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ABSTRACT

The purpose of this work is to examine the stress distribu-
tion caused by the bending of a thin elastic plate containing a line
discontinuity. Specifically, the plate under consideration is of con-
stant thickness and occupies a whole plane exterior to the line dis-
continuity. The line discontinuity is either a crack or a rigid
inclusion.

The loading is applied to the plate at infinity by certain com-
binations of tractions which leave the plate in equilibirum.

The analysis of the problems considered here is based on
an approximate theory which is more refined than the classical
theory ordinarily applied to problems of bending of plates. This is
because results based on the classical theory may be incorrect,
even in first approximation for thin plates, near a boundary, and
it is precisely the region near a boundary (in this case, the line
discontinuity) which is of primary interest in these problems. In
fact one of the principal objectives in this work is to compare the
stress distributions near the line discontinuity as predicted by the
two theories.

The principal techniques used in this work are based on inte-
gral gquations and the calculus of variations.

Results based on the two theories are found to agree for
thin plates away from the line discontinuity, but'differ significantly

in the vicinity of the discontinuity, even for very thin plates.
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I. INTRODUCTION

The problem considered in this work is the investigation
of the stress distribution caused by the bending of a thin elastic
plate containing a line discontinuity of finite length 2c. Specifically
we consider a plate of constant thickness h whose midplane occu-
pies the region consisting of all points in the XY-plane except for
the segment Y = 0, | X| < ¢ where the line discontinuity is located
(see Figure la). The line discontinuity under consideration is

either a crack or a rigid inclusion. From the three dimensional

point of view (see Figure 1lb), a crack is a plane surface perpendicu-
lar to the midplane of the plate which is to be free of stress. Thus
we shall require that the traction across the crack surface vanish

at every point along Y = 0+, | X|< ec. A rigid inclusion is such a

plane surface which is assumed to be fixed in space. In this case

we shall require that the displacement vanish everywhere along

Y = O‘l_-_, 11Xl < c. The plate is to be deformed by certain external

tractions applied along the cylindrical surface at infinity (v X2+ Y2 =00}.
The classical theory of bending for thinh plates which was first

established by Kirchhoff and Gehring (see Love [ 1] ) and ciariﬁed

later by Kelvin and Tait [ 2] is known to lead to inaccuracies in |

stresses, even for thin plates, near the edges of a plate. This is

due to the fact that the theory requires, and indeed can accommodate,

only two boundary conditions along an edge in connection with the

biharmonic differential equation, which is the governing equation of

the theory. For example, the physically natural boundary conditions

for a free edge of a plate are the vanishing of three components of
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the traction across that edge. However in the classical theory
these conditions are reduced in an approximate way in accord-
ance with Saint-Venant's principle to two conditions, namely the

vanishing of the normal stress couple and the vanishing of the so-

called '"'effective Kirchhoff force'!.

Stoker [ 3] pointed out that this difficulty may be resolved
if one formulates the plate problem as a ''boundary layer'' prob-
lem. He suggestedthat the starting point would be the threg—
dimensional theory of elasticity. He would then study the limit
problem obtained upon allowing the thickness of the plate to ap-
proach zero in the differential equations and he predicted that
the differential equation would degenerate and some boundary con-
dition would be lost at the edge. Such an appr;)ach has been dis-
cussed recently by Friedrichs and Dressler [4].

By taking into account the transverse shear deformation
interior to an elastic plate which is omitted in the classical theory,
Reissner [ 5] developed an approximate theory for bending of thin
plates which is governed by a sixth-order differential equation and
hence requires three boundary conditions along an edge. Quite a
few problems [ 5], [ 6] have been solved based on Reissner's
theory and results so obtained in general provide a qualitatively
better approximation to exact values in comparison with the clas-
sical theory, particularly in the vicinity of an edge of the plate.

On account of the reasons mentioned in the previous para-

graph, the Reissner theory of bending is employed here since it
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is the stress and displacement fields near the discontinuity that
are of primary interest, and in this region we expect that the
classical theory may be incorrect even in first approximation.
The problem for bending of an infinite plate containing

a crack has been investigated on the basis of classical theory by
Williams | 7] and by Ang and Williams [8]. In [ 7] eigenfunction
expansions are used in the flexure problem of an isotropic plate
containing a semi-infinite crack in order to study qualitatively
the character of the stress distributions near the vertex of the
crack. In[8] both stretching and bending problems are studied
for an orthotropic plate containing a finite crack and solutions
are obtained by means of dual integral equations.

There are in the literature many crack problems in elas-
ticity that hé.ve been solved [9]. For example we may refer to
Sneddon and Elliot [10] for the problem of finding the stress dis-
tribution in the neighbourhood of a Griffith crack in a stretched
plate and to Sneddon|[11] for the similar problem for the case of
a penny-shaped crack in a three-dimensional elastic solid.

The problems of an isotropic infinite plate containing an
elliptical hole or an elliptical rigid inclusion are considered using
Reissner's theory in [12] and in [13] respectively. However,
the approximation made in these references is not valid for a
slender ellipse and hence the results of [12] and [13] could not

be used to examine the limiting case as the ellipse tends to a line.
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In Part II, the Reissner theory for bending of thin plates
is derived in a somewhat different way than in (5] or in [ 6]. The
present derivation is closer to that given by G;een [14].

In Part III the problem of an infinite elastic plate contain-
ing a line discontinuity is formulated in terms of Reissner's equa-
tions and is reduced to integral equations for the case of a crack
and the case of a rigid inclusion. Each of these two cases is sepa-
rated into two parts, symmetric and antisymmetric with respect
to the line discontinuity.

In Part IV the existence of solutions for the symmetric and
antisymmetric parts of the crack case and for the antisymmetric
part of the rigid inclusion case is established through using Fred-
holm theorems for integral equations. In the same part an approxi-
mate solution for each case is obtained for plates whose thickness
is small in comparison with the length 2c of the line discontinuity.
The corresponding results based on classical theory are also com-
puted for purposes of comparison. The symmetric part of the
rigid inclusion case is purposely omitted since it presents no in-
teresting features beyond those extracted from the other cases.

It is shown that for thin plates the results based on classical theory

give good approximation in general except in a boundary layer near

the edge where the results of two theories are different even for

very thin plates. It is found that the angular distribution of stresses

around a crack point is different in Reissner's theory than in the

classical theory. A discussion of the differences in the results



-5
based on the two theories is given in; section 4.10.

A variational method is derived in Part V in order to in-
vestigate moderately thick plates for which the approximate solu-
tion obtained in Part IV is no longer expected to be accurate. It
is shown in some special cases that the variational solution tends
to the approximate solution obtained in Part IV as the plate thick-

ness tends to zero.
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II. DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS
FOR BENDING OF PLATES

2.1 Equations of Elasticity Interior to a Plate and Boundary Con-
ditions

Let us attach a set of rectangular coordinate system (XYZ)
to a plate of constant thickness such that the XY -plane coincides
with the middle plane of the plate (see Figure 2). As shown in
Figure 2, the middle plane of the plate occupies a region H in
‘the XY-plane and its boundary IiICi where [iJCi denotes the union
of cylindrical contours of the plate's boundary. The plate is as-
sumed to have thickness h and hence every point P(X,Y, Z)

interior or on the boundary of the plate belongs to one of the fol-

lowing sets:

h h
_Z)'Z)}
(ii) Surface sets S,: = {P(X,¥,Z): (X,Y)in &, Z = i%}

where S+ and S refer to upper surface and lower sur-

(i) Interior set ;d : = {P(X,Y,Z): (X,Y) in® ,Zin(-

face respectively,

(iii) Cylindrical boundary set B= UBi
i

where B: = {P(X,Y,2): (X,Y)in C,, Zin[-3, 3]} .
Now we shall define the stress and strain components for

every point in 58 . Referring to the above coordinate system we

denote by ¢, o___and ¢__ respectively the vector components in

x’ xy Xz

X, Y and Z directions of the traction at a point P in 2d across a
plane X = const. and similarly by o, o, o ando , 0 , 0o
' yx’' "y’ “yz zx’ zy’ =z

respectively for the components of tractions at the same point

across planes Y = const. and Z = const. We call these quantities
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the stress components at the point P in 3 .

Upon consideration of mechanics, it can be easily shown

that 0'Xy = o‘YX, Uyz = O'Zy and o-zx = sz’ and
2% v XY e +F_=0 (2.1,1)
X oY oZ x ! ’
%XY + BUY + SGYZ +F =0 (2.1, 2)
X oY 57 y ’ ’
“xz + aGVZ + °% +F =0 (2.1, 3)
X oY 0Z z ’

hold at every point in D . Equations (2.1,1), (2.1, 2) and (2.1, 3)
are known as equations of equilibrium in which FX, Fy and FZ are
the components of the external body force in the X,Y and Z direc-
tions, respectively. |
The material of the plate is assumed to be isotropic and

homogeneous with Young's modulus E, shear modulus G and Pois-
son's ratio v. It is also assumed that the plate is subject to small
deformations and strains so that the stress-strain relations may
be established through Hooke's law. If we denote by U, V and W
respectively the displacement components in the X, Y and Z direc-

tions at every point interior to the plate, then we have

_3u _ 1 . %27
S G o (o‘x - V¢y, -5 (2.1, 4)
_ oV 1 7Y
ey——Yzf(O‘y—VO’X)~ o (2.1,5)
_ 0U oV 1
xy——7+7‘_c—o—xy’ . (2.1,6)
o

%3z E “E T (2.1,7)



oW au 1
= e m— e 2.1,
exz oX + 97 G o-xz ’ ( &)
9w ov _ 1 :
°yz =37 ¥ 32 ° Ty (2.1,9)
for P in 33 .

" We assume that the upper surface Z = 1—%— is subjected to nor-
h .
mal traction p(X,Y) per unit area and the lower surface Z = - > is
free from external forces. Hence, the conditions on both surfaces

are respectively

v, = p(X,Y), Oy = o.yz =0 at Pin S+ , (2.1,10)
o =0 =g =0 at Pin S . (2.1,11)
z Xz vz -
. . . h h
From any point along a cylindrical surface C(s)X ["2—.’ 7]

in . where C(s) is the projection of the surface on the XY plane
and s is its parameter, we may draw a normal to C(s) directed

to the right with respect to the positive sense of C(s). If we denote
by T s and Tz respectively the components in the normal, tan-
gential and Z directions of the traction at the point across a plane
perpendicular to the normal, then we must have the following re-

lations:
o =0 cos‘2 n,X)+ o sinz(n X)+ 20 sin(n,X) cos (n,X)
n X 2 y > X.Y b4 3

. 2 . 2
T = ((Ty-o’x) sin (n,X) cos (n,X)+ o'xy(cos (n,X)-sin"(n,X)) (2.1,12)

q
H

o cos (n,X)+ ¢_ sin (n,X)
Xz Tyz

where cos(n,X) denotes the cosine of the angle between the normal

and X-axis. The displacement components along C(s) can be
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related to U, V and W by an orthogonal transformation

u_ cos(n,X) sin(n,X) O
US = -sin{n,X) cos(n,X) 0 v (2.1,13)
W 0 0o 1 w

where Un and US denote the displacement components in the nor-
mal and tangential directions respectively. .
Now, we shall investigate the boundary conditions along the
cylindrical surface B. For every Bi we may represent as
h h .
Ci(s)X [ - > 2—] such that &) always appears to be in the left
side of Ci(s) as s increases. . We shall require the satisfaction

of boundary conditions along all of these Bi' s by either

r crn(s,Z) = é\n(s,Z)

Pa
a

< o*ns(s,Z) * %

(5,2) ‘ (2.1,14a)

LY
L o‘nz(s,.Z) = o‘nz(s,Z)

corresponding tosthe case of prescribed surface tractions, or

rUn(s,Z) = I/J\n(s,Z)

Fa
< US(s,Z) = Us(s,Z) (2.1,14b)

\ W(s,Z) = V:’\(s,z)

corresponding to the case of prescribed displacements. In (2.1,14a,b)

quantities with hats denote given boundary values.
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2.2 Approximate Two Dimensional Equations for the Bending of
Plates

From now on we shall confine ourselves to problems of trans-
verse bending only. This can be achieved by assuming that the
loading along the cylindrical boundary of the plate produces no net
resultant force to stretch or compress the middle surface and, in
addition, the transverse deflection is small in comparison with the
thickness of the plate. Further assumptions can be made since
the plate under consideration is assumed to be thin, i.e. the thick-
ness of the plate is small in comparison with its other dimensions.
In connection with thin plates the well known approximate theory
derived by Kirchhoff-Gehring (see Love [1]) assumes that the
stress components Ot Oy’ Gyz are small in comparison with
the flexural stresses throughout the plate and the normals of the
middle surface before bending deform into the normals of the mid-
dle surface after bending. We shall refer to this theory as the
classical theory of bending for thin plates. By taking into account
the transverse shear deformation which was omitted in the clas-
sical theory, Reissner [ 5] developed another approximate theory
for thin plates which we shall make use of in the present work,

and hence we shall give here a brief derivation.

Reissner in [ 5] defines the bending and twisting couples

M_, M., M___ and the transverse shear resultants Q , Q as fol-
x y Xy X y
lows:
Mx h/Z %
v = Z o 47z (2.2,1)
y -h/2 y

. a
Xy . Xy



Q h/2 o

x xg 2z 1\ az (2.2,2)
Q -h/2 o

y vz

Upon omitting body forces, it follows by integrating (2.1,1) to (2.1, 3)

that these quantities must satisfy the following equations of

equilibrium:

M oM

X 2 . =0 (2.2,3)
X oY X ’ T
oM oM

Xy v .
X Tay TRy =0 (2.2,4)
) :le)
X b L+ p=0 (2.2,5)
) 5y P . - o

In addition to these equations stress strain relations were
obtained in [ 5] by using Castigliano's theorem of minimum com-
plementary energy. However, essentially the same results as in
[5] can be obtained by assuming certain approximate forms for
the stress in the plate and integrating the three-dimensional stress-
strain relations over the plate thickness. We shall use this ap-
proach in what follows.

From the homogeneity of equations (2.1,1), (2.1, 2) and (2.1, 3)

we may assume

o M (X,Y)
X X
= Y h (Z .
M (X,Y)
Xy xy
s QX(X,Y)

]

hZ(Z) s (2.2,7)
o Qy(X,Y)
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o, = p(X,Y) hy(Z) ' (2.2,8)

where hl’ hZ’ h3 are as yet arbitrary functions satisfying the fol-

lowing conditions:

h/2 h/2
Z h(z)dz =1, § h,(Z)dz =1, (2.2,9)

-h/2 -h/2
hZ(J_r_h/Z) =0, h3(h/2) =1, h3(-h/2) =0 . (2.2,10)

Condition (2. 2,9) is required in order to satisfy equations (2. 2,1)
and (2.2,2). Condition (2.2,10) is required in order to satisfy
the surface conditions (2.1,10) and (2.1,11).

Equations (2.2, 3) and (2.2,4) can be obtained by multiplying
by Z in (2.1,1) and (2.1, 2) (after omitting the components of body
force) and integrating over the plate thickness. Egquation (2.2,5)
can also be obtained by integrating (2.1, 3) over the plate thickness.

Substituting (2.2,6), (2.2,7), (2.2, 8) back in (2.1,1), (2.1, 2),
(2.1, 3) and using (2.2,3), (2.2,4), (2.2,5), we obtain further rela-

tions among hl’ h2 and h3:

d
hy(2) = - gz ha2)
(2.2,11)
h(Z) = -3 h,(Z)
2 dz 73 :
As an example, let us choose
z (2.2,12)

1
h) = h'z_/ . (‘7‘h 7).
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Then
1 7 .2
hy =zp73ll- 7071
and
3.2, 7z 1,7 .3
hy=zl3* 577 -3 Gz -

This corresponds to the distribution of stress across the thickness
used in {5] . |

Corresponding to the global description of stresses by means
of couples and stress resultants, we try to obtain a proper descrip-
tion for displacements. The expression for the work done by the

surface traction along any cylindrical surface C(s)X[-h/2,h/2] in

)2)15

h/2
[c. U +0. U +o¢ W] dsdz, (2.2,13)
n n ns s nz
-h/2 C
In this formula o , oo, ¢ and U , U , W are defined as in (2.1,12)
n’ ns’' nz n s

and (2.1,13). If the approximate stress distributions (2.2,6) and

(2.2,7) are employed then the work (2. 2,13) can be written as

h/2 h/2
E[M § hlU dz+M S h,U_dZ+Q § h,Wdz] ds  (2.2,14)
-h/2 -h/2 -h/2

where
M =M cosz(n,X)+M sinz(n,X)+2M sin{n, X)cos(n,X)
n X Uy Xy
_ . . 2 .2
Mns = (My-MX)sm(n,X)cos(n,X)+Mxy(cos (n,X)-sin"(n, X)) (2.2,15‘)

Qn = QX cos (n,X)+ QY sin(n,X)
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The expression (2.2,14) suggests that we may define the

generalized displacements as follows:

h/2

Bx(x,y) = S Uh1 dz, (2.2,16)
-h/2 ’
h/2

B (x,y) = Vh 4z , (2.2,17)
-h/2
h /2

w, (%, y) =§ Wh, dZ . (2.2,18)
-h/2 -

The generalized displacements being so defined, we are
now able to determine the appropriate two-dimensional stress-

strain relations. For the sake of convenience, we write

h/2

ey = Sh/z [hl(Z)]Z az ,
h/2 |

¢y = S:h/z (b,(2)]% 4z ,
h/2

ue), ), h(Z) h,(Z) dZ.

With the aid of (2.2,11) and (2.2,10), we can easily show that

_ o ! z .
C13 = Cppe Again if h(Z) = ;2—/—6— (572-) as in the example (2.2,12),
then
3
1 = 12/h” ,
Cyp = 6/5h .

Now, multiplying by hl(Z) in (2.1,4), (2.1,5), {(2.1,6) and inte-

grating over the plate thickness, we obtain



aB c vc
X 11 22
5% = _._E (MX - vMy) - o P> (2. 2,19)
ap c ve
Y = A _ o2z
57 CF (M VMX) = P (2.2,20)
op op c
T A Y (2.2,21)

Multiplying by hZ(Z) in (2.1,8) and (2.1,9) and integrating over the

plate thickness, we obtain

ow Csro

t
—W+ﬁxz G Qx’ (2.2,22)

Q . (2.2,23)

In analogy with classical plate theory, we define the fluxural

rigidity of the plate

D= —E.___
1-v%) ¢
‘ 11
Eh3 1 Z
which becomes D = —— when hl(Z) is chosen to be —— (m),
12(1-v%) h“ /6

as in (2.2,12).
Rearranging equations (2.2,19) to (2.2, 23) we have

8[3X oB Ve, s

' Yy
0B op ve
- v X 22
My-D(8Y+V8X + e P) (2.2,25)
oB o3
1-v X y
My =7 Digvr+ 5% | | (2.2,26)
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ow c
t 22
Pe=-ax v © % | (2.2,27)
awt C55

for every point indD .
The boundary conditions (2.1,14a) and (2.1,14b) are con-

verted to prescribe

N ~
(M, =M, Bn = Bn
. & S
either ¢ Mns = Mns (2.2,29a) or ¢ BS = ﬁs (2.2,29b)
~ L A
\ Qn = Qn W =W

along any contour Ci(s). Here Mn’ Mn and Qn are given by

s

(2.2,15) and ﬁn,ﬁs and w, are related to Bx’ {SY and w,_ as follows;

t t
Bn cos(n,X) . sin{(n,X) 0 ﬁx
BS = | -sin{n,X) cos(n, X) 0 By , (2.2,30)
W, 0 | 0 1 Wy

Equations (2.2, 3) to (2.2,5) and equations (2.2,24) to (2.2,28)

form a set of differential equation system for eight unknowns, BX, By,

w, M, M , M _, Q and Q . To these differential equations, we
X v Xy X vy

tl
append either the boundary condition (2.2,29a) or (2.2,29b).
We may remark here that the equations based on the classi-

cal theory of bending can be easily deduced by setting : G =coin the
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above equation system. The equations of equilibrium remain un-

changed while the stress-strain relations take the form:

2 2
0 Wt 0 W
M _=-D(—> +v ) (2.2,31)
oxX Y
82wt 82wt
M= - D (——s+v—s1) , (2.2,32)
y oY X
azwt
xy =" (1-v) D B Eya (2.2,33)

Also, there is a noteworthy difference in prescribing bound-
ary conditions. Instead of three conditions as in (2.2, 29%a,b), the

classical plate theory specifies only

Mn = IVIn on = on
either (2.2,34a) or (2.2, 34Db)
oM A
— ns ~
Vn~Qn+ 9s ==Vn Wy F Wi o

where Vn is known as Kirchhoff force.

