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ABSTRACT

An inversion procedure is developed to estimate the radial
variations of compressional velocity, shear velocity, and density in
the Earth. The radial distributions are defined as spherically
symmetric averages of the actual distributions in the laterally het-
erogeneous Earth, and the nature of the averaging implied by averaging
certain sets of eigenperiod and travel-time data is examined. For
travel-time data, the spherical averaging yields the Terrestrial
Monopole if the data sample a distribution derived from a uniform
distribution of sources and receivers. Since this is difficult to
obtain for absolute times, differential travel times are used to
constrain the velocities. It is shown that the bias inherent ip
available sets of differential travel-time data is considerably less
£han that in equivalent sets of absolute travel-time data, if the
phase combination is suitably chosen. Observations are presented for
the phase combinations PcP-P, ScS-S, P'(AB)-P'(DF), and P'(BC)-P'(DF).

The inversion algorithm developed is based on a linear approxi-
mation to the perturbation equations and is shown to provide a stable
method for estimating the radial distributions of velocities and den-
sity from a finite number of inaccurate data. The linear inversion
theory presented is complete; it allows one to estimate the resolving
power of the data and the resolvability of specified features in the
model.

Three estimates of the radial distributions are derived using an

extensive set of eigenperiod and travel-time data. One model,
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designated model B1l, fits 127 of the 177 eigenperiods of the Dziewon-
ski-Gilbert set within their formal 95% confidence intervals. This
model satisfies extensive sets of auxillary data as well.

It is shown from resolving power calculations that little infor-
mation is loét by using differential travel times in lieu of absolute
times. It is demonstrated that the nature of the averaging in the
estimation procedure for given sets of gross Earth data can be im-

proved by judicious specification of the norm on the space of models.
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Chapter 1

INTRODUCTION

1.1 Statement of the problem. This thesis addresses the problem of

estimating the average radial distributions of compressional velocity,
shear velocity, and density in the Earth from the observations of the
Earth's mass, moment of inertia, body wave travel times, and periods

of free oscillation.

1.2 Motivation. Seismological investigation of the structure of the
Earth began with Oldham's correct identification of compressional,
shear, and surface waves on seismograms of the Assam earthquake of
1897. Application of the theory of elastic wave propagation to the
problem of interpreting seismological data proceeded rapidly, culmin-
afing with the publication of the Jeffreys-Bullen and Gutenberg-
Richter tables. Bullen [1963, p.3] remarks:

The period from 1911 to 1940 saw the application of seis-

mological data to problems of the Earth's internal struc-

ture to a quite remarkable degree. The period started

. with the vaguest notions about a molten central core and

finished with well-determined values of the density,

pressure, compressibility, rigidity, and gravity through-

out practically the whole Earth.
Despite the progress made in the first part of this century, the prob-
lem of describing the variations of elastic parameters and density in
the Earth remains an area of vigorous geophysical research. The in-

terest in refining the descriptions currently available is not moti-

vated by some misplaced concern for detail. Rather, it is dictated
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by the critical dependence on these parameters of nearly every infer-
ence about the composition and state of the Earth's interior. Much
of the attention recently refocused on the problem of Earth structure
has been stimulated by three technological advances: the extension of
the observable seismic bandwidth to ﬁltra-long perlods, the develop-
ment of laboratory techniques for measuring material properties at
high pressures and temperatures, and the advent of the computer.

Ultra-long period seismology, heraldedjby Benioff's design of
the strain seismometer, has provided an important new source of data,
the periods of the Earth's free oscillation. Prior to mid-century,
the only direct information about the density distribution in the
Earth came from measurements of the Earth's gravity field and dynamic
response. In particular, Bullen's classical density models were
constrained only by the mean density and moment of inertia. The
measurements of surface-wave velocities commencing in the 1950's and
the reliable observations of free oscillation periods reported since
the great Chilian earthquake of 1960 have yielded valuable independent
constraints on the possible variations of density.

Additional impetus has come from our increasing knowledge of the
behavior of materials at pressures and temperatures appropriate to the
Earth's deep interior. To infer the Earth's compcsition and state, we
must compare the density and velocity distributions found from geophys-
ical data with observed material behavior at known conditions. Recent
improvements in the precision and range of static compression, ultra-

sonic, and shock-wave experiments have set the stage for this



comparison.

Finally, the problem of refining the estimates of Earth structure
is feasibly approached only with the aid of modern computing systems,
To evaluate the success of any model, the data functionals for that
médel must be calculated and compared with observations. This can be
a laborious task. For example, calculating the eigenperiod of a
spheroidal mode requires many numerical integrations of a sixth-order
system of differential equations; hand computation of the currently
well-observed eigenperiods for even one realistic Earth model is a
lifetime effort. However, it takes only a few minutes on a fast

computer.

1.3 Approach. To date, efforts towards modeling physical parameters
in the Earth have involved only very simple, usually one-dimensional
representations. A useful and often adequate approximation is to
assume that the Earth behaves as a spherically symmetric, non-rotating,
elastic and isotropic body to small mechanical excitations in the seis-
mic frequency band (10_4 Hz - 10 Hz). We shall adopt these assumptions,

thus allowing us to select an Earth model by specifying the compres-
sional velocity, shear velocity, and density as functions of radius
alone.

With these assumptions, it becomes feasible to solve the forward
problem for a number of gross Earth data functionals (data functionals
that depend on the radial variations) for which data are available.

These include the Earth's mass and moment, its eigenperiods, and the
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ray-theoretical travel times of signals propagating through its
interior. Our approach to.the inverse problem of estimating the
model given estimates of these data functionals follows closely the
treatment of Backus and Gilbert [1967, 1968, 1969, 1970]. The inver-
sion theory used is developed in Chapter 2.

Of course, the observations reflect the fact that the Earth is
a rotating, laterally-varying body. The precision with which the
data can now be measured is such that contamination by these depar-
tures from our assumptions can cause serious incompatibility and bias.
We shall try to reduce these effects by using averaged sets of free
oscillation and travel-time data. The motivation for this is dis-
cussed in Chapter 3.

Unfortunately, with the present-day distribution of seismic
sources and receivers it is not possible to sample uniformly the
velocity structure of the Earth's upper layers using body waves,

For this reason averaged sets of absolute travel-time data generally
are biased. At teleseismic distances this bias enters into the
distance-time expression as approximately a constant term, called

by seismologists the "baseline error'". To reduce as much as pos-
sible the baseline error without eliminating the valuable information
contained in travel-time data, we shall use in the inversion
calculations differential travel times; that is, the differences
between the arrival times of two body phases. If the phase combin-
ations measured are judicipusly chosen, the differential times will

be relatively unbiased. In particular, baseline errors will cancel.
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In Chapter 4 the use of differential travel times as gross Earth data
is discpssed. We alsa present in this chapter some observations of
differential travel times useful in constraining the radial variations
of seismic velocities.

These obsérvations are combined in Chapter 5 with eigenperiod
data and the observed mass and moment of inertia to derive estimates
of the radial velocity and density distributions. Emphasis is placed
op the construction of reasonable, but simple representations which
are used to initiate the iterative inversion algorithm. This algo-
rithm uses the inversion theory presented in Chapter 2 to provide
a perturbation to the starting model which, in a sense that is well-
defined, is the "smallest" necessary to satisfy the data, Therefore,
the resulting representations will deviate in some least way from

the starting model.



=hie

Chapter 2

INVERSION THEORY

2.1 Introduction. The task of deducing the constraints provided by

observables oﬁ the variations of physical parameters in the Earth
has been called the geophysical inverse problem. The mathematical
formulation of this problem characterizes possible varjations as
entities in an abstract function space, each entity representing an
Earth model. In particular a spherically symmetric, non-rotating,
linearly elastic, and isotropic (SNREIl) Earth can be described by
specifying the compressional velocity, the shear velocity, and the
density as functions of radius. An observation is the value of a
functional defined on this space of Earth models. Examples include
the Earth's mass and moment of inertia, the measured travel times

of seismic waves, and the observed periods of free oscillation, We
will assume that the forward problem for each data functional has
been golved: given any interesting Earth model the value of the data
functional can be computed. In general the relationship between the
data functional and the model is nonlinear.

Since the distributions of physical parameters are continuous
on some interval and the number of data obtainable is necessarily
finite, the inverse problem generally has no unique solution.
Furthermore, the observations used as data are invariably contaminated

by errors; only estimates of the values of data functionals for the

l'I‘he notation is due to Dahlen [1968].
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Earth are available. Inaccuracies act to increase the ensemhle of
aéceptable models. These circumstances, unfortunate for the geo-
physicist, make the problem mathematically interesting and motivate
the inversion theory presented in this chapter.

A variet§ of techniques, both theoretical and computational,
have been applied towards the solution of the geophysical inverse
problem. One potentially powerful technique is the Monte Carlo
method described in the geophysical context hy Keilis-Borok and
Yanovskaya [1967] and applied to the determination of SNREI Earth
models by Press [1968,1970,1972]. Monte Carlo calculations utilize
a random selection procedure to generate arbitrary models, test the
models against a set of data, and display those that satisfy the
data sufficiently well. The idea is to sample uniformly some region
of the model space thought to contain the beést representation of the
Earth and generate a fairly complete catalogue of acceptable models.
Properties of the real Earth would then be those common to this
entire ensemble.

In practice Monte Carlo techniques face severe limitationms.
Even with the most advanced computing systems, the calculations are
laborious and time consuming; the number of trials necessary to
sample even very restricted regions of the model space is large.

The more efficient algorithms such as the one used by Press [1972]
require a sieve-like series of tests against the data: at each of
several steps models are rejected or retained depending on how well

they satisfy some subset of the data. It is not clear in what
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way these algorithms sample the model space.

A supposed advantage of the Monte Carlo method is that nonlinear
data functionals can be used directly without resorting to linear
estimation. However, for geophysical inverse problems that use mode
data, complete recalculation of the eigenfrequencies for each generated
model is economically unfeasible. Instead, first-order variational
parameters are used [Press, 1972], eliminating the advantage of Monte
Carlo over the linear prediction method.

At the present time the linear prediction method offers the most
efficient and informative approach to the solution of the geophysical
inverse problem. Basically, this method employs an iterative pertur-
bation algorithm that approximates the difference between the sought
representation of the Earth and some initial model as a particular
solution to the finite system of linear, inhomogeneous, integral
equations relating changes in the model to first-order changes in the
data. The data functionals are compﬁted for the starting model and
subtracted from the observed data; the system of perturbation equations
is solved, and the calculated perturbation is added to the starting
model. This process is iterated until the data are satisfied. For
the one-dimensional case, this algorithm is simply Newton's method.

The first-order approximation reduces the nonlinear problem to
the problem of solving an underdetermined systen of linear equationms.

A general and extensive theory for the solution of the underconstrained
linear inverse problem for -inaccurately known data has been developed
by Backus and Gilbert [1967,1968,1970] in an important series of

papers. The central concept in this theory is the following: although
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the exact solution cannot be computed because the information provided
by the data is insufficient, it is possible to estimate accurately

linear averages of the desired model. The task to which their theory

is addressed is the constuction of an optimal inverse filter from the
constraints iﬁposed by the observations, through which the correct
solution may be viewed. Théy show that there exists a tradeoff between
the ability to resolve detail and the accuracy with which this detail
can be estimated. These concepts represent a major contribution to

the theory of linear estimation and will see wide use outside the
geophysical inverse problem.

Presented here is a variation on the Backus-Gilbert theory that
incorporates the stochastic inverse theory of Franklin [1970]. A
particular, unique solution to the linear system is obtained by mini-
mizing a specified quadratic measure of error. This quadratic form is
the sum of two terms, a measure of the resolution of the estimate and
a measure of its accuracy, parameterized to yield a Backus-Gilbert-
type tradeoff curve. The generalized inverse of Penrose [1955] and
Moore [1920] and the stochastic inverse of Franklin [1970] are shown
to lie on this tradeoff curve, the stochastic inverse being, in one
sense, an optimal point. Any particular solution computed by select-
ing a point on the tradeoff curve is showg to be ar estimate of the
correct solution convolved with a projection-like smoothing operator,
termed here the response operator of the linear system. Convolving
the response operator with delta functions yields Backus-Gilbert-type

averaging kernels (except that they are not constrained to be uni-
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modular).

One important aspect of the approach presented here is that the
model space is generalized to a Hilbert space with a fairly arbitrary
norm, or measure of length. In the application to the construction of
velocity and dénsity profiles in the Earth (Chapter 3) the operator
defining the norm is chosen to be a "roughing'" operator, i.e., the
inverse of a smoothing operator. The advantages of generalizing the
norm in this way are severalfold. Most importantly, it allows one to
introduce information about the solution not directly contained in the
data. The "rougher" the norm is, the smoother the particular solution
will be. If one is confident, say, that the variation of elastic
parameters in some region of the Earth is well-behaved, then the
method allows a solution embodying this information (or prejudice) to
be constructed. The roughing can be discontinuous - a convenient way
to allow for the possibility, or reality, of discontinuities in the
model. Also, by manipulating the norm on the model space one can
control to some degree the localization of the averaging kernels.
Finally, if the roughing operator is chosen to be unbounded (see
section 2.6),then the Frechet kernels for travel times, which are not
square-integrable, are membgrs of the model space (this is shown in
section 4.2).

Necessarily this introduction has been heuristic and vague. The
presentation in the remaining sections of this chapter will be more
formal and assumes that the reader has a basic understanding of the

Backus-Gilbert theory (see Gilbert [1972] for an elementary treatment).
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2.2 Hilbert spaces of Earth models. A model of a spherically symmetric

Earth of radius R is an ordered multiple of functions on the closed
interval [0,R]. For examplé, each SNREI Earth model is described by
the function triple [vp(r),vs(r),p(r)], 0 < r £ R, where vP is the
compressional.velocity, ¥ is the shear velocity, and p is the density.
Although constuction of SNREI Earth models is our ultimate goal, for
the purposes of notational simplicity we retain in this chapter a gen-
eral definition: a spherically symmetric Earth model m is an M-tuple
of real-valued, piecewise-continuous functions [ml(r),mz(r),...,mM(r)]
defined and integrable on the interval [0,R]. The model m is a mem-
ber of a vector space Ill over the field of real numbers R if the
vector sum of two models m+ m' is taken equal to [ml(r) + mi(r),
m, (r) + mé(r),...,mM(r) B mﬁ(r)]. Formally IIl is the Cartesian
product of M vector spaces, IIl= m1® 11129"' ® mM Each lni’
i=1,2,...,M, is the vector space over R of real, piecewise-contin-
uous functions integrable with respect to a weight wi(r) on the
interval [0,R]. The weighting function wi(r) must be strictly positive
on [0,R] but is otherwise arbitrary.2

A linear operator L: nﬂé-b is a single-valued, linear mapping
of Il into a vector space t]. Any linear operator of interest to us

here can be represented as an M x 1 array of linesr operators

& Backus and Gilbert in their original 1967 paper used the volume
measure w,(r) « r2. In this case the measure is singular at the
‘origin; tée domain of definition must be restricted to the semi-
open interval (O,R], and Il consists of functions regular at the
origin. In subsequent papers by these authors [1968,1970] and in
Chapter 5 of this work, wi(r) is chosen to be a constant.
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[ Li: Hli+lj; i=1,2,...,M], each characterized by a vector-valued
integral kernel L, (r). For any m€ M the element L*m€ Y} can be
compﬁted by integration:
M R
(2.2.1) L m = 3 Lm = 2 f L, (r) m (r) w (r) dr
i=1 Y0
The weighting functions wi(r) should be chosen to render this pro-
duct dimensionally homogeneous.

Much of the analysis in this chapter will involve manipulation of
linear operators that map the model space into itself. Any interest-
ing linear operator L: IlI»I11 can be represented as an M X M array
of operators Ilﬂj: n]i¢-n1j; i,j = 1,2,.,.,M] with scalar-valued
integral kernels Lij(r,r'). If L has eigenvalues (scalars A such that
L+ ¥ =2y), then, because Il is defined over R, they must be real.3

A class of operators whose eigenvalues are always real are the
symmetric operators, for which L(r,r') = L(r',r).4 If the transpose
of L, denoted L*, is defined as the operator with kernel L*(r,r') =
L(r',r), then L is symmetric if and only if L = If.

Associated with every symmetric operator L: III->11l is a unique,
symmetric bilinear functional

% R /R
(2.2.2) A(m,m') = f f m, (r)L, . (r,r")mi(x")
1.3=1Jo Jo 1 "1 3

-wi(r)dr wj(r')dr',

Although the spaces we will consider are all real, the theory can
be extended in a straightforward manner to spaces defined over the
field of complex numbers, permitting the eigenvalues to be complex.

Most statements made here are proved in Courant and Hilbert [1937].
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and a unique quadratic form
(2.2,3) A(m) = A(m,m ).

A symmetric operator and its corresponding bilinear and quadratic forms

are said to b;a positive definite, positive semi-definite, or indefinite

depending on whether A(m) > 0, A(m) > 0, or A(m) % 0 for all m# 0.
Any symmetric, positive definite bilinear functional can be used

as an inner product on IIl. The vector space M with an inner product
L v = '
(2.2.4) m-m' = A(m,m'")

defines an inner product space mL which can be completed to a Hilbert

space. The norm associated with this inner product is

(2.2.5) ||mHL = Allz(m).
Any mE I is a member of mL if

(2.2.6) Hml] < =.

The super- and subscription of the inner product, the norm, and the
Hilbert space are dropped for the special case L =1 , the identity
T = 1] R' ]
operator on ll:m-m' = m.1I-m' = ZIO mi(r) mi(r) wi(r) dr and
i
1)2
[m[] = (m-m)*2,
For our purposes (indeed, for most physical problems) quadratic
convergence is sufficient for the identification of vectors. That is,

a sequence of vectors {m_ : a = 1,2,...}, members of M, is said to

converge to the element mEI if lim||m - mall = 0.
a0
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2.3 The perturbation equations. Interesting data functionals such as

the mass, moment of inertia, cigenfrequencies, and travel times of an
SNREI Earth model are each Fréchet-differentiable. Paraphrasing Backus
and Gilbert [1967, p.249] in our own notation, we say that a data func-
tional D on Il is Fréchet-differentiable at a point m in Il if

there exists a member a of I, determined by D and m, such that for

any member ém of Il
2.3.1) D(m+édm) = D(m) + a-édm + €(édm)

where €(ém) ||ém| |_1 approaches zero uniformly as dm approaches
zero. The vector @ is called the Fréchet kernel of D.

Associated with each ordered set .@N of N Fréchet-differentiable
data functionals and each Earth model m are the linear perturbation

equations

(2.3.2) a, - dm = cSDi = Di( m+ dm) - Di(m), £ i L2506 5N

which are correct to first order in dm. These equations can be

written

(2:.3.3) A-m = &d,
a, 6D1

where A = | . and 6d =| . |. The operator A maps a change in the
ay GDN

model into a change in the data. This can be made accurate enough by
making 6m small enough. The vector 6d 1s a member of the N-dimen-

sional Euclidian space EN associated with the set .@N. The inner
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product between two vectors d and d' in EY is written dd' and equals

Z . Uid d!, the v i=1,2,..,N, being positive weights rendering the

i=1 i | , ik
inner product dimensionally homogeneous.
Suppose e(Gm)CEN is the vector representing the error com-

mitted in the linear approximation (2.3.3). Then the constraint
(2.3.4) ||e¢ém) || < &, & > 0,

which limits the error to an open ball in EN about the origin, defines
for each point m€ 111 a subset of IIl that is, in general, multiply con-
nected. We will define the domain of A to be D(§,m), the simply
connected part of this subset that includes the origin. All pertur-
bations in P(£,m) map into a region R({,m) C EN, the range of A,
with an error whose norm is less than £. A vector m'€ D(§,m) + m
is said to be &-near m.5 Obviously, R(E,m)C R(A), the range space
of A (spanned by the eigenvectors of A A*).

Given a set of N observations dO and a starting model m_, we
define 6d = dO - _d(ms). Now the linear inverse problem can
be formally stated:

We seek to estimate the difference ém, between the representation

0

m, of the "real" Earth and the initial guess m_ by an application of

some bounded linear operator L: EN + Il to the d:ta residual vector

éd .

If m0 is an exact representation of the Earth, i1f the functionals
in _@N depend linearly on the model, and if the data are perfectly

- This is a variation on the terminology used by Backus and Gilbert

[1970, p.125].
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known, then 6m0 can be expected to satisfy equation (2.3.3).6 If the

72N
set _@ contains nonlinear data functionals (such as travel times and
eigenfrequencies) and if m

is E-near m_, then 6m_, can be expected

0 0
to satisfy (2.3.3) with an error of norm less than , again assuming
d0 and m, are exact. Thus, in the nonlinear case, the success of the

estimate will depend largely upon proper specification of the starting

model.

2.4 The generalized inverse. For finite N the problem of computing the

solution to (2.3.3) is ill-posed in the sense that the solution is not
unique. In fact, it is obvious that A possesses a null manifold JI(A)
of infinite dimension. If h€JI(A), then it solves the homogeneous
equation A<+ h= 0. The general solution to equation (2.3.3) can be

written
(2.4.1) fra = Sm + :;1 o h_,
where dm is any particular solution to (2.3.3), {hn: B ™ Fe2ionet 1o
a basis for II(A), and the coefficients a s n = 1;2,+++3 are arbitrary
* *
scalars. If B( A ) is the range space of A, the space spanned by
the set of Fréchet kernels { ayidm= 1,2,,..,N}, then Il is the direct
%
sum of JI(A) and R( A).
One particular and interesting solution to (2.3.3) is given by

the generalized inverse of A [Moore, 1920; Tseng, 1949; Bjerhammar,

1952; Penrose 1955]. The operator A has a unique generalized inverse

’ Implicit in this statement is the assumption that dOC R (A).
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+

AT: EN > 1l such that

+
AA = P »
(2.4.2) . B(A)
*
A A Pli( Ay
where PB(A)'is the orthogonal projection operator mapping EN onto

B(A), and PK(A*) is the orthogonal projection operator mapping [l

*
onto B(A).7 The estimate

(2.4.3) Tm = Al sd

is the unique solution that minimizes the norm ||6m| | . Substituting

(2.3.3) into (2.4.3) and using (2.4.2) we obtain

o t
(2.4.4) dm = A A- é&d PB(A*) + dm.

Therefore, the solution given by the generalized inverse corresponds
to the orthogonal projection of any solution, in particular Gmo, onto

*
the subspace B(A).

