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ABSTRACT

This paper contains several problems that can be formulated
mathematically as two-dimensional boundary value problems for partial
differential equations containing a parameter. A method is given
which leads directly to asymptotic solutions for large values of the
parameter without resorting to the exact solutions. The examples
discussed involve linear differential equations and are drawn primarily
from various problems in the theory of elasticity.

The method involves consideration of what are termed corner-
layers in addition to the well known boundary-layers. The need for
considering these corner-layers arises from the fact that the problems
treated lead to boundary-layer differential equations which contain
derivatives, not only with respect to the boundary-~layer variable, but
also with respect to the remaining independent variable. Thus, the
solution of such boundary-layer equations requires knowledge of
boundary conditions in addition to those needed in standard boundary-
layer problems.

The applications include: a heat conduction problem, two problems
with transverse bending of stretched plates, and two problems from
elastic shell theory.

The shell problems concern the bending of both the shallow and the
non-shallow helicoidal shell. It is found that these shells have boundary-
layers whose characteristic length is proportional to the one-third
power of the thickness parameter. This may be contrasted with shells
of revolution, where this characteristic length is proportional to the

one-half power of the thickness parameter.
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I, PRESENTATION OF THE METHOD

A, Introduction

Theoretically, the solution of linear partial differential equations -
with appropriéte subsidiary conditions - can be systematically worked
out. However, in general, the complete mathematical representation
of the exact solution is very cumbersome. It is fortunate that the
practical abplication and physical significance of many problems are
restricted to cases where some parameter approximates a critical or
extreme value. Such cases have a special appeal to applied mathe-
maticians because of the possibility of obtaining adequate approximate
representations for the solutions.

As an example, there is the mathematical theory of thin elastic
shells. In this theory, the thickness dimension h of the elastic body
is assumed to be small in comparison with some other characteristic
dimension L. That is, a shell is described as a body that has one of
its dimensions small in comparison with its two others. L might be
a radius of curvature. In such cases, the parameter L/h is assumed
to be large relative to unity (1).

Another example occurs in fluid dynamics in which the parameter
VL/v, known as the Reynolds number, is of importance. Here V and
L represent a characteristic velocity and length, respectively, while
v is the kinematic viscosity of the fluid. When the Reynolds number
is large inertial effects are dominant while a Reynolds number near

zero indicates that viscous forces are dominant (2).



In such problems, it is frequently found that there are portions
of the exact solution which are insignificant when the relevant
parameter is, say, large., Furthermore, it may be that these in-
significant portions add considerably to the difficulty of finding an
exact solution. It is, therefore, very desirable to have a technique
which will provide the significant portion of such a solution by direct
means, i.e., without having to find the exact solution first and then
making approximations. An important set of techniques which perform
this service are classified as belonging to the study of asymptotics or
asymptotic methods. We will consider one such technique in this
thesis. Because of the nature of the approximations obtained, this
technique is known as a boundary layer or edge layer method.

The current and world wide interest in such asymptotic problems
and procedures is exemplified by most of the papers in the references.

Friedrichs and Dressler (3) are concerned with a systematic and
logical derivation of an approximate two-dimensional theory of thin
elastic plates from the exact three-dimensional theory for elastic
bodies. In particular, they have considered the boundary layers in
linear plate theory due to an arbitrary system of edge loads. Among
other things their boundary layer treatment derives the classical
Kirchhoff boundary conditions for thin plates.

In (4), Golilenveizer presents an over-all view and summary of
some asymptotic methods used in the linear theory of thin elastic
shells. Broadly speaking, the contents are indicated by a quotation

from the paper itself:



""All the questions enumerated ... are considered in this
article and their discussion takes a form partly of an account
of methods leading to solutions and partly of a description of
the results obtained.

Sometimes only a statement of the problem is formulated.
The author made it his aim to draw the attention of mathe-
maticians to problems, inadequately dealt with in the
literature ..."

Some problems related to those in this thesis are briefly mentioned
in (4). Free oscillation and stability problems are among those
ciiscussed.

Lagerstrom and Cole (5) illustrate some asymptotic expansion
procedures for the non-linear equations of fluid dynamics: specifically,
for certain solutions of the Navier-Stokes equations when the Reynolds
nu;cnber is either large or small. As part of their method they employ
the technique of first transforming their equations so that they depend
upon a new set of independent variables, which are themselves
functions of both the Reynolds number and the original coordinates,
and then formally taking limits for large or small Reynolds numbers
while holding the new variables fixed. This technique is employed in
this thesis. Kaplan and Lagerstrom in (6), (7) and (8) use and discuss
the basic ideas in (5) for problems involving small Reynolds numbers.

Fife (9), Mahony (10) and several of their references investigate

. 3 ’ " /7 / "
certain asymptotic expansions of the non-linear von Karman equations

for thin elastic plates.



This thesis considers several problems which can be formulated
as linear two-dimensional boundary value problems containing a large
parameter. With one exception, they are taken from the linear theory
of thin elastic plates and shells. A method is given which leads directly
to formal asymptotic approximations of the exact solutions of these
problems. In two of the problems considered, a comparison is made
between certain exact solutions and the approximations obtained by this
method. The most important applications are, of course, to problems
where the exact solutions are unknown.

There is a class of edge effect problems, particularly in thin
elastic shell theory, which possess features not present in the problems
which have been treated by boundary layer techniques in this area. The
method to be presented here represents a modification and extension of
methods previously used, and makes it possible to treat these problems.
These '""previous'' methods and the problems to which they have been
applied will be referred to as classical methods and problems if only
to distinguish them from those discussed here. The distinction bétween
the classical problems and those considered here will be explained in

the following sections.

B. Heuristic Description

A heuristic presentation of the concepts and arguments of the
asymptotic method can be given at this stage which will clarify both
the subsequent procedures and terminology. The complex structure
of the asymptotic solutions has necessitated the introduction of extensive
notation., However, as in the classical method, there is considerable

dependence upon intuitive reasoning by means of a conceptual model or



picture. Because the problems treated here are formulated as two-
dimensional boundary value problems, a model is easily visualized.
Consider a typical boundary value problem as having been formulated

for a rectangular domain in the (x, y) plane and that the solution consists

of a single dependent variable u = u(x, y) which can be plotted upon the
z-axis. Thus, the solution is a surface plotted above the rectangular
domain. For ease of explanation, assume that the boundary conditions
are merely requirements as to the height of the surface above the
circumference of the rectangle (fig. 1). The edges are numbered and
will be designated as l-edge, 2-edge, etc.

Characteristically, the differential equation is assumed to involve
a large parameter A in its coefficients. Let the coefficients be
constant and assume that there is an asymptotic representation of the
exact solution as )\ tends to infinity. It is also typical of such problems
that the coefficients of some of the higher order derivatives in the
differential equation become negligible in comparison with the other
coefficients as A becomes large. Nevertheless, the terms involving
these relatively negligible coefficients are not, in general, themselves
negligible., Intuitively, such terms are important wherever the solution
"varies rapidly'", i.e., wherever the higher derivatives in question are
large enough to offset the smallness of their coefficients. In boundary
layer or edge effect problems such higher derivatives become sufficient-
ly large only in regions near the boundary of the domain. Thus, the
domain of the problem can be considered in terms of vaguely defined

sub-domains. There is a central or inner domain in which certain
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Figure 1. Model for a Boundary Value Problem



higher derivatives are not large enough to offset the relative small-
ness of their coefficients. In this inner domain terms of the differential
equation which involve such derivatives are, to a first approximation,
negligible. The simpler differential equation which results from

omitting these terms will be designated as a sub-equation. However,

near each edge there may be a sub-domain in which some of these
terms are important. The ""rapid variation' of the solution generally
occurs in the direction orthogonal to a given edge. It is apparent that
in such a situation the sub-domains near the corners also require
special consideration.

With this model in mind, it seems natural to try to use the sub-
equation which, to a first approximation, governs the solution in the
inner domain. Assuming that appropriate boundary conditions could
be found, we could solve a boundary value problem using this simpler
differential equation. The approximate solution would be defined
everywhere in the (entire) domain but would only have validity in the
inner domain. Near the edges or corners it would be expected that
corrections would have to be added in order to get a valid first approxi-
mation for these sub-domains. These considerations lead one to view
the exact solution as a kind of geological formation which consists of

layers superimposed or stratified one upon the other. There is the

inner solution which is a valid approximation in the inner or 0-domain.

This analogy, however useful, has the obvious flaw that functions
representing layers may have negative values and so subtract from
each other.



In addition, along the l-edge there is a boundary layer* or l-layer
that must be added to the inner solution in order to obtain a valid
approximation in the 1-domain. Such a function diminishes rapidly
in magnitude as the distance from the l-edge increases. Similar
statements apply concerning the other three edges. Also there are
corner layers which must be superimposed to give valid representations
in corner domains. These layers, of course, become negligible as the
distance from the corner increases. This conceptual model, although
stated somewhat differently, is essentially the classical one. It has
been utilized in various fields, such as in the boundary layer theory for
viscous fluids, and in edge effect problems in elastic shell theory. It
applies to the problems of this thesis.

However, the distinction between the classical method and that of
this thesis is essentially in the analysis and utility of the layer structure

in the corner domains. The classical problems are those problems in

which boundary conditions for the inner solution and the boundary layers
can be determined without consideration of the corner layers. The
classical method recognizes that approximate solutions involving only
the boundary layers and the inner solution are not valid in the corners,
but for many purposes this is unimportant, For the problems in this

thesis (with one exception), the inner solution and boundary layers can

. . i
It is convenient to use the term layer to mean a specific function as

well as the graph of that function. Discussion of the origin and in-
terpretation of the term boundary layer in fluid dynamics is omitted
here. It is related to L. Prandtl's observation of a layer-like region
which develops along the surface of a body when it is submerged in a
stream of viscous fluid. There is a large velocity gradient in this

region. The boundary layer theory in fluid dynamics is due to Prandtl (2).



apparently only be determined by consideration of the corner layers.
As might be expected, in general, the boundary layers, corner layers
and inner solution are all more or less interdependent, Thus, even

thogh the behavior of the solution in the corner sub-domains may not

be of primary physical importance in such problems, it is necessary to

consider it in order to determine the appropriate approximations in the

remaining portions of the domain. This situation will be illustrated

by an example in the following section.

A description of the layers in the corner domains can also be
given in a heuristic manner. To do this, let us return to a consideration
of the inner solution. It represents the gross behavior of the exact
solution. Now to first approximation, it satisfies a differential equation
(a sub-equation) which is of lower order in certain derivatives than the
exact differential equation. This means that the inner solution is, in
general, unable to satisfy all of the boundary conditions placed upon the
exact solution. In this sense then, the boundary layers are used to
patch or match the inner solution to the boundary conditions at the edges.
However, this matching may not be complete. To see this, visualize
the sub-domains for the boundary layers as if they were thin rectangular
strips along their respective edges.

For example in figure 2, the sub-domain for the l-layer is depicted
as a strip adjacent to the l-edge. Also, for simplicity assume that
there are no boundary layers along the other edges, i.e., assume that
the inner solution satisfies the boundary conditions at all edges except
the 1-edge. A l-layer is required to match the inner solution to the

l-edge. However, now the l-layer may violate the conditions where its
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sub-domain intersects the 3- and 4-edges. This situation can be
remedied by using corner layers to match the 1-layer. These corner
sub-domains are depicted in figure 3. The corner layers which match
the 1-layer to the 3- and 4-edges are denoted as the 13-layer and the
l4-layer, respectively. It now may occur that these corner layers
violate the conditions where their sub-domains intersect the 1-edge.
Analogously, the corner layer which matches the 13-layer to the l-edge
is denoted as the 131-layer. The 131- and 14l1-domains have been in-
cluded in figure 4., It is obvious that this process might continue
indefinitely.

In more general cases there are boundary layers along all edges
and in a given corner there can be an infinite set of corner layers for
each of the boundary layers that meet there., We will refer to the
n-layer (n =1, 2, 3, 4) itself together with its associated corner layers
as the n-layers. Note that the 3l1-layer is the corner layer that
matches the 3-layer to the l1-edge and is distinct from the 13-layer.
The superposition of three layers is represented in the three-
dimensional drawing of figure 5. In the figure, the inner solution and

the boundary conditions are at different but constant levels.

C. An Example

a, Formulation of the problem

An adequate quantitative description of the method in general
terms is difficult at this point. For clarity, the details will be pre-
sented by using a specific problem as an example. Although this

problem is much simpler than those to follow, it does display some
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3-layer to the l-edge

Figure 5. Superposition of Three Layers



7, i

features which are characteristic of the more complex problems.
Further notation and/or terminology will be introduced in the process
of discussing the example.

For the example, consider the following problem of heat conduction
in a moving plate. There is a thin, semi-infinite, heat conducting
plate P passing between two reservoirs, A and B, with a constant
velocity V, (fig. 6). Heat losses through the exposed lateral surfaces
of the plate are assumed negligible. The thinness of the plate is
assumed to make variations in temperature through the thickness
negligible and to allow the assumption that portions of the plate in
contact with a reservoir have the temperature of that reservoir. The
reservoirs A and B have a fixed temperature T = 0, A fixed tempera-
ture distribution T = g(y) is maintained along the exposed edge of the
plate between the reservoirs. The problem is to predict the tempera-
ture distribution in the plate region which lies in the strip between the
reservoirs. We seek an asymptotic approximation to the exact solution
for large values of V, Thus, referring to figure 6, if b is the width of
the exposed strip, then

T

gly) forx=0 0=y=<hb (1.1)

and

T=0 fory= 0,1 and 0<x .2)

For heat conduction in two dimensions

2 BZT BZT 1
VL ¥y 2Tk
ax oy

DT
D

- (1.3)

where k is the thermal diffusivity and DT /Dt is the material or
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Eulerian derivative, (11) p. 13. If we assume that the temperature
is steady, i.e., 8T/3t = 0 but that the medium is moving in the y

direction with constant velocity V then

BT o BT )
Let
= o , bV — —
x =bx, y=by, gly = £y, =5 Ilxy)=Ulxy) (1.5)

and transform the equations accordingly. In the subsequent work the
bars will be omitted for notational convenience, With this agreement

the problem has the following mathematical formulation:

2 2

. 9

(1) %—IZJ—‘“E’—%-ZAEYH:O ‘1.6)
X oy

where
fii) ‘U=0 fory=0,1

0

(iii) U= fly) for x

(iv) U and its derivatives are bounded for x = co.

The exact solution of this problem is readily obtained and will be

presented subsequently. We seek the asymptotic approximation as
A — ©. The domain has been taken as unbounded only in the interests

of simplicity. It will be apparent that the inner solution and layers
obtained here are unaffected whether or not the 2-edge is at a finite
distance.

Wasow (12) has considered the behavior of the solution of the
Dirichlet problem in a bounded domain for the differential equation

1.6(i) as A — oo. A more general related problem has been treated
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by Levinson (13) and will be discussed in greater detail in section f.
Concerning heat conduction in media moving relative to their
boundaries, Wilson (14) gives an example where the conducting

medium is moving in a direction perpendicular to the boundary which

has a given temperature distribution. Other references on moving

media with heat conduction can be found in (11).

b. Procedure and criteria

As described in section 2, the asymptotic approximation is
conceived as the sum of an inner solution and numerous layers. The
layers are associated with the importance of certain terms of the
differential equation which involve the higher derivatives. It will be
assumed that the relative orders of magnitude of the terms in the
differential equation can be displayed explicitly by proper transfor-
mations from x and y to new independent variables § and 7 . We

will use transformations of the form,
£F =\ lazx and ¥ = Nty (1. 7)

where a, B, a and b are real constants. For our purposes a and B will
*
be positive., Such a transformation will be designated as a layer

transformation and the variables § and 7/l as layer variables. When

the differential equation is written in terms of layer variables it will

be designated as a transformed differential equation.

If either a or B are zero then no transformation is made on the

relevant variable, i.e., if a = 0 then § = x or if f = 0 then 7 = y and

Negative values will be discussed subsequently.
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such variables are not layer variables. The constants a and b and

the signs of x and y are chosen so that § and 7 are positive for points
in the domain and zero on the relevant edges which are adjacent to the
layer's sub-domain. Geometrically, the transformations are essentially
magnifications of the relevant sub-domains in directions orthogonal

to the edges.

For any differential equation with constant coefficients, the
estimation of the relative orders of magnitude of the terms in the
transformed differential equation is independent of the constants a and
b. Thus, in the present problem let § = A% and N = )\ﬁy. The

transformed differential equation can then be written as

2 2
e 2°0,, 43p 0 U 2B BT _ 1. 8)

o§ on o
If for a fixed a and B all derivatives of U are considered to be of
the same order of magnitude in A , then, to a first approximation for
large A , terms in the transformed differential equation can be deleted
or retained - depending upon the values of a and ﬁ.* There are seven
possible combinations of the three terms in this transformed differential
equation. Any differential equation which is formed by one of these

combinations will be designated as a sub-equation. The seven sub-

equations derivable from equation 1.3 by letting A\ — o0 are as

follows:

i The author has seen a procedure somewhat similar to this one
employed by Professor P, A, Lagerstrom in lectures at the
California Institute of Technology in connection with an ordinary
differential equation.
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{a) = =0 if 14> 2a, 2B, i.e., a, P=<1 and 2a<1+B

(b) Z5=0 if 2B> 2a, 1+B, i.e., a, 1=<B

2
() 2}%: 0  if 2a>2p, 14B, i.e., 14+B=<2a and P=<a
)
. (1.9)
3BT U Lo nd :
(d) S -2—5--— =0 if 2a=14f>2B, i.e., 20=p+l and B=<a<l
ok 4
3’y L8 U
(e) > =2 — =0 if 2B=1+f>2a, i.e., a<P =1
on o
a°u | »%u

(f)F+-—2_=o if 2a=2p>1+B, i.e., l<=a=p

a'U 2 U oU 4
() y 2"23 =0 iffa=p =

1
Each layer in the asymptotic approximation is associated with one or

two layer variables and will be considered as depending explicitly upon

its layer variable(s). Thus, there is an ordered pair (a, ) associated
with each layer. By means of equation 1.9, (a,p) determines a sub-
equation to be associated with the layer. The pair (a, ) will be

designated as the exponent pair. The inner solution, as a degenerate

layer, can be considered as having the exponent pair (0,0). A
boundary layer has an exponent pair of the form (a, 0) or (0,p) and is

designated, respectively, as a x-layer or y-layer where a and B are

greater than zero. All other exponent pairs are associated with

corner layers.
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It is now seen that there must be some kind of rule by means of
which the relevant exponent pairs can be determined. Such a rule is
incorporated in a set of criteria which form the operational rules of

our technique. These criteria are simply the result of an attempt to

codify procedures and considerations that have been successful in a

number of problems. The first three criteria are as follows:

(A): Layer
A layer and its derivatives must become, at least, ex-
ponentially small as any of its layer variables tend to infinity.

