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Chapter 1

Introduction

My thesis describes the design and implementation of systems that empower individuals to help their

communities respond to critical situations and to participate in research that helps them understand

and improve their environments. People want to help their communities respond to threats such as

earthquakes, wildfires, mudslides and hurricanes, and they want to participate in research that helps

them understand and improve their environment. “Citizen Science” projects that facilitate this

interaction include projects that monitor climate change[1], water quality[2] and animal habitats[3].

My thesis explores the design and analysis of community-based sense and response systems that

enable individuals to participate in critical community activities and scientific research that monitors

their environments.

This research exploits the confluence of the following trends:

1. Increasingly powerful mobile phones and inexpensive computers.

2. Growing use of the Internet in countries across the globe.

3. Cloud computing platforms that enable people in almost every country to contribute data to,

and get facts from, a collaborative system.

4. Decreasing costs and form-factors of a variety of sensors and other measurement devices in-

cluding accelerometers, cameras, video recorders, and EKG monitors.

The applications studied in the thesis are based on a set of principles common to community-

based sense and response systems. The applications acquire data from people and sensors at different

points in space and time; the data is fused in a cloud computing system which determines optimum

responses for participants and then pushes the information out to the participants. This thesis

demonstrates the applicability of a set of core principles to what, at the surface, appear to be very

different applications: seismology, health care and text analysis.
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1.1 What is Citizen Science

Citizen Science is a growing field of community driven science projects that provide the tools neces-

sary to enable volunteers to contribute their time or resources to scientific projects. This contribution

can be in the form of human observation, sensor measurement, or computation. This type of science

is closely related to the idea of crowdsourcing, in which difficult problems, measured in complexity[4]

or scale[5], are more easily solved by opening the problem solving process to the community at large.

The most often cited example of this model in action is Wikipedia, which, through freely donated

community contributions, attempts to solve the problem of how a free, up-to-date encyclopedia can

be created, maintained, and made available to the world at large.

The model has experienced a great deal of success, and, though it is not without its limitations,

scientists are embracing the same idea. A difficulty of crowdsourcing in scientific projects is that

specialized knowledge or equipment is required to participate effectively. However, as sensor tech-

nologies become more ubiquitous, and, as new tools for working with these technologies become

available, crowd sourcing and citizen science projects are likely to become more common.

Limitations in knowledge can be circumvented either through better educational or reference

material or by using technology to allow trained individuals to have access to more samples in less

time. For instance, in the Christmas Bird Count, knowledge of which birds are seen is important

in deriving an accurate count. This limits participation in the count to individuals capable of

differentiating between and identifying different species of birds.

This limitation can also be circumvented by an application on a smart phone which tags photos

taken of birds with their location and allows later automated or manual identification by a program

or trained individuals. In fact, we hypothesize that a larger population participating for a shorter but

synchronous time could result in a more accurate count; there would be less change in bird positions,

GPS coordinates and compass readings would help eliminate duplicates, and photos would enable

estimation of both species and flock counts more accurately. If an automated program is not feasible,

the photographs could still be easily reviewed manually over the internet by all interested individuals.

Allowing each photo to receive multiple identifications would help further eliminate errors.

Equipment limitations usually center around specialized equipment that is unlikely to see con-

sumer use or adoption. If the wide availability of the equipment is essential, suitable substitutes

must be found. For instance, in the Cellphone Medicine project it is desired that participants have

access to both a stethoscope and an EKG. Neither of these items is common outside medical clinics,

so one of the goals for the project must be to find a way that these items can be affordably made

available to participants.

Low-cost equipment that produces data from which conclusions can be drawn is key to projects

that require specialized equipment. The equipment must be cheap enough that wide scale adoption
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is not infeasible, yet sensitive enough that rates of false positives and false negatives are not too

high. Managing this tradeoff between sensitivity and price is difficult.

Sometimes the tradeoff is solved because of new consumer applications. Contemporary consumer

devices are incorporating more and more sensors, usually in order to permit greater interactivity with

the device. These sensors can often be repurposed, and the repurposing of existing technologies for

scientific purposes is a hallmark of Citizen Science projects. Doing so allows a project to eliminate

monetary adoption barriers; participants will find that all that is required is the willingness to

participate in the form of contributing these already available sensor readings.

For instance, the ubiquity of cell phones makes countless remote cameras and microphones GPS

systems and accelerometers available for researchers to tap into. The Citizen Scientist then need only

think about how these sensors can be used, in aggregate, to derive useful information. Some projects

have attempted to use GPS readings to estimate traffic patterns and congestion, and the Community

Seismic Network project uses accelerometer readings to determine whether or not ground motion is

occurring and how bad the shaking is.

1.2 How is Cloud Computing Helpful

While some Citizen Science projects have ample funds and are well organized, others, often run

by volunteers, have little in the way of resources or stable administration. Even for those projects

that are normally well equipped to handle technical problems, the issue of scale presented when

crowdsourcing scientific efforts can lead to difficult technical problems whose solution is not the goal

of the project.

In this facet, the availability of tools on the Internet that abstract technological problems from

physical resources makes it easier for projects to grow and thrive. This is particularly true for

projects which are intended to be made available to communities that do not have the resources

to effectively support the technical end of the project, but remains a boon for all projects. Many

projects have variable load; Cloud systems adapt gracefully to variable load, acquiring resources

when load increases and shedding resources when they are no longer necessary.

Many projects grow over time as greater levels of participation are achieved. The cost structures

of cloud providers help Citizen Science projects grow cost effectively because an application pays

only for what it consumes.

Research projects are often required to execute continuously for years; utilizing Cloud providers

removes the need for routine maintenance from the system, making supporting systems over years

simpler. It also means that if the project changes hands, the technical resources will not be affected.

Barring latency or bandwidth concerns, global participation and management are both possible.

These factors help free up the time of the project members to focus on the actual problem being
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addressed, rather than the concerns associated with building and maintaining the infrastructure for

a long-lived service. The analysis provided in this thesis recommends cloud computing for Citizen

Science projects.

This thesis describes: how different Cloud computing resources benefit citizen science projects,

the applicability of each type of resource to these projects, and experiences had while implementing

Citizen Science systems using these components. It will highlight how many common problems in

devising systems to run on the Cloud while showing solutions that have been used to address those

issues.
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Chapter 2

Cloud Computing Resources

2.1 Clients

Clients for Cloud computing projects can be separated into two types: web based clients and local

code clients. Clients with a remote code base are an overwhelmingly popular choice for many modern

applications, as evidenced by the support behind Software-as-a-Service (SaaS) projects. While they

are not always an option, or at least not exclusively, web based clients have a variety of advantages

over their more traditional brethren.

First, web based clients do not have to worry about the endless cycle of updates; bug fixes,

functionality upgrades, and security patches are all available to all clients simultaneously as soon as

they are released. Contrast this with the model in which many individuals do not receive updates

either out of an unwillingness to undergo what is seen as a hassle, or because the knowledge that

maintenance tasks can be important is not present.

Second, with web based clients the backup and safekeeping of data is necessarily left in the

hands of the software provider. To the extent that the provider is trusted, this is an excellent

thing, as most users are lax about keeping adequate backups of their data. Additionally, many SaaS

applications provide users with the ability to backup their content locally at their own discretion,

which means that particularly concerned users lose nothing, but gain an additional backup copy.

For the purposes of Citizen Science in particular, keeping the data centralized and protected is an

advantage and necessary irrespective of the client form.

Third, these applications are often location and platform agnostic. That is, accessing a Cloud

application from a desktop at work, a laptop at home, or an Internet caf while on vacation in another

part of the world makes no difference. This greatly reduces the impact of a failed machine; the data

is protected and, because access to and manipulation of the data is not restricted to the application

on that machine, downtime is reduced if another machine is readily available.

It is worth noting that most web based client still contain local code components, such as for

AJAX functionality; the distinction here is that the local code components are downloaded and
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executed in real time as a response to accessing the application, so the benefits described of a

remote code base still exist, partially as a result of limitations in access to users’ local resources.

This distinction is less precise when technologies like Java Web Start are used; while the application

still executes the latest version at all times, access to local resources is unhampered and there are

no guarantees regarding the safety of data except those provided by the developer.

