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ABSTRACT

The differential elastic scattering cross section for protons
from Li6 nuclei has been measured for energies from 0. 45 Mev to
2.9 Mev at six different angles. A measurement was also made of
the Lib(p, a.)He3 reaction cross section in order to determine its
absolute value. The scattering data is consistent with an s- and p-
wave phase shift analysis with a p-wave 5/27 state at about
Ep(Lab) = 1. 84 Mev, with resonant parameters consistent with the
parameters previously assigned to the corresponding mirror level in
Li7, and a very broad s-wave 1/2+ state near or above E_(Lab) =
2.76 Mev. The data is also consistent with a p-wave 3/2” state
with a different behavior of the s-wave scattering at higher energies,
if an appropriate channel spin mixture is chosen. A p-wave 1/2°
state is not consistent with the data. No evidence for the existence
of a 3/2+ state near EP(Lab) =1 Mev with an appreciable l"p/I‘

has been found.

The stopping cross section for protons on lithium follows the

Bloch formula from 0.8 Mev to 2. 8 Mev.
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I. INTRODUCTION

One of the most informative techniques available to the ex-
perimental nuclear physicist is the elastic scattering of charged
particles from nuclei, The coherence of the various scattering pro-
cesses gives rise to interference terms in the scattering cross
section between the Rutherford amplitudes and the nuclear aﬁplitudes.
These additional terms frequently assist in the determination of many
of the parameters describing the nuclear states involved. These
parameters may then be compared to the predictions of nuclear theory.

Perhaps the most interesting nuclei to study are the light
mirror nuclei at low energies because here one usually has well-
separated anomalies in the elastic scattering and reaction cross
sections which may be related to resonant behavior in the compound
nucleus. The charge symmetry of nuclear forces may then be checked
by comparing the level structure of the mirror nuclei.

A very interesting case, which has already been the object of
many studies, is that of Li7 and Be7 (Brown, 1951; Ajzenberg-
Selove, 1959). The first three levels of Be7 have been well estab-
lished experimentally, but the region between 6 and 8 Mev has not
been fully studied. This region may be reached by bombarding a
sample of Li6 nuclei with a well-defined beam of protons and ob-
serving the particles which come out. The following possibilities must

be considered:



Li6 +p (a)
He® ¥4 (b)
Be' +vy (c)
PR T, T e L o 11°% ¥ (d)
Be® +n Gad
Li° +d (£)
4
He  +d +p (g)

The region of interest above corresponds to protons of energy between
about 0.4 and 3.0 Mev. Although the three-body break-up threshold (g)
occurs at 1,716 Mev, the energy in the center of mass system available
to the three particles will not be sufficient over the region studied to
allow the particles to penetrate the coulomb barrier. However, if

the deuteron and the proton combine to form a He3 particle, then

there is enough energy available for separation. Thus the contribution
of the three-body break-up compared to the o.-He3 break-up may be
neglected over the region studied. The(e)and(f) modes need not be
considered since there is not enough energy available in the compound
nuclear system to allow such decays. The inelastic scattering process (d)
requires at least a proton energy of 7/6 (2.184) Mev to reach the first
excited state in I.,i6 and at least d-wave protons, so this process

would not be important except perhaps in the high energy part of the
region considered. The radiative capture of protons (c) has been studied
(Bashkin, 1955; Warren, 1956) up to 0.75 Mev and has been found to
have a cross section of about 10'31 cmz. Gamma rays were observed

to the ground state and to the first excited state of Be7, and the
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angular distributions obtained indicated that, if the process occurred
through a compound state, it would have to have negative parity.
McCray and Smith (1962) have also looked at the radiative capture of
protons by Li.6 at higher energies (1 Mev to 2 Mev) and have found
large cosze terms in the angular distributions. However, the yield
curve increases with energy without exhibiting resonant behavior.
The reaction Li6(p, a)He3 (b) has been studied by several in-
vestigators (Bashkin, 1951; Marion, 1956) and all have found a broad
resonance at about 1. 85 Mev and evidence of a broad structure at
lower energies. There is, however, some confusion as to the value
of the cross section, although all investigators obtain values in the
region 10“2'7 to 10~ & cmz. Marion et al. (Marion, 1956) measured
angular distributions for this reaction and found large cos 6 terms
which might indicate the presence of two compound nuclear states of
opposite parity. They assumed the 1. 85 Mev resonance to be formed
by p-wave protons since they did not nave to consider terms higher
than cosZB in their angular distribution. From the integrated cross
section they were able to fit the 1. 85 Mev resonance with a single
level Breit- Wigner curve assuming J' =5/2" for the state. With
this assignment for the 1. 85 Mev resonance, the other interfering
state would then have + parity; and if formed by s-wave protons,
would have to be 3/2+, since the 5/2° state can only be formed in the
3/2 spin channel. The elastic scattering of protons from Li6 (a) was
investigated by Bashkin and Richards (1951) only at one back angle with

a natural Li target. They found an elastic scattering anomaly with
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a cross section of about 10-25 cmz. In the above region of interest it

is seen that the radiative decay mode is negliéible compared to particle

decay, so we have here a system with essentially two channels,

scattering and one reaction, and perhaps two broad interfering levels.,
It was the purpose of this investigation to measure experimen-

tally the elastic scattering of protons from Li6 nuclei in the range

Ep = 0.45 Mev to 2.9 Mev, to check the Li6(p, 11)He3 reaction, and

to then analyze the above data in order to deduce the quantum numbers

of the states involved.



e
II. DISCUSSION OF THE EXPERIMENT

A. APPARATUS

This experiment was performed in two parts, The low-energy
work from 0,45 Mev to 1. 2 Mev involved the use of the 2-Mev Van de
Graaff accelerator, 80° electrostatic analyzer, 2.5-inch scattering
chamber, 10.5-inch magnetic spectrometer and cesium iodide
scintillation counter with amplifier and scaler, all of which have
been previously described. (Lauritsen, 1941; Fowler, 1947; Snyder,
1950; Mozer, 1956) The work from 1,0 Mev to 2, 9 Mev was accom-~
plished with the use of the 3-Mev Van de Graaff accelerator, 90°
electrostatic analyzer, 6-inch scattering chamber, 16-inch magnetic
spectrometer and a cesium iodide scintillation counter like the one
above, The 6-inch scattering chamber with target holder and furnace
was constructed during the course of this experiment and will be dis-

cussed in more detail in the section on target preparation,

B. THICK TARGET TECHNIQUE
1, Derivation of Equations
Consider now the situation described by figure la. A beam

of particles of known energy E impinges upon a thick target. Some

1B
of the particles scatter from the front surface or produce reactions
at the front surface, and the resultant particles leave with energy EZB'
Others penetrate the target and scatter or interact at various depths

inside. For any scattering or reaction event, E, is determined non-

relativistically by conservation laws to be



E, = o.(El, B)E1 (1)
where
ul/Z =g thw + FZ)I/Z (2)
- (—TMlMZ)l/Z 0 (3)
B = M’1+ 2 cos
w = 3 % +mM3_M1 (4)
ez ' &.1 2 3
MO = mass of target nucleus
M.1 = mass of incoming particle
M2 = mass of outgoing particle
M, = mass of residual nucleus
E0 = kinetic energy of target nucleus
E = kinetic energy of incoming particle
E, = kinetic energy of outgoing particle
E; = kinetic energy of residual nucleus
6 = laboratory angle between incoming parficle Ml
and outgoing particle MZ
Q=E3+E2-El-E0
The magnetic spectrometer will accept particles of energy
Ey 2 (AEZO/Z). The energy E,, may be set so that AE,, corre-

sponds only to particles emerging from a definite lamina As at a
depth s inside the target. The spectrometer accepts particles which
leave the target within a certain solid angle S'ZL. The number N of
detected particles from a reaction or scattering process is propor-

tional to the number of incident particles impinging on the target,
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which is equal to the total charge collected divided by the charge per
particle, to the number of target nuclei per unit area facing the beam,
and to the solid angle accepted by the magnetic spectrometer. The
proportionality factor is defined as the cross section and is a function

of the incident energy and the angle of observation. Thus

- CV do(E;,0) nds
Nze gOS¢S-s T Toss, O *

where n is the number of target nuclei per unit volume, 6 and ¢
are polar angles with respect to the beam direction and Z axis,
and ®, is shown in figure la.

The stopping power ¢€(E) is defined as

1 dE

e(E) = N &= (6)
s

where Ns is the number of stopping atoms per unit volume. From

figure la, one has then the following relations:

E

GELTTEE o e )
il €(E) cos 0
s“E 3 |
1B
1 (20 aE _ s )
N €e(E) “cos ©
s E2 2

where 0, is defined in figure la.
In order to proceed further with equation 5, one must change

variables from s to E?.O' giving



do'(El,G) s
n= Ze cos 5 ‘Sﬂ&)qrs d EE dEZOdSz (9)

Equations 7 and 8 may be combined to give

E E
G cos 92 20 dE _ cos 91 S- 1 dE (10)
N N €(E) N €(E)
s E2 s ElB

which may then be differéntiated with respect to EZO to give

T cos 6, [ g A aEZ/aE?_0 } S cos 8, a}z:l/aE20 -
9E,, €(E,y)  €(E) Ng (k)
This assumes ElB and cos 91 constant.
Now
BEZ
-5E—20= (SEZ/BEI) (8E1/8E20) (12)
Hence
BEl ) 1
'5?-20- 3E2 , cos@;
it [-rrrr TE) <os 9, ] o
and
9s b cos 91 [ 1 ] o
ﬁféo NsdEZOS cose e(E )
5 IE ) LEE
Thus
do (g 0)dE, 1df
NxCY = S‘ S’ | S (15)
-~ Ze N; o E cos 9 E(E

20 §("‘320)[ ~ e ?(E_)( ]
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If %(El’e) is a slowly varying function of 6 and E,, if
€(E,,) is a slowly varying function of E,,, and if 8E2/8E1 is a
slowly varying function of El’ then equation 15 may be integrated to
give

do
- 19) (El, 0) QLAEZO

n
N cos 8, €(E) 3JE,

N = EX.
Ze .
e'-(EZ.O)[ cos 52 ’ E‘EZ) kﬁfl }

(16)

where %3 (El’ 6) now is the cross section averaged over the magnetic

spectrometer window, and {. is the laboratory solid angle seen by

L
the magnetic spectrometer. The energy spread AEZO accepted by
the magnetic spectrometer is then related to the momentum resolution

of the spectrometer R = % by

2E
AR S 20

20 "R (17)

The equation then for the experimentally determined laboratory cross
section is

N cos © e(ElX' 9E ‘
do s ZeR 1 2 N
o m(El’ "y S kZCVﬁL €(E20)|: cos 52 ¥ dEZ)\EEI)] Eo

A further approximation may be made, if one looks at a lamina
close to the front of the thick target. Then e(El) e e(ElB) and

E(EZ) i e(EZO) so equation 18 becomes

do N ZeR

o 8E2 cos 91. N
™ (Er 0 = 7 (zev) [ BE; )<E18) * v, e(Ezo)]E?) (19)

For elastic scattering <’:)EZ/E)E1 = a which now is a function of angle
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only. One should see the thesis of Bardin (1961) for a more general
discussion of the thick target equation.

Since the above is the laboratory cross section at energy E.

one must find a relation between E1 and the experimentally deter-

mined quantities E and E

1B 20- From equation 10 one may write

E E

1 dE _ cos 92 20 dE a0
© €(E) ~ Cos 61 - €(E)

1B 2

Now if €(E) is a slowly varying function of E over the range Eg

to E. and E then the following approximation is sufficiently

1 2

accurate

to EZO’

El- ElB ¥ cos 92 0

e(El-)‘ £ cos 91 E(Ez)

Ex- E;

(21)

where fl and EZ are intermediate average energies. In order to

solve this equation for El’ one must then use equation 1 which gives

EZ as a function of El' For the particular case of elastic scattering,

equations 1 and 21 may be combined to give

cos ©
cos 0, e(-E—Z)ElB+ e(ﬁl)EZO
E1 ¢ cos 0 (23)
cos e(EZ) ¢ a,e('El)

The stopping powers in this equation may first be evaluated at

E1B+E1
determined. Then with e(fl) = e(—z—)

E and E and an E
E_._ +aE

1B 20 1
_ _ 20 1 g " e b x
and e(EZ) = 6(7—) a new E1 is determined. This iterative

procedure is continued until E1 is stable. If one is looking near the
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front edge of the target, usually the first approximation is sufficient,
and as one moves back into the target, one or more iterations become
necessary. For the case of a reaction one must first estimate what
E1 might be, determine o,(El,B) from equations 2, 3, and 4, use

equation 22 to compute E. and then iterate until stability in E, is

1
reached. Also for the case of a reaction one must use
M;Q J1/2
5 = E 9 a=a V2™ (23)
EE; 15El ¥ (w2+ FZ)I/ZEI

in equations 18 and 19.

In order to compare the measured cross sections with the
theoretical equations, a conversion must be made to the center of mass
system, using |

dQ2

i

CM CM 5
where

e, (1-y7‘)1/2

Tem [a-y")/%421

(25)

with

y=xsin9L

zzxcosOL

and MIMZ

2 MyM,

X = ¥
[1+Mo ey Q:I
G

In the above work ElB and E20 have been referred to as
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measured quantities. The energy ElB is that of the incoming beam
of particles and is determined by the use of a cylindrical electrostatic
analyzer. For such an instrument the energy of a particle passing
through a circular equilibrium orbit is

E
E ZeV_ v —25) (27)

1B
2 ln — MO
"z

where r and r, are the inner and outer radii of the cylindrical

2
analyzer, V is the voltage across the plates, Ze is the charge per
incident particle, and Mc’cz is the rest energy of the incident particle.

