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ABSTRACT 

An inversion procedure is developed to estimate the radial 

variations of compressional velocity, shear velocity, and density in 

the Earth. "The radial distributions are defined as spherically 

symmetric averages of the actual distributions in the laterally het­

erogeneous Earth, and the nature of the averaging implied by averaging 

certain sets of eigenperiod and travel-time data is axamined. For 

travel-time data, the spherical averaging yields the Terrestrial 

Monopole if the data sample a distribution derived from a uniform 

distribution of sources and receivers. Since this is difficult to 

obtain for absolute times, differential travel times are used to 

constrain the velocities. It is shown that the bias inherent in 

available sets of differential travel-time data is considerably less 

than that in equivalent sets Of absolute travel-time data, if the 

phase combination is suitably chosen. Observations are presented for 

the phase combinations PcP-P, ScS-S, P'(AB)-P'(DF), and P'(BC)-P'(DF). 

The inversion algorithm developed is based on a linear approxi­

mation to the perturbation equations and is shown to provide a stable 

method for estimating the radial distributions of velocities and den­

sity from a finite number of inaccurate data. The linear inversion 

theory presented is complete; it allows one to estimate the resolving 

power of the data and the resolvability of specified features in the 

model. 

Three estimates of the radial distributions are derived using an 

extensive set of eigenperiod and travel-time data. One model, 
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designated model Bl, fits 127 of the 177 eigenperiods of the Dziewon­

ski-Gilbert set within their formal 95% confidence intervals. This 

model satisfies extensive sets of auxilIary data as well. 

It is shown from resolving power calculations that little infor­

mation is lost by using differential travel times in lieu of absolute 

times. It is demonstrated that the nature of the averaging in the 

estimation procedure for given sets of gross Earth data can be im­

proved by judicious specification of the norm on the space of models. 
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Chapter 1 

INTRODUCTION 

1.1 Statement of the problem. This t hes i s addresses the problem of 

estimating the average radial distributions of compressional velocity, 

shear velocity, and density in the Earth from the observations of the 

Earth's mass, moment of inertia, body wave travel times, and periods 

of free oscillation. 

1.2 Motivation. Seismological investigation of the structure of the 

Earth began with Oldham's correct identification of compressional, 

shear, and surface waves on seismograms of the Assam earthquake of 

1897. Application of the theory of elastic wave propagation to the 

problem of interpreting seismological data proceeded rapidly, culmin-

ating with the publication of the Jeffreys-Bullen and Gutenberg-

Richter tables. Bullen [1963, p.3] remarks: 

The period from 1911 to 1940 saw the application of seis­
mological data to problems of the Earth's internal struc­
ture to a quite remarkable degree. The period started 
with the vaguest notions about a molten central core and 
finished with well-determined values of the density, 
pressure, compressibility, rigidity, and gravity through­
out practically the whole Earth. 

Despite the progress made in the first part of this century, the prob-

lem of describing the variations of elastic parameters and density in 

the Earth remains an area of vigorous geophysical research. The in-

terest in refining the descriptions currently available is not moti-

vated by some misplaced concern for detail. Rather, it is dictated 
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by the critical dependence on these parameters of nearly every infer­

ence about the composition and state of the Earth's interior. Much 

of the attention recently refocused on the problem of Earth structure 

has been stimulated by three technological advances: the extension of 

the observable seismic bandwidth to ultra-long periods, the develop­

ment of laboratory techniques for measuring material properties at 

high pressures and temperatures, and the advent of the computer. 

Ultra-long period seismology, heralded .by Benioff's design of 

the strain seismometer, has provided an important new source of data, 

the periods of the Earth's free oscillation. Prior to mid-century, 

the only direct information about the density distribution in the 

Earth came from measurements of the Earth's gravity field and dynamic 

response. In particular, Bullen's classical density models were 

constrained only by the mean density and moment of inertia. The 

measurements of surface-wave velocities commencing in the 1950's and 

the reliable observations of free oscillation periods reported since 

the great Chilian earthquake of 1960 have yielded valuable independent 

constraints on the possible variations of density. 

Additional impetus has come from our increasing knowledge of the 

behavior of materials at pressures and temperatures appropriate to the 

Earth's deep interior. To Infer the Earth's compcsition and state, we 

must compare the density and velocity distributions found from geophys­

ical data with observed material behavior at known conditions. Recent 

improvements in the precision and range of static compression, ultra­

sonic, and shock-wave experiments have set the stage for this 
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comparison. 

Finally, the problem of ref ining the estimates of Earth structure 

is feasibly approached only with the aid of modern computing systems. 

To evaluate ~he success of any model, the data functionals for that 

model must be calculated and compared with observations. This can be 

a laborious task. For example, calculating the eigenperiod of a 

spheroidal mode requires many numerical integrations of a sixth-order 

system of differential equations; hand computation of the currently 

well-observed eigenperiods for even one realistic Earth model is a 

lifetime effort. However, it takes only a few minutes on a fast 

computer. 

1.3 Approach. To date, efforts towards modeling physical parameters 

in the Earth have involved only very simple, usually one-dimensional 

representations. A useful and often adequate approximation is to 

assume that the Earth behaves as a spherically symmetric, non-rotating, 

elastic and isotropic body to small mechanical excitations in the seis­

-4 mic frequency band (10 Hz - 10 Hz). We shall adopt these assumptions, 

thus allowing us to select an Earth model by specifying the compres-

sional velocity, shear velocity, and density as functions of radius 

alone. 

With these assumptions, it becomes feasib l e to solve the forward 

problem for a number of gross Earth data functionals (data functionals 

that depend on the radial variations) for which data are available. 

These include the Earth's mass and moment, its eigenperiods, and the 
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ray-theoretical travel times of signals propagating th~ough its 

interior. Our approach to.the inverse problem of estimating the 

model given estimates of these data functionals follows closely the 

treatment of Backus and Gilbert [1967, 1968, 1969, 1970]. The inver­

sion theory used is developed in Chapter 2. 

Of course, the observations reflect the fact that the Earth is 

a rotating, laterally-varying body. The precision with which the 

data can now be measured is such that contamination by these depar­

tures from our assumptions can cause serious incompatibility and bias. 

We shall try to reduce these effects by using averaged sets of free ' 

oscillation and travel-time data. The motivation for this is dis­

cussed in Chapter 3. 

Unfortunately, with the present-day distribution of seismic 

sources and receivers it is not possible to sample uniformly the 

velocity structure of the Earth's upper layers using body waves. 

For this reason averaged sets of absolute travel-time data generally 

are biased. At teleseismic distances this bias enters into the 

distance-time expression as approximately a constant term, called 

by seismologists the "baseline error". To reduce as much as pos­

sible the baseline error without eliminating the valuable information 

contained in travel-time data, we shall use in the inversion 

calculations differential travel times; that is, the differences 

between the arrival times of two body phases. If the phase combin­

ations measured are judiciously chosen, the differential times will 

be relatively unbiased. In particular, baseline errors will cancel. 
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In Chapter 4 the use of differential travel times as gross Earth data 

is discpssed. We also present in this cnapter some observations of 

differential trave l times useful in constraining the radial va riations 

of seismic velocities. 

These observations are combined in Chapter 5 with eigenperiod 

data and the observed mass and moment of inertia to derive estimates 

of the radial velocity and density distributions. Emphasis is placed 

On the construction of reasonable, but simple represen~ations which 

are used to initiate the iterative inversion algorithm. This algo­

rithm uses the inversion theory presented in Chapter 2 to provide 

a perturbation to the starting model which, in a sense that is well­

defined, is the "smallest" necessary to satisfy the data. Therefore, 

the resulting representations will deviate in some least way from 

the starting model. 
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Chapter 2 

INVERSION THEORY 

2.1 Introduction. The task of deducing the constraints provided by 

observables on the variations of physical. parameters in the Earth 

has been called the geophys i cal inverse problem. The mathematical 

formulation of this problem characterizes possible variations as 

entities in an abstract function space, each entity representing an 

Earth model. In particular a spherically symmetric, non-rotating, 

1 linearly elastic, and isotropic (SNREI ) Earth can be described by 

s~ecifying the compressional velocity, the shear velocity, and the 

density as functions of radius. An observation is the value of a 

functional defined on this space of Earth models. Examples include 

the Earth's mass and moment of inertia, the measured travel times 

of seismic waves, and the observed periods of free oscillation. We 

will assume , that the forward problem for each data fun~tional has 

been aolved: given any interesting Earth model the value of the data 

functional can be computed. In general the relationship between the 

data functional and the model is nonlinear. 

Since the distributions of physical parameters are continuous 

on some interval and the number of data obtainable is necessarily 

finite, the inverse problem generally has no unique solution. 

Furthermore, the observations used as data are invariably contaminated 

by errors; only estimates of the values of data functionals for the 

lThe notation is due to Dahlen [1968). 
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Earth are available. Inaccuracies act to increase the ensemble of 

acceptable models. These circumstances, unfortunate for the geo­

physicist, make the problem mathematically interesting and motivate 

the inversion theory presented in this chapter. 

A variety of techniques, both theoretical and computational, 

have been applied towards the solution of the geophysical inverse 

problem. One potentially powerful technique is the Monte Carlo 

method described in the geophysical context by Keilis-Borok and 

Yanovskaya [1967] and applied to the determination of SNREI Earth 

models by Press [1968,1970,1972]. Monte Carlo calculations utilize 

a random selection procedure to generate arbitrary models, test the 

models against a set of data, and display those that satisfy the 

data sufficiently well. The idea is to sample uniformly some region 

of the model space thought to contain the best representation of the 

Earth and generate a fairly complete catalogue of acceptable models. 

Properties of the real Earth would then be those common to this 

entire ensemble. 

In practice Monte Carlo techniques face severe limitations. 

Even with the most advanced computing systems, the calculations are 

laborious and time consuming; the number of trials necessary to 

sample even very restricted regions of the model space is large. 

The more efficient algorithms such as the one used by Press [1972J 

require a sieve-like series of tests against the data: at each of 

several steps models are rejected or retained depending on how well 

they satisfy some subset of the data. It is not clear in what 
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~iay these algorithms sample the model space. 

A supposed advantage of the Monte Carlo method is that nonlinear 

data functionals can be used directly without resorting to linear 

estimation. However, for geophysical inverse problems that use mode 

data, complete recalculation of the eigenf requencies for each generated 

model is economically unfeasible. Instead, first-order variational 

parameters are used [Press, 1972], eliminating the advantage of Monte 

Carlo over the linear prediction method. 

At the present time the linear prediction method offers the most 

efficient and informative approach to the solution of the geophysical 

inverse problem. Basically, this method employs an iterative pertur­

bation algorithm that approximates the difference between the sought 

representation of the Earth and some initial model as a particular 

solution to the finite system of linear, inhomogeneous, integral 

equations relating changes in the model to first-order changes in the 

data. The data functionals are computed for the starting model and 

subtracted from the observed data; the system of perturbation equations 

is solved, and the calculated perturbation is added to the starting 

model. This process is iterated until the data are satisfied. For 

the one-dimensional case, this algorithm is simply Newton' s method. 

The first-order approximation reduces the nonlinear problem to 

the problem of solving an underdetermined systen of linear equations. 

A general and extensive theory for the solution of the underconstrained 

linear inverse problem for .inaccurately known data has been developed 

by Backus and Gilbert [1967,1968,1970] in an important series of 

papers. The central concept in this theory is the following: although 
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the exact solution cannot be computed because the information provided 

by the data is insufficient, it is possible to estimate accurately 

linear averages of the desired model. The task to which their theory 

is addressed is the constuction of an optimal inverse filter from the 

constraints imposed by the observations, through which the correct 

solution may be viewed. They show that there exists a tradeoff between 

the ability to resolve detail and the accuracy with which this detail 

can be estimated. These concepts represent a major contribution to 

the theory of linear estimation and will see vide use outside the 

geophysical inverse problem. 

Presented here is a variation on the Backus-Gilbert theory that 

incorporates the stochastic inverse theory of Franklin [1970]. A 

particular, unique solution to the linear system is obtained by mini­

mizing a specified quadratic measure of error. This quadratic form is 

the sum of two terms, a measure of the resolution of the estimate and 

a measure of its accuracy, parameterized to yield a Backus-Gi1bert­

type tradeoff curve. The generalized inverse of Penrose [1955] and 

Moore [1920] and the stochastic inverse of Franklin [1970J are shown 

to lie on this tradeoff curve, the stochastic inverse being, in one 

sense, an optimal point. Any particular solution computed by select­

ing a point on the tradeoff curve is shown to be an estimate of the 

correct solution convolved with a projection-like smoothing operator, 

termed here the response operator of the linear system. Convolving 

the response operator with delta functions yields Backus-Gi1bert-type 

averaging kernels (except that they are not constrained to be uni-
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modular). 

One important aspect of the approach presented here is that the 

model space is generalized to a Hilbert space with a fairly arbitrary 

norm, or measure of length. In the application to the construction of 

velocity and density profiles in the Earth (Chapter 5) the operator 

defining the norm is chosen to be a "roughing" operator, i.e. ~ the 

inverse of a smoothing operator. The advantages of generalizing the 

norm in this way are severalfold. Most importantly, it allows one to 

introduce information about the solution not directly contained in the 

data. The "rougher" the norm is, the smoother the particular solution 

will be. If one is confident, say, that the variation of elastic 

parameters in some region of the Earth is well-behaved, then the 

method allows a solution embodying this information (or prejudice) to 

be constructed. The roughing can be discontinuous - a convenient way 

to allow for the possibility, or reality, of discontinuities in the 

model. Also, by manipulating the norm on the model space one can 

control to some degree the localization of the averaging kernels. 

Finally, if the roughing operator is chosen to be unbounded (see 

section 2.6) ,then the Frechet kernels for travel times, which are not 

square-integrable, are members of the model space (this is shown in 

section 4.2). 

Necessarily this introduction has been heuristic and vague. The 

presentation in the remaining sections of this chapter will be more 

formal and assumes that the reader has a basic understanding of the 

Backus-Gilbert theory (see Gilbert [1972] for an elementary treatment). 
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2.2 Hilbert spaces of Earth models. A model of a spherically symmetric 

Earth of radius R is an ordered mUltiple of functions on the closed 

interval [O,R]. For example, each SNREI Earth model is described by 

the function triple [v (r),v (r),p(r)], 0 ~ r ~ R, where v is the 
p s p 

compressional velocity, v is the shear velocity, and p is the density. 
s 

Although constuction of SNREI Earth models is our ultimate goal, for 

the purposes of notational simplicity we retain in this chapter a gen-

eral definition: a spherically symmetric Earth model m is an M-tuple 

of real-valued, piecewise-continuous functions [ml(r),m2(r) ••••• ~(r)] 

defined and integrable on the interval [O.R]. The model In is a mem-

ber of a vector space m over the field of real numbers R if the 

vector sum of two models m+ m' is taken equal to [ml (r) + mi (r). 

m2(r) + m2(r), •.• ,~(r) + mM(r)]. Formally m is the Cartesian 

product of M vector spaces, Each In., 
1. 

i = 1,2, •.• ,M, is the vector space over R of real. piecewise-contin-

uous functions integrable with respect to a weight wi(r) on the 

interval [O.R]. The weighting function wier) must be strictly positive 

on [O,R] but is otherwise arbitrary.2 

A linear operator L: m .... U is a single-valued, linear mapping 

of In into a vector space U. Any linear operator of interest to us 

here can be represented as an M x 1 array of lineer operators 

2 Backus and Gilbert in their original 1967 paper used the volume 
measure w (r) «r2. In this case the measure is singular at the 

'origin; t~e domain of definition must be restricted to the semi­
open interval (O,R], and m consists of functions regular at the 
origin. In subsequent papers by these authors I1968,1970J and in 
Chapter 5 of this work. wier) is chosen to be a constant. 
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[ L i: 11ti + \): i = 1,2, ... ,M]. each characterized by a vector-valued 

integral kernel Li (r). For any mE: m the element L'mE: b can be 

computed by integration: 

(2.2.1) 

The weighting functions wier) should be chosen to render this pro­

duct dimensionally homogeneous. 

Much of the analysis in this chapter will involve manipulation of 

linear operators that map the model space into itself. Any interest-

ing linear operator L: Ill+m can be represented as an M x M array 

of operators [Lij : 111i+ mj: i,j = 1.2, .•.• M] with scalar-valued 

integral kernels Lij(r,r'). If Lhas eigenvalues (scalars A such that 

3 L' f = A f), then, because In is defined over R , they mus t be real. 

A class of operators whose eigenvalues are always real are the 

symmetric operators, for which L(r.r') = L(r',r).4 If the transpose 

* * of L, denoted L , is defined as the operator with kernel L (f.r') ~ 

L(r' ,r). then L is symmetric if and only if L = * L. 

Associated with every symmetric operator L: m + In is a unique, 

symmetric bilinear functional 

(2.2.2) A(m,m') = :£: (R (Rmi (r)L
i

. (r,r')m~ (r') 
i,j=lJO Jo J J 

3 

4 

.wi(r)dr wj(r')dr', 

Although the spaces we will consider are all real, the theory can 
be extended in a straightforward manner to spaces defined over the 
field of complex numbers, permitting the eigenvalues to be complex. 

Most statements made here are proved in Courant and Hilbert [1937J. 
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and a unique quadratic form 

(2.2.3) ),(m) = )'(m,m) . 

A symmetric operator and its corresponding bilinear and quadratic forms 

are said to be positive definite, positive semi-definite , or indefinite 

depending on whether ),(m) > 0, ),(m) ~ 0, or ),(m) ~ 0 for all ml O. 

Any symmetric, positive definite bilinear functional can be used 

as an inner product on In. The vector space m with an inner product 

(2.2.4) L 
m· m' ),(m, m') 

defines an inner product space mL 'which can be completed to a Hilbert 

space. The norm associated with this inner product is 

(2.2.5) 

Any mE: ln is a member of mL if 

(2.2.6) < co • 

The super- and subscription of the inner product, the norm, and the 

Hilbert space are dropped for the special case L = I , the identity 

operator on m:m· m' = m· I· m' = L.JR m.(r) m~(r) w.(r) dr 
i 0 1 1 1 

and 

For our purposes (indeed, for most physical problems) quadratic 

convergence is sufficient for the identification of vectors. That is, 

a sequence of vectors {m : a - 1,2, ••. }, members of m, is said to 
a 

converge to the element m E:nt if lim I I m - m II .. O. 
a+O a 
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2.3 The perturbation equations. Interesting data functionals such as 

the mass, moment of inertia, eigenfrequencies, and travel times of an 

SNREI Earth model are each Frechet-differentiable. Paraphrasing Backus 

and Gilbert [1967, p.249] in our own notation, we say that a data func-

tional D on III is Frechet-differentiable at a point m in In if 

there exists a member a of m, determined by D and m, such that for 

any member 15m of m 

(2.3.1) D( m + 15m) = D(m) + a· 15m + e:(6m) 

where e:(6m) 116m 11 -
1 approaches zero uniformly as 15m approaches 

zero. The vec tor a is called the Frechet kernel of D. 

Associated with each ordered set ~ of N Frechet-differentiable 

data functionals and each Earth model m are the linear perturbation 

equations 

(2.3.2) 

which are correct to first order in 15m. These equations can be 

written 

(2.3.3) A • 15m = 6d, 

where A = [: ,] and 6d ., ['~']. The operator A maps a change in the 

aN 6DN 

model into a change in the data. This can be made accurate enough by 

making 15m small enough. The vector 6d is a member of the N-dimen­

sional Euclidian space EN associated with the set gN. The inner 
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product between two vectors d and 
N d' in E is written d d' and equals 

inner product dimensionally homogeneous. 

Suppose E(cSm) ~ EN is the vector representing the error com-

mitted in the linear approximation (2.3.3). Then the constraint 

(2.3.4) II E(cSm) II < ~, ~ > 0, 

which limits the error to an open ball in EN about the origin, defines 

for each point m~ln a subset of m that is, in general, multiply con-

nected. We will define the domain of A to be V(~,m), the simply 

connected part of this subset that includes the origin. All pertur­

bations in V(~,m) map into a region R(~,m) C EN, the range of A, 

with an error whose norm is less than~. A vector m'~V(~,m) + m 

5 is said to be ~-near m. Obviously, R(~,m) C U(A), the range space 

of A (spanned by the eigenvectors of * A • A). 

Given a set of N observations dO and a starting model Dns ' we 

define cS d = dO - . d( m
s
). Now the linear inverse problem can 

be formally stated: 

We seek to estimate the difference cSmO between the representation 

mO of the "real" Earth and the initial guess Dns by an application of 

some bounded linear operator N L: E + In to the d l ta residual vector 

cSd • 

If mO is an exact representation of the Earth, if the functionals 

~. N f in ~ depend linearly on the model, and if the data are per ectly 

5 This is a variation on the terminology used by Backus and Gilbert 
[1970, p.12S]. 
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known, then or.nO can be expected to satisfy equation (2.3.3).6 If the 

set ~N contains nonlinear data functionals (such as travel times and 

eigenfrequencies) and if InO is ,-near Ins' then OInO can be expected 

to satisfy (2.3.3) with an error of norm less than ~, again assuming 

~. and Ina are exact. Thus, in the nonlinear case, the success of the 

estimate will depend largely upon proper specification of the starting 

model. 

2.4 The generalized inverse. For finite N the problem of computing the 

solution to (2.3.3) is ill-posed in the sense that the solution is not 

unique. In fact, it is obvious that A possesses a null manifold n(A) 

of infinite dimension. If hE:: n( A), then it solves the homogeneous 

equation A· h~ O. The general solution to equation (2.3.3) can be 

written 

(2.4.1) om om + t 
n=l 

a h , 
n n 

where ODl is any particular solution to (2.3.3), {h In· 1,2, •.• } is 
n 

a basis for n(A), and the coefficients a , n = 1,2, ••• , are arbitrary n -

scalars. * If R ( A ) is the range space of * A , the space spanned by 

the set of Frechet kernels { a i : i = 1,2, ••• ,N}, then m is the direct 

* sum of mA) and U( A). 

One particular and interesting solution to (2.3.3) is given by 

the generalized inverse of A[Moore, 1920; Tseng, 1949; Bjerhammar, 

1952; Penrose 1955]. The operator A has a unique generalized inverse 

6 Implicit in this statement is the assumption that dOE:: R (A). 
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.. 
PU(A)' 

PUCA) , 

where PU(A) . is the orthogonal projection operator mapping EN onto 

RCA), and PUCA) is the orthogonal projection operator mapping m 
* 7 onto R( A). The estimate 

(2.4.3) om 

is the unique solution that minimizes the norm I loml I. Substituting 

(2.3.3) into (2.4.3) and using (2.4.2) we obtain 

(2.4.4) om c At A· od = 

Therefore, the solution given by the generalized inverse corresponds 

to the orthogonal projection of any solution, in particular omO' onto 

* the subspace U ( A ) • 

Using equations (2.4.2) one can easily show that 

(2.4.5) 

t reducing the computation of A to determining the generalized 

N inverse of a symmetric, positive semi-definite operator on E. If 

A has rank N A· A* is pos~tive definite and (A' A*)t .. (A. A*)-l. , . 
* Otherwise, A· A can be diagonalized by an orthogonal transformation 

* 2 2 2 U ~ U where ~ .. diag(lJ l , lJ 2 ,. ··, lJN) and 

the ith column of U, u i ' solves the eigenvalue equation 

7 P is an orthogonal projection operator if p. P .. P and p* .. P. 



-18-

(2.4.6) * A • A u
i 

= 
2 

~i u i ' i = 1,2, . . . ,N. 

Then, (A, A*) t u tl U*. Since A • A* is degenerate, some of the 

2, * 
Il i s, say N - K of them, will be zero, and dim[tt<A'A)] '" K. 

* The generalized inverse of A' A is easily computed by ordering the 

2 2 
eigenvalues so that lli~llj if i > j. Then, 

K 
(2.4.7) = L 

i=l 

* N N The dyadic UiUi : E ... E * is the linear operator defined by ( Ui Ui ) v = 

(UiV) Ui ' vE::E 
N 

The form of equation (2.4.4) illustrates an important point: 

Since the data kernels are not a complete set, the value of a component 

omOi,i = 1,2, •.• ,M, of 0lIb at a point rE::[O,R] cannot be determined. 

