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ABSTRACT

Long waves in elastic rods of arbitrary cross section are studigd
by writing a general expansion of the exact sclution for three dimensional
linear elasticity. The solution holds for transient excitation of the end of
a semi-infinite cylinder and is in terms of the harmonic modes of wave
propagation for the infinite elastic cylinder, The major contribution to
the solution for large distances from the end of the rod is found by making
approximations to the infinitely long wave length part of the solution,

This is aided by using a perturbation method for long wave length to study
the modes of propagation. An approximate theory for rods of arbitrary
cross section is developed and compared to the exact theory for harmeonic
waves of infinitely long wave lengths. |

The amplitudes and locations of all wave fronts caused by certain
suddenly applied loads on elastic plates and circular rods are presented.
Both end loads on the rod and plate as well as normal line and poipt forces
on the plate are considered. The problems are sclved by expanding
double transforms into a series of terms, each term representing the
disturbance following a single wave front. Evaluation of the terms for
the wave front behavior is accomplished by Cagniard's method and the
saddle point method. Ray theory aids in the interpretation of the
results and also serves to verify most of the formulas. The solution
by Cagniard's method is exact for the plané strain problems studied

and is plotted and compared to experiments.
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1. INTRODUCTION

Transient wave propagation in semi-infinite elastic rods and
plates has been studied from two viewpoints. Most of the literature
has been devoted to the study of the low frequency - long wave
response. These studies quite accurately explain phenomena observed
.a.t long times after the application of the load and at long distances
from the end of the rod or edge of the plate. Attention has also been
given to the high frequency character of the response with the purpose
of finding the displacements and strains near to the load. This thesis
is divided into two main parts; sections II and III deal mainly with low
frequencies while sections IV and V are concerned with high
frequencies.

Low frequency behavior is most conveniently studied by
examining the modes of wave propagation, branches of the frequency
equation and associated displacements for all wave lengths. The
most important mathematical tool employed is Kelvin's method of
stationary phase. The associated concept of group velocity plays
an important role. On the other hand, the high frequency response |
is most easily investigated by means of ray theory. Though special |
nsathematical techniques are employed, Cagniard‘’s method and the |
saddle point method, the essential concept is that of rays and wave
fronts.

The literature on the theory of the low frequency response
-is based on two different methods of approach. The first method
used is to develop "approximate' theories. These are equations

of motion which incorporate the essential physics of the ''exact
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theory"! (thre.e dimensioneal linear elasticity) and the simplifying
features of the elementary theory--one dimensionality, plane sec-
tions remain plane, etc. Approximate theories govern the motion
accurately provided the frequencies are low enough and the wave
lengths long enough. Appéoximate theories may be solved exactly
as Miklowite (4, 2) has done with the Mindlin-Herrmann (3,4} equa-
tions governing compressional waves in a circular rod. The sec-
ond method of approach is to write a formal solution to the equations
of motion from the linear theory of elasticity by using double trans-
forms. Skalak {5) and Folk, Fox, Shook, and Curtis {6) have done
this for problems of compressional waves in a circular vrod. The
formal solutions are evaluated approximately by asymptotic meth-
ods and are valid for large time and the far field.

The solutions from approximate and exact theories are
both written in terms of modes of propagation. As an example,
solutions to the Mindlin-Herrmann theory are written in terms of
two modes, which model the lowest two modes of the exact (Pochham-
- mer) theory for the circular rod. Miklowitz (7) has shown that the
lowest frequency waves of both his solution of the Mindlin-Herrmann
theory and the exact theory solution given by Skalak and Folk et al.
behave in the same v}ay. This behavior and like phenomena for
higher modes will be found for a noncircular rod in the present
work.

Wave propagation in rods of arbitrary cross section has

received little attention due to difficulties in the mathematics.
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Love (Reference 8, p. 428) gave a simple approximate theory and
frequency equation valid for low frequencies. Further work was
hampered by two difficulties. Little is known about the exact theory
modes of propagation and frequency equation, which were the bases
of most mathematical analyses of the circular rod. Furthermore,
the differential equations for the double transforms of the exact
theory solution were not solved. However, one can use these dif-
ferential equations to write the double transforms formally in
terms of the modes of propagation, aa is shown in section II of
this thesis. Experience has shown that one needs only to know
the modes of propagation at certain critical points, where the group
velocity is @ maximum or minimum. This fact is used in section
1II to evaluate asymptotically for long time the formal solution
from the double transforms. The forms of the modes of propaga-
tion are determined only in so far as is needed for the approximate
evaluation. »

The differential equations for the double transforms of the
exact theory solutions for a rod may be found by using a method
developed by Folk, Fox, Shook, and Curtis (6). This method, un-
fortunately, cannot be used to solve the case of nonmixed boundary
conditions on the end of the rod or edge of the plate, e.g. the end
pressure shock problem, step axial stress, zero shear stress. In
section III of this thesis the boundary conditiong of the pressure
shock problem are assumed and some conclusions are drawn.

Wave fronts may be found from the double transforms either
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bi means of Cagniard's method (an ingenious method for inverting
the Laplace transform) or the saddle point method. Cagniard's
method has been used by Mencher (9), Sroberg (10), and Davide (11).
The saddle point method has been used by Knopoff (12) and Knopoff
and Gilbert (43). Either way the double transforms are first ex-
'panded into terms, each representing the disturbance following a
single wave front. Wave front information is then extracted from
each term.

The axially symmetric plate problems studied in papers
(9) to (13) are closely related to the rod and plate problems of
interest here. Those papers gave results which are only for re-
stricted regions of the plate. Mencher studied the displacement
at the epicenter of an infinite plate with a step point soﬁrce of
pressure at its center. Papers (10) to (13) éonsidered an infinite
plate with a transient point force applied normally to one surface.
Broberg and Davids considered displacements and stresses on
the axis of symmetry only. Knopoff and Gilbert studied the dis-
placement on the face of the plate opposite the load. The present
work studies the strains and displacements throughout the interior
of a plate to which is applied a normal point force. Also, the cir-
cular rod is studied. Here, two different transient compressional
loads on the end are considered. The analysis is aided by working
with the plane strain squivalents of the problems first.

A physical understanding of the equations for wave fronts

is achieved through a study of ray theory. Karal and Keller (14)
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and Babich and Alekseev (15) have developed a general ray theory
of elastic wave fronts. The fundamental idea is that elastic waves
may be studied through a geometric theory in much the same way
as light waves are. The general ideas are explained at the begin-
ning of section IV, and thé ray theory is used in both sections IV
and V as a partial substitute for Cagniard's method and the saddle
point method. It is most satisfying that the formulas found by the
three methods, the saddle point method, Cagniard's method, and

the ray theory, are in complete agreement.
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II. MODES OF PROPAGATION

Most solutions to wave propagation problems have been
written in terms of modes of propagation. Such solutions to the
linear theorjr of elasticity have been given only for simple geome-~
tri;a. circular rods and plane strain or stress. This suggests
that one ought to be able to write similar solutions to problems
of transient propagation in infinite cylinders of arbitrary cross

section in termes of modes of propagation. One would expect to
build up a solution by proving some orthogonality properties and
using them in much the same way as the orthogonality properties
of modes of vibration are used to solve transient vibration prob-
‘lems. Just such a solution is derived below. It contributes to

a further understanding of previously published solutions for the
circular rod and is evaluated in section IIl for certain features
of wave propagation in noncircular rods.

The starting point for the mathematics is to transform
two variables, time and the spatial variable in the direction of
propagation. Laplace and Fourier transforms were used by
Skalak (5) and Folk, Fox, Shook, and Curtis (6) to derive their
solutions for a rod of circular cross section. Explicit expressions
for the double transforms were found. Skalak and Fok et al. then
used inversion integrals, evaluating the first by residue theory
with each mode of propagation contributing one pole. A similar
method will be used here. However, the double transforms in
the present case cannot be given in an explicit, closed form. They

are found by making an expansion based on orthogonality properties
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of the modes. The general method of making the expansion is given
in textbooks on the mathematics of linear equations, such as Courant

and Hilbert (16).

A. THEORY OF ELASTICITY, MODES OF VIBRATION

The mathematics and governing laws used here to investigate
the modes of propagation are quite similar to those which are used
to discuss modes of vibration. The equations for the modes of propa~
gation are long. Certain steps in the derivations may be carried out
more easily by drawing the analogy with vibration. Therefore, it
is convenient to discuss modes of vibration first, writing the equations
in a concise form by means of variable indices.

Consider a finite, homogeneous, isotropic, linearly elastic
solid upon which no work producing forces are acting. A harmonic
time dependence, emt. is assumed in order to study the free vibrations.
The governing laws may be expressed by setting eéual to zero the vari-
ation of an integral which is similar to twice the Lagrangian in Hamil-
ton's rpinciple for arbitrary time dependence for elastic bodies with

no external work pr'oducing forces, (see reference 8, pp. 166-167)

Bu
6L=63)3 [pu uu, - zqur-ra—i)Jsto {1)

In equation 1 the ui(ki) are the Cartesian displacements, p the density,
the integration is over the volume of the solid, repeated indices {imply
surmmation, and the stresses cij(xk) are defined linearly in terms of

the strains through the constants Kijkl by
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Bu, Oy
“ij =Kuk1 (-ﬁ--k-rx:). (2)
There are three symmetry conditions on the Kmd:
Kijkl = Kkuj' Kijkl = ij. and KUH = Kijlk . {3)

The integrand of squation 4 is a bilinear form which is
symmetric on account of the first of equations 3. Because of the
symmetry it {8 only necessary to take the variation of the second
member of each term in equation 4 and to multiply by two. Thue,

equation 4 may be written as

2 1 8 9
8L =2 SS‘SV [pw “i bni- 'Z"ij (Ej- 5\1i + -5—; Guj)]dv = 0. (4)
Then, by virtue of the second of equations 3, which represents the

symmetry of the stress tensor,

L = 2 SSS'[puz u, Buy - o, -5%; Gu’] av = 0. ()

The next step is to integrate by parts and apply the divergence

theorem. There result two integrals which are required to be zero.

The first is a volume integral, the second a surface integral,

S‘Sgtp wlu + ..’%L) bu; av = 0 (6)

gg&ui (o'ij d.nj) = 0. (7

In equation 7 dnj is a vector proportional to the differential element
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of area and normal to the surface. If the boundaries of the solid are
rigidly held, then we restrict the variations in equation 1 by requiring
61.1i = 0 at the surface and look for an extremum of L. Then equation
7 holds. If the boundaries are not rigidly held, then the Gui are not
reatricted and equation 7 holds only if cudnj vanishes everywhere
on the gurface. Thus, the stress, (as defined by equation 2) acting on
the surface is required by the variational principle to be zero. It is
possible to have mixed boundary conditions requiring some components
of the displacement to be zero and some components of the force to be
Zzero. By the usual arguments of the calculus of variations, the equa-
tions of motion are found by setting equal to zero the coefficients of

each of the aui in equation 6;
8o

pmzui 'B':?q' =0. ' (8)

J
The solutions to the equations of motion, equations 8, and the

boundary conditions represent the modes of vibration of an elastic

body. Let u{n) be the displacements and o{;‘) be the stresses of the
nth mode, and let o, be the associated frequency of vibration. Then the

orthogonality relation may be derived from the symmetric integral
(m) g (m)
u, du;

o
13-3S§1 ‘“’( R Bg‘j )av . (9)

Asg in deriving equation 6 from equation 4, we may use the symmetry

of the stress tensor, integrate by parts, and use the divergence

theorem and the boundary conditions on equation 9 to show that
POEY

1= 53 g‘.rl- (m) gy (10)

Equations 8 are then substituted into equation 10 to show that
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1= -po? S‘Sgui“" u Py, | (14)

Because 1l is symmetric under interchange of n and m, we may de-

duce from equation 141 the orthogonality relation
2 2 (n) , (m) :
(wm -w, )S'S‘S‘“i u dVv = 0. {42)

o a and @, are not equal, the integral in equation 12
(n)

must be zero. I w_ and w A are equal, but the functions u, ' and

ui(m) are linearly independent, the Gram-Schmidt orthogonaliza-
tion process may be used to form from them two orthogonal modes
with the same natural frequency. The modes are then a set of

functions for which

0 m#an
SY 0, ® o ™) av = (43)
' 1 (say) m=n .
These orthogonal modes are used to expresas the solutions to

forced or free vibration problems and initial value problems.

B. DOUBLE TRANSFORMS

Laplace and Fourier trapsforma aid in deriving a solution
in terms of harmonic wave trains. Folk, Fox, Shook and Curtis (6)
have developed the technique of using double transforms for prob-
lems of elastic wave propagation in semi-infinite cylinders. Es-
gsentially, their method is used here to derive the differential

equations for the double transforms.
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The rod and the Cartesian coord@te system are shown
in figure 4. Initially the rod is at rest. At time t = 0 forces or
displacements are applied at =z = 0, the end of the semi-infinite
rod. The boundary conditions along the lateral boundary are con-
sistent with an equation such as 7. In particular, it will be assumed
" in section lII that the lateral surfaces are stress free.

The stress equations of motion are {see equation 8)

aa“ . oo 5, ao'xz Ozuz o (14a)
- p =
LA 2 S
2
ac 8¢ do 8% )
1A TR R R S
o 8 ® a2 e
o o o u
xy L '""'.I!.’y =
-Ey-y + K + -b;y P o 0, J
where the stresses are given by (see equation 2)
8u & du
N T ] (40
8u & du ]
T = Mgt g )t N 20
' r (444d)
Su
il A AR LE '

Oy = B G =) (14e)

& éu &
B O ) TR ) (4
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ROD AND COORDINATE SYSTEM

Figure 1
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where \ and p. are Lamd's constants. The Laplace transform of
these equations is taken by multiplying them by e P4t and inte-
grating over t from zero to infinity. Since it is assumed that

the rod is initially at rest, it is only necessary to replace -%- in
equations 44 by p and indicate transformed variables by a bar. |
The definition of the Laplace transform of any function, ¢, and

- its inversion integral are

[o o]
(-p- (proﬂnP)""'S. @ {x,y,2,t) B-ptdt (45a)
o
4 (XnY.S,t) = 'z"ﬁ' ‘S‘. Eo-»(x'Y'th’ eptdp' (45b)
Brl

where .'Bx-1 ia the Bromwich contour, which is located in the right
half p plane to the right of all singularities.
Next, sine and cosine transforms of equations 14 are taken.

The double transformsas are defined here as
@

{sine) vﬁ(x.y.x.p) = - i‘S’ @ (x,y,8,p) 8in Kk = da
N | (16a)

o -
{cosine) @ (x,y,x,p) = S @ (x,¥,2,p) cos k z du.
o

For éither type of transform the single inversion integral,

©

a (qu|30P) = %S $ (X.Y.K.p) eiKS d«, (16‘7,
-0

is correct. The important thing about Folk, Fox, Shook and Curtis'

method is that it is possible to take sine and cosine transforms of



equations 44 such that each variable appears as either a sine or

cosine transform, but not both. Two schemes may be used, and

they are outlined in table 1.

TABLE 1‘
Scheme 14 Scheme 2
Equations Laplace- 14a, 14f 14b, 14c
cosine transformed ' 144, 14e
Equations Laplace- 14b, 14¢ 14a, 14
sine transformed . 444, 14e
Varijables Laplace- ' u_,o o, u _,u_,o
cosine transformed 2’ xz'yz x ¥y xy
Wy Uxx'cyy”zz"g
Variables Laplace- u_,u_,0 U_,0__,0,_ _,
sine transformed Yy Xy zxz ys
cxx’“yy'ﬁzz"p ¥
Boundary conditions o _,u_,u u_ Lo ,0 .
asked foz atz =0 ez’ x' Ty’ 2’ xz'ye’
@, 8y/8z b, 8¢/8z
The equations for the double transforms are X
= = T
o0 oo zz\
= Yy Xz = z=0
ixczz+wy ‘g - epiu, = .
85 85 0 7]
xx Xy =
+ tike,  -ppiu = | r(17a)
B By z x|z ‘
= = ::5 350,__
8o oo 7
Yy + xy+ ix = . 2=
LA~ ys " PP By T o |
| velz=0 J

%@ and | are the displacement potentials defined and used In sec-

tions IVand V.
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o= ]

=x( + ;+(x+z“,;=
—K -5;'1 ¥ : (MZp,)u

[—
.

du
:xx‘“Wz *"‘f‘;“ (N + zp).ﬁ’s

- i 8.
= % ==
cyy=)\(—5;-+iicu’)+(x+2p.-5[1
} (47b)
- ba 8a
-~ X
Ty = b bgs + )
0% WO
xg P ‘-&5 * ik gx) - z=0
0
& _ My
Vz‘“‘WE“K“v)' =0 ‘
l o

7

They are derived by taking the Laplace transforms of equations

$4 and then multiplying by either cosxz dz or -i sinkz ds and inte-
grating over z from gzero to infinity. The boundary terms are dif-
ferent according to the two schemes of table 1 and are given in
brackets with scheme {1 above and scheme 2 below. Notice that
the two schemes ask for different boundary conditions at the end
of the rod. Both schemeas ask for mixed boundary conditions,

which involve both stresses and displacements. This is a serious
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shortcoming of equations 17, for nonmixed boundary conditions are

known in the very important pressure shock problem.

C. SCOLUTION USING MODES OF PROPAGATION

Orthogonality Froperties

The analogy between vibration problems and propagation
problems may now be made clear. Zquations ] 7ashould be com-
pared to equations 8. In equations 12 the terms in brackets are
the forcing functions. The remaining terms constitute the homo-
geneous equations for the inodes. The eigen parameter is pz. The
eigen value problem must be solved for all values of x. Letting
the superscript, {n), represent the nth mode, for which the eigen

value is pn(z:). the equations for the modes are

e B po ()

i:{o‘zz(n) + a;’z + axxz - P?Zn uz(n) =9
(n) (n)
do, dc,
22 e g2 e pp? W =0 (18a)

(n) {n)
&c 8o
-EYX' + -5;‘”‘ + i:wyz(n) - ppr?; uy(n) =9

(n) (n} ]
Su bu
(n) x .. (n)
o =X(-K- +-5-X )+ (A + 2p) dku
= éu (n) Y &uz(n)

e ) o g B+ (s 2p) X

XX

i
>
—

0L
N A R ISR s S N18D)

. (n}) =@ ( 2 ‘ + i.'{u.x(n)) o (n) = B‘L(—B;-_ + ilfuy



A variational principle similar to equation 4 will aid in

investigating the properties of certain modes. The correct form
is

8L = Qg‘g‘r ppn (n) (n)l' (n)uy(n)l'+u (n)u (n)‘)

P oy B (n) (n) .,
'“:m(n)"ﬁi"" - ,w(n) _51 -0 (n) (tiu (n), v(n)( F;l

( n} ,
-0',2:’ (il(\lin)i' -&-— ) - (n) “K“(n)+ W ) ] dx dy = o, (49)

where the integut'ton is over the area of the rod and the * repre-
sents complex conjugation. The equations of motion, equations 18a,
can be derived from equation 19 by inspection. It is only necessary
to notice that equation 19 contains a Hermitian form®* and that it
can be intsgrated by parts using the boundary conditiona on the
lateral surfaces. The terms in equation 19 can be matched one by
one with the terins in equations 18a. The detailed steps are the
same as those used to derive equations 8 from equation 1.

The orthogoanality relation is derived by writing an integral

similar to the one in equation 9. The correct bilinear form is
gy (WI*

1= 53”[ <n) .,‘n)Tyx o By ())?

Bu_ (m) 4, (@),

e e - (20)

#The Hermitian form 1s the extension to complex functiona of the
symmetric form used in section lIA,




co_ ) (ju (@) 5= ) ]dx dy . (20)
{cont'd)

Iis integrated by parts, again using the boundary conditions, to
find the form analogous to equation 10;

- 75

( ) (n)
¥y, mi Vxy  (m)e, o (a), (i

"y Yy " B y xz  x

av {n) 8o

(n)
(m)" Wyv uY(m)" + ixg  B), (m)*

gy (@) . gg (0 .
+ -5;” uﬂ(m)’. t txcys(n)uy‘m)‘ ¢ -51)" uz(m) ] dx dy . (21)

Then, the equations of motion for the modes, equations 18a, are

substfituted to find (see equation 11)

1=pp2 5§ [ u 0 ;n) ;m” :n)“u(m).] dx dy. (22)

I is real and negative when n = m, according to the definition, equa-
tion 20. Then, letting n = m in equation 22, it may be concluded
that pf; must be real and negative. That is, the frequencies of the

modes of propagation are real when the wave number, «, is real".

¥t {s known for the circular rod that there are modes of propaga-
tion with real frequency and complex wave number.
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Physically, this represents a lack of dissipation and a stable solu-
tion.

Interchanging n and m in equation 22, it follows that (see

equation 12)

(P:'P:zn)‘g‘ 5 [“x‘n)“z(m)‘+uy(n)uv(m)‘+ uz(n)“z(m).] dedy=0. (23)
A

The integral in equation 23 must be zero if pz and pf; are unequal.

n
If, at a particular value of 1, there are linearly independent modes
with the same value of the eigen parameter pz. they may be com-
bined by means of the Gram-Schmidt orthogonaligation process
(reference 16, p. 50) into modes for which the integral in equation
23 does vanish. Thus, associated with the homogeneous equations

18 are the modes of propagation among which one may write the or-

thogonality relation (see equation 13)

0 n#m

Sg [u;n)u;m)‘ +u;n)u;m)‘ +uin’u:m)‘] dx dy (24)
A 1 (say) n=m

According to equations 24, the modes of propagation are a set of

orthonormal functions.

Expansion in Terms of Modes

The orthogonality relation makes it possaible to solve equa-
tions 17 by writing the double transforms as an expansion in terms
of the modes of propagation. We assume that there exist functions

of x, I’ ‘n(.'c.p). such that the double transforms can be represented



by the sumsa
‘=‘i ‘xoYlK'P, ® E\ rm (Kop) ui(m) (X;Y.'K), (25’

where { = x,y,x.

-

Following a common procedure, the three equations 25 are multi-
plied by ux‘n’.. uy‘n). » and u"n” . respectively, added together,
and integrated over the area of the rod. Equation 24 guarantees

that only one term i{n the sum over m {a nonzero, Then,

I"' = S‘g [u ux (n)‘ + u u (n)*] dx dy (26)

can be used to determine the I’n.

Consider the appropriate, nearly Hermitian integral,

. ' oy *
g ») el + g2 - o (B) i + ’WE ) ]dx dy . (27a)

I' is not Hermitian because the definitions of the double transforms
of the stresses, equations 17b, contain some of the forcing terms.

