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ABSTRACT 

Two methods of finding the energy tensor from the Lagrangian 

of a system are those of Belinfante. and Landau and Lifschitz. Neither 

of these methods are unique; two energy tensors for the same system 

differ by a term that is symmetric, has zero divergence, and is itseli 

a second derivative. It is shown that such a term in the energy tensor 

produces physical effects that in one case can be measured experimen-

tally. It is because oi this lack of uniqueness of energy tensors that it 

is not sufficient to consider gravity merely as a spin-two field coupled 

to energy. 

To set up the quantum mechanics of gravity interacting with 

electrons, the curved space Lagrangian for the Dirac field is expanded 

in terms of the gravitational fields h It is checked that the expanded 
f.Lv 

Lagrangian has the same transformation properties as the original 

curved space Lagrangian. 

The calculations presented are the gravitational Rutherford 

scattering of electrons. emission of low energy gravitons by electrons, 

the scattering of gravitons by electrons, the gravitational self-energy 

of the electron, and the most divergent part of the vacuum polarization 

calculation. There is also an investigation of the effects of the spin of 

the electron by comparison with a spin-zero particle interacting with 

gravity. 
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I. INTRODUCTION 

The main purpose of this paper is to consider the interaction 

of electrons with gravity, where gravity is treated as a quantized epin

two meson field. The quantum mechanics of gravity interacting with 

a spin-zero particle has been worked out by Feynman, and the author 

shows that the same gene ral methods can be applied when gravity inter

acts with a spin-one half field. 

On the basis of experiment there is no need to treat gravity as 

a quantized spin-two field. Due to the weakness of the coupling of 

gravity to matter all experiments on gravity have used large masses 

and these experiments have been explained by a classical theory. 

Einstein's general theory of relativity. Since the classical limit of 

Feynman's quantized spin-two meson theory of gravity is the general 

theory of relativity, Feynman's theory is likewise in agreement with 

experiment. but the quantum nature of gravity is untested. 

The spin-two meson theory of gravity differs from general 

relativity in that the meson theory is consistent with the uncertainty 

principle. U general relativity were the correct theory then the un

certainty principle would fail for large distances and low velocities; 

1. e., just in the classical limit. Thus the main purpose of a quantized 

theory of gravity is that it demonstrates the possibility of maintaining 

the uncertainty principle even to the classical limit. 

The quantization of general relativity has been considered for 

many years, but appeared to be difficult. Feynman started with the 

point of view that gravity should be treated from the beginning as another 
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meson field. This point of view is presented in this paper. 

There is sufficient experimental evidence to conclude that the 

source of gravity is energy. This leads directly to the description 

of the gravitational field as a spin-two meson field. To a very good 

approximation the total energy of a system may be approximated by 

the energy of the matter alone, neglecting the energy of the gravita

tional field. If gravity is coupled only to the energy of matter, then 

a relatively simple linear theory of gravity results. This linear 

theory is ~ery accurate but not completely in agreement with experi

ment. The linear theory is also internally inconsistent. 

Feynman corrected the linear theory by demanding that a 

consistent theory of gravity come from an action principle. This 

lead in a unique manner to the general theory of relativity. Once the 

general theory of relativity had been derived from the point of view of 

meson physics, it was clear how to proceed to the quantum mechanics 

of gravity. 

The author attempted to correct the linear theory of gravity by 

consid.ering gravity as a spin-two field coupled to energy. The source 

of the spin-two field in the linear wave equation is the energy tensor 

of matter. The author added to the source, the energy tensor of the 

spin-two field itself, to correct the linear theory. A consistent equation 

for a 8pin-two field is obtained in this manner, but the equation is not 

unique because energy tensors are not unique. 

One of the possible energy tensors for the spin-two field leads 

to the same wa~e equation as general relativity and is therefore in 

agreement with experiment. Another energy tensor is derived which 
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leads to a different wave equation that is not in agreement with experi

ment. The conclusion is that gravity is not merely described as a spin

two field coupled to energy, but that an additional restriction is neces

sary. For Feynman this restriction was that the equations of motion 

be obtained from an action principle; Einstein required that the gravi

tational field have a geometrical interpretation. Feynman showed these 

two restriction. to be equivalent. 

ThilS thesis presents the author's work on the theory of a spin

two field coupled to energy as well as the quantum mechanics of the 

interaction of gravity with electrons. 

Much of the author's work on spin-two fields is based on 

Feynman's description of gravity from the point of view of meson 

physics. As this is still unpublished. it is described in sections two 

and three along with the author's description of spin-two fields coupled 

to energy. 

To find the energy momentum tensor of a system, the author 

uses both the methods of Beliniante (1) and Landau and Lifschitz (2). 

In part CI the author extends Belinfante'. method to the case where 

second derivatives are involved in the Lagrangian so that the non

uniqueness of energy tensors may be investigated more completely. 

The method of Landau and Lifschitz is described in part E and ita 

nonunlqueness is determined by the author in part F. It is in part G 

that the author gives the condition that selects the correct energy 

tensor for the gravitational field from the possible energy tensors for 

a spin-two field. 

The quantum mechanics of gravity interacting with electrons is 
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given in sections four, five and six. In section four the author derives 

the interaction of the spin-one hall fields IJ! with the spin-two gravita-

tional fields h • The expansions involved are new, and were rela
f.lv 

ttvely difficult to handle at first. Nor was it clear at first that the ex-

panded Lagrangian possessed the same invariance properties as the 

curved space Lagrangian, but this is shown to be true in part L. 

The curved space Lagrangian for the Dirac field has been de

rived by several authors, but by relying on ideas not discussed in this 

paper. Pauli's (3) derivation uses a five dimensional description of 

space; other derivations which are summarized by Brill and Wheeler 

(4) depend on spinor analysis. In parts Hand J the author presents 

another derivation which does not require the intruduction of spinor 

analysi6 or five dimensions. 

Section five deals with finite calculations involving gravity and 

electrons. Part M shows the elfecta of the spin of the electron by 

comparing the quantum mechanics of a spin-one half field to a spin-zero 

field interacting with gravity. These effects are then discussed in more 

detail in the non relativistic limit. 

In part N the momentum space representation of the interaction 

of electrons with gravitons, to second order in h • is given explicitly. 
~. \; 

This interaction is used in part 0 to calculate the scattering of gravitons 

by electrons. This calculation is presented as the main test of the 

gauge invariance of the interaction of electrons with gravity. 

In section six, two of the divergent calculations are presented, 

the gravitational self energy of the electron and the vacuum polarization 

of the gravitational field. As far as the divergent calculations are 
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carried out. the results appear to be similar to the divergent calcu

lations by Feynman on the spin"zero field. The spin-one half divergent 

calculations have not been carried as far as {or spin-zero becal.lse ot 

the increased complexity of the electron-graviton interaction. 
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II. THE OR Y OF ORA VITY 

Suppose the history of physics were rewritten in the following 

way. Gravity had not been noticed due to the weakness of its coupling 

to lUatter. The theory of quantum electrodynalUics, in which electrical 

forces are explained as the exchange of photons, had been developed 

and the properties of matter on an atomic scale were understood. Still 

to be explained were the forces holding nuclei together. 

Then heavy mesons and strange particles were discovered. 

After early difficulties with the theory of heavy mesons, because of 

the strength of their coupling to nucleons, it was finally shown that the 

nuclear forces were caused by the exchange of these mesons. 

Later, in a famous experiment, it was shown that two large 

chunks of matter, when separated by distances of the order of a centi-

meter, attracted each other. Careful checks were made to show that 

the chunks were electrically neutral and that magnetic forces did not 

cause the attraction; the remaining known heavy meson forces were 

of all too sbort a range to explain the force between tbe chunks. Thus 

a new meson called the graviton was invented to explain this force. 

In the ensuing experiments to determine the properties of the 

graviton it was first noted that all materials attracted each other 

whether the materials were similar or not. More quantitative expert-

ments showed that the graviton was coupled to tbe mass of the cbunk 

and gave rise to the long range Yukawa potential -Gen/r. Careful 

experiments with moving objects showed that the graviton coupled to 

2 
the inertial mass, or by the relation E = mc , to tbe energy of the 

object. 
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From the long range llr potential it was determined that the 

graviton had zero rest mass. To determine the spin of the graviton 

the following points were considered. First. a potential theory does 

not exist for spin one-half or any half integer mesons. Secondly. 

mesons of even integer spin give rise to an attractive force while 

mesons of odd integer spin give rise to a repulsive force between static 

like objects. * Thus the spin of the graviton was an even integer. 

A spin-zero theory of the graviton was eliminated by the experi-

ment that the coupling was proportional to the inertial mass of an ob-

o •• 

ject. while a spin-two theory was consistent wdh this experiment. 

In the absence of evidence for a higher spin of the graviton it was de-

cided that the graviton was a spin-two meson. 

With this background. let us see how a spin .. two theory of gravity 

could be constructed. 

A. ORA VITA TIONAL WAVE THE OR Y 

The mechanics of mesons. nucleons. electrons and the basic 

particles of physics is described by the fields associated with these 

particles. The equations of motion of the fields allow one to calculate 

the total amplitude for a given process, the absolute square of this 

amplitude giving the probability that such a mechanical process should 

occur. This system of mechanics is cODsistent with the uncertainty 

principle. We wish to fit the theory of gravity into this system • 

• In Appendix I these statements are investigated in more detail • 

•• See Appendix I. 
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The equations of motion of the fields of particles presumably 

may be obtained from the pJ;inciple of least action. It is thus from an 

action principle that we shall try to determine the equations for a 

gravitational field. The electromagnetic field being a spin-one, zero 

rest mass field, it should be closest in form to a spin-two, zero rest 

mass gravitational field. We shall therefore construct the theory of 

the gravitational field from an analogy with the theory of the electro

magnetic field. 

The action for a system may be given by 

(A-l) 

where L is called the Lagrangian density for the system. For electro-

magnetic fields interacting with matter 

L =L -jA 
em f.1 f.1 

(A-Z) 

where L 18 the Lagrangian density of the free electromagnetic fields em 

and -j A , the interaction Lagrangian density, iii the scalar product 
tJ. J.1 

of the electromagnetic field A and the electric current density of 
f.1 . 

matter j . L is explicitly given by 
f.1 em 

L = - 1 F F em n;;; f.1 v IJ v 
= - 1 (A A -A A ). (A- 3) 
~ V.v ~,v ~,v v,!J. 

'The notation we shall use in this paper is: 

A\o1=(A4 ,AI ,AZ,A3); .t\.lB .... = (A4B4-AIBI-A2BZ-A3B3' (A-4a) 

V'fJ.= (V'4' \71' \12' \73' = (a/St. -a/ax, -slay, -a/sz) 

We shall define v a = a 
V. g jJ. 

For example 
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The principle of least action states that 6S/oqJ is zero for 

each component qJ of the fields included in the action. In terms of 

the Lagrangian density L this gives the Euler-Lagrange equations 

of motion for the field component rp: 

(A-4) 

assuming that L is a function of the fields and their first derivitives 

only. It should be noted that if a term of L is a pure divergence 

then by equation A-I the action corresponding to this term may be written 

as a surface integral evaluated at infinity. If the fields are zero at in-

finity such a term will not contribute to the action and may be left out 

of the equations of motion A -4. 

By the above procedure the equations of motion of the electro-

magnetic field become 

(A-5) 

which are just Maxwell's equations. 

also 
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To construct a gravitational theory in analogy with electro-

magnetism, the following properties of the electromagnetic theory will 

be noted. The electric current density j is the source of the electro
p 

magnetic field as is seen in equation ;'-5. The interaction Lagrangian 

density j A leading to this source term in A-5 was the scalar product 
fJ. fJ. 

of the source J' and the field A . 
f.1 f.1 

The total electric current in a system is conserved; J" = O. 
fJ.,.,1 

The equations of motion A-5 were consistent with that fact; 

411'j = (A - A ) = 0 
tl.!J· !J.. vv v.I-1". tJ 

(A-6) 

That is. the Lagrangian for the free electromagnetic fields was designed 

so that the terms in A in the equation of motion had zero divergence 
f.1 

consistent with the conserved source j . 
I.L 

These properties may be carried over to the theory of gravity. 

As we shall see the source of gravity is the energy of a system. How-

ever, energy comes in many forms such as the rest mass, potential 

energy, and kinetic energy of an object. The description of all of these 

forms of energy requires the so-called symmetric energy momentum 

f m h m Irl tensor 0 matter T ,were T = T • 
f.1 \I fJ. \I \I "l 

The statement of conserva-

tion of energy for matter is that 

(A-7) 

By analogy with electromagnetism we shall write the interaction 

Lagrangian density as the scalar product of the energy tensor Tf.1V with 

the gravitational field. To do this the gravitational field itself must be 

a tensor of the form h • The scalar product giving the interaction 
tl" 



Lagra!!gian deltsit) will theref,)re be - ~ h,.,.v T ""v.'" where K is the 

coupling CO_'lstant to be deterrrAined by experiment. (The choice 

KhToa corresponds to a scalar theory of gravityo) '/,:e note froin the 

form of the couplin.g that h ma~r be considered symmetric, for ,.,.V 

the scalar product of the antisymmetric part of h with the sym-
~J. v 

:metric tensor T,.,.v is zero. implying that the antisymmetric part 

of h would not couple to matter and therefore would never be ,.,.V 

seen. 

The Lagrangia,n density for gravity interacting with matter 

(in analo~w with A-2) is now 

L = L g 

and the Euler-Lagrange equations of motion are now 

K Tm 0 - 2 tJ-V = 

(A-C) 

(A-9) 

( 

V7e must now find a Lagrangian density L of the free gravitational 
g , 

fields which has the property that (6L /Oh v) = 0 to be consistent .... ,v 
rn 

with the fact that T v v 
jJ. • 

The linear second order differential equation A-5 for the electro-

magnetic fields was a result of the fact that L consisted of terms in e.'n 

which the fields ap?eared twice and there were two derivatives, e. g •• 

... 
The factor of -1/2 is a convenient choice for later work. 
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A A By analogy we shall choose for L only those terms that 
~,v \J,v Ii. 

involve the gravitational field twice and have two derivatives. 

There are only four such terms, (two terms in the Lagrangian density 

that differ by a pure divergence lead to the same equations of motion 

and will only be counted once). These terms are 

h h 
.1\1,0' \.Lv,a 

h h 
!J.fJ.,a vv,a 

h h 
fJ.a,., va, v 

h h 
fJ.v,!.L 0'0', v 

(In this paper the notation h = h will often be used.) Therefore, the 
0'0-

most general Lagrangian density of this form is 

L = Ah h + Bh h + Ch h + Dh h 
g fJ. v, C1 fJ. v, a , a , a V-a,!.L va, v fJ. v, Jl , v 

The condition on L is that (oL IOh ) = O. Now 
g g ~.v,v 

6L loh = aL ISh - (SL lah ) g fJ.v g JlV g fJ.v,p,p 

= -2Ah - lB6 h - C(h +h )-D(h +6 h ) 
tJ. v, 0'0- fJ. v , 0-0 fJ.o, va vo-, fJo , fJ· v .... v up, O'p 

-(2A + C)h - (2B + D)h - (C + D)h 
... v,vO'a ,\-laO' va.\Jva 

= 0 (A-lO) 

In order not to place arbitrary restrictions on the fields themselves we 

must take the three coefficients each to be zero. This gives 

A = arbitrary constant C = -'lA. 

B = -A D = ZA 
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However, the coupling constant :t~ has not yet been determined so that 

if the arbitrary constant is included in K we may take A to be 1/16 

(for convenience in later work), giving 

L = 1 (h h - h h - 2h h t 2h h) g li .... v, 0' F v, a ,a, 0' Fa, tJ- va, v ~ v, tJ- , v (A-11) 

The equation of motion A-9 becomes 

-h - h + h 1- h - 6 (h - h ) = 2KT m 
tJ.V,C1C1 ,tJ-v J..lC1,VO VC1,tJ.O' IJV pC1,pO' ,PP 11'" 

We will find it convenient to introduce the notation 

A =A ~6 A 
tJ-V fJ.v £ I1V 00 

(A-12) 

It follows immediately that if the operation lIbar" defined in A-12 is 

applied twice we return to the original tensor, 1. e. , 

(6 6 = 4) 
tJ.V I1 V 

In terms of this notation (h = h - ~6 h) the wave equation for the 
I1 V JlV £ I1 v . 

gravitational field becomes 

- Ii + 'Ii + Ii - 6 h = 2KT
m 

I1v,oO ov,atJ- al1,av tJ.v ap,op tJ.v 
(A-B) 

live now have a gravitational wave equation with the coupling 

constant K to be determined experimentally. K is an extremely small 

number because of the weakness of the coupling of gravity to matter. 

Before investigating the properties of the gravitational wave 

equation A-13 it should be noted that the equation is not quite correct. 

The derivation of this equation depended on the fact that the total energy, 
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to which gravity coupled. was conserved. This is quite correct. How-

ever. in the derivation we assUO'led that the total energy was given by 

m 
T • the energy tensor of the matter alone. Vie then assumed that this ..,.v 
energy wall conserved. i. e. T m :: O. This is incorrect as can be seen 

tJ.v,v 

by the follOwing example. 

Consider two balls released from rest with a given initial sepa-

ration. Let there be no external forces on the system. Due to the 

gravitational attraction between the balls. they will start moving toward 

each other and each will have a definite velocity just before collision. 

If we consider the energy T m in the balls. then before release it will 
tJ.V 

just be the sum of the rest masses of the balls; finally it will be the 

sum of the rest masses plus the sum of the kinetic energy of the balls. 

Thus, the energy T m is not conserved and we cannot set T m = o. pv tJ.v,v 

The obvious answer is that the total energy is really conserved. 

We just forgot to include the gravitational potential energy in the above 

example. That is, we must include the energy in the gravitational field 

if we want conservation of energy. If we call T
g 

the energy in the 
fJ-V 

gravitationallield, then the total energy should be given by (T:' + T~v)' 

where the statement of conservation of the total energy is 

Vllr)" did we not use this complete energy tensor in the derivation 

of the gravitational wave equation? The Lagrangian density would be of 

the form 

The difficulty is that Tg (h) depends explicitly on the fields h i thus 
tJ.V vv 
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in deriving the equations of motion 

~ =0 
f.1v 

we do not know what 6[ h Ti (h)}/6h becomes. 
f-lV fJ.V IJ.V 

Our approximation has therefore been to neglect the energy of 

the gravitational field in comparison to the energy of the particles with-

out a gravitational field. In our example this is equivalent to neglecting 

the kinetic energy of the balls in comparison to the rest energy. For 

the Bolar sy~tem this corresponds to neglecting the gravitational potential 

energy in comparison to the rest mass of the planet. The ratio of these 

energies ia in magnitude 

OM M /1' 
).,1; C~ 

p 

For the earth this ratio is 10 -8. Thus the approximation of neglecting 

the energy in the gravitational field ia more than justified for almost 

any problem. 

We have neglected the fact that the energy in the gravitational 

field is a source of gravity; that is, that gravity itself is a source of 

gravity. Suppose, for example. we had calculated the gravitational 

field due to a point mass. We would then have to add to this field the 

field produced by the energy in the original field. But we would then 

have to add the field produced by the energy in the field we had just added, 

and so forth. Because of this non-linear process the fields of two point 

masses, for example, would not be the superposition of the fields of 

each of the masses alone. 
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However, we have seen that the fields produced in practice 

contain much leas energy than the particles had themselves and the 

corrections to the fields are extremely small. A linear theory of 

gravity as given by the wave equation A-13 is highly accurate and we 

shall, in the next few sections, discuss the linear theory of gravity 

before returning to non-linear corrections. 

B. LINEAR THEDR Y OF ORA VITY 

The Lagrangian for the linear theory of gravity is 

L = ~ (h h - h h - 2b b + 2h h) 
o f.Lv,oo f.Lv,oo ,a.a .... 00 .... va.v IJ.v,J.L v 

(B-1) 

The action corresponding to this Lagrangian density is invariant under 

the substitution 

(B-2) 

where T'J is an arbitrary vector. Pure divergences Will appear under 
tJ. 

this substitution as in the following example. 

However, pure divergence in the Lagrangian density does not contribute 

m 
to the action, and to tbe accuracy of the linear theory T .... v • v = 0; thus 

for example the term - !rSh Tffi is invariant under the substitution 
(; IJ-v !Jv 

B-2. We shall call the 8ubetitution B-2 a gauge transformation of the 

gravitational field (in analogy to the gauge transformation of the 

electromagnetic field A = A + X ) and say that the Lagrangian density 
J.L IJ. , IJ. 
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a-I is gauge invariant. 

We also note that the linear gravitational wave equation A-l3 is 

exactly the linear equation given by Einstein'. general theory of rela-

tivity. See for example Tolman (5). Equation A-l3 may be simplified 

by a particular choice of gauge. U we choose T} by the equation 
fJ. 

, 1 
1i = 0 = (h + ?\ + 'VI ) .. -.r 5 (h + 2,., ) 

fJ. v • v f.1v "fJ.. V ·'v. fJ. • v c. tJv 00 "00 • v 

or 

Then the wave equation A-13 

- 'Ii + Ii + 'Ii - 6 li = 2KT fJ. v. 00 ov, Of..!. OP • ov J.I. v po, p CI fJ v 

simply becomes 

, 
-li = 2KT 

tJ. v • 0(1 tJ. v 
(B-3) 

Thie is exactly the equation 93.7 given by Tolman (5). derived from a 

linearized form of general relativity. 

51. Free Fields 

Let ua consider A-13 in the case there is no source. Let 

'Ii = e e .. ik· x; define k e = ~ ; from A-l3 the free equation for 
..,.'" ..,.'" '" f.lV ..,. 

e is 
f.1V 

k2e - k ~ .. k ~ t 6 (k·~) = 0 
fJ.V v II fJ. v v·v 

(Bl-1) 

I , 

The change of gauge h = h + T} v + '1.. becomes lillv = li,.v + ..,.v p.v f.1 r.\.l 1""' .... 

T} ... T} .. 6" or in momentum representation 
fJ.,v v,fJ. f.1v p.P 
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= e + k a + k a - () v(k' a) 
flv v IJ. I.J V ~1 

-ik· x 
1') = a e 

Il P 
I I 2 

X. =ke =x, +ka 
~ v ~v p ~ 

Let us consider B1-1 in two cases. First, let us consider that 

1/ ~ O. Then by a proper choice of gauge, a = -x. /k2
, we can make 

IJ· IJ 
, 2 2-' -' 

X. = X. + 1<"a = O. Then the wave equation is k e = 0; e = O. 
IJ. 11· f.!. pV pV 

Thus for this choice of gauge there is no solution for the gravitational 

fields and there can be no physical effect. But we must ~.et the same 
., 

physics for any choice of gauge; therefore, in any 8<' 1ge for k'" ~ 0 we 

can have no physical effect. 

The second case is where k
2 = O. The free Gravitational wave 

equation is now 

k X. -)- k X. - 6 (k· X.) = 0 
v IJ. I.L v J.iv 

The solution to these sixteen equations is X. = O' k e = O. Let us 
V. J .... f.lv 

choose the case where the plane wave i13 moving in the x direction 

k (k k 0 0) k 2= k42 - k 2 0 1 t k k tJ. = ~ 4' 1.' , ; i = ; taL~e "1. = 4 = 

Now 

we rna y ta.ke 

l'iow choose a special gauge to give us a purely transverse wave. 

I e = e + k a + 1.. a - 0 (l~' a) 
IJ.v pV v Il P v IlY 
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-' - I e44 = e44 + k(al + a4 ) 

e~l = ell + k(al+ a 4 ) = 0 by choosing (a1+ a 4 ) =: -e44/k 

e~l = e 41 + k(al + &4) 

-' -e13 = e 1 ~ + ka3 
.3 

-' -e4Z = e4Z + kaZ 

} • 0 by choosing ~ = -e 41/k 

J 

} • 0 by choo8ing a Z = -e 4z1k 

-' -' - -e 33 + e ZZ = e 33 + e ZZ + Zk(a3+ a Z) + Zk(a4 - all 

= e33 + eZZ - Ze43 - Ze 4Z + Zk(a4- all 

-' -' e 33 + e ZZ = 0 if we chooee (a4- all = (Ze43+ Ze4Z - e33 ... ZeZZ)/Zk. 

-' We should note that because the trace of e is zero with this choice 
~l v 

of gauge. -' , 
e = e . 
~v ~v 

, -' 
(e = e .,.V ~v 

Therefore. by a proper choice of gauge for the case k
Z = 0 we 

are left with only two dependent 801utions: 

1) Firat solution 

0 0 0 0 

e(l) = a 
0 0 0 

e ZZ =: -e33 = a; 
~v 0 0 1 

0 0 0 -
writing only the y- z part of the tens or. 
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Z) Second solution 

and the general solution. a linear combination of these two solutions, la 

Solution 1) has a positive stress in the y - direction and a negative 

stre.s in the z-diredion. We shall show that the second solution ia the 

first solution rotated backward through an angle of 45 0
• Thus, the 

solutions may be pictured .s 

~ z / 

1) - -
y 

t / 

To study the properties of thes. solutions, consider the following 

vectors in the y .. z plane. 

U we rotate the coordinate Iystem by an angle e about the x-axls. 
• 8xa. 

using C = ---r C , the law of tranaformation oi vectors, we get ..,. ax C1 ..,. 

D' ;:: ( 1) e-i8 
..,. -1 

Now solutions 1) and Z) are outer products of these vectore. Explicitly 



1) 

Z) 
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e!~. (~ J · i(C" c.+ D" D.I • i [ (1, II C) + (1, -I{) 1 
· i [C J +C J] 

.(Z):: (0 1)::!r (D D _ C C ) :: !, [( 1 -1) _ (1 l)J 
tJ.v lOCo tJ. v .,. V Co -1 -1 i-1 

First let U8 show that if we rotate solution two by an angle 0[ 45 0 

, 
we get solution one. Consider e.,." = e.,.v rotated by an angle S. 

I(Z) . :: 
tJ.v 

1 (e -2iS _e 2i8) 

III - -zr ( _1(e- 2i9+ e ZiS) 

:: (Sin Z8 

cos Z8 

For the case 9:: 45 0 

cos Z8) 

-sin ze 

-i(e .. US +e218, 

(eZ1S .. e -ZiS) ) 

• '(Z) :: (1 0) 
fJ." 0 -1 

which is just solution 1) 

Now conside .. the following linear combinations of our original 

two solutions 

A) 
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B) D ~ •• (1) .. ie(i.). P 2. (1 -i

1
) 

~ v tJ.v ~v_1 

Under a rotation of the coordinate system by an angle 9 about the axle 

of propagation 

A) C C v - C C .llO; the prop4trty of a plane wave with plus two 
~ IL v • units of angular momentum. 

B) D ¢v - D D • -ZlO; the property of a plane wave with minua 
.... .... v 

two units of angular momentum. 

Thua a tree gravitation can be r.presented as a spin-two particle with 

its polarization directed either with or againat ita direction of motion. 

The general solution is a Unear combination of theae two solutions. 

BZ. Experimental Teate of the Linear Theory 

A fundamental teat of the Unear theory of gravity would be to 

test the basic idea that the source of gravity is the total energy of the 

object. For example. the mass of PbZ08 is lees than the sum 01. the 

rest ma.sea ollts electrone, neutrons and protons by a lac:tor 01 o. 8150fr 

due mainly to binding ol the nucleona in the nucleus; while the maaa of a 

.6 
hydrogen atom b reduced only by a factor of the order of 10 'Yo. Thus 

the comparison of the wei"ht of a sample of lead with a sample 01 hydro

gen having the same number of nucleona would indicate that tbe gravi

tational coupling is reduced by the negative binding energy of the nucleone 
i 

Note that the waves for a spln- zero field cp, a spin- one half field '" and 
a apin-one field A.. transform in the following way under the rotatlon 
of th. coordlnate ..... yetem by an angle 9. 

} The rotational properties det.rmine .... 
the angular momentum carri.d in the 

wave. 
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in the lead nudeus. 

A less direct but far more accurate method of determining that 

gravity coupl.s to the energy 01 a parttde relie. on the assumption that 

the energy 01 an object ia proportional to the object' 8 inerttai maas. 

i. e. E. mel. Thia relation il basic to relativistic mechanics where 

the relation between the fOl'ce and the inertial ma88 Ie F. d(mv)/dt. 

