
A DIGITAL-COMPUTER-PROGRAMMED TOPOLOGICAL 

METHOD OF COORDINATE SELECTION FOR NUMERICAL 

COMPUTATIONS IN AN ELECTRICAL NETWORK 

Thesis by 

Kenneth Lock 

In Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1962 



ACKNOWLEDGMENTS 

I wish to express my sincere appreciation to Professor 

G. D. McCann for his interest and advice during all phases of the 

work reported in this thesis. I am further indebted to the General 

Electric Foundation for the fellowship held and to the California 

Institute of Technology Jet Propulsion Laboratory for the financial 

backing during the course of my research. 

The material in Chapter 6 was priInarily developed during my 

summer employment at the Bell Telephone Laboratories in connection 

with the study of the vocal tract with nasal coupling. The LISP sys­

tem was provided by the Computation Center of M. 1. T. Lanny Sloan 

ran the LISP programs on the IBM 7090. 

The manuscript was prepared by Mrs. Sue DeWitt, assisted 

by Miss Evangeline Cranston. Their patience and efforts are much 

appreciated. 

I thank my wife, Cecilia, for her understanding attitude and 

for typing the first draft. If the work were to be dedicated, no 

persons would be more deserving than my loving parents. 



ABSTRACT 

In this thesis an algorithm is developed for setting up the 

differential equations and initial conditions of an electrical network 

of arbitrarily connected capacitors, resistors, inductors, multi­

winding ideal transformers, and ideal voltage and current sources 

that topologically represents a large class of systems. The algorithm 

formulates the equation in a set of coordinates such that all matrices 

to be inverted are nonsingular. The topological description of the 

circuit is used to select a nonsingular set of coordinates which enables 

the computation of the transient responses and the short circuit 

admittances to a set of arbitrarily chosen ports of a network. Trans­

formers are accounted for by appropriately selecting a set of dependent 

variables from the set of transformer linear equations. The algorithm 

for selecting a nonsingular set of coordinates, being mainly symbol 

manipulations, is coded in LISP. It is also shown that the same 

method may be applied to systems with nonlinear parameter matrices. 
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CHAPTER 1 

INTRODUCTION 

1. 1 Electrical Network as an Analogy of a Large Class of Systems 

The analogy between two systexns has often been used to study 

one system by means of the other. In the extreme, one can consider 

that mathematics is a system of language, consisting of a set of 

postulates, a set of rules and, consequently, a set of theorems, by 

means of which one may transform one equation into another. When 

mathematics is used to analyze a physical system, a set of syxnbols 

in the mathematical language is taken to represent a set of quantities 

in the physical system. From the observed basic relations among 

the physical variables, namely the physical laws , the set of mathe­

matical syxnbols is correspondingly correlated. What is known as 

mathexnatical analysis becomes nothing more than setting up an 

analogy between the system of mathematical language and the physi­

cal system under analysis. A rich mathematical concept is concise 

and yet comprehensive. However, for complex systems, there is 

no assurance that simple mathematical models can be constructed 

so that the subsequent analysis can be successively carried out in 

analytical form; even if one succeeds in obtaining the result, the 

mathematical form may be so complex that information cannot be 

extracted without going through a long evaluation procedure, pro­

bably with the assistance of computers. 

Systems, describable by partial differential equations with 

irregular boundary conditions, fall in this category. One may 

argue that this drawback is due to the inadequacy of the present 
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mathematical languages which cannot describe complex systems In 

simple terms, and that when some super-mathematical language is 

established in the future, all these difficulties may be resolved. 

However, until that time, other methods are employed to obtain the 

solution. 

Other methods of analysis, also, use the analogy between the 

system under study and some other system whose properties can be 

more readily explored. Currently there are two models being used 

most commonly in system analysis . They employ analog and digital 

computer principles. The former uses electrical quantities, namely 

voltages and cur rents, to represent variables and the latter uses the 

discrete states in a switching circui t . Analogies have been estab ­

lished between electrical networks and other systems which may be 

the actual physical systems or the mathematical models of the sys ­

tems in the form of a set of differential equations . The former often 

employs the direct topological analogy (1) that gives a model con­

sisting of electrical elements - representing the intrinsic properties 

of the system - interconnected in topologically the same form as the 

physical system variables are related. Examples are the finite 

difference analogies of beam (2) and plate (3), heat diffusion (4), 

electromagnetic wave (5), composite structures (6), and any other 

systems which can be approximated by a finite difference model de­

scribable by ordinary differential equations (7) . The latter often 

uses a differential analyzer which is an interconnection of integrators, 

summers and constant coefficient multipliers (8) . 

One of the important criteria in judging the effectiveness of the 

model is the ease of making observations and varying parameters . 
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With the present art of electronic instnlInentation, observation of any 

quantity in an electrical network can be :made quickly and accurately. 

If the para:meter to be varied is si:mply the coefficient in a differential 

equation, the differential analyzer offers a si:mple sche:me of :making 

para:meter changes. However, if the para:meter is the value of a 

certain ele:ment in the direct analog :model, the use of the topological 

:model will be preferred. In both cas es once the :model is constructed 

as a network of electrical ele:ments, :measure:ments can be :made to 

analyze the syste:m. 

1. 2 Digital C o:mputers as Si:mulators 

As distinct fro:m analog co:mputers, digital co:mputers e:mploy 

a set of coded :multistate ele:ments (:mainly binary el e:ments) to repre-

sent different states . Each state :may be assigned to represent a 

sy:mbol which specifically :may be a nu:mber . A digital co:mputer has 

a set of built-in :mechanis:ms to operate on the sy:mbols . As far as 

the progra:m:mer is concerned these :mechanis:ms are the :machine 

progra:m:ming co:m:mands. 

The task of specifying the steps is known as "progra:m:ming" 

** and the set of sequenced steps as the "algoritlun" In all cas es, 

one has to know the algorith:m before i:mple:menting the process on a 

digital co:mputer . The digital co:mputer together with the progra:m:med 

** The Webster New International Dictionary, 2nd Edition, defines 
algoris:m (algorith:m) as follows: 

"I. The art of calculating by :means of nine figur es and zero; 
arithmetic . 

2 . The art of calculating with any species of notation; as the 
algorith:m of fractions, proportion, surds, etc. Cf. Euclid's 
algorith:m. " 
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algorithrn form. a digital model that simulates the physical system. 

Figure 1-1 therefore shows four different ways to represent the 

same system. We may say that anyone of the four is a model of the 

others. They are equivalent within the limit of interest, in the sense 

that if (d) is a model of (b) and (b) is a model of (a), then (d) is a 

model of (a). This equivalence property is often used to set up the 

digital model as shown by the path (1, 2) in fig. 1- 2. The us e of a 

differential analyzer takes the path (1, 3)1 the direct analog topo-

logical model, the path (4). Most of the systems analyzed by using 

the path (1, 2) in fig. 1- 2 require a human being to derive the mathe-

matical equations into the form that is acceptable to the programmed 

digital computer. The human being's task is mainly symbol mani-

pulation according to a set of rules (as specified by the mathematics). 

A digital computer can be programmed to do more general 

symbol manipulation than that defined as numerical computation. 

It is conceivable that we may program the symbol manipulation part 

of the link (1, 2) and do away with the human being who derives the 

equations from the system. This gives a direct path, (5), from the 

physical system to the digital model. In achieving this goal, there 

are two requisites: 

** . Footnote (continued) 

"Algorithm" is used here to denote the sequence of operations which 
when performed on the initial data will provide the end solution. 
The initial data and end solution are represented by some symbols 
and their association, and the operations are expressed as the 
transformation on the symbols and their association. The algo­
rithm consists of the description of the initial data, the final 
solution and the complete sequence of steps that transform the 
input symbol into the solution symbol. 
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f------/ algor ithim 

FIGURE 1-1 

(a) the mechanical system 

(b) the mathematical equation 

(c) the direct analog nodal 
analogy 

(d) the digital computer 
programmed in terms of 
M, K, F, t,)I.. 
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(1) The algorithm that accepts the physical system 

description in its natural form as input data and 

gives the relationship among the variables and 

parameters for computation, 

(2) A good language capable of stating the algorithm 

concisely that can be efficiently implemented on 

a general purpose digital computer. 

1. 3 Digital Simulation of Electrical Networks 

In this thesis, an electrical network of completely arbitrary 

topology - consisting of resistors, inductors, capacitors and ideal 

transformers - is taken as the model of the class of physical systems 

to be simulated on the digital computer. The specification of the net­

work consists of three parts! 

(1) The passive structure 

This takes the form of a list of elements giving the 

values of their defining parameters and connections 

in the network. 

(2) The active components 

This consists of ideal voltage and current sources 

across any node pair in the network. 

(3) The initial conditions 

These are the complete specification of the energy 

distribution in the network at the time from which 

the transient response is to be computed. In an 

electrical network they are simply the charges in 
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capacitors (electrostatic energy) and the currents 

in inductors (m.agnetic energy). 

With (1), (2) and (3) com.pletely specified this is a well-

defined initial value problem.. An algorithm. is presented to select a 

set of nonsingular coordinates * in term.s of which equations m.ay be 

sYlltem.atically derived to describe the network com.pletely. The 

equations can be subsequently solved on a digital com.puter. For 

transient studies nurn.erical integration m.ethods of various order of 

approxim.ation (l 0) can be em.ployed; for the determ.ination of network 

functions in the com.plex plane, m.atrix m.anipulations are used. 

In the succeeding sections of this thesis, chapter 2 gives a 

review of the general coordinate transform.ation theory and derives, 

specifically, the equations of linear coordinate transform.ation which 

are used to develop the m.aterials in the following chapters. Chapter 

3 describes the governing factors that dictate the choice of coor-

dinates and the algorithm. for selecting a set of nonsingular coor-

dinates in a network of arbitrary topology consisting of R, L, C 

elem.ents only. Chapter 4 discusses the inclusion of the two m.ost 

general types of forcing functions, nam.ely, the ideal voltage and 

current sources, and the system.atic way of setting up the initial 

conditions (charges in capacitors and currents in inductors). 

Chapter 5 extends the scope of the network to include m.ultiple winding 

ideal transform.ers. Chapter 6 considers a slightly different problem.. 

t, A nonsingular set of coordinates is any set of coordinates in term.s 
of which the m.ethod of nurn.erical com.putation does not encounter 
the situation of inverting singular m.atrices. 
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In this case, only the passive structure of the network is given, and 

the probleITl is to deterITline the pole-zero distributions in the cOITlplex 

plane of the short circuit input adInittance and the short circuit trans­

fer adInittance between any two node pairs in the network. Chapter 7 

describes the cOITlputer program coded in one of the currently avail­

able sYInbol ITlanipulating languages, LISP. This prograITl selects 

the nonsingular coordinates according to the algorithITl described in 

the earlier chapters. Chapter 8 concludes this thesis by indicating 

the scope of this thesis and suggesting several related areas of 

research that are worth further investigations. Appendix A gives a 

ITlethod to evaluate the deterITlinant of a ITlatrix polynoITlial. The 

actual LISP prograITl listing is given in appendix B. Appendix C gives 

several worked out exaITlples. 
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CHAPTER 2 

COORDINATE TRANSFORMATION 

The linear coordinate transformation equations are reviewed 

in this Chapter to provide an immediate referenc e for the subsequent 

chapters. Most of the material for this is drawn from references 

(11), (12), (13) and (14). 

2. 1 Hamilton's principle 

Hamilton's variation principle is equivalent to the Newtonian 

equations of motion and can be derived from them. Instead of describ-

ing the motion of a particle directly in terms of its acceleration, this 

principle describes the path in terms of a quantity whose integral along 

the path has a stationary value compared with other possible paths. 

The variation principle is of little or no assistance in solving the equa-

tions, but it does provide a convenient means of writing the equations 

in any desired coordinates. 

Hamilton's principle states that for the motion of a mechanical 

system 

t ' , 

oj 
t' 

qn' t)dt = 0 (2- 1) 

The q's in equation 2-1 are the coordinates necessary to specify the 

configuration of the system completely; the q's are their first time 

derivatives; t is the time variable; and L is the Lagrangian function 
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of the system as defined b y 

L = T - V (2- 2) 

where T is the kinetic energy and V is the potential energy in the 

system. 

When all the coordinates are independent the path is described 

by the set of differential equations, with Q . as the generalized force, 
1 

d ( 8L ) 8L = 
dt 8q. - 8q. 

1 1 

Q . 
1 

i = 1, 2 . . . n. 

When the set of coordinates are not completely independent, 

there exists a set of equations of constraint. In general, the time 

dependent relation may be written as 

j = 1, 2 .. . m 

The corresponding Lagrangian equations are 

m 
80. 

d ( 8L ) 8L +2 dt 8e':[. - 8q. A.(t)~ = Q. 
J qi 1 

1 1 j= 1 

i = 1, 2 n 

The Lagrangian multipliers, A.(t), are unknown functions of 
J 

time. In simple cases they are constants. From equation 2-4 and 

equation 2- 5 the A's may be eliminated and the equations describing 

the trajectory in the space of the set of independent coordinates can 

be derived. 

(2- 3) 

(2- 4) 

(2- 5) 
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2. 2 Generalized coordinate elimination 

Let the set of coordinates (q1' q2 ... ~) be divided into two 

subsets 

1 1 1 1 
q = q1' q2 qn- m 

(2- 6) 
2 2 2 2 

q = q1 ' q2 qm 

where m is the number of constraints among the coordinates . These 

two subsets are such that q2 may be expressed as a function of q1, 

and equation 2 - 4 may be written as 

2 1 
q.+F . (q,t)=O. 

J J 

j = 1, 2 ... m 

1 
Substituting equation 2-7 into equation 2- 5 and separating q into q 

2 
and q , 

8L + 
-1 
8qk 

m 

L 
j= 1 

1 
8F.(q , t) 

}... . J 1 
J 8q 

k 

d ( 8L ) 8L + A... = o~ 
dt 8.2 - az ' "X 1I 

q~ <1Q 

where k = 1,2 ... (n-m) and 2 = 1,2 . . . m. 

The unknown multiplier, }...~, from equation 2-9 may then be 

substituted into equation 2-8 giving 

( 
Q~ _ ~ ( 8L ) + 8L 

J dt 8 . 2 8 2 q . q . 
J J 

1 
8F .(q , 

J 

(2-7) 

(2- 8) 

(2- 9) 

(2-10) 
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A set of (n - m) differential equations in the independent c oordi-

1 1 1 
nates (ql' q2' .. q ) can be derived from equation 2-10 by sub-

n- m 

stituting F.(ql, t) for q~ and ddtF.(qlt) for <i~. 
J J J J 

2 1 
At this point the type of constraint that r elates q to q and 

the function dependence of the Lag rangian on q and q can take any 

form. The general result in equation 2-10 will apply to a large class 

of systems. The next section treats specifically the transformation 

under time independent linear constraints. 

2. 3 Coo rdinate elimination under linear constraint 

When equation 2 - 7 is linear and time independent, we may write 

it as 

(2- 11) 

2. 1 f (2 2 2) where q IS a co umn vector 0 m components ql' q2 ... ~, 

and F is a matrix of m rows and (n - m) columns that represents 

2 1 
the linear dependence between q and q Substituting equation 2-11 

into equation 2-10, we have 

d ( 8L) 
dt? -

qk 

m 

l 
j = 1 

( 
2 d ( 8L ) Q. - dt -2 + 8L £.k ) 
J 8q. 2 J 

J 8q. 
J 

whe r e fjk is the jth row and kth column element in the matrix F. 

(2-12) 
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When the elements in the system are linear, we may write 

where [ ell ], 

[ e
22 

], 

[ e
l2 

], 

oL 
- -2 

oq. 
J 

[L
11

] 

[ L
22

] 

are 

are 

2 
+ [ L

22
]q 

(n - m) x (n - m) matrices 

m x m matrices 

[L
12

], [e
21 

JT[ L21]T are (n - m) x m 

equation 2-12 may be written in matrix form as 

= Q + [ F] T Q2 
1 

matrices, 

2 
The following equation is obtained by eliminating q in equation 

2- 14 by equation 2- 11, 

(2- 13) 

(2- 14) 
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([ C
ll

] + [C
12

J[ F] + [F]T[ C
21

] + [F]T[ C
22

J[ F1)ql 

+(rLll] + [L
12

][F] + [F]T[L
21

] + [F]T[L
22

][FV q l 

= (2-15) 

Equation 2-15 is the system of equations when a setofconstraints 

is imposed on the coordinates. If there were no constraint, the system 

of equations should be derived from 

d ( aL ) aL Ql 
dt ~ v - aql 

= 

q / 

(2- 16) 

d ( aL ) aL Q2 
dt aq 2 - aq2 

= 

to give 

(2-17) 

When the constraint, equation 2-11, is written in the following 

manner 

(2-18) 

and E is the identity matrix, equation 2-15, may be written 

as 
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ell e 1Z Lll LIZ 

[ AJ
T [ A J q1 + [ A J T [ AJ q 

1 

e Z1 e ZZ LZ1 L
ZZ 

Q1 ( Z-19) 

= [ A JT 

QZ 

The result of a linear transformation may be stated as follows: 

Let the system be originally described by a set of generalized 

independent coordinates, q1' generalized forces, Q1' and the system 

equation 

(Z-ZO) 

where [ Y 1 J is a linear differential operator, When constraints are 

applied to q1' such that the resulting system is specified by another 

set of independent coordinates, qz' then from the equations of constraint, 

(Z-Zl) 

the equation of the constrainted system in qz coordinates is 

(Z-ZZ) 

where 

(Z-Z3) 

and 

= (Z-Z4) 

[ A J may be a nonsingular matrix, in which case the equations 

of constraint merely specify a set of coordinate transformations. An 
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independent set of coordinates has the minimUIn number of coordinates 

which can completely describe the state of the system. 

2. 4 Coordinate transformation in electrical networks 

U sing the "definitions of terms in network topology" as pub­

l ished in the IRE proceeding , January, 1951, (I5), a "network" is 

a combination of "elements". An "element" is any electrical device 

(such as inductor , resistor , capacitor, generator , line , electron tube) 

with terminals at which it may be directly connected to other electrical 

devices . Topologically, a network consists of a cluster of O-diInension 

members , namely , the nodes and a collection of one-diInensional mem­

bers, namely , the branches. (Fig. 2-1-a) is an example of a network 

whose topology is shown in (fig. 2-1-b). The branches of a network 

form the original set of coordinates , in terms of which the Lagrangian 

may be formulated and the system equation in the absence of other 

constraints may be written as 

(2- 25) 

where the subscript B denotes branch quantities. This system of 

disconnected branches forms the priInitive network (11) , (12), from 

which all other networks using the same branches may be constructed. 

The priInitive network for (fig. 2-1-a) is shown in (fig . 2-2) whose 

system equation is 
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(a) A Network with Five Branches 

(b ) The Network Topology and 
a Set of Independent Node Pairs of (a) 

FIGURE 2-1 
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v 
a 

v 
c 

v 
e 

The Primitive Networ k of Individual Branches 

FIGURE 2 -2 
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(a) 

( b) 

FIGURE 2-3 
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Ya 0 0 0 0 v i 
a a 

0 Yb 0 0 0 vb ~ 
0 0 Yc 0 0 v i 

(2-26) c = c 

0 0 0 Yd 0 vd id 

0 0 0 0 Ye v i 
e e -

In the most general cas e, there may be couplings between the 

branches, such that the matrix, [Y B] is no longer diagonal . When 

elements like transistors or tubes appear as branches, [ Y B] is not 

even symmetrical (11). (12) . 

The topology of the network provides the equations of constraint 

among the original set of coordinates, namely, the branch voltages . For 

a connected network with P nodes, there are only (P - 1) independent 

node-pair voltages which form a tree connecting all the P nodes. All 

branch voltages may be expressed as linear functions of the (P - 1) node 

pair voltages . This is expressed by the matrix equation, 

(2-27) 

where the subscript p denotes node pair, and [ A] is the matrix that 

represents the linear functions. The node pair current i 
p 

alized current in v coordinate and defined as 
p 

* is the gener -

(2- 28) 

Both networks in (fig. 2-l-a) and (fig. 2-3-a) use the same 

b ranches. They are only different in the topology as shown in 

* This corresponds to the generalized force in the original Hamilton 
formulation. 
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(fig. 2-3-b). For the network in (fig. 2-1) we znay choose any three 

node pairs that forzn a tree spanning the four nodes. Us~the selection 

in (fig. 2-1-b), we have 

v 0 -1 0 
a 

vb 1 0 1 vI 

v 1 -1 1 v
2 = [ Al ] vp1 c 

vd 1 1 0 v3 

v 0 -1 
e 

The equation in the node pair coordinates is given by 

where 

= 

= 

[ Al J T [ Y B J [ Al J 

[ Al JT iB 

Siznilarly for the network in (fig. 2-3) we have 

v 1 0 0 0 
a 

1 1 -1 0 v11 vb 

v = 0 0 0 -1 :: j = [ A2 ] vp2 c 

vd 0 0 -1 0 

1 1 0 0 
v4 

v 
e 

then 

(2-29) 

(2-30) 

(2-31) 

(2-32) 

(2-33) 



-23-

and 

2.5 Tensorial concept of electrical network 

It can be seen from equation 2-21 , 2-22, 2-23 and 2-24 , 

that q , the generalized coordinates, obey the transformation rule 

of a covariant vector (or tensor of the first rank) , and Q , the gen-

eralized forces , obey the transformation rule of a contravariant 

v ector (16). The quantity [Y] which we have called a matrix, 

transforms like a contravariant second rank tensor . Having estab-

lished the tensorial concept of a network any transformation other 

than linear ones can be handled automatically by using the rule of 

tensor transformation (11). The same result may be obtained from 
8F. 

equation 2-10 in which the term :-f will eventually lead to the tensor 
8qk 

transformation. The concept of representing a stationary network by 

tensors does not help to solve the network equations; however , the 

concept offers a unified approach to a much larger class of system 

not specified by stationary linear transformations . Kron (17) initi-

ated the idea and applied it to the analysis of electrical machinery. 

It is conceivable that the same approach may be used in the study of 

magneto-hydrodynamics. 
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CHAPTER III 

COORDINATE SELECTION IN RLC NETWORKS 

Definitions for some of the terms used form the first section 

of this chapter. They are followed by some topological theorems 

pertinent to the remaining discussions. Then the necessity of select­

ing a nonsingular set of node pair coordinates is pointed out, followed 

by a discussion of the algorithm that selects the nonsingular set of 

coordinates in a completely pas sive network with no transformers. 

3. 1 Definitions 

Node: 

Branch: 

Element: 

A terminal of any branch of a network or a terminal 

common to two or more branches of a network. 

A portion of a network consisting of one or more 

two-terminal elements in parallel that have the 

same terminal nodes. 

Any electrical device. An active element can be 

either an ideal voltage source or an ideal current 

source. A passive element can be a resistor, 

capacitor, inductor Or a winding belonging to an 

ideal transforme r. 

Network: A combination of elements. 

Loop (mesh): A set of elements forming a closed path in a 

network, provided that if anyone element is 

omitted from the set, the remaining elements 

of the set do not form a closed path. 
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A pair of nodes whose voltage difference is 

used to describe the state of the network. 

An associated pair of accessible terminals, 

such as input pair, output pair and the like. 

A set of connected branches including no meshes. 

A network is connected if there ex ists at least 

one path, composed of branches of the netw ork, 

between every pair of nodes of the network. 

Two networks are separated if they are not 

connected. 

The passive elements whose currents are 

proportional to the voltages across them. 

They have the dimension " ohms " as impedances 

and "mhos" as admittances. 

The passive elements whose currents are 

proportional to the first time derivative of the 

voltages across them. They have the dimension 

-1 
"Farad" as admittances and (Farad) as 

impedances. 

The passive elements whose terminal voltages 

are proportional to the first time derivative 

of the currents in them. They have the dirnen­

-1 
sion "Henry" as impedances and (Henry) as 

admittance s. 

The voltages across the voltage sources are 

independent of the currents in them. 



Current 
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The currents from current sources are inde-

pendent of the voltages across their terminals. 

Ideal An electrical device with several two terminal 
transformer: 

windings. Each two terminal winding W . is 
1 

characterized by a relative number of turns n . 
1 

The current 1. in the i
th 

winding must satisfy 
1 

the condition, 

Between any two windings, the voltages across 

the winding terminals, v. and v., must satisfy 
1 J 

the condition, 

n.v . =n . v. 
1 J J 1 

3. 2 Some Topological Theorems in Networks 

Theorem 1 

(i) At least (P - 1) branches are required to connect P nodes, 

and (ii) any more than P - 1 branches connected among P 

nodes form at least one loop. 

Corollary 1 

When there are P nodes forming D separated 

networks , then the minimum number of branches 

among the P nodes is (P - D). 
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Corollary 2 

In a network of D separated parts , there are D 

sub-trees that connect the nodes within each con-

nected group of nodes. If a tree is constructed to 

connect the D parts together, then the resulting 

connected network is still a tree. 

Corollary 3 

In a connected network of P nodes and B branches, 

there are (B - P + 1) loops (Ineshes). 

TheoreIn 2 

• 

Two trees, each of (P - 1) branches, connecting the saIne 

P nodes are different if at least one of their branches is 

different. Then the nUIllber of different trees one can 

for In aInong the P nodes, S (P), is given by the expression, 

S (P) = T l{i) p-

where (~) is the coefficient of xl:! in the binoInial expres­

sion of (I +x)a, and Tp-l{i) is recursively defined as 

T {n} 
In 

and T (n) = 1 
In 

(n + j - 1) ! 
j!(n-l)! 

for In > n 

for In = n • 
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An arbitrary node is taken as the reference, then 

CP~l)Tp_l(i) is the number of different trees that 

have i of the remaining P - 1 nodes connected to 

the reference node. The total number of different 

trees is then given by 

P-l 

S (P) = L (3-1) 

i= 1 

T (n) in equation 3-1 is defined as the number of 
m 

different trees that can be constructed among m - n 

distinct nodes and a reference datum of indistinguish-

able n nodes. The j branches that connect to the 

datum can be distributed indistinguishably among the 

n nodes in 
(n+j-1)! 
j!(n-1)! ways. Therefore, 

can be recursively defined as 

T (n) 
m 

and 

m-n 

= '\' L 
j= 1 

T (n) = l. m 

(n+j-l)!' 
j!(n-l)! 

for m > n 

for m = n 

T (n) 
m 

(3-2) 

(3-3) 

The recurs ive function defined in equation 3-2 and 

3-3 always converges for m ~ n. From the very 

definition of T (n), S (P) can be defined as 
m 
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= T (I). 
p 

Here are a few evaluated values : 

S (Z) = TZ{l) = T
1

(1) = 1 

S (3) = T 3(1) = (i)TZ{l) + (~)T2{Z) 

(3-4) 

= 3 

S (4) = T 4 ( 1) = (i) T 3 ( 1) + (~) T 3 (Z) + G )T 3 (3) 

= 3 · 3 +3{Z·T1(1)) + 1 = 16 

(Fig. 3-1) gives the sixteen different trees that one 

can construct to connect 4 nodes. They are divided 

into the subsets T3(3), T
3

{Z) and T
3

(1), taking node 

4 as the reference. The next two values are 

S(5) = 119 

S (6) = 1136. 

The growth factor is approxiInately given by 

S (P) ~ (P - I)! zP (3- 5) 

which is a very fast growing nUIllber. 

The transformation matrix, [A], that transforms a vector, 

V., w hose (P - 1) elements are the voltages across the tree 
1 
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The Sixteen Different Trees that Connect 
Four Nodes 

Constructed from subsets T
3

(3), T
3

(2), T
3

(1) 
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Q) ~ ® 

!\: 
0:::;f!J 
0~ 

0Jf 
0@ 

0---jf 
@@ 
~ 
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I 2 @---(D ~ 
(:)7] (3) ==- 1 (~)?3 (l) = 6 
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S (4) = 16 

FIGURE 3-1 
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branches of a P node network, to another vector, V., whose 
J 

elements are the voltages across the branches of another tree 

that spans the same set of nodes as V., is nonsingular and 
1 

has a determinant of either +1 or -1. 

Proof: 

Since both V . and V . form the basis of P -1 linearly 
1 J 

independent vectors in the (P - 1) dimensional space, 

the linear transformation 

V.=[A]V. 
J 1 

has a nonsingular transformation matrix, [A]. 