The forcing terms must be included in the second equation, for I'*,
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| 0 (n)'( 0 by ()
-le 4 X_|& + _ )
§§ ( * \'ﬁ"l nﬂ)% i mslz-ao -B;Y

0 (n) (n)|*
fu Su
= {n) * = p 4 )
-lo_ +] {ixu - @ +
( 88 | 20 l.:o ) z xy(ﬁ 'Fxx

%
(27b)

(= ﬁfx| z=;l) ( @) aul(n))t
-10__+ iecux +-&-

First, I' is evaluated by integrating equation 27a by parts and using
the boundary conditions at the rod lateral surfaces. The result is

{n) (n) (n)
' = C scxx =% 8o, =% (n)=» 8o, ="
I JS[E u, + WYY Uy KTy Uy * ny Uy

n)
xy z° tn)=9% %% - » @)= # (28}
xg ox

Substituting equations 18a we find
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A

Next, I'* {s evaluated by writing equation 27b as two integrals. One
integral is integrated by paits using the boundary conditions and the
second integral (corresponding to the bracketed terms in equation
27b) is simplified by substituting the definitione of v, (), ¢ ),

Xz

" and vya(n) from equations 18b. The result is

()* -3 L

e s Svjs [80' (n)"+ _;;TY . izw L n) . ny ux(n)

*  do *
xy , (o) = (n) {n) , [ = {n)
i~ uy .im'“u t *-imrzy
(30)
oe
e ey
z
S‘S' L U L. n u'yzn dx dy.
z‘z'O ' 0 o
Equationa l7a are then substituted into equation 30 to give
I'*#=pp \S\ST“ u, + a uy(“) + u u, {n) ]dxdv
0 0
* *
o] ..
S‘S' zzlsz “a‘n) N ux(n) . _ uy(n) (31)

x% | 2=0 ’yn 5=0



0 U, )
* s=0 * y| 8=0 *
{n) (n) (n)
" L - L ’yu dx dy . (31)
“a’ z=0 0 L9

Equations 26, 29, and 31 can be combined easily to find the

expansion coefficients;

scheme |},
LY (n)*
I - [ 4
p(p -p") gSL “3E| 00 2 "x| g0 X
(32a)
»*
(n)
y,zzo y= ]dxdy
scheme 2
* *
- (n), = (n)
i S‘ [—u o + o u
n- p(p -p%) S. a=0 z2 XZ| g X
{32b)
&
- (n)
+ ’yz o ‘_‘Y ]dxdy.

Together, equations 25 and 32 are the solutions for the double

transforms in terms of the modes of propagation.

Inversion g_f_ the Transforms

The displacements are found from their double transforms

by using the inversion theorems, equations 15b and 16b. Because

-~

pﬁ-pz appears in equations 32 for the it is convenient to invert
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the Laplace transform over time first. It will be necessary to
interchange the order of certain integrals and summations. The
required uniform convergence of the integrals and sums will be
assumed.

In accordance with the definition of the Laplace transform,

equation 15a, o(x,y,p). for example, is replaced by

%2z 2=

o
-pT
5 crzzl {(x,y,7)e dr .
z=0
o
Then the inversion integrals, equations 15b and 16b, are applied
to the double transform for u,, equations 25 and 32, to give the

formal solution for scheme 1

2 2]

ui(x.}'.z.t) = "“'%" ‘g dk OiKz S dp eptE —y- 3
2 2 B Br, R ol p (k)-p° ]

ui(n)(x,y;lc)

N *
ﬁagdn | are PT[ e €.n.m, @ .05k (33)
A 0 - =0

-4

" €.n,7) Oy

*
(n)(ﬁ R/ ;K)-uyl
3=

-
(§n .7 (n) (g,n;m].

z vz

]z=0
with a similar expreasion for scheme 2.

The inversion integral over p can be carried out using Cauchy's
residue theorem. The Bromwich contour is to the right of all singu-
larities in the p plane. For t < 7 the contour is completed to the
right where there are no singularities, and for t > r the contour

is completed to the left around the singularities at p = +p_ and
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P = -p,- The integral over p is

( Pyit-7)  -p (t-7)
wm[-5 i e
n n
pit-7) :
e !
Bx-1 0 t<
\

The integration over 7 in equation 33 is carried only up to
the value t because of equation 34. Letting p_ = {w . equation 34
is then substituted into equation 33. The results for the displace-

ment u, are for écheme 1

iw_(kMt-7) -tw_(k)t-7)
(e ® -e ° | )yydgdn
~ A

(353)

[o0e| (60110, O mirny €. @0
|s=0 lms

~3

y ys

enme o)’ ®. n.x)]

For scheme 2" the exﬁreuiou in brnckéts in equation 35a is re-

‘placed by

*The boundary conditions asked for by scheme 2 correspond to the
~ longitudinal impact problem.
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*

(n)" o @

(nJ
-0 3 + 0 + o u {35b)
[ z‘ago 3 X% =0 x Y‘I$=0 y »

In equations 35 the integral over 7 is a convolution integral.
The infinite sum and the integral over x show that the response is
composed of contributions from all parts of all modes. The inner
double integral mrér the area gives the magnitude of the contribu-
tion from each part of each mode. This magnitude depends on
the distribution of the load over the end of the rod. The two ex-
ponentials represent harmonic waves travelling to the left and to
the right, respectively. |

When the load has a simple form and the modes are known
explicitly, the integrals over the area and over r can be carried
out explicitly. The double transform solutions found by Skalak (5)
and Folk, Fox, Shook, and Curtis (6) took forms similar to equa-
tion 35. Lloyd (18) has pointed out an essential difference in form
between the solutions given .by Folk et al. and the solutions given
by Skalak and equation 35. Folk et al. found their solutions by
integrating over « first. The result includes modos for which «
is complex, but only those real modes with group velocities such
that the waves move toward the right. In the present and Skalak's
golution wave groups travelling to both the right and left are found,
~ but complex modes ax;o not used unless K is extended to complex
values through contour integration as pointed out by Miklowits {17).
Lloyd (18) diacussed in detail the similarities between the two

types of solutions.
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The solution in equation 35 might be used in two ways.

First, solutions for complicated end loads on circular rods and
flat plates might be found. The modes are known in explicit form,
and so the inner integrals can be carried ocut. In particular, one
could study the effects of a load applied to a circular area centered
on the end of a circular rod. The seéond way of using the above
equations is to study the noncircular rod. That is the purpose
of the following section.
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III. LONG WAVES IN A NONCIRCULAR ROD

Through the use of the method of stationary phase Skalak (5)
;howed that the large disturbance at long times after the application
of an axial load to the end of a circular semi-infinite rod came from
the low frequency, long waves of the lowest compressional mode.
The longest waves from the higher modes trail far behind the head
of the pulse and are easily detected as Miklowitz and Nisewanger
(2, 19) noted, because they travel with group velocities approach-
ing zero. Knowledge of the longest waves of the higher modes of
the exact theory has also proved useful, as Mindlin and Herrmann
showed, for improving the accuracy of approximate theorie?. This
background and the fact that the higher mode, long wave response
can also be approximated by the method of stationary phaaé provide
reasons for investigating equations 18 for the modes by a perturba-
tion scheme for long wave lengths, i.e., smallk.

In the work below the investigation of the modes at emall
k is followed by a related approximation of the exact theory solu-
tion, equation 35. The approximation gives the contribution to the
response from the longest waves. Then, an approximate theory
with five modes is developed. The approximate theory is similar
to the three mode theory given by Mindlin and McNiven (20) for the
circular rod. The difference in number of modes required for an
approximate theory of a noncircular rod provides an interesting
contrast. The exact theory is used as a guide for discussing the

approximate theory.
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Only a little work has been done previously on the noncir-
cular rod. Love (reference 8, p. 428) gave a single mode approxi-
mate theory. Chree (21) and Gazis and Mindlin (22) studied the
longest waves and derived approximate frequency equations. These
three works are discussed in greater detail and compared to the
present work following equation 51 below. Volterra (23) derived
a more complex approximate theory by his method of internal con-
straints and has studied the resulting frequency equation. Mindlin
and Fox (24) have used the exact theory to find modes of propaga-
tion in a rectangular rod, but only for certain wave numbers and

certain ratios of width to thickness.

A. THE PERTURBATION SCHEME
The solution to equations 18 for the modes is now assumed |
in the form of a Taylor series at x equal to zero. The frequency

is written as

-pn" . wnz = rznz + (k)% c_ + () D+ ... (36)

There are no odd powers of i« in equation 36 since the frequency
should not depend on the aign of x. The {2, are cut off frequencies,
i.e. frequencies for which k = 0. For the first compressional
mode, £ is zero and -C, is the square of the velocity of propa-
gation of the longest Qaves. /-l?’pT » where E is Young's modulus.
Writing the displacements in a series in all powers of ik

and substituting into equations 18, there is a separation of terms
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so that there are two separate problems and two sets of mode

For the first set of modes the expansion

ux(n)(x.ym) = "‘“x{n)(x»ﬂ* (i"’s“:c(g)("’y“ T

“;n) = fxu ‘f) + (ix)3 “;2) T “373.)
ug‘) (") + (ix) “:1)" (i) u:;“ ce
holds. For the second set of modes we write a slightly different
form, |
“in) = u(“)+ (ik) “(n) C. ]
ui® 2ol wo?u M > (37b)

y

u’fn) = m“z(l n) (ix) “(n)

)

with u 20 equal to zero. Obviously, all of the governing equations

for the two sets of modes are the same except for the normaliza-

tion condition in equation 24. Equations 37 are substituted into

cquat\ion 24 with n equal to m so that equation 24 can be expanded

according to powers of ix for either set of modes. The resulting

normalization conditions are, respectively, for the two sets of

modes

2 2 2
S’S. u dxdy = 4 Sg(z“zouzl'uxl'“yl )dx dy = 0
A A

> (38a)

2
SS(Z“BO u,o - xl“xZ - Zuyluyzhle) dx dy = 0 etc.
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soao’

SS(“xlzi-u lz)dxdy=i (u
A b4
k(38b)

S (Z“xl“xz+ 2u uzlz)dxdyno -ete. ,

vl %y2 ~

where the superscript (n) is omitted.
The assumed expansions, equations 37, are substituted
into equations 18b defining the stresses to find definitions for the

perturbed stresses. The results are

Tx ® ix Gxx1+ (i;c)3 °'xe+ e . o-wzwo'wl+ (iK)3 "yy?.+ .
Con ® ““’zzl+ (ix)3 "zzz* R c'xy=ifco' 1+ (il() L Z
4
Tz = Txzo +(ix) L +(ifc) O g2t - Yl YW (ix) c’ (ix) "ysz"
(39a)
Divide the right hand sides of equations 39a
A (39b)
by ik and set %zo = "yzo = 0,
where
Bu u du 8u
1 xl . y2 x2
Toa® Mgy Hugoh RN 0 = Mg e e 2) g W
au
%oyl =M---ud+u S 2 g . (.5;"7- +u (0 20) WY Lo

8“ )
Texl M’& * Wy Ft2pn, o zzZ x?. ¥ WYZH(MzP’)“zl
8n
syl ’N‘g;xl'* E’_‘yl) xyZzNW x2 . ;o 2,




Su

S Su
2
xzo = P '5:?“ Tpmy = Bl * '5;‘1) Vg2 =B lu, &_z

)

(40)

Bu {cont'd)

du du
Lo zl 22
“vzo " P By “ym1 “‘“yl* By ) vsz © “‘“yz M ) -

The stress free boundary conditions must hold for each level of
perturbation.

The differential equations for the perturbations are derived
by substituting equations 36, 57. and 39 into the differential equa-

tions 18a. The coefficients of the separate powers of ix are set

equal to sero. The results are easily seen to be for the first get

of modes
2 2
do, 8o u 8 u
ABO 20 2 = %o 280 2
+ + pQ = + + pQ 0 1
LS A AN e e AL
8o 14
s;mi- nyli- % o + pﬂznx1 z 0 (42a)
dc oo
Ly 520 Trzo * pﬂzuyl =0 (42b)
K L be
L 4 X8, Wyzl + pﬂzua51 + pc“zo = 0 {42¢c)
9% ., 8o .
e va?- ta o+ pn"ux,_ + pCu =0 (43a)
de 8o
y2 xy2 2 -
WY tam ot cynd' pQ u g pCuyl 0 (43b)

+a“xz2+ae,52-+ 2, ,+pCu .+ pDu _=0. (43c)
222" Bx Wy Pl gt pCuy + pDuy, .
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Equations 44, 42c, and 43c are the coefficients of 1, (irc)z, and
(ix)é. respectively, in equations 48a, while equations 42a and'
42b are the coefficients of ik and equations 43a and 43b are the
coefficients of (ix)> in equations 18a. Equations 41, 42, and 43
also hold for the second aet of modes, but Uoot Txpo’ 804 "yzo
must be set equal to zero.

A variational principle for the above equations can be
developed by substituting equations 37 and‘ 39 into the integral
L in equation 19. Terms are collected according to powers of

ix so that for the two sets of modes, respectively,
L=Ly+ @)l + tofL,+
ot WLy ¢ ot Ly s
and L=L1+(ix)sz+...

There are no odd powers of ix because of the Hermitian prop-
ertyof L. If thé wvariation of L is to be zero for all values of
ik, then the variations of L, L;, and L, must all be gero. L,
and L, are

. 8u 8u
2 z0 20
LO:SS [pﬂ Y2o'so "~ "xzo Bx " "yzo By ]d"dy

A
z '
L = S‘S‘ l:pﬂ ('“xl“xf“yl“yl tug Ut )t pCu u
A
Su_ ., 8u & S
x1 1 x1 1
T ol B T ’ley ¥ 9si%z0 t Cxyl ('W ¥ 'Eiy )
&
20 =zl 20 du
Oyl B " xeoa t B ) " Oym By '“yuo(uyl + W’I)] dx dy.

(44)

where L Ux‘o. and ‘ryzo are gero in L1 for the set of modes
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governed by equations 38b. Lgs Ly, and L, are all bilinear and
symmetric. Table 2 shows the way the differential equations 41
through 43 are derived from the variational principle. Notice
that in certain cases the equations for the higher order unknown
are derived by varying the lower order unknowns. For instance,
using Lz. the equation for u 52 18 derived by varying Yoo

TABLE 2
Equation Variables Variables varied in
| L, L, L,
41 % “1.3 uzg Ygl  Ye2
42a 2 ; “ng’“xl'“yl - g Uy,
42b 2 3 “s:'“xl'“yl - vl uyz
42c CAR gu Buuy T U Yy
43a c.,Q ’“53'“x1'“y1"‘nx'“xz'“yz - - L
43b C o8 30,80ty tyai by -t uy
43c  DA*C, © Bt Ukl Uyl Yel Bx2t Byt Bg2 N Yo

Equations 44, 42, and 43 must be solved under the alter-
native normalization conditions, equations 38a and 38b. Using
equations 38a and setting u_  equal to a constant, we will find the
first compressional mocfe. for which & equals zerc. The remaining

* If equations 38b govern, ug, is not a variable, nor can it be var-
ied to derive equations 44 through 43.
*% Does not appear if equation 38b governa.
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compressional modes consistent with equations 38a have nonzero
cut off frequencies and will be referred to as ''longitudinal shear
modes''. The modes found by using equations 38b will be called
"'radial modes''. The flexural and torsional modes will not be dis-

cussed, although they too are governed by the above equations.

B. THE FIRST MODE

For the first compressional mode u:g) is taken as a con-~
stant. Equations 41 and 42 can then be solved easily for the con-
ditions of zero force acting on the boundary as follows. To do
this, it is aseumed that in addition to equation 41 and 42 there

are the conditions
{o) (o) 3\
'MW, N u‘°’)+ (A + z“).;‘.l"‘ = 0

pulo) ado)
or;;; = g+ ul) v s ap)WY‘ = 0

©) 40) 8“(0)
(*]
LA w( +K")=o | r(as)
(o)
Su v
"ol *Mu‘°’+-5;")= 0

aulo)

«f°) - (0)*‘; Y= 0,

yzl

y,
'where equations 40 defining the perturbed stresses are used. Thus,
the boundary is force free because all of the stresses appearing inv
the boundary conditions also appear in eqﬁations 45. Equations 44,
4Z, and 45 can all be satisfied provided do is zero and -Co takes



on the value

p(3\ + %ﬂ E 2
.Coz ST == =c”, (46)

. which is the correct value for the square of the spesed of propaga-
tion of infinitely long waves of the {first compressional mode. The
solution for the first mode is written with two undetermined con-
stants of integration, x, and Yo+ 88

A
7.3

ng:’ = u(xg’ Z - VE (x-xcj u(o) z . L (y-yo)

yl
& * (47)°

{0) v 2 2 vp.+y_q :
uly & e [ {eex )t (y-y )] - (I_+1),
2 A ° "7 gnpWA ety
A '
where A is the area of the rod, v = T is Poisson's ratio, and
1, and ly are the moments of {nertia (divided by the area),

L ’ z P Wi
Led (fen?aay 124 |y Paxey.
A A
In equations 47 some of the conatants of integration have been de-~
termined by applying equations 38a. These results depend on the
shape of the rod only through the moments of inertia. The trans-

verse displacements are coupled to the axial displacement by

Poigson's ratio.

* That equations 47 satiafy equatims 44, 42, and 45 can easily be
seen. For instance, the first two of equations 45 determine
du Y

-&-’d and Wy ! and the last two of equations 45 relate u 21 0 Yy and

“yl' Equations 44, 42a, and 42b are satisfied trivially.
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Equations 43 are difficult to solve; the solution depends
on the shape of the rod. However, it is possible to find D_, which
determines the dispersion of the longest waves. Integrating equa-
tion 43a over the area of the rod and using equations 47, one finds

. (@ and o, are sero.)

Cvpe S s‘S (x-x_ ) dy = g o, z|x‘(i:)+5 "V"'ly(x) ,

where the superscript (o) is omitted. The boundary conditions
require that the two boundary terms add up to sero. Equation 43b
can be integrated in a similar manner. This shows that X, and Yo
are the coordinates of the centroid of the rod.

The unknown, D _, is contained in equation 43c, which is
integrated over the area using the first of equations 47 to give
PD, v& = pc zyg\‘a;d" dy- Sg LA l‘zdx dy - S xazl (y) ’V’zlyc::) (48)
The boundary terms must vanish for the surface to be force free.
To evaluate the integral with ¢ g2’ 0P mnst first use the identity,

found from equations 40 and 46,

14

2
222 = PSo Yy t "‘“',mz* “'sz’- (49)

Then, equation 43a is multiplied by X=X, and equation 43b is multi-
plied by y-y ° and they are integrated over the area using equations
46 and 47 to give
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o ﬂjf(x x,) %ax dy = —S‘S‘(x—x )(&- 2, ;;XYZ) dx dy )
] S:Ecxxz = —S‘(X-x")c”‘zlx(v)dy-‘g‘ By 2| S L (50)
¢ 7‘% S:}:‘V'Vo’z dx dy = Sg O y2 x4y
- g(y-vo) w""zly((i:) - g(y-yo) wxyz':{y) |

Again, the boundary terms vanish. Equations 49 and 50 are then
used in equation 48 to find D_ as

2 2
D, = -vie P+ 1) (54)

I+ ly is the polar moment of inertia of the area about its centroid.
Equations 46, 47, and 51 together give the behavior of the

longest waves of the first compressional mode. Together with

equation 36 they are an expansion of the frequency equation for

the first mode. This expansion,

2 2 2 2 _ 2 4 '
w me K -v-c, (Ix«t- Iy)x (52)

is like the approximate frequency equations found by Chree (21)

and by Love (reference 8, p. 428) and is similar to an expansion
found by Gazis and Mindlin (22). Chree expanded the displacements
in powers of x and y and then neglected the higher powers of x and

y rather than expanding on K as was done here. Love developed a
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single mode approximate theory more accurate than the elementary
theory (one dimensional wave equation) by taking into account the
radial inertia. The frequency equation for that approximate theory
can be expanded for asmall x and equation 52 results. The ap-
proaches used by Chx;ee and by Love do not guarantee that the re-
sulting frequency equation is a valid expansion for the first com-
pressional mode of the exact theory. It is the exact theory which
is of interest here; in particuhr. an exact value for the constant
D, is desired. Gaszis and Mindlin derived a frequency equation
for the thin rectangular rod by using an approximate theory for
thin plates given by Kane and Mindlin (25). Their approximate
frequency equation is identical wifh equation 52 provided the rec-
tangular rod is thin enough so that Iy can be neglected with respect
to lx’ where the x direction is parallel to the width dimension of
the rod. Thelinaccuracy for thicker rods can be blamed on the

approximate theory used to derive the frequency equation.

C. HIGHER MODES
Longitudinal Shear Modes

The behavior of the longitudinal shear modes near « = 0

is governed by equations 38a and 44 through 43. Equation 41 for

ZOo
oo must be solved under boundary conditions on o w0 > B

8u
and ’yso =p Wzo. The boundary condition in terms of u,,isa
well known problem leading to discrete eigen values, -5— ﬂ: . The

important features of the longitudinal shear modes near their cut
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off frequencies are contained in the uég) . ﬂn' and Cn. The fol-
lowing paragraphs contain a means of calculating the C’n from the
ey ()
known solutions for the u 20 and Qn. _
A useful expression is found by multiplying equation 42c

by u__ and integrating over the area of the rod;

%O

dc 8o "
[ 2, o2 xzl zl
S‘Sl {_p Cu ot Pl u v 0180t Urot Wy Y20 dedy = 0.
A
Integrating by parts and then setting the sum of the boundary

terms equal to zero leads to the equation,

du &u__ -
2 2 : 20 z0
S y [p Cupo TPR U, 1, ¥ 0 21%0 " Ox2l TR “%y21 By dedy = 0.
A

» T

The definitions of «
x2 xzl

-0'2

o’ %yzo , and cyz'l are substituted to

give

S‘g Cu ?‘+ ﬂzu u__+o _u -0 {u_,+ auzx)-c {u .+ auzl) dxdy=0
. PRMlz0 TP Ua1%o Tzzlleo Txzo'Yx1” Bx yzo' yl By y=y.
A ’ .

This is integrated by parts, again using the boundary conditions to

show that the boundary terms add up to zero, with the result

80’850

[ 2, o2
S S‘ P Cugo ¥R 0" un1®a0 " Txeoxl ¥ Yal B
A .

do
20
- Vyzouyl*' “zl'ﬁy ]dxdys 0.

Equations 41 and the first of 38a are then substituted to show that
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pC= 55  “xo "xzo ¥ Yl %eo T Pso wazljl dx dy. (33)

Thus, u_, is eliminated from the equations.
In order to use equation 53, it {s necessary to determine
Yoo Yy and Uy An approximate solutiog for u s and Uy will
be found by using the Rayleigh~Ritz method. Notice in table 2
that equatioha 42a and 42b for u w1 and uo are found by varying
. and u

yl
an approximate form for the unknowns,

in'the integral L, given in equation 44. We assume

Uy T Aax “yl =a,y, (54)

where the origin of coordinates is at the centroid of the area.

L1 is then a function of al and ay, thal.az). The terms in L1

containing a and a, are

%il(al.az) = -pQ® 1 ala - pat 1, az"' + May + a?_)z

2

+ Zh(nld- aa)igguzohdy+ z“(alz«v- a,’)
A

Za.l »
- -A—-S.ch dx dy - TS‘SVYO' dx dy
A

~ Then f‘l is made stationary with respect to variations of u x1 and

“yl by means of the conditions
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0 =1 m:lsm 531 Ja, + A\a +g§(m -xe__ )dxd
2x Eal 2p-p i | 2 20 X%¢0 4
A

8~
1 1 2 1
0‘= A E-é = Ml + (\+3§l~pn Iy)iz*' -y gi(xuzo‘ycyzo) dx dy .

These equations are then solved for 3, and ayi

a = %Z l:(M Zp.-pﬂzly)Slg (xvxzo-mzo)dsdyi- kgg(mzc-ycyzo)dx d%
A A
(55)

a, = xiz [w Zp-pnzxx)ﬁmyzo-mm)dx dy +x§§(m o XTy 5 0)d% dﬂ
A A

where &= 1 1 Y(pn")z-w zu)(lx“'ly)pﬂz + dp(Mtp) .