The lnenlal mass of a nucleus is directly measured in a maes epeetl'o

graph. while the diUerence in energy between nuclei can be determined 

from the Q value of nueleal' reactions. Thus the equivalence of the 

energy and the inertial mass may be checked experimentally. The agr .... 

ment is fairly sood, althouSh not completely verUted. ( See R. H. 

Dicke (6) ). 

Assuming the equivalence of energy and inertial mals. then we 

may interpret the reeu1ta of the experiment of Eotv08 (7) ae an accurate 

teat that gravity couples to ener,y. The ide. 01 Eotvoa' experiment Ie , 

that an object on the svfac. of the earth Is accelerating due to the dally 

rotation of the earth and the motion of the earth in an orbit about the IWl, 

and thil acceleration is produced by gravitaticma.l lorcee. U the gravi .. 

tational force is exactly proportional to the inertial maee of the object. 

then all objects. independent of their composition. would have the eame 

acceleration. If not. then objects of dUferent material placed on a tortton 

balance could produce a tOl'que. 

Eotvos' result ... that if the gravitational force te proportional to 

the ma.s for platinum (be determined th.e gravitational constant for the 

case 01 platinum). tben the aravitational force on snakewood 1. propor-
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8 " tional to its inertial mass times a factor (1 - 0.1 x 10·' :t O. 2 x 10.°). 

The anakewood experiment is the most interestin.; for it compares the 

li£;ht elements of hydrogen and carbon with platinum which bas a much 

greater nuclear binding energy. 

We note that a spin-zero theory of gravity would imply that the 

gravitational force would be proportional to m(l· v2)~. which for a 

-7 particle on the earth moving about the sun would be m(l - 0.1 x 10 ). 

Thus if an Eotvos experiment showed the proportionality of the inertial 

mass of an object on the earth to its gravitational attraction to the sun 

with the same accuracy as Eotvos' original experiment, then a spin-

zero theory would be eliminated while the linear theory would still hold. 

Most of the accurate experiments on gravity are the result of 

astronomical observations. Of these all but three may be explained by 

Newton's original theory of gravity. If we show that in the limit of weak 

fields and low velocities the linear theory approacbes the Newtonian 

theory, then almost all tests of gravity will be explained. 

One observation not explained by a Newtonian theory is the 

gravitational red shift of light. This is seen in the shift of spectral 

lines of light emitted from stars. and in the experiment of Pounds (8) 

where photons were dropped 12. 5 meters and their frequency shift 

measured using the M08sbauer effect. To within the accuracy of the 

experiments the frequency shift may be explained by assigning an ef-

2 fective mass me to a photon. hW = mec. The change in kinetic 

energy of such an object moving from a region of potential qJ to a new 

• See Appendix I. 



region of potential rp - .00cp would be given by Newtonian physics as m-Clcp. 

The frequency of the photon in this new region by this simple argument 
~, 2 

is juet given by ow = me(l f 6tp)c. This simple derivation of the 

gravitational shift of line spectra is in agreement with the shift pre-

dieted by the linear theory of gravity. 

An astronomical observation that cannot be explained by an argu

ment even similar to the one used to explain the red shift is the deflection 

of light passing the sun. U one assumes that a photon should act as a 

massive particle and that the equation for the trajectory -; of the 

particle is given by Newton's laws as -Vrp::r d~ /dtZ, then the pre

dicted denection is half that observed. We shall see that the linear 

theory predicts the full observed deflection. 

The final test of gravity not in agreement with the Newtonian 

theory is the shUt in the perihelion of the elliptical orbit of the planet 

Mercury. In the absence of perturbations the Newtonian theory pre-

dicta that the perihelion of a planet in an elliptical orbit should remain 

fixed. After the perturbations are tal(.en into account the perihelion of 

Mercury is observed to shift by forty-three seconds of arc per century. 

The linear theory of gravity does predict a shift in the perihelion of 

Mercury--two-thirds of that observed. Only in the observation of the 

shift of the perihelion of Mercury is there an experimental test of 

the failure of the linear theory. 

The inconsistency in, and now the failure of the linear theory 

is that it neglecta the energy in the gravitational field as a aource of 

gravity. We shall show that by correctly including the energy in the 

fields &s a source of gravity, the correct shift in the perihelion of 



Mercury is obtained. Thus there is experimental evidence that gravity 

is itself a source of gravity. 

To check the above statements about the linear theory it t. only 

necessary to consider the interaction of gravity with point particles. 

In the Newtonian Ilmit i. t.a well known that the gravitational fi.eld out

side of a spherically symmetric object is the same field as that of a 

pOint with the same total mass. J1 we leave to astronomers the calcu

lation of perturbations due to tides, etc. the astronomical theory will 

be adequately described by point particles. 

Let tbe coordinate for a particle be given by the four vector 

Zf.L where ZtJ. = (Z4' Zl' ZZ' Z3)· 

is given by 

where . 
Z = dZ Ids 

tJ. tot 

The free Lagrangian for such a particle 

• 

The energy momentwn tensor for such a particle is 
\ 

m •• ds 
T " = mZ Z,,"""" f.L tJ. elL. 4 

I 

To the action Sg for the gravitational field must be added Smg' 

the action of the free particle plus the action of interaction, to obtain 

the total action for the linear theory of gravity interacting with particles. 

The Lagrangians corresponding to the terms in S are given by mg 

ifi 
See Goldstein (9) • 

•• See Landau (10). 
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L I _ ~ h Tm = _ K m h (Z) z z ds 
interaction = c- I-lv I-lv T IJ.v IJ. v ~4 

where S is given by mg 

We get 

s = -~ r [6 + Kh (Z ) 1 Z Z cis 
mg G j fJ. v J.l v fJ. v 

From B2-3 we may define a new Lagrangian L (Z) where 
mg 

s = r L (Z) ds 
mg J mg 

L (Z) = -~ [6 v + Kh v(Z)) Z Zv 
mg .::. .. ~ tJ '"' 

(B2-1) 

(82-2) 

( 32-3) 

(1-32-4) 

(132-5) 

In terms of the Lagrangian L(Z) the Euler-Lagrange equations of motion 

become 

6L(Z) = 
6z 

J.l 

8L d 8L 
dZ - ds ~ 

tJ. az 
tJ 

= 0 (82-6) 

If we wish to describe the particle in the space-time coordinate 

system x = (t, x, y, z), the action S of B2-3 may be rewritten as 
J.l mg 

(B2-6A) 

In the previous work on the linear theory, the Lagrangian density L mg 

was obtained. The action is given from a Lagrangian density L by 

the relation 



(' L 4 
S=\_dx 

",i 

From B2-6A we see that the lagrangian density L 
mg 

of the free 

particles plus interaction is given by 

L = -mg 
rn\'4 r •• 

~ \ 0 (x-ZH 6 + Kh vex)] Z Z de Co _, !J v ~ fJ v (B2-7) 

The Lagrangian density for a free particle is therefore 

(> 4 •• 
L =_.2!Z \ 6 (x-Z)Z Z de 

m J .... ;!' 
(82-8) 

and the energy momentum tensor density for a free particle is 

(B2-9) 

In the remainder of this paper we shall use the notation of capital 

L for the Lagrangian. and script L for the Lagrangian density. re-

ferring to both as the Lagrangian. 

With this formalism we may now consider the equation of 

motion of a particle in a gravitational field. Using the Lagrangian 

L (Z). B2-S. the equation of motion B2-6 becomes mg 

1 . 
[6 -I Kh J Z -1 ~[Kh (.l+ KhA, - Kh (.l 1 Z Z(.l= 0 P.... P........ G o.p.... ...p. a. a. .... po. ... 

(B2-1O) 

where we have u8ed the symmetry between a. and j3 in Zo.Zj3' and 
. 

noticed that dh (Z)/de = h Z . 
.... v I-lv.p F 

For later work we will want an exact expression for Z. This ..,. 

may be obtained by multiplying B2-10 by l6 -t Kh ] -1. where 
P'V P'I 

[ 6 + Kh ) -1 is defined by the equation 
P'V py 
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[ 0 -i· Kh ] -l[ 6 T Kh "i = 6 
P'i P'i PfJ. pfJ. J 'i~ 

(Bl-ll) 

A series expansion of [0 T Kh 1 -1 that obeys .82-11 is given by 
P'{ P'i 

[ 6 f Kh ] -1 = 6 - Kh T K 2h h - K3h h '\. h'\. "" 
p"V P"V P'i P'i pc cry pO' 0',.. "''i 

(132-12) 

a8 may be verified by direct substitution. (32 -12 is essentially the 

expansion of (1 + Kh(l with appropriate subscripts. ) 

Therefore. from 82-11 the equation for Z is given by 
'i 

.. 1 1 . . 
Z'i = - 1"[ 6 P'i + Khp'il - [Kha.p, ., + KhJ3p, a. - KhQf3, pl Za. Z ~ (B2-13) 

We may abbreviate the notation for the coefficient of Za.ZJ3 by 

r 'i A = .!:. ( 0 + Kh 1 -1[ Kh A -+ Khp. a. - Kh A 1 
a.t-' £.. P'i P'i a.p. ,., t-'P. a.t-'. P 

(B2-14) 

We are now in a position to demonstrate that the energy momen-

tllm tensor is not conserved by explicitly calculating TID • the di-
liY,Y 

vergence of the energy momentwn tensor density. By equation 32-:1 

o 4 . . 
T m 

= m\ 6 (x-Z(s»Z Z ds 
liY ~l Ii Y 

{'. 84 . r· a 4 . 
T

m = m\l [z -w---o (x ... Z)] Z ds = m'1 [z (-) TIr" 6 (x-Z)] Z de 
tJ· Y. Y v Y oXy Ii "v a.c;, v \i 

r d 4 • r4" = m\ [-~ 6 (x-Z» Z de = m\ 6 (x-Z)Z de 
J 08 Ii ~ Ii 

where the last expression was obtained by integration by parts and 

dropping the surface term. Using 82-13 Z = _rt-L z:i we just get 
p. a.f3 a. (3 

(132-15) 



Now from the linear equation for the gravitational fields A-13 we see 

that the fields produced by the tensor T In are of order of magnitude 
tJ.v 

K smaller than TID. But from 32-14 1~!.1(.l is of order K smaller 
!.1V n~ 

m Z m than the fields. Thus T is of order K smaller than T 
vv, v IJ.V ' 

small to be 8ure, but not zero. 

From the linear theory let us now calculate the gravitational 

field produced by a particle, e. g., the sun. fJsing a gauge in which 

1i = 0 the wave equation is in the form given by equation B-3 
tJ.v,v 

T m may be written as: 
tJ.v 

r 4 .• 
T m = m\ 6 (x-Z)Z Z ds 
tJ.v.) p. v 

But 
dZ4 dZ4 

Z = (1, v • V , V ) ~ Eli V ~s 
J1 x y z as tJ. all 

v == (1, V , V , V ) 
tJ. x y z 

and 

dZ 
4 _ (1 2)-1/2 (I'S- -v 

For a particle at rest only T: survives 

m 3--
T 44 = m6 (x - Z) 

(B2-16) 
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The field equation B-3 becomes 

3- --1i44 (x) = 2Km6 (x - Z) • aa 

The field produced by a particle at rest will not vary in time (li44. t= 0) 

and we may write the equation 

3- -= 2Km6 (x - Z) 

The solution of this equation known from electrostatics i" 

where 

r = /--; - Z I 

The fields h = Ii 1 2' 6~vhaa' From t32-17 this gives \J- Y tJ,Y 

h. -h -h -h - Km --n - 22 - 33 - 44 - - -
411'r 

These are the linear gravitational potentials produced by a star. 

(32-17) 

(BZ-1S) 

Let us now calculate the effect of these potentials on the motion 

of an object. In dealing with the linear theory we need only keep terms 

to the lowest order in K in equation B2-13 for Z ; 

.. K . . 
Z = .. ~ [ h A + ht\.., - h p, ] Z Z A "V c. o."V,,.., "'1'0. (1,:... "V (1,.. 

(B2-l9) 

Using the notation of 32 -16 

. . 2 
Z (1 Z ~ = v (1 v f3/ (1 - v ) 

v v = (1 .. v 2 - v 2 - v 
2) = (l _ v 2) 

(1 a x y z 
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.32-19 now may be rewritten as 

.. 2 K 
Z (1 - v ) = - 'Ir'[ h (.t + hA - h A ] V .. V Q 'V L 4", ,., ..,,,. a a.." 'V ... 1-1 

.. 2 
The quantity Z (1 - v ) may be written 

" 
.. 2 2 d [dZ dt ] 
Zy(1 - v ) = (1 - v ) de err di 

.Q. 

= (1 - v 2)1/2 it [d~)' (l _ v 2) -1/2 ] 

2 
d Z dZ 2 1/2 d 2 1/2 = ~ '1' -r.:-'V (1 - v ) t ~ (1 - v )-
dt at at 

Using (1 - v 2)1/2 = (va v a)l/Z we get 

.. 2 d
2

Z dvp v v 
Zy(l - v ) = --;;1- Tt (/_ ;2) 

The equation of motion may be written 

2 
d Z K dv v v 
~=--[h +h -It ]vv+--..£-..Y.L 7 2 4". ~ {3".4 4{3,,, 4 ~ CIt ~ 

(32-Z0) 

First let us consider the case of very slow velocities where in 

equation 82-20 we may take v 4 = 1, vI, 2.3 = O. Using the potentials 

132-18 the equation of motion becomes 

But h44• o4 = 0 and we are left with 

¥ 
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(B2-21) 

Thus the force on the particle is proportional to minus the gradient of 

the potential h44 in agreement with Newtonian physics. The force 

between two particles of mas s M and m separated by a distance R 

is given by B2 .. 2l and B2-18. 

but from classical physics this force is known to be GMm/R 2 , thus by 

going to the Newtonian limit we determine our coupling constant K. 

2 
K = 8wG 

We also see that the relation between the potential h44 and the 

Newtonian potential 4>. :: Gm/r is 

Kh44 = ZGm/r = 24> 

(Bl-22) 

(Bl-l3) 

We finally note that Newtonian physics depends only on the potential h44 

(see B2-21). 

Let us now consider small deflections 01 high speed particles 

moving past the 8un. Let us calculate the acceleration in the x-direction 

of a particle moving in the y-direction. From equation B2-20 

d 2
Z K dv v v 
~ :: - """' [ 2h - h ] v v t -.£. ~ 
dt' G o.x, f3 a.p, x a. f3 ~ n:;z) (B2 .. 24) 

For small deflections we may calculate the acceleration in the x-direction 

by assuming the velocity appearing on the right-hand side of B2 .. 24 re-
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mains in the y-direction. Thus v :: O. h A does not contribute and x o.x .... 

we get 

~ [ h44 + v 2
h 1; h44 :: h :: 2¢ /K 

t:. .x yy.r yy 
(B2-Z5) 

dZZ -:-r :: -~ (1 + vZ) 
dt x 

We will get a greater deflection by a factor (1 + v 2) than if we had calcu

lated by a Newtonian potential h44 alone (corresponding to dZZx/dtZ = 
- a¢ lax). and in the case of light this deflection will be twice as great. 

This result as we have mentioned "t the beginning of this section is in 

agreement with experiment. 

The calculation of the shift in the perihelion of Mercury is far 

more involved and we shall not go into it at this point except to note that 

the answer for the linear theory is two-thirds of the experimental result. 

B3. Quantum Mechanics of the Linear Theory of Gravity 

The experimental justification for the linear quantum theory of 

gravity is in a senae stronger than the justification of the linear classical 

theory. There are no experiments in disagreement with the purely 

quantum mechanical predictions of the linear theory. This is because 

there are no tests of the quantwl"l nature of gravity. The quantum effects 

are all too small. 

As with the classical theory the quantum mechanics of the linear 

theory of gravity will be obtained by an analogy with the theory of 

electromagnetism. We shall follow the approach given by Feynman (11). 
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Maxwell'. equations for electricity are 

A - A = 4trJ 
~,aa a,~G V 

In momentum representation, where 

A -iq· x = a e ; 
fJ. fJ 

equation 83 -1 becomes 

. -iq· x 
J = J e 

J.1 J! 

(B3-1) 

(B3-2) 

A solution of this equation, for the case that the current is conserved, 

is 

(B3-3) 

To check this solution, note that the statement of conservation of cur-

rent, J = 0 becomes in momentum representation q j = O. 
J1, V tJ. tJ. 

Therefore q a :::t 0 and B3 -3 is indeed a solution. 
fJ. fJ. 

The interaction of this field a with a second current / 
fJ. fJ. 

is of the form /a • 
tJ. V 

Substituting a = -~ j J we get the interaction 
V q fJ. 

of currents in the form 

4 
.2 1 . .1 

- trJ 2 J 
f1q fJ. 

(B3-4) 

The interaction of currents in quantum mechanics may be de-

scribed in the following way. The kemal for the propagation of two 

electrons exchanging one photon is given by Feynman (12). 
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3 
K ..(3,5) , 

K (3, 4il, 2) 

tfime 

The appearance of 0+(S;6) which describes the propagation 

of the virtual quantum guarantees a delated interaction through only 

positive energy photons. 

- -If the electrons had wave functions fa (x 1) and {b( xl) initially, 

and we wanted the amplitude that they were in the states ga ("i3) and -gb(x
4

) finally, the matrix element for thie process would be 

In momentum representation, taking 

where 
• 

The matrix element in momentum space becomes 

. -i[ -411'(eu3Y~) i. (eu4y u z>1 
Il q +ie !.l 

4 l dlK • 
• In Feymnan's articles replace his d 1< by 4 .. -

(2 .. )4 



The momentum space representation for the electron current is 

j = eu" u. Therefore the matrix element for the electromagnetic in-
p fJ. 

teraction of currents is 

2 1 l 

iMF = .. 41rj p. q~ + ie j..,. 

(U the photon had had a mass fJ., the term (q2+ ie)-l would have been 

replaced by (fl- ..,.2+ ie) .. l. Thus the + ie, which defines the correct 

tl'eatment of the pole in quantum mechanics. is obtained by Feynman's 

rule that all masses are considered to have a negative imaginary part. ) 

We see from this example that we may obtain -i times the 

matrix element for the scattering of electrons via one virtual photon 

by writing a classical formula for the interaction of currents, then 

adding a negative imaginary part to the mass of the virtual particle. 

For the case we are considering, the interaction of two cUl'rents via 

one photon, where the momentum q of the virtual particle is known, 

thel'e is no integration ovel' q2 and we do not need the + i£ to tell 

us how to treat the pole. 

Before returning to gravity, let us study the properties of the 

interaction 

Let us assume that the spatial part of the momentum carried by the 
,~ 

photon is in the spatial direction 3. The four vector ~ is then 

~ = (w,O,O,Q)j 
Z 2 2 

q = w .. Q 

and the directions 1 and 2 are transverse to the direction of motion of 
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the photon. 

or 

The fact that current is conserved implies 

J = 0 
Ji.Ji 

. w· 
J = - J 
3 Q' 4 

Therefore the interaction between currents may be written in the form 

4. 2 l.l .c4w.1 +4 >."2 1 .1 
- wJll Z JII = J..a, ":-2 J4 W / , J tr 2 0 2 Jtr rq I'"' Q - w-

2 transverse 
directions 

Z 
Now 4w/Q is the momentum space representation of the 

coulomb potential. j4 i8 the charge distribution of the current j~. 

Therefore the first term reprea'ents an instantaneous coulomb inter-

action between the currents. Z 2 -1 2 
The factor (w -C) = l/q as we have 

seen represents a delayed interaction through positive energy photons; 

where in this case the photons have two independent polarizations each 

transverse to the direction of motion. Thus the electromagnetic inter-

action of currents is via an instantaneous coulomb interaction plus 

transverse waves. 

With this background let us consider the gravitational interaction 

of energy. The equation for the gravitational field produced by an energy 

tensor T is by equation A-13 
Vv 

-Ii + Ii + Ii - 6 Ii = 2KT 
Ji v. aa av. all av-. av II v pa. pa V v 

In momentum representation. where 



-iq· x h = e e ; 
VV .... v 

equation A-13 becomes 
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-iq· x = t e 
\lv 

2- - - -q e - q q e - q q e + [) q q e = 2 Kt 
.... v \l a va v f. Va fJv a p up fJV 

(B3-5) 

A solution for this equation in the case where energy is conserved 

(qt = 0), is 
l.l flY 

t 
=ZK.J!f 

q 
e 

fJV 
=e 

VV 

t 
= ZK 4 

q 

Again we can check this solution by noting that 

= ZKq t - 0 Z .... flv -
q 

(83-6) 

automatically guaranteeing that the last three terms on the left side of 

B3-5 are zero for this solution. 

The interaction of the field e = ZK/q2'[ with a second energy 
VV flV 

tensor s is of the form I Ke s (This is the basic interaction 
11v 'Z .... v .... v 

we assumed for the derivation of the linear theory of gravity.) There-

fore the interaction of energy tensors sand t will be of the form 
VV .... v 

Kz I -
8 -wr t 

f!V G IJ.V q 
= -811'G(s t -!r s t )...!.r 

fJ.V fJ.Y G fJ.fJ. VV qG 
(B3-7) 

If, as before. we assume that the spatial part of the momentum 

carried by the graviton is in the spatial direction 3. then q = (O, 0,0, w), 
IJ. 

qZ = w2 _ el. and the directions I and Z are transverse. Since both 

energy tensors are conserved 
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q_ t = 0 = wt4 .. Qt3 ; 
~ ~v v v 

We can replace various t3v by t 4v ' s3v by s4v and the fundaznental 

interaction B3 .. 7 becomes 

(83-8) 

The first two terms represent an instantaneous interaction, the last 

represents a delayed interaction via positive energy gravitons. 

The classical energy momentum ~sor density B2-'1 may be 

written 

3- -For a particle at rest the only part that survives is T 44 = M6 (x - Z) = 
Po; Po is the maes density. Therefore the first term looks like 

I 
.. 4,..Gp 02 Cl Pol 

Thus the first term corresponds to an interaction energy -G/r between 

masses; just the Newtonian effect. 

For a particle moving in the direction 1 with a velocity v 

and the inte raction looks like 
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- 41fGP2 c? PI (1 + v
2

) 

Thus the attraction exceeds the Newtonian value by a factor (1 + v Z), 

which gives a factor of Z for the deflection of light; a fact we saw in 

the last section. 

Terma of the form s4Zt4Z represent an instantaneous velocity 

dependent interaction. 

The last term represents a delayed interaction by waves whose 

source is either (tll- t zZ) or t iZ . From the wave equation B3-6 we 

see that the waves generated by these sources are ell = -822 or 8lZ . 

(If the interacting particles are far enough apart 80 that the only sur-

viving interaction is via these transverse waves. then eaa = ell + e 22= 0 

- 1 - -and e ij = eij- "Z 6ijeau = e ij and we can forget the bars.) We have al-

ready studied the case of gravitons with the transverse polarizations 

en = -e22 or ell in part Bl, and we see that the last term repre

sents an interaction via spin two-gravitona with two independent trans-

verse polarizationa. In this caae they are virtual graviton. generated 

by the transverse components of the density s12 or (8U - sZ2)· 

B4. Example: Gravitational Rutherford Scattering of Electrons 

We shall consider the scattering of an electron by a heavy point 

mass in the Born approximation (1. e. via the exchange of a single 

virtual graviton). The matrix element for thia process is given by 

equation B3 - 7 

2 I -iMF = K s -.r t Jlv r.. flv q 

where t will be the energy tensor for the heavy particle of masa M, 
flv 



s lor the electron. 
f.1V 
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Actually much of the work for this problem has been done in the 

part B2. In that part we found that the gravitational field of a stationary 

M OM 
point of mass ~ is from B2-18 ~l = hZ2 = h33 = h44 = - 2 Kr ; 

hij = 0 (i", j). Equation B3-7 waG obtained by considering the momen-

tum space representation of tbe interaction KC h where b was 
1:.. f.1 v fJ. v tJ- v 

tbe field produced by T • 
fJ.v 

The interaction is therefore 

In momentum representation this becomes 

(B4-1) 

The symmetric energy momentum tensor for an electron given 

by Pauli (9) is 

s = - ;. (-i'li 'V \jI + iiliy ~ - i'li 'V ~ + i'li 'V' ~ v] fJ.v "C. ,J.! v v ,fJ. ,v 11 f.1 , 

Q 

In momentum representation, where 

ip • x 
'Ii = tir<Pf)e f 

~ = ui(Pi)e 
-ip· x 

(B4-3) 
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we will get a 6 function giving rise to conservation of energy and 

momentum 

and the energy tensor s becomes 
f.111 

The matrix element &4 ... 2 becomes 

The free particle Dirac equation may be written in tbe form 

where .;:: y p. Using the relation 
f.1 f.1 

4 

)' Pi Y :: 2E'Y t ... ~. 
'-I nn 1 1 

n==l 

the matrix element iMy becomes 

(84-4) 

where Ei == E f = E. 

The probability of transition per second P fi is 

(li :: C :: 1) 
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where p = density of final states; El and E2 are the initial and final 

energies of the electron. and the normalization of u is U u = Zm. Now 

3 
d Pz 

= P = 3 
(Z,,) dEZ 

2 Z 2 
where E Z = P Z + rn ; EZdEZ = PldPZ• 

alpl' 
= El 

= 
EZ/PZ/dQ 

(2 .. )3 

Also 

where (J is the cross section for the reaction. 

For our case EI = E Z' therefore IpI' = Ipzl. and the differential 

cross section from the matrix element B4-4 become. 

(B4 .. S) 

We will evaluate B4-S for the case where the electron is initially 

moving in the + x direction with its spin up in the z direction, and the 

scattering is in the x-y plane. The matrices ufui and ui'V tUi are zero 

if the spin is flipped and uf represents an electron with it. spin down 

• • 
in the z direction. Thus the total cross section for this case is obtained 

from tho non- spin flip amplitude • 

• For the spin flip case 
- -l/Z uf = F (0, F. -P +,0) 

and 
F 

ufui = F-1(0. F. -P +,0) (g ) = 0 

Pi 
I 0 0 0 F 

u'VtUi = F-1(O, F. -P +,0) (g ~ _~ g) (g ) = ° 
o 0 0 -1 P. 

\ 

See the next paragraph for notation. 
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The spinor for a iree electron moving in the x-y plane with 

its spin up in the z direction is 

F 

u = F-1/ 2 (g ), u = F-1/ 2 (F,O,O, -PJ 

p+ 

where F:: E + m; P+ = P + iP ; P = P .. iP ; u u = 2m. x y .. x y 

Therefore 

F 

F -I/Z ( 0 ). 
ui = 0' 

Pi 

where e is the angle of deflection. 

Substituting these spinors into equation M-S, the differential 

cross section becomes 

(B4-6) 

where 

Q = 2P sin e/z. 

The differential croes section if we had used only the Newtonian 

potential h44 would be 

2 2 Z Z 
dO' 4E (E M G ) [ 1 Z. 28 / 2 ] ,.,.... = - .. v stn 
Q~' 0 4 

This corresponds to the electrical Rutherford scattering of an electron 

Z 4 2 Z Z with z e replaced by E MG. This is exactly what we would expect, 

for the electrical force on the electron is ze2; rZ. the Newtonian force 

Z 
EMG/r • (E approaches me'· the mass of the electron for slow velo-

cities. ) 



-46-

We see that for small angle deflections at low velocities the 

cross .ections calculated by the Newtonian potential or by the full theory 

are the same. At high velocities when v. I the full cross section 18 

four time. the Newtonian cross section, which is equivalent to a de-

flection through twice the angle that is predicted by the Newtonian estt-

mate. This is the factor of two we have seen before. 

Let us consider the relative size of the gravitational and electri-

cal Cross sections. The strength of the electrical interaction is pro

portional to the dimensionless constant e Z /1i'c = 1/137. The corre

sponding constant in gravity is 

or we may say that for electrons the gravitational force is effectively 

-43 weal<:er than the electrical force by a factor Z.4 x 10 • Cross sections 

are smaller by the order of the square of this factor. 

