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ABSTRACT

The problem of electromagnetic wave propagation along a dielec-
tric cylinder of elliptical cross section is considered. Two infinite
determinants representing the characteristic equations for the two
types of hybrid waves (the GHE, and the ;1. waves) are derived.
These waves degenerate to the well-known HEmn wave of the circular
dielectric rod as the eccentricity of the elliptical rod approaches
zero. It is found that there exist two dominant waves which possess
zero cutoff frequencies. The characteristic roots of these two
dominant waves are computed for various values of eccentricity and
relative dielectric constant. Also given are the attenuation charac-
teristics and the field distribution of the dominant modes; It is
shown that a flattened dielectric rod supporting the eHEll wave offers
less loss than a circular rod having the same cross-sectional area and
supporting the HEll wave. Theoretical propagation characteristics
(the guide wavelength, the field distribution and the attenuation con-
stantj of the dominant waves are verified by experiments. The Q's

of a dielectric rod cavity resonator supporting the dominant waves are

also presented.
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CHAPTER I -  INTRODUCTION

The concept of guiding electromagnetic waves either along a
single conducting wire with finite surface impedance or along a dielec-
tric rod is not new. As early as 1899, Sommerfeld (1) conceived the
idea of guiding a circularly symmetric T wave along a conducting wire
with small surface resistivity. In 1910, Hondros and Debye (2) demon-
strated theoretically that it is possible to propagate a TM wave along
a lossless dielectric cylinder. However, due to the large field extent
outside the wire and the relatively high attenuation of this surface
wave, the "open-wire" line remained a novelty for almost half a century.
Recent developments in the generation and application of millimeter and
sub-millimeter electromagnetic waves, the availability of very low loss _
dielectrics, and the development of fiber optics, have renewed interest
in the surface waveguides. There have appeared numerous papers and
reports concerning various forms of surface waveguides and the feasibi-
lity of these guides as practical transmission lines.

Before discussing the purpose and the scope of the present inves-

tigations, a survey of previous work on surface waveguides is in order.

1.1 Survey of the Literature

The surface wave guiding structures are capable of supporting waves
intimately bounded to the surface of the structure. These waves have
exponential decay characteristics in regions away from the surface and
are governed by the usual propagation function e1Bz along the axis of
the structure, where =z is the axial coordinate and £ is.the propaga-

tion constant. For real values of B such waves persist at arbitrarily



large distances from the source. The steady state solutions with
harmonic time dependence e-hnt are the only ones considered here.
Of primary interest are the values of B as a function of the fre-
quency and of the properties of the guiding system.

The surface wave guiding system can take many forms. Theoone
intensively studied in the past was a surface wave structure of
infinite extent imbedded in an infinite uniform medium. The problem
then consisted of finding the solution that satisfied the homogeneous
field equations and the boundary conditions with the source at infinity.

Typical surface wave structures may be classified into three
types. The first type is the dielectric coated conductor, such as
dielectric coated conducting plane and wire. The second type is the
interface of two dielectric media, such as dielectric rods, dielectric
tubes, ,or dielectric strips. The third type consists of various open
periodic structures, such as unbounded helix, corrugated plane or cylin-
der. Sketches of these three types of surface wave structures are shown
in Figure I-1.

Among the various structures mentioned above, only those intimately
related to the propagation of surface waves along an ellipticﬁl dielec-
tric cylinder will be discussed further, namely, the Sommerfeld-Goubau
wire, the circular dielectric rod, the dielectric tube, and the ellip-
tical dielectric rod. Related topics such as the interaction of two
surface waveguides and the problem of excitation of surface waves will

also be mentioned briefly.

(a) The Sommerfeld-Goubau Wire
The possibility of propagating a surface electromagnetic wave along

a circular conducting wire was first demonstrated theoretically by
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Fig. I-1. Typical surface wave guliding structures.
Type 1, the dielectric coated conductor, (a),(v);
Type 2, the interface of two dielectric media, (c),(d);
Type 3, the open periodic structure, (e),(f).
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Sommerfeld (1) in 1899. The wave was a circularly symmetric TM mode

with components H ., Er’ Ez and was loosely bound to the surface of

e
the wire. In a numerical example he showed that the damping at high
frequency for this type of wawe was too pronounced to use as a com-
munication wave. Consequently the practical uses of this type of
transmission line were very limited. In 1909 Hondros (3), a student

of Sommerfeld, showed that an asymmetric field distribution was also
possible. But the wave was so strongly attenuated that it could not
be observed experimentally.

Recently in 1950 Goubau (4) reinvestigated the properties of
the Sommerfeld line and studied its suitability as a practical com-
munication line. His investigation showed that a circularly symmetric
surface wave might be guided by a conducting wire of small diameter
with the same low attenuation as that of the conventional coaxial con-
ductor guide. However, the field extended radially to a considerable
distance outside the wire before its strength decayed to a negligible
value; so that any small imperfection of the surface or any small cur-
vature along the wire would cause radiation loss. The practical use of
this surface waveguide was therefore limited. In an effort to reduce
the radial extension of the field, Goubau (5) proposed the coating of
the conductor with a thin sheath of dielectric,or corrugating the wire.
This reduction of radial field extent was achieved with the penalty of
higher attenuation due to dielectric loss or corrugation. This
increased attenuation due to dielectric loss together with the original
attenuation due to loss in the conducter has been calculated by

Goubau (5). It should be noted, however, that the first theoretical
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analysis of electromagnetic wave propagation along a conducting wire
with a cylindrical insulating sheath was given by Harms (5) in 1907.
Since Goubau's report, numerous papers concerning this type of
single wire line have been published. Among these are the papers by
Barlow and Karbowiak (6) in 1953 on the measurement of radial field
distribution; Sheibe, King and Van Zieland (7) in 1954 on the measured
losses of the "Goubau Line"; and Roberts (8) on the excitation of the
single wire line. Kiely (9) also reported on the effect of fog and
rain drops on the attenuation characteristics of the wave propagating

along a long single wire line.

(p) Circular Dielectric Rod

Hondros and Debye (2) in 1910 analyzed theoretically the guiding
of a circularly symmetric TM wave along a solid lossless dielectric
cylinder and thereby removed the cause of the strong attenuation due
to the conductor (1). In 1935 Zahn (10) and his two students, Ruter
and Schriever (11,12), confirmed the existence of such a T™M wave experi-
mentally. Carson, Mead and Schelkunoff (13) noted in their paper that
Southworth in 1920 also accidentally observed such a wave in a trough
of water. When the generation of high frequency electromagnetic waves
(about 10 cm) became feasible, Southworth (14) described some experi-
mental work dealing with phase velocity and attenuation of the circu-
larly symmetric ™ wave on the circular dielectric guide.

Not until 1936 were the propagation properties of asymmetric
waves on a round dielectric rod considered. A rather complete mathe-
matical analysis of this problem was given by Carson, Mead and Schel-

kunoff (13). It was noted in their paper that in order to satisfy the
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boundary conditions, a hybrid wave (i.e., the coexistence of longitu-
dinal electric and magnetic fields) must be assumed. In other words,
asymmetric TE and T™M modes were inextricably coupled to each other
along a circular dielectric rod. They also showed that, 1) pure TE
and TM waves could only exist in the circularly symmetric case, and

2) there existed one and only one mode, namely the lowest order hybrid
wave called the HE,; mode, which possessed no cutoff frequency* and
could propagate at all frequencies. All other circularly symmetric or
non-symmetric modes had cutoff frequencies. The dispersion relations
of these modes were also obtained in their paper, but no numerical
results were given.

Since then the development of metal tube waveguides as transmis-
sion systems completely over-shadowed the development of dielecfric
waveguides. This is largely due to the fact that the field is con-
tained entirely within the metal tube guide. For the dielectric guide,
however, the field is not entirely contained which leads to greater
transmission loss due to radiation when bends and discontinuities are
present. A large number of papers have been published on the subject
of propagation of electromagnetic waves in a hollow metal tube. Borgnis
and Papas (15) gave a very comprehensive treatment on this subject.

In 1945 Mallach (16) published his results on the use of the
dielectric rod as a directive radiator. He showed experimentally that
the radiation pattern obtained by the use of the asymmetric HEll mode

produced only one lobe in the principal direction of radiation.

*This cutoff frequency does not have the conventional definition as
that for the metal waveguide modes (see p.295 of reference 15). It is
here defined that the cutoff frequency for the surface waveguide mode
is the frequency below which the dielectric rod ceases to act as a

binding medium and the wave is no longer guided by this surface wave
structure.
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Immediately after Mallach's paper, Wegener (17) presented a dissertation

in which the asymmetric HE,. mode, together with the lowest order cir-

11
cularly symmetric TE and TM modes were analyzed in detail. Not only
were the numerical results of the propagation constants for these

waves obtained, but also their attenuation characteristies. Apparently
he was not aware of Carson, Mead and Schelkunoff's work. A few experi-
mental points were also included in his work to substantiate his
theoretical results. Elsasser (18) in 1949, independent of Wegener's
work, published his computation on the attenuation properties of these
three lowest order waves by the perturbation method (15). In a com-
panion paper, Chandler (19) verified experimentally Elsasser's results

considering the dominant HE,. mode. He found that the guiding effect

11
was retained even when the rod was only a fraction of a wd#elength in
diameter. Since the greater part of the guided energy was outside the
dielectric, very little loss was observed. For the first time the
cavity resonator technigue was introduced to measure the attenuation
constant of the HE,; mode. The resonator technique was very suitable
for investigating very low loss uniform waveguides. It should be noted,
however, that the formula relating the @ of the resonator and the
attenuation constant @ in Chandler's paper is only applicable for
very small Ea/xb , vhere a is the radius of the rod and i is the
free space wavelength (see Chapter V).

King (20) in 1952 proposed the so-called "dielectric image line"
as a practical surface wave gulding device. The "dielectric image line"
was made up of a semicircular dielectric rod mounted on a conducting
sheet and was designed specifically for thée dominant HE.,. mode. He

i i i
indicated that the conducting sheet not only could act as a supporting
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device, but also as a polarization anchor for this dominant mode. A
detailed study on the attenuation and the radial field decay charac-
teristics of the HEll mode guided by this image line was reported by
Schlesinger and King (21) in 1953. Again the cavity resonator method,
used by Chandler, was used for the attenuation constant measurement.
As of now the "dielectric image line" is still the best and the most

practical device for supporting the dominant dielectric mode.

(¢) Circular Dielectric Tube

A natural generalization of the analysis of the propagation of
electromagnetic waves on a dielectric rod would be that for the circu-
lar dielectric tube. The earliest theoretical analysis was carried out
by Zachoval (22) in 1932. He considered the propagation of a circularly
symmetric TM wave along a lossless circular dielectric tube. Two years
later Liska (23) verified Zachoval's work experimentally. A more com-
plete treatment on the theory of dielectric tube waveguides was given
by Astraham (24) in 1949, in which both symmetric and asymmetric propa-
gating waves were considered. He also substantiated his theoretical
results by experimental data. Independently, Unger (25) in 1959
reported his investigation on the same subject and showed that a dielec-
tric tube with a thin wall could support the dominant mode with very
little loss. But the radial field extent was rather large. One of the
most promising applications of dielectric tube waveguides may be found
in the field of millimeter wave cavity resonator and beam coupling struc-

ture (26).
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(d) Elliptical Dielectric Cylinder

The first attempt to find the dispersion relation of an electro-
magnetic wave guided by an elliptical cylinder structure was made by
Karbowiak (27) in 1954. He considered the elliptical cross-section
Sommerfeld line and the elliptical cross-section Goubau line. The wave
equation was formulated in elliptical coordinates and solutions were
obtained. However, he matched the boundary conditions only at one
point on the boundary surface; therefore his results can, at best, be
considered an approximation for very small eccentricity. Another
attempt to solve the problem of surface wave propagation along an ellip-
tical dielectric rod was made by King and Wiltse (28). Again they for-
mulated the problem in elliptical coordinates and obtained solutions of
Maxwell's equations in this coordinate system. But in matéhing the
fields on the boundary, similar over-simplifications of the boundary
conditions were made. The "approximation" of these two approaches can
be best illustrated by the following example. For the sake of clarity,
only the matching of the axial electric field on the boundary will be
considered.

Karbowiak's method. The expression for the axial electric field

in region 1 which is the region inside the dielectric rod is

2 2, *
Ez, = Ah Cen(g,Tl) cen(n,rl) (1)

where Ah is an arbitrary constant. The expression for the axial elec-

tric field in the surrounding medium is
Eg, = Ly Fek (£,75) ce*(n,75) (2)
o n n * o a* g

where Ln is an arbitrary constant. It should be noted that all these

*The notations of the Mathieu or the modified Mathieau functions are
defined in Chapter II.
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Mathieu functions and modified Mathieu functions are functions of the
characteristics of the medium. The boundary condition dictates the

continuity of the axial electric field, i.e., at £ =¢t , E =E,

Z
@ 1 o

we have
2 2 2
ACe (& ,7]) ce (n,7)) = LFek (¢ ,77)ce*(n,v3) . (3)

It should be noted that cen(q,ri) and ce;(q,rg) are functions of
n . The only way that equation 3 can be satisfied is by assuming
cen(q,ri) = ce:(q,rg) ; which is not true except when the eccentricity

is zero. This was the assumption made by Karbowiak.

King and Wiltse's method. King and Wiltse realized the invali-

dity of Karbowiak's assumption and propesed to attack the problem in a
slightly different way. They assumed that the expression for the axial
electric field in the dielectric rod is
i o 2
E, = ) Ace(&7]) ce (7)) ()
i n=0
where the Ah are the arbitrary constants; and the expression for the
axial electric field in the surrounding medium is

£
E, = L, Tk (67) ceX(n,75) (5)

where Ln is an arbitrary constant. Satisfying the boundary condition
_at g = gy 2w hawe

Ly 2 2 N VR
nz;o Ahcen(go’ri) cen(ﬂ’ri) s Ln Fekh(goyfé) cen(ﬂ;fé) . ()

They then multiply both sides of the equation by cez(n,ri) and
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integrate with respect to 7 from O to 2x , obtaining

2 2
AnCen(go,rl)Nn = LnFekn(g,YE)Mn g (7)
2x 2x
where N = ce2(n re)dn and M = ce (n,¥5) ce*(n Te)dﬂ .
n L ¢ n n' YL - Rl

This was how they eliminated the summation sign. It can be seen that
an identical result, i.e., equation 7, can be obtained by the use of
eéuations 1l and 2 . Multiplying both sides of equation 3 by cen(q,ri)
and integrating from O to 2x , one obtains equation 7.

Therefore the validity of King and Wiltse's solution is also ques-

tionable.

(e) Related Topics

Unlike the waves in the metal tube waveguides, there are no
evanescent modes on an open surface waveguide. It is not possible to
express any arbitrary field distribution in terms of the propagating
modes alone. Hence, there must exist a different type of wave, namely
the radiated wave (29) if any source is present in a finite region.

As a matter of fact, it should be noted here that the presence
of the surface wave was actually first postulated by Sommerfeld (30)
in 1909 when he was considering the now classical problem* which bears
his name. He found theoretically that there existed not only a radiated
wave due to the oscillating dipole, but also a surface wave which
traveled along the interface of the two dielectrics. Since then, a
great number of papers and reports have been published concerning varia-

tions of this problem. The most recent investigations have been reported

*The Sommerfeld problem is discussed very clearly and thoroughly in
Stratton (31).
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by Roe (29), Whitmer (32), Tai (33), Brick (34), Wait (35), Cullen (36),
and Brown (37), to mention only a few.

The problem of interaction between two parallel umiform surface
waveguides is also an interesting one. Since the wave equation is not
separable in the bipolar coordinates, approximate methods must be
employed. Quite a few authors used the electrostatic approximation¥* in
the earlier years. However this approximation was not satisfactory at
very high frequencies. Most recently Armand (38) and Marcuse (39)
treated the problem of interaction between two parallel Goubau wires
without resorting to the electrostatic approximation. They formulated
the problem by‘assuming the interaction of only one single mode on each
wire, namely the circularly symmetric ™ mode. They indicated the
presence of space beats and the energy exchange phenomenon: Numerical

examples were also given.

1.2 Purpose and Scope of the Present Investigation

In order that the dielectric rod may be a low loss surface wave
device, one must choose a small value of ka where k is the free
space wave number and a is the radius of the dielectric cylinder. 1In
the millimeter wavelength range, the radius of the dielectric cylinder
becomes inconveniently small. Fortunately it has been found experimen-
tally (41) that if the circular rod is flattened, (i.e., if the circular
rod is reddered to an elliptical rod of the same area), the attenuation

of the dominant mode may be reduced considerably, provided that the

*The electrostatic approximation is as follows: In calculating the
structure of the field one would neglect quantities of the order of
o(d Vkoz-kz), where d is the distance between the wires, k, is the
wave number for free space, and k is the propagation constant of
the wave.
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electric field of the dominant mode is parallel at the center of the
rod to the minor axis of the elliptical rod. The use of very thin
fivers of various cross-section as optical waveguldes or as mode selec-
tors in opti:ai masers has also received considerable attention. [For
example, see reference (40)]. Furthermore, it is noted that so far
there exists no satisfactory way of analyzing the problem of surface
wave propagation aloﬁg a dielectric rod of elliptical cross-séction.
It is therefore the purpose of the present investigation to develop a
method to analyie this problem theoretically, to examine in particular
the propagatiion characteristics of the dominant mbdes, and to perform
experiments to verify the analytic results.

