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ABSTRACT 

The problem of electromagnetic wave propagation along a dielec-

tric cylinder of elliptical cross section is considered. Two infinite 

determinants representing the characteristic equations for the two 

types of hybrid waves (the eHEmn and the oHEmn waves) are derived. 

These waves degenerate to the well-known HEmn wave of the circular 

dielectric rod as the eccentricity of the elliptical rod approaches 

zero. It is found that there exist two dominant waves which possess 

zero cutoff frequencies. The characteristic roots of these two 

dominant waves are computed for various values of eccentricity and 

relative dielectric constant. Also given are the attenuation charac-

teristics and the field distribution of the dominant modes. It is 

shown that a flattened dielectric rod supporting the eHEll wave offers 

less loss than a circular rod having the same cross-sectional area and 

supporting the HEll wave. Theoretical propagation characteristics 

(the guide wavelength, the field distribution and the attenuation con-
. 

stant) of the dominant waves are verified by experiments. The Q's 

of a dielectric rod cavity resonator supporting the dominant waves are 

also presented. 
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CHAPTER I INTRODUCTION 

The concept of guiding electromagnetic waves either along a 

single conducting wire with finite surface impedance or along a dielec­

tric rod is not new. As early as 1899, Sommerfeld (1) conceived the 

idea of guiding a circularly symmetric TM wave along a conducting wire 

with small surface resistivity. In 1910, Hondros and Debye (2) demon­

strated theoretically that it is possible to propagate a TM wave along 

a lossless dielectric cylinder . However , due to the large field extent 

outside the wire and the relatively high attenuation of this surface 

wave, the "open-wire" line remained a novelty for almost half a century. 

Recent developments in the generation and application of millimeter and 

sub-millimeter electromagnetic waves, the availability of very low loss 

dielectrics, and the development of fiber optics, have renewed interest 

in the surface waveguides. There have appeared n1lllierous papers and 

reports concerning various forms of surface waveguides and the feasibi­

lity of these guides as practical transmission lines. 

Before discussing the purpose and the scope of the present inves­

tigations, a survey of previous work on surface waveguides is in order. 

1.1 Survey of the Literature 

The surface wave guiding structures are capable of supporting waves 

intimately bounded to the surface of the structure. These waves have 

exponential decay characteristics in regions away from the surface and 

are governed by the usual propagation function ei~z along the axis of 

the structure, where z is the axial coordinate and ~ is ,the propaga­

tion constant. For real values of ~ such waves persist at arbitrarily 
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large distances from the source. The steady state solutions with 

-:iLot 
harmonic time dependence e are the only ones considered here. 

Of primary interest are the values of ~ as a function of the fre-

quency and of the properties of the guiding system. 

The surface wave guiding system can take many forms. Theoane 

intensively studied in the past was a surface wave structure of 

infinite extent imbedded in an infinite uniform medium. The problem 

then consisted of finding the solution that satisfied the homogeneous 

field equations and the boundary conditions with the source at infinity. 

Typical surface wave structures may be classified into three 

types. The first type is the dielectric coated conductor, such as 

dielectric coated conducting plane and wire . The second type is the 

interface of two dielectric media, such as dielectric rods, dielectric 

tubes"or dielectric strips. The third type consists of various open 

periodic structures, such as unbounded helix, corrugated plane or cylin-

der . Sketches of these three types of surface wave structures are shown 

in Figure I-l. 

Among the various structures mentioned above, only those intimately 

related to the propagation of surface waves along an elliptical dielec-

tric cylinder will be discussed further, namely, the Sommerfeld-Goubau 

wire, the circular dielectric rod, the dielectric tube, and the ellip-

tical dielectric rod. Related topics such as the interaction of two 

surface waveguides and the problem of excitation of surface waves will 

also be mentioned briefly. 

(a) The Sommerfeld-Goubau Wire 

The possibility of propagating a surface electromagnetic wave along 

a circular conducting wire was first demonstrated theoretically by 



(a) dielectric coated 
conducti~ pl ane 

(c) dielectric slabs 

n 0 o n 

(e) corrugated 
plane 
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(b) dielectric coated 
conducting wire 

(d) dielectric rod 

(f) unbounded helix 

Fig. I-l. Typical surface wave guiding structures . 
Type 1, the dielectric coated conductor, (a),(b); 
Type 2, the interface of two dielectric media, (c),(d); 
Type 3, the open periodic structure, (e),(f). 
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Sommerfeld (1) in 1899 . The wave was a circularly symmetric 'I'M mode 

with components HA , E ,E and was loosely bound to the surface of ., r z 

the wire . In a numerical example he showed that the damping at high 

frequency for this type of wave was too pronounced to use as a com-

munication wave. Consequently the practical uses of this type of 

transmission line were very limited. In 1909 Hondros (3), a student 

of Sommerfeld, showed that an asymmetric field distribution was also 

possible. But the wave was so strongly attenuated that it could not 

be observed experimentally. 

Recently in 1950 Goubau (4) reinvestigated the properties of 

the Sommerfeld line and studied its suitability as a practical com-

munication line. His investigation showed that a circularly symmetric 

surface wave might be guided by a conducting wire of small diameter 

with the same low attenuation as that of the conven~ional coaxial con-

ductor guide . However, the field extended radially to a considerable 

distance outside the wire before its strength decayed to a negligible 

value; so that any small imperfection of the surface or any small cur-

vature along the wire would cause radiation loss. The practical use of 

this surface waveguide was therefore limited. In an effort to reduce 

the radial extension of the field, Goubau (5) proposed the coating of 

the conductor with a thin sheath of dielectric,or corrugating the wire. 

This reduction of radial field extent was achieved with the penalty of 

higher attenuation due to dielectric loss or corrugation. This 

increased attenuation due to dielectric loss together with the original 

attenuation due to loss in the conductor has been calculated by 

Goubau (5). It should be noted, however, that the first theoretical 
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analysis of electromagnetic wave propagation along a conducting wire 

with a cylindrical insulating sheath was given by Harms (5) in 1907. 

Since Goubau' s report, numerous papers concerning thi s type of 

single wire line have been published. Among these are the papers by 

Barlow and Karbowiak (6) in 1953 on the measurement of radial field 

distribution; Sheibe, King and Van Zieland (7) in 1954 on the measured 

losses of the "Goubau Line"; and Roberts (8) on the excitation of the 

single wire line. Kiely (9) also reported on the effect of fog and 

rain drops on the attenuation characteristics of the wave propagating 

along a long single wire line. 

(b) Circular Dielectric Rod 

Hondros and Debye (2) in 19l0 analyzed theoretically the guiding 

of a circularly symmetric TM wave along a solid lossless dielectric 

cylinder and thereby removed the cause of the strong attenuation due 

to the conductor (l). In 19~5 Zahn (lO) and his two students, Ruter 

and Schriever (ll,l2), confirmed the existence of such a TM wave experi­

mentally. Carson, Mead and Schelkunoff (l3) noted in their paper that 

Southworth in 1920 also accidentally observed such a wave in a trough 

of water. When the generation of high frequency electromagnetic waves 

(about lO cm) became feasible, Southworth (l4) described some experi­

mental work dealing with phase velocity and attenuation of the circu­

larly symmetric TM wave on the circular dielectric guide. 

Not until 1936 were the propagation properties of asymmetric 

waves on a round dielectric rod considered. A rather complete mathe­

matical analysis of this problem was given by Carson, Mead and Schel­

kunoff (l3). It was noted in their paper that in order to satisfy the 
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boundary conditions, a hybrid wave (i.e., the coexistence of longitu­

dinal electric and magnetic fields) must be assumed. In other wordS, 

asymmetric TE and TM modes were inextricably coupled to each other 

along a circular dielectric rod. They also showed that, 1) pure TE 

and TM waves could only exist in the circularly symmetric case, and 

2) there existed one and only one mode, namely the lowest order hybrid 

wave called the BEll mode, which possessed no cutoff frequency* and 

could propagate at all frequencies. All other circularly symmetric or 

non-symmetric modes had cutoff frequencies. The dispersion relations 

of these modes were also obtained in their paper, but no numerical 

results were given. 

Since then the development of metal tube waveguides as transmis-

sion systems completely over-shadowed the development of dielectric 

waveguides. This is largely due to the fact that the field is con-

tained entirely within the metal tube guide. For the dielectric guide, 

however, the field is not entirely contained which leads to greater 

transmission loss due to radiation when bends and discontinuities are 

present. A large number of papers have been published on the subject 

of propagation of electromagnetic waves in a hollow metal tube. Borgnis 

and Papas (15) gave a very comprehensive treatment on this subject. 

In 1945 Mallach (16) published his results on the use of the 

dielectric rod as a directive radiator. He showed experimentally that 

the radiation pattern obtained by the use of the asymmetric HEll mode 

produced only one lobe in the principal direction of radiation. 

*This cutoff frequency does not have the conventional definition as 
that for the metal waveguide modes (see p.295 of reference 15). It is 
here defined that the cutoff frequency for the surface waveguide mode 
is the frequency below which the dielectric rod ceases to act as a 
binding medium and the wave is no longer guided by this surface wave 
structure. 
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Immediately after Mallach's paper, Wegener (l7) presented a dissertation 

in which the asymmetric HEll mode, together with the lowest order cir­

cularly symmetric TE and TM modes were analyzed in detail. Not only 

were the numerical results of the propagation constants for these 

waves obtained, but also their attenuation characteristics. Apparently 

he was not aware of Carson, Mead and Schelkunoff's work. A few experi-

mental points were also included in his work to substantiate his 

theoretical results. Elsasser (lS) in 1949, independent of Wegener's 

work, published his computation on the attenuation properties of these 

three lowest order waves by the perturbation method (l5). In a com-

panion paper, Chandler (l9) verified experimentally Elsasser's results 

considering the dominant HEll mode. He found that the guiding effect 

was retained even when the rod was only a fraction of a wavelength in 

diameter. Since the greater part of the guided energy was outside the 

dielectric, very little loss was observed. For the first time the 

cavity resonator technique was introduced to measure the attenuation 

constant of the HEll mode. The resonator technique was very sui table 

for investigating very low loss uniform waveguides. It should be noted, 

however, that the formula relating the Q of the resonator and the 

attenuation constant a in Chandler'S paper is only applicable for 

very small 2a/).. ,where 
o 

a is the radius of the rod and 

free space wavelength (see Chapter V). 

).. 
o 

is the 

King (20) in 1952 proposed the so-called "dielectric image line" 

as a practical surface wave guiding device. The "dielectric image line" 

was made up of a semicircular dielectric rod mounted on a conducting 

sheet and was designed specifically for the dominant HEll mode. He 

indicated that the conducting sheet not only could act as a supporting 
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device, but also as a polarization anchor for this dominant mode. A 

detailed study on the attenuation and the radial field decay charac­

teristics of the HEll mode guided by this image line was reported by 

Schlesinger and King (21) in 1953. Again the cavity resonator method, 

used by Chandler, was used for the attenuation constant measurement. 

As of now the "dielectric image line" is still the best and the most 

practical device for supporting the dominant dielectric mode. 

(c) Circular Dielectric Tube 

A natural generalization of the analysis of the propagation of 

electromagnetic waves on a dielectric rod would be that for the circu­

lar dielectric tube . The earliest theoretical analysis was carried out 

by Zachoval (22) in 1932 . He considered the propagation of a circularly 

symmetric TM wave along a lossless circular dielectric tube. Two years 

later Liska (23) verified Zachoyal's work experimentally. A more com­

plete treatment on the theory of dielectric tube waveguides was given 

by Astraham (24) in 1949, in which both symmetric and asymmetric propa­

gating waves were considered. He also substantiated his theoretical 

results by experimental data. Independently, Unger (25) in 1959 

reported his investigation on the same subject and showed that a dielec­

tric tube with a thin wall could support the dominant mode with very 

li ttle loss. But the radial field extent was rather large. One of the 

most promising applications of dielectric tube waveguides may be found 

in the field of millimeter wave cavity resonator and beam coupling struc­

ture (26). 
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(d) Elliptical Dielectric Cylinder 

The first attempt to find the dispersion relation of an electro-

magnetic wave guided by an elliptical cylinder structure was made by 

Karbowiak (27) in 1954. He considered the elliptical cross-section 

Sommerfeld line and the elliptical cross-section Goubau line. The wave 

equation was formulated in elliptical coordinates and solutions were 

obtained. However, he matched the boundary conditions only at one 

point on the boundary surface; therefore his results can, at best, be 

considered an approximation for very small eccentric1 ty. Another 

attempt to solve the problem of surface wave propagation along an ellip-

tical dielectric rod was made by King and Wiltse (28). Again they for-

mulated the problem in elliptical coo~dinates and obtained solutions of 

Maxwell f S equations in this coordinate system. But in matching the 

fields on the boundary, similar over-simplifications of the boundary 

conditions were made. The" approximation" of these two approaches can 

be best illustrated by the following example. For the sake of clarity, 

only the matching of the axial electric field on the boundary will be 

considered. 

Karbowiak f S method. The expression for the axial electric field 

in region 1 which is the region inside the dielectric rod is 

(1) 

where A is an arbitrary constant. The expression for the axial elec­
n 

tric field in the surrounding medium is 

(2) 

where L is an arbitrary constant. It should be noted that all these 
n 

*The notations of the Mathieu or the modified Mathieau functions are 
defined in Chapter II. 
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Mathieu functions and modified Mathieu functions are functions of the 

characteristics of the medium. The boundary condition dictates the 

continuity of the axial electric field, i.e., at ~ = ~o ,Ez = Ez 
1 0 

we have 

It should be noted that 

L Fek (~ 'Y22)ce*(~'~2) n non 

are functions of 

~ . The only way that equation 3 can be satisfied is by assuming 

2 2 
cen(~'Yl) = ce~(~'Y2) , which is not true except when the eccentricity 

is zero. This was the assumption made by Karbowiak . 

King and Wiltse ' s method. King and Wiltse realized the invali-

dity of Karbowiak's assumption and proposed to attack the problem in a 

slightly different way . They assumed that the expression for the axial 

electric field in the dielectric rod is 

( 4) 

where the A are the arbitrary constants; and the expression for the 
n 

axial electric field in the surrounding medium is 

where L is an arbitrary constant. Satisfying the boundary condition 
n 

at ~ = ~ ,we ha¥e 
o 

ro 2 2 L. A Ce (~ ,Yl ) ce (~'Yl) = 
n= 0 n non 

They then multiply both sides of the equation by 

(6) 

and 
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integrate with respect to ~ from 0 to 2~ , obtaining 

where 

2 
A Ce (~ "l)N n non 

2~ 

~=J 
o 

L Fek (t,,22)M 
n n S n ' 

2~ 

~ ~=J 
o 

(7) 

This was how they eliminated the summation sign. It can be seen that 

an identical result, i.e., equation 7, can be obtained by the use of 

equations 1 and 2 • Multiplying both sides of equation 3 by 

and integrating from 0 to 2~ , one obtains equation 7. 

Therefore the validity of King and Wiltse's solution is also ques-

tionable. 

(e) Related Topics 

Unlike the waves in the metal tube waveguides, there are no 

evanescent modes on an open surface waveguide. It is not possible to 

express any arbitrary field distribution in terms of the propagating 

modes alone. Hence, there must exist a different type of wave, namely 

the radiated wave (29) if any source is present in a finite region. 

As a matter of fact, it should be noted here that the presence 

of the surface wave was actually first postulated by Sommerfeld (30) 

in 1909 when he was considering the now classical problem* which bears 

his name. He found theoretically that there existed not only a radiated 

wave due to the oscillating dipole, but also a surface wave which 

traveled along the interface of the two dielectrics. Since then, a 

great number of papers and reports have been published concerning varia-

tions of this problem. The most recent investigations have been reported 

*The Sommerfeld problem is discussed very clearly and thoroughly in 
Stratton (31). 
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by Roe (29), Whitmer (32), Tai (33), Brick (34), Wait (35), Cullen (36), 

and Brow (37), to mention only a few . 

The problem of interaction between two parallel uniform surface 

waveguides is also an interesting one. Since the wave equation is not 

separable in the bipolar coordinates, approximate methods must be 

employed. Quite a few authors used the electrostatic approximation* in 

the earlier years. However this approximation was not satisfactory at 

very high frequencies. Most recently Armand (38) and Marcuse (39) 

treated the problem of interaction between two parallel Goubau wires 

without resorting to the electrostatic approximation. They formulated 

the problem by assuming the interaction of only one single mode on each 

wire, namely the cir cularly symmetric 'I'M mode . They indicated the 

presence of space beats and the energy exchange phenomenon. Numerical 

examples were also given. 

1.2 Purpose and Scope of the Present Investigation 

In order that the dielectric rod may be a low loss surface wave 

device, one must choose a small value of ka where k is the free 

space wave number and a is the radius of the dielectric cylinder. In 

the millimeter wavelength range, the radius of the dielectric cylinder 

becomes inconveniently small. Fortunately it has been found experimen-

tally (41) that if the circular rod is flattened, (i . e . , if the circular 

rod is rendered to an elliptical rod of the same area), the attenuation 

of the dominant mode may be reduced considerably, provided that the 

*The electrostatic approximation is as follows: In calculating the 
structure of the field one would neglect quantities of the order of 

Oed Vk~- k2), where d is the distance between the wires, ko is the 
wave number for free space, and k is the propagation constant of 
the wave. 
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electric field of the dominant mode is parallel at the center of the 

rod to the minor axis of the elliptical rod. The use of very thin 

fibers of va~ious cross-section" as optical waveguides or as mode selec­

tors in opti~al masers has also received considerable attention. [For 

example, see reference (40)]. Furthermore, it is noted that 50 far 

there exists no satisfactory way of analyzing the problem of surface 

wave propagation along a dielectric rod of elliptical cross-section. 

It is tberef.)re the purpose of the present investigation to develop a 

method to an.3.lyzel this problem theoretically, to examine in particular 

the propagat:Lon characteristics of the dominant modes, and to perform 

experiments " ~o verify the analytic results. 

The in"restigation is divided into six parts, and the results are 

correspondinl~ly presented in Chapters II, III, IV, V, VI and VII. In 

Chapter II t ile fundamental theory of wave propagation along an ellipti­

cal dielectr:Lc rod is given. A method is developed to assure that the 

solutions of the wave equation satisfy all the boundary conditions on 

the surface of' the dielectric rod. The characteristic equations for 

the principa:L modes are given 50 that the variation of guide wavelength 

with frequenc!y, the dielectric constant, and the physical dimensions of 

the guide ma;, be obtained. It is shown analytically that there exist 

two non-degenerate modes which possess no cutoff frequency. They are 

called the dominant modes, and it is the propagation characteristics of 

these that ~"ll b~ considered in detail in the subsequent chapters. It 

is also ShOVill that all the principal modes on an elliptical dielectric 

rod degenerai;e smoothly to the well kno'\.m modes on the circular dielec­

tric guide, us the eccentricity of" the elliptical rod approaches !;. ~ 

zero. 
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Numertcal resuJ.ts of the characteristic equations for the 

dominant modes are obtained and discussed in Chapter III. ' Sketches 

of the field configurations are also given. The decay characteristic 

of the aria:. electric field is computed. 

In Chapter IV the attenuation properties ,and the power distribu-

tion characteristics of the dominant modes are analyzed theoretically 

Wi th the asnumption that the dielectric loss is small. Numerical 

results are computed. It is found that the attenuation constant of 

the dominant HEll mode* propagating along an elliptical dielectric 
e ' 

rod is much less than that of the dominant HEll mode along a circular 

dielectric l~od, having ,the same. cross-sectional area. , Physical inter-, 

pretation of these results is also presented. 

The Q' s of an elliptical dielectric rod cavity supporting the 

, dominant modes are 'given in Chapter V. It is shown that very high Q 

cavity may 1)e constructed using thin elliptical dielectric rod. Also 

derived is H formula relating the Q of a cavity and the attenuation 

constant of a transmission line supporting the same mode. This for-

mula is morEl general than the one given by Davidson and Simmonds (41) 

in that i t ~.s also vali9, for the hybrid modes. , This relation is very 

important whenever the cavity resonator method (19) is used to measure 

the attenuation' constant. 

To verify the theoretical results a systematic experimental 
, 

investigation on the propagation characteristics of the two ' dominant 

modes was pnrformed. ' A detailed description., of the measuring apparatus 

and techniqne is presented in Chapter VI. Experimental data are then 

*The meaning of this symbol is given in Chapter II • ' 
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co~ared with theoretical results, and they are in very good agreement . 

Summary and conclusions are given in Chapter VII. The advanta~e 

of using ,a flat elliptical dielectric rod instead of a circular dielec­

tric rod as a 'microwave guide are pointed out. It is also indicated 

that the analytic method used here may 'be applied to 'other si~lar prob­

lems. The ~roblem with source present is also discussed briefly. 
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CHAPTER II THEORY OF ELLIPl'ICAL DIELECTRIC HAVEGUIDES 

The prcblem is formulated in terms of the elliptical cylinder 

coordinates; the appropriate solutions of the wave equation in this 

coordinate ' fystem are then obtained. The difficulties of satisfying 

the boundary conditions on the elliptical surface are pointed out. A 

method to overcome such difficulties is introduced. Various notations 

and classifications' of the principal propagating modes are defined. 

Upon matchiLg the boundary conditions by the indicated method) a set of 

char acteristic ~quations and explicit forms for all field components 

corresponding to various modes are obtained. The existence of the 

dominant modes having no cutoff frequency is demonstrated. Finally, it 

will be sho>in that as the eccentricity approaches zero, all principal 

propagating modes degenerate to the ,well known circular modes. 