Equations 53, 54, and 55 are an approximate solution for
the C_ provided the ":2) are known. The accuracy is limited by
the form chosen in equation 54. The exact solution for the circular
rod shows that for the higher modes u,, and 4 oscillate rapidly
with x and y’. Therefore, the present solution is expected to be

accurate only for the lowest one or two modes.

Radial Modes

The radial modes are governed by more complicated equa~
tiona than the longitudinal shear modes. An exact solution of
equations 42a and 42b for the cut off frequencies is difficult. Ap-

parently, only numerical ndethoda work except in special cases.

* The exact solution of Pochhammer is written in terms of Bes-
sel functions of large argument.
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The important constants are the ﬂn and the C ne Table 2 shows
that C is found by using equations 43a and 43b. Below, a formula
for C is derived s;o that equatione 43a and 43b do not have to be
solved. |

- Equations 42a, 42b, 43a, and 43b are multiplied by LY

u Uy and 'uyl' respectively, added together, and integrated

y2'
over the area. Then, equations 38b are used to find

80'
5‘5‘ ,'“xz (E_‘_ xyl) + u F/Jﬂ xyl
a’xxz 1.4 8o 2 e

~u g0 vah A b A «ryzl)]dx dy  (56)

-p C=0.

Equation 56 is then integrated by parts using boundary conditions
with the result

| 8u 8u 8u
f_ Bu . y2 x1 yl
pC=§§L xxl B2 Tyyl By YOx2 Bx +’yyzw

xz A
-0 +Ey)+o' Z(W +‘&-y)o' 1951~ yzluyl]dxdy‘
The definitions of the stresses, equations 40, are used to show

that several terms cancel and to produce the final result -

du du :
o= (T na, (et xPMeo - u e . ldxdy. (57)
AL el ‘Ox By xzl “x1 yzlyl ¥y
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D. THE LONG TIME RESPONSE

The modal solution given in equation 35 will now be eval-
uated apprbximately by using the forms for the modes found by
means of the perturbation scheme. The integrand of equation 35
will be approximated in the neighborhood of x = 0. Thus, the re-
sponse due to the longest waves will be found. It will be shown !
that the longest waves of the first mode give rise to the head of T
the pulse measured at long distances from the end of the rod.

The parts of both the upper longitudinal shear and radial modes
near cut off cause vibration like motions long after the head of
the pulse has passed. Similar vibrations would be expected from
cut off frequencies where K is not zero but the mn(x) have minima.
However, those cut off frequencies are more difficult to study.

We consider the pressure shock problem. The boundary
conditions oﬁ the end of the rod are that a normal compressional
stress o__ is applied suddenly at t = 0 and the shear stresses
L and 'ya are zero. Notice that the right hand side is not known
completely in either equation 35a or equation 35b.

The importance of the longest waves of the first compres-
sional mode can be seen as follows. The solution given in equa-
tions 35 is of the type to which the method of stationary phase can
be applied for large t and fixed z/t. The largest contributions
to the integral over K come from the points of stationary phase
provided the integrand is sufficiently smooth. Such contributions
are of order 1 /¥t for large t. (See reference 26, pp. 51-52. The

theorem is strictly true only for finite limits of integration, but
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only wavé fronts come from infinite x .} The only larger con-
tributions must come from places where the integrand is infinité,
and that can only be where w n(x) is zero in equations 35a or 35b.
Now, for compressional disturbances w goes to zero only for the
first compressional mode and when « goes to zero. Therefore,
we can expect the zﬁajor compressional disturbance at long time
and large distances from the end of the rod to come from that
mode from the vicinity of Kk = 0.

In accordance with the above arguments we consider first
the contribution to equation 35a from the part of the first com-
pressional mode with kK very small. In equation 35a the second
Fwo terms are negligible with respect to the first because o % :°)
and o y(:)
ining the expansions, equations 37a and 39a, and recalling that
ute) and o, [0 '
approximated by U which is given as 1/ VA in equation 47.

vanish as K goes to zero, which can be seen by exam-
are zero. According to equation 37a, u g TPaY be

Then, the innermost integral of equation 35a can be carried out.

The integral of T over the area is written as ~-AP, in which

z| 820
P is the average pressurc over the end face. In place of equation

35a we then write

S- S ( iw (t-THike -l oft- 'rH-ixz.) u‘°)(x.y)

-8 dr dg

°
(58)

+5 'f‘(x)dx*»g F («) dk
€

-Q0

where € i{s small and positive and the integrals containing Flx)
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are of the stationary phase type. Those integrals give a contri-

bution which dies out as % for large t and can be neglected. The

t
integration over 7 is carried out first and @, approximated, using

equation 36 and létting C= -coz. as

D, 3
W, = C K +«E—- K. {59)
)
Then;
[+ )
PVA S [ Do 3 ]ixz {o) Ak
u, = . cos{c i + K')yt-1lje u ' (60)
1™ ppe % JoL O B v

where the limits of integration have been extended to infinity; in
so doing & stationary phase contribution of order A for large t

is neglected.

The first term of the expansion for u§°) {x,y) from equa-
tions 37a and 47 {s then substituted into equation 60. To find the
strain € - 8\13/ 8z one must differentiate equation 60 with respect

to 2 within the integral sign, thus bringing down the factor ix. Then,

u u

€ N - v X o ow b4 ~

z (x-xo) v (Y-Yo)

(61)
[ ]
D ikz
P o 3 dx

i-——-—zS‘ ’-cos(c K+ x)t-l]e _

ﬂpco -0 b o EO K

The longitudinal strain and the lateral displacements are coupled
by Poisson's ratio. Noting that an odd function of x will integrate

to zero and using a trigonometric identity, equation 61 becomes
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u u
x ) 4
€ 2 - o E ]
TR = e

P Do '3
— S 2 sinke - uin[(cox t gk )t +xz) (62)
: [+
(>

tPCo

D
+ ain[(cou +-z-59- x%t-xs]}% .
°

The first term is a well known integral. The second term
may be approximated, provided z or t is large, by neglecting the
term in x3 in the argument of the sine function. The result is the
same as the first term except for a factor of 2 and is independent
of z ort. The last term is conveniently written with a change of

variables so that

u u,. 2c. 1/3
v P |11 o n~ldn
TR = e o bbb z‘";s "n[‘”‘cot"xm;r{’ e

pe,

(63)
The solution is a function of 7,, where
2c_ 1/3 2¢ % 1/3
T, = (c te) (mj-t") = ~§;) (375‘01[;)
Equation 63 is the same solution that was found for the circular rod
by Skalak (5) and by Folk, Fox, Shook, and Curtis (6) in their exact
theory and also by Miklowitz (7) in related approximate theory Qork.
They showed that the right hand side of equation 63 could be written
as the integral of the Airy function,
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o [ (b o]

where the constant, %-. is found by setting L equal to zero in
equation 63, a well known integral resulting. The integral of
the Airy function has been tabulated by Curtis (27). Figure 2
illustrates the form of the solution.

The contributions from the vicinity of the cut off frequen-
cies of the higher modes can also be lqund from equation 35a.
Hoyever. since u_ and “y are unknown at 2 = 0, some constants
in the solution must remain unevaluated. The integral over
the area in equation 35a can be approximated for small « by
using the expansions in equations 37 and 39. For the shear modes

and radial modes the results are, respectively,

xR0

G('thST l (ﬁ.n.f)u;';)(é-n)mxl 00'(“) ‘n)]dﬁdn
z=0 _ z=

"] uo e

(64)

ikG (T ""‘Sﬂ “lg:o (n)_ xl xz)l y yzlJ dgdn ,

8=0 1230

where the Gn(Ti are different for longitudinal shear and radial modes.
For any mode Gn('r) approaches a constant for large 7 because ¢ 2z’
u,., and uy at z = 0 approach constant values at long time. The re-
sults to follow are incomplete because the Gn('r) are unknown. If

mixed boundary conditions were specified on the end of the rod, then
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the Gn('r) would be known through either equation 35a or equation
35b.

An approximate expression for the time derivative of the
displacements is found by differentiating equation 35a with re-
spect to time and using the first of equations 64. The differen-
tiation ia carried out to avoid certain difficulties which will be
mentioned. Two texrms arise; the first, found by svaluating the
integrand at the upper limit of the integral over 7, is zero; and
the second term, found by differentiating the integrand, is
e ST S'mu"" elf® fc (T) comw_ (t-T)ar dx (65)
2 o B n

-mi

for the nth shear mode. For the radial modes there is an addi-
tional factor ix. _
The integration over 7 can be approximated for large t by

writing the integration in two parts;
t
S cos wn(t-‘r) Gn('r) dr

o
t t
= cO8 wnt 5°cos mn‘r Gn('r)d‘r+simnnt oGn('r)suwn'r dr. (66)

Since t is large, each of the integrals on the right hand side of
equation 66 can be written as two integrals, one from zero to t,
and the other from t,tot, wheret isa large number less than
t. Tl;e integrals from zero to t o are independent of t. The inte-
grals from t,tot are evaluated approximately by setting Gn('r)

equal to cohatant. Gn(co). The two terms which are found in that



manner are®

G, ()

- (-»eownt sinunto + 8in “’n‘ cos “’nto) .

It ie then seen that the x"ight hand side of equation 66 reduces to
the form

‘S‘cow n(t-{‘f)'G n(‘l‘)d'rzcmstan't + CO8w_t+ constant - sinw t

(-}

= An COS8. (wnt + q:n). | ‘ (67)

An and P, are undetermined constants.
Equation 67 {s substituted into equation 65 to show that

B, A ®
ﬁ‘_” - --9 ui(n’ cos (wnt + qon) e

-0

ik ax . (68)

The first term of the expansion in equation 37a is used to approx-
imate u’?‘), for example, and the first two terms of equa.tion 36

are used to approximate w with the result for the n'® longitudinal

ghear mode

{n)
du Al LAY (x,y) C _
'&}' - 'p S‘m ikcos( @ - KT:' xz)t+ @] elf%q, (69)

For the radial modes exactly the same equation holds. (Equations
37b and the ﬁecond of equatias 64 are used.) Equation 69 is eval-
uated for large t and fixed £/t by the method of stationary phase
(reference 26, p. 51) with the points of stationary phase being found

at

¥ This dependence on ¢ is the reason for working with bu, /0t
rather than uj. For uj there would be an additive constant in-
dependent of t. That constant would cause the integral in the
equation analogous to equation 68 to be divergent.
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2 x

K=t 2. . {70)
n

Since approximations have been made for ¥ small, the results are

valid only for large t/z. The result for u, ie
2

cer"“‘“ t+ 2%-1.1» @ - “a z)u(u)(x y). (1)
n o n m

n

Equation 7} cannot be integrated exactly to find the displacement.

Howevér. we have the approximate relation,
u B~ i‘} 32 cou(ﬂ t+ . zz + C” ;)u(n’(x ) {72)
x P C |?E‘C’T Z'C‘T Pn” rc;[? xl Y7 -

The time derivative of equation 72 is equation 71 provided t/z is
large as had already been assumed. uY is similar to L Similarly,

for the shear modes one finds for €-

A (= v o, zz @)
Ez = - "-’-—- I-c;l--‘- m@bﬂm t+ E—+ ¢ IEJ z)ﬂzo (x;Y). (73)

For the radhl modes u(n) is replaced by um) and the right hand
side of equation 73 is mulitiplied by (il{) evaluated at the point of
stationary phase, that is, by - /

9 zsz

antz '

Both the shear and radial modes cause vibrations which die
out as t increases. 'The magnitude.s and pha.aea of the vibrations
are not given by equations 72 and 73, for the An and @, are unknown
The longitudinal strain of the radial modes dies out more quickly
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than the other variables calculated above. Such vibrations for
the circular rod were pointed out by Miklowitz (2} in the approx-
imate theory work and by MMMtz and Nisewanger (19) in their
experimental response records. These vibrations oc;:ur for all
2 at long times after the head of the pulse has passed. Similar
vibrations would be expected from places in the frequency spec-
trum where the wave length is not infinite but the frequency is

a minimum.

E. APPROXIMATE THEORY

Problems too difficult for the exact theory are often tracta-
ble by approximate equations of motion. Mindlin and McNiven (20)
have recently developed an approximate theory for compressional
waves in a circular rod. A forerunner is the less accurate but
more easily solved two mode approximate theory of Mindlin and
Herrmann (3,4). Volterra (23) has developed a three mode theory
for the rectangular rod. A five mode theory for compressional
waves in rods of arbitrary cross section is developed below. It
is based on the same physical approximations as the Mindlin-
. MeNiven theory, but the present thodry allows for the asymmetry
of a noncircular rod. Following Mindlin and McNiven, the fre-
quency equations of the approximate and exact theories are com-
pared near their cut off frequencies.

The starting point {s Hamilton's principle for time depen-

dent problems;



ucsi‘jﬂ ﬁ (—5—)*(-&1)+ %z}

-\ (‘5;" -5[* r) - 3#[(-5;‘“) +(-W¥) + ('Ti') ] (74)

&u Bu 2

# ‘v B bt g gl gt fasdyasas,

where L is twice the Lagrangian. The variations of the displace-
ments are zero at t equal to Y and t,. Appropriate boundary condi-
tions must be given at & equal to z, and 2, and on the longitudinal
surfaces of the ‘rod.

Equation 74 is used by first assuming for the displacements
the forms

u, =w, (z,t) + xzwz(s.t) + yzw3(s.t)
(78)
uw, = xul(z.t) uy = yuz(u.t) .

The integration over the area in equation 74 is performed and the
variational principle gives partial differential equations in & and

t. The accuracy of the result depends on the accuracy of equations
75. The dependences on x and y chosen in equations 75 are
similar to those chosen by Mindlin and McNiven for the circular
rod. They did not allow for differences between the x and y
co-ordinates because they only considered waves which are sym-
metric about the axis of the rod. In the present case there is no

symmetry and wa and u, are assumed to be independent of w, and
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u,- {(With symmetry W, = wy and u, = uz.) All that follows is
a natural consequence of equations 75. For instance, no modes
of flexure or torsion will result because the motions assumed in
equations 75 are not bending or torsional in nature. Equation 74
"is valid for several possible boundary conditions on the longitudi-
nal surfaces. The approximate forms in equation 75 were chosen
with stress free aurfaées in mind. If the boundaries were rigidly
held, equation 75 would not be appropriate.

Having substituted equations 75 into equation 74, the in-
tegration over the area is easy. The results are expressed in

terms of the moments of inertia
1 2 1 ((.2
IX:KS‘S‘X dx dy IY’KS\S‘Y dx dy
A A
4 2 i 4 :
xx ISS"‘ dx dy Ixy K gxy dx dy Iyy‘]SS” dx dy.
A
Letting a dot represent Ft' and a prime 3;- ’
x- U o[ty iy v

+I(‘ﬁw +\feW)+I(\9W +\il\k1)+1 (wz 3+\f/3 Z)]

-\ [(“1“2 + uzul) + (ul+uz)(w1' + wa +1 w3) '(76)
Hw)' + 1w, ¥ Iyw3') (nl*uz)]-ﬂ“' 2p) L“l +“ZZ+W1' ?
2 2

t ] 1 L t
Pl W' F L Wit Ltwy'w,t o wolw )+ L(wy Wyl w gty

. 2
+Ixy(wz'w3‘ + ws‘wz')} p.lx(ul‘+ sz) -y.ly(uz +Zw3) dez dt .
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It is easy to take the variation of L because it contains a
symmetric bilinear form. Only the second member of each term
need be varied. The variations are taken by the usual method.

A term ﬁz is varied and integrated by parts to give
t

t
1 2 , 2
Y 1

A term wu' + u'w is varied and integrated by parts to give
. o2 ' 22 22
36 S. (wu'tu'w)de = S‘ {(-w'bu + u'bw) dzt+wbu
t z z
1 1 1l
The last term on the right hand side is used to determine the bound-
ary conditions. Since there are five dependent variables, there

are five displacement equations of motion and five boundary con-

ditions as follows:

-p\’t‘i + (7; + Zp)wl"-plxv‘bz + (N + 2p) waz" - plyﬁl3
+(h+2p)1yw3" + Xul' + Xuz' =0

-pL W, + O+ 2u)L " -pL W, + (We2p) 1w, t-dul w,

-plxyﬁrg’ + (N Zp)l_xyw3" + qul' - Zplxul' + Xlxuz’ =0

-»p}ywl + (Nt Zp-)lywl"-plxyﬁrz + (M Zp)lxywz"-plyy\%3

}(77&)
", ', 1. '

*(M‘ZP-)IWW3 4plyw3+uyu1 uyuz ?.u.lyu2 =0

-hwl‘-)\lxwz'i-Zplxwz' - klyw3' - plx(il-(M-Zp)ul
+plxul"-kuz =0

-)\wl' -uxwz' -uyw3'+2plyw3‘ -kul-ply'&z
(M 2phu, + pxyuz" = 0. J
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At g = Zys 250
6wyl Muyru, (W 2»)(w1'+1xw2'+lyw3' )] =0
Swal M (ughupht O 2uMI Wy + L w4 L, w3')) = 0

' ' ' >
6w3[ le(ul+uz)-l'(k+ le)(lwws "-va:r1 +lxyw?. )] =0 (77b)

Suy( L (u'+2w,)] = 0

Guz[ Iy(uz'+2w3)] = 0.

~ Equations 77a are a tenth order set of partial differential equa-
tions governing approximately the motions of a noncircular rod.
Equations 77a are not invariant under a rotation of the x and y
axes.

Letting b =u, apd W, =wWjy, equations 77 reduce to the
homogeneous Mindlin-McNiven equations and boundary conditions
for the circular rod with all correction factors in the latter equa-
tions set equal to unity. Volterra's* equations for the rectangu-
lar rod are derived by setting W, =Wy = 0 in equations 77. Finally,
letting u, = u, and w, = w, = 0 in equations 77, one finds the homo-
geneous Mindlin~-Herrmann equations and boundary conditions
with all correctiovn factors unity. In the same way the assumed

approximations in equations 75 reduce to the assume d forms used

#There 1s no apparent reason why Volterra' s equations cannot be
considered as valid for arbitrary cross ssction. They are ex-
pressed in terms of Ix and Iy as are equations 77.



-88.
by the earlier authors. This correspondence between the assumed
forms of the displacements and the resulting differential equations
hol;ls here despite the fact that Mindlin's derivation is different
from the derivation by Hamilton's principle used here and by
Volterra. Evidently, the derivations are equivalent. Notice -
that the Mindlin-Herrmann equations are the symmetric form of
Volterra's equations and that the Mindlin-McNiven equations are
the symmetric form of the present approximate theory. Also,
notice that Volterra's equations are derived from equations 77‘
by dropping the w, and w, which will be seen to lead to the im-
portant longitudinal ehear modes.

The boundary conditions need to be studied. The stresses

6n the end of the rod are

8u o 8u
ee = Mgt gt Ok 20 o

My +u)+ (4 20wy +xPw, + yPeg)

Q
i

]

fu_ B (18)
Tpy =B gt )= xn (af + 2w,)

8u du
e = R g 2wy

whese the approximations are found by using equations 75. By
comparing equatians'78 to equations 77b, the boundary conditions
are interpreted. Each boundary condition® in equatioms 77b re-

quires that in general either a displacement (or corresponding

¥The boundary conditlons could be Incorporated Into the deriva-
tion through Hamilton's extended principle (see reference 8,
pp. 166-167.).
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velocity) or a ''bar stress'' be specified as a function of time,

where the bar stresses are, respectively,
S‘g ¢ _dx d S‘Sixzv dx d 55‘ 2y axd
2] s g 1 4 Y %22 Ve
A | A A -
ngr“dudy. and S\jycyzdxdy.
A A

The five modes of propagation of the approximate theory
will be compared to the corresponding modes of tt;e exact theory.
The comparison provides a physical understanding of the modes
and is a criterion for judging the accuracy of the approximate
equations. In Mindlin's work there was an additional reason
for such a comparison. Correction factors were introduced by
Mindlin into the approximate theory and were adjusted to make
the approximate theory approach the exact theory more closely
in the long wave region (kK emall). According to Herrmann (4),
the correction factors must be introduced into the theory in such
a way that the bilinear form in equation 76 remains symmetric
as in the exact theory. There are many ways of introducing cor-
rection factors under that condition. One can multiply any term
" or symmetric pair of terms in equation 76 by an unevaluated
constant. According to Mindlin and McNiven, the constants should
be adjusted so that the frequency equations of the approximate
and exact theories are the same for long wave lengths. Since no
exact formulas for general croass sections have been given for

the 2 and C_ for the noncircular rod, it appears fruitless to
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introduce the correction factors in the present work. The cor-
rection factors could be introduced profitably if a particular cross
section were being considered. Then, the nn and C.n for the low-

. @8t modes could be calculated to the accuracy desired, numeri-~
cally if necessary.
To develop thé frequency equation, we substitute into

the differential equations 77a the travelling wave solutions

w, = Alei(mtﬂm) w, = Azei(utfxz) wy = Asei(«hxz) |
(79)
u A4ei(uat+xz) u- = Asei(u#xz)
The resulting linear equations for the A are
80 %2 33 lag, 3y Ai\ °\
342 322 33 day, a5 ) |4, 0
a3 3,3 a3, lag, fagg Agl = |0] (80)
sagy  clayy  -lag, 344 245 Ay 0
“15 -iazs -1335 a5 agy AJ 0f ,
where
agy = pwl-(v2u)? ag, = L [pe?-Ov2um?)

252 = Loy [po®- 0 2unc?] -t a5 = 1 [po?-On 207
233 =L, [po-2u)ic®] -4,y =1 [po?-(n 2
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844 = Llpw?-ue)-(v 20) 355= L (pw ) (i 2)
314 = ais = M 3.45 = - A 3248 xx(X‘zﬂ)K
a, = lx A Bq, Iy)« a3g= IY(R-ZMK

The frequency equation is found by setting the determinant of the
Hermitian matrix in equation 80 eq\;al to zero.

To study the cut off frequencies, @, we let « go to zero in
equation 80 and replace w with . The matrix elements a, ., 2,4,
Bygr Boge 3940 and ayg are sero. Then, equation 80 separates
into two equations, one equation for Ag. Ay, and A,, the other for

A4 and A;. The equations are

ol 2 2
pS i xxpzn : Iypﬂ i A‘ 0
lxpﬂ Ixxpﬂ -4ul Ixypﬂ A, - 0 |(81a)
2 2 2
Q Q 0“. 0
Iyp Ixyp pr My Aqg
‘ x,pn"~(x+z..) -\ A, 0
' 2 = {(84b)
-\ xypﬂ ={\+ 2) Ag 0/,

Three cut off frequencies are found from equation 84a. One of
them is zero and comes from the first mode. The other two are
related closely to the longitudinal shear modes of the exact theory.
Equation 84b yields two cut off frequencies, both related to the
radial modes of the exact theory.

To see that equations 84a and 84b are directly related to

the exact theory, we consider the variational principle formulation
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of the equations for the cut off frequencies of the exact theory.
The Rayleigh-Ritz method is used on the integrals L, and Ly
given in equations 44 and equations 81a and 81b result. In L,

we try the approximate form

_ 2 2
u = A1 + Azx + A3y . (82a)

while in I...1 we let Uo = 0 and try

u = A4x uy1 = A5y . {(32b)

Equations 82 are intentionally made to resemble equations 75 and
79 without the dependence on z and t.

To carry out the Rayleigh-Ritz method, equations 82 are
gsubstituted into equations 44 and the integrations are carried
out. The results are written in terms of the moments of inertia.

