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ABSTRACT 

The purpose of this work is to examine the stress distribu

tion caused by the bending of a thin elastic plate containing a line 

discontinuity. Specifically, the plate under .consideration is of con

stant thicknes s and occupies a whole plane exterior to the line dis

continuity. The line discontinuity is either a crack or a rigid 

inclusion. 

The loading is applied to the plate at infinity by certain com

binations of .tractions which leave the plate in equilibirum. 

The analysis of the problems considered hE;re is based on 

an approximate theory which is more refined than the classical 

theory ordinarily applied to problems of bending of plates. This is 

because results based on the classical theory may be incorrect, 

even in first approximation for thin plates, near a boundary, and 

it is precisely the region near a boundary (in this case,. the line 

discontinuity) which is of primary interest in these problem s. In 

fact one of the principal objectives in this work is to compare the 

stress distributions near the line discontinuity as predicted by the 

two theor ie s . 

The principal techniques used in this work are based on inte

gral equations and the calculus of variations. 

Results based on the two theories are found to agree for 

thin plates away from the line discontinuity, but'differ significantly 

in the vicinity of the discontinuity, even for very thin plates. 
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1. INTRODUCTION 

The problem considered in this work is the investigation 

of the stres s distribution caused by the bending of a thin elastic 

plate containing a line discontinuity of finite length 2c. Specifically 

we consider a plate of constant thickness h whose midplane occu-

pies the region consisting of all points in the XY-planc except for 

the segment Y ; 0, \ X \ ~ c where the line discontinuity is located 

(see Figure la). The line discontinuity under consideration is 

either a crack or a rigid inclusion. From the three dimensional 

point of view (see Figure lb), a crack is a plane surface perpendicu-

lar to the midplane of the plate which is to be free of stre s s. Thus 

we shall require that the traction acros s the crack surface vanish 

at every point along Y ; O~, I X 1< c. .A rigid inclusion is such a 

plane surface which is assumed to be fixed in space. In this case 

we shall require that the displacement vanish everywhere along 

y ; 0+ ,I X I < c. The plate is to be deformed by certain external 

tractions applied along the cylindrical surface at infinity (j X2+ y2 = (0). 

The classical theory of bending for thin plates which was first 

established by Kirchhoff and Gehring (see Love [ 1] ) and clarified 

later by Kelvin and Tait [2] ~s known to lead to inaccuracies in 

stresses, even for thin plates, near the edges of a plate. This is 

due to the fact that the theory requires, and indeed can accommodate, 

only two boundary conditions along an edge in connection with the 

biharmonic differential equation, which is the governing equation of 

the theory. For example, the physically natural boundary conditions 

for a free edge of a plate are the vanishing of three components of 
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the traction across that edge. However in the classical theory 

these conditions are reduced in an approximate way in accord

ance with Saint- Venant l s principle to two conditions, namely the 

vanishing of the normal stress couple and the vanishing of the so

called II effective Kirchhoff force ll • 

Stoker [ 3] pointed out that this difficulty may be resolved 

if one formulates the plate problem as a 11 boundary layerll prob

lem. He suggested that the starting point would be the three

dimensional theory of elasticity. He would then study the limit 

problem obtained upon allowing the thickness of the plate to ap

proach zero in the differential equations and he predicted that 

the differential equation would degenerate and some boundary con

dition would be lost at the edge. Such an approach has been dis

cussed recently by Friedrichs and Dressler [4] . 

By taking into account the transverse shear deformation 

interior to an elastic plate which is omitted in the classical theory, 

Reissner [5] developed an approximate theory for bending of thin 

plates which is governed by a sixth-order differential equation and 

hence requires three boundary conditions along an edge. Quite a 

few problems [5] , [6] have been solved based on Reis sner l s 

theory and results so obtained in general provide a qualitatively 

better approximation to exact values in comparison with the clas

sical theory, particularly in the vicinity of an edge of the plate. 

On account of the reasons mentioned in the previous para

graph, the Reissner theory of bending is employed here since it 
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is the stres s and displacement fields near the discontinuity that 

are of primary interest, and in this region we expect that the 

classical theory may be incorrect even in first approximation. 

The problem for bending of an infinite plate containing 

a crack has been investigated on the basis of classical theory by 

Williams [ 7] and by Ang and Williams [8]. In [ 7] eigenfunction 

expansions are used in the flexure problem of an isotropic plate 

containing a semi-infinite crack in order to study qualitatively 

the character of the stres s distributions near the vertex of the 

crack. In [ 8 J both stretching and bending problems are studied 

for an orthotropic plate containing a finite crack and solutions 

are obtained by means of dual integral equations. 

There are in the literature many crack problems in elas

ticity that have been solved [ 9 ]. For example we may refer to 

Snedd·OIl and Elliot [10] for the problem of finding the stress dis

tribution in the neighbourhood of a Griffith crack in a stretched 

plate and to Sneddon [11] for the similar problem for the case of 

a penny- shaped crack in a three-dimensional elastic solid. 

The problems of an isotropic infinite plate con taining an 

elliptical hole or an elliptical rigid inclusion are considered using 

Reissner's theory in [12] and in [13] respectively. However, 

the approximation made in these references is not valid for a 

slender ellipse and hence the results of [12] and [13] could not 

be used to examine the limiting case as the ellipse tends to a line. 



-4-

In Part II, the Reissner theory for bending of thin plates 

is derived in a somewhat different way than in [ 5] or in [ 6]. The 

present derivation is closer to that given by Green [ 14] . 

In Part III the problem of an infinite elastic plate contain

ing a line discontinuity is formulated in terms of Reissner ' s equa

tions and is reduced to integral equations for the case of a crack 

and the case of a rigid inclusion. Each of these two cases is sepa

rated into two parts, symmetric and antisymmetric with respect 

to the line discontinuity. 

In Part IV the existence of solutions for the symmetric and 

antisymmetric parts of the crack case and for the antisymmetric 

part of the rigid inclusion case is established through using Fred

holm theorems for integral equations. In the same part an approxi

mate solution for each case is obtained for plates whose thickness 

is small in comparison with the length 2c of the line discontinuity. 

The corresponding results based on classical theory are also com

puted for purposes of comparison. The symmetric part of the 

rigid inclusion case is purposely omitted since it presents no in

teresting features beyond those extracted from the other cases. 

It is shown that for thin plates the results based on classical theory 

give good approximation in general except in a boundary layer near 

the edge where the results of two theories are different even for 

very thin plates. It is found that the angular distribution of stresses 

around a crack point is different in Reissner ' s theory than in the 

classical theory. A discussi9n of the differences in the results 



-5-

based on the two theories is given in section 4.10. 

A variational method is derived in Part V in order to in

vestigate moderately thick plates for which the approximate solu

tion obtained in Part IV is no longer expected to be accurate. It 

is shown in some special cases that the variational solution tends 

to the approximate solution obtained in Part IV as the plate thick

ness tends to zero. 



-6-

II. DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS 

FOR BENDING OF PLATES 

2.1 Equations of Elasticity Interior to a Plate and Boundary Con
ditions 

Let us attach a set of rectangular coordinate system (XYZ) 

to a plate of constant thicknes s such that the XY -plane coincides 

with the middle plane of the plate (see Figure 2). As shown in 

Figure 2, the middle plane of the plate occupies a region [£) in 

the XY -plane and its boundary U C. where UC. denotes the union 
i 1 i 1 

of cylindrical contours of the plate's boundary. The plate is as-

sumed to have thickness h and hence every point P(X, Y, Z) 

interior or on the boundary of the plate belongs to one of the fol-

lowing sets: 

(i) Interior set.0 :z: {P(X, Y, Z) 

{ii} Surface sets Sf: = {P{X,y,Z) 

(X, Y) in cB ,Z in ( - ~, ~ ) } 

(X, Y) in :lJ, Z := t ~} 
where S+ and S _ refer to upper surface and lower sur

face respectively, . 

(iii) Cylindrical boundary set B == UB. 
i 1 

where Bi ::= {P(X, Y,Z): (X, Y) in C
i

' Z in [-~ , ~]} . 

Now we shall define the stres s and strain component s for 

every point in .>S. Referring to the above coordinate system we 

denote by cr ,cr and cr respectively the vector components in x xy xz 

X, Y and Z directions of the traction at a point P in .1> across a 

plane X := const. and similarly by cr , cr ,cr and cr ,cr', cr , yx y yz zx zy z 

respectively for the components of tractions at ~he same point 

across planes Y := const. and Z :;c const. We call these quantities 
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the stress components at the point P in 1) . 

Upon consideration of mechanic s, it can be easily shown 

that CT :=: CT CT :I: CT and CT = CT and 
xy yx' yz zy zx xz 

aCT aCT aCT 
x xy ~+ F 0 (2.1,1) ax-+8'Y+ ;;; 

az x 

ocr OCT OCT 
--Ei ---.:L --.Y!: F == 0 (2.1,2) oX + oY + az + y 

ocr aCT OCT 
~+~+ z 

F 0 (2.1,3) az + ;::: oX ay z 

hold at every point in l> Equations (2.l,1), (2.1,2) and (2.l,3) 

are known as equations of equilibrium in which F , F and Fare x y z 

the components of the external body force in the X, Y and Z direc-

tions, respectively. 

The material of the plate is as sumed to be isotropic and 

homogeneous with Youngl s modulus E, shear modulus G and Pois-

sonl s ratio v. It is also as sumed that the plate is subject to small 

deformations and strains so that the stre s s - strain relations may 

be established through Hooke l slaw. 1£ we denote by U, V and W 

respectively the displacement components in the X, Y and Z direc-

tions at every point interior to the plate, then we have 

(2.l,4) 

(2.l,S) 

_ au av 1 
exy == oY + oX x G CTxy 

(2.1,6) 

aw CT z v 
e z == az ;::: E - E (CTX +. CTy ) , (2.1, 7) 
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(2.1,8) 

(2.1,9) 

for P in.>S . 

We assume that the upper surface Z ;:: ~ is subjected to nor

mal traction p(X, Y} per unit area and the lower surface Z::: - ~ is 

free from external forces. Hence, the conditions on both surfaces 

are respectively 

o-z ::: p(X, Y), o-xz::: (J"yz :::: 0 at P in S+ (2.1,10) 

0- ::: (J" ::: (J" ::: 0 
Z xz yz 

at P in S (2.1,1l) 

From any point along a cylindrical surface C(s) X [- ~, ~] 

in ~ where C{s) is the projection of the surface on the XY plane 

and s is its parameter, we may draw a normal to C(s} directed 

to the right with respect to the positive sense of C(s}. If we denote 

by 0- ,0- and 0- respectively the components in the normal, tan-n ns nz 

gential and Z directions of the traction at the point across a plane 

perpendicular to the normal, then we must have the following re-

lations: 

0- ::: 0- cos
2 

(n,X) + (J" sin
2
{n,X) + 20- sin(n,X} cos (n,X) 

n x y xy 

0- ::: (0- -0- ) sin (n.X) cos (n,X) + 0- (cos
2 

(n,X)-sin
2
(n,X)) (2.1,12) ns y x xy 

0- :0: 0- cos (n, X) + 0- sin (n, X) nz xz ' yz 

where cos (n, X) denotes the cosine of the angle between the normal 

and X-axis. The displacement components along C(s} can be 
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related to U, V and W by an orthogonal transformation 

U 
n 

U s 

w 

cos(n,X) sin(n,X) 

-sin(n,X) cos(n,X) 

o o 

o U 

o v 

1 w 

(2.1,13) 

where U and U denote the displacement components in the nor-
n s 

mal and tangential directions respectively. 

Now, we shall investigate the boundary conditions along the 

cylindrical surface B. For every B. we may represent as 
1 

Ci(s)X [- ~ , ~] such that :iJ always appears to be in the left 

side of C.(s) as s increases •. We shall require the satisfaction 
1 

of boundary conditions along all of these B.I s by either 
1 

"... 

<T (s,Z)::<T (s,Z) 
n n 

.r-.. 
<T (s,Z)=<T (s,Z) 
ns ns 

. .r-.. 
<T {s,Z)=<T (s,Z) nz nz 

(2.1,14a) 

corresponding to ;the case of prescribed surface tractions, or 

"... 

U (s,Z):zU (s,Z) 
n n 

.r-.. 

U (s,Z)=U (s,Z) 
s s (2.1,14b) 

A 

W(s,Z) == W{s,Z) 

corresponding to the case of prescribed displacements. In (2.1, 14a, b) 

quantities with hats denote given boundary values. 



-10-

2.2 Approximate Two Dimensional Equations for the Bending of 
Plates 

From now on we shall confine ourselves to problems of trans-

verse bending only. This can be achieved by assuming that the 

loading along the cylindrical boundary of the plate produces no net 

resultant force to stretch or compress the middle surface and, in 

addition, the transverse deflection is small in comparison with the 

thickness of the plate. Further assumptions can be made since 

the plate under consideration is assumed to be thin, i.e. the thick-

ness of the plate is small in comparison with its other dimensions. 

In connection with thin plates the well known approximate theory 

derived by Kirchhoff-Gehring (see Love [1]) assumes that the 

stres s components () , () , () are small in comparison with 
z xz yz 

the flexural stresses throughout the plate and the normals of the 

middle surface before bending deform into the normals of the mid-

dIe surface after bending. We shall refer to this theory as the 

classical theory of bending for thin plates. By taking into account 

the transverse shear deformation which was omitted in the clas-

sical theo ry, Reis sner (5 ] developed another approximate theory 

for thin plates which we shall make use of in the present work, 

and hence we shall give here a brief derivation. 

Reissner in [5] defines the bending and twisting couples 

M, M, M and the transverse shear resultants Q x' Q as fol-x y xy y 

lows: 

M h/2 
() 

x x 

M :II: 

Ih/2 
Z () dZ (2.2,1) 

Y y 

M () 

xy xy 
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( ::: ) dZ (2.2,2) 

Upon omitting body forces, it follows by integrating (2.1,1) to (2.1,3) 

t hat these quantities must satisfy the following equations of 

equilibrium: 

aM aM 
x xy 

- Q :z: 0 , (2.2,3) ax+ aY x 

aM aM 
xy + --y- Q =: o , (2.2,4) aX aY y 

aQ aQ 
x y + p := 0 (2.2,5) aX + aY 

In addition to these equations stress strain relations were 

obtained in [5] by using Castigliano 1 s theorem of minimum com-

plementaryenergy. However, essentially the same results as in 

[5] can be obtained by assuming certain approximate forms for 

the stress in the plate and integrating the three-dimensional stress-

strain relations over the plate thickness. We shall use this ap-

proach in what follows. 

From the homogeneity of equations (2.1,1), (2.1,2) and (2.1,3) 

we may assume 

cr M (X, Y) 
x x 

cr M (X, Y) hi (Z) 
Y y 

(2.2,6) 

cr M (X, Y) 
xy xy 

(~: ) ( 
Q (X, Y) 

) 
x h 2 (Z) , := 

Q (X, Y) 
Y 

(2.2,7) 
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(Z.Z,8) 

where hI' hZ' h3 are as yet arbitrary functions satisfying the fol-

lowing conditions: 

h/z 
S 2 hI (2) d2 ::; I, 

-h/z 

h/z 
S h z (2) dZ :c 1 , 
-h/2 

(2.2,9) 

(2.2,10) 

Condition (2.2,9) is required in order to satisfy equations (2.2,1) 

and (2.2,2). Condition (2.2,10) is required in order to satisfy 

the surface conditions (2.1,10) and (2.1,11). 

Equations (2.2,3) and (2.2,4) can be obtained by multiplying 

by Z in (2.1,1) and (2.1,2) (after omitting the components of body 

force) and integrating over the plate thickness. Equation (2. 2,5) 

can also be obtained by integrating (2.1,3) over the plate thickness. 

Substituting (2.2,6), (2.2,7), (2.2,8) back in (2.1,1). (2.1,2), 

(2.1,3) and using (2.2,3). (2.2,4). (2.2,5), we obtain further rela-

As an example, let us choose 

1 Z 
hI :II: -2- (1i'2) • 

h 16 11/ ... 

(2.2,11) 

(2.2,12) 
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Then 

and 

This corresponds to the distribution of stress across the thickness 

used in ( 5] • 

Corresponding to the global description of stresses by means 

of couples and stress resultants, we try to obtain a proper descrip-

tion for displacements. The expression for the work done by the 

surface traction along any cylindrical surface C(s) X [-h/Z,h/Z] in 

1> is 

cr U + cr W] dsdZ. 
ns s nz 

(Z. Z, 13) 

In this formula cr , cr , cr and U , U , Ware defined as in (Z.l, lZ) 
n ns nz n s 

and (Z.1,13). If the approximate stress distributions (Z. Z, 6) and 

(Z. Z, 7) are employed, then the work (Z. Z,13) can be written as 

h/z h/z h/z 
S[MnS h1UndZ+MnsS h1UsdZ+QnS hZWdZ] dis (Z.Z,14) 

C -h/z -h/z -h/z 

where 

M ;:: M cosZ(n,X)+M sinZ(n,X)+Z~ sin(n,X) cos(n,X) 
n x y xy 

M ;:: (M -M )sin(n,X)cos(n.X)+M (cosZ(n,X)-sinZ(n,X» (Z. Z,15) 
ns. y x. xy 

Q ;:: Q cos (n, X) + Q sin(n, X) n x y • 
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The expres sion (Z. Z, 14) suggests that we may define the 

generalized displacements as follows: 

h/Z 

[3x(x, y) = S Uhl dZ, (Z.2,16) 

-h/z 

\

h/Z 
[3 (x, y) = Vh

l 
dZ , y , 

(2.2,17) 

-h/Z 

S
h/Z 

wt(x, y) = WhZ dZ . (2.2,18) 

-h/Z 

The generalized displacements being so defined, we are 

now able to determine the appropriate two -dimensional stress-

strain relations. For the sake of convenience, we write 

h/Z 

= S [hI (Z)] Z dZ , 
-h/z 
h/2 

= S [ h Z (Z )] Z dZ , 
-h/2 

h/z 
=S h 1(Z)h 3(Z)dZ. 

-h/2 . 

With the aid of (Z. 2,11) and (2. Z, 10), we can easily show that 

cn = C Z2 • Again if h(Z) :;;: +- (h/Z) as in the example (Z. Z, lZ), 
h 16 

then 

3 
c ll = lZ/h , 

C ZZ :::: 6/sh . 

Now, multiplying by hl(Z) in (Z.1,4), (Z.l,S), (Z.1,6) and inte-

grating over the plate thickness, we obtain 
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vC
22 

(M - vM ) - -E P 
x Y 

(2.2,19) 

(2.2,20) 

(2.2,21) 

Multiplying by h 2 (Z) in (2.1,8) and (2.1,9) and integrating over the 

plate thicknes s, we obtain 

oW
t 

c 
+p. l!l:~Q ax t-'x G x 

(2.2,22) 

(2.2,23) 

In analogy with classical plate theory, we define the fluxural 

rigidity of the plate 

E 
D == --.,,2.----

(l-v ~ ) c
ll 

Eh3 
which become s D 2C 2 

l2(1-v ) 
as in (2.2,12). 

when hl(Z) is chosen to be -i- (h/2), 
h /6 

Rearranging equations (2.2,19) to (2.2,23) we have 

(2.2,24) 

(2.2,25) 

(2.2,26) 
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f3 :II: 

oW
t c 22 

Q - -- + e-x ax x 
(2.2,27) 

f3 :II: 

aW
t c Z2 

Q - --+ e-y ay y 
(2.2,28) 

for every point in:f) . 

The boundary conditions (2.1,14a) and (2.1, 14b) are con-

verted to prescribe 

I' 

M == M n n 

I' 

either M :II: M (2.2,29a) ns ns 

'" Q = Q 
n n 

along any contour C. (s). 
1 

Here M , M n ns 

(2.2,15) and f3 , f3 and w
t 

are related to n s 

f3 n 
cos(n,X) . sin(n,X) 

f3 s 
:= -sin(n,X) cos(n, X) 

w
t 

0 0 

(2.2,29b) 

and Q are given by n 

f3 , f3 and w t as follows: x y 

0 f3x 

0 f3 y 
(Z.2,30) 

1 w
t 

Equations (2.2,3) to (2.2,5) and equations (2.2,24) to (Z.2,28) 

form a set of differential equation system for eight unknowns, f3 , f3 , 
x y 

w
t

' M , M , M , Q and Q • To these differential equations, we 
x y xy x y 

append either the boundary condition (2.2,29a) or (2.2,29b). 

We may remark here that the equations based on the classi-

cal theory of bending can be easily deduced by setting .: G :::: ro in the 
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above equation system. The equations of equilibrium remain un-

changed while the stress - strain relations take the form; 

2 2 
a w

t 
a w t 

M x-D (- + v--
2

), 
x ax2 ay 

(2.2,3l) 

2 2 

M - D 
a w t + v 

a w t 
:= { . 

ax2 y ay2 
(2. 2, 32) 

(2.2,33) 

Also, there is a noteworthy difference in prescribing bound-

ary conditions. Instead of three conditions as in (2.2, 29a, b), the 

clas sical plate theory specifies only 

r. 