Using equations (2.4.2) one can easily show that
* %
(2.4.5) AT - Aa- T,

reducing the computation of A+ to determining the generalized
inverse of a symmetric, positive semi-definite operator omn EN. It

A has rank N, A- A* is positive definite and ( A - A*)+ (A - A*)—l.
Otherwise, A A* can be diagonalized by an orthogonal transformation
U: EN +EN; A - A* = UAU* where A = diag(plz, uzz,..., uZN) and

the ith column of U, u,, solves the eigenvalue equation

*
7 P1s an orthogonal projection operator if PP =P and P = P,
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(2.4.6) A-A*u = pzu

1 4 Yy I = Ly2yeemslls

* & *
Then, (A- A )1- = UA+U . Since A - A 1is degenerate, some of the
2 *
ui's, say N - K of them, will be zero, and dim[ R(A*A)] = K.
- *
The generalized inverse of A+A is easily computed by ordering the

2_ 2. ;
eigenvalues so that uis uj if 4 > J. 'Then;

(2.4.7) Aa-O" = X 0w ®
i=1

*
The dyadic uju, - EN > EN is the linear operator defined by ( u, u’;) v=
N
(u,v) ui,VCE :
The form of equation (2.4.4) illustrates an important point:
Since the data kernels are not a complete set, the value of a component

Sm =1,2,...,M, of ém at a point r€ [0,R] cannot be determined.
m,

011

Rather, a linear average
. M R
= ' ' ' v
(2.4.8) Gmi(r) j;l . Pij(r,r ) Gmoj(r ) wj(r ) de

is obtained. It is desirable to compute an average which is localized
at each point. Roughly speaking, this means that we want the ith term
in this sum to dominate and the contributions to this term to be small

away from the point r.9 As we add more linearly independent data to

]

§(r-r'), where Gij is the Kronecker delta and 6(r-r') is

the data set, the kernel Pi KEE") should. look more like the identity

kernel Gij

. This approach is suggested by Penrose [1955, p.408]. See also the
discussions by Lanczos [1961], Wiggins [1972], and Jackson [1972].

? Backus and Gilbert [1968] provide an exhaustive discussion.
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is the Dirac delta distribution. The kernel Pi (r,r') with 1 and r

3
fixed is an example of an averaging kernel [Backus and Gilbert, 1968],
except that it is not constrained to be unimodular.

In practice, considerations of 1localization 1limit the usefulness
of the generaiized inverse. Backus and Gilbert [1968] examined the
kernels of the operator ]ii(ﬁf) and found that, for typical sets
of eigenfrequency data, the linear averaging associated with this pro-
jection was not as localized as averaging kernels obtained by minimiz-
ing the integral of the absolute value of the kernel times. the weight-
ing function (r - r')z. The former had better resolution, i.e., the
minimum scale length of features not appreciably damped by the averag-
ing was smaller, but had substantially larger sidebands than the
latter.

Furthermore, the inverse (2.4.3) was derived under the assumption
that the data are perfectly well known. Actually &éd is only an esti-
mate of the vector A- 6nao that has been corrupted by errors or
"noise" entering through observational errors, finite sampling, comp-
utational inaccuracies, etc. Neglecting this error can yield model
estimates with large statistical uncertainties [Backus and Gilbert,
1970].

These limitations of the generalized inverse can be overcome by

appealing to a stochastic formulation of the linear inverse problem.

2.5 The stochastic inverse. The equation corresponding to (2.3.3) for

inaccurate data can be cast in the form
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(2.5.1) A-ém+ n = &d,

where nEEN is a vector containing the components of noise. Since
these components have some unknown scalar value, the error is described
only in terms of its statistics. Following Franklin [1970] we consider

(2.5.1) to be a sample of the stochastic equation
(2.5.2) A - Pt P, = Py

where P, is the étochastic process describing the solution and is
defined over Il; P, is the noise process, and pd is the data process,
both defined over EN. In its stochastic formulation the inverse
problem becomes to construct the best linear unbilased estimate of the
solution process p, as an application of some linear operator to the
data process Py-

We digress briefly on the properties of stochastic processes that
shall be needed for this aection}o The process P, defined over a real,
separable Hilbert space Il maps an element u of Il into the random
variable p,u. I1f E{ } is the expectation operator, then the mean
mx(u) of p,u always equals E{ pxu} and is a linear functional on U.
The variance of this random variable, since it is the expectation of a
square, is a positive semi-definite quadratic form on 1; sz(u) =
B{ { pu - mx(u))z} = u Cxxu . The linear operator Cxx: U-u is
called the autocorrelation operator of the process P,- Similarly,

for two processes - and py defined over Il and D respectively,

4 The reader may refer to Doob [1953] for details and proofs.
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there exists a ny:h+u, called the cross-correlation operator of
. i .
p, and Py such that E{(p_u - m _(u))( P,V my(v))} u ny v .
*
Evidently, C - ny.

y

Since on all spaces quadratic convergence identifies vectors, two
stochastic pr.ocesses P, and Py defined over [l are taken to be identical
if m =m, and Cxx = Cx'x'; all distributions are equivalently normal.
Then a process p, can be represented by the decomposition ; a u.,
where {un: n=1,2,...} is some orthonormal basis for Il and
{an: n=1,2,...} is a set of independent Gaussian random variables.
The Karhunin-Lo&ve theorem [Lo&ve, 1955, p.478] asserts that u is an
eigenvector of Cxx and that anz, the variance of the variable a_, is
its eigenvalue:

2 *
(2.5.3) Coe = 2o 0 uju, -
n ;

Returning to the inverse problem, we seek a linear operator

B: EN + Il such that the process
(2.5.4) P = de

is the best linear unbiased estimate of P, given equation (2.5.2) and
the Gaussian statistics of P and P, -

Any bias can be removed at the outset by subtracting from P, and
p, their expectations, E{ ps} and E{ pn}, which are supposed known.
We assume this has been done, so that each process in (2.5.2) has zero
mean. This will insure that the estimate is unbiased, i.e.,

E{(ps- p_s) * gl =0 for all g€ INl.
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The process E is said to be the best linear estimate of P, 1f 4t
2 - == 2
minimizes the variance € (g) = E{[( P, ~ P, ) ~gl°} for all g€ M.
As shown by Franklin [1970], this can be done if the autocorrelation
operator Cdd is positive definite. Substitution using (2.5.4) and

expansion of the autocorrelation operator of ps - -l_)s- yields
2 * C g*
(2.5.5) e(g) = g-CBB'g- 2 g.CsdB.g + g-B 1d g

The first and second variations of the quadratic functional 82 with

*
respect to a variation of the vector f=B-g are

s(e’) = 2fCyy - g+ C,p 6f

(2.5.6) . 2
) = 2(fCyy - g-C.p ¢°F +6fCy, of .

62(‘_:2

The functional 52 is stationary if and only if 6(&:2) = 0 for all arbi-
trary variations 8f . Therefore the linear combination Cdd f - Cds. g
is required to be zero for all g€ IIl. This is true if and only if

B = Csd Cd;l' With this choice the second variation 62(52) reduces

to the positive definite quadratic form &f Cdd 6f , and the stationary

point is a minimum. Therefore the best linear estimate of Py is
= -1
e ) Pg = GCoq Cag Pg

The correlation operators in (2.5.7) can be e:panded in terms of

the correlation operators for Py and P,» which are supposed known:

*
Csd - Csa “A 4 Csn’

(2.5.8) .

%
CddEA.CBB.A+A.Csn+C A+ C .

ns nn
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It is convenient and usually reasonable to assume that the solution and
noise processes are uncorrelated, i.e., Csn = 0, With this assumption

equations (2.5.8) simplify to

Csd - Cas'A 2

i =A-C A + C__.

dd 88 nn

(2.5.9)

Using (2.5.9) in equation (2.5.7), we obtain for a sample &8d of P4

the estimate

8

* * -1
2.5.10) dm = Cs - A (A CSS o K & Cnn) éd .

The operator in this equation will be called the stochastic inverse of
A.

The statistical information embodied in an emsemble of samples can
be used to estimate the autocorrelation operators Cgs and (Jnn
appearing in (2.5.10). For example, suppose { dl’ d2,..., dL} is a set
of L independent observations of the data functionals and assume that
% fi d; is an unbiased estimator of d, . Then

i=1
the sample variance matrix

the sample mean d =

1 &L L _ _
(2.5.11) V = —Z >, td -d)(dj—d)

is an unbiased estimator of C%n . If the data components are statis-
tically independent, then, in the limit L + «», V converges to the

diagonal form

(2.5.12) C_=

-
.
Q o ¢ o O
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When all the variances 012,

positive definite, thus insuring that Cdd

i=1,2,...,N, are nonzero, Cnn will be
be positive definite as we
have assumed.

If independent samples of p, are available, a similar procedure
can be used ta construct an estimate of the autocorrelation operator
(;s. In the geophysical in%erse problem this is not the case. Answer-
ing questions raised by this fact will be the purpose of the next
section.

0f course, using information about the solution and noise pro-
cesses in deriving an estimate of the solution is not a new idea; its
roots lie in the linear filtering and prediction theories of Kolmog-
oroff and Wiener [Wiener, 1949]. In fact, equation (2.5.10) is anal-
ogous to the results of Wiener's theory for the construction of the
optimum infinite-lag smoothing filter [Davenport and Root, 1958] and
has been explicitly obtained by Strand and Westwater [1968]. It re-
duces to Twomey's [1963] results for the special case (%9 =71,

e =yl

nn

2.6 Specification of the solution autocorrelation operator. As out-

lined in the previous section, the statistics formed from an ensemble
of samples can be used to estimate the autocorrelation operator of a
stochastic process. However, at least in the inverse problem that
concerns us, this approach cannot be applied to the construction of
the solution autocorrelation operator C%s appearing in (2.5.10). The
Earth itself is presumably unique, and the mind twists to imagine what

a sample ensemble of P, might be (the radial variations of elastic
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parameters in a number of Earth-like planets taken at random from our
galaxy perhaps?). The resulting notions are generally absurd, and we
dismiss the possibility that the probability distribution of Py is de-
scribable in terms of the limits of relative frequencies. Then we
must ask, whaé is the significance of characterizing the solution as

a sample of a Gaussian process with zero expectation and an autocorre-
lation operator C;s in this estimation procedure?

To begin to answer this questionywe must first examine the behav-
ior of the stochastic inverse in the limit of zero noise. One measure
of the size of the noise is the operator norm || Cnn][,equal to the
largest eigenvalue of Cnn' Suppose for the moment that P, is a
"white" process, i.e., C%S = 1. We assert that by requiring || Cnnll
to be small enough the solution given by the stochastic inverse
AS = A*(A- A* + Cnn)-l can be made arbitrarily close to the solu-
tion given by the generalized inverse lﬁl Put more formally, for any
e > 0 there exists a positive number y(e) such that, if || Cnnli < y(g),
then, for all &d # 0, IIAA? sd - A° ad [|2< € I]Gdll% To show this
we first note that y(e) I-'(%H1Will be positive definite, so it is

sufficient to find a y(eg) such that

2.6.1) ||1ca-AHT- (A- A% vy 1% A
* =
Artas AN (as &% v 7Yl € e

Equation (2.4.7) and the completeness relation

% &
(2.6.2) I = u, u
=1 1 1
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can be substituted into (2.6.1). Computation shows that the resulting

inequality is true when
E
(2.6.3) v(e) < w——,

thus proving t.:he assertion by construction. Using the terminology of

A. N. Tikhonov [1963a, 1963b], we say that the stochastic inverse

solution A%sd regularizes the generalized inverse soluytion (2.4.3).
Identical arguments can be made to show that equation (2.5.10)

regularizes the computation of

(2.6.4) Tm = €.+ ACAs C, - AHY sd

88

This solution has a simple geometrical interpretation, Assume that

CSs is positive definite and define L ta be the inverse of Css’

| C:;, CSS is idempotent with respect to the product defined in
. L _
(2,2.4); that is, € * C, = C, . 1In fact, C__ is the identity

operator on mL' Let AL = A Css’ sa that equation (2.3.3) becomes

(2.6.5) A L sm = od .

Substituting (2.6.5) into (2.6.4) we obtain
— * Lafdy L
(2.6.6) sm AL(AL AL) AL < édm.

* i
The operator PKL(A*) = AL(AL I-‘AL).’.AL is an orthogonal projection
L
L L pL L
x * = ®
opeLr*ator on Il‘l”[L in the sense that PK(AL) PK(AL) PB(AL) and
PB(A:) = PB(A*)' Therefore, for perfectly known data, the solution
L

(2.6.4) 18 the symmetric projection of any solution, in particular Gmo.
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onto the manifold K(A:)CHIL, the inner product on mL being defined
by (2.2.4). 'A: EA:(ALI"A;)f is the generalized inverse of AL

As pointed out in §2.1, it will be useful to prescribe the solution
autocorrelation operator as a smoothing operator, or, looked at another
way, to prescfibe the inner product on the model space in terms of a
"roughing" operator, the inverse of a smoothing operator. The arguments
in the preceeding paragraph were intended to suggest that these view-
points are identical. The rationale for such a choice can come from
either of two considerations: we may wish to incorporate a priori as-
sumptions about the smoothness of the solution, or we may wish to
manipulate averaging kernels so that they are, say, more localized.

.To clarify what is meant by choosing the solution autocorrelation
operator to be a smoothing operator, we write C%B in terms of its

Karhunin-Lo&ve expansion,

(2.6.7) c., = 2 <> v v

88 e | n

and assume that the set of eigenvectors { yin= 1,2,...} has been
ordered so that, if ¢1 is smoother (say, has fewer zero crossings) than
¢3, then 1 < j. We will call Cés a smoothing operator if Kiz > sz

for all 1 < j. Note that the definition implies that any smoothing
operator is positive definite. This definition is not the most general

one, but it will be convenient for our purposes.

If C%B is a smoothing operator, then

(2.6.8) L= ¢~ = : « 2y v
n=
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is a "roughing" operator in the sense that rougher eigenvectors have
larger eigenvalues. L can be used to define an ordering on the model

space: a model m is said to be smoother than a model m' if

| Im ]| | |m']]
(2.6.9) = 2

[l [{m'{]

Since they are orthogonal projections, the solution (2.4.3) minimizes

||6m|| and the solution (2.6.4) minimizes ]lénlllL. Therefore, with

Csa chosen as a smoothing operator, (2.6.4f provides a smoother solu
tion than the generalized inverse.ll

Since a member of the model space Il is an M-tuple of functions
on the interval [0,R], defining ()ss to'be a smoothing operator does
not make much sense. Basically the ordering of the eigenvectors of a
smoothing operator requires characterizing them by generalized wave-
numbers, or numbers of zero crossings. But the total number of zero
crossings of a vector in Il does not really coincide with our notion
of its smoothness: Suppose Y(r) = [sin Mwr/R, 0,..., 0] (M terms) and
¢v'(r) = [sin 2#r/R, sin 2vr/R,..., sin 27r/R] (M terms) where M > 2.
Now ¥ has fewer (M-1) zero crossings than ¥'(M), but intuitively ¥ is
not smoother than ¥'.

To avoid this difficulty comparisons of smoothness will be made
component by component. In-the example given above \lll (\pl(r)=sin Mrr/R)
is less smooth than ¢i', but ¥, is smoother than ¢§'. One form of the
solution autocorrelation operator that is compatible with this decision
is

1% This assumes that the solutions are distinct. They will be identi-

cal when the eigenvectors of Csa and A'A are the same.
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. #:"" a
(2.6.10) B s » = s |®

L0 0 =« s C_J

Now Ci: Il’I:L > Ini can be chosen to be a smoothing operator on mi’
i.= 1,2,...,M. 1In this case CSs will still be positive definite but
will not always be a smoothing operator in the strict sense that we
have defined the term. If the process P, is considered to be an M-
tuple of processes [ pl, pz,..., pMJ. each p:L being defined over mi,
then‘ equation (2.6.10) implies that E{ (pimi) (pj mj)} =0 4if 1 # j for
all miC l'[Ii and all ij lllj. The component processes are thus
uncorrelated.

An example of the type of smoothing operator that is useful in the
practical applications of this theory (such as Chapter 5) cap be ob-
tained ag the solution to a second-order inhomogeneous differential
equation with homogeneous boundary conditions, Consider the problem
of constructing a smoothing operator C on the space of functions

real-valued and continuous on the interval [a,b], 0<a<bSR:12

Let A(r) be a differential operator of the Sturm-Liouville type;
A(r) = g—r' [p(r) g?] - q(r), r€[a,b]. The differential equation with
homogeneous boundary conditions
A@)s(x) + Kw(x)s(x) = 0,
l:%f alx) + uSCI)J = 0,

T8

(2.6,11)

A2 The interval [a,b] 1s used instead of [0O,R] to allow the construc-

tion of autocorrelation operators for functions (processes) expected
to be pilecewise-continuous. See Chapter 5.
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d
(2.6.11 cont.) [E; s(r) + B8s(x) ]r=b =0

generates a set of eigenfunctions {Sn: n=1,2,...}, taken to be nor-
malized, that is complete on the interval [a,b] [Morse and Feshbach,

1953]. The eigenvalues kﬁ, n=1,2,..., can be ordered as a continu-
12 < k22 <€ wiew < kn2 < +++, With this

ordering the number of nodes in the eigenfunctions on the interval

ously increasing sequence with k

[a,b] also forms a continuously increasing sequence [Morse and Feshbach,
1953, p.722]. We specify the kernel of C in the following form:
' 2 '
(2.6.12) c(r,r') = k.= 8. .(r) a_(x"),
n n n
n=1
For C to be a smoothing operator the sequence of spectral coefficients

2 2 2
{Kl Ko aeeesk

y+++} should be continuously decreasing. This will be
true if, for a given scalar value of the parameter k,

2
(2.6-13) an =_2—k_2 .
k™ + kn

Particularized in this way C has the desirable properties that a) its
norm is less than or equal to 1, and b) it converges in quadratic mean

to the identity operator as k goes to infinity. That is,

(2.6.14a) Hell <1,

(2.6.14b) lim | [¢I-C)+£ ] = 0.
ko

The parameter k is simply the mean wave-number of C. It can be easily
verified that for this choice of spectral coefficients the kernel of

Csatisfies the inhomogeneous system



.-

[w(z) - k2 AGx)] Clr,r') = &(r-r'),

(2.6.15) [d— clz,z') + aC(r,r')] =0,

dr
r=a

d

[ﬁ; C(r,x") + BCCI,I')]r=b = 0.

2
As an example we solve this system for the special case w(r) = p(r) = r,
q(r) = 0. 1In this case (2.6.15) has a regular singular point at r = 0.
Solutions to the equations (2.6.11) are the spherical Bessel functions

of angular order zero. Solving (2.6.15) we find

(2.6.16) c(r,r') = 2‘;:, {e-klr-r'l + 0 ia ¥ oo k(r-r')

+ B cosh k(atb-r-r') + C sinh k(a+b—r-r')]},

where A=[1- a(k+a)][1 + b(k-B)],
B =oqaa + Bb - [k2 - k(a+B8) + aBlab - 1,
C = k(b-a),

D=[1-aa - Bb + (aB-kz)ab]sinh k(a-b)
- k[b - a + (B-a)ab]cosh k(a-b).

Fig. 2.1 shows C(r,r') given by (2.6.16) on the interval (0,1] centered
at r' = 0.5 for the case a_l = B-l = 0. In this figure the kernel is

displayed for k values of 5, 20, and 50.

2.7 The tradeoff curve. The Backus=Gilbert theory of linear estimation

[Backus and Gilbert, 1970] suggests that for the problem described in
§2.5 - the estimation of a function given the values of a set of linear
data functionals corrupted by noise - there exists a tradeoff between

the ability to resolve detail and the reliability of the estimate. In
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-—k=30

Figura 2.1. The kernel ¢ (r,r') given by ~quation (2.6.16)

3

on the interval (0,1] centered at r'=1/2 for the case a 1=8 l=0.
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this section we construct a Backus-Gilbert-type tradeoff curve on which
the generalized inverse (§2.4) and the stochastic inverse (§2.5) are
represented as discrete points. It is shown that the stochastic in-
verse is an optimal point. The generalized inner product La and
norm H'\:l IL i;'xtroduced in §2.6 are retained throughout the analysis

and are assumed to be dimensionless quantities.

An estimate Sm of the function 6m0 satisfying

L
(2.7.1) AL- fémy +mn = sd

is sought given AL.Gd , and the statistics of a Gaussian noise process
P, from which n is a sample. The process P, is assumed to have zero
expectation and a positive definite autocorrelation operator Cnn'

The null space II(A) is populated by those members h of mL for which
ALI" h = 0. Since the data contain no information about the components
of Gmo in II(A), the estimate sm is required to belong to the range
space K(A*) = mL -N(A). This is equivalent to constraining 6m to

be a linear combination of the data kernels:

- *

(2.7.2) 8 = ALb' for some bEEY.

The vector b is to be determined by minimizing an appropriate scalar
measure of the error of estimation.
One obvious measure of the error of estimation of Gmo is the

norm of the difference between Gmo and dm. Define

2 * 2
(2.7,5) e, (b) = |lemy -Arb |l
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. K
The subspaces [I(A) and W(A) are orthogonal, so it is clear that the

projection of 6ln0 onto II(A) contributes to 512 its full squared norm

regardless of the choice of b. 1In fact, elz

*
”P%I(A) ¢ Gmol |12, for b = Q\LI"AL)+ALI: Gmo- This is the solution

is minimized at the value

(2.6.6).

Therfore, if the data were perfectly accurate, the best linear es-
timate of the vector Gnlo would result from the application of the
generalized inverse An's A;ﬂAHF‘Af)f to the data sample vector &d.

L L
However n # 0 implies an uncertainty in 8d and, correspondingly, in
dm. A measure of the uncertainty of any estimate of the form (2.7.2)
due to noise in the data is the variance 522 of the projection of P,
onto b. By definition,

2
(2.7.4) €, (b) = annb .

Minimizing this error with respect to a variation of b ylelds the
trivial solution b= 0.

2 2
In general the two measures of error e, and € is

1 2 |

minimized when 522 is largest and vice versa. To explore the possi-

bilities for some sort of compromise, we consider the quadratic

compete: €

measure of error
2 2 2
(2.7.5) e“(6,b) = £y (b) cos 8 + €, (b) sin 8

composed of a weighted sum of the two measures of error. The weight-
ing is parameterized by an angle 6 that will be allowed to vary on the

interval [0,7/2], so that ez(O,b) = elz(b) and ez(n/Z,b) - ezz(b).
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For a fixed 6 > 0, ez(e,b) can be minimized with respect to a

variation of the vector b. The first and second variations are

5(52) = 2[b AILZ‘ A*I:- 6m07=' A:] Sb cos6+2Db Cnn6b sin 6,

(2.7.6)
62(c?) = [ebA¥ Ajsh + 2(bA¥ A" - sm, “AD)8%b ] cos o

+ [sbC b+ 2bC _§%b] sin 0.
nn nn
For the functional ez(e.b) to be stationary it is required that
(2.7.7) (A¥AT +tan 6 C )b = A sm
I L nn Ag 0°

* 1
1f 6 > 0, then ALI" AL+ tan 0 Cnn is positive definite, and the unique

b that makes 82(8, b) stationary is

oy 1,1
(2.7.8) b(s) = (AL AL+ tan 6 Cnn) AL 6m0.