Rather, a linear average 

(2.4.8) om. (r) 
~ 

M iR L Pij(r,r') 
j=l 0 

om (r') w (r') dr' 
OJ j 

is obtained. It is desirable to compute an average which is localized 

at each point. Roughly speaking, this means that we want the ith term 

in this sum to dominate and the contributions to ' this term to be small 

away from the point r. 9 As we add more linearly independent data to 

the data set, the kernel Pij(r,r') should look more like the identity 

kernel 0ij o(r-r'), where 0ij is the Kronecker delta and o(r-r') is 

8 This approach is suggested by Penrose [1955, p.408J. See also the 
discussions by Lanczos f1961J, Wiggins 11972J, and Jackson f1972J. 

9 Backus and Gilbert [1968J provide an exhaustive discussion. 
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is the Dirac delta distribution. The kernel Pij(r,r') with i and r 

fixed is an example of an averaging kernel [Backus and Gilbert, 1968J, 

except that it is not constrained to be unimodular. 

In practice, considerations of local i zation limit the usefulness 

of the generalized inverse. Backus and Gilbert [1968] examined the 

kernels of the operator Pn(ll) and found that, for typical sets 

of eigenfrequency data, the linear averaging associated with this pro­

jection was not as localized as averaging, kerne1s obtained by minimiz-

ing the integral of the absolute value of the kerriel times. the weight­

ing function (r - r,)2. The former had better resolution, i.e., the 

minimum scale length of features not appreciably damped by the averag­

ing was smaller, but had substantially larger sidebands than the 

latter. 

Furthermore, the inverse (2.4.3) was derived under the assumption 

that the data are perfectly well known. Actually od is only an esti­

mate of the vector A· omO that has been corrupted by errors or 

"noise" entering through observational errors, finite sampling, comp-

utational inaccuracies, etc. Neglecting this error can yield model 

estimates with large statistical uncertainties [Backus and Gilbert, 

1970]. 

These limitations of the generalized inverse can be overcome by 

appealing to a stochastic formulation of the linear inverse problem. 

2.5 The stochastic inverse • . The equation corresponding to (2.3.3) for 

inaccurate data can be cast in the form 
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(2.5.1) A, om + n XI 6d, 

where n CEN is a vector containing the components of noise. Since 

these components have some unknown scalar value, the error is described 

only in terms of its statistics. Following Franklin Il970] we consider 

(2.5.1) to be a sample of the stochastic equation 

(2.5.2) A • P + P s n = 

where p is the stochastic process describing the solution and is 
s 

defined over nl; Pn is the noise process, and Pd is the data process, 

both defined over EN. In its stochastic formulation the inverse 

problem becomes to construct the best linear unbiased estimate of the 

solution process 

data process Pd ' 

P as an application of some linear operator to the 
s 

We digress briefly on the properties of stochastic processes that 

shall be needed for this section~O The process P defined over a real, 
x 

separable Hilbert space U maps an element u of U into the random 

variable P u. If E{ } is the expectation operator, then the mean 
x 

m (u) of P u always equals E{ P u} and is a linear functional on U. x x x 

The variance of this random variable, since it is the expectation of a 

square, is a positive semi-definite quadratic form on U; a 2(u) a 
X 

2 
El ( P u - m (u» } = u Cu. The linear operator C : U .... U is x x xx xx 

called the autocorrelation operator of the process p, Similarly, 
x 

for two processes p and 
x 

p defined over U and b 
y 

respectively, 

10 The reader may refer to Doob I1953] for details and proofs, 
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there exists a C : \) + U, called the cross-correlation operator of 
xy 

Px and Py' such 

Evidently, Cyx 

that E{ (p u x 

= C *. 
xy 

- m (u» ( p v - m (v») = u C x y y xy v . 

Since on all spaces quadratic convergence identifies vectors, two 

stochastic processes p and p , defined over U are taken to be identical 
x x 

if m em, and C ~ C , ,; all distributions are equivalently normal. x x xx x x 

Then a process p can be represented by the decomposition L au, 
x n n n 

where {u : n = 1,2, ... } is some orthonormal basis for U and 
n 

{a : n = 1,2, ... } is a set of independent Gaussian random variables. 
n 

The Karhunin-Loeve theorem [Loeve, 1955, p.478] asserts that un is an 

eigenvector of Cxx and that an
2 , the variance of the variable an' is 

its eigenvalue: 

(2.5.3) Cxx 
n 

a 
n 

2 * u .n un 

Returning to the inverse problem, we seek a linear operator 

N B: E + m such that the process 

(2.5.4) 

is the best linear unbiased estimate of p given equation (2.5.2) and 
s 

the Gaussian statistics of p and p. s n 

Any bias can be removed at the outset by sub t racting from p and 
s 

Pn their expectations, E{ ps} and E{ Pn}, which are supposed known. 

We assume this has been done, so that each process in (2.5.2) has zero 

mean. This will insure that the estimate is unbiased, i.e., 

E{( Ps - ps) • g} = 0 for all gE::m. 
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The process ps is said to be the best linear estimate of Ps if it 

minimizes the variance 2 - 2 
e: (g) == E{( Ps - Ps ) • gJ } for all g ~ m. 

As shown by Franklin [1970], this can be done if the autocorrelation 

operator Cdd is positive definite. Substitution using (2.5.4) and 

expansion of the autocorrelation operator of P - p. yields s s 

(2.5.5) 2 
e: (g) '" g' Css • g - * 2 g' Csd B • g + * g' B Cdd B . g. 

The first and second variations of the quadratic functional e: 2 with 

* respect to a variation of the vector f == B . g are 

(2.5.6) 
2(fC dd - g' Csd) Of , 

2(f Cdd - g' Csd) 6
2
f + of Cdd Of 

The functional e:
2 

is stationary if and only if 6(e:
2

) - 0 for all arbi­

trary variations 6f. Therefore the linear combination Cdd f - Cds' g 

is required to be zero for all gem. This is true if 

-1 
B = Csd C dd' With this choice the second variation 

and only if 

2 2 
6 (e: ) reduces 

to the positive definite quadratic form 6f Cdd 6f , and the stationary 

point is a minimum. 

(2.5.7) 

Therefore the best linear estimate of p is 
s 

= 

The correlation operators in (2.5.7) can be e ~panded in terms of 

the correlation operators for Ps and Pn" which are supposed known: 

-
(2.5.8) 

A • A* * 'C +A-C +C ·A+C. ss sn ns nn 
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It is convenient and usually reasonable to assume that the solution and 

noise processes are uncorrelated, i.e., c = O. sn With this assumption 

equations (2.5.8) simplify to 

= c . l 
88 

(2.5.9) 
= A· C + ss 

Using (2.5.9) in equation (2.5.7), we obtain for a sample cd of Pd 

the estimate 

(2.5.10) = c ss 
* A (A· C ss 

* A + c ) -1 cd 
nn 

The operator in this equation will be called the stochastic inverse of 

A. 

The statistical information embodied in an emsemble of samples can 

be used to estimate the autocorrelation operators C and C ss nn 

appearing in (2.5.10). For example, suppose { d l , d 2 , ..• , d L} is a set 

of L independent observations of the data functionals and assume that 
1 L 

the sample mean d = - L d is an unbiased estimator of dO. Then 
L i=l i 

the sample variance matrix 

(2.5.11) v = 1 
L-l 

L L 
L L (d

i 
- (i) ( d. 

i=l j=l J 

-* - d) 

is an unbiased estimator of C 
nn 

If the data components are statis-

tically independent, then, in the limit L + 00, V converges to the 

diagonal form 

(2.5.12) . : ]. 
a 2 

N 
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When all 2 
the variances cr i ' i c 1,2, ••• ,N, are nonzero, Cnn will be 

positive definite, thus insuring that Cdd be positive definite as we 

have assumed. 

If independent samples of p are avai lable, a similar procedure 
s 

can be used to construct an estimate of the autocorrelation operator 

~s' In the geophysical inverse problem this is not the case. Answer­

ing questions raised by this fact will be t he purpose of the next 

section. 

Of course, using information about the solution and noise pro-

cesses in deriving an estimate of the solution is not a new idea; its 

roots lie in the linear filtering and prediction theories of Kolmog-

oroff and Wiener [Wiener, 1949J. In fact, equation (2.5.10) is anal-

ogous to the results of Wiener's theory for the construction of the 

optimum infinite-lag smoothing filter [Davenport and Root, 1958J and 

has been explicitly obtained by Strand and Westwater [1968J. It re-

duces to Twomey's [1963J results for the special case Css = I , 

Cnn = yI. 

2.6 Specification of the solution autocorrelation operator. As out-

lined in the previous section, the statistics formed from an ensemble 

of samples can be used to estimate the autocorrelation operator of a 

stochastic process. However, at least in the inverse problem that 

concerns us, this approach cannot be applied to the construction of 

the solution autocorrelation operator C appearing in (2.5.10). The 
ss 

Earth itself is presumably unique, and the mind twists to imagine what 

a sample ensemble of p might be (the radial variations of elastic s 
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parameters in a number of Earth-like planets taken at rand·om from our 

galaxy perhaps?). The resulting not i ons are generall y absurd, and we 

dismiss the possibility that the probab i lity distribution of p. is de­
s 

scribable in terms of the limits of relat i ve frequencies. Then we 

must ask, what is the significance of characterizing the solution as 

a sample of a Gaussian process with zero expectation and an autocorre-

lation operator Css in this estimation procedure? 

To begin to answer this question,we must first examine the behav-

ior of the stochastic inverse in the limit of zero noise. One measure 

of the size of the noise is the operator norm II C II, equal to the nn 

largest eigenvalue of Suppose for the moment that Ps is a 

"white" process, i.e., C ss = I. We assert that by requiring II Cnn I I 
to be small enough the solution given by the stochastic inverse 

s * * -1 A .. A ( A· A + C) can be made arbitrarily close to the solu­nn 

tion given by the generalized inverse At . Put more formally, for any 

c > 0 there exists a positive number y (c) such that, if I I Cnn l I < y(c), 

then, for all Cd '" 0, II At cd - AS cd 112 < c II cd ll~ To show this 

we first note that y(c) 1- C will be positive definite, so it is 
nn 

sufficient to find a y (c) such that 

(2.6.1) 11 [(A'A*) t - (A'A*+yl)-l]*A' 

A*[(A'A*)t-(A'A*+yI)- l J II < c. 

Equation (2.4.7) and the completeness relation 

(2.6.2) 
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can be subst i tuted into (2.6.1). Computation shows that t he resulting 

inequality is true when 

(2.6.3) y (e:) < 

thus proving the assertion by construction. Using the terminology of 

A. N°. Tikhonov [1963a, 1963b] , we say that the stochastic inverse 

solution AS ed regularizes the generalized inverse solution (2.4.3}. 

Identical arguments can be made to show that equation (2.5.10) 

regularizes the computation of 

(2.6.4) 

This solution has a simple geometrical interpretation, Assume that 

C is positive definite and define L to be the inverse of ss 
-1 

L = Css• C is idempotent with respect to the product defined in ss 

(2.2.4); that Css 
L 

Css ' In fact, C is the identity is, • C
ss = ss 

operator on tn L• Let AL .. A· C , so that equation (2.3 • .3) becomes ss 

(2.6.5) A 1: eru = Cd. L 

Substituting (2.6.5) into (2.6.4) we obtain 

(2.6.6) 

L 
The operator PUC A "') -

L 
operator on tn

L 
in the 

A~ (AL 1: A~) tAL is an orthogonal projection 

h 'OL -I< L PoL '" pL '" sense t at rUCA ) • U(A)" R(A) and 
L L L 

n
L 

'" - rU( A ). Therefore, for perfectly known data, the solution 
L 

(2.6.4) is the symmetric projection of any solution, in particular cruO' 
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* onto the manifold l1<A
L
)Ctn

L
, 

( ) ALt:: A *(ALI:AL*)t by 2.2.4. "1.. 

the inner produc t on m L being defined 

is the ge\leralized inverse of ~ . 

As pointed out in §2.l, it will be useful to prescribe the solution 

autocorrelation operator as a smoothing operator, or, looked at another 

way, to prescribe the inner product on the model space in terms of a 

"roughing" operator, the inverse of a smoothing operator. The arguments 

in the preceeding paragraph were intended to suggest that these view-

po.ints are identical. The rationale for such a choice can come from 

either of two considerations: we may wish to incorporate ~ priori as-

sumptions about the smoothness of the solution, or we may wish to 

manipulate averaging kernels so that they are, say, more localized • 

. To clarify what is meant by choosing the solution autocorrelation 

operator to be a smoothing operator, we write C
ss 

in terms of its 

Karhunin-Lo~ve expansion, 

(2.6.7) 

and assume that the set of eigenvectors { f : n = l,2, ••• } has been 
n 

ordered so that, if fi is smoother (say, has fewer zero crossings) 

fj' then i < j. We will call C a smoothing operator if 
2 

ss Ki > K
j 

2 

for all i < j . Note that the · definition implies that any smoothing 

than 

operator is positive definite. This definition is not the most general 

one, but it will be convenient for our purposes. 

If Caa is a smoothing operator, then 

(2.6.8) -
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is a "roughing" operator in the sense that rougher e i genvectors have 

larger eigenvalues. L can be used to def ine an ordering on the model 

space: a model rn is said to be smoother than a mode l Dl' if 

(2.6.9) < 

Since they are orthogonal projections, t he solution (2.4.3) minimizes 

1.16rn ll and the solution (2.6.4) minimizes 116rn 11 L. Therefore, with 

Css chosen as a smoothing operator, (2 . 6.4) provides a smoother solu­

n tion than the generalized inverse. 

Since a member of the model space m is an M-tuple of functions 

on the interval [O,RJ, defin1ng C to·be a smoothing operator does ss 

not make much sense. Basically the ordering of the eigenvectors of a 

smoothing operator requires characterizing them by generalized wave-

numbers. or numbers of zero crossings. But the total number of zero 

crossings of a vector in m does not really coincide with our notion 

of its smoothness: Suppose ~ (r) = [sin Mnr/R. 0, ... , OJ (M terms) and 

~ '(r) = [sin 2nr/R. sin 2nr/R, •••• sin 2nr/RJ (M t erms) where M > 2. 

Now ~ has fewer (M-l) zero crossings than ~'(M), but intuitively ~ is 

not smoother than ~'. 

To avoid this difficulty comparisons of smoothness will be made 

component by component. In· the example given above ~l (~l(r)=sin ~rrr/R) 

is less smooth than ~l" but ~2 is smoother than ~2'. One form of the 

solution autocorrelation operator that is compatible with this decision 

is 

11 This assumes that the solutions are distinct. 
cal when the eigenvectors of C and AtA ss 

They will be identi­
are the same. 
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. . . o 
o 
• 

(2.6.10) • 
• 

o o 

Now C
i

: mi 7" lUi can be chosen to be a smoothing operator on m
i

, 

i ~ 1,2, •.. ,M. In this case C will still be positive definite but ss 

will not always be a smoothing operator in the strict sense that we 

have defined the term. If the process p. is considered to be an M-
s 

tuple of processes [ PI' P2,"" PM]' each Pi being defined over mi , 

then equation (2.6.10) implies that E{(Pirn i ) (pjrnj )} - 0 if i 1 j for 

all m i C ln i and all mjC lllj' The component processes are thus 

uncorrelated. 

An example of the type of smoothing operator that is useful in the 

practical applications of this theory (such as Chapter 5) can be ob-

tained as the solution to a second-order inhomogeneous differential 

equation with homogeneous boundary conditions. Consider the problem 

of constructing a smoothing operator Con the space of functions 

12 real-valued and continuous on the interval [a,b], O<a<b:5::R: 

Let A(r) be a differential operator of the Sturm-Liouville type; 

A(r) .. :r [per) :rJ - q(r), rCla,b). The differential equation with 

homogeneous boundary conditions 

A(r)s(r) + k
2
w{r)s(r) = 0, 

(2.6.11) 

12 The interval [a,b] is used instead of [O,R] to allow the construc-
tion of autocorrelation operators for functions (processes) expected 
to be piecewise-continuous. See Chapter 5 • 
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(2.6.11 cont.) [~r s(r) + Bs(r) ] r=b ~ 0 

generates a set of eigenfunctions {s : n = 1,2, ... } , taken to be nor­
n 

malized, that ,is complete on the interval Ia,b] IMorse and Feshbach, 

2 1953]. The eigenvalues k , n = 1,2, ... , 
n 

2 2 
ously increasing sequence with kl < k2 

can be ordered as a continu-

2 < ••• < k < •••• With this 
n 

ordering the number of nodes in the eigenfunctions on the interval 

[a,b] also forms a continuously increasing sequence [Morse and Feshbach, 

1953. p.722]. We specify the kernel of C in the following form: 

(2.6.12) C(r,r') I: 
n=l 

K 2 s (r) s (r'). 
n n n 

For C to be a smoothing operator the sequence of spectral coefficients 

222 {Kl ,K 2 , ••.• Kn •.•• } should be continuously decreasing. This will be 

true if. for a given scalar'value of the parameter k. 

(2.6.13) K 
n 

2 
k2 + k 2 • 

n 

Particularized in this way C has the desirable properties that a) its 

norm is less than or equal to 1. and b) it converges in quadratic mean 

to the identity operator as k goes to infinity. That is. 

(2.6.l4a) 

(2.6.14b) 

Il c ll $1. 

lim II (l - C)· f ·11 .. O. 
k--

The parameter k is simply the mean wave-number of C. It can be easily 

verified that for this choice of spectral coefficients the kernel of 

C satisfies the inhomogeneous system 
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[wCr) - k-2 IICr)J CCr,r') '" o(r-r'), 

(2.6.15) [~ CCr r') + aCCr,r')] '" 0, dr ' rca 

[{r C(r,r') + BC(r,r') ]r=b '" O. 

2 
As an example we solve this system for the special case w(r) c per) ~ r, 

q(r) '" O. In this case (2.6.15) has a regular singular point at r - O. 

Solutions to the equations (2.6.11) are the spherical Bessel functions 

of angular order zero. Solving (2.6.15) we find 

(2.6.16) 

where 

C(r,r') = 
_k_ {e-k1r-r' I + D-1[A -k(b-a) e cosh k(r-r') 
2rr' 

+ B cosh k(a+b-r-r') + C sinh k(a+b-r-r')J}, 

A = [1 - a(k+a)][1 + b(k-S)J, 

B = aa + Sb - [k2 - k(a+S) + as]ab - I, 

C k(b-a), 

D = [1 - aa - Sb + (as-k2)ab]sinh k(a-b) 
- k[b - a + (S-a)ab]cosh k(a-b). 

Fig. 2.1 shows C(r,r') given by (2.6.16) on the interval (O,lJ centered 

-1 -1 at r' = 0.5 for the case a = S = O. In this figure the kernel is 

displayed for k values of 5, 20, and 50. 

2.7 The tradeoff curve. The Backus-Gilbert theory of linear estimation 

[Backus and Gilbert, 1970J suggests that for the problem described in 

§2.5 - the estimation of a function given the values of a set of linear 

data functionals corrupted by noise - there exists a tradeoff between 

the ability~ resolve detail and the reliability of the estimate. In 
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~ 

~k=50 

A 
1\ 
I \ 

/ \ 
1 ... -" \ ___ k = 20 

~.., ',\" 
~ __________ -;r J t\",/k = 5 

_/ ~ " "-- ------
o r 1 
Figuc~ 2.1. The kernel C (r.r') giv<2n by ~'luat.i.tm (2.6.16) 

-1 -1 on the interva1(O.1) centered at r'-1/2 for the case a as -0. 
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this section we construct a Backus-Gilbert-type tradeoff curve on which 

the generalized inverse ( §2.4) and the stochastic inverse ( §2.5) are 

represented as discrete points. It i s shown that the stochastic in-

verse is an optimal point. 
L The general ized i nner product ~ • ~ and 

norm 1 I ~ I IL introduced in §2.6 are retained throughout the analysis 

and are assumed to be dimensionless quantities. 

An estimate 6Dl of the function 6DlO sa tisfying 

(2.7.1) 

is sought given AlL ,6d , and the statistics of a Gaussian noise process 

P
n 

from which n is a sample. The process Pn is assumed to have zero 

expectation and a positive aefinite autocorrelation operator C . 
nn 

The null space n( Al) is populated by those members h of m
L 

for which 

L Ali h = O. Since the data contain no information about the components 

of 6DlO in n(Al), the estimate 6Dl is required to belong to the range 

* space R(Al) = m L - n(Al) . This is equivalent to constraining 0 Dl to 

be a linear combination of the data kernels: 

(2 . 7.2) ODl = * N ALb, for some bE:E . 

The vector b is to be determined by minimizing an appropriate scalar 

measure of the error of estimation. 

One obvious measure of the error of estimation of ODlO is the 

norm of the difference between ODlO and om. Define 

(2.7.3) -
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The subspaces n( A) and liCl) are orthogonal, so it is clear that the 

2 projection of on10 onto n(A) contributes to £1 its full squared norm 

2 regardless of the choice of b. In fact, £1 is minimized at the value 

II P~(A) ~ omoll~ for b - (AL~ A~)ti\I; omO' This is the solution 

(2.6.6) . 

Therfore, if the data were perfectly accurate, the best linear es-

timate of the vector on10 would result from the application of the 

t * L * t generalized inverse A
L 

.. ~(A{.' AJ to the data sample vector od. 

However n~ 0 implies an uncertainty in od and, correspondingly, in 

om. A measure of the uncertainty of any estimate of the form (2.7.2) 

2 due to noise in the data is the variance £2 of the projection of Pn 

onto b. By definition, 

(2.7.4) .. be b. 
nn 

Minimizing this error with respect to a variation of b yields t~e 

trivial solution b,. o. 
2 

In general the two measures of error £1 2 2 
and £2 compete: £1 is 

minimized when £22 is largest and vice versa. To explore the possi-

bilities for some sort of compromise, we consider the quadratic 

measure of error 

(2.7.5) 2 
£ (e, b) 2 2 

£1 (b) cos e + £2 (b) sin 6 = 

compo5ed of a weighted sum of the two measures of error. The weight-

ing is parameterized by an angle 6 

2 interval {O,1I/2J, so that £ (0, b) 

that will be allowed to vary on the 

2 2 2 
- £1 (b) and £ (11/2, b) - £2 (b). 
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For a fixed 8 > 0, e?(8, b) can be minimized with respect to a 

variation of the vector b. The first and second variations are 

2 L * L * 0(£ ) ~ 2[b Ar: Ai: om O' J\J ob cos 8+ 2 b Cnnob sin 8, 

(2.7.6) 
2 2 L * L * L * 2 o (e: ) = [obAr: ALob + 2(bAr: AL - omO • AL)o b J cos 8 

+ lob C ob + 2b C 02b J sin 8. nn nn 

For the functional £2(8, b) to be stationary it is required that 

(2.7.7) 

L * If 8 > 0, then A
L

' AL + tan 8 Cnn is positive definite, and the unique 

b that makes £2 (8, b) stationary is 

(2.7.8) b(8) = (A ~ A* + tan 8 C )-1 A ~ 0 
L L nn L mo' 

This stationary point is a minimum because the second variation reduces 

to the positive definite quadratic form 

(2.7.9) 

If 8 = 0 and J\has rank K < N, then there exists an (N-K)-dimen­

sional manifold of solutions to (2.7.7), and the stationary point is 

not unique. To obtain a unique solution we may constrain b and its 

L * N variations to lie in the. subspace n (A • A ) .. R( A) C E . Then the 
L r; 

choice of b that minimizes (2.7.5) is given by the generalized inverse 

(2.7.10) 

This choice is the natural one, because, as was shown in §2.6, the 
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estimate (2.7.2) substituting for busing (2.7.8) regularizes the comp-

utation of the generalized inverse solution obtained from (2.7.10) 

along the path e ~ O. Realizing that the generalized inverse of a 

positive definite operator is just its ordinary inverse, we can write 

(2.7.11) b (A ~ A* + C)t A ~ a (e).. L L tan e nn L mO' 

for any e (:[0,11/2]. 

Replacing the vector ~ ODnO by its best estimate ad and substi­

tuting (2.7.11) into equation (2,7.2) yields for the best linear esti-

mate of onnO the equation 

(2.7.12) 

Special cases of (2.7.12) include the generalized inverse (e - 0) and 

the stochastic inverse (e ~ 11/4). 