The investigation is divided into six parts, and the results are
co?respondingly presented in Chapters II, III, IV, V, VI and VII. In
Chapter II tie fundamental theory of wave propagation along an ellipti-

cal dielectriic rod is given. A method is developed to assure that the
| solutions of the wave equation satisfy all the boundary conditions on
the surface of the_dielectric.rod. ThelcharaCteristic équations‘for
the principal modes are given so that the variation of guide wavelength
with frequency, the dielectric constant, and the physical dimensions of
the guide may be obtained._ It is shown analytically that there exist
two non-degenerate modes which possess no cﬁtoff frequency. They are
called the dominant modes, and it is the propagation characteristics of
these thaﬁ w..11 be considered in detall in the subsequeﬁt chapters. It
is also shown tﬁat all the principal modes on an elliptical dielectric
rod degenerate smbothly to the well known modes on the circular dielec-
tric guide, as the eccentricity of the elliptical rod approaches ..

ZEeIro.
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Numeri.cal results of the characteristic equations for the
dominant mocles are obtained and discussed in Chapter III. Sketches
of the.field configurations are also given. The decay characteristic
of the axial. électric field is computed.

In Chapter IV the attenuation properties and the power distribu-
tion characteristicé of the dominant modes are analyzed theoretically
with the assumption that the dielectric loss is small. Numerical
results are computed. It is found that the attenuation constant of
the dominani; eBE | mode* propegating along an elliptical dielectric

11

rod is much less than that of the dominant HE ﬁode along a circular

11
dielectric 1rod having the same cross-sectional area. Physical inter-
pretation of' these results is also presented.

The Q s of an elliptical Qielectfic rod cavity supporting the
_dominant modles are given in Chapter V. It isvshown that very high Q
cavity may be constructed using thin elliptical dielectric rod. Also
@erived is u.formula relating the Q of a cavity aﬁd the attenuation
constant of a transmissioh liné supportihg the same mode. This for-
~ mule is more general than the one given by Davidson and Simmonds (k1) -
in that it i.s also valid for the hybrid mddes.v This relation islvery
impgrtant whenever the cavity resonator method (19)‘is used to measure
the attenuatiion constant.

To verify the theoretical results a systematic experimental
investigation'on the propagation characteristics of the two dominant
modes was performed. A detailed description of the measuring apparatus

end technique is presented in Chapter VI. Experimental data are then

*The meaning of this symbol is given in Chapter II.
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compared with theoretical results, and they are in very good agreement.
Summgzy and conclusions are given in.Chapter VII. The advantage
of using a flat elliptica; diélectric rod instead of a circular dielec-
tric rod as a‘microwave gulde are pointed out. It is also indicated
that the aﬁalytic method used here may be applied to ‘other similar prob-

lems. The rroblem with sburce present is also discussed briefly.
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CHAPTER II - THEORY OF ELLIPTICAL DIELECTRIC WAVEGUIDES

The prcblem is formulated in terms of the eiliptical cylinder
coordinates; the éppropriate solutions of the wave equation in this
coordinate'syétem are then obtained. The difficulties of satisfying
the boundary conditions on the elliptical surface are pointed out. A
method to overcome such difficulties is introduced. Various notations
and classifications of the principal propagating modes are defiﬁed.
Upon matchirg the boundary conditions by the indicated method, é set of
characteris{ic equations and explicit forms for all field components
corresponding to various modes are obtained. The existence of the
dominant modes having no cutoff frequency is demonstrated. Finally, it
will be shown that as the eccentricity approéches zero, all principal

propagating modes degeherate to the well known circular modes.

2.1 Formulation of the Problem

The surface wave propagation along an infinitely long, straight,
isotropic, and homogeneous dielectric cylinder of elliptical cross sec-
tion imbedded in an infinite dielectric mediﬁm of dielectric constant
< and magnetic pérmeability By o is congidered. The dielectric
éylinder has a dielectric constant € and a magnetic permeability
gl . We assume that By =M s the free space magnetic permeability;
'el > eo , and that the gonductivity in both media is zero. We further
assume that the exciting source is so far away that, in the region of
interest, the sﬁrface waves dominate tﬁe radiated waves from the source.

To analyze the source-free dielectric surface waveguide of ellip-

tical cross section, the elliptical cylinder coordinates (¢&,n,z), as

shown in Figure II-l, are introduced} The elliptical cylinder coordinates
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n = constant

£ = constant = go

Semi-major axis=q cosh &
p—gq , Semi-minor axis=q sinh ¢
Eccentricity, e = 1/cosh

o
1
*0

(a)

F . F o
- T- 1. \ \

(&) ()

Fig.IIél. (a) Cross-section of elliptical surface wavegulde.
Fl and . F2 are the focl of the ellipse. The distance

between focl is the focal distance, 29 . .
" (b) Degenerate form of ellipse when e = 1. As e - 1
semi-ninor axis - Q , and semi-major axis - q .

(c) Degenerate form of ellipse when e =0. As e =0
q-0, go - 00 , semi-major axis - semi-minor axis - r .
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are related to the rectangular coordinates (x',y',z') through the

following,
x' = g cosh g cos 7
w ° ‘ y' = g sinh § sin q
z' =2

(04 ¢ <, 0=«q<2x)

where q is the semifocal length of the ellipse. The contour surfaces
of constant ¢ argcconfoéal elliptic cylinders, and those of constant
1 are confccal hyperbolic cylinders. The elliptic cylinders and hyper-
bolic cylincers ﬁave focli at x’=q, y’=0 and x’=-q , y’=0 . The
semi-minor exis is equal to g sinh go - The éccentricity e, defined
as the ratic of the semifocal distance to the semi-major axis, is given
by e = l/c;sh £ -

One of the confocal elliptic cylinders with ¢ = go is assumed to
coincide with the boundary of the solid dieiectric cylinder, and the

z-axis coincides with its longitudinal axis.

2.2 Maxwell's Equations and Their Solutions in Elliptical Cylindrical

Coordirates

It ié well known that the harmonic form of Maxwell's equations in

a source-free medium characterized by € and p  are given by

Adop E (ia)

v x §> =

VxHE =-1iweE ' _ (1v)
V> E = 0.° o , , (1c)
veE =0 | (12)

where E ard H are the electric field vector and the magnetic field

vector'respectively. The harmonic time dependence of e_mrb for all
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field gquantities is assumed. The rationalized MKS system is used
throughout this work. We shall now confine our treatment to waves
propagating along the positive z-axis. In complex representation
these assunmtibns result inva multiplication 6f all wave functions by

-iwt iz X
e e y 1.e.,

~iwt 4
e Rz

(2)
(3)

E(g:ﬂ:z)t) = (_e_g Eg(gifl) + 271 En(gﬂ']) + Ez Ez(g':'!])) e

; -lwt 1
B(5n,2t) = (o, B A6, + 2 B (60 + g, B(e0)] &™0F P2

where Eg’ iﬂ and Ez are unit vectors in the ¢,7,z directions res-
pectively, end B , the propagation constant of the wave in the z direc-
tion, is to be .determined from the boundary conditions.

In elliptical cylinder coordinates, equations la and lb become

1o 3%, = FEE) - & (eE). oW
< fwe p E, = %1 (5,) - 1Bp SR : (5)
-i0¢p E = iBPH, - %E (B) (&)
s, AR ‘-%n.mg) bt o ()
iwp-pﬁg =§T{ (Ez) -ipp E, . (8)
ia)p.pH‘ . iBPE, - %g (E?) | (9)

!
2 2%, 2
)

2 2 ) 2
where P = ¢(sinh & + sin7q) / , kK =wpes= (Ef and X is the.

wavelength ¢f a uniform plane wave in the medium. The above equations

. L through 9 can be combined to give the field components Eg’ Eﬂ’ Hg’ HTl

in terms of ,Ez and Hz only; we have,



1 aEZ BHZ
E, =73 3 }if + iap ——} - (10)
Eoat gt U o1
1 { aEZ aHZ z ( )
Ep = if ~= = 1oy~ 11
T i ﬁz)p. on ¢
1 OE OH } (12)
H, = -1 we + ip — 1
At
: (k- B7)p K& EE
1 { BEZ OH } (13)
H = -1iwe - ip . 13
1 (k2_ ﬁé)P TOE “on

Taking the derivative of equation 12 with respect to 1 and the deri-
vative of ‘ecuation 13 with respect to ¢ and substituting these

expressions into equation h, one obtains the equation

% 3%

L 22 + [qz(kz- Bg)(sinheg + sinan)] E = 0. (14)
[+ . B Z
ot on~ .

Similarly, taking the derivative of equation 10 with respect to 71 and
the derivative of equation 11 With respect to ¢ and substituting

these expressions into equation 7, one gets

2

u %m,

.Eré + _Er% + [q2(k2_ 52)(sinh2§ - sin2nX] B = 0. (15)
E  on ‘ T

Equations 1k and 15 are the wave eQuations. It should be noted that
these two weve equations are of the same form, therefore it is only
necessary tc so;ve'oqe of them. If 'HZ = 0 a TM wave results; if

Ez = 0 a TF wave results. The most general expressions fof %he elec-
tromagnetic flelds .consist gf a linear combination of the solutions of
TE and TM weves.

Consicer the following partial differential equation



2 2
aé{§;+ §g£% ¥ [qz(kz- 52)(sinh2§ + sinenﬂl\_ =0 (18)
£ )l : ’

in whiéh A may be ‘Hz or Ez . In order to obtain the solutions of

equation 16 one sets

Al = R () )

- and substitites equation 17 into equation 16. Applying the usual
sgparation of variables procedure, one may separate equation 16 into

the followirg two ordinary differential equations

2
d—a@—(z—qz- + (c -.272cos 21))@(71) = 0 (18)
and : n
dzR(g - (e¢'= 2?2cosh2§) R(¢) = 0 (19)
d§2

‘where ¢ is the separation constant and Y2 = (k2— Bz)qz/h . Equation
18 is the Mathieu differential equation; equation 19, which follows
from 18 by the transformation 7 = + 1§ , is the modified Mathieu
differential equation (L2).

For physically admissible single-valued electromagnetic fields,

A(e,n) must be a periodic function of 17 , of period = or 2x ,

and the separation constant ¢ ,in this case a function of 72 , takes

on an infinite set of characteristic values for every 72 .  When 72
is real the characteriétic values are all real; since we are considering
solutions in a‘lossless medium, only real values of cv and 72 are of

interest. Corresponding to 72 = 0 there are two independent periodic
solutions, namely sin n7n and cos nny with the separation constant

e n2 vhers n 1s an Integer. It can be shown (43) that wien Y2
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differs fromn zero, a characteristic value c¢ determines one and only
one periodic solution which is either even or odd in 1 . The charac-
teristic values ¢ , giving rise to even and odd solutions are denoted
here by lan(TE) and bn(rz) respectively. The subscript n identi-
fies those siets of characteristic values which approach n2~ as Y2
epproaches uero. It is known from the Sturmian theory of second order
linear differential equations that solutions associated with an(Tz)
and bn(Yz) have n zeros in the interval 0 4 n <€ x (L&) .

For arbitrary positive real values of 72, the periodic solutions
of Matheiu's equation 18 are*(42,L45)

cen(n,r2) (even) an(Ye)
(20)

G (n) -

2 2
sen('q,T ) (0ad) v (%)
and the corresponding solutions for the modified Mathieu's equation 19

are¥*

a, Ce (£,7°) + agFey (5,7)) (even) & (v9)

R(g) = (21)

2 2 2
by Se (£,77) + vGey (£,77)) (odd) 1 (¥7).
For arbitrary negative real values of’ 72 the periodic solutions of

Mathieu's ecuation 18 are¥
(an(lral) when n even)

N
cex(n,1¥) (even) (b_(1¥2]) vhen n odd)

G(n) = (bn(l‘le) when n even) (22)

.
sex(n,|v°]) (oaa) (an([y2\) when n odd)

and the corresponding solutions for the modified Mathieu's equation 19

*See Appendix A for the definitions and series expansions of these
Mathieu and modified Mathieu functions.
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' (2l 7D) )
. . 1 5 - len(ly when n even
che.n(g,lrl) + e ek (6, ¥°1)) (even) (o (1121} when n o)

R(g) = 2} bn(ly2[) vhen n even)

dlSﬂg(ﬁ;lY ) y dgGekn(a,lvzl) "~ (odd) E

an(lrel) when n odd)
(23)

an(Ye) and bn(Yz) are the characteristic values and n is the order

d and d are the arbitrary

of the function. 15 8p b b2, ¢y oy 4y -

l)
constants.

The proper choice of the above solutions to represent the electro-
’magnetic fiéld of an elliptical dielectric cylinder depends upon the
boundary concitions. For region i, which is the space inside the dielec-
tric rod, all. field components mugt be finite. For region O, which is
the space outiside the dielectric. cylinder, in order that energy flowsonly
along the axis of the cylinder, all field components, must approach zero
as the radial. argument approaches infinity. Consequeﬁtly we must discard
the functions Feyn(é,‘rz) and Geyn(é,*rz) , since they'aré infinite at
the origin, j..e., at £ = O . The functions Ceﬁ(g,lrel) and Se;(g,]rel).
must also be discarded since .they become infinite at infinity. Therefore

the solutions of the wave equationsll and 15 are as follows:

Hzl(é,n,z,t?.= éi;.AhCen(g,7§?.éen(n’ri) e-iwtfeiﬁlz
.*n:' Aésen(‘é:ri)ﬁ sen(n,rf)e‘mt' SRR (e, W) (o
-Hzo(é,ﬂ,z,t) . ni LnFekn(g,[f?\)ceg(ml'rgl) -t eiaoz
o 3% ssa (o, 2Dae 1D P, (3 sag) (29

¥*We follow che notation adopted by McLachlan (47) and Meixner (L4&4).
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(o}

(ee]
_ , 2 2y -iwt 1Bz
EZ (g:ﬂ)z;t) = Z BnCen(E,Yl) Cen(ﬂ:‘fl) e €
i n=0
& :
2 2, -iwt 1Pz N
* nZ::l anen( EJT_-L) Ben(n;}’l) e € , (¢ 2 ¢620) (26)

.

) m . .
: 2 2\ _-iwt 1BoZz.
E, (&m,2,t) = Y PrFek (& |70]) cex(n,(v]l) e e ©
o : n=0 ,
¢ 2 2\ ~iwt 1BoZ
+ nZIPnGekn(g,lrol) seX(n,1701)e = e ~ , (0dg>g ).
(27)

A, A'S,B,B', L, L',P and P' are coefficients which are related
n” "n” "n° "n°” "n” "n’” n n

by the boundary conditions and are functions of sy o Yi,'lrzl

, and
o

the nature cf the exciting sources, but independent of the coordinates.

&
YO

2 . ; 2 2, 2 2 2, 2
v] end are respectively (kl- Bl)q /4 and \(ko- Bola /u\

. 2 2 2 2 : i T "
W1ﬁh kl =@ pey and ko =wue . € is the dielectric constant of

the cylinder and eo is the dielectric constant of the surrounding

medium. ¢ = go is tbe surface of fhe dielectric cylinder. All trans-
verse field components for both regions can be derived from equations .
10 fhrough 13, using equations 24 through 27. Incidentally, the Hertz
vectors ﬂ; and ﬁ; (15) rather than E and Hz may be used as the

scalar quantities from which the other field components may be derived.

2.3 The Bouadary Conditions

The task of solving an electromagnetic wave.boundary value.prob-
lenm is to.find finite and single-valued solutions which satisfy the
source-free lMaxwell's equations and the boundary conditions. The boun-
1 dary conditions are, that'the tangential components of the electric and

magnetic fields must, in general, be continuous.through any surface. If
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the region cf interest is infinite, then the radiation condition (L45)
nust also be satisfied. The above conditions are necessary and suffi-
cient. In the present problem, the continuity conditions in the

elliptical cylindrical coordinates are

B - \
%2 EZO (1)
Hzl = H""o" | (2)
E = E
ay =y (3)
and . H = H (%)
. My o
for g=§0,2ﬂ¥néé and +00 >z >-0 .