The matrix [ A] can be proved to have a determi-

nant of either +1 or -1 by constructing a finite sequence 

of elementary transformations, each with,±l determi-

nant, that successively transform V. into V .• 
1 J 

then 

and 

Vk1 = [ Al ]Vi 

Vk2 = [ A2 ]Vkl 

[ A] = [ Am] [ Am _ 1] - - - - [AI] 

det (AI 
m 

= 1T 

t = 1 

The elementary transformation matrix At in 
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is such that Vkt and Vk (t- 1) have only one different 

branch in their corresponding trees. The differing 

branch in the V kt tree is a branch in the tree of Vj 

and the differing branch in the V k{t _ 1) tree is not. 

Since there are at most P - 1 different branches be-

tween any two trees that span the same set of P nodes, 

the sequence of transformations, [A J, has a finite 
t 

length of at most P - 1. Each elementary transfor-

mation matrix, [At]' will have P - 2 rows with +1 

on the diagonal and zero off diagonal terms, and a 

single row with some +1 off diagonal terms in addi-

tion to the .. :!:l diagonal term. Such a matrix has a 

determinant of ..:!.:l, hence the matrix [ A], which is 

the product of these elementary matrices, has a determi-

nant of +1. 

(Fig. 3 -2) shows the successive transformation 

from the tree in (a) into the tree in (d). 

3.3 Network Solution in Node Pair Coordinates 

In Chapter 2, two networks, with the same branches, but 

connected into different topologies, are considered as the same object 

subject to different constraints on their independent coordinates, namely, 

the branch voltages or currents. This object (network) with B branches 

may be considered to span a B - dirnensional space. Upon constraint, 

the object is restricted in such a way that fewer than B vectors in the 

B-dimensional space can define the object uniquely. In a connected 

network of P nodes, (P - 1) node pair voltages form a {P - I)-dimensional 
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a l a 2 a
3 

(a) 

:H~ ~ iJ 

(d) 

Successive Elementary Transformations from One Tree 
to Another 

FIGURE 3-2 
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space that defines the network. If these (P - 1) node pairs are taken 

as the branches of a tree in the P connected nodes, this (P - 1)­

dimensional space forms a subspace of the original B-dimensional 

space. In orthogonality to this subspace, there is a (B - P + 1)­

dimensional space which gives the set of independent branch currents, 

in terms of which all other branch currents can be computed from the 

condition of constraint. (Fig. 3-3-a) shows the five branches that form 

the object. (Fig. 3-3- b) shows the object (network) under a set of con­

straints. (Fig. 3-3-c) gives the components of the 3-dimensional space 

that correspond to the 3 node pair voltages, and (fig. 3-3-d) gives the 

components of the 2- dimensional space that correspond to the 2 mesh 

currents. 

In order to choose a set of independent coordinates, one may 

either pick a base in the (P - I)-dimensional space that corresponds 

to a tree in the P connected nodes, or one may define a base in the 

(B - P + I)-dimensional space that corresponds to a set of independent 

mesh currents. Node pair coordinates are used in the present work 

for the reason that it is easier to detect (P - 1) independent node pairs 

than selecting (B - P + 1) mesh currents in a network with arbitrary 

topology. The fact that (B - P + 1) may be less than (P - 1), in which 

case the mesh current formulation has fewer variables, is not con-

s idered at all. 

Networks consisting of purely passive elements without ideal 

transformer are considered in this chapter . In the subsequent chapters, 

active elements and transformers are included by extending the results 

from the present simplified model. Since the solution of the network 
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9 
I 

(a) The Individual Branches 

(b) The Connected Network 

/ 

(c) A Set of Independent Node­
Pairs Voltages 

FIGURE 3-3 

o 

(d) A Set of Independent Branch 
Currents 
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with several separate parts is obtained simply by solving each sepa-

rated part independently, we will only consider totally connected net-

works without loss of gene~ality. 

A connected network considered here with P nodes can have 

three types of elements, namely, resistors, capacitors and inductors. 

Each branch may consist of any parallel combination of the three types 

of elements. The basic physical laws describing the three types of 

element are 

i = C dvC (3-6) 
c crt 

iR = RV
R 

(3-7) 

iL = L J vL dt (3-8) 

where ic' i
R

, iL are the currents in the elements: capacitor, resis­

tor, inductor; v C' v R ' v L are the voltages across the corresponding 

elements. C has the dimension of capacitance, namely, Farad; R is 

the resistive admittance in Mho; and L is the inductive admittance in 

-1 ** (Henry). These relationships are shown in (fig. 3-4). Let vB de-

note the branch voltages, and V the (P - 1) node pair voltages that form 

a tree in the P connected nodes; iB and I are the corresponding cur­

rents in the branch and node pair coordinates. ([ C
B 

J. [R
B 

J. ~ L
B

]) 

and ([ C ], [R], [L]) are the (capacitive, resistive, inductive) 

** The unconventional use of Rand L to represent the resistive and 
inductive admittances is to give a consistent subscripting system 
such that the C, R, L subscripts denote the quantities in capacitive, 
resistive and inductive elements. Secondly, although G is often used 
to denote conductance, no universally accepted symbol denotes the in­
ductive admittanc e. 
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iC 

VJ 
iL 

v
R 

C R L 

T 0 

dv
C 

iR RVR iL = L J VLdt iC = C(It = 

Capacitive , Resistive and Indu ctive Elements with C, 
R, L a s their Re spective Admittances 

FIGURE 3-4 
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matrices - or tensors, if Kron1s terminology is used, in the branch 

and node pair coordinates. The equations in terms of branch coordi-

nates are 

dV
B i = [CB J Cit (3-9) c 

iR = [ RB J vB (3-10) 

iL = [ LB J J vB dt; (3-11) 

the equations in terms of the node pair coordinates are 

I = [ C J dV (3-12) 
c dt 

IR = [ RJ V (3-13) 

IL = [ L J J V dt. (3-14) 

In the absence of active elements, the resulting current in the gener-

alized node pair coordinate must be zero, 

= o. (3-15) 

If vB is related to V by a transformation matrix, [A J 

= [AJV (3-16) 

then from equation 2-23 and equation 2-24 we have 

I = [ A JT i (3 - 17) 
c c 

IR = [ A JT iR (3-18) 

IL = [ A J T iL (3-19) 
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and 

[ C] = [ A] T [ C
B 

][ A] (3 - 20) 

[ R] = [ A] T [ RB ][ A] (3 - 21) 

[ L] = [ A] T [ L
B

][ A] (3-22) 

Substituting equation 3-12, equation 3-13 and equation 3-14 into equa-

tion 3- 15, we have 

[ C] ~~ + [ R] V + [ L ] J V dt = O. (3 - 23) 

Equation 3 -23 is the second order matrix differential equation one 

has to solve . When solving equation 3-23 on a digital computer, the 

method of numerical integration (10) converts it into the canonical 

form as shown in equation 3 - 25 where y is defined as 

y = J V dt (3 - 24) 

~~ = [ C r l( -[ R] V - [ L] y) 

(3 - 25) 
dy _ 
dt - V. 

The method of numerical integration works provided that the right hand 

side of equations. 3 - 25 are f.v aluable . S ince the evaluation involves the 

inversion of [ C L which may be singular, equations 3-25 cannot be 

applied d i rectly. The rank of [ C] is an invariant property of the net-

work, depending only on the topology of the capacitor connections . 

However, if one can select the coordinates in such a way that [ C] 

is in the form 
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(3-26) 

where [ C ll ] is a submatrix of [ C] and has a dimension equal to 

the rank of [ C], then we may write equation 3-23 in the partitioned 

coordinates (page 48 of reference (18)), 

(3-27) 

o 
(3 - 28) 

The canonical form for numerical integration becomes 

dV
l 

[ Cll rl( - [ RU ] VI - [ R
l x

] VX - [ Lll ] yl - [ L
lx

] yx ) cit = 

dyl 
= VI (3-29) Cit 

dyi 
= v 2 = [ Rxx r \ -[ Rxl ] VI - [ LxI] yl - [ L xx] yX ) Cit 

By the choice of [ C] in equation 3-26, [C
ll 

r 1 always exists. 

However, if [R ] -1 does not exist, equations 3 -29 are still not 
xx 

completely evaluable. Once the coordinate VI is chosen to give a 

nons ingular [ C 11 ], the rank of [ Rxx] is invariant to the choice 

of V
x

. Therefore, it is necessary to choose V
X 

in such a way that 

VX may be partitioned into the form 
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V
X ~ [ ::j. (3-30) 

and [ R J partitioned into 

Rll R12 0 

[ R J = R2l R22 0 (3-31) 

0 0 0 

where [ R22 J -1 always exists. Equation 3-28 is then developed into 

the form 

ell 0 0 VI 
Rll R12 0 VI 

Lll L12 L13 
1 

Y 

0 0 0 d V
2 + R2l R22 0 V

2 + L2l L22 L
23 

2 
<IT Y 

0 0 0 V
3 0 0 0 V

3 
L3l L32 L33 

3 
Y 

= 0 (3-32) 

and equations 3- 29 become 

dyl 
= VI 

cit 
(3-33) 

dl 2 -l( J 1 [ J 1 [ L22 J y2 - [ L 23 J y3) cit = V = [ R22 J - [R2l V - L2l Y 

3 
[ L

33 r l 
(- [L3lJyl - [L32 Jl) y = 

Since the network is connected, [L
33 

J -1 must exist and equations 

3-33 are completely evaluable. Therefore, from the initial conditions 

w hich will be discussed in the next chapter, the state of the network at 

all subsequent times may be computed. 
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In setting up a digital model of any arbitrary network by using 

numerical integration, the important factor is the choice of coordinates 

in such a way that [ Cll rl, [ R22 rl and [L
33 

rl exist. Any set 

of coordinates that satisfies the above condition is called a "nonsingular 

set of coordinates". The next section will discuss two different methods 

of selecting a nonsingular set of coordinates; one uses matrix operations 

and the other uses topological properties of the network. Itwill be shown 

that the former method is not always applicable when there are excessive 

round off errors during matrix operations. 

3 . 4 Two Methods of Deriving a Nonsingular Set of Coordinates 

There are two general methods of deriving a nonsingular set of co-

ordinates . One assumes a base setof (P - 1) node-pair coordinates, and 

by matrix algebra such as the congruent transformation (page 89 of refer-

ence (19) on the [ c], [R], [ L J matrices in sequence, the base set of 

coordinates whichmaybe singular, is transformed into a set of nonsingular 

coordinates. The other method which is developed in this thesis takes the 

circuit topology as a starting point, and s elects yl, y2, y3 in sequence. 

When one class of coordinates is selectedthe network is reducedso that 

the selection of the next class of coordinates is f rom a simpler network. 

(a) The transformation method: 

Let Y be the initial base set of coordinates and [C ], [R ], 
000 

[L J be the capacitive, resistive and inductive matrices in the 
o 

bas e coordinates. Transformation is first applied to [C J which 
o 

is a symmetrical matrix of unknown rank. The transformation 

reduced [C J to a matrix of the form (page 89 of reference (19)), 
o 
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= [ pI ] T [e ] [ pI ] 
o (3- 34) 

where [ ell] is a diagonal matrix. 

After [ pI] is obtained to give equation 3-34, the same 

transformation is applied to [R ] and [L ] giving 
o 0 

1 T 1 = [RRxlll RRxxlX l [ R 1 ] = [p ] [Ro ] [p ] J (3-35) 

(3-36) 

Then [ Rxx] of unknown rank is subject to the same 

treatment as [ eo]' giving the transformation matrix [ p2' ] 

such that 

[p ] [R ][p ] 2' T 2' = [R022 00] . xx 
(3-37) 

Now we define 

(3-38) 

where [ El ] is the identity matrix of the same dimens·ion 

as [ e 11 ], and compute 

ell 0 

= 0 0 

o 0 

o 
o 
o 

(3-39) 
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[ R
2

] = [ p2 ] T [ pI ] T [R ] [ pI ] [ p2 ] 
0 

Rll R12 0 

= R21 R22 0 ( 3-40) 

0 0 0 

[ L
2

] = [ p2 J T [ pI ] T [L J [ pI J [ p2 J 
0 

Lll L12 L13 

= L21 L22 L 23 
(3-41) 

L31 L32 L33 

where [ C ll J and [ R22 J are diagonal, thereforenonsingular, and 

[ L33 J is nonsingular since the original base V 0 is a set of independent 

coordinates. The new set of nonsingular coordinates is given by 

[ pI ] [ p2 J -1 (V ) 
o 

( 3-42) 

This process of deriving a set of nonsingular coordinates by 

using congruent transformation is practicable if no appreciable round-

off error is developed in the arithmetic operations which may change 

the rank of the matrices. The altering of the rankmay change a co­

ordinate originally in class V
2 

or V3 into a component of VI or V
2

, 

in which cases, although the final matrices [ C
ll 

J. [R22 J and [ L33 J 

are nonsingular, they will introduce large round off and truncation 

errors in subsequent computations, since they are ill-conditioned. 

Such difficulties may be resolved by pre-determining the ranks 

and introducing special control in the arithmetic computations which 

will complicate the algorithm considerably. 
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(b) The topological method 

The starting point of the topological method developed in this 

thesis is the network topology itself. Since the network con-

sidered here has three types of elements, namely, resistive, 

capacitive and inductive elements, there are three topologies 

corresponding to the three types of elements. (Fig. 3 -5- a) 

shows a network whose capacitive, resistive and inductive 

topologies are given in (fig. 3-5-b, -c and -d) respectively. 

The topological method of s electing VI, V
2 

and V 3 is stated 

first, followed by the proof of its validity. 

When the network consists only of R-, L- and G­

elements, the first step of selecting VI is to draw the capa-

citive topology diagram such as (fig. 3-5 -b). In this diagram 

trees are selected to connect all the connected nodes. The 

branches of the trees with arbitrary orientation form the com-

. VI ponents In For the example in (fig. 3-5-b) the node pairs 

I 
vI 2' v5 2 and v3 7 may serve as the components of V 

" , 
When several nodes are connected together, there are a large 

number of ways to form a tree connecting these nodes as shown 

Anyone of these trees may be used to provide a 

such that [ GIl rl exists; however, thesetrees 

may differ in other respects. One important consideration in 

in Theorem 2. 

d
. I 

coor lnate V 

performing matrix operations on a digital computer is the con-

trol of round off errors. The next section will discuss the cri-

terion of selecting the tree among a large set that will give the 

minimum r. m. s. round off errors. After selecting VI the 

topological method proceeds to select V
2 

from the reduced 
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(a) The Complete Network 

7 @ 

(b ) The Capacitive Topology 

?--0 
I 

®~~--~@ 

l~0 
(c) The Resistive Topology 

(d) The Inductive T opology 

FIGURE 3-5 
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® 

(a) The Reduced Resistive DiagraIn of the Network in 
Figure 3- 5 

(b) T he Reduced Inductive DiagraIn of the Network in 
Figure 3- 5 

FIGURE 3-6 
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(c) The Grouping of odes during the Node-Pair 
Selection in the Network in Figure 3- 5 

FIGURE 3-6 (continued) 
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resistive topology diagram with all the nodes that are connected 

in the capacitive topology diagram short circuited. For example. 

(fig. 3-6-a) gives the reduced diagram of (fig. 3-5-c). The arbi-

trarily oriented branches of the trees in the reduced resistive 

2 
diagram form the components of Y. The final step of select-

ing y3 is to construct a tree in the reduced inductive diagram. 

A reduced inductive diagram is the inductive topology diagram 

with all capacitively or resistively connected nodes grouped 

together. For example, the reduced diagram of (fig. 3 - 5- d) 

is shown in (fig. 3-6-b). The arbitrarily oriented branches 

of the trees in the reduced inductive diagram form the com-

3 ponents of Y 

The proof of the topological method is preceeded by 

several theorems on matrices. Some theorems are quoted 

from references without proof. 

Theorem 4. (Page 91, Theorem 5- 6 in reference (19) 

A real symmetric matrix [ A] of rank r is congruent to 

a matrix 

E 
P 

[ BJ = 0 

o 

o 

-E 
r-p 

o 

o 

o 

o 

The integer p is uniquely determined by A. 

Definition 

(3- 43) 

The integer p in equation 3-43 is called the index of 

the symmetric, real matrix [ A] . 
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Theorem 5. (page 94, Theorem 5-8 in reference (19)) 

An nxn real, symmetric matrix of rank r and index p is 

positive semidefinite if and only if p = r, and positive defi-

nite if and only if p = r = n. 

Theorem 6. (page 94, Theorem 5-10 in reference (19)) 

If [ A] is positive definite, every principal submatrix is 

positive definite. Also, I AI and all principal subdetermi-

nants are positive. 

Theorem 7. (page 94, Theorem 5-9 in reference (19)) 

A real matrix [ A J is positive definite if and only if there is 

a nonsingular real matrix [ P J such that [ A J = [ P J T [ P J. 

Theorem 8. 

If [ A J is positive definite , then any congruence of [ A J, 

[ Q J T [ A J [ Q J. is also positive definite where [ Q J is 

nons ingular. 

Proof: 

From theorem 7, the positive definite matrix, [A J, 

may be written as 

and 

(3- 44) 

Since [ P J and [ Q J are nonsingular, their product, 

[ S J is also nonsingular, 
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(3-45) 

and by Theorem 7, w e proved that [ Q] T [ A] [ Q] 

is positive definite. 

Theorem 9. 

If [ A] is an nxn positive definite matrix, and [ B ] is an 

nxs (s<o) rectangular matrix of rank s, then the sxs matrix, 

[ B ] T [ A] [ B], is positive definite. 

Proof: 

Since [ B] has rank . s , it has s independent vectors. 

It is always possible to find (n - s) additional independent 

vectors orthogonal to the column vectors of [ B], and 

call them [ B1 ]. The nxn matrix [ B, B 1 ] has n 

independent column vectors, therefore nonsingular. 

When [ A] is congruent transformed by [ B, B1 ], we 

have 

= (3- 46) 

Since [ B, B
I

] is nonsingular, by Theorem 8, the right­

hand side of equation 3-46 is positive definite. Further­

more by Theorem 6, the submatrix [ B] T [ A] [ B] is 

positive definite irrespective of [ B1 ]. This proves the 

theorem. 
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The following notations are defined: 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

the set of branch voltages of all the 

capacitors, resistors and inductors. 

the set of branch voltages of all the 

resistors whose terminal nodes are 

both connected by the tree that gives 

yl. 

the set of branch voltages of all the 

resistors whose terminal nodes are 

either both connected by the tree that 

gives y2, or one in the tree that gives y2 

anc;l the other in the tree that gives yl. 

the inductor branch voltages similarly 

defined as v R land v R 2 . 

the set of inductor branch voltages 

which has at least one terminal node 

connected by the tree that gives y3. 

the number of components in yl. 

the number of components in y2. 

the number of components in y3. 

the number of capacitors in the 

network. 

the number of resistors in the 

network. 

the number of inductors in the 

network. 



= 
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the capacitive, resistive and inductive 

adInittance matrices in coordinate v C' 

v
R 

and v
L

• 

the resistive adInittance matrices in 

d " 1 coor mates v R ' 

the inductive adInittance matrices in 

coordinates v
L 

1
, 

With the above introduced theorems and notations, the validity 

of the topological method is proved as follows: 

(1) To prove that[ Cll r 1 exists: 

Since VI is s elected to connect all the capacitors, we may 

write 

= (3-47) 

where [ U J is aBc x d l matrix of rank d l . If all capaci­

tances are positive, the capacitive matrix [ C
B 

J in v C coor­

dinate is pos itive definite. Therefore, from Theorem 9, the 

matrix 

[ C 11 J = [U J T [ CB J [ u J 

is positive definite and nonsingular. 

(2) To prove that [ R22 rl exists: 

(3-48) 

Since all resistors are connected by VI and V
2

, we may write 

= [ W 11 J VI 

[ W 21 J VI + [ W 22 J V 2 
(3-49) 

= 



-54-

where [ W ZZ] is a rectangular rn.atrix of d
Z 

independent 

colUIIllls, that is, [W ZZ] has rank = d
Z

. 

The resistor rn.atrix in (yl, yZ) coordinates is given 

by 

with [ R
B

] written as 

o l (3-50) 
WzzJ· 

(3-51) 

where both [ R~] and [ R~] are positive definite, we have 

[ R 11] = [W 11 ] T [ R~ ] [ W 11] + [ W ZI ] T [ R~ ] [ W ZI ] 

[RIZ ] = [RZI]T = [WZI]T[RZ][WZZ] 

[ R ZZ ] = [W zz ] T [ R~ ] [ W ZZ] • 

(3 - 5Z) 

(3-53) 

(3 - 54) 

In equation 3-49, the rank of [ W 11] and [ W ZI] are not known, 

therefore, we cannot conclude whether [ R
11

] is positive defi­

nite or positive sern.idefinite. However, the rank of [ W ZZ] i s 

d
Z

' therefore the d
Z 

x d
Z 

rn.atrix, [RZZ ]' is positive definite. 

(3) To prove that [ L33 rl exists: 

1 [ Sl1 ] yl v
L = 

Z 
[SZI]yI + [ SZZ] yZ (3-55) v L = 

3 
[ S31 ] yl Z ] 3 vL = + [ S3Z] y + [S33 y 
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3 
FroITl the w a y we select Y , the transforITlation ITlatrix [ S33 ] 

has a rank of d
3

. The inductor ITlatrix in (yl, yZ, y3) coordi­

nates is given by 

L11 LIZ L13 S11 0 0 T Ll 0 0 S11 0 0 B 

LZI L
ZZ 

L
Z3 = SZl S22 0 0 L

Z 
0 S2l S22 0 

B 

L3l L
3Z L33 S3l S3Z S33 0 0 L3 

B S3l S3Z S33 

(3- 56 

FroITl equation 3 - 56 we have 

[ L33 ] = [ S33 ] T [ L~ ] [ S33 ] (3 - 57) 

since the ITlatrix [ S33 ] has rank = d
3

, the d
3 

x d
3 

ITlatrix, 

[ L33 J, is positive definite. 

3. 5 Coordinate Selection to MiniITlize Round Off Errors in Matrix 

COITlputations 

The transforITlation ITlethod described in Section 3. 4 reduces the 

ITlatrices to be inverted into diagonal forITls. The round off error in in-

verting a diagonal ITlatrix is in the last significant digit the COITlputer can 

represent. However, the transforITlation procedure that leads to the 

diagonal ITlatrices involves ITlany arithITletic operations which can intro-

duce appreciable aITlount of error in the diagonal terTIls. The transfor-

ITlation ITlethod has even a greater disadvantage of altering the rank of 

[ C
II 

J, [R
ZZ 

] and [ L33 J; its use in coordinate selection will not 

be considered further. In the topology ITlethod, the selection of yl, 

2 3 
Y , and Yare ITlade by constructing trees aITlong a set of nodes. 

There are S (F) different trees one can construct to connect F nodes. 
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S (P), as evaluated in Theorem 2 is a very fast growing function of 

P. This section will discuss the selection of one tree among this large 

set of permissible ones such that the r. m. s. round off errors in sub-

sequent matrix operations may be minimized. 

Turing (page 298, reference 20) gave the following statements: 

r. m. s. error of coefficients of solution 
r. m. s. error of solution 

= ~ N(A) N(A- l ) r. m. s. error of coefficient of [ A J 
n r.m.s. coefficient of [A] (3-58) 

where the matrix under consideration is [A J and N(A) 

is the norm of [ A] as defined by 

N(A) = (trace AT A)1/2 = (L 
i, j 

(3-59) 

He called ~N(A) N(A -1) the N-number of the matrix 
n 

[AJ. Similarly, hedefinedanM-number as nM(A.)M(A-
l

) 

where M(A) is the maximum coefficient of the matrix 

[ A J. 

M(A) = maxla.j' 
. . 1 
1, J 

(3-60) 

From equation 3-58 we can see that the N-number is a measure 

of the ill conditioning in a matrix [ A J with randomly distributed coef-

ficients. If we want to compare this property of two matrices with the 

same dimension n, the value N(A) N(A -1) will suffice. Given the ma­

trix [ A J. N(A-
l

) varies inversely as det I AI. Therefore, for the 

comparison of two matrices, instead of deriving the r. m. s. error 
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N(A) 
relationship as in equation 3- 58, we may use detl AI as a measure of 

relative round off error in matrix computation. If we fur-tiler define 

M(A) 

M(A) = Llaijl 
ij 

(3-61) 

as the sum of all the absolute values of elements in matrix [ A], then 

we can also use 

M(A) 
detlAI 

as the round off error measure. If 

M(A) M(B) 
det IAI > detl B I 

(3 - 62) 

(3-63) 

we say that the matrix operations in [ A] will introduce more round 

off errors than in matrix [ B]. In the selection of the tree such that 

the matrix operations introduce the least round off errors, equation 3-62 

is used instead of equation 3-58, because the latter, involving quadratic 

forms, in hard to implement into a selection algorithm. 

The following theorem is given before describing the algorithm 

that select s the optimum coordinates. 

Theorem 10. 

The determinants of the admittance matrices formulated in the 

node pair volta ges are invariant to the choice of the trees from 

which the node pair voltages are selected. 
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Proof: 

TheoreIn 3 states that the transforInation Inatrix, 

[ A], in 

V. = [AJV. 
J 1 

(3-64) 

has a deterIninant of + 1 where V. and V. are any 
- J 1 

two vectors whose eleInents are the node pair voltages 

across the branches of any two trees. FroIn equations 

2-21, 2-22 and 2-23 we have 

[ K. J 
1 = (3-65) 

where [ K . J and [ K. J are the adInittance Inatrices 
1 J 

in the coordinates V. and V .. Hence we have 
1 J 

= (3-66) 

Returning to the probleIn of selecting the tree that IniniInizes 

the value given in equation 3-62, it can be seen that since the deterIninant 

is invariant to the tree selection, the optiInUIn set of coordinates will 

IniniInize the value M (A). 

Let there be B adInittance branches whose branch voltages are 

(vI' v 2 • .• vB) and the adInittances of the branches be (kl , k 2 • •• k B ), 

then the adInittance Inatrix in branch coordinates is the diagonal Inatrix 

kl 0 - 0 

0 k2 - - - 0 

[ KB J = (3-67) 

0 kB 
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AssUIlle that these B branches are connected into P nodes, 

and a set of (P-I) node pairs are selected {VI' VZ ••• Vp_Ii. then 

w e may write 

VI VI 

Vz 
[ A J 

Vz , = , (3-68) 

vB V p-l 

and [KJ. the admittance matrix in (VI' VZ ••• V
p

_ l ) coordinates 

is given by 

[ K J = [A J T [ KB J [ A J , {3-69 

or 

B 

k .. = '\ a .a .k 
1J L m1 mJ m 

(3-70) 

m=l 

h k th I .. th d .th If ' were . . , a . . are e e ements m 1 rowan J co = 0 matr1ces 
1J 1J 

[ K J and [ A J. and k is defined in equation 3 - 67. 
m 

Equation 3-70 may be interpreted differently by freezing the 

dummy index m. Then we can say that each branch v which has 
m 

the branch admittance k contributed the amount a .a .k to the 
m m1mJm 

element k .. , and the resultant k . . is the SUIll of the contributions 
~ ~ 

from all branches (VI' v Z ••• vB) . Since we want to minimize 

M (K), the SUIll of the absolute values of all the elements in [ K J, we 

wish to keep the contributions from the largest k to a minimUIll nUIll­
m 

ber of terms of k... The elements a .. can either be + 1, - 1 or 0, there-
1J 1J 

fore, the contribution due to k
M

, the maximUIll branch admittance, may 

be limited to a single term k .. if we set 
11 
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aM! = 0 for Q .; i 
(3-7l) 

aMj = +1 for i = i 

When the result in equation 3-71 is substituted into equation 3-68 vM 

is selected as a branch of the tree. After the branch with the largest 

admittance is selected as a branch of the tree, the branch with the next 

largest admittance is selected, provided it does not violate the tree top-

ology. For example, after selecting the branches (4, 1) (I, 2) that cor-

respond to the first two largest branches in (fig. 3-7), the third branch 

cannot be (4, 2) which, although its admittance is the largest among the 

remaining branches, violates the tree topology. With the tree branches 

selected according to this algorithm, the value M (K) will be minimized, 

hence reducing the round off error in subsequent matrix computations as 

formulated in equation 3-33. 

3.6 The Algorithm to Select the Optimum Coordinates in a Passive 

RLC Network. 

The algorithm to select an optimum set of node pair coordinates 

is summarized below with the supplementing example in (fig. 3-8) for 

ill us tr a tion. 

(Fig. 3-8-a) shows an arbitrary network of resistors, inductors 

and capacitors. The values of all the elements are given to guide the 

selection of the optimum set of coordinates. 