2.1 Formtllation of the Problem 

The surface wave propagation along an infinitely long, straight, 

isotropic, and homogeneous dielectric cylinder of elliptical cross sec-

tion imbedded in an infinite dielectric medium of dielectric constant 

€ and magnetiC permeability ~ ,is considered. The dielectric 
o 0 

cylinder has a dielectric constant €l and a magnetic permeability 

~l· We assume that ~l = ~o } the ~ree space magnetic permeability; 

El > EO ' and that the conductivity in both media is zero. We further 

assume that, the exciting source is so faraway that, in the region of 

interest, the surface waves dominate the radiated waves from the source. 

To analyze the source-free dielectric surface waveguide of ellip-

tical cross section, the elliptical cylinder coordinates (~,~,z), as 

shown in Figure II-l, are introduced. The ellipti cal cylinder coordinat e s 
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y' 

lj = constant 

~ = constant = ~o 

--+-.---t---:::-r--{--<:>--r--- x' . 

Semi-mo.jor axis = '1 cosh ~ o 
Sem-minor axis = '1 sinh ~ 

(a) 

o 
Eccentricity, e = l/cosh ~ o 

y' y' 

F2 0 F1 
----_~c_-----~·------~~--x, 

~-2'1+---"; 
---+---~'~~-~~--x' 

(b) 
( c) 

Fig.II-1. (a) Cross-section of elliptical surface waveguide. 
Fl and . F2 ' are the foc~ of the ellipse. The ~stance 
between foci is the focal distance, 2'1 . 

(b) Degenerate fo~ of ellipse when e = 1. As e - 1 
semi-minor axis - Q , and semi-major a:ds - '1 • 

(c) Degenerate form of ellipse when 
'1 - 0 1 ~ - 00 1 semi-major axis o 

e = O. As e - 0 
- semi-minor axis -.. r • 



-18-

are related to the rectangular coordinates (x',y',z') through the 

follo'Wing, 

x' = q cosh ~ cos ~ 

y' = q sinh £ sin ~ 

z' = z 

(0 f s < OJ , 0 £ 1') £ 2rc) 

where q is the semifocal length of the, ellipse. The contour surfaces 

of ,constant ~ are ~ confocal elliptic cylinders, and those of constant 

1') are confc cal hyperbolic cylinders. The elliptic ' cylinders and hyper-

bolic cylinc,ers have foci at .. ' , x = q, y = 0 The 

semi-minor E.xiS is eq1;.a.l to q sinh s . , 0 The eccentricity e, defined 

as the ratic· of the semifocal distance to the semi-major axis) is given 

by e = l/ccsh S • 
, 0 

One of the confocal elliptic cylinders with s = s is assumed to o 

coincide 'vi th the boundary of the solid dielectric cylinder, and the 

z-axis coincides 'With its longitudinal axis. 

2.2 t,'laxHell.' s Equations and Their Solutions in Elliptical Cylindrical 

Coord.ir.ates 

It is well , known that the harmonic form of Maxwell's equations in 

a source-free medium characterized by € and j.L are given by 

\1 , x E = . i CJ.)j.L .!! (la) 

\1 x ,H = - iCJ.)€ E .(lb) 

\1 H = 0 (lc) 

"i1. E = 0 (ld) 

where ' E m ,d H are the electric field vector and the magnetic field 

vector respE:cti vely. The harmonic time dependence of -imt 
e for all 
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field quantjties is assumed. The ·rationalized ~~ system is used 

throughout t.his work. vIe shall now confine our treatment to waves 

propagating along the positive z-axis. In complex representation 

these assumltlons result in a multiplication of all wave functions by 

-imt il3z 
e e ) i.e.) 

!!(~)T))z)t) = (~~ E~(~)1) + ~T) . E1)(~)1) + ~z Ez(~')T)) 

~(~)T),z~t) = (~~ H~(~,T) + ~1) ~T)(~,T) + ~z Hz(~,T)) 

-imt il3z 
e e (2) 

-imt il3z 
e e 

where e) E and e are unit vectors in the ~,.,.,)z directions res-
-~ -"T) -z 'I 

pectively, End 13, the propagation constant of the wave in the z direc-

tion, is to be.determined from the boundary conditions. 

In elJiptical cylinder coordinates, equations 180 and lb become 

2 0 0 ( 4) - imE p E = Os (p H1) - dTi (p Hs)' z T) . 

o . 
(5) - imE P Es = di1(H)-iI3PH T) Z T) 

0 
(6) - imE: P E = il3 P Hs - a (H ) 1) ~ z 

im IJ. P~ . o ( E) o · ) ( 7) = - dn .(PE z o~ P 1) 1) ~ 

i m IJ. P H~ = ~ (E ) - il3 P E (8) 
oT) ,z 1) 

0 (9) i m IJ· P H = il3p E~ - ~ (Ez) 1) 

where 2 " 2 1/2 
P = dsinh ~ + sJ.n T) , 

2 2 2~ 2 
k = m ~€ = (~) ~d ~ is the · 

wavelength c,f a 'uniform plane wave in the medium. The above equations 

4 through 9 can be combined to give the field components Es' E1)' Hs' HT) 

in terms of .Ez and H only; we have, z . 
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1 i aE all } 
Es 

;: 2 2 i~ <IT + ic.q.L T (10) 
(k _ ~ )p s 1) 

1 {~ aa } (ll) E1) ;: 2 2 i~ T - iW\-L 0 Z 
(k - ~ )p 1) ~ r aE all } 

lIs, = 21 2 - i WE: Tn + i~ 0 ~ (12) 
(k - ~ )p 1) ~ 

lIT} = 
1 { aE all } 

(k2_ ~2)p -iwE: d{ - i~ 'a~ (13) 

Taking the derivative of equation 12 With respect to 1) and the deri-

veti ve of ' e~,uation 13 with respect to sand substituting these 

expressions into equation 4, one obtains the equation 

(14) 

Similarly, taking the derivative of equation 10 With respect to 1) and 

the derivative of equation 11 with respect to S and substituting 

these expreEsions into equation 7, one gets 

o . (15) 

Equations l~ , and 15 are the i,ave equations. It should be noted that 

these two we,ve equations are of the same form, therefore it is only 

n~cessary tc, solve one of them. If 'H = 0 a TM wave results; 
z if 

E
z 

;: 0 a TE wave results. The most general expressio~s for the elec­

tromagnetic fields ,consist ofa linear combination of, the solutions of 

TE and TM we.ves.' 

Consic.er the following partial differential equation 
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[
22 2 2 .2 J" q (k - ~ )(sinh ~ + s~n ~) 1~ = 0 (16) 

in which A may be 'H or E In order to obtain the solutions of 
z z 

equation 16 one sets 

(17) 

and substi t\.tes equation 17 into equation 16. Applying the usual 

s~paration Of variables procedure, one may separate equation 16 into 

the follo\ur.g two ordinary differential equations 

and 

' where 2 c ' is the separation constant and y 

= 0 (18) 

Equation 

18 is the Mathieu differential equation; equation 19, which follows 

from 18 by the transformation ~ = ± i~ , is the modified Mathieu 

differential equation (42). 

For physically admissible single-valued electromagnetic fields, 

J\(~,~) must be ~periodic function of ~,of period ~ or 2~, 

and the separation constant c ,in this case a function of 

2 
on an infinite set of characteristic values for every y 

2 
y ,takes 

When 
2 

Y 

is real the characteristic values are all real; since we are considering 

solutions in a lossless medium~ only real values of c are of 

interest. C~rresponding to 2 
y = 0 there are two independent periodic 

solutions, namely sin n~ and cos n~ ,with the separation constant 

c = n2 .lhere n is a.'1. integer. It can be shown (43) that when y2 
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differs frOll zero , a characteristic value c determines one and only 

one periodi<! solution which is either even or odd in'll' The charac-

teristic va:.ues c J giving rise to even and odd solutions are denoted 

and b (y2) respectively . The subscript n identi­
n 

fies those ~;ets of characteristic values which apllrOo.ch n 
2

, as y2 

apllroaches ;;ero. It is knovm from the Sturmian theory of second order 

linear diffE:rential equations that solutions associated with 
2 

a (y ) 
n 

2 
and b (y) have n zeros in the interval 0 ~ 'll ~ ~ (44) • 

n 

For al'bit:z:ary positive real values of 

of Matheiu'f; equation 18 are·*(42,45) 

2 Y , the periodic solutions 

(even) 

= (20) 
(odd) 

and the corresponding solutions for the modified Mathieu's equation 19 

are* 

(even) 

(21) 
(odd) 

For arbitrary negative real values of ' y2 the periodic solutions of 

Mathieu's e~uation 18 are* 

(a (I y21) when n even) 
n 

(b (I r21) when n odd) 
n 

(even) 

(odd) 
(b (ly21) when n even) 

(22) 
n 

(an ( 1 y2 \ ) when n odd) 

and the corr'esponding solutions for the modified Mathieu's equation 19 

*See Allpendix A for the definitions and series expansions of these 
Mathieu ana, modified Mathieu functions. 
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2 ~ + cle1.f.n (~,I y I) 

+ Q.2Gekn ( ~ ,I .. ll) . 

(an (f y21) when n even) 
(even) 

(b
n
(I-r21) n odd) when 

(b (I y2 J) 'Then n even) 
(odd) n 

(an ( J r21) when n odd) 

(23) 

and b (y2) are the characteristic values and n is the order 
n 

of the fun~tton . all .a2, b l , b2 , cl ' c2' dl and d2 are the arbitrary 

constants. 

The pl'oper choice of the above solutions to represent the electro-

magnetic field of an elliptical dielectric cylinder depends upon the 

boundary concitions. For region 1, which is the space inside the die lec-

tric rod, all field components must be finite. For r egion 0, which is 

the space ouLside the dielectric . cylinder, in order that energy flow>only 

along the axis of the cylinder, all field components, must approach zero 

as the radiaJ. argument approaches infinity. Consequently we must discard 

the functiom; Fey (~, y2) and Gey (~, y2) , since t hey ·are infinite at 
n n 

22 · 
the origin, toe., at £:::; O. The functions Ce~ (~, I y I) and Se~( £,1 y I) 

must also be discarded since they become infinite at infinity. Therefore 

the solution~; of the wave equations 14 and 15 are as follows: 

ro 
:::; L 

. n=O 

*We follow · ~he notation adopted by McLachlan (47) and Meixner (44). 
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co 2 2 
= L B'Ce (S,Yl ) cen(T),yl ) 

n=O n n 

+ 
-imt i{31z 

e e (c ~ ~ ~ 0) , ~o ~ 
(26) 

(27) 

A , A', B , B',·L , L', P and P' are coefficients which are related 
n n n n n n n n 

by the boundar~ conditions and are functions of n, w, yi, ly;1 ' and 

t he nature cf the exciting sources, but independent of the coordinates. 

and 

'n th 

are respectively 

2 2 
and k = w f.L€ o 0 

and 

is the dielectri c constant of 

the cylinder and € 
o 

is the dielectric constant of the surrounding 

medium. ~ = ~ is the surface of the dielectric cylinder. All trans­
o 

verse field components for both regions can be derived from equations . 

10 through 13, using equations 24 through 27. Incidentally, the Hertz 

vectors 11:' and 11:" (15) . rather than E and H may be used as the 
z z z z 

scalar quantities from which the other field components may be derived. 

2.3 The Bou1dary Conditions 

The ta3k of solving an electromagnetic wave boundary value .prob-

lem is to fi:ld finite and single-valued solutions ',hich satisfy the 

source-free 11axwel1's equations and the boundary conditions. The boun-

dart conditions are, that the tangential components of the electric and 

magnetic fie:Lds must, in general, be continuous . through any surface. If 
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the region cf interest is infinite, then the radiation condition (46) 

must also be satisfied . The above conditions are necessary andsuffi-

cient . In the present problem, the continuity conditions in the 

elliptical cylindrical coordinates are 

E = E 
zl Z 

0 

(1) 

H = H 
zl z 

0 

(2) 

E = E 
111 1)0 

a:ld H H 
111 1)0 

( 4 ) 

for ~ = ~ ,2t( ~ 11 ~ 0 an(l +00 > Z > -00 . 
o 

In orc.er to . illustrate the difficulties encountered in satisfying 

t he above bcundary coniitions for the elliptical dielectric cylinder, 

we shall first consider the case of the surface wave propagation along 

a circular cielectriccylinder. The required axial ele ctrom80~etic 

fields both inside and outside ·the circular dielectric cylinder are (13) 

Ei 
00 

Ai .J (~ir) ikz -iillt 
= )' cosnG e e (0 ~ r ~ a) (5) z "-' n n 

r:.=o 

co ikz -iillt EO = L ~ Kn(~or) cos nG e e (a ~ r < 00) (6) z 
r. = 0 

co i 
.J (~ir) ikz -iillt ~ L 

.. 
(0 :f ~ a} . _ (7) = B sin nG e e r 

z 
r:. = l ' n n 

00 ikz -iillt W = r.~l B~ Kn(sOr) sin nG e e (a ~ r< co) ( 8) 
z 

where ~ ~i = (k~- k2 . ~o = Vk2:.. k2 with k~ 2 and 2 2 and = ill ~€. ko = ill ~€o 
~ o · ~ ~ 

€. is the cielectric constant of the cylinder, € is the dielectric 
~ 0 
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constant of the surroundin3; rr.edium) and E . > E 
J.. 0 

i AO Bi A and 'n' n' n' 

B
O 

are the ~rbitrary constants and a is the radius of the cylinder. 
n 

The bounda ry conditions are 

1 ",0 E- ::: .c. 
Z Z 

If ::: if 
z z 

(10) 

Ei ",,0 
::: .l!;G G 

(ll) 

Hi ::: ~ G 
(12) 

at r ::: a, 0 ~ g. tf 2:rc and -00 tf z ~oo Substituting equations 5 and 

6 into equation 9, one obta ins 

00 

L 
n=O 

'"L i ikz ' 
A .J (s a)cos nG e = 
II n 

Multiplying l)oth sides of e quation 13 by cos mG and integrating with 

respect to <i from 0 to 2:rc vle have, due to the orthogonality of the 

trigonometri l:! functions , 

= (14) 

It should be noted that for each mode (in this case for each n) there 

should be on:L.y o~e propagation constant. Equation 14 shOl-lS that the 

boundary concLi tions may be satisfied ' for each n separately, due to the 

orthogonali t~r in G of the fundamental solutions and the fact that the 

angular funci~ion (cos nG or sin nG) is independent of the character-

istics of the medium . Similar procedures and conclusions can be applied 

to the boundary conditions, eg,uations 10, 11 and 12. 

Consid()r the boundary condition, equation 1, for the elliptical 

dielectric c~rlinder . Substituting equations 2.2-26 and 2.2- 27 into 1 
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one gets 

0) 

" 2\ . I 2\ = I. pI Fek (~ ,I I ) ce'X- (,.; I I ) '-' r roo r 'j' 0 
r= 0 . , 

00 2, 2 it3 z 
+ \' P Gek (~dll \ ) se* (1), II [)e 0 • 
~ r r 0 r 0 

r=l (~) 

Equation l5 way be written as two separate equations, one corresponding 

to the even'~ype modes) the other to the odd type modes. These equations 

are 

. and 

00 , 2 2 
\' P 'Fek (~ '\ 'I I) ce'r

x-( 1), t 1
0

. 1) 
r~O r roo 

Suppose one n.ultiplies both sides of l7 by 

it3 z o e (l6) 

(l7) 

and integrates 

with respect to 1) from 0 to 2n. Due to the orthogonality of the 

Mathieu fun·ctions . (see Appendix A), equation l7 becomes 

2 it3l z 
N B Se (1; 'Il ) e m m mo . 
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2:rr 

where Nm is the normalization constant, ~ se;(~,Y~)d~ Assuming 

~l = ~o one gets 

2:rr 
OJ 2 
\' P Gek (~ ,I Y I) 
r~l r roo J 

o 

o 

2 2 
se* (~, Iy I)se (~'Yl)d~ rom 

(18) 

Equation 18 involves the arbitrary constant B (m = 1, or 2, or 3, or 
m 

. • .) and an infinite number of arbitrary constants P l' P 2' P 3 ... P 00' 

Similar procedures may be applied to the remaining boundary conditions, 

equations 2, 3 and 4, and each of them contributes an arbitrary constant 

on the left hand side of the equation and an infinite number of arbi-

trary constants on the right hand side of the equation. For example, 

using 2, an algebraic equation involving A (m = 1, or 2, or 3, or 
m 

• L results; using 3, an algebraic equa-
co 

tion involving A and B (m = 1, or 2, or 3, or • • .) , and m m 

P 
00 

and 

another algebraic equation involving 

L results; using 4, co 

A and B (m = 1, or 2, or 3, 
m · m 

and L 
OJ 

results. Since these equations involve an infinite number of arbitrary 

constants, an infinite set of linear algebraic equations is required. 

This means m must be equal to 0, then 1 ,. then 2 , • • . , then 00 

It can therefore be seen by the method outlined above that in matching 

. the boundary conditions, an infinite order of Mathieu functions must 

be used to describe the fields in both media, i.e., both inside and 

outside the elliptical dielectric rod . 



-29-

2.4 The Notations and Classifications of the Propagating Modes 

For a circular dielectric waveguide it is well known that the 

pure TE and TM waves can exist only if the fields are independent of 

the angular coordinates . These circularly symmetric waves are desig-

nated by H on 
for the pure TE waves and E on 

for t he pure TM waves . 

The subscript 0 signifies the angular variations and n signifies 

the nth root of the characteristic equation. The coexistence of E 

and H waves is required to satisfy the boundary conditions if the 

field is a function of the angular coordinate.* These asymmetric 

waves are then designated by HEron if the cross-sectional field pat­

tern resembles that of an H wave and by EH if t he cross-sectional ron 

field pattern resembles that of an E wave. The subscripts m and n 

denote respectively the number of cyclic variations with G and the 

nth root of the characteristic equation. These hybrid asymmetric 

modes discussed above are doubly degenerate since an equally valid 

solution results if sin mG is replaced by cbs mG ,and cos mG by 

-sin mG . ' 

As pointed out in the preceding section, no pure TE or TM waves ' 

can exist on an elliptical dielectric rod. All modes must be hybrid. 

Due to the asymmetry of the elliptical cylinder, it is possible to 

have two orientations for the field configurations . Thus a hybrid 

wave on an elliptical dielectric rod will be designated by a prescript 

*Physically speaking, the presence of Ez in a predominantly H wave 
(i.e.) the HE wave) or vice versa (i.e., the EH wave ) assures the 
return path for the electric or magnetic lines of f orce; in other 
words , the electric and magnetic field lines must f orm clos ed loops 
in the case of the surface wave propagation along a dielectric rod. 
The existence of a circularly symmetric pure E or H wave along the 
dielectric rod is a special case; since the electric and magnetic 
lines of force of the E or H wave have already fo rmed closed loops . 
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e or 0, indicating an even wave or an odd wave. The axial magnetic 

and electric fields of an even ,.ave are represented by even and odd 

Mathieu functions respectively, and those of an odd wave by odd and 

even Mathieu functions respectively. The notation HE is used to 

designate the hybrid wave. A double subscript (m,n) will also be 

employed; (m,n) denotes the order of wave which corresponds to t he 

order (m,n) for an HEmn wave on a circular dielectric cylinder when 

the eccentricity of , the ellipse becomes zero. 

2.5 The Field Components and the Determinantal Equations 

Having properly classified the modes we are now in a position to 

describe the field components and to apply the boundary conditions in 

order to obtain the characteristic equations from which the propagation 

constants may be determined. 

In order to simplify the notations for the Mathieu and modified 

Mathieu functions without any ambiguities, the following abbreviations 

are used: 

Cem(~) 
2 

ce (11) 
2 

Cem(~'Yl) ;: cem( 11,Yl ) m 

Se (~) 
2 

se (11) 
2 

;: sem(~'Yl) sem (11, Y 1) m m 

Fek (~) ;: Fek (~, I y2n ce*( 11) ;: ce* ( 11, I y21) r r 0 r r 0 

Gek (~) 
2 

se*(11) se-;:- ( 11, I y21 ) ;: Gekr(~' I Yo \) ;: 

r r r 0 

(a) eHEmn wave 

According to the definition given in the previous section, the 

most general expressions for the axial magnetic and electric fields of 
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For region 1. (0 6 ~ < ~ ) 
0 

co 
i~z 

H L A Ce (~) ce (1)) e 
zl m= 0 m m m 

co 
i~z E = L B Se (s) se (T}) e 

zl m= 1 m m m 

and for region 0 ( ~ L. ~ < co ) 
~o - ~ 

H z o 
= 

co 

L 
r=O 

LFek (s) ce*(T}) ei~z 
r r r 

where A, B , L , and P are the arbitrary constants. All trans-
-in m r r 

verse fields can be derived from Maxwell's equations. 