2.3 Reduction of the Plate Equations
From now on we shall study the homogeneous differential
system, i.e. p = 0 at every point in L . Equation (2.2,8) then

suggests there exists a stress function X such that

X '
QX=W s (2.3,1)
X
ny—_a_i—( . . (2.3,2)

for every point 1n9 . By using these relations and setting



2 2

0w 0w 2
M, = - D (—s + v —t)+ 2”2 X (2.3, 3)
0X oY oX0Y
azwt Bzwt > 82X
M =-D(—5 +v—y) - 2k , (2.3, 4)
v oY oX 0X oY
2
8w 2 2
t 2 ,9°X 97X
M = - (1-v) D momsr + k= (LK - 2 Xy | (2.3,5)
Xy 0xXaY 8Y2 8X2
ow 2 '
t 2k N
Px*-3x * vD 3% (2.3,6)
ow 2
t 2k By
By * - 37 - T-vD 3% (2.3,7)

for every point in B . Substituting equations (2.3, 3) to (2. 3,5) into

equations (2.2, 3) and (2. 2,4) we obtain a pair of relations:

9 2
- 2% (DAw,) = & (x - K°2%) , (2.3,8)
-2 (DAw,) = 52 (X - k2Ax) | (2.3,9)

for every point in £ . The symbol A in (2.3,8) and (2. 3,9) stands

2 2
0 0
for +
8x2  gy2

The boundary condition (2.2, 29a) can be expressed in terms .
of W, and X through equations (2.3, 3) to (2.3,5) and equation (2. 2,15).
Similarly, the boundary condition (2.2,29b) can be expressed in

terms of w, and X through (2.3,6), (2.3,7) and (2.2, 30).
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III. AN INFINITE PLATE CONTAINING A CRACK
OR A RIGID LINE INCLUSION
3.1 Formulation of the Problems

Let us consider an infinite plate with constant thickness

h containing a crack or a rigid line inclusion of length 2c. We
consider only the case in which the crack or the line inclusion
is so oriented that it can be represented as one of the cylindri-
cal boundary sets of the plate defined in section 2.1. As shown
in Figure la, the plate occupies a region £ which consists of
all points in the XY-plane except the line segment Y = 0, |[X| <c
which corresponds to the crack or the line inclusion.

A crack is to be free of stress; thus it will be required
that certain relevant stresses vanish as Y — 0+ andas Y — 0,
whenever |X| < c for the case of a crack. A rigid line inclusion
is assumed to be fixed in space; thus it will be required that all
displacement components vanish as Y — O+ and as Y — 0, when-
ever |X] < c for the case of a rigid line inclusion.

It is convenient to introduce dimensionless coordinates

x, y and a dimensionless plate thickness € as follows: 3
c 1
2
X =cx, Y =cy, 63E=l(22)
¢ ¢ ¢

In addition, we introduce a new deflection w {(which has the units

of moment) through the relation

§ 15 fl(Z) is chosen to be L (E%), then € =

h2 /6 V10 ¢
parently dimensionless. It follows that € is small when h/c is
small compared to unity.

which is ap-
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C W
W, o=

t D

(3.1,1)

In terms of these new variables, equations (2.3,8) and (2.3,9)

may be written as follows:

o 3 2
- B (Aw) = By (X - €7AaX) ' (3.1,2)
and
8 3 2
W(AW) —5}"(‘()(' € AX) (3.1, 3)
8 . 8%
respectively, where A = ——2-+ — Similarly, equations (2.3,1)
ox oy
to (2.3,7) can be written as:
ox
CQxxa—y , (3.1,4)
= . 9X " \
CQyﬁ- —'—é-x— ’ (3.1,5)
2 2 2
sz-(avg+v§—%’)+2€zax , (3.1,6)
ox oy Ox 8y
2 2 2
497w 9w 2 97X
M_# - (st V—5)-2¢€ , (3.1,7)
y 8}’2 8x2 ox oy
2 2 2
0 w 2,07 07X
M, =-(1-v) gt € (5 -Z4), (3.1,8)
Xy ox oy ay2 8XZ
2‘3 = . 9W 262_@& 3.1,9)
c "x ox (i1-vy oy ° _ (3.1,
2
D ow 2e” 0X
TPyT oy - Tk (3.1,10)

valid at every point in @ .

Now we shall turn our attention to the boundary conditions.
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The plate under consideration has two boundariés: the line seg-
ment y = 0, |x| < 1 and the periphery of a circle centered at
origin with radius cp as p — o (see Figure la).

The boundary condition along the line segment is completely
dependent upon the nature of the segment; we shall have the ''free

edge'' conditions

lim M = lim M = 1limQ =0 (3.1,11)
, y xy y

ly -0 tyl —0 lyl —0

[x]<1 [x]<1 [x]< 1

for the case of a crack. On the other hand we shall have the

"'fixed edge'' condition

2
lim S~ w = lim B_ = lim B_=0 ‘ (3.1,12)

ly | —0 ly|—0 * |y|—0 ¥

Ix|<1 [xl<1 |x]<1

for the case in which the line segment corresponds to a rigid line
inclusion.

The plate is to be loaded at infinity. This loading is de-
scribed by a set of three independent conditions in terms of either
moments and shear forces or generalized displacements. For
simplicity, we shall take the case in which only moments and shear
forces are involved. If p and ¢ are polar coordinates in the xy-

plane, then the loading at infinity may be described as follows:

£ = M Js2ptt sinlgi2Ni i
p=oco: M= cos ¢ - sin"¢ xy sing cos¢ = gl(¢)
~ ~N
Mp¢— (M M )sing cos¢ + M (cosch - sinqu) = gz(qﬁ)) (3.1,13)

Q cos¢+Q sing = g, (¢)

_p)
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where the hat sign denotes values at the boundary. Here g](q’)),
Soud, and gzlp) are given arpitrary functions of the polalr dagle W

subject to the condition that they leave the plate in static equilib-

rium. Hence, the boundary condition at infinity will be

;ifoo Myg(e. @) | = g,(¢) (3.1,14)
Q,(p. ) g3(¢)

where Mp, MP(P’ Qp are defined as in (3.1,13).

Let us define the boundary operators B(C) and B(g) by

0
2 2 2
P) 5 2 8
[ et v =) ~2€” 5oy
oy ox ¥
2 2 2 w
B (w,x) = lim (1) o 22 -8, ) (3.1,15)
1 X0y 2 2 ,
xl<1 ' X
1 8
\ 0 N,
;e B 2¢fc B
D = (I=v)D 3y )
B (w,x) = 1im R -LZEZC 2 |7 (3.1,16)
o \W.X Tyl o D 3y I-v)D 3 "
Ix] <1 X
\ c?
B 0 /

and the operator Boo by
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2 82 2 8 82
-cos (}) (——+ v-—7) sin gb(———-+—-—-—2- 2(1—v)sinqbcos¢)———axa
Bx dy o y
82 2 2
Boo(w,x):s lim | (1-v)singcosd( ———2— 2) (1-v (cos ¢-sin ¢>) Bxay
p—00 oy
0
2 2 2
2¢ (cos gb sin qb) 8 + ZczslngbCObgb(—?——Z - —8—2-)
oy ox w
2 8° . 2, 2 2, 9% 9%
-4e sin¢cos¢m+ €” (cos"¢-sin" @) (——2— - —2)

3 o
3 1 d T JX
1 .
¢ cosdpx - ¢ sindgy

(3.1,17)
It is clear that B(g)and B(()r)are the boundary operators along the line
segment for the case of a crack and for the case of a rigid line inclu-
sion respectively. The operator Boo presents the boundary condition
(3.1,14).
Our problem then reduces to the determination of a pair of func-

tions {w, X} which satisfies the differential equations (3.1, 2) and (3.1, 3)

in & and which satisfies the boundary condition
B_ (w,X) = o at p = co . ' (3.1,18)

Here Boo is the operator defined by (3.1,17) and :c;; a vector whose com-
ponents are g1(¢), gz((,‘b) and g3(¢) given by (3.1,13). We also have the

boundary condition
B0 (w,X) =0 aty=0—, |x|<1 (3.1,19)

where BO is either Béc) (defined by 3.1,15) for the case of a crack or
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(r) : i . =
B 0 (defined by 3.1,16) for the case of a rigid inclusion; 0 denotes
the vector with all components zero.
Owing to the fact that it is usually much easier to solve the prob-

lem by omitting the condition (3.1,13) (corresponding to the case of a

plate without a crack or a rigid inclusion), we proceed as fo'llows, Let

w o= w+ wk (3.1, 20)

X=X+ X (3.1, 21)

where {w, X } and {w¥*, X*} are two pairs of functions with the follow-
ing properties. Both pairs satisfy the equations (3.1,2) and (3.1, 3). We

require further that {VNV, ;(} satisfies but
~ ~ —
Boo (w, X)= g at p = co. (3.1,22)

Hence, {v~v, i} is the solution pair for the plate loaded at infinity as in
(3.1,18) but without a crack or a rigid inclusion. By applying the bound-
ary condition operator B0 to this pair of solutions {v~v, )~(} we define

functions flc’ ch’ £3c by

2 2 2
9 9 2 9
(£ (x) (~(—+ v ) -2¢
le ay* ox? %3y
2 2 2 Y
_ale) =y 2° 2,8° @
fZC(X) =BO (W,X) —(1-V)—8—m € (F_—é‘?) N
4 X
=0
) 1 0 Ixi<1
\£3.6) \ 0 % Bx Y
(3.1, 23)

for the case of a crack, and functions £, _, f, , f, by
1r? “2r’ “3r



c 0 2e7c 0
£1:690 (- Do =00 3y )
5 w
= alr),~ <, _ c 9 _2€7¢c 2
er(X) = BO (w,X) = " D3y T-)D o= || _ (3.1,24)
X y=0
o2 txi<l
\ £5_(x) ) \ 5 o )

for the case of a rigid inclusion.
The boundary conditions (3.1,18) and (3.1,19) now lead to

boundary conditions for the second pair of functions {w*,x*} as

follows.

Boo (wk, x*) = -6 at p = o ' (3.1, 25)
and

B, (wk,X¥) =- f aty=0", |x| <l (3.1, 26)

where ? denotes a vector with components defined as in (3.1, 23)
for the case of a crack or as in (3.1, 24) for the case of a rigid in-
clusion.

Through the linearity of the differential equations and the
boundary conditions, it can be easily shown that the pair {w, X}
defined in (3.1, 20) and (3.1, 21) solves the original problem. Since
the pair {\;/,)Z} , representing the case of the continuous plate, can
be determined without much difficulty, it may be assumed that the
vector ? with components defined either by (3.1,23) or by (3.1, 24)

is known.
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We summarize the results of our analysis up to this point:

Our problem is reduced to finding a pair of functions

{w, X*} of x and y which satisfies the differential equations

(3.1,2) and (3.1, 3):

0 . o] . A e

- -8-—' (AW*) = gg; (X"‘—E AX’"‘) N
9 oy B e 2
—a—y—' (A\N'A ) - '5—;: (X €A X )

in /) . The functions w* and X* must also satisfy the boundary

conditions (3.1, 25)

—

B, (w, x*)= 0 at p =

and (3.1, 26)

" +

By (wik, x*¥)= - f aty = 0—, Ix|] <1.

The functions w* and X* and their partial derivatives of
all orders are required to be continuous in & .

It is known that crack problems lead to infinities in the
stress distribution at the crack points. Similar phenomena will .
be expected to occur in this problem. In order that the total
energy contained in the plate be finite, we shall require that
these singularities in the moments and stress resultants (com-

puted from w¥ and X*) be not worse than O(r"H-6

) where r is the
distance between the point in o@ under consideration and either
of the ends x =1, y = 0 or x = -1, y = 0 of the crack or the rigid

inclusion (see Fig.la), and § > 0.
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3.2 Fourier Transfams and Reduction to Dual Integral Equations

In order to simplify the notation, we use {w, X} instead of
{w, X*} , and we understand that this pair is required to satisfy
the differential equations (3.1, 2) and (3.1, 3) and the boundary
conditions (3.1,25) and (3.1, 26).

The boundary condition (3.1, 25) suggests that we may usc
a Fourier transform technique to determine w and X. According
to the Fourier integral theorem, any function ¢(x) which is ab-
solutely integrable over the range (-co, o), possesses Fourier
transform and, further, the inversion of its Fourier transform
converges to ¢(x) for all x (except on a set of measure zero)
provided ¢(x) is of bounded variation. In the present problem,

we shall require that the functions

j k
—E-)-—v.l’(x,y) , j=0,1, 2, 3; 2—XR(x,y), k=0, 1,
ox? ox

meet these conditions for each y# 0.
The most general solutions to equations (3.1, 2) and (3.1, 3)

which satisfy the boundary condition (3.1,25) are
w = w(l)'+ (sgn y) W(Z) (3.2,1)

and

§ In fact, in certain cases w and X may not possess Fourier trans-
forms. However if their partial derivatives with respect to x and
y do, then the problem can be still solved in some cases, as we
shall illustrate later.



x = (sgn y) xM + x{?) ' (3.2,2)
QO
with wi) = -2-1; § [QJ. (@)e” 19Vl 4 R (e) || e 19V | (3.2,3)
-0
eiax da
o o) -Va2+l/€2fY| -lay]|
and X(J) x é]:fy [Pj(a)e —ZiaRj(a)e ] - (3.2,4)
-0 .
eiax da |

for vy #0 and all x, where Qj’ Rj’ Pj are as yet arbitrary functions
of a. It is clear that in (3.2,1) and (3.2, 2) both w and X have been
separated into two parts. Since w(l) is even in y, we shall refer
to {w(l), X(l)} as the symmetric solution. Since (sgn y) W(Z) is

(2)} will be called the anti-symmetric

odd in y, the pair {W(Z), X
solution.
Corresponding to (3.2,1) and (3.2, 2) we can compute the

moments, the shear stress resultants and the generalized displace-

ments. From (3.1,4) to (3.1,10), we have:

Q =0 M+ (sgny) P, (3.2,5)
Q, = (sgn y) Qy(l) + QY(Z) , . (3.2, 6)
M= Mx(l) + (sgn y) Mx(l), (3.2,7)
M, = My(l) + (sén - MY<2), : (3.2,8)
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MXY = (sgn) Mxy(l) + Mxy(Z) , (3.2,9)
B, =W+ (sgny)p P, (3.2,10)
By = (sgn y) ﬁy(” + sy‘z’ 3.2,

where

/ [ 2 2
Q(J S\[ 2iqlal R (a)e lay a2+l/€2 Pj((Z)e- a +l/€ ]y‘,] .

X
oo (3.2,12)
eiax da ,
T -Jae1/e? |y
QYJ = 57z J[2a"R (a)e '“V'+iapj(a)e l-
-0 (3.2,13)

iax
e da ,

M(J x——§{[(l V)a Q(Cl)+((1 V)a |y|+2v|a| 45 a lal) ( )]e—layl_

-00
Va2+1/€2
, - 1vi
_zezia Ve + l/€2 Eg(a)e }e'™da ,
(3.2,14)
M;J f{[u v)a Q () (1-v)e% y| -2lal- 4€%a%|q| R, ()] e 1990
-COo
[2.) /2
E 1/€ .
—ZEZia ’a2+1/€2 Pj(a)e a / | '}elaxd )
. 5 (3.2,15)
)z?LWS‘{[(1-V)ia[ale(a)+(l—V)(ia|ay|—ia—4€_1a )Rj(a)]e-'ayh’
_m ,
2.2 2 - Jatr1/e? 1y, iax
+€%(2¢7 + 1/€ )Pj(a)e }e"da ,

(3.2,16)



o s0-
) 2_%55 (L1aQy(a) + e |y -i%r%—;ﬂ) R (a)] e 1V1+

-co
2¢% [Z 3 ety
+ i Ve +1/€ Pj(a) e }e da , (3.2,17)

p

X

2 2

[e9]
By = —2.%]_)5\{[ lal Qj(a)+ ( IaY| -1- 4§__Y)_) RJ(Q)] e_ lay‘ -

~00

_ 2¢ %ia P.(a) e-\/a2+l/€21yl ) elox
T-v) 7j

de . (3.2,18)
The above expressions for the stress resultants, the stress coup-
les and the generalized displacements are valid for |y} > 0 and
for all x. It is clear that all these quantities vanish as |y| — co
from the exponential dependence in their integrands. They also
vanish as |x| — oo since they are assumed to possess Fourier
transforms for all ly] > 0. Hence, the boundary condition (3.1, 25)
is indeed satisfied by the pair {w, X} as represented in (3.2,1) and
(3.2,2).

The pair {w, X} and their partial derivatives with respect
to x and y of all orders are required to be continuous in B .
Hence, in particular, we require that all physical quantities be
continuous across y = 0 for all |x| > 1.

In order to determine the arbitrary fu.nc’cions(.)j , Rj , Pj ,
j=1,2, use will be made of the continuity properties associated

with the pair {w,X} across y = 0 for all [x| > 1 and the boundary

condition (3.1, 26).
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Let us first study the continuity properties of w and X for
y = 0. From the odd and even behaviors with respect to y, we

must have the following for y = Oi, [x{ > 1.

« ) = 0 | (3.2,19)

%) = 0, (3.2,20)
) L 3.2,21

o, =0 (3.2,21)

and

Qy(l) =0 , (3.2,22)

Y - ( (3.2,23)
xy

MY(Z)’: o . (3.2,24)

Next, with regard to the boundary condition (3.1, 26), we -
group our problems into two cases: the case of a crack and the
case of a rigid inclusion. In each case, the appropriate boundary
condition, combined with the continuity conditions (3.2,19) to (3.2, 24)
yields two systems of dual integral equatiox;xs, one for the symmetric
part {wil), y( | 2) @)y

1)} and another for the antisymmetric part {w

» X
3.2a The Case of a Crack. Using the definition (3.1,15),

condition (3.1, 26) in the case of a crack now reads

L MY flc(x)
y—0— Mx = - £, (%) (3.2,25)
y 2¢c
ixt<l
QY f3c(x)

where flc’ ch and £3c are defined as in (3.1, 23). Using (3.2, 6),

(3.2,8) and (3.2, 9) equation (3. 2,25) yields six equations as follows:
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lim M M = £ (%), (3.2,26)
tyl —0 ‘
1xl <1

lim M (2) = 0 , (3.2,27)
jyi —0
Ix1 <1

lim M M=o, ' (3.2,28)
lyt —0
xt <1

im M s g @), (3.2,29)
ivi —0
ixt <1

lim Qy(l) = 0 , (3.2,30)
iyl —0
ixi <1

and  lim Q (%)= £ ) (3.2,31)
iyt —~0 ¥
Ixy <1

(i} Symmetric Part. Among the equations of continuity (3. 2,19)

to (3.2,24), and the boundary conditions (3.2, 26) to (3.2, 31), those
which are labeled with the superscript (1) form a system of integral
equations for unknowns Ql’ Rl’ and Pl; from (3.2,12) to (3.2,18),

these integral equations are

QO
- 5 {01-») ¢®Q,(a)-2 lal (1+2¢%a”)R (a)-26%a VaP41/e? P (a) } o' da=
-0

==—flc(x) s _ : \ x| <1, (3.2,32)
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1 4622
>= § {(1-v)ia lat Q{a)-(1-v)ie [1+ T ov1 Rye) +
-0
+ 62(2a2 + .LZ) Pl(a)} eiax de = 0,
€
all x , (3.2,33)
@
-21; 5 {2a° Ry(e) + ic Pjla)} e da =0,
all x , (3.2,34)

x 2 2,
ZL“V { lal Qo) - [1+%€—;‘r] R,(a) %{'—vy— P(a)} -
_CD .