We may rewrite the gravitational Rutherford scattering cross 

section as 

1 Z Z Z v Z v Z Z 9 ------sa [ (1 +v Ic ) - '"'"! ('"'"! + 3)sin 1'] 
(vic) c c 

(B4-7) 

where we have restored all factors of li and c. Because of the factor 

I -4 (v c) the largest crose sections come from slow velocity electrons 

scattering at small angles. However, such a cross section could be ob-

tained by a completely classical calculation using a Newtonian potential. 

Even so, for a one Kev electron being scattered through an angle of two 

I ..... -93 Z degrees by a neutron, the cross section is dud' fj = Z. 7 x 10 cm. 
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We can see that quantum mechanical effects. such as the inter

action with the spin of the electron. appear in the term v Z(vZ+3)sinZe/Z. 

For example. suppose we had calculated the deflection of the electron 

neglecting its spin. We could do this by calculating the electrical 

Rutherford scattering using the Klein-Gordon equation for spinless 

particles. then replace the electrical lorce law zeZ /rZ by 

EMG(l + v 2/c Z)/rZ
• The result is B4-7 without the spin term 

v Z(v2 + 3)s1n29/2. * 
For the spin term to be important we should have relativistic 

velocities and large deflections. just the conditions that make the 

cross sections even smaller. For relativistic electrons (note that 

the cross section 54-7 is independent of the energy of the electron 

o once v s== 1) taking v=: 1. we mu.st have a deflection of 21 before the 

spin term produces a five per cent correction in the cross section. 

/
'") 6 -102 2 For such an angle dO' d1j, = .0 x 10 em. For the five per cent 

spin correction to be seen. we would have to measure cross sections 

-103 Z of the order of 3 x 10 em. It is not necessary to comment on the 

experimental difficulties of such a measu.rement. In fact it i8 hard to 

believe in the validity of an extension of our ideas of quantum mechanics 

to such a range beyond the limit of present experimental capabilities. 

·The gravitational Ruthe rford scattering for a spin-zero particle is 
correctly obtained by using the spin-zero energy tensor s~1I in 
equation B4-2. With 

o 1 2. 2 
StJ.v = <p.tJ.'fJ. 11 - '! 6tJ.v (lP. pfP. p- m tp ) 

SO = _ pi pi +.!r 6 (pi. pf + ~) 
tJ.v tJ. 11 , tJ.v 

The cross section is ag~in B4-7 with~ut the spin term<: (For the deri
vation of SO see equation Cl-42A. ) 

Jl1l 
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Consider the validity of the Born approximation (assuming the 

exchange of only one virtual graviton) for this calculation. For 

electrical scattering the condition was that ze Z /liv «1. For gravi-

tational scattering the condition becomes in the low velocity limit 
Mm G 31 

m MG/liv« 1; v» e s= 10- cm/sec (B4-8). where M is 
e ~ 

the mass of the neutron. As we have mentioned. there are corrections 

to the linear theory of gravity. These corrections become important 

only when the Born approximation breaks down. U. however. m and e 

M were the mass of Mercury and the sun respectively. the velocity 

of Mercury is not great enough to satisfy condition B4-8 and inde«d 
e 

the corrections to the linear theory can be seen in the shift of the 

perihelion of Mercury. 

In fact we know that the Born approximation breaks down when 

the particle is in a bound orbit. The smallest orbit that an electron 

can have around a neutron is the first Bohr orbit. As we can see from 

134-8 it we assume only a gravitational force this orbit must be very 

large to give rise to velocities les,s than 10-31 em/sec. In fact. the 

- 33 
Bohr radius for such an electron-neutron system is 1.1 x 10 cm. 

It is only when an electron is in such a large orbit. with such low 

velocities. that corrections to the linear theory and the Born approxi-

mation are necessary. 

B5. The Uncertainty Principle for Gravity 

We can now see that if gravity were classical. the fa\lure of the 

uncertainty principle would be on the scale of large distances and slow 

velocities. 

U we think in terms of the classical picture that the electrons in 
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the hydrogen atom are in circular orbits. we would deduce from the 

uncertainty principle that the smallest orbit has one unit of orbi.tal 

angular momentum li. and a radius given by the Bohr radius. In such 

an orbit it is known that the product of the momentum of the electron 

times the lever arm (approximately the distance of the particle from 

the heavy force center) is exactly 11. U we do not specify whether 

the angular momentum comes from a large momentun'l with a small 

lever arm. or vice versa, then 1i essentially measures the product 
, 

of the uncertainty of the position and momentum of the electron. 

From this pqint of view the first gravitational Bohr orbit of 

the electron, with a radius of 10 .. cm and velocities less than 10-31 

cm/sec. is the smallest orbit consistent with the uncertainty principle. 

If the uncertainty principle failed and the classical theory were correct, 

then smaller orbits would be allowed. However, because of the weak-

ness of the known gravitational forces .in comparison to electrical, 

beta-decay or heavy meson forces gravity may be neglected fo r smaller 

orbita, say on the atomic scale. Thus for only slow velocities and large 

distances would there be an appreciable modification of the uncertainty 

principle. 

C. CORRECTIONS TO THE LINEAR THEORY OF GRAVITY 

As we saw at the end of part A. the linear theory of gravity 

. was obtained by neglecting the energy in the gravitational field in com-

parison to the energy of the matter fields. The linear theory was cor

rected in a straightforward manner by Feynman, by demanding that a 

consistent theory be obtained directly from an action prinCiple. This 
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work is described in part s C3 and C4. The author attempted to correct 

the linear theory by considering gravity as a spin-two field coupled to 

all forms of energy, including the energy in the field itself. This 

latter method, described in parts CI, C2, and the end of part G, was 

eventually successful, but would probably be found only after the cor-

rect answe r was known. 

The basic problern is that the wave equation A-l3 for the linear 

theory of gravity 

- Ii + Ii + Ii' - [; 1i = 2KT m 
~v,aa av,a~ ~,av ~v pa.pO' ~v 

is inconsistent. This may be seen if we take the divergence of both 

sides of A-l3. 

- Ii + Ii + Ii - 1i = 2KT
m 

~v,aav av,a~v a~.avv pa,pa~ ~v,v 

m The left side is identically zero, while T • the energy tensor of the 
~v . 

matter alone, is not conserved in the presence of a gravitational field 

and thus rn f: O. 
~v,v 

The physically correct idea is to replace T:V 
in A-l3 by T • the complete symmetric energy tensor of the system, 

~v 

including the energy in the gravitational field as well as the energy of 

the matter. (We wish T to be symme tric so that the antisymmetric 
\-1" 

part of h will not be coupled to any form of energy.) As the total 
flV 

energy of the system, including gravitational energy. is con~erved, 

T = 0 and the correct gravitational wave equation will be given by 
~v.v 

- 1i + Ii + Ii - 6 Ii = 2KT 
~ v, ac av , a~ all, av fJ. v pO'. pO' /.l v 

(e-l) 

The problem is now to obtain the correct T~v to put in eq,uation 

G-I. 
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CI. Symmetrized Energy Momentum Tensors 

The method of finding conserved quantities such as the energy 

momentum tensor of a system is to investigate the invariances of the 

action for that system. For example. if the action is unchanged under 

the transformation of the time coordinate t - t + a where a is an 

infinitesimal constant. then the total energy of the system is conserved. 

More generally if the action for a system is unchanged under 

the infinite.imal coordinate ~ransformation 

(CI-l) 

then depending on the choice of "t-t various quantities will be conserved. 

If" is a constant infinitesimal vector with four arbitrary component(] .,. 
then the total four momentum P of the system is conserved. When 

J1 

" , represents an infinitesimal rotation (Lorentz transformation) with 
f.1 

six arbitrary constant parameters (angles). it is the angular momentum 

of the system that is conserved. 

The momentum of the system defined in terms of the energy mo-

mentum tensor density Tf.1V is given by 

, 3 
p = \ T 4d x 

J1 ,J f.1 

Thus TtJ.4 may be considered the momentum density. 

for the angular momentum density about the origin is 

where the total angular momentum is given by 

(~ 3 
M = J (x T 4 - x T 4)d x tJ.v J1 v ~v f.1 

(CI-2) 

The natural choice 

(Cl-3) 
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The conservation of momentum will follow if T has zero 
f.Lv 

divergence, but T f.L" must also be symmetric for conservation of 

angular momentum. For example, 

y T~v. vd4x = 0 = -itS TI-'4d3x + ~ J' 
k=l 

a 3 
~(T k)d x 
Clxk f.1 

Since the fields are zero at infinity we may drop surface integrals, 

giving 

dP -r= (Cl-4) 

We also have 

Dropping surface terms and using Tf.L
U

, CT = 0 we get 

(CI-5) 

From Cl-5 we see that Tf.LV must be symmetric for cOilservation 

of angular momentwn, while linear mOlnentum may be defined by an 

energy tensor whose divergence is ~ero, but which is not necessarily 

symmetric. 

One procedure for finding an energy momentum tensor of a sys-

tem is described in the following steps. First investigate the invariance 

of the action under infinitesimal coordinate translations. We shall see 
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that this leads to a conserved (divergenceless) quantity a
llv

' called 

the canonical energy momentum tensor. Because the conservation of 

linear momentum relies only upon the invariance of the action under 

coordinate translations the total momentwn should be correctly given 

by 
,-, 
\ P = , 

\l I 
(CI-6) 

Since the canonical tensor 9 v is not obtained by considering 
!.l 

the invariance of the action under rotations. there is no guarantee that 

the angular momentum is correctly given by Cl-3 using e
llv 

instead 

of T • In fact the canonical tensor is in general not symmetric thus 
f.1v 

it does not lead to a conserved angular momentum. 

The next step is to investigate the invariance of the action under 

rotations. This leads to a quantity S which. when added to the 
Ilv 

canonical tensor Sf.1v' gives a symmetric divergenceless energy mo-

• mentum tensor TlJ.v. 

We shall see that S","V as well as 9tJ.v has zero divergence. 

thus the divergence of TI-lV is zero. 

T = (6 + S ) = 0 f.1v.v f.1v Ilv.v 

Also S .. will itself be a pure divergence. therefore its integral over 
IJ,r 

space is zero and the total momentum P 
IJ. 

P = r e .A d 
3 

x = \ T 4d 
3 

x 
f.1 j f.1... .J f.1 

• h' vVe will use t e notation 

is correctly given by 

ellv = canonical energy momentum tensor 

(Cl-7) 

T = e + S = the symmetric energy momentum tensor. 
f.1 v tJ. v Il v 
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Let us suppose we desire the energy momentum tensor for a 

system that involves the scalar, vector and tensor fields ~, A , and 
p 

h respectively. First consider the action for such a system. The 
.... " 

action may be written 

I'L n n n 4 S =j (q;q jC} ,,)d '; ,a. I a.f:. 

where the qn are the components of the fields included in the system. 

We shall include the possibility that second derivatives of the field com-

ponents appear in the Lagrangian. 

U we write the field components in the form 

n n n q (X,~) = q (x) + ~6q (x) (el-8) 

then the action may be written in the form 

(el-'}) 

and the condition that the action be an extremum may be written 

as I m: = 0 
~=O 

(el-IO) 

The quantity 8S()..)/8~ may be written 

11 
+ aL aq (x,~), a. 

8<P a~ 
~. a. 

n 
aL aq (x.)..), a.J3 ] 4 

+ --n- a~ d x 
aq,a.13 

(el-ll) 

Using equation Cl-8 we get 
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;/le may integrate by parts. dropping surface terms in Cl-12 

with the result 

;-. i18L (aL ) O=\6q--- + 
-> 8qn 8qn 

.(1 ,(1 

Thus the Euler-Lagrange equatil)ns of motion are 

(Cl-13) 

Let us now consider the cunsequences when action is invariant 

under infinitesimal coordinate translations and rotations. This will be 

the case if the Lagrangian is of the form of a scalar density. which 

determines the change of the Lagrangian under a coordinate transfor-

mation. I. e •• 

(CI-14) 

Furthermore the Lagrangian must be expressible as a function 

only of the field components and their derivatives. 

(Cl-15) 

Under a coordinate transformation the field components will be trans-

formed: 

n n" n n q - q (x) = q + oq 

n n" n n q - q (x) = q + 0( q ) etc. ,a. ,(1 (1 ,a. 
(CI-16) 

Thus the change in the Lagrangian may also be written 



(Cl-l?) 

The condition that the action is invariant under infinitesimal coordinate 

translations and rotations is that oL from Cl-14 and Cl-17 are equal 

(assuming the coordinate transform.ations giving Cl-14 and CI-16 are 

infinitesimal translations or rotations). 

l.et an infinitesimal coordinate transformation be written in the 

form 

, 
x - x = x - '1 (x) 

P P P I' 

If the four components '1 are constant, then CI .. 18 represents a co
p 

ordinate translation. If -r, (x) is of the form 
p 

(Cl-19) 

then CI-18 represents a rotation (Lorentz transformation) about the 

origin by an arbitrary infinitesimal angle in each of the six planes 

t-x, t-y, t-z, x-y, x-z, y-z. W p = -WA has six independent com-
a.~ t'Q. 

ponents and wQP /2 is the angle of rotation in the 0.-(3 plane. 

Under the coordinate transformation Cl-IB, the field htJ.v' for 

example, transfor:ms by the equation 

(This is the law of transformation of covariant tensors.) For h we f..tv 

get 
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I I 

However we want the non-infinitesimal quantities hf.!v(x) and hIlV(x) 

expressed at the same point in space. therefore we make a Taylor 
, , 

aeries expansion of h v(x ) about the point x lceeping only terms 
f1 P P 

to first order in 1]. 

The result is 

Similar arguments give the transformation of scalar and vector 

fields. leading to the result 

, 
tp (x) = tp(x) + q> • p'l1p 

, 
A (x) = A (x) + A "1p + (A Tl ) 

f1 lJ· \J-.P P P.'" 

, 
h\J-v(x) = h\J-V(x) + hfJ.V, P l1p t (hf1p flp, v + h pv 'rip. f1) (CI-20) 

or 
I 

qn (xl = qn(x) + q~ p"p t (L\qn) 

n n = q (x) + oQ (CI-21) 

where all terms of oqn which involve derivatives of 'I have been in

cluded in L qn. 

Since tp CL is a vector. 
• 

A a tensor. etc. (in GalleHan co-
f1. CL 

ordinates) 
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I 

r.P,o.(X) = f1',o.(X) +fI',a. p TJp + IP, p'l"lp,o. 

I 

A.,.,o.(x) = A.,.,o.(x) + AIJ,o.pTJp + A p ,o.llp ,j.1 i A\J., pllp,o. 

I 

hp v. a. (x) = hfJ.V, a. (x) + hJ.l v, o.p 'YIp + hpv, a. 'TIp,tJ. 

(CI-22) 

CI-ZZ may be written in the form 

or 

I 
n n n q = q -!- 6(q ) , a. • a. ,e. 

Let us now consider the quantity (oA ) a. for example. 
~1 , 

(oA) = (A 11 + A '1 + A ,.., ) + A on II , a. tJ., po. P tJ., P p, a. p, Q. . I p, .,. p . I p, .,.a. 

(6A ) a. = 6(A a.) + A 11 .,. • .,., p p, \1.a. 

(CI-Z3) 

It is true in general that 

n n 
(6q ) a. = 6(q ) 

, , 0. 
+ terms involving the second derivatives 

of 11 
p 

+ terms involving the second and third 
derivatives of ';) 

'j: 

However for coordinate translations and rotations, "p has at most a 

first derivative. Since we are dealing only with such transformations 

we may take 

(CI-24) 



-59-

Let us now consider the condition that the two forms of 51.., 
from Cl-l4 and Cl-17, are equal. Since L is a scalar density (so 

that s = \ f... d4x will be scalar) 
v 

L' (x) = L (xl + L TI = L (x) + (L 1'\ ) 
.1' P p.j) 

where the last step follows from the fact that ~1 = 0 for transla-
p.p , 

tions and rotations. Equating (L T1) to oL of Cl- 17 we get 
p , p 

o = !!.b ~qn + eL ~ (qn ) + aL ( n ( L ) s nUll n"'.a. --n () q,a.I3) - T)p,p 
q ~q , a. Sq • a.fl 

Using Cl-24 this may be written in the form 

The terms in the square brackets of Cl-25 are zero by the equa-

tiona of motion Cl-13. If we use the notation of Cl-21: 

n n n 6q = q Tl + ,~q ,p p 

equation Cl-25 becomes 

(CI-Z6) 



For the fields cp, A
fl

, and hflV' the quantities t\qn are from CI-ZO 

I.':.f' = 0 

~A = A 11 
f1 P P,fl 

(Cl-27) 

~h = h 1"1 + h r) 
flv flO. -0., V vo. 0., fl 

Suppose now that the components of 'I1p are constant, repre

senting a coordinate displacement. Sincel"Jp, ~ and the b.qn will be 

zero, CI-26 reduces to 

,,{qn aL _ qn (~) + qn aL _ r L} 
p ,p 8qn ,p orIn ,p~ 0. n upO' 

,a u, ,0' ~ ,l\. vq,O' >-. ,a 

Thus the invariance of the Lagrangian under coordinate displacements 

leads to the quantity e (given in the curly brackets of equation CI-16) 
pa '. 

which is conserved. That is, since l') is arbitrary, 
p 

e = 0 pa,C1 

e is the canonical energy momentum of the system, mentioned at the pO' 

beginning of this part, and the formula for the total conserved four 

momentum of the system is 

U" now represents an infinitesimal rotation about the origin 
p 
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" = W r.I (x 6 ~ - x A 5 ) p a...... 0, p..., t-' po. 

the condition on ~he Lagrangian Cl-26 becoznes 

o = W A {<x 6 (.l- xf.lO O,)e } o't-- a. PIJ ..... P pO" ,a 

(Cl-29) 

where the [,qn, given in equations Cl-27, depend on the spin of the 

field. 

For a scalar field where 6,,,, is zero, Cl-29 becomes 

o = W (.l(x en. - xn.9 ) + W r-t ((,fJ Po aL - tp L) (Cl-30) 
0.,., Q. j-'o' ..., 0.0' , o.t-' ,..... &(jJ , 0. 8tp 

,ao. ,0'13 ,a 

Let us define the quantity f~j3O' by 

fO _ aL aL. fO __ f o 
(1(30' - cp. (1 &", ,0' j3" qJ, (3 8", ,0' (1' a/3O' - BaG 

(Cl-3!) 

3 
then equation Cl .. IO becomes 

0= w Af(X 9 A .... - xA-9.) + f~ } 
C 1-' La......., ..., (~O' • 0' ...,0.0'. 0' 

(Cl-3Z) 

Now suppose we can write' 

Then since wa.(3 is arbitrary. Cl-3Z gives 
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. 0 0 J lx(a~+s.:t .... )"xA(a +8) =0 a t"'" t-"V ... 0,0' nO', 0' 
(Cl-34) 

U in addition SI3o". <:I = 0, then we will get from Cl-34 

(CI-3S) 

Thus if we define 

then T af3 will be a symmetric tensor with zero divergence. 

Equation Cl-33 may be written in the form 

..0 0 0 
1 _ = (x' 5 - x S ) 

j3aO't 0" a ~ f3 0,0' , a 
(Cl-36) 

A eolution of this equation is given by BeHnfante (1) 

(Cl.37) 

where 

o 0 
since f ijk = - fjlk" 

It is seen in Cl-3? that· Saj:l' aside from having zero divergence, 

is itself a derivative. U we write 

then 

5 f.t = ~I ArF 
(1"" '0,.,.., , C1 where ~a13O' = - ""o'O'~ 

(' 3 ;-. 3 
\[ dx=\~ dx J p.4 J tJta,O" 

a 
=rt 

3 
tJll.lttd x 

3 

+\ \ 
-.' ,) 

it=l 

(Cl-3S) 
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Since ~lJ.tt = -~lJ.tt = 0 and the second term is a surface integral, 

Thus the tensor T CLf3 = 90.J3 + So.(3 is not vnly symmetric and has zero 

divergence. but 

Thus To.J3 is a complete energy tensor from which the total linear 

and angular momentum may be obtained by equations CI-2 and Cl-3. 

Before the energy tensor for a spin-zero field is considered 

in more detail, let us nc:>te that equation Cl-26. for the choice 

where Cl-ztb has been written in the form waJ3fj3o.a. o' This can be 

done because waJ3 apears in each term of CI .. Z6b. and being a constant 

may b. factored outside of the derivatives. 

Since Cl-39 is the same form as CI-32 the same arguments used 

to find Sat> in the form of equation CI-37 may be applied in general. 

We may summarize the results for finding the energy tensor To.l3 from 

a Lagrangian involving fields of any integer spin and up to second deriva-

tives of the field components by the following relations. (U the Lagrangian 

involves higher derivatives than the second, the formulas may clearly 

be extended. ) 

(CI-40a) 



where 
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n aL n(sL) n aL e =q - -q - +q -o.P. 0. n 0. n o.~ n 
i'" • 8q , 8q • 8q 

.~ .P~ ,~ .~~ 

n 
- q 

.0. 8~ } 
.0' j3 ,a 

The 6qn are given by the formula 

n n n 
.6q = 6q - q T) ,p p 

(Cl-40b) 

(Cl-40c) 

(Cl-40d) 

(Cl ... 40e) 

where oqn is the change of qn under the coordinate transformation 

I 

X - X = X - 1j (x) p p p p 
(Cl-40f) 

and 1fp for our case is given by 

(Cl-40g) 

For a Lagrangian involving a spin-zero field fiI. a vector field 

Af.1' and a symmetric tensor field h
p
. v (including first and second deriva

tives of these fields), the formula for fa.f3a is given by 
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+ "'S: h sL 2£. h (aL ) '-v",,- ~"-,'" Sh - -VA ~ Bh 
,I\, VI\,... 6'V, af3 t"'V ut:. 6'V. O"~ .~ 

• - the same terms with a and 13 reversed. (Cl-40h) 

In using C} -40h for the fields h , care must be taken taken that the 
fJv 

variation of L with respect to h ~ be kept symmetric in 'V and 6. . 'V u 

The method described by equations Cl-40 for finding a symmetric 

energy momentum of a system is essentially an extension of the method 

of Belinfante (1) to the case where second derivatives are included in 

the Lagrangian. 

There are several interesting points to be noted about the tensors 

9GJ3 and SGI3 given in equations Cl-40. First the tensor Tn(3 = ea." + Sa(3 

has zero divergence and is symmetric only if the equations of motion 

are used. For example, since the divergence of Saf3 is identically 

zero, 

n [aL (aL) (8L ) ] T =6 =-q - .. - + 
0.13,(3 0.13,13 .a 8qn Spn 8qn 

.J3.J3 ,,,~ .13~ 

which is only zero by the equations of motion Cl-l3. 

*. Second, Belinfante was lead to consider StJ.v as the "spin 

momentum density," and the quantity 

·The term aL/8Afj, a~' for example. must be kept symmetric in a 
and ~ since the order of partial differential is reversable • 

•• Belinfante (1). 
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as the "spin angular momentwn density" of the field. However 

Beliniante considered that the Lagrangian was a function only of the 

field components and their first derivatives. In this case a scalar 

field does not give rise to a term S",v' and thus has no "spin mo

mentum density." Belinfante's interprEtation cannot be extended to 

the case where second derivatives are included in the Lagrangian, 

for then a 8calar, or spin-zero field bas a "spin momentum dens~ty" 

s . 
tJ.v 

Consider for example the La!! rangian for a spin-zero field of 

rest mass fJ.. 

(Cl-4l) 

If a pure divergence ~ (.p pcp) is added to L a we get , , , p 

Lb__ + I 1 2 2 
Cp, pfl' , p "2" CPfP, pp - 1.' t.t lP (Cl-42) 

The tensors 6a.~ and So.(3 corresponding to L a and L bare 

a 
Sa.13 = 0 

b 3 , 1 1 ( 2 2) 
SQ.A = ~ fP rp -f cP r.p - .... 5 f..\?..tp cp + <p qI - !J cP . 

,., " Q. , J3 'Z ,o.p G fl,., , P , P , pp 

also 

(Cl-4ZA) 

'iN e see that the two complete energy tensors T a and T b are the a.{3 0.(3 
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aame, but there i8 a so-called "spin momentum density" S:" for 

a spin-zero field when deZ'ived f!'Om Lagrangian I .. b. 

It is interesting to note that a~13 is already symmetric and 

th.erefore might be considered a possible energy tensor for a spin

zero field. In fact 

(Cl-43) 

Thus the two energy tensors differ by a term that is symmetric, is , 

a pure divergence, a.nd. as may be easUy checked, bas zero diver-

gence. Although the prescription of equations CI-4J does not lead to 

b b 
ea.~ as a complete energy tensor since Sa.i3 has not been added. we 

shall later discuss another method of obtaining energy tensors that 

can lead directly to a:ts • 

Finally, energy tensors resulting from equations Cl-4j are 

not unique. Only for spin-zero fields do equationo CI-40 lead to the 

same tensor starting from equivalent Lagrangian. (i. e., starting 

from Lagrangians differing oniyby a pure divergence). We have not 

considered adding to the Lagrangian a term such as (.p ,..rp ",) ,p.., ,,,, ,p 

since this term has different dimensions than the rest of the terms 

in the Lagrangian. The only term that can be added to a spin-zero 

field with the same number of field components and of the same di-

mensions ia (rp I"p) and we saw that this did not change the energy 
• p ,~ 

tensor. 

Let us however consider the following Lagrangian for a vector 

field. 
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(Cl-44) 

This is the usual Lagrangian for the electromagnetic field. and by 

equations Cl-40 gives the energy tensor 

o air 

T;v = - f,; { F I-ln F tl V - -f! F af1 F ej3 } (Cl-44A) 

where 

F = A - A 
flY !l.v ".Jl 

T c is just the energy momentum tensor of the electromagnetic field. 
fl" •• as given in several texts. 

We might also have started with the Lagrangian 

4# L d = ~(.A A - A Pc } 
t:. f.!. v 1-1, v fJ. fJ li • .,., 

).l )) 

because L d and I.. c differ by a pure divergence. 

4Tr Ld - 4TrL c = !r [A., "A -.A "A,,] 
&. .... fJ. Jl •• p-

However the energy tensor that results from Ld is 

where 

(CI-45) 

(Cl-46) 

w = .h f 6 A A + 0 A A - 6 /\ A - 6 A A 1 (Cl-47) 
Jlv UW' l Jlv P CI pCI f.L v flP v 0' P" fl CI , pCI 

Since the expression for W fJ.v is anti-symmetric between v and P. 

w fJ.v • v = 0 

"£""'_0 _____ _ 

In this equation and in the rest of this part we will neglect terms that 
are zero by the equations of motion • .. 
Se. Landau (12). Tolman (13). Eddington (14). 
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Vie have thus generated, by equations Cl-40, two energy mo-

mentum tensors that differ by a term iN that is symmetric, has 
!J.v 

zero divergence, and is its.elf a second derivative. \ove should note 

c d that the tensors TtJ.v and TtJ.v were obtained from Lagrangians that 

involved only the first derivatives of the field components. Thus the 
( 

ambiguity is not a result of the fact that we have allowed the Lagrangian 

to involve second derivatives of. the field components. 

In fact, from working several examples, the author believes 

that the inclusion of second derivatives does not contribute any further 

ambiguity in the energy tensors calculated by equations Cl-40. In the 

case of spin-zero fields we have seen that the incl Llsion in the Lagrangian 

of the term (cp cp) does not lead to a different energy tensor Tuv. ,p ,p ,-

For vector fields, when the terms 

I (.A .A) _ I (A A) 
1fi 'v, v !J., 1.1 'S"i 1-', v v, v 

= ~ (A A - A A ) 
011' V,V tJ,..,. !J.,v v,!J. 

(Cl-48) 

were added to the Lagrangian, the additional term VI of equation 
!J.v 

Cl-47 ap?eared in the energy tensor. When we add just one of the 

terms of Cl-48, namely 

1 (A A) - 1 (A A + A A ) 'S1r v,v.., ,!J. - 'S1f v.v!J. f.L v,v "".!J. 

the Lagrangian will involve second derivatives, but the additional term 

in the energy tensor is just Vi /2. 
~tV 

_ 1 (A A) 
'BW ~.,v v,..,. 

