spherical harmonics. The easiest method, proposed by Archambeau 

(1964) is to expand each ellipsoidal harmonic in spherical harmonics by 

Niven's theorem (e.g., Hobson, 1931). However, we are in the presence 

of external harmonics and, in that case, Niven's theorem has only been 
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proved to converge outside a sphere of radius a(i2 +1) where a is 

the major semi-axis of the ellipsoid. This is not sufficient for our 

problem since we want to compute the initial value integral over the 

volume lying immediately outside the rupture zone; in particular, we do 

not wish to ignore contributions coming from the vicinity of the tip of 

the ellipsoid since much of the radiated energy comes from that region. 

Thus it seems that such conventional methods are apparently doomed 

to failure. On the other hand, we know that such a physical problem 

must have a well behaved solution. It is this author's feeling that, 

unless a more sophisticated mathematical apparatus is used, the 

analytical solution will be most likely obtained through some mathemati-

cal trick-~possibly by inspection! It should be noted in that respect 

that, if it were not for the presence of Lame functions of second kind, 

the Lame products in (VI-2-4) would simply be the cartesian coordinates 

x , y, z 

Faced with the obvious impracticality of purely analytical attacks, 

we nOW turn to numerical solutions. Let us note first that, although 

* * the initial values e and 0 can be found analytically, the solution 

to the static problem of section VI-1 is most conveniently obtained by 

numerical inversion of the systems (VI-1-32) through (VI-1-35) 

* Thus the potentials Xu ' a=1, ••• ,4 can be computed numerically at 

any point in the medium. Being harmonic functions, they afford an 

expansion in solid harmonics. We write 

00 n ,,_1 [a(a) 
L..J n+l nm 
m=O r 

L: 
n=O 

(VI-2-5) 
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* Thus, if Xu is known on the surface of a sphere of radius R o 
, the 

static coefficients 
(u) 

a 
run and can be evaluated as integrals over 

the surface of this sphere and by use of the usual orthogonality relations. 

This is a classical problem of potential theory (e.g., Hobson, 1931). 

These integrals may be evaluated numerically on a high speed computer 

by a number of well known techniques. Then (VI-2-5) provides a 

* representation of Xu valid for r > Ro 

Since this method is tantamount to expanding ellipsoidal harmonics 

in spherical harmonics numerically, there is no insurance that the 

method should yield a convergent series for R < a(1Z +1) 
o 

However, 

it is intuitively clear that the complications arise mainly from the 

complicated azimuthal dependence of the fields caused by the ellipsoidal 

geometry, which is more pronounced in the close vicinity of the ellipsoid 

* itself. When Xu is known only at discrete points over the sphere of 

radius R , much of its "high frequency" azimuthal dependence is 
o 

filtered out by the discretization, and we can expect (VI-2-5) to 

converge relatively fast, even if R is chosen as R = a Of 
0 0 

course, in that case, (VI:"'2-5) yields a "smoothed" potential * Xu 

But the error made will involve only the harmonics of high degree, and 

should be felt only in extreme near-field studies. 

Once we know (VI-2-5) the entire mathematical apparatus of 

Chapter IV is at our disposal to complete the dynamical solution. The 

radius R is used in exactly the same fashion as it was in section 
o 

IV-2. Here also, any contribution to the radiation fields coming from 

inside the sphere of radius R 
o 

is ignored. However, this omission 

can be justified by exactly the same arguments as in section IV-2: 
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The essential contribution to the radiation field comes from the vicinity 

of the rupture front, and the energy which is ignored is assumed to be 

absorbed in the non-elastic processes of the failure. 

We saw in section VI-l that the elastic fields associated with 

the ellipsoidal inclusion scale in a very simple fashion with its size, 

provided that the aspect ratios PI = alb and P2 = blc are kept 

constant. Thus the problem of an ellipsoidal rupture undergoing self-

similar growth does not pose any major difficulty. In addition, the 

results of Chapter IV concerning the propagation of the failure zone 

can be applied without modification. 

* This approach presents the enormous advantage that Xu could have 

been obtained by an entirely numerical method such as a finite element 

technique. Thus very complex geometries can be handled in that way. 

However, we should note that growing sources for which the initial field 

does not scale simply with rupture size must be handled through a 

succession of static computations at a discrete sequence of source 

times t~n) , n=l, .•• ,N This may be time consuming, but does not 

add to the difficulty of the problem since the integrals over the source 

time t (Chapter IV, Appendix 4) are evaluated numerically anyway. 
o 

As a final remark, let us also point out that the dynamical near-

source calculation can also be performed through a numerical scheme. 

If this is the case, the connection with the results of Chapter IV must 

be done via the dynamic multipole coefficients, which are then to be 

calculated numerically, either as functions of time or as functions of 

frequency. This scheme is rather more complicated, but perfectly 

feasible. 
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Conclusion 

The major result of this chapter is the derivation of the elastic 

fields associated with an arbitrary ellipsoidal inclusion. In spite of 

considerable work needed to solve the problem, it should be noted that 

the final systems are remarkably simple and exhibit a fairly high degree 

of symmetry. 

As pointed out earlier the correctness of the final solution has 

not yet been checked completely. One particularly useful check would 

be to compare the results given here with numerical calculations based, 

for example, on a finite element technique. 

The method of solution, which we propose for the dynamical problem, 

is of great importance because of its great potentiality. Purely 

numerical solutions to elastodynamic problems are notoriously limited, 

given the present state of the art. In particular, far-field calcula­

tions are next to impossible to perform, especially at high frequency, 

because of physical limitations placed on the grid size, the coarseness 

of the mesh, and the allowable computing time. On the other hand, 

finite element techniques have proved to be excellent for static near­

field calculations (e.g., Alewine and Jungels, 1973). The method that 

we describe above provides a very convenient tie between such techniques, 

and our elastodynamic solutions. This opens the possibility of 

constructing realistic models for seismic sources, and of predicting 

their theoretical radiation by use of the methods described in 

Chapter V. 
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Chapter VII 

NUMERICAL APPLICATIONS 

Theoretical work in an applied field such as geophysics is of 

limited help if one does not develop simultaneously a capability to 

translate mathematical expressions into numbers. We shall now present 

the computed radiation field for the spherical rupture model described 

in section IV-2. 

The most important lesson which one can draw from these numerical 

applications is that even such a simple model depends on enough para­

meters so as to be, in fact, quite complex. A complete discussion of 

all of its aspects is thus a major undertaking in itself. We shall 

focus in this chapter on the major features of the radiation field, 

which we shall discuss on the basis of selected examples. 

The far-field radiation will be analyzed first, and then some of 

near-field effects. Starting from the simplest model of a symmetrically 

expanding sphere, we shall continue with a discussion of the effects of 

unilateral rupture propagation. The azimuthal dependence of the 

radiation fields will be discussed as a function of frequency, both on 

the basis of selected amplitude spectra and of selected radiation 

patterns . Phase spectra will be shown which further illustrate the 

complexity of the radiated fields and may revive the concept of the 

Z phenomenon. Finally, for the sake of completeness, a brief comparison 

with the observations will be given. 

We wish to emphasize in this chapter the fact that there is a 
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de facto trade-off between model flexibility and convenience. Of course, 

the dilemma must be solved according to the quality of the data to be 

interpreted. But in view of the complexity of this simple model, there 

can be no doubt that an earthquake is a very complicated phenomenon 

indeed, and we are probably still a long way from understanding it well. 

In order to fix the ideas we shall assume throughout this chapter 

that the stress field is pure shear, and such that it should generate a 

north-south vertical strike slip fault . In the source coordinate 

system (see Chapter V) this corresponds to the condition 

= 0(0) = 0 
23 

We shall in fact specify the prest rain 

e = e(o) rather than the prestress. Furthermore, whenever the rupture 
13 

propagates it is assumed to propagate towards the north. Azimuths are 

then measured from the northern direction, and take-off angles from 

the downward vertical (e.g . , Chapter V). The free-space radiation is 

computed in all cases, so that we are discussing source effects only. 
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VU.-1 The far-field amplitude spectra 

We already know from the discussion of Chapter IV that, at fixed 

rupture dimension, two esse?tia1 parameters affect the shape of the far-

field amplitude spectrum: the rupture velocity VR controls the high 

frequency spectral shape, while the relaxation radius R 
s determines 

the long-period behavior. Let us start with the simplest case of a non-

propagating, expanding spherical rupture of final radius 

i) Stationary rupture with equilateral growth 

R o 

In that case we know from the analytical solution that the 

radiation field is pure quadrupole at all frequencies. Figure VII-1-1 

shows the high frequency part of the displacement amplitude spectrum 

computed for a sequence of several rupture velocities. The lowest 

rupture velocity is .3 km/sec, which is very low, and the highest one is 

3.45 km/sec, which approaches the shear wave velocity, chosen at 

3.5 km/sec. The figure exhibits several noteworthy features. 

First of all, we note that the average slope of the spectra always 

tends to -3 at high frequencies. However, this asymptotic behavior is 

only reached at very high frequency for the S-spectra when the rupture 

velocity approaches v 
s 

This confirms the analytical result!:; of 

Chapter IV, and one can see quite clearly that the S-spectrum will have 

a slope of -2 when v = V R s 
We should note that this effect becomes 

strong only when V
R 

is greater than, say, 0.9 Vs No such effect 

is observed for the P-spectrum, since VR never approaches v 
p 

On the other hand, for low rupture velocities P- and S-spectra are 

affected in a similar fashion. In fact, it is clear from the figure 
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e = 5.10-4 

Ro= I km 
Vp = 6 .1 km/sec 
Vs=3 .5 km / sec 
Azimuth 30° 
Toke off angle 30° 
Distance 20 km 
----p 
--SH 

Hz 

Figure VII-I-I. Effect of rupture velocity on the displacement spectrum. 
Case of a stationary rupture with equilateral growth. 
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that the dependence of the spectra on V
R 

is nonlinear. As the rupture 

velocity becomes slow, we note the development of an intermediate 

frequency range, where the spectrum has approximately a slope of -1, 

before it steepens to -3 at higher frequencies. There is clearly no 

simple scaling law of these curves as a function of VR ; in fact, one 

wonders whether a "corner frequency" may be usefully defined. If fo is 

such a corner frequency, then according to the results of section IV-5, 

we have 

27ff = 
o (

9V V2 ) 1/3 
R (p,s) 

R3 
o 

We may therefore comput'e the following values of 

P-spectrum 

V
R 

= 3. km/sec 1.6 

V
R 

.3 kIn/sec 0.74 

f 
o 

(VII-I-I) 

, in .hertz 

S-spectrum 

1.1 

0.51 

It is clear that (VII-I-I) yields the intersection of the high 

frequency asymptote with the long-period level. Should one insist in 

defining a corner frequency in all cases, this is a self-consistent way 

to do it. However, it is doubtful that such a concept is very useful 

for low rupture velocities. 

Let us point out in passing that the frequency at which the 

spectrum reaches its long-period asymptote apparently scales linearly 
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with rupture velocity. Unfortunately, this point is rather difficult to 

pick on theoretical spectra (figure VII-l-l), let alone on observed 

spectra. 

Finally, we wish to comment on the observational result that S-

corner frequencies are lower than P-corner frequencies. For various 

reasons discussed earlier, observed spectra are rather band-limited. 

Now, if the spectra of figure VII-l-l were only given in the frequency 

band .5 cps to 10 cps, then we see that the average high frequency 

slope of the S-spectrum can easily be underestimated, and thus the 

corner frequency will be biased towards longer periods. This bias is 

not present for the P-spectrum, and therefore from band limited data, 

the difference between S- and P-corner frequencies will exhibit a 

tendency to be overes timated. 

Let us now turn to the long-period spectral behavior. Figure 

VII-1-2 shows three P-wave spectra computed for R = 5 km 20 km, and 
s ' 

R = 00 

s 
If R is unbounded, the long-period spectrum is flat, as we s 

also know from Chapter IV. On the other hand, a finite value of Rs 

leads to a peaked spectrum. However, even when R = 5 km, which is 
s 

two and a half source dimensions, the peak level is very nearly equal 

to the "flat level." And a more acceptable value of ten source 

dimensions yields a spectrUIII which is quasi-flat over almost a decade 

in frequency. Of course, this only corroborates the findings of 

section IV-5 and we shall not repeat the discussion here. 

ii) Propagating rupture, unilateral growth 

The model discussed so far is adequate to model the tectonic 
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Figure VlI-l-2. Effect of R on the long period displacement amplitude 
s 

spectrum. Case of equilateral growth. 
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release due to underground explosions. · Let us now investigate the case 

of a rupture growing unilaterally, since this is more appropriate to 

model an earthquake. 

Recall first that multipoles of higher degrees are excited in 

addition to the fundamental quadrupole, and that their effects are 

essentially felt at high frequencies. Figure VII-1-3 shows how these 

multipoles of higher degree affect the spectra--in a particular 

direction. The first impression is that this effect, although clearly 

noticeable, is not particularly large. However, under closer scrutiny, 

the figure reveals that the S-spectrum character has been radically 

changed by. the additional multipoles. Indeed, because of the rapid rate 

of growth chosen in this case (V
R 

~ .98 Vs ) the quadrupole spectrum 

exhibits a high frequency slope of almost -2. However, since the 

rupture is unilateral, the radiation field must "see" a different 

propagation velocity in different directions. In particular, the 

propagation rate in the direction indicated on the figure is certainly 

less than V
R 

This explains why the multipoles of higher degree 

steepen the spectrum at high frequency. When ten multipoles are taken 

into account, the slope is in fact -3. 

From the explanation given above, one expects this effect to be 

strongly dependent on azimuth; this is indeed the case, and we shall see 

later that this effect is very strong for back azimuths for which the 

azimuth makes an obtuse angle with the direction of propagation. As 

we pointed out in Chapter IV, one should probably add a few more multi­

poles (up to ~ ~ 15) in order to reach convergence. However, the 

computation becomes then quite lengthy, and necessitates a more 
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10 
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Figure VII-1-3. Effect of the multipoles of higher degree on the 
displacement amplitude spectrum. Case of unilateral growth. 
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efficient algorithm than the one we used. Convergence problems are only 

critical at very high frequencies, and for azilIluths close to 180 0
, and 

we shall silIlply keep this in mind for the present discussion. 

According to the analysis of section IV-5, if one wishes to define 

a corner frequency in that case, one should silIlply replace R o by L 

in (VII-I-I) This means that the corner frequency obtained at 

convergence should be about twice that obtained from the quadrupole only. 

Figure VlI-l-3 seems to agree with this result reasonably well. 

However, here again, one expects azilIluthal effects to be rather strong, 

and the concept of a corner frequency thereby loses some of its 

usefulness. 