In orcer to<illustrate the difficulties encountered in satisfying
the above bcundary corditions f§r the elliptical dielectric cylinder,
we shall first consider the case of the surface wave propagation along
a circular éielectric cylinder. The required axial'electromagnetic

fields both inside and outside the circular dielectric cylinder are (13)

108 4 i ikz _-dot .,
E, = ). A Jn(§ r) cos nd e e (0 £5%<a) . (5)
r:=0
[o0) .
o o ikz ~iwt
E = £r < (6
2w B B e e (eércm) (&)
o o B ikz -iwt e
Z=ZBJ(§r)smn9e e (0 £r < a) (7)
=1 : :
o) ) ' -
HZ = Z Bg Kn(gor) RO T el ek (a £ r<oo) (8)
r.=1

-

. 3 N ) 2
where §l = /kig- k2. and CO = k2- kO' with kf =W pei and ki:a)gpéo.

¢, is the ¢ielectric constant of the cylinder, e, is the dielectric
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: ; . i o) i
constant of the surrounding medium, and €, > € . A, A", B, and
. L o n n n
o) 3 o . : g :
Bn are the arbitrary constants and a dis the radius of the cylinder.

The boundery conditions are

Ej. = E (9)
Hi = B (10)
i &l

Ey f Lg (11)

Hg B Hg (12)

at r=2a, 04£0<£2x and =00 € z € co . Substituting equations 5 and

6 into equation 9, one obtains

4 i ikz & o o ikz
An-Jn(g a)cos nd e . = nZ;o A Kn(g a)cos no e .  (13)

18

n=0

Multiplying both sides of equation 13 by cos md and integrating with
respect to 6 from O to 2x we have, due to the orthogonality of the

trigonometric functions,
: i o) o
A g (E7a) = A K(£7a) . | (14)

It should be noted that for each mode (in this case for each ‘n ) there
should be on.ly one propagation constant. Equation 14 shows that the
boundary conditions may be satisfied for each n sepérateiy, duelfo the
orthogonality” in © of the fundamental solutions and the fact that the
angular function (cos né of sin nQ) is independentyof the characﬁer-
istics of the medium. Similar procedures and conclusions can be applied

to the boundary conditions, eguations 10, 11 and 12.
Consider the boundary condition, équation 1, for the elliptical

dielectric c¢yrlinder. Substituting equations 2.2-26 and 2.2-27 into 1
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2 2 1Bz = - ) iBjz
), BiCe (&,,77) ce (n,vy) e +-nZ;J_BnSen(§O,Yl) sen(n,vf)e

o . : ig 7
= Y, 2iFek (8| v5eek(n,lvS]) ¢ 7O
: 00 ' iB.z
+ L RS (elrgDsextn, [f])e

(15)

Equation 15 may be written as two separate equations, one corresponding

to the even -iype modes, the other to the odd type modes. These equations

a're
nijo BACQH(EO’Yi) cen(q,ri) eisli g
rijo P;Fekr(éo:lril) ce;(n,{yil) e:Laoz (16)
"~ and
nij; anen(éb;fi) sen(n,ri) eiBlZ k4
o 5% PrlGekr(go:\Y§l>se§(ﬂ,lYﬁ\) eiBOZ (17)

=l

Suppose one nultiplies both sides of l7'by sem(n,ri) and integrates
with respect to 7 from O to 2x . Due to the orthogona;ity of the
Mathieu functions (see Appendix A), equation 17 becomes

. 3B 2

iB.z (e}
== PrGekr(go’l7§l) e °
r=l

2
N&Pmﬁem(go,ri)e

2 -
a4 2 2
1££ sex (n, |v5]) se_(n,7])en
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2xn
where N~ is the normalization constant, _['sei(n,yi)dn . Assuming

Bl = BO one gets 0
- 25
N_B Se_(¢& 72) = z: P_Gek (& ]rel) se¥ (1 [yzl)se ( 2)d
mm m~o’'l R o? e AR m* WYL/
B 0 (18)

Equation 18 involves the arbitrary constant Bm (m = 1, or'2, or 3, or

+ + +) and an infinite number of arbitrary constants Pl’ P2,_P3 "-EBO.

Similar procedu;es may be applied to the remaining boundary conditions,
equations 2, 3 and 4, and each of them contributes an arbitrary constant
on the left hand side of the equation and an infinite number of arbi-
‘trary constants on the right hand side of the equation. For example,
using 2, an algebraic equation involving Am (m =1, or 2, or 3, or

s o« o) and L.y L,y L, * ¢ » LOO results; using 3, an algebraic equa-

Y T2
tion involving A end B (m=1, or2, or 3, or « + «), and

- 93, S end L, Ly, L3 * + + L results; using L,

another algebraic equation involving Am and Bm (m=1, or 2, or 3,

Pl,-P

or - - -5 , and Pl’ Pss P3, v .. Poo and Ll’ L2, L3 *r L,
results. Since these equations involve an infinite number of arbitrary
constants, an infinite set of linear algebraic equations is required.
This means m must be equal to O , then 1 , then 2 , * * * , then o .
It can therefore be seen by the method outlined above that in matching

. the boundary conditions, an infinite order of Mathieu functions must
ﬁe used to describe the fields in both media, i.e., both inside and

outside the elliptical dielectiic rod.
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2.4 The Notations and Classifications of the Propagating Modes

For a circular dielectric waveguide it is well known that the
pure TE and TM waves can exist only if the fields are independent of
" the angular coordinates. These circularly symmetric waves are desig-v
natgd by Hon for ‘the pure TE waves and EOn for the pure TM waves.
The subscript o signifies the angular variations and n signifies
the nth root of the characteristic equation. The coexistence of E
and H waves is required to satisfy the boundary conditions if the
field is a function of the angular coordinate.¥ These asymmetric
waves are then designated by HEmn if the cross-sectional field pat-
tern resembles that of an H wave and by EH if the cross-sectional
field pattern resemb}es that of an E wave. The subscripts m and n
denote respectively the number of cyclic variations with © and the
nth root of the characteristic equation. These hybrid asymmgtric
modes discussed above are doubly degenerate since an equally valid
solution results 1f sin mo6 1s replaced by cos me , and cos m@ by
-sin mo .-

As pointed out in the preceding section, no pure TE or TM waves'
can exist on an ellip£ical dielectric rod. All modes must be hybrid.
Due to the asymmetry of the elliptical cylinder, it is possible to
have two orientations for the field configurations. Thus a hybrid

wave on an elliptical dielectric rod will be designated by a prescript

*Physically speaking, the presence of Ez; in a predominantly H wave
(i.e., the HE wave) or vice versa (i.e., the EH wave) assures the
return path for the electric or magnetic lines of force; in other
words, the electric and magnetic field lines must form closed loops
in the case of the surface wave propagation along & dielectric rod.
The existence of a circularly symmetric pure E or H wave along the
dielectric rod is a special case; since the electric and magnetic
lines of force of the E or H wave have already formed closed loops.
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e or o , indicating an even wave or an odd wave. The axial magnetic
and electric fieldsof an even wéve are represented by even and odd
Mathieu functions respectively, and those of an odd wave by odd and
even Mathieu functions respectively. The notation HE is used to
designate the hybrid wave. A double subscript (m,n) will also be
employed; (m,n) denotes the order of wave which corfesponds to the
order (m,n) for an HEmn wave on a circular dielectric cylinder when

the eccentricity of the ellipse becomes =zero.

2.5 The Field Components and the Determinantal Equations

Having properly classified the modes we are now in a position to
describe the field components and to apply the boundary conditions in
order to obtain the charaCteristic equations from which the propagation
constants may be détermined.

In order to simplify the notations for the Mathieu and modified

Mathieu functions without any ambiguities, the fcllowing abbreviations

are used:
ce (&) = Cem(é,ri) ce (1) = Cem(n,ri)
se,(8) = Se(£,7]) - sey(n) = se (n,7)
Fek_(8) = Fek (& |72]) ¢ ceX(n) = ceX(n,|F2])
Gek_(¢) = Gek (&, |72]) se¥(n) = se¥(n,[¥2]) .

(a) JHE, Wave

According to the definition given in the previous section, the
most general expressions for the axial magnetic and electric fields of

an HE wave are:
€ mn
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For region 1. (0 £ ¢ < §0)

(09]

iz
H, = ace (€) e (n) e (1)
1 m= 0
S iz
E, = E: Bm§em(g) sem(n) e (2)
1 m= 1
and for region O (go £t <)
s * iﬁz
B, = ). LJFek () cel(n) e (3)
o] r=0
- .
_ ¢ * iBZ
E, = z: prLGekr(g) ser(q) e (&)
o r=1
Yhere A Bm, Lr, and Pr are the arbitrary constants. All trans-
verse fields can be derived from Maxwell's equations.
Equating the tangential electric and magnetic fields at the
boundary surface, & = go , one arrives at the following equations:
00 o .
2, Ace (&) ce (n) = ) LFek (g) ce (n) | (5)
m=0 r=0 :
00 @
== *
Y, BSe (&) se(n) = ) PGek (£) se¥(n) (6)
m= 1 r=1
2
e 1 —— t
E: All+— Cem(go) cem(n) * 5 BmSem(go) sem(n)
m=1 Ta
72 @ - WE
1 o]
. (-;.2. L 5 Bi0eRis) sk (7)




w2

2

S A % cer(s) ce(n) - B |1 +-%|se (5) ser(n)
Z n B “Cn'éy’ Cn'V " By 5 | SeylEy) =epin
m=0 Yo

72 <

1

=(-_§ %W r Ferr(z) cex(n) - (8)
v2 |20 |

The prime denotes the derivative with respect to £, or 71, as the

case may be. The 1 dependence in the above equation may be elimi-

nated by the following procedures. Substituting the expansions

. @ (00
ceX(q) = nz=o % Paln sex(n) = nglﬁr’n sen(n).
cey(n) = nzgl_xﬁ,n se, () sey(n) = nz;O Ym,n en() (9)

into equations 5 through 8 and epplying the orthogonality relations

of Mathieu function, leads to

oe)
Ana'n = Z err o‘r,n (10)
r=0
o0)
13nbn - Z 'Prprar,n (11)
r=1
2 2
a)el Yl 00) Tl we (0]
B Speat| v *=g 2. A:c'a'rzr,n - T2 7B 2 PrPrPron (12)
Y r=1 8 r=1
o o
ra @ 72 foo)
O A gt - L b - e =] BB '
5 A a! [1+—2]r§o B, ¥ .0 ( 72) 3 rl\;o Lz,erar,n (13)
o o '
n=0,; 8 &% o=
or. n=1, 3,5 -°°*



= ' = 1
a, Cen( gq) a! Cen( go)
= b! = Se’
®y Sen( go) n en(go)
- L 1
£, = Fek (&) £y, = Fek!(t )
. L A— ]
p, = Gek (&) p) = Gek!(t)) | (14)
have been used. ar,n ) B - }{m,n , and vm,n are given in the

appendix. It is noted that in equations 1O0_through 13 when n is
odd the series are summed over all odd values of r , and when n is
even, the series are summed over all even values of r . Simplifying

equations 10 through 13 and meking the identifications

Yl @®
m,n 1+ —2) 4 Z yr,n o‘m,r
r=1

g =
o
i ©
Smyn T T (L 4 =) By ) r,n Bm,r
r=1
o
2
1
h = (.ie—l EE B + Yl‘.l.)i)- ! B
m,n B % Pn"mn 2B PnPunm
n ,
a' 7'2
=20 5 L op
tm,n B a, b c‘m,n"‘y?' B by %0 (15)
)
one obtains
m .A
mgo[ m &m,n mm,n] = (16)
© 4 : .
5 [Lt +P s ]:o (17)
=0 m m,n  m mn

(n=0,2) e+ or n=1,3,5 *** ) .
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The above series are summed over all odd values of m when n is
odd and the series are summed over all even values of m when n
is even.

Equations 16 and 17 are two sets of infinite homogeneous linear
algebraic equations in Lm and Pm . PFor a nontrivial solution the
determinant of these equations must vanish. The roots of this
infinite determinant provide the values from which the propagation
constant B 'can be determined. For example, the infinite determi-

nant for m - 1 mode is

L P L P L P . L
1 L 3 3 5 5
‘h h h : .
1,1 1,1 83,1 3,1 85,1 5,1
1 1.1 31 S5a " Ysa o Yy o ]

£1,3 1,3 83,3 3,3 85,3 5,3

1,3 1,3 %,3 %33 V5,5 f53 - .
=0
&,5 ™,5 &, B35 &5 Dby5 - .
t o "
5 P15 Yas %35 %5 P55
(18)

Due to the extreme complexity‘of this infinite determinant, the roots
of this determinant can only be obtained numerically by the method of
approximations (47). This point will be discussed further in Chapter

ITI. It was found numerically that the first root of m = 1 mode



was governed principally by the expression¥*

&.,1 M1

0 Pia

= 0 (19)

as long as the elliptical cross section is not too flat (i.e.,

£, > 0.5) .

(b) HE__ wave
o m

The expressions for the axial magnetic and electric fields of

an HE wave are:
o mn

For region 1 (0 ¢ ¢ £ ¢ )

o
-
a
H,q = Z Ch Sem(g) sem(n) e pE (20)
m=1
o0
1
E,, = 5 D Cem(g) cem(n) R (21)
m=0
and for region O (go £t <)
& ipz
B, = Y, G Gek (&) seX(n) e (22)
r=1
(e o]
E,, = F. Fek (&) ceX(n) 1Pz (23)

r=0

*For any other modes, say the mth mode, successive approximations
should start from the factor |8y n Pp o

t e

8
m,m m,m
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where Cm’ Dm’ Gr’ and Fr are the arbitrary constants. All trans-
verse fields can be derived from Maxwell's equations. Upon matching
the boundary conditions at ¢ = go and applying the similar mathe-

matical operations as for the eHEmn mode, one can easily obtain the

characteristic equation for the oHEmn wave. For example, the charac-

teristic equation for OHEll wave is
h* h¥ *
&f,1 1,1 831 5,1 &3  Ha
t¥ s¥- . t* * * *
1,1 1,1 310 "3,1 B 5
h* h* ' h*
s ~ L3, - 83" 5 C Bfs HEa
t* s¥ t* g% t* s%
1,3 1,3 3,3 3,3 2,3 2,3
=0
h* : h* hx*
G5 s "|ps - s Hs W
¥ g% ¥ ¥ *
1,5 1,5 = 3,5 %35 %5 555
(24)
where
i 5
gr =1+ —) P
m,n r2 m ro1 t2 mr
o
yf o
s¥* = =1+ = 2 Q
m,n Ys m rz=:l ‘xr,n m,x
we, a' 7‘2 weE
h; & = —l -—n L o + _l. ._9, AR
s B a 'm mn Y2 B "m “m,n
o
b! e
ge = QD L oup
m,n B bn Pn Bm,n L1 72 B Px;x r3m‘,n i (25)
o



To simplify the notations, the following dimensionless gualities

are introduced:

2 , 2 2 2 2
q2 cosh go(kl - B7) = 4 cosh E, YL (26)

»
I

2 B, B B - 2, 2
y =~ ¢ cosh go(ko - B7) = 4 cosh E Yo - (27)

Hence the infinite determinants are functions of x,y,f  and el/eo

only.

2.6 Cutoff Frequencies of the Dominant Modes

It is known that x and y are the roots of the dispersion
relations. Combining equations 2.5-26 and 2.5-27 we arrive at the

propagation constant

1/2
1 Q. 52 2 1 2 &:. .28, 2
P = g cosh go [q A gokl i ] - E_EEEE—E;[q RES goko+y ]
2.8 2412
- i o
" q cosh £ | €1 : (1)
— =1
€o

2 2 2
In order to have a guided wave, B , x and y must all be real
and positive*. One recalls that the positive and real values of y2

indicate that the field intensities outside the dielectric rod decay

*The fact that x° and y2 must all be real and positive offers a
way to determine the upper and lower bounds of the propagation con-

stant B . According to equations 2.5-26 and 2.5-27, 62 £ ki and
B2 K2 . Thus k £BE€k .
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with increasing distance from the surface of the guide. If y2 is

negative and real, the expressions for the field components will
indicate the presence of an outgoing radial wave at a large distance
from the surface of the dielectric rod, which can only come from an
infinitely long (in the z direction) line type source located at some
finite ¢ . ©Such sources have not been postulated in the assqmptions.
In fact, the concern here is with the source-free problem. Thus y2
must‘be positive real for all surface guided waves and consequently
the lowest permissible value of y2 is zero. The propagation con-

stant and the frequency corresponding to this value of y2 are

B(y2=o) - = (2)
and
w(y2=o) = X (3)
q cosh ¢t \/(E—l- - 1) ue,
)

respectively. x corresponds to the root of the characteristic equa-
tion with y2= O . The frequency defined by equation 3 is called the
cutoff frequency of the wave, since below such frequency the mode can
no longer exist on the dielectric guide. Physically it means that
below this cutoff frequency the structure can no longef support such
a wave énd thereby ceases to be a binding medium.