Drawbacks to remote code clients are nearly identical to the list of advantages for local code

clients. That is, what is advantageous about local code clients is what is disadvantageous about

remote code clients and vice versa. The two models often stand in stark contrast in that, what one

does well, the other does poorly.

The first and most important advantage local code clients have over their web based counterparts

is that, with current operating system and browser models, only local client code can run persistently

without an open browser window. This is important for clients that require regular data to be

transmitted, and is probably the number one reason to use local client code.

The next most important advantage of local code clients is access to client hardware. While

hardware devices can be accessed with technologies like Flash and Java, without the built-in driver

base of the operating system or the vendor-provided libraries necessary for ease of communication,

substantial time will be spent coding an appropriate device interface. If access to hardware devices

is an important facet of a client, then a local client base will almost certainly be necessary.

The final primary advantage of local clients is speed. While remote code technologies are gaining

ground in their ability to access multiple cores and utilize hardware graphics acceleration, applica-

tions where performance is the dominant requirement will still benefit from a local code base.

2.2 Servers

Many solutions for Cloud based servers are available today from a variety of providers[6]; the offerings

fall into three primary categories.

Infrastructure-as-a-Service IaaS is the most basic Cloud based offering available. Examples

include Amazon EC2[7] and Rackspace Cloud Servers[8]. This type of offering provides a basic

infrastructure within which to deploy any kind of system; the infrastructure provided normally

consists of the physical hardware, the network connections between machines and the Internet, and

a framework that provides the ability to start up or shut down virtual instances that the customer

configures. The basic offering is in many ways similar to virtual private server offerings, or any

type of hosted server where the responsibility for the hardware lies with the vendor. However, IaaS

has the advantage that you can easily scale up or down the number of instances in use and, in so

doing, pay for only the machines you are actively using. According to Amazon’s FAQ, ”It typically
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takes less than 10 minutes from the issue of the RunInstances call to the point where all requested

instances begin their boot sequences.”[9].

Platform-as-a-Service PaaS applications provide a more constrained environment than IaaS.

Google’s App Engine (GAE)[10] is an example in which an instance is not a physical machine, but

rather a running instance of an application such as a specific Java Virtual Machine (JVM) running

on a particular computer. Physical machines may host multiple instances, but this fact is what

provides GAE’s primary benefit: instance startup time can be in the order of seconds. Because

machines have already booted up prior to the time that activation is required, the only thing that

must happen for an application to be loaded is for its code to be downloaded to the target machine

and prepared for execution.

Software-as-a-Service SaaS is both the most sophisticated Cloud based offering and also the

most restrictive. It is the most actively used model for Cloud based computing as the typical use

case for SaaS is consumer facing products. Examples of consumer facing SaaS products include

Gmail[11], Photoshop Online[12], and Zoho Office Suite[13]. This model is gaining popularity for

developer-facing products as well, such as for storage, messaging, and database platforms. These

developer-facing SaaS products can be layered on top of an IaaS model, a PaaS model, or a traditional

physical architecture, and enable specific pieces of functionality to be outsourced to a Cloud provider.

The main difference between the consumer-facing products and the developer-facing products is that

the latter are typically not interactive products, but rather provide programmatic access to a Cloud

based service.

Many Cloud based servers are distributed and resilient with redundant components across wide

geographic regions. For example, an earthquake in Southern California or a bushfire in New South

Wales, Australia will not bring down EC2 or GAE. Sensors or other data sources from almost any

place in the world can connect to EC2 or GAE easily. The organization deploying a Citizen Science

application need only pay for the IT resources that it actually uses; it does not need to pay for

infrastructure to handle the maximum load that may occur.

PaaS systems, such as GAE, can scale up in seconds as new instances of the application are

deployed. IaaS systems can be pre-provisioned to handle initial surges in load, and additional

resources can be requested in advance to manage anticipated load increases. The difference in time

required to get a new instance up and running between IaaS and PaaS means that applications

should predict surges in load and reserve additional resources earlier for IaaS implementations than

for PaaS. An advantage of IaaS is that organizations can deploy exactly the software that is most

appropriate for their application, whereas applications built on PaaS systems must, perforce, use

the software provided by the platform. Both IaaS and PaaS systems can be used for Citizen Science
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applications; this thesis focuses on PaaS systems generally, and GAE in particular.

2.2.1 Platform-as-a-Service

PaaS providers have a few characteristics that make them especially useful for Citizen Science. First,

while both IaaS and PaaS systems mean that project members need no longer maintain physical

machines, only PaaS systems also abstract the installation and maintenance of software. This

installation and maintenance relates to many normal IT duties: operating system, database, web

server, and related software installs, security patches and upgrades, user administration, and system

security. Because PaaS systems are sufficiently abstracted, only the running code itself is of concern

to the project; the security of the machine at the operating system level or otherwise is no longer a

concern.

Second, as has been pointed out, many projects have variable load; while IaaS and PaaS can

both be used to scale a project to match changing demand levels, the speed and ease with which this

is done is quite different. In IaaS systems, resources can be acquired or shed programatically as they

are needed or become unnecessary. However, this feature introduces added complexity because it

requires resource management in the form of an algorithm which dictates when resources should be

added to or removed from the system, how added resources are integrated with existing resources,

and how to avoid addressing resources which have been removed from the resource pool.

Some PaaS providers, such as GAE, enable carefully designed programs to execute the same

code efficiently when serving thousands of queries per second from many agents or when serving

only occasional queries from a single agent. This leads to two benefits of great importance to

Citizen Science projects: the scaling of resources need not be managed by project members, and the

speed of scaling is much more rapid.

While some projects[14, 15] exist to help IaaS projects deal with scalability, IaaS providers

normally leave it up to the client to determine how resources are added and removed from the

resource pool as well as relegating dealing with the complexities associated with these varying levels

of resources to the user. In a project dedicated to solving a problem unrelated to distributed

computing, this additional overhead in design is burdensome.

Finally, the constrained environment of PaaS applications allows providers to offer features that

cannot be found in IaaS systems. For instance, PaaS providers frequently provide the ability to easily

deploy new versions of an application with no downtime. This means that, while existing connections

are unaffected, new connections to the system will use the latest version of the application. Managing

rolling restarts of IaaS systems to update to the latest images is another hassle that can be avoided

by utilizing the tools provided by PaaS systems.

Cloud computing has disadvantages as well as advantages. One concern is vendor lock-in. We

explore the use of widely used standards for PaaS providers; these standards allow an application to
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be ported to other providers. Of course, porting an application, even when standards are identical,

is timely and expensive.

A major concern for outsourcing IT aspects is reliance on third parties. This concern must be

balanced against the benefits of Cloud computing systems.

2.3 Sensor communication

Sensor communication is a critical component of many Citizen Science projects; choosing how and

when data is conveyed from sensors to aggregation points is an important part of the design process.

We evaluated three options for sensor data aggregation:

1. Raw data is sent from sensors to the Cloud where global events are detected.

2. Raw data is sent from sensors to servers partitioned by geographic region. Regional servers

determine local events and communicate those events up the hierarchy. The top of the hierarchy

detects global events.

3. Local events are detected in an intelligent sensor or in a computer attached to the sensor; these

local events are communicated to the Cloud where global events are detected.

Each transmission mechanism has its own benefits. In the first case, having all sensor data

globally aggregated means that all event types are always available for analysis. Local events at the

sensor level, regional events of any scale, or global events at the system level can all be detected.

In the case of an earthquake-response application, raw data from many sensors taken over months

and years is invaluable because the raw data helps to understand the seismic structure of the region.

Likewise, raw data collected over months from sensors in buildings and bridges help to understand

the dynamics of the structures. A major advantage of this configuration is that the load on the

server is much less bursty than the load in other configurations; for example, sensors monitoring

water quality could send raw data continuously, at a well-characterized rate, rather than send data,

in a bursty manner, only when unusual events occurred.

