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111

P C,c
A,a
B,b
1
P v
Fig. 17

where we have chosen the sign of the graviton momenta to represent
the absorption of these gravitons,

We will use the following notation, 3 and C are the polari-
zation tensors of the two external gravitons and b and ¢ are their

associated momenta,

B= e:w b= q1
C= eiv c= q2 (O-17a)

p = E_zt_P... (0-17b)

To eliminate the complication of subscripts in the calculation

we shall use a form of matrix multiplication, explained by the following
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examples,
oo
Ya®apPp = YEP
1 .2
Ya®ap®popPp = y2Cp

2.1
ppYa®apPp = (CvBP

e

F{ecllﬁeiﬁ = ?‘(BC)

'%a Yalol - dz)vﬁ eép = (3y(¥ - £)y©) (0-17¢)

In this notation capital letters with the exception of K represent ten-
sors; small letters, vectors. A capital letter surrounded by two small
letters represents the dot product of that tensor into the two vectors.
A parenthesis around capital letters indicates that the first subscript of
first tensor in the parenthesis is dotted into the last subscript of the
last tensor,

The amplitude for absorption of gravitons by an electron is givé.n

by equation N-31

- 2 2
1 3K K
7 {PpYal Keap~ 7~ €0p%p* 7 %ppSas!
s - ‘ KZ KZ
(8 - m) ~Kegat T %a®pp t €ap®ap 1)

2
+%{'g e;m Yu(dl- 9(2)\{5 eip (N-31)

where ;)B is the average of the electron momenta just before and after

the point of emission of a graviton,



184~

In the notation described above, the amplitude for the diagrams

I, II, and III of fig, 17 are

i |
M= X1 +2)cy +£icn) ;51-1;—- [vBp-$)-E(m]  (0-18)
-m
2
a = X +$8y + 5] ;g;-‘;——-[yctp -5 -f©1 (019
-m
K% 3. 3
(1) = T[ - $YBCp - 5 yCBp + (B)YCp + (C)(yBp)

-%(Cm B) - 7(BYAC)] ~ (0-20)

After some standard algebra the sum of these three diagrams is
given by
KX, 3 1
(1) + (ID) + (I) = — { - % YBCp - ZcmB

—~ (p +5)C(2yp + by - yc - ¥ + y¥y)B(p - §) ]
2b(p - %)

+

+ the same terms with B exchanged for C, b for ¢

(O=-21)
For additional examples of notation, we have
CypBp = ez e1
P“YP P Pu vava papa

pC¥Bp = ¥pCBp

Suppose we try to check these terms alone for gauge invariance,
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We do this by replacing the polarization tensor v for one of the ex-

ternal gravitons by
oy T e * quév + qvép (C-6a)

Under this substitution the cross section should be unchanged provided
we have all the diagrams for a real physical process., lLet us make this

substitution on the graviton B,
B— B+bg +5b

or if we replace B by b + &b vﬂve\should get zero,

Making the substitution in O-21,
B —bf + &b (0-22)
we do not get zero, In fact O-21 becomes under this substitution
B—~bf +&b
K? .
(1) + (1) + (U — o[ -2(pCE)¥ - 2(ECy)bp - 2(pCy)ct]

(C=21a)

Thus the diagrama (1) + (II) + (III) alone are not gauge invariant and there-
fore do not completely describe the Compton effect,

To get a gauge invariant amplitude we must include diagram IV,
From equation O=14 we see that we get

K g .3
tpvepv

by expanding g‘KF3d4x in plane waves, Let F> be represented by the
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diagram

Fig. 16

where A is 03 .
pv

In terms of the fields th' F3 is given by equation C3-6 as

F° = 5ngph §Fup, y5 * ByphyaBap, 55° ZhayPecPap, yvs

L1
+ 2h,gh u*.y};ﬁa 5 +3h apPapBys, v6* T PaalppPys, yol

To expand F3 in plane waves we take all possible combinations of each
term. (For reference, see the example given in equations O-l4c and
O-l4d.) Using the notation described in O-17, the momentum space

representation of F° ig
KF> = [ (AT)cBe + (AB)WTb + (BT)cEe + (CH)bEb + (8K)aTa
+ (CX)aBa + 2(ABC)cc + 2(ACB)ob + 2(ABC)aa - 4cATEc
- 4bABCb - 4aBECa + 4cCA DD + 42X Te + 4aA T Bo
+ a&a(BC)+ Q‘Eb(Acw cTe(AB) + % aKa(B)(C)

+.1‘,_r bBb(ANC) + }zc’cc(A)(B)] (0=23)
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In equation C-23, the coefficient of e3, or A is --I;'-tﬁv. More
conveniently, the coefficient of X is - %Tﬁv' Since the electron in

diagram IV is free, the matrix element for diagram IV is from equation

O-16
Z2m 1 - . 1 _K=g
MIV = K pr -(;3-)2-{&‘, = K(yppv* ‘jVYp) (:3;2( - tpv) (O-24)
This matrix element may be obtained simply by replacing A or -e'zv
in C-23 by
-3 . K
epv -(-;-3-)-2 (y“pv- vap.) (O-25a)
-5
= [vp +pv] (O-25b)
a .

