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ABSTRACT

A. It is first shown how the ordinary Born-Oppenheimer approxi-
mation for separating nuclear and electron motions in a molecule
can be adapted to degenerate electronic states. Semiempirical
molecular orbital theory is then used to examine Jahn-Teller dis-
tortions in the ground states of conjugated hydrocarbon radicals.
Numerical predictions are made for cyclic polyene radicals and

the mononegative ions of coronene and triphenylene. It is concluded
that, except in the cyclic polyenes G4 _H, ., x = 0,1,2,,., the
barriers between ''stable' distorted molecular configurations are
negligible and that a dynamical coupling of nuclear and electronic
motions exists in these radicals,

B. It has been suggested in the literature that certain anomalies in
the electronic spectra of coronene and triphenylene mononegative
ions are due to Jahn-Teller distortions. The methods of the thesis
are adapted to the Pariser and Parr molecular orbital scheme and
benzene negative ion is treated in detail as a model for these systems.
It is concluded that the Jahn-Teller effect cannot be responsible for
the observed anomalies. The intensity of the lAlg“‘) lBlu transi-
tion in benzene is calculated mainly as a test of the theory which is
found to be adequate.

C. A theoretical treatment of the pseudo-Jahn-Teller effect is pre-



sented and shows that several types of behavior arise. The lBlu

state of benzene undergoes a pseudo-Jahn-Teller interaction and
a detailed calculation shows the state suffers a significant decrease
in its e2g CC stretching force constant, but is not permanently

distorted. The lEl level of benzene does not experience a simple

u
Jahn-Teller effect, but in addition to the pseudo-Jahn-Teller effect
has a Jahn-Teller effect due to two electron perturbations. These

perturbations result in changes in both bond lengths and valence

angles, the changes being small and leading to a dynamical coupling.



TABLE OF CONTENTS

Part Page

Introduction 1

A Dynamical Jahn-Teller Effect in Hydrocarbon Radicals 5

The Born Expansion for Molecular Wave Functions 5
Degenerate Electronic States 9
Theoretical Assumptions and Empirical Relations 14
Bond Orders and Resonance Integrals 18
Distortion Energies 21
Individual Molecules 26
(a) Cyclic Polyenes - First Order Theory 26

(b) Cyclic Polyenes - Second Order Corrections 37

(c) Coronene and Triphenylene Mononegative Ions 41

The Complete Dynamical Problem 46

B Influence of the Jahn-Teller Effect on Electronic Spectra 56

The Benzene Negative Ion Without Vibronic Per-

turbations LY
(a) Benzene 60
(b) Benzene Mononegative Ion 60

The Benzene Negative Ion Under Jahn-Teller
Distortions 63

Numerical Results 68

A Check of the Theory 7



Part

C Vibronic Interactions in Excited States
The Pseudo-Jahn-Teller Effect
Geometrical Relations

(a) Interatomic Distances

(b) Valence Angles
Semiempirical Relations

(a) Electron Repulsion Integral

(b) Resonance Integral

(c) A Further Approximation and a Test of the
Empirical Relations

(d) Valence Angle Bending Energies
The 1BIu State of Benzene
The lElu Level of Benzene
Appendix. The Huckel Molecular Orbitals of Triphenylene
References

Propositions

Page
88

89
98
98
100
102
102

103

107
109
110
114
119
123

127



INTRODUCTION

The quanturm mechanical treatment of molecules is greatly
simplified by the Born-Oppenheimer (adiabatic) approximation which
allows the motion of the nuclei to be studied separately, In this
procedure the electronic motion is calculated with the nuclei held in
fixed positions and then the slower motion of the nuclei is calculated
using a potential energy produced by the moving cloud of electrons,
This is a good approximation for most cases, but breaks down if
the electronic state under consideration is degenerate. Jahn and
Teller (1) and others following their lead (2, 3) have shown that a
molecule in a spatially degenerate electronic state will tend to dis-
tort into one of several more stable nondegenerate configurations of
lower symmetry., Also, unless the zero-point energies of the mole-
cular vibrations which remove the electronic degeneracy are much
smaller than the energy the molecule can gain by distorting, the
motions of nuclei and electrons are closely coupled together giving
the '"dynamical Jahn-Teller effect" (4,5). The molecule is then still
in a degenerate state, but passes regularly through a series of
distorted shapes with different electronic wave functions,

There has arisen in recent years considerable practical interest
in Jahn-Teller distortions and effects, This interest has come
through the study of the properties of the stable, radical ions formed
by many aromatic hydrocarbons in solution (6-9) and in the informa-

tion (10, 11) about their electronic structure which has been provided



by magnetic resonance experiments (12) and by optical spectra (13),
Of special interest are the negative radical ions of benzene, coron-
ene and triphenylene investigated by Weissman, Tuttle and de Boer
(12,14). Simple molecular orbital theory predicts that these highly
symmetrical radicals are in a spatially degenerate electronic ground
state and hence should experience a Jahn-Teller "effect''s Three
observations suggest that these radical ions do possess a dynamical
Jahn-Teller effect. First, the ring proton hyperfine splitting con-
stants of all three ions have the full molecular symmetry, implying
that the unpaired electron distributions of the different distorted
forms interchange at a rate much higher than the typical hyperfine
frequency (approximately 10’ cps). Second, Townsend and Weiss-
man {14) have found that the hyperfine linewidths are much larger
than in comparable nondegenerate ions such as naphthalene negative
ion. McConnell and McLachlan (15) have proposed an explanation
for this, Surrounding solvent molecules force the radical ion from
one distorted configuration to another so that the unpaired electron
density fluctuates and has a time dependent isotropic hyperfine
interaction with each ring hydrogen atom, Line broadening occurs
when this interaction has a strong Fourier component in the neigh-
borhood of zero frequency. Finally, Hoijtink's experimental and
theoretical work (13) on the electronic spectra of coronene and

triphenylene negative ions has revealed intense ''forbidden'' transi-



tions which could occur in a distorted configuration.,

Several authors (4,5,16,17) have studied the general theory of
the coupled nuclear and electronic motion which results from given
distortion energies A E and vibrational frequencies CJ and have
found three ranges of behavior, The quantities determining these
ranges are the ratio AE/f <2 and the sizes of the energy barriers
between different distorted shapes, It is of practical interest to
know which type of behavior is to be expected for hydrocarbons.
The only calculation of this sort appears to be that of Liehr (18)
who calculated the energies of the distorted configurations of cy-
clobutadiene, cyclopentadienyl radical and the benzene radical
ion using simple molecular orbital theory with allowance for
bond compression. Snyder (19) has extended the accuracy of Liehr's
calculations with the use of a computer obtaining results rather
similar to Liehr's, In this thesis (Part A) we present similar
calculations for cyclic polyene radicals in general and for the tri-
phenylene and coronene mononegative radical ions using different
semiempirical assumptions than those of Liehr. The major part
of these calculations has already appeared in the literature (20).
Snyder {21) has carried out unpublished computer calculations for
a number of the same molecules under both the assumptions of

Liehr and those used in this thesis,



We also investigate in this thesis (Part B) the electronic spectra
of benzene negative ion in an attempt to explain the observations of
Hoijtink (13) mentioned above, Finally in Part C, we have calculated
the Jahn-Teller ""effect'" in some singlet excited states of neutral
benzene in order to determine the actual magnitude of Jahn-Teller
distortions due to electron correlation effects alone. The '""pseudo-

Jahn=-Teller' effect in these excited states i s also treated,



A, DYNAMICAL JAHN-TELLER EFFECT IN HYDROCARBON
RADICALS

The Born Expansion for Molecular Wave Functions

Before we discuss the distortion energies a gap in the theory
must be filled, Previous authors (4,5) have used simplified ideal
models to treat the dynamical problem, from which it is not clear
whether the ordinary adiabatic electronic wave functions and nuclear
potential energy surfaces have any significance for the coupled
motion where the adiabatic approximation breaks down., That
they are significant and that the potential energy surfaces do deter-
mine the coupled motion is shown in this and the next section,

We shall use, not the original Born-Oppenheimer expansion
(22), but the conceptually simpler expansion given later by Born
(23)*, Let qj stand for the j'th electronic coordinate with gq= qu3
representing the set of all electronic coordinates. Similarly, let
Qrand Q= {Qka represent the coordinates of the atomic nuclei
with masses My. If U(q,Q) is the total potential energy of the elec-
trons in the field of the nuclei and one another and V(Q) is the
mutual potential energy of the nuclei alone, the total Hamiltonian

of the molecule is

>

s d B e g P (1)
H= }Zamai;} %QMJL:G—-QE > U(‘]_JQ)'F\/(Q).

* This should not be confused with the Born approximation of scat-
tering theory.



We now attempt an expansion of the exact wave function ’i‘(q_,Q)
of the molecule in the form

Y(q,8)=2 ¢ (4,9) %, (q) (2)

where we choose Y n to satisfy the Schrddinger equation

S

[ Zﬁ g +u(‘i:¢¢)}4’ (4,)=E, (@) ¥,.(4,]) (3)

for the electrons in a field of the nuclei held fixed at Q so that

E_ (Q) can be considered as the electronic energy for this con-
figuration, It follows from Eqn, 3 that§f\y 3 can be chosen ortho-
normal for all Q and real,

The usual adiabatic approximation* assumes that a nondegen-

erate state can be well represented by a single term

¥, . (4,9)=¥3.9) Lual9) (4)
of the expansion, Eqn.2. Then having found En(Q), one uses it in
a potential energy for the nuclear motion and solves a second

Schrodinger equation

-

to find the vibrational wave function. The common calculation

7
ol 8= Wy %m,,.,(q) (3)

aMk aqb

in the literature of molecular quantum mechanics stops with the
solutions of Egns. 3 and 5, However, the exact Hamiltonian H

still has nonvanishing matrix elements between different vibrational

* We follow in this thesis the terminology of Born and Huang (24).



levels r, s of the same electronic state n and the average value of

H for the function 'I‘ nr(qs Q) is not equal to W', .. Instead,

(T, W8 = 1 (e o~ |-2 3 T ?Q L@y (g

and

CLIE AR o ROl e —’%j)ymﬁq (7)

where

B a

The symbol {m|T|n) will be used similarly for the matrix elements

4’ (3, 9dq. (8

of an operator T between two electronic wave functions at a fixed

nuclear configuration. In Eqns. 6 and 7 we have taken 4’ as real

fh.> can

be formally eliminated by including it in the nuclear potential energy

so that <n, /% Qk| n> = 0, The term <ml . :Mhaaq)z

which determines X, .(Q)s Egn.5 then becomes
[-5 5535 +V@+ En@)o(w]- T E L | )
1”}3 aQ‘k m 3MJ._ 3 q‘k

x X, (=W,

(5)
o (9)

and the new energy matrix constructed from the solutions of Eqns. 4

and 5' has the elements

<rkwbl H J'E—km/\.> =W n (9)
</}\M'A4IH l’?/vw\) = 0 (A ?!'/b)
and



<'§w~| l'} > J’%”“’"’(Q)[ l Z mka% > (10)

-32 3 Q‘M,b,< l""hlm>9qk] o

The adiabatic approximation (Eqn. 5') succeeds only because

m) and Qwvlaa > of the off-dia-
2

gonal matrix elements are small compared with electronic excitation

; )
the electronic partsle:M

energies when \J./ m and 4’ n vary slowly with nuclear displacements,
If these matrix elements are treated as a small perturbation, the
unperturbed energy W, . is correct to first order and the largest
correction is a second order one.* From the Schrddinger equation
(Egn, 3) it follows that

(]2 )= (BB | 2081 |

(for all k)

(11)

and it is always true that
el | =5 G5 KIS )+ 20zl 1

(for all k)

so that in a molecule which is in a degenerate electronic state or
has low lying electronic excited states the neglected terms can be-
come very large as the energies approach one another. The levels
then combine more easily under the perturbation and the adiabatic

approximation fails completely.

* Brato% (25) has recently derived general expressions for the
various orders of correction,



Degenerate Electronic States

In order to handle degenerate states we return to the original
expansion, Eqn.2. Substituting this in the full Schrddinger equation
H ¥ (q,Q) = W o (q, Q) we obtain

Zmeh 7 £ 5% V@]t

(13)
—a %‘TGEL “pr_ W, )’:’A/} 0
where
=_5 % 2 % . 14

Multiplication of Eqn, 13 on the left by ¢ _(q,Q) and integration
with respect to q gives a series of coupled differential equations

for the X!s involving the electronic matrix elements of £ and

2/? Q;:
[‘% %jﬁb‘agq:i +\/(8) +E, 4 (=W ], (8) (15)
p 2
+2" [Ean @37 Fr (M3 [#) T, ] (@) =0
with
IR APYE (16)

Our aim is to make the coupling terms € . and(""’la/aﬁ,n.!“? in
a degenerate state as small as possible by an appropriate choice of

the electronic wave functions {4’13 o If {4’ r} is a fixed basic

set independent of Q (the usual harmonic approximation given by
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the simple theories of molecular structure),(;\,]‘a/aqb\,¢>=o

a a?.

and £ is equivalent to the electronic energy operator-2 o=, T

+ U ,9) . Clearly € _ (Q) can then be made to vanish at
one configuration, Q=0 say, and may otherwise be large., Since

{‘P 3 is the set of solutions of Eqn. 3, EA'A/"< |-Z aM*‘qu‘A)
so that £ __ and ALY can both become very large be-
tween two components of the degenerate level, However, since
these matrix elements are small for all other pairs of electronic
states one can neglect in the expansion Eqn, 2 all the electronic
wave functions except \}' 1 ece ¢ g the solutions of Eqn. 3 which
become degenerate in the symmetrical configuration Q=0,

The coupling terms of Eqn. 15 can be made small, under cer-

tain conditions, by choosing special variable linear combinations

of ¢ 1 e ¢g as a basic set, We make the approximation

»\I/‘q,qw;.é,.(q,‘%)’i;u(q) (17)
with

A (18)
$.(1,8) =}§| (DY, (4 Q)
and the coefficients aﬂlr(Q) chosen so that
JE&t@.e 2, 4.4 0dq=0. (for all A , , k). (19)

This can be done by solving the first order differential equations
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PDépy ? -
s 5o a5 IT0 or s o

which fix {(b/‘_(q, Q)3 once the orthonormal set {(?u(q, 0)3 has been
chosen, The choice of {4}‘, (q, 0)3 is arbitrary and has no physical
significance since any new combination

! (21)

( =2 b

$,(4.9)=2_b, ,4.(4,4)
derived by an orthogonal transformation still satisfies Eqn. 19.
Eqgn, 19 ensures that <¢Al%q)‘%> =0 and as a consequence
s

the term <¢7J—325;’?w) in Eﬁj‘- is small also since the expansion
Egn. 12 now contains only the contributions from higher electronic
states, It is consistent with the spirit of the Born-Oppenheimer
method to omit these contributions from the coupled equations 15

and obtain

E_§{%L.g%z + /\};;\(Q)-F\/(Q)— W]')LA(GQ

(22)
/
+; V() L (@)=0
in which the coupling terms are pure electronic energies:
M@= 2 5 S+ Vel m (23)

Cross differentiation shows that Eqns. 20 have a solution only
if

ﬁq‘)‘.@'l’%a\ﬁ? = faﬂ<}‘v| 3’%,»\ A;> (24)
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for all pairs k, £ . There are two situations in which this condition
is satisfied exactly:

(a) there is only one displacement coordinate Q which removes
the electronic degeneracy, (cyclobutadiene is an example of this
case)

(b) the g functions ¥ 1(a: Q... 4/g(q, Q) can be expressed as
linear combinations of just g fixed functions say \I/l(q,O). g

‘P (g;0). For example, if
¢ g
(4,Q) =L Cai (@ ¥i(q,0) (25)
L=t |

we may choose the functions 1
$,3.9=F %u(® $,.,0= 4,4, (26)
3(4.9)=2 Ap Q4,02 .4,
which are independent of the nuclear coordinates and hence satisfy
Eqn. 190

In practice Egn. 25 appears to be a good approximation to the
true wave functionsft}vr(q, Q)} . If El(O), s Eg(O), A En(O),
and ¥y 1(q, [0 ) [— ql g(q, 0)sses 4’n(q, 0),... are the electronic
energies and wave functions at Q=0 and v is an electronic pertur-

bation we can use perturbation theory to write, to second order in v.

g
o : i (Q)
LII/p(q')Q)_LZﬂCA" (Q)gqli.(q‘)o) —gg €, (0)-E (o) ‘Pm,(q': o) 3 (27)
Here v,;(Q) is the appropriate matrix element of v and the set of

coefficients {crigcomprise the orthogonal eigenvectors which

diagonalize the g x g energy matrix of the initially degenerate set
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q/l(q, 0)ses L,I (q,0). By the transformation Eqn., 26 we can
g

recover the functions

- . Mo uS) 28
$.(4,8)= $,.4,0) :é{ i (%,0). (28)

En(©)—E, (0)
The matrix elements of 2 /2 Q, between these functions
2_|D=>[E(9—E (0] ¥ 2% 29
<?\Iaqb'/"‘> Mé_[ nv( i )J ;\ﬂv(q)-g-%wf‘ (29)

are small for small displacements, Specifically, these matrix
elements are less than those of v by a factor of the order }:En—Eﬂ :2,
X @%&f so that we are still justified in neglecting these terms in
Eqgn. 15 and using the simpler form in Eqn., 22, Nevertheless,

the error caused by neglecting these terms is likely to be larger than
that caused by neglecting similar terms in a2 nondegenerate state
because the terms are now being compared to the overall splitting

of the degenerate electronic levels instead of the relatively large
energy gap between two nondegenerate levels,

Equation 22, which has been the starting point of previous theo-
retical work (4, 5), expresses the coupling of nuclear and electronic
motions in its simplest plausible approximation. For any degener-
ate level which is well separated from all other electronic states
the terms neglected in Eqn, 22 should not be much greater than
those neglected in the ordinary Born-Oppenheimer theory for non-

degenerate states, Since the eigenvalues of the matrix “v;\/u_(Q)(l
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are the ordinary electronic energies {En(Q)} , the electronic wave
functions {HL’ n(q’QB and their distortion energies play a funda-
mental part in the coupled motion, When the coupling is small
compared with vibrational energies the wave functions g(‘)}(q, Q)}
represent quasistationary states of electronic motion in the vibrat-
ing nuclear framework, whose high frequency components can follow
the vibrations adiabatically while the low frequency ones are unable
to. On the other hand, if the electronic degeneracy is effectively
removed by a large distortion the motion is mainly confined to the
lowest sheet of the electronic energy surface and the adiabatic
approximation is again useful,

Theoretical Assumptions and Empirical Relations

We shall use the molecular orbital method in our actual cal-
culations of the equilibrium bond lengths and energies of a conju-~
gated molecule in a spatially degenerate electronic state, We assume
that the total energy W is the sum of two parts, one F arising from
the ¢~ bonds and the other E from the TT electrons:

W=F+E (30)
The o electron energy is assumed to be a sum of independent con-
tributions from the CC bonds (the CH bonds being omitted from

consideration):