A small fraction of the voltage V is measured by a potenti-

ometer, so equation 27 may be written

1B

Ejg = ZCp Ve, + zu—z (28)

The constant CEA is then determined by the use of a well-known
resonant or threshold reaction.

The energy EZO is that of the outgoing particles and is
measured by the use of a double-focusing magnetic spectrometer.

The energy of a particle passing through an instrument of this kind is

2
(ZeBr)[ ZeBr ]
E a (29)
20 m;oc k:mucz)

where B = magnetic field at particle orbit, and r = radius of circular

orbit.
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The magnetic field is determined by a constant torque flux-

meter so equation 29 may be written

2

B e M8 - (30)
20 ¥ 2 z
M_I 2M_.c
0 0
where I is the fluxmeter coil current. The constant C is

MS

determined by scattering particles of known energy from the front
surface of a thick target of heavy nuclei.

If at some fixed angle one plots the number of particles counted,
for a definite charge collected, as a function of fluxmeter current,
the resulting graph is called a spectrometer profile. Figures 2 through

6 illustrate such profiles.

2. Following Procedure

The object of the experiment is to obtain the scattering cross
section as a function of energy (excitation curve) and of angle (angular
ﬁistribution). However, to take a profile at each energy and angle
would be almost prohibitive in the time required. Fortunately it is
not necessary, for one can pick a depth within the target, corresponding
to some point upon the Li6 profile and then follow along at approxi-
mately the same depth within the target as the incident energy or
spectrometer angle is varied. Assume that the difference between
the energy of the particles seen by the magnetic spectrometer E20

and that of the particle originating in the front surface aElB is always

a certain fraction of the energy aEl Then

Bn
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u.ElB - E20 = KO.EIB (31)

or

EZO =(1- K)aElB

In terms of the fluxmeter current this becomes approximately

N B R T R Y
N5 G E P A SR

Thus one decides on the value of K, usually 0.02 to 0.04, determines
(C;&S/(I-K) )1/2, and uses equation 32 to find the new fluxmeter setting
as one changes either or both angle and energy.

The choice of K is dependent upon the particular target. One
necessary condition in the use of equations 18 and 19 is that the lamina
contain only the element of interest or its isotopes, in this case Li6
and Li7. Consequently, if one of the contaminants C:l2 or O16 has
diffused into the target, one must be certain to follow far enough back
so that the Li6 is not diluted. The condition of the front edge of the
target may be estimated by looking at the Li6 profile and the low
energy sides of the contaminants. A rounding off of the Li6 edge
and a low energy tail on the contaminants indicates diffusion (see
figure 4). The amount of contamination is a function of the residual
gas pressure in the target chamber, time, and the amount of charge

accumulated at a particular spot on the target.
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C. CALIBRATION OF APPARATUS
1. Electrostatic Analyzers

The 80° electrostatic analyzer was calibrated at the beginning
and end of the first part of the experiment and the agreement in the
values of C., was found to be about 1/1000. The average value
obtained was CEA = 1,000 +0. 1%. The method used was to observe
the resonant y's from Flg(p, u.y)016 at the EP = 872.5 + 0.4 kev
resonance. (Marion, 1961) One of the curves showing the gamma ray
yield, from a target of thickness s, as a function of potentiometer
setting is shown in figure 7. The center of this curve E1 is equal to
ER + %, so by combining this with the equation

E = E + AE +ZeV,, (33)

where AEl is the energy loss due to surface contamination and VT

is the target potential with respect to ground, and equation 28, one

obtains
Cpa= zv— \“a—gz—)\“r) (34)
where _
b= .sz +AE, + ZeV,, (35)

The first target was CaF2 evaporated on a copper backing and the
thickness s was estimated by weighing the CaFZ, which was to be
placed in a tantalum boat, and assuming the mass to be distributed

evenly on a hemispherical shell at a known distance. The target was
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estimated in this way to be about 2 kev thick to 0. 9-Mev protons.
The target was made in a bell jar and then immediately placed in the

scattering chamber so AE. due to contaminant surface layers was

1
assumed to be negligible. For electron suppression the target was
kept at +300 volts. The second target was made by holding a piece
of copper over an HF bottle.

The 90° electrostatic analyzer was calibrated at various times
during the high energy part of the experiment, using the Li7(p, n)Be7
threshold. ¥ Either thin evaporated natural Li or LiF targets on
thick backings were used and the neutrons counted by a B10 plastic scin-
tillation counter. . An integral bias technique was used so that from
a (yield)2/3 versus potentiometer voltage plot, shown in figure 8,

the constant CE could be obtained by extrapolating to zero yield.

A

The necessary relation is

E
¢ 1B
} 4 = constmt[ CEAVEA(I + F) = Eth] (36)
OC
Thus at threshold
E
2 th
Cga = E (31
1 L
EAY oM c?
0

The value for E., used was that given by Marion (1961) ; Eth =
1880,7 + 0.4 kev. The average value of nine determinations made at
different times during the course of the experiment was CE:A =

2,274 + 0.1% Mev/volt,

*
The author is indebted to R, K. Bardin for the use of his calibration
data.
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2, Magnetic Analyzers
Both the 10, 5-inch and the 16-inch magnetic spectrometers
were calibrated by scattering protons from clean copper surfaces.

The calibration constant C will thus depend upon the electrostatic

MS

analyzer constant CEA and can be determined from the equations

2
M. I°E
e ol F20 (38)
MS E
2 20
L. A
2M_.c
0
aZC._.,V €
Eyp ™ gt . (ot 2)AE, + (1-0)ZeV,, (39)
i Z%EA"EA 1
Bootw -0 - 3
ZMOC

where the fluxmeter setting I now is the value corresponding to
half way up the profile,

The variations in CMS were of the order +0,3%; therefore
the 16-inch spectrometer was calibrated on every run by scattering
protons from copper and that particular CMS was used for that data,
The 10+ 5-inch spectrometer was not calibrated with the use of copper
profiles for every run; however, it was possible to calibrate the
spectrometer from the C12 and O16 contamination peaks and, if
the contamination appeared to be small, the Li6 edges were also
used. The magnetic spectrometer constant used then was the average

of the above values for each particular run,

3. Magnetic Spectrometer Resolution-to-Solid Angle Ratios
A determination of the factor ZeR/2CV QL must be made

before equations 18 or 19 can be used. This was accomplished by using
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for N in equation 19 the number of protons scattered by a clean
copper surface, corresponding to a definite charge CV collected,
and by assuming that the scattering cross section follows the Ruther-
ford formula. The values of the Li6 cross sections determined in
this work, therefore, depend upon this assumption. For the high
energy work this determination was made two or three times during
each run and the average value used for that particular data. No
special attempt was made to keep the trigger voltage of the integrator
constant from run to run; however, the same capacitor was used for
the copper scattering as for the Li6 runs. For the low energy work
different capacitors were used for the copper scattering and Li6
runs and the integrator firing voltage was measured once during each
run. The low energy work, therefore, depends upon the measured

capacitor ratios.

4, Determination of Scattering Angles
For any particular reaction or scattering cross section
measurement, one first selects the desired angles in the center of

mass system and then converts to the laboratory system by using the

o

equation

x + cos O
, _ CM
cot BL = s (40)

CM

where x is given by equation 26.
For each scattering chamber the horizontal magnet angle BH
was calibrated by first'scannix_lg the incident proton beam with a small

aperture at a fixed distance from the center of the chamber to deter-



=19

mine a yield distribution as a function of angle.'* Then the magnet
aperture was scanned to determine the number of protons scattered,

as a function of angle, into it. The difference in the centroids of the
two distributions then gives 7 - OH. This was done at a backward
angle and at an angle near 90° in order that a correction curve might
be drawn, Tﬁe scatte}-ing plane for the 6-inch chamber was horizontal,
but the geometry of the 2, 5-inch chamber, shown in figure 9, was
more complicated. The particle beam enters the scattering chamber
10° above the horizontal plane and leaves 10° below it. The equation

relating the horizontal magnet angle OH to the scattering angle GL is

] 0
sin 22 = cos a sin 2}-_1— (41)

where here a ~ 10°. A correction to BH was found necessary for

both scattering chambers and was of the order of + 0. 5° to +1°,

D. TARGET PREPARATION

Since Li forms LiZO and LiOH very rapidly in air, it is
necessary to perform the actual evaporation somewhere in the scatter-
ing chamber. The targets must be smooth and they must not deteriorate
too quickly under particle bombardment. Freshly evaporated copper
on a clean microscope slide was found to be a very satisfactory backing
material for the Li targets. The microscope slides provided the

smoothness and the copper provided enough thermal conductivity to

*
The author is indebted to R. K. Bardin for the angle calibration data
on the 6-inch scattering chamber,
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prevent deterioration by local heating. The slides were cleaned first
with a defergent and distilled water, then placed in chromic acid for
a few minutes, rinsed in distilled water, and dried with lint-free
gauze. The copper evaporation was performed in a vacuum bell jar
and the copper blanks then place.d immediately in the scattering
chamber. A furnace was situated below each scattering chamber so
that with the use of a long target rod, the Li evaporations could be
carried out and the targets moved directly up into the scattering
chamber.

Two L16 metal samples were used, one of 94, 5% purity and
the other of 99. 7% purity. Most of the work was done with the higher
purity sample. The Li6 metal was cleaned under kerosene, then
transferred directly to the furnace and the system placed under
vacuum, For the low energy work with the 2, 5-inch scattering cham-
ber, a long narrow cold trap was used. The furnaces were made from
tantalum sheets. However, satisfactory results were not always
achieved with this set-up, so for the high energy work, improvements
were made. Figure 10 shows a cross section of the 6-inch variable
angle scattering chamber. In this set-up the second copper blank
may be lowered through the cylindrical cold trap into the furnace
area while the upper calibration copper blank is isolated from the Li
furnace area by shields. The cylindrical cold trap was designed so
that it was as near as possible to the target position for scattering,
The better targets obtained with this set-up were possible mainly
because of the improved local vacuum, An additional feature of the

new set-up was the use of a very pure carbon rod "cannon" type
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furnace which was heated by a coil of.rﬁolybden'um wire. This furnace
held the Li well, was very directional, and could be used many
 times. An indication of the quality of the targets obtained with the
two different set-ups is found by comparing the contamination peaks
in the profiles of figures 3 and 5. In the earlier work the Li6 tar-
gets were used for one or two days. However, a procedure was
finally developed so that the Li6 targets we're not used for a period

longer than eight hours.

E. STOPPING POWER MEASUREMENTS

In order to use the thick target equation 18 or 19, one must
first know the stopping power € as a function of energy. The values
used here were those given in the review article by Whaling (1958).
There was, however, some doubt about the values of the Li stopping
powers for higher energies., Values deduced from old a-particle data
of Rosenblum (1928) were considerably higher than that predicted by
the Bloch equation. Consequently, a determination of the relative
stopping powers of Li was made over the region 0,8 Mev to 2, 9 Mev.
The technique used was to scatter protons first from a clean copper
target, then from a copper target on which a thin layer of lithium
had been evaporated. Figures lb and lc indicate the situation from
which one obtains experimentally the energy displacement BEZO of
the copper edge. Figure 1l illustrates the displacement for two
different spots on the same copper + lithium target. For a given tar-

get spot the relative displacements are found for several energies
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and relative stopping powers determined. These values were then
normalized to the low energy measurements which are believed to be
accurate on an absolute scale.

Referring to figures 1b and lc, one finds (Warters, 1953)

5820 = %2p - Fao ' (42)
and

E‘?'0 = a(ElB- AEI)_ - AEZ (43)
where

a=a-,
Thus

aAE. + AE, = 0E

1 2 20 (44)

From the definition of stopping power

1 AEI AE

1 2
'_N_s s7cos§l =€(El) and -N; s/cos 52 ="E(EZ) (45)

Therefore

N_s
- 8E30 = Gogp, [ 9By + Be(Ey)] (46)

where

cos 91

ﬁ = cos 2 (47)

If now e('El) and e(Ez) are expanded in Taylor series about some

energy Ex’ one may write

N s

- 8E,, = E%Q-l[ (atple(E.) + {a(fl—Epr(fz-Ex)}-g% L ;
p. &

(48)
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where E,-E_ and E,-E_ are assumed small. Setting the coefficient
of the -g-% term equal to zero gives
a‘El+ pfz
E_= - (49)

Now El and EZ may be written as

AE,
E = Ejg-— (50)
and
AE,
E-Z = Eyp t —— (51)

So E becomes
x

aE,p+ BE,; BAE,- aAE,

E_= TS TR ' (52)

With the use of equation 44 and recalling EZB = °’E1B’ this may be

written as AEZ
B4 pELY BEL e Maah s _
B s (53)
x atp Z(a+p) [ KEZ }
(z ) *e
1
Equation 48 becomes
cos 0 SE
~ 1 20
e(Ex) iy Wss a tp (54)

The above two equations then are used to compute the relative stopping

powers. In order to estimate the correction term in equation 53, one

may use
AE e(E,n)
2 20
xE =B (55)
1 €Eg)
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and the theoretical Bloch equation (see Whaling, 1958)

2
aZIZ2

€(E) = —g—[In 2% + 1] (56)

For two different energies and the same target spot and geometry,
equation 54 gives

'
GEZO

€(Ex) - ﬁ?o E(Ex) (57)

The results of this determination are given in figure 12 and show that
experimentally the stopping power for Li does follow the Bloch curve

at higher energy. This curve was then used in the reduction of the

Li%p, p)L1%. data.