As an example of the substitution O-25b we have
K K® .,
% aBACa — .z [ (aBy)(pCa) + (aBp){yCa)]
a

Before making the subastitution O-25b in O-23, we note that O-23

may be simplified, Consider the factor
3.3
ak = 9 ey

Under the substitution O-25a this becomes

‘—rqu) Qi(yppvvap) = (;%—)—2- [9f3pv+ Y,P°* ] =0 (0-26)
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This expression is zero because
=gl -
2N uiph) = TEHEE - Fruph) = Tm - mu =0

and

2prq = (pt +pf) ¢ (o = pf) = (p)2- pHZ am? - m? =0

Thus any expression in O-23 containing a factor aA is zero.
We also have conservation of momentum which gives us the re-

lation

1

32- z-
LT
a=-b-c (0-217)

This relation can be used to eliminate a in O-23, There are various

manipulations possible in O-23, For example, we get

(AT) = (AC)

(BC) = (BC) - F(B)C)

by manipulation of the operation "bar". Using conservation of momen-

tum and the fact that aA is zero, we can get
bX = - cA etc.

A convenient form for O-22, using aA =0 is
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3

®¥F” = 22[ 2(ZC)eBc + (BC)bED + 2(ZBC)bc

o

- 4cACBc ~ 2¢BACb] (a)

4 the same terms with B exchanged for C, b for ¢
+% [4p%(ZCB) - b%(C)(EB) - b2E)(CB) - bX(BNEC)
+%b2(1')(B)(C) + 2bBb(EC) + 2bBe(XC) - bBL(ANC)
- 4bBZACbH + 2bBCb(Z) + 2bB 2b(C)] (b)

+ the same terms with B exchanged for C, b for c

(O-28)

It is more convenient to test for gauge invariance by making the

substitution O-22,
B — bt +5b ' (0-22)

before making the substitution C-25b for A, In using O-22 we will have

for example
(ABC) — £ACb + bACE
(B)~2b- ¢
bBb —~ b . £

bBAb — {Zb etc,

Making this eubstitution O«22 in part a of O-28 (including the termsa

with B and C, b and ¢ exchanged) we simply get



«190 -
;= 5 b (FC)e + £+ 26KCH) (O-29a)

The subsatitution B — bt + b in part b of O~28 (including the
exchanged terms) does not give a simple result, We only get a simple
result if we assume that the graviton eiv is free, or that (q?‘)z = 0,

If this graviton is free it satisfies the wave equation for free fields,
equation Bl-l. This equation automatically implies that qi?ﬁv = 0 (see

part Bl), Thus if e:.v or C is {ree,

c2=0

cC=0

and the only part of KF?b) that remains is that shown explicitly in O-28b

without the exchange of B for C, b for c. Under this condition KF3
becomes under the substitution B — b + &b
xr{‘b) — Ev¥[(EC) + c + 2bECE] (0-30)

If we now make the substitution

K
A~ =[yp +py]
a
we get

2 ,.2
My (6) = 5 ‘9—-?;5?2‘51 [ 2(pCEIN + 2(ECy)bp + 2(pCy)ct]  (O-31)

" However az = bz + 2bc + cz = bz + 2bc for c:Z = 0, and 0O-31 just cancels

O=2la. Thus the amplitude for the scattering of gravitons by electrons

is gauge invariant, provided we include all four diagrams, and provided
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that the external graviton which is not tested for gauge invariance
(namely C) is free.

The reason that C must be free for a test of gauge invariance
is as follows, If C is not free, it was recently emitted from another

source. Including this source the four diagrams of fig, 17 become

1, 11, I1I

Fig. 18

There is however another physical process that can occur, namely

£ C
: B

Fig. 19 v

If the graviton B is to interact with a complete conserved system,
we must include the possibility of diagram V. We pointed out in de~
riving the gauge test O-6 that the external graviton must interact with
a conserved soﬁrce for the gauge test to work., For the case C is not
free, we must include the interaction of B with the source of C, as

shown in diagram V.,



192~

Only if C is free, or nearly free, is its source so far away that
we do not need to include the pouibility of B interacting with that source,
It is then that we are able to successfully test B for gauge invariance.

Finally, we give the complete amplitude for the scattering
of gravitons by electrons.