The second configuration is identical to the first except that tiers of servers are used to balance

the load. This has the benefit of reducing the load at the highest aggregation layer, since it will only

receive larger aggregated events rather than individual sensor measurements. However, this has two

drawbacks. First, it introduces latency into the detection of global events because sensor data must

percolate through multiple layers before reaching the final aggregation layer. Second, partitioning

regions creates edge cases that may cause otherwise effective algorithms to fail; a collection of data

that is exactly split in half by a regional partition might, together, identify an important event but,

when split into two separate pieces, neither partition contains enough data to extrapolate the larger
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event. Cloud computing providers do not generally allow organizations to determine the network

configuration including geographical locations of servers. A geographically structured hierarchy is

more easily implemented in a wholly-owned system.

In the final configuration, sensors do not act as simple information relay mechanisms, but instead

make local decisions about what is interesting in their specific data stream. This information is

then transmitted to a global aggregation center. Because events are identified at the sensor level,

this results in a dramatic reduction in traffic; consequently, it is often the least expensive form of

transmission. This configuration stores data that is not time-critical locally and uploads that data

only when requested by the server; however it uploads time-critical data immediately. A problem

with this approach is that the local device must be intelligent and make the decision about what is,

and what is not, time critical. A major problem is that in this configuration, the load is extremely

bursty — most of the time no events are reported but once in a rare while an unusual situation

arises that causes most sensors to detect an event and then generate a peak load.
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Chapter 3

Survey of Existing Cloud
Computing Resources

3.1 Google App Engine

Rather than relying on a parallel hardware platform for streaming aggregation[16], our work focuses

on the use of the often constrained environments imposed by Platform-as-a-Service (PaaS) providers

for event aggregation. In this work, we focus specifically on Google’s App Engine[10]. App Engine

provides a robust, managed environment in which application logic can be deployed without concern

for infrastructure acquisition or maintenance, but at the cost of full control. App Engine’s platform

dynamically allocates instances to serve incoming requests, implying that the number of available

instances to handle requests will grow to match demand levels. For our purposes, a request is an

arriving event, so it follows that the architecture can be used to serve any level of traffic, both

the drought of quiescent periods and the flood that occurs during seismic events, using the same

infrastructure and application logic.

However, App Engine’s API and overall design impose a variety of limitations on deployed

applications; the most important of these limitations as it concerns event processing are discussed

in the following sections.

3.1.1 Synchronization limitation

Processes which manage requests are isolated from other concurrently running processes. No normal

inter-process communication channels are available, and outbound requests are limited to HTTP

calls. However, to establish whether or not an event is occurring, it is necessary for isolated requests

to collate their information. The remaining methods of synchronization available to requests are the

use of the volatile Memcache API, the slower but persistent Datastore API, and the Task Queue

API.

Memcache’s largest limitations for synchronization purposes are that it does not support transac-
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tions or synchronized access and that it only supports one atomic operation: increment. Mechanisms

for rapid event detection must deal with this constraint of Memcache. More complex interactions

can be built on top of the atomic increment operation, but complex interactions are made difficult

by the lack of a guarantee that any particular request ever finishes. This characteristic is a direct

result of the timeframe limitation discussed next.

The Datastore supports transactions, but with the limitation that affected or queried entities

must exist within the same Entity Group. For performing consistent updates to a single entity,

this is not constraining, but when operating across multiple affected entities, the limitation can pose

problems for consistency. Entity Groups are defined by a tree describing ownership. Nodes that have

the same root node belong to the same entity group and can be operated on within a transaction.

If no parent is defined, the entity is a root node. A node can have any number of children.

This imposes limitations because groups can only have one write operation at a time. Large

entity groups may result in poor performance because concurrent updates to multiple entities in

the same group are not permitted. Designs of data structures for event detection must tradeoff

concurrent updates against benefits of transactional integrity. High-throughput applications are

unlikely to make heavy use of entity groups because of the write speed limitations.

Task Queue jobs provide two additional synchronization mechanisms. First, jobs can be enqueued

as part of a transaction. For instance, in order to circumvent the transactional limitations across

entities, you could execute a transaction which modifies one entity and enqueues a job which modifies

a second entity in another transaction. Given that enqueued jobs can be retried indefinitely, this

mechanism ensures that multi-step transactions are executed correctly. Therefore, any transaction

which can be broken down into a series of steps can be executed as a transactional update against

a single entity and the enqueueing of a job to perform the next step in the transaction.

Second, the Task Queue creates tombstones for named jobs. Once a named job has been launched,

no job by that same name can be launched for several days. The tombstone that the job leaves

behind prevents any identical job from being executed. This means that multiple concurrently

running requests could all make a call to create a job, such as a job to generate a complex event or

send a notification, and that job would be executed exactly once. That makes named Task Queue

jobs an ideal way to deal with the request isolation created by the App Engine framework.

3.1.2 Other Limitations

Timeframe limitation Requests that arrive to the system must operate within a roughly thirty-

second timeline. Before requests hit the hard deadline, they receive a catchable DeadlineExceeded

exception. If they have not wrapped up before the hard deadline arrives, then an uncatchable

HardDeadlineExceeded exception is thrown which terminates the process. Our work indicates that

factors outside of the developer’s control can create a timeout even for functions which are not
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expected to exceed the allocated time. Therefore, it is quite possible for a HardDeadlineExceeded

exception to be thrown anywhere in the code, including in the middle of a critical section. For this

reason, developers must plan around the fact that their code could be interrupted at any point in

its execution. Care must be taken that algorithms for event detection do not have single points of

failure and are tolerant to losses of small amounts of information. Operations that take longer than

thirty seconds can use the Task Queue API, which has a more generous deadline of 10 minutes.

Since tasks can spawn other tasks, a computation of any length can be performed if its constituent

computations never exceed 10 minutes.

Query limitation Several query limitations are imposed on Datastore queries. The most im-

portant limitation is that at most one property can have an inequality filter applied to it. This

means, for instance, that you cannot apply an inequality filter on time as well as an on latitude,

longitude, or other common event parameters. We discuss our solution to solving the problem of

querying simultaneously by time and location in Section 4.3. Additionally, the nature of the Datas-

tore makes traditional join-style queries impossible, but this limitation is circumventable by changing

data modeling habits or by combining data queries.

Downtime Scheduled maintenance periods for App Engine put the datastore into a read only mode

for usually on the order of half an hour to an hour. Sensor networks without sufficient memory to

buffer messages for that period of time will lose data during any maintenance period. Operations can

still be performed in memory, however, so sensor networks can still receive and perform calculations

on data that do not require persisting results to the datastore. Scheduled maintenance periods

occurred 8 times in 2009 and 8 times in 2010 in addition to 9 outage incidents in 2009 and 5 in

2010[17]. These outages can be mitigated by using App Engine’s newer and more expensive high

replication datastore[18].

Errors The error rate will be described as errors on the part of the cloud service provider, that is,

errors that would not have been expected when operating owned infrastructure. For App Engine,

these include errors in the log marked as a ”serious problem”, instances where App Engine indicates

it has aborted a request after waiting too long to service it, and DeadlineExceededExceptions. We

include deadlines as errors because, for a properly configured app with a predictable input set, if

the mean processing time for a single request lies substantially below the deadline time, then the

substantial increase in processing time required to drive the request to generate a DeadlineExceed-

edException is due to factors not under the user’s control.

All of these limitations illustrate that applications which utilize App Engine for collation of sensor

data must either be insensitive to the loss of small amounts of data and resilient to transient errors.
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3.1.3 Comparison to other PaaS platforms

One big difference between App Engine and its competitors is that App Engine does not charge

for availability nor does it explicitly charge by the number of machines or processes that handle

your requests. Rather, App Engine merely charge by the amount of resources consumed. This is

particularly ideal for bursty traffic, where resources are automatically allocated in times of demand.

For steady, predictable traffic levels, the model employed by competitors Heroku and Amazon Elastic

Beanstalk are very attractive, as they make it easy to guarantee a specified level of performance.

Without appropriate scaling models and smoothly varying traffic, however, they are susceptible to

the normal problem of either requiring over-provisioning or accepting sensitivity to fast changes in

demand.

