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ABSTRACT

This investigation deals with a perturbation theory for unsteady
cavity flows in which the time-dependent part of the flow may be con-
sidered as a small perturbation superimposed on an established steady
cavity flow of an ideal fluid, the gravity effect being neglected in this
study. In order to make a comparison between the various existing
steady~-cavity-flow models when applied to unsteady motions, some of
these models have been employed to evaluate the small time behavior
of, and the initial reaction to an unsteady disturbance. Furthermore,
the mechanism by which the cavity volume may be changed with time
is studied and the initial hydrodynamic force resulting from such
change is calculated,

The second kind of unsteady cavity flow problems treated here
is characterized by the fact that the disturbances are limited to be
small for all time instants, Based on a systematic linearization
with respect to the steady basic flow, a general perturbation theory
for unsteady cavity flows is formulated. From this perturbation
theory the generation of surface waves along the cavity boundary is
revealed, much in the same way as the classical gravity waves in
water, except with the centrifugal acceleration due to the curvature
of the free-streamlines in the basic flow playing the role of an

equivalent gravity effect.
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INTRODUCTION

The first solution of a problem of steady, irrotational, two-
dimensional cavitating, or wake-forming flows of an ideal fluid was
given by Helmholtz (1) and Kirchhoff ( 2) in the eighteen-sixties. These
pioneering works have since stimulated much interest in the subject,
leading to the development of general methods and several mathematical
models for dealing with such problems. In spite of such a long history
of steady cavitating flows and its applications to engineering problems,
the subject of unsteady cavitating flows has received attention only in the
past fourteen years. Some of the difficulties involved in the latter prob-
lem can be envisaged as follows. The theoretical treatment of irrota-
tional, two-dimensional cavitating flows of an ideal fluid i§ usually based
on certain proposed physical models, for example, the Kirchhoff-
Helmholtz model. If the flow is steady, the exact solution of such a prob-
lem, within the assumption of the proposed model, is usually obtained
by using the hodograph method, since in this case a surface of constant
pressure is also one of constant speed. This property, however, no
longer holds valid in the case when the flow is unsteady. Consequently,
in order to investigate some of the characteristics of unsteady cavitating
flows, different approaches and approximations have been adopted by
various authors.

In 1949 von K&drmén ( 3) treated an accelerated flow normal to a
flat plate which is held fixed in an inertial frame such that with given
acceleration of the flow, the flow will separate from the plate to form a

closed cavity of constant shape behind the plate, and he obtained a solution
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which is valid only at a particular Froude number characterizing the
acceleration. Later, Gilbarg (4) approximated the free surface of an
unsteady cavity flow by a streamline, and obtained two types of solutions
for a flow with finite cavity behind a symmetrical polygon (of which the
flat plate is a special case). One type of the solutions contains a doubly
covered cavity subregion in the flow plane, which, as pointed out by him,
is physically unrealistic; the other type solution has a cusped cavity which,
as pointed out by Woods (5), is also physically unrealistic. In order to
remove the cusped cavity Woods ( 5) introduced a second fictitious body
at the rear of the cavity, as in the Riabouchinsky model for steady cavita-
ting flows (6); the problem was then solved with the same approximation
as used by Gilbarg (4), that is, the free surface of the unsteady cavity
flow is approximated by a streamline. Recently, Yih (7) treated several
special types of unsteady cavity flows by generalizing von Kirmé&nfs ap-
proach; and he also gave the solution of a different problem which is con-
cerned with an accelerating body, to which a finite cavity is attached,
passing through a fluid which is otherwise at rest in an inertial frame.

Another method of dealing with the unsteady cavity flows is by
regarding the unsteady motion as a perturbation of an established steady
cavity flow. With this approach Ablow and Hayes ( 8) have developed a
perturbation theory which was later employed by Fox and Morgan (9) to
investigate stability problems of some free surface flows. In this cate-
gory it may be mentioned that a somewhat different perturbation theory
with further simplifying assumptions has been applied to treat several
different problems by Woods (10), Parkin (11), Wu (12), Timman (13)

and Geurst (14), (15).
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It is of importance to note an essential difference between the
unsteady flows with and without a free surface. In the determination
of the velocity field of an unsteady flow without a free surface the time
appears only as a parameter. Therefore, the kinematics of the unsteady
motion will not be basically different from its corresponding steady flow.
On the other hand, for an unsteady flow with a free surface, the flow will
depend on its previous time history because the explicit role played by the
time enters the problem through the boundary conditions on the free sur-
face. Consequently, the unsteady motion may completely change the
character of the flow, for example, by the creation of surface waves in
the flow. However, when an established steady cavitating flow (basic
flow) is given a sudden acceleration, there will be no past history of any
time-varying disturbance at the moment of the application-of this sudden
change. Therefore, the problem of finding the flow characteristics at
the initial instant of the unsteady cavity flow is expected to be not any more
complicated than that of the general unsteady flow without a free surface.
With this formulation Gurevich (16) treated the impact problem of the
Kirchhoff-Helmholtz flow. Wu (17), adopting the wake model as the
basic flow, evaluated the initial time behavior of a finite cavity flow.

The purpose of this investigation is to study the general features
of unsteady, irrotational, two-dimensional cavity flows of an ideal fluid
without including the gravity effect. As was mentioned in the beginning,
the theoretical investigations of the cavity flows are based on proposed
artificial models. It is known that in a positive range of the cavitation
number up to moderate values of order unity the agreement between the
existing models for steady flows may be considered very close (18).

No comparison, however, has ever been made between these models



when applied to unsteady flows. Part I of this investigation is mainly
devoted to make a comparison of the small-time behavior of unsteady
cavity flows when different existing models are used to describe the
basic flow. Furthermore, PartI includes an evaluation of the initial
effect of removing fluid at infinity on an existing steady cavity flow.
For cavity flows of an incompressible liquid surrounding a vapor
cavity, it is obvious that, when the cavity volume changes, the conserva-
tion of mass and conservation of volume of the entire flow become in-
compatible because of the difference in the density of these two phases.
Consequently, any variation of the cavity volume must come from a
source distribution in the flow with its net strength depending on the
time rate-of change of the cavity volume. For simplicity we -assume
that the change in cavity volume is affected by a source or sink located
at the point of infinity. A direct consequence of this source with a time-
varying strength in a two-dimensional flow of infinite extent is that it
generates a pressure field with is logarithmically singular at infinite
distances. Such a flow requires an infinite amount of energy to be
created. In reality, however, the flow is usually finite in extent and
never two-dimensional in the large. What formulation, or which model,
then, gives a good approximation to account for the change in the cavity
volume ? A part of this work in Part I is devoted to clarify this
question.

In the previous works on the unsteady cavity flows the assump-
tion has usually been introduced that the free surface of the cavity may
be approximated by a streamline in order to avoid some mathematical

difficulties, and it is hoped that such an approximation will give a



satisfactory result, at least for slowly varying flows. Based on such an
approximation the resulting flow has been interpreted (10) to contain the
effect that an unsteady disturbance applied on the solid body will pro-
duce two vortex sheets leaving the separation points and propagating
downstream on the free surface of the cavity with a velocity equal to
that of the free stream of the basic flow. In Part II of the present work
the formulation of a rigorous perturbation theory is presented, which is
based on a systematic linearization and without assuming that the dis-
placed free surface of the cavity be approximated by a streamline.
From the general formulation it is seen that the unsteady motion of the
solid body produces in general a free surface wave propagating along
the cavity boundary, much the same as the gravity waves generated by
a floating body in oscillation. The centrifugal force due to the curva-
ture of the free surface in the basic flow now plays the role of an
equivalent gravity in the classical water wave problem. In this sense,
the unsteady cavity flows are similar in nature to the radiation of
gravity waves over a flat water surface, only now in a much more com-
plex form since the centrifugal acceleration varies along the cavity
surface. Such a wave phenomenon cannot be found in the formulation
obtained by adopting the streamline-approximation mentioned previously.
Alsb, in Part II, a simple illustration of this theory will be carried out

for the surface waves over a hollow vortex,



PART I. SMALL-TIME BEHAVIOR OF UNSTEADY CAVITY FLOWS

1. General Formulation

To fix ideas, we suppose that for the time t <0, a steady two-
dimensional cavity flow past a solid body has been established, the solu-
tion of which is assumed to be given, or can be determined with the aid of
some cavity flow models. Suppose now the solid body to which the cavity
is attached is given for t > 0 a sudden accelerated motion; the problem
is to evaluate the small-time behavior of the resultant unsteady cavity
flow.

In general, the motion of the rigid boundary may consist of a
translation and a rotation. Let (xo, yo) be a point on the rigid surface
So(xo, yo) = 0 in the basic steady flow, and let it be displaced in time t
to the position (x, y) with translational velocity (V1 (t), Vz(t) ) and
angular velocity w(t). In terms of the complex variable z =x + iy and

V(t) =V +iV , the motion of z may be written
1 2

g%—=v<t)+ ( @)z, (1)

We shall assumed that the acceleration dzz/dtZ is continuous at t =0
so that for small positive t, V and w may be expanded in power series

of t, starting with the linear term as

iﬁ— = ct+ct' +i(wt+w.t*)Z +octh) (2)

where c¢_=a_+1ib_, a_, b and w_ being real constants. It then
n n RN B n

follows that for small t,
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Z=Z,453(C, +iw 28 + 5 (Co + (B T)E> +0%), (3)

The displaced surface will be denoted by S(x, y, t) = 0. In fact, we have

S(xo(",‘j-t)) 'j.(*.'j,t)) =5t g, %), (4)

regarding equation 1 as to provide the canonical transformation

Xo =x (%, ¥, 1), vy, =y (x vy, 1)
From the nature of the body motion it also follows that the complex

velocity potential of the flow
$<z,x) = Qx,y,e) +cf(x,9,t), (5)
will assume for small t the expansion

fGn =fm+tf e+t @+ ---——-- | ; (6)

where fn(z) = :pn(x, y) + iL|Jn(x, yis =0, 1, 2, , and fo(z) is the
complex velocity potential of the basic flow. The function ¢ (x, y) may
be called the initial acceleration potential. While q;o gives the stream-
lines of the basic flow, the function ¢n for n>1, being complex con-
jugate of ¢ . are introduced so that fn(z) are analytic functions of =z.