The term 
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likewise adds W..,.v/2 to the energy tensor, which agrees with the 

fact that the sum of the two terms Cl-48 just adds .,·ttJ.v. VIe might 

consider the possibility of adding 

(A A) 
1J·,v !J. ,v 

(Cl-49) 

but this term does not lead to any change in the energy tensor. 

Thus for vector fields the only ambiguity in the energy tensor 

calculated by CI-40 is the term iN of Cl-47, which may be obtained ..,.V 

from Lagrangians involving first derivatives only. For tensor fielda 

there are many more forms of the Lagrangian that differ by a pure 

divergence and still involve only first derivatives. Due to the algebra 

involved we have not investigated whether new forms of the energy 

tensor may be obtained by equations Cl-40 if second derivatives are 

allowed in the Lagrangian for the tensor field. 

The author does not guarantee that equations Cl-40 are unique, 

for we shall later, by another method, derive symmetric energy ten-

sora which cannot be obtained by equation:) Cl-40. An example of such 

a tensor will be e b of equation Cl-43. 
fJv 

The difference between energy tensors of a given system, 

whether obtained by equations CI-4') or any other method used by the 

author, is always of the form W IJ-v --that is the difference is symmetric, 

has zero divergence, and is itself a second derivative. "Ve will show 

later in part G why this form always appears. We might argue that a 

term of this form in the energy tensor has no physical meaning, for 

VI v will not contribute to either the total momentum or the total angu-
IJ- ' 

lar momentum by equations Cl-2 and Cl-3. However the energy mo-
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mentum tensor a[:>pears as the soarce of the gravitational waves in 

equation A-l3. We will see in the next part that a term of the form 

VI does have physical meaning in connection with gravity. and that 
~v 

a theory using the wrong choice of '.I leads to the wrong experi-
fJ.v 

mental result. 

C~. Theory of a Spin- Two Field Coupled to Energy 

At the beginning of part C. we said that the correct gravita-

tional wave equation would result if we used as the source of gravity 

m 
the complete energy tensor of the system TflV' rather than TflV' 

the energy tensor of the matter alone. T~v would be obtained from 

the complete Lagrangian of the system whereas T; would come 

from a Lagrangian in which the gravitational fields have been neg-

lected. 

In this part we shall use equations CI-40 to obtain a complete 

energy tensor for a system of point particles interacting with gravity. 

It will then be checked whether this energy tensor. used as a source 

of gravity. gives the correct shift in the perihelion of Mercury. Be-

cause energy tensors obtained by equations Cl-40 are not unique. the 

first energy tensor chosen might not work. 

In using equations CI-40. we do not need to deal with the com-

plete Lagrangian all at one time. If the Lagrangian can be written in 

the form 

where each part of the Lagrangian. L.. is Lorentz invariant. then the 
\ 

energy tensor may be broken up into corresponding parts 
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+ ••• 

The tensor Ti is obtained by applying equations CI-40 to the part 
tJ.v 

of the Lagrangian L i. 

For the case of gravity interacting with matter. we will find it 

convenient to break the Lagrangian up in the form 

L = 19 + Lm +- Lint ( C2-1) 

where (. g is the Lagrangian for the free gravitational fields (given by 

equation A-ll), [m is the Lagrangian for the matter without the 

presence of gravity, and l_ int represents the interaction between 

gravity and all forms of energy. The corresponding energy tensors 

are given by 

(CZ-Z) 

We see that the linear theory of gravity was obtained by ap-

proximating - ~h T by - ~h T m in the interaction Lagrangian. G tJ.v ~v G ~v tJ.v 

It is consistent in lowest order to neglect T8 and Tint for they 
.... v tJ.v 

each contain at least one factor of h which, by the linear wave 
flv 

equations, is smaller than the source of h by a factor K. We shall 
/Jov 

see in fact that both Ti and Tint are smaller than T m by a factor 
.... v tJ.v tJ.V 

To get Tint I' CI 40 f tJ.v we must app y equatlons - to -intO However 

Lint should be of the form 



-73-

f involves Tint which we are trying to calculate; thus we cannot '-int fJ.V 

solve the problem exactly in one step. We will therefore consider 

only the lowest order corrections to the linear theory in this part. 

For example to lowest order Lint is given by 

f K m =-....,h T -int c. J.lv J.lv 
(C2-4) 

Since '- tnt involves one factor of K and one factor of hJ.l v' T~n; 
derived from Li t will be of order K2 8maller than TID • As Tg 

n fJ.v J.Lv 

will involve two factors of h it will also be of order K2 srpaller 
fJ.v 

than T m . 
J.lv 

Equations Cl-40 applied to [g of equation A-ll give the result 

Tg = U + I h ( -li + 1i + li - 6 Ii ) (C 2 5) J.lv J.lv '1 t!Q. CLv,aa av,a Q. ac, av ClV PO', pO' -

where U is the -symmetric part of 
llv 

1 {b h + h h - h h + h h t h h "Z 'VI, 'I , v 'IP, y PIJ., v Pt!, y p,(, v J.Lv, Y ~y,~ f.Ly, Y ~v,x. 

-h h +.!rb. b. -~h b. +6 [lb. h +lh h 
p v ,P!J. c. PO', fJ. PO', v &. ,1.1. ,v J.L v '4 , p ,p "2 , pO' pO' 

-h h -~h h -~h h ]} 
py x.p, 'Ix. c. P'l, 'I p~ ~ ":t pO', ~ po-, ~ 

(C2-6) 

We note th.at if the complete system were described by Lg alone, then 

the wave equation gives 

(-li +1i +1i -61i )=0 
ClV, 0'0 av,aCl ac, O'V JII. v PO', po' 

0( 
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and Tg of equation CI- 6 would be symmetric by the use of the equa
J.Lv 

tions of motion. If the exact equations of motion are used. then only 

the complete ten80r T = Tg + T m + Tint is in general 8ymmetric. 
~v ~v ~v ~v 

Let U8 first suppose that gravity is interacting with matter fields 

rather than point particle8. For example a scalar field whose Lagrangian 

involve8 only first derivatives haa an energy tensor given by 

(Such a Lagrangian is given in equation Cl-41.) The interaction Lagrangian 

to lowest order K is given by 

By equations CI-40 the interaction energy tensor is just given by 
m 

aT-
Tint = K h [ po 6 T m ] (Cl 6A) 

J.LV -"2" po fP, J.L Sep, v - J.Lv po -

(In both T m and Tint no terms S appear in this example.) More 
~v J.Lv J.Lv 

algebra is involved when we consider matter fields of a higher spin, 

or if second derivatives are involved in the Lagrangians, but the calcu-

m . int . 
latioD of T and T is still stralghtiorward. 

J.Lv J.Lv 

A problem arises however when we consider gravity interacting 

with point particles. Equations Cl-40 apply to a Lagrangian involving 

only fields, but the author has been unable to apply equations Cl-40 

directly to a Lagrangian involving point particles. This would lead 

to no problem if the particles did not interact with gravity, for Tg 
J.Lv 

would be obtained by equations CI-40, and we already know T m from 
~v 
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equation D2-9. However (int involves both particles and fields and 

Tint could not be obtained directly. 
~v 

The following method was used by the author to obtain T~~t 

when gravity interacts with particles. The complete energy tensor 

must have zero divergence. and any approximation to the complete 

tensor which is to be an improvement over T~v must have a di-

vergence that is smaller than T m by at least a factor of K. 
FV. v 

We claim that the improved tensor is to be of the .form 

where Tg is given in equation C2-5 and Tm is from equation BZ-9. 
!Jov J1v 

Tint is to be determined by demanding that T v 
IJ. v IJ. • v 

be less than T m 
flY. v 

by at least a factor of K. We know from equation 32-15 that 

Thus 

m ~ m 1[ ] m T e - T::::: - 2h - h K T .... v. v r pv pv "Z !J.p, v pv. IJ. pv 

TIn is already of order K2 smaller than 
.... v. v 

By differentiating Tg we get (r-rol'r\ Cl-S) 
.... v 

(CZ-6B) 

(CZ-7) 

which checks U-at T g would be zero if we used the equations of .... v, v 

motion for the free gravitational fields (obtained from .~ g alone). 

\Yo now see that if 

Tint = _ .!,. h (-11 + 11 + 11 - 6 11 ) (CZ-B) 
IJ. v c. V p P v. a.a. Pel, vc. va.. r a. p v a.p. a.!3 
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then 

lnt 1 T-" 1:" - 'T-' T :: - ~ h (-h + II + n - 0 n ) 
11 v, " r.. !J.P," pv, a.a. po. va Vel, pa pv o.f), a." 

and the cUvergence of the complete energy tensor is given by 

:: ~ (Zh - h )[ -11 + 11 + 11 
":tlJ.f>. V pv, ~ pv, a.o. pa. va. Vel, po. 

- 6 1i - ZKT
m 

] pv ~,a.t:. pv 

The term in the square brackets is of order K3 (zero in the linear 

theory) thus T is of order K2 smaller than 
~". v 

T m 
&-:- v, v 

To lowest 

order Tint of equation CZ-8 may be written 
tJ.v 

(C2-9) 

which checks that Tint is the tensor involvin::r both the fields and pa.rticles 
'J'-" ~ 

that should be added to Ti + T m . 11= 
J'-v I1 v 

ill 
The form TinJ = -~ p. T~ is particularly simple, and to lowest 
order may b~ expressea entirely in terms of the fields h.. v as in 
equation CZ-S. One might wonder if this is the general form of Ti~ 
even for the case of gravity interacting with fields. This is not so!J. as 
may be seen in the case of spin-zero fields. 

The derivation of T~nJ:: -Kr,.q:) T~t [or gravity interacting with 

particles relies on the relation 'r~~, v :: -~" T ~ of equation C2-6~. 
For spin-zero fields where the ellergy tensor T~o is from the 
Lagrangian CI-4~ 

Tmo [ 2 Z] 
11 v, v :: fP' l1 (P, pp + 11 cp 

== Y.h ,': cp + Kh ~.., - ~ h cP (Ii pa,tJ. ,pa pa,a ,!J. ,f) &. ,p ,1J.',p 
where we used the equation of motion (to lowest order in h. v). 

Z Z K-l1 
<P {- 11 '; :: Kh dP pat K!~,O' O';~ - -z h ,;; , r p rno P. .~" p . ,p , P 

It is clear that T is not of the form -:::.'"1lpv Tmp"o. II v, v 
'.A/hat happens in the case of a spin-zero field interacting witl" 
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It is interesting that Tint just cancels the part of 
tJ.v 

was not symmetric (see equation CZ-5), ~d we get 

where U is the sYD:lmetric tensor given in equation C2-6. The 
~v 

corrected wave equation to be tested on the orbit of Mercury is now 

given by 

- 11 + 11 + 11 - 5 Ii = ZK(T
m + U ) (CZ-lO) 

~v,aa o'v,o.,. OIJ.,av ~l' pu,pcr .,.v.,.v 

Z where the inconsistency in CZ-lO is down by a factor of K from the 

linear theory. 

To solve CZ-lO to check the perihelion shift of Mercury, the 

fields produced by a point particle w~re first obtained by neglecting 

u.,. v' Next these fields were used in formula CZ-6 to give UJ-L v' Then 

the wave equation including U was solved giving the corrected fields .,.V , 
h due to a point mass. To actually check the effect on the shift of .,.v 
the perihelion, the work of Eddington (15) was followed closely, re-

, 
placing the fields given in general relatively by h.,. t,. The result: the 

term ZKU produced a correction to the fields, but no correction to ..,.v 
the perihelion shift, al'ld the same wz:oong answer as given by the linear 

theory was obtained. 

gravity is that the correct Ti~S given by equation CZ-6A may be 
written in the form 

Tint = -Kh Tmo + B .,.11 .,.p pv .,.V 
It is the quantity D.,. v + T~o that satisfies the relation 

(15 + T
roo

) = -r'" r~ + T
mo 

) .,. v .,.4, v pv -. pv pv • 
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As we have seen. energy tensors for a given system are not 

unique. ";Ve should ask if there is another energy tensor for the system 

of gravity interacting with particles that, when used as the source of 

gravity 1n equation C-l. does give the correct shift in the perihelion of 

Mercury. There is, and this energy tensor is given by 

(CZ-ll) 

where W is given by 
l!v 

a
Z 

{ 1 h h + 1 6 h ':l t 1 6 h h _ 1 h h ax ax '2' f.,v vp '4 .,. 0' va a.p '4 va 1-'_ (1 a.p -Z l! v pc; 
p CJ 

(CZ-l2) 

It We shall see at the end of part G that 7 may be directly :)'!:l--l! v 

tained as an energy tensor from the Lagrallgian of gravity interacting 
k' 

with particles. T- was obtained in a unique manner by Feynman 
tJ.v 

using the methods to be described in part C3. 

TF and the tensor we obtaine:i by equations Cl-40 differ by the 
l!v 

quantity W . 
liv W Ii v' being symmetric, divergenceless, and itself a 

second derivative, is just the form of the difference between tensors 

obtained by equations Cl-40. (See equation Cl-47 which gives the differ

ence between two tensors for vector fields.) yle will see at the end of 
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F part G that T is not likely to be obtained directly £ro1'."1 equation Cl.40, 
P.v 

but will be obtained as a.n energy tensor by the methods used in part G. 

Thus we will verify the idea that gra.vity is a spin-two field coupled to 

all forms oE energy. 

The interesting result of this part is that two energy tensors 

which differ by a term WIJ. v that is symmetric, divergenceless. and" 

is itself a divergence, are not physically equivalent tensors. Both ten-

Sor& would lead to the same total momentum and angular momentum for 

the system by equations CI-Z and Cl-3, but this is not sufficient to 

determine the energy tensor. Gravity interacts with the local distri-

bution of energy; a term that disturbs the local distribution of energy, 

even though it does not aHect the total energy of the system, changes 

the gravitational flelds. 

This change in the gravitational field. is tested experimentally, 

for the fields arising from TF gave the correct shift in the perihelion 
Ilv 

of Mercury, while T == U + TID lead to the wrong shift. Since 
p." Il" IJ.v 

TF :: T ,,+ W v' W has a physical significance. 
Il v P. .,. Il " 

Cl. Feynman's Derivation of a Theory of Gravity 

The linear wave equation A-13 written in the form aL g /6hIJ. v= 

- 6 '-n . ./6h v becomes 
~"<.> IJ. 

~ (-11 + 1i + 1i - 0 11 ) K T m 
"it IJ.v,O'O' O'v,O'IJ. ~,(iV 1-11.1 op,O'~ =G' IJ.v 

The leIt-hand side has zero divergence. wh.ile the divergence of TID 
~ ~v 

from CZ-6.t. is 
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(1\ 

To the lowest order in K the quantity KTIJ- v/Z may be replaced by 

fields using A-13. We get 

K m K[ ]'-...., T = -". 2h - h l ~ 1i + 'Ii 
c. ~ v, v 0 Vp,a pa,tI-' po, aa. pa,O'Q. 

+n -6 n ] 
(.I C1, P a. IXJ 0.;3, a.(3 (C3-l) 

The problem is n.ow to correct the left-hand side of A -13 so that it will 

have a divergence given by C3-1. 

Suppose, for exam.ple, a term of the form 

Kf3 : Kh h h (C3 2) a.f3,0" 0.13. 0' P P -

were added to the Lagrangian of the .h'ee Gravitational fields. This 

would add to the left side of the equation of motion A-13 

The divergence on the left-hand side of the equation of motion 

comes solely {ror.:,l C3-3 and is now 

ZKh .. tl h - ZKh h - ZKh h -..y,O'Vap,a Vv,aO'v pp ~v,aO' pp,v 

-ZKh h - ZKh h Vv,O'v pp,O' Vv,a pp,CJv 

These terms are not equal to KT /2 given by C3-1, but they are 
V v, t 

of the correct form and suggest the following procedure used by Feynman 
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for obtaining the correct wave equation. 

Write all independent terms (1. e., terms that differ by more 

than a pure divergence) of the form C3-Z. that is. with three h's and 

two derivatives. Assign an arbitrary coefficient A - N to each of the 

fourteen terms obtained this way, calling the sum of these terms F3. 

To the equation of motion will be added 

Then the relation that must be satisfied for a consistent wave equation 

(to a higher order in K) is 

where KT m /2 is given by C3-1. 
llv 

(C3-S) 

C3-5 may be rearranged so that it is in a form that closely 

resembles equation A-lO; that is, an equation in which the sum of a 

series of terms of the form (-1 + A-ZD ... )K11 h is set equal 
j.l0'. ~ pat no. 

to zero. As before, in order not to put arbitrary restrictions on the 

fields, each coefiicient i8 set equal to zero. This gives a large number 

of equations for the 8,1':;"ltrary coefiicients A, B, C, ... which can be 

solved to determine the coefficients uniquely. The reSulting F3 given 

by Feynman is 

3 K 
KF = -g (ha.(3n'lOhC1!3. ,,0+ h"!3hyr?~t 50 - Zha.yhI36lia.13, yo 

1 1 
+ tfi0.f3ho.'I' OJ;Fi.f}6, 6+"Z ha.{3hQ~1iy6, yo+ 4 hQ.Qh!3/3'hyo• ya) 