(I) From the given network, the capacitive topology in (fig. 3-8-b) 

is constructed as several connected branches weighted according 

to the capacitances. The most weighted branch, v 89 is selected 

h f · . VI as t e lrst component In • Then with the terminal nodes of 
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The Selection of Node-pair Coordinates in a Weighted 
Topology to M inimize the Round-off Errors in M atrix 
Operations 

FIGURE 3-7 
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/0 

6 

(a) The Complete RLC Network 

(b) The Weighted Capacitive Topology 

vS9 
v 40 

VI = 
v 45 
v

78 
v 43 

An Example 

FIGURE 3-8 
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I 

6 

(c) The Weighted Resistive Topology with all Capacitors 
in the Network Short Circuited 

(d) The Weighted Inductiv e Topology with all Capacitors 
and Resistors in the Original Network Short Circuited 

An Example 

FIGURE 3- 8 (continued) 



-64-

the selected branch grouped together, and all the parallel 

branches co:mbined, the next :most weighted branch is selected 

as the next co:mponent in VI, na:mely, v 40 in (fig. 3-8-b). 

The procedure continues until all capacitively connected nodes 

are grouped together. This ends the selection of node pairs 

. VI 
1.Il • 

(2) Fro:m the given network, with all the capacitors replaced 

by short circuiting wires, and all the parallel resistors co:m-

bined together, the reduced resistive topology, weighted accord-

ing to the resistive ad:mittance, is constructed as shown in 

(fig. 3-8-c). The sa:me selection criterion used to select VI 

fro:m the capacitive topology is used on the reduced resistive 

topology to give all the node pairs in V
2 

(3) Finally, with all the capacitors and resistors short cir-

cuited in the original network, and all the parallel inductors 

co:mbined, the reduced inductive topology, weighted according 

to the inductive ad:mittances, is constructed as shown in 

(fig. 3-8-d). The sa:me selection criterion used to select VI 

and V
2 

fro:m the capacitive topology and the reduced resistive 

topology is used to select all the node pairs in V
3 

fro:m the 

reduced inductive topology. 
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CHAPTER 4 

FORCING FUNCTIONS AND INITIAL CONDITIONS 

Chapter 3 dealt with the selection of an optirnurn set of coor-

dinates for a passive RLC network. This chapter extends the rnethod 

to include voltage and current sources and gives a systernatic pro-

cedure of setting up the initial conditions for the differential equations. 

4. 1 Voltage and Current Sources 

Voltage and current sources are also considered as two terrninal 

elernents. Voltage sources introduce additional constraints to the set 

of independent node pairs; however, current sources rnerely add 

additional terms to the current summation equation, equation 3-15. 

In order to have a unified approach, voltage and current sources are 

represented as J and J i in the current summation equation, J 
v v 

representing the current vector in voltage-source elements, and J. , 
1 

the current vector in current-source elernents. By definitions, J. is 
1 

known and J is unknown. In (fig. 3-3-a), each passive branch is 
v 

represented by an admittance which rnay be any parallel cornbination 

of R, L, C elernents. With the addition of voltage and current 

sources, each branch is represented as shown in (fig. 4-1). The 

branch x has branch voltage v and two current cornponents: i , x x 

the current in the passive elements; and j , the current in the active 
x 

elements, namely the voltage and current sources. 

(4-1 ) 
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v x 

A Generalized Branch Representation with a Passive 
Admittance k , and an External Forcing Current j . x x 

FIGURE 4-1 
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When several of these branches are connected together, a set of 

independent node pairs V is selected, and the branch voltages vB 

can be related to the set of node-pair voltages V by a transformation 

matrix, [ A] , 

vB = [A] V (4- 2) 

If we use J B to represent the vector whose components are the 

branch current j , we have 
x 

(4- 3) 

The current equation, equation 3-15, becomes 

(4-4) 

and equation 3-23 becomes 

te] ~~ + [R]V + [L ]JVdt = [A r J B (4-5) 

In order to factor out the unknown current, J , in equation 
v 

4-5, all branches that contain voltage sources are denoted by v 
v 

and all other branches by v,. A branch in v contains a voltage 
1 v 

source in parallel with or without any combination of other elements 

in the network. The four types of v are shown in (fig. 4-2) where 
v 

VS represents voltage source; IS, current source; and k, any 

parallel combination of resistors, capacitors or inductors. 

If we can pick a set of node pairs V, such that 

(4-6) 
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9 

VS = Voltage Source 

m = Current Source 

k = Passive AciInittance 

Four Types of Voltage-source Branches 

FIGURE 4-2 
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and the branch voltages 

(4-7) 

are related to V by the transformation matrix [A] such that 

(4-8) 

where 

LA] = [:VO : J ; 
10 1X 

(4-9) 

we can write equation 4-5 in the partitioned form as 

c C 

d~ l;] + 

R R 

[~ 
L L J[;] dt 

00 ox 00 ox 00 ox 
+ 

C C R R L L 
xo xx xo xx xo xx 

= [::] 
(4-10) 

where 

1
0 

= [A ] T J + [A. ] T J . (4-11 ) 
vo v 10 1 

r T ( 4-12) = [Aix] J i 
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Since by definition J , the current from voltage sources, is un­
v 

known, 10 is not defined. Therefore, the first equation in equation 

4-10, 

[ R ] VC + [L ]Jyo dt 
ox 00 

+ [L ]Jyx dt = 1
0

, (4-13) ox 

cannot be integrated; however, the second equation, 

[R ] VC + [L ] r yO dt 
xx xo 'J 

( 4-14) 

is integrable to give the value of VC (t) as a function of IX (t) and 

yO(t), where r(t) is defined solely by the current sources, J., as 
1 

shown in equation 4-12, and yO (t) is related to v in equation 4-8, 
v 

( 4-15) 

where [A ] -1 always exists as a consequence of the Kirchhoff 
vo 

voltage law that the set of branches, v , which contain voltage 
v 

sources must not form loops. For numerical computations, equation 

4-14 can be written as 

_ [R ] VC _ [L ] yX) , 
xx xx 

( 4-16) 
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Equation 4-16 is in the same form as equation 3-25; therefore, all 

the discussions on the e v aluation of equation 3-25 apply to equation 

4-16. Since [e ] -1 does not alw ays exist, it is necessary to se­xx 

lect the coordinates within yx into three classes: VI, V 2 and V 3 

( 4-17) 

such that the correspondingly partitioned submatrices [ ell]' [R
22

] 

and [ L
33

] are nonsingular. 

Equation 4-13 is not integrable since 10 is undefined; however, 

it may be used to compute the currents in v oltage sources. 

J 
v 

( 4-18) 

In concluding this part of the discussion, the above analysis is 

summarized as follows: 

(1) Restrictions on voltage- and current-source topologies 

(a) The voltage-source topology derived from the com-

plete network with all elements removed except voltage sources must 

contain no loops. This restriction follows directly from the Kirchhoff 

voltage law. 

(b) The current-source topology derived from the com-

plete network with all elements except current sources replaced by 

short circuiting wires must contain no branches. This restriction 
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follows directly from the Kirchhoff current law that the total algebraic 

sum of currents entering any set of internally connected nodes must be 

zero. 

(Fig. 4-3-a) shows an example of a forbidden voltage-source topology, 

and (fig. 4-3-b) shows an example of a forbidden current-source topo-

logy. 

(2) In a network consisting of voltage sources, current sources 
J 

and RLC elements connected in any arbitrary topology to form P nodes 

and D separate parts, within the restriction imposed on the voltage and 

current sources stated in (I) above, a set of (P - D) node pairs V, sub-

dividing into four classes, may be selected, 

V
o 

VI 

V = 
V

2 ( 4-19) 

V
3 

V o is selected from the voltage-source topology; VI is selected from 

the reduced capacitive topology with all nodes connected by V
O 

being 

grouped together; V
2 

is selected from the reduced resistive topology 

o 1 3 
with all nodes connected by V and V being grouped together; V 

is selected from the reduced inductive topology with all nodes connected 

o VI 2 by V , and V being grouped together. 

(3) In terms of the coordinates (yO, VI, V
2

, V 3 ) selected 

in (2), the current equations may be formulated as 
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(a) An Example of Forbidden Voltage-source Connections 

(b) An Example of Forbidden Current- source Connections 

The Forbidden Voltage- and Current-source Connections that Violate the 
Physical Laws 

FIGURE 4-3 
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COO COlO 0 r yO 
ROO ROI ROZ 0 

Vo 

C IO C ll 
0 0 

d 
VI 

RIO Rll R IZ 
0 VI 

dt l y' 

+ 
V Z 0 0 0 0 R ZO RZI R ZZ 0 

0 0 0 0 V
3 0 0 0 0 V

3 

(4- ZO) 

LOO LOI LOZ L03 
Vo 1° 

L
IO Lll LIZ L

I3 J VI II 

+ L ZO LZI L
ZZ 

L
Z3 V

Z dt = 1
Z 

L30 L31 L
3Z L33 V

3 
13 

Let (v , v., v , v
R

' v
L

) represent the branch voltages of (voltage-v 1 c 

source, current-source, capacitor, resistor, inductor) elements, then 

their linear dependence on the selected coordinates (yO, VI, VZ, V 3) 

are as follows: 

v [A ] Vo; (Vo = [A rl ) v = v vo vo v 
v 

[A ] Vo + [A 1] VI c = co c 
v R [ Alto] Vo + [ ARI ] VI 

Z = + [ A
RZ

] V (4- ZI) 

v L [ A
Lo 

] Vo + [ ALI] VI 
Z + [ A

L3
] V 3 = + [ A

LZ
] V 

v. [A. ] Vo + [ A ' I ] VI + [ A. Z ] V
Z + [ AB ] V

3 
1 = 10 1 1 

From equations 4-Z1 all the submatrices in equation 4-Z0 are 

defined. 

[ C
kj

] = [ A k] T [ C
B

] [A .] k = 0, 1 (4- ZZ) 
c CJ j = 0, 1 

[~j ] = [ ARk] T [ RB ] [ A Rj ] 
k = 0, 1, Z (4- Z3) 
j = 0, 1, Z 
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[ L kj J = [ ALi J T [ LB [ [ ALj J k = 0, 1, 2, ~ (4-24) i = 0, 1, 2, 

Ik = [AikJTJi k = 1, 2, 3 (4- 2 5) 

1
0 T + [A J J (4-26) = [A. J J. 

10 1 VO V 

where [ C B ], [R
B

], [LB J are the branch adInittance matrices; J
i 

the current sources and J the current vector from voltage sources. 
v 

Let 

k = 0, 1, 2, 3 (4- 47) 

then the following equations are derived from equation 4-20 

d~I = [ C
ll 

rI( 11* - [R
ll 

J yl - [ RI2 J y2 - [L
ll 

J / 

- [ L12 J l - [L I3 J l ) 
~ = yl 
dt 

(4-28) 

dy2 y2 -1( 2* [ 1 [ R22 J I - R21 J Y -
1 2 

[ L2I J Y - [L22 J Y Cit = = 

- [L
23 

J y3 ) 

l = [L33rI(r3* - [L31Jyl - [L32 Jl) 

1* 2* where I , I , 13 * are the equivalent source currents in yl, y2, 

and y3 coordinates and they are defined as: 

11* II dyo 0 
[ L 10 J Y 

0 = - [C10Jd't - [RlQJy -

12* 12 _ [ R
20 

J yO - [L20 J Y 
0 = (4-29) 

13* 13 - [ L 30 J Y 
0 = 
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Since equations 4-28 are in the canonical form for applying vari-

ous numerical integration formulae and the coordinates are so selected 

that [C
li 

J -I, [R
22 

J -1 and [L
33 

J -1 always exist; given the initial 

1 1 2 
values of V , Y and y , the state of the network at all subsequent 

times can be computed. This leads to the next unsolved task of deriving 

the initial values of VI, yl and y2 from the energy distribution in the 

system, namely, the charges in capacitors and the currents in inductors. 

4. 2 Initial Conditions. 

Bryant (21) and Bers (22) have discussed the problem ofevaluat-

ing the number of natural frequencies which the first author called "the 

order of complexity of the network", and the number of nonzero natural 

frequencies which the second author called "the degrees of freedom in 

RLC networks". They disagreed on the terminologies used as can be 

observed in their correspondences (23). Here the same subject is touched 

upon again, but from a different point of view. Based on the coordinates 

o I 2 3 
selected, namely V , V , V and V , the results obtained are the 

same as those of Bryant and Bers. The emphasis here, however, is 

not merely a number that represents the complexity of the network but 

on the systematic way of incorporating the energy distribution into the 

differential equations of equation 4- 28. 

In a network of RLC elements under the excitation of arbitrary 

.0123 
voltage and current sources, a set of coordinates (V , V , V , V ) 

is selected as described in section 4. 1. The matrix equation in these 

coordinates is given in equation 4-20. All branches that are connected 

within V
o 

coordinates are not allowed to take arbitrary initial condi-

tions on the voltage across capacitors, since the voltages across all 
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these branches are completely specified by the voltage sources that 

connect the same set of nodes . All inductors connected within yO 

can have any initial currents without changing the subsequent transient 

response since the effect of the inductor current in yO is absorbed by 

10 which itself is an undefined quantity. Therefore, all subsequent 

discussions concern coordinates (yl, y2, y3) only , without losing 

generality to networks that have yO coordinates as well. 

Since all capacitors are connected within yl, independent of 

the number of capacitors in the network, there are only d
l 

independent 

parameters to specify all the voltages across capacitors, where d
l

, 

d
2

, d
3 

are the number of components in the vectors yl, y2 , y3 

respectively. These d
l 

independent parameters are the voltages 

across the d
l 

branches of anyone of the S(dj, +1) trees that can be 

constructed from the (d\ + 1) nodes connected by the yl coordinates. 

With these d
l 

branch voltages , the electrostatic energy distribution 

in the system is uniquely defined. 

In order to determine the number of independent parameters 

that uniquely specify the magnetostatic energy distribution in the sys-

tem, the following equations derived from equation 4-20 are considered: 

(4-30) 

(4-31) 

(4-32) 
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where [ell] is defined in equati on 4-22, 

[R
21 

J, [R
22 

] are defined in equation 4-23, 

11*, 12* , 3* I are defined in equation 4-29, 

and Ii, I~, I~ are the current components in VI, V 2 , V 3 coordi­

nates due to the currents in the inductive elements. If iL is the cur­

rent vector of all inductive elements in the network, then using the 

transformation matrices defined in equation 4-21 and the law of trans-

formation in equation 2-24, we have 

II 
L = [ALI JT iL 

12 
L = [A

L2 
JT iL 

(4-33) 

1
3 
L = [AL3 JT iL 

3 After substituting for I
L

, equation 4-32 may be written as 

(4- 34) 

which is a set of d
3 

independent linear equations in the variables, i
L

. 

In equation 4-31, [R
21 

] VI is specified by the voltages across capaci-

~ 2 
tors; and I , by the voltage and current sources; however, [R

22 
] V 

is not constrainted. Therefore, 12 can take on any arbitrary value. 
L 

In equation 4-30, [Rll ] VI and 11* are prescribed in the same waJ 

as [R
21 

] VI and 1
2

* in equation 4- 31; [R
I2

] V
2 

is determined by 
I 

the arbitrary choice of I~ in equation 4-31; however, [ell] dIt 

is not constrainted such that Ii may take on any arbitrary value. 

Therefore, there are only d
3 

linear equations relating the BL com­

ponents of iL where BL is the number of inductors in the network. 
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In other words, there are (B L - d
3

) independent parameters to specify 

the initial conditions on the currents in inductive elements. The total 

number of independent parameters to specify completely the initial 

energy distribution in the network is 

(4-35) 

which agrees with Bryant's results (21). 

Whenever several inductors form a loop, an arbitrary d. c. cur-

rent may flow in the loop without changing the dynamic response of the 

network. When (B L - d
3

) independent parameters are used to specify 

the complete magneto static energy distribution, as many of them are 

used to specify the d. c. loop currents as there are loops in the induc-

tive topology. Each d. c. loop current constitutes a node of zero fre-

quency. If one is only interested in the number of nonzero frequency 

as Bers (22) was, the number of inductor loops has to be subtracted 

from equation 4-35 which gives the numbe.r of all the modes, including 

multiple zero frequency mode. The number of nonzero frequence modes 

is, therefore, given by 

(4-36) 

where 2 L is the number of loops in the inductive topology of the net­

work. (Fig. 4-4:-a) shows an arbitrary network; (fig. 4-4-b) shows 

its capacitive topology which gives d
l 

= 2; (fig. 4-4-c) shows the 

reduced inductive topology which gives d
3 

= 2; (fig. 4-4-d) shows 

the inductive topology which gives ~L = 1. With BL = 6 from equa­

tion 4-35 we have 
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(a) The Complete Network, BL = 6 

o 

o o 

(b) The Capacitive Topology, d
1 

= 2 

(c) The Reduced Inductive 
Topology, d

3 
= 2 

(d) The Inductive Topology, 
2L = I 

The Determination of a and p of an Arbitrary RLC Network 

FIGURE 4-4 
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and from equation 4-36, we have 

p=2+6-2-1=5. 

Equation 4-35 gives the number of independent parameters 
• 

one may use to specify the initial condition of the network. The next 

step is to incorporate these a independent parameters into equation 

4-28, the set of equations we wish to integrate. 

In the way equation 4-28 is formulated, the values of VI, yl 

and y2 at time t = ° are required before integrating to determine the 

state of the network at times, t > 0. The d
l 

independent parameters 

that specify all the capacitor voltages are the voltages across the 

1 branches of a tree that span the same set of nodes as V , then from 

Theorem 3 in Chapter 3, we know that these d
l 

branch voltages and 

the components of VI are related by a nonsingular transformation 

which gives a unique value of VI from the d
l 

parameters. However , 

the values of yl and y2 are not always defined at t = 0, and it turns 

out that equation 4-28 has to be modified slightly to cope with the ini-

Hal conditions in inductor currents. 

From the BL - d
3 

independent parameters that specify all 

BL inductor currents, we may compute 

I~ = [A
L2

]T iL 

I~ = [AL3 ]T iL 

Although IL is related to y by 

(4-33) 



-82-

II 
Lll L12 L13 

1 
L Y 

12 
L2l L22 L 23 

2 
(4-37) 

L = Y 

1
3 

L3l L32 L33 
3 

L Y 

we cannot in general compute yls from ILls because the rank of the 

inductor matrix in equation 4-37 is invariant to the choice of coordi-

nates, and the inductor matrix is singular whenever the inductive top-

ology of the network does not connect all the nodes of a connected 

network. This difficulty is resolved by writing equation 4- 28 as 

follows ! 

dyl 
[C ll r~ 1

1* II 1 2) 
at = - [Rll ] y - [R12 ] V 

L 

dyl 
= yl (4-38) <It 

d;-
= y2 = [R rl(I2* _ 12 - [R

21
] yl ) 

at 22 L 

(4-39) 

I~ and I~ in equation 4-38 are defined in equation 4-37 and they are 

readily evaluable from iL at t = 0 by using equation 4-33, therefore, 

. dyl dyl 
to glve at' at' equations 4-38 are completely evaluable at t = 0 

d 2 -It at t = O. Depending on the numerical integration method used 

I I 2 
(10), l!; Y , l!;y , l!;y may be computed where the l!; -operator is de-

fined as 

yl(t + l!;t) = yl(t) + l!;yl(t). (4-40) 
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However, in order to repeat the procedure to advance the computation 

from t = .6t to t = 2.6t, the values of I~ and I~ at t = .6t are required. 

They are computed in the following way. 

Assuming that the inductor matrix is time independent, from 

equation 4-37 we have 

.6yl 

.6y2 

.6y3 

(4-41) 

1 2 dyl 4/ 3 
where .6y , .6y are computed from at' -at and.6y is computed by 

taking the differential of equation 4- 39, 

.6y3 = -1 ( 3* 1 2) [L33 J .61 - [L3l J.6y - [L32 J.6y . (4-42) 

Finally the values of II 
L 

and 12 
L 

at t = .6 t are computed by 

I~ (.6t) = I~ (0) + .6I~ (0) 

I~ (.6 t) I~ (0) .6I~ (0) 
(4-43) 

= + 

At this point, all quantities at the right hand side of equations 

4-38 are defined at t = .6t, from which the same procedure is repeated 

to compute the variables at t = 2.6t and so on. 

There are two points that are worth mentioning: 

(1) Although y's are introduced as J Vdt in the 

original formulation in order to give a unified approach to 

the problem, their values are never defined during integration. 

This follows from the fact that no knowledge is assumed on 

the value of V for t < 0, and from 
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t 

y(t) = J Ydt = J Ydt + y(O), (4-44) 

o 

there is no way to determine y(O) which depends on the values 

of Y for t<O. 

(2) I~ is not used in cOInputing equation 4- 36; however, 

it serves as a check on the computation procedure since it must, 

at all time including t = 0, satisfy equation 4- 32, 

13* _ 13 = 0 L . 

In concluding this chapter, the sequence of computation proce-

dure is stated. It accepts the data of a network consisting of RLC 

elem ents interconnected in any arbitrary topology, voltage and current 

sources across any node pairs provided that they do not violate Kirchhoff's 

voltage and current laws, a set of d
l 

initial conditions on capacitor 

voltages, and a set of BL - d
3 

o I (1) Select Y , Y , 

initial conditions on inductor currents. 

y2 and y3 coordinates. 

(2) Compute [AvO]; [ACO]; [A
CI

]; [ARO ]; [ARI ]; 

( 3) 

(4) 

(5 ) 

( 6) 

[AR2 ]; [ALO ]; [ALI]; [AL2 ]; [AL3 ]; [AiO ]; [An]; 

[A
i2 

]; [An] as defined in equation 4- 21. 

Compute [C .. ]; [R .. ]; [L .. ] as defined in equation 4-22, 
lJ lJ lJ 

equation 4-23 and equation 4-24. 

Compute y1(t) and I~(t), I~(t) from the initial con­

ditions; I~(t) may be computed to check with I
3
*(t). 

Compute Ik(t) and Ik*(t) in equation 4-25 and equation 4-29. 

1 1 2 
Computel:>Y , l:>y , l:>y from equation 4-36. 
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(7) Compute VI (t + ~t) from equation 4-38 and Ii (t + ~t), 

Ii (t + ~t) from equation 4-41, equation 4-40 and equation 

4-39. 

(8) Compute the particular quantities to be observed by 

using equation 4-21 for all branch voltages and equation 

4-18 for the currents from voltage sources. 

(9) Increment t by ~t and advance the computation by 

returning to step (5) • . 
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CHAPTER 5 

IDEAL TRANSFORMERS 

In this chapter, the network studied in Chapter 4 is further 

generalized to contain m.ultiple-winding ideal transform.ers, inter­

connected in any perm.issible topology. A non-perm.issible connec­

tion violates either the Kirchhoff l s voltage or the Kirchhoff l s current 

laws. A nonsingular set of node-pair coordinates is selected by appro­

priately rem.oving the dependent node pairs due to the transform.er 

constraints. Section 5. 1 points out the inadequacy of using the equi­

valent circuit of an ideal transformer (24). 5.2 lists the forbidden 

transformer-winding connections. 5.3 discusses the algorithm. of 

selecting a set of nonsingular coordinates in the presence of ideal 

transformers. 5.4 gives the evaluation of (J and p in a network 

containing ideal transformers, where (J, as used by Bryant (21), 

is the degree of complexity of the network and p, as used by Bers 

(22), is the num.ber of nonzero frequency modes. 

5. 1 Equivalent Circuit of an Ideal Transform.er. 

Crosby (24) offered an equivalent circuit for a two-winding 

common ground transform.er as shown in (fig. 5-1). In the lim.it 

that the inductive adm.ittance L in (fig. 5-1-b) approaches to zero, 

the following relations are satisfiedt 

v 2 = nV l 

i
l 

= ni
2 

(5-1 ) 
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I : n 

(a) A Two-Winding Common-Ground Transformer 

L 
[I-::n) 

L 
n (n -I) 

(b) The E quivalent Circuit of (a) in the Limit that 
L~O. All Inductors are Valued as Inductive 
Admittances. 

Equivalent Circuit of a Two-Winding Common-Ground Transform er 

FIGURE 5-1 
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where n is the turns ratio and v l' v 2' i 1 , i2 are defined in (fig. 5-1-a). 

There are three major objections to the use of such an equivalent cir-

cuit in numerical computations: 

(1) When the inductive admittance L in (fig. 5-1-b) 

approaches to zero, in numerical computations, it is approxi-

mated by a finite nonzero value such that L is much less than 

the minimum value of all the other inductive admittances in 

the network. This results in a very poorly conditioned induc-

tive admittance matrix, [L
33 

J, such that the resulting numeri-

cal computations will introduce excessive round-off errors. 

This objection does not arise in purely analytical manipulations 

which may retain the expression L during computation and 

apply the limit L + 0 to the end result. 

o I 2 3 
(2) The algorithm that selects V , V , V , V to 

give nonsingular [ell), [R
22

), [L
33 

) assumes that all 

admittances are positive. For any value of n, at least one 

of the three branches in (fig. 5-l-b) has negative admittance. 

(3) The equivalent circuit in (fig. 5 -I-b) is restricted 

to transformers whose windings have a common terminal. If 

we assume a rn.ore general topology that the windings need not 

be connected to a common point, the equivalence cannot be 

applied. 

In Section 5.3, a different approach is presented to select the 

set of nonsingular coordinates for numerical computations in a network 

containing multi-winding transformers connected in any permissible 

topology. The three types of forbidden transformer connections are 

listed in the following section. 
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5.2 Forbidden Transformer Connections. 

There are three types of forbidden transformer connections: 

( 1) The violation of voltage law 

The voltages across the transformer windings must 

satisfy the equation 

e. 
I = constant 

n. 
I 

(5.2) 

where e. is the voltage acdss the ith winding and n., the 
I I 

relative nm:nber of turns. Equation 5-2 forbids the connec-

tion of more than one winding in the same transformer to any 

arbitrary voltage sources. (Fig. 5-2-a) shows a forbidden 

connection of this kind. 

(2) The violation of current law 

The current relationship among the windings of a 

transformer is 

(5-3) 

h . th . th .th . di were u. is e current 1n elWIn ng. 
I 

Therefore, in 

any transformer, at least one winding must not be connected 

to a current source. (Fig. 5-2-b) shows such a forbidden 

current relationship. 

(3) Over specified dependence among winding voltages 

A transformer with m windings specifies (m - 1) 

independent linear relationships among the m winding voltages. 

If the (m - 1) equations relate (m - 1) variables, then the 

(m - 1) x (m - 1) matrix, consisting of the coefficients in the 
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VI, V2 are voltage sources 

(a) The Forbidden Connection of More Than One Winding 
to Voltage Sources 

n, 12, 13 are current sources 
(b) The Forbidden Connection of all 

Windings to Current Sources 
(c) .Over Sp ecified Constraint 

Between e
l 

and e
2 

where 
n l I n 2 

Forbidden Transformer Connections 

FIGURE 5-2-c 
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linear equations, must have a rank less than (m - 1) such 

that there exists a nonzero solution for the (m - 1) variables. 

For example, the circuit in (fig. 5-Z-c) is over specified as 

such that 

e
Z 

e
l = n

l 
(5-4) 

e
Z e

l = n
Z 

or 

1 
1 - e

l n l 
= 0 ( 5-5) 

1 
1 

n Z 
e

Z 

If n
l '* n Z ' then 

1 
1 

n
l 

det '* 0 

1 
1 - n Z 

and there exists no solution for (e
l

, e
Z
)' 

5. 3 Coordinates Selection in the Presence of Ideal Transformers 

The network under analysis consists of RLC elements, voltage 

sources, current sources and ideal transformers. The RLC elements 

may be interconnected in any arbitrary topology; voltage and current 

sources must not encounter the forbidden connections in (fig. 4-3); 

transformer connections must satisfy the conditions discussed in 

Section 5. Z. Since the restrictions on the connections of voltage sources, 

current sources and transformer windings will not be encountered by any 
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physical network, the :method of analysis presented here will apply to 

any phys ical syste:m that has a topological analogy to a phys ical network 

of RLC ele:ments, voltage sources, current sources and ideal transfor:mers. 