The estimate b(e) can be put into (2.7.3) and (2.7.4) to obtain 

2 2 
El and E2 as functions of e: 

E/(e) = Iionno - R(e) ~ onnO II L2 , 
(2.7.13) 2 L L 

E2 (e) .. anno • Vee) • onnO' 

The operators R(8) and V(e) appearing in these expressions are de-

fined by the equations 

(2.7.14) 

* t R(e) = AL Q (e) AL ' 

V(e) - lL Q t (e) CnnQt (e) A L ' 

L * Q(e) - AL• AL + tan e C • nn 
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Both R(S) and V( S) are positive semi-definite, symmetric operators 

* mapping 11l onto U ( A ). 

For on10 fixed, equations (2.7.13) determine a curve in the pos-

itive 2 2 
quadrant of the El - E2 plane that is parameterized by the 

angle e. Backus and Gilbert [1970] have termed such graphs tradeoff 

curves. They have constructed tradeoff curves for the problem of 

estimating the scalar quantity omO(r) (r fixed). The tradeoff curve 

given by equations (2.7.13) is for the problem of estimating the vec-

tor quantity 01l10 • Nevertheless, the qualitative features of these 

curves are essentially the same. For any SE(0,rr/2), the expressions 

2 2 
for El and E2 can be differentiated with respect to S: 

2 
.££1 
dS = 2 Oll1 ~ L ~ I R - e ] L 0 o dS ss • T.n0 ' 

(2.7.15) 

Now, since ~S [QQ-l] = ~e [I] = 0, we can write 

(2.7.16) 
dQ-l 
dS 

_ Q-l dQ Q-l 
dS • 

The derivative of Q(S) can be computed from (2.7.14): 

(2.7.17) ~ 
dS = 2 

sec S. 

Using (2.7.14), (2.7.16), and (2.7.17) in (2.7.15), we find that 

(2.7.18) 
L L L 

- 2 ornO • veS) • [e ss - R(S)] • orno 
2 sec S, 



and that 

(2.7.19) 
2 

~2 
de 
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L * -1 . -1 -1 * L 
= -2 6m • A Q C Q C Q A • om o L nn nn L 0 

C is assumed to be posit i ve definite, and it will be shown in §2.8 nn 

that, for a finite number of data, the operator r C - R(e)] is posi-
S8 

tive definite. Therefore, for any omO~: n(A), 

~1 
2 

> 0, de 
(2.7.20) 2 

dE2 > O. d8 

Now, 

V(8) ~ [Css - R(e)] = 

A: Q-1(8) Cnn Q-1(8) [Q(8) - ~ ~ A LJQ1(8) A L. 

A*LQ-1(e) C (f1(8) C Q-I (8 ) A Ltan 8 • 
nn nn 

Using this equation in equation C2.7.18) and dividing the results intQ 

(2.7.19), we obtain 

(2.7.21) - - cot 8 • 

2 
Equation (2.7.21) can be differentiated with respect to E1 to yield 

(2.7.22) 

The inequality (2.7.20) implies that this derivative is positive. 
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0 

E 
'<> 

....l. 
iC....l 
+-< 

c: 
r;.f e = 0 [generalized inverse] 

+-....l 
< 

....l. 
0 

8 
'<> 

t 2 
£2 

e n/4 [stochastic inverse] 

e = n/2 [zero vector] 
o 

Figure 2.2. Schematic geometry of the tradeoff curve. 
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From (2.7.20), (2.7.21), and (2.7.22), we infer that the tradeoff curve 

2 2 
between c

l 
and c 2 is monotonically decreasing and convex towards the 

origin and that 6 is the acute angle between the tangent to the trade-

2 off curve and the c2 axis. Therefore, 

2 2 
Ilo mo ll L2, sup c l (6) '" C (Tl/2) .. 

0< 6<TI 12 1 

(2.7.23) 2 2 
inf c2 (6) = c2 (Tl/2) = 0 

0<8<Tl/2 

2 2 ~ At C At * ~ sup c2 (6) c2 (0) = omO omO . 
0< 6<Tl /2 L nn L 

A schematic diagram of this tradeoff curve is pictured in Figure 2.2. 

The qualitative features of this diagram are essentially identical 

to those of Figure 3 of Backus and Gilbert [1970, p.144]. 

Backus and Gilbert [1970J point out that it is best to avoid 

solutions corresponding to extremal values of 6. Clearly, the gener-

alized inverse solution [eq.(2.6.4)J is a poor choice on the tradeoff 

curve. According to Gilbert [1972, p.146J, fI the . place to be is down 

at the corner." This optimal point can be defined by the equation 

(2.7.24) .. -1. 

We see from equation (2.7.21) that this point corresponds to the 

solution (2.5.10) obtained from the stochastic inverse. 
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2.8 The response operator. For the estimate orn(e) to be useful, we 

must be able to evaluate how successfully it approximates the desired 

solution 001
0

, Substituting equation (2.7.11) into equation (2.7.2) 

we obtain 

(2.8.1) 

This result is a generalization of equation (2.4.4). The operator 

R(e) represents the filter through which we "see" 001 0 , It is opti-

2 mal in the sense that it minimizes the quadratic form E We shall 

call R(e) the response operator. For e = 0, the response operator 

reduces to the projection operator P~(A *) defined in §2 .6. For 
L 

e m n/4, the response operator equals the autocorrelation operator of 

the process Ps given by (2.5.7). 

Given 

estimation 

(2.8.2) 

R(e) and any gE: ltt
L

, we define the relative success of 

2 nL of the vector g at e by the equation 

2 It can be easily seen that 0 $ n
L 

(e, g) $ 1 for all g. Let f,. 

L *t L * L L 
(AL 'AL) A L' g , so that g ,. ALf + Pn<A ) • g. Since R(e) is 

2 L 
positive semi-definite, nL ~ O. Furthermore, since n(R) .. ll(AL) , 

2 L * t L * L * it is clear that nL$fAL 'AL Q AL 'ALf/fAL'ALf Now the term 

on the right of this expression will be always less than or equal to 

1 if II Qt AL 1: A~ f I I ~ II f II. This inequality holds because 

L * L * IIAL 'ALII ~ II Q II, and we can therefore replace AL 'AL by Q. 
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Thus we conclude that nL
2 

$ 1. This implies that C - R( e) is a posi­ss 

tive semi-definite operator, a fact we used in the previous section. 

Suppose that R(r,rO) is the kernel of R(e). F.rom (2.8.1) 

we see that ~hat this kernel with rO fixed is an averaging kernel in 

tn L; that is, defines a vector in mL whose L-product with omO is 

the estimate om(rO)' In the limit of infinite resolution this kernel 

will approach the kernel C (r,rO)' Equivalent averaging kernels in ss 

the space m are obtained by applying R to the operator I. Define 

(2.8.3) J/ = R(e) ~ I 

In the limit of infinite resolution the kernel of~approaches the 

kernel I(r,rO) which consists of delta functions. 

equivalent in the sense that 

J/and R(6) 

(2.8.4) 
L 

= R(e) • om
O

' 

are 

It is usually more convenient to work with ~ since it does not 

require comparison with C . We note that J/is not symmetric. ss 

2. 9 The variance operator. In the previous section we saw that the 

response operator R(e) is a representation of the i nverse filter 

used to calculate the estimate om. Examination of this operator (or, 

equivalently, the operator~ allows one to judge the nature of the 

averaging required in the estimation of the solution om
O

' Any 

features of the solution lost in this averaging are said to be un-

resolvable. The components in the null space of A will obviously be 
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unresolvable, and, due to the fact that the data are contaminated by 

errors, it is possible that a component of the solution in the range 

space of A is unresolvable as well. 

A simple quantitative criterion for the resolvability of any vec-

tor in the model space can be established in terms of the operator 

V(6) defined in (2.7.14). This operator represents a transformation 

of the error autocorrelation operator C into the model space. The nn 

eigenvalues of V(6) represent the variances of the errors induced on 

the model space by errors in the data along directions gtven by its 

eigenvectors, motivating us to call V(6) the variance operator. If 

~2 is an eigenvalue of V (6) associated w-ith the eigenvector V, then 

the probability that the errors in the data will give rise to an error 

in the estimate along the direction V with a magnitude less than l.96 ~ 

is 95%. This follows from the fact that the errors are normally dis-

tributed and that, for a normal distrib~tion, the integrated probabil-

ity in the interval [-1.96 x the standard deviation, +1.96 x standard 

deviation] about the mean is 95%. In general, let ~(c) be the factor 

associated with the confidence coefficient c, so that k(95%) = 1.96. 

Now, since the errors are normally distributed, the question of 

the resolvability of vectors in nl can be posed as the problem of 

deci~ing between two simple hypotheses. Let m and m' be two vectors 

in U1, and let us ask, are these two vectors resolvable by the obser-

vations? Quite obviously, they will not ~e if the difference between 

them om e m - m' is the zero vector. In the usual fashion of 

statistical inference [Freeman, 1963J we set up a null hypothesis: 
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the vector om is the zero vector, and an alternative hypothesis: the 

vector om is not the zero vector. If, on the basis of some criterion, 

we can reject the null hypothesis, then we shall say that om is re-

solvable. 

The most obvious criterion is the following: we reject the null 

* hypothesis if the projection of om onto n (A) lies outside the hyper-

ellipse * g'r V (e)] C IHA) whose principal axes are along the eigen-

vectors V of vee) and have lengths k(c) ~ , where c is some chosen n n 

confidence coefficient. Translating this geometrical criterion into 

an algebraic statement, we say that om is resolvable with a confidence 

cif 

(2.9.1) 

The form of the resolvability criterion given in equation (2.9.1) 

requires that the error autocorrelation operator C be nonsingular. 
nn 

In fact, because the generalized inverse of Vee) appears in this 

expression, the computation will be unstable if the error induced on 

the model space is very small. 
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Chapter 3 

SPHERICALLY SYMMETRIC AVERAGES OF 

THE EARTH'S VELOCITY AND DENSITY DISTRIBUTIONS 

3.1 Introduction. For most seismological purposes, wave propagation in 

the Earth can be adequately described by specifying the compressional 

and shear velocities and density at each point in the Earth's interior. 

At the present time, however, the inverse problem of modeling these 

three quantities from the observations of wave propagation becomes fea­

sible only if the distributions are taken to be spherically symmetric. 

For models involving more than one spatial dimension,the foward compu­

tation of such data functionals as travel times and eigenperiods is 

difficult and incredibly laborious. More importantly, the available 

observations do not contain enough usable information about aspherical 

variations of velocity and density to warrant inversion. For these 

reasons we restrict . our attention to Earth models that are spherically 

symmetric. 

Approximate spherical symmetry is to be expected. For an isolated, 

stationary, self-gravitating fluid in its equilibrium configuration, 

surfaces of constant density, pressure, and therefore velocity are 

spherical and concentric about its center of mass. Because the strength 

of the Earth is much less than the hydrostatic pressure throughout most 

of its interior, its state of stress is very nearly hydrostatic. If 

the state of the Earth's interior is close to equilibrium, then the 

density distribution should be approximately spherically symmetric, 

since the other body forces are small compared to the force of self-
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gravity. Realizing that velocity variations are intimately related to 

density variations through "their dependence on pressure, we should ex-

pect approximate spherical symmetry in the velocities as well. 

In the early years of seismology, spherical symmetry proved to be 

an adequate assumption for the purposes of modeling the velocities and 

density. Indeed, it was not until the 1930's that the errors in travel 

time observations were reduced to the point that corrections for the 

Earth's ellipticity were warranted. " These corrections, up to four sec-

onds for some phases, were published in the form of tables by Bullen 

in 1937. Apart from the Earth's ellipticity of figure, which was suf-

ficiently well predicted by hydrostatic theory, aspherical variations 

for the most part appeared to be confined to the Earth's crust. The 

existence of lateral differences in the uppermost layers explained 

reasonably well the fluctuations in travel times at short distances 

and the differences in surface wave dispersion. The consistency of 

o travel times at distances greater than 20 , evidenced by the similarity 

of the Jeffreys-Bullen and Gutenberg-Richter tables, provided a strong 

argument for the spherical symmetry of velocities in the lower mantle 

and core. 

Predictably, modern refinements and diversification of seismic 

techniques have reduced the standard error of one observation to where 

most of the scatter in travel times can be attributed to lateral het-

erogeneity. This is also true for many of the eigenperiods greater 

than 300 seconds· It now ~ppears that the entire upper mantle is 

laterally variable and that heterogeneities persist at least to the 
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depth of the core-mantle interface. In the light of these facts, we 

must reexamine the appropriateness of requiring a spherically symmetric 

representation of the Earth to satisfy data contaminated by the effects 

of lateral heterogeneities. 

Most authors working on the radial variations of velocity using 

travel times have tried to eliminate lateral effects either by averag­

ing the data or by applying direct corrections for them. The latter 

procedure is exemplified by the use of station corrections [Herrin and 

Taggart, 1968J. Unfortunately, this method is limited; it only 

accounts for anomalies in the vicinity of the receiver - usually only 

in the form of a constant correction for all distances and azimuths. 

Some work has progressed on correcting for source anomalies underneath 

the Aleutian arc using nuclear explosion data and three-dimensional 

ray tracing techniques [Sorrells ~ al.,197l; Jacob,1972J. but the 

wide application of this method has been prevented by its complexity 

and a lack of data. 

Applying direct corrections to free oscillation data is even more 

tedious. McGinley [1968J has treated the effect of some lateral struc­

tures on torsional oscillations using perturbation theory, and Dahlen 

[1968, 1969] has formulated the general first-order perturbation theory 

for both spheroidal and torsional oscillations us i ng Rayleigh's prin­

ciple. However, the calculations are too complex and the regional 

structure of the Earth is too unknown to permit any simple correction 

to be made to the eigenperiod data. 

A more reasonable procedure is to treat the fluctuations due to 
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lateral variations as another source of error and simply eliminate them 

by averaging. This has been the procedure of most investigators since 

the early work of Jeffreys . It is clear t hat averaged data contain 

information about some sort of spherically averaged representation of 

the Earth. For any estimates to be usef ul we must know the approximate 

nature of the spherical averaging, as wel l as the kind of data distri-

bution required to insure that the sample averages estimate without 

bias data functionals of this spherically symmetric representation. 

Two averaging theorems which provide this information exist, one 

for eigenfrequencies, due to Gilbert, and one for travel times. The 

purpose of this chapter is to state these theorems. 

3.2 The Terrestrial Monopole. Suppose v (r, e ,~) is the compressional 
p 

velocity, v (r, e ,~) is the shear velocity, and p(r,e,~) is the density 
s 

in the Earth expressed in spherical coordinates with an origin at the 

Earth's center of mass. Then the spherically symmetric distributions 

vpo(r) v (r,e,~) p 

(3.2.1) vsO(r) = Z~ l2~f.~ v (r.e.~) s sin e de d~ 

po(r) p (r, e.~ ) 

constitute what Gilbert 11972J has termed the Terr ~strial Monopole. 

The velocity and density distributions in the Earth can each be 

written as the sum of two terms: 



(3.2.2) 

v (r,e,q,) 
p 

v (r,e,q,) 
s 

p (r,e,q,) 

-
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+ 

ov (r,e,q,) 
p 

ov (r,e,q,) 
s 

op (r,e,q,) 

The terms ov , ov , and op represent the departures from spherical p s 

symmetry and average to zero on spheres of constant radius r. If the 

Earth is nearly spheric.lly symmetric, then these terms will be small 

compared to v , v , and p. 
p s 

3.3 Gilbert's averaging theorem for eigenfreguencies. Because of ro­

tational symmetry, an eigenfrequency of angular order t belonging to 

to the Terrestrial Monopole is (2£ + l)-fold degenerate. The effect 

of adding aspherical perturbations as in equation (3.2.2) is to re-

move this degeneracy. Gilbert 11972j has shown that, to first order in 

ov , 6v , and op, the arithmetic average of singlet eigenfrequencies 
p s 

in a mode multiplet split by lateral heterogeneities is the degenerate 

multiplet eigenfrequency of the Terrestrial Monopole. This result is 

a direct consequence of the zero sum rule of degenerate perturbation 

theory and is true for all first-order aspherical perturbations, in-

1 cluding those due to rotation and ellipticity. 

As Gilbert [1972] points out, this implies that, if the distribu-

tion of source and receiver parameters is such that the probability of 

picking a particular frequency as the "peak frequency" of a mode mul-

tip let has a density equal to the density of singlets at that fre -

1 Dahlen [1968, p.364] had shown this for ellipticity. 
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quency, then the average of many observed peaks is an unbiased estimate 

of the eigenfrequency belonging to the Terrestrial Monopole. 

Because of this averaging theorem, the construction of the Ter-

restrial Monopole is a logical goal of gross Earth inversion studies 

that use mode data. 

3.4 An averaging theorem for travel times. At the present time, the 

body of reliable eigenperiod data samples only sparsely those modes 

with periods less than 300 seconds. Below 300 seconds the normal mode 

spectrum of the Earth is densely populated, and the identification of 

individual lines is difficult. 2 Until this deficiency is remedied, 

better estimates of the density and seismic velocities in the Earth 

will be obtained by the simultaneous inversion of both eigenperiod and 

travel-time data. However, for the results of any inversion to have 

meaning, the sets of averaged eigenperiod data and averaged travel-

time data must be consistent in the sense that they average the velo-

city distributions in roughly the same way. 

Most seismologists have seemed contented to define the "average" 

radial velocity distribution in the Earth to be the one obtained by 

the inversion of travel-time averages. Quotes are often used around 

the word average to indicate that the nature of the averaging depends 

on the distribution of sources and receivers Ie.g. Freedman, 1968, 

p.1270]; there is the general realization that often regions of high 

seismicity (tectonic regions) and high station density (continental 

2 Dziewonski and Gilbert (personal communication) have turned their 
attention to this problem and have met with some success. 
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platforms) receive undue weight and bias this averaging. Intuitively, 

the average velocity distribution corresponds to the travel-time curve 

obtained by averaging many observations, each measured from a source­

receiver pair located at random on the Earth's surface. 

These intuitive notions have a solid basis in the following 

theorem: To first order in OV (P or S), the ray-theoretical surface­

focus travel times between source-receiver pairs at constant angular 

distance 6 are distributed with a mean equal to the travel time TO at 

distance 6 through the Terrestrial Monopole, provided the distribu­

tions of sources and receivers on the surface of the Earth are uni­

form. 

This result follows directly from Fermat's principle of station­

ary time. To first order, perturbations of the travel times due to 

variations in the path are negligible. As a consequence, an integra­

tion over all source-receiver geometries to get the mean yields T
O

(6) 

plus terms containing areal averages of ov, which are zero. A more 

complete discussion of the proof is given in Appendix 1. 

To a good approximation, unbiased estimates of both the travel 

times and eigenperiods of the Terrestrial Monopole are attainable, 

m~king their simultaneous inversion feasible. In practice, the hypo­

thesis of this averaging theorem is difficult to s ltisfy for absolute 

travel times - the distributions of sources and receivers on the 

Earth's surface are certainly not uniform. This motivates the use of 

differential travel times, discussed in Chapter 4. 

Importantly, since no equivalent averaging theorems exist at this 
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time for amplitude, dT/d6, and group velocity data functiona1s, the 

averages of their observations cannot be as simply interpreted as the 

averages of trave1-time and eigenperiod data. For these reasons we 

have excluded them from the data sets used in our calculations. 

3.5 Other spherically symmetric representations. Abrupt discontinui­

ties are well-established features of the Earth's velocity and density 

distributions. The Earth's surface and core-mantle interface are the 

most obvious examples. Since the radii of these discontinuities are 

variable due to the effects of rotation, lateral heterogeneities, and 

non-hydrostatic stress differences, averaging over spheres of constant 

radius to obtain the Terrestrial Monopole" smears them out "; sharp 

discontinuities become zones of transition. For example, it is ob~ 

served that the core-mantle boundary reflects considerable compres­

sional energy propagating at periods as low as 1 second. Kanamori 

[1967] estimates from the spectral amplitudes of PcP phases that a 

major transition must occur in a layer less than 1 kilometer thick. 

Now, the ellipticity of the core-mantle interface is about 0.003, so 

that spherical averaging [equation (3.2.1)J yields a transition region 

approximately 10 km thick. Large amplitude lateral variations in the 

radius of this boundary would yield a correspondingly thicker transi­

tion zone. This sort of spherically symmetric repr esentation can be 

inconvenient in theoretical and numerical calculations. 

If the variations in the radii of discontinuities are small com­

pared to the radius of the ~arth, spherically symmetric averages can 
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be defined which preserve these discontinuities and still allow one 

to make use of the first-order averaging theorems. The prescription 

is simple: the radii of the discontinuities are first averaged over 

the sphere, and the resulting distributions are averaged as in equation 

(3.2.1). Of course, we expect that the difference between this aver­

aged representation and the Terrestrial Monopole will be . negligible, 

at least to first order. 



-54-

Chapter 4 

DIFFERENTIAL TRAVEL TIMES AS GROSS EARTH DATA 

4.1 Introduction. A differential travel time is simply the difference 

between the times of arrival of any two body phases radiated from the 

same source and recorded at the same station. For example, if the 

travel time of the phase PcP at distance 6 is Tpcp (6) and if the time 

of P is Tp (6), then the differential travel time of the phase combin­

ation PcP-P equals Tpcp (6) - Tp (6) and is denoted Tpcp_p (6). 

Differential travel times have been used for some time by seismol­

ogists for locating earthquakes. The differential times of certain 

phase combinations yield directly good first approximations to the 

origin time (S-P), the depth (pP-P,sf-P), and the distance (PcP-P, 

PKKP-P) of an earthquake, and they are often tabul&ted for use at ob­

servatories. 

Use has been made of differential times in the construction and 

verification of absolute travel-time curves. Gutenberg and Richter 

[1934] used PKKP-P, P'P'-P, and P'P'P'-P times to get the absolute 

times of PKKP, P'P', and P'P'P'. These phases were recorded only 

after deep events with poorly constrained hypocenters, and the differ­

ential times were relatively insensitive to the de? th of focus. In 

more recent studies, Hales and Roberts [1970 b, 1971] used the differen­

tial times of SKS-S, SKKS-SKS, and SKKKS-SKKS to construct travel~time 

curves for Sand K. Bolt [1968] presented some readings of the time 

Tp'(AB)-P'(DF) to check his determination of the absolute times for 
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the phase P'(AB). 

Although differential times have been employed in the study of ab­

solute travel times, the direct use of them to infer the velocity 

structure has been limited to locating reflectors. If the velocity 

distribution above a discontinuity is known, then the time between the 

arrivals of the direct and reflected waves yields an estimate of the 

depth of the discontinuity. Hales and Roberts [1970 b] used a shear 

velocity model for the mantle and the differential times of ScS-S to 

estimate the depth of the core-mantle boundary. 

The purpose of this chapter is 1) to demonstrate that the differ­

ential travel times of particular phase combinations are an excellent 

source of gross Earth data and are relatively uncontaminated by the 

systematic errors that corrupt absolute travel time data, and 2) to 

present some observations of Tpcp_p ' TScs- S ' Tp'(AB)-P'(DF)' and 

Tp'(BC)-P'(DF)' The observations are included in the data sets used 

in Chapter 5 to derive estimates of the radial variation of seismic 

velocities and density. We begin with a general discussion on the 

inversion of travel-time data. 

4.2 Inversion of travel-time data. The classical work of Herglotz 

[1907] and Wiechert [1910] established a constructive existence and 

uniqueness theorem for the solution of the travel-time inverse problem 

in a radially stratified medium, subject to certain assumptions. Their 

method has been used extensively in seismology to construct profiles 

of elastic-wave velocities in the Earth from the observations of travel 

times. A number of authors [Slichter, 1932; Gerver and Markushevich, 
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1967; Backus and Gilbert. 1969; Johnson. 1971J have pointed out the 

various inadequacies of this t heory in its application to real data 

and the real Earth. To be strictly val i d. t he Herglotz-Wiechert 

procedure requires that the velocity gradi ent dvldr be everywhere less 

than vIr and that the ray-parameter - distance relationship be per-

fectly well known at almost all distances. Of course. in practice 

neither requirement can be real ized. Only a finite number of data 

can be obtained. and both shadow zones in the Earth and errors in the 

data do exist. 