1ax dg = O

Ixi>1. (3.2,35)
This system can be reduced further to a pair of dual inte-

gral equations involving only one unknown. Let us define

2.
Ala) = Yal Q(a) - [1+ 513-1;“5-] R(a) - %%Pl(a) ; (3.2,36)

Also, the integrands of equations (3.2,33) and (3.2, 34) are identi-
cally zero from the Fourier integral theorem. Hence equations
(3.2,36), (3.2,33) and (3.2,34) form a system of simultaneous alge-
braic equations as follows:

462 2

2e
+ R e e B v ] (1t Q) [ Al
22 2,2 ,2
a e+ 2y S (e s1fe) |\ |=|o | (3.2,37)
Lo 2¢° a b tip ) Lo )
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Solving (3.2,37), we obtain Ql’ Rl’ Pl in terms of A(ea):

LAty Ala)
Qla) == =7
1-v ~ (3.2,38)

Rl(a):’T A((Z) ’
Pl(a) = ~i (1-v) ¢A(c) .

Substituting (3.2, 38) into (3.2,32) and (3.2, 35), we obtain a pair

of dual integral equations:

(o)
-2};§ lal Ale)[3+v - 4€% |al (\/a2+1/<52 - lal)] e %%da =
-0

(3.2,39)
)
"‘z‘l__vy flc(x) » ixl <1,
[0 0] R
-2-177§ Afq) €% dg = 0, Lx| >1. (3.2, 40)

~Q0

(ii) Antisymmetric Part. Among the equations (3.2,19) to (3.2, 24)

and the equations (3.2, 26) to (3.2, 31), those which are labeled
with superscript (2) form a system of integral equations for QZ’

R2 and PZ; in detail they are, using (3.2,12) to (3.2,18)

X 2 2
+o= \ {(-v)ia + lal Q,(a) - (1-v)ie @+ E2) R (a) +
2T ' 2 1-v 2
-0

+ €22a% + 1/6%) Pola)} e da = - £, _(x)

(xl <1, (3.2,41)
oo

1 2 . i
ol g [ 2a Rz(a)+1a Pz(a)] e'®®dq = - f3c(x),

-0 )
ixt <1, (3.2,42)
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co

2 2

- -2—1—7;‘§ {(1—V)a2Q2(a)-2 lal (1 + 267«

-Q0

-2¢%ia VaPr1 /e P,(a)} ¢ da = 0

) R, (a) -

2

all x , (3.2, 43)

1-v

s 2. 2
] zl7§ {1a0,(a) - EHLLEL R (o) £ Va®41/e” Pyla)} -
-Q0

iax
e Tde=0,

x| >1, (3.2,44)
and
(o)
—2-17‘8‘ Qz(a) e*®dq = 0,
-00
ixl >1. (3.2,45)

Equations (3.2,41) to (3.2,45) can be reduced further to a

system of coupled dual integral equations. Let us define

zez\lazﬂ/ez

1-v

2.
Ra) = - ian(a) + ﬂéjit_z_l_al_ Rz(a) -

I-v) Pyla)

(3.2,46)
w(a) = Qz(a) . (3.2,41)

Combining with (3.2,43), we have a system of simultaneous alge-

braic equations:
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2
4€ "alal 1 .
a = v iQ, -2 (a)
1 0 0 iR, = |iw(e) | (3.2,48)

2(12) a 2€2Va2+1/€ ZPZ 0

(l—v)az -2lal(l+ 2¢
Solving (3.2, 48) we obtain

Q

Z(Q) = (o(a) s

1-v . a2 (a)
RZ(Q) =zt fal

s (3.2,49)

1

2¢ 2 \Ja2+1 /e

P(a) = -(1-v) [ (1+26 %% (a)+ia w(a)] -

Substituting (3. 2,49) into (3.2,41), (3.2,42) and (3.2,44), (3.2,45)
we obtain a system of coupled dual integral equations for €2 () and

w(a):
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o
—2—1—7—2_‘5 Q(a) e*dqg = 0 s
-co

x| >1, (3.2,52)

[0'0)
-21—%5“ w (a) e'®®dq = 0 ,
-0

Ixt>1 . (3.2,53)

3.2b The Case of a Rigid Inclusion. Using the definition

(3.1,16), condition (3.1,26) in the case of a rigid inclusion becomes

Py £, (x)
lim B = - £, (x) _ (3.2,54)
Lyl —0 y 2r
1x} <1 CZ
-5V £3r(x)

where flr’ er and f

of a crack, from (3.2,19) to (3.2, 24) and (3.2,54) we may déduce

3, 2%e defined as in (3.1,24). As in the case

two systems of integral equations, one for the symmetric part
{W(l),x(l)} and the other for the antisymmetric part {W(Z),X(z)}.

(i) Symmetric Part. The system with superscript (1) gives

the following equations:

oo

2 2

__c . _ 4€ Tia |a| 267 [ 2 2 iax -

_——Zng {1an(a) ) Rl(a) + 1 Ve +1 /€ Pl(a)}e da =
-0

= - flr(x) , fxl <1, (3.2,55)

2 (e¢]
-;;.C;f)g Q(a) e'da = - 13 (x), 1xt <1, (3.2,56)
=00
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2 2 2
S{IaIQ(a)(l%'%a)R()—e 1aP( }1axdaz
-co
=0, all x , (3.2,57)
C 2 2
Lﬂ 5 { 1-v) ig 1a! Ql(a) - (1-v)ie (1 + if:—vﬁ— )Rl(a) +
~00
+e%(2e®+1/6%) P la) } ' aa = 0,
xl >1, (3.2,58)
m .
—ZL—S‘ 2aRa)+1aP (a)] elaxda=0,
- lx\ >1, (3.2,59)

Similarly, this system of integral equations can be simpli-

fied in the following manner. We define

4é2a2
G(a) = (1-v)ia \al Ql(a)-(l-v)ia 1+ —ﬁ-——) Rl(a) +
v e2(2¢% + 1/6%) P, (a) (3.2, 60)
and  Ha) = - 2¢° R (a) - ia Py(a) - (3.2,61)

Solving (3.2,60), (3.2,61) and (3.2,51) we have

. 1 2€ H(a)
Q. (a) = - i Gla) - (—=+ )
1 2a lal ' Zaz 1-v lal
R, (a) = - -2-12- i Gla) - — H(a) (3.2, 62)

2a

Pl(a) = G(a) .
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Substituting (3.2, 62) into (3.2,55), (3.2,56) and (3.2,58), (3.2,59)
we obtain a system of coupled dual integral equations for G{a) and

H(e):

O
2 S5 .
_I__S‘ {[_._L_-i- (—216— ( a2+1/62 - lal)] Gla)- 1 H(a)}elaxda =
2 \al -v) 2 alal

QO

== flr(x) ) . lX\ <1 ’ (3'2)63)

X 2
LS G+ [+ 2 (o)} =

>
e 2a lal Zaz'lal (1-v)ieal
- Q00
D .
z;z’ £3r(x) » Ixt <1 ’ . (3‘2’64)
and
(00
1 .
o S‘ Gla) emxda =0, ixi >1, (3.2,65)
- Q0
0
-21—7r§ H(a) e'*da = 0, ” ix] >1. (3.2,66)
-00

(ii) Antisymmetric Part. The system with superscript (2)

gives the following equations:

oo
c 4€2a2 2€ zia iax
m—g { 1al Q,(a)-(1 + T ) R,(a) - T Pz(a)} e “da=

-Q0

= - fzr(x), . I1xl <1, (3.2,07)
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o)
2 2 .
1 . 4€ Tia | al 2€ 2 2 iax , _
- 5= § {1aQ2(a) - —(—1_——1)—% Rz(a) + - ¢ +1/€ Pz(a) Je de =
o)

=0 , all x , (3.2,68)
oo

“12%§ Qz(a)elaxda =0,
- all x , (3.2,69)

(00
] %§{<1-v>a2c>2<a>- 2 al (26 %a®)R y(e)-26 “ia Yo r1/6? Py (a)
-0

- g = 0, 1! >1. (3.2, 70)

By defining

F(a) = -(1-V)a2Q2(a) + 2 lal (L+2€ ZaZ)RZ(a)+2€ %10 a2+l/€2 P,(a)

(3.2,71)

and solving this equation with the help of (3.2,68) and (3.2,69), we

obtain:

Qz(a) =0

Rz(ajs L o), (3.2, 2)
2 lal

P,(a) ® st F(a) .
Za a2‘+l/€2 ¢

Substituting (3.2,72) into (3.2,67) and (3.2,70), we obtain a pair

of dual integral equations for F(a):

o ‘
2 2
1 § (L 26 “q 1 1 iax
— + [ - ] JF(e) e de =
2T 2 lal 1-v {al /a2+1/€2

= .CQer(x), 1x| <1, (3.2,73)
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o
1
27
-0

F(a) et da =0, x| >1 . (3.2,74)
Dual integral equations have been used previously in cexr-

tain crack problems in elasticity [ 8], [10], [11]. The contents

of those references have been mentioned in the Introduction.

3.3 Reductions to Systems of Singular Integral Equations

In the previous section, we obtained four systems of dual
integral equations. For the case of a crack, equations (3.2, 39)
and (3.2,40) correspond to the case of symmetric deflection and
equations (3.2,50) to (3.2,53), to the case of antisymmetric de-
flection. For the case of a rigid inclusion, equations (3.2,63) to
(3.2,66) correspond to the symmetric part and equations (3.2, 72)
and (3.2,74), to the antisymmetric part.

Instead of reducing the problem to dual integral equations
as in the previous section, it is possible to pro;:eed in an alterna-

tive way. We shall describe this in the following subsections.

3.3a Symmetric Part - Case of a Crack. Let us define

(0 0]
u(f) = %?5 Ala) 196 dq (3.3,1)
-co

where A(a) is defined by (3.2,36). The physical meaning of u(x)

is clearly described by the equation

= i .P_ ' (1)
u(x) y_l.i?i z Byv (X,'Y),
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from (3.2,18). From (3.2, 40) it follows that u(x) = 0 for x| >1,

hence, by the Fourier inversion theorem
1
Ala) = g u(§) e'lagdg , all a . (3.3,2)
-1

Substituting A(e) into (3.2, 39), we obtain an integral equation as

follows:
(e0]
—%—Wg tal [(3+ v) - 4¢® fal ( a2+l/62 - !al)]eiaxda .
-0
1 -iak 2
g u(g) e dg =T f.x), =l <L. (3.3,3)
-1

It is quite clear that the order of integrations in (3.3, 3) can not
be interchanged, hence no explicit use will be made of (3. 3, 3).
However, the left hand side of equation (3.2, 39) is the

)

lifniting value of MY(l as |y| approaches zero, so we may first
express My(l) in terms of u(g)v for |yl > 0 from (3.2,15) and (3.2, 38)
and then require its limiting value to satisfy the boundary condition
(3.2,26). Substituting relations (3.2, 38) and (3. 3, 2) into (3.2,15)

and interchanging the order of integrations which is justified when-

ever Jy| > 0, we have

1
My(l)(x:y) = _@_7?1_‘.’_1 gl u(g) my(l) (x-€, y) d§ (3.3,4)

where

2

~Va%1/e% 1y

126 a®Va%H 1/ 6 o’ 67 Iy Jie%g, . (3.3, 5

(00}
| 3 v 2 .
my(l)(x,y)r-%—‘g‘{[-( ;v) ot + 52 o% 1y ] et .
-0
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The integration in (3. 3,5) may be carried out explicitly in terms
of rational functions and modified Bessel functions of the third kind

of integer order. There follows

2 2 2, 2 2
mirl)(x’y) — (3;") (v ‘Z ) + (1-v) Y (y -3x") +
: P p

2 1 p 1 p *(2 2 )
t2e - 5= Ky (@)t —— K5 (g) - =77 K4 (g) -
€p €7p - €”p
4 22 4 |
o xT -bxTyT+ y7)
6 "3 ] (3.3,6)

where p2 = xz + y2 and Kn denotes the modified Bessel function of
the third kind of n-th order.
All physical quantities can likewise be expressed in terms

of u(f); they are

Mx(l) mx(l) (x-§,v)
1
M M e 2 fu(é) m 8 ety | (3.3,7)
-1
(1) 1)
MXY mXY (X"g’y)
and
(1) 1
Q_ b ety
= u(€) dag (3.3,8)
o ) (! Dise-g, y)
y Ay ’

where my is given by (3.3, 6) and the remaining kernels are given

by the following formulas .
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mx(l)(X:Y) = — (lév) (X Ty _66X Yy )
N3
2 1 1 X 2 p
~26 - = Ky (@) 3~ Ka (@) - g Ky () -
€ p €7 p € p
6(x 5yt - 6x%y?)
- Y, (3.3,9)
8
p .
(1) 2xy xy o (1-v )y(3xy2—x3)
Myy  Gy)= - =t 5 Ky () 5 -
p- €D p
2 25> 6
~e“[a8 & -2 Y ) 2 k. (B +
8 3 3 3 \¢
p P €7p
Feeg Ky (@] (3.3,10)
€7p
2 3 2
1 2(3xy“-
g ey = BRI ok (s Sk, () (3.3,1)
P €7p €7p
3 2 2 .
(1) 2(y"-3x"y) y P Xy P
qY (X,Y)’s p6 “ezpz KZ (6_)+;—3_;-3K3 ('é-) . (3.3,12)

To satisfy the boundary condition (3.2,26), we require

1

tim M W=t 22§ i) m gy at -
lyl— lyl— .
(x| <1 Ix1<1 1

= - flc(x) (3.3,13)

where the kernel my(l) is given in (3.3,6). Apparently, the limit-

ing process in (3. 3,13) can not be passed under the integral sign

since the kernel my(l) (x-£,0) is non-integrable. However, if u(x)

vanishes at x = T 1 and is HbBlder continuous with some Hblder
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index p, 0<p<l for all x in the closed interval [ -1,1], then the

-1+ 6

stress singularity will not be worse than O(r ) for some 6>0

(see Appendix A). We shall assume that this condition is fulfilled.

du(x)

I exists and is Hblder contin-

Furthermore, if we assume that

uous with Hblder index p for all x in the open interval (-1,1), then

we can write the left hand side of (3.3,13) as

1
. @) _1-v 4 (3+v)
lyllir'noM ﬁTﬁgu(é){_mk
ix1< 1 -1
vaef g ot BB Jag = o 0 (3.3004)

2
(x-£)" €7(x-§)
(see Appendix B). The integral in (3. 3,14) is a Cauchy principal
value. Combining (3. 3,14) with (3. 3,13) and integrating once with

respect to x, we obtain a singular integral equation with kernel of

Cauchy's type§:
1
u(t) 4¢ [ - (———— ] }dg
) e e - ot el 2 €
x
) (12—715 f,.(n) dn + const., | Ix] <1. (3.3,15)

3.3b Antisymmetric Part - Case of a Crack. The reduc-

tion for the antisymmetric part of the crack problem can be car-
ried out in a similar way. We omit details and simply list the

results here. We define

(0]
v(E) gﬂ(a) 05 4o, (3.3,16)
-0 OO
wig) = 3= | ol % a , (3.3,17)
-Q0

3 The same integral equation was obtained in [ 15] in which fl (x) =
MO = const. ¢
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where Q(a) and w(a) are defined by (3.2,46) and (3.2,41) respec-

tively., It is clear that from (3.2,17)

and that from (3.2, 3)
wix) = 1in3_ W(Z)(x,y) .
y—0~
Moreover with the aid of (3.2,44) and (3.2,45), v(x) = w(x) = 0

for |x| >1. Hence, by the Fourier inversion theorem
1
Qa) = g v(§) e'médé , all ¢ (3.3,18)
-1

1 .
w(a) =§ wi(&) e_lagdg , all ¢ . (3.3,19)
-1 '

All physical quantities can be expressed in terms of v(§) and w(§)

as follows,

(bdi?)~ frni?l)bc-E,Y)* ( DOL?2)0<-§»Y)~
1
M 1= (o) | Bty | 4 wie) | m@Pecey | e,
-1 ,
| M}({Zy) J ~ mg,l)(x—é,y) / ; m>(<2y2)(x'§’y) ’
(3.3,20)
QS‘) ol qfl) (x-¢,y qﬁfz)(x-é,y)
=2 § {~(&) w(t) }dg
ol?) -1 (21) (x-£,7) (22)
; ‘ ay 5% ay (x-£,y)

(3.3,21)



where

(2'2) - X P p p
Ty GOV K e 2 — 2 Kol - 33 Ksl -
p € p

~-47 -

p

4

x P 1 P
= K, (D] - ==K, (5) -
€4p4 4 ‘e 2(:2 0 ‘e

2

_ 2 P
epK()+ezp 2(6 >

( 4-3X2 Z)
- {1-v) -—-_6—-———Y ¥ ,
P

2
) Lovly -

X

%)

(3.3,22)

’

(3.3,23)

K3(e) -

(21) (3XY3'X3Y) x3y
(x,y) = —(1—v)—;—6——+ 2€ [24——6 48_p_8 -
3xy p Xy o
€ P p
[ %y kg (9_) y ny]
2 2772 %€ 4
2 2
(22) 2y(y"-3x") __y P e,
(x,y) = z - —— K, () + 3 3 Ky (&
[ €
3 3 3
21 3 -
mir )(x,y)z+(1-v)(_.x3;_-6_.}f_3f_) -2€ [24_6 48_p_y -
3 Ky (@)t T Ky (P
2
5 Ky () - =F ]
€ p P
22), 22
6, y) = - 028, )
4, 4 2.2
(21) wpeypxty -6x"y7) 3 Py, bx
mXY (X:Y) 262[.6 8 'ezpz ( )+ 3 3

(3.3,24)



2€ €
(3.3,25)
(22) Xy p
(x,v) K, (&),
2€4p2 2 ‘€
2
§,21)(X y)z-—-2~—2— K(e)--e—:%)zx( )+ g K2+ (iy %)
(3.3,26)
2
q.  x,y) = - K (%) K., (2)
Yy Ze3 1'¢ 2€4p2 AYS

Again we shall assume that both v(x) and w(x) vanish at
x =+ 1 and are Hblder continuous with some Hblder index p, O0<p<l
for all x in [ -1,1] . Further, we assume that %{(ﬁ and —d%vxi}i)— exist

and are Hdlder continuous for all x in the open interval (-1,1).

Under these assumptions, (3.2,29) anc (3.2, 31) can be written as

1
lim M(Z)=-—(—l———1-)-—{§v(§)[ lZKo(lXe—gl)] dg +

byt — 0 XY T 9 2€

g w(8) (- s - gy K, HEEL) 4

2 .
P ) ag (3.3,27)
(x-§)
1
+_§ w(g) [ — L KZ(‘XG'E'I)JF éx-iz) Kl(lx-éi)
-1 €7(x - £) 2€ 1 x-£| €
-2 lat |-
(x- é)
= ‘fzc(x)

and



1
. (2) _ (1-v) U" ) 1x- £ 1 ix-£]
lim Q') = &) [ K., ((Z22h K, ( )
1 =0 WC -1V 2¢7 [x-g1 ° ¢ efx-g) © €
Ix1 <1
2
- ] €+
(xc-£)°
1 (3.3,28)
*adzgw(s)[ Ze(x'i’_g‘ K, (X8 ag =
-1
=-£3c(x).

Equations (3.3,27) and (3.3,28) form a system of coupled singular

integral equations.