The velocity components are, as usual,

24

We shall introduce the complex velocity w =u - iv, and

W, = a¢n/ax -1 8¢pn/3y. Then from equation 6

wi(z,t) Wo () 4+ W () + £ W, (2) 4 ------- (75}

Similarly the pressure p(x, y, t) may be assumed to possess



the expansion

PORYE) = Polhiy) + plx,q) +t Fz(»c,j;+tzp_,(x,5)+ s (8)

where P, denotes the pressure field of the basic flow, p the impulsive
1
pressure due to the sudden acceleration, Then from the Bernoulli

equation,

%—-4-_3;‘{21—'7(Vﬂ)l=ﬁ+—f—-ua (9)

/0 2
where 2 . and U are the pressure and speed of the basic flow at infinity,

we obtain, by equating the coefficients of same powers of t, the follow-

ing relations:

4 1 vl j= —-';& + ‘;—UIJ

(10)

Iy

and so on.

P
f
L = 4, - vy (vh)
f’

The boundary conditions of the problem are as follows:

(i) At the solid surface, the normal component of the flow
velocity relative to the moving boundary must vanish. An alternative way
of stating this condition is that the fluid particles originally on S(x, y,t)=0,

at small time interval apart, will remain on it. That is,

DS 2 & 25 -

which becomes, upon using equation 4

25, [z_ﬂ_%%. L 28 2% 2] + 25, [9_53_23:+2§_&+%}z]=o(11)

%o L X 24y 34 2t

on S(x, y, t) = 0. Here the functions xo(x, y, t) and yo(x, y, t) can be



written down immediately from equation 3 by interchanging z and z
and by changing the signs of a bn’ and @ , as can readily be seen
from equation 3. Equation 11 is in a form convenient for manipulation
since BSO/BXO and 850/8y0 already correspond to the components of
the normal to the initial surface So(xo, yo) = 0. Substituting equations 3
and 6 in equation 11, expanding the various quantities about (xo, yo) and
t = 0, and equating the coefficients of different powers of t, we obtain

the conditions that on So(xo, yo) =0,

28,
an. . © (12a)
24,
B_r’u: no,(a1“b\)|j.) +n'l(b|+tho) (12b)
2% = 2., (G~ @ife) F 2N (bt ik = (n, 25 - n o2 )
2&: T £5 . £ 2 ].ZC
— (a-| '—(‘)Ia') (n-ol %T‘: + n“r.-?x)ff-a) _(b| +031X-) (n.lgxﬁﬂn‘f'ﬂ-,_?a—j%), ( )
where ;o = (no s no ) is the unit outward normal to the surface

1 2
8 (=, ¥,) = 0.

(ii) There are two boundary conditions at the free surface of the

cavity. Suppose the free surface may be expressed as
Fxyt) =Yy-hixt)=0,

then the kinematic condition that the fluid particles on the free surface

will remain on it requires

_ 2h 2 _
L on Y =hw,t) (13)

We assume that for small t, h(x, t) may be expanded as
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hx,£) =h, 00 +th, 00 + L t%h,(0 +ot?, (14)

where y = ho(x) denotes the cavity boundary of the basic flow on which

dho UO(“II"-O) 15
dx T U (%, kY (18]

Substituting equations 7 and 14 in equation 13, and expanding W and Vi

on y =h(x, t) about y = ho(x) and t = 0, we obtain

h, =U,(x,k.)—u,(x/h,)w=o,

Ul(x;ho)_ W, (X, h.) g;—;(: (16)

he

Since h1 = 0, the free surface will not be displaced in the time of order
t, as should be expected.
In the basic flow, the cavity boundary is a surface of cdnstant

pressure, and hence also one of constant velocity, say

Po=Pe v = 9. on  y=h.o, (17)
so that by the Bernoulli equation,
\
7C=U(|+6‘)‘ (18a)
where o 1is the cavitation number, defined as
¢ = (Poo“P;)_ (18hb)

U 1.2
S
We shall assume that the pressure in the cavity of the unsteady flow will

be maintained at the same constant value P that is

F(x,j,t): Pe on \j=l'1(’<,t). (19)

By expanding the left side of this dynamic condition about y = ho(x) and
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t = 0, using equations 8, 14 and 16, the following conditions result
P = P.=0 on 3=h.(x). (20)

Hence from equation 10,

Q =o on \j:h,(x) (21a)
a

@, =—(vd,) - (v&) on Ij:[n..(x).
Upon differentiating equation 2la along y = ho(x) and using equation 15,

it is readily seen that (tho) . (V:pl) = 0, and hence

&?. = O on j = h,(x)_ (Zlb)
From equations 2la and 21b it therefore follows that
(vd) - (V) = (v4.) - (v&,) = o on  y=h.o (22)

which asserts that the perturbation velocity is normal to the original
cavity boundary up to the time of order t2.

(iii) At the point of infinity we require the perturbation velocity

to vanish,

IV&n.l—'- O as 12| — oo, for n=12 ---- . (23)

If, in addition to the sudden acceleration of the solid body and the
assumption of the constancy of the cavity pressure, a certain amount of
fluid is removed at infinity with a source strength Q1t+ -12 Qz t% +
so that the cavity volume may be changed arbitrarily, then, aside from

condition 23, we must impose additional conditions at infinity as

Iﬂ"-j Wn(Z)dZ = G-n. 5 = 1,2, e, (24)
A
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where I' is a contour around the point of infinity. However, we impose
no boundedness condition on p at infinity since, if such Qn can be
arbitrarily chosen, pn(n > 1) will be logarithmically singular at infinity.
It will be seen later that, when the cavity is taken to be infinitely long
(Helmholtz flow, corresponding to the cavitation number o = 0), the
solution exists only when Qn = 0. Consequently the effect of change in
cavity volume can be sought only in the case of finite cavities. However,
the limit of the hydrodynamic forces in such case as the cavity becomes
infinitely long, with Q. held fixed, is seen to exist.

On the other hand, from Kelvin's theorem on the conservation of
circulation, the circulation around the point of infinity cannot be changed
in the unsteady motion for t <w. By combining this coxzditicuq with

equation 24, we may write

S Wa(2)dz = (R, , R 2, &, Fease . (25)
£

This completes our formulation of the small-time perturbation theory.

2. Solution of the Perturbed Flow

For the moment we assume that the solution of the basic steady
flow is given. We note that in the basic flow the entire boundary of the
body-cavity system belongs to a streamline, the form of which is
known. Therefore, by the general theory of conformal mapping, it is

always possible to find an analytic function
I(@) = B(xy) +i(xY) (26)

such that it maps the entire flow region in the z-plane into the upper half
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of the {-plane with the entire boundary of the body-cavity system mapped
onto the entire £-axis. For simplicity, we shall make the part |§ | <1
of the real {-axis correspond to the wetted solid surface and the part
[€|>1 correspond to the cavity boundary.

After the transformation to the {-plane the boundary value prob-
lem formulated in the last section can be stated as a Hilbert problem, as
will be shown below, the solution of which is readily attained. It is noted
from the last section that the problems of different orders in the pertur-
bation are expressed in a similar form. That is, the normal velocities
3<pn/3n0 are given at the initial solid surface and the potentials ¢, are
prescribed at the unperturbed cavity boundary. It is therefore sufficient
to treat one as the typical case. To save writing we shall denote
fn=¢n+ix.|4n by F=®+1V¥,

It is convenient to introduce the analytic function

d

-

|
I

dF dz (27)

G = 3 dz ds3

[u¥

which is defined for Im £ >0. Then on the solid surface, n = 0+, [£]<1,

I § == 5% =~ SElas{~ §(® say,  (28)

which is known, by equations 12 and 26. Furthermore,on the cavity

boundary, n =0+, [£]|>1,

Re G = —2—%— = 9,(%) say, (29)

which is also known, by equation 21. In particular, g, = 0 for ¢ and
1

e, Finally, equation 25 becomes

{ 4 =S’ 6 rds =:@ (30)
r F
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where I'' is the image of I' in the {-plane, the subscript n of Q is
dropped to show a typical case.

It is possible to transform the above boundary value problems of
a mixed type into a Hilbert problem by extending the unknown function
G(L) to a sectionally analytic function, defined on the whole {-plane
(excluding the real {-axis). Since ®, and higher terms will not be
treated explicitly here, we shall demonstrate the method by taking g,
of equation 29 to be zero; the general case of gz # 0 can be carried out
similarly. First, the function G({) may be continued into the lower

half {-plane by

For the case gz = 0, G(T) is the analytical continuation of G({) through
the interval ]g | > 1. In the following, by G + (§) will be denoted the
limiting values of G(§ as m— + 0. From equations 28, 29 and 31

it then follows that
Gy +Go =2iIm Gy = 2¢9.(8) for 1%l < 1,

32
Gy — G. =2Re Gy =0 for 151> |. (32)

The above Hilbert problem is well-known (19), its general solution can

be written

. | 5 .
GO0 = oy & J"g_ﬂ'}f”d; + fSP_‘_S: for N >0 (33

|

where the function (4% - 1)? is defined on the entire {-plane with the
1

branch so chosen that (£% - 1)2— ¢ as |[{|— e, and P({) is an

arbitrary Laurent's series with real coefficients. The last term in



15

equation 33 is the general solution to the homogeneous problem (with
g1 = 0 also). The real coefficients of P({), and hence also G({), can
be determined uniquely, when equation 30 is satisfied and the conditions
that the pressure is nowhere less than the cavity pressure and further is
integrable over the rigid boundary are observed.