These reasons motivate the use of a linear theory. such as the. one 

in Chapter 2. to solve the inverse problem. The linear formulation. 

equation (2.3.3). utilizes the spherically symmetric Frechet kernels 

to relate changes in the model to changes in the data f unctionals. 

For travel times the spherically symmetric Frechet kernel is given by 

equation (Al.2.5). Using (Al.l.4) and (Al.2.3). we see that this ker-

nel can be written 

(4.2.1) a(r) = 

where n(r) = r/vO(r) and p is the parameter of the ray~ If any of the 

turning radii Pi' i = 1.2 •...• n. equal the classical turning radius 

P - P vO(p), then the kernel has a square-root singularity at r ~ p. 

We can easily show that this singularity is integrable. That 
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is, it can be shown 

(4.2.2) I[a) = ~R a(r) dr < 00. 

The integral I[a) is an improper integral of the second kind, and 

according to Gradshteyn and Ryzhik [1965], the integral is bounded if 

there exists a scalar a < 1 such that 

(4.2.3) lim [(r - p)a a(r)] < 00. 

r + p 

-1/2 Now, a(r) « (r - [vO(r)/vO(p)] p) ,the other factors being always 

bounded, so that (4.2.3) is true if a~1/2 and if Vo is continuous at 

p. Therefore, the integral exists at all but isolated values of p. 

Although a(r) is integrable, its square obviously is not. This 

means that the Frechet kernel relating changes in velocity to first-

order changes in travel time is not a member of the Hilbert space of 

square-integrable functions, a fact that is the source of some theo-

retical difficulty. The linear theory requires that the Frechet ker-

nels belong to the space of Earth models. Since Backus and Gilbert 

[1967] take this to be the Hilbert space of square-integrable func-

tions, travel time data cannot be inverted directly for velocity using 

their procedure. To avoid this difficulty, Backus and Gilbert [1969] 

and Johnson (1971) integrate the perturbation equat i on [equation 

(2.3.2)] by parts, yielding an equation relating a change in a 

derivative of velocity to a change in travel-time. The Frechet kernel 

in this new equation is an integral of a(r) and is square-integrable. 

As Johnson [1971] points out, this procedure is an example of what 
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Backus [1970b] has called a linear quelling by integration. 

The fact that a(r) is not square-integrable presents no difficulty 

1 if the inner product on the model space is suitably chosen. The Fre-

chet kernel a(r) relates a spherically symmetric velocity variation 

over) to its corresponding first-order perturbation oT in travel time 

by the equation 

(4.2.4) ~R a(r) over) dr = OT. 

If the inner product on the model space is defined as the bilinear 

form associated with the positive definite symmetric kernel L(r,r'), 

then we noted in §2.6 that the Frechet kernel is 

(4.2.5) ~(r) = foR L-l(r,r') a(r') dr', 

so that the perturbation equation (4.2.4) becomes 

(4.2.6) foR ~R ~(r) L(r,r') over') dr dr' = oT . 

Now, the kernel ~(r) belon~s to the model space if 

(4.2.7) < 00 

This inequality is satisfied if the integral 

(4.2.8) {OR (OR J( Jc a(r) C(r,r') a(r') dr dr' 

-1 is bounded, where C(r,r') :: L (r,r'). It is easy to show that 

1 Generalization of the inner product on the model space is discussed 
in Chapter 2. The notation used in this section is compatible with 
the notation used in Chapter 2 if M - 1 and w(r) - 1. 
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(4.2.8) is bounded if we specify C(r,r') by the expansion 

co 
k2 

(4.2.9) C(r,r') L s (r) s (r'), '" 
k

2 2 2 
n=l + n 11 

n n 

where s (r) -1/2 for all positive integers n. 
2 Substitut-'" 2 sin n1lr n 

ing (4.2.9) into (4.2.8), we obtain 

(4.2.10) I: 2 k
2 

2 2 [ (R a(r) sn(r) drJ 2, 
n=l k + n 11 )0 

which we assert is bounded. The assertion is verified by noting that 

the integral in the brackets is always less than or equal to 2-1/2 I[aJ, 

a constant for all n. -2 Therefore, (4.2.10) converges as n , and ~(r) 

belongs to the model space. 

Since the characteristic wave-number k of the system (2.6.11) is 
n 

always proportional to n, the travel-time Frechet kernel (4.2.1) will 

belong to any model space for which C(r,r') ( = L-l(r,r'») satisfies 

the system (2.6.15). In the terminology of Backus [1970b], equation 

(4.2.5) is a linear quelling by convolution. 

Travel-time data can thus be inverted using the theory developed 

in Chapter 2. 

4.3 A comparison of systematic errors in absolute and differential 

travel times. Because a differential travel time is a linear combin-

ation of absolute travel times, the theory presented in the previous 

section and the averaging theorem for travel times given in §3.4 for 

2 
It can be shown that C(r,r') satisfies (2.6.15) with per) - w(r) - 1, 
q(r) - O. Since lo(r) - (sin r)/r, C(r,r') equals the product of the 

kernel given in (2.6.16) and the factor rr'. 
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absolute times can be applied verbatum to differential times. In this 

section we argue that the systematic errors .in particular differential 

travel times are generally much less than the systematic errors in the 

corresponding absolute travel times. For this reason differential 

travel-time data will be used in lieu of absolute travel-time data in 

the numerical inversions present ed in Chapter 5. 

The statistical uncertainties in estimating mean travel times 

calculated from sample dispersion are generally small, as low as ±0 .06 

seconds (standard error in the mean) for direct teleseismic P waves in 

the 1968 Tables [Arnold, 1968]. For Gaussian processes the standard 

error in the mean is inversely proportional to the square-root of the 

sample size, and it can be arbitrarily reduced simply by increasing 

the number of measurements. But statistics of this type adequately 

measure the error only if the error process has zero mean - the sample 

mean must be an unbiased statistic. Most likely, however, sample 

averages of existing travel-time data are severely biased by system­

atic errors introduced in the mislocation of earthquakes, incorrect 

identification of arrival times, poor sampling of lateral heterogen­

eities, the inadequacies of ray theory, etc. 

Because we cannot easily account for their effect on model esti­

mates, these systematic errors must be reduced to ~nsignificance . 

Obviously, systematic errors are not reduced simply by increasing the 

sample size. If independently estimated, they can be subtracted. For 

travel times this procedure involves estimating source and station 

anomalies, calculating corrections for elliptiCity, and the like. 
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The difficulties involved with this approach were mentioned in §3.l. 

An alternative is to use differential travel times. The idea is the 

following: A differential travel time is the difference between two 

absolute travel times. If the absolute times are systematically in 

error by the same amount, their difference will be an unbiased quan­

tity. 

The relative effect of some systematic errors on the differential 

times of PcP-P, ScS-S, p'GAB)-P'(DF), and P'(BC)-P'(DF) and on their 

corresponding absolute times for an earthquake 600 km deep can be 

evaluated using Table 4.1. (Further discussion of these phase combin­

ations and some observations of their differential travel times are 

presented in the next section.) We consider the following sources of 

systematic error: 

Origin time and location errors. Before the use of nuclear explosions 

as sources and before the advent of the WWSSN, origin time and location 

errors were the most serious concern of seismologists. These errors 

are now much reduced. However, locating earthquakes and modifying 

travel-time tables is still a "bootstrap" procedure and is susceptible 

to bias. Of course, for differential travel times, origin time errors 

cancel uniquely. The difference in travel time oT resulting from a 

mislocation 06 in angular distance and oh in depth is given approxi­

mately by the formula 

(4.3.1) 

The values of the derivatives in (4.3.1) have been computed for several 
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phases from the Jeffreys-Bullen Tables and listed in Table 4.1. With 

few exceptions, these values are less for the differential times. For 

. ° example, at 70 the error in Tp due to an epicentral mislocation of 

° 0.1 is about 0.6 seconds [aTp/a~ = 5 .9 sec/deg], whereas the corres-

ponding error in Tpcp_p is only about 0.2 seconds raTpcp_p/a~ - -1.6 

sec/deg]. At the same distance the error in Tp due to a 10 km error 

in the depth of focus is 0.9 seconds [ aTp/ah a 8.6 sec/lOO km). The 

corresponding error in the time of PcP-P is less than .01 seconds. 

For differential times, the greatest absolute values of [aT/a~] and 

[aT/ah] given in the table are those of ScS-S at 30° (10.5 sec/deg and 

8.3 sec/lOO km, respectively). Even so, both of these values are less 

than the corresponding values for S at the same distance (15.4 and 

8.8). 

Sampling bias. Because seismic sources are generally in tectonic re-

gions and because most receivers are on continental platforms, the 

uniform distributions of sources and receivers required by the first-

order averaging theorem [§3.4) are not available. In particular, there 

is a paucity of observations that sample the upper mantle under ocean 

basins. This sampling bias is now probably the most serious source 

of systematic errors in the measurements of absolute travel times. 

Fortunately, severe lateral heterogeneity seems f or the most part con-

fined to the crust and upper mantle. Phases with high apparent velo-

cities travel along nearly vertical paths through this region, so that 

for some range of (low) dT/d~'s sampling bias will appear in the travel 

time curve as approximately a constant term. This constant error is 
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termed the baseline error. Of course, the baseline error for phases 

propagating as compressional waves through the upper mantle will be 

different (generally smaller) than for shear phases. We observe that 

differential travel times of high apparent velocity phases travelling 

through the upper mantle in the same mode of propagation are relatively 

insensitive to variations in upper mantle structure. Quite obviously, 

simple baseline errors cancel. Table 4.1 gives some indication of how 

insensitive several phase combinations are. For example, the phase PcP 

o arriving at an angular distance of 30 from a source 600 km deep spends 

about 72 seconds traversing the upper 600 km of the mantle; at the same 

distance the phase P spends about 102 seconds. Therefore, a 1% var-

iation in velocity averaged over the upper mantle will change the 

travel time by about 0.7 seconds for PcP and 1.0 second for P. How-

ever, the same variation will affect their differential travel time by 

only 0.3 seconds. This reduction is even more dramatic for· the .. other 

combinations and distances listed in the table. 

Reading errors. Much of the art of seismology involves extracting 

signals from a background of noise. In this task, no substitute has 

yet been found for the seismologist's eye. However, every seismologist 

is aware that picking emergent arrivals late, especially phases 

that are not first arrivals, can be a source of cOfisiderable bias in 

travel-time measurements. If two phases have the same waveform, then 

their differential travel time can be measured between any two corre-

latable features of the signal, such as peaks or zero-crossings. 

This advantage of differential travel times has been used to reduce 
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reading errors and improve time resolution. Hales and Roberts [1970b]. 

for instance. read the differential times of ScS-S by correlating 

peaks. However. this procedure must be used with caution since un-

known effects, due to propagation and source can distort one signal 

relative to another and introduce systema~ic errors. 

We have established in the discussion above that the susceptibil-

ity of a differential travel-time datum to bias will be small if 

i) the difference between the ray parameters of the 
two phases is small. 

ii) the modes of propagation through the upper mantle 
are the same, 

iii) the ray paths through the upper mantle are similar. 

iv) the waveforms are similar and well recorded on the 
same instrument. 

4.4 Observations of differential travel times. In this section five 

sets of differential travel-time data are presented. These are listed 

in Table 4.2. Surface focus differential travel times of PcP-P were 

reduced from the published absolute travel times of PcP and P recorded 

from nuclear explosions and reported by Kogan 11960]. Buchbinder 

[1965]. Kanamori [1968], and Lambert et.al. [1968]. Differential 

travel times of core phases (relative to P'{DF» were obtained from 

the data sets of Hai [1963) and Engdahl [1968) and supplemented by 

new readings from three deep-focus events in the Sunda Arc. In ad-

dition. two new sets of differential travel times for the phase com-

binations PcP-P and ScS-S were read from long-period records of the 

World Wide Standardized Seismographic Network using eleven deep-focus 
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Table 4.2 

Observed sets of differential travel times 

Phase combination Distance range Events used 

PcP-P 250 _ 80 0 Explosions 
PcP-P 250 _ 700 Deep earthquakes 

ScS-S 250 _ 850 Deep earthquakes 

pI (AB)-p I (DF) 1450 
- 1800 Deep earthquakes 

P I (Be) _p I (DF) 1450 
- 1600 Deep earthquakes 

earthquakes. 

The earthquakes used in this study were restricted to events with 

focal depths greater than 500 km and magnitudes between 5.5 and 6.5. 

The reasons for this were several. Deep earthquakes in this magnitude 

range write exceptionally sharp seismograms, making them ideal for 

3 travel time studies. Secondly, the ray paths for these events include 

only one transit through the heterogeneous upper mantle, reducing a 

source of possible bias. Thirdly, the records are uncontaminated by 

surface waves. This allows one to read the times of ScS-S at short 

distances. For normal-focus events, surface waves preceed ScS at dis-

tances less than 450
, and the reading of ScS-S is difficult [Hales and 

Roberts, 1970b). Finally, simple geometrical con~ iderations imply 

that these events will be well located [Mitronovas and Isacks, 1971J. 

3 This fact was first noticed by Zoeppritz. 
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The thirteen deep-focus earthquakes used in this study are listed 

in Table 4.3. For the purposes of comparison, both ISS and USCGS 10-

cations are given ,if available. In all cases the epicentral locations 

o agree within 0.1 , and for all but one event the focal depths agree 

within 10 km. It can be judged from Table 4.1 that location errors 

of this magnitude will introduce errors in the differential travel 

o 
times no greater than 1 second (for the extreme case of ScS-S at 30 ). 

One event (Fiji C, 10/9/67) shows anomalous disagreement in the ISS 

and USCGS locations; the discrepancy in focal depth is nearly 50 km. 

Fortunately, this earthquake has been one subject of an intensive 

study by Mitronovas and Isacks [1971]. On the basis of their work, 

this anomaly can be attributed to the effect of including readings 

from certain anomalous stations for which the ray paths lie within 

the high-velocity lithospheric slab. The location we have used for 

this event is theirs, obtained by deleting these anomalous readings. 

They claim an accuracy of about ±5 km. For the other events we have 

used the ISS location if available and the USCGS location if not. In 

all cases we have used the location given in the top line of Table 4.3. 

All distances have been computed using geocentric coordinates. 

We discuss below each data set individually: 

PcP-P (surface focus). Observations of the trave l times of PcP and P 

from nuclear explosions have been published by Kogan [1960] (South 

Pacific events), Buchbinder [1965] (BILBY event), Kanamori [1968] 

(LONGSHOT event), and Lambert et.al. (LONGSHOT event). All readings 

were made from records of short-period vertic.al seismometers. From 
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these published values the differential times of PcP-P were computed, 

no corrections peing applied·. The data were residualed with respect 

o 
to the Jeffreys-Bullen ~imeB, the residuals were divided into 5 cells, 

and the sample means and standard errors in the means were computed 

° ° ° ° for cells centered at 30 • 35 ,40 , •.. , 75 (from here on, a series 

of distances such as this will be abbreviated 30°(5°)75°). ' The dis-

tribution of residuals is given in Taple 4.4. For every cell e~cept 

Table 4.4 

pistribution of PcP-P resil1uals (surface focus) 

Cell Interval (sec) 
-3 -2 -1 0 +1 +2 +3 

30° I 0 2 8 4 a 0 0 

35° 0 4 9 7 I a 0 0 

40° 0 I 8 6 3 a 2 0 

45° 1 2 16 13 3 2 1 0 

50° · 0 I 6 10 6 3 0 0 

55
0 

0 0 1 2 5 1 1 0 

60° 1 0 0 5 4 0 2 0 

65° 1 1 1 2 3 3 0 1 

70° 2 1 0 0 I 1 1 1 

75° 1 1 1 1 0 1 0 0 

the last two, the residuals had a well-defined mode. Readings beyond 

65° were few and showed considerable scatter. The sample mean and 

standard error in the mean 'were computed using the following formulae: 

(4.4.1) 
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In these expressions the wi's are weights. It was decided to weight 

the readings given in Lambert ~.al. only half as much as those in the 

other studies, because these readings showed appreciably more scatter. 

The means and standard errors in the means are given in Table 4.5. 

Table 4.5 

Observed surface · focus PcP-P ·times 

Distance Mean res. S.E.M. J.B.time Obs.time 
(deg.) (sec. ) (sec. ) (sec. ) (sec. ) 

30 -0.5 0.18 182.4 181.9 

35 -1.1 0.14 152.5 151.4 

40 -0.7 0.22 125.8 125.1 

45 -0.9 0.22 101.6 100.7 

50 -0.4 0.19 80.3 79.9 

55 +0.7 0.45 61.6 62.3 

60 +0.2 0.33 45.9 46.1 

65 +0.1 0.43 32.9 33.0 

70 -0.3 1.11 22.4 22.1 

75 -0.7 0.76 14.1 13.4 

Figure 4.1 displays the observed residuals and the 50 cell means. The 

error bars represent one standard error in the mean. 

PcP-P (deep focus). Records of fifteen deep-focus earthquakes from 

WWSSN stations in the distance range 25° - 75° fr um the source were 

examined for PcP phases. Two of the earthquakes were discarded because 

the P phases showed evidence of precursors, indicating a complex source 

function. PcP-P differential times were read exclusively from long-

period, vertical components. Long-period records were used to insure 
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proper identification of the PcP phase. All readings were assigned 

a "quality", an integer between 0 and 5 inclusive, on the basis of 

sharpness of the onsets. The readings assigned a zero quality were 

dropped, eliminating all readings from three of the earthquakes. The 

measured PcP-P times from the remaining ten events are listed (with 

all the other data presented in this section) in Appendix 2. Figure 

4.2 shows several records from the event designated Peru-Brazil B. 

The procedure used to ~educe these data was similar to the one 

described for the surface-focus PcP-P times: the times were residualed 

with respect to the appropriate J.B. travel time, the residuals were 

grouped into 5° cells, and means and standard errors in the means were 

computed. The distribution of residuals is given in the following 

table: 

Table 4.6 

Distribution of PcP-P residuals (deep focus) 

Cell Interval (sec) 
-4 -3 -2 -1 0 +1 

30° 1 0 0 2 3 0 0 

35° 1 1 1 0 1 1 0 

40° 0 1 0 0 2 0 0 

45° 0 1 1 2 7 3 0 

50° 0 0 0 0 13 6 0 

55° 0 0 0 1 2 2 0 
° 60 1 0 1 J J 2 a 
° 65 0 0 2 '1 1 3 0 
0 

70 0 1 a 1 5 1 0 
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Figure 4.2. Examples of records from which PcP-P differential 

travel times have been measured. 



-75-

The weighted means and standard errors in the means were computed 

for each cell using the formul ae (4.4.1), the weights being ~et equal 

to thtl "quality" assigned to each reading. The resul ts are given in 

Table 4.7. 

Table 4.7 

Observed deep-focus PcP-P times 

For a 600 lcIII focal depth 

Distance Mean res. S.E.M. J.B.time Obs. time 
(deg. ) (sec. ) (sec. ) (sec. ) (sec. ) 

30 -0 . 9 0.27 163.1 162.2 

35 -2.2 0.78 135.3 133.1 

40 -1.2 0.81 110.3 109,1 

45 -0.9 0.28 88.2 87.3 

50 -0.1 0.06 68.9 68,8 

55 +0.1 0.19 52.4 52.5 

60 -1.0 0.23 38.5 37.5 

65 -1.1 0.27 27,0 25.9 

70 -0.7 0.25 17.9 17.2 

The observed residuals and the cell means are displayed in Figure 4.4. 

For a focal depth of 600 km, the travel-time curves of the phases PcP, 

pP, and PP intersect at about 40°. Thus ther~ are few observations 

and correspondingly large uncertainties in mean travel times in " 

h d:1 35° - 400
• t e stance range 

Comparison of the mean PcP-P travel times for the two depths of 

focus shows that they are mutually consistent at a confidence level of 

90%. The 1968 tables show the same general trend, although they are 
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Figure 4.3. LeRend for figures 4.4 and 4.6 
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up to one second later than the observed surface-focus times at dis­

tances in the range 300 - 500 . 

ScS-S (deep focus). Eleven of the deep-focus earthquakes listed in 

Table 4.3 (all except Java Sea B and Flores Sea) were used in the 

ScS-S study. All available records from WWSSN stations in the distance 

range 250 to BOo were read. The readings were assigned qualities 

ranging from 0 to 5 on the basis of the sharpness of the arrival, the 

similarities of the waveforms, and instrument polarization. Although 

both horizontal long-period instruments were used, SH polarization was 

preferred. This eliminates possible contamination by such SV polarized 

arrivals as SKS . Records of the Argentina event (12/20/66) from 

stations in the United States are reproduced in Figure 4.5. As before, 

all readings assigned a zero quality were discarded. There remained 

193 observations. These are listed -in Appendix 2. 

Distributions of the residuals in 50 cells centered at the dis-

000 tances 30 (5 )BO are listed in Table 4.B. Cell means and their com-

puted standard errors can be found in Table -4.9, and they are plotted 

with the raw observations in Figure 4.6. Again, there are complica­

tions in the travel-time curve near 400 which make reading of the 

differential time difficult (in this case, due to the interference of 

sS and 55 with 5c5). The cell mean centered at 400 is displaced by 

about 1 1/2 seconds from the value obtained by interpolating nearby 

means, and this behavior can be attributed to these complications. In 

the inversion computations (Chapter 5) the standard error of this point 

was doubled. 
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Table 4.8 

Distribution of ScS-S residuals (deep focus) 

Cell 

30° 

35° 

40° 

45° 

50° 

55° 

60° 

65° 

70° 

75° 

80° 

o 

o 

o 

o 

3 

o 

o 

o 

o 

o 
o 

-6 

o 

o 

o 

1 

1 

o 

o 

o 

o 

2 

o 

-4 

o 

o 

o 

o 

1 

1 

2. 

1 

o 

2 

2 

Interval (sec) 

-2 0 +2 +4 

1 

2 

o 

3 

3 

3 

6 

1 

7 

4 

6 

o 

6 

2 

5 

6 

5 

8 

7 

9 

8 

4 

3 

1 

4 

5 

6 

3 

3 

9 

3 

2 

3 

3 

3 

a 

2 

2 

2 

2 

3 

2 

2 

o 

+6 +8 

1 

1 

1 

o 

o 

1 

1 

o 

o 

1 

o 

1 

1 

o 
o 

o 

o 

o 

Q 

Q 

1 

o 

All cell means are positive J.B. residuals, indica~ing that either 

the shear velocity in the mantle is slower than the J.B. model, or else 

the depth to the core is greater. Several recent studies on the abso­

lute travel times ' of 'PcP [Kogan, 1960; Taggart and Engdahl, 1968J. as 

well as the differential times of PcP-P given here, require that the 

core radius be increased on the order of 10 km over the J.B. value of 

3473 km. The latter possibility must therefore be rejected in fsvor 

of the former. More will be said about this in Chapter S. 

Hales and Roberts [1970b] have presented times of .ScS-S corrected 
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Table 4.9 

Observed deep-focus ScS-S times 

Distance Mean res. S.E.M. J .B. time Obs.time 
(deg. ) (sec. ) (sec. ) (sec. ) (sec. ) 

30 +4.7 0.80 306.6 311.3 

35 +2~ 7 0.71 256.7 259.4 

40 +3.3 0.66 212.4 215.7 

45 +1.2 0.52 173.1 174.3 

50 +0.5 0.69 138.1 138.6 

55 +1.2 0.58 107.3 108.5 

60 +1.3 0.52 80.7 82.0 

65 +1.6 0.44 58.1 59.7 

70 +1.1 0.46 39.5 40.6 

75 +0.8 0.60 24.7 25.5 

80 +0.5 0.37 13.5 14.0 

to a surface focus. From their observations they obtained 3486 km as 

the radius of the core. Comparison of our observations with theirs 

is difficult, aince they list no travel times or J.B. residuals. 

As can be seen from Table 4.8 or Figure 4.6, the differential 

travel times of ScS-S show a large scatter; the spread of the distri-

bution at some distances exceeds 5 seconds. The scatter seems to be 

a genuine propagation effect; it does not correlate highly with the 

assigned qualit~es of the readings. A similarly l arge scatter was 

noted by Hales and Roberts 11970b). They suggested the possibility 

that this scatter is due to lateral heterogeneity near or on the core-

mantle boundary. To account for the observed scatter of 5 seconds or 

so by fluctuations of the core-mantle interface itself would require 
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'~umps" on the order of 15 km in amplitude. Variations of this magni-

tude have been suggested by Hide [1966] and Hide and Horai [1968] to 

explain certain geomagnetic peculiarities and geoidal topography of 

luw angular order. Phinney and Alexander [1966] found evidence from 

their observations of diffracted P waves of .lateral heterogeneity 

at the core-mantle interface. Since several lines of independent evi-

dence support this hypothesis, the possibility that lateral struc-

ture in this . transition zone accounts for some of the scatter in the 

ScS-S data seems to be reasonable. 

