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ABSTRACT 

Long waves in elastic rOods of arbitrary cross section are studied 

by writing a general expansion of the exact solution for three dimensional 

linear elasticity. The solution holds for transient excitation of the end of 

a semi-infinite cylinder and is in terms of the harmonic modes of wave 

propagation for the infinite ela'stic cylinder. The major contribution to 

the solution for large distances from the end of the rod is found by making 

approximations to the infinitely long wave length part of the solution. 

This is aided by using a perturbation method for long wave length to study 

the modes of propagation. An approximate theory for rods of arbitrary 

cross section is developed and compared to the exact theory for harmonic 

waves of infinitely long wave lengths. 

The amplitudes and locations of all wave fronts caused by certain 

suddenly applied loads on elastic plates and circular rods are presented. 

Both end loads on the rod and plate as well as normal line and point forces 

on the plate are considered. The problems are solved by expanding 

double transforms into a series of terms. each term representing the 

disturbance following a single wave front. Evaluation of the terms for 

the wave front behavior is accomplished by Cagniard's method and the 

saddle point method. Ray theory aids in the interpretation of the 

results and also serves to verify most of the formulas. The solution 

by Cagniard's method is exact for the plane strain problems studied 

and is plotted and compared to experiments. 
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I. INTRODUCTION 

Transient wave propagation in semi-infinite elastic rods and 

plates has been studied from two viewpoints. Most of the literature 

has been devoted to the study of the low frequency - long wa.ve 

resJ.X)nse. These studies quite accurately explain phenomena observed 

at long time. after the application of the load and at long distances 

from the end of the rod or edge of the plate. Attention haa also been 

given to the high frequency character of the reaponse with the purpose 

of finding the diaplacements and strains near to the load. This thesis 

i~ divided into two main parts; sections D and m deal mainly with low 

frequencies while sections IV and V are concenled with high 

frequencies. 

Low frequency behavior is most conveniently studied by 

examining the modes of wave propagation. branches of the frequency 

equation and associated dlsplacements for all wave lengths. The 

most important mathematical tool employed is Kelvin 1. method of 

stationary phase. The a.sociated concept of group velocity plays 

an important role. On the other hand, the high frequency respon.e 

is most easUy investigated by means of ray theory. Though special 

mathematical techniques are employed, Cagniard's method and the 

saddle point method, the essential concept is that of rays and wave 

fronts. 

The literature on the theory of the low frequency response 

ls based on two different methods of approach. The first method 

used is to develop I 'approximate II theories. These are equations 

of motion which incorporate the essential physics of the "exa.ct 
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theory" (three dimensional linear elasticity) and the simplifying 

features of the elementary theory--one dimensionality. plane sec .. 

tions remain plane. etc. Appl'Oximate theories govern tbe motion 

accurately provided the frequencies are low enough and the wave 

lengths long enough. Approximate theories may be solved exactly 

as MUdowite (j.t Z) has cloDe with the Mindlin-Herrmann (3,4) equa .. 

tions governing compres8ional waves in a circular rod. The sec­

ond method of a.pproach is to write a formal solution to the equations 

of motion from the linear theory of elasticity by using double trans­

lol'ms. Skalak (5) and Folk, Fox, Shook, and Curtis (6) have done 

this lor problema of compressional waves in a circular ~od. The 

formal solution. are evaluated a.pproximately by asymptotic meth­

ods aDd are valid for large time and the far field. 

The solutions from approximate and exact theories are 

both written in terms of modes of propagation. As an example t 

solutions to the Mindlin-Herrmann theory are written in terms of 

two modes, which model the loweat two modes of the exact (Pochham­

mer) theory for the circular rod. Mtklowitz (7, has shown that the 

loweat frequency waves of both his solution 01. the Mindlin-Herrmann 

.theory and the exact theory solution given by Skalak and Folk et al. 

behave in the same way. Thi. behavior and like phenomena for 

higher mode. wU1 be found for a noncircular rod in the pre.ent 

wol'k. 

Wave propagation in rods of arbitrary CI'O •• sectlon has 

received little attention due to cUfflcu1tie. in the mathematic •. 



Loye (Reference 8, p. 4Z8) gave a simple approximate theory and 

frequency equation valid for low frequencies. Further work was 

hampered by two difficulties. Little t.s known about the exact theory 

modes of propagation and frequency equation, which were the bases 

of most mathematical analyses of the circular rod. Furthermore, 

the differential equations for the double transforms of the. exact 

theory solution were DOt 8olvec1. However. one can use the.e dif­

ferential equation. to write the double transforms formally in 

terms of the modes of propagation. as is &bown in section U of 

this thesis. Experience bas shown that one needs only to know 

the modes of propagation at certain c:ritic:al points, where the group 

veloc:ity is a maximum or minimum. This fact is used in sec:tion 

m to evaluate asymptotic:ally for long time the formal solution 

from the double transforms. The forms of the modes of propaga­

tion are determined only in so far a8 is needed for the approximate 

evaluation . 

The differential equations for the double transforms of the 

exac:t theory solutions for a rod may be found by using a method 

developed by Folk, Fox. Shook. and Curtis (6). This method. un­

fortunately ,cannot be used to solve the case of nonmixed boundary 

concUtions on the end of the rod. or edge of the plate, e. g. the end 

pressure shoc:k problem. step axial stress. zero shear stress. In 

section mot thls thesis the boundary conditions of the pressure 

shock problem are a.sumed and some conclusions are drawn. 

Wave fronts may be found from the double transforms either 
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by means of Captard's method. (an ingenious method for inverting 

the Laplace transform) or the saddle point method. Cagniard's 

method has been used by Mencher (9) • .3roberg (to). and Davids (tt). 

The saddle point method has been used by Knopoff ctZ) and Knopoff 

and GUbelt (t.3). Either way the double transforms are first ex .. 

panded into terms. each representing the disturbance following a 

single wave front. Wave front information is then extracted from 

each term. 

The axially symmetric plate problems studied in papers 

(9) to (t3) are cl08ely related to the rod and plate problems of 

interest here. Those papers gave results which are only for re .. 

stricted regions of the plate. Mencher studied the displacement 

at the epicenter of an infinite plate with a step point source of 

pre8sure at its center. Papers (to) to (t3) considered an infinite 

plate with a transient point force applied normally to one surface. 

Broberg and Davids considered displacements and stresses on 

the axis of symmetry only. KnopoU and GUbelt studied the dis­

placement on the lace of the plate opposite the load. The present 

work studies the strains and displacements throughout the interior 

of a plate to which is applied a normal point force. Also. the cir­

cular rod is 8tudied. Here. two different ~ran8ient compressional 

loads on the end are considered. The analysis is aided by working 

with the plane strain equivalents of the problems first. 

A physical understanding of the equations for wave fronts 

ia achieved through a study of ray theory. Karal and KeUer (t4) 
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and Babich and Alekseev (is) have developed a general ray theory 

of elastic wave fronts. The fundamental idea is that elastic wave. 

may be studied througb a geometric theory in mucb the same way 

as light waves are. The general ideas are explained at the begin­

ning of section IV. and the ray theory is u.ed in both .ections IV 

and V as a partial substitute for Cagniardt s method and the saddle 

point method. It's most satisfying that the formulas found by the 

three methode. the saddle point method. Cagniard's method, and 

the ray theory. are In complete agreement. 
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U. MODES OF PROPAGATION 

Most solutions to wave propagation problema have been 

written in term a of mode a of propalation. Such solutions to the 

linear theory of elasticity have been given only for simple geome­

tries, circular rods and plane stJ'ain or atress. This Buggests 

that one ouaht to be able to write similaJ' solutions to pJ'oblema 

of transient propagation in iDfinite cyllDdel's of arbitrary crosa 

section in terms of modes of propagation. One would expect to 

build up a solution by proving 80me ol'thogonality properti. s and 

using them in much the same way as the orthogonality properties 

of modes of vibration are used to solve transient vibration prob-

·lems. Just such a solution is derive. below. It contributes to 

a further understanding of previously published solutions for the 

circular rod and is evaluated in section m for certain features 

of wave propaaation in noncircular I'ods. 

The starting polnt for the mathematics is to tranaform 

two variables. time and the spatial variable in the direction of 

propagation. Laplace and Fourier transforms were used by 

Skalak (5) and Folk, Fox, Shook, and Curtis (6) to derive their 

solutions for a rod of circular cross section. Explicit expressions 

fol' the double transfol'ms wel'e found. Skalak and Folk et al. then 

used inversion lntegl'als, evaluating the first by residue theory 

with each mode of propagation contributing one pole. A similar 

method will be us.d here. However, the double transforms in 

the present case cannot be given in an expllcit. closed form. They 

are found by making an expansion based on ol'th0l0nality properties 
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of the modes. The general method of making the expansion is given 

in textbooks on the mathematics of lineal' equations, such as Couzant 

and HUbert (16). 

A. THEORY OF ELASTICITY, MODES OF VIBRATION 

The mathematics and governing laws used here to investigate 

the modes of propagation are quite similar to those which are used 

to discuss modes oi vibration. The equations for the modes of propa-

gation are long. Certain steps in the derivations may be carried out 

more easily by drawing the analogy with vibration. Therefore, it 

is convenient to discuss modes of vibration first, writing the equations 

in a concise £o1"m by means of variable indices. 

Consider a finite, homogeneous, isotropic, linearly elastic 

solid upon which no work producing forces are acting. A harmonic 

. iwe 
time dependence, e • le assumed in order to study the free vibrations. 

The governing laws may be expressed by setting equal to zero the vari­

ation of an integral which is similar to twice the Lagrangian in Hamil .. 

ton's rpinciple for arbitrary time dependence for elastic bodies with 

no external work producing forces, (see reference 8, pp. 166 .. 167) 

In equation I the u,(ki ) are the Cartesian displacements, p the density. 

the integration is over the volume of the solid, repeated indices imply 

summation, and the stresses crlj("k} are defined linearly in terms of 

the strains th1"ough the constants Kijk1 by 
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(6) 

There are three symmetry conditione on the KlJk1: 

(3) 

The integrarut of equation t is a bUinsar form which is 

symmetric on account of the first of equations 3. Because of the 

symmetry it is only necessary to take the vadation of the second 

member of each term iD equation t and to multiply by· two. Thu8, 

equation t may be written as 

Then, by virtue of the .econd of equations 3, which represents the 

symmetry of the str •• s tensor, 

6L = Z SSS[ P .. Z 111 "'i - "ij ~ 611,J dV • D. (5) 

The ne~ step is to inteirate !!I. parts a..nd .ply the diversence 

theorem. There result two integrals which are required to be zero. 

The first is a volwne tntsgral, the second a sudac. tntegral. 

(6) 

(7) 

In equation 7 dnj i8 a vector proportional to the differential element 
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01 area and normal to the Burface. If the boundaries of the solid are 

rigidly held. then we restrict the variations in equation 1 by requiring 

aUi • 0 at the surface and look for an extremum of L. Then equation 

7 holds. If the boundaries are not rigidly held. then the hi are not 

restricted and equation 7 holds only if crtjdnj vanishes everywhere 

on the surface. Thus, the stress, (as defined by equation Z) acting on 

the surface is required by the variational principle to be zero. It is 

possible to have mixed boundary conditions requiring some components 

of the displacement to be zero and some components of the force to be 

zero. By the usual argume ate of the calculus of variations, the equa-

tions of motion are found by setting equal to zero the coefficients of 

each oL the aUi in equation 6; 

Z ~crij pwu + =0. 
i Xj 

(8) 

The solutions to the equations of motion, equations 8, and the 

boundary conditions represent the modes of vibration of an elastic 

body. Let u~n) be the displacements and v1j)be the stresses 01. the 

nth mode, and let w be the associated frequency of vibration. Then the . n 

orthogonality relation may be derived from the symmetric integral 
(" 8u(m) au~m) 

I II - J S S ~ crLn)( Ix; + * ) dV • (9) 

As in deriving equation 6 from equation 4, we may use the symmetry 

of the stress tensor, integrate by parts, and use the divergence 

theorem and the boundary conditions on equation 9 to show that 
(n) 

S ." \ 8CTi · () I • \ J u m dV. J, &Xj i 

Equations 8 are then substituted into equation 10 to show that 

(10) 



1 = -pw2 rsr u (n) u (m)dV. 
n J J i i 

(it) 

Because 1 is symmetric under lnterchange of n and m, we may de-

due. from equation t t the orthogonality relation 

(w 2 .. w 2) srr u (n) u (m) dV c O. 
m n JJ i i 

(t2) 

If wn and ,wm are not equal. the integral in equation t z 

must be zero. If wn and wm are equal. but the functions ui (n) and 

u
t 
(m) are lineaf'ly independent. the Gram-Schmidt orthogonaliza­

tion process may be used to form from them two orthogonal modes 

with the same natural frequency. The modes are then a set of 

functions for which 

{

o m If: n 

S.fS "i (n) ui (m) dV I: 

t (Bay) m = n . 

These orthogonal modes are used to express the solutions to 

forced or free vibration problems and initial value problems. 

B. DOUBLE TRANSFORMS 

(t3) 

Laplace and Fourier transforms aid in deriving a solution 

in terms of harmonic wave trains. Folk. Fox, Shook and Curtia (6) 

have developed the technique of uaing double transforms for prob .. 

lema of elastic wave propagation in semi-infinite cylinders. Es­

lenUally. their method is used here to derive the dlfferential 

equations for the double tranlforms. 
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The rod and the Cartesian coordinate system are shown 

in figure t. Initially the rod is at reat. At time teO forces or 

displace~ent. are appUed at a = 0 t the end of the semi-infinite 

rod. The boundary conditions along the lateral boundary are con­

slatent with an equation such aa 7. In particular. it will be assumed 

. in section Dl that tbe lateral surfaces are stress free. 

The atrea8 equations of motion are (see equation 8) 

av Iv Iv 8Zu 
rzaa + JZ + ..,;'z _ P -;::rz = 0 

By at· 
(14&) 

Ivxx I~xy auxs SZux 
'Ii +ry +1i -P8;I =0 

8v Sv 8~ 82
\1 rfY + 5.xy + T1z 

.. P -;:l = 0 , 

(t4b) 

where the atreaaea a.re given by (see equation 2) 

(t4c) 

au 8u 8u 
flXX = ). '-,y'i + .:) + (). + z.a,)-,f 

(t4d) 
au &u 8u 

flyy = ). (o! + -rtf) + (). + 2y.) T/-

(i4e) 

(t4f) 
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ROD AND COORDINATE SYSTEM 

Figure i 

z 
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whore ~ and ~ are Lam"s constants. The Laplace transform of 

these equation. is taken by multtplyin, them by e -ptdt and tnte­

grating over t from •• 1'0 to infinity. Since it is assumed that 

the rod is initially at re.t, it is only necessary to replace -It in 

equations i4 by p and indicate transformed variable. by a bal'. 

The definition of the Laplace transform of any ftmction, qJ, and 

its inversion integral are 
Q) 

;p (x.y,z,p) II S f.fJ (x,y.z,t) e-ptat (iSa) 

o 

(iSb) 

where Brl is the Bromwich contour. which is located in the right 

half p plane to the right of all singularities. 

Next, sine and cosine transforms of equations i4 are taken. 

The double tran8form8 are defined here aa 
Q) 

(aine) ;Cx,y,K,p) II - i S cp (x.y,a,p) 8in K z dz 

o 
Q) 

(cosine) ; bt.y,K.p) II S ;p (x.y,z,p) cos K II dz. 

o 

For either type of tranatorm the single inversion integral. 

co 
- t S - iICz <(J ex, y. II , p) II i t:p (x, y , I( , p) e elK , 

-Q) 

(i6a) 

(t6b) 

i8 correct. The important thing about Folk. Fox, Shook and Curtis' 

method is that it is pos8ible to take sine and coaine transforms of 



equations t4 such that each variable appears as either a sine or 

cosine transform. but not both. Two schemes may be used, and 

they are outlined in table t. 

TABLE t' 

Equations Laplace­
cosine transformed 

Equations Laplace­
sine transformed 

Variables Laplace­
cosine transformed 

Variables Laplace­
sine transformed 

Boundary conditione 
asked 101' at II • 0 

Scheme t 

i4a. i4f 

t4b. 14c 
- t4d, i4e 

crzz,Ux·Uy ' 

CPt 8\II/8z 

Scheme Z 

t4b, t4c 
t4d, i4e 

t4&, 141 

Ux,Uy,CTxy 

CTxx,CTyy.Vzz,q; 

uz,erxz'vyz' 

uz ' vxz ' eryz " 

~. 8q;/8& 

(17a) 

• cp and", are the dlapl&cement potentiate defined and used iii sec­
tions IV and V. 
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(t7b) 

They ue derived by taking the Laplace transforms of equations 

S4 and then multiplying by either COSKS dz or .. 1 sinKz ds and !nte­

grating over z from zero to tDfinity. The boundary terms are dif­

ferent accorcU.ng to the t-wo schemes of table t and are given in 

brackets with scheme t a'boYe and scheme 2 below. Notice that 

the two scheme s ask lor dWerent boundary conditions at the end 

of the rod. Both scheme. ask for mixed boundary conditiona, 

which involve both str ...... and displacements. This is a •• rious 
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shortcoming of equations t 7 f for nonmixed boundary conditions are 

known in the very important pressure shock problem. 

C. SOLUTION USING MODES OF PROPACATION 

Orthogonality Properties 

The analogy between vibra.tion problems a.~d propagation 

problems may DOW be made clear. Equations 1 7ashould be com-

pal'ed to equations 8. In equations 1'11. the terms in brackets are 

the forcing functions. The remaining term 6 constitute the homo .. 

Z geneous equations for the modes. The eigen parameter is p • The 

eiSEa' value problem must be solved for all values of K.. Letting 

the superscript, (n), represent the nth mode, for which the eigen 

value is p (,,), the equations for the modes are n 

&0- (n) 8u (n) 
iKG" (n) + ---I!. + xz _ ppl u (n) = 0 

zz By -ux- 11. Z 

U8a) 

8 (n) 80' (n) 
G"xx -\_ ---!.Y. + ii{o- (n) _ppl u(n) = 0 --sx- ey xz n x 

8u (n) 8CT (n) 
J:i.. + ~ + iKO" (n) _ ppZ u (n) = 0 
fly --ax- yz n y 

a (n) au (n) 
0- (n) = ~ (~ + --Y ) + (~+ 2 .... ) itea (n) 
zz QX( ) BY zen) 

8u n au 
tr~n) = ~ (~ + iKU

z 
(n» + ell. + 2.,.)-Jf 

au (n) au (n) 
rryy (n) = ~ (~ + i[{u

z 
(n) + (~+ 2.;.&.)-r;f (iSb) , 

au (n) 8u (n) 
('f (0) = ~ ( x + --Y ) 
xy 8Y-ax 

au (n) 
(n) _ ( z - + iKU (n» 

(ixz - .... "IlC x 

au (n) (n) 
(f (n) = tL(~ + ilCU. ). 
yz oy ~ 
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A variational principle similar to equation t will aid in 

investigating the propertie. of certain mocles. The corl'ect form 

is 

6L c ISS r _ppZ (u (n)u (n)·+u (n)" (n).+" (n)u (11).) 
l n x x y y z z 

A 

au (n,. h (n). .. en Cn) 8u (n) .. 
_ fT (n) ~ _ fT (n)....:J.. _ fT (n) (iKu (n), -fT (n) ( x + -..Y ) 

xx vx yy By . zz z xy"'JY lbl 

au (n) • au (n) • 
-fT (n) (iKU (n)+ -ro! ) _ cr (n) (lKU (n)+ ~ ) ] ax dy= 0 

XII X ax ya y vy , (t9) 

where the integration t. over tbe area of the rod and the" repre­

sent. complex conjugation. The equations of motion, equations 18a. 

ctu). be derived from equation 19 by inspection. It is only necessary 

to notice that equation 19 contalna a Hermitian form. and that it 

can be tntegrated by pana u.ing the boundary conclitiona on the 

lateral surface.. The tel'ma in equation 19 can be matched one by 

one with the terms in equations 18a. The detaUed steps are the 

same as thos e used to derive equations 8 from eql.lation 1. 

The orthogonality relation is derived by writing an integral 

awUar to the one in equation 9. The correct bUinear form is 

hem,. au (m). 
1 I: Sf[_fT (n) x .fT (n) --::I. -fT (n)(tK1I (m) >* J xx""'IX yy By 1IZ II 

A 

au (m) 8u (m) • 

-6":;) (Iyx + 1rl- ) (20) 

'the Hermitian form is the eitenslon to complex !Unctions of £be 
symmetric form used in section 11A. 
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au (rn) * 
-fl (n) (lieU (m) i- • ) 

XB X ~ 

au (m) * 
-{I' (n) (ll(u (m) + ~ ) ] dx dy • 

yz y "'Y 
(20) 

(cont'd) 

I is integrated by parts t aaain using the boundary conditions, to 

find the (orm analogous to equation 10, 

au (n) . 8{1' (n) 
t~" \l Cm)* + iKfI (n) u em>- t- JZ \l (m).] d.x dy • (ll) 

we; z y. y &y 1& 

Then. the equations of motion for the modes. equatioDe 18a, are 

8ubstituted to find (see equation 11) 

I is real and negative when n II: m. according to the definition, equa­

tion 20. Then, 1ettina n c m in equation 22, it may be concluded 

that p! must be real and negative. That ie, the frequencies 01. the 

* mode. of propagation are real when the wave number. Ie. is real • 

.. !t Is lCiiOwn for the circUliI' rOd that there are modes of .propaaa­
tion with real frequency and complex wave number. 
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Physically. this repreaente a lack of dissipation and a stable solu­

tion. 

Interchanging n and m in equation 22, it follows that (a.e 

equation 12) 

(pZ 2 )SS[u. (n.u (m)*+u (n)u. (m)*+u. (n)u (m)*] dx dy = 0 (23) 
n-Pm x x y y z. . 

A 

The integral in equation 23 must be zero if p! and P~ are unequal. 

If. at a particular value of K. there are linearly indepenc1ent mode. 

with the same value of the eisen parameter p Z, they may be com­

bined by mean. of the Cram-Schmidt ol'thogonaliJBation process 

(reference 1'. p. 50. into modes for which the integral in equation 

23 doea vanish. ThUB, a.soelated with the homogeneous equations 

18 are the modes of propagation among which one may write the or­

thogonality relation (see equation 13) 

SS[u(n)u(m)*tuCn)u(m)*tu(n)ufm)*] dx dy 1° 
.x x y y z z 

A I 

n¢m 

(24) 
faay) n = m 

According to equations 24. the modes of propagation are a aet of 

orthonormal functiona. 

Expansion !!!. Terms ~ Modes 

The orthogonality relation makes it pos8ible to solve equa­

tions 17 by writing the double transforms &8 an expansion in terms 

of the modes of propagation. We assume that there exist functions 

of K. r~ (1£, p), such that the double transforms can be represented 
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by the sums 

:it (Xty,K.p) = I: r (K,p) u.(m) (X,Y;K), m m 1 
(25) 

where l = x,y, •. 

FoUowing a commOD proeedure, the three equatioDs ~5 &1'8 multi .. 

plied by Ux Cn) •• \1
y 

(n)*, and u. Cn,.. respectively f added together, 

and tntegl"ated over the area 01 the roc1. Equation Z4 guarantees 

that only one term in the awn over m is nonzero. Then, 

r~ = S S [ ~x "x (n). + :iyUy (n)* + :1. UII (n)* ] dx dy (26) 

A 

can be used to determine the r . n 

Consider the appropriate, nearly Hermitian integral, 

e;* aU- aU a:i. 
I' -= SS [-0' (n) ~ -fT (n) ....:t.. -(1 (n)(ih~ ,. -fl (n) ( x + ~) 

xx ax yy ty •• II xy ~ lJiC" 
A 

Iii • . e::. 
-fT 'n) (lKU +~) .. 0' (n) (lKli + ~) ] c1x dy • xa x v.K. ya Y V1 

(27&) 

I' is not Hermitian beeause the definitions of the double transforma 

of the stresses, equations 17b, contain some of the forcing terms. 

The foretng terms must be lnclucled in the second equation, for II. , 
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I'· = S5 
A 

(

eu(n) 8u cn)). 
= x+--.I 
O"xy -.y ~ 

(= LUX I z=J) f (n) Su. (n)). 
- 0' + iKU. + ""K"""'"' x. ~ QX 

o 

(

II: lp.Uy I z=J) ( (n) 8u.z (n,). 
- 0" + l1(u + -r.:-ys y vy 

o 
dx dye 

(Z7b) 

First. l' is evaluated by integrating equation Z7a by parts and using 

the boundary conditions at the rod lateral surfaces. The result is 

. 80" (n) a .. (n) 8.- Cn) rs r lQC = • Tf' = • Cn) = • YV = • I' = J ~ u + U +1,,0" U + ~' u L QX X Y zz z vy x 
A 

80" (n) 80" Cn) 

+.,d'Y u· + iKO' Cn) u • + -rrd'z uz· + i"O' Cn) u .. 
vx Y xz X QX yz Y (28) 

Substituting equat~ons 18a we find 
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11 = ppZ SS (u (n):i • t U (n):i • 1" U (n)U ., dx ely (29) n x x y y • & • 

A 

Next. 1'· is evaluated by wl"itlDg equation a7b as two tntegrals. One 

integral is integrated by parts using the boundary concliUons and the 

second integral Ccottl'e.pond.in.g to the bracketed terms in equation 

Z7b) is "tmplUie4 by substituting the definition8 of fl'za (n). "xs (n) • 

. and. O'y& (n) from equations 1Sb. The re.lIlt i8 

e: • 
, xy 11 (n) T'Ji y 

• 8=. • 
11£= u (n) t "xz u (n) ~ iKi u Cn) 

XlIX· "'Ii. yay 

• 0" (n) 
ylS 

Equations 17a are then substituted into equation 30 to give 

(30) 

dx dye 



Equations Z6, Z9. and 31 can be combined easUy to find the 

expansion coefficients, 

scheme 1. 

r = l 2 Sf r"i I u (1'1)*_ U I IT (n)* 
1'1 p(P

n 
_p) A L zs z=o z x . z=o xz 

* 
-u IT - I (n)J 

y z=o ya 
dx dy ; 

scheme Z, 

* 
+ i' I U (1'1)] dx dy. 

yz z=o Y 

Together. equations Z5 and 3Z are the solutions for the double 

transforms in terms of the modes of propagation. 