In the following the above perturbation theory will be carried out

for several basic steady cavity flows.

3. Inclined Lamina in Kirchhoff Flow

As a simple example we consider the basic flow to be that past a
flat plate held at angle «, with a cavity formation of infinite length.
The solution of this problem is known (20), which we sin}ply cited below
for the subsequent use. The coordinate system in the z-plane and its
conformal mapping planes are shown in figure 1. For simplicity the
free stream velocity U and the plate length £, are normalized to unity.

The solution Wy = Wo(zo) can be written parametrically as

=3 = |
Wo =Lj_' > (343.)

-

z. = —KS (1=3% +1) 4o (34b)
® (% + secat )?
I

_ %{ [+1-3* _ cold _JLI-%° +2C_°+3°L+M( |~r4qné)_ ‘

(3 +secd )* sink (S + seck) +3 (1+sec)T |

\

where

- 3 sind . 34c
K = 24an (4 +7Sind) ( )

The entire flow region is mapped into the upper half §-plane with the

corresponding boundary as prescribed in the last section



16

(i.e. on n =0, lg]< 1 corresponds to the plate and |[£|>1 to the
cavity surface). The coefficient of the normal force N of the basic

flow is

_ Noe 2|Sind
I T

Cw (35)

(a) The first order solution

—_

The unit normal to the plate is now B, = (0, -1). We suppose the
rotation is referred to the leading edge of the plate. Then the boundary

condition equations 12b, 2la and 23 become

§§l= (b, + W, X.) g == 1Bl (36a)
&‘ = 0 and  hence %&— = 0 on "('="°; I'S-l:7 l. (36b)
lVfQ.I —= O as T —» — secd . (36C)

It is noted that a1 , the first term of the x-component of acceleration,
drops out from condition equation 36a,implying that the acceleration of
the plate parallel to itself has no effect on the flow up to time of order t.
Furthermore, equation 25 cannot be satisfied unless Qn =0, m=1: 25 ;00
This can be seen as follows. If Qn f-’ 0, then equation 25 implies that
W= Qn/Z.n'z + of |zrl), and hence i (Qn/Zn)log Izl, as lz]—> .
It follows that P, will be logarithmically singular at z = e, which con-
tradicts the conditions of P such as equation 20, on the undisturbed
free boundary y = ho(x) which extends to infinity. This indicates that
the Kirchhoff-Helmholtz model with an infinite cavity is not a realistic
model for the consideration of change of cavity volume. The problem

when Qn # 0 will be considered later when other finite-cavity models
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are adopted.

By making use of equations 36a, 36b and 34b, equations 28 and

29 become

Im Gt’ - %%}J:(%I e K(bl-(—u).)t,)(Jl.-g'- +I)(§+sm5? I51< I)

Re & = O, Pl > 1,

where xo(g) is given by equation 34b, and K is given by equation 34c.

Finally, by equation 33, we obtain

| . =
d‘rl - K (b.+(D;X°)(|"§+JI—'§") n 37
a5y T w[i-%* { | ST (% + seck? dg + ) ca(3+ sect) } (37)

n=-0

where Cn are real coefficients. The Laurentz series in the }ast term
is expanded about § = - seca(or z'= w) for the'conveniénce of applica-
tion of the boundary conditions at z = e. The first term in equation 37
behaves like { % as [Q l'——> © and is regular everywhere except at

£ =+ 1. Now by using equation 34b,

_ df d3 (s + secd) 'A‘FI . (38)
Vi = 33T T T K+ 33

From equations 37 and 38 we readily see that Cn = 0 except for
n=-1, -2 in order that w — 0 as z— o (or {— -seca) and w
1 1

is regular as {—w ,Furthermore, with Qn = 0, as explained above,

equation 30 requires that

Zw, —= 0 as (2] —» o2, (39)

From equation 34b, we find that as [z I—-’ w0,

K [+ <tand
L ~3 (s +secd)®’
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Making use of this result, we readily deduce from equations 37 and 38
that equation 39 is satisfied if, and only if,C_l= C__=0 also. There-
fore all the coefficients Cn vanish, thereby the first order solution
given by equations 37 and 38 is uniquely determined.

It may be noted that wl has a singularity at the edges of the

plate, physically corresponding to a narrow spray sheet. For, with

£ =4+ (l+e), |¢|<<1, we deduce from equations 37 and 38 that as

g—+1,
¢ 3 7| i:'L
(£1+set) |+ 2 (b tQixe) (1IH]T-5%) %
Wy & % er S ( l-—-g ) (% +=ecdl)? dg [|+O(lel/)]_
-1

From the behavior of w on the free surface (¢ positive small) it may
be seen that the free surface starts to move into the cavity when the
plate accelerates into the fluid (e.g., with b1< 0, wl = 0), and vice versa.
Furthermore, it is noted that wl is of order |z‘-‘,’/z for large values
of ]z f . Consequently it follows that there will be no net change in the
cavity volume.

Since the spray sheets do not produce any singular force (like
the leading edge suction on a thin airfoil), the normal force acting on
the plate can be obtained by integrating the pressure along the plate so

that for small t, in view of equation 3,

|

)

°

=
I

i
P, 07, t)dx, = S [[J,,(x,,o)+ F.(x,,o)-t—tf:,,(x,,o)IJx, +0H)

No + N, ++ N, +0(th, (40a)

The first term N is given by equation 35. Now, from equation 10
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5 P, (%o, 0)d%, = —/OJ' Q, (%,,0)dx, ———/OJ X0 (%) aX(E)dg (40Db)

By substituting the real part of equation 37 for 98¢ /9£ in the above
1

integral, the normal force coefficient may be expressed as

= o =~ (0HIR - 1L, tats)

where

! [-s*
N, =~ Zj Rty j oS 2B s
- -1

.“_15—1 S—E, (41b)
1 I
[ | %.3)ds =S* 2XHS)
L—w (o) = ——g —— j = . ds (41c)
i PAs L. =% 3 5='%

the above integrals being interpreted by their Cauchy principal values.
In equation 4la, b1 and wl are expressed in the physiéal uni}:rs, and
the plate length £ and free stream velocity U are restored for com-
pleteness. The integrals in equations 41b and 4lc cannot be expressed
in terms of elementary functions of «; they are integrated numerically

and the results are plotted versus « in figure 2, In particular,we have

rbl(n/z) = 0.8448, (42)

which is the special case treated by Gurevich (16). The quantity CN
1

represents the jump in the normal force coefficient due to the accelera-
tion.

(b) The second order solution for a=7n/2, w =b =w =0
1 2 2

To facilitate investigation of the behavior of the second order
solution, let us choose the special case: & = w/2 (the flat plate being

held normal to the stream) and ml s bz, wz all vanish. Then the bound-
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ary conditions (equations 12 ¢, 2la and 23) become

&Z =0 on 0 =y (35 > I; (43b)
JV‘?zl — as [2l —» o0 . (43c)

Since the component a of the acceleration parallel to the plate does
not appear in the above conditions, the flow will not be affected by it up
to the second order terms. Now, in the limit as o — w/2, the zeroth

order solution becomes

L. = a7 [ Ell=%) =T-F ¥ cos"x] . (44)

and W is still given by equation 34a, Consequently, from equations 28

and 29

o b l
ImG=b.%%I%§—I=?'z-[ﬂ_—§;-’], (=e . Is1=<1,

Re G = 0O, = s 151 = |,

Hence, by equation 33,

d¥

[
g{z _ _ b S 1-[i-%*
T [ =- <2 . 2

{t=73 ) (5-3) % (45)

in which the complementary solution is zero, as can be shown by the

same argument given previously for ¢ . Carrying out the integration,
1

we then obtain

df. _ b [ev4leg 35y —n[I-%"]
s = wE = (46a)
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df (4+7 df
WZ=HT2=~14T1 )[I_Il_.s;]g_z. (46b)
It is readily verified that w also behaves like 23/ for large [z |.

2

The second order normal force, by equations 40a and 10, can be
obtained from

2 XKe

( I
N, = S B (., 03dx, =p L[&Z +u..,u.r]l=o 55 9%

=/°£[ Ue (8IU,(3) B2 — . (%) ?;%]dg.

After substituting the various terms and evaluating the resulting integral,

we find the simple result:

N, = o. (47)

-

For this special case we therefore have the normal force coefficient
Cu(t) = Cy, +Cy, + Cyt + O[(UE/L)]

- 0.8798 + 0.8448 (£b,/y2) + O [(Vt/L)],

(48)

Thus for constant acceleration, CN has, aside from the stepwise change,

the following behavior
d Sy
aE = 0.
( )‘t =ot
However, Na may not vanish when bz' w, and w are different from
1 2
zZero.
The quantity m = N1 /b1 may be called the initial induced mass

of this cavity flow, then by equation 48

2

o = f%ﬁ_ ” 0.4224/01. (49)
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If the flat plate had undergone an acceleration b normal to the flow
1
without wake formation (a postulated Dirichlet flow), then the induced

mass would be

m, = x/o (£/2)". (50a)

Thus

B 4 TR 0.5377.

e (50b)

This ratio is less than unity, as should be expected, since the cavitated
side of the plate, being exposed to constant pressure, has no capacity of

imparting kinetic energy to the exterior flow,

4, Re-entrant Jet Model

We proceed to consider the effect of the cavitation number o
(defined by equation 18) on the unsteady flow when the cavity of the basic
flow is finite in size. An additional degree of freedom achieved in this
type of flow problem is that the cavity volume can now be changed
arbitrarily by prescribing a flow source at infinity. In order that basic
steady flow is tractable to analysis, various cavity-flow models have
been introduced, such as the Riabouchinsky model ( 6), the re-entrant
jet model (21), the wake model proposed independently by Joukowsky (22),
Roshko (23) and Eppler (24), and the modified wake model introduced by
Wu (25). In each of these flow models an artifice of some sort is intro-
duced to admit o as a free parameter, and to replace the actual wake
flow of a real fluid by a simplified model within the framework of an

equivalent potential flow. It has been found that in a positive range of o
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up to moderate values of order unity, the agreement between these
models may be considered very close (see Wu (18) ). Furthermore, the
validity of these models in predicting the hydrodynamic forces acting on
the body has been supported by experimental observations. The purpose
of the following several sections is to make a comparison between the
resultant unsteady flows when different models are used for the basic
cavity flow, for such a task should be of fundamental value in the study of
unsteady cavity flows.