2
M=% [-3yBCp- FCymyB

b

+ — (p +3)C(2yp + by - yc - K + Y¥y)Blp - 3)
2b(p - §)

+ —gd s { 2yCpeBe - cBpyCb - cBypCb + beyBCp
b +2bc +¢

+ bepBCy - 2cpyCBe - 2¢pCBe + bp¥(BC) + 2b%pCBy
Y Y

+ 26%yCBp - b?H(CB) - bZyBp(C) - b2y Cp(B) + 3bZH(BIC)
+ 2bBbpCy + 2bBeyCp - bBbE(C) - 2bBpyChb - 2bBypChb

+ 2bBCb¥ + bBypb(C) + bBpK(C)}]

+ the same terms with B exchanged for C, b for c.
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V1. DIVERGENT CALCULATICNS

The subject of divergences in the quantum theory of gravity is
quite complicated. For the case of gravity interacting with spin-zero
particles Feynman has worked out the lowest order divergent diagrams
for such processes as the gravitational self-energy of the particle, |
vacuum polarization, and the corrections to the scattering in an ex-
ternal potential. At present there are still some problems with this
last calculation.

Because of the added complication of the graviton-electron
interaction, the corresponding divergent calculations are even longer
when gravity interacts with electrons. For this reason we shall pre-
sent only the calculation of gravitational seli-energy of the electron,
and the most divergent part of the vacuum polarization. The rest of
the vacuum polarization calculation involves considerable algebra which
the author has not yet had time to check.

Harold Yura has been applying dispersion theory techniques
to the problem of divergences in the quantum theory of gravity. This
leads to a slightly different emphasis of what is to be calculated, for it
is assumed that one is already working with a gauge invariant renor-
malized theory. Thus certain renormalization constants are not calcu-
lated. However the calculation of the remaining quantities appears to
be far simpler. It therefore seems reasonable that any further divergent
calculations involving electrons, with the more complicated electron

graviton interaction, should be done using the dispersion theory technique.
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P. GRAVITATIONAL SELF-ENERGY OF THE ELECTRON

The diagrams for the self~-energy of the electron are the follow-

ing

q
I —> >
p F P p
Vi VII
4 (Pq q q
VIII IX

Fig. 20

To calculate diagrams VI and VII we will use the graviton-
electron coupling N-19 and the graviton propagator O-16. The matrix

element for diagram VI becomes
V1= Ka[ -3 +8 é] :
Z LVpP % o po P-A4-m

2
% [yp(p - §)v+ é 6”] x[appsw»r avpaw- 5pv5p¢]/q (P-1)

Using P = m; pZ = mz since the external electron lines are free this

matrix element becomes
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2 2

2
-Ig—[ri(-‘ip-q*r%qz) - 4mp- q+-sgm q® + 2m’)

x [ a®(q®- 2p- q)] 7! (P-2)

The matrix element for diagram VII is

K

Vil = "Z— [y aPol” 'Z pa VP+ spvaap)

x(8,,8,5+ 8,58,," 8,,8,5)/a 3 (P-3)

Due to the symmetry of the propagator, the term in the interaction that
is proportional to the antisymmetric combination of three y matrices

gives zero. The matrix element P-3 reduces to

VII = ‘2‘ [- Ll (P-4)

It is interesting to think of these two diagrams, VI and VII, as
being obtained by connecting the external gravitons in the Compton

effect. The relevant Compton effect diagrams are given in fig. 2L

g_f_‘g_ _\z__\/_

Illa
Fig. 21

If we connect the external gravitons in these diagramse by the propa-

gator O-16, we will get just twice the self-energy diagrams VI and VIL
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We get the factor two because connecting the gravitons of diagram I
gives the same result as for diagram 1I, and each will give diagram
V1. Similarly diagrams III and Illa will each give diagram VII when
the external diagrame are connected.

For the complete self-energy of the electron we should include
diagrams VIII and IX. However, the calculation of these diagrams is
not straightforward since the graviton that connects the electron with
the external loop carries zero momentumn. The propagator for that
graviton, being inversely proportional to the square of the graviton's
momentum, is therefore 1/0.

Diagrams VI and VII lead to an in.iinite. contribution to the self-
energy of the clectron, but only in the limit that q, the momentum of
the virtual graviton, goes to infinity. If we cut off the momentum of
the virtual graviton to a finite value, say \, then the diagrams give
only a finite contribution to the electron seli-energy. However, no
such cutoff can be used for diagrams VIII and IX since the connecting
graviton has identically zero momentum and therefore a propagator that
is always proportional to 1/0.

Despite this factor 1/0 in c;iagrams VIII and IX, we will show at
the end of the next part that these diagrams give no contribution to the
self-energy of the electron, thus the total contribution to the gravita-

t ional self-energy is from diagrams VI and VIL

The complete matrix element is obtained from P-2 and P-4

by integrating over all possible momenta q of the virtual graviton. The

result is
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@ 4Ap q 2’“2‘“ 2f.p- 6m| at
Ms.z..s ..21_5’_4_‘1.-._2. (2)

-2p-* q) (q -2p- q) q q 7 (2n)

2 0 2 4
F T G
Y- q{(q -2pc-q) (2w

(P-5)
In terms of this matrix element M the correction to the mass is given

by

— - *
Amuu = %—u Mu

We shall calculate only the most divergent part of the self-
energy. This means that the integral P-5b, which is not as divergent
as P-5a, will not contribute. Using Feynman's (23) technique for calcu-

lating integrals, P-5a becomes

23 kA2 (P-6)

M= 1o "

where we used the cutoff k4/(q - Xa) in calculating the integrals.