This must also be true of each layer component.

{B): Matching

(i) When two layers are matched to a boundary, they
must both have the same layer variable as measured tan-
gentially to that boundary.

(ii) Matching progresses from inner solution, to boundary
layer, to corner layer, etc. When matching layers, the
matching is done progressively for layers having increasing
values of 0.2 + 132.

(iii) Matching continues indefinitely or until a layer is
reached which has the entire transformed differential equation
as its sub-equation. (In certain cases matching might stop
when a sub-equation is reached which includes all terms of the

transformed differential equation involving the higher derivatives.)
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(C): Uniqueness

The pertinent sub-equations are among those which are
associated with unique values of a= 0 and = 0: provided that
these values are obtained systematically in accordance with

criterion B.

There are also sub-equations associated with unique values of a= 0
and B = 0 which can be obtained in a similar manner. Remarks con-
cerning these will be made subsequently.

Before these criteria can be applied the term component must be
defined. Now in asymptotic methods such as this each layer, as well
as the inner solution, is a function which is determined by an iterative
procedure, For example, the inner solution U0 is assumed to be of

the form;
o)

UO = Uolx: Y!A_) = z Ur?(x: Y)
n=0

e
X (1.10)
where /ao is some constant greater than zero. The superscript 0 is
not an exponent but identifies the function as the inner solution. Thus

= will be the 1-layer, U2 the 2-layer, U13 the 13-layer, etc. In

U
practice each of the terms of which the series in equation 1.10 is
composed is found successively, Each function Uz? which appears in
these terms will be designated as a component of UO or as an 0-
component. Each component is found as a solution of a boundary value
problem. In other words, the inner solution and each layer are de-

termined by an iterative procedure which entails a sequence of boundary

value problems.
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Let us use the criteria to determine the pertinent exponent pairs
and sub-equations.
First, for boundary layers along the 1- and 2-edges, we take

f = 0. The following implications result from equations 1. 9;

[—

(a) = a< 3
(b), (e), (f) and (g) are not applicable

(¢) = a

v

(d) = a=

By criterion C, the pertinent sub-equation is given by (d) with a = -;— .
Now, by criterion B(ii) the corner layers for matching these boundary
layers must have a = El and B> 0. Again using criterion C, it follows
that the pertinent sub-equation is given by (e) with the exponent pair
(%, 1). Continuing this procedure, we seek a corner layer with an
exponent pair (a, 1) where a >§1 . The same criteria determine the
sub-equation (g) with a = B = 1. Since (g) is the entire transformed
differential equation, as stated in criterion B(iii), no further matching
is necessary.

Second, for boundary layers along the 3- and 4-edges, we take
a = 0. Inthis case both (a) and (c) satisfy the uniqueness criterion.
However, (c) with B = 1 gives a positive [‘3.* Thus, sub-equation (c)
with (a, B) = (0,1) pertains to these boundary layers. The sub-equation

for the matching corner layer is found to be (g) with (a, B) = (1,1) and

As stated before, the use of negative values of a and B will be dis-
cussed subsequently.
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again the matching process terminates. We see that boundary layers
along the 3- and 4-edges have only one set of corner layers. The
pertinent variable transformations are now known, as is the general
structure of the layers in the corners.

As described in the heuristic discussion, we assume that the exact
solution U can be asymptotically approximated for large A by a sum
of functions, i.e.,

1 41 42

st el B P LTS LT

u~ul+ulsvts vt uPr vt U

131+ U141+ U232 42

+U + Ul

{1.11)
Layers such as U313, U323, U4]‘4 and U424 are not included since the
discussion above implies that U31, U32, U41 and U42 need no layers to
match them to the boundary conditions. In solving this problem the
basic technique is used repeatedly. For example, the procedure that
shows the 3- and 4-layers to be zero is quite analogous to the procedure
for determining the 1-layers. This statement also applies to the 2-
layers since we could take a (finite) rectangle and deduce that the
2-layers were also zero — no matter how great the rectangle's length
was., Therefore, for simplicity, it is deemed best to assume that only
the inner solution and l-layers represent the asymptotic approximation

for large A . Let

0 1

u~ vl utsuP s Ut ol gt

(1.12)

where U0 = Uo(x, y» A ). Since the exponent pair for the l-layer is
(—21-, 0) the layer variable is § = ) \ x. Similarly, the exponent pair

(21-,1) for the 13- and 14-layers leads to the layer variables £ = ; 3y
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q = )\ y and § = /—5\_‘ X, ] = A (1-v), respectively. Let
glz /-X‘X, EZ =kxs ”1=RY’ ”Z:th'Y) (1-13)

then U~V where

v = 0%y N) +ule fl.y;)\) + U3¢ §1,’(l;>\) + Ut £ 7,50

+UPNCE, A0 UM E, TN

Now criterion A is used in determining the relations which each of the
terms of V must satisfy. For example, at a given point interior to the
domain VNUO('s, y;k) as A — o since the £ - and % , must tend to
oo and make the layers exponentially small. This is true for all points
of any bounded closed sub-domain stri;:tly interior to the domain. Since
this is assumed to also apply to all derivatives of V it follows that U0
must satisfy equation 1.6, Similarly, if we consider all points such that
y is bounded away from 0 and 1, and £ 1 is bounded away from zero

and infinity, then V-~ U0[0+, y;>\) + U]'I fly;X) since £ 2 a 1 and

7]2 — . Under this assumption, because Uo already satisfies equation
1. 6 then U1 will satisfy the transformed form of 1.1 in terms of § 1 and
y. Similar statements apply to the other layers. At a boundary point,
e.g., at x = 0, with y bounded away from 0 or 1, we have V~U0(0,y;)\)
+ Ul(O, Vs A), since the layer variables other than £ 1 tend to infinity.
This result simply states our intuitive notion that at points on l-edge,
which are away from the corners, only the inner solution and the l-layer

should be significant. Reasoning such as this will be implicit through-

out this thesis and results will generally be derived formally without
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detailed discussion. Note also that in the subsequent work subscripts
will not be used on the layer variables in order to avoid excessive
notation. There need be no confusion since the superscripts on a function

will indicate how its independent variables are to be interpreted.

c. Differential equations

The inner solution

Since A appears in equation 1, 6 to the first power, it is sufficient

to take /(0 = 1 in equation 1.10, Thus, we assume

[0 0]
"l Z U %, y) A" (1.14)

n=0
and formally substitute U0 for U in equation 1. 6. Upon equating
coefficients of equal powers of A » we find that the Owcomponents
satisfy the sequence of differential equations given by

ou 0 s%u 92U

2 g « S
¥ ox oy

2
il

NP ©
NB o

n=0,1,2,... (1.15)

Throughout the sequel functions with negative subscripts will be

defined to be zero and n will be a non-negative integer,

The 1-layer
As stated before, this layer's exponent pair is (%, 0). Analogous
to the form of equation 1.14, we assume that the l-layer, Ul, can be

written in the series form

Q

SR B SED I NT PN (1.16)

n=0
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where § = V2 Ax. The ¥ 2 has been introduced here merely for
convenience., With this transformation, the transformed form of

equation 1.3 is:

Z
NP
G

2
ag_)\ﬂ=o (1.17)
oy ¥

We now formally substitute U1 for U in equation 1.17 and by equating
coefficients of equal powers of )\ s, we obtain the sequence of differ-

ential equations satisfied by the l1-components. They are

a%ul sul i
P e S . (1.18)
Y By 2 "2

The 13-layer

In accordance with criterion B(i), the layer variables for the 13-

layer are taken to be

£ = .VZXX andﬂ=)\y (1. 19)

The transformed differential equation is therefore

2 2
9°U L 8U , 2 U

0 A -l = 0 (1.20)
s> M N ag?

Analogous to the preceding work, assume that

o0

U13=Z u P, 2N (1.21)

n=0

and formally substitute U13 for U in equation 1,20, It follows that

SZUS auf' aZUL2 i
2 oA (1.22)
aqz n ok
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The 14-layer

For this layer the layer variables will be
§ = 25: X and ﬂ = )\ (1-vy) (1.23)

and the assumed form for U14 is

Q

ylt =Z SR B N (1.24)

n=0
It is obvious that the equations analogous to equation 1.20 and equation

1.22 are found by replacing 4 by -7J . Thus,

aZUi4 an4 82t¢4l
+ 2 = -2 - .25)
a,,2 of a;z

As stated before, there need be no confusion due to the use of 4 as the
second independent variable for both U13 and Ul4. It will be assumed
throughout that the superscript on a function indicates how its inde-
pendent variables are to be interpreted.

We now seek the appropriate boundary conditions for the differential

equations derived here.

d. Boundary conditions

At points with y bounded away from 0 and 1, the boundary condition
for x = 0 becomes
u0,v: N) + U0, v \) = 1ly)
or

Ud(0,y) + Ug(0,y) = fly)  U2(0,y) + UL(0,y) = 0



o

Now U(? can quickly be disposed of because equation 1.15 shows
that it is a function of x only. Thus, the boundary conditions at the
3- and 4-edges require it to be zero. It then follows that all Un0 = 0 by

induction, With the inner solution identically zero, the boundary

condition for x = § = 0 becomes
1
U0 = f(y) Uu =0 (1.26)

In particular then, using equation 1.18, the first component for the

l1-layer must satisfy the following equations:

o’u; v .
a2 =0, U, (0,v) = £ly) (1.27)

A short digression is in order here to point out how the present
example requires extensions of the procedures used in the classical
method. It is clear that equations 1.26 and 1.27 have been obtained
without using information concerning the structure or the detailed be-
havior of the corner layers. Thus, these equations could have been
obtained by what has been termed the classical method. However, the
boundary condition for Uol given by equation 1,26 together with the re-
quirement of exponential decay for ! —= o0 (as required in criterion A)

are not sufficient conditions to determine Ué. This is due to the

presence of the y derivative in equation 1.27, which indicates that
another boundary condition is required.
If the original differential equation 1.6 were replaced by
2 2
o U + 9 U

sz oy

2AU=0
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while the boundary conditions remained the same, it is clear that the
first component, Ué, in the boundary layer at x = 0 would satisfy the

differential equation

and the boundary condition
1
U,(0, y) = £(y)
This boundary condition, together with the requirement of exponential

decay as f—h- 00, uniquely determines this Ucl) as

Ué = f(Y)e't

In such a case Ué is therefore determined without reference to the
corner layers. This is typical of what we will term a classical
problem.

Wittrick (15) provides an excellent example of the use of the
classical method. He obtains a solution for the boundary layer stress
system near a circular edge of a thin elastic shell whose middle surface
is a surface of revolution. In doing so, (15) page 250, he arrives at
the differential equation

84W

(o]
?—+4W0—0

(1.28)

for the first component WO in a boundary layer expansion of the dis-
placement normal to the shell. The stresses in the boundary layer are
given in terms of WO. € is the layer variable measured normal to the
circular edge along a meridian, Wo = Wo( §,0) where 0 measures the

angle of the meridian plane., Equation 1.28 is essentially an ordinary
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differential equation. As Wittrick indicates, a solution which has
exponential decay for increasing § is W= e £ EF(O)cos § + G(0)sin §]
where F(0) and G(0) are arbitrary functions. They are readily de-
termined by conditions at § = 0. Again then, the classical method is
successful where boundary conditions at § = 0, together with the
requirement of exponential decay, are sufficient to determine the
boundary layer.

In the present example, the required additional boundary condition
is obtained by considering the matching corner layers. Aty =1 the
boundary layer and corner layer are superimposed so that formal
substitution of Ul + U14 into the condition U = 0 gives

1 14
v (E,n+U(§,0=0 (1.29)
Similarly, at y = 0 we obtain
1 13
Un(E,O)'l'Un (’5,0)=0 (1.30)
Equation 1.22 gives
o’uy  aup
Y |

which is readily integrated. Its solution is

13 2
vl g th) g8

Equation 1.25 gives

BZU%)‘jt oU 14

0
87]2 on

+ 2 =0
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or

Ué4 = go(t)e‘Zﬂ * gl(f)

However, in accordance with criterion A, for these to be corner layers
they must decay exponentially in ” . Thus, we must have f0=f1:g1= 0.
This means, by obvious induction on n, that there is no 13-layer to

match the 1-layer to the 3-edge, but that

. = -ugt | (1.31)

matches Uo1 to the 4-edge whatever the value of Ué( £,1). It follows

that we must have
Ui( F.0)=0 (1.32)

This is the necessary additional boundary condition for Ué.

e. First components

In summary then the boundary value problem for U1

0 18
aul syl
0 0 _
2 93 " 8
o y
1
U0, y) = £(y) (1.33)

U(l)(f,y)—n-o as § —=

The boundary value problem is described in the § ,y plane in figure 7.
If the differential equation 1.33 were required to hold in the entire
quadrant § > 0, y >0, instead of in the strip 0 € y < 1, £ > 0, and
if the boundary datum f(y) were given along the entire half-line y > 0,
then the resulting boundary value problem for Ué would be a standard

problem of transient heat conduction. With the variable y representing
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1
Uy=0

Figure 7., Schematic of Boundary Value Problem

the time, the problem would be the determination of the temperature

U0 in a semi-infinite rod subject to a given time-dependent end

1
0

to this heat conduction problem is known to be

temperature U_ = f(y) and a zero initial temperature. The solution

o ®
y ~ - 2 2
L. ok f(p)e 4r-p cand i S 13 -p /2
U_= dp-/— fly-=—3) e dp
. /4v§ y-p)>"? v 0 ( Zp)
Y2y

(1.34)
Since it is clear that the values of this solution, for 0 <y < 1,
depend only on the values of f(y) for 0 < y « 1, we expect that our
present problem (1.33) is well posed and that its solution is given by
1.34. Thus, from equation 1.31, the first corner layer component is

found to be

] §2

(00
14 -ge*”s flp) " -p) [Z-27 5 £°Y -p°/2
U .= = e dp=-y —e f{l- 53— Je dp
0 m 5 (1-p)3/2 T ¢ ( 2p)
ryz (1.35)

Further assumptions about U1 are necessary to insure uniqueness, One
such condition is that U(l) be bounded uniformly in § as g tends to zero.
This would exclude functions such as the doublet ( f/ysl )exp(‘-le4y),
(11) p. 35.
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For purposes of discussion and illustration, we restrict attention to

the special case

Substituting this into equations 1.34 and 1.35, we have

Ucl) = 1-erf(——§—) = erfc( : ) (1.37)
2 /v 2 /v
and
Ucl)4 = -e—Z?’ erfc (T?.E) (1.38)
For large values of £ = /Z-x x, there is the asymptotic expansion
52
vl 2/ o YL (., (1.39)

B 0

This shows a decay rate for increasing § which is greater than the

exponential decay that we have required.

f. Results and discussion

In terms of the original variables, the temperature distribution in

the plate region between the reservoirs has the asymptotic approximation

T el e'er—g-)/-g—]-i- o%\) (1.40)

provided that corners of the region are excluded and that )\ = bV /2k
is large. Here § = m x and T = 1 for x = 0. This is an
approximation in which terms sufficiently small in comparison with
unity have been neglected.

Let us consider the possibility of plotting isothermal contours.

We note that for small temperatures the approximation becomes of the
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same order as the neglected terms. Thus, the shape of the contours
can only be accurately estimated where the temperature differs
significantly from zero. This means that such contours are inside
the boundary layer sub-domain, i.e., the l1-domain. However, it is
physically clear that all contours meet in the corners. To see this
consider the exact solution of the heat conduction problem for V = 0;
it can be shown that
sinh £
xy

sin —+
b

Timilia % arctan (1.41)

Equation 1.4l gives isothermal contours which are symmetric about the
line y = b/2 and concave toward the l1-edge. These contours are
sketched in figure 8. Intuitively, it is expected that for V > 0 these
curves would shift in the positive y direction. In accordance with the
above discussion, we see that 1.40 implies that the contours have the
shape of parabolas for the larger values of temperature when A is
large. These contours are sketched as solid lines in figure 9. However,
since all contours meet in the origin, there will be contours there that
represent low temperatures for which 1.40 is inadequate. In this sense
then, we may consider the boundary layer domain to be bounded by a
parabola, i.e., to have a semi-parabolic shape rather than that of a
rectangle as was employed in the heuristic discussion. Of course, the
shape of the boundary layer domains can be expected to vary with the
type of problem considered.

The differential equation 1, 6(i) is a special case of the equation

treated by Wasow (12), i.e., AU +>\88TU =A f(x,y). Wasow considers
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Figure 8. Isothermal Contours for A = 0 (The Static Case)

parabolas in boundary layer

-=—=—- hypothetical contours

Figure 9. Isothermal Contours for Large A
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a finite domain and mentions but does not determine boundary layer
terms. The methods that he employs are restricted to the special
form of the differential equation.