F. CORRECTIONS TO YIELDS

There are three corrections which must be made in this experi-
ment in order to obtain the yield N to be used in equations 18 or 19,
The first of these is a background subtraction. For this experiment
‘the méjor background consisted either of protons scattered from the
Li7 contamination in the target or of o.++‘s and He3 ++'s from the
reaction Li6(p, a)He3. The Li7 thick target profile, shown in
figure 4, was only present when the lower purity Li6 sample was
used. The nature of the background at more forward angles may be
determined from the profile in figure 6. The curve through the dots
is the unrestricted profile. The crosses indicate the profile obtained

13
when an 0,5 mil Al foil is placed at the end of the magnet. The a++ 8

++1
and He s are stopped while the protons are energetic enough to
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pass thr.ough the foil, The circles show the profile obtained 24 hours
later, ‘

. A second correction to be made is the loss due to high counting
rate, Assume that the scintillation counter, consisting of CsI crystal,
photo-multiplier, pre-amplifier, amplifier, and scalar, is dead for a
time p seconds after each recorded event. If the observed counting
rate is Nps then the fraction of a second during which the apparatus

is dead is n The fraction of time during which the apparatus is

RP*

sensitive is 1 - npp. This is then the fraction of the true number of
events NR' Thus

n

R

— =1-n_p (58)

NR R
or

=
My & g B (59)

The dead time p of the scintillation counter was obtained by scattering
protons from copper. If, for a definite charge CV collected, one
increases the counting rate Dps the time t required for the collection

decreases, The difference Ai in the number of counts recorded ni

and the true number of counts N is

1',12 t

R’
Ai =N - ni = (NR- nR.)ti = 'i'-_—n——p (60)

i R.

1

or nzp
' i
Ai - n,.p

i
ti(l i )
1
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An estimate of the true number of counts is made by counting
af a very low counting rate. The counting rate is then increased and
the time ti recorded. The differences Ai in the number of counts
recorded n, and the above estimate for N is then plotted against
l/ti' This is shown in figure 13. From equation 60 one can see that
at low counting rates A may be approximated by a straight line with
a slope equal to niz,p. With the use of the equation

px 2ope , (61)

N

the dead time p was found to be about 10 psec. This correction was
found necessary for the copper calibrations and the fo;'ward angle Li6
yields.

A third consideration is that of charge exchange. Some of the
protons, a-particles or I-Ie3 -particles, which scatter or are produced
within the target, will pick up electrons on the way out and thus will

1

not be observed in the magnetic spectrometer as protons or a's or

He's. Allison (1958) has measured the probability of this happening

as a function of energy and gives data for various solids. In the present

experiment corrections for this effect were less than one per cent for

proton scattering but were slightly larger for the Lib(p, u)He3 reaction,
There are two other important factors to be considered which

may affect the yield., As the experiment is being performed one must

check the operation of the scalar and the current leakage of the inte-

grator.

The screening effect of the electrons on the scattering cross
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section was estimated by the Born approximation (Bohm, 1951) for
the Li6 + p scattering and by a classical approximation (Wenzel, .
1952) for the Cu+ p scattering and found to be less than 0.3% in

both cases. Therefore a correction was not made for this effect,

G. EXPERIMENTAL RESULTS
1. Excitation Curves

The cross section for the elastic scattering of protons from
Li6 nuclei was measured from about 0,45 Mev to 2, 9 Mev at intervals
of 12,5 or 20 kev for ¢, m. angles near the zeros of the first and second
Legendre polynomials and near the farthest back angle obtainable
£ 1600). The results are shown in figure 14 and indicate that the
scattering is Rutherford near 0.4 Mev and that o-scattering/vRutherford
rises gradually up to about 1.1 Mev where it then exhibits resonant
behavior up‘to about 3 Mev. The decrease in cross section from the
backward angle to 90° suggests that the resonance might be formed
by odd f£-wave protons. The cross section measured at 90° will then
be the most informative, since the interference terms will vanish; this
is shown in figure 15. A comparison of the 160° data (BL - 1560) with
that of Bashkin and Richards (1951) at GL ~164° indicates that their
cross sections are about 2/3 of the values measured in the present
experiment.

No indication was found of a large anomaly in the vicinity of

1 Mev.
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2. Angular Distributions
The scattering cross section was also measured at c. m. angles
near 140°, 110°, and 70° at intervals of 100 kev. Figures 16 through 40
show the 25 angular distributions obtained. The error bars indicate
relative errors and are 3% for the backward angles and 4% for the more
forward angles 90° and 70°. The scattering cross sections deter-

mined are given in Table 1.

3. The Lié(p,u)He3 Reaction
In order to analyze the scattering data it is necessary to know
the reaction cross section. Since the reported values (Marion, 1956;
Bashkin, 1951; Ajzenberg-Selove, 1959) for this reaction varied by at
least a factor of 3, a new determination was deemed necessary. The
thick target method was used and the angle of the spectrometer set

1

at 0, = 95%45' to detect the He3 s coming off in the backward

L
hemisphere which correspond to the a's in the forward direction
which Marion (1956) measured at OL = 60°. The thick target profile
obtained for an incident proton energy of 2.3 Mev is shown in figure 41.
Since pulse height analysis was not used, the resulting curve is the
superposition of the a profile and the He3 profile. The two profiles
may be separated with the use of the thick target equation 18, The
positions at which the halfway points of the front edges of the profiles
should appear are indicated by the lower arrows. The spread in

fluxmeter current Al in which the profiles should rise was estimated

from the equation
AE
P | 20
Al = .2.(_EZ.)I_1/2 (62)
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where AEZO/EZO was calculated from (Cohen, 1949)

Ax. ” ] iy 0E,pa0 2
() = (%) (55 w— ) (43)
Here
R = 'Ei = 2(1 + M)’I:;;1= (64)

the momentum resolution of the magnet, and may be obtained from
either this equation and the measured values of central path radius r,
exit slit width Ar and rﬁa'gnification M, or from the measured
resolution-to-solid angle ratios if the solid angles are known., A

value for A6 was obtained from the measurements on scattering

9E
20 : - : 3
angle and i:-z_(-) 55— Was determined from the kinematical equation
(Brown, 1951)
1/2 .
1 BEZO e o Z(MIMZEIBEZO) sin 0 TE
E o0 E M M,E 1/2

20 20 1 .271B

M2+M3- ——E-Z—o— cos 0

For GL - 95045' the calculated spreads Al were determined mainly

by the 8E20/89 term and are indicated by the bars at the bottom of

the graph.
From figure 41 one can see that the yield of the top of the
L
He3 profile should contain only He particles; therefore, this

yield was used to calculate the cross section for the reaction
Li®(p; He®)He* at 0, = 95%45', which should then be the same as

the cross section for the reaction Li6(p, a.)Hf:3 at BL = 60°. When
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this was done it was found that the cross section was about 50% of
the value stated by Marion (1956) but in agreement with the results
of Burcham and Freeman (1950). By assuming the relative cross
sections of Marion'et al. to be correct and normalizing to the above
value, one can then use equations 18 and 22 to predict the yield of

'
He B s at some depth within the target. This was done and a line
drawn .through this point and the yield at the front of the He3 pro-
file. The a profile shown in figure 41 was then found by subtracting
the He3 profile from the total profile. The cross section for
Li6(p, a)He3 was then computed from the a profile yield and was
found to be about 607 of the value quoted by Marion et al. Estimates
of the reaction cross section made at other angles and energies from
the He3 profiles also indicated differences of about the same amount.
Therefo.ré, the Li6(p, u)l—le3 reaction cross sections of Marion et al.
were assumed to be correct on a relative scale, and were normalized
to 55% of the values quoted. The integrated reaction cross section
for Li()(p,la.)He3 is shown in figure 42. These normalized values
were then used in the analysis of th;a scattering data. A later reexami-
nation of the work of Marion et al. turned up a factor of 1/2 so that
their measurements are now in agreement with those of Burcham

and Freeman (1950) and the present determination.

4, Probable Error
The uncertainties of the relative stopping cross sections were
mostly a result of the uncertainty in locating the mid-points of the

copper profiles. The relative energy losses in the lithium layers
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were found from the difference of two measured quantities. Hence
the % uncertainty depends upon the magnitude of this difference, i.e.,
on the thickness of the layer. The uncertainties were found to vary
from 2 to 7 % and are shown on the stopping cross section diagram.
Since the measured curve for the stopping cross section agreed with
the Bloch formula, it was assumed that the stopping cross sections
used in the determination of the scattering cross sections could be
determined relatively from the Bloch curve to within an uncertainty
of 2%. The absolute uncertainty for the stopping cross sections of
protons on lithium and protons on copper was assumed to be 3%, the
value given by Bader, et al. (Bader, 1956).

The uncertainties in the measured I.;i6 scattering cross sections
were estimated to be about 3% relative error for all angles. The ab-
solute error was estimated to be about 5%. The sources of these un-
certainties and their respective contributions are shown in table 2,
and were combined as independent errors to give the values stated
above. These uncertainties may also be taken as reasonable estimates

for the probable error in the ratio, since

s cattering/ “Rutherford’

the coherent errors make only a small contribution to the combined

error.
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III. THEORETICAL ANALYSIS OF THE DATA

A. DISCUSSION OF THE THEORETICAL EQUATION

From the basic concepts of non-relativistic quantum mechanics
one can derive the cross section for the elastic scattering of charged
particles with spin i from charged nuclei with spin I in terms of

a scattering matrix S'I which relates the amplitudes of the

a,s'f';as’
outgoing waves to those of the incoming waves. The reaction cross
section is also found in the same manner. The concept of channel
spin s is introduced such that

gl
I +1i

-

=

—_—
s

8= |[I~i], coe, I+i (66)

A given set of two particles is denoted by the index a and is referred

to as a channel. For relative orbital angular momentum { a com-

pound nuclear state may have a total spin T such that

s +4

T =
TJ=|8=-L]|s aee , 8412 (67)

For each possible state of given J one may associate amplitudes for
various modes of formation and decay. These amplitudes are complex
and may be related to a resonant description of the state., The object
of the analysis is to deduce the various parameters of the resonant
formulation. The technique of analysis of elastic scattering data used

is that described by Christy (1956) and Mozer (1956) and involves the
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display of the amplitude matrix [A Here the index v

aa, s's, v'v] ’
designates the magnetic substates of the channel spin s and the

primes indicate the outgoing channel. An element of the amplit ude

matrix is given by

vy

. i(n,m,-27,)
aa, s's,vv ~ \/-Re '36 ’ +1kﬁz (21+1)1/2e o °

m 1

x (L sov/IM)(L's'm .V'/JM)fJ 111|Y£l (68)
where
g =sJ - B (69)
sstet! us'l_';o.s! s's LY
The first term is the amplitude for Rutherford scattering with
(_2_9_ ) (Rutherford cross (70)
2k  Sin section)
. 20 "
€ = -n In sin = (Rutherford phase shift) (71)
Z.Z e2
1. y
nw g {72)
a

where - 'ﬁka/p. is the relative velocity, p the reduced mass and

© the center of mass angle.

1
- ng = Z tam"lj11 (Coulomb phase shift) (73)
j=1

The second term is the nuclear part and consists principly of a
Clebsch Gordan coefficient for formation of the state ({ sov/JM) and

one for decay of the state (£ 's'ml v'/IM), the spherical harmonic
ml t
J !

formation and decay of a nuclear state of definite spin J, The sum

of the exit channel, and the nuclear amplitude fJ for

Y sstee!
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in equation 68 is’

@ J+s J+s!

Srodhad )
J=0 2=[J-s| 1'=[J-s'|.

where one should keep in mind that for an incoming beam along the z

axis m,

The differential cross section for scattering from magnetic

=0 so that M=v=m1,+v'.

sub-state v of entrance channel spin s to magnetic sub-state v' of
exit channel spin s' is found by squaring the appropriate element of

the amplitude matrix.

do i (75)

1,1 = |A 1
as'!, asv aa,s's, vl

The differential cross section for scattering from channel spin s to
s' for an unpolarized beam, isfound by averaging over the magnetic

sub-states of s and summing over those of s'.

s s?

. |
dvas',us - 2sH Z Z dcas'v', asv (76)

If in addition the particle detectors are spin insensitive, one must

average over initial channel spins and sum over final channel spins.
I+i I'4it

2s+l
40,0 = z I Pastas (77
s=|I-i| s'=|I'-i?|

The final equation for the elastic scattering cross section is then
+H I'+1 s st
. . 2
o~ T2 Z 2 L W———
s=[I-i| s'- I%-it| v=-5 vi=-5s?

(78)
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For a barticula.r incident particle and target nucleus the ampli-
tude matrix elements are worked out for the lowest orbital angular
momentum waves which are thought to contribute to the scattering.
The amplitude matrix for the case of Lib(p, p)Li6 with only s- and
p-waves contributing is shown in figure 43, The scattering amplitudes
within each element or box are coherent and give rise to cross product
or interference terms when the matrix element is squared., The final
cross section is then found by squaring each box, adding them and
dividing by (2I +1)(2i +1).