The spectra scale with V
R 

and R much in the same way as we saw 
s 

earlier. Figures VII-1-4 through VII-1-6 show a variety of possible 

spectral shapes obtained by varying these parameters. This is shown 

separately for P SV and SH spectra. Note also that these 

figures correspond to an azilIluth and a take-off angle of 30 0 each. It 

seems at first glance that the spectral shape changes rapidly as a 

function of Rs and VR 
However, we should point out that if 

R > lOL 
s 

, and if V
R 

is greater than, say, V /3 
s 

then the range 

of possible shapes is somewhat reduced. Nevertheless, there is a 

definite dependence of the general far-field spectral shape on the 

rupture velocity and the relaxation radius. The parameter VR controls 

the high frequency side of the spectrum, while R 
s 

controls the long-

period side. Furthermore, unless one goes to small values of both 

and V
R 

,there is little interference between these parameters; in 

particular, the spectra are rather insensitive to either one at 

R 
s 
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Figure VII-1-6. Same as figure VII-1-4. SH-wave spectra. 
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intermediate frequencies. 

Much simpler is the scaling with rupture length, as shown on 

f;i.gure VII-1-7. To simplify the matter we assume that R is propor­
s 

tional to L ,which is an acceptable assumption. The calculations 

are plainly in agreement with the results of Chapter IV. A change in 

rupture length simply results in a translation of the whole far-field 

spectrum. In fact, increasing L by one order of magnitude results in 

an increase of the peak level by three orders of magnitude, and a 

shift by a decade in frequency towards long periods . Thus the points 

A,B,C are transformed into A'B'C' For convenience, the segment 

AA' was graduated in terms of length. The figure illustrates several 

things. First, since the average high frequency slope of the spectra 

tends asymptotically to -3, the scaling as a function L consists 

essentially in sliding the spectra along their high frequency asymptotes. 

This is particularly true for the P-spectrum. Now if we assume that 

the body wave magnitude ~ is closely related to the P-wave spectral 

amplitude at 1 cps, we may conclude that, at constant prestress, ~ 

possesses an upper bound. The S-wave magnitude, however, could be 

unbounded if V
R 

approaches 

be close to -2 in that case. 

V 
s 

since the slope of the S-spectrum may 

Of course, this opens the possibility that 

efficient SV to P conversion near the source--for example, at the free 

surface--could result in large measured values of ~ Clearly a 

similar analysis can be made for the surface wave magnitude 

which may be related to the S-spectral amplitude at 0.05 cps. 

return to this question below. 

M 
s 

We shall 
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Figure VII-1-7. Scaling of the displacement spectra with rupture length. 
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VII-2 . The near-field amplitude spectra 

Discussion of the near-field spectra is somewhat less informative 

for several reasons . First of all, we are evaluating here a very 

simple model, and it is precisely in the near-field that the details of 

the source mechanism should be felt the most strongly. Thus near-field 

observations will depend very much on the fault geometry, on the history 

of rupture, on the complexity of the stress field (e.g., Hanks, 1973), 

and we do not take any of these into account. Furthermore, it is also 

in the near-field that most of the approximations made in Chapter IV 

lose some of their validity. However, we can point out several 

interesting general features which should hold independently of the 

particular model chosen. 

Since near-field effects are only important at long periods, only 

the quadrupole term contributes to the radiation, and there i s in 

that case no convergence problem. Let us discuss first the cas e of an 

observer lying inside the relaxation zone, that is, the case where 

is infinite. 

R 
s 

As we showed in Chapter IV, there is little point in talking about 

P- and S-waves in that case. The reason for this is clealy illustrated 

bY figure VII-2-l. The spherical (r,e,$) components of the so-called 

-3 P- and S- displacement spectra behave as w at long periods in that 

case. This is obviously unphysical since the radiated energy would be 

unbounded in that case. On the other hand, the total spectra--also 

-1 
shown on figure VII-1-2 as P+S--behave as w which is what should be 

expected for a net offset in displacement. This figure also shows that 

only the r component of the P-wave, and the e and $ components of 
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the S-wave--SV and SH respectively--are the only components which survive 

at high frequency. This means, of course, that the high frequency 

radiation is far-field in nature , and that no near-field effects are 

felt at such frequencies. 

Let us also point out that near-field spectral observations can be 

quite complicated because of interference phenomena, which give a 

scalloped aspect to the spectra. In addition, for example, the e and 

~ components of the S-spectra exhibit a quasi-flat portion at inter-

mediate frequency, while the r component, which is pure near-field,is 

monotonic. On the other hand, one notices that the e and $ 

components of total radiation are not flat but exhibit a broad peak. 

The shape of that peak will, of course, be azimuthally dependent since 

the quadrupole patterns for P, SV and SH waves are different. 

Figure VII-2-2 focuses on the dependence of the near-field with 

hypocentral distance. Only the radial component of the P-spectrum is 

shown, but similar results obviously hold for other components as well . 

Two cases are considered: for a source length of 10 km, Rs is chosen 

successively at 100 km and at infinity. The most obvious effect is 

that the greater the distance, the longer the period at which the near-

field is obs erved. 

with distance as 

This stems from the fact that far-field terms decay 

r - l ,while near-field terms have a faster decay of 

-2 -3 r r and -4 
r It is interesting to note that when R 

s 
is 

finite, the far-field spectrum is of course peaked, but that this peak 

practically dis appears at short distances, due to the near-field 

radiation . Of course, inside the relaxation zone, only the case 

R ~ = is relevant. s 
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Figure VII-2-2. Dependence of the near-field on hypocentral distance . 
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These are the only aspects of the near-field radiation that we can 

usefully discuss here. More complete investigations must be undertaken 

on the basis of each particular event, by taking into account the 

details of faulting, the inhomogeneities in the vicinity in the source, 

etc. Such investigations have been undertaken, for example, by Hanks 

(1973) or Cherry, et al. (1973). 
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VII-3 Azimuthal effects, radiatiOn patterns 

The azimuthal dependence of the radiation fields was mentioned 

several times in the preceding discussion. To be complete, a description 

of this dependence should include a presentation of the spectra at many 

azimutha and many take-off angles. Similarly, three dimensional 

radiation patterns should be plotted on the focal sphere, using a 

contour representation on a stereographic projection. This is well 

beyond the goals of the present discussion and we shall try and show, on 

the basis of selected examples, how complex the radiation field really 

is. 

i) Azimuthal dependence of the spectra 

Figure VII-3-1 shows two sets of spectra computed for a 

propagating rupture, at the same distance, the same take-off angle, but 

at two complementary azimuths. The difference is striking. 

First of all, there is clearly more high frequency energy radiated 

in the forward direction (azimuth 20°) than in the backward direction 

(azimuth 160°). This is accompanied by a drastic change in the 

character of the spectra. The spectra are indeed smooth in the forward 

direction and very scalloped in the backward direction. This is of 

course due to different interference phenomena. As we pointed out 

earlier, because the rupture is unilateral, the rupture velocity "seen" 

by the radiation field is greater in the forward direction than in the 

backward direction. This effect is rather more pronounced for the S­

spectra than for the P-spectra, which is to be expected since VR is 

closer to V 
s 

than to 
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Figure VII-3-l. Azimuthal dependence of displacement spectra. 
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We should eomment on the remark made earlier that the eonvergenee 

of the multipolar expansion is slower for baek azimuths. A total of 

ten multipoles have been added to eompute the speetra of figure VII-3-l. 

To eheek the eonvergenee of the series, we eompared the partial sum of 

five multipoles with figure VII-3-l. The result is that eonvergenee is 

praetieally attained with only five terms at the forward azimuth, while 

ten multipoles are not quite suffieient in the other ease. In faet, 

the details of the high-frequeney speetra at azimuth 160° ean be 

slightly modified by adding a few more multipoles, partieularly 

for frequeneies higher than 0.5 eps. Our numerieal experiments 

indieate that the speetral levels shown on this figure are a little too 

high, so that the average slope will be inereased by the additional 

terms • 

Figure VII-3-l also illustrates how the "eorner frequeney" may 

depend on azimuth. No eomment is needed exeept to emphasize onee again 

thst sueh a eoneept ean only be used in a gross sense, and that a 

suitable averaging over all direetions should be performed in evaluating 

it. 

ii) Radiation patterns 

In order to better illustrate the azimuthal dependenee of the 

radiated field, we eomputed radiation patterns at periods of 20, 10, 5, 

and 2 seeonds. These radiation patterns for P, SV, and SH waves were 

eomputed at eonstant take-off angle 30°, for the same model as used in 

figure VII-3-l for two rupture veloeit~es. They are given in figures 

VII-3-2 through VII-3-4. In addition,beeause of the obvious symmetry 
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of the source, only one half of the pattern in given in each case. The 

left-hand side of each figure corresponds to v = 3 lan/sec 
R 

and the 

right-hand side to VR 1 lan/sec For completeness, both amplitude 

and phase are shown as a function of azimuth . 

The simplest patterns are obtained at long periods, where the 

radiation field is dominantly quadrupole in all cases, and where no 

effect of the rupture velocity can be noted. We note, however, a 

slight alteration of these patterns at a period of ten seconds, and, by 

comparison with figure VII-3-l, this corresponds, of course, to a 

period where higher degree multipoles begin to be felt. We see that the 

holes in the amplitude pattern are not as pronounced, the phase discon-

tinuities not as sharp, and we also note a very slight distortion 

towards the direction of rupture propagation. 

At shorter periods, these effects are much more pronounced, and 

the patterns change very rapidly with frequency. At the same time, 

several phenomena take place: it seems that the SH pattern at 5 seconds 

possesses a rather strong monopole component, while P and SV develop 

apparently dominant dipole components at the same period. We know that 

this cannot be the case since the solution used for the computation 

contains neither monopole nor dipole (see section IV-2). It may thus 

clearly be misleading to try and deduce the multipolar content of a 

radiation field from observations at one frequency, and one take-off 

angle. The converse situation is also true: for instance, a dipole 

could be excited such as in the solution of section IV-3, but its 

contribution could be negligible at some frequencies and certain 

directions (for instance, in the holes of the dipole spectrum) . 
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Note that the details of the SV and SH radiation patterns at two 

seconds and for low rupture velocity are probably not real, and would 

be altered by adding a few more multipoles . 

In all cases we observe that more high frequency energy is 

radiated in the direction of rupture propagation than in the other 

direction, and that this effect is stronger for higher rupture velocity. 

All of the short period patterns are indeed distorted in a forward 

direction. This was to be expected, and is consistent with similar 

results in electromagnetism (e.g., Stratton, 1941). 

It is clear from these figures that the quadrupole is no longer 

dominant at high frequencies. In fact, no multipole dominates. It is 

fascinating to see that ten multipoles, with individual patterns of 

great complexity, can add up to yield such simple results. This 

requires a very particular combination of their amplitudes and phases, 

which could be easily destroyed if an error is made in the calculation. 

We may thus consider this simplieity as an indirect check of the correct­

ness of our calculation. 

Finally, let us note that the loss of the quadrupolar character of 

the radiation field--at high frequencies--does not invalidate the deter­

mination of focal mechanism from first motion data. Indeed, the 

direction of first motions, which is a time domain concept, is essentially 

controlled by the very beginning of the rupture. It cannot be associated 

in any way with the radiation pattern at any particular frequency, which 

depends on the whole time series . In fact, in order to retrIe ve a 

theoretical time series from the spectra given here, one must know the 

phase spectra as well. This is the object of the next section. 
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VII-4 The phase spectra 

In order to eventually be able to retrieve time domain information 

from spectral results--in particular, to construct synthetic seismograms 

--one must know the phase spectra as well at the amplitude spectra. 

Because the phase is rather more sensitive than the amplitude to numeri­

cal uncertainties, we only tried in this preliminary investigation to 

study it for frequencies lower than 1 cps. We shall recall that 

convergence problems started to be important for higher frequencies 

(see figure VII-3-l). 

Although it is sufficient to know a phase angle modulo 2n ,there 

are a number of advantages in "unwinding" the phase spectrum. This is 

true in particular for purposes of interpolation, and also to study the 

slope of the phase spectrum as a function of frequency (group delay). 

We also confine ourselves to the far-field case since near-field effects 

may be evaluated analytically (see section IV-5). 

Figure VII-4-l shows the phase spectra for various displacement 

components, computed at a hypocentral distance of 100 km, or ten source 

dimensions . The immediate observation is that, even at such a short 

distance, the phase spectrum is overwhelmed by the propagation term--

kar The s pectra are very linear, and s how very little fine s tructure 

(at leas t in that particular dir ection). The figure also show8 that an 

additional term is present in the spectra, which depends quite s trongly 

on the rupture velocity VR This is definitely a source effect, and 

it appears to be strong enough to be detectable in close range observa­

tions. A slow rupture velocity yields a steeper phase spectrum, and 

thus implies a larger group delay at the source. 
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Figure VII-4- l . Far-field phase spectra computed at a distance of 
ten source dimensions, and for two rupture velocities . 
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When the propagation term -k r a is removed (figure VII-4-2), one 

is left with the phase at the source. This is the initial phase of an 

equivalent multipolar point source (see Chapter V) . This reduced phase 

spectrum is much more interesting, and yields important information 

about the rupture phenomenon. 

First of all, the initial phase does not depend linearly on 

frequency . This means that our source model is inherently dispersive. 

As discussed in section rv-s, one defines the group delay at the source 

by 

a(phase) _ -1 a (phase) 
aw - 2 af (VII-4-l) 

Since the steeper slopes in figure VII-4-2 occur at long periods , we 

deduce that long-period radiation is rather more delayed than high 

frequency radiation . This delay c learly increases with decreasing 

rupture ve loci ty, and it is not difficult to s ee that the long-pe riod 

group delay is of the orde r of L/VR ' the rupture duration. This is 

quite consistent with the r esults of section IV-S. Recall tha t we found 

the long-period delay to be 0.75 L/VR for a stationary source. We have 

confirmed this result on the basis of numerical calculations not shown 

here . For propagating sources (figure VII-4-2) we see that the delay is 

closer to L/VR ' and that it is slightly larger for S-waves than for 

P-waves at this particular azimuth. 

Just as we predicted in Chapter I V, the group delay t ends t owa rds 

zero at h 19h fre quencies. This i s es pec ially clear [or S-wa vell il lld r" r 

h1gh rupLure vlduc I LicH. The gru up delay rOT P-waveH UOCH nol cUllv<.:rg c 
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Figure VII-4-2. Far-field phase spectra corrected back to equivalent 
point source. Effects of rupture velocity. 
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to zero as rapidly, and thts can be intuitively explained by noting that 

V
R 

stays rather small compared to Vp ,even when it approaches Vs 

As a result, our source model is less dispersive for P-waves at low to 

intermediate frequencies than it is for S-waves. Of course, one 

wonders whether this is azimuthally dependent. Figure VII-4-3 shows 

phase spectra (at the source) computed for thre e different a zimuths, and 

at constant take-off angle. It is immediately obvious that , just as 

the amplitude spectra, the phase spectra become more complicated as 

back azimuths. The portions marked with question marks correspond to 

f requency bands where the phase varies extremely rapidly with fr equency. 