Inversion of the Transforms --

(3la) 

(3Zb) 

The displacements are found from their double transforms 

by using the inversion theorems t equations ISb and 16b. Because 

p! _pZ appears in equations 32 for the r 1'1' it is convenient to invert 
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the Laplace transform over time first. It will be necessary to 

interchaDge the order of certain integrals and summations. The 

required uniform convergence of the integrals and sums will be 

asewned. 

In accol'dance with the definition of the Laplace transform, 

equation 15a. "'zzl z=O(x,y,p). for example. is replaced by 

j~ -p.,. 
{1' I (x, y, .,.)e d.,. • 

zz =0 
o II 

Then the inversion integrals, equations 1Sb and 16b. are appUed 

to the double transform for u1• equations Z5 and 3Z. to give the 

formal solution for scheme 1 

(n)( 'K) iKZS pt u i x.y. 
dK e dp e l:: . Z Z 

Br .n pL Pn(K)-p ] 
1 

with a similar expression for scheme Z. 

(33) 

';I'he inversion integral over p can be carried out using Cauchy's 

residue theorem. The Bromwich contour ie to the right of all singu­

larities in the p plane. For t < .,. the contour is completed to the 

right where there are no singularities, and for t > ., the contour 

is completed to the left ·around the singularities at p = +p and n 
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. p. -Po' The inte.ral over p i8 

p(t ... 'r) 

p (t-.,.) -p (t ... .,.) 

[
en en] 2ri .. Ii) + ru- t > ., 

Po Pn 

e d • tp -p)(p tp) P 
o 0 

(34) 

o t < .,. 

The intelrati.9D over,. in equation 33 is carried only up to 

the value t because 01 equation 34. Letting Pn = lWot equation 34 

is then substituted into equation 33. The results for the cllsplace .. 

ment ui are for scheme 1 

iwn(K)(t ... .,' -Wn(K)(t .. .,., 55 
(e -e ) ded'l 

A 
e35a) 

. ' 

For .cheme Z the expre •• ion in bracket. in equation 35a i. re-

placed by 

-The boundary conditions asked for by scheme Z correspond to the 
longitudinal impact problem. 



* * *~ 
[ -u I .. (n) +.. I u (n) T" I u (n)J 

z .=0 liZ XII s=O X ys z=o y 
(35b) 

In equatiOils 35 the integral over.,. is a convolution integral. 

The infinite sum and the integral over I{ show that the response is 

compo.ed 01. contribationa from all pans of aU modes. The inner 

double Integral over the area gives the magnitude of the contribu­

tion from each part of each mode. Thls magnitude depends on 

the distJ"ibutlon of the load over the end of the rod. The two ex-

ponentia1s represent harmonic waves traveUing to the left and to 

the right. respectively. 

WhOA the load ha. a Simple form and the mode.' are known 

explicitly, tbe integrals over the area and over .,. can be carried 

out explicitly. The double transform solutions found by Skalak (5) 

and Folk • .Fox. Shook. lAd Cunts (6, took forms simUar to equa .. 

tion 35. Lloyd (18) has pointed out an essential difference in form 

between the solutions given by Folk et ale and the solutions given 

by Skalak and equation 35. Folk et al. found their solutions by 

integrating over K first. The result includes modes for which K 

is complex, but only tho.e real modes with group velocities such 

that the wav.,. move toward the !'ight. In the present and Skalak'. 

solution wave .roup. traveUinB to both the right and left are found, 

but complex modes are not ".ect unl •• SKis extended to complex 

value. throuah contour lDtegratlon as pointed out by Miklowitz (17). 

Lloyd (18) discussed in detaU the simUaritl •• between the two 

types of solutions. 
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The solution in equation 35 might be u.ed in two ways. 

Firat, solutions for complicated end loads on circular rods and 

flat plates might be founcl. The modes are known in expliCit form. 

aZMt 80 the inner integrab CaD b. carried out. In particular, one 

could etudy the effecte of a load applied. to a ch'cular area centered 

on the end 01 a Circular roc1. The second way of using the above 

equation. i. to etucly the DODcireular rod. That ie the purpose 

of the fOUowin& •• ction. 
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UI. LONe WAVES IN A NONCIRCULAR ROD 

Through the uae ot the method of stationary phase Skalak (5) 

showed that the large di-aturbance at long times after the application 

of an axla110ad to the end of a circular semi-infinite rod came from 

the low frequency, long waves of the loweat compre8sional mode. 

The longest waves from the higher modes trail far behind the head 

of the pulse and are easUy detected as Miklowitz and Nisewanger 

(Z. t9) l\()ted, because they travel with group velocities approach .. 

ing zero. Knowledge of the longest waves of the higher modes of 

the exact theory has also proved useful. as Mindlin and Herrmann 

showed, for improving the accuracy of approximate theories. This . 
background aDd the fad that the higher mode, long wave response 

can also be approximated by the method of stationary phase provide 

reasons for inve'aUgatq equations is for the modes by a perturba­

tion scheme .for long wave lengths, 1. e., small Ie. 

In the work below the investigation of the modes at small 

K is followed by a related approximation of the exact theory solu-

tion. equation 35. The approximation glves the contribution to the 

response from the 10ngeat waves. Then. an approximate theory 

with five modes is developed. The approximate theory is similar 

to the three mode theory given by Mindlin and McNiven (ZO) for the 

circular rod. The difference in number of modes required for an 

approximate theory of a noncircular rod provides an interesting 

contrast. The exact theory is used as a guide for discussing the 

approximate theory. 
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Only a little work has been done previously on the nondr­

cular rod. Love (reference 8. p. 428) gave a single mode approxi­

mate theory. Chree (2t) and Oazis and Mindlin (22) studied the 

longeat waves and derived approlttmate frequency equations. These 

three works are discussed in greater detail and compared to the 

present worit. following equation 51 below. Volterra (23) derived. 

a more complex approximate theory by his method of internal con­

straints and has studied the resulting frequency equation. Mindlin 

and Fox (24) have used the exact theory to find modes of propaga­

tion in a rectangular rod. but only for certain wave numbers and 

certain ratios of width to thickness. 

A. THE PERTURBATION SCHEME 

The solution to equatioDs i8 for the modes is now assumed 

in the form of a Taylor serie.' at K equal to zero. The frequency 

is written as 

_ p Z II: W 2 II: Q 2 + UK) Z c + (iK) 4 D + 
n n n n n (36) 

There are no odd powers of iK in equation 36 since the frequency 

should not depend on the sign of ". The On are cut off frequencies. 

1. e. frequencies for which K • o. For the first compressional 

mode, 00 i. zero and -Co ia the square of the velocity of propa­

gation of the longest waves, j~ , where E is Young's modulus. 

Writing the displacements in a series in all powers of iK 

and substituting into equations 18, there is a separation of terms 
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80 that thel'e al'e two 8epal'ate pl'oblem8 and two sets of modes. 

For the first aet of modes the expansion 

U
x 

(n)(x. YiK) = lKU,jn)(x. Y) + CiK)3ux(;)(x. y) + 

u(n) • iKU (n) + (lK)3 u (n) + 
y yl yZ . . . (37a) 

U(n) = U (n) + (lK)Z U (n) + (iK)4 u (n) + 
z 180 .1 z2 

holda. For the second set of modes we write a slightly different 

form. 

U (n) * u(n) + (iK)2 U (n) + 
y y1 y2 (37b) 

U (n) = ilCu (n) + (i1C)3u (n) + 
z zl z2 

with uzo equal to zero. Obviou8ly. all of the goveming equations 

for the two sets of modes are the sarne except for the normaliza-

tion condition in equation 24. Equations 37 are substituted into 

equation 24 with n equal to m 80 that equation 24 can be expanded 

accol'dlng to powers of iK for either set of modes. The resulting 

normalization conditions are. respectively, for the two sets of 

modes 

(38a) 

SS(2UZOUZZ - 2uxtuxZ - ZUY1UYZ+U;1) dx dy = 0 etc. 

A 
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(3ab) 

where the superscript (n) is omitted. 

The assumed expansions, equations 37, are substituted 

into equations 18b defining the stresses to find definitions for the 

perturbed stresses. The results are 

3 
(1 :: !KG" I + (lK) (1 .. + yy yy yy~ 

tf -= iK(1 1 + UK)3 0" ... ') + zz aa ... ae;. 
3 

(T :: iKtf 1 + (lK) (1 Z + xy xy xy 

where 

Divide the right hand sides of equations 39a 

by iK and set 0" x.o :: (1 yao :: O. 

au au au. au 
O"xxt= ).(-i{l +u.o)+(>'+.~ tfxxZ :: ).(1IYYZ+Uz,l)+(>.+4t-) lrXxl 

au 8u 8u 
G"YY1.>'(~+Uao)+(>'+.) lfiy1 

G"yyz·>'Cwx.
xz 

+uz1)+().+.) ..,;Z, 
au 8u 8u au. 

O"zalaAC1Iixl+ "';l)+(>.+ap.)Uzo O"zzz='A{JiXz. + ..,;Z)+().+z.,..)UZ1 

(39a) 

(39b) 

(40) 
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~ au Bu.Z 
fT • LA. "'If::: &0 f1 • u.(u + ~.1) "YII"." IU

V
., + 15:.": ,. vzo r vy val r yl vy • ~ • Vl 

(40) 
(cont'd) 

The stress free boundary conditions mus' hold for each lev.l01 

perturbation. 

The cUffer •• '&! equation. for the pel'tu .. batloDs .... de .. ived 

by 8ubetitutiD& equations 36, 37. and 39 into the differential equa­

tions i8a. Thecoefft.cients of the separate powers of tIC are .et 

equal to zero. The results are easily seen to be for the n ... t eet 

of modee 

a a , Zu ,Zu 
fT -ao F/fT 

110" 0 80 Z 
"Ie- + + pO·u ==..,( II + ) + pO u • 0 
(IX &0 &x2 ,y2 zo (41) 

(42&) 

(4Zb) 

(4le) 

(43a) 

(43b) 

8crxzZ efT zZ Z 
.. .,+~ +J +pOu .,+pCu 1 +pDu -0. 

ZIIGO ox Oy ZGO lIS ZO 
(43c) 
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Equations 41. 4Zc:. and 43c are the coefficients of t. (il() z. and 

(1K)4, respectively, in equations 18&. whUe equations 4" and' 

4Zb are the coeUlciente of 11C and equations 43a and 43b are the 

coefficlente of (tIC)3 in equations 18a. Equations 4i. 4Z. and 43 

also bold for the second set of modes. but uao ' "xao' and "Yllo 

must be set equal to zero. 

A val'iat1onal principle for the above equations can be 
\ 

developed by substituting equations 37 and 39 into the tntegral 

L in equation 19. Terms are collected according to powers of 

iIC so that for the two set. of modes. respectively, 

L • Lo + (l1C)Z~ + (1K)4 L z + 

Z 
L • Ll + (ltd L Z + • • • 

There are no odd powers of t" because of the Hermitian prop­

ertyof L. If the .-adatlon of L is to be zero for all value s of 

IIC. then the variations of LO' ~, and L Z must all be zero. LO 

and ~ are 

LO z 55 [pQ1UllOllao - ..... 0 ;.0 - "yeo ;_0 ] <Ix dy 
A 

Ll • SS [pgZ(.~Uxl-UY1UYl + uzouzl+uzlUzo) + pCuaouzo 
A lux! au 1 8u

xl 
&u 1 (44) 

+"xx! 'Ii .. "yyl ~ + "z&lu&o + O'xyl (-.y + Tl ) 
hao &u.l h&O au 

.... xIII ~ .. O'xeo(uxl + 1X ) .. "yallY -cryz (u + IIl'J dx dye 
. 0 yl 1Y 

where "ao' O'xao' and O"YIIO are zero in Ll for the set of modes 



governed by equations 3ab. L O' Lt. and L Z al"e all bUinear and 

symmetric. Table Z shows the way the differential equations 4t 

throush 43 are de:rived f:rom the variational p:rtnclple. Notice 

that in certain caees the equations fo:r the higher ol"de:r unknown 

are derived by varying the lower 0:rd8r unknowns. For instance. 

"sinS LZ' the equation for ".Z ie derived by varying ".0· 

TABLE Z 

Equation Variables Variables varied in 

L t LZ 
4t 0-*, u • so ".1 "sZ 
42& Q : ".:. "xl' "yl 

.. "xl uxZ 
4Zb Q 

, ".:' "xl • "yl "yl "yZ 

4k ~.Q J "s:. "xl' "yl' ual ".: "151 

43& C t Q , ".:' "xl' "yl' ".1' "xZ' "yZ "xl 

43b C • 0 ; ".:' "xl' "yl' "al ' "xZ ' "Y Z "yl 

43c D1*C. Q a ".:'''xt '''yl f ".1' "xZ' "vz' ".z 
... u.: 

Equations .i. 42, and 43 must be solved under the alter­

native nOl'maltaatlon conc.Uttons, equations 38& and 3ab. Using 

equatlons 38& and aettina "ao equal to a constant. we wUl flndthe 

first compressional mode, for which 0 equals ael"O. The remaining 

• 11 equations 3ab lOVeI'D. u.o is not a variable, nor can it be var­
ied to derive equations 4t thS'Ough 43. *. Does DOt appear if equation 38b governs. 
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compressional mocles consiatent with equations 38a have nonzero 

cut off frequencies and. win be referred to .s "longitudinal sheaI' 

modea". The mode. founc1 by usfAa equatlOlls 38b will be caUed 

"radial modes". The fiexul'al and torsional modes will not be dis-

cuss.d, although they too are loverned by the above equations. 

B. THE FIRST MODE 

For the first compressional mode u~:) is taken as a con ... 

stant. Equations 4t and 42 can then be solved e.aUy for the con­

ditiona of .ero torce acting on the boundary as foUows. To do 

this, it ts a.sumed that in adctitton to eqUatton 4t and 42 there 

are the coDCiitioD8 

eu(o) 
.. (0' • ~ t-.Y1 + uCo), + (~+ 
xxi 'Jy .0 

(45' 
au'o) auto) 

.. !;: == ... ClfYxl + -&,1 ) It 0 

h(o, 
cr!:~ == ... (u:) + TiZ1 ). 0 

h(o) 
.. (0) = ... (u(o) + -r.a1) I: O. 

ye1 yl Vf 

wbel'. equations 40 deliDing the pertul'bed stresses are used. Thus. 

the boundary I. lorce free because all of the stre.s •• appearing in 

the boundary conditions also appear in equations 45. Equations 4i t 

42, &Del 45 can aU be aatiafled provided 00 is a.ro and -Co takes 



on the value 

.. c • fl:{3l. + !r) o p ,i+.,. E 2 
• - 111: C • P 0 

(46) 

. which is the correct value for the aquu-e of the speed of propaga­

tion of infinitely long waves of the first compressional mode. The 

solution for the Sr. mode ia written with two undetermined con­

atanta of integration. "0 and Yo' as 

u~~) ... ..!.. (x-x ) 
... .fA 0 

where A is the area of the rod. " • zttt..,.) is Polseont s ratio, anc1 

~ and J., are the moments of iDenia (divided. by the area), 

III equations 47 some of the constanta oIlntegration have been de­

termined by applying equattona 38&. These resulte depend on the 

ahape of the .rod only tbrouah the moments of inertia. The trans­

verse displacements are coupled to the axial displacement by 

Poi,.on's ratio • 

• That equations 47 satisfyequatials 4S. 42. and 45 can easily be 
seen. For instance. the first two of equations 45 determine 
au 8u 
lfXxl and"';l and the last two of equations 45 relate uz1 to uxl and 

uy1 • Equatlms 4t, 42&. and 42b are satisfied trivially. 



.. 37-

EquaUons 43 are difficult to solve. the solution depends 

on the shape 01 the rod. However, it is pos sible to find Do' which 

detenninee the disperslon of the longest waves. Integrating equa­

tion 43. over the area of the rod. ancl using equations 47, one finds 

e Q 0 and 0" xzl ue aero.) 

Z . 

"P c, S5 (x-xo )d.1r. dy • S V:x zl dy + S v z/ dx, 
.fA A x x(y) xy vex) 

where the superscript (0) ts omitted. The boundary conditions 

requb-. that the two boundary terms add up to aero. Equation 43b 

can be integrated in a slmUar manner. This shows that Xo and Yo 

are the coordinates 01. the centroid of the rod. 

The unknown. D • le contained in equation 43c. which is 
, 0 

intesrated over the aJ'ea usins the first of equations 47 to give 

PDoVA = pCo ZSS ua1dx dy .. SS er •• au dy -S 0""821. dy - S O"yzzl dx (48) 
A x(y) y(x) 

The boundary tenna m\Ut vaD1.h for the surface to be force free. 

To evaluate the integral with ... zZ' one must first use the identity. 

found from equations 40 and 46. 

Z 
0" '2 = pc u_, + v(er '2 + cr Z,. za. 0 _ xx. yy (49) 

Then, equation 43a la multiplied by x-xo and equation 43b is multi­

plied by y-y 0 and they are integrated over the area using equations 

46 and 47 to give 
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pc z.!.. CS(x-X )Zdx dy • - rs(X-X )(~XXZ+ !:xy2) dx dy 
o .,fAJ 0 J 0 ax oy 

1\ A 

= S) II z dxdy -S<X-X)II Zl dy-S (x-x)cr Zl dx A xx 0 xx x(y) 0 xy y(x) 
(50) 

2 ~/'S 2 S5 pc ..!.. (y-y) dx dy = II ~ dx dy 
o ~ 0 "~ 

A A 

-S (y-Yo) 11"21 dx - S (y-Yo) IIxyZ I dy . 
y(x) X(Y) 

Again. the boundary terms vanish. Equations 49 and 50 are then 

used in equation 48 to find Do as 

(5t) 

Ix + Iy ia the polar moment of inertia of the area about its centroid. 

Equations 46. 47. and 5t together give the behavior of the 

longest waves of the first compressional mode. Together with 

equation 36 they are an expansion of the frequency equation for 

the first mode. This expansion~ 

2, 2 Z Z 2 4 w-c K-VC (I+I)K 
o 0 x y (52) 

is Uke the approximate frequency equations found by Chree (2t) 

and by Love (reference 8, p. 428) and ia similar to an expansion 

found by Gazis and Mindlin (22). Chree expanded the displacements 

in powers of x and y and then neglected the higher powers of x and 

y rather than expanding on K as was done here. Love developed a 
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8ingle mode approximate theory more accurate than the elementary 

theory (one dimensional wave equation) by taking into account the 

radial inertia. The frequency equation for that approximate theory 

can be expanded for small K. and equation 5Z results. The ap­

proaches used by Chree and by Love do not guarantee that the re­

sulting frequency equation is a valid expansion for the first com­

pressional mode of tbe exact theory. It ia the exact theory which 

18 of interest bere. in particular. an exact value for the constant 

Do is desired. OaSis anc:l Mindlin derived a frequency equation 

for the thin rectangular rod by: using an approximate theory for 

thin plates given by Kane and Mindlin (Z5). Their approximate 

frequency equation is identical with equation 5Z provided the rec­

tangular rod is thinenouah SO that Iy can be neglected with respect 

to Ix. where tbe x direction is parallel to the width dimension of 

the rod. The inaccuracy for thicker rods can be blamed on the 

approximate theory used to derive the frequency equation. 

c. HIGHER MODES 

Longitudinal Shear Mode. 

The behavior of the longitudinal shear modes near K • 0 

is governed by equations 38a and 4t through 43. Equation 4t for 

u"o m,,8t be :-ved unde. boWldary conditione on "'""" ~ .. :"0 
and cr yzo = ~ 1fY .. o • The boundary condition in term s C!f uzo is a 

well known problem leadina to discrete eigen values, .e.. OZ. The 
I' n 

important feature s of the longitudlnal shear mode s near their cut 
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off frequencies are contained in the u (n) • 0 • and C • The lol-zo n n 

lowing paragraphs contain a means of calculating the Cn from the 

known solutions for the u:) and nn. 

A useful expression is found by multiplying equation 4Zc 

by uzo and integrating over the area of the rod: 

rs
L
r pCu Z+pQZu 1u +0" IU + !;XZ1u + ~Blu -JdxdY • O. J BO Z 1:0 BZ BO crx zo zo 

A 

Integrating by parts and then setting the sum of the boundary 

te'rms equal to aero leads to the equation. 

The definitions of 0" I 0" • f1 II and f1 "1 are substituted to xzo YBO XZ yz 

give 

This is integrated by part8 I again u8ing the boundary conditions to 

show that the boundary terms add up to zero, with the result 

ss r Z Z 8f1 :X:ZO 
,pCu +pQ,u lU +cr IU -a u __ , + u l~ 
L zo I: zo aa ao XBO A.t. as QX 

A 

80' flO] .. a u I + U 1..J dx dy == 0 • y.o y Z 8y 

Equations 41 and the fbst of 38a are then substituted to show that 



pC. 5' r r u fr + U <r .. U fr ] dx dy. (53) J L xo xzo yl YIIO 110 &111 
A 

Thus, uz1 ie eliminated from the equations. 

In ol'del' to u.e equation 53, it is nec.ssary to determine 

U ,uxl ' and u l' An approximate solution for uxl and U 1 wUl 110 y . y 

be found by using the Rayleigh-Ritz method. Notice.in table Z 

that equation. 4Za and 4Zb for U,u and uyl are found by varying 

uxl and Uy1in'the integral Ll given in equation 44. We assume 

an approximate form for the unknowns, 

where the origin of coordinate .. is at the centroid of the area. 

Ll is then a function of ~ and a Z' L1(~.aZ)' The terms in il 

containlng a1 and &Z are 

+ zMa1 "+ az)! Sf Uzo dx ely + z.,. Cal Z + a Z Z) 

A 

(54) 

Then i1 is made stationary with re'pect to variation. of ux1 and 

uyl by meane of the conditions 



These equations are then solved for a1 and a 2, 

"l &:;b, ~>.+ 2p.-PIl~yISS b· .. x.., ->.uaoldxdYt>.SS(>.u.., -YVyzo)dxd~ 
A A J(55) 

&1 • iA ~M 2p.- p IlZ1xl Sf (ycr yzo - >.uzo'dx dy + >-Sf (>.u.o -xv XIIoldx d~ 

where A= 11 (pOZ)Z.(X+4a.)(1 +1 )po2+ ~(X~f'o) , 
x Y x Y 

Equations 53, 54. an4 55 are an approximate solution for 

the Cn provided the u~:) are known. The accuracy is limited by 

the form chosen in equation 54. The exact solution for the circular 

rod shows that for the higher modes uxl and uy1 oscUlate rapidly 

• with x and y . Therefore, the present solution is expected to be 

accurate only for the loweat one or two modes. 

Radial Modea 

The radial modes are governed by more complicated equa­

tions than the longitudinal shear modes. An exact solution of 

equations 4Za and 4Zb for the cut off frequencies is difficult. Ap­

parently, only numerical methods work except in special cases • 

• The exact solution of Poehhammer is written in terms of Bes­
sel functions of large argument. 
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The important constants are the On and the Cn . Table 2 shows 

that C is 10Wld by using equations .43a and .3b. Below. a formula 

for C is derived 80 that equations 43a and 43b do not have to be 

solved. 

Equations 4Za. "Zb. 43a. and 43b are multiplied by "',,2' 

uyZ ' -uxl ' and -"'yl' respectively. added together, and integrated 

over the area. Then. eq",atioDs 38b are ",.ed to find 

(56) 

-p C • o. 

Equation 56 is then integrated by parts usinS boundary conditions 

with the I'e sult 

The definitions of the stresses, equations 40, are used to show 

that several terms caDcel and to produce the final result . 
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D. THE LONG Tn.,IE RESPONSE 

The modal solution given in equation 35 wID now be ev.,t­

uated approsimately by uslDg the forms for the modes found by 

means of the perturbatioD seheme. The iotegrand of equation 35 

will be approximated In the neighborhood of K = O. Thus. the re .. 
\ 

spon.e due to the longest waves will be found. It will be shown ' 

that the longest wav.s 01 the first mode give ris. to the head of 

the pW.se measured at long distances from the end of the rod. 

The parts of both the uppel' longitudinal shear and radial moc:1es 

near cut off cause vlbl'ation llke motions 10118 after the head of 

the pulse has passed. SimUar vibrations would b. expected from 

cut off frequencies where I( Is not zero but the Cl.)n(I() have minima. 

However, those cut off frequencies are more difficult to study. 

We consider the pressure shock problem. The boundary 

conditions on the enc1 of the rocl are that a normal compres stonal 

stress cr •• is applied suddenly at t = 0 and the shear stresses 

ux• and cry. are zero. Notice that the right hand side i" not known 

completely in either equation 35& or equation 35b. 

The imponuce of the longest wav.s of the first compre" .. 

sional mode can be seen a. follows. The solution given in equa­

tions 35 i. of the tyPe to which the method of 8tationary phase can 

be applied fol' large t and fixed ./t. The largest contributiODs 

to the integral over I( come from the polnta of stationary phase 

provided the tntegl'anci is .uffietently smooth. Such contributions 

are of order lIlt for large t. (See refel'ence Z6, pp. 51-52. The 

theorem is .l'tcUy true only for finite limite of Integration, but 
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only wave fronts come from infinite " .) The only larger con .. 

tributions must come from places where the integrand is infinite, 

and that can only be where Wn(K) is &el'O in equations 35a 01' 35b. 