The paper by Levinson (13) considers the following more general
differential equation of which Wasow's equation and ours are special

cases;

AU + [A(x. yhgy + Bl y)gy + Clx, v)U] = ADl,y)  (1.42)

In relation to the problem of determining the behavior for large A of
the solution of 1,42 which has given values on the boundary of a domain,
Levinson shows that an important role is played by the characteristics
of the sub-equation

Alx, y)-g—:: + B(x, y)-g%J + C(x, y)U = D(x, y)

In our case this sub-equation is simply dU/3y = 0, whose characteristics
are the lines for x constant. Levinson defines a '"regular quadrilateral"
which is determined in part by these characteristics. A regular quadri-
lateral for us is any rectangular sub-domain whose sides are determined
by the lines y = 0, y = 1 and two fixed values of x > 0. The presence of
boundary layers along the segments of the boundary which also form
part of the boundary of a regular quadrilateral are discussed in (13).
These boundary segments are not to be tangent to the characteristics

at any point. Thus, in relation to our example, Levinson is concerned
with boundary layers on the 3- and 4-edges. His very general results,
when applied to our case, predict the possible presence of a boundary
layer on the 4-edge and none on the 3-edge (or vice versa, depending

upon the sign of A). Furthermore, the functional form of what we call



-

the first boundary layer component is given for the 4-edge. Because

of our special boundary conditions the 4-layer is zero. A point of
significance for this thesis is that both Wasow and Levinson show that
what we call the inner solution can in general only be made to satisfy
boundary conditions over part of the boundary and that this part depends
upon the sign of A By reasoning similar to that used here for the
l-layer, we can arrive at this conclusion. Since the exponent pair

for the 3- and 4-layers is (0,1), the pertinent sub-equation is 1. 9(e)

which can be written

24 q
e+t S =0 (1.43)

a7 on
where I( = )\y or A (1-y) if g = 3 or 4, respectively. Integration of
this equation, as was done in connection with equation 1.31, shows that
there can be no 3-layer since 1.43 with q = 3 does not yield any ex-
ponentially decreasing functions for increasing 4 . It is obvious that
a change of sign for A in 1.6(i) would yield the reverse situation: there
would be no 4-layer. We thus conclude that the inner solution must
satisfy the boundary conditions where there is no boundary layer and, of
course, in general it would then not satisfy the boundary conditions
where a boundary layer can exist since the inner solution satisfies a
differential equation of too low an order.

It should be noted that both papers have sought to study asymptotic
approximations in a rigorous manner, e.g., Levinson's results can be
used to prove that the first component of the inner solution is zero in
our example, However, although both authors consider domains of very

general shape, the l-edge of our problem represents a portion of the
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boundary which is not discussed in their papers in relation to a

boundary layer. The l-edge is a boundary segment which coincides

with one of the characteristics mentioned above.

g. The exact solution

The problem as formulated in equations 1. 6 is readily solved by

use of the sine transform. Define
[e)
U= S U(x, v) sinwx dx (1.44)
0

so that equation 1.6(i) can be transformed into the form

2
_-2- 2 A& T - A = —w 26)) (1.45)
dy
wherein equations 1, 6(iii) and 1. 6(iv) have been utilized. Using equation

1. 6(ii), it follows that

<=.'>\y g )\7"

U= Psmh/o 31nh,o (1-v) S e (T)smhﬂf a7
0
1
: A7 .
+ sinh oy o f( 7')s1nhp (1-7)a7 (1.46)

5 4
where P = ( )\2+w2)1/2. If we now assume that equation 1. 36 holds,
i.e., f{y) = 1, then it can be shown that (16),

N @
U=1- 2 it yS s1nk.1-p('1-y) sinwx 'dw- A(l-y)S sinhQy sinwx .o
T s1nhlo w smh,o
0

(1.47)

In order to make a comparison with the results in section (e), we must
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obtain the asymptotic approximation to equation 1,47, The integrals
involved are not directly amendable to the usual asymptotic methods
for approximation, such as the methods of steepest decent, stationary
phase or Laplace. To obtain the boundary layer components, we set
£ = /2? x and formally obtain the asymptotic approximation by
taking A to be large even in comparison with w. Thus, for example,

we take 4

2)\ §>\3

By making such approximations, we may write

+ ece

P =Atz

oo sin(“J ) _ ywz 4 6 3
U~1-—;:1r0 —‘ﬁdw e ZT[1+§“’X3-_IZG%+0(‘§6-)]
(2-y)w® -ye®
—e-k(l_y) e- —7_3%_—[1 + O(ﬁ;)]+ e_2>\(l-y) e —Z_YX— [1+O(-‘;T:)]
1+ wz

e 2N, [1+o (%;)] + o(e'(1+V’7‘)+ o(e'Z)‘(Z'V)) (1.48)

It follows that all terms in equation 1,48 below the first line are
negligible for y bounded away from one. Further evaluation can be

made if we use the following relations (16) p. 74,

o _ywz .
% S e ZA stlr:mx dw = erf (/T:Y: x) (1.49)
0
Jo) _L“i; _)\ J—\ /7\-
%S o5 w3sinwxdw=-J% - )\2[( 772) -3Y5/§] (1.50)
0 :
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Appropriate substitutions then give the result,

2 2

e-%[ £ 38 ] +o(%e-%)'

5/2 " 3]2
ZY/ Y[

U~l-erf(.—£._)+_l_ _]_'.___.
2 Yy A 8 ™
(1.51)
: 2 2 2
provided that y is bounded away from one and § = + vy is bounded
away from zero. The first term is Ué as given in equation 1,37. The
second term is also readily obtained by our asymptotic method, but
again as stated in connection with equation 1.34 further assumptions
are necessary to insure uniqueness.
This process can also be repeated using the two transformations

£ = Y2\ x and 7 = A(l-y) so as to confirm the corner layer component

in equation 1.35.

D. Commentary

a. An additional criterion

It seems advisable to add one more criterion to the three already

given in part C, section b:

(D): Consistency

All boundary conditions and differential equations involving a

layer component must be mutually consistent.

This is to mean, for example, that if certain derivatives of a component
satisfy given conditions at a boundary, then these conditions must not
violate the relations between these same derivatives that are implied

by the differential equations that govern the component. Another ex-
ample occurs where relations can be obtained by requiring a set of

boundary conditions to be mutually consistent,
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This criterion seems obvious as stated especially if we assume
all functions to be sufficiently differentiable and the pertinent series to
have proper rates of convergence. However, it has been found to be of

such practical importance that it deserves explicit statement.

b. Negative exponents

In relation to the criteria and the sub-equations, the possibility of
exponent pairs, (a,p), where a and/or p may be negative has been
pointed out but not discussed. The criteria indicate how these exponent
pairs are to be deduced. From the nature of the layer variables
corresponding to the exponent pairs, it is apparent that any functions of
them must in some sense be considered as wide or super layers.
Johnson and Reissner (17) obtained one such wide boundary layer. The
first problem in chapter II is a more general treatment of the problem
that they considered. At this stage of investigation it must be stated as
a conjecture that the exponent pairs with negative a and B (which are
analogous to those for corner layers) are important in certain problems
and can be treated in a systematic manner. Since the method presented
here, using positive a and B, is apparently adequate for certain problems
with bounded domains, it is expected that the use of negative a and B
is necessary for treating corresponding problems with infinite domains.
Thus, we may predict the existence of wide of super corner layers for
such problems wherever our method indicates exponent pairs with both
a and P negative, An example of a possible domain for this would be a

quadrant.
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II. TWO APPLICATIONS IN THE THEORY OF ELASTIC PLATES

A, A Stretched Plate with a Transverse Load

a. Introduction

Consider the problem of the deflection of a thin plate whose
middle surface has the shape of a semi-infinite strip. It is subjected
to a uniform tension Nx parallel to its infinite edges and a transverse
load that varies across its width but which is independent of the length-
wise position.* The two infinite edges are simply supported and the
finite edge is clamped (fig. 10). The plate is of uniform thickness h
and width 2b. It consists of elastic, isotropic material. This
problem, for a special sinusoidal transverse load, has been treated
by Johnson and Reissner (17). In their paper they demonstrate the

existence of a wide- or super-layer in the asymptotic approximation.

This layer is so named because it has a sub-domain with a width which
is large in comparison with the finite edge of the plate. The usual
boundary layer is one whose sub-domain has a width that is small com-

pared with the characteristic dimensions of the plate. The importance

of this problem is that it affords an example of the use of an exponent

pair (a, B) where, say, a is negative. Thus, the layer transformation

for this super layer is a condensation or contraction of the domain in
the direction orthogonal to the finite edge, rather than a magnification
as is the case for a boundary layer. Because of the large scale of this

super layer and the believed applicability of the method as presented in

Nx is a stress resultant in as much as it is the integral of the corre-
sponding stress taken over the plate thickness.
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Chapter I for finite rectangles, it is expected that such super layers
are only useful in treating problems with unbounded domains. Thus,
super layers are associated with infinitely remote boundaries or edges.
We will use the super layer to find the asymptotic approximation for
Johnson and Reissner's problem when the transverse load is arbitrary
as described above. As in the example of Chapter I, an exact solution
of this problem is readily found. Johnson and Reissner use an exact
solution for comparison in the case of their special transverse load.

The reader is referred to their paper for this discussion.

b. Formulation of the problem

The classical equations for this problem can be found in standard
texts which treat the elastic theory of thin plates, e.g., (18) p. 299 et al.
The problem can be stated as follows:

W= W(x, y) is to satisfy

a*tw atw _otw qby) . Nx o%w |
F R o 5 adbeid ki L ) .M
ox 9x 9y oy ox
and the subsidiary conditions
BZW oW
W=V=0 for y = £ b; W=W=0 forx=20 (2.2)

W and %‘—-}f bounded for x = o

2
Here q(y) is the transverse load per unit area and D = Eh3/12(1—v L 1&
the stiffness coefficient of the plate. E and v are the Young's modulus
and Poisson's ratio, respectively, for the material of the plate. The

differential equation can be put into a homogeneous, non-dimensional



44

form by the following substitutions;

Let .
£ & 2 b Nx "3 "
x=hx, y=by, AN = D * W = Ulx, y)-£{y) (2.3)
where
1(y) = aty) - £ (F2auges) - ZL G
and
4 2
Qy) = - 'Ev S (?—t)3 q(bt)dt; d_—? = QN
ed) dy
so that
d2e85)
f(;): —ZY = 0 foF y::l:], (2.4)
dy

We assume in the sequel, that these substitutions have been made. For

convenience, the bar notation will be omitted. We now have;

- = 4 2
a°U 2 U U 29U
+2 - =R =0 (2.5)
ot P -
with the subsidiary conditions
BZU oU
U=—= =0 fory==%1; U=f(y)and =— = 0 forx =0 (2.6)
Byz ox

c. Structure of the layers

We seek an asymptotic approximation for large A\ . As discussed

in Chapter I, the transformed differential equation is obtained by letting

f= )\axand}{=xﬁy. It is

4 4 4 z
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Again, proceeding as in Chapter I, a sub-equation analysis gives,

2

(2) a—sUT =0 ifa, B, 2B-a <1
9
4
(b)a_thi—:o ifl, B<a
)
4
(c) 87320 ifo.,lz—a-<|3
3
4 2
(d)%g_%-%:o if p<a = 1 (2. 8)
)
4 2
3°U  8°“U . lta
(e) S ey & ) if agp = 5—
31,4 9§ 2
4 4 4
n 25 +2-3°5 +2 7.0 iriga-p
ok ok“op” o
4 4 4 2
R e = LICIETSL
at ok o~ ok

All other sub-equations are impossible.

For the x-layers, assume B = 0. Criterion C then indicates that
the appropriate sub-equation is 2, 8(d) with a=1. However, there is also
2.8(e) with a=-1. This latter sub-equation must describe the super
layer. It is seen that there are no other B# 0 which are uniquely de-
termined for a=-1. This indicates that there are no layers to match
the super layer to the 3- and 4-edges. Such layers would obviously be
unnecessary since 2,8(e) is of fourth order in the ﬂ derivative. Con-
tinuing the discussion for the x-layers, we seek a sub-equation having

an exponent pair (1, ) with p > 0. Again by criterion C, this exponent
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pair is (1,1) which corresponds to equation 2.8(g). Since this sub-
equation represents the entire equation, no further matching is
necessary.

For the y-layers, assume a= 0. Criterion C indicates that B = -% ’
which corresponds to equation 2,8(e). Accordingly, the next exponent
pair is (1, -%—) corresponding to equation 2.8(d). This procedure continues
to one more sub-equation; the entire transformed differential equation
2.8(g) with (a,B) = (1,1).

We see that had the plate had its infinite dimension parallel to the
y-axis that there would have been no super layer. The super layer
obtained by Johnson and Reissner is the only one connected with this
class of problems. This super layer can be considered to replace the
inner solution since it intuitively ''lies over' the inner domain. The
order of the differential equation 2.8(e) in relation to the § derivative
indicates that the super layer will require matching to the l-edge just as
the inner solution (equation 2.8(a) ) would for a finite plate. Thus, the
asymptotic approximation is considered to consist of the super layer
and the l-layers., We will use the notation U-1 to denote the super layer.
It is important to note here that the sub-equation 2,8(d) is essentially an
ordinary differential equation. Thus, the l-layer can be determined
without consideration of the relevant corner layers, i.e., the treatment
of this layer is exactly that used in the classical method. However, we
also see that in general these corner layers do exist and that our method

indicates how they can be found.
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d. The l-layer

We assume

Qo

vt =Z R IROD N (2.9)

n=0
where § =>\x since the exponent pair is (1, 0). With these variables

the transformed differential equation for U1 is

syt o ka1 % _—
st* ' aF* Nk ey X oayt
Formal substitution of equation 2.9 into 2.10 gives

atu! 2% atul atul

n n n-1 n-2
= g - (2.11)

Z 2 2. 2

o€ ot of “ay ay

as the sequence of equations to be satisfied by the l-layer components.

In particular,

otul . eful
: 0 0
(1) 4 = 2 =0
o€ ok
and (2.12)
L N 54
(i) T R
o 14 o “oy

These two are readily integrated to give;

2
- i - d"g,(y)
U{.J = gO(Y)e § and Ui =§ gg(Y)e t+ gl(Y)e £ where gg(y) = __T_d:
(2.13)

as the only solutions in compliance with criterion A, i.e., the solutions

which decay at least exponentially as § —» oo.
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e. The super layer

As for other layers, we assume
0

u? Z Rl S (2.14)

n
n=0

where § = x/ A is the transformation indicated by the exponential

pair (-1, 0). With these variables the transformed differential equation

for U-1 is
stel Vgt 2 atw' 1 gMut .15
oy ok N aflay ANt at*
Formal substitution of equation 2.14 into 2.15 gives
st oful i gyt
n R o b n-1 n-2 (2.16)
8y4 Y & a!zayz ok 4

f. Boundary conditions

The absence of boundary layers, along the 3- and 4-edges, to
match the U-1 layer means that each component of U":l must satisfy the

boundary conditions on these edges. Thus,

U =z—s— =0 fory==%1 (2.17)

Furthermore, U~! must be bounded for ¢ large. The boundary con-
ditions on these layers at the l-edge are obtained by formally substituting
Ul + U_l into the conditions at x = 0 and equating coefficients of equal

powers of AL Doing this, we derive the conditions:
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Ué(o. y) + UBI(O, y) =f(y) and U;(’O, y) + Ur'll(o, y) = 0 forn#0 (2.18)
also
1 1 = |
39U (0, y) ou_(0,y) au__,(0,y)
5" 0 and 58 ¥ 5E =0 forn# O (2.19)

Let the reader be cautioned again that the two § 's appearing in the
second equation of 2,19 are not the same. There should be no confusion
since the independent variable § for Ul is given in section (c) while

that for U™ is given in section (d).

g. Determination of the components

The form of Ué given in 2.13 and the first condition in 2.19 imply
that g

The boundary value problem for U0 can be formulated as follows: let

V = U, then
; %V oV
_7_ § g = 0 '(2. 21)
oy of
where
2%V
V= e 0 fory==%£1
ay

V=fly) for £=0

and V is bounded for § large. Assume

Qo
V:X vn(-f)sin“—‘;ﬂi”ﬁ (2.22)
n=l

then
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dZVn nm
i el Y =0
dg’z 2, ) n
or
nZ_"Z
) ¢
V. =ae $2.23)
n n

so that the solution is bounded. Using the orthogonality and complete-
ness properties of the functions sin %r (1+y), it follows from the

condition at € = 0 that

2 2
(e 6] _ nmw t
-1 _ _ 4 : 0 s
U0 =Vs= Z a e sin —= (1+y) (2.24)
nel
where
1
_ .. nm
= S f(t) sin 5= (1+t )dt
=1

Now V satisfies the differential equation 2.21
2 2
( ) 8) ( 0 8)
& = V=0 (2,25)
ayZ BE, oy’ oF,

by making the first operator zero, i.e., E)VZ/BV2 = 9V/o€ as can be
verified by the series 2.24 since it converges uniformly for 0 < § .*
Thus, as far as this solution is concerned, V = 0 at y = £ 1 implies
82V/8y2 =0aty=%1, If § represents the time, V is the solution for
the temperature distribution in a rod of length 2. The ends of the rod

are maintained at zero temperature and the initial temperature distri-

=
§ need not be bounded away from the origin since d3f/dy3 is con-

tinuous by construction.
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bution inside the rod is given by f(y). Various special cases are
discussed in Carslaw and Jaeger (11) p. 58. The second derivative of
f(y) exists due to the special nature of its construction. This means

that the boundary layer component Ui can be deduced from equation 2.20

as simply 2
Ui =d—f2-e‘f (2.26)
dy

The corner layers UE and U:L for n = 0,1 can readily be shown to be
zero because U(l) = 0 and dzf/dy2 = 0for y=%1. It also follows from

equations 2,16 and 2,18 that

2 2
T - 5= = -2 e & +ZZ(—2— a_e sin >- (1+y) (2.27)
oy ok of =
=l
and
2
-1 dy-f
urMto, y) = - S5
dy

The solution, that satisfies the boundary conditions at y = 1 and is

bounded for large § , is readily shown to be

2 2
-1 = '\’ cer= 4TT § nmw
U1 =z [bn+ T) an§] = sin—z— (1+y) (2.28)
n=1
where
1 2
e df (t) . nw
b= -S —d?— sin —2—(1+t)dt
-1

Collecting results,

2 Z
nmwx

oo
U NZ a e T sin%—-" (i+y) +
n=1
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+_;_Z. 3.2 '7‘x+i [b +( ) x] __xsinﬂz’-'(uy) (2.29)

n=1

where x and y are understood to be barred.

h. Results

In the original notation, we have:

n v x
W~-f(%)+z a_e A sin 37 (b+y)

2 2
oo
n=]

,a f(b

)\2 . Z [b +( ) —7\] —x 51n— (b+y)
y 0(#) (2.30)
where

)
I

1 1
; f :
> S f(t) sin EZE (1+t)dt, ML S d—d?(i sin %lr (1+t)dt
1 -1

1l

A X

ty) = Qly) - S (> ny+3) - G gy

b 3
Qy) = - 2 S (y-t)~ q(bt)dt
21



o

This is the asymptotic approximation for large ) of the transverse
deflection of the stretched plate. The deflection is produced by the
arbitrary transverse load q = q(y). The terms for the corner layers
have been omitted so that this approximation is not accurate in regions
near the corners.

