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ABSTRACT

The photoproduction of neutral pions from complex auclel is ex-
pressed in terms of the photoproduction froa single nucleons by means of
the direct interaction model and the impulse approximation., A summation
over all final states of the nucleus is performed by means of a ¢losure
approximation,

Within the framework of the independent particle model of the nu-
cleus, the nuclear matrix elements are evaluated exactly for closed shell
nuclei, the final results being expressed in terms of the nucleon density
and the two-particle correlation functions in tho nuclear ground state,
For quantitative purposes the correlation functions are calculated both in
the case of a Fermi gas and for harmonic oscillator wave functions.

The differential cross section is decoamposed into an elastic part,
which leaves the nucleus in its ground state, and an inelastic ‘part. The
elastic cross section has a coherent peak close to the forward direction,
The inelastic part is suppressed at small angles because of the contribdu-
tion from the correlation functions, which iz a manifestation of the ex~
clusion principle.

The interactions of the produced pion with the nucleus are in-
cluded by means of the optical model. Numerical integrationa are per-
formed using an approximete wave function for the plon,

Neutral pions can also be produced by the interaction with the
electrostatic field of the nucleus. This process is related to the life-
time of the pion for decay into two photons.

when compared with the available experimental results, the theo-
retically predicted cross sections seem to be too low. Fossible reasons

for this discrepancy are discussed,
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s latredustion

At lov emergies the photoproduction of pions from single nucleons
is well inou (2) and has been explained field thcouticllli (3) as due
to the interaction of the electromagnetic field with the pion-aucleon cur-
Yent. Receatly the cross section for the production of neutrsl pions from
protons has been seasured (4) at energies up to about 1 Bev. Although the
details of the high energy proceas are still very imperfectly known (5),
4% is presumably still due to the direct coupling with the pion-aucleon
curreat.

Aocording to the direot interaction model (6) the photoproduction
of plons from a complex nucleus can be considered as due to the inter-
agtion of the photon with the individual nucleons as long as:

kr, > | (1.1)

vhere k 1s the photon momentum while 7. 4s given in terms of the
mass number A and the nuclear radins R by

R = 7 A® (1.2)

Ve ahall always be using umits such that h =C =/ . If the impulse
approximation (7) is valid, the interaction with the bound nucleons can
be taken to be equal to that vith free nucleons. The process which
would ococur Lif for the latter we use the direot cowpling with the pion-
nucleon current only, will de called the auclear produotion.

_The nuclear production of positive pions was treated by lax and
Feshbach (8) for low energies. These authors were mainly interested in
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the pion energy spectrum at 90°, At such a large angle the coherent pro-
duction is very small so that they confined their atteation to the ineco-
herent cross sestion,

Primakoff (13) some time ago proposed that the lifetime of the
asutral pion be determined by measuriamg the photoproduction of asutrel
pions from heavy auclei. Since the T7° decays into two gamma-rays, it
should ve possible for a neutral pion to be produced when the incident
photoa interacts with a virtual photon corresponding to the electrostatic
field of the nucleus. This process will be called the conlomd produstion
of meutrel pions,

A suceesaful direct messurement of the lifetime of the neutral
pion was reported for the first time (14) when this thesis was already
being written, Primakoff's suggestion provides an indirect way of mea-
‘mi.u the lifetime. The coulosb preduction would have a pole when the
virtual photon im question becomes real. This condition is approached
in the forward direction wvhere the momentum tramnsfer to the nucleus
reaches a minimum value, The photoproduction cross sesction must thus bde
neasured at very saanll angles and then corrected for the nuclear pro-
dugtion in oxder to extrget a value for the lifetime. It is therefore
of considerable interest to obtain a theoretical estimate of the nuclear
production at small angles, In this region the coherent oross seotion
oan 80 loager be neglected and actually becomes doli.mt.'

The cross ssction for photoproduction of neutral pions froa
muclei at 250 Mev has been measured by Davidson (15). He treated the
cohereat nuslear produstion where the ausleus remains in its ground state,
by inocluding a source term in the Klein-Oordon equation for the pion and
fitting various parameters to his experimental results. The deviations
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from his fit at small angles were ascribed to coulomd production and used
to obtaia a value for the lifetime of the meutral pion. Imelastic pro-
oceases vere not included, The lifetime determination was alaso made
difficult by the faoct that the coulomd production happens to be much
smaller than the auclear productioa at 250 Mev, A similar experiment is
at preseat in progress at the Caltech synchrotron (16) at an emergy of
900 Mev at which the couloab production is much larger, partiocularly

from heavy nuclei,

In the pressnt work the differentisl orcvas section for the photo~
preduwotion of neutral pioas from complex nuolei in fairly forward direc-
tiona is expressed in teras of the intersctions of pions wvith single
nucleons and of certain properties of the nuclear ground state. Some
of these quantities are already known and others could be determined in
the mear future. This is done within the framework of the direct inter-
action model since condition 1.1 is satisfied at the energies under con~-
sideration, The further basic assumption is the validity of the impulse
approximation,

Ia chapter I a susmation is performed over the croess sections
wvhich leave the nuocleus in specific final states. This is achieved by
neans ¢f a closure approximation based on the work of Plaocsek and Wick
(9) on the scattering of neutrons by molecules and the work of Fowler
and Wateon {10) on the scattering of particles by nwclei. The dt‘fforca-
tial ocross section is expressed in terma of expectation values of two-
auclecn operators with respeat to the greund state of the nucleus. The
part which is disgonal witk respect to the two nucleons, is completely
inobhereat. The resaining part can be decomposed into a correlated and
a nom-gorrelated contribution. The latter is proportional to the square
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of the mass nwmber A and produces a diffraction peak near the forward
direction.

In chapter II the nuolear ground state is desomposed into states
of definite aymmetry. The expectation values of the two-nuscleon operators
are expressed in terms of form factors and spin-isospin matrix elements.
The two-particle correlation functiomns are caleulated using an inde~-
pendent particle model and it is demonstrated that the correlated cross
section partly cancels the diagonal contridutioa, This suppression ia
due to the fact that certain final states of the struck aucleon are for-
bidden By the exclusion principle.

The final state interacstions of the produced pion are introduced
in ohapter IIXI., The pion plame wave is replaced dy the wave function
for a pion inside a complex potential well, The effects of the pilon ab-
sorption and scattering inside the nucleus are computed numerically.

The cross seetions are attenuated and the diffrection minima are ssoothed
out, |

In chapter IV the decay of the meutrel pion is considered. The
coulosd produstion from heavy nuclei is expressed in terms of the pioa
1ifetime. Absorption of the pion is included and the determination of
the lifetime of the neutral pion is discussed.



SEAPIER I

PEOTOPRODUCTION IN A COMPLEX NUCLEUS

The differential ocross seotion in the laboratory systea for the
produstion of a neutral pion from a nucleus of mass number A by a

—>

photoa of momentum k s 48 given by:

do Q*de |t

4@ . 2.1

46 S (&Tr)z \O] TA S(EL Ho) —I,_A\ ‘O> ( }
This expression follows from A-23* 4if we assume that the nucleus is
initially at rest and imn its ground state ] O> e« All posaible final
states of the nucleus have been included and we integrate over the
values of the final momentum q, of the pion, The argument of the
delta funotion is:

E,—H, = k+W, —w — Hp <2-3~)

wvhere the terms on the right are the photoa emergy, the ground state
energy of the nucleus, the pion energy w==4/w + and the nuclear
hamiltonian, respectively. T;\ is the transition operator (see ap-
pendix A) corresponding to the photoproduction of a neutral ploa. It
operates on the nuclear variables only. At this point expression 2.1
is atill exast,

The purpose of this work is to inveatigate hov well the photo-
production oross section (2.1) cam be explained in terms of the

*An expression such as A.23 refers to an equation in sppendix A,
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interactions of & single nwoleon with the pion and electromagnetic fields
and of certaia properties of the nuclear ground state such as the spatial
nusleon density, the momentus distributioa, and the correlation functions.
The direst interastion medel was introdused by Server (6) to sxplaia high
energy muclvar reastions. In this model the interastion of a imoident
particle with the nucleus is expressed in terss of its interactions with
the individual nuscleoas. The conditions under vhich this sodel is valid,
are that the wave length of the incident particle does not exceed the
distance detween mwoleons (comdition 1.1) and that the absorption is
small enough so that the iscident wave is not appreciably attenuated
vhen 4% passes through the aucleus.

These oconditions are both satisfied in our problem so that we
MY 0XPIess TA as & sum of single nusleon trunsition opsrators tn .
Ia order to satisfy the requirement of tramslational iavariance, ve
have $0 sultiply each [, by a phase fastor which csm also be con-
sidered as the product of the photon and meson wave funotions at the
position of the aucleon (appemdix B):

TA _ i eig-_)_(,n tn (3_3}.

Here ?n is the spatial cosrdinate of nucleon 7 and ? is the
scnentum Sransfer:

— g -

P = k - ¢ (2.4).
The single nuoleon operator “tn 2o longer depends on the position of
the nucleon dut only on its spin, iscapin, and momentum, It does not
operate on the photon or the pioa fields dut does depend oa their quantum
nusbers such as the polarisation of the photon and the angle O between



the pioa and photon moments.

The usefulness of 2.3 besowes apparent vhen it is combined with
the iapulse approximation (7) according to which the single partisle
transitioa operator for a nwoleon bound inside the mucleus is taken to
be equal to the corresponding trensition operator for a free nucleon.
The relative error involved in this approximation has deen estimated (7)
to be of order

< UB> (2.5)
x 3
where { 41s the transition amplitude, / the wave leagth of the inci-

dent particle, < Ll;5> the average potential energy of a bound mu-
oleon (in the meighborhood of 40 Mev), and £ the kinetic energy ia
the initial state (im our case the total photon emergy K ). Iven at
the 33-rescnance 2.5 is only ebout 1 % so that it is very reascaable to
sake the impulse approximation. The validity of the form 2.3 astually
depends on ancther approximation whish is usually treated together with
the i{apulse approximation mamely the neglest of sultiple scattering.
In our problem multiple ssattering involves repetitive absorptioa and
re-smiosion of the incideat photon., This can be completely ignored be-
canse of the smmllness of the fine structure constant.

The traasition opsrater for the nucleus can thus be expressed as
2.3 vhere the tn are the free nucleon transition opsrators correspond-
iag to the photopredustion of a neutral pdon. The most general form that
Ty con assume, 1s given by (B.30):

t, = K =+ —E 8?n + M Tan +—I\T'6~:1T3n (2'6)

__>
viere O aad T;; are the spin and isospia operators for nucleon 7
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(for notation see appendix B) and where K ,E,M,N may depend on
the momentws operator for the mucleon and oan the photon and pion energies,
At lov emergies K .t 0 M .N are to a good approximation givem by the
static theory (see appendix B). At high energles no satisfactory theory
oxists as yet and K, L M .F‘T have to be determined by a phenomenclog-
ical analysis (see appendix C). Ia primciple, howsver, we have cx.pﬂM
TA  in terms of knowa quantities,

Whea 2.3 is substituted inte the expression 2.1 for the d4if-
ferential oross sestion, the following expression is obtained:

do = (29 55 G|t g (e )P, [0

d. Sy (an')z mn

(2.7)

It is convenient to decompose this inte two parts which are respectively
diagonal and non-diagonal in the nucleoa indices:

o%%‘ — (3%-)13 (%)ND (:2.8\

) =[28 2 f theTPsEmeT e o) @
(dc) zg 2ch <O“f€ Fx’"g(t ngf ht , > (2'!0)

(a")z men
If the delta function did not contain any operators, the exponential

terms in the diagonal coantribution would have cancelled directly so that
2.9 would have been independent of thovupctinl distridbution of the mu~
cleons. An approximate treataent of the delta function will be presented
in the aext sectien.



2. Slomire anproxisetion

In order to redwoe the expressions 2.9 and 2,10 for the nuclear
photoproduction oross sections o0 a more tractable form, the delta fumo-
tions have to be removed from inside the matrix elemseats. The sum over
final auolear states contained in 2.1 was performed by exaet closure.
This will nov esseatially be replaced by a closure approximation. The
sethod which we shall use was developed by Plaosek and by Wiek (9) 4n
their treatments of the scattering of aeutroas by solesular systems and
was later applied by Fowler and Watson (10) to the scattering of ele-
mentary particles hy nuslei,

First the diagonal oross section (2.9) will be oouiicrod. Our
ain 1o to commute the delta funoticn throush the factor €F " {
to the right eo that it can operate direetly on the auclear ground state.
From 2.2 e gan see that the only operator coatained in the delta func-
tion is the muclear hamiltoaian H, . After comsutation, the argusent
of the delta function will therefore muh: :dliuonl terms due to the
fact that H, does not compute vith €771, . he terms vhich
are % bes expested, are listed delow,

A) Sinse H, ocontaine the kinetic emergy opsrator - 5',“\1 p V,,j‘ .

Ui there will definitely be a term arising from the ocomamutation of this
operutor with the exponeatial e P ¥n .

B) If H, contains space-exchange and momentum-dependent potentials,
they will mot commute with the sxponential and will therefore intro-
duce additional terms,

C) when H, 4s commuted through [, , a contrivution will arise from

the potential snergy terms decause of the someatus dependence of tn o
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D) Finally there will be a sontribution from the commutation of the spin
and isospin operators ia tn with the corresponding potential terams
i Hy o
The latter three terms (B-D) exist as a result of the nuclear
bixding potential ub and would be absent in a gystem of noa-inter-
uuu aucleons. Their contridution to the total ocrosa section was esti-
sated by Placsek, Wick (9), and Fowler and Watson (10). Relative to the
remaining cross section, their magnitude was found to be of ordery
LUz
c @0,
the average potential energy of a nucleon divided by the imitial kinetie

energy vhich in our case is just the photon eaergy k e« These terss
will therefore bde unimportant at the energies we are considering and
will henceforth be aeglected.

The contribution (A) from the kimetic energy cam easily be
evaluated by expanding the delta fumnction in a Taylor series and using:

(PR L 2 YA
ﬁﬁvnz eFX _ - % <anz B fﬁ _ E{T\T) (3.1).

If the series is asgain summed and teras of order 3.1 are neglected, the
diagonal cross section reduces to: |
2

elog j deL 5 } (3.3)

— O t.1, S(k-w--L 0 )
() 48 3 6l slko- - B
The exponential fagtors have here dbeen combined to give unity vhereas
(W, — H,) vhen operating on the ground state was set equal to sero,

The aext step is to Fourier amalyze the nuclear ground state in

terms of nucleon 7 only:
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oy = | EPe Gy P %40

(3.4)

In this way the gradieat operator Vn in 3.3 is replaced by
. >
the moaentum me . 8ince tn does not depend on X, , ve thus

d . 24 3 z oo oblain:
(fgg—g%ﬁ;%;gégl (a ‘t t ( > S(k W= P ﬂﬁfr)
(3.5)

vhere the momentuam distridution in the ground state is defined Wy:

2
P(PA “S%JOP <x""’x""’ﬁf*'0>) (3.6).
If a "fiaal momentum" F;n is defined Wy:
E == —};:n -+ —I-? (3'7> 5
the argument of the delta funetion becomes:
P b, 3.3
M % T am (3:8).

Within this approxisation, the kinematics for the diagomal oross sestioa
is thus the same as that for production from a free awcleon. The matrix
element of t;tn is averaged over the single nﬁohon spin-isospina
states i) ooourring in the ground state of the musleus. Because
of the antisymmetry of the nuclear wave function, ve can replace the sum
ever 7. by a factor A and write the matrix element as the expestation
value of ftt, in the muclear ground state:

(d&L AJ(& )373(”)“% el tit.foy (ke g - f;) )
(3.9).
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In order to interpret this expression, we coapare it with the
differential oross section in the laboratory system for the production

of a neutral pioa by the interaction of a photon with momentum k and
a single free aucleon vith momentum _PT in the spin-isospin state IL>

3

‘ | " P z 2
(%%,) :O_E—E) %%2 <Ll”lt>g<‘<+%,—w-(%> (3.10)

free M

Ry compatrison of these last two expressions, it becomes clear that the
diagonal cross seetion is, apart from the flux fastor ia 3.10, just A
tines the !'rn ausleon cross section, averaged over the spin and momen-
tun states wvhieh are sacountered in the nuslear ground state, As far
as the one particle contridution (2.9) is conoermed, each nuoleon there-
for behaves like a free independent particle, the only effect of the
other nwsleons appearing in the spesification of its initial state., AR
this po!.;t the question may arise wvhether the exclusion principle has
not erronscusly beem neglected somevhere., This is, in fast, not the
Case., As vwe shall see in the mext chapter, a part of the non-diagomal
oross section (2.10) will partly camsel 3.9 whemever the exclusion
principle hecomes effective, |

Ve turn next to the noa-diagomal or two partisle contributioa
(2.10), The structure of the matrix element:

o] tn E P ¢ (kwmcom i) €F 8, [0y

4is such that the nusleus is first excited to some state by an intersction
with nwoleon 11 and then de-excited back $o0 the ground state by an
interaction vith a different nucleon 7l , This will in geaeral dbe
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possible only for lov exsitation energies. To a good approximation we
sy therefore for high energy processes replace HA in the delta func-
tion by W, . The mon-diagomal cross seotion can them be written:

( > Yl 5 5 o} - (5 m>t* /O>S(/<—w) (3.11),

(&ﬂ’l WI#Y'

We assume that the transition operators in 3.11 contaia spin and isospia
operators only. Their dependence on the momentum operators —i V,,
vill therefore give rise to correction terms. Jurther scorrection terms
come from values other than W, for H, inside the delta fuaction.
These terss were estinated by the same authors as before (9), (10) to

be of the order of the average kinetic energy of a nucleoa divided by
the "kimetic' energy C 4in the initial state. They will from now on be
neglected,

If the single nucleon transition operator did not contain any
spin or isespin operators, in other words if the only mon~vanishing term
on the right hand side of 2.6 were the first one, the matrix elemeant in
3.11 sculd de writtea:

2.7 <l eTE oy
— AQ-) ol it o ol P ET

vhere <O} t;t,lo> is in this case of course just the number
|K|2 . Equatioa 3.12 would also hold for the more general transi-

oy (312)

tion operater (2.6) if the nuclear wave function could be writtea as a
single product of a spin-isospin wave function and a vave funotion ia
coordinate space. This latter condition can be realized only in nuclei
wvith less than five nuwcleons or in a completely unphysical nucleus con=-
sisting, say, of A neutrons with parallel spins. The alternative
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sondition for the validity of 3.12 is also appareatly viclated in the
snergy reage under consideration asince it seems that the photoproduction
from single nuslecns does not vanish in the forward direction (2).
Nevertheleas we shall for the present suppose that 3,12 holds since the
noa-spin-isospin dependent part of L is actually treated correctly
and since the results wvhich follow from 3.12 can he corrected by a
slight modification., This will be discussed in the next chapter where
the matrix slement in 3,11 will be evaluated exaotly for closed ahell
auclesi,
If we define a tw-particle probability deasity:
PX %) “WSM’ A)l d,..d%, ~ (313)

vhore U 1s the ground state nuclear wave function:

V(.. A) = <><, ...XA]0> (3-14)
vhile sPch}s indicates that the inner product with respect to all

the spin~isospin variadles must de taken, then the matrix elemeat on the

extreme right of 3.12 can be writtem:

CE ip: (*—xz>1> S?(x" )P PR xz)dax o, (315,

It is conveniemt to express 3,13 im terms of the single nucleon density
?(55} and the two-particle correlation funection 8 €3 , X, t

?(Z,Xz) = T ?(X )f(?z)[| -+ 3(><, ,xzﬂ (3-|é>
96?') = S (X Xz\) dB (3.|7>_

The non-~diagonal oross section (3.11) can themn again be desomposed into
tw yarts:
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Gﬁz‘ >ND: C%JNC i (%) (3-18)

(£) = K [ 000l [P

&),

vhere the non-correlated orces section (3.19) is the part vhich does not
depend on the correlstion fusction,

Il

A S TN §(k-w)ltit Joy G(p)  (3.20)

(517‘

The two form factors appearing in 3.19 and 3.20 are defined as

follows:
(px

F(p) = 3 p(2) e s (3.21)
aip = A Jgomperg (206 T, gy

They are norsalised in such a sanner that:

Flo) = — G(o)
(3-23).
Pl:;lo F(F) ”" CT(PB

The first one (3.21) is the same form factor wvhich is determined from
the scattering of aucleons by nuclei and is prodbably very nearly equal

to that determined from the scattering of electrons by nuclei (11).