This stationary point is a minimum because the second variation reduces

to the positive definite quadratic form
2,2 L % ;
(2:7<9) §°(e”) = &b (AL AL cos 6 + Cnnsun 8)éb .

If 6 = 0 and ALhas rank K < N, then there exists an (N-K)-dimen-
sional manifold of solutions to (2.7.7), and the stationary point is
not unique. To obtain a unique solution we may constrain b and its
variations to lie in the. subspace B(AT}-' A,:? = B(A) CEY. Then the

choice of b that minimizes (2.7.5) is given by the generalized inverse

- L A%t
(2.7.10) b(0). (AFA) Agf sm,,.

This choice is the natural one, because, as was shown in §2.6, the
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estimate (2.7.2) substituting for b using (2.7.8) regularizes the comp-
utation of the generalized inverse solution obtained from (2.7.10)
along the path 6 -+ 0. Realizing that the generalized inverse of a

positive definite operator is just its ordinary inverse, we can write

L \* o
(2.7.11) b(8) = (AL- AL+ tan 6 Cnn) Af. Gmo,

for any 6 €[0,n/2].
Replacing the vector %}' dmo by its best estimate §d and substi-
tuting (2.7.11) into equation (2,7.2) yields for the best linear esti-

mate of Gmo the equation

S — WXL K +
(2.7.12) dm(g) = AL(AL' AL+ tan 6 Cnn) éd .

Special cases of (2.7.12) include the generalized inverse (6 = 0) and
the stochastic inverse (6 = n/4),
The estimate b(8) can be put into (2.7.3) and (2.7.4) to obtain
2

€1 and 522 as functions of 6:

e, 2(8) = [|omy - R(e) ¥ sm|[ 2,

(2.7.13)

ezz(a) = Gmo I-‘V(e) B Gmo.

The operators R(8) and V(8) appearing in these expressions are de-

fined by the equations

R(s) = A, Q' (6) A, >
(2.7.14) = A of U
V(o) = AL Q () C_ QA ,

Qo) = AI} A*L + tan g C_ .
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Both R(8) and V(0) are positive semi-definite, symmetric operators
*
mapping lll onto R( A ).
For Gmo fixed, equations (2.7.13) determine a curve in the pos-

itive quadrant of the ¢ 2 222 plane that is parameterized by the

i
angle 6. Backus and Gilbert [1970] have termed such graphs tradeoff
curves. They have constructed tradeoff curves for the problem of
estimating the scalar quantity Gmo(r) (r fixed). The tradeoff curve
given by equations (2.7.13) is for the probiem of estimating the vec-

tor quantity dm Nevertheless, the qualitative features of these

0.

curves are essentially the same. For any 6 €(0,n/2), the expressions
for slz and 522 can be differentiated with respect to 8:

de - Ld L L

@ = 2omy Tt IR- C,lTemg,
(2.7.:15) 2 Q-l

de _ L z*d =1l 2 L

deZ = 2 5“10 AL—de Cnn Q AL 6m0 .

d -1 d
Now, since ey [QQ "] = ® [I] = 0, we can write

=1
(2.7.16) % - Q—l% QL.

The derivative of Q(8) can be computed from (2.7.14):

(2:2:17) ﬂ = C sec” 8.

Using (2.7.14), (2.7.16), and (2.7.17) in (2.7.15), we find that

2
(2.7.18) %%1 = 2 Gmo I"V(G) 1-' [Csa - R(8)] % Bmo exec:2 e,
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and that

2
de L
{25 7.19) dez = =2 6n10

* =1 -l -1 4% L 2
ALQ C,Q C,.Q AL Sm, sec’s.
Cnn is assumed to be positive definite, and it will be shown in §2.8
that, for a finite number of data, the operator [C38 - R(8)] 1s posi-

tive definite. Therefore, for any 5m0q:n(A),

2
de
(2.7.20) 2
de
E‘z 0 .
Now,

vy ¥ e, -R®)] =
| -1 * L <1
A Q@ c, Qo 1o - & *AIg @A -
ALQ e C Qe C Qo) Aran 6 .

Using this equation in equation (2.7.18) and dividing the results intaq

(2.7.19), we obtain

d[ezz]
(2.7.21) 7- = =~ cot B .
d[e:l ]
Equation (2.7.21) can be differentiated with respect to elz to yield
dz[ezzl 2 d 8
(2= 7:22) ——> 5 = ¢sc ] 7|

The inequality (2.7.20) implies that this derivative is positive.
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- 8 = 0 [generalized inverse]

Figure 2.2. Schematic geometry of the tradeoff curve.
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From (2.7.20), (2.7.21), and (2.7.22), we infer that the tradeoff curve
2

between 512 and €y is monotonically decreasing and convex towards the

origin and that 6 is the acute angle between the tangent to the trade-

off curve and the ¢ s axis. Therefore,

2
2 2 L 2
inf €.°(8) = £.°(0) = || Py, & ¢ ém,|]|.",
0<6<m/2 L 3 B(A) L
2
sup € 2(9) =€, (n/2) = IlélnolILz’
0<b<7/2
(2:7:23) 2 2
inf €,y (8) = €, (n/2) = 0,
0<0<m/2
*
sup 522(9) = 822<0) = émo ¥ A+LCnn A+L b Gmo .
0<B<n/2

A schematic diagram of this tradeoff curve is pictured in Figure 2.2,
The qualitative features of this diagram are essentially identical
to those of Figure 3 of Backus and Gilbert [1970, p.1l44].

Backus and Gilbert [1970] point out that it is best to avoid
solutions corresponding to extremal values of 6. Clearly, the gener-
alized inverse solution [eq.(2.6.4)] 1is a poor choice on the tradeoff
curve. According to Gilbert [1972, p.l4é], " the place to be is down
at the corner." This optimal point can be defined by the equation

ale,’]
£2.7.24) ;—EE—Z]- = -1,
4
We see from equation (2.7.21) that this point corresponds to the

ablution (2.5.10) obtained from the stochastic inverse.
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2.8 The response operator. For the estimate ém (8) to be useful, we

must be able to evaluate how successfully it approximates the desired
solution émo. Substituting equation (2.7.11) into equation (2.7.2)

we obtain
(2.8.1) Tmee) = Re) ¥ sm,.

This result is a generalization of equation (2.4.4). The operator
R(8) represents the filter through which we "see" §mg. It is opti-
mal in the sense that it minimizes the quadratic form 52. We shall

call R(8) the response operator. For 6 = 0, the response operator

reduces to the projection operator I"L * defined in §2.6. For
R(A)

8 = n/4, the response operator equals the autocorrelation operator of

the process B; given by (2.5.7).

Given R(8) and any g€ IIIL, we define the relative success of

estimation n: of the vector g at 6 by the equation

g¥Reo) Yg
ghtg

(2.8.2) nf(e. g)

It can be easily seen that 0 < ni(e, g)<1 for all g. Let f =

L . ¥ T L * L L
(A "Ap) AL g , so that g = A/ f + PII(AL) g-. Since R(8) is
positive semi-definite, nlz‘ > 0. Furthermore, since [[(R) = II(AL).

2 Tig ® & L% P
< . . .

it is clear that n <A, “A Q A ALf/fAL ALf . Now the term
on the right of this expression will be always less than or equal to

*
1 4if || Q*AL I"AL f|| £]||f||]. This inequality holds because

”AL I-‘A::H < Il Q ]I, and we can therefore replace AL I-‘A’I': by Q.
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Thus we conclude that ni < 1. This implies that CSS- R(8) is a pési-

tive semi-definite operator, a fact we used in the previous section.
Suppose that R(r,ro) is the kernel of R(®). From (2.8.1)

we see that t.hat this kernel with I, fixed is an averaging kernel in

m L3 that is, defines a vector in mL whose L-product with ém, is

the estimate E(ro). In the limit of infinite resolution this kernel

will approach the kernel Css(r,ro). Equivalent averaging kernels in

the space IIl are obtained by applying R to the operator I. Define
L
(2.8.3) &= R(®) 71

In the limit of infinite resolution the kernel of .Mapproaches the
kernel I(r,ro) which consists of delta functions. ¥ and R(8) are

equivalent in the sense that

(2.8.4) & sm, = R(®) L sm.

It is usually more convenient to work with JB/, since it does not

require comparison with C__. We note that & 1s not symmetric.

2.9 The variance operator. In the previous section we saw that the

response operator R(8) is a representation of the inverse filter
used to calculate the estimate 6m. Examination of this operator (or,
equivalently, the operatorJ?/) allows one to judge the nature of the

averaging required in the estimation of the solution ém Any

0
features of the solution lost in this averaging are said to be un-

resolvable. The components in the null space of A will obviously be
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unresolvable, and, due to the fact that the data are contaminated by
errors, it is possible that a component of the solution in the range
space of A is unresolvable as well.

A simple‘quantitative criterion for the resolvability of any vec-
tor in the model space can be established in terms of the operator
V(6) defined in (2.7.14). This operator represents a transformation
of the error autocorrelation operator Cnn into the model space. The
eigenvalues of V(8) represent the variances of the errors induced on
the model space by errors in the data along directions given by 1its

eigenvectors, motivating us to call V(8) the variance operator, If

Ez is an eigenvalue of V(8) associated with the eigenvector v, then
the probability that the errors in the data will give rise to ap errar
in the estimate along the direction v with a magnitude less than 1,96 §
is 95%. This follows from the fact that the errors are pormally dis-
tributed and that, for a normal distribytion, the integrated probabil-
ity in the interval [-1.96 x the standard deviation, +1.96 x standard
deviation] about the mean is 95%. 1In éeneral, let k(c) be the factor
associated with the confidence coefficient ¢, so that k(95%) = 1.96.

Now, since the errors are normally distributed, the question of
the resolvability of vectors in Ill can be posed as the problem of
deciding between two simple hypotheses. Let m and m' be two vectors
in N1, and let us ask, are these two vectors resolvable by the obser-
vations? Quite obviously, they will not be if the difference between
them 6m = m - m' is the zero vector. In the usual fashion of

statistical inference [Freeman, 1963] we set up a null hypothesis:
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the vector dm is the zero vector, and an alternative hypothesis: the
vector §m 1is not the zero vector. If, on the basis of some criterionm,
we can reject the null hypothesis, then we shall say that dm is re-
solvable.

The most obvious criterion is the following: we reject the null
hypothesis if the projection of dm onto B(Ar) lies outside the hyper-
ellipse g[V(G)] C B(Ar) whose principal axes are along the eigen-
vectors V. of V(8) and have lengths k(c) g » where c is some chosen
confidence coefficient. Translating this geometrical criterion into

an algebraic statement, we say that dm 1s resolvable with a confidence

c if
(2.9.1) sm V() » ém > k(o).

The form of the resolvability criterion given in equation (2.9.1)
requires that the error autocorrelation operator (Jnn be nonsingular.
In fact, because the generalized inverse of V(6) appears in this
expression, the computation will be unstable if the error induced on

the model space is very small.
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Chapter 3

SPHERICALLY SYMMETRIC AVERAGES OF
THE EARTH'S VELOCITY AND DENSITY DISTRIBUTIONS

3.1 Introduction. For most seismological purposes, wave propagation in

the Earth can be adequately described by specifying the compressional
and shear velocities and density at each point in the Earth's interior.
At the present time, however, the inverse problem of modeling these
three quantities from the observations of wave propagation becomes fea-
sible only if the distributions are taken to be spherically symmetric.
For models involving more than one spatial dimensiongthe foward compu-
tation of such data functionals as travel times and eigenperiods is
difficult and incredibly laborious. More importantly, the available
observations do not contain enough usable information about aspherical
variations of velocity and density to warrant inversion. For these
reasons we restrict our attention to Earth models that are spherically
symmetric.

Approximate spherical symmetry is to be expected. For an isolated,
stationary, self-gravitating fluid in its equilibrium configuration,
surfaces of constant density, pressure, and therefore velocity are
spherical and concentric about its center of mass. Because the strength
of the Earth is much less than the hydrostatic pressure throughout most
of its interior, its state of stress is very nearly hydrostatic. If
the state of the Earth's interior is close to equilibrium, then the
density distribution should be approximately spherically symmetric,

since the other body forces are small compared to the force of self-
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gravity. Realizing that velocity variations are intimately related to
density variations through ‘their dependence on pressure, we should ex-
pect approximate spherical symmetry in the velocities as well.

In the early years of seismology,spherical symmetry proved to be
an adequate aésumption for the purposes of modeling the velocities and
density. Indeed, it was not until the 1930's that the errors in travel
time observations were reduced to the point that corrections for the
Earth's ellipticity were warranted. These corrections, up to four sec-
onds for some phases, were published in the form of tables by Bullen
in 1937. Apart from the Earth's ellipticity of figure, which was suf-
ficiently well predicted by hydrostatic theory, aspherical variations
for the most part appeared to be confined to the Earth's crust. The
existence of lateral differences in the uppermost layers explained
reasonably well the fluctuations in travel times at short distances
and the differences in surface wave dispersion. The ponaistency aof
travel times at distances greater than 200, evidenced hy the similarity
of the Jeffreys-Bullen and Gutenberg-Richter tables, provided a strong
argument for the spherical symmetry of velocities in the lower mantle
and core.

Predictably, modern refinements and diversification of seismic
techniques have reduced the standard error of one observation to where
most of the scatter in travel times can be attributed to lateral het-
erogeneity. This is also true for many of the eigenperiods greater
than 300 seconds: It now appears that the entire upper mantle is

laterally variable and that heterogeneities persist at least to the
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depth of the core-mantle interface. In the light of these facts, we
must reexamine the appropriateness of requiring a spherically symmetric
representation of the Earth to satisfy data contaminated by the effects
of lateral heterogeneities.

Most autﬂors working on the radial variations of velocity using
travel times have tried to eliminate lateral effects either by averag-
ing the data or by applying direct corrections for them. The latter
procedure is exemplified by the use of station corrections [Herrin and
Taggart, 1968]. Unfortunately, this method is limited; it only
accounts for anomalies in the vicinity of the receiver - usually only
in the form of a constant correction for all distances and azimuths.
Some work has progressed on correcting for source anomalies underneath
the Aleutian arc using nuclear explosion data and three-dimensional
ray tracing techniques [Sorrells et al.,1971; Jacob,1972], but the
wide application of this method has been prevented by its complexity
and a lack of data.

Applying direct corrections to free oscillation data is even more
tedious. McGinley [1968] has treated the effect of some lateral struc-
tures on torsional oscillations using perturbation theory, and Dahlen
[1968, 1969] has formulated the general first-order perturbation theory
for both spheroidal and torgional oscillations using Rayleigh's prin-
ciple. However, the calculations are too complex and the regional
structure of the Earth is too unknown to permit any simple correction
to be made to the eigenperiod data.

A more reasonable procedure is to treat the fluctuations due to
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lateral variations as another source of error and simply eliminate them
by averaging. This has been the procedure of most investigators since
the early work of Jeffreys. It is clear that averaged data contain
information about some sort of spherically averaged representation of
the Earth. F;r any estimates to be useful we must know the approximate
nature of the spherical averaging,as well as the kind of data distri-
bution required to insure that the sample averages estimate without
bias data functionals of this spherically symmetric representation.

Two averaging theorems which provide this information exist, one
for eigenfrequencies, due to Gilbert, and one for travel times. The

purpose of this chapter is to state these theorems.

3.2 The Terrestrial Monopole. Suppose vp(r,9,¢) is the compressional

velocity, vs(r,6,¢) is the shear velocity, and p(r,8,¢) is the density
in the Earth expressed in spherical coordinates with an origin at the

Earth's center of mass. Then the spherically symmetric distributions

1 2 (7
(3:2:1) vso(r) = -4-“[ vs(r,6,¢) sin 6 d8 d¢
0 0
L po(r)J p (r,6,9) |

constitute what Gilbert [1972] has termed the Terr:strial Monopole.
The velocity and density distributions in the Earth can each be

written as the sum of two terms:
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FVP(I,B,QJ)- -VPO(I)- "dvp(r,e,@-
(3:2:.2) vs(r,6,¢) = vso(r) - 6vs(r,e,¢) ‘
Lo (r,6,¢) ] L pg (1) [ Sp (r,6,¢) ]

The terms va, Gvs, and 8p represent the departures from spherical
symmetry and average to zero on spheres of constant radius r. If the
Earth is nearly spherically symmetric, then these terms will be small

compared to vp, va, and p.

3.3 Gilbert's averaging theorem for eigenfrequencies. Because of ro-

tational symmetry, an eigenfrequency of angular order l belonging to
to the Terrestrial Monopole is (2f + 1)-fold degenerate. The effect
of adding aspherital perturbations as in equation (3.2.2) is to re-
move this degeneracy. Gilbert [1972] has shown that, to first order in
GVP, Gvs, and 6p, the arithmetic average of singlet eigenfrequencies
in a mode multiplet split by lateral heterogeneities is the degenerate
multiplet eigenfrequency of the Terrestrial Monopole. This result is
a direct consequence of the zero sum rule of degenerate perturbation
theory and is true for all first-order aspherical perturbations, in-
cluding those due to rotation and ellipticity.1

As Gilbert [1972] points out, this implies that, if the distribu-
tion of source and receiver parameters is such that the probability of
picking a particular frequency as the '"peak frequency" of a mode mul-

tiplet has a density equal to the density of singlets at that fre -

1 Dahlen [1968, p.364] had shown this for ellipticity.
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quency, then the average of many observed peaks is an unbiased estimate
of the eigenfrequency belonging to the Terrestrial Monopole.

Because of this averaging theorem, the construction of the Ter-
restrial Monopole is a logical goal of gross Earth inversion studies

that use mode data.

3.4 An averaging theorem for travel times. At the present time, the

body of reliable eigenperiod data samples only sparsely those modes
with periods less than 300 seconds. Below 300 seconds the normal mode
spectrum of the Earth is densely populated, and the identification of
individual lines is difficult. Until this deficiency is remedied,2
better estimates of the density and seismic velocities in the Earth
wili be obtained by the simultaneous inversion of both eigenperiod and
travel-time data. However, for the results of any inversion to have
meaning, the sets of averaged eigenperiod data and averaged travel-
time data must be consistent in the sense that théy average the velo-
city distributions in roughly the same way.

Most seismologists have seemed contented to define the "average"
radial velocity distribution in the Earth to be the one obtained by
the inversion of travel-time averages. Quotes are often used around
the word average to indicate that the nature of the averaging depends
on the distribution of sources and receivers [e.g. Freedman, 1968,
p.1270]; there is the general realization that often regions of high
seismicity (tectonic regions) and high station density (continental

2 Dziewonski and Gilbert (personal communication) have turned their
attention to this problem and have met with some success.
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platforms) receive undue weight and bias this averaging. Intuitively,
the average velocity distribution corresponds to the travel-time curve
obtained by averaging many observations, each measured from a source-
receiver pair located at random on the Earth's surface.

These inthitive notions have a solid basis in the following
theorem: To first order in év (P or S), the ray-theoretical surface-
focus travel times between source-receiver pairs at constant angular
distance A are distributed with a mean equal to the travel time T0 at
distance A through the Terrestrial Monopole, provided the distribu-
tions of sources and receivers on the surface of the Earth are uni-
form.

This result follows directly from Fermat's principle of station-
ary time. To first order, perturbations of the travel times due to
variations in the ﬁath are negligible. As a consequence, an integra-
tion over all source-receiver geometries to get the mean yields To(A)
plus terms containing areal averages of 6v, which are zero. A more
complete discussion of the proof is given in Appendix 1.

To a good approximation, unbiased estimates of both the travel
times and eigenperiods of the Terrestrial Monmopole are attainable,
making their simultaneous inversion feasible. 1In practice, the hypo-
thesis of this averaging theorem is difficult to s:tisfy for absolute
travel times - the distributions of sources and receivers on the
Earth's surface are certainly not uniform. This motivates the use of
differential travel times, aiscussed in Chapter 4.

Importantly, since no equivalent averaging theorems exist at this
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time for amplitude, dT/dA, and group velocity data functionals, the
averages of their observations cannot be as simply interpreted as the
averages of travel-time and eigenperiod data. For these reasons we

have excluded them from the data sets used in our calculations.

3.5 Other spherically symmetric representations. Abrupt discontinui-

ties are well-established features of the Earth's velocity and density
distributions. The Earth's surface and core-mantle interface are the
most obvious examples. Since the ra&ii of these discontinuities are
variable due to the effects of rotation, lateral heterogeneities, and

non-hydrostatic stress differences, averaging over spheres of constant

" "

smears them out "; sharp

radius to obtain the Terrestrial Monopole
discontinuities become zones of transition. For example, it is ob-
served that the core-mantle boundary reflects considerable compres-—
sional energy propagating at periods as low as 1 second. Kanamori
[1967] estimates from the spectral amplitudes of PcP phases that a
major transition must occur in a layer less than 1 kilometer thick.
Now, the ellipticity of the core-mantle interface is about 0.003, so
that spherical averaging [equation (3.2.1)] yields a transition region
approximately 10 km thick. Large amplitude lateral variations in the
radius of this boundary would yield a correspondingly thicker transi-
tion zone. This sort of spherically symmetric representation can be
inconvenient in theoretical and numerical calculations.

If the variations in the radii of discontinuities are small com-

pared to the radius of the Earth, spherically symmetric averages can
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be defined which preserve these discontinuities and still allow one

to make use of the first-order averaging theorems. The prescription

is simple: the radii of the discontinuities are first averaged over

the sphere, and the resulting distributions are averaged as in equation
(3.2:1): Of c.ourse, we expect that the difference between this aver-
aged representation and the Terrestrial Monopole will be. negligible,

at least to first order.



=5

Chapter 4

DIFFERENTIAL TRAVEL TIMES AS GROSS EARTH DATA

4.1 Introduction. A differential travel time is simply the difference

between the t;mes of arrival of any two body phases radiated from the
same source and recorded at the same station. For example, if the

travel time of the phase PcP at distance A 1is TPCP(A) and if the time
of P is TP(A), then the differential travel time of the phase combin-
ation PcP-P equals T

1) - TP(A) and is denoted T CA)..