/ ;/Then, the ''variations'' of L, and L, are set-equal to zero by re-
quiring

oL
oA

oL 0 8L 0 oL 8L

1 1
= = = 0 = = 0, {83)
SAZ 8A3 8A4 BAS

0
1

The resulting linear equations are precisely equations 81a and
81b. This is not surprising in view of the fact that the physical
assumptions, equations 82, which went into the approximate cal-
culation on the exact theory were the same as the assumptions
that went into writing the approximate theory. V'e are now as-
sured that the five modes of the approximate theory correapond

approximately to five of the lower modes of the exact theory. The
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first mode c;f both the approxifhate and exact theories is a com-
pressional mode with a velocity of ¢ o for infinitely long waves.
Figure 3 makes a comﬁarison between the solutions of the

exact and approximate theories at cut off. The appréximate
theory solutions come directly from equations 75, 79, and 8%.
The exact theory solutions for the longitudinal shear modes at
cut off are known through an analogy \Gith a problem in electro-
magnetic wave propagation. The H (TE) modes of propagation
of electromagnetic waves in a waveguide of aribtrary cross sec-
tio;z are governed by the same boundary value problem and the
solutions are given in reference (28). The boundary value prob-
lem for the radial modes is more complex. ' The exact theory
solution for the circular cross section given in figure 3 comes
from Pochhammer's solution. The lower radial mode in the
approximate theory for the circle is not axially symmetric,

and, therefore, there is no comparable Pochhammer mode. The
. solutions of the exact theory for radial modes for the thin rec-
tangular cross secti&n come from assuming plane strain for the
higher mode or plane stress® for the lower mode. The formulas
for the modes are not normalized.

An idea of the accuracy of the épproximate theory can
be gathered by comparing the cut off frequencies of the exact

and approximate theories as given in figure 3. Similarly, the

u_is determined b o 0.
v Yy

#For plane stress oy a0 y = 0 for the coordinates of figure 3.
v yZett{‘ng
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forms of the displacements in the two theories can be compared.
For the radial mode in the circle, X is 2.126 when Poisson's ratio
is 0.3.

It can be seen in figure 3 that there is a definite corres-
‘pondence between the modes of the approximate theory and the
modes of the exact theory. The contrast between the square
and the circle is most interesting. According to the exact theory,
there is a doubly degenerate asymmetric lower longitudinal shear
mode while the syminetric higher longitudinal shear mode for
either cross section is not degenerate. In the circle the approx-
imate theory has one mode corresponding to the lower longitudi-
nal shear mode of the exact theory and one mode for the higher
longitudinal shear mode of the exact theory. 2ut, in the square
the approximate theory has two modes which have equal cut off
frequencies. These two modes seem from the form of the dis-
placements to correspond to the two degenerate modes of the exact
theory.

The limitations of the approxirate theory can be deduced
from figure 3. A criterion suggested b;} Mindlin and McNiven
is to limit the solution to long wave lengtha and to frequencies
below the lowest* frequency of the lowest exact theory mode

omitted by the approximate theory. For the thin rectangle the

*The lowest frequency of some modes of both the exact and ap-
proximate theories is a little lower than the long wave cut off
frequencies discussed here.
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higher shear mode and the higher radial mode of the approximate
theory both have very high cut off frequencies. Those two modes
are coupled to the amaller dimension of the cross section. But,
the exact theory has many modes coupled to thg larger dimension
which would have lower cut off frequencies than the two high modes
of the approximate theory. Those two modes should then be elimi-
nated from the approximate theory or ignored for the thin rec-
tangle or any other thin shapp:

It can ‘easuy be seen Aljrom tl’}”ﬂ frequency equation (the
determinant of equation 80 s@_ﬁet equal to zero) that three modes
have a limiting high frequen;:y. short wave velocity of ¢ ;= —)‘-E—Z'-E ’
while the other two modes go to the velocity ¢ 8= /%- in the same
limit.

It is clear that the present approximate theory models
the exact theory near the cut off frequencies. Furthermore, the
frequency equation of the Mindlin-McNiven theory, which is a
special case of the present approximate theory, was shown by
Mindlin and McNiven (20) to have solutions similar to the exact
theory provided only longer waQe lengths are considered. There-
fore, it seems reasonable to expect the present approximate
theory to model the exact theory for all wave lengths longer than,
say, the largest transverse dimension of the rod. Solution of
the approximate theory bfor harmonic wave trains would indicate
the behavior of the exact theory in the neighborhood of long waves.

Such a solution would be valuable as the exact theory is extremely
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difficult to solve. From the approximate theory one can learn,
for instance, the form of the modes with complex wave numbers
(such as exist in the circular rod). In addition, solutions to dif-
ficult transient problems can be attempted with the present ap-

proximate theory.
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IV. THEORY OF WAVE FRONT AMPLITUDES
AND LOCATIONS

The concept of wave front {8 associated with hyperbolic
partial differential equations with N +1 independent variables--

N space variables and one time variable. The time plays a role
distinct from that of the space variables. In this N +1 space a
characteristic surface is defined to be any N dimensional surface
across which any derivative of the dependent variable can be dis-
continuous. Wave fronts are associated with characteristic sur- -
faces and can be visualized either by considering stationary obser-
vers or by considering the situation at a particular time.

A stationary observer detects the variation of the distur-
bance, the dependent variable, with time at some fixed location in
space. A strain gage placed on an elastic rod is a atationafy ob~
server. At certain times, depending on the location and called the
times of arrival, 7, the stationary observer detects discontinuities
in the disturbance or its time derivatives. The magnitudes of the
discontinuities are called the amplitudes of the wave fronts at that ,z
location, .

At a particular time, to' consider the disturbance as it
varies in space. This corresponds to taking a picture of the distur-
bance. The N -1 dimensional surfaces across which the disturbance
has discontinuous space derivatives are the wave fronts at that parti-
cular time. The equations of the wave fronts at time t, are found

by setting the time of arrival as a function of the N space variables
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equal to to' f.e. T = to’ Viewed at successive times, the wave
fronts are seen to move. The speed of the motion measured along
a line perpendicular to a wave {ront at a point is the speed of propa~
gation at that point and can be determined from the governing partial
differential equation. The trajectories perpendicular to the wave
fronts are called rays.

Letting t be the time, y and z be the space variables,

and H(x) the Heaviside step f\mc,tion. ornie can write the wave {ront

eigansion as

z E Anl (v, z)[t"rn(}" z)] : H{ t’Tn(Yo e)] : (84)

n (1

*
where £ =0,1, 2, ... or £ =-1/2,1/2, 3/2, 5/2, ... Inthe

outer sum the nth

term is i..denticauy zero before the time of arrival,
'rn(y, z), for that term. The inner sum is similar to a Taylor series
for the disturbance with the coefficients depending on the space vari-
ables. The coefficient, Anl (y,2), of the first non-zero term of the
inner expansion is the wave front amplitude which, along with the
time of arrival, is the object of the calculations of thisk section,

A useful form of the wave front expanaion can be found by

taking its Laplace transform, which is written as

Y 0y -pT,.(y: 2)
(S e an ]
; P

n 2

®
Karal and Keller (14) and Babich and Alekseev (15) have given a
more general form, but only these two forms are of interest here.
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The following work is based to a large extent on two observations
about the transform {n equation 85, First, the time of arrival is
found in exponential functions. Second, the inner expansion is in the
form of an asymptotic expansion for large values of the transform
variable p. The first term of the expansion is the wave front ampli-
tude.

In this section the wave front amplitudes are found for the
displacement potentials ¢ and —47 in Lame's well known general
solution of the displacement equations of motion from linear elas-
ticity,

U = 6@0 +V x Tb. .
wave fronts found from ¢ are called P or dilatational wave {fronts
because the displacement field is irrotational, Wave fronts found
from -47 are called S or shear wave fronts because the displacement
field is equivoluminal. (These are the SV and SH waves of refers
ence 29. Here -\F will have only one component and the shear waves
will be SV waves.) The wave front amplitude for ¢ {s proportional
to the wave front amplitude of longitudinal strain measured in a di-
rection perpondicuiar tca P wave front. Similarly Tl: mea;ures
shear strain along the direction of an S wave front. Published works
have previously calculated wave front amplitudes of displacements
or stresses along fixed directionlé(‘?-l.’o); But then the answer includes
a factor dependent upon the angle the wave front makes with the arbie
trarily chosen fixed direction.

In the following work the wave fronts are first found by work-
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ing with the transforms. Two inversion methods are used. The
first, Cagniard's method, is patterned here after the work done by
Mencher (9), Broberg (10), and Davids (11), who calculated a limited
number of wave front amplitudes in a plate. The second, the saddle
point method, is used here in a manner similar to that of Knopoff
and Gilbert (13), who also calculated some of the wave front ampli-
tudes in a plate. In the following work all of the wave fronts and
their amplitudes are found from the transforms. The time depen-

dences of the potentials at the wave fronta are clearly displayed.

‘The mathematics of the transform method somewhat obscures the

. dependences on the space coordinates and on the integers n and m

identifyingbthe wave fronts. Therefore, ray theory is used to study
the wave fronts,

The. ray theory has one distinct advantage over the transform
methods; it is able to }Srovide a transparent and n?eaningful inter-
pretation to t?xe formulas which were also found by use of the trans-
forms. However, ray theory is not used here to find all of the
answers, the most notable lack being the time dependence. The re-
sults of ray theory and of the transform methods will both be written
in terms of the same symbols. The symbols will be defined differ-
ently for the two methodas. Whﬁt is notable is that the definitiona and
formulas found by the two methods are equivalent.

It is convenient at this time to discuss the different types of
wave fronts which will be found. All types develop immediately after
the load is applied. Figure 4 shows the wave fronts in a plate under

a point (or line) force suddenly applied at time t = 0, The wave fronts
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are drawnto geometric scale for a time, t, before any reflections
have occurred. The dilatational waves move at the speed ¢ d and
the shear waves move at the speed Cyr The spherical (cylindrical)
wave front indicated by the solid line AB is a regular dilatational .
or P wave front, which is at a distance cqt from the applied
force. At the same time there is a regular shear or S wave front,
CE, at a radius cgte The line AE indicates a head wave. It is
created by the dilatational wave front moving along the boundary
similarly to the way a Mach wave is created in the supersonic flow
of fluids. The part ED of the spherical (cylindrical) shear wave
between the free surface and the head wave is not a regular wave
front; it is called here a two sided shear wave, The time depen-
dence of the two sided shear waves, as will be shown, is distinctly

different from that of the head waves and the regular waves.

A, DERIVATION OF THE DOUBLE TRANSFORMS
The wave fronts will be found by working with double trans-
forms of the displacement potentiaia. The several steps in deriving -
the double transforms for six problems of interest are carried out
below. First, the governing partial differential equations and
boundary conditions are written in terms of the potentials., Next,
all of thease equations are transformed twice by Laplace and Fouriar
transforms. The resulting ordinary differential equations and
boundary conditions for the double transforms are then easily solved.
Figure 5 shows the six problems to be studied and the coordinate

systems. In each case, 2z {8 the coordinate in the direction of wave
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propagation and y is the transverse coordinate. Similarly, in
each case the boundary conditi.ona on y are specified at y =% a.
Problems i, ii, and {ii are the easier to solve plane strain prob-
lems. Problems iv, v, and vi are the analogous and more difficult
problems with cylindrical symmetry. The small Roman numerals
next to the equation numbers in this section will refer to the appli-
cable problems.
The boundary conditions are all expressed in terms of a
source magnitude, Z, as follows:
Problems i and iv, (Longitudinal impact problema)
Atz =0, u, = chtH(t) and a'yz =0;aty == a, cyy= “yzg 0.
Problems ii and v, (Pressure step problems)
Atz =0, T,z " Z(\ + 2u)H(t) and uy== O;aty=42a, cw= o’yz=0.
Problem iii, (Line %rce problem)
Atz =0, u, = a&y/az = 0 by symmetry; L Oaty==xa,
oy = Oaty= -a, vy = -Zpab(z)H(t) at y = + a, where for
€
any positive €, S‘ 6(z)dz = 1.
-€
Problem vi, (Point force problem)

At z = 0, continuity of displacements required; “yz= 0 at

2 6(z)
= a, =0 aty = -a, = - Zpa —— H{t ty=+a,
YE=& 9y y Tyy ha” - Hlt) aty

€
where for any positive ¢, Zg 5(z)dz = 1.
0

Each of these boundary conditions is mixed on the end surface, z = 0.
Therefore, schemes 1 and 2 of section II will work.

The two acalar displacement potentials are defined by

-
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u, = g% - -g% u, = g% + g2 (864, ii, iii)

u =52 %%(w) uyz.g;;’:+g.i1 (86iv, v)
u, = g2 - ay uy=8y+%-g;(z¢). (86vi)

¢ gives rise to an irrotational displacement field, ¢ to an equivo-
luminal displacement field, The potentials are all defined in a
similar way so that the plane strain problems can easily be com-
pared to the cylindrically symmetric problems.

The expressions for the stressea and the derivations of the
equations of motior; in terms of the potentials are given in Ewing,
Jardetzky, and Press (29), pp. 6-8 and 306-308. The equations of

motion are the wave equations

2 2 ol
2+l L 22,
8z 8y <4 ot
(871, it, i)
2 2 2
& 8% 1 @
+ - 80
oz 8y ::E ot
2 2
[} 1 9 ) 1 8 )
+ - - =0
9z YW(YE%) :5 ot
| > (87iv, v)
%y L 8 (LB . L 8% g
pzt OV ¥ By :f ot
J
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1w e v il
V4 cdat
2 2
o8y 1 8y _,
8y _c-z&t

2 2 2
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2 2 2
=adgiuld sr2n g
oz y oy
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= (222 424 3y,
yoz
8z oy

2

) -2 %(y%)+(x+zp).§;zf

|
—
.}
2
+
>
-+
™
L2
ch'o
L]
A

9 2

(87vi)

3

r(BBi. ii, iii)

r(88iv. v)

H(88vi)
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Initially the rod or plate is at rest. The initial conditions

which are prescribed for the potentials are

=gl =v=3t=0. (t = 0) (89)

- Equations 89 ‘do two things. First, they guarantee that the rod or
plate is at rest initially. Second, equations 89 eliminate unwanted

- solutions which could arise because equations 86 do not define the
potentials uniquely. For instance, in equations 86i, ii, iii any pair '
.of functions ¢ and | satisfying the Cauchy-Riemann Qquations
would not cause any displacements “y or u, and would not be of
interest. If such a pair of functions were independent of time, they
would satisfy the boundary conditions and the governing differential
equations but not the initial conditions in equations 89,

To express the boundary conditions at z = 0 in terms of the
potentials in a simple way, we proceed as follows. For the plane
strain impact problem, éroblem i, the two conditions on u, and
o can be expressed in terms of 'g'% and ¢ by using the differen-

ye
tial equations 87i and 88i;

2 2 3
2 ,0¢ 1 8 d =
ZW(H) +—c-z--8—t% - 2-8—;; =0
8
\ {z = 0) (a)
-g% - ay = chtH(t) . | J

Equations a are a pair of differential equations with independent
variables y and t. With this in mind we differentiate the second

of equations a with respect to y and substitute into the first with



the result

2

[~ -]

= 0 (z = 0) ®

[ 4

t

Equation b 1is a simple differential equation which is solved with
the help of the initial conditions, equations 89, to find that ¢ is
zero at z = 0. Then, equation a gives -g% . The impact problem
in the rod, problem iv, is worked in the same manner; and we have

the boundary conditions
3T = zc tH(t) $=0. (z=0)  (90i,iv)

For the problem of the pressure step on the plate, problem

ii, the two boundary conditions on ¢ and uy become conditions

22
on ¢ and g—% H
2
t

-z“§g+£§uz;

cd8

g.;+%1-‘=o.

The second of equations c is differentiated with respect to y and

2u 3"; (82) = -z(x+20)H()

(z = 0) (e

substituted into the first to show that

2
89 _ . 2 =
--—-atz = - chH(t) . (z = 0) '(d)

The differential equation d is easy to solve with the initial condi~
tions, equations 89, and then the second of equations ¢ requires

that -g-zf be zero. The results for the rod are similar. Then, the
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boundary conditions at z = 0 for the pressure step problems are

2

¢ = - Zci 4~ H() =0, (=20 (901,
For the line force problem the symmetry conditions that u, and
auy/az be zero are reflected in the two conditions
8
—-6-5 = ¢ o= Q. (z = 0) (90“‘.)

For the point force problem we only require that ¢ and ¢ remaig
finite as z goes to zero,

To take the Laplace transforms, the governing differential

equations, equations 87, are multiplied by e"Ptat and integrated
over t from zero to infinity. In the same way we transform the
boundary conditione on the edge of the plate or the end of the rod,
equations 90, and the boundary conditions at y = a. The Laplace
transform has the definition given in equation 15a. Because the
initial conditions are zero, the equations are transformed easily by
putting bars over ¢ and ¢ and replacing -gt- by p. The resulting
differential equations and boundary conditions are written below.
For convenience second derivatives with respect to z are eliminated
from the boundary conditions at y = = a. This {s done by substituting
the governing differential equations. The Laplace transformed equa-
tions are

2=

8% _p2- . %7 8% _plg. 9, 14, it
-—%4’-—% 22 0 -—2%4';-; EEIF 0 (911, i, 4i)

[~}
Y]

8z dy < 9z

0.
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gi:; =T =0 (s=0). (93it1)

Next, sine and cosine transforms of equations 914, ii, iii,
iv, v and 924, {1, i, {v, v are taken by multiplying the equations
by either cos Kz dz or ~i sin kz dz and integrating over z from
gero to infinity. Table ]l indicates which variables are sine trans-
formed and which variables are cosine transformed. The choice of
schemes is determined by what boundary conditions are given at
2 = 0. Problems {i and v fit into scheme 1 and problems {, iii, and
iv fit into 'achcme 2. In each case the boundary conditions at the
end of the rod or plate asked for by the transforming procedure are
the same as the boundary conditions thaf are known. The definitions
of the double transforme and the inversion theorem for the sine and

cosine transforms are given in equations 16. The results are

( ch . o
— 0 (941)
P
@3 2e Zike’ i‘f.? 2 5 (
“ K@= -y - K =< O 94ii)
PRI P dy ¢
.0 ) | 0 (944ii)
ch
L& o -ode B o
SO | (94v)
\ P

0 ' (94iv)
d 1L d 25 _
3o - ¥ {o ’ (94v)



d
Za
2= 2 "% (y=+a), i

z----;'ll +£-225+2ixdy=

dy €4 0 (otherwise) (y=2a)

= 2 2 ((951. ii, &t)
zixgﬁ.zi‘—i‘wlz T =0
dy c. J

a%3 .\ pt = %i w
2 * - ¢ + 2ix =0

dy (] E?i- Yy

r(YS h) (95‘V' V)

Ziltgg -Z%[.%.%(ymﬂ +§;¢=0 .
8

/

Hankel transforms are used for the point force problem be-
cause of the cylindrical symmetry in the direction of propagation,
s. To keep a similarity between the line force and pbint force prob-

lems, the Hankel transforms are defined here as

= ® g -
o(y.x,p) = ‘YO -;O(Y. z, P)Jo("z) ds

° (96a)
Ply.K,p) = -4 50 3 Uy, 5, p)3,(km) az .
The inversion integrals are (30, p. 342)
#ly,2,p) = agmxg(v.lt. P (k=) dx
° (96b)

o _ |
$ly,2,p) = {a S‘o k¥ {y,«, p)J,(xz) dx.

Equations 9lvi and 92vi are then transformed by multiplying them



-84
by (2/a)Jy(kz)ds or - (iz/a)] j{kz) dz and integrating over 2z from
sero to infinity. The terms with £ derivatives are integrated by
parts, the boundu-y terms at 5 = 0 vanishing provided ¢ and {

are bounded aa =z goes to zero. The results are

2= 2 _
% -k2%=0 l%-xiitmo ‘ (94vi)
dy dy
Za A
- (y=+a)
22‘-?4--’:2;’”1 §§ = w
dt p‘cd ? « 4 0 ( )
y=-a
| 3(95vi)
= 2 2
zsxg!;,.z“ +B J =0 (y=a) ,
dy g )

Important comparisons can be made between the problems.
Equations 94vi and 95vi are exactly the same as equations 94iii and
95iil. Therefore, the double transforms for the line force are
exactly the same as the double transforms for the point force, Only
the inversion theorems, equations 96b and 16b, are different.
Furthermore, the nonhomogeneous terms in equations 94 for prob-
lems ii and v differ from the same terms for problems { and iv only
by the factor -ikc d/p. Therefore, the two pressure step problems
will differ from the impact problems only because of that one factor
and through the difference between the definitions of Z,

Equations 94 and 95 are easily solved. The solutions to the

differential equations 94 are
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- Zeg
@ = chosh K3y + Kzsinh Kqy - —5—% W
, k°p
d
>(971)

L]

= Kysinh K y + K ,cosh Kk y

?= K cosh Ky +K,sinh Ky

(97iii)
P = K3sinh Ky + K4cosh Ky j
= Zcy -
? = KL (Kiy) « = b= K3L(k,y), (97iv)

de

where the Ki are independent of y and Io(x) and Il(x) are xﬁodi-
fied Bessel fuﬁctiona of the first kind. Equations 97 are the complete
solutions of the differential equations for the double transforms.
Equation 97iv omits the solutions which are irregular at y = 0. The
double transforms for the other three problems are similar to the
double transforms given above.

The boundary conditions equations 95, are applied directly to
equations 97 tofind the Ki’ Four linear algebraic equations resuit.
two equations for y = +a and two eq\iatlons for y = -a, except that for
the circular rod there are no equations for y=z-a. The forcing terms
in the four equationa come from the constant terms in equations 97i,
il.liv. v and for the line and point force problem directly from the

boundary conditions, equations 95iii, vi. The two equations for K1

and K3 for the rod haye the determinant

2

F=(By+ z:cz)zxo(x g (x a) - 4xx RATIN RTRY
. [~

. 8

2
- —22- Kyl (K ga)L (K a) . (98a)

ac
8

~
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The squation F = 0 is the Pochhammer-Chrees frequency equation
for the circular frequency, w = - ip, as a function of the wave nume
ber, K. The four equations for the plate problems can be aepa'rated
into two pairs of equations. One pair is for symmetric or compres-
sional waves and has the determinant

2 2
2 2
Fg= (fz +2x") cosh K ,a sinh K a - 4k Kk K sinh K8 cosh X a.

s
(98b)

The other pair of equations is for the antisymmetric or flexural
waves and has the determinant

2 2
Fy= (E-z + Zlcz) sinh k,a cosh k a - 4x2xdx'cosh k4o sinh x a,

s
(98¢)

The equations F g= 0 and Fuz 0 are the Rayleigh~Lamb frequency

equations for the symmetric and antisymmetric waves in a plate.

Having solved for the K, the results for the double trans-

i
forms are as follows:
Plate, impact,
2 Zc
H =.._...§z).‘._ (27 *sz)sinh K8 cosh KqY = "222'
HE 4K dF g <, KgP
(991)
b= 2ZMX inh Kqa sinh Ky .