Tae correlation fumotton  § (X/,%.)  1s & manifestation of the

way in vhuh the position of nucleon 1 is influenced by the position of
nusleon 2 (or vice versa) due to the exclusioa principle and the nuclear
forces, If the nucleoas had been coampletely independent, the correlation
funstion would have had the constant value —l/A in order that both
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sides of 3,16 have the same norsalisation.
Using expreasion 2.6 for the single mucleon transition operator,
one oan easily show that the matrix elesent which occurs in 3.9, is
given My

2 =lth oy = IKI*« [T+ ImI*+ [RI* (as)

for a closed shell nucleus with equal numbers of aeutrons and protons.
In the next chapter the satrix element which oocurs im 3,19 and 3,20
will bs showa to be given bWy

1T1% M)+ [N)®

Lol tit, Joy = [kI™ ~ — (3-29),

again for a closed shell nwoleus vith A=17 ,

Equations 3.19 and 35.20 were derived from 3.12 which, as has al-
ready beea stated, will in general be incorrect, In the next chapter
we shall see, however, that equations 3.19 and 3,20 may atill he used as
long as the matrix element 3.25 is replaced by modified quantities i
t,jc and tz . For closed shell nuolei wvith A=dZ one fiads:

2.

te = KI° (3260

tz = ]K}Z+IZIZ+ JM‘Z—f—f!—\”Z = t; (3.;7)

Only the coatribution from IKI2 is thus correoctly given by 3.25.
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b5 _Frelininary sstimste of differsutial cross sesticn

The three parts imto which the differential oross seotion for the
suclear production of neutral pions was decomposed in the previous sec-

tion, sach contains an integrel over an energy delta function:

= Sidi $(E,~E,) (4-1)

(am*

which is just AT times the appropriate density of final states. Ac-
cording to the Placsek-Wick-Fowler-Watson approximation (9)(10), this
density of states was found to be equal to that for photoproduction froa
s free nucleon in the case of the diagonal oross section. Ian the case
of the mon-diagonal cross seotion the approxisation was made that the
nuslear excitation energy /\ vanishes so that the density of states be-
came equal to that for production from a tightly bound nucleon, In a
closed shell nwoleus, the relation A=0 holds rigorously for the mon~
correlated contribution. In the gorrelated cross seotion all excitation |
energies up to the Fermi energy are im principle possidle so that the
approximation /\=0 may no longer bde very good for this part. On the
other hand, although the procedure leading to equation 3.2 for the
diagonal cress seotion could also be applied to the correlated cross
seotion, the resulting expression cannot de interpreted in physical
terms analogous to 3.5. It is therefore somewhat uncertain vhat treat-
meat of the correlated oross section would be the most satisfastory.

The monentum transfer p to the nucleus is given in terms of
the photon and pion momenta Kk amd G snd the angle O between them,

e (ke akg (- ws8)  (42a),
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At high energies and small angles, this is approximately equal to:

P~ (a5 ) v k67 (4-2b)

wvhere 71 ia the pion mass while /\ 4is the muclear exoitation emergy.
In the forward direction the momentum transfer is thus insensitive to
exeitation snergies small compared to ' /2k . At 250 Mev this
quantity has the value 40 Mev vhereas at 900 Mev its value is about 11
Nev, If an imdependent particle model of the nucleus is adopted, the
saxizum exvitation energy which could contribute to the correlated cross
section is the Permi energy which has the valus 33 Mev if the nuclear
redius parsmeter To™ 1.2 formis., The mean exoitation emergy would
probably de much lower. If the mean sxvitation enmergy due to recoil
alone is Pz/ AM , it does not become equal to mz/étk uatil

O 4s about 9° at k = 900 Mev or more than 60° at k= 250 Mev. JFor
ssall values of O , it may therefore be meglected. The excitation
energy associated with spin flip ia probably of the order of the spin-
orbit splitting of nuclear levels which may be several Mev., Although
this is mot negligidle compared to "U/2k , it should not affect the
value of p too much.

Since the value of the momentum transfer is not very sensitive
to the awclear excitation energy, particularly in the forward direction,
the uncertainty about the kinematics of the correlated ‘erou section
which was discussed above, is probadly not very important., Near the
forvard direction the value of the argument of the form factor
will from nowv on be assumed to be equal to that for production from a
tightly dbound nucleon and no distinction will be made between the value
of | for the diagonal, correlated, and non-correlated cross sections.
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The expressions for the three parts of the photoprodustion cross section
thus bdecome:

(&), = Al e 70
(ﬁ%)c = A &(zp) to T (44
(%)D — Aty I (4°5)

2 2 2
vhere the values of tNC N JEC o and tD were given by equations

3.27, 3.26 and 3.24 and will de derived in the next ohapter.

In the non-gorrelated cross sectioa, thc must be detormined
from the single nucleoa oross section in the laboratory systes at the
same energy as that at which the production from the nucleus is studied.
In the diagonal cross seotion, on the other hand, the single nucleon
oross seotion must be averaged over the momentum distribution in the
auwcleus. The correlated orose seotion again suffers from the uncertainty
discussed adove, It is, however, extremely likely that tz— should be
caloulated ia the same wy as t; as we shall presently see. This
will from now on be assumed to de the oase.

¥hen CI(P) is mot negligible, it is always negative, Since
the expressions for L. and [, are ideatical, at least for olosed
shell muglet with A=dZ , the quantity:

|+ G(p) (4-6)

agts as a suppression factor which vanishes whea P vanishes and tends
to uaity vhea P beoomes very large., JFor small mscaentum transfer, the
diagonal oross seetion is nearly completely cancelled by the correlated
cross sestion, Such a suppression would be expected to result from the
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exclusion principle since moat of the available final atates are cccupied.
In the next chapter we shall see that for a Fermi gas 4.6 has exmctly the
depeadsnce on D whish would be expected from the exolusion prineiple.
Vhea D vanishes (vich sammot quite be realised physically), the cen-
sellation should be exsct. This would only happen if tf and t;

are identical. As shown in the mext chapter, the expressions for |
and tj;' do agree, It is thus very likely that they should astually be
caloulated in the aame manmner (namely averaged over the nucleon momentum
distribution) as conjectured in the previous paregraph.

“Jhe role of the disgonal and eorrelated eross seotions can now
be interpreted ia a very direct way. The diagonal cross section arises
vhen the produwction processes froa the individual nucleons are added in-
cohereatly, without regard to their identity or the residual nucleon-
nucleon intersctions. The effects of the exclusion principle and the
twve~body forces are all contained in the correlation function so that the
correlated cross section then takes them imto acecouat, In spite of the
partial cancellation which is sometimes nearly complete, the separation
is thus agtually very natural.

The non-correlated croas section also allows a very siocple in-
terpretation. The differential cross sestion for elastic photoproduc=-
tion, where the nucleus remains in its ground state, is givea by:

(42) = |@lzteP™Ioy [ T
P2 |Fplt ta T (47)

l

2
vhere tel is defined by:

tz — <ol to>]” (4°8).
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Equation (4.7) follows from the antisymmetry of the nuclear wave function
and from the relation:

Gl eP oy = Gofuloy (o F Ty ()

vhich obviously holds for a olosed shell nucleus, Using expreesion 2.6

for t‘ + one finds:
2

J[e?[ = )KJZ = th (4+10).

By eomparing 4.3 and 4,7, one can thni conclude that the mon-correlated
cross section is precisely the elastic cross seotion where the nucleus
remains in its ground state and recoils as a vhole when the ploa is
produced,

It ia shown in appendix C that the K -term in 2.6 must always
contain SN O as a factor. This follows simply from the conserva-~
tion of the longitudinal component of the total angular momentum in the
elementary production process. Thus t ,j(_ vanishea in the tor\ﬁ.rd
direction and then increasss with O . On the other hand  F(p)
desreases with increasing P snd therefore with increasing 6 « The
combination of these two effects results in the mon-correlated oross
section exhibiting a peak at some angle., Using (4.2) and (4.12), a very
rough estiomte of the position of this angle is found to bde:

epeak ~ Q/kR

whsre R 1s the nuclear redius.
If the spatial matter distridbutioa in the nucleus is assumed to
be uniforas inside a sphere of radius R s and sero outside:



plr) = 45723 + <R } o,

— O T >R

the form factor (3.2) is given by:

F(p) = L (pR) (412)

—_ - 3 - ‘
i(x) == “%5 simxX — X @S DC] = j (x) (4-13).
x I
The behavier of the fuaction i(JC) for ssall values of X is given

L) ~ | — Lax? e oot (o1t

The first sero oceurs at x = 4. 49 after which it oscillates with rapidly
deoreasing amplitude,

Experimentally (11) it is knowa that A.11 is not a very realistio
distridbution since nuclei apparently have diffuse edges. To take this
into account, 4,11 can be replaced by a trapesoidal model:

N is a normalisation constant, R;‘ is the half-density radius, and

(. 1s related to Nofstadter's "skin thickness” by L =1/-4Q , The
fora factor becomest
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Ksﬂﬂl)i(p&) + (%) (Siu)i (ba) ] (d),

2

F(p)—

Ia order to compare 4,12 and 4,16, the parameters were adjusted
to yield the root mean square radii as measured by Hofstadter (11):

for C? ¢ R=305 TR=242 a=1I-3 o)
4-17),
for Pb: R=T710 R =673 a=I5

The redii are here givea in units of one fermi (10”'° cm.), Using these
paraneters, the form factors were calculated for different values of -

P e« In the case of carbon, a significant difference 414 not appear
until the value of D was about 220 Nev/e at which stage F(P) had
decrensed to about O.3. In the case of lead, the form factors resained
oqual uatil deyond p=110 Nev/o vhen F(P) was already smaller than
0.1,

Since the goherent peak usually oocurs where [ (P) is still
about 0.6, the uniform model (4.11) is perfectly satisfactory up to at
least soms distmc beyond the coherent peak. The positioms of the
seros of 4,12 and 4,16 do not coinocide. On the other hand, a more
smoothed out distribution than 4,13 may not have any seros at all.
8ince the precise details of the diffrection ainism are thus uncertain
anyway, there does not sees to be enough reason to discard the uniform
model as long as ve keep in mind that the minimea in the angular diatri-
dution may well be smoothed out somewhat., Such a smearing of minima will
actually emerge automatiocally wvhem the absorption of the produced pion
is included. In this connestion it must be noted that the abrupt sur-
fact of 4.11 may produce too much internal reflection when the final
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state interaction of the pion ie included. Ve shall, however, imtroduce
this interaction Yy a method vhich avoids this source of troudle.
Apart from the changes wrought by the inclusion of the pion in-
teraotions, and from wodifications of 4,7 when muolet wvith A+ dZ
are gonsidered, the non~gorrelated crose section is thus given by:

(3%1>Nc — A iZ(FR> <I* T (4-18)

vhere r is given by A4.,1. The correlated and diagonal cross sections
will be discussed in the next shapter, after wvhich the pion iatersctiens
will be introduced.



CHAPTER 11

NUCLEAR NATRIX ELENENTS

In this chapter the nuclear matrix element which occurred in
3.11 will b/o calsulated. The previously used result (3.12) only held
under very special ciroumstances and will now be generalized, Although
it will still be necessary to make certain restrictive assumptions, the
results of this chapter will have a much wider rangs of validity and
may also be expected to remain approximately true even for certain
nuclei which do not satisfy the conditions used in the derivation,

In order to evaluate the expectation value of a general operator
of the form —RIZO]Q_ in the state AEE + vhere R:z_ contains the
position operators of nucleons 1 and 2 only vhereas Q, > contains the
spin and isospin operators of nucleons 1 and 2 only, it is convenient
to define exchange operators for the spin and for the isospin variables

-

of nucleons 1 and 2:

P = t(i+ 0.5) Z

= S (5-1\)
__ | hadiug
L= i(e )
Here O, and ?n are the usual spin and isospin operators for nucleon
7l o« These parmutation operators have the following properties:
EE — T)t/Pt = | [ o
P = hT et
P5 ')t T t's
-

’PSG' == 6‘:’?5 elc .
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One can also define an operator [, which exchanges the spatial
ooordinates of nucleons 1 and 2, The complete interchange of nucleons 1
and 2 is then sooomplished by the produet I . 1. . Since nucleons
obeay Fermi statistics, all allowed nuclear states must de antiaymmetrisc

vith respect to the interchange of any pair of nucleons. This implies:

RE?t [ (5.3

vhich can be combined with (5.2) to yleld:

.
j
s
N
&)
~

Operutors oan be defined which project any state onto a state
with definite symmetry with reapect to nucleons 1 and 2. Because of
5.3, only the symmetry with respect to spsce and spin have to be speoi~
fied, the symmetry with respect to isospin being then uniquely determined.
The four projection operators are:

R R
D, = Dy = (PR R

DL,. = Dga =~ 4 \ *?S)(} "vft >J
The first imdex indicates the space symmetry, the second the spin sym-
metry. JFor example: Dsa projects any state onto a state which is
sysastric uith reapect to interchange of the spatial coordinates of nu-
cleons 1 and 2 but antisymmetric with respect to spin-exchange, It is
easy to show, using 5.2, that these projection operators have the

properties:
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by -s,D, |

An independent particle model will be used for the nucleus.
Thus the wave function i can be expressed as a superposition of single
nucleon wave funstioms wvhich will for briefness be called orbitals. Ve
can choose the complete set of orbitals in such a way that each one is
given by a product of a spatial wave function, an isospin wave function,
and a spin wave Mtiau:

RO HOENOE N (5-1).

[

The indices Kk and | can each have two values only, corresponding to
the two eigenvalues of 1; and of 7, . The index ( denotes the
triplet ki .
We now make the restrictive assumption that our nucleus can be
desocridbed by the single Slater determinant:
’k“ - »r,.’:»f, () . LfA(‘\)

NA

b

rr
oo
-’

L PN
(Tf\f\ﬂ ....,1/\&_/:\/'

where the set of orbitals 1s gaturated in the sense that each tj
which is ocoupied, is ocoupied by 4 nucleons with the 4 possible com~
binations of "fz {; . Within the framework of the independent
particle model, this assumption will be rigorously satisfied by nuclei
such as O'° ama (a*®.
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It follows from 5.6 that the expectation value of our operator
Ri,O/;  in the state ‘I 4s given by:

~. ST

> T N s L R U s W N Lot L)
RO,y == 2 UK Dy Dby 1.
N\

SE
The next step is to insert a acomplete set of states between the two
projection operators U 1

er]anClz}w‘J\?) = %\ Zy—l \JL—(\ !—\-x;D)\ ; ttn\‘\/ \/\‘1,, i IRE \ i/ (S’U>

2
At this point it is necesaary to proceed with great caution.

At firest sight it may seem as if the proper set of orthonormal
states Sbn to use is the set of all possible nuclear wave functions
vhich are completely antisymmetric with respect to all A nucleons.

If this is done, one argues as follows, The second factor on the right
of equation 5,10 does not oontain any position operators. It will

therefors be nonvanishing only if @-n contains the same set of aspsce
vave functions ij as “}f e« With the restrictive assumption which we
made, however, this detoermines S@n completely so that the only state

which can contribute to the sum, ia U itself, Hence one would obtain:
v

This result, slightly modified in some respests, was apparently used dy

RO ) = 2 Qe [R,.D, 1) (¥ ] D0, 1) o

Yowler and Watsom (10). It is incorrest, however, as can be seen by

setting R, =—=C,, = 1| °

e[y = 7 ol ol (5155,

The left hand side is unity by normalisation so0 that the result is in-

consistent with the relation:
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g

o AN o \—; e ’g . i NG ;o 3
£y == 2 (efbdey D)

unless E‘i is a simmltanecus eigenstate of the D/\ » vhich cannot be
satisfied beyond HG} o The same argument could as a matter of fact
bo used to justify the erronecus result (3.12) used in the previous
ohapter.,

The source of these paradoxical results, is the fact that the
set of C_Pn chosen is in fact not a complete set (17). Instead of
states which are antisymmetrical with respect to all A nucleons, one
should use states vhich are antisymmetric with respect to nucleons 1l and
2 and gompletely antisymmetric with respect to the other A -0
nucleons, but which have no definite symmetry bdetween nucleon 1 say, and
any of the A-1 , This can be achieved by writing:

~

b = X, Y, (514

M

vhere the X{x are a complete set of orthonormal atates of the A-2
nucleons (antisyametrized) whereas the “Kg are a complete set of ortho-
normal states for nucleons 1 and 2 (antisysmetrized),

Tor the X, we shall use Slater determinants of any Aol
orbitals (5.7) so that the index X denotes a specific colleotion of
orbvitals, The states ‘{3 + on the other hand, will be chosen to be

simultaneous eigenstates of the four 1, . It follows from 5.6 that:

. R
— - i - - )
,U)\L,. == rqj for one value of A }

== O for the other
three values of A\ J
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The index [5 therefore specifies a set of two O(r . two q,f . and
two ?f s a8 well as the index A for vhioh D '+ 3 does not vanish,
Corresponding to each choice of T” L4l ama L , there will
therefore be one, two, or four 7}»; « If the set of orditals cocupied
in X, 4s a subset of the set of orbitals occupied ia 't , then 3
will be called complementary to X 4f the remaining two orbitals in ¥
are composed of the | , {, + ana ¥, specified by 3 . In this
cass 3 4is determined by (¢ apart from the index )\ so that we may
write the state vector as &, .

The state vector |” ocan be expanded in terms of the T, :

S5

\P <7 ‘, s/ N
E == f,- L;/ r\/o('%, q;‘x’a/ (5~,6/).
i J Y

The only non-vanishing N,/ will be those for which the orbitals
X' are ocoupied in ¥ and for which R’ 1s complementary to x .

Equation 5.10 can now be written:

/
SSS TS Y 0T
\/]ZL JRJZ CIZ ) }.> ‘?;\ Z;( % Z;l t/ L—ﬁ/ i,l \;—9(;3

ows' IIM/

. , SN (N
: <$‘x&iD\CIZ.NJ(“2” {GI”S” ( ) //’
J / J /

Since the operators all refer toc nucleons 1 and 2 only, it is clear that

the only non~vanishing terms on the right hand side will be those for
vhich OC s equal to OC  and to OC' . Farthermors, the only spis-
isospin operators in the first factor on the right hand side occur in
’D) and the CPo()B have been defined in such a way that ‘D}\CEOKJB
must either vanish or just equal $q3 . Hence we can also conclude
that j3 must equal /,:3' and sust thor;foro be complementary to X ,

The matrix element under consideration can thus dbe expressed as:
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N Iy N p <
VAN DOy )

12~

where the orditals specified by X must be occupied in the state “ih.

We can therefore write:
CEIRLCLE =2 N R DS DL (s,

To determine the constent N, , we set WK, jl . C.=D,_,
obtaining:

For nuclear wave funotions vhich satisfy the criteria stated above, we
thus obtain the general result:
- \i Rl,_ ,\|:L>§L‘|~D/\L ’ / Fem N
GfRae = & RO CHRCLD )
SLEDA 4D 7
which will in general differ from 5.1l and from 5.1k,
This equation can now be applied to the matrix element which oo~
curs in 3.11. The result is that the right hand side of (3.12) must be
replaced Yhy:

=z
P
j
-
M
1
|
N
|
|
|
|
~
/-
(\
U
\
o
X

The factor containing the exponential will be evaluated in the next sec~

tion vhereas the spin-isospin matrix element will be discussed ian section
7.