Now, for compressional disturbances W 80e. to zero only for the 

first compressional mode and when " goes to zero. Therefore, 

we can expect the major compre.sional disturbance at long time 

and large distances from the end of the rod to come from that 

mode from the vicinity of K • O. 

In. accordaAce with the above arguments we cODsider first 

the contrilNUoD to equation 35a from the part of the first com· 

pressional mode with K very small. In equation 3Sa the second 

two terms are negligible with respect to the first because f1' (0) 
. xz 

and f1'y~o) van18h .s " goe8 to zero, which can be s •• n by exam-

ining the expansions. equations 37a and 39a, and recalling that 

.. ~:) and cry~:) are zero. According to equation 37a, U z may be 

approximated by uzo ' which is given as t/ iA in equation 47. 

Then. the innermost integral of equation 35a can be carried out. 

The integral of cr zz I z.O over the area is wl'itten a8 -AP. in which 

P i8 the average pre8sure over the end face. In. place of equation 

35a we then write 

p{A SE' st (k.Jo(t",.)+iKZ .Wo(t-,.)+iKZ) u\O)(X, y) 
uiAlliOT"p . e .. e d,. dK 

-E' ,0 Wo 

ao E' (58) 

+ S i (K) dK + S .... 
F (Ie) dIe , 

E' _0) 

where E' 18 small and positive and the integrals containing F(K) 



are of the stationary phase type. Those tntesrals give a contri­

bution which dies out .s ..L for large t and can be neglected. The 
.ff 

intelration over". is carried out first and Wo appl'oximated. usblg 

equation 36 and letting C II -co
2 , as 

D 
w • c " + t!- ,,'. (59) 

o 0 0 

Then, 

(60) 

whel'e the limits of integration have been extended to infinity; in 

so doinS a stationary phase contribution of order L for large t 
~ 

is neglected. 

The fbet term of the expansion for u!o) (x. y) from equa­

tions 37a and 47 is then 8ubstituted into equation 60. To finel the 

strain £ z • &u./la one mut dtlferentiate equation 60 with I'espect 

to IS within the integl'al sign. thus bringing down the factor IKe Then. 

(61) 

The longituc.Unal aUoain anel the lateral displacements are coupled 

by Poisson' 8 ratio. Noting that an odel function of K. wiU integl'ate 

to zero and usina a trigonometric identity. equation 61 becomes 
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p z r {1 ainKz - atn[ (cot( + ~ (\'3)t +,,-1 
.PC

O 
0 . 0 

(61) 

+ .in l (eoK + :: «3) t - n}} ¥ . 
The firat term is a well known integral. The second term 

may be approximated. provided z or t is lal'ge, by neglectina the 

term in (\3 in the argument of the sine function. The I'esult ia the 

same as the first tel'm except fol' a factor of Z and is independent 

of _ or t. The laat term la conveniently wl'itten with a change of 

variables so that 

e .. -
It 

The aolution is a function of ., l' where 

ko 1/3 It ko 
5 

1/3 
"1 11 (cot-.) (3/15 It ) :=:: (t "c) (310 1.) 

o 0 0 

(63) 

Equation 63 ia the same eolution that was found for the circular rod 

by Skalak. (5) and by Folk. Fox. Shook, and Curtis (6) in their exact 

theory and al80 by Mlklowitz (7) in related approximate theory work. 

They showed that the right hand side of equation 63 could be written 

as the Integral of the Airy function. 
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where the constant. \-. is found by setting "1 equal to zero in 

equation 63, a well known intelra! resulting. The integral of 

the Airy function ha.s been tabulated by Curtis (l7). Figure Z 

Wustrates the form of the solution. 

The contributions from tbe vicinity of the cut off frequen­

cies of the higher modes can al.o be found from equation 35&. 

However. .ince Ux and uy are unknown at a = 0, 80me constants 

in the solution mUlt remain unevaluated. The lntegral over 

the area in equation 35a can be approximated for small K by 

using the expansions in equations 37 and 39. For the abear modes 

and radial modes the results are, respectively. 

(64) 

where the ° (T) are different for longitudinal shear and radial modes. n 

For any mode On (T) approaches a constant for large T because cr zz' 

ux ' and "'y at 1& = 0 approach constant values at long time. The re­

suits to follow are incomplete because the On(") are unknown. If 

mixed boUDdary conditions were specified on the end of the rod, then 
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the 0n(T) would be known through either equation 35a 01' equation 

35b. 

An approximate expre. aion for the time derivative of the 

displacements is found by differentiating equation 35a with re­

spect to time and "sina the first of equations 64. The differen­

tiation is carned out to avoid certain difficulties which will be 

mentioned. Two tenns ariao; the fir8t, found by evaluating the 

integrand. at the upper limit of the integral over", is zero, and 

the second term, found by differentiating the tnt_lrand, is 

8u Q) t 

1ti .... k S-. u,(n) elKa S 0nCT ) cO~n Ct"''')dTdK (65) 
........ 0 

for the nth ahea. mode. For the l'acUal modes there is an adeU-

tional factor tIC. 

The intos"ation over ,. can be appzooximated for large t by 

writing the tntegratton in two pan., 
t S COB wn(t.,,) G

n
('7') dT 

o t 

a C08 W t S COS c., ,. 
non 

t 

o ('7')ctr + smw tS 0 ('r)smw 'r d'r • n non n 
(66) 

Since t i. large. each of the integrals on the right hand side of 

equation 66 can be written as two integrals. one from zero to to 

and ~e other fJ;"Om to to t. where to is a large number le.8 than 

t. The integrals from aezoo to to are independent of t. The inte­

grab from to to t are evaluated approximately by setting 0n(T) 

equal to constant, 0n(O:». The two terms which are found in that 
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It ie then seen that tl;\e right hand side of equation 66 reduces to 

the form 

l coaw (t ... ,,)O (.,)dor.:=cxmstant. cosw t+ Constant· smw t n ' D D n 
o 

= A COil (w t + qJ }. 
D D D 

(67) 

A and qJ are undetermined constants. n n 

E;qu.&Uon 67 1s substituted into equation 65 to show that 

au A (I) 

~- .. if s.Q) "l(n) cos (wnt + "n) e
t "'& dK • (68) 

The I1l'st te .. m of the expansion in equation 37a ts us.d to approx­

imate u~n'. fOff exampl., anel the first two terms of equation 36 

are used to approximate wn with the result for the nth longitudinal 

&bear mode 

au A u(n) (x,y) r: C i 
x .. _ n Xl iKCOI ((Q.. n K~)t+ qJ ] e KZdK (69) r.p -go n -z;; n • 

FOff the radial modes exactly the same equation holds. (Equatlons 

37b and the second of equaticDI 64 are used.) Equation 69 ts eval­

uated for 1&r.e t and fixecl &/t by the method of stationary phase 

(reference Z6, p. 51) with the points of stationary phaae being found 

at 

• Thi. dipendence on t i8 the reason for workLig With hi/at 
rather than "t. For Ui there would be an additlve constant. in­
dependent of t. That COIlstant would cause the integral in the 
equation analogou.. to equation 68 to be cUvergent. 
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(70, 

Since appl'Oximations have been made for" small. the results are 

valid only for large t/z. The result for Ux is 

aux AnJ;in On· In °n
zl 

Cn .. (n) "Jr-' - C"T aln, .. t + l1:"t+ rp .. 7!"'i 'i)uxl (x,y). (71) 
p ICnin n n n n I-I'll 

Equation 71 C&nDOt be inteSl'ated exactly to find ,the displacement. 

The time derivative of equation 7 Z is equation 71 provided tl z is 

large as had already been a.aurned. uy il similar to ux ' Similarly, 

for the ahear modes one fincls for E-:& 

An ~ z anzl Cn • (n) , 
e z - - P Jif;;;,ji£. t:;r co.enot + n::;I + CPn" fC;;j -1') uzo (x. y). (73) 

For the radW modea u~: .. replaced by u~) and the right hand 

side of equation 73 ia multiplied by (1,,)l evaluated at the point 01 

stationary phase; that is. by 

D 2 1. 
n II 

.. Z Z • 
Cn t 

Both the shear and radial modes cause Vibrations which ell. 

out as t increases. The magnitudes and phases of the vibrations 

are not given by equations 72 and 73, 101' the An and (/In are unknown. 

The longitudinal strain of the radial modes cU.s out more quickly 
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than the other variablea calculated above. Such vibrations for 

the circular I'Od were pointed out by MiklOWitz (1, in the approx­

imate theory work and by MUdowitz and Nieewanger (19) in the1r 

experimental reaponse records. Theee vibrations occur for all 

II at long times after the hea4 of the pulse has passed. Similar 

vibrations would be expected from place. in the frequency spec­

trum where the wave length 1s not infinite but the frequency is 

a minimum. 

E. APPROXIMATE THEOa y 

Problem. too difficult lor the exact theory are often tracta­

ble by approximate equations of motion. Mindlin and McNiven (ZO) 

have recently developed an approximate theory for compreasiOll&l 

wave. in a clJ'cular I'Od. A forerunner is the le8. accurate but 

more ea8ily solved two mode approximate theory of Mindlin and 

Herrmann fS.4). Volterra (Z3) has developed a three mode theory 

for the rectangular rod. A five mode theory lor compresaional 

wave. in rods of arbitrary cr08S .ection is developed below. It 

is ba.ed on the same phy.lcal approximations as the Mindlin­

McNiven theory. but the preaent theory aUows for the asymmetry 

of a noncircular rod. 1'01lowiDs Mindlin and McNiven. the fre­

quency equatf.ons of the apprOximate and exact theories are com­

pared near their cut off Irequenc ie s. 

The atarting point 1a HamUton' 8 principle for time depen­

dent problems; 



(74) 

where L is twice the La,I'angian. The variations of the displace­

ments are .ero at t eq\&&l to tl and t Z• Appropriate boundary condi­

tions m",st be given at & eq\&&l to a1 and z Z and on the lonlitudinal 

s",rfaces of the rod. 

Equation 74 ie u.ed by first assuming for the displacements 

the forms 

(75) 

The integration over the are. in equation 74 is performed and the 

variational principle gives partial differential equations in • and 

t. The aecuracy of the re.ult depends on the accuracy of equation. 

75. The dependence. on x and y cho.en in equations 75 are 

simUar to those chosen by Mindlin and McNiven for the circular 

rod. They did not allow for differences between the x and y 

co-ordinates because they only considered waves which are sym­

metric about the axis of the rod. In the present cas. there i8 no 

symmetry and w Z and ., are assumed to be independent of w 3 and 
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u z· (With symmetry W z = w3 and u1 • u Z') All that follows is 

a natural consequence of equations 7S. For instance. no modes 

of flexure or torsion will result because the motions assumed in 

equations 7S are not bending or torsional in nature. Equation 74 

. is valid for several possible boundary conditions on the longitudi­

nal surfaces. The approximate forms in equation 7S were chosen 

with stress free surfaces in mind. U the boundaries were rigidly 

held. equation 7S would not be appropriate. 

Having substituted equations 7S into equation 74, the in­

tegration over the area is easy. The results are expressed in 

terms of the moments of inertia 

t 5"S Z Iy • A y dx dy 
A 

t SS Z 1. lxy • A x y dx dy 
t sr 4 .. 

1 = A ,y dx dye 
yy '" 

A A 

Letting a dot represent lr and a prime fz . 
fz ZZ{ . * = i Sz p [Ix~ Z + Iy 6.2 Z + WI Z + Ixx VI 1.1. + Iyy W 3 Z 
1 1 

+ IX(~IWZ + wZw1) + Iy (w1w3 + *3w1' + IXy<w ZW3 + W3Wl.'] 
-~ [(U1Ul. + uZ~) + ("J.+u 1.)(wI ' + Ixw' Z + IyW3) 

] r z z 2 
+ (wI' + lxwz' + lyW 3') ("J.+uZ) ... (~ + ZtL) L"t tuz +w1' 

+1 w' Z + 1 w' Z + I (w'w ' t- w 'w ') + 1 (w'w '+w 'w ' xxZ yy3 xlZ 21 y13 31 

tIxy(wZ'w3' + W3'WZ')]- '"x(u1'+ Zwz)Z. ,"y(UZ'HW3)Z } dlII dt • 

(76) 
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It is easy to take the variation of L because it contains a 

symmetric bilinear form. Only the second member of each term 

need be varied. The variations are taken by the usual method. 

A term ill 18 varied and integrated by parts to give 

t, t, 
i 6 S. u' dt 11: ... r U 6u dt. 

tl ~l 

A term wu' + u'w is vaded and integrated by parts to give 

z, . z, z, 
~ 61 (wu'+u'w)da 11: S (-w'6u + u'6w) dz+w6u • 

Zl Zt Zl 

The la8t term on the right hand side is used to determine the bound­

al'y conditions. Since there al'e five dependent variables, there 

are five displacement equations of motion and five boWldarycon­

ditions a8 follows: 

-p,+ ("-+ ''')wl''-p1xw,+ (Xt Z,,)lxwZ"" Ply"'3 

+("-+Z"Uyw 3" + Xul ' + MA,' 11: 0 

-pIx" t + (X + ,,,)lxwI" .pIxxwZ + ("-+,,,) lxxwZ"-4t.a.1xwZ 

-pI *3 + (X+ 2,,)1 w3" + Xl u.' - 2,,1 u.' + Xl u.,' = 0 xyxy X ... X ... X ~ 

-pI WI + (MZ,,)1 wl"-pI w., + (M,,,)I w.,lf-pl w3 . y y xy ~ xy ~ yy 

+("-t Z.,,) lyyw 3 "-4I'1yw3+ Uy"J.' -Uyuz.' -2"Iyu,' = 0 

-Xwt ' -"-Ixw Z'+2.,.Ixw,' - 'It.1yW 3' - PIxuC(MZtA)"J. 

+tt-I u If. "'" • 0 xl, 

-"-Wl' -~w2' -Uyw3,+,.,.lyw3' -MAl-PIyUz. 

-("-+ Zp,)uZ + tt-1yUz" • o. 

(77a) 
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(77b) 

Equations 77a are a t_th order set of partial differential equa­

tions goveminl approximately the motions of a noncircular rod •. 

Equations 77a are not invariant under a rotation of the x and y -
axes. 

Lettinl "l I: u2 and W Z I: W 3' equations 77 reduce to the 

homogeneou.s Mindlin-McNiven equations and boundary conditions 

for the circular rod with all correction factors in the latter equa­

tions set equal to w"ty. Volterra's- equations for the rectangu-

lar rod are derived by settin. W z = W3 = 0 in equations 77. Finally. 

letting "1 I: Uz and Wz I: w3 I: 0 in equations 77. one finds the homo­

geneous Mindlin .. Herrmann equations and boundary condltions 

with all correetion factors \II1ity. In the same way the assumed 

approximations in equ.ations 75 reduce to the assume d forms used 

-there is no apparent reason Why Volterra' 8 equations cannot be 
considered as valid for arbitrary cross s.ction. They are ex­
pressed in terms of 1 and 1 as are equations 77. 

J[ Y 
·c·' 
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by the eal'liel' authol's. This cOl'l'espondenee between the assumed 

fOl'ms of the displacements and the I'esultinl diffel'ential equations 

holds hel'e clespite the fact that Mindlin's derivation is diffel'ent 

fl'om the derivation by Hamilton's pl'inciple used hel'e and by 

Voltel'l'a. Evidently, the derivations al'e equlvalent. Notice 

that the Mindlin-Herrmann equations are the symmetl'ic fOl'm of 

Voltel'l'a'. equation. and that the Mindlin-McNiven equations al'e 

the symmetl'ic fOl'm of the present apPl'oximate theory. Also, 

notice that Voltel'l'a's equations al'e del'ived fl'om equations 77 

by dl'opping the W z and w3 which will be seen to lead to the im­

portant longitudinal aheal' modes. 

The boundal'Y conditions need to be studied. The stl'esses 

on the eDd of the rod al'e 

8u h 8u 
cree == )..(~ + -,:/) + (X + ZtAo) ~ 

~ \ ("J. + uZ) + (X + ZtAo) (wl ' + xZwz + yZ
W 3') 

au 8u 
cr xz == tAo (-yf- + -rf) ~ Xtl ("if + Zw 2) 

8u 8u 
cry. == tAo (-,i- + -,f) ~ YtAo (u2' + 2w3' , 

(78) 

whe.e the approximations al'e found by uaing equations 75. By 

compal'ing equaticns'78 to equations 77b, the boundal'Y conditions 

are interpl'eted. Each boundal'Y conctition- in equatials 77b I'e­

quil'es that in general either a displacement (01' cOl'responding 

'The bOundary conditions co\ild be incol'pol'ated into the del'iva­
tion through HamUton's extended pl'inciple (see I'eference 8. 
pp. t66-t67.). 
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velocity) or a "bar 8tress" be specified as a function of time. 

where the bar atresses are, reapectivelYJ 

S j'xlcr.a dx dy 
A 

ss x crxz dx dy, and SS y cryz dx dye 
A A 

The five modea of propaaation of the approximate theory 

will be compared to the correapondina modes of the exact theory. 

The comparison provide. a phyaical Wlderatandlng of the modes 

and is a criterion for judging the accuracy of the appl"Oximate 

equations. In Mindlin' a work there was an additional reason 

for such,.a comparison. Correction factors were introduced by 

Mindlin into the approximate theory and were adjusted to make 

the approximate theory approaeh the exact theory more closely 

in the long wave reaion (K amall). According to Herrmann (4), 

the correction factors mua~ be introduced into the theory in such 

a way that tbe bilinear form in eq"ation 76 remains symmetric 

as in the exact theory •. There are many ways of introducing cor­

rection factors uncier that condition. One c,an multiply any term 

or symmetric pair of terms in equation 76 by an unevaluated 

cODstant. According to Mindlin and McNiven, the constants should 

be adjusted 80 that the frequency equations of the approximate 

and exact theories are the same for long wave lengths. Since DO 

exact formulas for general CI'OS" sections have been given for 

the On and Cn for the noncircwar rod. it appears fruitless to 
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introduce the correction factors in the present work. The cor­

rection factors could be introduced profitably if a particular eros • 

• ection were being considered. Then, the an and. Cn for the low­

eat modes could be calculated to the accuracy desired. numeri-

~ally if necessary. 

To develop the frequency equation, we substitute into 

the differential equations 77a the travelling wave solutions 

w = A e Uwt+KZ ) 
3 3 

(79) 

• A' eiCwt+ KZ) u2 5 • 

The resulting linear equations for the An are 

a tt a ta a t3 iat4 tats At 0 

a t2 a 22 a 23 ia24 ia25 AZ 0 

a t 3 a 23 a 33 ta34 ta35 A3 • 0 (80) 

.. iat4 -ia24 -la34 &44 &45 A4 0 

iatS -ia25 -ia35 a 45 aSS A o , 

where 

1 2 
a tl • pw -().+q,..K 

2 2 
a l2 = Ix (pw -(~+ 2.,.)K ] 

2 2 
a 22 1& Ixx [pw -(~+ 2t£)K 1 -~x 2 2 

a t3 I: ly [pw -(~+2"')K 1 

a 33 = lyy[ pw
2

.().+Zta.)ic
z] -4tl1y 2 2 

a 23 • Ixy( pw .. (~+z.,.)K ] 



a t4 I: &is I: "" 

a l5 I: Ix "'" 
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l 2 
&5S= IyCpw -fAIC )-(~+Zt&) 

&24= lx(~-2ta-)K 

a 3Sl: ly(X-Z .... )K • 

The frequency equation i., found by setting the determinant of the 
.' . 

Hermitian matrix in equation 80 equal to zoro. 

To study the cut 011 frequencies, 0, wc letK go to zero in 

equation 80 andreplac:e w with O. The matrix elements a t4, a tS ' 

a 24 , &25' a 34, and a 35 are zero. Then, equation 80 separates 

into two equations. one equation for At, A Z' and A3, the other for 

A4 and AS· The equations are 

pOZ Z I 0 2 

Ci (:)(8i&1 
1 pO . x yp 

~poZ 1 p02.4...,l 1 gZ A2 I: 
xx x xyP 

1 gZ I oZ Z 
A3 yP xyP lyypg .. ~y 

"( .. paZ .(M ZtAI 

-x 
.~ ) 

lypoZ -(M z...,) (::) . (:}(stb l 

Three cut off frequencie., are found from equation 8ta. One of 

them is zero and come. from the first mode. The other two are 

related closely to the longitudinal ahear modes of the oxacttheory. 

Equation 8tb yields two cut off frequencies, both related to the 

radial modes of the exact theory. 

To see that equations 8ta and 8tb are directly related to 

the exact theory, we con.ider the variational principle formulation 
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of·the equations for the cut off frequencies of the exact theory. 

The Rayleigh-Ritz method is used on the integrals LO and Ll 

given in equations 44 and equations 8ta and 8tb result. In LO 

we try the approxiInate form 

while in Ll we let u = 0 and try zo 

/ 

(8Za) 

(8Zb) 

Equations 8Z are intentionally made to resemble equations 75 and 

79 without the dependence on z and t. 

To carry out the Rayleigh-Ritz method, equations 8Z are 

substituted into equations 44 and the integrations are carried 

out. The results are written in terms of the moments of inertia. 

,Then, the "variations" of LO and Ll are set· equal to zero by re­

quiring 

(83) 

The resulting linear equations are precisely equations 8ta and 

8tb. This is not surprising in view of the fact that the physical 

assumptions, equations 8Z, which went into the approximate cal-

culation on the exact theory were the same as the assumptions 

that went into writing the approximate theory. '\,\ e are now as-

sured that the five modes of the approximate theory correspond 

approximately to five of the lower modes of the exact theory. The 



-63-

first mode of both the approximate and exact theories is a com­

pressional mode with a velocity of Co for infinitely long waves. 

Figure 3 makes a comparison between the solutions 01 the 

exact and approximate theol'!es at cut off. The approximate 

theory solutions come dil'ectly from equations 75. 79. and st. 

The exact theory solutions for the longitudinal shear modes at 

cut off are known through an analogy with a problem in electro­

magnetic wave propagation. The H (TE) modes of propagation 

of electromagnetic waves in a waveguide of aribtrary cr088 aec­

tion are governed by the same boundary value problem and the 

solutions are given in reference (Z8). The boundary value prob­

lem for the radial modes is more complex. The exact theory 

80lution for the circular cros. 8ection given in figure 3 comes 

from Pocbhammer's solution. The lower radial mode in the 

approximate theory for the circle i. not axially symmetric. 

and. therefore. there h no comparable Pochhammer mode. The 

. solutions of the exact theory for radial modee for the thin rec-

tangular cro.s section come from assuming plane strain for the 

higher Il'J.Jde or plane stress. for the lower mode. The formulas 

for the modes are not normalized. 

An idea of the accuracy of the approximate theory can 

be gathered by comparing the cut off frequencies of the exact 

and approximate theorie8 as given in figure 3. Similarly. the 

-tor plane stress fTyy• fT~y == 0 for the coordinates of figure !. 
uy is determined by",ettmg" • O. yy 
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forms of the displacements in the two theories can be compared. 

For the radial mode in the circle, X is 2.126 when Poisson's ratio 

is 0.3. 

It can be seen in figure 3 that there is a definite corres-

. pondence between the modes of the approximate theory and the 

modes of the exact theory. The contrast between the square 

and the circle is most interesting. According to the exact theory, 

there is a doubly degenerate asymmetric lower longitudinal shear 

mode while the symmetric higher longitudinal shear mode for 

either cross section is not degenerate. In the circle the approx-

imate theory has one mode corresponding to the lower longitudi-

nal shear mode of the exact theory and one mode for the higher 

longitudinal shear mode of the exact theory. But, in the square 

the approximate theory has two modes which have equal cut off 

frequencies. These two modes seem from the form of the die-

placements to correspond to the two degenerate modes of the exact 

theory. 

The limitations of the approximate theory can be deduced 

from figure 3. A criterion suggested by Mindlin and McNiven 

is to limit the solution to long wave lengths and to frequencies 

below the lowest. frequency of the lowest exact theory mode 

omitted by the approximate theory. For the thin rectangle the 

*The lowest frequency of some modes of bOth the exact and ap­
proximate theories is a little lower than the long wave cut off 
frequencies discussed here. 
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higher shear mode aDd the higher radial mode of the approximate 

theory both have very high cut off frequencies. Those two modea 

are coupled to the smaller dimension of the cross section. But, 

the exact theory haa many mode. coupled to the larger dimension 

_ich would bave lower cut off frequencies than the two high modes 

of the approximate theory. Those two modes should then be elimi-

nated from the approximate theory or ignorecl lor the thin rec-

tangle or any other thin .hap,.. 

It can eaaUy be seen from the frequency equation (the 

determinant of eq"ation 80 set equal to zero) that three modes 

have a limiting high frequency, short wave velocity of cd= j"A.;Zf, 
while the other two modes go to the velocity C s = /if in the same 

limit. 

It is clear that the present approximate theory models 

the exact theory near the cut off frequencies. Furthermore, the 

frequency equation of the M.~dlin"McNiven theory, which is a 

special case of the present approximate theory, was shown by 

Mindlin and McNlven (ZO) to have solutions similar to the exact 

theory provided only longer wave length. are considered. There-

fore t it seema reaaonable to expect the present approximate 

theory to model the exact theory for aU wave lengths lODger than t 

say. the largeat transverae dimension of the rod. Solution of 

the approximate theory for harmonic wave trains would indicate 

the behavior of the exact theory in the neighborhood of long waves. 