Each one of these bands is associated with a hole in the amplitude 

spectrum, while the regions where the phase varies smoothly with 

frequency are to be correlated with peaks of the amplitude (see e.g . , 

figure VII-3-1) . When the phase varies rapidly, it can only be unwound 

by sampling it very densely. Because our frequency sampling was not 

dense enough, each one of the jumps shown in figure VII-4-3 is only 

known up to an undetermined number of full cycles (2n) Furthermore, 

since the holes in the amplitude spectra are due to destructive inter­

ference phenomena, these frequency bands are precisely those for which 

numerical noise is critical . On the other hand, and for exactly the 

same reason, little power is radiated in the same frequency bands, so 

that spectral details in such bands are not essential. 

Outside the narrow frequency bands where the phase varies rapidly, 

one notices little azimuthal dependence of the slope . The strongest 

dependence is found for the P-wave , for which the group delay at the 

source is slightly smalle r at forward azimuths than at back azimuths. 
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This is consistent with the idea advanced earlier that the radiation 

field "sees" a slower rupture velocity at back azimuths. Azimuthal 

effects seem to be smaller at long periods, which was also to be 

expected. 

The fact that P- and S-waves may have different group delays at 

the source is somewhat unsettling and deserves further discussion. It 

seems to indicate that P- and S-waves should exhibit different apparent 

origin times. This effect has been called the "z" phenomenon. The 

International Dictionary of Geophysics gives the following definition : 

lI Z phenomenon: it has been s uggested that the main P and 

S waves may issue from some earthquake foci at times 

separated by the order of some seconds. Such a separation 

is called the Z phenomenon, but it is now thought to be 

much less significant than formerly." 

Observational evidence for such a discrepancy in P and S apparent 

origin times is relatively abundant in the seismological literature prior 

to 1950. For example, Jeffreys (1927) found that the linear travel time 

equations for the direct P- and S-waves from two British earthquakes had 

different constant terms by two or three s econds. The S radiation 

appeared to have originated earlier than the P radiation. Having 

observed this phenomenon in several other instances, Jeffreys (1937) 

concluded that the two waves both originated from the rupture zone but 

at different times. Gutenberg and Richter (1943) developed an explana-

tion of the phenomenon first suggested by Reid (1918) and used lat er by 

Benioff (1938). This explanation calls for a transsonic rupture 

velocity, tha t is, such that v < V
R 

< V 
s p 

If this is the case, they 
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argue, the first arrival of the S-wave actually comes from the point on 

the fault which is closest to the observer, while the P-wave first 

arrival comes from the point of initial rupture, hence the discrepancy 

in origin times. As pointed out by Bullen (1963), the concept fell into 

disuse and thus into obscurity after the work of Richter (1950). Richter 

plotted P arrival times against S-P times for several Southern California 

earthquakes and defined the origin time as the intercept of this curve 

for S-P = 0 This method presents the advantage of yielding origin 

times independent of the velocity (at constant Poisson r atio), but also 

the procedure will hide a hypothetical Z phenomenon by a shift of the 

origin time. In fact, if the Z phenomenon really takes place, the 

origin times so obtained should be slightly too late, and thus the mean 

velocities deduced from them slightly too high. If one tries in turn to 

locate an earthquake by using this high velocity, either the solution 

may be difficult to find, or the hypocentral depth will be too shal low. 

Figure VII-4-2 shows that no trans sonic rupture velocity is required 

for the occurrence of the Z phenomenon. We have here a frequency 

dependent effect, but since we are only talking about arrival times, and 

since instrument responses are generally band-limited, this dependence 

may be neglected. From figures VII-4-2 and VII-4-3, we see that in the 

case VR = 3.0 km/sec v = 3.5 km/sec 
s 

the group delay fo r S-waves 

at 1 sec i s practically negligible, while that for P-waves is of the 

order of two or three seconds. This matches Jeffreys' (1927) observations 

very well. Furthermore, this result is only weakly dependent on azimu th. 

TIle phenome non i::; even more pronounced for low rupture veloc ltl<.!~. 

For instance, ror V
R 

= 1.0 km/sec, figure VII-4-2 s hows Lhut at .5 cps 
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the S delay is 6.5 sec while the P delay is 9.5 sec, a Z phenomenon of 

three seconds. 

To go even further along this line of discussion, one may wonder 

whether premonitory apparent changes in the v Iv 
p s 

ratio before 

earthquakes (e . g., Whitcomb and others, 1973) could not be partly 

interpreted as a source effect. In order to create an apparent decrease 

of that ratio, one only needs to assume that the failure mechanism of 

small events preceding larger ones changes--for example, V
R 

may increase 

so that S-P decreases. Thus, the premonitory phenomenon would not be 

due to a wave propagation effect only, but also due to a change in the 

failure characteristics of the medium. The dilemma will be solved by 

obtaining conclusive data both from local and from teleseismic events . 

Although this is the object of much current research, we feel that the 

question is still open at this time. This is a vast subject, full of 

promising ramifications, and this is not the proper place for an 

extensive discussion. 

Although it is probably too early to reach definitive conclusions, 

we suggest that the long forgotten Z phenomenon may have to be revived, 

and that only careful observations will prove or disprove it. Since it 

is rather difficult to retrieve the initial phase of the radiated fields 

with sufficient accuracy, we propose the following procedure: seismic 

records could be filtered by narrow band causal filters, and the S-P 

times could be plotted against frequency for several events with 

neighboring foci. Changes in group delays at the source froID "ve nt to 

event might be observed in this fashion. ThiH l s , or cours (.', r-Hlb.lect to 

improvements, and fu -rther theoretical and nurnerlcal work IH needed in 
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that respect. 

Before leaving the subject, we should point out that only the 

curvature of the phase spectrum, as well as the sl?pe difference 

between Sand P, are of importance. The linear trend present in the 

spectrum will only yield a net shift in the origin time, which is of 

course impossible to retrieve from observations of arrival times only. 
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VII-5 Evaluation of the model 

The examples given in the previous sections give a general idea of 

the radiation fields predicted by our model. Let us now turn to an 

evaluation of how this model compares with observations, and with 

completely numerical models. The present section does not do justice 

either to the flexibility of the model, or to the large body of observa-

tions currently available (e.g., Tucker, et al., 1973; Hanks, 1973). But, 

then again, an extensive discussion would be too voluminous to insert 

here. 

i) Magnitude data 

As mentioned earlier, the spectral shape which our model predicts, 

and the scaling laws presented in this chapter permit us to discuss the 

relationship between the body-wave magnitude ~ and the surface-wave 

magnitude M Of course, because magnitude scales have been 
s 

empirically defined from time domain observations (e.g., Richter, 1958), 

a quantitative comparison can only be made by computing synthetic seismc-· 

grams and following the usual procedure to calculate magnitudes. 

However, by plotting the S-spectral amplitude at a period of 20 seconds 

against the p amplitude at one second as a function of source dimension, 

one obtains an idea of the character of the ~/Ms curve predicted by 

the model. A sketch of such plots is given on figure VII-5-1, for three 

relaxation radii and three rupture velocities. The axes are scaled so as 

to correspond to the source and medium parameters used in the previous 

sections. The distance was kept constant and equal to 100 km. 
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Figure VII-S-l. Plot of S spectral amplitude at 20 seconds versus 
P spectral amplitude at 1 second period. Simulation of ~ / Ms plots. 
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The low magnitude part of the graph is controlled by R 
s 

and the 

large magnitude part by the rupture velocity . The net result is that a 

band of possible observations is defined in the ~ - Ms plane, which 

allows for much scatter in the data. In addition, a change of the 

prestress yields a shift of the whole graph along a direction inclined 

at 45° on the axes. Since there is an observational cut-off, we do not 

expect to observe the lower part of the curves. Furthermore, we pointed 

out in Chapter IV that R may equal many source dimensions for small 
s 

events so that the observations should cluster towards the upper limit of 

the zone defined in figure VII-5-1 for low magnitudes. 

The diagram predicts an upper bound for both ~ and M 
s 

, at 

fixed prestress. In particular, the curves bend sharply upwards when the 

bound on is reached. The bend occurs for a fault dimension between 

5 km and 10 km, depending on the rupture velocity. This corresponds to 

a magnitude between 5 and 6. Of course, an increase in the prestress 

would bring the points A,B,C to A',B',C' respectively, and this 

complicates the problem. The latitude offered by the three parameters 

R 
s 

and the prestress leve~ may account for the very large 

scatter of the observations (Evernden, 1973, personal communication). 

The character of these curves provides an explanation as to why no 

earthquake with local magnitude larger than 6 ~ has been observed in 

Southern California (Hanks, 1973, personal communication). Furthermore, 

observations of a large number of events with widely differing locations 

and depths show that the ~/Ms diagram does indeed exhibit this 

character, in spite of the scatter (Evernden, 1973, personal communica-

tion) . 
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Figure VII-5-l shows an upper bound for M 
s 

as well, which agrees 

with the observations since no earthquake with magnitude greater than 9 

has ever been recorded. However, when the rupture velocity equals the 

shear velocity, we saw earlier that the S-spectrum has a high frequency 

-2 slope of w and thus M should be unbounded. But it seems difficult 
s 

to envision a rupture propagating for 700 km or 800 km at the shear 

velocity since this would require very high stress levels on a large 

regional scale. 

Let us again emphasize that spectral levels are not simply related 

to time domain amplitudes, so that we shall confine ourselves here to 

this qualitative discussion. 

ii) Comparison with numerical models 

Cherry (1973) constructed a two dimensional fault model for 

which the rupture propagation is controlled by a failure criterion such 

as the one described in Chapter III. A minimum of plastic work is 

required before failure, and a dynamic friction is imposed on the rupture 

surface. The radiation field is calculated by combining a finite 

element technique with a finite difference scheme for the time dependence. 

Figure VII-5-2 shows the near-field radiation obtained by Cherry at 

a particular station. The components x and yare measured parallel and 

orthogonal to the fault line respectively. Also shown on the figure is 

the radiation spectrum calculated from our model, using the average 

rupture parameters obtained by Cherry. The agreement is very good at 

high frequency. In particular, both models predict an average slope of 

-3 w On the other hand, one observes a discrepancy at long periods. 
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The field is practically radial for both models, but we predict a smaller 

relative long-period amplitude -- by a factor of 4 

Recall however, that Cherry uses a two dimensional model, while we 

use a three dimensional one, and since the distance is about two rupture 

dimensions, the finiteness of the fault should not be neglected. 

Furthermore,Cherry assumes a significant hydrostatic pressure, while we 

have a pure shear prestress; it is also rather difficult to evaluate 

the effects due to different boundary conditions, both on the fault 

surface, and at large distances: Cherry "freezes" the fault when the 

relative velocity of the two lips vanishes--unless the shear stress 

exceeds the dynamic friction--and thus he may freeze the fault in an 

tfovershot" configurationt 

In spite of the extreme differences between the two models, the 

agreement shown on figure VII-5-2 is still excellent. The corner 

frequency chosen by Cherry (1973) at .3 cps is almost exactly that 

predicted by our model, and since the high frequency spectra are quite 

comparable, it is likely that the far-field spectra would also compare 

favorably. 

iii) The Harris Ranch earthquake of 27 October 1969 

Figure VII-5-3 shows an example of spectral data compared with 

T Cherry (1973, personal communication) overestimated his spectral 

levels by a factor of 2~ Thus the two models can be better recon-

ciled, since we must then scale our prestress to 160 bars, which is of 

the order of his static stress drop (~ 110 bars) and his dynamic stress 

drop (~250 bars). The long-period difference is thus geometrical. 
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a theoretical spectrum . The data were computed by McEvilly and Johnson 

(1973). This is a displacement amplitude spectrum computed for the 

Harris Ranch earthquake of 27 October 1969. This was a magnitude 4.6 

strike-slip event on the San Andreas fault system; the focal depth was 

12.5 km; the epicentral distance was 1.25 km; the spectrum shown corres­

ponds to the EW component, and the entire wave train shown on figure 

VII-5-4b was used to compute it. The theoretical spectrum was simply 

obtained by use of the scaling laws from one of the cases computed 

earlier. We see that a good fit is obtained for a rupture length of 

1.4 km, a rupture velocity of 3.0 km/sec, a prestress of 300 bars, and 

a relaxation radius of about 10 fault lengths. The interaction of the 

incident wave with the free surface was simply taken into account by 

doubling the free-space amplitude. 

Of course, we are not capable of reproducing the high frequency 

details of the spectrum, which are most likely due to surface layering, 

and which come from the long coda shown on figure VII-5-4b. However, 

the general shape of the spectrum is matched reasonably well. It is 

probable that the slightly high spectral amplitude predicted by the model 

around 1 cps could be corrected by using, for example, a slightly lower 

rupture velocity. The fit is good at long periods, and a finite value 

of R 
s 

is required to match the marked trough at 0.1 cps. Note that 

the very long-period slope of the observed spectrum is steeper than 

which suggests that there is significant contamination by long-period 

nol::;e. 

111ere is no doubt that this fit could be improved I>y HlJitable 

n~nipulation of the fault parameters. For instance, one could try a 

-1 w 
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Figure VII-S-4. a) Wave forms computed for spherical rupture model 
with equilateral growth. b) Observed ground displacement from the 
Harris Ranch earthquake of 27 October 1969. 
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la~ge~ ~upture dimension, combined with a smaller prestress, then a 

smaller value of R would be required. But the results shown here are s 

sufficient for our present purposes. In particular, it seems that a 

finite value of R is required in order to match the long-period s 

spectrum. The trough seen at about 0.1 cps is also present on the NS 

component (McEvilly and Johnson, 1973). This feature should be translated 

into a particular pulse shape in the time domain. 

Figure VII-5-4 shows synthetic far-field pulses computed for a 

stationary spherical rupture of radius 750 m. When R is infinite, the 
s 

pulse is unipolar (e.g., Molnar, ~ al., 1973). This is no longer the 

case where R 
s 

is finite. It is easy to compare qualitatively these 

pulse shapes with the seismograms shown below them. McEvilly and 

Johnson (1973) show that these records represent essentially the ground 

displacement except at very long periods (tilts). It is clear that a 

finite value of R 
s 

is suggested by the time domain data as well. 