In this section we shall consider the matrix element:

{of e

By analogy with %.15, this matrix element can be expressed as:

IERCEATS VR (Y

Pt

/xl—)‘ \ . .
¥ N )

where the two-particle densities, by analogy with 3.13, are given by:
AN ST L xS i~ N 3 3 /€~3\)
S))\(x,,xz\-—-sﬁsgi u..A}DAY(n..A)JxS..LL XA { .

They obviously satisfy the conditioa:
©om - . — R /"' R N

If in 6.3 we use for | the single saturated Slater determinant
(5.8) vhioh was discussed in the previocus section, the two~particle den-
sities can be exprossed in terms of the "mixed density™:
A /- - * /-—¥ \ /‘ A
ey — s g () (¢5)
dix,%,) = o, GO (¢S
Here the qj (?:) are the single nucleon spatial wave functions
.f
¢, () which appear on the right hand side of 5.7. Each distinct
wave funotion is counted four times so that the sum contains A terms.

The result of thil substitution is:

[d“‘ F ALK - d &) d, )

£is (9,3 = :A(A R

(6-6a)
e dva T S iy - \
.PSale)XL - IBA(A—I)[J'M‘ |>d\xz. )7\1_> - d(x, M),[(x‘_)x
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/»‘; q )
yas()“)x = LA(A- ‘) VA X == e XA X ,\l /

_ | Tt k)
>N l..‘ - O T T T ST e o
30_(1(;' )xl) - IBA(_A ‘)_),\J’\x‘))\' )du;)xg’> — d '(X' )Xé)\x D‘;.‘ )K'ﬂ J
Alternatively the two-particle densities may be expressed in terms of
the aingle mucleon deasity: |

N ‘ N ~ Y
pE) == dF LR -
and the quantity:
A ] ALK G K )
F] Q)KI)XL ; == d(w)q(;‘))(: ) \1(;1 ))\7:_\ (
/N
5 SN ep %, o (e
ZZ 2 ;/{J (xél ) ¢, \x,')"fj'(xé)
by the relationsa:
S 3 A veay AT T
O () == 7 A5 §ODsGOL Ty nmxﬂ)
» - —— 3 A -,y » r”' hd >
Salf ) == 5 A Gl b o)
: 9 A /=y > - SN ' ’
Svub\/)? \: 16 A= 5()(‘?)\";{ L= l'(xa ))\g.\J/
. s o N e
§oaalX, X)) == i ?’\3_.} Sﬁm)}&xﬂ[l - Li()\,)xg)l

Using 6.4 and 6.9, one can easily see that the two-particle cor-
relation function defined by 3.16, is given by:

. b s . o
Cj(x,)fa) = sy, %) Ce 10

for the nwoclear model vhich is being used. It aleo follows from the
second of equations 6.8 that an integral over the correlation function

is easentially a measure of the ratio between exchange and ordinary
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integrals.
By substituting 6.9 into 6.2, the following expressions are found

A(A*O <CJ’ CLF.(X'—)\)D/\IS} == j{/)‘ {A‘ }F(F))Z A Hfj \}(j ({-H\)

where the plus sign must be taken for )\ = 1 or 2 and the minus siga for
4 - 3 9 A
A= 3 or h and where the four values of o(//\ are -/32)- s T€ 5 i€ 5 7€ -

The form faotor F(P\ has already been defined (3.21) whereas:

H(p) = AS ¢ ()5 ) e

P R-FL) L, Aox, (e1D)
differs from G(fﬂ by a factor -4, The two terms on the right hand
side of 6,11 thus give rise to the non-eorrelated and the correlated
cross sections, reapectively.

The form factor F(/P\) bas already been discussed in section
4 so that we may oonfine our attemtion to H/ F) . Before this is
done, however, it will be convenient at this point to briefly sketch a
proof of a statement which wasz made in the first paragraph of section 4,
namely that the excitation energy /\=0 for the non-correlated oross

section. VWe were at that time considering a matrix eloment of the form:
<C] 5, 8<k—w + W, Hu ) 5,}5‘) (¢13)

vhere S' operated on nucleon 1 only while :rry_ operated on nucleon 2
only; In the independent particle model the muclear hamiltonian H, 1s
given by a sum of single nucleon hamiltonimns H, + H, + ... . ..

By expanding the Slater determinant (5.8) whioh is used for the
ground state iu> s Wo can write 6.13 as a sum of ordinary terms of

the form:



V)] 5 Skt WomEyy =H,=H_) § 00 (2)) (6e14)
and a sum of exchange terms of the form:

<fb (1) “fj (2)

C v . . . A
5, o(k-m+w0-EU'—H‘ ~H, 0¥ I{J (k){k(;ﬁ\/ <6.15)

Bere the (i)  are the orbitals 5.7 and:

Ecj' =2 W, — & = & (¢ r1e)
The single nuclecn energies <. are defined by:
H o f. ) = e 9 G (€T).

In 6.1% |, ocan be commuted through §, to the left to operate on
P (D while H. can be commuted to the right to operate on
9 (2) . Using 6,17, one finds that the argument of the delta fumo- .

tien becomes:

k—co ( ¢18)

oo that the excitation energy /\ vaniehes in thia case, If the same
prosedure is carried out in 6.15, one finds instead that the argument
becomea:

k—co -+ & -- & (¢,

J

All that can be said in this case is therefore that the excitation

energy cannot be greater than the u:d.mn possible differente in single
particle snergies namely the Ferni energy. As we have shortly ago seen,
hovever, the ordinary terss (6.14) all contributs to the non-correlated

cross section while the exchange terms (6.15) all contribute to the
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correlated cross section, It followa therefore that, within the inde~

pendent particle model: »
ANy =0 A = Ep (6:20).

The form fmotor (P) will first be calculated for infinite
nuclear matter, Infinite nuclear matter can be described by the Fermi

gas model, The wave funotions are plane waves:

-

o f - f . L.’{:’x A
¢ (%) = A (e-21)

where \/ 1s the normalization volume. The summation in 6.5 becomes an

integral over all walues of the momentum leas than or equal to the Fermi
momentus D which is related to the normalization volume \/ and the

number of nue¢leons A inside this volume by:
3 3wz A / N\

Fo= v '

The nixed density becomes:

—y LN A ‘ // A ( . \
d (X ;Xav RV £ }FY') CEras]
vheres | — ,‘ 5\*.—5‘1\ and where the function i (x) has been de-

fined previously (4.13). Using 6.8, one finds that:

NCRANEEE S (620

is a function of the distance between X, and X, only.

The form factor 6.12 is given by:
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H(p) — A Jdrr L(p 0 T L, ¢ (g G
= L"r/\ 2/ . S’;n f— N
V 8 (i }’ Pf e dt
== L I/ f 3—‘ - -
— 4[_1 \rp RS J . PSR i s,
— s P ZAR j

Using 6.10 and 5.22. one finds that the suppression factor (4.6) for in-
finite nuclear matter is given by:

) pean | (e a)
1 F>&&J

This 1is exactly the suppression factor which one obtains by allowing only

B

|+ Glp)

il

i

the part of the Fermi sphere (in momentum apace) which lies outside
another Fermi sphere whose center is displaced from the center of the
first sphere by a distance P « Thus we see that in the infinite nu-
clear matter case the partial cancellation of (j;_? by /\?J\L Jo
correaponds exactly to the suppression expected from the exclusion prine
eiple. This latter suppression cannot be determined so simply in the
case of a finite nucleus but iz presumadbly then also obtained by just
adding the negative contribution of the correlated cross section.

The suppression fastor for a finite nucleus can be expected to
differ from that for nuclear matter. Presumably this difference would
be most important for light nuclei where the ratio of surface to volume
is relatively large. The mixed density (6.5) for a finite nucleus can
be caloulated if the single particle wave functions are known. BHarmonio
oscillator wave functions are usually employed for light nuclei because
of their simple analytical properties. Ve shall also do so. Apart from

He®  the 1ightest nucleus which satisfies the restrictions imposed in
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this chapter, is O‘b + 8ince deviations from the results for infinite
nuclear matter are most likely to ocour in light nuclei, we shall choose
this nucleus for the detailed caloulation,

The single particle wave functions in rectangular coordinates

are: ) - —
P, (F1 = 6,008, >j+’,,5<'z> L 3
o = (5] P hate
where the /1, (x) are proportional to hersite polynomials. JFor
exsmple:
hy=1  hy=aTx  hy= =(2xx*=1) (635),

The X is related to the distance (0 hetween energy levels and to the
radius K of the equivalent uniform nucleus by:

R 2 IS /6. 39
X = AV R*=— 72 (e

Using these wave functions, the following expression is obtained
for the mixed denmsity (6.4):

R XN\ =3 ‘(*'2+‘z>[ Z“‘-*’_J £
dE D=4 (G) €27 [T E T (¢30).
The single nucleon denaity and the two-particle correlation function can
be determined from 6.7, 6.8, and 6.10. The integral in 6.12 is per-

formed by transforming accordiag to:

_> S
o T =R (631
1o o=

The Jacobian for this transformsation is:
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,.N‘M#_;_. fnned - (6,3 ‘;L)
Bl 8
The integral can easily be performed with the result:
¢ Vo2l e ) - 1 Lo —s
‘ | V= XA ) , Y R
Hip) = (%) kt o ['fix‘“w e b ek ae
2
/ 1~ Plax? -
== & [) + \;,; ,‘*} e (€330,

Hence the suppreasion factor (4.6) is found to be:
‘-/ -
: /a2
ealp = 1= [ (BT

o~ 2. (,)R\)Z ~ -9 <P/FF‘>L

As one would expect from the structure of the integral in 6.33,
the form factor is an even function of the momentum transfer p o The
04d dependence (6.25) in the case of nuclear matter comes about because
of the integration to infinity. Whea 6.26 and 6,34 are compared, we ob~
serve that for small values of the momentum trensfer the cross section
is suppressed more in a finite nucleus than in nuclear matter, The

'_. ( ]
’ N l § ﬂ\tt |4 L J‘)lls 7/

[ N &

U -+ [I'(\[’)J Hacieaf malled

vanishes vhen p:o and then starts to rise linearly. Using the fol=-

16
lowing parameters for O 1

R puliphbea 3 . 55 ngm‘: ﬁ:‘ — oz(il IN)(J/L ( 6 ’ j é / 3
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one finds by a numerical calculation that the ratio 6.25 rises steadily

until:

bz (A0 M e:37)

and then remains wvithin 5% from unity.



In order to evaluate the aspin-iscspin matrix element:
<o} D, t*t, ,c > *
N Cen)
ve shall make use cf the fact that the total spin 5 and the total isospin
T both vanish in the munclear ground state |O) if this state satisfies

the conditions impomed in section 5. According to the wWigner-Eckart
theorea (18):

| By Ly = CC L sm,Mow) B (74 5) (7:a)

vhere PLM is a component of an irreducible tensor vhich transforms
like the spherical harmonic Y,,, under rotations, | and M are
the angular momentums and angular momentum prejection gquantum numbers of
the state vector, and C(J’ LJ” 3 mMwm”) is a Clebsch-Gordan co-
offigient, This theorem can movw separately be applied to the spin and
the isospin in 7.1. Ia each case j. m , j/ ,and M will all be
Sero so that the matrix element 0| P, [0  will be proportional
to C (OLD30MO) ., wnis Clebsch-Gordan coefficient vanishes un~
less' | =M=0 ., The only operators whose expectatioa values in the
state [0  would not vanish, sust therefore under rotations transform
1ike a scalar, both in ordinary space and in charge space.

The spin and isospin operators ocourring in L), all eocur in
the combimations 6:,0:; and :ﬁ_f: so that :D}\ already
treasfévas like a acalar in both spaces. All that remains, therefore,
is to seleut the scalar parts of the operator t;’[, o The spin and
isospin parta say be treated independently. For simplicity we shall just

consider:
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tit, = (A +EZ)(Cr B3) (7-3)

where A and B are the complex conjugates of ( and D, The right
hand side contains four terms:

P

tzt AC+A(DS) + C(B5) + (BENDS) ()

The first is already a scalar, The second and third terms transform
1ike vectors and will therefore not contriduts to 7.1. The last tem
oan be written B.D;OTC  where | and | run from 1 to 3 and

the summafion convention is assumed. Ve can now decompose:

A = | Lgdet 2 ~2
O70; == [3%‘51&)] + [;\Gfuj" -G, \J')J

&

t /2 TR 2.5 ¢ )
_+[;{\’L (j'J'quFQL')—-gUkaSLJJ (I'F)}

where the three terms within the square brackets dransform like irre-
ducible tensors of rank O, 1, and 2, respectively. Again, oaly the
first one can contribute. The only part of 7.3 which will have a mon-
vanishiag expectation value in the state ;‘ O> s is therefore:

AC + \%/'EJJ u) L6,

If the results of the preceding paragraph are applied to the
transition operutort

-

> Ry c
t = K+1-F +MT, +N-CT 1,

*_
it can sasily be shown that we may replace tzt\ in 7.1 by:
N
)

2 2 /> —»" GUT i L N
= [kI"+ 3IL5GS) + SIMPED) + § NG
).

(r-s |



It follows from:

o, - cr)(* ;
3 )(

for the four values of A + bamely:

ts = Ikl®
£ = lk\‘—
5=
t2 = In"-

lhutiouBZZandSllcan

g b, (il e a )

now be combined to yield the result:

)

} e ; .2 < ! N / N
_—_AZ)F("F‘)}Z{}M‘} — {;AH }a‘){ihi"fh_l - {M'"j» CT2)

L Z LP (>\ m/t
m;n
8ince }’) = — 4 (I(Fﬁ

+ we have thus now proved the relations

3,26 and 3.27 which were used in the expressions 4.3, b.4, and 4.5 for

the differential ¢ross section.

By replacing F(:) =] and

H{o) = in 7.12 and dividtng by A (A - ) » oxpression 3.25

tor ol t)t [0y

also follows directly.
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FIBNAL STATE INTERACTIONS OF

THE PRODUCED PIOHN

ﬁntil now the photoprodustion of a neutral pion from a single
aucleon has been described by the matrix element (A,10):

<¢§ \ i H';> (8.1

vhere T is the traunsition operator for the whole system., The initial
state vestor \¢>L> describes a nucleon in state [ and a plane wave
photon with momeatum K vhersas |7  desoribes a mucleon in state
§ and a free pioa with momentum CZ . The transition operator | con-
tains the photon and pion field operators, It is shown in appendix B
that if these are both expanded in terma of plane wave atates, 8.1 can
be replaced by:

V2 _— L‘-{; ¢ i(ﬂ): . g N
Sle te L> (%.2)
where t now operates on the variables of the nucleon only and no longer
contains the nuoleon coordinate X « Thus 8.1 is replaced by the matrix .

.

element between nucleon states |.” and |5 of the operator:
(8-3).

The factor C is just the value of the pion wave function at

the position of the nucleon. This form of the single nucleon transition
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opsrator was used (2,3) ia chapter I.

vhen photoproduction ocours in a nucleus, the produced pion is
not free sinse it interacts with the other nucleons. The matrix element
8.1 must therefore be replaced by (A.18):

QLT ey (8-4)

were in | X’ the plon 1s not in a plane vave state but in a
state which ineludes the interactions with the nucleus and which has
ingoing spherical waves only (see appendix A)., In order to perform the
inner product with respect to the pion varisbles, the pion field operator
contained in T should thus not be expanded in terms of plane waves but
in terms of the wave functions V' (X) ot a pion interacting with the
nucleus in question. Imstead of (8.3), the following expression should
thus be used for the nucleon transition operator:

YoE T e (85).

The interactions of a pion with a system of nucleons may be
divided into elastic scattering, inelastic scattering, and true absorp-
tion. The pion wave function including elastic scattering may be deter-
mined from the Schridinger equation:

R =) = GNP REEN (50

where X |VI|X') is a non-local optical model potential (12).
The non-losality of V can be taken into account by using a local
potential with an appropriate energy dependence. If terms of second
order in the potential are neglected, (8.6) can then be replaced by the

integral equation:



-%-

= L o} G)n o, = i (s /
W= e v AU R VEI @ (),

Here G(;(;,;' is the Green's function for the scalar Helmholts
equation wvhile § and U are the values of the pion's momentus and
velooity outeide the range of the interaction.

The optical model potential V(X) at a position X inside
the nucleus can be expressed (12) in terus of the nucleon density at that
point and the disgonal elemeat of the tramsition matrix for the scattering
in the ladoratory system of a pioa by a single nucleons

VE) = ¢ G) {tgy (8-8).

The tranaition operator in the laboratory system can be expressed in
terns of that in the eenter of mass systex dy means of relation A.22.
In infinite nuclear matter 9(: ) is constant so that V(X)

is just a gomplex nusmber:

- . / ‘ N
VE) = Vg + LV (8 1).
The solution of 8.7 can then be writtea as:

_

o, —ing-Xx _q-x% — :
UGy = e MRt (3:10)

where 7L and )\ are the real refractive index and mean free path for
plons in nuclear smatter and are given hy:
VR

n=1-% > = o EV (811,

These relations are only useful vhen the values of \; and \/;[ are

small compared to the total pioa energy. When thia is not the case, more
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complicated expressions involving higher powers of the potential must be
used,

By means of 8.8 and 8.11 the optical model parameters may be ex-
pressed in terms of the forward scattering amplitude and the total cross

seotion for pion-nucleon scattering:

| -+ 2:; ¢ 'RQ?\F)

3
I

L L (o) = ©
>\S~— E[ § Im $(e) 3 o)

The oross seotion U and forward scattering asplitude ) (c) are
averaged over all the nucleons., In general these averages will differ
for positive and negative piens while the averages for neutral pions
will just be the mean of the other two. In a nucleus with the same num-~
ber of neutrons and protons the optical model poteatial is independent
of the charge state of the pion,

Elastic scattering can in principle be treated exactly by the
optical model, Inelastic scattering, on the other hand, is treated as
absorption, Furthermore equation 8.8 does not include the effects of the
true absorption of a pion by a pair of nucleons which will become very
iaportant vhen the mean free path A s for inelastic scattering becomes
long. The value of ) to be used in 8,10 should thus be determined
from:

e Cgeis)

) A A
vhers >\5 is given by 8.12 while >‘a. is the mean free path for true
absorption.

The optical model potential for pions in nuclear matter has been

caloulated by Frank, Gammel, and Watson (12)., The forward scattering
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anplitiie was determined using diaspersion relations while A a was esti-
mated by means of a method due to Brueckner, Serber, and Watson. As can
be seen from 8,12, the potential is proportional to the nucleon denasity
80 that it is very sensitive to the value of the nuclear radius parameter
T, (nuclear radius R="1" A‘/ 3, Using 8.11 in conjunction with

the potemtials calculated by Watson et al,, the following values were
found:

'f\o — h 3
At 250 Mev: N = 1,20 A= 1,75 ferais (8;4}
At 900 Mev: n= 1,00 A= 3,05 fermis
To == 3
At 250 Mev: M ==1.24 A= 0,90 feruis o)
(8‘!5/
At 900 Mev: Nn= 1,00 A= 1,90 fermis

The energies are the mean energies of the phetoproduction oxporiuontﬁ at
MN.I.T. (15) and Caltech (16) and are in doth cases 10 Mev more than the
total pion energy outside the nucleus, Although the matter density in
nuclei. seems to correspond more to the lower value of Y, , the optical
model paremeters determined experimentally (19) from the soattering of
pions by nuclei agree much better with the parameters of (8.14) at low
snergies. At higher energies only the theoretical parameters above are
as yot available,

The solution of 8.7 for a finite nucleus would presumably contain
diffracted waves in addition %o the quasi-classical approximation 8.10.
Nevertheless 8,10 can still be expected to be a good approximation if

CLR is large compared to unity (R is the nuclear radius) which pertains
in all the cases to be considered. A closer approximation to the exact
solution oould be obtained by substituting 8.10 for Vi ' under the
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integral ia 8.7. The principal effect is to introduce internally re-
flected waves, The amplitude of these waves are very seusitive to the
thiciness O of the nuclear surfage (see equation 4.17), Since qa
is alsoc large compared to unity, the reflected waves should be unimportant
in thoA pnmt prodlem. Further attempts to approximate the exact
"qr{-) did not produce any significant results.

