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ABSTRACT

In this thesis an algorithm is developed for setting up the
differential equations and initial conditions of an electrical network
of arbitrarily connected capacitors, resistors, inductors, multi-
winding ideal transformers, and ideal voltage and current sources
that topologically represents a large class of systems. The algorithm
formulates the equation in a set of coordinates such that all matrices
to be inverted are nonsingular. The topological description of the
circuit is used to select a nonsingular set of coordinates which enables
the computation of the transient responses and the short circuit
admittances to a set of arbitrarily chosen ports of a network. Trans-
formers are accounted for by appropriately selecting a set of dependent
variables from the set of transformer linear equations. The algorithm
for selecting a nonsingular set of coordinates, being mainly symbol
manipulations, is coded in LISP. It is also shown that the same

method may be applied to systems with nonlinear parameter matrices.
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CHAPTER 1

INTRODUCTION

1.1 Electrical Network as an Analogy of a Large Class of Systems

The analogy between two systems has often been used to study
one system by means of the other. In the extreme, one can consider
that mathematics is a system of language, consisting of a set of
postulates, a set of rules and, consequently, a set of theorems, by
means of which one may transform one equation into another. When
mathematics is used to analyze a physical system, a set of symbols
in the mathematical language is taken to represent a set of quantities
in the physical system, From the observed basic relations among
the physical variables, namely the physical laws, the set of mathe~
matical symbols is correspondingly correlated. What is known as
mathematical analysis becomes nothing more than setting up an
analogy between the system of mathematical language and the physi~-
cal system under analysis. A rich mathematical concept is concise
and yet comprehensive. However, for complex systems, there is
no assurance that simple mathematical models can be constructed
so that the subsequent analysis can be successively carried out in
analytical form; even if one succeeds in obtaining the result, the
mathematical form may be so complex that information cannot be
extracted without going through a long evaluation procedure, pro-
bably with the assistance of computers.

Systems, describable by partial differential equations with
irregular boundary conditions, fall in this category. One may

argue that this drawback is due to the inadequacy of the present
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mathematical languages which cannot describe complex systems in
simple terms, and that when some super-mathematical language is
established in the future, all these difficulties may be resolved.
However, until that time, other methods are employed to obtain the
solution.

Other methods of analysis, also, use the analogy between the
system under study and some other system whose properties can be
more readily explored. Currently there are two models being used
most commonly in system analysis, They employ analog and digital
computer principles. The former uses electrical quantities, namely
voltages and currents, to represent variables and the latter uses the
discrete states in a switching circuit, Analogies have been estab-
lished between electrical networks and other systems which may be
the actual physical systems or the mathematical models of the sys-
tems in the form of a set of differential equations. The former often
employs the direct topological analogy (1) that gives a model con-
sisting of electrical elements - representing the intrinsic properties
of the system - interconnected in topologically the same form as the
physical system variables are related. Examples are the finite
difference analogies of beam (2) and plate (3), heat diffusion (4),
electromagnetic wave (5), composite structures (6), and any other
systems which can be approximatedby a finite difference model de-
scribable by ordinary differential equations (7). The latter often
uses a differential analyzer whichis an interconnection of integrators,
summers and constant coefficient multipliers (8).

One of the important criteria in judging the effectiveness of the

model is the ease of making observations and varying parameters.
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With the present art of electronic instrumentation, observation of any
quantity in an electrical network can be made quickly and accurately.
If the parameter to be varied is simply the coefficient in a differential
equation, the differential analyzer offers a simple scheme of making
parameter changes. However, if the parameter is the value of a
certain element in the direct analog model, the use of the topological
model will be preferred. In both cases once the model is constructed
as a network of electrical elements, measurements can be made to

analyze the system.

1.2 Digital Computers as Simulators

As distinct from analog computers, digital computers employ
a set of coded multistate elements (mainly binary elements) to repre-
sent different states. Each state may be assigned to represent a
symbol which specifically may be a number. A digital computer has
a set of built-in mechanisms to operate on the symbols. As far as
the programmer is concerned these mechanisms are the machine
programming commands.,

The task of specifying the steps is known as '"programming"
and the set of sequenced steps as the “a.lgorithm”**. In all cases,
one has to know the algorithm before implementing the process on a

digital computer. The digital computer together with the programmed

seie
The Webster New International Dictionary, 2nd Edition, defines

algorism (algorithm) as follows:

""l, The art of calculating by means of nine figures and zero;
arithmetic,
2. The art of calculating with any species of notation; as the
algorithm of fractions, proportion, surds, etc. Cf. Euclid's
algorithm. "
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algorithm form a digital model that simulates the physical system.
Figure 1=l therefore shows four different ways to represent the
same system. We may say that any one of the four is a model of the
others. They are equivalent within the limit of interest, in the sense
that if (d) is a model of (b) and (b) is a model of (a), then (d) is a
model of (a). This equivalence property is often used to set up the
digital model as shown by the path (1, 2) in fig, 1~2. The use of a
differential analyzer takes the path (1, 3); the direct analog topo~
logical model, the path (4)., Most of the systems analyzed by using
the path (1, 2) in fig, 1-2 require a human being to derive the mathe~
matical equations into the form that is acceptable to the programmed
digital computer. The human being's task is mainly symbol mani-
pulation according to a set of rules (as specified by the mathematics).
A digital computer can be programmed to do more general
symbol manipulation than that defined as numerical computation.
It is conceivable that we may program the symbol manipulation part
of the link (1, 2) and do away with the human being who derives the
equations from the system. This gives a direct path, (5), from the
physical system to the digital model. In achieving this goal, there

are two requisites:

Ak
Footnote (continued)

""Algorithm'" is used here to denote the sequence of operations which
when performed on the initial data will provide the end solution.

The initial data and end solution are represented by some symbols
and their association, and the operations are expressed as the
transformation on the symbols and their association. The algo-
rithm consists of the description of the initial data, the final
solution and the complete sequence of steps that transform the

input symbol into the solution symbol,
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The algorithm that accepts the physical system
description in its natural form as input data and
gives the relationship among the variables and
parameters for computation,

A good language capable of stating the algorithm
concisely that can be efficiently implemented on

a general purpose digital computer.

1.3 Digital Simulation of Electrical Networks

In this thesis, an electrical network of completely arbitrary

topology ~ consisting of resistors, inductors, capacitors and ideal

transformers ~ is taken as the model of the class of physical systems

to be simulated on the digital computer. The specification of the net-

work consists of three parts:

(1)

(2)

(3)

The passive structure

This takes the form of a list of elements giving the
values of their defining parameters and connections
in the network.

The active components

This consists of ideal voltage and current sources
across any node pair in the network.

The initial conditions

These are the complete specification of the energy
distribution in the network at the time from which
the transient response is to be computed. In an

electrical network they are simply the charges in
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capacitors (electrostatic energy) and the currents
in inductors (magnetic energy).

With (1), (2) and (3) completely specified this is a well~
defined initial value problem. An algorithm is presented to select a
set of nonsingular coordinates * in terms of which equations may be
systematically derived to describe the network completely. The
equations can be subsequently solved on a digital computer. For
transient studies numerical integration methods of various order of
approximation (10) can be employed; for the determination of network
functions in the complex plane, matrix manipulations are used.

In the succeeding sections of this thesis, chapter 2 gives a
review of the general coordinate transformation theory and derives,
specifically, the equations of linear coordinate transformation which
are used to develop the materials in the following chapters. Chapter
3 describes the governing factors that dictate the choice of coor-
dinates and the algorithm for selecting a set of nonsingular coor-
dinates in a network of arbitrary topology consisting of R, L, C
elements only., Chapter 4 discusses the inclusion of the two most
general types of forcing functions, namely, the ideal voltage and
current sources, and the systematic way of setting up the initial
conditions (charges in capacitors and currents in inductors).
Chapter 5 extends the scope of the network to include multiple winding

ideal transformers. Chapter 6 considers a slightly different problem.

s
A nonsingular set of coordinates is any set of coordinates in terms
of which the method of numerical computation does not encounter
the situation of inverting singular matrices.
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In this case, only the passive structure of the network is given, and
the problem is to determine the pole-zero distributions in the complex
plane of the short circuit input admittance and the short circuit trans-
fer admittance between any two node pairs in the network. Chapter 7
describes the computer program coded in one of the currently avail~
able symbol manipulating languages, LISP. This program selects
the nonsingular coordinates according to the algorithm described in
the earlier chapters. Chapter 8 concludes this thesis by indicating
the scope of this thesis and suggesting several related areas of
research that are worth further investigations. Appendix A gives a
method to evaluate the determinant of a matrix polynomial. The
actual LISP program listing is given in appendix B. Appendix C gives

several worked out examples.
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CHAPTER 2

COORDINATE TRANSFORMATION

The linear coordinate transformation equations are reviewed
in this Chapter to provide an immediate reference for the subsequent
chapters. Most of the material for this is drawn from references

(11), (12), (13) and (14).

2.1 Hamilton's principle

Hamilton's variation principle is equivalent to the Newtonian
equations of motion and can be derived fromthem. Instead of describ-
ing the motion of a particle directly in terms of its acceleration, this
principle describes the pathinterms of a quantity whose integral along
the path has a stationary value compared with other possible paths.
The variation principle is of little or no assistance in solving the equa-
tions, but it does provide a convenient means of writing the equations
in any desired coordinates.

Hamilton's principle states that for the motion of a mechanical
system

g
& L(ql, 4y - -+ 9 c'11, qz & W@ qn, tldt =0 (2-1)
¢!
The q's in equation 2-1 are the coordinates necessary to specify the
configuration of the system completely; the q's are their first time

derivatives; t is the time variable; and L is the Lagrangian function
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of the system as defined by
L=T-YV (2-2)

where T is the kinetic energy and V is the potential energy in the
system.
When all the coordinates are independent the path is described

by the set of differential equations, with Qi as the generalized force,

d /0L 8L -

E(a_q.)"ﬁ‘ Q {2-3)
1 1
1= L &s n

When the set of coordinates are not completely independent,
there exists a set of equations of constraint. In general, the time

dependent relation may be written as

ﬁj(ql’ qZ I qn: t) =0 (2-4)

J=31;2: &« « M

The corresponding Lagrangian equations are

{f—l ap
d s oL oL i i
#(5g)-9q * 2 MPsq = % i
1 1 . 1
j=1
orkiefl o2 n

The Lagrangian multipliers, Kj(t), are unknown functions of
time. In simple cases they are constants. From equation 2-4 and
equation 2-5 the A\¥s may be eliminated and the equations describing
the trajectory in the space of the set of independent coordinates can

be derived.
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2.2 Generalized coordinate elimination

Let the set of coordinates (ql, q - - - qn) be divided into two

subsets
1 1 1 1
=9 B s aom
(2-6)
2 p 2 2
. (. ql’ qz By T qm

where m is the number of constraints among the coordinates. These
two subsets are such that q2 may be expressed as a function of ql,

and equation 2-4 may be written as

qﬁ ¥ Fj(ql, t) = 0. (2-7)

Substituting equation 2-7 into equation 2-5 and separating gq into g

and qz,
2 aF (g, 1)
ALY B 0 Yo s dellad syl (2-8)
dt(a.l o R Pl e
K S | 9
d ; 8L 9L 2
a(;i)'—z”ﬂ = 9 (&-2)
9 7 29

where k=1, 2. .. (n-m) and {=1, 2. .. m.
The unknown multiplier, )‘ﬂ’ from equation 2-9 may then be

substituted into equation 2-8 giving

m 1

4 aL_aL+$ RN W gk % ok T el
dt(‘a.l) Bt AN, (< dt(a.z) e S
9 %G j=1 qj qj 9

1
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A set of (n-m) differential equations in the independent coordi-

nates (qi, qé aels, qul— m) can be derived from equation 2-10 by sub-

— 1 2 d 1 2
stituting F. , t) for q. and ==F. for =
g Fila 8 4 FFjlay L
At this point the type of constraint that relates q2 to ql and
the function dependence of the Lagrangian on q and ¢ can take any
form. The general result in equation 2-10 will apply to a large class

of systems. The next section treats specifically the transformation

under time independent linear constraints.

2.3 Coordinate elimination under linear constraint

When equation 2-7 is linear and time independent, we may write

it as

“ - [Flg' =0 (2-11)

7 A Z 2 2
where q 1is a column vector of m components (ql, dp « - - q'rn)’

and F is a matrix of m rows and (n- m) columns that represents
the linear dependence between q2 and ql. Substituting equation 2-11

into equation 2-10, we have
m
d/f oL aL 2 d s oL
_cﬁ(_.l)'—l E (Qj ‘E('"a.z)’fi’_]: f)
fo=s s 2
J=1 J 8qj

(2-12)

where fjk is the jth row and kth column element in the matrix F.
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When the elements in the system are linear, we may write

- 2
4oLy _ g g
at 1) =06, 17 +1cy,]
N
d [ oL 5%
E(a_.z)z [Cy 17 +1Cp,]
45
(2-13)
N N Y E A Ly
5 e 11 12
g
1 2
oL q q
-—5 = [Ly 17 4Ly,
9q .
J
where [Cll]’ [L11] are (n-m) x (n- m) matrices
[CZZ]’ [LZZ] are m X m matrices
[CIZ]’ [le], [CZI]T[ LZI]T are (n-m) x m matrices,
equation 2-12 may be written in matrix form as
ql (.32 T E';l T q2
[c, 1 +1c, 1 +1F1T1c, 1% +1F1T[cy,]
ql qz T q1 g q2
tIL 17 + 01,10 +[F]T (L, 1% +[F ]lL,,]
(2-14)

=Q; + [F]TQ2

The following equation is obtained by eliminating qz in equation

2-14 by equation 2-11,
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(fcy 1 +1c,1IF] +[F1%lc, 1+ [F1T[c,,1IF])q

+([L ] + (L IIF] + [F1T L, ] + [F]TL,,10F]) ¢

- ol +[F1TQ% (2-15)

Equation 2-15 is the system of equations when a setof constraints
is imposed on the coordinates. If there were no constraint, the system

of equations should be derived from

d/oLy oL A
dt( I)  EERE
9q " 9q
(2-16)
i(a )_ 8L _ 2
I\ 542 8q
to give
. LI 1 1
Ci1 Ci2] |8 Lir Laal |9 Q
+ - . (2-17)
.2 2 2
Ca1 Czz| |8 Lo Lol |4 Q

When the constraint, equation 2-11, is written in the following

manner

= ¢ =[alqd (2-18)

and E is the identity matrix, equation 2-15, may be written

as
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s | B b e & o
[a]T [alg' +[a]T [Alq'
g R by T2
FQ1 ' (2-19)
-[a]f
o

The result of a linear transformation may be stated as follows:
Let the system be originally described by a set of generalized
independent coordinates, qps generalized forces, Ql' and the system

equation
[ Yl ] q]. = Ql’ (2'20)

where [ Y1 ] is a linear differential operator, When constraints are
applied to 9 such that the resulting system is specified by another

set of independent coordinates, a5 then from the equations of constraint,

q; = [Alg,, (2-21)

the equation of the constrainted system in q, coordinates is

[Yzlq2 = Q, (2-22)
where
[¥,] = [A]T[Y,1[A] (2-23)
and
;4
Q, = [A] Q, (2-24)

[A] may bea nonsingular matrix, in which case the equations

of constraint merely specify a set of coordinate transformations. An
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independent set of coordinates has the minimum number of coordinates

which can completely describe the state of the system.

2.4 Coordinate transformation in electrical networks

Using the ''definitions of terms in network topology'' as pub-
lished in the IRE proceeding, January, 1951, (15), a 'metwork' is
a combination of ""elements'. An ""element' is any electrical device
(such as inductor, resistor, capacitor, generator, line, electrontube)
with terminals at which it may be directly connected to other electrical
devices. Topologically, a network consists ofa cluster of O-dimension
members, namely, the nodes and a collection of one-dimensional mem-
bers, namely, the branches. (Fig. 2-1-a) is an example of a network
whose topology is shown in (fig. 2-1-b). The branches of a network
form the original set of coordinates, in terms of which the Lagrangian
may be formulated and the system equation in the absence of other

constraints may be written as

[YB]VB = ig (2-25)

where the subscript B denotes branch quantities. This system of
disconnected branches forms the primitive network (11), (12), from
which all other networks using the same branches may be constructed.
The primitive network for (fig. 2-1-a) is shown in (fig. 2-2) whose

system equation is
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In the most general case, there may be couplings between the
branches, such that the matrix, [ YB] is no longer diagonal. When
elements like transistors or tubes appear as branches, [ YB] is not
even symmetrical (11), (12).

The topology of the network provides the equations of constraint
among the original set of coordinates, namely, the branch voltages. For
a connected network with P nodes, there are only (P~1) independent
node-pair voltages which form a tree connecting all the P nodes. All
branch voltages may be expressed as linear functions of the (P-1) node

pair voltages. This is expressed by the matrix equation,
vy = [A]vp, (2-27)

where the subscript p denotes node pair, and [ A] is the matrix that
s
represents the linear functions., The node pair current ip is the gener-

alized current in vp coordinate and defined as

. ;
Ly im [A] ip (2-28)

Both networks in (fig. 2-1-a) and (fig. 2-3-a) use the same

branches. They are only different in the topology as shown in

%
This corresponds to the generalized force in the original Hamilton
formulation.
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(fig. 2-3-b). For the network in (fig. 2-1) we may choose any three
node pairs that form a tree spanning the four nodes. Usingthe selection

in (fig. 2-1-b), we have

Fo 0 -1 0
Yy 1 0 1 Vi
goqiall geasgyt of vo| = [4A] %ol (2-29)
AP -1 1 0 Vs
_ve~ | 0 0 -1_
The equation in the node pair coordinates is given by
[ Wi ] Virbieh &g (2-30)
where
Q T
. L e 1 (2-31)
1p1 = [A‘l ] ig
Similarly for the network in (fig. 2-3) we have
v.7 [1 0o o 0]
a = -
Y1
vy 1 1 -1 0
-
vo|=]0 0 o0 -1 . = [AZ ] Vo2 (2-32)
vy o 0 -1 o0 v3
v 1 1 o of L*%
e L .
then
[ Yoo | Vo2 i (2-33)
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and

2.5 Tensorial concept of electrical network

It can be seen from equation 2-21, 2-22, 2-23 and 2-24,
that q, the generalized coordinates, obey the transformation rule
of a covariant vector (or tensor of the first rank), and Q, the gen-
eralized forces, obey the transformation rule of a contravariant
vector (16). The quantity [ Y] which we have called a matrix,
transforms like a contravariant second rank tensor. Having estab-
lished the tensorial concept of a network any transformation other
than linear ones can be handled automatically by using the rule of
tensor transformation (11). The same result may be obtained from

OF,
equation 2-10 in which the term —f— will eventually lead to the tensor

aqk
transformation. The concept of representing a stationary network by

tensors does not help to solve the network equations; however, the
concept offers a unified approach to a much larger class of system
not specified by stationary linear transformations. Kron (17) initi-
ated the idea and applied it to the analysis of electrical machinery,
It is conceivable that the same approach may be used in the study of

magneto-hydrodynamics.
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CHAPTER III

COORDINATE SELECTION IN RL.C NETWORKS

Definitions for some of the terms used form the first section
of this chapter. They are followed by some topological theorems
pertinent to the remaining discussions. Then the necessity of select~
ing a nonsingular set of node pair coordinates is pointed out, followed
by a discussion of the algorithm that selects the nonsingular set of

coordinates in a completely passive network with no transformers.

3.1 Definitions

Node: A terminal of any branch of a network or a terminal
common to two or more branches of a network,

Branch: A portion of a network consisting of one or more
two~terminal elements in parallel that have the
same terminal nodes.

Element: Any electrical device. An active element can be
either an ideal voltage source or an ideal current
source, A passive element can be a resistor,
capacitor, inductor or a winding belonging to an
ideal transformer.

Network: A combination of elements,

Loop (mesh): A set of elements forming a closed path in a
network, provided that if any one element is
omitted from the set, the remaining elements

of the set do not form a closed path,



Node pair:

Terminal
pair:

Tree:

Connected:

Separated:

Resistive

elements:

Capacitive
elements:

Inductive
elements:

Voltage
sources:

=2B=

A pair of nodes whose voltage difference is
used to describe the state of the network.

An associated pair of accessible terminals,
such as input pair, output pair and the like.

A set of connected branches including no meshes.
A network is connected if there exists at least
one path, composed of branches of the network,
between every pair of nodes of the network.
Two networks are separated if they are not
connected.

The passive elements whose currents are
proportional to the voltages across them.

They have the dimension '""ohms' as impedances
and "mhos'' as admittances.

The passive elements whose currents are
proportional to the first time derivative of the
voltages across them, They have the dimension
"Farad' as admittances and (Farad)-l as
impedances.

The passive elements whose terminal voltages
are proportional to the first time derivative

of the currents in them. They have the dimen-
sion '""Henry' as impedances and (Henry)"l as
admittances.

The voltages across the voltage sources are

independent of the currents in them,
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Current The currents from current sources are inde~
sources:
pendent of the voltages across their terminals,
Ideal An electrical device with several two terminal
transformer:
windings. Each two terminal winding W, is

characterized by a relative number of turns n, .