If we assume as a special case that

q(y) = k cos —Zt—g (2.31)

then from equations 2.3

4
kb 3 24 48
Q(y) =i 3-1-1-_—ﬁ— [(Y+1) i | (Y+1) - —-3‘ cos -%X]
™ ™
which makes
- B
™ D ™ T D

and
2. &b, =0 for n # 1.

Thus, the substitution of qy) from 2.31 into 2.30 gives

: A

4 2 + - 15 L
16kb [ 1 = 1" % x] ZoA 1 w b Ty
W~ 1-j1+ 5 — + =5 =le -— 5—e COS =+
D >‘2 4 >‘3 16 b >\2 4 2b

+ o(#) (2.32)

This formula for the transferse deflection of the stretched plate was
found by Johnson and Reissner (17). We note that the super-layer

decays exponentially with increasing x.
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B. Bending of a Stretched Rectangular Plate

a. Introduction

This problem treats the bending of a thin, rectangular plate
which is subjected, on two opposite edges, to a uniform tension N
parallel to the mid-plane of the plate. There are arbitrarily distri-
buted bending moments M, and M, upon the other two edges (fig. ll).*
The plate is of uniform thickness h, length 2a and width 2b. As given
in standard texts, e.g., (18), the differential equation which governs
this problem for small displacements is,

atw st am ' Ny atw
2 i iy e 3 (2.33)
ox ox 0y oy oy

where W is the transverse deflection and D = Eh3/12(1- vz) is the stiff-
ness coefficient of the plate. E and v are the Young's modulus and
Poisson's ratio, respectively, for the elastic isotropic material of the
plate. This differential equation is readily obtained from equation 2.1
if q(y) is set equal to zero and the variables x and y are interchanged.
Thus, the structure of the layers associated with this equation has
already been discussed in part A of this chapter: provided allowance is
made for the variable interchange.

The boundary conditions assumed in this problem require special
comment. They are not given explicitly in the standard texts on plates
and shells. Specifically, the usual Kirchhoff boundary condition for an

edge which is free of vertical shear is modified due to the presence of

# y s e ‘
N_is a stress resultant in as much as it is the integral of the corre-

sponding stress taken over the plate thickness. and'MZ are moments
per unit length of perimeter of the middle surface.
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the in-surface stress Ny' As discussed in the texts, the Kirchhoff

condition for no vertical shear on a y-edge is

.

3 3
D[a L. Sl Y. Vg]=0 (2.34)
oy 9yodx

This is the sum of the vertical shear stress Da—E;(E)ZW/ay2+ BZW/BXZ)
and the Kirchhoff effective shear stress term D(l-v) 83W/8y8x2. How-

ever, the presence of NY produces a vertical stress component at the

oW
yoy °

terms in equation 2,.34. It follows that our requirement for no vertical

3- and 4-edges equal to -N This quantity must be added to the

shear at the 3- and 4-edges must be

W o>w Ny ow

o + (2-v) - =0 {2.35)
Iy ayaxz W 9y

It may also be remarked that when the bending problem is formulated
as a variational one, in terms of work and strain energy, the condition
2.35 arises as a natural boundary condition according to the standard
procedures of the calculus of variations.

We will seek an asymptotic approximation to the exact solution for
the deflection W under the assumption that bZNle = A is large. The
exact solution is not known. An interesting feature of this problem is
that the large parameter A appears both in the differential equation and
in the boundary conditions. Another feature is that the problem exhibits
boundary layers on all edges. The assumption that the net moments due
to M1 and M2 are equal, i.e., of static equilibrium, is not explicitly

made in order to show how it arises naturally in the process of finding

the asymptotic approximation.
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b. Formulation of the problem

In view of the preceding discussion, the problem may be formulated

as follows:

W = W(x, y) is to satisfy

4 4 4 N 2
AW oW aW 3w _ :
t2 = + = __ID —F =0 (2.36)
0x 9y oy ay

and the subsidiary conditions

2 2 3 3
a9 W o W a~ W o~ W
_% > ¥y 5 ): Ml(y); —axT + (Z-V) _z =0 at x = -a

9x oy ox0y
2 3 3
D(aiz‘—y+vaw) Mz(y), BW (Zv)——z—=0 at x = a
x ox9y
2 2 3 3 N
v - 2 e 2 - L 2 -0 aty=s0
ay ax - oy dyox y
To put the problem in a non-dimensional form, let
= | 2 bZN a s
x =bx, y=By, N = =5, Wiy = W7y {2.37)

M, [y) = b—-ZD m(¥), M,ly) = ;’%— m, (¥)

If x, vy and W are understood in the sequel to be the barred variables,

the problem then becomes:

4 4
(i)alﬂf+2 BZWZ 8W_>\2 8W
ox Jx 0y ay

(2.38)

where
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2 2 3 3
(ii)a;‘w+va‘g=ml(y);a¥+(2—v) 8W=0 at x = <Y
ox oy oy ox0y
2 2 3 &
i 8 W 9 W "W . "W
(iii) v 4 ¥ e mz(y); T (2-v) =i e 0. akx o
ox oy Ix Oxoy
. BZW BZW 83W 8 \ 2 9W
(iv) — 5 = — t (2-¥) - A 5y -0 aty==l
ay ox oy dyox

Figure 12 depicts this formulation, We seek an asymptotic approxi-

mation to the solution for large Nos

c. Structure of the layers

Since equation 2.38 is merely equation 2,5 with x and y inter-
changed, the layer structure given in section b of part A in this chapter
suffices for this section also. The same sub-equations apply if § and i
as well as a and B are interchanged. The situation may be summarized
as follows;

For the x-layers: each boundary layer has an exponent pair (—1—, 0)
while the exponent pair for the matching corner layers is (%, 1). These
corner layers are in turn matched by a final set of corner layers with
the exponent pair (1,1).

For the y-layers; each boundary layer has an exponent pair (0,1)
while the exponent pair for the matching corner layers is (1,1). No
further corner layers are needed. Figure 13 gives schematic diagrams
for the sub-domains of these layers. These diagrams are analogous to

those in figures 2, 3 and 4.

d. The inner solution

Using the form of the boundary conditions in 2.38 as a guide, we

assume that the inner solution may be written in the form
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(4)

(1)

(3)

x~-la

y
(4)

Z
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(2)

e
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(3)

y-layers

Figure 13. Diagrams of the

Layer Sub-Domains
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Qo
w? =z wg(x, y) )\'n/Z (2.39)
n=0

Formal substitution of WO for W in the differential equation 2.38 gives

BZWO 34W0 84W0 84W0
n n-4 n-4 n-4
@il N T 7 (2.40)
oy ox 9x 9y oy

as the sequence of differential equations to be satisfied by the 0-

components. Integrating the first eight differential equations we get
0
Wk = ak(x) + ybk(x) fork=0,1,2,3 (2.41)

2 3
0 4 4
W = a,(x) + yb, (y) + )Zir a4 4 %,- b, _, fork=4,5,6,7

where a, and bk are arbitrary functions of x and y, respectively. We

make an exception to our superscript notation for such arbitrary

functions when they are designated in terms of lower case letters., The

superscript indicates the order of the derivative, i.e.,

k
4 a {x) k
a:(x) = —-dx——;—— and b:(x) = ﬁﬁ-— bn(x) (2.42)

if k # 0. This notation will apply to functions which are not inner
solutions or layers or their components since such functions are

designated by capital letters.

e. The x-boundary layers

Let p equal either 1 or 2 and

wP = wP(E,y) (2.43)



o -

1/2

where if p=1then § = )"/ “(¥+x) or if p=2 then € = xl/Z( Y-x), i.e.,

£= A2 (v-(-0P ) (2. 44)

Thus, £ is the layer variable for the x-boundary layers in accordance
with the exponent pair (% » 0). If we make either of these transfor-
mations on the x variable in the differential equation 2.38, we obtain the

transformed differential equation

o'w  oPw _ 2 atw 1 atw o
a§‘4— ay2 -Xafzayz N gud
Let us assume that
o —(1+%)
WP =S WRLE, )N (2. 46)
n=0

Formal substitution of WP for W in equation 2.45 gives

odwP  aZwP atwP otwP
% n_ n-2 n-4 (2.47)
™0yt aé “oy” oy "

as the sequence of differential equations satisfied by the p-components.
The boundary conditions at a p-edge which involve the inner
solution and a p-layer are obtained by formally substituting the sum

WO + WP for W in the relevant equations in 2,38, Thus,

&P 2..D 2,0 2.0
>\8Vg +valzv +8V2V +va“2r = m_(y) at § =0
ok ay 8x oy P
and
: 3P 3P 3...0 3.0
3/29°W 1/2 ° W p oW paw
+A T (2-v) -(-1) -(2-v) (-1) =0
- L™ oxdy?

at §=0
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Now substituting the series in equations 2.39 and 2.46 for WO and WP,

we obtain boundary conditions upon the components,

2’wP  alw? 8 w? a°wP  aZw? aZwP
0 0 0 n n n-2 _
= +v = m_(y) and + +v = 0
2 2 & P 2 2 2
ok ox oy o oy oy
(2.48)
o> wP " 2> wP | . a>wd a>we
_ﬁ_-(-l) —T -(Z-V)(—l) ———2—' 2 (Z—V) ——r = 0 (2. 49)
ok ax axdy o€ ay
which are valid when the relevant § is zero.
f. The y-boundary layers
Let q equal either 3 or 4 and
W= wix, 7)) (2.50)
where if g = 3 then J =)\ (lty) or if g = 4 then } =\(l-y), i.e.,
7= A(-t0%y) {2.51)

Thus, ﬂ is the layer variable for the y-boundary layers in accordance
with the exponent pair (0,1). If we make either of these transformations
on the y variable in the differential equation 2.38, we obtain the
transformed differential equation

4 2 4 2

°W 8°W _ 2 w1 a°w (2.52)
a’ff 87]2 )\2 axza’lz )\4 BXI
Let us assume that
e -@+%)
wd =Zwr§1(x,” A (2.53)
n=0

Formal substitution of W% for W in equation 2.52 gives



e

a*wd  a%wd p*wd atwd

n B n-4 n-8

e il T (2.54)
8 o ox"9f 9x

as the sequence of differential equations satisfied by the g-components.
The boundary conditions at a g-edge which involve the inner
solution and a g-layer are obtained by formally substituting the sum

WO + W for W in the relevant equations in 2,38, Thus,

2.9 2.9 2,0 2.0
2 0 W oW a W "W~ _ _
)\ —.-._2_+ v 5 + > + v > =0 &t 7[ = 0
o ax oy ax
and
3 344 3,0 3.0
>\3 oW +(2_v)>\8 W™ 3307 W (_l)q oW, (Z-V)B \
3 2 AR 3 2
9 afox on oy dydx
0
2 W _
- A B—Y_] at =0

Now substituting the series in equations 2.39 and 2.53 for WO and Wq,

we obtain boundary conditions upon the components,

azwg azwg_2 azwg_?_ azwg_4
¥ > + v > +v > =0 {2.55)
Bq oy ox ax
o’wd  Hwd Vo a>wd o[ Vo4 o>w?_,
SR L TR i SR T
op°> 9 % oM ox ay> aydx

(2.56)

which are valid when the relevant fl is zero.
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g. The x-corner layers

Let
wPd = wPepg ) (2.57)
where p, q, § and q are defined by equations 2.43, 2,44, 2,50 and 2.5l.
If we make any of these transformations on x and y in the differential

equation 2,38, we obtain the transformed differential equation

84W v aZW _ _ 2 84W _ 1 B4W (2.58)
+ e hY 2 )2 4 <
oy~  an akon H
We will assume that
. -(2+2)
qu.—.‘Z wPItE L 2N (2.59)
n=0
Formal substitution of WP into equation 2.58 gives
a4wPl g2wPd 84qu2 a4qu4
4? ¥ 2n = zn-z - 4n- (2.60)
on an ak “an o

as the sequence of differential equations satisfied by the pg-components.
The boundary conditions at a q-edge which involve a p-layer and a
pq-layer are obtained by formally substituting the sum WP+ WP for W

in the relevant equations in 2,.38. Thus,

2 92wPd ik a?wPe  §ZwP +V)\azwp

v + = 10 for 7[ = 0
. 2 8;2 ayz 8!2

3wPa Pq 3wP 3P
W 30W =(_1)q[8 W2 - 2w

8y3 ayafz
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Now substituting the series in equation 2.46 and 2. 69 for WP and

qu, we obtain boundary conditions upon the components,
p?WPL  %wP  ZwPL  HPwP
s— tV——— t v ‘;' + > =0 (2. 61)
an 9§ ok ay
a>wPd  pwPd wP a3 wPd >wP a3wP ]

(2. 62)
which are valid when the relevant /] is zero.
The x-corner layers necessary to match qu, ic€., wPaP will not
be treated here. These layers have the exponent pair (1,1). No
equations involving their components are necessary in order to find

the boundary layers and inner solution.

h., The y-corner layers

This set of corner layers, qu, need not be treated in detail here
because the sub-equation for w9is essentially an ordinary differential
equation as is found in the classical problems. However, these equations
are necessary if one is interested in the asymptotic approximation in the
corner. Note that WP has essentially the same sub-domain as wPaP
and it is expected that only one layer of this order is needed in each
corner. We note that the sub-equation is the entire transformed differ-
ential equation. The components of this layer are related only through
their boundary conditions and not by means of the sequence of

differential equations for the components.
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i, Summary of several relationships

For n=0 From equation 2.41, we have Wg = ao(x) + ybo(x).

Substituting this into equations 2.48, 2.49, 2.55 and 2.56 for n = 0,

we have
for € = 0;
0" Wy, 2 2> W,
(1) 5 2 ¥ ao("?) + Ybo("y) = ml(Y) !111) a§3 =0
(2.63)
R 2 2> Wg
(ii) —>— + a, (¥) + yb(¥) = m,(y) (iv) T =0
ok ok
for R = 0:
32W3 83W3 8W3
W —s> =0 fiii) 30 - = . - bobe) = 0
o Y n
(2.64)
a’wy 2>wy  aws
(ii) = 0 (iv) - +b.(x)=0
B”Z 8”3 Bﬁ 0
Forn=1 Except for the equations analogous to 2,63(iii) and

2,63 (iv), the equations in this case can be obtained from those for

n = 0 by increasing the subscripts by one and omitting mp(y). The two

exceptions give; for § = 0
Sl

W 3 3
i) —* +agt-7) 4 yogl-7) = 0

(2.65)

"W
(iv)
2g>

Sl
1

3 5 =
- 30(7) ‘Yb0(7) =0
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Forn=2
and for f = 0:
82W1

2

The corresponding equations are Wg = az(x) + ybztx)

20l
awo

(i) ==y +322('7)+Yb22(-7)+VT =0
of oy

2l
8W2

o dy

. |
8W2

3 3
) +a (-) + yb (-7) + (2-v) = 0
i) —= + 2t 14 LBt

23w’

liv) —== -2l (%) -ybi(¥) + 2-v) — =0
21 4 A 1 ok oy

(i) o vag(x)—vbg(x) = 0

o W 2 2
(ii) 3_ﬁ-2— - vao(x)+ vbofx) =

Forn=3

(2. 66)
92 w2
3.1
oW,
a3 w?
>w>  aws
(iii) 32 " _3’,2_ “b,(x) = 0
an
a’w? aw?

2 2
v = 2 =D
(iv) - 3 5 - bz(x)

The equations are analogous to those in 2.66 and 2,67

except that all subscripts are increased by one.

Forn=4

Only two of the rather complex equations that are

obtained in this case will be needed in the subsequent work. The

pertinent equations corresponding to those given above are
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0 2 v .4
W4 = a4(x) + yb4(x) + gl. a (x) + L 3, bo(x)
and for N =
r B0 3
oW oW oW
(iii) £ 2-} a”axg +(2- v)bo(x) ——”i —b4(x)+ag(x)-71,.—b§lx)=0
(2.68)
W} 2wy BW)
(iv) 5= T (2-v) 5 -(2- v)bo(x) - ﬂ + b4(x) + ao(x) t 57 b (x) =

8’{ 3}( 9x

For n =5 The equations are analogous to those in 2, 68 except

that the subscripts are increased by one.

j. First components

Consider first a gq-layer., For n = 0 equation 2.54 gives

3 wg azw'a1
- ~——=0 (2. 69)

By the layer criterion A, these equations are readily integrated to give

Wg - fq(x)e"( (2.70)

However, equations 2,64(i) and 2.64(ii) imply that
wg =0 (2.71)

Using this result, and referring to equation 2.54 for n = 4, we

see that WZ satisfies equation 2.69., For our purposes we need only

perform one integration, i.e.,
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q q
B Wi AW, .
4 E (2.72)

o’ o

We have used criterion A again. We note further that if equations 2.71

are substituted into equations 2. 64(iii) and 2.64(iv) then it is found that
bO(x) x 9 [2.73)

Now substituting from equations 2.71, 2.72, and 2.73 into equations
2,68 we find that
4 _ 4 _
ao(x)-b4(x) - ao[x) + b4(x) = 0

or that

ag(x) = b,(x) = 0 (2.74)

Thus, we have shown that Wg is a cubic in x and independent of y.
Linear or constant terms in Wg will be ignored since they represent
rigid body displacements. We now turn our attention to the p-layers.