F =% f(r; ) (31)

where r;

i is the length of the i'th bond. The TT electron energy is
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calculated by the LCAO-MO theory and is a function of the resonance
integrals f .= ‘B(ri) and the bond orders (26) p; = p;( ﬁl, 2 2,090 )0f
the bonds:
§
When the entire molecule is in static equilibrium 2W /2 r.=0 for
each bond implying
/. . B  FOPL Y, o
-FL' = AP [Qd +Z;‘F'-3, (%)Pc =0 (33)
T '\
where the primes denote first derivatives, Now the TT electron
energy remains unchanged for small variations of the wave func-
tion {(and hence of pJ-) so that the third term of Eqn. 33 vanishes and
/ /
$;+ap:.p!=o. (34)
As Longuet-Higgins and Salem (27) have pointed out Eqn. 34 implies

a fixed relation between the order and length of a bond in static

equilibrium since f(r) and f (r) are unique functions of r. This

relation exists independently of any special assumptions about the
form of f(r) or‘g (r) and holds also in the Pariser, Parr and Pople
self consistent field molecular orbital theory (28, 29).
A form of this unique relation was determined empirically by
Longuet-Higgins and Salem (27), In many molecules the formula
p(r) = & 667(1.500 - r) (r in A) (35)
holds for p(r) the bond order of an spZCC bond in equilibrium and

we shall assume this relation throughout our calculations. If we
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define the function
P(r) = 6,667(1.500-1) (36)
for any arbitrary distance r, then P(r) and [-* (r) completely deter-
mine (27) the variation of f(r) since
f'(r) + 2P(r) g'(r) = 0 (for all r) (37)
An assumption of the form of 8 (r) is then necessary. Longuet-
Higgins and Salem (27) adopted the exponential form
B(x) = - Be "*/2 (38)
which can be expressed as
P(r) = lBo exp [_-(r-l.400)/a._7 (r in A) (39)
where
a =0,3106 A
(40)
Bo= -25. 56 kcal/mole,
these values being calculated from the observed force constants
for the totally symmetric and totally antisymmetric CC stretching
vibrations of benzene. Every numerical quantity used in the theory
is therefore derived from experimental data. The above simple
assumptions, on the other hand, ignore the effect of CC bending
vibrations and out plane motions, but the conjugation energy of a
planar molecule probably depends far more strongly on the CC bond
lengths then on the angles.
An alternative set of assumptions about the ¢ and T electron

energies due to Lennard-Jones (30) was used by Liehr (18)
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in his work, Let s and d stand for the lengths of a single and a
double bond respectively, Lennard-Jones assumes that

flr) = 1/2 ks(r-s)2+ constant (41)
2B (r) = 1/2 kd(r—d)z- 1/2ks(r-s)2+ constant

where kg and k gare the observed force constants of a single bond
in ethane and a double bond in ethylene, The assumptions of Lennard-
Jones and of Longuet-Higgins and Salem lead to rather different
conclusions about the energies of distorted configurations and the
potential barriers between them because tS//(r) is positive in the
former and negative in the latter method. The available evidence
strongly favors the Longuet-Higgins and Salem assumptions, Apart
from the unreasonable assumption that ‘3 (r) and f(r) have a para-
bolic form in the entire range r= 1,35 to 1. 54 A, the relation be-
tween bond order and bond length derived from Eqns, 34 and 41
does not fit (26) the known bond lengths of benzene and graphite as
well as Eqn. 35. Furthermore, differentiation of Eqn. 34 shows
that the force constants of ethylene and of the totally symmetric
CC stretch of benzene are given by

w” = 25 (x) gtx) (42)
evaluated at r=1, 35 and 1,40 A respectively, Thus if we accept
the empirical bond order - bond length curve Egn. 35 in which
p'(r) = P' is a constant the negative sign of F»//follows immediately

from the greater force constant of ethylene, Even if p(r) is cal-
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culated from Eqn. 34 using Eqns, 41, Eqn. 42 still predicts that
the force constant for ethylene is significantly less than that for the
benzene symmetric stretch, Indeed, the Longuet-Higgins and
Salem form of ﬁ(r) reproduces both force constants fairly well,
It also leads to 2 0- bond potential energy

f(r) = -2 P' o [r-1. 50A + a] exp [-(r-1,40A/a) (43)
which is qualitatively similar to the observed potential functions of
many diatomic molecules (31). The chief doubt about their assump-
tion is whether F varies sufficiently rapidly with r. The energy of
a bond in static equilibrium is predicted to be

w(r) = -2 Po a P’exp[-(r-l.‘io A)/aj (44)

which leads to only 47 kcal/mole difference between a double and a
single sz bond. The observed difference between normal double
and single (sp3) bonds is 63, 2 kcal/mole (32),

Bond Orders and Resonance Integrals

In the undistorted configuration each of the highly symmetrical
radicals that concern us has an n fold rotation axis of symmetry.,
+ -
The degenerate electronic wave functions ¥ and ¥ are of sym-=
metry e'" and may be chosen so that a rotation C, through 2T /n

-1
about the axis multiplies each by a numerical factor < or & :

Cn ’?‘-‘F:C‘J’%*—

- (45)
Ch = ’%‘ .
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Symmetry restricts ¢ to the values exp(2TTik/n) with k = 0,
l,eeef{n-1) and i =1/ -1 . When the wave function is a linear com-

bination

- + _ =
d=atF +a ¥ (46)
the electron density A * A4 contains terms which acquire factors

2

of ¢ “™ and w-Zm

under a rotation (Cp) " through 2 TTm/n.
This implies a special relation between the orders of equivalent
bonds which are interconverted by a rotation, Suppose we label
each different family of equivalent bonds by a letter j and give the
n bonds in each family numbers m running from 0 to n-1 around

the molecule; then in the state A~ has parts which vary as

* Pmj
exp (¥ 47T ikm/n). In any distorted configuration the degenerate
level breaks up into two states with real wave functions and it is
convenient to express 4 in the new form

= ,{.’ cos © - ¥”sin © (47)
where {\I and 4" are the real and imaginary parts of ¥* . As
the radicals have symmetries D ; we can choose &' and 4" to be
those states in which the orbitals 4” and 4’” of the unpaired elec-
tron are, respectively, symmetric and antisymmetric across a
vertical 0~ = reflection plane, The m'th bond order P in a given

family (we shall henceforth drop the subscript j) is now given,

after some algebra, by the expression

pm=5+a>cos[4TrTlmk +ze+§] ®> 0) (48)

in which B, and § are different for each family., 7 is independent
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1 B ’ 174
of m and is the average of p,,2andp_ for & and ¥ which is

equal to the bond order for both #"and ¥~ . ® and § depend

on the LCAQO coefficients c' . ¢

A - Of the unpaired electron orbitals

Y/ and V”respectively. Let the first bond (m=0) of the family

join atoms 1 and 2 and define
=0, Lol o piltic it
S =2 (CI o T

=4 (clet +ele) (49)
then

@a= Sa'-t-T:L

Tan £ = -—;- . (50)

It is thus clear (see Eqn. 32) that the only distortions of the mole-
cule which can remove the degeneracy are ones in which Pm has
a portion which varies as exp(+4 Tr imk/n).

Suppose now that we make a distortion in which the extension

R.__ of bond m from its undistorted length

i (corresponding to p) is

?m
R_ =Q.cos[ﬂ:-:—rn - q;] (R>0) (51)

and expanding the resonance integral to O[(r-r)z_]

B(rM=F +¢ (h-R)+L " (n-R)* (52)

calculate the resonance integral under this distortion:

= (FH4 0+ Rpl e P — 4]

+%anuw[_ HT:‘M+A¢]- (53)
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The term in parenthesis is the contribution to the ordinary harmeonic
oscillator potential, The part which is linear in ® removes the elec-
tronic degeneracy only if u = 2k mod n and the quadratic part if

2u+ 2k = 0 mod n, Both may do so simultaneously in the ions, say,
of benzene, triphenylene and coronene where 6k = 0 mod n, but not
in cyclobutadiene or cyclopentadienyl. We shall restrict ourselves
to distortions whose interactions with the degenerate states are
linear in R, that is, with u = 2k, For the first three molecules
named such a distortion leads to resonance integrals of the form

Bm ™ (F+%(R2Fy) +(Rf$’ {cos _’_4_T_l'n;l’1_£ - (P}

1 ol 4 T mk
+ZR a7 cos [—T— +Z¢]}.

In the others the linear and quadratic parts vary differently with m

(54)

and only the linear one affects the total energy.

Distortion Energies

When any conjugated molecule distorts each Hiickel orbital changes
also and the energy contains second and higher order perturbation
terms from excited electronic states. As a first approximation we
shall neglect these changes and take the wave function to be a linear
combination (Egn. 47) of the two degenerate states in the undistorted
configuration, The electron energy is then a function of © and the re-

sonance integrals:

E(@) =23 g (©)p(xn). (55)
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In a given electronic state (fixed values of © and p ; (©))the lowest

energy shape is fixed by

(9W/21)g=0 (56)
or
() + 2 p; (©) /B/(ri) =0 (57)

and the unique relation (Eqn. 35) between bond order and bond length
must hold, Thus the distortion is governed completely by the differ-
ence between the actual bond order p and the value P = P(r) appro-
priate to the undistorted length ¥, According to Eqn., 37 there is a

force of

S22, =2[Pm - 5] Bt (58)

tending to stretch a bond which is not in equilibrium and the bond ex-
tends until P(r) is equal to p.
The linear form of P(r) (Eqn. 36) leads to the conclusion that

the equilibrium extension of each bond in the molecule is proportional

to its deviation from the average bond order p;,

R; = Pi ~P;) =_-0,150 (p; - B; ) (59)

P’
so that its distortion energy is

7
Wi - wy =2(pi-—l;i)(9(;i)+.P_;1:i_) (p; - P; )2
" o
+ 8 (¥i)

= 3
W (pi - pj) ¥
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up to terms in (p - _15)3. To derive Eqn. 60 one expands the energy
in powers of Rj up to Rf, substitutes from Eqn. 59 and eliminates
' (r,) and f"'(r,) by differentiation of Eqn. 37:
fr+2Pp'=-2Pp
(61)
frr + 2 PpY=aq PIp"
In the final result the contribution to the (p - 1_))3 term from R3 cancels
two thirds of the contribution from RZ. This means that if the ex-
pansion of the energy in powers of R is truncated at the R?Z term we
would over-estimate the potential barriers discussed below by a
factor of three. Use of a quadratic form for g should result in a
similar error, These difficulties occur in the work of Liehr (18).

In an initially symmetrical molecule the equilibrium extension of

each bond in a family is found from the general formula (Eqn. 48) for

the bond order and Egqn, 59:

R =-%co Aimk ,20+% -TT]- (62)

o n
This is of the same form as Eqn. 51 provided R= - ®/P', u= 2k
and2©@+§ +¢ =TT.
When the total energy of each family j is evaluated three types
of behavior can be distinguished. (a) In radicals like cyclopenta-
dienyl or cycloheptatrienyl which neither possess a 3 s-fold (s =1,

2...) axis nor have 4 k/n equal to an integer the distortion energy

AW; = W; - W; =rzn (W5~ Wiy )

i (63)
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is independent of © and has the value

AW, =n S1AGIN (64)
2 P

(b) In molecules like cyclobutadiene which do not have a 3s-fold axis,

but do have
= = X = integer, (65)
n

two subcases can be distinguished according to whether £ is even or
odd, We shall restrict ourselves to the case where L is odd (the
molecule has a four fold axis), Iff were even the distortion energy
would contain a term linear in ® and might be quite large, but we

do not know of any physical example where this occurs, In the cyclic
polyenes C4, Hy, R I R, L is always one, Here, as in Eqgn,
64, only the quadratic term of Eqn, 60 contributes to give the dis-

tortion energy

2. o =
AW-:nPjF (r;)
; 2 j [l+cos (4e+2§j)l (66)

/
- AW thus has a maximum value of - %@_Z_ at 4@ + 2§ j= O mod
2 T and a minimum value of zeroat 4 © + 2 § J.= T mod 2T , i, e. the
molecule must go through the symmetrical configuration to get from
one stable distorted shape to the adjacent stable distorted form,
This is a reflection of the fact that (at least for the cyclic polyenes)
where £ is an integer the vibration which removes the degeneracy

is nondegenerate, whereas when { is not an integer a doubly degenerate
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vibration removes the degeneracy. (c) Finally, in molecules which
possess a 3s-fold axis in their symmetrical configuration and £ is

not an integer the distortion energy depends on the angle 6 ©:

| - Tl s
AWJ- - n@.]z P (r_]) 1+ (PJ ﬁ (rJ) cos (6 © +3¥j)
2P! 6 P’lf.[ =

j (67)
. P p’(Fj)

[1+0.0805@.cos(66+3§.)]'
2p! i J

The minimum energy for each family occurs when 6 © + 3 t:j =0

mod 2 TN and the maximum energy when 6 © + 3 Ej = TTmod 2T , If
the molecule has a 3s-fold axis and £ is an odd integer as in Ci2Hyp
and C,4H,,4 the distortion energy has a more complicated dependence

on O:

S e
aw, = 2P @ (F)) [1 + cos(40 + 25.) + 0. 0805 @_ cos(6® + 3% )]
J J J ]
Z P
(68)

Since 0, 0805 (Pj44 1 the distortion energy here has its maxima and
minima under approximately the same conditions as in case (b)
above (cf. Table I).

With the simple theory used here the total distortion energy
A W is a sum of independent contributions from each family (this

not being true when mixing with excited electronic states is considered):

AW=2 AW . (69)
j

: : / 1" 5
Our special choice of 4+ and 4" means that, except in mole-

cules with a four fold axis, each of these functions corresponds to a
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distortion of extreme energy and in both cases the distorted radical
has D2h or C2y instead of D), symmetry. Also, if two separate
bond families j and  are interconverted by the ¢-,, reflection S; =Sg
and Tj = -Tp so that (Pj = 631’ and Ej = —;2 . In additionﬁj =§} "
If theo-  plane bisects the bond m = 0 of family i then T; = O and
Ei = 0. As a result, the total distortion energy in molecules with
a 3s-fold axis has the form (see next section)
AW=-AEY AUcosb6© ( AU> O). (70)
AE (the mean value of AW if £ is not an integer) is proportional
to p' while the potential barrier 2 A U between adjacent pairs of stable
distorted shapes depends on p#and is opposite in sign for the Longuet-
Higgins and Salem and for the Lennard-Jones assumptions, In all
of these ions AU/A E is small,

The pairing of electronic states in alternant hydrocarbons (11)
should lead to identical distortion energies in the negative and the
positive ions of benzene, triphenylene and coronene,

Individual Molecules

a) Cyclic Polyenes - First Order Theor
¥y Y Yy

The above theory reduces to particularly simple form for cyclic
polyene radicals or ions with one or three electrons in a level of e"
symmetry, These molecules are of general formula Cq Hq . Each

has a¢-, plane which we choose to pass through atom m = 0, The un-
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paired electron is in a Hiickel orbital ¥ i with permutation quantum

number k:
4}1(:2 cnnk‘?orn d (71)
m

! - being a sz orbital on atom m, The atoms are labeled such
that for q odd the sum is from m = -(g-1)/2 tom = (q-1)/2 and for
q even from m = -(q/2) + 1 to m = q/2. The conventional complex

form of the coefficients is
_ 1 mk
Chx "1 2@
(72)
W=e 2Ti/q

With our choice of labels the combinations of \Pk and \4]1 o which are

respectively symmetric and antisymmetric with respect to ¢~ - have

coefficients
2 2T mk
c! :l/—; cos (73)
mk q q
and
e =1/£ gin 2T mk (74)
mk q q

There is only one family of bonds and taking the first bond to be

that between atoms 0 and 1 we get

P=1 (75)
q
‘E = 2Tk (76)
q
Also from R = - ® /P', the amplitude of the distortion is

q
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For cyclic polyenes in which q is not a multiple of three or

four we have from Eqns, 64 and 75

aw = - 207 7). (78)

For those molecules in which q is a multiple of four but not of three
we have if ¢ = 4x,(x =1,2,4...) and u = 2k (see p. 21), k = x and

from Egn. 76, 2§ =T and hence from Eqgn. 66

AW = - O 275 F'('f) [1-cos 40 ] , (79)

which gives a minimum energy at ® = fTr/4. Those molecules
having q a multiple of three but not of four have a potential barrier
between adjacent stable distorted shapes. If q = 3s(s =1,2,3,5...),
distortions with u = 2k (see p. 21 ) must have k = s and hence from

Egn. 76, 3§= 2T , Thus Eqn, 67 gives

v -
AW=-.£_(_1'_)_[O.075+9-'—2£§—1 cosbe] (80)
q q

which shows that the minimum energy occurs for ® = 0 and thus for
the orbital which is symmetric with respect to O’V. Finally, if q = Ry
(y =1,2...) we obtain from Eqn, 68

l' —
aw = -L ) [0,075 (1-cos 4 ©)
B (81)

+.£'_01_§_1_ cos 6 6] .
q

For cyclic polyenes with two electrons in the lowest energy

orbital of the initially degenerate level we have

R = 0,300
q

(82)
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with the distortion energies

AW = - o.;oo ‘B/(I-) (q#3s or 4x) (83)
AW = -9-'?30_‘3_;3'(5) [1-cos 4 6] (q=4x#3s) (84)
AW = -—@-’—c(l-i-'l[o. 300 +°;ql-4—5 cos b e] (g=3s#4x) (85)
AW = ‘.L;(-fl[o. 300(1-cos 4e)+°';45 cos 69) (q=12y) (86)

It might be noted that neutral polyenes with q = 4x have two
electrons in a doubly degenerate molecular orbital which has zero
energy in the symmetrical configuration, Particular results of
this structure are discussed below.

In evaluating these energies P is calculated from the molecular
orbital coefficients as in Eqns., 72, 73 and 74 and is used in turn
in Eqn, 35 to calculate 1.

These results show that the mean distortion energy for all
cyclic polyene molecules and radicals decreases as 1/q and the
barrier in radicals with 3s-fold axis decreases as Ilq2 for increasing
size of the polyene, both becoming zero for an infinite polyene, This
is essentially due to the fact that as the size of the polyene increases
the unpaired electron is delocalized over more bonds and its effect
on any individual bond quickly becomes negligible, This effect is
to be distinguished from the alternation of bond lengths in long

polyenes due to cooperative second order effects as predicted by
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Longuet-Higgins and Salem (27).

Numerical results for some of the first members of the series
are given in Table I. Cyclobutadiene, which has by far the largest
distortion, provides a means of checking the accuracy of the energy
expansion, Eqn. 60. The distortion energy of cyclobutadiene can
be easily calculated directly from the wave function using the full
exponential form of é . The value thus obtained,ll. 43.kca1/mole,
compares quite favorably with the value 11, 39 kcal/mole computed
using the expansion.

Molecules with a doubly occupied, doubly degenerate molecular
orbital level (C4Hy, CyHg~ and CgHgt in Table I) require additional
comment, Simple theory predicts for these molecules four degenerate
electronic states, one triplet and three singlets, In cyclobutadiene
(33), for example, two of the singlets would have the rectangular
shape with alternating pure single and pure double bonds as shown in
Fig, 1, The third singlet and the triplet would have the square form
with all bonds equal (Fig.1l). Neglecting electron correlation, the
distorted form (a singlet) would be more stable by 11,43 kcal/mole,
However, when electron correlation is taken into account the initial
degeneracy is removed and the triplet state will have a lower energy
than the singlets (Hund's rules). The configuration lying lowest is
thus determined by which is greater, the distortion energy plus

correlation energy of the singlet or the correlation energy of the
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TABLE I

Cyclic Polyenes - Distortions to First Order

- AW, kcal/mole

Molecule P T, A ®, A Maximum Minimum
C4Hy 0.500 1,425 0,075 11,39 0

CsHs 0.585 1,412 0,030 1,188 1.188
CeHg~ 0,583 1,413 0,025 1,026 0. 946
CeHy ™ 0.500 1,425 0,050 4,102 3. 490
C7H7 0.610 1,408 0,021 0. 859 0.859
CgHg™ 0,604 1,409 0,019 1, 520 0

CoHg® 0,601 1,410 0,033 2.824 2,536
CoHg 0.620 1,407 0,017 0. 688 0. 652
CpHy, 0.622 1,407 0,025 4,027 0 (6=0)

(©=-45°52")
CyHpy  0.633 1,405 0,013 2,026 0 (=0

(©=-45°26")
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triplet. Finally it should be noted that the C-C-C bond angles in
planar cyclobutadiene are 90° instead of the 120° to which the
equations forming our starting point correspond so that the CC bond
energy may vary somewhat differently than we have assumed., These
points require further calculations which are beyond the scope of our
present treatment (the interested reader is referred to a few addi-
tional cormments by Coulson (33)) and we shall terminate our dis-
cussion of cyclobutadiene by noting that Liehr (18) computed 20,9
kcal/mole as the distortion energy of C4Hy.

QOur other results compare favorably with those obtained by
Liehr (18), He found a value of - AW = 1,602 kcal/mole for cyclo-
pentadienyl compared to our value of 1, 188 kcal/mole. For C6H6+
Liehr (18) calculated the minimum and maximum distortion energies
as 1,405 and 1, 266 kcal/mole which compare with our values of
1,026 and 0, 946 kcal/mole, The bond distances given by Liehr and
those in the present work (Fig.2), however, differ considerably,
The source of this difference lies mainly in the inaccurate (within
the Lennard-Jones scheme) ratio of the force constants for the CC
single and double bonds used by that author. This point has been
discussed by Coulson (26).