PcP PcP-P

Differential travel times have been used for some time by seismol-
ogists for locating earthquakes., The differential times of certain
phase combinations yield directly good first approximations to the
origin time (S-P), the depth (pP-P,sP-P), and the distance (PcP-P,
PKKP-P) of an earthquake, and they are often tabulated for use at ob-
servatories.

Use has been made of differential times in the construction and
verification of absolute travel-time curves. Gutenberg and Richter
[1934] used PKKP-P, P'P'-P, and P'P'P'-P times to get the absolute
times of PKKP, P'P', and P'P'P'. These phases were recorded only
after deep events with poorly constrained hypocenters, and the differ-
ential times were relatively insensitive to the depth of focus. 1In
more recent studies, Hales and Roberts [1970 b, 1971] used the differen-
tial times of SKS-S, SKKS-SKS, and SKKKS-SKKS to construct travel-time
curves for S and K. Bolt [1968] presented some readings of the time

TP'(AB)—P‘(DF) to check his determination of the absolute times for
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the phase P'(AB).

Although differential times have been employed in the study of ab-
solute travel times, the direct use of them to infer the velocity
structure has been limited to locating reflectors. If the velocity
distribution ;bove a discontinuity is known, then the time between the
arrivals of the direct and reflected waves yields an estimate of the
depth of the discontinuity. Hales and Roberts [1970 b] used a shear
velocity model for the mantle and the differential times of ScS-S to
estimate the depth of the core-mantle boundary.

The purpose of this chapter is 1) to demonstrate that the differ-
ential travel times of particular phase combinations are an excellent
source of gross Earth data and are relatively uncontaminated by the
systematic errors that corrupt absolute travel time data, and 2) to
present some observations of TPcP-P’ TScS—S’ TP'(AB)-P'(DF)’ and
TP'(BC)-P'(DF)' The observations are included in the data sets used
in Chapter 5 to derive estimates of the radial variation of seismic
velocities and density. We begin with a general discussion on the

inversion of travel—-time data.

4.2 Inversion of travel-time data. The classical work of Herglotz

[1907] and Wiechert [1910] éestablished a constructive existence and
uniqueness theorem for the solution of the travel-time inverse problem
in a radially stratified medium, subject to certain assumptions. Their
method has been used extensively in seismology to construct profiles
of elastic-wave velocities in the Earth from the observations of travel

times. A number of authors [Slichter, 1932; Gerver and Markushevich,
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1967; Backus and Gilbert, 1969; Johnson, 1971] have pointed out the
various inadequacies of this theoryvin its application to real data
and the real Earth. To be strictly valid, the Herglotz-Wiechert
procedure requires that the velocity gradient dv/dr be everywhere less
than v/r and Lhat the ray-parameter - distance relationship be per-
fectly well known at almost all distances. Of course, in practice
neither requirement can be realized. Only a finite number of data
can be obtained, and both shadow zones in the Earth and errors in the
data do exist.

These reasons motivate the use of a linear theory, such as the. one
in Chapter 2, to solve the inverse problem. The linear formulation,
equation (2.3.3), utilizes the spherically symmetric Fréchet kernels
to relate changes in the model to changes in the data functionals.

For travel times the spherically symmetric Fréchet kernel is given by
equation (Al.2.5). Using (Al.l1.4) and (Al.2.3), we see that this ker-

nel can be written

(4.2.1) @ = 3 = ntr) e, (x-p, )]
oy a(r = Hle (r-p
- vio elm-phtr

. H[ei(pi—r)], 0<r<R,

where n(r) = r/vo(r) and p is the parameter of the ray. If any of the
turning radii Py i=1,2,...,n, equal the classical turning radius
p=p vo(p), then the kernel has a square-root singularity at r = p,

We can easily show that this singularity is integrable. That
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is, it can be shown
R
(4.2.2) I[a] = a(r) dr < o
' 0

The integral I[a] is an improper integral of the second kind, and

according to éradshteyn and Ryzhik [1965], the integral is bounded if
there exists a scalar o < 1 such that

(4.2.3) 1im [(r - 0)% a(r)] < = .
E * b

/2

Now, a(r) « (r - [vo(r)/vo(p)] p)-l , the other factors being always

bounded, so that (4.2.3) 1is true if a21/2 and if vy is continuous at
p. Therefore, the integral exists at all but isolated values of p.
Although a(r) is integrable, its square obviously is not. This
means that the Fréchet kernel relating changes in velocity to first-
order changes in travel time is not a member of the Hilbert space of
square-integrable functions, a fact that is the source of some theo-
retical difficulty. The linear theory requires that the Fréchet ker-
nels belong to the space of Earth models. Since Backus and Gilbert
[1967] take this to be the Hilbert space of square-integrable func-
tions, travel time data cannot be inverted directly for velocity using
their procedure. To avoid this difficulty, Backus and Gilbert [1969]
and Johnson [1971] integrate the perturbation equation [equation
(2.3.2)] by parts, yielding an equation relating a change in a
derivative of velocity to a change in travel-time. The Fréchet kernel

in this new equation is an integral of a(r) and is square-integrable.

As Johnson [1971] points out, this procedure is an example of what
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Backus [1970b] has called a linear quelling by integration.

The fact that a(r) is not square-integrable presents no difficulty
if the inner product on the model space is suitably chosen.1 The Fré-
chet kernel a(r) relates a spherically symmetric velocity variation
§v(r) to its éorreSponding first-order perturbation 6T in travel time

by the equation
R

(4.2.4) a(r) 6v(r) dr = S&T.
0

If the inner product on the model space is defined as the bilinear
form associated with the positive definite symmetric kernel L(r,r'),

then we noted in §2.6 that the Fréchet kernel is
L

(4.2.5) aL(r) = L (xr,r") alz') ar*;
0

so that the perturbation equation (4.2.4) becomes

R R
(4.2.6) f f aL(r) L(r,t") Sv(r') dr dx' = &T .
0 0

Now, the kernel aL(r) belongs to the model space if

R R
(4.2.7) f f aL(r) Lt 2') aL(r') dr dr' < o ,
0 0

This inequality is satisfied if the integral

R R
(4.2.8) f f a(r) C(r,r') a(r') dr dr'
0 0

is bounded, where C(r,r') = L_l(r,rf). It is easy to show that

A Generalization of the inner product on the model space is discussed
in Chapter 2, The notation used in this section is compatible with
the notation used in Chapter 2 1f M = 1 and w(r) = 1.
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(4.2.8) is bounded if we specify C(r,r') by the expansion

© 2
(4.2.9) elr,x') = EE: “3;3L—§—§' Sn(r) Sn(r').

n=1 k +n7

142

- 2
where sn(r) = 2 sin nnr for all positive integers n. Substitut-

ing (4.2.9) iﬁto (4.2.8), we obtain

o 2 R
(4.2.10) nZ:l =, 2 % 7 [fo a(z) s_(r) dr] g
which we assert is bounded. The assertion is verified by noting that
the integral in the brackets is always less than or equal to 2-1/2 Lials
a constant for all n. Therefore, (4.2.10) converges as n-z, and aL(r)
belongs to the model space.

Since the characteristic wave-number k.n of the system (2.6.11) is
always proportional to n, the travel-time Fréchet kernel (4.2.1) will
belong to any model space for which C(r,r") ( - L-l(r,r')J satisfies
the system (2.6.15). In the terminology of Backus [1970b], equation
(4.2,5) is a linear quelling by convolution.

Travel-time data can thus be inverted using the theory developed

in Chapter 2.

4,3 A comparison of systematic errors in absolute and differential

travel times. Because a differential travel time is a linear combin-

ation of absolute travel times, the theory presented in the previous

section and the averaging theorem for travel times given in §3.4 for

2 It can be shown that C(r,r') satisfies (2.6.15) with p(r) = w(r) = 1,

q(r) = 0. Since jo(r) = (8in r)/r, C(r,r') equals the product of the
kernel given in (2.6.16) and the factor rr'.
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absolute times can be applied verbatum to differential times. In this
section we argue that the systematic errors‘in particular differential
travel times are generally much less than the systematic errors in the
corresponding absolute travel times. For this reason differential
travel-time data will be used in lieu of absolute travel-time data in
the numerical inversions presented in Chapter 5.

The statistical uncertainties in estimating mean travel times
calculated from sample dispersion are generally small, as low as *0.06
seconds (standard error in the mean) for direct teleseismic P waves in
the 1968 Tables [Arnold, 1968]. For Gaussian processes the standard
error in the mean is inversely proportional to the square-root of the
sample size, and it can be arbitrarily reduced simply by increasing
the number of measurements. But statistics of this type adequately
measure the error only if the error process has zero mean - the sample
mean must be an unbiased statistic. Most likely, however, sample
averages of existing travel-time data are severely biased by system-
atic errors introduced in the mislocation of earthquakes, incorrect
identification of arrival times, poor sampling of lateral heterogen-
eities, the inadequacies of ray theory, etc.

Because we cannot easily account for their effect on model esti-
mates, these systematic errors must be reduced to Iinsignificance.
Obviously, systematic errors are not reduced simply by increasing the
sample size. If independently estimated, they can be subtracted. For
travel times this procedure involves estimating source and station

anomalies, calculating corrections for ellipticity, and the like.
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The difficulties involved with this approach were mentioned in §3.1.
An alternative is to use differential travel times. The idea is the
follbwing: A differential travel time is the difference between two
absolute travel times. If the absolute times are systematically in
error by the same amount, their difference will be an unbiased quan-
tity.

The relative effect of some systematic errors on the differential
times of PcP-P, ScS-S, P'(AB)-P'(DF), and P'(BC)-P'(DF) and on their
corresponding absolute times for an earthquake 600 km deep can be
evaluated using Table 4.1. (Further discussion of these phase combin-
ations and some observations of their differential travel times are
presented in the next section.) We consider the following sources of
systematic error:

Origin time and location errors. Before the use of nuclear explosions

as sources and before the advent of the WWSSN, origin time and location
errors were the most serious concern of seismologists. These errors
are now much reduced. However, locating earthquakes and modifying
travel-time tables is still a "bootstrap" procedure and is susceptible
to bias. Of course, for differential travel times, origin time errors
cancel uniquely. The difference in travel time 6T resulting from a
mislocation A in angular distance and §h in depth is given approxi-

mately by the formula

- [er aT
(4.3.1) 8T [BA] SA + [ah] sh .

The values of the derivatives in (4.3.1) have been computed for several
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phases from the Jeffreys-Bullen Tables and listed in Table 4.1. With
few exceptions, these values are less for the differential times. For

: )
example, at 70 the error in T, due to an epicentral mislocation of

P
0.1° 1s about 0.6 seconds [BTP/BA = 5.9 sec/deg), whereas the corres-

ponding error in T

is only about 0.2 seconds [3T /3a = -1.6

PeP=P PcP-P

sec/deg]. At the same distance the error in TP due to a 10 km error
in the depth of focus is 0.9 seconds [BTP/ah = 8.6 sec/100 km]. The
corresponding error in the time of PcP-P is less than .01 seconds.

For differential times, the greatest absolute values of [3T/3A] and
[3T/3h] given in the table are those of ScS-S at 30° (10.5 sec/deg and
8.3 sec/100 km, respectively). Even so, both of these values are less
than the corresponding values for S at the same distance (15.4 and
8.8).

Sampling bias. Because seismic sources are generally in tectonic re-

gions and because most receivers are on continental platforms, the
uniform distributions of sources and receivers required by the first-
order averaging theorem [§3.4] are not available. In particular, there
is a paucity of observations that sample the upper mantle under ocean
basins. This sampling bias is now probably the most serious source

of systematic errors in the measurements of absolute travel times.
Fortunately, severe lateral heterogeneity seems fo: the most part con-
fined to the crust and upper mantle. Phases with high apparent velo-
cities travel along nearly vertical paths through this region, so that
for some range of (low) dT/dA's sampling bias will appear in the travel

time curve as approximately a constant term. This constant error is



64—

termed the baseline error. Of course, the baseline error for phases

propagating as compressional waves through the upper mantle will be
different (generally smaller) than for shear phases. We observe that
differential travel times of high apparent velocity phases travelling
through the u&per mantle in the same mode of propagation are relatively
insensitive to variations in upper mantle structure. Quite obviously,
simple baseline errors cancel. Table 4.1 gives some indication of how
insensitive several phase combinations are. For example, the phase PcP
arriving at an angular distance of 30° from a source 600 km deep spends
about 72 seconds traversing the upper 600 km of the mantle; at the same
distance the phase P spends about 102 seconds. Therefore, a 1% var-
iation in velocity averaged over the upper mantle will change the
travel time by about 0.7 seconds for PcP and 1.0 second for P. How-
ever, the same variation will affect their differential travel time by
only 0.3 seconds. This reduction is even more dramatic for the.other
combinations and distances listed in the table.

Reading errors. Much of the art of seismology involves extracting

signals from a background of noise. In this task, no substitute has
yet been found for the seismologist's eye. However, every seismologist
is aware that picking emergent arrivals late, especially phases

that are not first arrivals, can be a source of ccasiderable bias in
travel-time measurements. If two phases have the same waveform, then
their differential travel time can be measured between any two corre-
latable features of the signal, such as peaks or zero-crossings.

This advantage of differential travel times has been used to reduce
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reading errors and improve time resolution. Hales and Roberts [1970b],
for instance, read the differential times of ScS-S by correlating
peaks. However, this procedure must be used with caution since un-
known effects due to propagation and source can distort one signal
relative to another and introduce systematic errors.

We have established in the discussion above that the susceptibil-
ity of a differential travel-time datum to bias will be small if

i) the difference between the ray parameters of the
two phases is small,

ii) the modes of propagation through the upper mantle
are the same,

iii) the ray paths through the upper mantle are similar,
iv) the waveforms are similar and well recorded on the

same instrument.

4.4 Observations of differential travel times. 1In this section five

sets of differential travel-time data are presented. These are listed
in Table 4.2. Surface focus differential travel times of PcP-P were
reduced from the published absolute travel times of PcP and P recorded
from nuclear explosions and reported by Kogan [1960], Buchbinder
[1965], Kanamori [1968], and Lambert et.al. [1968]. Differential
travel times of core phases (relative to P'(DF)) were obtained from
the data sets of Hai [1963] and Engdahl [1968] and supplemented by

new readings from three deep-focus events in the Sunda Arc. In ad-
dition, two new sets of differential travel times for the phase com-
binations PcP-P and ScS-S were read from long-period records of the

World Wide Standardized Seismographic Network using eleven deep-focus
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Table 4.2

Observed sets of differential travel times

Phase combination Distance range Events used
PcP-P 25° - 80° Explosions
PcP-P 25 = 7p° Deep earthquakes
ScS-S 25° - 8s° Deep earthquakes
P'(AB)~P' (DF) 14s” - 18g° Deep earthquakes
P' (BC)-P'(DF) 145° - 160° Deep earthquakes

earthquakes.

The earthquakes used in this study were restricted to events with
focal depths greater than 500 km and magnitudes between 5.5 and 6.5.
The reasons for this were several. Deep earthquakes in this magnitude
range write exceptionally sharp seismograms, making them ideal for
travel time studies.3 Secondly, the ray paths for these events include
only one transit through the heterogeneous upper mantle, reducing a
source of possible bias. Thirdly, the records are uncontaminated by
surface waves. This allows one to read the times of ScS-S at short
distances. For normal-focus events, surface waves preceed ScS at dis-
tances less than 450, and the reading of ScS-S is difficult [Hales and
Roberts, 1970b]. Finally, simple geometrical conciderations imply

that these events will be well located [Mitrénovas and Isacks, 1971].

. This fact was first noticed by Zoeppritz.
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The thirteen deep-focus earthquakes used in this study are listed
in Table 4.3. For the purposes of comparison, both ISS and USCGS lo-
cations are given,if available. In all cases the epicentral locations
agree within 0.10, and for all but one event the focal depths agree
within 10 km: It can be judged from Table 4.1 that location errors
of this magnitude will intéoduce errors in the differential travel
times no greater than 1 second (for the extreme case of ScS-S at 300).
One event (Fiji C, 10/9/67) shows anomalous disagreement in the ISS
and USCGS locations; the discrepancy in focal depth is nearly 50 km.
Fortunately, this earthquake has been one subject of an intensive
study by Mitronovas and Isacks [1971]. On the basis of thelr work,
this anomaly can be attributed to the effect of including readings
from certain anomalous stations for which the ray paths lie within
the high-velocity lithospheric slab. The location we have used for
this event is theirs, obtained by deleting these anomalous readings.
They claim an accuracy of about *5 km. For the other events we have
used the ISS location if available and the USCGS location if not. In
all cases we have used the location given in the top line of Table 4.3.
All distances have been computed using geocentric coordinates.

We discuss below each data set individually:

PcP-P (surface focus). Observations of the travel times of PcP and P

from nuclear explosions have been published by Kogan [1960] (South
Pacific events), Buchbinder [1965] (BILBY event), Kanamori [1968]
(LONGSHOT event), and Lambert et.al. (LONGSHOT event). All readings

were made from records of short-period vertical seismometers. From
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these published values the differential times of PcP-P were computed,
no corrections peing applied., The data were residualed with respect

to the Jeffreys-Bullen times, the residuals were divided into 5° cells,
and the sample means and standard errors in the means were computed
for cells cen&ered at 300, 350, 400, YA 5 75° (from here on, a series
of distances such as this will be abbreviated 300(50)750). "The dis-

tribution of residuals is given in Table 4.4. For every cell except

Table 4,4

Distribution of PcP-P residuala (surface focus)

Cell Interval (sec)
-3 -2 -1 0 +1 +2 +3

30
35
40
45
50
55
60
65
70
S

e2]

16 13
10

H N M B O O+ D O &
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H © B O +H o
H O N U N

the last two, the residuals had a well-defined mode. Readings beyond
65° were few and showed considerable scatter. The sample mean and

standard error in the mean-were computed using the following formulae:

(4.4.1) T o= EWp Ly a: - A "i(Ti = 52 .
L w

i (z wi)z



. -

In these expressions the wi's are weights. It was decided to weight
the readings given in Lambert et.al. only half as much as those in the
other studies, because these readings showed appreciably more scatter.

The means and standard errors in the means are given in Table 4.5.

Table 4.5
Observed surface focus PcP-P times

Distance Mean res. S.E.M. J.B,time Obs.time
(deg.) (sec.) (sec.) (sec.) (sec.)

30 -0.5 0.18 182.4 181.9
35 L T | 0.14 152.5 151.4
40 -0.7 0.22 125.8 125.1
45 -0.9 0.22 101.6 100.7
50 -0.4 0.19 80.3 79.9
55 +0.7 0.45 61.6 62.3
60 +0.2 0.33 45.9 46.1
65 +0 1 0.43 32.9 33.0
70 -0.3 1.11 22.4 22.1
75 -0.7 0.76 14.1 13.4

Figure 4.1 displays the observed residuals and the 5° cell means. The
error bars represent one standard error in the mean.

PcP-P (deep focus). Records of fifteen deep-focus earthquakes from

WWSSN stations in the distance range 25% - 75° frum the source were
examined for PcP phases. Two of the earthquakes were discarded because
the P phases showed evidence of precursors, indicating a complex source
function. PcP-P differential times were read exclusively from long-

period, vertical components. Long-period records were used to insure
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proper identification of the PcP phase. All readings were assigned

a "quality", an integer between 0 and 5 inclusive, on the basis of
sharpness of the onsets. The readings assigned a zero quality were
dropped, eliminating all readings from three of the earthquakes. The
measured PcP—é times from the remaining ten events are listed (with
all the other data presented in this section) in Appendix 2. Figure
4.2 shows several records from the event designated Peru-Brazil B.

The procedure used to reduce these data was similar to the one
described for the surface-focus PcP-P times: the times were residualed
with respect to the appropriate J.B. travel time, the residuals were
grouped into 5° cells, and means and standard errors in the means were
computed. The distribution of residuals is given in the following

table:

Table 4.6

Distribution of PcP-P residuals (deep focus)

Cell Interval (sec)
-4 -3 =2 -1 0 +1

30 1 0 0 2 3 0 0
35° 1 1 1 o0 1 1 o0
40° o 1 0 O0 2 0 0
45° o 1 1 2 7 3 0
50° o 0 0 ©0 13 6 0
55° o 0o o 1 2 2 0
60 1 o 1 7 37 2 o
65 o 0o 2 7 1 3 o0
70° o 1 o0 1 5 1 o0
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The weighted means and standard errors in the means were computed

for each cell using the formulae (4.4.1), the weights being get equal

to tha "quality" assigned to each reading.

Table 4.7.

Observed deep-focus PcP-P times

Table 4.

7

The results are given in

For a 600 km focal depth

Distance Mean res. S.E.M, J.B.time Obs.time
(deg.) (sec.) (sec.) (sec.) (sec,)
3Q -0.9 0.27 163,1 162.2
35 -2.2 0.78 135.3 3331
40 -1.2 0.81 110,3 109,1
45 -0.9 0.28 88,2 87,3
50 -0.1 0.06 68,9 68,8
55 +0.1 0.19 52.4 52,5
60 -1.0 0.23 38,5 37.5
65 -1.1 0.27 27,0 25.9
70 -0.7 0.25 17.9 17,2

The observed residuals and the cell means are displayed in Figure 4.%4.

For a focal depth of 600 km, the travel-time curves of the phases PcP,

pP, and PP intersect at about 40°. Thus there are few observations

and correspondingly large uncertainties in mean travel times in-

the distance range 35° - 40°,

Comparison of the mean PcP-P travel times for the two depths of

focus shows that they are mutually consistent at a confidence level of

90%. The 1968 tables show the same general trend, although they are
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Figure 4.3. Legend for figures 4.4 and 4.6
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up to one second later than the observed surface-focus times at dis«

tances in the range 30° - 50°.

ScS-S (deep focus). Eleven of the deep-focus earthquakes listed in

Table 4.3 (all except Java Sea B and Flores Sea) were used in the
ScS-8 study. ’All available records from WWSSN stations in the distance
range 25° to 80° were read. The readings were assigned qualities
ranging from O to 5 on the basis of the sharpness of the arrival, the
similarities of the waveforms, and instrument polarization. Although
both horizontal long-period instruments were used, SH polarization was
preferTed, This eliminates possible contamination by such SV polarized
arrivals as SKS. Records of the Argentina event (12/20/66) from
stations in the United States are reproduced in Figure 4.5. As before,
all readings assigned a zero quality were discarded. There remained
193 observations. These are listed in Appendix 2.