In order to take the final atate interactions into account, we
shall therefore use the transition operator 8.5 with W{‘) given by
8.10. The plane wave is thus modified by changing the momentum and by
sultiplying by a growing exponential. This is just the time reversed
state of the usual scattering wave function with a decaying exponential,
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9, _Kffsct on non-sorrelated croas section

Equation 4.3 for the noa-cprrelated oross section can be written
i the following form:

)~
ol /NC

=)

dSl /NSF

seation from a single nucleon in the lakoratory system. In appendix C

sm B F(@]Q (j%)NSF <q‘,>

Sm%B
wvhere is related to the non-spin flip photoproduction cross
it is shown that the non~-spin flip cross section must always dbe proper-
tional to sSin‘B #0 that it ia convenient to factor this term out
and inolude it with the form factor.

Using expression 8.3 for the single nucleon transition operator,
the form factor was previously (3.21) shown to de given by:

Flp) = Sé.u[.'xeﬂl-'x o (%) d (4.2,

¥e nov wish to determine F(P\ vhen the tranaition operator appro-
priate to the production of an interacting pion (8.5) is used instead of
8.3. As discussed in section 4, we shall use = uniform model of the nu-

clear density:

9(3{) = =3 x < R
®) x> R

(9-3).

In order to be consistent with the usual definition of cross
sections, the wave function (8.10) of the outgoing pion must be norma-
lized to unit volume in the asymptotic region. At a point X, on the

auclear surface, the spin wave function is thua just:
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—_—
&), —L Q% )
w% X5 ) == C ( 1 L"’)
since the refractive index 'L=I Jjust outside the nucleus, At a point

X 4inside the nucleua, the wave function (8.10) is:

A =
q- X C—mq-x

Thasnormalisation constant N 1s determined by the requirement that 9.4

and 9.5 agree on the nuclear surface if (Yo —Y ) is parallel to

— -y
?q‘? « X2 N is found by setting X=X, 4{a 9.5 and equating the result

to 9.4, and if this value of N is substituted back into 9.5, one finds:

- . (n-Nek  —Yan —(T-X
'4’1 (x):(—:n'q C e t (9~6>
vhere [ 4is defined by:
—_y NN [/\ B
Xo == X+ A4 (9-7).

We have here taken the center of the nucleus as origin,
When the final state interactions of the produced pion are in-
cluded, the form factor ia thus given by:
Flp) = 3 L(E—Q)-")‘\) og b - Yon ) fa s
:kP)“erng € C o dAX (1%
where the volume of integration is the interior of the aucleus. To per-
form this integral, we chocse dimensionless cylindrical coordinates with

the direotion of the pion momentum as axis. If we define:
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= kR cos B - ({R
B == kR sin© |
r / 4 \({ ”,
o= VAN
§ = (n-)qR
it 15 easy to verify that:
(K-q)-X ==xz 3T 4 I}
Y N . (4-10),
(YI“I} \1 { freaibes % NW—‘TAZ’ — 5 i J

The ocordinates of the point X are (zk 5 r K 51 > and O 1s again

->

-3
the angle detween q and k .

The integral over { 1is standard:
T P . .
X e T == am s (311,
o <

The remaining integral i i-:

JIT (Y+ix~(8) 2 (L&—‘a))a/’{;,}i
F(p) = jo o[ de e e

,.r -/ ’
A/l fa > K/jf)
KOt) + cLie)
—. 3 o+~ T I
Ta SQO” {f “U;”) Yrox-uy } (t10)
K(“f) == (oS EX:J; f’-} - sz) -

oS [(x—&%){;qlf ) )
AATHE . (13,
L) == sm [xJT—’ri] e M s [(\x—lé\)u’hff XJ

All attempts to integrate 9.12 analytically, were unsuccessful, Instead,

9.12 was integrated numerically on an electronic computer for different

energies. The results of this numerical integration are pregented in
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appendix D and will be discussed later,

In the preceding chapters the pion was treated as 1if {t did not
interact with the nucleus at all after it had been produced, By means
of 9.12 we have taken the absorption of the pion as well as the changed
value of fts momentum inside the nucleus into account. The direction
of EE has so far been considered to resain unchanged, however, whereas
the pion could certainly undergo non-forward elastic scattering from the
other nucleons. In the forwalism introduced in the previous section,
the results of such deflections are concentrated in the regions where
the refractive index changes., In our model there should thus be a de-
flection at the nuclear surface so that the pion may be produced at an
angle f% (vith respect to 1: ) which is different from the asymptotic
direction O . Another consequence of this deflection is that the piom
is produced with an azimuthal angle 7(, which differs from the asymp~
totic value X (in order to prevent coafusion with the nuclear coordi-
nate ¢ , which is measured with respect to the final pion direction,
the azimuthal angle, which is measured with respect to the photon direc-
tion, is denoted X ). At 900 Mev these effocts will not ocour since the

refractive index is about unity (8.14). We shall nevertheless discuss

them.
Instead of [e‘x s Fp J s the following expres-
sion should thus be used:
- "(_\)/.-» \,X— ' t...['.;' RN 3 7 . N\
S 41 ()¢ samb e S\x)kix (900

vhere 6% and X, depend on X and must be kept in the integrand, The

deflection depends on the parameter:



‘g = N - | (q.‘5>

vhere 7l 4e the index of refraction. After a substantial amount of
geometry, one finds that to lowest order in £

sinf, = sinf — tj(‘r)Cos(j cos Sm@’\/‘}aj\'ml

== 3(1‘\ — /\,,T:‘iz('f‘) $enE kc‘;ff Sonf < i}(r)\

o —
s
-
—_——
f"\
S

‘ A." < C ~ v, IEEY {
€L( ,X) B sin B } ‘_}”‘) COb fl | \
. L)
L (;’ch Soi & I 2 Gor) NS } J
vhere: N R Lo o,
() == Zu¢ P R e
RPN
= P AT
== =T g VT S P O
/\,"l&] -

If the division in 9.17 did not depend on <°>‘1  , the inte-
grals over | and 7 could again be done analytically, leaving just
the integral over 7 to be done numerically, We may, however, asasume
first that thias is the case and then correot for the error by integrating
the difference (l - Cﬁc) over the region where oin & lies bYe-
tveen l*’j ()] and l Gued fes \ . The integrals over
oan be done using 10,1k while those over Z are trivial, The result is
that 9.14 can be written as:

L X N s .. C - ‘ o <c~..
& {(Ef}i)sm&* -t F‘; Cob @+ o g { 7-)1)
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T

Pl J—O(B “f> M ({‘) dr
L J

—— - »7719\——- _— r"_w_ (: y { — J_,(‘)f)‘(} \ i
PR B | T

, - (3-20).
—1) gL 0 MG b S
I /

£
!
i

F5 = i g_g 3(*5 Ji </"$f\) M(t) dt

Here we have defined:

\ 3t k() + Lip ) \
(4} e T el e 9. A1
[\1(*) oL X?‘L)"Lb \

and the regions of integration:
Lo lgnl<sms 5 O<ve |

{
T: lgw]=snt  ocv<y |

The integrals 9.20 were computed numerically., From 9.19 one might
expect that the produation will no longer vanish in the forward direction
since a pion could be produced at some angle and then deflected towards
0=0 . The terms which would make this possible, [ and F ,
both coatain a J, (U{w‘ bun[C) , however, which also vanishes in
the forward direction., This is caused by the variation of the azimuthal
angle (9.17) vhen O Dbecomes smsll. The non-correlated cross section
thus #till vanishes ia the forward direction as is required by angular
momentum conservation.

In appendix D the results of the numerical computation of the

follovwing quantities are presented:
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K, = A" | Bp) s £ [
(w= AT | (FovF) sind -+ s+ E;i; J

The first one ia proportional to the non-correlated cross section whea
the pion interactions are ignored, the second includes the adsorption of
the pion and the third aleo includes deflections. At 900 Mev the index
of refraction is practically one so that the last two are equal. As ex-
pected, the principal effect of the interactions is to attenuate the

croes section and to smear out the diffraction minima,



In section 6 we saw that the correlated oross section is propor-
tional to the quantity (6.12):

Hp) = Ajg)(x f(xz)h(x,,L LP'&'S"‘)d&!d&L (10.1)

Af an independent particle model of the nucleus is adopted. The quantity
hX %) was defined in 6.8.

As in the non~-correlated case, the exponential is really the
product of photon and pion wave functiona:

= s g L e -

L '(X,"X) ckx -L1q-X, —Ll(' ¢ 99X, /

eP = e ‘e e e(t \IO.Q).

To introduce the final state interactions of the pion, 10.2 must there-

fore be replaced by:
i
X,

L‘( X‘ ) J( % 4 o .
W &) e (A (x2) (10-3)

vhere for the pion wave functions the approximation 9.6 will be uased,

In the Fermi gas model of the nucleus (6.23) the first part of
the integrand of 10.1 is given by:

A sV h (R %) == 7 LUIRR D (104

In section 6 the integral 10.1 was performed by changing the variables
of integration to 3;; and 3?f= ;:-;;; .« V¥when the pion plane waves
have been replaced by the wave functions 'qf;ﬂ(j;) of 9.6, how-
ever, such a change of variables mo longer enables one to do the integral
and attempts to integrate 10,1 directly were also unsuccessful when

10.4 was used.
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In section 6 we also introduced harmonic oscillator wave fune-

tions for O‘b (6.30). 1In that case:
N TEALTCATIE W

& - L(XZ+X;>— 5 N — 1< .
== ({?) QI“ | L\ + Zl/ua)\,'%:}' (/Q-S).

The parameter (X of section 6 is here denoted }l + In terms of the

radius K of the equivalent uniform model:

s |
LLR = 5§ == ,\(: (‘O'(c .

Both for X, and 7(: we shall use dimensionless cylindrical coordi-

nates with the pion momentum as axis:

X, : U= H2Z 5 x=puh 5
(1c-'/>

—_

Xy * U = Hz,, y:/ut) .

which means that:

/Az(x,z+Ai> = X"k u"+yrvUs
ApEX-R, == quv + Adxy cos . T- 4, s
froo g (10-%).
3 e S Sl e L A
}ié’ gd3x,d X, == jdxg dj&d“‘jiv‘gx“‘ﬁiﬁdﬂ
0 o Zoo 2 Y0

o

In this model the density of the nucleons, from which the pion

is produced, is proportional to:
— L (x%u?) [ ,
e 2 O Li + (X‘-»ru‘)} (10-9)

so that the nucleus has a diffuse surface. In order to make the calcu-
lation feasible, we shall, however, assume that the optical model po-~

tential, which causes the absorption of the pion, has a uniform
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distridution:
Vixu) = Ve r o\ XFrut<s”

(1c-10)

— O XUt > 8%

where S 1is the constant defined in 10.6. By using the pion wave func-

tions corresponding to 9.6, the products in 10.3 are found to be:

N A \ , N -
B Cran U+ i3X @, yu-Yasixe .2
I ‘3’ (i)(.):: C - 'e 5 Uf+)\ S
Lau+£3xcm%;-—J,NE{;: X < S ,
— J e+ = 2 > 10e1)
u <-/J5-)\< /
XU 03X s, ‘ i
SRR T ! elsewneye
\—L;K)')v(z wel YW s
and similarly for O 'P,i (x) . The parameters
X ¢ 3 4 and X differ from those of equation 9.9 by a factor & :
. ‘o : /
T ( s )/ o).
/3 LKk son )/ M J

yo=E IANOY o J
For simplicity only the absorption of the pion will be considered,

It can be seen from 10,8 and 10,11 that the integrals over (Thl
anda 4, are of the form:

AT ¢ AT o " o )
) [ a L ( oL -— 1\ 3y T
S S [:l + AUU + Axy LO;(‘L—“I'L>J CL_} (Aot =y .
o o

XYy ci’f"‘ a4, \1 13] .

This double integral can be reduced to aums and products of the follow-

ing integrals:



AT o
{2 s U s ) T2 \
= g g2)
S e A aRICR
O
AIT =
L2 cosd . T :_»l'l - \t)
j & oS u du s
O
AT L2 sk ‘ o O /
e Sin udu
[ ,
AT (2 oStk ) == O /
¢ CoSU S
IS
(£ oS U .z ) e g I (£ )
S e St u du £ a
Lt cos i 2 S NNV ARE = Jig)
cosTu du ot £z 7

Thess results are obtainable froam any of the usual books on Bessel funo~
tions.

The remaining integrations over X , \ , Ay and U could now
be performed numerically. In order to reduce the results to products
of simple integrals instead of two-fold integrals, we shall, however,

replace 10.11 by the following approximation:

.
. )y ik I s t’ PR N N
eLI( X,u ( \__ X 'fL C ) ‘\()\)_ir",/,lk\l (ic-15)
L P X /\,lga‘)\: a5 o
T l N G o J
Huw) = ¢ ¥ w /
YN u g i
U L
This is identical with 10.11 in the region x°. u" < S . Outside

LL )k,

this region, however, the value of *i (X)) is en-

hanced in the forward hemisphere ( (L>>O ) and suppressed in the backward
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hemisphere ( UL<O ), Since the density 10.9 decreases very rapidly out-
side the uniform radius Nxé;a}1 = 5 + the error arising from the
use of 10.15 can, however, be expscted to be quite small,

With this approximatioa, 10.1 can now be expressed in terms of
the following integrale:

o= i e e s

r X . %
Foe= |7 e & {(w udu (ics)
=%
Fz = (® etdu l—u?—‘f(Lﬂ wd
— 0
H, = jme“xz x\f(sx)xdx
[6}
[20]
H, = X- e hix) J_/$X) X dx
. (i6419)
= rjux\‘] 3 -
== X7 AX
HZ j (‘ { 3x A
x TN
j o ll« ax) — —‘;x«] X dx
2 J
The integrals in 10.13 can further be reduced to:
<
v T/ ¢ { ™
E>==Mﬁ e 4Lmh3§ —+j5LXJL fd)iu \
/s o) x
E = *r\SLYJ’I }') i LX ﬁ[:{ Cf\tﬂw‘ g Vt o ( A)u Au 2 \)
x4 N e \ ~
/ X A - . L
Flr_: € 4("5[“-1}(‘0"“55 o SL\‘J\}S/
4+ &S et‘xu‘u‘%tu’> LW due
vhere:

w —XS .
’ IC &l



The original integral 10.1 is then given by:

2 [ < : , i i</, A
%{l%\‘(“iw‘rffwf Fany) e JRTHT e s

. b — i — :
au N LR } K'C""i‘*)-

The integrals in 10.19 and 10.20 were done numerically on a
digital computer. Since the values of the integrands in 10.19 decrease
rapidly with inoreasing X , the point X=3 was chosen as the upper
lisit in the actual calculationa, This represents a radial distance of
more than 1% times the uniform radius.

To caloulate the effeot of absorption on the diagonal crossa
section, we can return to the uniform density used for the non-corre-
lated cross section in section 9. Using the pion wave function 9.6, it
is easy to see that the diagonal cross section must just be multiplied

by a factor:
——/i (;)// PR . N
é s S C ‘>\ S (A) \15A (/\‘ ‘i"i_‘)rl

where ,{ (;) was defined in 9.7. If the same coordinates as in sec-

tion 9 are used, one finda:
Ty R B
. L _j__ , i fi . [i ».—/\II‘YLJR//‘A ’
é A . - £ T d# Al

3 5 . / RNPRE S
= 7 11* 16y L)— Uf'if}(\ﬁ. J} Ller gy )

vhere ”sz /;>\ is the ‘X of equation 9.9 and differs from the -V

@]
of equation 10.12 by a factor S. Thus L can be calculated directly

for any value of the nuclear radius K and the mean free path ,\ .

Using the parameters of 8,14, one finds the following values for |

—
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A 12 4o 6h 208

At 250 Nev 0.37 0.28 0.25 0.18

0.38 0.30

j

At 900 Mev 0.53 i 042
|
|

To a good approximation these values can be represented by the formulae:

-V I
At 350 Mev - o= 0-e1 AT L L
L (10.45).
At 900 Mev: 8 — o871 A%

These formulae are purely empirical and no significance should be at-
tached either to the exponents or to the coefficients,

The effect of the final astate interactions on the non-correlated,
the correlated, and the diagonal cross sections have now been estimated,
In the case of the correlated cross section this has been done for the
special case of C)Ib only but in the other two cases the results are
completely general, within the approximations mentioned from time to
time of course,

The results of the numerical integrations are presented in ap~
pondix D. At this time, however, it may be worthwhile to compare the
attenuation of the correlated cross section as compared to that of the
~fdiagonal cross seotion.

The correlated cross section is proportional to the function

Ci(P) of 3,22 which has unit magnitude when Fv vanishes and vanishes
when F) tends to infinity. The numerical integrations using the para-

meters of 8.1l produce the result that in the forward direction,



- 6l -
G(P) is attenuated by faotors:
0.32 at 250 Mev ,
o 2.
0. 48 at 900 Mev
16
On the other hand equation 10.2% ylelds for (O  the values:
£ = 0.3% at 250 Mev L
é = 0,50 at 900 Mev j
The slight difference between 10.26 and 10.27 probably reflects more

(10-27),

on deficiencies in the treatment of C‘E(P\) than on a fundamental
difference and ip in fact porhaps completely ascribable to the fact that
P does not quite vanish in the forward direction. One can therefore
deduce that the cancellation between the diagonal and correlated croass
sections for vanishing momentum traasfers is not destroyed by the pion
interactions.

At the angles at which the magnitude of (% { P\ without inter-
action falls to the value 0.5, the attenuation factors of (10,26) are
replaced by:

0.27 at 250 Mev } (10.2%)
O bk at 900 Mev
20 that the absorption causes CI(P) to decrease slightly more

rapidly with increasing P.
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CHAPTER 1V

INVERSE DECAY OF THE NEUTRAL PION

The decay of the neutral ploa into two photons is presumably due
to the strong (B.3) and the electromagnetic (B.4) couplings. Apart from
the method of dispersion relations, nc way has yet been found of extract-
ing quantitative results froa the relativistic field theory of the strong
ocouplings so that it is as yet impossible to represent the lifetime of
the T° 4n terms of known constants.

Although the Feynsan-Dyson H<, , €, “<;_ , @,
perturbation technique is not appli- g
cable to the prodblem in question,
the structure of the sum of all
Feynman diagrams containing one ex-
ternal pion line and two external =
photon lines only, is determined ;
uniquely by the conditions that it N 2
should depend linearly on each of %L '
the two photon polarisation vectors
and that the result should be a pseudoscalar. This sum is represented
by the diagram above, All relevant renormalizations are supposed to
have been performed, This vertex may thus be supposed to represent a
fundamental coupling which may, however, be used in irreducible diagrams
only.
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Four-vectors are denoted QP or Cﬁ . The pion's four-momentum
is CU« wvhereas those of the tw photons are ”‘(, and Ik& « The photon

polarisations are @, and @2 « Only four of these five four-vectors

are independent since:

q = ”(, + f‘(l (1ie1)

four
Only one pseudoscalar can be constructed out of/\four-vootors 80 that the

diagram above must be represented by the following vertex operator in

momentus space:
i < b2 VI
EK)‘/‘W 6”& e,zAij )<°“) Y< ”<l.)Kl s )k, 5 JK&> (\”‘i).