Equation 2.47 for n = 0 gives

a4wg azwg
- =0 (2.75)
Y -

Because of the presence of the y-derivative in this equation, it
cannot be treated as essentially an ordinary differential equation as is
done in what we have designated as classical problems. Remarks
similar to those in connection with equation 1.27 can also be made here,
It will now be demonstrated how our method leads to a well defined
boundary value problem for equation 2.74. We note that equation 2.74

appears in Gol'denveizer's paper (4) p. 17. Equations 2.48 and 2.49
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give boundary conditions at a p-edge,

a2 wP 8> WP
——-To'i-ag:m(Y)a ——?0' =0 at § =0 (2.76)
ok P 3?

(I; and we

must use our method to determine additional conditions from the x-

These boundary conditions are not sufficient to determine W

corner layers. Equations 2.6l and 2.62 give the boundary conditions

for WP at the g-edges, i.e., forn= 0,

0
82 wpd azwg o’ whd awhd awP
g% ¥ >— =0 and g = - +(‘-1)q—a—=0 at =0
an o on ¥ | ¥

(2.77)

Also for n = 0, equation 2,60 provides the differential equation for

wPd
0° 4 2
) wgq 9 wPkP4d

0
ap*

= = 0 (2- 78)
This is the same differential equation that we encountered before and

on

a first integration gives
3wPd Pq
"Wy BWO
1

3 - ] =0 (2.79)
We now assume, as described in the consistency criterion D, that the

second boundary condition in equation 2,77 must be consistent with

equation 2,79, We thus conclude that

P
BWO

ay

=0 aty==%1 (2.80)
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These form the additional boundary conditions, which in conjunction
with equations 2.75 and 2,76 determine the boundary value problem
p
for WO'
Before we attempt to solve for Wp, we note that the first equations

in 2,76 together with 2.75 and 2,80 allow us to determine Wg = ao(x).

Let a tilda on a function indicate the average of that function taken over

Y: €e8.,
1

~0 1 0
-1
Thus, if we integrate equation 2. 75 with respect to y from -1 to 1 and

use the conditions 2.80, we have

477 p
a W0
—a—F— =0 or by criterion A, Wg’ = 0 (2.81)
Applying this result to the first boundary conditions in 2.76, we obtain
1 1
altiy)s K wa \ mulp)dy ahd.aZty) =, 55 A\ @ ty)d (2.82)
0 1%¢ 1 0 ey | ide 2
sl -1
It follows that
™+ ™, -,
0 _ Tl O 2 3

to within a linear term in x. Restriction upon the mp will arise out of
equations for the higher order components,
The boundary value problems described by equations 2.75, 2.76

and 2.80 for Wl(; are easily solved. For example, assume that
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oo
1 nmw
W, = E cn(g) cos > (L+y) (2.84)
n=0
since these eigen functions,cos % {lty),form a complete set and satisfy

equation 2.80. The condition that equation 2.75 be satisfied is

d4Cn "
—__—+("‘—) C =0 (2. 85)
dg4 2 n

ian(lii)f
which has four solutions of the form e where a = Ynw/2 .

The condition that WOI be a layer, criterion A, requires that CO =0

and
-O.nrf -ansf

A e +B e forn# 0
n n n

C

3

where r = 1+i and s = 1-i. The condition that o

W /o8> =0at § =0

is satisfied if B_ = iA_, thus
n n

Q0
wl - ) A o ¢ -si g) s 5T (1+y) (2.86)
0 = : B ne (COS (ln sman co T Y .
n=1

where
i
b Z nw ;.
A= Al S m.l(t) cos > (1+t)dt
-1
since
2wl
—g—z—— = ml(y) -m,; at £ =0,
a

The problem for Wg is analogous; both solutions can be written
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@ -a.nf 1
P _ e :
W0 =2 E i [cos o,n§' -s1nun§] [S mp(t) cos %E(1+t)dt] cos 22-1—7 (1+y)
n=1 -1

(2.87)

where a = ynw/2 and p =1, 2.

k. Higher order terms

By analogy with the discussion in section j, it may be seen that

bl(x) = Wl3 = W14 = 0. Since the conditions upon al(x) are the same

as those on ao(x) provided that ml(y) is taken to be zero, it follows

that al(x) = 0. Now substituting bo(x) = 0 and ao(x) from equation 2.83

into the equations of 2.65, we obtain for § = 0

a3wi ™=, -8 a3w1Z X, -9,
3 + 7 = 3 - 1 = 0 (2.88)
of o€

However, again analogous to the result in equation 2,81, we see that

a"’w{’

Y

= (¥, (2.89)

Thus, the boundary layers have no average value over y. Equations
2.88 and 2.89 then imply that

™, = ™, =21 (2.90)

This is the physical condition for static equilii)rium of the plate under
the applied bending moments. From the fact that equations 2.88 are
now homogeneous conditions upon Wlp as are all other conditions on
Wlp, it follows that Wlp'='0. Also, analogous to equation 2.71 we have
that Wil = 0.
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We will seek qu in order to exhibit some non-zero components
for the boundary layers on the 3- and 4-edges. Corresponding to

equation 2. 70, we have

W, = £ ) s (2.91)

so that the conditions given by equations 2.67 for J = 0 become

azwzcl
(i) : i fq(x) = -v (2.92)

(ii) bz(x) =0
Therefore,

w,%= & o (2.93)

Concerning higher order components; there will be equations
analogous to equations 2.88 and 2.89 which are not necessarily homo-
geneous. Such equations will lead to restrictions on the mp(y) at

y = *1. For example, it can be shown that

ml(l) - ml(—l) R mz(l) + mz(-l) (2.94)

is the next restriction that is obtained. However, if this restriction
is violated only higher order terms in the asymptotic approximation
would be affected. It seems that there are an infinite number of such

restrictions and that there is no way of eliminating them.

1. Results
In the original notation: if corner domains are excluded, we have
the following asymptotic approximation for the transverse deflection of

the plate as A becomes large
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1 1 1 1 1 2 1 2
A+ ) Al- )
+i§lf’2_g‘_4e b+...+5\1-2-%‘%‘4—e P4 s (2.95)
where
b b bZN
M= S Ml(Y)dY = S M, (y)dy, A = —J—_—)—“Y (2.96)
-b -b
M= b [M ) + M (-b)] = b [M,(b) + M, (-b)]
and
o -ab b
wP- 265 e © ' M_{t)cos 2T (1+L)at
5= =5 o [cos un§ -Slnun§] e = b .
n=1 -b
cos %E (1+ %—)
with
- xl/Z
a = f5 and & =A—[a-(-1)Px] for p=lor2  (2.97)

The second component in the inner solution was obtained in a
manner similar to that presented here for the first component.
Although the boundary layers are of higher order in A than the first
term of the inner solution, they are essential for calculating the
moments in the vicinity of the edges. It is interesting to. note that the

transverse deflection W for a flat plate under these same moments

but without stretching is

W = *—M—Z- (xz-vyz) (2.98)
4b(1-v°)D
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provided that certain sub-domains along the 1- and 2-edges are

excluded. This gives the moments M__ = M/2band M__ =
xxX bip 4

1- and 2-domains are excluded in equation 2.95, we obtain

-A@- ) -A+ )
(i) Mxx = -Z-I;—f— [l-vz e b -'v2 e o
and
- A+ D
) M= ;11:4 [1-e L b ]

0.

If the

(2.99)

as first approximations for large A Thus, in the interior there is

a moment MYY = vM/2b which tends to keep the plate flat in the y-

direction when there is stretching. Stretching also reduces the dis-

placement of the line y = 0 by a factor of (l-vz).
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III. TWO APPLICATIONS IN THE THEORY OF ELASTIC SHELLS

A. Bending of a Shallow Hyperbolic Paraboloidal Shell

a. Introduction

The shell studied here can be considered to be a thin, pretwisted
rectangular plate of width 2b, length 2a and uniform thickness h,

(fig. 14). Its undeflected middle surface is given by

z=kxvy; k a constant (3.1)
When undeflected, the shell is assumed to be stress free. Two opposite
edges of the shell are subjected to distributed bending moments Ml(y)
and Mz(y).* The other edges are free from stress. The material of
the shell is elastic and isotropic with a Young's modulus E and a
Poisson's ratio v. This problem has been treated by Maunder and
Reissner (19). However, they did not consider the behavior of the
solution in the vicinity of the edges of the shell. They found what we
designate as the inner solution. For the moments considered here,

their result for the transverse deflection W is

W=~ _M_Z— (xz-vyz) (3.2)
4b(1-v7)D
where
b b
M = 5 M, (y)dy = S M, (y)dy
b b

and D = Eh3/12(1-v2). This result is the same as that obtained for the
deflection of a flat plate under these moments (see equation 2.98). Such

a result, of course, is valid only within the approximations used in

M1 and I\/I2 are moments per unit length of perimeter of the middle

surface.
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formulating the problem. The formulation, as given in (19), is valid
for ka<<1l. We will seek an asymptotic approximation to the problem

with this formulation under the assumption that the parameter
3_2 Y12(l-v')f, .2

is large. Thus, we must have

i” e (2X2) i

However, for b/a fixed we may take h small enough to make this bound
large and so allow >\3 to be large. An interesting feature of this
problem is that the boundary layers are found to have sub-domains
whose widths, as measured from the edges, are of the order of X_l,
i.e., they vary as the 1/3 power of h. The corresponding sub-domains
for shells whose middle surface is a surface of revolution are of
narrower width in that their width varies as the 1/2 power of h (15).
Another interpretation of the shape of this shell is that its middle
surface is an approximation to a helicoidal surface. If © = kx is the
helicoidal surface where O is measured in the yz-plane with the y axis
as base line, then for a bounded surface with sufficiently small k, we

have;
z = y tankx @ kxy (3.4)

The problem in part B of this chapter considers a shell with a middle

surface whose undeformed shape is a helicoidal surface.

b. Formulation of the problem

The differential equations and boundary conditions for this problem
are obtained by specializing the more general equations of the linear

theory of shallow shells as given by Marguerre (20). This specialization
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was performed by Maunder and Reissner (19). The differential

equations are

2 2
9°W - 0°F
A%F = 2Eme 2 W e DA"W = -2k 5o (3.5)

where F is an Airy stress function and W the transverse deflection of
the middle surface. The symbol A denotes the bi-harmonic operator

4 4 4
0 +2 0 +8

8x4 8x28y2 8y4

F and W are related to the stress resultants as follows:

2 2 2 -
N=aF,N=812,N=-aaaF,M=-D(a +8W)
- oy W oax xy g i ax
. I 2w 9%wW
M- -D(ay ) -(1-¥)D 55 (3.6)
23w
z (2-v) 2) +kyN_ +kxN
oxdy ¥y

3 3
e "W : 9~ W
- -D(aT + (2-v) 2) +kyN +kxN

Jyox

The resultants denoted by N are tangential to the middle surface of the
shell, The resultants denoted by V are the Kirchhoff effective shear
resultants and are perpendicular to the xy-plane. Within the approxi-
mations of this formulation, W and the M resultants can be considered
to be in the directions of the relevant coordinate axes. The strains and

displacements of the middle surface are related to F and W as follows:
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~ U .. AW\ _
Ehe€ :Eh(ﬂ' +kxﬂ)=N v N (3.7)
y 9y oy vy XX

Eh _ Eh du . av oW OWY _
2({1+v) 7xy T 2{I+v) \oy tagt Ry ay thesl)n ny
where U and V are parallel to the x and y axis, respectively. We

prescribe the boundary conditions to be

i) N = N =M =Y =90 fory=%b>b 3.8
) Yy xy Yy y 4 ( )
and

- _ el _ B P
(ii) Nxx_ ny— Vx— 0, Mxx+ kxy Nxx_ Mp(y) at x=a(-1)

where p =1 or 2.

It will be convenient to put the equations in terms of non-dimensional
quantities except for the dependent variables F and W which will be
transformed into variables with the dimensions of a moment. Let

.
Fo A120-v7)b &

h

x = bx, y = by, W:% G,

/ Y
e - 12(1-v")kb ¢ 1
7— _b" ] A = h ) MP(Y) - "E mpﬁ) (3- 9)
=2 1 84 84 84
A waplrr t & —w +—x
h™ Mox 9x 0y oy

and substitute these quantities into equations 3.3, 3.4 and 3.6. The bar

notation will be understood in the subsequent work, so that the problem

now has the formulation
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2

3 ¥ ’
o axa =0, e eX 5557 0 (3.10)
and
2 2 2 2 3 3
G 2F-22=-20,,88.28 0. 25 -0 fory=21
ox y oy 0 oy oyox
(3.11)
.. 9%F _o’F _ ac a%c _ . 8%°G . a8%G _
(ii) ¥ = o 3 +(2-v)—2—0; 5+ ¥ — = m_(y)
8y Y o oax axdy Bx ay p
for x = (‘—l)p
and p =1 or 2,
The two equations 3.10 can be conveniently written as one by
forming the complex function H = F + iG so that
2 3 83H
AH+1X5§5§=0 (3.12)

c. Structure of the layers

Although we are dealing with two differential equations of fourth
order or equivalently with a single differential equation of eighth order,
the complex function H makes it necessary only to consider the fourth
order differential equation 3.12 when making a sub-equation analysis.
Thus, the transformed differential equation for this problem is obtained

by letting £ = A%x and 7= )\py in equation 3.12. This gives

4 4 4 2
4a 9°H 2(a+B) 8 H _ 4B 8°H _ .N3+atf 3°H _
+ 2N\ > + LM =0 (3.13)
A a;i ak%on® an° A ant 1 ok an

A sub-equation analysis provides the following equations.



-84-

(a) %—g‘h: 0 if 20, 2P, atp < 3
4
) 22 =0 if 36, 3+B < 3a
of
4
(c) _a_% =0 if 3a, 3+a < 3P
on
4 2
8"H , . 9°H . 3
(d) +i = 0 if 3a = 34B and B<La <5 (3.14)
—Tai ok o)) Z
4 2
8°H , . 8°H : 3
(e) +i =0 if 38 = 3+a and a< B <S5
8”4 9k op Z
4 4 4
(f)a§+z %H2+a?=o if%<o,=ﬁ
of Gy MY
4 4 4 2
8°H ., 8°H 3 Y lf%”_ﬁ

(g) + + i
ittt ok%on? ot ¥R

All other sub-equations are impossible.

Consider the x-layers with B = 0. Using the criteria, equation
3.14(d) a = 1 for the positive value, while (e) gives a=-3 as the
negative value. Since we are dealing with a finite domain, only a=1
is of interest. This sub-equation for the matching corner layers must
have an exponent pair (1,B) where B > 0. This leads to equation 3.14(e)
and the exponent pair (I, —g-). Continuing according to criteria B and C
the next sub-equation is 3.14(d) with the exponent pair (-1733— : %). It is
apparent that this process may be continued indefinitely. If we denote

the successive values of a and B by a, and ﬁn, respectively, then we

observe that they satisfy two iteration equations:

B a
n
e 1+ . and =14+ ==  where Bo = 0 (3.15)
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or eliminating as

+ ﬁn
ﬁn+l=§+3-— where ﬁ0= 0 (3.16)

This first order difference equation gives the solution
- 3 1 _3 i
%5 " 7(1 A 32n+l ) o Py=3 (1 - 32n (3.17)

Sub-equation 3.14(d) corresponds to the exponent pairs (u.n, Bn) , while
3.14(e) corresponds to the exponent pairs (an, ﬁn+1)' Obviously, @ =
Bm=% which is the condition for 3.14(g). We see, therefore, that
there is an infinite sequence of corner sub-equations and that matching
continues indefinitely without ever achieving the entire differential
equation as a sub-equation.

For the y-layers, beginning with a = 0, the discussion is completely
analogous since the differential equation 3.13 is symmetrical in & and ?(

. We will assume that the y-layers are zero for our particular

boundary conditions.

For completeness, we note here that if the domain were unbounded

and the exponent pair (-3, 0) were used, we would obtain an infinite set

of exponent pairs corresponding to
_ 3 Zn+l _ 3 Z2n
oy =% (3 -1) and B_= -3 (3 -1) (3.18)

These correspond to sub-equations for infinite domains. A similar
statement applies to starting with the exponent pair (0, -3), again,

because of the symmetry of the differential equation.
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d. The inner solution

Consideration of the differential equation and boundary conditions

leads us to assume that

Qo
1Y - -2- Hr?(x,y) s Al - i
n=0

where HO = Fr? + iG 0. Now H0 must satisfy equation 3,11, i.e.,
n n
82 R ( 9 H ) H )
oxoy x3 6 28

Formal substitution of equation 3.19 into 3.20 gives

BZH 0 84H0 34H0 a4HO
n _ i( n-1 +2 n-1 n-1 )
oxdy 3x4 axzayz 8y4

(3.19)

(3.20)

(3.21)

as the sequence of differential equations satisfied by the 0-components.

Separating the real and imaginary parts of equation 3.21, we get

" R ata? a%c?
- n-1 +2 n-1 + n-1

axoy Bx 4 axzayz 3y4

E)ZGO 84F0 34F0 34F0
= n-1 +2 n-1 + n-1

Bxay 8x4 axzayz 8y4

Integrating the first two pairs of equations and applying the

boundary conditions 3.11(i) to each Fn0 and Gno, we obtain
X 0 0 25 x2
(1) FO = Vfo(y) Go = "go(l)_z— + Vgo(Y)
2 3

(i) Fy = v [f0)-xg (v)] G= ~gf (1) 3 + vey (y)-£ () i + v y)x

(3.22)

(3.23)

(3.24)
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provided that terms linear in x or y are ignored and

() £,°00) = £,°(-1), £,°(0) = £,°(-1) = 0
(3.25)

(i) g (1) = g (-1), g (1) = g (-1) = gg(1) = go(-1) = 0 for k=1 ox 2

Here the superscripts on the 'lower case' functions such as f and g,
are to indicate the order of their derivatives, e.g., dkfn/dykz fnk if
k # 0. This notation will be used in the sequel. It is obvious that
equations 3.25 do not exhaust the conditions for y = =1 which would be
obtained for these functions if we continued the process to components

with higher subscripts. However, all further conditions will be upon

higher derivatives of the functions.

e. The x-boundary layers

Let

HP = HP( £,y) where § = )\[7-(-1)Px] forp=1or 2 (3.26)

so that § is the layer variable corresponding to the exponent pair (1, 0).
Using this transformation, equation 3.1l gives the transformed

differential equation

. 89“H 2 9o°H 1 4H
-i(-1)P SR LG L S . (3.27)
NE 5Eoy )\Zakzay?‘ %
Let us assume that
(o0)
HP= Z an( £ v) )\‘(2“1) = FP+iGP where HszII:+ ic;lf’ (3.28)
n=0

so that formal substitution of HY for H in equation 3.27 gives
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84H£ . aZHII: 84H§ 5 84Hg £
wi{=1) .- e - (3.29)
e ¥y o8 Zoy? oy}

as the sequence of differential equations satisfied by the p-components.