3.3c The Case of a Rigid Inclusion. The reduction to

singular integral equations for the problem of the rigid line in-
clusion is essentially the same. We list only the results corres-

ponding to the case of antisymmetric deflection. We define
oo)
6(8) = -?_—,Tg F(a)e’®® da . (3.3,29)
-0

where F(e) is defined by (3.2,71). Through (3.2,15), it can be

shown that

: (2)
t{(x) = lim M (x,vy) .
g oty

From (3.2,74), we have t(x) = 0 for |x! > 1, hence by the Fourier
inversion theorem
1

F(a) =S t(§) efiag d¢ , all ¢ . (3.3, 30)
-1
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All physical quantities can be expressed in terms of t(§) as follows:

Y m_ Pt y)
1
(2) 1 (2)
My ‘ = —;S‘ t(£) m (x-§,v) dg (3.3,31)
-1
M, ) m He-g.y)
(2) (2)
QX ) 1 qX (X'g’Y)
= — | t(£) dt (3.3,32)
y dy ’
where
(2) y L 0-noex®) L o2y o
Wy y) =y St B b 26— Kyl -
p 2p € p
2
Xy py _ 2yly -3x7)
g§“§-K3 (6)— IS
P P (3.3,33)
mY(Z)(X’V) =2 L) el Yok, (B -
P Zp € p
XY g (P ZX(XZ-3XZ)]
‘e'”3—3 3 {g) - >
P P (3.3, 34)

x 4 2 €
y 0 20 P
—262[ 3x K (p) Xk (p) 2(3x 2-x3)
2 2 2'€ 3373 %Y T 6 1.
P (3.3, 35)
(2) ' P Xy
qX (X:Y)““ 2 ZKZ (e)' Z“Z: (3.3,36)
€ p P
g,y =2 K (&) - X _k p)+x2—y2 3.3
Gy ey mg fle) s R e T (3.3,37)
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Using (3.2,11) and relations (3.2, 72), we find that the gen-

eralized slope with reSpect to y is

oyl 25 - oyt z -VOtZH/EZM} )

8186, )= Zng{OY’ Ziylm - =—

—_— e
Y ozzﬂ/esZ

. (3.3,38)
. e S\ t(g)e % agda .
g}

In order to assure that the integral in (3. 3, 38) exists for all x and

for every |yl = 0, we should require
F(0) = 0. (3.3,39)
From (3.3,30), (3.3,39) can be also written as

1
S‘t(x)dxxO. (3.3,40)
-1
Now, let us define a new function

X

7{x) =g t(g) 4§ (3.3, 41)

-0
which exists since t(x) is absolutely integrable and vanishes for all
Ixt » 1 on account of (3.3,40). Integrating the right hand side of

(3.3,30) by parts, we obtain the Fourier transform of 7(§) as fol-

lows:
1

I‘j(a) gS ,T(g) e-ia{i dg . (3.3,42)

la -1

If this relation is used in (3. 3, 38) we find that
1

8, Py =5 | ) byfeeg ) 2t (3.3,43)
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where
2 2 3 3
i _ 2€ 2(3xy"-x") 3x p X 13
by G, y) = ooy L 6 T 2,2 K, @+ 3,3 Ky (gl *
+ x _ y@ . (3.3, 44)
ZP p

Aslyl—™ 0 we require that (3.3, 44) satisfies the boundary

condition (3.2,54); i.e.

2
'ergl Z(X £) 1-v (x—§)3 GZ(X_g) 2 €
_ (X £) (IX £l ]} d¢ =
{x g] €
- fzr(x) ., |xl <1. (3.3,45)

Equation (3.3,45) is a singular integral equation with kernel of
Cauchy's type and its solution determines t(x) uniquely through
(3.3, 41).

In the above subsections, we have reduced our problems
to problems of solving systems of singular integral equations. We
have omitted the reductions for the symmetric part of the rigid
inclusion case since it presents no interesting features more than
those which shall be extracted from the other cases. -

It can be shown that under certain conaitions the systems

of dual integral equations are case by case equivalent to the systems
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singular integral equations.

Before we go on to study the solutions of the systems of
singular integral equations, we shall state here that the solutions
to the systems of dual integral equations are unique under certain

conditions (see Appendix C).
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IV. SOLUTION OF THE INTEGRAL EQUATIONS

IN DIFFERENT CASES

4.1 Case I - Symmetric Solution for an Infinite Plate Containing
a Crack

In section 3.2a, the crack problem has been separated into

two parts, symmetric and antisymmetric. Naturally, the solution

pair {w, X} will be the sum of the pair {w(l),x(l)}

(2) (

part) and the pair {w'"/, ¥ 2)} (antisymmetric part) according to

(symmetric

(3.2,1) and (3.2,2). Hence, both {w(l), x(l)} and {W(Z),X(Z)} are
of fundamental importance to the present problem. Besides, from
the boundary conditions (3.2,26) to (3.2, 31) it is clear that {w(l),x(l)}
depends only on flc (x) while {W(Z), X(Z)} depends only on ch(X) and
f3c(x). Since it is possible to load the plate at infinity in such a
way that the corresponding solution {\;, )Z} for the plate without a
crack generates either fzc(x) = £3C(x) =0 or flc(x) = 0 along the
crack where flc’ ch’ f3c are given by (3.1, 23), either of the pairs
{ w(j),x(j)} , j =1,2 has physical significance in itself.

In this section we shall consider the symmetric solution
of the crack problem Which is represented by the singular integral
equation (3. 3,15‘),‘. For éimplicity, we shall replace flc (%) by fl(x)

hereafter. (3.3,15) can also be written in the form:
1 1

;r:_l_ g u(t) dt + Fl g kix,€) u({g) dg =.€1(X) + Cl s

- X
-1 -1

Ixl <1 (4.1,1)

where
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K, (12Xl
2__462[ 2Z 2 26 ]
k(x,£) = (E-x) < (4.1,2)
’ (1+v) (& - x) T
xX
2

2(x) = - £(t) dt (4.1,3)
1 (l—vZ)S‘ 1

and C1 is an arbitrary constant.

The existence of solutions to (4.1,1) is discussed in the
work of Muskheleshvili [16] . Out of the various classes of func-
tions listed in that reference, we seek our solution in the class
of functions which are Hblder continuous for all x in the closed
interval [-1,1]. This concept is required in order to fulfill one
of the assumptions we made in section 4.3 during the derivation
of (3.3,15).

Under the above restriction, (4.1,1) can be transformed
to the following Fredholm type integral equation for u(x) as shown

in Chapter 14 of [16].

1
ab) - 20 M6, ) wie) ag = 660
-1

ixl <1 . (4.1,4)
where
M(x,g)=ﬂ'—x—2—’i£§1 k(£ E) g (4.1,5)
T e e
and
1

-1
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provided that the additional condition

1
2. (t) dt
K(t,£)at 1 1
_*S u(g)dgg (t, éz))l/a_F§ e (4.1,7)
1

is fulfilled.
It can be easily shown that the solution u(x) to (4.1,4) van-

ishes at x =+ 1. Hence, the only assumption made in section 4.3

du(x)

dx

continuous for all x in the open interval (-1,1). Accordingly, we
dl (x)

find that this requirement will be satisfied if djc

——_Z-Z— fl(x)) is Hblder continuous for all x in the open interval
2)-1/2+6

which remains to be verified is that exists and is Hblder

(that is

1-v7)

(-1,1), and near the ends not worse than O((1-x } with 6> 0.

4.2 Thin Plate Solution to Case I

From the definition € =1/c (CZZ/Cll)l/Z and the definitions

of Ci1r Cpp» We find that € depends linearly on the ratio of the plate
thickness h to the length 2c of the crack or of the rigid inclusion.

In this section, we consider a plate with € << 1, i.e. a plate whose
thickness is small in comparison with the length of the crack.

§

Upon observing equation (4.1,1), we shall assume

u{x,€) = uo(x) + o(l) | as €—0 (4.2,1)

SThis assumption ought to be verified. However, it has not yet
been possible to carry out this verification because of the complexity
of the integral equation (4.1,1).
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uniformly for all |x|<1 provided that
fl(x,e) = flo(x) + ofl) as € —~0 (4.2,2)

uniformly for all ix{ < 1. Then, the integral equation for uo(x)

reads as:
1
1 ug (8) Ity
-1
where
X
2
1-

We seek the solution to (4.2, 3) in the same class of func-
tions admitted in the previous section. Following the procedure

of §113 in [16], we obtain

(x) = (+v) . (1 _XZ)l/Z 1 4y (t)at
Yo\ = T 3TV p 2\17Z

(4.2,5)
(1-t
-1

(t-x)

while the additional condition (4.1,7) determines constant Cl as

follows:
. 1 £, ()t
C =-z w472 (4.2,6)
-1

It will be convenient in later analysis if we put this solution in the

following form:

u,x) = ﬁmho(x) (1-x2yL/2 (4.2,7)
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where

1-v2) glﬂ.lo(t)dt
2m (1_t2)1/2

ho(x) = - (4.2,8)

_1 (£-x)

The function ho(x) is not defined at x =+ 1, however it is Hblder
continuous and bounded for all x in the open interval (-1,1); more-

over, it possesses finite limits as x — + 1 from interior.

I the assumption (4.2,1) is correct, then u(x,€) will be
well approximated by uo(x) for thin plates. Hence, we shall re-
place u(x,€) by uo(x) in (3.3,7) and (3.3,8) in order to compute
the approximate forms for € small of all the physical quantities.

To examine the stresses interior to the plate for € small,
we split the plate into three regions: the region away from the
crack, the regions near the vertices x =+ 1, y = 0 and the region
near the crack but away from the vertices as in the following sub-
sections.

a. Stresses away from the crack. For all points which

lie outside an arbitrary fixed ellipse with foci at x =+ 1 and'a
semi-minor axis b > 0, when we let € — 0, the stress couples and
shear force resultants can be computed from (3.3,7) and (3. 3, 8).

We shall consider Mx(l) for example. From (3.3,7) we have

1 ;
M P,y 222 (age) m O et yie (4.2,9)
21

where mx(l)(x,y,é) is defined by (3.3,9). For all points (x,y)

outside the ellipse, R? = (x—g)2 + yz is bounded away from zero
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whenever € in | -1,1]. Hence if we let € — 0 and replace u(§) by

uO(f_E,) in (4.2,9), we have for all (x,vy) outside the ellipse

2 4, 4 2 2
lim M ( ( ’Y) = (15;:) uo(g) [Y '(X'g) 6_6Y (X'é) ] dé
€ —0 R
-1
for any fixed b> 0.

Let us define a function

b (x,y) 1§1h°(g 0857 at
X,y :F .
' 4 )y’

(4.2,10)

(4.2,11)

With the aid of (4.2,7), (4.2,10) can be expressed in terms of ¢ (x V)

as
3 2
. 1 1 2 9
lim MX()E-3+V[¢ + 3y 8 ty "—%l]
€ —0 oy

(4.2,12)

Similarly the limiting value as € — 0 of the other stress couples

and resultants can be expressed in terms of ¢ 1

2
lim M(l)zm[(3+v¢+(5 v)yff_lJr(l vy y ?—j)z—l] ,
e —0 7 %y oy
2
o 97¢
. 1) 1 2 1
ehinoM = ) [(3-v)y 5~ + A-v) vy axay] ,
2
97
lim Q(l) L [Z&b1 + 2y '
LB B T ) o oxy
2
el
lim Q() L [4a¢1+ 2y ¢1]
e -0 Y c(3+v) oy Byz

for all (x,y) outside the, ellipse.

(4.2,13)

(4.2,14)

(4.2,15)

(4.2,16)
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b. Stresses near the vertex. For computing the stiress

distribution near the vertex we employ the following local coordi-

§

nate system v:

x =1+ r cosO

y = r sin0 ol <=

to specify the points near the end (x =1, y = 0). As r — 0 for any
fixed 6, |6l<m, the following asymptotic relations can be estab-

lished .

1
1/2 2,1/2
2/ 5 -8l Lk )/ d¢|—+0 for any p>0, (4.2,17)
-n 2 2
o€ty

L1/2
k

1
§ (1—52)1/2 hy(€) log [(x-£)°+ y°] ag|— 0. (4.2,18)
-1

Now, we consider for example the behavior of Mx for small r and
fixed 6, |0l<w. The kernel mX(l) in (3.3,9), may be written after

some algebra in the form:

2 4
1 1+ 1 8 1
m Mo,y = B (L 8, By iy (4.2,19)
p e
where
2 2
(1) . 2 p 2 Py, 2X ¥ P
P, (x,y) = — K, (e—) Ty K3(g) T K, (g) -
P €“p
4 4 2.2 . 2
_(x+Y6—6XY) (1_126_2_), (4.2,20)
P p
S

An analogous investigation could be carried out for the vertex
x = -1, y=0,
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Then the first equation in (3.3,7) becomes

™ (1) _ (1+v)
T M Tz Lt L (4.2,21)
where
: 1 sy® sy~
! ""Su(g)[ aie ] ag (4.2,22)
' 1 r® r* R® .
and
1
2 = g u(e) o, Vet y) at (4.2,23)

-1
2
with R = (x—g)2 + yz and pX(l) defined as in (4.2, 20).
If the thin plate solution U_O(x) given by (4.2,7) is used in

(4.2,22) and (4.2,23), we have

L=t : (4.2,24)
here I Sﬂ 2)1/2 8y” , By’ 4.2,25
where (—T)(ETV— (lé ——2'—R—ZI—+—R“6-]d€.,(- ’ )
2 2)1/2
112 = ———(1—U)(3+V) S\ [ho(g) - ho(l")] (l g /
-1
2 4 '
. [.é_z _%+ %] at (4.2,26)
with ho(l—) =xli_r3— ho(x)
and
l .
L = ooy ) ho®) 0-£9%p Wietyyas . az,2n)

~1
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These integrals may be estimated asymptotically for small r.

The integral 1., can be evaluated explicitly and its asymptotic

11

form as r — 0 is found to be

2 1/2:3 09,1 5
For 112’ we have the following estimate:
i1
1/2 2 4
1/2 T 2\1/2; 1 8 8
]r / Ilzl=£ M ~— j;!lmgl“ (1-£7) / [=+ —3%74--3%7] dg (4.2,29)
] R R R

where M is a positive constant. The right hand side of (4.2, 29)

tends to zero as r — 0 because of (4.2,17). Hence
/2 L,~0 = asz-—0o. (4.2, 30)

The remainder term p}((l)(x,y-) in (4.2,19) can be easily shown to

have the property

Px(l) (x,y) = OQQog p) as p — 0, (4.2,31)
hence

rl/z 12—>O asr — 0 (4.2,32)

through using (4.2,18). Substituting these results into (4.2, 21),

we {ind that as r —~ 0

1) (1+v) -1/2 ,3 0,1 56
Mx (——3;—:)— ho (1-) (2r) (-4— cos >+ 3 cos 7—) .l (4.2,33)
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In a similar way it can be shown that, for small € , as r ~0

3

M}fl) . %:1;)) hy(t-) (26) Y% Gcos & - Leos 22, | (42,34

xy | (37v) 27 % Z

LM 1) , (1t+v) hy(l-) (ZI)-l/Z (- % sin @+ Lsin 29y | (4.2,35)

The shear stress resultants are found to remain finite as

c. Stresses near the crack but away from the vertex. In

order to examine the stresses near the crack, we make the change

of scale
y = €n (4.2, 36)

and examine the limits of (3.3,7) and (3.3,8) as € — 0 for fixed
71> 0 and fixed x in (-1, 1).

We illustrate for Mxy(l)" According to (3.3,7)

1.
My W een e = ——-—‘ﬁf’f ag,€) m Mg, ne,e)ag (4.2,37)
-1
where
m W e-gne o) =
f L Enebeet) | mGeE) o Ry, gLy nEl30mg)n e o))
R4 €R2 2 ‘e - R6
3 N
i 62{48 [ne(i—g) ) Zne(gc-é) ] -
R
3
_2[27__(_};‘33)_1{3(?_)_1&&;22&_ K, (=) ]} (4.2,38)

€ "R € "R
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in which R% = (x-£)%+ n%e? . (4.2,39)

The integral (4. 2,37) may be written in the form:
x+6 1

(1) (1)
(S‘ +g{+6) LJ.(f;,€)rnXY d¢ | (4.2,40)

where 6 is small and positive. In the first and third of these inte-
grals, R is bounded away from zero so that

lim (S‘ ) = lim ) = 0. (4.2, 41)
€e—~0 €—0 i

In the second integral in (4.2,40), we use the thin plate solution
uo(x) given by (4.2,7), and expand it into a two term Taylor's series

plus a remainder. Also, we change the variable of integration from

£ to { where { = (§ - x)/en . It is then found

x+6
] : L
1 (€,¢€) (x-£,en,€) df =
6-1_1;1:10 s u(g mxy x-g £
n%¢? / 3t2-th
= uplx) g { -5 Ky (Ve - (1- ")_—2_3“
2a- t_. (1+2%) 1+ 2%)
2 4
+ {48 —2 S S
n2ae?)®  n et

-2 3% (nJ £%)

122 377 K3 (H,;ZZ 4:(’7“1+§ 13} a

= qu' () (1 - e‘V/e) . , (4.2,42)
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If this result and (4.2,41) are combined in (4.2,40), we

find that

tim M He,en,e) = 1-v) wx) (1-e7V/€) (4.2, 43)
e—0 *Y
duo(x)
with u'o(x) = —ax , this result may be written in the form

1) 2 1- ’L flo(t
Mxy(X,y,€)~W (1—8 f-_—z- ‘g‘ R —— (4.2,44)

as € — 0 for fixed y/€ > 0 and fixed x in (-1, 1).
Similarly, we find that the other stress couples and resul-

tants are:

(1) . (1-v) PREONS
M "~ ) fol®) M, ~£1px)
Vit% £ (%)
o M. __2 LV/€ 1 5" 10 at
b4 (3+v)ec 'n"l—xz ). t -x
1
1-t“f, (t)
(1) 2 -y/e, a 1 g 10
Q Y~ - (1-e ) — [ ]
\% (3+v)c dx o /1_Xa /| t -x

(4.2,45)
as € — 0 for fixed y/€ > 0 and fixed x in (-1, 1).
It was remarked in section 3. 2 that although w may not pos-
sess a Fourier transform, the problem still can be solved in some
el

cases if 5% and —8—? possess Fourier transforms. We may illustrate

this point by letting flo(x) =My = const.§ in (4.1, 3) and thus

§ This problem has been considered in detail in [15].
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2M

L 0 2.1/2 |
'CLO(X) = W———(}*‘V) (l—X ) » ]Xl 1. (4. Z, 46)
According to {3.3,2), we obtain
2 MO Jl(a)
AO(Q) = (l—V)(3+V) o p (4:. 2,47)

If (4.2,44) is used in (3.2,38) and we find that w') in (3.2,1) can be

written as:

zM, ‘Tl(a) (1+v)

00
W(l)(X,Y) z(—l——v_)_—__(3+1«')§ - [yl -—(T_—;—)—Z—] e IV esaxda (4.2,48)
0

which diverges (because of the behavior of the integrand at a = 0) for
(1) (1)
all (x,y) in O . However, ?%}-{—— and i\g—y—— do possess Fourier trans-

forms, so we could find w(l)(x,y) from its partial derivatives.

4.3 Results Based on Classical Theory of Bending of Plates for Case I

Let us denote by W the deflection of the middle surface of the

plate under consideration. It is well known that according to the clas-

sical theory of bending for plates the stress couples and resultants

may be expressed in terms of W, as:

2 2

a W 3 W .
ch = - D[ aXZ + v aYZ ], (4.3,1)
8w, 8w _ |
Myc =-D| 5y 2 v s 2 1. (4.3,2)
azw
M= (1-v) D _55@;— , (4.3,3)

0
0 =—D—8_X(AWC)’ ’ (4.3,4)
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a

ch =-D 57 (AWC) (£.3,5)
3 2 2

where D = —E-}-l———z , A= —((—3——2 + —8—2 and the subscript ¢ refers to the
12(1-v) oX oY

classical theory. As noted in section 2.2, this system can be de-

duced from equations (2.2,24) to (2.2,26) by taking G = co and

h(7Z) = —5—
h* /6
middle surface of the plate.

Z " :
(m), however W here denotes the deflection of the

It is also well known that for a plate whose upper and lower
surfaces are free from external tractions W satisfies the bihar-

monic differential equation
AAWC = 0 . (4.3,6)

in £ according to the classical theory.

Let us again make a dimensionless coordinate transforma-
tion X = cx, Y = cy in the above equations and we shall use (x,Vy)
hereafter.

The boundary conditions along the crack are

lim MYC = - £ () (4.3,7)
lyl —0
1xl <1

. oM

. 1 XyC 1 d

lim Q c + E ———ax = " f3O(X) - E- a—}-{-fzo(X) (4:.3,8)
iyl -0
1x1 < 1

where flO is defined by (4.2,2) and

fZO = lim fzc(x,e)
€ —0
f30 = €l.i»rr(; f3C(X’€ ) (4.3,9)
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Equation (4.3,8) is the Kirchhoff edge condition usually associated
with the classical theory and replaces the last two equations in
(3.2,25) of the Reissner theory. It is this effect of a reduction
in the number of boundary conditions which we wish to study. At
infinity, we shall require wc-and all its derivatives vanish.