In developing the concept of coordinate transfor:mation in a net­

work, Section 4 in Chapter 2 assu:mes a pri:mitve network consisting 

of all the individual branches such as (fig. 2-2), and a set of equations 

are set up in ter:ms of these pri:mitive coordinates, na:mely, the branch 

voltages. After the branches are interconnected, a transfor:mation :matrix 

is obtained to relate the original branch voltages to a new set of indepen­

dent coordinates. Using the results developed in Section 2.3, na:mely, 

equations 2-21, 2-23 and 2-24, the network equation in the independent 

coordinates is derived syste:matically. The sa:me concept of coordinate 

transfor:mation will be used to set up the equations of a network contain­

ing transfor:mers, which :merely introduce additional linear constraints 

a:mong the coordinates. 

Analogous to the procedures in Section 2. 4, a pri:mitive network 

is here defined as the connected network with all transfor:mer constraints 

re:moved. Such a network consists of voltage sources, current sources, 

RLC ele:ments and uncoupled transfor:mer windings. In supple:menting 

the description of coordinate selection, an exa:mple which represents a 

finite difference :model of a cantilevered bea:m under bending is used (25). 

The co:mplete circuit, including the voltage source, VS, is shown in 

(fig. 5-3-a). Two three-winding transfor:mers are used to relate the 

deflections of the bea:m to its slopes. This exa:mple brings out all the 

features to be discussed, and it also serves to indicate the application of 

the generalized network study to the analysis of syste:ms which are topo­

logically analogous to electrical networks (2), (3), (4), (5), (6), (7). 
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From the primitve network with transformer constraints re­

moved, we proceed to select the coordinates yO, yl, y2, y3, y4 

in the following sequence: 

(0) From the voltage source topology, a set of independent 

node pairs is selected to specify all the voltage source 

o 
branches. Th,form the components of y. The example 

in (fig. 5-3-b) has v
07 

as the only component of yO 

(1) From the reduced capacitive topology with all voltage 

sources replaced by short circuiting wires, a set of 

independent node pairs, specifying all the capactive 

branch voltages in the reduced topology, is selected 

1 
to form the components of y. The example in (fig. 

1 
5-3-c) has v 03 ' v 05' v06 as the components of Y 

(2) From the reduced resistive topology with all voltage 

sources and capacitors short circuited, a set of inde-

pendent node pairs, specifying all the resistive branch 

voltages in the reduced topology, is selected to form 

2 
the components of Y The example in (Fig. 5-3-d) 

2 
has v

27 
as the component of Y . 

(3) From the reduced inductive topology with all voltage 

sources, capacitors and resistors short circuited, a 

set of independent node pairs, specifying all the induc-

tor branch voltages in the reduced topology, is selected 

3 
to form the components of Y The example in (fig. 

3 
5-3-e) has vOl as the component of Y . 
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(4) FroIn the redu ced w inding topology w ith all elements 

except transformer w inding s short circuited, a set of 

independent node pairs, specifying all the w inding volt-

ages in the reduced topology, is selected to form the 

4 
components of Y. The example in (fig . 5-3-f) has 

4 
v

34 
as the component of Y . 

In terms of these five vectors (yO, yl, yZ, y3, y4), the 

matrix equation equating the currents in the network is 

Coo COl 0 0 0 ROO ROI ROZ 0 0 

( 
C IO C ll 

0 0 0 RIO Rll R IZ 
0 0 

d 
0 0 0 0 0 dt + R ZO RZI R ZZ 

0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

LOO LOI LOZ L03 0 yO 

L
IO Lll LIZ L13 0 

Jd~ 
yl 

+ L ZO LZI L ZZ 
L

Z3 
0 yZ ( 5-6) 

L30 L31 L
3Z L33 0 y3 

0 0 0 0 0 y4 

1
0 

1
0 

w 

II II 
w 

+ 
I
Z 

I
Z 

w = 

1
3 

1
3 

w 

14 14 
w 
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In equation 5-6 the four terms on the left hand side correspond 

to the currents in capacitors, resistors, inductors and transformer 

windings, transformed into the {yO, VI, V Z, V
4

} coordinates; 

the current vector on the right hand side is due to v oltage and current 

sources. The transformation between the various branch v oltages 

and the selected coordinates may be written as 

v A 0 0 0 0 
v vo 

V
O 

Vc ACo ACI 0 0 0 
VI 

v
R 

A
Ro ARI A

RZ 
0 0 

V
Z 

v L 
A

Lo ALI A
LZ 

A
L3 

0 
{ 5-7} 

V
3 

Vw AWo AWl AWZ AW3 AW4 
V

4 

v. A. Ail A
iZ Ai3 Ai4 1 10 

where Vw is the vector whose components are the branch voltages 

across transformer windings and vv' v c ' .v R ' v L and vi are defined 

in equation 4-Zl. 

V, {yO, VI, V Z, 

Let vB represent {vv ' v C ' v R ' v L ' v w' vi} and 

V 3 , V
4

), equation 5-7 may be concisely written as 

{ 5-8} 

where [ AB J is the matrix in equation 5-7. 

Equation 5-8 represents the constraints on the branch voltages 

v B due to the interconnection of various elements into P nodes. The 

{P - I} node pairs that constitute the components of V are so chosen 

such that in equation 5-6, [C
ll 

r 1, [RZZ r 1 and [ L33 r I always 

exist. The constraints on node-pair voltages due to transformers can 

now be introduced on the coordinates V. Each transformer Tk . 
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with :mk windings introduces (:m
k 

- 1) constraints on the node-pair 

voltages. The total nu:mber of constraints introduced by the trans-

for:mers is 

( 5-9) 

Fro:m these M linear constraints, a new independent set of (P - M) 

* coordinates, Y , is selected fro:m the (P - 1) di:mensional space 

which has Y as a base, 

* Y = [ AT J Y • (5-10) 

[ AT J in equation 5-10 is the transfor:mation :matrix derived £ro:m the 

transfor:mer constraints. The i:mportant thing about [ AT J is that the 

* resulting current equation in Y coordinate :must be separable into 

0 * 1* 2 * 3* [*J-l [ *J-l [ * J-l 
Y , Y , Y , Y such that GIl ' R22 ' L33 

always exist. This condition is satisfied if [ AT J has the for:m in 

equation 5-11 

yO E 0 0 0 
o'~ 

yl 
Y 

A
IO All 0 0 1* 

y2 
Y 

A 20 A21 A22 0 
2* 

( 5-11) 

y3 
Y 

A30 A31 A32 A33 y3 * 
y4 

A40 A41 A42 A43 

where E is the identity :matrix. 



-97-

Proof: 

Let [ Z] represent [ c], [R] or [ L] 

then [Z *] = [ AT ] T [ Z] [ AT ] ( 5-12) 

4 4 

and [ Zi~] = 2 l 
k=O ~=o 

i = 0, I, 2, 3 
j = 0, I, 2, 3 

the transforITled capacitor ITlatrices in V* coordinates are 

* [ C .. ] = 0 
1J 

for i or j = 2, 3 (5-14) 

[ C;I ] = [ A 10 ] T [ COO] [ A 10 ] + [ . A 10 ] T [ COl ] [ All ] 

+ [ All ] T [ C
10

] [ A
10 

] 

+ [ All ] T [ C 11 ] [ All ] 

(5-15) 

FroITl TheoreITl 9 in Chapter 3, the last terITl in equation 5-15, 

[ All ] T [ Cll ] [ All], is positive definite and the first three 

* terITlS are positive seITlidefinite, therefore, [C
ll

] is positive 

definite and [ C;1 r 1 
always exists. Substituting [ R *] for 

[ Z *] in equation 5 - 13 we have 

* [ R
ij

] = 0 for i or j = 3 

2 2 

[ R;2] = L I [A2k ] T [ ~~] [ Ai2 ] 

k=O ~o 

(5- 16) 
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From. Theorem. 9, the term. [ A
22

] T [ R
22

] [ A
22

] in equation 

5-16 is positive definite with all other term.s positive sem.i-

[ * J- 1 
definite, therefore, R22 

* Substituting [L ] for 

always exists. 

* [Z ] in equation 5-13, we 

have 

3 3 

[ L3~ ] = L L [A3k ] T [ L ki ] [ AQ3 ] 

k=O ~O 

(5-17) 

The term. [ A33 ] T [ L33 ] [ A
33

] in equation 5-17 is positive 

definite with all the other term.s positive sem.idefinite, there-

[ * ]-1 fore, L33 always exists. 

The results in equations 5-14, 5-15, 5-16 and 5-17 

[ * ]-1 prove that C 11 ' [ * J-1 [ * ]-1 R22 and L33 always exist 

if V* is related to V by the transform.ation m.atrix in equa-

tion 5-11. 

The task that remains is to determine the matrix [ AT] from 

the M constraints introduced by the transformers. 

For a transformer, T
k

, with m
k 

windings, whose terminal 

voltages are denoted b y (ek1 , e k2 ... e~), there exist (~- 1) 

independent relations among the m
k 

winding voltages. If e k1 is taken 

as the reference, then we have, for BT transformers, 

~j 
= --e n

k1 
k1' 

There are a total of 

BT 

M = L (~- 1) 

k=l 

£ = 2, 3 • 
k = I, 2 . ( 5-18) 
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independent linear constraints aIllong the winding voltages v . Since 
w 

each ekj' (for k = 1, 2 ... BT and j = 1, 2 . 

of the set v , the set of M constraints aIllong 
w 

v may be translated 
w 

into a set of M constraints among (Vo, V
l

, V
2

, V 3 , V
4

) by using 

the transformation matrices in equation 5-7. 

vw = [ AwoJ Vo + [ Awl] V
l + [ Aw2 ] V

2 
+ [ AW3 ] V

3 

+ [ AW4 J V
4 

( 5-19) 

After substituting equation 5-19 into equation 5-18, we have the follow­

ing M linear equations in (Vo, V
l

, V 2, V 3 , V 4 ). 

° 1 2 3 4 fko(V) + fkl(V) + fk2 (V) + fk3 (V) + fk4 (V) = 0 (5-20) 

k = 1, 2. . M 

where fls are linear functions of their arguments. 

At this point it is convenient to introduce a hierarchy among 

the coordinates (Vo, V
l

, V
2

, V 3 , V
4

). We say that Vic is of a 

higher hierarchy than V j , if j > k, and it is denoted as V
k > V

j
, 

therefore, we have 

( 5- 21) 

With the hierarchy defined in equation 5-21, the algorithm that gives 

[ AT] from the M linear equations in equation 5-20 is described 

below. 

The algorithm aims to divide the original coordinates into 

two parts, 
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V
O = Vo* 

VI = e:] 
V

2 = ~::J (5-22) 

V
3 = [:::] 

V
4 = V

4d 

where the d superscript denotes the dependent co:mponents to be e1i:mi-

* nated by using the M equations in equation 5-20 and the superscript 

denotes the co:mponents to be retained. In order to obtain [ AT J in 

the for:m specified by equation 5-11, we must have 

such that 

for k = 1, 2, 3, 4 

'k* 
V 

(5- 23) 

(5-24) 

o 0* In equation 5-22 we :must have V = V such that none of the node 

pairs that specify the voltage sources :may be eliminated. This fol-

lows directly fro:m the first forbidden transformer connections stated 

in Section 5,2. In equation 5-22, we also have V
4 

= V
4d

, that is all 

the node pairs selected fro:m the reduced winding topology with all 
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elements, except winding s, short circuited, can be eliminated from 

the M equations in equation 5-20. This condition is always satisfied 

if there is no redundant transformer winding in the circuit. A redun-

dant transformer winding is defined to be the winding which can be 

removed from the network without changing the network characteristic. 

(Fig. 5-4) shows a network with two redundant transformers. 

The algorithm that gives the equation of the form in equation 

5-23 is best described as a recursive function on two objects, L1 and 

L2. Ll is the object that consists of a set of (M - K) linear equations 

in the form of equation 5-20, and L2 is the object that consists of a 

set of K linear equations in the form of equation 5-23. Then the recur­

sive function F(Ll, L2) is defined as follows: 

If Ll contains no equation (i. e., M - K = 0), then 

F(L1, L2) =L2; 

otherwise, 

F(Ll, L2) = F(L1 *, L2* ) 

where Ll * and L2 * are derived from L1 and L2 in the follow-

ing way: 

(1) One equation is taken from the (M - K) equations in 

Ll, and define the remaining (M - K - 1) equations to 

be Ll ' . 

(2) The equation taken from Ll has the form in equation 

5-20. Using the hierarchy defined in equation 5-21, 

express one component V
kd 

of the lowest hierarchy 

coordinate in terms of all other components with the 

same or higher hierarchy. 
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(3) The expression obtained in (2) is substituted for all 

appearances of ykd in Ll' and L2. Ll * is then 

defined as the new Ll'; and L2 * is defined to be the 

union of the new L2 and the equation obtained in (2). 

The object Ll* contains M - K - 1 equations, and 

the object L2* contains K + 1 equations. 

With the recursive function F(Ll, L2) defined as above, the 

set of equations in equation 5-23 is derived fro:m the M equations in 

equation 5- 20 by setting 

equation 5-23 = F (equation 5-20, NIL) (5- 2 5) 

where NIL represents an e:mpty object L2, i. e., an L2 that contains 

no equation at all. 

The algorith:m that eli:minates the appropriate set of node pairs 

is deliberately described in the recursive language, since it is concise 

and easy to i:mple:ment in a sy:mbol :manipulating language for a digital 

co:mputer such as LISP (26), or IPL (27). 

With equation 5-8 and equation 5-10, we :may transfor:m VB 

directly into Y*, 

vB = [AB ] [ AT ] y * . (5- 26) 

Let [ A ] = [ AB ] [ AT ] , 

then we :may co:mpute [ C* J, [R* J, [L* ] and the corresponding cur-

1* 2 * 3 * . . . rents in (Y , Y , Y ) coordmates dlrectly fro:m the branch :matrlces: 

[ C
B 

J, [R
B 

J, [L
B 

] and the current sources, J i' 
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In concluding this section, the example in (fig. 5-3) will be 

used to illustrate the working principle of coordinate transformation · 

introduced by transformer windings. 

From (fig. 5-3), we have 

V
o = (v 07) 

VI = (v03 ' v 05 ' v 06) 

V
2 

= (v 27) (5-28) 

V
3 

= (v 01) 

V
4 

= (v
34

) 

From (fig. 5-3-a), we have 

v = (v 07) v 

Vc = (v 03' v 05 ' v 06) 

v
R = (v 27) 

v
L = (vOl' v 12) 

(5-29) 

Vw = (vOl' v 03 ' v 34' v 02' v 45' v 56) 

v . = 0 
1 

From equation 5-29 and equation 5-28, the transformation 

matrices are computed as 
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L, R, 

-r 
c, 

VS - Voltage Source 

(a) The Circuit Analogy of a Cantilevered Beam 
Under Bending 

o 

7 

vs 

o 

(b) The Voltage Source Topology of the Circuit in (a) 

AN EXAMPLE 

FIGURE 5-3 
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(7) ® 

(c) The R e J uced Capacitive Topology of (a ) 

o 

(d) The Reduced Resistive Topology of (a) 

2 
V = [v27 J 

FIGURE 5- 3 (co nt inue d ) 
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(e) The Reduced Inductive Topology of (a) 

3 
V = (vOl) 

(f) The Reduced Transformer Winding Topology of (a) 

4 
V = (v

34
) 

FIGURE 5-3 (continued) 
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NW 

VS Voltage Source 

NW - Any other network 

A Circuit with Two R edundant Transformers 

FIGURE 5-4 
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v = [v 07] = [EJ V
O 

v 

r0
3
] [EJ VI Vc = vOS = 

v06 

v
R = (v27J = [EJ v 2 

r01

J r01 1 UJ V
O 

+ [-~J v 2 v
L = = 

v 07 - v 27 - v 01 -v 12 

+ ~~] v 3 

vOl vOl 0 

v03 v03 0 

v
34 v

34 0 
V

O Vw = = = 1 v 02 v 07 - v 27 
v 4S vos - v03 - v 34 0 (5-30) 

vS6 v06 - v 05 0 

0 0 0 0 

1 0 0 0 

0 0 0 
VI + 

0 
v 2 + 0 0 0 -1 

- 1 1 0 0 

0 -1 1 0 

1 0 

0 0 

+ 0 v 3 + 1 v4 . 
0 0 

0 -1 

0 0 

The two transformers give the following linear equations in 
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n
lZ 

v03 = --v 
nIl 01 

n13 
v 34 = -- v 

nIl 01 

n
ZZ 

(5-31) 

v 45 = -- vOZ n Zl 

n
Z3 

v56 = -- v n Zl OZ 

by using the transfor:mation :matrices in equation 5-30, we have 

n
lZ 

v03 = vOl nIl 

n
13 

v 34 = vOl nIl 

n
ZZ 

(5- 3Z) 

v 05 - v 03 - v 34 = n
Zl 

(v07 - v Z7) 

n
Z3 

v06 - v05 = n
Zl 

(v07 - v Z7) 

The a1gorith:rn, defined as a recursive function in equation 5- Z5, 

is applied to equation 5-3Z. 
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L1 L2 

equatioo 5-32 NIL 

°13 
v =--v 

34 012 03 

°13 
v =--v 

34 012 03 

°Il 
vOl = n

12 
v03 

n
13 

v =--v 
34 012 03 

°21 °12 +n13 
v 27 = 022 ( -v05 + n

12 
v 03) 

+ v 07 

°Il 
vOl = n

12 
v03 

n
13 

v =--v 
34 n

12 
03 

°21 °22(n12 +n13) 

v 27 = 022 ( n
12

(022 +n23 ) v03 

TABLE 5-1 
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The successive changes in L1 and L2 as the recursive function 

in equation 5-25 is applied, are listed in Table 5-1. The final coordi-

nates are 

0 * V = v 07 

1* [V
03J = V ( 5- 33) v06 

2 * 0 V = 
3 * 0 V = 

With the last entry of L2 in Table 5-1 substituted into equation 5-30, 

and defined 

nIl 
n

1 = n 12 

n13 
n

2 = n 12 

n
21 

(n
12 

+n
13

) 

n3 = n
12

(n
22 

+n
23

) 

n
21 

(5-34) 

n
4 = n

22 
+ n

23 

n
22 

n5 = n
22 

+ n
23 

n
23

(n
12 

+ n
13

) 

n6 = n
12

(n
22 

+n
23

) 

we have 
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v = [VO?] = [ E] y o * 
v 

['03] [:6 
o J I ' v L = vos = Os Y 

v06 1 

v
R = tVZ?J = [ E] y o * (S- 3 S) 

[v01J [nlV 03 
- J£'7 - nl V OJ 

v L = = 
vIZ '# - n3 v 03 - °4v 06 

~ n1 -:.] yl * = 
-(n1 +°3) 

* The matrices [C ], * * [R],[L] in the coordinates 

( 0* Y , 
1 ,~ 

Y ) are computed as follows: 

0 0 0 

= 0 
Z 

C 1 +n6 C z °6°SC Z 

0 n6n SC Z 
Z 

Os Cz +C3 

Rl n3 R l °4R l 

= °3 R l 
Z (S-36) °3 Rl °30 4R l 

°4R l n
3

0
4

R
1 

Z 
n 4 Rl 

= 

0 o Z 0 
n 1 Ll 

Z 
0 +(n

1 
+n

3
) L

Z (°1 +n3 )n4L Z 

0 (n1 +03)n4L Z n 4L Z 

With the admittance matrices in equatioo S-36, the curreot 

equation in the form of equation 4-Z8 cao be formulated. Wheo the 
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initial conditions are given, and the tiITle dependence of the voltage 

source specified, the independent set of variables, V
l * ITlay be 

integrated. 

5. 4 a and p of a Network with Ideal TransforITlers 

a is the nUITlber of independent paraITleters to specify the 

cOITlplete energy distribution in the network. The expression a 

giv en by equation 4-32 also holds for a network with ideal transforITlers. 

(5- 3 7) 

* where d
l 

* 1 * 3 * and d
3 

are the nUITlber of cOITlponents of V and V . 

p is the nUITlber of nonzero frequency ITlodes of the network. 

The expression of p giv en in equation 4-33 also applies to networks 

with ideal transforITlers, if the value (B
L 

- R
L

) is replaced by 

* * RK ([ L ]), which is defined to be the rank of the ITlatrix [L ]. 

p = d
l 
* - d

3 
* + RK ([ L * ]) (5-38) 

The results in equation 5-37 and equation 5-38 are stronger 

than the ones given by Bryant (21) and Bers (22) since equations 5-37 

and 5-38 apply to a larger class of networks that contain transforITlers, 

with Bryant's and Bers ' ITlodel as a special case. 

The exaITlple in (fig. 5- 3) has 

a = 4 

p = 4. 
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CHAPTER 6 

COMPUTATIONS OF DRIVING-POINT AND TRANSFER 
ADMITTANCES 

This chapter develops the method that computes the poles and 

zeros of the short circuit driving-point and transfer admittances 

(page 153, reference 28), as sociated with an arbitrarily selected 

independent set of accessible node pairs in a network which consists 

of an arbitrary interconnection of resistors, inductors, capacitors 

and ideal transformers. The problem is first defined in Section 6. I, 

followed by a discussion on the inadequacy of applying conventional 

recursive formulae to networks with arbitrary topology. Here also 

are formulated the methods of admittances determination in terms 

of polynomial matrix operations. Section 6 . 2 solves the matrix 

polynomial equation developed in Section 6. 1. The method of solution 

requires a nonsingular set of coordinates selected in the same way 

as in Chapters 3 and 5. Section 6. 3 works out an example of a two-

port network. 

6. 1 The Problem of Driving-Point- and Transfer-Admittances 
Computation 

(1) Definitions of short circuit driving-point- and transfer­
adrnittanc e s 

A network consisting of P connected nodes has (P - 1) 

independent node pairs. When a subset of the P nodes, say P A nodes, 

are accessible, there are (P A-I) independent accessible terminal­

pairs (or node pairs, ports). (Fig. 6-1) shows an arbitrary network 

with four accessible terminals. From theorem 2 in Chapter 3, we 



4 a ccessible 
terminals 

,,--, 
I 

-llS-

o ·~ accessible tertn inals 

• - internal nodes 

I 
_____ J 

An Arbitrary Network with 4 Accessible T erminals 

FIGURE 6-1 
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know that there are S (P A) different ways to pick a set of (P A-I) 

independent node pairs. These different sets are related by a group 

of nonsingular transformations, and anyone of them may be used to 

describe the network property at the accessible ports. Let yE be 

E E E 
the vector whose components (VI' V 2 '···, V

PA
::" t ) 

(P A-I) independent accessible node pairs, and IE 

are the 

be the corres-

ponding current vector. The network is then described by the equation 

( 6-1) 

The components of (YJ are y .. where i, j take values ranging 
1J 

from 1 up to (P
A 

- 1). y . . is defined as the short circuit driving point 
11 

admittan~e to the node pair V.E and y . . is defined as the short-circuit 
1 1J 

transfer admittance between the node pairs V!' and V~. Literally, 
1 J 

y . . and y .. are respectively equal to the current I.E and I~ when a 
11 ~ 1 J 

unit voltage is applied across node pair V.E with all other node pairs, 
1 

V ~ (j "= i), short-circuited. If the network consists of bilateral RLC 
J 

elements and ideal transformers, the elements y .. ( = y .. ) are 
1J J1 

rational functions of s, which is the complex variable in the Laplace 

transform of f (t) , 

( 2) 

00 

F (s) = J f(t) e-
st 

dt 

o 

Evaluation of y .. for a ladder network 
1J 

• 

A ladder network has a highly regular topology. It is an 

iterative connection of many sections with identical topology, namely, 

T-sections or 11' sections. (Fig. 6-2) shows a ladder network con­

sisting of K sections, where the i
th 

section is characterized by zi' 
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First Section 
.th S . 
1 echon kth S . echon 

A Ladder Network 

FIGURE 6-2 
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the series impedance, and y", the parallel adlnittance. A ladder 
1 

network is often characterized by two acces sible ter:minal pairs, one 

at each end. Due to the regularity of the ladder topology, y . " may 
lJ 

be evaluated by adding one section at a time, and each time the 

same recursive formula is used. For example, if we let the terminal-

pair voltage at the right side end of the ladder network in (fig. 6-2) be 

V R' and the terminal-pair voltage at the left side be V L ' and assume 

that we kn"ow the short-circuit driving point and transfer adlnittances 

of the partial ladder network, which consists of the sections from i 

up to k, 

YiRJ 
YRR [:~l = [:~ 1 

i 

( 6-2) 

The recursive formula will give the short circuit driving point and 

transfer adlnittances of the augmented network which consists of the 

sections from (i-I) up to K • 

[

Yi_l, i-I 

YR , i-I 

( 6-3) 

i-I 

In equation 6-3, each Ykj (k, j = i-I, R) is a function of zi_l' and 

Yi-l of the {i_l)th section, and the Ykj (k , j = i, R) in equation 6-2. 

This may be stated in a functional form as 
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The function F. in equation 6-4 only depends on the topology 
1 

of connection of the (i_l)th section. For a ladder network of iterative 

sections, F i is independent of i, and defined as 

Yi 1 + y .. 
- 11 

1 + z . 1 (y. 1 + y .. ) 
1- 1- 11 

( 6-5) = 

= 

With the trivial case of the last section alone, 

::j [:: J : [::J 
K 

( 6-6) 

where 
1 

YKK = 
zK 

1 
( 6-7) YKR = zK 

YK + 1 
YRR = zK 

equation 6-4 may be applied repeatedly until all sections are included. 

The example of the ladder network illustrates one way of 

evaluating y . .. However, this method is highly restrictive. It re­
IJ 

quires a regular iterative network topology, and the iterative topology 



-120-

znust be siznple enough such that the iterative function F . in equation 
1 

6-4 is derivable in reasonably siznple forzn. It is obvious that such 

a znethod cannot be applied to networks with general irregular topo-

logy. The next paragraph presents a unified approach which forznu-

lates Yij as znatric polynoznials in s. 

(3) Evaluation of y . . for a network with arbitrary topology 
lJ 

When the current equation 

[c] d y(t) + [R) y(t) + [L1 jY(t) dt = I(t) 
dt 

( 6-8) 

in the tizne doznain is transforzned to the coznplex frequency doznain 

by the Laplace transforzn (30), 

[c] sY(s) + [R] Y(s) + [LJ ! Y(s) = I(s) , ( 6-9) 

the differential equation is transforzned into an algebraic equation. 

For the reznainder of this chapter, we concern ourselves with the 

algebraic equation in s. 

A P-node network of arbitrarily interconnected resistors, 

inductors, capacitors and ideal transforzners is taken as the znode!. 

It is assuzned that (P A - 1) independent node pairs, forzning the vector 

yE, can be selected frozn the P A accessible terzninals. (If trans-

forzners are so connected that sozne of the accessible node pairs are 

constrainted, the resulting set of unconstrainted node pairs are taken. ) 

Frozn the reznaining nodes, another (P - P A - M) independent node 

pairs, forzning the vector y * , znay be selected whe re M is the 

number of constraints introduced by ideal transforzners. In terzns of 

the coordinates (yE, Y* ) the znatrix equation is forznulated as 
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( [CEE 
C *E 

CEJ l~E 
C** s + R * E ~J 

R** 

+ [~E 
L *E ~:J ! l[;J 

= [:~ l (6-10) 

Equation 6-10 can be transfornled to the fornl of equation 6-1 

bye1inlinating Y* fronl the first equation in equations 6-10. Since 

Y* is selected cOnlp1ete1y outside of the accessible node pairs, we 

have 

1* = 0 (6-11) 

The second equation in the partitioned nlatrix equation, equation 6-10, 

can be written as 

Y* = 

(6-12) 

In order to keep the presentation sinlp1e to read, nlatrices 

with po1ynonlial coefficients are defined as 

[ C J s 2 + [R] s + [L] ( 6-13) 

Then equation 6-12 beconles 

(6-14) 

Substituting equation 6-14 into the first equation in equations 6-10, we 

have 
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(6-15 ) 

COInparing equation 6-15 with equation 6-1, the following 

relation is established. 

( 6-16) 

Equation 6-16 will give the short circuit driving point and 

transfer adInittances of the selected set of accessible node pairs, yE. 

Nothing has been Inentioned about the feasibility and the algorithIn of 

cOInputing the inverse of [H**] , whose ele=ents are polynoInials in 

s. This is treated in the next section. 

6.2 Matrix Operations Over the Field of Rational Functions 

(1) The concept of a field (Chapter 3, reference 31) 

We aSSUIne as given a non-eInpty set F of eleInents 

a, b, c, etc. F is a field if we can define two binary operations on 

its eleInents such that the following laws hold: 

1. Laws of Addition 

(a) The cOInInutative law -

a+b=b+a 

(b) The associative law -

a + (b + c) = (a + b) + c 

(c) The reversibility of addition, i. e., the equation 

a+x=b 

is always solvable in F for x . 