' The approximate expressions of the modified Mathieu functions

for small x and y are derived in Appendix A.2. TFor small values



of y we have

' 2¢
1 Teilt) {_m_ r et
8(m2-l) cosh™€

[(mel) + (m-1)e~ 0]+ o(yl‘>}

[for m> 3 (m odd)] (4)

2 &

Fek! (& ) 2 <& . =2t
1 1'"0 L Y e e y e o L
LT i AP W Y £n( )3 -2 ]1+0(y )} (5)
y2 Fek; (&) y2{ 8 cosh® E 4 cosh 3
and

Gek' (¢ ) | 2 28, lg
L
== .. A -]-‘é- {-m - y2 .. 5 [(m+l) + (m-1)e O]+O(y’1+)
y Gekm(go) y 8(m“~1) cosh &

[for m >3 (modd)] (8)

2 2 o’ '-go -2¢
B 10 B iaal i anSEE Y [3ae. TlaolyY)) (D)
8 cosh & 4 cosh &

vhere « is the Euler's constant. For small values of x , we have

Ce'(& ) 1 g 2
l_2 cez( EZ) T2 [tanh 8.0, + Olx )] LR R e £ =
and

Se' (&) '
.3_‘(?_7§_°).=—i§[cotth + 0(x )] , [for m> 1 (m o0dd)] (9)

where
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m-1
2 r (E%—+ r)! (cosh & )2r
2, (-1) m-1 : m-L
r=0 Sgrit e
2 o (2r) !
1. m-1
2 E%E +r)! (cosh & )2r
(-1)F 0
m-1 m-1
r=0 . 31 (_5— -
L (2r+1)
and
m-1 '
2 (B e (sim g )
gég e (Ei& r)! (EEE -r
e - L = (2r):
2 -1 -
- ; 22—1 r)! (sinh §o)2r
Z (-l) ,I_I:J:_ r)l (E.__l - r)
ks 2 Ty 2 (2r+1):

It can be shown that for small values of

order approximation,

Q ~ ~ 1
T',0 Br,n
~ 0
and
v ~ - ~ m
m,n m,n
~ 0

Substituting the above approximations into the characteristic

equation 2.5-18, one obtains for the even waves

when r =n

wvhen r £ n

when mnm

n

when m % n

X and y to the first

(10)
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€ €
o) 0 2
(m(l + EI) + (EI tanh ¢ G, + coth & G2)] 4(m=- 1)

<2 =
N 28 =g ’
= [(m+l) + (m-1) e °] (11)
cosh g
¥ [for m> 3 (m odd)]
and
29 4 2 )
((L+—=—) + (—tanh ¢ + coth ¢ )] 8
2 _ € € o o s
e €, 2% o g0 -28, i
-.e__e__g_ mfe* e }[3=2s ]
1 cosh & 2 cosh g

[for m = 1] .

Upon iﬁspection of equation 11 we may immediately conclude that
the right hand side of the equation is always positive and non-zero
and is not necessarily small for all values of go and eo/el , thus
X 1s not zero and is not necessarily small. In other words, the
imposed small x approximation is not valid and x must be determined
from the original characteristic equation 2.5-18 with y = 0 . The
same conclusion may be reached for m > 2 (m even) even principal
modes. '

From equation 12 it is noted that as y approaches zero

3
)
zn(ea L

E‘Zggﬁ‘go) approaches - , thus the right hand side of this

equation approaches +0 . In other words, as y approaches zero, x
also approaches zero and the imposed small x approximation is valid.
Therefore the cutoff frequency of the eHEll mode is zero (refer to

equation 3).
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Substituting the above approximate expressions 4, 5, 6, 7, 8, 9
and 10 into the characteristic equation 2.5-2&, we arrive at the fol-

lowing expressions for the odd waves:

l&(me-l) (m(1 + 3) + (tanh G, + i coth £ G.)]
Y 2N Y o2 i
13
250 'l‘éd ’

'-51—7;- [(m+l) + (m-1) e ]
cosh go

X =

[for m = 3 (m odd))

and

8r(1 + =2 tanh ‘o
[( +EI) + ( §o+€—lcoth E)]

X = (for m=1) .
€ 2§o go -2¢ ’
o el g HLOF Bl '} [3 = 28 7] 5
€1 cosh go 2 cosh éo (1k)

Similar conclusions as those for the even waves are reached. TFor
the m> 3 (m odd) odd waves, the right hand side of equation 13 is
élways positive and non-zero, thus x is also positive and non-zero.
It can be shown that the same conclusion applies for the m > 2
(m even) odd principal waves. However, for the m = 1 odd principal
wave, according to equation 1, as y approaches zero x must also
approach zero. There exists no cutoff f?equency for the oHEll mode
(refer to equation 3).

The results of the analysis in this section are summarized as
follows.

i. Along an elliptical dielectric rod there are only two

nondegenerate modes, namely the eHEll mode and the oHEll

mode, which possess no cutoff frequencies.
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ii. It can be observed from equations 12 and 1k that‘as the
elliptical cross section of the dielectric rod gets
flatter, x approaches zero more slowly, since coth go
is very large if go is very small. This fact has been

" verified in the next chapter (see Figures III-1 and III-6).

iii. The cutoff frequencies of all the other modes are higher
.~ for flatter elliptical cross section rod.

2.7 Transition to Circular Cross Section

As an ellipse degenerates to a circie its semifocal length q
tends to zero while go approaches infinity so that the product
q cosh g, 9F d &k g . or qe§°/2 tends to a constant r_ =~ which
is the radius of the degenerated circle. The degenerate forms of the
Mathieu and modified Mathieu functions are given in Appendix A.3.

Using these degenerate expréssions one obtains the following
aegenerate forms for the factors appearing in the characteristic equa-
tions:

a, ~b ~Ce (&) ~Se (£) ~J (x)
al ~ by ~ Cel (&) ~ Sel(g)) ~ xT(x)

£, ~ p, ~ Fek (&) ~ Gek (£) ~ K (¥)

T by
Y L [ 1 ~ ! ~
8, ~ p} ~ Fekl(g ) ~ Gek!(g ) ~ yK.(¥) (1)
l when r=n
O n~ Prn ™
’ ’ O vwhen r #n
m when m=n
Ymn "~ T 7lm n’ :
4 ? O wvhen m#Zn .
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k) . ALl terms in the

2 2. 2 2 2 2, 2
where x = ro(kl -B) and y = ro(B -
infinite determinants vanish except those within the dotted boundary.
(See equations 2.5-18 and 2.5-24). It is also noted that the degen-
erated forms of equations' 2.5-18 and 2.5-24 are identical, hence,

HE wave and HE: wave are degenerate on a circular dielectric
e m o m
cylinder. The degenerated infinite determinant becomes

g (gm,m *n,m ~ hm,m tm,m) = 0y (2)
or
(gm,m sm,m - hm,m tm,m) ¥ Wra (3)

with m=1,2,3,*** representing all possible hybrid waves of order
m=1,2,3,+++ respectively on a circular dielectric cylinder.¥* Sub-

. g ' s h da t
‘stltutlng the degenerated expressions for gm,m’ oo’ Cmym an, n,m

into equation (25) gives

[1 Ja(x) 4 Kg(v)} [ ai(x) ey Kﬁ(y)J
—_——ee 4 — — S
xJ (x) ¥ Km(y) T J (x) € YK

e 2 .2 2
o (X+ ) (¥7+ x7e fe))
x VY

which is exactly the characteristic equation for an HEmn wave on a
circular dielectric cylinder (13). The terms in the infinite series,
2.5-1 through 2.5-4 and 2.5-20 through 2.5-23, are uncoupled and the

summation signs may be omitted.
*When m=0 eguation (3) becomes (g i 5,
J
T LK)y T e 1K)
L e A R e - = 0 which is the charac-
XT (X YW || xT,® T yEE)
teristic equation for TEon and TMon waves on the circular rod.

-h t )=0, or
0o 0,0 0,0
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CHAPTER IIT - NUMERICAL ANALYSIS OF THE DOMINANT MODES

It is the purpose of this chapter to investigate in detail the
propagation characteristics of the dominant modes on a lossless ellip-
tical dielectric rod.

After a brief review of the method for computing the numerical
values of the Mathieu and modified Mathieu functions, the transcenden-
tal characteristic equations derived in the previous chapter for the
mode énd the OHE mode are solved. Several graphs showing how

Ll 11

the propagation' constants vary with parameters are given. Interpreta-

HE
e

tions of the results are given. The field configurations and the axial

electric field extent of these waves are also considered.

3.1 Computation of the Mathieu and Modified Mathieu Functions

It is known that the periodic Mathieu functions may be expanded
in terms of an infinite series of trigonometric functions, and that
the corresponding modified Mathieu functions can be expanded in terms
of an infinite series of products of Bessel functions (see Appendix
A.1). These Bessel function product series converge very rapidly [see
McLachlan (45), p.257]. As has been pointed out on page 21, Chapter
II, in order that the solutions of the Mathieu differential equation
be periodic, the characteristic number c¢ or the separation constant
of the wave equation must satisfy a certain transcendental infinite
continued-fraction equation which is a function of 72.* Furthermore,

the coefficients of these infinite series are functions of 72 and c¢

(42, L45).
*The infinite continued-fraction equation was first used by Ince (43)
in calculating the characteristic numbers; ¢ and are defined in

equations 2.2-18 and 2.2-19.
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Supposing one is interested in obtaining the numerical value of
a certain modified Mathieu function of order m , he must first deter-
mine the value of the characteristic number which is the root of an
infinite continued-fraction transcendental equation and then find the
coefficients from the three-term recurrence relations which are func-
tions of 72 and c¢ . Substituting these coefficients into the
infinite Bessel function product series and carrying out the computa-
tions, he then finally obtains the result.

According . to the above description, it is quite evident that the
task of computing the numerical values for a great number of Mathieu
and modified Mathieu functions is very time consuming and laborious.
Fortunately it is found that the characteristic numbers and the coef-
ficients for a certain finite range of 72 , which is the range of
interest for this present problem, have been tabulated and published
by the National Applied Mathematics Laboratories of the National Bureau

of Standards (49). These tabulated values are used in our computations.

3.2 Solutions of the Characteristic Equations

The solutions of the characteristic equations for the dominant
eHEll mode and the oHEll mode will now be considered. It can be seen
that all these transcendental characteristic equations are of the form

o
f(go) = Y x) = 0 . » (1)
1
Knowing Eo which determines the eccentricity of the elliptical cross-

section and eo/el which is the relative dielectric constant of the sur-

rounding medium and the medium of the rod, equation 1 reduces to
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g(y,x) = 0 (2)
= const.

S0
€ /e = const.
o' o

y and x are related to the major axis of the rod, the frequency,
the propagation constant and the characteristics of the medium by the
relations

2 2 2 2
- ¢® cosn®t (12 - %)

5
I

and
2
)

5
I

2 2 2
g~ cosh go(kl - B

respectively. In order to have propagating waves on the dielectric rod
- x and y must both be positive and real. Furthermore, for these
dominant modes as y varies from O to +m0, x varies from O to
some finite positive constant which is a function of €o/€l and go .
Equation 2 can most readily be solved by the "cut and try" method. The
values of the infinite determinants 2.5-}8 and 2.5-24 are found by the
successive approximation metﬁod (47). It was found (numerically) that
the infinite determinants converge rather rapidly within the present
region of interests (i.e. 0 £ x£€5 and 0 £y £ 3). An 8x8 deter-
minant was the largest one used to obtain a two significant figures
accuracy. Assuming y to be some finite constant, say Vo » the first

" root of x can be found by plotting the function . T— (yo,x)

eo el=const.
versus x as Xx varies from zero and up, and obtaining the first value

X, where the function is equal to zero. Then by setting y to be

another constant, the above process is repeated.
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The above method of solution will now be applied to the charac-

feristic equations for the even and odd dominant modes.

(a) The Even Dominant Mode, the SHE1 Mode.

The computations were carried out on a high speed electronic
computer, the IBM 7090%. The coefficients Aﬁm) and Bﬁm) prepared
by NBS (49) were stored in the computer's memory cells. A three-point
Lagrangian interpolation (50) sub-routine was used to interpolate the
coefficients Aim) and Bﬁm) from the stored values. The number of
decimals for the various coefficients obtainable with a maximum error
of 2.5 units in the last place by this interpolation method have been
tabulated in the NBS Table. It was found that the values of the
Mathieu functions or the modified Mathieu functions obtained using
these interpolated coefficients were correct at least to the third
significant figure. The roots of the characteristic equation were

found according to the method outlined on page 46 of this chapter.

The results are shown in Figure III-1 for the case of el/eo 2:5

0.2.

and for various values of éo ranging from go = 3.0 to go
It is required that the propagation constant inside the rod be
the same as that outside the rod, i.e., from equations 2.5-26 and
2.5-27,
2q cosh ¢ 2 €
2 2 27 L
x +y = (__X—_—E) :t(—e—--l)-~.- (3)
o) o

The intersection of the function in Figure III-1 with the circle,

determined by equation 3, glves the values of x and y required.

*The facilities of IBM 7090 were provided by Western Data Processing
Center at UCLA.
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The propagation constant B of the wave is related to x and y

by
2q cosh ¢ 2 € A B2
2 2
ALATRASA
o
and ;
2q cosh ¢ 2 A B2
2 2
P D - ) (5)
o

respectively, where xo is the free-space wavelength. Carrying out
the method outlined above graphically, the results are given in Fig.
IIT-2. The‘norﬁalized guide wavelength x/xo is plotted against the
normalized major axis 2q cosh go/xo (NMA) for various values of go

in Fig. TII-2. It is noted that the guide wavelength A 1is related

to the éropagation constant B by the relation B = 2x/A and

2g cosh go is the major axis of the ellipse. As expected, no cutoff
frequency exists for this dominant eHEll mode. For small values of NMA
(i.e., the size of the major axis 2q cosh §O compared with the free
space wavelength kb is small) the guide wavelength approaches that

of the free space wavelength; for large values of NMA it approaches

asymptotically to the characteristic wavelength of the rod material,
by

values of NMA the modified Mathieu functions describing the field out-

For small values of y which correspond to the small

side the dielectric rod decay very slowly; physically it means that
the field strength of the wave falls off very slowly away from the rod
and only a small part of the energy is transported within the dielectric

cylinder. The guide wavelength of this hybrid eHE mode actually

L]
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-

becomes that of a transverse electromagnetic plane wave* as the size
of the dielectric rod becomes vanishingly small. For very large
values of y which correspond to very large values of NMA, the modi-
fied Mathieu functions describing the field outside the dielectric
rod disappear very quickly, so the field strength of the wave outside
the rod vanishes very fast and almost all the energy is transported
within the dielectric cylinder. The guide wavelength of the hybrid
eHEll mode approaches that of a TEM plane wave propagating in a uniform
medium filled with a dielectric of dielectric constant € - The above
discussion\concerning the field decay properties of the wave will be
substantiated later in this chapter with numerical results.

It may be further observed that for a fixed value of NMA, as
the ellipse becomes flatter, i.e., as go becomes smaller, the guide
wavelength becomes closer to the ffee space wavelength. This effect
can best be illustrated by Fig. III-3 in which )\ /xo is plotted
against éo for various fixed values of NMA. The fact that the vgria-
tion of the curve becomes gentler as NMA gets smaller is expected,
since at very low frequencies most of the energy is outside the dielec-
tric rod thus the geometry of the cross-section is not important as far
as the guide wavelength is concerned.
| It is also noted that for a fixed value of NMA there is more
binding dielectric material in a circular rod (go = o) than in a
flatter elliptical rod, therefore, (x/xo) is smaller for larger go .
However, this is not the only reason. Supposing we plotted X/Xo
2q cosh €. 2
———x:——ﬁ tanh €

(NCSA) for various fixed velues of ¢, in Fig. ITI-k. Tt can be seen

*Although the wave 1s propagating at the plane-wave velocity of amedium it
does not follow that the wave is entirely transverse. See ref. (51).

against the normalized cross-sectional area, (




" om JO uoT3oUMJ B SB Spoul .ﬂ..mm@ sy3 JO Y3BuSTaABA 9PTNG POZTTBWION .,mlHHH *3Td
oM ‘
(0]4 ot 0T T0 .
‘0
I T I [Tl |
_, 62
® = VN
. 0O°'T = VYWN
L°0 = VHN
G0 = VWN
°0 = VAN

L1LL]

sehat®



=5l

A
Limit = - 0.633

0.6 [ -

0.5 L o , | | ' |
0 0.2 0.k 0.6 0.8 I.0
2q cosh ¢ 2 '
)" tenh g = = 2Z8 . yega
A o N e
(e} kb

Fig. III-L. Normalized guide wavelength of the

oHE,; mode as a function of normalized

crossg-sectional area.



for very small values of NCSA, say <£0.05 , that )‘/"o ~ 1 for all
values of go . As NCSA gets larger, the effect of varying go
becomes more noticeable. For a fixed value of NCSA, x/xo is smaller
for smaller go . This behavior suggests that the field intensity

is more concentrated in a circular rod than in an elliptical rod with
the same cross-sectional area, and that more energy is transmitted
inside the circular rod. We conclude that the circular dielectric
rod is a better binding medium for the eHEll mode than an elliptical
rod. As the NCSA becomes very large, the effect of varying go on

X/ko again becomes quite small, since most of the energy is carried

inside the dielectric rod; theréfore, the geometry of the cross sec-
2q cosh 50)2

A
o

the problem can best be handled by considering the case of a TM wave

tion is not importent. When ¢ - O and ( tanh g - oo
propagating along & thin sheet of dielectric slab in space. Due to
the simple geometry of this equivalent problem, it can. be easily
analyzed (52). The results will not be given here.

