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ARSTRACT

Two methods of finding the energy tensor from the Lagrangian
of a system are those of Belinfante, and Landau and Lifschitz. Neither
of these methods are unique; two energy tensors for the same system
differ by a term that is symmetric, has zero divergence, and is itself
a second derivative. It is shown that such a term in the energy tensor
produces physical effects that in one case can be measured experimen-
tally. It is because of this lack of uniqueness of energy tensors that it
is not sufficient to consider gravity merely as a spin-two field coupled
to energy.

To set up the quantum mechanics of gravity interacting with
electrons, the curved space Lagrangian for the Dirac field is expanded
in terms of the gravitational fields hpv' It is checked that the expanded
Lagrangian has the same trénsfqrmati.on properties as the original
curved space Lagrangian.

The calculations presented are the gravitational Rutherford
scattering of electrons, emission of low energy gravitons by electrons,
the scattering of gravitons by electrons, the gravitational self-energy
of the electron, and the most divergent part of the vacuum polarization
calculation. There is also an investigation of the effects of the spin of

the electron by'comparison with a spin-zero particle interacting with

gravity.
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I. INTRODUCTION

The main purpose of this paper is to consider the interaction
of electrons with gravity, where gravity is treated as a quantized spin-
two meson field. The quantum mechanics of gravity interacting with
a spin-zero particle has been worked out by Feynman, and the author
shows that the same general methods can be applied when gravity inter-
acts with a spin-one half field.

On the basis of experiment there is no need to treat gravity as
a quantized spin-two field. Due to the weakness of the coupling of
gravity to matter all experiments on gravity have used large masses
and these experiments have been explained by a classical theory,
Finstein's general theory of relativity. Since the classical limit of
Feynman's quantized spin-two meson theory of gravity is the general
theory of relativity, Feynman's theory is likewise in agreement with
experiment, but the quantum nature of gravity is untested.

The spin-two meson theory of gravity differs from general
relativity in that the meson theory is consistent with the uncertainty
principle. If general relativity were the correct theory then the un-
certaiqty principle would fail for large distances and low velocities;
i.e., just in the classical limit. Thus the main purpose of a quantized
theory of gravity is that it demonstrates the possibility of maintaining
the uncertainty principle even to the classical limit.

The quantization of general relativity has been considered for
many years, but appeared to be difficult. Feynman started with the

point of view that gravity should be treated from the beginning as another



2.

meson field. This point of view is presented in this paper.

There is sufficient experimental evidence to conclude that the
source of gravity is energy. This leads directly to the description
of the gravitational field as a spin-two meson field. To a very good
approximation the total energy of a system may be approximated by
the energy of the matter alone, neglecting the energy of the gravita-
tional field. If gravity is coupled only to the energy of matter, then
a relatively simple linear theory of gravity results. This linear
theory is very accurate but not completely in agreement with experi-
ment. The linear theory is also internally inconsistent.

Feynman corrected the linear theory by demanding that a
consistent theory of gravity come from an action principle. This
lead in a unique manner to the general theory of relativity. Once the
general theory of relativity had been derived from the point of view of
meson physics, it was clear how to proceed to the quantum mechanics
of gravity.

The author attempted to correct the linear theory of gravity by
considering gravity as a spin-two field coupled to energy. The source
of the spin-two field in the linear wave equation is the energy tensor
of matter. The author added to the source, the energy tensor of the
spin-two field itself, to correct the linear theory. A consistent equation
for a spin-two field is obtained in this manner, but the equation is not
unique because energy tensors are not unique.

One of the possible energy tensors for the spin-two field leads
to the same wave equation as general relativity and is therefore in

agreement with experiment. Another energy tensor is derived which
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leads to a different wave equation that is not in agreement with experi-
ment. The conclusion is that gravity is not merely described as a spin-~
two field coupled to energy, but that an additional restriction is neces-
sary. For Feynman this restriction was that the equationa of motion

be obtained from an action principle; Einstein required that the gravi-
tational field have a geometrical interpretation. Feynman showed these
two restrictions to be equivalent,

This thesis presents the author's work on the theory of a spin~
two field coupled to energy as well as the quantum mechanics of the
interaction of gravity with electrons.

Much of the author's work on spin-two fields is based on
Feynman's description of gravity from the point of view of meson
physics. As this is still unpublished, it is described in sections two
and three along with the author's description of spin-two fields coupled
to energy.

To find the energy momentum tensor of a system, the author
uses both the methods of Belinfante (1) and Landau and Lifschitz (2).

In part Cl the author extends Belinfante's method to the case where
second derivatives are involved in the Lagrangian so that the non-
uniqueness of energy tensors may be investigated more completely.
The method of l.andau and Lifschitz is described in part E and its
nonuniqueness is determined by the author in part F. Itis inpart G
that the author gives the condition that selects the correct energy
tensor for the gravitational field from the possible energy tensors for
a spin-two field.

The quantum mechanics of gravity interacting with electrons is
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given in sections four, five and six. In section four the author derives
the interaction of the spin-one half fields | with the spin-two gravita-
tional fields hpv' The expansions involved are new, and were rela-
tively difficult to handle at first. Nor was it clear at first that the ex-
panded Lagrangian possessed the same invariance properties as the
curved space Lagrangian, but this is shown to be true in part L.

The curved space Lagrangian for the Dirac field has been de-
rived by sew;'eral authors, but by relying on ideas not discussed in this
paper. Pauli's (3) derivation uses a five dimensional description of
space; other derivations which are summarized by Brill and Wheeler
(4) depend on spinor analysis. In parts H and J the author presents
another derivation which does not require the introduction of spinor
analysis or five dimensions. |

Section five deals with finite calculations involving gravity and
electrons. Part M shows the effects of the spin of the electron by
comparing the quantum mechanics of a spin-one half field to a spin-zero
field interacting with gravity. These effects are then discussed in more
detail in the nonrelativistic limit.

In part N the momentum space representation of the interaction
of electrons with gravitons, to second order in hP-"' is given explicitly.
This interaction is used in part O to calculate the scattering of gravitons
by electrons. This calculation is presented as the main test of the
gauge invariance of the interaction of electrons with gravity.

In section six, two of the divergent calculations are presented,
the gravitational self energy of the electron and the vacuum polarization

of the gravitational field. As far as the divergent calculations are
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carried out, the results appear to be similar to the divergent calcu-~
lations by Feynman on the spin-zero field. The spin-one half divergent
calculations have not been carried as far as for spin-zero because of

the increased complexity of the electron-graviton interaction.



II. THEORY OF GRAVITY

Suppose the history of physics were rewritten in the following
way. Gravity had not been noticed due to the weakness of its coupling
to matter. The theory of quantum electrodynamics, in which electrical
forces are explained as the exchange of photons, had been developed
and the properties of matter on an atomic scale were understood. Still
to be explained were the forces holding nuclei together.'

Then heavy mesons and strange particles were discovered.
After early difficulties with the theory of heavy mesons, because of
the strength of their coupling to nucleons, it was finally shown that the
nuclear forces were caused by the exchange of these mesgons.

Later, in a famous experiment, it was shown that two large
chunks of matter, when separated by distances of the order of a centi-
meter, attracted each other. Careful checks were made to show that
the chunks were electrically neutral and that magnetic forces did not
cause the attraction; the remaining known heavy meson forces were
of all too short a range to explain the force between the chunks. Thus
a new meson called the graviton was invented to explain this force.

In the ensuing experiments to determine the properties of the
graviton it was first noted that all materials attracted each other
whether the materials were similar or not. More quantitative experi-
ments showed that the graviton was coupled to the mass of the chunk
and gave rise to the long range Yukawa potential -Gm/r. Careful
experiments with moving objects showed that the graviton coupled to
the inertial mass, or by the relation E = mcz. to the energy of the

object.
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From the long range 1/r potential it was determined that the
graviton had zero reat mass. To determine the spin of the graviton
the following points were consideréd. First, a potential theory does
not exist for spin one-half or any half integer mesons. Secondly,
mesons of even integer spin give rise to an attractive force while
mesons of odd integer spin givé rise to a repulsive force between static
like objects. * Thus the spin of the graviton was an even integer.

A spin-zero theory of the graviton was eliminated by the experi-
ment that the coupling was proportional to the inertial mass of an ob-
jeét. while a spin~two theory was consistent with this experiment. o
In the absence of evidence for a higher spin of the graviton it was de-
cided that the graviton was a spin-two meson.

With this background, let us see how a spin-two theory of gravity

could be constructed.

A. GRAVITATIONAL WAVE THEORY

The mechanics of mesone, nucleons, electrons and the basic
particles of physics is described by the fields associated with these
particles. The equations of motion of the fields allow one to calculate
the total amplitude for a given process, the absolute square of this
amplitude giving the probability that such a mechanical process should
occur. This system of mechanics is consistent with the uncertainty

principle. We wish to fit the theory of gravity into this system.

*In Appendix I thege statements are investigated in more detail.

L
See Appendix I.
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The equations of motion of the fields of particles presumably
may be obtained from the principle of least action. It is thus from an
action principle that we shall try to determine the equations for a
gravitational field. The electromagnetic field being a spin-one, zero
reat mass field, it should be closest in form to a spin-two, zero rest
mass gravitational field. We shall therefore construct the theory of
the gia.vitational field from an analogy with the theory of the electro-
magnetic field.

The action for a system may be given by

S = VL atx (A-1)

where L is called the Lagrangian density for the system. For electro-

magnetic fields interacting with matter

L =L -j A (A-2)

em “pup
where L em is the Lagrangian density of the free electromagnetic fields
and -juAl-t' the interaction Lagrangian density, is the scalar product
of the electromagnetic field A‘_‘L and thg electric current densihj of

is explicitly given by

matter j}l' Lem

1 .. . * (A-
['em T Iow vava s 'E?(Ap,vAp,v Ap,vAv,p) (A-3)

%
The notation we shall use in this paper is:

Ap=(A4, AI. A2, A3); AHBM-‘ (A4B4-A1B1-AZBZ-A3B3)

vu= (v4l vli VZD VB) = (a/at; -3/8)(, ’8/8Y. -3/32)

{A-4a)

We shall define ‘\’/pa = a
For example

v M
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The principle of least action states that 5S5/8¢ is zero for
each component ¢ of the fields included in the action. In terms of
the Lagrangian density L this gives the Euler-Lagrange equations
of motion for the field component ¢:

YA A al
thodl - (2),

14

=0 (A-4)

assuming that L is a function of the fields and their first derivitives
only. It should be noted that if a term of L isa pure divergence
then by equation A-l the action corresponding to this term may be written
as a surface integral evaluated at infinity. If the fields are zero at in-
finity such a term will not contribute to the action and may be left out
of the equations of motion A-4,

By the above procedure the equations of motion of the electro-

magnetic field become

ol. .
'S'KF = Au, vy Av,pv = 4"";1 (A-5)

which are just lMaxwell's equations.

A, = (Vghy ViA = Vyh,y- Vihy)

8A. BA, BA., B8A
(344 B4 B4, B4,
“\8t  Bx By Bz
8%a, 8%a. %A, 8°%A
=( 4 4 4 _ 4
Pevv o \gel  Bx® By 82°
2 2 2 2
o°a; o%a; 0% 8°a )
gt  ax®  oy-  8z°

also

Vi = (}% ’5?? 52)
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To construct a gravitational theory in analogy with electro-
magnetism, the following properties of the electromagnetic theory will
be noted. The electric current density jp' is the source of the electro-
magnetic field as is seen in equation A-5. The interaction Lagrangian
density ijp leading to this source term in A-~5 was the scalar product

of the source j‘1 and the field Au'

The total electric current in a system is conserved; jp " = 0,
The equations of motion A-5 were consistent with that fact;
4nj = (A - A =0 A6
A T (A-6)

That is, the Lagrangian for the free electromagnetic fields was designed
so that the terms in .A‘1 in the equation of motion had zero divergence
consistent with the conserved source j!f

These properties may be carried over to the theory of gravity,
As we shall see the source of gravity is the energy of a system. How-
ever, energy comes in many forms such as the rest mass, potential
energy, and kinetic energy of an object. The description of all of these
forms of energy requires the so-called symmetric energy momentum
tensor of matter T;r:} . where T:? = TJ:: . The statement of conserva-

tion of energy for matter is that

'r:‘: , =0 (A-T7)

By analogy with electromagnetism we shall write the interaction
Lagrangian density as the scalar product of the energy tensor TPV with
the gravitational field. To do this the gravitational field iteelf must be

a tensor of the form hpv' The scalar product giving the interaction



Lagrangian deusit, will therefore be - = h where K is the

& Tpv T},;v'
coupling coastant to be deterrmined by experiment, (The choice
Ktho corresponds to a scalar theory of gravity.) %e note from the
form of the coupling that h“v may be considered symmetric, for
the scalar product of the antisymmetric part of th with the sym-

metric tensor TH is zero, implying that the antisymmetric part

v
of h“v would not couple to matter and therefore would never be
aseen,

The lLagrangian density for gravity interacting with matter

(in analogy with A-2) is now

wf K om ,
L = L= 3h, T, (A=C)
and the Euler-l agrange equations of motion are now
] 6Lg K ,m
= - T =0 (A-9)
BB v mY |

e must now find a Lagrangian density i’g of the free gravitational

fields which has the property that (6/1'“ /Gh‘w) y = O to be consistent
[}

with the fact that T° _ = g,
BV, Vv

The linear second order differential equation A-5 for the electro-

magnetic fields was a result of the fact that Le'n consisted of terms in

which the fields appeared twice and there were two derivatives, e. 2.,

* .
The factor of -1/2 is a convenient choice for later work.
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AM VAp v+ BY analogy we shall choose for Lg only those terms that

involve the gravitational field twice and have two derivatives.
There are only four such terms, (two terms in the Lagrangian density
that differ by a pure divergence lead to the same equations of motion

and will only be counted once). These terms are
hp,v, O'hp.v, o
h h
My, C Vv, o
hpcr.p hvo, v
h h
pv,p 00,V
(In this paper the notation h = hoo will often be used.) Therefore, the

most general Lagrangian density of this form is

L =An n +Bh h +Ch _h +Dh  h
g BV,C v, o 0 ,O wo,p vo, Vv BV,u , Vv

The condition on . _ is that (6L /6h ) =0. Now
g g/ v,y

allg/ahpf aLg/ah - (aL /8h

v,p .p
= -2Ahw’w ZBbpvh. 0" c(hW' vo Py, pa) D(h. ot p‘,h(,p,ap)
5L
< uv) v =-leas C)h uv, voo - (2B D)h.poa- (c= D)h"U- pve
=0 : (A-10)

In order not to place arbitrary restrictions on the fields themselves we

must take the three coefficients each to be zero, This gives

arbitrary constant C = ~2A

B=-A D=2A
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However, the coupling constant ¥ has not yet been determined so that
if the arbitrary constant is included in K we may take A to be 1/15

(for convenience in later work), giving

_ 1
LS - -g(hP'Vo chv-V. a” h. Oh. o Zhg:-,cr. ;.xhvo, v ¥ th;.v,ph, " (A-11)

The equation of motion A-9 becomes

(h h ) =2KT

v, 00" h,va hovo' hvc,uo' 6pv £G, po_ pp pv

Ve will find it convenient to introduce the notation

=A - -155 (A-12)

VY A
pv uv (U« [ o4

It follows immediately that if the operation "bar" defined in A-12 is

applied twice we return to the original tensor, i.e.,

1 =
uv Ipv -7 6;.w]s:()‘o = Ap.v (6pv6pv = 4)

E

i

. 1
In terms of this notation (va = hpv- }—Gpvh) the wave equgtion for the

gravitational field becomes

2KT™ (A-13)

SuvPop, op = KTy,

-

+h +h -
pv,00 T ov,op oy, oV

We now héve a gravitational wave equation with the coupling
constant K to be determined experimentally. K is an extremely small
number because of the weakness of the coupling of gravity to matter.

Before investigating the properties of the gravitational wave
equation A-13 it should be noted that the equation is not quite correct.

The derivation of this equation depended on the fact that the total energy,
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to which gravity coupled, was conserved. This is quite correct. How-
ever, in the derivation we assumed that the total energy was given by
T$ » the energy tensor of the matter alone. ‘Ve then assumed that this
energy was conserved, i.e, T::,. v = 0. This is incorrectas canbe seen
by the following example.

Consider two balls released f{rom rest with a given initial sepa-
ration, .L-et there be no external forces on the system. Due to the
gravitational attraction between the balls, they will start moving toward
each other and each will have a definite velocity just before collision.

If we consider the eneryy T'?: in the balls, then before release it will
just be the sum of the rest masses of the balls; finally it will be the

sum of the rest masses plue the sum of the kinetic energy of the balls.
Thus, the energy T:‘: is not conserved and we cannot set T‘:!:' v =0

The obvious answer is that the total energy ia really conserved.
We just forgot to include the gravitational potential energy in the above
example. That is, we must include the energy in the gravitational field
if we want conservation of energy. If we call T&v the energy in the
gravitational field, then the total energy should be given by (T:", + Tgv),
where the statement of conservation of the total energy is

(T:S) + Tgv). ,=0
Why did we not use this complete energy tensor in the derivation

of the gravitational wave equation? The Lagrangian density would be of

the form
[ =/ ./ . K T 4 18
T g "t m Thpv[ (13% ¥ p.v(h)]

The difficulty is that Tﬁv(h) depends explicitly on the fields hu . thus
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in deriving the equations of motion

6L _,
Eﬂpv
we do not know what &(h T8 (h)]/6h  becomes.
wy pv pv

Our approximation has therefore been to neglect the energy of
the gravitational field in comparison to the energy of the particles with-
out a gravitational field. In our example this is equivalent to neglecting
the kinetic energy of the balls in comparison to the rest energy. For
the solar system this corresponds to neglecting the gravitational potential
energy in comparison to the rest mass of the planet. The ratio of these
energies ia in magnitude

GMBNEP/r GM

8

Z - 2

M _C C
o r

For the earth this ratio is 10'8. Thus the approximation of neglecting
the energy in the gravitational field is more than justified for almost
any problem.

We have neglected the fact that the energy in the gravitational
field is a source of gravity; that is, that gravity itself is a source of
gravity. Suppose, for example, we had calculated the gravitational
field due to a point mass. ‘7e would then have to add to this field the
field produced by the energy in the original field. But we would then
have to add the field produced by the energy in the field we had just added,
and so forth, Because of this non-linear process the fields of two point

masses, for example, would not be the superposition of the fields of

each of the masses alone,
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However, we have seen that the fields produced in practice
contain much less energy than the particles had themselves and the
corrections to the fields are extremely small. A linear theory of
gravity as given by the wave equation A-13 is highly accurate and we
shall, in the next few sections, discuss the linear theory of gravity

before returning to non-linear corrections.

B. LINEAR THEORY OF GRAVITY

The Lagrangian for the linear theory of gravity is

L = -g(h -h h _-2h_ h + 2 h. )

nv, ot nv,o 20,0 Lo, B Vo,V hpv,p, v

- Thvapv _ (B-1)
The action corresponding to this Lagrangian density is invariant under
the substitution

v + W, p (B-2)

where 11'.l is an arbitrary vector. Pure divergences will appear under
this substitution as in the following example.

m _ m - m
N, VTP-V - (r‘PTFV)o v “P-TPV' v

However, pure divergence in the Lagrangian density does not contribute

to the action, and to the accuracy of the linear theory ™ uv, v = 0; thus

for example the term - -?— v i’n

is invariant under the substitution
B-2. We shall call the substitution B-? a gauge transformation of the
gravitational field (in analogy to the gauge transformation of the

electromagnetic field AP'= AM+ X “) and say that the Lagrangian density
»
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B-1 is gauge invariant.

We also note that the linear gravitational wave equation A-13 is
exactly thé linear equation given by Einstein's general theory of rela-
tivity. See for example Tolman (5). Equation A-13 may be simplified

by a particular choice of gauge. I we choose nu by the equation

1
+tn AR I ?6pv(hao * 2"00’),\'

wv o v,V

oy

=-h

nu. vu * 1"v,;,w - na,o'p uv, v

Then the wave equation A-13

pv, 00 +Kov,op +Eop,av - GMVEPO’,DCI = ZKTpv

simply becomes

]
-E”v’ oo = ZKT'W (B-3)

This is exactly the equation 93, 7 given by Tolman (5), derived from a

linearized form of general relativity.

Bl. Free Fields

Let us consider A-13 in the case there is no source. Let

=% e X define kS = A :from A-13 the free equation for
By o Cuv vy T
epv is
kK'e -~k X~k A +86 (k<A =0 (B1-~1)
T2 T e e O

] '
The change of gauge hpv = hpv tagy tny,, becomes Epv = Epv +

+ -9 or in momentum representation
nlhv "Vou PVnPo P P



uv pv
where
n =a e-ik' x
# H
' ! 2
hg.a = kvepv = )\p + ke a,
I et us consider Bl-1 in two cases. First, let us congider that
s
k7 # 0. Then by a proper choice of gauge, a!J = -)"u /kz, we can make
t -t
A =\ +Kk%a =0. Then the wave equation is ks _ =0; & _ = 0.
(TR (0 BV pv

Thus for this choice of gauge there is no solution for the gravitational
fields and there can bé no physical effect. But we must ; et the same
physica for any choice of gauge,; therefore, in any g¢ 1ze for kz 0 we
can have no physical effect. |

The second case is where kz = U, The free gravitational wave

eguation is now
kvkp, + k“xv - ﬁuv(k- A) =0

The solution to these cixteen equations iz A\ = J; ku'émv = 0. Let us

¥

choose the case where the plane wave is moving in the x direction

= (1 C 1l k% 12 2 0. tanke k= k =
kbl- (ké,kl,i).ﬂ), k -k4 kl = 0; take lcl- k‘g-k

Now

kpep.Y = k4e4v - klelv =0; ke4v = kelv;

we may take

€44 %5 T % C42 T G120

€,, = €
43 13
jow choose a special gauge to give us a purely transverse wave.

] — .
e#v = epv + kvap + kpav - épv(“ a)



+ k(a)+ a,) >=0by choosing (a)+ a,) = -6_44/k

, _ ]'> = 0 by choosing a, = ~?4l/k

. = 0 by choosing a, = -€,,/k

@33+ €5, =€ 5+ €,, + Zk(a3+ az) + Zk(a4- al)

=ej3te,, - Ze43 - Ze4z + Zk(a4- al)

' t

¥
We should note that because the trace of ‘E}‘ v is zero with this choice

[} '

of gauge, EM" =ey-

] $ 1 ' 1

(o = &y~ Z8:%0 %0 =9
Therefore, by a proper choice of gauge for the case k2 =20 we
are left with oﬁly two dependent solutions:

1) First solution

o 0o 0 O
0 6 0 0 0 ) 1 0
e,, = ~€3; = a; euvsa 6 0 1 o -a<0-1>
6 0 0 -

writing only the y-z part of the tensor.



2) Second solution

2 0 1
e =@ =h; e =b( >
32 23 (Y 1 0

and the general solution, a linear combination of these two solutions, is

(v )
e =
g b -a

Solution 1) has a positive stress in the y-direction and a negative
stress in the z-direction. We shall show that the second solution is the
first solution rotated backward through an angle of 45°, Thus, the

solutions may be pictured as

To study the properties of these solutions, consider the following

vectors in the y-z plane.

W () 2 (L)

If we rotate the coordinate system by an angle 6 about the x-axis,
8x
using C; = -—-:f CQ , the law of transformation of vectors, we get

ox
M

1 1
c' = < >ei9 — =< )e-ie
o i B -

Now solutions 1) and 2) are outer products of these vectors. Explicitly
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1 0 1 1
0 (g )" “g[on () een()]
e 0 -1 -Z(CPCV\% D“Dv) 2z (1, 1) i + (1, -i) -1
1 i 1l i
2 [, )0 L)
2 i -1 «i -1

0 1 1 -i 1 4
W) e aen=g[( L) () )]
e > (DP,DV C‘,LCV) 2 g el § -

2
) By 1 0

First let us show that if we rotate solution two by an angle of 45°

we get solution one. Consider °|lv = ouv rotated by an angle 6.

“20_ . o 218

Y2) { v v i

o = -z(D“Dv- cpcv) = -Z(DpDve . Cy
i o0 -210 Q20 216

= ‘Z[(‘ia~21e -0 T\, 2ie .ot )]

| (e HOGAE) g -20, 20
T\ om0, 246, 26 °~Zie))

8in 20 cos 20
=
(cos 280 -s8in ZB>

For the case 0 = 45°

2 (' °
e = ( ) which is just solution 1)
Lol 0 -1

Now consider the following linear combinations of our original

two solutions

1 i
1) (2) _
A) C‘,Cv’”’,ﬁv v 1l - (i -1>
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D 2 1 i
N 2 BPON + * I
B) DPGV e iepv (-i 1)

Under a rotation of the coordinate system by an angle 6 about the axis
of propagation

210

A) CVCV -~ Cpcvo ; the property of a plane wave with plus two

*
units of angular momentum.

216; the property of a plane wave with minus

D
B) D»(S}v — DpDve
two units of angular momentum.
Thus a free gravitation can be represented as a spin-two particle with
its polarization directed either with or against ite direction of motion.

The general solution is a linear combination of these two solutions.

B2. Experimental Tests of the Linear Theory

A fundamental test of the linear theory of gravity would be to
test the basic idea that the source of gravity is the total energy of the
object. For example, the mass of Pb,,q is lesa than the sum of the
rest masses of its electrons, neutrons and protons by a factor of 0. 825%.
due mainly to binding of the nucleons in the nucleus; while the mass of a
hydrogen atom is reduced only by a factor of the order of 10“6%. Thus
the comparison of the weight of a sample of lead with a sample of hydro-
gen having the same number of nucleons would indicate that the gravi-

tational coupling is reduced by the negative binding energy of the nucleons

T;iote that the waves for a spin-zero field ¢, a spin-one half field ¢ and
a spin-one field J} transform in the following way under the rotation
of the coordinate system by an angle 0.

¢ — uie/ 2 The rotational properties determined
10 the angular momentum carried in the
Ay. ~ Ape wave.



in the lead nucleus.

A less direct but far more accurate method of determining that
gravity couples to the energy of a particle relies on the assumption that
the energy of an object is proportional to the object's inertial mass,

i,e. E= mcz. This relation is basic to relativistic mechanics where
the relation between the force and the inertial mass is F = d{mv)/dt.
The inertial mass of a nucleus is directly measured in a mass spectro-
graph, while the difference in energy between nuclei can be determined
from the Q value of nuclear reactions. Thue the equivalence of the
energy and the inertial mass may be checked experimentally. The agree-
ment is fairly good, although not completely verified. ( See R. H.
Dicke (6) ).

| Assuming the squivalence of energy and inertial mass, then we
may interpret the results of the experiment of Eotvos (7) as an accurate
test that gravity couples to energy. The idea of Eotvos' experiment is
that an object on the surface of the earth is accelerating due to the daily
rotation of the earth and the motion of the earth in an orbit about the sun,
and this acceleration is produced by gravitational forces. If the gravi-
tational force is exactly proportional to the inertial mass of the object,
then all objects, independent of their composition, would have the same
acceleration. If not, then objects of different material placed on a tortion
balance could produce a torque.

Eotvos' result is that if the gravitational force is proportional to
the mass for platinum (he determined the gravitational constant for the

case of platinum), then the gravitational force on snakewood is propor-
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ticnal to its inertial mass times a factor (1 ~ J.1 x 10'8 +£0.2x 10'8).
The snakeﬁrood experiment is the most interestin; for it compares the
light elements of hydrogen and carbon with platinum which has a much
greater nuclear binding energy.

We note that a spin~-zero theory of gravity would imply that the
gravitational force would be proportional to m(l - vz)/%"* which for a
particle on the earth moving about the sun would be m(l - 0.1 x 10°7).
Thus if an Eotvos experiment showed the proportionality of the inertial
mass of an object on the earth to its gravitational attraction to the sun
with the same accuracy as Eotvos' original experiment, then a spin-
zero theory would be eliminated while the linear theory would still hold.

Most of the accurate experiments on gravity are the result of
astronomical observations. Of these all but three may be explained by
Newton's original theory of gravity. If we show that in the limit of weak
fields and low velocities the linear theory approaches the Newtonian
theory, then almost all tests of gravity will be explained.

One observation not explained by a Newtonian theory is the
gravitational red shift of light. This is seen in the shift of spectral
lines of light emitted from stare, and in the experiment of Pounds (8)
where photons were dropped 12. 5 meters and their frequency shift
measured using the Mossbauer effect. To within the accuracy of the
experiments the frequency ghift may be explained by assigning an ef-
fective mass m_ to a photon, hwo=m c%. The change in kinetic

energy of such an object moving from a region of potential ¢ to a new

*See Appendix I,
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region of potential ¢ -~ A¢ would be given by Newtonian physics as mAg,
The {frequency of the photon in this new region by this simple argument
is just given by ' = me(l + Acp)cz. This simple derivation of the
gravitational shift of line spectra is in agreement with the shift pre-
dicted by the linear theory of gravity,

An astronomical observation that cannot be explained by an argu-
ment even similar to the one t'x'sed to explain the red shift is the deflection
of light passing the sun. If one assumes that a photon should act as a
masaive particle and that the equation for the trajectory z of the
particle is given by Newton's laws as Vo= dZ;/dtZ. then the pre-~
dicted deflection is half thatv observed. We shall see that the linear
theory predicts the full observed deflection.

The final test of gravity not in agreement with the Newtonian
theory is the shift in the perihelion of the elliptical orbit of the planet
Mercury. In the absence of perturbations the Newtonian theory pre-
dicts that the perihelion of a planet in an elliptical orbit should remain
fixed. After the perturbations are taken into account the perihelion of
Mercury is observed to shift by forty-three seconds of arc per century.
The linear theory of gravity does predict a shift in the perihelion of
Mercury-~two-thirds of that observed. Only in the observation of the
shift of the perihelion of Mercury is there an experimental test of
the failure of the linear theory.

The inconsistency in, and now the failure of the linear theory
is that it neglects the energy in the gravitational field as a source of
gravity. We shall show that by correctly including the energy in the

fields as a source of gravity, the correct shift in the perihelion of
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Mercury is obtained. Thus there is experimental evidence that gravity
is itself a source of gravity.

To check the above statements about the linear theory it is only
necessary to consider the interaction of gravity with point particles.
In the Newtonian limit in’ is well known that the gravitational field out-
side of a spherically symmetric object is the same field as that of a
point with the same total mass. If we leave to astronomers the calcu-
lation of perturbations due to tides, etc. the astronomical theory will
be adequately described by point particles.