Such a solution would be valuable as the exact theory is extremely 
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difficult to 801ve. From the approximate theory one can learn. 

for instance, the form of the modes with complex wave numbers 

(such as exist in the circular rod). In addition, solutions to dif­

ficult transient problems can be attempted with the present apM 

proximate theory. 
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IV. THEOR.Y OF WAVE FRONT AMPLITUDES 

AND LOCA TIONS 

The concept of wave front is associated with hyperbolic 

partial differential equations with N + I independent variables--

N space variables and one time variable. The time plays a role 

distinct from that of the space variables. In this N + I space a 

characteristic surface is defined to be any N dimensional surface 

across which any derivative of the dependent variable can be dis­

continuous. Wave fronts are associated with characteristic sur­

faces and can be v18ualized either by considering stationary obser­

vers or by considering the situation at a particular time. 

A stationary observer detect. the variation of the distur­

bance, the dependent variable, with time at some fixed location in 

space. A strain gage placed on an elastic rod is a stationary ob­

server. At certain times, depending on the location and called the 

times of arrival, or, the stationary observer detects discontinuities 

in the disturbance or its time derivatives. The magnitudes of the': 

discontinuities are called the amplitudes of the wave fronts at that 

location. 

At a particular time. to' consider the disturbance as it 

varies in space. This corresponds to taking a picture of the distur­

bance. The N - I dimensional surfaces across which the disturbance 

has discontinuous space derivatives are the wave fronts at that parti­

cular time. The equations of the wave fronts at time to are found 

by setting the time of arrival as a function of the N space variables 
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equal to t , i. e." • t. Viewed at successive times, the wave 
o 0 

fronts are seen to move. The speed of the motion measured along 

a line perpendicular to a wave front at a point is the apeed of propa-

gation at that point and can be determined (rom the governi~a partial 

differential equation. The trajectories perpendicular to the wave 

fronts are called rays. 

Letting t b. the time, y and z be the space variables, 

and H(x) the Heaviaide atep function, one can write the wave front 

expansio~ aa 

(84) 

• where I. = 0, 1, Z, ••• or I. :: - liz, liz, 3/Z, 5/Z, ••• In the 

outer sum the nth term 18 identically zero before the time of arrival, 

,. n(y, .), for that term. The inner sum is similar to a Taylor serles 

lor the disturbance with the coefficients depending on the space vari­

ables. The coefficient, Anl (y, z), of the first non-zero term of the 

inner expansion is the wave front amplitude which, along with the 

time of arrival, is the object of the calculations of this section. 

A useful form of the wave front expansion can be lound by 

taking its Laplace tran8iorm, which is written as 

I[I 
n 1 

1 t 
1+1 

p 
] 

.. p" (y, z) 
Ani. (y, z) en. (85) 

• Karal and Keller (14) and Babich and Alekseev (15) have given a 
more general form, but only these two forms are of intereet here. 
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The following work is baaed to a large extent on two observationa 

about the transform in equation 8S. Firat. the time of arrival ia 

found in exponential functions. Second. the inner expansion is in the 

form of an asymptotic expansion for large values of the transform 

variable p. The first term of the expansion i8 the wave front ampH-

tude. 

In thia section the wave front amplitudes are found for the 

displacement potentiala tp and -; in Lame'. well known general 

solution of the displacement equations of motion from linear elas-

ticity, 

Wave fronts found from fI are called P or dilatational wave fronts 

because the displacement field is irrotational. Wave front. found 

-from ~ are called S or shear wave fronts because the displacement 

field ia equivolwninal. (These are the SV and SH waves of refer-

-ence 29. Here ~ will have only one component and the shear waves 

wUI be SV waves.) The wave front amplitude for tp is proportional 

to the wave front amplitude of longitudina\ strain measured in a di-

-rection perpendicular to a P wave front. Similarly ~ measures 

shear strain along the direction of an S wave front. PubUshed works 

have previously calculated wave front amplitudes of displacements 

or streB.eli along fixed directions: (9-13)~ But then the answer include. 

a factor dependent upon the angle the wave front makes with the arbi­

trarily chosen fixed direction. 

In the following work the wave fronts are first found by w~rk-
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ing with the transforms. Two inversion methods are used. The 

first, Cagntard's method, h patterned here after the work done by 

Mencher (9), Broberg (10), and Davida (11), who calculated a limited 

nwnber of wave front amplitudes in a plate. The second, the saddle 

point method, is used here in a manner similar to that of Knopoff 

and Gilbert (13), who alao calculated 80me of the wave front ampli­

tudes in a plate. In the following work all of the wave fronts and 

their amplitudes are found from the transforms. The time depen­

dences of the potentiale at the wave fronts are clearly diaplayed. 

I The mathematics of the transform method 80mewhat obscures the 

. dependencea on the space coordinates and on the integers nand m 

identifying the wave fronts. Therefore, ray theory is used to study 

the wave fronts. 

The ray theory has one distinct advantage over the transform 

methods; it is able to provide a transparent and meaningful inter-

pretation to the formulas which were also found by use of the trans-

forma. However, ray theory is not used here to find all of the 

answers, the most notable lack being the time depen·dence. The re­

sults of ray theory and of the transform methods will both be written 

in terms of the same symbols. The symbols will be defined differ-

ently lor the two methods. What ia notable is that the definitions and 

formulas found by the two methods are equivalent. 

It is convenient at this time to discuss the different types of 

wave fronts which will be found. All types develop immediately after 

the load is applied. Figure 4 shows the wave fronts in a plate under 

a point (or line) force suddenly appUed at time t = O. The wave fronts 
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are drawn to geometric scale for a time, t, before any reflections 

have occurred. The dUatational waves move at the speed cd and 

the shear waves move at the speed c s " The spherical (cylindrical) 

wave front indicated by the solid line AB Ie a regular dilatational 

or P wave front, which ts at a distance cdt from the applied 

force. At the same time there ts a regular ahear or S wave front, 

eE, at a radius cst. The Une AE indicates a head wave. It is 

created by the dilatational wave front moving along the boundary 

simUarly to the way a Mach wave is created in the supersonic flow 

of fluida. The part ED of t~e spherical (cyUndrical) shear wave 

between the free surface and the head wave is not a regular wave 

front; it is called here a two sided shear wave. The time depen­

dence of the two sided shear wave., as will be shown, ta distinctly 

different from that of the head waves and the regular waves. 

A. DERIVA nON OF THE DOUBLE TRANSFORMS 

The wave fronts will be found by working with double trans­

forms of the displacement potentiale. The several steps in deriving 

the double transforms for six problems of interest are ca~ried out 

below. First, the governing partial differential equations and 

boundary conditions are written .n terms of the potentiah. Next, 

all of these equations aroe troanaformed twice by Laplace and Fourier 

transform.. The. resulting ordinary differential equations and 

boundary conditions for the double transforms aroe then easUy solved. 

Figure 5 shows the six problems to be studied and the coordinate 

.yetems. In each caee, z ie the coordinate in the direction of wave 
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propagation and y i. the transverse coordinate. Similarly, in 

each case the boundary conditions on yare specified at y = :I: a. 

Problems i, ii, and iii are the easier to solve plane strain prob-

lems. Problema iv, v, and vi are the analogous and more difficult 

problema with cylindrical symmetry. The small Roman numerals 

next to the equation numbers in this section will refer to the appli .. 

cable problems. 

The boundary conditions are all expressed in terms of a 

source magnitude, Z, as follows: 

Problems i and iv, (Longitudinal impact problems) 

At z = 0, u = ZcdtH(t) and tr = 0; at y = :I: a, tr = tr = O. z 'yz yy yz 

Problems ii and v. (Pressure step problems) 

At z = 0, tr = - Z(~ + 2~)H(t) and u = 0; at y = :I: a, tTyy= tr =0. zz y yz 

Problem iii, (Line ~rce problem) 
'\ 

At z = 0, u = 8u 18z = 0 by symmetry; (T = 0 at y = :I: a, z y yz 

(T :I 0 at y = -a, tr :I: -Z~a6(z)H(t) at y = + a, where for yy yy 

any positive €, J € 6(z) dz = 1. 
-£ 

Problem vi, (Point force problem) 

At z = 0, continuity of displacements required; tr = 0 at yz 

y = :I: a, (T = 0 at y = -a, tT = - Z~a 2 6(z) H(t) at y = + a, yy yy z 

where for any positive €, 2.r. ~ 6(z) dz = 1. 
o 

Each of these boundary conditions i. mixed on the end surface, z = o. 

Therefore, schemes 1 and 2 of section II will work. 

The two scalar displacement potentials are defined by 



u = ~ .. a", 
z rz 8y 

u = ~.. 1.!.. ( .... I.) 
a 8z y oy I" 

8cp ~y u ="R""'"" 
Z OZ 

u = ~ + a~ 
y By rz (86i, ii, iii) 

(86iv, v) 

(86vi) 

cp gives rise to an irrotationat displacement field, ~ to an equivo­

luminal displacement field. The potentials are all defined in a 

similar way 80 that the plane strain problems can easily be com-

pared to the cylindrically symmetric problems. 

The expressions for the stresses and the derivations o~ the 

equations of moti.on in term. of the potentials are given in Ewing, 

Jardetzky, and Press (29), pp. 6-8 and 306-308. The equations of 

motion are the wave equations 

(87i, it, iii) 

2 2 
!....f. + 1. 8 (y!f.) _ I U = 0 8z"Z y By By ~ a;z-

d 
(87iv, v) 

.q + 8 [ 1. a (ri)] _ I 82t =: 0 
aa By y By ;Z at 

8 
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(81vi) 

The stresses which are involved in the boundary conditione are 

fT :I 
zz 

2 
~ 8 ( 8cp) _ ~ 8 ( a",) + (~ + 2 ) 8' cp 
yBy yry y By yrz f.L:r 

8 z 

2 2 2 

fT yy = ~ 4 + 2f.L lyl. + ~ -3y (y * ) + 2f.L 8 I 
8. 8y 

ay• = .. { z:;t. + ::t -~ [ ~ ~ (~)j} 

2 
fT :I ~.!.. (z ~ ) + ~ ~ (z .!.%) + (~ + 2f.L) ~ 

yy Z UlD h. z aE ay 8y' 

fT :I f.L 2 ~ + 'r':'" [ - 'K"""" (z",)1 - • 
{ 

82cp 8 1 8 ~2 } 
y. ayas az z az 8y 

(88i, ii, iii) 

(88lv, v) 

(88vi) 

J 
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Initially the rod or plate is at rest. The initial conditions 

which are pre8cribed for the potentials are 

(t :II 0) (89) 

Equations 89 do two things. First, they guarantee that the rod or 

plate is at rest initially. Second, equations 89 eliminate unwanted 

solutions which could arise because equations 86 do not define the 

potentials uniquely. For instance, in equations 86i, ii, iii any pair 

of functions rp and ~ satisfying the Cauchy-Riemann equations 

would not cause any dhplacements u or u and would not be of y z 

interest. U such a pair of functions were independent of time, they 

would satisfy the boundary conditions and the gove rning dilfe rential 

equations but not the initial conditions in equations 89. 

To express the boundary conditions at z = 0 in terms of the 

potentials in a simple way, we proceed as follows. For the plane 

strain impact problem. problem i, the two conditions on U z and 

G'yz can be expressed in terms of .;;. and ~ by using the differen .. 

tial equations 87i and 88ii 

., 8 (8rp) I 82", 82", __ 0 
~ By 1i' +":-:1'"" l :--2' 

C s 8t 8y 

(z :II 0) (o!) 

Equations !. are a pair of differential equations with independent 

variables y and t. With this in mind we differentiate the second 

of equations !. with respect to y and substitute into the first with 
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(z = 0) 

Equation 2. is a simple differential equation which is solved with 

the help of the initial conditions, equations 89, to find that ~ is 

zero at z = O. Then, equation !. gives .;;. • The impact problem 

in the rod, problem iv, h worked in the same manner; and we have 

the bo\:ndary conditions 

.;;. = Zc dtH(t) ~ = O. (z = 0) (901, iv) 

For the problem of the pressure step on the plate, problem 

ii, the two boundary conditions on f1' and uy become conditions sz 

8~1I on t(I and 8z 

2 Z 
-2~ -4 + ).+~tL 4 - 2~ -Iv (~) = -Z()'+2~)H(t) 

8y Cd 8t y z 

(z = 0) 

~+~=o. 

(c) -

The second of equations .£ is differentiated with respect to y and 

substituted into the first to show that 

(z • 0) (d) -
The differential equation d is easy to solve with the initial condi ... -
tions, equations 89, and then the second of equations .£ requires 

that ~ be zero. The results for the rod are simUar. Then, the 
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boundary conditions at • = 0 for the presaure 8tep problems are 

~ = 0 • (z = 0) (9011, v) 

For the Une force problem the symmetry conditions that Uz and 

8uy /8z be zero are reflected in the two conditions 

!!. =",=0. -h (z = 0) (90iH) 

For the point force problem we only require that tp and '" remain 

finite as z goes to zero. . 

To take the Laplace transforms, the governing differential 

equations, equations 87, are multiplied by e -ptdt and integrated 

over t from zero to infinity. In the same way we trandorm the 

boundary conditions ()n the edge of the plate or the end of the rod, 

equations 90, and the boundary conditions at y = ::t; a. The Laplace 

transform has the definition given in equation 15a. Because the 

initial conditions are zero, the equations are transformed easUy by 

8 putting bars over. and '" and replacing 1t by p. The resulting 

differential equations and boundary conditions are written below. 

For convenience second derivativea with respect to z are eliminated 

from the boundary conditiona at y = ::t; a. This ia done by substituting 

the governing differential equations. The Laplace tranelormed equa-

tiona are 

(911, il, iii) 
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(9liv, v) 

1 & fi.. ,2- 2 
'i 1i (. r.) +:-t -~ .. = 0 

8y cd 
(91vt) 

8 [1 8 8~ 2 
1i' ali' (.;)] + :-f -17 'Ii = 0 

8y C 
8 

2 at + ~P~ .. + 2. I). = {- -F 6(z) iii, (y=+a) 

By f.LCd' 0 (eleewhere) 

2- 8~ Z (y=*a) 
2M. _ 2 ~ + L -; = 0 (92i, ii, iii) 

y 8y 7 • 
s2- ~ 2 Q. 

2:; +- ;." + Z 8 = o· 
Sy f.L C Y • d (y = +a) (92iv, v) 

2:~ 8 1 a 2 y • - 2 1Y [ Y 1Y (y lJj)] +;. 'Ii = 0 
C • 

2 Bt + ! p: .. +.! 8 (. 8; ) = {- Zp~Z 6(.) (y=+a) 

8y f.L 7 • 'Ii Ty 0 d (y=-a) 

82- 8~ 2 2M. -2 ~ +"-% lJj = 0 
&y C • 

(y=lta) 

* ZCd z =,-
p 

iii = 0 (.=0) 

2 
_ ZCd 

~ =0 .= -.,... (z=o) 
P 

(92vt) 

(93i.lv) 

(93U. v) 
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* =";= 0 
(a=O). (93iU) 

Next, sine aDd. cosine transtonns of equations 9U. it. iU. 

iv. v and 92i. ll. iU, iv, v are taken by multiplying the equations 

by either cos ICZ da 01' .. I sin lCa dB and integrating over a from 

zero to bllinlty. Table I indicates which variables are sine trans­

formed and which variables are cosine transformed. The choice of 

scbemes b determined by wbat boundary conditions are gl yen at 

• = O. Problems it and v fit into scheme 1 and problema i. iii, and 

Iv ftt into scheme 2. In each caee the boundary conditions at the 

end of the rod or plate aekedfor by the transforming procedure are 

the same aa the bouncla.I'Y conditions that are known. The definitions 

of the double transforms and the inversion theorem for the aine and 

cosine transforms are given in equationa 16. The results are 

ZCd 0 .,... 
P 

dZ; 2= Zi"C~ ~ .. ,,2 ; z: 0 
dYZ 

-lCd ,,= - 3 p dy a 

0 0 

., 

(94i) 

(94U) 

(94Ui) 

(941v) 

(94v) 

(94iv) 

(94v) 
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= dZ~ z 
ZiK!.Z~+Ey; .0 

Y dy c 
s 

Z= Z -
2 ~ +! Ey ; + Zile! • 0 

dy .... c Y . d 

(y=:ka.) 
(95i, U, lil) 

(y=fa) (95iv, v) 

Hankel transforms are used for the point force problem be­

cause of the cylindrical symmetry in the direction of propagation, 

s. To keep a similarity between the 11ne force and point force prob­

lems, the Hankel transforms are defined here as 

The inversion integrale are (30, p. 342) 

Equations 91vi and 92vt are then transformed by multiplying them 



by (z/a)JO(Kz) eta or • (iz/a)J I(KZ) d.z and integrating over z from 

zero to infinity. The terms with II derivatives a1"e integrated by 

parts, the bounda..,. terms at a. 0 vanishing provided" and -; 

are bounded aa a ioes to zero. The results are 

z. 2 d~ 
24+!Er;+21K~ = 

. dt .... c y 
. d 

• d2:t 2 2iK! • 2 ~ +;' ; • 0 
Y dy c • 

(y=+a) 

o (y=-a) 

(y=Za) • 

(94vi) 

(95vi) 

Important comparisons can be made between the problems. 

Equations 'Uvi and 95vi are exactly the same as equations 94Ui and 

95Ul. Therefore, the double transforms for the line force are 

exactly the same as the double transform. for the point force. Oftly 

the lnveraion theorems, equationa 96b and 16b, are diUerent. 

Furthermore, the nonhomogeneous terms in equations 94 for prob-

1ems it and v differ from the same terms for problems t and tv only 

by the factor -IICCd/p. Therefore, the two pre. sure step problema 

will differ from the impact problems only because of that one factor 

and through the difference between the definitions of Z. 

Equations 94 and 95 are easUy solved. The soluttons to the 

dille rential equation. 94 are 
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:j, = K)sinh K.y + K4cosh KaY 

_ ZC
d • = ~ 10 (KdY) - T'l' 

Kdp 

(97i) 

(91lv) 

where the Ki are independent of y and 10 (x) and II (x) are modi­

fied Bes.el functions of the first kind. Equations 97 are the complete 

solutions of the differential equations for the double transforms. 

Equation 97iv omits the solutions which are irregular at y = O. The 

double transforms for the other three problems are similar to the 

double transforms given above. 

The boundary conditione. equations 95, are applied directly to 

equations 97 to find the Kt• Four linear algebraic equations result, 

two equations for y = +a and two equations for y = -a, except that for 

the circular rod there are no equations for y=-a. The forcing terms 

in the four equations come from the constant terms in equations 97i, 

U, iv, v and for the line and point force problem directly from the 

boundary conditions, equation. 95iH, vi. The two equations for ~ 

and K) for the rod haye the determinant 

2. 2.2. 2. 
F = (~ + 2.K ) IO(Kda)~(Ksa) - 4K KdK.~(Kda)IO(K.a) 

Cs 
2. 2. 

-., Kdll(Kda)~(K8a) • 
ac 

8 

(98a) 
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The equation F:a 0 i. the Pocbhammer -Chree frequency equatlo~ 

for the circular frequency, fA) = • ip, a. a function of the wave num­

ber, IC. The lour equations lor the plate problem. can be aeparated 

into two pall" of equationa. One pair is for .ymmetrlc or compre.­

slonal waves and hal the determinant 

Z 12 2· 
F &I: ( L + 2/C ) co.h /Cda .inh K a - 4/C ICdlC .inh Kd& c:osh It a. 

g -;z 8. • • 
(<J8b) 

The other pair of equation. i. for the antieymmetric or llexural 

wave. and baa the determinant 

2 Z Z Z 
F u= ( ~ + 21( ) .inh ICda cosh lC.a - 411. ICdlC.c:o.h ICda .tuh /C,a • 

• (98c) 

The equation. F = 0 and F = 0 are the Rayleigh-Lamb frequency g u 

equation. for the .ymmetric and antieymmetriC: wave. in a plate. 

Having solved for the Ki' the result. tor the double tran.­

form. are aa follow.: 

Plate, impact, 

(991) 
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Plate, pre •• ure step, 

Replace Z in equation. 991 by 

Plate, Une and point force, 

= tp = • 

Rod, impact, 

Rod, pressure .tep, 

sinh IC.& cosh "dY 

ZF g 

+ cosh ".a sinh "dY ] 

IF 

[ ainh ::& sinh K 8 Y 

g 

u 

cosh "da cosh IC y J + 8 

IF • u 

Replace Z in equations 99iv by 

(99U) 

(99iH, vi) 

(99tv) 

(99v) 



-88-

B. EXPANSION OF THE TRANSFORMS FOR PLANE STRAIN 

The .... ve froot eapaulon lor plane .train 1. derived in 

.everal .tep.. The expollential £unction., which. aecorc1.lni to 

equatlOil 85, are a •• ociated with the time", of arrival. are contained 

In tbe hyperbolic .1M and eo.ine function. in the double tnnaloS'Dl'. 

equatio1.\8 991. U, Ui. The exponeDtial functions In F I and J" u are 

. broucht to the Du.merator by u.lna a binomial expan.ion. It 1. only 

nece •• aI'Y to look at J' I or J' u a. a biDOmial cOD.i.tina of OM 

lar.e term. the lar,8.t of tbe exponential., and one .mall term. 

the re.t of F I or F u. In addition. notice that the double tl'au .. 

form •• a.lde from the expoaent1a1 part •• are bornoae .. ou. In It/p. 

Thi. '\IIae.t8 the .\Ib.UtutlOQ, Ie. spied' alvilll a new variable 

• -"ccJ!p. Then "d· ~ P and ICs • ~ p;;z, where 

k • c dl c." The quaatltle' 

" ~ F •• (k2+2.2,2co'h "d& .Inh I(:.a 
p 

- .,2 ;l+.Z)(k&+.l) .inh teda co.h k.a (100., 

aad 

(lOOb, 

mu.t be expanded by the binomial expansion. Thu., in each ca.e 

the fir.t lDvel'.loa tntell'al. equation 16b, become. an lntell'a! !l0Dl 

the real axle 01. .: 
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Plate. impact. 

1(p/Cd '8Z 
..;;e_--...--_ ds 

(1+s2) 

Plate. pressure step, 

Replace Z in equation IOU by -iaZ (l011t) 

Plate. line force. 

(101Ul) 
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It is now necessary to choose a branch of the square root 

function tor what follows. The above inte,rations are a10na the 

real s axls and hence P ~nd. Jk1 ... s 2 must be real numbers. 
, . 

either positive 01' negative. We will chooae the positive square 

roots to be meant by eit;hel' of th~ radicals when s is real. Under 

... .E! Q- .:e! JkZ+S! 
-/Cd- Cd y~T._ . -/C.& Cd 

that choic~ e II 8 . 'and e II 8 vanish 
Kda "aa 

lor lar,e, positiv8, l'e&1 p while e and e approach iDfinity 

a. p increase. without Umit. 

" Cd 
Then, the factors, F 

p • 

• 

" Cd 
and "4' F u in the transforme and 

p 

liven in equations 100 can b. written out as 

and (102) 

.. 1 {[ L' J[ K a+1C a -I( a-I( a] , FUll" (k2+Zs 2)2. 4s2 V'1+sZ)(ki+s2) e d • -e d s 

+ [ (It' +,.1)' + ... ' J(l+.'KItZ +,. Z) ][ • /C~a-/C.a -e -/Cda+/C .a] } . 

Look!. at both .xpresslons in equationa 102, on8 can s •• 
ICda+1C a 

that for larl8, positive, real p the term made out of e s 

and its cHUtelellts is lal',er than -the J'emai.,ing terms. Mon 



.... 
predaely. there exiata aome p. in4ependent of ., such that for aU -p Ireatel' than p the above mentioned term ia 8l'e.tel' tban all of 

the I'emainlna tel'ma tOlether. Tl\en. we may apply the binomial 

00 

tMOl'em in tbe f01'm (1_x)",l. L an for 'x I < 1 to obtain the re.ult 
0.=0 

deaired. Thi. expaneion waa aUllested by Pekerls in a problem '* 
involviraa layered media (e.e relel'ence 29. p. 131). It auffices otLly 

.... 
to cODsid.r p Ireater tban p because the invera. of the Laplace 

tranalorm la unlquely determined if the tl'an.tol'm is known for all 

valuea of the tran8fol'm pal'ameter. p. areatel' tban aome fixed 

numbel', accorcHOI to Lerch' a theol'em (ll). 

,... -~ 2a Q 
_ - ..... da Cd 

Pille = e 

Let 

and 
.. k a 

S II e a (103) ce 

the exponential factoI'. relatlna to travel aero •• the plate a8 P and 

S wave., reapeett •• ly. and let 

R(a) c (kZ+Za Z)2. 4.% v"1+8Z)(kZ+aZ) 

(kZ+ZaZ)2 ••• 2 VU+sZ)(k2+aZ) 

(104) 

a factor which wUl be ldantilled aa a reflection eoelflcient in the ray 

theory of wave fronts. Then, from equation 10Z 



·1 

1 

co I [Sp + R(S-P)] a 

a-O -----------------------------------

(l05) 

The transforms aJ'e written In a more useful form by eubstltuttns 

equations 105 into equatione 101: 

Plate, impact. 

CD if- •• 
U-S) L [sp + R(s ... p)1 n • d de 

n-O (1061) 

-w ' i~ 8S' 

U-P) L [SP + R(S.P)} n e cd de . 

n-O . 
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Plate. pl'eaaul'e atep. 

Replace Z in equations 1061 by -l.Z. (l06U) 

Plat.. line .fol'ce. 