The current ii in the iﬂ:1 winding must satisfy

Zn.i.:O A
i’i

Between any two windings, the voltages across

the condition,

the winding terminals, v, and vj , must satisfy

i

the condition,

n.v, = n,v .

L ¥y = My

3.2 Some Topological Theorems in Networks

Theorem 1
(i) At least (P-1) branches are required to connect P nodes,
and (ii) any more than P- 1 branches connected among P

nodes form at least one loop.

Corollary 1
When there are P nodes forming D separated
networks, then the minimum number of branches

among the P nodes is (P = D).
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Corollarx 2

In a network of D separated parts, there are D
sub-trees that connect the nodes within each con-
nected group of nodes. If a tree is constructed to
connect the D parts together, then the resulting
connected network is still a tree.

Corollary 3
In a connectednetwork of P nodes and B branches,
there are (B- P +1) loops (meshes).

Theorem 2

Two trees, each of (P-1) branches, connecting the same

P nodes are different if at least one of their branches is

different. Then the number of different trees one can

form among the P nodes, S(P), is givenbythe expression,
1

(P ) p-1?

P-1
S(P) = T(1) = y
i=1 i

P

where (g) is the coefficient of xb in the binomial expres-

sion of (1 +x)a, and Tp_l(i) is recursively defined as

m-=n m=-n
+j-1)1! ;
rw =) () BEEE 1.0

for m >n

L &1
I
—

.

and T_(n) = 1 for m=n,
m
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An arbitrary node is taken as the reference, then
(.9-11) Tﬁ-—l(i) is the number of different trees that
have i of the remaining P~ 1 nodes connected to
the reference node. The total number of different

trees is then given by

PS-‘I P—l
S(P) = ( )T 1 (D). (3-1)
L ' P

=]

[

Tm(n) in equation 3-1 is defined as the number of
different trees that can be constructed among m-n
distinct nodes and a reference datum of indistinguish-
able n nodes. The j branches that connect to the
datum can be distributed indistinguishably among the

) (n+j-1)t
n nodes in T‘TIJ:UT ways. Therefore, Tm(n)

can be recursively defined as

A
T = ) ( ) BHHE TG G-2)
= NN
for m>n
and
T_(n) = L for 'm ='a® UTH%

The recursive function defined in equation 3-2 and
3-3 always converges for m > n. From the very

definition of Tm(n), S(P) can be defined as



e

S(P) = T_(1). (3-4)

Here are a few evaluated values:

S(2) = T,(1) = Ty(1) = 1
5(3) = T,(1) = (3)1,(0) + (§)T,(2) = 3
S(4) = T,(1) = (i)'r3(1) + (3)Ty2 + (3)r,503)

3:343(2-T (1)) +1 = 16

(Fig. 3-1) gives the sixteen different trees that one
can construct to connect 4 nodes. They are divided
into the subsets T3(3), T3(2) and T3(1), taking node

4 as the reference. The next two values are

"

S(5) = 119

S(6) = 1136,

The growth factor is approximately given by

s(P) ~ (p-1)! 2P (3-5)

which is a very fast growing number.
Theorem 3
The transformation matrix, [ A], that transforms a vector,

Vi’ whose (P-1) elements are the voltages across the tree
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The Sixteen Different Trees that Connect

Four Nodes

Constructed from subsets T3(3), T3(2), T3(1)
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branches of a P node network, to another vector, Vj' whose
elements are the voltages across the branches of another tree
that spans the same set of nodes as Vi’ is nonsingular and
has a determinant of either +1 or -1,
Proof:
Since both Vi and Vj form the basis of P -1 linearly
independent vectors in the (P - 1) dimensional space,

the linear transformation

Vj = [A]Vi

has a nonsingular transformation matrix, [ A].

The matrix [ A] can be proved to have a determi-
nant of either +1 or -1 by constructing a finite sequence
of elementary transformations, each with +1 determi-

nant, that successively transform Vi into Vj'

Vi = [a v

Vie = [ 4,1V,

<
I

j o Am]Vk(rn-l)

then [A] =[A I[A JEERS AT

m-1

and det [A] = T
=1

det |A,| = +1.
t -

t

The elementary transformation matrix At in

Vi = [ At]vk(t- 1)
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is such that V ¢ and V have only one different

k k(t-1)
branch in their corresponding trees. The differing
branch in the th tree is a branch in the tree of Vj

and the differing branch in the V tree is not.

k(t-1)
Since there are at most P - 1 different branches be-
tween any two trees that span the same set of P nodes,
the sequence of transformations, [ At], has a finite
length of at most P - 1. Each elementary transfor-
mation matrix, [At]’ will have P - 2 rows with +1

on the diagonal and zero off diagonal terms, and a

single row with some +1 off diagonal terms in addi-

tion to the +1 diagonal term. Such a matrix has a
determinant of +1, hence the matrix [ A], which is

the product of these elementary matrices, has a determi-
nant of +1.

(Fig. 3-2) shows the successive transformation

from the tree in (a) into the tree in (d).

3.3 Network Solution in Node Pair Coordinates

In Chapter 2, two networks, with the same branches, but
connected into different topologies, are considered as the same object
subject to different constraints on their independent coordinates, namely,
the branch voltages or currents. This object (network) with B branches
may be considered to span a B-dimensional space. Upon constraint,
the object is restricted in such a way that fewer than B vectors inthe
B-dimensional space can define the object uniquely. In a connected

network of P nodes, (P- 1) node pair voltages form a (P - 1)-dimensional
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space that defines the network. If these (P - 1) node pairs are taken
as the branches of a tree in the P connected nodes, this (P - 1)-
dimensional space forms a subspace of the original B-dimensional
space. In orthogonality to this subspace, there is a (B- P +1)-
dimensional space which gives the set of independent branch currents,
in terms of which all other branch currents can be computed from the
condition of constraint, (Fig. 3-3-a) shows the five branches that form
the object. (Fig. 3-3-b) shows the object (network) under a set of con-
straints. (Fig. 3-3-c) gives the components of the 3-dimensional space
that correspond to the 3 node pair voltages, and (fig. 3-3-d) gives the
components of the 2-dimensional space that correspond to the 2 mesh
currents.,

In order to choose a set of independent coordinates, one may
either pick a base in the (P - 1)-dimensional space that corresponds
to a tree in the P connected nodes, or one may define a base in the
(B-P+1)-dimensional space that corresponds to a set of independent
mesh currents. Node pair coordinates are used in the present work
for the reason that it is easier to detect (P - 1) independent node pairs
than selecting (B-P +1) mesh currents in a network with arbitrary
topology. The fact that (B- P +1) may be less than (P-1), in which
case the mesh current formulation has fewer variables, is not con-
sidered at all,

Networks consisting of purely passive elements without ideal
transformer are considered in this chapter. In the subsequent chapters,
active elements and transformers are included by extending the results

from the present simplified model. Since the solution of the network
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with several separate parts is obtained simply by solving each sepa-
rated part independently, we will only consider totally connected net-
works without loss of generality,

A connected network considered here with P nodes can have
three types of elements, namely, resistors, capacitors and inductors.
Each branch may consist of any parallel combination of the three types
of elements. The basic physical laws describing the three types of

element are

dv

1= @9 (3-6)
s dt

iR = Rvg (3-7)
i = Lf v, at (3-8)

where ic' iR’ iL are the currents in the elements: capacitor, resis-
tor, inductor; Ver Ve Vp, are the voltages across the corresponding
elements. C has the dimension of capacitance, namely, Farad; R is
the resistive admittance in Mho; and L is the inductive admittance in
(Henry)-l. 5, These relationships are shown in (fig. 3-4). Let Vg de-
note the branch voltages, and V the (P-1) node pair voltages that form

a tree in the P connected nodes; i, and I are the corresponding cur-

B
rents in the branch and node pair coordinates. ([ CB ], [ RB ], ['LB ])

and ([Cc], [R], [L]) are the (capacitive, resistive, inductive)

sk
The unconventional use of R and L to represent the resistive and

inductive admittances is to give a consistent subscripting system
such that the C, R, L subscripts denote the quantities in capacitive,
resistive and inductive elements, Secondly, although G is often used
to denote conductance, no universally accepted symbol denotes the in-
ductive admittance,



Capacitive, Resistive and Inductive Elements with
'R, L as their Respective Admittances ¥

FIGURE 3-4
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matrices - or tensors, if Kron's terminology is used, in the branch
and node pair coordinates. The equations in terms of branch coordi-

nates are

dv
i, = [cgzl —(—1-,—;]3—’ (3-9)
ip = [ RB] Vg (3-10)
L, = [LB] va dt; (3-11)
the equations in terms of the node pair coordinates are
1= [elSE (3-12)
Ip = [R]V (3-13)
I = [L] f V dt. (3-14)

In the absence of active elements, the resulting current in the gener-

alized node pair coordinate must be zero,

I 1, +L = O (3-15)

E 4 VR is related to V by a transformation matrix, [ A]

Ve & L) ¥ (3-16)

then from equation 2-23 and equation 2-24 we have

Iy i [A]Tic (3-17)
Ip = [A]TiR (3-18)
S [a]Ts, (3-19)
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and
[c]l=[alT[cgllA] (3-20)
[R] = [A]T[RLI[A] (3-21)
[L] =[A]T[LgI[A] (3-22)

Substituting equation 3-12, equation 3-13 and equation 3-14 into equa-

tion 3-15, we have
dv
[C]?{+[R]v+[L]det=o. {3-23)

Equation 3-23 is the second order matrix differential equation one
has to solve. When solving equation 3-23 on a digital computer, the
method of numerical integration (10) converts it into the canonical

form as shown in equation 3-25 where y is defined as

y = fV dt (3-24)

S-lclMIrIV-[L]y

(3-25)
ﬂ— Vl

dt

The method of numerical integration works provided that the right hand
side of equations 3-25 are ‘valuable. Since the evaluation involves the
inversion of [ C], which may be singular, equations 3-25 cannot be
applied directly. The rank of [ C] is an invariant property of the net-
work, depending only on the topology of the capacitor connections.
However, if one can select the coordinates in such a way that [ Gl

is in the form
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C 0
By ke (3-26)
0 0
where [ C11 ] is a submatrix of [ C] and has a dimension equal to

the rank of [ C], then we may write equation 3-23 inthe partitioned

coordinates (page 48 of reference (18)),

rﬂ
V=]
v
- J
(3-27)
1
y
y = x
LY 4
C.. 0 vi R.. R. v Ly i L 1
11 d " 11 “1x 2 11 “ix|| Y "
dat x X %1 =
0 o0 \' o BillV L, L |y (3-28)

The canonical form for numerical integration becomes

G = Lo 17 - IRy IV - TR IV - Ty 1y! - T1 1v7)

& =yl (3-29)

e o vEo iR 1Y -Ir, Vi 0yt T 1vF)

By the choice of [ C] in equation 3-26, [ (311 ]-1 always exists.
However, if [ Rxx]_l does not exist, equations 3-29 are still not
completely evaluable. Once the coordinate V1 is chosen to give a
nonsingular [ C’ll ], the rank of [ Rxx] is invariant to the choice
of V¥, Therefore, it is necessary to choose V* in such a way that

v* may be partitioned into the form



)
VT o= - (3-30)
\'

and [ R] partitioned into
i 3
L1 By
[R] = R,, R,, 0 (3-31)
0 o0 9J

where [ R22 ]-1 always exists. Equation 3-28 is then developed into

the form

e ; Yoo un '

1] 1 [ It 1

Cj 00 v Ry; Ry 01V Lyg Tya Lysl| ¥
d 2 2 2

0 00 |4 | Ry Ry 0 | Lyy Lpp Lpsl| ¥
3 3 3
0 00 AN 0o 0 0 : I S o

- =0 " (3-32)

and equations 3-29 become

AR - il €8 P At YO £ N PR 6 P P T
1

.dL:V]'

at (3-33)

dyz e -

o =Y :=[Rzz]-l(—ljR21]Vl"[L21]V1” [L,,1y%- [L23]Va

v = [y 17 (- DLy Iy! - [1g,15%)

Since the network is connected, [ L must exist and equations

33 ]
3-33 are completely evaluable., Therefore, from the initial conditions
which will be discussed in the next chapter, the state of the network at

all subsequent times may be computed.
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In setting up a digital model of any arbitrary network by using
numerical integration, the important factor is the choice of coordinates
in such a way that [ C11 ]_l, [ R,, ]-1 and [ Kog o ]-1 exist. Any set
of coordinates that satisfies the above condition is called a '"nonsingular
set of coordinates'. The next section will discuss two different methods
of selecting a nonsingular setof coordinates; one uses matrix operations
and the other uses topological properties of the network. Itwill be shown
that the former method is not always applicable when there are excessive

round off errors during matrix operations.

3.4 Two Methods of Deriving a Nonsingular Set of Coordinates

There aretwo general methods of deriving a nonsingular setof co-
ordinates. One assumes a base setof (P-1) node-pair coordinates, and
by matrix algebra suchas the congruent transformation (page 89 of refer-
ence (19) onthe [ C], [ R], [ L. ] matrices in sequence, the base set of
coordinates whichmay be singular, istransformed into a set of nonsingular
coordinates. The other method which is developed in this thesis takes the
circuit topology as a starting point, andselects Vl, VZ, V3 in sequence.
When one class of coordinates is selected the networkis reduced so that
the selection of the next class of coordinates is from a simpler network,
(a) The transformation method:

Let Vo be the initial base set of coordinates and [ Co ], [ R0 ],

[ Lo] be the capacitive, resistive and inductive matrices inthe

base coordinates. Transformationis first appliedto [ CO] which

is a symmetrical matrix of unknown rank. The transformation

reduced [ Co] to a matrix of the form (page 89 of reference (19)),



=B

G50
[c,]1=[®'1T[c I[P ] =| M (3-34)
0 0
where [ Cll ] is a diagonal matrix.

After [ P1 ] is obtained to give equation 3-34, the same

transformation is applied to [ Ro] and [ Lo] giving

-

[r,] =[P 1T[R I[P'] = 11 i (3-35)
x1 Rxx
3
L L !

(L] =[P T I0p' 1 = 1 1= 0 (3-36)
x1 Txx

Then [ Rxx] of unknown rank is subject to the same

1
treatment as [ Co 1. giving the transformation matrix [ P2 ]

such that
R 0
2! rA 22
[P*1T[R_I[P*] = . (3-37)
0 0
Now we define
E 0
2 1
[ ] (3-38)
2!
a.P

where [ E1 ] is the identity matrix of the same dimension

as [ C11 ], and compute

[c,]=[P*1T1P" 1T c 112" 1 P?)
Cll 0 0 (3-39)
=10 0 0
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[r,] = [P*1T[ P 1T R I[P ][ P?]
Ry, Ry O
= [Ry; Ry, 0 (3-40)
0 0 0
[L,] =[P* 1T P 1T 1P 1 PP]
R2TIE PR
= 1| &21 i Log Yo (3-41)
| Sako e, oy

where [ C11 ] and [ RZZ] are diagonal, thereforenonsingular, and
[ L33 ] is nonsingular since the original base V0 is a set of independent

coordinates., The new set of nonsingular coordinates is given by

V.1

v = [P 10P%] Ty (3-42)

V3

This process of deriving a set of nonsingular coordinates by
using congruent transformation is practicable if no appreciable round-
off error is developed inthe arithmetic operations whichmay change
the rankof the matrices. The altering of the rankmay change a co-
ordinate originally in class V2 or V3 into a component of V1 or Vz,
in which cases, although the final matrices [ Cll ], [ RZZ ] and [ L33 ]
are nonsingular, they will introduce large round off and truncation
errors in subsequent computations, since they are ill-conditioned.
Such difficulties may be resolved by pre-determining the ranks
and introducing special control in the arithmetic computations which

will complicate the algorithm considerably.



-45-

(b) The topological method
The starting point of the topological method developed in this
thesis is the network topology itself, Since the network con-
sidered here has three types of elements, namely, resistive,
capacitive and inductive elements, there are three topologies
corresponding to the three types of elements. (Fig., 3-5-a)
shows a network whose capacitive, resistive and inductive
topologies are given in (fig. 3-5-b, -c and -d) respectively.
The topological method of selecting Vl, V2 and V3 is stated
first, followed by the proof of its validity.

When the network consists only of R-, L- and C-
elements, the first step of selecting Vl is to draw the capa-
citive topology diagram such as (fig. 3-5-b). In this diagram
trees are selected to connect all the connected nodes. The
branches of the trees with arbitrary orientation form the com-
ponents in Vl. For the example in (fig. 3-5-b) the node pairs

1

v 5 ¥ and v may serve as the components of V™.
5,2

3,7
When several nodes are connected together, there are a large
number of ways to form a tree connecting these nodes as shown
in Theorem 2, Any one of thesetrees may be used to provide a
coordinate Vl such that [ C11 ]-1 exists; however, thesetrees
may differ in other respects. One important consideration in
performing matrix operations on a digital computer is the con-
trol of round off errors. The next section will discuss the cri-
terion of selecting the tree among a large set that will give the

minimum r,m.,s, round off errors. After selecting V1 the

topological method proceeds to select VZ from the reduced
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(a) The l{educed Resistive Diagram of the Netwark
Figure 3-5

(b) The Reduced Inductive Diagram of the Network im
Figure 3-5
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Capacitive

Resistive

Inductive

(c) The Crouping of Nodes during the Node-Pair
Selection in the Network in Figure 3-5

FIGURE 3-6 (continued)



-49-

resistive topology diagram with all the nodes that are connected

in the capacitive topology diagram short circuited. For example.

(fig. 3-6-a) gives the reduced diagram of (fig. 3-5-c). The arbi-

trarily oriented branches of the trees in the reduced resistive

diagram form the components of Vz. The final step of select-

ing V3 is to construct a tree in the reduced inductive diagram.

A reduced inductive diagram is the inductive topology diagram

with all capacitively or resistively connected nodes grouped

together. For example, the reduced diagram of (fig. 3-5-4d)

is shown in (fig. 3-6-b). The arbitrarily oriented branches

of the trees in the reduced inductive diagram form the com-

ponents of V3.
The proof of the topological method is preceeded by

several theorems on matrices. Some theorems are quoted

from references without proof.

Theorem 4. (Page 91, Theorem 5-6 in reference (19)

A real symmetric matrix [ A] of rank r is congruent to

a matrix
F .
E 0 0
P
[B] =] 0 -Er_P 0 (3-43)
0 0 0

The integer p is uniquely determined by A.
Definition
The integer p in equation 3-43 is called the index of

the symmetric, real matrix [A].
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Theorem 5. (page 94, Theorem 5-8 in reference (19))
An nxn real, symmetric matrix of rank r and index p is
positive semidefinite if and only if p = r, and positive defi-
nite if and only if p=r = n.
Theorem 6. (page 94, Theorem 5-10 in reference (19))
If [ A] is positive definite, every principal submatrix is
positive definite. Also, |A| and all principal subdetermi-
nants are positive.
Theorem 7. (page 94, Theorem 5-9 in reference (19))
A real matrix [ A] is positive definite if and only if there is
a nonsingular real matrix [P] suchthat [ A] = [ P]T[ Pl.
Theorem 8.
[ A] is positive definite, then any congruence of [A],
[ Q]T[ Al[ Q], is also positive definite where [ Q] is
nonsingular,
From theorem 7, the positive definite matrix, [Al,

may be written as

[A]l =[P]1T[P]

and

[e]T[allel =[lT[PIT[PI[Q]. (3-44)

Since [ P] and [ Q] are nonsingular, their product,

[ 8] is also nonsingular,



Theorem 9.
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[@]lT[allQ]l =[s]1%[s], (3-45)

and by Theorem 7, we proved that [ Q]T[ Al Q]

is positive definite.

If [ A] is an nxn positive definite matrix, and [ B] is an

nxs (s<n) rectangular matrix of rank s, then the sxs matrix,

[ B]T[ A] [ B], is positive definite.

Proof:

Since [ B] has rank s , it has s independent vectors.
It is always possible to find (n- s) additional independent
vectors orthogonal to the column vectors of [B], and
call them [ B1 ] The nxn matrix [ B, Bl] has n
independent column vectors, therefore nonsingular.
When [ A] is congruent transformed by [ B, B1 ], we

have

[B, B, 17[A]l B, B,]

BTAB BTABl

= , (3-46)

L T
Bl AB Bl AB1

Since [ B, Bl] is nonsingular, by Theorem 8, the right-
hand side of equation 3-46 is positive definite. Further-
more by Theorem 6, the submatrix [ B ]T[ Al[ B] is

positive definite irrespective of [ B1 ]. This proves the

theorem.
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The following notations are defined:

Y&, "a. "L - the set of branch voltages of all the
capacitors, resistors and inductors.

- y = the set of branch voltages of all the
resistors whose terminal nodes are
both connected by the tree that gives
Vl.

'R 6 = the set of branch voltages of all the
resistors whose terminal nodes are
either both connected by-the tree that
gives VZ. or one in the tree that gives Vz
and the other in the tree that gives Vl,

VL 1, VL % = the inductor branch voltages similarly
defined as 'R i and YR 2.

i 2 2 = the set of inductor branch voltages
which has at least one terminal node
connected by the tree that gives V3.

d1 = the number of components in Vl.

d2 = the number of components in Vz.

d3 = the number of components in V3.

Bc = the number of capacitors in the
network.

BR = the number of resistors in the
network.