CgHg™ has recently been prepared and the evidence indicates

that the ion is planar (34), Its Jahn-Teller distortions are of interest
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Fig.l. Bond orders (outside) and bond lengths (inside) in cyclo-
buudieneo

Symmetric Antisymmetric
AW'=- 1,146 kcal/mole AW" = -1,173 kcal/mole

Fig.2. DBond lengths and charge densities in benzene mononegative
ions. The bond lengths and energies are calculated from the
final first order wave functions.
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in connection with its paramagnetic resonance (15).

Cyclic polyenes of general formula GHy,(x =1,2,...) are of in-
terest in relation to the theory of alternating bond lengths in long
polyenes. Longuet-Higgins and Salem (27) have used molecular
orbital theory to predict that in cyclic polyenes of the general formula
C4n+2H4n42 the C-C bonds will start to alternate in length when n
becomes sufficiently large and that this alternation persists to infinite
n, This result can be interpreted in terms of a mixing of orbitals
with a consequent lowering of the total energy caused by the proper
changes in bond lengths from their values in the symmetrical con-
figuration. Using the same theoretical assumptions and empirical
relations used in this thesis these authors predicted that this alter-
nation should start whenn =8, i,e,;, 4n + 2 = 34, although this
number is quite sensitive to the assumptions used, They inferred
that all cyclic polyenes, if sufficiently large, should show this bond
alternation, In a subsequent paper (35) Longuet-Higgins and Salem
examined the electronic spectrum of CjgH;g,Cp4Hy4 and C3gHyy and
concluded that '"the available spectroscopic evidence indicates that
the bond lengths almost certainly alternate in CyyHp4 and probably
also in CigHg and C3yHyy " {35), although all of these have n less than
the predicted value,

These authors, although distinguishing between the closed electron
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shells of CjgHg and C3yHgy and the open shell structure of CyyHpy ,

apparently did not realize that CyyH,4 undergoes a Jahn-Teller dis-

tortion. Table I shows that in the singlet states of CjpHj, and CyyHpy

the value of © for the maximum distortion energy is quite close to

- TT/4. Assuming, then, that ® = =TT /4, Eqns, 62 and 82 show that

polyenes of the form CygHy, possess a bond alternation R, = (-1)m+l,
xR = {-1)™+1 (0, 075)/x . In CyyFhy ,® = 0. 0134,

Longuet-Higgins and Salem (35) showed that the electronic spec-
trum of CyyHy4 is consistent only with a distorted singlet ground
state, Furthermore, using simple molecular orbital theory without
configuration interaction they could calculate for these molecules
the ratio P I/FZ where [ is the resonance integral of the "long"
bond and f ; that of the "short" bond. It is possible to obtain from
this ratio an estimate of the distortion amplitude. We assume an
exponential form (Eqn. 38) for ‘B (r); remembering that the semi-
empirical value of B depends on whether it is determined from force
constant data or from electronic spectra. Such an exponential form
of P has been used by Pariser and Parr (28) in electronic spectra
calculations, Using ﬁ(1.40 A) = 24,000 cnil calculated from benzene
by Longuet-Higgins and Salem (35) and calculating P(l. 35A)=30, 650cm ©

from the 7.6 ev, 1A1g~> lBlu band of ethylene (36) we obtain for

electronic spectra without configuration interaction a = 0, 2044,
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Egn. 38 then gives
- 2 8
R=-32n(8) (87)

Table II gives the values of ﬁl/P > and R, as calculated from Eqn. 87,

TABLE II
Molecule B:/Ba (35) @R, observed
CigHig 0. 74 0.031 A
CoyHopy 0,67 0. 041
CypH7y 0,71 0.035

The '""observed'" (R involve numerous approximations, but pro-
bably indicate the correct general results The '"observed" & for
CyyHy4 is immediately seen to be much larger than that calculated
for its Jahn-Teller distortion, but it is also significantly larger than
the '"observed'" R 's for CigH;g and CyHyy. In fact, if we subtract

the average ® for CjgH o and CyHyy from that for G, H,, we obtain
0. 008 A which is relatively close to 0,013, the Jahn-Teller ampli-
tude for CyyH4. These considerations suggest that in the polyenes
C4,Hy, two approximately additive effects operate, a Jahn-Teller
distortion decreasing to zero as x becomes large and generally
larger bond alternation approaching a constant value as x approaches
infinity, The Jahn-Teller portion can be predicted by the methods

of this thesis, but there is not yet a satisfactory quantitative theory
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of bond alternation.

(b) Cyclic Polyenes - Second Order Corrections

When the bond lengths in a molecule change the coefficients in the
Hiickel orbitals will change also, Within the framework of the present
theory these changes can be treated as a second order perturbation
(on the energy) - the molecular orbitals in the distorted configura-
tion will be linear combinations of the Huckel orbitals for the sym-
metrical configuration, This mixing results in small changes
in the bond orders and hence in further changes in bond lengths.,

We shall restrict ourselves to second order treatments of CgHg
and CgH¢™ and shall consider mixing only among the Hiickel orbitals
arising from the 2p, atomic orbitals,

The first order wave function ‘P t(l) for molecular orbital t

(cf. Eqns, 71-74) is

(M ¢ (0) ‘Culavit (0)
b 0 Tl .

where AV is the perturbation operator for the Jahn-Teller effect
and {u|av ‘T>E <""\4, AVH’t) « The first order coefficients of the

atomic orbitals are, hence,

Cr(r},)t _ cs.g),t +Z/ S—.—HA vit clgr?,)u . (89)

Et— Ey

If all molecular orbitals are chosen to be real, then to first order

corrections in the wave function the partial bond order between atoms
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m and m + 1 for molecular orbital t is

1
pm, m+1F*F c1Sn)‘c Crrgl 1t (90)

or

(t) (0) (0)

pm, m+l ¥ ®m,t m+l,t
g M[ 19, oyt 1 e vtery (91)

’{u AVIt)<u'|AVlt} (0) (o)
ZZ TELt Eu‘) (Et_ E. W) m,u ®m+1,u’

{u|aV|t)is usually linear in ® so that the double sum will be at least
quadratic in ® .
OQur next problem is to find the matrix elements <ulAVlt). Assum-=

ing only nearest neighbor interactions between the atomic orbitals

§9 .3

Chplovi) =2 [efficers g + T on,  J<HLIAV LG, (92)

Hence, from the definition of bond order (26)
<t laviy )= ZPA RIS E (93)
Now, using perturbation theory, the first order change in the energy is
CESSAINLY, (94)

while the ordinary molecular orbital formalism gives to the same

order

1 (2
AE, = 2; Pr,r+l Aﬁr,rﬂ (95)

where AP r,r+]1 18 the change in the resonance integral of the bond
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between atoms r and r + 1 from its equilibrium value { AV = 0), so
that

B lavity, )= APn, p+i - (96)

Eqns, 96, 92 and 53 with 72 or 73 and 74 then yield the matrix
elements in terms of R, Cb and the derivatives ofP (cf. Eqns. 138).
The energy is then found by substituting Eqn, 91 into 60 and summing
over all bonds, The second order calculations are tedious; but
straight-forward and the details will not be given here.

The mixing of states in the cyclopentadienyl radical removes the
degeneracy giving rise to a barrier between a series of stable dis-
torted shapes, Carrying the treatment out to terms quadratic in R
and using the first order value for R, , the total distortion energy is

found to be a function of 2 &:

AW = - 1,087 - 0,196 cos 2 © - 0,437 (cos 2 ©)% -

+ 0,196 (cos 2 6)3
The maximum distortion energy, -1l.524 kcal/mole, occurs at cos
260 =1 (9 = 0) and the minimum, -1.067 kcal/mole, at cos 2 ©
=- 0,1978 (© = 50°42'), Our prediction of a potential barrier in
C5}15 is in agreement with the result of Snyder (19), but our value of
0. 457 kcal/mole is considerably greater than Snyder's value (19)
of 0,027 kcal/mole. It is quite possible that higher order mixing

within our scheme will reduce the barrier significantly,
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The first order treatment for benzene mononegative ion already
predicts extrema of energy for the symmetric and antisymmetric
wave functions (Eqn. 47) and it is reasonable to suppose that these
states will remain extrema, Hence, we have simplified our calcula-
tions in the case of C6H6- by calculating the second order effects
only for these two configurations, As for CsHg, the treatment is
carried to terms quadratic in ® . Using the first order value for
(R, the changes in bond orders due to the mixing of states (i.e.

the last two terms in Eqn. 91) are

8TT m 411"]
A le,m+1 - 0,00012 + 0,01374 COS[ 7 + z (98)

8 TTm 4T
= D - 0,01758
AD" il 0,00018 0175 cos[ - + z J

with the resulting energies

AW'!' =- 1,137 kcal/mole

(99)
AW'" =2 1,160 kcal/mole

Egns. 98 show that there are two types of contribution to the change
in bond order: (1) a change of about 104 , constant for all bonds and
of little, if any, significance and (2) a change in # of about 10-2,
This latter change can be interpreted as a further change in R .
Hence, a still better approximation to the energy can be obtained by
calculating the new R and using it in the energy expression. The re-

sults are:

®R' = 0,027 A

R

(100)
0,028 A
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AW' = = 1,146 kcal/mole
(101)

AW" =u],173 kcal/mole

showing only a small additional change in the energy. The final
bond lengths are given in Fig, 2. Again, our result for the potential
barrier is qualitatively in agreement with Snyder (19), but disagrees
quantitatively, Our barrier (from Eqns, 101) of 0,027 kcal/mole

is in this case less than Snyder's value of 0,234 kcal/mbole,

These second order calculations of the energy indicate that the
first order calculations are relatively adequate in determining the
average distortion energy of these molecules and radicals, but that
the magnitude of the potential barrier between two stable distorted
configurations depends strongly on the assumptions used, i.e., on
the particular form ofF » the point at which the various series ex-
pansions are truncated and on the order of the perturbation calcula-
tion, In any case, however, the potential barrier, except for mole-
cules which possess a four-fold axis, is always found to be small,
The significance of this will be discussed in another section below.

(c) Coronene and Triphenylene Mononegative lons

Since coronene (Fig, 3) possesses a six-fold axis and triphenylene
(Fig. 4) a three fold axis the radical ions of these molecules would be
expected to have, in the first order, potential barriers between

stable configurations, However, since the odd electron is delocalized
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over many bonds the distortions are small, Our numerical results
for these two ions are given in Tables IIl and IV, The family de-
signations are indicated in Figs, 3 and 4. We have used the mole-

cular orbitals given in the Dictionary of Values of Molecular Con-

stants (37) for the coronene computations, Some of the coefficients
for triphenylene given in this reference were found to be in error
and we have redetermined the molecular orbitals which are given
in the Appendix to this thesis,

Defining A Ej and A Uj as in Eqn, 70 we have for each family j

of bonds

AW; = - AE; - AU; cos (6 © + 3§j). (102)

The AEj X Uj and SJ are given in Tables III and IV and the total
distortion energy of coronene mononegative ion in kcal/mole is

AW = - 0,2989 + 0,0024 cos 6 © (103)
while that of triphenylene mononegative ion is

AW = - 0,3859 - 0,0022 cos 6 © (104)

The main distortions of the coronene ion are in the perimeter

bonds, the interior bonds contributing little to the distortion energy.
On the other hand, in the triphenylene ion, although the average
distances of the bonds vary among the families the average dis-
tortion amplitude R is the same for all bonds and all families con-

tribute almost equally to the total energy. Egn, 103 shows that the
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Fig.3. Coronene. The numbers designate bond families.

Fig.4. Triphenylene. The numbers designate bond families.
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TABLE III

Distortions in Coronene Mononegative Ion

AE, AU,
Family P T, A QR A E sdeg. kcal/mole kcal/mole
1 0.713 1.393 0,008 -60°0! 0,1207 0. 0016
2 0,540 1,419 0,007 =21 %25" 0.0743 0, 0008
3 0. 540 1,419 0,007 gi*25t 0.0743 0. 0008
= 0.513 1,423 0,004 0°0! 0. 0207 0. 0001
5 0.530 1,421 0,002 -60°0! 0, 0087 0. 0000
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TABLE IV

Distortions in Triphenylene Mononegative Ion

AE, AU,
Family P ?,A xR A k,deg. kcal/mole kcal/mole

1 0.464 1.430 0,008 60°0! 0.0519 0. 0007

2 0,507 1.424 L 0°0! 0. 0529 0, 0007

3 0.584 1,412 H 80°0! 0. 0550 0, 0007

B 0,671 1.399 i 40°0' 0. 0573 0. 0008

5 0.638 1,404 W 0°o! 0, 0564 0. 0008

6 0,671 1,399 ¢ -40°0' 0. 0573 0. 0008

7 0,584 1,412 i -80°0! 0. 0550 0, 0007
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stable distorted form for coronene mononegative ion is the sym-

metric state ’I‘” while Eqn. 104 shows that the distorted form of lowest
energy for triphenylene mononegative ion is the antisymmetric state /El?'l.
In any case, the total distortion energies of these two ions are small
being about one third that in benzene mononegative ion. The potential

barriers are extremely small.

The Complete Dynamical Problem

In order to understand the role of nuclear vibrational motions in
distorted molecules we must first examine the nature of the Jahn-Teller
potential surface. This surface is sketched in Fig.5. W is the total
bond energy and X and Y represent certain symmetry coordinates of
the molecule corresponding to the vibrations which remove the electronic
degeneracy. X and Y are certain functions of ( and ({). The origin at
(0, O,W) represents the undistorted molecule in its degenerate electronic
state and A W is the equilibrium distortion energy as calculated above.
The minimum of the potential trough, at least within the first order
calculation of the energy, occurs on a circle of constant & with ¢ di-

rectly proportional to ©.
The contributions of the - bond energy and the TT electron energy
to this potential surface have been analyzed by Craig (38) and are

illustrated schematically in Fig. 6. If the total potential energy V can
be written as a sum of ¢~ and 7T parts

= _1 Z o 1 2
V =V + Vg __Z_krg toke (Ex5) (105)

where the § 's are nuclear displacement coordinates and the k's the
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appropriate force constants then the minima of the total potential

surface occur at
£ o=t Ep/(k, + ko). (106)

The surface, as pictured in Fig. 5, is that for a molecule with no
potential barriers so that the molecule can assume a continuous
series of distorted shapes all of the same energy., In molecules with
a four fold axis the surface reduces to a single plane Y = 0, say),
AW then being the barrier height, For molecules with a 3s-fold axis
the bottom of the potential trough has a series of bumps and there
is a small barrier between two adjacent stable distorted forms,

In benzene negative ion, for example, the top of the bump would be
on the - X axis and the deepest point of the surface on the + X axis,

Let us first consider a potential surface having a deep trough with
bumps along the trough, Clearly, if the barrier height is much
greater than the zero point vibrational energy the molecule will
vibrate about the minimum point of the potential surface and the
equilibrium distorted configuration as calculated above will be
truly stable. On the other hand, if the vibrational energy is of the
same magnitude as or greater than the potential barrier the mole-
cule will tunnel through or pass over the barrier with the result
that ® and hence the electronic wave function (Eqn, 47) as well as

the shape of the molecule will be continuously changing, Hence
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there will be a dynamical coupling of electronic and nuclear motions
and the wave function can no longer be separated into an electronic
part and a nuclear part. In the limit of very small barrier the
barrier will have little effect on the motions of the molecule causing
only a splitting of some of the vibronic levels, the wave functions
resembling those of a slightly hindered vibrating rotator (4,5, 16).
The numerical results reported in this thesis show that the potential
barriers (except for G4, H 4,) are generally much less than both

RT = 0,6 kcal/mole (300°K) and the zero point energies of the
carbon skeletal vibrations and hence have only a minor role in
molecular properties,

Of more importance is the ratio of zero point vibrational energy
to total distortion energy. Again there are two limiting cases with
the corresponding intermediate case, If the distortion energy is
large relative to the zero point energy the molecule will always
remain distorted either vibrating about one particular configuration
or passing through a series of distorted shapes, the particular
behavior depending on the circumstances outlined in the preceding
paragraph, On this basis the singlet state of C4Hy(cf. Table I) is
expected to remain permanently distorted. In the other extreme,
if the distortion energy is much smaller than the zero point vibrational

energy the electronic degeneracy is not removed, (the nuclei passing
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at least some of the time through the symmetrical configuration)
although the vibrational levels are slightly perturbed., Finally,
when the distortion energy and the zero point energy are of about
the same magnitude the electronic and nuclear motions are strongly
coupled the lowest vibronic level remaining, at least to a very good
approximation, doubly degenerate and having a total '"angular
momentum'' of +h with the molecule interchanging rather freely
between all its distorted shapes, All the molecules and radicals

in Table I except C4H4 and probably Gy Hg~ and CjgH]2 fall into this
last class,

The general theory of the dynamic coupling has been worked out
by Longuet-Higgins, et al (4) and by Moffitt and his co-workers
(5,16,17), our comments in the last two paragraphs being based on
their papers, The treatment of the dynamical Jahn-Teller effect
requires detailed knowledge of the vibrational normal modes of the
molecule so that the only particular case that has been studied is
the benzene mononegative ion which has been treated by McConnell
and McLachlan (15). We will now discuss this last paper in order to
obtain an idea as to the effect of a dynamical treatment on the energies
calculated in this thesis,

These authors (15) solved a 34 x 34 energy matrix whose elements

were those of the one electron Hamiltonian between wave functions
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of the adiabatic approximation (see the first two sections of Part A
of this thesis). These wave functions were taken to be products of
a vibrational part with an antisymmetrized product of molecular
orbitals, the odd electron being restricted to 4/ 5 OT ?_Z(Cf.Eqns.
71,72) the remaining electrons forming a closed shell. The electronic
part of these matrix elements involves the resonance 'mtegrallB and
McConnell and McLachlan followed the treatment of the present
thesis., Since the normal coordinates of the ion of benzene are
unknown, these authors used the empirical normal coordinates of
the 1595 cm_l and 605.6 e L €2 vibrations of neutral benzene.
The nondiagonal matrix elements contained terms linear, only,
in the nuclear displacements and the diagonal matrix elements were
dropped to avoid terms arising solely from the change in vibrational
frequencies in going from CgHy to CyHg, The vibrational wave
functions considered were those for various overtones of the 1595
cr ! and 605, 6 cmi ! vibrations. The lowest vibronic state of CHyeg
was thus found to be doubly degenerate and to have a Jahn-Teller
depression in energy of 704 e ! (2.012 kcal/mole).

This energy depression is about twice that found by the methods of
this thesis, If this additional depression is typical of dynamical calcula-
tions, one can conclude that the static approach is useful in determining

the general behavior of a particular system, but if a dynamical situation
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is indicated, the complete vibronic calculation should be carried
out,

These authors also do not allow the electronic wave function to
vary with nuclear displacement, i.e. they do not consider mixing
among the molecular orbitals, However, our second order treat-
ment indicates that this neglect probably has only a small effect on
the energy.