-123-

II. Laws of Multiplication 

(d) The COIrlInutative law -

a.b = b·a 

(e) The as sociative law -

a·(b·c) = (a·b).c 

(f) The reversibility of znultiplication, i. e. , 
the equation 

a· x = b 

is always solvable in F for x, if a =I- 0 . 

(g) The existence of an eleznent different frozn 0 • 

III. Distributive Law 

(h) Ii a, b, c are any three eleznents in F, then 

a.(b + c) = a·b + a·c 

We can see easily that all rational nuznbers forzn the eleznents 

of a field, as do all the coznplex nuznbers. 

(2) Calculation with znatric polynoznials (page 298, reference 
31) 

Since the theorezns in znatrices and the deterzninant theory 

are derived solely on the assuznption that their entries were eleznents 

of a field, we znay apply all the theorezns to the calculations of matric 

polynoznials if we can set up a field whose eleznents contain all poly-

noznials. The doznain of all polynoznials is itself not a field because 

the axiozn of reversibility of multiplication (i. e., the possibility of 

division) is not always satisfied. However, the doznain of all rational 

functions constitutes a field, and the doznain of polynoznials is izn-

bedded in this field with the denozninator polynoznial being equal to one. 
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A rational function is defined as the ratio of two polynomials; 

therefore, 

are rational functions where f l , f2' gl' g2 are polynomials. 

The binary operation of addition is defined as 

The polynomial f is defined as 

f 
f = T 

The binary operation of multiplication is defined as 

The inverse is defined as 

Two rational functions are equal if 

(6-17) 

( 6-18) 

(6-19) 

( 6-20) 

(6-21) 

All matrix theorems apply to matrices whose entries are 

rational functions, which include polynomials as special cases. The 

calculations involving polynomial matrices may lead outside the 

domain of polynomial matrices, however always within the domain of 

rational functions. It is easy to see now that the inverse of a 
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polynomial matrix may very well have entries which are rational 

functions. In fact, the inverse of a polynomial matrix is also a 

polynomial matrix only when the determinant of the matrix is equal 

to a scalar. 

(3) Computation of (Y] in equation 6-16 

From the definition of [HJ in equation 6-13, the 

equation we want to solve, equation 6-16, is a matric polynomial in 

s, the solution of which is in general a mat ric rational function. 

The necessary and sufficient condition that [H**) -1 exists is that 

det I H**( =I- 0, or that [H**] must have a rank equal to its dimen­

sion. It will first be proved that [H**] in equation 6-16 has nonzero 

determinant, and then a method is described to compute [H**]-l.[H*J. 

(a) Existence of 
-1 

H** 

[H**] is the admittance matrix in the set of inde­

pendent coordinates y *. The (P - P A - M) independent node pairs 

selected from the (P - P A) internal nodes plus the grouped node, 

consisting of all the accessible nodes, can always be divided into three 

classes, (yl, y2, y3), such that the partitioned [H**) has the form 

C ll 
0 0 Rll R12 0 Lll Ll2 L13 

[H**l 0 0 0 
2 + R21 R22 0 s + L21 L22 L 23 = s 

0 0 0 0 0 0 L31 L32 L33 

( 6-22) 

and [C
ll

] -I, [ R
22

1-1
, and [L

33
] -1 always exist (Chapters 3 and 5). 

For example, (fig. 6-3) shows a set of yl, y2, y3 that will partition 

[H**] into the form of equation 6-22. [H**] can now be written as 
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[H**] = [H
1
,HZ ,H3 J (6- Z3) 

where 

ellS 
Z + Rlls + Lll 

[HI] = RZI s + LZI (6-Z4) 

L31 

(6- Z5) 

= (6-Z6) 

Since [ell] is positive definite, [HI] has rank d
l 

where d
l 

is the 

nu:mber of co:rnponents in VI, which is also the rank and di:mension of 

[ell]' Likewise, [HZ] and [H
3

] have ranks of d Z and d
3

, respec­

tively. We want to prove that the :matrix [H**l has rank of (d
l 

+ d Z + d
3

), 

or in other words, we want to prove that every colu:rnn vector in rH.] is 
1 

independent fro:m all the colu:mn vectors in [H .] where i, j = (1, Z, 3) 
J 

and i -4 j . 

Let us first take a colu:mn in [HZ] and prove that it cannot be 

a linear co:mbination of the colu:rnns in [HI] • 

colu:rnn vectors of the :matrix rH. J, j = (1, Z, 
J 

Let h
J
' 1 h' d be the 

J j 
3), and assu:rne that 
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(6-27) 

represents the kth column vector in [Hz] being a linear combination 

Z 
of the column vectors in [HI] . From the fact that [HZ] has no s 

terms, we must have 

all 

Gll 
alZ 

0 = 0 (6-Z8) 

0 

aId 
1 

or 

= 0 (6- Z9) 

Since (GIl] is pos i tive definite, equation 6-Z9 is false and the 

assumption in equation 6-Z7 is not valid. This proves that ev ery 

vector h 2k , k = (1, Z, ... , d 2), in [Hz1 is independent from every 

vector in [HI]. In the same way we may prove that every vector 

h 3k , k = (l, 2, ... , d 3) is independent from the vectors in [HI] and 

This proves that the matrix (H*~J has (dl + d Z + d 3) inde-

pendent vectors and hence a rank of (d l + d Z + d 3 ) . 
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(b) Solution of [H**r
l 

. [H*E] 

[H**1 is a matr ix over the field of rational function; 

therefore, the following theorem also applies: 

Theorem 11 (page 79, theorem 4-8, reference 19) 

A square matrix [AJ is nonsingular if and only if 

det IAI of o. In this case 

[ adj A] is defined to be the matrix, such that the ith row 

and jth column element of its transpose is the cofi.atdr 

c .. of A, where c .. is defined as 
lJ lJ 

with M . . 
lJ 

being the determinant of the matrix [A] with 

i
th 

row and jth column deleted. 

Applying theorem 11 to [H**] , we have 

= [F (s)) 
G (s) 

(6- 30) 

If [H**] is a matric polynomial, [adj H**] will also be a 

matric polynomial and det\H** ' will be a single polynomial, G(s) 

From this, we can see that the entries in [H**]-l are rational 

functions with the denominator polynomials equal to det /H**I . 

Equation 6-30 offers a scheme to compute (H**] -1 which in-

volves many determinant evaluations. Since determinant evaluation 

is a long process, especially when the entries of the matrix are 
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polynomials, this workable scheme is not practical, and instead the 

following method will be used. 

Assume that the polynomial det I H**' is known, (Appendix 

A gives a method to evaluate det I H ** ' ). 

G(s) 

then [H**] -1 . [H*J may be written as 

(F (s)J 
G(s) 

Multiplying both sides of equation 6-32 by [H**] , we have 

If we write 

and substitute into equation 6-32 and equation 6-33, we have 

and 

(6- 31) 

(6-32) 

(6-33) 

(6-34) 

(6-35) 

( 6-36) 

From equation 6- 36 we will solve for (Q] , a matric polynomial, and 

then substitute it into equation 6-35 to obtain the solution of 

Both the left hand side and the right hand side of equation 6-36 

are polynomials in s with matrix coefficients; hence we may solve 

for [QJ by equating coefficients for the same power of s • 
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[oJ is a matric polynomial and can be written as 

Writing [H**] and [H*E] in polynomial form as they are 

defined in equation 6 -13, we can expand equation 6- 36 into the form 

(6-38) 

Then by equating the coefficients for the same power in s, we obtain 

the following set of equations: 

n + 2 s terms 

n + 1 
s terms 

sj terms, where n ~ j 3 2 

I 
s terms 

(6- 39) 

( 6-40) 

(6-41) 

( 6-42) 
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SO terms 

( 6-43) 

When det / H** / is a polynomial of nth order, ~ we have, 

from equation 6-39 up to equation 6-43, (n + 3) matric equations to 

solve for (n + 1) unknown matrices ([Qn] , (Qn-l] ... [QJ). If 

[c**] -1 exists, they may be solved starting from the sn+ 2 terms in 

equation 6-39 for (Qn] • which is subsequently substituted into equation 

6-40 to solve for [Qn-l] . The recursive relation to solve for [Qj_ 2J 
from [Qj-11 and [Qd is given in equation 6-41. If [L*"J -1 ex ists, 

the process is reversed by solving first for [Q ] in equation 6-43, 
o 

then [Qll from equation 6-42. The recursive relation that solves for 

[ Q
j
] from [Q

j 
_ a and [Q

j 
_ 2J is also given by equation 6-41. Equation 

6-44 up to equation 6-46 give the equations for (QJ when (C**] -1 exists. 

(6-45) 

(6-46) 
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-1 [ -1 However , very often neither (C**J nor L **] exists 

such as the network in (fig. 6-3). Under such circuITIstances, we 

cannot use equations 6-44, 6-45, and 6-46 derived £rOITI equations 

6-39 up to 6-43 . * Instead, the Y coordinate ITIust be picked such that 

yl 

-, y2 Y = (6-47) 

y3 

and the corresponding [C,,'*] , [R** 1 ' and [L**] ITIatrices becoITIe 

o o o 

000 

( 6-48) 

o 0 0 

r ] -1 ] -1 [) -1 . where l Cll ,[R22 and L33 always eXIst. The existence 

of such a set of coordinates and the topological algorithITI that selects 

them are given in Chapters 3 and 5 . 
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* According to the partition in V , [Q] and [H*E] are similarly 

partitioned: 

= j=O,l, ... ,n (6-49) 

z = C, R, L ( 6-50) 

With the partitioning scheme, each equation in equation 6-39 up 

to equation 6-43 contains three equations. Each of the partitioned 

equations is denoted by two' indices: the first one gives the power of 

s whose coefficients are equated; the second index gives the order of 

sequence due to partitioning. For example in the following equations, 

equation (n + 1, 2) is the second equation partitioned from equation 

6-40 which equates the coefficients of sn + 1 terms. 

(n + 2 , 1) 

(n + 1, 1) 

(n + I , 2) 
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(RZl] [Qjl_lJ + [RZJ [Qj~l] + [LZa [Qj'] + [L ZZ] [Qj
Z

] 

+ [LZ3][Q/J 

Since (c1l1-1 
and [RzzI-

l 

equation (n + Z, 1), and L ~-'i ] , 

. I 
eXlst, [Qn ] can be evaluated froIn 

[ Q; J can be evaluated froIn 

equations (n + 1, 1) and (n + 1, Z), respectively. By substituting 

[Q~], [Q;] and [Q~-'i] intoequations(n, 1), (n, Z)and(n, 3), we 

can evaluate (~J, [Q;,:, ] and [Q~-1. ] . Now we will prove the 

induction process, that knowing 
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(6-51) 

[ Q3 ] [Qn3] 
j + 1 

then by substituting into equations (j, 1), (j, 2) and (j , 3) we can 

cOlnpute [Q/-2] , [Qj:1] , and [Q/] . 

From. equation (j , 1) we m.ay com.pute [Qj~2J as 

( 6-52) 

where everything on the right hand side is known and [C 1 a -1 e x ists. 

From. equation (j, 2) we m.ay com.pute (Qj:d as 

( 6-53) 

where (R2J -1 exists and every term. on the right hand side is known. 
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Finally from equation (j , 3), we compute [Q?J as 
J 

where (L33J -1 ex ists. 

( 6-54) 

This proves that with the selection of VI, V
2

, V 3 coordinates , 

all (Q) (j = 0, 1, ... , n) may be computed. With the substitution 

of [QJ into equation 6- 35 which is further substituted into equation 

6-16, the short circuit driving point and transfer admittances, (Y] 

can be evaluated. 

The steps to· compute (YJ are now summarized: 

The problem is to compute the short circuit driving point and 

transfer admittances between a specified set of node pairs in a net-

work. The network may consist of RLC elements and ideal trans-

formers interconnected into any arbitrary topology. The systematic 

steps of computation are as follows : 

(1) Check to see that the specified set of accessible node 

pairs are independent. If otherwise, remove the 

dependent ones. This may occur when the problem is 

badly specified or some of the node pairs are con-

strainted by transformers. 

(2) Form VE whose components are the specified set of 

independent accessible node pairs. 
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1 2 3 
(3) Select Y , Y ,Y from the network with all node 

pairs used in yE short-circuited. In the presence 

of ideal transformers , the algorithm in Chapter 5 

is used to reduce them to an independent set. 

(4) Compute (Z .. J where Z = (C, R, L) 
1J 

and i,j = (E,1,Z,3) 

(5) Compute det! H** I as a polynomial G(s), where 

[H**] is defined as 

o o 

= o o o 2 
s + o s + 

o o o o 

(6) Solve for [0/1 [o/J (oj3J (j= O,1 , 2, ... ,n)by 

using the recursive formulae in equations 6-52, 

6-53, and 6-54. 

(7) Compute [YJ = ( [HE~ - [HEJ [a] Jg(s) )-~ 

6 . 3 An Example 

-1 s 

A ladder network is used because of its regular topology so that 

for compa,.rison, an independent solution can be obtained with the con-

ventional method described in section 6.1. The network, shown in 

(fig . 6-4), consists of four series branch inductors of equal admittance 

value, L in (henry)-l , and five parallel branch capacitors of equal 

capacitances C. The choice of equal parameter values is purely for 

easier manipulation by hand. When the algorithm is programmed on a 
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L L L L 

lc c. --

T I I T T 
yE fO!J V05 

[V02 J yl = V03 
V04 

y2 = 0 

y3 = 0 

[ CEE J = l~ ~ J [ REE J = 0 [ LEE J . [~ ~] 
fc 0 0 12L -L ~l [cll] = 0 c 0 [ RII J = 0 [Lll } = -L 2L -L 

0 0 C 0 -L 2LJ 

L~ 
0 

-~J [ CEl l ~ 0 [ REI 1 = 0 [ LEI J = 0 

An Example in Ladder Network 

FIGURE 6-4 
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cOJ:nputer , any parameter values may be used; even mutual couplings 

between branches are allowed. vOl and v 05 are the two accessible 

terminal-pairs. The computation now foll,?ws the steps summarized 

at the end of section 6. 2. 

(1) vOl' v05 are independent node pairs. 

r01] yE= 
v05 

( 2) 

( 3) v
02 

VI = v03 

v
04 

V
2 

= 0 

V
3 = 0 

( 4) 
[GEE] = [: ~ 
(~El = 0 

(LEE] = [: ~ 
G 0 0 

( GIl] = 0 G 0 

0 0 G 

( 6-55) 

(6-56) 

(6-57) 

to be 
continued 
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[RIIJ = 0 

2L -L 0 

CLllJ = -L 2L -L 

0 -L 2L 

( 6-57) 

[CEl] 0 cont. = 

[REI] = 0 

[Ll~ T = [-: 0 

:L] [LEI] = 
0 

(5) det {[Cll] s2 + (LuJI = c
3 

s6 + 6LC
2 

s 
4 

+ lOL2Cs 2 + 4L3. (6-58) 

(6) Solve for [Qd ' [Q5J ' [Q4] ... [QoJ 

[Q6 ] = [Cll ] -1 C
3 [~J = 0 

o 

[Q5] = [ell] -1 (e' rj.J + 0 [IE] - [o~J ~ci]) = 0 

-L 0 

[Q4] = [Cll] -1 (c3 
0 0 + 0) = 

o -L 

, 

o o 

( 6-59) 

to be 
continued 



[QJ 

[ Q1] 

[QoJ 

-14Z-

-L 0 ZL -L 0 _CZL 0 

= [Cll] -l( 6LC Z 
0 0 -L ZL -L 0 0 ) 
0 -L 0 -L ZL 0 _CZL 

-4L ZC 0 

= _LZC _LZC 

0 _4L ZC 

= 0 

-L 0 ZL -L 0 _4L ZC 0 

= [Cll] -1 ( 10L Zc 0 0 -L ZL -L _LZC _LZC 

0 -L 0 -L ZL 0 
Z 

-4L C 

_3L 3 _L3 

= 
_

ZL
3 _

ZL
3 

(6-59) 

_L3 _3L 3 cont. 

(7) Compute r yJ 

+ (QZ] 5
Z + CQol) (25

7 + 6LC
Z

5
5 + 10L ZC5

3 

+ 4L 3 5 )-1 

( 6-60) 

) 
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With the values of [Q4] , [QZ] , [QoJ from 

equation 6-59 substituted into equation 6-60, 

and putting everything under the same denomi-

nator, we have 

[yJ : (e',7 + 6LeZ,5 + IOLZe,' + 4L,,)-I([ ~4 :j ,8 

+ LL:' 7~ej ,6 + [5L:e
z 

15L~ej ,4 

+ [IO~'e lo:,rz + ~~: -~j) (6-61) 

Then, 

C 4 s 8 + 7LC 3s 6 + 15L ZCZs 4 + 10L 3Cs Z + L 4 

C
3

s 
7 + 6LC

2
s

5 + 10L
2
Cs

3 + 4L \ 

Y ZZ = Y ll 

To check the solution obtained in equation 6-6Z, 

the same network is evaluated using the recursive 

function F in equation 6-4. 

( 6-6Z) 
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= £ s + 
1 

= 

1 
- s + 
L 

cs + 
1 -s 
L + 

c s 

1 

1 

1 

+ 1 

1 -s + L 

c s 

€4sB + 7LC 3 s 6 + 15L 2Cs 4 + 10L 3Cs 2 + L 4 

c 3 s 7 + 6LC
2

s
5 + lOL

2
Cs 3 + 4L3s 

1 

+ L -s 

( 6-63) 

The expression computed in equation 6-63 agrees with the 

expression for Yll in equation 6-62. 
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CHAPTER 7 

THE COMPUTER PROGRAM 

The first part of this chapter is to introduce the concept of 

symbol manipulation as the most universal data processor, followed 

by a brief descr iption of a currently available symbol manipulating lan-

guage, namely, the LISP. The final section of the chapter presents the 

program organiz ation of the coordinate selection algorithm in terms of 

symbol manipulation on list structures. The actual LISP coding appears 

in Appendix B. Examples of the LISP program output are included in 

Appendix C . 

7. 1 Symbol Manipulation as the Universal Processor 

The Oxford dictionary (The Concise Oxford Dictionary, fourth 

edi tion) gives the following definition for " Symbol": 

1. Things regarded by general consent as naturally typi­
fying or representing or recalling something by pos­
session of analogous qualities or by association in 
fact or thought. 

2. Mark or character taken as the conventional sign of some 
object or idea or process, e. g. , the astronomical signs 
for the planets, the letter standing for chemical elements, 
letter of the alphabet, the mathematical signs for addition 
and infinity, the asterisk; hence or congo 

Symbols are used to represent ideas, concepts and objects. 

They may stand for themselves or they may be the name;sof some ob-

jects. The word Bridge in the sentence 

" There is a B in bridge. " 

stands for its elf, and the same word Bridge in the sentence 

" Washington Bridge is in New York. " 
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denotes the physical structure known as bridge. We will classify SYITl­

boIs that stand for theITlselves as atoITlic sYITlbols; and the others, naITle 

syInbols. All sYITlbols are different and their associated ITleanings are 

defined by the person who created theITl. When a set of sYITlbols is 

us ed as the cOITlITlunication between two parties, the sYITlbol ITleaning 

ITlust be understood by both parties . 

In forITlal ITlatheITlatics symbols are used to represent concepts, 

objects and operations. They are given rigorous definition so that their 

subs equent appearances with other syInbols can be appropriately inter­

preted. A postulate or a theoreITl in ITlatheITlatics is a string of defined 

sYITlbols, for exaITlple, the equation, 

2 + 3 = 5 (7- 1) 

is a string of five sYITlbols whose associated ITleanings ITlust b e under­

stood before the whole string of theITl c an be interpreted. Spoken language 

is also cOITlp osed of a set of defined sYITlbols. 

When the cOITlputer is used to solve a numerical probleITl, the 

l e tter is transforITled into the sYITlbol dOITlain that consists of numerical 

numbers and arithITletic operations. The process of cOITlputing the end 

result froITl the input data can be interpreted as the transforITlation of 

input data syInbols into solution symbols. The transforITlation is speci­

fied by a sequence of arithITletic operations which are theITlselYes repre­

sented by syInbols . The string of sYITlbols that represent the cOITlputing 

process, naITlely the prograITls, farITls an object that is subject to trans­

forITlation just like the string of sYITlbols that repres ents the input data 

to the numerical probleITl. This is the basic idea of autoITlatic prograITlITling, 



-147-

which has internally stored programs that can be modified as well as 

the n=erical data the program works on. 

When the problem is not n=eric, such as the analytical evalu­

ation of an integral, the simulation of h=an thought process, the study 

of biological system behavior, etc., we cannot use the symbol manipu­

lation of arithmetic operation since in these problems the symbols used 

to describe the objects are not in the class of n=erical n=bers. For 

example, 

J cos xdx (7-2) 

and 

HE SAW THE CAT. (7-3) 

are merely strings of symbols associated to each other in some special 

way. The processes that operate on these symbols transform them into 

different strings of symbols that represent the results, such as 

sin x (7-4) 

and 

HE WAS SCARED. (7- 5) 

We can say in general that any system whether it be mathematical, phy­

sical, behavioristic or philosophical, which can be described by a set of 

defined symbols and their associates - numerical n=bers, arithmetic 

operations, topological propoerties or plain English description - can be 

studied or simulated as symbol manipulation. How the input symbols 

should be manipulated to give the correct output symbols constitutes 
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the algorithm. pertinent to that particular syste:m under study or sUnu­

lation. The present day co:mpiler is a sy:mbo1 :manipulating process that 

transfor:ms the co:mpiler state:ments which are strings of sy:mbols into 

the :machine progra:m which is also a string of sy:mbols. It is not hard 

to see that sy:mbol :manipulation is indeed the :most universal processor. 

Before describing a sy:mbol :manip ulating processor in the next 

section, so:me of their i:mportant characteristics are discussed here. 

(1) The processor :must have the ability to represent and 

differentiate a large nu:mber of sy:mbo1s. 

(2) The processor :must be able to associate any arbitrary 

nu:mber of sy:mbols together in any arbitrary :manner. 

We have the concept of a string of sy:mbo1s that itself 

for:ms an entity and can be represented by a na:me sy:m­

bol which can again be one of the ele:ments in so:me other 

string of sy:mbols. This can best be described by the 

recursive definition of sy:mbol: 

A sy:mbol can be either an ato:mic sy:mbol or 

a na:me sy:mbol. 

A na:me symbol is a string (or list) of sy:mbo1s. 

The arbitrary sy:mbo1 association, called the 

list structure, is defined as a list of ele:ments 

which can be ato:mic sy:mbols or list structures. 

(3) The processor :must be independent of the data and, for 

convenience, it allows recu rsive definition of functi ons 

such as 

n! = n. (n - I) ! (7-6) 
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7.2 LISP'< 26) 

The LISP is one of the currently available computer languages 

for symbol manipulation. It has been coded for the IBM 704, 709 and 

7090 series of machines. This section will only outline some of its 

characteristics. A detailed method of coding and implementation can 

* be found in its manual. 

* 

(l) Atoms or atomic symbols: 

An infinite set of distinguishable atomic symbols are 

represented by strings of capital English letters and 

digits . For example, 

A 

AA (7-8) 

CZ5 

are all atomic symbols . 

(2) S - expressions (S stands for symbolic): 

An S - expression is either an atom or an ordered pair, 

the terms of which may be atomic symbols or S - expressions. 

If we use If 11 to form pairs, examples of S - expressions 

are 

(A. B) (7-9) 

{AB· (A . B» (7-10) 

The latest is LISP 1. 5 Programmer's Manual, July 14, 1961, dis-
tributed by the Computation Center and Research Laboratory of 
Electronics, Massachusetts Institute of Technology. 
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Both terrns in equation 7-8 are atomic symbols. The 

first term in equation 7-10 is atomic, while the second 

term is an S - expression. 

With the definition of S - expressions given above, a 

list of symbols Ml, M2 .•• Mn as denoted by 

(Ml, M2 ..• Mn) (7-11) 

is represented by the S - expression 

(Ml . (M2 . (. . . (Mn· NIL) . • . ») (7-12) 

where NIL is an atomic symbol used to terminate lists. 

(3) S - functions: 

All transformations on S - expressions are represented 

as functions applied on the S - expressions to be trans­

formed as their arguments. These S - functions are 

written in a conventional functional notation. In order 

to distinguish the expres sion representing functions 

from S - expressions, a sequence of lower case letters 

and digits is used for function names and variables. 

Brackets are used to enclose the arguments and argu­

ments are separated by semicolons. Examples are 

car[x] (7-13) 

cdr [cons [x; (A' B)] ] (7-14) 
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In these expressions, any S - expressions that occur 

stand for the:mselv es such as the (A · B) in equation 7-14. 

(4) Propositional expressions and predicates: 

A propositional expression is an expression whose pos-

sible values are T (for truth) and F (for falsity). 

Typical propositional expressions are 

5 > 8 (7-15) 

167 is pri:me (7-16) 

A predicate is a function whose range consists of the 

truth values T and F. 

(5) Conditional expressions: 

A conditional expression is used to express the depend-

ence of an object on so:me propositional expressions. A 

conditional expression has the for:m 

p ~ e ) 
n n 

(7 - 17) 

where p's are propositional expressions and e ' s are 

any kind of S - expression. Equation 7-17 :may be read 

as " If PI then e l , otherwise if P2 then e 2 .•• , other­

wise if p then e . " 
n n 

Equation 7-18 is an exa:mple of the use of conditional 

expression in defining the functional d epend ence of y 

on x in (fig. 7-1). 

y[xJ = (x<-l~Oj x~-1 -+- 1 + Xj x~O "" 1) (7-18) 
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-/ 

A Function Describable in Conditional Expression 

y(x) = (x < -I ... 0; -1 ~x < 0~-1 +x; T-+ 1) 

FIGURE 7 -1 
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(6) Recursive function definitions : 

By using conditional expressions, functions may be 

defined by formulae in which the defined functions 

occur. For example, the factorial of an integer, n, 

may be written in S - function as factorial [n J, then 

we may define it as 

factorial [n] = (n = ° -+ 1; T~ n· factorial [ n- 1 J) 
(7-19) 

(7) Elementary S - functions and predicates: 

There are five elementary S - functions and predicates 

from which all other S - functions may be composed. 

(a) atom 

atom [ x] has the value of T or F, 
accordingly as x is an atomic symbol 
or not. 

(b) eq 

eq [ x; y J is defined if and only if either 
x or y is atomic. eq [ x; y J = T if x 
and yare the same symbol, and eq [ x; y ] 
= F, otherwise. 

(c) car 

car [ x J is defined if and only if x is 
not atomic, and car [ x J equals to the 
first term in the S - expression pair x. 
Thus 

(7-20) 

(d) cdr 

cdr [x J is defined if and only if x is 
not atomic, and cdr [ x] equals to the 
second term in the S - expression pair, 
x. Thus 
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(7-21) 

(e) cons 

cons [x; y ) is defined for any x and 
y, and the result is the S - expression 
(x· y). Thus 

The above description of LISP is by no means complete. For 

a full insight into its working principle, its programmer's manual (26) 

should be consulted. The next section will describe the program organi-

zation of the coordinate selection algorithm presented in Chapters 3 - 6. 

7.3 Program Organization 

A program is written to select the set of nonsingular coordinates 

for a network of arbitrary topology consisting of RLC elements, ideal 

transformers, voltage sources and current sources. The complete pro-

gram is given the name of an S - function, "corsel", and its argument 

is the S - expression that describes the network, say ''NETWORK''. After 

applying "corsel" to "NETWORK", the S - expression "NETWORK" is 

transformed into a different S - expression that lists the selected Node 

Pair Co~dinates, say "NPCORD". Then we have 

corsel [NETWORK) = NPCORD. (7 - 23) 

The program organization that performs the transformation in 

equation 7-23 is divided into three aspects, namely, the S - expression 

format of NETWORK, the S - expression format of NPCORD and the 

S - function corsel (for ~o~dinate Selection). 
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(1) The S - expression of NETWORK: 

NETWORK is represented as an S - expression in the 

form of 

NETWORK = (CLIST, RLIST, LLIST, TLIST, 

VLIST, ILIST) (7-23) 

where the equivalence of ", II in representing a list 

of elements and ". II in representing a pair is given 

by equations 7-11 and 7-12. The individual elements 

in equation 7 - 23 are defined as follows: 

CLIST: 

RLIST 

Capacitor list. It is the name of the S -
expression whose elements represent the 
capacitors in the network. 