The value of KZ is given in equation $52-22 as
L 8vG

thus we get for Am

Am 23 2 ' -
_ = - 5= G\ (P-7)

—
See Feynman (22).
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Let us compare this value of Am/m with the value of Amo/ m
for a spin-zero particle. Feynman gives the result that gravitational

self-energy of a spin-zero particle is

Am
—_l . -2- ze + finite terms
m w

which is not the same correction as for an electron.

It would be interesting if all gravitational mass corrections were:
the same. We can take as a basic unit of length the Compton wave length
of any of the fundamental particles. These units of length are propor-
tional to the mass of the particles. Thus if the mass of these particles
were all renormalized by the same factor, each unit of length would be
changed by the same factor and the gravitational mass renormalization
could be interpreted as merely a uniform change in the scale of lengths.
Since the electron mass renormalization is not the same as for a spin-

zero particle, this interpretation is not correct.

0. VACUUM POLARIZATION

The diagrams for vacuum polarization are the following

B
p- 3 q

B C

q q NN
p+§

X XI

Fig. 22
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The matrix elements for these diagrams are

X = "S {T YBp - (BEXB - m)] ;—T—

&
x[ yAp - (AN - m)}} a%p (Q-1)

Xl = ZS‘ [(A)va + (B)YAp - 2 YABp - » YBApl

+ g—:—g}[ 2(AB) - (A)R) ]} a*p (e-2)

where we are using the notation given in equations O-17. This notation

is very convenient for taking traces. For example

FLAYEA] = (abllca) + (ad)(cb) - (ac)bd)]

Therefore the trace of a quantity such as PyBpdyAp may be done by

inspection:
tr
7 [ PYBpAvAp] = pBpgAp + qBppAp - p+ qpBAp

The matrix elements X and X'I niay be evaluated by techniques
entirely similar to those used by Feynman (24) for the problem of
vacuum polarization in quantum electrodynamics. The traces and inte-
grals involved have been done by the author, but are not yet checked.

There are no inherent difficulties or complicated integrals involved in

—
The part of the second order interaction prOportional to Xél does not
not contribute in the trace since vy Y, Y

plvio p voa Yo ¥s®
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calculating the divergent parts of X and XI; but quite a few pages of
algebra are involved. The finite parts of X and XI involve one final
integral that is rather difficult, but for physical interpretation there
is apparently little gained by performing this integral.

It is far easier to calculate the most divergent part of X and
XI1. The most divergent part of these amplitudes is independent of
the momentum q of the external particles and may be calculated for

q = 0. Inthis case the amplitude X reduces to

2
X{q = 0) = g & {éxAgé‘xAé + e yAPYAP
P

- m*%)
+ EYARBLBYBR(A) 4 (aym)} ot (Q-3)
p--m | ’

There i8 no change in the form of XI for 2z = 0.
Taking the traces in Q-2 and Q-3 the amplitudes X and XI

may be written

X(q=0) = 5’ [_ZzAzaafzg_z - (pABp 4 pAR(B) + pBRIA) ] atp  (a-4)

(p"-m") p“ - m
X1{q=0) =S [‘3PABP + (AlpPp 4 (BlpAp } atp (Q-5)
p“ - m

where we have left out terms of the form
S(AB)d p (Q-6)

Feynman's technique for evaluating integrals appearing in vacuum

polarization problems involves calculating the integral for two different’
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masses of the electron, namely the normal mass and a very large mass,
and taking the difference. Therefore any integral such as Q-6 which
does not involve the electron mass will not contribute.

Before evaluating Q-4 and Q-5 let us include the amplitude for
the emission of a single graviton from a closed electron loop. This
process only occurs for zero momentum of the graviton. We are there-

fore calculating the amplitude of the following diagrams.

XII : Xa Xla
Fig. 23

The amplitude for XII ie

-

xn"‘s - T——m [ 2yap - 2(¢ - m)(A)]}d P
" 2pA 4
Y FE e

The total amplitude for diagrams Xa, XIa and XIl for q =0

may be written in the following form

o 4

Xa +Xla + XII=2A P 5
.-m)

pv po

+ (24, - 4,48, 5 -PT—Td"p (Q-7)

{p"-m")
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Using Feynman's methods for evaluating vacuum polarization integrals

we get
P PP P, 4
§ a*p
(p"-m")
2,,2
=t wj(s 6, 48, o8uot 8,850 2np -2y zh (Q-8)
1642 ' pp vo pvopolt P P=Z
2,,2
8 m 4\
v 1p 2 34°
c-—tz-x [pYYnp -5]_2 (Q-9)
5 (p o) P ok °F 2'm
The complete contribution of these diagrams for q = 0 is
mz-l»)sz a) 1 1
‘12—2—-[ P (h‘ P - 'z) [ -l (AB) + Y. (A)(B)] (Q-IO)
o
m2+7\2
The divergent part of [p (Inp-3 )] - may be obtained in
the following way. Using
2 2 2 4
Infmfnd) s m (A 14 2] sy o B,
m A m A rAs
we get
2 3 4, 2% 2.2 2% 4 a?
[p(lnp--z)]z-Kln—-z-Zmhln—-—z-mln—-z {Q2-11)
m m m

where we have dropped all terme that are finite or contain only a factor

2 or A% (See Feynman (24).)