Separating the real and imaginary parts of equation 3.29, we get

84F£ . BZGE a4F§ , 341-"11: p
e SR - 2 =2 = (3.30)
ak* o¥ oy 2§ “ay° oy
and
a*gP a2 FP p3gP adgP
o '(“l)pﬁfai - Zn‘g A 2‘4 (3.31)
o ¥ 28%ay dy

We note here that for n = 0 equations 3.30 and 3.31 form a set of
differential equations which contain y-derivatives and so cannot be
treated as essentially ordinary differential equations in § as is done
in what we have designated as classical problems. Our method will
provide the additional boundary conditinns for these equations which
are necessary to determine a well defined boundary value problem.

The statements made in connection with equation 1.27 illustrate this
distinction between our problems and the classical ones. The boundary
conditions at a p-edge which involve the inner solution and a p-layer
are obtained by formally substituting the sums FO + FP and G0+ GP

for F and G, respectively, in equations 3.11(ii). Thus,

(i) BZFZO + azl’;p =0 (ii) __aaZFO AP gzgp -0
oy oy xdy Fay
3.0 3.0 3. 3.p
tis) 2 ? +(2-v) 2 5 -(_1)P()\3 sy ) S 2) =0 (3.32)
ax 9xdy of okay
2n0 2.0 2] 2.p
(iv)acé +vaC2; 1‘)\283T +v8(;r =m_(y)
0% oy of oy .
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all at x = (-1)P9. Now substituting the series in equations 3.19 and

3.28 into 3.32 we obtain the boundary conditions upon the components.

9’F?  9°FP a%F?. 9% FP
(i) n_ . 3n-2 _ 0 i) n _(_l)p 3n-1 _ 0
2 2 Ix0y of ay
oy 9y ‘
2°c3 2°G) | 2°Gy ) o°Gh
(iii) 20 -(-1)1’[ T t(2-v) — 5 | +(2-v) —5= = 0 (3.33)
ok ox axdy okay
o 8%gY atgP a°GP
; n n 3n 3n-2 _
(iv) el - B g 5—t v > = m_{(y)
ox oy 8; oy P
and
2Lp 2pP 3P 3gP 2eP 2P
8°Fp , 9°Fp, G, 0°Gp_4  9°Gy 8°Gy_,
BT WGy s el e Tkl il g ¢
By ¥ of af ay o dy
(3.34)
for the relevant § = 0 and k a positive integer not equal to 3n.
f. The x-corner layers
Let
HPY - HPY( £, 7 ) (3.35)

where £ and ” are the layer variables corresponding to the exponent
pair (1, %). Thus, in accordance with criterion B(i), we take § as
defined by equation 3.26. The ” variable for these layers must now

have the form,
= )\4/3[1—(—1)qy] (3.36)
Using these layer variables, equation 3.1l gives the transformed

differential equation
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st . orq RO 2. [Pl 1 atu
3 ey i R e e wheen £3.37)
oy N'T ekt v 3 ok

Let us assume that

a0 n
-(2+ %)
Hpq=ZH§q(§,7()) 3 = PP 4 5GP (3.38)

n=0

where ng = ng +iG§q. Thus, formal substitution of HPY for H in
equation 3.43 gives
o *uP? p°uPd a*uPd,  auPd

- ptq 1 n-4
+i(-1) ¥ o =5 a;zaqz YL

n
(3. 39)
an’

as the sequence of differential equations satisfied by the pg-components.

In terms of the real quantities these equations become,

p4FPd a%GP1 p*FPd a*FPa
e SO e ST e B (3.40)
87 ¥ on 5% “on of*
and
s3cPa 52 FPd 53gPd 53cPd
R Y o e SRR Tl . - (3.41)
on’ L TR NE

The boundary conditions at a q-edge which involve a p-layer and
a pg-layer are obtained by formally substituting the sums FP+FPY ana

GP + GP%for F and G, respectively, in equations 3.11(i). Thus,

2P 2.Pq 2P 2-P9
i R 3" F - i B R ax4/3 8 F > _
(i) R + ok 0 (11)T—a 55 P13 X 5EoF - 0

2~P 2.p 2~pq 2..pq
Jlli)é—%—+v)2 8 g' + N\8/3 9_%_+v)\2?—97—=0 (3.42)
3y 0§ an o8
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p 2..p 3gPe 3P4
) o+ 2-v) X 25 [)\4 25" +(2+w) NO/3 B—G—2]=0
3 an apok

fory = (-l)q. Now substituting the series in equations 3.28 and 3.44

into 3.48, we obtain the boundary conditions upon the components, At

n=0,
92FP  5°FPY a2FPL 9%FP
(i) stz 0 (i) — 83“"1 -(-1)% 51-1 =0
o ok §o7 ¥y
[iii) 2“ +v —t v ——— + > = 0 (3.43)
o o¢ o€ ) :
" 83G§g 83052-2 q 8262-4 q 83G§~6
(iv) —F + (2-v) —5= -(-DY2-») -¢-1) >— =0
a7 eV E oy o€ 3y
and
8°FP1  p%FPL  5°GPY 3°GPL. oGP a>GPY
A Rl P Sl Y W il D)
afs ¥ O8O ot ok on’ apak”
(3.44)

for k a positive integer and k # 3n.

g. First components

It will be convenient to list some of the results for the first few

components. In the following equations the expressions for FI? and GnO

which are given in 3,24 will be substituted into equations 3.33 and 3.34.

Thus, if £ = 0 we have;
(i) fg(y) =0 {ii) and (iii) are automatically satisfied

°Gg 2 2
(iV) _é'E'Z_' 'go (1) + v go(y) = mp(Y) (3-45)
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fa¥m =140 3.33

2_p 2
°F 89°“FP
. 2 5 1 % 4 2
(i) V[fl (Y)'?(-‘l)pgo(y)] F ayz =0 (11) ng(Y)+('-l)p_am— =0
(3. 46)
8°GP
(iii) s 0 (iv) not needed
af
from 3,34
aZFg a’FP  o’FP  o’cP oGP o%GP
= = = =0 (3.47)

aY.z s€oy o8y ok 3 VE NE:

The other equations pertain to higher order components. From 3.45(i)

it follows that F(;)! 0. We now seek to determine aZFf/ayz in 3.46(i).

From equation 3,31 for n=1, we have 84G{)/8§4 ={-1)P BZF{JIBQ oy
= 0. Since the dependent functions are layers as described in criterion

A, we may integrate once to get

a°GP 9FP

L el .
—3 NP5 =0 (3. 48)
ok

The arbitrary function of y that would appear here must be zero since
the solution and its derivatives must decay exponentially as § increases.

Now, as described in criterion D, this equation is required to be

consistent with the boundary conditions. Therefore, if 83Gf/8§' 3 5 0

as given in 3. 46(iii) then 9F /3y = 0 also at § = 0. Differentiating
this with respect to y, we have

2.p
d F1
ayz

=0 at & =0 (3.49)

It follows that flz(y) + 7g05(y) = flz(y)-‘)’gos(y) = 0 or that
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£7ly) = ggly) = 0 (3.50)

Thus, g03(y) is linear in y but conditions 3.25(ii) require that this

linear function be identically zero. This means that Ff! 0, see

equation 3.24(ii), and that gg'(y) is a constant. The equations in 3, 25(ii)
are all satisfied. We may now write 3.45(iv) in the form

°ah  ,
5= ~-v") gg = mp(v) (3.51)

0§

where gg' is a constant. Before determining this constant, we consider
the boundary value problem for Fg and Gg. We seek boundary con-
ditions for y=%1. To find such conditions we must investigate the
boundary conditions involving the corner layers. From equations 3.43

and 3.44 we obtain the four pertinent equations;

9°FP  p?FPd 82F P4 92GPe a>GPY
(i) 2? + 20 =0 (ii) —af_gﬁ__ =0 (iii) __2(.)_ =0 (iv) __%__: 0
8§ 2§ an Y

(3.52)

all for }l = 0. Equation 3.41 for n = 0 may be integrated once to give

33(}8‘1 ang
ptq _
>+ + (-1 —F— =0 (3.53)

As before, the arbitrary function of f that would appear here must be
zero since it must decay exponentially with ” . As described in
criterion D, we require the differential equation 3.53 to be consistent
with the boundary condition 3.52(iv). This gives ang/al = 0 at ﬂ =
which may be integrated to the form

Pq _
FO =0
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However, such integration can also be performed on equation 3.52(i)

to give F(I;+ Fé)q: 0aty==1. It follows that

FéJ:O aty = %1, (3.54)

Now the constant gg in equation 3.51 can be evaluated by finding the
mean value of azGé)/BfZ. The equation analogous to equation 3. 48

which involves Gg and F(I)) is

a3Gg’ PaFé’
— =1} 5 - 0 (3.55)
Define
1
~
£f= S f(y)dy (3.56)
b

so that we may integrate equation 3.55 with respect of y to get
3orp
0~ G
0 _ (.)P[rP p L
——= (1) [Fo(l)-Fo(-l)] =0
o§
or integrating this with respect to § , we get

a4
c.g: 0 (3.57)

It follows from equation 3.5l that

1
2 1 S m

gy = - —> m_(y)dy = - - (3.58)
R oy & T 2(1-v%)

where
1 1

o = S m, (y)dy = S mz(y)dy
3 L |
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The boundary value problem for the first components of the p-boundary

layers may be formulated as follows:

35P P 3~P p
9°F G 9°G oF
(i) 30 +(—1)p—8-—9— =0 30 -(—I)P—a—o— = 0
14 * E1 5
and for § =0 (3.59)
a%GP 9%FP  53gP
() —7 = my) - F ) gppe =3 = 0
ag P ¥ o€

while at y = 1

(iv) Fg =0

Equations 3.59(i) follow from 3.30 and 3.31. Equation 3.59(ii)
follows from equations 3.51 and 3.58. Equation 3,.59(iii) comes from
3.47. Note that anglayz = 0 is a redundant condition which follows
from equation 3.59(iii) and the requirement that the differential
equations be consistent with this. This is analogous to equation 3.49.

To solve this problem we assume that

oo Qo
FP=D a,(§)sin 3 (hy) GH=) b (F)cos Fliy) (3. 60)

n=1 n=1
and substitute into equations 3.59(i). We get
an C6)-(F) 0P b (€)= 0 and b (6)-(57)(-DPa (§)=0

If an(f ) is eliminated the single equation

2
bf(!)-(% b (€)= 0 (3. 61)
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7§
results. Now bn must be a sum of functions of the form e where
2= (nw/2)1/3 and r6 =11, Thus, =1, -1, %('ld:i f?), = -%(l:ki m
but we can use only those r which have negative real parts in order to

insure exponential decay. We conclude, therefore, that

-7.§ -Y w.§ -Tw €
bn( F)= A e ooy B e B 5 Cne i (3.62)
a ¢ ¢ :
-7 -Tw -T w
b= [ ™ T T e
where

- ;
w, =3 1xi/3)
The condition that BZF(I))/B_; oy = 0 at €& = 0 can be satisfied if we take
An-—w+ Bn-w_ Cn =0 (3. 63)

The condition 83(}(1))/8§3 = 0at £ = 0is satisfied if

A -B -C_ =0 (3. 64)
n

tw_ 1+w+
Bn b An and Cn = An (3.65)
Thus,
= -7 E ltw -Y w, & lto - T w
Fp“(1p+1 & n n + + n - in BT
o = (-1 .(e i -y sin 5= (1+y)
n=1
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0
-7 £ o -7 w £ 1+ -7 w_f
Gg: E An(e s 4! — & o +——3—i o i )cos%(’l-}-y)
n=1
where 1
1 nmw 1/3
An:-z—-12 S m (y)cos (1+y dy and 7. =

in order that condition 3.59(ii) be satisfied. In summary then, if the

corners are excluded,

1, .2 1
F~—--(F L, 2 e 0f-L ) and G~-—-—(x vy )+ S Gt oY+ B
e 8 200 ¥ ,\z 0" o e

(3. 67)

h. Re sultsi

If equation 3.67 is put in terms of the original variables then

-y 12(1-v7)b
F u e (F +F )+ o( )\3) - (3.68)
and
M 2 2 b 1 2
MY = . (= ) + (G +G.)+ 0(—5 ) (3.69)
4b(1-v%)D dinid pxX ° ¢ DN
where
= «2& )\(a+x) 6 Na+x)
Fé =z Ar]l' = _Z_C cos (JHXF (a+x) + _161:)
f=]

. nw
sin 53 (b+y)
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= -26 Aa-x) -8 Na-x)
P2 ._ZAde n g 2_353 n cos(Jn)\/B—‘ (a-x) +%)§

" nm ,.
sin —Z—b' (b+'y)

3

& -26 Aa+x) -8 Alatx)
GCI):ZArll Ee n +2 ﬁe n cos (Jn)\/?’—‘ (a+x) +%)

nw
cos > (bty)

2 -28 Aa-x) -d Ala-x)
G(ZJ =ZAHZ§6 n +23ﬁ‘e n cos (Jn>\/3—‘(a-x) +%)l

nmw
CcOos 2‘.5' (b+y)

b
g S M_(y) cos 5= (b+y)dy
n 2 p2 P 2b
4b” 8 7
1/3 1/6 241/3
8 < (? : » = [120-v%)] (%.)

b b

M = S M, (y)dy = S M, (y)dy
-b b
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B. Bending of a Helicoidal Shell

a. Introduction

Let us consider the bending of a shell whose undeformed

middle surface is a right helicoid described by the equations

z = al, X = rcos 9, y =rsin® (3,70)

where
-b2 r=b and -7 =0<7

The shell represents a pretwisted strip having a total twist 2 7,
a width 2b, a pitch 2ma and an axial length 2a?¥ . We assume that it
consists of elastic isotropic material and has a uniform thickness h.
For simplicity, we will consider only the cases where )\ = nm with
n a positive integer. Let the shell be subjected only to the distributed
bending moments Ml(r) and MZ(r) along the edges 0= -% and 0=7,

s

respectively. " The conditions of static equilibrium require that
b b
M = S Ml(r)dr = 5 Mz(r)dr (3.71)
-b -b

Figure 15 depicts the shell schematically.

The equations governing this problem have been given by
Knowles and Reissner (22). They have used these equations to solve
the rotationally symmetric problems for the helicoidal shell under
axial torsion and tension (23). Their solutions are given in terms of

; 2 : LR :
series expansions in powers of the parameter k = 2! 1€ their

3
M1 and M2 are moments per unit length of the edge of the middle

surface and will be designated as stress couples.
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M, (r)

R B

L A\ \J
M, (r)

Figure 15. Bending of a Helicoidal Shell
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solutions are perturbations from the case of the untwisted strip.

We will seek asymptotic solutions for the helicoidal shell under
the assumption that the parameter )\ = (12.;1b/hz)]’/6 is large. Besides
being a problem of considerably greater complexity than those con-
sidered in Chapters I and II, this problem also affords an example of

the application of our method to linear differential equations with non-

constant coefficients.

b. Formulation of the problem

The equations as formulated in (22) are in terms of displacements
parallel to the cylindrical coordinate directions, i.e., in the radial,
circumferential and axial directions. We will employ the displacements
U, V and W which are in the radial, tangential and norl-'nal directions,
respectively, to the middle surface of the shell, (Fig. 15). In terms

of these displacements the relevant strain quantities may be written:

PRV 8 V  2a
(111) 3’1.9—?—8—"’ RE-I—_ —RT +—;;— w
2 BZW 2r oW 4ra
iv) 7 =-gemo T30 < U (3.72)
R R
alw oV B : v at
) A= - +25 e TS 2 e g
or R R R R
1 BZW r oW a 0oV a 0U ar az
(vi) & ¢ = "RZ 202 g2 Or T RZ ot +R3 30 - R4V' 22 w

where R = (a.2 + rz)]'/2
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The stress resultants (N) and the stress couples (M) are

related to the strain quantities as follows:

i) N_= Cte_+ vey) - R%— D[T-(l-v) ;2 (-er-eg)]

tii) Ny = C(€y+ vE)) - ;az— D[‘r—(l-v) -s? (€,- cr)J

i) N_ =C (12") —2?—1;2— D [(1+v)£,(¢r 4 (3-v),40] |

livi Ny_=C {15") 7ro » ? D[(1+v),40 + (3-v),(.r] (3. 73)
(v) M_= D[ +V"g‘lz_—vfz‘ 71-0]

1-v

S5 - a
(Vll) Ml’@ = D[—Z—' 7 - ;2‘ (eg + v Er)]

L3 l-v a g
(viii) M, = D[ = = R_Z (€r+ veg)]

where D = Eh3/12(1-v2) and C = Eh/l-vz. Here E and v are the
Young's modulus and Poisson's ratio, respectively, for the material
of the plate.