HeKGF g
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Plate, preassure step,

C.K
Replace Z in equations 991 by -i —1?. z. (99ii)
Plate, line and point force,
2 2
Za(Bz + 2K°)
.. Cq { sinh K,8 cosh L 4
2 2F
P g
. cosh k,a sinh Kdy ]
2F
u
99iif, vi
- Zailtl(d !’ sinh K42 sinh K.y ( ’ )‘
- 2F
P g
. cosh Kqa cosh Kgy ]
2F ¢
u
Rod, impact,
2
Z\( By + 24%)
c Zc
s = 2 L (k a)y (K y) - =
p.cdl(dF k4P
(991v)
Ja2EME qixan,y),

e K F

Rod, pressure step,

C LK
Replace Z in equations 99iv by -i-—-g—- Z. {99v)
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B. EXPANSION OF THE TRANSFORMS FOR PLANE STRAIN

The wave front ex;ianaion for plane strain is derived i{n
several steps. The exponential functions, which, according to
equation 85, are associated with the times of arrival, are contained
in the hyperbolic sine and cosine functions in the double transformas,
ecquations 994, ii, iii. The exponential functions in F g and Fu are
“brought to the numerator by using a binomial expansion. It is only

necessary to lockat F, or F . as a binomial consisting of one

8 ,
large term, the largest of the exponentials, and one small term,

the rest of F g °F F,- Inaddition, notice that the double trans-
forms, aside from the exponential parts, are homogeneous in &/p.
This suggests the subatitution, Kk = sp/c, giving a new variable
s =Kcy/p. Then K4 = ""Bd W and K, = ’°2d k“+8®, where
ke cy/c,. The quantities

4

c
-% FS = (kz*chz)zcoah Kqa sinh Kg8

p
- 462 [1902)KE1e) sinh k 4 cosh k_a (100a)

2)2

and
4

C
;% F,* (k3+z- sinh k43 cosh k_a

- 482 [u+s5)1%+a%) cosh kg sinh ks {100b)

must be expanded by the binomhi expansion. Thus, in each cntéj‘
the first inversion integral, cqﬁation 16b, becomes an integral deng
the real axis of s:
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Plate, impact,

- ch s QD ei(p/cd)‘z )
=~ -—-3 —--—-——-E—-——- ds
wp -0 (1+87)
2 2,,.2 '
ZrcY ~oo{k“+28“)sinh k_a cosh k,y i{p/c,)ex
+ d S 8" d e d de
4
P g 2, °d
4‘!2‘)«:‘21 o is sinh k42 sinh k_y i(p/cd)az
§ = — S e ds
T e (B |
* s J
Plate, pressure step,
Replace Z in equation 10li by -isZ (101i1)
Plate, line force,
Zac el sinh ¥ _a cosh K,y 3
Fe- —3 | (ePeze? [ 2 d
4wp Y~0 ( <4 )
F
P
cosh k_a sink.,y 1 i(p/c,)sz
+ 8 d :]e d ds
(S5 F))
i
Zac o sinh K .a sinh k_y
Y= -—-zd 5 ls‘/luz[ d4‘ 2

( 3r) '
;‘4 g | ruouu)

cosh K43 cosh k_y ] ei(p/cd)us
4

C
(= F)
P

+ ds
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It is now necessary to choose a branch of the squars root
function fox_' what follows. The above integrations are along the
real s axis and hence y/;_;z, and \/kz+sz must be real numberse,
either positive or' negative. . _wé'wm choose the positive square

roots to be meant by eit'h'er of tixg’ radicals when s is real. Under

.pa B2
that choice e =8 - and e =e vanish
K43 Kga

for large, positive, real p while e and e approach infinity

as p increases without limit. ¢
Then, the factors ~z F_ and —x F  in the transforms and
o p. 8 po v

glven in equations 100 can be written out as

N

a |
r'y v 4 + K 2

€a Fsgl "[(kz*z'z)z"hz\ﬁl+cz)(kz+.z)][e“d‘ xsa-‘ K gp K’a]
P

T ' “K.atk_a K. a-K a
+[(k2+znz)z+ 4-2\141“2)&2*32)][0 " "s -e d" s ]
and ’(102)

4 K 8+K 8 =K. .8-K_a
%Fua% [(khl&z)z- 4-2 vl(luz)(kzﬂz)J[e " "s -e " s }
P

+[(kz+ 26424 4.3\/m '![o“d“" ,ﬂ_-.-x dam.a]

»

7

Looking at both expressions in eénations 102, one can see
‘ K jatK _a
that for large, positive, real p the term made out of e " s

and its coefficients is larger than'the remaining terms. More
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precisely, there exists some ;. independent of s, such that for all
P greater than ; the above mentioned term is greater than all of

the remaining terms together. Then, we may apply the binomial

oo
theorem in the form (lax)'l= z x® for le <1 to obtain the result
. n=0
desired. This expanseion was suggested by Pekeris in a problem

involving layered media (see reference 29, p. 131). It suffices only
to consider p greater than ; because the inverse of the Laplace
transform is uniquely determined if the transform is known for all
values o£ the transform parameter, p, greater than some fixed

number, according to Lerch's theorem (31). Let
‘ -2 23 VH-z )

2K .2 c )
P=e d =@ d
Sze * ze¢ ¢ , (103)

the exponential factors relating to travel across the plate as P and

S5 waves, respectively, and let

(x2+28%)%4+ 482 Vi sdNK%416%) ’
2

“R{s) = (104)

(kz‘.'le) - 4:2 (1+6“}k“+8")

a factor which will be identified as a reflection coefficient in the ray

theory of wave fronts. Then, from equation 102
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P _
Z [SP + R(S-P)] ®

- n=0

-1
B |
K a+K
(f-gng %[ (k_z+zoz)z-4¢z\/(1+|2)(kz+sz) e 4* "
P , -

and

Q
Z [sP+ R(P-S)] 2
1 o n=0

K 'l‘K )
(-11-* ) ‘[(k +28%)2.40°% \/1+-zxk5+.z] o &t

 (105)

The tranaforrns are written in a more useful form by eubntituting

equations 105 into equations 101:
Plate, impact, |
1L oz
_ ch o _ ‘4
Q - —-3— —-—-—T
-0 (1+8°)

2 “K {a-y) «k.laty)
+Z)‘cd © (kz+?.cz)[e d +e O ]

-3
. Tpp Y- (1+l2)[ (k2+3'2)3 - 48° \/(lﬂz)(kzﬂiz)]
[ i-cz- ez
(I-S)Z [SP + R(S-P)]®e % ds
n=0

2 . - ( -y) <K ‘l"‘ )
Fe 2Nea S T O
Tup”  Vew J 1482 [ (k3+282)2-402 v 1+ 2)k2+82)]

) , i-f— B2
(1-1:)2 [sP+R(5-P)]%e ¢ ds.
n=0 '

r (1064)
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Plate, pressure step,
Replace Z in equations 106i by -isZ. (10641)

Plate, line force,
rE —ZCdZ' ‘Sm | i "-(kz+ 2s%)
2wp” V-0 [(k2+2az 2 4s? V(l-faz)(kz-uz)]

- Kd(“'Y) ) ‘xd(.’+Y)

](1-5)2 [sP + R(s-P)] ®

n=0

X -lz[e

1 “Kalaey)  -kglaty) N At
+-Z[e -e ](1+S)Z[SP+R(P-S)] e

n=0

ds

(106411)

_4_‘ chnS i ,/mz
2 ) 2. 22 2 [t "“2““7.'
hid [(k%+28°)%- 48° V (14+8“Kk"+8°) ]

- (a- (aty) >
[e kol Y)- o"' k4 ] (I-P)z [sP + R(s-P)] ®

n=0

>

-K (a-y) -K_(aty) & 1.‘:2..“‘
+-z[e te © ](1+P)Z[SP+R(P-S)]° e ¢ de

n=0

It may be anticipated that individual wave fronts will be found
from single pronential functions. Looking at the transforme, |
equations 106, it is clea-r that one can separate out the exponential
functions if the coefficient of 8™P"™ can be found for given m and
n. The only difficulty is in working with the iﬁfinite sums. By the
.b‘inomial the orem. |

n .
(a+b)n=z () 8™ ™ where (2 )=( 7 )er-l‘ln-—,.

ma0
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o k

* .
Z [sP+R(s-P) ¥ a§ > (% uspi*trY(s-p)!

/ bt

k=0 k=0 ¢=0
© k 1
= Z Z ( ‘l‘ NSP) “R‘Z( '; yst-d-pp .
k=0 £=0 j=0 :
Letting m =k - j, the sum becomes

w k k
" ' k 1 kem, fcmo2k-f-m
> Y Y gt ks |
k=0 £=0 m=k-{t
The same combinations of f and m are covered if the limits are

changed to

o ko

k £ ke tempo2k-f-m
D)) Ua A R
k=0 m=0 fzk-m

L

Then, letting n = 2k - £ + m, the sum becomes

® k k '

k 2k-men kem_.mpny, 2kem-n
D DY gk N EmR R s et
k=0 m=0 n=kem

Again changing limits, but still covering the same combinations of

k, m, and n, the final form is found as

@©
2 [sP+Rr(S-P)} &

k=0
O
‘ mon \’ k 2k-me-n kem, 2kem-n A
=) SPERY (kK Ik mpEkemen, g7
n, m=0 k

where the sum over k runs from the greater of m and n up to
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men. The similar expansion of F, gives the same series oxcept
for sign changes as can be seen from equations 105.
It is next posaible to write the integrals of equations 106 for
the transformed solutions as a sum of integrals. Eact‘::z;t'o.grll in

the sum has an exponential which can be factored into thres exponen-

--cEd-(uy) Y mz_

ipzs/c a ' -K 4{azy)
tials, first, e ' , second, aither e L)
or e s = e d » and third PRs™ =

.-E-Za(n 148 + m Vk"+s%)
d.

e with n and m integers. For sach

1

pair of integers n and m a separate integral can be written. Cal-
culation of wave fronts then boils down to studying transforms

written in the form

--ca- [-izs 40 V1+az +B \/kzﬂz]

or = f(s) ds, (108)
L4 ;N S—m L]

where f(s) is a known function and N is a known integer. For;ho
dilatational potential

a=(2n+1)a zy and f =2ma (109a)
while for the shear potential

a=2na and P=(2m+l)aary. {109b)

Let the exponent in equation 108 be -p times the function g(s),

where
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gls) 873; [-.iu + n\/lﬂz + B \/kz+lz ; ) (110)

Since the factor 1/p in equation 108 is equivalent to a partial
derivative with respect to time, the transform of the Nth deri-
vative of ¢ or Y is a sum of integrals of the form
N

=

o ,
or -a—t# y f(s)e'Ps(s) ds . (111)
-00

-
@

Each integral of the form of equation 111 will be seen to
represent the disturbance following a single wave front. The
functions f(s) and g(s) depend on whether the dilatational or
shear potential is being btudied.. which plane strain problem is
being conslde.red. and the two integers, n and m. The functions,
f(s) are found from equations 106 by using equation 107. For the
line force problem the two terms in each of equations 106iii should
be compared upon change of sign of both S and P. It is clear
that if m+n is even only the terms with a-y survive, and if
m+n is odd only the terms with a+y survive. This will explain
why only half of the wave fronte exist in the line force problem.
Except for the first term in equations 106i, ii, for which a=p=0,
the functions f£(s) are'as follows in terms of R(s) given in

equation 104:



Plate impact, (N=3)

For dilatational potential

2,,2 2
Zaeik 420N R (R) - R (R)]
fs) = — 9 . 8 (m-1). a (1121a)
vp(1+lz)[ (kz+202)-4sz V(1+sz)(k§+lz)]
For shear potential
z B
2zac5is [R . (R)-R (R
f(s) =F d ma m. (n-1) » (1121b)
wp Vl«uz [(k%+282)%- 482 V(1+8°KK%+8%)
where m+n ,
2 2f{-m-n f-m,20-m=-n
Rm. n‘R) = Z (llom-n) 1-m ) (-1) R
t=greater of m, n
and
Ry aR)V =R _(R)=0.
Plate, pressure step, (N=3)
Replace Z in equations l12iby -isZ. (1121i)
Plate, line force, (N=2)
a 2
Replace ZA i in equations 112{ by - Tc—d- Z({1+8")
and take only the upper signs of m+n is even, (112414)

the lower signs of m+tn is odd.
The first term in equations 106i, ii deserves special atten-
tion. That term can be integrated easily by contour integration.

The results come from the pole at s=i and give for the transform

of ¢
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z 2 -2
- €4  “4a
¢E-—y o

P

for both problems { and ii. This can be inverted easily, for .
instance, by means of tables of the Laplace transform. Then,
differentiation in accordance with equations 861, ii gives the
displacements. The motion is only in the z direction with the
strain in the z direction, €, given by
du, e

est;=~ZH(t-?5) (113)
Equation 113 represents the step found in both of the end load
problems It is the first wave formed by the load as it hits the
edge of the plate. The significance of the step will be explained

in conjunction with the ray theory.

C. EVALUATION OF THE INTEGRALS FOR THE WAVE FRONTS

It is possible to find the amplitudes and times of arrival of
the wave fronts associated with each integral of the form given in
-equation lll. To do this, the integrand must be continued into the
complex plane of 8 and the contour of integration altered from
the real axis. Either of two methods can be used, the saddle point
method or Cagniard's method.

The only difficulty associated with the extension into the
complex s plane is due to the radicals \/I;t and \/kz}sz ,
which appear in £(s) and g(s). It is necessary and sufficient to

make branch cuts running from the two roots of 1+.2‘.= 0, +1i, and
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from the two roots of kzﬂ2

= 0, + ik, to infinity. This is done by
using branch cuts running all along the imaginary axis except
between +i and -i, as is shown in figure 6. It will be recalled
that previously m and W were both taken to be positive
real numbers along the real & axis Then, the values of \/T;Z
and k™+8" in the complex s plane are defined to be the analytic.
continuation off of the real axis and up to the branch cuts. The
arguments of the radicals /;:;2’ and Vk%+s along the branch
cuts are given in parenthesis in figure 6

Great freedom is allowed in moving the contour of integra-
tion. The only poles are the poles of the functions f£(s) given in
equations 112 The poles occur in some cases where 1+sz= 0, which
is also a branch point, and in all caa;s where (kz+sz)2 -
40l V(lﬂz)(kzﬂi) = 0. Eliminating the radicals in this equation
by squaring, one obtains the equation for the Rayleigh surface wave
speed. (See the section below on Rayleigh .wavea.) Letting <y be
the speed of Ra:ylelgh surface waves, the pole is at s = ik = icy/c..
which is a.loﬁg the branch cut since k_>k =c,/c_. Thus, only
the branch cuts interfere with moving the contour of integration.
The.ends of the contour may be moved freely because the exponential
functions cause the integrand to vanish sufficiently rapidly in the
first two quadrants as s goes to infinity.

The above considerations assure us that for 2> 0 any con-

tour in the s plane shown in figure 6 extending continuously from

infinity in the second quadrant across the imaginary axis between
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(+2)

CAGNIARD
CONTOUR 1I

CAGNIARD
CONTOUR 1

s PLANE

-i

-ik
Ny
T

(+3) | (-3)

INVERSION CONTOURS

Figure 6




<10}~
the branch points + i and off to infinity again in the first quadrant
is equivalent to the original contonr along the real axis.

Cagniard's Method

Cagniard's method is to pick a contour such that the ex«
ponent of equation 111 is real and to let -1/p times that exponent
be a new, real variable of integration, t; then,

t=g(s)m 3% [«izs + @ Vluz + B sz+lz 1. (14)

Also,

ét . cq &
glis) -is + 22 + B8

\/;:;2' sz+.z

A glance at equation 15a defining the Laplace transform suggests
that t will be identified with time.

ds =

It is not necessary here to solve explicitly for s as a
function of t. The solution is pouibh by the quadratic formula
only if @ or P is sero. However, several features of the solution

must be studied. As t goes to infinity, so does s. For t large

cqt
and positive s = '-T?-Tq'i'?’ in the first quadrant while in the
second quadrant "i_ﬁ-:f-‘-;-a . The solutions for s as a function

of t in the first and second quadrants, where the contour may be
moved freely, exist only for t poaitive. While moving toward the
imaginary axis from either end of the contour, t decreases con-
tinuously and is stationary where the two ends of the contour join at
the imaginary axis and where
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dt=g(s)ds = 0. (115)

This point is referred to in the saddle point method as the saddle
point. It ;n located on the imaginary axis at a point s =is , where
L is the root of the preal equation

%8 N ﬁ"c:c -
\./I-so2 \/kz~soz

Two cases must be distinguished. If the saddle point given

0. (116)

-iﬂ'(ilo) B .p+

by equation 116 is located between the branch points & = + i, then
the contour is closed at s = is  (Cagniard contour I, figure 6)
and the value of g(s) at the saddle point is the minimum value
of t. From equation 114 and 116 that value is

rag(holt-é%[soz + uVl-loz +p \/kz-uoz ]

....1..[ o, _x% ]
‘a \/;:E \/kz-soz

This r will be seen to be the time of arrival of regular wave

(17)

fronts. Equations 116 and 117 can be solved simultaneously to find
the wave front locations and times of arrival. However, explicit
solution by the quadratic formula is poseible only if a or P is
zero.

If the saddle point is located along the branch cut, then the
contour is closed by extending it along the branch cut to close at
s =i (Cagniard contour II, figure 6). Then the minimum of t is
the value of g(s) at s = {;
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Ty = alt) = ;‘;[ s+ 8/x%1 1, (118)

where the subscript indicates that this is the time of arrival of head
waves. The condition for Cagniard contour Il is s > 1. This only -
occurs when a= 0, forif a> 0, »t!u term “o//::i in equation
116 ranges from sero to infinity with » o betwesn zero and onej

and {t can be shown that that term can match the other two terms
while o,  remains between zero and one. _

The integral of equation 11l can then be found by taking twice
its real part and integrating only along the half of Cagniard's path
in the first quadrant owing to the coﬁ@uﬁo nature of the integrands
and the two halves of the path. In the integral t goes from 7 or
Ty to infinity and the tuuior&z is represented by an integral
over real t with s expressed by equation 114 as a function of ¢,
s(t), in the first quadrant;

!—;“-;f or !-!;?-zne Sm % e Plat . (119)

Bt bt ror 7,8 "

When Cagniard contour I is applicable, 7 is the lower limit; Ty
is used with Cagniard contour 1I. By the definition of the Laplace

transform, equation 15a, and aleo because no two functions have

the same Laplace transform,

N

N
L0 or L eame it e - ror (120)

Thus, ¢t is identified as time and 7 or Ty 88 the time of arrival
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of the wave. This inversion is exact as applied here to plane
strain problems. Integration N times over time is necessary
to find the final eoclution for ¢ and Y. Displacements and strains
can be found similarly or by differentiation of the results for the
potentials. .

Regular Wave Fronts

The first term of the wave front expansion must be found
by considering separately the cases where the saddle point is and
is not on the branch cut. If 8, < 1, the only wave front occurs at
atime 7 given by equation 117 and corresponds to the part of
Cagniard contour 1 near the saddle point. Since g'(io o) =0, a
Taylor series approximation of the Cagniard contour, equation 114,
at the saddle point gives

tm ‘“'o’* é(--s-o)zg'u-o) = T4 -lz(n-uo)zg'ulo)

s-is = /=T (121)
o sﬂ“‘o)

Similarly, in the inversion by Cagniard's method, equation 120,

or

the expression g'(s) can be approximated by
g'e) = (l-ho)g"(lao) . (122)

Using the last two equations in equation 120, the first term of the

wave front expansion for regular waves ie found to be the real
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expression
N N .
5 or S ¥ f(il -1--2-——--—-
ot 8t

g (e )t-7)

or

N-l
9 Or Y= l—rg—g——n-um,— [ = (t-‘T) . (123)
vee (“ )

which is sero for t< 7. The coefficient of (t- v)‘ZN‘l’/ 2 ys the
wave front amplitude, which depends on position in a complicated

way.

Head Waves and Two Sided Shear Waves

The shear di-turbmce found from Cagniard contour 1l has
two wave fronts, the initial wave front, the head wave, correspond-
ing to the branch point s =i, and a two sided shear wave corre-
sponding to the saddle point. By the argument given following
equation 118, a = 0 and by equations 109 only shear waves can be
involved and B may be replaced by (2m+l)aty. The head wave
arrives at a time given by equation 118;

e 2 (2 + [(2milaryl VEi1), (124)
d
The location of the saddle point can be found explicitly by solving

equation 116 to find

’, = ks (125)

‘/;I,' [(2m+1)a+y] L

Then, the time of arrival for the two sided shear wave is given by
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equation 117 as

T -;‘5- Vats [(Zmﬂ)ay]r = 'EL VAX; (2m#+l)aty] ¢ . (126)
d _ 8

Consider the firset ;rilval. the head wave. The singularity
in £(s) at s =i is euch that either f;:zf(u) or f{s)/ fl::t
remains finite and nonsero as s approaches i (see equations 112).
Both cases must be considered. Near s={ equation 114 for the

Cagniard contour becomes

' M 1 (2m+l)liy
t = gli)+(s-i)g (1) TH-(s-i)-é—[z- ]. (127)
d K°-1
which gives
. (t-7r,)
y{uz = flatIl{s=1) =1 d([mflhiy . (128)
Z -

Vk:-l

Notice that the denominator of the expression under the radical in
equation 128 must be positive for there to be a head wave (recalling
equation 125 and the condition 8,> 1 for Cagniard contour II).
Also, notice that \/J;:r must be positive imaginary along the
first quadrant side of the branch cut as shown on figure 6. Then,
considering \/-1:;7 £(s) finite and nonzero near s=i, the first term
of the wave front expansion, found by using equation 128 to approxi-

mate equation 120 near s=i, is
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, (2m+tl)aty
ol ,z[mqq ]1 T Vida
ot g (s anid T alt""u
or :
e ‘r'rréi“(m:n z(;c:nﬂ)siy[ 4s” o), ]
x(ter NEN-I/2 | (129)

And considering f(s)/V ‘1"1 finite and nonzero near s=i, the re-
sult s

o™ 'z[ 1(s) }‘ 2eqlt-Ty)
ot =T (ZmiDaty
1+¢” g (8) |s=i z-
| /K21
or
. 3/2
¢ .- 3N [ ch ] /
-3 + {(¢m+tllaty
| RO -
Vk©-1
x[ f(s) }“_TH)(zmn/z. (130)
Vluz ax=f

The coefficient of (t—'rH)(ZNin/ 2 is real and is the amplitude of
the head wave.

The wave front expansion for the two sided shear wave is
found by expanding near the saddle point in almoast the same my as

was used to find the regular waves, but this time the branch cut



~-108-

interferes. The time of arrival is given by equation 126. Near the

saddle point
(t-7)= 3 (s - s )3g"(1s ) | (131)
and
' z'(-) =(s - 1s )g"(is), (132)
where

1 k2[( 2m+l)at y)
8'Usg) =5, —InyT
d (k"- sc)

Before the wave front arrives t< 7 and from equation 131

-5 = -1 FE-'-—E’ (133)
g (is))

which must be negative imagim;-y as indicated. But, after the wave

fron arrives t> 7 and

8 - lso = /EE (134)
g (is)) |

Equations 132 through 134 are used to approximate equation 120.