In retrospect, the differences in energy between the symmetric
state ’I‘/and the antisymmetric state QE‘” (cf. Egn, 47) are in general
small or nonexistent and, although these wave functions are useful
in calculating the.total molecular energy, more sophisticated wave
functions must be used in predicting, say, magnetic properties
(15,39), If, however, ’E‘Ior ’f‘”or a combination of the two is stabi-
lized by an additional interaction such as substitution of an aromatic
ring by a saturated radical* or perhaps by electrostatic forces in
a crystal then the particular properties of these states, such as
equilibrium bond lengths and spin densities, are of interest,

Such stabilization has actually been observed for a series of
substituted benzenes, Voevodskii, Solodovnikov and Chibrikin (41)

have studied the electron paramagnetic resonance spectra of the

% The latest treatment of the effect of substituents is a series of
papers by Petruska (40),
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negative ions listed in Table V, In the simplest 0~ picture of
these ions the T orbitals are localized on the benzene ring(s) and
have the same form as in unsubstituted benzene. The odd electron
would then be in a degenerate level, The saturated substituents
may cause a splitting of the degeneracy and a mixing of orbitals
(40) and might even cause a slight delocalization onto the substitu-

ent, The results in Table V indicate that the ground state of the ions

TABLE V

Ion Spin Densities (41)

Ortho Meta Para
C¢HLCH(CHs),"™ 0.2 0.2 0
CeHsCgHj 1~ 0. 2 0,2 0
CyH5C(CH3) 3~ 0.12 0.12 0
CH5CH3™ 0.18 0.18 0.02
C¢HsCHg™ 0. 16 0.16 0.02
P-CeHe(CH3) 2” 0.18
CeHsCH,CH,C¢Hs™ 0,11 0.11

is almost entirely the antisymmetric state & (see Fig.2). (In di-
benzyl the odd electron is shared equally between the two benzene
rings.) Thesharp paramagnetic spectra observed (41) indicates
(15) that this state is significantly stabilized, Thus the benzene

rings in these ions will have the general shape of the antisymmetric
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state in Fig, 2, although the bond lengths will differ somewhat due

to the partial shift of the electron onto the substituents, The actual
magnitude of the bond lengths could be estimated from the observed
spin densities (provided only the odd electron is delocalized onto the

substituents), but that will not be attempted here.
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B. INFLUENCE OF THE JAHN-TELLER EFFECT ON ELECTRONIC
SPECTRA

In the introduction we mentioned the three experimental observa-
tions which prompted us to undertake a study of the Jahn-Teller effect.
McConnell and McLachlan (15) have investigated the two magnetic
effects mentioned and have shown that they could be explained by a
dynamical Jahn-Teller effect, In this part of the thesis we use the
methods of Part A to predict the influence of the Jahn-Teller "effect"
on the electronic spectrum of benzene negative ion,

Now the electronic spectrum of the benzene mononegative ion
has not yet been observed because of several experimental difficulties
(13), but that of the ions of coronene and triphenylene have been seen
(9,13,42). Hoijtink (13) has used a semi-empirical antisymmetrized
product of molecular orbitals procedure to calculate the spectra of
these three ions., His results agree well with the spectrum of the
coronene ion and fairly well with the spectrum of the triphenylene
ion except that in both cases transitions to two doubly degenerate
2E levels, forbidden in the ASMO scheme, actually occur with in-
tensities expected for allowed transitions, Hoijtink suggested that
Jahn-Teller distortions were responsible for this breakdown of the
selection rules,

To determine the validity of this suggestion we investigate now

the spectrum of benzene negative ion under the Jahn-Teller distor-
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tions found in Part A, CyHg has only one family of bonds and is
simpler to treat than the other molecules, but the calculations should
illustrate the general principles. Actually, if in Eqns. 118-120 and
127-130 below, 2 B is replaced by the appropriate Hiickel excitation
energy these transition energies hold in general for alternant hydro-
carbons of symmetry D3} or higher, in which the highest bonding and
lowest antibonding Tr electron levels are doubly degenerate (13),
Hence the calculated spectrum of GyH¢ ™ should be qualitatively
similar to that of the ions of coronene and triphenylene,

The Benzene Negative Ion Without Vibronic Perturbations

Unfortunately, a number of the transition energies and inten-
sities calculated by Hoijtink (13) are in error (this does not alter
his qualitative conclusions) so that we must devote this section to a
treatment of the ion without any vibronic interactions. We will
eventually need in addition to the wave functions, etc., of benzene
negative ion those of benzene itself. The general method used in
both Parts B and C has been developed by Pariser and Parr (28)
and Pople (29).

Following now the nomenclature of Hoijtink (13) we designate the
molecular orbitals by (b and the total electronic wave function by ¢ .

The l,/ 's are then sums of the usual normalized Slater determinants
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represented by

[0 PPy By eee] = (1) s (1P

P (107)

x [y (D (1) §; (2) f(2) O (31x(3) B, (4) pl4). . ]

the ¢'s being given by Eqns, 71 and 72 with N being the total number
of electrons., The transition energy from the ground state is ex-
pressed in terms of the resonance integrallﬁ and the exchange inte-

gral

Kjj Ej o (1) ¢ (2);95. & (1) ¢ (2) dq 1dq . (108)

Two quantities are commonly used (43) to express absorption
intensities: the "oscillator strength' f of dispersion theory and the
""dipole strength'" D, Each of these related quantities may be com-
puted quantum theoretically or obtained in terms of experimental
absorption coefficients. In the following discussion the absorption
intensities refer to the total electronic intensity summed over all
vibrational, rotational and spin bands and band lines, The dipole
strength for a transition between two electronic states 4’ Kk and ‘-]’L

is defined as

Dy Vikmlz
)»kk.lijq"l’:_z"{i‘lj_ dq

(109)

Here G is the degeneracy of the upper state a.nd_};_i is the radius
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vector of the i'th electron referred to a system of coordinate axes
fixed in the molecule. If the electron jump is assumed to result in
a single narrow absorption band at frequency V (in cm'l) then f can

be expressed in terms of D:

2
f=%n_° y D=1.085x 102 v D, (110)

f and D are related to the experimental absorption coefficients

k, , defined by
_0 kL
L, =10 ¢ (111)

where £ is the length of absorbing path in cm and Ig and I, are
the light intensities at frequency Y before and after absorption,

by the expressions

2
_ mc _ -8
f___ezﬁj‘kydv - 4.20x 1078 [k, av (112)
and

3he fk _19Jk
= X2 4y =3,88x10°19 | K2 qy 113
P=gmieenJ v Y * v S

N being the number of molecules per cubic centimeter, Strictly
speaking, the last two equations hold only for gases, but appear to
work quite well also for liquids and solutions (43). In the Pariser,
Parr and Pople method the transition dipoles jt reduce to expressions

involving the integrals
*
L = ,H)x (1) z1 §; (1) da (114)

We are interested here in transitions from the ground electronic
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state and shall consider only states of the same spin multiplicity
as the ground state, Furthermore, we shall confine ourselves to
transitions expected to fall in the 10,000 to 50,000 cm~1 region.
(a) Benzene
The ground state of benzene has all bonding orbitals doubly

occupied and is a singlet; the lower excited states being due to transi-
tions from the highest bonding to the lowest antibonding level. The
wave functions are
Ay, Yo = 0B & 61010, (115)
By it 1¥,2 =%[{ |0 o &1 20104 |

+ [ do Bo &0, 410,43 2{] 9 B ®1 B, O102] (116

+{0oDod) &y 0, 0_1( 3]
1 ‘\’3-ﬁil¢o¢o¢1¢z¢1¢_ﬂ+|¢o$o¢z¢1¢1¢-l\3

1y —{l GoBod1 B1 ¢+ [ Do P01 b1 G20, l}

The transition energies and dipole strengths are

B, 1B - 1By =-2p 43K 5 - K D=0  (118)
1 b - lp. 228~ K K

By 2- Eg=-2f-Kj2+Kj-] D=0 (119)
1 1 1

Elu t "E3 - "Eq

- 2P+ 2K - K]-2 D

4|z 12(2 (120)

(b) Benzene Mononegative Ion

The ground state of benzene mononegative ion has one electron
in the lowest antibonding orbital and is a doublet. The excited states

obtained by promoting an electron from the highest bonding to the
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lowest antibonding level are (13)

*Epu t, % = I%&O%?&l?&z‘ "(121)
2y, = (0,8, 0,8, 0,8,0,] _
29 =198 6,3 0.3 6 ‘
24," = 1 § 6 8,0,3,0, [
2y, = v_lf{z by By & 8,0.,6,9, “

ZEI . +dy 60 ¢, $z ¢-16.1¢.21 - \¢0 $0 ¢, 61 ¢-1$-1¢-2 B
: ‘f’: = ul—’(;fz iq’o@o & 61‘15.162 ¢
\%304’ ¢, ¢ 52 ¢zl - & B, 0, 192} |

}(123)

> 2(124)
b, = 509,8,9 3, 0,3, 0,410, 8 6,3 6.3
BT o
¥, = UL__{I‘PO(PO Py PO, 0,0,0+ 9P 01 P00, P
4 2
2 . 2 = 2 i - < &
Bi,og © V4,5 = = £19000 919 0.,9,9,| _
£GP & 0,.9,)3
Excitation of the TT electron from the lowest antibonding to the
vacant (k=3) level gives rise to another low lying doublet
2B1yt 2, = | 0P 1 b1 10105 (126)
The transition energies and dipole strengths are
2E, - %Eg =-28 D=0 (127)
1 1
E1gt 2Ep-%Eg =-24 +5 K j+5 K D=0 (128)
ZE3-2E0 =-—2P + 2 KIZ-—;— Kl-l '%KI-Z D=2 x (129)
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2 2 2
B),2g ° E4,5- Eg=-2p +K2- Ki2 =%|£12|2 (130)

2By, : 2E¢-ZE0 =-p +Kp-Ki.] D= |za3f (131)

(Within the Pariser and Parr (28) scheme |,r_23i2 2]3_']2]2.)

Since the benzene mononegative ion does not have a closed shell
ground state, this state will interact with doublet excited configura-
tions of the same symmetry, These excited configurations have
considerably higher energy than the ground state so that the effect of
configuration interaction on the energy of the ground state should be
small (13) and will be neglected. On the other hand, the accidental
degeneracy of the ZBI’ 2g States is removed by interaction of the
two 2B 1 configurations,

The matrix element between these two states

(Y

Y& [ y=vEK, (132)

A<y Yuy
is of the same order of magnitude as the energy difference between
the two states. The 2x2 energy matrix was set up taking ZEO as the
zero of energy and gave for the final energies

E; = %[&p +2Kp-Kj_1- K1_,]

1 2 2 2
+ 2_[@ + 8K%, +K{.1 +Ki.2-2pK_ 1 +2pK]; (133)

1/2
-2K;_1Kj_].

The perturbed wave functions are
2 5 + 2 + 2
Vg By gt T

/ 2 - 2
“g, = ooy Sy e Y.

(134)



63

where -
-1/2
C:h - & [1 + 2K%2_— J
4 (-p+Kp- Kj_1- AE,)? r (135)
‘ -1/2
% [1+(-{3+K12-1§1-1-AE¢)2J /
2K2, J

the signs being chosen to ensure orthogonality, Under the numerical

assumptions given below

C Z = i E) = 0,876
(136)
¢” =-c T=0,483
4 6
With the Pariser, Parr and Pople scheme (see below)
3;12 L 3 so that i
ci + 72 2
Do 4 =[r +C6J Iz 2]
2 r(137)
- 2 2
Dy gt = gy + 24 r .
ouer <[ + 2] Izl |

_The Benzene Negative Ion Under Jahn-Teller Distortions

In the discussion of second order effects in Part A it was shown
that the Jahn-Teller operator AV has matrix elements between cer-
tain molecular orbitals in symmetrical molecules. Eqgns, 96,92,72
and 53 can be used to write down these matrix elements for the com-
plex representation of the molecular orbitals used in Part B, In
benzene and its ions these matrix elements exist for the pairs 1-1,

2-2, 0+2 and 13, The first two pairs are responsible for the initial
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effect in Cé.,HE,+ and C(,H(; respectively while the others appear in the
second order energy. The complete electronic states of GyHy given
in Eqns. 121-126 also have various matrix elements of AV involving
in this case only the molecular orbital elements
{1]av[-1 and {2]aV]-2)-
Using the first order values for the angles ¢ and £ found in
Part A we have to O(R)
[ -i120

e md HyedL )
Qlav]-p =-gpe 3 =0pe —

Glav)-2) =Rg-ild+ ZUS R’ <120

The term in (] - in these matrix elements is that responsible for the
potential barrier of Part A, Because of its small size (the absolute
value of the term in ® 2 is about 0. 04 that in ® ) we have neglected
it here.

The matrix elements among the wave functions of Eqns 121-126
are given in Table VI. We notice immediately from the Table that
the degenerate levels 0,2 and 3 (these numbers refer to the sub-
scripts in Eqns, 121-126) undergo Jahn-Teller distortions, but the
level 1 does not. Solving the three 2x2 zero order matrices we

obtain

aEy == (2] av]|-2)| =zap’

qu: 71__2_%;;29 240 + Zq_,o*}

(139)
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- -
AE, . |1av|y] == %(Rp’

2
VR T T _

5 (140)

and

% 1
LTty K1lav|p] == .;_&‘3’

2% _ 1 20 2 2 x
Lyz._;j—z{*e 4’3+q’33 ]

AE
5 (141)

AE™ is the lower and A E' is the upper surface of the Jahn-Teller
potential as illustrated in Fig. 5. Eqns. 140 and 141 together with
expressions (as functions of bond distances) for the energies calcu-
lated for the symmetrical configurations could be used to calculate the
equilibrium configurations and distortion energies of the 2 and 3
levels. We will not do this here since our interest is in electronic
transitions from the ground state to excited states.

We shall consider these transitions as vertical excitations, i.e.
the nuclear configuration of the molecule remains unchanged during
the electron jump.* The ground state is distorted by its Jahn-Teller
effect so that the final electronic state will have initially this same
distortion causing it to mix with other excited states. In this manner

the forbidden transitions are allowed to ''steal" intensity from allowed

* It is possible that the vertical excitation assumption breaks down
for states with a dynamical Jahn-Teller effect since the electronic
and nuclear motions may be strongly coupled. The vertical excita-
tion assumption appears to hold for allowed transitions (4) and would
thus seem likely to hold for '"forbidden' transitions.
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transitions and thus be observed in the experimental spectrums.

Egns, 139-141 can be used to express the matrix elements of
Table VI in terms of the . \P * wave functions and the first order
wave functions, dipole strengths and second order energy corrections
can then be calculated from these new matrix elements, using the usual
perturbation formulas, The second order corrections are of course
quadratic in . However, they can amount to about 0, 30 times the
first order corrections and these second order corrections are justi-
fied even while dropping the R = terms in the matrix elements, Eqgns.
138, Since the perturbations AV and ezlrij commute, the order in
which we take them into account is immaterial, In the actual cal-
culation Eqns, 121-126 were used to calculate the first order wave
functions under the Jahn-Teller perturbation and these wave functions
then transformed to the . L}/;’ ¢ Tepresentation (Egns. 134),

The algebra of the calculation follows the usual path and will
not be given here. The results do have one striking feature: although

the first order wave functions (Table VII) depend on © the dipole

strengths (and the second order energies) do not, except in the sense
+(1)
2

24/0‘(129 2\‘/2‘(1) differ by a factor of about three (but still do

£g. ~l} &
that the dipole strengths of the transitions 500 ( )—> ¢ and

not depend explicitly on ©). Thus the question of potential barriers

versus dynamical treatment is irrelevant within the accuracy of the
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present calculation, The numerical results of the calculations are
given in the next section.

Numerical Results

The treatment up to now has been the usual molecular orbital
formalism in which the unperturbed Hamiltonian is taken as a sum
of one electron operators representing a T electron moving in an
average electrostatic field arising from the nuclei and the ¢~ (core)
electrons with the correlation among the TT electrons (the ezlrij
terms) being considered as a perturbation, Even in this scheme the
energy expressions are quite complicated, involving many center atomic
integrals so that Pariser and Parr (28) have introduced further approxi-
mations to simplify the equations and allow empirical evaluation of the
necessary integrals,

The basic simplifying assumption is that of ''zero differential

overlap'. If the molecular orbital (Dk is written as

dx =Zn A . (142)

where % St is an atomic 2p, orbital centered on atom m, then all
products of the form X (1)X _(1l)dq; are considered to be zero if
m #£ n except in the nearest neighbor resonance integral B. Kij

(Egn. 188) then reduces to

* £
Ky = ; CPi"pj§ %iCqi ¥ pq (143)
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where

2

% & *
qu = j%p(l) sz(l) i %q (2) XL " (2)dqydq,. (144)

The integrals Xij (Eqn. 114) are expanded to give
_ *
Lij =2 2 Silpq (145)
P q
where
s
Ipq = ) o) m X g(Ddq (146)

The zero differential overlap assumption here is equivalent to (44)

the Mulliken approximation (43)

Zpg =LpSpq t

where Ip is the position vector of the nucleus for the p'th atomic

orbital so that

*
Zij =) it p- (148)
P

Taking benzene and its ions to be perfect hexagons with bond

length T we get
o A (149)

From the viewpoint of the present thesis C()Hb_is not a perfect hexagon,
but a numerical calculation shows that the changes in Eqn. 149 due to
distortion are completely negligible.

@and the ¥ __ are evaluated empirically, Considering ,3 we

Pq
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immediately run into a fundamental difficulty of semiempirical mole-

cular orbital theory alluded to in Part A. (3 may be evaluated either
from electronic spectra or from experimental force constants. Al-
though within either type of calculation the £ 's so obtained are con-
sistent, the values obtained from electronic spectra differ considerably
from those obtained using force constants, apparently because of the
neglect of overlap. The calculations of Part B involve both the over-

all electronic transitions and perturbations involving bond stretching

and we are forced to resort to a logical inconsistency (but an empirical
consistency) by using one |B for the zero order contributions to the energy
and another for the perturbations,

Pariser and Parr (28) have used an exponential form for the
optical ,e and we shall follow their lead except that we shall, for
consistency's sake, take the CC bond length in benzene to be 1. 40:&
instead of the 1. 39!;:. used in their work. From P(l. 40:&) = - 2.39 ev
(benzene) and B(1. 35A) = - 2.92 ev (ethylene)(28) we obtain
P(r) = - 651.6 exp [-4.006r] ev (r in A) (150)
For the infrared P we have used the Longuet-Higgins and Salem
expression of Part A modifying the parameters to take into account
electron correlation, the details of the modification being given in
Part C of this thesis.

Pariser (44) has given the ¥ 's for benzene. Yll and ¥ 12 are
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determined empirically while the integrals for longer distances are
calculated theoretically. Pariser's values can be fitted quite nicely

to an exponential expression which we have used to interpolate for the
benzene negative ion distances. The details are again given in Part C.

The first order value (0. 025 2&) was used for ® .

The results of the calculations are given in Tables VII-IX, All
the transitions in Table IX are from the lower sheet of the Jahn-Teller
potential surface and involve an increase in transition energy of 0.08 ev
from the first order Jahn-Teller lowering of the ground state energy.
The energies for transitions from the upper (0+) sheet would be 0.16 ev
lower than those of Table IX, although the dipole strengths probably
would not vary much from those given in the Table. The considerations
at the end of Part A apply here also, of course, so that if the dis-
tortion and vibrational energies are comparable the differences be-
tween the + and - states will disappear., This dynamical coupling
should not affect the total dipole strengths significantly.

The Jahn-Teller distortion of the ion does indeed make the two
"forbidden" ZElg states accessible from the ground state, as well as
changing the other intensities slightly. The intensities of the newly
allowed transitions are,however, quite weak and not compatible with
Hoijtink's results (13).

Before comparing our calculations with experiment a discussion of
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TABLE VII

Transition Energies and Dipole Strengths for C6H6_ without Vibronic

Interactions

Transition (a) Energy D

0> 1 4,54 ev 0

0 2 5. 01 0

0= 3 6,78 1.997

0> 4 6. 54 1.233

0= 5 5,49 0. 499

0> 6 2. 04 0. 264

(2) These numbers correspond to the subscripts
on the wave functions. (cf.Egns,121-125,
and 134),
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TABLE IX

Transition Energies and Dipole Strengths for C4H¢ Under Jahn-Teller

Distortions
Transition (a) Energy D Sum of D's
b
07>1 4,59 ev 0. 004
0, 008
0= 1% 4,59 0, 004
fra® 5.13 0.011 q
’ 0, 045
0—2 5,05 0.034
= +
07—=>3 6,91 0.936
1.872
0 —=>3 6.83 0.936
- 4
0> 4 6, 64 1,302
0 =5 5. 57 0. 564
= 1
0 =6 2.13 0. 263

(a) These numbers correspond to the wave functions of
Table VII.
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the accuracy of the predicted results is in order. It is a well known
fact that the dipole strengths predicted by molecular orbital theory
are usually two or three times larger than the observed strengths.
This is largely because of the undue amount of ionic structure in the
simple molecular orbital wave functions and could be removed by
extensive configuration interaction. However, as Mulliken (45)
puts it, '"it is a comforting fact... that intensity calculations which
may be in error even by a factor of two or three are far from value-
less, since observed intensities of allowed transitions vary in magni-
tude over several powers of ten''.

The experimental spectra of coronene and triphenylene monone-
gative ions are summarized in Tables X and XI. Quantitative values
of the intensity for some important transitions are lacking, but the

comparisons in Table XII can be constructed from Tables IX-XI.