of A\
From Q-10 and Q-11 we get the most divergent part of the vacuum

polarization diagrams X and XI:
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2
X+ XI = ‘—i—.;.'él—z_i A 10 X, [-2(aB) + (aNB)]
w m

+ leas divergent terms {(Q-12)

This is the same degree of divergence for the vacuum polarization as
for the case of gravity interacting with spin-zero particles.

In the case of electromagnetism the amplitude for vacuum polari-
zation is less divergent for electrons than for spin-zero particles,
namely In G / m® compared to A% In ().Z/mz) . This mildnees of the
divergence for electrons is not repeated in the case of gravity, and
both spin-zero particles and electrons give rise to the higher divergence
2% 1n (A2/md).

Finally lat us return to the amplitude Q-10 representing the

diagrams of fig. 23. Q-10 may be written
N[ 3 (A) - 3 (AB) + 3 (ANE)] (Q-10a)

where N(\) is a divergent constant. Suppose we added to the action

the quantity

- 5 NOWN-g)Y 2a%x (©2-13)

The term Q=13 is a scalar quantity in the space of metric gpv and thus
preserves the invariance properties of the action.

Expanding (-g)l/ 2

, we have added to the action

. 2
S N2 +§ +%- - -}I by, +eee ]1a%x (0-14)
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This term in the action gives rise to the diagrams

q:O A
=N(\) e =N(\)

XIII =0 B
XIV

Fig. 24

The amplitude for these diagrams (treating A and B symmetrically
in XIV) is

-NOM 3 (A) - 3 (AB) + 5 (AXB)]

which exactly cancels Q-10. Thus Q-13 may be considered the countexr
term in the action that removes the effect of the diagrames in fig. 23.

The physical interpretation of the diagrams in fig. 23 is ae
follows. The vacuum state in field theory is not represented by a real
vacuum, but by the lowest state of the oscillators of the fields, in this
case the electron field. The energy of the lowest state of a quantum
oscillator is not zero but hw/2, thus the vacuum state has an energy
equal to hw/2 for each oscillator of the field, or an infinite energy.
To get the correct vacuum state this energy should have been subtracted.
This is not usually done for the zero of energy has no meaning in most
problems.

However gravity couples to all forms of energy including the

energy of the so~called vacuum state, thus we must be careful to sub-
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tract this energy. In terms of diagrams the energy of the vacuum ap-
pears to lowest order in the form of an unconnected closed loop. That
this closed loop ia a source of gravity is seen in the diagrams of fig. 23.
Thus when we add the counter term Q-13 to the action, we are sub-
- tracting off the energy of the vacuum state as well as the gravitational
fields produced by that energy.

We can now return to the diagrams VIII and IX for the seli-

energy of the electron.

Y
\

VIII IX
Fig. 25

Diagram VIII represents the energy of the vacuum producing a graviton
of zero momentum which later interacts with the electron. Since the
vacuum state of the gravitational field also has an energy, dlagram
IX has the same interpretation as VIIL

We have already introduced a counter term in the action 8o that |
the amplitude for the emission of a single graviton from a closed
electron loop is zero. A similar counter term should be introduced
8o that the amplitude for a closed graviton loop to emit a single graviton
ie zero. With these counter terms the amplitude for diagrams VIII and
IX will be proportional to zero times the propagator of the zero momen-

tum graviton, or 0/0. Thus the magnitude of the contribution from
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these diagrams is undefined.,
These diagrams will still have no physical effect for the following

reason. All particles are affected by the gravitational field h'“v from

the closed loops, thus these fields may be replaced by a space of metric

]
8,
fields are constant (there is an equal amplitude for the graviton to

'
v = 6’.w + Kh“v in which all particles move., Furthermore these

arrive at any point in space) and the metric g;v = 6“‘, + Kh;v is a
flat space metric. Thus by a suitable choice of the scales of length and
time the effects of these fields will not be noticed,

This argument, invented by Feynman, shows that although the
amplitude for diagrams VIII and IX may not be zero (they are proportional
to 0/0), their physical effects are inobservable and should not be included

in the calculation of the self-energy of the electron.
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APPENDIX 1

At the beginning of section Il we pointed out that a potential theory
could not be set up for a half integer-spin meson, The reason for this
is simple. Asasume an arrangement of the sources of this meson that
gives rise to a static potential. If one of these sources is moved, the
potential is changed. As with electric potentials, the change in potential
must be brought about by the radiation of an infinite number of very low
energy mesons. (This is the source of the infra-red divergence in
quantum electrodynamicas. )

Let us assume that a proton is the source of the mesons. To
conserve angular momentum the proton could emit an integer-spin meson
into a state of the opposite angular momentum and not change its own
state. However, there are no angular distributions of radiation that
correspond to half a unit of angular momentum, thus the proton must
change its own state when emitting a half integer-spin meson. But this
cannot happen {n the linﬁt that the proton emits an infinite number of
such mesons coricsponding to a change in potential,. Thus a potential
theory does not exist for a half integer-spin meson.