{ 

. m 
- IC (a-y) . -IC (a+y) )( i [ e d + ... d 1 (1-5) L [SP + R(S-P)] n 

ncO 

-IC (a-y) -IC (a+y)· c 
+ i [. d ... e d ) (1+5) L [SP+ R(p_S)]n e d d. 

m } i
L 

all 

ncO 

(106Ul) 

{ 

m 
-IC (a-y) IC (a+y) )( i [e s - e • J (l-P) L [SP + R(S-P)] n 

nlilO 

-IC (a-y) ·IC (a+y)' c ' m } iLa. 
+ ~ [ e a +e s ) (l+P) L [SP+R(P .. S)] ned da. 

ncO 

It may be anticipated that individual wave .fronta will be found 

from ainale exponential functions. Looklns at the tranafOl'm8. 

equation. 106. it i. cleal' that one can separate out the exponentlal 

functioll8 if the coeaielent of Smpn can be found for liveD m and 

n. The only difficulty le in working with the infinite suma. By the 

• binomial the ol'e m 
• n 

(a+b)D a \' (mn) a~n-m be ( n ) c ( n ) _ nl L w re m n-m (n-m)t ml • 
maO 
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co co k 

" [SP+R(S_p»)k = \."' ') (k )(SP)k-1Rl(S_p)1 L LJ ,-r 1 
k-O k=O 1=0 

CO k 1 -L L ( ~ )(Sp)k-lR 1 2 ( 1 )Sl-j(_p~ . 

k=O 1-0 j-O 

Lettiq m - k - j. the sum becomes 

The eame combinations of 1 and m are covered lithe Umits are 

chan,ed to 

k=O maO l=k-m 

( k)( 1 )(_l)k-m:a"SmpZk-l-m 
1 k-m 

Then, lettinl n = ZIt -I ... I'D. the .um become. 

A,ain chaDgiDg Umits, but sUll covering the eame combinations of 

k, m. and n. the final form is found ae 

CO L [SP+R(S.P») k 

k-O 

where the eum over k rune from the Ireater of m aDd n up to 



m.ft. The similar expanaion of F u lives the same series except 

101' si,n cu.es as can be s.en from equations 105. 

It 18 ne. possible to write the' inte,rals of equations 106 for 
..... -, .. 

the tl'anaformed aolutions aa a Bum of iDte,rala. Each inte,ral in 

the aum bas an exponential wblch can be factored into three .&ponen-

/
. ( ) .. ..2..( .. y) {i;;E 

iplSs cd -#cd a:l:y cd : 
tWs, first. e . • s.conc!. either e • e 

• .l?.Za(n .fi,;;E + m Jk1.+s'/.) 
c 

e d_ with n and m lnte,ers. For each 

pair of inte,era n and m a separate intelral can be written. Cal­

culation of wave fronts then boUs down to studying transforma 

written in the form 

(l08) 

where fta) 1. a known function and N ia a known inteler. For the 

dUatational potential 

CL. (2n + I). =y and f3 II Zma (109.) 

while 101' the shear potential 

Go • Zna and f3 ::a (2m + 1) a .. y. (l()CJb) 

Let the exp0Dent in equation 108 be -p times the function I(a), 

where 



(110) 

Since the iactor IIp in equation 108 is equivalent to a partial 

derivative with respect to time. the transform of the Nth deri­

vative of tp or '" i, a aum of inte,rals of the form 

aN., or .NJt • S Q) f(s)e -PI(S) ds • 
at .t -Q) 

(111) 

Each intelral of the form of equation 111 will be seen to 

repreaent the disturbance following a sinlle wave front. The 

functions f(a) and I(a) depend on whether the dilatational or 

shear potential h beina studied, wblch plane strain problem i, 

bein. considered, and the two intelers. nand m. The functions. 

f(a) are found from equations 106 by usinl equation 107. For the 

line force problem the two terms in each of equations 106Ui should 

be compared upon change of sign of both Sand P. It is clear 

that li mfn is even only the terms with a-y survive. and if 

mfn is odd only the terms with a+y survive. This will explain 

why only half oi the wave fronts exist in the 11ne force problem. 

Except for the first term in equations 106i. ii, for which 4= 13=0. 

the functions f(s) are a8 follows in terms of R(s) given in 

equation 104: 
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Plat., impact, (N-]) 

For dtlatatloDal potential 

Z~cdZ(kZ+Z.Z)[ R (R) - R ( 1) (R)} 
1(.) _ . m, n m- ,n 

'W'.,.(1+.Z)[ (kltZ.Z)~4.Z v'(l+s2)(k2t.2)] 
(11l1a) 

For ahear potential 

ZZ~c: ls [R. m, nCR) - R m. (n-1)(R)} 
f(a) == 1" , (UZib) 

• .,. Q [(kZ+ZaZ)Z •• a Z V(l+s2)(k2+s Z, 

where 

and 

R 1, (R) == R. l(R) = O. - n m, .. 

Plate. pre.aure step, (N:3) 

Replace Z in equations llZiby -18Z. 

Plate. Une lorce, (N-Z) 

Replace Z~N in equations UZi by .. -rc: z(l+aZ) 
cd 

(lllU) 

and take only the upper 81gl18 01 m+n Is even. (112111) 

the lower si,n8 of m+ n is odd. 

The first term in equations 1061, ii deeerves special atten­

tion. That term can be integl'ate,d eaBily by contour Inte,l'atioo. 

The results come from the pole at .-1 and give for the tl'anslol'm 

of tp 
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for both problema 1 and U. This can be inverted eaaUy. for 

In.tance. by meana of tablea of the Laplace tranaform. Then, 

dillerenUation in accordance with equations 86i. U gives the 

displacements. The motion is only in the z direction with the 

strain in the z direction. f z. given by 

Bu. • 
ez • ~ ... ZH(t - - ) 

Gil cd 
(113) 

Equation 113 reprelente the step found in both of the end load 

problems It is the first wave formed by the load aa it hits the 

edge of the plate. The silnillcance of the atep will be explained 

in conjullctioll with the ray theory. 

C. EVALUATION OF THE INTEGRALS FOR THE WAVE FRONTS 

It is poslibla to find the amplitudes alld times of arrival of 

the wave fronts associated with each integral of the form liven 1n 

. equation ll1. To do thll. the illtell"and must be continued into the 

complex plane of I and the contour of integration altel"ed from 

the real axle. Either of two methods can be uaed. the aaddle point 

method or Calniard·. method. 

The only difficulty asaociated with the exteneioll into the 

complex s plane ia due to the ra~icala .Q and .JkZ"+e2 • 

which appear ill f(.) allCl 1(&). It is necesaary and sufficient to 

make bl"anch cuts rUlULina bom the two roots of 1+. Z. 0, + it and 
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2 2 from the two root. of k fS = O • .:! ik. to infinity. This 1s done by 

usil1l branch cuts runnina all alons the imaainary axle except 

between +i and -i, as is shown in figure 6. It wUl be recalled 

that previously {1;;l and VkZ+sZ were both taken to be posillve 

real numbers alona the real • axle Then. the value. of ~ 
and Jkl.+s2 in the complex • plane are defined to be the analytic. 

continuation oft of the real axis and up to the branch cuts. The 

arauments of the radical. Q and " kl.t8 Z along the branch 

cuts are given in parenthesis in figure 6 

Oreat freedom la allowed in moving the contour of intelra­

tion. The only poles are the pole. of the function. f(a) given in 

equations 112 The poles occur in some caees where 1+.2= 0, which 

is also a branch point. and in all ca8~8 where (k2+s 2)2_ 

.s2/U+s2)(kl+si, I: O. Eliminating the radicale in thie equation 

by equarioa. one obtains the equation for the Rayleiah surface wave 

speed. (See the section below on Rayleigh wavea.) Lettina: c
r 

be 

the speed of Rayleigh surface waves, the pole is at s = UtI' a lCd/cr , 

which is along tM branch cut slnc~ kr > k • cd/cs' Thus, only 

the branch cuts interfere wltla moving the contour of integration. 

The-ends of the contour may be moved freely because the exponential 

functions cause the lntearanel to vanish sufficiently rapidly in the 

first two quadrants as s goes to infinity. 

The above consideratioris assure U8 that for z > 0 any con-. 
tour in the s plane shown in ttsure 6 extendlns continuously trom 

infinity in the second quadrant across the imaginary axl~ between 
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-i 

-ik 

-ik 
r 

(+ i) 

CAGNIARD 
CONTOUR II 

CAGNIARD 
CONTOUR I 

INVERSION CONTOURS 

Figure 6 
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the braac:h polnta + I aad oil to lDl1Dity alain in the firet C(U&bant - . 
ia equivalent to tbe ol'illDal cODtour alOlli the real axla. 

Ca,Diarel'a Method 

CqDiarcl'a methoclla to pick a coratOUl' such that tbe ex­

PODeDt of equatiOD W 'a real uel to lot -lip timea tbal eapolle. 

bo a new, real variable of lnto.ration. t; the", 

CU4) 

Abo. 

A ,lance at _ .. Uon 15a defining the Laplace tranaform aUllo.'s 

that t will be ldentUl.d with time. 

It i. not nec.asary here Co solve expUcitly lor s aa a 

lunction of t. Th. 801utlon la po •• ible by the quachoatlc formula 

only if • or "ia .ero. However. aeveral feature. of the aolution 

muat be studied. Aa t ,08S to Infinity. 80 doea e. For t larae 
cdt 

anel positive e· -l. + Cl +J in tho firet quadrant while in the 

aocoDd cpaclraDt a .. _I ... c. _ " • The .olution. lor a aa .. NDction 

of t in the lba' an.ct a.cOIlcl quadruts. where tbe contour may be 

moved lr.ely. exiat ODly for t positive. While mewi. toward the 

'maainal'Y axla from. eitber enel of tbe contour. t clecreaaea COll­

tinuoualyand la atatloaary where the two enda of the coatOUl' Join at 

the lmaalD&J'y axla and where 
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t 
clt. I (.)ds • o. (115) 

This polat 1 ... elars-ed to ia the sac1dle point method a. tbe sacWl. 

point. It 1. located oa the 'maa1ury axil at a pobd s. 'so' where 

.0 1. tbe root of the .. e&1 equUoo. 

"0 {3·0 
-il'U. ) ••• + - + • o. 

o Vl.s2 IkZ .. ,2 
o 0 

(U6) 

Two cue. mu.t be cll.tlqulahecl. U the saddla polDt ,1vea 

by equatiOD U6 "located between the braach point ••• .:t.1. thea 

the contour 1,- clued at a" 1eo (Caiman contOUl' 1. fll\lJ'e 6) 

aDel the value of ,(.) at the saddle poilit I. tha minimum value 

of t. From equatioa U4 and 116 that value is 

(117) 

Thia ,. wU1 be .a •• to be the time of attrlval of I'e,ulas- wave 

11"onts. Equation. 116 aael 117 can be solved simultaneously to find 

the wave f.ont loeatlema aDd time. of ar1"lvaL Howevar, eXplicit 

solution by the quac!ratic formula le possible only U G or fl le 

.el'o. 

If the aac1d1e point ie located aloOl the b1"anch cut. then the 

coatour Is cloeed by .. eDCUq it along the branch cut to clo •• at 
. 

• • I (CasolaI'd coatOUI' U. llaure 6). Then the mlD1mum of t 1. 

the value 01. ,(e) at s. I; 
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(118) 

where the .ub,cl'lpt blc.Ucate. tbat thi. i. tile time of urival of .ad 

wave.. The comUtlOD. 1m Ca,Diard cODtOQ!' II Is so> 1. Thia oaly . 

OCC\lI" wbell o. 0, 101' U G> O.the term uj II-.! in equatlOD 

U6 I'a .... Irom .'1'0 to bsflDlty with '0 between .ero and OIle, 

and It CaD be .hOWD that that te,m can match the other two terma 

while '0 I'emaiu between .'1'0 and OM. 

The lIltelra! 01. .qu.atlon W can then be fOWlet by taJdDl twice 

it. 1'.&1 part aa4iatell'ati .. only aloq the half of CaIDlard" path 

in the llr.t quactn.Dt owl. to the coDJusate Dature 01. the lnt •• rancla 

&Ad th. two halve. of the path. 1A the Intell"&1 t 108. 'rom T .. 

T H to iDflD.lty aa4 the traufOi-m i. repl'e'ented by aa intepal 

OftI' real t with • eXp.e •• ed by equation 114 a. a function of t, 

.(t), in the fir •• quacll'aat, 

:Jr "N 
~ 01' 9' -ae 
It 8t 

CD . 

S fL.(t)l e -ptat • 
,. or .,. i'["i1il1 

H 

(119) 

Whea CaaDlard cOfttO\ll" I i. applicable. T 1. the lower limitJ "H 

i. u •• d with CaaDlucl COiltov It By the deflAltloft of the Laplace 

trauform, equation 15 .. and &1.0 becauae DO two functi01l' have 

the .ame Laplace tranafoftn. 

(lao) 

Thu.. t 1. Ic!esmed a8 time aad ,.. 01' If H ae the time of as-rival 
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01. the Wave. Thia inveraion 1a exact aa appUed here to plane 

atrain problema. latelration. N timea ovel' time Ie Deceaaal'Y 

to find the llDal eolutlon 101' ., aad ",. Di8placementa and atl'aina 

can be found similarly 01' by dLfferentiatiOl1 01 the reaults 10l" the 

potentiala. 

R.pal' Wave Fl'onta 

The IlJoat tel'm of the wave Iront expanaion muat be louDd 

by could.I'!. aeparately the casea where tbe saddle point ia aneS. 

ia not OIl the bl'an.ch cut. U .0 < 1. the only wave front occura at 

a time .,. stven by equation Ul aDd. corl'eaponds to the part of 

• Ca.DJ..uod coDtOUl' 1 neal' the aadelle point. Since I Ua 0) • 0, a 

Taylor aerlea appa-OlIlmatiOll of the Call1lard conlov, equaUon U4. 

at the .acld1. point Ilvea 

01' 

a-i •• o 
(In) 

Similarly, in the lnveralon by Caglllard'a method, equation lZO. 

the expres.lon ,'(a) can be apPl'oxlmated by 

(lJJ, 

Ual. the laat two equatlolUl in equation llO. the fll'at term of the 

wave froat eXpanaion for regular wave. ie found to be the real 
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eXp1".asion 

N N 
!.-f. or t·~., iUs ) 
atN kN 0 

or 

(123) 

wave front amplitude, which depends Oft position in a compUcated 

way. 

Head Waves and Two Sided Shear Waves 

The sheu diaturbance found from Cagniud coDtOUl" n baa 

two wave fronta, the initial wave front. the head wave, correspoDd­

Ina to the branch point a. i, aDel a two sided ehear wave corre­

spondlDl to the aadcUe point. By the argument given following 

equation 118. •• 0 and by equations 109 only ahear waves can be 

involved aDel ~ may be replaced by (Zm+1)aiY. The head wave 

arriv«18 at a Ume liven by equation 118. 

~H • ..!. {& + [(Zm,+1)a+y] J k2.1 ) • 
, Cd -

(1U) 

The location of the aaddle point can be found explicitly by ao1viq 

equation 116 to fiDel 

• • k& 

o /&1.+ [(2m+l)a+ y1 J -
Then, the Ume of ardvallor the two sided shear wave Is ... ven by 
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equation U7 aa 

Coaeldel' the fil'et al'l'lval, the head wave. The e1naw.al'lty 

in I(e) at e. I la auch that either Q 1(a) 01' l(a)/ .Q 
I'emaina 'hute and no ... el'o ae a approachee 1 (aee equation8 UZ). 

Both ca.ea must be couldereel. Neal' .=, equation U4 lor the 

Ca,mard CODtOUl' become. 

• 1 [ (Zm+l)a+y J 
t • .(1) + (1-1). (1) = 'rH- (a.i~ z· - _ ' 

Cd VkZ .. l 
(117) 

which ,tve. 

(118) 

Notice that the denowDatos> ot the expre.810n uncles> the radical in 

equation 118 mut be po.ltlve tor there to be a bead wave (l'ecaUiq 

equation IB and the condition .0> 1 for Ca,niard cODtov U). 

Alao, notice that Q" muat be poaltlve lmallna!'y aloq tbe 

ftl'.t quadrald .ide of tbe bl'aDch cut a. 8hown. on filure 6. Then. 

conaldel'lD, .;;;;r Ita) llmte and nonzero neal' a=i. the fir.t te .. m 

of the wave floo. eXpanalon, fOUDd by ua1na equatioD 128 to approxi­

mate equation 1.10 Deal' a =1. la 
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(2m+l)a'±'y 

eNJ .. % [ Ii:? f(.) 
It. I (.) 

~ 

or 
z.N 

",.. 1· J. !S' •••. (m-I) 

X(t·"H)(2N-l)/2 • U29) 

Anel con.lc1ertna fC.)/Q finite and nonzero near • iii, the re • 

sult 1. 

!:J-z[ fi'i } Zcd(t-TR) 

r;;;;r I'C.) 
(Zm+l)a+y 

sDl -
Ik2.1 

or 

aN [ ZCd 
3/z, 

] '" ... J. 5' •••• (ZN+1) (Zm+l)a.:!:.y 
s-

IkZ .. l 

X [ ft.) ] (t"'Ta,(Z,N+l)/Z • (130) 

Q s-l 

The coefficient of (t-T H)(2N+l)/J i8 real and i8 tbe amplitude 01 

the bead wave. 

The wave f .. OIlt expa.nalon for the two .ided .beal' wave 1. 

f OWld by expa.a.dioa near tbe .adc:l1e point in almo.t tbe .ame way a. 

wa ... eel to flDd the ... plal' wavee, but thie time the branch cut 
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interferes. The tlme of arrlval is liven by equation 1Z6. Neal' the 

aaddle point 

(131) 

and 

(13Z) 

where 
1 k 2 [(2m+l)a.±. y) ,"(l·o' 1& C I Z 3/z 
d (k· .0) 

Before the wave front al'rives t <,. and from equation 131 

a • is 0 .. - i r:::!!:!L (133) 
J ,"(l.o) 

which muat be ne.atlve imaginary aa indicated. But • .!!!!! the wave 

iron arrlvea t > .,. and 

(134) 

Equations 132 through 134 are u.ed to approximate equation 120. 

For t < or 

and 

8N3 lfU·o) 
"lRe~========~ 

8t I 2( ,..t)."U. 0) 

2cd(kZ .. ·o) . 

kl[(Zm+l)a.!, y] 

IN·l 
R. [ii Us 0)] (.,..t)-r-• 

(135) 

where .0 U .tven by equation 1Z5. Similarly. for t>.,. 
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ZN 
~ • 1· J. , ..... (IN-I) 

The natuS'e of the two aicled aheaS' wave la then deaS'. Ne.aS' 

the time of as'S'ival 01. an oS'dinarr wave front or a head wave. 

moat contributions to the diaturbance are eaaentially coutant; 

but ODe teS'm atarts ita contribution at the time of as'rlvaL Thia 

behavior ia aeen in the leneral wave fS'ont expanaion. equation 84-

On the otheS' hand, the two aided ahear wave la found in a term 

which chanae. ita behavior at the time of arrival. That one term 

liv.a a disturbance both before and alter the arrival. One cannot 

always live in a simple manner a single number wblch la the ampli­

tude 01. the two .ided aheaS' wave. 

RaIleiah Wav.a 

The Raylel.h wave ia a motion which propaaatea aloOi the 

free aurface of an elaatlc medium with tbe apeed cr' Th. Rayl.llh 

wave baa no wave front. the diacontinuity in the citsplacement betDl 

ODly at a aina1. pOint on the surface. The Rayleigh wave is found 

from CalmaI'd'. method by ~tudyinl what happens when Cagniud'. 

contoUS' approach •• the pole of Its) at s = lcd/Cr= ikr • The de­

nominator of 1(8) aa liven in equaUou lIZ can be shown to have 

that .ero aa follows. Letti. F(.) be that denominator. the 

equation lor the root is 
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(131) 

Squal'lnl to eUmiaate the I'adicall. equatlon 131 becomel 

And then. 

16(kZ.1).6 + k ZU4kZ. 16).4 + 8k6• Z+ k 8 
:I 0 . (138) 

Taul 1I ealUy .e.n to be the equation 101' tbe Raylellh aulace wave 

ape.el ( ••• I'eferenc. 29. p. 3Z). The lolutlon i. • II lkl" Thel'. 

al'e two extl'aneOUl root I of equatlon 138 whicb al'e not .olution. 

of equatlon 137 becaua. ol·th. prevloul el.flnition of the bl'anchel. 

w • .t.h to lnveltilate tbe po •• lbUlty that the Raylellh pole 

will ItroDily influence the cl1lplacem.entl in the plate. Slnce the 

pole I, on the brancb cut. the Ca,niarel contour can approach tbe 

pole oDly if CL and " approach zero al can b. , •• n lrom .quatlOQ 

ll4. Then t ,oel to sl c r at the pole. Accordlna to equationa 

109 tW. meanl that m and n mUlt be zero and y mUlt approach 

.!... a. It I, cODvelllent to I'eplace f(a) in equation, 112 by 

. 1
0

(1) 
f(1) :I Yfir • (139) 

where F(I) ie ,lven by equation 137. fo(l) 18 ealUy found born 

equation. 112 by .ettlna m aDd n equal to zero. Since Q and " 

are small, -equatioD U4 for the Ca,lllard contour can be approxi. 

mated Deal' the Raylel,h pole by 
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t • ,(8) • ,Clkl') + Ca - ikr)g'CUtI') • (140) 

F(a) and foCa) are approximated near the Rayleigb pol. by 

(141) 

EquatiODs 140 and 141 are tMa substituted into the basic 801ution 

by CagDiaI'd.' 8 method, equation 120, to show that 

8N eNd' . fo(ikr) :,r 01' =- lB.e ----~---
8t 8t F'(Utr ) [t-gCikr )] 

(l4~) 

is the form of tbe Rayleilh wave. 

Each of tbe functions on the riaht-hand aid.e of equation 141 

b known. For y app.oachlna positive a we have from equations 

139, Uz. 109. and U4 for the impact problem 

fol' •• 

(143) 

fol' ~ 

Notice from equatiOD 137 that F'CUtr ) is imaginal'Y. Substituting 

equations 143 into equation 142 we have for the Rayleigh wave 
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(144) 

Each 01. the above expre.sl •• can be lnte,rated once with re.pect 

to time. and tben tbe ellsplacements are del'tved by dWerellltatina 

the poteDtial~ accordiDi to equttou 861. il. Ul. The re.ults 101' the 

impact problem are 

(t - ..!...) 
c£ 

(145) 

From equatioDs UZ it 1. clear that similar expre.slons re.ult for 

the pre •• ure step problem and the Une force problem; • 1. m .... ly 



~ep1aced by ik~ in t1w a.ddit1onal multipUcative fa.cto~s ,1ve1'110'/: 

those pz-oblema In equatiOl'ls U2U.lll. But. for the liM force prob­

lem eC(U&tlou 145 hold lor the lbst time privative ~athez- than 

the •• c0D4 Ume derivative. 
-

Eq,aaUona 145 ca.n be lateal'ated once with respect to time 

without clUficulty. The I'e.,,". for the velocities for the lmpt.ct 

p,oblem are a. foUowe 

IU. ZZ~d kl'(ZkI' .. k ) .. 1 [Cd(t -e; J 
{ 

2 I • ) 

It • ---:--...... - ! F tan 
t .... [ IF'(lkl')] (Jtl'- 1) (a-y)/k!-l 

2k /ki ... ki [Cd(t_!-) J) 
.. ,1' z- tan-I I' 

Ik!- 1 (a-y) /k!.kZ 
, U'6a) 

(146b) 

Equation. 146 bold lor the dl.p1acerne" fol' the Une force pl'ob14un. 

aalde from a constant factor. 

In bOth equat10na 145 and 146 tbe contl'lbutioD fz-om the 

dilatational potential, the fb.t teZ-Me and the coDtribution from 

the shear potential. the •• CODeS term, are very ehnUar. At the 

aUI'fa.c:e eqw.tion 146& take. tbe f~m of a atep in time anel equation 

146b loee to InfiDity a. the natua1101al'ithm of time. wide the 



plate the cUsplacemente are similar to tbose at the suface. but 

the cUecoatlaultie. al'e smoothed ovel'. 

The Saddle Pol .. Method 

An alterRative method of flading the wave il'o.s ie the sac.tdle 

point method. u.ed by Knopoll aDC1 GUbert (13). Thie method lives 

only the waft fl'onts. 10 contrast, Cagalal'd' s method. ,ave all 

exact solutioa 101' piau straio in equation 120. whlcb was approxi­

mated to aDd the wave fronts. The saddle point method 1. u •• d to 

evaluate 1Iltol1'als involvlDl a large parameter p in the IOl'm of 

equatiOD. U1. In the pl'e.eDt ca.. p i. the Laplace traDsform 

parametel' aod it is well knoWil fl"om the Tauberian tbeol'em that 

bowleclae of the tl"an.I01'm for 1&l'ge p is sufficient to determine 

the wave fl"ollts. 

In oreter to u.e the saddle point method, the contour ollnte­

Iration must paas thl"oulh a polDt where g(a) is atational"Y. called 

the saddle point, ill a cUroctioo auch that the 1malinary part of ICa) 

I"omaina eseentially cOllataat ne.r the saddle point. Thia only wol"ka 

without modification If the liacld1e point ia not 01'1 a branch cut. The 

.aclc.Ue poillt waa i4entlfiod ill the study of Caillial'd-a techlli.e as 

the point •• iso' where So is liveo by equation ll6. The imali­

nary part of I(a) t. a coutant, .ero, alOlll the lmagtll&l'yaxl. 

alld it follows that the lmalinary part bas .01"0 .econd derivative 

io a c.UrectlOll parallel to the real ut. of s (aiace the lmaglaary 

pan eatl.ltes Laplace-a equatioll). Thua. for the aaddle point 
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mAldaod the cOlltO\ll' 01. intelratiOD m".t cro •• the lm.aalD&l'Yaxl. 

parallel to the real axle. Notice that the CaaDiud cODtou.r 1 In 

flpzoe 6 I. corzoect Ifn tht. method. but only the part of the coatouzo 

..... zo the .acl41e polat 1. tixed tor the •• ddle point method. Thi. 

ia rea.onable alnce the aacld1e poiDt method only live. wave frODt 

iDiozomatioa aIM! CAlmal'cl'. m.thocl firMla wave froot lDfcwmatlOll 

by atudylq the .aclcIle polot. 