Equating the tangential electric and magnetic fields at the 

boundary surface, ~ - ~ ,one arrives at the following equations: 
o 

00 co 

L 
m=O 

= L 
r =0 

L Fek (~ ) ce*(n) r r 0 r 'I 
A Ce (s ) ce (n) m mom 'I 

co co 
\'B Se (~ ) se CrJ) 

m';: 1 m mom 
= L P Gek (~ ) se* ( T}) 

r=l r r 0 r 

co . mE 

mEl 
+ - B Se' (~ ) se (T}) 

~ m mom 

L A 
0 

P Gek' (~ ) se*( 1)) , 
r=l I-' r r 0 r 

(1) 

(2) 

(4 ) 

(5) 

( 6) 

( 7) 
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A Wfl Ce 1 (s ) ce (TJ) - B 
m13 mq m m 

2 

[1 + y~ ] Sem( SO) se~( 11) 
Yo 

= (- Y~) [ W: Lr Fek~( SO) ce~( T}) 
Y r=O o 

(8) 

The prime denotes the derivative with respect to or TJ , as the 

case may be. The TJ dependence in the above equation may be elimi-

nated by the following procedures. Substi tutirig the expansions 

co co 
ce~( TJ) = L a cen(TJ) se*( T}) = n~ 113r ,n 

sen (T}) 
n =0 r,n r 

ce 1 ( TJ) = L ;i m n sen ( T}) se 1 ( TJ) = L v cen ( TJ) m n = l' . m n=O m,n 

into equations 5 through 8 and applying the orthogonality relations 

of Mathieu function, leads to 

2 

Aa 
n n 

B b = nn 

co 

co 

L 
r=O 

L £ a r r r,n 

2 
WE [ 

+ Y~] Yl 
13

1 Bnb~+ 1 r~l Arar'tr,n -2 
Yo Yo 

Wfl A a 1 _ 
13 n n 

2 

[ Yl ] co . 1+2" L Bbv . 0 r r r,n Y r = o . 

n 0, 2, 4 
or . n = 1, 3, 5 

2 

(- Y~) 
Yo 

I 

WE 0 co 
-2::: p 113 

13 r = 1 rPr r,n 

co 
Wfl L L £ 'a 

13 r r r,n 
r=O 

( 9) 

(10) 

(11) 

(12) 

(13) 
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a ::;: Ce (~ ) a' Ce' (~ ) 
n n 0 n n 0 

b ::;: Se (~ ) b' Se' (~ ) 
n n 0 n n 0 

£ ::;: Fek (~ ) £' ::;: Fek' (~ ) r r 0 r r 0 

Pr 
::;: Gek (~ ) P' Gek' (~ ) (l4) r 0 r r 0 

have been used. ex ~ II and v are given in the 
r,n' r,n' ~m,n ' m,n 

appendix. It is noted that in equations lO~through l3 when n is 

odd the series are summed over all odd values of r, and when n is 

even, the series are summed over all even values of r. S~plifying 

equations lO through 13 and making the identifications 

-x ex r,n m,r 

ro 
s 
m,n Pm L v ~m r r::;:l r,n , 

h m,n 

a' 
t (l)~ n.t ex 

m,n ::;: ~ a- m m,n 
n 

one obtains 

2 
11 (l)€ + 0, A 
"'""2 T Pm .... m n y , 

o 
2 

Il + ~ (l)~ £' ex 
Co ~ m m,n 

Yo 

ro 
\"' [L g +Ph ]::;: 0 

m'-;;: 0 m m,n m m,n 

ro 
L [Lt +Ps 1::;:0 

m::;:O m m,n m m,n 

( n = 0,2,4 ••• or n l,3,5 ••• ) • 

(15) 

(16) 

(l7) 
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The above series are summed over all odd values of m when n is 

odd and the series are summed over all even values of m when n 

is even. 

Equations 16 and 17 are two sets of infinite homogeneous linear 

algebraic equations in L and P 
m m 

For a nontrivial solution the 

determinant of these equations must vanish. The roots of this 

infinite determinant provide the values from which the propagation 

constant ~ can be determined. For example, the infinite determi-

nant for m = 1 mode is 

Ll P
l L3 P

3 L5 P
5 

gl 1 , hl 1 , g3,l h3,l g5,l h5,l 

tl 1 , sl,l t 3,l s3,l t 5,l s5,l 

gl,3 hl ,3 g3,3 h3,3 g5,3 h5,3 

t l ,3 sl,3 t 3,3 s3,3 t 5,3 s5,3 
0 

gl,5 hl ,5 g3,5 h3,5 g5,5 h5,5 

t l ,5 sl,5 t 3,5 s 
3,5 t 5 ,5 s5,5 

(18) 

Due to the extreme complexity of this infinite determinant, the roots 

of this determinant can only be obtained numerically by the method of 

approximations (47). This point will be discussed further in Chapter 

III. It was found numerically that the first root of m = 1 mode 
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was governed principally by the expression* 

= 0 

as long as the elliptical cross section is not too flat (i.e., 

I: >0.5) . 
~o 

(b) HE wave 
o ron 

(19) 

The expressions for the axial magnetic and electric fields of 

For region 1 (0 ~ ~ ~ ~ ) o 

(20) 

co 
= 2: D Ce (~) ce (~) ei~z 

m =0 m m m 
(21) 

and for region 0 ( I: ~ I: <co) 
~o So 

co 
se*(~) ei~z H = L G Gek (~) zo r =1 r r r 

(22) 

co 
ce*(~) ei~z Ezo = L Fr Fekr ( s) 

r=O 
r 

*For any other modes, say the mth mode, successive approximations 
should start from the factor Igm m hm ml 

. , '- 0 t s -
m,m m,m 
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where C, D , G , and F are the arbitrary constants. All trans-m m r r 

verse fields can be derived from Maxwell's equations. Upon matching 

the boundary conditions at ~ = ~ and applying the similar mathe­o 

mati cal operations as for the HE mode, one can easily obtain the 
e ron 

characteristic equation for the HE wave. 
o ron 

teristic equation for oHEll wave i6 

~l , 
t!,l 

~,3 

tt,3 

~,5 

t!'5 

where 

s* -
1,1 

h!'3 

s1,3 

h!'5 

61,5 

~,n = ( 1 

~,l 

t"3,l 

~,3 
t* 

3,3 

~,5 
t"3,5 

h"3,l 

6"3,1 

h"3,3 

5* 
3,3 

h* 
3,5 

co 

~,l 
t 5,l 
~,3 
t 5,3 

~,5 
t 5,5 

For example, the charac-

h5,1 

55,1 

h5,3 

55",3 

h5,5 

65,5 

= 0 

(24) 

6* =­m,n j, L t Ct 
mr=l r,n m,r 

h* m,n 

t* m,n (25) 
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To simplify the notations, the following dimensionless qualities 

are introduced: 

2 2 2 2 
x = q cosh ~O(kl (26) 

(27) 

Hence the infinite determinants are functions of x,y,~o and €I1€o 

only. 

2.6 Cutoff Frequencies of the Dominant Modes 

It is known that x and yare the roots of the dispersion 

relations. Combining equations 2.5-26 and 2.5-27 we arrive at the 

propagation constant 

1 2 2 2 2Jl/2 1 
Ii. = [l"1 cosh ~ k x ~ [l"12COSh2~oko2+ y2] ~ q cosh ~o ~ ~o 1 - = q cosh 0 ~ ~ 

= __ 1 __ [ x€2

1

+ -:! y2] 1/2 

q cosh ~o 
- - 1 € . 

o 

(1) 

222 . 
In order to have a guided wave, t3 ,x and y must all be real 

and positive*. 
2 

One recalls that the positive and real values of y 

indicate that the field intensities outside the dielectric rod decay 

*The fact that x2 and y2 must all be real and positive offers a 
way to determine the upper and lower boUnds of the propagation con­
stant t3. According to equations 2.5-26 and 2.5-27, t32 ~ ki and 
t32 ~ k2 • Thus k ~ t3 ~ kl. • o 0 
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with increasing distance from the surface of the guide. If 
2 

Y 

negative and real, the expressions for the field components will 

is 

indicate the presence of an outgoing radial wave at a large distance 

from the surface of the dielectric rod, which can only come from an 

infinitely long (in the z direction) line type source located at some 

finite ~. Such sources have not been postulated in the assumptions. 

In fact, the concern here is with the source-free problem. Thus 2 
Y 

must be positive real for all surface guided waves and consequently 

the lowest permissible value of 2 
Y is zero. The propagation con-

stant and the frequency corresponding to this value of 2 
Y are 

f3 2 
(y =0) 

and 

ill 

= 

= 

q cosh ~ o 

2 
(y =0) 

q .cosh '£ 

respectively. x corresponds to 

x 

x 

El 
(- - 1) !-LEo E 

0 

the root of the characteristic 

(2) 

(3) 

equa-

2 
tion with y = O. The frequency defined by equation 3 is called the 

cutoff frequency of the wave, since below such frequency the mode can 

no longer exist on the dielectric guide. Physically it means that 

below this cutoff frequency the structure can no longer support such 

a wave and thereby ceases to be a binding medium • 

. The approximate expressions of the modified Mathieu functions 

for small x and yare derived in Appendix A.2. For small values 
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of y we have 

l Feki (~o) 

y2 Fekl (~o) 

and 

l Geki (So) 

y2 Ge~ (So) 

[for m ~ 3 (m odd)] (4) 

2~ ~ 
l { 2 a ex a - -2~ 4 ] =2' -l+ ye 2 .en( eye )[3-2e o]+O(y) 
y 8 cosh ~ 4 cosh S a 0 

2S 
o -4~ 4 ] 

e 2 [(m+l) + (m-l)e 0] + O(y ) 
cosh S o 

[for m~3 (modd)] (6) 

{ 

2t So 
2 ~o ex " 

= 2:... -l + Y e .en(e y e ) 
2 2 

y 8 cosh So 4 cosh So 

-2~ 4 } [3 + 2e 0] + 0 (y ) ( 7) 

'Where ex is the Euler's constant. For small values of x, we have 

l 
Ce' (s ) l [ , ~oGl + O(x

2
)] (m odd)] m 0 = 2" tanh [for m ~ l 

x2 Cem(so) 
, 

x 
(8) 

and 

l 
Se' (s ) 

= l2 [ co~h ~oG2 + O(x
2

) ] (m odd)] m a [for m ~. l 
x2 sem( So) 

, , 
x 

where 



G = 1 

and 

m-l 
~ 

L 
r=O 

m-l 
2 
L 
r=O 

m-l 
2 

(m-l ) ~r ~ 
(_l)r 

(m-l ), T- r . 

(m-l ~ + r)! 
(_l)r 

(m-l ) ~ - r ~ 
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( 2r cosh ~ ) 
0 

(m-l ) --r 
4 2 (2r)! 

( 2r cosh ~ ) 
0 

(m-l _ r) .. 
4 2 (2r+l)! 

L (_l)r 
(m-l ) T + r ~ 

m-l ) 

(sinh ~ )2r 
o 

(m-l ) r=O (2 - r ! -- r 
4 2 (2r)! 

(~ + r)! (sinh ~o)2r 
( -1) r (m-l _ r)! --:::(_m::-"-2:1-_-r )---

2 4 2 (2r+l)! 

It can be shown that for small values of x and y to the first 

order approximation, 

ex - t3r ,n .... 1 when r = n r,n 

.... 0 when r f n 

and 
(10) 

v ..... m when m=n m,n m,n 

-0 when mfn 

Substituting the above approximations . into the characteristic 

equation 2.5-18, one obtains for the even waves 
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€ €o 
So G2)] 4(m

2 
- 1) [mel + -2.) + (- tanh So Gl + coth 

2 - €l €l 
x - 2s 

, 
0 -4s (11) e [(m+l) + (m-l) e 0] 
2 

cosh s 
0 [for m ~ 3 (m odd)] 

and 

€ € 
[(1 + -2.) + (-.£ tanh So + coth S )] 8 

2 €l €l 0 

X ::::: 2go go -2s 
, € 

0 e £n(ea 'i. e )[3 - 2e 0] 
€l 2 

cosh S 2 cosh So 

(12) 

[for m 1] . 

Upon inspection of equation 11 we may immediately conclude that 

the right hand side of the equation is always positive and non-zero 

and is not necessarily small for all values of So and 

x is not zero and is not necessarily small. In other words, the 

imposed small x approximation is not valid and x must be determined 

from the original characteristic equation 2.5-18 with y = o. The 

same conclusion may be reached for m ~ 2 (m even) even principal 

modes. 

From equation 12 it is noted that as y approaches zero 
So 

£n(ea y e ) approaches -00 , thus the right hand side of this 
2 cosh So 

equation approaches +0. In other words, as y approaches zero, x 

also approaches zero and the imposed small x approximation is valid. 

Therefore the cutoff frequency of the eHEll mode is zero (refer to 

equation 3). 
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Substituting the above approximate expressions 4, 5, 6, 7, 8, 9 

and 10 into the characteristic equation 2.5-24, we arrive at the fol-

lowing expressions for the odd waves: 

2 
x ::;:; 

2~ o 
e 

-4~ . 
[(m+l) + (m-l) e 0] 

, (13) 

and 

· 2 
x ::; 

2 
cosh ~ o 

€ 
8[(1 +-.9.) 

€l 

€ 2~ 
0 

€o 
+ (tanh ~ +-

0 €l 

~o 
0 e I- n(ea. y e - - 2 €l cosh ~ 2 cosh ~o 0 

[for 3 (m odd)] 

coth ~o)] 
, (for m = 1) . 

-2~ 
) [3 - 2e · 0] 

(14) 

Similar conclusions as those for the even waves are .reached. For 

the m ~ 3 (m odd) odd waves, the right hand side of equation 13 is 

always positive and non-zero, thus x is also positive and non-zero. 

It can be shown that the same conclusion applies for the m ~ 2 

(m even) odd principal waves. However, for the m = 1 odd principal 

wave, according to equation 14, as y approaches zero x must also 

approach zero. There exists no cutoff frequency for the oHEll mode 

(refer to equation 3). 

The results of the analysis in this section are summarized as 

follows. 

i. Along an elliptical dielectric rod there are only two 

nondegenerate modes, namely the eEEll mode and the oHEll 

mode, which possess no cutoff frequencies. 
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ii. It can be observed from equations 12 and 14 that as the 

elliptical cross section of the dielectric rod gets 

flatter, x approaches zero more slowly, since coth ~ 
~o 

is very large if ~o is very small. This fact has been 

. verified in the next chapter (see Figures III-l and III-p). 

iii. The cutoff frequencies of all the other modes are higher 

for flatter elliptical cross section rod. 

2.7 Transition to Circular Cross Section 

As an ellipse degenerates to a circle its semifocal length q 

tends to zero while t !'o 

or q sinh ~ . 
o 

approaches infinity so that the product 
~ 

or qe 0/2 tends to a constant r which 
o 

is the radius of the degenerated circle. The degenerate forms of the 

Mathieu and modified Mathieu functions are given in Appendix A.3. 

Using these degenerate expressions one obtains the following 

degenerate forms for the factors appearing in the characteristic equa-

tions: 

a '" b *" Ce (~ ) Se (~ ) J (x) n n n 0 n 0 n 

a' ~ b' '" Ce'(~ ) n n n 0 Se~ (~o) xJ'(x) n 

£ '" p '" Fek (~ ) r r r 0 
"' ·Gek (~ ) '" K (y) r 0 r 

£' '" p' '" Fekt(~ ) r r r 0 
'" Gek'(~ ) '" yK (y) r 0 r (1) 

{: 
when r = n 

0: I3r ,n '" r,n when r .J n 

r when m= n 
v X ,.. 
m,n m,n 0 when m.J n 



where 
222 2 

x = r (k - ~ ) o 1 
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222 2 
and y = r (~ - k ) • o 0 

All terms in the 

infinite determinants vanish except those within the dotted boundary. 

(See equations 2.5-18 and 2.5-24). It is also noted that the degen-

erated forms of equations ' 2.5-18 and 2.5-24 are identical, hence , 

HE wave and HE wave are degenerate on a circular dielectric 
e ron 0 ron 

cylinder. The degenerated infinite determinant becomes 

II (g s - h t ) 0 , m m m m m,m m,m m ' , 
(2) 

or 

(gm m s - h t ) = 0 , , m,m m}m m,m 

with m= 1,2,3,··· representing all possible hybrid waves of order 

m= 1,2,3,··· respectively on a circular dielectric cylinder.* Sub-

stituting the degenerated expressions for 

into equation (25) gives 

[~ J~(x) + ~ K~(Y)] [~J~(X) EO 1 K~(Y)] 
x J (x) y K (y) ~ J (x) + El Y Km(Y) m m m 

2 
- m = o 

and t 
m,m 

( 4) 

which is exactly the characteristic equation for an HEron wave on a 

circular dielectric cylinder (13). The terms in the infinite series} 

2.5-1 through 2.5-4 and 2.5-20 through 2.5-23, are uncoupled and the 

summation signs may be omitted. 

*When m=O equation (3) becomes (g s - h t ) = 0 } or 
0,0 0,0 o}o o}o 

[ lJ~(X) lK~(Y)][lJ~(X) €OlK~(Y)J 
--r-..- + - - + - - 0 which is the charac-x Jo(x) Y Ko(Y) x Jo(x) €l Y Ko(Y) -

teristic equation for TEon and TMon waves on the circular rod. 
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CRAPI'ER III NUMERICAL ANALYSIS OF THE DOMINANT MODES 

It is the purpose of this chapter to investigate in detail the 

propagation characteristics of the dominant modes on a lossless ellip-

tical dielectric rod. 

After a brief review of the method for computing the numerical 

values of the Mathieu and modified Mathieu functions, the transcenden-

tal characteristic equations derived in the previous chapter for the 

eHEll mode and the oREll mode are solved. Several graphs showing how 

the propagation" constants vary with parameters are given . Interpreta-

tions of the results are given. The field configurations and the axial 

electric field extent of these waves are also considered. 

3.1 Computation of the Mathieu and Modified Mathieu Functions 

It is known that the periodic Mathieu functions may be expanded 

in terms of an infinite series of trigonometric functions, and that 

the corresponding modified Mathieu functions can be expanded in terms 

of an infinite series of products of Bessel functions (see Appendix 

A.l). These Bessel function product series converge very rapidly [see 

McLachlan (45), p.257]. As has been pointed out on page 21, Chapter 

II, in order that the solutions of the Mathieu differential equation 

be periodic, the characteristic number c or the separation constant 

of the wave equation must satisfy a certain transcendental infinite 

2 * continued-fraction equation which is a function of y. Furthermore, 

the coefficient s of these infinite series are functions of y2 and c 

(42, 45). 

*The infinite continued-fraction equation was first used by Ince (48) 
in calculating the characteristic numbers; c and y2 are defined in 
equations 2.2-18 and 2.2-19. 
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Supposing one is interested in obtaining the numerical value of 

a certain modified Mathieu function of order m, he must first deter-

mine the value of the characteristic number which is the root of an 

infinite continued-fraction transcendental equation and then find the 

coefficients from the three-term recurrence relations which are func-

f 
'

2 and c. tions 0 Substituting these coefficients into the 

infinite Bessel function product series and carrying out the computa-

tions, he then finally obtains the result. 

According .to the above description, it is quite evident that the 

task of computing the numerical values for a great number of Mathieu 

and modified Mathieu functions is very time consuming and laborious. 

Fortunately it is found that the characteristic numbers and the coef-

ficients for a certain finite range of 
2 , ,which is the range of 

interest for this present problem, have been tabulated and published 

by the National Applied Mathematics Laboratories of the National Bureau 

of Standards (49). These tabulated values are used in our computations. 

3.2 Solutions of the Characteristic Equations 

The solutions of the characteristic equations for the dominant 

eHEll mode and the oHEll mode will now be considered. It can be seen 

that all these transcendental characteristic equations are of the form 

f( g , 
o 

y, x) o (1) 

Knowing go which determines the eccentricity of the elliptical cross­

section and €o/€l which is the relative dielectric constant of the sur­

rounding medium and the medium of the rod, equation 1 reduces to 
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g(y,x) 
So = const. 

e: Ie: = const. o 0 

o 

y and x are related to the major axis of the rod, the frequency, 

(2) 

the propagation constant and the characteristics of the medium by the 

relations 

and 

2 
Y 

. 2 
x , 

respectively. In order to have propagating waves on the dielectric rod 

x and y must both be positive and real. Furthermor e , for these 

dominant modes as y varies from 0 to +co, x varies from 0 to 

some finite positive constant which is a function of € IE and 
o 1 

S • o 

Equation 2 can most readily be solved by the "cut and try" method. The 

values of the infinite determinants 2.5-1 8 and 2.5-24 are found by the 

successive approximation method (47). It wa s found (numerically) that 

the infinite determinants converge rather rapidly within the present 

region of interests (i.e. 0 ~ x ~ 5 and 0 ~ y ~ 3). An 8x8 deter-

minant was the largest one used to obtain a two significant figures 

accuracy. Assuming y to be some finite constant, say yo' the first 

root of x can be found by plotting the function g (y x) S = const . . 0' 

€ 01 €l =const • 
versus x as x varies from zero and up, and obtaining the first value 

xo where the function is equal to zero. Then by setting y to be 

another cons.tant, the above process is repeated. 
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The above method of solution will now be applied to the charac-

teristic equations for the even and odd dominant modes. 

(a) The Even Dominant Mode, the eHEll Mode. 

The computations were carried out on 

computer, the IBM 7090*. The coefficients 

a high speed electronic 

A(m) and B(m) prepared 
r r 

by NBS (49) were stored in the computer's memory cells. A three-point 

Lagrangian interpolation (50) 

coefficients A(m) and B(m) 
r r 

sub-routine was used to interpolate the 

from the stored values. The number of 

decimals for the various coefficients obtainable with a maximum error 

of 2.5 units in the last place by this interpolation method have been 

tabulated in the NBS Table. It was found that the values of the 

Mathieu functions or the modified Mathieu functions obtained using 

these interpolated coefficients were correct at least to the third 

significant figure. The roots of the characteristic equation were 

found according to the method outlined on page 4 ,6 of this chapter. 

The results are shown in Figure III-l for the case of E1/Eo = 2.5 

and for various values of ~o ranging from ~ = 3.0 to o 
t: = 0.2. 
~o 

It is required that the propagation constant inside the rod be 

the same as that outside the rod, i.e., from equations 2.5-26 and 

2.5-27 , 

2 2 
x + Y = 

The intersection of the function in Figure III-l with the circle, 

determined by equation 3, gives the values of x and y required. 