Heroku Heroku[19] allows applications written to a standard framework in Ruby to be trivially

deployed to the service, but its pricing structure is more similar to Amazon EC2 than to App

Engine. It requires users to predetermine the number of available dynos (for synchronous requests)

and workers (for background requests) to handle jobs. While logic can be built into the application

to dynamically alter that number, you are also billed by second for every available worker. This is

similar to how you are billed by second for every running EC2 instance, rather than only being billed

for resources consumed as on App Engine. Unlike EC2, however, newly added dynos are available

to a Heroku app within seconds, meaning that if you have the right scaling conditions built into

your application, you can still handle quickly changing demand structures.

Amazon Elastic Beanstalk Amazon’s newly launched Elastic Beanstalk service[20] is very simi-

lar to Heroku, but with even more of the physical hardware choice that EC2 provides. It allows users

to easily deploy applications using a standard Java framework and handles the creation and man-

agement of EC2 instances. That is, unlike the normal use of EC2 instances, users are not required

to create images that are booted as a normal system. Instead, the images are handled for the user,

who is only required to create the WAR file to be deployed. Users can select what kind of instances

their application uses, but, like Heroku, must determine manually or through the API how many

instances should be loaded and when to increase or decrease the number of instances. This can be

managed by the Auto Scaling service which Amazon provides, but the service still requires users to

specify the conditions under which their application will scale. Since the scaling, either manually or

as managed by scripts, relies on the creation of new EC2 instances, it suffers from the same latency

drawbacks as EC2, but does avoid the system maintenance issues associated with managing your

own EC2 images.
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3.1.4 Latency

Of primary concern in many applications is the latency experienced in processing requests. Latency

here will be defined as the total amount of time required to process a request, rather than the latency

experienced by a user or sensor, which is subject to network latency beyond that which is due to

network components controlled by the provider.

Unique to App Engine is the concept of a loading request. A loading request occurs when a new

instance of an application is started in order to respond to a user facing request. This means that the

incoming request must wait for the normal response time of the application as well as the additional

latency incurred when starting up a new instance. This is particularly important in sensor networks

because the duration of a loading request is an artificial lag introduced into the system between

the time when a stimulus is detected by a sensor and the time when the system is able to respond

to it. Applications that are extremely sensitive to latency are unlikely to use cloud providers, as

the network latency would already be too much to handle. Here, we will define latency sensitive

applications as those applications where increasing the amount of time between stimulus detection

and the ability to respond to it by a second could pose problems.

3.1.4.1 Loading request performance by language

App Engine supports two different programming environments: Java and Python. Because Python

is a scripting environment, it is presumed that Python performs better than Java for loading request

duration. To test this, we ran an experiment in which we uploaded the simplest possible Java

application that printed a ’Hello world’ style response to every single request. We then constructed a

similarly simple Python app using the webapp framework[21]. While Python users are not compelled

to use webapp, since Java users must rely on HttpServlet it seemed reasonable, particularly given

that most Python users will use webapp or another framework, to use it in our application. As you

will see, Python did not suffer unduly from this requirement.

In Figure 3.1 we show the difference in loading request times between the Java and Python

applications. The applications shown are:

• No Libs: in this Java application, all libraries were stripped from the war’s library directory

and the application was uploaded that way.

• Default Libs: in this application, the libraries in the application’s library directory were only

those placed there by default by the Google plugin for Eclipse.

• 100 MB Libs: in this application, 100 MB worth of jar files were added to the application’s

library directory. These libraries were not referenced by the ’hello world’ application in any

way, and were only added to estimate their impact on application load time.
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• Python: in this Python application, the only file uploaded was the .py file for the ’hello world’

application.

• Python 100 MB: in this Python application, 100 MB of additional .py files were added to the

application directory.
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Figure 3.1: Differences in the loading request

times for a ’hello world’ style application in Java

and Python.

From the data we can see that the startup

time of Python instances is substantially better

than Java instances, even for very simple appli-

cations. The median loading request response

time of the simplest Java application was 369

milliseconds, while the median response time of

the Python application was 54 milliseconds. For

applications that are not particularly sensitive

to latency, this initial difference is relatively in-

substantial, however, the test with additional

libraries added is more worrisome for Java users

that rely on substantial frameworks. The me-

dian response time for a loading request sent to

the Java application with an artificially inflated

library folder was 1,341 milliseconds.

These findings also corroborate findings from the operation of the Community Seismic Network.

In Section 4.2.3 we will show that loading requests for our more sophisticated application, where

libraries are actual dependencies, are even more troublesome.

It is worth noting here that the additional latency experienced for the 100 MB Libs application is

roughly 1 second, which would correspond to about 1 Gbps when factoring in additional latency for

finding and accessing the appropriate files. What this means is that most of the increased latency is

likely attributable to being forced to download the entire application before the servlet could start.

This is notable because it is clear from our tests that the equivalent Python application suffered

no such delay. While the application package was still 100MB in size, the application was able to

start before the entire application was downloaded. This is a substantial performance advantage for

Python users.

To test this, we also constructed a similar Java application; one which had 100MB of .class

files after compilation but had no additional library files beyond the default. This application also

required more than 1 second to start up, indicating that the Java platform being used simply cannot

optimize the files necessary to start the JVM in the same way that Python can start with a subset of

the application files. For that reason, it is clear that Java users that intend to endure many loading
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requests should avoid large codebases, while language agnostic users needing to deal with loading

requests may be best served by choosing Python. The final and most obvious takeaway from our

data is that loading requests should be avoided where possible.

3.1.4.2 Avoiding loading requests

Loading requests occur for one of several reasons:

1. the application had no traffic at all for a period of time, did not use the Always On option,

and was unloaded

2. the application experienced a small spike in traffic and did not use the Always On option

3. the application experienced a larger spike in traffic and it was faster to send requests directly

to the new instances than to wait for new instances to warm up

The Always On feature permits users to pay for a fixed number of instances to always be on

standby so that small surges in traffic are easily accommodated by the waiting instances without

those incoming requests incurring the additional latency of a loading request. For applications

with relatively smoothly varying load, this means that applications should be able to completely

eliminate loading requests by paying for the feature. Applications which are more resilient to latency

are unlikely to be bothered by the latency of loading requests, particularly since those requests are

guaranteed to succeed (see results in Section 4.2.3).

Applications that expect to see larger spikes in traffic should be aware, however, that if the

observed increase in traffic cannot be accommodated by the three waiting instances, then loading

requests will still be generated to handle the spike in traffic. For this reason, driving down loading

request times and understanding their impact on the system as a whole is a more robust solution

than hoping to avoid them.
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Chapter 4

Case Study: Cloud Computing for
Earthquake Detection

4.1 The Problem

In the Earthquake Detection problem, the question being addressed is whether large groups of noisy

sensors can create a good enough picture of a region to provide operationally useful shakemaps for

damage assessment and whether or not these sensors, in concert, can arrive at a conclusion regarding

the approximate location and strength of an earthquake faster than a traditional, sparse network

operating with only very high quality sensors. This is similar to the work being explored by the

Quake-Catcher Network[22], but my thesis is different in that it explores the use of public cloud

computing platforms to support the application instead of Berkeley’s private BOINC system.

Since many sensors are needed to help address this problem, the bursty nature of the incoming

traffic would pose obstacles for a simple client-server model or even for clustered server topologies.

While traffic during quiescent periods is limited only to control traffic and false positives, traffic

during seismic events could approach sensor density in a region. Initially, only those sensors closest

to the source would send messages, but for a major seismic event the sustained nature of the event

and the periodic resubmission of data implies that the requests per second rate would reach a

significant fraction of the total number of sensors in the region. If we achieve a goal, for instance,

of 10,000 sensors in a region like Southern California, we would expect most of the 10,000 sensors

to send messages as the earthquake spreads outward, and to continue doing so for the duration of

the earthquake.

To obtain the envisioned density of sensors, the Community Seismic Network (CSN) recruits

volunteers in the community to host USB accelerometer devices in their homes or to contribute

acceleration measurements from their existing smart phones. The goals of the Community Seismic

Network include measuring seismic events with finer spatial resolution than previously possible and

developing a low-cost alternative to traditional seismic networks, which have high capital costs for
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Present Ideal 1,000 stations 10,000 stations 

Figure 4.1: Increasing sensor density enables better visualization of earthquakes.

acquisition, deployment, and ongoing maintenance.