A potential theory may be constructed for integer spin mesons,
but for even integer spins the force is attractive while for odd integer
spins the force is repulsive between static like objects, This is a
consequence of the fact that the energy in radiation fields must be posi-
tive and therefore those components of a meson field that contribute to
the radiation field must have positive energy.

For the example of a single component spin-zero meson field
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the energy in the field must be positive. This immediately leads to an
attractive force between like objects exchanging spin-zero mesons,
Consider the case of two like parallel plates., The field between them
will be uniform as long as the spin-zero meson has zero rest mass.
(The 1/r Yukawa potential gives a force field of the same form as
electrostatics.) As the plates are' brought together the region of the
fielde, and thus the energy in the fields decreases. Thus the force must
have been attractive. This result is also tfue for non-zero rest mass
spin-zero mesons as is seen in the binding of nuclear matter by
mesons,

For a spin-one or vector meson the vector field consists of a
tirﬁo component, a longitudinel and two transverse spatial components,
ﬁy a proper choice of gauge the longitudinal component may be eliminated
(Coulomb gauge). The radiation fields are made up of the transverse
components, thus these components must carry positive energy. Thus
for electromagnetism like objects interacting via the transverse com-
ponents of the field, such as parallel currents, attract each other,

To determine the sign of the energy in the time component of

the field, one may consider the Hamiltonian density of the field. (See
for example Schweber (25).) The over-all sign of the Hamiltonian
density is determined by the fact that the transverse components of the
field carry positive energy. The result, for the static vector field
which we are considering, is that the energy in the time component is
negative. Since the interaction of static particles is only through the
time component (Coulomb field) this implies that like objects (charges)

repel each other when interacting via a spin-one meson.
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For the spin-two field like objects interact only through the time~
time component of §h3 tensor that describes the spin-two field. Here
the sign of the energy is reversed again and static like objects attract,
The general rule as stated earlier is that static like objects attract for
the exchange of mesons of even integer spins, and repel for mesons of
odd integer spins.

To distinguish the physical effects of a spin-sero and a spin-two
gravitational theory, we can look at the form of the coupling for the two

f ields. Consider the case of gravity interacting with point particles.
For static particles gravity must couple to the mass of the particle, and
the only corrections to the coupling can be due to the velocity of the
particle,

For a spin-zero gravitational field ¢ we might write the inter-

action part of the action as

Sint = §¢(?)mde 1)

where = is the coordinate of the particle,

However, this action is not a scalar quantity under Lorentz
transformations, and in the relativistic limit would not lead to conser-
vation of energy and momentum. This may be corrected by replacing

at in 1 by
ds = (1 - v2)/ 2ae

with the result

mn
Sipe = ) olmlt - vA¥at.
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Thus for a spin-zero theory of gravity the coupling would be propdrtional
to m(l - vz)l/ z. or would be reduced for a moving particle.

For a spin-two gravitational field h“v. in order that the action
be scalar, gravity must be coupled to the energy tensor of the particle,
This is because the energy tensor is the only tensor constructed from
the masa and velocity of the particle that reduces to the mass when the
velocity goes to sero. Thus for a moving particle which has more
onorﬁ than when it is at rest, the coupling to gravity would be increased.

Finally we note that 2 theory of a spin-zero, zero rest mass
mescn field does not exist a present, If we started with a zero rest
mass spin-zero particle, it would shortly create its own rest mass via
virtual interactions with itself, There are no such self energy cor-
rections for a photon, because of the gauge invariance properties of
the electromagnetic field. We may also prevent self energy corrections
of a zero rest mass spin-two meson by gauge invariance, but no gauge

invariance exists for spin-zero,
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APPENDIX II. RELATIONS AMONG y MATRICES

The curved space y matrices are defined by the relation

oYy Y VY =28, )

We define the antisymmetric combination of y matrices by

YuYy = é-(vuv, =Yy (2)

1
= - +
Y Yo Yp g(v,,v,ve \OATRANRAN (3)

- 1
Y ¥o¥o¥o = 1 (v“v,,vgva ROANL

MAANIRBANR (4)

The quantities vy vy v Y, Y ¥ and y Y,V Yoy aTe all antisyminetric in

their indices p, v, p, ¢, and normalized to one. That is if A’w. A

kve

and Apra are antisymmetric tensors

YPY vApv = VEYvApv

A A
V¥ ¥pluvp = V¥ ¥oluvp

Y Y YoVohuvpo = MDY EYOAW po

We can express the quantities y Y, Y and y \ A in terms

of the y matrix Y5 = yxyyyzyt by the equations

Vo ¥o = €uypoV¥s Vo (5)
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Y Y, Y Vg = (6)

B P €p,vpoYS
where e“vpa ie the antisymmetric unit tensor which is zero unless
w¥ ve ps 0 and equal to +1 or - 1 according to whether u, v, p, ©
is an even or odd permutation of x, vy, %, t.