For t<~7
N if{is )
213' = 2Re 2
ot / 2(r-t)g"(is )
and
2¢ 4(k2-8%)” 21
Y= S Reliftisl(r-t) *
k“[(zm+l)as y] °
(135)

where s, is given by equation 125. Similarly, for t> 7
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N [z (x2-s5) /% ad
T I—!T_Z—_TZN'TT cd %o Re [f(i-o)] (t-7) .
e - kzi (2m+l)aty]

(136)

The nature of the two sided shear wave {s then clear. Near
the time of arrival of an ordinary wave front or a head wave,
most contributions to the disturbance are essentially constant;
but one term starts its contribution at the time of arrival. This
behavior is seen in the general wave front expansion, equation 84.
On the other hand, the two sided shear \;vave is found in a term
which changes its behavior at the time of arrival. That one term
gives a disturbance both before and after the arrival. One cannot
always give in a simple manner a single number which is the ampli-

tude of the two sided shear wave.

Rayleigh Waves

The Rayleigh wave is a motion which propagates along the
free surface of an elastic medium with the speed Cype The Rayleigh
wave has no wave front, the discontinuity in the displacement being
only at a single point on the surface. The Rayleigh wave is found
from Cagniard's method by studying what happene when Cagniard's
contour approaches the pole of f(s) at s = icd/c;ré ikr. The de-
nominator of f(s) as given in equations 112 can be shown to have

that sero as follows. Letting F(s) be that denominator, the

equation for the root is

\F
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F(s) = (k+ 202)% - 482 /(116%)Kk%46%) = 0. (137)
Squaring to eliminate the radicals, equation 137 becomes

(x%+ 202)% = 166%(1482)K2487) .
And then,

16(k2-1)a’ + K2(24k%- 16)s% + 8xCa2+ kB = 0. (138)

This is easily seen to be the equation for the Rayleigh surface wave
speed (see reference 29, p. 32). The solutionis s = ikr. There |
are two extraneous rootsof equation 138 which are not solutions
of equation 137 because of-the previous definition of the branches.

We wish to investigate the possibility that the Rayleigh pole
will strongly influence the displacements in the plate. Since the
pole is on the branch cut, the Cagniard contour can approach the
pole only if « and P approach zero as can be seen from equation
114. Then t goes to z/cr at the pole. According to equations
109 this means that m and n must be zero and y must approach
+ _a. It is convenient to replace f(s) in equations 112 by

f(s) ’%z(-;.;- . (139)
where F(s) is given by equation 137. fo(-) is easily found from
equations 112 by setting m and n equal to zero. Since a and P
are small, equation 114 for the Cagniard contour can be approxi-
mated near the Rayleigh pole by
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t=g(s) = glik,) + (s - ik )g'(ik.) . (140)
F(s) and f o(l) are approximated near th? Rayleigh pole by
F(s) = (s-ik_)F'k_) and f(s) = f {1k ). (141)
Equations 140 and 141 are then substituted into the basic solution

by Cagniard's method, equation 120, to show that
£ (ik))

N.
-?-ﬁ or -a—él’ % 2Re ——t (142)
: |

ot F'(ik ) [t-glik )]

is the form of the Rayleigh wave.

Each of the functions on the right-hand side of equation 142
is known. For y approaching positive a we have from equations
139, 112, 109, and 114 for the impact problem

for ¢, 2 h
Zic (Zk k)

d
f(ik)"?“ --z

(k. -1
glik, ). + 19:1 \/ Z_
“r 2 (143)
for ¢, 2
Zizkcd kr
f(ik ) = =
k- 1

4
% a-
glik,) = o ¢ i—-é% \/krz- kz. :

Notice from equation 137 that F'(ikr) is imaginary. Substituting

equations 143 into equation 142 we have for the Rayleigh wave
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g3, 2Zhciizx-k?) L. i ]
= e
-O-t-? m[ﬂ"‘(lkr)](k‘,-l) :-{---x!‘g;! r
5
P (144)

8% azZhelx_ e .
® alruk)) k-t Zo 12 AELT

r d /

Each of the above expressions can be integrated once with respect

to time, and then the displacements are derived by differentiating

the potentials according to equations 86i, ii, ili. The results for the

impact problem are

2%

| o2
s _ 22 kel k") (a-y)

— -
ot mn[iF (lk,)] ki1 [(t- --.) + Q?— (k -1)

2 .2
Zk,(k,- k%) (a - y)

® ) 2z
z a-y) 2 .2
,/krz_-x [(t- -é-;-) + ‘-?L- (xZ- x%)]
82 2z 3 2.x%) (t - --)

™.

ot°  wuliF (1 ) / 2 [(g--—-) + L—{’-(k"-n]

[ (148)
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From equations 112 it is clear that similar expressions result for

the pressure step problem and the line force problem; s is merely
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replaced by ik' in the additional multiplicative factore given for
those problems in equations 1121, i1i. But, for the line force prob-
lem squations 145 hold for the {irst time derivative rather than
the sacond time derivative.
EMom 145 can be integrated once with respect to time
without difficulty. The results for the velocities for the impact

problem are as follows

;‘_;3 2y kr(?;:kz) e[ catt -2 ]
t [ ]
nltF'ax ) | (-1 (;-y)/krz-l
z
2k ‘/kz-kz cglt-2-)
- —Et tan™! = (146a)
V k’z- {a-y) \/k’z-kz
bu Zhe, (2. k%) 2 2 2
2= —— -l -2+ 2 o)
wliF (k) / kf- 1 r oy
2
al 2 2
t—2 Inf(t- 29 E‘i!l-(kf- ) | (146b)
k&1 : ¥ €a

Equations 146 hold for the displacement for the line force problem,
aside from a constant factor. |

In both equations 145 and 146 the contribution from the
dilatational potential, the first term, and the contribution from
the shear potential, the second term, are very similar. At the
surface equation 146a takes the form of a step in time and equation
146b goes to infinity as the natural logarithm of time. Inside the
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plate the displacements are similar to those at the surface, but

the discontinuities are amoathid over.

The Saddle Point Method

An alternative method of finding the wave fronts is the saddle
point method used by Knopoff and Gilbert (13). This method gives
only the wave fronts. In contrast, Cagniard's method gave an
exact solution for plane strain in equation 120, which was approxi-
mated to find the wave fronts. The saddle point method is used to
evaluate lntoju.h {nvolving a large parameter p in the form of
equation 111. In the preicnt case p is the Laplace transform
parameter and it {s well known from the Tauberian theorem that
knowledge of the transform for l#rge p is uuﬁiclont to determine
the wave fronts. |

In order to use fhc saddle point method, the contour of inte-
gration must pass through a point where g(s) is stationary, called
the saddle point, in a direction such that the imaginary part of g(s)
remains essentially constant near the saddle point. This only works
without modification if the saddle point is not on a branch cut. The
saddle point was identified in the study of Cagniard's technique as

the point s = is , where s _ is given by squation 116. The imagi-

o
nary part of g(s) is a constant, zero, along the imaginary axis

and it follows that the imaginary part has zero second derivative
in a direction parallel to the real axis of s (since the imaginary

part satisfies Laplace's equation). Thus, for the saddle point
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method the contour of integration must cross the imaginary axis
parallel to the real axis. Notice that the Cagniard contour I in
figure 6 is correct for this method, but only the part of the contour
near the csddlc point is fixed for the saddle point method. This
is reasonable since the -qaddla point method only gives wave front
information and Cagniard's method finda wave front infor mation
by studying 'tla saddle point.

Provided the branch cut does not interfere, the general
theory of the saddle point method (reference 26, p. 39) then gives
for equation 111

- ' -pglis )
- .

t

But the dependence on p in equation 147 is so simple that the
transform can be inverted immediately to give equation 123, which
was also found by Cagniard's method.

If the saddle point lies on a branch cut, the saddle point
method must be modified as Knopoff and Gilbert did (13). Again,
Cagniard's contour 1l in figure 6 is used. It is sufficient to take
only the half of Cagniard's contour in the first quadrant and to
take twice the real part of the results. As in Cagniard's method,
the head waves are found by an expansion around the point 8=
which depends on f{(s) \/-l-;:z or f(a)/ \/;;T being finite and non-
sero at s ={. Also, the expansion near the saddle point again

gives the two sided shear wave, the part of the Cagniard contoni
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on the imaginary axis giving the disturbance before the wave arrival,
the part of the contour extending into the first quadrant giving the
disturbance after the wave arrival.
The integrand of equation 11l is expanded at the point &=l

to find the head wave. Introducing a small, real variable of inte-

gration, m, such that s-i = {9, we hive the approximations
gle)= g(i) + ing'(1) = =+ ing'(1), and Vita“mi VER (148)

For very large p the main contribution to the integral in equation
111 comes in the neighborhood of v = 0. Hence, equations 148

may be nsed and the integration may be extended to n = co. With
i(s) »/;:;T finite and nonzero at s =i, this gives the approximation
to equation 11,

% u 2Re[ f(s) \/lﬂz}

-p7T et
. PTy S\m 'cig (i)p'ad‘1
sxi V2 0 va '

The exponent is real and integration gives the result

t

o -p7,
S ¥ a/-2% Relde) /ivs?]| o H, (149)
ot ipg (1) =i

Inversion of the Laplace transform in equstion 149 gives the ﬂrit
term of the wave front expansion for the head wave given by
Cagniard's method in equation 129. With £(s)/ Y1+8® finite and
nonsero at s={, which is the other posesibility, the approximation
to equation 111 is
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N, | N -p7 '
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The inverse is precisely equation 130, which was found by Cagniard's
method. ‘

- From the saddle point, 8 = is o when it {s on the branch cut
is found the two sided shear wave. The function f(s) is approxi-
mated by f(is o,‘ For g(s) we write the Taylor expansion

(s-is )z
gls)= 7+ —-z-——-s "(is o - (151)
The integration in equation 11l away from the l_addle point out i{nto
the ﬁut quadrant along the Cagniard contour 1I is approximated

by using equation 151 as
(s-is )

T “"2""" i )
—a‘ Re f(is )0'975‘ P ‘ ( *
ot \

This integral is identical to the integral which must be evaluated
in deriving the results (equation 147) of the saddle point method
when the saddle point is not on the branch cut. Carrying out the
integral and inverting, the results of Cagniard's method, equation
136, are duplicated.

The integration near the saddle point and along the imaginary
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axis is carried out by replacing s-is by -in with n small,
real, and poeitive. Then, equation 11l {s approximated by

N o pAtal 42
.a-.ﬁ‘ = 2Re muo).’l"y e dq. (152)
.13 0

This integral only converges for p large and negative. Previously
p had been restricted to positive values in order to expand the
denominator of the double transforms. The use of negative p here
for plane strain will be justified only by obaserving that the reasults
will agree with those of Cagniard’s method. Comparison to
Cagniard's method is not rigorous for problem vi (point force)
because, as will be seen, Cagniard's method follows the use of
the asymptotic representations of the Bessel functions for large
p (large argument). Knopoff and Gilbert (13) in a similar manner
used negative p after expanding for positive p the denominator
of the double transform for their plate problem. They made use
of the Tauberian theorems in their work and developed new
Tauberian theorems for negative p.

Evaluating the integral in equation 152 with p a negative

number gives

-~ —
) ~ Re m‘so)e'pr/.__._zz__.. ‘153)
ot -pg (is,)

This suggests identification with the Laplace integral
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which, with a- change of variables, can be written

-2:3—'3}.57 -.;-:.Piidg.
T5T 7 Yoo V7T

Looking only at the part of the integration near t=7, it is clear

that a disturbance before time T of the form

Y et
is contained in the transform of eguation 153. Thus, one may

write the disturbance before time 7 as

91? Re[1f(is )i
bt ?(;-o) V7t '

which is identical to the results found by Cagniard's method in

equation 135,

D. MODIFICATIONS FOR CYLINDRICAL SYMMETRY

The results of the work on plane strain must be modified
slightly when a Cartesian coordinate is replaced by a radial
coordinate. The Bessel functions which result in cylindrically
symmetrical problems must be approximated by their asymptotic
forms, exponential functions. Then, the analysis is carried out
using the exponential functions as for plane strain. The asymptotic
forms of the Bessel functions will be good only for large p, but
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this is adequate for studying wave fronts. Two cases are analysed
here. First, we treat the problem vi of the point force on a plate,
where thé radial coordinate is the direction of propagation, and
second the problems- iv and v of the rod where the radial coordinate

is transverse to the direction of propagation.

The Point Force

For the problem of the point force on the plate the double
transforms are the same as for the line force, but the inversion
integrals, equations 96b, are different from the inversion integral
for plane strain, equation 16b. In place of the exponential,

‘ikz - ei'(p/ cd)'. is a Hankel function, Hr)(lcz). But, the Hankel

function may be replaced by its asymptotic representation,

H '(kz) = ‘/171?—22 e . (154)

and only the radical differentiates the point force and line force
problems. The detailed analysis follows.

Applying the inversion integrals, equations 16b and 96b,
to the double transforms, equations 99iii, vi, there are only two
differences between the line and point force problems:

L el¥® in equation 16b of the line force problem is re-

placed by tano(xs) for ¢ and by ulel(xs) for W
We will indicate these two replacements by 1""ltaJn(z¢z).
where n = 0 for c). n=]1 for .

2. For the point force problem the integration {s only over
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positive x.

These differences do not interfere with expanding the double
transforms to write individual integrale for each wave front in the
form jivon in equation lll. The two changes carry through to the
individual integrals. Now, we substitute the Hankel function
Hg)(xs) = Jn(xs) + iNn(xn) for Jn(xa). The Neumann function,
N _(xs), adds only an imaginary part to the integral, so it is neces-
sary to take the real part of the resulting integral. Since the Hankel
function behaves like the exponential function for large argument,
it is otill possible to move the contour of integration (alonﬁ the
real axis from #ero to infinity) off of the real axis onto the part
of the Cagniard contour defined before in the first quadrant. The
only error will be that of a line iniegul along the imngimry axis
between the origin and the point where the Cagniard contour begins.
But, such an integral is imaginary as ds is imaginary and the
integrand [the double transform times inﬁg)(xz)] is real along
that path; and when the real part of the.lntogral is taken, the error
will be eliminated.

The asymptotic form in equation 154 may be used because
KE = ‘55 sz is large along the Cagniard contour. Then, we combine
the replacement given in difference number 1 above with equation
154 and multiply by 1/2 to account for difference number 2. The
result, letting « = sp/cy,-is a factor which accounts approximately
for cylindrical symmetry, |
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This factor can be incorporated in £(s)/p" in equation 108. This
approximation for large p is acceptable because only wave front
information is desired. To find the wave front amplitudes of
roguhi waves and the two sided shear waves following the head
waves, the function f{s) must be evaluated at the saddle point,
s =is_. Then, the additional factor introduced by cylindrical sym-
metry is

s ¢-;-:7:-§ . : | (156)
For the head waves f{{s) is evaluated at the branch point, s =1i.
Then, the additional factor is

s/ ,_.!g: . (157)

The factor p changes the time dependence of the first term of the
wave front expansion. A typical term for the line load which wase
proportional to (t-f)N+ 'lz becomes instead proportional to (t- 'r)N.
The geometrical factors in equations 156 and 157 will be interpreted
in section V. It should be recalled that Z was defined differently
for the line and point force. Z is the magnitude of the line force
per unit long-th times 1/ua or it is the magnitude of the point force
times 1/ maz.
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The Circular Rod

The double transforms for the rod, equations 99iv, v, are
very similar to the double transforms for the plate, equations 991, ii.
There are two differences. First, F, given in equation 98a, has
one more term than Fg. equation 98b. But, for large p this
extra term in F {s negligible compared to the other terms. Second,
the hyperbolic functions sinh x and cosh x, where x = x.a or
K,a are replaced for the rod by I (x) or L(x). For large p

(large x) we have the asymptotic representations,

e* o
Io(;) = I,(x) & E;"i and sinh x = cosh x = 5 - (158)

Substituting these asymptotic forms into aquations 991, ii and
99iv, v, it is clear that the double transforms for the rod have an
additional fuctor

va/y (159)

for large p. This factor -ircngthcno the wave fronts near the
axis of the circular rod. Egquation 159 does not apply to the step,
iqustion 113, which is the samse {n rod and plate.

Because the sinh and cosh functions were replaced by positive
exponentials, the above argument does not apply to all wave fronts.
Examination of the expansion procedure given prior to squations
112 shows that only the unreflected waves are kept when the asympto-
tic forms, equations 158, are used. Waves with n or m > 0 have

more rapidly decaying exponential functions as shown in equation 108.
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The double transforms of the reflected waves are asymptotically
for large p negligible with respect to the unreflected waves.
Apparently there is no way of determining the reflected wave
fronts in the rod from the double transforms.

Ray theory can be used to show that the factor/a/y relates
the amplitude of all wave fronts in the bar to the corresponding
ones in plane strain. It was shown above that the amplitudes of
the unreflected wave fronts are related by /a/y . By ray theory
all other fronts ave derived from those wave fronts by reflection,
a process which is the same in both problems. The only differ-
ence comes because the rays in the bar must be strengthened by
the factor \/a/y for energy to be conserved as the rays approach

the centerline.

E. RAY THEORY

Ray theory can be formulated by nub-timiﬁg an expansion
of the form of oquation 84 for ¢ or ¢ into the governing wave
equations 87. The conditions are then that the vn(y. z) must
satisfy the Eiconal equation jwerning the geometry of rays and
wave fronts and that the amplitudes of the wave fronts must vary
in the directions of the rays in a certain prescribed manner. = The

interpretation {s that the energy, which is proportional to the square

"rho govornix partial differential equations are given by Karal
and Keller (14) and Babich and Alekseev (15).
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of the amplitude at a point on a wave front, must have followed the
ray to that point from the source. The total energy which is trans-
mitted between two adjacent rays in two dimensions depends on
the source and is a constant as the rays vary in their separation.

When a ray hits a boundary, two rays are created which
come off at angles determined by Snell's law. The reflection of rays
is shown in figure 7. A dilatational (P) wave incident at an angle
of incidence 6, produces a P wave with angle of reflection O
and a shear (S) wave with angle of reflection OS in accordance
with Snell's law

:::-:-p- k. (160)
oln B¢

Similarly, an S wave incident at angle of incidence OS produces
S and P waves with angles of reflection GS and GP respectively.
Again, equation 160 holds. The amplitudes of the reflected rays
are given linearly in terms of the amplitudes of the incident rays.

In the problems dealt with here there are only two sources
of S and P rays. Theseareat 2 =0 and y=+ a. Iuathe lne
fo;(rco and point force problems it is obvious that the only source
of rays is at 5 =0 and y = + a, where the load is. The pressure
step and longitudinal impact problems are shown in figure 8 for a
time immediately after application of the load. The direct reiult
of the application of the load is the step which is given in iquation
113 and moves at the dilatational velocity. Since the dilatational
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velocity is the maximum velocity of any disturbance, the step moves
ahead of all other waves. Because the step itself does ;:ot satisfy
the boundary conditions at y = + a, a system of wave fronts starts
at the two points S and S'. All rays leave those two points and
reflect off of the free surfaces, y =+ a, to produce the many wave
fronts. Notice that the pattern of waves formed at S and S' ls
the same as that shown in figure 4.

Because of the simple geometry of the plate (or rod), in
which rays reflect between parallel surfaces, any ray can be
associated with a single angle OP. For P type rays this is the
angle of reflection of that ray from the surface at which it was
created and aleo the angle of incidence of that ray at the surface
at which it will end. For S type rays O, is the angle of inci-
dence of the P wave which created the 5 wave and it is the
angle of reflection of the P wave created by the S wave. The
formulas of ray theory can be identified with formulas found from
the expansion of the double transforms by using the relationship

., = sin OP. {161)

Only real rays will be considered here and hence s, <L (Grazing
{incidence, for which s, =1, will not be considered here.) For-

mulas from ray theory are written here in terms of s The

o'
amplitudes in the neighborhood of the source depend primarily on
angle (s,). Reflection reduces the amplitudes by a factor depending

only on angle. Only the formula which gives the weakening of the
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rays as they diverge requires other variables.

Ewing, Jardetsky, and Press give the reflection coef!icu;xta
for a free surface (reference 29, pp. 24-28). Their results for
plane harmonic waves reflecting off of plane -urfacei are inde-
pendent of frequency and therefore apply here. The results are
written differently for waves incident on the surface y = +a than
the sufrace y = -a because there is a sign convention involved in
the definition of the shear potential. If Pinc and St ne Mre the
amplitudes of the incident waves and PLos 8nd S_ . are the ampli-

tudes of the reflected waves, the conditions at a free surface are

that

P TR

ref inc -psinc
and {162)

Sref

s - RP

=+R - RS

papinc inc
The upper signs apply for y = +a and the lower signs for y = «a.

The reflection coefficients as functions of angle are
(kz 2652 4a? fa-sDii- o3 )

(kz 28 )z+ 4-2 \/(1 8, kz *{)

\/ 2_’ .2 (k - Zcz)

Ryp" 2 ’ (163)

(kz z-z) + 4- »/(l-nz)(kz- . oz)
4 ° \/1- aoz (kz- Zni)

k3 2022 4 442 /oo -z)(kz- 3;

ps

/
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Geometry of the Rays |

Consider a ray which starts at y=a and s =0 and then
zig zags down the plate as in figure 9, changing from P to S
and back again in any order, and finally arrives at a point (y, z).
Let @ be the component in the y direction of the distance
travelled as a P wave. Each time the ray traverses the plate
as a P wave, it contributes 2a to a. If the wave arrives at
{(y,s) as a P wave, o must also {nclude the contribution a-y
or a+y. Similarly, let p be the component in the y direction
of the distance travelled as an S wave. The distances travelled
in the transverse direction, a and £, can be expressed in terms
of the y coordinate of the end point of the ray (the observation
point) and the number of whole traversals as a P wave and as
an S wave, n and m, respectively. The contributions from
total traversals are 2na and 2ma, respectively. If the last seg-
ment of the ray is of the P type, then one must add to o either
a-y if the last segment is off of the top boundary or aty if the
last segment is off of the bottom boundary. Thus, for P rays
and P wave fronta o and p are given by equations 109a while
for S raysand S wave fronts o and § are given by equations
109b.

With equations 160 and 161 in mind the geometry of the rays
can be discussed as follows. The total distance travelledasa P

wave 19
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a - a R
cos OP ‘/1 - soz

and the distance travelled as an S wave is

B -

. __B . _kB_
cos&s Vl-sin@s Vk"d

Then, the total distance travelled in the z direction is

as ps
z=atan9_+ Btan 6_ = o+ 2

P S
2 2 2
\/l-so \/k-ao

(164)

and the total time of travel, which is the time of arrival of the wave

front, is

C
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(165)

Equations 164 and 165 are identical witl; equations 116 and
117. The locations of the wave fronts can be calculated by con-
sidering T a constant and solving equation 165 for 8, and then
substituting into equation 164 to find z as a function of y for that
7. That gives a picture of the wave fronts at a given time. One
can also consider z and y as given and solve for the times of

arrival, T, associated with different values of m and n.

Divexxence Factor

Consider two adjacent rays parameterized by 8, and

s, + A8 . The energy propagating between the rays must depend
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only on LIRS The energy is proportional to the square of the ampli-

tude of the wave front multiplied by the area between the rays.

The area in plane strain is given by f(Ay)Z-F (Az)f » where the
variations are at constant r. Thus, the amplitude, A, for given

L must vary such that

a2 VianZray?

is a constant,

We wish to find relationships between the differentials
Aso, Ay, and Az along a wave front. We consider, for example,
the shear wave fronts, for which Af = + Ay. Then, we differen-

tiate equations 164 and 165 to find, respectively ,

2 s
‘— [+ k o
i—--——z-m-+-2——g-37-z:|Anoi Ay = Az,
(1-'50) ( Vk©- 8

) ‘0)

{' as kzﬁqo K’
}As + ' Ay =0,

J +"'2"""Z“572"‘
1 - so) / (k“- so) O"VQZ'__;T

o
Solving these two equations and substituting the correct expression

from equation 110 for g"(iso).