Here & JO\}W is the completely antisymmetric unit temsor in four
dimenaions. The form factor Y may still depend on the three scalars
which do not involve the polarization vectors. We shall use the rela~
tivistic metric and the fz{-ntricn defined in appendix B,

By means of the Feynman rules the S -matrix element for the

diagram in question can be written down directly:

() 5* (4-ki-k,) ’ )
&/—‘:;‘(1 ,./—Sl_k . ,,/‘Zlc\; E.K,\'P.V elxelkkl}x }(-l'V-Y (lkln(L ;O)O> (” 3)

k=
since the photons are real so that ;= K LSO « The plon energy

is W =9_ . The transition rate is thus given by:
a3k, { a3k, O q-k, -k,
o G 3 [k Bk

o (am?d (am? Bk ok,

5
X %—1%1 exkﬁveme.mkl/u.ksz) (;1-4)_

The factor :‘i in the density of atates is necessary because of the

identity of the photons. Wwhen the sums over polarizations are performed,



one finds:

— P2 / 2, s
?g% g’x)\ﬂvemelxkf/*kleE = "Z{\““"kﬁ /\i} (”'5>-

Four of the six integrations in 11.4 just remove the delta function and
yield the conservation law 11.1. If O ie defined bdy:
—

k-q = k,q cos B (11-6),

the following expression is obtained for the decay rate:

dQ kik (kb e -
r - JZ&W)} w—q_z—cose R k. k 5 )Y(H(ln“ )C)U\‘ (”. 7).
(R2

The rate | is not an invariant, The lifetime of the pion in

its own system is obtained by choosing:
|
W=m q=0 kK, =k,=xM 1

(i1-%).
i, = keq = —kw = —5Hm* ‘(

The integral over solid angle jd.ﬂ., just introduces a factor 4T

80 that the final expression for the lifetime is:
7{ m* e /-
H(‘I)Ovo)) \”'9).

The value of the form factor im 11.2 at one specific point can thus be

m?

::_-.r———‘_—'-f”
L,

L
T

expressed in terms of the mass "M and lifetime T of the neutral pion.
To lowvest order in the

electromagnetic coupling (B.4)

photoproduction by the inverse

decay of the neutral pion can



now ocour through the diagram
on the right. The initial and E,

final four-momenta of the nu- J

cleus are denoted ]E and ]PZ X y
while those of the inoident t (

photon and the produced pion \

are "< and % y respectively. 'P: ”( 2\‘ @

The four-momentum of the virtual

photon is demcted & wnile ©

is the polarisation of the incident photon. The vertex on the right is
the one ve discussed before (11.2). The one on the left represents the

interaotion of the virtual photon with the whole nucleus and will be
denoted . .

The S -matrix element can again be written down directly:

det 1 Q@m* s+ (k+tt-4) r
j @am* it T dae Cpap evhak

Y (kT £, K) (11-10).

The result of the integration is that the components of Tt are just the

momentus and energy transfer to the nucleus:

b= 4=k =~F Iy
t, = w—k = —A

S8ince the other photon $s8 real, €.,=0O so that;

E}‘Vk"r}levtkkx = 5 (DK + (Fk";‘:ﬁy'(ﬁ—é) ( -1z,
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If the nucleus had beea & scalar particle with a point charge

Ze s+ the vertex function [; would have been:

| ~L - txy ,3‘-']1})]’/7\
e, B frelr 06 s
F F 4 o SN
—~ 7o :2,/ o (ant S5 (-1, t) Cliviz)
1 2
where E,= N and Ez_: }"10 + Bimilarly for a single Dirac
point proton (B.&):
- P —L“«)x b
f;-——Xe'““[a ey u €M et B Ry,
= e(E} X}*u;\ (amy S*(p-p -t um

where LI, and (l; are the initial and final spinors. If instead of
in plane wave states the proton were initially and finally in two sta~

tionary states of a potential, then

(BT o~ - AT ~E
I;’“*gﬂv\)e [u cyu 6[ CL J}\x\ "t d3x
— e (T y.u) (ar) S(E+A-E)
. Cheox N
x S W:(‘:) & P Yok A% x (iz-lS/.
Yor simplicity we supposed that the spinor components have the same
spatial dependence. If the initisl and final wave functions are the

same, the last integral is just the charge foram factor:
Flp) = S Prool" e P i i,

In genersl the three-momentum delta functions in 11.13 and 11,1k are
replaced by 11.16 or something similar when the charge is not concen~

trated at a2 point.
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In a real aucleus the curreat f;L is very complex. Its spatial
components, however, are usually of the same order as the magnetic mo-
ments of siangle nucleons whereas the charge is always additive. We shall
therefore for the moment keep [; only and assume that the nucleus re-
mains in its ground etate so that A is negligible and:

9 L - 2
F; == Ze (&ﬂ'\» é\:,*E_‘) r"\F) ity

vhere [ P) is the form factor defined in 3,20, The discussion of
possible corrections will be left to asesction 13,

The | -matrix element can then be written (A.9) as:
Ze Fip) € (xR SR

2 Ak’ v L \/"", , by Ol i,
Comparison with 11,9 shows that the value of the form factor | which
enters the photoproduction matrix element will in general not be identi-
cal to that encountered in the decay proceas. Especially in forward
directions, hovever, these two can be expected to be approximately equal
since it is extremely unlikely that the non-locality of Y bhas a range
larger than the Compton wave length of the proton. We shall thus sub-
stitute for | 4m 11.18 the value:

Y o o== ° A QLé SINED
NFY;IST

vhere 8 is an uninown phase factor,
The differential crosas section for photoproduction by the in-

verse decay of the neutral pion, now followe simply from A.20:



ds Z2x g‘l‘d@ S NGTT e e Ly €- (xR 2
ﬁ AVYLaTA (;{.Tl')z LT l('\o ! r l o o F‘
{ 72 ' va _ 3}\ an<b )
== <§_Z__.D.<j}_> ( ):‘_> ! - }J/,} .(L . Fu( o ( fl‘J.C)
mce T -

2
vhere X == € Aﬂrgc is the fine structure conatant and where we have
temporarily restored 7. and C to indicate the dimensions.
D)
The factor P has a maximum at an angle:

/o LN
== —_— il

vhich begomes very saall at high energies. At 900 Mev, for example,
its value is less than two thirds of a degree. From then onwards, this
faotor decreases monotonically but becomes modulated by the | oy <.
The couloab production should thus exhibit a strong peak at a very
small angle., The magnitude of this peak is inversely proportional to
the pion lifetime so that T ocould be determined by detecting thias
peak and correcting for the nuclear production.

The production of neutral pions by its inverse deocay was first
suggested by Primakoff (13) who proposed that its lifetime be deter-

mined by looking for a Z7_ term in the total cross section.
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The introduction of the final state interactions of the produced
plon follows in the most direct way if the S-matrix element (11.10) is
expressed in configuration space instead of momentum spece. Following
the usual Feynman rules, we now need an integral over the coordinates
K and Yy 4in the diagram on page 68, instead of an integral over the
moaentum . of the virtual paoton. The integration over the time~
ocomponents produces a delta function of energy which can be factored out
(A.9) to yield the transition matrix element:

T
LK'y

g — (3 da ~ ‘___. — é-g{y ”fg’hﬂ_l LE N R \ @ B }
g j“ y G&) Arrlx—ﬂ(:;j;' Nwir € e-(Trk s
(l‘z-s),

We have here made the same approximations as in the previous section,

such as using 11.19 for the “"pion form factor" and keeping the contri-
bution from 'o only (11.12),

Apart from some factors, G(X)  4is the Fourier trensform of
s

« JYor a2 single nucleon, for example:
GE) = VTE) ey, V&) == e ¥V Gz

Under the same conditions as before, G(X) for a whole nucleus will
be given by:

GC(X) = Ze ¢ (1a.3),

Henoe the transition matrix element becomes:



5 , s aa
T = 2£°¢ é\'@xmi g ety Y
i = S

o3 T
N T Nk ‘
(1d-4)
vhich is of course identical to 11.18 since nothing nev has yet been
introduced.
Already in this form it is posaible to see roughly what the ef-
fect of the absorptiocn of the pion will be. Let us in 12.4 once again

use a uniform distridbution (4,11) and perform the integral:

S g3 = 3 Y <Rl
S X -7 Ak dR? : (12-5).
L y > K f

The remaining integral then yields:
) cF&‘g i S0 L
gdy e dx -7 = i[f(FR)—&OJFRl*PCOS pR

(12-6)

where the contribution [’f \F R> — oS i’R } came from the in-
terior region ( y< R ). The function L(x) has already been de-
fined (4.13). A rough idea of the consequences of absorption can now
be obtained by multiplying the interior coatribution by a factor )_,L

which is less than unity. Effectively the fora faotor:
F(P) === of(FR\) (1-7)
thus seems to be replaced by:

A [;ﬁ(rﬁ) — (oS FRV] =+ (oS FK (.,lo'l-SJ.

3ince the first zero of (%) oceurs at X =4 49 whereas
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CosS X has a zero already at X =1-Sf , the first minimum in the
differential cross section for coulomb production can thus be expected
to be shifted appreciably towards the forward direction. In the case
of couloamb production it is probably even more so than for nuclear pro-
duction that the results cannot be trusted beyond the first minimum since
the marked oscillatory behavior contained in 12.6 will be modified if a
amoother nuclear density is used. After this preliminary investigation,
we can novw proceed to include the final state interactions in a more
systomatic manner.

As discussed in section 8, the pion field operator at the Y-
9l

vertex should be expanded in terms of the true wave functions Ur; 3 )

rather than the plane wave (fjﬂi') « To account for the final

state interactions, we shall thus replace the exponential in 12.4 by

p< =)
()> o« The transition amplitude thus becomes:
Z e"b o R : ! LT . . N
T . T ,*fx Cougrrel A [icp) PRl
}L m ’\’ mc '\/r—l\ [ ’ Fg
which agrees with 11,18 except for the replacement of | y }D)‘ by:

! [} s >

P ) Ny k- L x 1 \

Hin) == - \A’y{ ‘I.L Yo . \\ 3—* = TESN (4 1O).
P AT ; J K=yl

It is convenient to decompose (1.} imto Minp ) and 1. F;)
which are the contributions from 4= K and j>K » respectively.
The interior contribution, Hint P ) s Can be obtained by
using for 1}/; )\;' the same nuclear matter approximation 9.6
that was used for the nuclear production, and using the first of the

two equations 12.5. Proceeding just as in section 9, one obtains:
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R)2 ! Ni-ye YN S) 2 SV gy
n (P> _ ("Fb(_- gd"j dz e&b’r e( § N -t
wm 9 "'N‘l:{"'
C Tolan) [3e-riores ).
J

The parameters X , J? v Y + and 8  have been defined in 9.9 and
should mot be confused with the O( (fine structure constant) and O
(unknown phase) ocourriag in 12,9. The integral over Z 4ie juite
trivial but the resulting expreassion is not inatruoctive and rather tedious
and will be omitted. The remaining integral over 7 was again done
sumerically on a digital computer.

If the nuclear matter (8.10) wave function is used for the pion,
its value inside the nucleus has been shown to be given by 9.9. In a
similar sanner one finds that outside the nucleus:

2 ((8-3)A- T?- ~.qR;
W =g (o= W2 gere |
> o< Z<—AINTE (11-113.

—~9R=
1 evetywhete clse whete 3 245

|

Since the valus of H,, ( P} is just Cos fR when there is no

absorption or refraction, it is convenient to write:
HCX(P) = (05 FR +  H (]‘)\ (12-13).

Proceeding Jjust as with Hgn (F\ + one would then write;

2 el . ey
Hcmq) = (f-[}? jgﬂ(f):ﬂ(ﬁﬂ [eg(ts_jul'“—l J dt (rasy)
o
~Ai-tt -Ldl\/; vz
() = e”xz . d (aas).

—_— 0 Nt +22’
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This latter integral, however, diverges logaritheically when X tends
to zero, i.e, Qhon there is no momentum éranator parallel to the direc-
tion of the produced pioa,

At last we are forced to peay for the use of the approximate
wvave function 12.12. The separation between 12.12a and 12.12b is prod-
ably fairly good up to some distance away from the nucleus, but to main-
tain it to infinity 4is completely unrealistic since the diffracted waves
which should be included im NV{')(';:") , ¥ill gradually obliterate
the distinction between the values of the wave function inside and oute-
side the cylinder T=! . The only completely satisfactory remedy would
be to use the exact W (Y)  and to integrate the difference

[ﬁf{_)(§> ~ Q“L‘LRZ/J over all space outside the nucleus, It
is then aleo necessary, howsver, to use the correct demsity ¢ (XD
since ﬁf{ _)( ) will otherwvise contain too much reflected wave.
Instead of thie, we shall replace the integration over the complete in-
finite cylinder "behind" the nucleus in 12,15 by an integration over the
shadovw region only. This is not a precisely defined region but aince the
region "behind the nucleus" does not even under the amost favorable con-
ditions comprise as much as 155 of the total production volume, we shall
choose a convenient boundary extending to Z =«2R along the axis, this
being the maxiwum extension of the shadow regiom obtained from consider-
ing the uncertainty principle or the Fraunhofer diffraction behind a
sphere, The second integral in 12,15 ia thus replaced by:

+) —C X lJ, ‘L.f;_
$(3) = S? c f_— dx Cra-16)
( NINEIRTSS
vhere fj(f\ sust vary smoothly from ?(«):l to ?‘(0)217( .

For convenience the expression:
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g(r) = 4K (1-ve) v 7 (iaei i)

wvas used in the numerical computationas,

A second approximation that was made for the purpose of the numeri-

cal integration, is to replace 12,16 by:
F) = jjm N (12-15)
| X

whioch is not too unreasonable since we are interested in the regioa
T<! whereas the region of integration contains only X >| , For
Q?~ less than unity, which never cccurred in the cases considered,

£ could be put equal to zero. Since 12,18 can be expressed in
terms of sine and cosine integrals, it is now possible to integrate
12.14 nuserically. This was also done on the computer.

Just =8 in the case of nuclear production, one can expect cor-
reotions due to the deflestion of the produced pion to have some effect,
These corrections vanish at 900 Mev though, since the refractive index
of nuclear matter for pions is then practically ome. 3ince coulomb pro-
duetitn will be important mainly at these higher energies, the correc-
tions due to deflections were omitted.

In appendix D the results of the nuserical computation of the

following quantities are presented:

. —22 43k sm? N

Y . =1 k:—“e- [Fip|= [
) . P 2B o (A9
. 2Ot ksin®U )}th(F)—f(jSFR; A

X,
Vo= E | Hoa () + Hew ()]
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The first is proportional to the differential cross section (11.20) with-
out final state interactions. The second expreassion includes the absorp-
tion of pions produced inside the nucleus only. As conjectured previously
(12,8), this shifte the diffraction minima appreciadbly towards ssaller
angles. The third expression oontains in addition the absorption of
pions produced in the shadow region.



The transition operator for the nuclear production of neutral

plons was expressed (2.3) in terms of single nucleon transition opera-

tore: ..
~ A Ch Xy o (ND / y
T(N') — ST P T, (13
n=i

80 that the matrix element in the ground state is given by:

/ - B ' ,C";";\ \N)('{\ ;
\égl ]—(N)}C S ﬁf;‘ \\(1 S P tlw b
< s ol Q).
P A F“)\ o~ T‘
The single nucleon operator is expressed as:
—t(N) . K(N) M N)v‘ +_( (N . f\ () ) '_T (,5‘5)

A slightly different approach has so far been used for the cou-
lomb production. By inspection of equations 11.18, 12.1, and 12.4, one
can see, however, that a similar formalism could be used for the coulomd
production, namely by writing:

2) S ¢ - 4_)( /-—{»W \ ¢ ( )&k\ (:) T
T = o PTG T e B
=1t 1 / ’V‘k
; \
By introducing the projection operator -i {1 - T;1! » the sum can
be extended over all the nucleons:
() A L.F';n () 4
= 2 N , =
T n=i C tn klj ‘3//

P e KO M9y 136)

3
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O_ MO _ 0 Tk [aT @) S

Exagtly the same analysis as in chapters I and II can now be carried out
for the coulomdb production, The previous results can thus be taken over
directly. We expect namely that the interaction with the electrostatic
field of the nucleus will also lead to a non-correlated cross mection:

=\ ©) L o

and an inooherent croass section:

BN (220 = L capl e eI
/D e '

By taking the factor % in 13,7 into account, it is easy to see
that 13.8 is just the croes section (11.20) considered in section 11
with EZZ replaced by ﬁgAz' » vhich follows from our assumption that
A=1%Z . In addition to the nuclear cross sections of chapter I and
the coulomb cross sections of equations 13.8 and 13.9, there will in
gemeral be interference terms since the correct procedure wuld be to

consider the total transition operator:

. (N) ()
= t v T (13-1¢) .
The non-~correlated production would thus for example be given by:
Z i ‘)2
/d¢\ == Af)ﬂpl R e R (1310}
\drz )NC

There will thus also be interference terms:
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ds\(Tnt) ; , o o
ﬁi) e ATTRTT TN RO cn (SN (),

Since the coupling is weak, the coulomb amplitude is probably real (i.e.
SC equals O° or 180°). Since pions are mostly produced outside the
nucleus when the momentum transfer is emall, the interaction with the
nucleus is also unable to produce a different phase. The pions which do
in fact come close to the nucleus, are mwostly absorbed, At lov energies
SV would be given by the scattering phase shift in the 33-state
(C.33). At high energies the only theorsms of this nature which are
available, are much weaker and at present the nuclear phase is unknown.

When the absorption of the pion is included, an additional phase
difference arises becauss th§ form factors for coulomd and nuclear pro-
duction are then no longer identical. These phases due to the abeorp-
tion were computed along with the values of the form factors and their
values are included in appendix D,

In section 11 we assumed that the excitation energy A s
negligidle. In the new formalism 13.8 is the elastic production where

A=0 while the contributions from nuclear excitations are included
in 13.9. Another approximation which was made in seotion 11, was to
neglect the contribution T—: from the spatial current, This oontribu~
tion will now be discussed,

The value of T? for a Dirac proton is given by 11,14, In the
noa-relativistic approximation the interaction e¢ with the electrostat-
ic field ¢ is replaced by the interaction of the apace and spin cur-
rents with the vector potential ﬁ?s
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dx’ > ch 2~ o
AT gl T VRA

0|0

(15-13).

The magnetic moment of a real free proton is modified by a factor
}LP = Q.14 due to the strong interactions whereas 2 real free
aeutron acquires a moment givem by /ln = — |91 ., Although the
virtual pion clouda may be damped inaside the nucleus, we shall use the
free nucleon moments in our discussion.
The tranaition amplitude can then be expressed in terms of the

sultiple amplitudea given, for example, on page 599 of Blatt and Weiss-

kop? (20): N
- Lo By x AL’ o ,\Al A ?, S5
T = e ~',_F IS o HJ(\
3o P Nhkaond T oMY v

’ SEDR}
The constants follow from 11.12 and 13.4 and the definition of the multi-
pole amplitudes, which differs slightly froam Blatt and Weiaskopf., As an
illustration, the spin part of the Ml amplitude and the z-component of

the aspace part of the El amplitude will be exhibited:

PLEAR [Py ef & PN -
BT 60 == U5 ame =, A Vol C1305)
PR o A. [ <A- ‘ . 5) P 1 N (14 N
,B‘)i(ﬁ)tx o (h> - 5'_;, (/S \ 5 L/ 15,,(5

where }' and ‘|, are the magnetic moment and electric charge of nu-
cleon S in units of the nuclear magneton and the protonic charge, re-
spectively. The factors ( P/) and L) gome from the
derivatives in 13.13.

The initial atate i will again be taken to be the ground state

of the closed shell aucleus which we considered. The elastic transition
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(1 — 1) will therefore be forbidden except for internal pair counversion.
Since this process is not related to the lifetime of the pion for decay
into two photons but to the much loager lifetime for decay into a photon
and an electron~position pair, we shall neglect it. This means that
F?.oan only contribute by exciting the nucleus. Its contribution can
therefore only be of order A and not A® like the elastic nuclear
and coulomb production.