The following are a set of relationsa among the matrices,

YoYu¥v = Y V0¥, = 28,y = 28,,Y, (7
Yo¥u¥y = MuVu¥p 8 Yy < By, (8)
Yu¥u¥p = VuVu¥p " BouYy T By, . r
YV = YV ¥, - Y, Y 80T, By, (10)

1
Y,y ¥p¥o = ThYY, Yo¥o F Y Yo VLY, FY Y YLy

T VYo VYo T YpY, VYo T Yoy Wl

1 1 ,
zlv,y, Yp¥g * Yp¥o z"v,] =7 0y, ¥e ¥, 7, Y, Y, v Y]

880 * BpuByo T 28y p8y0 (2}

1 1
+ =
=lv.v, Yo¥o * Yo¥o v"yvl zlv,y, YYo t Yo Yoy, ]

" BuvBpg ~ BupBuo T ZBuoBpy (13)

From equation 11, 12, and 13 we get
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1 =
zlyy, Yoy, AL 'vpv‘v] =Y,Y,Y, Vg

g, .8 (14)

T 8u08yp " BupBug

We also have
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APPENDIX III. THE MATRIX fp

We wish to solve equation J-7

Multiplying through by gpv and noting that the covariant derivative of

gpV is zero, we get the equivalent equation
~ - P 1
Yo = Tu¥p = ¥ply )
Now the commutation relation satisfied by Yo is
Ya¥p * YoV = 284, (2)

Taking the covariant derivative of both sides of 2 we get

Multiplying 3 on the left by yu. noting yay o~ 4, we get

a a a
Y Yo, Yo PV tY Y Ya TY VY, 0 (4)
But
a a
- + 2 5
Y YpVay = = YoV Ya;, ¥ &y (5)
Equation 4 becomes
Yoo PV YpuuVa = Ypl¥ Yo ) - (Vivg, )y, (6)

At this point the author has been unable to proceed without ex~

panding YP in terms of the flat space matrices by the relations K-3
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-~ - [¢2
Yp = PpsYs Vg = PggY
From this we get
- e o _ o c
Yo = Yo, u” Fo,puY = (Pps, uPos o, pplY ™

where we have used (bp6Y6).p = bp&, pya since we are assuming a

representation of the flat space y matrices where

Yﬁ,p= 0

Using equation 7 we get

a - _ , ; a0
Y YoiYa = (P55, %5 = To, pp)¥ Y Yo (8)

Now

a o a
Y ¥ Y = - ¥ gy~ *+2v780 = -2y’
Therefore

a (3
= -Zb - | = . g
Y YoipYa ( pé,uboé Io, u)Y ‘ ZYp;u : )

The author has been unable to obtain equation 9 directly from
the commutation relations of yp. It is not «nown whether this is a
failure on the part of the author, or whether the relation K-3 puts an
added restriction on the curved space y matrices that allows us to
obtain the relation 9. This question is not important for the quantufn
mechanics of gravity interacting with electrons, since the quantum

mechanics is based on the expansion K-3.
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Substituting equation 9 into § we get

1l a 1 a
- L g 10
Your = YplTY Yo;) = (3V vq 0y, (10)
Comparing with equation 1

4

Youu = Ypl=t)= (-T v,
we get

- _1 a

Lp = -7V Ya.;p (11)
Since

a a a a Qa
= = + = +
vvely, YiYa Y Yo T Ye;Y Y Yo

we also get

N | a
Fu =3 Ya;,Y (12)

which is the solution given in equation J=8,
Alternate forms of f‘p in terms of the quantities a and b may
be obtained in the following way.
, 1 a_ 1 a _1 a a
TLu® T Ya;Y 7Y Yoy “8Way,¥ - Y Yo ) (13)
Using equation 7 we get

S 1 - Q ﬁ
TP =3 (bﬂk, pb)& + iﬁ,pa)LY.. (14)

In terms of the flat space y matrices -Y-o. this becomes

1 - -
Ip = K(b)&, wap t Iy, p5a5ﬂa)~5)1§1E (15)
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To lowest order in hpv we get
r =in .Y (16)
p 4 Bp,a¥a¥p
In equation K«7 we desired the quantity

1l .p B .