The Fourier transform technique shall be applied again to
(4.3,6) and it is found that the most general solution of (4.3, 6)

satisfying the condition at infinity is

W= wc(l) + (sgn y) WC(Z) ‘ (4. 3,10)

C

where
w .
D Gy .1 -lay - oyl iox
2w =g g[ch (@)e ‘[i'[y[ch(Ol)e 1e1a0 (4.3,11)
-0
i=1, 2

in which ch, ch, j=1,2 are as yet arbitrary‘ functions. Here

(1) (2)

W denotes the symmetric deflection and w , the antisymmet-
ric part. These superscripts will also be attached to the other phys-
ical quantities. Upon satisfaction of the boundary condition (4.3,7)

and (4.3,8), we have

tim M. D a o x) (4.3,12a)
Iyl —Q yc 10
1kt <1 (1)

lim [Q (1)+1_-.—_X_Y_‘i]=o (4.3,12b)
Lyl —0 yc c ox
ixt <1

and



2) M(Z)
1 Xyc 1 d
1xt <1
lim M((Z:) =0 .  (4.3,13b)
Yl —'2 Y
ix)] <

It is clear that the symmetric part depends on flO(X) only while the
antisymmetric part depends on fzo(x) and f30(x).
We shall postpone the discussion on the antisymmetric part

until section 4.6. For the symmetric part, we define
ow (1)

. D c
uc(x) = - lim + T2 By all x (4.3,14)
y=—=0— ¢

(1)

which vanishes for all |x| > 1 on account of the fact that W is
awcl
even in y and - is continuous in &£ . All other physical quan-

tities can be expressed in terms of U (x). We omit the detail and

list the results as follows.

ch(:l) m}&) (x-~£,y)
1 .
My((:l) = (1;v)§uc (g) my(i) (X"g,Y) dg
-1
Mx(';Z: m,g,)c (x-£,v) ,  (4.3,15)
Qé? | 1 q;i) (x-£,y)
¢ = Lov) S‘ u_(£) de (4.3,16)
Q(l) 1 ¢ (1)
YC - qYC (X'g,Y)

where
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4 4,22
mxc(l)(x’y) . 1-vty \X6—6X y) (4.3,17)
2 .2 2,2 ,.2
i W,y) = EUED) ) TN s
| 2p P
(1) 25y, gy V(3" o) 4.3,19
sye (X,Y)='~--p—4~+ (w)——p—é—— : (4.3,19)
2 .3
qxc(l)(X’Y) = 2 (_32&’.61_) , (4. 3,20)
p
3 ,.2
qyc(1)(X,y) =2 by 3xy ) (4.3, 21)

p

The integral equation for u (x) follows directly from the
boundary condition (4.3,12a). We have

1

u_(§) ‘
% g g-x dg =((3L715) Lok + Gy 1x1 <1 (4.3,22)
-1

where ﬂlo(x) is given by (4.2,4). Equation (4.3, 22) is exactly the
same integral equation for U.O(X) which was obtained in section 4. 2.
Hence uc(x) is identical to our approximate thin plate solution (4.2,7)
of Reissner's theory.

With (4.2,7) and formulas (4.3,15), (4.3,16) we are again able

to compute the stresses in different regions.

a. Stress away from the crack - classical theory. When

the stress resultant and couples are computed according to classi-

cal theory from (4.2,7) and formulas (4.3,15), (4.3,16), we find that
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8 8
1y . (1-v) 1 2 1
ch ”‘Bm[¢l+3y—\§; y 5“};],
(1) 1 &%Pl 2 82¢l
MYC = Eaan [ (3+v)¢_l+ (5-v) Y—W + (1-v) vy —8—}-’—2—] s
2
(1) 2 9%

1 : 1
Mxyc - Zj—'rv)[(:a'v) Vgt vy Oxay] ’

2
9% 97¢
1y . 1 1 1
Q'xc T S(3rv) [2 ox T2y Bxay] ’
2
o Wo_1 (g%, 2%,
yc c (3+v) ay y ayz

where ¢l(x,y) is defined by (4. 2,11.). These are precisely the same
as the limiting values as € — 0 (4.2,12) to (4.2,16) of the couples

and resultants computed according to the Reissner theory, provided
we stay away from the crack. Thus for sufficiently thin plates

(€ <<1), the M's and Q's from classical theory and those for Reiss-
ner's theory of bending agree in any region which excludes the crack,

as would be expected from our discussion in the Introduction.

b. Stresses near the vertex - classical theory. Using the

same method as in the previous section we find for points near the
end x =1, y = 0 that, as'r — 0, the asymptotic expressions for the

stress couples are
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1) _l+v -1/2,3 0.1 50
ch mho(l—) (2r) (4 cos §+ Z €0s > )
' L .1 ) -1/2 ,114+5v 0, 1l-v 50
MYC 355 B (-) (2r) (=f— cos~+ =5~ cos>-) (4.3,23)
() . -1 -1/2  tv .0, 1-v . 50
Mxyc 377 h, (1-) (2r) ( 7 sin >+ —-sin 5 )

where ho(x) is given by (4.2,8). Similar results hold at x = -1, y=0.
Mofreover, the shear stress resultants Qxc(l) and ch(l) be -

come infinite like r-3/2 as r — O.

c. Stresses near the crack - classical theory. The stresses

near the crack can be easily obtained through formulas (4.3,15) and

(4.3,16) for small y and fixed x in (-1, 1). We find

1-v

(1) .
M v fox)

XC

M

1)
yC _flO(X)

1/1 ¢

M

Q

XC

Q
yc

1y 2

(1)

(1)

£ o(t)at

~ : S
e TB AT

-1

t-x

2y & . -2 £,o(t)dt
T (GEF z == g t -
(3+v)c ax - l—xz 4 X
>
5 g . Wi-t© £ (t)dt
~-Z3+’v)ca§[ § t - x

i l—xz

-1

]

as y — 0 for fixed x in (-1, 1).

(4. 3,24)

We may remark that M (1) and Q (1) in (4. 3, 24) satisfy the
XycC yC

Kirchhoff condition (4.3,12b) along the crack, and that MYC

~{

at y = 0, |x| <1, thus verifying that the boundary conditions approp-

riate for the classical bending theory are indeed satisfied at the crack.
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4.4 Case Il - Antisymmetric Solution for an Infinite Plate Con-
taining a Crack

In this section we shall study the antisymmetric solution
of the crack problem which is represented by the system of coup-
led singular integral equations (3.3,27) and (3. 3, 28).

Integrating (3.3, 27) with respect to x, and after some al-

gebra, we obtain

1 1 1
% g l%%?‘ + %gkn(x,é) v(g) d§ + 171 gklz(x,g)w(g)dg =
-l. -1 -1
= ,QZ(X)+ Cz, [xl < 1 (4.4,1)
where (£ -x|
K, ( )
1+ 2¢ 4 —2 5 - 2 ; +
ko (%, E) = e { (£-%) €
1Y s = 0y —
%
1 g £ -1l
t—=\ K, {(=~—)dn} , 4.4,2)
. 262 0 € } (
1 2V € 2
klz(x,g) = EE0) [ eZ - (g_x)z] (4.4,3
and
X
£,(x) = - ————-22 5 £,(n) dn (4.4, 4)
(1-v7)

in which fz(x) stands for fzc(x). Integrating (3.3, 28) with respect

to x, we obtain
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1 1 1
& o
175 Wé(éxdg ¥ %{g ko (2, 8)v(€)dE + i—jkzz(x,i)W(%)dé =
-1 -1 1
= 4,(x)+ Cy Ll <1 (4.4,5)
where
1§ -x|
ko bea8) = - ‘1 - > - =1
€ (€ -x)
(4.4, 6)
- (E-x) 1E-x1, 1
kzzbgé) 6lg_X[Kl( =) 5
(4.4,7)
and
> X
ﬂ(x)z-zec £,(n) dn
3 I-v) 3 .
' (4.4,8)

in which f3(x) stands for £3C(x).

We require solutions of (4.4,1) and (4.4,5) to be Hblder con-
tinuous with some positive Hblder index p for all x in the closed
interval [ -1, 1]. Undgr the above considerations, (4.4,1) and (4.4,5)
can be transformed into a system of Fredholm type integral equa-
tions, by procedures discussed in {16], Chapter 19. These Fred-

holm equations are as follows,

1 1
vix) - %T—gMH(x,g) v(g) dt - —j;g M, (5, 8) w(E) dt =
-1 -1

=G2(X) » Ix( <1 (4.4,9)

and
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1 1
wix) - %g M, (¢, £) v(£) dt - —},5 M,, (¢, 8) wit) dE =
-1 -1

= Gy(x) Ix| <1 (4.4,10)
where
1
2,1/2 k. (t,&)
(1-x7) il )
M., (x,§) = S dt, j,L=1,2
j4L * T ) (l—tz)l/z(t-x)
(4.4,11)
and
1
2,1/2 2. (t)dt
_ o (-x%) g j L
G.(x) = - s j=2,3
JX T A (l—tz)l/z(t—x)
- (4.4,12)

provided that constants C C3 are chosen as follows.

2>
1

c, = }17 <T§§_§172— {5 [yt £)v(E) + Ky, (e, E)w(E) ] € ) -
-1 -1

1 .

£2(t)d§
_‘g — 75 (4.4,13)
-1 (]-"t ) .
and
1
C, = — g at {g[k (t,€) v(€) + k,, (t,€) w(£)]dE } -
3 2 2, 1/2 21 22
T 1 {1-t7) el
1 £, ()t '
- S‘ — 1, (4.4,14)
| (1-t7) */ 7
Moreover, the requirement made in section 3.3 that dv (x) and

dx
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dw(x) . : B ‘ . e . .
—g%  exist and are Hblder continuous for all x in the open inter-

val (-1,1) has to be verified. We find that this requirement will
be fu1f21ellzed if both ax (tha.t 18, - —(T——V-?—) fZ(X)) and -—dx—-
is, ﬁ—;‘;— 3(x) ) are Hblder contmuous for x in the open interval

1/2+6

(that
(-1,1) and near the ends are not worse than O(l- with
some § > 0.,

4.5 Thin Plate Solution to Case II

In order to obtain appropriate approximate solutions for
thin plates, it will be convenient to write equation (4.4,1) in the

form:

1 x : :
2
_ 1 in-€| _(l-v)_ 2 {x-£1 4e
{SV(g)[S‘ 262 Ko( € )dn 2(x-%) (%-E) 2( € )+ (x—§)3] dg +

[§ o(me Shan - iy oy (XL ag) -

x : ‘
) ‘ :
"Tfﬁﬂ'g f,(n)dn + C,, x| < 1. : (4.5,1)

For a similar reason, we integrate (4.4,5) with respect to x once

and then write it as:

in-£1 o1 (x-£) lx £l
{§V(€)[S Kol==)dn (x_§)+€lx g\K ( )] dg +

S‘ E13 '—Ko(u)d" at} = - WXS £,(£)dtdn+Cox+C,

Ix| <1. (4.5,2)
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As € —0, the left sides of both {4.5,1) and (4.5, 2) grow
without bound. Howevei‘, this difficulty may be removed if the
~limits
elir,no fz(x,e) = fzo(x)

(4.5, 3)

lim f,(x,€) ={, (x)
e o 3 30V

exist in |x! <1l. We shall assume that (4.5, 3) holds in the sequel.

Let us assume§

v(x,e)-vo(x)%i(x,e), Ix1 <1 (4.5, 4)
and

v(x,€) = o(l)as € — 0 (4.5,5)

uniformly in {x| €1, Then, if the system of equations (4.5,1) and

(4.5,2) does have a limiting solution as € =0, we must have

T e) = -vol) + P (ce) . 1xl <1 (4.5,6)
where
@(x.e)xou) as € — 0 (4.5,7a)

for all x,ix} <1; the end points are not included since _g%v (x,€) may

3 This assumption again ought to be verified. However a proof
has not yet been carried out.
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not be defined there, and

x
S Y(E,e)dE = o(l) as€ — 0 for |x| <l. (4.5, 7b)
-1

Substituting these assumed forms into (4.5,1) and (4.5, 2)

and letting € — 0, we have

1. 1 X
(1+v) . ~ 1 gl N
:§V0(€>z—zx—.ad€-gﬂ_ 36 e Pie.e 27 (e anag
' X
-1 \f (han+cC Il <1 (4.5,8)
{T-¥) ) “20 M 2’ . .5,
and

1 1 X '
(v gy as + 2 (15eend o0 | 27 w0008 anag =
-1 -1 ,

X
= - (1%)- S§f3o(§) dfdn+ Cgx + c4,‘ ix] < 1. (4.5,9)

Adding (4.5,8) to (4.5,9), we obtain

1 . % <
v,4(E)
(3;:) A go.x dg = - -(117;y[5 f,0(n)dn + c§§ fa5(0)dtdn  +

+C3x+ C5, . jxl <1. (4.5,10)

The solution of (4.5,10) can be obtained by procedures dis-
cussed in §113 of [16] . The solution is
v a(x) % el W-x22 5 x), ix1 <1  (4.5,11)
0 1-v)(3+v) B Jo ’ T

1

where
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t n

t
o Teygman +c [ ] 500t
Jo(x) =¥
-1

dt—(l-v)C3,

@-t212 (¢ - x)
1x] <1 (4.5,12)

provided the constant C5 is chosen to be

C

Lfe fTe. wat
f_.(n)dn+ ¢ £ ydtdn
1 S 207V 30 it . (4.5,13)

5% - v) 2.1/2
v -4

Substituting vo(x) back into either (4.5,8) or (4.5,9), we obtain
another integral equation for [;(x,e )+ {p (x,€)] as €—=0 which can
not be solved explicitly. However, a simple estimate shows that
both fb' (x,€ ) and v(x,€) for small € give only higher order effects
in computing the stress field away from the crack and the stress
couples around the vertices. Hence, we shall ignore it as long

as the stress field near the crack but away from the vertex, and
the shear stress resultants near the vertex, are not considered.

Integrating (4.5, 6) with respect te x from x = -1, we obtain

X X
w(x,€) = - Svo(g)dg + g &(&:E ydg, 1xi =1, (4.5,14)
-1 -1 ‘ ' ,
If the asymptotic property (4.5, 7b) is used, then as &€ — 0, (4.5,14) -
gives ‘
X .
wo(x)Eel;u:rz) w(x,€E) = -S' vo(g)dg,‘ Ix| <l. (4.5,15)
-1 :

On account of the fact that wo(i 1,0) = 0, the constant C3 can be
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determined through the relation
1

5 vole) dg =0 . (4.5,15)
-1

If the approximate solutions vo(x) and wo(x) as given by
(4.5,11) and (4.5,15) are used in formulas (3.3, 20) and (3. 3, 21),
we can compute the approximate stress field away from the crack
and the stress couples near the vertex, Using the same geometri-
cal description as we did in section 4.2, we find the following

results.

a. Stress field away from the crack

2

' 3¢ "¢
€~ .
3¢ 87¢
Lim MY(Z) = T%W[ (1-v) y 5=+ (1-v) y° Kz%r] , (4.5,17)
€~ : : '
2
a¢ 87 ¢
. 2)_ 1 " 2 . ., 2°%
61_1:1’6 Mxy —m)[(l"'v) ¢2.(1 3v) Y5y (1-v)y ———‘ayz }, (4.5,18)
2
8¢ )
. (2) _ 2 2 2
e}-]fr:) QX» = (3+V)C [2 ay + Y ayz ] ’ ' (45»19)
‘ ' 2
, a¢ 8”¢ :
o Qy(z) = (3fv)c [ + V&T;?;] (4.5,20)
where
Lt a3 ) '
¢, (x,y) = = dg . (4.5,21)

o -g) e yP

t
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b. Stress couples near the vertex (x =1, y = 0)

My~ 1(—1}1:—)) o(l )(Zr)l/2 in%—'-‘—i«sin%g)
Mxy (1+V) ig (1-) (2r) 1/2 ( g.+ -i—cos §2_9_) (4.5,22)

as r— 0. Here r, 0 are local polar coordinates centered at x =1,

y = 0 as in section 4, 2.

4.6 Results Based on Classical Theory for Case II

In section 4.3, we have already discussed the classical
theory for bending of plates. For the present case, we shall find
a solution wc(z)(x,y) according to classical theory in the form

(4. 3,11) such that it satisfies the boundary conditions (4. 3,13ab)

lim M) =0, (4.6,1a)
C
tyl =0
Ixl <1 o (2)
1 XyC 1 4
W}u_n’o[o t3 T{X—] = - £54(x) -3 I fo0(x)  (4.6,1b)
Ix1 < 1 ' .

where M(Z), Q (2), M (2)
yc yc xyc

are defined among (4. 3,1) to (4.3,5) and
fzo(x), '£3O(x) are defined in (4. 3,9).
Let us define a function <I>C(x) by
(2)
D We (x,y)

(I)c(x) = lim , & —a—

(4.6,2)
y ~— olec

which vanishes for all |x| > 1 since wéz)(x,O) =0 for {x1>1. All

physiéal quantities can be expressed in terms of <I>c(x) as follows:



ch(Z) mxc(Z)(X*g’Y)
1
Myc(Z) = 1?'1 ®_(£) myc(z)(x-g,y) dg¢ (4.6,3)
B
Mxyc(Z) m}E}Zrl (x-g,y)
and
ST 1 0. Bt )
2 ) v (e ) . )dg (4.6,4)
QYC ‘1. qu (X-g,Y)
where
(2),, oy - (3xy>-xy) 2xy
m_ “x,y) = (l-v)——T—L+ (v) =L, (4.6,5)
P P .

(2) (3xy° -x’y) o
m T y) =-<1-v)JTL, (4.6,6)

(2) (y2-x%) (y*-3x%y ) '
oy (oY) = (V) Bl (1-v) =2, (4.6,7)
P P

2
qxc(z)(x,y) = -2—% - ——618’; , (4.6,8)
4

2 2
qyc(Z)(x’Y) = - Ei(_?;%._'_x_) . (4.6,9)

To satisfy the boundary condition (4.6,16) we obtain an inte-

gral equation for <I>C (x):

1 x - XN
@, (8) at
iahl = =al.v)[§ f2(n)dnte § §f3<§)d; dn] -
-1 . |

-vC3x - C4 ) fxl < 1 (4.6,10)
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which is exactly of the form (4.5,10). Thus

P (x) = - vylx) , Ix1<1 (4.6,11)

where vo(x) is given by (4.5,11).
Using (4.6,11), we find from (4.6, 3) and (4.6, 4) that
(i) for points a.wé.y from the crack, the stresses based on

the classical theory are precisely the limiting values given in (4.5,16)

to (4.5, 20);

(ii) for points near the vertex (y = 0, x =+1), asr — 0

2 1 . -1y2 +7v . 86, 1- . 5
ch( )~-(-§W)_]0(1—)(2r) / (-94 sm7+——4—v-sm-?g)

Myc(Z) ~ '('3+_)1v jo(l-)(Zr)-l/2 (—‘l—-i:——zsin—g- - -li:lsin %Q-) (4.6,12)
M (2) . 1 )2 -1/2 5+3v 6 1l-v 50
xyc 337-'1')30( -)(2x) (g~ cos 3 -—7 cos )

and (Qxc(z), ch(Z)) ~ o(r=3/2y,

4.7 Case III - Antisymmetric Solution to an Infinite Plate Containing
a Rigid Line Inclusion

In this section, we shall study the antisymmetric solution

of the inclusion problem which is represented by the singular inte-

gral equation (3. 3, 45).

. We may rewrite (3. 3,45) as follows:

1 c 1
1-3"— S:]. 'r(%)_i - "1% S:]_ L(x,&)7(£)dE = lzr(x), x| <1 (4.7,1)



where
L(x,§) = (E-x)" € c
(3 ) E - x
(4.7,2)
and
IZr‘x) = 2(1-:) . _CQ er(x) . (4.7, 3)

From (3. 3,41), the solution of (4.7,1) is necessarily sought
in the class of functions which are bounded and Hblder continuous
for all x in the closed interval [ -1, 1]. Thus, (4.7,1) can be trans-

formed to a Fredholm type integral equation as follows:

7(x)+§N(x g) 7(£)d§ = G, (x) s ixl <l (4.7,4)‘
-1
where
1
2,1/2
L d-x7) Li(t,€) :
N(x,§) = S dt (4.7,5)
x,8 T (l-tz)l/z(t—x)
and
1
2,.1/2 L (t)
(L-x S‘ 2r
G, (x)= - >—1L (4.7,6)
T 2r ™ o (1-t )1/2 x)
provided that the additional condition
Lor®lge 1 g Lit,£)d
-ty 172 -—S (g)dgg (-t ); .
-1

is fulfilled.
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Further, in order that i—g}g—)

= t(x) exist for all x in (-1,1),

we require that

al, (x) df, _(x)
2 . 20-v)p . ¥
—%I_  (that is, Bov)e 31‘ )

exist and be Hblder continuous for all x in (-1,1) and near the ends
1

(1-x%)

be not worse than Of

1725 ) for some § > 0.