*The facilities of IBM 7090 were provided by Western Data Processing 
Center at UCLA. 
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The propagation constant ~ of the wave is related to x and y 

by 

(4 ) 

(5) 

respectively, where A is the free-space wavelength. o Carrying out 

the method outlined above graphically, the results are given in .Fig. 

III-2. The -normalized guide wavelength A/AO is plotted against the 

normalized major axis 2q cosh ~O/AO (NMA) for various values of ~o 

in Fig. III-2. It is noted that the guide wavelength A is related 

to the propagation constant ~ by the relation ~ = 2~/A and 

2q cosh ~ is the major axis of the ellipse. As expected, no cutoff o 

frequency exists for this dominant eHEll mode. For small values of NMA 

(i.e., the size of the major axis 2q cosh ~ 
o 

compared with the free 

space i.;avelength AO is small) the guide wavelength approaches that 

of the free space wavelength; for large values of NMA it approaches 

asymptotically to the characteristic wavelength of the rod material, 

A o For small values of y which correspond to the small 

values of NMA the modified Mathieu functions describing the field out-

side the dielectric rod decay very slowly; physically it means that 

the field strength of the wave falls off very slowly away from the rod 

and only a small part of the energy is transported within the dielectric 

cylinder. The guide wavelength of this hybrid eHEll mode actually 



). 

). 
0 

-51-

1.0 

0·9 

0.8 

-
--0.7 ---

- ..... -- -....................... -. ----.. --- -- ---
Limit ). € = 0.633 

0.6 

0.5 
0 0.2 0.4 0.6 0.8 1.0 1.2 °1.4 

2q cosh ;0 = Major axis 
). ). 

= NMA • 
0 0 

Fig. 1II-2. Normalized guide wavelength )./).0 of the eHEli mode 

as a functiori of normalized major axis. 
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becomes that of a transverse electromagnetic plane wave* as the size 

of the dielectric rod becomes vanishingly small. For very large 

values of y which correspond to very large values of NMA, the modi-

fied Mathieu functions descr~bing the field outside the dielectric 

rod disappear very quickly, so the field strength of the wave outside 

the rod vanishes very fast and almost all the energy is transported 

within the dielectric cylinder. The guide wavelength of the hybrid 

eHEll mode approaches that of a TEM plane wave propagating in a uniform 

medium filled wi.th a dielectric of dielectric constant E
l

. The above 

-
discussion concerning the field decay properties of the wave will be 

substantiated later in this chapter with numerical results. 

It may be further observed that for a fixed value of NMA, as 

the ellipse becomes flatter, i.e., as So becomes smaller, the guide 

wavelength becomes closer to the free space wavelength. This effect 

can best be illustrated by Fig. III-3 in which A /A is plotted 
o 

against So for various fixed values of NMA. The fact that the varia-

tion of the curve becomes gentler as NMA gets smaller is expected, 

since at very low frequencies most of the energy is outside the dielec-

tric rod thus the geometry of the c»oss-section is not important as far 

as the guide wavelength is concerned. 

It is also noted that for a fixed value of 1~ there is more 

binding dielectric material in a circular rod (So = 00) than in a 

flatter elliptical rod, therefore, (A/Ao) is smaller for larger 

However, this is not the only reason. Supposing we plotted A/A o 
2q cosh So 2 

against the normalized cross-sectional area, ( ) tanh s . Ao 0 

S • o 

(NCSA) for various fixed values of S in Fig. 1II-4. It can be seen o 
*Although the wave is propagating at the plane-wave velocity of a medium it 

does not follow that the wave is entirely transverse. See ref. (51). 
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Fig. III-4. Normalized guide wavelength or the 
\ 

eBEll mode as a runction or normalized 

cross-sectional area. 
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for very small values of NCSA, say < 0.05 , that VA ~ l for all 
o 

values of ~o· As NCSA gets larger, the effect of varying ~o 

becomes more noticeable. For a fixed value of NCSA, A/A is smaller o 

for smaller ~ • This behavior suggests that the field intensity 
o . 

is more concentrated in a circular rod than in an elliptical rod with 

the same cross-sectional area, and that more energy is transmitted 

inside the circular rod. We conclude that the circular dielectric 

rod is a better binding medium for the eBEll mode than an elliptical 

rod. As the NCSA becomes very large, the effect of varying ~o on 

'1../'1..
0 

again becomes quite small, since most of the energy is carried 

inside the dielectric rod; therefore, the geometry of the cross sec-
2q cosh ~o 2 

tion is not important. When ~o - 0 and ( A ) tanh ~o - 00 

o 
the problem can best be handled by considering the case of a TM wave 

propagating along a thin sheet of dielectric slab in· space. Due to 

the simple g~ometry of this equivalent problem, it ca~ be easily 

analyzed (52). The results will not be given here. 

It can be seen from the above numerical results that the eBEll 

mode passes smoothly to the circular BEll mode as ~ -+ co • The o 

~ = 3.0 curve in Fig. II!-2 is almost identical with that given by 
o 

Wege~er (l7). 

The effect of the variation of relative dielectric constant 

on the propagation constant can be seen readily from Fig. III-5. 
I 

As a representative example, ~o = 0.7 is chosen to illustrate the 

effect. For large values of €~€o' A approaches to the characteris­

tic wavelength of the rod material, ~ = '1..0/ J €~€o very quickly; 
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and for quite small values of €l/€ ,i.e., €l/€ - 1 ,A/A varies 
000 

very slowly with respect to NMA. One may therefore deduce that for 

constant NMA and constant ~o more energy is carried within a rod 

with higher relative dielectric constant and that the field outside the 

rod also decays faster for the higher dielectric constant rod. It may 

then seem that the higher dielectric constant rod is more desirable as 

a transmission waveguide. Unfortunately the high dielectric constant 

material usually is associated with a large loss factor (63). 

(b) The Odd Dominant Mode, the oHll Mode 

Similar procedures as those used for the eHll mode can be applied 

here to analyze numerically the characteristic equation for the oHEll 

mode. 

Equation 2.5-24is now solved according ~o the method outlined 

in Section 3.1. Fig. III-6 shows the results of this extensive com-

putation. Again y is plotted against x for various values of 

~o ' and a constant value of €l/€O which equals 2.5. Combining the 

results shown in Fig. ITI-6 with equations 3, 4, and 5, the guide 

wavelength which is a function of t ro the size of the guide, and 
~o ' 

can be obtained. 

the normalized major axis 

The normalized guide wavelength A/Ao versus 
2q cosh ~o 

A for various values of ~o' 
o 

and a constant is given in Fig. III-7. The pattern of the 

curves is very similar to that of the HEll mode, Again as expected, e . 

no cutoff frequency is observed. When the frequency is low, i.e., 

NMA is small, the guide wavelength becomes that of the free-space wave-

length and most of the energy is being transpqrted outside the 
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Fig . 1II-7. Normalized guide wavelength of the oEE~J mode as a function 
of normalized" major axis. 
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dielectric rod; a small value of NMA implies a small value of y, 

which means that the field outside the rod decays at a rather low 

rate. For a large value of NMA the guide wavelength approaches 

asymptotically the characteristic wavelength of the rod material 

~ = ).0/ J €l/ €o' almost all the energy is beild.g transported 

inside, and ~he field outside the rod decays very r~pidly. 

By comparing Fig. III-7 with III-2, it is note~ that the dif-

ference between the guide wavelength curves for the oHEll mode and 

the eHEll mode ,is ~re pronounced as So gets smaller. The nor­

malized guide wavelength of the oHEll mode approaches to the limit, 

S = 0.2 and o 

NMA = 0.9, )../)..0 for the oHEll mode is 0.895, while )../)..0 for the 

eHEll mode is 0·987. We conclude that the oHEll mode binds closer 

to the dielectric rod than the eHEll mode. When ~o is larger 

than 3, the guide wavelength for the oHEll mode is almost identical 

with that for the eHEll mode, since these modes are degenerate on a 

circular dielectric guide. 

To show the effect of the variation of ~o with respect to 

)../)..0 for a fixed value of NMA, Fig. III-8 is introduced. For a 

fixed value of NMA the curve for the oHEll mode is smoother than 

that for the eHEll mode. It is again quite evident that when NMA 

is very small, )./).0 is a constant with respect to the variation 

of ~ • For very large values of NMA the geometry of the rod is 
0 , 

not important as far as )./)..0 is concerned. 

In Fig. 1II-9 the normalized guide wavelength is plotted against 

the NCSA for various values of so' Unlike the case for the eHEll 
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mode, it seems that the elliptical rod is a better binding geometry 

for the oHEll mode than a circular rod. These curves for various values 

of So are quite close to each other, which means physically that the 

field lines are quite uniform for this oHEll mode. The slight differ­

ences between these curves may be explained by the fact that as a 

circular rod deforms into an elliptical rod, the electric lines of 

force are being squeezed together so that the field de~sity is more 

concentrated. For a very flat elliptical rod, the electric lines of 

force are almost uniform (the field density is also almost uniform) 

and any further flattening of the rod would not change the field den­

sity too much. Figure 111-10 shows the variation of the A lAo versus 

NMA (with So = const.) curve with respect to the various values of 

€l/€o. The behavior of these curves for the oHEll mode is very 

similar to those for the eHEll mode. It is interesting to note that 

as €l/€o approaches unity, or as €l/€o approaches infinity, the 

AIAo versus NMA curve for the oHEll mode becomes identical with that 

for the eHEll mode. 

As NMA - co and So - 0 , this problem degenerates to the prob­

lem of TE wave propagation along a thin sheet of dielectric slab in 

space (52). 

3.3 Field Configurations 

In practice the field configurations are most quickly found by 

inspection of the mode functions. It is found that the patterns of 

the electric and magnetic field lines are quite similar to those known 

in a hollow, metallic guide . However, owing to the absence of the 

metallic 'shield around the dielectric, the field is no longer confined 
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to the inner space. Furthermore, due to the absence of conducting 

walls and therefore the absence of the conduction current, all the 

electric and magnetic field lines must form closed loops. 

Figs. III-lla and III-12a show the transverse cross-sectional 

field distributions of the eHEll mode and the oHEll mode respectively. 

The longitudinal cross-sectional views of the field distributions of 

the eHEll mode and the oHEll mode are given by Figs. III-llb and 

III-12b. The traveling wave patterns are shown in these figures. 

Solid lines indicate the electric lines of force; dotted lines repre­

sent the magnetic lines of force. Three-dimensional sketches of the 

field configurations for these two dominant modes are shown in Figs. 

III-13 and III-14. The field configurations of these modes are quite 

similar to the corresponding dominant modes in the metal ltube wave­

guide, as mentioned above; a simple method of excitation is thus 

available. The method of excitation of the eHEll mode and the oHEll 

mode will be discussed in greater detail in Chapter VI. 

3.4 Rate of Field Decay 

The dielectric rod waveguid§ is an open structure and hence 

the field is not confined within the dielectric rod. Therefore, the 

guide is susceptible to considerable radiation loss when it is mis­

matched at input and output ends, When it is curved, or when extrane­

ous objects are near it. The knowledge of the external field extent 

and the rate of field decay outside the rod is very important. It is 

known from the discussion in Section 3.2 that for small values of NMA 

most of the energy is transported outside the dielectric rod, thereby 
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Fig. III-llo Field configuration of the eHEll mode. 
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y' 

z 
Fig . III-13.A sketch of the electric lines of force for the eBE~ mode 

z 

Fig . III-14. ' A sketch of the electric lines of force for the oHE~ mode 
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we may expect to have a large field extent and a slow rate of field 

decay. For large values of NMA most of the energy is being carried 

inside the rod so that the field extent is quite moderate and the 

rate of field decay is fast. To get an idea' of the variation in 

the rate of field decay and the field extent with respect to the 

change in NMA and ~o' numerical results for the longitudinal elec­

tric field will be obtained. 

( a) The eHEll Mode 

According to section 2.5a the equation for the external 

longitudinal electric field of, the eHEll mode is 

co 
Ez = L Pr Gekr(~) 

r=l 
(odd) 

+ ••• ] ~ (1) 

P 
The ratio r (r = 3,5, ••• ) 

Pl 
can be obtained easily by manipulating 

equations 2.5-16 and 2.5-17. For example, one may rearrange equation 

2.5-16 to give 

, where a are functions of g and h 
-r,m " m,n m,n 

into equation 2.5-17 yields 

Substituting 2 
\ 

~pa t +Ps J=o r'; 1 r -r,m m,n m m,n 

(n = 1,3,5,···) 

(2) 

(3) 
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The ratio P~Pl (r = 3,5,···) can now be obtained from equation 3: 

where b is a functimn of a , t , and s 
-r -T,m} m,n m,n 

(4) 

Again b are 
-r 

expressed in terms of infinite determinants which may be computed 

numerically by the method of successive approximations (47). It is 

found that for this eHEll mode 

P
3 1» » Pl 

(5) 

Therefore the external E may be approximated by only considering z 

a few terms of the expansion. The normalized external longitudinal 

' electric field is given by 

where Ez ~s the axial electric field iUtensity at S 

the intensity of the axial electric field at S = S! • o 

, (6) 

and E is z o 
Equation 6 

is computed for various values of So and NMA wi th €/ € 0 = 2.5 

and ~ = ~/2. The results are shown in Figs. III-15, 16, 17, 18 

and 19 for So = 3·0, 1.0, 0.75, 0.5 and 0.3 respectively. A family 

of curves for various values of NMA are shown in each figure.* These 

figures possess similar characteristics as far as the variation of 

*1n each figure (Ez/Ez )2 is plotted against B/Bo for various values 
of 2q cosh S /A an~ for a fixed value of so. B is the dis-o 0 
tance from the axis to the point of observation; Bo is the semi-minor 
axis. (See sketch in Fig. 111-15). Ez is the axial electric field 
strength at point of observation. 
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NMA is concerned. The axial electric field decays (not exponentially) 

much slower and extends much farther-for smaller values of NMA. For 

large values of NMA the field decays exponentially quite rapidly and 

its extent is quite small. Physically it means more energy is being 

carried outside the guide for smaller values of NMA. The same conclu-

sion was reached in the discussion in section 3.2. 

To observe the effect of axial electric field extent as a 

function of frequency for various values of eccentricities, we intro­

duce Fig. III-20. The field extent, BIBo' at which point (Ez/Ez )2= 
o 

0.1 is plotted against the normalized frequency NCSA for various 

~o. It is quite evident that BIBo is larger for the flatter 

elliptical cross-section rod. As frequency becomes very high the 

normalized field extent BIBo approaches to unity and for low fre­

quencies BIBo can get very large. Since Bo is a function of ~o 
, 

it is somewhat difficult to compare the absolute axial electric field 

extent of a circular rod and that of an elliptical rod having the 

same cross-sectional area using Fig. 1II-20. Thus Fig. I~I-21 is 

introduced. BIA ,the normalized absolute field extent, is plotted 
. 0 

against the normalized cross-sectional area for various ~ • Some o 

very interesting features are noted in this figure. For the region 

2q cosh S 2 
0.05 = ( A. 0) tanh ~o ~0.5 and 0.2 ~ So< 00, the variation 

o 
of BIA is quite small; it varies between 0.35 and Or55. As NCSA o 

approaches infinity so does BIA . at very low fr~quencies, BIA. 
o ' 0 

approaches zero. As the cross section of the rod gets flatter, ~.e., 

as ~o gets smaller, the peaks and the valleys of the curves become 
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\ 

0.1 0.2 

2q cosh ~ 2 
( A 0) tanh eo - NCSA 

o 

0.4 0.6 0.7 

Fig. 1II-20. Field extent :S/:So where (E /E )2. 0.1 as a function 
z Zo 

of normalized cross sectional area for the BEll mode. a . 
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more pronounced. The fact that 'Within a certain frequency range the 

absolute axial electric field extent of a flatter elliptical rod is 

actually smaller than that of a circular rod of the same cross-sectional 

area is worth mentioning. As a typical numerical example, we choose 

Ao 3 em. According to Fig. III-21 the .absolute field extent B 
. 2 

for (E IE ) = 0.1 is 1.37 em for a circular rod with a 1.5 cm 
z z 

o 
diameter, while it is L 28 em for ; = 0.5 elliptical rod 'With the o 

same cross-sectional area. 

Similar ~urves for smaller values of 

The general shapes of these curves remain the 

valleys of these curves are more pronounced. 

(E IE )2 may be plotted. z z o 
same, only the peaks and 

Figs. III-15 through III-19 also offer a convenient way of 

verifying the purity of the mode on the dielectric guide. (Experiments 

on the field decay properties of the eHEll mode have been carried out 

and the results are reported in Chapter VI.) 

Although only the E z 
field is discussed above, it may be shown 

thatthe other electric field components also possess similar though not 

identical behaviors. 

(b) The oHEll Mode 

From Section 2.5b one obtains the expression representing the 

external axial electric field for the oHEll mode: 

co 

L Fr 
r=l 
odd 

Fek (;) ce* ( T'I) r r 'I 

~z o 
e (7) 

where F r/Fl (r = 3,5, ••• ), can be obtained in a similar way as for 
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Fig. III-a. 
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Normalized axial e~ectric fie~d extent B/A as a o 
function of normalized cross-sectiona~ area for the 

eBEll mode. B is 'the distance measured from the 

origin to the point of observation where (E /E )2= O.~ 
, , ~ ~ 
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the eREll wave. It can also be shown that for the oREll mode 

1 « I :~ 1« :~ \ « ... « \ :: I· Therefore the value of the 

external axial electric field can be approximated by using only a 

few terms of the expansion 7. The normalized external axial electric 

field is 

Numerical computations are carried out assuming ~ = O. Th~ results 

are shown in Figs. III-22 through III-25 for ~o ranging from 

~ = 3.0 to ~ = 0.2. In each of these figures (E /E )2 is plotted o 0 z z o 
against A/ Ao for various values of NMA. 2Ao is the major axis of 

the ellipse while A is the distance measured from the origin to the 

point of observation in the ~ = 0 plane (see the sketch in Fig. III-22). 

The decay characteristics are as expected. At lower frequencies the 

field decays slower since a larger 'portion of the energy is carried 

outside the rod, and at higher frequencies the field decays faster and 

the field extent is less, since more energy is carried inside the rod. 

Fig. III-26 which is similar to Fig. III-21 is introduced. In 

this figure the normalized absolute axial electric field extent 2A/A 
o 

2n cosh I: 2 
( 

_
_ ":1 --:-__ ~_o_) '.' is plotted against the normalized cross-sectional area ~ 

o 
tanh ~o ' for various values of ~o; the point of observation is taken 

to be the point where (Ez/Ez )2 = 0.1 • 
o 

approaches to zero; and as NCSA - 00, so 

Again as (.l) - 0 , 2A/A o 

does 2A/A • However, it is o 

interesting to note the variation of these curves with respect to the 
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change in eccentricity. Unlike the eHEll mode, 2A/AO is always 

larger for flatter elliptical cross section rod. This is because the 

major axis of a flatter ellipse is always longer than a rounder one 

having the same area. 

Figs. III-22 through III-25 may also be used to check the purity 

of the oHEll mode on the elliptical dielectric rod. 

3.5 Summary 

The numerical results of the characteristic equations for the 

two dominant modes are obtained. It is found that for the eHEll mode 

the guide wavelength becomes longer as the elliptical cross-section 

becomes flatter, and for the oHEll mode the opposite is true, although 

not as pronounced. As expected, there is no cutoff frequency for 

these two dominant modes. The fact that these two modes are degenerate 

when ~ ~ 00 is also demonstrated numerically. 
o . 

Sketches of !the field configurations for these modes are obtained. 

It is observed that the cross-sectional views of these modes are similar 

to the cross-sectional field pattern of the dominant mode in the metal 

waveguide. The possibility of launching these dominant dielectric rod 

modes by means of the metal waveguide is also discussed. 

The field extent of these modes outside the dielectric rod is 

considered. It is found that the electric field extent of the oHEll 

mode is much greater than that of the eHEll mode, and .the flatter the 

cross section, the larger the contrast. 
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ATTENUATION AND POWER FLOW CHARACTERISTICS OF THE 

DOMINANT MODES 

Having obtained the guide wavelength from the transcendental 

equation and investigated the field decay characteristics, it would 

seem appropriate to consider the attenuation and power flow proper-

ties of these dominant modes. Attenuation is caused bJ imperfection 

of the dielectric material. It is possible to include the lossy 

characteristics of the dielectric material by assuming a complex 

dielectric co~stant to represent the permittivity of the material. 

The effective complex dielectric constant is given by 

€ = € +:.. € l 
e le le (1) 

Replacing the lossless dielectric constant €l (as used in Chapters 

II and III) by the effective complex dielectric constant € and 
e 

substituting € e into the equations in Chapters II and III where 

applicable, one notes that since the arguments of the Mathieu and 

modified Mathieu functions are complex, the roots of the character-

istic equations can no longer be real and must be complex. Therefore 

the propagation constant ~ is also complex and must be represented 

by 

~ = ~I + ia (2) 

where ~I . is the neW real propagation constant of the wave on the 

lossy dielectric guide and a is the attenuation factor of the wave. 

Of course the neW real propagation constant ~I does not necessarily 

equal the propagation constant of the wave along the lossiess 
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dielectric guide. The numerical solutions of these complex charac-

teristic equations are extremely complicated and involved. Even the 

analytic properties of the Mathieu and modified Mathieu functions 

with complex argument have not been well investigated and understood 

(45,49). 