(C3-6) 
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This expression has been considerably simplified by judicious uee of 
~~~ 1 

the notation h = h - - 6 h • 
IJ.v ~v 2 Ilv CJCJ 

1!R:e deriv&tivee have been put 

on the last h by al'?ropriate integration by parts. The simple form 

C3-6 will be I.lseful in later calculation3. 

The I agrangian for the free gravitational fields consists of 

terms involving two h's (equation A-ll} which leads to the linear wave 

equation A-B. and now terms involving three h's. For higher orJer 

corrections to the theory we w0uld add terms involving four h's, five 

h's, etc. Let us label this series by 

L = F = F2 "' EF3 -; .!<2 F
t
! + r .. (3 F 5 1- ••• 

g 

where F2 includes the terms with two h's. F3 the terms with three 

h's, etc. The exact condition that must be satisfied by the series Ii' 

is 

(C3-"l) 

where T =,-P(.lT ~ is the exact relation 32·15, and 
~ v , v a.p a.tj 

is defined in l32-1'~ may be exc,relJueJ in an infinite series in powers )f 

,. 
'- .. '::e will sh:)w in the ne'~t ,Jart the met'h0d Llsed by Feynman to stun 

the ocries in F, ccmsistent with C3 - 7. 

T et uS first chec.~ that the addition of F3 to _ gives a theory 
g 

wHch ci..'rrectly Inedict8 the i:i:hift in the ;)erihelLmA :'.:iercury. Ve 

have 
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The gravitational wave equation may be written 

(C3-8) 

3 Thus we can interpret the term -Z6F 16h as the energy in the pV 

gravitational field, where ... Z6F 3 16h is given by 
IJ-v 

where 

3 ., 6F _ T F ... ~~ - = 
""v tJ.v 

1 {h h - h h - h h "l a.1J.t 0' O'V, Cl ClV,O' ~a.,O' ,Cl Cl .... V 

+ Zh h • h h - h h ... Zh h 
O'~ P x.. 0' V O'~, 0' IJ- v, ~ O'x. IJ. v, 0 ~ p.a. , va. 

- Zh h + Zh h + Zh h + h h 
~ Vel, 0'0' pa. lie, ClO' IJ-Cl O'a.,O v IJ. v ,00' 

.1 h h .~h h +h h +h h "t , a. , Cl c. a.~, 0 0')., Cl ,Cl Cl~, ~ O'~ O'~, pp 

h = h • 
0'0' 

(C3-9) 

We have already mentioned in part CZ that T F from C3-9 is 
IJ.v 

related to the tensor U by the equation 
IJ.v 
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where U was obtained by using equations Cl-40, and W is a term 
~v ~v 

that alters only the local distribution of energy and momentum. It is 

T F and not U that gives the correct shift in the perihelion of the 
~v VV 

planet Mercury. 

Experimentally equation C3-8 is a completely satisfactory 

equation for the gravitational fields, there are no known tests more 

accurate than the shift of the perihelion of Mercury. The work of the 

next part, to sum the series F2 + KF3 + K2F 4 + ,will be to merely 

formulate a conaistent theory of gravity. 

C4. A Conaistent Theory of Gravity 

For this part we shall adopt the followina notation 

g..,v a (6..,v + Kh.,.v) (C4-1) 

IIV -1 g l"" e:: g . that is ..,V I 
(C4-2) 

r 5 K[h +h -h ] 
Vt o.~ -Z !-In, ~ tJ·13, 0. 0.(3, IJ. 

(C4-3) 

Then r:f3 = g ~ r ~ G!3 a8 given by equation B2-14. From our point of 

view thls notation is strictly a matter of convenience. The i" v = g~~ 

can be expressed in terms of the fields as is seen in B2-12 
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Finally. for p~rpoaea 01 notation the coordinate of a particle Z .... 

will be written with the index aa a 8uperscript, although there is no 

change in meaning. Feynman'. summation convention A-4A will still 

apply to repeated indicea. 

In the above notation we have for the case of gravity acting on 

a point particle 

l F 1 TjJ.v 
- D - '"Z i""v m (C4 ... 4) 

where 

(C4-5) 

and the condition that F mU8t 8atisfy is given by C 3-7 

To determine F we 8hall show that equation C3 .. 7 implie8 that 

S F d4x has a certain invariance property. We will then look for the 

quantitiea of the form S F d4x which have thia Invariance property, 

and then decide which of these quantities we have been generating by 

the series F2 + KF3 + ••• 

As an example of this technique suppose we had the function 

G(,,) which had the property that 

(C4-6) 

was unchanged under the substitution q; - If' + >4 where ~ i8 an infini

telimal quantity. Under this substitution ~ becomes 
C't-6 
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The quantity S 6[~f) ~ d4x must be zero if C4- 6 18 to be unchanged 

under the 8ubstitution ~ - tp + ~ 

To find the invariance properties of F we shall therefore look 

tor an equation 01. the form 

Equation C3-7 i8 

Multiplying through by ' .... l. noting C4- 3. we get 

(C4-7) 

Multiply equation C4-7 by an arbitrary vector quantity A ~ and integrate 

the result over all space. 

'[g (6F ) +r KTJ111]A~d4x.O 
J .... l ~ • v ~ J1v ""Z m 

Assume A ~ :: A ~(x) goes to zero at infinity. Integrate by parts the 

term involving 6F/6h throwing out the surface terms and there result.: 
fJov 

\ 
6F [ ~ l ~] ... 
~ -g '\ vA - g ~A v + r}.. vA d x = 0 

• fJo v .... "- ....' , fJo 

where we have used ~ T .... v = 6F /6h • This last equation may be rewritten 
~ m ~v 
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aubatituting lor r >.0. IJ.v and noting that 6F IOh..,.v is symmetric in IJ. 

and v: 

(C4.S) 

This is the equation that we wanted, and we aee that the quantity 

S F(htJ.v)d4x , which is the action lor the gravitational field, remains 

• unchanged if the fields h are replaced by the fielda h given by 
tJ.v tJ.v 

(C4-9) 

The t is an blflniteaimal constant to guarantee that the substitution 

• htJ.v - h,...v corresponds to an infinitesimal change o.f the fields. (Re .. 

member that A >"(x) is an arbitrary vector. ) 

The problem is to find the quantities r F(h ) d4x which are J tJ.v 
• invariant under the translormation h - h • To do this the author f.Lv ..,.v 

has found it convenient to study the transformation C4-9 itseU. 

Byaddlng 6
1lV 

to both sides 01 C4 .. 9, expancUng g .... a:.61J4 t hflG 

and taking ~ A>" = (l/K}T) \ we get 

(C4-l0) 

Now suppose we were originally workins in Cartesian coordinates and 

make an arbitrary infinitesimal coordinate transformation 
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From equations Cl .. Zl we ••• that the tensors 6."" and Kh",,, will 

be transformed into 

, t 

It is now seen that the sum of a.,." plus Kh.,." just gives the 

right-hand eide of equation C4-I0. Thus we have the relation 

(C4-1Z) 

For an interpretation 01 thie equation let us consider the actlon 

for particles interacting with gravity: 

Because the Lagrangian t8 a 8calar quantity the action is invariant under 

a coordinate transformation of the Lagrangian. with the result 

s [6.,...,(x) ... Kh..,,(x)) T"'''(x) d
4

x 

II: S r 6' .. (x) + Khl (x)] T'.",,(x) d4x 
fl.... ."Y 

But by equation C4-11 

S [6~,,(x) + Kh~,,(x)] T,,",Y(x) d
4

x 

• S [ 6 fLV(x) + Kh ;y(x)1 T \J.v (x) d
4

x (C4-l3) 

Suppose we were o1"iginally working in the Xl coordinate system with 
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I , 

the metric tensor 6 J.L" and the fields hJ.L ,,(x) were present. The 

equation C3 .. 1Z states that we must get the eame physics (since 

S F(h )d"x I: S F(h'" ) d"x) it we use the new fields h· but uae a 
"" J.L" IJ.". 

dU.t'erent metric tensoJ' 6 (x). 

"" That ta, U we make the transformation of. the gravitational fields 

• hlJ." - hJ.L" we must change the geometry of our system in order to 

obtain the same physics. It is therefore suggested that we look to the 

theory of geometry for the quantities r F(h ) d"x that are invariant 
J ..,." 

under tbe transfOTmations C4-9. 

Such functions are known from geometry to be 

• and other functions constructed from the curvature tensor R QJ.tI3" ' where 

g • determinant of i..,.v 

~ R"". g RQ "vj3 

R I: gf.IVR 

.~ ~~~~ 
It is now a matter of testing which of tbe functions ~8 

being generated by the eerles S (FZ + KF3 + ••• )d"x. The answer is 

r F(b )d4x = ~ SR(-S)l/Z d4x 
J J.L" ZK 

The action for the problem of point particles interacting with gravity 

• • 

See Landau (16). 'Vo shall us. the opposite sign for the curvature ten-
sor than that used by Landau (16). Our choice of sign corresponds to 
that of Tolman (17). 
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is now siven by 

(C4-15) 

It ie conalatent with the action C4-15 to interpret gl!"= 6 .... ,,+ Kbl!" 

as the metric of apace-time assuming that there are no gravitational 

fields present, giving gravity a completely geometrical description. 

This was the starting point of Einstein when he formulated the general 

theory of relativity. The general theory of relativity may be formu

lated (rom an action principle, where the action for gravity interacting 

with point particles i. just given by C4-1S. 

It 18 thua not unlikely tbat a meson physicist, first noticing 

gravity only when he built too large a chunk of matter, would eventu

ally arrive at the geometrical description of gravity postulated by 

Einstein. 

The meson physicist, being rather excited by the geometrical 

description of the gravitational force, would probably set out to find 

a geometrical description of the other known meson forces such as 

electro-magnetic, j3 .. decay, and nuclear forces. Our history does not 

tell U8 whether he 8ucceeded, but if he did he would have ample reason 

to belleve in the significance of a geometrical de8cription of the world. 

Falling to include the other forces in a geometrical description he 

would have to content him.elf with the tact that the geometrical de

scription of gravity ia a gl'eat convenience in solving gravitational 

problema, such.a the formulation of the spin-two meson theory of 

gravity. 
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III. USE OF THE GEOMETRICAl FORMULATION OF GRAVITY 

In the general theory of relativity the effects of a gravitational 

field are correctly described if one works in a curved s~ace of metric 

g = 6 + Kh This implies that the correct method for obkining 
f-t V !-iv IiV· -

the interaction of a system with gravity is to write the action for tluit 

system in a curved space of metric gtJv. If then the explicit dependence 

of the action 1M the fields h v is desired, the functions of the metric 
On \.1 

tensor that a;J;,ear in the curved space action may be eXi?anded in terms 

For exam;::lle, the action for a system of non-interacting particles 

is from part B2 

To write this action in a curved s(.>ace we ref,lace the metric 6\.1V by 

gliv = 6\.1V + KhIJV' giving 

which is exactly the result we had in equation B2- 5. 

The correct prescription i:>r writing an action in curved space 

is that the action be a scalar quantity in that curved space. Since the 

definition of a. scalar quantity is a quantity that is invariant under a 

transformation of the coordinate system, this prescription implies 

that the action for a system interacting with gravity shall be invariant 

under a coordinate transformation. 

We shall show that this condition :::m the action does in fact lead 

to a consistent theory of gravity, and gives a method of calculating a 
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conserved symmetric energy rnomentl.lln tensor for the complete system. 

The prescription of general relativity does n')t, as we shall see, lead 

to a unique tIleory of gravity, nor to a unique energy tensor for the 

system even in the absence of gravity. 

D. A CONSISTENT THEORY OF GRAVITY INTERACTING \lITH FIELDS 

For the case of gravity interacting with point particles, the 

equation of motion for the gravitational fields was 

6F _ K T !J.v 
~ - r m 

(C4- 5) 

where F was the Lagrangian of the free gravitational fields and 

T~, the energy tensor of the particles, satisfied the relation 

(B2-15) 

Thus the condition on F that lead to a consistent theory of gravity 

was 

~ = - r ~(3 T~ = -i r ~i3 tla.
A .,.v ,v t" 

(C3-7) 

Suppose now that the Lagrangian for gravity interacting with 

matter fields is written in the form 

L = F +L mg (D-1) 

where L includes the Lagrangian of the free matter fields plus the mg 

Lagrangian representing the interaction between these fields and gravity. 

The equations of motion for the gravitational field from D-I is 
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of 
~ 

= - (D-2) 

If we define 

(D-3) 

then the equation of motion D-l becomes 

of = ~ 
(D-4) 

VIe see that if 

TfJ-
V =-

mg.v 
(D-Sa) 

or 

then we get the same condition on F as given in C3 - 7. Since F was 

determined by condition C3-7. the theory of gravity interacting with 

fields will be consistent as long as L satisfies the relation D-S. mg 

We will now show that if L is obtained by rewriting L mg m 

in the curved space of metric gov = 6 v + cJl ,v' in such a way that 
,', ' !J. !J 

\ L d4
x is a scalar quantity in that space, then L satisfies con-J mg mg 

dition D-S. 

n Let the components of the matter fields be given by q. Let 

us assume for simplicity that L • which is a function of the qn and 
r.ng 

Ii 
of the metric tensor bfJ-V' is written in a form that involves q , g\J'v 

and only the first derivatives of qn and g\J.v' I. e. , 
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(D- ) 

If the action S = \' L d4
x is to be a scalar quantity it must 

mg v mg 

be unchanged under the coordinate transformation 

I 

x Jl - xlJ. = xtJ. -rttJ. (x) (D-7) 

where qf.1(x) is an arbitrary infinitesimal vector. L considered mg' 

as a function of g v;g ~;qn;qn will however be subject to change. 
... f.1."" .a 

If under the coordinate transformation D-7 

DI - g .,. 6g 
DtJ.V I1v IJ.v 

(D-8) 

then 

bjJV,o. - gr.tv,o. + (6g)J-v),o. 

(D-9) 

• For eXilmple for a vector field AIJ. under the transformation 
xtJ - x .... = x.... - ,,~ 

, , BxP 
A (x) = A (x)---r-

.... P tx !J. 

, 
BAu (x) P 

\ - A n axe. .... ' po. ' 
and 

SAp(X) ax'P 8Ap 8xCl axP 
Ie --.;, = --0 --ro ---r.;- = 

8x Sx r ax ax 8x~ 

8A (x) 
P +A '1 P +A ·l "a 11, p ,a. p,a., p ax 

Putting these equations together, we get 
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and the change in Smg may be written in the form 

65 - C' [Slms (al ) J6 d4x 
mg - j 88 fJ.V - 8gfJ.v. 0. • a. glJ.v 

(a) 

(b) 

(D-I0) 

where we have dropped the surface terms that u3ually appear in such 

a calculation. The quantity D-lOb is zero by the equations of motion 

n· for the field components q. thus the first integral D-I0a must be zero 

if S is to be unchanged by a coordinate transformation. mg 

Writing 

af 
( -mg) - D = 

8,...v.o. to. 
(D-11) 

we therefore get the condition 

O I t TfJ.v J! JJ.V .24 = - l' j ms uS u x (D-12) 

However UDder the coordinate transformation D-7 the quantity 6gJJ.v 

is given by 

(see equations CI-ZO) 

• SA (x) 
fJ. = A T'lP + A T'lP + A T'lP + A llP 

&xo. fJ.t po. fJ.. P • 0. P. C!. t IJ. P. IJ.O( 

= (A TIP + A T)p) =(6A) 
JoLt P P • IJ. t a. fJ. • C!. 

The proof of D-9 for 8,...v or fields of various spin is similar to this 
proof for vector fields. 

·The quantity [(8L m /8g v) - (8L m /&g v ) a.] is not zero by the 
equations of motion for tl:e gravitati~al ~ie'la hecause the Lagrangian 
of the free gravitational fields has not been included. 
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Thus the condition D-12 becomes (noticing TfJ.
v = TV,.,. ) 

mg mg 

Integrating by parts and writing flo = gOj"'.'1j3 we get 

~o(e. 

o C [Jia T .... v + T .... V~( 1 )]d4 
= J 1113 g ga.,.. mg. '" mg gl- a. v - '2' gfJ.v. a. x 

Equation D-13 may be written in the form 

(' AV (.t v 4 
")" 1l",(x)[ Tt-' + r.... T)J. ] d x = 0 

p mg,v 1-'" mg 

Since ,,~(x) is an arbitrary vector. we must have the relation 

which is just equation D-5a which is what we wished to ?rove. 

E. CONSERVED SYMMETRIC ENERGY TENSORS 

(D-13) 

VIe are now in a position to write the general formula for a 

symmetric conserved energy tensor for a system interacting with 

gravity. To do this let us write the Lagrangian for the system ,in the 

form 

L = F2 + (F _ F2) + L 
mg 

(E-I) 

In E -1. F = R( - g)I/2 /21\.2. F2 includes those terms in the expansion 

* of F that involve the fields hJ.L'" twice and is given by equation A-ll. 

L is the Lagrangian of the matter fields rewritten in the curved mg 

*R(_g)I/2 also involves terms that are first order in ~v. but these 
form a pure divergence and have been dropped from F. 
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space of metric i.,v = (6 + :-:-.h ). 
r- ~v JJ.v 

The wave equation for the gravitational fields may now be re-

written in the form 

6F2 K [6Lm 6(F - F 2) ] 
~ = '"2" - 2 ~ - 2 6Kli 

~v JJ.v JJ.v 
(E-2) 

We have seen however that for a consistent theory of gravity the term 

in the brackets must be TJJ.v, the com?lete, symmetric, conserved 

energy momentum tensor of the system. (See for example equation C-l. 

Notice that C-l has been multiplied through hy a factor of four. ) 

If we use the notation of equation D-ll 

we get 

(E-3) 

From the derivation we know that TJJ.v is symmetric for it was ob-

tained by variation with respect to the symmetric quantity h",v' and 

from the fact that 

we must have T JJ.v = (, f h h th t ti E 2 i v or we ave s own a equa on - s con-,v 

siatent. 

Suppose we wish the symmetric energy tensor of a system in 

the absence of gravity. The formalism of writing the canonical energy 

tensor and then symmetrizing involves a rather cumbersome calculation. 
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We now have a direct method of obtaining a symmetric energy tensor 

by using E-3 and then taking the limit as Kh - O. Since (F - FZ) 
~" 

will not contribute in this limit. the symmetric energy tensor of matter 

is given by 

(E-4) 

Equation E-4 does not actually rely on the existence of gravity 

or curved space. Let the flat space action for a system be given by 

S = S I d
4

x (E-5) m-m 

Now suppose that the action Sm is invariant under the coordinate 

transformati on 

where ,,~(x) is an arbitrary infinitesimal vector. Since ,,~(x) can 

take on an arbitrary infinitesimal value at each point in space, the 

invariance of the action under the transformation E-6 will mean that 

there exists a quantity that is conserved at each local region in the 

space. This conserved quantity will be identified as the energy momen-

tum tensor of the system. 

This method of finding conserved energy momentum tensors 

differs from the method described in part Cl. In part CI we considered 

the invariance of the action only under coordinate translations and 

Lorentz transformations. Under these transformations the Gallelian 

metric tensor 6 ~", 
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1 o 
( -1 

o 
-1 ) 

-1 

is unchanged. Thus if the action was originally written in a Gallelian 

metric, then it will remain in a GalleUan metric under the tranafor-

mations used in part Cl. 

Suppose that the action is originally written in a Gallelian metric 

and we use the coordinate transformation E-6. The coordinate system 
I 

X tJ. would then have a metric g defined by the relation 
tJ.v 

Z v I IV 
S = 6 x'" x = g x "'x tJ.v tJ.v 

If we write gtJ.v in the form 

then 

as may be checked by direct 8ubstitution. Thus the trans!or~ation 

E-6 leaves us with an action that is no longer in a Gallelian metric, 

but which must be described by curvUinear coordinate8. 

We would therefore be led to write the action in curvilinear co-

ordinates. Thb would give U8 the same form for the action a8 f -mg' 

except the metric would be 

a flat space metric. Designating the action written in curvilinear co-

ordinates by Smk' the condition that the action be unchanged under the 
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coordinate transformation E -6 is 

) ( 
6Lmk ) 

. 6k 6k " = 0 . ~v fl 

in analogy with equation D-12. The re8ulting conserved energy momentum 

tensor is given by 

k =0 
tt" 

• 
(B-7) 

for all the steps are similar to those used for the case that gravity was 

present. 

The only dilference between equations E-7 and E-4 is that E-7 

does not rely on the use of a curved space for its derivation. 

F. NONUNIQUENESS OF THE INTERACTION OF GRAVITY WITH FIELDS 

In the previous parts of this section we have given the prescription 

for finding a consistent theory for the interaction of gravity with fielde 

of matter, and for finding the total conserved energy momentum tensor 

for that system. The prescription relied on writing the action for the 

system as a scalar quantity in the space of metric g = 6 + Kh .. ' 
~" fJ·v Vr 

Since there is no unique method for rewriting, in a space of metric g~", 

an action known only in a nat space of GalleHan metric 6 • the above 
~" 

prescriptions are not unique. 

Consider for example the action for the electromagnetic field. 

Two nat space Lagrangians, already discussed in part CI. that lead to 

* This i. the method used by Landau and Lifschitz (2) for obtaining sym-
metric energy momentum tensors. 
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the same action are 

4 f c 1 (A A - A A ) 
1T .- m • 'I .... v .... v .... v v .... 

(Cl-44) 

41Tf d = 1 (A A _ A A ) 
-m 'I .... v .... v .... ~ v.v 

(Cl-45) 

4tTL~ is obtained by adding to 41TL~ the quantity 

1 1 
- .... (Av vA) + .... (Av A ) v 

c. , .... ~ c. .... J.I.. 
(F-l) 

:: - .!, (A A - A A + [A - A ] A ) (F-2) 
c. v, v J.I..J.I. v'J.I. J.I.. v v. VJ.I. v ..... v .... 

Since the order of partial differentiation may be reversed the terms 

in the square brackets cancel. and F-2 added to 41Tt c m 
,d gives 41T_

m
. 

To write L~ and L~ in the space of metric g&J-v' we shall 

introduce the metric tensor for each summed index, replace partial 

• derivatives by covariant derivatives, and replace the volume element 

d4x in the action by (_8)1/2 d4
x., '-~ and [~ become 

I c :: _ 1 Gj3 PC1(A A _ A A ) {_ 1/2 
- mg If.ir g g Q; P !3; C1 a.; p (j; j3 g) (F-3) 

! d _ 1 a!3 PC1(A A A A \( )1/2 
-mg - - 'B1T g g QiP /3;(7- ai!3 Pi 0' -g (F-4) 

Although in flat space 

S '-~ d4X:: S.L: d
4

x 

the corresponding actions in curved space are related by the equation 
.. 

We wUl use the notation ;:..1 {or a covariant derivative. For example 

q:l;J.I. = CP, .... 
A =A -rPA 

ViJ.l. v. .... ... v p 

Ta.j3 :: Ta.j3 + ra. TP/3 + ri3 Tap 
iJ.l. .J.I..,.P 4v.p etc. 
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(F-5) 

where Rt-t
v 

is the curvature tens.:)r. Since the action of the free gravi-

tational fie l.ds is 21 yen by 

S - 1 r R!J.v ( )1/2 d4 
-:-:-::-2 1 g v -g x 

g 2K ., tJ. 

only in the absence of gravity can we set the curvabre tensor RlJ.v 

eq~lal to zerv. Thus we have generated two nonequiva1ent, but consistent, 

theories for the interactbn of gravity with electromagnetic fields,. 

The reason that the two acti'JOs \ L d d4x and C L c , d4x differ 
'J mg J mg 

1 (' IJ.v 1/2 4 
by the term - 87f J R AjJ.Av(-g) d x may be seen as follows. If 

either of the terms of F-l are separately written in c'-lrved space they 

remain a pure divergence; i. e •• 

• 
(F-6) 

and 

+ 1 0.(3 PO'[A AiA A 1 (_ )1/2=!..r AQ AO'(_ )1/2] 
]' g g a.;pj;3 a Cl;P a;j3 g ZL jO" g ,a (F-7} 

However t) obtain Ld we did not add the term 
Lrng 

1 aj3 PO'[ (A A ) A ) ( )1/2 1 "2 g g (l;~;p - Cl;p;~ 0' -g x 41i (F-S) 

·For exam,)le F-6 n'lay be written (noticing A c. is scalar) 
, 'Q 

[(Aa.) A(J-; j.\(! AO' ](_ )1 2 = (A Cl ) .I.O'(~ )1/2+ A o. A a (_ )1/2 
;0. ,a ;o.;a g ;0. .a g ;0. .a g 
+ A 0. A 0' " 0 (_ )1/2:1 [A 0. A 0'( _ )1/2) 

;0. - ao g ;0. g ,a 

where ( )1/2 _( ,)1/2,,6 
-g - -fj '" ~. , a au 
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because (Av v - Av ',v)A was cancelled in flat space before the 
• I.L .", I.L 

Lagrangians were written in cl.lrved space. 

Si.nce 

A - A = A R~ 
Qi(3;P Q;Pif3 ~ a.p(3 

• 

the term F-8 is just 

1 RlJ.v A A (_ )1/2 
'S'i '" " g 

Ld and this is just the term missing in mg 

(F-9) 

Let us assume that the only restrictions placed on a cur-.red 

space action are the fOllowing. First, the action shall be a scalar 

quantity in the space of metric gl.L". Second. in the limi.t of flat space 

we return t,.J the Jriginal flat s pace action. Third. the same number 

·::;i field components qn shall appear in each term of a given curved 

space Lagrangian. Fourth. each term of the curved space Lagrangian 

shall be of the same dimensions without the introduction of new con-

stante. (This limits the number of derivatives a?pearing in a given 

term in the curved space Lagrangian.) Let these restrictions be 

labeled by F-IO. 

Let us denote by L SmOg' f Vo and L To a particular choice '-mg' mg-

of curved space Lagrangians for the scalar. vector. and tensor fields 

0/. A • and h... The most general curved space l,agrangians con-
J1 IJ." 

sistent with the restrictions F-IO are 

• See for example Landau (18). Note again that we are using the o?-
;)08ite sign than that used by Landau for the curvature tensor. 
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LS :; LSOi fRtptp(_g)1/2 
mg mg 

(F-lla) 

( V LVo. QA 1/2 QA liz 
L. mg = mg -. rnR t'AcA

13
(-g) -r nRg I-'A

Q
Af3{-g) (F-llb) 

LT = LTo + aR PClj3ah h (_ )1/2+ bRtlf3 pCh h (_ )1/2 
:mg:mg pO' o.~ g g o.p O'~ g 

+ eR (113 pUh h (_ )1/2 
g g 413 pu g (F-llc) 

where the constants a, b, c, d, e, f, rot n are arbitrary. 

We might include the further restriction that we only consider 

curved space Lagrangians that are obtained from a flat space Lagrangian 

"directly, " that is, by introducing the metric tensor for each summed 

index, replacing partial derivatives by covariant derivatives and intro

ducing the ( ... g)1/2 for the volume element. (Restriction F-1Z.) 

If the flat space Lagrangian involves only first derivatives of 

the field components, and the LO are obtained under restriction F-12, 
mg 

then the most general curved space l.agrangians are 

(F-13a) 

(F··13b} 

(F-13c) 

The terms with arbitrary constants m and b only api/ear due to the 

possibility of inte:rchanging the order of covariant differentiation. 

Since the fields h are symmetric, we oet the same number of arbi-P.v ~ 

trary terms for the tensor field as fo? the vector field. 



Ii the Lagrangian involves second derivatives, and a second 

derivative is written in curved apace in the following manner (using 

A a8 an example) 
IJ. 

(F-14) 

then the most general curved space Lagrangians are still given by 

equations F-13. (VIe may also add pure divergences to the Lagrangians 

in 1'.11 and F-13, but such terms will not lead to different actions.) 

We will see in the next part that tbe restriction F-lZ is not the 

correct restriction for all fields. 

o. NONUNIQUENESS OF ENERGY MOMENTUM TENSORS 

At the end of part E we deacribed a method of obtaining energy 

momentum tensors that relied on writing the Lagrangian for a system 

in flat space curvilinear coordinates. The procedure for writing a 

Lagrangian in flat space curvilinear coordinates 18 similar to the 

procedure for writing the Lagrangian in curved space as was described 

in part F. The only diUerence is that in flat apace the metric tensor 

SIJ.V = 6IJ.V + klJ.v(x) may be obtained from the Gallelian metric 6IJ.V 

by a coordinate transformation, while the curved space metric 

ilJ.v = 6 IJ.v + Kh.,.v cannot be 80 obtained. Thus the formulas F-ll 

and 1'-13 may be considered as formulas for Lagrangians written in 

nat space curvilinear coordinates, as long as we use the metric 

g""v = 6""v -t k.,.v· 

In equations F-ll and 1'-13 the Lagrangians differed by terms 

involving the curvature tensor. In nat space the curvature tensor is 
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zero, thus the possible Lagrangians for a given system are equivalent. 

(They may differ by a pure divergence.) The question is therefore. 

will we get the same energy tensor for a system by equation E- 7 

.. 1 Tm _ 6Lmk I 
'2' .... " - 6k" k = 0 .... ....v 

(0-1) 

if we use equivalent flat space Lagrangians? 

The answer is that two Lagrangians that differ by a term involv-

ing the curvature tensor lead to different energy tensors. We may 

investigate the difference between energy tense,l'S for a given system 

by writing all the possible terms involving the curvature tensor and 

applying equation E-7. 

Let the Lagrangian for a given system be written in the form 

Lmk = L~k + f(R) (0-2) 

where f(R) is a function of the curvature tensor. and L~k is one 

particular choice of the curvilinear Lagrangian. The energy tensor 

from Lmk is 

- ~r(R) 
k = 0 fJ.v .... v 

We shall call W , obta.ined from i(R}, the difference tensor. 
\-Lv 

(G-3a) 

(G-30) 

To find \"1 (or TO ) by equation E- 7. we need to keep only 
IJ." tJ. v 

the terms in the curvilinear Lagrangian that are first order in kIJ.". 

To lowest order in k the various {o nne of the curvature tensor are 
tJ." 
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ZR = 2g ~ Zg 
CTCT, pp ap,a p (G~4) 

v~ hen g " = 6 ,," k has been obtained from 011" by a coordinate 
IJ. ~ It-" ,... 

transformation, i. e. 

k -." ... " ..,.V - ..,.," ' ~..,. 

then the terms in 0-4 wUl cancel. However. if we apply equation E-7 

before canceHng the terms in the curvature tensor, we get a non-zero 

contribution. 

The most general curvilinear Lagrangians of the lor m 0-2 for 

scalar, vector and tensor fielda are given by equations F-ll. (We are 

assuming the restrictions F-IO and that we are dealing with linear 

·s 
theoriee.) The energy tensors corresponding to the Lagrangians Lmk, 