TABLE XII

Correlation of Transitions

Benzene _ Coronene Triphenylene ~
Transition Transition Transition
0> 1 0.008 15. 7kK(°E,,) 0.46 18.3kK(?E) madium
05 2 0. 045 20.8(2E,,)  1.37 24.2(°E) 0.55
0 4 28, 1(%A;,)
1.866 1,75

0> 5 26, 7(%A 1)
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TABLE X

Electronic Transitions in Coronene Negative Ion (a)

Assignment Energy D

285 7. 7TkK(b) 0. 09

By 8.9 0.12
10.8

o 12.0 0.20
13.1

2

E,y, 15,7 0. 46
17.1
17.9

2

E,, 20.8 1,37
21.9
22,7
24.0

A, 26.7

u

, 1.75

As 28. 1

2E;y 28.5

2E2y 29.7

2

Ao 30.2

= o 30,9

ZEZu 33.4 strong

34,7

(a) All energies except the

last four are given by
Balk, Hoijtink and Schreurs
(9,42). The last four were
read from the spectral
tracing in Hoijtink's paper
(13). The D's are given
by Balk (9); the bands
lacking any intensity de-
signation are weak
(D{*0.1). The assign-
ments are those of
Hoijtink (13).

(b) 1kK=1 kilo-Kayser =

103 cm-1,
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TABLE XI

Electronic Transitions in Triphenylene Negative Ion (2)

Assignment Energy D
< 4, 5kK (2) All energies except the
5 last four are given by
Aq 5.4 Balk, Hoijtink and Schreurs
(9,42). The last four were
5.9 read from the spectral
tracing in Hoijtink's paper
8.8 (13). The D's are given by
Balk (9); the bands lacking
2E 14,1 any intensity designa-
2 0. 68 tion are relatively weak.
A, 14.9 The assignments are
2 those of Hoijtink (13).
E 18.3 medium
g 24.2 0. 55
28.8
medium

[29.6

2 2
By Ry

133.4
2E 35,1
2g 36.6
2

E 39:1 strong
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The predicted and observed intensities for the '"allowed' transitions
are seen to be comparable, but, even allowing a large margin of
error, the Jahn-Teller contributions to the intensities of the 'for-
bidden' transitions come nowhere near the observed intensities.
Thus the Jahn-Teller effect per se cannot explain the abnormally
high intensities, particularly in view of the fact that the distortions
in coronene and triphylene mononegative ions are much less than
those in benzene mononegative ion.

Since the Jahn-Teller distortions do give some intensity to the
""forbidden'' transitions it is possible that the observed intensities
are due to an accentuated Jahn-Teller distortion. The spectra were
observed in solutions containing sodium ions and since the charge
distributions in the + and - states are different (cf, Fig, 2) these
positive ions could remove the degeneracy through electrostatic
interactions and indirectly increase the distortions. In this connec-
tion it is interesting to note that one of the '"forbidden'" ZEZu bands
of coronene mononegative ion appears to have at least three compon-
ents (15.7, 17.1 and 17.9kK) and the other four (20,8, 21.9, 22,7
and 24, 0kK). (The spectrum of triphenylene mononegative ion is
unusually smooth (9)). If an accentuated Jahn-Teller distortion
is responsible for the transition, these could be, say, the four com-

N . I + 4+
ponents 0 > 2, 0> 2, 0» 2 and 0—» 2, although Table IX gives no
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reason why they should differ in intensity as greatly as they are
observed to do (Table X). On the other hand these side peaks could
be merely part of a vibrational progression.

Finally, it is possible that the spectra have been misinterpreted.
It would seem from the agreement between theory and experiment
that at least a majority of the assignments of Hoijtink (13) are correct.
The abnormal bands could then be due to impurities with some of the
weak side peaks attributable to the coronene ion 2EZu transitions.

A Check of the Theory

As a check on the calculation of transitions due to Jahn-Teller
effects we use in this section the same basic theory to calculate the

g ia transition of neutral benzene caused by

intensity of the IAlg w
the Herzberg-Teller mechanism (46,47).

As was seen in Part A, the adiabatic approximation assumes that

nondegenerate molecular states can be represented by a simple product
P (0, = ¥ (¢, (Q) (4)

5{/ o being an electronic wave function and ¥ ,, a nuclear wave func-
tion. A further approximation (the harmonic approximation which has
been used in all the molecular orbital calculations of this thesis) is
usually made in obtaining the electronic wave functions of molecules.
The view point taken here is that, since the nuclear vibrations are

small compared with total bond lengths, the electronic wave functions
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do not change much during a vibration and can be considered as
independent of nuclear distances, i. e. 4/11 = ‘l’ n(q, 0). A particular
symmetry is then assumed for the nuclei and the {k}/ ng determined
for this symmetry. If this procedure is followed En(Q) in Eqn. 5 or
5' must be replaced by En(0)+<n| U(q, Q)-U(q,0)| n) . Fregquently,
empirically fitted harmonic oscillator functions are used in practice.
The fact that the{x‘/ n}) do depend slightly on internuclear dis-
tances can be taken into account by perturbation theory. In our treat-
ments so far the resulting mixing of states was considered as perman-
ent under a permanent distortion, but the mixing can be instantaneous,
varying in a regular manner during a molecular vibration,
Assuming the perturbation problem to be solved, we have
¥, (4,8)=%.(4,0) *%/Amw(a)¢m (4,0). (151)
Let us now consider the transition dipole between the two states

‘}’n(q, Q)’X—ng(Q) and ‘{"S(q, Q)% h(Q) We have (cf. Egns. 109)

o

]

J1 5@ A0 +2 A 2an(Q) 4 o (0) (152)

+t%57\ts(Q) /,..'.‘.’nt(o) + Z Z Kmn(Q) lts(Q)/f—‘-'mt(o)] % sn(Q)dQ |

m#n t#s

where/,& kL(O) is obtained from Eqgn, 109 using Sbk(q’ 0) and g/i(q, 0).

If/lA nst0) = 0 the transition is "forbidden" in the symmetrical con-
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figuration, but can acquire a small intensity through the remaining
terms in Eqgn. 152; the transition is '""vibrationally induced''. Ex-

panding 4 we obtain

- 2 A A
Q mn B mn L
mn (¥ Z[ ] Q=0 “k* %;,[ 0090y ]Q=OQk07‘+
(153)

Retaining only the linear term of Eqn. 153 we have for 2 nondegenerate

""forbidden'' transition

31 mn W )
Z{ 2 o 1

Q=0 (154)

+Z ___B_L.t.s_ )A—nt(o)j ‘J.’X,aig(Q)Qk ’Lsh(Q)dQ .

ths~ © Ok ~ Q=0
We turn now to the specific case of benzene. Of the states under
consideration (Egns. 115-117), only the lAlg—9 lElu transition is

allowed (cf. Egns. 118-120), but the lAlg_") lBlu, B lAlg—> 132‘1

transitions are both vibrationally induced. In these two cases the
nature of the perturbations are different and only the 1Alg"> lBlu
t ransition interests us here. This transition is induced by the €2¢
vibrations of the ground state (47). % In the theory above we have
considered only CC bond stretches and have neglected changes in

electron correlation. As a consequence of this only the contributions

of the €2g CC symmetry coordinates will be taken into account. This

* The various theoretical calculations of the vibrationally induced
transitions in benzene have recently been reviewed by Liehr (48).



82

approximation should tend to lower the calculated value of the transi-
tion intensity only slightly.
Now in the e2g motion we have for the change in length of the m'th

CC bond

R, =R cos[4-r3rm - dPJ (155)

where (R, and (b are variable, so that the electronic states of benzene
are connected by the same Jahn-Teller operator AV as used previously.

Forming, for convenience, the combinations
i + 1 1 + 1 %
& ﬁg vs £ 3
. 1 1 *
1 - _ _l_i _ }
4" 3 vz ¥ 3 LP 3

and following the procedure used in the treatment of benzene mono-

r(lsb)

"

negative ion we obtain the pertinent matrix elements:

4, av[ty ;) - 2ap oo+ LT

(157)
<14’1I AV'1+3_>=2(R,'B/ i+ z;rr :
so that the first order wave function is
/ +
14’1(1) = -lez-;ajﬁml_z {°°s (¢ + z;rr ) 1&1/3
(158)

+ sin($ + 21T ) 1¢3-}'

3

1'+' 0 has no matrix elements of AV.
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Using the notation of Wilson, Decius and Cross (49), the sym-
metry coordinates St are related to the Cartesian displacement

coordinates (measured from the equilibrium positions) ét i by

S¢ =ZBti§i
1

(159)
S =B'5
and to the mass weighted normal coordinates Q, by
S¢ =>  Lgc
8 >
(160)
S = L-Q

If Egn. 155 is written in its exponential form it is evident that, aside

from an arbitrary phase factor,

R+
Seggt = o o ¢ (161)
with
-1 T;4Tm
(B ezqe =" 73 (162)

Whiffen (50) has analyzed the infrared spectrum of benzene and ob-

tained the normal coordinates, The quantities Srtk given by Whiffen
2 112 .

are equal to)h/4TT oz Lix where Y, is the frequency of the k'th

normal mode., Whiffen uses a set of real normal coordinates and an

examination of the derivation of the normalization condition (49)

2 2
Z Figr Lyge Lpnge =4TT 7 Vg (163)
tt!
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Fi;1 being the appropriate force constant, shows that when the de-
generate normal coordinates are transformed from Whiffen's real
form to the complex form used here the coefficients S'ix must be

divided by 'lff * The pertinent values of {L'tls are given in Table

XIII.

TABLE XIII
Y i calculated (49) Le2gt, k
610.0 cm™ ! 0.8321 x 1011
1179. 5 -0.8124
1599. 3 3. 310
3044. 0 -0.4867

We shall assume that the molecule is in its ground vibrational
state and shall neglect below explicit mention of all vibrational modes
except the e2g modes. In general the degenerate normal coordinates

are of the form

Qe = [l e 10y (164)

* McConnell and McLachlan (15) have also used this transformation
from real to complex normal coordinates, but have included this
factor of 1/ UZ in the definition of the normal coordinate (Eqn. 164).
Equivalent results are ultimately obtained by the two methods.
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with wave functions and energies (51)

% vy - 181 el ]

nm

Eom =nhy (165)

n=1;2 s m=n~1, n-3;ss5-nkl

. ik | . . .
Then, if % nm 18 the wave function for the k'th €20 vibration of the

electronic state i, the total transition dipole, summed over all vi-

brational states is
! ok _ o I
SAESP PR AGUIAS [¢ v Tedh

arr (166)

Cag+

4 B’ / ok .
2K~ Ky +"‘K;—1\TIX" e l"}":-l—&e'

+ & mc‘-‘tgsﬁg‘-— ,% (ELX'?{: >(7[‘I:L% o x; fi)) ’

It appears a good approximation to take the vibrational wave functions
in the excited state equal to those in the ground state (4). The vibra-
tional matrix elements have been worked out by Longuet-Higgins, et al,

(4) and the only non zero ones are
0k 0k 0k 0k 1 [n (12
4 : =< Q -l = ] . (167
<;Y,10) k*(%2-1> xlo K %21> 2T I:Dk gl

Eqgns. 160 and 167 substituted in Eqn. 166, together with Table XIII

and the definition of D (Egn. 109) give
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-18, s.2 2
3.158 x 10
D1A1g——> 1p, = * (7 |z pl (168)

Iu ‘[:ZI<12-:K]__1-i"ll(l__:,_;']d

The numerical results are given in Table XIV. The D for lAlg—)lBlu
was calculated from Eqn. 168 using the values of the parameters given in
the previous section. The D for lAlg—> lElu was calculated from Eqgn.
120 not making any allowance for a slight decrease in intensity due to
the vibrational "borrowing'. The observed D's were calculated from
the f's given by Hammond and Price (52) using Eqn. 110, taking for Y
its value at the maximum of absorption*, We see that the dipole
strength for the lAlg—> 1E 1y transition follows the expected behavior
in being about 2.6 times the observed value. The dipole strength for
1

A, —»

1g Blu is, however, slightly less than the experimental value,

the reason being that the theoretical difference in energy between the
1 1 y
Elu and "B, states (the energy denominator -2K, -Kj_; + 4K _5)

is twice the experimental value,

TABLE XIV
Transition D, calculated D, observed
la) 1By, 3.92042 1.49 A2
la) =~ 1By 0,132 0.175

* In treating absorption intensities we prefer to use the dipole strexi_éth
D over the more common oscillator strength f in order to avoid addi-
tional error in the calculated intensities due to errors in the calculat-
ed transition energies (cf. Eqn.110).
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In any case, Table XIV shows that the present theory is capable
of predicting relative magnitudes of transition intensities and con-
firms the validity of the conclusions of the previous sections.,

In closing this section we might point out that the present method
of calculating the intensity of the 1A1g‘7’ 1B 1y transition compares
favorably with other calculations (48) of the same transition and might

be of use as a simple, general method of predicting transition in-

tensities in conjugated systems,
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C. VIBRONIC INTERACTIONS IN EXCITED STATES

In Part A, after discussing the usual general technique for treat-
ing molecules quantum mechanically we turned to aromatic hydro-
carbons and showed that if the ground state was degenerate in a cer-
tain symmetrical nuclear configuration the electronic and nuclear
motions coupled with a resultant depression of the molecular energy.
This coupling was the consequence of the existence of matrix elements,
depending on bond lengths, of the one electron Hamiltonian between
the two components of the degenerate level, Once this problem
is solved the question arises as to the existence of vibronic interac-
tions with qualitatively different characteristics regarding origin
and nature of the effect. For example, can the vibronic coupling be
caused by electron correlation rather than one electron perturbations
or can it originate in the interaction of two closely spaced, but non-
degenerate states? Also, can vibronic coupling be manifested in bond
angle bending as well as bond stretching motions? If so what are the
actual magnitudes of these effects?

All of these vibronic interactions do indeed occur in the excited
states of neutral benzene which we will now discuss. We limit our-
selves to the singlet states, although similar phenomena probably
occur in the triplet states where the vibronic interactions would be of

interest in the phosphorescent and paramagnetic resonance spectra,
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Calculations on the lBlu state are of particular interest since a
detailed analysis of the spectrum of this state is not yet possible.

The Pseudo-Jahn-Teller Effect

As pointed out previously in Part A the adiabatic approximation
fails for states which are close together as well as for degenerate
states and the remarks on degenerate states apply as well to closely
lying states. Two closely spaced states interacting vibronically
undergo a '"pseudo-Jahn-Teller effect'. Fulton and Gouterman (53)
have recently given a general discussion of the pseudo-Jahn-Teller
effect which is formally equivalent to exciton coupling in dimers.
Working within the harmonic approximation these authors deduced
that no general solution of the eigenvalue problem exists and hence
the perturbation technique must be used to elucidate the effect.

Rather than follow Fulton and Gouterman we shall use a slightly
different approach which may throw more light on the physical situa-
tion. Let us consider a molecule with two electronic states 4/ 1 and
\P I lying close together and interacting vibronically through the
matrix element
—A—E<¢1|AVH"E>' (169)
AV could, for example, be the same operator used previously for
the Jahn-Teller effect in aromatics., In general, this matrix element

exists through some distortion of the molecule and can be expressed
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as a power series in the nuclear coordinates Q, the first term being
linear in Q. Let K be the diagonal change in energy of 4J I under the
above distortion. The lowest term of K can be chosen to be quadratic
in Q, Finally let A be the difference in energy of 41 I and ¥ I
under the above distortion. If the two levels are nondegenerate it
will have a constant term (the zeroth order energy difference) with the
next term being quadratic in Q if the origin of the normal coordinates
is the same in both states., If the levels are degenerate A = 0.

If all other states have energies sufficiently different from that
of [ and N7 [p we need only, to a good approximation, consider the

2x2 energy matrix
K-AE ", .

- = G (170)
N K+ A+ AE

which has the solutions

AE = K+ [(A + A J (171)

Two limiting cases of behavior exist.(1) If 'A/2‘> ‘_/Ll , as will
always be the case for small Q (if A#0) and may be the case for all Q
if the parameters in A and _A. have the proper relation, the expansion
of the square root will have a constant term then a quadratic term
with no linear term. This will result only in a change in the force

and anharmonicity constants and the energy need not be lowered. If
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IA/Z |>> I‘A', second order perturbation theory should suffice for

the problem.

AEX < (172)

(2) For sufficiently large Q and relatively small A, IA/Z |\< I_/Ll
and the expansion of the square root will have its leading term linear
in Q. This will result in a change in bond lengths from the unperturbed
state and a lowering of the total energy (and perhaps changes in the
appropriate force constants, etc). If \A/Z |4< [A-|

A A?
AE%K+?fE;_A_|+_ém}, (173)
i.e., the perturbed energy surfaces are symmetrical about the
average (K +%) of the unperturbed surfaces for a given Q. Of course,
if the term in brackets in Eqn. 173 is relatively small a dynamical
situation can exist (cf.Ref, 53).

We next investigate the complete Born-Oppenheimer potential
surface for this problem, assuming that only one doubly degenerate
vibration is operative in mixing the two states. The two normal
coordinates can be written as re*id) and we shall consider only the
linear term in the perturbation:

A = Lrei(®+) (174)

where { is a positive constant (analogous results are obtained if L
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is assumed to be negative) and « is independent of 4) Assuming all

other normal coordinates equal to zero

0 1 2 7
K=EI +?k1 r

0
K+A-= EH +-;—k11 1'2 >(175)

0 0 2
A=By =B ¥agln R &

In most cases of physical interest k., - k[ will be small. Since we

II
have taken the diagonal potential energy only to terms O(rz) we shall
take the expansions of AE only to O(rz). Furthermore, we shall
take A> 0

(1) For |A/2]> |A|

2 2 -
AE+ =EII+—-[1§JI EH—EI ]1‘
? (176)
a
AE_ :E? +—]2'[k1 - _&_’Q‘__] 1'2
En~Ep |
(2) For |A/2|& [A|
(o] e}
AE, = . | +En +[k1 + kIIJ 2
(177)

2
{[j},+(k11' kp )(En 'EI)]r+ (Ef-E]) j
8{r

If Ey; -E is quite small the result for case (2) is essentially that
for the ordinary Jahn-Teller distortion in a doubly degenerate level

(4) having at minimum energy

a (178)
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Otherwise, examination of Eqn, 177 shows that the effect is smaller
than that for the pure Jahn-Teller case, a conclusion that could have
been anticipated.

Now the expansions to the second order in |._/L| and A of AE
for case (1) (Eqns. 172)are continuous with those for case (2) at the
point where ‘_/Li = IA/ZI. It is clear from the nature of the two ex-
pansions for the lower state that near I_A_' =(A/2lthe total potential
surface has a rapid change in slope. For purposes of illustration,
we shall suppose that the two expansions are still valid in this neigh-
borhood and that region (1) changes to region (2) abruptly at !_A_I -

lA/ZI at which r = rj where

0 0
P = Eh—-z—]_EI thy =g ) )
or
o X 0 . 1/2
e O g

(kg #kn)
Hence if k; = kjj the two regions always intercept. However, if
0 0 2 : .
kI # kIl and (EII -EI )(kH -kI)> 20" the curves never intercept in
o 0
real space. If kyj -k; is small we have to first power in Ej -E
and to the zeroth in kyy -k

(Ep -E7) /22

T¥ | 44  _ Ef -E] (k #k (181)

kip -kg 2L

II ).
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Two distinct types of behavior occur depending on whether
ﬂ,z,(E;I -Eg )is smaller or larger than kIIZ. For LZ/(E(I:’I -E(; )<
kI/Z the energy increases as r increases for small r. If at the

same time we have }ZI(E;I -Eg )< (k,II -kI )/ 2 the potential surface
for region (1) is the surface for all values of r. However, in this

case the two inequalities imply ky;22 2k; which seems physically
unlikely for two states close together in energy. If the magnitude

of kII —kI is comparable to that of £ and of the same sign, the potential
surface will start out with a positive slope, abruptly changing to a
negative slope at r = (EgI -Eg })/2 4, go through a minimum which may
be below the energy for r = 0 and then at r = 4£/(kn -kI ) - (Efl -E;)/ZJ’.
suffer another abrupt change in slope. Finally, if ki -kj is small,
the slope of the potential surface will always be positive, suffering
an abrupt change at r = (E?I -E? )/2 L, but never possessing a re-
lative minimum. This last fact can be seen by the following argument.
To have a minimum in the actual potential surface we must have

Tmin > To or, taking ki = ky; =k,

0 o o e}
rmin = 2 EI - En-Ep )> Ep-Eq
k - i ?
8 1°{*min) 2

the left hand side being obtained by minimizing Eqgn.177. This in-

equality can be rearranged to

L2 {1_ (Ef1-Ef )° N
Eqn -Ep 8 L2(rmin) © 2
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The equation for r,, ;, shows that the quantity in braces must be
positive and it is always less than one so that we must have

ﬂ,Z/(E;I -EOI)> k/2. But this is a contradiction of the initial assump-
tion and the surface can never have a relative minimum. As shown
below, this last case is the situation for the 1Blu state of benzene.