However, when the conductivity of the imperfect dielectric is 

very low, in other words, when the imaginary part of the effective 

dielectric constant given by equation 1 is very small, i.e., 

€ie « €le ' it can be assumed (15) that to the first order approxi­

mation the dissipation has no effect on the field configuration of 

the wave, which simply remains the same as that of the lossless case. 

Thus the propagation constant ~ is unchanged by the presence of 

small dielectric loss and therefore the analyses carried out in the 

previous chapters still apply. The mode functions in the case of 

small dielectric loss differ from those of the lossless case only by 

a multiplicative attenuation factor -en e ,where a is the attenua-

tion constant and can be calculated by a perturbation method which 

will be described later. 

The approximate formula for the attenuation constant a will 

be derived by the Poynting's vector theorem. The problem of attenua-

tion of the eHEll mode along a slightly lossy dielectric rod will 

then be analyzed analytically and numerically. The results will be 

exhibi ted graphically . Similar considerations concerning the problem 

of attenuation of the oHEll mode along a slightly lossy dielectric 

rod will also be made. The results on the attenuation properties of 

these two dominant modes will be discussed and compared in detail. 
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The power flow characteristics of these modes will be calculated. 

4.1 The Attenuation Constant 

The attenuation constant a can be calculated by a perturbation 

method, provided that the power loss per wavelength along the rod is 

small compared to the power flowing along the rod. Since there is 

no radiation perpendicular to the rod at large distances,the power 

flow is only in the z-direction, i.e., only along the axis of the 

rod. It has been pointed out earlier that the fields are damped ex-

ponentially as they propagate along the rod, and if their attenuation 

factor is a, that of the Poynting's vector is 2a. Therefore the 

attenuation constant can be calculated from the following relation: 

2a = \ ~ ~: \ , (1) 

where P dP is the time average transmitted power and dZ is the time 

average power loss per unit length. According to Poynting's theorem 

( 15) we have* 

where S is the longitudinal component of the Poynting's vector 
z 

~ , and ~t is the transverse part of S. Integrating this expres­

sion over a cross-section A of the guide (this A includes the ' 

cross-section Ai of the dielectric guide and the cross-section 

outside the dielectric rod) we get 

A 
o 

* E* or H* signifies the complex conjugate of E or H respec­
tively. 
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is the time- average power loss per unit length; and 

Ware the time-average magnetic energy and electric energy per unit 
e 

length of the guide respectively. It has been assumed that a = 0 d 

outside the rod and J = a E - d-
inside the rod. The value of the second 

integral on the left hand side of equation 3 is zero, since power flows 

along the rod only . 

o 
-p oz 

For the undisturbed field, W = W ,thus we have 
m e 

(4 ) 

The time-average transmi tte.d power is given by 

p = • (E x H*) dA 
=t ~ 

(5) 

~t and ~t are the transverse components of the electric and magnetic 

field of the mode under consideration, and A is the total cross -

sectional area of the guide. Substi tuting equations 4 and 5 into 1 we 

get the expression for the attenuation factor 

ad J~ • E* dA 

20: Ai ( 6) 

J ~z • (E x H* ) dA 
- t -t 

A 

where the unit of 0: is nepers/ meter . Changing into practical units we 

have 
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ex = 1 • ~€o 2 • 8.686 . O'd 
. 0 

(db/meter) 

€l and ¢d are respectively the dielectric 

constant and the loss tangent of the rod. It may be noted that for a 

' plane wave propagating in an infinite homogeneous medium of conducti-

vity O'd' the expression within the absolute value signs becomes 

1/ J €/€o where 

medium. 

€ is the dielectric constant of the surrounding 
o 

Let US now consider the integrals within the absolute value signs. 

In elliptic cylinder coordinates these integrals can be expressed as 

follows: 

!!!OE*dA= 

A. 

£J21t' . J 2 2 2 (E t E* + E E* + E E*)q (sinh + sin Tl)dTld~ 
~l ~l Tll Tll zl zl 

J. 

and 

o 0 (8) 

222 
(E H* - E H*)q (sinh ~ + sin Tl)dTld~ 

~o Tlo Tlo ~o 
, (9) 
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where the subscript 1 and the subscript 0 represent the inside 

and outside regions of the dielectric rod respectively, and q is 

the semifocal length of the ellipse. 

of the elliptical rod. 

~ is the boundary surface 
~o 

4.2 The Attenuation Factor and the Power Distribution Characteristics 

of the eHEll Mode 

The field components of the eHEll mode have been given in sec­

tion 2.5a. Upon examining the integrals in equations 4.1-8 and 4.1-9 

it can be seen that it would be extremely laborious to carry out this 

integral if many terms of the expansions representing the field com-

ponents are required. Fortunately it is found (numerically) that, 

within the region of our interest, i.e. for 

y ~ 3 , 

A A5 Am 
1» .-l» » ... » 

~. Al Al 

s ~ 0.2 , x ~ 5 and 
o 

, (1) 

so that the expressions representing the field components can be ap-

proximated by only the first few terms ·of the infinite series expansion. 

In other words, the infinite series converge .rather rapidly, providing 
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that is not too small. For instance, it is found numerically 

that a two-significant-figures accuracy for IHzo I is obtained using 

three terms of the infinite series, even when ~ = 0.2. It is also 
o 

noted that the accuracy gets better as ~o gets larger, assuming that 

the same number of terms is used. 

We are now in a position to consider the integrals in equations 

4.1-8 and 4.1-9. Substituting the appropriate expressions into equa-

tion 4.1-8 and 4.1-9 one obtains 

2 rc;- (1) 0 ( ) (_1)2 (_0) (AIV) B ~ ] B E 

+ V ~2 ~ i:L"" AIII + ~ ~ (2) 

J ~z· (!!It x ~lt)dA 
A. . [ El E Bl 2 

f2 = -~------- == ~l J ~2(AI) + EO J ~2 ~o (A.) (AII) 
2 2 2 . rL -~ 

cosh ~oq '\ V EO 



where 

(AI) 

(AIl) = 

(AIII) 

2 2 €1 
x + y € 

c = . ° 
-1 € 

4 1 
x (- - 1) 

€ 

° 

B 2 ' L (..E) [Ro I O 
B1 nn n n 

A B 
= L L (-E:)(~) 

m A1 B1 n 

(AIV) = L 
n 

(BI) 

(BII) 

(BIll) 
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, 

° 0' 
B B 

RO IO' +R I ] + L L (-E:) (~) 
un un m B1 B1 run run n 

n f m 

[Te 
J

O 
run run 

_ TO Je] 
run run 

p p , 
L L (2:) (~) [Ro I O 

] 
n m P1 P1 -nm-run 

nfm 

The R's, I's, J's, T's and Q's are. defined in Appendix B. Expressions 
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in a straightforward manner using equations 2.5-l0 through 2.5-l3. 

Because of their very complicated expressions they will not be 

gi ven here and will be presented in Appendix C. Expressions 3 and 

4 represent the portion of power being transmitted inside and outside 

the rod respectively. 

Substituting equations 27 37 and 4 into the expression within 

the absolute value signs of equation 4.l-7 7 we get 

J (~l . E*)dA 
A." -l 

fi-= fl 
R 

~ 

(5) 

J f2+ f3 
(~t x .!!~) • 

I..l. 
edA -z 

A.+ A 
~ 0 

R is related to the attenuation constant a in db/meter by the fol-

lowing relation 

a = 
8.686 

2 (J fER d € o 

where (Jd is the conductivity of the dielectric rod. 

(6) 

Using the results given in Chapter III regarding the relation-

ship between x and y for various values of ~o and 

numerical computation of R can now be carried out. All radial 

integrals are evaluated numerically using Simpson's rule (50). Results 

of this very lengthy computation are shown in Fig. IV-l*. In this 

figure the value R, which is directly proportional to the attenuation 

*It takes almost 30 minutes of continuous computation by the IBM 7090 
computer to obtain each curve. 



constant (see equation 
2q cosh So 

axis (NMA), A. 

S = 3·0 to o 

o 
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6) is plotted against the normalized major 

, for various values of 

It is assumed that 

e ranging from 
;'0 

E /E = 2.5. For 
1 0 

sufficiently large values of NMA, R tends toward the plane-wave 

value 1/ V E/ EO for all values of S ; for small enough values of o 

NMA ,R can be chosen as small as desired. This behavior is attri-

buted to the fact that, when NMA is sufficiently large, almost all 

of the energy of the wave is transmitted inside the rod*; and for 

small values of NMA almost all of the energy is outside the rod. (It 

has been assumed that the dielectric surrounding the rod is perfect.) 

It is also clear that R tends to the limit 1/ J E/E
O 

much slower 

as So gets smaller and that flatter elliptical dielectric guide 

possesses lower loss characteristics. This may be explained by the 

fact that, according to Fig. IV-l, for a constant value of NMA, smaller 

So rod has less volume of dielectric material and therefore lower 

dielectric lQss. However, this is not the only reason. 

R against the normalized cross-sectional area (NCSA), 

If we plot 
2q cosh S 2 

( A. 0) 
o 

tanh So ' for various value's of So with El/€o = 2·5 , as in Fig.IV-2, 

the same effect (i.e., lower loss for smaller s ) of a lesser degree 
o 

can still be observed. As the elliptical cross-section gets flatter, 

the field of the eEEll wave spreads out more so that the total inte­

grated effect on the attenuation indicates that this type of field 

distribution offers less loss. The shape of these curves in Fig.IV-2 

*It is noted that when NMA is very large the attenuation factor R is 
numerically identical with the attenuation factor of a certain wave ­
guide mode propagating in a perfectly conducting metal tube waveguide 
filled with the same dielectric material as that of the dielectric rod 
under consideration. 
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l.Or---------.----------r--------~--------~----------~--------~ 
€l 

O. 

R 

O.ol 

0.00 

Limi t R = -;>~F= 
-= 
€ o 

.~~------~~~--~~--~~~----~~------~------~ o 0.2 0.6 l.O 
2q cosh t 

'0 

Ao· 
Fig. IV-l. Attenuation factor R for the eHEll mode as a :function of 

normalized major ·axis. 
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= 0.633 

¢d is the loss tangent of the 
d4electric 

A is the free space ~avelength 
o in meters 

----

·~5~~~--~--~----~~------~------~~4--------~------~ . l O.l 0.2 0.3 o. 0.5 0.6 

Fig . rV-2. 

(2q cosh £ /A )2 tanh f . 
000 

Attenuation factor R for the HE~ mode as .s runction of 
normalized cross sectional ares~ 
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shows that the attenuation factor can be made extremely small if a 

very flat strip is used. For example, when NCSA = 0.15 the attenua-

tion constant a of the eHEll mode can be made ten times smaller if 

S = 0·3 elliptical rod is used rather than a circular rod, and a o 

may be almost 90 times smaller if S = 0.2 elliptical rod is used. 
o 

It is interesting to compare the axial electric field extent of these 

rods corresponding to the above example. According to Fig. 111- 21, 

,when NCSA = 0 .15 the axial electric field extent B/A where 
o 

2 
(E /Ez ) = 0.1 ~or S = 0.3 elliptical rod, is 0.47, and for 

z 0 ' 0 

S = 3·0 elliptical rod it is 0.435. 
o 

The fact ' that the variation of slopes with respect to NCSA in 

Fig. IV-2 is smaller for flatter rods in the low loss region, is 

quite significant . It means that a small imperfection in the dimen-

sions of a flatter rod would induce a smaller change in the attenua-

tion factor R. 

It is interesting to note the distribution of the transmitted 

power. There is a very close correlation between the percentage of 

power carried inside the rod and the loss factor of the wave. With 

the help of Poynting1s vector theorem one can easily calculate the 

percentage of power transmitted inside the dielectric rod. It is 

, (7) 

where are given in equations 3 and 4. Numerical results 

of equation 7 are given in Fig. IV-3 in which Pi/p
t 

is plotted 

against NMA for various values of So; €~€o is assumed to be 
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constant and is equal to 2.5. It is observed from Figs. IV-2 and 

IV-3 that a higher percentage of power transmitted inside the rod 

corresponds to a higher attenuation factor and more power is carried 

inside the circular rod than an elliptical rod of identical cross-

sectional area. Fig. IV-3 also confirms the fact that more power 

is carried inside the rod as the frequency gets higher. 

The ~ = 3.0 curve in Fig. IV-l corresponds very well with 
o 

the published results for the circular dielectric rod (l8). The 

analytic expression of the loss factor R for the degenerate cir-

cular dielectric rod can easily be derived from equation 5. Noting 

that as ~ - co, q -+ 0 , q cosh ~ - a and qe~/2 _p ,where a o 0 

is the radius of the circle and p is the radial component in the 

polar coordinates, one gets, 

L3 L5 L7 L A3 A5 A7 A co co 
----+--+ -- -0 , --+--+--+ ---0 
Al ~ ~ Al ~ Al ~ ~ 

P
3 

P
5 

P7 P B3 B5 B7 Bco 
--+--+--. ..2::. -+ 0 , --+--+--+ -- -+ 0 
~ Al Al Al Bl Bl Bl Bl 

2 Ll 
~ y K'(y) - + x J i (x) 

Bl -J~o 
y2 l . Al 

Al [v'x2 + y2)(x2 + y2 <l)J Jl(x) EQ 

y2 

Pl Jl(x) Bl 
- -+ (-) 
~ . Kl(y) Al 

and 
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2 a2 (k2 _ (l) 2 2 2 
13

2
) x = , y -a (k -

1 0 

since ex "-
r,n Pr,n ~ 1 when r = n 

~ 0 when r 1= n 

vm n '" "' m when m=n , m,n 
'" 0 when ml=n 

Equations 2, 3 and 4 degenerate to the known expressions associated 

with the loss factor of the dominant mode propagating along a circular 

dielectric rod (21); they are, respectively, 

and 

edA -z 
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where 

2 2 El 2 2 x + y EO X + y 
C1 = 

4 El 
J c2 El 

, 
- 1) 

2 2 x (- x +e y E 
0 0 

X x 

I8 = III = J Ji(p) 
dp 

I9 I 10 = f Ji2(p)p dp 
P J , 

0 0 

x x 

I12 = I~3 =J Jl(p) Ji(P)dP , I14 = J Ji(p) .R... dp , 2 
0 0 x 

CO co 

=f 2 dn 
II =JK

I2
(n)ndn I21 = I27 Kl(n) J I 20 = n 28 1 J 

y Y 
00 

and I33 I34 = J Kl (n) Ki (n)dn 
y 

in which p = x.e. and n = y Q. The attenuation constant of the HEll a . a 

wave on a circular dielectric rod can easily be obtained by substitut-

ing the above expressions into equation 4~1-7. 

4.3 The Attenuation Factor and Power Distribution Characteristics of 

the oHEll Mode 

The attenuation factor of the oHEll mode can be calculated in a 

similar manner as that of the eHEll mode. The expressions for the field 

components are given in Section 2.5b. It can also be shown numerically 

that 
C3 C

5
· 

1» -» -» 
C

l 
Cl 

C co »-­
Cl 

D 
00 »­
Dl 
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(1) 

for most cases investigated. 

Substituting the appropriate field expressions into 4 .1-7, one 

finds after some manipulation that 

and 

a' 8.686 
2 (J ftR' dE' 

o 

where 

(db/m) 

. D f€: ] 
+ 2 VQ2 (C~)V~ (AIII) , + 

J (~to X!!to ) • ~z dA 

(2) 

(4) 

4 [G ' F E f3' = _Ao ____ ---==--__ = x C (~)2 {f; (BI) '+ (~)2 ~ {f;(BII)' 
2 2 2 ~ 4'1 -1 C1 -2 C1 1-l-2 

cosh s q C c-
o 1 EO 
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~1 and ~2 are defined in Section 4.2 and 

(AI) , 

(AIl) , L: 
n 

(AIII) , := L L 
n m 

(AIV) , 
D D 

L L (2:) (..E:) ~ n m D1 D1 

(BI) , 
G 2 ' 

+ RO' 10
] + 

G G 

[~~J L (~) [RO 1
0 L L (~) (..E:) 

G -un-un -un-n Gl Gl n 1 n m 
nf.m 

(BII) , := 
F 2' , J F F 

[ Re Ie' ] I: (~) [Re Ie +Re Ie + L L (~) (2:) 
F -un-n -un-un Fl Fl -nm-nm n 1 . n m 

n f m 

(BIll)' := L 
n 

where the R's, I's, J's, T's and Q's are given in Appendix B, and 

the ratio of arbitrary constants are given in Appendix C. The loss 

factor R' for the oHEll mode as a function of NM.A is computed for v 

various values of c ranging from 5 := 0.2 to 
~o 0 5 := 3·0. The rela­

o 

tive dielectric constant eo/Eo is assumed to be constant and equals 

2.5. The results are plotted in Figure IV-4. The attenuation factor 
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1.0r----------------r-----------,-----------~-----------r--------~-r-----------~ 

Limit 1 

. , 

.01 

• I • 

• 001 

·~5~~~------~------~---~~---------~-----~~--~----~----------~ 
0.16 0.4 0.6 0.8 1.0 1.4 

. 2q cosh Eol>"Ot 

Fig . IV-4. Th~ attenuation factor R' for the oREii . mode as a :t."unction of 
the no~zed major axis. 
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R' for the oHEll mode varies with frequency in a similar way as that 

for the eHEll mode, viz., the attenuation factor R' approaches 

1/ JE1/EO as frequency approaches infinity and R' can be made 

arbitrarily small by lowering the frequency. It should be noted 

that the slope of the curve for the elliptical rod in the low loss 

region is quite steep, i.e., a small variation in NMA would cause a 

rather significant fluctuation in R' . It is quite obvious that 

the eHEll mode is more sui table than the oHEll mode as a transmission 

mode. 

The distribution of the transmitted power as a function of 

frequency can easily be computed. The percentage of power carIied 

inside the dielectric rod is 

P' 
i 

pI 
t 

= 
f' 2 

f' + f' 
2 3 

where f' 
2 

and fl 
3 

are given by equations 4 and 5 respectively. 

Fig. IV-5 shows the variation of pI/pI 
i t as a function of NMA for 

various values of ~o; El/Eo equals 2·5 • . The behavior of 

(6) 

these curves is as expected. More power is carried inside the rod 

as the frequency gets higher. Again there is a very close correla-

tion between the amount of power carried inside the rod and the 

value of the attenuation factor. 

4.4 Summary 

A detailed analysis on the attenuation characteristics of 

the eHEll mode and the oHEll mode propagating along an elliptical 
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dielectric rod is carried out in this chapter. Numerical results 

are obtained. It is found that a thin elliptical dielectric rod 

operating in the dominant eHEll mode is a better guiding structure 

than a circular dielectric rod operating in the dominant HEll mode,. 

because the eHEll mode has much lower . loss on a flat elliptical rod 

than on a circular rod of identical cross-sectional area. 

It would be interesting to compare the attenuation constant 

of the eHEll mode with the attenuation constants of some well known 

metallic waveguide modes in the millimeter wavelength region . The 

values of the attenuation constants for various kinds of waves are 

tabulated in the' following table. 
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CHAPTER V ELLIPTICAL DIELECTRIC ROD RESONATOR 

To conclude the theoretical analysis of surface wave propagation 

along an elliptical dielectric rod, we include here the analysis of the 

Q factor of the elliptical dielectric rod cavity. The earliest . work 

on dielectric resonators was carried out by Richtmyer (53) in 1939. He 

developed the theory of operation for several interesting dielectric 

resonators of simple shapes, such as the spherical dielectric cavity 

and the "doughnut" shape dielectric cavity. The dielectric tube resona-

tor was first used by the gro~p in the Northwestern University (54). 

Later in 1959 Becker and Coleman (26) made use of the dielectric tube 

resonator to generate millimeter and submillimeter waves and to operate 

as a frequency meter . Most recently Snitzer (40) proposed the use of 

dielectric rod cavity as a mode selector in laser operation. 

In the present problem the dielectric rod cavity consists of an 

elliptical dielectric rod suitably terminated at its ends by suffici-

ently large flat metal plates which are perpendicular to the axis of the 

rod (see Figure V-l). At resonance, the length of the cavity L must 

~dielectric rod 
,r-reflecting 

plate 

---------H---Z 

'-I .. ....-----·· L ----~D I 

Figure V-l. The Elliptical Dielectric Rod Resonator 
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an integer), where A 
g 

is the guide wavelength of the 

particular mode under consideration and is a function of AO ' €l/€O J 

and the size and shape of the dielectric rod. The relations between 

A and the mentioned physical constants are determined by the boundary 
g 

conditions. Only the eHElln and the oHElln modes of the dielectric 

rod resonator will be considered in this chapter. 