Provided the bzoaDch cut doe. DOt lnterfezo., the leneral 

theozoy of the aaddle poiDt m.thod (referenc. Z6, p. 39) then liv.a 

lor equation W 

(147) 

But the dependenc. OIl p in equation 147 i. ao .imple that the 

tranafO'l'm can 'be lnvel'ted immecllat.ly to live equatioD 1Z3, which 

waa alao lOUDd by CalJUarcl's method. 

If the aaddle point 11e. on a branch cut, the aaddl. polnt 

method muat be modUied aa KDopoff and Gilbert did (13). AlalD, 

Cagniard' a contOUJ' U in nave 6 ia used. It i. auUicient to take 

only the balf of CaaDiarc!'. cOGtOUJ' in the first quaclJ'aat an4 to 

take twice the real part of the reaulta. Aa in Caaniard'a method. 

the h.act wave. are lOUIld by an eXpansion aroun.d the pOIM .et 

wblch •• peDCla on ICa).[i;;'l OJ' l(a)/ jj;;'E bel., flDite and non­

.ero at •• L Aleo. the .xp ...... lon near the .aclcll. pOint a.ain 

,Iv •• the two aicled abear wave, the part of the CaaD1arcl contour 
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on the imaliDal'Y axla stvtng the d18turbance before the wave al'rlval, 

the pan of the coatour exteadlllJ Into the fil'at quadrant livilll the 

dbtul'bance aft.,. tbe wave arrival. 

The tnte,raDd. of equation W ia expanded at the polat a ... 

to find the head wave. Introducing a small. l'ea1 vulabl. of ~nt •• 

Il'atioDe .... .uch that s.l. 1", we bave the approximations 

For very lar.e p the main contribution to the integral in .quation 

W com.s in the Mllbborho04 of 1\. O. Hence, equations 148 

may be usea and the iAtell'ation may be extend.d to 1\. 00. With 

f(s' W flaUe aM Aouero at 8. 1. thi. 11ves the approximation 

,to .... tloo We 

r e .. t.'(l)p'l -----d". o ,/if 

The ex:pcmellt ta real ancllntegratlon Itve. the result 

(14,) 

Inversion of the Laplace transform In equation 14' giv •• the first 

tel'm of the wave {!'out expanalon for the head wave liven by 

Casaiard's method in equation 129. With f(a)/ P finite and 

no.ero at a-l. which 18 the othel' poaalbility. the apPl"oximation 

to ecauatloll W Is 
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The inv ..... I. p ... ci •• ly .quation 1]0, wblch wa. founcl by Cagaiard'i 

method. 

- F .. om the .a4d1. point. • • 'I • wben it ,. on the b .. anch cut o 

il found the two aided lhe ... wave. Th. function 1(1' i. approxi-

mated by 1("0). For .(1) we writ. the TaylM .Xpan.lon 

Z 
'a-'Io' • 

,(1). T + 2 • (110 ) . USI) 

The iote,ration in equation W away from the I.addle point wt Into 

the firlt quaclraat alOfti the Ca.ma .. d contour 11 is apPl'oxlmat.d 

by ua'na equation 151 •• 

Thi. lnte,l'&1 la lcleD.ttcal to the intell'al which mUlt be evaluated 

in derh". the ,"e.uI,. ,equation 147) of the aaddle poiDt method 

when the aaddle poiDt la not on the b .. anch cut. Ca"l'ylq out the 

intelral and inveniDi' the .... ult. of Ca.Diard'. method, equation 

136, a ... duplicat.d. 

The lnt .... ation nea .. the .addle point aDd alOI'll the lma.lu .. y 
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axia ia ~al'l'led out by :re.,lac1na a-ia 0 by .. 1" with " amall. 

l'e&1. ud poaltive. TheDe eq\1&tlOil W la apPI'OIXimated by 

eN,t _P'" 1m p '''yao' ,,1. • me uu. )e. d" . 
8t 0 0 

(152) 

Thi. tatell'a! ODly COD.Y.l'le. fol' p wle and ne,ative. PJoeYiou.ly 

p had been re.tl'lcted to poaitive value. In order to expand the 

denomlDatOl' at the double tl'anaforma. The uae of Del_tive p hel'e 

for plane .traiD will be Ju.tifled ODly by obaenina that the :re.ults 

wU1 &lr.e with thoae of Cas_ard'. method. Compariaon to 

Caanla:rd·. method ia not :r18oroua for problem vi (point force) 

becau.e, a. will be .een. Ca.nlard·. method follow. the use of 

the a.ymptotic l'ep,.e.eDtationa of the Be. eel functione for lar8e 

p (lars8 upment). Knopoff and GUbert (13) in a elmllar mAtmel' 

ueed De,ative patter expand1na fol' po.ltive p the denomiu.tOl' 

01 the double transform for theb plate problem. They made u •• 

01. the Tauberlan theol'em. 111 the1l' work and developed DeW 

Taube..tan theorems for ne,.ttve p. 

EvaluatlD, tbe lIate81'&11n equation lSZ with p .. Delative 

numbe,. .lve. 

(153) 

Thi. 8\1., •• t. ldentWcatlon with the Lapl,ace Into,l'al 
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which. with a- cha.e of variable., can be writt.n 

-p'" 1 S.,. -pt 
e • cit -a .. ____ . 

.Jr-PT" 'i. a) .;;;:r 

LookJ.ai oaly at the put of the lDte.s-atlon near t • .,.. it 1. cleu 

that a dlatuJobance bel_. Um.e .,. of the form 

1/ I.,.·t 

is con.t&laed In the trall8form of equation 153. Thu.. one may 

Wl'lte the cllRvbaace before time "f .s 

whlch is identical to the re.ulta found by CalmaI'd'. method in 

equatioo 135. 

D. MODIFICATIONS FOR CYLINDRICAL SYMMETR Y 

The renk. of the work on plaae strain must be mocllfled 

.Ulhtly wben a Cane.laD coorilnate 1 ... eplaced by a radial 

coordinat.. The B •••• I fuoctlooa wblch reault In cyllncblcally 

.ymmetl'lcal pstoblema m.uat be apps-OJdmat.d by th.il' asymptctlc 

forma, expoaeDtial functions. Then. the analy.i. i8 caJ'ri.d out 

uaina the exponential functloD.8 ... foJ' plan •• train. The a.ymptotic 

form. of the B •••• I fUllctloll8 wU1 b. 100G only for 1arl. Pt but 



tbi. t. adequate for .tudyll., wave f~01lt.. Two ca.es are analysed 

here. Firat, we t~eat the problem vi 01. the pobat force on a plate, 

where the racUal coordinate ts the direction of prop&.uton. and 

.ecoM the pl'oblema tv au v of the roc! whel'e the l'ac:Ual coordinate 

la t~aA8ve~ae to the direction 01 propa.satlon. 

The Point Force 

YOl'the problem of the point force on the plate tbe double 

tl'auiormB are the same aa for the 11ne fOl"ce, but the inveralon 

lnte,rala, equaUolUI 96b, a~. cU.ff.~.nt fl"om the inV8l'slon lDt •• ~a1 

fol' plaM atrain. equation 16b. In place of the exponential, 

e1kz • eta(P/Cd)., ie a Ha.el function. H(1)(ICZ). But, the Hubl . n 

function may be replaced by it. asymptotic repres.ntation, 

• I' 
HU),,,.) _I! eUK •• n l' - i ) • 

n 'fI',,;Z (154) 

and only the radical differentiates the potnt force and Une f<nce 

pl"oblems. The detailed analysi. fo11owa. 

Applyiq the inveralon lntegrala. equationa 16b &Ad 96b, 

to tU doubl8 t~aD8fol'm., equation. 99111, vi. there al'e only two 

c:Uffel'enc8. between the Une and pOint force p~oblemel 

1. elles in equation 16b 01. the line fOl'ce problem ia re· 

placed by .,,&JObes) for • and by !I'Kall (K.) fol' .. 

We wUllncUcate theae two replacements by In.<<aJnCl(z). 

whe~. D. 0 for •• n. I for "'" 

i. i'01" the point fOl'ce p~obl.m the intelration 'a only over 
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The.e dlffe .. eace. 40 Ilot lnte .. fe .. e with ex.pandl. the clou.ble 

u&lUlfo .. ma to 1ftite lIlcltvlcluallatelral. lor each wave lront ill the 

form liven in e.uatlOD. llL The two chanae. carry thrtMl.h to the 

lndlYldual 1.ell'als. Now. we sub.titute tbe HaDkellUilctlon 

at;)(".) • JaC".) + iN .. (".) for J Il(".). The Neumalln fuactioD, 

NIlC".)' adela ouy all 1mallDa1'Y pan to tbe intelra!, so it l8 nee •• -

.a1'Y to take the .. eal pUt of the .. e .ultlllI integral. Sillce the HaDkel 

fuaction behave. lUte the exponential function for w,e al'lument. 

it t •• Ull po •• lble to mow the contour of Integration (alona tbe 

real axle from zero to lDff.D1ty) 011. of the real axle onto the pa:w:t 

of the CAinlarcl coDtou 4ellned buol'e"n the lb.t quaaant. The 

only errol' will be tbat 01. a Une inte,ral alOllI the imaginary ...... 

between the O1'igla aDel the point where the CaaDlarcl contoUr beliDe. 

But, .ucb an lnte,1'al ie imaslQU'Y a. d. ie lm&1inary and the 

intelraDCi [the ~ble tJ'analo:rm tlme. lna~)(I,Z)] i. real alol'll 

that patb, and whea tbe J'eal pUt of the Inte,ral ts takeD, the e1'I'01' 

will be eUminated. 

, The a8ymptotic'foJ'm In equation 154 may be u.ed because 

Ie •• ..E.... 18 lar,e alo. the Ca,Diu4 contour. TheD, we comb!ae 
Cd 

the replacement ,tvea la dilfereace DUmbeJ' I above with equation 

154 aDd multiply by 1/1.' to account for dlUeJ'ence number Z. The 

re.ult. lettlna " • • pl cel' . i. a factol" whicb account. apPl"oximately 

10J' cyllaulcal symmetry. 
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~ cds 6 CdS 

Thi. factcw can be lncol'porated in I(s)/pn 1n equation 108. This 

appl"oximation '" lu,e p 's acceptable becauae only wave froat 

1D10l'matioll 1I c1esbecL To f1Dcllbe wave bODt amplitudes of 
- . 

l'eauJ.a1' waves aDd tbe two sided ahear wave. followloa the head 

wave., the function I(s) muat be evaluated at the saddle point, 

a - Iso. Then, the adcUtional factOI' intl'oduced by cyUDdJ'lcal srm­

meny Is 

Jft;P 
a Ire; · 

d 

For the head waves l(s) Is evaluated at the branch point. 

Then. the addltiow factor is 

(156) 

a=L 

(157) 

The factor p cu..es the time dependence 01. the fbst tel'm of the 

wave front expaaslOll. A typical term for the 11ne load which was 
1 

proponloul to (t_,.,N+ '% becomes instead pl'oportional to (t .. ,.)N. 

The .eometl'ical facto"s in equations 156 and 151 will be interpreted 

in section V. It ahould be recalled that Z was denced cUUereat1y 

f01" the li ... and point i.ce. Z la the malmtude of the line fOl'ce 

pel' unit leqth tlmas 1/.,.a 01" It is the magnitude of the point foree 

time. 1/ 'V-a J. 
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The Cil'c:u1a1' Rod 

The double tl'aaalorml tor the rod. equatlou "iv, v, ue 

very limil..,. to tho double "&JUIlol'ml 101' the plate, equ.atloal 991. U. 

The ... are two dUf .... DC... Fb." F. Ilven in equ&t1oa 98a, hal 

OIle mOlte t •• m thlla 1'1' equatioD 98b. But, few lu,e p tble 

exua tel'm ill F i. De.U.lble compared to the other 'erma. Second, 

the hypel'bollc functloa. .lnh x and coah X. where x. Itda (W 

Itla are ,.eplaced 1ft tb.e I'oct by 10(a) or 11(x). For luge p 

(luge x) we have the a.ymptotic l'8pre.eDtatioDl, 

x 
10(.) • L(x)" ...!... 

. -'1 ~Z ... 
.x 

an4 ainh x - co.h x -T' (158) 

Sub.tltutiaa the.e a.ymptotic forma into equatiOl1l 991. 1i aDd 

99lv, v, i'1. claat." tbat ~ double tl'aulorme 101' the rod have aD 

aclcU.t1OD&1 factor 

(159) 

lor lule p. Thl.e facto, .tl'eqtheD' the wave fl'oat. IlUI' the 

axle of the cbcalu I'M. Equation 159 do •• Ilot apply to the atep. 

eq\1&tiOft U3, wldch ia the lame In I'od and plate. 

Secaule the alab an4 co.h iunctioftl were replaced by pOlitive 

exponeDtiala. the aboye al'pment d.oee Dot apply to all wave fl'oml. 

Examination of tb.e eapanaion pl'oceclure given pl'ior to equatlou 

112 .howe that only tbe Quell.cted. wave. are k.pt wben the aeympto­

tic lor~. equ.atlorut 158, al'a oed. Waves with n 01' m> 0 bave 

more I'apldly decaying exponential mncttoftl .s .hOWD in .... Uon lOS. 
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The double -tJlaufoJ'Dl8 of the rellected wavea are .eymptotlcally 

fo~ lu.e p ae.11alb1e with re.pect to the Duellectect wavea. 

AppareDt1y the .. e i. no way of determlnllll the reflected wave 

lroata tn tbe r04 'rom the 40uble tl'an.forma. 

Ray tMewy can be ".eel to .how that the iactor/'iTi relat •• 

the ampUtucle of all wave front. in the bar to the cor .. eapondinl 

one. In piau ., .. aia. It waa .hoWll above that tbe amplitude. 01 

the \UU"ef1ecteci wave trOilte are related by 1i:TY. By ray theOI'Y 

aU otbe .. fl'cm.te al'e de .. lved from thOle wave frOllta by I'ellectlcm, 

a p .. oce.e which ,. tbe eame in both problem.. The ollly cll£t.r­

ence comel becaul. the I'aye In the bar mu.t be Itrenathened by 

the factor v;:ry- for enel'lY to be conserveel aa the I'ayl approach 

the ce.el'll .... 

E. RAY THEOR Y 

Ray theory can be formulated by aubatltuUDI an expansion 

01 the form of • .-llon 84 for ., 01' '" Into the .overnlDl wave 

equatloll8 87. The condttloll8 ... e then tbat tbe "o(Y •• ) mut 

aatiefy the Eicoaal equatlOil ,ovel'nl. the a.ometl'Y of raya aDd 

wave I .. o.s aDd that the amplltwle. of the wave Ironta mat vuy 

• • 10 the d1Joectlou of the ray. tD a certaln pr.acl'ib.el manner. The 

lntel'pl'etatlOll Ie that the el18l',Y. which ia pl'oportioD&l to the .qua.e 
, p 

The lovuniDi pU'Ual dUfel'entlal equtl0B8 are .lveo by Kal'al 
aac1 Kelle .. (14) aDd Babich aDel Alebeev (15). 



of the amplitude at a point on a wave front. must have followed the 

ray to that point Iromthe SOUl'ce. The total eDarlY which " b'ane­

mitt.d b.t .... n two adJacent I'ays in two dimensloDe depends on 

the S<Nrce aDd le a coa.stant aa tbe rays vary iD their .eparation. 

When a ray hUs a bouDClary. two I"&YS are created which 

come off at ... les detel"miaed by Snell's law. The I'ellectioa of I"aye 

il .hown tn l1aul"e 7. A cUlatational (P) wave incident at aD aDile 

01. incidence tp pl"ocluce. a P wave with al\ll. of reflection Ip 

aDd a .heu (5) wave with aqle of l"ef1ection IS in accol"dance 

with Snell'. law 

ala tp 

.In 's • k. 
(160) 

SlmUuly. aa S wave lnciclent at ... le of incidence IS pl"ocluce. 

S and P .... v •• with aDlle. 01. retl.ctlon 85 and tp re'pectiv.ly. 

Alai,.. equtlOD 160 ho14s. Tbe am.plltudes of the l"el1ectedl"ays 

u. ,lven llMal"ly In '.I"m. 01 the amplitudes of the Incident I"ays. 

111 the pl"oblema dealt with here there &I'e only two .OUI'C •• 

of S and P I"ay.. The •• are at z. 0 and y. + a. In the llne . -
f~c. and poiDt fOl"c. pl"oblem.. it I. obvious that the only ~ovce 

of I'ays II at •• 0 aacl y. + .. whel"e the load le. The pr.s.un 

I'.p and. l0D8itudlDal lm.pact problema are shown In figure 8 fol" a 

time bnmecllat.ly after appllcation of the load. The dlrect re,utt 

of the application of the load i. the Itep which I, given In ecauatlOl1 

UJ aDd moves at the dUatatlcma1 ve1'?CUy. Since the dllataUonal 
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REFLECTION OF RAYS 

Figure 7 

TEP 

AI 

SOUR CES OF RAYS 

Figure 8 



... la7 ... 

velocity i. the maximum velocity of any di8turbance. the .tep move. 

ahead of. all ethel" wave.. Becau.e the step itaeU d.oes not satl.'y 

the bO\lftdary condltlona at y Ii + a, a aystem of wave front •• tan. -
at the two points Sand S·. All raye leave tho.e two point. and 

reflect oil of tbe tree .urtace., y • .:!:. a. to produce the many wave 

bonta. Notice that the patt.rn of wave. formed at S aDd S' Is 

the .a.m.e a. tbat .hown in Glue 4. 

Becau.e of the almple geometry of the plate (01' rod), In 

wblch raye renect bet.een parallel 8Ul'iaC.S, any ray can be 

aasoclated. with a .'Alle ana1e 'po For P type ray a tbls Is the 

&IlI1e 01. I'eaeettoa of that ray Irom the aulac. at which it waa 

createct and al80 the aqle of. incidence of that ray at the sUl'lace. 

at which 1t will ea.cL For S type ray. 8p Is the aDlIe of lnci ... 

deuce of the P wave which created the S wave and It 18 the 

an.le of rel1ectloD 01. the P wave created by the S wave. The 

fonnulaa of ray theory caD b. identified with formula. fOUDd hom 

the expaulOD of the d.ouble transform. by u.lng the relatl'onahip 

(161) 

OaUy rea1rays wtl1 be cODstderea here and hence .0 < L (Oruilll 

incidence. tor wblch .0 -I. will not be con.idered here.) For­

mulae fl'om ray theory ue written here In terma of .0' The 

ampUtud4s In the nel,hborhooc1 of the source depend pl"lmal"Uy OIl 

ana1e e.o)' aeflection reclv.ce. the amplitudes by a factol' depeac:U", 

only on ..... 1.. Only the formula which Ilv •• the wea1tenlDl 01. the 



rays as they divel'l. l'equ1l'es other variables. 

Ewlna. Judetaky. and Pre.s alve the I'eaeetlon coefflclents 

tor a tl'ee sumce (I'eterence %9. pp. U-%8). Tbeb results for 

plane harmonic waves reaectlne oS 01 plane sulac.s are iDde .. 

pendent of frequency aDel thel'etol'e apply here. The results are 

Wl'itten cllfferently £01' wav.s Incident on the surface y. fa than 

the sufrace y ••• because there Ie a sian cOllvention involved In 

the definition 01 the shear potentiaL If Plnc and Sine are the 

amplitudes of the incident waves and P rei and Sref are the ampli­

tudes of the reflected waves. the conditions at a free sulaee are 

that 

P f. - RP.I_ "+ R 51 re u&C sp nc 

(16Z) 

51'e£ • i Rp.Plnc .. RSinc• 

The upper sl,1lS apply for y. +a and the lower slaDS for y.-a. 

The rellectlon coeUlcienta .e functions 01 anale are 

(kZ• 1sZ)J •• sZ JO_.Z)(k1._ .1.) 
R- 0 0 0 0 

(kZ .. b%)Jf .s% JU_sl.)(kJ • • J) o 0 . 0 0 

R -.p 

R • p. 

(ll?3) 



o.ometry of the Ba ye 

Could ... a ray which .tart. at y I: a and • III 0 and then 

zia aa •• down the plate a. in fil'U'e 9. cba.D.ginl from P to S 

and back a,alaln any order, and finally arl'lve. at a point (y •• ,. 

Let a. be the compount In the y cUrection of the di.tance 

tl'avellecl a. a P wave. Each time the ray traver ••• the plate 

•• a P wave. It contl'lbute. Za to CL. U the wave arl'lv •• at 

(Y •• ) .. a P wave. • mut al.o include the cOIlt1"lbutiOll a-v 

01' a+y. Slmllal'l,. let ~ b. the compo .... nt 10 the y cUl'ecUOD 

of the cUetance traveUed aa an S wav.. The dietance. travened 

1n the tranevel'e. dir.ctlon. Cl and ,:sf can be .xpr •••• cl In term. 

of the y coordinate of the end. point of the ray (the ob •• rvation 

polat) aDel the Dumber of who1.tl'aver.al. a. a P wave aad •• 

an S wave, n and EDt r •• pectively. The contl'lbutlona from 

total trav.r.al. al'. 2M. and 2ma ..... pectiv.ly. Jf the la.t .el­

meat of the 1'ay 1. of the P type. then one muat adO to G .lth •• 

a-v if the la.t •• ,lDem i. oI.f of the top boundary 01' a+y U the 

la.t ••• meld i. off 01. the bottom boundU'y. Thu •• fol' P 1'aye 

au P wave fl'o.a G aacl ~ are liven by equation. 109a while 

for S I'aya aad S wave froota 0. and ,:s a .. e liven by equation. 

109h. 

With equation. 160 and 16110 mind the .eometry ol the rays 

can b. di.cuaed aa followa. The total cUatance travelled.a a P 

wave 1. 
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Q Q = , 

and the distance travelled aa an S wave is 

= t/ z Z k - s o 

Then. the total distance travelled in the z direction ia 

Q8
0 (164) 

and the total time of travel, which ia the time of arrival of the wave 

front, is 

1 Q +..!.. k~ = ..!..r C1 + kZ~ J. .,.=-
cd /1 Z c a 'kl_ l cd'; Z JkZ. l 

- s s I-a a 
0 0 0 0 

(165) 

Equations 164 and 165 are identical with equationa 116 and 

117. The locations of the wave fronts can be calculated by con-

sidering .,. a constant and solving equation 165 for .0 and then 

substituting into equation 164 to find z as a function of y for that 

.,.. That give. a picture of the wave fronts at a given time. One 

can also consider z and y as given and aolve for the timea of 

arrival. .,.. associated with different values of m and n. 

Divergence Factor 

Consider two adjacent ray. parameterized by .0 and 

.0 + As o• The energy propagating between the ray. mu.t depend 
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only on so. The energy is proportional to the square of theampH­

tude of the wave front multiplied by the area between the rays. 

The area in plane strain is given by " Z Z '(Ay) + (Az) , where the 

variations are at constant T. Thus, the amplitude, A, for given 

So must vary such that 

is a constant. 

We wish to find relation8hips between the differentials 

Aso ' Ay, and Az along a wave front. We consider, for example, 

the shear wave fronts, for which AI' = .! Ay. Then. we differen­

tiate equations 164 and 165 to find, respectively 

Solving these two equations and substituting the correct expression 

" from equation 110 for g (iso )' 

(166) 

we have along a shear wave front 

.Jk2_ 8 2 " 
Ay = "+ c d 8

0 
k Z 0 g (iao)Aso 

Cd 2 2 " 
Az =- - (k - s ) g (is )As • 

Zoo 0 
k 
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Then, between two rays 

muat be a conatant. Therefore. the shear wave front amplitude 

must be expreased a8 a function of 8
0 

alone time8 the .imple 

divergence factor; 

fS(·o) 
A= = (167) 

Ig"(i·o) Q 

The function fS(.o) will depend on the .ource of the rays and on 

the amount the ray bas been diminished by multiple reflections. 

The ampUtude along dilatational fronts has the same divergence 

factor. Equation ll3, found for the double transform for regular 

wave fronts, agrees with equation 167. 

The Source 

The problem of finding the strength of the ray. at the 

aourcea y = .! a and z = 0 ie a canonical problem of ray theory. 

The probl-:m is solved here by extracting from the double transfoJ;'m 

solution fo r the plate the part which includes only the rays going out 

from one or the other source. That part will be the complete solu-

tion to a 8impler problem, one where the plate becomes a half-

space or quarter-space as one surface of the plate moves to 

infinity. 

The wave front expansion for regular waves found by 
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Cagniard's method was given in equation 123. The functions which 

must be evaluated at the saddle point are found in equations 11Z. 

The sums involving R in equations 112 are replaced by unity 

(i. e.. nand m are taken as zero) to obtain the correct expres-

sions for the rays leaving the source. The time dependence in 

equation 123 is left out in writing the wave front amplitudes. Here, 

the divergence factor, 1/ Jg"Uso) , is also left out to leave func­

tions of So only. Those functions, the source amplitude {unctions, 

will be called So for shear waves and Po {or dilatational wav.s. 

For • = 0 and y = .! a they are 

s=+ o 

p = o 

r-'1"[ 2 2 2 2 " Z Z Z 15. f.A. "1-s- (k -2s ) + 4. (l-.)(k -s ») o 0 0 0 0 

(168) 

for the impact problem. For the pre.sure .tep problem multiply 

the above functions by so' and for the Une force multiply by 

.. .; .!.. ~ (1 .. s 2) 
.. Cd X 0 

and take the upper sign only since only y = +a, z = 0 18 a source. 

The diUerence in dimensions for the line source problem is accounted 

for by the difference in time dependence of the wave fronts. 

If one could find So and Po for problem. with ~onmixed 

end boundary conditions, then one could find all of the wave fronts 
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by the ray method. However, even the canonical source problems 

remain unsolved for nonmixed boundary conditions. 