The rather qualitative comparisons· presented above are only 

preliminary results in an effort to systematically compare model and 

observations. We should make note of the fact that Tucker and Brune 

(1973) observed flat spectra for many aftershocks of the San Fernando 

earthquake, observed at close range. Thus their data suggest that R 
s 

should be very large compared with the fault dimensions for those events. 

Although any precise statement concerning the comparison of data and 

model would require a more complete study, we can nevertheless state 

that the results of this section are very encouraging. 
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GENERAL CONCLUSION 

The present work is essentially open ended, both from the 

theoretical point of view and from the point of view of its applications . 

As we mentioned at the very beginning, even more questions are raised 

than are answered. Because this is the case, it is not superfluous to 

stress again the underlying philosophy . The failure model and the 

elastodynamic treatment given here are very crude and quite sophisticated 

at the same time. The crudeness comes from the geometry that we chose, 

and from the many approximations and idealizations involved in the 

mathematical treatment. The sophistication lies in the flexibility of 

the model, obtained by allowing for a sufficient number of parameters. 

The most appealing aspect of the model is that it can be readily 

generalized in many ways, and that these generalizations can be made on 

a physical basis. This is an enormous advantage over kinematical models 

which leave little place for the physics of the phenomenon. 

However, it is essential to investigate all the properties of a 

model in its simplest form, before even thinking of generalizing it. 

Only through such a systematic procedure can one determine which effect 

is due to which cause. It is a shortcoming of very realistic and thus 

complex models that one cannot, in general, determine a single cause for 

a particular effect. Thus, as a rule, generalizations should only be 

implemented as they are required by the observations. 

As we see it, the next step following this study will be to 

systematically compare the model with existing data. The results shown 

in the last chapter probably do not even cover all the possible features 
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offered by thls model, and, lengthy as the procedure may be , all the 

details of the predicted radiation field should be investigated and 

evaluated against a background of data. Only then shall we be in a 

position to decide which model characteristic should be modified. 

Eventually, the comparison will lead to conclusions as to the physical 

conditions surrounding failure of earth materials and earthquakes . The 

last results shown are most encouraging and enhance our belief that the 

method will prove successful. 
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APPENDIX I 

REYNOLDS' TRANSPORT THEOREM FOR THE CASE OF MOVING BOUNDARIES 

i) Reynolds' Transport Theorem 

Considering a region of a continuum undergoing a continuous flow, 

we first seek a description of this flow in a fixed reference frame. 

For this we consider the position X of a "particle," or small volume 

element of the continuum. and follow it as a function of time so that 

(A-I-I) 

Here )( i~ the position of the particle at some reference time t , 
o 

We shall say that x is the position. at time t, of 

the particle X, and for convenience we assume t = 0 without loss of 
o 

generality. 

Equation (A-I-I) can be viewed as a (Lagrangian) mapping, and the 

flow is said to be continuous if this mapping is continuous. We shall 

further assume that the ~'s ' are sufficiently differentiable so that 

there exists a continuous inverse mapping 

4>i(X.t) (A-1-2) 

We shall further assume that a small right-handed triad moving with the 

flow stays right-handed as a function of time. If the flow is also 

regular. thereby forbidding Singular points for the mapping (A-I-I). 

then the jacobian J = det (~~) will be strictly positive. The velocity 

field V associated with that flow is then 

(A-1-3) 
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The usual form of Reynolds' transport theorem (e.g. Malvern, 1969. 

sec. 5-2) expresses the material time derivative of the volume integral 

of an arbitrary continuous tensorial function of the flow F(x ,t). The 

geometry is described on figure A-l-l. The surface Set) is a material 

surface--i.e., moving with the flow--and is to be considered instanta-

neously asa control surface traversed by the flow. 

wish to evaluate the d 
F( x ,t) 3 df 

where We quantity d ffl d x ~ 
dt t Vet) 

d3x is the volume element. The main difficulty that arises is that both 

the integrand and the volume of integration are time dependent. We 

therefore transform first the integral into an integral over a fixed 

volume. For this we operate the change of variable of integration 

(A-l-l). This change of variable is a logical one since it maps the 

time dependent volume Vet) into its initial position V(O); we thus 

circumvent the difficulty mentioned above. We write 

df a ~ fF [+ ( X ,t) ,t ] . J d3
X dt dt 

(A-1-4) 

V(o) 

Here we specifically assume that J > 0 The volume of integration is 

now time independent and we can write 

~~ = f[~! (A-l-5) 

V(o) 

But, by the usual differentiation rule for a determinant, we have 



Figure A-i-I. 
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x • n. 

5(0) s (t) 
v(O) v(t ) 

Mappings defining the flow of a continuum, as a function 
is a material volume, moving with the flow. 
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dJ 
= 

dt 

Here is the cofactor of the (i.j) element in J. Noting that. 

by simple expansion of the determinant J with respect to the jth 

column, 

dJ 

Thus (A-1-5) yields 

df f 
V(o) 

dt 

, we then write 

[ 

dF 

- +F 
dt 

J <; • V 
x 

Or, transforming the volume of integration back to V(t) ,we get the 

first form of the transport theorem. 

d 

dt 
f F(X,t) d3~ 

V( t) 

f[:: + F 

V(t) 

Other forms are obtained by using the following relations 

dF aF 
= - + 

dt at 
( V· <;) x 

F 

(A-1-6) 
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Then 

Or, by 
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v . (FY) - ( V· v ) F + F V • V 
x x x 

d f F( x ,t) 

dt V(t) 

application of Gauss' theorem 

d f F( X ,t) d3x =1 dt V(t) V(t) 

aF 
d3x + IF 

at S(t) 

(A-I-7) 

y. ~ 

da n 

(A-I-8) 

The physical interpretation of (A-I-B), often used as a heuristic 

proof, is obvious. If S(t) is instantaneously considered as a control 

surface then we have (e . g., Malvern, 1969) 

Rate of increase of 
the amount of F 
possessed by the 
material instanta­
neously inside S 

rate of increase 0 

the total amount 
of F inside S 

net rate of outward 
flux of F carried by 

+ mass transport 
through S 

Because S(t) is a material surface, it englobes the same mas s at any 

time t and conservation equations can be obtained directly f rom 

(A-I-6), (A-I-7), or (A-I-B) if F is a conserved quantity (see 

section iv below). 

ii) Generalization to the Case of Moving Boundaries 

We now turn to the generalization of the transport theorem to the 

case of a volume U(t) , bounded by a surface E(t) , which is no 

longer a material surface . We shall give two derivations, the first 

one being somewhat more heuristic, the second one more formal. 
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A) First proof 

Consider the flow described by (A-l-l). and a closed surface E(t), 

surrounding a volume U(t) of the continuum. We assume that E(t) 

deforms as a function of time sufficiently smoothly so that for at 

sufficiently small there exists a piecewise continuous mapping of the 

points of E(t + at) into those of E(t) Obviously if such a 

mapping exists, it can serve to define the velocity U of E(t) at 

all points of E(t) The geometry is described on figure "(A-1-2). 

Consider the material surface S(t) ,surrounding the volume 

V(t), which coincides at time t with l;(t) Then 

f(t) = f F(X ,t) d
3

x = f F(X ,t) d
3

x 

U(t) V(t) 

After a small increment of time at • we have 

f(t + at) = f F(X,t) d
3
x 

U(t + at) 

But S(t + at) does not coincide with E(t + at) and we have 

f(t + at) ~ f F d\ + at f F ( U - V ) 

V(t + at) S(t + at) 

(A-1-9) 

(A-I-IO) 

(A-l-ll) 
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I(tl == S(t) 

~ot 

S(t +0 t) 

Figure A-1-2. Case of a surface E(t) which is not a material s urface . 
V is the material velocity, U the velocity of E(t) S(t) is a 
material surface coinciding with E(t) at time t V(t) is bounded 
by S(t) while U(t) is bounded by E(t) 
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where the correction term is added in order to account for the 

difference between the volumes U(t + at) and Vet + a t) 

Combining (A-1-9), (A-l-lO) and (A-l~ll) and defining 

d 
3 

F d x -
dt 

U(t + at) (A-1-12) 

we get 

:t! 
d f F d

3
x + f F( u- V ) . =-

dt 
U(t) Vet) Set) (A-l-l3) 

The transport theorem in its conventional form now applies to the first 

term on the right-hand side of (A-1-13); if we use (A-I-B), we obtain 

immediately 

d f dt 
Vet) 

of 3 
- d x + 
ot 

set) 

u . 'a da , 

Where the material veloc:\.ty V is no 10llger present, However,:\.f 

we observe that at time t, the volume Vet) and the material surface 

Set) coincide respectively with U(t) and L(t) ,we can then write 

! 
dt U(t) 

of 3 f 
- d x + F 

ot L (t) 

u· ~ da (A-I-14) 
d 
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which is the desired theorem. Note that (A-1-14) reduces as expected 

to the usual result (A-1-8) when u=v 

B) Second proof 

In order to derive (A-1-14) on a more formal basis, we need to make 

a number of more restrictive assumptions about the volume U(t). In 

particular. we assume that the points r E E E (I:) can be described as 

a function of time by a mapping 

r E (t) = 1/>i (R,t) 
i 

(A-l-1S) 

However, such a mapping describing the evolu-

tion of E(t) is · non unique. We shall only consider here the class of 

surfaces E(t) for which a mapping (A-l-1S) can be found which is a 

valid description of some continuous flow. This means that we assume 

E(t) to evolve sufficiently smoothly in time so that 1/>i can be found 

and defined throughout the continuum, with continuity and differentia-

bility properties similar to those ·for ~i 

r E by the field 

is defined as the velocity of E(t) at r E 

inverse mapping 

'I'i (r (t) , t) 

Then the value taken at 

(A-1-16) 

The existence of the 

(A-l-17) 
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is also assumed. 

We now want to express :t f(t) and it is logical 

to use (A-l-l) to change the variable of integration. The mapping of 

the particle X through (A-1-17) can be obtained by a careful considera-

tion of the superposition of the flows (A-l-l) and (A~l-lS)--see figure 

A-1-3. For simplicity we shall distinguish material points X, under-

going the flow (A-l-l) and "surface" points R, undergoing the flow 

(A-l-1S). 

Consider the material point of location x(t) thst coincides at 

time t with the surface point located at r(t) Then at that time 

both these points are mapped at the same location x - • ( r ,t) by 

(A-1-17). At time t + at the material point is located at x (t + at) 

= x (t) + Vat and is still mapped into X. But the surface point 

is now located at T (t + at) - r(t) + U at Thus at time t + at 

the surface point r(t + at) coincides with a new material point. 

This last point was located at time t at x(t) + (U - V ) at (to 

first order in at). Then the surface point which was mapped at time t 

into X is now mapped into X + Wat ,where 

W=(U-V)·V <I> 
x 

(A-1-18) 

By use of the mapping (A-l-l) we have therefore reduced the original 

problem to the simpler equivalent problem where a surface 1: (t) moves 
o 

with velocity W through a fixed continuum (see figure (A~1-3). 

This is expressed mathematically by 
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<P 
<P --:;:=:::;;:-____ 

\ ....-"!~c------ <P ---.I 

u (t) 

Figure A-1-3. The surface E(t) ,bounding the volume U(t) ,is 
not a material surface. Thus, if ~ is the mapping representing the 
flow of the medium, E(t) is mapped into a time dependent surface 
E (t) ,which has a velocity W . U is the velocity of E(t), V 

o 
the velocity of the medium. Two points x 
(surface point), which coincide at time t 
more at time t + at 

(material point) and r 
, do not coincide any 
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df d I r. dt = dt FLH x ,t) ,t] 

U (t) 
o 

= f ~t [FJ] 

U (t) 
o 

w· it da o 

(A-l-l9) 

The surface integral on the right-hand side of (A-l-l9) takes into 

account the rate of increase of the volume U Because we have 
o 

defined W everywhere we can apply Gauss' theorem and write 

~! = f[~t (FJ) + ~Xi [FJWi L ] d
3

X 

U (t) 
o 

(A-l-20) 

But _a _ [FJ] ,,0 ax x . 
i 

and 
a <Pi 

- V ) - - V • (V-V) 
k a~ x 

Using the theorem (A-l-6) in (A-l-20) we obtain immediately 

or 

f [dF + F V 
dt x 

U (t) 
o 

. V + F V 
x 

~! - f[~! + F Vx ' UJd
3

X 

U(t) 

It is then a trivial matter to transform (A-1-2l) into 

(A-l-21) 
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ilF +f FU' tl da ilt 

U(t) L(t) 
(A-I-ZZ) 

This last equation is identical to (A-I-14), but its proof required 

rather stringent assumptions which were not needed for the former proof. 

iii) Medium with an interior surface of discontinuity 

We now turn to the . case where the surface L(t) , of velocity U 

is a surface of discontinuity of the medium. Phase boundaries and shock 

fronts constitute examples of such discontinuity. The velocity of the 

material V , and the flow function F are then assumed to be discontin-

uous across L(t) For convenience, we choose the normal tlL to be 

such that U· nL > 0 , i.e., L(t) is now an oriented surface 

propagating in the direction of its . positive normal. We seek to apply 

the transport theorem to the material volume Vet) bounded by the 

material surface set) As shown in figure A-I-4, the volume Vet) 

is separated by L(t) into two contiguous volumes VI(t) and VZ(t) 

and similarly Set) is cut into two surfaces Sl(t) and SZ(t) We 

can furthermore consider L(t) to be composed of two surfaces 

LZ with outer normals -DL and tlL respectively. The transport 

theorem may now be applied to the two volumes VI(t) and VZ(t) 

separately. We write 

d 
dt 

and 
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Figure A-1-4. Case of a propagating discontinuity. E(t) is the 
surface of discontinuity, of velocity lJ . Sl(t) + S2(t) is a 

material surface , moving with the medium. , 
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or 

d I F d3x I aF d3 + I y. A da = F n dt at x s 
V(t) V

l
(t)+V

2
(t) Sl (t)+SZ (t) 

IF u· A da + IF u· fiE da (A-l-Z3) n
E 

El (t) EZ(t) 

The surfaces Sl (t) and SZ(t) are not closed surfaces and there­

fore we cannot apply Gauss' theorem to the surface integral over them . 