The Q factor of a resonator is indicative of the energy storage 

capability of a structure relative to the associated energy dissipation 

arising from yarious loss mechanisms, such as those due to the imper-

fection of the dielectric material and the finite conductivity of the 

end plates. The common definition for Q is applicable to the dielec-

tric rod resonator, and is given by (15) 

where 

Q = 

total time-average 
energy stored 

average power loss 

is the frequency of oscillation. 

pression "is valid when Q» 1 • 

VI 
().) 

o p , (1) 

The above approximate ex-

In our case the time-average power dissipation P consists of 

two parts, the power loss due to the dielectric rod and that due to the 

metal end walls 

P = Pdielectric + Pwall (2) 

The power dissipation due to the dielectric rod is given by (15) 

P dielectric Jf 
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while the loss due to the end wall is (15) 

J H • 
-t 

A wall 
end 

* ~t dA 
wall 

, (4 ) 

wall 

where J ~~M is the surface resistance, 

energy stored is given by (15) 

R . s The total time-average 

w= 2W = 2W = ~ f H . H* dV = ~ J E . E* dV (5) m e 2 -

Vi-tO Vi+o 

where V. is the total volume of the cavity. 
1.+0 

5.1 Q of a Cavity Supporting the eRElln Mode 

By a linear superposition of the mode functions for the eREll 

wave traveling in the positive and negative z-direction, the normal 

modes of the cavity may be constructed. The resultant axial fields of 

an eREll , wave traveling in the positive z-direction and a superposed 

eREll wave of the same amplitude traveling in the opposite direction 

are as follows for region l ' (0 f S f s ) o 

00 

L: Ar Cer(s) cer(~) sin ~z 
r=l 

(1) 

00 ' 

E =-L B Se (s) se (~) cos ~z 
zl -1 r r r- ' 

(2) 

and for region 0 ( So (, s < ,ro) 

ro 
H L ~Fekr( ~) cet( 11) sin ~z z 0 r=l 

odd 
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00 

- L P Gek (g) se-l(- ( T)) cos t3z 
r=l r r r 
odd 

All the symbols in the above expressions have the same meaning as 

those defined in the previous chapters. The arbitrary constants 

(4 ) 

A , B , L , and P are related by the boundary conditions. Expres-
r r r r 

. sions 1 through 4 satisfy the boundary conditions on the surface of 

the . dielectric rod and at the end z O. To make them also satisfy 

the boundary conditions at the other end, z = L , we restrict t3 in 

such a way that t3L = n~ where n is an integer, (i.e., L = nA~2). 

Substituting the proper field expressions into 5-5, carrying 

out the integrations where possible and retaining enough terms of the 

expansion to give the same order of approximation as obtained in 

Chapter IV, one finally arrives at (after some rather lengthy algebraic 

manipulations) the expression for the energy stored in the cavity for 

the eHElln mode, 

w • E-)(- ) dV 
-1 

2 2 2 L€o I-l 
= cosh ~ q Al -4 € CT . 0 0 

where 
€l B 2 € 

- (~) ~ (AIV) 
CT €o ~ I-l 

J(~ • E*)dV 
-0 

(5) 
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~l' ~2' (AI), (AIl), (AIII), (AIV), (BI), (BII), and (BIll) are given 

in Chapter IV; 

(BIV) L 
n 

(n = 1,3,5 ... ) 

(m = 1,3,5 ... ) 

where ~ is given in Appendix B. The ratios of the arbitrary con­

stants are given in Appendix C. 

where 

The power dissipation due to the dielectric loss is 

So 21t' 

Pdielectric = II 
o 0 

(JdL 2 2 2 
= 2 Al q cosh So ~ Cd 

o 

Another source of power loss in this cavity is caused by the 

( 6) 

finite surface conductivity of the reflecting end plates. The loss 

may be computed from equation 5-4. 

p = wall 

where 

(H . H*) 
-t -t at z=odAJ ( 7) 
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Rearranging expression 5-1, we get 

1 
Q 

P 
= -- = 

(}.)w 

p p 
dielectric wall 1 1 ---=--- + = - + -

(}.) W (}.) W Qd ~ 
(8) 

Qd is the Q factor of the cavity if the end plates are perfectly 

conducting, and ~ is the Q factor of the cavity if the dielectric 

is perfect. According to equation 8 we have 

Q = (}.)w 1 C
T 

= 
Cd d 

Pdielectric 
€l 

2¢d € 
0 

and 

Q"..= 
(}.)W L CT = 25 Pwall 

Cw 

where ¢d is the loss tangent of the dielectric rod and 5 is the 

skin depth of the end plates. 

(10) 

The expressions C~Cd and C~Cw are evaluated numerically 

and the results are shown in Fig. V-2 in which corICd and corIcw are 

plotted against the normalized cross-sectional area (NCSA) for various 

values of ~o with €l/€o = 2·5 • For small values of NCSA, CT/Cd can 

be very large, thus Qd can also be very large. This is because most 

of the energy is outside the rod. As NCSA approaches infinity, C~Cd 
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300 
" 

.. -
100 eHEl.l,.n mde 

10 

2.5~------------~----------------------------------------------------:( 

~ 
o 0.1 0.2 0.4 0.6 

3 ~-------r--------~------~--~----~------~--------~ 

1L-------~~~--------~~---------L--------~------------~--------~ o 0.1 0.2 0.3 0.4 0.5 
" {2q cosh ~Oh'O),2 t~ to 

0 . 6 

F1g. V-2. ' 
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approaches €~€o and Qd approaches 1/2¢d'* Again .one notes that 

the flatter the elliptical cross section, the higher the Qd factor. 

It is worth while to take notice of the behavior of C~Cw as 

a function of NCSA. For an ordinary cylindrical metallic waveguide of 

simple cross-sectional shape, terminated at both ends QY short-circuit-
": 

ing plates, the Q factor resulting from the imperfection of the end 

plates is L/2'O L is the length of the guide and '0 is the skin 

depth of the end plates. This Q factor is independent of the type 

and order of the mode under consideration as long as the mode is either 

of TE, TM or TEM type and not of a hybrid type. It means that for this 

type of cavity, crlcw is always unity. However, CrrlCw is no longer 

a constant (see Fig. V-2) if a hybrid wave is present. This character-

istic is probably due to the fact that the TE and TM waves are inex-

tricably coupled to each other on a dielectric rod except for the 

circularly symmetric waves. 

It is also noted that Q
d 

is independent of the length of the 

cavity and ~ is directly proportional to the length of the cavity. 

The total Q of the cavity can be computed from the knowledge of .~ 

and Qd using equation 8. For a very long cavity, ~ » Qd ' there­

fore ~otal ~ Qd • 

5.2 The Q of a Cavity Supporting the oEElln Mode 

For the sake of completeness, we include here the analysis of the 

oEElln mode. The geometry of the cavity is the same as the one shown in 

*Incidentally, the Q of a section of perfectly conducting metallic 
waveguide, terminated at both ends by perfectly conducting · end walls 
and filled with a dielectric material with a loss factor of ¢ d is 
also 1/2¢d' 
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Fig. V-l. The analysis in this section follows very closely that 

in the previous section, therefore only the results will be given 

here. 

The power dissipations due to the dielectric loss and the end 

walls loss are res~ectively 

and 

where 

~o 21( 

pI = _ C1d2L II 
dielectric 

o 0 

C1dL 2 2 2 
= - -- C q cosh ~ ~ C I 

2 l 0 € d o 

P~all = 2 [R; J (!!t· !!~)at z=O dA ] 

Ai+o 

222 

C' -d -

= Rs Cl cosh ~o q C~ 

C' = C [(AI) I w -l 

The total time average energy stored in the cavity is given by 

_I 

W = 

(l) 

(2) 
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where 

£l' £2' (AI)', (AII)', (AIII)', (AtV)', (BI)', (BII) , and (BIII) , are 

given in Chapter IV; 

(BIV) , = L 
n 

(n = 1,3,5 ... ) 
(m = l,3,5 ... ) 

e where Q is given in Appendix B. The ratios of arbitrary constants -nm 

are given in Appendix C. 

-' -, -' P d ' P w and WT are related to the Q factor by the following 

relation 

where 

and 

-' , 
l P Pdielectric PWall l l 
Q' = (1)W~ = (1) W~ + (1) W~ = Qci + ~ 

-' 
(1) W

T C' l T 
Q' = = 

d P 
dielectric 

€l C' 
2'" - d Y'd € 

o 

~= 

-' 
(1) W~ C' 

:.I. L T 
- = 25 C' Pwall W 

(4) 
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¢d is the loss tangent of the dielectric and 5 is the skin depth 

of the reflecting end plates. 

The expressions cTlc~ and cT/Cd are evaluated numerically. 

Results are given in Fig. V-3 in which cT/Cd and q~c~ are plotted 

against the normalized major axis (NMA) for various values of ~o 

with €l/€O = 2·5· The characteristics are similar to those of the 

eHElln mode. CTlCd can be made as large as desired by choosing suit­

able values of NMA. As NMA approaches infinity, cTlCd approaches 

for all . ~ • o In the region where C'/C ' is large, the slopes T d 

of these curves are very large; in other words, a small variation in 

NMA can cause a rather larger variation in CTlCd , thus a large 

variation in Qd. The behavior of CT/C~ is similar to that of the 

eHElln mode. Similar deductions as those given in Section 5.1 can be 

made and will not be repeated here. 

5.3 Relation between Q and a 

In 1944 Davidson and Simmonds (41) derived a relation between the 

Q of a cavity composed of a uniform transmission line with shortcircuit-

ing ends and the attenuation constant a of such a transmission line. 

Later in 1950, Barlow and Cullen (55) rederived this relation. These 

authors showed that this relation is quite general and is applicable to 

arbitrary cross-section, uniform metal tube waveguides. Since then one 

of the standard techniques for the measurement of the attenuation con-

stant a is the use of the cavity method*. This method offers an 

*The procedures of this method in general are the following. Short the 
uniform transmission line under consideration at both ends and measure 
the Q of such a resonator. From the knowledge of the measured Q and 
other constants such as the cut-off frequency of the guide, the frequency 
of oscillation, etc., it is an easy matter to obtain a from the for­
mula derived by these authors. 
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Figure ' V";3 
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excellent way of measuring the attenuation constant of the guide when 

the loss is quite small. Later on this method is generalized and 

applied to open waveguides, such as the single wire line, the dielec-

tric cylinder guide and associated guides, by various authors (6, 7, 

19, 21). 

However, it should be remembered that the formula by Davidson, 

Simmonds and Barlow is derived under the assumption that there exists 

a single equivalent transmission line for the mode under consideration. 

This assumption . is true for a pure TE, TM or TEM lOOde, but it is not 

clear that such a single equivalent transmission line exists for the 

hybrid waves. This suspicion originates from the fact that a) the TE 

and TM waves are intimately coupled to each other, and b) the charac­

teristic impedance defined by Schelkunoff (56) is not constant with 

respect to the transverse coordinates. It is, therefore, very difficult 

to conceive the possibility that there exists a single equivalent trans-

mission line for this hybrid mode; at best the hybrid wave may be 

represented by a set of transmission lines coupled tightly with one 

another. Hence the formula by Davidson, Simmonds and Barlow is not 

applicable to the hybrid wave.* 

A more general relation between Q and a can be obtained 

without using the transmission line equivalent circuit, provided that 

a is very small compared w:Lth f3 (57). The propagation constant of a 
'. 
\ 

guided wave with small attenuation constant at Wo is 

= a(w) + if3(w ) o 0 
(1) 

*But several investigators (19,21) apparently unaware of this restric­
tion, used this formula in their investigations of the hybrid wave. 
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At resonance*, the following relation is true 

Combining equations 1 and 2 we have 

0(1) 
According to t~e definition, of group velocity Vg which is o~ 

the definition of the Q factor which is (1)o/2(~), we finally 

arrive at the relation 

ex = 
v J? ' (3 

= v 2Q 
g 

(2) 

and 

(4) 

This is the general relation that we are seeking. Substituting the 

** values of v/v g for TE, 'I'M or TEM into equation 4, one gets the 

relations derived by Davidson, etc. For the 'I'M or TE mode 

v 
1 1 ~ 2= and for the TEM _ mode, , -ex = 2Q 

, 
v A. 2 (~)2 g 

1- (-) 1-
A. A. c c 

f';Vg = 1 , ex = ~/2Q • A. is the cut-off wavelength. 
c 

The group and phase velocity of the dominant modes can be 

obtained easily from the (1)-~ diagram. A sketch of the (1)-~ diagram 

for the dominant modes is shown in Fig. v-4. It can 'be seen that at 

low frequencies or small ~'s, v h ~ v and again at very high fre-
p , g 

quencies or large ~'s, v h% V • Therefore, the relation ex = ~/2Q 
p g 

is applicable only at very low frequencies or at very high frequencies. 

-*The resonant cavity is made by sborting both ends of the guide under 
consideration. 

** vp = vph = the phase velocity of the wave. 
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CHAPTER VI EXPERDiENTAL INVESTIGATIONS 

It is the purpose of, this chapter to inyestigate and verify the 
--,. 

analytic results exper1Iilentally'. " The properties of a certain propagating 

mode along an infini tel)" long uniform waveguide are usually specified by 

three characteristics*, (a) the guide wavelength which is directly re­

lated to the propagation ,constant of the wave, (b) the field configu­

rations or the field distributions, (c) the power loss or the attenuation 

"*In order that a. good matching condition may be obtained so that in 
coupling energy into and out of a dielectric. rod guide without the , 
presence of high ' standing-wave ratio which is a measure of the relative 
intensities of reflected and incident waves, the knowledge of the chara,c­
teristic impedance or the wave impedance is very important. As we have 
pointed out earlier the characteristic impedance defined in the usual 
manner (1.e., the Schelkunoffidefinition) is not meaningful, since it is 
a function of the transverse coordinate system. A mean 'value impedance" 
which takes into account the energy distribution over a cross-section of 
the rod was first suggested by Wegener. He divided' the (circular) dielec­
tric rod into four sections and in each of these four sections he assumed 

. the ,field to be independent of ¢, the angular variation, so that in 
regions I and III, ~ is assumed to be zero and in regions II and IV, rjJ 
is assumed'to be 1C/2. [See Figure 9,. ref. (17)]. , The appro~te " . 
expression for mean impedance is therefore 

.. J (~) . (ExH*)· e dA + J (~) (ExH*) e dA 
Z = I+ III p ¢=O - - -z II+ IV' J!.. ¢=.1C/2 - - -z • 

!(!X 1!*) • =-~ dA 

He showed that Z/Z A$ A. IA.. Similar approximate mean imp.edance as og. 0 ' 
defined above may be obtained for the elliptical dielectric rod. 

The fact that the characteristic impedance of the hybrid waveguide is 
not well defined shows that the single transmission line analog is at 

' best an approximation. ' Any measurements assuming the single transmission 
analog of this guide are therefore apprOximate, and should not be consi-
dered as precision measurements. . 

Sinc~ at present we are only concerned with the problems of wave propa­
gation along 'an infinitely long uniform die~ctr1c rod, the "characteris­
tic impedarice" or the equi vaJ.ent cireui t , net"WOrkof 'this guide"'Will not .. 
be considered. , 
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constant of' the wave. ,Experiments will therefore be ,specifically 

designed to measure these three quantities. 

After a detai~ed de~cr1ption o~ the experiment~ apparatusj the .. .. . . 

methods of measurement for these' variousquant1ties a;-e, discussed. The . .' . . . -' " 

experimental results are then compared with the theoreti"c&l' results. A ' 

discussion will be given. 
, ' 

6.1 ~ Experimental Apparatus 

, I 

Figure VI-l is ' a photograph c;>f ' the ' general. physical appearance of 

, the experimental: set-up~ A block diagram is sho'Wll in Figure VI .. 2. For ':' 

the sake of convenience and simpllc1 ty ,measurements were ' performed in 

,the X-band frequency , range. ,' The ' microwave ' X-band 'power was obtained 

from an "X-13 Varian reflex klystron which ',offered a max:1.m~ power~ output 1 

, ' 
of five 'milliwatts,, and ,was powered by the Hewlett-Packard power ~suppl¥ .. ,:; 

The microwave signal was' modUJ.ated ,with a 1000 cps square wave. . The 

output of the :klystron was connected to an isolator followed by an 

, attenuator, :~ a , cavity resonator" 'a slotted line section, '. and a section 
.. ."-. 

of standard X-band , rectangular metallic ' waveguide. These were ' standard 

X-band components.' , The other end ' of the rectangular metalJic waveguide 

was " connected to the special apparatus specifical.l.y designed 'for ':the ", ' 
I ' • t' .. , . 

present experimental investigation; " see Figure VI:"2. ','. 
, , 

, The following sections are devQted to ' a detailed' description of : , ' 

I , , ',' 

, the , special apparatus.; '" , :. . . 
" \' I" 

I " 

1 " -: A. ' The Launching ' Device 
I . ' . " , 

The method ' of transferring,:microwave' energy. from an 'ordinary', metal-
" -< 

lic waveguide into a dielectric rod waanot, very diff1cul.t, or complicated. 
" 

Since a rectangular 'metal guide, ,operating in "the dOm1n~t TEla 'mod'; bad 
,. , 
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an electric field whose configuration was rqughly similar' ''to the trans-

verse component of the electric field of the HEll JOOde or the HEll e , 0 

mode on the diel:ectrio guide, ' , th~. transfer couJ.d be made simply by 

inserting the dielectric rod long! tudinally into the metal guide for a 

short distance. The orientation of the cross-section depended upon 

whether the eHEll mode or the oHEll mode was desire~. To improve the 

, matching and to minimize reflection the dielectric rod was tapered to a , 

, :point within the gw.de ' 8.nd after emerging frem the metal guide ' ,~the rod 

, was tapered to whatever size was ~equired ~or. "·a given" test/ : Furthermore , 

a ' flare pyramidal horn whose flare angle' was adjusted ' for :best 'energy'1' . 
transfer was connected to , the rectangular metal guide. (See Figur~ VI-J). 

, ' 

" 

' ; 

" ", 
'" : . 

, " 

'0' : ',, ' ,". 

rectangular 
metal waveguide , horn ,.:: elllptical dielectric ' rod , , . 

• :. i.,~ ! ~ • \ ' 

• • ,f 

, I , 
, . 

I . ".; 

Figure 'VI-'3.· ' The, Launching ,Device. :~ , 

. ' ., 
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B • . The Elliptical Dielectric Rod , 

Since dielectric rods of el11ptic81 cross-section ·were not com-" 

merc1~ · ava1~b~ei th~rwere :mach1ned from ava1lAble rectangular 

~ucite strips which : ~ere ~~; leas~ " five anci half 'feet long. , A, total 

or ' twelve rods or airferent sizes, and ellipticities ' were made, in 

, order that · the eXperimental data would cover a wide 'range of , 2q cosh ~o 
, " , ~ 

, and "So values. A picture o,f these rods is . shown in Figure VI-4~ , One 
. ' 

end or 'each rod was machined,'very .. rlat while ' the other , end was tapered 

as described ' in section S.lA to fit into the metal guide •. . A small ,chunk :' " 

or 'lucite,' waa taken :rromeach rod in order to measure the e1ectz.-1caJ. ' 

properties of each: rod 'individual..ly' 'by Von ,Rippel's method (58) .,.; It was 

found that the dielectric constant of these rods varied between E. 2.5 

to € = 2.6 and the loss tangent varied from tan 6 = 0.005 to 
, 

tan 0 = 0.003. It should be noted that due to the resillent property 

or lucite it was very dirficult to, machine such a required-length uni-

,form.ly. A special and rather expensive technique was d~veloped and used. ' 

Although extreme care was taken in making these rods, some small non-

uniformities which might .attributeto experimental errors were ' unavoid-
, . . . 

, able'. ' The ' major -axis ,and 
• I . • • ~. f ,'J. I 

So of these. el11ptic8J.: rods 'ranged 'from " n , 

2A = 1.5 in. to 2A = 0.5 in. and & III 00 to !to 

C. The Shorting' Plate 

In order that the plate could be a good shorting device, its sur-

face had to be very flat and large enough to intercept practically all 

of the, energy- outside the diel.e'ctricrod and the plate had to be made 

or good conducting material. ', A l/4"x36"x36" aluminum plate was used. 
"/. ~ ' .." .,: \,.. . . , _) .. ,'-, ., -. ', i i, .:: '. . . ' . ' 

One side of the aluminum plate was 'macb1nedtlat and its surf'f.'ce was 



- L97-

Fig. VI-4. Elliptical Dielectric Rods 

Fig. VI-5. Probe and Its Carriage 
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cleaned and polished in' order to assure maX1m~ conducti vi. ty. The 

plate and its support can be seen ciearly' 'in . Fi'gure~ VI-l.' ' .. ' 

i 
" ' . \ 

: D • . The Px-obe and Its 'Carriage 

·TQ detect . and measure theelectromagnetic. f'ie1d on" the dielectric 

. rodj a smal.l. electric ' probe was designed and used. The probe ' con- , 
.. 

sisted, of a section of rigid coaxial cable whose outside diameter was · 

about 1/8" and whose l.ength was ' about l' 3" • .An. inch from ' one end of . 
. 0 

the cable . was formed into a gradual 90 bend. and the center conductor 

protruded ';'about 1/8". The other end was connected to a crystal detec-
. . 

tor which was calibrated, and the :, output otthis detector was , connected 

t o the HP standing wave indicator •. The L ,bend was introduced to 

reduce the ·~unt · of metal cQnductors parallel t~ the electric fie1d 

'.-' indicator. The probe and the detector were supported by a , stand .which 

was. fastened to a ' HP carriage . A pi.cture of the probe and its , support . 

is shown in Figure · VI-5. The whole instrument was so designed, that the '. 

probe might be moved up an.d do'WIl , radialJ..y ,with respect . to the cente~ 

. axis of t~ dielectric rod andlongi tudinally' along the center axis ot 

the rod. Furthermore, . the probe cou1d be adjusted to detect. either 

'E . or E ' field. : The longitudinal movement of the probe "cou1d be 
~ z 

measured from a scal.e on the carriage; and e. dial indicator was used 

to obtain accurate measurements of smal.l. long!. tud,j.nal · movements of the 
" . 

probe. . The radial movement of' the . probe was. ·m.;;asured "by a level tele-
. .~ 

scope whose movement· had been calibrated. 
.' . 