The elements of the scattering matrix SJ

are complex
as't % ast P

quantities and are related to a resonant description by the relation

(see Mozer's thesis (Mozer, 1956) for a more complete discussion),

, T :
s=f+ig=ehﬁ1+1?ufm-n] (79)
where
4 Ty
6 = cot “T77 (resonant phase shift) (80)

¢ is the "potential phase shift® which for the case of a charged hard

sphere would be

¢ = - tad o s} (81)
G, (ka)

where a is the ®interaction radius.® The latter quantity is not well

defined but is sometimes given by

- 1/3 1/3
a-RMA/ tAY7) (82

R, = 1,45 1™ om

0
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F! (ka) and' G! (ka) are the coulomb wave functions evaluated at the
interaction radius a and wave number k.

In general, however, ¢ will also contain the "tails" of other
states at energies far from the region being considered. The relation
79 enables us to separate a rapidly varying energy-dependent behavior
in the scattering from the slowly-varying non-resonant scattering.

The resonant parameters of a state are
the resonant energy ER
the total width T'
the proton width I‘p
other partial widths I‘u, I“y’ I"n, -

The partial widths are a measure of the probability of the state decay-
ing via 5. certain mode and thus the partial widths must add up to the

total width for decay of the state.
r=rp+ra+ry+rn+... (83)

For a given mode of decay the nuclear part of the probability

for decay may be separated out by defining the "reduced™ width.

., = 2kP,y>

it P Vi (84)

where i denotes a particular channel and { denotes the angular
momentum wave involved. ki is the relative wave vector for the chan-

nel i.

_ 2 _ t %
ki_ri.- = (85)
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where v, is the relative velocity of the two particles involved, and

e o
By = M, M,

the "reduced mass™ for channel i (86)

Pl is the penetration factor and depends upon the relative wave
factor, the angular momentum involved, and the interaction radius.

1

- - (87)
F (k) + Gylk;a,)

P! (kiai) =

where FI is the regular Coulomb wave function, and Gl is the ir-
regular Coulomb wave function. For a very broad state the level shift
of the state (Thomas, 1951) must be considered. The resonant energy
is equal to the actual  energy of the state (in the CM system) plus

a level shift in energy.

ERX =E, + Ax (88)

where the index \ denotes the state.

The level shift is given by
2

Yis d(ln Al)
Ail = - ai [l + ﬂl_-k——)n iai ] (89)
The quantity AI is just
2
A (ka,) = [Ff(kiai) + Gi(ka,)] 1/2 (90)

The total level shift then is the sum of those for each mode of decay.
A= ) Ay, (91)
it

The partial width of decay is given by
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I, = Z 2k.P, v, (92)
£

From equations 79 and 81 one sees that since ¢ is negative for
"potential" type scattering; the complex points des‘cribing the scat-
tering matrix element begin at (1,0) and move in a clockwise di-
rection on the unit circle as the relative energy of the incoming
channel increases.

From equations 79 and 80, however, one sees that the complex
points describing the resonant scattering move in a counter-clockwise
direction (&'s are positive) and the distance of the points to the point

(1,0) depends upon the value of I‘P/I". When E = E e., at

R’ i.
resonance, & becomes /2 and thus for pure resonant scattering
the complex points describing the resonant scattering should cross
the real axis at 1 - Z(I‘P/I").

If I‘p/l" is close to unity and the potential scattering small,
then the resonant complex point should be near the point (-1,0). If
I‘p/l" is small then it will be in the vicinity of the point (1,0) and
will depend mainly on the potential phase shift,

B. APPLICATION TO Li6(p, p)Li6

For this case one must combine a proton of spin and parity
l/2+ to a Li6 nucleus of spin and parity 1+. Thus there are two
possible channel spins, 1/2+ and 3/2+. If one considers only s-waves,
then nuclear states in Be7 may be formed which have total spins and
parities of J" =1/2% or 3/2+. The spin and parity associated with p-

waves is 1 . Thus nuclear states may be formed through the 1/2 spin
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channel which have J" =1/2° and 3/2°. States which may be formed
.through the 3/2 spin channel have v = 1/27, 3/2" and 5/2°. The
above possibilities then must be considered in constructing the ampli-
tude matrix shown in figure 43.

The experimental data indicates the presence of a strong
resonance in the vicinity of 1. 85 Mev. The angular distributions show
a decrease in cross section from backwani angles to BCM =90°, If
only s- and p-waves are assumed to be important in this energy
region then this nuclear resonance would have to be formed by p-
waves. The spin and parity of this state then must be either 1/27,
3/2" or 5/2°. The assumptic;n will be made that there is only one
p-wave nuclear resonance in the region investigated.

The mirror nuclei Li7 7

and Be shown in figure 44 have cor-
responding levels for the first and second excited states, There is

also a well-defined state at 7,47 Mev in Li7 which should correspond
to the resonance seen in Be7 at 7.18 Mev. From the total absorption
cross section for neutrons on Li6 and the cro.ss section for the re-
action ‘Lié(n,u)H:’, the spin of the above state in Li7 was found to be
5/2" (Johnson, 1954)., It was not possible because of the divergent cross
section at forward angles and the unknown s-wave background, to

6 and Li6(p, a)He3.

perform a similar analysis in the case of Li6(p, p)Li
However, it seemed reasonable to assume that the state in Be7 at
7.18 Mev is the mirror state of the 5/2° state in Li'; therefore,

an analysis was performed for the Li6(p, p)Li6 scattering under the

assumption that only s- and p-waves contribute and that the p-wave

The reduced proton width calculated by assuming f-wave exceeds the
single particle limit. '
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scattering is only through a 5/2° resonant state. The amplitude
matrix for this case is shown in figure 45 and is of course much
simpler than that for the more general situation of s- and p-waves.
The differential cross section for scattering is found by squaring each
box, adding them together and dividing by six. There are three un-
known complex amplitudes which describe the scattering, one for the
resonant p-wave state and two for the s-wave scattering, one for each
spin channel. The real and imaginary ;parts of these complex ampli-

tudes are written as follows:

1
f.f]. =f1+ig1-1

s gFE y %

%

£ s =f; +igg -1 (93)
s g Bl | z

5

f§3 =f5+ig5-1

TErr. 2 |

It is also convenient to define the guantities X, Y and U in

terms of the above amplitudes.

X:%f +§-f

1 3
. V.
(94)
1 2
T="9§ % 38
- 7 )
Bk, F e
U=1-§(ff+gl)-3(f3+g3) (95)
BrivE T
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It is also to be noted that

B kzo'R(s—wave)

U= — (96)

where op is the integrated s-wave reaction cross section. The dif-
ferential cross section for scattering may then be written in the

following way:

%ﬁ(G,E) = B ({Esin g - 721:2-)(x-1) -%cos EY = ;‘i?-

+ iz{(f?’— D[ (fs- 1)cos 2(111-110)- ggsin z(nl_no)]

> - ) o
+ g3l (f5-1)sin 2(n;-ny)+ ggeos 2(n -n )] }cos ©
e AR p 4 (97)
- YR (¢, -1)ain] 2(n, -n)-£] + gncos] 203 -n,)-E]}cos 0
T ;- sin[ 2(n,-ny)- ggcos n,-Ng)-§]} cos

9 b i 2 2 2
The first line is the s-wave scattering in the form given by Christy
(1956). The second line is the s-wave, p-wave interference term.
The third line is the p-wave, Rutherford interference term, and the
fourth line is the resonant contribution to the 5/2° p-wave state.
The object of the analysis is to find a set of six coefficients,

fl/Z’ gl/Z’ f3/2, g3/2, f5/2’ g5/2' as functions of energy which
describe the 25 angular distributions over the energy region con-

sidered. These coefficients must, however, also be consistent with
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the reaction data for Li6(p, u)I—Ie3 and they must vary smoothly as a

_function of energy.

C. TECHNIQUE OF ANALYSIS OF DATA AND RESULTS

An extension of the method given by Christy (1956) was used
to determine a set of the six coefficients at each energy. Equation 97
may be written in terms of X and Y as a straight line, The energy

will now be considered fixed and only the angle 6 will be varied.
Y = A(B)X + C(8) (98)

where the slope is given by

sin £ - v

Ask)'s cos §

(99)

and is only a function of kinematical variables and the atomic numbers

Z1 and ZO'

The intercept C(8) may be written as the sum of two parts.

Recall that § and R are functions of angle.

C(8) = B(8) + D(8) (100)

where

[kwfR—sm‘é"’W_{z-kZzB %';é-?—))}]

cos £

B(®) = (101)

is the s=wave intercept, This term involves the measured scattering
differential cross section do(0)/d? and the integrated s-wave reaction
cross section o-R(s—wave).

The intercept D(0) contains the contribution of the p-wave
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resonant scattering, p-wave, Rutherford interference scattering
and s-wave, p-wave interference scattering. Since the 5/2° p-
wave state is formed only through the 3/2 ;spin channel, the s-wave,
.p-wave interference term contains only the s-wave 3/2 spin channel

amplitude. The intercept D(6) may then be written as follows:

D(0) = ZG(8) + H(0) (102)
where
T (f3 -1)s + g3 (103)
- | 2

is not a function of angle but only a function of energy. The quantities
S, G(8) and H(6) are given by

(fs" l)COS Z(nl-no) 5 gSSin 2(711"10)

S = - 2 (104)
(fs" 1)sin Z(ﬂl'ﬂo) + gSCOS 2(111' no)
Z 2
G(e) = [ (£5-1)sin 2(ny-n,) + ggcos Z(nl-no)]—cc’—s-g
2kVR i = cos
(105)
" cos ©
H(a) . iy {(fs'l)sm[ Z(ﬂl'ﬂo)'g] +g5cos[ 2(“1'“0)‘5]}m
¥ 4 &
7 2
(1 +- cos™0)
9 [ 2. Ky °
+50kw/'R oy [(f;-l) + g;] (106)

In this experiment angular distributions were taken at six different
angles, hence six straight line equations may be written in terms of

X and Y. The complex scattering amplitudes are restricted by the
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conservation of particles to lie within the unit circle in the complex

" plane. This then results in restrictions on X, Y, and U. These are

(107)

The slopes A(0) of the six lines are calculated and the s-wave
intercepts B(0) are computed. If the scattering is describable in
terms of s-wave protons alone, then the six lines must intersect with-
in experimental error at some point in the complex plane, which is
just the point (X, Y) for this energy. At low energies the six lines
do intersect as shown in figure 46. The s-wave intercepts B(9)
were computed for each of the twenty-five energies and the six lines
for X, Y plotted in the complex plane. At higher energies the six
lines no longer interse.ct within experimental error, indicating that
s-waves alone are not sufficient to describe the scattering. The plot
of the six straight lines with s-wave intercepts at an energy near the
peak of the assumed 5/2° p-wave resonance is shown in figure 47,

The next step was to assume reasonable parameters for the
p-wave amplitude fS/Z + igs/2 and calculate p-wave intercepts D(8)
for the six angles. The fesonant description given by equation 70 was
assumed for the p-wave amplitude for a state with J_"r ='%/2 .. The
p-wave potential scattering was neglected in the analysis since no

good estimate of its contribution could be made, The resonant phase
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shift certainly dominates over most of the resonant region., With this

_assumption the parameters f5/2 and gz_.,/2 become:

r ;
f5 -1= -r? (cos 265- 1)
2 Z (108)
g = -r? sin 25,
Z
with
ER— E
cot 65 = 1172— (109)

A reasonable choice must be made for the resonant parameters
I‘p, I', and ER as a function of energy. From the Lib(p, c::.)He3 inte-
grated reaction cross section (figure 42), one may find values for the
reduced proton width Yf’ and the reduced alpha width yi. The p-wave

reaction cross section is given by

I‘pI‘a

o (p-wave) = l‘z - (110)

L
and becomes at resonance

i 2o (111)

o(E_.) =
This combined with the relation
T= Pp + I"u

yields two sets of values for I‘p and Pa for an assumed s-wave

reaction background, one set with large 1"P and small Fa, the other
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with small I'p and large I"u. The magnitude of the resonance in the
scattering data indicates that ],"p is large. These two modes are the
dominant modes of decay for the state.

The relative wave vectors for the p-Li6 system and the a-He3
system are given in terms of the incident proton energy E1 in the

laboratory system as

k; = 3.536E, x 10 -
(113)
ki = 7.027[ E, +4.692] x 10%* T

The parameters n defined in equation 72 must also be known in order

to compute the penetration factors. These are given by

.2 . 0.2248
P E,
(114)
2 _ _0.7937
a EI ¥+4.692

In all of the above expressions the laboratory proton energy E1 must
be expressed in Mev.

Since the angular momentum quantum number of the incoming
proton with respect to the Li6 nucleus was assumed to be £ =1, the
penetration factor for the entrance channel is given by equation 87
with £ =1 and kp as given above. The interaction radius ap for
the p-Li6 system was taken from equation 82 which gives ap =
4,08 1073 cm. The penetration factors were found from the graphs

given by Sharp, et al. (Sharp, 1955).