Multiply Reflected Ray. 

Wave fronts and rays ariaing upon reflection of the .ource 

rays from the surface. can be calculated by using the reflection 

condition. given in equations 162. Con8ider the wave front which 

ariaes from ray. which have traversed the plate n times.e P 

rays and m time. a. S rays. There are several different path. 

for rays, all of which cross the plate n times as P rays and m 

times as S rays. Each path contributes a different amount to the 

amplitude of the final wave front. The problem is to add up all of 

the contribution.. For simplification consider only rays arising 

from the upper source. Because of the symmetry in the plate, 

that is sufficient. 

A precise .tatement of the pro1:lem ia the following. Let 

P represent a P wave traversal and S an S wave traversal. 

Then, we wish to know every permutation of n P's and m S' •• 

For instance, if n = 2 and m = I, the three permutations repre­

sent three ways of creating the S ray E W shown in figure 10: 

PPS represents path SBDE W 

PSP represents path SaCE W 

SPP repre.ents path SACE W. 

Next, add to each 01 the permutations of n + m letters the letter 

S U' shear amplitudes are being calculated, or the letter P if 

dilatational wave amplitudes are being calculated. For each pe,-
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mutation one finds a contribution to the amplitude by multiplying 

a series of factors. The first factor is Po if the first letter is 

P, 50 if the first letter is 5. The second factor is ... R multi­

plied a8 many times as an S ie followed by an S plus the number 

of times a P i8 followed by a P. The third factor is found ~y 

multiplying by "+ Rsp each time 5 is followed by P. The upper 

sign is used when the S is in an even numbered position, the 

• • lower sign when S is in an odd numbered pontion. The fourth 

factor is found by multiplyIng by + R each time a P is followed 
- pa 

by an S, taking the upper sign when P is in an even numbered 

position. For instance, PSP55 becomes PSPSSS for a shear 

front and contributes P ( .. R)2(_R )(-R )2 to the amplitude. 
sp ps 

The following identities. which come from the dellning equations, 

equations 163 and 168, will be useful 

2 R R =l-R sp ps 

S R = ... P (1 ... R) 
o sp 0 

(169) 

Equations 169 hold with the sign of So in equation 168 taken ap­

propriately for the upper so~rce. It is expected that only R need 

be involved in the resulte in any complicated way as the expansion 

of the double transform produced polynomiala depending only on n, 

m, and R, but not on R or R • sp pa 

Consider shear waves. In any permutation let 1. be the 

• Multiplication by the divergence factor then gives the correct wave 
front amplitudes. 
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number of times an S 18 followed by a P. Now consider first 

only those permutations starting with S. U S is followed by P 

I times, then P is followed by S I. times aho. Then, the 

n+m-21 amplitude ie found by taking as factors So and then (-R) 

and then + Rand "+ R I. times each. Only the sign of the sp ps 

result remains to be determined. Consider in pairs the occur-

renee of SP in the permutation and the next to follow PS. U 

between the two st. there are k pts, then one must take the 

factor (R R )( _l)k-t. One then must take (-1) k-l a total of I. 
sp ps 

time •• 
-1 . 

The sum of the k t• is nand (-1) occurs i times. so 

the amplitude contribution is 

where equation 169 has been used. 

Next. it ia necessary to count the number of permutations 

with S followed by P I. time.. Any but the last of the m+l st. 

may be followed by a P and I. of them are. m There are ( I. ) 

way. of choo.ing which st. are to be followed by pt.. The last 

of the pts must be followed by an S. Then. provided 12:1 and 

n c: I, there are (~:~) ways of choosi.ng among the remaining pts 

which will be followed by st.. Those two choices completely 

determine a permutation. Clearly I may be as small as one and 

may range up to either n or m a8 a maximum. whichever i. 

smaller. Then. one may sum over all values of I. to find the 

total contribution to ihe amplitude of an S wave due to ray. start-

ing as S wavea. It is 
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(m ~ I, n a: 1). 

(170) 

Next, consider all permutations starting with P which 

create shear waves. Again, 1 is the number of times an S is 

followed by a P. The number of times a P 18 followed by an 5 

is I + 1. The amplitud.e is found. by taking tb.e factor Po and then 

the factor -R a total of n + m - 21 - 1 times, once for each time 

an 5 is followed by an 5 or a P is followed by a. p. and then 

by taking the factora + Rand + R the correct number of 
- sp - ps 

times. The factor + R will occur I. times and + R will 
- sp - pa 

occur 1 + 1 times. Again, consider in paris the occurrence of 

SP in the permutation and the next to follow PS. Between any two 

5'. let there be k p's and then a factor (R R )( _l)k-l is intro-
ap ps 

duced. This happens I. timee. In addition, let there be j P'. 

before the first 5. This introduces a factor Rps (-1)J. The total 

of the k's plus j ia n and the factor (_1) .. 1 occurs I. times. 

Hence. the contribution to the amplitude is, using equations 169, 

Next, the number of permut~tlone for each value of 'J. must 

be counted. Any but the last of the m+l S's may be followed by 

one of I P's. The SiS to be followed by piS may be chosen 

in (z:) ways. The laat P must be followed by an S. The re­

maining n-l p'a may be followed by I. 5'. in (n;l) different 
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ways. These two choices completely determine the permutations. 

The number J. may range from zero up to either m or n-l, 

whichever is smaller. Then, rays starting as P rays contribute 

to an S wave front a total amplitude 

lesser of m, n .. l L So(_1)m+1 ( nil )( rr )(1+R)(1_R 2)J. Rntm- 21 -1• (111) 

1:0 
(m ~ I, n 2: 1) 

The special cas.a n = 0 or m = 0 are easy to calculate. 

The amplitudes of the S waves are 

(n=O) 

(172) 

(m=O, n 2:: 1) 

The total amplitude of any shear wave front exclusive of the 

divergence factor is then taken from equations 170, 171, and 172 as 

5 (l+R)Rn -1 
o 

(m 2: 1, n 2:: 1) 

(n=O) 

(m=O, n 2: 1) • 

(113) 
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Dilatational wave fronts can be found in a similar manner. 

In the derivation above P and S, Po and So' and nand m 

interchange their 1'01.s, but Rp8 and Rsp are interchanged with 

a revereal in 8ign. The identity relating So and Po takes a 

different form. One may then write the total amplitude. of the 4i .. 

P ( ... l)nRn 
o 

... P (1 - R)Rm -1 
o 

(m = 0) 

(n = 0, m C!: 1) • 

If the tranaform methods are to give the same wave front 

amplitudes a. the ray method, then the formulas above should 

agree with equations 112 when the functions f(.) in equations 112 

are evaluated at the .addle point. Firat, notice that R(i. o) in 

equation 104 is the same as the reflection coefficient R defined in 

equation 163. It baa been verified that the formulas in equations 

173 and 174 agree with equation. ll2 for the special cases 

m = 0, I, 2 (n arbitrary) and n = 0, 1. 2 (m arbitrary). Though 

the formulas found by the two methods take different lorms. there 

ia no reason to beHeve that they are not in complete agreement for 

all n and ~. 
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V. RESULTS FROM WAVE FRONT THEORY 

A. W AVE FRONT LOCATIONS 

Solution of equations 116 and 11 7 (01' 164 and 165) to find the 

many wave fronts created by renectlon was carded out nUllledcaUy. 

The wave front locations were found for a Poisson', ratio of o. 3 

(k2 = 3.5) lor two tlm.s: first a time t • Sa/cd' when the leading 

wave front would have travelled a distance of four thicknessea, and 

second a time t • lba/cd. The results are presented to geometrical 

scale in figures 11 and 12. Only the wave fronts of the line force 

problem are shown: twice as many wave fronts are created by end 

loads, the additional wave fronts being neces sary for symmetry 

about the center of the plate. Dilatational wave fronts are shown as 

solid lines, shea! frOnts as dashed lines. Figure 12 is broken into 

two parts for convenience. The integers nand m of equations 109 

are shown on the wave fronts. 

The wave fronts in figures II aDd t 2 should be compared to 

those shown in figure 4. The points A. B. D. and E on the three 

figures are the same. In figures 11 and 12 the leading circular 

dilatational wave front, AB, can be seen to reflect off to create a 

dilatational wave front and a shear wave front. Then. each of 

these fronts reflects off to create two more, and so forth. Simi­

larly, the leading circular shear front, which starts out from 

the source, reflects to create two new wave fronts. which in turn 

reflect off of the boundaries. The two sided shear wave front, . 

KD in figures 11 and 1 Z, has too great an angle of incidence to 
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create a dilatational wave front. It reflects to form another two 

sided shear wave. The head wave. AGt rellects to create a con-

tinuation of itsell and also to create a dilatational wave front at 

grazing incidence. The continuation of the head wave is tangent 

at E to the two sided shear wave and a regular shear wave front 

which comes directly from the leading circul.r shear front by re-

aection. 

Each wave front can be labeled by its type. P or S. and by, 

the two numbers nand m as shown in figures 11 and 12. One can 

follow back from the very first wave fronts along n P wave fronts 

and m 5 wave fronts_ in some order. but always following as one 

wave is created by another. and finally one arrives at a P or 5 

wave which would be identified by the numbers n and m. Notice 

for instance the 5 wave front marked IJ in the figures. for which 

n :: 2 and m = 1. It is created as two wave fronts come together. 

One, the P wave front HI. was created when a head wave, AG. 

was followed by a P wave front •. CH, and at the same time when 

the first P wave front. AB. was followed by an 5 wave front, BH. 

The second. an 5 wave front, Fl. was created when the first P 

wave front. AB. reflected to form another F wave front, BF. which 

in turn created the 5 wave front. Fl. By these three paths energy 

could travel along rays to the 5 wave front IJ. This special cir-

cumetance, that different rays merge. occurs only because the 

parallel faces of the plate form a simple geometry. 

The form of the wave fronts near the end of the plate can be 

investigated theoretically by imposing small s on equations 116 
o 
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and 117. The approximate equations for the wave fronte are then 

which together give 

Along a wave front either a or IS is constant while the other varies as 

y. In either caee z is given as a quadratic function of y and the wave 

front must cross the line z = 0 parallel to the free surfaces and 

with some finite curvature. 

To study wave front arrivals as they occur in time at the surface. 

it is convenient to group them. Looking particularly at figure 12. 

it is clear that the initial wave front will be followed closely by a 

series of wave fronts created as the P wave fronts rellect back 

and forth. Each member of this series of wave fronts is found by 

actual calculation (as shown below) to be weaker than the preceding 

member. After 11 longer delay a wave front arrives whichh 

created by the head wave travelling once across the plate. This 

wave front ill followed closely by successively weaker and weaker 

wave fronts. Alter another long delay a wave front arrives which 

is created when the head wave travels twice across the plate. 

That wave front is followed closely by successively weaker and 
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weaker wave fronts created by P w,ave reflections after the head 

wave. The process continues through several sets of wave 

fronts. An observer far from the source is able to distinguisb 

the grouping better. 

The head waves, which start each series of arrivals at the 

surface, have been observed experimentally because they are 

the strongest. Hughes, Pondrom. and Mime (32) were the first 

to observe the head waves arriving and gave the correct explana­

tion. Meitzler (33) and Miklowitz and Nisewanger (19) observed 

the head waves under experimental conditions more similar to 

the theoretical conditions imposed in this thesis. They placed 

a rod at the end of the expansion chamber of a shock tube, which 

supplied a sudden step in pres sure. The strain pattern as a 

function of time was displayed on an oscilloscope and photo­

graphed. The patterns show a large number of wiggles which 

were caused by the wave front arrivals. Certain of the wiggles 

are distinctly larger than the others. They were identified and 

attributed to the head waves by Meitzler. who was studying wave 

fronts. Miklowitz and Nieewanger were looking at the low fre­

quency behavior and measured radial displacement as well as 

axial strain. However. their records also show the head waves 

at the expected timee. 

The experimental records of Meitzler and Miklowitz and 

Nisewanger were searched carefully with the hope of finding a 

larger number of the wave fronts predicted by the theory. 
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Choosin, only the clearest records, it was possible to identify some 

of the willies with predicted wave fronts. This identification was not 

at all certain however. The records are not accurate to sufficiently 

hilh frequencies to bring out the wave fronts clearly. The wi,ales are 

so wide that they tend to merae into each other. .And so, it is not pos-

sible to distinguish which part of each wiagle really represents the be ... 

ginning of a wave front. Only the head waves could be identified beyond 

any reasonable doubt. The other wave fronts and the Rayleigh Vlaves 

require more sensitive instrumentation for positive identification. 

B. WAVE FRONT .AMPLITUDES 

Time Dependence 

Before discussinl the amplitudes of the Vlave fronts it is neces-

sary to examine their time dependences. The potentials were studied 

in section IV. The displacements are found by differentiatina the 

potentiala once with respect to space coordinates and the strains are 

found by differentiatinl the potentials twice with respect to space co-

ordinatee. Looking back at equation 108, it is clear that each dif-

ferentiation brings out a factor of p. Then, a time dependence of 

h h-l 
(t-T) in the potential becomes (t-T) in the displacements and 

h-Z (t-r) in the strains. The strains have severer changes at the 

wave fronts than the displacements. 

The time dependences at the wave fronts of the potentials 

in plane strain are given in equations lZ3, lZ9, 130, 135, and 

136 in terms of the integer N, which is given in equations llZ 
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as three for the two end . load problems and two for the line force 

problem. In the rod the wave fronts have the same time depen-

dences as the fronts in the equivalent plane strain problem. The 

wave fronts caused by propagation from a point force are more 

eevere because of th~ in equation 157; one-half must be sub­

tracted from the exponent of (t - T) which is found for the line 

force problem. Then, the time dependences of the strain at the 

wave fronts are as follows. 

Firet arrival at T = z/cd : 

end load only. H(t - T). 

Regular waves: 

1/2 . (.1/2 ( end load. (t • T) ; hne force. t - T) : point force. 6 t - T). 

Head waves: 

1/2 1/2 . end load, (t - T) ; line force. (t - T) ; pomt force. H(t - T). 

Two sided shear waves, for t '7 T: 

end load. (t - T)1/2;line force. (t - T)-1/2;pointforce. 6(t - T). 

Two sided shear waves. for t c:::. T: 

end load. tr - t)1/2; line force. (T - t,.·1/2. point force, 6(T - t). 

For the end load problems the time dependences are all the 

same except for the initial step which has the strongest time de­

pendence. In the point force and line force probleme the head 

wavea are. weaker than any of the other waves. The greater 

severity of the wave fronts under a line force or point force is 

not surprising in view of the fact that a finite force is applied to 

only an infinitesimal area. 
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Amplitudes 

The wave front amplitudes were calculated for the three 

plane strain problems for Poisson's ratio equal to O. 3 lor two 

different times. t = 8a/cd aDd t = 16a/cd. The wave fronts are 

shown in figures 13 to 21 plotted to geometrical scale with the 

amplitudes in non .. dimensional form written in along the wave 

fronts. Dilatational wave fronts are shown with solid lines and 

shear wave fronts are shown with dashed lines. The amplitudes 

of the two sided shear waves for t-<. T are given in parenthesis. 

The amplitudes of the head wave for the line force are not shown 

as the time dependence of the head wave is weaker, and therefore 

the disturbance near the head wave is an order of magnitude 

smaller than the disturbance near other wave fronts. Only half 

of the wave fronts produced by the end loads are shown. The 

manner in which the various lactors affect the wave front am­

plitudes can be studied in the several figures. 

The effects of the source of r~y8 and the divergence factor 

are studied most easily by looking at the circular wave fronts 

which have undergone no conversion from one type of wave front 

to the other type through reflection. Those are the P (5) wave 

fronts shown in figures 1 t and 12 with m :I: 0 (n = 0). According 

to equations 162, along such wave fronts the two leading wave , 

fronts are reduced in magnitude through 8uccessive reflections 

into wave fronts of the same type by the factor R. which is never 
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zero or infinite. and 80 the behavior of the reflected wave fronb 

is determined mostly by the l!Iource of rays and by the divergence 

factor. The effecte of rellection on the amplitudes can be studied 

by looking at the wave fronts which arise alter multiple reflections. 

The variable 8
0 

(so = sin 6p • ksin 8S)' which appears in 

the equations, must b. interpreted in light of ray theory. When 

So is small. an 5 or P wave front is nearly parallel with the free 

surfaces. When 8
0 

11; nearly one. a F wave front is nearly 

perpendicular to the free surfaces •. and an 5 wave front is nearly 

at the angle of the head waves. Along the two sided shear wave 

So varies between one and k ae the wave front varies in slope 

between the slope of the head wave and the direction perpendicular 

to the free surfaces. In that case (so:: sin 8p~l) the saddle point 

is on the branch cut. a head wave arrives before the shear wave 

(which is two sided). and 8p is not a real angle. 

The Source 

The source of waves affects the wave front amplitudes 

mainly through the source factors given in equations 168 and 

the following remarks. The divergence factor given in equation 

167 also has a variation with angle which must be attributed to 

the source. The line force problem is the easiest to understand. 

The source function for P waves. Po' varies slowly with angle; 

but the divergence factor vanishes when So approaches one. This 

is a natural result that the F waves are pushed out most strongly 
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directly under the load and most weakly to the side of the load 

(So = 1). The source {unction for 5 wavee, So' vanishes at 

8 = 0 and at 8 = 1. Directly under the load (so = 0) the shear o 0 

wave fronts must have zero amplitude by symmetry. 

The end load probleme are not so simple. The load itself 

causes a simple step to move down the plate. Then, that step 

cannot satisfy the boundary conditions on the free surfaces and 

so a complicated system of wave fronts of weaker time dependence 

is formed as shown in figure 8. As 8 approaches zero, 80 do 5 
o 0 

in both end load problems and P in the pressure step problem. 
o 

The boundary conditions at the end of the plate govern wave fronts 

moving along the end of the plate at grazing incidence (so I: 0). 

There. P waves must have zero amplitude in the presBure step 

problem for the displa.cement u to vanish and 5 waves have zero y 

amplitude in the longitudinal impact problem in order that 0-yz 

be zero. The p_roduct of the source function 50 and the divergence 

factor approaches zero as 8
0 

approaches one except 1£ a is zero. 

That one exception, cr = 0 and So going to one, corresponds to 

the point of tangency of the two sided shear wave and the head 

wave, point E in figures 4. 11, and 12. There the regular shear 

wave, two sided shear wave. and head wave all approach infinite 

amplitude. (Equations 129, 135. and 136 govern the head wave 

and two sided shear wave.) (The approach to infinity is too fast' 

to show clearly in figures 13, 14. 17 and 19.) The product of the 

other source fUnction. Po' and the divergence factor approaches 
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infinity as So approaches one. But flO becomes one only where a 

P wave intersects the head wave at the free surfaces (A, Ci, etc. 

in figures 11 and 12). The amplitude remains finite due to the 

reflection coefiiciente going to zero except at the very point 

where the head wave starts, point A on figures 8. 11, and 12. 

There the dilatational wave front has infinite amplitude. 

Reflection at Cirazing Incidence 

A critical examination of that one point A on figures 8, 11, 

and 12 is enlightening. The strain at the surface due to the 

dilatational potential can be calculated by considering the two 

integrals containing the dilatational wave fronts at point A. No 

wave fronts arrive before those two wave fronts. The first 

integral is for the unreflected P wave, for which n = m = 0; and 

the other integral is the first integral in equations 106i. ii for 

<I> and represents the step. We will consider the impact problem. 

The pressure step problem gives the same approximate result 

since the Cagniard contours appropriate to the region of point 

A are near the point s • i in the s plane. Thus, the factor -is, 

which differentiates the impact and pressure step problems, is 

unity. 

We wish to lind the strain in the z direction due to the 

dilatational potential, 
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First, we take the double transform of equation 175 according 

to scheme 2 01 table 1. Equation 175 is multiplied by e -pt 

cos !( z dt dz and integrated over t and z. The integration over 

z is carried out by parte using a boundary condition from 

equations 931 with the result 

(175, 

(176) 

Next, equations 1061 and 176 are combined to form an integral for 

• • z· 

JCO{ i-L sz 
Z Cd 

• :I -- e z "'p 
-co 

Z 
8 e 

The first term in equation 177 comes directly from the second 

term on the right hand aide 01 equation' 76. The second term in 

equation 177 is the integral for the step from equation 1061 mul­
Z 

tipUed by _K2 :I • .E...z. .2. The third term in equation 177 represente 
c 

the unreflected dUa~ational wave front for which n :I m :II O. It is 

found by taking the f(s) for n and m equal to zero as given in 
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equations 112 i and multiplying by _ J:.. 2. 2 (Note that k - 2 III \/'tJ-. ) 

The analysis of equation 177 for the two wave fronts inside 

the plate has already been done. The tirst two terms together' 

live the step in equation 1 t 3· . The third term is like equation 

111 and the wave front is given by equation 123 as 

• ~2 f(is )""\ 1_2 __ 
Z 0 VgIIUs ) 

o 

where 

I'( a - y g s) III Z 3/2 •. 
cd (1 + a ) 

{rom equation 117 with" • 0 and a I: a - y 

1 ~ (a - y) 
T 11_ 

cd;J Z 
1 - s o 

• 

and from equation 116 

• T1'ie residue of tile sum of the first tWo terms taken at t1'ie poie 
S III i and multiplied by 2,,1 ia the Laplace transform of equation 
113. The sum of the terms muat be used because it is only the 
sum of the terms to which Jordan's lemma (reference 30, p. 137) 
applies and the total integral is given by the residue. 



-165-

The above can be combined for (a - y)/z small (then, so~) and 

the step added with the result 

. ~­z 
Z H (t .. -=-) + z/i' Z 

cd ... 

Equation 178 holds .approximately inside the plate near the sur­

face and near to the point in question. point A. 

At the surface we let y equal a in equation 177 and combine 

the three terms. The result is easily seen to have no pole at 

s • i and can be handled like equation 111 with g(8) = -ize/cd. 

(See equation 110.) According to equation 114 the Cagniard contour 

is given by 

tC
d s al_. 

z 

The two arm. of the Cagniard contour in figure 6 are collapsed 

onto the imaginary axis branch cut. The solution by Cagniard' s 

method is then given by equation 120 as 
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= ~ Re{-L2 
'If 1 + 8 

s=---z 

Equation 179 is easily approximated near t • z/cd with the result 

for y • a 

. -­z-
81Zz 

11' -JC
Zd (t -~) 

d 
(180) 

By a similar analysis using equation 112ib the contribution at the 

surface from the IlIhear potential of the head wave is found to be 

the same thing multiplied by a constant. 

Equations 178 and 180 are plotted in nondimensional form in 

2 
figure 22 for (a - y)/z equal to 0.0, O. 1, and 0.0447 and k = 3. 5. 

Essentially, figure 22 is a plot of longitudinal strain vereus time 

for three statione with the same z coordinate and located at three 

different distances from the surface, one station being on the 

surface. The results of wave front theory, equations 178 and 180, 

are shown with solid lines. Notice that the strain on the surface 

behaves simply as the square root of time. Also, notice that the 

strain inside the plate takes a jump and then quickly reverses 

itself. starting back to zero as the square root of time. The 
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nearer the station to the surface, the more quickly the reversal 

takes place. Because the strain due to the dilatational potential 

must vary continuously a8 y approaches a. it can be inferred that 

after the Jump and subsequent reversal takes place the strain inside 

the plate behaves almost the same as the strain on the surface. 

This is indicated by the dashed line in figure 22. 

Some light can be thrown on this strange behavior. in which 

the strain is intluenced by a regular dilatational wave front and 

the step. by looking at two different limiting procedures. If 

a .. y is considered small but fixed and t approaches the arrival 

time for the circular wave. the step plus the wave front approxi .. 

mation for the circular wave front is found and equation 118 holda. 

But, if t is allowed to approach z/cd while (a .. y)/cd remains small 

in comparison to (t - z/cd ). then the wave front form at the surface 

is found. The second limi~ing procedure is carried out by letting 

y go to a firet and then the results are the same as those found for 

the surface in equation 180. 

In this situation one i8 led to ask for what length of time tbe 

first term of the wave front expansion .... that is, tbe first term of 

the inner expansion of equation 84- .. i8 a good approximation to the 

total !!'train. Here it is evident from figure 22 and equation t 18 

that as y approaches a the amplitude of the first term increases 

but the first term becomes valid for a lessening interval of time. 

(Note in figure 22 tbe more rapid fall of that term.) If one con .. 

siders the whole wave front expansion in equation 84 as a Taylor 
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series times (t - T )1/2, then one might ask what i8 the region of 

convergence. if any. It would appear that the Taylor series would 

converge to the correct solution over a smaller and smaller region 

of convergence a8 y approaches a. 

The preceding discu88ion should shed 80me light on the 

grazing incidence problem. Cioodier and Bishop (34) have studied 

this problem for harmonic waves. The problem is to determine 

the reflected waves when a dilatational wave is incident on a surface 

at a ninety degree angle of incidence. Figure 22 shows what actual­

ly happens in a certain transient problem. When there is an end 

load on a plate. a step wave travels down the plate at a ninety 

degree angle of incidence to the free surface. By ray theory the 

wave fronts created by the step have been considered as part of 

the canonical problem of the source. More generally speaking. 

however, grazing incidence is a refraction rather than a reflection 

problem or a source problem. In the case of harmonic waves that 

Goodier and Bishop considered. the same comments 8hould apply 

since harmonic waves can be used to synthesize transient waves 

by means of the Fourier transform. 

Head Waves 

The head waves have a very simple dependence of amplitude 

on position. Looking at equations 129 and 130, one can see that 

the amplitude at a point on the wave. front depends on one co­

ordinate which is the distance in the z direction from the point of 

tangency of the head wave and the circular shear wave (E on 
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figures 4, 11, and 12). Coing away from the point of tangency, the 

amplitude decreases monotonically from infinity. However. in 

the line force and point force problems the amplitude must be 

considered a8 negliaible compared to the other wave fronts since 

the time dependence is weaker, as has been shown. 