For simplicity the basic flow is taken to be that past a flat plate
held normal to the stream of unperturbed velocity U and pressure Py’
forming a finite cavity with a prescribed cavity pressure pc(< pm).
According to the re-entrant jet model, the free streamlines eventually
reverse their direction at the rear part of the cavity, forming a re-
entrant jet which disappears on another '""Riemann Shéet'' (see figure 3‘).
Due to the assumed symmetry of the flow, it suffices to consider only
the flow in the left half physical z-plane. To save writing, both the half
plate length, £/2,and the constant speed . (see equation 18) on the
cavity surface will be normalized to unity.

It is convenient to introduce the variable

Q:loja?:=fog w.=|°ﬂ 7’:-"‘\9 (51)

where fo is the complex potential of the basic flow, q, is the flow
speed, and 0 the flow direction to the x-axis. The part of the flow under
consideration in the z, fo, and {-planes is shown in figure 3. By apply-
ing the Schwarz-Cristoffel transformation, the flow region can be map-

ped conformally into the upper half {-plane, with the point of infinity I,
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front stagnation E, plate edge A, jet infinity B and the rear stagna-
tion C correspondingto { =, 0, 1, b, and c respectively. The

required transformation is given by

d'[:n ___A T =1e .
dsy — N ¥ (52)
da B
43 T x(s-o)[(x-u-b)]k (53)

where A, B are two coefficients. From the local behavior of £ at

£ =0 and c¢, we find the relations

B =—%cb'/z 3 b= ctc=1)(c =% (54)

Integrating equation 53, and by making use of equation 54, we obtain
b) (3 ENN yz

(c-b)(5-1) S-b
'——~ + o it

dz o (=3 - b) ! jb(T—u) + |

B—F: = & = £ E (55)
C-b)(Fsl) _ 4 [ 3-b |
(c-1)(¥-b) bS-1»

3 8
As |t{|— o, df /dz — U =(1 +0)%. From this condition and

equation 55 it results

ced 1 Chee-n”
e e (56)

Finally, by integrating equations 55 and 52 to obtain z = z({), the co-

efficient A is determined by the unit plate length, giving

- (b~ t)B/‘
= ————-[K“)- sy (57a)
where
K(%) = (2¢- b)[BUFDIT + (2€- ) [(-5)% +cc-?‘b)s;n"i‘5-b‘—l°
+[5[b(b-2)+ c(2-b)]sin (25 - 1) + (b-.)%cc-b)s.‘n"ﬁi%')é_‘b,(s-,b)



25

This completes the zeroth order solution for prescribed o. In particular,

on the half plate, y =0, -1 <x<0 (or =0+, 0<§<1), we have

- [K(8) — K(o)]
(K(l)—K(O)] > }é % y (58&)
sy L b-3% 2
gl(__A(c—s)_[ccinf%] e ]A” }
g - A% -b)(1-%) % b-% 1/
[éi-.jul,-;)] -t g -

X(g) =

(58b)

This expression is needed for the first order solution.
When a sudden acceleration of magnitude b 1is applied normal
1

to the plate, the boundary conditions corresponding to equation 32 can be

written
G + G- = 2¢h, % for o< =1, (59a)
G,~-G. = © for I« <L b, (59b)
G, +tG.=0© for —co<E<o and b<T<so. (59c¢)

The last condition (equation 59c) expresses the assumption that the per-
turbed flow preserves the basic flow symmetry about the y-axis, that is,
v, = 0 on =0, for £ <0 and £ >b. The above conditions are ex-
pressed in forms different from equation 32. The solution, however,
can be written down directly by applying the same principle. It is
obvious that H(L) = [ (£-1)(¢-b) ]%, defined with branch cuts from

{ =-0to 1 and from b to ® sothat H— { as [Ql—'oo,

0 <argf <m, 1is a homogeneous solution of the present problem. There-

fore the general solution can be written

%
b (ro-%)b-5]" dx | 1% .
G = ’rcH(‘!:)g 5-%z dE =% 4 H(;)[ZC"B } (60)

° -02
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where dx/df is given by equation 58b and c ~are arbitrary real con-
stants. To determine ¢ » We note first that the pressure must be finite
at §{ =0, hence c, = 0 for n<0. Furthermore, we note that the
first term in equation 60 is of order of {,-Z as |§,]——>oo, this implies
that the behavior of dfl/dz at large distances is determined by the last
term in equation 60. By applying equation 30 and using the symmetry
property of the flow, we obtain e, = C.)l /2w, c1 = c2 =. .. =0, where
Q1 is the source strength defined in equation 24.

The integral in equation 60 can be integrated explicitly. For the
determination of hydrodynamic forces, however, only the real part of G

on the plate (where n =0, 0 <§ <1) is needed. The final result is

-V
_ b lu-me-m)] ¢ ) (- Dlze-b-2) (8- 1)-c(b-1)]
Rt = =g [k - keo] {A‘ * By (B-) +1B [5(b-%5)]% ’
|‘33 (b-D%F +(b-%)+ zl(b-—usclr;)} B a‘[u-g)(b—‘;)f%
bll-%8) 27 a

A =mfbec-o+ 2]+ B o2b +2e)(Z+ sin 22B)_ b= (b-2¢)
7(61

, )
B, = f_g(b—ZC)(%c'fSin-'a—;é) — S Lae=1),

By using equation 40b and the symmetry property of the flow, the first

order normal force N is given by
1

I
N, = Z/OJ x(5){ReG}dE, (62a)
where x(§) and RL G are given by equations 58a and 61. The result

can be expressed in terms of nondimensional parameters as

B = e = = (REI D Bl - (62b)

z
ZpU

in which the coefficients I‘b and I‘Q

1 1
number ©. Analytic evaluation of the above integral is too tedious to be

are functions of the cavitation

practical. The numerical computation of these coefficients has been



27

carried out with an IBM 7090, the final result is plotted versus ¢ in
figures 4 and 5 to show the effect of (1) the finite cavity size and (2) the
change in the cavity volume. From this result several salient features
of significance may be pointed out.

First, it is noted that as o — 0, the value of I‘b tends to

1,
0.8448, which is the limit of Kirchhoff-Helmholtz case (see equation 42).

For small to moderately large values of o, l"b increases very slowly
with increasing ¢ compared with the increase 1of the zeroth order drag
which increases approximately with the factor (1 + o) (see, e.g., Wu
(18) ).

Another point of interest is that FQ — 0 rather rapidly as
o — 0, this limit being independent of Q1 slo long as Q1 is finite.
This result shows that the effect on the drag force by removing fluid at
infinity is insignificant when the cavity is sufficiently long. Furthermore,
it shows that the limit of the solution as ¢ — 0 is non-uniform with

respect to Q1 since the solution in the Kirchhoff case does not exist

unless Q1 = 0,

5. Riabouchinsky's Model

The essential feature of the Riabouchinsky model is the introduct-
ion of an appropriate image body downstream of the real body so that the
free boundaries of the cavity are connected by this pair of solid boundaries.
Let us apply this model to consider the cavity flow past a flat plate set
normal to the stream, the flow in the physical z-plane is shown in
figure 6. Again, as in the problem stated in the previous section, the un-

perturbed velocity and pressure are U and Bia respectively, the cavity
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pressure is P corresponding to the cavitation number o. Also, the
half plate length, £/2,and the constant speed q. on the cavity will be
normalized to unity. Furthermore, due to the assumed symmetry, only
the left half z-plane of the flow needs to be considered.

For the present case it is convenient to denote by { the complex
velocity potential. We further introduce an auxiliary complex variable

7 defined by
T = %-(w.+w.") (63)

where W= d{/dz is the hodograph plane of the basic flow. The flow
field under consideration in the z-plane and conformal mapping planes
L {, T, are shown in figure 6. By the assumed symmetry of the
flow, we may choose the potential at the front and rear stagnation points

tobe { =-n and n respectively, and LB = -m, C‘D =m. We further

define k' and k by

K = , , k=(|-_1<”)|/'-=(z(?+ g‘)'/Z/(Hp)_
(64)

Then, at z = 0o, we have

v — ( r =1 g0 b
wh = = fk Tz = =k /Z-—k /‘). (65)
The upper half T-plane is mapped into the upper half {-plane by the

Schwarz-Christoffel transformation

(r -
5+ (- K (66)

From the local conformal behavior of {(7) at the point D, i.e.