The relative orbital angular momentum of the u-He3 system
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which results from the breakup of the Be' nucleus in a resonant

_Ju = 5/2° state is found from the conservation of angular momentum
and conservation of parity. Since the a-particle has spin and parity
ot and the He3 spin and parity 1/2+, the only possible exit channel
spin quantum number and parity is s' = 1/2+. Thus from equation 67
the lowest possible relative orbital angular momentum quantum
number with negative parity in the exit channel is £'=3". The
penetration factor is then given by equation 87 with £'=3 and ko,
as given above. The interaction radius was taken from equation 82
which gives a_ = 4.39 x 107" cm.

The reduced proton width y; and reduced a-width yi were

found from equation 84, which are in this case

2

e (115)

2
I'p = kaPlyp and Fu = ZkuP3y

Since the magnitude of the s-wave background is not known apriori,
various choices may be made resulting in sets of reduced widths Y;
and yi. These values, however, are very close to the "best" values
for the reduced widths yi and yi of the corresponding mirror state
in the Li7 nucleus as given by Gabbard (1961). The discrepancy
between the previously reported value of Yi for the Be' state
(Marion, 1956) and the yi for the corresponding Li7* state (Gabbard,
1961) appears to be a result of a computational error. Since there
was no criterion for making a different choice, Gabbard's values were
then used to compute the resonant parameters of the 5/2° p-wave
state in Be7. The resonant energy of the state was determined from

the elastic scattering data at 90°. This data is shown in figure 15. At
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this angle the p-wave interference terms of equation 97 disappear

leaving only the resonant contribution of the p-wave state.

b 2 . 3
F; -;a—kj-[(f;'l) +g§] (116)
P

This term may be written as a function of the resonant phase shift as

follows:
18 ES
o = —— (-I.P) sin“8 (117)
5 25k -
P

The total width I"' and the partial widths Fp and ra were
calculated as functions of energy using Gabbard's values for ylz) and
yi and equations 112 and 115. Since this state is very broad the reso-
nant energy was computed from equations 88, 89, and 91 which become

in this case

ER = Ek 'l'Ak
(118)
A)\ = Ap + Aa.
2
Y d(ln A.)
=05 sl -
Ap a i+ d(In k_a_) ]
P PP
. (119)
12 d(ln A3)
Aa= o aa[3 +m—r—)n uau]

The above level shifts were calculated with the aid of the graphs
of Coulomb wave functions of Sharp et al. (Sharp, 1955), and were
determined from the slopes of the Af versus ka graphs. The

resonant energy Ek' was chosen so that when the calculated p-wave
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resonant cross section equation 117, is added to the calculated Ruther-
ford cross section, equation 70, the resulting curve is symmetrically
placed beneath the measured curve.

The p-wave reaction cross section for the 5/2° state may

also be written in terms of the resonant phase shift

roln) s TR0 B) ein® 5 (120)
R'2 ;2 W 4 5
P

This was calculated as a function of energy and subtracted from the
measured integrated reaction cross section to give the s-wave re-
action background R (s-wave) which is necessary in the computation
of the scattering cross section (see figure 42). The p-wave scattering
amplitudes were then calculated for the twenty-five energies from
equation 108, The variation of this scattering amplitude in the complex
plarile‘is shown in figure 48. The coefficients‘ H(6) and G(8) were
then calculated for the six angles at each of the twenty-five energies.
The coefficient D(8) cannot be calculated completely since the factor
Z given by equation 103 contains the unknown s-wave 3/2 channel

spin scattering amplitude; however, Z at a given energy must be the
same for all angles.

If a scattering cross section can be described in terms of s-
waves only, then at each energy all of the straight lines must intersect
at some point (X, Y). If the reaction cross section is also known, then
the function U is determined. For the case of two channel spins
there are two complex scattering amplitudes and hence four unknown

s-wave parameters. The quantities X, Y, and U defined by equations
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94 and 95 give only three relations between the four unknowns. How-
ever, if there is a p-wave state present, then the s-wave, p-wave
interference term will give a fourth relation between the unknown s-
'wave parameters. In this particular case the relation is given by
the coefficient Z as defined in equation 103 and must also be deter-
mined from the scattering cross section, Of the four equations re-
lating U, X, Y, and Z to fl/Z’ gl/Z' f3/2, and g3/2, three are
linear and one quadratic. The unknowns fl /2 and g /2 may be
eliminated from the equations 94 and 95, giving an equation for f3 /2!
g3/2 which is just a circle in the complex plane with the center at

X,Y and the radius a function of X, Y, and U.

2 a2 _ 1 2. ok
(£, - X)" + (g5 - ¥)" = 5[(-U) - (X"+Y7)] (121)
- 2z
The equation 103 is just a straight line for f3/2, g3/2 in the complex
plane with a slope dependent only on the p-wave state and an inter-

cept which is a function of Z.

g3 = -Sf3 +(S +2) (122)

¥ ] Z
If a solution for f3/2, g3/2 is possible, the straight line must inter-
sect the circle and will in general give two solutions for the 3/2 com-
plex scattering amplitude. The restriction that the complex scattering
amplitudes (fl/Z' gl/z) and (f3/2. g3/2) must lie within the unit circle,
the restrictions on (X,Y), and the requirement of smoothly varying

curves for the points (fl/Z' 31/2)’ (f3/2, g3/2) and (X, Y), in the
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complex plane as a function of energy provide a basis for making a
choice between the two solutions. The complex point (f1 /2! gi- /2) may
also be found geometrically, from equations 94, by constructing a
straight line from the point (f3/2, g3/2) through the point (X, Y) to
a distance which is twice that of the distance between (f3/2, g3/2) and
X Y)s

The procedure used to determine the s-wave parameters (see
figures 47 and 49) was as follows: If the six straight lines for X, Y
do not intersect at some point in the complex plane within experimental
error, then the coefficient H(6) was added to each B(0). If the lines
intersect, then this would indicate a value of zero for Z. If they do
not, then a value of Z may be chosen and the six coefficients ZG(0)
determined, These are then added to the intercepts B(8) + H(0). If
the lines still do not intersect, a different value for Z may be chosen
and the procedure repeated. If the lines do then intersect for some
value of Z and the point (X, Y) is within the circle (1 - U)l/z, and
the straight line for f3/2, g3/2 intersects with the circle for f3/2,
g3 /2 and the points (f3 /2! g3 /2) and (f1 /2 g /2) lie within the unit
circle, and all three éf the complex points are a smooth extension of
the three curves constructed previously at lower energies; then this
solution is taken to be an acceptable one.

The s-wave, p-wave interference term in the cross section

may be written as
csp(E, ) = asp(E) cos © (123)

where o'sp(E) is related to the coefficient Z by



x>

wsp(E) = —2112-( %’) {sin [265 - 2(111-1\0)] - sin Z(ql-qo)}Z (124)
&

The vz.Lriation of this quantity as a function of energy was computed
from the Z's determined in the analysis and is shown in figure 50,
The above technique was then used, beginning at low energies and
proceeding to higher energies, to determine an acceptable set of s-
wave parameters £1/2, gl/Z' f3/2 and g3/2. The resulting complex
points are shown in figure 48 along with the points (X, Y) and
(f5 /2 g5 /2). Table 3 gives the numerical values of these quantities
obtained in the analysis.

At each energy these six values for fl/Z’ 31/2' f3/2, g3/2,
fS/Z’ g5/2 were substituted into equation 97 for each of the six angles
and values of g—& / R obtained. The solid curves drawn on each
angular distribution represent the results of these calculations.

Given this set of s-wave parameters as a function of energy it
was then possible to calculate the s-wave scattering cross séction at
90° as a function of energy and to add this contribution to the sum of
the Rutherford scattering cross section and the resonant p-wave
scattering cross section to give the scattering cross sections predicted
by equation 97 at this angle. The result is shown in figure 15 and ap-

pears to be a reasonable fit to the measured scattering cross section,
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IV. CONCLUSIONS

Over the region studied, equation 97 appears to describe the
measured elastic scattering cross section. The p-wave scattering
is consistant with resonant scattering through a state of spin and
parity I = 5/2- with resonant parameters in agreement with those
from the mirror level in Li7 and with the Li6(p, u)He3 reaction
Cross sectiom* The s-wave scattering phase shift in-the 3/2+ spin
channel (figure 51) does not show a resonance in the region from
0. 45 to 2.9 Mev but qualitatively follows the energy variation of
charged hard sphere scattering with an interaction radius of about
2 fermis. Hence if a 3/2+ state exists at about 6. 35 Mev excitation
in the compound nucleus Be7, it must have a small I‘p/ I" anda
large I‘Q/I‘. This state should then show up in the elastic scattering
of He3's from He®. It should also be noted that the mirror level of
this proposed state could not be excited in the Li6(d, p)Li'7 reaction.
(Hamburger, 1960) This evidence also suggests a small value of
I‘n/I‘ for this state. Of possible interest here are the cluster model
calculations of Pearlstein (1960) and Khanna (1961) who ¢onclude that
neither an alpha-particle plus mass-three clustering, nor a neutron
plus Li® cluster, will yield the proposed 3/2% state. The p-wave
5/2" state at about 7. 2 Mev excitation is now usually assigned the
configuration Py /2 (nglis, 1953; Marion, 1957) onan L-S
coupling model. These calculations also predict a state with con-

figuration 2F5/2 somewhere in the excitation range, ~5 to ~7 Mev.

* -
The possibility of a 3/2” assignment for the p-wave state cannot be

excluded. A'1/2" assignmentisinconsistent with the data.(See Appendix

I1L. )
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If such a state falls within the region corresponding to 0. 45 Mev <
Ep < 1. 4 Mev, the present experiment suggests that the state must
have a small value of I‘p/l". (See figure 46. )

The s-wave scattering phase shift in the 1/2+ spin channel
has qualitatively the same behavior as that in the 3/2" channel at
low energy but begins to exhibit resonant behavior at about L. 5 Mev
and goes through & = /2 at about 2. 76 Mev. This suggests the
presence of a broad 1/2+ s-wave state in Be7 at an excitation energy
of about 8 Mev, although the resonance energy may not be accurately
given by the present analysis.

Resonant parameters for the three states discussed above
are listed in table 4. These parameters are consistent with the
measured elastic scattering cross section for Lib(p, p)Li6 and the
reaction cross section for Lié(P' a)He 3. The parameters for the
3/2+ state (proposed by Marion to explain the energy and angular
variation of the Li6(p, a)He3 reaction) were obtained from the re-
adjusted Li6(p, o.)He3 integrated reaction cross section, using the
scattering data to make a choice between the two possible sets of
values for I‘P/l" and I‘u/I". The 1/2.+ state seems necessary to
understand the scattering data in terms of s- and p-waves alone.
An analysis of the scattering data of Harrison and Whitehead
(Harrison, 1961) in terms of s-, p-, and d-wa.veé should shed further
light on this region. The parameters for the p-wave 5/2  mirror
level in L17 as given by Gabbard (1961) are also shown in table 5

for comparison.
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APPENDIX I

Calculation of Measured Elastic Scattering Cross Section

An example of the reduction of the measured yield to scattering

cross section will be given for the data shown on the L6

profile in
figure 5. The relation between yield and laboratory cross section is

given by equation 19 as follows:

do(E,,8) N

where
oE cos O
. 2 B = |
FEI ¢ cos 52

The resolution-to-solid angle ratio and the factor Ze/2CV was
determined as a product (ZeR/ZCVQL) by scattering protons from
copper just before and after the particular Li6 run.

The energies E1B and EZO for the copper scattering were

determined from equation 28 and 30.

E;p =L 298 Mev
Cu(p, p)Cu

E20 = 1. 252 Mev
o, =81°3; a=0.9734; p=1

]
Ocm = 82°14
Meom
x 1. 0047 from equations 25 and 26

L

The Rutherford scattering cross section equation 70 may be

written



-56-

2
+M cscze 2 -3
=1.296| Z ZO(T) j{cﬂ/—] x 10"~ barns/steradian

The laboratory energy E; was computed from equation 22

which becomes in this case

ey +

o G a+m

where
e(E,) €(E,))

€(E,) - EER)

From the stopping cross section curve for protons on copper (Whaling,

1956)
€(E;g) =1L1x 107 sv-cm®
E(EZO) =13 x 10-15 ev-cm2
n =1 018

Hence
E1 =1. 292 Mev

The Rutherford cross section then becomes
R = 3. 600 barns/steradian
which in the laboratory system is

do'( E

dQ
( CM)R—- 3. 617 barns/steradian

at (E;p) + BE(E, ) = 22.10 x 10”7 ev-cm®

N
s

. T 1 for pure copper (an average mass of 63.55 a. m. u.
was assumed)
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N =9, 361 x 104 counts (corrected for dead time of
apparatus)

Hence
do'(El, 0)
E
( ZeR j = 20 Q)
ZCVQL o

—= (a€(E;p) + BE(E, ) ) N

24

ZeR , _ (L 252x 10-6)(3. 617 x 10™°7)

( )

L 1(22.10 x 10" )(9. 361 x 10%)

The energies ElB

determined from equations 28 and 30.