There are several advantages to a dense community network. First, higher densities make the

extrapolation of what regions experienced the most severe shaking simpler and more accurate. In

sparse networks, determining the magnitude of shaking at points other than where sensors lie is

complicated by subsurface properties. As you can see in Figure 4.1, a dense network makes visualizing

the propagation path of an earthquake and the resulting shaking simpler. With a dense network,

we propose to rapidly generate a block-by-block shakemap that can be delivered to first responders

within a minute.

Second, community sensors owned by individuals working in the same building can be used to

establish whether or not buildings have undergone deformations during an earthquake which cannot

be visually ascertained. This type of community structural modeling will make working or living in

otherwise unmonitored buildings safer.

Lastly, one of the advantages of relying on cheap sensors is that networks can quickly be deployed

to recently shaken regions for data collection or regions which have heretofore been unable to deploy

seismic network because of cost considerations. As the infrastructure for the network lies entirely

in the cloud, sensors deployed in any country can rely on the existing infrastructure for detection.

No new infrastructure will need to be acquired and maintained, rather, one central platform can be

used to monitor activity in multiple geographies.

4.2 The Architecture

The thesis describes an implementation of the systems architecture for citizen participation. The

implementation uses accelerometers connected to host computers, Android phones, laptops, and the

Google App Engine. Code written by the research team is used to extract sensor readings from

accelerometers connected to devices or built into laptops and phones, compute whether an event has

occurred, and transmit the findings to Google App Engine. Code running on Google App Engine

is used to aggregate the results, calculate a shake map showing the amount of activity across the
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region, and estimate the likelihood that an earthquake is occurring.

The use of Google App Engine, as opposed to a more traditional server format, is useful for

several reasons. First, it means that the server itself cannot be rendered inaccessible by the natural

event that it is attempting to detect. That is, in the case of a single physical server, a natural

disaster could destroy the server or its connection to the outside world. In the best case, backups

are available and limited data is lost, but in either case the server is not available for use at the

time that it is most needed. Using the cloud model means that, while it is possible for some data in

transit to be lost, the server and its data, being decentralized, will remain available during the time

of crisis.

Second, the decentralized model means that deploying the application to multiple geographies

is greatly simplified. Since the address used to talk to the Google App Engine application will

actually redirect to the nearest available cluster, determining cluster placement for optimal access

is handled automatically; thus, concerns over the need and method of deploying additional physical

resources evaporate. Lastly, and perhaps most importantly, the solving of problems related to scale

is no longer a direct concern of the project. Infrastructure placement, cluster sizing, distributed

messaging, and more, are all problems that a team needs to deal with when building an application

to scale. Using existing cloud solutions relies on previously developed solutions to the problems so

that the actual focus of the project can be addressed.

PickRegistration Heartbeat

Datastore

Client  Interaction

Associator

Early Warning Alerts

Google
App Engine

Memcache

Figure 4.2: Overview of the CSN system.

An overview of the CSN infrastructure is

presented in Figure 4.2. A cloud server admin-

isters the network by performing registration

of new sensors and processing periodic heart-

beats from each sensor. Pick messages from the

sensors are aggregated in the cloud to perform

event detection. When an event is detected,

alerts are issued to the community.

PaaS systems were investigated in general,

and Google App Engine selected in particular,

because of the ability to scale in small amounts

of time from using minimal resources to consum-

ing large amounts of resources. While during quiescent periods the only data sent on the network

is control traffic and false positives - a relatively insignificant volume of messages - the data sent

during seismic events is quite substantial. We ran simulations to estimate the traffic load of a dense

network, which you can see the results of in Figure 4.3. For a network of 10,000 sensors, we expect

the number of queries per second (QPS) the server must handle when sensors detect a magnitude

5 earthquake to reach a maximum rate of 423 QPS for an earthquake 50 km distant to the center
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of the network and a maximum rate of 2,289 QPS for an earthquake centered relative to the sensor

network.

4.2.1 Sensor messages
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Figure 4.3: Estimates of the amount of server traf-

fic generated by a magnitude 5 earthquake at dif-

ferent distances from the sensor network.

The CSN is designed to scale to an arbitrary

number of community-owned sensors, yet still

provide rapid detection of seismic events. It

would not be practical to centrally process all

the time series acceleration data gathered from

the entire network, nor can we expect volunteers

to dedicate a large fraction of their total band-

width to reporting measurements. Instead, we

adopt a model where each sensor is constrained

to send fewer than a maximum number of sim-

ple event messages per day to an App Engine

fusion center.

Sensors in the network send three kinds of

messages to the server.

Pick messages are sent when anomalous seismic activity is detected. They have very little

payload, containing only the client’s identifier, the time of the event, the maximum amplitude

experienced, and the location of the client at the time of detection. The process of pick detection is

discussed in Section 4.4.

Heartbeat messages are sent once per hour to keep the server informed of which clients are

currently active. Clients can also relay waveforms of suspected events using the heartbeat messages.

Registration messages are sent by new clients to obtain a registration id, and by existing clients

to change registration values. The amount of traffic generated by these messages is small enough to

be negligible.

4.2.2 Cost

To estimate the cost of running the CSN network at a larger sensor density, we must first estimate

a general false positive rate, the amount of control data generated per sensor, and the amount of

data from each sensor that we would like to store for analysis purposes.

In 94 days of data, we observed 10,454 picks. In the same time span, we saw 120,104 heartbeats.

We are using an accelerated rate of heartbeats during the initial deployment, and we can use that

rate of 144 heartbeats per day per client to estimate that there were 8.827 active clients per day on
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average. Thus, we can conclude that our active clients generated 12.6 picks per day on average. Since

the total number of picks includes those generated for testing or demo purposes, that is, intentionally

generated picks, we can assume this is a safe upper bound on the false positive rate of our normal

sensors. Per sensor studies that exclude intentionally generated picks will need to be conducted to

more accurately narrow down the number of false picks expected to be generated per day.

Each pick requires 117 bytes to transmit. Each sensor, at network maturity, is expected to send

24 heartbeats per day. Each heartbeat requires 86 bytes to transmit. Using those figures to calculate

the outbound and inbound bandwidth costs, it is clear that our main limiting factor is cpu. That is,

it would take a network of 303,471 sensors at that size of message to use up the incoming bandwidth.

If we let n be the number of sensors in the network, we can then estimate the cpu cost of running the

network as: c = (n(12.6(869(1− .218) + 5132 · .218) + 24(3132(1− .282) + 7985 · .282)) 1
3600000 −6.5).1

Solving for 0 we get that a network of up to 179 sensors could be operated without generating

a bill with additional sensors costing $0.00363 per sensor per day. These parameter estimates are

conservative in several respects, however. First, they do not include the savings that could be

generated by optimizations which reduce the amount of cpu consumed per request. Second, they do

not include the costs associated with other overhead messages or the cost of data stored for archival

purposes. The second point is more dependent on data retention policies, however. The first point

is especially salient because of our discussion of loading times when comparing Python and Java.

The amount of cpu ms consumed per request could be easily driven down by switching to a

language with a smaller loading request penalty. Additionally, these figures currently include the

cpu penalty incurred by processing 1 MB waveforms with every heartbeat. In reality, the processing

times of heartbeats should be lower than the processing times of picks; even setting them equal

yields a network size of up to 323 sensors with nearly half the incremental cost per sensor. Finally,

the cpu cost uses the loading request incidence rate from our network; in a larger network, we would

expect the loading request rate to be much lower. Setting it to the overall loading request rate of

the current network yields a network size of 541 sensors with an incremental cost of just $0.00120.

4.2.3 Performance

The biggest impact on system performance is the occurrence of loading requests, which were de-

scribed in Section 3.1.4.

We took measurements on 120,104 heartbeat messages over 94 days. Of those requests, 33,921

were loading requests, giving a loading request incidence rate of 28.24%. Given the small volume

of our current network and the relatively random occurrence of heartbeats, this is not a terribly

surprising incidence rate. Picks, which are more correlated in time, had 10,454 messages over the

same time period with 2,277 loading requests for an overall loading request incidence rate of 21.78%.