With the help ' 'of a transit and ' a level thia -WhOle eXperimental 
.. ' I "/"" ,'. . ' . . . . • 

set-up . wa~ alignedcaref'ully'. , The 'dielectric "rod had to be ve'rystraight 
#:' ,', " '1 '. ~ . ~~ Y','; . ''''\''~: ' ' ': '· .. ·"i····· .. _\: ,,' _ .~ .. 1', , : .. • 
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. and its axis perpendicular :to the shorting' plate., To insure 'a good' con-

tact 'between the polished 'shorting plate and the flat end ' of the 
I ' 'L:~ 

dielectric ' rod, 'a slight ' pressure" was asserted 'on both ends or the system. 

To minimize sagging ' of ', some small. or flat rods, very thin nylon threads 

were used along the rod to provide." support~ 'Altbo~ dis'tUrb~~~S ' due 
. . '. '. .' "' . . , , . ..'! '. ' " 

to these "threads were unavoidable, because ~of the ' sizes of the rods' used . . . . 
" " \ 

at this f~equencyrange very' .little · perturbation'''w8s ob~erved."·:~ ".'." 
'; . , . 

" ~ " . , . ~. .. ~ .: ... ':. .. 't .• '. 
to 

'.' 

. 6.2 Method of Neasurement . . ... ' .. . \ .' ,' .··.1 • I .r,. '. 
. , i ' ' 

, .. 
" 

In .. general there are ' two most · commonly used ,methods .tor 'measuring 

~he . propagation characteristics of.· a certain mode along :a uniform .. low. .. ... 

. . ' 

. los s waveguide .. ,'. The tirstone 18 ·the so-called' resG)nator technique. The 

guide under. consideration .is. placed between two "parallel 'plates·.with : 

proper coupling 'holes. Resonance occurs when the ' length of ~he cavity is 
). 

n ~ where - n ' is an integer and ). 'is .the guide wavelength: of ·the mode 
2 g .. 

on .the .guide .. ). can be measured ,eas'1ly: either ,by ·c.ounting·':·thenumber 
g 

of minjM Within the · cavity length ·With a ~ 8mall. -probe ' or by moving one 
. " :' . 

of . the reflector 'plates and measuring the :.displacement \ ot ' the plate' for · 

each resonant peak. ·.:-:By measUring. the ' Q:/ oflthis.' cavity·, , the :attenuation 
.# ', ; 

, 
constant · a can readily .be calculated*,,"This method is ~ particularly 

useful and accurate :f'or 'very, low loss'. transmission . line 8** •. The .second 

method is the ' standing wave measurement . technique. . The guide is ' terminated 

by a perfectly: reflecting '·plate· acting 'as '. a . short-circuit. device·...... The · 

propagating .wave is. perfect~:-- :reflected~ by the termination and a standing 

*See equations 5.3-4 
**This . method·· was first used by:,Cbandler ', (:l9) on the measurement ot 'attenua­

tion factor 'for the ', HEll mode ' on . a · verY··. 8mall · c1rc~ . dielectric rod • . 
, . . .. 
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wave pattern is f'ormed along the guide. A probe, such as the one des-
, , 

, cri bed earlier in se~tion 6.lD, 'can b~ used to detect t~ microwave 

, s i gnal. al.ong an open wavegu;1.c1e, ~; ' By measu.r1ng the c1:1.atance between two , 

, adjacent minima ~f' the standing wBve pattern, and the standing wave : 

ratio" it is an easy matter to calculate the guide wa,,(e1.ength and the 
, " 

attenuation f'actor of' the mode on the guide*. 

*The f'ormula re1.at1ng the attenuation f'actor 'a with the ' standing wave 
ratio can ,be ' derived as f'oliows: . It ·. is ,well , known that ' 

P1. 
A == 5 l.oglO P db 

' 3 
where Pl ' and , P3 ' are respectivel.y the input and ref'lected power of' 

the guide;, and P
l 

r -1 2 

P ' == , (r +1) , where r is the standing wave ratio 
3· 10 (r - 1.) 2 / \ .. " ' . 

at the probe. , Theref'ore, we have a = -; 10glO r+l db m;: in which , J 

" is ' the ' length of' the guid~ : as indicate'd in 'Figure VI-S:" '\ :" ~'" :, ' : ... 

" elliptical ,dielectric rod 

, I===::;=====;=======:::f f : .' • ~ ' .' . . . ... . ·~.~ f .. "' .' '1~ ... 

.' . ' .. ~ .,, ' • .-. _. 1 ' '' , 

: ' 

'. 'to I" i,. ,. ": 

a" '\ " I 

, I, Figure VI-6. 
.'" 

To take into account the loss due .to' imperf'ection of' the ,shorting plate 
one notes that the attenuation measured at point a ' is A • a/, + D I ' a . a . 
and , similarly ,- the measured attenuation at point '" b is , ; ,:. ' 
~ == a~ + D where , D is the losS , ~f' the ref'lec:~1ng p~te ~ , Combining 
'these ,two equations· ,and ,eliminating 'D ' qne gets' :: ,: ., ";-', ' , ' 

... ~> 
. .. .. . ,I' ", '0' 

;, 

I~. ~ •• ~. " ' I . ., 

':' ... "'", 

), ' , ~ 

ll • 

; if' " •• :' • , • I.. , ,' I. ~ ~ ... ' , ' • . "I' ~ . : . \ 

. " " .:' 

, , 
" '\ 

.. 
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The ~atter method was used for our measurements since it presented 

,a , simp~e and expedient way of measuring', the desired quanti ties With 

reasonably good accuracy. To ayoid 'perturbatiQn by the ~aunch1ng device 
. , 

; pr by, end ef,fects, measurements , were made in the middle section of the 

rod. " It shouJ.d a~so be mentioned that throughout this :who~e experiment 
. ' '. . . . ' . 

" 

the coupling between the probe and the fieM was kept at a mini mum in . . '. . . 

order to avoid interference With the 'propagating wave .. ' 
: . " .. . . 

. ;" \ ," 

6.3 ' COmparison of the Theoretic~ and Experiment~ Res~ts 

,'~ The results are separated into three general c~tegor1es. ;\:~~", ' 
~'~' I 

.' ' ... . ';' .. 
A. Guide Wave~ength "., 

, " Guide ,. wavelength was measured according 'to' the ,procedures described " 
.' , ' . ' 

' earlier. ,' The ; dis~ance between :adjacent minima of the standing wave pat. 
, , 

, tern was measured at several sections ~ong the guide and the average 

value was calc~ated and recorded as the measured ,)./2. The maximum 

difference between the~e measurements vas about 3~. Wavelength measure-
, " 

ments were taken from nine different s~ze's o'f el.l1ptical dielectric rod ' 

fO~ the ~HE?-l - mode , and the oHEll mode. Normalized experimenta~ , 

res~ts, . together with their corresponding theoretica~ results, are 

, " ',' ,", ' 

given ,in ,Figures VI-,7 through VI-15. \. The:;p~s~,~al size o'feach ' diel.ec~ 

" , ' .. ' " • •.• ' . ',' " ,' • j ", . 

·tric rod used and its measured dielectric 'constant 'are ' indicated in each 
,", ~ , ' , 

figure.'.: Excellent' "agreement' was. obtained." ',i·· .. 

To ' illustrate the ~eementbetween the ' 'analytic . and exper~tal 
, , .' '. ' ' : ' \ ' 

" , . " . ~'~" .; .; 
' \ \. ,. .. ; ,. . . .. ~ . . 

" 
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. " 

Fig. VI .. 7. 

" 

' (Circ~es are experimental. points) 
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Fig. VI-13. 
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2q cosh ~o 
E " "---:---o >.. 

o 

". 

(~) . ~ (~) . 

o meas.. 0 cal.c. 

: 

€ 
0 ' 

eHEll . '.:: '''. ' O. 770"xo.s45" .: ' ;: 1.22 . .. 0 '.55 . . : .. 0.845 "". 0.853 ... ~. 2.55 
' . . 

. ~ . .' , 0.63 . . :, 0.80 ' .' .:. 0.804 . . . ... 

HE . 
. 0 II 

: 0~. 77()"xO ,.645" . . 1.22 0.555 . , , ' \ 0.83 0.833 " " 2·55 . , 
" 

0.635 0 •. 784 0.787 
" '. , . 
,.' 

eHEll ' o .769"xO. 505" , . 0.775 0.56 '. 
0·925 0·925 2·5 

.. . . : 0.785 ' . . 0.80 ' , ;.' 0.802 . " ' . 

oHEll ,0. 7!)9 j 'xO.505" . , ~' 0.775 0.55 0.875 ... 0.882 2·5 

0.695 0.80 0.80 

'HE ' 
e II 

·1.005"xO·36.1" 0·376 0:725 0·962 0.964 2.5 
. ' I " . 1.00 · .0.862 ' 0.862 . 

' HE ' 1.005''xO·361"· .0·376 . ,0.72 · 0.87 . 0.873 " 2.5 
o U 

0·93 0.79 0.792 : . 

It was found that the wavelength: measurements were rather insensi~ . 

ti ve to small ' non-uniformity of the rods and to the variat1'~m of , 

humid1 tr and temperature in the laboratory. Incident8.l.l.y "the 'above 

experiment , al.so suggested ',~ . rather convenient ~ay of measuring the ' 

'dielectric constant ofa' certain low' loss dielectrt,c :material.. : , , 

. ,B. ' The Field . Distributions . ' i : I · 

. '. 

In order to establish the degree of field purity an examination of 

the radial. field decay at a 'fixed axia;t position was carried out. The 
. . .' , 

decay of the axial. electric field was measured since it can most easily 

be detected 'by a probe pointed ~n the axial.. 'direction. Fo~ maximum sig­

nal strength, the 'probe was aligned in ,the . 'I} = re/2 plane for ·the eHEli . 
. . 

mode and 'I} >;: . 0 for the HEll' mode. 'The gen~ral. · method of measurement 
) 0 
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has been outlined in section 6.2. 

Exp'erimental results, together with; their theoretical results 

:for the eREll ' mode ar~ show :Ln Figures VI-loS thro-ugh VI-loB. Six 

di:f:ferent rods ranging :from S =. 00 to o . S = 0.376 , .... ere used. o .. It . 

can be seen that the experimental results corresponded'rather .... ell 

with the analytical ~esults. The largest di:f:ferences .... ere :found among 

thin rods. This e:f:fect may be explained by the :fact that :for small 
. . . . 
values o:f NMA, a , large ' percentage o:f .energy .... as carried outside ' the 

dielectric rod/thus a small amOunt .o:f curvature or sagging may have 

caused 'some errors ' in the :field decay measurements. These measurements I 

'together with the · .... avelength measurements veri:fied the existence o:f 

the eHEll mode along an elliptical· dielectric rod. 

, Similar measurements .... ereper:formed :for the oHEll mode • . Four 

rods ranging from S =' 00 to 
o 

Results are 

shown in Figures VI-l9 through VI-20. Again, good agreement with 

theoretical results .... ere observed. These measurements also confirmed 
. ' , ,. 

the existence of theoHEli mode" • 

. The above discussion sho .... s clearly the necessity of having a 

structure .... hich may support the dielectric rod and at the same time 
, .. 

will not ' interfere with the desired propagating mode. One o:f the best 

ideas, .... hich .... as . first ·proposed by D. D. King (20)/ is tl1e use of too 

image plane. He .took advantage. o:f the. symmetrical property o:f the 

, HEll mode. and mounted a ha1f-rouncl,dielectric" rod, .on an image 'plane. , 

·It can be , seen that '.his idea can very ..... ell ,be extended to. the ellipti-
.' ." . . " . - .' . : ' , 

'" cal dielectric rod. '. This . image plane : can .·not _pnly serve . ilS a support . 
• l' ' . ' . '.. , . • • • 

'. without disturb1ng:_the , fiel~" :but. flU.so may' serve as a pol.ar1zation : 
• • . '. ", '. ", ~ .. .' , ., • . '.:. •••• • \ . ,, ' • i • .. 

" 

anchor. 
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C. Attenuation, Constants 

Attenuation ' measurements ' were made by probe, using ' the 'standard 

standing wave- technique .(59) • ', ~~ For each experimental point two mea-

surements at two different locations were carried out in order that 

the loss ' due to the imperfections of the 'terminating reflecting ' plate 

could be eliminated, (See the footnote on p"~:1':C5~). The percentage ; ." 

' ,variations of the loss factor 'of these dielectric rods were found to 

" be quite large. ' The loss factors for various rods were' found to vary 

' from ta.n5 = 0,.0055 to tan5 = 0.003 Both theoretical and experi-

mental results for the eHEll and the oHEll waves are shown in 

Figures VI-2l throughVI- 27 . In general, the agreement is "'quite good, 

and it is better a.t higher' frequencies than a.t lo101er frequencies. One 

, of the reasons ' for ,this is that at l0wer frequencies, ' more energy is 

di stributed outside the rod; thus, more energy is radiated due to the 

slight curvature of this open guide. ~urthermore, the disturbance of 

, the field caused ' by the presence of the suppol;"t;tng threads and' the ," . 

:probe is 'more pronounced at lower frequencies. Since the attenuation 

is lower 'at lower frequency, the standing wave ' ratio is higher and the 

, percentage ' erroriri the measurements of this ' high standing wave ratio 

is therefore ' larger. ' ' Because -the attenuation constant is a measure of 

the power' loss as compared with the power transmitted, it is ' qui te 

'understandable that the above mentioned factors -would ' atfect "the ' ac-

. '. . '. \ . 
curacy of our ~asurements more at lower frequencies. ' It is for this 

reason that the resonator method is superior ' for 'low attenuation mea­

surements. At higher frequencies most of :the' energy is carried inside 

the guidej very"little disturbance ' will result"'from the " s~pportiIlg ' 

threads; t he probe, and the small', curvatures of , the rod. The accuracy 
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LOr----------~------------~------------_r----------~-----------~--------~ 
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Fig. VI-22 • 
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Fig., VI-23. 
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of the experimental measurements is thus greatly improved. Another 

source . o~ error is probably due to the. approximations .used in computing 

the numerical. results . fz.:om the ·analytical. equations. It. was mentioned 

earlier in Chapter IV that as the 'elliptical cross sections become 

fl.atter~ i.e.~ S gets .smal.l.er~ more terms of the eXpanSions ' are . 0 . . 

.require·d to obtain more accurate . nu:merical. results. However, suffi-

ciently .close .agreement between the analytical and experimental results . 

is observed. to · warrant .the verification of the theoretica~ predictions • 

. It is noted that a dielectric ribbon having the same cross sec-

tional .area as a'circular dielectrie rod and operating ' in the dominant 

eHEll mode does indeed offer much less attenuation than the circular 

dielectric cylinder. 

6.4 Conclusions 

Special experimental apparatus was desi~ed to measure the propa-

gation characteristics of the two principal dominant modes, namely the 

eHEll and the ' oEE~ mod~s.DesPite the mentioned, sources of experi­

mental errors, . measured results . were found to be in good agreement with 

the calculated results. Particularly good agreement was observed in 

the guide waveJ,.ength category. The existence of these two dominant 

modes was verified. ' 

It was .noted experimentally that the next higher order mode occurs 

at a higher frequency for the fl.B.tterelliptical · cross,:,section rod. 

Therefore~ the flatter rod possessed not .only a lower attenuation factor 
~ ... ", 

but also a )tl.der · bandwidth • . . 
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CHAPTER VII SUMMARY AND CONCLUSIONS 

The problem of electromagnetic wave propagation along an elliptical 

dielectric rod was considered. It was shown that, in general, no pure 

TE or TM wave might exist on such a waveguide except when the eccen-

tricity of the rod was zero. In order to satisfy the boundary 

conditions an infinite series of product terms of Mathieu and modified 

Mathieu functions were used to represent the field configurations in 

both regions. The field components and the characteristic equations of 

two types of wayes were obtained. They were classified as the HE 
e mn 

mode and the HE mode. These modes were degenerate .and became the 
o mn 

well-known HEmn mode when the eccentricity was zero.. The modes with 

m ::;: 1 and n = 1, called the dominant modes, possessed no cut-off fre-

quency. The propagation characteristics of the dominant modes were 

considered in detail both analytically and experimentally. Extensive 

numerical computations on the properties of the guide wavelength, the 

rate of field decay, and the attenuation characteristics of the dominant 

modes were carried out. 

Experiments were designed and performed using various sizes of 

elliptical lucite rod to verify the analytic results of the dominant 

modes. Measured data were compared with theoretical results and it was 

shown that very good agreement was obtained. 

The Q of a dielectric cavity resonator operating in either one 

of the dominant modes was also computed. It was found that a very high 

Q cavity could be made using proper size dielectric strip. 

It was demonstrated analytically and experimentally that a thin 

elliptical rod operating in the . HEll mode typically had considerably e . 
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lower loss than did a circular rod, operating in the HEll mode, having 

.the same cross-sectional area. 

other advantages are listed below: 

a. A flat elliptical dielectric rod has larger surface area, 

thus it would be easier to handle at very high frequencies 

such as in the rom wavelength range. 

b. The eHEll mode possesses greater bandwidth, since the cut­

off frequency of the next higher order mode is higher for 

flatter elliptical cross sections. 

c. Depolarization effects are minimized because the guide 

wavelengths differ for the even and odd modes. It is known 

that internal strain, non-uniform dimensions, and bends of 

the circular rod cause the HEll mode to change polarization. 

d. A flat elliptical dielectric rod which may be approximated 

by a strip is easier to fabricate since wider dimensional 

tolerances are permitted. This is because the guide wave­

length and the attenuation constant are slower varying 

functions of the dimensions for the strip than for the 

circular rod. 

It should also be noted that the eHEll mode can be launched as easily 

as the HEll mode. 

The advantages and disadvantages of using the dielectric tape line 

as a transmission line in comparison with the conventional metal tube 

waveguide (at frequencies above 50 kmc) are discussed below. 

a. Keepi ng the spread of the field outside the dielectric tape 

within a reasonable distance from the surface of the dielec­

tric guide, the loss fa.ctor of the eHEll mode on a 

dielectric tape line can be made smaller than that of the 

dominant mode in a rectangular inetal tube guide, but still 

somewhAt larger than that of the TEOl mode in a circular 
metal tube guide. 
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b. In order to avoid mode conversion the surface of the cir­

cular metal waveguide must meet very close tolerances. 

These kinds of tolerances are not required for the ellip­

tical dielectric rod, thus it is easier to fabricate. 

c. Unlike the metal tube waveguide, the field of a dielectric 

tape is not entirely confined within the str~~. Consequently, 

it can be subjected to interference due to nearby foreign 

objects or foreign signals. The presence of curvature or 

discontinuity of the strip will also cause energy loss by 

radiation. It is rather difficult to support the dielec­

tric rod without disturbing the field. As proposed by 

King, the use of image plane as a supporting device appears 

to be quite sui table. 

The greatest attraction of a surface wave dielectric tape line as a 

millimeter wave transmission line is in its simplicity of construction, 

its low cost and ease of manufacture, and its flexibility. 

The analytic method of solving this elliptical dielectric wave-

guide problem should prove applicable to others involving the use of 

the elliptical coordinate system and the Mathieu functions. For ins-

tance, one may apply this technique to the problems of 

a. The propagation of electromagnetic waves along an ellip­

tical dielectric tube, or 

b. the surface wave propagation along an elliptical Sommer­

feld or Goubau wire, or 

c. the scattering of electromagnetic wave by an elliptical 

dielectric cylinder. 

other analogous mechanical problems can also be solved in a similar 

manner. 

We did not consider the source-present problem. However, it is 

emphasized here that it is not possible to express any arbitrary field 
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distribution in terms of the propagating modes alone for any open 

boundary problems. The problem with source present must then be 

formulated in terms of Green's function in the form of a contour 

integral. The residues at the poles of the integrand will give rise 

to modal type waves which are also called guided waves. The contri­

bution of the integral around the branch cut will give rise to a 

radiated wave. 
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APPENDIX A 

Mat hematical Relations 

Many of the formulas, and expressions which are used throughout 

this report are given in the following sections for convenient refer-

ence. Those relationships which are considered well kno~ are stated 

'with only a reference tO ,their origin. Others, which are considered not , 

so well known are discussed in more detail. Some relations which are 

given here for the first time are derived. 

A.l Series Representations of Mathieu and Modified Mathieu Functions 

The Mathieu differential equation may be written in the form 

2 
2y COB 2T})B = 0 

where 2 
Y is a constant which 'may be positive or negative, and c 

the separation constant or ,the characteristic number. ' The periodic 

soluti ons of '(A.l-l) which ~y be expanded in terms of 'trigonometric 

functions are given below (42,45): 

For 'y2 ~ 0 , 

is 

, 2 ' Q) 

ce~(~IY ) ,= L: (A.1-2) 

, 2 
ce2n+1(1},Y) 

r= 0 

= ' ~A(2n+l) cos(2r+l)T} 
r = 0 2r+l 

2 00 (2n+l) 
se2n+l ( ~, y ) , = L B 2r+l sine 2r+l) T} 

, r =0 

2 
and for 'y ~O 1 

(A.1-3) 

" (A.1-4) 

, (A.1-5) 
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cos 2rTj (A.l-6) 

'1 2\ 00 'C"· )r+n (2n+l) 
, ce2n+i (1'1,. ) . =.', L . .:-l .. B2r+l cos (2r+1) 1'1 

. . r =0 ' 
(A.1-7) 

* ( 1.2 1) ~ . (-1) r+n A( 2n+l) .sin( 2r, +.1) n , . se2n:+-1 '1'1'. = ~ 2r+l . 'f 

r =0 
. (A.1-8) 

00 

= L 
r=O 

( )
r.tn (2n+2) 

-l B2r+2 , sin(2r+2)1'1 (A.l-9) 

Th i ffi i A(2n) A(2n+l) (2n+l) d B(2n+2) 
e expans on ~oe cents, 2r ' 2r+l ,B2r+l ,an 2r+2 are 

f ·unctions ' of 1 .21 and have been tabulated by NBS (49) for various . 