The differential eéluations of the problem are given by the

equilibrium equations:
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a NOr T a
(1)3;('RN1_)+—-———-—- N, + Q

50 5 g Ty My ¥
aNO r a
(i) 52 (RN )+ 55— + g No, * g Q.= 0
an a
(111) (RQ ) 4 ——— 5o~ "R (Nrg + NOr) = () (3.74)
aMOr T
(1v) (RM )+ —m— —55— =5 Mg -RQrz 0
M, ’
(v) 55 (RM_g) + —5= + 5 Mg, -RQ, =0

. a ; =
i) N g -Ng, +— (Mg-M,) =0
R
Equations 3.74(iv) and (v) can be considered as defining the Q stress
resultants. Equation 3.74(vi) is an identity which is useful in
calculations. It is physically a consequence of the equilibrium of

moments about the normal to the shell. The boundary conditions are:

at r =+ b
(i) N_+ %—- MrO =0 (zero radial stress)
R
(ii) NrO =10 (zero tangential stress) (3. 75)
1 M.
(iii) Qr + w i 0 (zero transverse shear stress)
fiv) Mr =0 (zero bending moment)
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at 0 = (-1)P7:
(i) N0 + -iz— My = 0 (zero tangential stress)
(ii) Ngr =0 (zero radial stress)
(3.76)
aMOr
(iii) Q9 + ~3e 0 (zero transverse shear stress)
(iv) M0 = Mp(‘r) for p=1or 2. (prescribed bending couple )
We now put the equations in a more convenient form by the
transformations:
” D — 5 >4
d=bd, N=CN, M=—M, Q=DBR) Q
(3.77)

where d stands for the quantities x,vy,z,r,U,V, W, 7, Ar and 4 o
Also N, Q and M stand for any of the corresponding stress resultants
and stress couples. Assuming that these transformations have been
made, we will drop the bar notation in the sequel and take the equations
to be formulated as follows;

For the strain quantities,
’ ouU . ) \4
ki i € - A =
i) € mar (i) €o=k33 (R)

. d U 0 vV 2kW
iii) 7 g=k35 (‘ﬁ)+ Ra: (—R‘) N 3
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2 3
. ok 2o (WY 4rk
(IV) T = -2k 9790 (R) R4— u
(3.78)
T A A N W]
r 5y R4 R ar \ R R3 E)
gy o xloatw o aw __liw_};_fz_(i)+ia_v
E RZ 802 RZ ¥ R R or\R R3 9
here Bl Bikieiyhi2
For the stress resultants and couples:
H=N_-= e:r+ve:g-—-2-1—6— [T-(l-v) kz (e - eg)J
RN R *
I=N.= €, +vE_ - : r-(l-v)k (€ .- €)
4] Q r 2406 2 8 P
RN R
J=N_ =Y o __1 (1+v) &_+ (3-v) &
r0 2 r0 26 r o
2R\
B _1l-v 1
= .N'gr == Vro il 5 [(1+V) Ag + (3'V)A'r]
2R
(3.79)
3 _ l-v  k
L=M_= A +vk -5~ 5 7,
R
A B l-v k
M_MO_AO+VA- ) ?71'0
) _1l-v k
N_MrGPTr-_I:Z_ (€Q+v£r)
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¥4

) 3 80 rk

P=Q =47 (RL)+k55-5— M
0 oM rk2

Q=0Qy=757 (RN) + k5= + 35— O

where we have introduced new notation which will be convenient for
discussing the layers. The equations for P and Q come from the two
equilibrium equations 3.74(iv) and (v). The remaining equilibrium

equations can now be written as

2
8K rk 1
(1) (RH) +k - I+ Q=0
50 " K 2236
oI , rk’ 1
(11) (R.T)+k K+ P=0
30 TR N
(3.80)
R o8P 1 2Q
(iii) J + K - - = 0
255 Bt " 56 B9
8 5-K+ —_21_*- =15 = 0 (identity)
R

An alternative form of equations 3.78 can be obtained by solving for
J and K between 3. 78(iii) and (iv) and eliminating them in equations

3.78(i) and (iii). The alternative forms are

2 Z 2
. 0 R a P 1 9 Q rk k
(i) =— (RH) + - - I+ (M+L)
or kab oroo 2)\6 80Z R Rzkb 80
Q
t ——7 =0
RN

(ii) = 3.80(ii)
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2

0 R oP R aQ 1 ‘ ol
Uidd). o= [ - - (M-L)] £ 2k ==
87 | 1236 9T | )0 89 )8 50 (3.81)
r 9P rk 2Q 1'kZ 2P
+ + + (M-L) + =0
)\6 or R)\6 20 R3x6 RZ)E _

Finally, the transformed boundary conditions become;

atr==x1:
" 1 _ g
(i) H + ey N = 0 (zero radial stress)
RN
§ii) J=0 (zero tangential stress)
(iii) P+ kg—;v- =0 (zero transverse shear stress) (3.82)
(iv) L=20 (zero bending moment)
at 0 = (-1)P7:
(i) I+ —71_—6- O = 0 (zero tangential stress)
RN
(ii) K=0 (zero radial stress)
(3.83)
(iii) Q + R%S— =0 (zero transverse shear stress)

(iv) M =mp(r) for p=1or 2 (prescribed bending couple)
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where we have set Mp(r) =(Cb/k >\6)rnp(r) -- this represents the

applied bending moments at the ends of the strip.

c. Structure of the layers

The determination of the exponent pairs and sub-equations
cannot be made as simply as in the previous problems. The fact that
the differential equations have variable coefficients makes the
stfucture of the layers depend upon the location of the boundaries. In
particular, a boundary at r = 0 requires special consideration.
However, for the shell considered here this is not of importance. The
principles employed here are the same as before although the calcu-
lations are somewhat more laborious and are carried out in a some-
what different manner. The method for finding the exponent pairs and
sub-equations for the corner layers is entirely analogous to that for
finding exponent pairs and sub-equations for the boundary layers. The
calculations for the boundary layers will be omitted here. It can be
shown that the exponent pair for the @-boundary layers is (1, 0) and
that for the r-boundary layers is (0,1). We will now seek the exponent
pairs for the corner layers. Assume a and P greater than zero and set

E=) (7+0) B ) g (14x) . u= (1+k2)1/2 (3.84)

The procedure is to transform all equations into new ones involving
the layer variables § and 7{ . It is only necessary to retain terms
involving each variable U, V and W that have the highest powers of
in their coefficients. Thus, if we transform the equations 3.78 and

substitute from them into 3. 79 and yet again substitute from these
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equations into 3.81, we obtain to first approximation

328 3%u. . 5-v k y2a+2p-6 o*u 1y ﬁ)‘«h-é atu
" o T t2.02 % 3 —7
87] os "o s of
2 at3p -4
¥ vk \VHP g g - ——1'4" A K V—3
§ 37 ok o
\ 5—vﬁ>‘3u+ﬁ-6 8%V 8% ya+4p-6_9°W | N3a+26-6 _3°W
a7 ok oy K of o 28 3ay°
3 5
k )\50.-63‘._: - o s
28 d

2 2 2 2 3
1+v k>\a+|3 8" U 1-v s)\Zﬁ a~Vv _'_k_s )\Zu 0"V 1l-v\3B-6 0™ W

+ - ——
¥ o 2 ‘“‘2‘8” e o
l-v _ aB AW , 1-v k° \2atp-6 9°W
ik k"a;,* Fe e N —__327] =0 (3. 86)
s a8 0
2 4 4
2vk >\a+f3 0"U "5"2'?1 a+t3p-6 98U " liv k_2 3a+B-6 83U
o¥ a7 a8 ap° s of “on
2 4
c2< 320 25V 1y s gap-6 2’V
e 2 z k 4
ok a7
5-v k y2a+2B-6 S Wiur # 356-6 oW
TTE EZ_B_—Z \ L0 ey
0 \k on
e By f i e o8 -
2g)20+3B-6_8°W Kk ydaip-6 8°W _ o -

atzaq?’ » ag"‘af(
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We may now make various assumptions about the magnitudes of a and

B. For example, if we assume that a and B are each greater than or

equal to one and less than two we may omit several terms from the

preceding equations. To further restrict this example assume that

a > B, then we have from equations 3.85, 3.86 and 3.87;

2 2 3
x:+B8U+Vk)\Za BV_k Abuﬁb -0
: Y AEON 2(12F ag
2 2
T atfp 0 U 2a 07V Bpow _
(11) (1+V)Sk w : 3 ka atz + 2(1—V) A W = (3. 88)
) s yer 2y 2a 8%V L Nda+B-6 35w fo

% Sl . g
Fon 0§ o¥ “on

Let us introduce the "O'" or order notation. To illustrate, we will
write for the first term in equation 3.88(i), O (XHBU) and mean by
this ''the order of XJ'+BU with respect to A as >\ becomes large.'
The argument goes as follows: Assume O ()\qﬂaU) >0 ()\ZQV)
then in equations 3.88{i) and (iii) the first terms and third terms must
be of equal order; otherwise, either U or W would be zero under the
assumption that the dependent variables and their derivatives must
tend to zero exponentially as the layer variables tend to infinity
{Criterion A). However, if this is so then O ()fm'ﬁ-()W):

O (xia-'—ﬁ_éW) or a = B contrary to our assumption. Similarly, the
assumption that O ()\a+ﬁU)< O ()\ZQV) also leads to this contra-
diction. The only remaining possibility is that O ( X‘*ﬁu) .

2 : -y i
O ()\ aV) . By arguing in the manner indicated, it can be shown that
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ﬁ+1witha<% and O (X"’ﬁu): o) ()\z“v)z

we must have a = 3
o (>\6Q-B-6w) . Indeed, if we set A\'U = u, AZu-ﬁv =vand W=w

then to first approximation equations 3.88 become

’ azu Bzv k3 35w
) a3+ vkoggy- «—5 —p =0
Y 2s ok
62 azv ow
tii) (1+v)s —!T“’,— +2k 5 4 2(1-v)§’1_ =0 (3.89)
: 3
Bzu Bzv

(iii) vs + k = 0
8; 37i agz

The third of these equations is readily integrated, in accordance with

du

criterion A, to give vs 57 + k g = 0. Similarly, when 3.89(iii) is

used to eliminate v in 3.89(11), we can deduce that s -g-? + 2w =0,

In summary, equations 3.89 lead to the sub-equations:

(i) vs—l—l-+a =0

i

i) s g? $ Zw= O ( (3.90)

fiii) 36‘2_+ ' 32 2 8P
of

w:itha.=%+1.

In the previous discussion, if we had assumed B > a then we

would have obtained B = % + 1 <% and
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(i) szg;'i $ = B (3.91)
6 2.5 .2
fiii) ;) \65/'_'_ 4(1-v6 k- 9w -0

on s 8!2
provided that here )\Zﬁ'uU = u, }\ﬁv =vand W= w,

We will omit the discussion for other magnitudes of a and B,
e.g., for a and B not bounded between one and two. Note that the
relations between a and P that have been found here are those appearing
in equations 3.14(d) and 3.14(e) in the first problem of this chapter.
Thus, the exponential pairs are the same as those found there and so
the layers will have the thickness h appearing (by means of A )to
the same powers as in the previous problem. Thus, there are infinite

sets of corner layers.

d. The inner solution

Since A appears both in the differential equations and in the
boundary conditions to the sixth power, we assume

e o]

v'- Z Ug(o, ) \~6n

n=0

(e 8]
¥ - ng(o, o e (3.92)

n=0

o o]
-6
wo= wie,n X
n=0
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Let S denote a representative function for the functions H
through Q and also assume that

QO

RN (3.93)

n=0

Now formally substituting UO, VO and WO for U, V and W in equations
3.89 and substituting these in turn into equations 3.90, we have for

the first 0-components of the stress resultants and couples:

2
0_ aU rk vk 8V
Rl =2 U+tx 30

2
6§ 30U . =k k oV
IO—V—; +R—2— U+—I{—-a_—
0. 0y [% 28 9 2kW
Jo = %o =53 ['IT—E 5—(—) ]
e La B Wil x4 4% Ly al oW ul olw
0 5 o). 2 R o 22 g
vrkz oW
. RZ or
(3.94)
MO l-v KX 9U  l-v 3k _@_(1)_21(2 Wy W k% %w
0" 2 3 9 2 R 9r\ R _RT ar2 ?_—302
_rk” aw
R ar
0 3-2v .3.. vk aU k° BV 92
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2 2
g 3% 13" K0T  eeOY 9 W
o, = - N - . -(l-v)k——(-—)
0 RZ RZ or R3 00 0ra0 \ R

0
90 2
9l B 0  rk® ..0
Pg = 55 (RLg) + k55— - = M,
0
oM 2
0_ 8 ,...0 g " o
Qp = 37 (RNy) + k—g—+5- O,

where the U, V and W occurring in equations 3.94 are understood to
0 0 0 :
be UO’ Vo and WO' respectively.
If we substitute S0 for S in equations 3.80, where S is a

representative function for the functions H through Q, then the inner

solution components satisfy

0
oK )
i 0 e n rk 0 1 [
(i) 5-1;(RHn)+k e In+7R Q ,=0
0
ol 2
iy @ 0 n rk 0 1 0o _
(i) o5 BRI +kog—+ R Kpt—7 Po =0 b
0 0
i) 1°+ k0. R Zral 1 %
n n kz or k 00
. 0 0 1 0 0 _
(1V) Jn - Kn + R—Z' (Mn-l - L -1) 0

Also since we assume no boundary layers at r = =1, we have by a

similar substitution into equations 3.82 that for r = £1,

(i) RZHE + Ng—l = 0 (zero radial stress)

(ii) Jg =0 (zero tangential stress)

(3.96)
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0. . N,
(iii) Pn tkpp—= 0 (zero transverse shear stress)
(iv) Lg = 0 (zero bending moment)

e. The O-boundary layers

As stated in section ¢ the exponent pair for these layers is

(1, 0). In the terms of the O notation, it can also be shown that

o(Au)= o (N*v) = otw).

Accordingly, we assume that for p =1 or 2,

Qo

uP=> uRck,n N O

n=0

oo
vP = Z VE( £.1) )\-(4+n) where § = XII—(—I)PO]
n=0

QO
WP =S whek, n N
n=0

(3.97)

Let S denote a representative function for the functions H through

Q and write
o

sP :ZS§( P Y adie

n=0
then we also assume the following correspondences

§ M I R L oM N0 P R
A 3 32 2 0 0 1 1 0-1

(3.98)
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Formal substitution of UP, VP and WP for U, V and W in
equations 3.78 and use of the series forms of equations 3.97 provides

the following relations for the first components:

2
" p_09U , vrk _ vk pov
A Ho=5x * 227 “)—;

8 . rh*

- P _ v
(11) IO—V-B—r' -—Z—-U———( 1) T

(iii) ng-l%l[ (1)P§!-+——WJ

2 2
vk~ 8
(iv) Lp- —_—
R a2
. . (3.99)
tv) Mp_ k a3 W
"R Y

&
1 N5 =157 w0 B () = 08

p_ _ltv BZW

Gh) Fo=-2 atzar (T"_) R o?

(viii) Qp =-—-—3-’-—/( 1)P 83??
R* ok
where U, V and W are understood to stand for Ug, Vg and Wg,
respectively.
Thus, we have the first p-components of the stresses and
couples in terms of the first p-components of the displacements., We
may now find the differential equations satisfied by these displacement

components by first substituting from equations 3.98 into equations

3.80. This gives
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2°QP 2
R P 1 0 rk P~
(i) 57 (RHD) +> =29 o p=0
BIE . .. g2
fil) 5= (RJP) k(- 1)P—!.— tx-Kb=0 (3.100)
P P _ . P P_
(iii) Jo T Kp=10 (iv) Jo-Kp=0

for the first p-components.

Now 3.100(iii) and (iv) imply Jg KIS 0 and from 3.100(ii) we

get 818/85 = 0 which can be integrated, in accordance with criterion

A, to give Ig = 0. Thus, noting that Hg-vlg = (l—vz) BUg/BI , we have

2
aul . . 8°ab
W 2052 (R— 2

=0

aEZ
(ii) Jg =0 (3.101)
(iii) Igz 0

or rewriting these in terms of displacements by means of equation

3.99 we get
auP 2 avP
: 0 rk P P 0 _
(1)var +—1-{—2-U-—-—(1)—!.—-—0
aUY
(i) 2wh -R/(-l)p—a;— =0 (3.102)
6.;P
U
| i) —=+ 4(1V’R1(R 0)—0
_ of




-118-

These are the basic equations for the boundary layers at an

edge determined by constant 0. The differential equations for the
other p-components will be at most inhomogeneous forms of these,
Note that equation 3.102(iii) includes derivatives with respect to
both & and r. This means that it is not one of the classical type
as described in relation to equation 1,27,

The equations for the second p-components can be obtained
from equation 3.102 by increasing the subscripts by one. The
equations for the third p-components which are obtained analogously

to equations 3.101 are:

2P 2.p
0 P 9 Q 2
0 o D G s ¥ e e IE
or 27. 2k Bfar 2 5 2 R 2
. (-1)1’(MP -LP)= o
ZRZ 0 0
9 P p aIIZ) rk® P
QP
P P _1_ _1\P 0 _
(111) J2+K2+k(1)T—0
. P P _
(iv) JZ - KZ =0
it follows that
an :
(3.104)

p_&p_ 1 P
J2 =K = -5 (1) —5

and substitution of 3.104 into 3,103 (ii) gives, after an integration

with respect to § ,

2.,p_ 0 P :
-2k” 15 = =— (RQE) + Qg (3.105) .
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The equations for the fourth p-components can be obtained from these
by increasing the subscripts by one.

The boundary conditions at a p-edge which involve the inner
solution and a p-layer are obtained by formally substituting sums of
the form S0 + sP for S, where S is a representative function, into

equations 3.83 . Thus, for 0= 9 (-l)p

t) rEC + 1P +_J)_\6_ (0% +0P)=0
R

tii) K2+ KP = 0
(3.106)

0 P
wi) Q%+ QP+ R22 1 REQ .
or Ir

(iv) MO + MP = mp(r)

Substitution from equations 3,93 and 3.97 gives for the relevant § =0

. 2,.0 P 0 P
(i) R (In + I6n-3) +0_,+ O(m 9= =0
- 0 P
(ii) KI + K(:n > = ='0
560 5P (3.107)
n 6n-1 _
(iii) Q +Q6 at + R = + R e = 0
{iv) M0 +MP = m (r)
. n 6n p
and
iy 4D P % P _ P bn-7 _
{i) Ik 3 ¥ Ok 9= =0 (ii) Kk-Z =0 (iii) Qk-5 + RT =0
(3.108)

(iv) M]I: =0

for k a positive integer not equal to 6n.