P'(AB)-P'(DF) and P'(BC)-P'(DF). It can be seen from an examination of 

Table 4.1 that the differential travel times of pI phase combinations 

are especially insensitive to the types of bias discussed in the pre-

vious section, a property which follows from the fact that these core 

phases are characterized by low values of dT/d6. Since they also pro-

vide severe constraints on the possible variations of velocity in the 

core, the differential times of pI make excellent gross Earth data. 

Several phase combinations were considered. The phase pI (DF) was 

chosen as the reference phase because it is a strong, clear arrival at 

all distances that other pI phases are observed (1250 - 180°). For 

the Jeffreys model, there are two other branches of the pI travel-time 

curve. the AB branch and the BC branch. The AB branch represents the 

travel times of rays which bottom in the outer core and is well ob-

served; it is a receding branch (has positive curvature) and terminates 

at the caustic B located at a distance of 143°. At distances greater 

° than 143 , at least one other branch is observed. Jeffreys has labeled 
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150 .....--------------------, 
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FLORES SEA 

MAY 24. 1965 

15 43 54.S GMT 
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Figure 4.8. Examples of records from which pI differential 

travel times have been measured. 
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p' DIFFERENTIAL TRAVEL TIMES 
RELATIVE TO p' (OF) h=600 km 

--- JEFFREYS-BULLEN 
--- ADAMS-RANDALL (1964) 

BOL T (1968) 

SUBIZA -BATH (1964) 
o HAl (1963) 

ENGDAHL (1968, Peru-Brazil) 
-u- (-u- Fiji) 

Java Sea A 
-11- -11- 8 

Flores Sea 

o 

o ~ ____________ ~B~~~ __________ ~D~F~B~A~S=E=L~IN~E~~ 

. . 

130 140 150 180 

DISTANCE, deg. 

Figure 4.9. Plot of p' differential travel-time data. 
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this branch Be; in his model it represents rays bottoming below the 

B-caustic ray and above the inner core . Bolt [1959] has re-interpreted 

the arrivals beyond the caustic as members of a family constituting 

what he calls the GH branch. In his model there exists a transition 

region between the inner and outer cores in which these rays bottom, 

and it is separated from the outer core by a discontinuity. His 

interpretation was motivated by a series of small arrivals preceding 

° P'(DF) at distances less than 143. These precursors, originally 

studied by Gutenberg [1957]. would, ·in Bolt's model, be refracted by 

the transition region - outer core discontinuity to distances near 

125°. Recently, however, Haddon [1972] has proposed that these pre-

cursors might result from scattering off lateral heterogeneities in 

the vicinity of the core-mantle boundary. His arguement has been mott-

vated by the anomalous curvature of this branch, pointed out by Buch-

binder [1971], an4 the predominance of high freqqencies in the -precur-

ors. Examples of these precursors from an event_in the ~unda arC (Java 

Sea B) are shown in Figure 4.7. 

TO test Haddon's hypothesis, a simple model experiment was per~ 

formed. Rays were traced through a two-dimensional Earth model consis-

ting of a homogeneous mantle (v = 13 km/sec) surrounding a homogeneous 
p 

core (v ., 10 km/sec) separated by a "bumpy" bound, ry . The equation p 

used to specify the radius of the boundary was Rc = 3473 + ~ sin nTI 6. 

~e rays were traced and the travel times computed for various values 

of the parameters n and A. The results for n • 20 and A • O. 10, 20 km 

are pictured in Figure 4.10. It can be seen that the effect on the p' 
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A=O km 

A=IO km 

A-Amplitude A=20 km 

(1) 
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D 
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---F 

.' 
. ' 

~-F 

, . ..-..... ·-F / .... , .... 

... ~' 
D·' r Distance-

Figure 4.10. Model experiment showing the scattering of pI rays 

from bumps on the core-mantle boundary. Parameter A is the amplitude 

of bumps. 
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travel times is to introduce a number of arrivals as precursors to 

P'(DF) at distances less than the distance to the B caustic. Although 

the calculation is extremely crude, the resulting travel-time curve for 

A D 20 km looks surprisingly like the observations (compare with Figure 

4.9 for example). This qualitative experiment confirms the plausibil-

ity of Haddon's hypothesis and lends further support to the speculation 

that the transition region between the mantle and core is laterally 

heterogeneous. 

The observations of p' differential travel times shown in Figure 

4.9 were computed from the raw readings of Engdahl [1968], who used 

the events designated Peru-Brazil A and Fiji B in Table 4.3, as well as 

Engdahl's [1968] compilation of Hai's [1963] times for a 600 km focal 

depth. Additional readings of precursor phases at distances less than 

a 143 were taken from Subiza and Bgth [1964]. To further supplement 

this data, times were read for three deep-focus earthquakes in the 

Sunda Arc from records wri~ten by short-period vertical component 

seismometers of the WWSSN. This geometry was advantageous because it 

provided a number of good readings of P'(AB)-P'(DF) near the antipode 

from stations situated in the Caribbean. Most of the readings were of 

very high quality. Examples of seismograms are shown in Figures 4.7 

and 4.8. 

All p' differential times were reduced to a 600 km focal depth 

using the J.B. Tables. Beyond 1430 two branches are well delineated. 

The precursors to P'(DF) at distances less than 1430 show their char­

acteristic scatter. Neither the interpreation of Bolt [1968] nor the 

more complex model of Adams and Randall [1964], plotted with the obser-
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+4~------~------~------~------~------~------~------~ 

+2 

-2 

-4 

lIE HAL 
A ENGDAHL 
el JAVA SEA A 
~ JAVA SEA 8 
~ FLORES SEA 

r::.'s - P~F Differential Travel Times 

(Deep focus) A 

1968 Tables 

-6L-______ L-____ ~~ ____ ~ ______ ~ ______ ~ ______ _L ______ ~ 

/50 160 /70 180 
DISTANCE, deg. 

Figure 4.11. P'(AB) - P'(DF) residuals from deep-focus events. 

Black dots are cell means; error bars represent one standard 

error in the mean. 
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Table 4. 10 

Distribution of P'(AB)-P' (DF) res i duals (deep focus) 

Cell Interval (sec) 

-5 -4 -3 - 2 - 1 .0 +1 

147.5° 0 2 3 5 7 0 1 0 

152.5° 1 0 10 11 1 0 0 0 

157.5° 1 5 8 10 2 0 0 0 

165.0° 0 4 5 5 7 3 1 0 

175.0° 0 1 0 1 7 1 1 0 

vations in Figure 4.9, adequately explain these arrivals. Because of 

the possibility that the precursors arise from scat~ering off lateral 

heterogeneities and therefore are not gross Earth data, we have assumeq 

that the PKP curve is of the Jeffreys type and have compu~~d cell means 

only for the combinations P'(AB)-P'(DF) and P'(BC)-P'(Df}. 

The dis~ribution of residuals for these ~wo phase combinations are 

given in Tables 4.10 and 4.12. Residuals for P'(BC)-P'(DF) wer~ 

Table 4.11 

Observed deep-focus p' (AB)-P' (DF) .times 

Distance Mean res. S.E.M. J.B.time Obs.time 
(deg.) (sec. ) (sec. ) (sec. ) (sec. ) 

147.5 -2.3 0.24 10. 0 7.7 

152.5 -2.9 0.28 23.5 20.6 

157.5 -3.2 0.19 38.3 35.1 

165.0 -2.2 0.31 63.0 60.8 

175.0 -1.5 0.31 101.6 100.1 
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Table 4.12 

Distribution of P'(BC)-P'(DF) residuals (deep focus) 

Cell Interval (sec) 

0 +1 +2 +3 +4 

146.25° 1 6 0 1 0 0 

148.75° 1 0 15 6 0 0 

151.25° 0 0 5 10 3 2 

153.75° 0 0 8 3 4 1 

156.25° 0 1 5 1 3 0 

computed by extending the BC branch in the Jeffreys model with a ray 

parameter of 2.2 sec/deg. In computing the cell means listed in Tables 

4.l1.and 4.13 all observations were given equal weight. 

From Figure 4.11, which displays the observations of P'(AB)-P'(DF), 

we see that Bolt's [1968] times are in good agreement with the data. 

Figure 4.12 shows the residuals for P'(BC)-P'(DF). The point C is not 

well defined by these data but lies somewhere near 1550
• The cell means 

centered at 153.750 and 156.250 may be biased by spurious arrivals. 

Table 4.13 

Observed deep-focus P'(BC)-P'(DF) times 

Distance 
(deg.) 

146.25 

148.75 

151.25 

153.75 

156.25 

Mean res. 
(sec.) 

+0.7 

+1.7 

+2.8 

+2.2 

+1.8 

S. E .M. 
(sec. ) 

0.30 

0.11 

0.20 

0.24 

0.34 

J.B.time 
(sec. ) 

1.8 

3.2 

4.8 

6.8 

9.0 

Obs.time 
(sec.) 

2.5 

4.9 

7.6 

9.0 

10.8 
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Figure 4.12. P'(BC) - P'(DF) residuals from deep-focus events. 

Black dots are cell means; error bars represent one standard 

error in the mean. 
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Chapter 5 

NUMERICAL MODELING OF THE RADIAL VARIATIONS 

5.1 Introduction. This chapter is concerned with actual numerical , 

modeling of the radial distributions of velocity and density in the 

Earth. The data we shall attempt to fit are the E~Tth's mass and mo-

ment of inertia, the observed eigenperiods of oscillation, and the 

differential travel times presented in Chapter 4. The algorithm that 

we shall employ was outlined in Chapter 2: a starting model is coq-

structed and tested against the data, a correction is computed by 

solving the linear perturbation equations, the data functionals are re-

evaluated, and the procedure is iterated until the fit is satisfactory. 

Because the inverse problem is nonlinear and has no unique sol-

ution, interpretation of any numerical results is a tricky business. 

A common mistake is to infer that because a certain model satisfies 

the data some feature of that model actually exists in the Earth, 

when in reality the data do not require this feature. To guard 

against this kind of breach of scientific method, one must insure 

that the calculated perturbations are resolvable - are really required 

by the data. The resolving power of the data in a linear neighborhood 

of any' model can be judged by examining the averaging kernels given in 

equation (2.8.3). To calculate the perturbations we shall use equa-

tion (2.7.12); it provides an approximate solution which has been 

filtered of any linearly unresolvable components. 

As we emphasized in §2.3, the success of an algorithm based on 
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linear estimation depends critically on the model used to "start" the 

computation. In the design of the startIng model we must strike a 

balance between two opposing considerations. On the one hand, because 

the eigenperiods and travel times are nonlinear functiona1s, the 

starting model should be as linearly close as possible to the sought 

representation of the Earth. Otherwise, the model that results from 

successive perturbations may end up in a local minimum far removed 

from this representation, and resolving power computations may be de­

ceptive. Generally speaking, the starting model should include any 

major discontinuities that exist in the Earth. A starting model in 

which the velocities and density are taken to be constants is an 

example of an inadequate representation. On the other hand, we desire 

that the starting model be "simple" - devoid of any features that 

might not exist in the spherically averaged Earth. For this reason 

published models generally make poor starting models. 

The procedure we shall adopt is to construct starting models 

based on a series of reasonable but "simple" physical assumptions. 

These will be detailed in section 5.4. Since the inversion al­

gorithm provides the minimum deviations (in a norm sense) from these 

starting models necessary to fit the data, the resulting models will, 

in some sense, be as simple as possible. 

We discuss in the next section the adaptation of the inversion 

theory given in Chapter 2. The data sets used in the inversions are 

presented in §5.3, and §5.4 is devoted to construction of the starting 

models. In §5.5 models are derived and evaluated. In section 5.6 the 

resolving kernels are displayed. The last section contains conclusions. 
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5.2 The inversion algorithm. Estimates of the spherically &veraged 

compressional velocity vpO(r), shear velocity vso(r), and density 

PO(r), which constitute a spherically symmetric Earth model rnO' were 

sought given the observed values of the Earth's mass and moment of 

inertia and the sample means of available sets of eigenperiod and 

differential travel-time data. The data values were arranged in· a 

vector dO' The errors in the data were assumed to be samples of 

independently distributed, Gaussian random variables with zero means 

and known variances. The vector orno was defined to be equal to the 

difference between rnO and some initial guess rns ' and the vector odD 

was de,fined equal to dO - d(ms )' As an approximation, ornO and 0da 

were assumed to be related by equation (2.5.1), where n is the vector 

containing the noise components and ~ is the linear operator whose 

ith row is the Frechet kernel of the ith datum in do' Under these 

assumptions the theory presented in Chapter 2 was applicable, 

The inner product between any two vectors rn and m' in the space 

of Earth models was defined by the equation 

(5.2.1) m • rn' .. (\v (r)v' {r)w (r) Jo p p p 
+ v (r)v'(r)w (r) s s s 

+ p(r)p'(r)w (r)] dr. 
p 

The measure on the interval (O,R] was chosen to be linear in r, so 

that the weighting functions w , w , and w in the integral (5.2.1) 
p s p 

are simply constants. These constants were chosen to render the inner 

product dimensionless. The velocities were expressed in units km/sec, 

and the density was expressed in units of gm/cm3• We write 



(5.2.2) 

[v J 
p 
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Iv J s 

The inner product is dimensionless i f 

(5.2.3) 

lan/sec, 

where the units of radius are taken to be kilometers. We specified the 
. -1 

weighting functions to be numerically equal to R This specification 

implies that unit perturbations of both velocities and density are of 

equal weight. Although arbitrary, this decision was motivated by t he 

near numerical equality of vpO ' vsO ' and Po when expressed in the units 

given in (5.2 . 2). 

The four types of data functionals which compose a data vector d 

are the mass of the model, denoted M; its moment of intertia I; spher-

oidal and toroidal eigenperiods of radial order n and angular order t, 

a T denoted nt~ and nt~ respectively; and the ray-theoretical travel times 

T (6,h) of a phase x at angular distance 6 from a source with focal 
x 

depth h. The functionals M and I were normalized by their observed 

values (given in §5.3) and thus are dimensionless. The eigenperiods 

and travel times were expressed in seconds. The scale factors for these 

fUnctionals appearing in the inner product on the data space were set 

-2 equal to 1 sec 

With these conventions, a computer program was written to calculate 

the best linear estimate olD given by equation (2.7.12) and the averag-

ing kernels appearing in equation (2.8.3). Rewriting (2.7.12) and 
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(2.8.3) in terms of the inner product (5.2.1), we find that 

(5.2.4) om .. 

and that 

(5.2.5) 

the angle e being the parameter of the tradeoff curve. 

The foward calculation of the eigenperiods and the calculation of 

their Frechet kernels was performed in subroutines written by Mr. 

Martin Smith. The travel-time routines were kindly provided by Dr. 

Bruce Julian. 

Since the error components are assumed to be uncorrelated, the 

form of the noise autocorrelation operator C is given by equation nn 

(2.5.12). This form was used with the variances along the diagonal 

set equal to the squares of the standard errors in the me~estimated 

from the scatter in the data. 

Specification of the operator Css requires some discussion. We 

saw in §2.6 that the meaning attached to C in the stochastic form­ss 

ulation, where it plays the role of an autocorrelation operator, makes 

sense only if we impose on the model space an ~ priori probability 

distribution • . This is because sample ensembles f v r the solution pro-

cess are unavailable, and probabilities cannot be interpreted as the 

limits of sample frequencies. In §2.6 we also saw that, if quadratic 

convergence is sufficient to identify vectors, then ch90sing Css is 

equivalent to specifying the norm on the space of models. With this 
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realization we chose C in the following manner: for each of the ss 

model functions v (r), v (r), and p(r), the interval [O,Rl was parti-
p s 

tioned into several sub-intervals, each bounded by radii at which 

discontinuities are known or thought to exist. Considering only one 

model function for a moment, let us label these radii a , where 
p 

p - 1,2, .•. ,P. We define aO = 0 and assume that ap _ R, so that on 

the pth interval the radius varies between a 1 and a p a 1,2, .•. ,P. 
p- p' 

On each of these sub-intervals we defined a smoothing operator C (r,r') 
p 

by the equation 

(5.2.6) 

where 

C (r r') = k /2 { -k Ir-r'l -1 -k (a -a ) p' pep + D [A e p p p-l 

x cosh k (r-r') + B cosh k (a +a l-r-r') p p p p-

+ C sinh k (a +a l-r-r')l}, p p p-

A'" [1 - a 1 (k +cx' )][ 1 + a (k - 8 )], p- p p p p P 

B = cx a 1 + 8 a r [k
2 

- k (cx +8 ) + cx 8 la la - 1, 
P p- P P P P P P P P p- P 

k (a -a 1) p P p- , 
C 

D = [1 - cx a 1 - 8 a + (cx 8 _k
2
)a 1a lsinh k (a I-a) p p- p p p p p p- p p p- p 

- k [a - a 1 + (8 -cx )a a 1] cosh k (a I-a). p p p- p p p p- p p- p 

Equation (5.2.6) is similar to equation (2.6.16); in fact, C (r,r') 
p 

satisfies the system (2.6.15) with w(r) '" p(r) = 1, a a a b = a , 
p-1' P 

cx = cx , and 8 a 8. Having done this for each of the three model p p 

functions, we specify Css to be a block-diagonal operator as in 

equation (2.6.10) with each of the three blocks in the form 



(5.2.7) 

O--a 

I C
l I 

a --. 
1 

I 0 

a-- • 
2 

~-l 
I 0 

R--' 

1 
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a2 
... R "1>-1 

0 I I 0 

• 

C2 0 

o 

This block-diagonal form of the operator C expresses the con­ss 

viction that between the radii of discontinuities the solution ornO 

behaves smoothly. The estimation is therefore weighted in favor of 

this behavior. The parameter k is simply the mean wavenumber of the 
p 

smoothing operator C. In the minimization to obtain the best linear 
- p 

estimate orn, components with unit amplitude and wavenumber k measure 
p 

twice as much as components with unit amplitudes and wavenumbers near 

zero. Since the minimization seeks out the "smallest" solution that 

satisfies the data, low-wavenumber components; i.e., smoother compon-

ents, are preferred. 

The parameters Qp and Bp specify the boundary conditions applied at 

the radii a 1 and a. If they are set equal to zero, the derivatives p- p 

of the solution will vanish at these radii (inside the interval). 

whereas if they are set equal to infinity, the values of the solution 

itself will vanish. 

This form of the solution autocorrelation operator is quite 
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versatile. By its manipulation, . one can introduce information about 

the solution not contained in the data or search for solutions with 

specified constraints. Often this is a convenient way to test hypo-

theses; e.g., does a solution to the inverse normal mode problem exist 

with a density at the top of the mantle equal to 3.33 gm/cm3? 

We return now to a discussion of the numerical algorithm. Be-

cause the computer available to us was fairly small (an IBM 370/155 

with 320 kilobytes 80 K words of core), it was not feasible to invert 

all three functions, v , v , and p, simultaneously. Instead, a FORTRJL~ 
p s 

program was written to invert either compressional velocity and density 

or shear velocity and density simultaneously. The iteration scheme 

employing the estimate given in (5.2.4) was designed to alternate be-

tween these two possiblities. At each step, up to eighty data could be 

inverted. Convergence was always rapid as long as tan 6 was kept at a 

value greater than 5; no model presented in this chapter required more 

than eight iterations. Typically, a run involving one iteration on a 

data set consisting of 50 normal modes and 30 travel times required 

about twenty minutes on the 370/155 and cost about fifty dollars. Over 

eighty per cent of this time was devoted to calculating the mode per~ 

iods and Fr~chet kernels. Calculation of the operator ~took an ad-

ditional five minutes. 
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5.3 The data set. The hasic dua set comprised -a total o f 219 data. 

Of these, 178 were normal mode periods, 39 were differential travel 

times, and the remaining two were mass and moment of inertia. We 

devote this section to a discussion of each of th~se three subsets. 

The normal mode data. Gilbert [1972J observed that the average period 

of s-inglets in a mode mult i plet sp l it by disturbing influences such 

as rotation, ellipticity of figure, and t he presence of lateral heter-

ogeneities equals, to a first-order approxi mation, t he degenerate 

eigenperiod of a spherically averaged Earth model. l Unfortunately, 

resolution of the multiplet structure of an eigenperiod is, with the ex-

ceptions of only the very gravest modes, impossible at the present 

time. Instead, we must rely on averages of many observations to give 

periods that can be interpreted in terms of an average Earth struc t ure. 

Averages of observed free oscillatiop periods were given by 

Pekeris in 1966. However, the wide variations in the quality of the 

early recordings (mainly from the Chili an earthquake of 1960) apd the 

procedure used to reduce the data largely negated the advantage of 

using these averages; much of the early ipversion work was done with 

values obtained from single records. Anderson [1967], who also pre-

sented averages, picked "best values" to evaluate various Earth models. 

As investigators have set themselves to the task 0 & gleaning from 

existing records information about the mode spectrum, the situation 

1 This will be true as long as the disturbing influences leave the 
linear system describing small oscillations Hermitian. 
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has improved considerably. Derr L1969] averaged the observations 

available through 1968 using a complex, somewhat arbitrary system 

of weights to enhance the importance of high-resolution recordings. 

Although the great majority of the mo r e than 1500 data he used 

were of the fundamental mode, he attempted to obtain averages of some 

of the higher modes as well. Backus and Gilbert [1968] had s~own 

inclusion of higher modes greatly improves the resolving power of the 

normal mode data set. 

Recently, a major contribution to the study of tne normal mode 

spectrum has been made by Dziewonski and Gilbert 11972]. Using a 

comprehensive series of criteria to identify modes, they have analyzed 

84 long-period seismograms of the great Alaskan earthquake of 1964 

and tentatively identified all but 30 of the 136 theoretically pre­

dicted multiplets in the normal mode spectrUm with periods greater 

than 300 seconds, as well as a number of modes in the period range 

200 - 300 seconds. Besides their extensive listing of higher-mode 

periods, they also give cumulative averages of fundamental mode data 

for periods greater than 176 seconds (OS 3 - oSsa, oT3 - OT46). 

Their averages, listed with standard errors in the means in Tables 

2-5 of their paper, formed the basis of our normal mode data set. 

They did not list averages of the modes OS2 and oT2' and the period 

they give for OS3 (2140.57 sec, at the limit of their resolution) is 

evidently too large; for these modes we have used the periods given 

by Derr [1969J. In addition, we included in our data set the average 

periods of the modes OSS1 to OS63 given in Table 2 of Dziewonski and 
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Landisman [1970]. These data are listed with fits to the models 

derived in §5.5 in Table A3. 1 . The consistency of this data set is 

indicated by the precision with which these models satisfy the data. 

One model, model Bl, has eigenperiods which differ from the observed 

values by no mo~e than 0.4% in the extreme; generally, the fit is much 

better. This strongly suggests (but, of course, does not prove) that 

these data are representative of the averaged Earth. 

The travel-time data. Because of the problem of baseline errors, 

we used only differential travel times in the inversion. Included in 

the data set were the 39 differential travel-time averages listed in 

Tables 4.5, 4.7, 4.9, 4.11, and 4.13 for the phase combinations PcP-P 

(surface focus), PcP-P (deep focus), 5c5-5 (deep focus), p'(AB) -P' (DF) 

(deep focus), and P'(BC)-P'(DF) (deep focus). These data along with 

the fits to the models are aummarized in Table A3.2. 

The mass and moment of inertia. The mass M and normalized moment of 

inertia I/MR2 used in the inversion are given by Jeffreys [1970]. These 

are 

(5.3.1) 
M 27 5.977 ± 0.0006 x 10 gm, 

I/MR2 0.330841 ± 0.00018 

Partitioning of the data sets. Two subsets of the basic data set were 

formed. These were designated data set I and data set II. Data set I, 

used in the inversion of compressional velocity and density, consisted 

of the eigenperiods of the following modes and the differential travel 

times of the following phase combinations: 0-450, 052, 053, 055, 

087, 089, 0812, 0515, 152, 157-10, 251-4, 286, 2815, 382-9, 3811. 
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451-10. S5Z. S53. 651. 654. 65 S. 75Z. 75 3. 75 S, a51 , a5z. PcP-P 

[Tables 4.5 and 4.7J. p'GAB)-p'(Dp) [Table 4.llJ. P'(BC)-P'(DF) [Table 

4.l3J. Data set I included all modes observed by Dz iewonski and Gilbert 

[1972J with greater than 257. compressional energy or greater than 57. 

compressional energy in the outer core (as given in their Table B2). 