M :o::M 
n n 

either (2.2,34a) 
aM /' 

v =Q + ns xV 
n n as n 

where V is known as Kirchhoff force. 
n 

2.3 Reduction of the Plate Equations 

or (2.2,34b) 

From now on we shall study the homogeneous differential 

system, i.e. p;lil: 0 at every point in Jj . Equation (2.2,8) then 

suggests there exists a stress function X such that 

Q := __ a_X 
y ax 

for every point in J?J. By using these relations and setting 

(2.3,1) 

(2.3,2) 
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we can put equations (2.2,24) to (2.2,28) into the following form: 

2 2 a w
t 

a w
t M :a: - D (-- + v --) + 

x aX2 8y2 

M :11:
xy 

2 
2k2 8 X 

8XaY 

2 
2 a X 

2k 
8X8Y 

(2.3,3) 

(2.3,4) 

(2.3,5) 

(2.3,6) 

(2.3,7) 

for every point in 33. Substituting equations (2.3, 3) to (2.3,5) into 

equations (2.2,3) and (2.2,4) we obtain a pair of relations: 

(2.3,8) 

(2.3,9) 

for every point in i). The symbol f:::. in (2.3,8) and (2.3,9) stands 

82 82 
fo r --:::::z + --

8X 8y2 • 

The boundary condition (2.2,29a) can be expressed in terms 

ofw
t 

and X through equations (2.3,3) to (2.3,5) and equation (2.2,15). 

Similarly, the boundary condition (2.2, 29b) can be expressed in 

terms ofw and X through (2.3,6), (2.3,7) and (2.2,30). 
t . 



-19-

III. AN INFINITE PLATE CONTAINING A CRACK 

OR A RIGID LINE INCL USION 

3.1 Formulation of the Problems 

Let us consider an infinite plate with constant thickne s s 

h containing a crack or a rigid line inclusion of length 2c. We 

consider only the case in which the crack or the line inclusion 

is so oriented that it can be represented as one of the cylindri-

cal boundary sets of the plate defined in section 2.1. As shown 

in Figure la, the plate occupies a region i?J which consists of 

all points in the XY -plane except the line segment Y :: 0, IX I ~ c 

which corresponds to the crack or the line inclusion. 

A crack is to be free of stress; thus it win be required 

+ -
that certain relevant stresses vanish as Y - 0 and as Y - 0 , 

whenever IXI < c for the cas.e of a crack. A rigid line inclusion 

is assumed to be fixed in space; thus it will be required that all 

displacement components vanish as Y - 0+ and as Y - 0-, when-

ever I X I < c for the case of a rigid line inclusion. 

It is convenient to introduce dimensionless coordinates 

x, y and a dimensionles s plate thickne SsE as follows: § 

X :a: cx, Y = cy, 

1 
k 1 c 22 Z 

E =-l::- (--) 
C c c

ll 

In addition, we introduce a new deflection w (which has the units 

of moment) through the relation 

§ If fl (Z) is chosen to be + (hI2), then E = _h_ which is ap-
h /6 ~c 

parently dimensionless. It follows that E is small when hlc is 
small compared to unity. 
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(3.1,1) 

In terrns of these new variables, equations (2.3,8) and (2.3,9) 

may be written as follows: 

(1 (1 2 
- ox (Aw):= oy (X - € AX) (3.1,2) 

and 

002 
oy (Aw) = ax (X - € .6. X) (3.1,3) 

0
2 

02 
respectively, where A :.: --2 + --2. Similarly, equations (2.3,1) 

ox oy 
to (2.3,7) can be written as: 

cQ :II: aX 
x oy 

, 

cQ :.: oX 
y - ox 

2 2 
2 o2X 

M ::: - (~+ v a w) + 2€ 
x 

ox
2 oy2 oxoy 

2 02w 2 o2X 
M := - ,0 W + v-) - 2€ oxoy , Y oy2 ox

2 

M :=
xy 

~2w 2 2 
(1- v) _v_ + € 2 (0 X _ 0 X) 

oxoy oy2 ox2 

D ow 2€ 2 
oX - f3 x - ox + (f=Vf oy c x 

D ow 2€ 
2 

oX - f3 :;; - oy - (1- v) .ox c y 

valid at every point in i) . 

(3.1,4) 

(3.1,5) 

(3.1,6) 

(3.1,7) 

(3.1,8) 

(3.1,9) 

(3.1,10) 

Now we shall turn our attention to the boundary conditions. 
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The plate under consideration has two boundaries: the line seg-

ment y x 0, I x I ~ 1 and the pe riphery of a circle centered at 

origin with radius cp as p - co (see Figure la). 

The boundary condition along the line segment is completely 

dependent upon the nature of the segment; we shall have the I' free 

edge l
' conditions 

lim M 
y 

:a:: lim M 
xy 

:II: lim Q =: 0 
y 

(3.1,11) 

]yj-O 
lxJ< 1 

Iyl-O 
Ixl < 1 

Iyl-O 
Ixl < 1 

for the case of a crack. On the other hand we shall have the 

II fixed edgell condition 

2 
lim ~ w 

Iyl-O D 
Ixl < 1 

== lim ~ x 
:<:lim~ ;:::0 
I yl-O y 

(3.1,12) 
Iyl-O 
I x I < 1 I x 1< 1 

for the case in which the line segment corresponds to a rigid line 

inclusion. 

The plate is to be loaded at infinity. This loading is de-

scribed by a set of three independent conditions in terms of either 

moments and shear forces or generalized displacements. For 

simplicity, we shall take the case in which only moments and shear 

forces are involved. If p and ¢ are polar coordinates in the xy-

plane, then the loading at infinity may be described as follows: 

p :: co: 
.A /'. 2 A 2 /'. 
M == M cos ¢+M sin ¢+2M sin¢ cos¢ :::: gl(¢) p x y xy 
A A/'. " 2 2 
M rf,== (M -M )sin¢ cos¢ + M (cos ¢ - sin ¢) == g2(CP) p,!-, y x xy 

(3.1,13) 

/' /'. /'. 

~ == Q x cos ¢ + Qy s in¢ := g 3 (¢ ) 
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where the hat sign denotes value s at the boundary. Here g1 (cp), 

subject to the condition that they leave the plate in static equilib-

rium. Hene e, the boundary condition at infinity will be 

lim 
p-oo 

Mp(P,CP) 

Mpcp(P,CP) 

Qp (p, CP) 

where M , M A-.' Q are defined as in (3.1,13). 
P p,!-, P 

Let us define the boundary operators B~) and B(;) by 

2 
-2€ 

(3.1,14) 

B (c)( )- 1· o w,X = 1m 
Iyl-O 
.Ix J < 1 

02 
-(1-v) -oxoy € (-2 - -2) (3.1,15) 2 0

2 
0

2 (W) 
oy ox X' 

B (r) ( ) - 1· o W,X = 1m 
lyI -0 
Ixl <1 

and the operator Boo by, 

2 e 
D 

o 1 a 

(3.1,16) 

< 2 
2€ c a 

-(1-v)D ox (:J 
o 
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2 0
2 

0
2 2 0

2 
02 0

2 
-cos ¢ (--2 + v-:::---2)-sin CP(--2 + -:::---2)-2(1-v)sincpcoscpoxo 

ox oy oy ox Y 

B (w, X)= lim eo p-eo 

0
2 

0
2 

2 2 0
2 

(l-v)sincpcoscp(-- - -)-(l-v)(cos cp-sin cp) C'lxC'ly ox2 oy2 u u 

o 

2 2 . 2 0
2 

2 E (c 0 s cp - s m cp) ax oy + 

2 0
2 

-4€ sincpcos CPoxoy + 

(3.1,17) 

It is clear that B(~)and Bbr)are the boundary operators along the line 

segment for the case of a crack and for the case of a rigid line inclu-

s ion re spective1y. 

(3.1,14). 

The operator B presents the boundary condition 
eo 

Our problem then reduces to the determination of a pair of func-

tions {w,x.} which satisfies the differential equations (3.1,2) and (3.1,3) 

in E and which satisfies the boundary condition 

..... 
B (w, X) :;; g 

eo 
at p ::: co • (3.1,18) 

Here B is the operator defined by (3.1,17) and g a vector whose com
eo 

ponents are gl(CP), g2(CP) and g3(CP) given by (3.1,13). We also have the 

boundary condition 

. + 
,at y :=: 0 -, I x I < 1 (3.1,19) 

where BO is either B~c) (defined by 3.1,15) for the case of a crack or 



-24-

B (~) (defined by 3.1,16) for the case of a rigid inclusion; -0 denotes 

the vector with all components zero. 

Owing to the fact that it is usually much easier to solve the prob-

lem by omitting the condition (3.1,13) (corresponding to the case of a 

plate without a crack or a rigid inclusion), we proceed as follows. Let 

(3.1,20) 

(3.1, 21) 

where {;;;, X} and {w~:<, X~:<} are two pairs of functions with the follow-

ing properties. Both pairs satisfy the equations (3.1,2) and (3.1,3). We 

require further that {.;, X} satisfies but 

- - ~ 
B (w, X):III: g 

00 
at p ::a: 00. (3.1,22) 

Hence, {;;;, X} is the solution pair for the plate loaded at infinity as in 

(3.1,18) but without a crack or a rigid inclusion. By applying the bound

ary condition operator BO to this pair of solutions {.;, X} we define 

functions f1c ' f 2c ' f3c by 

3
2 

-(I-v) --3x3y 

o· 

2 32 
-2€ ~ ox3y 

1 3 

for the case of a crack, and functions fIr' f 2r , f3r by 

G) 
y=O 

Ixl<l 

(3.1,23) 
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a 2 a 
fIr (x) 

c 2E c 
- Dox (1- v)D Ely 

a 2 a [) f 2r (x) 
(r) ~ ~ c 2E c (3.1,24) =BO (w,x):.: - 15 oy - (1- v)D ox 

y:;::O 
2 lx\<1 

f3r (x) 
c 0 D 

for the case of a rigid inclusion. 

The boundary conditions (3.1,18) and (3.1,19) now lead to 

boundary conditions for the second pair of functions {w>:<, x>:<} as 

follows. 

and 

-'" 
B (w>:<,X>:<):s: 0 

co 
at p ~ co 

+ B 0 (w>:<, X>:<) % - f at y :;: 0-, I x I <1 

...:.. 

(3.1,25) 

(3.1,26) 

where f denotes a vector with components defined as in (3.1,23) 

for the case of a crack or as in (3.1,24) for the case of a rigid in-

clusion. 

Through the linearity of the differential equations and the 

boundary conditions, it can be easily shown that the pai r {w, x} 

defined in (3.1,20) and (3.1,21) solves the original problem. Since 

the pair {;;:', X}, representing the case of the continuous plate, can 

be determined without ~uch difficulty, it may be assumed that the 

vector f with components defined either by (3.1,23) or by (3.1, 24) 

is known. 
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We summarize the results of our analysis up to this point: 

Our problem is reduced to finding a pair of functions 

{w':' , X':'} of x and y which satisfies the differential equations 

( 3 . l, 2) and (3. 1, 3 ): 

a (A ') a (' 2A " ) - - L.J.W~IC:: ::: - X~l'-E ~X)I'" ax ay , 

in £). The functions w':< and X':< must also satisfy the boundary 

conditions (3.1,25) 

...... 
B (w':<, X':<) lS: 0 

00 

and (3.1,26) 

~ 

BO (w':<, X':<) == - f 

at p :: 00 

+ at y == 0 -, t xl < 1. 

The functions w':< and X':< and their partial derivatives of 

all orders are required to be continu~us in fEJ • 

It is known that crack problems lead to infinities in the 

stres s distribution at the crack points. Similar phenomena will 

be expected to occur in this problem. In order that the total 

energy contained in the plate be finite, we shall require that 

these singularities in the moments and stress resultants (com

puted from w'l.< and X'l.<) be not worse than O(r -1+8) where r is the 

distance between the point in i) under consideration and either 

of the ends x :=I 1, y = 0 or x := -1, y = 0 of the crack or the rigid 

inclusion (see Fig. la,), and 8 > O. 
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3.2 Fourier Transforms and Reduction to Dual Integral Equations 

In order to simplify the notation, we use {w, x.} instead of 

{w':', X':,}, and we understand that this pair is required to satisfy 

the differential equations (3.1,2) and (3.1,3) and the boundary 

conditions (3.1,25) and (3.1,26). 

The boundary condition (3.1,25) suggests that we may usc 

a Fourier transform technique to determine wand X. According 

to the Fourier integral theorem, any function ¢ (x) which is ab-

solutely integrable over the range (-co, co), possesses Fourier 

transform and, further, the inversion 'of its Fourier transform 

converges to ¢(x) for all x (except on a set of measure zero) 

provided ¢ (x) is of bounded variation. In the present problem, 

we shall require that the functions § 

j := 0, 1, 2, 3 k x 0, 1, 

meet these conditions for each y* 0. 

The most general solutions to equations (3.1,2) and (3.1,3) 

which satisfy the boundary condition (3.1,25) are 

W :.: w(l) + (sgn y) w(2) (3.2,1) 

and 

§ In fact, in certain cases wand X may not possess Fourier trans
forms. However if their partial derivatives with respect to x and 
y do, then the problem can be still solved in some case s, as we 
shall illustrate later. 
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X a; (sgn y) X(l) + X(2) 

co 

with w O) =: 2~ S [Q
j 

(a)e- laYI + Rj(a) IYI e- 1aY1 ] . 

-co 

iax . e da 

co _ja 2+1/€2 rYI 
(") 1 S -laYI 

andx J 
:111:-

2 
[P.(a)e -2iaR.(a)e] 

IT J J 
-co 

iax d . e a 

(3.2,2) 

(3.2,3) 

(3.2,4) 

for y=/;O and all x, where Q., R., P. are as yet arbitrary functions 
J J J 

of a. It is clear that in (3.2,1) and (3.2,2) both wand X have been 

separated into two parts. Since w(l) is even in y, we shall refer 

to {w(l), X(l)} as the symmetric solution. Since (sgn y) w(2) is 

odd in y, the pair {w(2), X(2)} will be called the anti- symmetric 

solution. 

Corresponding to (3.2,1) and (3.2,2) we can compute the 

moments, the shear stress resultants and the generalized displace-

ments. From (3.1,4) to (3.1,10), we have: 

Q
x 

:: Q
x 

(1) + (sgn y) Q
x 

(2) , 

Q
y 

:s (sgn y) Q
y 

(1) + Q/2) , 

M ~ M (1) + (sgn y) Mx(l) , 
x x 

M x M (1) + (sgn y) M
y

(2), 
y y 

.(3.2,5) 

(3.2,6) 

(3.2,7) 

(3.2,8) 
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M = (sgn) M (1) + M (2) 
xy xy xy 

(3.2,9) 

j3 at j3 (1) + (sgn Y) j3x(2) , 
x x 

(3.2,10) 

j3 :00: (sgn y) j3 (1) + j3 (2) 
Y Y Y 

(3.2,11) 

co 

Q (j) :=: J-- S[ 2i a I al R.(a)e - laYI 
x "''IT C J 

_ Ja 2+ 1/ €2 P. ~a)e - Ja 2+1/E2,YlJ 
J 

-co (3.2,12) 

iax d . e a , 

C) -1 SCO 2 -a _ja
2
+1/€2IYl 

Q J :00: ~ [2a R.(a)e I YI+ iaP.{a)e ] • 
Y 27rc J J 

-co (3.2,13) 

iax d • e a , 

co 
(j) 1 S 2 2 2 2 -I I Mx -27r {[(I-v)a Q}a)+{{I-v)a IYI+2vlal-4€ a lal)Rj(a)]e ay_ 

-co 

co (3.2,14) 

C) -1 S 2 . 2 2 2 MJ =..,-- {[(l-v)a Q.(a)+«l-v)a IYI-2Ial-4E a lal)R.(a)]e- 1aY1-
Y ~7r J J 

-co 
/2 2 

2 J 2 2 -a +1/€ /Y/ . 
-2€ ia a +1/E P}a)e }elaX da , 

co 2 3 (3.2,15) 

M(j);l; irS{[ (1-v)ialaIQ.{a)+(I-v)(ialaYI-ia- 4E ia )R.(a)] e- 1aY1 + 
xY J I-v J 

-co 
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S 4 
2. 

p. c {[ () E la lal) {] - layl + I-'x =: - 27TD iaQj a + {ia I YI - (1 _ v) R j a) e 

-CD 

CD 2 2 

f3 y = 2~D S ([ ! al Q/a) + ( lay\ -1- 4~_~ ) Rj{a)] e - laYI 

-CD 

2(: 2ia 
- (1- v) 

P.(a) e - J a 2
+l/E 2 I yl } 

J 
iax d e a 

(3.2,17) 

(3.2,18 ) 

The above expressions for the stress resultants, the stress coup-

les and the generalized displacements are valid for I YI > 0 and 

for all x. It is clear that all these quantities vanish as I yl -- CD 

from the exponential dependence in their integrands. They also 

vanish as I xl -- CD since they are assumed to possess Fourier 

transforms for all IYI > O. Hence, the boundary condition (3.1,25) 

is indeed satisfied by the pair {w, X} as represented in (3.2,1) and 

(3.2,2). 

The pair {w, X} and their partial derivatives with respect 

to x and y of all orders are required to be continuous in J) . 

Hence, in particular, we require that all physical quantities be 

continuous across y=:O for alllxl > 1. 

In order to determine the arbitrary functions Q., R., P., 
J J J 

J :s; 1,2, use will be made of the contir~uity propertie s as sociated 

with the pair {w, X} across y == 0 for all I x I > 1 and the boundary 

condition (3.1, 26). 
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Let us first study the continuity properties of wand X for 

y :::: O. From the odd and even behaviors with respect to y, we 

+ must have the following for y = 0 -, I x I >1: 

and 

w(2) ::r: 0 

f3 (2) ;I: 0 
x 

f3 (1) :r: 0 
y 

Q (1) = 0 
y , 

M (l);z: 0 
xy , 

M (2) = 0 y . 

(3.2,19) 

(3.2,20) 

(3. 2,21) 

(3.2,22) 

(3.2,23) 

(3.2,24) 

Next, with regard to the boundary condition (3.1,26), we 

group our problems into two cases: the case of a crack and the 

case of a rigid inclusion. In each case, the appropriate boundary 

condition, combined with the continuity conditions (3.2, 19) to (3.2,24) 

yields two systems of dual integral equations, one for the symmetric 

part {w(l), X(l)} and another for the anti symmetric part {w(2), X(2)}. 

3.2a The Case of a Crack. Using the definition (3.1,15), 

condition (3.1,26) in the case of a crack now reads 

M f
1c 

(x) 
lim+ 

y 

y-O- M z - f
2c

(x) (3.2,25) 
Ixl <1 

xy 

Q f3c (x) y 

where f1c ' f 2c and f3c a,re defined as in (3.1,23). Using (3.2,6), 

(3.2,8) and (3.2,9) equation (3.2, 25) yields six equations as follows: 
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lim M (1) :::: 
lyl -0 Y 

-f (x) 
lc ' 

Ixl < 1 

lim M (2 ) x 0 , 
lyl -0 Y 
lxl < 1 

lim M 
(1) 

:s: 0 
lyl -0 

xy 

Ixl < 1 

, 

lim M 
(2) 

- £2c (x) :0: 

Iyl -0 
xy 

\xl < 1 

lim 0 (1) :rr: 0 , 
IYI -0 Y 
Ixl < 1 

and lim 0 (2) :0: -f3 (x) • 
IYI -0 Y c 
IXI < 1 

(3.2,26) 

(3.2,27) 

(3.2,28) 

, (3.2,29) 

(3.2,30) 

(3.2,31) 

(i) Symmetric Part. Among the equations of continuity (3.2,19) 

to (3.2,24), and the boundary conditions (3. 2,26) to (3. 2, 31), thos e 

which are labeled with the superscript (1) form a system of integral 

equations for unknowns 0 1 , R
l

, and P
l
; from (3.2,12) to (3. 2,18), 

these integral equations are 

co 

- i7T S {(I-v) a
20

l
(a)-2 lal (1+2€2a 2)R

l
(a)-2€2ia Ja 2+1/€2 Plea) }eiaxda:o:: 

-co 

I x I < 1 , (3.2,32) 



1 
-27r 

-co 
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2(2 2 1 ) P ( )} iax d 0 +E a +2 la e a=, 
E 

all x , 

all x , 

co 2 2 2 

i7T S { \al Ql(a) - [1+ (lE_ v) ] Rl(a) - fl~V)a Plea)} • 

-co 

iax . e da :I: 0, 
I xl > 1 • 

(3.2,33) 

(3.2,34) 

(3.2,35) 

This system can be reduced further to a pair of dual inte-

gral equations involving only one unknown. Let us define 

(3.2,36) 

Also, the integrands of equations (3.2,33) and (3.2,34) are identi-

cally zero from the Fourier integral theorem. Hence equations 

(3.2, 36), (3~ 2, 33) and (3.2,34) form a system of simultaneous alge-

braic equations as follows: 

2 2 2E 2a _ (1 + 4E a ) la\ Q l 
A(a) 

(l-v) -r-v 1 

a -a(l + 
4€ 2a 2 E 2(2a 2+1LE 2) 

Rl 0 (3.2,37) 1-v ) I-v . 

o Za 2 
a iP

l 
0 
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Solving (3.2,37), we obtain Ql' R
l

, PI in terms of A{a}: 

Q(a)~l+v A(a) 
1 2 la I 

(3.2,38) 

PI (a) :: -i (I-v) aA{a) • 

Substituting (3. 2, 38) into (3. 2, 32) and (3.2,35), we obtain a pair 

of dual integral equations: 

00 

i7l'S lal A{a)[ 3+v - 4€ 2 lal ( ja
2
+l/€ 2 

-00 

)] iax 
- la I e da:::: 

(3.2,39) 

I xl < 1 , 

iax A{a)e da:.:O, I xl > 1 . (3.2,40) 

-00 

(ii) Antisymmetric Part. Among the equations (3.2,19) to (3. 2, 24) 

and the equations (3.2,26) to (3.2,31), those which are labeled 

with superscript (2) form a system of integral equations for Q2' 

R2 and P2; in detail they are, using (3. 2,12) to (3.2,18) 

00 

1 S 4€
2

a
2 

+21f {(l- v )ia' -. I al Q2{a) - {l-v)ia (1 + I-v ) R 2(a) + 

-00 

Ixl <1, (3. 2,41) 
00 

1 S 2 iax ( - 21fc [2a R 2(a)+ia P 2(a)] e da:= - f3c xL 
-co 

\x I < 1, (3.2,42) 



and 

co 

- _1 S 
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222 
{ (1- V) a Q 2 (a) - 2 I a I (1 + 2€ a ) R 2 (a) -

27T 
-co 

all x 

co 
1 S 4 

2. 
{ 

t la lal 
- 27T iaQ2(a) - I-v 

-co 

iax . e da:: 0, 

I X \ > 1 , 

co 
1 S iax 27T Q2(a) e da == 0, 

-co 

Ix I > 1 . 