The magnetic dipole contribution (13.15) is only the first term
in an expansion of the exponential EitT;:if « Actually the tarms
arising from the nucleon apins can again dbe treated using our previous
formalism, In this way the whole exponential can be taken into account.

The magnetic moment of nucleon S ocan be written:
I

o= =5 R Tes o+ AP AD (1301),

The square of the firat term is thirty times as large as that of the
second so that the latter may be discarded, Once again equations

analogous to 13,5 and 13,7 can be written down:

(s) T R (T : |

s = > R <= [T S

T ';‘;‘ (./ N . ()n ri)\ N ) l?\,l
=> () }1 )_,)(F ’A+X /LHT\LX\PL EA)&E‘)
T () (L () S e

(13-11)
leading to a croas section:

(dﬁ‘* (B * e A {, ' m’)»sz; INCTE T Ui

In addition to the coatributions from the spin operators, the
multipole moments in 13.14 contain contributions from the orbital motion
of the nuclecns., These cannot be calculated by means of the formalism

which has been used until novw and the various terms in 13,14 have to be



-84 -
considered separately. At 900 Mev §ﬂ2 may alreasdy at 3° become equal
to unity and even with no excitation im carden, PR. has a value of one
sixth in the forward direction. Nevertheless, we shall discuss only the
electric dipole contribution (13.16) because of its dominant and simple
behavior (21). At larger angles one should also include higher multi-
poles such aa £ ,
Inside the nucleus the protons and neutrons have effective

charges:

N

=08, Lok e

>

due to the recoil effects, If thiz is teken into account, the Thomasg-~
Reichs-Kuhn sus rule becomes (20):

s A N Y -
§<E§,~EL\)\+} %_:l C‘ihzh’t /l = —01;] A (A~£3 (/S-Jol).

The usual derivation is no longer valid when exchange forces are opera-
tive and Levinger and Bethe (21) have shown that one can correct for
this by multiplying 13.22 by a factor (1 + 0.8 x) where x is the frac~-
tion of the nuclear force which consists of exghange forces.

It bas been found experimentally (21) that the coross section
for absorption of electric dipole radiation by nuclei containes a so-
ealled "glant resonance” with a width of about 5 Mev centered around
20 Mev, Furthermore, the area under the cross section-energy curve prac-
tically exhauats the sum rule, To a fairly good approximation we may
thus set 4\ = Ei;-E¢ = Q¢ Mev for El-transitions so that we may
write:

z g0l = TN (D0 s
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Here we have set (A-2)Z/A = A/h and assumed a Serber force mixture

x = 0,5, The cross section hecomes:

(ASNED l_-ﬁ-_@_/\/qx_) rs LS A
‘\Jl> == 5),\1 —-\"n‘)r k-a‘:})‘f' I 2 C [ X\ i; "~ LA/\ (ls.)‘+>.

The value of the momentum transfer at small angles is given by:

2 N 2 A
P = (A%t_) - K6 (13- 43)

</

vhere /\ is the excitation energy and e = m/ Lk has a value of
11 Mev when K = “co IFliv |, Equations 13.8 and 13.9 contain the

quantity:

l'; I \'{4’5\; 5[»1"8 (ﬁlﬁ"it )

I

>
L[]
—.
>
7y
-~

while 13.20 and 13.24 contain the gquantity:

N\
<

- ; . 2 /('i Lge sin® b (15, )
.L kﬂ(})‘kﬁi[\)] = }\&(C Af—‘,’_({_ St t—‘\ Cls aL/)_
L
We shall now compare the magnitudes of the various corrections discussed
in this section. As a convenient unit we shall choose the quantity:
5 X EXZSS

e A . R .
% = mir L T o osce Jx 4 f“’ REREO I

The recent measurement (14) of the pion lifetime has yielded a value

. ) ~ it
T == (3°4 5 1:C)x it 5. o that the quantity in
breckets is about unity.

The elastic cross seotion (13.8) contains a slowly varying forms

factor | F o ;))\ = and a rapidly varying factor:
’\+ 62«
S ~ - R 3
2o (E’) [ e + ko e ) ( A1)

. N L . S
which has a maximum value of ("/gi ) vwhen b = t/‘k o« At 900
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Mev this meens that S, (6) reaches a peak value of about 1680 at
B = 0-Cld which is about 0.7 degrees. At this angle ]F(p)]l
has only decreased to about 0.99. Inserting the density of states:

| - o “L\d

.‘-Q T ~ - //l W~ (\
AT | (»\h‘)i' (13-3¢)

one thus finds for the elastic oross section a value:

s e 2% O (13-31)

at the peak.

The incoherent cross section (13.9) alsc contains a factor
siailar to 13.29 except that & is replaced by ¢t +/\ . Since the
mean excitation energy /\ is unknown, we shall estimate an upper bound
to the cross section by setting /A =" ., In addition, the form factor

| F(p) | = is replaced by the suppression factor J+ G N .
This factor will vary from nucleus to nucleus but we shall use the
value calculated (6.34) for Qlé 1

L+ Gy = FR” [ £ 0 hot” Cs3a)

vhere /\ has again been set equal to sero. Using the calcium radius
of 4.4k fermis, one finds that the incocherent cross section has a peak

value of:
/4N == A4S £ O

(‘ d/_)\ ' l’VlL C»i\t {\.nt

The "spin" cross section (13.20) has the second instead of the
fourth power of p 4in the denominator. This changes the sharply
peaked profile of 13.29 to the very flat function:
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2
<

_2:,—: +- ':)\fa , ‘
(E+rn)" + kos© QERFYE

S, (8) =

which has the value (L/ R e )& in the forward direction and then
decreases or increases monotonically to a value of 0,5. The factor
<)“)—/*,‘T)" kg /»+MZ has a value of about 5 while Ft (r(P)
is givea by 13,32, At the position of the peak in the elastic orcss
segtion, the "spin" cross section has a magnitude of:
/@LT) B (15-35).
LdlL ojant
The electric dipole cross section (13.24) again contains the
factor 13,34, with /\ now known to be about 20 Mev. In addition to
the small factor O/ Ayﬂq ~ C 0% | this cross section contains a
factor ;f in the demominator, which causes a rapid increase towards
saall angles. Even in the forwsrd direction, however, the El croas

section has a value of only:
(dT\ A i3 3¢),

4Lz,

By compariason of 13.31, 13.33, 13.35, and 13,36, it becomes ob~-
vious that at small angles all the correction terms discussed in this
seotion may be neglected in comparison with the elastic coulomb pro-
duotion discussed in seotions 1) and 12, By the same token, the only

interference term which has to be conaidered, is the teram 13,12, which

may be written as:

Is R
A5\ Int) fd T\ (N A ';_‘>(c) D ON e PN
(J‘L e - ’\/(:‘1 NC . (i 1 Ne oS ( 8 -—-S) \> (13 5])

The complete cross section for the photoproduction of neutral pions
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from complex nuclel is then:

(L{T Wl /s Lt / "*,‘i‘ () - d N ( 3%5)
\ bl " Ki P\ R
\d L/ g A LT N e NG RCARE

where the fourth term indicates the sum of the nuclear diagonal and cor-

related cross sections.
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A%, _CONCLUSIONS

The only experimental results with which the theoretical pre-
dictions can at present be compared, are those of measurements at 250
Mev done at M,.I.T, (15) and the preliminary results of the 9500 Mev ex-
periment at Caltech (16).

At 250 Mev the photoproduction of neutral pions from single nu-
cleons is well understood. Acsording to the static theory, the single

nucleon transition operator T must be proportional to (B.27):
(J,i— O;) eLmeE) - io\{ s B Ci-1)

vhere (9 )"f ) are the spherical polar coordinates of the pion in
the center of mass system., Equation 14,1 holds for production by right-
handedly polarized photons,

The free nucleon differential oross section in the center of

mass system is then:

Q@%) = ¥ (5 a8 L st d)
dix 5_

== ‘é (5 — 3 c05&6> (lh’f'al)

vhere g is an energy-dependent constant which can be determined em~
pirically. Ve shall adopt the value:

£ = 235 b (1 3)

which leads to the differential cross section:
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<d7> = (s — 105 s2B)  pb/rcy (et
G,

2
The so-¢alled non-spin flip cross section is proportional to fl\‘
wvhere K 4s the part of 14,1 which does not ocontain any spin or isospin
operators. Hence:

(d?‘> = L% sn? 6 (14-5).
d 2/ NsF

It is not simply the part of 14.2 which does not flip the spin, namely
5 g sm%6 .

The equare of the transition amplitude is approximately given
by an invariant divided by k) , where K and o are the photon and
pion energies in a given system (see B.26). In addition to this matrix
element squared, the cross section contains the density of atates which
is appreximately proportional to & , where ¢ 1is the plon momentum.

Henoe the following quantity:
| L d3 BN
q doL \lert)
can to a good approximation be treated as an invariant. Yor photopro-
duction from a sing].o nucleon, the gquantity ( 1/1 ) has the value 0.96
in the center of mass system, In the case of photoproduction from a
heavy nucleon vhioh reecils as a whole, ( L/k) has the value 0.84
in the laboratory system, Hence at 250 Mev the single nucleon cross

sections should be multiplied by a faotor g‘% = 0.875 before their

values are substituted into the expressions for photoproduction from
complex nuclei, At 900 Mev this factor is practically unity so that

this point say be disregarded,
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In order to avoid possibdle uncertainties due to non-closed shell
offects, the comparison with Davideon's K.I.T. data will de made for

caloium, The non-correlated or elastic cross section is given by (D,1l):

CL”)— o av ‘
(JLL)NL_ = 943 X /LLL/JU (lg1)

where the 8.23 is the product of the 4% and the factor 0.875 while
the computed values of X appear in appendix D, We shall use both X. ,
the value without final state interactions, and '}{2_ + the value which
includes abeorption and deflections of the pion.

The incoherent croass section can be expressed in terms of the

free nucleon cross section (14,2) as:

/d3\© | . /d'> TS
SN A ] ()
kdi>1m N ‘ 2l

in the case of no absorption and:
/d’f)— 2 v ) ’." \! (/djj\> (,,/ j\’
Ldi)r = A lfé U R ) y o

vhen absorption is inoluded. We used for (i.lp) the Fermi gas ex-
pression (6.26) with a Fermi momentum FF = 250 Mev. At small angles
this will be larger than the finite nucleus values as one can see from

the tables in appendix D, In addition, since (x_ [ }f) was calculated
for O'b only, the expression in the square brackets in 14,9 was re-

Placed by:
é L T CX‘L(P\J \ g1 €

which can be seen from appendix D to give a fairly good estimate., The

\i&,luo used for f) was 0,28 (see 10.25).

If the experimental value (14) of the pion lifetime is at all



gorrect, the coulomb production will be negligidly small at 250 Mev. The

elastic cross section is:

(fff\ Y o Cla-nn)

R uul -

13.28 and appears to have the value:

6‘\; oot 5)\ A [ /LA 1) ( Iy <l > .

From the table of calcius at 250 Mev it follows that at most 0,04
pb/sterad can be expected to arise from the coulomb production. The
interference with 14,7 will alsc obviously be negligible.

In the following table we shall tabulate the values of 14,7,
14,8, and:

‘ds ' dy \
JL «tor J._JL/ NC J,L Tnc

both in the case of ne absorption and in the case of absorption accord=-
ing to the parameters D.5. Ian addition, interpolated values from the
M.I.7. data will be presented., The units of all cross sections will be

microbarns per steradisn while the angle 65 1s measured in radians.



- 93 -
Calcium at 250 Mev

8 0.1 ’“ 0.2 | 03| o | 0.5 | 0.6 | 0.8 |
| |
do )O 23] 32 bl 60 78! 100 | 152
asl/In f’ |
| t
{,?1? )0 05| 353 588 | 673 573 362 28!
AL/ NC E 1 i
; !
1 ]
{S‘,i )O 18| 385, 632 733 651 62| 180,
4.2 Jtst | l
- L
1 |
a5y 2 ,
<Q'3:>Int 6 9 12\ 1?7 22 | 28 43
i
A3\ ¢ ‘
(mjm 12 68 1w 75| 1500 79 4
43\ 2 | |
(d N LBM 18 77 156 192 172 107 k7
as”
<J“5_)E 350470 | 510380 | 800470 | 850460 | 740480 | 560470 | 380440
XP.

Iaspection of the table reveals the fact that the theoretical
predictions are far too low to account for the sxperimental results, As
a matter of fact, if one allows for the fact that certain production

modes are not taken into account by the theory, the predictions when ab-

sorption is not taken into account, namely \d L)t(‘)t . agree

AT ‘>0 r A7 \4
amasingly well with the experiment, Both fot and \ i L /t +
/s
agree quite well with k 4.0 Exp as far as shape is concerned,

de\ 2
—= ust being too small by a factor 4,
(dl tot J
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At 900 Mev the results are not yet available in a fors which
permite a similar analysia, Partly this is due to the fact that the
croas section ia not measured directly as a function of the angle 6
but of another variabdle, Scme results are already available, however,
and will nowv be discussed.

Unfortunately the single nucleon croas sections at high energies
are only very incompletely understood at present (5), Even the avail-
able experimental information is Snconsistent, The ecparatiog into
spin flip and non-spin flip or the resolution into multipole amplitudes
is quite sensitive to measurements at small angles. The closest values
to the forward direction which are available, are due to Vette and
Berkelman and Waggener (4). They disagree, however:

Vette: 912 Mev (31.5’) 2,42 + 0,42 pb/aster H{ )

B& Wi 940 3 100 (27.6 £ 2°)1.0 & 0.3 pb/ster J
It seems (16) that Berkelmsn and Waggoner's result is probably closer
to the truth,

Since the details of the angular distribution are still quite
uncertain, it would be safest to use the values l4.lh only to place
upper or lower limits on the cross sections., One could for example hope
to place an upper limit on the non-spin flip cross section by assuming
that the c¢ross section at 30° is 1.0 pb/htor and that it is 2ll due to
a Dewave non-spin flip amplitude:

/Cﬁjj\ - Y covth sin- & (1150,
Vdl
This would iuply that 1| has the value 5.3 pb/ster. Using the tables
of appendix D, one would thus expect the nuclear production from lead

to have the following maximum values:
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gg_)n < 360 phfstec  withad absotplion

ASL/NC T
| o (lusie).
(3%3?; L 716 /ulo/sfcf with Q bSo!rJT fon J

The photoproduction from lead has actually been analyzed (16),
The cross section was represented as the sum of:
~ 5 (pRI%

.
g, (6 = A" G s

VoL
-7 < [ ke Lr b :‘ i L) N
6. () = 2% 0, [ sk e RN (=i /)

G ie) = A AT, (e). Tk o5 9

1 N
and the values of O, , O, , and S were sought which gave a best

fit to the results. The values found, were:

o, == (8.5c + 1a3) pb Joter 2

. TS
S, —> Ty== (141 Tl ) » 1€ ‘S“J Cig1s).
N = 101°

The results ware, however, also consistent with keeping C?N only.
The value of Cjé is slightly larger than the upper limit 71::55~3
derived from Berkelman and Waggoner's data, One might hope to be able
to stretch the values a little, or to use Vette's values, in order to
obtain agreement, The expressions 14,17, however, correspond to the
theory witbout absorption, When absorption of the pion is included,
an additional factor of 4,7 has to be explained.

In both the low and the high energy reglons it thus appears as
if the Born approximation (no absorption) yields results which come sur-

prisingly close to the experimental values, The calculations which take
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the pion interactions into mccount, on the other hand seem to produce
values which are far too low. Since thisz tends to cast doubt on the
validity of the theory, it will be worth while to review all the as-
sumptions and approximationa which were made,

The basic assumption was that of the wvalidity of the direct in-
teraction model (6) and the impulse approximation (7)., This general
wode of attacking high energy problems seems to be fairly well estab-
lished., It is, in fact, so far the only type of approach which has met
with a reasonable amount of success in explaining the properties of
many-body systems in terms of more fundamental constants. It pions can
be produced by some process in which it is essential that many nucleons
must take part, such pions will, howsver, not be included in our forma-
lisa,

The next approximation that was made, was the closure approxi-
mation (9) (10), in order to sum over all the final states, This is,
admittedly, an approximstion, but it s0 happens that the dominant
elastic part of the cross ssction is treated exactly which makes it
unlikely that an improvement of this approximation would remove the
disagreement with the experiments,

In the evaluation of the nuclear matrix elements, a two~fold
approximation was made. The first was the adoption of an independeat
particle model in which the nucleons occupy single particle orbitals,
The second was the restriction to closed shell nuclei. These two as-
sumptions made an exact calculation of the nuclear matrix elements
possible,

Although the expressions for the spin-isocspin matrix elements
were rigorously derived for closed shell nuclei only, they can probably
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to a reasonably good aprroximation be used for non-closed shell nuclei
aleso since such nuclei can be considered as a closed shell core plus
additional aucleons and the number of nucleon pairs of which both zmem-
bers belong to the core will usually outweigh the remaining pairs. This
could in any case not be the source of trouble since Ca' 1s a closed
shell nucleus.

The other approximation, that of independent particle motion, is
more serious. It neglects strong corrslaticns due to the residual
forces between nucleons, Especially processes where the nucleus is
disrupted, may be appreciably enhanced due to the presence of high
momentum components arising froa the hard core repulsion betweean nu-
cleons. Once again, however, the elastic process where the nucleus
recoils as a whole, is the least likely to be affected much.

The final state interactions of the produced pion were treated
by means of the optical model (12), 1In this model a pion which is
scattered inelaatically, is treated as if it has been absorbed, where-
as it may in fact still be detected and included in the measured cross
section., It is thus almost certain that auch a treatment would under-
estimate the observed cross section. Another process which is also
neglected in the treatment, is the initial production of a charged pion
which {5 then later coaverted into a neutrsl pion by charge exchange
scattering with the nuclecms in the nucleus. On the whole the experi-
mental cross sections can thus be expected to be higher than the
theoretical estimates. It is extremely improbable that this could ex-
plain the factors of 4 by which theory and experiment disagreed, how-
ever.

Even within the optical model a further approximation was used
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for the pion wave function (section 8). Im the damped plane wave that
was used, scattered waves were disregarded. This could possidly lead
to appreciable errors in the calculations relating to the coulomd pro-
duction and perhaps aiso in the caloculations involving deflections at
the nuclear surface., It is hard to see how an improved calculation of
the latter could oonplitoly remove the discrepancy at 250 Mev, however,
since the final result wuld have to be that the effect of absorption
is nearly negligible., The place where it is least likely that this
method may be misleading, is in the calculation of the effect of absorp-
tion on the nuclear production at 900 Mev, This is the place where the
largest amount of confidence in the treatment is felt. A calculation
is in progress (17) to replace the approximate wave function by an ex-
pansion into partial waves which satisfy the Schrdinger equation (8.6).
It would be interesting to see how the results compare with the results
obtained using the approximate wave function 8,10,

The interaction parameters used were those of calculated by
Frenk, Gammel, and Watson (12). The set (8.14) which was used, agrees
with empirical determinations at low energies (19). The other set
(8.15) would make the diecrspancy in the present work even greater,
The values of the interaction parsmeters at 900 Mev have not yet been
checked experismentally and they may be incorrect, particularly since
it seems as if certain low energy results, such as the Brueckner-Serber-
Uaéaon model, may just have been extrapolated. The results are guite
sensitive to the mean free path so that a change in these values may
change the predictions considerably.

The possibility must finally not be overlooked that there is

in fact no discrepancy after all, In this connection cne might amention
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that the latest M.I.T. results (15) differ by a factor & from their pre-
viously reported measurements (see Osborne: CERN, 1956)., It appears
(16), however, that their earlier results were probably due to faulty
calibration and that it ia very umlikely that their latest reaultq@on-
tain any serious error.