Data set II, used in the inversion of shear velocity and density. 

consisted of the following modes and travel times: 05z• 053, 05S-9' 

051Z, 051S, 051a. 05Z1. 05ZS. 0530. 0537 , 054S. 05S4. 0563. 15Z. 154. 

15 S' 157_10' 1514-17. 25Z. z5a_14' 354-11. 451-3. 4510' S5 Z• a5z. OT3- 6 . 

oTa, oT10, oT11. oT13, oT 16 • oT Zl. oT23' OT 2S ' oT29. oT3S ' oT4 l . OT46 ' 

5c5-5 [Table 4.9J. This data set provided good coverage of the funda-

mental mode as well as the higher modes sensitive to variations in 

shear velocity and density. 
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5.4 Construction of the starting models. Two starting models, desig-

nated model A and model B, were constructed. In thiq section we de-

scribe their derivation. 

The central idea behind the construction was the assumption that 

discontinuities in density and shear ve l ocity are associated with dis-

continuities in compressional ve locity. For dens i ty, this assumption 

is well-motivated; available laboratory data on the behavior of mantle-

type materials indicates that the compressional vel ocity - density 

systematics are very regular over wide ranges of temperature and pres-

sure. Birch [196lJ proposed that, for materials of constant mean 

atomic weight, v and p are related by a linear law. The invariance 
p 

of this relationship to temperature and preqsure variations has been 

discussed hy Anderson et.al.(197l). Such a linear relationship 

was used to construct the upper mantle de?sity profiles in the starting 

models. Densities in the lower mantle and COre were derived using the 

Adams-Williamson integration procedure [Williamson and Adams, 1923]. 

By fixing the density at the base of the crust and fitting the mass 

and moment of inertia, construction of the density profile was made 

deterministic once the velocities were chosen. This was exactly the 

procedure used by Birch [1964) to construct his model II. 

We review the construction of the velocity mote l s region by re-

gion: 

The crust (Bullen's region A). The crust was modeled as a layer 

21 km thick with v D 6.2 km/sec and v - 3.4 km/sec. This roughly . p s 

corresponds to an areal average of the six crustal types listed by 
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Brune Il969J (oceanic, shield, ridge, alpine, basin and range, and 

island arc) taken in proportion to their surface areas. 

The upper mantle and the transition zone (regions B and C). The 

presence of l~rge velocity gradients and t he existence of strong lat­

eral heterogeneity complicate the i nte rpreta t ion of seismic data sen­

sitive to the upper mantle and trans i tion zone. Evidence from surface 

waves has confirmed Gutenberg's hypothesis that a low-velocity channel 

exists for shear waves 100 km or so below the base of the crust [Ander­

son, 1967). Structure in the transition zone between 400 km and 700 km 

has been illuminated by dT/d6 studies using large seismic arrays [Niazi 

and Anderson, 1965; Johnson, 1967). These have confirmed the presence 

of at least two major discontinuities at depths near 400 and 650 kilo­

meters (corresponding to breaks in dT/d6 at distances of about 20 and 

25 degrees). However, lateral variation of these structures is great, 

and currently available data sample only a small fraction of the 

Earth's surface. 

Because the average structure of these regions is in doubt, we 

have used simple representations as starting models. The compressional 

velocity below the crust was fixed at 8.0 km/sec and increased linearly 

with depth to a value of 8.8 km/sec at 420 km. The shear velocity in 

the ~pper mantle was taken to be a constant 4.55 km/sec. Thus, the 

starting models have no low-velocity zone in this region. 

The transition region was modeled by two discontinuities at depths 

of 420 km and 671 km with the velocities varying linearly in between. 

Only in this region do the starting models A and B differ. Model A 
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is characterized by discontinuities of second-order. In this model, 

the compressional velocity rises from 8.80 km/sec at 420 km to a value 

of 10.86 km/sec at 671 km. In the same region shear velocity varies 

linearly between values of 4.55 km/sec and 6.13 km/sec. 

In model B the discontinuities were chosen to be of first-order. 

At 420 km the compressional veloci ty jumps from 8.80 km/sec to 9.5 

km/sec, and the shear velocity jumps from 4.55 km/sec to 5.33 km/sec. 

Between this depth and the discontinuity at 671 km, the compressional 

velocity increases at a rate of 0.27 km/sec per 100 km, and the shear 

velocity is constant. 

Although the variation of velocities in these regions is somewhat 

ad hoc, the values chosen were designed to give the same baseline for 

teleseismic P as the 1968 Tables and the same baseline for teleseismic 

S .as Hales and Roberts [1970 al. 

The lower mantle (region D). The Earth's lower mantle is a region 

characterized by relatively uniform increases in the velocities with 

depth. The models of lower mantle velocities derived from travel-time 

studies have changed very little since the early work of Jeffreys and 

Gutenberg. The travel times through this region show very little 

azimuthal dependence {Jeffreys, 1962J, and it may be ·inferred that the 

lateral heterogeneity is small, at least in compar~son with the upper 

mantle. 2 

The velocities in the lower mantle we have used in our starting 

models were taken from the studies of Herrin et.al. 1l968J (compres-

2 A recent study of ISS P times by Sengupta and Julian {in preparation] 
indicates, however, some lateral variation in the lowermost 600 km. 
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Table 5.1 

Positions of the major discontinuities 

Region Radius (km) 

------ 6371 
A Crust 

------ 6350 
B Upper mantle 

------ 5951 
C Transition zone 

------ 5700 
D Lower mantle 

------ 3485 
E,F Outer core 

------ 1215 
G Inner core 

------ 0 

sional velocity) and Randall [197lj (shear velocity). Both of these 

studies used ISS times from the same set of sources. 

The radius of the core-mantle boundary. Since the radius of this dis-

continuity was fixed during the inversion, its accurate determination 

for the starting models was critical. The procedure we followed was 

to fit the differential travel times of PcP-P given in Tables 4.5 and 

4.7 by varying this radius. The times were calculated for both depths 

of focus using the mantle and crustal velocities for model A described 

above. The differences between the observed times (50 cell means) and 

the computed times were minimized with an RMS of 0.4 seconds for the 

radius 3485 km. Since differential times were used, this determination 

is essentially independent of the upper mantle model we assumed. The 

radius we obtained is 12 km greater than Jeffrey's value and 7 km 

greater than the value obtained by Taggart and Engdahl [1968J. 



-110-

Table 5.2 

The starting models 

Model A Model B 
Radius vp Vs P vp Vs p 

(km) (km/sec) (km/sec) (gm/ cm3) (km/sec) (km/sec) (gm/cm3) 

0 11.20 3.50 12.57 same as model A 

600 11.20 3.50 12.50 

1215 11.20 3.50 12.28 

1215 10.12 0.00 12.28 

1600 10.07 0.00 12.05 

2000 9.85 0.00 11. 76 

2400 9.50 0.00 11.40 

2800 9.06 0.00 10.95 

3200 8.51 0.00 10.42 

3485 8.10 0.00 9.98 

3485 13.67 7.30 5.51 

3700 13,57 7.23 5.41 

4000 13.22 7.11 5.26 

4300 :\.2.87 6.97 5.11 

4600 12.51 6.81 4.95 

4900 12.15 6.66 4.79 

5200 11. 71 6.48 4.63 

5500 11.22 6.29 4.45 

5700 10 .86 6.13 4.33 

5700 10.86 6.13 4.33 10.71 5.33 4.09 

5951 8.80 4.55 3.61 9.50 5.33 3.85 

5951 8.80 4.55 3.61 same as model A 
6350 8.00 4.55 3.33 

635Q 6.20 3.40 2.79 

6371 6.20 3.40 2.79 
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The core (regions E, F, and G). A simple model of compressional velo-

city in the core was designed which f i ts most of the well-observed fea-

tures of the PKP travel-time curve. It cons i sts of an inner core and 

outer core se?arated by a discontinuity l oca t ed at 1215 km. The ve1o-

city at the core-mantle boundary was taken to equal Jeffrey's value of 

8.10 km/sec. The velocities i n the outer core varied smoothly from 

this value to a value of 10.12 km/sec at the inner core - outer core 

boundary. Below this discontinuity, a constant ve l oci ty of 11.20 

km/sec was assumed. For this model, the point A of the PKP travel-t ime 

curve occurred at a distance of l76~ the point B at 145° , the point C 

° 0 at 158 , and the point D at 111. It fits Bolt's [1968) absolute times 

for the AB and DF branches within 2 seconds. 

The shear velocity in the outer core was assumed to be zero. The 

shear velocity in the inner core was taken t o equal to 3.5 km/sec, the 

value determined by Dziewonski and Gilbert [1972J. 

Once the velocity models had been constructed, it was possible to 

determine a unique density distribution from the observed values of the 

Earth's mass and moment of inertia using the method of Birch [1964). 

3 The density in the crust was assumed to equal 2.79 gm/cm. In the 

upper mantle and in the transition zone the densitv was assumed to obey 

the Birch law 

fixed at 3.33 

p = a v + b. The density at the top of the mantle was 
p 

3 3 gm/cm , yielding a value of 1.54 gm/cm for the constant 

b. Below the discontinuity at 671 km, density was determined by inte-

grating the Adams-Williamson equations IBu1len, 1963, p.229J. At the 

top of the core these equations were re-initiated with a new value of 
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the density (call it p ), and the solution was continued to the center. 
c 

The values of the free parameters a and p were determined by fi tting 
c 

the mass and moment of inertia. For both models, the values obtained 

were 0.349 a~d 9.98, respectively. These can be compar ed with Birch's 

values of 0.379 and 9.96 for his solution II. 

The starting models are listed in Table 5.2 and plotted in Figure 

5.1. 

5.5 Inversion results. We have used the inversion algorithm described 

in §5.2, the data sets presented in §5.3, and the starting models con-

structed in §5.4 to derive three estimates of the radial distributions 

of compressional velocity, shear velocity, and density in the Earth. 

These results are presented in this section. 

Model Al. In this first experiment we were concerned with obtaining 

a model with a very simple structure in the upper mantle. Model A was 

used as the starting model. Initially, the fit to the eigenperiod data 

in data sets I and II was 0.3%, RMS relative deviation. The computed 

differential travel times deviated from the observed by at most 3 sec-

o onds (for ScS-S at 30). The autocorrelation operators for the func-

tions v , v , and p were partitioned, .or "decorrelated", at the radii 
p s 

of the discontinuities separating the inner and ou ~ er cores (1215 km), 

the outer core and mantle (3485 km), and the crust and mantle (6350 km). 

In each of these regions a correlation operator of the form given in 

equation (5.2.6) was used, and in all cases we assumed that a • B • O. 
p P 

For this experiment, the correlation wavelengths A • 2/k were set 
p p 
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equal to 1000 km. The diagonal components of the noise autocorrelation 

operator (the only nonzero components in the form we have assumed) 

were taken to equal the squares of the standard errors in the means 

of the data . In the algorithm we alternated between an inversion of v 
p 

and p using data set I and an inversion of v and p using data set II. 
s 

At each step the perturbation was computed from equation (5.2.4.). 

The perturbation was "overdamped" by setting tan e in this equation 

equal to 10. Although this value is ten times the "optimal" value of 1, 

doing this insured more rapid convergence. 

For this model, convergence was achieved in six iterations. The 

final model is plotted in Figure 5.2, and the cumulative perturbation 

is plotted in Figure 5.3. A listing of the model and its fit to all of 

the data are given in Appendix 3. 

As can be seen from Figure 5.3, the compressional velocity in 

model Al differs from the starting model by less than 0.05 km/sec every-

where except in the upper mantle and outer core. The value of the ve-

locity at the top of the core is 8.01 kml.sec, which is in agreement 

with Hales' and Roberts' [1971] conclusion that the velocities in this 

region are less than the values given by the Jeffreys model. Their 

study was based on the differential travel times of SKKS-SKS. The com-

puted times of SKKS-SKS for model Al are listed along with times com-

puted for equation 3 of their paper in Appendix 3. The agreement is ex-

ce11ent • 

The times of P'(DF) are almost 0.3 seconds less than those given 

by Cleary and Hales [1971] and roughly one second greater than the times 
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of Bolt [1968J. The times of p'(AB) computed for Al are a few tenths 

of a second greater than Bolt's. 

The decrease of the compressional veloci ty in the upper mantle 

introduced in the inversion shifts the baseline of te leseismic P by 

about one second. If this amount is added to the P times given in the 

1968 tables, then they agree with the times computed from model Al to 

o 
within 0.2 seconds at distances greater than 30 • 

The perturbation in the shear velocity distribution in going from 

model A to model Al is most dramatic in the lower mantle. In this 

region the perturbation is negative and averages about 0.03 km/sec in 

magnitude. The effect on the S times is to introduce a "drift" of 

nearly 5 seconds in the distance range 300 to 80°. Most responsible 

for this net decrease in shear velocity are the eigenperiods of the 

fundamental mode torsional oscillations of low angular order. The 

incompatibility of torsional oscillation eigenperiads with travel-time 

data has been evident since the early work of MacDonald and Ness rl96l1. 

However, there seems to be no significant incompatibility between the 

oocillation data and the ScS-S travel-time data; for model Al all of 

o this data (except for T
ScS

_
S

(40 ) which, due to interference with sS 

and SS, is poorly determined) is fit to within their 95% confidence 

intervals. 

Because the solution was tightly correlated throughout the upper 

mantle, model Al has almost no low-velocity zone for shear waves. The 

need for this feature is evident from the fit of this model to the 

fundamental torsional mode data. At periods near 200 seconds, the 



-118-

periods computed from the model deviate from the observations by as 

much as 0.5%, beyond the limits of probable error. 

The perturbations to shear velocity in the inner core are very 

small, confirming the correctness of nziewonski's and Gilbert's 1l972j 

determination of 3.5 km/sec as the mean velocity ' of this region. The 

high phase velocity arrival seen at LASA by Julian, Davies, and Shep­

pard [1972] and identified by them as PKJKP implies, with this identi­

fication, a shear velocity in the inner core of about 2.8 km/sec. This 

value is incompatible with the mode data. 

The cumulative perturbations to the density in the upper mantle 

are negative. In the resulting model the average density in the upper 

two hundred kilometers of the mantle is only about 3.33gm/cm
3

• In 

the lower mantle the perturbations are positive, and in the outer core 

they are again negative. The inversion introduces a small jump in the 

density dt the boundary between the inner and outer cores, but the sig­

nificance of this feature is very doubtful. 

Model BI. In this second experiment, model B was used as the starting 

model. The inversion procedure was essentially the same as we used to 

derive model AI, the principal difference being a different specifica­

tion of the solution autocorrelation operator. For this inversion, the 

distributions in the inner core, the outer core, and the lower mantle 

Wi!re decorrelated and assigned correlation wavelengths of 1000 km, as 

before. In addition, the transition region and the upper mantle were 

decorre1ated. For the former, the correlation wavelengths for each of 

the three distributions were chosen to be 200 km. For the latter, the 
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correlation wavelengths for the velocities were chosen to be 100 km, 

and the correlation wavelength for the density was chosen to be 300 km. ' 

As before, the distributions in the crust were not inverted. 

Convergence was achieved in eight iterations. The final iterate, 

designated model Bl, is listed in Appendix 3 and is plotted in Fig. 5.4. 

The ' cumulative perturbations are pictured in Figure 5.5. 

The fit of this model to the fundamental spheroidal and torsional 

mode data sets (given in Table A3.1) is considerably improved aver , 

model AI. This improvement results from the introduction of a more 

profound shear wave low-velocity zone in the upper mantle, made pos­

sible by relaxing the 'smoothing in the upper mantle. 

A second feature which distinguishes this model from model Al is 

that the strong negative perturbation, centered at about 5600 km r&dius 

and broadly spread over the upper part of the lower mantle in model AI. 

is localized in the transition zone in model BI. Examination af the 

averaging kernels for this perturbation confirms th&t this difference 

is indeed due to localization of the averaging. As a result, the trans­

ition zone of model Bl is characterized by a decrease in shear velocity 

with depth. A similar localization can be observed in the density in 

this region. 

Other than these features, the models Al and Bl are essentially 

the same. 

Model B2. A second experiment using model B as the starting model was 

attempted. The purpose of the experiment was to see if modifications 

in the velocities at the very base of the mantle had any significant 
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effect on the inversion results and to attempt to further localize 

the averages of shear velocity at the top of the lower mantle by de-

correlating at a radius of 5500 km. The existence of a transition zone 

at the base of the mantle has been the subject of some debate among 

seismologists since the paper of Dahm in 1936, and the recent obser­

vations by Cleary [1966J of so-called diffracted S which indicate a 

significant decrease in the velocity of S waves in this region, have 

heightened the speculation. This motivated us to modify the model B 

in the following way: The compressional velocity at the base of the 

mantle was decreased to 13.40, the shear velocity was decreased to 6.50, 

and the density was increased to 6.0. Linear gradients were used to 

connect these values to the unmodified values for model B at a radius 

of 3510 km. 

The resulting model was inverted as before, except that the shear 

velo'city was decorrelated at a radius of 5500 km. This was done to 

localize the averages of shear velocity in this region and to test 

the hypothesis that a discontinuity in shear velocity exists at this 

radius. This has been suggested by Hales and Roberts I1970aJ, among 

others, on the basis of a discontinuity in the dT/d~ of shear waves . 

o at 42. The correlation wavelength assumed in the region from 5500 km 

to 5700 km was 100 km. 

The results of this inveraion, which took eight iterations, 

was the model B2 plotted in Figure 5.6. Like the other models, it is 

listed in Appendix 3 along with the fits to the data. The cumulative 

perturbation for this model sequence is plotted in 7igure 5.7. 
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The inversion was successful; out of the 166 modes listed in 

Table A3.l, this model fit 114 of them with a relative error of less 

than 0.1%. The inv~rsion introduced a region of negative velocity 

gradient between the depths of 821 and 851 kilometers and a corres-

o 
ponding break in the travel-time curve of S near 42. However, the 

somewhat simpler model Bl fit the data better; it had 121 of the 166 

modes fit with relative errors less than 0.1%. It cannot be argued on 

the basis of this experiment that the additional features appearing in 

model B2, in particular the negative gradients in shear velocity in 

the mantle, are warranted by the data used in the inversion. 

5.6 Averaging kernels. We present in this section the averaging kernels, 

rows of the operator ~given by equation (5.2.5), for various data 

sets and choices of the solution autocorrelation operator C . Six ss 

figures are presented. In each, the kernel~ of ~corresponding to 

several radii for a given function, v , v , or p, are plotted. The 
p s 

radii are indicated by the numbers in the corners of the plot; the 

function to which the kernel corresponds is indicated by whether the 

radius is plotted on the left or the right hand side of the graph: the 

left hand side indicates velocity, and the right hand indicates density. 

Figure 5.8. This plot shows the results of an experiment to compare 

the resolving power of absolute versus differential travel times. Two 

data sets were used. Panel (8) of this figure shows several kernels 

computed fram .a data set aOBsiatins · of 32 ScS-S differential travel times 

o 0 in the distance range 30 to 94. Panel (b) shows kernels centered at 

the same radii for a data set consisting of 64 Sand ScS absolute times. 

All data were assumed to have errors of 1 second. 
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The model used ·is Al. and the solution autocorrelation is 100 km. 

For all radii in the lower mantle. Doth sets of data yield highly peaked 

kernels with half-widths of about 75 km. roughly the spacing between 

the bottoming depths of the S rays. The absolute travel times give 

somewhat more localized averaging kernels. but the difference is not 

appreciable. We conclude that not much resolution is lost by using 

the more precisely observed differential travel times. Of course. since 

neither data set contains rays which have turning points in the upper 

mantle. neither yields localized kernels in this region. as can be seen 

from examination of the kernels centered at 6050 km. 

Figure 5.9. Shown in this figure are averaging kernels computed from 

model Al for compressional velocity using the Frechet kernels of data 

set I. The averaging is reasonably localized. although some tradeoff 

exists between perturbations in compressional velocity and density in 

the outer core beyond the radii at which P'(AB) rays bottom. Note the 

localization in the vicinity of the inner core - outer core boundary. 

This results from using the differential travel times of P'(BC)-P'(DF) 

The correlation operator used in this computation was the same as was 

used in the derivation of model AI. 

Figure 5.10. This figure displays the averaging kernels for density 

using the same model. data set. and correlation operator as for Figure 

5.9. The averaging in the inner core is extremely poor and unlocalized. 

We infer that our estimates of density in this region are correspondingly 

poor. In particular. we doubt that the jump in the density at the inner 

core - outer core boundary. present in all three models. is significant. 
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Figure 5.13. Averap,inp, kernels for shear velocity computed using 
data set II and the correlation operator for model B2. Functions 
inverted are shear velocity and density. 
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Figure 5.14. Avera~ing kernels for density computed using data set II 
and the correlation operator for model B2. Functions inverted are 
shear velocity and density. 
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Figure 5.11. We show in this figure the averaging kernels for shear 

velocity computed from model Al using data set II. The correlation 

operator is the same as before, although naturally shear velocity in 

the outer core has been fixed. Most interestingly, we see that the 

averages of shear velocity in the inner core are reasonably localized, 

resulting from the inclusion of modes such as 052' 252' 552, and 852 

in the data set. It can be inferred that the average shear velocity 

in the inner core is near the value 3.5 km/sec given by Dziewonski and 

Gilbert [1972]. As the radius is increased, the averaging kernels be­

come progessively more peaked. However, for kernels centered in the 

upper mantle and transition zone the tradeoff between shear velocity 

and density is considerable. 

Figure 5.12. This figure corresponds to Figure 5.11, except here the 

kernels for density are displayed. As we might expect, the averages 

of density in the core given by this data set are very broad. In fact 

they are not even localized for radii below about 2400 km. However, 

at the very top of the core the averaging kernels narrow considerably. 

The kernels centered in the mantle are similar to those for shear 

velocity. 

Figures 5.13 and 5.14. The averaging kernels shown in these figures 

correspond to some of the averaging kernels given in Figures 5.11 and 

5.12, except that here we use model B2 and its corresponding correla­

tion operator. By comparison of the kernels used in the derivations 

of these two models, the effect of changing the autocorrelation operator 

can be seen. Comparison of the kernels for shear velocity centered 



-142-

at 6200 km radius in Figure 5.11 and 5.13, for example, illustrates 

how manipulation of the solution autocorrelation operator can be used 

to localize the averaging. 

5.8 Summary • . In this section we summarize our conclusions. 

An inversion procedure has been developed to estimate the radial 

variation of compressional velocity, shear velocity, and density in 

the Earth. The radial distributions are defined as spherically sym­

metric averages of the actual distributions in the laterally hetero­

geneous Earth, and the nature of this averaging implied by averaging 

certain sets of eigenperiod and travel-time data has been examined. For 

travel-time data, the spherical averaging is simple if the data 

sample a distribution which results from a uniform distribution of 

sources and receivers. Since this is difficult to obtain for absolute 

times, we have used differential travel times to derive our estimates. 

It has been shown that the inherent bias in available sets of differential 

travel-time data is considerably less than for equivalent sets of absolute 

travel-time data. Observations have been presented for the phase com­

binations PcP-P, ScS-S, P'(AB)-P'(DF), and P'(BC)-P'(DF). 

The inversion algorithm developed, based on a linear approximation 

to the perturbation equations, has been shown to provide a stable 

method for estimating the radial variations from a finite set of gross 

Earth data. One advantage of this approach is that it allows one to 

estimate the resolving power of the data and the resolvability of speci­

fied features in the Earth. 

Three estimates of the radial distributions have been derived using 
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an extensive set of eigenperiod and differential travel-time data, each 

representing a different level of complexity . . Besides satisfying the 

data used in the inversion, these models also satisfy extensive sets 

of auxilIary data. 

The resolving power of the various data sets used in the inversions 

has been examined by computing their corresponding averaging kernels. 