(3.2,43) 

(3.2,44) 

(3.2,45) 

Equations (3.2,41) to (3.2,45) can be reduced further to a 

system of coupled dual integral equations. Let us define 

(3.2,46 ) 

(3.2,41) 

Combining with (3.2,43), we have a system of simultaneous alge-

braic equations: 
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2 
1 4€ alaI iQ

2 
-0 (a) a (1- v) (1- v) 

1 0 0 iR2 ::: iw(a) (3.2,48) 

(1- v)a 2 2 2 2€ 2 J a 2+1/€ 2P2 0 -2Ial(l+2€ a) a 

Solving (3.2,48) we obtain 

R () 1- v . aQ (a) 
2 a ::r: -2- 1 -Ia.!.-I ~ (3.2,49) 

Substituting (3.2,49) into (3.2,41), (3.2,42) and (3.2,44), (3.2,45) 

we obtain a system of coupled dual integral equations for Q (a) and 

w{a); 

1/2t 2 2 i x + [ - ( I a\ - a )]ia weal }e a da :II 

Ja 2+l/t 2 Ja 2+1/c 2 

f
2c

{x) 

:.; (1- v) Ixl < 1 , 

\ xl < 1 , 

(3.2,50) 

iaxd e a :0: 

(3. 2,51) 



CD 

2\ S' n (a) eiaxda ::c 0 , 

-CD 

CD 

~S iax 
w (a) e da "" 0 , 

-CD 
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Ix I >1 , (3.2,52) 

lxl >1 . (3.2,53) 

3.2b The Case of a Rigid Inclusion. Using the definition 

(3.1,16), condition (3.1,26) in"the case of a rigid inclusion becomes 

f3 x 
f
lr 

(x) 

lim f3 y 
:::: - f

2r
{x) (3.2,54) 

lyl-O 
lxl < 1 2 

c f
3r

{x) I)w 

where f
lr

, f2r and f3r are defined as in (3.1,24). As in the case 

of a crack, from (3.2,19) to (3.2,24) and (3.2,54) we may deduce 

two system s of integral equations, one for the symmetric part 

{w(l),X(l)} and the other for the antisymmetric part {w(2), X(2) }. 

(i) Symmetric Part. The system with superscript (1) gives 

the following equations; 

CD 

- 2~D S {iaQl (a) 

-CD 

:= - flr(x) l xl <1 , (3.2,55) 

2 (X) 

c S Q iax 21TD l(a) e da:: - f 3r (x), Ixl <1 , (3.2,56) 

-(X) 
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::: 0 , all x , (3.2,57) 

CD 

1 C 4€
2

a
2 

21i- J {(l- v) ia lal Ql(a} - (1- v}ia (1 + 1- v }Rl (a) + 
-CD 

2 2 ! 2 } iax + E (2a + liE ) PI (a) e da:ll:: 0 , 

Ix\ > 1 , (3.2,58) 

CD 

- 1 S 2 iax 21(c [2a Rl(a) + ia Plea)] e da ;.:; 0 , 

-CD 
\ x \ > 1 • (3.2,59) 

Similarly, this system of integral equations can be simpli-

fied in the following manner. We define 

and 

4
' 2 2 
t a 

G(a) :0; (1- v}ia lal Ql(a)-(l- v}ia (1 + 1- v ) Rl(a) + 

H(a) :0; - 2a
2 

Rl (a) - ia PI (a) • 

Solving (3.2,60), (3.2,61) and (3.2,51) we have 

1 
Ql(a} ,. - --

2a \a I 

2 
i G(a) _ (_1_ + ~) H(a) 

. 2a Z I-v lal 

Rl (a) :c - Zla i G{a} - ~ H(a} 
2a 

(3.2,60) 

(3.2,61) 

(3.2,62) 
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Substituting (3.2,62) into (3.2,55), (3.2,56) and (3.2,58), (3.2,59) 

we obtain a system of coupled dual integral equations for G(a) and 

H(a): 

co 
1 S H_l_+2c

2 
(/a 2+1/c 2 

21T 2 lal (1- v) 
1 } iax tal)] G(a)- H(a) e da:.:: 

-co 

D 
::: - fl (x) , c r 

2 

2 alai 

Ixl < 1 , (3.2,63) 

[ . 1 + 2E ] } iax G(a} + H(a} e da:s; 
2a 2 lal (l-v)la! 

1 xl <1, (3.2,64) 

and 

co 
1 S iax 7ii G(a} e da:s; 0 , IX\ > 1 , (3.2,65) 

-co 

co 
1 S iax 21T H (a) e da::: 0 , IX \ > 1 . (3.2,66) 

-co 

(ii) Antisymmetric Part. The system with superscript (2) 

give s the following equations: 

iax
d e a :s: 

\xl <1 , (3.2,67) 



-40-

00 

1 S { 4€ 2ia I a I 2E 2 j 2 / 2 iax 
- 27T iaQ2(a) - (1- v) R 2 (a) + 1- v a +1 E P2(a)}e da::: 

-00 

:II: 0 all x , (3.2,68) 

00 

1 S iax 7..7r Q 2 (a)e da x 0 , 

-00 
all x , (3.2,69) 

00 

- i7T S {(l- v) a2Q 2(a)- 2 lal (1+2€ 2a 2)R 2 (a)-2€ 2ia ja
2
+l/€ 2 P2(a)}· 

-00 

. iaxd 0 e a ;:s: ~xl >1. (3.2, 70) 

By defining 

(3.2,71) 

and solving this equation with the help of (3.2,68) and (3.2,69), we 

obtain; 

1 
R 2 (a) • -- F(a) , 

2 lal 
(3.2, 2) 

Substituting (3.2,72) into (3.2,67) and (3.2,70), we obtain a pair 

of dual integral equations for F(a); 

00 

1 S 1 2E 2a2 1 1 . 
- {-- + --:-- [ ] }F(a) elaXda :II: 

27T 2 I al 1- v taT - la2+1/€ 2 
-00 

:0: D f2 (x) , 
c r tx\ < 1, (3.2,73) 



(X) 

_1_ S F{a) e iax da == 0, 
21f 

-(X) 
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t x I > 1 . (3.2,74) 

Dual integral equations have been used previously in c er-

tain crack problems in elasticity [ 8] , [10], [11]. The contents 

of those references have been mentioned in the Introduction. 

3.3 Reductions to Systems of Singular Integral Equations 

In the previous section, we obtained four system s of dual 

integral equations. For the case of a crack, equations (3.2,39) 

and (3.2,40) correspond to the case of symmetric deflection and 

equations (3.2,50) to (3.2,53), to the case of antisymmetric de-

flection. For the case of a rigid inclusion, equations (3 o 2,63) to 

(3.2,66) correspond to the symmetric part and equations (3.2,72) 

and (3.2,74), to the antisymmetric part. 

Instead of reducing the problem to dual integral equations 

as in the previous section, it is possible to proceed in an alterna-

tive way. We shall describe this in the following subsections. 

3.3a Symmetric Part - Case of a Crack. Let us define 

(X) 

u(~) := ~7r S A(a) eia~ da 

-(X) 

(3.3,1) 

where A(a) is defined by (3.2.,36). The physical meaning of u(x) 

is clearly described by the equation 

D ' (1) 
u(x):= lim+ c f3 y (x, y) , 

y-O-
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from (3.2,18). From (3.2,40) it follows that u(x):=: 0 for Ixl >1, 

hence, by the Fourier inversion theorem 

1 

A(a) :.>: S u(~) e -ia~ d~ . ' 

-1 

all a • (3.3,2) 

Substituting A(a) into (3.2,39), we obtain an integral equation as 

follows: 

-00 

Sl u(~) e-ia~d~ 
-1 

Ixl < 1 • (3.3,3) 

It is quite clear that the order of integrations in (3.3,3) can not 

be interchanged, hence no explicit use will be made of (3.3,3). 

However, the left hand side of equation (3.2,39) is the 

limiting value of M (1) as lyl approaches zero, so we may first 
y 

express M (1) in terms of u(~) for Iyl > ° from (3.2,15) and (3.2,38) 
y . 

and then require its limiting value to satisfy the boundary condition 

(3.2,26). Substituting relations (3.2,38) and (3.3,2) into (3.2,15) 

and interchanging the order of integrations which is justified when-

ever Iyl > 0, we have 

where 
00 

u(~) m (1) (x- ~, y) d~ 
y 

:m/1)(x,y):: ~ S {[ -<3~v) tal + l;v a 2 lYI ] e- layJ + 

-00 

(3.3,4) 



-43-

The integration in (3.3,5) may be carried out explicitly in terms 

of rational functions and modified Bessel functions of the third kind 

of integer order. There follows 

2 2 
U"l~\x, y) ;w: _ (3~ v) (y -: ) 

p 

2 2 2 
+ (1- v) y (y - 3x ) + 

6 
p 

(3.3,6) 

222 
where p :0: x + y and K denotes the modified Bessel function of 

n 

the third kind of n-th order. 

All physical quantities can likewise be expres sed in terms 

of u(s); they are 

and 

M (1) 
x 

M (1) 
Y 

1 
1- v S u(S) ::s: --

-1 

1- v 
7fC 

m (1) (x-S,y) 
x 

m (1) (x - s , y) 
y 

dS (3.3,7) 

(3.3,8) 

where m is given by (3.3,6) and the remaining kernels are given y , 

by the following formulas. 
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(1) (1) (x4 + y4 _ 6x2y2) 
mx (x,y):or: - -2-v 6 

p 

2 2 
2[ 1 P 1 P x Y (p ) 

- 2E - 22 K2 (€) + ~ K3 (€) - 4 4 K 4 € -
Ep "p Ep 

4 4 2 2 
_ 6 (x + Y - 6x y )] 

p8 

2 3 
m

Xy
(l) (x,y) = _ 2xy+ ~ K (e..) + (1-v)y(3xy -x ) 

4222.€ 6 
p € P P 

3 
+ 2 ~ K (e..)] 

E3 p 4 4 E 

232 
(1)( ) 2(3x~ -x ) _ ~ K (e..) + _x_ K (e..) 

qx x, y %£ 3 3 3 € 2 2 2 € ' 
P € pEp 

(1)( ) 2(y3 _ 3x
2

y) Y p x
2

y P 
q x,y III: 6 -22 K 2(€)+33 K 3(€)· 

y p € P € P 

(3.3,9) 

(3.3,10) 

(3.3,11) 

(3.3,12) 

To satisfy the boundary condition (3.2,26), we require 

1 

lim 
Iyl-O 
Ixl <1 

M (1)= lim 
y \y/-O 

Ixl< 1 

1- v S u(s) m (l)(x-s, y) dS ::: 
7r y 

-1 

(3.3,13) 

where the kernel m (1) is given in (3.3,6). Apparently, the limit
y 

ing process in (3.3,13) can not be passed under the integral sign 

since the kernel m (1) (x-S, 0) is non-integrable. However, if u(x) 
y 

vanishes at x = + 1 and is H51der continuous with some HBlder 
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index }-L, 0<1-1<1 for all x in the clo sed interval [-1, I} , then the 

stres s singularity will not be worse than OCr -1+ 0) for some 0>0 

(see Appendix A). We shall as sume that this condition is fulfilled. 

Furthermore, if we assume that d~~) exists and is H()lder contin

uous with Hl:)lder index 1-1 for all x in the open interval (-1,1), then 

we can write the left hand side of (3. 3,13) as 
1 

lim M (1) 
lyl- 0 Y 
Ixl < 1 

+ 2E 2[ 

1- v d S {(3+ v ) r - ---:;r dx u(S) - 2(x - S) -
-1 

(3.3,14) 

(see Appendix B). The integral in (3.3,14) is a Cauchy principal 

value. Combining (3.3,14) with (3.3,13) and integrating once with 

respect to x, we obtain a singular integral equation with kernel of 

Cauchy's type §: 
1 r u(~) {3+v _ 4E 2 [ 2 

J_ l ~ (x_~)3 

I x I < 1. ( 3. 3, 15 ) 

3.3b Antisymmetric Part - Case of a Crack. The reduc-

tion for the antisymmetric part of the crack problem can be car-

ried out in a similar way. We omit details and simply list the 

results here. We define 

(3.3,16) 

w(~) (3.3,17) 

-co 

§ The same integral equation was obtained in [ 15] in which f
1c 

(x) :: 
MO = const. 
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where Q(a} and w(a} are defined by (3.2,46) and (3.2,41) respec-

tively. It is clear that from (3.2,17) 

v(x) ;:: lim D f3 (2) (x, y) 
0 + c x y- -

and that from (3.2,3) 

w(x):=: lillf w(2) (x, y) . 

y-O-

Moreover with the aid of (3.2,44) and (3.2,45), v(x);: w{x);: 0 

for I x I > 1. Hence, by the Fourier inversion theorem 

1 

Q(a) ;: S v(S) e -ias dS , 

-1 

w(a):s: Sl w(;) e-iaSds , 

-1 

all a (3.3,18) 

all a • (3.3,19) 

All physical quantities can be expressed in terms of v(s) and w(s) 

as follows. 

M(2) m~21)(x_S'Y) m~22)(x_S'Y) 
x 

1 
M(2) 1- v S { m~21)(x_S'Y) + w(S) m~22)(x_s, y) }d;, ;:.: -;- v(s) y 

-1 
M(2) m~~)(x-s, y) m~~2)(x-s, y) xy 

(3.3,20) 

[

c(21) (x-s,y} rqf2 )(x- s ,y)] 
w(S) }dS 

q~21) (x-;,y) q~22\x_s, y) 
S

l 
1- v 

::a: - {v(S) 
'IT c . 

-1, 

(3.3,21) 
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3 3 3 
(21) ( ) (1 )(3xy -x y) + 2€ 2 ( 24 ~ _ 48 x 8Y _ rnx x, y :x - - v 6 0 

p p p 

v 2xy ] 
4 

p 

+ [~K ( e...) _ 2.xy ] 
2 2 2 € 4 

€ P P 

(3.3,22.) 

(3.3,23) 

4 4 222 
(21)( ) 2€4 6(X +y -6x y ) __ 3_ K (e...)+ ~ K (e...) _ 

rnxy x, y =: L 8 2 2 2 € .: 3 3 3 € 
P € P .... P 

(3.3,24) 

3 2 2 
(22)( )= _x_ K (e...)+ ~ K (e...) _ x K (E.)_ 2x{3y -x ) 

rnxy x, y 3 1 € 2 2 2 € ~ 3 E 6 
2€ P € pEp P 
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(3.3,25) 

qx(22)(X,y) =: _ xy K (~) , 
2£ 4 P 2 2 <. 

(3.3,26) 
2 

q(22)(x,y)= __ 1_K(e..)+ x K2(~)' 
Y 2<: 3 P 1 € 2<: 4 p 2. ... 

Again we shall assume that both vex) and w(x) vanish at 

x == ::.. 1 and are H!:)lder continuous with some H!:)lder index fJ., O<fJ.<l 

. [ ] dv(x) dw(x) for all x ln -1,1. Further, we as sume that dX and dx exist 

and are H!:)lder continuous for all x in the open interval (-l, 1). 

Under these assumptions, (3.2,29) auG. (3.2,31) can be written as 

1 
lim M(2) == - (I-v) {S v (;)[_1_ K (Ix-~j )] d; + 

I Y I -.. 0 xy 1T' 2E 2 0 <: 
IX I < 1 -1 

1 

and 

+~S v(s)[- (l-v)_ 2 K (lx-s/)+ 
dx 2ex-g) (x-g) 2 € 

-1 

1 

+S 
-1 

2 
+ 4E 3 ] ds + 

(x-s) 

2 ] dS } :c: 
- (x- s)3 

(3.3,27) 
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1 

lim Q(2):::: (1- v) { S v(~) [(x- S) K (\x-sl) 
O y TIC 2 3 1 .. I 3 € ty/- -1 € x-~ 

!XI < 1 

- 2 3 ] dS + 
(x- S) 
1 

(3.3,28) 

d S (x- S) I x- s I + - w(S) [ - 3 K ( ) ] ds 
dx 2€ I x - s I 1 € 

-1 

=: - f3c (x) 

Equations (3.3,27) and (3.3,28) form a system of coupled singular 

integral equations. 

3.3c The Case of a Rigid Inclusion. The reduction to 

singular integral equations for the problem of the rigid line in-

elusion is essentially the same. We list only the results corres-

ponding to the case of antisymmetric deflection. We define 

0) 

t(~) =: ~1T S F(a)eia~ da • 

-0) 

(3.3,29) 

where F(a) is defined by (3.2,71). Through (3.2,15), it can be 

shown that 

t(x) x lim M(2) (x, y) . 
+ y y -0-

From (3.2,74), we have t(x) = 0 for Ixl > 1, hence by the Fourier 

inver sion theorem 

1 

F(a) "' S t(~) e -ia~ d~ • 

-1 
all a • (3.3,30) 
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All physical quantities can be expressed in terms of t(S) as follows: 

M (2) m (2)(x-S y) 
x x ' 

1 
M (2) = +- S t(S) m (2)(x-S y) dS y Y , 

-1 

M 
(2 ) m (2 ) (x - S , y) 

xy xy 

( 

Qx (2) ) 

Q (2) 
Y 

1 

;;: _1_ S t(S) 
1fC 

-1 
) dS 

where 

2 2 2 
_ ~ K (~) _ 2y(y -3x ) 

.:3 3 3 € 6 
~ p p 

] , 

m (2)(x y) := _y _ ..!-(1 ___ v.:....!.)y'---'-(~y2 ___ x_2..:..-) _ 2€ 2[ _y _ K (~) _ 
Y , 2 4 .: 2 p2 2 E 

P 2p ~ 

222 
_ x Y K (~) _ 2y(y - 3x )] 

.:3 3 3 € 6) 

.. P P 

2 
m

xy
(2){x,y):a: - {1-v)xY

4 
+ (1-v)x _ -2:... K (~)_ 

p 2 p2 € pIE 

3 2 3 
_2€2[~K (~) __ x_K (~) _ 2(3xy -x )] 

.:2 2 2 € .:3 3 3 E 6 .. p .. p p 

q (2)(x y) = ~ K (~) _ 2 xy 
x' 222E 4' 

€ P P 
2 2 2 

(2)( ) _ 1 P x P x-y 
qy x, y - EP Kl (€") - --z-z:- K2 (€") + 4· 

E P P 

(3.3,31) 

(3.3,32) 

(3.3,33) 

(3.3,34) 

(3.3,35) 

(3.3,36) 

(3.3,37) 
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Using (3.2,11) and relations (3.2, 72), we find that the gen-

eralized slope with respect to y is 

(2' SOO 1 -lOYI 2<:2 -layl a2 _jC/+l/<:2\y\ 
[3 )(x,y)=_c_ {(lYl--)e --(Iale - e ]} 

y 271' D 2 2 ! ad 1- v j 2 2 
-00 a +l/€ 

• e iax S\(g)e -iCLs, dsda . 