Because other types of network requests in our network are extremely highly correlated in time, the
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overall incidence rate of loading requests was only 7.34%.
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Figure 4.4: Latency for pick and heartbeat mes-

sages for both normal and loading requests.

Figure 4.4 shows that the penalty the CSN

application currently pays for a loading request

is substantially higher than the minimal appli-

cations explored in Section 3.1.4. That is, to

process even a simple message, such as a pick,

the median processing time increases from 202

ms to 3,246 ms, a difference of over 3 seconds.

This is even greater than the worst penalty ex-

perienced by our simple hello world applications

and shows that, as one might expect, libraries

that are in use can have a much more dramatic

impact on instance startup time. Heartbeats

paid a similar penalty, with the median process-

ing time increasing from 1,205 ms to 4,320 ms.

In the version of our application from which this information was derived, heartbeat and pick

messages, despite structural dissimilarity, shared a common entry path in the application. It is

therefore expected that the penalty paid by both messages would be similar.

4.2.3.1 Error rates

Error rates are another important factor. There are three types of errors we will include in our

analysis of CSN error rates: deadline exceeded errors, aborted requests, and serious problems.

Deadline errors were previously discussed as occurring when a request is terminated for exceeding

the processing deadline imposed by App Engine. These errors are lumped together in the error

rate, considered a fault of the PaaS provider, because the extreme variability in the processing of a

request is not attributable to developer code, but rather to conditions within the cloud system.

For instance, heartbeat requests that reach a warm instance have a median processing time of

1,205 ms. This might sound like a lot, but in the current stage of the network, in addition to normal

processing we submit a 1 MB waveform with every heartbeat that is processed for validity before

it is stored. The first quartile of heartbeat processing time is 981 ms while the third quartile is

1,566 ms, giving an interquartile range of only 585 ms. The standard deviation, however, is 3,511

ms, which gives an idea of the dispersion of the remaining values outside the interquartile range.

This still leaves the 30 second cutoff at 8.2 standard deviations above the median. Given that a full

1.03% of non-loading heartbeat messages result in a deadline exceeded error, this is a clear indication

that the volume of deadline exceeded requests is far too large to be attributable to any reasonable

variation in processing time.
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All three types of errors that we measure have a 0% chance for loading requests. Take heartbeats

again as an example. While the total error rate of non-loading requests was 1.33%, the error rate

of loading request heartbeats was exactly 0%, giving an overall heartbeat error rate of 0.95%. This

discrepancy in error rates leads us to believe that special priority is given to requests which hit

a cold system, preventing them from encountering the same problems that normal requests might

otherwise encounter.

4.2.3.2 Lessons learned

If the application is latency sensitive, use Python. The Java Virtual Machine was not designed

for scripting-style execution. That is, it was not set up to load, run a snippet of code, and then

unload. It was designed to load once, with some known amount of overhead, and then process future

bytecode efficiently. For security reasons, the App Engine team loads every Java application in its

own JVM. Since loading requests must then wait on JVM initialization in addition to whatever costs

are paid by the application, this is less than ideal. Conversely, Python has no such overhead; code

that needs to be run, and just that code, can be swiftly retrieved and run. For programs that need

to be insensitive to loading request penalties, Python is the clear winner for Google App Engine.

Develop direct no-dependency pathways for data retrieval and processing. In a standard server

installation, it is common to spend time setting up the environment before requests are ever handled.

While this is possible on App Engine by utilizing the Always On feature, for any latency sensitive

application that needs to endure loading requests, it is undesirable. Instead, building pathways into

your code that allow time-sensitive data to arrive without loading dependencies from other parts

of the application will ensure that you are able to drive down the instance startup time and the

processing time of individual requests. The only way to effectively manage this in Java is with

separate application versions or separate applications entirely (which might communicate by means

of an API). In Python, dependencies which are not called by the code on the critical path will not

affect the instance’s startup time; so as long as the particular logic lines leading to data processing

do not invoke those dependencies, they can be buried elsewhere in the code.

4.3 Numeric Geocells for Geospatial Queries

Since queries on App Engine are limited to using inequality filters on only one property, a different

method is needed for any form of geospatial queries. Our solution involves the use of 8-byte long

objects to encode latitude and longitude pairs into a single number. This single number conveys

a bounding box rather than a single point, but, at higher resolutions, the bounding box is small

enough that it can be used to convey a single point with a high degree of accuracy. We define

the resolution of a numeric geocell to be the number of bits used to encode the bounding box. A
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resolution 14 geocell uses 14 bits, 7 for latitude and 7 for longitude, to encode the resolution. A

resolution 25 geocell uses 25 bits, 12 for latitude and 13 for longitude.

It’s important to note that the ratio of the height to the width of a bounded area depends

on the number of bits used to encode latitude and longitude. For even-numbered resolutions, an

equivalent number of latitude and longitude bits are used. For odd numbered resolutions, one

additional longitude bit is used. This permits bounding boxes with different aspect ratios. An odd

numbered resolution at the equator creates a perfect square, while an even-numbered resolution

creates a rectangle with a 2:1 ratio of height to width.

4.3.1 Creating geocells

Geocells are created using a latitude, longitude pair. This is done by dividing the world into a grid

and starting with the (90◦S, 180◦W), (90◦N, 180◦E) bounding box, which describes the entire world.

Each additional bit halves the longitude or latitude coordinate space. Odd numbered bits, counting

from left to right in a bit string, convey information about the longitude, while even-numbered bits

convey information about the latitude. After selecting an aspect ratio by choosing even or odd

numbered resolutions, geocells are made larger or smaller in increments of 2. This means that each

larger or smaller geocell selected will have the same aspect ratio as the previous geocell.
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Figure 4.5: How bounding boxes divide the coor-

dinate space.

For this reason, each bit pair can be thought

of as describing whether the initializing point

lies in the northwest, northeast, southwest, or

southeast quadrant of the current bounding

box. Subsequent iterations use that quadrant

as the new bounding box. To work a simple ex-

ample, consider (34.14◦N, 118.12◦W). We first

determine whether the desired point lies east

or west of the mean longitude and then deter-

mine whether it lies north or south of the mean

latitude. If the point lies east of the mean lon-

gitude, the longitude bit is set to 1, and if the

point lies north of the mean latitude, the lati-

tude bit is set to 1. In our example, the point lies

in the northwest quadrant, yielding a bit pair of

01 for a resolution of 2. Iterating through the

algorithm yields the following bits for a resolution of 28:

0100110110100000010000000101
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For an illustration of how increasing resolution divides the coordinate space, see Figure 4.5.

Because these representations are stored as fixed-size numbers, the resolution of the geocell must

also be encoded. Otherwise, trailing zeros that are a result of a less than maximum resolution would

be indistinguishable from trailing zeros that represent successive choices of southwest coordinates.

Therefore, the last 6 bits of the long are used to encode the resolution. The other 58 bits are available

for storing resolution information.

For space considerations, we also have an integer representation capable of storing resolutions

from 1 to 27 using 4 bytes, as well as a URL-safe base64 string based implementation that uses

a variable number of bytes to store resolutions from 1 to 58. The integer implementation uses 5

bits to store the resolution, and the remaining 27 bits are available for resolution information. The

string based implementation always encodes the resolution in the final character, occupying 6 bits

of information in 1 byte, while the remaining characters encode the resolution information.

Our analysis of geocell sizes at various resolutions led us to the conclusion that the most useful

geocell sizes for event detection were resolutions 12 through 28. Resolution 29 ranges from 1.5

kilometers square to 0.65 kilometers square depending on the point on earth (see Limitations) and

is too small to be useful for aggregation in all but the densest networks. Resolution 12 is quite large,

encompassing anywhere from 84,000 square kilometers to 195,000 square kilometers. This resolution

is still useful for aggregation of extremely rare events that may be spread out over a large region.

4.3.2 Comparison

Two similar open methods of hashing latitude and longitude pairs into simple strings have been

previously proposed: GeoModel[23] and Geohash[24]. Our algorithm is capable of translating to and

from representations in both systems. Numerous other systems exist; however, many are variations

on a similar theme, and the earlier systems not designed for computer derivation each suffer from

different shortcomings. The UTM[25] and MGRS[26] systems not only have a complicated derivation

algorithm[27] but also suffer from exceptions to grid uniformity. The GARS[28] and GEOREF[29]

system utilize an extremely small number of resolutions: 3 and 5, respectively. The NAC System[30]

is proprietary and has different aims, such as being able to encode the altitude of a location.