The apparent disorepancy at 900 Mev could possibly be explained
by a fortuitous cancellation. The quantity that enters measurements

such as those of Vette and of Berkelman and Waggoner, is:
2 ,
K —M | (119)

(see B.31) whereas the quantity which enters the elastic nuclear cross
sections 48 |[K|° alone. It is thus still possible, sven if it may
be improbable, that |k | “  may be large although the quantity 14.19
happens to be samall. This uncertainty could be removed by alac measuring
photoproduction from neutrons and adding it to 14,19 so that the cross
terms ocancel.

If the discrepancy between theory and experiment persists, it
may be necessary to investigate explanations in terms of processes which
have not yet been considered, such as the virtual three pion bound state
suggested by Chew, which could introduce a retardation term into the

photoproduction of neutral pions from single nucleons (16).



The time-indepsndent Schr8dinger equation:
HV == E ¥ (A1)
L LA

is usually solved by introducing as basis the eigenvectors of some ap-

propriately chosen "free" hamiltonian Fﬂaz
HO == H - \/ (,»\ ] \)
Pﬂ)4% o= EL4% <A'3>.

In seattering problems F4o is usually chosen in such a sanner that it
has the same continuous spectrum as }{ « Equation A.l can then be re-

placed by the Lippman~Schwinger integral equation which incorporates the
boundary ocondition on uf:

o ($) | L A WA AR €. o
Y = dpa e —h, ton Vo (A-4),

Here 71 is an infinitesimal positive number which prescribes the treat-
ment of the pole. The plus and minus signs correspond to molutions
which contain only outgoing and only incoming spherical waves, re-
spectively, in the asymptotic region,

The wave matrix operator of Mgller transforms each CE into

the corresponding ’4Q(+) 3
Vasa _
Vo= 0

Bquation A.4 is satisfied if:

™~

X
)
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This equation can be demonstrated to have the following solution, due to

Chew and Goldberger (7):
. i
[ - | . U,
al ! EL'_Hr)“‘\V‘*‘L"’L

v (A,
Ia this formalism any reaction can be conasidered to be a transi-
tion from an "uncoupled" state CPL to another state &‘E as a result

of the "interaction hamiltonian” \/ , Heisenberg's S -matrix is then

defined by:
= Al == JA-E ] e .
Sfi \Cb}) JH)»’/ - \11”5 / Y. > (A-%).
By using A.% and A.7, one can easily demonstrate that:
S}L. = 8}; — Jdm 5<E;“E§> T}; (A-Q)

vhere O ;i end 5 (E, - Ea are the Kronecker delta and Dirac's

delta function while the transition matrix T;L is defined by:!

R A / [ GO LAY
_’;;”_\%{T}di/ = \‘%I\/W; / (A-10).
The transition operator T can therefore be written:
T = Vil (A1)
It satisfies the integral equation:
! - (A-12)
T = Vo Ve (

which has the solution:
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It is often convenient to split the interaction into two parts.

Equation A.2 is thea replaced by:
= M. o+ Loy (A

By analogy with A.4, we define:

1’}’“}"\’ “P -+ “.:"'l‘" o /UF\/”".LL\ [ANED)
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:XL T f E ~H, T bl { L

L

—

where ﬁﬁ are the sigenfunctions of Ho + 28 before, The transition
matrix oan then be written as:

L \) (A7,
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12 \V 1s the photoproduction interaction whereas .| is completely non-

electromagnetic, and if the state 4}

the state ¢’; s only the second term can ocontribute:

contains one photon less than

L /( ‘) . ,’ . L'.)\,\ /’/, ) )
T&: == \/kj v } o 7 AR

This formula is very useful for the study of final state interastions.
If the bhasis states CPL are eigenstates of operators corre~

sponding to constants of the motion, then the transition matrix becomes

diagonal, In particular, for reactions which conserve the total linear

momentus:
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The only exception to this rule ocours in the case of energy conservation.
Matrix elements of | between states of different energy do, in general,
not vanish. This exception does not ocour for the 5 -matrix, as can be
seen from 4.9,

If all plane wave states are normalized to unit wolume, the cross

section for a reaction whose initial and finzl states CPL and 43& are
both two-particle states, is given dy:
ST v :iact : < o o ,
— —_— - r R O S . { . ; 3
4. U & (i )? } ‘“l OLE, t§> LA

Here L[ =FE+E, and E,=E.rt,  are the values of the total
—>
energy in the initial and final states and ( is the momentua of one

of the final particles., If the incident particles have velocities LU,

and ([, , the incident flux U is glven by:
2 I 2 / 2N/ ‘ - o
U, == < VD B M O uj\) LA,

The following two gquantities are lorentz invariant:

I

E‘ E& 'LN‘: === L‘n'\/erd)lT l ( AL

EIEZE'jEz,, j];L \2 — (mvatian t J

The total cross section froa a state < to all final states
be can bo obtained froam A.20 by closure. At the same time the total

eross seotion can be converted into a differential croass section:
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The theoretical analysis of processes in which particles are
created or destroyed, is usually formulated in terss of a quantized
field theory or some equivalent formalism, In a completely relativistic
theory the interactions between pions and nucleons, for example, 13.
described by introducing field operators <> and | for the pion and

nucleon fields. Of the three pion field operators

b, destroys the T or creates the T,

gb destroys the T or creates the il .

' destroys the T or creates the T .
The following sumaation conventions in charge space will be used:
¢j¢ $L == ¢+‘~P T Ubop_« | ? (B-1)
T ¢ == NEY ([;\1*0 + Ilq)*) v T, r}ﬁg j
vhere for the isospin matrices we use the convention:

Py =1 Tipr=-

which is more convenient in nuclear physios than the high energy physiocs

. DoElpeo (D

convention in which the roles of proton and neutron are interchanged.
If the pseudoscalar coupling between the pion and the nucleon

fields is assumed, all the properties of the interaction cam in prin-

c¢iple be determined from the commutation rules and the oodplod field

squations:



- 106 =~

a,lﬁ'\3>

N

_ o/
(B3, + M) Y == =gy Tk Y )

vhere 7 and M are the bare masses of the pion and the nucleon., We

3
define E»* = 3xn ( K= 0,1,2,3,) and are using the metric in which
x}lﬁkzs.ﬁzjt - t< . The 7 -matrices are defined in teras of the
,A.‘) . — N . . . . R
Dirse matrices by '3/ = ““-1‘39( N ]o;: — LJ > + and Y 5= L 3’7 1’(’, x, j"i.

For pseudovector coupling one gets similar but slightly different field
equations. These field equations look very aimilar to the equations for
the interaction betwveen the electromagnetic field and any charged fermion
field:

vhich has been very successfully treated by the Feynman-Dyson perturba~
tion technigue. The relatively large coupling constant ( 32'=$15 as
compared to e’ ~ iz ) renders the usual perturbation theory
useless for relativistic meson theory, however,

In order to produce a real antinucleon from a free nucleon which
is at rest, pione or photons of amors than 3.7 Bev are required. We
shall, on the other hand, only be considering emergies up to a Bev or
s0. Although virtual antinuocleon-aucleon pairs are probably very im-
portant even at these energies, their effect can presumably to a good
approximation be included by modifying the basic interactions, If this

is done, it 1s no loanger necessary to quantize the nucleon field. Instead
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the nucleon ia described by an ordinary wave funotioan just as in non~
relativistic quantum mechmnics,

In such a forsalism, the free hamiltonian H_, 4s given by the
pum of terms like:
2

H o= ™M+ & + ..
N o(M (B'S)_

Hy = | [ g+ SCvt ) v B4

The interaction hamiltonian is the sum of terms with the following

structure:

H, contains the pion field operator linearly

e L/ AN
H, oontains the plon field operator quadratically (B-€/.
ote.
If the pion field is expanded in plane waves:
b =5 N (et e e
;—K’(/ B k \uuke + d. C <B.7/

wvhere (I and afk are the destruction and creation operators for
a pion of momentum f in a charge state ( while /N, 1is a normaliza-
tion c¢constant, then the teras containing ¢u<’ ,\ will reduce to the
following form:

_ ¥
Hy == Z% A by ¢
_ , oot IR.Q
i, = ZE (a Vo + @3N ) (B-8).
= 222% C( \,
HL C k~1<

EACA L
L“Ji ark“n\cm) e con)

Here @k: N'—m‘+ k< is the plon energy while \",Jk etc, no longer

contain any creation or destruction operators but operate on the nucleon
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variables only,

At energies appreciably smaller than the nnnlcoq reat mass, the
motion of the nucleon may be neglected, The \{k in B.8 can then
contain the spin and isospin operators of the nucleon only. The struc-
ture of H, 1s then completely determined by the conservation of
angular momentum, parity, and isospin. For a nucleon whose center is

at X, , one obtains:

; e s ke L
\/.i et iy?{ NK ’L'(k» gL jr.,\ } r C Lfﬁ‘“}/]

L (9

vhere U(k) is the Fourier transform of the spatial distribution of
the nucleon while fg is a dimensionless coupling constant which can
be related to the relativistic coupling constant '}R of B.3 by:
! ™o, s .
§o== N (e,
The non-relativistic coupling constant is therefore much smaller than
the relativistic one 8o that perturbation theory is not completely use-
less.
The transition amplitude (A.10) for the scattering of a pion by
a mingle nucleon can dbe expressed as the matrix element between initial

and final states of the complete non-fnteracting system, of a transition

opsrator M]; for the vhole system:
AP e g y
NI L} o s ke / L,

Here _ and | denote the initial and final states of the nucleon.
3
The pion is initislly in a plane wave state with momentum L and
—»
finally im one with somentum k} « The charge variable of the pion is

suppressed, If the only interaction term which exists, is F%, ’ 7;



is acoording to A.12 and A,13 given by the perturbation expansion:

The interaction operators H, contain creation and annihilation operators
for plons in plane wave astates (B.8) so that the inner product in B,11

can easily be performed with respect to the pilon variebles., It merely
involves the replacement of one of the 1 ’- by s \V(k,) and
another by a V f(_" ke , }  where these quantities are given by B.9 in

the statiec theory. The transition amplitude B.ll can therefore also be
considered as the matrix element between the initial and final states of
the nucleon only of a different transition operator which only operatea

on the nucleon variables:

SCR I ﬂ;\ o S

Using B.9, we see that t o j.\, %)  can be written as:

'1.';)(7f)>)x>\:) SRS S SN SR

eGP CEi
where ’P§ is the momentum transfer and where ZQ no longer depends on
the nucleon coordinate X .

When the transition operator | for the whole system is re-
placed by a transition operator t . for the nucleon only, the wave
functions of the incoaing and outgeing field particles thus appear as an
explicit factor. Such a factor is alsc to be expscted fros translational
invariance, If the initial and final spin-isospin states of the nucleon
are denoted | X;7 amd |A,, , and the initial and final spatial

states are plane waves with momenta {; and [u; + the transition

“



satrix becomes:

>

b N B T , \
Siig‘ < & \\A}) fbt}))x )\/KL / b ( B-1v)

-

vhers X 4{s the nucleon coordinate. Since, according to (A.19), this
,,j’»a > »

matrix element must be proportional to O (}1 tp “lﬁ ) s We must

have: ’ N

Chew, low, and Wick (3) have investigated the implications of
the static theory in which B.S is used in (1, while all higher terms
ti. 4 115 4 ses 8re neglected, By adjusting the renormaliszed coupling
constant and the cutoff momentum ( U () being 1 when K ia less than
the cutoff momentum and O otherwise), very good agreement is obtained
with the observed p-wave pion scattering below 450 Mev. The small
amount of s-wave soattering which is in fact observed, can be ascridbed
to nucleon recoil, The main feature of the p-wave scattering is the
resonance in the state with total isotopic spin | and total angular
momentum . both equal to . .

In the emsygy region near the resonance, one can to a good ap-
proximation assume that this is the only state which contributes to
the seattering. JFor the non-charge exchange scattering of neutral
plons, the transition operator will not contain any isospin operators
80 that all the operators are contained in the projection operator on

the state which is givem by (3):

3 */!\, o n { 7o N oy NN
SN 2\ . N AT N
PR/ YRR S O VP R

L ¥
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Here kL and w; are again the initial and final pion momenta. If

/\
k; is chosen as axis of epin quantization and as polar axis for a

A
system of spherical polar coordinates in which k§ has the directional
coordinates { 8 ,{ ), B.17 reduces to:
L /oo -t { B L‘f o .
}i e O& O 6 -4- ( :)f‘ < - CT'* & ) L E:" VB ).

-4

Hence the spin flip amplitude vanishes in the forward direction while
the non=-spin flip amplitude vanishes at 90° in the center of mass system,
The convention O, - = 51(7; ti(ﬁ&‘\ has been uased for the nucleon
spin operators,

In order to characterize the reaction by an invariant number
which depends on the total energy in the center of mass system only,
one should write (A,22):

ts o ;!vfhgpgu }i (:B-V1>
AN B By Sy
where ()., ¢J;  are the pion energies while L. ,L; are the nucleon
energies. Since the value of 1N%;E;’ varies only slightly froms
laboratory to center of mass aytea in the energy range under considera-

tion, we can to a good approximation write:

t . = S = -y j)‘ \ 15 - AL )
> mlghnsj >

where J

; 1s now an (approximately) invariant complex number which

contains all the intrinsic energy dependence of the process, such as
the resonance behavior. The differential cross section for non-charge

exchange scattering of neutral pions from nucleons is thus given by:
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;LV n;

- (1 22 ji
> w’f‘]"rl‘)‘

in the center of mass systesm.
In order to deacribe the photoproduction of pions field theo-
retically, the goupling of the electromagnetic field to the total pion-

aucleon current T must be added to B.65. This is usually described by
the interaction hamiltonian:

I B e [
HB’” jJAdx ( B-au)

->

vhere A 1is the vector potential asscciated with the photon field.

Chew and low (3) decomposed the current operator T into two
parts, :j:} and J; ¢ in such a way that J: commutes with the pion
areation operators while J; has a vanishing expeotation value in the
state contalning a single real nucleon and no pions. The coupling with
J; corresponds to making the usual substitution:

>

C o beeA and Vo= VoA

in B,9 and B.5, respectively. In the case of charged pios production
these two replacements give rise to the direct s-wave production and to
the retardation term, respsotively. For the production of nsutral pions,
however, the contribution froa J:_ vanishes #0 that we need only con-
sider J; . N

The "real nucleon current” | N can again be decoaposed into
an isoscalar part J: and an isovector part J: « In the static
theory the coatribution of the latter dominates because only it can

leaéd to the I=% state, This term is equivalent to the usual
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- }f . _H’ «~goupling of the magnetic field H’ wvith the true (i.e, including
anosalous parts) magnetic moment }f of the nucleon.
By analogy with B,11, the transition amplitude for the photo-

production of a pion of momentum /(f by a photon of momentum Kk can be
written as!

! » N\, i

ST NALNS N

~ g

The transition operator | b will now contain a destruction operator

R A
for a photon in a plane wave state !k / 4in addition to the creation
operator for a pion in stste )(’/ « These operators can again be re-

moved by replacing B.23 by:

N PN L Y
¢ ( B~y )

R

vhere tr{ ‘}‘3 X ) » by analogy with B, 14, can be written as:

3 > >y
‘l‘—«‘ (k‘)\

- e » } { A - b
[.:F,))\) - t[_)“-

—= P tp (145 ),

The transition operator t p again operates on the nucleon only.
If only the coatribution from r is kept, one finds (3) that
Jy

the operators in "tf) may be separated out as in B,20:

g,
SrLr (B-16)

P ke

wvhere the projection operator ’PP is obtained from ff by replacing
the momentusm of the incident pion by the quantity ¢ ﬁx/t\ ( L and
€ are the momentum and the polarization vector of the photon). Using
the same coordinates as in the scattering case and assuming that the

photon is right-handedly polarised (this does not involve any loass of
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generality since the strong and electromagnetic interactions are invariant

under reflections), one finds:

| —~ L({ . : Ve A N P R
= 07 [(Jd— Jz> e smb o~ J I, cen GJ { B-27).

Unlike the gscattering case, it is the non-spin flip amplitude which now
vanishes in the forward direction. The differential cross section for

photoproduction from unpolarized nucleons becomes:

\,

rdsy j ‘)’* /_(‘: -3 fé‘f@)

/ ) *(_ A /\/Bal%\
/VM 206/ \ NM‘HL‘

in the center of mams system.

\d)/,' \if‘

The principal result of the Chew-lLow theory is that the L= .
= i" y 1= f: state is enhanced in all pion-nucleon processes at low
energies. If only this state is kept, the theory gives a very simple

relationship between the scattering and photoproduction of neutral pions

namely:
e mo N\ - .
N SN . (B-a9)
N 5 4N P
3
- -~ !
where € and § are the renormalized coupling constants <—C‘;r = 157 s
:; =0 05> + MU and [V are the plon and nucleon masses and
}AP == 2,79 and /Hn: —1.91 are proton and neutron magnetic moments.

The scattering of neutral pioans cannot be studied dix:eotly but the com-
ponent that goes through the [=> state can be inferred from the
soattering of positive pions by protons (appendix C). If this is done,
one finds that B.29 gives a good approximation to the low energy experi-
mental resulta, The low energy photoproduction of neutral pions can

thua be described quite well by the statioc theory.
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The most general form that the transition operator }tP for the
photoproduction of neutral pions can have, is:

o e

J[P = K + -3 + MT, + N- 75’@ (B-3c)

>

. -

vhere K , L. 4, M , and N are energy-dependent complex numbers. By
measuring the differential cross section B, 28 for the photoproduction
of neutral pions from unpolarized protons, one determines the quantity:

P o l .

[k=m|" + | C-N CR-31).

(Yor the production from neutrons, the minus signs would be replaced by
plus signs.) At low energies, the simple static theory leads to the re-
sult that N and T\T vanish (this corresponds to the neglect of the
isoscalar current :J: ) and that K and L are related by B.27.

Thus the single determination of B,31 specifies the transition operator
B.30 completely, the energy dependence of both K and l: being con-
tained in jP o As a matter of fact, by means of relations B.29 and
B,21 the transition operator for the production of neutral pions can at
low energies be determined by measuring the total cross section for the
ascattering of positive pione from hydrogen! Such a determination is of
course correct only to the extent that all states except the J = ‘i— '
I= %_ state may be neglected.

At high energiea there is unfortunately not yet a theory which
provides simplifications corresponding to those at low energies. The
photoproduction from hydrogen determines the quantity B.31 onlﬁ whereas
for the production from complex nuclei we need the guantities:

i | * S
, bl& (b\g*).

I [® + 1T+ s+ I
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Even 4f the isoscalar contridutions are negligible at high energies too
(1.6. M anda N both vanish), it is still necessary to separate the
spin flip from the non-spin flip contributions which is not possible
from a measurement of the angular distribution alone. Experiments with
polarized nucleons may be used to obtain more information.

Although no field theoretical prediction at high energies is as
yet in existence, it i=s possible that a phenomenological analyeis of the
experimental results may indicate that a small number of multipole ampli-
" tudes dominate the photoproduction process. If this happens, it may be-
come posaible to separate the spin flip from the nonespin flip temma,
The relation B.27 for example follows just from the dominance of the

M; =-amplitude and historically the 33-resonance was discovered by
phenomenologicel analysis before the advent of the successful field
theoretical description. The relation B.29, however, is a consequence
of the Chew-Low theory. The description in terms of multipole ampli-

tudes is considered in appendix C,
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In any reaction which conserves the total angular momentum J

and the parity 5 , the transition matrix must be diagonal in a repre-
sentation where eigmstates of the total angular momentum and parity are
chosen as basis. In addition, the matrix elements must be independent
of the value of the projection My of J .