-1 

(3.3,38) 

In order to as sure that the integral in (3. 3,38) exists for all x and 

for every I yt ~ 0, we should require 

F{O) := O. (3.3,39) 

From (3.3,30), (3. 3, 39) can be also written as 

(3.3,40) 

Now, let us define a new function 

X 

'T(x) II: S t(s,) d~ (3.3,41) 

-00 

which exists since t(x) is absolutely integrable and vanishes for all 

Ixl ;, 1 on account of (3.3,40). Integrating the right hand side of 

(3.3,30) by parts, we 0 btain the Fourier transform of 'T(g) as fol-

lows: 

F(a) 

i a 

1 

:rt: S 'T(S) e -iag dS 

-1 

If this relation is used in (3.3,38) we find that 

1 

f3 y (2)(x,y) =71'~ S_l 'T(S) by{x- Ly) dS 

(3.3,42) 

(3.3,43) 
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where 

2 2 3 3 
b (r ) _ ~ [2(3xy -x } _ ~ (p) x K (p)] 

Y x, Y - (i-v) 6 2 2 K2 € + 33 3 € + 
P € P € P 

(3. 3,44) 

Aslyl- 0 we require that (3.3,44) satisfies the boundary 

condition (3.2,54); i. e. 

1 

; D S T (S){ 2(~-~} 
-1 

I xl <1. (3.3,45) 

Equation (3.3, 45) is a Singular integral equation with kernel of 

Cauchyl s type and its solution determines t(x} uniquely through 

(3.3,41) . 

In the above subsections, we have reduced our problems 

to problems of solving systems of singular integral equations. We 

have omitted the reductions for the symmetric part of the rigid 

inclusion case since it presents no interesting features more than 

those which shall be extracted from the other cases. 

It can be shown that under certain conditions the systems 

of dual integral equations are case by case equivalent to the systems 
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singular integral equations. 

Before we go on to study the solutions of the systems of 

singular integral equations, we shall state here that the solutions 

to the systems of dual integral equations are unique under certain 

conditions (see Appendix C). 
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IV. SOLUTION OF THE INTEGRAL EQUATIONS 

IN DIFFERENT CASES 

4.1 Case I - Symmetric Solution for an Infinite Plate Containing 
a Crack 

In section 3. 2a, the cra·ck problem has been separated into 

two parts, symmetric and antisymmetric. Naturally, the solution 

pair {w,X} will be the sum of the pair {w(l},X(l)} (symmetric 

part) and the pair {w(2), X(2)} (antisymmetric part) according to 

(3.2,1) and (3. 2,2). Hence, both {w(l), X(l)} and {w(2),X{2)} are 

of fundamental importance to the present problem. Besides, from 

the boundary conditions (3.2,26) to (3.2,31) it is clear that {w{l), X(l)} 

depends only on flc (x) while {w(2), X(2)} depends only on f
2c 

(x) and 

f 3c (x). Sinc e it is po s si ble to load the plate at infinity in such a 

way that the corresponding solution {.;., X} for the plate without a 

crack generates either f 2c (x) :: f3c (x) :: 0 or flc (x) = 0 along the 

crack where f
lc

, f 2c ' f3c are given by (3.l, 23), either of the pairs 

{ w{j), XU)}, j :: 1,2 has physical significance in itself. 

In this section we shall consider the symmetric solution 

of the crack problem which is represented by the singular integral 

equation (3.3,15). For simplicity, we shall replace f
lc 

{x} by fl (x) 

hereafter. (3. 3,15) can also be written in the form: 

1 1 

,; S ~~(~ dS +,; S k(x,S) uCS) dS ::£.lCx) + C l , 

-1 -1 

Ix/<l (4.1,1) 

where 
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K (I S -x l ) 
2 [2 2 2E ] 4E 2 

(S -x) E 
k(x,S) =-------(~l~+-v~)~(~~----x')--------

2 -

(4.1,2) 

(4.1,3) 

and C l is an arbitrary constant. 

The existence of solutions to (4.1,1) is discussed in the 

work of Muskheleshvili [16] •. Out of the various classes of func-

tions listed in that reference, we seek our solution in the class 

of functions which are HBlder continuous for all x in the closed 

interval [-1,1]. This concept is required in order to fulfill one 

of the as sumptions we made in section 4.3 during the derivation 

of (3. 3 , 15 ) . 

Under the above restriction, (4.1, l) can be transformed 

to the following Fredholm type integral equation for u(x) as shown 

in Chapter 14 of [ 16] • 

1 

u(x) - ; S M(x, s) u(s) dS := G1 (x) , 

-1 

Ixl <1 

where 

2 1/2 
1 

M(x, S) ;t; (I-x) S k(t, s) 
1T (l-t 11/2 (t -x) 

-1 

and 

(1_x2 )1/2 
1 

11 (t)dt 
G

1 
(x) :.>: - S 1T (1_t 2 //2 (t_x) 

-1 

(4.1,4) 

dt (4.1,5) 

(4.1,6) 
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provided that the additional condition 

is fulfilled. 

k(t, S)dt 1 
( I-t 2 ) liZ - :rr (4.1,7) 

It can be easily shown that the solution u(x) to (4.1,4) van-

ishes at x ::: + 1. Hence, the only as sumption made in section 4.3 

wh ich remains to be verified is that d~X) exists and is H!)lder 

continuous for all x in the open interval (-1,1). Accordingly, we 
d£l (x) 

find that this requirement will be satisfied if dx (that is 

-2 
2 

(1- v ) 
fl (x) ) is HI:Hder continuous for all x in the open interval 

(-1,1), 2 -1/2+6 . 
and near the ends not worse than O( (I-x) ) WIth 6> O. 

4.2 Thin Plate Solution to Case I 

From the definition € ::: l/c (c
22

/c n )l/2 and the definitions 

of c 11' c22 ' we find that € depends linearly on the ratio of the plate 

thickness h to the length 2c of the crack or of the rigid inclusion. 

In this section, we consider a plate with € «1, i.e. a plate whose 

thickness is small in comparison with the length of the crack. 

Upon observing equation (4.1,1), we shall assume§ 

u(x, € ) := uO(x) + 0(1) as € - 0 (4.2,1) 

S This as sumption ought to be verified. However, it has not yet 
been possible to carry out this verification because of the complexity 
of the integral equation (4.1,1). 
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uniformly for all I x\ ~ 1 provided that 

as E - 0 (4.2,2) 

uniformly for all \x( ~ 1. Then, the integral equation for uO(x) 

reads as: 

1 
! S u o (~) 
TI ~-x 

(4.2,3) 

-1 

where 

(4.2,4) 

We seek the solution to (4.2,3) in the same class offunc-

tions admitted in the previous section. Following the procedure 

of §ll3 in [16] , we obtain 

(l+v) 
- - (3 + v) (4.2,5) 

while the additional condition (4.1,7) determines constant C
l 

as 

follows: 

(4.2,6) 

It will be convenient in later analysis if we put this solution in the 

following form: 

_ 2 2 1/2 
uO(x) - (1-v)(3+ v) hO(x) (l-x ) (4.2,7) 



where 

hO(x) 
2 

(1- v ) 
21T 
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(4.2,8) 

The function hO(x) is not defined at x ::::: ±-l, however it is HMder 

continuous and bounded fo::: all x in the open interval (-1,1); more-

over, it possesses finite limits as x ->- + 1 from interior. 

Ii the assumption (4.2,1) is correct, then u(x, E) will be 

well approximated by u o (x) for thin plate s. Henc e, we shall re

place u(x, E) by uO(x) in (3.3,7) and (3.3,8) in order to compute 

the approximate form s for E small of all the physical quantities. 

To examine the stresses interior to the plate for E small, 

we split the plate into three regions: the region away from the 

crack, the regions near the vertices x :z: :: 1, y ::: ° and the region 

near the crack but away from the vertices as in the following sub-

sections. 

a. Stresses away from the crack. For all points which 

lie outside an arbitrary fixed ellipse with foci at x ::z: + 1 and a 

semi-minor axis b > 0, when we let E -- 0, the stress couples and 

shear force resultants can be computed from (3.3,7) and (3.3,8). 

We shall consider M (1) for example. From (3.3, 7) we have 
x 

1 

Mx(l)(x,y)::: l,;v S u(s) mx(l) (X-s,yjE )dS 

-1 

(4.2,9) 

where m (l)(x,y,E) is defined by (3.3,9). For all points (x,y) 
x 

outside the ellipse, R 2 :: (x-s)2 + y2 is bounded away from zero 
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whenever ~ in L -1,1]. Hence if we let E - 0 and replace u(~) by 

uo(~) in (4.2,9), we have for all (x,y) outside the ellipse 

2 1 
lim M (l)(x,y) ::: - (l-v) S 

E -0 X 21T 
-1 

for any fixed b> O. 

Let us define a function 

dS . 

(4.2,10) 

(4.2,11) 

With the aid of (4.2,7), (4.2,10) can be expressed in terms of <P 1 (x, y) 

as 

lim 
E - 0 

(1) 1 v 09 1 + 2 '" 
2
",] ] M :0:----['" +3 U,+, 

x 3+v '+' 1 Y BY y 2 
oy 

(4.2,12) 

Similarly the limiting value as E - 0 of the other stres s couples 

and resultants can be expressed in terms of <Pl: 

2 
(1) 1 o<p 1 2 a <p 1 

lim M :s: 3+'11 [ (3+v)<p 1+ (5-v) y- + (l-v) Y -2-] , 
E - 0 Y oy oy 

(4.2,13) 

2 
" (1) 1 o<p 1 2 a <p 1 

Eh~ 0 Mxy ::: (3+v) [(3-v) Y ox + (l-v) y oxoy] , (4.2,14) 

O<P 
1" Q(l) 1 [ 2 _1 
1m 0 X ::: C (3+ v) 8x 

E-
(4.2,15 ) 

O<P 
lim Q(l)::: 1 [4 _1 + 

E _ 0 Y c (3+ v ) 8y 
(4.2,16) 

for all (x, y) outside the, ellipse. 
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b. Stresses near the vertex. For computing the stress 

distribution near the vertex we employ the following local coordi

nate system §: 

X := 1 + r cosEl 

y :::: r sin8 10\ ~ 'IT 

to specify the pOints near the end (x ::::: 1, y :;: 0). As r - 0 for any 

fixed 8, 181< 'IT , the following asymptotic relations can be e stab-

lished . 

(4.2,17) 

(4.2,18) 

Now, we consider for example the behavior of M for small rand 
x 

fixed e, I el< 'IT. The kernel m (1) in (3.3,9), may be written after 
x 

some algebra in the form: 

where 

2 
(1 - 12 ~ ) • 

p 

§ An analogous investigation could be carried out for the vertex 
x ::: -1, y=:O. 

(4.2,19) 

(4.2,20) 
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Then the first equation in (3.3,7) becomes 

where 

and 

_0_ M (1) ::: (l+v) II + 12 
(I-v) x 2 

1 

S 1 8 2 8 4 
II;!: u(~) [~ -~ + -!b] d~ 

-1 R R R 

1 

12 ::: S u(~) p} l)(x_~, y) d~ 
-1 

with R2 :..: (x_~)2 + y2 and p (1) defined as in (4.2,20). 
x 

(4.2,21) 

(4.2,22) 

(4.2,23) 

If the thin plate solution uO(x) given by (4. 2, 7) is used in 

(4.2,22) and (4.2,23), we have 

2 
where III = (1-v)(3+v) 

1 

112 := (1-:)(3+V) S (hO(S) - h O(l-)] (l-S 2}1/2 . 

-1 

with h O(l-)::t lim hO(x) 
x -1-

and 

1 

12 := (1-V)(3+V) S hO(S) (1_s
2

)1/2 p}l}(x-S,y) dS 

-1 

(4.2,24) 

(4.2,25) 

(4.2,26) 

(4.2,27) 
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These integrals may be estimated asymptotically for small r. 

The integral III can be evaluated explicitly and its asymptotic 

form as r -- 0 is found to be 

21r 
In ~ (1-v}(3+ v) 

-1/2 3 e 1 50 
ho (1-) (2r) [:q;cosz+Lfcosy1. (4.2,28) 

For lIZ' we have the following estimatc; 

l/Z Sl 2 4 

1
1)/21 I~ M_r_ Il-,gllJ. (l_gZ//Z[J:.. + 8y + 8y ] dS 

12 'Ii R Z R4 ~ 
-1 

(4.2,29) 

where M is a positive constant. The right hand side of (4. z, 29j 

tends to zero as r - 0 because of (4.2,17). Hence 

l/Z I - 0 
r 12 as r - O. (4.2,30) 

The remainder term p(l)(x,y') in (4.2,19) can be easily shown to 
x 

have the property 

hence 

p (1) (x, y) :: O(log p) as p - 0 , 
x 

r
1/

Z 
I - 0 Z as r - 0 

(4.Z,31) 

(4.2,32) 

through using (4.2,18). Substituting these results into (4. Z, Zl), 

we find that as r - 0 

(1) (l+v) -l/Z 3 e 1 50 
M ~ -- hO (1-) (2r) (4 cos 2'+ 4 cos 2)· (4.2,33) 

x (3+ v) 
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In a similar way it can be shown that, for small E , as r --- 0 

(1) (l+v) -1/2 5 6 1 56 
My - (3+v) hO(l-) (2r) (4 cos "2 - 4 cos 2)' (4.2,34) 

(1) (l+v) , -1/2 1 . e 1 . 50 
Mxy - (3+v) hO~l-) (2r) (- 4 sm"2 + 4 sm T ). (4.2,35) 

The shear stress resultants are found to remain finite as 

r -0. 

c. Stresses near the crack but away from the vertex. In 

order to examine the stresses near the crack, we make the change 

of scale 

y = E Y7 (4.2,36) 

and examine the limits of (3.3,7) and (3.3,8) as E --0 for fixed 

Y7> 0 and fixed x in (-1, 1). 

where 

We illustrate for M (1). According to (3.3,7) 
xy 

1 

Mx/
1

) (x,E Y7,E) = (1-;) S U(S,E} mx~)(x-s, Xl E ,E )dS (4.2,37) 

-1 

mXy(l) (x-s,Y7E,E):::: 

::: -
2 2 3 

2Y1 E (x-S) + Y1 (x-S) K (R) + (I-v) Y7 E [ 3(x-S)Y1 E - (x-S) ] 
R4 ER2 2 E . R6 

E 2 { 48 [ Y7 E (x - s ) 
R6 

(4.2,38) 
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in which R 2 ;: (x-S)2 + y) 2€ 2 

The integral (4.2,37) may be written in the form: 

x-o x+o 1 

M (1) :.: l-v ( S + r\ + r ) u(s, E ) m (1) dS 
xy 1f -1 "x-o ~+ 0 xy 

(4.2,39) 

(4.2,40) 

where 0 is small and positive. In the first and third of these inte-

grals, R is bounded away from zero so that 

x-o 1 

lim (S ) :0: lim (S )::; O. 

€ -- 0 -1 E -- 0 x+ 0 
(4.2,41) 

In the second integral in (4.2,40), we use the thin plate solution 

uo(x) given by (4.2,7), and expand it into a two term Taylor's series 

plus a remainder. Also, we change the variable of integration from 

s to S where S =: (S - X)/E Y) • It is then found 

x+Ci 

lim S· u(S, E ) m (1) (x- S, € Y) , € ) dS ::; 
€ -- 0 x-ci xy 

- 2 [ 

::: 1fU I (x) (1 - e -y/€) o (4.2,42) 
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If this result and (4.2,41) are combined in (4.2,40), we 

find that 

lim M (l\x, E YJ ,E) :::: (l-v) uIO(x) (l-e -y IE ) 
E-O xy 

duO (x) 
with uIO(x):::: dx ' this result may be written in the form 

1r-? 
(1) 2. -y IE 1- • 1 S Jl-t~f10(t}dt 

Mxy(x, y, EO ) - (3+v) (l-e ) R 7T t - x 
-1 

as E - 0 for fixed y/E > 0 and fixed x in (-1, 1). 

(4.2,43) 

(4.2,44) 

Similarly, we find that the other stress couples and resu1-

tants are: 

(1) (l-v) 
Mx - (3+v) flO (x) , M (1) - -f (x) 

y 10 

Q (1) _ 2 -y IE 
x (3+V)E c e 

1Q 
1 S 1-t flO(x) 

-'j"'--Z- t dt , 
7T 1-x -1 - x 

1r--2 
Q (1) _ _ 2 (l-e -y /E ) ~ [ 1 

Y (3+v)c. dx / Z S 
ll-t~flO(t)dt 

t - x ] 
-1 7T 1-x 

as E -- 0 for fixed y/E > 0 and fixed x in (-1, 1). 

(4.2,45) 

It was remarked in section 3.2 that although w may not pos-

ses s a Fourier transform, the problem still can be solved in som e 

o £ ow d ow F 0 £ W 011 cases 1 ox an oy possess ourler trans orms. e may 1 ustrate 

this point by letting flO(x) :::: MO :::: const.§ in (4.1,3) and thus 

§ This problem has been considered in detail in [ 15 ] . 
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U o (x) :::: (1_2~(~+ v) (1_x
2

)1/2, 1 x I ~ 1 . (4.2,46) 

According to (3.3,2), we obtain 

27r MO J 1 (a) 
AO(a) = (1-v)(3+v)' a (4.2,47) 

Ii (4.2,44) is used in (3.2,38) and we find that w(l) in (3.2,1) can be 

written as: 

00 

(1) 2MO S J 1 (a) 
w (x, y) :c (1-v)(3+ v) -a-

D 

(1+ v) 
[Iyl -(l-v)a] 

-a e I y/ co sa xda (4.2,48) 

which diverges (because of the behavior of the integrand at a = 0) for 

ow(l) ow(l) 
all (x, y) in .f). However, -<:1- and -<:1- do pos sess Fourier trans-

ux uy-

forms, so we could find w(l){x, y) from its partial derivatives. 

4.3 Results Based on Classical Theory of Bending of Plates for Case I 

Let us denote by w the deflection of the middle surface of the 
c 

plate under consideration. It is well known that according to the clas-

sical theory of bending for plates the stress couples and resultants 

may be expressed in terms of was: 
c 

f/w a2w 
[ C c ] M :=-D 2 +v 2 ' 

xC ax ay 
(4.3,1) 

(4.3,2) 

(4.3,3) 

(4.3,4) 
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(4.3,5) 

Eh
3 

where D ::::: 2 ' 
8

2 
8

2 
b. = -- + -- and the sub script c refer s to the 

8X2 8y2 12(1-v) 
classical theory. As noted in section 2.2, this system can be de-

duced from equations (2.2,24) to (2.2,26) by taking G = co and 

1 Z 
hI (Z) ::: 11 2 /6 (h/2), however w c here denotes the deflection of the 

middle surface of the plate. 

It is also well known that for a plate whose upper and lower 

surfaces are free from external tractions w satisfies the bihar
c 

monic differential equation 

b.b.w :=: 0 
C 

in JD according to the classical theory. 

(4.3,6) 

Let us again make a dimensionless coordinate transforma-

tion X :=: cx, Y :0: cy in the above equations and we shall use (x, y) 

hereafter. 

The boundary conditions along the crack are 

lim Myc:=: - flO (x) 
Iyl --0 
Ixl < 1 

1 aM 1 d 
lim Q + - xyc:=: - f

30
(x) - - - f (x) 

yc c ax, c dx 20 
\yl -- 0 
IXI < 1 

where flO is defined by (4.2,2) and 

£30::>: lim f3c (x, E ) • 
E-O 

(4.3,7) 

(4.3,8) 

(4.3,9) 
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Equation (4.3,8) is the Kirchhoff edge condition usually associated 

with the classical theory and replaces the last two equations in 

(3.2,25) of the Reis sner theory. It is this effect of a reduction 

in the number of boundary conditions which we wish to study. At 

infinity, we shall require wand all its derivatives vanish. 
c 

The Fourier transform tccbnique shall be applied again to 

(4.3,6) and it is found that the most general solution of (4.3,6) 

satisfying the condition at infinity is 

W ::: W (1) + (s gn y) w ( 2 ) 
c c c 

(4.3,10) 

where 
(X) 

~ w (j) 1 S [Q . (a)e -Iay~ !y!R . (a)e - IQlyl] eiQlxda 
2 c :,;; 21T cJ cJ 

C 

(4.3,11) 

-(X) 

j :s: 1, 2 

in which Q ., R ., j ::: 1,2 are as yet arbitrary functions. Here 
cJ cJ • 

w (1) denotes the symmetric deflection and w (2), the antisymmet-
c c 

ric part. These superscripts will also be attached to the other phys-

ica1 quantities. Upon satisfaction of the boundary condition (4.3,7) 

and (4.3,8), we have 

lim 
Iyl-O 
Ixl < 1 

(1) 
Myc :II: -flO (x) , 

lim [ Q (1) + !.. 
\yl -0 yc c 
lxl <1 

and 

(1) 
oMxyc 1._ 

ox J - 0 

(4.3,12a) 

(4.3,12b) 
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oM(2) 

lim [Q (2 ) + !.. xyc ] == 
\yl ~O yc c ox 

Ixl < 1 

lim 
\YI ~O 
IXI < 1 

M (2) := 0 . 
yc 

(4.3,13a) 

(4.3,13b) 

It is clear that the symmetric part depends on flO(x) only while the 

antisymmetric part depends on f
20

(x) and f
30

(x). 