E =1, 298 Mev

1B . .
L16(p. p)L16
E,, = 0.9527 Mev
0, =81°13' ; a=0.7510 ; p=1
¢ o
a2y,

= 0.9634
QM

and E20 for the L16

=2.189 x 107

scattering were also

From the measured stopping cross section of protons in

lithium (figure 12)
-15 2
C(EIB) =~ 2,10 x 10 ev-cm

€(E,g)~ 2.67x107" ev-cm

n=1L27

E. =1 287 Mev

|
The Rutherford cross section is

R = 0. 0374 barns/steradian

& -15
aE(ElB) + ﬂE(EZO) = 4, 247 x 10

2
ev-cm
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NS

= = Y (from the spectroscopic analysis given by

the supplier of the Li)
N =7.900 x 103 counts
ave
Background = 490 counts

The yield becomes

N = 7. 410 x 10° counts
Equation 19 then gives for the laboratory scattering cross
section for protons with laboratory energy El(L'a.b) = 1. 287 Mev from

I
L16 nuclei at a center-of-mass angle of 90° 45

do

do) (L 007)(2 189 x1077)(4. 247 x 107°)(7. 410 x 10)

L (0. 9527 x 10°)

= 0. 07281 barns/steradian

From equation 24 the center-of-mass cross section becomes

2"522) = (0. 9634)(0. 07281) = 0. 07015 barns/steradian
CM

The ratio of the elastic scattering cross section to the Ruther-

ford cross section is then

do

(ol E (Lab) = 1. 287 Mev
CM _ (0.07015) _, oo,
- (0. 03744) 8., =90°45

CM
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APPENDIX II

Determination of S-wave Scattering Amplitudes

An example of the scattering analysis will be given for the
case of El(La.b) = 1. 879 Mev. Since the method used is described in
Section III-c only an outline of the procedure with definite numbers
will be given here. A program was written so that most of the cal-
culations could be made on the Burrough's 220 computer. An attempt
to fit the data with s-wave protons alone was made first by computing
the values of the slopes of the six lines Y = A(0)X + B(8) and the six
intercepts. The input parameters for this part of the program are

(see Tables 1 and 5)

Laboratory incident proton energy, E1

Center-of-mass s-wave integrated reaction cross
section °z

Center-of-mass angle eCM

Differential elastic scattering center-of-mass cross
section de(8)/dQ

The computer calculates equation 99 which gives A(8) and equation
101 which gives B(@). In addition the computer calculates -B(8)/A(8)

and two other quantities b(8) and c(8) defined by the following

equations:
b(8) = £28.5(0) (125)
K(R(@))7 2
c(8) =1 - 4;11%(6) (126)

The quantity -B(8)/A(8) is useful in plotting the straight lines
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and the quantities b(®) and c(0) are helpful in computing the ratio
of the measured elastic scattering cross section to the Rutherford

scattering cross section which is now given (for s-waves) by

do(0)
“R‘(Wm =b(0) A(B)(X-1) - Y] + c(8) (127)

For the case of El(La.b) = 1, 879 Mev these parameters were

computed to be (from table 5, O'R(s-wave) =~ 0. 068 barns. )

Wox A B -B/A b .

70%41' 0; 6424 . =<1.327 -2. 066 1.796 0. 8656

90%45'  -1.265 -0.8757  -0.6921 2. 847 0. 6919
110°48  -1.841 -0.6855  -0.3724 3. 881 0. 4485
126°6 -2.224 -0.7999  -0.3596  4.579 0. 2413
140°83° L 527 al343 -0.5314 5.128 0. 0530
159°7' 2. 784 -2. 079 -0. 7466  5.590 -0.1238

The six lines were then plotted in the complex plane and are
shown in figure 47. Since they did not intersect at some point within
the circle (1 - U)l/2 within experimental error, it was assumed
that the resonance at this energy was not an s-wave resonance.
Resonant parameters for an assumed p-wave 5/27 state were then
estimated by the procedure given on page 45 and resulted in the follow-

ing set of values at the energy El(Lab) =1, 879 Mev (see Table 5)

I(CM) = 0, 834
P

I(CM) = 0. 872
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E(CM) = 1. 559

A program was also written for the computer to calculate the quantities

f5/2, 35/2’ S, G(0), and H(@). These are defined in equations 108,
109, 104, 105, and 106. The resulting values are

f5/, = -0. 888
S = 1. 009
4 G H 7G
70°41'  -0.4604  1.790 0. 2026
90°45' 0.02636 1.944 -0.0116
110°48' 0.9389  2.537 -0.413
126%6' 1. 816 3, 483 -0. 799
140°53' 2. 666 4. 688 5173
159°7' 3, 494 6. 100 1,537

The above intercepts H(O) were then added to the s-wave
intercepts to give the dashed lines in figure 47. It is evident that
there is still no intersection and the s-wave, p-wave interference
intercepts ZG(6) must be added to the intercepts B(0) + H(9©).
Various values of Z were tried with the result that only the choice
Z = -(0, 44 + 0. 02) would yield an acceptable solution for the s-wave
scattering amplitudes. The values of ZG(0) are also included above
for this value of Z. These additional intercepts were added to the

B(6) + H(®) intercepts to give the lines plotted in figure 49. The choice
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of Z was made simultaneously with the choice for the complex point
(X, Y) and the graphical solution of equations 121 and 122 for the com-
plex point (f3/2, g3/2) and the complex point (fl/z’ gl/z). Most
solutions for the s-wave scattering amplitudes were discarded be-
cause they gave a complex point for (fl/Z' gl/z) outside the unit
circle.

An additional restriction on the above choice was that all three
complex points be reasonable extrapolations of the values found at

lower and higher energies. The numbers actually obtained were

X=0.82 ; Y=0,02

(3 1a-u)-(x?+v2] /2 = 0. 31

The angular distribution was then calculated from the equation

do(09)
’R'(F)'m =b(0)[ A(B)(X-1)-Y + H(8) + ZG(08)] + <(8) (128)

which gave for E,(Lab) =1. 879 Mev the following ratios

Ocy  70%41  90°45'  110°8'  126%  140%3'  159°7
do
-m/R 4,62 6. 78 9.90 14. 3 20. 3 28. 1
do
r) /R 4.37 6. 80 10. 3 14.1 20. 0 27.1
exp

The second line gives the experimentally determined ratios which are

to be compared with the calculated ratios.
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APPENDIX III
Consideration of the possible 1/2° and 3/2° assignments for the

1. 84 Mev p-wave resonance

If the single p-wave resonance assumed in the analysis has the
assignment J" =1/2" or 3/27, the state may be formed through either
spin channel and a channel spin mixing parameter must be introduced.

The scattering amplitude for the 1/2° assignment then becomes

17 2% i s
131/>p = a.a, (fl/z- + 1g1/2_ -1 i,j=1/2or 3/2 (129)

where af'/z is the probability of forming the 1/2° p-wave state through
the 1/2 spin channel and a.g/z is the probability of forming the 1/27
p-wave state through the 3/2 spin channel. Since the uiz are proba-
bilities and there are only two spin channels, the following relation must

hold

ulz/Z + u,g/z =1] (130)

Since there is only one additional quantity involved, one speaks
of the channel spin mixing parameter M which is defined here to be
equal to °12/2’ The f and g are defined as in equations 108 and 109.

The scattering cross section is then found from the amplitude
matrix in the same way as that described for the case of %= 5/2°. All
of the terms for a J' = 1/2- p-wave state must be considered including
the channel spin flip terms (i. e. scattering events which involve a change
of channel spin). The correctness of the p-wave resonant term in the

cross section may be checked by integrating the cross section over solid
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angle. The interference terms drop out and the result must agree with

the Breit-Wigner formula at resonance

r 2
_ 2J4l 4w
“scatt, (Bes) = 5= Z (+F) (as)
The scattering cross section for a single J¥ = 1/2° p-wave
resonant state is found to be
VR U

do : 1 YR
(6,E) =R + ( sin § - NX-1) - os £Y - —
= K o ke -y

- l3 (—ZZ;‘(-Z-)[ (fl/Z' - 1)sin 2(1}1-110) + gl/z_cos Z(nl-no)] cos 6O

- 5YR (465 Dsinl2ng-n )-£l+ g /- cos[2ny-n )-E] }cos ©
+ ﬁz[ (/- - D% + g7, (132)

The coefficient Z is defined similarly to equation 103 but now

2 2 2 2
Z = lay/pfy 5 03/583/5- 118 + (ay/,8) /5% a3/583/,) v33)

The coefficient S is defined as in equation 104 with the index 5/2 re-
placed by 1/2°. The s-wave 1/2 channel spin parameters, fl/Z and
gl/Z' may be eliminated from the equation for Z by using equations 94.
This then gives a straight line equation in terms of the s-wave 3/2
spin channel parameters, f3/2 and g3/2, which has the same form as
equation 122 with the same slope but different intercept.

~ Z +S - 3M(SX + Y)
T R T 1= 3M {34)
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This equation combined with the circle equation 121 must then yield an
acceptable solution for the s-wave scattering if this choice of I is
correct. The p-wave resonant parameters may be found from the
Li6(p, a)He3 reaction cross section by the procedure given on page 45.
An arbitrary s-wave background was chosen which was similar to that
used for the J" =5/2" case.

With the assumption that only s- and p-wave contributions are
present, the assignment ¥ = 1/2" is excluded by the experimental
data. This is primarily due to the fact that the p-wave intensity term
is isotropic for J =1/2, and this restriction makes it impossible to
fit the observed angular distributions.

The analysis in terms of a 3/2° p-wave state proceeds in
exactly the same manner as that for the 1/2° case. The scattering
amplitude is given by

E ; e &
fijpp = aiuj(f3/2_ + ig3/,- - 1) i,j=1/2 or 3/2 (135)

The channel spin mixing parameter M is defined in the same way as

above. The scattering cross section then becomes

%(e,z) =R +(1€-‘sing -2—:2)(X-1) -‘[rf.‘.cos EY - i-z

+-§-(iz)[ (f3/2,- 1)sin 2(n;-m ) + g3/2_c'os Z(nl-no)] cos €

e %‘[TR {(f3/2-' 1)31131[2(1'11"‘10)"51 *83/2_C°S[2(ﬂ1-‘ﬂo)-§]}COB )

1
300k

+

5 [+ 3(50-p)cos?e] [ (£5/,- - )" 4 g32/2_] (136)

where
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B =34+ 72M - 81M> (137)

Z is defined as in equation 133. The straight line equation for the 3/2
channel spin s-wave parameters is given by equation 134 and the circle
equation is given by equation 121.

Various values of channel spin mixing parameter M were
chosen and an analysis carried out in the same manner as for the 5/2"
case and the 1/2° case. The case of M =1/2 (i.e. if the 3/2 state
is formed equally through both spin channels) may be excluded since
it gives an almost isotropic p-wave intensity contribution to the scatter-
ing. However, for the cases of the 3/2" state being formed almost
entirely through either the 1/2 spin channel or the 3/2 spin channel,

a fit to the data can be made with a different choice of s-wave back-
ground. In these cases the s-wave background does not show resonant
behavior in the 1/2 channel spin but may indicate resonant behavior

in the 3/2 spin channel at a much higher energy.
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E(Lab) O, %
(Mev) (degrees) (mb)

0.495 70°56, 544
90°42, 252

110°28, 152
125°28 114
14092 88. 8
159932 78. 7

0.594 70°41' 398

1

90°42 187
110°28 123

125929 87. 2
140°2° 73,0
159932 63.0

0. 692 7o°41: 308
90942 143

110°28' 85. 0
1zs°z?' 69. 2
14002" 56, 4
159032 47,0

TABLE 1

DIFFERENTIAL ELASTIC SCATTERING CROSS SECTION

G

0. 95
0. 99
1. 06
1. 10
1. 06
1. 14

0.97
1. 06
1. 24
1. 22
1. 26
1. 32

1. 03
1.11
1. 17
1. 31
1, 32
1. 32

(Page 28)
do
(Mev) (degrees) (mb)
0.792 70°41' 255
90°42' 119
110928 77. 5
125°29' 62. 9
140°2° 83, 3
159932 42,9
0.892 70°41' 208
90°42' 101
110028 66, 5
125029’ 54,8
140°2" 49, 1
159932 40, 5
0.989 70°41' 164
90042 87.9
110°28' 63, 2
12502?' 52, 8
140°2 . 46, 8
159932 42,5

do do do
(Mev) (degrees) (mb)

1.12 1.087 70°41' i38 1.14
1. 20 90942 77.9 1.48
1. 40 110028 60.5 2,05
1.54 125°29' 51.3 2.38
1. 65 14002 46,2 2.69
1. 59 159932 42,2 2.95
1. 15 1.186  70°41' 108 1. 07
1. 29 90942’ 1. 7T .52
1.51 110928’ 60,4 2.43
1. 70 125929' 54,5 3,01
1.92 14092, 50,1 3.47
1.92 159°7 45.3 3,73
1.12 1.286 70°41' 96.1 1.12
1. 39 90°45' 70.2 1. 87
1. 77 110°48' 58.8 2.82
2,03 12696 56.5 3,70
2. 26 140°53 56,3 4,62

2. 45 15907" 55,6 5,38

-99-



El( Lab)

OcMm

do
daQ

(Mev) (degrees) (mb)

1. 386

1. 485

1. 585

1

70041

90045:
110948
126%6
140°53
159°7

70941

90°45'
110°48'
12696’
140953'
15907'

7004]"

90945"
110049'
126°6
1400953’
15907'

90. 6
70. 5
63.9
65. 4
70. 6
71. 2

96. 2
80, 8
75. 7
82, 8
90. 4
98. 8

113
96. 4
94, 8
103
117
134

TABLE 1 (Cont,)