BL = the number of inductors in the

network.
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[Cgls ERgde gl

the capacitive, resistive and inductive

admittance matrices in coordinate v

C’
YR and Vi
[ Ré 1. 4 Ré ] = the resistive admittance matrices in
: 1 2
coordinates YR * VR -
[ LEI,’ s I Lé LT Lé] = the inductive admittance matrices in

1 2 3
MRS )
With the above introduced theorems and notations, the validity

coordinates v

of the topological method is proved as follows:
(1) To prove thet [ C11 ]_1 exists:
Since V1 is selected to connect all the capacitors, we may

write
[vgl = [UlV (3-47)

where [ U] is a chdl matrix of rank dl' If all capaci-
tances are positive, the capacitive matrix [ CB] in Ve coor-
dinate is positive definite. Therefore, from Theorem 9, the

matrix
[c);] = [ulflcgl[u] (3-48)

is positive definite and nonsingular.

(2) To prove that [ RZZ ]-1 exists:

Since all resistors are connected by Vl and VZ, we may write
v 1 = [ w ] Vl
R 11
> 1 2 (3-49)
veg. = [Wy 1V +[w,, 1V
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where [ W22] is a rectangular matrix of d, independent

2
columns, that is, [WZZ] has rank = dz.
1 2

The resistor matrix in (V°, V) coordinates is given

by
R,, R W o |T W 0
11 Ry 11 S 11
= R . (3-50)
Ra1 Raa Wo1 Vo BT Wy Wy,
with [RB] written as
Iié 0
[Rg] = 2 (3-51)
0 R
B

where both [ Ré] and [ Ré] are positive definite, we have

[R;, ] = [w ITIRAII w1+ 1w, ITIRZI[W,,]

(3-52)
[R,] = [R, 17 = [w, 1T[R,I[W,,] (3-53)
[Ry,] = [w,,1T[REIIW,,]. (3-54)

In equation 3-49, the rank of [ W11 ] and [ W21 ] are not known,
therefore, we cannot conclude whether [ Rll ] is positive defi-
nite or positive semidefinite. However, the rank of [ sz] is

d therefore the dzxd2 matrix, [ R’ZZ ], is positive definite.

2’
(3) To prove that [ L33 ]-1 exists:

v 2 o= [8,,1V +[s,,1v? (3-55)
v? = [531]'v1 + [532]'v2 +8,,1V
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From the way we select V3, the transformation matrix [ S
7

33]

has a rank of d,. The inductor matrix in (V', V2, V°) coordi-

nates is given by

r 1T 1 & ]
Lytadie Fys 11 P 11 0
Liay Tno Lose 21 B3z © - 21 B3 0
Lgy Tia3 T3 31- 8327343 Bl %a1 852 83
- J L % G2 JL (3-56)
From equation 3-56 we have

S IR LA . (3-57)

since the matrix [ S33] has rank = d,, the d3 x d3 matrix,

3,

[ L33 ], is positive definite.

3.5 Coordinate Selection to Minimize Round Off Errors in Matrix

Computations

The transformation method described in Section 3. 4 reduces the
matrices to be inverted into diagonal forms. The round off error in in-
verting a diagonal matrix is in the last significant digit the computer can
represent. However, the transformation procedure that leads to the
diagonal matrices involves many arithmetic operations which can intro-
duce appreciable amount of error in the diagonal terms. The transfor-
mation method has even a greater disadvantage of altering the rank of
[ Cll ], [ R22] and [ L33 ]; its use in coordinate selection will not
be considered further. In the topology method, the selection of Vl,
Vz, and V3 are made by constructing trees among a set of nodes.

There are S(P) different trees one can construct to connect P nodes.
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S(P), as evaluated in Theorem 2 is a very fast growing function of
P. This section will discuss the selection of one tree among this large
set of permissible ones such that the r. m. s. round off errors in sub-
sequent matrix operations may be minimized.

Turing (page 298, reference 20) gave the following statements:

r.m. s, error of coefficients of solution
r.m, s, error of solution

—1) r. m,s. error of coefficient of [ A]

1
= — N(A) N(A
n LA r.m.s. coefficient of [ A] (3-58)

where the matrix under consideration is [ A] and N(A)

is the norm of [ A] as defined by

N(A) = (trace AT &)1/ - (Z a.é)”2 (3-59)
i, j

s called -:IN(A) N(a™ !

) the N-number of the matrix
[ A]. Similarly, he defined an M-number as nM(A) M(A_l)
where M(A) is the maximum coefficient of the matrix

[A]
M(A) = nfla_xlaij. (3-60)
L)

From equation 3-58 we can see that the N-number is a measure
of the ill conditioning in a matrix [ A] with randomly distributed coef-
ficients. If we want to compare this property of two matrices with the
same dimension n, the value N(A) N(A-l) will suffice. Given the ma-
trix [ A], N(A_l) varies inversely as det | A|. Therefore, for the

comparison of two matrices, instead of deriving the r.m.s. error
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relationship as in equation 3-58, we may use %ﬁ%—' as a measure of

relative round off error in matrix computation., If we further define

M (A)

M(A) = Zla ; | (3-61)
i

as the sum of all the absolute values of elements in matrix [ A ], then

we can also use

M(a) (3-62)

det{ A|

as the round off error measure, If

M (A) M (B)
det|A] ~ det|B| °’

(3-63)

we say that the matrix operations in [ A ] will introduce more round
off errors than in matrix [ B]. In the selection of the tree such that
the matrix operations introduce the least round off errors, equation 3-62
is used instead of equation 3-58, because the latter, involving quadratic
forms, in hard to implement into a selection algorithm.

The following theorem is given before describing the algorithm
that selects the optimum coordinates.

Theorem 10.

The determinants of the admittance matrices formulated in the
node pair voltages are invariant to the choice of the trees from

which the node pair voltages are selected.
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Proof:
Theorem 3 states that the transformation matrix,

[A], in

Vj = [A] v, (3-64)

has a determinant of +1 where Vj and Vi are any
two vectors whose elements are the node pair voltages
across the branches of any two trees., From equations

2-21, 2-22 and 2-23 we have
[%;] = [A]T[K,1[A] (3-65)

where [ Ki] and [ Kj ] are the admittance matrices

in the coordinates Vi and Vj. Hence we have
det K[ = (il)zdet[Kjl (3-66)

Returning to the problem of selecting the tree that minimizes
the value given in equation 3-62, it can be seen that since the determinant
is invariant to the tree selection, the optimum set of coordinates will
minimize the value M (A).

Let there be B admittance branches whose branch voltages are
(vl, Voo vB) and the admittances of the branches be (kl’ kZ > & s kB),

then the admittance matrix in branch coordinates is the diagonal matrix

-kl § iw =D |
9 k, - - -0
[KB] = | (3-67)
0 kB
. —
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Assume that these B branches are connected into P nodes,
and a set of (P~ 1) node pairs are selected (Vl, V2 o on Vo 1), then

we may write

¥y Vl

v v

2 l=1a1].? (3-68)
VB Vp- 1

and [ K], the‘a.dmittance matrix in (Vl, v P~ 1) coordinates

2 . = =

is given by

[kK] = [A1T[R,I[A], (3-69
or
B
kij = Zamiamjkm (3-70)

where ki" aij are the elements in ith row and jth column of matrices

[K] and [ A], and k_ is defined in equation 3-67.

Equation 3-70 may be interpreted differently by freezing the
dummy index m. Then we can say that each branch Yo which has
the branch admittance km contributed the amount a’mia’mjkm to the
element kij’ and the resultant kij is the sum of the contributions
from all branches (vl, Voo VB). Since we want to minimize
M (K), the sum of the absolute values of all the elements in [ K], we
wish to keep the contributions from the largest km to a minimum num-
ber of terms of kij' The elements aij can either be +1, -1 or 0, there-
fore, the contribution due to kM, the maximum branch admittance, may

be limited to a single term kii if we set
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a =0 forQ £ 1
My ¢ (3-71)
ang = +1 for { =i

When the result in equation 3-71 is substituted into equation 3-68 ‘M

is selected as a branch of the tree. After the branch with the largest
admittance is selectedas a branch of the tree, the branchwith the next
largest admittance is selected, provided it does notviolate the tree top-
ology. For example, after selecting the branches (4, 1) (1, 2) that cor-
respond to the first two largest branches in (fig. 3-7), the third branch
cannot be (4, 2) which, although its admittance is the largest among the
remaining branches, violates the tree topology. With the tree branches
selected according to this algorithm, the value M (K) will be minimized,
hence reducing the round off error in subsequent matrix computations as

formulated in equation 3-33.

3.6 The Algorithm to Select the Optimum Coordinates in a Passive

RLC Network.

The algorithm to select an optimum set of node pair coordinates
is summarized below with the supplementing example in (fig. 3-8) for
illustration.

(Fig. 3-8-a) shows an arbitrary network of resistors, inductors
and capacitors. The values of all the elements are given to guide the
selection of the optimum set of coordinates.

(1) From the given network, the capacitive topology in (fig. 3-8-b)

is constructed as several connected branches weighted according

to the capacitances. The most weighted branch, V89 is selected

as the first component in Vl. Then with the terminal nodes of
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(a) The Complete RLC Network

(b) The Weighted Capacitive Topology
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FIGURE 3-8



—aT

(c) The Weighted Resistive Topology with all Capacitors
in the Network Short Circuited

&

(d) The Weighted Inductive Topology with all Capacitors
and Resistors in the Original Network Short Circuited

An Example

FIGURE 3-8 (continued)
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the selected branch grouped together, and all the parallel
branches combined, the next most weighted branch is selected
as the next component in Vl, namely, ‘40 in (fig. 3-8-b).
The procedure continues until all capacitively connected nodes
are grouped together. This ends the selection of node pairs
in Vl.

(2) From the given network, with all the capacitors replaced
by short circuiting wires, and all the parallel resistors com-
bined together, the reduced resistive topology, weighted accord-
ing to the resistive admittance, is constructed as shown in
(fig. 3-8-c). The same selection criterion used to select Vl
from the capacitive topology is used on the reduced resistive
topology to give all the node pairs in VZ.

(3) Finally, with all the capacitors and resistors short cir-
cuited in the original network, and all the parallel inductors
combined, the reduced inductive topology, weighted according
to the inductive admittances, is constructed as shown in

(fig. 3-8-d). The same selection criterion used to select Vl
and VZ from the capacitive topology and the reduced resistive
topology is used to select all the node pairs in V3 from the

reduced inductive topology.
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CHAPTER 4

FORCING FUNCTIONS AND INITIAL CONDITIONS

Chapter 3 dealt with the selection of an optimum set of coor-
dinates for a passive RLC network. This chapter extends the method
to include voltage and current sources and gives a systematic pro~-

cedure of setting up the initial conditions for the differential equations.

4.1 Voltage and Current Sources

Voltage and current sources are also considered as two terminal
elements. Voltage sources introduce additional constraints to the set
of independent node pairs; however, current sources merely add
additional terms to the current summation equation, equation 3~15,
In order to have a unified approach, voltage and current sources are
represented as Jv and Ji in the current summation equation, Jv
representing the current vector in voltage-~source elements, and Ji 4
the current vector in current-source elements, By definitions, Js is
known and ‘Tv is unknown. In (fig. 3-3-a), each passive branch is
represented by an admittance which may be any parallel combination
of R, L, C elements. With the addition of voltage and current
sources, each branch is represented as shown in (fig. 4-1). The
branch x has branch voltage ¥y and two current components: ix .

the current in the passive elements; and jx , the current in the active

elements, namely the voltage and current sources.

e = LA . (4-1)



A Generalized Branch Repreu'éﬁtaﬂbn with a Pas e R |
Admittance k , and an External Forcing Current j .

FIGURE 4-1



When several of these branches are connected together, a set of
independent node pairs V is selected, and the branch voltages Vg

can be related to the set of node~pair voltages V by a transformation

matrix,[ A] ,
o = [A]Y .. (4-2)

If we use Jg to represent the vector whose components are the

branch current jx , we have

oL S A (4-3)

The current equation, equation 3-15, becomes

Lo ¥ X

T
= LR TAT ag (4-4)

R
and equation 3-~23 becomes

Ic]“ii—‘t’ + [R]IV+ [L]|vVadt = [AFJB ’ (4-5)

In order to factor out the unknown current, ‘Tv , in equation
4-~5, all branches that contain voltage sources are denoted by O
and all other branches by vy A branch in v, contains a voltage
source in parallel with or without any combination of other elements
in the network. The four types of v, are shown in (fig. 4-2) where
VS represents voltage source; IS, current source; and k, any
parallel combination of resistors, capacitors or inductors.

If we can pick a set of node pairs V, such that

.VO

V = ' 4-6
x (4-6)



Voltage Source

Current Source

Passive Admittance
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and the branch voltages

vy = (4=7)

are related to V by the transformation matrix [A] such that

v A 0- Vo
Y voO
Vi A, ALV
where
A 0
VO
{a] = ; (4-9)
A, A,
10 1xX

we can write equation 4~5 in the partitioned form as

Coo Cox d Vo Roo Rox v° I"oo I"ox Vo
3 -+ + dt
Cxo Cxx Vx Rxo Rxx Vx on Lxx v
Io
= 3 (4-10)
IX
where
o T T
I =[A,] Jv+[Aio] I (4-11)
4 4
¢ W T (4-12)
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Since by definition .]’v , the current from voltage sources, is un~
known, 1° is not defined. Therefore, the first equation in equation
4-10,

[coo]i}; + [cox]%’; +[R_IVO+ [R_IV" + [Loo]jvodt

+ [Lox]fvxdt = 1°, (4-13)

cannot be integrated; however, the second equation,

[c,] 93‘-';3 B [cxx]%}’; +[R _IVO+[R_IV" + [on]fv%t

+ [Lxx]fvxdt = 1%, (4-14)

is integrable to give the value of Vx(t) as a function of Ix(t) and
Vo(t), where Ix(t) is defined solely by the current sources, Ji , as

shown in equation 4-12, and v° (t) is related to Yy in equation 4-8,

o =1
v =[Avo] . (4-15)

where [Avo] s always exists as a consequence of the Kirchhoff
voltage law that the set of branches, = which contain voltage
sources must not form loops. For numerical computations, equation

4-14 can be written as

av™

il o
at [Cxx] (Ix'[cxo]% & [Rxo]vo- [on]yo
- [R IVE - [L 1Y7) .
(4-16)
& x|
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Equation 4-16 is in the same form as equation 3-25; therefore, all
the discussions on the evaluation of equation 3-25 apply to equation

4-16. Since [ Cxx]_l does not always exist, it is necessary to se-

lect the coordinates within V> into three classes: Vl, V2 and V3
V.1
v= =| v® (4-17)
V3

such that the correspondingly partitioned submatrices [ C11 o RZZ ]
and [ L33 ] are nonsingular.
Equation 4-13 is not integrable since I° is undefined; however,

it may be used to compute the currents in voltage sources.
T Yo T )
s =1a] (2 -[4,1773 ) (4-18)

In concluding this part of the discussion, the above analysis is
summarized as follows:

(1) Restrictions on voltage- and current-source topologies

(a) The voltage-source topology derived from the com-
plete network with all elements removed except voltage sources must
contain no loops. This restriction follows directly from the Kirchhoff
voltage law.

(b) The current-source topology derived from the com-
plete network with all elements except current sources replaced by

short circuiting wires must contain no branches. This restriction
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follows directly from the Kirchhoff current law that the total algebraic
sum of currents entering any set of internally connected nodes must be
zero,
(Fig. 4-3-a) shows an example of a forbidden voltage-source topology,
and (fig. 4-3-b) shows an example of a forbidden current-source topo-
logy.

(2) In a network consisting of voltage sources, current sources
and RLC elements connected in any arbitrary topology to form P nodes
and D separate parts, within the restriction imposed on the voltage and
current sources stated in (1) above, a set of (P - D) node pairs V, sub-

dividing into four classes, may be selected,

o

2 % (4"19)

< < < <

V® is selected from the voltage-source topology; Vl is selected from
the reduced capacitive topology with all nodes connected by o being
grouped together; V2 is selected from the reduced resistive topology
with all nodes connected by v and Vl being grouped together; V3

is selected from the reduced inductive topology with all nodes connected

1

by V’o, V" and Vz being grouped together.

(3) In terms of the coordinates (Vo, Vl, VZ, V3) selected

in (2), the current equations may be formulated as
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(a) An Example of Forbidden Voltage-source Connections

A—V A V—Q

i |
= = %, =
l .
i B C)

(b) An Example of Forbidden Current-source Connections

The Forbidden Voltage- and Current-source Connections that Violate the
Physical Laws

FIGURE 4-3
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Coo Co1 0 O v Roo Rop Rpz ©
1 1
101 9%, °l.a |V Rip Ryp Ry 0
dat 2| 1 2
0o 0 0 0 v R,, Ry, R,, 0
0o 0 0 0 v3 0 0 o0 o 3_1
L ) — - — —
] ) - - (4-20)
- [ . o o
Loo Lo1 o2 L3 ¥ I
1 1
Lo 14T 2" Lys v 1
+ 2| dt = 2 E
Lo Ly Lipp Lipg v I
3 3
Lig L3 Lsp 1‘33_1 v ] I
s = - ..

Let (vv, Vi Voo Vg VL) represent the branch voltages of (voltage-
source, current-source, capacitor, resistor, inductor) elements, then
their linear dependence on the selected coordinates (VO, Vl, Vz, V3)

are as follows:

vv =[AVO]VO; (vo= [AVO]-I VV)

Ve =[a_1V° +[a_ 1V

VR o= [Ap 1V° + [Ag, 1Vl +[ag,1v2 . (4-21)
VL o= (A Ve + LA v + (A 1V +[A 1V

V. fo) 1 2 3
i [Aio]V +[AH]V +[Aiz]v +[A13]V

From equations 4-21 all the submatrices in equation 4-20 are

defined.
y T _ 3
[ckj]_[Ack] [CB][ACj] ﬁc;g:{ (4-22)
_ 3 - g
[Rkj]-[ARk] [RB][ARJ.] ic;g: ig (4-23)
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T
=" X L A_ . = 1
k _ ;3 N
I = [Aik] J k=1, 2,3 (4-25)
¥ afiar 1% ¥ Py (4-26)
io i vo v

where [ CB 1, [ Ro 1, [ LB] are the branch admittance matrices; J,
the current sources and Jv the current vector from voltage sources.

Let

o :/vkdt k=01, 2 3 (4-47)

then the following equations are derived from equation 4-20

A =lc, Y - [ry IV - [R,IVE - [, 1y
S L, lyP - T 1y?)
1
%zvl , (4-28)
%3=V2=[R22]_1(12*'[R21]V1'[L21]Y1 [L,, 1y
- [Ly, 1)

y o=l NP - g, Ty - [, 14%)

2% 3% Loy

P
where I1 L ol g are the equivalent source currents in V', V',

and V3 coordinates and they are defined as:

*
Il

1 dave o o
I -[Clol g - [Rypl V" - [Lyply

s
I2.

Lo [ Ry J V% 5[ Ligg Jx? ) (4-29)

PP oL, 1y
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Since equations 4-28 are in the canonical form for applying vari-
ous numerical integration formulae and the coordinates are so selected
that [Cll ]-1, [RZZ]-I and [1433]“1 always exist; given the initial
values of Vl, yl and yz, the state of the network at all subsequent
times can be computed. This leads to the next unsolved task of deriving
the initial values of Vl, y1 and yz from the energy distribution in the

system, namely, the charges in capacitors and the currents in inductors,

4, 2 Initial Conditions,

Bryant (21) and Bers (22) have discussed the problem of evaluat-
ing the number of natural frequencies which the first author called ''the
order of complexity of the network', and the number of nonzero natural
frequencies which the second author called ''the degrees of freedom in
RLC networks', They disagreed on the terminologies used as can be
observed in their correspondences (23). Herethe same subjectis touched
upon again, but from a different point of view. Based on the coordinates
selected, namely Vo, Vl, VZ and V3, the results obtained are the
same as those of Bryant and Bers. The emphasis here, however, is
not merely a number that represents the complexity of the network but
on the systematic way of incorporating the energy distribution into the
differential equations of equation 4-28.

In a network of RL.C elements under the excitation of arbitrary
voltage and current sources, a set of coordinates (Vo, Vl, VZ, V3)
is selected as described in section 4.1, The matrix equation in these
coordinates is given in equation 4-20. All branches that are connected

within V® coordinates are not allowed to take arbitrary initial condi-

tions on the voltage across capacitors, since the voltages across all
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these branches are completely specified by the voltage sources that
connect the same set of nodes. All inductors connected within V°

can have any initial currents without changing the subsequent transient
response since the effect of the inductor current in Vv® is absorbed by

1° which itself is an undefined quantity, Therefore, all subsequent

discussions concern coordinates (Vl, VZ, V3) only, without losing

generality to networks that have v°® coordinates as well.
Since all capacitors are connected within Vl, independent of
the number of capacitors in the network, there are only d1 independent

parameters to specify all the voltages across capacitors, where d

dZ’ d3 are the number of components in the vectors Vl, VZ, V3

respectively. These d1 independent parameters are the voltages

across the d1 branches of any one of the S(dy +1) trees that can be

constructed from the (d. +1) nodes connected by the Vl coordinates,

1’

With these d1 branch voltages, the electrostatic energy distribution
in the system is uniquely defined.