It can be seen from the above numerical results that the eHEll
mode pasées smoothly to the circula£ HEll mode as £, = ®© - The

£ = 3.0 curve in Fig. ITII-2 is almost identical with that given by

Wegener (17).

The effect of the variation of relative dielectric constant
el/eo on the propagation constant can be éeen readilx from Fig. III-5.
As a representative example, £y > 0.7 1s chosen to illustrate the

effect. TFor large values of el/eo, A approaches to the characteris-

tic wavelength of the rod material, X, = kb/\/el/eo very quickly;
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and for quite small values of el/eo PR TN el/eo -1, x/xo varies
very slowly with respect to NMA. One may therefore deduce that for
constant NMA and constant go more energy is carried within a rod
vith higher relative dielectric constant aﬁd that the field outside the
rod also decays faster for the higher dielectric constant rod. It may
then seem that the higher dielectric constant rod is more desirable as
a transmission waveguide. Unfortunately the high dielectric constant

material usually is associated with a large loss factor (63).

(b) The 0dd Dominant Mode, the oH; Mode

Similar procedures as those used for the eH mode can be applied

11

here to analyze numerically the characteristic equation for the OHEll

mode.
Equation 2.5-241s now solved according to the method outlined

in Section 3.1. Fig. IIT-6 shows the results of this extensive com-
putation. Again y 1s plotted against x for various values of

t, » and a constant value of el/eo which equals 2.5. Combining the
results shown in Fig. III-6 with equations 3, 4, and 5, the guide
wavelength which is a function of go s ® the size of the guide, and
el/eo can be obtained. The normalized guide wavelength x/xb versus

2q cosh go
the normalized major axis P ——— for various values of go 5
o)

and a constant el/eo is given in Fig. ITII-7. The pattern of the

curves is very similar to that of the eHE mode, Again as expected,

11
no cutoff frequency is observed. When the frequency is low, i.e.,
NMA is small, the gulde wavelength becomes that of the free-space wave-

length and most of the energy is being transported outside the
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dielectric rod; a small value of NMA implies a small value of y ,
which means that the field outside the rod decays at a rather low
rate. For a large value of NMA the guide wavelength approaches

asymptotically the characteristic wavelength of the rod material

M = Xo/\/el/eo , almost all the energy is being transported
inside, and the field outside the rod decays very rapidly.
By comparing Fig. III-7 with ITI-2, it is noted that the dif-

ference between the guide wavelength curves for the oHE1l mode and

the eHE mode is more pronounced as go gets smaller. The nor-

11

malized guide wavelength of the OHEll mode approaches to the limit,

X/XO = l/\/el/eo , faster. For example, when £ = 0.2 and

NMA = 0.9, x/xo for the HE , mode is 0.895, while x/xo for the

11
eHEll mode is 0.987. We conclude that the OHEll mode binds closer
to the dielectric rod than the eHEll mode. When g is larger

than 3, the guide wavelength for the oHEll mode is almost identical

with that for the eHE mode, since these modes are degenerate on a

11
circular dielectric guide.

To show the effect of the variation of go with respect to
x/xo for a fixed value of NMA, Fig. III-8 is introduced. For a
fixed value of NMA the curve for the ofE11 mode is smoother than
that for the eHEll mode. It is again quite evident that when NMA
is very small, x/xo is a constant with respect to the variation
of §o»' For very large values of NMA the geometry of the rod is
not important as far as x/xb is concerned.

7 In Fig. III~-9 the normalized guide wavelength is plotted against

the NCSA for various values of g Unlike the case for the eHEll
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mode, it seems that the elliptical rod is a better binding geometry
for the OHEll mode than a circular rod. These curves for various values
of go are quite close to each other, which means physically that the
field lines are quite uniform for thi; OHEll mode. The slight differ-
ences between these curves may be explained by the fact that as a
circular rod deforms into an elliptical rod, the electric lines of
force are being squeezed together so that the field density is more
concentrated. For a very flat elliptical rod, the electric lines of
force are almost_uniform (the field density is also almost uniform)

and any further flattening of the rod would not change the field den-
-sity too much. Figure ITT-10 shows the variation of the A\ /xo versus
NMA (with s = const}) curve with respect to the various values of
el/eo . The behavior of these curves for the 0HEll mode is very
similar to those for the eHEll mode. It is interesting to note that

as el/e0 approaches unity, or as el/eO approaches infinity, the
x/xo versus NMA curve for the oHEll mode becomes identical with that
for the eHEll mode.

| As IMA - c© and go -+ 0 , this problem degenerates to the prob-

lem of TE wave propagation along a thin sheet of dielectric slab in

space (52).

3.3 Field Configurations

In practice the field configurations are_most quickly found by
inspection of the mode functions. It is found that the.patterns of
the electric and magnetic field lines are quite similar to those known
in a hollow‘metéllic guide. However, owing to the absence of the

metallic shield around the dielectric, the field is no longer confined
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to the inner space. Furthermore, due to the absence of conducting
walls and therefore the absence of the conduction current, all the
electric and magnetic field lines must form closed loops.

Figs. ITII-1lla and III-12a show the tfansverse cross-sectional
field distributions of the eHE

mode and the OHEl mode respectively.

11 1
The longitudinal cross-sectional views of the field distributions of
the eHEll mode and the oHEll mode are given by Figs. III-11b and
IIT-12b. The traveling wave patterns are shown in these figures.
Solid lines indicate the electric lines of force; dotted lines repre-
sent the magnetic lines of force. Three-dimensional sketches of the
field configurations for these two dominant modes are shown in Figs.
III-13 and III-14. The field configurations of these modes are quite
similar to the corresponding dominant modes in the metal ‘tube wave-
guide, as mentioned above; a simple method of excitation is thus

available. The method of excitation of the eHE mode and the oHE

11
mode will be discussed in greater detail in Chapter VI.

11

3.4 Rate of Field Decay

The dielectric rod waveguide is an open structure and hence
the field is not confined within the dielectric rod. Therefore, the
guide is susceptible to considerable radiation loss when it is mis-
matched at input and output ends, when it‘is curved, or when extrane-
ous objects are near it. The knowledge of the external field extent
‘and the rate of field decsay outside;the rod is very important. It is
known from the discussion in Section 3.2 that for small values of NMA

most of the energy is transported outside the dielectric rod, thereby
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we may expect to have a large field extent and a slow rate of field
decay. For large values of NMA most of the energy is being carried
inside the rod so that the field extent is quite moderate and the
rate of field decay is fast. To get an idea of the variation in
the rate of field decay and the fleld extent with respect to the
change in NMA and B, o numerical results for the longitﬁdinal elec-

tric field will be obtained.

(a) The eHE{ Mode

According to section 2.5a the equation for the external

longitudinal electric field of the eHEll mode is

@
By = L Pr Geky(8) sex(n)

(0dd)
-
= Py [Gekl(g) se%{(q) +Fl- Gek3(§) seg(q) + ] : (1)
Pr
The ratio - (r = 3,5,***) can be obtained easily by manipulating
1

equations 2.5~16 and 2.5-17. For example, one may rearrange equation

2.5-16 to give
gﬁ
. Pr 8 (2)
Lm =1 r —rm

where Er,m gre functions of gm,n and hm,n . Sub?tituting 2

into equation 2.5-17 yields

@ [ o0
P_a t +P_ 8 = 0 (3)

(o =.3,3,5;%%) .
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The ratio Pr/Pl (r = 3,5,***) can now be obtained from equation 3:

Pr
== b (4)
Pl r
where b is a functiéon of a s b , and s . Again D are
-r =r,m, m,n m,n -r

expressed in terms of infinite determinants which may be computed
numerically by the method of successive approximations (47). It is

found that for this HE,., mode
e 11

El
Pl

-
1 > 53 >> >> v oow (5)

b

Therefore the external Ez may be approximated by only considering
a few terms of the expansion. The normalized external longitudinal

‘electric field is glven by

P
E, Gek, (&) sex(n) +'F% Gek3(g) se§(q) + e
E - 2 ’ (6)
z,  Gek (g ) set(q) + 5% Gek(&) seX(n) + +»-

where E_  is the ax;al electric field intensity at ¢ and E, is
~ the intensity of the axial electric field at ¢ = g, - Equatiog 6
is computed for various values of _§o and NMA with el/eo = 245
and 7 = n/2 . The results are shown in Figs. III-15, 16, 17, 18
and 19 for go = 3.0, 1.0, 0.75, 0.5 and 0.3 respectively. A family

of curves for various values of NMA are shown in each figure.* These

figures possess similar characteristics as far as the variation of

*In each figure (E,/E, )¢ is plotted against B/Bo for various values
of 2q cosh go/xO and for a fixed value of £, . B 1is the dis-
tance from the axis to the point of observation; B, is the semi-minor

axis. (See sketch in Fig. III-15). E, is the axial electric field
strength at point of observation.



1 T | 1 | I T =
i P ¢y =
B .
=00286 J - ‘ — m
. s | Bo el eHEJi mode
0.1 — E P 1is the point of =
— observation =
E, 2 — ]
(= - —
E
ZO - —
0.01 |- .
__ 3.0 -
0.001
1 8
1 =
0.1 L N eHEu mode
E, 2 = 3
(E : — -
VA
o) o -
0.01’.".: —
0.001

[
(e 0]



i T T T I T T
‘€ . -y
el
255 4 A
€o d
E = 0.75 — HE

- 11 mode
e P 8

E, 2 — 3
(if" - ]
Z .
[e) | — —
0.01 = =
e 1 3 N 5 6 7 8
Fig. III-17.
1 T I T T T T =
"€ —
-—:L- = 2.5 =
eo —
.go % Bn2 — ‘
o ol eEEll‘mode
E, 2 -
S5 [
VA
o b
0.01 =
el 1 2 L 5 6 7 8
B/B,

‘Fig. ITI-18.



.

Figure III-19



~73-

NMA is concerned. The axial electric field decays (not exponentially)
much slower and extends much fartherfor smaller values of NMA. For
large values of NMA the field decays exponentially quite rapidly and
its extenﬁ is quite small. Physically it means more energy is being
carried outside the guide for smaller values of NMA. The same conclu-
sion was reached in the discussion in section 3.2.

To observe the effect of axial electric field extent as a
function of frequency for various values of eccentricities, we intro-
duce Fig. III-20. The field extent, B/Bo’ at which point (Ez/Ez )2=
0.1 is plotted against the normalized frequency NCSA for variouso
£, - It is quite evident that B/BO is larger for the flatter
elliptical cross-section rod. As frequency becomes very high the
normalized field extent B/Bo approaches to unity and for low fre-
quencies B/Bo can get very large. Since Bo is a function o? go
it is somewhat difficult to compare the absolute axial electric field
extent of a circular rod and that of an elliptical rod having the
same cross-sectional area using Fig. III-20. Thus Fig. III-21 is
introduced. 'B/xo ,» the normalized absolute field extent, is plotted
against the normalized cross-sectional area for various £ o Some

very interesting features are noted in this figure. For the region
5 ,
q cosh go)
XO
of 13/)»o is quite small; it varies between 0.35 and 0,55. As NCSA

0.05 = ( 2

tanh €y 40.5 and 0.2 £ £, < @, the variation
approaches infinity so does B/xo ; at very low frequencies, B/>\.o
approaches zero. As the cross section of the rod gets flatter, i.e.,

as & gets smaller, the peaks and the valleys of the curves become
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Fig. IIT-20. Field extent B/B, vhere (E/E, )%= 0.1 as a function
of normalized cross sectional arga for the eHEll mode.



=75

more pronounced. The fact that within a certain frequency range the
absolute axial electric field extent of a flatter elliptical rod is
actually smaller than that of a circular rod of the same cross-sectional
area is worth mentioning. As a typical numerical example, we choose

Ao = 3 cm. According to Fig. III-21 the absolute field extent B

for (Ez/Eé )2 = 0.1 1is 1.37 cm for a circular rod with a 1.5 cm
diameter, wgile it is 1.28 cm for go = 0.5 elliptical rod with the
same cross-sectional area.

Similar curves for smaller values of (Ez/Ez )2 may be plotted.
The general shapes of these curves remain the same,oonly the peaks and
valleys of these curves are more pronounced.

Figs. III-15 through III-1l9 also offer a convenient way of
verifying the purity of the moderon the dielectric guide. (Experiments
on the field decay properties of the eHEll mode have been carried out
and the results are reported in Chapter VI.)

Although only the Ez field is discussed above, it may be shown

that the other electric field components also possess similar though not

identical behaviors.

(b) The oHE,; Mode

From Section 2.5b one obtains the expression répresenting the

external axial electric field for the OHEll mode:

o) B,z
E, = rZ;l F,. Fek (&) ce;(q) e (7)

odd

where Fr/Fl (r = 3,5, *++) can be obtained in a similar way as for
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the HE wave. It can also be shown that for the HE.., mode
e 11 o 11

F ¥

2 2

¥y 3

external axial electric field can be approximated by using only a

R <L o &L . Therefore the value of the

F_.!
2«
1

few terms of the expansion 7. The normalized external axial electric

field is
F
g Fek(s) cet(n) + Ff Pek, (&) cey(n) + - .
E_ F - (9

2, Fekl(éo) Ce{(n) + 5% Fek3(go) °e§(H)+""

Numerical compuﬁations are carried out assuming 7 = O . The results
are shown in Figs. III-22 through III-25 for go ranging from
£, = 3:0 to g =0.2 . In each of these figures (Ez/Ez )2 is plotted
against A/Ao for various values of NMA. 2A  1s the m:jor axis of
the ellipse while A 1is the distance measured from the origin to the
point of observation in the 17 = O plane (see the sketch in Fig. III-22).
The decay characteristics are as‘expected.' At lower frequencies the
field decays slower since a larger portion of the energy is carried
outside the rod, and at higher frequencies the field decays faster and
the field extent is less, since more energy is carried inside the rod.
Fig. ITII-26 which is similar to Fig. III-21 is introduced. In
this figure the normalized absolute axial electric field extent 2A/ko

2q cosh £y o

~i1s plotted against the normalized cross-sectional area (————3r—————- .
o)

tanh go , for various values of go ; the point of observation is taken
to be the point where (EZ/Ez )2 =0.1. Again as w -0 , EA/XO

o
approaches to zero; and as NCSA - co, so does 2A/xo . However, it is

interesting to note the variation of these curves with respect to the
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change in eccentricity. Unlike the eHEll mode, 2A/x0 is always
iarger for flatter elliptical cross section rod. This is because the
major axis of a flatter ellipse is always longer than a rounder one
having the same aresa.

Figs. ITI-22 through III-25 may also be used to check the purity

of the OHE mode on the elliptical dielectric rod.

L1

3.5 Summary

The numerical results of the characteristic equations for the
two dominant modes are obtained. It is found that for the eHEll mode
the guide wavelength becomes longer as the elliptical cross-section

becomes flatter, and for the oHE mode the opposite is true, although

14
not as pronounced. As expected, there is no cutoff frequency for
these two dominant modes. The fact that these two modes are degenerate
when £, @ is also demonstrated numerically.

Sketches of !the field configurations for these modes are obtained.
It is observed that the cross-sectional views of these modes are similar
to the cross-sectional field pattern of the dominant mode in the metal
waveguide. The possibility of launching these dominant dielectric rod
modes by means of the metal wavegulide is also discussed.

The field extent of these modes outside the dielectric rod is
considered. It is found that the electric field extent of the 0HEll

mode is much greater than that of the eHEll mode, and the flatter the

cross section, the larger the contrast.
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CHAPTER IV - ATTENUATION AND POWER FLOW CHARACTERISTICS OF THE
DOMINANT MODES

Having obtained the guide wavelength from the transcendental
equation and investigated the field decay characteristics, it would
seem appropriate to consider the attenuation and power flow proper-
ties of these dominant modes. Attenuation is caused by imperfection
of the dielectric material. It is possible to include the lossy
characteristics of the dielectric material by assuming a complex
dielectric constant to represent the permittivity of the material.

The effective complex dielectric constant is given by

€, = €q T €] . (1)

Replacing the lossless dielectric constant € (as used in Chapters
II and III) by the effective complex dielectric constant €, and
substituting € into the equations in Chapters II and III where
applicable, one notes that since the arguments of the Mathieu and
modified Mathieu functions are complex, the roots of the character-
istic equations can no longer be real and must be complex. Therefore
the propagation constant P i1s also complex and must be represented
by

B = B*' + iy (2)

where PB'. is the new real propagation constant of the wave on the
lossy dielectric guide and « is the attenuation factor of the wave.
Of course the new real propagation constant fB' does not necessarily

equal the propagation constant of the wave along the lossless
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dielectric guide. The numerical solutions of these complex charac-
teristic equations are extremely complicated and involved. Even the
analytic properties of the Mathieu and modified Mathieu functions
with complex argument have not been well investigated and understood
(45,49).