Let the coordinate for a particle be given by the four vector
2."l where Zp = (24, 21. ZZ' 23). The free Lagrangian for such a particle
is given by |

! ds *

L=-Dz3
7 %% 2,
where

z = dz /d
p® 92, /2

The energy momentum tensor for such a particle is
\
* \d ‘*

m _ ds
Tp,V = mzuzv 324

To the action 8 for the gravitational field must be added S .
the action of the free particle plus the action of interaction, to obtain
the total action for the linear theory of gravity interacting with particles.

The Lagrangians corresponding to the terms in Sm g are given by

* See Goldstein (9).
** See Landau (10).
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m > ds
Lm -7 pzp, dZ4 (BZ*l)
' = K m - 4 I ° ° dS B -
Linteraction =7 hvapv = -K Thpv(z) szv 3-2—4 (82-2)
where Srng is given by
. ' '
Smg = \ U“'m * Lint] dZ4
We get
m r M * .
smg = - Slaw + thv(Z)] szv ds (32-3)

From BZ2-3 we may define a new Lagrangian ng(Z) where
s = gL (Z) ds (B2-4)
+ thv(Z)] ZuZV (B2-5)

In terms of the Lagrangian 1.(Z) the Fuler-Lagrange equations of motion

become

iiz) _ 8L 4 oL _, (82-6)
B B 32‘,'

1f we wish to describe the particle in the space-time coordinate
system xp = (t, %, y, z), the action smg of B2-3 may be rewritten as

Smg =" 3 W 6% x-2) 6, + Kb (]2 2, ds d’x (32-64)

In the previous work on the linear theory, the Lagrangian density L mg

was obtained. The action is given from a Lagrangian density L by

the relation
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S=1 L d4x
From B2-6A we see that the Lagrangian density erg of the free
particles plus interaction is given by

(‘l

~ 4 ) ..
ng = - LG'j 8 (x-2){ 5PV+ Khuv(x)] zpzv ds (B2-7)

The lLagrangian density for a free particle is therefore

r .o .
- m 4
Lm = - 75 5 (x-Z)ZMZa. ds (82-8)

and the energy momentum tensor density for a free particle is

m 4 i .
TFV = mgﬁ (x-Z)Zvads (B2-9)

In the remainder of this paper we shall use the notation of capital
L for the Lagrangian, and script L for the lLagrangian density, re-
ferring to both as the Lagrangian.

With this formalism we may now consider the equation of
motion of a particle in a gravitational field. Using the Lagrangian

ng(Z), B2-5, the equation of motion B2-6 becomes

Z.=0 (B2-10)

- b 1 . .
{6 + th’l]zu 4-2-[Khn + Kh p.p]Zu 6"

- Kh
pH PP a

Pp,a

where we have used the symmetry between a and f in ZGZ , and

B

noticed that dh (Z)/de = h Z .
pv bv, pp

For later work we will want an exact expression for Zp. This

may be obtained by multiplying B2-10 by | apy+ thy] '1. where

{ép + thy] 1 {6 defined by the equation

Y
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& + Kh 5 +Kh | =& B2-11
[ PY pv] [ n pp? ( )

A series expansion of [6py+ thY] -1 that obeys 52-11 is given by

{6 +Kh ] V'=6 -Kh +K’h h_ -Kh h.h . (B2-12)
PY PY PY PY pc oy po GAAY

as may be verified by direct substitution. (32-12 is essentially the
expansion of (1 + Kh)™! with appropriate subscripts. )

Therefore from 32-11 the equation for ZY is given by

. -1
Z = - § + Kh Kh + Kh - Kh Z Z B2-13
vy = Tzl Byt Kyl UKD gt Xhg, - Kbyg g)Zg2Z5 )

‘We may abbreviate the notation for the coefficient of iai B by
) + Kh + Kh - Kh B2-14
Tdp = 3085y Kby 1 [Khy o3 Khg, - Knyg ] (B2-14)

We are now in a position to demonstrate that the energy momen-
tum tensor is not conserved by explicitly calculating '1‘:: v the di-

vergence of the energy momentum tensor density. DBy equation B2-)

r . .
T™ - m | 64(x-Z(a))Zvads

~
u

9 .4 : . 3 .4 :
mg[ZV 5—;:5 (x-2)] 2, ds = mg[zv(-) '5'235 (x-2)} 2 ds

C[ $ 8'x-2))Z de = m3 6%(x-2)Z,, ds

where the last expression was obtained by integration by parts and

dropping the gsurface term. Using B2-13 Zp = f‘ﬁ ZO‘Zﬂ we just get

T::.V {“uﬁ :g (32-15)
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Now from the linear equation for the gravitational fields A-13 we see

that the fields produced by the tensor T:? are of order of magnitude

K smaller than Tm .
RV

than the fields. Thus T™
pv, v

’

small to be sure, but not zero.

field produced by a particle, e.g., the sun.

HMV v = 0 the wave equation is in the form given by equation 8-3
m
°K|w.oo = ZKT’W
™ may be written as:
v
T™ = m 6%(x-2)2 Z ds
'J.V o p v
3,—- = S o ds
= mgﬁ (x mz)é(t - 24)zp2v v dZ4
4
But
. dZ4 dZ4
Z‘1 = (1, Vo vy, vz) w ralie vp > I
vM = (1, Vo Vy’ vz)
and
a2, 0 - v3) 1/
T -4-v)

ap

But from ©B2-14 Y is of order K smaller

is of order KZ smaller than T;: .

From the linear theory let us now calculate the gravitational

m

m

T =
pv Qa -VZ)I72

3-—- —
67 (=x —Z)vuvv

For a particle at rest only T‘E survives

m
Tyq

m63(; -—i)

Jsing a gauge in which

(B2-16)
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The field equation B3-3 becomes

-544' ca(x) = ZKmGS(;: -Z)

The field produced by a particle at rest will not vary in time (1'1'44 = Q)

and we may write the equation

2 2

8% 8%k e .
£+ 2+ s kme’ (% - Z)

Ox 8y 6z

The solation of this equation known from electrostatics is

- Kxn 1 7
byg=-Zm 7 (52-17)
where
r= |x -Z|

: - 1 < N
The fields hpw = pr -5 5pvhcc‘ From 32-17 this gives

hjy =hpp =By =hyy = - %:1;' (82-18)
These are the linear gravitational potentials produced by a star.
lLet us now calculate the effect of these potentials on the motion
of an object. In dealing with the linear theory we need only keep terms
to the lowest order in K in equation B2-13 for Z ;

K

ZY = . T[hay, B + hﬁy,a - huﬁ' V] zuzﬁ (B2-13)

Using the notation of B2-16

2

éaiﬁ = vnvp/(l - vY)

_ 2 2 2 . 2
vava—(lovx-vy-xz)-(l-v)
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32-19 now may be rewritten as

L .
2y =¥ = - 7lhay, " Pay,a Pap,y) V¥

The quantity Zy(l - vz) may be written

. dz
2 2, d dt
Zy(l-v)=(1-v)a-;[ :\

t dm
L.
az
PN NV aqt_[_m] (l_vz)d/z]
, |
az 4z
- ¥ 1 0= G
t

dZZ dv. v. v

iy(l-vz)z -_2]- -a-t£ ..X_.EZ

dt {(1-v")
The equation of motion may be written
2
d " Z K dv_ v v
_d_t.z_Y = - ?[hcy. st hm.c- Bag, Y] vav§+—a-ie- ﬁ:g_) (32-20)

First let us consider the case of very slow velocities where in

equation B2-20 we may take P 1, Vi2 3% J. Using the potentials

52-18 the equation of motion becomes

Sut h‘“' 4= 0 and we are left with
Y
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2=

da"Z _ = K o
_;?— = - Vh“ > (i32~21)

Thus the force on the particle is proportional to minus the gradient of
the potential h 44 in agreement with Newtonian phyaics. The force
between two particles of mass M and m separated by a distance R

is given by B2-2] and B2-18.

F = ————
8aR

but from classical physics this force is known to be GMm/RZ. thus by

going to the Newtonian limit we determine our coupling constant K.

K° = 84G (B2-22)

We also see that the relation between the potential h 44 and the

Newtonian potential ¢ = Gm/r is

44 = 2Gm/r = 2¢ (B2-23)

We finally note that Newtonian physics depends only on the potential h 44
(see B2-21).

Let us now consider small deflections of high speed particles
moving past the sun. Let us calculate the acceleration in the x-direction

of a particle moving in the y-direction. From equation B2-20

, |
d°Z dv_ v v

K X
T e g Rep Ve o, (B2

For small deflections we may calculate the acceleration in the x-direction

by assuming the velocity appearing on the right-hand side of B2-24 re-
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mains in the y-direction. Thus Vey=0, R 8 does not contribute and

ax,
we get
dzz" Xlh,, _+v’h h,,=h /K
dtz S Tlfe x"V yy.x]' 44 = Byy =20
(B2-25)
2
d"Z
— X 2. 80 44?
t

We will get a greater deflection by a factor (1 + vz) than if we had calcu-
lated by a Newtonian potential h4 4 alone (corresponding to dzz x/r.it2 =
- 8¢ /8x), and in the case of light this deflection will be twice as greét.
This result as we have mentioned =zt the beginning of this section is in
agreement with experiment.

The calculation of the shift in the perihelion of Mercury is far
more involved and we shall not go into it at this point except to note that

the answer for the linear theory is two-thirds of the experimental result.

B3. Quantum Mechanics of the Linear Theory of Gravity

The experimental justification for the linear quantum theory of
gravity is in a sense stronger than the justification of the linear classical
theory. There are no experiments in disagreement with the purely
quantum mechanical predictions of the linear theory. This is because
there are no tests of the quantum nature of gravity. The quantum effects
are all too amall.

As with the classical theory the quantum mechanics of the linear
theory of gravity will be obtained by an analogy with the theory of

electromagnetism. We shall follow the approach given by Feynman (11),
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Maxwell's equations for electricity are

w, 00" Ac.po = 417.]“ (B3-1)

In momentum representation, where

A, = apve-xq-x ;3 = etiarx

equation B3-1 becomes
-q%a_ +q.qa_=4nj (B3-2)
Q " q“qo g - WJp -

A solution of this equation, for the case that the current is conserved,
is

47
a = - B3-3)
» -5 J (
4 q it

To check this solution, note that the statement of conservation of cur-
rent, JM-P = 0 becomes in momentum representation qup = 0,
Therefore 9,2, = 0 and B3-3 is indeed a sclution.

The interaction of this field a.M with a second current J:

1
is of the form jza . Substituting a = - -4-;-,5 we get the interaction
e ® qc

of currents in the form

21 4
-4 B3-4
w%i;gJ” ( )

The interaction of currents in quantum mechanice may be de-
scribed in the following way. The kernal for the propagation of two

electrons exchanging one photon is given by Feynman (12).



-36-

|}
K.(46) K (3,4:1,2)

Virtual
Quantum

bl

2 -
= -je gg K +a(3. 5)r\+b(4- 6)Yap.ybp

2
6+(°56)K+a(5’ 1)K+b(6. 2)d15d76

The appearance of & +(S§6) which describes the propagation
of the virtual quantum guarantees a delated interaction through only
positive energy photons.

If the electrons had wave functions f a(;l) and fb(;z) initially,
and we wanted the amplitude that they were in the states ga(;3) and

gb(;4) finally, the matrix element for this process would be

-iezg‘ Ea(s)Ypfa(s)-g-b(é)Ypfb(é)6+(S§6) a7 dr,

In momentum representation, taking

-iPl' x - _ iP3- X
£.(5) = u(P))e go(5) = ug(Pyle

-iP.'x - _ iP4-x
fb(6) = uZ(Pz)e N gb(6) = u4(P4)e

where ( )

o -iqe (%e-xq 4
b ,(55¢) = -an) 2= —

. q“+ e (2w)

The matrix element in momentum space becomes

, -— 1 -
-i} ~4n(e ) (eu,y u )}
i[ 4w U3y, Y T—q w 4Y, %2

2 a°x

(2:)4

* In Feynman's articles replace his atx by 4w
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The momentum space representation for the electron current is
jp = eﬁypu. Therefore the matrix element for the electromagnetic in-
teraction of currents is

iM =-4uj -z-—-———- j
F + e s

(If the photon had had a mass p, the term (q2+ ie)"l would have been
replaced by (qz- p2+ ie)-l. Thus the + ie, which defines the correct
treatment of the pole in quantum mechanice, is obtained by Feynman's
rule that all masses are considered to have a negative imaginary part. )

We see from this example that we may obtain -i times the
matrix element for the scattering of electrons via one virtual photon
by writing a classical formula for the interaction of currents, then
adding a negative imaginary part to the mass of the virtual particle.
For the case we are considering, the interaction of two currents via
one photon, where the momentum ¢q of the virtual particle is known,
there is no integration over qz and we do not need the +ic to tell
us how to treat the pole.

Before returning to gravity, let us study the properties of the

interaction

21 . 211 21 1
-4wjp;-ga °4"[J4—2‘J4 J3—2‘J -=J2—2-J2 Jl"lel

Let us assume that the spatial part of the momentum carried by the

photon is in the spatial direction 3. The four vector q‘.l is then

2

qu (W.O.O.Q); q '-'-(»2- QZ

and the directions 1 and 2 are transverse to the direction of motion of
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the photon.

The fact that current is conserved implies

or

[¥%3 .
2’4

qi, =0 =wiy - Cisi J,=
-

pop

Therefore the interaction between currents may be written in the form

“- o
e

2 1 1_. 1 )
-4"’!‘?#- 4+4w; JtrT.—?Jtr

2 tranaverse
directions

Now 4w/Qz is the momentum space representation of the
coulomb potential, j4 is the charge distribution of the current jp.
Therefore the first term represents an instantaneous coulbmb inter-
action between the currents. The factor (wz--(lz)"1 = l/q2 as we have
seen represents a delayed interaction through positive energy photons;
where in this case the photons have two independent polarizations each
transverse to the direction of motion. Thus the electromagnetic inter-
action of currents is via an instantaneous coulomb interaction plus
transverse waves.

With this background let us consider the gravitational interaction
of energy. The equation for the gravitational field produced by an energy

tensor Tpv is by equation A-13

“av, oo’ Kav. 0‘p+ Hop, ov 6pwH;w, po pv

In momentum representation, where
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equation A-13 becomes

2 -
Qq e‘w' qpqoeva' qvqt o 6 9 qpecrp ZKtpv (B3-5)

A solution for this equation in the case where energy is conserved

(q“t“v = 0), ia

t T
v = - - v .
K-:-‘z- e, e, T ZKJ:IZ» (B3-6)

Again we can check this solution by noting that

q -é' ZKq =0
B '7 whuv
automatically guaranteeing that the last three terms on the left side of
B3-5 are zero for this solution.
The interaction of the field e, = ZK/qZT:;w with a second energy
tensor s is of the form 1 Ke 8 . (This is the basic interaction
nv Z vy

we assumed for the derivation of the linear theory of gravity.) There-

fore the interaction of energy tensors spv and tl-W -will be of the form

1 — 1 1
K spv ;Etpv = -5«6(5‘“’ pv ¥ sp“tvv) ;2- (B3-7)

If, as before, we assume that the spatial part of the momentum
carried by the graviton is in the spatial direction 3, then qp: (0,0, C, w),
qZ = uz - QZ; and the directions 1 and 2 are transverse. Since both

energy tengors are conserved
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qptpv =0= L Qt3v; ty, = a tav

qpspv =0= c"‘54\1. Qs3v; 83,7 [e)] S4v

We can replace various t3y by t 4 %3y by s 4v and the fundamental

interaction B3-7 becomes

8,,t
4444  4uG -
-4nG oz o2 [o44(tyoty) +tya(s,,%8y) = 8 3ty = 48,,t,,

- 4ayty) ’“fz'f%z[ 3 (ay)-8,5)( -t55) #2805t 5] (B3-8)

The first two terms represent an instantaneous interaction, the last

represents a delayed interaction via positive energy gravitons.

The classical energy momentum tgdsor density B2-3 may be

written

m _ .3 o 2,1/2
wv - Mo (x ~ Z)ZpZV(l -v7)
For a particle at rest the only part that survives is T44= M63(; -Z) =

T

Po’i Po is the mass density. Therefore the firat term looks like

1
-4nGp,, '5'2 Po1

Thus the first term corresponds to an interaction energy ~-G/r between
masses; just the Newtonian effect,
For a particle moving in the direction 1 with a velocity v

- 2,-1/2 _ _ .2
Tyq =P -v) 7 =pi Ty =viTyy

and the interaction looks like
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1 2
~-4aG 1+
"Pz"zQ‘Pl( v’)

Thus the attraction exceeds the Newtonian value by a factor (1 + vz).
- which gives a factor of 2 for the deflection of light; a fact we saw in
the last section.

Terms of the form 84,4, represent an instantaneous velocity
dependent interaction.

The last term represents a delayed interaction by waves whose
source is either (tn-tzz) or txz' From the wave equation B3-6 we
see that the waves generated by these sources are 'e—u = -3'22 or '512.

(If the interacting particles are far enough apart so that the only sur-

—

oo = 1t €227

- 1 - - -
and elj = elj 5 5-ijeao = eij and we can forget the bars.) We have al

viving interaction is via these transverse waves, then 0
ready studied the case of gravitons with the transverse polarizations
€)= €z °r e, in part Bl, and we see that the last term repre-
sents an interaction via spin two-gravitons with two independent trans-
verse polarizations. In this case they are virtual gravitons generated

by the transverse components of the density 8;, or (su- 822).

B4. Example: Gravitational Rutherford Scattering of Electrons

We shall consider the scattering of an electron by a heavy point
mass in the Born approximation (i. e. via the exchange of a single
virtual graviton). The matrix element for this process is given by
equation B3-7

2 1 =
iMp = K pr ;2' t“v

where tlJ-V will be the energy tensor for the heavy particle of mass M,
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s _ for the electron.,
1Y

Actually much of the work for this problem has been done in the

part B2, In that part we found that the gravitational field cf a stationary

point of mass 1!25 is from B2-18 hy=h,,=hy;=h, =-2 % ;

hij =0 (i# j). Equation B3-7 was obtained by considering the momen-
tum space rapresentation of the interaction K& h where h was
F BV pv pv
the field produced by Tpv‘
The interaction is therefore
%{[ Spbyt Spahpp* S33hyzt Syghyyl
- - GM 5 & -
5——-r [Sll+522+u33+544] (B4-1)
In momentum representation this becomes
4 . 2 ,
iMg, = -8 MGl 81 * 8,5 + 833 t5,,] /0 (B4-2)

The symmetric energy momentum tensor for an electron given

by Pauli (9) is

Sy = 11[','&7. pol ¥ im"vq’.n B i-‘5. vt ¥ ifﬁvpnl:' vl (B4-3)

In momentum representation, where
ip, x '
.‘F = uf(Pf)e

¥ = uylpe P
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we will get a & function giving rise to conservation of energy and

momentum

=Pi+Q; Ef=E.

Pf i

and the energy tensor apv becomes
1 - - - -
- I[i’fp“ﬂv“i * Py, gV, Yyt Pe ugY vyt Piv“pr“i]

The matrix element B4-2 becomes

4
_2aMG \ - -
iMf - QZ {:, (pin“fynuﬁ pinuﬂnui)
n=1

The free particle Dirac equation may be written in the form

#iui = mu, and Efff = m-l-.l-f

where g =y Py Using the relation

v
4

$
-

) Pin¥n = 2By, - B
n=

b

the matrix element iMF becomes

_ 28MG —~
IMp = e ug[ 2E + Egy,- B¢ - ¥ ]y

4aMG -
Mp=-1 -—-!-é-z-— ud 2Ey, - m}u, (B4-4)

where Ei = Ef = E,

The probability of transition per second P, is

2w

L
Pﬂ":m Mg |%p (B=c=1)
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where p = density of final atates; El and E, are the initial and final

energies of the electron, and the normalization of u is uu = 2m. Now

3 2
d’p, _ P,dQdp, _ Ezgpztdfz

-(Zw)3dE2— (21.)3&2:2~ (2w)°

2 2 2 _
where Ii:2 = I-“’2 +m ; Eszz = Pzdpz. Also

O'PI'

1

Pu=ov

where o is the cross section for the reaction.
For our case E, = E,, therefore Ipll = |p, |, and the differential

crogs section from the matrix element B4-4 becomes

dcr~M22

2
ol _T ]ZEufyt‘ m ufuil

{B4-5)

We will evaluate B4-5 for the case where the electron is initially
moving in the + x direction with its spin up in the =z direction, and the
scattering ie in the x-y plane. The matrices 'Gfui and Efyt“i are zero
if the spin is flipped and 'Ef represents an electron with its spin down

in the 2z diractidn.‘ Thus the total cross section for this case is obtained

from the non-spin flip amplitude,

&
For the spin flip case

T = r20,F,-p,,0)
and F

Tu = FYo,r-p,0)( 2 )=o0

9% »Fo-P, 0
Py
1000 F

- 0o100\/0 \ _

uyw; = F (O'F"P+'°)<0 0 -1 0)(0 > =0
000-'"'p

See the next paragraph for notation.
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The spinor for a free electron moving in the x-y plane with

its spin up in the 2z direction is

0

F
u=F'1/2(0 ); 3= FY2(r,0,0,-p)
P

where F = E +m; P+=Px+ipy; P.=Px-iPy; uu = 2m.,

Therefore
F
u = F'l/z( 9 ) i u = FY4r,0,0,-p.0719)
P
where O is the angle of deflection.
Substituting these spinors into equation B4-5, the differential

croes section becomes

q.
3..2.2
g.a = .?E.é%..g.. [ Q1+ vz)zo vi(vi+ 3)sin2 -g-] (B4-6)

- where
Q = 2P sin 6/2.
The differential cross section if we had used only the Newtonian

potential h4 4 would be

2,02y, 22

§%= 4 (E4MG)[1-stin29/2]
o W Q

This corresponds to the electrical Rutherford scattering of an electron

with z2e4 replaced by EZMZGZ. This is exactly what we would expect,

for the electrical force on the electron is zez/rz. the Newtonian force

EMG/rz. (E approaches m_, the mass of the electron for slow velo-

e
cities,)
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We see that for small angle deflections at low velocities the
cross sections calculated by the Newtonian potential or by the full theory
are the same. At high velocities when v =1 the full cross section is
four times the Newtonian cross section, which is equivalent to a de-
flection through twice the angle that is predicted by the Newtonian esti-
mate. This is the factor of two we have seen before.

Let us consider the relative size of the gravitational and electri-
cal cross sections. The strength of the electrical interaction is pro-
portional to the dimensionless constant e’ /hc = 11317, /'I‘he corre-
sponding constant in gravity is

m2G

e =1.75x10
he
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or we may say that for electrons the gravitational force is effectively
wealter than the electrical force by a factor 2.4 x 10'43. Cross sections
are smaller by the order of the square of this factor.

We may rewﬂte the gravitational Rutherford scattering cross

section as
2.2 2 2
do MG 1 2,22 v v 20
= 1+ - (- + 3)si B4-7)
a@ 4c49in46/2 (v/c)4 [g1+v7/e5) c (c )ein .2-] (

where we have restored all factors of h and ¢. Because of the factor
(v/c:)"4 the largest cross sections come from slow velocity electrons
scattering at small angles, However, such a cross section could be ob-
tained by a completely classical calculation using a Newtonian potential.
Even so, for a one Kev electron being scattered through an angle of two

degrees by a neutron, the cross section is do/d? = 2.7 x 10°93 em?.
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We can see that quantum mechanical effects, such as the inter-
action with the spin of the electron, appear in the term vz(v2+ 3)sin26/2.
For example, suppose we had calculated the deflection of the electron
neglecting its spin. We could do this by calculating the electrical
Rutherford scattering using the Klein-Gordon equation for spinless
particles, then replace the electrical force law zcaz/r2 by
EMG(1 + v /c?)/r%. The result is B4-7 without the spin term
vz(v2+ 3)sin23/2. *

For the spin term to be important we should have relativistic
velocities and large deflections, just the conditions that make the
crogs sections even smaller, For relativistic electrons (note that
the cross section B4-7 is independent of the energy of the electron
once v = 1) taking v=1, we must have a deflection of 21° before the
spin term produces a five per cent correction in the cross section.
For such an angle do/d = 6,0 x 10'102 cmz. For the five per cent
spin correction to be seen, we would have to measure cross sections
of the order of 3 x 10'103 cmz. It is not necessary to comment on the
experimental difficulties of such a measurement. In fact it is hard to

believe in the validity of an extension of our ideas of quanturn mechanics

to such a range beyond the limit of present experimental capabilities.

)
The gravitational Ruthe rford scattering for a spin-zero particle is
correctly obtained by using the spin-zero energy tensor s&v in
equation B4-2, With
(p v -me")

1
S -
pv 2 2.6“” P o P

o i f .1 i £, 4
8, WPy tE 8PP + m)

2 2

The cross section is again B4-7 without the spin term. (For the deri-
vation of S“:V see equation Cl-42A,)
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Consider the validity of the Born approximation (assuming the
exchange of only one virtual graviton) for this calculation., For
electrical scattering the condition was that zez/ﬁv <<1l, For gravi-
tational scattering the condition becomes in the low vélocity limit

Mm,G .31
meMG/Ev<< L, v> -—ﬁ—-—z 10

cm/sec (B4-8), where M is

the mass of the neutron., As we have mentioned, there are corrections
to the linear theory of gravity. These corrections become important
only when the Born approximation breaks down. If, however, m, and
M were the mass of Mercury and the sun respectively, the velocity

of Mercury is not great enough to satisfy condition B4-8 and indegd

the corrections to the linear theory can be seen in the shift of the
perihelion of Mercury.

In fact we know that the Born approximation breaks down when
the particle is in a bound orbit. The smallest orbit that an electron
can have around a neutron is the first Bohr orbit, As we can see from
B4-3 if we assume only a gravitational force this orbit must be very

31 cm/sec., In fact, the

33(:

large to give rise to velocities less than 107
Bohr radius for such an electron-neutron system is 1.1 x 10 m,
It is only when an electron is in such a large orbit, with such low
velocities, that corrections to the linear theory and the Born approxi-

mation are necessary.

B5., The Uncertainty Principle for Gravity

We can now see tfmt if gravity were classical, the failure of the
uncertainty principle would be on the scale of large distances and slow
velocities.

If we think in terms of the classical picture that the electrons in
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the hydrogen atom are in circular orbits, we would deduce from the
uncertainty principle that the smallest orbit has one unit of orbital
angular momentum h, and a radius given by the Bohr radius. In such
an orbit it is known that the product of the momenturn of the electron
times the lever arm (approximately the distance of the particle from
the heavy force center) is exactly h. If we do not specify whether
the angular momentum comes from a large momentum with a small
lever arm, or vice versa, then h essentially measures the product
of the uncertainty of the position and momentum of the electron.

From this point of view the first gravitational Bohr orbit of
the electron, with a radius of 1038 cm and velocities less than 10~3!
cm/sec, is the smallest orbit consistent with the uncertainty principle,
If the uncertainty principle failed and the classical theory were correct,
then smaller orbits would be allowed, However, because of the weak-
ness of the known gravitational forces,in comparison to electrical,
beta~-decay or heavy meson forces gravity may be neglected for smaller
orbits, say on the atomic scale. Thus for only slow velocities and large

distances would there be an appreciable modification of the uncertainty

principle.

C. CORRECTIONS TC THE LINEAR THEORY OF GRAVITY

As we saw at the end of part A, the linear theory of gravity
.was obtained by neglecting the energy in the gravitational field in com-
parison to the energy of the matter fields, The linear theory was cor-
rected in a straightforward manner by Feynman, by demanding that a

consistent theory be obtained directly from an action principle. This
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work is described in parts C3 and C4. The author attempted to correct
the linear theory by considering gravity as a spin-two field coupled to
all forms of energy, including the energy in the field itself. This
latter method, described in parts Cl, C2, and the end of part G, was
eventually successful, but would probably be found only after the cor-
rect answer was known,

The basic problern is that the wave equation A-13 for the linear

theory of gravity

. - m
v, oct Eo'v, Up+ Kop, ov” 5pvﬁpa, poc ZKTpv

is inconsistent. Thia may be seen if we take the divergence of both

sides of A-13,

- m
- KpV, oav’ I;av. opv+ Eo'p. ovv_ ﬁpo, pop~ ZKT’“' v

The left side is identically zero, while T;’: » the energy tensor. of the
matter alone, is not conserved in the presence of a gravitational field
and thus ’I'::;. v ¥ 0. The physically correct idea is to replace T::,

in A-13 by Tpv. the complete symmetric energy tensor of the system,
including the energy in the gravitational field as well é.s the energy of
the matter. (We wish Tg_w to be symmetric so that the antisymmetric
part of h“v will not be coupled to any form of energy.) As the total

energy of the system, including gravitational energy, is conserved,

Tpv v = 0 and the correct gravitational wave equation will be given by

p.v,06'+ KOV.O‘p+EO'p,0v - 6vapO’. po = 2KTpv (C-1)

The problem is now to obtain the correct TPV to put in equation

C"ln
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Cl. Symmetrized Energy Momentum Tensors

The method of finding conserved quantities such as the energy
momentum tensor of a system is to investigate the invariances of the
action for that system. For example, if the action is unchanged under

the transformation of the time coordinate t — t + a where a is an
infinitesimal constant, then the total energy of the system is conserved.
More generally if the action for a system is unchanged under

the infinitesimal coordinate transformation
X =X =X -1 {Cl-1)

then depending on the choice of np various quantities will be conserved.
If np is a constant infinitesimal vector with four arbitrary components
then the total four momentum P“l of the system is conserved. When
np« represents an infinitesimal rotation (Lorentz transformation) with
six arbitrary constant parameters (angles), it is the angular momentum
of the system that is conserved.

The momentum of the system defined in terms of the energy mo-

mentum tensor density TpV is given by

3

- ,
= Cl-2
Pp ) T!M‘d x { )

Thus ’1.“.t 4 ™Ay be considered the momentum density. The natural choice

for the angular momentum density about the origin ie
xpTv 4" vap 4
where the total angular momentum is given by

¥ 3 .
MH-" =“) (xpTv4 - vap4)d x {C1-3)
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The conservation of momentum will follow if Tpv has zero

divergence, but '1'.‘w musat alsc be symmetric for conservation of

angular momentum. For example,

o 3 ’\L
x=0=-5-t-STp4dx+:)J5 T (T, ) d'x

—
=

4
~§ Tﬂvb vd

Since the fields are zero at infinity we may drop surface integrals,

giving
dP
-4 3, -
- c & § Tuadx=0 (C1-4)
We also have
daM
pv_ d 3
t = a—g (xpTv4-va“4)dx
3 A
= - 3,0 9 3
= S‘ (xpTvc xVTuo).ad x »,/45 FJE;(xMTVk-xVTuk)d x
k=1
Dropping surface terms and using Tp P 0 we get
M, ¢ .3
2 = )1, - T (Cl1-5)

From Cl-5 we see that Tp_v must be symmetric for conservation
of angular momentum, while linear momentum may be defined by an
energy tensor whose divergence is zero, but which is not necessarily
symmetric.