In order to determine the number of independent parameters
that uniquely specify the magnetostatic energy distribution in the sys-

tem, the following equations derived from equation 4-20 are considered:

1
av 1 2 1% 1
[c), 15 + [R; 1V + [R,IVS =17 -1 (4-30)
[R, 1V +[R,,1v% = 1% - 12 (4-31)
o=1" -1} (4-32)
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where [C11 ] is defined in equation 4-22,
[RZI 1 [RZZ] are defined in equation 4-23,

V¥ Lol colinl Bl donbed In' aqdation 4559}

1 2 3 1 2
L,I I

and I Lt 1, are the current components in V°, V°, V3 coordi=
nates due to the currents in the inductive elements. If iL is the cur~
rent vector of all inductive elements in the network, then using the
transformation matrices defined in equation 4-21 and the law of trans~-

formation in equation 2-24, we have

1 T

I, =la, 174

o T

I, = [a 104, (4-33)
3 T,

I, =la ;174

After substituting for I3

L’ equation 4~32 may be written as

3%

[A ¥ th (4-34)

ey o
L3 L

which is a set of d3 independent linear equations in the variables, iL'

In equation 4-31, [R21 ] Vl is specified by the voltages across capaci-

tors; and 12*, by the voltage and current sources; however, [RZZ] Vz

is not constrainted. Therefore, Ii

In equation 4=~30, [Rll 1 VI and Il* are prescribed in the same wajp

can take on any arbitrary value.

as [R21 ] Vl and IZ* in equation 4-31; [R12] VZ is determined by

)
3 A dv

the arbitrary choice of I/ in equation 4-31; however, [C11 ]_a't_

is not constrainted such that Ii may take on any arbitrary value.

Therefore, there are only d3 linear equations relating the B, com-~-

L

ponents of iL where B. is the number of inductors in the network,

L
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In other words, there are (B, - d3) independent parameters to specify

L
the initial conditions on the currents in inductive elements. The total
number of independent parameters to specify completely the initial

energy distribution in the network is

o=d + B -d (4-35)

L 3’

which agrees with Bryant's results (21).

Whenever several inductors form a loop, an arbitrary d.c. cur-
rent may flow in the loop without changing the dynamic response of the
network., When (BL - d3) independent parameters are used to specify
the complete magnetostatic energy distribution, as many of them are
used to specify the d, c. loop currents as there are loops in the induc~
tive topology. Each d.c. loop current constitutes a node of zero fre~
quency. If one is only interested in the number of nonzero frequency
as Bers (22) was, the number of inductor loops has to be subtracted
from equation 4~35 which gives the number of all the modes, including
multiple zero frequency mode. The number of nonzero frequence modes

is, therefore, given by
p=d + B -d;-f (4-36)

where 91.. is the number of loops in the inductive topology of the net-
work, (Fig, 4-4~a) shows an arbitrary network; (fig. 4-4~b) shows
its capacitive topology which gives d1 = 2; (fig. 4=4-c) shows the
reduced inductive topology which gives d3 = 2; (fig. 4-4~d) shows
the inductive topology which gives ‘QL = 1. With B, = 6 from equa-

tion 4-35 we have
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L

(a) The Complete Network, BL =16

I L) O
O O

(b) The Capacitive Topology, d1 =8

. o SRS G 14
) o ¥o

(c) The Reduced Inductive (d) The Inductive Topology,

Topology, d3 =2 ‘QL =1

The Determination of 0 and p of an Arbitrary RLC Network

FIGURE 4-4



-81-

O =246-2= 63
and from equation 4-36, we have

p=2+6-2=-1=25,

Equation 4~35 gives the number of independent parameters
one may use to specify the initial condition of the network. The next
step is to incorporate these 0 independent parameters into equation
4-28, the set of equations we wish to integrate.

In the way equation 4~28 is formulated, the values of Vl, yl
and yz at time t = 0 are required before integrating to determine the
state of the network at times, t > 0., The dl independent parameters
that specify all the capacitor voltages are the voltages across the
branches of a tree that span the same set of nodes as Vl, then from

Theorem 3 in Chapter 3, we know that these d, branch voltages and

1
the components of V1 are related by a nonsingular transformation
which gives a unique value of Vl from the d1 parameters. However,
the values of yl and yz are not always defined at t = 0, and it turns
out that equation 4~28 has to be modified slightly to cope with the ini-

tial conditions in inductor currents.

From the B, =~ d, independent parameters that specify all

L 3
BL inductor currents, we may compute

=P T

=LA, 10

2 T ¢

I = [ALZ] i . (4~33)
3 T

IL ) |:AL3] iL

Although IL is related to y by
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- B - r —
1 B 1
1, Lip Lz Lgs|| ¥
12 Libegyalap) 2 (4-37
L | =] Ta1 L2z La3|| ¥ |° -37)
3 3
1, L3y L3y Ligsf| ¥
- p— = - - -

we cannot in general compute y's from IL‘S because the rank of the
inductor matrix in equation 4-37 is invariant to the choice of coordi-
nates, and the inductor matrix is singular whenever the inductive top~

ology of the network does not connect all the nodes of a connected

network, This difficulty is resolved by writing equation 4~28 as

follows:
1
de - [011]"(11* . Ii " [Rll]Vl . [RlZ]VZ)
1
d%:r = v! (4-38)
d 2 -1y 2% 2 1

Ii and Ii in equation 4~38 are defined in equation 4~37 and they are

readily evaluable from i, at t = 0 by using equation 4~33, therefore,

- av! gy
eqt:zxations 4-38 are completely evaluable at t = 0 to give ——, —g7»
%rt_ at t = 0. Depending on the numerical integration method used

1

(10), AVl, Ay Ayz may be computed where the A-operator is de-

fined as

vigt + at) = viy + avi@. (4-40)
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However, in order to repeat the procedure to advance the computation

from t = At to t = 2At, the values of Ii and I2

L at t = At are required.

They are computed in the following way.
Assuming that the inductor matrix is time independent, from

equation 4-37 we have

1 Ay'
ALy Ly Ly Lys Ay?
2| = (4-41)
Aly Ly Lz Lipg 3
Ay
1 2

where Ayl, Ayz are computed from Sg-—, %— and Ay3 is computed by

taking the differential of equation 4-39,
3 -1 3% 1 2
Ay~ = [Lg,] (AI - [Ly, 1Ay - [L32]Ay ) (4-42)

Finally the values of Ii and IIZ_‘ at t = At are computed by

1 1 1
I (At) = I (0) + AIy (0)

. (4-43)
2 2 2
I (At) = I; (0) + AL (0)

At this point, all quantities at the right hand side of equations
4-38 are defined at t = At, from which the same procedure is repeated
to compute the variables at t = 2At and so on.

There are two points that are worth mentioning:

(1) Although y's are introduced as det in the

original formulation in order to give a unified approach to

the problem, their values are never defined during integration.

This follows from the fact that no knowledge is assumed on

the value of V for t < 0, and from
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t
y(t) =[th =/ vdt + y(0), (4-44)
o]

there is no way to determine y(0) which depends on the values
of V for t<0,

(2) Ii is not used in computing equation 4~36; however,
it serves as a check on the computation procedure since it must,

at all time including t = 0, satisfy equation 4-32,

In concluding this chapter, the sequence of computation proce-~
dure is stated., It accepts the data of a network consisting of RLC
elements interconnected in any arbitrary topology, voltage and current
sources across any node pairs provided that they do not violate Kirchhoff's

voltage and current laws, a set of d, initial conditions on capacitor

1
1. d3 initial conditions on inductor currents,

(1) Select Vo, Vl, V2 and V3 coordinates,

voltages, and a set of B

(2) Compute [A_ Is [A_ 1 [A I [Agy s [Ag I
[Ag, 1 [A o] [A; ] [A; ] [A; ] [A]: [A L5
[AiZ 1s [Ai3] as defined in equation 4-21.

(3) Compute [Cij 1; [Rij 1; [Lij ] as defined in equation 4-22,
equation 4~23 and equation 4-24,

(4) Compute Vl(t) and Ii‘_‘(t), Ii(t) from the initial con=-
ditions; 113_‘(1:) may be computed to check with 13*(t).

(5) Compute Ik(t) and Ik*(t) in equation 4~25 and equation 4-29.

1

(6) Compute AVI, Ay, AYZ from equation 4-36,
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(7) Compute Vl (t + At) from equation 4-38 and 111‘ (t + At),
ILZ(t + At) from equation 4~41, equation 4-40 and equation
4-39,

(8) Compute the particular quantities to be observed by
using equation 4-21 for all branch voltages and equation
4-18 for the currents from voltage sources.

(9) Increment t by At and advance the computation by

returning to step (5).
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CHAPTER 5

IDEAL TRANSFORMERS

In this chapter, the network studied in Chapter 4 is further
generalized to contain multiple~winding ideal transformers, inter-
connected in any permissible topology. A non-permissible connec~
tion violates either the Kirchhoff's voltage or the Kirchhoff's current
laws. A nonsingular set of node-pair coordinates is selected by appro~
priately removing the dependent node pairs due to the transformer
constraints, Section 5,1 points out the inadequacy of using the equi-~
valent circuit of an ideal transformer (24). 5.2 lists the forbidden
transformer~winding connections, 5.3 discusses the algorithm of
selecting a set of nonsingular coordinates in the presence of ideal
transformers. 5.4 gives the evaluation of 0 and p in a network
containing ideal transformers, where 0, as used by Bryant (21),
is the degree of complexity of the network and p, as used by Bers

(22), is the number of nonzero frequency modes.

5.1 Equivalent Circuit of an Ideal Transformer.

Crosby (24) offered an equivalent circuit for a two~-winding
common ground transformer as shown in (fig. 5-1). In the limit
that the inductive admittance L in (fig, 5~1~b) approaches to zero,

the following relations are satisfied:

v, = nv
(5-1)

i ni
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(a) A Two-Winding Common-Ground Transformer

(b) The Equivalent Circuit of (a) in the Limit that
L—>0, All Inductors are Valued as Inductive
Admittances.

Equivalent Circuit of a Two-Winding Common-Cround Transformer

FIGURE 5-1
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where n is the turns ratio and Vi Var il, iz

There are three major objections to the use of such an equivalent cir~-

are defined in (fig, 5-1-a).

cuit in numerical computations:

(1) When the inductive admittance L in (fig, 5~-1-b)
approaches to zero, in numerical computations, it is approxi-
mated by a finite nonzero value such that L is much less than
the minimum value of all the other inductive admittances in
the network. This results in a very poorly conditioned induc~

tive admittance matrix, [ L , such that the resulting numeri-

33 ]
cal computations will introduce excessive round-off errors.
This objection does not arise in purely analytical manipulations
which may retain the expression L during computation and
apply the limit L. -~ 0 to the end result,
(2) The algorithm that selects Vo, Vl, VZ, V3 to
give nonsingular [C11 1, [RZZ]’ [L33] assumes that all
admittances are positive. For any value of n, at least one
of the three branches in (fig, 5~1~b) has negative admittance.
(3) The equivalent circuit in (fig. 5~1-b) is restricted
to transformers whose windings have a common terminal, If
we assume a more general topology that the windings need not
be connected to a common point, the equivalence cannot be
applied.
In Section 5, 3, a different approach is presented to select the
set of nonsingular coordinates for numerical computations in a network
containing multi-winding transformers connected in any permissible

topology. The three types of forbidden transformer connections are

listed in the following section.
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5.2 Forbidden Transformer Connections,

There are three types of forbidden transformer connections:
(1) The violation of voltage law
The voltages across the transformer windings must

satisfy the equation

= constant (5. 2)

Bl .0
|

where e; is the voltage acrf@ss the ith winding and n., the
relative number of turns, Equation 5-2 forbids the connec~
tion of more than one winding in the same transformer to any
arbitrary voltage sources. (Fig. 5~2-a) shows a forbidden
connection of this kind.
(2) The violation of current law

The current relationship among the windings of a

transformer is

Z nu, = 0 (5-3)

where u, is the current in the ithL winding, Therefore, in
any transformer, at least one winding must not be connected
to a current source. (Fig. 5~2=b) shows such a forbidden
current relationship.
(3) Over specified dependence among winding voltages

A transformer with m windings specifies (m - 1)
independent linear relationships among the m winding voltages.
If the (m ~ 1) equations relate (m - 1) variables, then the

(me~1) x (m~1) matrix, consisting of the coefficients in the
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V1, V2 are voltage sources

(2) The Forbidden Connection of More Than One Winding
to Voltage Sources

/
L
€1
I
I1, 12, I3 are current sources
(b) The Forbidden Connection of all {c) Over Specified Constraint
Windings to Current Sources Between 3 and e, where
n, ¢ n,

Forbidden Transformer Connections

FIGURE 5-2-c¢
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linear equations, must have a rank less than (m - 1) such
that there exists a nonzero solution for the (m - 1) variables.

For example, the circuit in (fig, 5~2~c) is over specified as

such that
o (T n;
(5-4)
e, = c2
| LEAE 'n_z
or
B 19 7
l - — (e
n, 14
= 0 (5-5)
1
l = — e
_ nZ_l L z.i
If n, # n,, then
S
1
det 4 0
) cendl
. -

and there exists no solution for (t.a1 3 ez).

5.3 Coordinates Selection in the Presence of Ideal Transformers

The network under analysis consists of RLC elements, voltage
sources, current sources and ideal transformers. The RLC elements
may be interconnected in any arbitrary topology; voltage and current
sources must not encounter the forbidden connections in (fig. 4-3);
transformer connections must satisfy the conditions discussed in
Section 5. 2, Since the restrictions on the connections of voltage sources,

current sources and transformer windings will not be encountered by any
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physical network, the method of analysis presented here will apply to
any physical system that has a topological analogy to a physical network
of RLL.C elements, voltage sources, current sources and ideal transformers.

In developing the concept of coordinate transformation in a net-
work, Section 4 in Chapter 2 assumes a primitve network consisting
of all the individual branches such as (fig. 2-2), and a set of equations
are set up in terms of these primitive coordinates, namely, the branch
voltages. After the branches are interconnected, atransformation matrix
is obtained to relate the original branch voltages to a new set of indepen-
dent coordinates. Using the results developed in Section 2.3, namely,
equations 2-21, 2-23 and 2-24, the network equation in the independent
coordinates is derived systematically. The same concept of coordinate
transformation will be used to set up the equations of a network contain-
ing transformers, which merely introduce additional linear constraints
among the coordinates.

Analogous to the procedures in Section 2. 4, a primitive network
is here defined as the connected network with all transformer constraints
removed. Such a network consists of voltage sources, current sources,
RLC elements and uncoupled transformer windings. In supplementing
the description of coordinate selection, an example which represents a
finite difference model of a cantilevered beam under bending is used (25).
The complete circuit, including the voltage source, VS, is shown in
(fig. 5-3-a). Two three-winding transformers are used to relate the
deflections of the beam to its slopes. This example brings out all the
features to be discussed, and it also serves to indicate the application of
the generalized network study to the analysis of systems which are topo-

logically analogous to electrical networks (2), (3), (4), (5), (6), (7). .
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From the primitve network with transformer constraints re-
moved, we proceed to select the coordinates Vo, Vl, VZ, V3, V’4
in the following sequence:

(o) From the voltage source topology, a set of independent
node pairs is selected to specify all the voltage source
branches. Thqform the components of v°. The example
in (fig. 5-3-b) has Vo7 @8 the only component of ve,

(1) From the reduced capacitive topology with all voltage
sources replaced by short circuiting wires, a set of
independent node pairs, specifying all the capactive
branch voltages in the reduced topology, is selected
to form the components of Vl. The example in (fig.
5-3-c) has v

Vog 25 the components of Vl.

03’ Y05 Y0

(2) From the reduced resistive topology with all voltage
sources and capacitors short circuited, a set of inde-
pendent node pairs, specifying all the resistive branch
voltages in the reduced topology, is selected to form
the components of Vz. The example in (Fig. 5-3-d)
has Vyq 2s the component of Vz.

(3) From the reduced inductive topology with all voltage
sources, capacitors and resistors short circuited, a
set of independent node pairs, specifying all the induc-
tor branch voltages in the reduced topology, is selected
to form the components of V3. The example in (fig.

3

5-3-e) has v as the component of V™.

01
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(4) From the reduced winding topology with all elements
except transformer windings short circuited, a set of
independent node pairs, specifying all the winding volt-
ages in the reduced topology, is selected to form the
components of V4. The example in (fig. 5-3-f) has

v as the component of V4.

34
In terms of these five vectors (Vo, Vl, VZ, V3, V4), the

matrix equation equating the currents in the network is

Cpp Cop © 0 O Roo Rop Rop 0 O
Ci0 €120 0 0 P Rio Ry Rjp 0 0
o &

0 0 o of|&*|R, R, R,, 0 O
0O 0 0 0 0 0 0 0 0 0
0o 0 0o 0 o0 o 0o o o o0f
Loo Lg1 Loz Loz 9] v

1
Ljo Lyp Lyp Ly3 © ¥
2
+ |Lyg Lyy Eipp Lipg 0 at || v (5-6)
3
Lo L3y Ly Lig3 0 ¥
0 0 0 0o 0 Lvﬂ
rlo‘ "'Io'
W
A A
W
2 2
+ IW = 3
3 3
W
14 _144
= W J
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In equation 5-6 the four terms on the left hand side correspond
to the currents in capacitors, resistors, inductors and transformer
windings, transformed into the (Vo, Vl, VZ, V3, V4) coordinates;
the current vector on the right hand side is due to voltage and current

sources. The transformation between the various branch voltages

and the selected coordinates may be written as

v] [a, © o o o 7| a—

Ve Ac, Ag, 0 0 0 S

"’ *me "1 gz ¥ ¥ )

e B fre Ml Mz Ma P w3 s
Vw Awo Aw1 Awz Aws Awal |4 i

e | coffireinthul THhzodtann e : )

where Vw is the vector whose components are the branch voltages
across transformer windings and Ve Yo Vpr VL and \f] are defined

in equation 4-21. Let VR represent (Vv’ Vor YR Yoo Ywe vi) and

v, (VS Vl, VZ, V3, V4), equation 5-7 may be concisely written as

g | [AB]V (5-8)

where [ AB] is the matrix in equation 5-7.
Equation 5-8 represents the constraints on the branch voltages
Vg due to the interconnection of various elements into P nodes. The
(P-1) node pairs that constitute the components of V are so chosen
such that in equation 5-6, G ]_1, [R ]_1 and [ L ]-1 always
11 22 33
exist. The constraints on node-pair voltages due to transformers can

now be introduced on the coordinates V. FEach transformer Tk .
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with my windings introduces (m, - 1) constraints on the node-pair

k
voltages. The total number of constraints introduced by the trans-

formers is

M=) (mk-l). (5-9)

From these M linear constraints, a new independent set of (P - M)
s
coordinates, V , is selected from the (P - 1) dimensional space

which has V as a base,
s
V = [AT]V ’ (5-10)

[ AT] in equation 5-10 is the transformation matrix derived from the
transformer constraints. The important thing about [ AT] is that the
sk
resulting current equation in V coordinate must be separable into
o* 1% 2% 3% *q-1 *4-1 *q9-1
ve, v, VE, VP suchithat [Cyp 1T, [Ry, 1T, [Lgy ]

always exist. This condition is satisfied if [AT] has the form in

equation 5-11

~ B -
o -

v ¥ 0 ‘0 poso el
; v

v Ay iy detinie 1
2

v L A, A, ays 0 2 (5-11)
3

-3 Agg Agg Agp Agy y3*
4 L -

V1 P40 A Aa2 Ayl

where E is the identity matrix.
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Proof:

Let [ Z ] represent [Cl,..kR]).0r [ L]

then [z*] = [AT]T[Z][AT] (5-12)
4 4
and [z:Jf] =Y T [Aik]T[qu][APj] (5-13)
k=0 =0 i=0, 1, 2, 3
j=0,1, 2, 3

*
the transformed capacitor matrices in V coordinates are

[ci’;f] =0 for 1,08 = 2,3 (5-14)

[Cyy] = [ag1 TG [a0] + [a]7 16y 104, ]
+ LA 17111 A,]

AESTO ROV

(5-15)

From Theorem 9 in Chapter 3, the last term in equation 5-15,
[A,, 171G, 1l A ], is positive definite and the first three
terms are positive semidefinite, therefore, [ Cl*l] is positive
* ] : %
definite and [ Cll] always exists. Substituting [R'] for

s
[ Z ] in equation 5-13 we have

[R:j‘]=0 for for j=3
2 2
[R,,] =Z z [Azk]T[R.kR][A!Z] (5-16)
k=0 (=0



=

T :
From Theorem 9, the term [ AZZ] [ R,, 1k AZZ] in equation
5-16 is positive definite with all other terms positive semi-
W
definite, therefore, [RZZ] : always exists,
% *
Substituting [L"] for [Z ] in equation 5-13, we

have

3 3
(L] =) > [ay1Tl0,104,] (5-17)
k=0 f=0

The term [ A33 ]T[ L33 11 A33 ] in equation 5-17 is positive
definite with all the other terms positive semidefinite, there-

-1

fore, [ L always exists.