'1.2 1. . values of up to 1.21 = 25 • 
: ~ . 

The 'modified Mathieu differential equation may be written in the 

form . 

(A.l-lO) 

where 2 • is a constant which may be positive or negative and c is 

the separation constant or the characteristic number. The stable solu-

tions of A.l-lO which correspond to the periodic solutions of A.l-l can 

be expressed in terms of Bessel function product series. Comparing this 

with other ways of expressing the solutions of A.l-lO, the Bessel func-

tion product series converge the fastest and therefore are best suited 

for computational purposes (45). 

Let u = I. I e - S and v = I. I. . e S ~ the set of stable solutions 

. of A .• l-lO with .2:) 0 is (45) ,. , 

ce2nU,.2) =:' p(2n) . f · (-l)r · A~r2n)·J (u)J ' (v) 
A r= 0 -~ r r 

(A.l-ll) 

o 
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, r (2n+l)[ ] 
(-1) A2r 1 J(u)J ' lev) + J l(u)J (v) + r r+ r+ r 

(A.l-12) 
'6 CO " .' ,: ' , ' 

( 2)' 2n+l ' . V' ( ,,)r (2n+l)[ () () () ()] , 
Se2n+l ~,y , = (2n+l) Lr ' -1 B2r+l J r U J r +l v -Jr+l ,u J r v 

B r=O ' 
1 , (A.1-13) 

And, the set of stable solutions of A.I-IO with 'y2 ~ 0 is (45),' 

-- ~ , , . (A.1-15) 

The expans ion coefficients ' A (2n) A (2n+,l) "B (2n+l) .. B (2n+2) , and the 
2r ' 2r+l ' 2r+l ' 2r+2 

connecting coefficients P2n', P2n+l' s2n+l' s2n+2 are functions of 

ly2
1 and" hav~ ' all been tabulated ina table p~ep~ed :by NBS (49) '. " The ' 

above series are absolutely ,and Uniform.ly convergent~' ,-' The ' analytic expres-

sions for the connecting coefficients are 
j • 

P2n = ce
2n 

(0, y2) ce2n (~1{ ,y2) / A~2n) (A.1-19) 

, , 2 ' l ' ~ ' 2 I ' (2n+l) 
P2n+l' =" ce2n+l (O,y ;)ce2n+l ('21{"y ) :,YAJ. ' ", , (A~l-20) 
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(A.l-21.) 

(A.1-22) 

The prime signifies the derivative of the function with respect to ~ , . 

The normalizations 'j introduced by Goldstein (60) will be used. 

They are 

2 
It is also defined that. when y . = 0 

(A.1-23) ,. 

= 0 

when r f n. 

A.2 Approximate Expressions for the Modified Mathieu Functions Suitable 

for Small Values of I r21 

Mathieu (6l) rirst · derived the expre6sion~ ' ror the expansion coerri­

-'I. t A(2n) A(2n+l) B(2n+l) 'B(2n+2) " h 1 21 is small. Th 
c ... e~ s 2r' 2r+l ' 2r+l ' 2r+2' w en y ey are 

. .. . . 2 r 
' B(m) -A(m) (l)r m! ' (Y) 

m+2r - m+2r ::::S - r!(m+r)! · '"4 ' , '. 
(A.2-l) 

. / .. ' 
. (r '~ O, 'm >0) 

(A.2-2) 



where ~ means approximate equality. 

a . Approximate Expressions .. :for Fek~+1( ~ ,. ly2 1 ) and Ge k2n+1 (s,ly
2 1) 

when I y2 \ ~ 0 ' . . The approximate expression for Fek2n+l. ( s, I y2\) from 

. A.1-16 is 

1! ( I 2\ 1 { (2n+l.) 
(
_l.)n

s 
Fek2n+l. S, y . ) >:;S B (2n+1) ••• '.+ B(2n+l.)'-2 

.2n+l. l. . . 

where 

and 

] 
(2n+1) [ . .. ] I u K v + ,B I u K v - I u K v + n+1 ( ) n ( ) .' (2n+l.)+2 n+l. ( ) n+2( ) , n+2( ) n+l. ( ) 

. . " 2 
B C2n+l.) ~ ~ L oC 4) 

2n-1 2n 4 + y 

B (2n+1) ~ l ' ~ 0 (y 4) 
2n+1 

, , 
(n. ~ l.) (A.2-3) 

(A.2-4) 

(A.2-6) 

0(y4) means that the next term in the expansion is of the order Ofy4. 
. 4 . ' ... , .', '. 

The val.ue of O( y ) . iD: A~2-5 can easilY be' obtained f~om ~the 'normaliza-

tion Z [BL~~l)J 2 ' = 1. Thus 
r =0 . 

:.' 
(A.2-7) 

) 

·The following 'ap:proximations"'for the ·modified Bessel functions (62) 

will be used, . "When u and · v are small: 
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I (u) 
m 

, ( A.2-8) 

and 

( ) m-1 m- 3( ) . . ex 
K (v)= m-1 !2 2m-2! + 0 ( 1 .)+ (_i)m+1 I (v) . .tn(~) (A.2-9) 

m m m-2 --m::J+ m 2 v v v 
(m ~ 1) 

ex 
K (v) <:::s - .En ~ o 2 (A.2-10) 

where ex is Euler's constant, ex = 0.5772 •••• 

Substituting these expressions, A.2-4 and A:2-6 through A.2-10 

into . equation A. 2-3 and ~emembering that u = ,y.e - ~ , v = ye ~, after , 

considerab1e .algebr.aic manipulations one obtains the approximate expres-

,sion 

. 1C . ( 1 21 1 {(.~) [e -(2ii+1): SJ n Fek2n+1 s,y ) = (2n+1) • 
. (-1) s2n+1 . B1 

.[ (-2n+1) s .. . 4 ] 
(,) : ( ) (n+1)+ 2e-2s _ ne- S) + 0(y3) 

n n+1 . . 

Putting the approximate expression for ·B(2n+1) into A.2-11, one 
1 .. 

finally arrives at the equation 

1C .. 2 . . 22n ( 2n) .! . '. { . .. y2 e 2 S 
(-1) ns Fek2n+1 (s, I y I) ~ y2n+1e (2n+1h 1.- Bn(n+1) 

'2n+1 

(A. 2-11) 

+ 2e - ne + 0 , • n ~ 1 A.2-12) -2s . -4sJ . (4)} . ( ) ( 

\ 

For the specia1.·case, n = 0 

1C . I 21 . 1 ye E . . e ex S [ - 2 E ] ,e - 3 s ~ 
S Fe~<'E,' ) .= -E + 2 ..en(2: ,ye J l;-,e .. - 8 ' . + ,o~r) . 

1 ,e, . , . 
.:. . (A.2-13) 

, l ', •• 
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The approximate expression for the Ge~+l ( ~,ly21) can be obtained 

in a similar manner. ' Carrying out the tedious algebraic steps, one 

arrives at'the.equation,f?r,n ~ 1 

22n( 2nt ' { . 2 2~ [ . 2~ 4 J 
2n+l2n+l) ~ 1- Y e C~++) - 2e- -ne - ~ 

y e 8n(n+l) 
. 4 } + o(y) , (A.2-14) 

and for ' n = 0 

(A.2-15) 

' b .• Approximate Expressions for ce2n+l(~'y2) and se2n+l(~,y2) 

as . 1 y21-> 0 • ' It is possible to expand' Ce
2n

+
l 
(~,y2) , and Se

2n
+

l 
(~ly2) 

' in a series of Bessel functions (45). They are 

~ ' (~l)r A~~~l)J2r+l(2y cosh ~) 
r = 0 , (A.2-16) 

. . ' , 

and 

(A.2-17) 

These series are absolutely and uniformly convergent (45). Substituting 

equations A.2-1 and A~2-2 and thesmall ' argument ' approximation of the . 
' . ,.' " 

Bessel' function into equations A.2-16 andf..,;2-17, and keeping the first 

order appr~ximation, we get 

2 ' - · .ce2n' 1(~21C,i) ' f 2n+1 n . ( ), (cosh ~)2r+1 
Ce C~, y ) =.;,. ' + y \' (-1) r : n+r • ~:.::.::-'~~_ 

. 2n+1. . , y 42n+1 ) ' ( 2n)! /;;' 0 . . (n-r) ! , 4n - r (2r+1) ! 
\ ... .. 

"'+ o( r2n+3l 1 
(n ~ 0) 

(A.2-18) 

and 



n , ( )' ( i h .) 2r+1 L (-1{ n+r. s n ~ 
r = 0 . ,(n-r)! 4n - r (2r+1) 

+ 0(y2n+3)} (n ~ 0) (A.2-l9) 
.... ,.. , 

;. ,~~I:~+ltsJy2\ ) . Gek2n+l (s, I y21) 
c. Approximate Expressions for F k (s I y21) , (1-2.\ ' 

e 2n+l' , Gek2n+1 S, J - ) 

,Ce2n+
l 

( s) y2) Se2n+
l 

( s) y2) I 2[ " .. 
----""'2,.- and 2 as r ~, O 
Ce2n+l (s)y) Se2n+l (s,y) 

Taking the derivative of equations A.2-12 through A.2-15 with res-

pect to S, combining these derivatives with the required functions, 

and keeping ' only the second order term in the approximation, ,we arrive 

at the ' following 'expressions: 

Fek2n+l (s) I y21) " 

, Fek
2n

+
l 

( s) I y21) -

Feki ( s, 1 y21 ) 

Fe~ ( s, I y2\ ) 
(n ~ 1) 

, (A.2-21) 

Gek'2n+l(S,iy
2

1) y 2e2S { , -4s ] 4 ' 
------=2- = -(2n+1) ,- 4n(n+l) , (n+l):t ne+ o(y ,) " (n ' ~ 1) , , 
Gek2n 1 ( s, I y I) , " ' ' 

, + " , ',' .. , ' " . ':,," (A.2-22) 
and 

, , 

Taking the derivative of equations A.2-18)and A.2-19 with respect to ~, 
I 

combining these derivatives with the required functions,' arid: keeping only - ' 

the first order term in the approximation, we arrive at the following , 
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expressions: 
. " 

n (n+r)! 2r 
. 2 .~ '( _l)·r ~cosh SL 
Ce2n+1 CSIY ) , r::O (n-r)! 4n-r~2r2! 2 ... tanh ~ + O(y ) 2 n (cosh s)2r 

I 

Ce2n+l ( SI Y ) L (U)r 
! ' 

! " 4n- r (2r+l) ~ , r =0 
", 

, , (n '~O) , (A.2-24) 

I , 

n 
" (sinh s)2r , 

( 2 L (_l)r . 
Se2n+l s,Y ) 

... coth~ ' 
r=O 4n-r~2r2! + 0(y2) 

se2n+l(S'Y~) 00 (sinh s)2r 
I 

r 
L ( -1) 

r ,= 0 4n- r (2r+l)t 

, (n ~ 0) (A.2-25) 

It should be noted that all the approximate expressions derived in 

this section reduce to the well known approximate expressions for ~he 

Bessel functions when the ellipse degenerates ,to a :c1rcle. 

Similar approximate expressions for the even order 'modified Mathieu 

functions can be obtained in the same manner. 

, A.3 Degenerate Forms of Mathieu and Modified Mathieu Functions 

When the ' ellipse tends to a cirCle,i.e. ,,1 as ,the semifocal.;.~engths , ' 

q , and S tend "to zero and infinity respectively, ~ 6uch that 

qe S 
q cosh S Af q sinh S Af 2 -7 r I 

where r ,is the radial component of , the circle, ',al.1 

to zero except that A (m) = B (m) ~ 1 ' . ' ' .. Therefore ,the 
, " ' m m , 

the Mathieu functions are (45) 
, J 

,., 2 " ' 
ce (1), Y ) ~, cos m'l} " 

m , '" ' ' '," (' 

sem ( 1), ,2) ~ sin m1} 

\.. 

, A (in) and " B (m) tend 
p p 

degenerate forms of 

(A.3-1) 

(A.3-2) 
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'Wi th m ~ 1 , and 'When m = 0 

.. " . 
~ I .:... •. , 

(A.3-3) 

, The' 'degenerate forms "or' the modified Ma,th1eu f~ctions are 
, , 

Ce
2n 

(~,y2) ..:.( _l)n P2nJ 2n (x ~ ) ,: " ' 
'0 

2 n " " r 
ce2n+1 (E,Y),_(-1) p 2n+1J 2n+1 (x-;-) I , 

o 
:, 2 . n ' ' r ' 

Se2n+1 (E, Y ) - (-1) s2n+1J 2n.tl (x r-) ., ' ',' . ' " 
o 

, F k" (t 2) , (_l)n ' ( 'r) , K' (r) 
, e 2n+1 .,.,Y ; , 1( 6 2n+i Y. r- 2n+1 '1', r ' 

" 0 0 

•• ~ }'" ' 1 . '" .... 

(A.3-4) . 

(A.3-5) 

, (A.3-6) 

" (A.3-7) 

(A.3-8) 

, (A.3-lD) 
" ... ; ~ . .. 

. (A.3-ll) 

, (A·3-12) 

(A. 3-14) 

, (A.3-15) 

, (A.3-16) 

, (A.3-17) 
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(A.3-l8) 

(A.3-l9) 

where P2n' P2n+l' , S2n+i' "s2n+2 " are connecting factors which have been 

, 2 .,' 2 2 ' 2 2 2 2 2 2 2 
defined in section A. l, and x = lCr - 13 r ,Y = 13 r - k2r in 

~ 0 0 '0 , 0 

which r is the radius of the circ:)..e. The prime on the modified Mathieu 
o 

function represents the derivative of the function with respect to ~, 

while the prime on the Bessel or 'modified Bessel function represents the ' 

derivative of the function with respect to its argument. 

·A.4. Orthogonality Relations of Mathieu Functions 

, . 
The orthogonality ,relations of Mathi~u functions are (45) 

2 
a. For all r I s 

21( 
, " 

f ce
m

(1},r
2

) cep (1l,r
2
)dll= 0 

o , 
" 

(m 1= p) 

• 1. ,.~ .-

.. . \. . . , 
.... ' f , 

0 ", ' ", '" ' (m 1= p) 

b. For 2 ~ '0 ' r-

21( 

J 2 ( 2 ' ,' 
ce2n 'I),r)d'l) = 

o 

',( 

/ .,.,. I' , 

.' ..' 
• I ' • ~ 

(m 1= p 
or 

'm = p) 

(A.4-l) 

(A.4-2) 

(A.4-3) 

" 

(A.4-4) 

(A.4-5) 
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(A.4-6) 

' .. 

[
B (2n+2)] 2 

2r+2 , 
, (A.4-7) 

, (A.4-8) 

21C ' , 
f ' C~~+l (1)1 \r2\ )dT) ,= ': ,1C :[ ' [B(::~)J 2 
o " r =0 

(A.4-9) 

. 21C ' 

t~e~+l.(~'lrl)d~ = ~ JJ~~ra:~l.)r (A.4-10) 

21C . , ' 

f: se~+2(1), II~j)dT} = " ~ [B(2n+2)]2 
, 0 " r = 0 2r+2 ' 

(A.4-ll) 
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APPENDIX B 

Tabulation of Integrals Involving Mathie~ and Modified Mathieu Functi ons 

Integrals resulting from the attenuation constant and Q factor 

calculations are tabulated in this appendix. Integrals are integrated 

analytically whenever possible, and the results are given. The inte-

grals are divided into two categories; those involving the Mathieu 

functions are called the angle integrals since they correspond to the 

trigonometric integrals of the circular guide, and those involving the 

modified Mathieu functions are called the radial integrals since they 

correspond to the Bessel integrals of the circular guide. 

B.l Angle Integrals Involving Mathieu Functions 

be 

The definite integrals involving Mathieu functions can usually 

integrated analytically. They are 

= 

e' 
I = om 

0' 
I 

run 

1 ce~(~)d.~ 
0 

2rc 

J 2 
se (1))d'l) n 

0 

2rc 

J ce' (1)) ce' ( 1)) d 1) 
n m 

0 

21! 

J se' ( 'I)) n se'('I))d'l) m 
0 

2rc 

J ce (Tj) se' (Tj)dTj n m 
0 

2rc 

J ce'(Tj) se (Tj)d1) n m 
0 
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21r 
Ie J 2 

= ce* ('Il)d'll -n n 
0 

21r 

I
O J 2 

= se* (ll)d'll -n n 
0 

21r 
e ' J ce* '('Il) ce*'('Il)d~ I = - run n m 

0 

21r 
0' J se*' (~) se*' (Tj)d'll I = -run n m 

0 

21r 
Je = J ce*(Tj) se*'(Tj)dTj 
-run n m 

0 

21r 
JO = J ce* '(~) se* (Tj)dTj 
-run n m 

0 

The prime signifies the derivative of t he function with respect to 'Il. 

B.2 Radial Integrals Involving Modified Mathieu Functions 

All these radial integrals are integrated numerically by Simpson's 

Rule (50). The normalized dimensionless variables 

xe~ ye~ 
zl = , z2 2 cosh So 2 cosh ~o 

2 2 2 2 2 2 2 222 where x q cosh ~o(kl-t3) and y q cosh ~ (t3 - k ) are used. o 0 

As the ellipse approaches a circle, r and r The z--;)x- z2 y-1 r r 
0 0 

limits of integration instead of being from 0 to ~o and ' ~o to Q) 

will be from 2 x h 
xe~o ye SO 

to respectively. to and 2 cosh 
Q) 

cos ~o 2 cosh ~o ~o 



Assuming 

x 
a =----
1 2 cosh So 

, 
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So 
xe 

2 cosh S J 
o 

So 
b

l 
= __ y::...e__ and b 

J 2 
2 cosh So 

we have -th.e ollowi.ng radial integrals: 

, 

Re J . Cen(zl) Cem(zl) 
dZ

l 
= nm zl 

al 

8 2 dZ
1 

RO J Sen(zl) Sem(zl) = 
nm Zl 

al 

8 2 
e' J ce~(zl) Ce~(zl)zldZl R = nm 

8
1 

a2 
0' J Se~(zl) Se~(zl)zldzl R = 
nm 

8
1 

8 2 

Te 
= J Cen(zl) Se~(zl)dzl nm 

a
l 

a2 

TO = J ce~(zl) Sem(zl)dzl nm 
al 

b2 dZ
2 

R
e J Fekn (z2) Fekm(z2) -nm z2 

bl 

RO f Gekn (z2) Gekm(z2) 
dZ2 

-nm z2 
b, 

co 



-169-

The prime on the modified Mathieu function indicates the derivative 

of the function with respect to its argument . 

B.3 Integrals Involving Mathieu and Modified Mathieu Functions 

The double integrals are 

o 
~~ 

~o 2n 

If o 0 

~o 2n 

~~ II o 0 

~~ If 
o 0 

~~ 

2 
Se (~) Se (~) se (~) se (~) p d~d~ 

n m n m 2 2 
q cosh ~o 

Gek (~) Gek (~) se*(~) se*(~) n m n m 

Fek (~) Fek (~) ce*(~) ce*(~) n m n m 

2 
P dT)d~ 
2 2 q cosh ~ o 

2 
P dT)d~ 
2 2 q cosh ~ o 

, 
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APPENDIX C 

Ratio s of Arbitrary Constants 

C.l The HE Wave 
e ron 

Rearranging equation 2.5-16 gives 

00 

Lm= L P a 
r = 1 r -r,m 

(m=1,3,5···) 

odd 

(C.l-l) 

where a are functions of and h 
m,n 

and can be obtained 
-r,m 

from equation 2~5-l6. Substituting C.l-l into equation 2.5-17 yields 

Pat + P s ro [ 00 ] m~l r~l r -r,m m,n m m,n 
= o (C.1-2) 

odd odd 

(n 1,3,5, ... ) 

P 
The ratio r (r = 3,5, .•• ) 

Pl 
can easily be obtained from the above 

equation: 

= b 
-r 

where b is a function of a , t and s 
-r -r,m m,n m,n 

C.1-3 into equation C.l-l, one gets 

00 

= L 
r= 1 

odd 

According to c.1-4 

00 

= 

b a 
-r -r,m 

L 
r=l 

b a 
-r -r,l 

odd 

(m 1,3,5, .•. ) 

(C.1-3) 

Putting equation 

. 
\ 

(c.1-4) 
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Thus (Xl 

L L Pl 
L ~r a 

-r,m m m r=l (C.1-5) -= P1 Ll 
= 

Ll (Xl 

L ~r a 
r=l 

-r,l 

Using (C.1-5) and 2.5- we get 

A 00 L 
n 1 L (.2:) £ ex 

Ll = an r = 1 Ll r r, n 
(C.1-6) 

odd 

Using (C.1-3) and 2 .. 5- we get 

00 

L 
r= 1 

(C.1-7) 

odd 

C.2 The HE Wave 
0 ron 

Ratios of the arbitrary constants for the HE wave may be 
0 ron 

obtained in the same way as those for the HE wave. Replacing . e ron 

A by C £ by Pn n n n 

Bn by D , Pn by £n , 
n 

L by G , ex by t3r n ' n n r,n , 
p by F , t3r n by ex n n , r,n 

a by b , 1r,n by v n n r,n 

b by a , Vr n by l r ,n n n , 
a' by b' , b' by a' , 

n n n n 

£' by P' , and P' by £' n n n n 
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in the expressions for the ratios of the arbitrary constants for 

the HE wave, one obtains the ratios of the arbitrary constants 
e mn 

for the oHEmn wave. 
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