=m, T~ =1, we find the relationship

gD D
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_ 2,[k'n
"= Tey (67)

Let us introduce another auxiliary variable w = + iv defined

d3 ) Jk'
W=7 T 7 dnas (68)
where dnw is the Jacobian elliptic function, delta amplitude of w,
with modulus k. In the following analysis the conventional notations for
the elliptic functions and integrals will be used without specification and
the modulus k will always be omitted to save writing. By substituting

equation 68 into equation 66 it gives

il w0 =l
5= .69

0

From equations 68 and 69 we deduce that on both the front and the image
half plate -1 <x <0,
x = 2= [Kn —EQ) + K- ZHL] ocua K. (70)
Ing 7 s 2
Evaluating the above result at g = K/2, which corresponds to x = -1,

we obtain

2[K
E-KK+EEr (71)
.‘, ’

=

which completes the necessary calculation for the basic flow.

Due to the presence of the image plate, an additional assumption
is needed for this model in the study of its small time behavior. It is
given that at t = 0 a sudden acceleration bl is applied on the front
plate directed in the positive y-direction. For small t > 0 the image

plate may be assumed to move in the y-direction with speed
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v = —/slo.t + oty (72)

where P is an unknown constant. To determine this unknown constant
B, we shall assume that on the image plate the jump in the drag due to
the suddenly applied acceleration is zero. The physical significance of
this assumption may be explained as follows. It has been pointed out by
Wu (18) that the image plate in the basic flow may be regarded as a
means to represent the energy dissipation in the wake flow of a real
fluid. In fact, in a frame of reference at rest with respect to the fluid
at infinite, the work done by the moving image plate is negative and
numerically equal to the work done by the real plate since the total force
on the pair of plates vanishes. This negative work done by the image
plate therefore corresponds to the mechanical energy rémoved from the
system in unit time as there is no other means of dissipating energy in
potential flow. Now in the unsteady motion, it is conceivable that the
rate of dissipation in the wake (of the actual flow) cannot be affected at
small time. This implies that the initial change of momentum at the
image plate must vanish. It is this physical meaning that underlies the
above assumption. For small t> 0, the boundary condition on the part
of the £-axis (n = O+) corresponding to the image plate can be written

by using equation 72 as

Tn G = shRe (D),
where G = dfl /df. Or,by applying the continuation (equation 31), we
have on the part of the £-axis corresponding to the image plate the con-
dition |

G, + G- = zjﬂ b, Re (5%), (73)
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Referring to equations 32 and 73 and using equation 68, the

boundary conditions of this problem are

: . b oen
G++G-=—zcb.(§%>=2¢m§—ﬂ,ﬁ§§—)) B  wneEa i,

G+ = G... =0 -Ftr -m<E < P,
Get G_ = ai/gk'?e(g-g-) =z£/j%' crpl(¥) for ™m< gL,

Gyt G =0 -Far -~ <EL-N, N<ELE

where m and n are given by equations 67 and 71.

Consider the function h(¢) = [t%2 - m? with the branch cuts from
-®© to -m and from m to w, and h({)— { as I;l—'m,
0 <argl <K. It is obviously a homogeneous solution of the above Hilbert
problem and satisfies equation 31. There, by using equation 33 the solu-

tion may be written

r-‘/z ="t n n cn
G(3) = - _bk jg B :sJu((SJ)Jg 2 S J5om" S dxt 4 P(3)
Mz we l ) S—S/ /5 ). ¥ - Th_ et

(74)

where P(l) = E R Ln, and c are arbitrary real constants. Again,

-00
since the pressure at { = 0 should be finite and the first term in

equation 74 is of order of { % as |[{|— », we have, by applying condi-
tion (30)and the symmetric property of the flow, P({) = Q1 /2w. By using
equation 69, the variable £ in equation 74 can be transformed into the

variable u, giving
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’ ls/Z
ad b (1-K)n c:n./u.cln./t(l ET’)
i "‘W]S‘-M‘ { S dn-/.t +—+&§Jn/¢+k /“

K/z

kK
drlu (| = ) a
+5 Af"’“ o — X2 }+——_; <
f A~ B s 3o 41 7 In e -

After integrating part of the above expression and some simplifica-

tion, we obtain

G(5) = ML{ (442 A, = (1-5)B,5 + ‘J%"’)[“”" $* - 4nk ]}

QA
-+ T = p) (76a)
where
-k E+kK+(1+k)
Az . : k- (- L 7en)
+ W)E
< B KK+
- |+K - K T e
B, = -?%_J—ET[?ZL I+ [ A s I+l:'] Lo
and
Kfe
I("S)=S cn’ [ ~ [, + £ ]A Vi
| /0L er/a+-‘lnk—sJ;/A+k' d?-—-mnigdry&-*k’ /

From the above results and equation 69, we deduce that
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PeG=¥%{(t+ﬁ)[Az|:kl(ddM ) + ZK,(J"’“ k)

Al /
__I’_cin en) PVTT(S' IT(T = ) .
™ ) -
T 550 % o[ SE 4 ek

2 (1- kAS/A/K
lag £% + |k sn K
e 7T an

where the upper sign is used for the front plate, the lower sign for the

27 n

]} - S QB |+K ( Jnf‘k)

image plate. In particular, when o = 0, the above expression reduces

to

2
cosz@ |+ +an6 ]

-b
Re G = szoms (Oer ) +2 555 o9 113005

Y cos2O for the front plate

b " '
= 'h:c.oslzs [(7"""2) +2 :ﬁg leq tt:mg] for the image plate,

where 0< 6 = sin™ ! sny < —4 . By applying equations 40b, 70, 77 and 66,

we obtain the normal force Nl on the front plate as

W= z/o{ b LT, o)L + &, 1I,} (78)

and the normal force N1 (in the y-direction) on the image plate as

= z/a{ b (1480 T, —U—f)L] + Q, L} (79)

where K/z

= (-kon " (|+k')f— K Jﬂg- k)"
en'u ! [

+(An/4 k)[—',i—f’v Tr (i J—k—,:——};)
-’53 w/m‘iT(s —— i;‘,é‘—)”/u (80a)

Wn (K2 deia -
I = SI—IT_ g /)[J—B ( 5/‘/‘ ‘;_((I <)Jr\/v)~ {505}
[ Y7 ] [_-Sh
‘°3 Tﬁ'g
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=1 K/z
I, = S X () S (80¢)

and x(u) is given by equation 70.
Now we apply the condition that on the image plate the change in

the drag due to the applied acceleration is zero, it results

l’ /5 /3 &
or

o L
e e (81)

Substituting equation 81 into equation 78, we obtain the drag on the front

plate as
(82)

This result can also be expressed in the following non-dimensional form:

N, fl: a
Cn =157 = —(E)G, - (36 (83a)
N 2'—/0U,£ (U )ﬁn (U ) &,
where
L2
ﬂ,. = ‘41—{:7; ) L, = Is, (83b)

The integrals I , I and I3 are computed numerically with an IBM 7090,
1 2

and the final results of fb and I‘Q are shown in figures 4 and 5 as a
1 1

comparison with the results of other flow models. It is further noted that

as B —
(o} 0, I‘b
1

reduces to equation 42 of the Kirchhoff case and

¥ 0,
1
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6. A Wake Model for an Oblique Plate with a Finite Cavity

Thus far we have considered the accelerating motion of an in-
clined plate in Kirchhoff flow, and of the finite-cavity flow past a plate
broadwise to the stream. Application of either the re-entrant jet model
or the Riabouchinsky model to an oblique plate with a finite cavity forma-
tion leads to very complicated analyses. The task is considerably
simplified, however, if we adopt a modified wake model recently pro-
posed by Wu (25) to describe the basic steady flow. The purpose of this
section is to determine the effect of acceleration on the hydrodynamic
forces with the cavitation number ¢ and the angle of attack « as two
free parameters.

The basic flow is taken to be a uniform stream of infinite extent
impinging on a flat plate at an incidence angle «, to which a finite cavity
is attached. According to this modified wake model, the incoming stagna-
tion streamline branches off the plate at the leading edge A and the
trailing edge B, forming two free streamlines ACI and BC'l which
are assumed to become asymptotically parallel to the main flow at down-
stream infinity (see figure 7). The pressure on the parts AC and BC'
of the free streamlines is assumed to take the constant cavity pressure
P and the space within the closed curve ACC'BA is regarded to
represent approximately the cavity. The space in between the free
streamlines CI and C'l represents a crude model of the dissipating
wake, along its boundary the uniform stream conditions are eventually
restored at downstream infinity. The flow outside this infinite wake
strip is assumed to be irrotational. The locations of the points C and

C' are determined with two assumptions; the first is that both the
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velocity potential and the flow inclination at C and C' are equal, and
the second assumption is the so-called "hodograph-slit condition' that
the free streamlines CI and C'l form a slit of undetermined shape in
the hodograph plane. With these two additional assumptions the whole
flow field outside the wake is then completely determined. For the con-
venience of subsequent application, the solution of the basic flow is re-
produced briefly in the following. The plate length £ and the constant
speed q. on AC and BC' are again normalized to unity.

The flow in the physical z-plane, the complex potential fo-plane,
and the hodograph wo-plane are shown in figure 7. The subscript of W,
will be omitted for simplicity. We further introduce the parametric

{-plane defined by

3 = (wtw™) (83a)

or

w =3 —(3"-1)

'/
o (83b)
1
in which the function (£%-1)? is defined with a branch cut made between
1
the points { = -1 and 1 so that (¢ - 1)2 —1¢ as f§|—>oo. At the

point of infinity, the complex velocity takes the value

o =W = e U=+6)" (84)

2 .