Distributions of the residuals in 5° cells centered at the dis-
tances 30°(5°)80° are listed in Table 4.8. Cell means and their com-
puted standard errors can be found in Table 4.9, and they are plotted
with the raw observations in Figure 4.6. Again, there are complica-
tions in the travel-time curve near 40° which make reading of the
differential time difficult (in this case, due to the interference of
8S and SS with ScS). The cell mean centered at 40° is displaced by
about 1 1/2 seconds from the value obtained by interpolating nearby
means, and this behavior can be attributed to these complications. In
the inversion computations (Chapter 5) the standard error of this point

was doubled.
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Table 4.8

Distribution of ScS-S residuals (deep focus)

Cell Interval (sec)
-6 -4 =2 0 42 +4 +6 +8

30° 0 0 0 1 0 3 3 1 1
35" Q 0 0 2 6 1 3 1 1
40° 0 0 0 0 2 4 0 8 0
45° 0 1 0 3 - 5 2 0 0
50° 3 1 1 3 6 6 2 0 0
55° 0 0 1 3 5 3 2 1 0
60° 0 0 2. 6 8 3 2 1 0
65° 0 0 | i} 7 9 3 0 0
70° Q 0 0 7 9 3 2 0 Q
75° Q 2 2 - 8 2 2 1 3
80° 0 0 2 6 “ 3 0 0 0

All cell means are positive J.B. residuals, indicating that either
the shear velocity in the mantle is slower than the J.B. model, or else
the depth to the core is greater. Several recent studies on the abso-
lute travel times of '‘PcP [Kogan, 1960; Taggart and Engdahl, 1968], as
well as the differential times of PcP-P given here, require that the
core radius be increased on the order of 10 km over the J.B. value of
3473 km. The latter possibility must therefore be rejected in favor
of the former. More will be said about this in Chapter 5.

Hales and Roberts [1970b] have presented times of ScS-S corrected
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Table 4.9
Observed deep-focus ScS-S times

Distance Mean res. S.E.M. J.B.time Obs.time
(deg.) (sec.) (sec.) (sec.) (sec.)

30 +4.7 0.80 306.6 311.3
35 +2.7 0.71 256.7 259.4
40 +3..3 0.66 212.4 215.7
45 +1.2 0.52 173.1 174.3
50 +0.5 0.69 138.1 138.6
55 +1.2 0.58 107.3 108.5
60 +1.3 0.52 80.7 82.0
65 +1.6 0.44 58.1 59.7
70 o 195 0.46 39.5 40.6
75 +0.8 0.60 24.7 25.5
80 +0.5 0.37 13.5 14.0

to a surface focus. From their observations they obtained 3486 km as
the radius of the core. Comparison of our observations with theirs
is difficult, since they list no travel times or J.B. residuals.

As can be seen from Table 4.8 or Figure 4.6, the differential
travel times of ScS-S show a large scatter; the spread of the distri- -
bution at some distances exceeds 5 seconds. The scatter seems to be
a genuine propagation effect; it does not correlate highly with the
assigned qualities of the readings. A siﬁilarly large scatter was
noted by Hales and Roberts [1970b]. They suggested the possibility
that this scatter is due to lateral heterogeneity near or on the core-
mantle boundary. To account for the observed scatter of 5 seconds or

so by fluctuations of the core-mantle interface itself would require
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"bumps' on the order of 15 km in amplitude. Variations of this magni-
tude have been suggested by Hide [1966] and Hide and Horai [1968] to
explain certain geomagnetic peculiarities and geoidal topography of
low angular o?der. Phinney and Alexander [1966] found evidence from
their observations of diffracted P waves ofilateral heterogeneity

at the core-mantle interface. Since sgeveral lines of independent evi-
dence support this hypothesis, the possibtlity that lateral struc-
ture in this transition zone accounts for some of the scatter in the
ScS-S data seems to be reasonable,

P'(AB)-P'(DF) and P'(BC)-P'(DF). It can be seen from an examination of

Table 4.1 that the differential travel times of P' phase combinations
are especially insensitive to the types of bias discussed in the pre-
vious section, a property which follows from the fact that these core
phases are characterized by low values of dT/dA. Since they also pro-
vide severe constraints on the possible variations of velocity in the
core, the differential times of P' make excellent gross Earth data.
Several phase combinations were considered. The phase P'(DF) was
chosen as the reference phaée because it is a strong, clear arrival at
all distances that other P' phases are observed (125o - 1800). For
the Jeffreys model, there are two other branches of the P' travel-time
curve, the AB branch and the BC branch. The AB branch represents the
travel times of rays which bottom in the outer core and is well ob-
served; it is a receding branch (has positive curvature) and terminates
at the caustic B located at a distance of 143°., At distances greater

than 1430, at least one other branch is observed. Jeffreys has labeled
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this branch BC; in his model it represents rays bottoming below the
B-caustic ray and above the inner core. Bolt [1959] has re-interpreted
the arrivals beyond the caustic as members of a family constituting
what he calls the GH branch. In his model there exists a transition
region betweeﬁ the inner and outer cores in which these rays bottom,
and it is separated from the outer core by a discontinuity. His
interpretation was motivated by a series of small arrivals preceding
P'(DF) at distances less than 143°. These precursors, originally
studied by Gutenberg [1957], would, in Bolt's model, be refracted by
the transition region - outer core discontinuity to distances near
125°. Recently, however, Haddon [1972] has proposed that these pre-
cursors might result from scattering off lateral heterogeneities in

the vicinity of the core-mantle boundary. His arguement has been moti-
vated by the anomalous curvature of this branch, pointed out by Buch-
binder [1971], and the predominance of high frequencies in the precur-
ors. Examples of these precursors from an event. in the Sfunda arc (Java
Sea B) are shown in Figure 4.7.

To test Haddon's hypothesis, a simple model experiment was per-
formed, Rays were traced through a two~dimensional Earth model consis-
ting of a homogeneous mantle (vp = 13 km/sec) surrounding a homogeneous
core (vp = 10 km/sec) separated by a "bumpy" bound: ry. The equation
used to specify the radius of the boundary was R, = 3473 +-% sin nm6.
The rays were traced and the travel times computed for various values
of the parameters n and A. The results for n = 20 and A = 0, 10, 20 km

are pictured in Figure 4.10. It can be seen that the effect on the P'
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travel times is to introduce a number of arrivals as precursors to
P'(DF) at distances less than the distance to the B caustic. Although
the calculation is extremely crude, the resulting travel-time curve for
A = 20 km looks surprisingly like the observations (compare with Figure
4.9 for exampie). This qualitative experiment confirms the plausibil-
ity of Haddon's hypothesis and lends further support to the speculation
that the transition region between the mantle and core is laterally
heterogeneous.

The observations of P' differential travel times shown in Figure
4.9 were computed from the raw readings of Engdahl [1968], who used
the events designated Peru-Brazil A and Fiji B in Table 4.3, as well as
Engdahl's [1968] compilation of Hai's [1963] times for a 600 km focal
depth. Additional readings of precursor phases at distances less than
143° were taken from Subiza and B&th [1964]. To further supplement
this data, times were read for three deep-focus earthquakes in the
Sunda Arc from records written by short-period vertical component
seismometers of the WWSSN. This geometry wae advantageous because it
provided a number of good readings of P'(AB)-P'(DF) near the antipode
from stations situated in the Caribbean. Most of the readings were of
very high quality. Examples of seismograms are shown in Figures 4.7
and 4.8.

All P' differential times were reduced to a 600 km focal depth
using the J.B. Tables. Beyond 143° two branches are well delineated.
The precursors to P'(DF) at distances less than 143° show their char-
acteristic scatter. Neither the interpreation of Bolt [1968] nor the

more complex model of Adams and Randall [1964], plotted with the obser-
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Table 4.10

Distribution of P'(AB)-P'(DF) residuals (deep focus)

Cell Interval (sec)

-5 -4 -3 -2 -1 0 +1
147.5° 0 2 3 5 7 0 : B 0
152.5° 1 0 10 11 1 0 0 0
157.5° i 5 8 10 2 0 0 0
165.0° 0 4 5 5 7 3 1 0
175.0° 0 1 0 1 7 1 1 0

vations in Figure 4.9, adequately explain these arrivals. Because of
the possibility that the precursors arise from scattering off lateral
heterogeneities and therefore are not gross Earth data, we have assumed
that the PKP curve is of the Jeffreys type and have compuyted cell means
only for the combinations P'(AB)-P'(DF) and P'(BC)~P'(DF).

The distribution of residuals for these two phase combinatjons are

given in Tables 4.10 and 4.12. Residuals for P'(BC)-P'(DF) were

Table 4.11
Observed deep-focus P'(AB)~P'(DF) times

Distance Mean res. S.E.M, J.B.time Obs.time

(deg.) (sec.) (sec.) (sec.) (sec.)
147.5 -2.3 0.24 10.0 7:7
152.5 -2.9 0.28 235 20.6
1575 -3.2 0.19 38.3 35.1
16500 "'2-2 0-31 63o0 60-8

175.0 -1.5 0.31 101.6 100.1
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Table 4.12
Distribution of P'(BC)-P'(DF) residuals (deep focus)

Cell Interval (sec)
0 +1 +2 +3 +4

146.25° 1 6 0 1 0 0

148.75° 1 0 15 6 0 0
151.25° 0 0 2 10 3 2
153.75" 0 0 8 3 - 1
156.25° Q i 5 1 3 0

computed by extending the BC branch in the Jeffreys model with a ray
parameter of 2.2 sec/deg. In computing the cell means listed in Tables
4.11.and 4.13 all observatioms were given equal weight.

From Figure 4.11, which displays the observations of P'(AB)-P'(DF),
we see that Bolt's [1968] times are in good agreement with the data.
Figure 4.12 shows the residuals for P'(BC)-P'(DF). The point C is not
well defined by these data but lies somewhere near 155°. The cell means

centered at 153.75° and 156.25° may be biased by spurious arrivals.

Table 4.13
Observed deep-focus P'(BC)-P'(DF) times

Distance Mean res. S.E.M. J.B.time Obs.time
(deg.) (sec.) (sec.) (sec.) (sec.)

146.25 +0.7 0.30 1.8 2.5
148.75 +1.7 0.11 3.2 4.9
151.25 +2.8 0.20 4.8 7.6
153.75 +2.2 0.24 6.8 9.0

156.25 +1.8 0.34 9.0 10.8
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Chapter 5

NUMERICAL MODELING OF THE RADIAL VARIATIONS

5.1 Introduction. This chapter is concerned with actual numerical

modeling of the radial distributions of velocity and density in the
Earth. The data we shall attempt to fit are the Earth's mass and mo-
ment of inertia, the observed eigenperiods of oscillation, and the
differential travel times presented in Chapter 4, The algorithm that
we shall employ was outlined in Chapter 2: a starting model is cop-~
structed and tested against the data, a correction is computed by
solving the linear perturbation equations, the data functionals are re-
evaluated, and the procedure is iterated until the fit {s satisfactory,
Because the inverse problem is nonlinear and has no upique sol-
ution, interpretation of any numerical results 1s a tricky business.
A common mistake is to infer that because a certain model satisfies
the data some feature of that model actually exists in the Earth,
when in reality the data do not require this feature. To guard
against this kind of breach of scientific method, one must insure
that the calculated perturbations are resolvable - are really required
by the data. The resolving power of the data in a linear neighborhood
of any model can be judged by examining the averaging kernels given in
equation (2.8.3). To calculate the perturbations we shall use equa-
tion (2.7.12); it provides an approximate solution which has been
filtered of any linearly unresolvable components.

As we emphasized in §2.3, the success of an algorithm based on
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linear estimation depends critically on the model used to "start" the
computation. In the design of the starting model we must strike a
balance between two opposing considerations. On the one hand, because
the eigenperiods and travel times are nonlinear functionals, the
starting model should be as linearly close as possible to the sought
representation of the Earth. Otherwise, the model that results from
successive perturbations may end up in a local minimum far removed
from this representation, and resolving power computations may be de-
ceptive. Generally speaking, the starting model should include any
major discontinuities that exist in the Earth. A starting model in
which the velocities and density are taken to be constants is an
example of an inadequate representation. On the other hand, we desire
that the starting model be "simple" - devoid of any features that
might not exist in the spherically averaged Earth. For this reason
published models generally make poor starting models.

The procedure we shall adopt is to construct starting models
based on a series of reasonable but "simple" physical assumptions.
These will be detailed in section 5.4, Since the inversion al-
gorithm provides the minimum deviations (in a norm sense) from these
starting models necessary to fit the data, the resulting models will,
in some sense, be as simple as possible.

We discuss in the next section the adaptation of the inversion
theory given in Chapter 2. The data sets used in the inversions are
presented in §5.3, and §5.4 is devoted to construction of the starting
models. In §5.5 models are derived and evaluated. In section 5.6 the

resolving kernels are displayed. The last section contains conclusions.
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5.2 The inversion algorithm. Estimates of the spherically gveraged

compressional velocity vpo(r), shear velocity vso(r), and density
po(r), which constitute a spherically symmetric Earth model m,, were
sought given the observed values of the Earth's mass and moment of
inertia and the sample means of available sets of eigenperiod and
differential travel-time data. The data values were arranged ip a
vector dO' The errors in the data were assumed ta be samples of
independently distributed, Gaussian random variables with zero means
and known variances. The vector 6!n0 was defined to be equal to the
difference between m, and some jnitial guess m_, and the vector Gdo
was defined equal to dO - d(xns). As an approximation, &m, and <Sd0
were assumed to be related by equation (2,5.1), where n is the vector
containing the noise components and A is the linear operator whose
ith row is the Fréchet kernel of the ith datum in do. Under these
agsumptions the theory presented in Chapter 2 was applicable,

The inner product between any two vectors m and m' in the space

of Earth models was defined by the equation

R
(5.2,.1) m-m' = —I; [vp(r)v;(r)wp(r) - vs(r)v;(r)ws(r)

+ p(r)o'(r)Wp(r)] dr.

The measure on the interval [0,R] was chosen to be linear in r, so
that the weighting functions V. Voo and A in the integral (5.2.1)
are simply constants. These constants were chosen to render the inner
product dimensionless. The velocities were expressed in units km/sec,

and the density was expressed in units of gm/cm3. We write
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vl = IvJ = im/sec,

(5.2.2)
[p] = gm/cmd.

The inner product is dimensionless if

[wp] = {wsl = sec?/km3,
(5.2.3)
[wo] = cm®/gn? km,

where the units of radius are taken to be kilometers. We specified the
weighting functions to be numerically equai to R—l. This specification
implies that unit perturbations of both velocities and density are of
equal weight. Although arbitrary, this decision was motivated by the
near numerical equality of va‘ veo? and Po when expressed in the units
given in (5.2.2).

The four types of data functionals which compose a data vector d
aré the mass of the model, denoted M; its moment of intertia I; spher-
oidal and toroidal eigenperiods of radial order n and angular order %,

denoted ntU respectively; and the ray-theoretical travel times

T
2 and nt

;)
Tx(A,h) of a phase x at angular distance A from a source with focal
deptﬂ h. The functionals M and I were normalized by their observed
values (given in §5.3) and thus are dimensionless. The eigenperiods
and travel times were expressed in seconds. The scale factors for these
functionals appearing in the inner product on the data space were set
equal to 1 sec_z.

With these conventions, a computer program was written to calculate

the best linear estimate ém given by equation (2.7.12) and the averag-

ing kernels appearing in equation (2.8.3). Rewriting (2.7.12) and
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(2.8.3) in terms of the inner product (5.2.1), we find that

S & * -
(5.2.4) 3 = CSS- A (A CSS- A + tan 8 Cnn) Gdo,
and that

B «ACA-C__+ A"+ tan 0 iy
(5.2.5) Css A( Css tan Cnn) ’

the angle 6 being the parameter of the tradeoff curve.

The foward calculation of the eigenperiods and the calculation of
their Fréchet kernels was performed in subroutines written by Mr.
Martin Smith. The travel-time routines were kindly provided by Dr.
Bruce Julian.

Since the error components are assumed to be uncorrelated, the
form of the noise autocorrelation operator Cnn is given by equation
(2.5.12). This form was used with the variances along the diagonal
set equal to the squares of the standard errors in the meansestimated
from the scatter in the data.

Specification of the operator (és requires some discussion. We
saw in §2.6 that the meaning attached to CSs in the stochastic form-
ulation, where it plays the role of an autocorrelation operator, makes
sense only if we impose on the model space an a priori probability
distribution. .This is because sample ensemEles fcr the solution pro-
cess are unavailable, and probabilities cannot be interpreted as the
limits of sample frequencies. In §2.6 we also saw that, if quadratic
convergence 1s sufficient to identify vectors, then choosing C53 is

equivalent to specifying the norm on the space of models. With this
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realization we chose (%S in the following manner: for each of the
model functions vp(r), vs(r), and p(r), the interval [O,R] was parti-
tioned into several sub-intérvals, each bounded by radii at which
discontinuities are known or thought to exist, Considering only one
model functioﬁ for a moment, let us label these radii ap, where
p=1,2,...,P. We define a, = 0 and assume that ap = R, so that on

0

the pth interval the radius varies between ap—l and ap, P=™ 1;25000sF,

On each of these sub-intervals we defined a smoothing operator Cp(r,r')

by the equation

N\ = = it - = -
(5.2.6) C,(r,x') = k /2 {e kplr i) (. s (a2, )
x cosh k (r-r') + B cosh k (a +a _-r-r'
P ) p( p p-1 )
— 1
+ C sinh kp(ap+ap_l r-r )]} 4
where A=([1-a k +a 1+ k -
(1~ a_; Gk +a )]l +a (k-8)],
B=aa +Ba ~ [k2 -k (a+8 ) +a B lJa ,a -1,
p p-1 PP P P P P pp p-lp
C=%k (a -a
p( p p-1),
2
D=[1-0aa -Ba + (a0 B-k)a a ]sinh k (a -a
[ p p-1 PP (PP p)p—lp] p(p-l p)
-k [a - a -+ - h k - P
p[ P Pl (Bp up)apapd] o8 p(ap—l ap)
Equation (5.2.6) is similar to equation (2.6.16); in fact, Cp(r,r')
satisfies the system (2.6.15) with w(r) = p(x) =1, a = ap_l, b = ap,

a= up, and B = Bp. Having done this for each of the three model
functions, we specify Cgs to be a block-diagonal operator as in

equation (2.6.10) with each of the three blocks in the form
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This block-diagonal form of the operator C%s expresses the con-
viction that between the radii of discontinuities the solution Glno
behaves smoothly. The estimation is therefore weighted in favor of
this behavior. The parameter kp is simply the mean wavenumber of the
smoothing operator Cp. In the minimization to obtain the best linear
estimate 3?5} components with unit amplitude and wavenumber kp measure
twice as much as components with unit amplitudes and wavenumbers near
zero. Since the minimization seeks out the "smallest" solution that
satisfies the data, low-wavénumber components; i.e., smoother compon-
ents, are preferred.

The parameters ap and Bp specify the boundary conditions applied at
the radii ap-l and ap. If they are set equal to zero, the derivatives
of the solution will vanish at these radii (inside the interval);
whereas 1f they are set equal to infinity, the values of the solution

itself will vanish.

This form of the solution autocorrelation operator is quite
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versatile. By its manipulation,. one can introduce information about
the solution not contained in the data or search for solutions with
specified constraints. Often this is a convenient way to test hypo-
theses; e.g.,_does a solution to the inverse normal mode problem exist
with a density at the top of the mantle equal to 3.33 gm/cm3?

We return now to a discussion of the numerical algorithm. Be-
cause the computer available to us was fairly small (an IBM 370/155
with 320 kilobytes = 80 K words of core), it was not feasible to invert
all three functions, vp, L and p, simultaneously. Instead, a FORTRAN
program was written to invert either compressional velocity and density
or shear velocity and density simultaneously. The iteration scheme
employing the estimate given in (5.2.4) was designed to alternate be-
tween these two possiblities. At each step, up to eighty data could be
inverted. Convergence was always rapid as long as tan 6 was kept at a
value greater than 5; no model presented in this chapter required more
than eight iterations. Typically, a run involving one iteration on a
data set consisting of 50 normal modes and 30 travel times required
about twenty minutes on the 370/155 and cost about fifty dollars. Over
eighty per cent of this time was devoted to calculating the mode per-
iods and Fréchet kernels. Calculation of_the operator ggf’took an ad-

ditional five minutes.
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5.3 The data set. The basic data set comprised a total of 219 data.

0f these, 178 were normal mode periods, 39 were differential travel
times, and the remaining two were mass and moment of inertia, We
devote this section to a discussion of each of these three subsets.

The normal mode data. Gilbert [1972] observed that the average periocd

of singlets in a mode multiplet split by disturbing influences such
as rotation, ellipticity of figure, and the presence of lateral heter-
ogeneities equals, to a first-order approximation, the degenerate
eigenperiod of a spherically averaged Earth model.l Unfortunately,
resolution of the multiplet structure of an eigenperiod is, with the ex-
ceptions of only the very gravest modes, impossible at the present
time. Instead, we must rely on averages of many observations to give
periods that can be interpreted in terms of an average Earth structure,
Averages of observed free oscillation periods were given by
Pekeris in 1966. However, the wide varjiations in the quality of the
early recordings (mainly from the Chilian earthquake of 1960) apd the
procedure used to reduce the data largely negated the advantage of
using these averages; much of the early imversion work was done with
values obtained from single records. Anderson [1967], who also pre-
sented averages, picked "best values" to evaluate various Earth models.
As investigators have set themselves to the task o° gleaning from

existing records information about the mode spectrum, the situation

i This will be true as long as the disturbing influences leave the
linear system describing small oscillations Hermitian.
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has improved considerably. Derr [1969] averaged the observations
avéilable through 1968 using a complex, somewhat arbitrary system
of weights to enhance the importance of high-resolution recordings.
Although the great majority of the more than 1500 data he used

were of the f;ndamental modé, he attempted to obtain averages of some
of the higher modes as well. Backus and Gilbert [1968] had shown
inclusion of higher modes greatly improves the resolving power of the
normal mode data set.