" 2
g (igo) = -E!'-!- o + k ﬁ ] . (166)
da' Q1 - 8:)3/2 (kZ- .2)3/2

we have along a shear wave front

Vk™- 8 n
- T o
Ay-+cds° -—-;z-—-g(ilo)Aso
[J
. d,2 2 "
Az-—z(k-so)g(iso)Aso.
k
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Then, between two rays

[ o4 n
A2 Viay)?+ az)2 = A2 :‘é Vic®-s2)eZ +(kz-s§)2_ g (is)as_

must be a constant. Therefore, the shear wave front amplitude
must be expressed as a function of 8, alone times the simple

divergence factor;

f_(s ) f.(s )
As_Soo S o (167)
/gn(iso) / il [ _a . _ilp ]
at u_.i)s/z - s§)3/2

The function fs(u o) will depend on the source of the rays and on
the amount the ray has been diminished by multiple reflections.
The amplitude along dilatational fronts has the same divergence
factor. Equation 123, found for the double transform for regular

wave {ronts, agrees with equation 167.

The Source

The problem of finding the strength of the rays at the
sources y= ta and z =0 is a canonical problem of ray theory.
The problem is solved here by extracting from the double transform
solution for the plate the part which includes only the rays going out
from one or the other source. That part will be the complete solu-
tion to a simpler problem, one where the plate becomes a half-
space or quarter-space as one surface of the plate moves to
infinity.

The wave front expansion for regular waves found by
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Cagniard's method was given in equation 123, The functions which
must be evaluated #t the saddle point are found in equations 112,
The sums involving R in equations 112 are replaced by unity
(i.e., n and m are taken as zero) to obtain the correct expres-
sions for the rays leaving the source. The time dependence in
equation 123 is left out in writing the wave front amplitudes. Here,’
the divergence factor, 1/ m , is also left out to leave func-
tions of L only. Those functions, the source amplitude functions,
will be called S o for shear waves and Po for dilatational waves.

For 5 =0 and y= +a they are

16 V2 ZXcgso
S =
o
157 h--cz [a?-262)%+ 402 V(1-82)(k%-62))
»(168)
8 V2 ZXcg(kZ- 2.§)
P =
[«
151m(1-l§)[ (kZ-Zsi)Zi- 4-: /(l-ag)(kz-ag)] )

for the impact problem. For the pressure step problem multiply

the above functions by 8, and for the line force multiply by

5 a 2
E S G
d
and take the upper sign only since only y = +a, £ = 0 is a source,
The difference in dimensions for the line source problem is accounted
for by the difference in time dependence of the wave fronts.
If one could find S, and P  for problems with nonmixed

end boundary conditions, then one could find all of the wave fronts
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by the ray method. However, even the canonical source problems

remain unsolved for nonmixed boundary conditions.

Multiply Reflected Rays

Wave fronts and rays arising upon reflection of the source
rays from the surfaces can be calculated by using the reflection
conditions given in equations 162, Consider the wave front which
arises from rays which have traversed the plate n times as P
rays and m ti?nen as S rays. There are several different paths
for rays, all of which cross the plate n times as P rays and m
times as S rays. Each path contributes a different amount to the
amplitude of the final wave front. The problem is to add up all of
the contributions. For simplification consider only rays arising
from the upper source. Because of the symmetry in the plate,
that is sufficient.

A precise statement of the protlem is the following. Let
P representa P wave traversal and S an S wave traversal,
Then, we wish to know every permutation of n P's and m S's.
For instance, if n=2 and m = ], the three permutations repre-~
sent three ways of creating the S ray EW shown in ﬁgure- 10:

PPS represents path SBDEW

PSP represents path SBCE W

SPP represents path SACE W,

Next, add to a#ch of the permutétiona of n +m letters the letter
S {f shear amplitudes are being calculated, or the letter P if

dilatational wave amplitudes are being calculated. For each per-
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mutation one finds a contribution to the amplitude by multiplying
a series of factors. The first factor is P, if the first letter is
P, S, if the first letter is S. The second factor is - R multi-
plied ae many times as an S is followed by an S plus the number
of times a P is followed by a P. The third factor is found by

multiplying by F R op ©3Ch time S is followed by P. The upper

P
sign is used when the S is in an even numbered position, the
lower sign when S is in an odd numbered position.. The fourth
factor is found by multiplying by + Rps each time a P 1is followed
by an S, taking the upper sign when P is in an even numbered
position. For instance, PSPSS becomes PSPSSS for a shear
{front and contributes P (-R)z(-R"_’)(«le)Z to the amplitude,

The following identities, which come from the defihing equations,

equations 163 and 168, will be useful

- 2
R.pRp‘\— 1-R

SoRop z - Po(l - R) > (169)

PyR,, = = Sl +R) . J

Equations 169 hold with the sign of S o in equation 168 taken ap-
propriately for the upper soarce. It is expected that only R need
be involved in the results in any complicated way as the expansion
of the double transform produced polynomials depending only on n,
m, and R, but not on Rs or R__.

P ps
Consider shear waves. In any permutation let { be the

*
Multiplication by the divergence factor then gives the correct wave
front amplitudes. '
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number of times an S {8 followed by &8 P, Now consider first
only those permutations starting with S. If S is followed by P
{1 times, then P is followed by S { times also. Then, the
amplitude is found by taking as factors S  and then (_R)nhn-Zl
and then + R'p and ¥ Rps f times each. Only the sign of the
result remains to be determined. Consider in pairs the occur-
rence of SP in the permutation and the next to follow PS. If
between the two S's there are k P's, then one must take the
factor (RspRp')(-l)k'l. One then must take (--l)k'1 a total of !

times., The sum of the k',a is n and (--1)'1 occurs £ times, ‘lO

the amplitude contribution is

ntme21 nime-24

S,(-R) (R, R ' (-07t= s (0™ (m) a-rHt,

sp ps

where equation 169 iuu been uied.

Next, it is necessary to count the number of permutations
with S followed by P ! | times. Any but the last of the m+l S's
may be followed by a P and ! of them are. There are ( rln)
ways of choosing which S's are to be followed by P's. The last
of the P's must be followed by an S, Then, provided £=1 and
n =1, there are ( ;‘:i ) ways of choosing among the remaining P's
which will be followed by S's. Thoee two choices completely
determine a permutation. Clearly I may be as small as one and
may range up to either n or m as a maximum, whichever is
smaller. Then, one may sum over all §a1uen of £ to find the
total contribution to the amplitude of an S wave due to rays start-

ing as S waves. It is



«139-

legser of m,n

s ( ; )( ?-i M- l)mﬂ n+m-2(

(170)

Next, consider all permutations starting with P which
create shear waves. Again, ! is the number of times an S is
followed by a P. The number of times a P is followed by an S
is £ +1. The amplitude is found by taking the factor Po and then
the factor -R atotal of n+m - 2¢ -1 times, once for each time
an S is followed by an S ora P 1is followed by a P, and then
by taking the factors + R.p and + Rpa the correct number of
times. The factor + R'p will occur { times and + Rpa will
occur { +1 times. Again, consider in paris the occurrence of
SP in the permutation and the next to follow PS. Between any two
S's let there be k P's and then a factor (R“pRp.)(--).)k'l is intro-
duced. This happens f times. In addition, let there be j P's
before the first S. This introduces a factor R (-1, The total

of the k's plus j ie n and the factor (-l) occurs 1 times.

Hence, the contribution to the amplitude is, using equations 169,

ntm-21 -1 m+l

oa(RepRoy) et s (-

Py(-R) sp ps

(1+R)(1-R ) R

Next, the number of permutations for each value of £ must
be counted. Any but the last of the m+l S's may be followed by
oneof { P's, The S's to be followed by P's may be chosen
in (T) ways. Thelast P must be followed by an S. The re-

maining n-1 P's may bé followed by £ S's in (') different

1-RY)!. m=1,n=1.

n+me2{

-1



-140-
ways. These two choices completely determine the permutations.
The number I may range from zero up to either m or n-l,
whichever is smaller. Then, rays starting as P rays contribute

toan S wave front a total amplitude

lesser of m,n-l

) s (-2 (P aemya-RYIRATAL gy
1=0 .
fm=1 n21)

The special cases n=0 or m = 0 are easy to calculate,
The amplitudes of the S waves are
So(~R)™ = 8_(-)™R™ . (n=0)

172)
po(-n)“"(-n“n pa= Soll*R) R™!,  (m=0,n21)

The total amplitude of any shear wave front exclusive of the

divergence factor is then taken from equations 170, 171, and 172 as

lesser of m,n _ \
sy ) UPE ™M aerytprime
1=} :

lesser of m, nel
+ ( n;l Y T)(-l)mﬂ (1+R)(1-R2)1 Rn+m-2! ~1
1=0

{173)

m=1, n21)

S-DTRT (n=0)

S 0(1+R)Rn'1 {m=0, n=1) , J |

~
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Dilatational wave fronts can be found in a similar manner.
In the derivation above P and S, Po and S o’ and n and m

interchange their roles, but R and R sp are interchanged with

ps
a reversal in sign. The identity relating S, and P° takes a
different form. One may then write the total amplitudes of the di-

latational fronts exclusive of the divergence factor as

lesser of m,n W
P, Z (2 )Ly .pRn -2t
1=l
lesser of n, m-1
) Z (n;ol ) ;1 )(_l)nﬂ (I-R)(I-Rz)l ghtm-2t -1
2=0 } (174)
(n=1, m=1)
P (-1°R" (m = 0)
- Po(l - R)Rm"x (n=0, m=&1) , J

If the transform methods are to give the same wave front
amplitudes as the ray method, then the formulas above should
agree with equations 112 when the funct-ions f(s) in equations 112
are evaluated at the saddle point. First, notice that R(is o) in
equation 104 is the same a'l the reflection coefficient R defined in
equation 163. It has been verified that the formulas in equations

173 and 174 agree with equations 112 for the special cases
m=0,1 2 (narbitrary) and n=0, 1, 2 (m arbitrary). Though
the formulas found by the two methods take different forms, there
is no reason to believe that they are not in complete agreement for

alln and m.
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V. RESULTS FROM WAVE FRONT THEORY

A. WAVE FRONT LOCATIONS

Solution of equations 116 and 117 (or 164 and 165) to find the
many wave {ronts created by reflection was carried out numerically.
The wave front locations were found for a Poisson's ratio of 0.3
(kz = 3,5) for two times: first a time t = 8a/c e when the leading
wave front would have travelled a distance of four thicknesses, and
second a time t = 16a/cd. The results are presented to geometrical
scale in figures 11 and 12. Only the wave fronts of the line force
problem are shown; twice as many wave fronts are created by end
loads, the additional wave fronts being necessary for symmetry
about the center of the plate. Dilatational wave fronts are shown as
solid lines, shear fronts as dashed lines. Figure 12 is broken into
two parts for convenience. The integers n and m of equations 109
are shown on the wave fronts.

The wave fronts in figures .11 and 12 should be compared to
those shown in figure 4. The points A, B, D, and E on the three
figures are the same. In figures 11 and 12 the leading circular
dilatational wave froﬁt. AB, can be seen to reflect off to create a
dilatational wave front and a shear wave front. Then, each of
these fronts reflects off to create two more, and so forth. Simi-
larly, the leading circular shear front, which starts out from
the source, reflects to create two new wave fronts, which in turn
reflect off of the boundaries. The two sided shear wave front, .

KD in figures 11 and 12, has too great an angle of incidence to
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create a dilatational wave front. It reflects to form another two
sided shear wave. The head wave, AG, reflects to create a con-
tinuation of itself and also to create a dilatational wave front at
grazing incidence. The continuation of the head wave is tangent
at E to the two sided shear wave and a regular shear wave front
which comes directly from the leading circular shear front by re-
flection.

Each wave front can be labeled by its type, P or S, and by.
the two numbers n and m as shown in figures {1 and 12. One can
follow back from the very first wave fronts along n P wave fronts
and m S wave fronts in some order, but always following as one
wave is created by another, and finally one arrives at a P or S
wave which would be identified by the numbers n and m. Notice
for instance the S wave front marked 1J in the figures, for which
n=2andm =]1. It is created as two wave fronts come together.
One, the P wave front HI, was created when a head wave, AG,
was followed by a F wave front, GH, and at the same time when
the first P wave front, AB, was followed by an S wave front, BH.
The second, an S wave front, Fl, was created when the first P
wave front, AB, reflected to form another F wave front, BF, which
in turn created the S wave front, FI. By these three paths energy
could travel along rays to the S wave front 1J. This special cir-
cumstance, that different rays merge, occurs only because the
parallel faces of the plate form a simple geometry.

The form of the wave fronts near the end of the plate can be

investigated theoretically by imposing small s, on equations 116
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and 117. The approximate equations for the wave fronts are then

' : . 2 . 2
- 1 l:( o ( o):,
¥R —— | 1+.7..} +kp |1+
€a | 2% )
and zz[a-lv-g-) so.

which together give

zzzz(a+-£-) (cgr - & - kB).

Along a wave front either a or B is constant while the other varies as
y. In either case z is given as a quadratic function of y and the wave
front must cross the line z = o parallel to the free surfaces and
with some finite curvature.

To study wave front arrivals as they occur in time at the surface,
it is convenient to group them. Looking particularly at figure 12,
it is clear that the initial wave front will be followed closely by a
series of wave fronts created as the P wave fronts reflect back
and forth. Each member of this series of wave fronts is found by
actual calculation {(as shown below) to be weaker than the preceding
member. After 2 longer delay a wave {front arrives which is
created by the head wave travelling once across the plate. This
wave front is followed closely by successively weaker and weaker
wave fronts. After another long delay a wave front arrives which
is created wheﬁ the head wave travels twice across the plate.

That wave front is followed closely by successively weaker and
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weaker wave fronts created by P wave reflections after the head
wave. The process continues through several sets of wave
fronts. An observer far from the source is able to distinguish
the grouping better.

The head waves, which start each series of arrivals at the
surface, have been observed experimentally because they are
the strongest. Hughes, Pondrom, and Mims (32) were the first
to observe the head waves arriving and gave the correct explana-
tion. Meitzler (33) and Miklowitz and Nisewanger (19) observed
the head waves under experimental conditions more similar to
fhe theoretical conditions imposed in this thesis. They placed
a rod at the end of the expansion chamber of a shock tube, which
supplied a sudden step in pressure. The strain pattern as a
function of time was displayed on an oscilloscope and photo-
graphed. The patterns show a large number of_ wiggles which
were caused by the wave front arrivals. Certain of the wiggles
are distinctly larger than the others. They were identified and
attributed to the head waves by Meitzler, who was studying wave
fronts. Miklowitz and Nisewanger were looking at the low fre-
quency behavior and mea'sured radial displacement as well as
axial strain. However, their records also show the head waves
at the expected times.

The experimental records of Meitzler and Miklowitz and
Nisewanger were searched carefully with the hope of finding a

larger number of the wave fronts predicted by the theory.
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Choosing only the clearest records, it was possible to identify some

of the wiggles with predicted wave fronts, This identification was not
at all certain however., The records are not accurate to sufficiently
high frequencies to bring out the wave fronts clearly. The wiggles are
8o wide that they tend to merge into each other, And so, it is not pos-
sible to distinguish which part of each wiggle feally represents the be-
ginning of a wave front. Only the head waves could be identified beyond
any reasonable doubt, The other wave fronts and the Rayleigh waves

require more sensitive instrumentation for positive identification,

B, WAVE FRONT AMPLITUDES

Time Dependence

Before digculling the amplitudes of the wave fronts it is neces-
sary to examine their time @ependences. The potentials were studied
in section IV, The displacements are found by differentiating the
potentials once with respect to space coordinates and the strains are
found by differentiating the potentials twice with respect to space co-
ordinates, Looking back at equation 108, it is clear that each dif-
ferentiation brings out a factor of p. Then, a time dependence of
(t-’r’)h in the potential becomes (1:--1’)}1"1 in the dieplacements and
(t:--r)h'z in the strains, The strains have severer changes at the
wave fronts than the displacements.

The time dependences at the wave fronts of the potentials
in plane strain are given in equations 123, 129, 130, 135, and

136 in terms of the integer N, which is given in equations 112
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as three for the two end load problems and two for the line force
problem. In the rod the wave Irénts have the same time depen-
dences as the fronts in the equivalent plane strain problem. The
wave fronts caused by propagation from a point force are more
severe because 6{ the‘\/;in equation 157; one-half must be sub-
tracted from the exponent of (t = ) which is found for the line
force problem. Then, the time dependences of the strain at the
wave fronts are as follows. |

First arrival at v = z/cd:

end load only, H(t - 7).
Regular waves:

/2

end load, (t - 7)1/2; line force, (t - 1)"1 ; point force, 6(t - 7).

Head waves:

1/2 2

end load, (t - T) ; line force, (t - -r)” ; point force, H(t - T).

Two sided shear waves, fort >7:

-1/2

end load, (t - -r)l/z;line force, (t ~ T) ; point force, 6(t - 7).

Two sided shear waves, for t2r:

1/2 2

end load, ¢r - t)"’ “;line force, (v - t)'” ; point force, 8(t - t).
For the end load problems the time dependences are all the
same except for the initial step which has the strongest time de-
pendence. In the point force and line force problems the head
waves are weaker than any of the other waves. The greater
severity of the wave fronts under a line force or point force is

not surprising in view of the fact that a finite force is applied to

only an infinitesimal area.
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Amzl itudes

The wave front amplitudes were calculated for the three
plane strain problems for Péiaaon's ratio equal to 0. 3 for two
different times, t = Ba/cd and t = 16a/cd. The wave fronts are
shown in figures 13 to 21 plotted to geometrical scale with the
amplitudes in non-dimensional form written in along the wave
fronts. Dilatational wave fronts are shown with solid lines and
shear wave fronts are shown with dashed lines. The amplitudes
of the two sided shear waves for t«<T are given in parenthesis.
The amplitudes of the head wave for the line force are not shown
as the time dependence of the head wave is weaker, and therefore
the disturbance near the head wave is an order of magnitude
smaller than the disturbance near other wave fronts. Only half
of the wave fronts produced by the end loads are shown. The
manner in which the various factors affect the wave front am-~
plitudes can be studied in the several figures.

The effects of the source of rays and the divergence factor
are studied most easily by looking at the circular wave fronts
which have undergone no conversion from one type of wave front-
to the other type through reflection. Those are the P (S) wave
fronts shown in figures 1t and {2 with m = 0 (n = 0). According
to equations 162, along such wave fronts the two leading wave .
fronts are reduced in magnitude through successive reflections

into wave fronts of the same type by the factor R which is never
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zero or infinite, and so the behavior of the reflected wave fronts
is determined mostly by the source of rays and by the divergence
factor. The effects of reflection on the amplitudes can be studied
by looking at the wave fronts which arise after multiple reflections.

The variable 8 (so = gin OP = ksin Bs). which appears in
the equations, must be interpreted in light of ray theory. When
8q is small, an S or P wave front is nearly parallel with the free
surfaces. When s o \® nearly one, a F wave front is nearly
perpendicular to the free surfaces, and an S wave front is nearly
at the angle of the head waves. Along the two sided shear wave
5o variees between one and k as the wave front variee in slope
between the slope of the head wave and the direction perpendicular
to the free surfaces. In that case (so = gin 9P71) the saddle point
is on the branch cut, a head wave arrives before the shear wave

(which is two sided), and GP is not a real angle.

The Source

The source of waves affects the wave front amplitudes
mainly through the source factors given in equations 168 and
the following remarks. The divergence factor given in equation
167 also has a variation with angle which must be attributed to
the source. The line force problem is the easiest to understand.
The source function for P waves, P o’ varies slowly with angle;

but the divergence factor vanishes when s o approaches one. This

is a natural result that the F waves are pushed out most strongly
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directly under the load anci most weakly to the side of the load
(so = 1). The source function for S waves, So' vanishes at

6, = 0 and at 8y = 1. Directly under the load (so = 0) the shear
wave fronts must have zero amplitude by symmetry.

The end load problems are not so simple. The load itself
causes a simple step to move down the plate. Then, that atep
cannot satisfy the boundary conditions on the free surfaces and
s0 a complicated system of wave fronts of weaker time dependence
is formed as shown in figure 8. As 8, approaches zero, so do So
in both end load problems and Po in the pressure step problem.
The boundary conditions at the end of the plate govern wave fronts
moving along the end of the plate at grazing incidence (s o= o).
There, P waves must have zero amplitude in the pressure step
problem for the displacement “y to vanish and S waves have zero
amplitude in the longitudinal impact problem in order that oyz
be zero. The product of the source function S o and the divergence
factor approaches zero as s o approaches one except if a is zero.
That one exception, @ = 0 and 8, going to one, vcorresponds to
the point of tangency of the two sided shear wave and the head
wave, point E in figures 4, 11, and 12. There the regular shear
wave, two sided shear wave, and head wave all approach infinite
amplitude. (Equations 129, 135, and {36 govern the head wave
and two sided shear wave.) (The approach to infinity is too fast:
to show clearly in figures 13.~ 14, 17 and 19.) The product of the

other source function, P o’ and the divergence factor approaches
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infinity as s o approaches one. But 8, becomes one only where a
P wave intersects the head wave at the free surfaces (A, G, etc.
in figures 11 and 12). The amplitude remains {inite due to the
reflection coefficiente going to zero except at the very point
where the head wave starts, point A on figures 8, 11, and 12.

There the dilatational wave front has infinite amplitude.

Reflection at Grazing Incidence

A critical examination of that one point A on figures 8, {1,
and 12 is enlightening. The strain at the surface due to the
dilatational potential can be calculated by considering the two
integrals containing the dilatational wave fronts at point A. No
wave fronts arrive before those t\.vo wave fronts. The first |
integral is for the unreflected P wave, for whichn = m = 0; and
the other integral is the first integral in equations 106i, ii for
; and repreoenta; the step. We will consider the impact problem.
The pressure step problem gives the same approximate result
since the Cagniard contours appropriate to the region of point
A are near the point s = { in the s plane. Thus, the factor -is,
which differentiates the impact and pressure step problems, is
unity.

We wish to find the strain in the z direction due to the

dilatational potential,
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ou 2
z 9
.« *7Tvz ° ';%“' | (175)

First, we take the double transform of equation 175 according
to scheme 2 of table 1. Equation 175 is multiplied by e Pt

cos Az dtdz aﬁd integrated over t and z. The integration over
z is carried out by parts m;sing a boundary condition from

equations 93i with the result

(176)

«© L. sz i LB sz
F e . Z e €a - sze €4
z P i+s8
- 00

-(d(a-y)i-i-% 82

. a2 k® - 2) (% + 26%) de. (17T

i+ 8% [(kz +262) - 42 V(1 + 62 (2 + 82)) -

The first term in equation 177 comes directly from the second

term on the right hand side of equation {76. The second term in
equation 177 is the integral for the step from equation 1061 mul-
tiplied by -l e 232- sz. The third term in equation 177 represents
the unreflected dﬂ:éational wave frqnt for whichn=m = 0. 1Itis

found by taking the f(s) for n and m equal to zero as given in
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equations 112i and multiplying by -’—Z. (Note that k2 «2=N/p)

The analysis of equation 177 for the two wave fronts inside

the plate has already been done. The first two terms together:

give the step in equation 113*. The third term is like equation

111 and the wave front is given by equation 123 as

1/2
., ~2 i(iso)‘\ /---E--—- t-7) ’
| g'(is )

where

2 2 2 2
f(s) = - Z(k" - 2) 8" (k™ + 28 )2
w{l + sz) [(kz + Zsz) - 452

(1+ a2y 0+ )]

g"(s) = .__2_:_1__2.3/2 .

cd(1+s)

from equation 117 with g = Oanda=a- y

{ [ fa-n) ]
d 1_%z_l

and from equation 116

¥The residue of the sum ol the lirst two terms taken at the pole
s £ i and multiplied by 2wi is the Laplace transform of equation
113. The sum of the terms must be used because it is only the
sum of the terms to which Jordan's lemma (reference 30, p. 137)
applies and the total integral is given by the residue.
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The above can be combined for (a - y)/z small (then, soq;l) and

the step added with the result

- ‘
¢, =-ZHI(t- Z)+ 2,272 ( zy)'\f: (t--é%'{:zo(a-v)z).