GeoModel, Geohash, and our own system all bear similarity to the well known quad tree algorithm

for storing data. All of these algorithms rely on dividing the plane into sections: quad tree algorithms

divide the plane into quadrants, our own algorithm divides the plane into 2 sections per resolution

while GeoModel and Geohash divide the plane into 16 and 32 sections respectively. While the

algorithm for finding a storage point in a quad tree is the same, what the other algorithms actually

compute is equivalent to the path to that storage point in a quad tree with a storage depth equal to

the resolution. The focus of the quad tree method is on the in-memory storage of spatial datapoints,

while the focus of the other algorithms is computing an effective hash for datapoints. The path
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serves at that hash.

Our numeric geocells have one key advantage over the Geohash and GeoModel algorithms: the

numeric representation allows for the description of a broader range of resolutions. GeoModel

and Geohash encode 4 and 5 bits of information per character, respectively, using the length of

the character string to encode the resolution. Numeric geocells therefore have 4 to 5 times more

expressive power in possible resolutions.

Resolution density has a strong impact on the number of cells required to cover a given region

or the amount of extra area selected by the cells but not needed. When selecting cells to cover a

region, it is possible that several smaller geocells could be compressed into one larger geocell. This

can happen more often when more resolutions are available. For instance, 16 GeoModel cells and

32 Geohash cells compress into the next larger cell size, where only 4 numeric geocells compress

into the next larger numeric geocell (when maintaining aspect ratio). This comes at the expense of

having to store more resolutions in order to perform the compression. Section 4.3.4 contains more

information on the selection of geocells to query.

Space filling curves, such as the Hilbert curve, can provide similar advantages by using an algo-

rithm to ascribe addresses to all the vertices in the curve. Whatever advantage these curves might

have derives from their visitation pattern, which can yield better aggregation results for queries that

rely on ranges. Our query model utilizes set membership testing for determining geographic locality,

which means that we cannot derive a benefit from the visitation pattern of space filling curves. We

rely on the simpler hash determination method used in quad trees instead.

4.3.3 Limitations

Because they rely on the latitude and longitude coordinate space, numeric geocells and similar algo-

rithms all suffer from the problem that the bounded areas possess very different geometric properties

depending on their location on Earth. The only matter of vital importance is the coordinate’s lat-

itude; points closer to the equator will have larger, more rectangular geocells while points farther

from the equator will have smaller, more trapezoidal geocells.

Algorithms which rely on the geometry of the geocells, if applied globally, will not operate as

expected. Instead, algorithms must be designed without taking specific geometries into account, or

must be tailored to use specific resolutions depending on the point on earth. In the following table,

we compare the size, in terms of area, of four different locations. The area is expressed as a ratio

of the size to Jakarta, the site used with the largest geocells. Geocells of any resolution converge to

this ratio between sizes beginning with resolution 16. The ratio of the height to the width is also

included for both even and odd resolutions.
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Jakarta Caltech London Reykjavik

A:Jakarta 1 0.83 0.63 0.44

H:W Even 1.99 1.66 1.24 0.87

H:W Odd 0.99 0.83 0.62 0.44

Finally, prefix matching with any of these algorithms suffer from poor boundary conditions.

While geocells which share a common prefix are near each other, geocells which are near each other

need not share a common prefix. In the worst case scenario, two adjacent geocells that are divided

by either the equator, the Prime Meridian or the 180th Meridian will have no common prefix at all.

For this reason, geocells are used exclusively for equality matching.

4.3.4 Queries

When querying for information from the Datastore or Memcache, geocells can be used to identify

values or entities that lie within a given geographic area. A function of the numeric geocell library

allows for the southwest and northeast coordinates of a given area, such as the viewable area of a map,

to be given and returns a set of geocells which covers the provided area. Given that no combination

of geocells is likely to exactly cover the map area, selecting a geocell set to cover a specified area is

a compromise between the number of geocells returned and the amount of extraneous area covered.

Figure 4.6: Combining geocells of multiple resolu-

tions to cover an area.

With smaller geocells, less area that is not

needed will be included in the returned geocells,

however, more geocells will be required to cover

the same geographical area. Larger geocells will

require a smaller number of geocells in the set,

but are more likely to include larger swaths of

land that lie outside the target region. Balanc-

ing these two factors requires a careful choice of

cost function which takes into account the cost

of an individual query for a specific size, which

depends on the network density.

With a low density, smaller numbers of

queries across larger parcels of land are opti-

mal as discarding the extraneous results is less

costly than running larger numbers of queries.

With very high sensor densities, too many ex-

traneous results may be returned to make the extra land area an efficient alternative to a larger

number of queries, and so reducing the size of the geocells to help limit the area covered is helpful.
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Another feature of numeric geocells is that smaller cells can be easily combined to form larger

cells. If an object stores the geocells that it exists within at multiple resolutions, then any of those

resolutions can be used for determining whether or not it lies within a target geographical area.

The algorithm for determining the set of geocells to query can then combine several smaller geocells

into larger geocells, which allows larger geocells to be used in the interior of the map with smaller

geocells along the exterior.

For instance, Figure 4.6 shows how smaller geocells can be combined into larger geocells of

varying sizes. Importantly for our purposes, the determination of neighboring geocells is a simple

and efficient algorithm. By using minor bit manipulations, it is possible to take a known geocell and

return the geocell adjacent to it in any of the four cardinal directions. This means that if an event

arrives at a known location, not only can the cell that the event belongs to be easily identified but

the neighboring cells. This factors in to our event detection methods, which are described next.

4.4 Decentralized Detection with Community Sensors

The CSN system performs decentralized detection of seismic events by allowing each individual

sensor to generate picks of potential seismic events and then aggregating these pick messages by

geocell in the cloud to determine if and where an event has occurred. The different algorithms used

at the sensor and server levels are discussed next.

4.4.1 Sensor-side Picking Algorithms

Different sensor types are likely to experience different environmental and noise conditions, and so

different picking algorithms may be best suited to particular sensor types. We studied two picking

algorithms: the STA/LTA algorithm, designed for higher-quality sensors in relatively low-noise

environments, and a density-based anomaly detection algorithm suited to handling the complex

acceleration patterns experienced by a cell phone during normal daily use. These algorithms are

described in detail in [31] and summarized here.

Event Detection using Averages: STA/LTA STA/LTA (Short Term Average over Long Term

Average) computes the ratio between the amplitude of a short time window (STA) and the amplitude

of a long time window (LTA) and decides to “pick” when the ratio reaches above a threshold. In

our analysis, we used a short term window size ST = 2.5 s and a long term window size LT = 10 s.

This simple algorithm can detect sudden changes in transients that may indicate the occurrence of

an event in a low-noise environment. In an ideal situation where the sensors have fixed orientation,

the signal on each axis can be used to derive the direction of the incoming wave. We do not assume

consistent orientation here, but instead simply take the L2 norm of all three axes before computing
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the STA/LTA.

4.4.2 Server-side Pick Aggregation

Picks generated by the sensors are sent to the App Engine server. These simple events are aggregated

using the numeric geocells described in Section 4.3. However, a few factors complicate complex event

association and detection.

First, the time of App Engine instances is not guaranteed to be synchronized with any degree

of accuracy. This means that relative time determination within the network must be handled by

clients if any guarantees about clock accuracy are to be made. This is currently done through the

inclusion of an NTP client in the sensor software which determines the drift of the host computer

to the network time at hourly intervals.

Second, requests may fail for a variety of reasons. We have previously estimated that as many

as 1% of requests on App Engine will fail for reasons beyond the control of the developer. These

kinds of errors include requests that wait too long to be served, hard deadline errors, and serious

errors with the App Engine servers. In addition to these system errors, clients may go offline without

notice due to a software error or something as simple as the host computer going to sleep.