We shall postpone the discussion on the antisymmetric part 

until section 4.6. For the symmetric part, we define 

D 
u (x) ;r: - lim -2 c + 

y- 0- c 

" (1) ow 
c 

ay all x (4.3,14) 

which vanishes for all 
ow (1) 

\ xl > 1 on account of the fact that w (1) is 
c 

even in y and a~ is continuous in .i). All other physical quan-

tities can be expres sed in terms of u (x). We omit the detail and c 

list the results as follows. 

where 

M (1) 
xc 

M (1) 
yc 

M (1) 
xyc 

1 
(I-v) S . 

:0: -- U 
'iT c 

-1 

1 

:0: (l;V) S u (S) c 
-1 

my~) (x-S,y) 

m~ic (x-s,y) 

~~} (x-S, y) 

(<<i~) (x-S.y) ) 

(4.3,15) 

(4.3,16) 
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4 4 2 2 

(1- v )( Y + x - 6x y ) 

2p6 

2 2 2 2 2 
m (1) (x, y) :z: (3+V)~ -y ) + (1-v) Y (y i x ) 

yc 2 P P 

2 3 
m (1) (x, y) .,; _ 2x: + (I-v) y(3xy 6- x ) 

xyc p p 

2 3 
(l){ ) 2 (3xy -x ) 

q x, y := 6 
xc p 

(l) ( 3 3 2 
q (X y) :.:: 2 y - x y 
yc' 6 p 

(4.3,17) 

(4.3,18) 

(4.3,19) 

(4.3,20) 

(4.3,21) 

The integral equation for u (x) follows directly from the 
c 

boundary condition (4.3, l2a). We have 

Ix I < 1 (4. 3, 22) 

where 1!.lO(x) is given by (4.2,4). Equation (4.3,22) is exactly the 

same integral equation for uO{x) which was obtained in section 4.2. 

Hence u (x) is identical to our approximate thin plate solution (4.2,7) 
c 

of Reis sner' s theory. 

With (4.2,7) and formulas (4.3,15), (4.3,16) we are again able 

to compute the stresses in different regions. 

a. Stress away from the crack - classical theory. When 

the stress resultant and couples are computed according to classi-

cal theory from (4.2,7) and formulas (4.3,15), (4.3,16), we find that 
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(1) _ 1 ..1- &PI 
Myc - (3+v) [(3+v}<I> 1 ' (5-v) y oy + 

2 
2 0 <1>1 

(I-v) Y --] 
oy2 

2 
(1) 1· O<j> 1 2 0 <I> 1 

Mxyc ~ T .. Hv) [(3-v) Y ox + (I-v) y uxuy] 

(1) _ 1 0<1>1 0
2

<1> 
Q - c (3+ v) (2 ox + 2 1 ] 

xc y oxoy , 

(I) 1 0<1>1 0
2

<1> 
Q 1 

:= 
c (3+v) (4 By + 2y--] 

yc oy2 

where <P 1 (x, y) is defined by {4. 2, ll}. These are precisely the same 

as the limiting values as E - 0 (4.2,12) to (4.2,16) of the couples 

and resultants computed according to the Reissner theory, provided 

we stay away from the crack. Thus for sufficiently thin plates 

(E < < 1), the M's and Q' s from classical theory and those for Reiss-

ner l s theory of bending agree in any region which excludes the crack, 

as would be expected from our discussion in the Introduction. 

b. Stresses near the vertex - classical theory. Using the 

same method as in the previous section we find for points near the 

end x == 1, Y x 0 that, as·r - 0, the asymptotic expressions for the 

stress couples are 
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I 
I (1) -l+v -1/2 3 G 1 58 
1M ~--h(1-)(2r)" (-coc;-+-cos-) I xc 3+ v 0 4 2 4 2 
, 

M (1) 1 hO (1-) (2r)-1/2 (ll+5v 8 + I-v 58) yc ~ 3+v -4-cosZ --:q;-COSy (4.3,23) 

M (1) ~ -1 h (1-) (2 )-1/2 (7+v " Q+ 1-v " 50) 
xyc (3+ v) 0 r 4 sm 2 4 sm 2 

where hO(x) is given by (4.2,8). Similar results hold at x:t: -1, y=O. 

Moreover, the shear stres s resultants Q (1) and Q (1) be-
xc yc 

" f"" l"k -3/2 0 come ln lnlte 1 eras r -- • 

c. Stresses near the crack - classical theory. The stresses 

near the crack can be easily obtained through formulas (4.3,15) and 

(4.3,16) for small y and fixed x in (-1,1). We find 

M (1) ~ 1- v f (x) 
xc 3+v 10 

M (1) ~ -f (x) 
yc 10 

M (1) ~ 2 1 SlD flO(t)dt 

xyc (3+v) r-z t - x 
. 1T vl-x" -1 

(1) 2 d 2 1 S1) 1_t
2 

f 10(t)dt 
Qxc - (3+~)c -2 [ rc;;z t - x ] 

dx 1T l-x -1 

(4.3,24) 
(1) ~ 2 d 1 .SlA-t2 

flO(t)dt 
Qyc - (3+ v )c dx [~ t - x ] 

1T 1-x -1 

as y - 0 for fixed x in (-1,1). 

We may remark that M (1) and Q (1) in (4.3,24) satisfy the 
xyc yc 

Kirchhoff condition (4. 3, 12b) along the crack, and that M :::-f (x) 
" yc 10 

at y :: 0, Ixl < 1, thus verifying that the boundary conditions approp-

riate for the classical bending theory are indeed satisfied at the crack. 
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4.4 Case II - Antisymmetric Solution for an Infinite P1Cite Con
taining a Crack 

In this section we shall study the antisymmetric solution 

of the crack problem which ,is represented by the system of coup-

led singular integral equations (3.3,27) and (3.3,28). 

Integrating (3.3,27) with respect to x, and after some '11-

gebra, we obtain 

ill 

~ S vt~~s +~Skll(x'S)v(s)ds+~ Sk12(X'S)W(s)ds = 
-1 -1 -1 

1')(.1 < 1 (4.4,1) 

K ( \s-xi ) 
1 + 2€ 2[ 2 _2_-,€;---_] + 

(s-x)2 €2 
{------~~------------

where 

s - x 

x 

+ _1_ S K (I s -YJ.l) dYJ } 
. 2€ 2 0 € 

(4.4,2) 

K (Is-xI) 
1 2 € 

k 12{x,s) = (1+ v) [ € 2 - 2 2] 
(S -x) 

(4.4,3 

and 

2 
.£ 2 (x) == - 2 

(1- v ) 
(4.4,4) 

in which f
2

(x) stands for f
2c 

(x). Integrating (3. 3,28) with respect 

to x, we obtain 



where 

and 

1 
~S w(t';)dt'; 
'iT ~-x 
-1 

in which f3 (x) stands for f3c (x). 

2 
2 

(~ -x) 

1 

I xl <1 

(£ -x) 

(4.4,5) 

(4.4,6) 

(4.4,7) 

(4.4,8) 

We require solutions of (4.4,1) and (4.4,5) to be HNder con-

tinuous with some positive HNder index fJ.. for all x in the closed 

interval [-1,1]. Under the above considerations, (4.4,1) and (4.4,5) 

can be transformed into a system of Fredholm type integral equa-

tions, by procedures discussed in [16], Chapter 19. These Fred-

holm equations are as follows. 

1 1 

v{x) -.; S Mll(x,s) v(s) ds - -; S M12 (x,s) w(s) ds :: 

-1 -1 

Ixl <1 (4.4,9) 

and 
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1 1 

w{x) - ~S M21(x,~) v{S) d~ - ~S M22(x,~) w(~) d~::c 
-1 -1 

::: G
3 

(x) , Ix I < 1 (4.4,10) 

where 

j,.£lI:1,2 

(4.4,11) 

and 

1 
{1_X2 )1/2 S 1.. (t) dt 

G (x) = _ __~~J~ __ __ 
j 7r (1_t2 )1/2 (t-x) 

-1 

j ::: 2,3 

(4.4,12) 

provided that constants C 2 ' C 3 are chosen as follows. 

1 1 

C 2 := ~ S ~\/2 {S [k1~t,s)v(s) + k 12(t,s)w(s)] dS} -
7r -1 (l-t ) -1 

(4.4,13) 

and 

(4.4,14) 

-1 

Moreover, the requirement made in section 3.3 that d~~) and 
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dw{x) exist and are HlHder continuous' for all x in the open inter
dx 

val (-1,1) has to be verified. We find that this requirement will 
dL 2 {x) 2 d.£3(x)' 

be fulfilled if both dx (that is, - 2 f 2 (x» and dx (that 
2 (1 - V) ) 

is, - (l~V) f3 (x) ) are Hl)lder continuous for x in the open interval 

(-l,l) and 'near the ends are not worse than O(1_x2 ) -1/2+0) with 

som~ () > O .. 

4.5 Thin Plate Solution to Case II 

In order to obtain appropriate approximate solutions for 

thin plates, it will be convenient to write equation (4.4,1) in the 

form: 

1 . x 

-{S v{~)[ S -!-z KO (ll1;S I )dl1 
2 

_ (1- v) _ 2 K (I x - g I ) + 4€ ] dS + 
Z~ "{X-1l 2 € {x_g)3 

-1 2€ 

1 x 

+S dw[ S 1 K (111 -~I)dl1 
~ ~ 0 € 

-1 

X 

_ ~ + (x-g) K (lx-g I)] dg} = 
\x-SI € Ix-g, 1 € 

:: - (I~V) S f 2(11) dr) + C 2 , lx/ < 1. (4.5,1) 

For a similar reason, we integrate {4. 4, 5} with respect to x once 

and then write it as: 

_ 1 + {x-g}K (Ix-gl}]dg+ 
~ € \x-g\ 1 € 

1 x x r) 

+ S ~ S ~ KO(Ir) ~~I)dr) d~) :a: - (l~V) S S f 3(s)dsdr)+C 3x+C4 , 
-1 .2e , 

I x I < 1. (4.5,2) 
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As € -0, the left sides of both (4.5,1) and (4.5,2) grow 

without bound. However, this difficulty may be removed if the 

limits 

(4.5,3) 

exist in Ixl <1. We shall assume that (4.5,3) holds in the sequel. 

Let us assume§ 

Ixl ~ 1 (4.5,4) 

and 

~(x, € ) • o{l) as € - 0 (4.5,5) 

uniformly in l x I ~ 1. Then, if the system of equations (4.5,1) and 

(4.5, a) does have a limiting solution as € -0, we must have 

dw -
dx (x, € ) • - v 0 (x) + l/I (x, €) , .Ixl < 1 (4.5,6) 

where 

q; (x,€) • 0(1) as € - 0 (4.5,7a) 

for all x, Ixl < 1; the end points are not included since ~: (x,c) may 

§ This assumption again ought to be verified. However a proof 
has not ye't been carried out. 
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not be defined there, and 

Sx t/I{~,e )d~ • o{l) as e - 0 for I x I :S;;1. (4.5,7b) 

-1 

Substituting these assumed forms into (4.5,1) and (4.5,2) 

and letting e - 0, we have 

1 1 x 

-S vo{~)z't:~~)d~- el~oS [~(~,e)+t1/(~,e)]S2~2 Ko(I1)~~I)dT1ds =: 

.-1 -1 
x 

• - (l~V) S fZO{,,) dT1 + C Z' Ixl < 1 (4.5,8) 

and 

1 1 x 

-S v 0 {~} dn d~ + €1~ S [~(~,E )+t1/ (~,E)] S ~ KO(I1);SI} dT1ds lI: 

-1 -1 ZE. 

• - (l~V) Sff30 ( Q d~ d'1+ C3x + C4 , Ixl < 1. (4.5,9) 

Adding {4.5,8} to (4.5,9), we obtain 

Ix I < 1. (4.5,10) 

The solution of (4.5,10) can be obtained by procedures dis

cussed in §1l3 of [16]'. The solution is 

Z Z l/Z . 
v O(x) • (1-v}(3+v) (I-x) JO(x}, lxl :S;;1 (4.5,11) 

where 
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t t r.) 

J fZO(TJ )dTJ t c J J f 30{t;)dt; dTJ 
------------- dt- {l-v )C 3 ' 

{1_t Z)1/2 (t - x) 

Ixl < 1 (4.5,12) 

provided the constant C
5 

is chosen to be 

1 

S 
-1 

t t TJ 
Jf20 (TJ)dTJ + c J J f 30{t;)dt;dTJ 

(1 _ tZ)l/Z 
dt . (4.5,13) 

Substituting vO(x) back into either (4.5,8) or (4.5,9). we obtain 

another integral equation for [;(X,E) + til (x,E)] as E-O which can 

not be solved explicitly. However, a simple estimate shows that 

both liJ (x,€ ) and ;(x, €) for small € give only higher order effects 

in computing the stress field away from the crack and the stress 

couples around the vertices. Hence, we shall ignore it as long 

as the stress field near the crack but away from the vertex, and 

the shear stress resultants near the vertex, are not considered. 

Integrating (4.5,6) with respect to x from x :: -1, we obtain 

x x 

w(x,€) :I: - S vO(~)d~ + S liJ(~:~)d~. \xl~. (4.5.14) 

-1 -1 

If the asymptotic property (4.5. 7b) is used, then as e - 0, (4.5,14) , 

gives 

x 

w O(x) == lim w(x.E) = -S vO(~)d£, I x I ~l. 
E-O . 

. -1 

(4.5,15 ) 

On account of the fact'that w 0 (:!:.. 1. 0) :I: O. ~he constant C 3 c an be 
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determined through the relation 

1 

S v 0 (S) dS = 0 • 

-1 

(4. 5,15) 

If the approximate solutions v O(x) and w O{x) as given by 

(4.5,11) and (4. 5,15) are used in formulas (3.3,20) and (3.3,21), 

we can compute the approximate stress field away from the crack 

and the stress couples near the vertex. Using the same geometri-

cal description as we did in section 4.2, we find the following 

results. 

a. Stress field away from the crack 

. a¢ a2¢ 
lim M (2) = b [(1+3v) y -a 2 _ (I-v) y2 __ 2 ] 

€ _ 0 X .\JTV I x axay 

lim 
€-o 

2 
(2) 1 a¢2 2 a ¢2 

M = [ (1-v) Y - + (1- v) Y --] y"{3+V) ax axay 

(4.5,16) 

(4.5,17) 

2 

lim 
€- 0 

M xy 
(2) 1 a¢2 2 a ¢2 

= 13+"V> [ (1+ v) ¢2 - (1- 3v) y ay - (1- v )y --2]' ( 4. 5 , 18) 
ay 

lim 
€-o 

lim 
€- 0 

where 

2 
(2) 2 a¢2 a ¢2 

ax. = -(3+v)c [2 ay + y ay2] 

2 
Q (2) = 2 a¢2 a ¢2 

y (3+v)c [ ax :r y axay ] 

1 

¢2(x, y)=; S 
-1 

(4.5,19) 

(4.5,20) 

dS • (4.5,2.1) 
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b. Stres s couples near the vertex (x = 1, Y = 0) 

M (Hv). (1) (2 )-1/2 (7 . a + 1 . sa) 
x "'" - "'{3+V} Jo - r 4' sm"2 4' sm '2" 

M (Hv). (1)(2)-1/2(1. a'l. 58) 
y "'" - (3+"Vl JO - r 4 sm "2 - '4 sm T 

(Hv) . -1/2 3 a 1 sa 
M "'" ~ J (1-) (2r) (- cos -+ - cos-) xy \.TO V I 0 4 2 4 2 

(4.5,22) 

as r - O. Here r, a are local polar coordinate s c entered at x = 1, 

y :r:: 0 as in section 4.2. 

4.6 Results Based on Classical Theory for Case II 

In section 4.3, we have already discussed the classical 

theory for bending of plates. For the present case, we shall find 

a solution w (2)(x, y) according to classical theory in the form c . 

(4.3,11) such that it satisfies the boundary conditions (4.3,13ab) 

lim M (2):: 0 
Iyl -0 yc 

Ixl < 1 (2) 
aM 

lim [Q (2) + J: xyc 
Iyl -0 yc c ax 
Ixl < 1 

(4.6,la) 

(4.6,lb) 

where M (2), Q (2), M (2) are defined among (4.3,1) to (4.3,5) and 
yc yc xyc 

f 20(x), f 30(x) are defined in (4.3,9). 

Let us define a function <I> (x) by c 

aw~2)(x, y) 
<I>c(x):: lim + ~ ax (4.6,2) 

Y - O-c 

which vanishes for all I xl > 1 since w(2) (x, 0) == 0 for \ xl > 1. All c 

physical quantities can be expressed in terms of <I> (x) as follows: 
c 
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M 
(2) m

xc 
(2) (x-S, y) 

xc 
1 

M 
{2} i-v S cI> (S) myc (2\x-s, y) :: -yc 1T c 

-1 

M 
(2) m~~~ (x-s, y) xyc 

and 

( Qcx (2) 

) 
1 

( 
qxc (2)(x-s, y) 

I-v S ::- cI> (S) 
Q (2) 

1TC C 

qyc (2) (x-S, y) -1 

where 

yc 

3 3 
In (2)(x, y) :: (I-v) (3xy it y) + (l+v) 2x

4
y , 

xc p p 

. 3 3 
In (2)(x, y) ::-(I-V) (3xy i X y) 

yc p 

2 2 4 2 2 
In (2) (x y) :: (l+V) (y -x ) + (I-v) (y -3x Y ) 

xyc '4 6 2p P . 

2 
q (2) (x, y) :: ~4 -~ , 
xc p ~ 

2 2 
(2)( ) _ 2X(3~ -x ) q x, y - - • 

yc p 

ds (4.6,3) 

) d~ (4.6,4) 

(4.6,5) 

(4.6,6) 

(4.6,7)' 

(4. 6, 8) 

(4.6,9) 

To satisfy the boundary condition (4.6,16) we obtain an inte-

I" I < 1 (4.6,10) 
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which is exactly of the form (4.5,10). Thus 

Ixl~l (4.6,11) 

where vO(x) is given by (4.5,11). 

Using {4.6,ll}, we find from (4.6,3) and (4.6,4) that 

(i) for points away from the crack, the stresses based on 

the classical theory are precisely the limiting values given in (4.5,16) 

to (4. 5,20); 

(ii) for points near the vertex (y = 0, x = + 1), as r - 0 

M (2) __ 1 . (1 )(2 )-1/2 ( 9+7v . 9 + I-v . 59) 
~ JO - r - -- Sln - -- Sln -xc \ oTT" V I 4 2 4 2 

M {2} __ 1 . (1 ){2 )-1/2 (1 - V . 9 I-v .59) 
yc ptV) JO - r --:r- sm 2" - ~sm 2 (4.6,12) 

and (Q (2) Q (2}) __ OCr - 3/2). 
xc ' yc 

4.7 Case III - Antisymmetric Solution to an Infinite Plate Containing 
a Rigid Line Inclusion 

In this section, we shall study the antisymmetric solution 

of the inclusion problem which is represented by the singular inte-

gra1 equation (3.3, 4S) . 

. We may rewrite (3.3,45) as follows: 

1 ' 1 

1T
1 S T{i }_d

x
S 1 S - - L(X,;)T(;)dS = 12 (x), I x I < 1 

-1 1T -1 r 
(4.7,1) 



where 

and 

1 L(x.g):: ~ 
\J-v I 
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s - x 

(4.7,2) 

(4.7,3) 

From (3. 3.4l). the solution of (4.7,1) is necessarily sought 

in the class of functions which are bounded and H/:)lder continuous 

for all x in the closed interval [ -1, 1]. Thus, (4.7,1) can be trans-

formed to a Fredholm type integral equation as follows: 

1 

where 

and 

T(X} + S N(x,g) T(S)dS = G2r{x) 

-1 

2 1/2 Sl N(x,g} :: (I-x) L(t,g) dt' 
1T (1_t2)1(2{t_x) 

-1 

-1 

1. (t) 
2r 

provided that the additional condition 

1 

S 
-1 

is fulfilled. 

··Ixl <1 (4.7,4) 

(4.7,5) 

(4.7,6) 

(4.7,7) 
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Further, in order that d ~x) = t(x) exist for all x in (-1,1), 

we require that 

(that is, 
2(1-v)D 
(3-v)c • 

df2 (x) 
r ) 

dx 

exist and be HMder continuous for all x in (-1,1) and near the ends 

1 
be not worse than O( 2 1/2-6 ) for some 6 > O. 