This can be circumvented by writing 

+ I F y. fiE da - f F y. fiE da 

Here the outer normal fi is defined as 

for E
Z 

(t) 

A 

- n E 
for and as 

We can now apply Gauss' theorem because the surfaces Sl (t) + El (t) 

and S2(t) + EZ (t) are closed, and we obtain 

~/F d3 
dt x = I [aF + V at x 

• (FY) ] 

V (t) V (t) 

(A-1-24) 
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We have introduced the notation [Q] E to indicate the jump of the 

quantity Q across E(t) This jump is defined as the difference of 

the limiting values of Q when E is approached from its positive side 

and its negative side successively. Equation (A-l-24) represents 

Reynolds' transport theorem in the presence of an internal boundary 

which is a surface of discontinuiti. It is worth noting that if V - U 

is tangential to E(t) on both sides of E or if the jump vanishes, 

then (A-l-24) reduces to (A-l-7) ,i.e., the usual theorem. This 

means that there is no flux of F across E(t) by material transport. 

This is true in particular if U =V , that is when E(t) is a 

material surface. 

iv) Conservation equations 

A) Away from discontinuities 

The transport theorem in the form (A-l-24) expresses the conserva-

tion of the quantity F Let V(t) be bounded by a material surface, 

but be otherwise arbitrary. Then if k(x,t) is the rate of production 

of F at the particle X 

~t / F(x,t) 
V (t) 

we have 

d
3
x = / k(x, t) 

V(t) 
• (A-l-25) 

Because of the arbitrariness of V(t) the equality of two integrals 

over V(t) implies the identity of the integrands and thus, using 

(A-l-6) and (A-l-7) we get 

dF (x, t) + F!:J • V = k(x, t) 
dt x 

(A-l-26) 



-425-

or 

aF(x,t) + 'i/ • (FV) = 
at x k(X, t) (A-l-27) 

which are to be satisfied at every point where the flow is regular. The 

specific forms taken by these equations to express conservation of mass, 

momentum, energy, ••• etc., are given in Chapter I. 

B) At discontinuities 

Because of the preceeding discussion, and because (A-1-27) is 

satisfied at every regular point of the medium, we see that the second 

integral on the right-hand side of (A-1-24) must vanish identically 

unless .r(t) is a layer source for F If ret) possesses a 

production rate density of F kr(x,t) , then at every point on [ 

(A-1-28) 

This equation will yield the usual Hugoniot equations of shock wave 

theory. It will be particularly useful when applied to a phase boundary 

with the latent heat of transformation appearing on the right-hand side. 

If the source density k(X, t) is of the form 'i/o K then by 

application of Gauss' theorem, and comparison with equations (A-l-23) 

and (A-1-24) we see that 

(A-l-29) 

This last relation is used extensively in section I-I. 
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APPENDIX 2 

G FUNCTIONS: EVALUATION OF THE INTEGRAL 

l
z 

-at G(a,~,v;z) = 0 e t~Jv(t) dt 

a) A particular case 

In a first step we evaluate the integral in the case 

F(~;z) = G(O,-~+~,~+~;z) 

In Erdelyi (B.M.P. vol. 2, p. 22, #4) we find 

l-v v-3/2 
dx = 2 y 

f(v) 

therefore we write, with u = t/z t = uz 

_ -1/2 J () 
Y v-l Y 

dt zdu 

F(~;z) = z-Hli
l u-~1/2 J~+1/2(uz)(uz) du 

thus, with v = ~ + 1/2 

F(~;z) 
-Hl 

= z 
-Hl/2 ~-l 

2 z 
f(t-H/2) 

-1/2 
z J~_1/2(z) 

or 



F(R.;z ) 
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2-Hl/ 2 _ fI jR.-l (z) 
= ""r ";;;(U;-:-O-l/"'2""") V 7f R.-l 

z 

From this result one deduces immediately 

and in an identical fashion 

j R.-l (lea) 

R.-l 
lea 

h (2) (ka) 
(r)-(Hl\~2) (kr) r 2dr = _ R.:.:...--",l-:-_ 

x. kaR.-l 

j R--l (kb) 

kbR.-l 

(A-2-l) 

(A-2-2) 

(A-2-3) 

Both of these results are used in Chapter IV in the computation of the 

multipole coefficients for a sPherical rupture. 

b) General case 

We now turn to the general case and evaluate 

G(a,\1,V;z) (A-2-4) 

i n Abramowitz (p. 483), we find the following r ecursion relation 
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(a
2 

+ 1) G(a,~,v;z) = e-
az z~ Jv+1(z) 

+ a(~ - 1) G(a,~-l,v;z) 

(A-2-5) 

We rewrite this relation, changing ~ to ~+2 

2 2 _z ~2 
[(~+1) - V 1 G(a,~,v;z) = e z Jv+1(z) 

( ) e- a t z~l J (z) + ~+3-v 
V 

-az ~+2 
- a e z J

v 
(z) 

+ a(2~ + 3) G(a , ~+l,v;z) 

2 
- (a + 1) G(a,~+2,v;z) (A-2-6) 

We shall be concerned with negative values of ~ and the recursion 

relation (A-2-6) permits to reduce I~I at constant a and v 

Defining 

P(a,~.v;z) 
1'+2 -az z e 

2 2 
(~+.!-) - V 



Q(a,ll,V;z) 

V(a,}1,'J) = 
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a(211 + 3) 
(1l+1)2 _ v2 

W(a,ll, V) = - 2 2 
()l+1) - v 

we can write 

G(a,ll,V;z) = P(a,)l,v;z) Jv+l(z) 

+ V(a,)l,v) G(a,ll+l,v;z) 

+ W(a,)l,v) G(a,)l+2, v ;z) (A-2-7) 

By concatenation of this formula for n-l successive values of )l 

we can ~press G(a,)l,v;z) in terms of the same functions with two 

successive values of )l 



A 
o 

x 

x 
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G( ••• ll •.• ) = P( .ll. ) J
vtl 

+ Q( .ll. ) J
V 

+ 

V( .ll. ) G( .ll+l. ) + W( .ll. ) G( .ll+2. ) 

.... .... ....... ............ ... ....... ...... .......... 

+A 
n-2 x G( .ll+n-2. ) = P( .ll+n-2. ) J

vtl 
+ Q( .ll+n-2. ) Jv + 

V( .ll+n-2. ) G( .ll+n-l. ) + W( .ll+n-2. ) G( .ll+n. ) 

By summing these equalities weighted by the coefficients A • • ••• A 2 o n-

we get 

n-2 

G(a.ll.v;z) = ~o Ai [p(a.ll+i.v;Z) J vtl (z) + Q(a.ll+i.V;z) Jv(Z)] 
1.= 

+ A 1 G(a.ll+n-l.v;z) 
n-

+ A 2 W(a.ll+n-2.v) G(a.ll+n.v;z) n-
(A-2-8) 

where the coefficients Ai are entirely determined by the recursion 

A1.' = V(a.ll+i-l.v) A. 1 + W(a.ll+i-2.v) A. 2 
1- 1-

(A-2-9) 
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because of the presence of the denominator (P+1)2 - v2 in the 

coefficient W(a,p,v), this recursion breaks down for p + (n-2) + 1 = V 

or n = V+1-p 

But for the functions G we have to evaluate in Chapter IV, V 

takes the constant value V = 2+1/2 and p varies from -2+1/2 to 

2+3/2 Because of the denominator appearing in the coefficients 

P(a,p,v;z) Q(a,p,v;z) , , V(a,p,v) W(a,\l, v) the maximum p for 

which we can apply the reduction formula (A-2-8) is p = 2-3/2 

Thus we see that for -2+1/2:: p ::: t -3/2 we can apply the reduction 

formula, and thus we need only evaluate 

G(a,2-1/2,2+1/2;z) 

G(a,2+1/2,2+1/2;z) 

G(a,2+3/2,2+1/2;z) 

that is, G(a,m-l/2,2+1/2;z) for 2 < m It should be noted that 

this is perfectly feasible in closed form. For this purpose we need to 

evaluate the spherical Bessel functions in closed form. It should also 

be noted that the case where a = i is a particular one which should 

be integrated separately.' 

Recall that 

G(a,m-l/2,2+1/2;z) (A-2-l0) 

The spherical Bessel function j2(t) is expressible in terms of a 
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finite combination of sines and cosines: we write the Hankel functions 

of the first and second kind as 

h(l)(t) = 
~ 

and therefore 

eit 

.Hl 
~ t 

£ 

L 
k=O 

(~+1/2,k)(-2it)-k 

~ L (~+1/2,k)(2it)-k 
k=O 

~ 

=~ 
k=O 

(Hl/2, k) 

(2t)k+l 

Using the following formula (Erdelyi, B.M.P. vol.l, p. 134, US) 

t
n -pt 

e dt 
n! -pz 

=-- -e 
n+l 

p 

n I m 

~:; ~-m+l 
p m=O 

and replacing a by , then, with (~+1/2,k) = (Hk)! 
k! r (n-k+l) 

we have the following results 
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1) a I 1 

a) HI < m -

R. 

l
z -iat m 

jR.(t) dt = L (R.+l/2,k) (_l)R.+k+m+l im+R.+l(m_k~l)! e t 
2k+l 

• + ->-='----;- - " 
( 

1 (_l)k+R.+l m-k-l 

(a_l)m-k (a+l)m-k ~ 
j=o 

b) m = R. 

k=O 

(iz)j 
j! 

e + 
[ 

-i(a-l)z 

(a_l)m-k- j 

1 (a+l)z e- it 
--dt 

t 
(a-l)z 

(A-2-11) 

(A-2-l2) 

We have ther.efore expressed the function G(a,Jl,V;z) for the case 

v = R.+l/2 -R.+l/2 ~ Jl ~ R.+3/2 in terms of a finite combination of 

elementary functions and an exponential integral, all of which can be 

evaluated by standard numerical methods. 

2) a = 1 

The particular case a = 1 is of interest since it corresponds in 

Chapter IV to the case where the rupture velocity equals the seismic 
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velocity. This may be used to model an instantaneous rupture or 

equivalently a shock generated rupture. However W(a,p,v) vanishes in 

that case and from the recursion (A-Z-7) we see that the only integral 

left after reduction is G(i,~+l/Z,~+l/Z;z) which is a standard integral 

found in Abramovitz (p. 483, #11-3-9) 

iz -(~-l/Z) 
/ 

e z 
G (i, H 1 Z , H 1/ Z; z) = --=--:Z'""('"H'""l')--

(A-Z-13) 

Although equations (A-Z-ll) and (A-Z-IZ) provide closed forms for 

the G functions, numerical experiments showed that their computation 

by this method becomes rapidly unstable even for low values of p and 

v It was found empirically that the most reliable method is to 

evaluate them as finite Faurier transforms, using a numerical integra-

tion scheme. 
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APPENDIX 3 

CCMPUTATION OF TIlE INTEGRAL 

We defined in Chapter IV the integral 

a 
at 

o 
dt 

o 

We shall now obtain a closed form for it in the case where 

d (t ) are polynCtnials of t In that case, we may write 
0 0 

a 3 R. -2 
N 

(to) I n R (t ) d = a t at 0 n 0 
0 n=O 

(A-3-l) 

R(t } 
0 

and 

(A-3-2) 

where a (n=O, ... ·,N) are coefficients which depend on the rupture 
n 

geometry under consideration . . FrCtn Erdelyi (B.M.P., vol 1, p. 134. #5) 

we have 

t i t
n 

e-pt dt = 
n! 
n+l 

p 

n! 
n 

e -pz l: 
m! m=O 

Then by simple substitution we get 

n 

m 
z 

n-m+l 
p 

L !!.!.. 
m=O m! 

which is the r esult we sought. 

(A-3-3) 

(A-3-4) 
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APPENDIX 4 

ASYMPTOTIC BEHAVIOR OF THE INTEGRALS 

When evaluating the radiation fields generated by a growing and 

propagating spherical rupture (Chapter IV), we expressed the dynamic 

multipole coefficients in terms of integrals over the source time t 
o 

These were 

111) (w) 

1(2) (w) 
R. 

1(3) (w) 
R. 

and, 

J(2) (W) 
\! 

; 

iTO 
e 

0 

iTo 
e 

0 

iTO 
e 

0 

-iwt 
~t [R3 (to) dR.-2 (to) ] 0 dt 

0 
0 

-iwt 
~t [R3 (to) dR.-2 (to)] 

jR.-l (kaVRto) 0 

0 (k V t )R.-l 
a R 0 

-iwt 
o ~[R3 (t ) dR.-2 (t )] • 

e 

e 

dt 0 0 
0 

[;H 'V, '0' _ ;'-l "0'.' ] dt 
(k V t )R.-l (k R )R.-l 0 

a R 0 a s 

-iwt aR
3
(t) 

0_,,---=0_ 

at 
o 

-iwt aR
3
(t) 

o _,,----'-0_ 
at 

o 

j (k d(t ») 
\! a 0 

jl(kaR(to ») 
k R(t ) \ 

a 0 

dt 
o 

(k d(t ») 
. a 0 

dt 
0 

dt 
o 

(A-4-1) 

(A-4-2) 

(A-4-3 ) 

(A-4-4) 

(A-4-S) 
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v at 

o 
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• j (k d(t » dt v a 0 0 
(A-4-6) 

The integrals appear in the approximate solution to the 

problem, while appear in the exact solution. Here 

R(t ) 
o 

is the radius of the spherical rupture, d (t ) 
o 

the amount of 

translation along the z axis, and we shall assume these functions to 

be polynomials of t 
o 

=w/v 
a 

is the wave number, T 
o 

and R 
s 

the total rupture time and the relaxation radius, are constants of the 

problem. 

We shall now investigate the long period and high frequency 

asymptotic behavior of these integrals. 

A) Long period behavior, w« 1 

In this case, we have wt < WT «1 k V t < k V T «1, 
aRo aRo 

and k R «1 
a s 

o 0 

Thus the following asymptotic behavior hold 

-iwt 
e 0 = 1 + 0 (w) 

j ' l(kVt) ,.- a R 0 

(kV t )R.-l 
a R 0 

j, 1 (k R ) 
J(.;- a S 

(k R )R.-l 
a s 

= 

1 + O(w
2

) 
-

1·3·5 ... • (2R.-l) 

(A-4-7) 



jt-l (\,VRtO ) 

(k v t ) t-l 
cx R 0 

j'l(kR) 
x,- ex s 

(k R )t-l 
cx s 

j (k d (t ») v ex 0 · .. 
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+ O(w"+2) 
1·3·5 .• . • (2v+1) 

(A-4-7) 

(Cont. ) 

Therefore we get immediately the following asymptotic behavior for 

w « 1 

I~2) (w) 'V 1 R3 (T ) d
t - 2 (T ) 

'" 1·3·5. · .. • (2t-l) ° 0 

J (1) (w) 
k" fTo dR

3 
(t ) 

cx d" (t ) ° 'V 

" 1·3·5 . .. • (2,,+1) 0 dt 

° ° 

k"/3 T dR
3 

(t ) 
J(2) (w) cx fa ° d" (to) ° 'V 

1 ·3 ·5 ... • (2,,+1) " dt 

° 

k,,+2/30 
J (3 ) (w) 'V .,-.,....,,:::cx'----:-::----::-. 