It has been shown from this analysis that little resolving power is 

lost by using differential times in place of absolute times. It has 

demonstrated that the nature of the averaging for given sets of gross 

Earth data can be manipulated and improved by a judicious specification 

of the norm on the space of .models. 
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Appendix I 

Al.l Ray-theoretical travel times in a spherically symmetric body. 

Suppose that in a sphere S(R) of radius R a signal propogates along a 

ray with parameter p at a velocity vO(r) that varies with radius only. 

Let Po = (rO,n
O

) be the position of the source and Ps = (rs,ns ) be the 

position of the station, where rO,rs E [O,R] and nO,ns E as(l), _ the sur­

face -of S(l). The ray-theoretical travel time of this signal is 

(Al.l.I) 

where ds is a differential element of arc length along the ray path 

between Po and Ps ' Fermat's principle states that the permissible 

paths are those for which TO is stationary with respect to path varia-

tions. 

The travel time TO depends on vo ' PO' and Ps ' We assume that the 

station is located on as(R). the surface of S(R), so that r = R. 
s 

Then, because the velocities are spherically symmetric, TO depends 

only on vo ' 6, and h, where 6 is the angular distance between the 

source and receiver, and h is the focal depth. 6 and h are assumed to 

be fixed, and dependence of TO on these quantities will usually be 

suppressed. 

Spherical symmetry implies there exists a function K(r), rE [O,R], 

such that 

(Al.l.2) ~ 
( ) dr. Vo r 
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Because s(r) 1s a multi-valued function, the kernel K(r) is the sum of 

n+l terms, n being the number of turning points of the ray generalized 

to include reflections from and transmissions through discontinuities: 

(Al.l. 3) 
n+l 

K(r) = L 
i=l Ids . (r) I 

dr~ • 

The function s.(r) represents arc length along the ith ray segment and 
~ 

1s single-valued. From Bullen [1963J, 

(Al.l.4) 1~:i(r)1 = 
1)(r) 

2 2 1/2 H[Ei(r-Pi _1)] H[Ei(Pi-r)]. 
(1) (r)-p ) 

Here 1)(r) = r/vo(r), 

Pn+l .= rs R), H[~J 

Pi is the ith turning radius (PO = rO ~ R-h, 

is the Heaviside function, and E. equals either 
~ 

+1 or -1 depending on whether the direction of propogation is upward 

or downward. 

The path of the ray can be traced in the following manner. Let 

lli_l = (Pi-l,Oi-l) be the position vector of the (i-l)th turning point. 

Then the position vector along the ith ray segment, Pier) = (r,Oi(r», 

satisfies the following vector and scalar relationships: 

- 0, 

Pi (r) • lli_l 

(Al.l.S) 

The first equation states that the ray path lies in the plane defined 

by the source, the station, and the origin of coordinates; the second 
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defines y.(r), and the third is from Bullen [1963J. 
1. 

Al.2 The Frechet kernel for travel times. If the velocity distribution 

in S(R) is varied from vO(r) by an amount ov( r, fl ), then Fermat's prin­

ciple implies that the perturbation in the travel time, to first order 

in ov, is equal to an integral of the velocity perturbation along the 

ray path [Archambeau and Flinn, 1966; Backus and Gilbert, 1969J: 

(A1.2.l) oT - ov 
--2 ds. 
vo 

This expression can be written as an integral over (r,fl): 

(Al. 2. 2) = (R ( . a(PO'p ;r,fl) ov(r,fl) dfl dr. J 0 IaS(l) s 

The function a(PO'Ps;r,fl) is the Frechet kernel for the three-dimen­

·sional perturbation problem and is given by 

(A1. 2.3) n+l I I '" -2 ddrsi (r) LJ -va (r) o[fl - fli(r)J. 
i=l 

Here o[~] is the Dirac delta distribution on as(l), and fl.(r) is de­
l. 

termined by (Al.l.5). If the velocity perturbations are spherically 

symmetric, the equation (Al.2.2) can be written 

(A1. 2.4) -- (OR oT J( a(r) over) dr , 

where 

(A1. 2.5) aCr) - f a(Po'P ;r,fl) dfl 
aSCI) s 

is the spherically symmetric Frechet kernel for travel times. 
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Al.3 Proof of the averaging theorem for travel times. In §3.4 we 

stated a simple averaging theorem for travel times. Its proof is a 

simple matter. Without loss of generality assume that all sources 

and receivers are located on the surface as(R). To first order, the 

travel time T(PO'Ps ) between a source located at Po and a station lo­

cated at P can be written as the sum of two terms: 
s 

(A1.3.l) T 

The first term on the right-hand side of this expression is the travel 

time through the spherically symmetric Terrestrial Monopole, defined by 

equation (3.2.1). The second term is the first-order perturbation in 

the travel time due to an aspherical perturbation ov in the velocity. 

The first term depends only on the angular distance 6 separating the 

source and receiver, while the second term depends only on PO' 6, and 

the azimuth ~ from Po to Ps ' 

The hypothesis of the existence of uniform distributions of 

sources and receivers implies that the probability that a source lies 

in the region dnO about the point Po and that, for a fixed 6, a re~ 

ceiver lies between the azimuths ~ and ~ + d~ is constant. The aver­

aging theorem is proved if we can show that the mean fluctuation oT 

is zero. Because the distributions are uniform, " e have 

(Al.3.2) 

where oT(nO'~) is given by equation (Al.2.2). Equation (Al.2.2) can 

be integrated immediately with respect to n. This yields 
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(A1.3.3) l R n+l 
= ~ a.(r) ov(r,n.) dr, 

o i=l ~ ~ 

where ai(r) = - vo-2
(r) Idsi(r)/dr l . In equation (Al.3.3) n . will 

~ 

depend on r, nO' and ~ through the relations (Al.l.5). 

Now, we substitute (Al.3.3) into (Al.3.2) and interchange the 

order of integration. We obtain that oT is proportional to 

(Al.3.4) 

At any specified radius r, the locus of the intersection of S(r) and 

the ith ray segment describes, for fixed nO as ~ is varied, a circle 

on S(r). These circles cover S(r) uniformly, and, therefore, 

(Al.3.5) ( ( 
2 

Tr ov (r ,n. ) 
JS(l) Jo ~ 

d~ dn
O 

a: ( ISv(r,n) dn. 
) 5(1) 

By definition, however, aspherical perturbations average to zero when 

integrated over the sphere. Thus, the integral on the right-hand 

side of (Al.3.5) is zero, implying that 1ST is zero. This proves the 

averaging theorem. 
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Appendix 2 

A2.l PcP-P differential travel-time data [nuclear explosions] . 

EVENT ' STATION /). TIME OBS-JB 
(deg. ) (sec.) (sec. ) 

KOGAN (5. PAC I F I C) 

(h = 0 km) UGL 42.05 114.7 -0.8 
TEM 46.68 92.8 -1. '\ 
TEM 46.72 93.4 -0.5 
TEM 46.90 89.7 -3.5 
KAB 61.75 40.7 +0.4 
COL 62.10 40.0 +0.2 
IRK 63.20 37.2 +0.1 
SEM 77.88 10.5 -0.5 

BUCHBINDER (BILBY) 

(h - 0 km) "AM 25.16 7.1~.~ -0.'\ 
ATL 26.06 207.5 -1.0 
LND 27.19 200.8 +0.0 
8L- 27.48 198.6 -O.~ 

BLA 28.28 192.6 -1.0 
esc 28.57 191.4 -0.4 
I3R- 29.11 188.0 -0.2 
SCP 29.75 184.3 +0.3 
OTT 31.17 175.5 +0."1 
OH- 31.86 171.0 +0.1 
COL 33.61 159.8 -0.8 
HN- 36.56 14",\. "I -0.6 
HW- 38.48 133.5 -0.2 
RES 39.03 130.9 +0.2 
M8C ~9.10 128.1 -1.3 
NP- 39.32 128.0 -1.3 
BHP 43.24 107.9 -1.9 
SJG 47.~6 90.4 -0.9 
ALE 48.90 84.3 -0.6 
CAR 51.40 73.7 -1.2 
TRN 55.56 62.0 +2.2 
KON 73.71 17.1 +1.0 

KANAMOR( (LONG5HOT) 

(h - 0 km) 
T5K 31.61 171.3 -1.1 
MAT 32.56 165.5 -1.1 
MYK '\5.27 149.'\ -1.4 
SHK 37 .28 138.8 -1.1 
SE~ 38.91 129.8 -1.5 
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EVENT STATION /::, TIME OBS-JB 
(deg.) (sec. ) (sec.) 

LAMBERT E T. A L. ( LONG SHOT) 

(h - 0 kIn) WH- 7.6.60 2 O/t. 0 -0.8 
WL- 29.80 181.9 -4.6 
MTJ 31.60 171.5 -1.1 
SI- "\1.80 168.7 -0.6 
MAT 32.60 165.7 -1.2 
PHC 32.90 151.9 -2.6 
FL- 33.00 16"\.9 -0.1 
MBC 34.00 155.6 -2.5 
NP- 3'4.00 156.1 -7..0 
PG- 34.50 156.2 H.O 
KIP 34.80 152.2 -1.8 
HON '14.90 151.0 -2.5 
CMC 35.00 15 ;).8 -1.8 
YKA 36.10 145.9 -0.8 
VIC '16.20 144.7 -1.'1 
YKC 36.20 145.3 -1.2 
KV- 36.40 145.0 -0.2 
TUM '17.20 ! 40. 5 -0.1 
SHK 37.30 139.2 -1.5 
JP- 37.40 138.8 -0.3 
HIL 37.60 137.5 -1.9 
PAH 37.80 136.2 -1.6 
LON 38.00 135.7 -0.7 
PNT 38.10 135.2 -0.8 
COR 38.20 134.4 -1.1 
SEO '18.90 129.5 -2.4 
R"I6 39.40 132.1 +2.2 
EOM 39.90 127 .4 +0.9 
LOb 39.90 129.0 +2.5 
YR- 40.10 123.2 -1.1 
BMO 41.70 116.5 -0.4 
HHM 41.80 116.6 +0.7. 
ORV 42.10 113.8 -0.9 
BA6 42.50 112.1 -1.3 
RKS 42.70 111.5 -0.9 
8RK 42.70 112.5 -0.3 
SW- 42.70 112.3 -0.4 
ALE 42.80 109.1 -2.4 
PCC 42.80 111.1 -0.1 
NRR 43.10 109.7. ':"1.2 
RLC 43.40 111.1 +1.8 
GCe 43.40 108.5 -1.1 
MHC 43.40 108.3 -0.6 
UNN 43.70 106.b -1.1 
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EVENT STATION t. TIME OBS-JB 
(deg. ) (sec.) (sec.) 

LAMBERT ET. Al. (LONGSHOT, CONT.) 
JAS 43.80 106.3 -0.9 
HL2 44.10 10S.7 +0.7 
HV- 44.20 106.8 +1.6 
PRS 44.20 104.4 -1.1 
SH6 44.20 104.8 -1.0 
L L fI 44.30 103.8 -1.4 
BOZ 44.00 103.6 +0.3 
PR [ 44.80 102.0 -1.1 
MN- 44.9;) 99.7 -2.7 
CH6 4S.20 100.3 -O.G 
FFC 4S.20 101.7 +0.1 
EUR 45.60 97.8 -1.2 
TIN 45.70 97.4 -1.2 
TNP 45.70 97.5 -1.1 
TF- 45.80 97.0 -1.0 
KRC 45.90 96.7 -1.4 
WU6 46.00 96.8 +0.1 
ISA 46.40 94.6 -0.7 
sac 46.40 9~.9 -1.4 
PI6 46.60 97.0 +2.1 
FTC 46.70 93.9 -0.7 
CLC 46.90 92.8 -1.0 
LAO 47.10 92.2 -0.2 
MWC 47.60 90.3 +0.3 
PAS 47.60 89.0 -1.'\ 
GSC 47.70 89 .6 -0.2 
RVR 48.20 88.6 +0.8 
BCN 48.60 85.9 -1.2 
[RF 48.60 84.8 -1.6 
FGU 48.70 86.0 +0.4 
PLM 48.90 84.0 -0.6 
UBO 49.00 84.0 -0.8 
KN- 49.10 8'\.4 -1.0 
BAR 49.50 82.2 -0.1 
HAY 49.50 83.3 +0.7 
RG- 49.60 8:'\.6 +1.6 
CP- 49.70 81.7 +0.1 
GCA 49.80 81.0 +0.5 
Reo 50.40 79.2 +1.0 
RK- 51.S0 75.9 +1.0 
LAR 50.70 77.9 -2.8 
PA6 51.80 73.3 -0.3 
TA6 51.80 73.2 -0.1 
TFO 51.80 72.8 -0.6 
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EVENT STATION !J. TIME OBS-JB 
(deg. ) (sec. ) (sec.) 

L AMGERT E T. A L • ( LONG S HO T t CaNT.) 
GOL 51.90 72.8 -0.4 
SA6 51.90 72.8 -0.7 
WN- 52.60 70.6 +0.7 
TUC 53.40 67.7 +0.9 
TRG 53.90 66.1 +0.5 
ALQ 54.30 64.5 +0.9 
GWC 56.00 57.8 -0.4 
LC- 56.00 56.9 -1.8 
MHT 57.30 55.7. +1.0 
HKC 57.40 54.0 -0.5 
WW6 57. 'to 54.6 +0.9 
RAG 57.90 57..5 -o.~ 

LUB 58.00 53.1 +0.7 
MAN 58.90 48.2 -3.6 
WMO 59.7.0 48.8 +0.7. 
SV3 60.80 44.6 +0.4 
ROL 60.90 47.0 +2.2 
GV- 61.40 42.7. +0.0 
JC T 61.40 41.3 -0.9 
OAL 61.60 41.8 -0.2 
AAM 67..~0 42.~ +2.4 
DAV 62.30 40.3 +0.3 
EN- 62.30 42.3 +2.7 
KJN 62.70 40.2 +1.2 
LRA 62.80 38.0 -0.6 
LNO 63.00 37.'t -0.6 
MLF 64.20 32.9 -Z.O 
SJ- 64.40 33.3 -1.3 
cpo 66.10 7.7 .4 -~.1 

SCP 66.40 30.8 +0.8 
PMG 66.60 28.6 -0.8 
OH- 66.70 37..3 +'\.6 
HN- 66.90 30.0 +1.6 
FN- 67.20 29.3 +1.4 
BLA 67.70 28.2 +1.5 
SFO 67.80 27 .1 +0.8 
NHA 68.10 26.9 -4.4 
PAL 68.20 28.7 +2.6 
ATL 68.40 29.3 +3.5 
uno 68.40 7.4.5 -7..4 
STJ 71.80 15.5 -3.7 
BE- 73.10 15.5 -2.4 
RAR 74.70 14.0 -1.0 
OOU 78.70 4.4 -4.8 
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A2.2 PcP-P differential travel-t ime da t a [deep- focus events] . 

EVENT STATION !J. TIME OBS - JB QUAL . 
(deg. ) (s ec .) (sec . ) 

MINOINAO 
(h = 605 km) CHG 26.51 18 1 .9 -2.2 1 

PERU-BRAZIL A 
(h c 587 kIn) BEC 41.67 102.9 -0.1 4 

SaM 43.64 92.0 -2.3 4 
ATL 44.01 92.4 -0.3 5 
BLA 46.79 80.6 -0.7 4 
GEO 47.99 76.9 +0.3 4 
OAL 48.20 75.2 -0.2 5 
aGO 49.94 96.4 0.0 4 
SCP 49.96 69.4 +0.1 4 
WES 51.17 65.0 0.0 4 
LUB 51.37 64.6 +0.2 5 
AAM 52.32 61.2 +0.1 4 
ALQ 54.93 53.2 +0.4 5 
GaL 57.85 44.2 -0.1 4 
RCD 60.24 36.5 -1.6 4 
GSC 61.53 34.1 -0.8 4 
~UG 62.20 32.5 -0.8 4 
aDz 65.31 25.2 -1.3 3 
BKS 66.58 23.1 -1.0 4 
COR 71.00 15.4 -1.1 2 

FIJI B 
(h = 627 kIn) eTA 32.37 147.2 -1.3 3 

RAB 32.49 147.S -0.3 5 
PGM 34.42 136.8 -0.6 4 
GUA 49.24 70.2 -0.8 3 
MUN 58.14 41.5 -1.4 2 
OAV 61.01 35.9 +0.4 4 
MAN 68.55 19.8 -0.3 3 
BAG 69.84 14.1 -3.8 1 

ARGENTINA 
(h .. 571 kIn) BOG 32.33 1S0 .4 -0.6 3 

SJG 44.01 93.7 +O.S 3 
LPS 47. 5 0 7 7.1 - 1 .8 2 
ATL 62.54 31.8 -1.0 1 
SPA 64.09 63.0 +0.3 4 
BLA 65.03 24.4 -2.9 2 
SOB 71.22 15.7 -O.S 4 
WIN 71.97 15.3 +0.2 3 
SBA 72.30 14.4 -0.2 1 
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EVENT STATION f::, TIME OBS-JB QUAL. 
(deg.) (sec .) (sec. ) 

PERU-BRAlI L B 
(h = 598 km) . SJG 27.47 173.9 -4.6 1 

BEC 41.68 101.8 -0.8 2 
SHA 42.68 98.3 +0.1 4 
SOM 43.63 93.1 -0.9 3 
ATL 44.01 91.9 -0.5 4 
BLA 46.79 80.2 -0.8 4 
JCT 47.87 76.4 -0.4 4 
GEO 48.00 76.5 +0.2 4 
OGD 49.95 69.1 0.0 5 
WES 51.18 64.7 -0.1 5 
LUB 51.37 64.1 0.0 5 
AAM 52.32 61.0 +0.1 5 
ALQ 54.92 53.1 +0.5 5 
TUC 55.75 50.1 0.0 5 
GOL 57.85 43.6 -0.6 5 
GSC 61.53 33.6 -1.1 5 
DUG 62.19 31.4 -1.8 3 
BOl 65.31 24.8 -1.6 4 
COR 71.00 15.0 -1.4 3 

JAVA SEA A 
(h = 606 km) CHG 27.94 174.8 -0.4 1 

ANP 32.26 146.0 -4.0 1 
CTA 35.79 131.2 +0.2 2 
GUA 37.73 117.5 -3.6 2 
RIV 45.36 85.9 -0.6 2 
TAU 47.99 76.0 -0.2 2 
MAT 48.78 72.7 -0.5 3 
WEL 65.41 24.7 -1.3 3 

F I J I C 
(h = 643 km) TAU 35.44 129.0 -2.4 2 

GUA 49.15 70.8 -0.1 1 
MUN 58.04 43.2 +0.3 4 

CHI NA 
(h = 555 km) CHG 35.63 130.2 -3.4 4 

MAR JANAS 
(h - 602 km) HKC 29.28 166.3 -1.0 4 

SNG 44.79 87.2 -1.8 2 
SHL 49.62 70.1 -0.1 2 
COL 63.59 30.2 +0.2 2 
NIL 65.17 24.5 -2.2 4 
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EVENT STATION t:. TIME OBS-JB QUAL. 
(deg. ) (sec . ) (sec.) 

SEA OF OKHOTSK 
ANP 35.21 130.9 -4.1 4 
BAG 43.23 92.6 -3.7 3 
NOR 46.30 83.6 +0.2 2 
KBS 46.95 80.2 -0.7 3 
KEV 51.85 62.3 -0.6 3 
CHG 52.56 59.9 -0.6 3 
RAB 56.18 47.9 -1.3 1 
KTG 57.61 44.6 -0.5 3 
UME 58.23 42.1 -1.2 5 
NDI 58.43 42.6 -0.3 5 
BKS 59.17 34.4 -4.5 3 
NUR 59.83 38.1 -1.1 4 
SNG 61.06 34.1 -2.3 4 
PMG 61.47 34.1 -1.0 3 
AKU 62.18 32.3 -0.2 2 
DUG 62.67 32.7 +0.4 2 
QUE 63.52 28.8 -1.6 2 
GOl 66.88 23.2 -0.4 2 
POO 67.98 20.7 -0.9 3 
TUC 69.62 18.3 -0.4 2 



-165-

A2.3 ScS-S differential travel-times [deep-focus events). 

EVENT STATION A TIME OBS-JB QUAL. 
(deg.) (sec.) (sec.) 

FIJI A 
(h = 535 km) RIV 31.30 307.0 +9.0 4 

eTA 33.1B 287.7.. +8.2 "\ 
AOE 41.44 211.,) +6 .6 3 
KIP 43.57 182.8 -4.6 2 
GUA 47.55 J61 .'\ +"1.4 4 
MUN 59.91 89.1 +5.8 5 
DAV 60.33 89.0 +7.8 3 
BAG 68.80 50."\ +5."\ 2 
LEM 72.44 32 .3 -0.7 3 
SED 75.14 30.2 +4.8 4 
BKS 76.69 19.5 -2.0 2 

NEW HEBRIDES 
(h = 641 km) RIV 26.72 "145.6 +7.3 5 

TAU 35.42 257.3 +7.5 4 
ADE 35.66 251.7 +4.2 3 
GUA "16.76 236.7 -0.9 2 
MUN 52.65 120.5 +1.1 4 
BAG 57.40 95.5 +"\.0 3 
LEM 61.92 75.0 +4.8 4 
SEa 65.03 61.8 +5.0 1 
HKC 65.48 55.9 +0.9 2 
CHG 77.22 13.9 -4.7 4 

MINDINAO 
(h = 605 km) SEa 29.93 310.5 +3.6 4 

SHL 35.22 254.0 -0.3 3 
CTA "\5."\4 258.4 +5.2 3 

PERU-BRAZIL A 
(h - 587 km) SJG 27.45 "\42.6 +7.6 7.. 

LPS 29.16 321.8 +5.3 3 
SaM 43.64 182.4 -1 .7 4 
ATL 44.01 18"1.2 +7..0 5 
DAL 48.20 150.7 -0.1 3 
OGD 49.94 132.6 -6.5 5 
SCP 49.96 132.5 -6.5 2 
WES 51.17 133.9 +2.8 3 
LUG 51.37 130.2 +0.4 "1 
AAM 52.32 125.8 +1.9 4 
ALQ 54.93 10B.7 +0.4 4 
GOL 57.B5 90.9 -1."\ 4 
RCD 60.24 36.5 -2.0 3 
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EVENT STATION /). TIME OBS-JB QUAL. 
(deg. ) (sec. ) (sec.) 