However, when the conductivity of the imperfect dielectric is
very low, in other words, when the imaginary part of the effective
dielectric constant given by equatiop 1l is very small, i.e.,
ely e it can be assumed (15) that to the first order approxi-
mation the dissipation has no effect on the field configuration of
the wave, which simply remains the same as that of the lossless case.
Thus the propagation constant f i1s unchanged by the presence of
small dielectric loss and therefore the analyses carried out in the
previous chapters still apply. The mode functions in the case of
small dielectric loss differ from those of the lossless case only by

o Z

a multiplicative attenuation factor e , Where «a is the attenua-

tion constant and can be calculated by a perturbation method which
will be described later.

The approximate formula for the attenuation constant o will
be derived by the Poynting's vector theo:em. The problem of attenua-

tion of the eHEl mode along a slightly lossy dielectric rod will

1
then be analyzed analytically and numerically. The results will be

exhibited graphically. Similar considerations concerning the problem

of attenuation of the OHE mode along a slightly lossy dielectric

11
rod will also be made. The results on the attenuation properties of

these two dominant modes will be discussed and compared in detail.
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The power flow characteristics of these modes will be calculated.

4.1 The Attenuation Constant

The attenuation constant « can be calculated by a perturbation
method, provided that the power loss per wavelength along the rod is
small compared to the power flowing along the rod. Since there is
no radiation perpendicular to the rod at large distances, the power
flow is only in the z-direction, i.e., only along the axis of the
rod. It has been pointed out earlier that the fields are damped ex-
ponentially as'they propagate along the rod, and if their attenuation
factor is « , that of the Poynting's vector is 2a . Therefore the
attenuation constant can be calculated from the following relation:

2a = l 3 ' (1)

i
Sq151

where P is the time average transmitted power and g% is the time

average power loss per unlt length. According to Poynting's theorem

(15) we have*
—~— 8 +V, *8 . =-J B +iw(pE - B¥ - ¢E - E¥X) (2)

where Sz is the longitudinal component of the Poynting's vector

s, ad s,

sion over a cross-section A of the guide (this A includes the:

is the transverse part of S . Integrating this expres-

cross-section Ai of the dielectric guide and the cross-section Ab

outside the dielectric rod) we get

% E¥ or H* signifies the complex conjugate of E or H respec-
tively. . }



-85~

.g—i+)gg_.(;E_xg_*)dz=-adfg-g*dwrhm[wm-we] (3)
c .
L
3

" where - P is the time-average power loss per unit length; Wh and
VA

Wé are the time-average magnetic energy and electric energy per unit

length of the guide respectively. It has been assumed that 03 = 0

E inside the rod. The value of the second

outside the rod and £ = Ud

integral on the left hand side of equation 3 is zero, since power flows

along the rod only. For the undisturbed field, Wﬁ = We , thus we have

. :
.EP:-odfg._E_*dA. (k)
A

The time-average transmitted power is given by

P=fgz.@tng€>u . (5)
A

Et and g% are the transverse components of the electric and magnetic

field of the mode under consideration, and A 1s the total cross-

sectional area of the guide.' Substituting equations 4 and 5 into 1 we

get the expression for the attenuation factor

qi -/ig - E¥ dA

2q = Al | (6)

J RSN
A

where the uait of « is nepers/meter. Changing into practical units we

have
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IE - Ex dA

M Ay
a = ‘% - 8.686 + g - Eg = (db/meter)
.o | Jf
o
-e: o (Etx E%)G'A
A (7)
where cd =W €l¢d v el and ¢d are respectively the dielectric

constant and the loss tangent of the rod. It may be noted that for a
‘plane wave propagating in an infinite homogeneous medium of conducti-
vity Gd , the gxpression within the absolute value signs becomes
l/Vr;;7E;. where < is the dielectric constant of the surrounding
medium.

Let us now consider the integrals within the absolute value signs.

In elliptic cylinder coordinates these integrals can be expressed as

follows:
£, 25
fiE- . ff (E *Eq ES+E lE* )a2(sinh® + sin®n)dnde
By (8)
and

_[—e-z * (Byx Ef)dA = fsz.(gt =5 )‘i‘”fiz' (E; x Hf )da
A o 8 oL o o

K A,
€, 2
ff (E, H* - E Hag )g2(sinh® + sin®n)dnde
0 0 &
o 2x
+f f (E H* - E H* )q (sinh ¢ + sin n)d-ng (9)
Lol ke %l ’
o
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where the subscript 1 and the subscript o represent the inside
and outside regions of the dielectric rod respectively, and q 1is
the semifocal length of the ellipse. £y is the boundary surface

of the elliptical rod.

4.2 The Attenuation Factor and the Power Distribution Characteristics
of the eHE Mode

JL

The field components of the eHEll mode have been given in sec-
tion 2.5a. Upon examining the integrals in equations 4.1-8 and 4.1-9
it can be seen that it would be extremely laborious to carry out this
integral if many terms of the expansions representing the field com-
ponents are required. Fortunately it is found (numerically) that,

within the region of our interest, i.e. for go 20.2 x5 eand

Yy<3,
L L L
1> L—3- >> fi >SS eee >> —i’—i
1 1 1
P P P
1> 53- > 1—,-5- S>> e >> ;i
1f . (¥ 1
B B B
(e0)
1> B—3 >> gi 3o g s
1 1 1
A A A
Lss =250 <25 oo 35 ] (1)
By Ay Ay

so that the expressions representing the field components can be ap-
prdximated by only the first few terms of the infinite series expansion.

In other words, the infinite series converge rather rapidly, providing



-88-

that €, is not too small. For instance, it is found numerically

is obtained using

o

three terms of the infinite series, even when £, 0.2 . It is also

that a two-significant-figures accuracy for 1HZ

noted that the accuracy gets better as go gets larger, assuming that
the same number of terms is used.

We are now in a position to consider the integrals in equations
4.1-8 and 4.1-9. Substituting the appropriate expressions into equa-

tion 4.1-8 and 4.1-9 one obtains

jf(gl' EiidA

A B €
2
L= - _C_l[gz(AI) (D2 () (axx)
2 224 1 H
cosh goq A.l =
(e]

H
|
|

B € B €
+2(c (Kli) @ (AIII)] 4 (TA—i-)E (—f)(Axv) (2)

Afe - (Bpy x Ejg)ar A _
£, = — - sl[fz_g(ﬂ) v \/_ (Al) 2 (1)
(o]

2 2.2
cosh £,9 A ‘/ %—
o

o

B
+ V/2§- zi (1 + Ei_ga)(AIII)] (3)

. *
Afgz (Byo * Ef)ah

£, = - "’E—l [(—) J&o (BI) +( )\/— —(BII)

cosh2§0q2A1 —%'
(o]
Tl P
+ /% (1%) (El) [Lre 32)(3111)] (%)
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where
€
x2 + y2 -—i’- x2 " y2
El = € ’ -92 = € ¢
L (_1_ - 1) Py E ye
< 5
Ah 2r_e _e' e'_e An m e e
(AT) = % (-A—) [Rm1m+ RnnIn]+ § Zm(KI) (7“1 [anInm]
n#m
(ATT) = (?E 2..0%.0 0 .0' Bn Bm o .0
ATI) = g Bl), R I° +R T ]+ g % (EI) (§I) R_T
n#m
(ATII) = ). Z(fﬂ)(Bﬁ) (22 a° -0 J° ]
= = Al Bl nm nm nm nm
B
(av) =3 % (—,%)(B? Qo
(BI) = Z: (EE)E [Re Ie' Re'Ie] z:(Ih)(Lm) re Ie']
B * Spnend Yt Z; & fz fz [—nm—nm-
" n#m
Gr) = TG D + 200 T ol
L) ek v Rl v 4 B @)kl
n#m
(52‘. Pm e (o) (o) e
(BIII) = % é Ll)(i.;—l-)[gnm_{nm o A o
=1,3,5°""
(i = 1,3,5...)

The R's, I's, J's, T's and Q's are defined in Appendix B. Expressions

A r/Al, B r/Bl, P 1_/Pl, L r/Ll, Bl/Al, ./A,, and Pl/Al may be obtained
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in a straightforward menner using equations 2.5-10 through 2.5-13.
Because of their very complicated expressions they will not be

given here and will be presented in Appendix C. Expressions 3 and

4 represent the portion of power being transmitted inside and outside

the rod respectively.

Substituting equations 2, 3, and 4 into the expression within

the absolute value signs of equation 4.1-7, we get

[(E - EX)aa
A =1 =1 € £
R=|— 2= (5)
—/' A e " £+ f3 i
(B, x H()- e dA
A+ A
R [e]

R is related to the attenuation constant « in db/meter by the fol-

lowing relation

_ 8.886 [1 .
a = 5 O'd -e-;R (6)

is the conductivity of the dielectric rod.

where cd
Using the results given in Chapter III regarding the relation-
ship between x and y for various values of go and el/eO y
numerical computation of R can now be carried out. All radial
integrals are evaluated numerically using Simpson's rule (50). Results

of this very lengthy computation are shown in Fig. IV-1*. 1In this

figure the value R , which is directly proportional to the attenuation

*Tt takes almost 30 minutes of continuous computation by the IBM 7090
computer to obtain each curve.
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constant (see equation 6) is plotted against the normalized major
. 2q cosh ks ]
axis (NMA),-————x————— , for various values of go ranging from

o

g =3.0 to & =012 . It is assumed that e /e = 2.5 . For

o o} 1" o

sufficiently large values of NMA, R tends toward the plane-wave
value l/\/el/e0 for all values of £, for small enough values of
NMA , R can be chosen as small as desired. This behavior is attri-
buted to the fact that, when NMA is sufficiently large, almost all
of the energy of the wave is transmitted inside the rod*; and for
small values of NMA almost all of the energy is outside the rod. (It
has been assumed that the dielectric surrounding the rod is perfect.)
It is also clear that R tends to the limit 1/\/ el/eo much slower
as go gets smaller and that flatter elliptical dielectric guide
possesses lower loss characteristics. This may be explained by the
fact that, according to Fig. IV-1, for a constant value of NMA, smaller

rod has less volume of dielectric material and therefore lower
go

dielectric loss. However, this is not the only reason. If we plot

2q cosh go 2
R against the normalized cross-sectional area (NCSA), (————x—————) .

o

tanh Eo 2 for various values of go with el/eO = 2.5 , as in Fig.IV-2,
the same effect (i.e., lower loss for smaller go) of a lesser degree
can still be observed. As the elliptical cross-section gets flatter,
the field of the eHEll wave spreads out more so that the total inte-
grated effect on the attenuation indicates that this type of field

distribution offers less loss. The shape of these curves in Fig.IV-2

*Tt is noted that when NMA is very large the attenuation factor R is
numerically identical with the attenuation factor of a certain wave-
guide mode propagating in a perfectly conducting metal tube waveguide
£filled with the same dielectric material as that of the dielectric rod
under consideration.
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shows that the attenuation factor can be made extremely small if a
very flat strip is used. For example, when NCSA = 0.15 the attenua-
tion constant <« of the eHEll mode can be made ten times smaller if

g = 0.3 elliptical rod is used rather than a circular rod, and «

o

may be almost 90 times smaller if b ® 0.2 elliptical rod is used.
It is interesting to compare the axial electric field extent of these
rods corresponding to the above example. According to Fig. III-21,
.when NCSA = 0.15 the axial electric field extent ZB/)\.o where
(EZ/EZO)2 = 0.1 for ¢ =0.3 elliptical rod, is 0.47, and for
E, = 3.0 elliptical rod it is 0.435.

The fact that the variation of slopes with respect to NCSA in
Fig. IV-2 is smaller for flatter rods in the low loss region, is
gquite significant. It means that a small imperfection in the dimen-
sions of a flatter rod would induce a smaller change in the attenua-
tion factor R .

It is interesting to note the distribution of the transmitted
power. There is a very close correlation between the percentage of
pover carried inside the rod and the loss factor of the wave. With

the help of Poynting's vector theorem one can easily calculate the

percentage of pover transmitted inside the dielectric rod. It is

P, £

i 2
—_— I —— 7)
P 4 (

£ f2 + f3

where f, and f_ are given in equations 3 and 4. Numerical results

2 2
of equation 7 are given in Fig. IV-3 in which Pi/Pt is plotted

against NMA for various values of £, 3 el/eo is assumed to be
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constant and is equal to 2.5 . It is observed from Figs. IV-2 and
IV-3 that a higher percentage of power transmitted inside the rod
corresponds to a higher attenuation factor and more power is carried
inside the circular rod than an elliptical rod of identical cross-
sectional area. Fig. IV-3 also confirms the fact that more power

is carried inside the rod as the frequency gets higher.

The go = 3.0 curve in Fig. IV-1 corresponds very well with
the published results for the circular dielectric rod (18). The
analytic expression of the loss factor R for the degenerate cir-
culer dielectric rod can easily be derived from equation 5. Noting
that as £ -, -0, qcosh £ —a and qe§/2 -p , where a
is the radius of the circle and p is the radial component in the

polar coordinates, one gets,

P
_P;3.-’.P_5._,_P;Z._.n--_c£—>o ) f—i—,?é—,?l—b ..?91_,0
A A A Ay By By By By

X2 Ll
1 Py 1
B, = v K@) Al+XJl(x)
— 5 [k ¥
A € 2 + v2) (%2 + y2 €1
o x2 + y2)(x2 + yo 21
Jl(x)P/ eo)]
72




g B.® B 2 .2 .2
x = a (kl w« B ). iy y~ = -a (&o - B5)
since O%,n ~ Br,n ~ 1 when r =n
~0 vhen r £ n
Vm,n o~ w,n ~m when m =n
~ 0 vhen m # n

Equations 2, 3 and U4 degenerate to the known expressions associated
with the loss factor of the dominant mode propagating along a circular

dielectric rod (21); they are, respectively,

j(gl : Ei)dA
A,
. 4

2 2 Ko
a8y =
(@]

z Bl » eo

€ B € B
[e) 1 [e) 1
- 2 02 -u—o' IJ-_. (I12+ 113)] + (ﬁ;) -A—l Il)-l- .

f (By % Efp)- e da

! PR NG Lo (12
> o 1|VCa(Ig+Ig)+ eVl KI) (Typ+ Iy
a Al E;
€ B €
¢} gl 4.
- \fjf —I (1 + E; 02)(1124-Il3)J 5
and
JCNES R bt :
A " €
[) L X 1.2 . , I <6 - .
m %% [("‘) e g v 1)+ ()7 2ey(ay v 13y
a2A§ "o v A’l Al H
: :

b s TR o | s it
- (7{)(1{) \/; (L +Cp)(Tys+ I3h)] ;
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where
c
2 2%
X +¥Y & x2 + y2
Cl = - J C, = ’
I el N 2 5 €& 5
%" {== = 1) ZH+7
(o] o
X X
B 2 dp ” B 2
IB—Ill—le(p)P i I9—Ilo—fJJ‘_ (p)p dp ,
0 0
X X
- - _ 2 P
=Ty =[ 5@ @e, 1,-[fe Lo |
0 0 -
(o8] (o0}
dn 2
b o= TV = — R TR i 1
Ip) = Iy f Ki(n) n  ° T = Tzg f K (a)n dn ,
Y Y
(o]
and Ié3 = 13)+ = le(n) Ki(n)dn :
y

in which p = x—g- and n=y g - The attenustion consteant of the HE .

wave on & circular dielectric rod can easily be obtained by substitut-

ing the above expressions into equation 4.1-7.