Effects ~ Divergence. Reflection, !!!!!. Cylindrical Symmetry 

The divergence factor given in equation 167 is the only 

factor making up the wave front amplitudes that cannot be written 

in te rm. of 8
0 

alone. The dependence on tI· and IS at constant 8 . a 

is 8uch that the larger tr and ~. that is, the farther the wave front 

from the source, the weaker is the wave. Thie satisfies the in­

tuitive notion that the ampUtude of the wave front must decrease 

as the wave front epreads out. 

The reflection coefficient R given in equations 163 varies 

smoothly with s and takes on the value one when B is zero or o a 

one. With R = 1 the polynomial functions of R in equations t 12 

which account for the multiple reflections are zero only for dila .. 

tational waves when m is not zero. When 8 is nearly one, those 
o 

are the dilatational waves which are created where the head wave 
1 

reflects at the surface. Those dilatational waves are not zero 

because the product of the source factor (equations lll) and 

divergence factor (equation 161) becomes infinite as 8 approaches 
o 

one. The dilatational waves with So zero must have zero amplitude 

because of the reflection factors except for the one wave front which 

is created through multiple reflectione as a P wave front only. The 
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other dilatational wave fronts with So zero have zero amplitude 

according to equations 162 because both R and R given in sp ps 

equations 163 are zero when '0 is zero. 

The point force problem differs' from the line force problem 

-. Jft8 P 
through the correction factor a V"'Z-z-~:--­

d 
given in equation 156 

and through the difference in the definitions of Z. The p affects 

the time dependence as explained above. The distance z/ s 0 is the 

distance from the observation point back to the line :i: • 0 measu,red 

along a Une inclined at the angle of a P ray. For the circular 

dilatational wave front that i8 simply the distance to the point force 

measured along a ray. For all wave fronts z I s is a measure of o 
the distance from the point force. For the head waves the factor 

a':"" ~iven in equation 157 indicate8 a lessening of amplitude \.['ZiCd II 

compared to the Une force problem which is proportional simply 

toM. 

c. WAVE FRONTS IN THE MODAL EXPANSION 

The solution given in equations 35 as integrals over the modes 

of propagation is an exact solution and must therefore contain 

information on the wave fronts. However. great difficulties are 

met when wave front inlormation is sought in the modal solution. 

To investigate the wave fronts in a plate. rather than using equations 

35 directly. a similar expansion for the plate will be found in terms 

of the Rayleigh-Lamb symmetric modes of propagation for the in­

finite plate in plane strain. The following discussion reveals no 
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new information about wave £ronte but does live additional meaning 

to the high frequency part of the Rayleigh-Lamb spectrum. Only 

the head waves and the step will be found here from the modes. 

Analogou8 information can be found about the Pochhammer be .. 

quency spectrum of the rod. 

We will use the double transforms given in equation a 991 

for the impact problem. The inversion theorem for the aine and 

cosine transforms given in equation 16b is applied by multiplying 

t 1.t<1l • equations 991 by - e dK and integrating over H.. To write a 
'II' 

solution in terms of modea. residue theory is used to carry out 

the intearation in a malUler Bimilar to Skalak'8 (5). It i8 easUy 

Been that the integrand bas no branch points; the only possibilities 

are X!= 0 and K! :: 0 and expUlsion at those points quickly ShOW8 

that they are not branch points. Since the intearand vanishe8 suf-

fieiently rapidly for K tarae and in the first two quadrants of the I< 

plane •• the integration can bee.xpresBed a8 a 8um of the residue8 

of all of the poles in the firat two quadrants. It can easUy be shown 

2 :: . 
that the total residue of the pole at K d :: 0 in (fJ 18 zero and that the 

only other simple poles are the zeroes of F • The Rayt.lah-Lamb g 

. modes of propqation. Thus, for example. ii> is expressed as a 

8um over all zeroes of F •• here "'=k' (p), in the fir8t two quadrants as 
II n 

. 1 iKZ .The lntelrand vanishes at lea8t as fast a8 ~ for larle k. 
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i~. 
aidil( a cosh KdY e 

5 

Next, we wish to integrate along the Bromwich contour in 

accordance with the Mellia inversion theorem, equation lSb. Now, 

equation 181 holda everywhere in the p plane including on the 

Bromwich contour, which must be. located to the right of aU 8inp-

larUiea. In the present cas •• it is known that the Bromwich contour 

need only be located infiniteaimally to the right of the imaginary p 

axia because the solution is expected to be stable with time. Then, 

we select in equation 181 the modes for which the Io{n(p) have. 

positive imaginary part when p ia located on the Bromwich contour 

Br I' located slightly to the riaht of the imaginary axis. The aallWer 

is found by writina for the Bromwich contour p :: i wJ + EO with w and 

e real and (f; amall and poaitive. It is known that the Raylei,h. 

Lamb spectrum for w real, 'Which is consistent with the location 

of Br I' includes aome modea for which K haa a positive imasinary 

part and other modes for which K. is real. (See Mindlin and Onoe 

(35). Use here of w real ia consistent with the lack of disaipation. ) 

Among the modes for which k is real, equation 181 admits only the 
dK dK * 

modes for which ~ -= i ap n is negative because then 

• dw 
This ia the same as requiring that the group velocity, - diZ' be 

positive. 
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d,c 
/L (p) iii J( (iw + .) -;0- K. (iw) + • ~ n n n up 

dl(. 
III ,.( n (iw) .. i. a: 

has a positive imaginary part. Then. from equations 181 and lSb 

the potentials are written as integrals over to) of sums over all modes 
dK 

for which 1m K.. ? 0 or 1m K III 0 and ~ &:.. 0 in the form n n ow 

i,(z+iwt 
sinhit'. a cosh/( dye 

~ eX (p) 
n 

d r.J • (tal) 

where pZ III .. wl • In equation lal • has been taken as zero. Certain 

indentations of the Bromwich contour may be necessary where the 

•• integrand in equation 18Z is not finite· • 

It is convenient now to look at the right hand side of equation 

18l as integrals to be taken over all parts of all modes in any 

desirable order. To study wave fronts it is Ilecessary to integrate 

in a useful order over the t.~rraced part of the spectrum, which 

was investigated by Mindlin (36). The Rayleigh-Lamb equation 

for symmetric waves is 

.iIi BF /81.. may liave zeroes, wliich are branch points of the integrand 
(see ~ference 18) •. Theee do not occur in the high frequency part of 
the spectrum. which is of intereet here. 
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(183) 

In equation 183 I( d and 

spectrum (W? cd I ~p. 
ICe are imaginary in the terraced parts of the 

As mentioned before, the branches of I<-d 

and K are not branches of the double transforms and make no 
I!I 

diUerence in the 80lution. and 80 they wUl be chosen arbitrarily 

to be poeitive imaginary in the following. We will let 

j( =ik. s 8 

where k d and k s ~re positive real. Then, the Rayleigh-Lamb 

equation is 

- cw~) 
2 

8 

= o. 

In the terraced region w, /(.. and k are large with W z-cd ' s 

(184) 

wave number kd is small causing the second term of the Rayleigh­

Lamb equation to be small compared to the first unless either 

coskda or sinksa is small also. Each mode is shown in figure 23 

to approach alternately the curves coskda = 0 and sinksa :: O. 

Those curve a were called bounds by Mindlin. Our present 

interest is in the parts of the modes near coskda = 0 along which 
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kda. (m + l/Z)'II'with m. O. 1. Z •••• The integration and sum 

in equation 18Z will be rearranged by integrating over parts of 

successive modes in a certain convenient order. The idea will 

be to integrate along ~he bounds coskda = 0 rather than along the 

modes. Thh will be indicated by replacing the sum over the 

modes in equation 18Z by a sum over the bounds. that is. over 

m. Then, for instance. in figure Z3 the integral along the bound 

for which m I: Z would include an integration from A f to B plus 

an integration from B' to C, an integration from C' to D, an 

integration from D' to E. etc. 

For large frequency -various approximations can be made 

along the bounds. Because the approximations are good only for 

large w, the results will only be good for the wave fronts. The 

largest term in the derivative SF 1St:. in the denominator of equation - g .. - -.~ 

182 comes from differentiating coskda in the first term of equation 

184. Then. 

SF 
~.X:i 

Substituting the several approximations appropriate to the terraced 

region into equation 18Z, we have 
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dw, (18Sa) 

va 
cp_ '>j zc! cos [(m + 1/2)wy/a] iw(t-z/cd ) 
~ L Z 3 m e dw. 

m _()O i 1rW (m + 1/2) (-1) 
(l8Sb) 

The strain in the II direction due only to <P is then found by dif-

ferentiating equation 18Sb twice with respect to II; 

f ...... -Z \ (_l)m co. [(m + 1/Z",y/aJ 
z~ i1l'Z ~ (m + lIZ) 

m -()4 

The integral over c.J is quite similar. to the Mellin inver8ion intelral, 

equation 1Sb, of the Laplace transform of the Heaviside 8tep. IIp. 

*The lntelrais are similar in the large. (J relion, whiCh determines 
the wave fronts. Actually. because of the poor approximations near 
wequal to zero, the integral in equation 186 doe. not converge. 
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That Mellin inversion integral to be compared to equation 186 is 

1 
H(t) = 2"i dp • 

We then deduce that the discontinuity in strain must be of the form 

fz ~ -z r ~ Z(_1)m cos [(m + l/Z)"y/a] ] H(t .. zle ). l L- ,,(m + l/Z) d 

m 

The sum over m ranges from zero to an unspecified number 

which may be quite larl. if the solution ranges over very bigh fre-

queneies. Summing from zero to infinity, the expression in braces 

is a Fourier series for a function which vanishes for Z> ! y/a\ > 1 

and which is unity for the ran&e of interest. 1> {y/a [. Then. 

h the strain at the wave front found by approximating the modal 

solution at high frequencies. This ie the eame as the step given in 

equatleD 113. 

Further refinement of the calculations for large w can be ac-

complished by considering the error introduced near sink a • 0 
. s 

where the above integra.tion hal the greateat error. Then. the next 

step is to write for cP sums along lines cos kda = 0 over the integers 

n with k a = nw '0 that sin It a.J. s zero. Each term of the sum s • 

repre •• nt. a correction to the simple result which was found above. 

The condition is 
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And so rAJ takes on the values 

Then. one must sum over terms with phase 

t+ z 

z • 

.A Fourier series of that form is periodic in t-z/cd with frequency 

, which 18 precisely the frequency of the reflection of 

the head waves back and forth acro.s the plate. The sum then 

represents the dilatational potential caused by the reflecting head 

waves at the points.A. G. etc. ~n figures 11 and lZ. 

For the shear potential one is led by the same arlumenta to 

a sum of integrals along bound •• imilar to equation 185&. The 

important differences are the appearance of sink a in the denominator 
8 
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and sin k y in the numerator. To the approximation of equation 
s 

185a, the intearand loes to infinity when sink a equals zero. s 

ThuB, the fir st approximation is a sum over those points where 

the integrand becomes very large. The phaBe. wt + 11: z, may be 

augmented by nTry/a;:;k y from sink y. which i8 contained in the 
8 s 

integrand. Then. the total phase is 

I k Z 
- 1 .) 

c Y 
d 

In,.. 

and one can deduce the form of the head waves by the argument used 

above. 

It is apparent that the leading wave fronts come out of the 

terraced region of the frequencYl spectrum. The parts of the modes 

in the terraced region are made up of a plane harmonic dilatational 

wave moving almost parallel to the free surfaces plus a shear wave 

moving at the angle of the head wave. The limiting pha,e and group 

velocities are Cd' the same as the speed of the leading wave fronts. 

The periodic structure of the frequency spectrum is related to the 

periodic arrival of the head waves. It is al80 reasonable to expect 

that tbe first mode, wbich approaches a phase and group velocity 

of c at high frequency, accounts for the Rayleigh wave in the plate. 
r 

The arrival of the circular shear front at time zl c at the surface 
8 

is probably related to the fact that all modes but the first go off 

to a limiting speed c • 
8 
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D. EXACT SOLUTIONS FOR LIMITED TIME INTERVALS 

The solution by Cagniard'8 method is useful for more than 

just finding the wave fronts. For plane strain Cagniard's method 

gives an exact solution. equati~n 120. This exact 8olution is valid 

for all z and all t. Cagniard's method is far more powerful than 

either the method of stationary phase. which is limited to large t. 

or other wave front methods. which are limited to the vicinity 

of the wave fronts. The solution by Cagniard'8 method i8 built 

up by adding terms. one term for the disturbance following each 

wave front. The only limitation is that for times long after the 

first arrival too many wave fronts have passed and the numerical 

work becomes very involved. 

Cagniard's method has been used here to calculate the 

strain and displacement at the 8urface of a plate for times before 

the arrival of the first reflected head wave. For those early times 

equation 114 fot the Cagniard contour can be solved by the quadratic 

formula since either CI or f3 is zero for every wave. Calculations 

for times after the arrival of the first reflected head wave would 

require numerical solution of equation 114. The results are 

compared to the experiments of Miklowitz and Nisewanger (19) 

and Meitzler (33). Their experiments covered a much larger 

time 8cale than the theory and so only gross features can be 

compared. Besides· the limit on the time interval covered by 

the theoretical calculationa, there are two fundamental differences 

between the theory and experiment. First. the experiments were 

done on a circular rod and the theory is valid for plane strain. 

Second. to a very good approximation the experiments involved 
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the nomnixed end conditions of the pressure shock problem. 

whereas the theory was done for mixed boundary conditions 

on the end of the plate. To asses. the importance of the 

second difference between theory and experiment. the 

calculations were carried out for two different problems. 

the impact problem and the pressure step problem. On 

the basis of approximate theory work Miklowitz (7) anticipated 

a similarity between the responses to different boundary 

conditions. Folk. Fox, Shook, and Curtis (6.37) expected 

similarities in the responses at large z and therefore applied 

an exact theory solution for mixed boundary conditions to 

experiments with nomnixed boundary conditions. The present 

calculations are for relatively small z. 

The solution by Cagniard's method was used in a 

straightforward manner. Rather than using the potentials. . au 
the double transforms for the longitudinal strain • = ~ z uZ 

and the displacement uy at the surface were derived 

from the double transforms of the potentials. The double 

transforms were then expanded to form integrals like equation 

108. Since the work was specialized to y = a, the results 

took on a form different from equations 112. At the surface 

one sees not the individual wave fronts shown in figures 11 

and 12, but rather the junctions of three or four incident and. 

reflected wave fronts. That is why the derivations were done 

over again with the double transforms evaluated at y = a. It 

would have been possible to use equations l12 and add together 

the displacements and strains of the many wave fronts at the 



-184-

surface. In order to eliminate waves which are delayed by a 

-2K a traversal of the plate as an 5 wave. 5 = e s was set equal 

to zero. The remaining terms represented waves which traverse 

the bar only a8 P waves. The integral like equation 108 with 

n = 0 and the integral for the step were combined; the result 

has no pole at s = i. Then. equation 120 was taken as the 

inversion of the double transform. N in equation 120 is I for 

the strain and 2 lor the displacement. Therefore. a single 

integration was necessary for the strain and a double integration 

for the displacement. Equation 120 was applied directly with 

one exception. At the wave front. the function being integrated 

had a singularity in the form l/y/t. .In order to integrate 

accurately. tbis singularity was subtracted out. After integrating 

nwnerically. the integral of the singularity (2 --rti was added back in. 

The resulting plota of strain and displacement versus time 

are sbown in figures 24. 25. and 26 and compared to the 

experiments. The first figure corresponds to one of Meitzler', 

records for strain and the other two figures correspond to records 

given by Miklowitz and Nisewanger for strain and displacement. 

The values for the constants used are tbe values given for the 

rods tested in the experimental work. The calculations were 

done with source magnitudes. Z. such that tbe long time strain 

or displacement in the plate would be unity. Wave front arrivals 

are indicated by arrows. 

In figure 24 the calculations were stopped at tbe Rayleigh 

wave for simplicity. Only the first wave front is seen because 

the station is so close to the end of the plate. Notice that the 
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strain rise8 very rapidly a8 the square root of t exactly as the 

wave front theory predicts. but after one-half microsecond the 

strain staye essentially constant. The displacement behaves 

according to the wave front theory only for a fraction of a micro­

second and then rises nearly linearly. 

The strain shown in figure 25 rises in the same manner 

as the strain in figure 24 and then levels out at a nearly constant 

valUe. After a little more than one and one-half microseconds 

a far weaker wave front arrives a8 shown and the strain again 

continues at an approximately constant value until the Rayleigh 

wave arrives. The weaker wave front corresponds to the point 

B on figures 11 and 12. The resulting wave front behavior 

shown in figure 25 is due to an incident wave and two reflected 

waves all acting together. Figure 2.6 for the strain at a station 

farther from the end of the rod ehows that during the first 

microsecond three wave fronte arrive. The first is compressional 

and the second tends to destro), the effect of the first. Then. 

with the arrival of the third wave front the theoretical strain 

starts to build up the 8ame as shown on the experimental 

records. the later wave fronts being much weaker. 

The experimental recorda can be compared with the 

theoretical calculations by looking at the figures. It is 

immediately apparent that the experiments are not able to 

follow the rapidly changing strains. A negative rate of 

change of strain response is indicated by the small negative 

spikes on the experimental records in figures 24 and 25. 

Neitz}er noted the rate of change of strain response in his 
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work. In figure 26 it i8 seen that the experiments do not pick 

up the small pulse arriving with the dilatational speed in nearly 

the correct magnitude. if at all. The strain record of Miklowitz 

and Nisewanger for the station where z/ Za = 5 (not shown here) 

does show the arrival at the dilatational velocity. but at a 

magnitude greatly reduced from that of the theoretical curve. 

It can be seen by comparing the curves in figures 24 and 25 

that the strain rises faster in the theory than in the experiment. 

All of the above conclusions are independent of the differences 

between rod and plate and the differences in the end conditions 
. 

as prescribed in theory and as created by the shock tube for 

the experiments. The experiment and theory can also be 

compared by looking at the displacements. In figures 25 

and 26 it can be seen that by the last time on the theoretical 

curves the displacement has risen approximately the same 

amount in the theory as in experiment. The small difference 

between the two is possibly due to the differences between 

the plane strain and the circular rod. The difference in 

boundary conditions is evidently not important because both 

boundary conditions used in the theoretical calculations 

give similar results. 



-190-

REFERENCES 

1. Miklowitz. J .• Traveling Compressional Waves in an Elastic Rod 

According to the More Exact One-dimensional Theory. Proceedings of the 

Second U. S. National Congre.s of Applied Mechanics. A. S. M. E •• 

(New York. 1955). 179-186. 

2. Miklowitz. J •• The Propagation of Compressional Waves in a 

Dispersive Elastic Rod. Part ~ -- Results from the Theory. J. Appl. 

Mech •• 24. (1957). 231-239. 

3. Mindlin. R. D., and Herrmann. G., A One-dimensional Theory 

of Compressional Waves in an Elastic Rod, Proceedings of the First 

U. S. National Congress "of Applied Mechanics, A. S. M. E •• (New York, 

1952).187-191. 

4. Herrmann. G •• Application of Green's Method in Deriving Approximate 

Theories of Elasticity. O. N.R. Project NR- 064- 388, Contract Nonr-

266(09), Technical Report No. 13. (February. 1954). 

5. Skalak. R •• Longitudinal Impact of a Semi-infinite Circular Elastic 

Bar. J. Appl. Mech •• 24. (1957). 59-64. 

6. Folk, R •• Fox. G .• Shook. C. A •• and Curtis. C. W •• Elastic 

Strain Produced by Sudden Application of Pressure to One End of a 

Cylindrical Bar, I. Theory. J. Acoust. Soc. Amer •• 30. (1958), 

552-558. 

7. Miklowitz. J.. On the Use of Approximate Theories of an 

Elastic Rod in Problems of Longitudinal Impact. Proceedings of 

the Third U. S. National Congress of Al?plied Mechanics. A. S. M. E •• 

(New York. 1958), 215-224. 

8. Love. A. E. H.. A Treatise on the Mathematical Theory of 

Elasticity. (New York. Dover. 1944). 



-191-

9. Mencher. A. G •• Epicentral Displacement Caused by Elaetic 

Waves in an Infinite Slab. J. Appl. Phys •• 24. (1953). 1240-

1246, 1529. 

10. Broberg. K. B., A Problem on Stress Waves in an Infinite 

Elastic Plate. Trans. Roy" Inet. Tech •• Stockholm. Rep. No. 139. 

(1959). 

11. Davids. N., Transient Analysis of Stress-Wave Penetration 

in Plates. J. Appl. Mech.. 26. (1959). 651-660. 

12. Knopoff. L.. Surface Motions of a Thick Plate. J. Appl. Phys •• 

29. (1958). 661-670. 

13. Knopoff. L •• and Gilbert. F •• First Motion Methods in 

Theoretical Seismology. J. Acoust. Soc. Amer •• 31. (1959), 

1161-1168. 

14. Karal. F. C •• Jr •• and Keller. J. B., Elastic Wave 

Propagation in Homogeneous and Inhomogeneous Media. J. Acoust. 

Soc. Amer •• 31. (1959). 694-705. 

15. Babich. V. M •• and Alekseev, A. 5., On the Ray Method of 

Calculation of the Intensity of Wave Fronts. bv. Akad. Nauk 

5.S.S.R •• Sere Geofiz. (1958). 17-31. 

16. Courant, R •• and Hilbert. D., Methods of Mathematical 

. Physics. Vol. L (New York. Intersdence. 1953). 

17. Miklowitz. J.. Trans ient Compres sional Waves in an Infinite 

Elastic Plate or Elastic Layer Overlying a Rigid Half-Space. 

J. Appl. Mech •• 29. (1962). 53-60. footnote 6. 

18. Lloyd. J. R.. Wave Propagation in an Elastic Plate Resting 

on an Elastic Foundation. Thesis. California Institute of Technology. 

( 1962). 



-192-

19. Miklowitz. J •• and Nisewanger, C. R •• The Propagation 

of Compressional Waves in a Dispersive Elastic Rod. Part II .. -

Experimental Results and Comparison with Theory, J. Appl. 

Mech.. 24. (1957). 240-244. 

20. Mindlin. R. D •• and McNiven. H. D., Axially Symmetric 

Waves in Elastic Rods. J. Appl. Mech •• 27. (1960). 145-151. 

21. Chree. C.. The Longitudinal Vibrations of Aeolotropic 

Bars with an Axis of Material Symmetry. Quart. J. of Pure 

and Appl. Math •• 24. (1890). 340 .. 358. 

22. Gazis. D. C •• and Mindlin. R. D •• Influence of Width 

on Velocities of Long Waves in Plates. J. Appl. Mech., 

24. (1957). 541-546. 

23. Volterra. E., Dispersion of Longitudinal Waves. Proc. 

of Amer. Soc. of Civil Eng., 83. (1957). Paper 1322. 

24. Mindlin. R. D., and Fox. E. A •• Vibrations and Waves 

in Elastic Bars of Rectangular Cross Section. J. Appl. Mech., 

27, (1960). 152-158. 

25. Kane. T. R •• and Mindlin. R. D., Hi~h-Frequency Ex­

tensional Vibrations of Plates. J. Appl •. Mech •• 23, (1956). 

277-283. 

26. Erdelyi. A., Asymptotic Expansions. (New York, Dover, 

1956), 

27. Curtis. C • . w.. t Propagation of Elastic and Plastic 

Deformations in Solids. O. O. R. Report, Lehigh Unlv. , 

Contract DA-36-034-0rd-1456 Sup. 2, Project TB 2-0001 

(187). (Sept.. 1956). 



-193-

28. Borgnia, F. E. ,and Papas, C. H., Electroma,netic 

WavelUides and Resonators, Encyclopedia of Physics, 

(Berlin. Springer-Verlag, 1(58), Vol. XVI, 285-422. 

29. Ewing. W. M •• Jardetaky, W. S., and Pre.s. F •• 

Elaatic Waves in Layered. Media. (New York, McGraw-Hill, 

1957 ). 

30. Cop.on, E. T., Theory of Functions of a Complex 

Variable, (London, Oxford UDiv. Pre.a, 1935). 

31. Widder, D. V., The Laplace Transform. (Princeton, 

Princeton Univ. Preaa, 1(41). 59-63. 

32. Hughea, D. S •• Pondrom, W. L •• and Mima, R. Lo. 

Transmisaion of Elaatic Pulaea in Metal Rods. Physical 

Review, 75, (1949), 155Z-1560 .. 

33. Meitzler, A. H., Propagation of Elaatic Pulaes Near 

the Stresaed End of a Cylindrical Bar, Thesis, Lehigh 

Univ •• (1955). 

34. Goodier. J. N., and Bishop, R. E. D., A Note on 

Critical Reflections of Elastic Wavea at Free Surfacea, 

J. Appl. Physic., Z3, (195Z), lZ4 ... 126. 

35. Mindlin, R. D., and Onoe. M •• Mathematical Theory 

of Vibrations of Elastic Plates, ProceediDls 11th Annual 

Symposium on Frequency Control, U. S. .Army Signal Corps 

Engr. Labs., Ft. Monmouth, N. J.t (1957), 17-40. 

-~36. Mindlin, R. D •• An Introduction to the Mathematical 

Theory of Vibrations of Elastic Plates, Monograph, U. S. 

Army SilD&l Corps En,r. Laba •• Ft. Monmouth. N. J., 

Signal Corps Contract D.A-36-039, Sc-5677Z, (1955). 



-194-

37. Fox, 0., and Curtis. C. W •• Elastic Strain Produced 

by a Sudden Application of Pressure to One End of a Cyl­

indrical Bar, U. Experimental Ob8ervations~ J. Acoust. 

Soc. Amer., 30, (1958). 559-563. 