These system conditions mean that the detection algorithm must be: insensitive to the reordering

of arriving messages, which occurs by variations in processing or queueing time or by inconsistent

determination of network time, and insensitive to the loss of small numbers of messages either due

to client or server failures.

The server’s job is to estimate complex events such as the occurrence of an earthquake from

simple events that indicate an individual sensor has experienced seismic activity. This is done

by estimating the frequency of arriving picks by allocating arriving picks to buckets. Buckets are

created by rounding the pick arrival time to the nearest two seconds and appending the geocell to

the long representation of the time. This gives a unique key with which a bucket is created that

all arriving picks in the same time window and region will use to create estimates of the number of

firing sensors at that point in time. For instance, an example bucket name would be ‘12e55d89260-

4da040500000001c’.

This bucketing necessarily removes any ability to detect events based on arrival order, but permits

event detection based on both arrival frequency and the content of arriving events. Whenever a pick

arrives, the appropriate bucket name is calculated and the number of arriving events for that bucket

is incremented. The number of active clients for location identified by the bucket’s key is also

retrieved, which makes it possible to determine the ratio of clients that have experienced a seismic

event. For each arrival, the contents of the buckets of the current time window and the surrounding

time windows are summed to help manage inconsistencies in arrival time and time of computation.

The sum of the arriving picks across a known time interval is then divided by the number of
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active clients to determine whether or not a specific geocell has exceeded a threshold level of activity

to perform further computation. This is the first trigger which generates a complex event that a

given geocell has activated. Activation of the geocell is managed by a Task Queue job which is

created to proceed with further analysis. The job is named, which means that for any number of

arriving picks in the same time window, only one job will be created per geocell per time window.

The execution of the named job involves probing the surrounding geocells to determine what

other geocells have recently fired. The total number of sensors reporting seismic activity in any

region for a given time window can be computed by calculating the bucket names under which those

events would have been aggregated and summing their contents. The sequence of activation is then

used to extrapolate what kind of event the network is experiencing. Of particular importance is the

reliability of this detection.
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Chapter 5

Case Study: Cloud Computing for
Unstructured Text Analysis

Our experiments with unstructured text analysis explore how the composition of multiple SaaS

web components can lead to useful results. Specifically, our text analysis platform makes use of a

single server for staging requests to a SaaS application which provides the content of all posts in the

blogosphere and pushes those requests to a second SaaS application which rerenders the unstructured

text as an RDF document composed of its referenced entities. The data flow for this application

can be see in Figure 5.1.
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Figure 5.1: caption

The Personal Information Broker A per-

sonal information broker (PIB) acquires and

analyzes data from multiple sources, detects

events, and sends event objects to appropriate

devices such as cell phones, PDAs and comput-

ers. A PIB also displays data in multiple dash-

boards. A PIB may acquire data from blogs,

news stories, social networks such as Facebook,

Twitter, stock prices and electronic markets. In this paper we restrict attention to PIBs that analyze

blogs.

An example of a PIB application is one that learns, in near-real time, changes in the numbers

of posts that discuss relationships between different entities. Consider the following example from

this election year. The Hilary Clinton campaign may want to know, as quickly as possible, whether

the number of blog posts containing both Clinton and some other entity changes significantly. For

example, as shown in Figure 5.2, a PIB application can detect that the number of blog posts con-

taining Clinton and Governor Elliott Spitzer of New York changed significantly before the Governor

resigned. Note that the application isn’t looking specifically for an association between Clinton and
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Spitzer — the input to the application is only the entity, i.e., Clinton, of interest. Related entities

are discovered by monitoring other entities that co-occur with the entity of interest and estimating

the relevance of the co-occurance at each point in time that it is found in the stream. The changing

numbers of posts containing the monitored entity and the related entity is detected automatically

by the application. The challenge is to carry out this detection in near real-time as opposed to post

facto data mining.
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Figure 5.2: Volume of posts mentioning both

”Clinton” and ”Spitzer” over time.

Information in the blog universe can be cor-

related automatically with other types of data

such as electronic markets. For instance, when

a component of a PIB detects anomalous time

series patterns of blog posts associating a pres-

idential candiate, say Senator Obama, with

some other entity, say Rev. Jeremiah Wright,

then it can determine whether Senator Obama’s

“stock” price on the Iowa Electronic Market

changed significantly at that time. If the price

of Senator Obama’s stock didn’t change much

then we may deduce (though the deduction may be false with — we hope — low probability) that

market makers don’t expect this association to have much impact on the likelihood of Senator

Obama’s chances of winning.

Another PIB application continuously searches for entities to discover when the rate of blog

posts containing names of any of these entities changes rapidly. This application has no input — it

detects changes in the frequency of posts about any and all entities. For example, the application

can discover that the volume of posts about the bank IndyMac changed significantly on July 8 and

July 12 (see Figure 5.3). The event that is detected does not predict anything; the event is merely

an anomaly in the time-series patterns of posts about any entity. In this example, the failure of

IndyMac became public knowledge on July 11.

One of the challenges of developing PIB systems is the development of algorithms that do not

use too much memory or computational power to analyze huge volumes of data. Consider the

application that detects anomalies in time series in the numbers of posts containing the name of an

entity. In just 14 weeks of data, 77 million unique entities (see Experimental Results) were discussed

in blog posts. We do not know which entities are going to engender anomalous time-series behavior

beforehand, so we have to track every single one of them. The challenge is to detect anomalous

behavior without repeatedly executing queries.
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5.1 Experimental Results
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Figure 5.3: Volume of posts about IndyMac over

time.

The first three steps of the application de-

scribed by the information flow in Figure 5.1

were implemented; a database is used to store

processed data for later processing to analyze

missed event opportunities and run simulations

of input streams. Using this data, algorithms

for detecting events in the stream are being de-

veloped to help complete the implementation of

step 4.

The stream itself is relatively large; over 14

weeks of data, the database has increased to

164GB, or about 1.7GB per day. The average

number of posts for a given weekday is 292,879, but, being bursty in nature, the number of posts in

a timeframe varies dramatically, from 0 messages in a given second to upwards of 30. Weekends see

only 76% of the traffic that weekdays see, or an average of 223,124 posts. Algorithms that smooth

frequencies over time need to account for the discrepancies in post volumes between weekdays and

weekends or holidays; without accounting for this discrepancy, erroneous events can be generated by

an algorithm which incorporates that discrepancy as part of its algorithm for detecting significant

changes.

It is worth noting that, out of a sample of 31,304,036 processed posts, only 21,741,604 posts

actually entered the database. The singular criterion for entering the database is that Calais has

identified at least one entity that the post referred to. This indicates that only roughly 70% of the

processed posts contain any meaningful content that can be analyzed for generating events. The

ability to identify and discard the 30% of posts that are meaningless before they are processed would

yield large performance gains, both locally for the corresponding process and remotely for the Calais

web service.

Calais, by Thomson Reuters, is an excellent example of the kinds of latencies and error rates

that compositional applications can expect when integrating web services into their information

flow. After processing 31,304,036 posts, latency measured from beginning submission to completion

of the receipt of the result averaged only 733 milliseconds. Fluctuations were high, ranging from

only marginally more than round trip estimates-in the 100 ms range-to a minute to process more

complex posts. With proper threading, latency had no impact on system throughput, which at peak

utilization reached 30 posts per second, our maximum allowable throughput by Calais. Error rates

were, for our purposes, very reasonable; overall error averaged only 0.66% of the total volume of
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posts, which includes errors from posts that are too large to process and non-English posts that

slipped through Spinn3r’s language filter.

Using these results we are able to identify the criteria necessary for extrapolating emerging

relationships and identifying meaningful time-series deviations for entities, which helps build the

foundation for a framework that allows users to specify what kinds of deviations are considering

“interesting”.
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Chapter 6

Conclusion

Our case study on the Community Seismic Network showed how clients controlled by developers

can easily interact with cloud-based aggregation platforms to generate unique results, while our case

study on unstructured text analysis demonstrated how a server controlled by developers can be used

to stitch together disparate web services to achieve an enriched result at minimal developer cost.

By these case studies and an analysis of the benefits of Cloud services to Citizen Science, the thesis

demonstrated why Cloud computing platforms are of interest to researchers conducting large scale

analysis projects.
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