One procedure for finding an energy momentum tensor of a sys-
tem is described in the following steps. Xirst investigate the invariance

of the action ﬁhder infinitesimal coordinate translations. We shall see
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that this leads to a conserved (divergenceless) quantity pr, called
the canonical energy momentum tensor, Secause the congervation of
linear momentum relies only upon the invariance of the action under

coordinate translations the total momentum should be correctly given

by

P =46 d'x ~ (C1-6)

Since the canonical tensor eu is not obtained by considering

v
the invariance of the action under rotations, there is no guarantee that
the angular momentum is correctly given by Cl-3 using Spv instead

of Tp,v' In fact the canonical tensor is in general not symmetric thus
it does not lead to a conserved angular momentum.

The next step is to investigate the invariance of the action under
rotations. This leads to a quantity S‘w which, when added to the
canonical tensor epv. gives a symmetric divergenceless energy mo-
mentum tensor Tpv‘ *

We shall see that Spv as well as Gpv has zero divergence,

thus the divergence of Tpv is zero.

Tpv,v = (ep.v + spv),v

Also Spv will itself be a pure divergence, therefore its integral over

space is zero and the total momentum }‘F".L ig correctly given by

3 3
= = , -7
Pp = Seu4d X ‘(; T}.l4d X {(C1=-7)

[
We will use the notation
pr = canonical energy momentum tensor

TpV = Gpv + 5

v = the symmetric energy momentum tensor.
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Let us suppose we desire the energy momentum tensor for a
system that involves the scalar, vector and tensor fields ¢, Ap. and
hpv respectively, First consider the action for such a system. The

action may be written
UL @™ e yad
S -) (q LRy o.ﬁ)d

~ where the q" are the components of the fields included in the system.
We shall include the possibility that second derivatives of the field com-
ponents appear in the Lagrangian.

If we write the field components in the form

q"(x,\) = g"(x) +\6q" (x) (C1-8)
then the action may be written in the forn

{’ 4 i
SIVERPA TR CRVE R VIR CR VIS L (C1-9)
and the condition that the action be an extremum may be written

8S ) | .
| =0 (C1-10)

The quantity 55(\)/8X may be written

2N (2N

, n

as(y) _ T8l 8 n) , 8L 897, N) o , oL 8 (/M 4 .
\ . = d
8q 6«:‘1' o aq' ap

Using equation Cl-8 we get

85(\ al ol n 4 i
LaLy )lx—'j [._- 59™t = (8q™) o+ —5 (8g ).aﬁ}d x  (Cl-12)

% %9, ap
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We may integrate by parts, dropping surface terms in Cl-12

with the result

0= z"sqszé.-(.éé_) +(al ) Ja
) n n n
8q 8q o 99, ap/, ap

s Q

Thus the Euler-lLagrange equations of motion are

.i‘é-(.i‘!—.) +<ai )
S RAL aq?oﬁ

14

L}
o

(C1-13)

,ap

Let us now consider the consequences when action is invariant
under infinitesimal coordinate translations and rotations. This will be
the case if the lL.agrangian is of the form of a scalar density, which
determines the change of the Lagrangian under a coordinate transfor-

mation. L e.,

Ly =L 'y L~ L'x) =L (x) + 6L (C1-14)

Furthermore the Lagrangian must be expressible as a function

only of the field components and their derivatives.
L = Lg% e gp) (C1-15)

Under a coordinate transformation the field components will be trans-
formed:
t
q® ~ q® (x) = ¢® + 6"

t
o qnu(x') =q g *t8la7) ete. (C1-16)

Thus the change in the Lagrangian may also be written
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2
.7 _ Ol n n, . n
6l = —= 5q + - G(q,u) + = 6(q.a‘3) (C1-17)

The condition that the action is invariant under infinitesimal coordinate
translations and rotations is that & from Cl-14 and Cl-17 are equal
(assuming the coordinate transformations giving Cl-14 and Cl1-16 are
infinitesimal translations or rotations).

Let an infinitesimal coordinate transformation be written in the

form

] .
- = x - Cl1=-18}
xP xp ‘(p np(x) ( 3

If the four components np are constant, then Cl-18 represents a co-

ordinate translation, If ?’;p(x) is of the form
¥ = - / 1' ”
‘gp(x) waﬂ(xaapﬁ xﬁépa) (C1-19)

then Cl-18 represents a rotation (Lorentz transformation) about the
origin by an arbitrary infinitesimal angle in each of the six planes
tex, t-y, t-z, x~-y, x-z, y-z. “ap = 'wﬁo. has six independent com-
ponents and waﬁ/z is the angle of rotation in the o-{ plane.
Under the coordinate transformation Cl-18, the field hpv' for
example, transforins by the equation
Ox  8x
[} [] p o
h = h vmaton oot
HV(X ) pO‘X) 8x' ox.
X1 v
(This is the law of transformation of covariant tensors.) For huV we

get

L] L]
= + k] + h
hp.v(x) h}w(x) hpp o, v vpﬁp,p
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However we want the non-infinitesimal quantities h;w(x') and hpv(x)
expressed at the same point in space, therefore we make a Taylor
¥ t
series expansion of hpv(xp) about the point xp keeping only terms

to first order in .

1] []
h - = - P -
pv(Xpm Mp) =B x) - by ome ® RO - By 0T

The result is

]
h;_w(x) = hpv(x) +h +h n

+h
uv, e T Puple v T PvpTlp,p

Similar arguments give the transformation of scalar and vector

fields, leading to the result

n

¢'(x) = ¢(x) +¢'p 0

Au(x) = Au(x) +tA n t(An )

W, P P P P
'
- + + y } Cl-ZO
hpv(x) hpy(x) hpv, p“‘p (h}lpqpv v’ hpvnpo P) ( )
orY
'
q" () = qx) +9° n, + (497
- qn(x) + 6qn (Cl-21)

where all terms of an which involve derivatives of v have been in-

cluded in % qn.

Since ¢ a is a vector, A a a tensor, etc. (in Gallelian co-
’ []

ordinates)
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!
= + + ¥
¢, aX) =0 g te g0 te

]
A = A + A + A + A
poal®) = Ay o) AL o AL e T A e,
]
Puv,al®) = By o) * Ry apmp TRy 0
h +h C1-22
pp,ae,y T uv,pp,e a-za)
Cl-22 may be written in the form
n'
_n n
Ug =9 q * 8l ) (C1-23)

Let us now consider the quantity (GAM) a for example.

(EAP)o“ = (& n ) + A

+ A + A
B, pa p Mo pnp,a p,nnp,p PWP!PQ

or

SA = + A
( F)to' G(Ap’a) PnPn ra

It is true in general that

(Sqn) a " &(qn + terms involving the second derivatives

)
G
of
n&’

(6™ ap = G(qnnﬁ) + terms involving the second and third
' * derivatives of ’:3‘:

However for ccordinate translations and rotations, np has at most a

first derivative., Since we are dealing only with such transformations

we may take
n - n
(8q" = 8la",)

(647 4g = 8(a",p) (C1-24)
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Let us now consider the condition that the two forms of & ’
from Cl-14 and Cl-17, are equal. Since L is a scalar density (so

e

that S =} £ d4x will be scalar)

«/

L'(x) = £ x) +/.. oM = Lix) + (!an), 5

where the last step follows from the fact that 'qp 0 = 0 for transla-

tions and rotations. Egquating (L np) p1:0 8L of Cl- 17 we get
?

7 {
0=-’3-{=-éqn‘f""-&L 8lay) + 25— (e ) - (L)
b s ,a 8q™ af PP
q q,ﬂ. qoaﬁ

Using Cl-24 this may be written in the form

aqn[a%'n '(Eafj'*a ).°+(aa§:‘cﬁ)'aﬁ] - (b

+ {'qui1 -8—1:5 - 6q“(9—!‘;; ) +(89") e 9‘;} } =0 (Cl-25)
8q dg P oaq
.B ,ﬂﬁ iﬁ ’GB »y @

The terms in the square brackets of Cl1-25 are zero by the equa-

tions of motion Cl-13, If we use the notation of Cl-21;

n N + xﬁqn

89" = 9,07

equation Cl-25 becomes

) n sl nfel YA |
o=l g~ ol ) e, Lo @

(Cl-26)
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For the fields o, Ap, and h ,, the quantities ~q™ are from C1-20

AA = A 7

1 AL (C1-27)

S

"'hpv = pnno,v+ hvano.p

Suppose now that the components of n p are constant, repre-

senting a coordinate displacement. Since n and the /.\qn will be

Py N
zero, Cl-26 reduces to

" |
s {q?P o q?p (:l;l ) + qx.lpk :Ln - 5po'!‘}
q.a q'o k . k q. 'o

= {ora} 70
pLoeo] o

Thus the invariance of the Lagrangian under coordinate displacements

leads to the quantity © (given in the curly brackets of equation Cl-16)

po
which is conserved. That is, since np is arbitrary,

=0

epo,a -

ep o is the canonical energy momentum of the system, mentioned at the

beginning of this part, and the formula for the total conserved four

momentum of the system is

Pp- = 5 9p4d4x

If np now represents an infinitesimal rotation about the origin
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Mo = “apadpp = XpBga)

the condition on the Lagrangian Cl1-26 becomes

@ap {(xuépﬂ' xﬁépa)epo} .

' A
(6 5 & )qn ...8_-._ }
ﬁ { Aa kﬁ pa T, p aq

» ON
/
+{:.Aq“ ..Q.Li. - gq"( a‘; ) +;:.an Bin (C1-29)
aq.a aq.o). o A Bq’ OA” ,C

where the Z.».qn, given in equations Cl-27, depend on the spin of the
field.

For a scalar field where 2¢ is zero, Cl-29 becomes

- ol al
0= wnﬁ(xueﬁc- xﬁew). + w 6( B 8—-——- - qo'a 5 ) {C1-30)
¥ ‘P,Oﬁ
Let us define the quantity f 50'
L oL o o
£, =0 4 2= - o fope = f (C1-31)
afo ' a ¢,0’§ 0‘3 .O’Q afo foo
3
then equation C1-30 becomes
Q
"’u@{("aem' xﬁew). o + fﬁao, c} {C1-32)
Now suppose we can write
O O .
(xueﬂo‘ xﬁeuo),c+ Bac, o= [x (eﬁo {,30') xB(G )].c (C1-33)

Then since “aﬂ is arbitrary, Cl-32 gives
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{xe(eﬁoﬁ- 5«5;0) - %g(0,0+ szo)] =0 (C1-34)

If in addition S = 0, then we will get from Cl-34

po, o

(e + szﬁ) =0 (C1-35)

Q
pa * Spa) = Cap

Thus if we define

then TG@ will be a symmmetric tensor with zero divergence,

Equation C1-33 may be written in the form
s° ) (C1-36)

A solution of this equation is given by Belinfante (1)

o _ 1,0 o
Sap= 7 (faﬁc + fgcﬁ tioa), o (C1-37)
where
o _ 1,0 o o -
SQ'B. g~ 2 (fcﬁo * faa@ * fcf)cz). of ~ 0
o o
since fijk = - fjik'

It is seen in C1-37 that ' gc,ﬁ’ aside from having zero divergence,

is itself a derivative, If we write

Sa‘3 = \bcﬁa,a where 41050 = - ¢¢wﬁ (C1-33)
then
:\) CFA_dsx = }” npptc' Gd3x
3,
='58? "’pttds" + f g%(%tk)dBX
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Since ¢p.tt = -¢ptt = § and the second term is a surface integral,

i 3

1S dx=20

J “ee

Thus the tensor Tﬂﬂ = Gaﬁ + So‘ﬁ is not only symmetric and has zero

divergence, but

-y

4 ! _
STp4d x-jep4d x= P

Thus Taﬁ is a complete energy tensor from which the total linear
and angular momentum may be cbtained by equations Cl-2 and Cl1-3,

Before the energy tensor for a spin-zero field is considered
in more detail, lét us note that equation Cl-26, for the choice

np = wnﬂ(xnapﬁ - xﬁbpn)' can always be wriiten in the form

0= wnﬁ(xae el xﬁew).o + wnﬁfﬁo.o,o (C1-393)

where Cl-26b has been written in the form “’cpfﬁuo, o This can be
done because “ap apears in each term of Cl-26b, and being a constant
may be factored outside of the derivatives.

Since Cl-39 is the same form as Cl-32 the same arguments used
to find Sﬂﬁ in the form of equation Cl1-37 may be applied in general,
We may summarize the results for finding the energy tensor To,[i from
a Lagrangian involving fields of any integer spin and up to second deriva-~
tives of the field components by the following relations. (If the Lagrangian

involves higher derivatives than the second, the formulas may clearly

be extended.)

+ 5 (Cl-40a)



R - ol n ol n ;1 !
8ap = T0 o5 - ( = ) +a T - 5gpL (C1-40b)
24,8 99 e 84 s\
- &
Sep = -Z(faﬁo fm3 + faﬁ«)'o (C1-40c¢)
where
w f {qn BLI. _ BL }
apfro0 T Taf| 4,PB n , G n
89 a % 66”0
+45g2 oL q® oL soqh L (C1-40d)
ot P\ P LA E
o Qorn’, 2 9017 .0
The Aqn are given by the formula
Aq™ = 8¢™ - " 7 (C1-40¢)

where aq“ is the change of qn under the coordinate transformation

]
xp — xp = xp - r,p(x) (Cl-40f)

and Tip for our case is given by

np = wuﬁ(xaspﬁ - xpapa) (C1-40g)

For a Lagrangian involving a spin-zero field ¢, a vector field

Ap, and a symmetric tensor field hl’V {including first and second deriva-

tives of these fields), the formula for fo.@c is given by

8L ol oL 8l
uﬁa =P ado tA, 57-;6 +Au ksﬁﬁ Ah,c 53’\' op

/ / /
i 8L
- A ( ) +26_.h +26_ h
e \FA; o YB6a Bhy YB éa,) Bﬁay on
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ol < o, )
+26_.h - 26, h,
YA8N e Bhe g T TRy 6e\BRe oy /)
- the same terms with a and B reversed. * {(C1-40h)

In using C1-40h for the fields hpv' care must be taken taken that the
variation of L with respect to h‘( 5 be kept symmetric in y and §.
The method described by equations C1-40 for finding a symmetric
energy momentum of a system is essentially an extension of the method
of Belinfante (1) to the case where second derivatives are included in
the Lagrangian.
There are several interesting points to be noted about the tensors
9:.5 and So.ﬁ given in equations Cl1-40, First the tensor Tnﬁ = eaﬁ+ Snﬁ
has zero divergence and is symmetric only if the equations of motion
are used. For example, since the divergence of Scﬂ is identically'

zero,

T =0 . - A - ol + al
nﬁnﬁ- 0‘3,(3_ qou n n n
847 A8 g/ p 29 g\ /B
which is only zero by the equations of motion Cl-13,

o
Second, Belinfante  was lead to consider Spv as the "spin

momentum density, " and the quantity

xksp\' - X, va

[ ) .
The term 8/./8A , o\ for example, must be kept symmetric in ©
and \ since the order of partial differential is reversable.

"Belinfante {1).
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as the "spin angular momentumn density" of the field. However
Belinfante considered that the Lagrangian was a function only of the
field components and their first derivatives. In thie case a scalar
field does not give rise to a term SFV. and thus has no "spin mo-
mentum density. " Belinfante's interpretation cannot be extended to
the case where second derivatives are included in the Lagrangian,

for then a scalar, or spin-zero field has a "spin momentum density"
SHV'
Consider for example the La; rangian for a spin-zero field of

rest mase .

L®= 3 9 - u'ed) (C1-41)

If a pure divergence % (» p¢) 0 is added to L2 we get
14 H]

1 1 2 2
P ot TP oo TP@ (C1-42)

LY
%% 0

' P

The tensors euﬁ and suﬁ corresponding to £2 and LP are

a _ 1 2 2
®ap = %,a%,p " T 8apl?, oF, om0 @)

b 3 | 1 2 2
- 5 - 4 ? + -1 4
eaﬁ -Z'Gp,aq),ﬁ 'Z'Cp,nﬁgo zﬁaﬁ( x;'. pep,p w,ppw pe)

b _ 11 1
Sap = " 7%,0%,8 Z%06% 2%, 07,57 %, pp”

also

b b b 1 2 2
Tap “%as * Sep = ,0%,2” 7 8apl?, 0%, "+ @) (C1-42A)

¥ e see that the two complete energy tensors T:B and T:,ﬁ are the
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same, but there is a so-called "spin momentum density" S:p for

a spin-zero field when derived from Lagrangian ' °
It is interesting to note that 0 :@ is already symmetric and
therefore might be considered a possible energy tensor for a spin-

zero field. In fact

a;bﬁ - G:p g [ (5 Bo. aﬁ PG)‘P‘?] (C1°43)

Thus the two energy tensors differ by a term that is symmetric, is
a pure divergence, and, as may be easily checked, has zero diver-
gence, Althoﬁgh the prescription of equations Cl-47 does not vlead to
e fﬁ as a complete energy tensor since S:ﬁ has not been added. we
shall later discuse another method of obtaining energy tensors that
can lead directly to e:’ﬁ .

Finally, energy tensors resulting from equations Cl-4_ are
not unique. Only for spin-zero fields do equations C1-40 lead to the
same tensgor starting from equivalent Lagrangians (i.e., starting
from lLagrangians differing oniyby a pure divergence)., We have not
considered adding to the Lagrangian a term such as (qJ' p o®, o), o
gince this term has different dimensions than the rest of the terms
in the Lagrangian. The only term that can be added to a spin-zero
field with the same number of field components and of the same di-
menaions ie (qv' pga). o and we saw that this did not change the energy
tensor.

Let us however consider the following Lagrangian for a vector

field.
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‘e _ 1 . Cl-44
4ql* = E(AP'V.AP.V Au.vAv.u) (C1-44)

This is the usual Lagrangian for the electromagnetic field, and by
equations Cl-40 gives the energy tensor

5 * .
c v b ]
Tpv =" T {Fyn av’ _E. £ aﬁFaB} (C1f44A)

where

Fov =80 A,

T:v is just the energy momentum tensor of the electromagnetic field,

L2
as given in several texts.

We might also have started with the Lagrangian

4nil 8= ) (C1-45)

A A -A A
LAY A 3

v’

because /.d and L€ differ by a pure divergence,

d [/ € _ 1l
anl® . 4nlC = 304y, 4, A“.VAV] i (C1-45)
However the energy tensor that results from l.d ie
d _ ¢ .
Tp,V = T}J»v + !“!P-v
where
1
Wy aat 6PVAPA0 EPUAPA 6pp£ vheo GPVAP.AO] (C1-47)

Since the expression for Wll" is anti-symmetric between v and p,

EJ
In this equation and in the rest of this part we will neglect terms that
are zero by the equations of motion,

*See Landau (12), Tolman (13), Eddington (14).
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/e have thus generated, by equations Cl-43, two energy mo-
mentum tensors that differ by a term WPV that is symmetric, has
zero divergence, and is itself a second derivative. We should note
that the tensors T:v and T:v were obtained from l.agrangians that
involved only the first derivatives of the field components. Thus the
ambiguity is not a result of the fact that we have allowed the Lagrangiat{
to involve second derivatives of the field components,

In fact, from working several examples, the author believes
that the inclusion of second derivatives does not contribute any further
arhbiguity in the energy tensors calculated by equations C1-490., In the
case of spin-zero fields we have seen that the inclusion in the Lagrangian

of the term (¢ Pc,'o) o does not lead to a different energy tensor TP“"

For vector fields, when the terms

1 1
Bw (AV,VA”),“ T Bw (AP,VAV),V

1
ol s (Av, VAP-ﬂ— Ap.. vAv,p) (C1~48)

were added to the Lagrangian, the additional term va of equation
Cl-47 appeared in the energy tensor., When we add just one of the

terms of C1-48, namely

1 !
B (A, 0A) L T B Ay L A, F A, LA )

the Lagrangian will involve second derivatives, but the additional term

in the energy tensor is just wpv/z. The term:

]
1L
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likewise adds W”v/z to the energy tensor, which agrees with the
fact that the sum of the two terms Cl-48 just adds ‘HNV. We might

consider the possibility of adding

(A ) (Cl-49)

A
BV u',V

but this term does not lead to any change in the energy tensor,

Thus for vector fields the only ambiguity in the energy tensor
calculated by Cl1-40 is the term Wll" of C1-47, which may be obtained
from lLagrangians involving first derivatives only, For tensor fields
there are many more forms of the Lagrangian that differ by a pure
divergence and still involve only first derivatives., Due to the algebra
involved we have not investigated whether new forrms of the energy
tensor may be obtained by equations Cl1-40 if second derivatives are
allowed in the I agrangian for the tensor field.

The author does not guarantee that equations C1-40 are unique,
for we shall later, by another method, derive symmetric energy ten-
sors which cannot be obtained by equations Cl1-40, An example of such
a tensor will be 9:‘, of equation C1-43,

The difference between energy tensors of a given system,
whether obtained by equations Cl-47 or any other method used by the
author, is always of the form v‘;’uv--—that is the difference is symmetric,
has zero divergence, and is itself a second derivative. We will show
later in part G why this form always appears. ‘Ye might argue that a
term of this form in the energy tensor has no physical meaning, for
wpv will not contribute to either the total momentum or the total angu-

lar momentum by equations Cl-2 and Cl-3, However the energy mo-
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mentum tensor appears as the source of the gravitational waves in
equation A-13. We will see in the next part that a term of the form
WPV does have physical meaning in connection with gravity, and that
a theory uéing the wrong choice of W‘pv leads to the wrong experi-

mental result,

C2. Theory of a Spin-Two Field Coupled to Energy

At the beginning of part C, we said that the correct gravita-
tional wave equation would result if we used as the source of gravity
the complete energy tensor of the system TM"' rather than T:: .
the energy tensor of the matter alone. TPV would be obtained from
the complete Lagrangian of the system whereas ’I"ﬁ: would come
from a Lagrangian in which the gravitational fields have been neg-
lected.

In this part we shall use equations Cl1-40 to obtain a complete
energy tensor for a systém of point particles interacting with gravity.
It will then be checked whether this energy tensor, used as a source
of gravity, gives the correct shift in the perihelion of Mercury. DBe-
cause energy tensors obtained by equations C1-40 are not unique, the
first energy tensor chosen might not work.

In using equations Cl1-47, we do not need to deal with the com-
plete Lagrangian all at one time. If the Lagrangian can be written in

the form

L=LPsi24034,.,

where each part of the Lagrangian, .ff.i. is Lorentz invariant, then the

energy tensor may be broken up into corresponding parts



Tpv = Tp.v BV pv

The tensor 'I‘:w ie obtained by applying equations Cl-40 to the part
of the Lagrangian Li.
For the case of gravity interacting with matter, we will find it

convenient to break the Lagrangian up in the form

L [‘int (c2-1)

[

[ =/ /
Lgt

where (ﬂg ie the Lagrangian for the free gravitational fields (given by
equation A-11), /‘m is the L.agrangian for the matter without the

presence of gravity, and represents the interaction between

!
“int
gravity and all formse of energy. The corresponding energy tensors

are given by

T =718 4™ 4 rint (C2-2)
BV uv pv By

We see that the linear theory of gravity was obtained by ap-~
K K m . .
proximating - Thvapv by - 'Z'hvap,v in the interaction Lagrangian.

It is consistent in lowest order to neglect Tg and T int

v v for they

each contain at least one factor of hpv which, by the linear wave
equations, is smaller than the source of h}w by a factor K. We shall

see in fact that both Tﬁv and Th:‘t are smaller than T:i by a factor

2 B
K"
To get T::;t we must apply equations Cl1-40 to {*int‘ However
“/“int a?muld be of the form
/ _K _K m _K g _K int -
“int -7 hvapv =02 hp.v‘rp.v 2 hp.v'rpv 2 hvap,v (C2-3)
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int

A int involves Tpv which we are trying to calculate; thus we cannot

solve the problem exactly in one step. We will therefore consider

only the lowest order corrections to the linear theory in this part.

For example to lowest order '{int is given by
K m
Lint -2 hp.VTp.V (C2-4)
/ int
Since " int involves one factor of K and one factor of hI»W' Tp.v

derived from /

L int will be of order Kz smaller than T;r; . As wa

will involve two factors of hpv it will also be of order KZ smaller
than T™ .

BV

Equations Cl1-40 applied to /‘g of equation A-1l give the result

™ =y v+%hw(-1i + %

pv " h ) (C2-5)

av,o0 ¥ %ov,0at Eon. ov_ 6av PO, PO

where U‘i v is the symmetric part of

1

h h +h h - h h +h h h h
‘z{ Yir Y 0 V YPr Y P V Py Y PV Y, Y )-Yp)\+ HYs Y AV, A
N T I A +h_h +h__h
T2 Y,y ZTpvL,00 0 Tup pvoo | TPV pPMART TPY P YV

1 1 1 1
hpvh'w+z hpa'“hpo. v 3 h'yh. . 5“[ zhb OB ot 2 b ooPoc

h h (C2-6)

1 1
-h - -
PY Aoy YA 2 hm{. Yy PN 4 hpa.khpo.x] }

We note that if the complete system were described by /. g alone, then

the wave equation gives

(-h +h +h

av, 66 Ov, ca 0a, OV 6“ VHpc,p G) =0
&
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and 'I“Ev of equation Cl-6 would be symmetric by the use of the equa-

tions of motion. If the exact equations of motion are used, then only

int
pv
Let us first suppose that gravity is interacting with matter fields

the complete tensor T = ™ +7T™ 4T
B nv

v is in general symmetric.

rather than point particles. For example a scalar field whose Lagrangian

involves only first derivatives has an energy tensor given by

m YA I
Tov * %0 36 ™ Suv-

(Such a Lagrangian is given in equation Cl-4l.) The interaction Lagrangian

to lowest order K ie given by

! _K m
~int =~ 7 hvapv

By equations Cl1-40 the interaction energy tensor is just given by

int K anno m
Tpv = - hpc [:p' b B7 - 6;.pro] (C2-6A)
» V

(In both T:‘: and T:::t no terms S appear in this example.) More

BV
algebra is involved when we consider matter fields of a higher spin,

or if second derivatives are involved in the Lagrangians, but the calcu-

int

lation of T™ and T
MV v

is still straightforward.

A problem arises however when we consider gravity interacting
with point particles. Equations C1-40 apply to a Lagrangian involving
only fields, but the author has been unable to apply equations C1-40
directly to a Lagrangian involving point particles. This would lead
to no problem if the particles did not interact with gravity, for Tﬁv
would be obtained by equations C1-40, and we already know T::; from
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equation B2-9. However {1nt involves both particles and fields and
T:f:f could not be obtained directly.

The following method was used by the author to obtain T:::f

when gravity interacts with particles. The complete energy tensor
must have zero divergence, and any approximation to the complete

tensor which is to be an improvement over Tni must have a di-

vergence that is smaller than T':n

.y, p DY at least a factor of K.

We claim that the improved tensor is to be of the form

= T8 m
Tpv TH" + 'I'!w + 'I“w

where Tﬁv is given in equation C2-5 and Tn: is from equation 32-9.

int

T,

. . m
ie to be determined by demanding that Tp.v, , be less than Tpv, v

by at least a factor of K. We know from equation 32-15 that

m Ly pm 1 . m i

Tav, v =~ Tou Toy = -2 [ah% v By, M]KTPV (C2-6B)
Thus T is already of order Kz smaller than T™.
uv, v v

By differentiating Tﬁv we get (From C2~5)

T8 =%([2th -h__ J}:2n  )N-B 5

By, v 'V PV B, ¥

Pvﬁuﬁ’ Gﬁ)
(C2-7)

5
ov, t:.ts,*r Kpa, va+ Evo, pa

which checks trat va v would be zero if we used the equations of

motion for the free gravitational fields {obtained from / alone).

We now see that if

pint 1 + R -8

wv -7 2 hup(—EPV. ac’ Hpa. ve' va, pa pvﬁnﬂ. aﬁ) (C2-8)
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then

int _ 1 . _ =
Tave v =72 %0, Wl Boy, aa® Pog, va' Bug, pa™ 2ovPap, ap!

and the divergence of the complete energy tensor is given by

g int m
Tpv, v = (TP"+ T“v + THV)n v

| ‘ .
-3 (Zhhp. v hpv.u)[ 'Hpv, aa’ Hpa, va" Eva, pa

eIl 7
- 6pv-ﬁo.;3.c{:"- Zh’rpv i

The term in the square brackets is of oxrder K3 (zero in the linear

theory) thus T is of order KZ smaller than T'T . To lowest

T (S P 4
order T;'::’ of equation C2-8 may be written

int m

T =-Kh T 2-

BV hup pv (€2-9)
which checks that T:ﬁf' is the tensor invclving both the fields and particles
that should be added to T8+ T™ .*

pv pv
The form ’I‘zﬂt = - T, is particularly simple, and to lowest
order may be expressed entirely in termse of the fields y 88 in
equation C2-8. One might wonder if this is the general form of T&‘%,t

even for the case of gravity interacting with fields. This is not so as

may be geen in the case of spin-zero fields.
The derivation of T&‘{f = -Kbp?’l‘g}, for gravity interacting with

particles relies on the relation ‘l‘pr%. v © ‘Iﬂpv Tpmv of equation C2-67.

For spin-zero fields where the energy tensor Tﬁ" is from the
Lagrangian Cl-41,

mo
= ep,“[fp

2
TR AR Y ]

2

4+

oo B 7
. K
=Xh o ¢ + Kh G - h g
PGI'Hvo po PO,0 7,7, P 2 op(p.’lqjop
where we used the equation of motion {to lowest order in hﬁ")'
@ ¥ paﬁfz =Kh o + Kb - -k h
) " mo PO PO 20,0 ,p 27, p",p
It is clear that TM" , 18 not of the form -3‘%‘, TIO
14

What happens in the case of a spin-zero field interacting with
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int

It is interesting that Tpv just cancels the part of va that

wag not symmetric (see equation C2-5), and we get

24 int .
TPV + Tpv 31‘“’

where va is the symmetric tensor given in equation C2-6. The
corrected wave equation to be tested on the orbit of Mercury is now

given by

= m )
- H}t viao t KOV’G“+ EW.G v 5 vBoo, oo = 2K(T 7, + U ) (C2-10)

where the inconsistency in C2-10 is down by a factor of KZ from the
linear theory.