Recently, a major contribution to the study of the normal mode
spectrum has been made by Dziewonski and Gilbert [1972]. Using a
comprehensive series of criteria to identify modes, they have analyzed
84 long-period seismograms of the great Alaskan earthquake of 1964
and tentatively identified all but 30 of the 136 theoretically pre-
dicted multiplets in the normal mode spectrum with periods greater
than 300 seconds, as well as a number of modes in the period range
200 - 300 seconds. Besides their extensive listing of higher-mode
periods, they also give cumulative averages of fundamental mode data
for periods greater than 176 seconds (gS3 - ¢Ssg, 0T3 — oTus)-

Their averages, listed with standard errors in the means in Tables
2-5 of their paper, formed the basis of our normal mode data set.
They did not list averages of the modes (S; and (T,, and the period
they give for ;S3 (2140.57 sec, at the limit of their resolution) is
evidently too large; for these modes we have used the periods given
by Derr [1969]. 1In addition, we included in our data set the average

periods of the modes (S5; to Sg3 given in Table 2 of Dziewonski and
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Landisman [1970]. These data are listed with fits to the models
derived in §5.5 in Table A3.1. The consistency of this data set is
indicated by the precision with which these models satisfy the data.
One model, model Bl, has eigenperiods which differ from the observed
values by no more than 0.4% in the extreme; generally, the fit is much
better. This strongly suggests (but, of course, does not prove) that
these data are representative of the averaged Earth.

The travel-time data. Because of the problem of baseline errors,

we used only differential travel times in the inversion. Included in
the data set were the 39 differential travel-time averages listed in
Tables 4.5, 4.7, 4.9, 4.11, and 4.13 for the phase combinations PcP-P
(surface focus), PcP-P (deep focus), ScS-S (deep focus), P'(AB)-P'(DF)
(deep focus), and P'(BC)-P'(DF) (deep focus). These data along with
the fits to the models are summarized in Table A3,2.

The mass and moment of inertia. The mass M and normalized moment of

inertia I/MR2 used in the inversion are given by Jeffreys [1970]. These

are
27
M = 5.977 + 0.0006 x 10/ gm,
(5.3.1)

I/MR2 = 0.330841 * 0.00018

Partitioning of the data sets. Two subsets of the basic data set were

formed. These were designated data set I and data set II. Data set I,
used in the inversion of compressional velocity and density, consisted
of the eigenperiods of the following modes and the differential travel
times of the following phase combinations: o-4 S0» 052, 053, 0Ss,

0575 059, 0512» 05155 1525 157-10» 251-4» 2565 2515, 352-9, 3S11s



-105-

4S1-10> 552» 553, 651, 654» 655, 782, 753, 755, 851, gS2, PCP-P
[Tables 4.5 and 4.7], P'(AB)-P'(DF) [Table 4.11], P'(BC)-P'(DF) [Table
4,13]. Data set I included all modes observed by Dziewonski and Gilbert
[1972] with greater than 25% compressional energy or greater than 5%
compressional. energy in the outer core (as given in their Table B2).

Data set II, used in the inversion of shear velocity and density,
consisted of the following modes and travel times: ¢S, S3, 0Ss5-9,

0512, 0S15, 0S18, 0S21, 0S25, 0S30, 0S37, 0Su5, 0S54, 0S63, 152, 1Su»

1555 157-105 1514-17» 252, 258-1u4» 354<11» 451-3s 45105 5525 852, 0T3-6>

0Ts> 0T10s 0T11s 0T13» 0T16s 0T21s 0T23s 0T25s 0T29s 0T35s 0Tu1s 0Tuss

ScS-S [Table 4.9]. This data set provided good coverage of the funda-
mental mode as well as the higher modes sensitive to variations in

shear velocity and density.
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5.4 Construction of the starting models. Two starting models, desig-

nated model A and model B, were constructed. In thig section we de-
scribe their derivation.

The central idea behind the construction was the assumption that
discontinuities in density and shear velocity are associated with dis-
continuities in compressional velocity. For density, this assumption
is well-motivated; available laboratory data on the behavior of mantle-
type materials indicates that the compressional velocity - density
systematics are very regular over wide ranges of temperature and pres-
sure. Birch [1961] proposed that, for materials of constant mean
atomic weight, vp and p are related by g linear law. The invariance
of this relationship to temperature and pressure variations has been
discussed by Anderson et.al.[1971]. Such a linear relationship
was used to construct the upper mantle density profiles in the starting
models, Densities in the lower mantle and core were derived using the
Adams-Williamson integration procedure [Williamson and Adams, 1923].
By fixing the density at the base of the crust and fitting the mass
and moment of inertia, construction of the density profile was made
deterministic, once the velocities were chosen. This was exactly the
procedure used by Birch [1964] to comstruct his model II.

We review the construction of the velocity moczls region by re-
gion:

The crust (Bullen's region A). The crust was modeled as a layer

21 km thick with vp = 6.2 km/sec and v = 3.4 km/sec. This roughly

corresponds to an areal average of the six crustal types listed by
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Brune [1969] (oceanic, shield, ridge, alpine, basin and range, and
island arc) taken in proportion to their surface areas.

The upper mantle and the transition zone (regions B and C). The

presence of large velocity gradients and the existence of strong lat-
eral heterogeneity complicafe the interpretation of seismic data sen-
gitive to the upper mantle and transition zone. Evidence from surface
waves has confirmed Gutenberg's hypothesis that a low-velocity channel
exists for shear waves 100 km or so below the base of the crust [Ander-
son, 1967]. Structure in the transition zone between 400 km and 700 km
has been illuminated by dT/dA studies using large seismic arrays [Niazi
and Anderson, 1965; Johnson, 1967]. These have confirmed the presence
of at least two major discontinuities at depths near 400 and 650 kilo-
meters (corresponding to breaks in dT/dA at distances of about 20 and
25 degrees). However, lateral variation of‘these structures is great,
and currently available data sample only a small fraction of the
Earth's surface.

Because the average structure of these regions is in doubt, we
have used simple representations as starting models. The compressional
velocity below the crust was fixed at 8.0 km/sec and increased linearly
with depth to a value of 8.8 km/sec at 420 km. The shear velocity in
the upper mantle was taken to be a constant 4.55 km/sec. Thus, the
starting models have no low-velocity zone in this region.

The transition region was modeled by two discontinuities at depths
of 420 km and 671 km with the velocities varying linearly in between.

Only in this region do the starting models A and B differ. Model A
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is characterized by discontinuities of second-order. In this model,
the compressional velocity rises from 8.80 km/sec at 420 km to a value
of 10.86 km/sec at 671 km., In the same region shear velocity varies
linearly between values of 4.55 km/sec and 6.13 km/sec.

In model B the discontinuities were chosen to be of first-order.
At 420 km the compressional velocity jumps from 8.80 km/sec to 9,5
km/sec, and the shear velocity jumps from 4.55 km/sec to 5.33 km/sec.
Between this depth and the discontinuity at 671 km, the compressional
velocity increases at a rate of 0.27 km/sec per 100 km, and the shear
velocity is constant,

Although the variation of velocities in these regions is somewhat
ad hoc, the values chosen were designed to give the same baseline for
teleseismic P as the 1968 Tables and the same baseline for teleseismic
S as Hales and Roberts [1970 a].

The lower mantle (region D). The Earth's lower mantle is a region

characterized by relatively uniform increases in the velocities with
depth. The models of lower mantle velocities derived from travel-time
studies have changed very little since the early work of Jeffreys and
Gutenberg. The travel times through this region show very little
azimuthal dependence [Jeffreys, 1962], and it may be inferred that the
lateral heterogeneity is small, at least in compar_son with the upper
mantle.?

The velocities in the lower mantle we have used in our starting

models were taken from the studies of Herrin et.al. [1968] (compres-

. A recent study of ISS P times by Sengupta and Julian [in preparation]
indicates, however, some lateral variation in the lowermost 600 km.
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Table 5.1

Positions of the major discontinuities

Region Radius (km)
Y e 6371
A Crust
------ 6350
B Upper mantle
------ 5951
C Transition zone
------ 5700
D Lower mantle
—————— 3485
E,F Outer core
—————— 1215
G Inner core
————— 0

sional velocity) and Randall [1971] (shear velocity). Both of these
studies used ISS times from the same set of sources.

The radius of the core-mantle boundary. Since the radius of this dis-

continuity was fixed during the inversion, its accurate determination
for the starting models was critical. The procedure we followed was

to fit the differential travel times of PcP-P given in Tables 4.5 and
4,7 by varying this radius. The times were calculated for both depths
of focus using the mantle and crustal velocities for model A described
above. The differences between the observed times (5° cell means) and
the computed times were minimized with an RMS of 0.4 seconds for the
radius 3485 km. Since differential times were used, this determination
is essentially independent of the upper mantle model we assumed. The
radius we obtained is 12 km greater than Jeffrey's value and 7 km

greater than the value obtained by Taggart and Engdahl [1968].
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Table 5.2
The starting models

Model A Model B

Radius vp Vg p Vp Vg p
(km) (km/sec) (km/sec) (gm/cm3) (km/sec) (km/sec) (gm/cm?)

0 11.20 3.50 12.57 same as model A
600 1120 3. 50 12.50 .
1215 ¥l..20 3.30 12.28 .
1215 10.12 0.00 12.28 .
1600 10,07 0.00 12.05 "
2000 9.85 0.00 11.76 .
2400 9.50 0.00 11.40 .
2800 9.06 0.00 10.95 .
3200 8,51 0.00 10.42 .
3485 8.10 0.00 9.98 '
3485 13.67 7.30 551 .
3700 13,57 7.23 5.41 ,
4000 13:22 £+l 5.26 -
4300 12.87 6.97  5.11 ;
4600 12.51 6.81 4.95 P
4900 1215 6.66 4.79 .
5200 11.71 6.48 4.63
5500 11:22 6.29 4,45 .
5700 10.86 6.13 4,33 -
5700 10.86 6.13 4,33 10.71 5«33 4,09
5951 8.80 4.55 3.6l 9.50 5.33 3.85
5951 8.80 4.55 3.61 same as model A
6350 8.00 4.55 3:33 =
6350 6.20 3.40 2.79 s

6371 6.20 3.40 2.79 .
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The core (regions E, F, and G). A simple model of compressional velo-

city in the core was designed which fits most of the well-observed fea-
tures of the PKP travel-time curve. It consists of an inner core and
outer core separated by a discontinuity located at 1215 km. The velo-
city at the core-mantle boundary was taken to equal Jeffrey's value of
8.10 km/sec. The velocities in the outer core varied smoothly from
this value to a value of 10.12 km/sec at the inner core - outer core
boundary. Below this discontinuity, a constant velocity of 11.20
km/sec was assumed. For this model, the point A of the PKP travel-time
curve occurred at a distance of 176°, the point B at 145°, the point C
at 1580, and the point D at 111°, It fits Bolt's [1968] absolute times
for the AB and DF branches within 2 seconds.

The shear velocity in the outer core was assumed to be zero. The
shear velocity in the inner core was taken to equal to 3.5 km/sec, the

value determined by Dziewonski and Gilbert [1972].

Once the velocity models had been constructed, it was possible ta
determine a unique density distribution from the observed values of the
Earth's mass and moment of inertia using the method of Birch [1964].
The density in the crust was assumed to equal 2.79 gm/cm3. In the
upper mantle and in the transition zone the densitv was assumed to obey
the Birch law p = a vp + b. The density at the top of the mantle was
fixed at 3.33 gm/cmB, yielding a value of 1.54 gm/cm3 for the constant
b. Below the discontinuity at 671 km, density was determined by inte-
grating the Adams-Williamson equations [Bullen, 1963, p.229]. At the

top of the core these equations were re-initiated with a new value of
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the density (call it pc)’ and the solution was continued to the center.
The values of the free parameters a and p, were determined by fitting
the mass and moment of inertia. For both models, the values obtained
were 0.349 and 9.98, respectively. These can be compared with Birch's
values of 0.379 and 9.96 for his solution II.

The starting models are listed in Table 5.2 and plotted in Figure

5.1.

5.5 Inversion results. We have used the inversion algorithm described

in §5.2, the data sets presented in §5.3, and the starting models con-
structed in §5.4 to derive three estimates of the radial distributions
of compressional velocity, shear velocity, and density in the Earth.
These results are presented in this section.

Model Al. In this first experiment we were concerned with obtaining

a model with a very simple structure in the upper mantle. Model A was
used as the starting model. Initially, the fit to the eigenperiod data
in data sets I and II was 0.3%, RMS relative deviation. The computed
differential travel times deviated from the observed by at most 3 sec-
onds (for ScS-S at 300). The autocorrelation operators for the func-
tions vp, Voo and p were partitioned, or '"decorrelated'", at the radii
of the discontinuities sep;rating the inner and ou'2r cores (1215 km),
the outer core and mantle (3485 km), and the crust and mantle (6350 km).
In each of these reglons a correlation operator of the form given in
equation (5.2.6) was used, and in all cases we assumed that o_= Bp = 0.

For this experiment, the correlation wavelengths Ap = 2/kp were set
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equal to 1000 km. The diagonal components of the noise autocorrelation
operator (the only nonzero components in the form we have assumed)

were taken to equal the squares of the standard errors in the means

of the data. ;n the algorithm we alternated between an inversion of vp
and p using data set I and an inversion of e and p using data set II.
At each step the perturbation was computed from equation (5.2.4,).

The perturbation was "overdamped" by setting tan 6 in this equation
equal to 10. Although this value is ten times the "optimal" value of 1,
doing this insured more rapid convergence.

For this model, convergence was achieved in six iterations. The
final model is plotted in Figure 5.2, and the cumulative perturbation
is plotted in Figure 5.3. A listing of the model and its fit to all of
the data are given in Appendix 3.

As can be seen from Figure 5.3, the compressional velocity in
model Al differs from the starting model by less than 0.05 km/sec every-
where except in the upper mantle and outer core. The value of the ve-
locity at the top of the core is 8.01 km/sec, which is in agreement
with Hales' and Roberts' [1971] conclusion that the velocities in this
region are less than the values given by the Jeffreys model. Their
study was based on the differential travel times of SKKS-SKS. The com-
puted times of SKKS-SKS for model Al are listed along with times com-

puted for equation 3 of their paper in Appendix 3. The agreement is ex-
cellent .
The times of P'(DF) are almost 0.3 seconds less than those given

by Cleary and Hales [1971] and roughly one second greater than the times
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of Bolt [1968]. The times of P'(AB) computed for Al are a few tenths
of a second greater than Bolt's,

The decrease of the compressional velocity in the upper mantle
introduced in the inversion shifts the baseline of teleseismic P by
about one second. If this amount is added to the P times given in the
1968 tables, then they agree with the times computed from model Al to
within 0.2 seconds at distances greater than 30°,

The perturbation in the shear velocity distribution in going from
model A to model Al is most dramatic in the lower mantle. In this
region the perturbation is negative and averages about 0.03 km/sec in
magnitude. The effect on the S times is to introduce a "drift" of
nearly 5 seconds in the distance range 30° to 80°. Most responsible
for this net decrease in shear velocity are the eigenperiods of the
fundamental mode torsional oscillations of low angular order., The
incompatibility of torsional oscillation eigepperiads with travel-time
data has been evident since the early work of MacDonald and Ness [1961],
However, there seems to be no significant incompatibility between the
cscillation data and the ScS-S travel-time data; for model Al all of

this data (except for T (40°) which, due to interference with sS

SeS-5
and SS, is poorly determined) is fit to within their 95% confidence
intervals. .

Because the solution was tightly correlated throughout the upper
mantle, model Al has almost no low-velocity zone for shear waves. The

need for this feature is evident from the fit of this model to the

fundamental torsional mode data. At periods near 200 seconds, the
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periods computed from the model deviate from the observations by as
much as 0.5%, beyond the limits of probable error.

The perturbatiopns to shear velocity in the inner core are very
small, confirming the correctness of Dziewonski's and Gilbert's [1972]
determinatioﬂ of 3.5 km/sec as the mean velocity of this region. The
high phase wvelocity arrivai seen at LASA by Julian, Davies, and Shep-
pard [1972] and identified by them as PKJKP implies, with this identi-
fication, a shear velocity in the inner core of about 2.8 km/sec. This
value is incompatible with the mode data,

The cumulative perturbations to the density in the upper mantle
are negative. In the resulting model the average density in the upper
two hundred kilometers of the mantle is only about 3.33gm/cm3. In
the lower mantle the perturbations are positive, and in the outer core
they are again negative., The inversion introduces g small jump in the
density at the boundary between the inner and outer cores, but the sig-
nificance of this feature is very doubtful.

Model Bl. In this second experiment, model B was used as the starting
model, The inversion procedure was essentlally the same as we used to
derive model Al, the principal difference being a different specifica-
tion of the solution autocorrelation operator. For this inversion, the
distributions in the inner core, the outér core, end the lower mantle
were decorrelated and assigned correlation wavelengths of 1000 km, as
before. In addition, the transition region and the upper mantle were
decorrelated. For the former, the correlation wavelengths for each of

the three distributions were chosen to be 200 km. TFor the latter, the
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correlation wavelengths for the velocities were chosen to be 100 km,
and the correlation wavelength for the density was chosen to be 300 km.
As before, the distributions in the crust were not inverted.

Convergence was achieved in eight iterations. The final iterate,
designated m;del Bl, is listed in Appendix 3 and is plotted in Fig. 5.4.
The cumulative perturbations are pictured in Figure 5.5.

The fit of this model to the fundamental spheroidal and torsional
mode data sets (given in Table A3.1) is considerably improved over .
model Al. This improvement results from the introduction of a more
profound shear wave low-velocity zone in the upper mantle, made pos-—
sible by relaxing the smoothing in the upper mantle.

A second feature which distinguishes this model from model Al is
that the strong negative perturbation, centered at about 5600 km radius
and broadly spread over the upper part of the lower mantle in model Al,
is localized in the transition zone in model Bl. Examination qf the
averaging kernels for this perturbation confirms that this difference
is indeed due to localization of the averaging. As a result, the trans-
ition zone of model Bl is characterized by a decrease in shear velocity
with depth. A similar localization can be observed in the density in
this region.

Other than these features, the models Al and Bl are essentially
the same.

Model B2. A second experiment using model B as the starting model was
attempted. The purpose of the experiment was to see if modifications

in the velocities at the very base of the mantle had any significant
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effect on the inversion results and to attempt to further localize

the averages of shear velocity at the top of the lower mantle by de-
correlating at a radius of 5500 km. The existence of a transition zone
at the base of the mantle has been the subject of some debate among
seismologists since the paper of Dahm in 1936, and the recent obser-
vations by Cleary [1966] of so-called diffracted S which indicate a
significant decrease in the velocity of S waves in this region, have
heightened the speculation. This motivated us to modify the model B

in the following way: The compressional velocity at the base of the
mantle was decreased to 13.40, the shear velocity was decreased to 6.50,
and the density was increased to 6.0. Linear gradients were used to
connect these values to the unmodified values for model B at a radius
of 3510 km.

The resulting model was inverted as before, except that the shear
velocity was decorrelated at a radius of 5500 km. This was done to
localize the averages of shear velocity in this region and to test
the hypothesis that a discontinuity in shear velocity exists at this
radius. This has been suggested by Hales and Roberts [1970a], among
others, on the basis of a discontinuity in the dT/dA of shear waves.
at 42°. The correlation wavelength assumed in the region from 5500 km
to 5700 km was 100 km.

The results of this inversion, which took eight iterations,
was the model B2 plotted in Figure 5.6. Like the other models, it is
listed in Appendix 3 along with the fits to the data. The cumulative

perturbation for this model sequence is plotted in Figure 5.7.
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The inversion was successful; out of the 166 modes listed in
Table A3.1, this model fit 114 of them with a relative error of less
than 0.1%. The inversion introduced a region of negative velocity
gradient between the depths of 821 and 851 kilometers and a corres-
ponding break.in the travel-~time curve of S near 42°. Ho&ever, the
somewhat simpler model Bl fit the data better; it had 121 of the 166
modes fit with relative errors less than 0.1%. It cannot be argued on
the basis of this experiment that the additional features appearing in
model B2, in particular the negative gradients in shear velocity in

the mantle, are warranted by the data used in the inversion.

5.6 Averaging kernels. We present in this section the averaging kernels,

rows of the operator b97,given by equation (5.2.5), for various data
sets and choices of the solution autocorrelation operator Css' Six
figures are presented. In each, the kernelé of Jafzorresponding to
several radil for a given function, vp, Vg » OT p, are plotted. The
radii are indicated by the numbers in the corners of the plot; the
function to which the kernel corresponds is indicated by whether the
radius is plotted on the left or the right hand side of the graph: the
left hand side indicates velocity, and the right hand indicates density.
Figure 5.8. This plot shows the results of an experiment to compare

the resolving power of absolute versus differential travel times. Two
data sets were used. Panel (a) of this figure shows several kernels
computed from a data set consisting of 32 ScS-S differential travel times
in the distance range 30° to 94°. Panel (b) shows kernels centered at

the same radii for a data set consisting of 64 S and ScS absolute times.

All data were assumed to have errors of 1 second.
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Figure 5.8, Averaging kernels for travel times.
a) ScS-S differential times, 30°(2°)94°.
b) S and ScS absolute times, 30°(2°)94°.
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The model used is Al, and the solution autocorrelation is 100 km.

For all radii in the lower mantle, both sets of data yield highly peaked
kernels with half-widths of about 75 km, roughly the spacing between

the bottoming depths of the S rays. The absolute travel times give
somewhat more.localized averaging kernels, but the difference is not
appreciable. We conclude that not much resolution is lost by using

the more precisely observed differential travel times. Of course, since
neither data set contains rays which have turning points in the upper
mantle, neither yields localized kernels in this region, as can be seen
from examination of the kernels centered at 6050 km.

Figure 5.9. Shown in this figure are averaging kernels computed from
model Al for compressional velocity using the Fréchet kernels of data
set I. The averaging is reasonably localized, although some tradeoff
exists between perturbations in compressional velocity and density in
the outer core beyond the radii at which P'(AB) rays bottom. Note the
localization in the vicinity of the inner core - outer core boundary.
This results from using the differential travel times of P'(BC)-P'(DF)
The correlation operator used in this computation was the same as was
used in the derivation of model Al.

Figure 5.10. This figure displays the averaging kernels for density
using the same model, data set, and correlation operator as for Figure
5.9. The averaging in the inner core is extremely poor and unlocalized.
We infer that our estimates of density in this region are correspondingly
poor. In particular, we doubt that the jump in the density at the inner

core - outer core boundary, present in all three models, is significant.
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Ficure 5.10. Averaging kernels for densitv computed using data set I
and the correlation operator for model Al. Functions inverted are
compressional velocity and density.
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Figure 5.12. Averaging kernels for density computed using data
set II and the correlation operator for model Al. Functions
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Firure 5.12. (cont.)
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Figure 5.13. Averaging kernels for shear velocity computed using
data set II and the correlation operator for model B2. Functions
inverted are shear velocity and density.
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Figure 5.11, We show in this filgure the averaging kernels for shear
velocity computed from model Al using data set II. The correlation
operator 1s the same as before, although naturally shear velocity in
the outer core has been fixed. Most interestingly, we see that the
averages of éhear velocity in the inner core are reasonably localized,
resulting from the inclusion of modes such as ¢S;, 2S5, 5S2, and gS;
in the data set. It can be inferred that the average shear velocity
in the inner core is near the value 3.5 km/sec given by Dziewonski and
Gilbert [1972]. As the radius is increased, the averaging kernels be-
come progessively more peaked. However, for kernels centered in the
upper mantle and transition zone the tradeoff between shear velocity
and density is considerable.