The corresponding value of §{ is

3. =+ (Ue®+ue™), (85)

Since Im fo = 0 on the entire real {-axis, the complex potential f(Z)

can be continued analytically into the lower-half {-plane by
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F(® = Lisy. (86)

Now from the asymptotic behavior of the streamlines 410 = const. near
the point ¢ = ;w, it is evident that f, must have there a simple pole.
Furthermore, from the local conformal behavior of fo at fo =0, itis
obvious that fo = O(L 2) as ILI—* . Therefore the solution must be of

the form

- A '
e T ICEE =78l

where A is a real constant. Or, expressing in terms of w by equation

83,

f. = i -
« = =W w e Wlw e ) (87h)

-

The z-plane is determined by integration of dz/df0 =1/w, giving

Aw) | I — l
E+a = f\i) +LB{(T— w)[wbj(w—\/\/) ~W|oa(w——vlv)]

l e —_—
_(._\lv_w)[—ﬁbﬁ(w—-W)—W[oﬂ(w——-\%——/-)}}, (88a)

where the constant B is related to A by

%=Z(U-i—U)SiV\d[(U—|+ U)a_ (2cosd)z}' (88Db)

Finally, the constant A is determined by the plate length as

A = [(u"‘+ u)z— (Zcosd)l]/],(, (89a)
K (U™ U)" (2comt)” r (U ) | rus- (25«:-5»014r - U -u
(U4 UY'= (2cosa)’ 2 Find (U-u)sma T GG5ng) (890)
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For the unsteady motion we shall confine ourselves to the simple

case of constant acceleration so that for any point z of the plate

—g%=(a.+ib.)t. (90)

Then the boundary conditions of this problem (see equation 32) become

. dz
G+ + G- = —24biRe g3 for sl =1,

(91)
G5~ 8 = B for  IEl< 1,

where G = df1 /dt. In the first condition, dz/df{ =w ! dfO/dL can be
deduced from equations 83 and 87.

Similar to the general solution of the problem with the boundary
conditions given in equation 32, the general solution of the above

boundary value problem, stated in equation 91, can be written

___b SRR RN > P(3)
G(3) = 'rtcz‘—nA{ S_:i % R (92)

where the function (g2 - 1)% is defined in the entire {-plane with branch
cuts from - to -1 and from 1 to o along the §-axis so that

(L? - 1)%——>g as |[{|— o, for 0<argf{<m. The arbitrary function
P({) is real on the real {-axis, and hence can be expanded into the

Laurent's series

)
-
P(z) = Z { EwlS=%.L) 4+ Cu (B~ E,)“]‘
n=- oo
Since =z '“-(!;—l;m)_l as |z|— «, itis necessary to have €. = 0 for

n > -2 in order that the perturbation velocity w vanishes at infinity.
1

Furthermore, we must impose Cn =0 for n 20 if we require the
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pressure at |{|= o to be finite. Finally, application of equation 30
yields

=4
PIE) = CulB~2u) 4+ CuylE~Eu) 5 (93a)

Vo

Co=- (- =-F (w'-w), (93b)

i

where use has been made of equations 84 and 85.
Transforming the variable ¢ in the above solution into w by

equation 83, we obtain

l z W
b et | -w |- w
G = e (l-wD S 3(‘”'“)&“ TC1- W?) [(w-w)(ww-l)+ (w- '\/_J)(WW")] Ve
where
_..._..I_.., Aco . |‘LL7- &
G b el = e w1} (94b)

In particular, on the rigid plate, -1< w<1, RIG = acpllif_,, and

1 5 —Z

&| W, wydn — Q‘ L l_w
%‘E ")_‘t—(l—w—[b PVj q »d z {(w-W)(wW-')+ (W—WJ(WW"‘”” (95)

=

where (P. V.) denotes the Cauchy principal value of the integral.
The normal force N1 acting on the plate due to the acceleration is

given by
24 >
—f g W) Sg —_‘,—?\‘,—C)W (96)

where 9¢ /& is given by equation 95, and 9£/8v can be obtained from
1

equation 83. As in the previous cases, we write

R L o7
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then, from equation 96,

|

I
[y, = %(P.V.)S xcw)A“’j g w, w dw, %)
ol | -1
L (! - w’ - '
— [ — ———— w = - ¥ 99)
&y 71& p 9 ¢ )[(w~\,\/J(WW“) + (w—W)(wW—‘)]AV' (

These integrals have been computed numerically with an IBM 7090, the

final result of I and I, is shown in figures 8 and 9 for « = 75°.
1 1

The result of the special case « = w/2 is also compared with the

other flow models in figure 4. For the special case a = w/2, we

deduce from equation 98 the expression which can be readily integrated

after the expansion for small ¢ is made; the final result is

[y, = ©0.8448[1+ 00676 (1-6)> +0(5%] (100)

which is the special case already noted by Wu (17).
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PART II. A PERTURBATION THEORY FOR UNSTEADY CAVITY FLOWS

7. General Theory

It is assumed that for the time t <0 a steady, irrotational,two-
dimensional cavity flow past a solid body has been established, the solu-
tion of which is assumed to be given. Suppose now for t >0 the solid
body to which the cavity is attached is given a time dependent small dis-
turbance in such a way that the resulting flow remains irrotational, and
the small disturbance is characterized by a small parameter €. We shall
establish a perturbation theory, of the first order in €, for the result-
ing unsteady cavity flow; the perturbation is made with respect to the
basic steady cavity flow. "

Generally speaking, the physical space in a cavitating flow is
occupied by a solid body, an air-filled cavity and the flow field under
consideration. Consequently, the velocity potential of the basic flow,
denoted by qao(x, y) (where x, y are the Cartesian coordinates in the
physical plane), will be a function defined only at points within the region
of the basic steady flow. For the purpose of later application, we shall
assume that the function <po(x, y) can be extended analytically into the
region of the solid body and the air-filled cavity in the basic flow. That
such analytic continuation is possible has been demonstrated, for exam-
ple, by Shiffman (26).

Under the assumptions mentioned above it follows that for t> 0
there exists in the flow field a time-dependent velocity potential,

¢(x, y, t), which may be expanded as

101
Q(x,y,t) = CQ,(*,‘j)+€-tQ.(x,(j,t)+OCéz), el
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where :po(x, y) is the "extended velocity potential'' of the steady basic
flow, ? (x,y, t) is a function of x, y and t but independent of e¢. The
necessity of constructing conceptually the analytically extended velocity
potential is quite clearly seen from equation 10la in which the function
¢ (x, y, t) is defined for all points, possibly with the exception of a
finite number of isolated singular points, of the unsteady flow region
whose boundary is a function of t and therefore, in the course of time
it may cross into the region of the solid body and the air-filled cavity of
the original steady basic flow. If goo(x, y) were not extended,

equation 1 could only be held valid over the part of the unsteady flow
field which is in common with the original steady basic flow region and
the problem of defining ¢(x, y, t) would become considerably com-
plicated.

Since both ¢(x, y, t) and qoo(x, y) are harmonic functions of
X, vy, and since € is an arbitrary small parameter, it follows that
cpl (x, y, t) must also be a harmonic function of x, y. In a similar way,
we shall assume, for the purpose of later application, that gol(x, ¥ t)
has also been analytically extended, at fixed time, into the instantaneous
region of the solid body and the cavity.

For the convenience of derivation, instead of using the Cartesian
coordinates (x, y) the intrinsic coordinates (s, n) of the extended
steady basic flow will be used in the following formulation, where s is
the distance measured along a streamline in the basic flow and n
is the distance measured normal to a streamline such that on the cavity
boundary it is directed into the flow as shown in figure 10. By using

this coordinate system equation 10la becomes
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Qs.nt) = &(s,ny+ed, (s.n,t) +0Ce). (101b)

The pressure field of the resulting flow, p(s, n, t), is related

to the velocity potential through the Bernoulli equation which may be

written in the form

L fotl+ 3L~ £t (102)

|

where p is the density of the fluid under consideration, P. and q, are
the cavity pressure and the constant speed of the fluid particles on the

free surface of the cavity in the basic flow respectively. By use of

o¢
equation 101b and the property that —B—fl- =0, we have

0" =24y + e (2424 4 6 e, . (103
and

9& - a&: 2

e ~F et 0D, (104)

Using the results of equations 103 and 104, we can write equation 102 as

F-fs 1100 - e[@oad + H] o), aon

which gives the pressure field of the perturbed flow.

The boundary conditions of the problem are as follows:

(i) There are two boundary conditions at the free surface of the
cavity, the kinematic boundary condition and the pressure condition. To

express the kinematic boundary condition, let us denote the deviation of
1
f 2

the perturbed free surface of the cavity, S from that of the basic flow,

Sf, by
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n =ehisb, (106)

where s is measured along Sf and S; is given by n =0 (see figure
10). Then, the kinematic condition that the fluid particles on the free

surface will remain on it requires

% -e[3435 38

5% oe on Sf' : (107)

By using the expansion of ¢ in equation 101b equation 107 becomes

24 , 2R o4 "
et =c[282L . 2] 0ce on S/ (108)
atpo
= mn
where I 0 has been used. Since 2 (s, n) is the "extended

de,
velocity potential' of the basic flow, we may write the value of T§

on S! as

f
(?9)_( )S+E‘g.(s+_)[;,i(3 °)}S + 0T, (109a)
S 5 3
a¢o
or, using the notation 9. = (—6?) s
S
f
(Qﬂ) = 75 -+ 6‘&(5,'&)[597"_(%%—)]5 + 0 e") ” (109Db)
S& §
Similarly,
aﬁ_?( )+eJ2Lsu[-;,%(i)] +ocey, (110)
S, S 3

By using equations 109b and 110, equation 108 can be written as

6(%%)=6[7¢%+%€r]+066a’ on S . (111)

Retaining first order in €, we have
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26 _q2bh . 3£

The pressure condition on Sf’ is stated by the assumption that

the cavity pressure will be maintained at the same constant p ,

that is
pes.mt) = pe on Sf‘ ’ (113)
From equations 105 and 113, it follows that
[ Qo 2&0y 24y, (24 e o
—?_—[7 — (2% ]-e[(—ﬁj(—%)ﬂm—')] + 0CH =0 on S! . (114)
O¢ d¢
By expanding ('Tsl_)s : and (—B%)Sl about their values at Sf and using

equation 109b, equatifon 114 givesf

€| qclcs,t)[%(%‘g‘)l (2422 4 (%‘@)} +0¢) =0. (115)

S}
Retaining the first order terms in €, we have
. d
9e 4 s, t)[g-(éﬁ )] 4 (9.,,4)(3_43-) +28 =0 on S, . (116)

The vorticity, {, of a steady two-dimensional flow can be expressed in

terms of the intrinsic coordinates as [Cf- Ref. (27)]

(117)

where R 1is the radius of curvature of a streamline at a point considered
and n is in the direction of increasing R. By the assumption of irrota-

tional flow and making use of equation 117, we can write (cf. figure 10)

G0, --&

(118)
S, Ry
represents the radius of curvature of S

where Rf £ Substituting
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equation 118 into equation 116, we obtain

7‘2 ﬁl ]
‘—Q?%(s.t) - T 2—5—1- %‘{i on sf " (119)

which represents the first order pressure condition on the perturbed
free surface.