" l' 3' 5 ...• (2,,+1) 

dt 

° 

dt 

° 

(A-4-8) 

(A-4-9) 

(A-4-10) 

(A-4-11) 

(A-4-12) 

dR
3

(t ) 
---;;,---,0,,- d t 
dt ° o 

(A-4-1]) 
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However, as shown in Chapter IV, the dominant terms at very long 

period correspond to the values £ = 2 and v = 0 respectively. For 

these particular values we find for w« 1 

and 

J(2)(W) 'V 

o 

J(3)(W) 
o 

R3 (T )/3 
o 

(A-4-l4) 

(A-4-l5) 

To obtain the expressions given in (A-4-l4) and (A-4-lS) we 

assumed that none of these terms vanish, that is R > R (T ) > 0 
S 0 



-440-

B) High frequency behavior, w» 1 

The asymptotic behavior of these integrals is more difficult to 

obtain in that case. We shall assume a simple case corresponding to 

one of the models described in Chapter IV, and computed in Chapter VII: 

and d(t) o to be linear functions of t and, without 
o 

loss of generality take 

R(t ) = d(t ) = VRt /2 
000 

where VR is the rupture velocity . We know that the solutions of 

Chapter IV hold only for V
R 

< ca where c is the wave velocity. 
a 

When the rupture propagates at sonic or supersonic velocity, it must 

then be assumed to have been created instantaneously. 

Let us first note that, if R »V T 
s R 0 

, that is for a relaxation 

zone much larger than the rupture dimensions, the terms in R 
s 

appearing in and are negligible : The high frequency 

behavior of these integrals is then independent of R 
s 

and we have 

for w» 1 (A-4-16) 

Furthermore we know that, for w» 1 



n 
t dt 

o 0 

so that we get immediately 
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for w » 1 (A-4-17) 

The remaining integrals may be rewritten after suitable changes of 

variables 

I (2) (w) 
R. 

J(2) (w) 
v 

f
kVT 

R.+1 a R 0 -i~t . 
R.+1 e t JR._1(t) dt 

(2k ) 
ao . 

(A-4-18) 

f
kVT 

= _3_ a ROe -i~t 

8k3 
a 0 

(A-4-l9) 

(A-4-20) 

where ~ = ca/VR is a number greater than one. The problem is now 

reduced to the study of the integrals appearing on the right-hand sides 

of (A-4-12) through (A-4-20) These integrals do not have any 

limit as w + 00 ,and thus one cannot properly define asymptotic forms 

for them. Instead we separate the integral by writing 
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(A-4-21) 

and choose X to be a fixed number, large enough so that for t > X 

we can use the approximation 

This approximation may be used in the second integral on the right-

hand side of (A-4-2l) ,the first integral being now a fixed number. 

Consider for example the case of (A-4-1S) ,we have 

(A-4-22) 

We see now why we must have s + 1 ,since this expression becomes 

singular for ~ = 1 It is clear that this expression is of order 

one as w + 00 ,so that, by combination of (A-4-2l) and (A-4-22) 

we get 
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1(3) (w) = 
R, for w » 1 (A-4-Z3) 

Similar results are obtained for (A-4-l9) and (A-4-Z0) by the same 

method. We get, after some algebra 

If R( t ) 
o 

/1) (w) 
\! 

J(3) (w) 
\! 

and d(t) 
o 

for w » 1 

are more complicated functions of t 
o 

(A-4-Z4) 

the 

analysis is still possible, but becomes more difficult. For ~ = 1 

the rupture grows at sonic velocity and the solution to the source 

problem must be obtained differently from the beginning (see e.g . , 

Archambeau, 1972). 
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APPENDIX 5 

COMPUTATION OF THE VECTOR DISPLACEMENT FIELD 

FROM THE DILATATION AND ROTATION POTENTIALS 

In the frequency domain the vector displacement field is given 

in terms of the dilatation and rotation potentials by 

ii (r ,w) 
1 ~ 

= - -2- II e(r ,w) 
k 

2 ~ +211 x f/(r,w) 
k 

(A-5-l) 

p S 

The first term represents the "P wave," the second one the "s wave" 

radiation. Archambeau (1964, Appendix 4) showed how one obtains the 

curvilinear components of the vector u from the dilatation e and the 

cartesian (rectangular) components of the rotation f/
i 

' i = 1,2,3 

We recall his result for the case of spherical coordinates 

~ 

u 
r = - ~2 ~~ - -k-;;-2r--'~=-in--e {(Sin q, sin e ~e + cos q, cos e ~q,) Ql 

P s 

+ (Sin q, cos e 
d 
aq, - cos q, sin 

CA-5-2a) 

{(sin e cos sin e sin d ) ~ 
q, dr f/l 

+ (sin e sin q, ~q, - r sin e cos ~ ~r ) Q2 + (cos 0 ~cp) QJ } 

CA-5-2b) 
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N 

~ _:::---=1 __ 3& + _2_ 
u~ ~ - 2 e a~ k2r 

't' krsin 't' 
p S 

{( r cos e cos cp ;r - sin e cos cp ;e) Ql 

a cos e sin cp -- - sin e ar 

- (rsin e ~r + cos e ;e) Q3 } (A-5-2c) 

Because we used multipolar expansions to evaluate the potentials in 

Chapter IV, these spherical components are the most convenient ones to 

compute . Archambeau (1964) also gives the equivalent expressions for 

cartesian and cylindrical coordinates. On the other hand, having the 
..., 

spherical components of the vector u(r,w) , one can as easily obtain 

its cartesian components through the orthogonal transformation 

u cos cp sin e cos 
x 

cp cos e - sin cp U r 

'IT sin cp sin e sin cp e cp - (A-5-3) = cos cos ue y 

u cos e - sin e 0 -
z Ucp 

Similarly, the cylindrical components are given by 

-' sin e e 0 u u cos 
p r 

~ 0 0 1 - (A-5-4) Ucp = ue 
~ cos e - sin e 0 -u Ucp z 
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In order to apply equat~on (A-4-2) , we must f~nd express~ons for 

~ 

, where X ~s anyone of the four potent~als 

n~ (~ ~ 1,2,3) e and ~s g~ven by a multipolar expansion such as 

CD R, 
x(r,w) - L L ZR, (kr)(AR,m cos mcjl + Bim sm mcjl] P~(cos e) 

,1/,=0 m=O 

(A-S-S) 

Here ZR, (kr) represents either a spherical Bessel function or a Hankel 

function of order ,I/, From Stratton (p. 406) we have 

a k 
ar ZR, (kr) = 2,1/,+1 [,I/,Z,I/,_l (kr) - (,1/,+1) ZR,+l(kr)] 

S~~larly from Stratton (1941, p. 402) we have 

m apR, (cos 

ae 
e) [ ] ~ %" (R,-m+l)(R,+m) p~-l(cos e) - p~l(cos e) 

This last formula is val~ for m ~ 0 , and yields 

provided that we define 

p-m( e ) ~ (_l)m (,I/,-m)! pm( e) R, cos (,I/,+m) ! R, cos 

(A-S-6) 

(A-S-7) 

(It should be noted in that respect that the similar formula given by 

Jahnke and Emde (194S, p. 114) must be in error since it conflicts with 
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the recurrence formula given below it for m = 0 ). 

We thus obtain 

a 00 ~ k [ ] ~ = L L 2H1 ~Z~_l (kr) - (H1) Z~+l (kr) 

~=O m=O · 

m · 
• [A~m cos m$ + B~m sin m$] P~ (cos 8) (A-5-8) 

~-
a8 -

00 ~ 

LL Z~ (kr) [A~ cos m$ + B~ sin m$] 

)1;=0 m=O 

1 [ m-1 m+1] . 2 (2-m+1)(~+m) P2 (cos 8) - P~ (cos 8 ) 

(A-5-9) 

00 ~ 

LL 
~=O m=O 

(A-5-10) 

This last expression may be rewritten by using the following r elations 

(Stratton, p. 401) 

1 m 
sin 8 P~ (cos 8) 

cos 8 [ m-1 m+1 ] 
= 2m (~-m+1)(2+m) P~ (cos 8 ) + P~ ( cos 8 ) 
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or (Jahnke and Emde, p. 114) 

m 1 [ m-l m+l cot 8 P2(cOS 8) = 2m (24m+l)(2+m) P2 (cos 8) + P
2 

(cos 

Then specific terms appearing in (A-S-2) are 

~ 

cot 8 h = a.p 

1 .EX­
s:in 8 a.p -

GO 2 

LL 
2=0 m=O 

1 [ m-l m+l ] • 2 (2-m+l)(2+m) P
2 

(cos 8) + P
2 

(cos 8) 

GO 2 
L ~ Z2 (kr) [-AJI.m sin m<p + B2m cos m.p ] 
2=0 m=O 

(A-S-ll) 

. { cos 8 
2 [ 

m-l · m+l ] (24m+l) (Hm) P 2 (COB 8) + P 2 (cos 0) 

+ m sin 8 P~(cos 8) } (A-S-12) 

These last expressions are somewhat better suited for numerical appli-

cations than (A-S-lO) because of the complications occurring at 

8 = 0 or 1T 
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APPENDIX 6 

INTERACTION OF BODY WAVES WITH A FREE SURFACE 

In section III-I, we encountered the problem of the interaction of 

body waves with a free surface. The theory for the case of plane waves 

can be found in textbooks on elementary wave propagation (e.g., Richter, 

1958). The closed form solution for incident plane waves is given by 

Cherry et al. (1972). We shall enumerate here their results without 

proof. 

Figure A-6-l describes the geometry. If c is the apparent 

velocity of the incident plane wave along the free surface, then the 

incidence angles for P- and S- waves are given by the equation 

V V 
c P s 

-s--;in..J:."e- = sin e (A-6-l) 
p s 

where V and V are the P and S wave velocities respectively. 
p s 

a) Incidence of SH waves 

In that case at all incidences one gets a pure reflection, of 

reflection coefficient 1. The particle motion at the surface is in the 

x direction and has amplitude twice that of the incident wave. 

b) Incidence of P waves 

In that case we have V < V < C The reflection coefficient 
S P -

(P + P) is 

(A-6-2) 
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Free surface 

0
x 

~~----------~----------------~y 

p 
p 

s s 
z 

Figure A-6-1. Incidence of rays upon a free surface. 
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TQe conversion coefficient . (P + SV) is 

(A-6-3) 

As for the particle motion at the free surface, the amplitude of the 

radial motion (in the y direction) for an incident P wave of 

amplitude 1 is 

Rad (A-6-4) 

and the amplitude of vertical particle motion in that case is 

1 [ cV (2 ) 1/2 (2 )] Vert = - 2 ~ .'=- - 1 .'=- - 2 
D V2 v2 V2 

s p s 

(A-6-S) 

In the equations (A-6-2) to (A-6-S) the quantity D is given by 

c ) Incidence of SV waves 

For SV waves two cases arise 

ex) HV<V<c 
s p -

(A-6-6) 
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then the reflection coefficient (SY + SV) is 

1 [ (2 ) 1/2 2 1/2 · 
R = D 4 ;~ - 1 (;! -1 ) - (A-6-7) 

where D is now given by 

(A-6-8) 

The conversion coefficient is then 

c = - * [ 4 (;~ _ 1) 1/2 (;~ _ 2) ] 
p s 

(A-6-9) 

For an incident SV wave of amplitude 1 the radial and vertical 

amplitudes of particle motion at the free surface are respectively 

(A-6-10) 

1 [ ( 2 )1/2 ( 2 )1/2] 
Vert = Ii 4 ~s ~! - 1 ;! -1 (A-6-ll) 
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Bl If V < c < V 
s - p 

In that case the incidence angle is greater than the critical angle. Ray 

theory does not apply any longer and one must take into account the 

generation of Rayleigh waves. Since for practical purposes this case 

does not arise for the applications mentioned in section 111-1, we shall 

omit the theory for that case. The reader will find the ne ces sary 

information, for ex ample, in Brekhovskikh (1960). 
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APPENDIX 7 

DERIVATION OF EULER ANGLES FROM FAULT ORIENTATION PARAMETERS 

As described in Chapter IV, the most convenient coordinate system 

to represent the radiation field from a propagating rupture is that one 

with the z-axis along the direction of propagation. It is shown in 

Chapter V how to transform the radiation field under a rotation of the 

reference frame, if the Euler angles are known. We now derive these 

Euler angles to transform the coordinate system to the local geographi­

cal system, described on figure (A-7-1). The z-axis is along the local 

vertical, the x-axis in a northerly direction. 

The fault geometry can be described by its strike. diP. and plunge, 

denoted S, D, and P respectively. We choose the convention that the 

strike be measured counterclockwise from the North so that -TI ~ S ~ TI , 

or 0 < S < 2TI The dip can then be measured clockwise from the 

horizontal by a vertical obse~er at the hypocenter so that 0 < D < TI • 

The same observer measures the plunge downward from the horizontal, thus 

-TI/2 < P ~ TI/2 The unit vectors xG' YG' zG are then transformed 

into the unit vectors xs'Ys,zs,by the (orthogonal) rotation matrix 

-sin S sin D 

sin D cos S 

-cos D 

-sin S cos D cos P 

+ cos S sin P 

cos S cos D cos P 

+ sin S sin P 

sin D cos P 

sin S cos D sin P 

+ cos S cos P 

-cos S COB D sin P 

+ sin S cos P 

-sin D sin P 

(A-7-1) 
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~----------------------~·YG 

Figure A-7-l . Fault geometry relating . the source coordinate system to 
the geographical coordinate system. S D P, are the st rike, 
dip, and plunge angles respectively. 
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system. T can then be written equivalently in terms of the Euler 

angle s ~l' 8 , ~2 described in Chapter V (figure V-2-1 ) - (Gelf'and, 

1963). Calling the new matrix R , we have 

cos ~l cos ~2 -cos ~l sin ~2 sin e sin ~l 

-cos e sin ~l sin ~2 -COB e sin ~l cos ~2 

R= sin ~l cos ~2 -sin ~l sin ~2 -sin 8 cos ~l 

+cos e cos ~l sin ~2 +cos e cos ~l cos ~2 

sin ~2 sin e sin 8 cos ~2 cos e 

(A-7-2) 

Here 0 ~ ~l ~ 2TT. 0 ~ 8 ~ TT , 0 ~ ~2 5:_ 2TT 

We obtain the relation between the fault orientation parameters 

and the Euler angles by simple identification of T and R 

1) T33 = ± 1 

In that case the transformation is a simple rotation of angle ~l 

around the z-axis. thus 

8 .JO • 
1 TT ' ~ - 0 2 

: } (A-7-3) 

Then because 0 < e < TT 

-1 
8 - cos (T33) (A-7-4) -



-457-

sin 0 s (1_T2 )1/2 is a positive quantity. Furthermore we have 
33 

sin ~l 
T13 

COB ~l = -
T23 

= 0 , 
0 sin sin 

sin ~2 
T3l 

~2 = 
T32 

= 
0 

, cos sin sin 0 

Therefore 

~l 
-1 

-T23 
= cos 

_ T2 )1/2 (1 33 

~l 27T - -1 -T23 
= cos 

_ T2 )1/2 (1 33 

if T13 > 0 I 
if T13 < 0 

and 

~2 
-1 T32 

if T3l > 0 = cos 
T2 ) 1/2 (1 - 33 

~2 27T -
-1 T32 

if T3l < 0 cos 
T2 )1/2 (1 - 33 

(A-7-5) 

(A-7-6) 

The Euler angles thus obtained transform the geographical coordinates 

into the source coordinates. The inverse rotation may be obtained by 

replacing the matrix Tij by its transposed Tji in the results 

above; the Euler angles for the inverse rotation are 7T-~2' 0 

7T-~ 
1 
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APPENDIX 8 

ULTRASPHERICAL FUNCTIONS AND JACOBI POLYNOMIALS 

The formu1ae describing the transformation of multipo1ar expansions 

under rotations of the coordinate system are given in Chapter V. They 

involve u1traspherica1 functions for which we now derive a simple c10sed 

form for the cases of interest to us. 