L ~k' and L ~k of equations F-ll are given by 

~; = T:k ~ U{(o..,.y5 pO - 6IJ.p Ovo)f12}, pCT (a-Sa) 

LV = LVo + :mR C1(3A A (_ )1/2+ nR o.~A A (_ )1/2 
mk mk 0. f3 g g Cl P g 

T~" = T:: - 2n{ (blJ."Opa- 6..,.po"o)Ac.Aa,1 ,pa 
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and for L T given in F-llc, the energy tensor T T is 
mg JJ.v 

where wT is the symmetric part of 
f.L" 

- {2ahp h v - lahy h p + blS vhp h T bo h h v 
0" JJ. 0" f.L I.L a. 0"0. pO" fJ. 0. a. 

When the a, b, c, d, e, f, m, n are arbitrary constants e'luations 

G .. 5 give the most general energy tensors obtainable from equation E-7. 

(Again a8suming a linear theory and restrictions F-lO.) 

We note that all difference tensors Y1IJ.V are symmetriC, have 

zero divergence, and are a second derivative. This is the same form 

am the difference tensor as obtained by equations Cl-40. 

If we add the restriction that the curvilinear Lagrangian i3 to 

be written "directly" from the GalleHan Lagrangian (analogous to 

restriction F-12) and that tbe Gallelian Lagrangian involve only fir;')t 

derivatives of the field components, then the only arbitrary constanta 

left in G-5 are m and b. This mean.s that for a scalar field the 

energy tensor is unique, and that for a vector field Vi:v must be of 

the form 

But this is exactly the situation we had when we used equations CI-40. 
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(See equations CI-47 through Cl-49.) 

Possible Lagrangians for scalar. vector and tensor fields that 

involve only first derivatives are 

La of equation Cl-41 for scalar fields 

Lc 
of equation CI-44 for vector fields 

L of equation A-U for tensor fields g 

When these Lagrangians are written "directly" in curvilinear coordi

nates and equation E-7 is used to find the energy tensor. the results 

are the same as obtained by equations CI-40. • 

It therefore seems likely that equations CI-40 are equivalent 

to E-7 when E-7 is applied only to a curvilinear Lagrangian written 

"directly" from a GalleHan Lagrangian involving only first derivatives 

of the field components. 

We should mention that we obtained a difference tensor 

lor scalar fields by comparing the symmetric cannonical energy tensor 

9~" with the complete energy tensor. (See equation CI-43.) In thi.s 

sense equations Cl-40 gave the sar:."le general results as in 0-5a for 

scalar fields. This indicates that some modification of equations Cl-40 

might lead the full range of energy tensors in 0-5. 

, 
With the spectrum of energy tensors presented in 0-5. and with 

CI-40 also gave rise to terms that destroyed the symmetry of the energy 
tensor. but thes1e tern-H) were zero by the equations of motion. We are 
neglecting such terms. 



the evidence from part CZ that there is physical meaning to a particular 

choice of the difference tensors W","v t is there any generally valid rule 

for selecting a particular energy tensor for a given system? The author 

has found none. For scalar and vector fields there exists only one 

energy tensor in 0-5 that involves only first derivatives of the field 

• components, but no such energy tensor exists for spin-two fields. 

Thus the requirement that energy tensors have only first derivatives 

is not general. In the one case where we have experimental evidence 

(the energy tensor of gravity), second derivatives are involved. 

To survey the possible energy tensors for spin-two fields, 

choose the Lagrangian A-ll written "directly" in curvilinear coordinates 

LTo LTo as mk. The energy tensor we get from mk is 

alTo 
-2 mk 

Sk ... v 
=u 

k =0 IJ.v ..,.v 
(G-6) 

where U ... V is just the energy tensor of equation C2-6. UJ.LV was ob

tained from A .. ll by equations Cl-40 (within terms that are zero by the 

equation of motion of the free lields) which checks the equivalence of 

the two methods of finding energy tensors. 

We can now see that there is no energy tensor for the spin-two 

field. that involves only first derivatives of the field components. 

Using equation G-5c, the possible terms in the energy tensor that have 

a {actor are 

'Namely the tensors T~!3 and T~~ of equations Cl-42a and CI-44a. 

Any W..,.v added to these tensors involves second derivatives of the 

field components. 



(G-7) 

By no choice of the constants b, c, d, e, can we eliminate the terms 

involving second derivatives. 

There is, bowever, at least one well defined choice of a curvi-

linear Lagrangian for spin-two fields (leading to an equally well de

fined energy tensor). The Lagrangian 

L - (_ )1/2{ 1 CLf3 pa YO(h b _ b h 
gk - g If g g g o.P;'Y t'k1.o o.J3;y pa;6 

- 2h h + 2h h ) + 1 R Po p~ h oY;13 po;a o.y;j3 pa;o '4 pO' a.,. 
e 

+ 1. R 0.f3 path h - h h ) 
4 g a.p af3 Q.~ pa 

which corresponds in F-llc tO,the choice of the constants 

111 
a = b = -c = 4" d = - 8' e = i7) 

(0-8) 

(0-9) 

is. symmetric between the fielda hJJ.v and the geometrical quantities 

k u (if we keep the terms in L 1 that are first order in k .J. By 
~r mK ~r 

this symmetry, we mean that if a term, for example of the form 

k "b" h appears, then tbe terms h k hand h "h " a k a J.L J.L ,a ,a iJ.v J.L" ,a ,a iJ. J.L, , 
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also appear with equal coefficients. 

The energy tensor from Lgk is 

aL 11k 
- 2. "S"'k...&liii

J.l.v 
s: U + W = TF 

k =0 ~v !.Lv .. v 
~v 

(0-10) 

F 
where W.,.v i8 the diUerence tensor given in equation C2-12. and T.,.v' 

the ten80r obtained by Feynman. is given in equation C3-9. 

Because this derivation of the ten80r U + W required the .,.v !J.v 

use of all five arbitrary constants, it ie probably not derivable by 

equations Cl .. 40 as they now stand. However, U + V/ was derived as 
tJ. v !.L v 

an energy tensor (without the use of curved space). Since UtJ.v + W..,.". 

the same tensor as obtained by Feynman and Einstein, is the energy 

tensor that gives the correct shift in the perihelion of Mercury, we 

may consider gravity as a spin-two field coupled to energy. The diffi-

culty is that we need an extra condition to define the energy. 

Thus the connection between gravity and geometry, originally 

stated by Einstein in the general theory of relativity. is also seen 

when gravity is treated as a spin-two field coupled to energy. 
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IV. INTERACTION OF GRAVITY ¥/lTH ELECTRONS 

It1 this section we shall derive the interaction of gravity with 

electrons in a manner that treats gravity as a spin-two field. The 

method will be to rewrite the action for the free electron fields in a 

curved space of metric guu = 0 + Kh • We have seen from part D ,..... ....v 1-1" 

that this method leads to a consistent theory. 

Our first problem is to find the correct flat space action that 

is to be rewritten in curved space. 

H. FLAT SPACE LAGRANGIAN FOR THE ELECTRON FIELDS 

The flat space Lagrangian for the two independent electron 

fields ~ and ~ is usually given by the formula 

L = ii!i Y ~ - m \1i ~ e J.I. ,J.I. 
(H-I) 

where the Dirac y matrices. are defined by the commutation relation 

(H-2) 

The equations of motion for the fields iti and ljJ are given by 

and 

For example. the equation fJr 4J is given from 6Le /6 \jj as 

• As we will later need to distinguish between a curved space and a 
flat space y ttlatrix, the notation ~ will be used for flat space y 
matrices. !J. 
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which is just the Dirac equation for a free electron. 

The electron Lagrangian H-I is not the only form for a flat 

space Lagrangian for the electron fields. First 01 all any Lagrangian 

diHering by a pure divergence gives an equivalent action for an 

electron. Secondly, the equation H-2 doee not uniquely define the 

flat space y matrices; any set of y matrices satisfying H-2 will 

lead to the same physics of the electron provided the correct wave 

function is used. 

To see the possible choices for a flat space Lagrangian sup-
, 

pose that the particular set of y matrices Y~t had been chosen. Let 

the wave functions associated with this choice of y matrices be given 
, , 

by ~ and \Ii. U one choice of the Lagrangian for these fields is given 

by 

Ll I " I I 

=i'!iy" '" -m'!i'" e .... , .... 
(H-3) 

then another choice is 

2 " I " L = -i ~ ~ l/J - m iTi '" (H-4) e ......... 

for L 1 and {l differ by a pure divergence. The commutation relation e e 
-' satisfied by the y matrices yp. is 

(H-5) 

Now let us assume that we wished to use a different choice (or 
I 

representation) of the y matrices, namely y • related to y by the 
f.l. fJ. 

equation 

-' -1-
Y = s Y S . .... f.1 

(H-6) 



where the operation S·ly- S represents a unitary transformation on 
I.L 

-1 the 4 x 4 Dirac y matrices; S S::: 1. 

Equation H-5 becomes 

5 -1- <~ 8-1 S + <~-1- c' ("-1- S _ .. t y 0 y I ~ y.:.:>;;) y - '"u 
..,. V v 1.1. V-V 

or 

(H-7) 

\,'?e get the last step for S must commute with 6 ; thus matrices 
J.1v 

YJ.1 satisfy the COrrect commutation relation and are a possible re~.>re-

sentation of the y matrices. 

The Lagrangians L 1 and .i.. 2 expressed in terms of the Dirac 
e e 

matrices ~ now become: 
Ii 

'1 I -1- t I I 

L ::: i\li S Y S ljJ - m i1i ljJ ; 
e J.1. J.l 

If we define 

we get 

t 

S ljJ ::: ljJ 

• 
- ::: S 5.1 
J, J.1 • fJ. 

"'va will also get 

, t , 

SljJ ::: (SljJ) • S ljJ 
.J.1 .J.1.J.1 

L!::: -i[ i1i.tJ. + i1i :=J.11Y!J~ - mll} tj; 

*Note that f is a spin matrix as well as a B:~)atial vector. 
J.1 -

(H-8) 

(H-':) 



Any linear combination of these two Lagrangians is the most 

general Lagrangian we can write for an electron in flat space. 

We note that in flat space the quantities !' can always be 
IJ. 

eliminated by an appropriate choice of the representation of the 'Y 

matrices. For the so-called standard representations where the 

-'Y matrices are not a function of position the -, will be zero. 
p. 

J. CURVED SPACE LAGRANGIAN FOR THE ELECTRON FIELDS 

A prescription for writing a curved space Lagrangian is to 

introduce the metric tensor for each summed index, replace partial 

derivatives by covariant derivatives, and replace the volume element 

d4x in the action by (_g)1/2 d4x. 

It was noted in section III that in writing the curved space 

action, terms involving the curvature tensor might also be added, 

for in the limit of flat space the curvature tensor goes to zero and 

such terms would not contribute to the flat space Lagrangian. These 

terms do contribute to the energy tensor of the matter fields however, 

changing the coupling of gravity to matter even in the limit of the 

linear theory of gravity. 

In the case of electrons we have a unique prescription for 

identifying and excluding such terms.. Vie will see that the energy 

momentum tensor for the free electron field involves only ter~8 that 

have a single derivative, whereas terms derived from an expression 

• including the curvature tensor each have at least two derivatives. 

fAe shall therefore assume that the curved space action for the .. . 
See part G. 
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electron field does not involve the curvature tensor. 

To write the electron Lagrangian in curved space. we will 

adopt the convention that the fields '" and i1i are scalar quantities. 

• • while the 'Y matrices transform as vector quantitles. As the partial 

derivative of a scalar quantity is the covariant derivative. no change 

in the quantities '" and ili need be made • . ..,. . ..,. 
The flat space 'Y matrices satisfied the commutation relation 

'Y11'Y .. +'Y~ =26 
.- v v.... IlV 

We will assume that the curved s?ace 'Y matrices are obtained by 

merely replacing the metric tensor 0\-i.'v by i
llV 

giving 

where 'Y is now our curved space 'Y matrix. satisfying the com
f.I. 

mutation relation J-1. 

Finally. we will assume that the quantity appearing in the 
tJ. 

flat space Lagrangians L~ and L! becomes ~ J.! in curved space. 

The curved space Lagrangi.ans corresponding to L land L 2 now e e 

become 

(J -2) 

(J -3) 

where we have used the notation 

• • 
An equivalent choice is to assume that the 'Y matrices do not trans-
form under coordinate transformations. and that the fields '" and 'Ii 
transform as spinors. This leads to the subject of spinor analysis 
(see Vi. L. Bade (19) ) which is somewhat cumbersome. 
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It follows that "J.l satisfies the relation 

(J-4) 

The question is, which Lagrangian, L1 or L 2 , is the eg eg 

correct curved space Lagrangian. In general they will not lead to 

the same physics for they do not differ by a pure divergence. It was 

1 ' 2 
true that the flat space Lagrangians Land L differed by a pure e e 

divergence, but this property was lost in the generalization to curved 

space. If for example we have r = 0, then 
J.l 

L2 =Ll _ «_g)1/2i4i,,1l~) .+i(_g)1/2 4i"J.l ~ +i(_g)1/24i"J.l~ eg eg , tJ , II , J.L 

We can see that the last two terms, which destroy the equiva-

lence of the two Lagrangians would be zero in flat space. (In flat 

space we could choose constant " matrices and use a coordinate 

system where (_g)1/2 = 1. ) 

The fact that L~g and L!g are not equivalent leaves us with 

an infinite number of nonequivalent theories for the interaction of 

electrons with gravity, de?ending on the linear combination of L~o 
e 

and L!g that is chosen for the Lagrangian of the eystem. One way 

out of this difficulty is to find a value of the quantity l' which makes 
Jl 

L~g and L ~g equivalent. 

If we drop the restriction r f.L = 0, and note that 

we get 
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+ a ?ure divergence (J-5) 

For L 2 to be equivalent to Ll we must find a value of r lor 
eg eg p 

which the term of J -5 in the square brackets vanishes. That is. 

we must satisfy the relation 

(J -6) 

where the quantity ~l' := ,,'" + "P r.J.Lpv is just the covariant derivative ,v tV 

of the contravariant vector "I-L, and in J -6 we have swnmed over the 

• indices I-L and v. 

The equation actually solved was not J -6 but the more general 

form 

v '.... r v v 
-" ! IJ. + f.! " =" ;JJ .* with the result 

(J .7) 

iliThis is different than the notation in the literature. The literature 
is concerned with the ideas of spinor ana~sis in which the transfor
mation properties are put into the fields tI-, and ~, and the ,,'21 are 
considered a metric tensor in spin space. It is desired that the co
variant derivative of the spin metric be zero (in analogy with the 
choice for tensor analysis), therefore the covariant derivative of a " 
matrix is taken as 

"I-L - "f.! + "P rV ,-, '\If.! + "p)- - 0 
, : j,I - ',v ," pv - .:, v ' ,.L V -

consistent with our condition J -6. 
'" and '" are no longer scalar quantities, but spinors, and as 

such have a covariant derivative given by 
.1. .1. r .1. ~:: ~ + :r. r 
'1":f.1='I",fJ- v'1"; 'fI:fJ 'fI,/.l. 'fI'-1-L 

See V/heele r (4 ) • 

•• See Appendix III for the solution of J -7. 
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T' _ 1 Q 

A. J1 - '4 "QiP 'Y (J -8) 

where "Q;P = "Q,J! - "pf':J.! is the covariant derivative of the covariant 

vector". We note that a solution of J-7 is also a solution of J-6. 

With the choice J -8 for r • L I and L 2 differ only by a 
J1 eg eg 

pure divergence and are thus equivalent. It is convenient for later 

calculations to choose a symmetric combination of the two Lagrangians 

L = I (LI + L 2 ) • eg '! eg eg , 

(J -9) 

where 

(J -10) 

K. EXPANSION OF THE ELECTRON LAGRANGIAN IN TERMS OF -
THE FIELDS h I.LV 

To find the dependence of the curved SIJace Lagrangian J-f) 

on the gravitational fields hl.Lv we must first find an expansion of the 

curved space matrices that satisfy the commutation relation 

To do this we shall look for a relation between the vector quantity "fJ. 

• L; alone was originally used by the author, but the test of the gauge 
in:jariance of certain calculations became too difficult to carry out. 
The symmetric form of the interaction leads to a far simpler calcula
tion of problems such a8 the scattering of gravitons by electrons. 



in curved space, and the vectors ~(l in flat space. 

A theorem of curved spaces is that at each point x in apace 

time it is possible to transform from general coordinates xi to a 

system xi whose metric is flat at that point, i. e •• 

We must use a different transformation at different points in space, 

therefore 

a~ = alJ.(x) . 
a. a. • 

b iJ = b t3(x) v v 

At a particular point in space time we have the relations 

For this point in space the relation 

implies 

LtV U V V Ll II V _a.-A _A-a. 
Zgl"" = y~y + Y yl"" = a~a~(y y t' + Y i""y ) 

_ f.Lv 6 (_a.-~ + -13-0.) 
- g nl3 y y y y 

or 

~v (-a.- f} + -13 - (1) 260.13 fJ.v g Y'Y yy = g (K-Z) 

For an arbitrary metric g""v the solution of K-Zis 



which is the correct commutation relation for the flat space y matrices. 

Thus at any pOint in space time we may take as the relation between 

the curved space y matrix yl-. and the flat space y matrices ~ct 

The following relations between the various y matrices and 

transformation matrices may easily be verified: 

a~ (x) b~ (x) = 6~ 

60.13 alJ. (x) a" (x) = Il" 
0. j3 

60.~b:(x) be(x) = ilJ." 

-0. a ).t. 
y = b .... (x)y 

y = a"" (x) y 
CL a .... 

(K-3) 

We now wish to use the point of view that a curved apace may 

be replaced by a flat space plue gravitational fields in order to find 

the dependence of the quantities a~(x) and b~(x) on the fields h
JL
". 

For example. the relation 60.flb~e = S .... " becomes 

b b = 6 + Kh (K-4) 
Iol Cl "a. Iol" P. " 

To obtain a series expansion for b .... " that satisfies K-4 con

sider the expansion 

2 3 
b = (1 + Kh)l/2 = 1 + .!i h - ~ h 

2 + ~ h 
3 + (K-5) 
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If indices are nov.' put in I~-5 we might believe that the correct ex-

pansion for b is given by 
j.I.<l 

That this is indeed the correct expansion may be checked by substituting 

into £<-4. 

a n it 
From the relation ar" b = 6,,1""' we would expect that a would 

Q " ~a 

be the reciprocal of b , or that the numerical coefficients for the 
!JoG. 

expansion of a are given by the series 
~Q 

. -1/2 K 3K
2 

2 
a = (l + Kh) = 1 - 7" h + 8"" h 

15K
3 

h 3 -415 t ... 

This is correct and the aeries expansions for a and bare 
lot c. IJ.O 

given by 

K K2 2 
....". h - h h + 3K h h h + 

" ~LC 8 p.P po. --;rn- p.p PO' 0'0. 

a = 6 -
tJ.a tol" 

2 2 
K h + 3K h h - 15K h h h 
-Z !J." S- IlP p~ 48 ilP pO' aQ. + •.. 

',' e note that the choice K -6 imi)lies that the quantities b and . ~n 

a are symmetric in the indices u and a. This is because we de-tLtl f"" 

manded that b and a be expressed as a series involving only the 
!J.o, It-Q 

symmetric fields in a Lorentz invariant ma.."mer. It was thus impos-

sible to write an antisymmetric part for b and a • 
fLO. 11.<2 

\~Te shall now write the curved 9,?ace Lacrangian J -9 exactly 

in terms of the quantities a , b • and (-t )1/2. I,s the expansion 
iJ-o. lJ.a "" 

fur these quantities in terms of h are now known, it will be merely 
!J.V 
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a matter of using these expansions to the de8il"ed accuracy to obtain 

the Lagrangian for electrons interacting with the gravitational fields 

L is given by eg 

In Ap~)endix III It is shown that 

(K-7) 

where 'V Yv Yp is the completely antisymmetrlc combination of the 
It 

three " matrices YiJ.' Yv' and Yp. That is 

(K-S) 

---"f!:'Vv'Vp may also be written in the form 

- --"J:I:"v"p = f: J.Lvpa" 5"0' 

where £J.Lvpa is the completely antisymmetric unit tensor, defined 

so that its components are zero unless IJ. ¢ v '¢ p :j:. 0'. and equal to ::I: 1 

according to whether '" v p a is an even or odd permutation of x y z t. 

The matrix 'V 5 is defined by 
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The Lagrangian L using K-7 now becomes eg 

(K-9) 

where 

II" K K
Z 

Z K
Z 

(-g) c. = 1 + -z h +"8 h - -r h a.j3h a.f3- + ... 

K 3K 
a a. /3 = 6 a. ~ - "7 h a.j3 + 8'" h aa h aj3 + •.• 

L. INVARIANCE OF THE ELECTRON LAGRANGIAN UNDER CO-

ORDINA TE TRANSFOlUlLA TIONS 

To find the interaction of a system with gravity, the action for 

that system is to be rewritten as a scalar quantity in the space of 

metric g~v. This prescription of general relativity is in agreement 

with experiment wherever it is tested, and leads to a consistent theory 

of gravity. 

For the action to be scalar, it must be unchanged under the 

coordinate transformation x~ - x tJ ' = x tJ .. ."fJ.. This will be the case 

if the Lagrangian changes by a pure divergence under the coordinate 

transformation, for the pure divergence will not contribute to the 

action. For electrons interacting with gravity, the Lagrangian 

J.!-,.., + r J.!. 
L =(_g)1/2{.!r\li·.l~ -..i\li "J.!.~-mW~-i\li" LV If" ~) (J-9) 

G ,f! t:. ,fJ. 2 
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does change by a pure divergence when the following transformation 

properties are assumed. 

• a. ~(x) - '" (x) = "'(x) + '" " ,e. (a) 

, a. 
'Ii(x) - 'Ii (x) = 'Ii(x) ... 'Ii '1 .a. 

(b) 

, , 
'" (x) - '" (x) = ['" (x)] .tl • tJ. • \..I. 

(c) 

, . 
'Ii (x) - \V (x) = ['Ii (x)] 
.f.!.f.! .tl 

(d) 

(e) 

• 
"V (x) - "V (x) = "V (x) + "V II + "V ''1J1 

fl fl fl fl.P P .P 
(f) 

r (x) - .1-.' (x) = r (x) + r "P + r 1lP 
fl fl fl fl.P P.f.1 

(g) 

g (x) - g' (x) = g (x) + g t'lP + g "P 
tJ.v J.1v I-1v f.1v. P pv .1-1 

+ . P ivp'1, v (h) 

1 2 liz' 1/2 l/Z P l/Z' P 
(-g) - (-g) = (-g) + (-g) ,,+ (-a) " .P .p 

(1) 

(L-l) 

Under the transformations L -1 we get 

L(x) - L'(x) = L(x) + [T}PL (x)] 
• P 

(L .. Z) 

Thus the change in the action 65 is 

and the action is invariant under the transformations L -1. 



The transformations L-l follow from the assumption, originally 

made in deriving the electron Lagrangian. that ~ and \j; transform 

as scalars. while the y matrices transform as vectors. Since 

I' .... = ~ Yo;",yo. f'.... should likewise transform as a vector. The 

transformation of scalars, vectors and tensors is given in equation 

C,-l and the transformation of the derivatives of thelle quentities is 

liz given in equation D-9. The transformation of (-g) follows from 

the transformation of gil" as may be seen in the following derivation. 

Landau (20) shows that the change in g is related to the change in 

gil" by the equation 

6g = ggll" 6g 
11" 

(L-3) 

From L -3 we get the relations 

liz 1 liz 11" 6(-g) a ~ (-g) g 6g 
G 11" (L-4) 

and 

(L-S) 

Substituting into L -4 the quantity 6Sf.1" from L -1h we get 

6(_g)1/2=~(_g)1/Zg"'Yg T\Pt!r(_g)l/Zgl-l"(g'''p +g Yjp) 
G .... ".P G tJP." "P ..... 

6(_g)1/Z = (_g)l/Z"P + (_g)1/2"p 
• P , P 

Let us now consider the curved space electron Lagrangian 

expanded in terms of the fields h
ll
". To do this we may replace the 

metric tensor gil" by 6
11

" + h
tl
". where 6

11
" is the GalleHan metric 
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of flat space. We now have a flat space Lagrangian representing the 

interaction of electrons with the gravitational field htJ.'" plus the 

Lagrangian of the free electron fields. When we add to the Lagrangian 

the quantity 

F = ~ R(_g)I/2 
2K 

expanded in term. of ht-:'" we have the complete flat space Lagrangian 

for gravity interacting with electrons. 

In part C4 we saw that the action for gravity in the absence of 

matter 

was invariant under the substitution 

(L-6) 

If we add 6 ... " to both sidel of L-6 we get 

which il equation L -lho Thus the invariance of the gravitational field 

under coordinate transformations in curved space corresponds to the 

invariance under the substitution h " - h·" in flat space. 
tJ. p 

Vie now wish to find the substitutions that leave unchanged the 

complete flat space action for electrons interacting with the gravita-

tional fields h .... ". The substitutions will correspond to a kind of 
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ga\lge transformation of the fields h v and '" \lnder which the theory 
tJ 

i. invariant. It is clear that if the ga\lge lJubstit\ltions correspond to 

a coordinate transformation of the c\lrved space action, as they do for 

the gravitational fields alone, then the flat space action will be 

• ga\lge invariant. 

One possible transformation of the flat space Lagrangian wowd 

be the simultaneous substitutions 

• 
"'(x) - '" (x) 

t 
iIi(x) - iii (x) 

(L-7) 

• t 
where '" (x) and iii (x) have the same values as given in equation L .. I. 

The substitutions L-7 automatically correspond to the transforma

tions L-l (a, b, c, d, h, 1). U we show that the transformation of the 

'i matrices by equations L-7 give the same results a8 L-l (e. f. g) 

then we will know that the action is invariant under the substitutions 

L ... 7. 

All we have to show is that equation L -7 leads to the transfor-

mati on 

'i (x) - 'i (x) + 'i TlP + 'i TiP 
tJ f.1 tJ. P P • tJ 

(L-lf) 

for then the quantities 

; 
It sho\lld be noted that the name "gauge transformation" has already 
been used to describe the substitution given by equation B-Z. We 
shall retain the name "gauge transformation" for equation B-Z and no 
longer refer to htJv - h:v as a ga\lge transformation. 
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will automatically transform by equations L -Ie and L -lgo This may 

be checked in detail, or seen from the fact that gf.1v transforms in 

the same way by L-7 a8 by L-l. 

In flat apace the relation L-l£ may be written 

'U (x) = b :v - (b + b '1"1 + bon):V 
, .,. flO. ' 0. 1.10. fJ-0.. p"' P po. . I p. IJ. 'a. (1.-8) 

where 

We have used the relation between curved and flat space y matrices 

given by equations K-3 and K-6. If equation 1,-8 can be shown to 

follow from the substitution hlJ.V - h:v • then the substitutions L-7 

will leave the Lagrangian invariant. 

• Under the substitution h.,.v - h~y we may directly calculate 

the change in b • The result to first order in K is 
J-to. 

(1.-9) 

This expansion is rather a mess which does not directly lead to equa-

tion L-8. At this point we can say that the substitutions L-7 are not 

equivalent to a coordinate transformation, and, as may be checked to 

zero order in K, do not leave the action invariant. 

We need not give up, for the follOwing relation does hold. De-



fining 

b = b +b T) +b '1 
f.!.tl .... tl ..,.0., P P po. P, .... (1- -10) 

we get 

(L.-ll) 

where D is an infinitesimal antisymmetric tensor given to order 
IJ.v 

K
2. 

by 

1 K K2 
+ '4 110., ~ [ 6v c:\ + "! hvo. - T hv {3hr;o. + • • • ] 

K K2 
- ~ '''o.,v[ 6f.10. + ~ hlJ.Q. - ,. hf.1f3hf3a. + • • .] (I -12) 

• Suppose at the same time we make the substitution hf.1V - h .... v 

we also change the representation of the flat space 't matrices, 

---- -1--'to. - S 'to. S. Under these simultaneous substitutions we get 

(::.-13 ) 

Now suppose we can solve the relation 

(L-14) 

then equation L-13 becomes 

(L-15) 



- '- -
b " - b " :IE (b + b YJ + b '1 ) 'V 

!J0.10. fJo. 10. p.o. po.,p p po. p,!J 10. 
(L-16) 

where we have used l-l1 to go from L -15 to L-16. 

Equation 1--16 is just the transformation pro"erty we needed 

for the y matrices to maintain the invariance of the action. 

The solution of L .. 14 for S is 

[ 1 - - 1 
S = 1 + 4' D po 'Y p'Y 0' (L -17a) 

where ~p:o = ~(YpYo - YoYp) is the antisymmetric combination of the 

two 'Y matrices. Since Dpo is infinitesimal 

-1 1 
S =[l--rD 'Y'Y] 

... po~ 

To check that S is the correct solution for L-14 we have 

Using the commutation relation. which may easily be checked. 

we get L-14. 

(L-17 b) 

(L-18) 

We now have the situation where the flat space action is un-

changed if we simultaneously make the substitutions 

I 

"'-'" 
(L-19) 

The difficulty with the substitlJ.tions 1..-13 is that it is convenient to work 



with a given simple set of y matrices. '::e wOl1ld rather have a set 

of substitutions on the field components alone that leave the action 

unchanged. As we shall see this may be done by redefining the 
, , 

transformed fields ~ and 'iii. 

Let 118 start with the curved space Lagrangian 

(J -9) 
Under a coordinate transformation this becomes 

" " ( '\I r +"' '\I ) I , 
/ ' i -' " i' " -" -' 1 p" (J .l. a l e I pa 1/2 

L = (1'\jJ yp\jJ.a- iili,ayp\jJ -m\jJ ~ -itlJ 2 \jJ)g (-g) 

(L-20) 

Since L 
, , 

and L differ by a pure divergence, they lead to the same 

action. 

We have shown that 

, 
gpa = gpa (h .) (L-21a) 

<_8)1/2' = ( .. g)1/2(h·) (1- -llb) 

, • -1-
Y = b (h)S y .. S p pa OJ 

(L-llc) 

We also need the relation 

(L-Zld) 

which is proved in a?pendix IV. 

If we. define 

(L-22) 



then we have the relatione 

, -1· t\J = S t\J 

-' -r'* t\J = \jJ S 

-1 -1 where 58 = (-5 S ). ,a .a 

=134-

(L-Z3) 

If we now substitute the relations L-ZI and L-Z3 into the equation 

L-ZO for L' we get 

(L-Z4) 

, 
However equation L-Z4 for ~ is exactly what we would get if we made 

• - -* • 
the substitutions lV - IV. IV - IV. h - h directl y in the odglnal "V "V 
Lagrangian. 

To summarize the preceding work. we have the following results. 
, 

Under the coordinate transformation ."f -."f ="f -,,~ the curved 

space Lagrangian ,-, representing the interaction of electrons with 
, 

gravity, transformed into L where 

If both [(x) and ['(x) are expanded in terms of the gravitational 