To golve C2-10 to check the perihelion shift of Mercury, the
fields produced by a point particle waere {irst obtained by neglecting
Up v 'Next these fields were used in formula C2-6 to give Ij"L y+ Then
the wave equation including‘ Up y wase solved giving the corrected fields
h;v due to a point mass. To actually check the effect on the shift of
the perihelion, the work of Eddington (15) was followed closely, re-
placing the fields given in general relatively by h;w' The result: the
term ZKqu produced a correction to the fields, but no correction to

the perihelion shift, and the same wrong answer as given by the linear

theory was obtained.

gravity is that the correct Tmt civen by equation C2-0A may be
written in the form
™2 2 xh T®%4p
pV p pv v
It is the quantity ,upv 'I"f’-‘o that satisfies the relation

(5 + T™9 -r oy ET

mo)
nv pa S, Vv

v pv
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As we have seen, energy tensors for a given system are not
unique. We should ask if there is another energy tensor for the system
of gravity interacting with particles that, when used as the source of
gravity in equation C-1, does give the correct shift in the perihelion of

Mercury. There is, and this energy tensor is given by

- 1 i m -
Tpv = va+ V\pv ¢ T“v (Cc2-11)

where Wli" is given by

2
1 1
ox 5 {'Z . Vp 15 oPve? ap Zﬁvcipuhap 'thvhpc

1 1
B Z 5o’ph ave "2 bvpspchakha,\. 75 h wh - 3 Syoty p

1 1 1
-7 8,gbyph t g 8,8, Ghh+ 8 plzhgoh - .4 Boyboy

1 1
+3690 alan” -gépchh] } (C2-12)

We shall see at the end of part G that ’i‘fv may be directly ob-

tained as an energy tensor from the Lagrangian of gravity interacting
with particles. va was obtained in a unique manner by Feynman
using the methods to be described in part C3.

va and the tensor we obtained Ly equations CT1-40 differ by the
quantity va' W&-’- w» Peing symmetric, divergenceless, and itself a
second derivative, is just the form of the difference between tensore

obtained by equations C1-40. (See equation C1-47 which gives the differ-

ence between two tensors for vector fields. ) Ve will see at the end of
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part G that va is not likely to be obtained directly frorm equation Cl1-40,
but will be obtained as an energy tensor by the methods used in part G.
Thus we will verify the idea that gravity is a spin-two field coupled to
all forms of enargy.

The interesting result of this part is that two energy tensors

which differ by a term WP"

that is symmetric, divergenceless, and '
is itself a divergence, are not physically equivalent tensors. 3oth ten-
sors would lead to the same total momentum and angular momentum for
the system by equations Cl-2 and Cl-3, but this is not sufficient to
determine the energy tensor. Gravity interacts with the local distri-
bution of energy; a term that disturbs the local distribution of energy,
even though it does not affect the total energy of the system, changes
the gravitational fields.

This change in the gravitational field is tested experimentally,
for the fields arising from va gave the correct shift in the perihelion
of Mercury, while '1"’L v Up.v + T:f:) lead to the wrong shift. BSince

F

Tpv = Tp ot va, va has a physical significance.

C3. Feynman's Derivation of a Theory of Gravity

The linear wave equation A-13 written in the form 6. g/5hp Ve

/
-6l ,/t’:h“L , becomes

o

1 R o

X -m
1("Hpv,a¢7‘ &, b ’g'ZT

‘1<;=v.up+8:m.@ v uviop,op wv

The left-hand side has zero divergencs, while the divergence of ’I‘:’v

from CZ-6E is
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m

1 SR
v, v s-z[zhw'a-h 1XT

PO PO

"
To the lowest order in K the quantity KTPV/Z may be replaced by

fields using A-13. Ve get

K

m = - - [ &
.ZTP_V.V -~ 'E[thp.o, hm’p] i EPO.' aa‘ Epa’cu

The problem is now to correct the left-hand side of A-13 so that it will
have a divergence given by C3-1.

Suppose, for example, a term: of the form

K13

= Ehgp heg obo (C3-2)

were added to the Lagrangian of the fresc gravitational fields. This

would add to the left side of the equation of motion A-13

3
Gf bl 3 .
K -5-5;—; = 6*& vkhuﬁ.c huﬁ,o - ?,m,hé.L v,00 Pap” ZK_h"l v, G hpp,o (C3-3)
The divergence on the left-hand side of the equation of motion

comes solely fror: C3-3 and is now

2Kh o6, oulag,o ™ FEBLy, aavlop™ 2By, gobop, v

-2Kh h

LV, OV pp, G Zth v, ohpp. cv (C3-4)

These terms are¢ not equal to KTpV /2 given by C3-1, but they are
s

of the correct form and suggest the following procedure used by Feynman
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for obtaining the correct wave equation.

Write all independent terms (i. e., terms that differ by more
than a pure divergence) of the form C3-2, that is, with three h's and
two derivatives. Assign an arbitrary coefficient A — N to each of the
fourteen terms obtained this way, calling the sum of these terms F3.

To the equation of motion will be added

.3
K&F /5th

Then the relation that must be satisfied for a consistent wave equation

(to a higher order in K) is

3
8F K. .m
K( (L ) v ) -ZTP‘V'V (CS-S)

where K'r:f; /2 is given by C3-1.
C3-5 may be rearranged so that it is in a form that closely
resembles equation A-10; that is, an equation in which the sum of a

series of terms of the form (-1 + A-2D ... )Kh is get equal

PO, hpc. aa
to zero. Asg before, in order not to put arbitrary restrictions on the
fields, each coefficient is set equal to zero. This gives a large number
of equations for the arbitrary coefficients A, B, C,... which can be

solved to determine the coefficients uniquely. The resulting FS given

by Feynman is

3_K
K™ =g (hggPyeBag, v6© Pyslycas, 587 2aypeRap, vo
1 1
+ 2h wﬁay’ \{EM stz h aﬁhaf}—xya. v6t 37 h mhﬁﬁﬁy& vé)

(C3-6)
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This expression has been considerably simplified by judicious use of

MeosT

the notation Epv = h Bke derivatives have been put

v }iapvhoc’
on the last h by apspropriate integration by parts. The simple form
C3-56 will be useful in later calculations.

The I agrangian for the free gravitational fields consista of
terms involving two h's (equation A-11) which leads to the linear wave
equation A-13, and now terms involving three h's. For higher order

corrections to the theory we would add terms involving four h's, five

h's, etc. Let us label this series by

7 - 4 P
L =F-= F2 o xF « fF e k3F0 L.

where FZ includes the terms with two h's, F3 the terms with three

™

h's, etc, The exact condition that must be satisfied by the series ¥

is
fF U ot
6h|.1v 7 pv
oY
¢F B i K )
g = — T =. ;" = T , (C3-
< 5hp,v >’ v 2 Twuv,v effp 2 Taf
. U . . ERT -4 :
where Tpv,v T ap To.gi ig the exact relation B2-15, and “ap which

is defined in B2-14 rmay be expressed in an infinite series in powers >f
. Ve will show in the next part the method used by Feynman to sumn
the series in F, consistent with T3-7.

T et ug first checx that the addition of F3 to ig gives a thecry
wkich correctly predicts the ghift in the perihelicn of Ziercury. We

have



-83 -

The gravitational wave equation may be written

2 3
G ENARY S (©3-8)
p,v ¥ pv

Thus we can interpret the term '26F3/5hpv as the energy in the

gravitational field, where -26F3/6hpv is given by

3
87> _ . F _ 1
-2 EEPV - Tpv -2 {hup.ohov. a” hav.ahpu.o' B chup. v

1
2 h, uhpv. o~ 2 hox. vhax, oo hG)\hO'.\,p v Zhax.ahkp. v

* Zhokhp oV hUX,th v, \~ hO)\th,O 1N thnh, va
- thnhvn,oo+ z'hpuhvc, act thah(m,c vt hpvh.ao
1

1 3
°hpvhax,c vtz hh,,.w,mcr+ 4 hh, na hhcv.op“L apv(? hak,ohnx.o

1 1
! h, nh, a 2 hax,o hox, ot h, uhak, at hcxhcx, PP
1
- hox,o hnx. a 2 hh,oa - Zhohhu)\,on" hoxh.a A

1

+ghhg, o)) } (C3-9)

where

h = hcc'

We have already mentioned in part C2 that T:; from C3-9 is

related to the tensor Upv by the equation
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where U‘l was obtained by using equations C1-40, and WP" is a term

v

that alters only the local distribution of energy and momentum. It is

va and not Upv that gives the correct shift in the perihelion of the
planet Mercury.

Experimentally equation C3-8 is a completely satisfactory
equation for the gravitational fields, there are no known tests more
accurate than the shift of the perihelion of Mercury. The work of the
next part, to sum the series Fz + KF3 + K2F4 + ..., will be to merely

formulate a consistent theory of gravity.

C4. A Consistent Theory of Gravity

For this part we shall adopt the following notation

8= (8, + Kh ) (C4-1)

Pv = ‘l . Hn - M -
4 gpv ; thatis g 8oy = 5v (C4-2)
K
= + h -
Tlﬂo af 2 [ hb-“it g pphea haﬁo P]

='lz[gwx. BB @ gaﬁ.v] (C4-3)

v
Then I“M5 ap

view this notation is strictly a matter of convenience. The g“v= g;lv

= ng‘p’ as given by equation 52-14. From our point of

can be expressed in terms of the fields as is seen in B2-12

By _ 1 2 o 3 .
g = 6‘“ Kh“v + K h‘mhtw K hpahaﬁhﬁv+ ..
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Finally, for pﬁrpous of notation the coordinate of a particle zl
will be written with the index as a superscript, although there is no
change in meaning. Feynman's summation conv;mtion A-4A will still
apply to repeated indices.

In the above notation we have for the case of gravity acting on

a point particle

1
L aF-zgmﬁg (C4-4)
where
pv

and the condition that F must satisfy is given by C3-7

SF s. 1t Knap
( FV).v Tap 27

To determine F we shall show that equation C3-7 implies that
S.F d4x has a certain invariance property. We will then look for the
quantities of the form SF d4x which have this invariance property,
and then decide which of these quantities we have been generating by

2 . krd;...

the series =
As an example of this technique suppose we had the function

G(¢) which had the property that

§a¢)d4x (C4-6)

was unchanged under the substitution ¢ — ¢ + \, where \ is an infini-

tesimal quantity. Under this substitution &imz becomes
CH-
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g‘ Glo + ).)d4x = S‘G(op)d‘tx + S‘-a-b%ﬂ)- Xd4x+ terms of order xz

The quantity S _5;‘_1‘%2) rd*x must be zero if C4-6 is to be unchanged
under the substitution ¢ — ¢ + \.
To find the invariance properties of F we shall therefore look

for an equation of the form

oF 4
m;;kpvdxco

Equation C3-7 is

6F K ..af _
(%) , *Tas 2 Tn =0

n m

Multiplying through by gp_)‘. noting C4-3, we get

5F K pv _
gpx<‘65;;> Lty Z2Tm =0 (C4-7)

A\

Multiply equation C4-7 by an arbitrary vector quantity A" and integrate

the result over all space.

By /, v

A

Assume A" = A)‘(x) goes to zero at infinity. Integrate by parts the

term involving 8F/6hpv throwing out the surface terms and there results:

§F A A\ N 44
[ Sl SRVAEE RGN WL LY.

where we have used % T:;: = 6F/6h&v. This last equationmay be rewritten
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substituting for T, v and noting that 8¥/ Sh'w is symmetric in p

and wv:

1 oF N N
'ZS‘ TR [ngA vi8nA Lt By XA}\] ax = 0 (C4-8)
“v [ [ »

This is the equation that we wanted, and we see that the quantity

gF(h“vM4x, which is the action for the gravitational field, remains

unchanged if the fielde h“ y are replaced by the fields h:v given by
* . A A A |
hw = h’w + €] gpr. vt EBnA w8y, \ A | (C4-9)

The € is an infinitesimal constant to guarantee that the substitution
h’w — h:w corresponds to an infinitesimal change of the fields. (Re-
member that A)‘(x) is an arbitrary vector.)

The problem is to find the quantities S.F(h'w) atx which are
invariant under the transformation h“v - h:v. To do this the author

has found it convenient to study the transformation C4-9 iteelf.

By adding 6‘“ to both sides of C4-9, expanding g‘ml& M+ hp.a
and taking eal =(1/K)n)‘. we get
R
* a o a a
5‘-1:* thv’ 6“v+ Gmn’”g{, gt 5vn“.p+ ép“ ol
+ K(h 4+ S v h v +h %) (C4-10)

pv hw‘r}.v va ' p.v, a.“'

Now suppose we were originally working in Cartesian coordinates and

make an arbitrary infinitesimal coordinate transformation

N ey .
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From equations Cl-22 we see that the tensors 6"” and thv will

be transformed into

a [+ 8 (-3
6 ~86 =8 +8 nn’v+6mn.p+6uv' n

pv o Tpv T Ty Cp a

! a (L] a
Khv-" — thv = Khuvi- Kh’mn. ot Khvu'q.“+ Kth. oM (C4-11)

It is now seen that the sum of 6:*" plus Kh:w just gives the

right-hand side of equation C4-10. Thus we have the relation
» ] ]
6‘” + thv = pr + Khw (C4-12)

For an interpretation of this equation let us consider the action

for particles interacting with gravity:
1
= S'./. a‘x agrd‘* -3 g“w" Kh () ) TH(x) ax

Because the Lagrangian is a scalar quantity the action is invariant under

a coordinate transformation of the Lagrangian, with the result
S'[s () + Kb (x)] TH(x) d%x
=\ 18 (0)+Kn (2] T Pix)a*x
W * W x
But by equation C4-11

S[ 61, (x) + Kh! (x)] TH(x) a*

. 5 (8,02 + Kn (x] T (x) d*x (C4-13)

Suppose we were originally working in the x' coordinate system with
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the metric tensor 6;;\' and the fields h;v(x) were present. The
equation C3-12 states that we must get the same physics (since
SF(th)d‘ix = gF(h:v) d4x )} if we use the new fields h:v' but use a
different metric tensor aw(x).

That {8, if we make the transformation of the gravitational fields
h'1 v h:v we must change the geometry of our system in order to
obtain the same physics. It is therefore suggested that we look to the
theory of geometry for the quantities gF(h“v)d4x that are invariant
under the transformations C4-9.

Such functione are known from geometry to be
S‘(-slv 2 4% , S‘R(-g)l/ 248 .g‘R“"va(-g)l/ 2344 (C4-14)

*
and other functions constructed from the curvature tensor Ro. by where

g = determinant of SP-"

RM" = g“ﬁR

R= g“wa

apvp

It is now a matter of testing which of the functions ‘ 8

3 4

being generated by the series S‘(FZ + KF™ +...)d"x. The answer is

4 1 _al/2 44
gF(th)dx Py gR( gy’ d'x

The action for the problem of point particles interacting with gravity

Ts—ee Landau (16). \«“fe shall use the opposite sign for the curvature ten-
sor than that used by Landau (16). Uur choice of sign corresponds to
that of Tolman (17).
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is now given by
1 1/2 .4 1 2H SV -
S= ;I-Zz S‘R(-g) d'x - 2 S‘gp\'z Z ds (C4 15)

It ie conseistent with the action C4-15 to interpret gpvs 6!-'-"+ Khw
as the metric of space-time assuming that there are no gravitational
fields present, giving gravity a completely geometrical description.
This was the starting point of Einstein when he formulated the general
theory of relativity. The general theory of relativity may be formu-
lated from an action principle, where the action for gravity interacting
with point particles {8 just given by C4-15.

It is thus not unlikely that a meson physicist, first noticing
gravity only when he built too large a chunk of matter, would eventu-
ally arrive at the geometrical description of gravity postulated by
Einstein.

The meson physicist, being rather excited by the geometrical
description of the gravitational force, would probably set out to find
a geometrical description of the other known meson forces such as
electro-magnetic, (-decay, and nuclear forces. Our history does not
tell us whether he succeeded, but if he did he would have ample reason
to believe in the significance of a geometrical description of the world.
Failing to include the other forces in a geometrical description he
would have to content himself with the fact that the geometrical de-
scription of gravity is a great convenience in solving gravitational
problems, such as the formulation of the spin-two meson theory of

gravity.
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III. USE OF THE GECOMETRICA! FOCRMULATICN OF GRAVITY

In the general theory of relativity the effects of a gravitational
field are correctly described if one works in a curved s>ace of metric
g ., =5 + Kh .. This implies that the correct method for obtaining

(SN 14 pv
the interaction of a system with gravity is to write the action for that
system in a curved space of metric gpv. If then the explicit dependence
of the action gi the fields hpv is desired, the functions of the metric
\g]

tensor that ap;ear in the curved space action may be expanded in terms
of hpv‘

For example, the action for a system of non-interacting particles

is from part B2

s =.Mm g SbaV
Spm= -7 ) 8,,2"2%as

To write this action in a curved space we reclace the metric 6pV by

g v=spv+th

giving
p‘ o<

v.
” __m N 'p'v
Sm=-3 (L6, +rn 1282

which is exactly the result we had in equation B2-5,

The correct prescription for writing an action in curved space
is that the action be a scalar quantity in that curved space., Since the
definition of a scalar quantity is a quantity that is invariant under a
transformation of the coordinate system, this prescription implies
that the action for a system interacting with gravity shall be invariant
under a coordinate transformation.

We shall show that this condition on the action does in fact lead

to a consistent theory of gravity, and gives a method of calculating a
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conserved symmetric energy rmomentum tensor for the complete systems,
The prescription of general relativity does not, as we shall see, lead
to a unique theory of gravity, nor to a unique energy tensor for the

system even in the absence of gravity.

D, A CONSISTENT THEORY OF GRAVITY INTERACTING WITH FIELDS

For the case of gravity interacting with point particles, the

equation of motion for the gravitational fields was

pv
where F was the Lagrangian of the free gravitational fields and

Ti‘:. the energy tensor of the particles, satisfied the relation

Y it 0P -
Tonv =~ TapTm (B2-15)

Thus the condition on F that lead to a consistent theory of gravity

was

SF - -~ naf 2 -p &F (
= - TF =2 o C3-7
SEFV v af "m K “ap SEGB ( )

Suppose now that the L.agrangian for gravity interacting with

matter fields is written in the form
L =F+L (D-1)
mg

where IT'n g includes the Lagrangian of the free rnatter fields plus the
Lagrangian representing the interaction between these fields and gravity.

The equations of motion for the gravitational field from D-1 is



-93-

.gﬁ__ﬁF = - _6_{:_‘11.& (D-2)
uv Shyv
If we define
6L
T"mvghxzr'sf'nﬁhzﬁz[i— (b-3)

uv &

T e v =~ The T;‘fg (D-5a)
or
5
k) =-1t 'S'T"ali (D-5b)
( nv ).v ap oK ap

then we get the same condition on F as given in C3-7. Since F was
determined by condition C3-7, the theory of gravity interacting with
fields will be consistent as long as ng satisfies the relation D-5,

We will now show that if ng is obtained by rewriting Lm

*

in the curved space of metric Buy = épv + ;{hpv,

jL d4x is a scalar quantity in that space, then L satisfies con-
mg mg

in such a way that

dition D‘So
L et the components of the matter fields be given by qn. Let

us assume for sirnplicity that L » Which is a function of the qn and

mg

of the metric tensor gpv. is written in a form that involves qﬁ. gpv

and only the first derivatives of qn and gpv. I.e.,
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' - i . . n n -1,
ng - ng(ng'gpv.n 9 q.g ) (D-")
If the action S = 35 L d4x is to be a scalar quantity it must
mg J mg '

be unchanged under the coordinate transformation

t

xP - = x* o T’P(x) (D-7)

’

where r}“(x) is an arbitrary infinitesimal vector, ng, considered

as a function of g ;gM u;qn;qna will however be subject to change.
? 1]

“V
If under the coordinate transformation D-7

B By * Ggpv

" = " +6q" (D-8)

then

—

gpv,o. gp,v,o. + (53pv),a

n _, . .n n * a
Uq ~ 9,4 *(827) (D-3)

3
For example for a vector field A, under the transformation

x¥ - x M =xt .l s

Ay = A 22
)=

B P ex M
1 ]

8A (%) . 825" aAp(x) P

- = A (X) —yo——y "
ax © P ox%x b ox® ax™

¥e may write .( ) ' '
BAPX. BAp(x-ij) 8x°_ BAp(x)

)
v - L - A it
8x @ 8x° ex®  oax° K. Pa
and
BAp(x) Bx‘p___ BAp 8x° 8xp - 8Ap(x)+A nP s qF’
ox ¢ ex* 8x” Bx'C ox P ox KeP o PG Ly

Putting these equations together, we get
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and the change in Smg may be written in the form
el
6S ‘ ['5 mg . (BGL ) ]Sg vd4x (a)
mg J g guv.a ,a K
s~ ol 8l
e [ mg ( ‘;‘ﬂ—) ]Sq“ atx )
T
n 8q aq.a Q

(D-10)
where we have dropped the surface terms that usually appear in such
a calculation. The quantity D-10b is zero by the equations of motion
for the field components qn.‘ thus the first integral D-10a must be zero

if S,g 18 to be unchanged by a coordinate transformation,

Writing
oL ol mg
T_B - ..5__5 = Wg' = - 'r (D-11)
E.v ( gw.a) : 'Z'
we therefore get the condition
.1 Copv oopv 4
0=« 2—) ng 6g" d'x (D-12)

However under the coordinate transformation D-7 the quantity Ggpv

is given by
[ =g 'q°'+ nu + na (see equations Cl1-20)

Buv = Buv, 0" T Bua,v T By, pa

84’ (x)

x
axa AP-. Pan Auo pn (] Apo ana M Apno B

= Py P =
= (Au. p" Pn ) (6Au). a

The proof of D-2 for g,., or fields of various spin is similar to this
proof for vector fields,
-
The quantity [ (81 me/88,v) - (al. /8g.v ol 18 not zero by the
tidhal ?ie'lg be

equations of motion for the gravitati cause the Lagrangian
of the free gravitational fields has not been included.
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Thus the condition D-12 becomes (noticing Ti: =T ™ )

3

B ey pv 4
C = z}[ZTm ua”, * t ThgBuv, a” 4 a®x

Integrating by parts and writing a% = g%

o %
4
0=) “5[gﬁ ngﬁ;g v ¥ T“msf(r

Equation D-13 may be written in the form

~P 4, - ¢
)nS(X)[ngv vT*;‘ng]dx-o

Since 7 ,(x) is an arbitrary vector, we must have the relation

P

pv _rhk qop
ng. = raﬁ ng

which is just equation D-5a which is what we wished to prove.

E. CONSERVED SYMMETRIC ENERGY TENSORS

Ve are now in a position to write the general formula for a
symmetric conserved energy tensor for a system interacting with
gravity., To do this let us write the Lagrangian for the system in the

form
L =F2+(F-F)+L (E-1)
mg
- 1/2 ,,..2 2 . . .
In E-1, F = R(-g)’/“/25x"., F° includes those terms in the expansion

]
of F that involve the fields hpv twice and is given by equation A-ll,

L mg is the Lagrangian of the matter fields rewritten in the curved

"
R(-g)l/2 also involves terms that are first order in h,,, but these
form a pure divergence and have been dropped from I'H'.
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space of metric g“v = (6&&" + ‘;-’.h“v).

The wave equation for the gravitational fields may now be re-
written in the form

§§'=i[ 2‘{'5'5'

p.v

6(F F?)
} (E-2)

We have seen however that for a consistent theory of gravity the term
in the bracikets must be ’I"‘w. the complete, symmetric, conserved
energy momentum tensor of the system. (See for example equation C-1l.
Notice that C-1 has been muitiplied through by a factor of four,)

If we use the notation of equation D-l1

v 3 ng 6zf.m
2 ng = Sg = §Xh
BV MV
we get
‘ —l
™ W _pMF-F) (F-3)
mg i
MV
From the derivation we know that T"' is symmetric for it was ob-
tained by variation with respect to the symmetric quantity h“v , and
from the fact that

arz)
( p,v vV

n
<

v
we must have T“v = 0 for we have shown that equation E-2 is con-
1 4
sistent,
Suppose we wish the symmetric energy tensor of a system in

the absence of gravity. The formalism of writing the canonical energy

tensor and then symmetrizing involves a rather cumbersome calculation,
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We now have a direct method of obtaining a symmetric energy tensor
by using E-3 and then taking the limit as thv - 0. Since (F - Fz)

will not contribute in this limit, the symmetric energy tensor of matter

is given by
YA
1 pv _ m, -
-2 Th * R i (E-4)
TR 4 thv- 0

Equation E-4 does not actually rely on the existence of gravity

or curved space. Let the flat space action for a system be given by
- 4
S, = Sl.m a®x (E-5)

Now suppose that the action S m ie invariant under the coordinate

transformation

i - x'P = xV . ¥ (x) (E-6)

where n¥(x) is an arbitrary infinitesimal vector. Since n"(x) can
take on an arbitrary infinitesimal value at each point in space, the
invariance of the action under the transformation £-6 will mean that
there exists a quantity that is conserved at each local region in the
space. This conserved quantity will be identified as the energy momen-
tum tensor of the system.

This method of finding conserved energy momentum tensors
differs from the method described in part Cl. In part Cl we considered
the invariance of the action only under coordinate translations and
Lorentz transformations. Under these transformations the Gallelian

metric tensor § _,
p,V
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is unchanged. Thus if the action was originally written in a Gallelian
metric, then it will remain in a Gallelian metric under the transfor-
mations used in part Cl.

Suppose that the action is originally written in a Gallelian metric
and we use the coordinate transformation E-6. The coordinate system

]
x ¥ would then have a metric gw defined by the relation

Z_ BV - W 'V
L] ~6uvx X -gpvx X

If we write g“v in the form
g .,=8 +k

By pv pv
then

. o a 2
kM" = G.mn.v + avoﬂ.p 4 terms of order 1

as may be checked by direct substitution. Thus the transformation
E-6 leaves us with an action that {s no longer in a Gallelian metric,
but which must be described by curvilinear coordinates.

We would therefore be led to write the action in curvilinear co-
ordinates. This would give us the same form for the action as ng,

except the metric would be

a flat space metric. Designating the action written in curvilinear co-

ordinates by S mk’ the condition that the action be unchanged under the
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coordinate transformation E-6 is

Y(%%“—lk— > Bk, = 0

in analogy with equation D-12. The resulting conserved energy momentum

tensor is given by

1 v 6!‘mk *
- Tp' = (E"?)
2 m KEW k =0

pv
for all the steps are similar to those used for the case that gravity was
present.
The only difference between equations E-7 and E-4 is that E-7

does not rely on the use of a curved space for its derivation.

F. NONUNIQUENESS OF THE INTERACTION OF GRAVITY WITH FIELDS

In the previous parts of this section we have given the prescription
for finding a consistent theory for the interaction of gravity with fields
of matter, and for finding the total conserved energy momentum tensor
for that system. The prescription relied on writing the action for the
system as a scalar quantity in the space of metric gpv= GP-"+ Kh“v.
Since there is no unique method for rewriting, in a space of metric gpy.
an action known only in a flat space of Gallelian metric pr. the above
prescriptions are not unique.

Consider for example the action for the electromagnetic field.

Two flat space Lagrangians, already discussed in part Cl, that lead to

%
This is the method used by Landau and Lifschitz (2) for obtaining sym-
metric energy momentum tensors.



~101-

the same action are

c 1 :
4ﬂ[,m = (Ap. VAP‘ v AP’ VA, “) (C1-44)

rd _ 1 -
anl = 2L VAL v AL LAY (C1-45)
4"!‘?:': is obtained by adding to 4"/*:1 the quantity
L, a0y +ra, A (F-1)
'Z v, v oy 2 V,p B \ 4
1 .
=-z(a, vAp'p- AV'FAP' . [Av' w” Av’pv]AM) (F-2)

Since the order of partial differentiation may be reversed the terms
in the square brackets cancel, and F-2 added to 4m’_:n gives 4“'/‘2—:
c d
To write [‘m and Lm in the epace of metric gw. we shall
introduce the metric tensor for each surmmmed index, replace partial

derivatives by covariant derivatives.* and replace the volume element

d%x in the action by (-g)l/z atx. /‘::n and /_Sn become
c ap_po 1/2 -
ng '8"' g 8 (Aa ip” Bio Aa;pAG;BN'g) (F-3)
d __ 1 af po - 1/2 _
‘/’mg -gy8 8 (Aa;pAﬁ;O" Ag;phe; o-8) (F-4)

Although in flat space

d
S‘/.:nd‘}x= S.Cmd4x .

the corresponding actions in curved space are related by the equation

—
We will use the notation ;u for a covariant derivative. For example
KR S
= -
Vip v, p v o
dﬁ - Taﬁ + r Tpﬁ + Y‘"ﬁ TP
etc. d ' ¥ s
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Pl

d L4 i re
L =
’B d s L}L

4 LY /2 4
mg mg d'x - ?’.fj R A“AV(-g) d'x (F-5)

L S o . . .
where RY" is the curvature tensor. Since the action of the free gravi-

tationa! fieids is given by

SE bzi? (; Euv RW"E’I/Z a*x
only in the absence of gravity can we set the curvature tensor rHY
eqaal to zero., Thus we have generated two nonequivalent, but consistent,
theories for the interaction of gravity with electromagnetic fields,
The reason that the two actions g‘[. d d4x and { L€ d4x differ
~ J mg J Tmg
by the term - '817:' 3 R“VA“,AV(-g)l/Zd‘lx may be seen ae follows. If

either of the terms of F-l are separately written in curved space they

remain a pure divergence; i. e,,

»
1 . 1/2 1 o 1/2
- 78%P% AsupipPo’ Pajpfio;pl (-8 /2. . 3 LA A% (-0 2 o [(F-€
and
1 af po 1/2_1; ,e ,0, \1/2 .
t38 8 LAy oshsiAg Ayl (-8) Te gl AL AT (F-7)
However t: obtain 1’.':“@ we did not add the term
1 ap_po /2 1 -
E g g [(Aﬂ;ﬁ;p- AQ;P;ﬁ) AOJ (-fy) X in (F (')

*For examole F-0 rnay be written (noticing Ac_1 is/scalar) /
a C., ,¢ ,0 12_,,0 o’ \1/2, ,a ,C 1/2
[(A ) A £ A 1 gy "= (A ) (A (-g) A A (g

;0,0
‘ 0.5 1/2 o 1/2
¥ A?GA ' g5l-8) /2 [A?aA (-g) / ) o

1/2..6

1/2
where (-g) / o =(~-g) g6 "
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because (A pV)Ap. wasa cancelled in flat space before the

v,vu~ Av,
lLagrangians were written in curved space.