33
The results in equations 5-14, 5-15, 5-16 and 5-17
prove that [ CI:: ]-1, [ R;g2 ]-1 and [ L;; ]-1 always exist
if V* is related to V by the transformation matrix in equa-
tion 5-11,
The task that remains is to determine the matrix [ AT] from
the M constraints introduced by the transformers.
For a transformer, Tk' with my windings, whose terminal

voltages are denoted by (ekl’ € o+ + - © ), there exist (m_k- 1)

independent relations among the m, winding voltages. If €11 is taken

as the reference, then we have, for BT transformers,
B oqeecifs i il
ekQ — -ﬁ'l—{?ekl. k= I, 2 5 e BT (5-18)
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independent linear constraints among the winding voltages V.- Since
each ekj’ (for k= 3; 2.4 = BT and j=1, 2, 4 & mk), is a member
of the set L the set of M constraints among v may be translated
into a set of M constraints among (VO, Vl, Vz, V3, V4) by using

the transformation matrices in equation 5-7.

1v?

_ o 1 2
vw_[AWO]V +[AW1]V +[Aw2]V +[AW

3

4

+ [AW ]v: . (5-19)

<4

After substituting equation 5-19 into equation 5-18, we have the follow-

ing M linear equations in (Vo, Vl, Vz, V3, V4)-

£ WD)+ fkl(vl) - sz(vz) - fk3(v3) - fk4(V4) = 0 (5-20)

k=1,2... M

where f's are linear functions of their arguments.

At this point it is convenient to introduce a hierarchy among
the coordinates (Vo, Vl, Vz, V3, V4). We say that Vk is of a
higher hierarchy than Vj, if j > k, and it is denoted as Vk > Vj,

therefore, we have

2 4

v > v vhs ¥ s vh (5-21)

With the hierarchy defined in equation 5-21, the algorithm that gives
[ AT] from the M linear equations in equation 5-20 is described
below.

The algorithm aims to divide the original coordinates into

two parts,
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%
VO 4 VO
[ag iy
1
Vo= {5
B
v% = (5-22)
2%
b
v3d
v = "
.V3 i
yio v

where the d superscript denotes the dependent components to be elimi-
e

nated by using the M equations in equation 5-20 and the superscript

denotes the components to be retained. In order to obtain [ AT] in

the form specified by equation 5-11, we must have

k
b
vid - E A vt (5-23)
!=0 for k: l’ 2, 3’ 4
such that y
_ o
de ! l,o=- = = A 1%
K I e T Akl v
vV = w=| = ' (5-24)
V'k 0 0 E :k*
Ve

In equation 5-22 we must have ve = voF such that none of the node
pairs that specify the voltage sources may be eliminated, This fol-
lows directly from the first forbidden transformer connections stated
in Section 5.2. In equation 5-22, we also have V4 = V4d, that is all

the node pairs selected from the reduced winding topology with all
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elements, except windings, short circuited, can be eliminated from
the M equations in equation 5-20. This condition is always satisfied
if there is no redundant transformer winding in the circuit. A redun-
dant transformer winding is defined to be the winding which can be
removed from the network without changing the network characteristic.
(Fig. 5-4) shows a network with two redundant transformers.
The algorithm that gives the equation of the form in equation
5-23 is best described as a recursive function on two objects, Ll and
L2. L1 is the object that consists of a set of (M- K) linear equations
in the form of equation 5-20, and L2 is the object that consists of a
set of K linear equations in the form of equation 5-23. Then the recur-
sive function F(L1l, L2) is defined as follows:
If L.l contains no equation (i.e., M- K = 0), then
F(L1, L2) =L2;
otherwise,
F(L1l, L2) = F(L1l*, L2%)
where Ll* and L2%* are derived from L1 and L2 in the follow~
ing way:
(1) One equation is taken from the (M- K) equations in
L1, and define the remaining (M- K- 1) equations to
be L1l'.
(2) The equation taken from L1 has the form in equation
5-20. Using the hierarchy defined in equation 5-21,
express one component de of the lowest hierarchy
coordinate in terms of all other components with the

same or higher hierarchy.
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(3) The expression obtained in (2) is substituted for all

A in LI1* condalez.: . 1%, is shem

appearances of Vk
defined as the new Ll'; and L2* is defined to be the
union of the new L2 and the equation obtained in (2).
The object L1l* contains M-K-1 equations, and
the object L2%* contains K + 1 equations.

With the recursive function F(L1l, L2) defined as above, the

set of equations in equation 5-23 is derived from the M equations in

equation 5-20 by setting
equation 5-23 = F (equation 5-20, NIL) (5-25)

where NIL represents an empty object L2, i,e., an L2 that contains
no equation at all.

The algorithm that eliminates the appropriate set of node pairs
is deliberately described in the recursive language, since it is concise
and easy to implement in a symbol manipulating language for a digital
computer such as LISP (26), or IPL (27).

With equation 5-8 and equation 5-10, we may transform Vg

directly into V¥,

vy = [AB][AT]V*. (5-26)

Let [A]l =[AagllAGl

then we may compute [c*], [R*¥], [ L*] and the corresponding cur-

2%

sk
rents in (Vl*, ¥ V3 ) coordinates directly from the branch matrices:

[ CB 1, [ RB | . LB] and the current sources, Ji'
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In concluding this section, the example in (fig. 5-3) will be
used to illustrate the working principle of coordinate transformation
introduced by transformer windings.

From (fig. 5-3), we have

L v B

vV s (Vo3 Yos5° Voe!

Y= (rpm (5-28)
V3 (vm)

AR L

From (fig, 5-~3-a), we have

vy = (vgp

Ve = (Vo30 Vo50 Yoe!

g = (737

e T Argr ) e
Yw = (Vo1 Vo3» V3sr Vozr V450 Vse)

v = 0

[ e

From equation 5-29 and equation 5-28, the transformation

matrices are computed as
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VS - Voltage Source

(a) The Circuit Analogy of a Cantilevered Beam
Under Bending

6. o o' elis

(b) The Voltage Source Topology of the Circuit in (a)

o

N =AY

07)

AN EXAMPLE

FIGURE 5-3
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(d) The Reduced Resistive Topology of (a)

or s 18
Ve = [vyg]

FIGURE 5-3 (mﬂw :
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(e) The Reduced Inductive Topology of (a) ERE
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(f) The Reduced Transformer Winding Topology of (
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- _ o
vy = [Vo7] = [E]V
Vo3
Yo = ¥ [E]V1
¢ " Mos| =
Vo6

vg = (V3] = [E]v?

3
+ '
.~
prg gy O T
Vol Vo1 2
Vo3 Vo3 0
v o V34| _|Vaa I R
w Vo2 Vo1 = Va7 1
v v -V -V 0 (5-30)
45 05 ~ V03~ V34
V56| [Yo6 ~ Vos 4 Lol
[0 0 0] Kl
0 0
0 0 0
1 2
*lo o ol % |l¥
1 ¥n0
[0 -1 1 | 0]
il " 0]
0 0
+ | %v3 4 v
0 0
0 -
L o] 0

The two transformers give the following linear equations in

terms of Vw'



v.. = 12

03 By 01
v = Elé v

34 04 01

(5-31)

v :.IEV

45 n,, 02
v = o2

56 n,, 02

1 2 3

After substituting VO, Yu Yl ¥ V4 into equation 5-31

by using the transformation matrices in equation 5-30, we have

v = -1—1-1—%\/
03 m, ol
v.. = a3
34 nll 01
] . (5-32)
P ' ( )
Tps ™ Vo3 " Yag ™ - o~ iy
Yoz =¥ = —n23 (Yaqg = Vou)
06~ V05 T w, V07" V27

The algorithm, defined as a recursive function in equation 5-25,

is applied to equation 5-32,



-110-

;% 1.2
equation 5-32 NIL
v ZBV
34 an 03
Vos ~ Vo3 "34'11‘22 (vo7-V27) "01‘_n11"03
3 | b
) nza( )
Voé Vos"n'z“ hi Y
1
e | D7 SR [ S g
05~ V03 1z 037 m, V07" V27 01~ n, V03
Yoé = Vo5 = _223 (Vo7-Va7) | V34 = 33 Vo3
21 Ry
V :Ev
01 an 03
- S e & NN I & I
06 05 n,, 05 n, 03 34 n, 03
n n +n
. =21(_V s127%13
v A § n,, 05 nl2 03
+v07
. -
01 nIZ 03
v Zfl_;_iv
34 an 03
o 21 ( nyalng, +ay3) 5
NIL 27 n,5 nlz(n22+n23) 03
S22 )+v
n,, ¥n,, 06 07
. . M2z (v i e T v03)
05 n22+n23 06 n,,0,,

TABLE 5-1
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The successive changes in L.l and L2 as the recursive function

in equation 5-25 is applied, are listed in Table 5-1.

nates are

With the last entry of

and defined

we have

o*

v

<
V1

™
VZ

%
V3

07
03

Vo6

The final coordi-

(5-33)

L.2 in Table 5-1 substituted into equation 5-30,

n,,(ny, +n;5)
n;,(n,, +n,,)

n

21

(5-34)
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o*

1
LS
)

-

l

(5-35)

‘/’ﬁ “%4V03 " "4%06 %6 i i |

n 0
sk

1 Vl
-(n1 +n -n

3) 4

£ % b
The matrices [C ], [R ], [ L ] in the coordinates

e
3 V1 ) are computed as follows:

[L]

1l

I

[ o

0

B
0 0
C, +n 2('J 8 oG
1 6 2 6 8 2
2
nbnSC2 ng C2 +C3 ]
e n Ry
2
n, Rl n3n4R1
2
DBty o R ccatid
0 0 o
n 2L

2
+(n1 +n3) L, (n1 +n3)n

(n1 +n3)n4L2 n,L,

45

(5-36)

With the admittance matrices in equation 5-36, the current

equation in the form of equation 4-28 can be formulated. When the
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initial conditions are given, and the time dependence of the voltage
st
source specified, the independent set of variables, Vl may be

integrated.

5.4 o and p of a Network with Ideal Transformers

o is the number of independent parameters to specify the
complete energy distribution in the network. The expression o

given by equation 4-32 also holds for a network with ideal transformers.

s i
c=d +B -d, (5-37)

* *
where dl* and d3* are the number of components of Vl and V3 "

p is the number of nonzero frequency modes of the network.
The expression of p given in equation 4-33 also applies to networks

with ideal transformers, if the value (B ) is replaced by

P (7 L
RK([ L* ]), which is defined to be the rank of the matrix [ L* P

p=d -d +RE([L"]) (5-38)

The results in equation 5-37 and equation 5-38 are stronger
than the ones given by Bryant (21) and Bers (22) since equations 5-37
and 5-38 apply to a larger class of networks that contain transformers,
with Bryant's and Bers' model as a special case.

The example in (fig. 5-3) has
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CHAPTER 6

COMPUTATIONS OF DRIVING-POINT AND TRANSFER
ADMITTANCES

This chapter develops the method that computes the poles and
zeros of the short circuit driving-point and transfer admittances
(page 153, reference 28), associated with an arbitrarily selected
independent set of accessible node pairs in a network which consists
of an arbitrary interconnection of resistors, inductors, capacitors
and ideal transformers. The problem is first defined in Section 6.1,
followed by a discussion on the inadequacy of applying conventional
recursive formulae to networks with arbitrary topology. Here also
are formulated the methods of admittances determination in terms
of polynomial matrix operations. Section 6. 2 solves the matrix
polynomial equation developed in Section 6.1, The method of solution
requires a nonsingular set of coordinates selected in the same way
as in Chapters 3 and 5. Section 6. 3 works out an example of a two-

port network.

6.1 The Problem of Driving-Point- and Transfer-Admittances
Computation

(1) Definitions of short circuit driving-point- and transfer-
admittances

A network consisting of P connected nodes has (P - 1)
independent node pairs. When a subset of the P nodes, say PA nodes,
are accessible, there are (PA- 1) independent accessible terminal-

pairs (or node pairs, ports). (Fig. 6-1) shows an arbitrary network

with four accessible terminals. From theorem 2 in Chapter 3, we
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4 accessible I
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An Arbitrary Network with 4 Accessible Terminals

FIGURE 6-1
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know that there are S(PA) different ways to pick a set of (PA - 1)
independent node pairs, These different sets are related by a group
of nonsingular transformations, and any one of them may be used to
describe the network property at the accessible ports, Let 'V'E be

the vector whose components (Vf:, Vf, ety Vg =t ) are the

E

(PA- 1) independent accessible node pairs, and I~ be the corres=

ponding current vector, The network is then described by the equation
[Y]vE = 1F (6-1)

The components of [Y] are Yij where i,j take values ranging

from 1 up to (PA - 1). Yii is defined as the short circuit driving point
E

admittance to the node pair Vi and Y3j is defined as the short-circuit
transfer admittance between the node pairs ViE and VjE . Literally,

Yii and yij are respectively equal to the current IiE

and IjE when a
unit voltage is applied across node pair ViE with all other node pairs,
VjE (j # i), short-circuited. If the network consists of bilateral RLC
elements and ideal transformers, the elements Yij (= in) are
rational functions of s, which is the complex variable in the Laplace

transform of £(t),

o
F(s) = f f(t)e®tar
o
(2) Evaluation of Vij for a ladder network 5

A ladder network has a highly regular topology. It is an
iterative connection of many sections with identical topology, namely,
T-sections or 7 sections, (Fig. 6-2) shows a ladder network con-

sisting of K sections, where the it'h section is characterized by Zs
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the series impedance, and ¥i» the parallel admittance. A ladder
network is often characterized by two accessible terminal pairs, one
at each end. Due to the regularity of the ladder topology, Yij may
be evaluated by adding one section at a time, and each time the
same recursive formula is used. For example, if we let the terminal-
pair voltage at the right side end of the ladder network in (fig. 6-2) be

v

, and the terminal-pair voltage at the left side be V and assume

R L’
that we know the short-circuit driving point and transfer admittances
of the partial ladder network, which consists of the sections from i

up to k,

= (6-2)

The recursive formula will give the short circuit driving point and
transfer admittances of the augmented network which consists of the

sections from (i-1) up to K,

Flel, inle- Tini, R
e (6-3)

YR, i-1 YR, R
i-1

In equation 6~3, each ij (k, j = i=1, R) is a function of Zy 1 and
y;, of the (i-1)'® section, and the Yi (K, 3= 4, R) in equation 6-2.

This may be stated in a functional form as
¥i-1,i-1  Yi-1,R Yii ViR

YR, i-1 YR,R | | YrRi  YRR];
1-
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The function F i in equation 6-4 only depends on the topology
of connection of the (.’L—l)th section. For a ladder network of iterative

sections, F; is independent of i, and defined as

Yiel ¥ ¥y
Tiooly, dolint
' Vdmy g (ygq +7y)
Y.
Yiel, R T » L=}
. L4z (g + 7y)
(Ve (Yem) * iR
y = (y Tands
RE'$-1 RRYy © MRTA-1 142, (y; g + vy)
With the trivial case of the last section alone,
YK YKR Yk Ix
. (6-6)
YRk YRR YR Ir
where
gy
I
— (6-7)
y'KR zK
YR.R = YK + ;‘I;' 3

equation 6-4 may be applied repeatedly until all sections are included.
The example of the ladder network illustrates one way of
evaluating Yij . However, this method is highly restrictive. It re-

quires a regular iterative network topology, and the iterative topology
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must be simple enough such that the iterative function F; in equation
6-4 is derivable in reasonably simple form, It is obvious that such
a method cannot be applied to networks with general irregular topo-
logy. The next paragraph presents a unified approach which formu=-

lates 4T as matric polynomials in s.

(3) Evaluation of Vi3 for a network with arbitrary topology

When the current equation
[c]i}t(i) + [R) V() + [L] fV(t) dt = 1(t) (6-8)

in the time domain is transformed to the complex frequency domain

by the Laplace transform (30),

[c]sV(s) + [R] V(s) + [L] %V(s) =I(s) , (6-9)

the differential equation is transformed into an algebraic equation,
For the remainder of this chapter, we concern ourselves with the
algebraic equation in s.

A P-node network of arbitrarily interconnected resistors,
inductors, capacitors and ideal transformers is taken as the model.
It is assumed that (PA - 1) independent node pairs, forming the vector
VE, can be selected from the PA accessible terminals, (If trans-
formers are so connected that some of the accessible node pairs are
constrainted, the resulting set of unconstrainted node pairs are taken,)

From the remaining nodes, another (P - P, - M) independent node

A
pairs, forming the vector i, may be selected where M is the
number of constraints introduced by ideal transformers. In terms of

the coordinates ('VE, V*) the matrix equation is formulated as
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( Ceg  Crx Rpe  Rex Ygg  DLe«| |V
s + » - )
s

C*E Cx R*E R** L*E L** V=°=
)

E

. (6=10)

I*

s

Equation 6-10 can be transformed to the form of equation 6=1
by eliminating Vv* from the first equation in equations 6-~10. Since
V* is selected completely outside of the accessible node pairs, we

have

I =0 (6-11)

The second equation in the partitioned matrix equation, equation 6-10,

can be written as

Vo= - ((Cusd s + [R**] + [L**] Tlg')-l ([C*E] "% [R*FJ
b (L] )vVE . (6-12)

In order to keep the presentation simple to read, matrices

with polynomial coefficients are defined as

[#] = (cls®+ (Rls+ [L] . (6-13)
Then equation 6~12 becomes
-1
v e oH,,] (H]V . (6-14)

Substituting equation 6-14 into the first equation in equations 6~10, we

have
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%([HEE] . [HEJ[H**]A[H*E]JVE = oy (6-15)

Comparing equation 6~15 with equation 6-1, the following

relation is established.
-1
S[Y] = [-HEE] 2 [HE*] [H**.] [H*E] . o

Equation 6~16 will give the short circuit driving point and
transfer admittances of the selected set of accessible node pairs, VE
Nothing has been mentioned about the feasibility and the algorithm of
computing the inverse of [H**] , whose elements are polynomials in

s . This is treated in the next section.

6. 2 Matrix Operations Over the Field of Rational Functions

(1) The concept of a field (Chapter 3, reference 31)
We assume as given a non-empty set F of elements
a, b, c, etc, F is a field if we can define two binary operations on
its elements such that the following laws hold:
I. Laws of Addition
(a) The commutative law -

a+b=Db+a
(b) The associative law -
a+(b+c)=(a+hb)+c

(c) The reversibility of addition, i.e., the equation
a+x=D>0

is always solvable in F for x .
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II. Laws of Multiplication
(d) The commutative law -

a.-b=Db-a

(e) The associative law -

a(b-c) = (a+b)-c

(f) The reversibility of multiplication, i.e.,
the equation

a-x = b

is always solvable in F for x, if a # 0.

(g) The existence of an element different from 0.

III. Distributive Law
(h) If a, b, ¢ are any three elements in F, then
a:(b+c) =a-b+a-c
We can see easily that all rational numbers form the elements
of a field, as do all the complex numbers,

(2) Calculation with matric polynomials (page 298, reference
31)

Since the theorems in matrices and the determinant theory
are derived solely on the assumption that their entries were elements
of a field, we may apply all the theorems to the calculations of matric
polynomials if we can set up a field whose elements contain all poly=-
nomials. The domain of all polynomials is itself not a field because
the axiom of reversibility of multiplication (i.e., the possibility of
division) is not always satisfied. However, the domain of all rational
functions constitutes a field, and the domain of polynomials is im~

bedded in this field with the denominator polynomial being equal to one.
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A rational function is defined as the ratio of two polynomials;

therefore,

are rational functions where fl ’ fz » 8y B, are polynomials,

The binary operation of addition is defined as

f f . 8%+ 1,8
ideiohy T et els (6-17)
g1 B2 g1 82

The polynomial f is defined as

i T . (6_18)

The binary operation of multiplication is defined as

£ £ £ . f
. S . T (6-19)
gy 82 B1°8

f = g

1) 1

i " . (6-20)
(gl EN

Two rational functions are equal if

f g, =f (6-21)

182 284! -

All matrix theorems apply to matrices whose entries are
rational functions, which include polynomials as special cases. The
calculations involving polynomial matrices may lead outside the
domain of polynomial matrices, however always within the domain of

rational functions, It is easy to see now that the inverse of a
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polynomial matrix may very well have entries which are rational
functions. In fact, the inverse of a polynomial matrix is also a
polynomial matrix only when the determinant of the matrix is equal
to a scalar.
(3) Computation of Y] in equation 6~16
From the definition of [ H] in equation 6~13, the
equation we want to solve, equation 6~16, is a matric polynomial in
s , the solution of which is in general a matric rational function.
The necessary and sufficient condition that [H**] " exists is that
det lH**[ # 0, or that [H**] must have a rank equal to its dimen-
sion. It will first be proved that [H**] in equation 6-16 has nonzero
determinant, and then a method is described to compute [H**] -1'[H*E]'

(a) Existence of H,_, e

[H**] is the admittance matrix in the set of inde=~
pendent coordinates V*. The (P-P > M) independent node pairs
selected from the (P =~ PA) internal nodes plus the grouped node,

consisting of all the accessible nodes, can always be divided into three

classes, (Vl, VZ, V3), such that the partitioned [H**] has the form
R i 0] ; ]
11 Ri1 Ry Ly Ing Sge
2
[H**] = 10 0 0| s+ |R,, R,, 0|8+ |L, Lyy Lse
0 0 0 0 0 0 L L L
K 4 i £ | 3 s P <

(6-22)

and [Cil -1, [RZZ]—I’ and [L33] =l always exist (Chapters 3 and 5).