€4 v a-
(178)
Equation 178 holds approximately inside the plate near the sur-
face and near to the point in question, point A.
At the surface we let y equal a in equation 177 and combine
the three terms. The result is easily seen to have no pole at
s 2 i and can be handled like equation 111 with g(s) = -ize/cd.
(See equation 110.) According to equation 114 the Cagniard contour
is given by

tc

szi—_"o

The two arms of the Cagniard contour in 'figure 6 are collapsed
onto the imaginary axis branch cut. The solution by Cagniard's

method is then given by equation 120 as
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2 - 2) (is?) (&% + 24°)

C
- d H(t - _z_..) .
2 iz c
(1 + 8%) [(k" + 26%) - 482 V(1 + &%) (K + aZ)J d
it cd
.= (179)

Equation 179 is easily approximated near t = z/c:d with the result

fory=a

BHZ -\[kz.l \fd z
€, - 4 (t-c*&—) : (180)

Z 2 Z

k™ - 2)

By a similar analysis using equation 112ib the contribution at the
surface from the shear potential of the head wave is found to be
the same thing multiplied by a constant.

Equations 178 and 180 are plotted in nondimensional form in
figure 22 for {a - y)/z equal to 0.0, 0.1, and 0.0447 and k?‘ = 3, 5.
Essentially, figure 22 is a plot of longitudinal strain versus time
for three stations with the same z coordinate and located at three
different distances from the surface, one station being on the
surface. The results of wave front theory, equations 178 and 180,
are shown with solid lines. Nofice that the strain on the surface
behaves simply as the square root of time. Also, notice that the\
strain inside the plate takes a jump and then quickly reverses

itself, starting back to zero as the square root of time. The



LONGITUDINAL STRAIN

-167-

a
N
T

0. 002 0. 004 0. 006 0. 008 0. 010 0.012

- I i I L
T T T T >

c,t
TIME

STRAIN FOLLOWING STEP NEAR SURFACE

Figure 22



-168-

nearer the station to the surface, the more quickly the reversal
takes place. DBecause the strain due to the dilatational potential
must vary continuously as y approaches a, it can be inferred that
after the jump and subsequent reversal takes place the strain insgide
the plate behaves almost the same as the strain on the surface.
This is indicated by the dashed line in figure 22.

Some light can be thrown 6n this strange behavior, in which
the strain is influenced by a regular dilatational wave front and
the sfep. by looking at two different limiting procedures. If
a-yis conaidefed small but fixed and t approaches the arrival
time for the circular wave.. the step plus the wave front approxi~
ma.tioh for the circular wave front is found and equation {78 holds.
But, if t is allowed to approach z/c¢ d while {(a - y’/ 4 remains small
in comparison to (t - z/cd). then the wave front form at the surface
is found. The second limiting procedure is carried out by letting
y go to a first and then the results are the same as those found for
the surface in equation 180.

In this situation one is led to ask for what length of time the
first term of the wave front expansion--that is, the first term of
the inner expaneion of equation 84--is a good approximation to the
total strain. Here it is evident from figure 22 and equation 178
that as y approaches a the amplitude of the first term increases
but the first term becomes valid for a lessening interval of time.
{Note in figure 22 the more rapid fall of that term. ) If one con-

siders the whole wave front expansion in equation 84 as a Taylor
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series times (t - 1')l » then one might asgk what is the region of
convergence, if any. It would appear that the Taylor series would
converge to the correct solution over a sraller and smaller region
of convergence as y approaches a.

The preceding discussion should shed some light on the
grazing incidence problem. Goodier and Bishop (34) have studied |
this problem for harmonic waves. The problem is to determine
the reflected waves when a dilatational wave ie incident on é surface
at a ninety degree angle of incidence. Figure 22 shows whé,t actual-
ly happens in a certain transient problem. When there is an end
load on a plate, a step wave travels down the plate at a ninety
degree angle of incidence to the free surface. By ray theory the
wave fronts created by the step have been considered as part of
the canonical proble;rn of the source. More generally speaking,
however, grazing incidence is a refraction rather than a reflection
problem or a source problem. In the case of harmonic waves that
Goodier and Bishop considered, the same comments should apply

since harmonic waves can be used to synthesize transient waves

by means of the Fourier transform.

Head Waves

The head waves have a very simple dependence of amplitude
on position. Looking at equations 129 and 130, one can see that
the amplitude at a point on the wave front depends on one co-
ordinate which is the distance in the z direction from the point of

tangency of the head wave and the circular shear wave (E on
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figures 4, 11, and 12). Going away from the point of tangency, the
amplitude decreases monotonically from infinity. However, in
the line force and point force problems the amplitude must be
considered as negligible compared to the other wave fronts since

the time dependence is weaker, as has been shown.

Effects of Divergence, Reflection, and Cylindrical Symmetry

The divergence factor given in equation 167 is the only
factor making up the wave front amplitudes that cannot be written
in terme of s o alone. The dependence on a-and P at constant L
is such that the larger @ and B, that is, the farther the wave front
from the source, the weaker is the wave. This satisfies the in-
tuitive notion that the amplitude of the wave front must decrease
as the wave front spreads out.

The reflection coefficient R given in equations 163 varies
smoothly with L and takes on the value one-when 5, is zero or
one. With R = { the polynomial functions of R in equations 112
which account for the multiple reflections are zero only for dila-
tational waves when m is not zero. When LR is nearly one, those
are the dilatational waves which are created where the head wave
reflects at the surface. Those’:_dilatational waves are not zero
because the product of the source factor {equations 112) and
divergence factor (equation 167) becomes infinite as 8, approaches
one. The dilatational wav?s with s o 2ero must have zero amplitude
because of the reflection factors except for the one wave front which

is created through multiple reflections as a P wave front only. The
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other dilatational wave fronts with 8, zero have zero amplitude
according to equations 162 because both Rsp and Rps given in
equations 163 are zero when s, is zero.

The point force problem differs from the line force problem

ws p
through the correction factor a V"Z'z'%""" given in equation 156
d

and through the difference in the definitions qf Z. The p affects
the time dependence as explained above. The distance z/ 8, is the
distance from the observation point back to the line 2z = 0 measured
along a line inclined at the angle of a P ray. For the circular
dilatational wave front that is simply the distance to the point force
measured along a ray. For all wave fronts z/ . is a measure of

the distance from the point force. For the head waves the factor

a‘\g_—given in equétion 157 indicates a lessening of amplitude
d

compared to the line force problem which is proportional simply

tom

C. WAVE FRONTS IN THE MODAL EXPANSION

The solution given in equaiions 35 as integrals over the modes
of propagation is an exact solution and must therefore contain
information on the wave fronts. However, great difficulties are
met when wave front information is sought in the modal solution.
To investigate the wave fronts in a plate, rather than using equations
35 directly, a similar expansion for the plate will be found in terms
of the Rayleigh-Lamb symmetric modes of propagation for the in-

finite plate in plane strain. The following discussion reveals no
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new information about wave fronts but does give additional meaning
to the high frequency part of the Rayleigh-Lamb spectrum, Only
the head waves and the step will be found here from the modes,
Analogous information can be found about the Pochhammer fre-
quency spectrum of the rod.

We will use the double transforms given in equations 99i
for the impact problem. The inversion theorem for the sine and
cosine transforms given in equation 16b is applied by multiplying

equations 99i by% ei

A% 4k and integrating over 4., To writea
solution in terms of modes, residue theory is used to carry out

the integration in a manner similar to Skalak's (5). It ie easily
seen that the integrand has no branch points; the only possibilities
are Kﬁ: 0 and K i = 0 and expansion at those points quickly shows
that they are not branch points, Since the integrand vanishes suf-
ficiently rapidly for K large and in the first two quadrants of the X
plane®, the integration can be expressed as a sum of the residues

of all of the pol—e- in the first two quadrants, It can easily be shown
that the total residue of the pole at K i = 0in @ is zero and that the
only other simple poles are the zeroes of Fg. The Rayleigh-Lamb

- modes of propagation. Thus, for example, @ is expressed as a
sum over all zeroes of Fg: where /fa,fn(p), in the first two quadrants as

*The integrand vanishes at least as fast as }{-em" for large 4.
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- 2 c i
cpzZ iZ/\E aﬁ_r aidif(sn costhy e e . {(181)

K=k lp)

Next, we wish to integrate along the Bromwich contour in
accordance with the Mellin inversion theorem, equation 15b., Now,
equation 181 holds everywhere in the p plane including on the
Bromwich contour, which must be located to the right of all singu-
larities, In the present case, it is known that the Bromwich contour
need only be located infinitesimally to the right of the imaginary p
axis because the solution is expected to be stable with time. Then,
we select in equation 181 the modes for which the Kn(p) have a
positive imaginary part when p is located on the Bromwich contour
Brl. located slightly to the right of the imaginary axis. The answer
is found by writing for the Bromwich contour p = {J + € with « and
¢ real and ¢ small and positive., It is known that the Rayleigh-
Lamb spectrum for & real, which is consistent with the location
of Brl. includes some modes for which kK has a positive imaginary
part and other modes for which i is real. (See Mindlin and Onoe
(35). Use here of w real is consistent with the lack of dissipation.)
Among the modes for which X is real, equation 181 admits only the

dKn dl(n .
modes for which T =i I is negative because then

*
This is the same as requiring that the group velocity, - ==, be

dw
positive, dk
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' d'(n 44
/Cn(p)ﬂ/(n(i(d‘fﬁ)‘;'ﬂn(m)"‘C—a—PT 3/(n(iﬁ,)‘iﬁ-m’-

has a positive imaginary part. Then, from equations 181 and 15b
the potentiale are written as integrals over w of sums over all modes

d X
for which Im £ >0 6r ImA =0 and == <0 in the form

2

oo ..P_z + 2/(2)
c
¢=§ 1 AN "8
THC, /Ld! g (ps /)

n

ifz + iwt
sinh/(' a cosh/cdye dao, {(182)

ls/{n (p)

where pz = - Wl In equation 182 ¢ has been taken as zero. Certain
indentations of the Bromwich contour may be necessary where the
integrand in equation 182 is not ﬁnite*f .

It is convenient now to look at the right hand side of equation
182 as integrals to be taken over all parts of all modes in any
desirable order. To study wave fronts it is necessary to integrate
in a useful order over the téerraced part of the spectrum, which
was investigated by Mindlin (36). The Rayleigh-Lamb equation -

for symmetric waves is

¥F GF_JOL may have zeroes, which are branch points of the integrand
(see Rference 18). These do not occur in the high frequency part of
the spectrum, which is of interest here.
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2
2
2 w2 .
Fg= (-—f—-z + 2L ) cosh /(da sinh /Caa -4 /(d /(8 sxnh/(da coahKBa
8

= 0 (183)

In equation 183 Ky and /(s are imagihary in the terraced parts of the .

spectrum (w > €q l,g}) As mentioned before, the branches of Kd .

and /Cs are not branches of the double transforms and make no

difference in the solution, and so they will be chosen arbitrarily

to be positive imaginary in the lollowing; We will let

'(dgikd and /ﬁsﬁiks.

where k . and k8 are positive real. Then, the Rayleigh-Lamb

d

equation is

2
2
2 w 2 .
Fg =i IZ/C - -c-z cos k ja sink a+ 4 £ k4 k, sink jacoska
8
= 0. (184)
In the terraced regionw, £, and ks are large with w =-cy - The

wave number k d is small causing the second term of the Rayleigh-
, Lamb equation to be small compared to the first unless either
coskda or sink a is small also. Each mode is shown in figure 23
to approach alternately the curves cosk 42 = ¢ and sinksa. = 0.
Those curves were called bounds by Mindlin. Our present

interest is in the parts of the modes near coskda = 0 along which
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kda 2 (m+1/2)nwithm=0, 1, 2, ... The integration and sum
in equation 182 will be rearranged by integrating over parts of
successive modes in a certain convenient order. The idea will
be to integrate along the bounds cosk a* = 0 rather than along the
modes. This will be indicated by replacing the sum over the
modes in equation 182 by a sum over the bounds, that is, over
m. Then, for instance, in figure 23 the integral along the bound
for which m = 2 would include an integration from A' to B plus
an integration from B' to C, an integration from C' to D, an
integration from D' to E, etc.

For large frequency various approximations can be made
along the bounds. Because the approximations are good only for
large w, the results will only be good for the wave fronta. The
largest term in the derivative BFg/B/C in the denominator of equation

182 comes from differentiating cosk a2 in the first term of equation

184. Then,
2
aF 2
— a ¥ w .
Fﬁ-. < 1 -éd—— (Z/K - :7) sinkda Bmksa.

8

Substituting the several approximations appropriate to the terraced

region into equation 182, we have
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(ks +t)

Z Acosk y e
Q= Z d 5 dw, (185a)

)
-00 iwpacd d (ZK -—é-;:_-)ainkdn

or, since Kz-u)/cd and kdaz(m +1/2)m,

+ 1/2py/s] io(t-z/c)
D Z/ cos [(m y a] . z/c 4o (185b)
(m +1/2) (-1)"

The strain in the z direction due only to @ is then found by dif-

ferentiating equation 185b twice with respect to 2;

§ a)(t z/c.)

o =2 (- 1) cos[(mi- l/Z)n'y/a] i d db\7

€~ ;;7 (m+ 172) - (186)
m ~00

The integral over W is quite similar* to the Mellin inversion integral,

equation 15b, of the Laplace transform of the Heaviside step, 1/p.

#The integrals are similar in the large W region, which determines
the wave fronts, Actually, because of the poor approximations near
W equal to zero, the integral in equation 186 does not converge.
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That Mellin inversion integral to be compared to equation 186 is

1 | ept
H(t) = m *—5-‘ dp .
Brl

We then deduce that the discontinuity in strain must be of the form

_ Z(-l)m cos- [(m + l/Z)vy/a] -
éz = -2 Z w(m + 1/2) H(t s/cd).

m

The sum over m ranges from zero to an unspecified number
which may be quite large if the solution ranges over very high fre-
quencies. Summing from zero to infinity, the expression in braces
is a Fourier series for a function which vanishes for 2> |y/al >1
and which is unity for the range of interest, 1>(y/a|. Then,

éz'::-z H(t - z/cd)

is the strain at the wave front found by approximating the modal
solution at high frequencies. This ig the same as the step given in
equation 113, |

Further refinement of the calculations for large () can be ic-
complished by considering the error introduced near sinkea =0
where the above integration has the greatest error., Then, the next
step is to write for @ sums along lines cosk

d

n with k.‘a = nw so that uink't is zero, Each term of the sum

a = 0 over the integers

represents a correction to the simple result which was found above.

The condition is
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2
nw W W
(TN =k=ZF k= 7 -7
8

.
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And s0 «/ takes on the values

C nw
W= (2F) 1 d

VoAt s
[ [ .

8 d

Then, one must sum over terms with phase

Cd
t+ =z (t-z/cd) 2nvw,
2a kz -1

A Fourier series of that form is periodic in t-:s/cd with frequency

€4

2a kz—l

which is precisely the frequency of the reflection of

the head waves back and forth across the plate. The sum then
represents the dilatational potential caused by the reflecting head
waves at the points A, G, etc. in figures 11 and 12,

For the shear potential one is led by the same arguments to
a sum of integrals along bounds similar to equation 185a., The

important differences are the appearance of sin ksa in the denominator
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and sin k.y in the numérator. To the approximation of equation
185a, the integrand goes to infinity when sinksa equals zero.
Thus, the first approximation is a sum over those points where
the integrand becomes very large. The phase, Wt + Mz, may be
augmented by nwy/ azksy from sinksy. which is contained in the

integrand. Then, the total phase is

€d z Vil -1

L > o - D 4 anw
2 €d €aq
2a Vk -1 .

and one can deduce the form of the head waves by the argument used
above.

It is apparent that the leading wave fronts come out of the
terraced region of the frequency spectrum. The parts of the modes
in the terraced region are made up of a plane harmonic dilatational
wave moving almost parallel to the free surfaces plus a shear wave
moving at the angle of the head wave. The limiting phase and group
velocities are cq the same as the speed of the leading wave fronts,
The periodic structure of the frequency spectrum is related to the
periodic arrival of the head waves. It is also reasonable to expect
that the first mode, which approaches a phase and group velocity
of <. at high frequency, accounts for the Rayleigh wave in the plate.
The arrival of the circular shear front at time z/ Cy at the surface
is probably related to the fact thgt all modes but the first go off

to a limiting speed Cge
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D. EXACT SOLUTIONS FOR LIMITED TIME INTERVALS

The solution by Cagniard's method is useful for more than
just finding the wave fronts, For plane strain Cagniard's method
gives an exact solution, equation 120, This exact solution is valid
for all z and allt. Cagniard's method is far more powerful than
either the method of stationary phase, which is limited to large t,
or other wave front methods, which are limited to the vicinity
of the wave fronts., The solution by Cagniard's method is built
up by adding terms, one term for the disturbance following each
wave front. The only limitation is that for times long after the
first arrival too many wave fronts have passed and the numerical
work becomes very involved,

Cagniard’s method has been used here to calculate the
strain and displacement at the surface of a plate for times before
the arrival of the first reflected head wave. For those early times
equation 114 fof the Cagniard contour can be solved by the quadratic
formula since either o or B is zero for every wave. Calculations
for times after the arrival of the first reflected head wave would
require numerical solution of equation 114'.\ The results are
compared to the experiments of Miklowitz and Nisewanger (19)
and Meitzler (33). Their experiments covered a much larger
time scale than the theory and so only gross features can be
compared. Besides the limit on the time interval covered by
the theoretical calculations, there are two fundamental differences
between the theory and experiment. First, the experiments were
done on a circular rod and the theory is valid for plane strain.

Second, to a very good approximation the experiments involved
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the nonmixed end conditions of the pressure shock problem,
whereas the theory was done for mixed boundary conditions
on the end of the plate. To assess the importance of the
second difference between theory and experiment, the
calculations were carried out for two different problems,
the impact problem and the pressure step problem. On
the basis of approximate theory work Miklowitz (7) anticipated
a similarity between the responses to different boundary
conditions. Folk, Fox, Shook, and Curtis (6, 37) expected
similarities in the responses at large z and therefore applied
an exact theory solution for mixed boundary conditions to
experiments with nonmixed bounda.ry conditions. The present
calculations are for relatively small z.

The solution by Cagniard's method was used in a
straightforward manner. Rather than using the potentials,
the double transforms for the longitudinal strain e, = —d—‘-x-ﬁ
and the displacement uy at the surface were derived
from the double transforms of the potentials. The double
transforms were then expanded to form integrals like equation
108. Since the work was specialized to y = a, the results
took on a form different from equations 112, At the surface
one sees not the individual wave fronts shown in figures 11
and 12, but rather the junctions of three or four incident and
reflected wave fronts. That is why the derivations were done
over again with the doublel transforms evaluated at y = a. It
would have been possible to use equations 112 and add together

the displacements and strains of the many wave fronts at the
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surface. In order to eliminate waves which are delayed by a
traversal of the plate as an S wave, S = e'ZKaa was set equal
to zero. The remaining terms represented waves which traverse
the bar only as P waves. The integral like equation 108 with
n = 0 and the integral for the step were combined; the result
has no pole at 8 = i, Then, equation 120 was taken as the
inversion of the double transform. N in equation 120 is 1 for
the strain and 2 for the displacement. Therefore, a single
integration was necessary for the strain and a double integration
for the displacement. Eqi:_.ation 120 was applied directly with
one exception., At the wave fronts the function being integrated
had a singularity in the form 1/7/t. In order to integrate
aééurately. this singularity was subtracted out. After integrating
numerically, the integral of the singularity (2 %j’ was added back in,

The resulting plots of strain and disglacement versus time
are shown in figures 24, 25, and 26 and compared to the
experiments. The first figure corresponds to one of Meitzler's
records for strain and the other two figures correspond to records
given by Miklowitz and Nisewanger for strain and displacement.
The values for the constants used are the values given for the
rods tested in the experimental work., The ¢alculations were

done with source magnitudes, Z, such that the long time strain

or displacement in the plate would be unity. nge front arrivals
are indicated by arrows.

In figure 24 the calculations were stopped at the Rayleigh
wave for simplicity., Only the first wave front is seen because

the station is so close to the end of the plate. Notice that the
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strain rises very rapidly as the square root of t exactly as the
wave front theory predicts, but after one-half microsecond the
etrain stays essentially constant. ’fhe displacement behaves
according to the wave front theory only for a fraction of 2 micro-
second and then rises nearly linearly.

The strain shown in figure 25 rises in the same manner
as the strain in figure 24 and then level; out at a nearly constant
value. After a little more than one and one-half microseconds
a far weaker wave front arrives as shown and the strain again
continues at an approximately constant value until the Rayleigh
wave arrives. The weaker wave front corresponds to the point
B on figures 11 and 12. The resulting wave front behavior
shown in figure 25 is due to an incident wave and two reflected
waves all acting together. Figure 26 for the strain at a station
farther from the end of the rod shows that during the first
microsecond three wave fronts arrive. The first is compressional
and the second tends to destroy the effect of the first. Then,
with the arrival of the third wave front the theoretical strain
starte to build up the same as shown on the experimental
records, the later wave fronts being much weaker,

The experimental records can be compared with the
theoretical calculations by looking at the figures, It is
immediately apparent that the experiments are not able to
follow the rapidly changing strains. A negative rate of
change of strain response is indicated by the small negative
spikes on the experimental records in figures 24 and 25.

Neitzler noted the rate of change of strain response in his
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work. In figure 26 it is seen that the experiments do not pick
up the small pulse arriving with the dilatational speed in nearly
the correct magnitude, if at all, The strain record of Miklowitz
and Nisewanger for the station where z/2a = 5 (not shown here)
does show the arrival at the dilatational velocity, but at a
magnitude greatly reduced from that of the theoretical curve.

It can be seen by comparing the curves in figures 24 and» 25

that the strain rises faster in the theory than in the experiment,

All of the above conclusions are independent of the differences

between rod and plate and the differences in the end conditions
as prescribed in theory and as created by the shock tube for
the experiments. The experiment and theory can also be
compared by looking at the displacements. In figures 25

and 26 it can be seen that by the last time on the theoretical
curves the displacement has risen approximately the same
amount in the theory as in experiment. The small difference
between the two is possibly due to the differences between
the plane strain and the circular rod. The difference in
boundary conditions is evidently not important because both
boundary conditions used in the theoretical calculations

give similar results.
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