Since

- N b
Aa;ﬁ;P' Aa;P;ﬁ - AkRePb

the term F-8 is just

3117— RuvAuAv('g)l/z (F-9)

and this is just the term missing in L?ng .

Let us assume that the only restrictions placed on a curved
space action are the following. First, the action shall be a scalar
quantity in the space of metric gpv. Second, in the limit of flat gspace
we return t. the original flat space action, Third, the same number
aof field components qn shall appear in each term of a given curved
soace Lagrangian. Fourth, each term of the curved space lLagrangian
shall be of the same dimensions without the introduction of new con-
stants, (This limits the number of derivatives anpearing in a given
term in the curved space Lagrangian. ) Let these restrictions be
labeled by F-10,

So ; Vo

L , and élr‘x:?g a particular choice

Let us dencte by ng. mg

of curved space Lagrangians for the scalar, vector, and tensor fields
P A“. and hpv‘ The most general curved space Lagrangians con-

sistent with the restrictions F-10 are

*
See for example Landau (18), Note again that we are using the op-
posgite sign than that used by I andau for the curvature tensor.
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"fng = z’.f;g i iRoe(-g)L/? (F-1l1a)
i’.‘:ng = L‘;ﬁ’g + mRaﬁAGAﬁ(-g)l/ 2, nRgaﬂAaAﬁ(-g)l/ 2 (F-11b)
LT = LT 4 arPoPon b (-g/21 5R%PEPOn (-9
' cRaﬁgpoh h (_g)l/Z . ngaBgPoh B (_g)l/?.
af po o Po
+ eRgnﬁgpahQﬁhpa(—g)l/ 2 (F-llc)

where the constants a, b, ¢, d, e, f, m, n are arbitrary,

We might include the further restriction that we only consider
curved space Lagrangians that are obtained from a flat space Lagrangian
"directly, " that is, by introducing the metric tensor for each surnrned
index, replacing partial derivatives by covariant derivatives and intro-
ducing the (-g)l/Z for the volume element, (Reastriction F-12,)

If the flat space Lagrangian involves only first derivatives of

the field components, and the L:ng are obtained under restriction F-12,

then the most general curved space lI.agrangians are

L . " LS;g (F-13a)
v _ Vo ap 1/2 B

ng = z”.mg + mR%A Bg(-g) (F-13b)
T _sTo af po 1/2 -

!.mg = Iimg + bR h hoa(-g) (F-13c¢)

The terms with arbitrary constants m and b only appear due tc the
possibility of interchanging the order of covariant differentiation.
Since the fields hpv are symmetric, we get the same number of arbi-

trary terms for the tensor field as for the vector field.
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If the Lagrangian involves second derivatives, and a second
derivative is written in curved space in the following manner (using

AP- as an example)

r A F-14
o " ( )

A —
pe Q03 Au;u:ﬁ HH

then the most general curved space Lagrangians are still givén by
equations F-13. (We may also add pure divergences to the Lagrangians
in F-1l and F-13, but such terms will not lead to different actions.)

We will see in the next part that the restriction F-12 is not the

correct restriction for all fields.

G. NONUNIQUENESS OF ENERGY MOMENTUM TENSORS

At the end of part E we described a method of obtaining energy
momentum tensors that relied on writing the Lagrangian for a system
in flat space curvilinear coordinates, The procedure for writing a
Lagrangian in flat space curvilinear coordinates is similar to the
procedure for writing the Lagrangian in curved space as was described
in part F, The only difference is that in flat space the metric tensor
gpv = 6p9+ kpv(x) may be obtained from the Gallelian metric GP-"
by a coordinate transformation, while the curved space metric
g, =96, +Kh cannot be 8o obtained. Thus the formulas F-l11

wy pv p,V
and F-13 may be considered as formulas for lLagrangians written in

flat space curvilinear coordinates, as long as we use the metric
gp.v = 6“." 4 k“vo
In equations F-1l1 and F-13 the Lagrangians differed by terms

involving the curvature tensor. In flat space the curvature tensor is
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zero, thus the possible Lagrangians for a given system are equivalent.
(They may differ by a pure divergence.) The question is therefore,

will we get the same energy tensor for a system by equation E-7

YA
1 .m mk
- T = m—-——— (G-l)
Z twv [TAd k =0

if we use equivalent flat space Lagrangians?

The answer i3 that two Lagrangians that differ by a term involv-
ing the curvature tensor lead to different energy tensors. We may
investigate the difference between energy tenscrs for a given system
by writing all the possible terms involving the curvature tensor and
aprplying equation E-7,

Let the Lagrangian for a given system be written in the form

Lmk = L‘;nk + £(R) (G-2)

where f(R) is a function of the curvature tensor, and [’:nk is one
particular choice of the curvilinear Lagrangian. The energy tensor

from L is
m

k
o/ i _ 264(R) (G-3a)
BY SEp,v k =0 “%uv |k =0
Thg uv
T =T + W (G-3b)

T84 pv YA

obtained from {(R}, the difference tensor.

We shall call Vv _,
p.v

To find va {or TZV ) by equation E-7, we need to keep only
the terms in the curvilinear Lagrangian that are first order in k#"'

To lowest order in kpv the various forms of the curvature tensor are
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pepo _
2 = 4 - -
R &po,ap” 8ap,po” 8pp, 00" Eoa, p3

Gﬂ = i - o -
2R = g4, o’ 8ap,00 " %0p,0a” Boa,08

2R = Bgo_q' pp " Zgop'op (G-4)

Ve hen gpv = 6“v+ k;.n.v has been obtained from 5‘“ by a coordinate

transformation, i.e.

=n, N,

ku" my s
then the terms in G-4 will cancel, However, if we apply equation £~7
before canceling the terms in the curvature tensor, we get a non-zero
contribution,

The most general curvilinear Lagrangians of the form G2 for
scalar, vector and tensor fields are given by equations F-11, (We are
assuming the restrictions F-10 and that we are dealing with linear

theories.) The energy tensors corresponding to the Lagrangians i’fnk'

v T . ;
L mk® and[.mk of equations F-l1 are given by

S _ /So 2, \1/2
Lmk - ['mk * fRy (-g)
S _ .So 24
T{,-wv =T k" Zf{(ﬁuv’ipc - agpévo)“’ i po (G-5a)

LY =LY® +mr%a a (-g)/2 4 nRg“ﬁAnAs(-g)l/z

m B
W o Vo s - s
Tuv = T“v Z2ni (ép.vﬁpc appévo)AcAa} , PO

- mi8 L A AGT B gh Ay m 8 AR, 6voApA“}' po- (G=50)
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T

v is

and for iTr;;g given in F-llc, the energy tensor T

T

Tuv uv pv

where W'T‘lv is the symmetric part of

- {2ah ~2ahvohu +b6 h h +b&_ h h

poluv P’ Tuvipaioa’ CUpo pe av

- 2¢cd _hh

- 2b8 o, b+ B hh B ohh upPByo

- + - 3 - ‘
+2d(8,, 650" 8,8, oMb ghoat 26088 .= 8, 8, Jhh} o (G=5c)

Vhen the a, b, ¢, d, e, f, m, n are arbitrary constants ecquations
G-5 give the most general energy tensors obtainable from equation E-7.
(Again assuming a linear theory and restrictions F-10.)

We note that all difference tensors ‘;“iuv are symmetric, have
. zero divergence, and are a second derivative. Thia is the same form
as the difference tensor as obtained by equations C1-40,

If we add the restriction that the curvilinear Lagrangian i3 to
be written "directly"” from the Gallelian I agrangian {(analogous to
restriction F-12) and that the Gallelian Lagrangian involve only first
derfivatives of the field components, then the only arbitrary constants
left in G-5 are m and b, This means that for a scalar field the
energy tensor is unique, and that for a vector field WXV must be of

the form

wY LA +6 A A -8 A
Bo

w™ Buafefio Spofuy pBv™ Suahphyl os

But this is exactly the situation we had when we used equations Cl-40,
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(See equations Cl-47 through C1-49,)
Possible Lagrangians for scalar, vector and tensor fields that

involve only first derivatives are

TAY equation Cl-4] for scalar fields
LS of equation Cl-44 for vector fielda
['g of equation A-l]l for tensor fields

When these Lagrangians are written "directly"” in curvilinear coordi-
nates and equation E-7 i3 used to find the energy tensor, the results
are the same as obtained by equations C1-40, *

It therefore seems likely that equations Cl1-40 are equivalent
to E-7 when E-7 is applied only to a curvilinear Lagrangian written
"directly” from a Gallelian Lagrangian involving only first derivatives
of the field components,

We should mention that we obtained a difference tensor

- 2

Wiy = 1608567 6,p8001? ) | o

for scalar fields by comparing the symmetric cannonical energy teasor
b
11} 4
sense equations Cl-40 gave the sarme general results as in G-5a for

0 with the complete energy tensor, (See equation Cl~43.) In this

scalar fields., This indicates that some modification of equations Cl-40

/

might lead the full range of energy tensors in G-5.

¥ith the spectrum of energy tensors presented in G~5, and with

-
Cl1-40 also gave rise to terms that destroyed the aymmetry of the energy
tensor, but these ter:ms were zerc by the equations of motion, We are
neglecting such terms.
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the evidence from part C2 that there is physical meaning to a particular
choice of the difference tensors va' is there any generally valid rule
for selecting a particular energy tensor for a given system? The author
has found none. For acalar and vector fields there exists only one
energy tensor in G-5 that involves only first derivatives of the field
components, * but no such energy tensor exists for spin-two fields,
Thus the requirement that energy tensors have only first derivatives
is not general. In the one case where we have experimental evidence
(the ernergy tensor of gravity), second derivatives are involved.

To survey the possible energy tensors for spin-two fields,

choose the Lagrangian A-11 written "directly” in curvilinear coordinates

as [Ix;?k‘ The energy tensor we get from [:’::k is
8[.T°
-z..ﬁ_’!‘_‘f_. =U (G-6)
uv k =0 v

uv
where U“v is just the energy tensor of equation C2-6, Upy was ob-
tained from A-ll by equations Cl-40 (within terms that are zero by the
equation of motion of the free fields) which checks the equivalence of
the two methods of finding energy tensors.

We can now see that there is no energy tensor for the spin-two
fields that involves only first derivatives of the field components.

Using equation G-5c, the possible terms in the energy tensor that have

a factor § are
p.v

*Namcly the tensora T:ﬁ and Tz,_, of equations Cl-42a and Cl-44a.
r

Any W v added to these tensors involves second derivatives of the

field components.
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1 1
6}”{ vs h. pc'hpo" = hpahca, pa} (from U“v)
+6 ,{blbyg oohotboghoy oo) - de(hh o)

h

c(h +h __h__) - 4d(h

po,pc ,po po (G-7)

ap,00 "ap'}

By no choice of the constants b, ¢, d, €, can we eliminate the terms
involving second derivatives,

There is, however, at least one well defined choice of a curvi-
linear Lagrangian for spin-two fields (leading to an equally well de-

fined energy tensor), The lLagrangian

. 1/2 g@PgPI Y0 -
Lgk g) g B (hap;yhpo;a haﬁ;yhPO;G

- pap
2h b +2h  _.h 6)+ER %

ay:8 pbic ay;p po; po un
+3 L roP 8" b apPop” PagPpo)
- 5 Re®P(h g~ 3 b gho o) (G-8)
which corresponds in F-llc to the choice of the constants
a= =—c=£—,d=-1§.e=I}6— (G-9)

is: symmetric between the fields hHV and the geometrical quantities

kpv (if we keep the terms in Lmk that are first order in kﬂ")' By

this symmetry, we mean that if a term, for example of the form

kpvhy,v ch.c appears, then the terms hp.vi‘pv,ah and huvh;;v P
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also appear with equal coefficients.

The energy tensor from /'Sk is
;o ¥ -
-z-mf;-k =0=UP"+%P"-TP" (G-10)
BV

where va is the difference tensor given in equation C2-12, and va,
the tensor obtained by Feynman, ls given in equation C3-9.

Because this derivation of the tensor Up.v + va required the
use of all five arbitrary constants, it is probably not derivable by
equations Cl-40 as they now stand. However, qu + V;’pv was derived as
an energy tensor {without the use of curved space). Since Upv + va,
the same tensor as obtained by Feynman and Einstein, is the energy
tensor that gives the correct shift in the perihelion of Mercury, we
may consider gravity as a spin-two field coupled to energy. The diffi-
Acultyis that we need an extra condition to define the energy.

Thus the connection between gravity and geometry, originally

stated by Einstein in the general theory of relativity, is also seen

when gravity is treated as a spin-two field coupled to energy.
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IV. INTERACTION OF GRAVITY WITH ELECTRONS

In this section we shall derive the interaction of gravity with
electrons in a manner that treats gravity as a spin-two field. The
method will be to rewrite the action for the free electron fields in a
curved space of metric gpv = 6p_v + Khl-l"" We have seen from part D
that this method leads to a consistent theory.

Our first problem is to find the correct flat space action that

is to be rewritten in curved space,

H. FLAT SPACE I AGRANGIAN FCR THE ELECTRON FIELDS

The flat space Lagrangian for the two independent electron

fields ¢ and ¥ is usually given by the formula

Le=TY 4, , - mTy (H-1)

where the Dirac y matrices are defined by the commutation relation

-— - — *
YuY¥y TYY, =28, (H-2)

The equations of motion for the fields | and ¢ are given by

6L sl
-0 d -2z
W an 5{5

For example, the eguation for ¢ is given from Bie/ﬁm as

i:(-PkP’ b myp= U

i

As we will later need to distinguish between a curved space and a
flat space y matrix, the notation y will be used for flat space vy
matrices. b
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which is just the Dirac equation for a free electron.,

The electron Lagrangian H-1 is not the only form for a flat
space lLagrangian for the electron fields. First of all any Lagrangian
differing by a pure divergence gives an equivalent action for an
electron, Secondly, the equation H-2 does not uniquely define the
flat space y matricés; any set of y matrices satisfying H-2 will
lead to the same physics of the electron provided the correct wave
function is used.

To see the possible choices for a flat space Lagrangian sup-
pose that the particular set of y matrices ?; had been chogen. Let
the wave functions associated with this choice of y matrices be given
by t',:' and W'. If one choice of the Lagrangian for these fields is given
by

223774 - mTy (H-3)
e L

then another choice is

2 t __l 1 ) t
L= T ¥, ¥ -mT ¢ (H-4)

for Lle and Li differ by a pure divergence. The commutation relation
¢

satisfied by the y matrices 7}1 is

1! 1 _1

Y, Yy + Y, ¥, = 26 (H-5)

LV

Now let ue assume that we wished tc use a different choice (or
]
representation) of the y matrices, namely % related to Y, by the

equation

¥ =57y s (H-6)
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1

where the operation S~ _y-p.S represents a unitary transformation on

the 4 x 4 Dirac y matrices; sls =1,

Equation H-5 becomes

1 1 “l= 1

s~ ?ps.s’ Y,S +5Y, 887 7ps = zapv
or 7
- == -1
V.Y, + Yy, = ZSGyVS = Zﬁpv (H-7)

We get the last step for S must commute with 6pv; thus matrices
?p satisfy the correct commutation relation and are a possible repre-
sentation of the y matrices,

The lLagrangians l.le and :"..i expressed in terms of the Dirac

matrices ?p now become:

S U v se' =(set -5 o
L g ifs ypa\b’p myy; b‘P’p (S¢ ).p “’.p"p

R DT oo S WL S -
Lo=i({s ), L8¢) -8 8 (S4)] - m(T 5 HSY)

1f we define

S¢ = ¢
*

T =s s}

Y .
we get

VST (0 - T ouj - -

Lo=1Ty,[¥ - D4l - mTy (H-8)
e will also get

2_ - LT -7 - W i)

Lo=-ilT +T " 1¥ 4-mTy (H-)

x® = . . . .
Note that ip ie a spin matrix as well as a spatial vector,
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Any linear combination of these two Lagrangians is the most

general Lagrangian we can write for an electron in flat space.

-~
P
§

e note that in flat gspace the quantities can always be
eliminated by an apuropriate choice of the representation of the vy
matrices. For the so-called standard representations where the

Y matrices are not a function of position the .:p will be zero.

J. CURVED SPACE LAGRANGIAN FOR THE ELECTRON FIELDS

A prescription for writing a curved space lLagrangian is to
introduce the metric tensor for each summed index, replace partial

derivatives by covariant derivatives, and replace the volume element

1/2 d4x.

d4x in the action by (-g)

It was noted in section III that in writing the curved space
action, terms involving the curvature tensor might also be added,
for in the limit of flat space the curvature tensor goes to zero and
such terms would not contribute to the flat space Lagrangian. These
terms do contribute to the energy tensor of the matter fields however,
changing the coupling of gravity to matter even in the limit of the
linear theory of gravity.

In the case of electrons we have a unique prescription for
identifying and excluding such terms. /e will see that the energy
momentum tensor for the free electron field involves only terms that
have a single derivative, whereas terms derived from an expression

' *

including the curvature tensor each have at least two derivatives.

‘We shall therefore assume that the curved space action for the

-
See part G,
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electron field does not involve the curvature tensor.

To write the electron Lagrangian in curved space, we will
adopt the convention that the fields ¢ and  are scalar quantities,
while the y matrices transform as vector quantities. * As the partial
derivative of a scalar quantity is the covariant derivative, no change
in the quantities q:‘ " and W. " need be made.

The flat space y matrices satisfied the cormnmutation relation

VY, FYY, =26,
We will assume that the curved space y matrices are obtained by
merely replacing the metric tensor 5p.v by gpv giving

Y.Yy Py, = 28, (J-1;

where yp is now our curved space vy matrix, satisfying the com-
mutation relation J-l.
Finally, we will assume that the quantity f'p appearing in the

flat space l agrangians if.le and f.i becomes E"p in curved space.

The curved space Lagrangians corresponding to Li and iz now

become
L, a2 Ty b - T 4] - mTe) (3-2)
72 = (. 1/2 -3 o~ | - -
Leg= (&’ "{- 110 +8.7 I¥7b - mTy) (3-3)
where we have used the notation
B RV
Y =8 Y,

*An equivalent choice is to assume that the y matrices do not trans-
form under coordinate transformations, and that the fields ¢ and {
transform as spinors. This leads to the subject of spinor analysis
(see ¥/, L. Bade (19) ) which is somewbat cumbersome.
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It follows that y” satisfies the relation
YWy oy = 2" (3-4)

The question is, which l.agrangian, Lleg or ng. is the
correct curved space Lagrangian. In general they will not lead to
the same physics for they do not differ by a pure divergence., It was
true that the flat space Lagrangians LL and Ilz differed by a pure
divergence, but this property was lost in the generalization to curved
space, If for example we have l"p = 0, then

LZ

Y SR TR M STl N R e s o

Ve can see that the last two terms, which destroy the equiva-
lence of the two Lagrangians would be zero in flat space. (In flat

space we could choose constant y matrices and use a coordinate

}1/2 =1.)

system where (-g

The fact that [‘leg and ng are not equivalent leaves us with

an infinite number of nonequivalent theories for the interaction of

electrons with gravity, depending on the linear combination of L};a
-]

and Lig that is chosen for the Lagrangian of the system. One way
out of this difficulty is to find a value of the quantity E"# which makes

f1 /2
“eg and ~eg equivalent.

it

If we drop the restriction ip = 0, and note that

1/2 _ 1/2 .o
(-g).P = (-g)’ " i o

we get
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2

L =£1 4 (- I/Z. 3] + "'F"O‘ -7 v, P‘[‘
eg “Ceg PR TRV N AV T - By Ay T T

+ a pure divergence {J-5)

For [.2 to be eguivalent to Ll we must find a value of [° for
eg eg B
which the term of J-5 in the square bracikets vanishes. That is,
we must satisfy the relation
- oMy NV Bo o UM .
YI, I =y, ty Do® Y, (3-6)

(o) -
i pv

where the quantity Y':v = y’jv ty is just the covariant derivative
of the contravariant vector y"t , and in J-6 we have summed over the
indices p and v, *

The equation actually solved was not J-6 but the more general
form

Vv . v 14
- T - = J-7
voi, ¢+ lpv Yy (J-7)

£ 3
with the result

*This is different than the notation in the literature. The literature
is concerned with the ideas of spinor analysis in which the transfor-
mation oroperties are put into the fields ' and ¢, and the y's are
considered a metric tensor in spin srace. It is desired that the co-
variant derivative of the spin metric be zero (in analogy with the
choice for tensor analysis), therefore the covariant derivative of a y
matrix is taken as
<o L RN
Y':v = Y’:V +ypf‘;v -~ ,‘«,'vyp +y"iv =90

consistent with our condition J-6.
¢y and |y are no longer scalar quantities, but spinors, and as
such have a covariant derivative given by

V=¥ - TN T =T 4T
See Wheeler (4 ). '

ok
See Appendix III for the solution of J-7,
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o a

1
E =3 Vg Y (J-8)

where Yum =Yg, o Y pftfp. is the covariant derivative of the covariant
vector y . We note that a solution of J-7 is also a solution of J-6.
- 1 2
VWith the choice J-8 for 1" L and L differ only by a

T tut Teg eg 4
pure divergence and are thus equivalent, It is convenient for later
calculations to choose a symmetric combination of the two Lagrangians
'

1,71 2
L ='Z(Leg+'£eg)’

eg

Leg = (-a)"/ % %m y”‘tlf.p- %:F' P\'”\P -mUy

. [Yﬂy + I YM] .
-i% ._&T.E... $ ) (3-9)
where
B v OB
vy I +iy
BB 1 r 1 a c_u .
) = glYyg Y +yg,Y Y] - (3-10)

ife EXPANSION CF THE ELECTRON LAGRANGIAN IN TERMS OF

THE FIELDS h ,

To find the dependence of the curved space Lagrangian J-9
on the gravitational fields hpv we must first find an expansion of the

curved space matrices that satisfy the commutation relation
v v v
Yy oty vt = 2gt

To do this we shall look for a relation between the vector quantity YN

‘Lel alone was originally used by the author, but the test of the gauge
imeariance of certain calculations became too difficult to carry out.
The symmetric form of the interaction leads to a far simpler calcula-
tion of problems such as the scattering of gravitons by electrons.
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in curved space, and the vectors .y—a in flat space.
A theorem of curved spaces is that at each point x in space
time it is possible to transform from general coordinates xi to a

syatem ':'E1 whose metric is flat at that point, i.e.,

(K-1)

WWe must use a different transformation at different points in space,

therefore
a"; = a';(x) H b‘: = b&(x)

At a particular point in space time we have the relations

a a;d;:u %P =5 ax%xP

2 v
ds” = guvdxp‘dx =g ap

p,v

B
g,v3,

v
wia?p = 8qp i

For this point in space the relation

implies

oY

g* (Yo7P + 7P ) = 26°PgHY (K-2)

For an arbitrary metric g“v the solution of K-2 is
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VOVP + 7Py 2%

which is the correct commutation relation for the flat space y matrices,
Thus at any point in space time we may take as the relation between

the curved space y matrix yi" and the flat space y matrices -‘;-a

The following relations between the various y matrices and

transformation matrices may easily be verified:
Y“ = ai;(x)-y-ﬂ VQ = bz(x) Y’r‘

= % ()T T =M
Y -bu(x)\(u Y © au(x)yu

m

ab (x) b} (x) = &},

Bupaﬁ(x)a;(x) = g“v
6 apbnx) BE(x) = g, (K-3)

¥#e now wish to use the point of view that a curved space may
be replaced by a flat space plus gravitational fields in order to find
the dependence of the quantities at(x) and b':(x) on the fields hpy.

g
For example, the relation 6apb:bv * By becomes

b 5., 1t Kh“v (K-4)

pelva = 8y
To obtain a series expansion for bpv that satisfies K-4 con-

sider the expansion

2 3
b= +xn/2=14+ %h-%h2+§§gh3+.,. (K-5)
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If indices are now put in -5 we might believe that the correct ex-
pansion for bp,a is given by

K K2

bp.a = OHO + -5 hp.ﬁ - T hgmhpa + aee
That this is indeed the correct expansion may be checked by substituting
intc K4,
From the relation az b3 = 65’ we would expect that agw, would
be the reciprocal of b;m' or that the numerical coefficients for the

expansion of au@ are given by the series

K. 3k% 2 15k° .3

This is correct and the series ‘expansions for a}m and bém are

given by

2 2
+K K 3K

bua pe 2 ham' 8 hpphpa+ 48 hpphpoh.ou e

]
o

2 2
- K, 3K . 5 .BK

a;.w T w2 hw’ 8 TP pe I8 hpphpchca UERE

/e note that the choice K-6 implies that the quantities b{w and

43

a;.m are syrmmetric in the indices p and &, This is because we de-

manded that bs‘m and a be expressed as a series involving only the

pa
symmetric fields in a Lorentz invariant manner, It was thus impos=
sible to write an antisymmetric part for bM o and 8 .

i"e shall now write the curved space lagrangian J-9 exactly

2
in terms of the quantities a“a. b“ﬂ. and (—g)l/”. 43 the expansion

fur these quantities in terms of huv are now known, it will be merely
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a matter of using these expansicns to the desired accuracy to obtain
the Lagrangian for electrons interacting with the gravitational fields
hu"'

[eg is given by

Log = (-2 (& Ty IICE * JVE R T VSR v 1)

In Appendix III it is shown that

1 —
vy = 7y

1 a - -
5O VoY gy u¥v¥p 2pp2av® (K-7)

PR av uea, B

where y y,Y p is the completely antisymmetric combination of the

three y matrices 'i'“. Y, and '\79. That is

- e 1 — — ] — -
= - + -
uYvY¥p ST A TRA T A PR AN

— amn  ape

pivip

may also be written in the form

where e’w po is the completely antisymmetric unit tensor, defined
so that its components are zero unless p# v # p # 0, and equal to *1
according to whether pvpo is an even or odd permutation of xyzt.

The matrix ;5 is defined by

75”7¥§§7£7t
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The Lagrangian L using K-7 now becomes

eg

L, =Ly

eg .‘F.ﬁ'm‘ﬁ;aq’)aaﬁ‘mm‘p

- %m ;g—.vv ‘papﬁauvbpa. ﬁ} (K-9)
(-g)l/2 =1+ .I; h+3-h"-=phgh g+

af af - h ap —8' haahaﬁ

K
bap = Bap * 7 Pap "B Paplpp *

I. INVARIANCE OF THE EILECTRON LAGRANGIAN UNDER CC-

ORDINATE TRANSFORMATIONS

To find the interaction of a system with gravity, the action'for
that system is to be rewritten as a scalar quantity in the space of
metric g“v. This prescription of general relativity is in agreement
with experiment wherever it is tested, and leads to a consistent theory
of gravity.,

For the action to be scalar, it must be unchanged under the
coordinate transformation x" — xM' = x* - n!. This will be the case
if the Lagrangian changes by a pure divergence under the coordinate
transformation, for the pure divergence will not contribute to the
action. For electrons interacting with gravity, the Lagrangian

:‘+f

L =(-g)1/2{_§_-$v”¢ -2 T - mTy - 1T —;l’—;—i‘—- ¢} (3-9)
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does change by a pure divergence when the following transformation

properties are assumed,

) = 4 = Yx) + 4 0 (a)
Fox) = T ) = Tw) + T 0 (5)
‘P.p(X) - w.p(x) = [ (x)] - (c)
T —=T )= (T, . (@)
V) = Y () = yHx) + y':lp'np - ypnt‘p (e)
) =y () =y (x) +y P +y.q 0
A Yy Yp Yu,pm T Yp%p
T b = i) = O x) + T, Pn" + TP (g)

Buvlx) = g (=) = g, (x) + gy, P gpvﬂ?u
P
ey | (h}
(-2 2=~ (-@% = (-2 (-0 2P 4 2P )
(L-1)
Under the transformations 1 -1 we get
L) = L'tx) = Lix) + [nPL )] (L-2)

Thus the change in the action 85 is
88 = 3 [npli (x)] p d4x =0

and the action is invariant under the transformations 1 -1.
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The transformaticns 1-1 follow from the assumption, originally
made in deriving the electron Lagrangian, that ¢ and { transform
as scalars, while the y matrices transform as vectors. Since
f‘p = lz-yu;uynf i”p should likewise transform as a vector, The
transformation of scalars, vectors and tensors is given in equation
C-1 and the transformation of the derivatives of these quentities is
given in equation D-9, The transformation of (-g)l/ 2 follows from
the transformation of v as may be seen in the following derivation.
Landau (20) shows that the change in g is related to the change in

g by the equation

pv
og = gg"’'6 (L-3
g =88 OB,y -3)
From 1.-3 we get the relations
172 _ 1 1/2 pv
s-0/% = § -0/ 2"eg, (L-4)

and

(-0)'f% = 5 -0/ % (L-5)

uv,a

=3 (-g)
Substituting into L -4 the quantity Ggpv from I -l1h we get

s/ = k(-0 % g, Pk -0 2 g o+ g, o)

5(- g)1/.2 = (- 5)1/2 Py (- g)1/2 f,p

Let us now consider the curved space electron L agrangian
expanded in terms of the fields hpv' To do this we may replace the

metric tensor gpv by 6‘“ + hpv' where 6pv is the Gallelian metric
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of flat space. We now have a flat space Lagrangian representing the
interaction of electrons with the gravitational field hpv' plus the
Lagrangian of the free electron fields. When we add to the Lagrangian

the quantity
1 1/2
F = — R{-g)
2K

expanded in terms of hpv' we have the complete flat space Lagrangian
for gravity interacting with electrons.
In part C4 we saw that the action for gravity in the absence of

matter
4 1 1/2 4
S=(Fdx=——zS‘R(-g) d'x
v 2K
was invariant under the substitution

*
thv - thv = Kh”v + n + 'qv'P + th

eV v, pnp

+ Kh + Kh

pv o, wpP, v (L-6)

If we add pr to both sides of L-6 we get

*
- + + +
gt =g, (h) =g, *&,, oM * 8o,y * BupTp,

which is equation ! -lh. Thus the invariance of the gravitational field
under coordinate transformations in curved apace corresponds to the
invariance under the substitution hpv - h:v in flat space,

Ve now wish to find the aub;titutions that leave unchanged the
complete flat space action for electrons interacting with the gravita-

tional fields hu"' The substitutions will correspond to a kind of
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gauge transformation of the fields hpv and y under which the theory
is invariant. It is clear that if the gauge substitutions correspond to
a coordinate transformation of the curved space action, as they do for
the gravitational fields alone, then the flat space action will be
®
gauge invariant.
One possible transformation of the flat space Lagrangian would

be the simultaneous substitutions
]
Y(x) — ¢ (x)

P(x) —~ W'(x)

B, = R, (L-7)

where 4)'(x) and "F.(x) have the same values as given in equation L -1,
The substitutions 1.-7 automatically correspond to the transforma-
tions L-l{(a, b, ¢, d, h, i) If we show that the transformation of the
Y matrices by equations 1L -7 give the same results as 1-1 (e, £, g)
then we will know that the action is invariant under the substitutions
L-7.