(l-x ). ) 

4.8 Thin Plate Solution for Case III 

Equation (4.7,1) suggests that we assume 

'T (x,e) ::: 'T O(x) + 0(1) as e- 0 (4.8,1) 

uniformly in I x I ~l if 

as €- 0 (4.8,2) 

uniformly in lx' ~l. Then, the integral equation for 'T O(x) reads as 

\x I < 1 (4.8,3) 

where 

(4.8,4) 

The solution of (4.8,3) can be easily found from (4.7,4) as follows: 

(3-v) 
'T O(x):.: {l-v} GO(x}, (4.8,5) 

where 



Differentiating (4.8,5), we obtain 

where 

D 2 -1/2 
::: -2 C (l-x ) kO(x) 

(l-t 2)1/2fO (t )dt 
t-x 

(4.8,6) 

(4.8,7) 

(4.8,8) 

is apparently a H51der continuous f:i.:J.nction for all x in the closed 

interval (-1, 1] • 

Now, we examine the state of stresses in different regions 

of the plate by using the approximate solution (4.8,7) and formulas 

(3.3,31) and (3. 3, 32)~ For points away from the inclusion, near 

the vertex and near the inclusion, we use the same geometrical' 

descriptions as we did in Case I and list the results as follows. 

By defining 

(4.8,9) 

(4.8,lO) 

where kO(x) is given by (4.8,8), we find that at points away from 

the inclusion: 

(2) D . 2 o</>3 
lim M ::: - ({1-3v) y</>3 + (l-v) Y -] 

E-Ox c oy 
(4.8,11) 
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lim M (2) :: _ D [(3-v) Y¢3 + (I-v) y2 o¢3 ] 
€-o Y c oy 

lim 
€-o 

lim 
€ -0 

M 
xy 

(2) D 2 o¢3 = - (1- v) - [¢ + Y -] c 4 ox 

. (2) D o¢3 
11m Q ::--[¢ +y-] 

E -0 Y c 2 3 oy 

(4.8,12) 

(4.8,13) 

(4.8,14) 

(4.8,15 ) 

b. Stresses near the vertex: We find that as r - 0, 

M (2)..., D k (1-) (2r)-1/2 (1-7V . 8 l+v . 58) 
x c 0 4 sm"2 - 4"" sm 2"" 

M (2)..., _ D k (1_)(2r)-1/2(9+ V sin ~ _ l+v sin 58) 
y cO 4 24 2 (4.8,16) 

M (0) Dk (1 )(2 )-1/2(S-3V 8 l+v 58) 
xy ..., - c 0 - r -4 - co s "2 - --;r- co s 2"" 

where x = 1 + r cos8, y = r sin8. 

Furthermore, the shear stress resultants Q (2), Q (2) 
x Y 

remain finite as r - O. 

c. Stresses near the inclusion but away from the vertices: 

As € - 0, for fixed y/€ > 0 and for fixed x in (-I, 1), we find 

M (2)..., 2D v k (x) (1_x2 ) -1/2 
x cO' 

My (2) ..., _ 2~ kO(x) (1_x2 ) -1/2 , 

M (2)..., _ (l-v) D fl (x) 
xy ,c 0 ' 

Q (2)..., _ 2D (l-e -y /€) ~ [k (x)(l-x2 ) -1/2] , 
x c2 dx 0 . 

(4.8,17) 

Q (2),:.. 2 ;D fld (x) . 
y c 
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4.9 Results Based on Classical Theory for Case III 

According to the classical theory of bending of plates, the 

stress couples and shear resultants for the case of a rigid inclu-

sion can still be expressed in terms of w as in (4.3,1) to (4.3,5). 
c 

w satisfies the same biharmonic equation (4.3,6) in :e and 
c 

hence the most general solution for w would have the form (4.3,10) 
c 

and (4.3,11) such that the condition of vanishing of wand all its 
c 

derivatives at infinity is satisfied. 

Along the boundary lxl < 1, y :s: 0, we require 

dw 
dyC JC - lim f 2 (x) , ( 4. 9 , 1) 

(;-0 r 

W :&: - lim f 3 (x) ( 4. 9 , 2) 
c (;-0 r 

where f 2r , f3r are giv~n in (3.l, 24). 

Ii the anti symmetric part w (2) alone is considered, then . c 

from (4.9,1) 'and (4.9, 2) we find 

where 

lim 
Iyl - 0 
Ixl < 1 

dw (2) 
c 

dy 

lim 
~YI -0 
IXI < 1 

w (2) :&: 0 
o 

(4.9,3a) 

(4.9,3b) 

(4.9,4) 

We may note here that (4.9,4) is in fact the same as (4.8,2). 
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Let us define 

lim 
t (x) lI: (yl -0 M

yc
(2) (x,y) 

c Ixl < I 
(4.9,5) 

which vanishes for Ixl > 1, y lI: 0 on account of continuity proper-

ties. All physical quantities can be expressed in terms of t (x) 
c 

as follows: 

where 

M 
xc 

(2) 

M 
yc 

(2) 

M 
xyc 

{2} 

1 

:: 1:. S t (g) 
'It' c 

-1 

myc (2) (x-S, y) 

m
xyc 

(2) (x-g, y) 

22 
(2)( ) v..L + (l-v)y(y -x ) 

m x,Y:S: 2 4 
xc P 2 P 

2 2 
(2)( ) L (l-v)y(y -x ) 

m x, y :s: 2 - 4 
yc P 2 P 

m (2) (x, y) == _ (I-v) x y: + {l-v)x 
xyc P 2 p2 

~c (2){x, y) = - 2xr 
, p 

(2) 2 2 
qyc (x. y) :: X :t 

p 

(4.9,6) 

(4.9,7) 

(4.9,8) 

(4.9,9) 
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Again the subscript c refers to the clas sical theory of bending. 

Upon satisfying (4.9, 3a), it follows that the integral equa-

tion for 

X 

'Tc (x) ::s: S tc(~)d~ 
-1 

(4.9,10) 

is identical to (4.8,3). Hence, t (x) will have the form (4.8,7). 
c 

Stress couples and resultants in the plate can be then 

computed according to (4.9,6) and (4.9,7). For points away from 

the inclusion we find that these values are exactly the limiting 

values as € - 0 (away from the inclusion) based on Reissner l s 

theory listed in (4.8,11) to (4.8,15). For points near the end x=+l, 

y :;:: 0, we find that 

M (2) __ ' Dk (1-) (2r)-1/2(H- 7v . 9 I-v . 59) 
xc c 0 4 sm '2 - 4 sm T 

M (2) __ Dk (1-) (2r)-1/2(7+V sin ~+ I-v sin 59) 
yc ' c 0 4 2 4 2' (4.9,11) 

M (2) __ D k (1-) (2r) -1/2(S-SV cos ~ + l-v cos 59) 
xyc c 0 4 2 4 2' 

(Q (2) Q (2»_ O(r-3/2) 
xc ' yc 

as r - O. For points near the inclusion but away from the vertices, 

we find that 

M(2) _ 2D v k (x)(1-x2 ) -1/2 
xc cO' 

M (2) - -(I-v) D fl (x) 
xyc c. 0 ' 

Q(2)_ 2D d [k () (1 2)-1/2] Q(2) 2D f" ( ) 
xc -"2: dx 0 x -x , yc"""2: 0 x 

c c 
(4.9,12) 

as y - 0 for fixed x in (-1, 1). 
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4.10 Summary of the Results and Discussion 

In the three cases we have treated so far the stress fields 

away from the crack or from the rigid line inclusion are the same 
, 

for Reissner's theory and the classical theory for thin plates. How-

ever, significant differences occur near the vertices of the line seg-

ment y = 0, Ixl ~ 1 and near the line segment but away from the vcr-

tices. We shall write down again some of the results obtained in 

previous sections in order to give a discus sion. 

Let us examine first the stress distribution near the vertex 

y = 0, X :: +1. For Case I, the case corresponding to symmetric 

deflection of an infinite plate containing a crack, we have obtained 

the following. 

(i) Results based on the Reissner theory for small € 

M (1) 
x 

3 8 1 58 
"4cos2+ "4COSy 

M (1) 
Y 

'" ~ h (1-) (2r) -1/2 
\3+v J 0 

5 8 1 58 
4cOS 2" - 4 cos T (4.10,1) 

M 
xy 

(1) 

( Q (1) Q (1»)_ 
x ' y 

0(1) 

as r - 0 for \81< 1T with r 

1 . 8 + 1 . 58 
- 4 sm 2 4 sm 2 

= (x_l)2+y2, 8 = arctan -L
x-1 

(ii) Results based on the classical theory 

M xc 
(1) 3(1-v) 8 1-v 58 

- 4 cos2-~COSy 

M 
yc 

{I} 

M 
xyc 

(I) 

'" _1_ h (1-) (2r) -1/2 
3+v 0 

as r - 0 for 18 J < 1T • 

ll+5v 8+ I-v 58 --:r- cos z Tcos2 

7+v . 8 I-v . 58 ,.. -;r- sm 2-~smy 

(4.10,2) 
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Comparing (4.10,1) with (4.10,2) shows that the angular distri-

bution of the stresses based on the two theories is different. Partie-

ularly, when 9 = 0, we have from 

according to the classical theory, 

(4.10,1) M (l)/M(l)~l as r -- 0, while, 
x y 

we have M (1) /M(lL_(l-v)/(3+v). 
xc yc 

Hence, the Reissner theory predicts that along the prolongation of the 

crack near the vertex, the state of stress is one of uniform hydrostatic 

tension or compression, while in the classical theory M(l) and M(l) have 
xc yc 

opposite sign and different magnitude. Moreover, the angular distribu-

tion as shown in (4.10,1) is identical to the corresponding stretching 

problem reported in [8] according to the classical theory. Thus, if 

the Reissner theory is expected to be more accurate near edges, we 

would state that the angular distribution near a vertex of a crack is the 

same no matter the plate is under the action of stretching or of bending. 

The shear force resultants in (4.10, 2) become infinite like 

-3/2 
r as r -- O. Thus, in order to maintain a finite amount of energy 

in the neighbourhood of the vertex, the classical theory would have to 

have the transverse shear modulus G = 00. This is certainly not true 

... 
for an isotropic elastic solid. In (4.10 ,l) Q and Q remain finite as 

x y 

r - 0; thus the above defect will not occur in the refined theory. 

For Case II, the case corresponding" to antisymmetric deflection 

of an infinite plate containing a crack, we have near y = 0, x = + 1: 

(i) Results based on the Reissner theory for small E 

M (2) 
x 

M (2) 
Y 

M (2) 
xy, 

l+v . (1 }(2 "}-1/2 .... 3+"V JO - r 

as r -- O. for fixed 9, 191 < 1T • 

7 . 9 1 . 59 
- "4 s~n "2 - 4 s~n ~ 

1 . 9 + 1 . 59 
- "4 sm "2 4 sm ~ 

3 9 1 59 
4 cos 2: + "4 cos ""2 

(4.10,3) 
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(U) Results based on the classical theory 

M xc 

M yc 

(2) 

(2) 

M xyc 
(2) 

(Q (2) Q (2»,... O(r-3/2) 
xc ' yc . 

as r ~ 0, 191 < 1r • 

9+ 7 v . 9 + 1-v . 59 
- -4- sm '2 4 sm 2 

I-v . 9 I-v . 59 --:r- sm'2 -4 sm 2 

5+3v 9 I-v 59 --:r- cos '2 - --:r-cos 2 

(4.10,4) 

Formulas (4.10,3) and (4.10,4) show again that the angular 

distributions based on the two theories are different. Moreover, 

there is a significant difference in the behaviors of the maximum 

shear stress computed according to the two theories. It is found 

that the maximum shear stress according to the classical theory 

possesses il. relative minumum at 9 :: ° near the vertex, while, ac-

cording to the Reissner theory, the maximum shear stress pos-

sesses a relative maximum there. Hence, the failure due to 

tearing of a plate containing a crack would be expected to propa-

gate along the prolongation of the crack, as far as this factor is 

concerned. 

The transverse shear force resultants in this case accord

ing to the classical theory again behaves like O(r- 3/ 2) as r - 0. 

In the Reissner theory, we can show that the shear force resultants 

Q(2), Q(2) become infinite like r-1/ 2 as r - 0 if the function {j/(X,E) 
x y 

in (4.5,6) is considered. However, ti/(x,€) is assumed to be of 
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small order effect when € « 1 and the, contribution to strain energy 

due to a stress singularity of O(r -1/2) is finite in general. 

From (4.8,16) and (4.9,11), it can be easily seen that the 

stress distribution near the vertex y = 0, x = +1 is also different 

based on the different theories for Case III. 

Next,. we shall examine the stress field near the segment 

y = 0, Ixl''::::; 1 but away from the vertices. 

For Case I, we have as € - 0 for fixed y If. > 0 and fixed 

x in (-1,1) 

M (1) .... I-v f (x) 
x . 3+v 10 

Q (1) 2 
Y .... ""'( 3+..-,..-.v ...... ) -c 

1 (1_t 2 l/2f (t)dt 
-y If. d [ 1 S 10 (1- e ) dx 2 1/2 t _ x ] (4. 10 , 5 ) 

'fl' (l-x ) -1 

based on the Reissner theory. And, we have for y -0, x in (-1,1); 

. (1) I-v (1) 
. Mxc .... 3+v flO (x) , Myc .... - flO(x} , 

1 2 1/2 
(I) 2 S (l-t) fl0 (t}dt 

M .... ----~..."....,~ 
xyc {3+v}'fl' (1_x2}1/2 t-x 

-1 . 2 1/2 
(I) .... 2y d 2 1 Sl (l-t) flO (t)dt 

Qxc - (3+ v )c dx2 [ 'fl' (1_x2 }1/2 t - x 1 ~ 
-1 2 1/2 

Q (I}.... 2 ~ [ 1 51 (l-t) f10 (t}dt] 

yc - {3+v}c dx 'fl' (1_x2 )1/2 -1. t - x 

(4.10,6) 
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based on the classical theory. 

As shown in (4.10,5), the boundary conditions (3.2,26), 

(3.2,28) and (3.2,30) are indeed satisfied, while (4.10,6) shows 

that these boundary conditions are satisfied only in an approximate 

way (see section 4.6). A comparison of (4.10,5) and (4.10,6) dem-

onstrates the presence of a II boundary layer" effect (neglected by 

the classical theory) in the values of Q (1), Q (1) and M (1) near 
. x y xy 

the crack for thin plates. This effect is not present in the values 

of M (1) and M (1). Also it may be observed that while according 
x y 

to the classical theory Q (1):: 0 along the crack, this is not the xc . 

case in the Reissner theory. Moreover, the stresses associated 

Q (I) and MI s are of about the same magnitude along the crack while 
x 

according to classical theory the transverse shear stress in thin 

plates is assumed to be of small order in comparison with the flex-

ural stresses. 

Finally, from (4. 8,17) and (~. 9,12) it can be observed that 

the boundary layer affects only the value of Q (2). We have in the 
x 

Reissner theory 

as e -- 0 ~or fixed y Ie > 0 and for fixed x in (-1,1), while in the clas

sical theory we have 

as y -- 0 for fixed x in (-1,1). 



-96-

V. APPROXIMATE SOLUTIONS BY A VARIATIONAL METHOD 

5.1 A Variational Theorem 

In Part IV we have reduced our problems to either a single 

integral equation or a system of integral equations. In the same 

part we obtained some approximate results for thin plates through 

a perturbation method. However, for € of moderately small val

ues the perturbation scheme breaks down since the dependence on 

€ of the higher order terms is not clear. We shall establish cer

tain variational principles in order to obtain furtner approximate 

solutions to our problems. 

In the sequel, the theorem of minimum potential energy 

from classical linear elasticity shall be used. However, instead 

of using as admissible displacement and stress states those which 

satisfy certain boundary conditions, we shall use those which sat

isfy the equations of equilibrium (2.2,3) to (2.2,5) as well as the 

stress strain relations (2.2,24) to (2.2,28) in the interior of the 

plate. Thus the Euler equations obtained according to the varia

tional procedure are the boundary conditions of the problem. 

Before we derive the variational method which will be ap

plicable to our problem, we shall compute the strain energy con

tained in the plate in terms of the moments, the shear force 

resultants and the generalized displacements which were defined 

in section 2.2. 

Since the plate is assumed to be isotropic and the stress 

strain relations obey Hooke l slaw, the strain energy§ contained 

§ See Love [ 1.] • 
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in the plate is 

TI 1 iII 1 2 2 2 2v = -2 [E «(I +(1 +(1 ) - -E «(I IT +IT IT +IT IT )-T 
S X Y z xyyz zx 

J8 

+ 2:.. (IT 2 + IT 2 + IT 2)] dXdYdZ 
G xy yz zx 

(5.1,1) 

where IT etc. are defined in section 2.1 and..2 is the set consisting 
x 

of all points interior of the plate. 

Let us now consider the plate whose geometry was described 

as in section 3.1 and whose upper surface and lower surface are 

free from external tractions. We shall assume that the stres s dis-

tributions across the plate thickness are approximately (2.2,6), 

(2.2,7) <;tnd (2.2,8). Also we assume that the two-dimensional stress 

strain relations (2.2,24) to (2.2,28) hold everywhere in Sf) • Under 

the above assumptions the integration with respect to Z in (5.1,1) 

can be carried out and (5.1,1) may be expressed in terms of 13 , 13 
x y 

and w t as 

(5.1,2) 

(1) a(wt / ) 2 a(wt / c ) 2 
+ ~ [(13 + c ) + . (13 + ay - )]} dxdy 

€ 2 x ax y 

E 2 1 c 22 1/2 . 
where D = 2 ' € :: - (--) and x, yare dimensionle s s 

(l-v)c ' c c ll 
coordinates as be!~re. 
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Integrating (5.1,2) by parts, we obtain 

n 

TIs = ~ J(M n l3n + Mns 13s + QnWt) ds -

aM aM 
cQx) I3x + ( a:y 

+ of- -cQy) l3y 

oQ oQ 
+ (af- + a~ ) w t] dxdy (5.1,3) 

where Coo denotes the boundary at infinity and Co is the line segm.ent 

y = 0+, I x I ~ 1. The second term. in the right side of (5.1, 3) van

ishes if the Mis and Q's (com.puted from. the set {13 ,13 ,w
t

} according 
x y 

to (2.2,24) to (2.2,28) ) satisfy the equations of equilibrium. (2.2,6) to 

(2.2,8). 

Hereafter, we shall only consider the reduced problem.s, 

that is, the probiem.s associated with the boundary conditions 

(3.1,23) and (3.1, 24), where the load" at infinity has been transferred 

to the segm.ent y = 0, Ix I < 1, since they are of principal interest. 

Again, we shall assum.e that" the total energy contained in the plate 

is finite. This assum.ption can be verified if (i) we require that 

all physical quantities possess Fourier transform.s so that the line 

integral along C in (5.1, 3) vanishes, and (ii) we require that 
(x) 

that com.ponents of the vector f defined as in (3. 1, 23) (case of a 

crack) or as in (3.1. 24) (case of a rigid inclusion) satisfy the con-

ditions m.ade in Part IV so that the existence of solutions is assured 

and thus the energy contained in the neighbourhood of the 
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vertices of the crack or rigid inclusion is finite. 

Under the above restrictions, (5.1,3) becoITle s 

1 

'TI :a:-CS[M~+:a ~+Q~] dx+ 
s "2 yt-'y xy t-'x Y t y::O+ 

-1 

1 cS ,..... ~ A A A A + - [M P. +M P. + Q w] _ dx. 
2 y t-'y xy t-'x Y t y=O 

-1 

where the hat sign denotes boundary values. 

(5.1,4) 

We digress for a moment to remark that the uniqueness of 

the solutions can be easily established with the aid of (S.l, 4). We 

shall illustrate for the case of a crack. For the case of a crack, 

the boundary condition (3. 2, 2S) shall be us ed and (5. I, 4) c an then 

be written as 

1 

1T cS '" '" ~ a: + -2 L fl f3 + f2 f3 + f3 wt ] 0+ dx -
s -'1 c Y . c x c y= 

cSl 
A "'" A -2 [ fl f3 + f2 f3 + f3 w t ] 0 dx -1 eye xc· y=-

(5.1,S) 

where fIe' f 2c ' f3c are given by (3.1,23). 

1£ both {f3 , f3 , w
t

} and {~ , ~ , :;t} satisfy the stress strain x y x y 

relations (2. 2,24) to (2.2,28), the equations of equilibrium (2.2,6) 

to (2. 2,8) in ~ , satisfy the same boundary conditions (3.1, 2S) and 

(3.2,2S), and possess finite total energy, then from (S.l, 5) we have 

(S.1,6) 

From the positive defip.ite character of IT s as shown in (S .1,2), 

(5.1,6) shows that the difference of these two sets is at most a rigid 

body displacement. However, the solution corresponding to a rigid 
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body displacement is excluded since it does not possess a Fourier 

transform and thus the solution to the crack problem is unique. 

Similarly, we can prove that the solution to the inclusion 

problem is also unique. 

Now, we shall return to the variational principle. For the 

case of crack, we shall use the theorem of minimum potential 

energy as our guide to derive a variational method which is ap-

plicable to our problems. Let us define the potential energy as 

follows 

:: D SS {(l+v) (o[3x + ~) 
4 _ ox oy 

~ 

a{w I ) o(w / ) o(w / ) 8(w / ) 
+ (1-v) [([3 + t c ) ([3 + t c ) + ([3 + t c )([3 + t c)]} 

€ 2 x ox x 0 x y 8y y 8y 

dx dy -

1 

-c S Re {flc 13y + f 2c 13x + f3c wt}y::O+ dx + 

-1 

+ c Sl Re {fl [3 + f2 [3 + f3 wt } 0 dx . c y c x c y=-
-1 

(5.1,7) 

where the bar over a symbol denotes its complex conjugate and the 

symbol Re denotes the real part of a complex function. It is clear 



-101-

that the ,double integral in (5. 1. 7) is the strain energy contained 

in the plate and the line integrals are the work done by external 

forces along the segment y :0: o. \x\ < l. 