For 1,2'/(Ec1)I -E‘.Io )> kI/Z the energy decreases as r increases

for small r. If simultaneously ﬂ,Z/(E?I -]E:'i> ) <(kqp -ky )/2 which
implies k;j/2 2 lZI(EfI -E‘;) then again the potential surface for
region (1) is the potential surface for all values of r. In this case
(and neglecting terms in r3 or higher), however, the state is un-
stable, the molecule dissociating through the normal coordinate r.
If the magnitude of kyj -k is comparable to that of £ , the potential
surface will start out with a negative slope, abruptly changing to
a more negative slope at r = (E;)I -E? )/2 £, go through a metastable
minimum and then resume a dissociation curve at r=4ﬂ«/(k.ﬂ -kI ) -
(E‘;I —E? )/2 4. Finally, if k; = kJI, the initially decreasing potential
curve will change to a more negative slope at r = (EIOI —E? )/2 £ and

then go through an absolute minimum at roughly

ry _&_El - kz(EII ’EI)}.
" g L4

This last case is, except for the change in slope, analogous to the

ordinary Jahn-Teller distortion.
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In the sections to follow it is shown that the 1Blu state of benzene
interacts vibronically with the 1Elu level in such a way that Eqn. 171
holds. The theoretically predicted parameters are

o
E?I -EI = 1.6 ev

£ 30,5 ev/ﬁ 2

kII —kI is so small that it is taken as zero. The resulting potential
curve is compared in Fig. 7 with the unperturbed curve. For most
nuclear displacements of interest, the potential is still quadratic,
only the force constant changing from the unperturbed case.
Recent calculations (54, 55) on the so-called ""pseudoaromatic"
molecules indicate that these molecules also experience pseudo-
Jahn-Teller effects. A pseudoaromatic molecule is defined (56)
as a neutral molecule with a nontotally symmetric ground state.
Normal aromatics have totally symmetric ground states. In prac-
tice this definition of pseudoaromatic means that the molecule,
in its ground state, has unfilled bonding or nonbonding molecular
orbitals, Pseudoaromatics like cyclobutadiene which have degen-
erate ground states experience a pure Jahn-Teller effect. The

other pseudoaromatics have close lying excited states which could

interact vibronically with the ground state. Calculations on the
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hypothetical molecules pentalene (54, 55) and heptalene (55) predict
that these molecules are permanently distorted (in the static approach)
while '""the symmetrical forms of several other pseudoaromatic
molecules are computed to be stable but unusually soft with respect

to particular displacements of their bond lengths''(55).

Geometrical Relations

In the Pariser and Parr scheme, electron correlation interactions
between all pairs of atoms appear in the energy expression. Hence,
we must know all interatomic distances as functions of small changes
in the various bond lengths and valence angles. The variations of
bond lengths and valence angles from their values in the symmetrical
configuration are small and hence, any length-angle cross terms
will be neglected.

(2) Interatomic Distances

Let the carbon atoms in the benzene hexagon be numbered conse-
cutively around the ring, the choice of atom 1 being arbitrary, and
let the distance between atoms i and j be designated by Tjje In the
bond stretches in which we are interested, the valence angles remain
fixed at 120°, The cosine law then gives directly
T3 =(:r‘?'12 + T Ty +r223} 1./2 (182)
and

2 2 1/2
ryg =173+ Ty - 2rj3ry, cos(120°-«)] (183)
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where X is the acute angle between I3 and 1 j3. Now

cos(120° -<() :.%_ -cosx + 13 sino<_] (184)

while the law of cosines and Eqgn. 182 give

2 2
cose{ = Tz YTy ~Tp = 2Ipn +T (185)
Zr23 T3 21'13
so that
sin & =[1 - coszb(_] 152 o _U_E_rlz__ (186)
21‘13

Combining Eqns, 182-186 gives

_l.2 P 2 1/2 187
Ty =Ty + Ty #T 3 #5573 - 1Ty, 1'231'34] . (187)

Let Ar; ;4] Tepresent the change in length of the bond i,i + 1 from
its value T in the symmetrical configuration. Expanding rj; and
T4 about the undistorted configuration (r12 =Ty =Ty =T, T3 =

371, r

= 2r) we obtain

14
-, V3 1 2
- i S a e g =
T s BT+ 5 ( r12+Ar23)+ —— (ArL2 Ara)
1 _ {(ar )3+(Ar )3-ar_(ar )2 (188)
- - 12 12 23
16 V32 g &
2
- (Arlz) Ar233 Fe o 4
and
r —2?+—1—(4r +Ar,,)taAar +——3—(ﬂr -Ar )2
4 2 12 A4 23 16T 12 3

'a:sfz—g (a 1'12)3+ (a 1'34)3— Arlz(ArM)z—
T
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2 2 2
(Azp)" ATy + AATR)" Ary +2arglary) (189)

+4 Arlz AI‘B Ar343 * 5w

We shall again be interested in bond distortions of the form

Y cos(‘lﬂ‘m

AT - C}), m=0, ...,5. Under this distortion

m, m+l

Eqns. 188 and 189 give to O( R7)

5 5 rﬁil_ REC cos[«m(m;—) ) ﬂ

rm,m+2= -
o e ; (190)
2 8T‘r(m+_)
e & (e T )
- 27+ &6 IR° coS[————4Tr(m+1) -¢]
2
. 20 {1 i [%M_U i z@]; (191)
3
15®,
-2—56?2- c053¢.

T'm, m+4 is obtained by replacing m +;— in Eqn. 190 by m + 2— .

(b) Valence Angles

We shall consider only the planar molecule with all bond lengths

—_—

constant at rj ;4 = T. Let a; designate the change from 120° of the

angle C;_; - C; - C441. The cosine law gives

_ a
= 2r sin [T; + t2+1 ] (192)

Tt t+2

and

2 - 1/2
Tt t+3 =[r Ty 42 2T T °°SY] (193)
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and r .
where ¥ represents the acute angle betweenzt’t"_z Zi42,t43

Similarly let § designate the angle between B a2 and £t+1,t+2 »
Then
8§ = 180° - (120° 5 at‘l’l) = 30* = a’t+1 (194)
2 2
and hence
¥ =120° +ag,, -6 =90° +ag,, + agy) (195)
2

Combining Eqgns. 192,193 and 195 gives
i i L0
rt,t+3 — i o [3 + Z{COS{_E— - at+13

1/2

Now a; is smallywe can expand the trigonometric functions and square

(196)

roots to obtain to O(az)

Tt t+2 T Ve [l ¥ 2]}-3- %41 %aiﬂi\ HI30)
Te, t43 = 2T {1 ¥ Uf [at+1 tago]
(198)
i % [hiﬂ tea P’ 3a§+7j} :

Again we will be interested in an e?.g motion which has the form
a, = acos[4;Tt E Q)J (199)
giving
T, t+2=U3¥ {1+ & cos[‘irr(ﬁl) _¢]

’ 2 U3 3

(200)

- _(1-2’.6_2 {1 + cos [____8 Tr3(t+1) -2 (‘pj}}
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Tt, t+3 =2?{1--—T{§—G/cos[4¥t -q)]
'%—;55-008[82—t -Zq)J}g'

Semiempirical Relations

(201)

(a) Electron Repulsion Integral

In the Pariser and Parr form of molecular orbital theory the
energy of a state can be expressed in terms of the resonance integral

p » the exchange integrals K j;

j and the coulomb integrals J; = Kj;.

These last two integrals can in turn be expressed in terms of the
atomic orbital repulsion integrals ng (Eqn. 144). ng can be
evaluated either empirically or theoretically (28). For orbitals on
the same atom or neighboring atoms the empirical \(pg gives better
agreement with experiment while the theoretical ng appear ade-
quate for nonbonded atoms (44). We need in this thesis an expression
for ng as a function of interatomic distance over the whole range
of distances and obtain such an expression by fitting the combined

empirical and theoretical results to an exponential function:

ng = Y(rpg) =Ae “PTpg (202)

Using the values of ng in Table XV taken from Table I of Pariser's
paper (44) and choosing A to give the correct value of ¥ at r=0, we

obtain b as an average of the b's calculated for the other four dis-
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tances:
A =10,959 ev
(203
b =0.2939 A-!
TABLE XV
__f___}_)_g___ \/pg Method
o A 10.959 ev empirical
1. 400 6.895 H (a)
2.407 5.682 theoretical
2.850 4,857 H (b)
3.678 3.824 1

(a) Taking r for benzene as 1.400 A instead of
Pariser's value of 1. 390.
(b) Calculated from Eqn. 75 of Ref, 44.
These parameters reproduce the Y 's of Table XV to within about
5% for smaller distances and to within less than 3% for the last two

distances listed.

(b) Resonance Integral

The parameters in the resonance integral used in Part A (Eqgn. 39)
were determined by Longuet-Higgins and Salem (27) from the observed
force constants for the totally symmetric (alg) and totally antisym-

metric (b,,) CC stretching vibrations of benzene. Longuet-Higgins
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and Salem's theory neglects electron correlation which when included
changes the parameters slightly.
Longuet-Higgins and Salem derived the following expressions

for these two force constants*

. 2P
kalg - aﬁo
(204)
kp,, = 2P B (14_L1 )
u a a P!

where the symbolism is that of Part A,
First order perturbation theory gives for the total electron

correlation energy £ of the singlet states of benzene (Eqns, 115-117)

1A1g :€9 =157 - 4Kjp - 2K _j (205)
"B, €] =157-4Kp - 3K + 3Kj_2 (206)
IB,, :€, =150-4Kp-K_; - K, (207)
B, 163 =157 - 2K - 2Ky 1- Ky 3 (208)

where Kij is given by Eqn, 108 and J = J; = Jj = KJJ' Since & j1s a
function of the bond distances its contribution must be added to Eqgns.

204 when the complete electronic states are under consideration, e.g.

in the lAlg state

k. 22P B L1 gl
dig a 6 €o
ZP. ﬁ 1 1" 11
=S+ (157" - 4K - 2K} )

* The second of these expressions is the correct form of Longuet-
Higgins and Salem's (27) Egn, 6. 11 which contains a typographical
error,
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'
]

u

[]

Zp’éo 1 1_ "no_ noo_ 1
- (1 +§_PT) + 5 (15J 4K12 ZKl_l)

where the coulomb and exchange integrals are to be evaluated for the
appropriate distortion.

In the a)g vibration the bond lengths all remain equal:

Tpptl =T + x [
Tp,pt2=Tp,pt4 ~ V(T + %) 5(210)
Ip,p+3 = 2(r+x) |

so that Eqns. 143 and 202 give for the second derivatives

. -
Jn =%{2Y(f)+6¥(1f§?)+4¥(2§)}
x=0
b .
K| =2 §Y(®-3Y(V37) -4Y(27)} 0 (211)
x=0
1 b ~ = =
K. =T€-Y(r) -3Y(V3T)+4Y(2 r)}
x=0 -
In the by, vibration the bond lengths alternate:
X, il =T+y (p odd)
s, ptl =T -y (peven) » (212)
=2 2
Tp,pt2 = Tp,p+s = U3T ty el 1)
rp’p+3 =2r (3.1]. p) ]
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so that the second derivatives are

N 3
Jl,.,= 5 ¥®) — 5urx Y (3T
N L >(213)
K7, #:a=—'2-X(E)+ s f(BE)
7] a = -
KI-I ’ﬂ'"’: -_% Y(h)*’%}/(ﬁ/b) N

Using the above values of A and b (Egns. 203) Egns. 209 become
/
— 2 PBo a.
y'3 —-—,&E-+ 2.66¢ ev/R

&ls‘

(214)

/
- xPfA, [
Ay, 2Ee (14 3)+ o ev/k*

which with the experimental values (50), (see also the pertinent com-

ments by Longuet-Higgins and Salem (27))

kalg = 7.620 mdyn/A ‘

(215) |
5

kau = 3,940 mdyn/A

give

P =« 1,111 ev = - 25,61 kealfmole

° > (216)
a =0,3298 A

These results show only a small change over the parameters evaluated,
neglecting electron correlation,
It should be noted that the empirical evaluation of the ¥ 's does

not involve the resonance integral{ﬂ in any way so that there is no
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cross play between the two evaluations.

(c) A Further Approximation and a Test of the Empirical Relations

The changes in interatomic distances will be small in our cal-
culations and we can expand the repulsion integral about the symme-

trical configuration:

¥ (Mpq)d= Y‘-"'PQ—)+¥ (Rpg) 8hy, +& ¥ U’Pq— (A/qu.)&-w-- (217)

For the above exponential expression (Eqns. 202 and 203)

[} i
_Y o _1|
‘3__ = -—D.'EA

Y7 (218)

(for all rpg)

so that if A Tpg is of the order of 0.1 A, say, then the quadratic

term in Eqn. 217 is about one hundredth the linear term. Thus we

will use in the rest of this thesis the approximation
= o 1 "
Y (rpg) = ¥(Tpg) + ¥ '(rpg) atpy . (219)

Under the distortion Ar, 54 = R cos [f‘%-— (P:l the following changes
2
in the coulomb and exchange integrals occur to O® ):

AJ= = %_ EV’Y(W/»)+—-1Y (ax)3

a
AK11:*%{WB]1(‘EE}+%B~(D‘};)3 T( 0
22

AK, = _ﬁ'—ﬁ {u;‘ Y'(viR)-2yar))

A K ‘EU‘Y(U‘A) iY(:L/»)}

I"D. '48/&,




3

and under ap = @ 005[4 P . ¢:|:

-
Af=— ’;9’ SavsY' (B E)+5 Y (aR)]

Ak, = E S (Vs Y (ViR)+sY (aR))}

h ,(221)
e XN

AKI—lz%?,@ {U? Y’(i&ﬁ)-—-‘?}(’(aﬁ)}

AKyy= 7‘;,‘? §—avsY'(vs B)—s¥ ' (2R) 3

For the average bond length in the excited states we take the simple
molecular orbital prediction of T = 1,425 A.

The totality of assumptions above can be checked by calculating
the force constant for the e2g CC stretching symmetry coordinates
(Egn. 161) in the ground state and comparing the theory with experi-

ment, The total molecular energy " E ; of state m\].t ; 18, within our

assumptions,
m

where W is defined in Eqn. 30 and € is the correlation energy. In
the lAlg state of benzene P = 2/3 and under the €2g motion A Th, ptl
= R cos [%P_ - ¢] so that Eqns, 30, 34,53 and 61 give to O(&Z)

the following change in W:

AW, =-3 P'P’a". (223)
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The Change in correlation energy is, from Egns. 205 and 220,

AL, SIFAT-HAK ;5 =% BK iy

(224)
z%(%: Cavs¥ (v E)+ LY (aR)3
with ¥ = 1.400 A, Using the empirical parameters given above
AW, = 67,374 tR,Z ev ((R,in;\)
A€,= -1.539 R 2 (225)

A'E = 65.835 R 2

Since Sezg:i: = R e icb"(Eqn. 161) this last expression gives a pre-
2

dicted force constant of 5,273 mdyn/A which is in error by only 2%

when compared with the experimental value of 5.380 mdyn/;& (50).

(d) Valence Angle Bending Energies

Mpolecular orbital theory does not yet provide an adequate theory
of valence angles so that we must resort to empirical expressions for
bending energies. We assume the usual quadratic potential function

= k; ar +,Q,Z_ Bt s (226)
Now V contains the changes in energy due to the change in hybridiza-
tion of the ¢~ bonds, the change in bond order (i.e. electron density)
of the TT system and the change in the repulsion energy of nonbonded
atoms. Whiffen (50) has determined k and Lfrom the infrared spec-
trum of the ground lAlg state of benzene, but we shall need V for the
4

Elu state. If we assume that the dependence of these force constants

on changes in the neighboring T bond orders is small and can be neg-
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1
lected then we can use the empirical force constants for the Alg
state in the energy expression for the lElu level provided we correct

for the correlation energy:

Vimg R, 2 v 2 LA, —AE T AL, (227)
with (50)
k, =12.615ev

(228)

2,264 ev

Lo

where the states are numbered according to Eqns. 115-117. Since

a; --[@cos 4;” -qz‘,wehave

V=2(k,~L.)A - aE, +aE,. (225)

The AE 's are to be expanded in powers of (L with the derivatives
in A€, being evaluated at T = 1.400 A while those in A€, are to be
evaluated at T = 1.425 A. Using Eqns. 205, 207 and 221 we obtain

from Eqgn. 229

Vv, = 15.219@2 ev (A in radians) (230)

which has the contributions% (kg - £o) = 15.528 ev and - AE,+ AE5
=- 0,309 @2 eve.

The lBlu State of Benzene

We shall consider in this section only the one electron operator

AV defined in Part A, In exactly the same manner as employed in
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our calculation of the intensity of the lAlgﬂ 1B . transition of

benzene we derive the matrix elements

Chlav ) = lavingxy=o pean)

o aviy =€ g lav]igx 3%
:% glffeicwazr)Jré @Pne—mw%)}

= _A

(232)
2

where R, and q are as yet unspecified and A is correct to the second

order in®R, . Using the combinations 14/ ; ={1+’ 3+ 1\)/ ;}/J‘i and

14;; = el {14,3 = lq, :3/,5 (Eqns.156) and letting K = IE(;’) and

(o)
= lEl - IE‘(::?), the secular determinant for the problem is

K-AE o RL _A_
o K—AE T =3 ¥ (233)

The solution of the determinant shows that one state, not involving
] \.‘/1 » remains unperturbed at AE = K while the energies of the
other two are the same as in the two state pseudo-Jahn-Teller case
(Eqn. 171). These results have been used previously to predict that
the pseudo-Jahn-Teller effect will only result in a change in the

force constant of the eZg CC stretch in the lBlu state.
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The magnitudes of the various parameters in Eqn. 233 indicate

that second order perturbation theory should suffice and our final

results do indeed support this estimation. Since the .

E,, states

u

undergo additional interactions of more interest we will not consider
them further in this section. The first order change in the energy

of the 1B1u state is

A\A/,=—BP’F’02,"=69..%O(R,°‘ ev
AL, =154 —4AK—3AK,_ +34K, 3 = — L4485 @*
A'EP= ¢lols &

(234)

and the second order contribution is

e _la &p'1 {1~ %B&HW”}

a°E, Ta K= KL T dRKi-x

(235)

= —23.922 R +36.2638 R con 3 9.

Although we have neglected 0?,3 terms in the correlation energy
these terms are significantly less than the R 3 term in Eqn. 235
and should not alter our results appreciably., Combining Eqns. 234
and 235 we get for the final energy change

A'E; =37.093 R % 436,268 R> cos 3 & (236)

Thus, if the pseudo-Jahn-Teller interaction is neglected, (Eqn.
234) the predicted force constant for the €2g CC stretch given in Eqn.

161 is 4,887 mdyn/;&. while, when the interaction is taken into account
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the predicted force constant is 2,971 mdyn/ﬁ, a 39% change. The
interaction also results in a large anharmonicity constant with an
unusual angular dependence. It is thus possible that the €2g vibra-
tional level of this state may be split slightly,

The experimental spectrum (57) of the lAlg—? g 1y transition

in benzene is rather diffuse and the only vibrational structure that

can be seen is a 965 cm_1 progression which has been attributed to
the alg CC stretch of the upper state. This progression shows, how-
ever, an unusually strong convergence implying a large anharmonicity
not expected for totally symmetric vibrations (47). The diffuseness
and anharmonicity could possibly be related to the results predicted
in this section. An examination of this relationship would entail a
detailed normal coordinate treatment of the lBh1 state and we shall
not pursue the subject further. As a parting comment, however,
we note that the semiempirical methods of this thesis permit cal-
culation of the force constants of the excited states, taking into account
the different correlation energies of the various states.

A moral can be drawn from the results of this section. The em-
pirical analysis of vibrational spectra frequently involves assumptions

as to the transferability of force constants from molecule to molecule

or that one bond force constant serves to predict the force constants

for all symmetry coordinates constructed from a set of equivalent
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bonds. However, if vibronic interactions occur in the state under
consideration these assumptions break down and the spectra must be
analyzed with care.