CLIST = (Cl, C2 .•. CBC) (7-24) 

The ele~tnts of CLIST are also S - expressions 
and the i capacitor, Cl, has the form 

Cl = (nl, n2, VCl, QCl). (7-25) 

The elements in Cl are atomic symbols. nl, 
n2 are the symbols used to represent the two 
terminal nodes the capacitor, Cl, is connected 
to; VCl is the atomic symbol that represents 
the capacitance of Cl; QCl i s the atomic sym­
bol that represents the initial condition of Cl. 

Resistor list. It is the name of the S - expression 
whose elements represent the resistors in the 
network. 

RLIST = (Rl, R2 ..• RBC) (7-26) 
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TLIST: 
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where the general term RI has the form, 

RI = (nl, n2, VRI). (7-27) 

In equation 7-27, nl, n2 are the terminal 
nodes of RI, and VRI is the admittance value 
of the resistor RI. 

Inductor list. It is the name of the S - expression 
whose elements represent the inductors in the 
network. 

LLIST = (Ll, L2 .•. LB
L

) (7-28) 

where the general term Ll has the form, 

Ll = (nl, n2, VLl, ILl). (7 - 29) 

In equation 7-29, nl, n2 are the terminal nodes 
of Ll; VLl, its inductive admittance; ILl, its 
initial condition. 

Transformer list. It is the name of the S -
expression whose elements are the transformers 
in the network. 

TLIST = (Tl, T2 . .. TB
T

) (7-30) 

Th . th t f Tl ' h t' d b e 1 rans ormer is c arac erlze y 
its windings, 

Tl = (WIl, Wl2 •.• Wlml) 

The /h winding of the ith transformer is 
characterized by 

(7-31) 

WIJ = (nl, n2, VWIJ). (7-32) 
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In equation 7-32, nl, n2 are the terminal nodes 
of the winding Wll and VWIJ is its relative turns 
ratio. 

Voltage source list. It is the list of voltage 
sources in the network. 

VLIST = (VI, V2 ••• VBV) (7-33) 

VI = (nl, n2, VVI) (7-34) 

In e5lt~ation 7-34, nl, n2 are the terminal nodes 
the i voltage source, VI, is connected to, and 
VVI is the name of the S - expression such that 
when applied on by "evalsf" (for Evaluate Source 
Function) will give the value of VI at time~ t, 

evalsf [ VVI; t] = value of VI at time t. 

(7-35) 

Current source list. It is the list of current 
sources in the network. 

ILIST = (11, 12 .•. IB
I
) (7-36) 

II = (nl, n2, VII). (7 - 3 7) 

In equation 7 - 3 7, nl, n2 are the terminal nodes 
of II, and VII is the name of the S - expression 
such that 

evalsf [ VII; t] = value of II at time t. 

(7-38) 

We can see that any arbitrary network consisting of 

linear time independent RLC elements, ideal transformers, 

time dependent voltage sources and current sources, can 
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be described completely b y the S - expression in 

equation 7-23. It w ill only be a simple modification 

to include nonlinearities in RLC elements. All w e 

hav e to do is to replace the atomic symbols in equations 

7-24, 7-27 and 7-29 that g ive the element v alue s by S -

exp ressions specifying the nonlinearities. For example, 

a nonlinear capacitor, CI, will be represented as 

CI = (nl, n2, NCI, QCI), (7-39) 

where NCI is the S - expres s ion such that 

evalnl [NCI; P 1; P2; . . • ] (7 -40) 

= capacitance of CI evaluated at the 

parameters PI, P2, ••• 

" evalnl" is the S - functi on that evaluates the value of 

::o~inear elements at the specified parameters. 

(2) The S - expression of NPCORD: 

NPCORD is the S - expression that represents the 

Node Pair Coordinates. 

NPCORD = (INDNP, DEPNP) (7-41) 

In equation 7-41, INDNP is the S - expression of the 

independent set of n o de pairs; DEPNP is the S -

exp res sion of the dependent node pairs introduced b y 

ideal transformers. They are defined as foll ows: 



-159-

INDNP = (VZ, VI, V2, Y3) (7-42) 

DEPNP = (EQ1, EQ2, • . . EQM) (7 - 43) 

In equation 7-42, YZ is the S - expression containing 

o 1 
the components of V ; Y1, the components of Y ; Y2, 

2 3 
the com.ponents of Y ; Y3, the com.ponents of Y. The 

components of yO, y1, y2, y3 have the sam.e form. _ 

they are pairs of two atom.ic sym.bo1s representing the 

term.inal nodes of the node pairs. For exam.p1e, the 

coordinates 

yO {13] 
v 32 

(7-44) 

is represented in S - expressions as 

VZ = ((N1· N3), (N3· N2)). (7 -45) 

In equation 7-43, the general term. EQI is the S -

expression that represents the linear equation which 

1 · ° h .th d d d' dO e lm.lnates tel epen ent no e pair coor lnate. 

EQI = (DNPI, EXPI) (7-46) 

DNPI in equation 7-46 is the nam.e of the ith Dependent 

Node Pair, and EXPI is the linear expression in the 

independent node pairs to which DNPI is equal. 

EXPI = (EXPYZ, EXPY 1, EXPY2, EXPY3) 

(7-47) 
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The S - expression, EXPI, is divided into four com­

ponents according to the classification of the independ­

ent node pairs in its expression. Each sub-expression 

is a list of pairs, the first term of which is the coeffi­

cient and the second term is the S - expression of the 

independent node pair. For example, a network has 

only one dependent node pair, (N4' N5), and the set 

of independent node pairs, 

VZ = ((NI'N3), (N3'N2» 

VI = NIL 

V2 = NIL 

V3 = ((N2' N4), (N6' N4». 

(7 -48) 

Let the linear equation expressing the dependence be 

(N4' N5) = -4(Nl' N3) + 3 ' 3(N6' N4) 

then DEPNP defined in equation 7-43 becomes 

DEPNP = (E01) 

EOl = ((N4' N5), EXP1) 

EXPl = (((-4, (Nl'N3»), NIL, NIL, 

((3·3, (N6'N4»» 

The complete S - expression for NPCORD of the 

network is given by 

(7 -49) 

(7-50) 

(7-51) 

(7-52) 
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NPCORD = (( ((Nl· N3), (N3· N2» 

NIL, 

NIL, 

( (N2 . N4), (N6· N4) ) ) 

(((N4·N5), (((-4, (Nl·N3») 

NIL 

NIL 

((3'3, (N6·N4»»») 

(7-53) 

(3) The S - function corsel 

The S - function that performs the corrdinate selection 

from a com.pletely specified network, NETWORK, is 

defined as "cors el ". 

The S - function "corsel" is defined in terms of sev-

eral sub - S - functions. They will now be defined. 

(a) vnpgen [ NETWORK J = NPLIST (7 - 54) 

vnpgen (Voltage Node Pair Generator) is the 
S - function whose argument is the S - expres­
sion that specifies the network and whose value 
is NPLIST (Node Pair LIST). NPLIST is the 
S - expression whos1. ele~en1:f; arlt lists of com­
ponents in the yO, V , V , r, V coordinates. 
The algorithm for selection is described in steps 
(0) - (4) just prior t1 eq:t-tio~ 5-6 in Section 5.3. 
In the selection of V , V , v-', the criterion that 
minimizes the round- off errors in subs equent 
matrix computation as described in Sections 3.5 
and 3. 6 is also incorporated. 

NPLIST = (VZLT, VlLT, V2LT, V3LT, V4LT) 

(7-55) 
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lqgen [ TLIST; NPLIST J = LQLIST (7 - 56) 

lqgen (Linear eQuations GENeration) is the 
S - function with two argwnents. The first 
argwnent is the S - expression, TLIST, which 
as defined in equations 7-30, 7-31, 7-32, spec­
ifies all the transformers and their connections 
in the network. The second argwnent is NPLIST, 
which is the S - expression computed from equa­
tion 7-54. The value of lqgen is LQLIST (Linear 
eQuation LIST). LQLIST is the S - expression in 
the form of a list of sub - S - expressions each of 
which represents a linear equation with the node 
pairs in NPLIST as variables. 

LQLIST = (LQl, LQ2, ••• LQM) (7 - 5 7) 

The S - expression LQI that describes the ith 
linear equation is defined as follows: 

LQI = (LHSLQI, RHSLQI) (7-58) 

In equation 7-58, both LHSLQI and RHSLQI have 
the same form. They are the S - expressions 
that represent the Left Hand Side and Right Hand 
Side of the equation, LQI. - --

LHSLQI = (EXPVZ, EXPV1, EXPV2, 

EXPV3, EXPV4) (7-59) 

where each component of LHSLQI, say EXPV2, 
is an S - expression in the form of a list of pairs. 
The first term in the pair is the coefficient of 
the variable in the linear form and the second 
term in the pair is the name of the variable which 
is a node pair in, say the V2LT in NPLIST. F~ 
e::ttm~e, t,fe network in (fig. 5-3-a) has yO, V , 
V , V ,V selected as shown in (fig. 5-3-b, c, 
d, e, f) then its NPLIST, as defined in equation 
7-55 has the following S - expressions as its 
elements : 
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VZLT = ((NZ - N7)) 

VILT = ((NZ - N3), (NZ - N5), (NZ - N6) 

V2LT = ( (N2 - N7) ) 
(7-60) 

V3LT = ( (NZ - Nl) ) 

V4LT = ( (N3 - N4) ) 

NZ is the atomic symbol for node zero and Ni 
is the atomic symbol for node i (i being numeric)_ 

The network has two transformers, each with 
three windings, therefore introducing four linear 
equations as given in equations 5-32_ The LQLIST 
of this network as defined in equation 7-57 has the 
follow ing S - expressions as its elements : 

LHSLQl 
A , 

( (NIL, ((1.0, (NZ - N3))), NIL, NIL, NIL), 
n 

(NIL, NIL, NIL, ((n 12, (NZ - Nl), NIL) ) 
\ 11 / 

RHSLQl 

( (NIL, NIL, NIL, NIL, ((1. 0, (N3 - N4) ) ) ), 
n 

(NIL, NIL, NIL, ((~, (NZ - Nl), NIL) 
n

11 
( (NIL, ((1.0, (NZ-N5), (-1. 0, (NZ - N3) ) ), 

NIL, NIL, ((-1. 0, (N3 - N4»)) ), 
n n 

(((~, (NZ-N7»), NIL, ((-~, (NZ-N7»), 
n

21 
n 21 

NIL, NIL» 

LQ4 = ((NIL, ((1.0, (NZ-N6», (-1.0, (NZ-N5))), 

NIL, NIL, NIL), 
n 

(((~, (NZ-N7»), 
n

2l 
NIL, NIL») 

n 
NIL ((-~, (NZ - N7»), 

n 2l 

(7 - 61) 

For ease of reading, the expressions in equa­
tions 7-61 that represent the left hand side of 
the equation are underlined_ 
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sedv [ LQLIST J = DEPNP (7-62) 

sedv (SElect Dependent Variables) is the S -
function that computes the list of dependent 
node pairs, DEPNP from the list of linear 
equation, LQLIST. LQLIST is the S - expression 
computed from equation 7-56 and DEPNP is the 
S - expression defined in equation 7-43. sedv 
is defined according to the algorithm in equation 
5-25. 

rednp [NPLIST; DEPNP J = INDNP (7-63) 

rednp (REmove Dependent Node Pairs) is the 
S - function thatremoves the dependent node 
pairs from NPLIST which is the S - expression 
computed in equation 7-54. The dependent node 
pairs are given as DNPI in effilation 7-46 which 
is the S - expression of the i term in DEPNP 
as defined in equation 7-43. The value of rednp 
is the S- expression, INDNP that specifies all 
the final s elected independent node pairs. The 
definition of INDNP is given in equation 7-42. 

With the functions defined in equations 7-54, 
7-56, 7-62, the S - function corsel is now de­
fined in terms of the dummy variable k: 

corsel [kJ = 
cons [ 

rednp [ vnpgen [ k J; (7-64) 

s edv [ lqgen [ caddddr [k]; vnpgen [ k JJ JJ; 
sedv [ lqgen [ caddddr [k J; vnpgen [ k J J J J 

In equation 7-64 cons is the elementary S -
function defined in equation 7 - 22, and the S -
function caddddr is defined as 

caddddr [x J = car [ cdr [ cdr [ cdr [ cdr [x JJ JJ J 

(7-65) 
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With the S - function corsel in equation 7-64 defined in ter:ms 

of the S - functions vnpgen, lqgen, sedv and rednp, there still re:mains 

the task of defining the:m in ter:ms of the five ele:mentary S - functions 

described in Section 7.2(7). Their definitions are given in Appendix B. 

It is assu:med that the LISP working principles are the prerequisite 

before tracing the definitions in Appendix B. 

Since this thesis is pri:marily concerned with the algorith:m of 

selecting a set of nonsingular coordinates suitable for various digital 

co:mputations on the network, the detailed :method of i:mple:menting the 

algorith:m by using sy:mbol :manipulating language is not included. The 

purpose of this chapter is to illustrate the use of sy:mbol :manipulation 

as a universal data processor. 
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CHAPTER 8 

CONCLUSION 

In this thesis, an algorithnl expressed in ternlS of network 

topology has been derived to select an independent set of coordinates. 

The ordinary differential equation in the chosen coordinates describes 

the electrical network of RLC elements, ideal transfornlers, ideal 

voltage- and current-sources, which is topologically analogous to a 

large class of systems with linear constant coefficient parameters . 

The algorithm insures that parameter matrices requiring inversion 

will always be nonsingular in the application of conventional methods 

of numerical analysis to integration nlethods for transient response 

calculations and matric polynomial manipulations for driving point 

and transfer admittance determinations. A modified Turing's 

criterion (20) is incorporated in the algorithm to minimize the 

round-off errors in matrix operations. 

Because of the non-numeric nature of the algorithm, a symbol 

manipulating language such as the LISP (20) (coded on IBM 7090 

computers) is chosen to implenlent it. The LISP is found efficient 

in describing the algorithm in which the search of a path in a network 

of arbitrary topology and the manipulations of linear equations intro­

duced by ideal transfornlers are programmed as operations on list 

structures. The program has been successfully applied to the net­

works in Appendix C of various complexity. For the example on the 

plate analogy of a delta wing, the network of thirty nodes and fifteen 

two-winding transformers took about ten minutes to give the set of 



-167-

independent coordinates and almost exceeded the core mem­

ory capacity of 32K on the 7090. This indicates the need of 

more efficient digital computers oriented towards non-numeric 

computations . 

Section 8. 1 extends the algorithm to networks with non­

linear elements and coupled branches. Alternative methods of 

evaluating the matrix expressions are discussed in Section 8.2. 

Some related research topics are outlined in Section 8 . 3. 

8. 1 Nonlinear Elements, Coupled Branches and Nonbilateral Elements 

(1) Nonlinear Elements 

In the preceding chapters, the selection of co­

ordinates and the subsequent formulation into the canonical 

form for numerical integration (equations 4- 28) as sumes that 

all RLC elements are linear, time independent and positive. 

These methods can, however, be extended to nonlinear systems. 

The nonlinearities in element values introduce nonlinear 

parameter matrices in equations 4-28 . Although the analytical 

treatment of nonlinear mechanics is difficult and rather re­

stricted, it is a simple matter to numerically integrate a non­

linear differential equation (10). From the initial state of the 

system, at t = 0, enough parameters are available to compute 

all the nonlinear element values. The method of numerical 

integration assumes that the system remains linear during 

the time interval of t:.t and evaluates the state of the 
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system at tiIne t = fit. Due to the change of state, all nonlinear 

elements are r~-evaluated to correspond to the new set of parameters, 

and hence compute the state of the system at t = 2f1 t. The approxi-

mati on is to replace the continuous nonlinear dependence by the 

staircase-like function as shown in (fig. 8-1). It is evident that the 

closer the intervals, the better is the approxiInation; however, it is 

difficult to estiInate the absolute error introduced due to such an 

approximation. By using the same method, equations 4-28 with non-

linear elements can be integrated step by step; and at each step all 

nonlinear matrices are adjusted to correspond to the change of state, 

provided that [Cll] -I, [R22] -I, and [L33J -1 remain nonsingular 

'at all tiInes. These conditions are satisfied if 

(a) nonlinear elements always have values greater 

than zero; or 

(b) if the nonlinear element does become zero, then 

the removal of which must not effect the yO, yl, 

y2, y3, y4 coordinates classification. For 

example, the disappearance of anyone capacitor 

in the circuit in (fig. 8-2-a) will not effect the 

coordinates classification, and the removal of 

anyone capacitor in (fig. 8-2-b) decreases d
l 

by 1. 

If some elements are negative in value and others positive, it is not 

possible to conclude on the existence of [CIJ -1, [R22J-I , and 

(L33J -1. However, if all elements of one type have negative values, 

then (c 111 ' [R22] , or [L33] will be negative definite and also 
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The Staircase App roximation of a Nonlinear Element, 

Z (x) 

FIGURE 8-1 
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(a ) The Removal of Any One Capacitor Will Not Change the 
'ode-pair Coordinate Classification 

(b) The Removal of Any One Capacitor Will Alter the 
Node - pair Coordinate Clas 8 ification 

FIGURE 8-2 
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possess inverses. Therefore, we can say that if the nonlinear 

elem.ents always satisfy conditions (a) or (b), the m.ethod of coor-

dinate selection developed for linear system.s is also applicable with 

the additional work of adjusting the nonlinear m.atrices in equations 

4-28 at every interval. (If higher order num.erical integration 

form.ula (10) is used, adjustm.ents are to be m.ade even at m.id-interval 

points,) 

(2) Coupled Branches 

When branches are coupled, the adm.ittance m.atrices 

[CJ ' (~J ' and [LBJ are no longer diagonal. This condition 

does not effect the com.putation of m.atrices used in equations 4-28. 

Equations 4-22, 4-23, and 4-24 give the adm.ittance m.atrices trans-

form.ation. It is irrelevant whether [CJ ' [~] , and [LBJ are 

diagonal or not. At this point, it is also irrelevant even if the branch 

m.atrices are not sym.m.etrical; active elem.ents like triodes or tran- ·-

sistors can oftenbe represented in equivalent circuit as branches with 

unsym.m.etrical branch m.atrix (pages 44-48, reference 12). 

(3) Non-bilateral Elem.ents 

Elem.ents with different forward and backward character-

istics and elem.ents with properties depending on their past history 

such as the hysteresis loop are all special cases of nonlinear elem.ents. 

The discussions on nonlinear elem.ents apply directly. 

8.2 Alternative Methods of Evaluating Matrix Expressions 

• 0 1 2 3 4 
After the coordinates are selected as Y , Y , Y , Y , Y , then 

with all y4 and som.e of yl, y2, y3 elim.inated due to transform.er 
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constraints, we set up the equations to be integrated in the for:m of 

equations 4-28. The evaluation of the :matrix expressions in equation 

4-28 involves :matrix :multiplication and :matrix inversion. Although 

these :matrix operations are co:m:monly coded as subroutines so that 

one can call for their service readily, alternative ways of evaluating 

these :matrix operations are worth the consideration under special 

circu:mstances. 

(l) Sparsely Distributed Matrices 

When an :m x n :matrix is stored as n consecutive colu:mns 

each with :m ele:ments, (:m x n) :me:mory cells are used irrespective 

of the ele:ment distribution within the :matrix. If :most of its ele:ments 

are nonzero, this is a1:most the best way to store :matrices in co:m­

puters. However, if the :matrix were only sparsely distributed such 

that a larger portion of its ele:ments is equal to zero, the colu:mnwise 

storage of a :matrix would be wasteful in :me:mory utilization and 

co:mputing ti:me. In this case, :matrices :may be stored by specifying 

only their nonzero ele:ments, each of which is specified by three 

quantities: the row index, the colu:mn index, and the value. In net­

works with a large nu:mber of nodes, each node is usually only con­

nected to a few other nodes through RLC ele:ments. The :matrices in 

equation 4- 28 for such networks are sparsely distributed, and the 

sche:me of storing only nonzero ele:ments in the co:mputer deserves 

consideration. 

(2) Use of Relaxation Methods 

If the network is such that all the :matrices in equation 

4-28 are sparsely distributed, we :may store only the nonzero ele:ments. 
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However, even if [c 111 [R2zJ ' and [L3J are only sparsely 

distributed, their inverses are in general full matrices. In order 

to retain the virtue of efficient memory utilization, these matrices 

are not to be inverted, and instead equations 4-28 are evaluated by 

relaxation methods (33) to which the following features are related. 

(a) Convergence 

When the Gauss-Siedel (34) relaxation method 

is used, convergence is assured whenever the 

matrix is positive definite. The choice of 

coordinates in Chapter 3 (that minimizes the 

round-off error) will, in general, also give 

the fastest convergence rate. 

(b) Trial Solution 

When the relaxation method is used, a trial 

solution is usually assumed from which the 

method will iterate towards the actual solution. 

If the trial solution is close to the actual 

solution, only a few steps of relaxation would 

converge on the final solution. When equations 

4-28 are integrated, variables are continuously 

varying provided that there are no discontinuities 

such as step changes in forcing function; then 

the values at time t can be used as the trial 

solution J for relaxing the values at time t + .6 t 
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(c) Nonlinearities 

When the network has nonlinear [C 1) 
(RzzJ ' and [L33J r.natrices which are 

to be adjusted at every integration tir.ne 

interval, the use of relaxation r.nethods 

does not require additional cor.nputations 

in evaluating equations 4- Z8. Ii [C 11J -1, 

] -1 [J-l (RZZ ,and L33 are used, they 

have to be inverted at every tir.ne interval, 

whereas if the network is linear they would 

only be inverted once. This feature suggests 

that the relaxation r.nethod is r.nore suitable 

than the r.natrix inversion r.nethod for non-

linear syster.ns. 

8. 3 Related Research Topics 

(1) Network Synthesis in Terr.ns of More General Topological 
Configurations 

This thesis has presented a syster.natic way of analyzing 

networks with RLC eler.nents, ideal transforr.ners, ideal voltage- and 

current-sources interconnected in any arbitrary topology. The 

algorithr.n is rigorous and can be prograr.nr.ned on digital cor.nputers. 

The r.nost closely related subject is to extend the approach to network 

synthesis in r.nore general topology other than the usual ladder or 

lattice configurations. Topological properties such as the nur.nber of 

nodes, the nur.nber of branches and the physical layout of eler.nents 
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may be of practical interest. It is desirable to have control over 

these parameters by finding the m.ost suitable topology besides 

satisfying the usual input-output transfer functions. The im.portance 

of synthesis leading to m.ore general topological configurations has 

already been initiated in the literature (35) (36) (37). 

(2) Unified Approach to System. Analysis 

This thesis reports a unified approach to the analysis of 

any electrical network which topologically represents a large class 

of systems described by a set of ordinary differential equations. 

The system.atic procedure from. accepting basic iniorm.ation about 

the system. to setting up the appropriate equations for com.putation is 

algorithm.ically program.m.able. It will be encouraging to take som.e 

other classes of system.s and, from the basic physical laws, derive 

all the steps that accept the physical description of the system. and 

provide the com.puted quantities that characteristically represent the 

system properties. With the algorithm. program.med on the com.puters, 

the com.puters extend their capabilities a step further tqward supple-

m.enting hum.an beings' mental effort in system. analysis. The signi-

f ' f h' for if' d hI" al 1cance 0 searc mgAa un 1e approac to system ana YS1S 1S an ogous 

to the physicist's effort to search for a unified field theory. 

(3) Machine Organization Oriented Toward Symbol Manipulation 

Although a symbol manipulating language such as LISP is 

found efficient to express the algorithm. in this thesis, its im.plementa-

Hon on computers leaves much to be desired. As computers are used 

more and more to solve non-num.eric problems such as the one in this 

thesis, SOllle thought should be given to the organization of a digital 
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computer oriented toward symbol manipulations rather than high 

speed arithmetic operations. 
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APPENDIX A 

DETER MINANT EVALUATION FOR CERTAIN CLASSES OF MATRIC POLYNOMIALS -
Consider the matric polynomial 

[ H] = [ Hn] sn + [ H
n

_
l 

] sn- l + ... [HI] s + [ HO] (A-A-I) 

and we want to evaluate det I H I which is a polynomial in s. The 

straightforward method is to expand along one row or column to give 

det I HI = l 
i 

M .. 
lJ 

for any j (A-A-2) 

where h .. is the 
lJ 

ith row, /h column element of [ H], and M .. 
lJ 

is the determinant of the matrix [ H] with ith row and .th I J co umn 

deleted. However, the process in equation A-A-2 is a long one and 

especially when the elements are , in general, polynomials, the arith-

me tic involved is complicated. For certain classes of matric polyno-

mials, alternative methods can be used. 

The approach of the method described below is to convert the 

determinant e v aluation of a matric polynomial into the problem of de-

termining the eigenvalues of a matrix constructed from the coefficient 

matrices in the matric polynomial. 

Let G(s) be the polynomial evaluated as the determinant of 

the matric polynomial [ H], then G(s) can be factored into the form 

_n 
G (s) = 7! (s - Aj) 

J=I 
(A-A-3) 
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where n is the order of the polynomial G(s), and Aj are the roots 

of G(s). If G(s) has real coefficients, then Aj must be all real or 

in complex conjugate pairs. Aj are the values of s at which G(s), 

the determinant of [ H], vanishes. The evaluation of G (s) from 

[ H] is reduced to the problem of determining the values of s at 

which det I HI = o. 

When the matrix [ H] is of the special form 

[ H] = [HI] s + [ HO ] (A-A- 3a) 

the determination of the values of s at which det I HI = 0 can be 

treated as the determination of the eigenvalues of the matrix 

[HI r
1 

[HO] if [HI rl exists; or as the inverses of the eigenvalues 

of [ HO rl [ HI] if [ HO rl exists. The values of s and the elements 

of the matrices [HI J. [HO J are scalars, hence the eignevalues can 

be efficiently computed by using various kinds of iterative procedures 

(46). However, when the matrix [ H] is of order higher than linear, 

such as equation A-A-l, additional transformation is required. 

Let the matric polynomial be normalized to have identity matrix 

[ H ]
-1 

as its leading coefficient by multiplying the whole polynomial by 
n 

if it exists, then equation A-A-l becomes 

n [ *] n-l [ * ] [* ] s + Hn _ l s + . .. HI s + HO (A-A-4) 

where 

[ H~] = [ H- 1 ] [ H. ] 
J n J 

(A-A- 5) 

for j=O, 1,2 ..• n-1. 
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The determinant of the polynomial in equation A-A-l is only different 

from the determinant of the polynomial in equation A-.A:-4 by a scalar, 

det I Hnl . Let E be the identity matrix, then by expanding the deter­

minant of the matrix in equation A-A-6, we obtain equation .A-A-4. 

* * * * H n-l + Es H 
n- 2. HI HO 

-E +Es 0 0 0 

0 -E +Es 0 
(A-A-6) 

-E +Es 0 

-E +Es 

Hence, we have the following classes of matric polynomials whose 

determinants may be evaluated by the eigenv alue method: 

(1) Proper matric polynomial: 

A proper matric polynomial has a nonsingular leading 

coefficient matrix, therefore, we may normalize the 

leading coefficient to unity as in equation A-A-4. With 

the equivalence of equation A-A6, its determinant can 

be evaluated by expanding equation A-A-3 where X-j 

are the eigenvalues of the matrix 

j,::: ~, * * "-~ 
-H n-l 

-H 
n-2 

-H 
n-3 -HI -HO 

E 0 0 0 0 

0 E 0 (A-A-7) 

o o o E o 
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The eigenvalues of a m.atrix [ A] are defined as the 

values of A that satisfy the equation 

det I [ A] - A [ E ] r = 0 • (A-A-8) 

(2) Nonsingular HO m.atric po1ynom.ial: 

If HO of the m.atric polynom.ial in equation A-A-l is 

nonsingular, we m.ay introduce a change of variable 

I 1 
s = s 

(A-A-9) 

such that the new norm.alized m.atric polynom.ial is 

where 

In 
s [ I] In-I [I ] + HI s + . .. Hn 

[ H~] = [ HO r I [ H. ] 
J J 

for j = 1, 2 . . • n. 

(A-A-IO) 

(A- A-II) 

Then the determ.inant of the original m.atric polynom.ial 

is given by equation A-A-3 where Aj are the inverses 

of the eigenvalues of the m.atrix 

I I I I 
-HI -H

2 
-H 

n-l 
-H 

n 

E 0 0 0 

0 E 0 0 (A-A-12) 

o E o 
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(3) Neither Hn nor HO exists: 

When the matric polynomial is such that neither the 

leading coefficient nor the coefficient of the lowest 

order term is nonsingular, then neither (1) nor (2) 

can be used and special procedure is required to get 

around the singularities . 