-120-

f. The r-layers

Although these layers will not be used here, we present their
basic formulation for completeness. As stated in section c, the
boundary layers have the exponent pair (0,1). In terms of the O

notation, it can also be shown that
o (¥u) =0 (xv)=-o(w)

Accordingly, we might assume that for q = 3 or 4,

Qo

vl=> udte, ) X
N |

V‘_1 = ng(e, 7) )\‘(“n) (3.109)
n=0

(o 6]
wi Zwﬁ(o, 27)N"
n=0

and then perform the calculations which are analogous to those in

section e. If this is done, the equations corresponding to equations

3.102 are found to be

auUg AR
(1) ST + vk ao =0
2 9%
(ii) s otk wi=o0 (3.110)
6.,,.9 2o
s 2 Wo o apagtig® ¥ Vo .
{iii) = ¥ 3 > = 0
az s 90

where s = (l-Fk2 1/2.
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These are the basic equations for the boundary layers at an

edge determined by constant r # 0. The differential equations for the
other g-components will be at most inhomogeneous forms of these.
As with equation 3.102(iii), derivatives in both variables appear in
3.110(iii) so that it is not of the classical type. Our method would be
needed to get sufficient boundary conditions for it,

The basic equations for the r-corner layers are given by
equations 3.90 and 3.91 and we note that equations 3.110 are analogous

to equations 3.91.

g. The O-corner layers

As deduced in section c, the first set of matching corner layers

have the exponent pair (1, %) and in the O notation
o ()\5/3U) -0 (A*3v)= o(w)

Accordingly, we assume that for p=1o0or 2 and q = 3 or 4,

0 by 13+n
Pq _ Pq 3
gPl - Zun (E,7) A
n=0
[o's) _ 124+n
vPa _ Zvﬁq(;,q P (3.111)
n=0
3 _8n
Pq _ Pq 3
W -E WESEEL ) A
n=0

where £ =A[7-(-0P0] and 7 =  ada [1-t-0%] .
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Let S denote a representative function for the functions H

through Q and write

(e 0] b +n
qu=ZS§q(§,7()>\ : (3.112)
n=0

Then we also assume the following correspondences:

8. axH' 'Ei-id' Kplu-'M N © P
A 9 9 8 8 0 0 1 1 -4 -3

Formal substitution of qu, VP9 and WP? for U, V and W in equations
3.78, and substitution in turn of these equations into equations 3.79

gives for the first components:

$h s ) 277_ - 25 0P g

o) 15" = "’("”q%lu— L =

(i) gP9-1v [ a8V, ZkW ] _ ppq

0 2 [ . 3}]— sZ] 0

2

: pg _ _ 8°W

Br) Lig == o
y (3.113)
92w

(v) MPY =y

0 80

2
(vi) NP9- -(1-v)§'(-1)P+q S = R

4

0 3o 0
2w
(vii) PR = (-1 23
on
P 83W

(viti) Q% = K(-1)

ayaqz
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/2

where s = (1+k2)1 and U, V and W are understood to stand for qu,

ng and qu, respectively.
The differential equations which are obtained by substituting sP4

for S, where S is a representative function for H through Q, from

equations 3.113 into equations 3.8l can be deduced from equations 3.91,

) s g-ﬂl-’ + vef-1)PTe _g.;’_ -0

fi) s> %;— 2k(-1)Tw=o0 - (3.114)
" 2 2
i) W, A0-vD) 597w

a;,E’ o’ af °
where again U, V and W stand for qu, ng and qu, respectively.

The boundary conditions at a q-edge which involve a p-layer and a
pq-layer are obtained by formally substituting sums of the form
SP 4+ SP4 5 S, where S is a representative function, into equations

3.82 . Thus, for the relevant }] =0 dyes, for = ('-l)q, we obtain

(i) sz(Hp+Hpq) - )\°6(Np+Npq)=0 (zero radial stress)
i) JP+J3P9= o (zero tangential stress)

(3.115)
P P4
(iii) PP+pPPY 4 k A B_BI\_I!_ +8_g_lg_) =0 (zero transverse shear stress)

(iv) LP+1LPl=-90 (zero bending moment)

Substitution from equations 3.98 and 3.112 into equations 3.115 gives
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P Pq P Pq -
Ti) s (Hn - H3n) - Nn-4 + N3n—10 =0
TN .
(ii) Jn + an_z =0
aNP aNPd

@ii) PP+ PRY 3n-2

n p—
hivg b Kogp— R rmgp— & 0

g P P9 _
tiv) Ln+L3n_o

and

G b
) B e =0 ) T2 =0 i) PRY 4k

2
%

: Pq _
(iv) L= 0

form a positive integer not equal to 3n.

h., Equations for first components

(3.116)

PY
BNm_ 8

3y .0

(3.117)

We first attempt to formulate a boundary layer problem for the

first components of the p-layers by deducing boundary conditions at the

q-edges.

that HP9 = 0.

We note that equation 3.114(i) together with 3.113(i) imply

o Similarly, 3.102(ii) together with 3,99{iii) imply that

JP - kP = o,

0 0 Thus, for n = 0 equation 3.116(ii) is satisfied auto-

matically and the other conditions from 3.116 and 3.117 are, at ), = 0,

(i) Hg =0
(ii) ng = 0 satisfied by 3.114(ii)

(iii) qu =0

(iv) Lg + qu =0

(3.118)
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The condition we seek is 3,118(i), which gives

aUuP
P _ = 0 _ o tr==1
HO— (1-V )—'8—;—'— at r = (3.119)

This is another example of how our method of considering the layers in
the corners leads to boundary conditions which are necessary for
determining the boundary layer. Now we may integrate 3,102 (iii) over

r from -1 to 1 and get

677 P p Pr.
8 Ul . 4(1-v%) s[auo(l) ) aUO(-l)J: .
3g6 k3 or or

I

£ 0 ; o) " .
where U0 g dr. Thus, since U0 and all its derivatives

must tend to zero exponentially with § , we conclude that

P
Uy =0 (3.120)

The relevant boundary conditions for @ = 7(‘—1)p from equations 3,107

and 3,108 are

(i) 18: 0 (i) KO=0 (i) MmO

P_ : P _
0 0+M0—mp(r) fiv) 1. =0

0

(3.121)

(v) KS: 0 (vi) ngo (vii) K123=0

of which (ii), (iv) and (v) are satisfied automatically. Note that

Kg = - z%—(—(-l)p (an/aS ) from equation 3.104. Thus, equations
\

3.121(iii), (vi) and (vii) together with 3.99 provide the following

boundary conditions on wk,

2 92wP WP atwP
-k——zg-f-Mg:m(‘r); 30= 40=0 at £ = 0.
R® o p o 0§
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Using equation 3.102(ii), these may be written in terms of Ug as

33 uP a*uP  5°yP
kz 30 = ZR(V-l)p [Mg-m (r)]; 2 = 50 =0 (3.122)
ok P ok of

when the relevant § is zero.

Equations 3.102(iii), 3.119 and 3.122 determine the boundary
value problem for Ug provided Mg is known to within its mean value.

We now turn our attention to the inner solution. Equations 3.95

for n = 0 give the differential equations
0

9K 2
. D 0 8 k0L -
(i) 37 (RHp) + k—5— -5 15=0
a1° 2

. 0 0 rk 0 _ .

.. 20, 0 0 0.
(iii) J0+K0—0 (iv) JO- Ky=0

and for r = £ 1, from equation 3,96

0
W H2=0 @0 I%=0  gui) P24 kaNo =0 @v) L9=0  {3.124)
1 0 = 11 0 = 1 0 ao = 1V 0 = o
Also, from 3.121(i), we have
19=0" at 0.= YENP (3.125)

0

Now equations 3.123(ii),(iii) and (iv) together imply that Ig is a function
of r only, so that 3.125 requires Ig 2 0, Similarly, from 3.123(i) we
deduce that RHg is a function of @ only but 3.124(i) requires this
function to be zero. Thus, we have

0 0 _ J0

" - S
Hy=I,=J,=K =0

(3.126)
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and the two boundary conditions at r = £1,

o-nagtl . < Tp
L0=P0+k—a—g—— = 0 (3.127)
Since Hg -vIg = (‘l-vz) (8U8/8r) , we deduce that
0 ', aF
UO_ ‘ZW (3.128)

where F = F(0) is an arbitrary function. Putting H0 = 0 in 3.94, we

0
thus deduce that

0

Yo

r
- r_;{‘ F(0) -2kR S %(—3‘"-)— dr (3.129)

where G is an arbitrary function of r. Similarly, Jg = 0 gives

7
0_ . d°F 2
W, = R:IEZ- +(R—-F)F+G (3.130)

The inner solution now depends upon the determination of F and G.

Substitution of equations 3.128, 3.129 and 3.130 into 3.94 gives

2 2 2
dr R R
2 2 2
Mg= _%IF P, GZ ; "liz gf' + 1‘34" K2G (3.131)
dr R R
0 _
Ng =0
0=
0y =0

where IF = (d4F/d04) + ZdeF/dOZ) + F. Now equation 3.124(iv)

implies that
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XF = CO a constant (3.132)

Thus it follows that
QQ =0 (3.133)
0 0 0 :
Only the components LO, MO and PO may differ from zero. These

correspond respectively to Mr' Mg and Qr’ We note that they are

independent of @ and that equation 3.127 requires that
=P,=0 atr==x1. (3.134)

Since we have used all of the equations for n = 0 in equations 3.95, we

now consider the equations for n = 1. Using our previous results, we

have
BKO 2
N 0 1 rk“ 0
(1) -a-;(RHl)-Fk—-—ag = g 11-0
0
oI 2
.. D 0 1 ,rk“ 0, 1 _0_
. 0 R apg (3.135)
(iii) Jl tK = e
k
; 6 a0 0 0
(IV) Jl i K]. = —E{—z- (LO — MO)

It follows that since the first components here are independent of O then

so are J{J, Klo and 813/80 . We now seek conditions on If. Two

relevant conditions from equations 3.107 are (i) with n = 1 and (iii)
with n = 0, These give

(i) 1{’

+1§= 0 (i) Qf: 0 (3.136)

for 0 = 7(-—1)p. As stated in relation to equation 3,105,
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2:-p 8 P
-2k 13_5—;(RQ{’) +QF

Thus, it follows from equation 3.136 that

1? =0 for 0 =7%(-1)P (3.137)

However, I{) is linear in @ and so must be zero. Equations 3.135(i)

and 3.96(i) imply H{) =

provide us with a differential equation involving Lg, Mg and Pg. Also,

0. Equations 3.135(ii), {iii) and (iv) now

Pg is given in terms of Lg and Mg in equation 3.94. Eliminating J?

and K{) between equations 3.135(ii), (iii) and (iv), we get

4 2
0 2 d 0, 2rk™ ; 2k 0 _
(R )+k (Lo-MD) - —Z—(L M) + 2 PO= 0 (3.138)
o o g a0 o
so that we may integrate and obtain
0
dP
3 0 2.0 .0 2.0 2 j
R o ol g k (LO-MO) + 2k Lo+ -2k CZ (3.140)
: ; i " g e 9 .0
where C2 is a constant of integration. Again, eliminating LO-M0
between equations 3,139 and 3.140, we obtain
0
_d_(_r_ po)._ _d_(_.__LO ) I 5 S
dr\ R0 dr RZ RZ 2
which integrates into
rRPJ-LY = C (s*-R%) = Ck*0-r%) (3.141)

where Cl is an arbitrary constant of integration and C2 has been

eliminated by use of the conditions 3,134, Let
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_dG 1 _r d (RG :
Tsar 2 " F @ (T‘) (3.142)

then from equations 3.131, we may write

z 2 2
0_dT l+vk r vk
1) —Lo—dr + 5 T+R CO
rR
(3.143)
{on B2 2
s 0 dT vtk r k
(11) —Mo—vd‘r ' 3 T+-'R- CO
rR
Using equations 3.139, 3.14l and 3.143, we obtain
dZT + kzr dT _ [ 2 + vk2+ k4r2] T = - kz('l-rz) C.+ kz(‘v+r2kz) C
art RS 9 | 28% R* =R .
(3.144)
and 4
FA Ck'r
0_ R 42 d'TF dT 0 ;
'PO__Z [r 5 +rdr -T]-—T— (3.145)
T dr R
Now equation 3.141 assures us that Pg =0atr=2]11f Lg does also.

Thus, we may consider equation 3.144 and the condition that Lg =0

for r = £ 1 as determining T in terms of CO and Cl. To see this, let

T COTO(r) - ClTl('r) (3.146)
then if
o @ ke d 2 . wkoach® ,
dr R r R R
we have
A 2. 2
) ET0= k (v+r3k )
rR
(3.148)
L5  tevks" el

forr==%1

{ii) + PR
dr rRz_ 0 R
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and
Zg 2
(’i) ETI: + .. (1-1‘ )
rR
(3.149)
dT 2 2
(ii) drl + 1+Vk2 = T1 =0 forr=%1
rR

Thus, T0 and Tl are determinate. It is interesting to compare these
equations with those found by Knowles and Reissner in (23) p. 416. If
K is their operator with S0 and S1 as the dependent functions, their

equations may be written

® : dz +kzr d % vkz-k4r2
drz RZ dr R4
so that
\ Be _ (A-v)kr (1+v)kr
(i) KSo = > - i
R R
ds vkzr vk
(ii) + S, =~ forr=%1
dr RZ 0 RZ
and
2
1 R4
dS1 vkzr v
(ii) —+ —— S, = — forr==%1
dr RZ 1 RZ

The operator L has a regular singular point at the origin, while both
K and L have singularities at kr = £ i. However, because of the way
that G depends upon T, there is no such singularity in the stresses or

displacements.
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Inspection of equations 3,148 and 3.149 shows that both '1‘0 and

T1 are odd functions of r. Now it is readily verified that

R .
Ty= -5 (3.150)

is the solution of equations 3.148, Thus, substitution of T from

equation 3,146 into equations 3,143 and 3.145 gives

dT 2.2
°=c1[ 1, Lvk’r Tl]

(i) L

0 dr rRZ
: dT 2 2
- 0 _ 1 vtk r ;
(ii) MO = C1 [v -t rRz Tl] (3.151)
2
C,R d T dT
o oS, N 2 1 1
(iii) PO = rr >- +r et Tl]
: dr

This means that Mg is completely determined to within the multipli-

cative constant C1 which is found from the condition that
1 1
. ;
S Modr = S mp(r) dr (3.152)
-1 -]

It is readily shown that the constant C0 enters through F and G in
such a way that all functions are unaffected. Indeed, it may be defined
to be zero.

We may now solve the boundary value problem for the p-

boundary layer. If we letu = Ug , the formulation of the problem is:

6 2

W 0 u , 4(1-v7) 9 9u

i) ¥ r2 (R— -0
ag?) k3 or or
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where for § = 0,

) 223 = 25 (1P [Mo)-m ()]
4 5
(iii) 3}% =0 (iv) a—u_é, =0
and
tv) a—‘r‘: 0 forr==1
Let

sinh-lkr 2R pf, 0 :
WS — and —5 (-1)* [M_(r)-m_(r)]| = f(w)
sinh-lk k2 [ o p ]

then equations 3.153(i), (ii) and (v) become
6

: 2

- o u 2 9 u
(1)—-——6+A———2-=0

o€ dw

where
83u du
(ii) =flw)at § =0; —=0atw=+1
3 ow
ok
and o 1/2
& 4(1-v"7) 1
B k e
sinh "k

We also have from equation 3.120 that

| 1
S udr N sinh lk S udw = 0
5 |

R i3
|

Thus, we may assume that

Q0
u =Z a_(§) cos % (1+w)
n=1

{3.153)

(3.154)

(3.155)

(3.156)

{3.157)
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and so 6
d Q@ 2
n - EEA =0
dQ‘E (2 ) an

similar to the result in equation 3, 62, we conclude that

-7t -T v, § -rw §
B o=l B R NF +C e n"-

n n n n

where 711 = (n'er/Z)l/3 and W, = (1xi ¥ 3 ). Conditions 3.153(iii)

N|n—-

and (iv) require that

A-w B -w C =0
n 4+ " m - n

and

A +tw B +wC =20
n - n T A

respectively. Solving for Bn and Cn’ we get

£ _ iAn ;
_Bn 5 Cn = ’f3—‘ (3.158)
Thus,
- - 7ng i - wnw+§ i - an-§ nw
u = E A [e - - + - ]cos—z-—(l-f-w)
. V3 /3
(3.159)
where 1
An = %3- 5 f(w) cos %(‘li-w)dw
-1

in order that equation 3.155(ii) be satisfied. This equation, together
with equations 3.102(i) and (ii), determine the displacements due to the
’bb;ndary layers. Knowing the boundary layer displacements, we can

calculate the boundary layer stresses using equations 3.99,
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i, Conclusions

By substituting 3.159 into equation 3.102(ii), we obtain

o -7 f w_ - w E Lw, -Xw
Wg =ZRAn[e #—p—an By s ]cos (1+w)
. (3.160)
where
1
An= 21 | S [Mg('r)'m (1')] [cos - (1+ sinh”kr ] di
Tk sinh” k4 P aink T

This may be compared for small k with Gg which is given in connection

with equation 3. 66,

In the original notation, from equations 3.151 we may write for

the inner solution, to first approximation:

2 2
M :Cl[dT L 2 tvr T]

r dr rRZ
dT a2v+r
Mg = C1 [v e + > T] (3.161)
rR
C 2
N | 2 dT dT
Qr’—z—[r T trEE 'T]
: dr
where
_5 Mp(r)dr % 1/2
C, = 5 R=(a"+r")
1 b 2 2
dT , a v+r
v + T )dr
é dr 2 )
- rR

and T is a solution of the equation

d2T+rdT_2a2 va+r)T_ -r
ar? RZ OF £ R brRZ
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with the conditions

2 2
dT+a+vr T=0 ik % ik
dr 2

rR

Further calculation is necessary to determine the displacements

uniquely.
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