%/R Ey(Lab) gy, =4 %/R E|(Lab) 0y, % %/R
(Mev) (degrees) (mb) (Mev) (degrees) (mb)
ks Z2 1.681 70°41' 151 2.98 1.976 70°41' 167 4,57
2.18 90°45" 116 5. 28 90°45' 106 6. 67
3,56 110048' 111 9.10 110048'  88.5 10.0
4,98 12696 120 13,5 12696 82,6 12.8
6.72 140°53' 138  19.4 140053 88.9 17.3
8. 06 15907" 157 26,0 15907 104 23.9
1. 49 1.780 70°41' 174 3, 86 2.076 70°41' 152 4,56
2. 87 90945’ 124 6. 34 90°45' 95,5 6, 60
4, 84 110°48° 115  10.5 110°48"' 74,7 9,31
7. 24 126%6 121 15. 2 12696 69.5 11.9
9. 89 14005§' 134 21.0 140°53' 74,2 15,9
12. 8 159°7 154 28. 6 159°7' 83.2 21.1
2. 00 1. 879  70°41' 177 4, 37 2.174 70°41' 139 4, 60
3.90 90045: 119 6. 80 90°45 87.2 6.63
6. 89 110948 101 10, 3 110°48' 64.5 8.83
10, 3 126°6' 101 14. 1 12606" 58.4 11.0
14,5 140°953' 114 20. 0 140953 61.2 14.4

19. 8 159°7" 130 Ly o 15907 67.3 18.8



El(Lab) BCM %%Z
(Mev) (degrees) (mb)

2.273 70°41' 130
90045" 79. 8
110948" 57. 4
12696' 52, 3
14005;' 51. 4
15997 56, 4

2,372 70°41' 119
90°45' 76,1
110948’ 55,5
12696' 47. 8
140953’ 45, 2
15907" 50, 2

2. 470 70°41' 111
90945' 72. 4
110048' 52.5
12696' 44,5
140953' 41.9
15907' 45, 4

TABLE 1 (Cont. )

do do do aor

'd:fz/R E,(Lab) 0., oo Hs‘z/R E(Lab) 0cMm o
(Mev) (degrees) (mb) (Mev) (degrees) (mb)

4,70 2.570  70°41' 106 4,90 2.861  70°41' 96,7

6. 63 90°45 69.6 7.39 900945’ 64, 7

8.58 110048' 50,1 * 9,57 110948' 49, 2

10, 6 12696’ 44,5 10.8 126°6" 39,9

13.2 140053' $1.9 214, 7 140053' 35, 3

1% 2 15907’ 45.4 16,3 15907 34, 8

4, 69 2.664 70°41' 104 5.17

6. 88 90045: 67.9 7.78

9. 05 110048 49,6 10,2

10, 7 126°96' 41,1 11.6

12, 6 140053" 37.7 13.3

16, 7 15907 38.2 16,0

4,73 2,762 70°41' 100 5, 37

7.10 90045 66,2 8,14

9. 28 110048 48,8 10, 8

10, 8 126°6' 40,2 12,0

T 140053' 36,0 14,3

16, 3 15907" 36,1 16,2

&/

5,54
8.52
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TABLE 2
PROBABLE ERROR IN THE Li6 SCATTERING CROSS SECTION
(Page 30)
ESTIMATED PROBABLE
RELATIVE ERROR ERROR (%)

1. Resolution to solid angle ratio

Uncertainty in factor a€(E;p) + BE(Eq)
due to 0. 5© uncertainty in angle and
2% relative uncertainty in €y 1. 4

Statistical uncertainty in Cu yield 0.5

Fluctuations in firing voltage of current
integrator 0.5

Fluctuations in spectrometer energy
calibrations 0.3

Uncertainty in Cu Rutherford cross
section due to 0.5° error in angle and
0.5% error in E;

Back angles LO
Forward angles L9
2; Uncertaintg in factor a€(E;g) + ﬁE(EZO)
due to 0. 5Y uncertainty in angle and
2% relative uncertainty in €33 L5
3. Statistical uncertainty in Li,6 yield L8
4. Fluctuations in firing voltage on current
integrator 0.5
5. Uncertainty in target composition N /n 0.2

Relative probable error in cross section

All angles ~ 3%
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TABLE 2 (Cont.)

ESTIMATED PROBABLE
ABSOLUTE ERROR ERROR (%)

1. Resolution to solid angle ratio 3.5

Uncertainties are the same as for the
relative error with the exception of
the factor a€(E;g) + pe(E,q) which

is uncertain by about 3% on an absolute
scale. (Bader, 1956)

2. Uncertainty in factor a€(E;g) + Be(E ()

for Li 3.0
3. Statistical uncertainty in Lib yield L5
4. Fluctuations of firing voltage of current

integrator 0.5
5. Uncertainty in target composition Ns/n 0.2

Absolute probable error in cross section
All angles ~ 5%



-T0=

TABLE 3
COMPLEX SCATTERING AMPLITUDES (Page 52)

E,(Lab) £1/2 81/2 £3/2 g3/2
0. 495 0.981  -0.035 0. 981 ~0. 035
0.594 0.973 0. 065 0.973 -0. 065
0. 692 0.972  -0. 068 0.972 -0. 068
0.792 0.986  -0.178 0.944 -0. 090
0. 892 0.939  -0.106 0.982 -0. 200
0. 989 0.977  -0.217 0. 930 -0.130
1, 087 0.970 -0, 240 0.927 -0. 133
1.186 0.962  -0.238 0.928 -0.132
1. 286 0.946  -0.215 0. 930 -0. 140
1. 386 0.93¢  -0.162 0.934 -0, 162
1. 485 0.932  -0.160 0.932 -0. 160
1.585 0.891  -0.038 0. 950 -0, 215
1. 681 0. 900 0. 070 0.932 -0, 240
1. 780 0. 874 0.424 0. 880 -0. 273
1. 879 0. 770 0. 630 0. 850 -0. 286
1.976 0. 629 0. 779 0. 810 -0.318
2. 076 0. 315 0. 950 0. 798 -0, 323
2.174 0.143 0. 987 0. 770 -0. 370
2. 273 -0, 058 0. 945 0. 774 -0. 400
2,372 -0, 235 0. 880 0. 760 -0, 440
2. 470 -0. 400 0. 788 0. 750 -0, 455
2,570 -0. 470 0. 710 0. 727 -0. 507
2. 664 -0. 580 0.567 0. 710 -0, 540
2. 762 -0. 650 0, 465 0. 700 -0. 580

2. 861 -0. 688 0. 324 0.673 -0, 600



El( Lab)

0. 495
0. 594
0. 692
0. 792
0. 892
0. 989
1. 087
1. 186
1. 286
1. 386
1. 485
1.585
1. 681
1. 780
1. 879
1.976
2. 076
2.174
Z, 273
2, 372
2. 470
2.570
2. 664
2,762
2. 861

X

0.981"

0.973
0.972
0. 960
0. 954
0. 947
0. 942
0. 940
0. 938
0.934
0.932
0.928
0.922
0. 880
0. 820
0. 750
0. 640
0. 560
0.500
0. 430
0. 370
0. 330
0. 280
0. 250
0. 220

Tl

TABLE 3 (Cont. )

Y

-0, 035
-0. 065
-0. 068
-0.120
-0.135
=0. 155
-0. 165
-0, 165
-0, 165
-0. 162
-0, 160
-0, 156
-0.135
-0. 040

0. 020

0. 050

0.100

0. 085

0. 050

0

-0, 040
-0.100
-0.170
-0. 230
-0. 290

cCoocoOoO0CcoOooo

0.124
0. 740
-0, 550
-0, 480
-0, 440
"0- 433
-0. 425
-0. 450
~0. 450
-0. 470
-0. 490
-0,534
-0, 567
-0.596
-0. 614

572

0. 999
0.998
0. 995
0.992
0. 982
0. 964
0.938
0. 887
0. 810
0. 659
0.413
0. 031
-0, 468
-0, 844
-0, 888
-0. 704
-0, 461
-0, 285
-0. 088
0. 035
0. 142
0. 209
0. 266
0. 317
0. 353

€5/2

0. 034
0. 061
0. 093
0.121
0.175
0, 253
0. 332
0.443
0. 565
0. 725
0. 875
0. 947
0. 798
0. 334
-0. 218
-0. 600
-0. 818
-0. 905
-0.953
-0.963
-0.958
-0. 949
-0- 938
-0.924
-0.912



Nucleus (Units)

J‘l'

ER( Lab) Mev

I‘(ER) Mev
(Mev

E)k above
ground)

I‘P’ n(ER) Mev

Y Mev-£

I (Eg) Mev

Y Mev-£f

-7 P

TABLE 4
RESONANT PARAMETERS
(Page 54)

Be7* Be7*
(3/2%) (/2%
0. 77 2.76
1.03 1. 23
0. 025 0.90
0.17 1. 82
0. 01 0.10
1. 00 0. 33
| P { 0. 25
0. 20 0.03

7%

5/2
1. 84
0. 836
7+ 58
0.798
5. 02
0. 28
0. 038
0.101

0.012

ks

5/2°
0. 262
0. 154
7. 70
0.118
4, 85
0. 26
0. 036

0. 091

0. 012



w3

TABLE 5

ASSUMED S-WAVE INTEGRATED REACTION CROSS SECTION AND

El( Lab)
(Mev)

0. 495
0. 594
0. 692
0. 792
0. 892
0. 989
1. 087
1.186
0. 286
1. 386
1. 485
1.585
1. 681
1. 780
1. 879
1.976
2. 076
2.174
2. 273
2. 372
2. 470
2.570
2. 664
2. 762
2. 861

g

R

(barns)

0. 068
0. 069
0. 070
0. 070
0. 070
0. 069
0. 067
0. 065
0. 063
0. 063
0. 061
0. 060
0. 058
0. 059
0. 068
0. 072
0. 072
0,073
0. 076
0. 079
0. 080
0. 082
0. 083
0. 084
0. 084

1.986
1. 960
1.935
1,923
1. 901
1. 872
1. 851
1. 823
1. 796
1. 760
1. 723
1. 680
1. 639
1. 595
1. 559
1.530
1.501
1. 491
1. 455
1.438

1. 422

1. 411
1. 402
1. 393
1. 390

P-WAVE RESONANT PARAMETERS (Page 59)
ER(CM)
(Mev)

(CM)
(Mev)

0. 076
0.113
0.150
0.176
0. 228
0. 292
0. 345
0.411
0. 468
0. 539
0. 605
0. 660
0. 733
0,777
0. 872
0.923
0.990
1. 054
1.123
1. 190
1. 242
1. 317
1. 377
1. 439
1.504

I (CM)
P
(Mev)

0. 053
0. 089
0.126
0. 151
0. 201
0. 265
0. 316
0. 381
0. 437
0.507
0.572
0. 625
0. 697
0. 740
0. 834
0, 884
0. 950
1. 013
1. 080
1. 146
1. 197
1. 271
1. 330
1. 390
1. 454
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Figure 1

Thick Target Diagrams (Page 5)

Figure a represents the target beam geometry for a typical situ-
ation. The perpendicular to the target surface is oriented at an angle
Bl from the direction of the incident beam and at an angle 62 from the
direction of the exit beam. Particles which strike the front surface of
the target with bombarding energy ElB scatter or form a reaction at
the surface and leave at some angle 02 with an energy EZB' The mag-
netic spectrometer may be adjusted to accept particles which originate
only within a certain lamina As in the target. The energy of a particle
before a scattering or reaction event is given by El and that after the
event by EZ' Since some energy is lost by the particles in traveling
from the surface to the lamina, E1 will be less than ElB and similarly
the energy of the particle accepted by the spectrometer EZO will be less
than EZ'

Figures b and c represent the scattering situation in the determina-
tion of the stopping cross section for protons in lithium. In the first case

the target is just copper; in the second, copper plus a thin layer of

lithium.
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Figure 2

Spectrometer Profile of Copper Target (Page 13)

The voltage across a precision resistor is plotted on the abscissa
and is proportional to the current through the fluxmeter in the magnetic
spectrometer, As indicated on page 13 this current is inversely pro-
portional to the square root of the energy of the particles accepted by
the magnetic spectrometer. The yield or number of particles counted
for a given charge collected is plotted on the ordinate. At a given angle
the protons scattering elastically from copper will have a maximum energy
corresponding to those scattered from the front surface of the target.

Most of the protons will penetrate into the target, scatter at some point
and also come out in the same direction as the protons scattered from

the front surface. These, however, vwill lose energy while passing thiough
the target and will be recorded at a lower energy. The result then is a
step function with the front edge at the calculated maximum energy. This
copper edge was used to calibrate the magnetic spectrometer i, e. to find
the constant CMS in equation 30. The incident proton energy was about

1. 3 Mev and the laboratory angle 81°13 .
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Figure 3

Spectrometer Profile of Lithium Target (Page 13)

This profile was taken with the 10. 5-inch spectrometer and a Li6
target in the 2, 5-inch scattering chamber. The 016 and C12 peaks
correspond to protons which are scattered from the thin oxygen and
carbon contamination layers on the surface of the lithium., The shape
of the L16 profile is given by equation 18, The incident laboratory

proton energy was about 0. 80 Mev and the laboratory angle 116° 54'.
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Figure 4

Spectrometer Profile of Lithium Target (Page 14)

This profile was taken with the 10, 5«inch spectrometer and a Li6

target in the 2, 5-inch scattering chamber. However, since the purity
of the Li6 sample was only 95, 7%, the Li7 profile is also present.
An indication of the age of a target is given by the "tail" on the C12

il TOP™. einks whinh supresent diffnsion inte the Hehivom. The incident

laboratory proton energy was about 1. 00 Mev and the laboratory angle

155934,
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Figure 5

Spectrometer Profile of Lithium Target (Page 21)

This profile was taken with the 16-inch spectrometer and a L16

target in the 6-~inch scattering chamber. The O16

and C12 peaks
here, however, are much reduced because of the improved vacuum in
this chamber. The Li6 edge also appears to be sharper than the Li6

edges found with targets in the 2. 5~inch scattering chamber. The

incident laboratory proton energy was about 1. 30 Mev and the labora-

tory angle g1”13',
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Figure 6

Spectrometer Profile of Lithium Target (Page 24)

This profile was taken with the 16-inch spectrometer and a L16

target in the 6-inch scattering chamber. The solid dots represent

the profile taken just after the target was made and show very little
indication of C12 and O16 contamination. When a foil; which is thick
enough to stop a++'s and He3++ls but not protons at this energy, is
placed in front of the detector, the profile indicated by the crosses is
found. This then is taken as evidence that the background consists
mainly of ott's and He3++‘s. The profile represented by the circles
was taken twenty-four hours later and gives an indication of the quality

of the target used and the vacuum in the 6-inch scattering chamber.