For example, the matric quadratic in equation 6-13 

is used, 

[ H J = [ e J s2 + [ R J s + [ L J (A-A-13) 

where [ e J -1 and [ L J -1 do not exist. 

If det r H r = 0, then there is a nonzero vector y such that 

[ H J Y = O. (A-A-14) 

Let us introduce coordinate transformation on y, or congruent trans­

forrnation on [ e J, [R J and [ L], such that after partitioning y 

into three subvectors 

(A-A-15) 

equation A-A-14 is transformed to 

ell 0 0 Rll R12 0 Lll L12 L13 
1 

( 
Y 

0 0 0 
2 

R21 R22 0 L21 L22 L
23 ) 2 

s + s + y 

3 
0 0 0 0 0 0 L31 L32 L33 Y 

(A-A-16) 

= 0 
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where [ C
ll 

rl, [R
22 

rl and [ L33 rl always exist. To solve 

for the values of s in equation A-A-16, we Inay first eliIninate the 

3 1 2 
variable y which is uniquely related to y and y b y 

(A-A-17) 

The independent equations in equations A-A-16 becoIne 

(A-A-1S) 

To solve for s in equation A-A- 18, we Inay solve for the following 

siInultaneous equations: 

21 1 [ ] 2 ']1 ']2 [ C ll ] s Y + [ Rll]By + Rl2 sy + [L ll Y + [L12 Y = 0 

(A-A-19) 

1 2 ']1 ']2 [R
21

]sy +[R22 ]sy +[L21 y +[L22 Y = 0 

(A-A-20) 

Inents in equation A-A-1S. 

In order to write the equations into first order forIn so that 

the eigenvalue Inethod can be used, we introduce the variables 

1 = sy 

2 = sy 
(A-A-21) 
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then equations A-A-19 and A-A-ZO may be written as 

[ ' -I' I + L ll - RIZRZZ LZI J Y 

+ [ LI'Z-RIZRZZ -ILz'Z J l ) 

s y Z = - [ R Z Z J - I ( [ RZI J Vi + [ L z' I J Y I + [ L;Z J Y Z ) 

The left hand sides of equations A-A-ZZ have sV
I

, I sy , 

(A-A-ZZ) 

Z sy , 

I I Z 
and the right hand sides only have variables in V , y, y, therefore, 

we may write it as 

(A-A-Z3) 

and solve for s as the eigenvalues of the matrix [ A J in equation 

A-A-Z3, where 

[ Al J = - [ell rl[ Rll-RIZRZZ-IRZI J 

[ A z J = [ rl [' -1 'J - ell Lll-RlZRZZ LZI 

[ A3 J [ rl[' -I 'J = - ell LIZ-RIZRZZ L ZZ (A-A-Z4) 
[ A4 J = - [ R ZZ r I [ RZI J 

[ AS J = - [ R ZZ r I [ Lz'l J 

[ A6 J = - [ R ZZ r I [ Lz'Z J 
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and 
, 

[ Lll ] - [L13][L33rl[L31] [L
ll

] = 
, 

[ LIZ] - [L13 ][ L33 rl [ L 3Z ] [ LIZ J = 
, 

[ L
Zl

] - [L
Z3

] [L
33 

rl [L
31

] 
(A-A-Z5) 

[ LZI ] = 
, 

[ L ZZ ] = [ L
ZZ

] - [LZ3 ][ L33 r 1 [ L 3Z ] 

The evaluation of the determinant of the matrix [ H] in equa-

tion A-A-13 by the eigenvalue method is hinged on the coordinate trans-

formation in equation A-A-15 to give equation A-A-16. The algorithm 

of selecting VI, V
Z

, V
3 

discussed in this thesis gives the coordinates 

in equation A-A-15 directly. 

Equation A-A-Z3 will give Zd
l 

+ d
Z 

eigenvalues where (d
l

, d
Z

) 

are the numbers of components in the vector (yl, yZ). The actual num-

ber of nonzero roots in equation A-A-13, is given by equation 5-38 as 

p = d l - d
3 

+ RK ([ L ]) . (A-A-Z6) 

When the rank of the matrix [ L] is equal to its dimension, (d l + d Z 

+ d
3

), the actual number of roots is exactly Zd
l 

+ d
Z

• 1£ otherwise, 

p < (Zd
l 

+ d
Z

)' and the extraneous zero roots computed from equation 

A-A-Z3 should not be included into equation A-A-31 in evaluating the 

determinant G (s). 

The same procedure, described starting at equation A-A 13 to 

equation A-A-Z3, can be used to compute the roots (natural frequencies) 

of any arbitrary passive linear network. 
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APPENDIX B 

The complete listing of the LISP program, "corsel", and all 

the subfunctions used in its definition are included in alphabetical 

order in this appendix. Starting with the LISP 1. 5 tape (26), this 

listed deck of cards will produce a new LISP tape with the defined 

function "corsel", and many of the unused functions in the LISP 

system removed to give more working memory. As many functions 

are compiled as possible to provide speedier computations. The 

LISP manual (26) should be consulted for the notations and function 

definitions given in this appendix. 
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~x ~ on~ LISP PROG ~R8 NETWORl COORD SELECTIO~ 
S ETSET WILL SET E YEN W~" THERE I S A" E~ - LI~~ 

nEFI .. E II 
I .PELT~T ILA"SOA IA LI IC~O 

II"ULL LI 1'1 fl ~TD" LI IC ONO ICEO A LI 11 IT FI" 
I T lOR I "PH TST A ,,"R L11 l APEL TST A ICDR L 1111111 

II 
')EFI"< II 

l Io""EAR ILA"'80A III L2 1 IC ONO 
II NULI L21 ILIST LIII 
((Of! IA"O IEOVAL I CAAR l1 '1 I C AR LlI) 

I FOUIoL IC ADAR L21 IC AOR LIllI 
lA ND IEOUAL I CAAR L21 (C AOR llll 

IEOUAL IC AOAR LZI ICAR LIIIII L?I 
IT I CONS IC IoR L21 IAP9£AII L1 IC OR L2II1I))1 

, I 

"f F'/lF I[ 
( "P"EAR~ IL A"I'!{)A ILl L21 IC OfI O 

fI/ll'LL Ln '" 
[IE OUAL L1 IC AR LZII TJ 
( T I A""£AR"3 L I (CDR L2 Jill )) 

I I 
"IfF, "IE « 

( ARRA"GE IL AJIIROlo I " l PR I I ~OG I A BI 
I<;ETf) A "' LI 
I <; £T O II L~ I 

H J ! r ()fto I ( "U LL B I I RfT UR " I ( ()ft S fA)) I 

I! 
"! " F, /IF I( 

IIEOUAL N IC DAR 811 I RFTURN I(OM S T IA~FNO 8 .111 11 
(C;ETO A IC~S IC AR 1\1 A )) 
l~ cTO ~ ICDR 81 I 
I GO HI) II I 

I f\VFV ILA IIISOA III L7 L11 
(r Ol'l n rl fO 'C AR III (C AOR llll " 'l l 

I T 11 "(1' I( AR L II IC AOII LJI 

II 
n F.- ! "I f II 

(P ATHFOI (C O"S I CAR LlI ICAOR Lllt UI 
L2IIII) 

Ir AOf)f)OP (l A""RDA III (C AR (C Drn'lf)R L ill i 
I 'OAAonOO R (l A"BOA III (rOA ... R (: noonR L ill I 

r loAAOOOOR Il A"!\OA IL I (C AAAR IC OoooR LIlli 
(- ~AOOOOR (l AJIIR () ' (L I ((A AII (r oonOI1 II I I I 

i";) AOOO rR Il A,.RI" (LI (CO AR I (OOOOR LI llI 

:r nA "~OR (L ""ROA 'Ll ICOAAII ( rODOR LI ll I 
(r A."OO"R IL ""P['l.I. LI (( A ... AI1 (CO [)OR Lilli 
(r AAI' D() R I ""'SO. I L I (C AAR (rOODR L II II 
, C DADO" II I L ""'SO ~ (LI I ( OA R I CDOOR L " JI 

I" O A" flO II (L A"'BOA I L I I COllAR I (Tl{)R L I I II 
- 1010" 0(>11 I UIMBnA ILl I( AAAR IC OO~ L illI 

I I 

"r ~ I " E II 

I-O"~ Er T I IL •• ~OA IG "I " 21 «(0"0 
1(, .. eLuDE N I GI «(0" 0 11' " CL UDf N2 (,1 (OUOTE E~OR211 

II , ,,, rl'II)F " 2 GI 1(0fI 5 T " "1 
IT 'll~ ~tJltJ 

II 
.... r ~ ,~c I ( 

, - O"N F ( T 2 Il ..... RO. I N 1 II.? 1I r "Ror; I A A I 
I < < T • (F AC 1 R '" I L I I 



-187-
ISETO a I ST~INC,I NI ICA~ AlII 
IrOND IINULL III IIIETU"" F II 

IllNCL UOr N7 BJ l"rTu~ TIll 
IAflUR!! IrONlTl II N2 ICOl! AIIIIII 

(C ONlTl ILAl'lSOA III N L21 ICOND 
fI NULL L11 F I fI (O""ECT 2 I CAlf L11 N LZI T I 
( T I CONLT 1 (CDR LlI N LZIIIII 

( <.TAINGI ILA/IIIIOA III LI (CONO 
flN ULL LI NILI CT ICONS ICONO flEO N (C AAII LlI ( CoAA 1I 1 

IT ICAA" LIII 

II 
O£F I NE (I 

(STRIIIGI N (COR LIIIIIII 

ICORSEL I LAI'I80A INETWORKI (~G 

I J 
[)£FJIIE I I 

1 ~L1 ST LOLIST D£~ NETWO!tJ:II 
ISETO NETWa.Kl (CAR (G~TST NETWORKIII 
(SETO N~ IST IYNPGEN NETWORKll1 
(SETO LOLIST (LOGE II IC AOOOR "ErwOR~ ll NP LISTII 
(SETO DE~P ISEDY LOLI~TII 
(RETUR!! ICONs IREO"P "PLIS T OE~I Of~NPIIIII 

I ELIM ( LAI'I80A (Ll L31 I ~OG I A 8 CI 
ISETO 8 N ILl 
ISETO A L11 

HJ ICOND ( CNULL Al IRETURN 811 
II NULL ICAII All IG O H21' I 

ISETO C IUKAY CC AR AI L" I 
I COIIO (IC AR CI IGO H3111 

HZ I ~ETO 8 I APP EIIO II ILI ST (CAR AIIII 
I SE TO A (COR A I I 
IGO HII 

Hl ISETO 8 CA~ E ND 8 ILIST (COOR CIIII 
ISETO A ICOIt All 

I J 

DEFINE" 

I GO HII II I 

IF ACTOR IL A"'80A IN LI C~OG IA TLISTI TLIST21 
I~ETO TLISTI N IL I 
I~ETO TLIST2 NILI 
(5fTO A LI 

Hl IC <*O ""ULL Al CRETURfil CC<*S TLlST! TLlST2111 
I«}fl lEO" (C AAR All (E O" (CO AR AliI 

IGO HZIII 
I SETO TLiSTl (C~ S (C AR Al TLlSTZlI 

H3 (SETO A ICOR All 
I GO HII 

HZ ISETO TLlST! (C~S (CAR A l TLlSTllI 
I GOH31111 

II 
" EFIIIE «( 

(GNLTST (LA /IIBOA (LI (SUIISUIILIS (~AL LIllI 
II 

DEFINE ( 
( I II CF (LA/IIBOA ( Ill 112 Ll L2 1 (F'ttOG (Tl T! T2 13 T4 8 CD "'" 

ISETO Tl IIIL I 
(SETa T1 NILI 
(sETa T2 ,.IL I 
(SETO T3 IIILI 
(SETO 14 NILl 
(SETO N" NIl 
ISOO 0 1I 1 
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HH (5ETa 6 (5EARCH~ Nft 011 
rCOfilD (fa (CA A" III .... , lGO Ht111l1 
(SETa C -1.01 
ISETa ~ (CAA" 811 
IGO HH21 

HHI (SETa C 1.01 
(SETa N" (~A" 611 

HH2 (COfilD (( A""EA"3 I CA" III I CAR L2 I I (GO HI I I 
I(APPEAR) IC AR 81 (CAOR Lnl IGO HIlI 
rIAPPEAR) ICAR 81 (CADOR L211 (GO H21' 
I I APPEAR) I CAR 61 (C ADOOR L2" I GO H3" 
I (APPEAR) ICAR BI (CAOOOOR L211 (GO H4', 
IT IRETURN laUOTE ERROR 5 I '" 

HZ ISETa T1 (CONS (CONS C (CAR 81) TZI' 

HI 

H2 

H3 

H .. 
HtO 

I) 
"EF Illf I ( 

r GO HH1) 
( SETa Tl I COfilS ( COfilS 
( GO HH1) 
{SETa T? {CONS (COfilS 
{GO HH31 
I SETa T3 ICo..S ( COtIS 
IGO HH3) 
ISETO Tit ICo..S (COtIS 
I C0f4D I INUlL I COR el) 
I SET a 0 I (l)R III I 
r GO HH) I) 1 

( INCLUDE ILA"'80A (8 LI IC()IIID 
(( IIULlLlF, 
( (Ea B (C AR LI' T I 
(T t I /lCl UO£ II (Cl)R LIllI" 

) I 
DEFINE (( 

C (CAR 1111 T\ I I 

C (C AR 811 T2 I I 

C (CAR 611 13 I I 

C ( CAR II I I T41) 
I RETU,", (LlST TZ 

(L OGE" (LA"'~ ILl l21 I~G ITLIST A 8 CI 
(SETa TLI ST "Ill 
(SETQ C (STRI"G l211 
(SETO A III 

H (C()IIIO «(NUll AI IRETURN TlISTllI 

Tl T2 T3 TIt)'" 

(SETa 1\ (TFREDI (CAAR AI (COAR A I l2 C, I 
(SETQ TlIST I"'COMC 6 TllSTII 

I) 
DEFINE I I 

(sETa A ICOR A" 
I GO HI I II 

( "'AXCF IL AllleDA III I ~G ITLIST A 81 
(SETa TLIST IIIILI 
ISETO 8 (C AR L11 
(SETa A ICOR LI I 

HH IC ONO I ;NULl A' IRETURN IC()IIIS 1\ TLISTIII 
I {LfSSP ICAR 81 (CAAR All 

{COftO I(NllilUSP IPlUS (CAR B) !CAA" A'" 
IGO 86RAI' 

IT (GO AGRII" n 
""'"tuSP I~LUS ICAR 81 (CAAR A" I 

I GO AGR8l' 
IT (G08GRAI', 

IIGR" ISETO TLIST (COfliS ICAR AI rLlSTII 
(SETO " I CDR All 
(G O HHI 

"GRB (SETO TllST (COtIS 6 TLISTII 
(c;ETO fl (CAR A" 
(SETO A (CDR "'I 
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(GO HHIIII 
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(.IMU~1 (L A-SOA (Ll L21 (PLUSI Ll CTI~SI -1 .0 L21111 
I I 

OEF'/II[ (( 
(NLEO (L AM8DA (ll (COMO 

(! /IIULL L I "' Ll 
IT (C OllIS (M'"US1 (CAAR Ll (C ADAR Lll (II\.EO (CDR L11111 II 

II 
OEF'/IIE « 

( ~MAL (LAMBDA (LI (CONO (CNULL CCDR LII II 
( APE LTST ICAAR LI ICDR LII I ~AL IA~EIID ICDR LI ILIST IC AR LII 
I I I 
IT (APf'HID (COR Ll (LIST (CAR LIlI"" 

) I 
DEF' NE (( 

IPATHFD! (L AIIIfIOA (Ll L21 ,P!tOG (AI 
ISETO A (F ACTOR (C AR L11 L2)1 

HI (Co..D (NULL (CAR A» IRETURN lOUOTE ERROIt3111 

I I 

O!:F' Nf ( 

(I /IIOT ICOMIECT2 ICAR LlI ICDR LlI 
(C OtID «( /lULL (CDAR A II I COR A II 

IT (APPEND ICOAR AI I CDR All III I 
(C OMO (C OR I EO I CAAAR A I (CDR L 11 ) 

( EO I COAAR A I I ctlR Ll III 
( REruR/I ILIST ICAAR AIlII 
(T (REru~ ICONS (CAAR AI 

( PATHI'D! (COND IIEQ (CAAAR AI (CAJt Llll 
(COlIS (COR LJ I (ctlAAR A III 

I (EO (CAAAR A I (COR L 1 ) I 
ICOIIS (CAR ll) (ctlAAR AlII 

II EO (CDAAR A) (CAR LlII 

I COMS (COR LJ I I CU"R ""l 
I T I CONS I CAR Lll (eMAR A II I I 

I CDR A 11111111 
(SETO A (CONS (CDAR AI (CDR AlII 
(GO HI) I I 

( PICK (L AMSO" (LI IPItOG (LL A 81 

II 
I)EFI /IE (I 

(SETQ LL (COMO (INOT lNULL ICA&DOOR LIII I~ LII 
llNOT (IIULL (CAOOO!t LII) (CDOOR LII 
llNOT INULL ICADOR LIII (COOR LII 
«( NOT (NULL ICAOR LII' (CDR LII 
IT (RETURN IOVOTE ER~61111) 

(SETQ 8 (~AXCF IC AR LLII' 
(SETO A (C AR 811 
(RPLAC A Ll (CDR 8)1 
(RETURN (CONS (CDR AI (LI ST 

(TIMES1 (REeIP (M'"US (CAR AlII LIIII)', 

( PL US 1 (LAM!!!)A (Ll L 21 I COfIO 
( I NULL L21 LlI 
(INULL LlI l21 
I T I CONS (PLl1S2 (C AR L 11 I CAR L2" 

II 
I)EFI~E (( 

I P\..US! I CDR III I CDR L21' 1111 I 

( P LUS2 (LAM!!!)A (L3 l41 ( ~G (A 51 
(C OIIO I 'NULL l31 (RETURN L411 

(( NULL L., (RETURN U III 
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(SETa A (ARRANGE (COAR L'I L4 11 
(C()ftO (( CAR A I (GO HH" I 
( RETU~ (CONS ( CAR L31 (PLUSZ (CO« L3 1 L." I 

HH (SETQ 8 (PLUS (CA~R L31 (CAAOR AlII 

) I 
!)EFINE II 

( C()ftO (IIEROP 81 ( RETURN (PLUS2 (COR L31 (COOR A,I',I 
( RETU~ (CONS (CONS 8 (COAR L311 

( PUIS 2 (CDR L 3 I I COOII A' II " " 

(PSENO (L~~8DA IA LI I~G 18 CI 
(SETO B Ll 

HI (C()ftO (( NULL 81 (RETURN A til 
(SETa C (CAR 811 

) ) 

DEFINE (( 

(C()ftO ((INCLUDE A CI IRETURN CIII 
(SETa 8 ICOR 811 
(GO HI 1111 

( REDE~T (LA~80A (L) ( PROG ( A E G { J (I TLIST) 
ISETO TLIST NI LI 
(SETa A II 

HI (C()ftO IIIIULL A I (RETU~ TL I ST)) I 
(SETa f IC AR AI) 
(SETa G TLlST) 
(sETa { NILI 

H5 (C()ftO (( NOT (IIULL Gil ( GO H2/11 
(SETa TLIST ICONS E KII 

H4 (sETa ~ (COR All 
(GO HI) 

HZ (SETa J (C AR GI) 
(CONO I(OR (AHO (EO (C AAR E) IC AAR JII 

I EO (CAAOR E I I CAADR J I I ) 
( AND (EO (C AAR EI (CAAOR JI) 

(EO (CAADR EI ICAAR JIIII 
(C ONO I (LESSP ( CADOR EI ( CAOOR JI) (GO H." 

(T (GO H6 I I , , I 
(S ETa {I ( LIST JII 
(RPLACO {I {I 
ISETa { ( l) 

(sETa G (CDR GIl 
(GO H51 

H6 (SETO TLIST IA~EIIO ICOR GI (CONS E {III 
(GO H4 I I I I 

) I 
flEF INE (( 

( REOE~LTI (LA~8DA ILl L2) ( PROG IA 8 ( 0 TLIST) 
(SETa TLIST NIll 
(SETa.u) 

HI 1()ft0 (INULL .1 (RETURII TL!ST)) I 
I SETa 8 IC AR All 
(SETa C (PSE NO (CAR 81 Lzll 
(SETa 0 IPSEIIO (CADR 81 L211 
(COND ((NOT (EO C DII (GO HZIII 

H.. (SETO A (CDR A,I 
(GO HII 

HZ (SETa TLIST (CONS (LIST (CONS C (C AR 811 

I I 
OE FINE (I 

(GO H4' I) ) 

(CONS D (CADR 811 
(( .lOOP! BII lLlSTl1 

I REDE~LT2 (LA~80A III L21 (~G (A 8 C TLIST) 
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ISETO TLI ST lUll 
ISETO A LlI 

HI I cOtto (( NULL A I (RE TU",. TL IS TIl I 
ISETO 8 I CAR A II 
(cOtto I (OR IEQ (CAAR 81 ICAR L211 

lEO IC.UR 81 (Cl)R L2111 
(GO H2 III 

ISETOCICAR811 
H4 (COfIO I lOR (EO I CAAOR 81 (CAR L 211 

lEO ICAAOR 81 I~ L2111 
(GO H~ I II 

(SETO Tll ST I COfIS (COfIS C I CDR 811 TLI ST' I 
H5 (SETO A (COR All 

(GO HII 
H2 (SETO C (COfIS L2 (Cl)AR 11111 

(GO H41 
H, (COfIO ((EOUAL ICAR CI L21 lGO H5111 

I I 
DEfl,.E II 

(SETO TLIST (CONS (CONS C ICONS (CONS L2 ICOA~R 811 
I COOR 8" I T LI S T II 

(GOH5Ill1 

(REOL TL T I LA~80A I L I I CONO 
II NULL Ll N I LI 
IT (C""S IREDE"'l T (CAR LlI IREOL TL T ICl)R LlIIIIIl 

II 
DEFINE II 

I REOl TU 1 (L A"BOA ILl L 21 ((QIIIO 
(iNULl III Nlll 
(T IC,,"S IREOE"'lTl (CAR III l21 (REOULTI ICOR LlI L2111111 

II 
O£flNE II 

I REDUL T 2 (LAII48DA ILl L21 I CQIIIO 
IINULL LII NILI 
(T (C ONS IREDE"'lT2 (CAIt LlI L21 

IREDLTLT2 ICDR LII L21ltlll 
II 

nHINE (( 
(RE D"" ILA~8f)ot. (Ll L21 ICOMO 

I (NULL L21 LlI 
(T IRED,", IELI" lJ (CAAA l2)1 (CDR L211ltll 

) I 
')EF1"E I I 

I REOUCE (LA~80A (L) IPROG (A 81 
(SETO 8 II 
(SETO A "Ill 

C ICONO (I NUll 81 (RETU~ AI) 
IIEOUAl ( CAAR B) ICADAR 81) (GO 0111 

(SETO A (A~EAR (CAR 81 All 
o (SETO 8 (CDR 811 

I GO ClI II 
I) 

~FINE II 
IRE~T IlA~8&A IA L) IPROG IBI 

(SETO B L I 
H (C OfID !(NUll 81 (RETURN Nlllll 

(RE~ (C_R BI Al 

I l 
f1FFINf I( 

(SETO B (CDR 8) I 
(GO HI III 

15EARCH~ (LA"~_ I N II (COHO 
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(( OR (EO" (C AAR LII (EO" ICOAR LIII LI 
(T (A~END (SEARCH) " (CDR L II (LIST (C AR LIII I II I 

I I 
OfF UtE I I 

(S EOV (LA~80A ILl I~ (TLIST A 81 
(SET O TLIST "Ill 
ISETO A INLEO LII 

HI (COtilD IlNULL A I IRE TURIII TLl ST I 1\ 
ISETO 8 IP'C~ (CAR AlII 

II 
Of FINE (I 

(SETO TLIST ICa.S 8 lSUBSTT 8 TLISTIII 
(SETO A lSUBSTll B (CDR A"I 
( GO HIIII' 

(S E LECT ILA"~ (LI (~OG IA B C 01 
(CONO (INULL LI (RETURW NILIII 
( SETO A Ll 
(SETa 8 N lll 
(SETO C (CAIt All 
(SETO 0 (cOlt All 

HI (COtilO (( NULL 0 I (It\!: TU,"" (C OtilS C B I I I 
liNCH (lESSP (CADC».R 01 ICADOR CIlI (GO HZIlI 

(SET O B ICOtilS (CAR 01 ell 
H) ( SETo 0 (COR 011 

( GO Hll 
HZ (sETQ B (COtilS C BII 

( serQ C (CAR 011 

I' 
1)EI'I IilE (( 

(GO H) I I I I 

(ST RING fl A~80A ILl (COtilD 
" NULL II NILl 
(T (APPE ND (CAR L! (Slit I NG I COR LlII I II , 

I' 
')E FI"E II 

I SU BSTT IL A"BOA III lZ' ICOtilD 
/ I NUL L L2' N III 
(T ICOtilS ICOItS ICUR LZ' ILIST lSUBSTTZ 11 IC AOAR L21111 

l SUBSTT L l (COR LZI',IIII 
II 

,)FF "If If 
ISUBS T TI IL A"eOA ILl L21 ICONO 

I PIUL L L 2 I N 1 Ll 
IT (C OtilS (SUBSTT2 Ll IC.U 1211 (SUBSTTI Ll I CDR LZlIll11I 

I I 
OEF 'NE I I 

(SUBSTT2 (L A"BDA IL l LZI ( PItOG ITLlST A 01 
Isera TLIST NIl) 
ISETa A L21 

H I (C OtilD (I NULL A I (RETURN TLl ST II I 
(SETO 0 I ARRANGE ( CAR lI1 (CAR AIlI 
I COfCD (( CAR 0 I (Go H4 I II 
ISETO TLIST ( NCa.C TLIST ILIST (C AR A',I, 
I S ETa A ICOR AI' 
IGO HI ' 

HI. (RETURtI ( PlUSI (T'~ESI (C AAOR 01 ICAOR lI11 

I , 

OE FI"E II 

( COtilC lLlST (LlST (COOR 011 (CDR All II II I 

ISUBSUBLIS IlANBOA ILl ICOHO 
(I NULL (CDR LII IC OAR LII 
I T I SUBSUBLI S I SUBS T (C ADAR II t CA AR Ll (COR l) It II II 
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IT AI::.H I LAMBOtl (Ll L 2 I II'ROG I A 1'1 I 
I SET 0 A NILI 
I SETa 6 LlI 

H) (COtiID I (NULL I'll IRfTU,", ICotIS F At' I 

II 
[)£Flllf f( 

IIEOUAL Ll ICAR 1'111 IRETU"" (COllIS T IA .... El.o 6 All 111 
ISETO A ICOIIIS ICAR I'll All 
ISETO 6 Ict>R 1'111 
IGO HI 1111 

ITFREDI (LAMI'lDA III L2 L3 01 (~G ITLIST A 1'1 CI 
ISETQ TLIST IIIILl 
ISETO A ITIIIESI IRECIP ICADOR Llll II'IVfV Ll L' DIll 
ISETQ 8 UI 

HI 1(01110 (INULL I'll I RETURN TLISTIII 

II 

f)EFI~E " 

(SETa ( I TlIIESI IRECIP ICAeOAR 1'111 IBVEv ICAR I'll L3 0111 
IsETQ TLIST (COlIS «(0115 A (LIST CII TLlSTIl 
I sETa 6 (COR 1'1 II 
I GO Hll II I 

ITI IIESI (LA",SOA ( I: LJ IC01IIO 
"~Ull LI "I Ll 
( T ICOIIS !TIIIES1 K ( CAR LlI ITIIIESI I: (COR LJlIlIll 

I I 
nFF INF I I 

ITT MES2 IL AIII'lDA II: LI ICONO 
(( ~ l'Ll LI ,.Ill 
IT ((0115 I (O~S IT I ME 5 I: (C "AR L II ((OAR L II 

(TI"'ES2 ( I(OR LIllI III 
II 

OEFI~E II 
( VGEII (LAIIBOA IL l L21 I~OG I A R C 0 E GI 

(SETa C lOll 
ISETO"L11 
(SETa 0 UI 

HI IrOtilD I(NUll AI l~fTURN ICONS C 01111 
ISETO 6 (SELE(T All 

II 
OEfl,.E (( 

IsETO E (CONe; ICOAAR I'll (COAOAR BIl l 
(SETQ G (CONS (CA AAR 81 ((AAoAR BIll 
(SETa A (RfDE~T (RfOF~T2 (COR I'll GIl I 
(SETQ 0 (REOLTLT (REDLTLT2 0 GI" 
IsETO ( (CONS E CII 
(GO HI 1111 