" f 
fields h we obtain '.. from ',_ "V 
for h.,.". IJI and IJI in L. That is 

.. ..... 
by substituting htJ. v' ~ • and \jJ 

(L-Z5) 



Since L 
, 

and L differ by a pure divergence, the action remains un .. 

changed under the above substitution for the fielda h ,~and ifi. 
IJ.v 

Explicitly, the substitution that leaves the action invariant is 

given by 

h - h (x) + .. + .,., + h 11 + h 11 + h" <a) IJ. v IJ. V "IIJ., V "IV, IJ. IJ. v, P fp IJ.p 'p, " "P p, IJ. 

~x) - [ I + ~ D 'Y 'Y 1 [ ~x) + IjJ " ] (b) pa-f-1 fa a 

~x) - [ tjj(x) + iii,a Tlal [1 - ~ Dpa YeY J (c) 

<L-26) 

where D pa is an infinitesimal anUsymmetrlc matrix, given aa a series 

in the coupling constant K to order K2 by equation L-12. 

The work in this part to find the substitutions L-Z6 was carried 

out because the author originally had considerable difficulty in checking 

the calculation of the scattering of gravitons by electrons. It was noted 

that the action was invariant under the substitutions L .. l in which 

(L-lf) 

But L-lf seemed to imply that the transformation of b should be given 
1J.0. 

by 

(L-Z7) 

The difficulty with L-Z7 is that it does not treat the subscript. 

IJ. and 0. symmetrically, while the author's expansion for b in terms 
1J.C1 

of the fields h makes b symmetric. This suggested that the diffi-
IJ.v 1J.C1 

culty in checking calculations based on the expansions K-6 was due to an 



error in the expansions themselves. 

It was then that the author found the sub8titution8 L- Z6 that 

leave the action invariant when the expansions K-6 are used. Bya 

rather lengthy calculation it was checked to order Kh" that the sub8ti

tution8 L-Z6 did in fact leave the action unchanged. The difficulty of 

checking calculations was later solved by following a sugge8tion of 

Dr. Feynman'8 that a symmetric form for the interaction of electrons 

with gravity be u8ed. 

From the existence of the 8ubstitution L-Z6 and from the check 

of later calculations, the author suggelts that there is good evidence for 

the validity of the electron-graviton Lagrangian K-9. The only diffi

cultie8 are that no Lagrangian involving gravity is unique a8 has been 

discussed in part F, and there are no experiments to check the theory. 



V. QUANTUM l\A...ECHANlCS OF THE INTERACTION OF 

GRAVITY WITH ELECTRONS 

In this section we shall deal with the quantum mechanics of 

gravity interacting with electrons. The first part will be an investiga

tion of the gravitational Dirac equation to find the effects of the spin 

of the electron. This will be done by comparing the Dirac equation 

with the equation for a spin-aero particle interacting with gravity. 

In the next part, part N, we will show how to write Feynman 

diagrams for the case of gravity interacting with electrons. The em

mision of low frequency graviton. will be discussed as a simple example 

of the diagrams. 

In the final part we give the calculation of the scattering of 

graviton. by electrons. This calculation to lowest order includes the 

nonlinear eUects of the gravitational field. The check of this calculation 

for gauge invarimce offers the best proof of the correctness of the 

electron Lagrangian in the expanded form given by the author. 

We will not discuss radiative corrections to these calculations 

until the next section, and even there the discussion ot radiative cor-

ret:tion will not be complete. 

M. GRAVITATIONAL DIRAC EQUATION - EFFECTS OF THE SPIN 

OF THE ELECTRON 

The gravitational Dirac equation may be obtained most easily 

from the Lagrangian Leg ot equation J-Z. 

L :: (. g )1/ Z {i~ ~[~ - r ~] - m ~ ~ } 
eg ,~ ~ 



The equation of motion is 

(M-l) 

To find the effect of the spin of the electron we wish to compare 

M-l with the equation of motion for a spin-zero particle interacting with 

gravity. The Lagrangian for a spin-zero particle of ma.. m may be 

written 

l IZ Z - = ..... (qJ cP - m 'P ) m ~,~,~ 
(M-2) 

A general curved space Lagrangian that reduces to M- Z in the limit 

L 1 1/ Z [ ~" Z Z] == ..... (-g) g cp cp u- (m +o.R)fp mg ~ ,~ , .. (M-3) 

where 0. is an arbitrary constant. 

The gravitational Klein-Gordon equation corresponding to M-3 

II V Z _gr rp • _ o.Rrp = m rp , iJ.." 
or 

(M-4) 

We could find the eUects of the spin of the electron, at leaat in 

the nonrelativlstlc linear limit by directly expanding equations M-l and 

M-4, adjusting 0. 80 that the equations are a8 similar a8 possible. 

The extra terms that appear in the expansion of M-I will then be due to 

the spin of the .electron. The author bas attempted this but the calcu-

lation is extremely cumbersome. 

For a more direct method of finding the spin of the electron, 
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let us firet consider the interaction of electromagnetic fielde with 

electrons. The Dirac equation is 

y (1'V - eA )q, = m'" .,. .,. .,. 

while the spin-zero Klein-Gordon equation is 

Z (i'V - eA )(i'V .. eA k) = m <p 
.,. fl fl .,. 

U we operate with "t (i'V .. eA ) on both sides of M-S we get 
fl .,. .,. 

(M.S) 

(M-6) 

[ Y.,.{i'V.,.- eA.,.)Yv(i'Vv - eAv>1 = mY.,.{i'V.,.- eA.,.)4J = m Z
", (M-7) 

Equation M-7 reduces to 

(i'V - eA )(i'V -eA )", .. .!: 'V Y F ~ .,. .,. .,. .,. e. ~ .,. V 

where 

Z = m ~) (M-B) 

Comparing M-6 with M-8 we eee that the eUects of the spin. such as 

the Dirac magnetic moment and spin orbit coupling. arise from the 

term 

(M-Sa) 

Let us use the same technique on the gravitational Dirac equa-

tion to find the part of the lnteraction that is due to the epin of the 

electron. We have 

le Y 1\7 (3" y~r (3)'" = mq, 

Operating again with the quantity l(YCI.cy 0. - yo.r 0.) we get 
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(M"9) 

M-9 becomes 

(M-IO) 

Now 

But 

yfi :I I:. .. r~ yP :I r y~.. Ir .. r f3 yP , a. ;41 a.p C1 'a. a.p 

where by equation J-7 

Also 

Since yfJr f3 is a scalar quantity 

ya.(yf3rfi ), a. = ya.(Y~a.r~+ Ir~;a.) 

== 'loT a. yf3r ~ - yQ.y~r Q. r p + yGyfir 13;a. 

where we again used J -7 for {G. 
Putting theee relatione together equation M-IO become 8 

{_gQ.fi[~Q.V'f3- r~\7p] + ga.fi [zr(3V'Q. + I"a.;f3- ra.r f3] 

(M-ll) 
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where we have split yay 13 into symmetric and antisymmetric parts 

In appendix V we 8how that 

(M-IZ) 

The gravitational Dirac equation M-ll becomes 

For the choice c. i the spin-zero equation M-4 becomes 

(M-14) 

By comparing equation8 M-13 and M-14 we see that we are left with the 

additional term in the Dirac equation 

gC
13[ Zr C 'V ~ + r c.~]ljJ 

- gC~r cr f3ljJ 

(M-ISa) 

(M-ISb) 

To study the Dirac terms .w~-15, we note that the matrix r c 

is given by appendix III. equations 13 and 14; 

(M-16a) 

or 

(M-16b) 
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Using equation M-16b we see that the Dirac term M-lSa is 

purely a spin term. 

a.j3[ os ] - -
g .r a. 'V ~ + r Gel' = AfJ." YIJ; Y" (M-17) 

where 

(M-17a) 

To lowest order in K the Dirac term M-15a reduce s to 

gG~[ zr 0. 'V 13+ r G:f3]~ 

K [ 1--= '4 'V .h"A. .,. + h"A. IoL V' 0..1 "t!: Y,,~ (M-IS) 

which i8 in close a.nalogy to the electromagnetic term M-Sa. 

The Dirac tel'm M .. lSb is more dWicult to handle and harder 

to interpret. Using equation M-16a iol' r a. we get 

_gGj3r a.I" j3lJi • .. isCi~(r a.r ~- r j3r Ci) "" 

1 a.j3 
• .. 101 (bAo". a.b~ + r v. ~)(ba6. j3b6p + r a. j3p) 

x i [lit:i' + lla li] 

From appendix II. equation 14, we have 



Writing 

and noting that 

we get for the term M-15b. 

(M-19) 

where 

(M-19a) 

(M-19b) 

To lowest order in K M-15b becomes 

~ K2 _ 
_ gtA r (Lr 13 = - 1l:) hVCL, .... haG, P '\ .. vpo 'Vs l\J 

K2 
- T (hVCL, .... hVCL, ...... hVCL, .... hloLa.. v)~ 

At first it appear. that the quantity C4s may not be a spin term 
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{or it involves no y matrices. We might try to include CljJ in the 

spin-zero part of the equation by adding the term 

(M-Z1) 

to the Lagrangian M- 3 for the spin-zero field. This would just lead to 

the • quati on 

(M-ZZ) 

for a spin-zero field, and CljJ would not be considered as arising due 

to the spin of the electron. 

This is not the corl'ect intel'pretation of the term CljJ as may 

be 8een by investigating the transformation properties of the tel'm 

<_g)1/2ccpZ which we were supp08ed to add to the spin-zero Lagrangian. 

U we suppose that under a coordinate transformation 

C - C -+ 6C 

then from the transformation of (.g)1/2 and the 8calar field ({J given 

in equations L-l 

liz 1/2 liz p. liz p (-g) - ( .. g) + ( .. g) '1 + (-g) '11 ,p .p 

cp - cp + cp "p , p 

the transformation of (_g)l/ZCcpZ h 

(_g)l/ZecpZ _ (_g)l/ZCcpZ + [ "lP( _g)l/ZccpZ] 

1/2 2 + (-g) cp (oC - C TJP) , P 

, p 

(M-23) 



Since the change in (_g)l/ZCcpZ must be a pure divergence in order 

that the action be unchanged under coordinate transformations, we 

must have 

6 C • C TIP (M-Z4) 
• P 

To lowest order in K, C is given from equation M-ZO 

To lowest order in K the transformation of the fields hj.1 v is given 

by equation L-6 

(M .. ZS) 

Ueing M-ZS we aet the change in C, to lowest order in K, to be 

6C • 2Kh (4'\ .. ..., ) va. j.1 'I v, .,. ".,.. v • (L (M-Z6) 

6C is an order of K larger than C TJP and does not satisfy equation , p 

M-Z6. Thus U the quantity (_g)l/2c.;cZ were added to the curved space 

Lagrangian for a spin-zero field, the resulting action would no longer 

be invariant under coordinate transformations. We therefore conclude 

that the appearance of the term Cq; in the Dirac equatiOn is due ex

clusively to the properties of the spin of the electron. 

Collecting the results of the last few pages, we can write the 

gravitational Dirac equation in the form 

{-gG(3[\7(L \7~ .. r:~\7 p] .. ~ R}q; 

+ Aj.1V ~tI; Yv + B YS + C}~ = mZq; (M-Z7) 



where A ,B and C are given in equations M-17a, M-19a. and 
fJ.v 

M-19b respectively. Comparing with a possible equation for a spin-

zero field 

(M-14) 

we conclude that the terms 

{A Y Y + B "5 + C}4J fJ.v .... v 
(M-27a) 

arise due to the effects of the spin of the electron. 

To order K, or in the linea.r approxLnation, only the term A 
\-Lv 

remains in M-Z7a and the spin term is given by 

K[ ] --"4 \l a.hva., .... + hva., .... \] a. "l* 'I v 1.!J (Iv: -18) 

The terms {BY'S + C}t\J are of order K2, and to that order are given by 

K2[ 1 (h h t ) '\1 .,.1 (h h - h h )] tI; - n; a.v, .... aa., p .... vpo, '5" ... va., .... vo.,.... va., tJ. jJ.a.. v ., 

Finally, the linear approximation to equation M .. Z7 is given by 

K -- 2 ;. ...,.. (Zh \l + h ) Y 'I tIl = m W 
":# a.v,1.l. a. a.v, CI.jJ. :...:.t:....:.!' . 
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J.d. Dirac Equation for an Electron Moving in the Gravitational 

Field of a Point Mass - Nonrelativietic Lim.it 

:F'or a more detailed investigation of the effects of the spin of the 

electron, it ie instructive to consider the nonrelativistic limit of the 

linear gravitational Dirac equation. The fact that we are dealing with 

the linear equation and can neglect terms that involve the product of 

two gravitational lield components allows us to proceed to the non-

relativistic limit in about the same way as for the electror'tmgnetic 

Dirac equation. The only difficulty is that the gravitational field has 

co many components that the result ia very long and would require an 

elaborate investigation of the physical effects. 

Rather than consider the electron l".c'loving in an arbitrary gravi-

tational field, the results are far simpler if the electron moves in the 

field of a stationary point mass. Such fields are experimentally ob-

served and there are still effects due to thesrin of the electron. 

v.e may use either the first order £Or)('::l of the Dirac equation 

M-I, or the second order equation 1\'-28. It turns out to be slightly 

easier to handle the first order forr::... The linear expansion of }Yt-l io 

The gravitational field arising froJ.:!'! a stationary point mass is 

given by equation B 2-18 

~.~: 

"?h Kh K' h K' h 2 \ 2 _"-If\' 
.l:'\. 11 = , 22 = >- 33 = ',~. 44 = .:,~ = - r 

where Q is the :Newtonian potential. t sing these fielda the three di-

mensional form of equation Ml-l becomes 



where the latin letters stand for three dimensional quantities. For 

example 

(M-3) 

Multiplying Ml-Z through by 'Vt we get 

[(l-¢)E - (l+q'»Q.Pi - ~ ~ i(1· - 'V m] ~ = 0 
1 '" 1 t 

(1\111-4) 

where 

and we have defined the operators Pi and E by 

E = i'V ( .Ml- 5 ) t 

If ~ is a stationary state, E is no longer an operator, and 

where V is the kinetic energy of the electron. (Since \~\4) = o. E 

will not operatr- :>n cJ;.) 

In terms of the two component electron wave functions l/Ja and 

4i> and the Pauli spinors a, 
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equation Ml-4 becomes the two equatio!.'l.s 

(l-fb)ElJi - mlJi - (j • TrilL = 0 a a Tb (Ml-6a) 

(Ml-6b) 

where· 

(Ml-7) 

Using E = M + v; equations Ml-6 become 

(lVil-Sa) 

(l\il-8b) 

Substituting for ~ in equation Ml-8a we get 

"\' I 1 .1. E' . 
1". 'Pa = (J. Tr W _ E¢ + 2m (j. Tl"'t'a -I- fj/'Pa (Ml-9) 

This is the same form as for electromagnetism. with the electric 

potential V replaced by E¢. and the momentum operator 

replaced by 

Due to the similarity of the electromagnetic and gravitational equations. 

we expect similar effects such as spin orbit coupling. 

Vie shall expand equation !::J-9 to order v 4. Assuming that the 
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kinetic and potential energy of the electron are of the same order of 

magnitude as in the gravitational hydrogen atom, we have 

or we shall take ¢ to be of the order of z v • Expanding the fraction 

in lvll-8b we get 

1 1 V - E1; 
'V' - E~ + 2m :::r: 2m - 4m Z + ••• 

Equation Ml-9 becomes to order v 4 

Uaing the relation 

(0· A)(a· B) = A· B + io· (A x B) 

we get 

(0· 1T)(a· 11") = 1T. 1T + ia· (1T x TI') 

Since f/J is a l/r potential ¢ .. = 0 and 
,11 

or 

ia· (1T x Tf)\jJ = 0 a 

Z 
1T. Tf = (1 + Z¢)p 

1. 1. 
(a· Tf) = (1 + 1.q,)p 

To lowest order equation Ml-IO is 

( Ml-lO) 

(Ml-ll) 

(Ml-l1.) 
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Z 
Wlj;a = [fin + m¢] Ij;a (M-13) 

Using M-13 to replace \,\t on the right side of A.1l-1D. taking care that 

W is treated as a number. we get to order v 4 

or 

Z Z Z Z 
W q,a = {M¢ + f/J fro + (1 + Z~) fm - ( im Z + ~~ ) 

Now the correct normalization of the wave functions is 

(. 11& 3 
\Ij; Ij;dx=l 

.) 

From equation MI ... 8b to lowest order in v we have 

. Z I ( p)Z'I'aZ 
4b = -::--z 0" 't' 

4m 

or 

ZpZ Z 4 l\Jb = ~ Ij;a + terms of order v 

The normalizing integral is now 

r' * Z 3 J 4Ja [ 1+ :mZ ] 4Ja d x = 1 

By the substitution 

(Ml-14) 



z 
x = [ 1 + ....e., ] ~ or 

8me. a 

z 
ljJ =[1- P ]x 

a 8m2 

the normalization integral is simply 

f'. 3 
JXXdx : 1 

(Ml-1S) 

(Ml-16) 

substituting [1 - p2/8m2] X for y in equation 1v'1-14, and a 

noting that to lowest order 

2 4 l 
Vi -!-z X = -~ X .. m¢ ~ X 

8m 8m 8m 

we get no change in the form of Ml-14. Thus we may consider I./Ja 

normalized to one, or replace I./Ja by X in MI-14. 

The term 1/4m(O'· p)¢(o'. p)x may be written 

1 2' <=" 4m <fJ(a· p) X - 4~ (0'. (/0) (] • p)X 

By equation M1-11 this becomes 

~ 2 . 1 
{rm P .. 4~ (9~)· P + 4.m (]. [(9¢) x p}}x 

Substituting this into equation Ml-14 we get 

2 4 

'\'.'X = ( fm - 8:3 )'" 

3 2 
+ {c(m t =tm )x 

+ ~ (J. [(9 ¢) x p] X 
"in. 

- ~ (9¢)· PX 

(a) 

(b) 

(c) 

(d) 

(M1 .. 1?) 
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where 

S 11= 3 
X X d x :: 1 

The interpretation of the terms in ~U-17 Is as follows. The 

terms (a) and (b) are independent of the spin of the particle. In fact 

if we dropped (c) and (d) we would just have the equation for a spin-

zero particle as may be checked from equation .M-4. 

(a) is just the kinetic energy of the particle, which is pZ /Zm 

plus the relativistic correction _p4/8m3. The first part of (b). namely 

m¢i is just the Newtonian potential energy. To interpret all of the term 

(b) we note that to this order the inertial mass m i is just m(l + v 2/2). 

In terms of the inertial mass (b) may be written, to order v4 

Z 
cbmi(l ... v ) 

Thus we see the extra factor of (1 ... vZ) which appeared in the classical 

mechanics of the linear theory (see equation BZ-Z5). It is this factor 

that accounts lor the denection of light moving past the sun. 

We should note that we obtained Ml-l7 from a linear approxi-

mation to the gravitational Dirac equation, and therefore did not ke.ep 

any factors of ¢Z in going from Ml-Z to Ml-17. However in ap

proximating Ml-9 we assumed that the kinetic energy and gravita.-

tional potential energy were of the same order of magnitude, or 

that tb was of order v Z. Thus in dropping terms with a factor 

q;Z we have dropped a term of order v 4. But to keep such a term 

would be inconsistent with the linear approximation to 



the Dirac equation with which we started. 

If term8 with a factor q,Z are kept, we will have the following 

additional terms on the right-hand side of M-17 (to order v 4), 

2 1 
mt; X - ~ ft'> • cb • X om .1.1 

To this order there are no new terms in which a a matrix appears. 

Thus the only terms of order v 4 that may be taken seriously in (b), 

(c) and (d) of Ml-17 i8 the spin term (c). 

(c) is similar to the spin-orbit coupling term that appears for 

the electromagnetic Dirac equation. The electromagnetic spin-orbit 

coupling term that is proportional to a is 

~ a • [<P - eX) x E] X 
4m 

(MI-18a) 

For the coulomb field of a proton this is just 

ez 3 -:.--z a' (p x r) /r 
4m 

(Ml-18b) 

For the case that <; is the field of a point of mass M. (c) is just 

(Ml-19) 

Thus we have the same term if we replace the electrical force e 2/r'l. 

by the gravitational force GMm/r'l.. 

- - -Since p x r may be interpreted as the angular momentum L, 

Ml-19 may be written 

(Ml-19a) 



It is thus clear that (c) is a spin-orbit coupling term. 

N. FEYNW..AN DIAGRAMS: EMISSION OF LOW ENERGYGRAVITONS 

The Feynman diagrams for gravlty interacting with electrons 

are obtained by analogy with quantum-electrodynamics using the methods 

presented in Feynman's articles, NTheoryof Positrons· and IfCuantum 

Electrodynamics" ( 7 ) . 

Let the Lagrangian for an electron interacting with an external 

field be given by 

where '-c is the interaction part of the Lagrangian. The equation of 

motion for lj; is 

(N-l) 

The operator 0 is a quantity involving the external field components. 
p 

For example, for the electromagnetic field 

or 

o := eJ/. 
p 

IliBy definition 1l = Y A. Since we shall only deal with flat space y 
matrices in the res~ o~ this paper, we sball represent them by y 
rather than YfJ.. fJ. 
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The amplitude for t~e transition from the state q,i to the sta.te 

~f when the electron inter~ts with an external potential is given by 

the perturbation series 

+ • • • (N .. Z) 

where K+(Z, 1) is the free electron kernal to go from 1 to Z. For 

electromagnetism equation N-Z just becomes 

(N-3) 

N-3 is just the transition amplitude given by Feynman (21). 

Rather than dLfferentiating Lc to obtain 0p and then substi

tuting in N-Za, the first order transition amplitude. N-Za, may be 

directly obtained from the aetion. Suppose we rewrote the interaction 

part of the electron action so that it is a function of ~f and ~i rather 

than just arbitrary iields ~ and I.jJ. 

Since lc(iTif , ~i) is a linear function of "llif and its first derivative, 



(
a!.c ) ] (_ a[c ) • - + ljJf-
8lJj alii 

i, IJ. , IJ. it IJ. 'IJ. 

Dropping the surface term 

Writing 

we get 

(N-4) 

which is -1 times the first order transition amplitude. 

Thus we have the simple rule that we get -i times the first order 

transition amplitude by simply writing the interaction part of the action 

and replacing qi and ljJ by qii and ~i' 

The transition amplitude N-2 is for an electron moving in an 

external potential. The transition ampliutde for an electron emitting 

or absorbing quantized particles, photons or gravitons, is obtained 

by expanding the external field in plane waves. Each wave acts only 

once, the waves proportional to e +iq· x acting when the particle is 

absorbed, e -iq· x when emitted. 

For electrons interacting with gravity, the first order transition 

amplitude, obtained by replacing ~l and tjJ by \Pi' <Ji in iSc(y, LJ;) is 



+ terms of order KZ (N-5) 

To get N-17 we used the elecgron Lagrangian K-9 expanded to first order 

in K. 

Consider the case that the electron is initially in a plane wave 

state of mom.entum pi and we wish the amplitude that after the emis-

sion or absorption of a single graviton the electron is in a state of 

momentum pt. We have 

i i .p' X lV. = u(p )e 
1 

i i\7 4J. = p 4;. 
0.1 0.1 

(N-6) 

For absorption of a single graviton the field hClf3 is replaced by 

hClj3 - e Clf3e 
-iq· x (N-7a) 

and for emission 

(N-7b) 

These gravitational potentials are normalized to 2 w gravitons per 

cubic centimeter, the same normalization used by Feynrnan 

for electromagnetic potentials. 

The first order transition amplitude for this case becomes 
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... l(p -p ±q)- x3 d 4 S 
1 f 

x e x3 (N .. S) 

where the choice of +q or -q in the exponent depends on whether a 

graviton was emitted or absorbed. In either case the integral corresponds 

to (2'11')4 times a 6 function representing conservation of momentum 

at the point where the graviton was absorbed or emitted. 

where 

For the emission of a graviton. N-8 may be written 

- f K {A ~ eo.a} i 
Pfi = .. iu (p,"'2' p{3'Vo.eo.f3 + (p'" m)(-.,-' u(p) 

4 4 f i x (2'11') 6 (p - p - q) 

f i 

Pf3 == PI?; Pp = the average of the electron 

momentum just before and after 

(N-9) 

the emission of the graviton (N-IO) 

Now the first order transition amplitude for the emission of a photon 

by an electron is 

4 4 f 1 x (Z'II') 6 (p - p .. rJ (N-ll) 

Comparing N-9 with N-ll, we get the amplitude for the emission of a 

grariton (in analogy with the ampUtude (4ne Z) lIz for a photon) as 

(N-IZ) 
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The corresponding diagram is 

q 

:F'igure 1 

Iterations of. the first order matrix element corresponding to 

the second order transition amplitude of equation N-Zb follow in a 

manner similar to ele<!trodynamics. The diagram for N-Zb to order 

KZ is 

where 

i 1 p .. q 

1 
q 

K {AZ 2 "'}2 eo.a. 
~ p"Ya.ea.~ + (p .. m)( ... -r)} 

K "'1 1 A1 ea.a. 
"'Z {PI3Yctea.13 + (~ - rn)(.-r)} 

Figure 2. 

(N-13) 

One difference between gravity and electrons is that for gravity 

we have bigher powers of the gravitational field in the intera.ction 

Lagrangian. This means we will bave the possibility of emitting or 

absorbing two or more grantORS at one point. 

Let us consider the absorption of two gravitons at a single point. 

We obtain the ampUtude for this process by expanding the interaction 
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part of the action to second order in F ... and proceed as we did for 

one graviton. One term in the action that offers some new problems 

is the last term in K-9 

.1 _ """:T. a a b dx .). 1/'- 4 
'4 • (g) 4'fY~ Yv Yp ~i p{3 o.v ~a.,f\ 

Expanded in terms of h we get to lowest order 
tJ-v 

The diagram for the absorption of two gravitons is 

f 
p 

i 
p 

Figure 3 

(N-14) 

To obtain the transition amplitude we expand the external fields h~o. 

and h in plane waves, each of which acts only once. 
Vel 

1 Z 
h = e e .. iq . x + e e -iq • x + ••• 
~o. ~o. ~o. 

i 
1 . Z - q • X -lq • X 

hV(L = eVele + e Vo.8 + ••• 

For the case shown in fig. 3 where Olle graviton carries in a momentum 

1 Z q and the other q. 



(N-IS) 

The transition amplitude becomes 

Since YI;I; YvYe is antisymmetric in .... ' v and p, N .. 16 may be writte~ 

2 
K - (f) (.ll.lZ 1 2 - f -1"10 u p Yl!: 1i .. 1i hv e~eva. u (p ) 

x (Z1I')4&4(pf _ pi _ ql _ q2) (N .. 17) 

Comparing this with equation N-9 we see that the amplitude for the 

absorption of two gravitons corresponding to the term N-14 is 

(N-IS) 

By a similar calculation we can expand the rest of the action to 

order K2 to find the complete amplitude for absorption of two gravitons 

at a point. The resulting amplitude for the absorption of one or two 

gravit ens at a point is given by 
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(N-19) 

.... 
where p always stands for the average of the electron momentum 

just before and after the point of absorption. 

To use formula N-19, we must symmetrically treat two gravi
K2 

tons arriving at a point. For example, the term -r- e e ~ ia to be 
~ ~ pp u~ 

K2 1 2 K~ 2 1 
written 7 e ppea.f3 + 7 e ppeu13· If we wish one of the gravitons to be 

emitted, we change the sign of the momentum of that graviton but 

maintain conservation of momentum. V{e also note that if gravitons are 

converging on a single point, and the electrons entering and leaving 

that point are free. then (~- m) = O. That is because 

f ..' £ ,,it i i u(p )pU(pl) II u(p )(-r-)u(p ) I: umu 

ExpUcitly the diagram for two gravitons being absorbed at a 

point is given by equation N-19 

Figure 4 
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Suppose one of the particles is a positron rather than an 

electron. For example, one of the diagrams for two-graviton pair 

annihilation is 

f 
P 

Figure 5 

The matrix element for fig, 5 is exactly the same ao for fig. 4 except 

that the signs of ql and qZ are changed since the gravitons are emit .. 

ted, and pi is the negative of the four tr.lomentum of the positron. 

For example 

~i -+--
1:' = (E _ 'If' p _ • 'I) 

.if . -- - .i 1:' == ... (E ,,~ ... P • Y) ail ... 1:' 
+~ + + 

The conservation of momentum 

now becomes 

The quantity P(3 appearing in equation 

i £ i + 
Pf3 + P(3 Pi3 - P(3 

= 2 2 

... 
Pj3 = 

(N-ZO) 

N-19 is now 

(N - 21) 



-1t5 -

To order 1(2 there is another possible type of diagram repre-

senting the interaction of two external gravitons with an electron. This 

diagraIn represents the possibility of gravity interacting with itself, 

and is of the forIn 

Figure 6 

This diagram will be described in the next part when we consider the 

scattering of gravitons by electrons. No such diagrams appear to first 

order in K. and we may correctly consider the emission of a single 

graviton by an electron using formula N -1 '1. 

Let us consider low energy gravitational bremstahlung when an 

electron is scattered by some potential V. The Feynman diab:"';;;''::J.,~ 

for the processes are 

f f 
p p 

V q 

V i P -q 
V 

f 
P +q 

V 

i i i 
P P P 

Figure 7 Figure 8 Fig'.lre ') Figure 10 
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Figure 'I ia the diagram for the process without the emission of 

gravitons. Since there is an energy of interaction between the potential 

V and the electron, the diagram of fig. 10 represents the possibility 

of graviton emission from this energy. Gravitons may also be emitted 

from the potential V, but these are being neglected now. 

The amplitude for the diagram of fig. 8 is proportional to 

2 2 2 
Since p = m and q = 0, the propagator beco:..nea 

• 1 = pi-~+rn 
f - i - m -2p. q 

which in the limit of low energy gravitons goea as l/w. To calculate 

the amplitude for emission low energy gravitons, we may neglect q 

in comparison to p in the numerator of N-22 with the result 

(N-23 ) 

The term (~, - m)enQ. u(pi) does not contribute in this limit since 

The term in the square brackets of N-23 may be written 

(N-24) 

i Ai" where we have replaced mu(p) by , u(p ), and approximated p~ by 
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i 
PI3. N-Z4 may be written 

Thus the amplitude N-23 becom.es 

K - f iii 
- u(p )V(e AP PA)U(P ) 
Z 1 el,.. (l ,., p.q 

(N-Z5) 

i i 
Since ea.~PQ.P13 does not involve " matrices N-25 becomes 

(N-26) 

The term in the square brackets is just the amplitude for the 

scattering of the electron by the potential V without the emission of 

gravitons, corresponding to the diagram of fig. 7. If we call this 

amplitude A, then the amplitude for fig. 8 in the low frequency limit 

is 

(N-27) 

where 

(N-27a) 

The amplitude for the diagrv.m of fig. -) is similar to that of 

fig. 8, except that / \S replaced uy /. and the overall sign i.s 

changed since the propagator is now for the virtual momentum 
f p+q 

rather than pi. q. The amplitude for the two di.agrams of fig. 8 and 

fig. 9 is 
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K 
M =rw Aa (N-28) 

where 

(N-28a) 

Since (pi. q)-l and (pi. q)-l go as l/w as w - 0, the quantity 

a of N-Z8a is finite in the limit of w - O. Thus the amplitude N-Z8 

diverges as l/w and we get an infra-red bremstrahlwng from the 

diagrams. From the dic..t;ram of fig. 10 we have no electron pro?a-

" -1 
gator, thus no factor of (p. q) • As long as the momentum trans-

ferred to the electron by the potential is much larger than w, we have 

no infra-red divergence for this diagram and it does not contribute in 

the low frequency limit. 

By similar arguments Feynman showed that the amplitude for 

low energy graviton emission from a spin-zero particle is given by 