Ge1'fand (1963) gives the fo11owing analytical expressions for the 

u1traspherical functions. 

K-m 
- -2-

F(l-~) (1+~) 

where 

n-m .K-m 

K+m 
2 

(-1) . ~ 
F = ~~--~-

n 
2 (n-m)! 

.. 
n-K 

d~ 

(n-m)! (n+K) 1 

(n+m)! (n-K)! 

(A-8-1) 

These functions possess tne following symmetry properties (Gel'fand, 

1963) 

(A-8-2) 

and therefore depend only on the va1ues of Im+KI and Im-KI One is 

thus led to define 
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e Im+KI 
I = s = n - -(a.+e) s - 2 + 

I I 
t = n - -(a.-e) t = n + -(a.-e) 

2 + 2 

where all of these quantities are integers. 

By identification we can rewrite (A-8-1) as 

(A-8-3) 

whe r e K is a constant and pa. e(~) are the Jacobi polynomials in 
s 

Erde lyi's notation 

s 
= .i::.!.L~ (l_~)-a.(l+~)-e 

s 

s 
- [ s +cr. s +e J 
~ (l-~) - (l+~)- (A-8-4) 

2 ·s ! d~ 

Since the indices are integers, (A-8-4) can b e rewritten in closed 

form 

j=O 

We e v a lua t e K b y simple identification 

1 . a. 
- = 1 2 
K 

n-s t't ! +. 

s ! s ! 
+ 

s -j 
(A-8-5) 

(A-8-6) 



-460-

Equations (A-S-3), (A-S-5) and (A-S-6) are then combined to yield 

IllK 
P n (II) 

(A-S-7) 

Equation (A-S-7) provides a closed form for the ultraspherical 

function which is particularly suitable for computation on digital 

machines. 

Formula (A-S-7) is a polynomial involving few terms , especially 

for low degree n It is thus particularly convenient for nurner.ical 

computations in those cases. For seismological problems one is rarely 

interested in considering more than a few multipoles and (A-S-7) is 

adequate. For larger degrees and orders useful recurrence relations 

are given by Edmonds (1957). 
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APPENDIX 9 

AN ADDITION THEOREM FOR SPHERICAL WAVE FUNCTIONS 

The following addition theorem for spherical waves functions is 

used in Chapter IV to compute the radiation fields from a propagating 

rupture. It is used also in Chapter V to determine the transformation 

of multipolar expansions under translation of the coordinate system. 

The proof presented here is parallel to that of Friedman and 

Russek (1954), but uses also some remarks given by Miller (1964). The 

results of Friedman and Russek are erroneous at least in one case, and 

so are Ben-MEmahem' s (1962) who recast the solution in operational form. 

We define a spherical wave function by 

Here r 

Z (kr) ym(8,~) = (_l)m 
n . n 

(2n+l)(n- m )! 
411 (n+ m )! 

• Z (kr) pm(cos 8) eim~ 
n n 

8 ~ are the usual spherical coordinates in the 

(A-9-l) 

original coordinate system. 8 ,~ are the polar angles of the 

position vector r Z (kr) is either the spherical Bessel function 
n 

. (kr) I n 
or a spherical Hankel function of the first or second kind • 

h (1) (kr) 
n 

or h(2) (kr) 
n 

Thus (A-9-l) may represent a standing wave, 

or an outgoing or incoming travelling wave. 

Let (l , fl be the polar angles of the wave vector k then we 
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can wrLte (Morse and Feshbach, 1953, p . 1466) 

Here 

:ik"r e 
00 

= 411 L 
Jl.=o 

R. 
E iR. jR.(kr) ~(e,4l) 

n=-R. 

is the complex conjugate of , and we have 

(A-9-2) 

(A-9-3) 

We shall use the following integral representation for spherical waves 

(Friedman and Russek, 1954) 

1211 1 :ik"r 411in Z (kr) ym(8,4l) = e ym(a,S) 
n n n 

o C 
sin a dadS (A-9-4) 

where the integration contour C is shown on figure A-9-l for the 

various cases involving Z (kr) 
n 

(Morse and Feshbach, 1953, p. 1467; 

Friedman and Russek, 1954, p. 17). Multiplying both sides of (A-9-2) 

by Y~(a, S) and integrating over a and S according to (A-9-4) we 

get the following expansion 
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1m (a) , 

Figure A-9-l. Contours in the a-plane for the integral 
representation of Hankel and Bessel functions. 
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12Tf{ 
o lc y~«(l, B) 

ik·r 
e sin (l dadB = 

'" 
4Tf E 

R.=o 

If now the vector r is written as r 1 + r
2 

' then 

ik·r 
e = e 

ik·r 
1 

ik·r 
2 e 

(A-9-5) 

(A-9-6) 

Equation (A-9-6) can be substituted into the integrand on the right-

hand side of (A-9-4) Friedman and Russek (1954) prove that if 

exp(i k· r 1) may then be replaced by use of 

(A-9-2) and that the infinite summation can be interchanged with the 

integral Indeed they do so, but claim that in the case Ir21 < Irll 

one only has to interchange the scalars and in the final 

result. This is clearly not the case; as we can see at this point, one 

has to interchange the vectors and 

Then by substituting (A-9-6) 

into (A-9-4) ,using (A-9-2) to expand exp (i k 'r 1) and inter-

changing the order of summation and integration, we obtain 
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"" 
41fi

n 
Z (kr) y'l'C8,q,) = 41f L 
n n 

\)=0 

ik'r 
e 2 y'I'(a, 13) 

n 
y ~(a,f3) sin a dadf3 

\) 

(A-9-7) 

We can now make use of (A-9-3) and of the expansion for a product of 

spherical functions (Edmonds, 1957) 

= L (2n+l) (2\1+1) (2Hl) ) 1/2 
o . 41f }\',p 

c: ~ 

p 
Y~(a , f3) 

\) 

o 

(A-9-8) 

Here the symbols appearing on the right-hand side are the usual 3-j 

symbols of Wigner, introduced in- the theory of coupling of angular 

momentum vectors in quantum mechanics. 

Equation (A-9-8) can be substituted into (A-9-7) and the order 

of summation and integration can be interchanged since the Hum tn 

(A-9-8) is a finite one. Then, using (A-9-4) whenever possible, we 
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get 

00 

Zn(kr) ~(6,CP) = L 
v 

L 
\1=0 ll=-V 

L A(n,mlv,lll R.,p) 
R.,p 

(A-9-9) 

which is the addition theorem for spherical wave functions that we 

sought. The coefficient A is given by 

v v c: o 

(A-9-10) 

For the second 3-j coefficient not to vanish we need n+V+R. to be 

even (see Edmonds, 1957). In that case, we must have p = ll-m ,but 

since Ipl < R. this means I ll-m I S R. Further, from the 

triangular inequality we must have (Edmonds, 1957 ; Gottfried, 1966) 

In-vi s R. < n+v 

We can permute the first and third column in both 3-j coefficients 

without changing their value since n+R.+v is even. Then u~ing the 

relation between 3-j coefficients and the Clebsch-Gordan coefficients 
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(Edmonds, p. 46; Gottfried, P. 220) 

(A-9-11) 

we eventually get 

v nt-v 
Z (kr) yDica ,</» = L 

n n L 
\1=0 \l=-v 

~ C(v,\l,~ln,m) 
~~n-v l 

(A-9-l2) 

where 

= . V+~-n (4TI(2V+l)C2~+1» ) 1/ 2 C(v,\l,~ln,m) 1. 2nt-l . 

• (~v m-\l \l I n m)(~ V 0 0 I n 0) (A-9-13) 

The coefficient C is non-zero only if ~+v+n is even. The Clebsch-

Gordan coefficients appearing in (A-9-l3) can be evaluated by standard 

recursion relations. See, for example, Edmonds (1957). 
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The result given by (A~9-12) and (A~9-13) is identical with 

that obtained by Miller (1964) in the case of standing waves. 

This result is valid for r l < r
2 If the converse is true, then 

and are to be interchanged, and not only and as 

stated by Friedman and Russek (1954). Their equations (19) and (21) 

can hardly be correct since they do not reduce to the identity in the 

case of zero translation; in fact, their right-hand sides are not 

spherical wave expansions in all cases. Ben-Menahem (1962) used their 

results and his theorem suffers, therefore, from the same shortcoming. 

One can easily verify that (A-9-12) reduces to the identity in the 

case r = 0 
1 

One particularlY interesting case is that when the translation 

r
l 

is along the z-axis of the initial coordinate system. Then 81 

is 0 or W ,and only the terms for ~ = 0 remain; $1 can be 

taken to be zero. We have 

(A-9-14) 

where e: cos 8
1 

is ±1 Noting that $2 = $ in that case, we 

obtain 

Z (kr) ym(8,$) = 
n n L 

v=o 

(A-9-15) 



where 

Note that if r = 0 
1 
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• (~\! mol n m) (~ \! 0 0 I n 0) 

, there is no translation, then \! = 0 

only term present and we have ~ = n ,thus 

Z (kr) Y"(e ,<j» 
n n 

Cl(O,nln,m) Z (kr) Y"(e,<j» 
n n 

But 

Cl (O,nln,m) (n 0 mOl n m) (n 0 0 0 I n 0) = 1 

(A-9-16) 

is the 

(A-9-17) 

and (A-9-17) is a proper equality. We make use of (A-9-l5) in 

Chapter IV and in Chapter V. This result is equivalent to the one 

obtained by Sato (1950), who used a different approach, since the 

terms in the sum over ~ in (A-9-15) vanish if ~ < m 
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-.Al'PENDIX 10 

3-j S)l1BOLS USED IN CHAPTER IV 

Vector coupling coefficients, -or 3-j symbols are used in 

Appendix 9 in the addition theorem for spherical wave functions. This 

theorem is used in Chapter IV to solve the problem of a propagating 

spherical rupture. The table given below provides closed forms for all 

the 3-j symbols to be used in Chapter IV. This table is de rived from 

the closed forms tabulated by Edmonds (1957). 

a) V = R, - 2 

R,-2 

o 

R,-2 2) = (V+2 
-1 1 o 

,£,-2 2) = (V+2 
-2 2 o 

v 

0
2) = 

o 
(-1) v(V+2) (V+l) 

6(2v)! 
(2v+5) ! 

v 2) = 2(-1)v+l(v+l)"(v+2)(v+3) 
o -1 

(2V)! 
(2V+5) ! 

v 2 ) = (_l)v ~(V+l)(V+2)(V+3)(V+4) 
o -2 

(2v )! 
(2v+5)! 



b) v = )I, 

o 

c) V = )I, + Z 

I 

HZ 

o 

)I,+Z 

o 

HZ 

o 
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v 

o 
Z) v+1 = 2(:-1) v(V+1) 
o 

(2v-2)! 
(2v+3)! 

v 2) 
o -1 

v 2) 
o -2 

v 

o 

(_1)V ~V(V+1) 6(ZV-2)! 
(2v+3)! 

(_l)V ~ (v-l)v(V+1) (V+2) 

: ) = (_1)V v(v-1) 
6(2'11-4)! 
(2 +l)! 

6(2V-2) ! 
(2v+3)! 

Z) = ( V-Z 
-1 1 

v 2) = 2(-1) v v V (v-1) (V-2) 
o -1 

(2v-4) ! 
(2V+1)! 

Z) = (V-Z 
-Z Z 

v 2) 
o -2 

(-1) V V (v-3) (v-2) (v-l)v 

(2'.>-4)1 
(NH) ! 
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APPENDIX 11 

BOUNDARY CONDITIONS FOR AN ELASTIC ELLIPSOIDAL INCLUSION 

The boundary conditions prevailing on the boundary of an elastic 

ellipsoidal inclusion embedded in an infinite elastic matrix are 

described in Chapter VI. The system (VI-1-31) expresses the continuity 

of the tractions and displacements at the boundary of the inclusion . 

We shall give in this Appendix the completely developed forms 

of these equations in ellipsoidal coordinates. The notation used 

here is the same as in Chapter VI . However, for simplicity, the 

definition of some coefficients has been changed slightly. For 

consistency with the results of Chapter VI, the following operations 

must be performed on the coefficients used below : 

Z 
AZ ' A3 ' A4 ' BZ ' B3 ' B4 must be mutiplied by 1 / km 

AS ' Ag , AID ' BS ' Bg , BID must be multiplied by 

Other coefficients must be multiplied by 1 / m
Z 

2 
kk' / im 

The constants V and V are the Poisson ratio and the 

rigidity of the matrix respectively, and the constants v' and V' 

are those of the inclusion. 
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The equation expressing the continuity of the stress component 

T across the boundary a = a may be developed as : 
aa 0 
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- /5 2>.l L 
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A.t [ttz..P« - 6. d.t} -4/ c
fj .J~dr 
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(A-ll-l) 

Equation (A-ll-l) must be satisfied identically in Band y 

on the surface of the ellipsoid a = a . We must therefore find 
o 

all the independent functions of these variables appearing in this 

equation. This is done in Appendix 12 . 