Figure 5.12, This figure corresponds to Figure 5.11, except here the
kernels for density are displayed. As we might expect, the averages
of density in the core given by this data set are very broad. In fact
they are not even localized for radii below about 2400 km, However,
at the very top of the core the averaging kernels narrow considerably,
The kernels centered in the mantle are similar to those for shear
velocity.

Figures 5.13 and 5.14. The averaging kernels shown in these figures

correspond to some of the averaging kernels given in Figures 5.11 and
5.12, except that here we use model B2 and its corresponding correla-
tion operator. By comparison of the kernels used in the derivations

of these two models, the effect of changing the autocorrelation operator

can be seen. Comparison of the kernmels for shear velocity centered
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at 6200 km radius in Figure 5.11 and 5.13, for example, illustrates
how manipulation of the solution autocorrelation operator can be used

to localize the averaging.

5.8 Summary. , In this section we summarize our conclusions.

An inversion procedure has been developed to estimate the radial
variation of compressional velocity, shear velocity, and density in
the Earth. The radial distributions are defined as spherically sym-
metric averages of the actual distributions in the laterally hetero-
geneous Earth, and the nature of this averaging implied by averaging
certain sets of eigenperiod and travel-time data has been examined. For
travel-time data, the spherical averaging is simple if the data
sample a distribution which results from a uniform distribution of
sources and receivers., Since this is difficult to obtain for absolute
times, we have used differential travel times to derive our estimates.
It has been shown that the ;nherent bias in available sets of differential
travel-time data is considerably less than for equivalent sets of absolute
travel-time data. Observations have been presented for the phase com-
binations PcP-P, ScS-S, P'(AB)-P'(DF), and P'(BC)-P'(DF).

The inversion algorithm developed, based on a linear approximation
to the perturbation equations, has been shown to provide a stable
method for estimating the radial variations from a finite set of gross
Earth data. One advantage of this approach is that it allows one to
estimate the resolving power of the data and the resolvability of speci-
fied features in the Earth.

Three estimates of the radial distributions have been derived using
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an extensive set of eigenperiod and differential travel-time data, each
representing a different level of complexity. . Besides satisfying the
data used in the inversion, these models also satisfy extensive sets
of auxillary data.

The resoiving power of the various data sets used in the inversions
has been examined by computing their corresponding averaging kernels.
It has been shown from this analysis that little resolving power is
lost by using differential times in place of absolute times. It has
demonstrated that the nature of the averaging for given sets of gross
Earth data can be manipulated and improved by a judicious specification

of the norm on the space of models.
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Appendix 1

Al.1 Ray-theoretical travel times in a spherically symmetric body.

Suppose that in a sphere S(R) of radius R a signal propogates along a
ray with parameter p at a velocity vo(r} that varies with radius only.
Let P0 = (rO,QO) be the position of the source and PS = (rs,ﬂs) be the
position of the station, where ro,rSE[O,R] and QO,QSE 3S(1), the sur-

face of S(1). The ray-theoretical travel time of this signal is

(Al.1.1) s =

o
"o 2
g
®
<|a
o |un

where ds is a differential element of arc length along the ray path
between PO and PS. Fermat's principle states that the permissible

paths are those for which T, is stationary with respect to path varia-

0
tions.

The travel time To depends on Vor PO’ and PS. We assume that the
station is located on 3S(R), the surface of S(R), so that .= R.

Then, because the velocities are spherically symmetric, T, depends

0
only on vo, A, and h, where A is the angular distance between the
source and receiver, and h is the focal depth. A and h are assumed to
be fixed, and dependence of To on these quantities will usually be
suppressed.

Spherical symmetry implies there exists a function K(r), r€ [O,R],

such that

R K(r
(A1.1.2) To = 5 % = dr.
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Because s(r) is a multi-valued function, the kernel K(r) is the sum of
n+l terms, n being the number of turning points of the ray generalized

to include reflections from and transmissions through discontinuities:

s lds. (r)
(A1.1.3) : Kied = 2, =1 |«
i=1 |

The function si(r) represents arc length along the ith ray segment and

is single-valued. From Bullen [1963],

ds, (1) n(r)
2 2.12 i - il
Here n(r) = r/vo(r), Py is the ith turning radius (p0 = ro = R-h,
pn+1,E r, = R), H[v] is the Heaviside function, and € equals either

+1 or -1 depending on whether the direction of propogation is upward
or downward.
The path of the ray can be traced in the following manner. Let

ni-l = (pi_l,ﬂi_l) be the position vector of the (i-1)th turning point,

Then the position vector along the ith ray segment, Pi(r) = (r,ﬁi{r)),

satisfies the following vector and scalar relationships:

Pi(r) - P x PS = 0,

0
P(x) - M, ; = v, ; cosy,n),
(Al.1.5) €, P

vy, (r) = [T
: foia r' (2 (") -p)

172 dr',

E <E, I

1 P31 =8 T SE Py

The first equation states that the ray path lies in the plane defined

by the source, the station, and the origin of coordinates; the second



-155-
defines yi(r), and the third is from Bullen [1963].

Al.2 The Fréchet kernel for travel times. If the velocity distribution

in S(R) is varied from vo(r) by an amount 6v(r,R), then Fermat's prin-
ciple implies that the perturbation in the travel time, to first order
in 6v, is equal to an integral of the velocity perturbation along the

ray path [Archambeau and Flinn, 1966; Backus and Gilbert, 1969]:

¥ -8v
(Al.2.1) §T = s =3 das
o Vo
This expression can be written as an integral over (r,Q):
R
(Al.2.2) GT(PO,PS) = ‘ a(Po,P ;T,0) 6v(r,R) d9 dr.
0 J3s(1) o
The function a(PO,PS;r,Q) is the Fréchet kernel for the three-dimen-

‘'sional perturbation problem and is given by

. n+l -2 ds. ir)
(Al1,2.3) a(Py,P_;r,0) = Eéi vy (X E%i s[a - o, (0)].

Here §[v] is the Dirac delta distribution on 3S(1), and Qi(r) is de-
termined by (Al.1.5). If the velocity perturbations are spherically

symmetric, the equation (Al.2.2) can be written

R
(Al.2.4) 8T = .I. a(r) 6v(r) dr ,
0
where
(Al.2.5) a(r) = .]. a(P,,P ;r,2) do
as(1) 978

is the spherically symmetric Fréchet kernel for travel times.
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Al.3 Proof of the averaging theorem for travel times. In §3.4 we

stated a simple averaging theorem for travel times. Its proof is a
simple matter. Without loss of generality assume that all sources
and receivers are located on the surface 3S(R). To first order, the

travel time T(PO,PS) between a source located at P, and a station lo-

0

cated at Ps can be written as the sum of two terms:

The first term on the right-hand side of this expression is the travel
time through the spherically symmetric Terrestrial Monopole, defined by
equation (3.2.1). The second term is the first-order perturbation in
the travel time due to an aspherical perturbation &v in the velocity.
The first term depends only on the angular distance A separating the
source and receiver, while the second term depends only on PO’ A, and

the azimuth 7 from P, to Ps'

0
The hypothesis of the existence of uniform distributions of
sources and receivers implies that the probability that a source lies

in the region dﬁo about the point Po and that, for a fixed A, a re-
ceiver lies between the azimuths [ and ¢ + dz is constant. The aver-

aging theorem is proved if we can show that the mean fluctuation 8T

is zero. Because the distributions are uniform, we have

2T
{41.3.7} 8T « f f 8§T(Qy,2) dz dQ; ,
s(1) 40

where GT(QO,C) is given by equation (Al.2.2). Equation (Al.2.2) can

be integrated immediately with respect to Q. This yields

O
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A R n+l
(A1.3.3) 8T(2;,2) =f L a (@) sv(x,q) dr,
0 i=1
where ai(r) = - vo_z(r) Idsi(r) /dr|. In equation (Al.3.3) ﬂi will

depend on r, QO' and ¢ through the relations (Al.l.5).
Now, we substitute (Al.3.3) into (Al.3.2) and interchange the

order of integration. We obtain that 8T is proportional to

R ntl 27
(A1.3.4) f ! am f f sv(r,2,) dg dg, dr.
0 i=1 s(1) Jo

At any specified radius r, the locus of the intersection of S(r) and

the ith ray segment describes, for fixed @, as ¢ is varied, a circle

0
on S(r). These circles cover S(r) uniformly, and, therefore,
2T
(A1.3.5) f 6v(r,Qi) dz dQO « f sv(r,Q) dQ.
s(1) 40 S(1)

By definition, however, aspherical perturbations average to zero when
integrated over the sphere. Thus, the integral on the right-hand
side of (Al.3.5) is zero, implying that 6T is zero. This proves the

averaging theorem.
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Appendix 2

A2.1 PcP-P differential travel-time data [nuclear explosions].

EVENT * STATION A TIME OBS-JB
' (deg.) (sec.) (sec.)
KOGAN (S. PACIFIC)
uGL 42.05 1i4a7 -0.8
(= Q ) TEM 46.68 92.8 -1.3
TEM 46.72 93.4 -0.5
TEM 46.90 89.7 -3 5
KAB 61.75 40.7 +0.4
coL 62410 40.0 +0.2
IRK 63.20 37.2 +0.1
SEM 77.88 10.5 0.5
BUCHBINDER (BILBY)
AAM 25.36 #13.3 -0.3
(h = 0 ka) ATL 26,06 207.5 sl o8
LND 27.19 200.8 +0.0
BL~- 27.48 198.6 =043
BLA 28.28 192.6 ~1.0
csC 28.57 191.4 ~O ok
RR— 29.11 188.0 ~0.2
SCP 29.75 184.3 +0.3
orT 31.17 175.5 +0.3
DH- 31.86 171.0 +0.1
coL 33,61 159.8 -0.8
HN— 36.56 1435 =) B
HW- 38.48 133.5 ) 2
RES 39,03 130.9 +0.2
MBC 39,30 128.1 =1 43
NP" 39032 128-0 —103
8HP 43.24 107.9 =149
SJG 4736 90.4 -0.9
ALE 48.90 84.3 il
CAR 51.40 o -1.2
TRN 55.56 62.0 $2.2
KON 73.71 1%.1 +1.0
KANAMORI (LONGSHOT)
i TSK 31.61 171.3 -1l.1
MYK 15,27 149.3 ~1.%
SHK 37.28 138.8 ~1.1

SEO 38.91 129.8 -1.5
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EVENT STATION A TIME OBS-JB
(deg.) (sec.) (sec.)
LAMBERT ET.AL.(LONGSHQOT)
(h = km) WH-— 264,60 204.0 -0.8
: WL- 29.80 181.9 4.6
MTJ 31.60 171.5 =] 1
S1- 31.80 1687 -0.6
PHC 32.90 1951%9 =26
M8C 34,00 155.6 =29
NP—- 34,00 156.1 -2.0
PG~ 34.50 156.2 +1.0
KIP 34.80 152.2 -1.8
HON 34.90 151.0 -2e5
cMC 35.00 150.8 —-1..8
YKA 36.10 145.9 -0.8
VIC 36.20 144.7 -l.3
YKC 36.20 145.3 =Lnd
KV- 36440 145.0 =0.2
TUM 37.20 140.5 -0.2
SHK 37.30 139.2 =1e5%
JP= 37.40 138.8 -0.3
HIL 37.60 1375 =1=9
PAH 37.80 136.2 =1=6
LON 38.00 1357 -0a7
PNT 38.10 135.2 -0.8
COR 38.20 134.4 ~1s1l
SEO 38.90 129.5 —Ze4
RM&6 39.40 132.1 + 25 2
EDM 39.90 1274 +0.9
LDS6 39.90 129.0 +*25
YR~— 40.10 123.2 e P |
BMO 41.70 116.5 -0.4
HHM 41.80 116.6 +0.2
ORV 42.10 113.8 -0.9
BA6 42.50 11241 =} «3
BKS 42.70 111.5 =he 9
BRK 42.70 112.5 =s 3
ALE 42.80 109.7 ~2.4
PCC 42.80 11izl . !
NRR 43.10 109.2 ~1.2
BLC 43.40 111.1 +1.8
GCC 43.40 108.5 -1lsl
MHC 43.40 108.3 -0.6
UNN 43.70 106.6 ~-lal
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EVENT STATION A TIME 0BS-JB
(deg.) (sec.) (sec.)
LAMBERT ET.AL.{(LUNGSHOT, CONT.)

JAS 43.80 106.3 -0.9
HLZ 44.10 10547 +0.7
HV- 44,20 106.8 +1.6
PRS 44,20 104.4 b P |
SH6 44,20 104.8 -1.0
LLA 44.30 103.3 -l.4
BOZ 44,60 103.6 +0.3
PRI 44,80 102.0 —1%3
MN- 44499 997 -2
CH6 45.20 100.3 -0.9
FFC 45.20 102 .7 +0.1
EUR 45,60 97.8 ~la2
TIN 45.70 974 ~1a2
TNP 45,70 97.5 =~lel
TF= 45.80 97.0 =]
KRC 45.90 96.7 -l.4
WUG 46.30 96.8 +J.1
I1SA 46440 94,6 -0.7
SaC 46.40 93.9 -1.4
P16 46.60 97.0 #2241
ETL 46.70 93.9 =-0a.7
CLC 46.50 92.8 -l.0
LAO 47.10 92 2 -0.2
MWC 47.60 90.3 +0.3
PAS 47.60 89.0 =] 3
GSC 47.70 89.6 0.2
RVR 48.20 88.6 +0.8
BCN 48.60 85.9 -l.2
IRF 48.60 84.8 -1.6
FGU 48.70 86.0 +0.4
PLM 48.90 84.0 —0.6
uBo 49.00 84.0 -0.8
KN- 49.10 83.4 "'1.0
BAR 49.50 82.2 ~Ds 1
HAY 49,50 83.3 +0.7
RG~- 49.60 83.6 +1.6
CP— 49.70 81.7 +0.1
GCA 49.80 8l.0 +0.5
RCD 50.40 79.2 +1.0
RK- 51.50 75.9 +1.0
LAR 50.70 77.9 —-2.8
TFO 51.80 72.8 -0.6
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EVENT STATION A TIME OBS-JB
(deg.) (sec.) (sec.)
LAMBERT ET.AL.(LONGSHOT, CONT.)

" SA6 51.90 72.8 -0a7
WN— 52.60 T0.6 +0.7
TuC 53.40 6T7.7 +0.9
TRG 53.90 66.1 +0.5
ALQ 54.30 64.5 +0.9
GWC 56.00 57.8 -0e4
LE— 56.00 56.9 =ik w8
MHT 57«30 55.2 +1.0
HKC 57«40 54.0 =-0e5
WWE 57040 5"’.6 +Ooq
BAG 57.90 5245 -0.3
LUB 58.00 531 +0.7
MAN 58490 48,2 -3.6
WMQO 59.20 48.8 +0.2
Sv3 60.80 44,6 +D.4
ROL 60.90 47.0 *2.4.2
GvV- 6140 42.2 +0.0
JCT 61.40 41.3 -0.9
DAL 61.60 41.8 =0.2
AAM 6230 42.3 +t2.4
DAV 62.30 40.3 £04:3
EN- 62.30 42.3 ¥ 261
KJN 62.70 40.2 #].e2
LND 63.00 374 -0.6
MLF 64.20 32.9 -2.0
SJ- 6‘9.40 33.3 "1.3
CPO 66.10 274 ~%s1
sce 66.40 30.8 +0.8
PMG 66.60 28.6 -0.8
DH- 66.70 32.3 +3.6
HN-—- 66.90 30.0 +l.6
FN- 67.20 29.3 +tle.4
BLA 67.70 28.2 +1.5
SFO 67.80 27.1 +0.8
NHA 68.10 269 —bob
PAL 68.20 28.7 +2.6
ATL 68.40 29.3 +3.5
unob 68.40 24.5 —-2+4
STJ 71.80 15.5 =3a il
BE- 73.10 15.5 -2'4
RAR T4.70 14.0 -1.0
DOU 78.70 4.4 ~4.8
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A2.2 PcP-P differential travel-time data [deep-focus events].

EVENT STATION A TIME 0BS-JB QUAL.

(deg.) (sec.) (sec.)

MINDINAO

PERU=BRAZIL A

(h = 587 km) BEC 41.67 102.9 =0'wl 4
SaM 43.64 92.0 =243 4
ATL 44,01 92.4 =0.3 5
BLA 46.79 8046 =07 4
GEO 47,99 769 +0.3 4
0GD 49.94 96. 4 0.0 4
Scp 49.96 69. 4 +0.1 &
WES 5Yal7 65.0 0.0 4
Lus H1s30 64.6 +0.2 5
AAM 52.32 6l.2 +0.1 4%
ALQ 54.93 53.2 +0 .4 5
GOL 57.85 4442 ~0e.1 &
RCD 60.24 36.5 -1.6 4
GSC 61.53 34.1 =0.8 %
DUG 62.20 32.5 -0.8 %
BKS 656.58 23:1 -1.0 &

FIJI B

(h = 627 km) CTA 22s37 147.2 =13 3
RAB 32.49 147.5 =-0.3 5
GUA 49.24 70.2 -0.8 3
MUN 58.14 41e5 =-le% 2
DAV 61.01 35.9 +0.4 4
MAN 68«55 19.8 =0.3 3

ARGENTINA

(h = 571 km) BOG 32.33 150.4 =-0.6 3
SJG 44,01 93T +0.5 3
LPS 47.50 TTel -1.8 2
ATL 62.5% 31.8 -1.0 1
SPA 64.09 63.0 +0.3 4%
BLA 65.03 244 -2s9 2
WIN 71.97 15.3 +0.2 3
SBA 72.30 l4.4 =-0.2 1
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EVENT STATION A TIME 0OBS-JB QUAL.
(deg.) (sec.) (sec.)

PERU=BRAZIL B

(h = 598 km) . SJG 2747 173.9 =4 4.6 1
B8EC 41.68 101.8 -0.8 2
SHA 42.68 98.3 +0.1 4
SOM 43.63 93,1 =09 3
BLA 46.79 80.2 -0.8 &
JECT 47.87 T6.4% =0e4 &
GEO 48.00 765 +0.2 “
0GD 49.95 69.1 0.0 5
NES 51 -18 6"-7 -001 5
LuUB 51.37 64.1 0.0 5
AAM 52.32 61.0 +0.1 5
ALQ 54.92 53.1 +0.5 5
TUuC 5575 50s1 0.0 5
GOL 57T.85 43.6 -0.6 5
GSC 61.53 33.6 i 7 | 5
DUG 62.19 Al.4 -1.8 3
BOZ 65.31 24.8 -l.6 4

JAVA SEA A

(h = 606 km) CHG 2T7.9% 174,.8 -0.4 1
CTA 35.79 131.2 +0.2 2
GuA 3T T3 117.5 =3.6 2
RIV 45.36 85.9 -0.6 2
MAT 48.78 T2«7 0.5 3
HEL 65.47 2"1.7 "1 03 3

FIJY €

(h = 643 km) TAU 35.44% 129.0 -2.4 2

' GUA 49.15 70.8 -0.1 h
MUN 58.04% 43.2 +0.3 4

CHINA

(h = 555 km) CHG 35.63 130.2 -3.4 &

MARIANAS .

(h = 602 km) HKC 29.28 166.3 -1.0 4
SNG 44,79 87.2 -1l.8 2
SHL 49 .62 T70.1 -0.1 2
coL 63.59 30.2 +0.2 2
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EVENT STATION A TIME 0BS-JB QUAL,
(deg.) (sec.) (sec.)

SEA OF OKHOTSK
ANP 35.21 130.9 -4,1 4
BAG 43.23 92.6 =37 3
NOR 46.30 83.6 +0.2 2
KBS 464,95 802 -0.7 3
KEV 51.85 623 -0e6 3
KTG 5761 44 .6 -0.5 3
UME 58.23 42.1 -1s2 5
NDI 58.43 42.6 -0.3 ]
NUR 59.83 38.1 -5 4
SNG 61.06 34,1 -2e3 4
PMG 61.47 34,1 -1l.0 3
AKU 62.18 32.3 -0.2 2
DUG 62.67 32.7 +0.4 2
QUE 63.52 28.8 =1.6 2
GOL 66.88 2322 =04 2
TUuC 69.62 18-3 =04 2
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A2.3 ScS-S differential travel-times [deep-focus events].

EVENT STATION A TIME OBS-JB  QUAL.
(deg.) (sec.) (sec.)