Equations 112 and 119 are the two conditions on the cavity free
boundary. It is of interest to note that, if qcz/Rf is regarded as an
equivalent gravitational acceleration and if the s-coordinate is recti-
linear, then these two conditions are in the same form as those in the
classical water wave problems. Thus, the centrifugal acceleration
qcz/R.f here plays the role of gravity in producing surface waves on the
curved cavity boundary. .

Furthermore, it is noted that h can be eliminated from equa-
tions 112 and 119, therebyawe obtain a gingle boundary condition contain-

q q

ing qpl only. Since both (_Bc_s) and (-—3—;—) are zero, we may first

S¢ S¢

normalize q. to unity and then perform the operation of substitution,
giving

24, _ - ¥ dRgy 7 2

=Ry (55+5) L +(FH(2+2) 4, on S.(120)

Dividing equation 120 by R_., we obtain

f)

a z
s+ 36S 4, + 15 1eaRe) (3 + Fo)d, - 2% =0 on sp012)

which is the free surface boundary condition of vl .

We may also express equation 121 in a complex variable form.

To do so, we shall choose the complex velocity potential of the steady



basic flow, fo(z) = ¢p0(x, y) +1i tpo(x, y). as the spatial independent

variable, in terms of which the first order complex perturbation

velocity potential, f1 {2, t) = ?, + ixpl » will be expressed. The intro-

duction of fl(z, t) is justified by the reason that ¢ is a harmonic
1

function of (x, y) as mentioned previously. Since both s and q:o

are functions of x and y, and therefore, functions of s and n, so

we can express the operators

2
33z = (5= + (532

> 28\ 2 2%, 2
2n =(?n)a—&: * (en-)ar,b,
But,
2& _ 2k _
2n s
and
2% _ 24
AR - B85 7

(122)

(123)

(124)

(125)

where the upper sign will be used when the local positive n-direction is

at 90° counter-clockwise from the local positive s-direction, and the

lower sign will be used when the positive n-direction is at 90° clockwise

from the positive s-direction. Substitution of equations 124 and 125 into

equations 122 and 123 gives

2 EE%Q 2
2s 23

(126)

(127)

To express Rf, the radius of curvature of the free surface of the basic
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flow, in complex variable form we note that

&= F3 (128)

where 6 denotes the angle of the tangent to the free surface measured
counter-clockwise from a fixed direction, say, from positive x-axis,
and the F sign will be chosen so that the right-hand side of the last

equation is always positive. It is worthy to note that on S, both the

f
signs in equations 128 and 125 are interrelated; that is, when the upper
(or lower) sign in equation 128 is required at a place on Sf, the corre-
sponding positive n-direction is at 90° counter-clockwise (or clockwise)
from the positive s-direction at that place. This is the result due to the
assumption that the cavity pressure is a minimum pressure in the flow
field* and due to the convention we adopted for the positive directions of
s and n (see figure 10). Also, we note that, since the speed of the
fluid particles on the free surface of the basic flow has been normalized

to unity, the complex velocity on the free surface of the basic flow can

be written as

Jf. -i6
Wo =5 = € on 5f . (129)
Hence
9=i103 W on Sf . (130)

Substitution of equation 130 into equation 128 gives

E:q:i(wn)g—";’—' on S, , (131)

Which implies that the streamlines of the basic flow are convex seen
from the fluid.
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dw
. p . 1 o . :
which also implies that 5 = is purely imaginary on Sf. By the

aid of the results obtained in equations 126, 127 and 131, and the rela-
L oy
tion Tﬁpl:‘ = - ﬁ we may write equation 121 in the following form:

‘ 3{({ t)f»

Re{(F+ T f. 4. tJ-(ar'*’ij)(::r*‘Ehf(( g oon S. , (132)

or,

I dw,

R"'U(i’%)l‘{ff“.l"ﬂ(w. D+ Fe) - \,‘V‘ZJ'?:T”.(\C..U}=° on S, , (133)

which is the free surface boundary condition expressed in complex vari-
able form.

The result expressed by equation 133 can also be obtained in a
different way as shown in the Appendix in which the perturbation is
applied not only to the velocity potential and pressure, but also to the
positions of fluid particles.

(ii) At the solid surface the normal component of the flow velocity
relative to the moving boundary must vanish. This condition can be
derived analogous to the kinematic boundary condition on the free surface.
If we denote the displacement of the wetted side of the solid body from its

steady position S0 by
n=egt) (134)

where (s, n) are the intrinsic coordinates of the basic flow and s is
measured along So from one end to the other (see figure 10), then the

boundary condition on the solid body can be described by
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3?% =% [(%')%' "’aa%] on n=e8¢.t), (135)

After making use of equation 101lb and expanding the involved quantities

about So’ we have, up to the first order in e,

28 _@hy3t . a8 n 8, . 030
But,

hence the boundary condition on the solid body can be written as

S
o, g L9 %f- i %é]ds on S , (138)
where s _Bi
75 ’as.?s

(iii) At the point of infinity we require the perturbation velocity
to vanish, or

l%l . - 12| — oo (139)

Also, the applied disturbance cannot induce a source or sink at infinity;

that is
>4
Imfsa ghdz = o, (140)
T

where I is a countour around the point of infinity. Furthermore, from
Kelvin's theorem on the conservation of circulation, the perturbed un-
steady motion cannot, for any finite time, result in a net vortex at

infinity; that is
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Re§ 2dz =0 for t<oo, (141)
C

Equations 140 and 141 can be combined to give

>4,
&r M ls =0 (142)

This completes the formulation of the perturbation theory.

8. General Methods of Solution

In view of the complexity of the boundary condition on the free
surface, the details involved in solving the problem formulated above
will depend on the basic flow and hence will differ for each individual
case. An outline of the general method, however, can still be given.
Since the wetted side of the solid body together with the free sﬁur‘face of
the basic flow form a streamline, say, Lpo = 0, then, by the aid of the
fo-plane it is always possible to transform the whole flow field into the
uppér-half of a certain {-plane such that the streamline LIJO =0 coin-
cides with the real axis of the {-plane. With the boundary conditions
expressed in the form of equations 133, 138 and 142, the solution of fl

can be obtain in the {-plane by applying either of the methods described

below:
1 dwo
(i) If the solid body is a flat plate, the quantity V—v; HT_O
will be purely real on it. Then, by applying the operator
— (2 R 4 | dwe 3 . 3 L dwe D
L ‘(ﬂ:*ua_{) _[Elea(mm)](ﬂ:-"ﬁ)_ma’%?ﬁ (143)

on both sides of equation 138, we get

I {LIfI} = ﬂcﬂ,t) on S, (144)
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where g(fo, t) is a known function. With the boundary conditions on
the free surface and the solid body expressed in the form of equations
133 and 144 a Hilbert problem can be constructed in the {-plane by the
method described in section 2, Part I. The solution of the so constructed
Hilbert problem will lead us to a second order linear partial differential
equation with variable coefficients, the solution of which gives fl.

(ii) For a solid body arbitrary in shape, we express the free

surface boundary condition in the form

LIf] =« G, 1), (145)

where G(fo, t) is an analytic function of fo’ continuous in t, which
is real for fo on the basic flow free boundary but is otherwise unknown
a priori. The solution of equation 145 gives both the real and imaginary
parts of fl on the free surface with G as an unknown function, which
together with the other boundary conditions may be expected to deter-

mine fl(fo, t) uniquely.

9., Surface Waves on a Hollow Vortex

This relatively simple problem was chosen to demonstrate the
application of this general theory to a very special case; this applica-
tion is partly meant for the verification of the complicated expression
of the free surface boundary condition, since the problem has already
been solved by Lord Kelvin (28) in a completely different way (the solu-
tion is obtained by making use of the axial symmetry of the basic flow
field).

The basic flow is an irrotational, circulating motion about a
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point, say z =0, as center. The free surface will be denoted by
lz [ = a on which the speed of flow is normalized to unity. The velocity

potential can easily be seen as

f,(Z) - —ialogz (146)
and therefore,
wo@ = - 42, (147)

The transformation

P 1 3 (148)

|+ We

maps the entire basic flow in the hodograph wo-plane_, [wp | < 1.:4‘_ into the
upper half- of the {-plane (see figure 11).