The incident laboratory proton energy was about 2. 3 Mev and the

laboratory angle 81° 13..
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Figure 7

6

Resonant Gamma-ray Yield From the Flg(p, t:ty)O1 Reaction (Page 15)

The 80° electrostatic analyzer was calibrated by using the known
872.5 kev resonance in the Flg(p, a.y)016 reaction. The dots represent
the curve taken from left to right and the crosses represent the curve

taken immediately afterwards from right to left.
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Figure 8

Neutron Threshold for the Reaction Li7(p, n)Be7 (Page 16)

In this graph the two=thirds power of the number of neutrons
counted for a given charge collected is plotted against the setting of
the electrostatic analyzer potentiometer., The analyzer is calibrated
by using the straight line extrapolation near the threshold and the

well-established threshold energy of 1880.7 + 0.4 kev (Marion, 1961).
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Figure 9

Scattering Geometry of 2, 5~inch Chamber (Page 10)

The incident beam comes into the chamber at approximately 10°
above the horizontal plane and leaves the chamber at approximately
10° below the horizontal plane. The scattering angle 8, is given by
the relation

OL (¢}
szn-z— = CcoOos a sin T
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Figure 10

The 6-inch Target Chamber and Furnace (Page 20

This drawing illustrates the relative positions of the scatter-
ing chamber and furnace. This arrangement with the cold trap
separating the two regions was found to be a very satisfactory way

of obtaining a clean copper calibration target and a lithium target

in the scattering chamber at the same time.
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Figure 11

Stopping Power Measurement Spectrometer Profile (Page 21)

The curve on the right represents the copper edge resulting from
the scattering of protons from a clean copper surface. The two curves
on the left represent the copper edges resulting from the scattering
of protons from a copper surface upon which a thin layer of lithium
has been depositeds The displacements between the latter two edges
and the clean surface copper edge are due to the energy loss of the
protons in the lithium layer. The incident laboratory proton energy

was about 2. 0 Mev and the laboratory angle 90°44',
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Figure 12

Atomic Stopping Cross Section for Protons in Li (Page 24)

The solid points are measurements of Bader et al., (Bader, 1956)
and Warters et al, (Warters, 1953) of the stopping cross section for
protons in Li. The solid points with vertical bars are determined
from the a-particle measurements of Rosenblum, (Rosenblum, 1928).
The solid curve is the Bloch curve as derived by Whaling, (Whaling,
1958). Relative stopping power measurements made in this experiment
are indicated by the crosses and triangles and show that indeed the
Bloch curve applies to lithium as well as to all of the other elements

(Whaling, 1958).
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Figure 13

Dead Time Measurement of Scintillation Counter (Page 26)

In this graph the difference between the true number of counts
and the number of counts recorded for a given charge collected is
plotted against the reciprocal of the time necessary for collection.
The counting rate is then varied by increasing the beam current of
protons which are being scattered from a copper target. An estimate
for the true number of counts is found by counting at a very low
counting rate. The dead time is then given approximately by the

formula

p= sloFe

N

where N is the estimate for the true number of counts and the slope
of this curve is used. Here N =1 828 x 10° counts and the dead time

was found to be p =10 psec.
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Figure 14

Excitation Function for Li6(p, p)Li6 (Page 27)

The ratio of the measured elastic scattering cross section to the
cross section for Rutherford scattering from a point charge is plotted
as a function of laboratory proton energy (in Mev) for three C. M,
angles corresponding approximately to the zeros of the first and
second Legendre polynomials and the farthest back angle obtainable.
The crosses indicate data taken on the 2-Mev machine and the dots

indicate data resulting from measurements on the 3-Mev machine.
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Figure 15

Scattering Cross Section for Li6(p,p)Li6 at eCM= 90° (Page 27)

The measured cross section is indicated by the solid dots. The
solid curve represents the calculated Rutherford cross section. The
curve indicated by the open circles is that calculated for a 5/2° p-
wave resonant state as shown on page 27. The curve indicated by
crosses is the sum of the Rutherford cross section and the cross
section due to the 5/2"p-wave resonant state. The triangles represent
the s-wave scattering cross section calculated from the s-wave scatter=
ing amplitudes which were determined in the scattering analysis of the
data. The solid curve through the experimental points is the sum of
the s-wave background, the 5/2- p-wave resonant state, and the

Rutherford cross section; and represents a theoretical fit to the data.
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Figures 16 to 40

Angular Distributions for Li6(p, p)Li6 Scattering (Page 28)

In the following figures the ratio of the measured scattering
cross section to the calculated Rutherford cross section is plotted as
a function of center of mass angle. The error marks indicate relative
uncertainties and are 3% for the backward angles and 4% for 900 and
70°. The curves are calculated from equation 97 using the values of

the scattering amplitudes deduced from the analysis and given in

table 3 and shown in figure 48.
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Figure 41

Spectrometer Profile of Reaction Products (Page 28)

This profile was taken with the 16-inch spectrometer and a Li6

target in the 6-inch scattering chamber. The curve represented by

the dots is the measured superposition of the thick target a.++ and
++

He3 profiles which result from the Li6(p, u)He3 reaction. The

method used to interpret the profile is given on page 28. The incident

laboratory proton energy was about 2. 3 Mev and the laboratory angle

95°45',
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Figure 42

Integrated Reaction Cross Section for Lib(p, u)He3 (Page 30)

The low energy data indicated by the solid line are those of
Sawyer and Phillips, (Sawyer, 1953). The data indicated by solid dots
are those of Marion, Weber and Mozer, (Marion, 1956), normalized
to measurements made in this experiment. The energy E, (Mev)
is the energy of the proton in the laboratory system.

The curve indicated by the open circles is that calculated for a
5/2" p-wave resonant state as shown on page 49. The curve indicated
by crosses is the difference between this curve and the measured curve
and is the s-wave reaction background assumed in the analysis of the

scattering data. (See Table 5.)
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Figure 43

Amplitude Matrix Diagram (Page 35)

The elements of the amplitude matrix (equation 68) are displayed

for the case of s- and p-waves. For convenience the factors

i(n,+n,,-2ng)

nﬁr (21 +1)1/z A 0
a

coefficients, the exit spherical harmonics and the nuclear amplitudes

are left out and only the Clebsch Gordan

are given. The general notation is

m

([SOV/JM)(I Sm v!/JM)fJ 111! 1'

The amplitudes within each box add and correspond to coherent pro-

cesses. The cross section for scattering then is found by squaring

each box, adding them and dividing by six.



-116-

AMPLITUDE MATRIX

Li*(p.p) L:°
“ [ \ 1 1 3 3 3 ) 3 [ 3.3
‘-.:u,1 3T i3 3.3 .x E A= T
f‘ Y
Hu . i Y + B T ed '
id v fi Y J‘if”,, -Ffﬂoo b 1T -,jr;wa
g ino 1 | . -
3y '«I?fﬂon -\]—‘filw ’J:waY- ff““
H'lw
fc‘f:inY“
¢ 1P o B fpes Y ST o oY
L1 :iw !fi” ve :lu ' itep Hn
X L [0 - o .
oY gty J5 fpon Y, Tt F flano.
lion
+ °
frfiga £y
I R R =f;mY- = ilov
f
*1f””Y.' va
Tk t:’f:luY'. > o4 '
iy g T Y0 sule g i fhaee Y.
& L i P _F HIL ,,g‘ff Y T v
- Hoe . I Bt Y.
QJ: f'f” A *F f’fDDY' ;F f‘ Y' R 1 f]i ppY. QJE f' Y'
Hop *%f}hpY-. tiop
- ¢ Y ft‘f:le'. R .
§ iy 'F TR e | . _FfﬂuY‘
5 i F Hw 5 Thiop Y i Y. Fl
e ‘Ef ‘Ef’ v rfuw vk . ‘E‘f“”Y,
Heo Y Hep LTI b ,
S gty FEfiaon
HHee
e i Y
B H ' s o4
B ® ffhno i * v AT
"J; tiee ' if‘ -
Hoo




-117a-

Figure 44

Energy Level Diagram for Mirror Nuclei Li7 and Be7 (Page 39)

The corresponding nuclear levels of Li‘7 and Be7 are shown

here with their assigned spins and parties. (Ajzenberg-Selove, 1959.)
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Figure 45

Amplitude Matrix Diagram (Page 40)

In constructing this diagram the assumption was made that only
s- and p-waves contribute to the scattering and that the p-wave scatter-

ing is only through a resonant 5/2° state. (See figure 43.)
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Figure 46

S-wave Scattering Amplitude Diagram (Page 44)

The equation Y = A(0)X + B(6), where B(6) is the s-wave
intercept, is plotted in the complex plane for the six C. M. angles
used in the experiment. At this low energy the six lines do come
to an intersection within the experimental relative errors. The
complex point (X, Y) must be the same for all angles at a given

energy and must fall within the inner circle with radius equal to

a- uY2,
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Figure 47

S-wave Scattering Amplitude Diagram (Page 44)

The six lines at this energy do not intersect and indicate that
the resonant structure at this energy cannot be described by s-waves
alone. The dashed lines represent the addition of the H(6) intercepts
to the B(0) intercepts. Since an intersection is still not possible, the
s-wave, p-wave interference intercept ZG(6) must be computed for

each angle. Figure 49 illustrates the solution which was finally

taken as acceptable.
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Figure 48

Scattering Amplitude Diagram (Page 49)

This figure represents the region in the complex plane within the
unit circle. For the case of Lié(p, p)Li6 the scattering cross section
may be written in terms of three complex scattering amplitudes. The
assumption is made that only s- and p-waves contribute and that the
p-wave scattering is through a single resonant 5/2° state. The energy
variations of the complex scattering amplitudes for this state (f5 /2 g5 /2).
for s-wave scattering through the 3/2 spin channel (f3/2, g3/2) and for
s-wave scattering through the 1/2 spin channel (fl/Z’ gL/Z) are indicated
in the diagram. The energy variation of a fourth complex amplitude (X, Y)
is also shown in the figure. The real and imaginary parts of this com-
plex number are related to those of (fl/Z’ 31/2) and (£3/2, g3/2) in the

following way:

1 2
At 3ty

]
I

_ 1 . 2
38/27 383/2

The curves are labeled as follows:

s-wave X,Y amplitude. . . . . . . . . . . . . . @
s-wave 1/2 spin channel amplitude . . . . . . . . . o
s-wave 3/2 spin channel amplitude . . . . . . . . . x

p-wave 5/2 resonant amplitude . . . . . . . . . . A
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Figure 49

S-wave Scatterimg Amplitude Diagram (Page 51)

In this diagram the six lines Y = A(8)X + C(8) are plotted where
C(0) is the s- plus p-wave intercept. An explanation of the procedure

used to obtain this final solution is given on pages 49-51
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Figure 50

S-Wave - P-Wave Interference Cross Section (Page 51)

The s-wave - p-wave interference term in the scattering cross

section may be written as
o’sl(El, 8) = o’sl(El) cos O

The coefficients crsl(El) shown in this diagram are obtained from the
analysis of the scattering data directly from the coefficient Z as
shown on page 51. The energy El (Mev) is the energy of the proton

in the laboratory system.
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Figure 51

S-wave Phase Shifts (Page 35)

The s-wave scattering amplitudes may be written in terms of

phase shifts in the following way:

]

f+ig = Ne2id

where
N = (fz + gz)l/2 (magnitude)
26'= 1:an'1 % (phase)

1 1
The quantities 61/2 and 63/2 are plotted here as functions of

laboratory proton energy and as C. M, proton energy. At low energy
both spin channels appear to exhibit "potential™ type behavior and
would correspond to potential scattering from a charged hard sphere
(equation 81) with a radius equal to about 2 fermis. The 3/2 spin
channel exhibits this behavior over the whole region studied and in
particular does not exhibit resonant behavior near 1 Mev. The 1/2
spin channel, however, does exhibit resonant behavior and would

correspond to a resonant phase shift,

&t -1 I
= tan 2—(—-—E-)-ER_
which goes through %/2 at about Ep(Lab) = 2.76 Mev with a width
of '~ 1,44 Mev. This is valid if ]."P/l"z 1 for the resonance since

then equation 79 becomes

1
£4ig = e21(6+ 8) _ e2.16
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