4.8 Thin Plate Solution for Case III

Equation (4.7,1) suggests that we assume

T (x,€) ='To(x)+ o(l) as €~ 0 (4.8,1)
uniformly in |x| <1 if

er(x,e) = fo(x) + ofl) as € 0' (4.8,2)

uniformly in {x| <1. Then, the integral equation for 7 O(x) reads as

(i)dﬁ '
__S 9 =32 1) x| <1 (4.8, 3)
where
2,x) = %(Ll% _CQ £,60) - (4.8, 4)

The solution of (4.8, 3) can be eas‘ily found from (4.7,4) as follows:

To(x) = (-(:1:_'-;% Go(x) , o ixi =1 (4.8,5)

where
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1
2,1/2 (t)dt
(L-x7) S‘ O

Go(x) = - p e )lfz(t o (4.8, 6)
Differentiating (4.8,5), we obtain
tol) = —2 = -2 2 (k)2 i (4.8,7)
where
- _71;51 (1-t2)tl-/xzfo(t)dt (4.8, 8)
-1

is apparently a Hblder continuous function for all x in the closed
interval [ -1, 1] .

Now, we examine the state of stresses in different regions
of the plate by using the approximate solution (4.8,7) and formulas
(3. 3, 31) and (3.3, 32).' For points away from the inclusion, near
the vertex and near the inclusion, we use the same geometrical
descriptions as we did in Case I and list the results as follows.

a. Stresses away from the inclusion: By defining

() at
1 0
(x,y) =
Pabey gu e % (xe-£) %y
oty = 151 ko(£) (x-£)dE (4.8,9)
X,y
* (1-£2)2[ (e-£)%4y 4]
(4.8,10)

where ko(x) is given by (4.8,8), we find that at points away from
the inclusion:
o

11m0M (2) _ [(1 3v) ygs + (1-v) y __?_] , (4.8,11)
e —
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o¢
. (2) _ D 2 7%3
8¢
(2) D 2 9V
o,
Jim Q (?) - ZDZ 8y4 (4.8,14)
9¢
2) D 3
1i Q (e} . . B ty—-=——1] . . 4.8,15
elmo C2[¢3 Yay ] (4.8,15)

b. Stresses near the vertex: We find thatas r — 0,

-1/2 (1-7v

+v . 56
7 )

nd.
3

2 D 1/2.94v v o

My( Yo 2 K, (1-)(2x) / (94" s1ng-- 14" smiz‘i) (4.8,16)
0 D 1/2,5-3 1+ 5

Mxy( N ) /2 2 cos 2 - BY cos 29

where x =1+ r cos6, y = r sin®.
Furthermore, the shear stress resultants QX(Z), Qy(z)

remain finite as r — 0,

c. Stresses near the inclusion but away from the vertices:

‘As € — 0, for fixed y/e > 0 and for fixed x in (-1, 1), we find

Mx(z) ~ %]9 v ko(x) (1-::2)'1/‘2 ,
M8 - 2 ) ety 2

MXY(Z) ~ - 1-v) 28 (x) , (4.8,17)

Qx(z)., - 2_]22( ‘Y/e [k (x)(1-x ) 1/2 ,
c

Q (&)« -32‘9- £ (x)
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4.9 Results Based on Classical Theory for Case III

According to the classical theory of bending of plates, the
stress couples and shear resultants for the case of a rigid inclu-
sion can still be expressed in terms of w_ as in (4.3,1) to (4. 3,5).
W satisfies the same biharmonic equation (4.3,6) in P and
hence the most general solution for W would have the form (4. 3,10)
and (4. 3,11) such that the condition of vanishing of W and all its
derivatives at infinity is satisfied.

Along the boundary Ixl| <1, y = 0, we require

dwc' , . :
— = - lim £, _(x), (4.9,1)
o

where er, £3r are givgn in (3.1, 24).
| (2)

If the antisymmetric part W alone is considered, then

from (4.9,1)and (4.9, 2) we find

dw (&)
lim — ——— = £ (x) , (4.9, 3a)
iyl =0 0 .
ixi < 1
lim wo(z) =0 (4.9, 3b)
iyt —0 ‘
1xt <1
where
lim - .
fo(x) = 0 fzr(x) . (4.9, 4)

We may note here that (4.9, 4) is in fact the same as (4.8, 2).
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Let us define
lim

tc(x) = |yl —0 Myc(Z) (x,v)

(4.9, 5)
ixi < 1

which vanishes for Ixl{ >1, y = 0 on account of continuity proper-

ties. All physical quantities can be expressed in terms of t. (x)

as follows:

G

5 m_ Px-£,y)
1
MYC(Z) = 1.;1.5‘ t_(€) myc(z)(x-é,y) g (4.9,6)
-1
2) 2
Mxyc( mxyc( Jx-,y)

(2)

( N ) 1 - qxc(znx’é,y)
x t_(£) d¢  (4.9,7)
mwe (o4
g ©@ | ( )

(2)
y Aye  x-E,Y)

where

m (2)(x,Y) =v L+ (1-v)y(zz-x2)
xc p2 2 94

2 2
(2) (-v)y{y -x")
mYC (le) "pXZ_ = ZXPY4 = P (4-9’ 8)

2
(2) - xy (1-v)x
mxyc (x,y) = - (L-v) 94 T > p2 ’

4o Py = - 2L
( ' 2" (4.9,9)
: 2) . Xy ‘

W%
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Again the subscript ¢ refers to the classical theory of bending.
Upon satisfying (4.9, 3a), it follows that the integral equa-

tion for

X

To (x) =g tc(g)dg (4.9,10)
-1

is identical to (4.8, 3). Hence, tc(x) will have the form (4.8, 7).
Stress couples and resultants in the plate can be then
computed according to (4.9,6) and (4.9,7). For points away from
the inclusion we find that these values are exactly the limiting
values as € = 0 (away from the inclusion) based on Reissner's
theory listed in (4.8,11) to (4.8,15). For points near the end x=+1,

y = 0, we find that

M (2) _ _-ED_ko(l_) (Zr)-l/2(1+47v

o_L1v
<c nZ A sin

50
_2_) »

M (2. __k a-) (2r) 1/2(7+v n 0, 1-v

.50 '
ye in >+ = sin =) , (4.9,11)
(2) -1/2,5- 5v 0, 1l-v 50
xye - T koll-) (20) AR cos G+ I cos 3D,

(2) (2. -3/2
Q. ,ch) O(r /)

as r == 0. For points near the inclusion but away from the vertices,

we find that

M2 ~ Ry, Ml 2 )2,

M}E}Q -(1-v) 28h()

of2) . ZD d

ol% [kl 22712, Q- e (1.9.12)

as y —~ 0 for fixed x in (-1, 1).
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4.10 Summary of the Results and Discussion

- In the three cases we have treated so far the stress fields
away from the crack or from the rigid line inclusion are the same
for Reissner's theory and the classic‘:al theory for thin plates. How-
ever, significant differences occur near the vertices of the line seg-
ment y = 0, |x|£1 and near the line segment but away from the ver-
tices. We shall write down again some of the results obtained in
previous sections in order to give a discussion.

Let us examine first the stress distribution near the vertex
y =0, x =+1. For Case I, the case corresponding to symmetric
deflection of an infinite plate containing a crack, we have obtained
the following.

(i) Results based on the Reissner theory for small €

1) 3 0, 1 56
MX / Zcosi+ ZCOS >
(1) | _ (tv) _ -1/2 5 0 1 56
My &) ho(l ) (27) ZCO8 5 - 7 cos > (4.10,1)
(1) - —lsin9+ l sin §_Q
Xy 4 2 4 2 -
1) 1.
(" Q )~ o)
. 2, 2 y
asr — 0 for |06l<m withr = (x-1)"+y~, 6 = arctan =7 -
(ii) Results based on the classical theory
(1) _3(L-v) 6 1-v 56
ch —F —CO0S5-—F—CO5
. 1 -1/2 | 1+5v 0,1-v__ 56 _
MYC —mho(l-) (21‘) T COSZ'*' y) COs > ) (4.10,2)
C{1) 7+v 6 1l-v 56
.Mxyc I Sl B )

@ o) o3/
e, olh~ o7

asr~—0for 16| <w .,
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Comparing (4.10,1) with (4.10, 2) shows that the angular distri-
bution of the stresses based on the two theories is different. Partic-
ularly, when 8 = 0, we have from (4.10,1) M}gl)/MS)"l as r — 0, while,
according to the classical theory, we have M}E?/M;lc)~—(1—v)/(3+v).
Hence, the Reissner theory predicts that along the prolongation of the
crack near the vertex, the state of stress is one of uniform hydrostatic>
tension or compression, while in the classical theory M}({lc) and Mélc) have
opposite sign and different magnitude. Moreover, the angular distribu-
tion as shown in (4.10,1) is identical to the corresponding stretching
problem reported in [8] according to the classical theory. Thus, if
the Reissner theory is expected to be more accurate near edges, we
would state that the angular distribution near a vertex of a crack is the
same no matter the plate is under the action of stretching or of bending.

The shear force resultants in (4.10, 2) become infinite like
173/2 as r =~ 0. Thus, in order to maintain a finite amount of energy
in the neighbourhood of the vertex, the classical theory would have to
have the transverse shear modulus G = co. This is certainly not true

“for an isotropic elastic fsolid. In (4.10,1) Qx and Qy remain finite as
r — 0; thus the above defect will not occur in the refined theory.

For Casé 11, the case corresponding to antisymmetric deflection

of an infinite plate containing a crack, we have near y = 0, x = +1:

(i) Results based on the Reissner theory for small €

@) 7m0 1. 50
Mx Z §1n > - g sin>
M.Y(Z) ~%—;j0(1-)(2r’)'1/2 -gsind+ 2sin 22 | (4.10,3)
(@) 3 0s 84 L ooy 50
xy ' yi coOSs ) + i cos >

as r—~ 0, for fixed 8, 16} <.
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(ii) Results based on the classical theory

(2) 9+7v . 6, l-v . 50
ch - 51n-2-+ —— sin 5=
(2) | . 1 . -1/2 l-v. . 6 1l-v . 50
Myc Ty Joll-)(2r) - g sing oS
M (2) 53V cos B L1V 028
xXyc 4 2 4 2
(4.10, 4)
(2) (2)y & op=3/2
Q ch ) O(r )

asr—0, lol <w. v

Formﬁla.s (4.10, 3) and (4.10,4) show again that the angular
distributions based on the two theories are different. Moreover,
there is a significant difference in the behaviors of the maximum
shear stress computed a:cc'ording to the two theories. It is found
that the inaximum shear stress according to the classical theory

possesses a relative minumum at 0 = 0 near the vertex, while, ac-

cording to the Reissner theory, the maximum shear stress pos-

sesses a relative maximum there. Hence, the failure due to

tearing of a plate containing a crack would be expected to propa-
gate along the prolongation of the crack, as far as this factor is
concerned. |

The transverse shear force resultants in this case accord-
ing to the classical theory again behaves like O(r'3/2) as r —~ 0.
In the Reissner theory, we can show that the shear force resultants
Q)(CZ), QB(IZ). bécome in.finité like r_l/2 as r = 0 if the function \P(x,e)

in (4.5,6) is considered. However, J/'(x,e) is assumed to be of
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small order effect when € << 1 and the. contribution to strain energy
due to a stress singularity of O(r_l/z) is finite in general.

From (4.8,16) and (4.9,11), it can be easily seen that the
stress distribution near the vertex y = 0, x =+1 is also different
based on the different theories for Case III.

Next,A we shall examine the stress field near the segment
y =0, I1xl <1 but away from the verticés.

For Case I, we have as ¢ — 0 for fixed y/e > 0 and fixed

x in (-1,1)

(1) _ 1-v 1)
T R (L ' My( ~- o)

1 (l—tz)l/zflo(t)dt

t -x

b4

Q. 2 yfe. 1 1
MxY 3tv (1-e ‘ )(1_x2) 72 ?Sl\

2,1/2
o WM. 2  -v/ 1- Si (L-t7)/7E, (¢ )dt ,
X (3+v)ec . (1-x2)1/2 )| t - x '

2)1/2

1
(1-t f£o(t)at

_ 2)1/2 t-x

] (4.10,5)

based on the Reissner theory. And, we have for y —0, x in (-1,1);

M. W 1=V v @

XC ~ mflo(x) ’ yc / ~o- flo(x) ’
1 2.1/2

M Do 2 (L-t)"/7f p(t)dt ,

R R T
Q(l) ~ 2y a% [ 1 1 (1-t7)/7f) (t)dt

xc  (3tv)c dxz T (1-x2)1/2 s ,

) 2,1/2 '

q Lo 2 _(_1_[ 1 L (1-t7) 7 (t)dt

yc¢ T 3ZFve d&x . (1-x2)1/2 . T - x

(4.10, 6)
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based on the classical theory.
As shown in (4.10,5), the boundary conditions (3.2, 26),

(3.2,28) and (3.2, 30) are indeed satisfied, while (4.10,6) shows
that these boundary conditions are satisfied only in an approximate
way (see section 4.6). A comparison of (4.10,5) and (4.10,6) dem-
onstrates the presence of a ''boundary layer'' effect (neglected by
the classical theory) in the values of Qx(l), Qy(l) and Mxy(l) near

' ' fhe crack for thin plates. This effect is not present in the values
of Mx(l) and My(l). Also it may be observed that while according
1)

to the classical theory Qxc = 0 along the crack, this is not the
case in the Reissner theory. Moreover, the stresses associated
Qx(l) and M's are of about the same magnitude along the crack while
according to classical theory the transverse shear stress in thin
plates is assumed to be of small order in comparison with the flex-
ural stresses.

Finally, from (4.8,17) and (4.9,12) it can be observed that
the boundary layer affects only the value of QX(Z). We have in the

%

Reissner theory
2 2D,, -~y/€. d - 2.1/2
9@~ Ba-e A M P
as € = 0 for fixed y/€ > 0 and for fixed x in (-1,1), while in the clas-

sical theory we have

q (2. _2D d

. -5 I [ k.O(K) (1-X2)1/2]
. C

as y —~ 0 for fixed x in (-1,1).
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V. APPROXIMATE SOLUTIONS BY A VARIATIONAL METHOD

- 5.1 A Variational Theorem

In Part IV we have reduced our problems to either a single
integral equation or a system of integral equations. In the same
part we obtained some approximate results for thin plates through
a perturbation method. However, for € of moderately small val-
ues the perturbation scheme breaks down since the dependence on
€ of the higher order terms is not clear. We shall establish cer-
tain variational principles in order to obtain furtner approximate
solutions to our problems.

In the sequel, the theorem of minimum potential energy
from classical linear elasticity shall be used. However, instead
of using as admissible displacement and stress states those which
satisfy certain boundary conditions, we shall use those which sat-
isfy the equations of equilibrium (2.2, 3) to (2.2,5) as well as the
stress strain relations (2.2, 24) to (2. 2, 28) in the interior of the
plate. Thus the Euler equations obtained according to the varia-
tional procedure are the boundary conditions of the problerh.

Béfore we derive the variational method which will be ap-
plicable to our problem, we shall compute the strain energy con-
tained in the plate in terms of the moments, the shear force
resultants and the generalized displacements which were defined
in section 2. 2.

Since the plate is assumed to be isotropic and the stress

strain relations obey Hooke's law, the strain energy§ contained

§ See Love[1] .
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in the plate is
1 1 2 2 2 2v
Tl.s = 7S§§[E— (crx +cry to,7) - -—E:—(¢X¢y+o‘ytrz+o'zcx) +
A

1 2 2 2
+ & (O‘XY + o’yz + L )] dXdydz (5.1,1)

where T etc. are defined in section 2.1 and,8 is the set consisting
of all points interior of the plate.

Let us now consider the plate whose geometry was described
as in section 3.1 and whose upper surface and lower surface are
free from external tractions. We shall assume that the stress dis-
tributions across the plate thickness are approximately (2.2, 6),
(2.2,7) and (2. 2,8). Also we assume that the two-dimensional stress
strain relations (2.2, 24) to (2. 2, 28) hold everywhere in @ . Under
the above assumptions the integration with respect to Z in (5.1,1)
can be carried out and (5.1,1) may be expressed in terms of BX, ﬁy

and Wt as

| o8 Op ap op
T, =§§§{(1+v)(—8,—}‘+ —5%)2‘* (1-v) [ - —a-}-)i)z+
&

| aﬁx o8 2
vyt )1 + (5.1,2)

(w, ;) w,_ /)
(1-v) t/c) 2 t/c) 2
+ ezt(ﬁx+—4—aaxf’ £ (B, + —5LS)2} axay

c 1/2
-————EZ——-—- , € 2 = 1 (—ZE) and x,y are dimensionless
] c C
(1-v©)c 1 11
coordinates as be%ore.

where D =
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Integrating (5.1, 2) by parts, we obtain

C lal
T['s = _255(Mnﬁn + Mnsﬁs + ant) ds -

CoUC

oo
M, M _ M, oM
\Sj L ( 3 + 6yy h CQx) ﬁx+ ( ox * Oyy B CQy)ﬂy
8Q 90
ol + az)“’t] dxdy (5.1, 3)

where coo denotes the boundary at infinity and CO is the line segment
y = 0+, lx! < 1. The second term in the right side of (5.1, 3) van-
ishes if the M's gnd Q's (computed from the set {Bx, By,wt} according
to (2.2,24) to (2.2, 28) ) satisfy the equations of equilibrium (2. 2, 6) to
(2.2,8).

'i—Iereafter, we shall only consider the reduced problems,
that is, the problems associated with the boundary conditions
(3.1, 23) é.nd (3.1, 24), where the load at infinity has been transferred
to the segment y = 0, lxl <1, since they are of principal interest.
Again, we shall assume that the total energy contained in the plate
is finite, This assﬁmption can be verified if (i) we require that
all physical quantities possess Fourier transforms so that the line
integral along‘ Coo in (5.1, 3) vanishes, and _(ii) we require that
that components of the vector ?defined as iﬁ (3.1,23) (case of a
;rack) or as in (3.1, 24) (case of a rigid inclusion) satisfy the con-

ditions made in Part IV so that the existence of solutions is assured

and thus the energy contained in the neighbourhood of the
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vertices of the crack or rigid inclusion is {finite.

Under the above restrictions, (5.1, 3) becomes

1
c A A N SOA
TI'S =-> _1[ Myﬁy+ ﬁxy B+ Qy Wt]y=0+ dx +
1
c 7~ A O A AN
+—2—S‘.1[MY py+Mxy Bt Qywt]y___o.. dx . (5.1,4)

where the hat sign denotes boundary values.

We digress for a moment to remark that the uniqueness of
the solutions can be easily established with the aid of (5.1,4). We
shall illustrate for the case of a crack. For the case of a crack,

the boundary condition (3.2, 25) shall be used and (5.1, 4) can then

be written as

1
c ~ ~ ~
Trs =_+ -Z_S_'_'liflc By+ ch Bx+ f3c Wt]y=0+

1
C N\ ~~ P
- 75‘_1 Lo By + 50 By ¥ f30 Wil g dx (5.1,5)

where flc’ £2c’ £3c are given by (3.1, 23).

If both {Bx,ﬁy,wt} and {px, ﬁy’ wt} satisfy the stress strain
relations (2.2, 24) to (2.2, 28), ‘the equations of equilibrium (2.2, 6)
to (2.2,8) in ® , satisfy the same boundary conditions (3.1, 25) and

(3.2,25), and possess finite total energy, then from (5.1,5) we have
T By - B By - B)s (W, - W) ) =0 . (5.1,6)

From the positive definite character of TTS as shown in (5.1, 2),
(5.1,6) shows that the difference of these two sets is at most a rigid

body displacement. However, the solution corresponding to a rigid
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body displacement is excluded since it does not possess a Fourier
transform and thus the solution to the crack problem is unique.

Similarly, we can prove that the solution to the inclusion
problem is also unique.