_In practice measurements of cross sections are performed in
terms 0f plane wave states rather than angular momentum eigenstates,
The transition matrix for the scattering of a pion by a nucleon is there-

fore written asi
{5504

wvhere S and S ( are the initial and final values of the nucleon

To| s, B (c.1)

spin projection while F and Zf are the initial and final momenta of
the pion, respectively. The coordinates will usually be chosen in such
a sanner that the momentum of the incident particle 'f—o’*—-P% vhere 2
denotes a unit vector in the Z -direction, This direction will also
be chosen as axis of quantization for the angular momentum. The transi-
tion operator (A.12) for pion scattering is denoted -TS .

In order to fully exploit the invariance propertiea of the

tranasition operator, C.l can be written as the following sum:

Z <Q\l,m> <S§a ﬁ,m}j" MJ><%)3-3MJ9Q'{T5]P’TI’M;’11>.
« {Fhmils Vm ) LU m| By (c.2)
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vhers the sumsation runs over all possible valuesof f , m, J , M,
R MJ-/ . A , and m’ 1 and m demote the pion's orbital
angular momentum and its projection, respectively,
The first and last factors of each term in C.2 are the trans-

formation coefficients between plane and spherical waves. The well knowm

expansion:

ndi ) o0
eLk')\: Z
=0

3 M-

i Y, R (n)

can also be written as:
{z "i>:zgz Xk, tymy <Oml &> (c-8)
Lm

in which form it 4is obvious that the transformation coefficients must

be identified with the values of the corresponding spherical harmonics
AN
in the direction Kk of the momentum. With our choice of coordinates,

we thus have:
A FIGU .
<£/‘) m/ I P> o SM/O '/V/ 8'4;! (C'S)
) hmy == Yy, (857) (c-¢)

vhere ( O ,7 ) are the angular coordinates of the direction /CL\ in
which the final pion is emitted.

The second and fourth factors of each term in C.2 are the trans-
formation coefficients between a representation in which J and MJ-
are diagonal and one in which M and S are diagonal, namely the

Clebsch-3ordan coefficients:

M

- ~ o . . , )
Lo, Uym] Tom, >y = C(LE,T 5 ms M) (e,

The phase of these coefficients will alwaya be chosen in accordance with
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the convention of Condon and Shortley.
The third factor in C.2 is the transition matrix in the desired

representation. Since the pion is pseudoscalar, the parity is given by:
Lk
w o= - (1)

Conservation of total angular momentum and parity therefore implies:
Tl s T

A = L ixa | fts

b 3 b}

i
Bacause :r‘:it £ o+ conservation of parity is in this case equivalent

to conservation of orbital angular momentum so that:

// - |- - / o/ . \ S ./ {
\\{J‘)J;MJ")'L\ E‘p7J/1MJ")'L>:L”Tr bJ—J/(SMjM/E\iL/ tb<vr)k'7p> .
T (c.8).
the eightfold sum ia C.2 has thus been reduced to:
%:% NVVIZ*W(DMH) WL)QBL-SKS’%O C‘}L“ tS <‘r> 1‘)})) <L’ 9)

where (; and (; are the final and initial Clebsch-Gordan coeffi-
cients,

If no inelastic processes can ogcur, i.e,,belov the threshold
for the production of two pions, the ascattering in each state can be
represented by a real phase shift S N N P) . If W is the
total pion energy, the relation between té and the phase ghift is:

R .
. . AT sm 0 -
ts (J, 4, P\ - (C\ '0).

(@) [)
Using C.10 and C.9, one can now odtain expressions for the differential

croas-sections for pion scattering with and without flipping of the nu-

cleon spin, by substituting C.1 into A.20, If one defines:
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%
£ & sino
L = 5 (c.n)

o

vhere the ( + ) signs correspond to U= LE l;, s respectively, then:

(dg-‘/ I o VA S W d P (cos6)|2 )
\ﬁ) (spm“Lp) —= T (‘Xi u(’d sin B —Z;T;EEZ?E l (C .’13
<j§) (no }liP) = {%_ r(YH)TXE + ){XZ] 71 <cos ) }2 (C'B\)-

An interesting case oocurs if the only nonvanishing phase shift

3 \ -
is 6’\‘;{) / o+ namely the p -wave phase shift for the J= f’i atate,

13
In that case C.12 and C.22 becone:

do . sintd 2

AT ey = SN2 on? e

a5y pim ) o

d;‘“ - —_— 5(’77:16 2
= { no > == L S LS e
A8l ( F *

Adding these, cne finds for the differential and total cross sections:
dao 5%y s , . S
LI = S 3 ws“h (Coy
4L pe < I ) :

- ) / :
G == 2 s?S L5,
}D-ﬁ.

Here P is the momentum in the center of mass system.

At total plon energies up to at least 450 Mev in the laboratory,
the angular distribution in the center of mass system of positive pions
scattered from hydrogen agrees very closely with C.l4, 1In addition, the
total croas section reaches a value of %Tr/;f ~ at a total pion
energy of about 330 Mev., Froa these facts it can be deduced that the
low energy interactions between pions and nucleons are completely doai-

nated by the interaction in the J= % ' £=| state and that the

scattering phase shift for this state goes through 50° at a laboratory
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energy of around 330 Mev., The exiatence of auch a resonance was contem-
plated by Brueckner in 1952,

By means of the isospin formaliss, reactions involving different
charge states of the pion and the nucleon can be handled together. The
usefulness of this formalism is due to the fact that the total isospin
1 end its Z~component I 3 are both apparently conserved by all
pion-nucleon interactions vhen electromagnetic effects are Ancglectod.
The physical pion-nucleon states )THN\/ can be expanded in terms of
eigenstates |I.I,> by means of Clebsch-Gordan coefficieats and
the summation in C.2 can be extended to imclude | and 1 3 + The
transition matrix C.9 then becomes:

5% Awmlaied Yy 60 G GO0 T (1,0, 6 p)

= 2T (4 +1,) (coe

]
vhere 5§, and 5§, are scattering amplitudes corresponding to I[=3
and I_:% s respectively.

In terms of 3, and 5‘3 , the differential croes sections

for the ten possibdle scattering processes become:

A6+ 4N dep- oy 4
i (Tp>1p) = dL‘L(Wn"’“ n) — |5
aT U < Lejo 1 & 4 »
45 (17> i) == 92 m s 1) == 7 1l G SR
dAl( P P> dsl (C'”).
<7rp._7rn 1<~rrn::rrp) 'fitj}é %'l § |t — ?Ke%?&l
(TTP—»TT P) (TTYZ »Tf‘n) = g‘lh |2+ (iﬂﬁ,llﬁ— :—Rc%rf\

At lowv energies the total oross section (including charge exchange) for
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scattering of negative pions by hydrogen is very close to one third of
that for positive pions., This faplies that lg.) is much amaller
than |5,| eo that Brueckner's enhanced state has the additional
quantus number 1= X e

At lov energies the scattering of pions can therefore, apart from

small s-wave effects, be described quite well by the single parameter

535 (we are using the notation 5 AT 3 for p-wave phase
shifts). The resonance in the 33-state completely dominates the other
three p-states and the two a-states.

At higher energies the situation becomes much more complicated,
The (Wf—-f P) cross section passes through two peaka at total
laboratory energles of about 800 Mev and 1100 Mev. The <1T+-+ FD)
cross section does not exhibit these peaks. This has led some investi-
gators to assume that these peaks are due to resonances in two aingle
states with :I:=§: « A8 yet, however, it has not yet been established
whether these are true resonancss, whether these peaks are due to a
single state each, or even how purely [ =5 they are.

The photoproduction of pions from nucleons can be analysed in a
similay manner. The incident photon can in this case be in different
states of polarisation., If the direction 1; of the photon momentum is
again chogen as z-axis and as axis of quantization, the photon's spin
projection can be either parallel or antiparallel to its momentum. Be-
cause of invariance under space inversion, we can without losa of gener-
ality reatrict the discussion to right handedly polarired photons, i.e.
photons having spin projection +| . The wave function of the incident

photon will thus be taken to bes:
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o~
o0
N

where C is the normalising factor to unit volume and:

A

| 7SN Ka
g == ;j’j‘U\*‘ﬂ>

N
™
o

S’

Just as before, the plane wave state can be expanded in terams of
eigenstates of the total photon angular somentum J « Since the orbital
angular momentum of the photon can have no component along its momentunm,
the projection of J will also be +| . Corresponding to C.4 one can

write:
- o RPN
%_ < ] k)J 3:’—> <J‘5 €> QC lo)'

/- . .
The eigenfunctions X ) k) J , 3/, are the so-called multipole fields

which we shall define as:

L C -
<—7‘("\’K)j)m> ::::N‘,,B;, L{-f( J (kX)Y( )""l (C'lIS

Fiy .j—n-
<X \ k)J)L/ - C‘ A'rr[’\/ o‘ljjf“l jJ_](kx) Yj(j—n) +1
'J U A C. 22
e T ] (c.22)

. ~
Here | . (kx) are spherical Bessel functions and \13 - ( x)
are the vector spherical harmconics discussed, for example, in Blatt and

Weisskopf (20), With this definition, the expansion coefficients are:
ACA I:J i—kb ‘ -
. N . / . -
Gl k=2, = 4 7% (c.a3).

The summation over O contains two terms, O=¢C and O© =1,

- > A
The photoproduction transition matrix <S+ 59 | Ty ISL‘, k >£>
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can nov be expanded in a sum similar to C.2:

2 {4l (m) <Ssa Lym l ZT’MJ-\) <L’(»>J> My (! Tp { k>I:MI/ >j\6>
L ADNERCRI D (Can).

The summation runs over (. L j. Mr ' 3! ' M_/r ' J' o and O,
The laast factor is given by C.23 and the fourth is again a Clebsch-
Gordan coefficient:

N\,

¢ . . - : " . . /
\Tlab\J' \ S 4 )‘3+I> == (I 13;';,, 5! ; +130L)MJ,)

The third factor can be written:
- i /o L=
<13J3MI>(‘1T!>]L‘ ‘Yera-Ju”) <

=== LT 5 .9 §

Ty omems Pt P
As before, the parity on the left hand is given by:

(
{,J o ( — | 3
The parity on the right hand is different for electric and magnetic multi-
poles: _
; J (e )
{)U—/ o -+ L “‘l) (k) =L
LS [ — ( - | \J k o \
Parity conservation therefore implies that s~wave pions can be produced
by electric dipole ( ¢ '=¢ J=1 ) radiation only whereas p-wave piona
can be produced by magnetic dipole ( =m , | =! ) or elesctric
quadrupole ( 0=t , |=o ) radiation.
Keeping in mind the restrictions imposed by parity coasiderations,

one can write C.2b as:
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%—_?%% WA (2] 1) Yi (e, - \(8;{) CC 5,
x J[F(J")ij)k) (C.ae)
vhere (O,§) again define the direction G of the momentum of the

emitted pion wvhile C, and (. are the appropriate Clebsch-Gordan

coefficients. It is customary to denote the matrix elements of T,

P
as follows:
tP(J—)‘[-)S)k\/ = MJ-;JJ_ L§' T =w (
C-47).
/ . .
tPK‘I)J)O_)k> = EJ)Q.J' o T=¢C

Ir terns of these quantities one can write down the matrix elements of
t

Denoting the matrix element between S = -3 and S&= t 3

b between definite initial and final spin stateas of the nucleon,

by
< + ]tf,l——> and so forth, one gets:

G+ = i [ (B Erg) + Yo (VR E gt Mo+ E Mis
- J§535> + Y3, (&AF; E25+A/~§ M35+...> t... ]

)=y = Wfbu(wmuh/s“,ﬁ&;)#—ﬂ(«/g Eyat,
+J‘M15+N§E3«D+\’3\ ’V,’B" Ezs*"\/l-“‘ Mss*--->+--']
Gty |y = et [Ym@ﬂ E) Yo% Myt 5 Mg N7 Euu )
+ 2_( By «/" 23+fM25+,\/ 535)
+Y3°<"’V/%—E)—5 NE Mt >+]
<*[’C[J+>=A[~';{[\fzz<~” 13“'\/: 3*\/>MZS 4%7}5>
+Y3z(vr;c a5~ W2 Mg+ )+ ]

(c28),
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The \{,Qm’s are spherical harmonics with the angular direction of the
emitted pion as argument. All terms up to and including J= 55_ were
kept. These expressions are valid wvhen the inocident photon has

m ] +| « The corresponding expressions for left handedly polarized
photons can be obtained by interchanging |+ and |-> and changing
the signs of the m-subscripts of the apherical harmonics.

Singe the spherical harmonic Y( " (6, \ contains sin 6
as a factor, it is obvious from C.28 that the non-spin-flip amplitude
sust always be proportional to 5n D and will therefore vanish in
the forward direction. This is of course a direct consequence of the
conservation of ™M T e

The differential cross section for a specific transition in the
center of mass system is given by:

. P
o (1,0 = (ﬂkk - I\Htflj} (c-a9)
| + > ( A1) _

if the snergy transfer to the nucleon is neglected., Here M 4s the nu-

cleon mass while k and fi are the center of mass momenta of the photon
and the pion, respectively. If the only nonvanishing multipole amplitude
(C.27) is MB y one obtains from C.28 that:

d5(++> ~ 1 sn*8

2
ds ¢ L osin?8 (c-30)
om( ) <
ds 2
22 (1) o~ Q2 ws
diL ( >
Por unpolarized nucleons one would observe:

;{6{ — fl - * s )'(f 0 olf <r—3Co329> (C.ij.
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This differential crosas section is actually observed in the produotion
of neutral pions from protons by photons of energy up to at least 450
Mev., The total oross section has a peak at 320 Mev and its energy de-
peundence in general is very similar to that of the cross sections for
scattering of positive and negative pions by protons. This fact, com-
bined with the fact that the M , -amplitude produces p-wave pions
with =35 , leads one to conclude that the photoproduction of the
neutral pione is also domineted by the resonance in the 33-atate,

The production of charged mesons is more complicated, a atrong
E ,, ~amplitude and the so-called retardation term being added to the
M -amplitude. If the interaction hamiltonian can be written as
the sum of an isoscalar and the J-component of an isovector, then the
four photoproduction amplitudes can be expressed in terms of three para-

motera:
= e

t b (XP >T) e N"’%
t(’ (Ip->mp) = 4% Vo g Vi+ S - <C‘5;().
tp <X" > W) = ,\/‘E: \/5 - NY}L‘ \/, — S

. ’;,‘:L’ ” , | “l / N ; -
tF(jn_M)an/\:: r\j;\fj oA { \, N2 5

Here & 4s the matrix element of the isoscalar term in the [=3 atate
vhile vV | and \’/_5 are the matrix elements of the isovector term for
finnl states with 1= f_ and L= f,_ s respectively. If the isoscalar
term is negligible, the production of neutral pions from protons and
neutrons should therefore be equal, If the final state with [—= fZ

dominates, the productions of neutral pions from protons should be twice

that of positive pions. This agrees with experiment which lends further
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support to the 33-hypotheais. The production of charge pions will not be
considered further.

At higher energies the (Yp—>T°h) cross setion aleo be-
comes more complicated. That the close relation to the scattering is
maintained, is shown by the appearance of two peaks at photon energies
of 800 Mev and 1100 Mev. As in the case of scattering, many investigators
consider these peaks to be due to resonances. The angular distribution
at 800 Mev could possidly be explained by a single state with | = 35_.
Wilson and Stoppini have assumed that the 800 Mev peak is due to an
™M,z =amplitude (with I’—‘ﬁ‘_. however, in contradistinction to the

2 peak at 320 Hev), Peierls and Sakurai, on the other hard, favor
sn E|; -amplitude (5).
Belov the threshold for the production of two piens, the matrix

elements C.27 have been shown to have the following form:

AT > BT, T
MJ&QT = m(".} 33->I> e

(¢ 33)

where Yn(j,D')I\, is a real number while S“)T)I\ is the
pion scattering phase shift in the corresponding state. This theores is
a consequence of invariance under time reversal and of the uaitarity of
the S -matrix. At high energies, vhere inelastic pion scattering is

possible, equation C.33 is no longer valid,



When the final state interactions of the produced pion with the
nucleus were introduced, various radial integrals were encountered which
could not be done analytically. Their values were computed using the
IBN 709 digital computer at the Weatern Data Processing Center, Graduate
Sohool of Business Administration, University of California at los
Angeles. The results of the computations are presented in this chap-
ter,

The mon-gorrelated cross section for nuslear production can be
expressed in terms of the non-spin flip cross section from single nu~

cleons (901) 1
46

/ 4q> N { 2
k dal NC sin“8

The quantity inside the curly brackets was coaputed numerically., Its

et b Fip) }Z} ().

value vhen there are no interactions, will be denoted X, its value
when the finnl state interactions are included without Alloving for de-
flections of the produced plon, will be denoted X, § its value when
deflections are also included, will be demoted X . In order to dia-
cuss the interference with the coulomdb production, one also has to know
the phase caused by the adbasorption, Ia the second case, for example,

we define:

| . Im By (D-2)
tan 9, ke RO

and similarly in the other cases. When there is no absorption, the
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phase 6° vanishes, The values of the phases will alweys be given in
radians.

The ocoulomb production cross section can bhe expressed in terms
of the lifetime U of the neutral pion, the pion mass " and the fine

struoture constant O by (11,20):

()= Sy { e el
4L/ coul e (D-3).

The quantity inside the curly dbrackets was coaputed numerically, Its
value when there are no interactions, will be denoted ﬂYQ { its value
vhen interactions are included for pions produced 1ns§dc the nucleus,
will be denoted Y { its value when pions produced behind the nu-
cleus are also allowed to interact, will be denoted Y, . The phase
of Yi is defined just as in the nuclear case but is distinguished
'by a superscript C , e.g. S.CZ_ corresponding to —Y_Z
Caloulations vere performed for carbdbon, calcium, copper, and
lead and the following values were used for the mass number A and for
the uniform radius K :
C A= 12, R = 3.05 ferais
Ca: A = 40, R = bW, b4 fermis .
Cus A = 6b, R = 5.00 fermis (}4>
Pbs A =208, B =7,10 fermis
The interaction parameters (section 8) chosen at 250 Mev, were:

= 1d0 A= (75 fermis (D‘5>

corresponding to the optical model potential (8.9):
Vo= — (435 + 491 ) Mev (D-6).
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The results of the computatioas at 250 Mev will now be presented for

various values of the angle o (in radians) between the pion and the

photon directions in the laboratery.

Carbon at 250 Mev
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Copper at 250 Mev
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Lead at 250 Nev
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At 900 Mev the interaction parameters which were used, are:

(D7)

305 fetmis

;\"_—.

bl

N= |-00

corresponding to a complex potential:

(D-8).

— 32) Mev

1

i



Since the refractive index is about 1.0, the gquantities

The results of the computations are presented in the next

are equal,

given in the tables must be multi~

-
8

The quantities

four tables,

plied by a factor 10%,

Carbon at 900 Mev
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Calcium at 900 Mev
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Copper at 9500 Mev
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Lead at 900 Mev
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The effect of the absorption on the diagonal cross section is ex-

pressed by the conestant factor é by which the cross section without abe

Using the interaction parameters R.5 and

sorption must be multiplied,

e
O the radius D.10, one finds:

DP.7, and for

(D).

0.500 at 900 Mev

G P\)

for the correlated cross section without absorp-

The form factor

Its value using the Fermi gas model will

tion was discussed in section 6.
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be denoted GD and its value using harmonic oseillator wave functions

(z, obtained by including ab-

The form faotor

will be denoted (7, .

sorption in the description by seans of harmonic oscillator wave funce

All nuweri¢al couputations were

tiona, was discussed in section 10,

for which the following unifora radius and FPermi momen~

OI(D

done for

tum were used:

(Dic).

225 Mev/c

3.35 fermis, P

R =

Olb.,

In the following two tables the values of the recoil momentus P (in

ey G{ +» and the suppression

Wy

Mev/c), the form factors

2, =0+ &G, will

s and

I+ &,

2,

b+ G,

Z,=

be pressnted for various values of the angle O (4ia radians),

factors

Oxygen at 250 Mev
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