Similarly the continuity of the component of 'traction ,Ta B 

on the surface of the inclusion is expressed by the following 

equation : 
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7: Co) 
ei!< 

(A-1l-2) 

The remarks made earlier about equation (A-ll-l) apply here as 

well. Note that equation (A-II-2) was divided through bY the factor 

R<i~~/~~ . The equation expressing the continuity of T is simply 
. ay 

obtained from (A-II-2) by interchanging ~ and y everywhere. 

We turn now to the equation expressing the continuity of the 

normal component of displacement u 
ex 

trace of the prestress, that is 

We shall denote by ~ the 

(A-ll-J) 
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The developed equation reads : 
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This equation was divided through by ha . Finally we express 

the continuity of the component ue of the displacement field by 

the equation : 



-490-

l (-('l./J,J'DIIi)flZ - (-lZ-"s;.ri..,l)f, B, +[~2(3-¥JJ) 

. at/. Sill] fi'1- [g2 (3-'tV~: 40l d. .. ] Bf + (-CI.I'1.t)I1'L 

- (_,Z- rrti) f, 13,2. J ""/ 'p AI" d r 

+ { [- (3-4 v) .dol j),t] 112 - E (3 -I, V:J.f, AJ doll 62 +( dol S~) 1/, 

- (A,l.ci,) ;, B9 + M" 11,2. - '"ol f, B,zJ "I'd/,dr r:i.r 

+! (--:1 .... C .. )A't - (-~c.Jfo Bit +[{3-tfl~)C.,tS.tJII, 

- [(3-/tV j ;, '" 4,(.] B, - ~ II,S · +,P .. p 8/J ",,/ap Ar'r 

t[ [-(3-4V)~cJ C,,] fI" - [-(3-it~'Jf,A", .. J Bit + (c_5.t)1I6 

- (A~ c'(rf,' 6. T P.t II,s - ,oil. :' f3'f J c/ ", Are r 

-I [ (- IZ c.. lJ,,) fls _ (- it c.", d,;.);' 8s + [ '- 2 (3-1, v) dol. {-,.} 11,(1 

-[ f.1. (3-4)));' ' .. "Ill] 8,# - f2~ 11'1( . + llttt.f, 8'It 1 
• 4,d '/ c. r dJ­

+ [[ (3-4 v) 'If J).t.] lis - [O-'tv~;'- c"" d"jB 5 - a" c .. II/t) 



-491-

+ "0/ ""' f, 8'0 - ~ fI'f + 0 ... ;' 8/1t J ..Jp ,,/ 'rdJ-

+ ( [- z (1-2.v) 4~ S,,} R3 - [-l (I-lll') P .-!.}} 83 

+[-1. (I-lll)'~ C<£JIl 7 -[-l(l-zv'Jf './j 87 

-I- [ -1 i ~ (H v) doL b .. ] II, - [_lllt (l-lJJj d.t f J !J 8 

+ 2. Lot fi" -.t f,t ;, 8'1 oj- l N,t I1'J - 2. nil :,8,) J 

-[z.(I-lll)L c ,] 8 
",' 0/ 7 

+[Zgl.(l-lv)d,t i).,J fl8 - [Zil(l-zvJff/"] 88 

+ (-2 P, L p.) II" - (-7. P, .f.t J: 81/ + (-z ~ Not) I1'J 

(-2 P h."t.) L B } 4.A. cl'I d" 
2. . f' I . 13 '"" ,- ,-

-



-492-
,,.,~ 'r (0) 

40£ dot c., rL/ 4 r til' £.' .A'~ 

gl..m l. (oj 

..4/ tip '" 4,£ '0{ .Act '-r 

" 
xy 

C. l. M 1. ( (oj v-a) C/ .At' '($ "I' L. 
+ 7: Y)' c.r 

'( 'l. 1+ fr' 

i ... l. T (0) 

c.", "ot ,At! eL' 
Cr "r -

~/, y~ P 

. gl. t (tI) 
...:It, + ' m Z-X~ · .4,l ri", .ltd.; 

" ~ , 
" i.l.,., , (0) . 

1-
r),1! ',I. d" A~ 'p Cor d r t.' L 

ml... ( CoJ ~~) t:I/" --!" 'p d, d
Z - -eH -

i'l. ;. 
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TA~ equation was divided through by the factor -h
a 

I 2~ 

The corres ponding equation for the component u of tlle displacement 
y 

f ield is simply obtained by interchanging a and y in (A-ll-S) . 

The reduction of the equations given . in this Appendix is done by 

applying the formulae of Appendix 12 , and by following the algorithm 

given at the end of it . 
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APPENDIX 12 

SOLUTION FOR THE STATIC ELLIPSOIDAL INCLUSION 

The boundary conditions expressed in Appendix 11 are to be 

satisfied identically in and y on the inclusion boundary ex = ex 
o 

This appendix contains the necessary formulae to reduce these equations . 

General formulae are given which include 1) identities between the 

Jacobi elliptic functions; 2) first and s~cond derivatives of the Lame 

functions of the first and second kind, of the metric coefficients, and 

of the Lame products;. 3) useful identities to reduce some of the 

expressions encountered in reducing the equations; 4) a list of the 

independent functions of e and y found in each one of the four 

equations of Appendix 11 ; and 5) a flow chart of the reduction algorithm. 

i) General identities between Jacobi elliptic functions 

These identities can be found in the literature (e.g., Whittaker 

and Watson, 1927), Arscott (1964), Erdelyi (1953). 

l 
'- y + I 

('& 
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ii) Derivatives appearing in the equation 

a) Lame functions of the f i rst kind 
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b) Lame functions of the second kind 

The first derivatives are obtained in terms of the wronskian 

between Lame functions of the first and second kind. The second 

derivatives are obtained directly by writing Lame's equation. 

We define the wronskian by 

W,,(i.): A (l!:) rJ./\ t\(z.) cL>. - - -c:L~ 4ii!; 
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c) Functions of the metric coefficients 

We have the following definitions. 
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Then we have to compute the following expressions 
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These equations are purposely left unsimplified because these are the 

most convenient forms when reducing the boundary condition equations. 

d) Lame products, and ellipsoidal surface harmonics. 

We define the following ellipsoidal surface harmonics and their 

derivatives 

I) 
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Clearly, some of the expressions given above could be simplified 

and rewritten in a more elegant form. One must remember, however, 

that there .is little point in doing this until one knows which inde-

pendent functions of i3 and y one wishes to appear . . The equations 

listed above are p~rticularly useful to determine the various symmetries 

of the displacements and stresses of. the problem (see Chapter VI). 

iii) Identities used in reducing the equations. 

The identities given below were proven as they were needed in the 

process of reducing the boundary condition equations of Appendix 11. 

Their specific purpose is the following : the left-hand side is in all 

cases a particular quantity encountered during the reduction process, 

and the right-hand side is written in such a way so as to make specific 
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functions of ~ and y appear explicitly. These functions must be 

some of the independent functions of ~ and y described later in the 

Appendix. 

[
It 1. t. If, ,-] ) 

') ~ ( ~ r ()' - i ~ ~ p C ~ . f ( p , r -

[9~~~~~ (e~-A:)+Alc:(~;-~~)]f{p,r) 

We shall drop the arbitrary function f(~.y) for the remaining identities . 

3) 
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iv) Reduction of the boundary condition equations. 

We now turn to the problem of solving the equations of Appendix 11. 

These equations must be satisfied identically in 8 and y for . 

Ct = Ct 
o 

We list below all the terms appearing in these equations, 

and give their expressions in terms of independent functions of 8 

and y Each one of these independent functions gives rise to a 

separate equation since its coefficient must be equal to the coefficient 

of the same function on the right-hand side of the boundary condition 

equation. The circled numbers indicate the number of the equation 

generated by each particular term. 
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a) Continuity of T " 
C!C! 

There are 1L independent functions of e and y in (A-1l-1) , 

which. are : 
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@ 

All the other terms in (A-ll-l) can be expressed as linear combinations 

involving these 12 independent functional forms. We have 

R ?!Kri. 
cI. ~ 11(3 n r = 

io/. ?JRo( 
-R~ -

b" 

P, (P,-I) 
+-

( ./U pI tx.c.t P 
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P, by ~ } 

~ Z.-oS 2 
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@) 

® @ 
l Z P,(P,-tJdldlj 
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by Pz ) 

® @ @ 
~R« { (Z~ z.A Z _l..Z 2 Z I d(d l

} 

'bti .~ r €'l. C~ C. ~ +--iL "(I r 

We shall not indicate the equation numbers any longer. 
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- Since the same functions of S and y appear on the right-hand side of 

(A-11-1), this equation is thus equivalent to a system of 12 equations 

in which S and y do not appear any more, and where ex = ex 
o 
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b) Continuity of T Q and T ' • 
ex" a.y 

There are 11 independent functions of Sand y which appear in 

(A-II-2), and they are 
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The decomposition of any term figuring in (A-11-2) in terms of 

these 11 functions is elementary in that case and can be omitted. 

Recall that the equation expressing the continuity of 

obtained from (A-11-2) by interchanging Sand y 

T 
a;y 

is simply 

The independent 

functions of S and y figuring in that equation are thus obtained 

by interchanging S" and y in the above expressions. However, since 

the a dependence of the equations is the same in both cases, and since 

S and yare not present in the final "system, one can verify that 

the systems for TaS and T are identical, and therefore redundant. ay 

C) Continuity of u 
a 

There are 6 independent functions of S and y in (A-1l-4), 

which are given below. 

All d. 4~ 01..;- @ 
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Since no other term appears in (A-11-4), no further discussion is 

necessary. 

d) Continuity of Us and u 
y 

These tWO components of displacement yield identical systems, 

just as the corresponding tractions do. There are 8 independent 

functions of . S 4nd Y in (A-11-5), which are found to be 
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In that case again, no further discussion is required. 

v) Reduction of the system (1) through (39) 

We are now in the presence of a system of 39 linear equations in 

(B1 does not appear in the 

equations of Appendix 11.) We shall now describe the algorithm which 

leads to a reduction of this system. 

First of all, the system of eq~ations naturally separates itself 

into four systems which are 

System A: Equations 

Unknowns 

Data 

System B: Equations 

Unknowns 

Data 

1,7,13,14,21,26,32,33 

A2,A9,A12,B2,B9,B12 

, (0) 
xz 

2,9,15,16,22,27,34,35 

A4,A6,A15,B4,B6,Bl5 

,(0) 
x:y 



System C: Equations 

Unknowns 

Data 
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3,10,17,18,23,28,36,37 

A5,A10,A14,B5,B10,B14 

T(o) 
yz 

System D: Equations 4,5,6,8,11,12,19,20,24,25,29,30,31,38,39 

Unknowns 

Data 
(0) 

T 
xx 

, T 
(0) 
yy 

(0) 
,Tzz 

For example, the first subsystem--System A--is reduced by the following 

operations : 

a) By addition and subtraction of (32) and (33), we get (32-1) and 

(33-1) which are simpler 

b) (26) may be simplified by substituting (7) into it. This yi e lds 

(26-1) 

c) Subtract (14) from (13) to get (13-1) 

d) Subtract (1) from (14) to get (14-1) 

e) Subtract (14) from (21) to get (21-1) 

At this point it should be easy to see that 

f) (7) and (14-1) can be combined to yield (13-1) 

g) (7) and (21-1) can be combined to yield (13-1) 

h) (33-1) and (26-1) can be combined to yield (32-1) 

Three of the eight equations are thus redundant . We are left with five 

equations for six unknowns . However, with a little effort it can be 

seen that the elementarY internal displacement solution with coefficient 

Bl2 can be expressed as a linear combination of those with coefficients 
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We can thus choose B12 = 0 The 5 x 5 system 

obtained in this fashion can then· be rewritten in a more elegant fashion 

and is given in Chapter VI. Systems Band C are reduced in exactly 

the same fashion . The algebra is more difficult for System D, but 

proceeds from the same principles. 

The final results are given in Chapter VI; they are in the form of 

three 5 x 5 systems and one 9 x 9 system. 
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APPENDIX 13 

-CALCULATION OF WRONSKIANS OF LAME FUNCTIONS 

Let A(Z) be a Lame function of the first kind. Then as pointed 

out in Chapter VI, one can associate to A(Z) a Lame function of the 

second kind by the integral relation 

Ii.(Z) C A(Z) fZ 
ik' 

du 

A 2(z) 

The normalization factor C may be chosen so that Ii.(z) 

particular value Z = a Then we have 

C [ f~, 
and also 

C = W
A 

(a) = Ii.' (a) A (a) - Ii.(a) A' (a) 

(A-13-l) 

A(Z) for a 

(A-13-2) 

(A-13-3) 

The wronskians appearing in equations (VI-1-32) through (VI-1-35) 

can be computed by (A-13-2) , in which we set a = a 
o 

We denote the incomplete elliptic integral of the second kind by 

E(z) =( 
o 

2 
dn u du (A-13-4) 



We define 

a = C! - ik' 
o 0 
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Re(C! ) 
o 

Here C! is the first of the ellipsoidal coordinates defined in section 

VI-I. 

The calculation of the wronskians does not present any major 

difficulty. We shall use integrals given by Gradshteyn and Ryshik 

(1965, p. 630), and by Whittaker and Watson (1927, p. 516). Then, 

adopting the notation of section VI-I, 

(A-13-5) 

1 - E(a ) (A-13-6) -= a 
W 0 0 

s 

1 
dn C! 

1 + 
0 (A-13-7) -= a - - E(a ) 

k,2 sn W 0 k,2 0 C! cn C! c 
0 0 

1 1 
en 0.

0 (A-13-8) - = - E(a ) 
k,2 Wd k,2 0 sn C! dn C! 

0 0 

1 k2 1 (A-13-9) -= -+-
Wm Wd Ws 

1 1 k2 
(A-13-10) W-" k,2 k,2 W 0 W c d 
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1 -1 
-W~- " -2--s-n--a~0--c-n-a--o=-dn--a-o-.~rn-2~a-o---P-l-r) 

where 1 
P 1 "-1-+k"""'2;;--_-=V"=1_=k'"'2F

k
=, Ofi 

k 
4 

(3Pl -l) 1 

2P k ,2 Wd 
1 

Wn can be obtained by changing Pl in (A-13-l2) to 

1 
P 2 " -1+-k"""'2;;-+-=~rl-_-k"'l2I""k-' 2:;" 

(A-13-11) 

(A-13-12) 

Equations (A-13-5) through (A-13-B) yield results which are identical 

with those of Sadowsky and Sternberg (1949) . However, (A-13-l2) 

cannot be reconciled with the L&me function of the second kind given by 

these authors. Although (A-13-l2) may be rewritten in a form similar 

to that given by Sadowsky and Sternberg, we have been unable to achieve 

complete agreement, in spite of repeated efforts to do so. 