For example, (fig. 6~3) shows a set of Vl, VZ, V3 that will partition

[H**] into the form of equation 6-22, [H**] can now be written as
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[H, =[H, H,, H,] , (6-23)
where

Gyy 0" + Byge s iy,

[Hl] - R,;8 + L, ; (6-24)
g L3
R,,8 + ng

[H,] = |R,,8 + Ly, " (6-25)
L "32)
[ Ly5]

[(Hi] =|Lp| - (6-26)
[ 33

Since [Cll] is positive definite, [Hl] has rank d1 where d1 is the

number of components in Vl, which is also the rank and dimension of

[Cll] . Likewise, [HZ] and [H3] have ranks of dz and d3, respec-

tively., We want to prove that the matrix [H**] has rank of (d1 + d, + d3),

2

or in other words, we want to prove that every column vector in [Hl] is
independent from all the column vectors in [HJ] where i, j = (1, 2, 3)
and i#j.

Let us first take a column in [HZ] and prove that it cannot be

a linear combination of the columns in le] . Let hjl T be the

jd
J
column vectors of the matrix [HJ] , j=(1, 2, 3), and assume that
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h h

ok = all 11 + a12h12 + ...+ a

h (6-27)
14, "14,

represents the kth column vector in [HZ] being a linear combination
of the column vectors in (H,] . From the fact that [HZJ has no s°

terms, we must have

: ar; |
G, .
12
0 ) =0 (6-28)
0 -
; 1d1J
or
= =
i
o
[CIJ v =0 (6-29)
a
1d
e |

Since [Cll] is positive definite, equation 6-29 is false and the
assumption in equation 6-27 is not valid. This proves that every

vector h k={l, 2, ..., dz), in [HZ] is independent from every

2k’

vector in [Hlj . In the same way we may prove that every vector

h K=l & vsn d3) is independent from the vectors in [Hl_] and

3k’

[HZJ . This proves that the matrix [H,,] has (d; + d, + d) inde-

2
pendent vectors and hence a rank of (d1 + d2 + d3) "
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-1
(b) Solution of [H**] . [H*E]
[H**] is a matrix over the field of rational function;

therefore, the following theorem also applies:

Theorem 11 (page 79, theorem 4-8, reference 19)

A square matrix [A] is nonsingular if and only if

det |[A] # 0. In this case

7. (—}A( . [adj A] .

[adj A] is defined to be the matrix, such that the 1 ol

and jth column element of its transpose is the coffafor
i of A, where c,. is defined as
J i
it
cij = (=1) Mij
with Mij being the determinant of the matrix [A] with

o row and jth column deleted.

Applying theorem 11 to [H**] , we have

[H =°‘]'1 - da Rl [GFH o= Lr(s)] (6-30)
* det [H_] * G(s)
ok
If [H**] is a matric polynomial, [adj H**] will also be a

matric polynomial and det | H**l will be a single polynomial, G(s) .
From this, we can see that the entries in [H**J‘l are rational
functions with the denominator polynomials equal to det l H**I .
Equation 6-30 offers a scheme to compute [H**J = which in=-

volves many determinant evaluations, Since determinant evaluation

is a long process, especially when the entries of the matrix are
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polynomials, this workable scheme is not practical, and instead the
following method will be used.
Assume that the polynomial det/H, | is known, (Appendix

A gives a method to evaluate det | H**[ )
n
det lH**I = G(s8) = g, + 8h-1% <e. g8 + g, ° (6=31)

then [H**] -, [H*E] may be written as

-1 (F LF(s)] ]
[H**] [H*E] T T G(s) [ *E] . (6-32)
Multiplying both sides of equation 6-32 by [H**] , we have

[H*E] = [H**]M [H*E] : (6-33)

G(s)

If we write

(@] = [F][H,g] - (6-34)

and substitute into equation 6-32 and equation 6~33, we have

[ ](fes] = sy L] (6-35)

and
G(s) [H,g] = [Ha] [] - (6-36)

From equation 6-36 we will solve for [Q] , a matric polynomial, and
then substitute it into equation 6-35 to obtain the solution of
-1
[ - [Fug] -
Both the left hand side and the right hand side of equation 6-36
are polynomials in s with matrix coefficients; hence we may solve

for [Q] by equating coefficients for the same power of s .
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[QJ is a matric polynomial and can be written as

n=-1

[(Q] =[QJs"+ [Q, 05 +...+[Q]s+ [Q)] (6-37)

Writing [H,,] and [H*E] in polynomial form as they are

defined in equation 6=13, we can expand equation 6=36 into the form
(g, s" + gn_lsn"l .88+ g) ([Crpl s+ [Rygls + [L.g])

= ([Cu]s®+ [R,] = + (L] ([T + [, ,] =™

..[Q,] s+ [Q]) (6=38)

Then by equating the coefficients for the same power in s, we obtain

the following set of equations:
gt 2

terms
(Ces] [Rn) = 2n [Cug] (6-39)
sn +1 terms

[Css] [Qn.1] + [Ree] [20] = & [Rug] * 8oy [Cug]  (6-40)

*

s terms, where n2j 22

[C**] [Q_j-z] r [R**] [Qj-l] ¥ [L**] [Qj]

= & [Lug] *+ g1 [Reg] + 55, [cig] (6-41)

s terms

[R**] [Qo] + [, [Qﬂ = g [L*E] + g, [R*E-] (6-42)
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s° terms
(L) [Qo] = & [L*E] (6-43)

When det lH**] is a polynomial of nth order, txea we have,
from equation 6-39 up to equation 6-43, (n + 3) matric equations to
solve for (n + 1) unknown matrices ([Q_]. (Q _,] --. [QOJ ). If

[C**] =% exists, they may be solved starting from the ot £

terms in
equation 6-39 for [Qn] , which is subsequently substituted into equation
6-40 to solve for [Qn-l:l . The recursive relation to solve for CQj-Z]
from [Qj—ll and [Qj] is given in equation 6-41, If [L**] =] exists,
the process is reversed by solving first for [Qo] in equation 6-43,

then [Ql-l from equation 6-42, The recursive relation that solves for
[Qj] from [Qj-lj and [Qj-Z] is also given by equation 6-41. Equation

6-44 up to equation 6-46 give the equations for [ Q] when [Cisl 1 exists.

[Q,] = (C.4] b g, [Cug] (6-44)

[Ru-1] - [C**Tl (8y (Reg] * &n-1 [Cug]

- [Ru] [24]) (6-45)

(9.2] = [Cusl = (g; [Lug] + 2.1 [Reg] + 85_2 [Cug]

- [(Re] (9501] - [0 9]) ()

n2jzz2.
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However, very often neither [C**J "1 nor fL**] "1 exists
such as the network in (fig. 6-3). Under such circumstances, we
cannot use equations 6-44, 6-45, and 6-46 derived from equations

6-39 up to 6-43., Instead, the V* coordinate must be picked such that

Vo= |V (6-4T)

and the corresponding [C**] ) [R**] , and [L** matrices become

where [Clll

B i

C,y 0 0
[c**]= 0 0 o

0 0 o0

—_— J

FR“ R,, O
(R,] = |Ry; Ry, O (6-48)

0 0 0

.

Ly T2 Igs
[L**] = | Ly Ly Ly,

_L31 Li, Liag

s [Rzzj-l and [L

them are given in Chapters 3 and 5.

wl
33)

of such a set of coordinates and the topological algorithm that selects

always exist,

The existence
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According to the partition in V*, fQ] and [H*E] are similarly

partitioned:

1]
0
—
I
o
-
—
=}

2 .
[Qj] ; e (6-49)

I
N

[2.g]

Z%€, B L. (6-50)

With the partitioning scheme, each equation in equation 6-39 up
to equation 6-43 contains three equations, Each of the partitioned
equations is denoted by two indices: the first one gives the power of
s whose coefficients are equated; the second index gives the order of
sequence due to partitioning. For example in the following equations,
equation (n + 1, 2) is the second equation partitioned from equation

6-40 which equates the coefficients of sn+ . terms.

CRICHEENC (n 42, 1)

(cyd el i) + (Ry)TQn] + [R][R2]= € (Ryg] * 8a1(Cig]

(n+ 1, 1)

[Rzﬂ[Qr:] + (Ry2] a® = g, [Rog] * 841 [Com] (¥ 152
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[C11) [Qj._z] + [Ry4] [le—L] + [Ry,] [Qf.l] + [Lyy] [Qj'J
+ (L,] [sz] + [Ly4] [Qﬂ

= g [Lg| * & (Rig] + 8.2 [€1g] G- D)

(Rz1] [le-l] + [Ry)] [sz-l] + [Ly] [Qj'J + [Laa] [sz]
+ [L23] [9]

= g [Loe] * g (Reg] * g2 [Cg] G2

[t (9] # [a] [97] + (s3] (2]
= g [L3E] + g.1[Rag] + g2 (Cag] (3. 3)

Since [Cll] . and [RZZI “1 exist, [ Qri ] can be evaluated from
i 1. ZJ
equation (n + 2, 1), and Y.Qn.., ] 3 [Qn can be evaluated from
equations (n + 1, 1) and (n + 1, 2), respectively. By substituting
[Q:] i [an] and [Q;—T ] into equations (n, 1), (n, 2) and (n, 3), we
can evaluate [Qj] i [Q 2-’1 ] and [in—‘l. ] . Now we will prove the

induction process, that knowing
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[Q;_l] : [Qj'] VAR (o]

[atlssfal {] oo o2 (6-51)

then by substituting into equations (j, 1), (j, 2) and (j, 3) we can
1 2 3
compute [ Qj-Z] " [Qj-l] , and [QJ. J .

From equation (j, 1) we may compute [ le_ z] as
[Qj'-Z] = (e, (g; (Lyg] *+ g1 (Rigl + 8.2 [Cgl
(R Lo] - (R 1e%] - (1] 19)]
- [L12] [sz] - (T3] [Qj3.]) (6-52)

where everything on the right hand side is known and ECIIJ 3 exists.

From equation (j, 2) we may compute [sz_ ] as
[Qj?zl] - [R,,T (g; (Lo ] *+ &1 (TRl *+ g2 Cox]
- [Rz1] [le-l] - (2] [Qj'] - [L22] [szj
- w51 (9°]) (6-53)

where [RZL] ey exists and every term on the right hand side is known.
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Finally from equation (j, 3), we compute [QjSJ as

[033] 3 [L33] .- (gJ tL3E] L« gj-l iR3E] + gj-Z [C3E]
- {5 09)] - [Ly] (R2] ),

(6-54)

where [L33] =R ks

This proves that with the selection of Vl, VZ, V3 coordinates,

all fQj] (j=0,1,..., n) may be computed. With the substitution
of [ Q] into equation 6-35 which is further substituted into equation
6-16, the short circuit driving point and transfer admittances, [ Y]
can be evaluated.

The steps to compute (Y] are now summarized:

The problem is to compute the short circuit driving point and
transfer admittances between a specified set of node pairs in a net-
work. The network may consist of RLC elements and ideal trans~
formers interconnected into any arbitrary topology. The systematic
steps of computation are as follows:

(1) Check to see that the specified set of accessible node
pairs are independent. If otherwise, remove the
dependent ones. This may occur when the problem is
badly specified or some of the node pairs are con-
strainted by transformers.

(2) Form VE whose components are the specified set of

independent accessible node pairs.
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(3) Select Vl, VZ, V3 from the network with all node
pairs used in VE short-circuited. In the presence

of ideal transformers, the algorithm in Chapter 5

is used to reduce them to an independent set.

I

(4) Compute [Zij] where Z (C,R, L)

and 1i,j (E, 1,2, 3)

(5) Compute det[H**\ as a polynomial G(s), where

[H**] is defined as

-y @ Rig B2 O Liy 92 Lys

2
[HM] =|0 ® 0" 4l Rey Byy Os 4R Kl il
0 0 0 0 0 0 Lgy Tegy | Ml

1 2 3 .
(6) Solve for [Qj] [QJ.] [QjJ (] =0,1,2,,..,n)by
using the recursive formulae in equations 6-52,

6-53, and 6-54.
(7) Compute [Y] = ‘CHEE] - [HE*J [Q] !g(s))-l) il .

6.3 An Example

A ladder network is used because of its regular topology so that
for comparison, an independent solution can be obtained with the con-
ventional method described in section 6.1. The network, shown in
(fig. 6-4), consists of four series branch inductors of equal admittance
value, L in (henry)"l, and five parallel branch capacitors of equal
capacitances C. The choice of equal parameter values is purely for

easier manipulation by hand. When the algorithm is programmed on a
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computer, any parameter values may be used; even mutual couplings
between branches are allowed. Vo1 and Vo5 2Te the two accessible
terminal-pairs. The computation now follows the steps summarized
at the end of section 6. 2,

(1) Vo1* Vo5 2Te independent node pairs.

(2) FvOIT
vE = (6-55)
VosJ
(3) [v02]
vie v, (6-56)
[ vo4)
v 20
V3 =0 .
(4) cC 0
(CeE] -
91 .C
(R‘EE] =9
(6-57)
( r]_, 0 to be
¥ = continued
ol = Lo
¢ o o]
(c;y] = |0 ¢ o
0 c
L -




-141-

[R;,) = o0
2L -L 0
[Lu] w | =k 2 el
0 -L 2L
(6-5T)
[CEI] = 0 cont.
(Rgy] = ©

0 -

L 0 0
[Lg] = [LIE] { L:]

(5) aet [lc;,] 8% + (L] = s+ 6nc?s*

+ 10L%cs? + 4.3, (6-58)
(6) solve for [Q;] . [Q5] » [Q] --- (2]
(9] = [e0] ™ < [ghe] -
[ = 1 = ( 1 =0
SECARCIAR o(ﬂ%z] /) L;g{J)

L 0 W R

[e,] = [C;i] “1( ol SR o) =1 P 0
¥ =% 0 -Cc2L
(QBJ = 0 (6"59)
to be

continued



< A  TARE S "-CZL 0
(Q,] = [cn]'l(éch 0 O0|-|[-L 2L ~-L (| 0 0 )
0 -L| gl il '_ o -c’L
-4L.%¢ 0
« |wréc -L%c
o -4r%c
{o,] = o
wLyn B 2. 4wl . 4§ lear%e 0
-1 2 2 2
[Qol = [Cn] (IOL C|l 0 '#]= [=L *2L . «L|[|~L"C -L“C
o -1 9 L 2L 0 -4r%c
O S
- (6-59)
-L3 -3L3 cont,
(7) Compute [YJ
cC o0 L 0 -L 0 0
(YJ = s 4+ 8-1 - (EQ4] 84
0. G 0 L 0 0 -L

+ (Q,] 8% + [QO_]) (s’ + 61c%” + 1onlen®

+ 413 )"1

(6-60)

)
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With the values of [Q4] s [Qz] , [Qo,] from
equation 6-59 substituted into equation 6-60,
and putting everything under the same denomi-

nator, we have

ct o
[¥] = @ + 6LC*s" + 10L%Ce %% 4L3s)”1( .
0 C
[71.c3 o . 151.%c2 0
* 3 B ¥ : 2zl *®
0 7LC 0 15L.%¢
r10L3C 0 h Pl
+ "
o 1onL3 0o )
Then,
o - c4s® + 7Lc3s® + 15L.2c%s% + 103cs% + 1LY
11 c3s’ + 6LC%s + 10L°Cs> + 4L°s
Y225 Y11
-L4
'y' -3 y =
12 2l 357 4 6nc?s® + 10L2%Cs> + 4138

To check the solution obtained in equation 6-62,
the same network is evaluated using the recursive

function F in equation 6-4,

(6-62)
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Yll = €s + .
L 1
€Es +
1 1
g
L -}
€s + 1
1
bee
L
63 + -'s—
€28 4+ 7Lc3s® + 150.2%cs? + 10n3cs% + 1LY o
&' + 6L + 10L%cs® + 4%

The expression computed in equation 6-63 agrees with the

expression for Y, in equation 6=62,
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CHAPTER 7

THE COMPUTER PROGRAM

The first part of this chapter is to introduce the concept of
symbol manipulation as the most universal data processor, followed
by a brief description of a currently available symbol manipulating lan-
guage, namely, the LISP. The final section of the chapter presents the
program organization of the coordinate selection algorithm in terms of
symbol manipulation on list structures. The actual LISP coding appears
in Appendix B. Examples of the LISP program output are included in

Appendix C.

7.1 Symbol Manipulation as the Universal Processor

The Oxford dictionary (The Concise Oxford Dictionary, fourth

edition) gives the following definition for '""Symbol'':

1. Things regarded by general consent as naturally typi-
fying or representing or recalling something by pos-
session of analogous qualities or by association in
fact or thought.

2. Mark or character taken as the conventional sign of some
object or idea or process, e.g., the astronomical signs
for the planets, the letter standing for chemical elements,
letter of the alphabet, the mathematical signs for addition
and infinity, the asterisk; hence or cong.

Symbols are used to represent ideas, concepts and objects.

They may stand for themselves or they may be the namesof some ob-
jects. The word Bridge in the sentence
"There is a B in bridge. "

stands for itself, and the same word Bridge in the sentence

"Washington Bridge is in New York."
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denotes the physical structure known as bridge. We will classify sym-
bols that stand for themselves as atomic symbols; and the others, name
symbols. All symbols are different and their associated meanings are
defined by the person who created them. When a set of symbols is

used as the communication between two parties, the symbol meaning
must be understood by both parties.

In formal mathematics symbols are used to represent concepts,
objects and operations. They are given rigorous definition so that their
subsequent appearances with other symbols can be appropriately inter-
preted. A postulate or a theorem in mathematics is a string of defined

symbols, for example, the equation,
Z2'%'3.= B (7-1)

is a string of five symbols whose associated meanings must be under-
stood before the whole string of them can be interpreted. Spoken language
is also composed of a set of defined symbols.

When the computer is used to solve a numerical problem, the
letter is transformed into the symbol domain that consists of numerical
numbers and arithmetic operations. The process of computing the end
result from the input data can be interpreted as the transformation of
input data symbols into solution symbols. The transformation is speci-
fied by a sequence of arithmetic operations which are themsedves repre-
sented by symbols. The string of symbols that represent the computing
process, namely the programs, forms an object that is subject to trans-
formation just like the string of symbols that represents the input data

to the numerical problem. This is the basic idea of automatic programming,
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which has internally stored programs that can be modified as well as
the numerical data the program works on.

When the problem is not numeric, such as the analytical evalu-
ation of an integral, the simulation of human thought process, the study
of biological system behavior, etc., we cannot use the symbol manipu-
lation of arithmetic operation since in these problems the symbols used

to describe the objects are not in the class of numerical numbers. For

fcos xdx (7-2)

HE SAW THE CAT. (7-3)

example,

and

are merely strings of symbols associated to each other in some special
way. The processes that operate on these symbols transform them into

different strings of symbols that reI;resent the results, such as

sin x (7-4)
and

HE WAS SCARED. (7-5)

We can say in general that any system whether it be mathematical, phy-
sical, behavioristic or philosophical, which can be described by a set of
defined symbols and their associates - numerical numbers, arithmetic
operations, topological propoerties or plain English description - can be
studied or simulated as symbol manipulation, How the input symbols

should be manipulated to give the correct output symbols constitutes
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the algorithm pertinent to that particular system under study or simu-
lation. The present day compiler is a symbol manipulating process that
transforms the compiler statements which are strings of symbols into
the machine program which is also a string of symbols., It is not hard
to see that symbol manipulation is indeed the most universal processor.
Before describing a symbol manipulating processor in the next
section, some of their important characteristics are discussed here.
(1) The processor must have the ability to represent and
differentiate a large number of symbols.
(2) The processor must be able to associate any arbitrary
number of symbols together in any arbitrary manner.
We have the concept of a string of symbols that itself
forms an entity and can be represented by a name sym-
bol which can again be one of the elements in some other
string of symbols. This can best be described by the
recursive definition of symbol:
A symbol can be either an atomic symbol or
a name symbol.
A name symbol is a string (or list) of symbols.
The arbitrary symbol association, called the
list structure, is defined as a list of elements
which can be atomic symbols or list structures.
(3) The processor must be independent of the data and, for
convenience, it allows recursive definition of functions

such as

al''t nh-1)! (7-6)
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7.2 LISP (26)

The LISP is one of the currently available computer languages
for symbol manipulation. It has been coded for the IBM 704, 709 and
7090 series of machines. This section will only outline some of its
characteristics. A detailed methoci of coding and implementation can
be found in its manual.

(1) Atoms or atomic symbols:

An infinite set of distinguishable atomic symbols are
represented by strings of capital English letters and

digits. For example,

A
AA (7-8)

CZ5

are all atomic symbols.
(2) S - expressions (S stands for symbolic):

An S - expression is either an atom or an ordered pair,

the terms of which may be atomic symbols or S - expressions.
If we use '"'." to form pairs, examples of S - expressions

are

(A. B) (7-9)

(AB - (A. B)) (7-10)

e
The latest is LISP 1.5 Programmer's Manual, July 14, 1961, dis-
tributed by the Computation Center and Research Laboratory of
Electronics, Massachusetts Institute of Technology.
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Both terms in equation 7-8 are atomic symbols. The
first term in equation 7-10 is atomic, while the second
term is an S - expression.