+ r 17
3 [ pr Y p] (17)

From equation 14 we get

1 T 1 = app, pob
5 (F“y ty l"p) = g(bM.”bM+ 15'pa)(w\{ Yy y)
(18)
From equations 8 and 9 in appendix II we get
APV +vP0P) = 2ty (19)

Since I“ﬁ ua is symmetric in p and a, it gives zero when multiplied
1}
by xo'xﬁxp. Expressing the remainder of equation 17 in terms of flat

space matrices we get K-7

1 1 - /
3 [IP‘Q,p + YPI"“] = 7 Pay, BRav3ppY, Yy (20)
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APPENDIX IV

To prove equation 1.-20 we use the relation

(] ' ' ' [ L |
re= %(YQ;KYQ) = %(Ya. KYﬂ) gaﬁ - :lfrzx gﬂﬁ Yo¥Vp

' - ) e
Substituting Yo = (h )S 1 S and noting that

Y
Fak = Taxl®)

we pet

re =g ®PmMle,, by (0N T,

&

-p * — —
- 1P by ()b, (BT,

» * L omle -l —
oo oth Mbg (hy S (ST =S STy YIS

where we have used
= [b sy sl = s Ysib__s"'y s] .s"l}s
Yo,k ap” Yp ap” Yol k

and

1f we note that

L J—

Tb®) = 3a*PmN b 0", T Y,

B e -

- ] * E
Pox(h dbg (b )bg ()Y Y, ]
and that from equation K-3

a L aB * *
g% bg, = s%P b B og ")
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we get

-1 ™~ » 1 S -1
r,=5 [lK(h)+zy Syp- js

However, from equations 1L -17 we get

g . ——— -

S S =0
Yp Y vgkYpY Y Y

since -\;p? ?V;’p = J, Thus we have proved equation 1L-20.

' Slf o gy ® -1
r,=85 [1,((1‘_)-5,,‘5 ]s
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APPENDIX V

We wish to investigate the quantity

APt FaTp) = - 2vPUL,

where we used the relation

..._ .

P .
* Tgalp™ 1a,p6” 1,0

- . -
la’ﬁ’ i aﬁf'p- Lﬁ

We can see the meaning of the terms in ! by the following investigation.

The order of partia! differentiation is interchangeable, thus

- =0 2
YP-PV YP}"'P (2)
Now
g (e
- ™ - +
Yo,u = Yo * FopVo = Tu¥pm Yo It Fpu¥e
= -y, [, #T.T,y -0y [ +10T
Yo,uv = Ty, o¥p™ Ypliy ot T luv o DY 10 1, Ly,
vy i" Yo r I”'u FpVYO'Fp ng.vyc
o~
+ - 3
TouTo¥o™ TouYoTu* Tp, I5,Y %)

And in a similar manner

-y =y 0, &, vy ti vy i,-v I":.V+E"°\(OTV

P VR P Yop Vet 'p PV PR PR
- -0 r O
- I p I"y I" }pp wo © Lov,wYo

~ _ 1© 6 .
LR SR VLD A s 5l RS (4)
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Substituting 3 and 4 in 2 we get

- + - - - + -
(v Tyt Bu Ty LR V(T = Ty # T T, - T T

K v V,

+ o + ) + 5 ‘
= Yol =T, v Tovp™ Toulav® TpuTsy) (5)

The terms in the square brackets are just R:pv' If we define

F}lo"- I’v'#*‘ FPI‘V- FVI‘p = Cu" ‘ (6)
we get
(o} o
c -C = -y R = +y R 7
Yo~ uv™ Muv¥p T T YoTpuy T 7Y Fpopv (7
Try as a solution of equation 7
a1 a p .
va =tz Raﬁpvw (8)
We get
1 o B a B
- = + -
YoCuv™ Cuv¥e = T3 Rap oIV XX - X YY)
1 a B a
= + -
. 'ZRaﬁpvaY 6PY )
- g
= +y RpO'pV

which checks equation 8.

Equation & may be written

(I1a.6- I"ﬁ'n'f FGF@- iﬂgrwa)
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since Rp,vaB = - RV}!“?'

1...1‘.3.( pt Talp) = "gY “YPyty'R uvap (9)

Y/e now get from equation 1

The quantity -yayﬁypva may be written

pvap

v G
v*yPyty Rqﬁw g(v vy YﬁRpmﬁ"’ v“vﬁv Y Rgva

B v

Q
+v*y'y

We have

B v a

v a . Q a v
YIVPYIY® = v NP+ 2gPYMy® - 2g%Pye

Y

a v v a v [+ % av
YYOPYY = vV + 2Py 20 P

Therefore

a B p v = oL rv.e P
VY Y'Y R, T -3 IV R ot Riguat R gp,)

+2y"y R+ 2yPy R+ 2yMyP i
Y'Y R, *2¥Y R+ 2YYR ] (i)
Using the identity

vaaa + Rpﬁvn + Rpuﬁv =

equation 1l becomes

Bk = -
v vy Raﬁpv = - 2R
Substitution of 12 into 9 gives

-v*Pry  + Tpr) = - IR

which is relation M-12 which we set out to prove,
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