Now, we shall return to the variational principle. For the
case of crack, we shall use the theorem of minimum potential
energy as our guide to derive a variational’ method which is ap-
plicable to our problems. Let us define the potential energy as

follows

oB.  op oB. op
= 2 (o G2+ ) 2+ 5D+

op, o8, Op_ 9P 0B_ OB OB_ OB,
y y x y
+ (1) 9x oy ) (BxX " By )+(8y * ‘axy) (8yx T % )+

] ohw, /) 5w, /) Blw, ) Bw )
e 80 (o + ) (B, — L)+ (8 —5 Lo )

€ d
dx dy -
1
-c S' Re {f1c py + i, Bt fs, Wt}y=0+ dx +
-1
1‘ — — —
+c§ _Re {flcﬁy * f2c Bx * f3c Wt}y=o- dx (5.1,7)

where the bar over a symbol denotes its complex conjugate and the

symbol Re denotes the real part of a complex function. It is clear
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that the double integral in (5.1, 7) is the strain energy contained
in the plate and the line integrals are the work done by external
forces along the segment y = 0,|xl <1.

Apart from the solution state {Bx’ﬁy’wt}’ we consider a
class of arbitrary displacement sets {ﬁx+ 65x,[3y+ 6ﬁy,wt+ éwt} sub-
ject to the conditions that their derivatives of all orders are con-
tinuous in 9 and vanishing at infinity, and that they possess
finite potential energy.

Using the above admissible displacement sets, we compute

the first variation of (5.1, 7).

6§ (B, B, w,) =

c OM_ oM, _ OM_ " M
= - 75‘5‘{( 5 © -cQX)apX + 55" . | —ch) 6[3y +
o v

oy oy
oM, OM _ M __ oM
+ (———Vax + ——Zay - ch) 6ﬁy + (——Jax + ——?ay ~. -ch) 6ﬁy +
BQX O BQX ?_EX
+(_3'}T+8y) Wt g +8y)6wt}dXdy-

1

-c S‘ Re {(My+flc) ssy + (Mxy+£2c) 8B, + (Qy+£3C) 6th}[ dx +
-1
O

+c§ Re{(My+flc)asy+(Mxy+f2C)ag3x+ (Qy+f3c) 6Wt}y=0— dx

(5.1, 8)
in which the M's and Q's computed according to the stress strain
relations (2.2, 24) to (2.2,28). We also find that the second varia-

tion of (5.1,7) is given by
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62“(ﬁx.ﬁy.wt) = T (8B, 8B, 6w} > 0. (5.1,9)

Equation (5.1, 8) shows that out of all admissible displacement sets
{ﬁx, ﬁy, wt} the set which satisfies equations (2_.2,6) to {(2.2,8) and
the boundary condition (3.2, 25) makes M an extremum and equation
{(5.1,9) shows that this extremum is in fact an absolute minimum.
On the other hand, if we set § || = O in the first place, then equa-
tions (2.2,6) to (2.2, 8) and the boundary condition (3.2, 25) must
be satisfied since 6[3X, Sﬁy and éwt are arbitrary in @ and along
its boundaries. Hence, we conclude that equations (2.2, 6) to (2.2,8)
and the boundary condition (3.2, 25) are necessary and sufficient
conditions to minimize .

If we select the displacement sets {ﬁx, l3y’ wty} from among
the above admissible sets in such a way that they satisfy equations
(2.2,6) to (2. 2,8) through the stress-strain relations (2.2,24) to

(2.2,28), then the potential energy (5.1,7) can be reduced to the fol-

lowing form:

(B Byrw,) =
1 .
Cc — — —
= - —Z-‘g-l Re{(My+2f1c) py + (Mxy + 26, B+ (Qy+ 2f5 ) wt}yzoJr dx +
vCC{(‘l Y*{ g pr iyovay ' . o ¥ s a3 - - I 3
+--.2.j Re (My+2f1c)-ﬁy + (Mxy+2fzc) 5X+(Qy+2£3c) WS ag.
-1

(5.1,10)

It has been assumed that all the physical quantities possess
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Fourier transforms. Hence the general solutions of the differen-
tial equations as shown in (3.2,1) to (3.2,18) obtained in section
3.2 become the most suitable admissible sets since they satisfy
the equations of equilibrium (2.2,6) to (2.2, 8), the stress strain
relations (2.2, 24) to'(2. 2,28) and the vanishing condition at infinity.
They do not, however, necessarily satisfy the boundary conditions
along the segment y = 0,\x| < 1.

Using the symmetric and antisymmetric representations
for stresses and ﬂibsplacements as shown in formulas (3.2,1) to

(3.2,18), we may rewrite (5.1,10) as follows:

T - -[r(l) + @) (5.1,11)

where
1 ‘
Q) . (L) M, 1) 5 @, o0 ( 7—
o cS.lRe{MY py +MXY B, +Q +zflc Y)}i}){
(5.1,12)
and
1
%)= cg Re{M(Z)T-rM}({Z)} T+ Q(Z) é Zfzc? *
+ 26, wt(2> } (5.1,13)

Equation (5.1,12) and (5.1,13) are independent of each other. Hence,
to minimize IV it is sufficient to minimize —n-(l) and -IT(Z).

It is obvious tha,lt the energy expression (5.1,12) corresponds
to the symmetric solution for the case of a crack. Owing to the fact

that Mx'.y(l)’ Qy(l) appear in (5.1,12), we may point out that the
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moments and shear force résultants based on the admissible sets
{[3x, ﬁy, wt} are not required to satisfy the boundary conditions
along the crack. It is this point which is different from the well
known theorem of minimum potential energy.

Similarly, the energy expression (5.1,13) corresponds to
the antisymmetric part for the case of a crack.

In our discussion so far, we have treated B, By’ w, as the
quantities to be varied in the variational principle. Since, in
order to be admissible, a state of displacement and stress char-

acterized by {ﬁx, ﬁy, w,, M, M, Mx

g0 My - , QX, Qy} must satisfy

y
all of the field equations in the plate, it is possible to select any
independent set of three of these quantities, and not necessarily
just ﬁx’ﬁy’wt’ to be varied in the variational principle.

By considerations similar to the above, we can easily de-
duce an appropriate energy expression similar to (5.1,10) for the
case of a rigid inclusion.

The negative of the work done through the prescribed dis-
placéments flr’ er’ f3r given as in (3.1, 24) along CO is

1
(o} ——— ——
-75:1 Re {2f1r MxY tef, MY + 2y D_}r}yzmdx +

1 ,
C >t r——
+ 75..1 Re {zflr Mt 2 £, MY + 2f3r‘Q‘y}y=O_dx . (5.1,14)

Therefore, the appropriate energy expression for the case of a

+
rigid inclusion becomes
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E =
1
=-%§ Re{(p +2f) ) xy+(s +2f, )'1\71“;+(wt+2f } +
-1 Y y=0+
1
+ %5 Re{(p +2f JM__ R C o )M (w2, )ZS"} _dx . (5.1,15)
-1

Again, using the symmetric and antisymmetric representa-
tion for stresses and displacements as shown in formulas (3.2,1)

to (3.2,18),, we may write (5.1,15) as follows:

€t -t g | | (5.1,16)
where
1
(1) _ 1, @ 1), 1,5 Q)@
W= ‘gRe{M wy B Mg Bl B B4
v 2f Mxym v 26y Qym}yzo dx (5.1,17)
and
1
(2)_ _ (2) ;(2) (2) o(2) (2) _(2) (2)
€ ‘Slee{_Mxy B+ M T w T r2n, My 3};_:de.
(5.1,18)

Our variational principle may now be summarized as fol-

lows. Among the physical quantities P ﬁy,wt, M_, My’ Mxy’. Qx and

?1 which are given by the formulas (3.2,1) to (3.2,18), we select

three independent ones to form the admissible sets. Among all

these sets the set for which
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’ 6“:6-“-(1)-%- GT(Z)zo (5.1,19)

also satisfies the boundary condition (3.2,25) along the line y = 0,

| x\ <1 solves the crack problem.

A similar statement may be made for the case of a rigid

inclusion.

5.2 Approximate Solution for Case I

In order to seek an approximate solution for Case I (the

@),

case of a crack with symmetric deflection w , we use the sym-
metric parts (with index (1)) in formulas (3.2,1) to (3.2,18) as the
set which is appropriate for varying the energy functionTr(l),
(5.1,12). It is found that the most suitable quantities to use for
“the admissible sets are P—ﬁ (1), M
cly Xy
vanish at y = 0,|x} > 1, and since they appear naturally in-ﬂ-(l).

(L) and.ch(l), since they

In what follows, we shall transform (5.1,12) into a Hermitian form
in terms of these quantities and their Fourier transforms. Then,
using a tech;lique similar to that discussed by Noble [17], we

can show that the dual integral equations (3.2, 39) and (3.2, 40)
corresponding to Case I arise again from the variational principle.

Using. matrix notation, we define

2.2 L2
[A@) 1 -+ ) %ﬁ—f‘;-\ @ )

B) | = (-v)oi -0i-v+ae%?) 0%\ R @) 15.2,1)

\C(a) v 0 20 ' - 1 \Pl(a) |
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where from (3.2,18), (3.2,16) and (3. 2,13) Alay,

are seen to be the Fourier transforms of (1)

B(®) and C(a)

M (1) and cQ (1)
¥

Xy

at y = 0 respectively. From the Fourier inversion theorem, we

have

2 5" X
. (0 0]
M (1) = —}—S B(x) ew‘X do .
Xy 2w
~00
(1)
cQy ‘ \ C(a) 1

The left sides of (5.2,2) vanish for all {x| > 1

the continuity properties of these functions in g .

left sides of (5.2,1) are in fact

A) 2p,
1
Bl@) | = S Mxy(l) e 10X gy |
| "1
Cla) Q (1)

(5.2,2)

. on account of

Hence, the

(5.2,3)

Solving (5.2,1) for [¢f Ql(oz), Rl(a) and Pl(a), we obtain

\a\Q (@) = —— [(1+v)a A) - iaB(a) - 1+
ZOL

R (@) = 1 -(-v)a?A(@) - iB(@) - c@] ,
" 20

P (@) = -(1-v)icdA(Q) + B(a) .

4€"
22 cl,

2 2

(5.2, 4)

Substituting (5.2, 4) into MY(I) of (3.2,8), 2p_ ! of (3.2,10) ana

—I%Wt(l) of {3.2,1), we obtain at y = 0
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(8.0]

My(l) -_-2}1.; y {A@)(1-v) [2“_‘.’. (al+2€ a( \a| - o + 57 )] o+
-
+ B(oz)[HV \al+ 2¢%a (|af - a?+ 1/e%) ] +
; C(a)%} el®* 4y | (5.2,5)

.]C?.px(l) = 5 {A(a) [1+v Ioz( +2€ a( ol - &a +1/e )]+

2
+ iB(@) [ - Z't‘oﬂ + %—) (lal - a2+1/ez)] +

+ Cla) [ - & ga (5.2,6)

1
Zajan 1) e

and

[0 0]
Bow = 5 {A@) (zlJ\r;)( +1B(@) (zgy) -
-0
4€%0® . iox

-Cl0) g G+ T ) e

We substitute (5.2,5), (5.2,6) (5.2,7) into (5.1,12). Using (5.2, 3)

ot . (5.2,7)

after interchanging the order of integrations, we obtain:

W .

2 p° :
z-’"DcTw— S‘ {A(@) Aoy (1-v) [iﬂ \a\ - 2640 (ga +1/€%) - o] +

-0
+B(a) BZaS[—-—l\H\ —H—v-) ( &a +1/e e
+C(a) Cla) (1+ 4€ 2a /1 -v) +

20%{aul
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. 1
+ iB(a) Cla) =—— Za T B(a) C(x) m} do -

1
- cg [£, (@) ﬁym (x,0) + I_G%) ﬁy(l_) (x,0)] dx . (5.2,8)
-1
The first integral in (5.2,8) is apparently a Hermitian form
in A(®), B(a), C(a) and hence (5.2,8) is an appropriate form to
which we shall apply the variational principle again.
Apart from the solution state {—C]2 By(l)(x, 0), Mxy(l)(x, 0),

ch(l)(x, 0)} we consider a class of arbitrary frunctions

, e My sen M)
Xy y y

and their Fourier transforms {A(®) + §A(a), B(a) + 6B(@), C(aH+sC(a)}

computed according to (5.2, 3). The first variation of (5.2,8) is

g =
S‘D —de{ g Aa)(1- v)[3+vla\ - 2¢%a ( o1 +1/e - lal)] -

i0ix
« e dua - £} +

1
+§ 55 (l)dx{ = 5 Alo)(1-v)[ 5— 2V o) -2¢2 2(\a +1/e - lad )]
-1
e 1% gy . flc(.‘x.)

—l -_(—)dx 2 S‘ {B(Ol) [_ZW ( o +l/e - ot )]- SO%Z)I} 10500
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1 oo
2 =7 .
+ o e L §E(&7[—\—T21a v 2 (JoP /e <o)+ i eIy

1
2.2 .
B(a) 1 4€70 iox
Sc& g [i isaat ™t C‘a) Tl (I+ 4 e da +
N Z'n' “Loman BT I-v
-1 -00
(5.2,9)

Also, we find that the second variation
§2TM > o . ‘ (5.2,10)

When we set év(l) =0, (5.2,9) };ields three equations since
SBY(I)(X,O), SMXY(l)(x,O) and 6QY(1)(X,0) are arbitrary and inde-

pendent of one another; they are

3+v

-v gm 2 2
5— Aa) [——-{a\~ 2e°n
-0

2e1/e% - (al )] e a0 = £ _(x)

Ixt <1, (5.2,11)

g{B(a}[ 2\0“ 1 > ( o +1/e -lal )] - go(z(\xa\ } R . 0,
-Q0
[x| < 1. (5.2,12)

and

4620®

1-v

1
2lal a

1+ )} eida = 0,

(o)
1 .

-0
Ixl <1. (5.2,13)
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Equation (5.2,11) combined with the first equation in (5.2, 2)

gives exactly the same system of dual integral equations (3.2, 39)

and (3.2,40) which were obtained directly in Part III.

Equations (5.2,12) and (5.2,13) combined with the last two
equations in (5.2, 2) form a system of equations which corresponds
to the symmetric deflection problem for the case of a rigid inclusion
with homogeneous boundary conditions (see equations (3.2,63) to
(3.2,66)). This suggests that B(a) =C(a) = 0. In fact an argument
essentially the same as that given in Appendix C can be used to

prove this. Then, from (5. 2,2) it follows that
M D, 00=0 Wi, 0)=0
xy Yy

for all x. .
Making use of these results, the formula (5.2, 8) for T (1)

now becomes

T - cD(leV) 51 A{a)A(o] | .3_+l(a| 2¢%a?( la® +1/e - lal )] do

¢ S [£_(x) ﬁy(]‘)(x,O) + I () ;3y§1)(x,0)] dx . (5.2,14)
), -

It is this form which we shall employ to obtain an approximate solu-
tion for ﬁy(l)(x, 0). |
In the usual way (see [17]), we shall assume that our solu-
tion ma.y‘ be approximated by a finite linear combination of suitably
chosen functions. The coefficients appearing in this linear -combi-

nation shall then be determined by minimizing (5.2,14).



-112-

The selection of a minimizing sequence of functions in gen-
eral depends on the concept of the solution class, In particular,
we wish to select a sequence of functions which is complete with
respect to the solution class. For the present problem, we re-
‘quire further that the Fourier transform of each member of the
sequence can be evaluated explicitly so that our later computation
will be greatly simplified.

In section 3.3, the function u(x) defined by (3.3,1) has been
identified as CRﬁy(l)(x,O). Hence we shall require that our approxi?
mating functions satisfy the same requirements as were imposed
on u(x) in the integral equation (4.1, 4).

Without loss of generality, we may assume that
flc(-x) = flc(x) = flcbd . _ ' (5.2,15)
It follows from the integral equation (4.1,1) that
1 1 ' 1 ' ‘
B, %, 0) = b, i, 0) = p P, 0) (5.2,16)

if (5.2,15) holds.

Let us put
-?py(“(x,O) = 02 hw), 1%l <L (5.2,17)

Then from (4.14) we shall find that h(x) is Hblder continuous for
all x in [ -1,1] .

With the above considerations, we find that the sequence of
Z)k—l/Z} ’

n o
functions {kz';'l ck(n)(l-x n 2 1 will be appropriate for our
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purpose. The reason is clear. They are real and even in x which
is in accordance with (5.2,16). They vanish at x =+ 1. If (l—xz)l/2
is factored out, the remaining parts of this sequence is a sequence
of polynomials, and it is well known that the sequence of polynomials
is complete for continuous functions in a closed interval. Further-
more, the Fourier transform, computed according to (5.2, 3),

of each member of this sequence can be evaluated explicitly.

Let the approximate solution up to the n-th term be
1) s 2 ) 2,k
{3 (n) (x,0+) = = Ch —_— l-xT)T 2, axl 21
k=l T()T(k3)

(5.2,18)
where the coefficients are arbitrarily arranged for the sake of con-

venience. We intend to use the minimum principle to find the opti-

mum Cl(<n)' From (5.2, 3) we obtain the Fourier transform of __Birl()n)

as follows (see [18]):

J, (&)
A gy = 5:1 clin) zk ) (5.2,19)

Substituting (5.2,18) and (5. 2,19) into (5. 2,14) and minimizing

Tr(l) by varying clin), we obtain an nxn system of simultaneous equa-

tions:

f:*lakl . =bk, k=1, ....n (5.2,20)

where

()T , (@)
S‘ —k——ﬁ— [ (3+v)a - 2(5?‘012(qu‘2+1/€2 - )] do

(5.2,21)
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and

1
1,k 1 .
- 2 () 2\k-3
b, = £ (x)(1-x°)°7% dx . (5.2,22)
K @-vT@) T+ $) g_l te

It can be easily shown that the matrix (akl) is positive definite and
(n)

thus non-singular for every € 2 0 and for every n = 1. Hence, cy

as in (5.2,20) can be uniquely determined if the b 's are all finite.

k
Since we have required at the beginning that flc satisfies the con-
ditions given in section 4.1, the bk' s are easily seen to be finite

from (5.2,22). Substituting these solutions back into (5.2,14) and

denoting by ﬂ r(xl)the complementary energy corresponding to an

n-term approximation, we obtain

21D 1) _ _ 2 (n)
(1-v)c? .= 21 Bl (5.2,23)

It can be shown that the following relation is valid

(n+1)

20 W W A1 o

2
( - )= - ] <0, n=>1 (5.2,24)
(1-v) c2 n+l n An

[C

where An denotes the determinant of the n x n matrix (akﬁ)' Hence
{_ﬂ‘ S“)} is a monotone dec‘reasing sequence and is bounded below since
it can not be less than _ﬂ'(l} who se negative value is the strain energy
contained in the plate corresponding to the true solution; moreover
'ﬂ'(l) is finite. Because of the fact that flc(x) satisfies the conditions
given in section 4.1, we can show further that

lim '[rn(l) =TT, (5.2,25)

n "o
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Combining the results obtained so far, we may conclude
that if flc(x) is real and even, satisfies the conditions given in
section 4.1, then (i) the approximate solution as represented by
(5.2,18) is uniquely determined for every n = 1 and (ii)

lim 7 4 _qr@)
n

n=" oo

It is worthwhile to remark here that the problem of whether
the approximate solution tends to the true solution as n — o is also
interesting. However, a proof for this has not yet been found.

We shall work out a specific example by using the variational
method. We consider that the plate is deformed by the action of a
constant bending moment MO per unit length uniformly distributed
around the periphery of a circle centered at origin with infinite
radius. The boundary condition along the crack for the reduced

f

problem will then be flc = M, = const., { = 0, We shall

0~ 2¢c T “3c
apply the variational method to this reduced problem.