The solution of the perturbation flow is obtained by using the
first method of solution stated in the last section. The boundary con-

ditions of this problem are

Re{LIf1} =0 on n=o* all ¥ (149)
‘%é\ = as 2l —> oo, (150)
and
n

where the operator L is defined by equation 143 and I' is a contour
around the point of infinity, or ¥ =i. A particular solution of the
above boundary value problem is

LIf.] = o. (152)
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The complementary solution can be written as

(2]
LUl = ) [enwr(s-0)" = catd (3405"] (153)

N= —~ o0
where cn(t) are unknown functions of t. In order to satisfy equations

150 and 151, that is, to satisfy the condition

f,~olts-i)7, d>o as =z —» <, (154)

it is necessary that

Cn =0 for n <o (155)
But, IL[fI] |<oo at wo=—1, or, at { =, so we must have
Ca=0 for n >o, (156)
Therefore, the solution of the boundary value problem is
L{%] =8, (157)
From equations 146 and 147, we have
we df, &’ af, Wod{.)— >
(158)
3 _ 4 2 _ o dead 3
ol A — ==alFom+Egy),
Substitution of these expressions into equation 157 gives
23 | 22 @ 4. D >
I'_f'a_f-+ a"A?_Z-__O-ZﬁE_?_P]-F\(-Z't):O' (159)

Since f (z, t) should be regular everywhere outside |z|=a, we may
1

write
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5"(21*:) = Z An({'-) 71!_7[‘ (160)

n=14,2, -

Substituting equation 160 into equation 159 gives

0o s . = |
Y [ RO A - 28 A+ BERAL-A®]z=o, e

Iz/ s

or,

AL ) - 2;“ Anlt) — =tn=13A,(t) = 0, (162)

where dot represents the differentiation with respect to t. The solu-

tion of the last equation is

A =y & =(n [t
n n

|

where a_ are constants. Finally, we have

. | |
fat) =Y [aned™ Tt | patn-Mtr L, (163)

P, 2, <
where the constants a_ and bn can be determined by appropriate
initial conditions. The result given in equation 163 agrees with that

obtained by Lord Kelvin (28).
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APPENDIX

The free surface boundary condition as expressed by equation 133,
Part II, may also be obtained by considering perturbations of both the
velocity potential and the positions of fluid particles. Let z =X + iyo
denote the position of a fluid particle in a two-dimensional,irrotational,
steady flow (the basic flow), and let fo(zo) =@t il.l.lo denote the complex
velocity potential of the basic flow. We assume that at the time t =0, a
small disturbance is applied on the basic flow so that the resulting un-
steady irrotational motion may be considered as a perturbation of the
basic flow. Then the position of a fluid particle and the complex velocity

potential of the resulting flow may be written as
Z =2, +€E (%, 4,,t) + 0CED (163)

and

fan =@+ ef (z,0)+0cer, (164)

where € is a small parameter, and both z and f are independent of
1 1

€. Since both f(z, t) and fo(z) are analytic functions of z, and e is

an arbitrary small parameter, it follows that fl (z, t) is also an analytic

function of =z.

We denote
p(x, y, t) = the pressure field of the resulting perturbed flow,
w(z, t) = 0f(z, t)/9z = complex velocity of the resulting flow,
P, = cavity pressure of the basic flow,
q = constant speed of the fluid particles on the free surface of the

C
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basic flow, which will be normalized to unity in the follow-
ing derivation.

The Bernoulli equation may be written as

—;—+ -ZLW(?,t)W(Z,t)-i-Re [;‘—g-lt—-m] =£+l<j"=l =-%-+l (165)
!

where w(z, t) = the complex conjugate of w(z, t), R [31f(z, t)/Btl: real
part of 9f(z, t)/0t.

There are two boundary conditions on the free surface of the cavity;
they are (i) that the pressure is prescribed to be the constant value P.’
and (ii) that during a small time interval a fluid particle originally on the
free surface will remain on it. To express the pressure condition we put

p(x, vy, t) = 18 in equation 165, giving

lwca tHwEt) + Qe{g{(zt)l (166)

on the perturbed free surface Sf'. In the following, we shall proceed to
express the quantities in equation 166 in terms of the basic flow and the

perturbation variables. From equations 164 and 163, we can write

W(Z,t) = d\f(z)+e 3\((1.U+ O ce®)

- d\f.(::)_+ & [ 312;2 ‘t)_*_ dd{z(l") zl(x,,cj,,t)] + oce™

. d.t) dhcz dweif Af,(z.,)] PR

=w¢<z)+e[7_ +Z'7TT'7?

= w, (1)5\+6[T+z|%§ﬂ]} +OC€1))

(167)
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and,

2,t) L2 t)

|(2=1t) =
m(T_ + oced, (168)

Substitution of equations 167 and 168 into equation 166 leads to

—l-WLZJW(%.)[l‘i'é(?-(' "'Z.a—)j”l"FE(-aFl +Z|%‘%’:)]
+eRe[°‘(]= 5> e

where z is evaluated on the free surface of the basic flow, Sf.

Retaining the terms of the first order in € and using the relation

L 2 " . s, e 1
[wo(zo)wolzoj ]Sf =q. " =1, we obtain the pressure condition on S/ as

ot olte 1 “/t Wo
%[(Dé(f )+Z.A‘§{f‘()) n ( ail{o ) $ Z d ({JJ]
+Re[g_{'§££)] = O for £, on S, (170)
or,
Re | aétf‘:,t) 2,003 Jw,<{o)

(B
+ 9—{91—]

for fo on Sf. (171)

To express the kinematic boundary condition (ii) stated previously, we
may use the relation dz/dt = W(z, t) when evaluated on S¢. In the
following derivation, instead of using the form of equation 163, it will be
more convenient to write the position of the perturbed free surface in the

form

=, v eg {s.1)+ 0
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where z is the position of a particle on Sf, and s, is the arc length

measured along Sf in the flow direction. Then,

dz dz. d? (5., ) 2 e Z ds Z 2
E=ajc—+ —Z_t-—‘-i-OCé) =W.(2.)+E[:g—s:|--2:€-+%-€]+066). (172)
o oo 5. B % 8 8 _ @8 g
ince along Sy Fs_ T Bs_ Do, % BL - 8f, 7
dso
=g SR 5 1, hence by using equation 167, we obtain the kinematic

boundary condition on Sf' as

%:W,Le(% 22y 4+ 0ced)

- W(Z, L) = W,(2.) [He[%‘*‘z%‘fﬂ}'*océl) for £ l‘o-n S

f>
{17 3)
or,
(?9{' +z{‘i,}’j) =w.,(z.,>(372_' + 2% for £ on S., (174)
where use has been made of the relation [w (z ) w I i ]S
Substitution of equation 174 into equation 170 gives
3
%[}Th{ﬁw.z.) + o (F+wet)) - 9‘C 20 ] + Re (£ ] =0
for fo on Sf s (175)

which can be rewritten as

(%;""%)('Fl'\'wni.) S _%T‘= o for fO on Sf . (176)
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Integrating the last equation from t = 0" to t with fo held fixed, we
obtain for f on S
o f

t

fdo,t) = f,f,,0%) = — {;—3{-5 firwezpdb + [ ft) + we 2, 0]

L]
ot

- [fhd) +n i, o)) (177)

where f denotes the complex conjugate of f . By denoting
1 1

t
H =5 (Fi+wezndt (178a)
or,
L S S (178b)

we obtain for fo on Sf the result

{l ({°tt) — _{%'% -+ % . 24% ('Fo,t=0+) _wo({a)zl(-(n,t:o.’)} _ (179)

Since it is not possible to have a pressure jump across a free surface at

any time we must have
Q , t=0=o for £ on S, . (180)
Furthermore it is obvious that

Z, ($., t=o*)y =0 for £ on S, , (181)

whence

f.5,,t) = —(

J|
2
e
ol
i

for fo on S, . (182)
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From equations 178b and 182 z can be expressed in terms of H as

Z, =_JI[?TE+%(H+Q)] for £ on S, . (183)

Substituting equation 183 into equation 171 we have

dw, —— ](‘ {_‘
an 2H . 3 = e
Re{w.[ﬂj*’g{-_(HJ'H)] T —E} for £ on S, . (184)
1 dW0
As pointed out in equation 131 that —vi HT;_ is purely imaginary on Sf,

therefore equation 184 reduces to

Qe[l_a._i,%;_' ?;? P_‘{'_ %] = G for £ on S. . (185)

We now eliminate H by differentiating equation 185 with respect to

fo on Sf‘ and t respectively, thereby we obtain

"-{ 31{{;- + figit * Iﬁg%%?{_ + dAf° vl« Aw“ 1
for fo on Sf , (186)
and
Re [)?:i[‘. - ?:t; + &%—?{—i&] =0 for f on S . (187)

Adding equation 187 to equation 186 and using equation 182, we obtain

2 dw. 2
Pe{gp ;{ft+a>£l‘lf,’2¢,_ 371(—+a‘ . dw);\c,] =0

for fo on Sf . (188)

From equation 185 we can deduce for fo on Sf the relation

dw,

T o)

(2 4 26

= (189)
—7— .

;4%

- d
Pe[ﬂf_(‘?{%)i?p] = - Re {d—‘[_
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Substitution of equation 189 into equation 188 gives

d | dwa
[3‘('4_2 \ + D'L(} = d?_(Wn _Tr (3 _-{ __|_dw' 3'[1
SEtiat T SE T tSE) - wa St =0
We df.
for fo on Sf » (190)

which is the free surface boundary condition obtained in equation 133,

Part II.
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Figure 6. Riabouchinsky's model for a flat plate
and its conformal mapping planes.
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p increases from
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Figure 7. A wake model for an oblique plate with a
finite cavity and its conformal mapping planes.
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Illustration of an unsteady perturbation flow.
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Figure 11,

Hollow vortex and its conformal mapping planes.