Apart from the solution state {13 .13 • wt }. we consider a 
x y 

class of arbitrary displacem~nt sets {13 + 013 .13 + 013 • w t+ owt } sub-
x x Y y 

ject to the conditions that their derivatives of all orders are con-

tinuous in ~ and vanishing at infinity. and that they possess 

finite potential energy. 

Using the above admissible displacement sets, we compute 

the fir st variation o£ (5. 1 J 7). 

aM aM aM 
a: _ ~s.r {( aMx 

2 J ax 
i) 

+ --E. -cQ )013 + ( __ x + ~ -cQ ) 013 + 
ay x x ax ay x y 

aM aM aM aM 
+ (~a x + ----La - cQ ) 013 + (--E + --Y -cQ ) 013 + x y y y ax ely y Y 

aQ aQ aQ aQ 
+ (~ + ---.1") OW + (_x_ + --1.) ow } dxdy -

ax ay t ax ay t 

- c Sl Re {(M +£1 ) 013 + (M +£2) 013 + (Q +f3c ) ow
t

} dx + 
Y c Y xy c x y y=O+ 

-1 
1 

+cS Re{{M +£1 )013 + (M +£2 )013 + (Q +£3 ) ow} 0 dx -1 Y c Y xy c x y C t y:;:. -

(5.1,8) 

in which the M' sand QI s computed according to the stress strain 

relations (2.2,24) to {2. 2, 28}. We also find that the second varia-

tion o£ (5.1, 7) is given by 
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0
211' (13 ,13 , w t ) :s: 1t (013 ,013 , owt ) ~ O. x y s x y 

(5.1,9) 

Equation (5.l, 8) shows that out of all adrnis sible displacement sets 

{13 , 13 , w
t
} the set which satisfies equations (2.2,6) to (2.2,8) and 

x y . 

the boundary condition (3.2,25) makes IT an extremum and equation 

(5.1,9) shows that this extremum is in fact an absolute minimum. 

On the other hand, if we set 0 1f:s: 0 in the first; place, then equa-

tions (2.2,6) to (2.2,8) and the boundary condition (3.2,25) must 

be satisfied since 013 , cS13 and cSw
t 

are arbitrary in ~ and along x y 

its boundaries. Hence, we conclude that equations (2.2,6) to (2.2,8) 

and the boundary condition (3.2,25) are necessary and sufficient 

conditions to minimize 1T . 
If we select the displacement sets {13 , 13 , w

t
} from among x y 

the above admissible sets in such a way that they satisfy equations 

(2.2,6) to (2.2,8) through the stress-strain relations (2.2,24) to 

(2.2,28), then the potential energy (5.I,7) can be reduced to the fol-

lowing fo rm: 

1 

:s: - £2S Re{(M +2f1 ) 13 + (M + 2f2 )13 +(Q + 2f 3 ) w} 0+ dx + 
-1 Y c Y xy c x y c t y= 

(5.1,10) 

It has been assumed that all the physical quantities possess 
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Fourier transforms. Hence the general solutions of the differen-

tial equations as shown in (3.2,1) to (3. 2,18) obtained in section 

3.2 become the most suitable admissible sets since they satisfy 

the equations of equilibrium (2. 2, 6) to (2. 2: 8), the stre s s strain 

relations (2.2,24) to '(2.2,28) and the vanishing condition at infinity. 

They do not, however, neces sarily satisfy the boundary conditions 

along the segment y ~ 0, \x\ < 1. 

Using the symmetric and antisymmetric representations 

for stresses and ilisplacements as shown in formulas (3.2,1) to 

(3. 2,18), we may r'ewrite (5.1,10) as follows; 

11" == 1T(1) + 1T (2) (5.1,11) 

where 

1 
1t' (l) II: -cS Re{M (l);-m+M(l) -;m+O(l) w (1)+2 f f3(l)}dx 

y y xy x Y t lc y _ 0 
-1 y-

(5.1,12) 

and 

(5.1,13) 

Equation (5.l,12) and (5.l,13) are independent of each other. 

to minimize 1\ it is sufficient to minimize ,,-(1) and ;r(2). 

Hence, 

It is obvious that the energy expression (5 .1,12) corresponds 

to the symmetric solution for the case of a crack. Owing to the fact 

that Mxy{l), 0/1) appear in (5.1,12), we may point out that the 
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moments and shear force resultants based on the admis sible sets 

{!3 , !3 , w t } are not required to satisfy the boundary conditions 
x y 

along the crack. It is this point which is different from the well 

known theQrem of minimum potential energy. 

Similarly, the energy expression (5.1,13) corresponds to 

the antisymmetric part for the case of a crack. 

In our discus sion so far, we have treated!3 !3 , w
t 

as the 
x y 

quantities to be varied in the variational principle. Since, in 

order to be admissible, a state of displacement and stress char-

acterized by {!3 , !3 , w
t

' M , M , M , Q , Q } must satisfy 
x y x y xy x y 

all of the field equations in the plate, it is possible to select any 

independent set of three of these quantities, and not necessarily 

just!3 ,!3 , w
t

' to be varied in the variational principle. x y 

By considerations similar to the above, we can easily de-

duce an appropriate energy expression similar to (5 .1,10) for the 

case of a rigid inclusion. 

The negative of the work done through the prescribed dis-

placem~nts f lr , f 2r , f3r given as in (3 .1,24) along Co is 

_~Sl Re {2f ~+ 2 f2 M + 2f3 Q} o+dx + 
2 -1 lr xy r y r y y= 

+ ~2 Sl R~ {2fl ~ + 2 f2 M + 2f3 Q} 0 dx. (5.1,14) 
-1 r xy r , y r y y= -

Therefore, the appropriate energy expression for the case of a 
I 

rigid inclusion bec.omes 
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1 

::-~S Re{(px+ 

-1 

2f1 ) ~ + (13 + 2f2 ) M + (wt+ 2f3 )O} dx -t 
r xy y r y r y y==O+ 

1 

+ ~2 S Re{(p +2f1 )~ + (13 +2f2 )~+(w + 2f3 )Q} -0 dx. (5.1,15) x r xy y r y try y - -
-1 

Again, using the symmetric and antisymmetric representa-

tion for stresses and displacements as shown in formulas (3.2,1) 

to p.2"18,},, we may write (5.1,15) as follows: 

where 

and 

(5.1,16) 

+ 2 £ M (1) + 2 f OW} dx 
1r xy 3r y y=O 

(5.1,17) 

1 

-c S Re{M(2} ~ + M(2) ~ + 
xy x y Y 

Qy(2} w
t
(2) + 2f M(2}} dx. 

2r y y:::O 
-1 

(5.1,18) 

Our variational principle may now be summarized as fo1-

lows. Among the physical quantities 13 ,13 ,wt,M ,M,M ,Q and 
x y x y xy x 

Q whichare given by the formulas {3. 2,1} to {3. 2,18}, we select 
y 

three independent ones to form the admis sible sets. Among all 

these sets the set for which 
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(5.1,19) 

also satisfie s the boundary condition. (3. 2, 25) along the line y = 0, 

\ x \ < 1 solves the crack problem. 

A similar statement may be made for the case of a rigid 

inclusion. 

5.2 Approximate Solution for Case I 

In order to seek an approximate solution for Case I (the 

case of a crack with symmetric deflection w{l)), we use the sym-

metric parts (with index (1) ) in formulas (3.2,1) to (3. 2,18) as the 

set which is appropriate for varying the energy function 1T (1), 

(5.1,12). It is found that the most suitable quantities to use for 

. the admis sible sets are D f3 (I), M (l) and .cQ (l), since they 
c y xy y 

vanish at y:: O,\x\ > 1, and since they appear naturally in "IT (1
). 

In what follows, we shall transform (5.1,12) into a Hermitian form 

in terms of these quantities and their Fourier transforms. Then, 

using a technique similar to that discussed by Noble [17] , we 

can show that the dual integral equations (3.2,39) and (3.2,40) 

corresponding to Case I arise again from the variational principle. 

Using. matrix notation, we define 

A(a) 1 -(1+ 
4€ 2a2 2€ 2ai 

Ql(a l-v - (l-V) a 

B(a) lC (l-v )a~ -ai(l-v+4€ 2(2) (1+ za2€2) RlCa ) 5.2,1) 

C{a) ° _2a2 
-ai P

l 
(a) 
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where from (3.2,18), (3. 2,16) and (3. 2,13), A(a}, B(a) and C(a) 

are seen to be the Fourier transform s of D B (1), M (1) and cQ (1) 
c y xy y 

at y :: 0 respectively. From the Fourier inversion theorem, we 

have 

D f3 (1) A(a) -c y 
00 

M 
(1) 

:: 2~ S B(a} e iax da . 
xy 

(5.2,2) 

-00 

cQ (1) C(a) 
y 

The left sides of (5.2, 2) vanish for all (x \ > 1 . on account of 

the continuity properties of these functions in 2) Hence, the 

left sides of (5. 2,1) are in fact 

A(a) D f3 (1) 
c y 

1 

B(a) :: S M 
(1) 

xy 
-iax e dx. (5.2,3) 

-1 

C(a) cQ (l) 
y 

Solving (5.2,1) for lal Ql{a), Rl(a) and Plea), we obtain 

.22 
\ a \ Q l (a) :: + [ (l+v)a

2
A{a) - iaB(a) - (1 + ~_~ ) C(a)] , 

2a 

(5.2,4) 

Plea) :;:: -(l-v)iaA(a) + B(a) • 

Substituting (5.2,4) intp M/l
) of (3.2,8), ~f3x(l) of (3.2,10) and 

-¥wt(l) of (3.2,1), we obtain at y = 0 
c 
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co 

M (1) - 1 S {A(a)(l-v) [3
2
+V lal +u.2d( \a\ -i a 2 + 1-2 )] + 

y - S J E 
-co 

(5.2,5) 

D p. (1) :;: _ ..i..- SCO {A(a)[ l+v lal +2E2a( la\ _ Ja2+1/~2)] + 
c "'x 2iT 2 a 

-co 

(5.2,6) 

and 

co 
D (1) _ 1 S { (l+v). -1 
2 W t -2iT A(a)2\at+1B(a)(2alal)-
c 

-co 

(5.2,7) 

We substitute (5.2,5), (5.2,6) (5.2,7) into (5.1,12). Using (5.2,3) 

after interchanging the order of integrations, we obtain: 

If (lY == 

2 c 
:;: D 2 iT 

co 

S {A(a) A(a) (l-v) [3;V \a\ - 2E
2
a

2 
<1a

2
+1/E2) - \a\] + 

-co 2 j 
+B(a) B{a}(,2 ~a\ + (~-V) (a2

+1/E2 - \aIH+ 

+C{a) Cea) ~ (1 + 4E
2a 2/1_v) + 

2a {al 
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1 

- c S [£1 (a) ~ (1) (x,O) + C1X)1 x ~ (1) (x, 0)] dx . 
c Y c Y 

(5.2,8) 

-1 

The first integral in (5.2,8) is apparently a Hermitian form 

in A{a), B(a), C(a) and hence (5.2,8) is an appropriate form to 

which we shall apply the variational principle again . 

. Apart from the solution state {D ~ (l)(x,O), M (l)(x,O), 
c y xy 

cQ (l)(x,O)} we consider a class of arbitrary functions y 

{D ~ (1)+ 0 D ~ (1) M (1) + oM (1) cQ (1) + ocQ (I)} 
c y c y 'xy xy' y y 

and their Fourier transforms {A(a) + oA(a), B(a) + oB(a), C(a)+ oC(a)} 

computed according to (5.2,3). The first variation of (5.2,8) is 

2 c 
:5:-

D 

1 00 

{S ~ O~~)dx{2~ S A(a)(l-v)[ 3;V \ a\ - 2€2a 2(ja
2
+1/€2 - (a\)] '1 

-1 -00 

1 00 

+ S ~ O~y(1)dx{2~ S A(a)(l-v)[ 3;V\a\ _2E
2
a

2
()a

2
+1/e2 -ta\)] . 

-1 -00 

-iax } e da - flc (,,) + 
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1 00 2 _ __. 
+ S oM(l) dx 1 S 1:3[ci} [ 1 + ~ ( L2+1/€2 - \al)] + iC(a) e -laxda + 

xy ZiT 2fZir I-v P Z a a 
-1 -00 

1 00 2 2 +S coQ(l) dx _1_ S [i B(a) + C(a) ~ (1+ 4€ a )] e iax da + 
y 2-rr Za\al zl ala2 I-v 

-1 -co 
1 00 

+ S coQ (I) dx 1- S [-i B{a) +"C"{aT 1 (1 + ~~~2)] e -iaxda . 
y 2-rr 2ala\ 21a\a2 

-1 -00 

(5. 2, 9) 

Also, we find that the second variation 

(5.2,10) 

When we set o1f(l) :;: 0, (5.2, 9) yields three equations since 

oB (1) (x, 0). oM (l){x, 0) and oQ (1) (x, 0) are arbitrary and inde-
y xy y 

pendent of one another; they are 

00 

1-v S 3+ v. 2 2 L 2 2 iax 
2-rr A(a} [-2-{a\ .. 2e a {JO! +l/e - (a( }]e da = f1c(x) , 

-00 

I xl < 1 , . (5.2,11) 

00 

1 S { 1 2e
2 rz:-;z . C(a) iax 

2-rr B(a)[ 2\a\ + I-v ( Ja-+lje- - la\ )] -lza\al } e da = 0, 

-00 

I xl < 1. (5.2,12) 

and 

00 

1 S . 1 A,,2 2 . 
_. {B(a) 1 +C(a) (l+-n;·a )}e1axda=0, 
2-rr za \a\ 2ta\ a2 I-v 

-00 

I xl < 1 . (5.2,13) 



-111-

Equation (5.2,11) combined with the first equation in (5.2,2) 

gives exactly the same system of dual integral equations (3.2,39) 

and (3.2,40) which were obtained directly in Part III. 

Equations (5.2,12) and (5.2,13) combined with the last two 

equations in (5.2,2) form a system of equations which corresponds 

to the symmetric deflection problem for the case of a rigid inclusion 

with homogeneous boundary conditions (see equations (3.2,63) to 

(3.2,66». This suggests that B(a) == C(a) == O. In fact an argument 

essentially the same as that given in Appendix C can be used to 

prove this. Then, from (5. 2, 2) it follow s that 

M (l)(x 0) = Q (l)(x 0) = 0 xy , y , 

for all x. 

Making use of these results, the formula (5.2,8) for n(l) 

now becomes 

-co 
1 

-c S [f
1 

(x) f) (l)(x, 0) + T,-=<X}l x f) (l)(x,O)] dx • 
c Y c y' 

(5.2,14) 

-1 

It is this form which we shall employ to obtain an approximate solu

tion for f) (l)(x,O). 
Y 

In the usual way (see [17 ]), we shall assume that our solu-

tion may be approximated by a finite linear combination of suitably 

chosen £unc'tions. The 'coeffiCients appearing in this linear ·combi-

nation shall then be determined by minimizing (5. 2,14). 
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The selection of a minimizing sequence of functions in gen-

eral depends on the concept of the solution class. In particular, 

we wish to select a sequence of functions which is complete with 

respect to the solution class. For the present problem, we re-

quire further that the ~ourier transform of each member of the 

sequence can be evaluated explicitly so that our later computation 

will be greatly simplified. 

In section 3.3, the function u(x) defined by (3.3,1) has been 

identified as D [3 (l)(x.O). Hence we shall require that our approxi
c y 

mating functions satisfy the same requirements as were imposed 

on u(x) in the integral equation (4.1,4). 

Without loss of generality, we may assume that 

f lc (-x) = f
lc 

(x) = f
lc 

(x) • (5.2,15) 

It follows from the integral equation (4.1,1) that 

(5.2,16) 

if (5. 2,15) holds. 

Let us put 

(5.2,17) 

Then from (4.l~) we shall find that h(x) is H51der continuous for 

aU x in [ ~l.l] . 

With the above considerations, we find that the sequence of 
n ' 

functions { ~ C
k

{n)(1_x2 )k-l/2}. n ~ 1 will be a, ppropriate for our 
k=l 
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purpose. The reason is clear. They are real and even in x which 

is in accordance with (5.2,16). They vanish at x ;::::'1. If (1_x2 )1/2 

is factored out, the remaining parts of this sequence is a sequence 

of polynomials, and it is well known that the sequence of polynomials 

is complete for continuous functions in a closed interval. Further-

more, the Fourier transform ¥ computed according to (5.2, 3), 

of each member of this sequence can be evaluated explicitly. 

Let the approximate solution up to the n-th term be 

1 k 

D 13 (I) (x 0+);: ~ c (n) (2) (1_x2 )k-i, I xl ~ 1 
c y (n)' k=l k r(i )r(k+i) 

(5.2,18) 

where the coefficients are arbitrarily arranged for the sake of con-

venience. We intend to use the minimum principle to find the opti

mum c~n). From (5.2,3) we obtain the Fourier transform of ~~11n) 

as follows .. (see [18] ): 

n J (a) 
A(n)(a) = ~ c(n) k • 

k=l k ~ 
(5.2,19) 

Substituting (5.2,18) and (5.2,19) into (5.2,14) and minimizing 

n(l) by varying c~n), we obtain an nxn system of simultaneous equa-

tions: 

where 

= SOO J k (a)J 1. (a) 

~+1 
o 

k = 1, .... n (5.2,20) 

[ (3+v) a - 2E
2a 2(J a 2+1/E2 - a)] da 

(5.2,21) 
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and 

2iT (i)k b
k 

= ____ ...!.6!..!.-__ _ 

(l-v )r(i) r(k + i) 

1 S f
lc 

(x)(1_x2 )k-i dx 

-1 

(5.2,22) 

It can be easily shown that the matrix (ak.f) is po sitive definite and 

thus non- singular for every E ~ 0 and for every n ~ 1. Hence, c 1n ) 

as in (5. 2, 20) can be uniquely determined if the bk's are all finite .. 

Since we have required at the beginning that f
lc 

satisfies the con

ditions given in section 4.1, the bk's are easily seen to be finite 

from (5.2,22). Substituting these solutions back into (5.2,14) and 

denoting by IT {I} the complementary energy corresponding to an 
n 

n-term approximation, we obtain 

27/" D IT (l):= _ ~ b c (n) 
(1_v)c2 n k=l k k 

It can be shown that the following relation is valid 

27/" D IT (I) 
----,:2 ( n+ 1 
(I-v) c 

IT (I}) = L::.n+ l (+l) 2 [ en ] :<0 >- 1 n - -X- n+ 1 -..;:: , n ~ 
n 

(5.2,23) 

(5.2,24) 

where L::.
n 

denotes the determinant of the n x n matrix (ak.f). Hence 

t IT ~)J is a monotone dec'reasing sequence and is bounded below since 

it can not be les s tpan 11 (ll who se negative value is the strain energy 

contained in the plate corresponding to the true solution; moreover 

1T (1) is finite. Because of the fact that f
lc 

(x) satisfies the conditions 

given in section 4.1, we can show further that 

lim 
n-co 

1f (1) = TI(l) • 
n 

(5.2,25) 
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Co~bining the results obtained so far, we may conclude 

that if f lc (x) is real and even, satisfies the conditions given in 

section 4.1, then (i) the approximate solution as represented by 

(5.2,18) is uniquely determined for every n ~ 1 and (ii) 

lim 1f (1);:: 1(1) • 
n- 00 n 

It is worthwhile to remark here that the problem of whether 

the approximate solution tends to the true solution as n -- 00 is also 

interesting. However, a proof for this has not yet been found. 

We shall work out a specific example by using the variational 

method. We consider that the plate is deformed by the action of a 

constant bending moment MO per unit length uniformly distributed 

around the periphery of a circle centered at origin with infinite 

radius. The boundary condition along the crack for the reduced 

problem will then be f lc ;:: MO ;:: const., f
2c 

;:: f3c = O. We shall 

apply the variational method to this reduced problem. 