All we have to show is that equation 1L -7 leads to the transfor-

mation
- P P
+ + -
Y8 =y )y ot ypn (L-19)

for then the juantities

*1t should be noted that the name "gauge transformation® has already
been used to describe the substitution given by equation B-2, We
shall retain the name "gauge transformation" for equation B-2 and no
longer refer to hpv - h:v as a gauge transformation,
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v
Wo=g"y,
I = P
TnTE Y Y

will automatically transform by equations L -le and 1. -lg. This may
be checked in detail, or seen from the fact that gﬂv transforms in
the same way by 1L-7 as by L-l,

In flat space the relation 1 -1f may be written

Y, (%) = <o at? n,+ b (1-8)

bpo.yu a” Zpa,pe’ Zpa’lp, p,)Y a

where
- K K
bp.n - 6’10- +"th° 'g'hughﬁ +ooo

e have used the relation between curved and flat space y matrices
given by equatione K-3 and K-6., If equation L.-8 can be shown to
follow from the substitution hp.'V - hpv' then the substitutions L-7
will leave the Lagrangian invariant. .

Under the substitution hpv - h:v we may directly calculate

the change in b‘m_. The result to first order in K is

* . 1 1 3K 3K
= + + +
bpu(h ) Dpo.(h) t a2,y T hppnp,u 38 hcpnp. B

K K K
TP, " T PpaMp T T Buae (L-9)

This expansion is rather a mess which does not directly lead to equa-
tion 1L.-8, At this point we can say that the subatitutions L-7 are not
equivalent to a coordinate transformation, and, as may be checked to
zero order in K, do not leave the action invariant,

We need not give up, for the following relation does hold. De-
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fining

L =b 4+ +b
Dpo f1ive b}m. PnP PGWP.}-&

(L -10)
we get
,' ) . )
bpu = Mﬁ(h” 5;3‘; + Dﬁn] (L-11)

where Dpv is an infinitesimal antisymmetric tensor given to order
Kz by
1 K K2
Dp.v = zﬂv,u[ apn B 'tho. +-Z'hp]3h{3n teeo ]
L {8 En +th h, +4se]
" TN, %a” 7 et T Pvpglpat 0

+d (5, +3% E h+ ]
7 Ta,put fvaT T hva” T Byt e

KZ

1 K ]
- I ﬁlu.vi 6‘.!,0.+-2. hp.(l- ‘T h}lﬁhﬁ“+ .o c} (.«.‘12)

Suppose at the same time we make the substitution hpv - h;v

we also change the representation of the flat space y matrices,

Yo S'lvo‘ S. Under these simultaneous substitutions we get

% -1 .
b balh STV, S (-13)

(111 Ya
Now suppose we can solve the relation
- “le
6, +D =S S L-14
[y + Dgalvg Yo | (1-14)
then equation I -13 becomes

bya¥a = B, Nyl 8ga * Dpal Ya (L-15)
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- J - -
bpaya - bpaya = (b‘m+ bpa,p Mo + bpo.ﬂp'p)-y‘1 (L.-16)

where we have used I -1l to go from L -15 to L-16,
Equation I.-16 is just the transformation property we needed
for the y matrices to maintain the invariance of the action,

The solution of 1. -14 for S is

5=[1 +%Dpo'y'p'{cl (L-17a)

where .;p:"-o = 'li(?pvo - 70'{‘,) is the antisymmetric combination of the

r—————~

two y matrices. Since Dpa is infinitesimal

s7la -5D ] (L-17b)

To check that S is the correct solution for 1. -14 we have

1, == = ) -
(1 'szoYEYo]Yu“ +7!quf’EYo]

=¥, + 3D, (V,7.V, - V,¥,7,)
a 47po 'alp’o p.0'a

Using the commutation relation,which rmay easily be checked,

Y 707(1 KA ';q +26 Y -26 Y, (L-18)
we get L-14.,

We now have the situation where the flat space action is un-

changed if we simultanecusly make the substitutions

' L]
¢y =y hv™h,
— ' -—— - -—
] Y, 8 lyuS (L-19)

The difficulty with the subatitutions 7. -17 is that it is convenient to work
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with a given simple set of y matrices. /e would rather have a set
of substitutions on the field components alone that leave the action
unchanged. As we shall see this may be done by redefining the
transformed fields \p' and 75'.

L et us start with the curved space ILagrangian

)

0g°%(-g)/?
(J-9)

, : . v, "t i gy
L= (bTy b 5T v ¥ - mby - i =P

Under a coordinate transformation this becomes

st P I B - t ot _.(y'ff"'*"{'y') ' ' !
Lg(i"“p"‘,o’éz’ ,oYp""'m‘N"W p % e y')gP® (_g)l/z

(L-20)
v ¥
Since L and L differ by a pure divergence, they lead to the same

action,

‘¥e have shown that

g’ =g’ (L-21a)
1]

-0)/% = (- ?m* (L -21b)

y; = bpc(h*)s‘lvos (L-21c)

Ye also need the relation
S -1 * -1 .
Ig=s [E“o(h ) - s. oS 1s (L-21d)

which is proved in appendix IV,

If we define

o= sy
3" =7 (L-22)
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then we have the relations

¢ =5"1y* 4:'0 = s‘l(-s. os“l)¢*+ s'lfo
7 =T's Tp: o= :rf"(s' ,Shs + 'qf_‘as (L-23)
where SS°! =(-s s}
» O » O

If we now substitute the relations L-2] and L-23 into the equation

]
L-20for [ we get

AL T SMCSEANSEE T e A
[ ¥ ,Tyh) +T (h)F]
gt ) e T gty (La2g)

However equation L-24 for /.' is exactly what we would get if we made
the substitutions ¢ — ¢’y T~ 0, B, —~ h:v directly in the original
Lagrangian.

To summarize the preceding work, we have the following resulits.
Under the coordinate transformation x* — ' = x* - n" the curved

space Lagrangian ‘., representing the interaction of electrons with

gravity, transformed into (.' where
L) =L + [nPLin)

if both /_(x) and ./.'(x) are expanded in terms of the gravitational

]
fields hpv we obtain /[ from [ by substituting h: v q,-*. and T.F‘
for huv’ ¢ and § in [ . That is

/ ] *Eﬁ

Ling 4" T =Lth, ) (L-25)
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'
Since [ and [ differ by a pure divergence, the action remains un-
changed under the above substitution for the fields hHL v Y and

Explicitly, the substitution that leaves the action invariant is

given by
By Bt T B et B, vt BupTp,, (2
wx) =1+ % Dpo¥p¥ gl Ux) + 4 ;0] (b)
Wx) = [Ux) + T, n ll1 - %Qpaw | (e)

(L-Z6v)

where Dpc is an infinitesimal antisymmetric matrix, given as a series
in the coupling constant K to order Kz' by equation L-12.

The work in this part to find the substitutions L-26 was carried
out because the author originally had considerable difficulty in checking
the calculation of the scattering of gravitons by electrons. It was noted
that the action was invariant under the substitutions L-1 in which

nP P
+ + L‘u
L ndh M WIPL R AL (L-1f)

But L.-1f seemed to imply that the transformation of b“a should be given
by

b _—b +b Pib L-27
pe ™ Pua * Bua t Pug, p™ * Ppatp, (L-27)

The difficulty with L-27 is that it does not treat the subscripts
p and a symmetrically, while the author's expansion for bl-m in terms
of the fields h“v makes b“a symmetric. This suggested that the diffi-

culty in checking calculations based on the expansions K-6 was due to an
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error in the expansions themselves.

It was then that the author found the substitutions L.-26 that
leave the action invariant when the expansions K-6 are used. By a
rather lengthy calculation it was checked to order Khn that the substi-
tutions L-26 did in fact leave the action unchanged. The difficulty of
checking calculations was later solved by following a suggestion of
Dr. Feynman'e that a symmetric form for the interaction of electrons
with gravity be used.

From the existence of the substitution L.-26 and from the check
of later calculations, the author suggests that there is good evidence for
the validity of the electron-graviton Lagrangian K-9. The only diffi-
culties are that no Lagrangian involving gravity is unique as has been

discussed in part F, and there are no experiments to check the theory.
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V. QUANTUM MECHANICS OF THE INTERACTION OF
GRAVITY WITH ELECTRONS

In this section we shall deal with the quantum mechanics of
gravity interacting with electrons. The first part will be an investiga-
tion of the gravitational Dirac equation to find the effects of the spin
of the electron. This will be done by comparing the Dirac equation
with the equation for a spin-zero particle interacting with gravity.

In the next part, part N, we will show how to write Feynman
diagrams for the case of gravity interacting with electrons. The em-
mision of low frequency gravitons will be discussed as a simple example
of the diagramas.

In the final part we give the calculation of the scattering of
gravitons by electrons. This calculation to lowest order includes the
nonlinear effects of the gravitational field. The check of this calculation
for gauge invariance offers the best proof of the correctness of the
electron Lagrangian in the expanded form given by the author.

V'e will not discuss radiative corrections to these calculations
until the next section, and even there the discussion of radiative cor-

rection will not be complete.

M. GRAVITATIONAL DIRAC EQUATION - EFFECTS OF THE SPIN

OF THE ELECTRON

The gravitational Dirac equation may be obtained most easily

from the Lagrangian L eg of equation J-2.

Log = (-8 2 6T (4 - T4l - mT 4 )
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The equation of motion is
WY, - 4T 4 = my (M-1)

To find the effect of the spin of the electron we wish to compare
M-]1 with the equation of motion for a spin~zero particle interacting with
gravity. The Lagrangian for a spin-zero particle of mass m may be

written
1 2 2
lm = 2le, AR | (M-2)

A general curved space Lagrangian that reduces to M-2 in the limit

g ., bpv is

Y

[‘mg = 'lz ('8)1/2[ Ep'vqo. wv (mz-l»aR )cpz] (M-3)

where a is an arbitrary constant.
The gravitational Klein-Gordon equation corresponding to M-3
is

v 2
°g“ q,'.“v. ch) =m ¢
or

[-e""9,9, - T0,9,) - eRl¢ = m% (M-4)

We could find the effects of the spin of the electron, at least in
the nonrelativistic linear limit by directly expanding equations M-1 and
M-4, adjusting a so that the equations are as similar as possible.
The extra terms that appear in the expansion of M-1 will then be due to
the spin of the electron. The author has attempted this but the calcu-
lation is extremely cumbereome.

For a more direct method of finding the spin of the electron,
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let us first consider the interaction of electromagnetic fields with l

electrons. The Dirac equation is
K", - A = M-s
Yp“vp. e “)q; my ( )

while the spin-zero Klein-Gordon equation is

2
(in eA“l N iV“ eAP Yo =m-p {M-6)

If we operate with ‘;u(iv“- GAP) on both sides of M-5 we get
- - 2
[3,6V, - A )Y, (17 = €A )] =my (iV - eA )y =m" (M-7)

Equation M-7 reduces to

(1, oA JIT -eA )y - 23 b mey (M-8)

where
—— l,— = ==
=
Y, Y z(vnv' YY)

Comparing M-6 with M-8 we see that the effecta of the spin, such as
the Dirac magnetic moment and spin orbit coupling, arise from the

term

fe — ..
~zT Y M Yy pvq’ (M-8a)

Let us use the same technique on the gravitational Dirac equa-
tion to find the part of the interaction that is due to the spin of the

electron. We have
- ﬁ =
i(Y ;ﬁ Y rﬁ)"‘ my

Operating again with the quantity i('y°V°- \(GI‘G) we get
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a g 2
1YV 1T PV - 1¥PT by = mPy (M-9)
M-9 becomes
(¥ ¥, + ¥ ¥Prg + vOr VP, - Vi S AT

= m%y (M-10)

Now

-y‘Vny ﬁvﬁ =< aYﬁvavﬁ - Yav.ﬁnvﬁ
But

Vazvl-T 297" =T VT, r‘w\(
where by equation J-7

Y‘;Sa = I‘ayﬁ - Yﬁra

Algso

Y, ¥PTg = vPr T+ VP |
{

Since yp I‘p is a scalar quantity

v(vprﬁ) -v(v wt\«ﬁI‘ML

= V'T¥'rg - ¥Pr T+ v

where we again used J-7 for \(‘3 o’

Putting these relations together equation M«10 becomes

.ob rP ap o
{-g°"[V A c‘ﬁv‘,] +g [2rﬁvu +Tg.p rnrﬁ]

- XArg g+ TTpd v m?y (M-11)
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where we have split y“yp into symmetric and antisymmetric parts

8P = g4y

In appendix V we show that
a B 1
X YTyt I rg)=-zR (M-12)
The gravitational Dirac equation M-11 becomes

ap 1 \
F8™ IV, Vg- TgaVp) - g R Iu g*fler oVp* Taip~ T rﬁ]w

amzq;

For the choice a 8-14 the spin-zero equation M-4 becomes
£6*1V, ;- T8g) - gR Yo = m% (M-14)

By comparing equations M-13 and M-14 we see that we are left with the

additional term in the Dirac equation
Gﬁ
-15
[2r Vg + T, ql¥ (M-15a)
- gaar r‘s‘p (M-15b)
To study the Dirac terms M-~-15, we note that the matrix I‘a

is given by appendix III , equations 13 and 14;

v

1
Ty =3(by,y, abxp +T,, cp’.ﬁl. {M-16a)
or

r "Z’ ! N-t ot I‘x’ naa&“)y Yy {M-16b)
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Using equation M-16b we see that the Dirac term M-15a is

purely a spin term.

gl2r v+ T 51 =4 T, (M-17)

where

A 3°‘ “ﬁ{?.a

v (byyat T, a525,/V5

* [‘)\v(b)\u. ot rx. a&aép)]. g

P -
- Tag®wPrp, ot T, 0626, } (M-17a)
To lowest order in K the Dirac term M-15a reduces to
OBlar Vot T 0
& a'f “aif
=3[V, ut Bug, Vol V¢ (M-18)

which is in close analogy to the electromagnetic term M-8a.
The Dirac term M-~15b is more difficult to handle and harder

to interpret. Using equation M-l6a for T o We get
-g%P . 10P -
g I‘ul‘ﬁup = - wg (I‘cl"p I"ﬁf‘n)tb

v, aPr t Ty, 0uMPos, gP8p* To, pp!

1
x 2 [ ¥y + ¥ YY)

From appendix 1II , equation 14, we have
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LY P+ T

= t L gpang_ g“"ngo

Writing
YY'Y’y =a .a a a AT
e vm ey 08 6 'n'y

and noting that

.Y-E_Y-n ]:_‘;5 =€ gnyg\'g,

we get for the term M-«15b,
ap Y : M-1
g T Tg=Bysd+ Cy (M-19)

where

1 ap
Bz-yrg ‘bvh. abw" r‘v‘ up)(boﬁ,ﬁbﬁp + I‘c. ﬁp)

* 2L ERunPpyP06° Enhs (M-19a)

Cc = 7 (g°PePg"7 - g*Pgr%"P)

x (va abNa.+ l"v. q.m)(baﬁ, 5b5p+ I“o’ ﬁp) (M-19b)

To lowest order in K M-15b becomes

frr =-Eh h e Vet
g ap " TE Tva,p ao..pgvpaYS

K2

ol 2L LY SRR S Y (M-20)

At first it appears that the quantity C{y may not be a spin term
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for it involves no y matrices. We might try to include Cy¢ in the

spin-zero part of the equation by adding the term
(-3)1/ 2ce? (M-21)

to the Lagrangian M-3 for the spin-zero field. This would just lead to

the equation
("9, 7,- T8, 9, ) - 3R + Clo = mP% (M-22)

for a spin-zero field, and Cy would not be considered as arising due
to the spin of the electron.

This is not the correct interpretation of the term Cy as may
be seen by investigating the transformation properties of the term
1/2C¢2

(-g8) which we were supposed to add to the spin-zero Lagrangian.

1f we suppose that under a coordinate transformation
C—C+ 8C

then from the transformation of (-g)l/ S and the scalar field ¢ given

in equations L.l

(-g)l/z ~ ('8)1/2 + (-g)l./pzn" + (-g)l/"'nf’p

P
— 4
L4 ¢ ‘P. pn

qu — qoz + Zw' pnp = ccz + w.zpn

P

the transformation of (-g)l/ 2qu2 is

(-8 2Co? — (-g)/2Co? + [nPl-g)/2ce?

+ (-1 %%6C - C o) (M-23)
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i/ 2Ccp2 must be a pure divergence in order

Since the change in (~-g)
that the action be unchanged under coordinate transformations, we

must have

$C=C pn" (M-24)

To lowest order in K, C is given from equation M-20

2
C==glbyy By, ~Bug B )

To lowest order in K the transformation of the fields h"L , is given

by equation L-6

— - 5
thv thv+n|1. vt n"-ﬂ (M-25)

Using M-25 we get the change in C, to lowest order in K, to be

6C = ZKhva' “( vop” v), a (M-26)

8C ie an order of K larger than C. pnp and does not satisfy €Quation
M=26. Thus if the quantity (-g)l/ ?'Cc,sz were added to the curved space
Lagrangian for a spin-zero field, the resulting action would no longer
be invariant under coordinate transformations. We therefore conclude
that the appearance of the termn Cy in the Dirac equation is due ex-~

clusively to the properties of the spin of the electron.
Collecting the results of the last few pages, we can write the

gravitational Dirac equation in the form
, o
tg™ v, v, - raﬁv ] -3 RN

+ PV vyt BYs +CHy=m q; (M-27)
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where Apv’ B and C are given in equations M-17a, M-19a, and

M-19b respectively. Comparing with a possible equation for a spin-

zero field
we conclude that the terms
{Apv'\'}py + Byg + Ch (M-27a)

arise due to the effects of the spin of the electron.

To order K, or in the linear approximation, only the term A“v

remains in M=-27a and the spin term is given by

'Z[va va, u + th. Pvn] Y“Yv :‘ (I“%’f-lg)

The terms {B‘Y.S + C }W are of order KZ. and to that order are given by

1

av " hoa, P prO') Y5 = 'Z(hvc.phvo.. p hia, " pa. v)l W

'Kz[m(
Finally, the linear approximation to equation M~27 is given by

2 ¥
(-V° + thvvuvv + thv’ pvv - h’ 7

I
K K
tz hpo. pG 4 h,ora W
i‘: 1 . Z; T O §
+ 520y, Tot By, )Y T, = m (Bi-28)
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Ml Dirac Equation for an Electron Moving in the Gravitational

Field of a Pceint Maes -~ Nonrelativistic Limit

F'or a more detailed investigation of the effects of the spin of the
electron, it is instructive to consider the nonrelativistic limit of the
linear gravitational Dirac equation. The fact that we are dealing with
the linear equation and can neglect termse that involve the product of
two gravitational field components allows us to proceed to the non-
relativistic limit in about the same way as for the electromagnetic
Dirac equation. The only difficulty is that the gravitaticnal field has
£0 many components that the result is very long and would require an
elaborate investigation of the physical effects.

Rather than consider the electron raoving in an arbitrary gravi-
tational field, the results are far simpler if the electron raoves in the
field of a stationary point mass. Such fields are experiinentally ob-
served and there are still effects due to thespin of the electron.

% e may use either the first order fore: of the Dirac eguation
M~l, or the second order equation i -28. It turns out tc be slightly

easier to handle the first order forw. The linear expansion of M-l is

W o= mi (X:1-1)

B

PR . i . d
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The gravitational field arising fromn a stationary point mass is

given by equation B2-18

o

i = =¥ = K =220 = - Sh

B

4

where ¢ is the MNewtonian potential. Using thease fields the three di-

mensional form of equation Ml-1l becomes
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i

Liv,V, + iy,V, + 16y9; - 10y, Y, - 5 ¢ ,y;] 4 = my (M1-2)

where the latin letters stand for three dimensional quantities. For

example

Multiplying M1-2 through by y, we get
i, "
{(1-H)E - (1+é)a;p; - > ¢ 19 - ytm] G=0 (l-4)

where
G T VeYy

and we have defined the operators P; and & by

p; = -iVy

E =iV, (M1-5)
If ¢ is a stationary state, E is no longer an operator, and

E=M+%V (M1-6)

where V. is the kinetic energy of the electron. (Since th& =0, E
will not operats on &. )
In terms of the two component electron wave functions xpa and

LR and the Pauli spinors o,
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() (2

equation Ml-4 becomes the two equaticns

(1-¢)E¢a -my, -0 mpb =0 (Ml-6a)

(1-¢)Edy, + myy =0 @, =0 (Mil-6b)
where

Mol dlp + 30, (M1-7)

Using E = M + V' equations Ml-6 become

(V% - EQ)Lpa =0 mpb (Ml=-8a)
1 . 5
W= TTEFTIE O (341-8b)
Substituting for ¢vb in equation Ml-8a we get
x 1 LA I3
VU S0 TETES T Im 0 ™a Eou, (2:1-9)

This is the same form as for electromagnetism, with the electric
‘potential V replaced by E¢, and the momentum operator
replaced by
- 3 i 2
m=l0+dp+g9 )

Due to the similarity of the elecfromagnetic and gravitational equations,
we expect similar effects such as spin orbit coupling.

We shall expand equation M:1-9 to order v4. Assuming that the
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kinetic and potential energy of the electron are of the same order of
magnitude as in the gravitational hydrogen atom, we have

2
or we shall take ¢ to be of the order of vz. Expanding the fraction
in Ml-8b we get

1 1 v -

b
v -E¢+2m  2m

o

+¢0.
4m

Equation M1+9 becomes to order v4

2
Wy = Mg+ we + 0T

X T '3%5 o- oW -Ed)o- why,  (Ml-10)

Using the relation
(o Ao B)=A- B +io- (A x B) {M1-11}
we get
(o a6 w)=w- w+ic: (vxmxn)
Since ¢ is a 1/r potential ¢. jj =0 and
io - (nxn)q:a=0

meowo=(l+ 2¢)p°
or

(o w)z =(1+ Zé)pz (M1-12)

To lowest order equation Ml1-10 is
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2
wy, = [ 2= + mély, (M-13)

a

Using M-13 to replace W on the right side of MIl-10, taking care that

V' is treated as a number, we get to order v4
2 2 2 'i‘PZ
V"\Pa = {M¢+ ¢§-r'x'1+ (1+ 2¢) %ﬁ - (-821'1—12 +-4?n-)

+ (0 )il - PN, (Ml-14)

Now the correct normalization of the wave functions is

i’} ¢*¢d3x =1

oy
5( Lo 12+ Ly 191a%x =1

From equation M1-8b to lowest order in v we have

1 .2 1 2.2
Y Tzm O Plai gy Tz Pl
m
or
2 _p? 2 4
= y_ + terms of order v
“ T, 2%

The normalizing integral is now
% 2 3
4 p =

a 4m

By the substitution
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2 2
x=[1+—£z]%aor q%=[1-—£7jx (M1-15)
8m 8m
the normalization integral is simply
:*) x xdx =1 (1i1-16)

Substituting {1- pz/Bmz] x for q;a in equation i:1-14, and
noting that to lowest order

2 4 2

va'—g—zxzoo x-m(,!i.e_zx

8m 8m 8m

we get no change in the form of Ml-14. Thus we may consider ¢,
normalized to one, or replace W, by y in Ml-14.

The term 1/4m(c - p)¢{c . p)y may be written
1 o - )2 - (o (T¢)o - p)
Im ¢ PV X~ z1m: )G ¢ PIX
By equation Ml-1l this becomes
(e p?- @ L v
Im P “;-n,‘;( d’)'P'*mU'[( ¢) x p}}x

Substituting this into equation Ml-14 we get

2 4
"K},’X = ( %ﬁ - _2_3 )X {a)
8m
3 2
+ &{m + '{)ﬁ )X {b)
+£—,50- [T ¢) x pl ¢ (c)
- = (T4) - px (d)

(21-17)
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where
g x*x x = 1

The interpretation of the terms in Ml1-17 ia as follows. The
terms (a) and (b) are independent of the spin of the particle. In fact
if we dropped (c) and (d) we would just have the equation for a spin-
zero particle as may be checked from equation MNi-4.

(a) is just the kinetic energy of the particle, which is pz/Zm
plus the relativistic correction -p4/8m3. The first part of (b), namely
m¢ is just the Newtonian potential energy. To interpret all of the term
(b) we note that to this order the inertial mass m, is just m(1+vz/2).

In terms of the inertial mass (b) may be written, to order v4

gmy(1 + v%)

Thus we see the extra factor of (l+ vz) which appeared in the classical
mechanice of the linear theory {see equation B2-25). It is this factor
that accounts for the deflection of light moving past the sun.

We should note that we obtained Ml-17 from a linear approxi-
mation to the gravitational Dirac equation, and therefore did not keep
any factors of ¢2 in going from Ml-2 to Ml-17. However in ap-
proximating Ml-9 we assumed that the kinetic energy and gravita-
tional potential energy were of the same order of magnitude, or
that ¢ was of order v®. Thus in dropping terms with a factor

q:z we have dropped a term of order v4. But to keep such a term

would be inconsistent with the linear approximation to
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the Dirac equation with which we started.
If terms with a factor ¢2 are kept, we will have the following

additional terms on the right-hand side of M-17 (to order v4).
2 1
mEx - gm ¢, 19, 1%

To this order there are nb new terms in which a ¢ matrix appears.
Thus the only terms of order vi that may be taken seriously in (b),
{c) and (d) of Ml-17 is the spin term (c).

(c) is similar to the spin-orbit coupling term that appears for
the electromagnetic Dirac equation. The electromagnetic spin~orbit

coupling term that is proportional to o is

Z—0-[(F - eX)xE]x (Ml-18a)
4m

For the coulomb field of a proton this is just

2
L o (B xT)/e (M1-18b)
4m
For the case that ¢ is the field of a point of mass M, (c) ie just

—QA@%— o (P x?)/r3 (M1-19)
4m _
Thus we have the same term if we replace the electrical force e‘?‘/r2
by the gravitational force GMm/rz.
Since _5' xT may be interpreted as the angular momentum f,
Ml-19 may be written

GMm (?I. . r)/r.'i

4m

(M1-19a)
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It is thus clear that (c) is a spin-orbit coupling term.

N. FEYNMAN DIAGRAMS: EMISSION OF LOW ENERGY GRAVITONS

The Feynman diagrams for gravity interacting with electrons
are obtained by analogy With quantum-electrodynamics using the methods
presented in Feynman's articles, "Theory of Positrons® and "Cuantum
Electrodynamics® (7 ) .

Let the Lagrangian for an electron interacting with an external

field be given by

L= iy - mPy + L

where [ c is the interaction part of the Lagrangian. The equation of

motion for s is

9 5Lc (N1}
(¥ - m)y = - =0y N-
57 P

The operator OP is a quantity involving the external field components.

For example, for the electromagnetic field

/ “j A = «
e T TPy ﬂmﬂﬁu

™

6C

-

= = efy = Oy

|

or

o
p = ok

* -
By definition ¥ =7V, A . Since we shall only deal with flat space vy
matrices in the reag of this paper, we shall represent them by vy
rather than "ip. a
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The amplitude for the transition from the state ".’1 to the state
4:5 when the electron interacts with an external potential is given by

the perturbation series

Py = - Smi(l)cp(l)q;i(l)d‘lxl (a)

. 5 Smﬁ 2)0,(2)K (2, N0 (M (hd*xa®x,  (b)

$o.. | (N-2)

where K+(2, 1) ie the free electron kernal to go from 1l to 2, For

electromagnetism equation N-2 just becomes

Py = -ie \ﬁ}a)‘g{(nw) d4x1+ , (N-3)

N-3 is just the transition amplitude given by Feynman (21).

Rather than differentiating L c to obtain Op and then substi-
tuting in N-2a, the first order transition amplitude, N-2a, may be
directly obtained from the action. Suppose we rewrote the interaction
part of the electron action so that it is a function of mf and y; rather

than just arbitrary fields { and
S - SL (T ) d%x
c BN

Since ‘/“c(mf’ xpi) is a linear function of T{}f and its first derivative,
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ol of
L Tp 9) =0 —= 4+ 7 —
.3 [a[,c ‘( 8l ) ]+(E CL >
£ f
o &%, pap Bmf-ﬂ ' P
Dropping the surface term
5/
SelTpup) = (T —< a*
b
Writing
Op\!:i = 5!-c/6¢f ‘
we get
5. ) = { Tno mym atx, (N-4)

which is -i times the first order transition amplitude.

" Thus we have the simple rule that we get -1 times the first order
traﬁsition amplitude by simply writing the interacfion part of the action
and replacing J and ¢ by Y, and by

The transition amplitude N-2 is for an electron moving in an
external potential. The transition ampliutde for an electron emitting '
or absorbing quantized particles, photons or gravitons, is obtained
by expanding the external field in plane waves. Each wave acts only

+Ha

once, the waves proportional to e ® acting when the particle is

absorbed, e T ¥ when emitted.
For electrons interacting with gravity, the first order transition

amplitude, obtained by replacing ! and ¢ by T.)Jf, Lf:i in iS c("::l ) is
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K hé -
Py = -1 5 | (381 v iV 8y) + (-17,Tvg]

- STV T 0y + (=19 Tdy, ¢ - 2mT ]} ax

2

+ terms of order K (N-5)

To get N-17 we used the elecgron Lagrangian K-9 expanded to first order
in K.

Consider the case that the electron is initially in a plane wave
state of momentum pi and we wish the amplitude that after the emis-
sion or absorption of a single graviton the electron is in a state of
momentum pf. We have |

i
i, ~p'x \ i
% =ulple’P iV 4 = 24

£
mf = E(Pf)e‘up "% 'ivu—‘pf = Pimf (N-6)

For absorption of a single graviton the field h“ﬁ is replaced by

~e e lax (N-7a)

h aﬁe

af

and for emission

+ig-x -
haB — €qse (N-7b)

These gravitational potentials are normalized to 2w gravitons per
cubic centimeter, the same normalization used by Feynman
for electromagnetic potentials.