The lElu Level of Benzene

As Eqn. 233 has already indicated, there is no matrix element

of the one electron operator AV between the components 1 \!/3 and

E3
1 ‘P3 of the 1E ia state, due to the way in which the Slater determinants

are combined to form the wave functions of the level (Eqn. 117).
Let us, then, examine the two electron perturbation,

Following the Pariser and Parr scheme we obtain

(IS L ['9%) =4 5O Py

| o ~-(p+
-.;..'_12@ F"!-)Y

P4 Pt 2

where Z ® means the sum is over all pairs such that p + q is even
and Zo over all pairs with p + q odd. These sums are zero if

qu = Yp'q' when |p - q|= lp' - q'| , but not necessarily so other-

wise., The first case corresponds to the completely symmetric
hexagonal shape, while the second corresponds to a distorted con-

figuration. Using the linearized ¥ (Egn.219), Eqn. 237 becomes

AP

(<4 /“af | *) z w—(P*“F)X

?_

S w X Bhpy (238)
X
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Now for Dy, symmetry Ei,XE; = Alg + AZg + EZg' Since there
is no benzene CC symmetry coordinate of symmetry aZg and since
the molecule is already assumed to be stable against distortions of
symmetry alg’ the degeneracy of the lElu level is removed only by
an ez, stretching or bending motion of the same form as used in our
previous calculations.

" + Ld: =
Let us again use the combinations ! \-}/ 3 and 4’ 3 instead of

1 L}/3 and ! 4’: . The new matrix element is

kS ) e
<|¢; Ig—é’%? I"’P_-; ):3'3—6 ;M[M] é/p,/q_a’h’?q_ (239)

I (prp T /
+’2_ PJq_ Aann 3 _] YP’? A/!/P%_ .

Solving the appropriate 2x2 matrix for the bond length displacements

we obtain the first order energy

AEN =3P @+ 154T- 28K~ A K,

1 L [} —
—AK £ L *3+|%4'€TL$ tP3 >

(240)
=1 L4588 R pan[d—-T]
+ > géj_oqg’ io.olSM[a\dn—i“;—r]}
corresponding to the wave functions
o
S
' 31_:'11):::?'4’3 - \PGI}
L(241)

PR A
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the + and - notation here referring to those in the expression for
A E(l), Egn.240. As shown in the last section an €2¢ bond length
change causes the 1Elu level to interact with the 1B 1y State. Egns.

232 and 241 give
Clav)id, )= L'R,[:L/s’w(c}+ LI

+ L /g% an (24 55T)]

5 (242)
CHlav'ys=) = R [ plam(d + 17)
i Rpeor(ad+197T) ] i
The second order corrections to the energy are
Ap® _ a[®RB I £ cow (a4 -TF) ]
3t 2K F K=Y Kis (243)
= 1961 ® [0 £ ret(24-T) ]
The total distortion energy of the 1E1u level is thus
- 4D (2
- E;x=AE5; +A53t
= X l.4ysss @,Mw[d? "?J
(244)

+ @ {13.056 * il.961 cov [2¢ -]

£0.018 am [24-2T]3-

Minimizing Eqn. 244, we obtain the distortion amplitudes and
energies given in Table XVI. Thus there is an average distortion

energy of 0. 168 kcal/mole with a barrier of 0.010 kcal/mole. Be-
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cause of the low distortion energy the dynamical Jahn-Teller effect

should be operative here.

TABLE XVI
R ¢ AE
1
Y3+  0.010A 320°45! -0.163 kcal/mole
1 - L]
$,-  o.o010 159°17! -0.173

Solving now the 2x2 matrix for the Jahn-Teller interaction

through the e2g CCC angle bending we obtain, for the wave functions
of Eqns, 241,

) =~/ 1, + =il T
AB3:= N3 = 4’3 '% /ug,;, "P3 D
245
= 2= 9,415 0 (L s ( )

+ @ (1529 Loz A 2 d)
Minimizing this expression we obtain for k \}’3:!:’ Q& = 0, 0202 radian,
él) =+ 88°49' and AE(l) = - 0,144 kcal/mole. Thus the Jahn-Teller
distortion energy for the angle bending is of the same order of magni-
tude as that for the bond stretching, although there is no predicted
barrier for the angular motion. In the distorted molecule with wave
function 1 *J 34 the predicted changes in angle are (in radians) a; =
0,0L.73, a, = - 0.0177, a3z = 0.0004. The amplitude of angular

vibration in the ground state is (50) (a;) = - 0.0464 radian, so

rms
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that the dynamical effect is again operative. In this connection it is
interesting that epg CCC bending vibrational structure (58) is found
in the electronic spectra of some Rydberg lElu states of benzene
(59). The bending vibrations would be expected to appear on the
basis of either the static or dynamic Jahn-Teller effects. (Liehr
(60) has recently treated these Rydberg series, neglecting electron
correlation, ) e

In summary, we have seen that variations of electron correlation
with internuclear distances can lead to Jahn-Teller effects. The elec-
tron correlation vibronic effects differ from the one electron vibronic
effects, qualitatively in that angular motions as well as bond motions
enter and quantitatively in that the distortion amplitudes and energies
are much less for the electron correlation perturbations. Never-

theless, these electron correlation interactions may have observable

influence on electronic spectra,
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APPENDIX

T he Huckel Molecular Orbitals of Triphenylene

The Hiuckel molecular orbitals are of the form
Y=3 <oy (A1)

L
and are obtained by solving the secular determinant for the molecule.

Aside from minor differences in the last figure of some of the
coefficients, the correct coefficients of the molecular orbitals of
triphenylene given in Tables AI and AII differ from those in the
"Dictionary of Values of Molecular Constants'' (37) only in the de-
generate orbitals. The coefficients quoted in the '"Dictionary' do not
satisfy the appropriate secular equations.

Table Al gives the coefficients in the real form used in this
thesis and Table II lists the coefficients in the complex form corres-
ponding to those given in the '""Dictionary'. The numbering of the
coefficients is given in Fig. AI. The errors of the "Dictionary"
occur in 2 manner guch that the bond orders for the neutral molecule

given in that reference are correct.
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Fig.Al. Triphenylene
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TABLE AIl

Complex Representation of e'' Orbitals

€/p C, C,
1.96962 0. 25575 + 0, 04726 «w 0. 26803 + 0,09309 w
1. 28558 0.04726 - 0,20849 -0,17494 - 0, 26803
0. 68404 0.20849 + 0, 25575 -0.09309 + 0.17494 e
Cs Cq
0.27217 + 0. 13608 0. 26803 + 0,17494 <
-0.27217 - 0.13608 w -0.17494 + 0. 09309 <>
-0.27217 - 0.13608 w -0.09309 - 0,26803 w
Ci4 Ci5
0.23571 0. 25575 + 0, 20849 w
0.23570 0. 04726 + 0, 25575 w
0. 23570 0.20849 - 0,04726

e'' means that Cg=wC], Cg =u2C1

C6 SUCZ, clo= GZCZ , etc.
where the two degenerate states are given by
w = g2Ti/3

and w= e4Tri/3.



4,

5.

9.
10.
11.

12,

13,

14,

15,

16,

123

References

H, A, Jahn and E, Teller, Proc. Roy.Soc.(London) Al61,220-235
(1937); H, A. Jahn, ibid. Al64, 117-131 (1937); E. Teller, Ann,

N.Y. Acad. Sci. 41, 173 (1941).

U. Opik and M. H. L. Pryce, Proc.Roy.Soc. (London) A238, 425-447
(1957).

W. L, Clinton and B, Rice, J.Chem,Phys, 30, 542-546 (1959).

H, C, Longuet-Higgins, U, Opik, M.H, L. Price and R. A, Sack,

Proc. Roy.Soc. (London) A244, 1-16 (1958).
W.Moffitt and A,D, Liehr, Phys.Rev, 106, 1195-1200 (1957)

S.I. Weissman, E,De Boer and J.J.Conrad; J. Chem, Phys, 26,
963-964 (1957).

G, J.Hoijtink and W, P, Weijland, Rec.trav.chim, pays=-bas 76,
836-838 (1957).

W.P,.Weijland, PhD thesis, Free University of Amsterdam (1958).
P.Balk, PhD thesis, Free University of Amsterdam (1957).

H. M, McConnell, Ann.Rev.Phys, Chem. 8, 105-128 (1957,
A.D,McLachlan, Mol. Phys, 2, 271-284 (1959).

S.I. Weissman, T.R. Tuttle and E.de Boer, J, Phys,.Chem. 61,
28-31 (1957); S.1. Weissman and E, de Boer, J,Am,Chem,Soc. 80,
4549-4555 (1958).

G. J.Hoijtink, Mol, Phys, 2, 85-95 (1959).

M.G, Townsend and S.I, Weissman, J.Chem, Phys, 32, 309-310
(1960).

H., M. McConnell and A, D, McLachlan, J, Chem, Phys, 34, 1-12
(1961)

W. Moffitt and W, R, Thorson in Calcul des Fonctions d'Onde Molé-
culaire (Rec. Mem, Centre National de la Recherche Scientifique,

Paris, November, 1958), pp 141-156.



17,
18,
19,

20,

4
2z,

23,

24,

25,

26,

27.

28
29.

30.

31,

32,

33

124

W. Moffitt and W, R. Thorson, Phys.Rev, 108, 1251-1255 (1957).
A.D, Liehr, Z,physik, Chem, 9, 338-354 (1956).
L,C.Snyder, J,Chem, Phys, 33, 619-621 (1960).

W.D,Hobey and A, D.McLachlan, J.Chem. Phys, 33, 1695-1703
(1960).

L. C.Snyder, private communication,
M.Born and R, J, Oppenheimer, Ann, Physik 84, 456-484 (1927).
M.Born, Festschrift Gott, Nachr, Math, Phys.Kl. 1 (1951), Also

presented in M. Born and K, Huang, Dynamical Theory of Crystal
Lattices (Oxford University Press, 1954) Appendix VIIL

M.Born and K. Huang, loc.cit. Chapter IV,

S.Brato¥, in Calcul des Fonctions d'Onde Moléculaire (Rec, Mem.
Centre National de la Recherche Scientifique, Paris, November,
1958) pp 127-138,

C.A,Coulson, Proc.Roy.Soc. (London) A169, 413-428 (1939)

H, C. Longuet-Higgins and L, Salem, Proc.Roy.Soc. (London)
A251, 172-185 (1959).

R,Pariser and R,G,Parr, J,Chem, Phys, 21, 466y 767 (1953)
J.A,Pople, Trans,Faraday Soc. 49, 1375-1385 (1953).

J. E, Lennard-Jones, Proc,Roy,Soc. (London) A158, 280-296
(1937).

G. Herzberg, Spectra of Diatomic Molecules (D.van Nostrand
Company, Princeton, 1950) p 147,

T, L. Cottrell, The Strengths of Chemical Bonds (Butterworths
Scientific Publications, London, 1958), 2nd ed., p 272.

C.A,Coulson in Chemical Society Symposia, Bristol 1958 (Spec-
ial Publication No, 12, The Chemical Society, London, 1958)
Pp 85-106,




125

34. T.J.Katz and H. L. Strauss, J,Chem,Phys. 32, 1873-1875
(1960); T.J.Katz, J.Am,Chem. Soc. 82, 3784, 3785 (1960).

35. H.C. Longuet-Higgins and L. Salem, Proc.Roy.Soc. A257,
445-456 (1960)

36, P,G. Wilkinson and J. L. Johnston, J.Chem,Phys, 18, 190-193
(1950).

37. C.A,Coulson and R.Daudel, eds, Dictionary of Values of Mole-
cular Constants (Centre de Chimie Theorique, Paris, 1955),
Vol.1l,

38.D.P.Craig, Rev,Pure App.Chem. 3, 207-240 (1953).

39. H, M. McConnell, J.Chem, Phys, _2_‘& 13-16 (1961).

40, J,Petruska, J,Chem, Phys, 34, 1 111-1136 (1961).

41, V.V, Voevodskii, S, P, Solodovnikov and V.M., Chibrikin, Proc.
Acad. Sci, USSR, Physical Chemistry Section (Consultants

Bureau translation) 129, 1083-5 (1959).

42, P.Balk, G.J.Hoijtink and J. W, H. Schreurs, Rec.trav, chim.
pays - bas 76, 813-823 (1957).

43, R.S.Mulliken and C.A,Rieke, Rep.Progress Phys, 8, 231-273
(1941).

44, R.Pariser, J.Chem,Phys, 24, 250-268 (1956)
45. R.S.Mulliken, J.Chem,Phys. 7, 14-34 (1939).

——

46, G.Herzberg and E. Teller, Z,Physik, Chem, B21, 410-446
(1933).

47. H.Sponer and E, Teller, Rev.Mod.Phys. 13, 75-170 (1941)

48. A.D, Liehr, Can.J.Phys. 35, 1123-1132 (1957); errata in ibid.
36, 1588-1589 (1958),

49, E. B, Wilson, Jr., J.C.Decius and P.C,.Cross, Molecular Vibra-
tions (McGraw-Hill Book Company, New York, 1955), Chap 4.




50.

Sl

52,

53.

54,

55.

56,

57

58.

59.

60,

126

D.H, Whiffen, Phil. Trans, Roy, Soc.(London) A248, 131-154
(1955).

L.Pauling and E.B. Wilson, Introduction to Quantum Mechanics

{McGraw-Hill Book Company, New York, 1935), 517.

V.J. Hommond and W.C, Price, Trans, Faraday Soc. 51, 605-
610 (1955).

R, L, Fulton and M, Gouterman, J. Chem, Phys. 35, 1059-1071
(1961).

P.C.Den Boer-Veenendaal and D. H. W. Den Boer, Mol, Phys.
4, 33-38(1961).

L.C.Snyder, Abstracts of the Symposium on Molecular Struc-
ture and Spectroscopy, Ohio State University, Columbus, June
12-16, 1961, pp. 18-19,

D.P,Craig, J.Chem, Soc.{London), 3175-3182 (1951).
E.P.Carr and H, Stucklen, J.Chem. Phys. 6, 55-61 (1938),
A.D, Liehr and W, Moffitt, J,Chem.Phys. 25, 1074 (1956).
P.J, Wilkinson, Can,J.Phys. 34, 596-615 (1956).

A.D, Liehr, Z, Naturforschg, 1la,752-757 (1956).



127

PROPOSITIONS

Proposition I: Qualitative and semiquantitative arguments are
presented to show that the sigma-pi model of a double bond predicts
bond angles different from the commonly supposed 120°, Certain

statements of Pauling are discussed in light of this result.

Two alternative quantum mechanical descriptions of the double
bond exist, In the equivalent orbital picture a carbon atom, say,
is considered to be in a state of sp3 hybridization with each hybrid
orbital directed toward the corner of a tetrahedron. A double bond
is formed by two of these orbitals forming with similar orbitals on
the second atom two '"bent bonds''. The sigma-pi description regards
the carbon atom as in sp2 hybridization. The sz orbitals form three

0~ bonds, one of them in the double bond, and the remaining p orbital
unites with a similar p orbital on the second atom to form the Tr part
of the double bond.

Now if all bonds of the central carbon atom are equal, the angle
between the double bond and one of the single bonds would be 125, 27°
for the bent bond picture and 120° for the ¢ - 77 picture. Experi-
mentally, the value for most hydrocarbons possessing a single double
bond is in the range 123° to 125°, ethylene being an exception with

122.0° reported from an electron diffraction study (1) and 121, 3°



128

from the most accurate infrared analysis (2). Pauling (3) claims
that the experimental observations are evidence for the bent bond
theory against the ¢- -Tr theory.

This claim, however, is based on a misinterpretation. As
stated above the ¢~ -Tr picture predicts a planar molecule with all

angles in the plane equal to 120° only if all bonds are equivalent.

If the pertinent carbon atom has two single bonds and one double bond
it is clear that the o orbitals in the two types of bonds are not
equivalent. For instance, the lengths of the two types of bond will
be different. The differing environment of the orbitals can cause
rehybridization of the sp2 orbitals such that the molecule remains
planar, but with the angles in the plane different from 120°, The
final hybridization will be determined by the valence forces (involv-
ing electronegativity differences) between all bonded atoms and by
the repulsive forces between nonbonded atoms. We now will show,
semiquantitatively and semiempirically, that the ¢~ -7 theory pre-
dicts changes in bond angles from 120° that are at least qualitatively
in agreement with experiment.

2

The wave function '}l for an sp“ o~ hybrid atomic orbital can

be written

A = ,I‘as*—aqn*f’ (1-1)
A Yi+2?

where 'I‘Zs is the wave function for an atomic 2s orbital and b 2p
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is the wave function for an atomic 2p orbital having its maximum
density in the direction of the particular bond under consideration.
A is a hybridization paramster, For the unhybridized atomic orb-

itals we take

V(L e, ) =R (WY (Ldo ¢) (I-2)

where Y is the usual spherical harmonic function and R is a radial
wave function.

First we consider the relation of 2 to bond length. In deter-
mining the length of a & bond formed by the overlapping of two or-
bitals on adjacent atoms we shall use the assumption of Coulson
(4) that the bond is formed in such a manner that the centroids of
the respective charge clouds lying to the side of each atomic nucleus
where A 2p is positive coincide. This assumption should provide
for the maximum overlapping of the atomic orbitals. The centroid
z is given by

at & AE g
L L L2 B, A sbdrdedy (1-3)

TSRS T A a6 dAdody

T/~ 2

z=

which becomes

TR S (I-4)
r=f% RY A dA (1-5)
(1-6)

4 3192
S=s!rAtEa
l+v3 A+ A™®
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We follow Coulson (4) in determining T empirically from known
distances in ethane to obtain T = 0, 568 ;X

To a good approximation the ¢~ and the 7T bonds can be treated
separately and it appears plausable to assume that the above prin-
ciple of coinciding centroids holds for the o~ bond in a ¢~- T bond
combination as well as for an isolated &~ bond. Hence, when a ¢~ -TT
bond is shortened over the normal & bond length the & bond system
should rehybridize so that the centroids of the two ¢~ atomic orbitals
still coincide and in our approximation the distance R between the
two carbon atoms in the bond C;-C; is
R= % [5)+ 5G] (-

Now, the hybridization parameter can be related to the bond
angles by the orthogonality relations among the three sz hybrid

orbitals (4). Using the notation in the schematic diagram, Fig.I-1,

Fig.I-1

if‘gz Y:‘n‘—;‘;—

JYyR--3
"o e

)b:ﬂczm_f&, (1-9)
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Thus, if the length of the double bond is known, say, by the theo-
retical calculation of the molecular orbital bond order and use of a
bond order-bond length relationship (5, 6), and if sufficient molecular
symmetry is present (e.g. A, =A,), the A 's can be determined
through Eqn,I-7 and the angles around the double bond calculated
using Eqn.I-8 or the more general expression (4) if P $ ¥,

The treatment is complicated by the fact that the nonbonded
atoms around the double bond are well within the sum of their res-
pective van der Waal's radii and should experience relatively strong
repulsive forces. The well known Lennard-Jones potential,

P= ”e[(%)m“ (%)6.-{ (I-10)

together with the empirical combining rules

%= Ja'.(d?l— + 05.—:.)
(I-11)
& .- €, €

where r is the interatomic distance, might be used to estimate these
forces.

The above considerations were tested by estimating the Me-
C-Me angle in isobutylene using an iterative procedure. The length
of the double bond in this molecule and in ethylene was taken as

1.350A and it was assumed that A, =A_ so that tentatively « =

=5

A HCH = £ Me-C-Me =95,70°, The total energy for changing

the valence angle was taken as the quadratic potential
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v = .1;_(1:('._0(‘0)1 (I-12)

and is assumed to be the sum of two contributions, (1) the energy of
bending of the central carbon atom orbitals and (2) the van der Waal's
interaction of the nonbonded atoms. The orbital bending energy was
isolated by expanding Eqn. I-10 to quadratic terms in (X - =) and
subtracting from Eqn.I-12, all parameters being evaluated for ethy-

lene (see Table I-A). This orbital bending energy was assumed to

TABLE I-A

Used for Interac-

Molecule  tions of Groups € o=

Hy(8) -H, -H 5.109 x 10 Perg  2.928 A

CHy(8) -CH3,-CHj 1.89 x 10714 3. 882
-CH3, =CH;

k = 3,22 x 10710 erg. (7)

hold for any «, , the basis of this assumption being the approxi-

mate transferability of the force constant of a given group from
molecule to molecule, and the new &, = 95. 70° assumed. The
repulsive forces according to Eqn.I-10 with the appropriate parameters
were added to this orbital bending potential and the minimum energy
found. The calculated o« = 113,1° compares favorably with the

observed K = 111.5° (9).
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This result is encouraging, but the numerical result should not
be taken too seriously in light of the numerous assumptions made above.
The empirical validity of the main equations used, however, indicates
that our general result is correct,.e. the 0 -TT picture predicts the
angle « to be less than 120° in conformity with experience. It
should be noted that, for the proper parameters, o« can be greater
than 120°, One such known case is formaldehyde with &K = 121.6°
(10).