4.3 The Attenuation Factor and Power Distribution Characteristics of

the oHEll Mode

The attenuation factor of the OHEll mode can be calculated in a

similar manner as that of the eHEll mode. The expressions for the field

components are given in Section 2.5b. It can also be shown numerically

that
C C- & &)
l>>—é§>>65—>> '"»?:92'
i i 1
D D D
;) 3 2 oo ¥ ..
>> D >> D >> = D

L X kL



«§um

G, G G,
l>>—G—>>-c-;_—>> -'°>>—6—
1 1 g
F F F
l>>f3'>>f2>>"'>>_;9’ (1)
1 1 1

for most cases investigated.
Substituting the appropriate field expressions into 4.1-7, one

finds after some manipulation that

o.\/=R', (db/m) (2)
(o]

in which R' = fi/(fé + fé), where

- E¥)dA
A7 & B Dy 2 %
BY o s s [QQ(AI)w feS) = A BT}
cosh goq Cl o 1 K

(o)

)f(mx) ] )2 © (arv)

(3)

(E, xH¢ ) . e dA : .
A'o[ o e S xt 8 . S
fé = : ;—T c, [<C—l) \/9_2 (BI) '+ (—CI) T\/9_2(BII)'

G, F €
- (@—i)((—%)\/% (1 + 92)(3111)-} . (5)
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Cl and 92 are defined in Section 4.2 and

(AT)' = Cn 210 T° 00 E: Cn m [ o o'}
- § @l T 16 [
n#m
2 '_e Dn m e ..e
(ATI)" = EI; (2 [Rann+Ran§n] +§n: Ez;(i)(]) ) [anrnm]
n£m

() - B % <3’§><Dm> QG
G = L@ M R T D[R]
pei n m
n#m
hor e & et Foie e e’
Gm = T @[] T T @6 (]
n#mn

. EE) Fn) [TO I _ g g© ]
(BIII)' = % ;(Gl &) Mo Ton ~ Tom Zom

where the R's, I's, J's, T's and Q's are given in Appendix B, and
the ratio of arbitrary constants are given in Appendix C. The loss

factor R' for the OHE 1 mode as a function of NMA is computed for v

1
various values of go ranging from go = 02 1o go = 3.0. The rela-
tive dielectric constant €o/eO is assumed to be constant and equals

2.5. The results are plotted in Figure IV-4. The attenuation factor
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R' for the oHEll mode varies with frequency in a similar way as that
for the eHEll mode, viz., the attenuation factor R' approaches
1/ ¢217E;' as frequency approaches infinity and R' can be made
arbitrarily small by lowering the frequency. It should be noted
that the slope of the curve for the elliptical rod in the low loss
region is quite steep, i1.e., a small variation in NMA would cause a
" rather significant fluctuation in R' . It is quite obvious that
mode as a transmission

the eHE mode is more suitable than the OHE

11 11

mode.

The distribution of the transmitted power as a function of
frequency can easily be computed. The percentage of power carixied

inside the dielectric rod is

1
Ei = __fé___ (8)
P! 14 £
=2 3

wWhere fé and fé are given by equations 4 and 5 respectively.
Fig. IV-5 shows the variation of Pi/P% as a function of NMA for
various values of £y 3 el/eo equals 2.5 . The behavior of
these curves is as expected. More power is carried inside the rod
as the frequency gets higher. Again there is a very close correla-

tion between the amount of power carried inside the rod and the

value of the attenuation factor.

4.y Summary

A detailed analysis on the attenuation characteristics of

the eHEll mode and the oHEll mode propagating along an elliptical
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dielectric rod is carried out in this chapter. Numerical results
are obtained. It is found that a thin elliptical dielectric rod

operating in the dominant eHEl mode is a better guiding structure

L

than a circular dielectric rod operating in the dominant HEl mode,.

5

because the eHE 1 mode has much lower. loss on a flat elliptical rod

1

than on a circular rod of identical cross-sectional area.
It would be interesting to compare the attenuation constant

of the eHE mode with the attenuation constants of some well known

11
metallic waveguide modes in the millimeter wavelength region. The

values of the attenuation constants for various kinds of waves are

tabulated in the following table.
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CHAPTER V =~ ELLIPTICAL DIELECTRIC ROD RESONATOR

To conclude the theoretical analysis of surface wave propagation
along an elliptical dielectric rod, we include here the analysis of the
Q factor of the elliptical dielectric rod cavity. The earliest work
on dielectric resonators was carried out by Richtmyer‘(53) in 1939. He
developed the theory of operation for several interesting dielectric
resonators of simple shapes, such as the spherical dielectric cavity
and the "doughnut" shape dielectric cavity. The dielectric tube resona-
tor was first uséd by the grohp in the Northwestern University (Sh).
Later in 1959 Becker and Coleman (26) made use of the dielectric tube
resonator to generate millimeter and submillimeter waves and to operate
as a frequency meter. Most recently Snitzer (40) proposed the use of
dielectric rod cavity as a mode selector in laser operation.

In the present problem the dielectric rod cavity consists of an
elliptical dielectric rod suitably terminated at its ends by suffici-
ently large flat metal plates which are perpendicular to the axis of the

rod (see Figure V-1). At resonance, the length of the cavity L must

—reflecting
,/,dielectric rod plate

—— Z

r 4

: .
| |

Figure V-1. The Elliptical Dielectric Rod Resonator
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A

be n £ (n an integer), where Xg is the guide wavelength of the

2
particular mode under consideration and is a function of Ay s el/eO 3
and the size and shape of the dielectric rod. The relations between
Xg and the mentioned physical conétants are determined by the boundary
conditions. Only the eHElln and the oHElln modes of the dielectric
rod resonator will be considered in this chapter.

The @ factor of a resonator is indicative of the energy storage
capability of a structure relative to the associated energy dissipation
arising from various loss mechanisms, such as those due to the imper-
fection of the dielectric material and the finite conductivity of the
end plates. The common definition for @ i1s applicable to the dielec-

tric rod resonator, and is given by (15)

total time-average
energy stored =
© average power loss o]

(1)

F-»)]

|

&
ro||2|

where Oy is the frequency of oscillation. The above approximate ex-
pression is valid when Q >> 1 .

In our case the time-average power dissipation P consists of
two parts, the power loss due to the dielectric rod ana that due to the

metal end walls

P = Pdielectric o Pwall : (2)

The power dissipation due to the dielectric rod is given by (15)

Patelectric = % j‘j (El i E_i‘_)d.Adz (3)
o) Ai
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while the loss due to the end wall is (15)

= 1 [wu *
B - H - E a , (&)
wall 2 2qu Jf twall —twall
A
end
wall
where gg is the surface resistance, Ry - The total time-average
M

energy stored is given by (15)

Ve =8 =E . = .
W= 21 _'.ewe = 5 [g H* av = [g E*¥ av (5)
A \

i+o i+o

oo

where Vi+o 1s the total volume of the cavity.

5.1 Q@ of a Cavity Supporting the eHElln Mode

By a linear superposition of the mode functions for the eHEll
wave traveling in the positive and negative z-direction, the normal
modes of the cavity may be constructed. The resultant axial fields of

an eHEll,wave traveling in the positive z-direction and a superposed

By

are as follows for region 1 (0 £ ¢ £ go)

wave of the same amplitude traveling in the opposite direction

o

Hzl = 251 A, Cer(g) cer(q) sin Bz (1)
o -

EZl=u-g;l B Ser(g) ser(n) cos Pz ‘ (2)

and for region O (go £ <o)

[0o)
H = z: I&Fekr(g) ce?(n) sin Bz (3)
o r=1 ' ‘
odd
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o0

E, =- ) PrGekr(g) sei(n) cos Bz (&)
o] r=1

odd

All the symbols in the above expressions have the same meaning as
those defined in the previous chapters. The.arbitrary constants
Ar’ Br’ Lr’ and Pr are related by the boundary conditions. Expres-
.sions 1 through 4 satisfy the boundary conditions on the surface of
the.dielectric rod and at the end z = 0 . To make them also satisfy
the boundary conditions at the other end, z = L , we restrict p in
such a way that PBL = nx where n is an integer, (i.e., L = nxg/Z).

Substituting the proper field expressions into 5-5, carrying
out the integrations where possible and retaining enough terms of the
expansion to give the same order of approximation as obtained in
Chapter IV, one finally arrives at (after some rather lengthy algebraic

menipulations) the expression for the energy stored in the cavity for

the HE, , mode,
= €l eo
= e . % — . X%
W= j(gl gl)dv+ . ](Eo go)dv
Vi Vb
Le
- 2 P2 o
= cosh ;o q Al .= . CT (5)
Where
€ B €
Ll B8 Tp
Cn = =— () — (A1V)
T R
€ B € B €
1. 1:2 o 1 o}
t=— & [QQ(AI) * 5 Y (AIT) + 2y ¢, (Ki) iy (AIII)J
o 1 . )
P €
+ (2)% =2 (z1v)
Al K
L
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Cys Cps (AI), (AII), (AIII), (AIV), (BI), (BII), and (BIII) are given

in Chapter IV;

P F
(B1v) = ¥ ¥ (D Lo
n n St &
(n =1,3,5 ...)
(m =1,3,5 ces)

where QO is given in Appendix B. The ratios of the arbitrary con-

stants are given in Appendix C.

The power dissipation due to the dielectric loss is

3
3 ch o 2x .
= e c— . X%
FPatelectric 2 I f (E)- E}) pandg
0O O
o,.L
d 2 2 2 o)
= g Al q cosh éo € Cq
where
B € B c
l 2 (o) l 2 o)
Cq = (KI) m (ATV) + gl[gg(AI) + (K]_-) .y (ATT)

B €
r2(G <,—é>@ ()

Another source of power loss in this cavity is caused by the

(6)

finite surface conductivity of the reflecting end plates. The loss

may be computed from equation 5-L.

= 1 @ 2, 2
- = . g* -
P e 2[:2 Rs Jr (Ht Ht)at z=0dA} = RsAlcosh goq c (7)
A
i+o

where
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c,=¢ [( )+l (1)2 °(AII)+2( )\/_\[‘2/_(/&111)]

L

X l 2 Ll Pl €
e [N [(—) (BI) + g, Al) uo (BII) +2(Kl-) (7\1—)\/—7;\/'9_2 (BIII)]
Rearranging exéression 5-1, we get

1 P Pitelsctrie wall 1 1
- — — 4 — = — (8)
Q w W w W w W Qd Qw

Qd is the Q <factor of the cavity if the end plates are perfectly

conducting, and Q, is the Q factor of the cavity if the dielectric

is perfect. According to equation 8 we have

- C
1 il
Ry B BN = = (9)
d P € Cd
dielectric 2¢d =
€
and
w W L CT
wall W

where ¢d is the loss tangent of the dielectric rod and & is the
skin depth of the end plates.

The expressions CT/Cd and CT/Cw are evaluated numerically
and the results are shown in Fig. V-2 in which cT/cd and c.,:/cw are
plotted against the normalized cross-sectional area (NCSA) for various
values of &  with e /€ = 2.5 . For small values of NCSA, Cq/C4 can
be very large, thus Qd can also be very large. This 1s because most

of the energy is outside the rod. As NCSA approaches infinity, CT/Cd
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approaches el/éo and Q; approaches l/2¢d-* Again one notes that
the flatter the elliptical cross section, the higher the Qd factor.

It is worth while to take notice of the behavior of CT/Cw as
a function of NCSA. For an ordinary cylindrical metallic waveguide of
simple cross-sectional shape, terminated at both ends by short-circuit-
ing plates, the Q@ factor resulting from the imperfectibn of the end
plates is L/26 . L is the length of the guide and & is the skin
depth of the end plates. This Q factor is independent of the type
and order of the mode under consideration as long as the mode is either
of TE, ™ or TEM type and not of a hybrid type5 It means that for this
type of cavity, CT/cw is always unity. However, CT/Cw is no longer
a constant (see Fig. V-2) if a hybrid wave is present. This character-
istic is probably due to the fact that the TE and TM waves are inex-
tricably coupled to each other on a dielectric rod except for the
circularly symmetric waves.

It is also noted that Qd 1s independent of the length of the
cavity and Q, is directly proportional to the length of the cavity.
The total Q of the cavity can be computed from the knowledge of Qw

and Qd using equation 8. For a'very long cavity, Qv >> Qd , there-

fore Qiopa1 ~ 9% °

5.2 The Q of a Cavity Supporting the OEEl Mode

1n

For the sake of completeness, we include here the analysis of the

oHElln mode. The geometry of the cavity is the same as the one shown in

*¥Incidentally, the Q of a section of perfectly conducting metallic
waveguide, terminated at both ends by perfectly conducting end walls
and filled with a dielectric material with a loss factor of @. is

. d
also 1/2, .
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Fig. V-1. The analysis in this section follows very closely that
in the previous section, therefore only the results will be given
here.

The power dissipations due to the dielectric loss and the end

~walls loss are respectively

g
odL 2 CF 5
—l
Patelectric = ~ g'ff (E; _E_’l")P dn de
0 O
o.L
S Clqcoshg oca _ (1)
and
el s
Pwal_l ) [—2— f (H at z=0 d‘A]
=R C coshg q2 c' (2)
8 l [e] W
where

D € D €
Vo (42 e ' 12 o '
Ca= G 7 (W' +g gg(AI)'+(Cl) - (AII)

D €
+2yc, (C—i) V=2 (AIII)']
. €l D € , Dl € € :
et = ¢ [(AI) A ge(c—i)‘? —2(aTI) +2(5I)\/7*2‘/92/;§(Mm }

i F, , € g, ¥, [e '
X i 1,2 "o ' 1y, L o) il
_.Ey [(__) (BI)' + —cl) —u(BII) + 2(——01) (—Cl)\/_u V _(_J_z(BIII)]

+

The total time average energy stored in the cavity is given by

€ €
= f & e+ 2 [ (&, B

Yo

—_t
W

i

Le,
2
cosh? Es q2 Cy T %— Co (3)
2 :
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where
p = 2 (D72 e
l ;
¥ % ¢ [EQ(AI)' + (% ¢ —ef (A1) '+ 2/C, (-]%) @ (AIII) ]
(1%)2 i& (BIV)"

L G F, € G, F € '

. iﬂ gl[%)zgz(m) '+ (;,f) 2(s11) '+ 2T, (ﬁ) (C—N:f; (BIIT) J _
Cy» Cps (AT)', (AII)', (AIII)', (ATV)', (BI)', (BII)' and (BIII)' are
given in Chapter IV;

F F
@BIV)' = Y L (2D @

= & Fl Fl -nm
(n = 1,3,5 "')
(m=1,3,5 )

where gﬁm is given in Appendix B . The ratios of arbitrary constants
are given in Appendix C.

are related to the @ factor by the following

relation
_— _
1 P Patelectric Fwalr 1 1 ‘ )
A S A P T
O T i d
where
e
1
Q! w WT 5 1 EZ ‘
d 7 - € C& !
dielectric 2¢d E;
and
- ’
Q& B w W& £ EL EE
T3 - 25 ¢
Pwall w
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¢d is the loss tangent of the dielectric and & 1is the skin depth
of the reflecting end plates.
] ] 1 1

The expressions CT/CV and CT/Cd are evaluated numerically.

Results are given in Fig. V-3 in which Cé/Cé and Q&/C' are plotted
,‘: w
égainst the normalized major axis (NMA) for various values of go
with el/eo = 2.5 . The characteristics are similar to those of the
1 1 .

eHElln mode. CT/Cd can be made as large as desired by choosing suit
able values of NMA. As NMA approaches infinity, Cé/C& approaches
el/eo for all. ¢ . In the region vhere Cé/Cé is large, the slopes
of these curves are very large; in other words, a small variation in
INMA can cause a rather larger variation in cé/cd , thus a large
variation in Qd « The behavior of Cé/C; is similar to that of the
eHE mode. Similar deductions as those given in Section 5.1 can be

1ln
made and will not be repeated here.

5.3 Relation between Q and «

In 1944 Davidson and Simmonds (41) derived a relation between the
Q of a cavity composed of a uniform transmission line with shortcircuit-
ing ends and the attenuation constant « of such a transmission line.
Later in 1950, Barlow and Cullen (55) rederived this relation. These
authors showed that this relation is quite general and is applicable to
arbitrary cross-section, uniform metal tube waveguldes. Since then one
of the standard techniques for the measurement of the\attenuation con-

stant o d1s the use of the cavity method*. This method offers an

*The procedures of this method in general are the following. Short the
uniform transmission line under consideration at both ends and measure
the @ of such a resonator. From the knowledge of the measured Q and
other constants such as the cut-off frequency of the guide, the frequency
of oscillation, etc., it is an easy matter to obtain « from the for-
mula derived by these authors.
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excellent way of measuring the attenuation constant of the guide when
the loss is quite small. Later on this method is generalized and
applied to open waveguldes, such as the single wire line, the dielec-
tric cylinder guide and assoclated guides, by various authors (6, 7,
19, 21).

However, it(should be remembered that the formula by Davidson,
Simmonds and Barlow is derived under the assumption that there exists
a single equivalent transmission line for the mode under consideration.
This assumption. is true for a pure TE, TM or TEM mode, but it is not
clear that such a single equivalent transmission line exists for the
hybrid waves. This suspicion originates from the fact that a) the TE
and ™ waves are intimately coupled to each other, and b) the charac-
teristic impedance defined by Schelkunoff (56) is not constant with
respect to the transverse coordinates. It is, therefore, very difficult
to conceive the possibility that there exists a single equivalent trans-
mission line for this hybrid mode; at best the hybrid wave may be
represented by a set of transmission lines coupled tightly with one
another. Hence the formula by Davidson, Simmonds and Barlow is not
applicable to the hybrid wave.*

A more general relation between Q and « can be obtained
without using the transmission line equivalent circuit, provided that
a is very small compared with B (57). The propagation constant of a

\

guided wave with small attenuation constant at @, is

I‘(mo) = a(wo) + 1B(w,) ] (1)

*But several investigators (19,21) apparently unaware of this restric-
tion, used this formula in their investigations of the hybrid wave.
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At resonance¥, the following relation is true

NMw ) +=— Aw & 15(:»0) . (2)

Combining equations 1 and 2 we have

or _ oB ke’
a(“’o)='35m =-iste . (3)

According to the definition of group velocity vg which is -g—(-; and
the definition of the Q factor which is wo/a(é-f’) , we finally

arrive at the relation

w v .
a = 2 2 = -V-P- 'é@'d' . (h)
QVg g

This is the general relation that we are seeking. Substituting the
values of vp/vg** for TE, ™ or TEM into equation 4, one gets the

relations derived by Davidson, etc. For the TM or TE mode

p__1 1 B
S W et W e s and for the TEM.mode,
¥ A2 a2 N
g€ 1. (=) la (=—
A A
c c
fp/vg =1, .. a= B/2Q . xc is the cut-off wavelength.