The first order transition amplitude for this case becomes
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£, .1
_ Pat P £, 4 e
Py = STEIELL v (LY - ml 232 yuh

i f
x S‘e‘“p -p *q) X3 d4x3 (N-8)

where the choice of +q or =-q in the exponent depends on whether a
graviton was emitted or absorbed. In either case the integral‘ corresponds
to (Ztr)4 times a & function representing conservation of momentum

at the point where the graviton was absorbed or emitted.

For the emission of a graviton, N-8 may be written
Py = 1T (615 (Byy e s + (B - mll- —22)}u(p)
£ P12 1PgY¥e®ap —Zz-1up

x (Zv)464(pf - pfl - q) (N-9)

where

f i
- Pg+P
Pg = -—Kz-—-é- = the average of the electron
momentum just before and after

the emission of the graviton (N-10)

Now the first order transition amplitude for the emission of a photon
by an electron is
Py = 1% (ph) {(4me?)/ 24 Ju(ph)
x (2mstpt - pl - 1) (N-11)

Comparing N-9 with N-11, we get the amplitude for the emission of a

graviton (in analogy with the amplitude (41:32‘) Yz for a photon) as

~ e
3 (BgYeeqp + (F - mN- 7)) | (N-12)
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The corresponding diagram is

-~ -~ e
3 (Pvgegs + (2 - m)-—32))

Figure 1

Iterations of the firast order matrix element corresponding to
the second order transition amplitude of equation N-2b follow in a

manner similar to electrodynamics. The diagram for N-2b to order

K? is
2
- e
3 {pévaeig, + (3% - m)--52))
~ -~ e
3 {p:;\fae:p + (- m)i- 32))
q
.p' Figure 2
where

i i, 1 i1 £
sy _ Pgtlpg+9s) ap (Pg-dg)tp
Py = zﬂ £, pg = B J B

(N-13)

One difference between gravity and electrons is that for gravity
we have higher powers of the gravitational field in the interaction
Lagrangian. This means we will have the poseibility of emitting or
absorbing two or more gravitons at one point.

Let us consider the absorption of two gravitons at a single point.

We obtain the amplitude for'this process by expanding the interaction
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part of the action to second order in K, and proceed as we did for
one graviton. Ome term in the action that offers some new problems

is the last term in K-9

/2~ ax
S(-g) wpz' VoY ¥i2op2qy ua.ﬁ

Expanded in terms of hpv we get to lowest order

2
SEE ! VY ‘L’i 110, P avd4x (N-14)

The diagram for the absorption of two gravitons is

Figure 3

To obtain the transition amplitude we expand the external fields hﬂ a

and hvc in plane waves, each of which acts only once.

1 2
h =e e l0'%,, glarx

Pa P.a ‘_La +uco

-iql- X -iqz- x
h =e e +e e

vo va va LR

Tor the case shown in fig. 3 where one graviton carries in a momentum

ql and the other o.z,

-



1, 2
detal o2 o-i{a+q7) - x
hpa. phav iqpepaeave
1, 2
22 1 -i{qg+q7)-x -
-iqpepaenve , (N-13)

The transition amplitude becomes

K2 2 221
i g B pf 1Y, VYo u(p "l qpewem, tage g, ]
= (2m*s%(p’ - p' - ¢! - §F) (N-16)
Since y v,y, is antisymmetric in p,v and p, N-16 may be written
K? 2 £
-iy¢ u(p)v (4~ 42 )v‘,e‘,‘M va B (P)
x (zm®s*pf - pl - ¢! - 4% (N-17)

Comparing this with equation N-9 we see that the amplitude for the

absorption of two gravitons corresponding to the term N-14 is

2
T %oy YU - A2y 02, (N-18)

By a similar calculation we can expand the rest of the action to
order K2 to find the complete amplitude for absorption of two gravitons
at a point. The resulting amplitude for the absorption of one or two

gravitons at a point is given by
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2 2
1 3K K
z {ppYol Kegg- 7= oge,0 + 7 €5 e00)

2 2
+ (f - m) [-Kew - %— eo.aeﬁﬁ+ -I;{!- eaﬁeuﬁ] }

+1-5-e v(til £y, o2, (N-19)

where p always stands for the average of the electron momentum
just before and after the point of absorption.

To use formula N-19, we must symmetrically treat two gravi-
tons arriving at a point. For example, the term I—%— e e is to be

212 k%24 PP of

written -I%- ep‘:‘en’3 «2- op np If we wish one of the gravitons to be
emitted, we change the sign of the momentum of that graviton but
maintain conservation of momentum. e also note that if gravitons are

converging on a single point, and the electrons entering and leaving

that point are free, then (:4 - m) = 0. That is because
T Ty AR T
u{p’) pulp’) = ulp )(éz-é‘)u(p }=Gmu

Explicitly the diagram for two gravitons being absorbed at a

point is given by equation N-19

k2, - 31 2 3.2 12
T IppYal-Zegp%5™ 290 pﬁ ®pp®ap

2 1
+ eppeaﬁ) + (16 m)(-e ﬁﬁ+ 2e! aﬁ)

1
+-;;re Y, (' - 42 )vvew1

Figure 4
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Suppose one of the particles is a positron rather than an
electron. For example, one of the diagrams for two-graviton pair

annihilation is

Figure 5

The matrix element for fig. & is exactly the same as for {ig. 4 except
that the signs of ql and q‘?‘ are changed since the gravitons are emit-
ted, and pf is the negative of the four momentum of the positron.

For example
i - -
P =(E_v-p_Y)
f — —
P =-(E,y,-p, " V)=-8, (N-20)

The conservation of momentum

i £
=

1. 2
L Y

now becomes
4 £ 1. 2
LS T N

The quantity §ﬁ appearing in equation N-19 is now

i, f i+
.zpﬁ Pﬁzpﬁ Pg

Pp 3 z (N-21)
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To order Kz there is another possible type of diagram repre~
senting the interaction of two external gravitons with an electron. This
diagram represents the possibility of gravity interacting with itself,

and is of the form

Figure 6

This diagram will be described in the next part when we consider the
scattering of gravitons by electrons, No such diagrams appear to first
order in K, and we may correctly consider the emission of a single
graviton by an electron using formula N-19,

Let us consider low energy gravitational bremstahlung when an
electron is scattered by some potential V. The Feynman diagrams

for the processes are

Figare Y Figure 10

Figure 7
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Figure 7 is the diagram for the process without the emission of
gravitons, Since there is an energy of interaction between the potential
V and the electron, the diagram of fig, 10 represents the possibility

of graviton emission from this energy., Gravitons may also be emitted
from the potential V, but these are being neglected now,

The amplitude for the diagram of fig., 8 is proportional to

M = - ap)v -
= -d-m

E [y b goap- (B-mleggl ulpy) (N2

Since p2 = m2 and qz = C, the propagator becouines

1 _P-dim
F-d-m -2p' . g

which in the limit of low energy gravitons goes a3 l/w. To calculate
the amplitude for emisasion low energy gravitons, we may neglect q

in comparison to p in the numerator of N-~22 with the result

M= "14:'. q' Tx'(pf)veuﬁhb’lvm‘;;p + yarn;ﬁ} u(pi) (5-23)

The term (;{‘ - m)eaau(p‘) does not contribute in this limit since
; iy, A & i
u(p)= fulp’) = mu(p’)
The term in the square brackete of N=23 may be written

[#'V,pp + vBPglute) (N-24)

where we have replaced mu(pi) by p’iu(pi). and approximated Ep oy
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piﬁ. N-24 may be written
ii i i i i
+ = 2
Lyvpyg +vgvplpgogule’) = 2 pulp’)

Thus the amplitude N-23 becomes

K = f $ i i
e u{p)V{e .o palulp) (N-25)
sz. q apaf

Since eagp:plﬁ does not involve y matrices N-25 becomes

K i ifee f i -
- (p)Vulp) (N-26)
S, SasParp TEVe(eh)

The term in the square brackets is just the amplitude for the
scattering of the electron by the potential V without the emission of
gravitons, corresponding to the diagram of fig. 7. If we call this

amplitude A, then the amplitude for fig. 8 in the low frequency limit

is
= Aa, (N-27)
where pi pi
a. = we -—9—-&- (N-Z?a)
7 af p‘l. q

The amplitude for the diagram of fig. 7 is similar to that of

ES

fig. 8, except that ot is replaced oy gf. and the overall sign is
changed since the propagator is now for the virtual momentum pfw" q
rather than pi- ¢. The amplitude for the two diagrams of fig. & and

fig. 9 is
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M= -5% Aa (N-28)
where i
e ap. P i '
az= w( apio. B - nﬁf 53 > (N-28a)
P9q P9

Since (pi- q)'1 and (pf- q)°l goas 1w as w — 0, the quantity
a of N-28a is finite in the limit of w — O, Thus the amplitude N-28
diverges as 1/w and we get an infra-red bremstrahlumg from the
diagrams. From the dizgram of fig. 10 we have no electron propa~
gator, thus no factor of (p- q)'l. As long as the momentum trans-
ferred to the electron by the potential is much larger than w, we have
no infra-red divergence for this diagram and it does not contribute in
the low frequency limit.

Py similar arguments Feynman showed that the amplitude for

low energy graviton emission from a spin-zero particle is given by
M= z‘-‘; Aa (N-Zg)

where

A = the amplitude for scattering without graviton emission

. T |
X, P ,pv
a=sw ' _.ki.— e

{ p-q

“v

where the sum over i is the sum over all incoming particles, minus
the sum over all outgoing particles.
It is easily checked that the amplitude of emission of a low fre-

quency graviton from a photon is of the same form as N-28, Thus the
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formula for low energy graviton emission will be independent of the
type of particle or the kind of force scattaring the particle. *
In terms of the amplitude for a given process, M, the transi-
tion probability/second is given by
P = % ) Im | %
where p is the density of final states and i{(}) is the normalization

factor. For example we have normalized uu to 2M, or the quantity

L S
uu=uytu=ZE

Thus we have normalized the electrons to 2E per cubic centimeter
rather than one per cubic centimeter, and this normalization factor
2E is divided out in :i(N). As we mentioned after equation N-20,
the gravitons are normalized to 2w gravitons per cubic centimeter
and this 2w is likewise divided out in ".(N). Thus ii(N) is given by
the product of twice the energy of all the external particles.

Now the transition probability for the scattering of an electron
without the emission of gravitons, corresponding to the diagram of
fig. 7, is

P_=——

2w 2
Alp
i nmn "0

Granting that such a scattering has occurred, the mean number of

gravitons of polarization enp. momentum ¢, emitted per scattering

)
The author has not explicitly checked this statement for the case that
a graviton itself is the source of the infra-red gravitons.,
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is, for small w
2
1 ¢ 2 K
bk la| z;z] pgd
where P o the density of final states of the graviton

Eplopl a4

Py = = dir 4w X e——
& (2w T

The number of gravitons emitted per collision is therefore given by

2
2 oy I )
N= |a)’x §= x 22 Xi%? (N=30)
w

where in general

ii
a= wS‘ < -piu—‘ig—egp > (N-30a)
i p°q
The sum over i is the sdfn over all incoming particles minus the sum
over all outgoing particles, As we have seen equation N-30 applies not
only for incoming and outgoing electrons, but all spin-zero, spin-one
half and spin-one particles.

The radiation formula N-3U is discussed in consideracle detail
by Feynman in a letter to Weisskoo,f (21), including comparison to

classaical calculations of gravitational radiation.
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O. SCATTERING OF GRAVITONS BY ELECTRONS: GAUGE

INVARIANCE

In this part we shall Flescribe the scattering of gravitons by
electrons, We will not be as interested in the resulting cross section
as we will be in using the calculation as a check of the rules for dia-
grams given in the last part. In fact we shall only give the amplitude
for the scattering of gravitons by electrons since this amplitude is
rather complicated.

The check of a calculation with gravitons involved is similar
to the check of a calculation in quantum electrodynamics for gauge
invariance. For electrodynamics thg interaction part of the action

s = - \J7 A ak
c pp

is unchanged under the substitution
A — A +y
o] b ' ¥

because the current J“' is conserved. IL.e.,

v 4 ¢ 4, O 4
-\ J + d'x=-J A -4 J
) p‘(A“t X, “) x M Hd x=3J.x, P»d x

/

where

4 4 _( 4
d = J . =0
\ Juxo“ * ) ( l-"X)o P'd *

since

In quantum mechanics this means that whenever we have a photon

emitted by a conserved source, the cross section for the emission of that
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photon will be unchanged if the photon's potential A“ is replaced by
A“ + X " In terms of Feynman diagrams the cross section for the
[}

process

conserved . q
source
j .
)
Fig, 11

is unchanged if we make the gauge transformation
e ~e + O-1
ke taf (0-1)

in the matrix element of the diagram. The quantity £ in O-1 is the
momentum space representation of x.

We may use the same procedure to define gauge invariance when
gravity interacts with matter, From part E we have the Lagrangian for

gravity interacting with matter,
L=FP+(F-F)+L (E-1)
mg

where F = R(-g)l/Z/ZKZ, and F2 is the Lagrangian for the linear gravi-

tational fields, The gravitational wave equation from E-l is

2

6 K 5(F-F
3 i [ZFKE'E : )] 'Z'Tpv

nv

In terms of h this is
pv
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1, = = - _ K _
7l -hw.w+ (ha".ov'k hcv.op- apv'ﬁpc. pc)] = > Tpv (0-2)

Equation O-2 is consistent only if the source term T,.;v is con-
served, The consistency of the gravitational theory has been demon-

strated in part D, thus

-26(L__ +F - F?

pv .

Consider the following action
r ' K. 4
S= ) [Fz(hpv) 3 hvapv(hpv)]d x (0-3)

t 1
in which we consider the gravitational fields hpv in Fz(hpv) separately
from the gravitational fields hpv' involved in the source term Tpv(hp,v)'

) '
Variation of O-3 with respect to h.;v just gives

1 K
T8y ,00* Buo,vo? Bov,op™ 8uvBoo, poll =T Tuv(By,)  (O-4)

which is just the correct gravitational wave equation if we drop the primes,

The action O-3 is now invariant under the gauge transformation

hpv - hp,v + np,,v + nv,p (O-5a)

hpv - hl“’ (O-5b)

O-5 is gimilar in form to the gauge invariance of the linear theory given

in equation B-2, From the action O-3 we see that it is the gravitational

]
field hpv that is emitted or absorbed by the conserved source TNV'
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The gauge invariance of a process in which a graviton is emitted or

t
absorbed will be tested by replacing the field hyv of this graviton by

'
h ,+n

+ 0 . The fields in the source are not to be changed.
B v Vit

Mo
Ve shall see that a source THV emits the gravitational wave

E“v. Thus the diagram for the emission of a graviton from a conserved

source t is
pv

conserved BV
source
t q
(TRY
Fig. 12

To check this diagram for gauge invariance, we replace the field e"v

of the emitted graviton;

e, ~ew + gpqv + qup (O-~6a)
or
v T t quu ¥ gpqv -5,v9° § (O-6b)

This substitution is made only on the external graviton, and the result
should be that the cross section for the process ia unchanged by the
substitution O-6,

Before calculating the amplitude for the scattering of gravitons

by electrons, let us return to the exact wave equation O-2,

I, +&, _,+%

1 = K8 mg
pv,00 ‘Op,oV ov,ou 6vapo, pc)J =zl Tuv *T oy

p_V
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where
g . 2 -
T v = -28(F - F )/6thv (O-T7a)
mg _ _ -
Tpv = ZGL /aKhw (O=~Th)

\

The momentum space representation of O-2 is

2— - - - _ g mg

q epv-l- (chvea“-i' chpec’v- 6pvqpqceav) = ZK[tp.v-Ftp.v ] (0-8)
g mg g

where tpv and tpv are the momentum space representations of Tu"

and T™S, Since the source [t8 +t™8] is conserved,
p,V BV pv
g mgy -
qﬂ[tpy +t|,_v ]=0
A solution of O-8 is

- .2 g , . mg
epv = :1-2- K[tpv + tpv ] (O=3)

The solution C-9 is of the same form as the solution for -épv
given by equation B3-5 for the linear theory. The only difference is
that we now have an exactly conserved source, while in the linear theory
we made the approximation that the incomplete source was conserved,
In the linear théory the matrix element for the interaction of two energy

tensors tpv and s was given by

p,v

_ g2 ] -
M=K Spv :;2- tpv (R3-7)

W
The steps here are entirely similar to those for the linear theory, For
a more complete description see part B3, equations B3-5 and B3-6,
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Replacing the linear approximations to the energy in B53-7 by the com-
plete tensors (tiv + t;r:‘g } and (aﬁv + siﬁg). we get the matrix element

for the interaction,

M=K (s&v + smg)—z(‘ mg ) (C-10)

From equation O-10 we see there are new types of interaction
not considered in the linear theory. Consider the term in O-10
2 s™M8 1 =g
K P-V ?tpy (O=-11)

Suppoa‘e that a:::,g is the)energy tensor of an electron, and tﬁv is the
energy tensor of an external graviton passing by the electron. The term
O-11 represents the possibility of the exchange of a virtual graviton be-
tween the electron and the external graviton,

To obtain the diagram for this process, we expand the tensors

88 and T8 in orders of K. To lowest order in K, t8  is just the
pv (184 v
energy tensor of a single graviton, and s:f“,g is sﬁv. the energy tensor

of a single electron. The diagram is therefore

Fig. 13

We see that this diagram corresponds to the scattering of a gravi-

ton by an electron. This type of diagram does not have an analogy in
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electromagnetism and was not included in the last part, This is the
only diagram for the gravitational Compton effect that has a factor of
l/qz. For small momentum transfers of this diagram will be dominant,
and at zero momentum transfer will lead to an infinite cross section.
Let us now obtain the quantity tfv (to lowest order in AK) that
appears in the diagram of fig, 13, tfv is the momentum space repre-

sentation of ’I‘ﬁv given by
TE = -28(F - F%)/6Kn (C-7a)
pv iR 4 a

The gravitational Lagrangian F = R(-g)l/ 2 / ZKZ may be expanded in the

gseries

F=F+ur +xKert +,..

2
where KF3 is of order K smaller than F~ etc. This series is
described in considerable detail in parts C3 and C4. To lowest order
in K the quantity (F - Fz) is just KFB, given in equation C3-6, The

gource term O-7a to the lowest order in K is now

3
TE, = - 26F /6h (0-13)

where -61-"3 /éhpv is given explicitly in equation C3-9,

A typical term of F3 is

: 1
2= T Bap o Pap o Bpp (O-14)

L
T € for this term is
p.v
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1 h

1
g - -2 = + 1 =
TS 58 /8By =+ T8 uhyg Bog -3 b, | B

1

= T hy, \Bes,y (C-14a)

If we label the gravitons on the right-hand side of fig. 13 by
e ., epv , and ezv » and in analogy to electromagnetism assign a
factor ¢ 3'* for emitted gravitons, e ' * for those absorbed, we

have for this part of the diagram

=i 1°x
e 1d

Fig. 14

To obtain the momentum space representation of the source T:L% we
expand the classical fields hpv appearing in U-13a in plane waves,
Using the rule that each of these waves acts only once, we get for t.ﬁv
corresponding to the diagram of fig, 14

'8 = (Ll oloZel o2 .loliolel o2 _1.2,.2,1 ez
pv T VEO0uva 02 CpCapT T9 0 0857 T "9 C55°w

11 21 2 1 1 21 2
A BRSPS I LY (O-14b)

L
There is a more direct method of obtaining tu% than the one out-

lined above. The action corresponding to our typical term f3 is

Y

K { 4
T ) Peg,oPap,oPpp

d'x (C-14c)
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Suppose the action O-l4c is directly expanded in plane waves corre-

sponding to the diagram of fig. 14, We get

20 2 3,1, .21 3 2,1 22 13
Tla.a% aB®ap®pp” 3 ' ©ap®ap®pp” 1 Capap®op

2,
-q+qe

302 3 ol 4ol aded ol o2 - o3uaed o2 ol
+
ap®ap®pp T 9" qenﬂ af%pp~ 4 "9 %up%appp]
x 2m¥s4(q® - ¢! + 49 (O-14d)

Eliminating q3 by the & function O©O-14d may be written

Lo2gl o2 L lo2.0 2 .11 11 .2
;.LV[ "2‘('2 pv? "9 Capap " T A €855 - FT "D €,0%5

1 1 22 1 +1 .2, ,2,.2 r!
txqq e.v®s txqq v 55)] x (Zw) (O-14e)
The (Zw)4 is taken care of in the cross section. Neglecting the factor
1
(2w)4. - % tp% is obtained directly from the action as the coefficient of
the polarization vector of the emitted graviton. Thus we may write the
momentum space representation of the action O-l4c as

K3tg

v v (O-144d)

The momentum space representation of the complete action corre-

sponding to fig. 14 will be

-~ .K.g 3
S‘Fdx TtprV

In a similar manner the energy tensor of the electron spv is obtained
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directly from the electron action S ngd4x by the formula

§ Ldtx—~ - F omel,

The expansion of the action S ngd4x or equivalently j Lcd4x
is given in the last part by equation N-9, The amplitude for the emis~
sion or absorption of a graviton is given by N-1l and is proportional to
the coefficient of eiﬁ in the expansion of the action. Thus we have

taken the amplitude for the absorption of a graviton from an electron

tobe - %(-sf:é » corresponding to the diagram

Fig. 15

In 2 similar manner we take the amplitude for the emission of a

graviton from & graviton to be the coefficient of eiv iné F3d4x. or

K.g
asg - Ttp.v

Fig. 16
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From equation C-11 the amplitude for the interaction of a graviton
with an electron via the exchange of a graviton is given by

2 m 1 «g
K Spv ?tp,v

2(6, 6. ,+6,.6 =5 6 )
= (. K, m po vp “va pf “"wv af K, .8
={-3) Suv qZ (-T)ti&ﬂ
(O-15)
If we take
2(8,08,5* 6,08,6" §,,,80p)/a° (0-16)

as the propagator of the graviton then we may put the diagrams of fig, 15
. and fig. 16 together to get the diagram of fig. 13,

We should note that the above analysis which leads to O-16 as the
propagator for a graviton is based on the solution to the wave equation
given in ecuation O-8, This solution relied on the assumption that the
source of the emitted or absorbed graviton is conserved. If the source
or absorber of a particular virtual graviton is not conserved we must
deal with the full wave equaticn O-8, For the diagra:a of fig. 13 both

the source and absorber t&  and s
pv pv

of the virtual graviton have a

divergence which is higher order in K. '"we are calculating the diagram -

to lowest order in K and may assume that these sources are conserved.
We are now in a position to calculate the gravitational Compton

effect. The diagrams for the process are
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111

P C,c
A,a
B,b
1
P v
Fig. 17

where we have chosen the sign of the graviton momenta to represent
the absorption of these gravitons,

We will use the following notation, 3 and C are the polari-
zation tensors of the two external gravitons and b and ¢ are their

associated momenta,

B= e:w b= q1
C= eiv c= q2 (O-17a)

p = E_zt_P... (0-17b)

To eliminate the complication of subscripts in the calculation

we shall use a form of matrix multiplication, explained by the following
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examples,
oo
Ya®apPp = YEP
1 .2
Ya®ap®popPp = y2Cp

2.1
ppYa®apPp = (CvBP

e

F{ecllﬁeiﬁ = ?‘(BC)

'%a Yalol - dz)vﬁ eép = (3y(¥ - £)y©) (0-17¢)

In this notation capital letters with the exception of K represent ten-
sors; small letters, vectors. A capital letter surrounded by two small
letters represents the dot product of that tensor into the two vectors.
A parenthesis around capital letters indicates that the first subscript of
first tensor in the parenthesis is dotted into the last subscript of the
last tensor,

The amplitude for absorption of gravitons by an electron is givé.n

by equation N-31

- 2 2
1 3K K
7 {PpYal Keap~ 7~ €0p%p* 7 %ppSas!
s - ‘ KZ KZ
(8 - m) ~Kegat T %a®pp t €ap®ap 1)

2
+%{'g e;m Yu(dl- 9(2)\{5 eip (N-31)

where ;)B is the average of the electron momenta just before and after

the point of emission of a graviton,
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In the notation described above, the amplitude for the diagrams

I, II, and III of fig, 17 are

i |
M= X1 +2)cy +£icn) ;51-1;—- [vBp-$)-E(m]  (0-18)
-m
2
a = X +$8y + 5] ;g;-‘;——-[yctp -5 -f©1 (019
-m
K% 3. 3
(1) = T[ - $YBCp - 5 yCBp + (B)YCp + (C)(yBp)

-%(Cm B) - 7(BYAC)] ~ (0-20)

After some standard algebra the sum of these three diagrams is
given by
KX, 3 1
(1) + (ID) + (I) = — { - % YBCp - ZcmB

—~ (p +5)C(2yp + by - yc - ¥ + y¥y)B(p - §) ]
2b(p - %)

+

+ the same terms with B exchanged for C, b for ¢

(O=-21)
For additional examples of notation, we have
CypBp = ez e1
P“YP P Pu vava papa

pC¥Bp = ¥pCBp

Suppose we try to check these terms alone for gauge invariance,
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We do this by replacing the polarization tensor v for one of the ex-

ternal gravitons by
oy T e * quév + qvép (C-6a)

Under this substitution the cross section should be unchanged provided
we have all the diagrams for a real physical process., lLet us make this

substitution on the graviton B,
B— B+bg +5b

or if we replace B by b + &b vﬂve\should get zero,

Making the substitution in O-21,
B —bf + &b (0-22)
we do not get zero, In fact O-21 becomes under this substitution
B—~bf +&b
K? .
(1) + (1) + (U — o[ -2(pCE)¥ - 2(ECy)bp - 2(pCy)ct]

(C=21a)

Thus the diagrama (1) + (II) + (III) alone are not gauge invariant and there-
fore do not completely describe the Compton effect,

To get a gauge invariant amplitude we must include diagram IV,
From equation O=14 we see that we get

K g .3
tpvepv

by expanding g‘KF3d4x in plane waves, Let F> be represented by the
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diagram

Fig. 16

where A is 03 .
pv

In terms of the fields th' F3 is given by equation C3-6 as

F° = 5ngph §Fup, y5 * ByphyaBap, 55° ZhayPecPap, yvs

L1
+ 2h,gh u*.y};ﬁa 5 +3h apPapBys, v6* T PaalppPys, yol

To expand F3 in plane waves we take all possible combinations of each
term. (For reference, see the example given in equations O-l4c and
O-l4d.) Using the notation described in O-17, the momentum space

representation of F° ig
KF> = [ (AT)cBe + (AB)WTb + (BT)cEe + (CH)bEb + (8K)aTa
+ (CX)aBa + 2(ABC)cc + 2(ACB)ob + 2(ABC)aa - 4cATEc
- 4bABCb - 4aBECa + 4cCA DD + 42X Te + 4aA T Bo
+ a&a(BC)+ Q‘Eb(Acw cTe(AB) + % aKa(B)(C)

+.1‘,_r bBb(ANC) + }zc’cc(A)(B)] (0=23)
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In equation C-23, the coefficient of e3, or A is --I;'-tﬁv. More
conveniently, the coefficient of X is - %Tﬁv' Since the electron in

diagram IV is free, the matrix element for diagram IV is from equation

O-16
Z2m 1 - . 1 _K=g
MIV = K pr -(;3-)2-{&‘, = K(yppv* ‘jVYp) (:3;2( - tpv) (O-24)
This matrix element may be obtained simply by replacing A or -e'zv
in C-23 by
-3 . K
epv -(-;-3-)-2 (y“pv- vap.) (O-25a)
-5
= [vp +pv] (O-25b)
a .

As an example of the substitution O-25b we have
K K® .,
% aBACa — .z [ (aBy)(pCa) + (aBp){yCa)]
a

Before making the subastitution O-25b in O-23, we note that O-23

may be simplified, Consider the factor
3.3
ak = 9 ey

Under the substitution O-25a this becomes

‘—rqu) Qi(yppvvap) = (;%—)—2- [9f3pv+ Y,P°* ] =0 (0-26)
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This expression is zero because
=gl -
2N uiph) = TEHEE - Fruph) = Tm - mu =0

and

2prq = (pt +pf) ¢ (o = pf) = (p)2- pHZ am? - m? =0

Thus any expression in O-23 containing a factor aA is zero.
We also have conservation of momentum which gives us the re-

lation

1

32- z-
LT
a=-b-c (0-217)

This relation can be used to eliminate a in O-23, There are various

manipulations possible in O-23, For example, we get

(AT) = (AC)

(BC) = (BC) - F(B)C)

by manipulation of the operation "bar". Using conservation of momen-

tum and the fact that aA is zero, we can get
bX = - cA etc.

A convenient form for O-22, using aA =0 is
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3

®¥F” = 22[ 2(ZC)eBc + (BC)bED + 2(ZBC)bc

o

- 4cACBc ~ 2¢BACb] (a)

4 the same terms with B exchanged for C, b for ¢
+% [4p%(ZCB) - b%(C)(EB) - b2E)(CB) - bX(BNEC)
+%b2(1')(B)(C) + 2bBb(EC) + 2bBe(XC) - bBL(ANC)
- 4bBZACbH + 2bBCb(Z) + 2bB 2b(C)] (b)

+ the same terms with B exchanged for C, b for c

(O-28)

It is more convenient to test for gauge invariance by making the

substitution O-22,
B — bt +5b ' (0-22)

before making the substitution C-25b for A, In using O-22 we will have

for example
(ABC) — £ACb + bACE
(B)~2b- ¢
bBb —~ b . £

bBAb — {Zb etc,

Making this eubstitution O«22 in part a of O-28 (including the termsa

with B and C, b and ¢ exchanged) we simply get
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;= 5 b (FC)e + £+ 26KCH) (O-29a)

The subsatitution B — bt + b in part b of O~28 (including the
exchanged terms) does not give a simple result, We only get a simple
result if we assume that the graviton eiv is free, or that (q?‘)z = 0,

If this graviton is free it satisfies the wave equation for free fields,
equation Bl-l. This equation automatically implies that qi?ﬁv = 0 (see

part Bl), Thus if e:.v or C is {ree,

c2=0

cC=0

and the only part of KF?b) that remains is that shown explicitly in O-28b

without the exchange of B for C, b for c. Under this condition KF3
becomes under the substitution B — b + &b
xr{‘b) — Ev¥[(EC) + c + 2bECE] (0-30)

If we now make the substitution

K
A~ =[yp +py]
a
we get

2 ,.2
My (6) = 5 ‘9—-?;5?2‘51 [ 2(pCEIN + 2(ECy)bp + 2(pCy)ct]  (O-31)

" However az = bz + 2bc + cz = bz + 2bc for c:Z = 0, and 0O-31 just cancels

O=2la. Thus the amplitude for the scattering of gravitons by electrons

is gauge invariant, provided we include all four diagrams, and provided
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that the external graviton which is not tested for gauge invariance
(namely C) is free.