With the definition of S - expressions given above, a

list of symbols M1, M2 . . . Mn as denoted by

(M1, M2 . . . Mn) (7-11)
is represented by the S - expression

(M1-(M2-(... (Mn*NIL). . . ))) (7-12)

where NIL is an atomic symbol used to terminate lists.
S - functions:

All transformations on S - expressions are represented
as functions applied on the S - expressions to be trans-
formed as their arguments. These S - functions are
written in a conventional functional notation. In order
to distinguish the expression representing functions
from S - expressions, a sequence of lower case letters
and digits is used for function names and variables.
Brackets are used to enclose the arguments and argu-

ments are separated by semicolons. Examples are
car [ x] (7-13)

cdr [ cons [ x; (A- B)] ] (7-14)
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In these expressions, any S - expressions that occur
stand for themselves such as the (A* B) in equation 7-14.
Propositional expressions and predicates:

A propositional expression is an expression whose pos-
sible values are T (for truth) and F (for falsity).

Typical propositional expressions are
5> 8 (7-15)
167 is prime (7-16)

A predicate is a function whose range consists of the
truth values T and F.

Conditional expressions:

A conditional expression is used to express the depend-
ence of an object on some propositional expressions. A

conditional expression has the form
(Py=>e;; Py—>ey o o . P >e) (7-17)

where p's are propositional expressions and e's are
any kind of S - expression. Equation 7-17 may be read
as "If Py then ey otherwise if Py then €y v v vy other-
wise if p thene ."
n n
Equation 7-18 is an example of the use of conditional
expression in defining the functional dependence of y

on x in (fig. 7-1).

vl x] = (x <-10; xz~l*l+ x x30->1) (7-18)
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Recursive function definitions:

By using conditional expressions, functions may be
defined by formulae in which the defined functions
occur. For example, the factorial of an integer, n,
may be written in S - function as factorial [n], then

we may define it as

factorial [n] = (n = 0>1; T-»n - factorial [n-1])
(7-19)

Elementary S - functions and predicates:

There are five elementary S - functions and predicates

from which all other S - functions may be composed.
(a) atom

atom [ x] has the value of T or F,
accordingly as x is an atomic symbol
or not.

(b) eq

eq [ x; y] is defined if and only if either
X or y is atomic. eq [x;y] = T if x
and y are the same symbol, and eq [ x; v ]
= F, otherwise.

(c) car
car [ x] is defined if and only if x is
not atomic, and car [ x] equals to the
first term in the S - expression pair x.
Thus

car [ (e1 . ez)] = e (7-20)

(d) edr
cdr [ x] is defined if and only if x is
not atomic, and cdr [ x] equals to the
second term in the S - expression pair,
x. Thus
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cdr [(el-ez)] = e, (7-21)

(e) coms
cons [ x; y] is defined for any x and

y, and the result is the S - expression
(x+y). Thus

cons [el; ez] = (el-e (7-22)

2)

The above description of LISP is by no means complete. For
a full insight into its working principle, its programmer's manual (26)
should be consulted. The next section will describe the program organi-

zation of the coordinate selection algorithm presented in Chapters 3 - 6.

7.3 Program Organization

A program is written to select the set of nonsingular coordinates
for a network of arbitrary topology consisting of RL.C elements, ideal
transformers, voltage sources and current sources. The complete pro-
gram is given the name of an S - function, "corsel', and its argument
is the S - expression that describes the network, say "NETWORK!". After
applying "corsel" to "NETWORK', the S - expression "NETWORK" is
transformed into a different S - expression that lists the selected Node

Pair Coordinates, say "NPCORD'. Then we have
corsel [ NETWORK ] = NPCORD. (7-23)

The program organization that performs the transformation in
equation 7-23 is divided into three aspects, namely, the S - expression
format of NETWORK, the S - expression format of NPCORD and the

S - function corsel (for coordinate Selection).



~-155-

(1) The S - expression of NETWORK:
NETWORK is represented as an S - expression in the

form of

NETWORK = (CLIST, RLIST, LLIST, TLIST,
VLIST, ILIST) (7-23)

where the equivalence of "," in representing a list
of elements and ".'" in representing a pair is given
by equations 7-11 and 7-12. The individual elements
in equation 7-23 are defined as follows:

CLIST:

Capacitor list. It is the name of the S -
expression whose elements represent the
capacitors in the network,

CLIST = (Cl, C2. .. CB (7-24)

c)

The elernt nts of CLIST are also S - expressions
and the i~ capacitor, CI, has the form

CI = (nl, n2, VCI, QCI). (7-25)

The elements in CI are atomic symbols. nl,
n2 are the symbols used to represent the two
terminal nodes the capacitor, CI, is connected
to; VCI is the atomic symbol that represents
the capacitance of CI; QCI is the atomic sym-
bol that represents the initial condition of CI.

RLIST

Resistor list, It is the name of the S - expression
whose elements represent the resistors in the
network,

RLIST = {Rl, R2. . . RB (7-26)

c)
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where the general term RI has the form,

RI = (nl, n2, VRI). (7-27)

In equation 7-27, nl, n2 are the terminal
nodes of RI, and VRI is the admittance value
of the resistor RI.

LLIST:
Inductor list., It is the name of the S - expression

whose elements represent the inductors in the
network,

REIST = (L1 LZs ous LBL) (7-28)
where the general term LI has the form,
LI = (nl, n2, VLI, ILI). (7-29)

In equation 7-29, nl, n2 are the terminal nodes
of LLI; VLI, its inductive admittance; ILI, its
initial condition.

TLIST:

Transformer list. It is the name of the S -
expression whose elements are the transformers
in the network.

TLET = {Ti, T2, . . TH (7-30)

T)

The ith transformer TI is characterized by
its windings,

TI = (WIl, WI2. .. WI

The j"'h winding of the ith transformer is
characterized by

WIJ = (nl, n2, VWLJ). (7-32)



~157~

In equation 7-32, nl, n2 are the terminal nodes
of the winding WIJ and VWIJ is its relative turns
ratio.

VLIST:
Voltage source list. It is the list of voltage
sources in the network.

VLIBT = {(V1, V2% %*) VB (7-33)

v
VI = (nl, n2, VVI) (7-34)
Ine tion 7-34, nl, n2 are the terminal nodes
the i™ voltage source, VI, is connected to, and
VVI is the name of the S - expression such that
when applied on by 'evalsf" (for Evaluate Source
Function) will give the value of VI at time, t,

evalsf [ VVI; t] = value of VI at time t.

(7-35)
IILIST:

Current source list. It is the list of current
sources in the network.

ILIST = (I1, I2. . . IB (7-36)

7
II = (nl, n2, VII). (7-37)
In equation 7-37, nl, n2 are the terminal nodes
of II, and VII is the name of the S - expression
such that ’
evalsf [ VII; t] = value of II at time t.
(7-38)
We can see that any arbitrary network consisting of
linear time independent RL.C elements, ideal transformers,

time dependent voltage sources and current sources, can
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be described completely by the S - expression in
equation 7-23. It will only be a simple modification

to include nonlinearities in RLC elements. All we

have to do is to replace the atomic symbols in equations
7-24, 7-27 and 7-29 that give the element values by S -
expressions specifying the nonlinearities. For example,

a nonlinear capacitor, CI, will be represented as
CI = (nl, n2, NCI, QCI), (7-39)
where NCI is the S - expression such that

evalnl [ NCIL; Pl; P2; . . . | (7-40)

= capacitance of CI evaluated at the

parameters Pl, P2, . . .

'""evalnl'" is the S - function that evaluates the value of
nonlinear elements at the specified parameters.

(2) The S - expression of NPCORD:
NPCORD is the S - expression that represents the

Eode Eair Eoordinates.
NPCORD = (INDNP, DEPNP) (7-41)

In equation 7-41, INDNP is the S - expression of the
independent set of node pairs; DEPNP is the S -
expression of the dependent node pairs introduced by

ideal transformers. They are defined as follows:
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INDNP = (VZ, V1, V2, V3) (7-42)
DEPNP = (EQl, EQ2, . . . EQM) (7-43)

In equation 7-42, VZ is the S - expression containing

the components of Vo; V1, the components of Vl; V2,

the components of VZ; V3, the components of V3. The

components of Vo, Vl, VZ, V3 have the same form -
they are pairs of two atomic symbols representing the

terminal nodes of the node pairs. For example, the

coordinates

v = (7-44)

is represented in S - expressions as
VZ = ((N1- N3), (N3-:N2)). (7-45)

In equation 7-43, the general term EQI is the S -
expression that represents the linear equation which

eliminates the ith dependent node pair coordinate.
EQI = (DNPI, EXPI) (7-46)

DNPI in equation 7-46 is the name of the ith Dependent
Node Pair, and EXPI is the linear expression in the

independent node pairs to which DNPI is equal.

EXPI = (EXPVZ, EXPV1, EXPV2, EXPV3)
(7-47)
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The S - expression, EXPI, is divided into four com-
ponents according to the classification of the independ-
ent node pairs in its expression. Each sub-expression
is a list of pairs, the first term of which is the coeffi-
cient and the second term is the S - expression of the
independent node pair. For example, a network has
only one dependent node pair, (N4-:N5), and the set

of independent node pairs,

VZ = ((N1-*N3), (N3°N2))
V1l = NIL
(7-48)
V2 = NIL
V3 = ((N2°*N4), (N6 N4)).

Let the linear equation expressing the dependence be

(N4-N5) = -4(N1-N3) + 3 3(N6* N4) (7-49)

then DEPNP defined in equation 7-43 becomes

DEPNP = (EQIl) (7-50)

EQl = ((N4°N5), EXPI) (7-51)

EXPl = (((-4, (N1-N3))), NIL, NIL,
(7-52)
((3-3, (N6°N4))))
The complete S - expression for NPCORD of the

network is given by
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NPCORD = ((((N1:N3), (N3:N2))
NIL,
NIL,
((N2-N4), (N6-N4)))
(((N4-N5), (((-4, (N1-N3)))
NIL
NIL
((3-3, (N6-N4)))))))

(7-53)

The S - function corsel

The S - function that performs the corrdinate selection

from a completely specified network, NETWORK, is

defined as '""corsel'.

The S - function 'corsel' is defined in terms of sev-

eral sub - S - functions. They will now be defined.

(a)

vnpgen [ NETWORK ] = NPLIST (7-54)

vnpgen (Voltage Node Pair Generator) is the

S - function whose argument is the S - expres-

sion that specifies the network and whose value
is NPLIST (Node Pair LIST). NPLIST is the

S - expression \%h—OSﬁ eiezner‘jse arg lists of com-
ponents in the V-, V7, V, , V  coordinates.
The algorithm for selection is described in steps
(o) - (4) just prior tci equzitio 5-6 in Section 5. 3.
In the selection of V°, V, , the criterion that
minimizes the round-off errors in subsequent
matrix computation as described in Sections 3.5
and 3. 6 is also incorporated.

NPLIST = (VZLT, VILT, V2LT, V3LT, V4LT)

(7-55)
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lqgen [ TLIST; NPLIST ] = LQLIST (7-56)

unction with two arguments. The first
argument is the S - expression, TLIST, which
as defined in equations 7-30, 7-31, 7-32, spec-
ifies all the transformers and their connections
in the network, The second argument is NPLIST,
which is the S - expression computed from equa-
tion 7-54. The value of lqgen is LQLIST (Linear
eQuation LIST). LQLIST is the S - expression in
the form of a list of sub - S - expressions each of
which represents a linear equation with the node
pairs in NPLIST as variables.

lggen (Linear eQuations GENeration) is the
X =1

LAQLIST = {LQl, LQ2, . . . LQM) (7-57)

The S - expression LQI that describes the ith

linear equation is defined as follows:
LQI = (LHSLQI, RHSLQI) (7-58)

In equation 7-58, both LHSLQI and RHSLQI have
the same form., They are the S - expressions
that represent the Left Hand Side and Right Hand
Side of the equation, LQL e T

LHSLQI = (EXPVZ, EXPV1l, EXPV2,
EXPV3, EXPV4) (7-59)

where each component of LHSLQI, say EXPV2,

is an S - expression in the form of a list of pairs.
The first term in the pair is the coefficient of

the variable in the linear form and the second
term in the pair is the name of the variable which
is a node pair in, say the V2LT in NPLIST.O FOf
ezﬁamp%e, e network in (fig. 5-3-a) has V, V°,
V-, V7, V  selected as shown in (fig. 5-3-b, c,
d, e, f) then its NPLIST, as defined in equation
7-55 has the following S - expressions as its
elements:
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VZLT = ((NZ*N7))

VILT = ((NZ*N3), (NZ-N5), (NZ- Né)

V2LT = ((N2+N7)) (7-60)
V3LT = ((NZ*N1))

V4LT = ((N3+N4))

NZ is the atomic symbol for node zero and Ni
is the atomic symbol for node i (i being numeric).

The network has two transformers, each with
three windings, therefore introducing four linear
equations as given in equations 5-32, The LQLIST
of this network as defined in equation 7-57 has the
following S - expressions as its elements:

LHSLQI
r A —
((NIL, ((1.0, (NZ-N3))), NIL, NIL, NIL),
n
(NIL, NIL, NIL, ( (=2, (NZ*NI1), NIL))

RHSLQI

LQl

LQ2 = ((NIL, NIL, NIL, NIL, ((1.0, (N3:N4)))),

n

(NIL, NIL, NIL, ((-=2, (NZ*N1)), NIL))
11

((NIL, ((1.0, (NZ*N5)), (-1.0, (NZ*N3))),

LQ3

NIL, NIL, ((-1.0, (N3 *N4)))),
.y 22
E—'—”v (NZ'N—{))), NIL: (("'n_—': (NZ‘N?))),
21 21

NIL, NIL))

(((

LQ4 ((NIL, ((1.0, (NZ-N6)), (-1.0, (NZ-+N5))),

NIL, NIL, NIL),

(223, (NZ-N7))), NIL ((--22, (NZ-N7))),
| 11
NIL, NIL))

(7-61)

For ease of reading, the expressions in equa-
tions 7-61 that represent the left hand side of
the equation are underlined.
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sedv [ LQLIST ] = DEPNP (7-62)

sedv (SElect Dependent Variables) is the S -
function that computes the list of dependent

node pairs, DEPNP from the list of linear
equation, LQLIST. LQLIST is the S - expression
computed from equation 7-56 and DEPNP is the

S - expression defined in equation 7-43. sedv

is defined according to the algorithm in equation
5-25.

rednp [ NPLIST; DEPNP | = INDNP (7-63)

rednp (REmove Dependent Node Pairs) is the

S - function that removes the dependent node
pairs from NPLIST which is the S - expression
computed in equation 7-54. The dependent node
pairs are given as DNPI in eguation 7-46 which
is the S - expression of the i~ term in DEPNP
as defined in equation 7-43. The value of rednp
is the S- expression, INDNP that specifies all
the final selected independent node pairs. The
definition of INDNP is given in equation 7-42,

With the functions defined in equations 7-54,
7-56, 7-62, the S - function corsel is now de-
fined in terms of the dummy variable k:

corsel [k] =

cons [

rednp [ vnpgen [x]; {764

sedv [ lqgen [ caddddr [ k]; vnpgen [ k]]]];

sedv [ lqgen [ caddddr [ k]; vnpgen [ k]]]]

In equation 7-64 cons is the elementary S -
function defined in equation 7-22, and the S -
function caddddr is defined as

caddddr [ x] = car [ cdr [ cdr [ cdr [ cdr [x]111]1

(7-65)
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With the S - function corsel in equation 7-64 defined in terms

of the S - functions vnpgen, lggen, sedv and rednp, there still remains

the task of defining them in terms of the five elementary S - functions
described in Section 7. 2(7). Their definitions are given in Appendix B.
It is assumed that the LISP working principles are the prerequisite
before tracing the definitions in Appendix B.

Since this thesis is primarily concerned with the algorithm of
selecting a set of nonsingular coordinates suitable for various digital
computations on the network, the detailed method of implementing the
algorithm by using symbol manipulating language is not included. The
purpose of this chapter is to illustrate the use of symbol manipulation

as a universal data processor.
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CHAPTER 8

CONCLUSION

In this thesis, an algorithm expressed in terms of network
topology has been derived to select an independent set of coordinates.
The ordinary differential equation in the chosen coordinates describes
the electrical network of RLC elements, ideal transformers, ideal
voltage~ and current-sources, which is topologically analogous to a
large class of systems with linear constant coefficient parameters.
The algorithm insures that parameter matrices requiring inversion
will always be nonsingular in the application of conventional methods
of numerical analysis to integration methods for transient response
calculations and matric polynomial manipulations for driving point
and transfer admittance determinations., A modified Turing's
criterion (20) is incorporated in the algorithm to minimize the
round~off errors in matrix operations.

Because of the non~numeric nature of the algorithm, a symbol
manipulating language such as the LISP (20) (coded on IBM 7090
computers) is chosen to implement it, The LISP is found efficient
in describing the algorithm in which the search of a path in a network
of arbitrary topology and the manipulations of linear equations intro-
duced by ideal transformers are programmed as operations on list
structures. The program has been successfully applied to the net-
works in Appendix C of various complexity, For the example on the
plate analogy of a delta wing, the network of thirty nodes and fifteen

two~winding transformers took about ten minutes to give the set of
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independent coordinates and almost exceeded the core mem-
ory capacity of 32K on the 7090. This indicates the need of
more efficient digital computers oriented towards non-numeric
computations.

Section 8.1 extends the algorithm to networks with non-
linear elements and coupled branches., Alternative methods of
evaluating the matrix expressions are discussed in Section 8. 2.

Some related research topics are outlined in Section 8. 3.

8.1. Nonlinear Elements, Coupled Branches and Nonbilateral Elements

(1) Nonlinear Elements
In the preceding chapters, the selection of co-

ordinates and the subsequent formulation into the canonical
form for numerical integration (equations 4-28) assumes that
all RLC elements are linear, time independent and positive.
These methods can, however, be extended to nonlinear systems.

The nonlinearities in element values introduce nonlinear
parameter matrices in equations 4-28., Although the analytical
treatment of nonlinear mechanics is difficult and rather re-
stricted, it is a simple matter to numerically integrate a non-
linear differential equation (10). From the initial state of the
system, at t = 0, enough parameters are available to compute
all the nonlinear element values. The method of numerical
integration assumes that the system remains linear during

the time interval of At and evaluates the state of the
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system at time t = At . Due to the change of state, all nonlinear
elements are re-evaluated to correspond to the new set of parameters,
and hence compute the state of the system at t = 2At . The approxi-
mation is to replace the continuous nonlinear dependence by the
staircase~like function as shown in (fig. 8~1). It is evident that the
closer the intervals, the better is the approximation; however, it is
difficult to estimate the absolute error introduced due to such an
approximation, By using the same method, equations 4~28 with non~
linear elements can be integrated step by step; and at each step all
nonlinear matrices are adjusted to correspond to the change of state,
provided that [Cll] -1, [Rzz] -1, and [L33] = remain nonsingular
at all times. These conditions are satisfied if

(a) nonlinear elements always have values greater

than zero; or
(b) if the nonlinear element does become zero, then

the removal of which must not effect the Vo, Vl,

VZ, V3, V4 coordinates classification. For

example, the disappearance of any one capacitor

in the circuit in (fig, 8-2~a) will not effect the

coordinates classification, and the removal of

any one capacitor in (fig, 8-2~b) decreases d1

by 1.
If some elements are negative in value and others positive, it is not
possible to conclude on the existence of ICH] -1, [RZZJ -1, and
[L33] "1. However, if all elements of one type have negative values,

then [CIIJ ’ [RZZJ ; OF [L33] will be negative definite and also
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(z) The Removal of Any One Capacitor Will Not Change the
Node-pair Coordinate Classification

(b) The Removal of Any One Capacitor Will Alter the
Node-pair Coordinate Classification

FIGURE 8-2
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possess inverses. Therefore, we can say that if the nonlinear
elements always satisfy conditions (a) or (b), the method of coor=-
dinate selection developed for linear systems is also applicable with
the additional work of adjusting the nonlinear matrices in equations
4-28 at every interval, (If higher order numerical integration
formula (10) is used, adjustments are to be made even at mid~interval
points;)

(2) Coupled Branches

When branches are coupled, the admittance matrices

[CB] i [R_B] , and [LB] are no longer diagonal., This condition
does not effect the computation of matrices used in equations 4~28,
Equations 4~22, 4-23, and 4-24 give the admittance matrices trans~
formation, It is irrelevant whether [CBJ P [RB] , and [LB] are
diagonal or not. At this point, it is also irrelevant even if the branch
matrices are not symmetrical; active elements like triodes or tran- -
sistors canoftenbe represented in equivalent circuit as branches with
unsymmetrical branch matrix (pages 44-48, reference 12),

(3) Non~bilateral Elements

Elements with different forward and backward character-

istics and elements with properties depending on their past history
such as the hysteresis loop are all special cases of nonlinear elements.

The discussions on nonlinear elements apply directly.