PERU-BRAZ IL A [ CON T.1 
GSC 61.53 71 .1 +2.7 4 
COR 71.00 37.3 +0.8 4 
pro 76.n 2 0 .4 -~.6 '\ 
TOL 78.81 16 .6 +0.6 3 
SOB 82. 82 12.5 +3.6 1 

F I J [ B 

(h - 627 km) 
RIV 29.1 8 3 19.1 +7.2 3 
CTA 32.37 7. 85.0 +4.<) 4 
RA R 32.47 2 8 5. :) +5 .9 4 
AOE 39.44 219.0 +3.7 3 
KIP 46.57 164.2 +4.0 4 
GUA 49.24 137.5 +4.3 3 
MU N 58.14 90.5 +1.4 5 
MAN 68.55 47.~ +~.5 4 
BAG 69.84 38.4 -1.0 1 
ANP 13.68 34.6 +6.9 2 
COR 82.78 9.9 +1.1 3 
lUC 84.13 14.6 +7.6 1 
LON 84.94 14.1 +8.0 1 

ARGENTINA 
(h = 571 km) SaM 27.09 342.0 +1.7 3 

BOG ~2. ·n 287.7 +2.8 5 
GIE 36.40 246.5 +0.7 5 
BHP 38.35 231.5 +3.2 4 
LPS 47.50 156.7 +0.2 3 
BEC 58.13 94.6 +3.3 3 
AlL 62.54 72.8 +3.2 5 
SPA 64.09 6~.0 +O.~ 4 
BLA 65.03 59.1 +0.3 5 
OXF 65.23 60.7 +2.8 5 
GEO 65.94 55.~ +0.3 5 
JC T 66.33 56.7 +3.2 5 
OGO 67.64 48.0 -0.5 4 
SCP 67.94 45. 8 -1.5 4 
WES 68.53 46.0 +0.8 3 
FLO 69.41 46.1 +4.0 5 
LUB 69.87 44.3 +3.8 5 
AAM 70.64 39.7 +1.7 5 
SDB 71.22 36.5 +0.4 ~ 

SBA 72.30 33.4 +0.7 2 
TUC 73.77 30.6 +2.1 4 
GOL 76.47. 22.5 +0.9 5 
GSC 79.44 14.7 -0.3 4 
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EVENT STATION t;, TIME OBS-JB QUAL. 
(deg. ) (sec.) (sec. ) 

PERU-RRAZ Il B 

(h D 598 km) 
srG 27.47 343.1 -3.5 3 
BEC 41.68 202.2 +':\.4 1 
SHA 42.68 191.6 +0.7 2 
SOM 43.63 181.8 -1.7 5 
ATL 44.01 182.6 +7.0 4 
BlA 46.79 161.0 +Q.8 5 
JCT 47.87 152.7 +0.1 4 
GEO 48.00 146.1 -5.6 2 
OGD 49.95 131.8 -6.7 4 
WES 51.18 133.8 +3.3 4 
AAM 52."'\2 12':\.1 +2.9 4 
AlQ 54.92 109.1 +1.2 2 
Tue 55.75 107.8 +4.6 3 
GOl 57.85 90.4 -1.3 4 
Gse 61.53 73.0 -0.4 2 
DUG 62.19 72.7 +2.3 3 
BOI 65."\1 60.4 +3.5 2 
BKS 66.58 54.3 +2.5 1 
COR 71.00 36.4 +0.1 3 
LON 71.40 34.4 -0.6 1 
PTO 76.15 21.2 -0.6 2 
TOl 78.83 14.9 -0.9 1 
VAL 80.04 10.5 -3.0 1 

JAVA SE'A A 

(h = 606 kIn) 
CHG 27.94 330.3 +2.3 3 
ANP 32.26 282.1 -0.8 2 
PMG 34.66 264.4 +4.9 4 
CTA 35.79 250.6 +1.7 5 
SHl 37.14 234.8 +1.0 3 
GUA 37. n 215.0 +':\.5 "'\ 
SHK 44.66 175.5 +0.2 3 
RIV 45.36 169.9 -0.2 3 
TAU 47.99 152.0 +0.7 '\ 
NDI 48.31 153.4 +4.3 4 
MSH 64.82 63.7 +5.0 4 
WEL 65.47 56.9 +0.9 2 
AAE 74.83 26.6 +1.6 3 
AF I 74.92 33.3 +9.5 2 
NAI 75.47 25.0 +1.6 5 
S8A 77.05 17 .8 -1.8 3 
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EVENT STATION /). TUlE OBS-JB QUAL. 
(deg. ) (sec.) (sec . ) 

FIJI C 

(h .. 643 kin) 
TAU 35.44 253.3 +3.9 5 
KIP 46.62 163.9 +5.0 5 
GUA 49.15 144.6 +":\.1 4 
MUN 58.04 90.4 +1.4 5 
SHK 71.66 33.9 +0.6 4 
LEM 71.84 ":\~.O +0.3 2 
ANP 73.59 26.2 -1.5 4 
COR 82.85 8.9 +0.2 2 

CHI NA 

(h '" 555 km) 
BAG 27.00 343.7 + 1.1 4 
DAV '\5.09 260.0 +0.9 4 
COL 49.38 143.9 -0.4 1 
LEM 53.05 119.5 -1.3 1 
PMG 53.29 121.5 +2.2 3 
MSH 51t.13 114.4 +0.2 4 
TAB 62.29 72.4 +1.2 3 
SHI 62.72 69.4 +0.1 5 
1ST 71.36 36.6 +0.6 1 
HLW 77.14 16.2 -4.0 4 

MARIANAS 

(h .. 602 kin) 
CHG 43.69 185.2 +2.2 5 
SNG 44.79 175.5 +1.0 3 
SHL 49.62 141.0 +0.5 5 
KIP 52.37 120.7 -2.2 2 
COL 63.59 64.8 +0.8 3 
NIL 65.17 54.3 -3.0 3 
KOD 65.82 57.4 +2.7 5 
MSH 75.79 27.2 +4.6 2 
COR 78.23 17.9 +0.9 4 
LON 78.69 15.2 -0.9 2 
BKS 80.78 9.3 -2.8 1 
SH I 83.28 6.6 -1.6 4 

SEA OF OKHOTSK 

(h = 580 kin) 
COL 32.77 280.1 +0.3 4 
ANP 35.21 256.6 +0.4 "\ 
HKC 41.30 204.4 +1.4 3 
MAN 44.56 177.7 +0.2 5 
NOR 46.":\0 167. ":\ +2.7 4 
KBS 46.95 162.1 +2.1 5 
KIP 48.92 148.6 +2.3 3 
DAV 49.73 140.7 -0.1 4 
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EVENT STATION /). TIME OBS- JB QUAL. 
(deg. ) (sec.) (sec. ) 

SEA OF OKHOTSK (CONT.) 
KEV 51.85 128.2 +1.1 5 
CHG 52.56 121.0 -1.7 3 
Lr.N 5' .4 ? 1113.1 +0.7 4 
r. (, F 5 ' •• ) ~ 119 .3 . 1) . :' 3 
I< /, b ~(,.la <J ,) • 2 -L. 3 3 
NIL 57.,1 94.0 -1.' 4 
GDH 57.49 97.3 +3.0 5 
KTG 57.61 94.6 +0.9 4 
UME 58.?'~ 90.? -o.? 5 
NO! 58.43 89 .8 +0.4 5 
AKS 59.17 85.9 +0.3 3 
NUR 59.8">' 32.0 -0.2 4 
SNG 61.06 73.9 -2.3 4 
P ~G 61.47 73.4 -0.9 2 
HNR 61.82 74.5 +1.8 4 
AKU 62.18 72.3 +1.3 3 
DUG 62.67 70.8 +1.1 2 
QUE 63.52 67.5 +2.5 4 
GSC 64.05 64.7 +2.0 3 
KON 64. ">'2 60.1 -1.4 5 
GOL 66.88 55.6 +4.5 2 
TAB 69.05 42.4 -0 .7 4 
TUC 6<;.62 45.0 +'\.8 2 
SH! 72.26 31.3 -1.4 3 
AFI 73.13 31.3 +1.2 3 
STU 74.,6 26.8 +0.1 4 
VAL 74.40 24.5 -2.1 2 
AAM 74.52 27.9 +1.6 4 
!ST 74.57 26.9 +0.8 5 
flO 74.67 29.2 +3.4 3 
TRI 75.97 23.7 +1.2 5 
SCP 77.98 20.1 +2.2 3 
OXF 78.66 18.4 +2.0 5 
OGO 78.90 16.0 -0.5 1 
ATU 79.31 16.0 +0.9 3 
8LA 80.17 12.8 -0.6 4 
All 81.81 1"'\.5 +,.0 '\ 
SHA 82.44 9.4 -0.1 2 
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A2.4 P'(AB)-P'(DF) differential travel-time data [deep-focus events ) . 

EVENT STATION /:, TIME OBS-JB 
(deg . ) (sec. ) (sec. ) 

HAl 
(h co 600 km) Cll 145.40 3.2 -1.7 

JEN 146.00 3.4 -2.9 
un 146.30 3.9 -3.2 
BNS 146.70 6.1 -1.9 
DUR 147.00 7.1 -1.7 
CCP 147.90 8.7 -2.3 
STU 148.60 11.2 -1.1 
TUB 148.80 10.9 -2.5 
STR 149.00 11.4 -2.5 
HLE 149.00 11.2 -2.1 
PAR 149.20 11.4 -3.0 
PRU 149.10 14.1 -1.1 
BNS 150.40 15.3 -2.4 
VIE 150.60 16.0 -2.2 
DUR 150.60 15.1 -3.1 
GAR 150.10 15.3 -3.2 
CFF 152.20 19.5 -3.2 
STU 152.20 20.5 -2.2 
TUB 152.40 20.1 -2.6 
JEN 152.40 20.0 -3.3 
MSS 152.80 22.1 -2.3 
PAR 153.0 a 21.6 -3.4 
BNS 153.50 24.0 -2.4 
MeN 153.70 24.0 -3.0 
NEU 154.30 26.4 -2.3 
GAR 154.4 a 26.1 -3.9 
STU 155.00 28.9 -1.9 
PTO 155.30 28.0 -3.1 
MSS 155.60 31.4 -1.2 
STR 155.60 30.1 -2.5 
PAR 156.30 32.5 -2.2 
CHU 156.70 33.4 -2.5 
MeN 151.30 35.5 -2.2 
TCL 151.6 a 35.4 -3.2 
GAR 151.80 36.4 -2.8 
MaN 160.10 45.3 -1.1 
MBO 161.90 48.9 -3.4 
ALG 164.90 60.4 -2.2 
SET 165.00 61.6 -1.4 
REl 166.10 64.4 -2.6 
BAS 171.40 86.0 -1.1 
TAM 113.70 94.4 -l.Ci 
TAM 175.20 100.9 -1.5 
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EVENT STATION /). TIME OBS-JB 
(deg.) (sec. ) (sec.) 

ENGDAHL 'PE RU-ERAZ I l A) 

(h = 590 km) 
LEM 164.19 59.4 -0.7 
HKC 165.80 63.0 -2.S 
BAG 166.27 64.5 -3.1 
CHG 1&6.51 68.2 -0.2 

ENGDAHL (FIJI B) 

(h = 639 km) 
KSA 146.53 6.3 -1.3 
CHZ 147.52 10.3 +0.2 
RAC 147.98 8.3 -3.0 
VAL 148.07 7.4 -4.1 
BNS 149.79 11.9 -4.1 
TNS 150.33 14.6 -2.9 
WRM 151.11 16.2 -3.4 
KRL 151.51 15.4 -5.4 
PRK 151.64 18.9 -2.2 
TUB 151.86 18.8 -2.S 
STR 152.03 19.5 -2.7 
MSS 152.21 19.3 -3.4 
ZAG 152.39 21.2 -2.0 
FEl 152.67 20.1 -3.9 
lJU 152.70 16.2 -7.9 
ZUR 153.06 22.4 -2.8 
TRI 153.25 23.3 -2.4 
BES 153.59 25.5 -1.2 
NEU 153.70 23.9 -3.1 
ATH 154.02 24.3 -3.6 
VAM 155.01 29.5 -1.3 
RSl 155.03 25 .8 -5.1 
LNS 155.37 28.8 -3.1 
MNY 155.88 29.4 -4.0 
BNG 155.99 30.8 -2.9 
ISO 156.41 32.5 -2.5 
ReM 157.03 32.4 -4.5 
BOB 158.11 36.0 -4.2 
PTa 158.52 38.3 -3.1 
LIS 160.52 44.5 -3.3 
Tal 160.85 44.6 -4.3 
MBO 161.85 50.5 -1.7 
ALI 162.79 53.4 -1.9 
MAL 163.81 55.7 -3.1 
SET 164.44 63.4 +2.4 
RBA 165.51 60.4 -4.4 
AVE 165.86 61.3 -4.8 
TAM 175.28 101.5 -1.3 
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EVENT STATION 6 TIME OBS-JB QUAL. 
(deg.) (sec. ) (sec. ) 

JAVA SEA A 
(h = 606 kIn) BEC 153.61 23.4 -3.3 2 

GIE 156.44 32.7 -2.4 2 
ARE 157.37 33.9 -4.0 4 
LPB 157.61 33.9 -4.7 5 
NNA 159.94 42.2 -3.7 4 
BHP 167.85 72.4 -1.0 3 
SJG 167.87 70.3 -3.2 2 
TRN 172.27 89.3 -1.2 2 
BOG 173.49 95.6 .. 0.2 2 
CAR 175.46 101.4 -2.1 5 

JAVA SEA B 
(h = 599 km) ARE 157.08 34.2 -2.e 5 

LPB 151.41 34.1 -3.5 4 
NNA 159.31 41.4 -2.7 5 
QUI 166.79 67.1 -2.4 3 
BHP 166.88 69.2 -0.6 5 
SJG 168.05 73.0 -1.2 2 
BOG 112.46 92.1 -0.8 4 
TRN 173.12 92.4 -1.5 5 
CAR 175.61 102.6 -1.5 5 

FLORES SEA 
(h .. 618 kIn) SHA 145.28 2.8 -1.8 3 

NNA 155.62 28.7 -3.<; 4 
lPB 155.11 29.2 -3.9 4 
BHP 161.62 49.6 -1.8 5 
ARE 166.06 62.6 -4.2 2 
SJG 167.18 10.7 -2.4 4 
TRN 116.21 102.5 -4.2 5 
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A2.S P'(BC)-P'(DF) differential travel-time data (deep-focus events]. 

EVENT STATION t:. TIME OBS-JB 
(deg. ) (sec.) (sec.) 

HAl 
(h .. 600 km) CLl 145.40 1.0 -0.3 

KEW 146.50 2.5 +0.6 
BNS 146.70 2.8 +0.8 
OUR 147.00 3.1 +0.9 
COP 147.90 4.0 +1.4 
KRl 148.40 4.6 +1.7 
STU 148.60 5.1 +2.0 
TUEI 148.80 5.0 +1.8 
STR 14·9.00 4.8 +1.5 
HlE 149.00 5.0 +1.7 
CLL 149.00 5.0 +1.7 
PAR 149.20 5.3 +1.9 
PRU 149.70 5.5 +1.8 
BNS 150.40 6.0 +1.8 
VIE 150.60 6.6 +2.3 
GAR 150.70 5.5 +1.1 
CFF 152.20 7.0 +1.5 
STU 152.70 7.2 +1.3 
TUB 152.40 7.7 +2.1 
JEN 152.40 7.0 +1.4 
MSS 152.80 7.7 +1.8 
PAR 153.00 7.2 +} • J 
BNS 153.50 7.7 +1.2 
MON 153.70 9.4 +2.7 
NEU 154."'\0 9.0 +1.7 
GAR 154.40 9.0 +1.6 
STU 155.00 '10.3 +2.4 
PTO 155.30 8.3 +0.1 
MSS 155.60 9.9 +1.5 
PAR 156.30 10.0 +1.0 
CHU 156.70 11.0 +1.6 
MON 157.30 12.B +2.9 
GAR 157.80 11. ~ +1.0 

ENGDAHL (FIJI 8) 
(h .. 639 km) KRA 147.39 5.1 +2.7 

JER 147.52 2.6 +0.1 
CHZ 147.52 5.1 +2.6 
RAe 147.98 4.1 + 1.4 
VAL 148.07 4.6 +1.9 
eLL 148.18 5.4 +2.5 
HLE 148.44 5.0 +2.0 
CMP 148.71 5.7 +2.6 
1ST 148.93 4.5 +1.2 
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EVENT STATION t:. TIME OBS-JB QUAL. 
(deg. ) (sec.) (sec. ) 

ENGDAHL ( Fl J I 0, CaNT. ) 
PRA 149.15 5.6 +2.2 
KEW 149.70 5.6 +1.9 
BNS 149.79 5.7 +1.9 
GG- 150.30 6.6 +2.5 
TNS 150.33 6.4 +2.3 
OOU 150.9"'1 9.0 +4.4 
HEI 151.08 7.3 +2.6 
WRM 151.11 7.0 +2.3 
HLW 151.13 7.8 +3.1 
KRL 151.51 8.4 +3.4 
STU 151.58 7.6 +2.6 
PRK 151.64 7.5 +2.5 
PDA 151.78 6.2 +1.1 
TUB 151.86 7.4 +2.2 
STR 152.03 9.1 +3.8 
MSS 152.21 8.1 +2.6 
ZAG 152."\9 9.6 +4.0 
FEL 152.67 8.8 +3.0 
ZUR 153.06 9.9 +3.7 
TR I 15"'1.25 8.8 +2.5 
BES 153.59 10.0 +3.4 
NEt) 153.70 9.7 +3.0 
ATH 154.02 11.0 +4.0 
VAM 155.01 11.0 +3.1 
RSL 155.03 10.9 +3.0 
LNS 155.37 11.4 +3.2 

JAVA SEA B 
(h = 599 kIn) SHA 145.28 1.6 +0.4 3 

NNA 155.62 9.5 +1.0 3 
LPB 155.77 9.9 +1.3 2 

FLORES SEA 
(h = 618 km) OXF 144.76 1.1 +0.3 5 

GfO 146.02 1.8 +0.1 1 
ATL 148.22 4.3 +1.5 5 
SHA 148.28 4.1 +1.2 4 
LPB 157.47 11.0 +1.0 2 
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Appendix 3 

Tables A3.l - A3.3 display the three final inversion models 

(AI, Bl, and B2) derived in section 5.5. Besides listing the de fin-

ing parameters v , v , and p, we have also listed the values of the 
p s 

242 
seismic parameter ~ = v - -3 v , the bulk modulus K, the shear 

p s 

modulus ~, the modulus A, the Poisson ratio cr, pressure, and gravity. 

Tables A3.4 and A3.5 show the fit of the models to the basic 

data set described in section 5.3 of the text. The relative errors 

are computed as (computed - observed)/observed. For comparison we 

list the standard errors in the mean of the data and the associated 

symmetric 95% confidence intervals computed from critical t values of 

the student's t-distribution [Freeman, 1963]. This allows for the 

fact that the sample variances are only estimates of the true vari-

ances. 

Of the 177 eigenperiods listed in Table A3.4, model Al fits 86 

within their 95% confidence intervals, model Bl fits 127, and model 

B2 fits 115. We conclude that Bl is the most satisfactory model from 

this point of view. 

Table A3.6 gives observed and computed absolute travel times 

for teleseismic distances useful in evaluating the inversion models. 

Comparing model Bl with P times from the 1968 Herrin Tables, .we ob-

serve that the difference in baseline is approximately 0.8 seconds. 

The same comparison with Hales and Roberts [1970a) S times indicates 

a baseline shift of approximately 5 seconds. 

Table A3.7 lists additional differential travel time data. 
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Table A3.6 

Fit of the models to absolute travel time data 

Phase t, J.B. '68 Tables Al B1 B2 
(deg) (sec) (sec) (sec) (sec) (sec) 

P 30 372 .5 369.5 370 .5 370.9 370.6 
(surface 35 416.1 413.3 414.5 414.4 414.2 focus) 

40 458.1 455.7 456.8 456.5 456.4 

45 498.9 497.4 497.3 497.0 496.8 

50 538.0 535.2 536.0 535.6 535.5 

55 575.4 572.2 573.0 572.6 572.5 

60 610.7 607.4 608.3 608.0 607.7 

65 644.0 640.9 642.0 641.7 641.4 

70 675.4 672.7 673.7 673.6 673.2 

75 705.0 702.6 703.5 703.5 703.1 

80 732.7 730.6 731.4 731.5 731.0 

85 758.5 756.6 757.4 757.4 756.9 

90 782.7 . 780.7 781.7 781.5 781.1 

95 805.7 803.9 804.9 804.6 804.2 

PcP 30 554.9 552.1 552.1 551.9 551. 7 
(surface 

35 568.6 565.9 565.9 565.7 565.5 focus) 
40 583.9 581.1 581.2 581.0 580.8 

45 600.5 597.7 597.9 597.7 597.5 

50 618.3 615.5 615.8 615 .6 615.4 

55 637.0 634 .3 634.6 634.4 634.3 

60 656.6 653.9 654.3 654.1 654.0 

65 676.9 674.2 674.7 674.5 674.4 

70 697.8 695.1 695.7 695.5 695.3 

75 719.1 716.5 717.1 716.9 716.7 

80 740.6 738.0 738.8 738.5 738.5 

85 762.3 759.9 760.8 760.5 760.5 

90 784.2 781.9 782.9 782.7 782.7 
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Table A3.6 (cant. ) 

Phase f:1 J.B. '68 Tables Al Bl B2 
(deg~ (sec) (sec) (sec) (sec) (sec) 

PKP 180 A 1330.6 1327.8 1328.5 
(surface 170 1286.3 1283.7 1284.0 1283.4 1283.6 
focus) 

160 1242.7 1239.7 1239.9 1239.3 1239.3 

150 1200.2 1196.9 1197.3 1196.8 1196.6 

145 B 1180.4 1178.0 1178.0 1177.4 1177.3 

145 B 1179.3 1174.4 1178.0 1177.4 1177.3 

150 1190.7 1188.1 1192.7 1191. B 1192 . 0 

155 C 1201.7 1201.0 1205.3 1204.3 1204.6 

1I0 D 1113.2 1113.0 1114.8 1114.0 1114.9 

120 1132.7 1132.1 1133.6 1132.7 1133.0 

130 1152.0 1151.3 1152.3 1151. 4 1151.B 

140 1170.5 1170.1 1170.4 1169.5 1170.0 

150 1187.4 1186.8 1187.2 1186.2 1186.8 

160 1200.8 1200.0 1200.9 1200.0 1200.4 

170 1209.2 1208.4 1209.8 1208.9 1209.3 

IBO F 1212.2 1211.0 1212.9 1212.1 1212.4 

* PKiKP 10 996.9 996.9 996.2 996.3 
(surface 20 1000.1 1000.3 999.6 999.6 focus) 

30 1005.7 1005.8 1005.1 1005.1 

40 1013.2 1013.4 1012.7 1012.8 

50 1022.8 1023.0 1022.3 1022.4 

* Data for PKiKP from Engdahl et.al. [1970. Table 1). 
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Table A3.6 (cont. ) 

Phase tJ. J.B. H&R [1970a) Al B1 B2 
(deg) (sec) (sec) (sec) (sec) (sec) 

S 30 670.2 669.5 672.0 675.0 671. 7 
(surface 35 748.2 749.0 751.5 752.8 751.9 focus) 

40 824.5 825.7 829.5 828.8 828.6 

45 897.9 899.5 704.2 902.5 903.1 

50 968.6 970.5 975.9 973.9 974.6 

55 1036.8 1038.7 1044.4 1043.2 1043.8 

60 1102.6 1104.1 1109.7 1109.2 1109.6 

65 1165.5 1166.7 1172.4 1172.5 1172.9 

70 1225.6 1226.4 1233.1 1233.2 1233.7 

75 1282.6 1283.2 1290.4 1290.6 1291.1 

80 1336.5 1337.3 1344.9 1344.8 1345.3 

85 1387.3 1388.5 1395.8 1395.7 1395.5 

90 1435.5 1436.9 1444.2 1443.7 1442.0 

95 1478.2 1482.4 1489.1 1488.6 1490.6 

ScS 30 1011.0 1016.6 1016.4 1016.7 
(surface 

35 1036.4 1042.2 1042.0 1042.4 
focus) 

40 1064.6 1070. 6 1070.5 1070.8 

45 1095.1 1101. 7 1101.5 1101.9 

50 1127.8 1135.1 1134.8 1135.2 

55 1162.5 1170.2 1169.9 1170.3 

60 1198.8 1207.0 1206.6 1207.1 

65 1236.4 1245.1 1244.7 1245.2 

70 1275.2 1284.2 1283.9 1284.5 

75 1315.0 1324.2 1323.9 1324.5 

80 1355.5 1364.9 1364.6 1365.4 

85 1396.5 1406.3 1405.8 1406.8 

90 1437.8 1447.9 1447.3 1448.5 

95 1479.2 1489.5 1489.0 1490.6 
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Table A3. 7 

Fit of the models to auxilIary differential travel time data 

Phase 
Combination 

SKKS-SKS 
(surface 
focus) 

SKS-S 
(surface 
focus) 

* 

f:, 

(deg) 

85 

90 

95 

100 

105 

llO 

115 

120 

125 

85 

90 

95 

H&R 
(sec) 

* 8.2 

15.4 

23.9 

33.9 

45.2 

57.9 

72.0 

87.6 

104.8 

6.4 t 

22.0 

39.4 

Al 
(sec) 

6.4 

13.4 

23.0 

34.1 

46.7 

59.8 

73.9 

88.8 

104.7 

6.4 

24.8 

42.5 

SKKS-SKS data from Hales and Roberts [1971, Eqn.3). 

t 
SKS-S data from Hales and Roberts [1970a, Table 4]. 

Bl 
(sec) 

6.4 

13.4 

22.8 

33.9 

46.2 

59.4 

73.5 

88.5 

104.5 

7.0 

24.9 

42.6 

B2 
(sec) 

6.3 

13.2 

22.7 

33.9 

46.1 

59.3 

73.6 

88.6 

104.2 

6.3 

22.7 

44.1 