For the one-term approximation, we put 

D i3 (1) (x,O);:: ~ c (11) (1_x2)1/2 , 
C y(l) It 

Ixl ~ 1. (5.2,26) 

From (5.2,20), we find 

C (1) ;:: 21I'M l(l-v} (3+v) (1 _ 2J,(€) ) 
1 0 3+v (5.2,27) 

where· 

(5.2,28) 
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The integration in (5.2,28) can be carried out explicitly § 

to give a series representation for 11 (t) as 

1 00 
Il(t) = 1 + - ~ 

7r n=l 

{ 1 [ n-l 4 £ (r-l)] } 
. In(~)+ 2y-41n2- n (n+l)- r=lr{2r-l) (5.2,29) 

where y is the Euler ' s constant = 0.5772. .• • Figure 3 shows the 

plot of 11. (€) against t • 

As € -- 0, the asymptotic representation for ~(€ ) is found 

to be 

(5.2,30) 

Hence, the one term approximation (5. 2, 26) for thin plate s will be 

D (1) _ 2MO 2 1/2 1 c f3Y(l} (x, 0) - (1-v)(3+v) (I-x) + 0 (€.£ n E ) , 

\xl ~l as € -- O. (5.2,31) 

In order to estimate this result, we compute uO(x) by (4.2,7) 

with £1 = MO and find 

D (l) _ 2MO 2 1/2 
cf3y (x,O) == uO{x) - {1-v)(3+v} (l-x) , Ixl~ 1. (5.2,32) 

A comparison between (5.2,31) and (5.2,32) shows that when £1 = 

const. the one term approximation tends as € -- 0 to the approxi-

mate solution of the integral equation obtained in Part IV for the 

§ A contour integration procedure suggested on p. 436 in [19] can 
be used to evaluate I.{E). 
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first order term of the thin plate solution. 

The stress distribution near the vertex x = 1, Y = 0 can be 

computed by using the one term approximation (5. 2, 26) in formula 

(3.3,7). We find that as r - 0 for fixed e, lei < 1(' 

M (1) 
x 

My(l) "-' _--.!(l_+_V..;..)~~_ M
O

(2r)-1/2 
211 (t ) 

(3+v) (1- 3+v 

M 
xy 

(1) 

3 9 1 59 
-cos -+ -cos -
4 2 4 2 

5 9 1 5e 
~os2 -4"cos T 

(5.2,33) 

where r, e are the local polar coordinates centered at x = 1, Y == 0 

as in section 4.2. 

The asymptotic behavior of 11 (e) for large t can be obtained 

directly from (5.2,29). We have 

as t - CD • (5.2,34). 

Hence. the one term approximation (5.2.26) becomes 

D (1) . 2MO 
c!3 1(1) (x.O) = . 2 

(l-v ) 

\xl ~ as ~ - co . (5.2,35) 

Again, it can be shown directly by perturbation methods that 

the solution of the integral equation (4.1,1) for E - CD agrees with 

(52,35). 
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We finally conclude that for this special case (flc=oMO=oconst.) 

the one term approximate solution based on the variational principle 

agrees with the approximate solution of the integral equation (4.1,1) 

for small € and for large € • 

However, large € means physically a plate who se thickne s s 

is large in comparison with the length of the crack. In such a case, 

the differential equations may no longer be accurate near the vicinity 

of the crack. Thus while the physical validity of the approximate 

solution for large € is doubtful, it is still useful to observe that the 

variational approximation agrees for large € with a limiting solution 

obtained directly from the integral equation by perturbation methods 

as € -: 00. This suggests a reasonably wide range of usefulness for 

the variational approximation. 

5.3 Approximate Solution for Case II 

By the same procedures used for Case I, we shall apply the 

variational principle to Case II in order to seek an approximate 

solution. We shall omit the details and list only the results. 

We select M (2)(x,O), D!3 (2)(x, 0) and D2 w
t 
(2)(x, 0) as the 

y c x c 

admis sible set to minimize TI (2), (5.1,13). These quantities vanish 

for \ x I > 1, thus their Fourier transform will be 

F(a) My (2) (x, 0) 

1 

O(a) ¥S ~ !3
x 

(2) (x, 0) -iax 
e dx all a. (5.3,1) 

-1 

w(a) D (2) "2 wt (x,O) 
c 
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With the aid of formulas (3. Z 1) to (3. Z 18) D A(Z) M(Z) Q(Z) , "c t-'y , xy' y 

can also be expressed in terms of F(a), Q(a) and w(a). We substi-

IT {Z) 
tute these results into , (Z.1,13). By minimizing TI{Z), we ob-

tam 

F{a) s: 0 (5.3, Z) 

and we again recover the dual integral equation system (3. Z, 50) and 

(3.Z,51). 

Using (5. 3,Z), IT{Z) of (5.1,13) can be reduced into the fol-

lowing form: 

00 Z 

S {O{a~ [ 1 + (za 1- v I a I ) + 
-00 Z€ ZJa2 + l/€ l JaZ+l/€ Z - -Z-

Z a4 2 
+ Z€ '(f< Z 2 - !al a )] + 

a +l/€ 

3 
+ iw{a)O(a) [ zJaz 2 + (J 2

a 
"'1 - alaI)] -

z€ a +l/€ a +l/€ 

3 
- i w{a}O(a) [ zla 2 2 + (J Z a 2 - alaI)] + 

Z€ a +l/€ a +l/€ 

1 

, -Zc S Re {f f3 (Z) + f w (Z) } dx 
Zc x 3c t (5.3,3) 

-1 

It is this fonn which we shall employ; to obtain an approximate solu-

tion. 
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Without loss of generality, we may assume that both f 2c 

and f3c are real, and 

f
2c 

(-x) = f 2c (x) , 

(5.3,4) 

It then follows from integral equations (4.4,1) and (4.4,5) that 

both !3
x 

(2) and w
t 

(2) are real and 

(5. 3,5) 

. w
t 

(2) (-x, 0) :: - w
t 

(2) (x, 0) 

It is found that an appropriate sequence of minimizing 

functions for i3 (2){x, 0) is 
x 

~ b (n){1_x2 )k-l/2 
k::l k ' 

n~1 . 

Similarly, we find for w
t
(2)(x,0) 

~ (n) (1 2)1-1/2 
,f.J C n X -x , 

1;;:1 "" 
n~l. 

The n-term approximate solution will then be as follows: 

D i3 (2) (x,O) = ~ b (n) (1!2)k 
C x(n) k=l k r(i )r (k+t) 

2 k-.!. 
(l-x) 2, \xl~ 1 (5.3,6) 

and 

(5.3,7) 
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where the coefficients are arranged for the sake of convenience. 

We intend to use the variational principle to optimize the choice 

of b l s and c l s. 

From {5. 3,1}, we find that the Fourier transforms of (5.3,6) 

and (5.3,7) are 

n J (a) 
n(n) (a) :: ~ b (n) _k...--

k::1 k cf- (5.3,8) 

and 

J (a) 
. (n) ("') _.... (n) k+ 1 
100 u. - ~ c k cf- . (5.3,9) 

Substituting these expressions into (5.3,3) and minimizing n(2) by 

varying the bk{n)1 sand c 1. (nh s, leads to a system of 2n x 2n simul-

taneous equations: 

k :: 1,2, ••.• 2n (5.3,10) 

where 

as 1 ~ k, £. ~n 

as n< k ~2n, 1 ~£. ~n 



and 

t (n} b(n) 
1. :s: 1. 

:s: C (n) 
1. 

-lZZ-

as n < k, 1. ~ Zn, 

as 1 ~ 1. ~ n 

as n < i.~ Zn 

k 1 
y:le 7r (liZ) S. f (x) (l_xZ)k-l/Z dx 

k (l-v)r(l/z}r(k+l/Z) -1 Zc . 

as 1 ~ k ~ n 

1 
I k-n S I :s:. 1T C (1 Z) , f (x)x(l_xZ)k-n-l Z dx 

(l-v)r{l/z)r(k-n.+I/Z) -1 3c 

as n < k ~ Zn. 

(5.3,11) 

(5.3,lZ) 

(5.3,13) 

It can be shown that the matrix (ak.f) in (5.3, 10) is positive definite 

and, thus, non-singular. Hence the solution to (5.3,10) exists and 

is unique if 'Vk l s are finite for all k, k = 1, ... Zn. Since f Zc and f3c ' 

satisfy the conditions given in section 4.4, .'V I s are seen to be finite 

from (5. 3,13). 

5.4 Approximate Solution for Case III 

In order to apply the variational method to Case III, we shall 

again use M (Z}(x,O), D f3 (Z}(x, 0) and ~ w
t 

(Z)(x, 0) as given among 
y c x c 

formulas (3.Z,1) to (3.Z,18) as the admissible set. The proper 
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energy expression to be varied is e. (Z), (5.1,18). We shall omit 

the details of reduction here. 

The final form of ~ (Z) becomes 

00 

(Z) S 1 Z€ Za
Z 

1 1 ~ • ~ F(a) Frai [--+ I-v (-I a 1 - ] 2 Z)] da -
Z7r Zial a +l/€ 

-00 

- Zc 51 Re {f
Zr 

My (Z)} dx (5.4,1) 

-1 

where 

1 

F(a) ~ S My (Z)(x, 0) e -iax dx . all a (5.4,Z) 

-1 

and fZr(x) is defined in (3.1, Z4). 

Let us assume that fZ is real and odd in x, so that M(Z)(x, 0) 
. r y 

is also real and odd from the integral equation (4.7,1). 

{ n (n) Z k-3/Z 
The sequence ~ c

k 
x{l-x) } is found to be proper 

k=l 
as the minimizing functions for M (Z) (x, 0). 

y 

The n-term approximation for M (Z) (x, 0) will then be 
y 

M(Z) 
yen) 

n (n) (l/z}k-l Z k- 3/Z 
= k~l - c k r(l!Z}r(k-l!Z) x(l-x ) 

I xl <1. (5.4,3) 

We can easily compute the Fourier transform of (5.4,3), which is 

n J (a) 
F (n}/I'U) _ ..... (n) _k_ 

\U. - 1 kI C k k-l. 
k:s:l a 

(5.4,4) 

Substituting these results into (5. 4, 1) and minimizing S (Z) with 



-124-

respect to c
k

' s, we find again.a system of n x n simultaneous 

equations: 

kxl, .•. n (5.4,5) 

where 

00 

S Jk{a)Jl(a) 1 2E 2a 2 1 1 
akL :: k+1-2 [2a + {I-v} (- - J 2 2)] da (5.4,6) 

o a a a + l/E 

and 

1 S f
2r

(x)X(l-x2 )k-3/2 dx • (5.4, 1) 

r (1/2)r(k-l/2) -1 

The matrix (a
kL

) in (5.4,4) is positive definite, thus the equation 

{5. 4, 5} has unique solution for every finite bk's. Again, the \.' s are 

seen to be finite since f 2r (x) satisfies the conditions given in section 

4.7. 

We shall work out an example. 
cMo 

Let us take f 2r==- D (I-v) x, 

which is induced by a loading at infinity in the original problem de-

scribed as follows: 

M :Ie M :: Q :Ie Q :S:O 
x Y X Y 

at x == :!:.. 00 and y :: :!:.. 00 

M :II: MO :Ie const. xy 

The one term approximation can be found through (5.4,5) 

to be 
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(2) 2MO x 
My(l) (x,O) :c (I-v) 12(~ )( -1-_x-)';-I/=2 ;> 

I "t- I <. 1 (5.4,8) 

where 

co 

S 2 2 8€ 2 a 2 
12(€}:c [Jl(a)] [ -;v + l-v (a - "I 2] da • 

o ~ Ja.~l~ ) 
(5.4,9) 

The integral 12(€ ) has the following limits: 

(5.4,10a) 

" 3-v 
11m 12 (€) = l-v • 
€-co 

(S.4,10b) 

Using (S.4,10a) and (S.4,10b), we have from (S.4, 8) 

1" M (2) ( 0) 2MO 
€ ~ y(l) x, :: (l-v) 

x 
, Ixl <1. (S. 4, lla) 

and 

lim (2) 2MO 
€ -co My(l) (x. 0)= (3-v) 

x 
Ixl <1. (5.4,llb) 

We shall remark here that (S.4,lla) and (S.4,llb) can also be obtained 

from the solution T(X) to the integral equation (1=. 7,1) as € - 0 and as 

€ - 00 by perturbation procedures. To do this it is necessary to 

make use of the relation 

M (2)( 0)· dT{X) 
y X. :c -ax- . 
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APPENDICES 

Appendix A 

Statement: If u(x) vanishes at x = + 1 and is H!)lder con-

tinuous with some positive H!)lder index j.J. for all x in the closed 

interval [-1, 1] , then the stress singularity for the quantities in 

(3.3,7) will not be worse than O(r -1+6) for some 0> 0 where r is 

the distance measured from an interior point to one of the ends 

of thec rack. 

Proof: We prove this for M (1) since M (1), M (1) have similar 
y x xy 

characters. From (3.3,7) we have 

1 

M
y

(l){x,y) == (l;V) S u(S) 
H (x-s, y) 

---,y,--=,--.,-- dS 
( (x-s)2 + y2] 

-1 

where 

4 4 2 2 
_ 6 (x + Y - 6x y ) J 

p6 

2 2 2 
with p ==x +y 

(A,l) 

(A,2) 

Apparently H (x,y) is bounded for all x, y, €>O hence there exist y . 

a number 0 < H < +00 such that for fixed € > 0 

I H (x,y) I ~ H 
Y 

(A,3) 
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for all x and y. Suppose the behavior of the integral in (A, 1) near 

the end x :: 1, y :: 0 is under consideration. Then it is preferable 

to transform the coordinates x, y to X :: 1+ rcos9 and y :: rsin9; 

by doing so (A,l) takes the form 

1 
(1) S H (r,9,S) 

(l~V) M (r,e):: [u(;) - u{l)] 2 Y 2 
Y -1 (1-;) ;r2rcose(l-;)+ r 

dS + 

S
l H (r,9,S) 

+ u(l) y 2 d; 
-1 (1- s)l2rco s 9(1-;)+ r 

(A,4) 

Using the HBlder continuity property ofu(x), i. e, 

and using (A,3), we have the following estimation: 

1 

I 'IT' M(l)(r 9)I:S:: MH S Il-;Ii.l. d C + -rr:v1 y''''' 2 2'" 
-1 (l-;) +2rcos9(1-;)+r 

1 

+ I u(l)1 H S 2 d; . 2 
-1 (1-;) +2rcos9(1-;)+r 

(A,6) 

1£ the change of variable 1 - ; ::s: tr is used, then (A, 6) becomes 

. 2/r 

I 'IT M(l) (r, 9) I ~ MH r -1+i.l. S ti.l.dt 
u-:vT y 0 (1+ 2tcose+ t 2 + 

2/r 

+ H lu(l)1 r-
1 S' ti.l.dt 2' 

o (1+2t cos9 + t ) 
(A,7) 

I 

Suppose we fix e so that I e I < 'IT; thus we approach x :: 1, y :::: 0 
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Appendix B 

To verify (3.3,14), it is equivalent to show that if u (~ 1) :::: 0 

and if u' (x) exists and is H51der continuous for all x in (-1, 1) then 

the following statement is true. 

Statement: Given n > 0 there exists I YO I > 0 such that 

1 I iI' (1) d S u(s) {-
(3+v) + ""{I7V) My (x, Y) - dx 2(x-~) 

-1 
K (Ix-sl) 

] } dS I + 2€2 [ 2 2 € <n (B,l) 3 - 2. 
(x-s) € (x-s) 

whenever 0 ~ I yl ~ IYolfor fixed x in (-1, 1). 

Proof: Using the assumptions that u' (x) exists and that u(:!:.. 1) = 0, 

we can deduce the following result from (3. 3,4) by integration by 

parts. 

1 

(l~V) M/1) (x, y) ;II: S u ' (S) (x-~) S{x-S, y) dS 
-1 R 

(B,2) 

where 

3+v 2. 2 K2 (l:) 
Sex, y) :e - -2- + (I-v) :2. + 2.€ [- €: + 

2K (p) 2 2 
Y 3 € (3y -x ) + 3 - 2 -!-4._---,-_:... 

€ p p4 
(B,3) 

2 2 2 2 2 2 
andR ;II: (x-s) + y ,p :ex + y as before. By suitable integra-

tion by parts, it may; also be verified that 
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1 

~S (B,4) 

-1 

Through {B,Z} and (B,4), the left side of (B,l) can be written as 

a sum of two integrals I 11 + 12. I with 

1 

S ( ~ ) So (x - ~ ) 
Il:r:: [UI{~)-UI{X)][ x- Z S{x-S,y) - (x-g) ] d~ 

-1 R. 

(B,5) 

and 

(B, 6) 

where 

So (x) :r:: S (x, O) • (B, 7) 

Let 0 > 0 and small. Then write 

Il:a:~l+~Z (B,S) 

where 

[ (x- ~) 1 ] 
[ulC€)- ul(x)] ---;zS(x-S,y) - (x_s)SO(x-s) dS 

(B,9) 

and 
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x-o 1 

112. == (S + S) [u' (~)-u' (x)] 

-1 x+o 

(x _ ~ ) So (x - g ) [-S- S (x - S , y) - (x _ S ) ] dg. (B , 10) 
R 

By changing the integration variable S in (B, 9) to t == S - x, III take.s 

the form 

o 
In :: S u' (X\t)-u' (x) [- t2.

2 
S(t, y) + SO(t)] dt. 

-0 R 

(B ,11) 

It is obvious that for all values of t and y 

K is bounded, say less than or equal to z-
on u' (x), we have the H5lder. inequality 

(B ,12) 

From the given condition 

(B ,B) 

for some 0< j.J. < 1 and for every pair of Xl' x
2

iiIl.(-I,I). Using (B,12) 

and (B .13) we obtain the following estimate for Ill: 

(B,14) 

From (B ,14) 0 is then chosen such that 

(B, 15) 

with the restriction -1 < x - 6 < x + 0 < 1. 

The function 
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in (BJ 9) is continuous with respect to y as S is in the intervals 

-1 ~ S ~ x - OJ x + 0 ~ s ~ 1 (0 now fixed) and moreover tends to 

zero uniformly in that interval as I y\ - O. Since u l (s) is in-

tegrable from -1 to 1, there exists I yll > 0 such that 

(BJ 16) 

whenever I yl ~ \yll 

With 9 fixed by (B, 15), l
Z 

can be written as a sum of two 

integrals 

(B,17) 

where 

. x+o 
lZl :c u 1 (x) S [X~f S(x-s, y) -~ SO(x-s)] dS 

x-o . 
(B,18) 

and 

x- c5 1 

-l ZZ ;:u l (X)(S + r ) [X~S S(x-s, y) - ~O (x- s)] ds 
-1 4c+ c5 R tx - !; ) 

(B, 19) 

lZ1 vanishes on account of oddness of the integrand and there exists 

I Yzi > 0 such-that 

whenever loY I ~ ly zl by an analysis similar to that for IIZ . 



-136-

Combining these estimates all together, we have 

1 Ix-gl 

I 71" {I} S 1 3+v 2 2 K2 ( E) 1 
(1- v) M (x , y) - u {s} { - 2 (x _ S ) + 2€ [ 3 - 2 ] } ds < Y) 

Y (x - S ) € {x - S } 
-1 

whenever \yl ~ \YOI for fixed x in {-1,1} where !Yolisthelesser 

of \ y 11 and I y 21 • 
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Appendix C 

Uniquenes s of solutions of dual integral equations 

We shall consider the uniquenes s of solutions to the various 

cases of present problems. We illustrate for example the anti-

symmetric case of the crack problem. Multiplying (3. 2. ,50) with 

v(x) of (3. 3,16) and integrating from x == -1 to x == I, we obtain § 

00 1 

h S [ Cll (a) O(a) 'TI(a) + iCl 2. (a)w(a) 1r(a} ] da = (l~ v) S f2.c vdx 

-00 -1 

where we have abbreviated by writing 

(C,l) 

(C,2) 

(C,3) 

Multiplying (3. 2,51) with w(x) of (3. 3,17) and integrating from x :: -1 

to x ::: I, we obtain§ 

00 1 

f1f S [-iC12(a) w(a)O{a) + C 22 {a} w(a}w(a)] da :: (lc_
V
}Sf

3C 
wdx (C,4) 

-00 -1 

where C12(a) is given by (C, 3) and 

a2 
C 22{a}:: 272 2 

. 2€ ..;a +1/€ 

Adding (C,l) and {C,4}, we have the following expression: 

(C,5) 

§ An interchange of orders of integration has been performed in 
obtaining {C. 1 } and (C,4). Thus our subsequent argument ap
plies only to those solutions for which this interchange is valid. 
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(X) 

2
1

'/T S [Cll (a)~(a) IT(a)+ ic12(a)w(a) ma1- iC12(a)w(a)~(a) + 
-(X) 

(C,6) 

It can be easily shown that the integrand in the left hand side of 

(C,6) is positive definite for almost all a since 

(aZ + 1 ) 
C

n 
(a) = (1; v) rOll + ---;""",-..;-_~-.;~2_€_2:;--____ ~....--

2(;2 J a2+ 1/(;2( a 2 + J:... + I Q'j J a Z + 1-.) 
2(;Z (;2 

> 0 for all a, 

c
22

(a) > 0 for all a::f:. 0 

= 0 for a :II: 0 

and 

> 0 for all a::f:. 0 

= 0 for a = O. 

Hence, r2(a) = w(a) = 0 if f 2c = f3c = 0, so that if the solution to this 

system exists, it is unique. 

The uniqueness for the other cases can be similarly estab-

lished by considering the appropriate dual integral equations. 
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Figure 10. Midplane of an elastic plate containing 

a line discontinuity 
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z 
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Figure I b. Three dimensional view of the plate 

containing a surface of discontinuity 
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