8.2 Alternative Methods of Evaluating Matrix Expressions

1 3 4

After the coordinates are selected as Vo, s VZ, V., V, then

with all V4 and some of Vl, VZ, V3 eliminated due to transformer



~172-

constraints, we set up the equations to be integrated in the form of
equations 4~28. The evaluation of the matrix expressions in equation
4-28 involves matrix multiplication and matrix inversion. Although
these matrix operations are commonly coded as subroutines so that
one can call for their service readily, alternative ways of evaluating
these matrix operations are worth the consideration under special
circumstances.
(1) Sparsely Distributed Matrices

When an m x n matrix is stored as n consecutive columns
each with m elements, (m x n) memory cells are used irrespective
of the element distribution within the matrix. If most of its elements
are nonzero, this is almost the best way to store matrices in com-
puters., However, if the matrix were only sparsely distributed such
that a larger portion of its elements is equal to zero, the columnwise
storage of a matrix would be wasteful in memory utilization and
computing time. In this case, matrices may be stored by specifying
only their nonzero elements, each of which is specified by three
quantities: the row index, the column index, and the value. In net-
works with a large number of nodes, each node is usually only con~
nected to a few other nodes through RLC elements. The matrices in
equation 4-28 for such networks are sparsely distributed, and the
scheme of storing only nonzero elements in the computer deserves
consideration,

(2) Use of Relaxation Methods
If the network is such that all the matrices in equation

4-28 are sparsely distributed, we may store only the nonzero elements.
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However, even if [Cn] ’ [R‘Z?J , and [L33] are only sparsely
distributed, their inverses are in general full matrices., In order
to retain the virtue of efficient memory utilization, these matrices
are not to be inverted, and instead equations 4-28 are evaluated by
relaxation methods (33) to which the following features are related.
(a) Convergence

When the Gauss~Siedel (34) relaxation method

is used, convergence is assured whenever the

matrix is positive definite. The choice of

coordinates in Chapter 3 (that minimizes the

round~off error) will, in general, also give

the fastest convergence rate.

(b) Trial Solution

When the relaxation method is used, a trial

solution is usually assumed from which the

method will iterate towards the actual solution.

If the trial solution is close to the actual

solution, only a few steps of relaxation would

converge on the final solution. When equations

4-28 are integrated, variables are continuously

varying provided that there are no discontinuities

such as step changes in forcing function; then

the values at time t can be used as the trial

solution: for relaxing the values at time t + At.
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(c) Nonlinearities
When the network has nonlinear [C“] %
[RZZ] s and [L33] matrices which are
to be adjusted at every integration time
interval, the use of relaxation methods
does not require additional computations
in evaluating equations 4-28. If [Cll] -1,
[RZZ] -1, and [L33] =L e used, they
have to be inverted at every time interval,
whereas if the network is linear they would
only be inverted once. This feature suggests
that the relaxation method is more suitable
than the matrix inversion method for non=-

linear systems,

8.3 Related Research Topics

(1) Network Synthesis in Terms of More General Topological
Configurations

This thesis has presented a systematic way of analyzing
networks with RLC elements, ideal transformers, ideal voltage~ and
current-sources interconnected in any arbitrary topology. The
algorithm is rigorous and can be programmed on digital computers.
The most closely related subject is to extend the approach to network
synthesis in more general topology other than the usual ladder or
lattice configurations. Topological properties such as the number of

nodes, the number of branches and the physical layout of elements
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may be of practical interest. It is desirable to have control over
these parameters by finding the most suitable topology besides
satisfying the usual input-output transfer functions. The importance
of synthesis leading to more general topological configurations has
already been initiated in the literature (35) (36) (37).

(2) Unified Approach to System Analysis

This thesis reports a unified approach to the analysis of
any electrical network which topologically represents a large class
of systems described by a set of ordinary differential equations.
The systematic procedure from accepting basic information about
the system to setting up the appropriate equations for computation is
algorithmically programmable. It will be encouraging to take some
other classes of systems and, from the basic physical laws, derive
all the steps that accept the physical description of the system and
provide the computed quantities that characteristically represent the
system properties. With the algorithm programmed on the computers,
the computers extend their capabilities a step further toward supple~
menting human beings' mental effort in system analysis. The signi-
ficance of searchingﬁ’g unified approach to system analysis is analogous
to the physicist!s effort to search for a unified field theory.

(3) Machine Organization Oriented Toward Symbol Manipulation

Although a symbol manipulating language such as LISP is
found efficient to express the algorithm in this thesis, its implementa~
tion on computers leaves much to be desired. As computers are used
more and more to solve non=-numeric problems such as the one in this

thesis, some thought should be given to the organization of a digital
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computer oriented toward symbol manipulations rather than high

speed arithmetic operations.
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APPENDIX A

pETERMINANT EVALUATION FOR CERTAIN CLASSES OF MATRIC POLYNOMIALS

Consider the matric polynomial

n-1

[H]=[Hn]sn+[Hn_1]s ... [H1s+[H] (A-A-1)

and we want to evaluate det | H| which is a polynomial in s. The

straightforward method is to expand along one row or column to give

for any j (A-A-2)

det |H| = Z (-1)“511ij M,
i

where hij is the ith row, jth column element of [H], and Mij

is the determinant of the matrix [ H] with ith row and jth column
deleted. However, the process in equation A-A-2 is a long one and
especially when the elements are, in general, polynomials, the arith-
metic involved is complicated. For certain classes of matric polyno-
mials, alternative methods can be used.

The approach of the method described below is to convert the
determinant evaluation of a matric polynomial into the problem of de-
termining the eigenvalues of a matrix constructed from the coefficient
matrices in the matric polynomaial.

Let G(s) be the polynomial evaluated as the determinant of

the matric polynomial [ H], then G(s) can be factored into the form

n
Gl(s) = ?T'(s - 2\j) (A-A-3)
2'-"
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where n is the order of the polynomial G(s), and \j are the roots
of G(s). If G(s) has real coefficients, then \j must be all real or
in complex conjugate pairs. \j are the values of s at which G(s),
the determinant of [ H], vanishes. The evaluation of G(s) from
[ H] is reduced to the problem of determining the values of s at
which det [H| = 0.

When the matrix [ H] is of the special form
[H] =[H;]s + [H,] (A-A-3a)

the determination of the values of s at which det |H| = 0 can be
treated as the determination of the eigenvalues of the matrix
[ H1 ]-1[ HO] if [ Hl ]-1 exists; or as the inverses of the eigenvalues
of [ H0 ]-1[ H1 1 21 HO ]-1 exists. The values of s and the elements
of the matrices [ H1 ], [ H0 ] are scalars, hence the eignevalues can
be efficiently computed by using various kinds of iterative procedures
(46). However, when the matrix [ H] is of order higher than linear,
such as equation A-A-1, additional transformation is required.

Let the matric polynomial be normalized to have identity matrix
as its leading coefficient by multiplying the whole polynomial by [ Hn].1

if it exists, then equation A-A-1 becomes

n * n-1 % *

s +[Hn_1]s +...[H1]s+[H0] (A-A-4)
where

[Hy] = [H, 1[H] (A-A-5)

for j=0, 1, 2. . , =1,
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The determinant of the polynomial in equation A-A-1 is only different

from the determinant of the polynomial in equation A-A-4 by a scalar,

det |[H [. Let E be the identity matrix, then by expanding the deter-

minant of the matrix in equation A-A-6, we obtain equation A-A-4.

H +Es H H

gy TR, Hecg 1

-E +Es 0 0
0 -E tEs 0

-E +4Es

-E

(A-A-6)

0

+Es_‘

Hence, we have the following classes of matric polynomials whose

determinants may be evaluated by the eigenvalue method:

(1)

Proper matric polynomial:

A proper matric polynomial has a nonsingular leading

coefficient matrix, therefore, we may normalize the

leading coefficient to unity as in equation A-A-4. With

the equivalence of equation A-A6, its determinant can

be evaluated by expanding equation A-A-3 where \j

are the eigenvalues of the matrix

n” g -a* H
el | SR e i |
E 0 0 0
0 E 0
0 0 0 E

H*-
-Hy

0

(A-A-T7)




(2)
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The eigenvalues of a matrix [ A] are defined as the

values of \ that satisfy the equation
detI[A] -xE]I[=0. (A-A-8)

Nonsingular H0 matric polynomaial:
If H0 of the matric polynomial in equation A-A-1 is
nonsingular, we may introduce a change of variable

1
o' =1 (A-A-9)

such that the new normalized matric polynomial is

iy [H'l]s'n'1 5 7% [HI;] (A-A-10)

where

[H;'i] = [HO]'I[Hj] (A-A-11)

for =1, 2. « « 1,

Then the determinant of the original matric polynomial
is given by equation A-A-3 where \j are the inverses

of the eigenvalues of the matrix

—

1 1
_Hl “HZ -Hn-l _Hn
E 0 0 0
0 E 0 0 (A-A-12)
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(3) Neither Hn nor H, exists:

0
When the matric polynomial is such that neither the
leading coefficient nor the coefficient of the lowest
order term is nonsingular, then neither (1) nor (2)
can be used and special procedure is required to get
around the singularities.

For example, the matric quadratic in equation 6-13

is used,
[B] = [6])s® +[R]s + [ L] (A-A-13)

where [C]—1 and [L]_l do not exist.

If det [H| = 0, then there is a nonzero vector y such that
[H]y = o. (A-A-14)

Let us introduce coordinate transformation on y, or congruent trans-
formationon [ C], [R] and [ L], such that after partitioning y

into three subvectors

y
y=|vy (A-A-15)
y

e & . &) B B 8] L. . ][
11 s RRE e & 11 12 13 y
2 2

( 0 0 0| s~ + R21 Rz2 0| s + L21 L22 L23) vy
3

LN | 0 0 0] L3y L3 L3él ¥

(A-A-16)



where [ Cyy ]-1, [R and [ L,y ]'-1 always exist. To solve
for the values of s in equation A-A-16, we may first eliminate the

variable y3 which is uniquely related to yl and yz by
3 __ -1 1 2)
y =L 17 ([ Ly, 1y, # [ Ly, ]y (A-A-17)

The independent equations in equations A-A-16 become

—

(cll o » Ri;1 Ryp

" S s
0 0 _R21 R,,
- -1 -1 1
Lyy-bagfan’ Ty Spprlgaliay Lggh 1Y
+L-LL-1L L-LL'IL)2=0
| 2172333 31 22723 sz ag) LY
(A-A-18)
To solve for s in equation A-A-18, we may solve for the following
simultaneous equations:
2.1 1 2 R | 1.2
[Cy1s%y +[ Ry )sy #[ Ry, )ey” +[ Ly ]y +[ L, 0y =0
(A-A-19)
1 2 R | t o B
[R,,1sy +[ Ry, Isy" +[ L, Iy +[L,,Iy" = 0
(A-A-20)

where [ Llll ], [ LITZ ], [ L2.|1 ], [ LZTZ] are the corresponding ele-
ments in equation A-A-18.
In order to write the equations into first order form so that

the eigenvalue method can be used, we introduce the variables

V1 syl
VZ syz

]

(A-A-21)
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then equations A-A-19 and A-A-20 may be written as

47 ¢ 41 500 1
Vo = - LC 1T (IR -RypRy, Ry TV
1 =1 1 ¥
FLL-RRy gy ]y
1 -1 1 pA
+[Lp-Ri,Ry, T Lpo ]y ) (A-A-22)
ol o
2 -1 1 1 1 1 2
sy’ = - IRy, 17 ([Ry IV #1015, 1y +1155157)

The left hand sides of equations A-A-22 have sVI, syl, syz,

and the right hand sides only have variables in Vl, yl, yz, therefore,

we may write it as

Vl Al A2 A3 Vl V1
E yl =| E 0 0 yl = [A] yl (A-A-23)
2 2 2
¥ Ay Ag Ay y

and solve for s as the eigenvalues of the matrix [ A] in equation

A-A-23, where

1

[A].] = = [ Cll]-l[ R]_I—R]_ZRZZ'- RZI]
(4,1 = - [ €}, 17 [ Ly)-Ry R Ly ]
-] 1 -1 1
[A;] =-Tc),] 1[ L2 R1aRzz L] (A-A-24)
[A4] = -[RZZ]— [R21]
[Ag] = -[Ry,17 Ly ]

"

[A,]=-[R,,17 [L,,]
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i
=

]

-1
(L3013 17 [ Ly,

(1431005517 0Ly, ]

(=
AV]
[}
I

t < . (A-A-25)
[Ty ] = 12y 1 = [ Lpg I Ly 7L Sy ]

' sl
(L] =[] - [Lp 1MLy 1 T [ Ly,

The evaluation of the determinant of the matrix [ H] in equa-
tion A-A-13 by the eigenvalue method is hinged on the coordinate trans-
formation in equation A-A-15 to give equation A-A-16. The algorithm
of selecting Vl, VZ, V3 discussed in this thesis gives the coordinates
in equation A-A-15 directly.

Equation A-A-23 will give Zd1 + d2 eigenvalues where (dl, dZ)

are the numbers of components in the vector (yl, yz). The actual num-

ber of nonzero roots in equation A-A-13, is given by equation 5-38 as
p = d; -d;+ RK( L]). (A-A-26)

When the rank of the matrix [ L] is equal to its dimension, (dl -~ d2
+ d3), the actual number of roots is exactly Zd1 + dZ' If otherwise,
P < (Zd1 + dz), and the extraneous zero roots computed from equation
A-A-23 should not be included into equation A-A-31 in evaluating the
determinant G(s).

The same procedure, described starting at equation A-A13 to
equation A-A-23, can be used to compute the roots (natural frequencies)

of any arbitrary passive linear network.
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APPENDIX B

The complete listing of the LISP program, 'corsel', and all
the subfunctions used in its definition are included in alphabetical
order in this appendix. Starting with the LISP 1.5 tape (26), this
listed deck of cards will produce a new LISP tape with the defined
function "corsel', and many of the unused functions in the LISP
system removed to give more working memory. As many functions
are compiled as possible to provide speedier computations. The
LISP manual (26) should be consulted for the notations and function

definitions given in this appendix.
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KxXLo000 LISP PROG ARB NFTWORK COORD SELECTION
SEYSET WiLL SET EVEN WHEN THERE [5 AN ERROR - pisp
NEFINE ((
(APELTSYT (LAMBDOA (A L) (COND
{INULL L) F) ((ATOM L) (COMD (IEQ A L) T) (T FI11Y
{T (OR [APELTST A (CAR L)) (APELYST A (COR LIYHYIIDY
B
NEFINE (1
[APPEAR (LAMBDA (L] L2) (COWND
CIRULL L2) (LIST Wiy :
((OR (AND (FQUAL (CAAR L2) (CAR L1))
(FQUAL (CADAR L2) (CADR L1111}
{AND (FQUAL (CAAR L2) (CADR L1))
(EQUAL (CADAR L2) (CAR L1)))) L)
(T (CONS (CAR L2) (APPEAR L1 (CDR L2100)D )Y}
))
NEFINE I
tAPPFAR2 (LAMARDA (L1 L?) (COND
feNULL L2 F)
((EQUAL LY (CAR L2)Y)Y T)
[T (APPEARY L1 (CDR L2))1)))
3]
DEFINE (¢
{ARRANGE (LAMBDA (N LPR! (PROG (A R)
(SETQ A NIL!
[SETQO B LPR)
1 {-OMD ((NULL B) (RETURN (CONS F A)))
((FQUAL N (CDAR B)) (RFTURN ((CONS T (APPEND R A)))))
(SETQ A (CONS (CAR RY A))
[SFTO R (CDR B))
GO H1) )M
]
NEEIRF (|
(AVFY (LAMBDA (L] L2 L3)
{COND ((FQ (CAR L1) (CADR L1)) MIL)
(T [INCF (CAR L1) (CADR L)
(PATHFD] (CONMS (CAR L1) (CADR L1)) L3)
L2
14
NEFINE (]
[“ADDDDR (LAMBDA (L)Y (CAR (CDDPOR L)1y
("DAADDDDR (LAMBDA (L) (CDAAR ( NPDDDR L))}
CAAADDDDR (LAMBDA (L} (CAAAR (CDDODR L))))
(“AADDDNR (LAMRDA L) (CAAR (CNDADR L1 )
TDADDDDR (LAMBDA (L) [CDAR (CPPDDR L)) })
{CDAADODR (LAMARDA (L) (CDAAR [(CDDDR L))
[CAAADDDPR [(LAMBNDA ‘L)Y [CAAAR (CDDDR L))
CAADDDR (L AMBDA (L)' (CAAR (CDDDR L)1)Y))
'CDADDPR [LAMBDA (L) (CDAR ICDODDR L))
“"DAADDR (LAMBDA (L) (CDAAR [(CDDR L))

[TAAADDR (LAMBDA (L) (CAAAR (CPDR L)) ))
NEFINE
[ "OMNECT] (LAMARDA (G N1 N2) [COND

[TINCLUDE N1 G) (COND ((INCLUDE NZ G) (QUOTE ERROR2))
(T ("OWMS T N2
rl]n’tw@r N; G) (CONS T N
(Y ILYIST F¥) YD)
! \
WEINE 1
{"ONNECT2 (LAMBDA iN1 N2 L) (PROG (A B)
ISFTO & IFACIOR N1 LI
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(SETQ B (STRING1 N1 (CAR AM))
{COND ((NULL B) (RETURN F))
{(INCLUDF N2 B) (RFTURM T1))
(RETURNM (rOMLT2 B N2 (CDR A
(COMLT2 (LAMBDA (L1 M L2) (COND
(INULL L1) F) ((COMNECT2 (CAR L1) N L2) T
[T (CONMLT2 (CDR L1) N L2))9))
ISTRING] (LAMBDA (N L) (COND
{INULL L) MIL) (T (COMS (CONMD ((EQ N (CAAR L)) (CDAR L)
(T (CAAR L))}
(STRING1 m (CDR L)) D))
')
DEFINE (1(
(CORSEL (LAMBDA (NETWORK) (PROG
(NPLIST LOLIST DEPNP NETWORK] )
(SETQ NETWORK] (CAR (GMLTST NETWORK )))
(SETQ NPLIST (VNPGEN NETWORK]))
(SETQ LOLIST (LQGEN (CADDDR NETWORK]1) MPLIST))
(SETQ DEPNP (SEDY LOLIST))
(RETURN (COMS (REDNP NPLIST DEPNP) DEPRP)})))
1)
DEFINE (1
(ELIM (LAMBDA (L1 L3) (PROG (A B C)
(SETQ B NIL)
(SETQ A L1)
H1 (COND ((NULL A) (RETURN B))
({NULL (CAR A)) (GO H2)))
(SETQ C (TAKAY (CAR A) L3))
{COND ((CAR C) (GO H3)))

H2 (SETQ B (APPEND B (LIST (CAR A)}))
(SETQ A (CDR A))
(GO H1)

H3 (SETQ B (APPEND B (LIST (CDDR C)1))
(SETQ A (CDR A))
(GO H11)))

)}

DEFINE ((
(FACTOR (LAMBDA (N L) (PROG (A TLIST] TLIST2)

(SETQ TLIST1 NIL)
(SETQO TLIST2 NIL)
(SETQ A L)

H1 (COMD ((NULL A) (RETURN (CONS TLIST]1 TLIST2)))

((OR (EQ N (CAAR A)) (EQ N (CDAR A}))

(GO H2)1))
ISETQ TLIST2 (COMS (CAR A) TLIST2))
Ha (SETQ A (CDR A))
(GO H1)
H2 (SETQ TLISTY (CONS (CAR A) TLIST1))
(GO H3Y I

o3
DEFIRE (1(
[GNLTST (LAMBDA (L) (SUBSUBLIS (NORMAL L))))
B
DEFINE (|
(INCF (LAMBDA (N1 N2 L1 L2) (PROG (TZ T1 T2 T3 T4 B C D NN)
ISETQ TZ NIL)
(SETQ T1 NIL)
{SETQ T2 NIL)
(SETQ T3 NIL)
(SETQ T4 NIL)
(SETQ NN N1)
(SETQ D L1)



HH 1

HZ
H1
H?
H3
Ha

HH3

1
PEFINE (1
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(SETQ B (SEARCHI NN D))

(CONMD ((FQ (CAAR B) MM} (GO HM1I))

(SETQ € -1.0)

(SETQ MmN (CAAR BY)

(GO HM2)

(SETQ C 1.0)

{SETQ WM (CDAR B))

(COND ((APPEAR? (CAR B) (CAR L2)) (GO HZIM)
[(APPEARY (CAR B) (CADR L2)) (GO H1)}
((APPEAR3Y (CAR B) (CADDR L2)) (GO H2))
({APPEARY (CAR B) (CADDOR L2)} (GO H3))
{ (APPEAR3 (CAR B) (CADDDDR L2)) (GO H&))
(T (RETURN (QUOTE EFRRORS5))11})

{SETQ 72 (CONS (CONMS C (CAR B)) T2

(GO HH13)

(SETQ T1 (CONS (COMS C (CAR B)) T1))

(GC HH3)

(SETQ T2 (COMS (COMS C (CAR B)) T2))

(GO MM1)

ISETQ T3 (COMS (COMS C (CAR B)) T3))

(GO HH3)

ISETQ T& (CONS (COMS C (CAR B)) T4))

(COND (I(MULL (CDR B)) (RETURN (LIST TZ T1 T2 T3 T4))))

(SETQ@ D (COR B))

GO HHY ) )Y

( INCLUDE (LAMBDA (B L) (COND
{tNUtL LY &)
(1EQ B (CAR L)) T)

T e
1)
NEFINE ((
(|