IVNPGEIII (L AMBDA (LI (PROG (A 1'1 C 0 EI 
(SETa A (VZGEII ((ADODOR llll 
ISETO I'l (CAR All 

I I 
DEFINE" 

(SETa ( ((OR All 
IsETO 0 ICONS ((AR LI 

(C ONS (CAOR LI 
IC01IIS I(ADOR LI 
III ST I REDUCE I STR I ~G I CAODOR LillI" II 

ISETO 0 IREOLTLT IREOLTlTl 0 CIII 
ISETa E IY1234GEN OIl 
I RE TV'"' I CONS I'l Ell'" 

IVIGE" (LAII80A ILl IPROG 11. I'l C 0 E G JI 
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(SETa A II 
(SETa 8 NILl 
(SETaCNllI 
(SETO E JlILI 
fSETa G NILI 

H7 (COIIO f(NULl Al (RETURN (COlIS 8 CIIII 
(SETa 0 (COlIS ICAAR AI (LIST (CADAR AllII 
ISETO G 01 
(60 1411 

HJ (COIIO ((NULL GI (GO 1441)1 
HI (COIIO "NUll A) (GO H21l1 

(SETa J (C~ECTI G (CAAR A) (CAOAR A)) I 
(COIIO ((ATOM J) (RETURN (ovaTE ERROR2)II 

(ICAR JI (Go H~III 
(SETa E (C~S tCAR AI E)) 

146 I SETO A I COR A I ) 
(GO HI I 

142 ISETO G (COR GIl 
(SETa ~ EI 
(SETO E NILI 
(GO H)) 

144 (SETO ( ((~S D CII 
(GO 147) 

14' (NCOIIC 0 (LIST (CDR JIll 
HI! (SETa 8 (C~S (CO .. S (CUR AI (C.O.R All !I)I 

(GO 1461111 
II 

DEFINE II 
(VI2)4GE" (LA~8eA (LI (~G (A 8 ( 0) 

((0110 "NULL II (RETURN .. , UII 
(SETa A (CAR L" 
(SETO 8 (COR L) I 
(SETa 0 NILI 

. H} I SETO C (VG£N A 81) 
(SETa 0 (CONS 'CAR CI 01) 
I COIIO II NtllL (CDR C II (RETURN (REVERSE 0"') 
(SETO A (CAOR C)) 
(SETO 8 (COOR CI) 
(GO HI I ) I I 

II 
TRACLIS II 

COI'!SH 
VNf'GEN 

lOG£N 
SED" 

" COMDEF (( 
CAOOAR 
STRING 
(At)OOOR 
) I 

[()II!O£F (( 
..... EAR 
A""EAR) 
A~A"GE 
'NCLUOE 
STRING} 
REOE~l T 
REM lilt. T1 
REM""- T2 
SELf,.T 
) I 
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COMOEF II 
C """ E CT 1 
PSEND 
1t£0\. TL T 
RroL TL Tl 
ItEDLTLT2 
REOUCE 
II 

C~F II 
"A< TOR 
S£""C"~ 
.6£N 
I I 

COMM'F I ( 
COIiIIIIECT2 
COM. T2 
PA Hff'OI 
II 

RE~LT 

SUeR 
fATTRl1! 
PfWf' 
COf'Y 
PAIR 
S ASSOC 
SE.RO! 
ElfPT 
"up 
FLOATP 
LHTSHlfT 
AItRAY 
C()IIIP I I.E 
S AP 
CC*PSAP 
OPDEFINE 
REAO 
PUNCH 
IOttOG2 
CPL 
GENSYIII 
T E",PUS-FUGI T I I 

R E IIIP1mPl T ( 
FSUBR 
I lOGOfI 

LOGANO 
LOGXOfII I 

RE~lT ( 
EX"" 
fC ONsr •• l 

C()IIC[)£F 
F>RINTPfWf' 
PUNCHO£F 
"'AJ(CBlR 
FORMAT II 

ST Of' IIIIIIIIIISTOf' 
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APPENDIX C 

EXAMPLES 

The example in A. C. 1 is the dynamic circuit analogy of a 4-

cell finite difference cantilevered beam (13). The coordinate selec­

tion is worked out manually in detail and followed by the actual LISP 

program (corsel) output. The example in A. C. 2 is the dynamic cir­

cuit analogy of an airplane wing, represented as a 6-cell finite dif­

ference model (reference (13), Chapter 5) of a mass coupled bending 

and torsion beam, with Russell analogy in the bending mode. The 

example in A. C. 3 is the dynamic circuit analogy of a delta wing, 

represented as a 6-cell finite difference model of a plate with Poisson' s 

lateral coupling (3). A. C. 4 gives an example of a network with many 

irregular transformer interconnections. Only the LISP program out­

put are provided for the last three examples. 

A. C. 1 

The circuit in (fig. A- C-l) is taken as an example. It is the 

dynamic analog circuit of a 4-cell finite difference cantilevered beam 

(reference (13), Chapter 5) with torque II applied at the point that 

corresponds to node 3. 

The complete description of the network is as follows: 

Voltage sources - none 

VLIST = NIL 
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The Dynamic Analog Circ uit of a Cantilevered Beam with a Moment Applied at Point 3 

FIG URE A - C - 1 
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C4 

( CI, C2, C3, C4) 

(NZ, N5, VCI, QCI) 

(NZ, N7, VC2, QC2) 

(N9, NZ, VC3, QC3) 

(NE~, VC4, QC4) 

connecting nodes. 

VC. = value of C. 
1 1 

initial charge in C .. 
1 

Resistors - none 

RLIST = NIL 

Inductors = LI, L2, L3, L4 

LLIST = (LI, L2, L3, L4) 

LI = (NZ, NI, VLI, ILl) 

L2 = (N2, NI, VL2, IL2) 

L3 = (N2, N3, VL3, IL3) 

L4 = (N3, N4, VL4, IL4) 

VL. = value of L. 
1 1 

IL. = initial current in L .• 
1 1 

Transformers = TI, T2, T3, T4 

TLIST = (TI, T2, T3, T4) 

TI = three windings WIl, W12, W13, 

TI = (WIl, W12, W13) 

WIl = (NZ, NI, 1. 0) 

Wl2 = (NZ, N5, n12) 

W13 = (N5, N6, n13) 
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Sirn.ilarly for T2, T3, T4 

T2 = (W21, W22, W23) 

W21 = (NZ, N2, 1. 0) 

W22 = (N6, N7, n22) 

W23 = (N7, N8, n23) 

T3 = (W31, W32, W33) 

W31 = (NZ, N3, 1. 0) 

W32 = (N8, N9, n32) 

W33 = (N9, NT, n33) 

T4 = (W41, W42) 

W41 = (NZ, N4, 1. 0) 

W42 = (NT, NE, n42) 

Current sources: II 

lLIST = (II) 

II = (N3, NZ, VII) 

VII contains the information on the 

time dependenc e of II. 

The LISP program, "corsel", that algorithmically selects the 

coordinates proceeds as follows: 

(0) VLIST is taken and V
O 

is set to NIL since VLlST 

is empty. 

VZLT = NIL 

(1) o 
All nodes connected by the node pairs in V are 

grouped together and CLIST is reduced by removing 

all the elements whose two terminals are connected 

to the same node and only the one with the largest 

value among the several that are connected to the 
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common pair of nodes is retained. From the reduced 

CLIST, yl is selected according to the criterion of 

minimizing round- off errors. 

YILT = (v z5' v zl' v 9z ' vEZ ) 

2 
RLIST is empty, Y = 0 

Y2LT = NIL 

(3) LLIST is reduced by grouping all the nodes connected 

o I 2 3 
by Y , Y and Y , then Y is selected according 

to the minimum round-off error criterion. 

Y3LT = (vZI ' v 2l ' v 23 ' v 34) 

(4) TLIST is stringed together to form a winding list, 

and the winding list is reduced by grouping all the 

nodes connected by yO, yl, y2, y3. From the 

non-empty winding list, y4 is selected. 

Y4LT = (v67 ' v 78 ' v TE ) 

(5) Form the node pair list NPLIST 

NPLIST = (YZLT, YILT, Y2LT, Y3LT, 

Y4LT) 

(6) From TLIST one transformer is taken at a time and 

from its m windings, (m - I) linear equations are 

constructed. The variables in the equations are the 

components of yO, yl, y2, y3, y4. The list of 

equations from all the transformers form the LQLIST. 

TI gives 

LQI I = v ZI = nrz v Z5 

LQ2 I = v ZI = n13 (vZ7 - v Z5 - v 67) 



TZ 

T3 

T4 
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gives 

LQ3 1 = v Z1 - v Z1 = nZ2 (v67) 

LQ4 1 = v Z1 - v Z1 = n23 v 78 

gives 

LQ5 1 = v Z1 - v Z1 + v Z3 = n32 (-v9Z -vZ7 -v78) 

LQ6 1 = v Z1 - v Z1 + v Z3 = n33 (-vEZ + v9Z - v TE ) 

gives 

LQ7 
1 = v ZI - v ZI + v Z3 + v 34 = n4Z (vTE) 

LQLIST = (LQI, LQZ, LQ3, LQ4, LQ5, 

LQ6, LQ7) 

(7) From LQLIST and the hierarch of variables defined 

in NPLIST, 

V O > VI > V Z > V 3 > V4 

express the variables of the lowest hierarchy in terms 

of variables of higher hierarchy. Using the seven equa-

tions in LQLIST, seven variables are listed, together 

with their dependences on the remaining four variables. 

LQI in LQLIST is taken first and the lowest hier-

archy variable, v Zl' is expressed in terms of the 

other higher hierarchy variables in the equation. The 

expre s sion of v Z I is put into DEPNP, and the new 

LQLIST has the old LQI removed and every v
ZI 

sub-

stituted by its equivalent expression in the higher hier-

archy variables. Then from the new LQLIST, one 

equation is taken and the expression of one of its lowest 

hierarchy variables is substituted for the appearance 
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of the variable in both DEPNP and LQLIST. Its~ 

expression is also added to DEPNP. This process 

continues until the final LQLIST is empty. For our 

example, we have the DEPNP as follows: 

DEPNP = (EQI, EQ2, EQ3, EQ4, EQ5, EQ6, EQ7) 

Let all nls = O. 5, then we have 

EQI = v ZI = 2v
Z5 

EQ2 = v67 = -vZ5 + v Z7 

EQ3 = v 2I = 6vZ5 - 2vZ7 

EQ4 = v 78 = -2vZ5 + v Z7 

EQ5' = v 23 = 8vZ5 - 6vZ7 - 2v
9Z 

EQ6 = v TE = -2vZ5 + 2vZ7 - 2v9Z - vEZ 

EQ7 = v 34 = -8vZ5 + 8vZ7 + 6v9Z - 2vEZ 

The final set of independent node pairs are obtained 

by removing all the dependent node pairs from NPLIST. 

INDNP = (VZ, VI, V2, V3) 

VZ = NIL 

VI = (vZ5 ' v Z7 ' v 9Z ' vEZ ) 

V2 = NIL 

V3 = NIL 

(9) The [C], [R], [L] matrices in the coordinate 

CI 0 0 0 

o C2 0 0 

o 0 C3 0 

o 0 0 C4 
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[R
11

] ::: 0 

2 6 8-8 

o -2 -6 8 
[L ll ] = 0 0 -2 6 

Ll 0 0 0 

o L2 0 0 

o 0 L3 0 

2 0 0 0 

6 -2 0 0 

8 -6 -2 0 

o 0 0 - 2 0 0 0 L4 - 8 8 6 - 2 

i12 R13 ~14 
h2 123 ~24 
~32 .R33 234 

942 43 ~4 

[ z . . ] = 0 for [z] = [c], [R], [L] and 
1J 

i, j ::: 0, 2, 3 

J 11 ::: 4(L1) + 36(L2) + 64(L3) + 64(L4) 

.l 12 ::: -lZ(L2) - 48(L3) - 64(L4) 

~13::: -16(L3) - 48(L4) 

R 14::: 16(L4) 

Q 22::: 4(L2) + 36(L3) + 64(L4) 

123 = 12(L3) + 48(L4) 

~ 24 ::: - 1 6( L4) 

R33 == 4(L3) + 36(L4) 

~34 = -12(L4) 

R44 ::: 4(L4) 

~ ij ::: ~ ji 

(10) The forcing function (1°, II, 12, 13 ) is computed. The 

current source is connected between nodes N3 and NZ. 
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Then from (EQl, EQ3, EQ5) v 3Z is expressed as a 

linear function of the chosen independent node pairs: 

v 3Z = 4vZ5 - 4vZ7 - 2v9Z ' 

1 
The forcing function I becomes 

4 

-4 

-2 

o 

11 

where 11 is the time dependent current source as 

specified in ILIST. 

(II) After choosing the coordinates and setting up the appro-

priate matrices, various numerical integration methods 

may be used to compute the transient response of the 

network. 

The example does not give the actual result from numerical com-

putation since the purpose of the example is to illustrate the algorithm in 

coordinate selection. The program in Appendix B coded in LISP restricts 

itself to the selection of coordinates. Once the coordinates are selected 

comparatively straightforward programs can be written to do the actual 

numerical computations. 

The LISP program input card listing is given in (fig. A-C- 2-a) 

and the output is included in (fig. A-C-2-b) 

The selected coordinates are: 

VI = NE • NZ 

N9· NZ 

NZ N5 

NZ N7 
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YX l OOO LIS P FOUR CELL FI~ITE OIFFERENCF BEA~ ANALOGY 
TEST THIS IS A/II OVE~O~D CARD - LISP 

(OR<;EL I I 
( "ETWOR~ (CLIST RLIST LLIST TLIST VLIST ILIST)) 
('LIST (() C2 '3 Cal I 
(ll I"Z H5 1 . 0) ) 
( (" 2 (Nl N 7 1 . 0) I 
1(1 ( /119 /liZ 1 . 0)1 
(r 4 (/I4F /liZ 0 . "») 
( RL 1 <; T NIL I 
(LLl~ T ILl L2 l1 Lall 
( L 1 (NZ H 1 O. "> ) I 
(Ll (/OI? /Ill 1 . 0 11 
(l1 IH2 ,., 1 . 011 
(L a (N' N_ 1.011 
(TLIST (Tl T2 T3 T41 I 
ITI (Wll 10112 WI'I) 
(WI (IIlZ 1'41 1 . 01) 
( 101 12 (NI N"> 0.51) 
( WI' (N., N6 0.">1) 
t T l (Wll Wl7 Wn)) 
tWll t .. Z N2 1 . 011 
twn ('lit, N7 0 . 5)) 
(Wl' ( N7 Nil 0 . ">11 
(T1 110111 W17 10111)) 
( 101'1 (NZ /111 1 . 01) 
(101" I "IS /119 0 . "») 
( W13 (1'19 NT 0 . 5)) 
(T4 IW41 1014211 
( W4 1 INZ N4 1 . 0)1 
I W4' ( NT NE O.S)I 
(ILI~T (1111 
r I 1 (V I I ) ) 
PILIST Nit) 

I) 

STOP) II 1 ) II I ) IS T('1f> 

FIGURE A - C - 2 - a 
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The dependent node pairs are: 

(N2 . Nl) = 

(N3 . N4) = 

(N6 . N7) = 

(N2 . N3) = 

(N7 . NS) = 

- 2(NZ . N7) 

+6(NZ N5) 

+S(NZ N7) 

- S(NZ . N5) 

+ 6(N9 . NZ) 

- 2(NE • NZ) 

(NZ N7) 

- 2(NZ N5) 

- 6(NZ N7) 

+S(NZ N5) 

- 2(N9 . NZ) 

(NZ N7) 

- 2(NZ N5) 

(NZ . Nl) = 2(NZ N5) 

(NT' NE) = + 2(NZ • N7) 

- 2(NZ . N5) 

+ 2(N9 . NZ) 

- 2(NE . NZ) 

The atomic symbol NX corresponds to the node X in (fig . 

A-C-l). (NX . NY) represents the node-pair voltage v . xy 

A. C. 2 

The circuit of a six-cell finite difference mass coupled bending 

and torsion beam model of an airplane wing (reference (13), Chapter 5) 

is shown in (fig. A-C-3). Russell analogy (2) is used in the bending 

mode . 



7 8 

I 2 3 

T he Dynamic Analog Circuit of a Six-Cell Finite Difference Mass Coupled Bending and 
T orsion Beam Model of an Airplane Wing 

FIGURE A - C - 3 
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The LISP program output is in (fig. A-C-4-b) while the input 

card listing is included in (fig. A-C-4-a). 

The selected coordinates are: 

VI = (B6· C6) 

(BS· Z) 

(B4· Z) 

(C6· Z) 

(CS . Z) 

(B 3 . Z) 

(B2· Z) 

(C4. Z) 

(C3 . Z) 

(Bl . Z) 

(C2 . Z) 

(Cl . Z) 

V
3 = (A3 • A4) 

(AI· A2) 

(AS. A6) 

(BS6S . BS66) 

(B 121 . B122) 

(B 343 . B 344) 

A. C. 3 

The analog circuit of a six-cell finite difference plate analogy 

of a delta wing with Poisson's lateral coupling (reference 13, Chapter S). 

(3) is shown in (fig. A-C-S-a, b, c, d). The LISP prograIn input cards 
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W = vertical deflections 

X = slopes in X direction 

Y = slopes in Y direction 

or • ..,. ow+ 
I 

I 

I -6l(~~ _I _ 

I I 

The Cell-Division and Coordinate Representation of a Delta Wing 

FIGURE A - C - 5 - a 
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The W-Circuit of the Delta Wing in (a) 

The Capacitors Represent the Translational Masses of Individual Cells; 
the Transformer Windings Specify the Coordinate Transformation Between 
the Vertical Deflections and Slopes. 

FIG URE A - C - 5 - b 
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The X-Slope-Circuit of the Delta Wing in (a) 

FIGURE A - C - 5 - c 
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The Y-Slope-Circuit of the Delta Wing in (a) 

FIGURE A - C - 5 - d 
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LISP SI~PLIFIEO DELTA WI"G PLATE ANALOGy 
THIS IS 4" OVE~ORO (ARD - LISP 

IOT WIN(; leu ST 
«(LIST 11 '1 1 1 

O f 1 I 
IW3 I 

NIL LLIST TLIST NIL NILII 
1 . 0' 
1 . 0 I 
1 . 01 

I W4 I 1 . 0, 
1'1 5 I 1 . 01 
( 1f6 I 1 . 0'" 

I LlIC,T (II ZF] 1 . 01 
IZFl Fl 2 . 01 
IZ I Xll 1 . 01 
IZ XIl 1. 0' 
IZ x21 1 . 01 
fZXIl Xl2 2 . 01 
IXIl xln~ '5 . 01 
IXI?2~ X11 1 . 01 
Ixn )(21FI . 01 
IX21FI Fl 1 . 0' 
IXI? XI2~ " 3 . 01 
I XZ., X4'5 1 . 01 
IF Fl • • 01 
IX12 4') )(4'5 1 . 01 
IX4'5 X4'5 F2 5 . 0' 
IX • .,F? F2 2 . 0, 
IX4., F? 1 . 01 
II TIl 4 • ." 
I I Tl7 4. '" 
17 I T7" 4 . 01 
ITl1 Tl' 1 . 51 
ITZl '( I" 1 . 5' 
,.,Z '( l]144 . ", 
ITIl YI1 4 4. 0) 
ITI" '(Z'5 4 . 0, 
I'(Z'+ '(1'5 1 . 51 
1'( 14 '(2~56 4 . '51 
1T3" Y-' ,) 6 4 . 0 I I , 

( TL I S T I III WI 1 . 01 II TI l 0 . 1'5" 
III ~2 1 . 0' II T1 2 0 . 1'511 
lIZ w' 1. 0) 11 '(I' . 1"'1 
II If W4 1 . 01 11 T24 0 . 1'511 
II W ~ W5 1 . 01 11 '('I" 0 . 1'51) 
IIW., ~6 1 . 01 11 '(56 0 . 1'5)1 
II W2 W] 1 . 0' Il Xll 0 . '51' 
11 '1 3 WZ 1 . 0) Il X23 0 . '511 
11 1f '5 W4 1 . 0) 11 X45 0 . 511 
II X12 IXIZ 0 . 25) I Tl124 '(2 ~ 1. 0) I 
l(Xl~ XI223 0 . 2'5) ITl24 '(24 1 . 011 
IIFI ZFI O. ?51 Il TZ'I '(Z., 1 . 01) 
IIFI )(23FI o. z<;) I,(Z"'5 '('5 1 . 0)' 
1(X1o'5 Xl14'5 0 . 2'5) 1'f'2 4 56 '(~ 1 . 011 
IIF, X45F' o . ? .. , IY ~ "6 '('56 1 . 01"" I 

<;ToP) 11 II 111)) STOP 

FIGURE A - C - 6 - a 
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are listed in (fig. A-C-6-a) and the corsel output, in (fig. A-C-6-b). 

The selected coordinates are: 

A.C.4 

VI = (W3 Z) 

(W4 • Z) 

(W5 Z) 

(WI Z) 

(W6 . Z) 

(W2' Z) 

v 3 = (Fl' F2) 

(YZ3 . YZ35) 

(YZ2' YZ24) 

(Z . ZYZ3) 

(Y35 . Y356) 

(YZI . YZI24) 

(Y24' Y2456) 

(X45 . X45F2) 

The circuit in (fig. A-C-7) shows an arbitrary irregular trans-

forrne r: ___ interconnection. The resulting selected coordinates by the 

LISP prograIn appear in (fig. A-C-8-b) while the input cards are listed 

in (fig. A-C-8-a). The independent coordinates are: 

V
O 

= (A B) 

VI = (E H). 
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The dependent coordinates are: 

(B . E) = 2(A· B) 

(A - G) = (A . B) + (E . H) 

(D . E) = (A . B) 

(C - E) = 2(A . B) 
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LIST OF SYMBOLS 

the tiIne variable 

the Laplace transform complex variable 

h .th l' d di t tel genera lze coor na e 

the set of independent generalized coordinates 

the set of dependent generalized coordinates 

the Lagragian, L = T - V (chapter 2) 

the kinetic energy in the system (chapter 2) 

the potential energy in the system (chapter 2) 
the Lagragian multiplier (chapter 2) 

the coordinate transformation matrix 

the admittance matrix of a network in its branch 
voltage coordinates 

the set of branch voltages 

the set of currents in vB 

the node pair admittance matrix (chapter 2) 

the set of node pair voltages (chapter 2) 

the currents in vp (chapter 2) 

the number of nodes (or terminals) in the network 

the nu:mber disjointed parts in a network 

the number of elements in the network 

the number of different trees that connect the same 
set of P nodes 

the set of currents in capacitive elements 

the set of currents in resistive elements 

the set of currents in inductive elements 

the set of capacitor branch voltages 



c 

R 

L 

r C] , [RJ, [L] 

v 

I 

y 

-235-

the set of resistor branch voltages 

the set of inductor branch v oltages 

capacitance in FARAD 

resistive adxnittance in mho 

-1 
inductive adxnittance in (henry) 

the capacitive, resistive, inductive 
adxnittance :matrices in the branch 
voltage coordinates, v C' v

R
' v

L 

the capacitive, resistive, inductive 
adxnittance :matrices in the node pair 
voltage coordinates, V 

the set of node pair voltages 

the set of currents in V 

the ti:me integral of V , Y =fVdt 

the partitioned co:mponents of V, I, y, 
that correspond to the node pairs connected 
by voltage sources 

the partitioned co:mponents of V, I, y, that 
correspond to the node pairs connected by 
capacitors, with voltage sources short­
circuited 

the partitioned co:mponents of V, I, y, that 
correspond to the node pairs connected by 
resistors, with voltage sources and 
capacitors short-circuited 

the partitioned co:mponents of V, I, y, that 
correspond to the node pairs connected b y 
inductors, with voltage sources, capacitors, 
and resistors short-circuited 

the partitioned co:mponents of V, I, y, that 
correspond to the node pairs connected b y 
transfor:mer windings, with voltage sources, 
capacitors, resistors, and inductors short­
circuited 
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for i, j = (0, I, 2, 3), the submatrices 
in [el , [R), (Ll, partitioned according 
t0

3 
the partitioning of Y into yO, yl, y2, 

Y 

the arbitrary set of independent node pairs 
to form the base for transformation 

the congruent transformation that changes 
Yo into Y 1 such that the nonsingular 
submatrix, e 11' is partitioned out of 
e 1 ' the capacitor matrix in Y 1 

the base coordinate after pI being applied 
on y 

o 

the congruent transformation that changes 
y 1 into Y 2 such that the nonsingular R22 
is partitioned out of R

2
, the resistor 

matrix in Y 2 

the base coordinate after p2 being applied 
on Y

I 

the capacitive, resistive, and inductive 
admittance matrices in Yo coordinates 

the capacitive, resistive, and inductive 
admittance matrices in Y I coordinates 

the capacitive, resistive, and inductive 
admittance matrices in Y 2 coordinates 

the resistor branch voltages whose terminals 
are connected within yl 

the resistor branch voltages which ha1e at 
most one terminal connected within V 

the inductor branch voltages Similarly 
defined as vJ and vl: 

the inductor branch voltages which have at 
least one terminal connected within y3 

the number of components in yl 

the number of components in y2 



v 
v 

V. 
1 

J v 

J i 

J B 

1 2 I 3 
IL ' IL ' L 

1* I , 2* 
I , I 

3* 

(J 

-237-

the number of components in V 3 

the number of capacitors in the network 

the number of resistors in the network 

the number of inductors in the network 

the number of transformers in the network 

the resistor matrices in the coordinates 
1 2 

v R ' v R 

the inductor matrices in the coordinates 
123 

v L ' v L ' v L 

the current component in branch x due to 
external sources, voltage and current 
sources 

the set of voltage source branch voltages 

the set of branch voltages the current 
sources are connected to 

the current vector in v (unknown) 
v 

the current vector in v. (known) 
1 

the current vector in branch coordinates, 
VB' due to external sources, voltage and 
current 

the components of current in coordinates 
VI, V 2, V 3 , due to the inductive elements 
in the network 

the equivalent source currents, the combined 
result of current and voltage sources 

the number of independent parameters that 
specifies completely the energy distribution 
in the network 

the number of nonzero roots of the netw ork 

the number of loops formed by the inductors 
in the network alone 
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the voltage across the lth winding of the 
kth transformer in the network 

the number of windings of the kth trans­
forrner 

the relative turns ratio of the .tth winding 
of the kth transformer 

the total number of linear constraints 
introduced by ideal transformers 

the current component in I, due to the 
transformer winding connections 

the coordinate transformation matrix due 
to branch connections 

the coordinate transformation matrix due 
to ideal transformers 

the subset of Y, chosen to be dependent 
variables due to transformer constraints 

the subset of Y, chosen to remain inde­
pendent in the presence of transformers 
(chapter 5) 

the number of accessible nodes 

the set of externally accessible node pairs 

the remaining inaccessible node pairs that, 
in complement to yE, form the complete 
set of independent node pairs in the network 

the current vector in yE 

the short circuit driving point and transrer 
admittances in yE coordinates 

the matrix polynomial defined as 

H = C s2 + R s + L 

the polynomial in s, evaluated as the 
determinant of H** 

the coefficients of the polynomial 
n n-l 

G(s) = gns + gn-l s + ... + gl s + go 
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the nUnlerator matrix polymonial of the 
inverse of [H**j 

[H*'1-
1 

= G(lS) [F(s)] 

the matrix polynomial. defined as 

(Q] = [F][H*EJ 

the matrix coefficients of Q 

(Q] = (Qn1 sn + ... + [QlJ s + [Q;J 

the nUnlber of separate networks to be 
connected together 

the sets of externally accessible node pairs 
of the S separate networks 

E E E 
the current vectors in VI' V 2 •.•.• V 3 

the short circuit driving point and transfer 
ad=ittance matrices of the S networks 

the set of accessible node pairs after 
interconnecting the S separate networks 
together 

the set of node pairs that interconnect the 
S separate networks 

the connection transformation matrix that 
connects the S separate networks together 

a partition operator on matrices 