The reason that C must be free for a test of gauge invariance
is as follows, If C is not free, it was recently emitted from another

source. Including this source the four diagrams of fig, 17 become

1, 11, I1I

Fig. 18

There is however another physical process that can occur, namely

£ C
: B

Fig. 19 v

If the graviton B is to interact with a complete conserved system,
we must include the possibility of diagram V. We pointed out in de~
riving the gauge test O-6 that the external graviton must interact with
a conserved soﬁrce for the gauge test to work., For the case C is not
free, we must include the interaction of B with the source of C, as

shown in diagram V.,
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Only if C is free, or nearly free, is its source so far away that
we do not need to include the pouibility of B interacting with that source,
It is then that we are able to successfully test B for gauge invariance.

Finally, we give the complete amplitude for the scattering
of gravitons by electrons.

2
M=% [-3yBCp- FCymyB

b

+ — (p +3)C(2yp + by - yc - K + Y¥y)Blp - 3)
2b(p - §)

+ —gd s { 2yCpeBe - cBpyCb - cBypCb + beyBCp
b +2bc +¢

+ bepBCy - 2cpyCBe - 2¢pCBe + bp¥(BC) + 2b%pCBy
Y Y

+ 26%yCBp - b?H(CB) - bZyBp(C) - b2y Cp(B) + 3bZH(BIC)
+ 2bBbpCy + 2bBeyCp - bBbE(C) - 2bBpyChb - 2bBypChb

+ 2bBCb¥ + bBypb(C) + bBpK(C)}]

+ the same terms with B exchanged for C, b for c.



-193-
V1. DIVERGENT CALCULATICNS

The subject of divergences in the quantum theory of gravity is
quite complicated. For the case of gravity interacting with spin-zero
particles Feynman has worked out the lowest order divergent diagrams
for such processes as the gravitational self-energy of the particle, |
vacuum polarization, and the corrections to the scattering in an ex-
ternal potential. At present there are still some problems with this
last calculation.

Because of the added complication of the graviton-electron
interaction, the corresponding divergent calculations are even longer
when gravity interacts with electrons. For this reason we shall pre-
sent only the calculation of gravitational seli-energy of the electron,
and the most divergent part of the vacuum polarization. The rest of
the vacuum polarization calculation involves considerable algebra which
the author has not yet had time to check.

Harold Yura has been applying dispersion theory techniques
to the problem of divergences in the quantum theory of gravity. This
leads to a slightly different emphasis of what is to be calculated, for it
is assumed that one is already working with a gauge invariant renor-
malized theory. Thus certain renormalization constants are not calcu-
lated. However the calculation of the remaining quantities appears to
be far simpler. It therefore seems reasonable that any further divergent
calculations involving electrons, with the more complicated electron

graviton interaction, should be done using the dispersion theory technique.
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P. GRAVITATIONAL SELF-ENERGY OF THE ELECTRON

The diagrams for the self~-energy of the electron are the follow-

ing

q
I —> >
p F P p
Vi VII
4 (Pq q q
VIII IX

Fig. 20

To calculate diagrams VI and VII we will use the graviton-
electron coupling N-19 and the graviton propagator O-16. The matrix

element for diagram VI becomes
V1= Ka[ -3 +8 é] :
Z LVpP % o po P-A4-m

2
% [yp(p - §)v+ é 6”] x[appsw»r avpaw- 5pv5p¢]/q (P-1)

Using P = m; pZ = mz since the external electron lines are free this

matrix element becomes



~195~

2 2

2
-Ig—[ri(-‘ip-q*r%qz) - 4mp- q+-sgm q® + 2m’)

x [ a®(q®- 2p- q)] 7! (P-2)

The matrix element for diagram VII is

K

Vil = "Z— [y aPol” 'Z pa VP+ spvaap)

x(8,,8,5+ 8,58,," 8,,8,5)/a 3 (P-3)

Due to the symmetry of the propagator, the term in the interaction that
is proportional to the antisymmetric combination of three y matrices

gives zero. The matrix element P-3 reduces to

VII = ‘2‘ [- Ll (P-4)

It is interesting to think of these two diagrams, VI and VII, as
being obtained by connecting the external gravitons in the Compton

effect. The relevant Compton effect diagrams are given in fig. 2L

g_f_‘g_ _\z__\/_

Illa
Fig. 21

If we connect the external gravitons in these diagramse by the propa-

gator O-16, we will get just twice the self-energy diagrams VI and VIL
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We get the factor two because connecting the gravitons of diagram I
gives the same result as for diagram 1I, and each will give diagram
V1. Similarly diagrams III and Illa will each give diagram VII when
the external diagrame are connected.

For the complete self-energy of the electron we should include
diagrams VIII and IX. However, the calculation of these diagrams is
not straightforward since the graviton that connects the electron with
the external loop carries zero momentumn. The propagator for that
graviton, being inversely proportional to the square of the graviton's
momentum, is therefore 1/0.

Diagrams VI and VII lead to an in.iinite. contribution to the self-
energy of the clectron, but only in the limit that q, the momentum of
the virtual graviton, goes to infinity. If we cut off the momentum of
the virtual graviton to a finite value, say \, then the diagrams give
only a finite contribution to the electron seli-energy. However, no
such cutoff can be used for diagrams VIII and IX since the connecting
graviton has identically zero momentum and therefore a propagator that
is always proportional to 1/0.

Despite this factor 1/0 in c;iagrams VIII and IX, we will show at
the end of the next part that these diagrams give no contribution to the
self-energy of the electron, thus the total contribution to the gravita-

t ional self-energy is from diagrams VI and VIL

The complete matrix element is obtained from P-2 and P-4

by integrating over all possible momenta q of the virtual graviton. The

result is
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@ 4Ap q 2’“2‘“ 2f.p- 6m| at
Ms.z..s ..21_5’_4_‘1.-._2. (2)

-2p-* q) (q -2p- q) q q 7 (2n)

2 0 2 4
F T G
Y- q{(q -2pc-q) (2w

(P-5)
In terms of this matrix element M the correction to the mass is given

by

— - *
Amuu = %—u Mu

We shall calculate only the most divergent part of the self-
energy. This means that the integral P-5b, which is not as divergent
as P-5a, will not contribute. Using Feynman's (23) technique for calcu-

lating integrals, P-5a becomes

23 kA2 (P-6)

M= 1o "

where we used the cutoff k4/(q - Xa) in calculating the integrals.

The value of KZ is given in equation $52-22 as
L 8vG

thus we get for Am

Am 23 2 ' -
_ = - 5= G\ (P-7)

—
See Feynman (22).
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Let us compare this value of Am/m with the value of Amo/ m
for a spin-zero particle. Feynman gives the result that gravitational

self-energy of a spin-zero particle is

Am
—_l . -2- ze + finite terms
m w

which is not the same correction as for an electron.

It would be interesting if all gravitational mass corrections were:
the same. We can take as a basic unit of length the Compton wave length
of any of the fundamental particles. These units of length are propor-
tional to the mass of the particles. Thus if the mass of these particles
were all renormalized by the same factor, each unit of length would be
changed by the same factor and the gravitational mass renormalization
could be interpreted as merely a uniform change in the scale of lengths.
Since the electron mass renormalization is not the same as for a spin-

zero particle, this interpretation is not correct.

0. VACUUM POLARIZATION

The diagrams for vacuum polarization are the following

B
p- 3 q

B C

q q NN
p+§

X XI

Fig. 22
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The matrix elements for these diagrams are

X = "S {T YBp - (BEXB - m)] ;—T—

&
x[ yAp - (AN - m)}} a%p (Q-1)

Xl = ZS‘ [(A)va + (B)YAp - 2 YABp - » YBApl

+ g—:—g}[ 2(AB) - (A)R) ]} a*p (e-2)

where we are using the notation given in equations O-17. This notation

is very convenient for taking traces. For example

FLAYEA] = (abllca) + (ad)(cb) - (ac)bd)]

Therefore the trace of a quantity such as PyBpdyAp may be done by

inspection:
tr
7 [ PYBpAvAp] = pBpgAp + qBppAp - p+ qpBAp

The matrix elements X and X'I niay be evaluated by techniques
entirely similar to those used by Feynman (24) for the problem of
vacuum polarization in quantum electrodynamics. The traces and inte-
grals involved have been done by the author, but are not yet checked.

There are no inherent difficulties or complicated integrals involved in

—
The part of the second order interaction prOportional to Xél does not
not contribute in the trace since vy Y, Y

plvio p voa Yo ¥s®
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calculating the divergent parts of X and XI; but quite a few pages of
algebra are involved. The finite parts of X and XI involve one final
integral that is rather difficult, but for physical interpretation there
is apparently little gained by performing this integral.

It is far easier to calculate the most divergent part of X and
XI1. The most divergent part of these amplitudes is independent of
the momentum q of the external particles and may be calculated for

q = 0. Inthis case the amplitude X reduces to

2
X{q = 0) = g & {éxAgé‘xAé + e yAPYAP
P

- m*%)
+ EYARBLBYBR(A) 4 (aym)} ot (Q-3)
p--m | ’

There i8 no change in the form of XI for 2z = 0.
Taking the traces in Q-2 and Q-3 the amplitudes X and XI

may be written

X(q=0) = 5’ [_ZzAzaafzg_z - (pABp 4 pAR(B) + pBRIA) ] atp  (a-4)

(p"-m") p“ - m
X1{q=0) =S [‘3PABP + (AlpPp 4 (BlpAp } atp (Q-5)
p“ - m

where we have left out terms of the form
S(AB)d p (Q-6)

Feynman's technique for evaluating integrals appearing in vacuum

polarization problems involves calculating the integral for two different’
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masses of the electron, namely the normal mass and a very large mass,
and taking the difference. Therefore any integral such as Q-6 which
does not involve the electron mass will not contribute.

Before evaluating Q-4 and Q-5 let us include the amplitude for
the emission of a single graviton from a closed electron loop. This
process only occurs for zero momentum of the graviton. We are there-

fore calculating the amplitude of the following diagrams.

XII : Xa Xla
Fig. 23

The amplitude for XII ie

-

xn"‘s - T——m [ 2yap - 2(¢ - m)(A)]}d P
" 2pA 4
Y FE e

The total amplitude for diagrams Xa, XIa and XIl for q =0

may be written in the following form

o 4

Xa +Xla + XII=2A P 5
.-m)

pv po

+ (24, - 4,48, 5 -PT—Td"p (Q-7)

{p"-m")
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Using Feynman's methods for evaluating vacuum polarization integrals

we get
P PP P, 4
§ a*p
(p"-m")
2,,2
=t wj(s 6, 48, o8uot 8,850 2np -2y zh (Q-8)
1642 ' pp vo pvopolt P P=Z
2,,2
8 m 4\
v 1p 2 34°
c-—tz-x [pYYnp -5]_2 (Q-9)
5 (p o) P ok °F 2'm
The complete contribution of these diagrams for q = 0 is
mz-l»)sz a) 1 1
‘12—2—-[ P (h‘ P - 'z) [ -l (AB) + Y. (A)(B)] (Q-IO)
o
m2+7\2
The divergent part of [p (Inp-3 )] - may be obtained in
the following way. Using
2 2 2 4
Infmfnd) s m (A 14 2] sy o B,
m A m A rAs
we get
2 3 4, 2% 2.2 2% 4 a?
[p(lnp--z)]z-Kln—-z-Zmhln—-—z-mln—-z {Q2-11)
m m m

where we have dropped all terme that are finite or contain only a factor

2 or A% (See Feynman (24).)

of A\
From Q-10 and Q-11 we get the most divergent part of the vacuum

polarization diagrams X and XI:
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2
X+ XI = ‘—i—.;.'él—z_i A 10 X, [-2(aB) + (aNB)]
w m

+ leas divergent terms {(Q-12)

This is the same degree of divergence for the vacuum polarization as
for the case of gravity interacting with spin-zero particles.

In the case of electromagnetism the amplitude for vacuum polari-
zation is less divergent for electrons than for spin-zero particles,
namely In G / m® compared to A% In ().Z/mz) . This mildnees of the
divergence for electrons is not repeated in the case of gravity, and
both spin-zero particles and electrons give rise to the higher divergence
2% 1n (A2/md).

Finally lat us return to the amplitude Q-10 representing the

diagrams of fig. 23. Q-10 may be written
N[ 3 (A) - 3 (AB) + 3 (ANE)] (Q-10a)

where N(\) is a divergent constant. Suppose we added to the action

the quantity

- 5 NOWN-g)Y 2a%x (©2-13)

The term Q=13 is a scalar quantity in the space of metric gpv and thus
preserves the invariance properties of the action.

Expanding (-g)l/ 2

, we have added to the action

. 2
S N2 +§ +%- - -}I by, +eee ]1a%x (0-14)
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This term in the action gives rise to the diagrams

q:O A
=N(\) e =N(\)

XIII =0 B
XIV

Fig. 24

The amplitude for these diagrams (treating A and B symmetrically
in XIV) is

-NOM 3 (A) - 3 (AB) + 5 (AXB)]

which exactly cancels Q-10. Thus Q-13 may be considered the countexr
term in the action that removes the effect of the diagrames in fig. 23.

The physical interpretation of the diagrams in fig. 23 is ae
follows. The vacuum state in field theory is not represented by a real
vacuum, but by the lowest state of the oscillators of the fields, in this
case the electron field. The energy of the lowest state of a quantum
oscillator is not zero but hw/2, thus the vacuum state has an energy
equal to hw/2 for each oscillator of the field, or an infinite energy.
To get the correct vacuum state this energy should have been subtracted.
This is not usually done for the zero of energy has no meaning in most
problems.

However gravity couples to all forms of energy including the

energy of the so~called vacuum state, thus we must be careful to sub-
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tract this energy. In terms of diagrams the energy of the vacuum ap-
pears to lowest order in the form of an unconnected closed loop. That
this closed loop ia a source of gravity is seen in the diagrams of fig. 23.
Thus when we add the counter term Q-13 to the action, we are sub-
- tracting off the energy of the vacuum state as well as the gravitational
fields produced by that energy.

We can now return to the diagrams VIII and IX for the seli-

energy of the electron.

Y
\

VIII IX
Fig. 25

Diagram VIII represents the energy of the vacuum producing a graviton
of zero momentum which later interacts with the electron. Since the
vacuum state of the gravitational field also has an energy, dlagram
IX has the same interpretation as VIIL

We have already introduced a counter term in the action 8o that |
the amplitude for the emission of a single graviton from a closed
electron loop is zero. A similar counter term should be introduced
8o that the amplitude for a closed graviton loop to emit a single graviton
ie zero. With these counter terms the amplitude for diagrams VIII and
IX will be proportional to zero times the propagator of the zero momen-

tum graviton, or 0/0. Thus the magnitude of the contribution from
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these diagrams is undefined.,
These diagrams will still have no physical effect for the following

reason. All particles are affected by the gravitational field h'“v from

the closed loops, thus these fields may be replaced by a space of metric

]
8,
fields are constant (there is an equal amplitude for the graviton to

'
v = 6’.w + Kh“v in which all particles move., Furthermore these

arrive at any point in space) and the metric g;v = 6“‘, + Kh;v is a
flat space metric. Thus by a suitable choice of the scales of length and
time the effects of these fields will not be noticed,

This argument, invented by Feynman, shows that although the
amplitude for diagrams VIII and IX may not be zero (they are proportional
to 0/0), their physical effects are inobservable and should not be included

in the calculation of the self-energy of the electron.
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APPENDIX 1

At the beginning of section Il we pointed out that a potential theory
could not be set up for a half integer-spin meson, The reason for this
is simple. Asasume an arrangement of the sources of this meson that
gives rise to a static potential. If one of these sources is moved, the
potential is changed. As with electric potentials, the change in potential
must be brought about by the radiation of an infinite number of very low
energy mesons. (This is the source of the infra-red divergence in
quantum electrodynamicas. )

Let us assume that a proton is the source of the mesons. To
conserve angular momentum the proton could emit an integer-spin meson
into a state of the opposite angular momentum and not change its own
state. However, there are no angular distributions of radiation that
correspond to half a unit of angular momentum, thus the proton must
change its own state when emitting a half integer-spin meson. But this
cannot happen {n the linﬁt that the proton emits an infinite number of
such mesons coricsponding to a change in potential,. Thus a potential
theory does not exist for a half integer-spin meson.

A potential theory may be constructed for integer spin mesons,
but for even integer spins the force is attractive while for odd integer
spins the force is repulsive between static like objects, This is a
consequence of the fact that the energy in radiation fields must be posi-
tive and therefore those components of a meson field that contribute to
the radiation field must have positive energy.

For the example of a single component spin-zero meson field



-208-

the energy in the field must be positive. This immediately leads to an
attractive force between like objects exchanging spin-zero mesons,
Consider the case of two like parallel plates., The field between them
will be uniform as long as the spin-zero meson has zero rest mass.
(The 1/r Yukawa potential gives a force field of the same form as
electrostatics.) As the plates are' brought together the region of the
fielde, and thus the energy in the fields decreases. Thus the force must
have been attractive. This result is also tfue for non-zero rest mass
spin-zero mesons as is seen in the binding of nuclear matter by
mesons,

For a spin-one or vector meson the vector field consists of a
tirﬁo component, a longitudinel and two transverse spatial components,
ﬁy a proper choice of gauge the longitudinal component may be eliminated
(Coulomb gauge). The radiation fields are made up of the transverse
components, thus these components must carry positive energy. Thus
for electromagnetism like objects interacting via the transverse com-
ponents of the field, such as parallel currents, attract each other,

To determine the sign of the energy in the time component of

the field, one may consider the Hamiltonian density of the field. (See
for example Schweber (25).) The over-all sign of the Hamiltonian
density is determined by the fact that the transverse components of the
field carry positive energy. The result, for the static vector field
which we are considering, is that the energy in the time component is
negative. Since the interaction of static particles is only through the
time component (Coulomb field) this implies that like objects (charges)

repel each other when interacting via a spin-one meson.
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For the spin-two field like objects interact only through the time~
time component of §h3 tensor that describes the spin-two field. Here
the sign of the energy is reversed again and static like objects attract,
The general rule as stated earlier is that static like objects attract for
the exchange of mesons of even integer spins, and repel for mesons of
odd integer spins.

To distinguish the physical effects of a spin-sero and a spin-two
gravitational theory, we can look at the form of the coupling for the two

f ields. Consider the case of gravity interacting with point particles.
For static particles gravity must couple to the mass of the particle, and
the only corrections to the coupling can be due to the velocity of the
particle,

For a spin-zero gravitational field ¢ we might write the inter-

action part of the action as

Sint = §¢(?)mde 1)

where = is the coordinate of the particle,

However, this action is not a scalar quantity under Lorentz
transformations, and in the relativistic limit would not lead to conser-
vation of energy and momentum. This may be corrected by replacing

at in 1 by
ds = (1 - v2)/ 2ae

with the result

mn
Sipe = ) olmlt - vA¥at.
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Thus for a spin-zero theory of gravity the coupling would be propdrtional
to m(l - vz)l/ z. or would be reduced for a moving particle.

For a spin-two gravitational field h“v. in order that the action
be scalar, gravity must be coupled to the energy tensor of the particle,
This is because the energy tensor is the only tensor constructed from
the masa and velocity of the particle that reduces to the mass when the
velocity goes to sero. Thus for a moving particle which has more
onorﬁ than when it is at rest, the coupling to gravity would be increased.

Finally we note that 2 theory of a spin-zero, zero rest mass
mescn field does not exist a present, If we started with a zero rest
mass spin-zero particle, it would shortly create its own rest mass via
virtual interactions with itself, There are no such self energy cor-
rections for a photon, because of the gauge invariance properties of
the electromagnetic field. We may also prevent self energy corrections
of a zero rest mass spin-two meson by gauge invariance, but no gauge

invariance exists for spin-zero,
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APPENDIX II. RELATIONS AMONG y MATRICES

The curved space y matrices are defined by the relation

oYy Y VY =28, )

We define the antisymmetric combination of y matrices by

YuYy = é-(vuv, =Yy (2)

1
= - +
Y Yo Yp g(v,,v,ve \OATRANRAN (3)

- 1
Y ¥o¥o¥o = 1 (v“v,,vgva ROANL

MAANIRBANR (4)

The quantities vy vy v Y, Y ¥ and y Y,V Yoy aTe all antisyminetric in

their indices p, v, p, ¢, and normalized to one. That is if A’w. A

kve

and Apra are antisymmetric tensors

YPY vApv = VEYvApv

A A
V¥ ¥pluvp = V¥ ¥oluvp

Y Y YoVohuvpo = MDY EYOAW po

We can express the quantities y Y, Y and y \ A in terms

of the y matrix Y5 = yxyyyzyt by the equations

Vo ¥o = €uypoV¥s Vo (5)
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Y Y, Y Vg = (6)

B P €p,vpoYS
where e“vpa ie the antisymmetric unit tensor which is zero unless
w¥ ve ps 0 and equal to +1 or - 1 according to whether u, v, p, ©
is an even or odd permutation of x, vy, %, t.

The following are a set of relationsa among the matrices,

YoYu¥v = Y V0¥, = 28,y = 28,,Y, (7
Yo¥u¥y = MuVu¥p 8 Yy < By, (8)
Yu¥u¥p = VuVu¥p " BouYy T By, . r
YV = YV ¥, - Y, Y 80T, By, (10)

1
Y,y ¥p¥o = ThYY, Yo¥o F Y Yo VLY, FY Y YLy

T VYo VYo T YpY, VYo T Yoy Wl

1 1 ,
zlv,y, Yp¥g * Yp¥o z"v,] =7 0y, ¥e ¥, 7, Y, Y, v Y]

880 * BpuByo T 28y p8y0 (2}

1 1
+ =
=lv.v, Yo¥o * Yo¥o v"yvl zlv,y, YYo t Yo Yoy, ]

" BuvBpg ~ BupBuo T ZBuoBpy (13)

From equation 11, 12, and 13 we get
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1 =
zlyy, Yoy, AL 'vpv‘v] =Y,Y,Y, Vg

g, .8 (14)

T 8u08yp " BupBug

We also have



=214 -

APPENDIX III. THE MATRIX fp

We wish to solve equation J-7

Multiplying through by gpv and noting that the covariant derivative of

gpV is zero, we get the equivalent equation
~ - P 1
Yo = Tu¥p = ¥ply )
Now the commutation relation satisfied by Yo is
Ya¥p * YoV = 284, (2)

Taking the covariant derivative of both sides of 2 we get

Multiplying 3 on the left by yu. noting yay o~ 4, we get

a a a
Y Yo, Yo PV tY Y Ya TY VY, 0 (4)
But
a a
- + 2 5
Y YpVay = = YoV Ya;, ¥ &y (5)
Equation 4 becomes
Yoo PV YpuuVa = Ypl¥ Yo ) - (Vivg, )y, (6)

At this point the author has been unable to proceed without ex~

panding YP in terms of the flat space matrices by the relations K-3
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-~ - [¢2
Yp = PpsYs Vg = PggY
From this we get
- e o _ o c
Yo = Yo, u” Fo,puY = (Pps, uPos o, pplY ™

where we have used (bp6Y6).p = bp&, pya since we are assuming a

representation of the flat space y matrices where

Yﬁ,p= 0

Using equation 7 we get

a - _ , ; a0
Y YoiYa = (P55, %5 = To, pp)¥ Y Yo (8)

Now

a o a
Y ¥ Y = - ¥ gy~ *+2v780 = -2y’
Therefore

a (3
= -Zb - | = . g
Y YoipYa ( pé,uboé Io, u)Y ‘ ZYp;u : )

The author has been unable to obtain equation 9 directly from
the commutation relations of yp. It is not «nown whether this is a
failure on the part of the author, or whether the relation K-3 puts an
added restriction on the curved space y matrices that allows us to
obtain the relation 9. This question is not important for the quantufn
mechanics of gravity interacting with electrons, since the quantum

mechanics is based on the expansion K-3.
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Substituting equation 9 into § we get

1l a 1 a
- L g 10
Your = YplTY Yo;) = (3V vq 0y, (10)
Comparing with equation 1

4

Youu = Ypl=t)= (-T v,
we get

- _1 a

Lp = -7V Ya.;p (11)
Since

a a a a Qa
= = + = +
vvely, YiYa Y Yo T Ye;Y Y Yo

we also get

N | a
Fu =3 Ya;,Y (12)

which is the solution given in equation J=8,
Alternate forms of f‘p in terms of the quantities a and b may
be obtained in the following way.
, 1 a_ 1 a _1 a a
TLu® T Ya;Y 7Y Yoy “8Way,¥ - Y Yo ) (13)
Using equation 7 we get

S 1 - Q ﬁ
TP =3 (bﬂk, pb)& + iﬁ,pa)LY.. (14)

In terms of the flat space y matrices -Y-o. this becomes

1 - -
Ip = K(b)&, wap t Iy, p5a5ﬂa)~5)1§1E (15)
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To lowest order in hpv we get
r =in .Y (16)
p 4 Bp,a¥a¥p
In equation K«7 we desired the quantity

1l .p B .

+ r 17
3 [ pr Y p] (17)

From equation 14 we get

1 T 1 = app, pob
5 (F“y ty l"p) = g(bM.”bM+ 15'pa)(w\{ Yy y)
(18)
From equations 8 and 9 in appendix II we get
APV +vP0P) = 2ty (19)

Since I“ﬁ ua is symmetric in p and a, it gives zero when multiplied
1}
by xo'xﬁxp. Expressing the remainder of equation 17 in terms of flat

space matrices we get K-7

1 1 - /
3 [IP‘Q,p + YPI"“] = 7 Pay, BRav3ppY, Yy (20)
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APPENDIX IV

To prove equation 1.-20 we use the relation

(] ' ' ' [ L |
re= %(YQ;KYQ) = %(Ya. KYﬂ) gaﬁ - :lfrzx gﬂﬁ Yo¥Vp

' - ) e
Substituting Yo = (h )S 1 S and noting that

Y
Fak = Taxl®)

we pet

re =g ®PmMle,, by (0N T,

&

-p * — —
- 1P by ()b, (BT,

» * L omle -l —
oo oth Mbg (hy S (ST =S STy YIS

where we have used
= [b sy sl = s Ysib__s"'y s] .s"l}s
Yo,k ap” Yp ap” Yol k

and

1f we note that

L J—

Tb®) = 3a*PmN b 0", T Y,

B e -

- ] * E
Pox(h dbg (b )bg ()Y Y, ]
and that from equation K-3

a L aB * *
g% bg, = s%P b B og ")
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we get

-1 ™~ » 1 S -1
r,=5 [lK(h)+zy Syp- js

However, from equations 1L -17 we get

g . ——— -

S S =0
Yp Y vgkYpY Y Y

since -\;p? ?V;’p = J, Thus we have proved equation 1L-20.

' Slf o gy ® -1
r,=85 [1,((1‘_)-5,,‘5 ]s
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APPENDIX V

We wish to investigate the quantity

APt FaTp) = - 2vPUL,

where we used the relation

..._ .

P .
* Tgalp™ 1a,p6” 1,0

- . -
la’ﬁ’ i aﬁf'p- Lﬁ

We can see the meaning of the terms in ! by the following investigation.

The order of partia! differentiation is interchangeable, thus

- =0 2
YP-PV YP}"'P (2)
Now
g (e
- ™ - +
Yo,u = Yo * FopVo = Tu¥pm Yo It Fpu¥e
= -y, [, #T.T,y -0y [ +10T
Yo,uv = Ty, o¥p™ Ypliy ot T luv o DY 10 1, Ly,
vy i" Yo r I”'u FpVYO'Fp ng.vyc
o~
+ - 3
TouTo¥o™ TouYoTu* Tp, I5,Y %)

And in a similar manner

-y =y 0, &, vy ti vy i,-v I":.V+E"°\(OTV

P VR P Yop Vet 'p PV PR PR
- -0 r O
- I p I"y I" }pp wo © Lov,wYo

~ _ 1© 6 .
LR SR VLD A s 5l RS (4)
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Substituting 3 and 4 in 2 we get

- + - - - + -
(v Tyt Bu Ty LR V(T = Ty # T T, - T T

K v V,

+ o + ) + 5 ‘
= Yol =T, v Tovp™ Toulav® TpuTsy) (5)

The terms in the square brackets are just R:pv' If we define

F}lo"- I’v'#*‘ FPI‘V- FVI‘p = Cu" ‘ (6)
we get
(o} o
c -C = -y R = +y R 7
Yo~ uv™ Muv¥p T T YoTpuy T 7Y Fpopv (7
Try as a solution of equation 7
a1 a p .
va =tz Raﬁpvw (8)
We get
1 o B a B
- = + -
YoCuv™ Cuv¥e = T3 Rap oIV XX - X YY)
1 a B a
= + -
. 'ZRaﬁpvaY 6PY )
- g
= +y RpO'pV

which checks equation 8.

Equation & may be written

(I1a.6- I"ﬁ'n'f FGF@- iﬂgrwa)
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since Rp,vaB = - RV}!“?'

1...1‘.3.( pt Talp) = "gY “YPyty'R uvap (9)

Y/e now get from equation 1

The quantity -yayﬁypva may be written

pvap

v G
v*yPyty Rqﬁw g(v vy YﬁRpmﬁ"’ v“vﬁv Y Rgva

B v

Q
+v*y'y

We have

B v a

v a . Q a v
YIVPYIY® = v NP+ 2gPYMy® - 2g%Pye

Y

a v v a v [+ % av
YYOPYY = vV + 2Py 20 P

Therefore

a B p v = oL rv.e P
VY Y'Y R, T -3 IV R ot Riguat R gp,)

+2y"y R+ 2yPy R+ 2yMyP i
Y'Y R, *2¥Y R+ 2YYR ] (i)
Using the identity

vaaa + Rpﬁvn + Rpuﬁv =

equation 1l becomes

Bk = -
v vy Raﬁpv = - 2R
Substitution of 12 into 9 gives

-v*Pry  + Tpr) = - IR

which is relation M-12 which we set out to prove,
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