In summary, our considerations show that the &~ - TT descrip-
tion predicts bond angles in general different from 120° and pre-
sumably could predict the angles accurately on a purely theoretical
basis, This prediction involves consideration of the interactions
between all neighboring atoms and thus it appears that the agreement
between the equivalent orbital picture and experiment is rather
fortuitous. Although equivalent orbitals may be better basis func-
tions than o~ - 7T orbitals for a purely theoretical calculation, this

question can only be answered by detailed calculations (11).
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Proposition II: It is shown that the usual discrepancy in semiempirical
molecular orbital theory between the values of the resonance integral
obtained from electronic spectra and from experimental force con-
stants can be eliminated by a redefinition of ""bond order'" so as to

include overlap.

It is a2 well known fact that, if the resonance integral of simple
molecular orbital theory, neglecting overlap, is evaluated by fitting
theoretical energy expressions to experimental data, the value ob-
tained using electronic spectra is about twice that obtained using
experimental force constants alone or with '"resonance energies''.
The reason can be seen by examining the secular determinant.

The secular determinant neglecting overlap is

(=€ pPia o) fo)
Fn. oL, = & P:lB @ ———= P (H—l)
o FAS , «3— e\ FS"i
I == ~

with the resulting orbital energies

)
€p= Z ( + 9-Z F 5 /BL} (11-2)
(k)

where q ;- is the partial charge on atom L due to one electron in
. (k) . .
molecular orbital LP K 2nd Pi; is the partial Coulson bond order

for bond i j(1). The secular determinant including nearest neighbor
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overlap is

- € Bra— Sia€ o o
Pin=>n€ Hg—€ faz~Sas€ o bt
o) ﬁ;j_saze I °(3“ & P34~53q,e (H’3)
I = -
|

with the solutions

(k.) (k)
¢ Z * & Z Pey Pid (I1-4)
é,k.*

P‘tu S‘C'u

T

First let us assume o(ﬂ. = c( for all ﬂ., m so that by the

y
()1

normalization condition Z 4.

(II-5)
k) k) =
5__[0(-%12}7'( Fé:[[H-lZ Piustu] '
and let
Yté: ﬁgrsaé;o( (11-6)
so that
E:‘Pé-O(-i-lJ °¢ X‘ (11-7)

{2 Z P(k)stu

Mulliken, et al.(2) appear to be the first to point out that the em-
pirically determined P in Egn.II-1 is really some average value

of '3 - S€ and this average should differ for different types of data.
Shortly afterwards, Wheland (3) solved Eqn.II-3 and found empirically

from resonance energies that the ratio 3//(3 was about 1.8 to 2.0.



137

Mulliken and Rieke (4) using molecular orbital theory with overlap,
evaluated ¥ for benzene by various means and found that spectro-
scopic data gave a value of -2.6 ev while resonance energy taking
into account bond compression gave -3.1 ev. These observations
suggest that inclusion of overlap would remove the disparity in
the empirical values for " g ", but a formal theory which also in-
cludes explicitly the useful concept of bond order has not previously
been developed. We now present such a theory.

Neglecting overlap the total TT electron energy is

E= o + :LZ Pey Pej (11-8)

where

occ.

l-.;_ Z PL (11-9)
is the total Coulson bond order and m is the total number of TT elec-

trons, When overlap is included, the energy can be written as

s
E-_—/Wvo-(-i-l% i Yo (11-10)
where
occ. P(k)
ar —2 EESS P‘k’ } S

might be called the "Wheland bond order' for bond ij.
The total ¢ bond energy is assumed to be a sum of independent

contributions

F=2 & . (II-12)
[ 5

L G
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and the total molecular energy is
W!'=F + E' (II-13)

at static equilibrium

aw”
T ™ (II-14)
2
where Ti; is the length of bond ij, giving
Eﬁi+gw.ﬁi+za“%uy s 5
Y Ay T & Thif : (I1-15)

This is a series of coupled equations which, since f{, £ and S are
unique functions of r,can be solved to give wijasa function of all
bond lengths in the molecule, It would appear, however, from the
form of 'awtu/ 2 rij and from the success of p-r relations that
the dependence of wij on bond lengths other than Ty is small and we
shall neglect such dependence.

Longuet-Higgins and Salem (5) have given the empirical re-
lation
r=1.50-0.15p A (II-16)
for a bond between two sp2 carbon atoms. The success of this ex -
pression leads us to postulate the relation
r=1.500- xw A (II-17)
The factor 1.500 is retained for two reasons: (1) w— 0 as p >0 so

that the two expressions for r should have the same limit at p = w

= 0; (2) the relation predicts a length of 1. 500 A for an sz single
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bond which is quite close to 1,498A, twice the ""experimental'' carbon
sp2 radius given by Coulson (6). We now determine x from the CC
bond distances in benzene and ethylene given in Table II-A, which

appear to be the most accurate available.

TABLE II-A

Molecule s w
Ethylene(7) 1,337 A 0. 7407
Benzene(8) 1, 397 0.4430

Now Mulliken, et al, (9) have calculated theoretically the over-
lap integrals for 2p, atomic orbitals using both Slater orbitals and

self consistent field (SCF) orbitals., Part of their Table III is given

below:
elow g
r, A SCF Slater
1. 20 0.43 0. 34
1..35 0. 36 0. 265
1.39 0.34 0. 25
1.54 0, 29 0.19

It is immediately seen that the commonly used Slater orbital

value S = 0, 25 is too small.

different sp2 ponds is relatively small.

Also the variation of the SCF S for

In order to keep the cal-

culations simple, we shall assume that S = 0. 35 for all ¢ - TT

bonds. The resulting w's for ethylene and benzene are given in
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Table II-A and lead to an average x=0, 226.
As a test of Eqn.II-17 we have predicted the bond lengths for

coronene (Fig,II-1) given in Table II-B.

Fig.II-1
TABLE II-B
b3
Bond P w Eqn.II-16 Eqn.II-17 Observed(10
p 0. 745 0.516 1.388 A 1.383A 1.385A
0 0. 538 0. 328 1.419 1,426 1.415
R 0. 538 0. 336 1,419 1.424 1.430
S 0. 522 0.318 1,422 1,428 1.430

¥ * 0,01 or 0,02

Eqn.II-17 appears to give slightly better agreement than Eqn.II-16,
but both are well within experimental error. Table II-B does show
one advantage of the "Wheland bond order' over the Coulson bond
order''which may be of significance with high experimental accuracy.

Bonds Q and R are predicted to have the same p but different w and
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hence should have in reality different bond lengths.

The success of an exponential form for 'B (5,11) leads us to
postulate the same expression for Y :
V)= = B 0 (1I-18)
or
Y(m=1% MfE'(/b—J.woo/K)/a] (1I-19)
where Y, is the value for benzene. Since we have cast the mole-
cular orbital theory including overlap into the same form as that
neglecting overlap the evaluation of ¥ and 2 is entirely analogous
to the treatmesnt of Longuet-Higgins and Salem (5) and gives

Y,=- 2,52 ev

(11-20)

a = 0.468 A

These values can be checked by calculating the CC force constant
of ethylene:
k=-2w X/
= 8.81 x 10° dyn/cm
which compares quite well with one of the two possible experimental
values of 8,837 and 10. 986 x 10° dyn/cm(12).
Our value of ¥ 1is quite close to Mulliken's spectroscopic
value of -2.6 ev quoted earlier and also to the value of -2, 30 ev

given by Balk, et al (13). This latter value, also obtained from
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optical spectra, is an average over several molecules with S taken
as 0, 25.

In summary, we have seen how a suitable restatement of the bond
order concept allows us to include overlap in molecular orbital theory
and to treat infrared and optical spectra with the same parameters
while retaining the formalism of the previous molecular orbital
theory. Furthermore,previous molecular orbital calculations are
still useful since the concepts of the new theory are defined in terms

of the old concepts.
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Proposition III: It is shown how the theory of alternant hydrocarbons
can be extended in modified form to a restricted, but important,
class of heteroatomic molecules, The main subclass is then treated

in detail.

Although the concept of alternant conjugated molecules (1-4) has
proven quite useful in the study of aromatic hydrocarbons by the
molecular orbital method, it has apparently not been recognized that
the theory can be extended to a class of compounds of current in-
terest in which the '"starred" and '"unstarred'' atoms are physically
different. Examples are borazole (I), cyanuric compounds such as

s - triazine (II) and the boroxoles (III):

| . lR
//N\\ /N\ B
=B~ Hy N B g
l { |
! ; || ll “ |[
H-N> _ 2 M—H N~ /N, R-BN 7 B~R
d H
k II 111

Many of these molecules contain nonbonding electron pairs, but
these pairs interact only weakly with the conjugated TT system so that

we shall treat only the TT electrons here.
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An alternant molecule is one where all the atoms contributing
TT electrons can be divided into two sets, the starred and the un-
starred such that no atom in a given set is bonded to another atom in
the same set. In alternant hydrocarbons the atoms in both sets are
all carbon atoms. In the molecules we are considering each set
contains only one species of atom, but the two sets are of different
species,

Let the two species be designated by X and Y. The TT electron

secular determinant, neglecting overlap, is

OLX‘—A E ﬂx‘YI O [e}
Bx.Y. Xy ~AE By, xa 7 =R =
L @YIX:L | DLX;_ AE ‘exiY;\ (II—].)
I S
[
i i °< = O{ = e0e = -
which, if we assume X1 x5 4 and X ¥ < Y,

= sns = X y and all resonance integrals equal, can be rewritten as

e+a ﬁ o o
? e-a F O———| =0
o g, €+ B (111-2)
' ~
where
=St Xy _ag

The molecules under consideration can be divided into two classes:
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(1) there are equal numbers of X and Y atoms such that if a given X
atom is bonded to m Y atoms then all X atoms are bonded tom Y
atoms and all Y atoms are bonded to m X atoms and (2) all molecules
not in class (1). Class (1) compounds are limited to cyclic polyene
like molecules and graphite like solids. Some general properties of
class (1) compounds can be derived easily, but extremely little can
be said in general about class (2) compounds.

(1) If € i (the numbering is in the order of increasing energies)
is a solution of the secular determinant for class (1) compounds

P

then the substitutions & i—> - & i

Yh,i~ “X, (ks Dmod 5, i,

C = G

Xk i i where C

is the coefficient of the 2pz orbital

Yik; Yk,i

on the k'th Y atom in the molecular orbital of energy € i? leave
the set of secular equations unchanged. n here is the total number

of X or Y atoms, Thus we have

élm—§+| - éj’,

i (111-4)
C\{k,lm-"dl,"'l - CX(/E'FI)/V\WJ//W)}
Cx,ﬂgam-é,-ﬁ-l: CY,&J, J

i.e. the energies are paired about the average of the two Coulomb
integrals,
(2) The above substitution changes the set of secular equations

for a class (2) molecule into the set for a molecule obtained by
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transforming the X atoms into Y atoms and vice versa, In other
words the €& j level of the molecule X, Y., is paired with the

en+m-—j+1 level of the molecule Y X  possessing the same spacial
symmetry as XnYm° It appears that this relation is not of much
physical usefulness.

The theorem just proved is more restricted than the analogous
theorem for alternant hydrocarbons in that for the present case
it was necessary to assume that all resonance integrals are equal
in the molecule. This swuld not be a serious restriction, however,
since once the wave functions for equal resonance integrals are
known, any deviations can easily be taken into account by per-
turbation theory.

The secular equations for the cyclic polyene like molecules
(XY)n, the main subdivision of class (1) compounds can be solved in
a general manner. If we form symmetry orbitals for the X atoms and
for the Y atoms we need only solve a smaller determinant representing

the orbitals of a given symmetry only. The normalized symmetry

orbitals here are

by =12, " By

Y :#_;ﬁ PP P




148

/&:OJtth;)---)-—{ (m. eucn) (111 5)
Rzoxl +2 -k 221 (m odd)

b 2 ) )
CJ:'C;Tr‘L/’W

where % is the 2p atomic orbital centered on the p'th X atom.
P z

If h is the one electron Hamiltonian and if,and only if,all resonance

integrals are equal

Fexlh[¥-py)=0, (I1I-6)

so that the problem reduces to the solution of a set of 2 x 2 deter-

minants:
e+ a ‘lﬁ w—ﬁ/a. -,_1_-,_:%
=6
2 (III-7)
1)"‘*’ AMT% € —-a
with solutions
=t M x a Jt/a
e=*[(apreaTE) +a* ] _—

s

[ Gt + | - (s ]
x(h o "bkx ¥ [W (I11-9)

< -G |7 %)
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ka+ is degenerate with 4/_1': = ( qJ 1':)* and \P]; with q/ -k-

= L"’ k— )*. In the special case of cos Tk -0 we have
n

1—
= + =
EAESEE & = Yoy
- (III-10)
E= — —
N ft \ka
Charge densities q and bond orders p can be defined in 2 manner

analogous to hydrocarbons:

occ.

*
=7 £ C
Fxp % Xp, B ~Xpy k ]

<3 [+ sz [ o T T

7')/?5%.9?,; S
:;"i' [aﬂ:&’—%‘ IE +(ap~:4n§)l]uz]l (I11-12)

e ek
Fx(p}:\;? = J:Z[_C*;P:}E SYe k t<xp, e C?f’,k] ;
g 2| *(aﬁlﬁ‘%’” 1

a [ 3 P
l"‘(:.la MWEM t[l'+\1pm£,%>] )

(I1II-13)

o I
=1 o TR

(Orbitals with cos Tk =9 require special treatment,) All dxp
n

are equal as are all dyp and all partial bond orders,

The total T energies €, the charge densities and the bond orders
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are plotted in Figs.III-1 to 3 as functions of a/g (with a/p assumed
to be negative) for n=2 and 3, These quantities should be useful for
studying the structure, stability and properties of various mole-

cules and solids,
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Proposition IV: A nonseparable solution to the time dependent one
dimensional free particle Schrodinger equation is presented. The
properties of this solution may have fundamental significance to the

interpretation of quantum mechanics.

The Schr'édinger equation for a free particle in one dimension

4, = =M, aq»
:uwv 34» T (Iv-1)

is usually separated into space and time parts and the resulting
relatively simple equations solved. This procedure, however,
misses a solution in which the space and time variables are not se-
parable., Although this nonseparable wave function does not satisfy
the usual restrictions on wave functions, its lone singularity suggests
an interpretation similar to the self energy singularity in quantum
field theory.
This (unnormalized) wave function is

g = AT opfi %g}. (IV-2)
It can be seen by substitution in Eqn. IV-1 that g does indeed satisfy
the Schrodinger equation, Now the Hamiltonian of Eqn.IV-1 has
two symmetry operations: (1) the space inversion x » - x and (2)
time reversal. Under space inversion g-> - g and under time reversal

g > ig so that this wave function is not intrinsically degenerate.
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The unnormalized probability of finding the particle at the point
(x,t) is
g¥*g = x2t-3 (IV-3)
which approaches infinity as x approaches infinity and also as t ap-
proaches zero and approaches zero as x approaches zero and also as
t approaches infinity. The possible infinity of g*g as the particle
approaches infinite distance does not occur in the physical world,
however, since either (1) it takes an infinite time for the particle
to travel to infinity so that g*g = 0 for the actual process or (2)
it takes an infinite time for a signal to travel from a particle already
at infinity to an observer at a finite distance.

The infinity at t=0, on the other hand may have significance.
It would seem at first that the origin of coordinates for a free particle
should not have any particular significance, but origin of time for
g seems to be particularly determined. We thus propose that t=0
is to be taken literally, i.e. it is the point at which the particular
particle under consideration began its life - the point in cosmological
time where it was created. The singularity is connected in some
way with the process of creation.

The behavior of g for small changes in time and distance are
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interesting., Let

t= to+ V4T -
(IV-4)

X = xo+ A X
with At/ty <& 1. Dropping bilinear and higher terms we obtain

-3/a .o 4&1 3 AT
grr, [oppgsde [[¥o-2 4 S2 +ay]x
(IV-5)
‘L/W\/’l’o - 4/
RPN, tanq = Aatj-
If the linear terms multiplying the exponential are relatively small

then g becomes the ordinary separated free particle solution of the

formexpi(kx - w t), k=p/hand w=E/h =‘ﬁkZ/2m with

k = M Xg

with the ratio xo/f‘.D determining the momentum p and energy E of the
particle. This behavior raises an interesting question: are the de
Broglie waves as usually observed really a limiting aspect of the
wave function g or are they the commonly accepted waves associated

with the usual solution of the Schrodinger equation?
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Proposition V: A purely mechanistic model for the origin of the

de Broglie waves is presented.

The Schrddinger equation and the whole of quantum mechanics
ultimately rest on de Broglie's hypothesis that every material par-
ticle has intimately associated with it 2 wave and that the momentum
p of the particle is related to the wave length A by the expression
p= X (V-1)
or, if m is the mass of the particle and v its velocity
P=myv (V'Z)
so that

= (V-3)
mv
The Schrédinger equation can then be constructed starting from the
ideas of de Broglie.

There has arisen two schools of thought on the origin of this
particle-wave duality (1). One school claims that the question is
unfathomable and that the resulting indeterminacy (e. g. the Heisen-
berg relation) is an ultimate principle of nature. The other school
retains the particle-field (wave) duality, but relates the two by a

statistical theory in which the '"quantum field" ¥ (equal to the wave

function) interacts with the particle through its '"quantum force',
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The first view point has a number of difficulties inherent in it
while the second appears to contain some elements of truth,

In this proposition a third approach is presented. The reason
for formulating different approaches to the particle - wave problem
is not to necessarily present a final theory but to show that theories
other than the indeterminist theory can explain the experimental
facts and to provide possible starting points for investigating the
question. The model presented here is not a statistical one, but a
purely mechanistic picture which explains the '"duality' on the
basis of a2 single nature.

We start from the Planck-Einstein relations
E =hY =mc? (V-4)
where V is the frequency of the photon obtained by completely con-
verting the mass of the particle into a single quantum of energy.

Our hypothesis is the following: every particle consists of a dis-
tribution of mass which is in a state of continuous vibration about the
center of mass and which vibrates with a frequency ¥ from some
minimum particle size (maximum average density) to infinite size
(zero mass density). Thus if an observer follows the mass density
of 2 moving particle he will see a wave motion.

Now a wave motion has associated with it a wave length 2 and
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a wave or phase velocity w related by
Av= w (V-5)

so that Eqn, V-4 gives

ok
A= = (V-6)

mC

Let us assume that the particle is moving along the x axis with a
velocity v. Let the (x,y,z,t) space-time system be that of the ob-
server and the (x',y',z',t') system be moving with the particle
with its origin at the center of mass, i.e. primed quantities will
refer to the moving system (the particle) and unprimed quantities
to the fixed system (the observer). The Lorentz transformation

then gives (2)
Lo nl-l 5 829
x=p(w+ ) (V-17)
B=(1- &) ™

= s

Here 2 is the wave length associated with the x direction., It follows

from the hypothesis that A' = & so that
e AL /
EEpY (V-8)
Also by the Lorentz transformation (2)
= / Y= / V-
V=g(y'+ L5 )= (V-9)
so that Eqns, V-8 and V-5 give

e 2y mw (V-10)

v

Substituting Eqn. V-10 into Egn, V-6 gives Eqn., V-3, the de Broglie

relation.
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Thus the simple assumption of a vibrating particle together with
special relativity leads directly to the de Broglie relation. The
intrinsic structure of the particle remains unspecified. The ques-
tion as to whether the vibration is like that of an elastic solid or an
oscillating plasma or an entirely new phenomenon remains the subject
of future research. The assumption of an infinite vibration (i. e.

A' = implying w' = 00 ) may seem an unsatisfactory aspect of
the hypothesis, but this infinity is inherent in the de Broglie relation,
no matter how it is obtained, The Lorentz transformation (3) gives

/: M_.._..__._———-Ara

i_N_'AA-’_'
P

AT

Now it is easily deduced (4) from Eqn, V-1 that w = c? /v which gives
w!' = o ,

In this model the ""probability' function ¥ * ‘lb is not related
to a field strength, but is proportional to the average mass density
at a particular point in space resulting from the superposition of

the particle's center of mass and vibrational motions.,
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