For the one-term approximation, we put

?ﬁ}%) (x,0) = 2 1-xAY2 | xi <1 (5.2,26)

From (5.2,20), we find

cl(l) = 27rM0/(1—v) (3rv) (1 - ZHEL) (5.2,27)
where"
(00]
L(e) = 4625 ( 012+1/e2 - ) [Jl(a)] 2 4o . (5.2,28)

0
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§

The integration in (5.2, 28) can be carried out explicitly

to give a series representation for Il(e) as

1.2
Il(&’.)=l+-}-g"_,o Tin+3) 2(__12)11 .
Tn=l D(n)T(ntl)T(nt2)” €
1 n-1 n (r-1)

where y is the Euler's constant = 0.5772... . Figure 3 shows the
plot of I,l(e) against €.
As € — 0, the asymptotic representation for I{€) is found

to be

_4 1
Il(e)_;e £n6—+ Ofe) . (5.2,30)

Hence, the one term approximation (5.2, 26) for thin plates will be

| 2M
28501) 6.0 = oy A2 0 ean ).

x| <1 as € — 0, (6.2, 31)

In order to estimate this result, we compute uo(x) by (4.’2, 7)

with fl = M0 and find
2M
D 1 0 2.1/2
c'ﬁy( Jx,0) = uo(x) = gy 4-x ) 2, xis1. (5.2,32)

A comparison between (5.2, 31) and (5.2, 32) shows that when fl =
const. the one term approximation tends as € — 0 to the approxi-

mate solution of the ini:egral equation obtained in Part IV for the

3 A contour integration procedure suggested on p. 436 in [19] can
be used to evaluate I(€).
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first order term of the thin plate solution.
The stress distribution near the vertex x =1, y = 0 can be
computed by using the one term approximation (5.2, 26) in formula

(3.3,7). We find that as r — 0 for fixed 8, 16l < 7«

() 3 cos &4 Leos 29)
fo T ZCOS 2+ 4c S 7
(1) (1+v) -1/2 5 e 1 56
My ~ 211(6) MO(Zr) - ZC0s 5 -ZCOs >
(3+V) (l' 3t v )
(1) 1 .. & _1_. 50
KMxy J , -7 s:Ln-2—+ zsin > J
(5.2,33)

where r, 0 are the local polar coordinates centeredatx =1, y =0

as in section 4. 2.

The asymptotic behavior of Il(e) for large € can be obtained

directly from (5.2,29). We have

_ 1 1
LE)=1+0(5 ln =)

€ €

as € ™ . (5.2, 34)

Hence, the one term approximation (5.2, 26) becomes

‘ 2M
D.(1) 0 2,1/2 1 1
=B (x,0) =- (1-x%) + O (= ln =),
c (1-v%) ¢ €l
Xl o€ as €—oo (5.2, 35)

Again, it can be shown directly by perturbation methods that

., the solution of the integral equation (4.1,1) for € — co agrees with

(52, 35).
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We finally conclude that for this special case (£1C=M0=cons’c.)

the one term approximate solution based on the variational principle

agrees with the approximate solution of the integral equation (4.1,1)

for small € and for large €.

However, large € means physically a plate whose thickness
is large in comparison with the length of the crack. In such a case,
the differential equations may no longer be acc‘urate near the vicinity
of the crack. Thus while the physical validity of the approximate
solution for large € is doubtful, it is still useful to observe that the
variational approximation agrees for large € with a limiting solution
obtained directly from the integral equation by perturbation methods
as € = ow. This suggests a reasonably wide range of usefulness for
the variational approximation.

5.3 Approximate Solution for Case II

By the same procedures used for Case I, we shall apply the
variational principle to Case II in order to seek an approximate
solution. We shall omit the details and list only the results.

We select My(z)(x, 0), -? 6X(2)(x, 0) and % wt(z)(x, 0) as the
admissible set to minimize ﬂ(z), (5.1,13). T}Cxese quantities vanish

for |x| > 1, thus their Fourier transform will be

F(a) My(z)(x, 0)
1
Q@) | = g 2 5x(2)(x, 0). eI gy alla, (5.3,1)
-1 _
' D

w(Q) Wt(z)(x, 0)

2
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With the aid of formulas (3. 2,1) to (3. 2,18), 2:12 B(Z), M>(<§r)’ Qirz)
can also be expressed in terms of F(x), Q(¢) and w(®). We substi-

tute these results into -)T(Z), (2.1,13). By minimizing ﬂ(z), we ob-

tain
F(a) =0 {(56.3,2)

and we again recover the dual integral equation system (3.2,50) and

(3.2,51).

Using (5.3, 2), "IT(Z) of (5.1,13) can be reduced into the fol-

lowing form:

n’(z)
QO
=———-—°2‘12"’) g{ﬂ(aﬁ(&ﬂ S + 20” Y a))+
Dr Y 2¢ 2 [a + 1/e [al+1/e ?
4
2, o 2
+ 2€ °f -lala™) | +
f 2’+1/ez ]
+ iw(a) o) [ & + o -alal)] -
: 2¢ 2];2+1/e e fa2+1/€—2
| 3
- @) [ 20‘ -+ { 2_“ — - alal)] +
| 2¢ 2Jat1/et Jafr1/e
2
+ w(a) w(@) > oé — } da -
2e f& +1/€
1 —_—
-2 g Re {f,_ px(z) + gy Wt(z) }ax . (5.3,3)
-1

[

It is this form which we shall employ to obtain an approximate solu-

tion.
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Without loss of generality, we may assume that both ch

and f3 are real, and
c

fzc(_x) = fZC(x) ’
(5.3, 4)

£3 (-x) = - £5_(x) .

It then follows from integral equations (4.4,1) and (4.4,5) that

both ﬁx(z) and wt(z) are real and

(2) (2)
(' ’0) = ( :0) ’
P * P (5.3,5)

'wt(z)(-x,O) = - wt(z)(x,O) .

It is found that an appropriate sequence of minimizing

functions for ﬁx(z)(x, 0) is

n
Z 1:>k(n)(1-x?‘)k’l/2 , n>1.
-

Similarly, we find for wt(z)(x, 0)

121 cl(n)x(l_xz)l-l/z

s =1,
£=1 n

The n-term approximate solution will then be as follows:

D 4(2) SR ¥/ 2k~

& P 0000 = 20 P el — 0B E it 6.3,0)
and

D (2) NV S I

Z Vi) K0V =T c 2 (1-x)°72, {xi <1

2 t(n) is1 % e (s 2 ) x(l-x $3

(5.3,7)
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where the coefficients are arranged for the sake of convenience.
We intend to use the variational principle to optimize the choice
of b's and c¢'s.
From (5.3,1), we find that the Fourier transforms of (5. 3, 6)

and (5.3,7) are

J (oz)
o) () =kzl p, (1) T (5.3,8)
and
J (@)
10)(n)(01) =z ck(n) ——15--;1'—(— . (5.3,9)

Substituting these expressions into (5.3, 3) and minimizing ﬂ(z) by
varying the bk(n)’s and cﬂ(n)‘s, leads to a system of 2n x 2n simul-

taneous equations:

Izéll 3, , ti(n)zyk k=1,2,....2n (5.3,10)
where
TJ oy 1 '( 2% (- v) oy 26 &%)
ki~ 5 o<t Zezﬁx 11/ o2+l fe? Jo +1/«.=Z
asl <k, £ <n
¢ k Iy +1 012
-1
) g aku'n -1 [ZGZ.EMZH/E i (ﬂxzﬂ/ez "ol e
P as ISkSé&, n< £ £ 2n
i g ai‘ﬁili 11 [‘25 ?‘f1<§2+'1/ezJr (oz?*fl/e2 - o] e

as n< k €2n, 1<i=<n
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T P ‘ '
:S' k“;ll 12“‘12 . 212 5 da (5. 3,11)
S o<tE-2n-2 el [0fr1 fe
asn<k, £< 2n,
t‘(en) = bgn) asl < f<n
= o) asn < {< 2n (5.3,12)
and
Kk 1
1/2 2.k-1/2
Yk= T (/) 5 fZC(X) (1_x ) / dx

(1-v)I(1/2)I(k+1/2) ‘1

1
_me (/2)°" — §f3 (e (L322 g
(1-v)I(1/2)T(k-nt1/2) ¢

as n< k < 2n. (5.3,13)

It can be shown that the matrix (aki) in (5. 3,10) i s positive definite
and, thus, non-singular. Hence the solution to (5. 3,10) exists and
is unique if yk's are finite for all k, k =1,...2n. Since f,. and f3c '
satisfy the conditions given in section 4.4, .y's are seen to be finite
from (5. 3,13).
5.4 Approximate Solution for Case III

In order to apply the variational method to Case III, we shall
(2)(x, 0) as given among

t
formulas (3.2,1) to (3.2,18) as the admissible set. The proper

. (2) D, (2) D
again use My (x,0), c_ﬁx (x,0) and C—Z-w



-123-

energy expression to be varied is & (2), (56.1,18). We shall omit

the details of reduction here.

The final form of & (2) becomes

L 2.2
g<2’=i§m>m N e
27’_00 [2 ot vlad Ja%+1/e®
l [EO—
- ZCS Re {£,_ MY(Z)} dx (5.4,1)
-1
where
1
F(a) '=§ My(z)(x,O) e 1 gy all o (5.4,2)

and er(X) is defined in (3.1, 24).

Let us assume that er is real and odd in x, so that M(Z)(x, 0)

is also real and odd from the integral equation (4.7,1).
n -

The sequence {kzl ck(n) x(l-xz)k 3/2

} is found to be proper
as the minimizing functions for MY(Z)(X, 0).

The n-term approximation for M (2)(x, 0) will then be

M)

- B (n) /2t 2,k-3/2
ym) T %k TWPZQTUZ‘S x(l-x7) ;

lxl <1. (5.4, 3)

We can easily compute the Fourier transform of (5.4, 3), which is
n J, (@)
FMlg) =13 o) Kk

ksl K

— . (5.4, 4)
T

Substituting these results into (5.4,1) and minimizing € (2) with
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respect to ck' s, we find again a system of n x n simultaneous

equations:
n
(n) _ i
El ke Ce TPy k=1,...n (5.4,5)
where
o)
24 ZS‘ Jk(:rjzi(:') Tzl‘ * -(—y'zfzfz [g— )] da (5.4, 6)
0 a i ¢ ) ¢ :}az + 1/6
and
k-1 1

T (1/2)T'(k-1/2) -1

The matrix (akl) in (5.4, 4) is positive definite, thus the equation

(5.4,5) has unique solution for every finite bk

seen to be finite since fzr(x) satisfies the conditions given in section

's. Again, the q{'s are

4.7.
¢ M,
We shall work out an example. Let us take erz-m X,

which is induced by a loading at infinity in the original problem de-

scribed as follows:

M_.=M_=Q_=Q_ =0
X y X y
atx =t ooandy =1+ .

M = M_. = const.
xy 0

The one term approximation can be found through (5. 4,5)

" to be

1
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M2 (x, 0) - o x Il < 1 (5.4,8)
y(@) ™’ @-v) L) /2 - ’
where
gl 2.2  8€° a? |
Iz(e)zg[Jl(a)] [‘6[+T-7 (o -Tﬁ—] do . (56.4,9)
§ o +1/e“)
The integral 12(6) has the following limits:
lim .
€ 0 IZ(€)=1 , (5.4,10a)
. _ 3-v
lim 12(6) =T , (5.4,10b)

€ —oo

Using (5.4,10a) and (5.4,10b), we have from (5.4, 8)

lim M%) (x,0) = Mo X xl<1. (5.4,11a)
dim My 000 =1y a7z ' -4 1a)
and
. | 2M
lim . (2) oMy g -
€ My 6, 0) = 3 v Ix1<1. (5. 4,11b)

We shall remark here that {5.4,1la) and (5. 4,11b) can also be obtained
from the solution 7(x) to the integral equation (4 7,1) as € — 0 and as
€ — oo by perturbation procedures. To do this it is necessary to

make use of the relation

MY(Z)(xfO)' = %(i) .
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APPENDICES
Appendix A .

Statement: If u(x) vanishes at x =+ 1 and is Hblder con-
tinuous with some positive Hblder index p for all x in the closed
interval [-1, 1], then the stress singularity for the quantities in
(3.3, 7) will not be worse than O(r-l+6) for some 6> 0 where r is
the distance measured from an interior point to one of the ends
of the crack.

Proof: We prove this for My(l) since Mx(l), Mxy(l) have similar
characters. From (3.3,7) we have -
Ho (-8, y)

[ (x-£)% + y°]

L
M Wiy = 9 (o) at (A,1)
"1

where

HoGey) = - N )y gy Yl o),
2 p P

' 2.2
2 1 y
P26~ S Ky @) 3Ky @) - L5 K, (@) -
€ € € “p
_ 6(x4+y4-6x2y2')
p° A

with PZ ==x2 + 'yz. (A,2)

Apparently Hy(x,y) is bounded for all x, y, €>0 hence there exist

a number 0 < H < +o such that for fixed € > 0

¢

|H G, y) | <H (4, 3)
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for all x and y. Suppose the behavior of the integral in (A,l) near

the end x =1, y = 0 is under consideration. Then it is preferable

to transform the coordinates x, ytox =1+ rcos6 and y

by doing so (A,l) takes the form

Hl(r,e.if,)

1
— M‘”(r 0) = §[ a8) - u(l)]

N (1)5‘ H (r 0,¢) dg
u
(1- g)zrzrcose(l £ )+

Using the HbBlder continuity property of u(x), i.e.
]u(x1)~ - u(xz)l <M [xl-xz\ P

and using (A, 3), we have the following estimation:

(l-g)z'ﬂ-Zrcose(l-g)«k r2

g +

1
ITf_—'V)Mél)(r,e)lsMHg 11-gl*

1 (1-§)2+ 2rcosO(l-g)tr

" lu(1)lH§ de

(1-£)%+2rcos0(l-£ )+ r°

2

dg

= rsing;

(A, 4)

(A, 5)

(A,6)

If the change of variable 1 - £ = tr is used, then (A, 6) becomes

2/r W
T (1) S tPat
oy M (x,0) | <MH S‘
1-v) 7y g (+2tcose+ ¢ )
2/r » "
+ H|u)] 7t ‘ t de

0 (1+2t cosB + tz)

Suppose we fix 0 so that |6 <m; thus we approachx =1, y

(A7)

=0
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Appendix B

To verify (3. 3,14), it is equivalent to show that if u (+ 1) =
and if u'(x) exists and is Hblder continuous for all x in (-1, 1) then
the following statement is true.

Statement: Givenn > 0 there exists |y,| > 0 such that

w7 M,y - S f ale) (- S+
K (‘X el
+2€Z[ 2 z2_ ¢ ]} de| <n (B,1)

(x-£)° €x-t)

whenever 05 |y| < lyO[for fixed x in (-1, 1).
Proof: Using the assumptions that u'(x) exists and that u(+ 1) = 0,

we can deduce the following result from (3. 3, 4) by integration by

parts.
1
(1)
oy My ey =_§lu @) (ng Stx-£.y) at (5.2)
where
2 K, ()
S(xy)z-igl%-(lv) + 2¢® [ - 226 +
p €
2. (P
K.£) 2 2
+ ) ;6 -2—(1-:1-}5—)—] (B, 3)
€’ p p

and RZ = (x-g)z + yz, p2 = xz + yz as before. By suitable integra-

tion by parts, it may also be verified that
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{X‘g‘ )

1
| K,
a-i-§u<g>{-g_-’>(;;:.>€.,+;ezt 2 .5 C J)a-=
-1 .

(x-£)°  €%(x-£)

1 K (lx'gl)

=S' a'(g) { - —-(——é-)(?’+v)+262[ CI— A ) YT

’ (x-£)°  €4(x-£)

. (B, 4)

Through (B,2) and (B, 4), the left side of (B,1) can be written as

a sum of two integrals | I + I, | with

(x-§)
1 =§[u(§> ] (B g)s<x £.y) 70—5—] at
-1
and
1 (x-£)
I, = u'(x) S‘[b;-zg)S(x-g,y) 72—?)——] ae
, -1
where
So(x) = S(x,0) .
Let 6 > 0 and small. Then write
=D+t 1,
where
x+ 8

(B, 3)

(B,6)

(B,7)

(B,8)

1113.5 : [u'0§) u(x)] [ g)s(x €,v) (X %) O(X g)] d§

x-6 .

and

(B,9)
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x-6 1 ek SO(X-g)
I, = (g + S. ) [u'(g)-u'(x)] [_R-é— S(x-£.,y) - -‘G;:g;—] d¢ . (B,10)
-1 xt6
By changing the integration variable § in (B,9§ tot = § - x, Il1 takes
the form
§ 2
! 1
i =§ Wtt)w ) et g v)+ So(t)] dt. (B,11)
11 t 2 0
R
)
It is obvious that for all values of t and y
2
| 5601 - L5 sty | (B.12)

is bounded, say less than or equal to -?—- . From the given condition

on u'(x), we have the Hblder inequality
fu' (x) - u (xz)( < M lxl-lep' (B,13)

for some 0< p <1 and for every pair of X xzi'fn(-l,l). Using (B,12)

and ’(B,13) we obtain the following estimate for Ill:

KM'
| = =58 (B,14)
From (B,14) 6 is then chosen such that
KM' (p _ 1
=< | (B, 15)

with the restriction -1<x - 6 <x+ § <1.

The function

1

(x-§) 1
—)';—zg—“ S(x-€,y) - @ So(x‘g)
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in (B,9) is continuous with respect to y as £ is in the intervals
~-l<g €£x -6, x+ 6 <& <1 (65 now fixed) and moreover tends to
zero uniformly in that interval as |y| — 0. Since u'(f) is in-

tegrable from -1 to 1, there exists \yl{ > 0 such that

11,1 < 3 (B,16)

whenever |y| < \yl(

With § fixed by (B, 15), 12 can be written as a sum of two
integrals |
L, =1, +1, (B,17)
where
xt6 :
- ‘ 1
121 = u' (X)S. ['}LR—Zg— S(X—g,y’) - G{__E') So(x'g)] dg (B,lS)
x-6 '
and
X=-0 1 S
. . - 1
Iy, = (x)(g + j; ) [Z3 56e-6,y) - pySotx-£)] d -
A -1 +& R
(B,19)
I21 vanishes on account of oddness of the integrand and there exists

Z1ke 0 such that

|1,,1< 3 | (B,20)

whenever |y | < [yszy an analysis similar to that for 112.

'
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Combining these estimates all together, we have

1 K Ix-£€l

{ )
T 1) . _ 3ty 2 2 2 €
vy My ) -:gu (&) { ToE) T % [(x-g)3 Zot) 1}de|<n

whenever |y| = ‘yo\ for fixed x in (-1,1) where [yo]_is the lesser

of |y,| and ‘Yzl .
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Appendix C

Uniqueness of solutions of dual integral equations

We shall consider the uniqueness of solutions to the various
cases of present problems. We illustrate for example the anti-
symmetric case of the crack problem. Multiplying (3.2,50) with
§

v(x) of (3.3,16) and integrating from x = -1 to x = 1, we obtain
o 1
1 .
-z—-?;g [ Cll(a)Q(a) Qo)+ 1C12(Ol)w(0t)'§7@ Jda = z—l—_lT)S‘fzcvdx (C,1)
-0 -1

where we have abbreviated by writing

2012 (1-v)

2 2
C. (@) = ] lal + /-_é=-71 28 - 6% (jal- =2 ),
1 [oP1/e4 2 a1 /e Jaf+1/e?
(C,2)

C (a):a(réﬁ_e_zz_-(nal- o’ ) (C, 3)
12 @il /e Jate2 ’

Multiplying (3.2, 51) with w(x) of (3. 3,17) and integrating from x = -1
§

to x =1, we obtain

1

QO
%g [ -iClz(a) (@) Qo) + C, (@) m(O{)B(BZ) ]da = (_lc-_ﬂ £, wdx (C,4)
-0 -1

where Clz(a) is given by (C, 3) and

c

(C,5)

Adding (C,1) and (C,4), we have the following expression:

§ An interchange of orders of integration has been performed in
obtaining (C. 1) and (C,4). Thus our subsequent argument ap-
plies only to those solutions for which this interchange is valid.
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[0 0]
£ 1o @e@ am+ ic, @i 7@ - 1c, @a@a +

-
1

+ sz(a)w(a)aTci)]da = T:[E-T)‘g\[fZCV + cf3cw] dx. (C,6)
1

It can be easily shown that the integrand in the left hand side of

(C,6) is positive definite for almost all & since

(@” + =)
Cpl = (1; 2 i + T2 o
262/ a%+1 64 o + —-2-+ ld Jo +__)
2¢
-> 0 for all @,
CZZ(a) > Oforalla# 0
=0fora=0
and
C. (@)C, . (@)-[ C, ()] 2 _ _(+v) lal 3 N lal
1 ez 12 4¢” Jazﬂ/ez Zﬁx +1/e?‘(a2+ —+ [aUa2+ _f_)

26 e
>0 foralla# 0

= 0 for @ = 0.

Hence, Q(a) = w(a) = 0 if ch =f, =0, so that if the solution to this

3c
system exists, it is unique.

The uniqueness for the other cases can be similarly estab-

lished by considering the appropriate dual integral equations.

1
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Figure lo. Midplane of on elastic plate containing

o line discontinuity
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| Figure” |b. Three dimensional view of the plate

containing a surface of discontinuity
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