FlJ41 A

(h = 535 km) ~ RIV 31.30 307.0 9.0 4
CTA 33+ 18 287.2 48 o2 %
ADE 41l.44 211.0 +t6.6 3
KIP 43.57 182.8 -4.6 2
GUA 47.55 16l.3 +3.4 &
MUN 59.91 89.1 +5.8 5
DAV 60.33 89.0 +7.8 3
BAG 68.80 50.3 +543 2
LEM T2 <44 32.3 -0.7 3
SEO 75.14 30.2 +4.8 &
BKS 76.69 19.5 =2 +0 2

NEW HEBRIDES

(h = 641 km) R1V 26512 345.6 +7.3 5
TAU 35.42 2573 15 &
ADE 35.66 2517 +4,2 3
GUA 36.76 2367 =09 2
MUN 52.65 120.5 L ) | &
BAG 57«40 95.+5 +3.0 3
LEM 61.92 75.0 +4,.8 4
SEQ 65.03 61.8 +5.0 |
HKC 65.48 55.9 +0.9 2
CHG 1122 13.9 4.7 &

MINDINAQ

(h = 605 km) SEO 29+93 310.5 +3.6 4
CTA 35.34 258.4 +5,.2 3

PERU-BRAZIL A

(h = 587 km) SJG 27.45 342.6 +7.6 2
LPS 29.16 321.8 +53 3
SOM 43.64 182.4 =)o &
ATL 44,01 i83.2 +2.0 5
DAL 48420 1507 =0el 3
0GD 49,94 132.6 —6.5 S
sce 49.96 1325 -6.5 2
WES 5117 . 133.9 +2.8 !
LuUB 51e 3T 130.2 +0.4 3
AAM 5232 125.8 +1.9 4
ALQ 54.93 108.7 +0.4 £
GOL 57.85 90.9 -1.3 L
RCD 60.24 36.5 -2.0 3
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EVENT STATION a TIME 0OBS-JB QUAL.
(deg.) (sec.) (sec.)
PERU—-BRAZIL A [CONT.)
GSC 61«53 Tlel 2.7 &
COR 71.00 37«3 +0.8 &
" PTO 16413 204 -l.6 3
TOL 78.81 ' 16.6 +0.6 3
so8 82.82 1Z2+5 +3.6 1
FIJI B
- RIV 29.18 319.1 +7.2 3
o B teond CTA 3237 285.0 +4.9 4
RAB 32.47 28549 +5.9 4
ADE 39.44 219.0 437 3
KIP 46.57 164.2 +4.0 4
GUA 49.24 1375 +4.3 3
MUN 58.14 90.5 +l.4 5
MAN 68:55 473 +3.5 &
BAG 69.84%4 38.4 =1.0 1
ANP 73.68 34.6 +6.9 2
COR 82.78 9.9 *1.::1 3
TUucC 84.13 l4.6 +7.6 1
LON 84.94 l4.1 +8.0 1
ARGENTINA .
- SOM 27.09 342.0 +1.7 3
O LR BOG AZ2e3% 28TeT +2.8 5
GIE 36.40 246.5 +0.7 5
BHP 38+35 231:5 +3.2 4
LPS 47.50 1561 +0.72 3
BEC 58.13 94.6 +3.3 3
ATL 62.54% T2<8 +3.2 5
SPA 64.09 63.0 +0.3 4
BLA 65.03 59.1 +0.3 S
OXF 65.23 60.7 +2 &8 5
GEO 65.94 553 +0.3 5
JCT 66.33 56,7 +3:2 5
0GD 67.64 48.0 -0.5 4
SCP 67.94 45.8 -1.5 &
WES 68.53 46.0 +0.8 3
FLO 69.41 46.1 » +4.,0 5
LuUB 69.87 44,3 +3.8 5
AAM T0.64% 39,7 * 1w 5
soDB 71.22 36:5 +0.4 3
SBA 712.30 33.4 +0.7 2
TUC 1317 30.6 +2.1 4
GOL T6.42 22.5 +0.9 5
GSC T19.44 14.7 -0.3 4
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EVENT STATION A TIME 0BS-JB  QUAL.
. (deg.) (sec.) (sec.)
PERU-BRAZIL 8
STG 27.47 3431 % B 3
(h = 598 km) . gec 41.68 202.2 +3.4 1
SHA 42.68 191.6 $0.7 2
ATL 44.01 182.6 +2.0 4
BLA 46.79 161.0 +0.8 5
JcT 47.87 152.7 +0.1 4
GEO 48.00 146.1 P 2
0GD 49.95 131.8 s F 4
WES 51.18 133.8 +3.3 4
AAM 52.32 123.3 +2.9 4
ALQ 54,92 109.1 +1.2 2
TUC 55.75 107.8 +4.6 3
GOL 57.85 90.4 -1s3 4
GSC 61.53 73.0 0.4 2
DUG 62.19 72.7 +2.3 3
8OZ 65,31 60.4 +3.5 2
BKS 66.58 54,3 +2.5 1
COR 71.00 36.4 +0.1 3
LON 71.40 B oh =D 6 1
PTO 76,15 21.2 -0.6 2
TOL 78.83 14.9 -0.9 3
VAL 80.04 10.5 -3.0 1
JAVA SEA A
CHG 27.94 330.3 $2,3 3
(h = 606 km)  ,\p 32.26 282.1 -0.8 2
PMG 3466 2864, 4 +4.9 4
CTA 35.79 250.6 +1.7 5
SHL 37.14 234.8 +1.0 3
GUA 37.73 735.0 3,5 3
SHK 44566 175.5 +0.2 3
RIV 45.36 169.9 -0.2 3
TAU 47.99 152.0 +0.7 3
NDI 48.31 153.4 +4.3 4
MSH 64, 82 63.7 +5.0 %
WEL 65.47 56.9 +0.9 2
AAE 74.83 26.6 +1.6 3
AF 1 74.92 33.3 +9.5 2
NAT 75.47 25.0 # 6 5
SBA 77.05 17.8 ~f B 3
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EVENT STATION A TIME OBS-JB  QUAL.
(deg.) (sec.) (sec.)
FIJI C
TAU 35,44 $53.% +3.9 5
(h = 643 km) . ,1p 46,62 1859 +5.0 5
GUA 49.15 144.6 3.1 4
MUN 58.04 90.4 *1ah 5
SHK 71.66 33,9 +0.6 4
LEM 71.84 33,0 +0.3 2
ANP 73.59 26.2 -1-5 ‘l
COR 82.85 8.9 +0.2 2
CHINA
BAG 27.00 343.7 +l.1 4
(h =555 km) puy 35,09 260.0 +0.9 4
coL 49.38 143.9 Bk 1
LEM 53.05 119.5 ol o3 1
PMG 53.29 121.5 $2,2 3
MSH 54413 114.4 +0.2 4
TAB 62.29 12.4 +1.2 3
SHI 6272 694 +0.1 5
IST 71.36 T +0.6 1
HLW 77.14 1642 il O %
MARIANAS
CHG 43.69 185.2 +2.2 5
(h = 602 km)  gpng 44.79 175.5 +1.0 3
SHL 49.62 141.0 +0.5 5
KIP 52.37 120.7 =2 2 2
coL 63.59 64.8 +0.8 3
NIL 65.17 5443 -3.0 3
KOD 65.82 574 +2.7 5
MSH 75.79 27.2 - 2
COR 78.23 17.9 +0.9 4
LON 78.69 15,2 -0.9 2
SHI 83.28 6.6 ol 4
SEA OF OKHOTSK
coL 32.77 280.1 +0.3 4
(h = 580 km)  pnp 35,21 256.6 +0.4 3
HKC 41.30 204.4 1ot 3
MAN &4%+56 1777 +0.2 5
NOR 46.30 1673 +2.7 4
KBS 46.95 1621 +2.1 5
KIP 48.92 148.6 +2.3 3
DAV 49.73 140.7 =51 4
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EVENT STATION A TIME OBS-JB QUAL.
(deg.) (sec.) (sec.)
SEA OF OKHOTSK (CONT.)

KEV 51.85 128.2 L . 5
" CHG 52.56 1210 -le7 3
LON 53.42 11894 +0.7 <
AR 54413 193 5.5 3
RAb Y0eld 99e2 L 3
GDH 57.49 97.3 +3.0 5
KTG 57.61 94 .6 +0.9 4
UME 58.23 90.7 ~{.ei? 5
NDI 58.43 89.8 +0.4 5
BKS 59.17 85.9 +0.3 3
NUR 59.83% 320 e &
SNG 61.C06 73.9 —2+3 4
PMG 6le4a’d T73.4 -0.9 2
HNR 61.82 4.5 +1.8 4
AKU 62.18 2w *1la3 3
DUG 62.67 70.8 +& ad. 2
QUE 63.52 675 +2 o9 4
GSC 64405 64.7 +2.0 3
KON 64.32 60.1 -l.4 5
GOL 66.88 55.6 +4.5 2
TAB 69.05 42 o4 e § R &
TUuC 6S.62 45,0 +3.8 2
SHI 72426 31.3 -l.4 3
AF 1 13213 31.3 *1las2 3
STU T4.36 26.8 +0.1 &
VAL T4.40 245 —=Zind. 2
AAM T14.52 27.9 +1l.6 4
IST T4.57 26.9 +J.8 5
FLO T&.67 29.2 +3.4 3
TRI 1597 2357 *1l.2 5
SCP 77.98 20.1 A 3
OXF 78.66 18.4 +2.0 5
0GD 78.90 16.0 -0.5 1
ATU 79.31 16.0 +0.9 3
BLA 80.17 12.8 -0.6 &
ATL 8l.81 13.5 +3.0 3
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A2.4 P'(AB)-P'(DF) differential travel-time data [deep-focus events].

EVENT STATION A TIME 0BS-JB
(deg.) (sec.) (sec.)
HAI
(h = 600 km) €Ll 145.40 E -le7
" JEN 146.00 3.4 =25
LWI 146.30 3.9 =3.2
BNS 146.70 6e.1 =19
DUR 147.00 Tad e T 4
cCcp 147.90 8.7 =243
STU 148.60 11.2 =-1l.7
TUB 148.80 10.9 =2e5
STR 149.00 11.4 =25
HLE 149.00 11.2 =2 o
PRU 149.70 14.1 s
BNS 150.40 15.3 =24
DUR 150.60 151 =3el
TUB 152.40 20.7 =2.6
JEN 152.40 20.0 =33
MSS 152.80 22.1 =23
PAR 133.00 21.6 =34
BNS 153.50 24.0 =24
NEU 154.30 264 “2ed
STU 155.00 28.9 =149
PTO 155.30 2860 =3 el
STR 155.60 30.1 =245
PAR 156.30 3245 =22
CHU 156.70 33.4 =245
MON 160.10 4543 -l.1
ALG 164.90 60.4 -2 a2
SET 165.00 6le 6 -l.4
BAB 171.40 86.0 = .
TAM 173.70 944 e T

TAM 175.20 100.9 -1l.5



EVENT STATION A TIME 0OBS-JB
(deg.) (sec.) (sec.)
ENGDAHL (PERU=ERAZIL A)
LEM 164.19 5%.4% =07
(h =590 km) - pxc 165.80 63.0 -2.5
BAG 166.27 645 =-3.1
CHG 166.51 6802 -0.2
ENGDAHL (FIJI B)
KSA 146.53 6.3 =1l.3
th =633 0 ey 147.52 10.3 +0.2
RAC 147.98 8.3 =-3.0
BNS 149.79 11.9 =441
TNS 150.33 14.6 =2.9
KRL 151.51 15.4 =54
PRK 151.64 18.9 =2l
MSS 152.21 19.3 =34
FEL 152.67 20.1 =3 .9
ZUR 153.06 224 -2.8
TRI 153.25 23.3 =24
BES 153.59 25.5 =le2
NEU 153.70 23.9 =-3.1
ATH 154.02 24,3 =36
RSL 155.03 25.8 =5 <l
LNS 155.37 288 =341
IS0 156.41 32.5 =2 w5
RCM 157.03 32.4 =445
10]-] 158411 36.0 -4 42
PTO 158.52 38.3 =341
LIS 160.52 4445 =333
TOL 160.85 44 .6 =443
SEX 164.44% €3.4 +2.4
AVE 165.86 61.3 -4 .8
TAM 175.28 101.5 =le3
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EVENT STATION A TIME OBS-JB QUAL.
(deg.) (sec.) (sec.)
JAVA SEA A
- BEC 153.61 23.4 -3.3 2
= 908 et " GIE 156.44 32.7 -2.4 2
ARE 157.37 33.9 -4 .0 4
LPB 157.61 33,9 -4.7 5
NNA 159.94 42,7 -3.7 4
SJG 167.87 70.3 -3.2 2
TRN 172:27 89.3 -1.2 2
BOG 173.49 95.6 +0.2 2
CAR 175.46 101l.4 -2.1 5
JAVA SEA B
E ARE 157.08 34.2 - -2 5
ol 157.47 3447 =3,5 4
NNA 159.37 41.4 -2.7 5
Qul 166,79 671 -2.4 3
SJG 168.05 73.0 -1.2 2
BOG 172.46 92.1 -0.8 4
TRN 173.12 92.4 -1.5 5
CAR 175461 102.6 -1.5 5
FLORES SEA
" SHA 145.28 2.8 -1.8 3
= RIS g NNA 155.62 28.7 -3.9 4
LPB 155.77 29.2 -3.9 4
BHP 161.62 49.6 -1.8 5
SJG 167.78 70.7 -2e4 4
TRN 176.21 102.5 -4.2 5
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A2.5 P'(BC)-P'(DF) differential travel-time data [deep-focus events].

EVENT STATION A TIME 0BS-JB
(deg.) (sec.) (sec.)
HAI
(h = 600 km) CLL 145.40 1+0 -0.3
+ KEW 146.50 2+5 +0.6
BNS 146.70 2.8 +0.8
DUR 147.00 3el +0.9
cop 147.90 4.0 +l.4
KRL 148. 40 bo6 *1e7
STuU 148.60 S5el +2.0
TUB 148.80 5.0 +1.8
STR 149.00 4.8 +1.5
HLE 149.00 50 +1e7
CLL 149.00 500 e
PAR 149.20 Se3 +1.9
PRU 149.70 55 +1.8
BNS 150.40 6.0 +] .8
VIE 150.60 6.6 *2e3
GAR 150.70 a5 *1 o
CFF 152,20 T +1.5
STU 152.70 s (- +1.3
TUB 152.40 TT +2.1
JEN 152.40 7«0 +1.4
MSS 152.80 Tel +1.8
PAR 153.00 Tl +1.1]
BNS 153.50 Tad 1 o2
MON 153,70 9.4 20T
NEU 154.30 9.0 *YeT
GAR 154.40 9.0 +1.6
STU 155.00 : 103 +2.4
PTO 155,30 8.3 +0a1
MSS 155.60C 9.9 *1.45
P AR 156.30 10.0 +1.0
CHU 15670 b 8 1981 o 146
MON 157.30 12.8 +2.9
GAR 157+80 1d+3 +l1.0
ENGDAKL (FIJI B)
(h = 639 km) KRA 147.39 Sal +2:7
JER 147.52 26 +0.1
CHZ 147.52 o § +2.6
RAC 147.98 41 +l.4
VAL 148.07 4.6 +l.9
GLL 148.138 Selt +2.5
HLE 148.44 5.0 +2.0
cMP 148.71 Swl +2.6
ISE 148.93 4.5 +l1.2
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EVENT STATION A TIME 0BS-JB QUAL.
(deg.) (sec.) (sec.)
ENGDAHL (FIJI B, CONT.)
PRA 149.15 5.6 +2.2
KEW 149.70 506 19
© BNS 149.7S 5T +1.9
GG- 150.30 6.6 +2.5
TNS 150.33 5.4 +2.3
DOU 150.93 9.0 +4.4
HEI 151.08 Tw3 +2.6
WRM 15111 7.0 +2«3
HLW 15113 T8 +3.1
KRL 15151 8.4 +3.4
STU 15158 7.6 +2.6
PRK 151.64% 75 +2:5
PDA 151.78 6.2 +lal
TUB 151.86 Tel 2.2
STR 152.03 9.1 +3.8
MSS 15221 8.1 +2.6
ZAG 152.39 9.6 +4.,0
FEL 152.67 8.8 +3.0
ZUR 15306 99 ¥3aT
TRI 153225 8.8 28
BES 153.59 10.0 +3.4
NEU 15370 9.7 +3.0
ATH 154.02 110 +4.0
VAM 155.01 11.0 +3.1
RSL 155.03 10.9 +3.0
LNS 155437 ile.4 +3 o2
JAVA SEA B
(h = 599 km) SHA 145.28 1.6 +0.4 3
NNA 155.627 9.5 +1.0 3
LPB 19577 9.9 *1 w3 2
FLORES SEA
(h = 618 km) OXF 144,76 ) [P | +0.3 5
GEO 146,02 1.8 +0.1 2
ATL 148.22 4.3 *1s5 5
SHA 148.28 4.1 +1.2 4
LPB 157.47 1t a0 +1.0 2
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Appendix 3

Tables A3.1 - A3.3 display the three final inversion models
(Al, B1l, and B2) derived in section 5.5. Besides listing the defin-
ing parameters v_, vs, and p, we have also listed the values of the
seismic parameter ¢ = vp2 - %—vsz, the bulk modulus K, the shear
modulus u, the modulus A, the Poisson ratio o, pressure, and gravity.

Tables A3.4 and A3.5 show the fit of the models to the basic
data set described in section 5.3 of the text. The relative errors
are computed as (computed - observed)/observed. For comparison we
list the standard errors in the mean of the data and the associated
symmetric 95% confidence intervals computed from critical t values of
the student's t-distribution [Freeman, 1963]. This allows for the
fact that the sample variances are only estimates of the true vari-
ances.

0f the 177 eigenperiods listed in Table A3.4, model Al fits 86
within their 957 confidence intervals, model Bl fits 127, and model
B2 fits 115. We conclude that Bl is the most satisfactory model from
this point of view.

Table A3.6 gives observed and computed absolute travel times
for teleseismic distances useful in evaluating the inversion models.
Comparing model Bl with P times from the 1968 Herrin Tables, .we ob-

. serve that the difference in baseline is approximately 0.8 seconds.
The same comparison with Hales and Roberts [1970a] S times indicates

a baseline shift of approximately 5 seconds.

Table A3.7 1lists additional differential travel time data.
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Table A3.6
Fit of the models to absolute travel time data

Phase A J.B. '68 Tables Al Bl B2
(deg) (sec) (sec) (sec) (sec) (sec)
P 30 372.5 369.5 370.5 370.9 370.6
ool - 416.1  413.3 414.5 4144 414.2

focus)

40 458.1 455.7 456.8 456.5 456.4
45 498.9 497.4 497.3 497.0 496.8
50 538.0 535.2 536.0 535.6 535.5
55 575.4 572.2 573.0 572.6 572.5
60 610.7 607.4 608.3 608.0 607.7
65 644.0 640.9 642.0 641.7 641.4
70 675.4 672.7 673.7 673.6 673.2
75 705.0 702.6 703.5 703.5 703.1
80 732.7 730.6 731.4 731.5 731.0
85 758.5 756.6 757.4 757.4 756.9
90 782.7 °  780.7 781.7 781.5 781.1
95 805.7 803.9 804.9 804.6 804.2
PcP 30 554.9 552.1 552.1 551.9 551.7
yeealE 568.6  565.9 565.9  565.7  565.5
40 583.9 581.1 581.2 581.0 580.8
45 600.5 597.7 597.9 597.7 597.5
50 618.3 615.5 615.8 615.6 615.4
55 637.0 634.3 634.6 634.4 634.3
60 656.6 653.9 654.3 654.1 654.0
65 676.9 674.2 674.7 674.5 674.4
70 697.8 695.1 695.7 695.5 695.3
75 719.1 716.5 21t 716.9 716.7
80 740.6 738.0 738.8 738.5 738.5
85 762.3 759.9 760.8 760.5 760.5
90 784.2 781.9 782.9 782.7 782.7
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Table A3.6 (cont.)
Phase A J.B. '68 Tables Al B1 B2
(deg)_ (sec) (sec) (sec) (sec) (sec)
PKP 180 A 1330.6  1327.8 - - 1328.5
(zurface 170 1286.3  1283.7 1284.0 1283.4  1283.6
ocus)
160 1242.7  1239.7 1239.9 1239.3  1239.3
150 1200.2  1196.9 1197.3 1196.8  1196.6
145 B 1180.4  1178.0 1178.0 1177.4  1177.3
145 B 1179.3  1174.4 1178.0 1177.4  1177.3
150 1190.7  1188.1 1192.7 1191.8  1192.0
155 C  1201.7  1201.0 1205.3  1204.3  1204.6
110 D 1113.2  1113.0 1114.8 1114.0  1114.9
120 1132.7  1132.1 1133.6  1132.7  1133.0
130 1152.0  1151.3 1152.3 1151.4  1151.8
140 1170.5  1170.1 1170.4 1169.5  1170.0
150 1187.4  1186.8 1187.2 1186.2  1186.8
160 1200.8  1200.0 1200.9  1200.0  1200.4
170. 1209.2  1208.4 1209.8 1208.9  1209.3
180 ¥ 1212.2  1211.0 1212.9  1212.1  1212.4
PKiKP 10 996.9" 996.9 996.2 996.3
(surface  ,, 1000.1 1000.3  999.6  999.6
focus)
30 1005.7 1005.8 1005.1 1005.1
40 1013.2 1013.4 1012.7 1012.8
50 1022.8 1023.0 1022.3 1022.4

*
Data for PKiKP from Engdahl et.al. [1970, Table 1].
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Table A3.6 (cont.)

Phase A J.B. H&R [1970a] Al Bl B2
(deg) (sec) (sec) (sec) (sec) (sec)
S 30 670.2 669.5 672.0 675.0 671.7
(surface. 5 230  749.0 751.5  752.8  751.9

focus)
40 824.5 825.7 829.5 828.8 828.6
45 897.9 899.5 704.2 902.5 903.1
50 968.6 970.5 975.9 973.9 974.6
25 1036.8 1038.7 1044.4 1043.2 1043.8
60 1102.6 1104.1 1109.7 1109.2 1109.6
65 1165,5 1166.7 1172.4 1172.5 1172.9
70 1225.6 1226.4 1233.1 1233.2 123357
75 1282.6 1283.2 1290.4 1290.6 1291.1
80 1336.5 1337.3 1344.9 1344.8 1345.3
85 1387.3 1388.5 1395.8 1395.7 1395.5
90 1435.5 1436.9 1444,2 1443.7 1442.0
95  1478.2  1482.4 1489.1  1488.6  1490.6
ScS 30 1011.0 1016.6 1016.4 1016.7
(surface 35 1036.4 1042.2  1042.0  1042.4
focus)

40 1064.6 1070.6 1070.5 1070.8
45 1095.1 1101.7 1101.5 1101.9
50 1127.8 11351 1134.8 1135:2
55 1162.5 1170.2 1169.9 1170.3
60 1198.8 1207.0 1206.6 1207.1
65 1236.4 1245.1 1244.7 1245.2
70 1275.2 1284.2 1283.9 1284.5
75 1315.0 1324.2 1323.9 1324.5
80  1355.5 1364.9  1364.6  1365.4
85 1396.5 1406.3 1405.8 1406.8
90  1437.8 1447.9 1447.3 1448.5
95 1479.2 1489.5 1489.0 1490.6



Fit of the models to auxillary differential travel time data
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Table A3.7

Phase A H&R Al Bl B2
Combination (deg) (sec) (sec) (sec) (sec)
*
SKKS-SKS 85 8.2 6.4 6.4 6.3
(surface 90 15.4 13.4 13.4 13.2
focus)
95 23.9 23.0 22.8 22.7
100 33.9 34.1 33.9 33.9
105 45.2 £6.7 46.2 46.1
110 57.9 59.8 59.4 59.3
115 72.0 73.9 73.5 73.6
120 87.6 88.8 88.5 88.6
125 104.8 104.7 104.5 104.2
SKS-S 85 6.4 B 7.0 6.3
(i“rface 90 22.0 24.8 24.9 22.7
ocus)
95 39.4 42.5 42.6 44.1

*
SKKS-SKS data from Hales and Roberts [1971, Eqn.3].

t

SKS-S data from Hales and Roberts [1970a, Table 4].