The group and phase velocity of the dominant modes can be
obtained easily from the w-p diagram. A sketch of the w-p diagram
for the dominant modes is shown in Fig. V-4. It can be seen that at

low frequencies or small B's, vph

quencies or large B's, LA S Therefore, the relation a = B/2Q

is applicable only at very low frequencies or at very high frequencies.

zvg and again at very high fre-

-¥The resonant cavity i8 made by shorting both ends of the guide under
consideration.
A Vp = Vpp = the phase veloclty of the wave.
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Fig. V=k. A sketch of the w-p diagram for the dominant dielectric
‘ rod mode. :
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. CHAPTER VI -~  EXPERIMENTAL INVESTIGATIONS

It is the purpose of this chapter to investigate and verify the ’
analytic results experimentaiiy;fvThe properties of a certaln propagating
mode along an infinitely long uniform waveguide are usually specified by
three characteristics¥, (a) the guide wavelength which 1; directly re-
lated to the propagation .constant of the wave, (b) the field configu-

rations or the field distributions, (c) the power loss or the attenuation

*In order that a good matching condition may be obtained so that in
. coupling energy into and out of a dielectric rod gulde without the ,
presence of high-standing-wave ratio which is a measure of the relative
intensities of reflected and incident waves, the knowledge of the charac=-
teristic impedance or the wave impedance is very important. As we have
pointed out earlier the characteristic impedance defined in the usual
menner (i.e., the Schelkunoffidefinition) is not meaningful, since it is
a function of the transverse coordinate system. A mean 'value impedance,
which takes into account the energy distribution over a cross-section of
the rod was first suggested by Wegener. He divided the (circular) dielec=-
_tric rod into four sections and in each of these four sections he assumed
the field to be independent of ¢, the angular variation, so that in
regions I and III, @ is assumed to be zero and in regions II and IV, @

is assumed’ to be /2. [See Figure 9, ref. (17)]. The approximate
expression for mean impedance i8 therefore

(EQ) (EXE*)+ e dA + E")  (EXE¥) a
. x e e + — x H*
=I+HI#D%O—_ e n+w'%ng"'sz *

Jaxm o, a

zZ

He showed that Z/Zo = A /A .« Similar approximate mean lmpedance as
defined above may be obt&ined for the elliptical dielectric rod.

The fact that the characteristic impedance of the hybrid wavegulde is

not well defined shows that the single transmission line analog is at

best an approximation. Any measurements assuming the single transmission
analog of this guide are therefore approximate, and should not be consi-
dered as precision measurements. 3 '

Since at present we are only concerned with the problems of wave propa-
gation along an infinitely long uniform dielectric rod, the "characteris-
tic impedarce" or the equivalent circult network of this guide will not = '
be considered. . X B 5 : '

2
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constant of the wave. Experiments will therefore be specifically
designed to measure these three qusntities.

After a detailed description of the experimental apparstus, the
methods of measurement for these;various quantities are-discussed. The
experimental results are then compared with the theoretical‘results. A

discussion will be given.

6.1 Experimental Apparatus

_ Figure VI-l is a photograph of the‘general physical appearance of;
i:the'experimental set-up. .A'block diagram is shown in Figure VI-2. For:
the‘sake of convenience and simplicity, measurements were performed‘in
-the X-band frequency range.' The " microwave X-band power was obtained
from an-X-13 Varian reflex klystron which offered a maximum power output
of five- milliwatts and was- powered by the Hewlett-Paekard power supply. ;
The microwave signal was modulated withla 1000 cps square wave. The
output of the-klystron was connected to an isolator followed by en
attenuator, a cavity resonator, a slotted line section, and a section
of standard X-band rectangular metallic'uaveguide:‘:These vere standard
X-band componentsaeAThe other end of the rectangular metallic wavegulde
was connected to the special apparatus specifically designed for: the -
present experimental investigetion; see Figure VI-2..5

The following sections are devoted to-a detailedvdescription of

the- special apparatus. - -

A The Launching Device
The method of transferring microwave energy from an ordinary metal-
lic waveguide into a dielectric rod was not'very difficult or complicated.

Since a rectangular metal gulde operating in the dominant TE, mode had
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an electric field whose configuration was roughly ‘similar to the trans-

verse component of the electric fleld of the BE mode or the IIE

11
mode on the dielectric g'uid.e , ‘tha. transfer could be mad.e simply by

1l

inserting the dielectric rod. long:l.tudinally into the metal gulde for. a

- short distance. The orientgtion of the cross-section depended upon
whether the eHE.u. 'mode‘ or the OHE_u mode was desirec_l. To improve the
- matching and to minimize reflection the dielectric ro& was tapered to a

point within the guide and after emerging from the metal guide the rod

.was tapered to whatever size was feq\nred ifor,' a given“ test. Furthermore .

& flare pyramidal horn whose flare angle was adjusted for best energy

transfer was connected to the rectangular metal guide. (See Figure VI-3).

M

rectangular 4 : ; ) s
metal wavegulde horn s . " ~elliptical dielectric rod

JEESSN

SSSSSSS-

Figure ~VI-3.'- The Launching Device. .
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B. . The Elliptical Dielectric Rod .

Since dielectric rods of elliptical cross-section were not com=-
mercially- availnblo, thny wbre machined from available rectangular
5iucite strips which were at least five and half feet longhz A total -

of twelve rods of different sizes and ellipticities were made, in
2q cosh §g

%

~and £ values. A picture of these rods is shown in Figure VI-4. One

-order that the experimental data would cover a wide range of .

end of each rod was machinedjvery,fla£ while the other end was tapered
as described'in section 6.1A to fit into the metal gulde... A smallLChunkiﬂ
of 'lucite was téken:from each rod in order to measure the electricall,
properties of'each:rod'individuslly'by Von Hippel's method (58)4; It was
found that the dielectric constant of these rods varied between € = 2.5
to € = 2.6 and the loss tangent varied from tan & = 0.005 to
tan & = 0.003. It should be noted that due to the resilient property
of lucite it was iery difficult to machine such a required:length uni-
formly. A speclal And rather expensive technique was developed and used. °
Although extreme care was taken in making these rods, some small non-'_ ;
uniformities which might attribute to experimental errors uerg«unavoid-‘b
‘sble. The major axis and & oOf these elliptical rods ranged ‘from =

2A = l-s in. to 2A = 005 in. and go = 00 to go = 0037 .

C. The Shorting Plate

In order that the plate could be a good shorting device, its sur-
face had to be very flat and large enough to intercept practically all
of the energy outside the dielectric rod and the plate had to be made
of good conduﬁting material. A 1/4":36"x36" alnminum,plate was used.

One side of the aluminum plate was machined flax and its surface was
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Fig. VI-4. Elliptical Dielectric Rods

Fig. VI-5. Probe and Its Carriage
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cleaned and polished in order to assure maximum conductivity. The

plate and its support can be seen clearly in Figure VI-1.

D. The Probe and -it.éi'qarriat'ge
.To detect and measure the electromagnetic field on the dielectric
.rod, a small electric'probe was designed and used. The probe con-
sisted of‘a section of riglid coaxial cable vhose oufside diameter was
about 1/8" and whose length was about 1'3". An inch from one end of
the cable was formed into a gradual 90°;bendAand the center conductor
protruded about 1/8". The other end was connected to a crystal detec-
tor which was éalibrated, and the'duxpﬁt of this detector was. connected
to the HP standing wave indicator. The L bend was introduced to
reduce the-aﬁount'of metal conductors parallel to the electric field
7‘indicator. The probe and the detectof were supported by a stand which
was fastened to a HP carriage. A picture of the probe and its support
is shown in Figure VI-5. The whole instrument was so designed that the
probe might be moved up and ﬁoﬁn.radially’with respect to theAcehter
‘axis of the dielectric rod and longitudinally along the center axis of
the rod. Furthermore, the probe could be adjusted to detect elther
E, or E'z. field. The longitudinal movement of the probe could be
measured from a scale on the carriage; and a dial indicator was used
to obtain accurate measuremenfa of small 1ongitud1na1 movements of the
probe. The radial movement of the prdbe was measured‘by a 1evel tele=-
‘ scope whose movement had been calibrated. ‘ ‘ '
With the help of a transit and a level thia vhole experimental

set-up was aligned carefully Tha dielectric rod had to be very atraight

P . ¥ (o PO NCOA (4 1A ‘ . abe
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-and its axis perpeﬁdicular-to the éhorting’piate.- To insure 'a good con=-
tact between the poliahed'sho:tingnplate and the flat end of the
dielectric:rod, é slight'pressuréjwns asserted on both ends of the system.
To minimize sagging ofisome amali of flat rods, very thin nylon threads

" were used along the rod to provide support. Although disturba.nces due

to these threads were unavoiddble, because of the sizes of ‘the' rods used

»

at this frequency4range very.little perturbation vas observed.

.6.2 Method of Measurement

. In.general there are two most commonly used-methodé:for‘heasuring
the pfopagation chargcteristics of a certaln mode alongfa uniform. low:
- loss waveguide. The first one 1s ‘the Bo-calledfresonatof technique. The
guide under. coﬁsideration is. placed between two parallel plates with:
proper coupling holes. Resonance occurs when the length of thevcavity is
n ;% where ~n° is an integer and xg 1is the guide wavelength of the mode
on the guide. xg can be measured easily'either:byvcouhtinthhe'number
of minimaiwithin the cavity length with a small probe or by moving one
of. the reflector plates and measuring theidisplacement‘of'the plate'fof
each resonant peak.ﬁfo measuring the Qj;oflhhis{cavity,.thefattenuatioh
constant @ can reaﬁily.be.éalculated*;fvmhis method is particularly
useful and accurate for very. low loss transmission lines**. The second
method is the standing wave measurement fechnique. “The guide 18Lterminated‘
by & perfectly reflecting plate acting as:aAshort-eircuit.device;} The.

propagating wave 1s perfectly reflected by the terﬁination and a standing

*See equations 5.3-4 ‘ '
*%This method was first used by Chandler (19) on the measurement of attenua=-
tion factor for the HEjj mode on a very small circular dielectric rod.
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wave pattern is formed along the gulde. A probe, such as the one des-
cribed earlier in section 6.1D, can ﬁe'used to detecﬁ thé micrdwave':
signal along an open waveguideq By measuring the distance between two
badjacent minima of the standing wave pattern, and the standing wave

' ratio, 1t 1s an easy matter to calculate the guide wavelength and the

attenuation factor of the mode on the guide*

[}

*The formula relating the attenuation factor ' with the standing wave
- ratio can be-derived as follows: It is well known that:
P .
b &
,_ > logy, 57 P
where Pq "and - P3 are respectively the input and reflected power of
the guide, and

A db

e P Y : | - i
== = (=—=)°, where r 15 the standing wave ratio
it ol ... P3or+l
at the probe. = Therefore, we have « = %g loglo(r*_l) db/m in vhich Y]

o

''is the length of the guide as indicated in Figure VI-6%.
.+ elliptical .dielectric rod

/ reflecting plate

Foe

Figure VI-6.

To take into account the loss due to 1mperfection of the shorting plate
one notes that the attenuation measured at point a is ."\.a = al + D,
and- similarly the measured attenuation at point b is ga

= + D where. D 1s the loss. of the reflecting plate._ Combining

these two equations and . eliminating ‘D ‘one gete %

B T “ (ab/meter) T
(,‘a."?rb) YT 2 ¢

.’.'
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The latter method was used for our measurements since it presented
a simple and expedient tay of measuring the desired quantities with
reasonably good accuracy. To ayoid-perturbation by the launching device
: gof by end effecte, meaennementefwere made in the middle section of the_
rod.v It shoubd'also be mentioned that'throughout-this.yhole.experiment
the conpling between the probe and the field was kept at a mininum in

order to avoid interference with the'probagating waves' ., xf“! 3 P

" 6.3 VComparison‘of the Theoretical and Experimental Results

" The results are separated into three genefel cetegories.&]

#HA.“:Guide Wavelength
5 Guide3wayelength was measured according to- the procedures described °
earller. - The' distance between adjacent minima of the standing wave pat-
tern was meaeufed at several sections along the éﬁide-and the averaée v
value was calculeted and recorded as the measured 13/2 . The maximum
difference between these measurements was about 3%. 'Wavelength measure-
. ments were taken from nine @ifferent silzes of elliptical dlelectric rod
fox{ the eHE»ll‘ mode and the HE,, lmode. Normalized experimental | |
results,.together with their corresponding theoretical results, are
_ given in Figures VI~ 7 through VI 15, The. phyaical size of each’ dielec-'
+tric rod used and its measured dielectric constant are indicated in each
' figure.« Excellent agreement was obtained.
To illustrate the agreement between the analytic and experimental

results, we introduce the follouing tdble:

s'-
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2q cosh g

Wiode of .- ‘Bl
O ( 1 (55) €.
Operation o (2Ax2B) . . o ey A XE meass .Y oalo, ©9
B s 0.770"X0.6U5" 1 F1.22°  -0.55 ' i 0.845 . 0.853 i 2.55
| | ' ‘45 0,83 S5 0.80 .. i, 0.806
OHEj; . .0.770"x0.645" " 1.22 i, 0555 .. 0:83 ' " 0.833 .7, 2.59
0.635 . 0.784 - . 0.787
oEEq " 0.769"x0.505"  0.775 0.56 '0-925 * 0.925 . 2.5
S ) 1 0.785 7 0.80 . 0.802
\ ' | 0.695 0.80 0.80
EE . 1.005'x0.361" . 0.376  0.725  0.962  0.96k 2.5
. ¥ g ! . 1.00 '.: 0.862‘ i 00862 : )
JEEy; 1.005"x0.361" ":.0.376 . 0.72."  * 0.87 0.873 « 2.5
- . ; P ' 0.93 " 0.79 0.792

It was found that the wavelength measurements IWex:e‘ ratixer insensi-
tive to sma].l-nor'z-uniformity of the rods and to the variation of |
- humidity and temperature in the laboratory. Incidentally, the _"a'.'bove
experiment also éuégested, w rather convenient way of measuring the -

‘dielectric constant of a certain low loss dielectric material.
B.  The Field Distributions .- :

Il;l. order .to es‘tablish\the degree of field purity an.examina.tion of
the radial ‘ﬁ.eld‘ decajr at a fixed axial position wa.a'.carried 'out. The
decay of the axial electric field was measured since it can most easily
be detected by a probe pointed in the éxia’l_ direction. For maximum sig-
nal strength, the probe was aligned in the " = x/2 plane for the JR:ol

mode and v =0 for the omll' mode. The general method of measurement
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has been outlined in section 6.2.
Experimental results, together with their theoretical results

for the HE , mode are shown in Figures VI-16 through VI-18. Six

ll -

different rods ranging from §o =00 to go = 0.376 :mere used. It.
.can be seen that the experimental results corresponded rather well

. with the analytical results. The largest differences were founé among
Hhilin, Fods. | Dhls sffech may by saplatnsd By the fact that for small
vvalues of NMA,'a,largé‘percentage of energy was carried outsidelthé
dielectric rod, thué a small amount of curvature or sagging may havg
.caﬁseQ'some-er¥ors'inlthe field decay measurements. These measﬁrements,
together with the wavelength measurements verified the existence of

11
__Similar measurements were performed for the oHEll mode. ' Four

¢

" the eHE~’ mode along an elliptical dielectric rod.

rods ranging from go = 00 to go = 0,376 were used. Results are
shown in Figures VI-19 through VI-20. Again, good agreement with
theoretical”results were observed. These méasurements also cdnfirme¢

11
lThe above discuséioﬁ shows clearly the necessity of having a

. the exlstence of the'oHE“ mode.

stfucture which may support the dielectric rod and at the same time
_will not interfere with the desired propagating mode. One of the best
ideas, which was first proposed by D. D. King (20), is the use of the
image plane. He took advantgge_of the symmetrical property of the

'HE., mode and mounted a half-round dielectric rod on an imﬁge-plane..

i
‘It can be seen that his idea can very well be extended to the ellipti-
-wcal dielectric rod.. This.lmage plﬂnefcan~potfonly serve as a support .
.without disturbing&the,fields;:but_glso may serve as a polarization :

‘anchor.
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C. Attenuation. Constants

Attenuation measurements were made by probe, using‘the'standard
standing wave~technique,(SQ).'iFor each experimental point two meé-
surements at two different locations were carried out in order that
the loss'dte to the imperfections of the'terminatin