where 

K 
M=~Aa (N-29) 

A = the amplitude for scattering without graviton emission 

i i 
",~- P1Pv e v a = w' 
"( p. q ~ 

where the sum over i is the sum over all incoming particles, minus 

the sum over all outgoing particles. 

It is easily checked that the amplitude of emission of a'low fre

quency graviton from a photon is of the same form as N .. 28. Thus the 
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formula for low energy graviton emission will be independent of the 

• type of particle or the kind of force scattering the particle. 

In terms of the amplitude for a given process. M. the transi-

tion probability/second is given by 

p - 1.!. IMll 
fi - II(N) P 

where p is the density of final states and iH!'.:) is the normalization 

factor. For example we have normalized u u to 2M, or the quantity 

• u u = u"" u = 2E t 

Thus we have normalized the electrons to 2E per cubic centimeter 

rather than one per cubic centimeter. and this normalization factor 

ZE is divided out in j](N). As we mentioned after equation N-ZO, 

the gravitons are normalized to 2w gravitons per cubic centimeter 

and this 2w is likewi. se divided out in ;-:(N). Thus il (N) is given by 

the product of twice the energy of all the ey.ternal particles. 

Now the transition probability for the scattering of an electron 

without the emission of gravitons, corresponding to the diagra..'"ll of 

fig. 7, is 

F - 1.!.. IA 12p 
ii - r~(N) 0 

Granting that such a scattering has occurred. the mean: number of 

gravitons of polarization eC1~' momentwn q, emitted per scattering 

• • The author has not explicitly checked thiS statement for the case that 
a graviton itself is the source of the infra-red gravitons. 
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is, for ernall w 

J-[ /aI2~] p dw ,w 4w' g 

where p Ct' the density of final states of the graviton .,. 

The number of gravitons emitted per collision is therefore given by 

where in general 

dw xw (N-30) 

(N-30a) 

The sum over i is the sum over all incoming particles minus the awn 

over all outgoing particles. As we have seen equation N-30 applies not 

only for incoming and outgoing electrons, but all spin-zero, spin-one 

half and spin-one particles. 

The radiation formula N-3u is discussed in considerable detail 

by Feynman in a letter to V/eiasko?f (21), including comparison to 

classical calculations of gravitational radiation. 
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O. SCATTERING OF GRAVITONS BY ELECTRONS: GAUGE 

INVARlANCE 

In this part we shall describe the scattering of gravitons by 

electrons. We will not be as interested in the resulting cross section 

as we will be in using the calculation as a check of the rules for dia-

grams given in the last part. In fact we shall only give the amplitude 

for the scattering of gravitons by electrons since this amplitude is 

rather complicated. 

The check of a calculation with gravitons involved is similar 

to the check of a calculation in quantum electrodynamics for gauge 

invariance. For electrodynamics the interaction part of the action 

/, 4 
S=-\JAdx 

c J IJ. IJ. 

is unchanged under the substitution 

A - A + X 
IJ. IJ. , tL 

because the current J is conserved. I. e. , 
.... 

I 4 r 4' 4 - j J (A + X )d x = -', J A d x - J X d x 
.,. IJ. , iJ. .; 1-1. J.L iJ. • J.L 

where 
r. 4 r 4 
\ J X d x = \ (J X) d x = 0 .. tL ,IJ. ,IJ. ,IJ. 

since 

J = 0 
IJ..J.L 

In quantum mechanics this means that whenever we have a photon 

emitted by a conserved source, the cross section for the emission of that 
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photon will be unchanged if the photon t Iii potential A is replaced by 
jJ. 

A + X • In term8 of Feynman diagrams the cross section lor the 
jJ. .jJ. 

process 

conserved 
source 

Figo 11 

ia unchanged if we make the gauge transformation 

e - e + q ~ (0-1) 
jJ. jJ. jJ. 

in the matrix element of the diagram. The quantity ~ in 0-1 is the 

momentum space representation 01 X. 

We may U8e the same procedure to define gauge invariance when 

gravity interacts with matter. From part E we have the Lagrangian for 

gravity interacting with matter, 

L = F2 + (F _ F2) + L 
mg 

(E-l) 

where F = R(_g)1/2 /2K2, and F2 is the Lagrangian for the linear gran-

tational fieldso The gravitational wave equation from E-l is 

6F = K _ 2~ _ 2 6(F-F) = I<. T 2 [6L 2 ] . 
6hjJ.v ~ ~ 6KhIJV '"! J.1v 

In terms of hf.1V this is 
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1 l h + (11 + 1i 6 h ) 1 - K T 4' - J.1".erer O)I,er" O'''.er..,. - vV per, pc - ~ tJv 
(0-2) 

Equation 0-2 is consistent only if the source term T
fJ

" is con

served. The consistency of the gravitational theory has been demon-

atrated in part D. thus 

Consider the following action 

(0-3) 

, 2 ' 
in which we consider the gravitational fields hf.1" in F (h

fJ
,,) separately 

from the gravitational fields hJ.1" involved in the source term T tJ.,,(h .... ,,). , 
Variation of 0-3 with respect to h .... " just gives 

I [}i' + (li' + Ii' _ o}i' )] K ( 
'4 J.1" .erer tJ er. "a 0''' .er J.I t.!." per, per = 'T T tJ" h .... ,,) 

(0-4) 

which is just the correct gravitational wave equation if we drop the primes. 

The action 0-3 is now iit.variant under the gauge transformation 

, , 
h .... " - h .... " + " ..... " + TI". tJ. 

( 0-5a) 

(0-5b) 

0-5 is similar in form to the gauge invariance of the linear theory given 

in equation B-2. From the action 0-3 we see that it is the gravitational 
, 

field h .... " that is emitted or absorbed by the conserved source T .... ". 



The gauge invariance of a proce8s in which a graviton is emitted or 
, 

absorbed will be tested by replaCing the field htJv of this graviton by , 
hv.v + n + ,., • ·tv.. V ·tv. V. The fields in the source are not to be changed. 

We shall see that a source T v emits the gravitational wave po 

Thus the diagram for the emission of a graviton from a conserved 

source 

conserved 
source 

t 
Il V 

Fig. 12 

To check this diagram for gauge invariance. we replace the field eV.v 

of the emitted graviton; 

(0-6a) 

or 

(O-6b) 

This substitution iii made only on the external graviton. and the result 

should be that the cross section for the process is unchanged by the 

substitution 0-6. 

Before calculating the amplitude for the scattering of gravitons 

by electrons. let us return to the exact wave equation 0-2. 

I [ 'Ii + (Ii + 'Ii 6 Ii )J' = K (Tg + Tmg] 
'4 - v. V. 0"0' O'Il.a v av.a !J. - \J v pO'. pa "! JJ.v !J v 
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where 

(O-?a) 

Tmg = -26L /6Kh v 
fJv mg I.!. 

(O-7b) 

The momentum space representation of 0-2 is 

(0-8) 

where t~v 
mr:t 

and T\lVo. 

and tmg are the momentum space representations of Tg 
fJv I.!.v 

Since the source [t~v + t~g] is conserved, 

A solution of 0-8 is 

'" 

The solution 0-9 is of the same form as the solution for e!J.v 

given by equation B3-5 for the linear theory. The only difference is 

that we now have an exactly conserved source, while in the linear theory 

we made the approximation that the incomplete source was conserved. 

In the linear theory the matrix element for the interaction of two energy 

tensors t
fJV 

and sfJv was given by 

.2 1 -M=l\.s ~t 
~V G "v . q r 

(B3-7) 

'The steps here are entirely similar to those for the linear theory. For 
a more complete description see part B3, equations B3=5 and B3-6. 
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Replacing the linear approximations to the energy in B:3-7 by the com

plete tensors (t~v + t::,g) and (s~v + 8:::'8), we get the matrix element 

for the interaction, 

(0-10) 

From equation 0-10 we see there are new types of interaction 

not considered in the linear theory. 

K
z mg 1 -t 8 

B ltv l v 
r- q J1 

Consider the term in 0-10 

(0-11) 

Suppose that _:;g is the energy tensor of an electron, and t~v is the 

energy tensor of an external graviton passing by the electron. The term 

0-11 represents the possibility of the exchange of a virtual graviton be-

tween the electron and the external graviton. 

To obtain the diagram for this process, we expand the tensors 

s:v
g 

and r:v in orders of K. To lowest order in K, t~v is just the 

energy tensor of a single graviton, and s:::,g is 8~V' the energy tensor 
, 

of a single electron. The diagram is therefo re 

K K 
1 

t 
q 

Fig. 13 

We see that this diagram corresponds to the scattering of a gravi-

ton by an electron. This type of diagram does not have an analogy in 
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electromagnetism and was not included in the last part. This is the 

only diagram for the gravitational <?ompton effect that has a factor of 

2 l/q. For small momentum transfers of this diagram will be dominant, 

and at zero momentum transfer will lead to an infinite cross section. 

Let us now obtain the quantity t~v (to lowest order in K) that 

appears in the diagram of fig. 13. t~v is the momentum space repre

sentation of Tg given by 
fLv 

Tg :: -Z6(F - FZ)/oKh 
tJ.v ~v 

(0-7a) 

The gravitational Lagrangian F = R(_g)I/2/2K2 may be expanded in the 

series 

where KF3 is of order K smaller than F2 etc. This series is 

described in considerable detail in parts C3 and C4. To lowest order 

in K the quantity (F - FZ) is just KF3 , given in equation C3-6. The 

source term 0-7a to the lowest order in K is now 

(0-13) 

where -6F3/6htJ.V is given explicitly in equation C3-9. 

A typical term of F3 is 

I h h h 
'§' a.f3 ,a o.t> ,a p p 

(0-14) 

fg 
T fLY for this term is 
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(0-14a) 

If we label the gravitons on the right-hand side of fig. 13 by 

e~v, e~", and e!v ' and in analogy to electromagnetism assign a 
+iq. x -iq· x factor e for emitted gravitons~ e for those absorbed, we 

have for this part of the diagram 

1 e 
tJ.v 

Fig. 14 

, 
To obtain the momentum space representation of the source Tf.1~ we 

expand the classical fields hflV appearing in 0-13a in plane waves. 

'g 
Using the rule that each of these waves acts only once, we get for t tJ.v 

corresponding to the diagram of fig. 14 

(O-l4b) 

, 
There is a more direct method of obtaining ttJ.~ than the one out-

lined above. The action corresponding to our typical term f3 is 

(O-14c) 
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Suppose the action O-14c is directly expanded in plane waves corre-

sponding to the diagram of fig. 14. We get 

4 4 3 1 2 x (2 .. ) 6 (q - q + q ) (O-14d) 

Eliminating q3 by the 6 function 0-14d nlay be written 

(0-14e) , 

The (211')4 ie taken care of in the cross section. Neglecting the factor 

(2 .. )4. _ ~ t~~ i8 obtained directly from the action as the coefficient of 

the polarization vector of the emitted graviton. Thus we may write the 

momentum space representation of the action O-l4c as 

K 3 • - ..... e t g 
c. fl" fl" 

(0-l4d) 

The momentum space representation of the complete action corre-

sponding to fig. 14 will be 

S 3 4 K g 3 Fdx-- ..... t e 
c. fl" .... v 

In a simUar manner the energy tensor of the electron s .... " is obtained 
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)
.. 4 

directly from the electron action L d x by the formula . rng 

The expansion of the action S Lmgd4X or equivalently S Lcd4x 

ia given in the laat part by equation N-9. The amplitude for the emis

sion or absorption of a graviton is given by N-ll and is proportional to 

the coefficient of e!13 in the expansion of the action. Thus we have 

taken the amplitude for the absorption of a granton from an electron 

to be - ~s~ • corresponding to the diagram 

Fig. 15 

In a similar manner we take the amplitude for the emission of a 
3 ~ 3 4 

graviton from a granton to be the coefficient of elJ-v in j F d x. or 

aa - ~ t g 
t:. IJ-" 

Fig. 16 
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From equation 0-11 the amplitude for the interaction of a graviton 

with an electron via the exchange of a graviton is given by 

If we take 

K 2 m 1 -tg 
S "" ---r " r q ~ 

K m = (- ""11") s 
G ~" (-~)t~~ 

(0-15 ) 

(0-16) 

as the propagator of the graviton then we may put the diagrams of fig. 15 

and fig. 16 together to get the diagram of fig.- 13. 

We should note that the above analysis which leads to 0-16 as the 

propagator for a graviton is based on the solution to the wave equation 

given in el~l.1&tion 0-8. This solution relied on the assumption that the 

source of the emitted or absorbed graviton is conserved. If the source 

or absorber of a particular virtual graviton is not conserved we must 

deal with the full wave equativn 0-8. For the diagram of fig. 13 both 

the source and absorber t~" and s~ of the virtual graviton have a 

divergence which is higher order in K. We are calculating the diagram 

to lowest order in K and may assume that these sources are conserved. 

We are now in a position to calculate the gravitational Compton 

effect. The diagrams fvr the process are 



f 
p 

i 
p 

I 

f 
p 

II 

/e,c 
~ 

~'b 
IV 

Fig. 17 

III 

where we have chosen the sign of the graviton momenta to represent 

the absorption of these gravitons. 

We will use the following notation. Band C are the p01ari-

zation tensors of the two external gravitons and band c are their 

associated momenta. 

1 
b=q 

The variable p will be the average electron momentum 

i + f 
P - P P - 2 

(0-17a) 

(O-17b) 

To eliminate the complication of subscripts in the calculation 

we shall use a form of matrix multiplication. explained by the following 
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1 
"V 0. eo.f3pf:3 = "V Bp 

1 2 
"V0.8a.pepj3pp = yBCp 

e!p "VQe~(3p" = (C)y Bp 

ple~(3e!f3 = ,J(BC) 

(O-l7c) 

In this notation capital letters with the exception of K represent ten-

sors; small letters, vectors. A capital letter surrounded by two small 

letters represents the dot product of that tensor into the two vectors. 

A parenthesis around capital letters indicates that the first subscript of 

first tensor in the parenthesis is dotted into the last subscript of the 

last tensor. 

The amplitude for absorption of gravitons by an electron is given 

by equation N-3l 

1 A 3K2 K Z 
'! {Pf3"Va.[ Ken,,- -:r enpe p(3 + T e ppen(3] 

A K2 K2 
+ (p - m)[ -KeQn + r eo.o.e 1313 + Z eo.(3eQ(3]} 

(N-3l) 

... 
where PI' is the average of the electron momenta just before and after 

the point of emission of a gravitono 
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In the notation described above, the amplitude for the diagrams 

I, II, and III of fig. 17 are 

K2 b '1 ~ 
(I) = T[(p +c)Cy +y(C)] 2 [yB(p -I) -y(B)] 

P +)I-m 
(0-18) 

(0-19) 

K2 3 3 
(III) = T[ - l'Y BCp - l' yCBp + (BhCp + (C)(y Bp) 

(0-20) 

After some standard algebra the sum of these three diagrams is 

given by 

+ 1 c (p + ~)C(2Yp + by - yc - )I + llti)B(p - 1) ) 
2b(p - 'I ) 

+ the same terms with B exchanged for C, b for c 

(0-21) 

For additional examples of notation, we have 

pC",Sp = ~pC Bp 

Suppose we try to check these terms alone for gauge invariance. 
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We do this by replacing the polarization tensor etJY for.2!!! of the ex

ternal gravitons by 

(0-6a) 

Under this 8ubstitution the cross section should be unchanged provided 

we have all the diagrams for a real physical process" Let us make this 

substitution on the graviton B, 

B - B + bs +;b 

or if we replace B by bt +;b we, should get zero. 

Making the substitution in 0-21, 

B - b£ + ~b (0-22) 

we do not get zero. In fact 0-21 becomes under this substitution 

B - b~ + ~b 

K2 
(I) + (n) + (IIt) - T [ -2(pCS)~ - 2(gCy)bp - 2(pCy)cs] 

(0-21a) 

Thus the diagrams (1) + (II) + (III) alone are not gauge invariant and there-

fore do not completely describe the Compton effect. 

To get a gauge invariant amplitude we must include diagram IV. 

From equation 0-14 we see that we get 

by expanding ~ KF3d4x in plane waves. Let F3 be represented by the 
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diagram 

Fig. 16 

where A is e!vo 

In terms of the fields h .... v • F3 is given by equation C3-6 as 

To expand F3 in plane waves we take all pos sible combinations of each 

term. (For reference. see the example given in equations 0-14c and 

0-14d.) Using the notation described in 0-17. the momentum space 

representation of F3 is 

+ (CA)aBa + 2(ABC)cc + 2(ACB)bb + 2(ABC)aa - 4cA~Bc 

- 4b.A~Cb - 4aBACa + 4c~A~ + 4a'A'l!'"e'c + 4aA ~ 1Jb 

+ aAa(BC)+ b~b(AC)+ c~c(AB) + ~ aAa(B)(C) 

+ ~ blrb(A)(C) + ~ c~c(A)(B)] (0-23) 
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In equation 0-23, the coefficient of e
3

• or A is -!i t~v. More 

conveniently, the coefficient of A is - .!it~v. Since the electron in 

diagram IV is free, the matrix element for diagram IV is from equation 

0-16 

(0-24) 

This matrix element may be obtained simply by replacing A or i~v 

in 0-23 by 

-3 
e -.... v 

As, an example of the substitution 0-25b we have 

K K2 
"'! aBACa - -::--,; [(aByHpCa) + (aBp)("Ca)] 

2a 

(0-25a) 

(0-25b) 

Before making tbe substitution 0-25b in 0-23, we note that 0-23 

may be simplified. Consider the factor 

~,.. 3 3 
&I\. • q_ e 

l.l Ilv 

Under the substitution 0-25a this becomes 

(0-26) 
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This expression is zero because 

-(f..J3 i -fA Ii. i-up)", u(p ) = u(p )(,~ - ,r)u(p ) = u(m .. m)u = 0 

and 

i f i f iZ fZ Z Z 
Zp· q = (p + p ) • (p - p ) = (p) - (p) = m .. m = 0 

Thus any expression in 0-Z3 containing a factor aA is zero. 

We al80 have conservation of momentum which gives us the re-

lation 

3 Z 1 
~=-~-'\t 

a = - b - c (0-Z7) 

This relation CaD be used to eUminate a in o-Z3. There are various 

manipulations possible in 0-Z3. For example, we get 

(AC") = (XC) 

(!,C) = (BC) .. t(B)(C) 

by manipulation of the operation -bar". Using conservation of momen

tum and the fact that aA is zero, we can get 

bj( = - c1r etc. 

A convenient form for 0-Z2. using aA = 0 is 



-189-

3 K IT "T"'" KF = tr[ Z,.t-'.C)c:Bc + (BC)b.f'ob + Z(.liBC)bc 

- 4CACBc .. ZcBACb] (a) 

+ the same terms with B exchanged for C, b for c 

+ ~ [4bZ(ACB) - bZ(C)(AB) .. bZ(A)(CB) .. bZ(B)(AC) 

+ t b 2(A)(B)(C) + 2b~b(AC) + 2b'!'c(AC) .. b"m,(A)(C) 

.. 4blJ"XCb + ZblJCb(A') + Zbl!A'b(C)] (b) 

+ the same terms with B exchanged for C, b for c 

(0-l8) 

It is more convenient to test for gauge invariance by making the 

substitution O-Zl, 

B - b~ + sb (0-l2) 

before making the substitution 0·25 b for "A. In using O-ZZ we will have 

for example 

(ABC) - ~ACb + bAC~ 

(B) - lb· ~ 

blTb - b· ~ 

Making this substitution O-Zl in part a of 0-28 (including the terms 

with B and C, b and c exchanged) we simply get 



¥ 2bc[ (7C)c .; t 2bAC~] (O-29a) 

The su.bstitution n - b~ + gb in part b of 0-28 (including the 

exchanged terms) does not give a simple result. We only get a simple 

result if we a.awne that the granton e 2,. is free. or that (q2)2 = o. p ... 

If this graviton is free it satisfies the wave equation for free fields. 

equation BI-l. This equation au.tomatically implies that q~'i!" = 0 (see 

2 
part Bl). Thus if e .... " or C is free. 

2 c = 0 

c'e' = 0 

3 
and the only part of KF(b) that remains is that shown explicitly in 0-Z8b 

without the exchange of B lor C. b for c. Under this condition KF3 

becomes under the substitution B - bG +;b 

(0-30) 

If we now make the substitution 

K 
A - -:y [Vp + py] 

a 

we get 

Z 2 
MIV(~) = f- (b + ;bC) [ Z(pC;>l' + Z(~Cy)bp + 2(pCy)ct] (0-31) 

a 

However a Z = b Z + Zbc + c Z = b Z + Zbc for c Z = O. and 0-31 just cancels 

0-21a. Thus the amplitude for the scattering of gravitons by electrons 

is gauge invariant. provided we include all four diagrams. and provided 



-191-

that the external graviton which is not tested for gauge invariance 

(namely C) b free. 

The reason that C must be £ree for a test of gauge invariance 

is as fol1ows. If C is not free, it was recently emitted from another 

source. Including this source the four diagrams of fig. 17 become 

Fig. 18 

There is however another physical process that can occur, namely 

B 

Fig. 19 v 

If the gravlton B is to interact with a complete conserved system, 

we must include the possibility of diagram V. We pointed out in de

riving the gauge test 0-6 that the external graviton must interact with 

a con.erved source for the gauge teat to work. For the case C is not 

free, we must include the interaction of B with the source of C. as 

shown in diagram V. 
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Only if C is free, or nearly free. is its source 80 far away that 

we do not need to include the possibility of B interacting with that source. 

It is then that we are able to succe •• fully test B for gauge invariance. 

Finally. we give the complete amplitude for the scattering 

of gravitons by electrons. 

K2 3 1 
M = T [ - '% ~BCp - 4 Cl.2x B 

+ 1 c (p +~) C(2~p + ~ - ~c - t" + .xb.)B(p - ~ ) 
2b(p - y) , 

+ 2 1 2 { 2~CpcBc - cBp~Cb - cB~pCb + bc~BCp 
b + 2bc + c 

+ bcpBC~ - 2cp~CBc - 2¢pCBc + bpl"(BC) + 2b2pCB~ 

+ 2b'BCbp + b'Bypb(C) + b1Jp~(C)}] 

+ the same terms with B exchanged for C, b for c. 
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VI. DIVERGENT CALCULATIONS 

The subject of divergences in the quantum theory of gravity is 

quite complicated. For the case of gravity interacting with spin-zero 

particles Feynman haa worked out the lowest order divergent diagrams 

for such processes as the gravitational self-energy of the particle, 

vacuum polarization, and the corrections to the scattering iu an ex

ternal potential. At present there are still some problems with this 

last calculation. 

Because of the added complication of the graviton-electron 

interaction, the corresponding divergent calculations are even longer 

when gravity interacts with electrons. For this rea80n we shall pre

sent only the calculation of gravitational self-energy of the electron, 

and the most divergent part of the vacuum polarization. The rest of 

the vacuum polarization calculation involves considerable algebra which 

the author has not yet had time to check. 

Harold Yura has been applying dispersion theory techniques 

to the problem of divergences in the quantum theory of gravity. This 

leads to a slightly different emphasis of what is to be calculated, for it 

is assumed that one is already working with a gauge invariant renor

mali zed theory. Thus certain renormalization constants are not calcu

lated. However the calculation of the remaining quantities appears to 

be far simpler. It therefore seems reasonable that any further divergent 

calculations involving electrons, with the more complicated electron 

graviton interaction, should be done using the dispersion theory technique. 



-194-

P. GRAVITATIONAL SELF-ENERGY OF THE ELECTRON 

The diagrams for the self-energy of the electron are the follow-

ing 

q qQ 
:;, ~ 

~ ~ ~ 
p p P 

VI VII 

q q qyq 
VIII IX 

Fig. 20 

To calculate diagrams VI and VII we will use the graviton

electron coupling N-19 and the graviton propagator 0-16. The matrix 

element for diagram VI becomes 

[ t 4 [ / 2 
x .. + 6 x 66 +6 6 -6 6 y..,.(p )v IJ.) ..,.p Vcf vp IJ.cf ..,.v p~ q (P-l) 

..1 2 2 Using p = m; p = m eince the external electron lines are free this 

matrix element becomes 
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¥[A(-4p.q + i q2) .. 4mp· q + -i mZqZ + Zm~ 

x [qZ(qZ_ Zp' q)] -1 

The matrix element for diagram VII is 

x (6 6 + 6 6 - 6 6 )/ Z] 
JiP vo 1-'-0 vp I-'- v po q 

(P-Z) 

(P-3) 

Due to the symmetry of the propagator, the term in the interaction that 

is proportional to the antieymmetric combination of three y matrices 

gives zero. The matrix element P-3 reduces to 

VII == ¥ [-~ 1 (P .. 4) 
q 

It i8 interesting to think of these two diagrams, VI and VII, as 

being obtained by connecting the external gravitons in the Compton 

effect. The relevant Compton effect diagrams are given in fig. ZL 

I II III IlIa 

Fig. 21 

U we connect the external gravitons in these diagrams by the propa-

gator 0-16, we will get just twice the self-energy diagrams VI and VII. 
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We get the factor two because connecting the gravitons of diagram I 

gives tbe same result as for diagram II. and each will give diagram 

VI. Similarly diagrams III and IlIa will each give diagram VII when 

the external diagrams are connected. 

For the complete self-energy of the electron we should include 

diagrams VIII and IX. However. the calculation of these diagrams is 

not straightforward since the graviton that connects the electron with 

the external loop carries zero momentum. The propagator for that 

graviton. being inversely proportional to the square of the graviton's 

momentum. i. therefore 1/0. 

Diagrams VI and VII lead to an infinite contribution to the self· 

energy of the electron. but only in the limit that q, the momentum of 

the virtual gravUon. goes to infinity. U we cut off the momentum of 

the virtual graviton to a finite value, say ~ then the diagrams give 

only a finite contribution to the electron ~el£.energy. However. no 

such cutofi can be used for diagrams VIn and IX since the connecting 

graviton has identically zero momentum and therefore a propagat.9r that 

is always proportional to 1/0. 

Despite this factor 1/0 in diagrams VIII and IX. we will show at 

the end of the next part that tbese diagrams give no contribution to the 

self-energy of the electron. thus the total contribution to the gravita-

t ional self-energy is from diagrams VI and VII. 

The complete matrix element is obtained from P- Z and P-4 

by integrating over all possible momenta q of the virtual gravlton. The 

result is 
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(-4mp. q + 2m2) ~ 
2 Z :-:--:-4 q (q .. 2p· q) ( ltr) 

(b) 

(P-5) 

In terms of this matrix element M the correction to the mass is given 

by 

- 1- • Amuu III ru Mu 

We shall calculate only the most divergent part of the seU

energy. This means that the integral P-5b, which is not as divergent 

&8 P .. 5a. will not contribute. Using Feynman's (23) technique for calcu= 

lating integrals. P-5a becomes 

23 K Z,\ 2 
M l\. 

= 1'Z'lr Z m 
'II' i 

(P .. 6) 

where we used the cutoff ~ 4 /(q2 _ ~ 2) in calculating the integrals. 

The value of K2 is given in equation B2-22 as 

thus we get for Am 

* 

Am 
m 

23 G'\2 = - 'I01T I\. 

See Feynman (22). 

(P-7) 
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Let us compare this value of am/m with the value of Amo/mo 

for a spin-zero particle. Feynman gives the result that gravitational 

self-energy of a spin-zero particle is 

.6.mo a a 
- = - - G)" + finite terms 
mo 'I\' 

which i8 not the same correction as for an electron. 

It would be interesting if all gravitational mass corrections were, 

the same. We can take as a basic unit of length the Compton wave length 

of any of the fundamental particles. These units of length are propor-

tional to the mass of the particles. Thus if the mass of these particles 

were all renormallzed by the same factor, each unit of length would be 

changed by the same factor and the gravitational mass renormalization 

could be interpreted as merely a uniform change in the scale of lengths. 

Since the electron mass renormallzation is not the same as for a spin-

zero particle, this interpretation is not correct. 

O. VACUUM POLARIZATION 

The diagrams for vacuum polarization are the following 

B c 
q q A 

x XI 

Fig. aa 
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The matrix elements for these diagrams are 

25 tr {I [ ..L 1 X • K 4" 4 ~Bp - (B)(p - m)] J p. -m p+ -m 

x[ ~Ap - (A)(p - m)]} d4
p 

• 
(0-1) 

2 S tr { 1 [ 3 3 XI • K T () _ m (A)yBp + (B)yAp - -z ~ABp - '2 ~BAp] 

+ ~~ : :~ [ Z(AR) - (A)(B) l} d4
p (Q-Z) 

where we are using the notation given in equations 0-17. This notation 

is very convenient for taking traces. For example 

¥[ "j~~] :I: [ (ab)(cd) + (ad)(cb) - (ac)(bd)] 

Therefore the trace of a quantity such as P'VBpA'VAp may be done by 

inspection: 

¥ [ P~BpA~Ap] :I: pBpqAp + qBppAp - p. qpBAp 

The matrix elements X and XI may be evaluated by techniques 

entirely similar to those used by Feynman (Z4) for the problem of 

vacuum polarization in quantum electrodynamics. The traces and Inte

grals involved have been done by the author. but are not yet checked. 

There are no inherent difficulties or complicated integrals involved in 

'The part of the second order interaction proportional to l!l. does not 
not c ontrlbute in the trace since 'VI:!; 'V v 'V e :I: Co V vpa 'Va 'VS· 
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calculating the divergent parts of X and Xli but quite a few pages of . 

algebra are involved. The £inite parts of X and XI involve one final 

integral that is rather difficult, but for physical interpretation there 

is apparently little gained by performing this integral. 

It is far ea8ier to calculate the most divergent part of X and 

XL The most divergent part of these amplitudes is independen.t of 

the momentum q of the external particles and may be calculated for 

q :: O. In this case the amplitude X reduces to 

t -P'YAp~B}=~BP.(A} ... (A)(B)} d 4p 
p - m 

There 1s no change in the form of Xl for z:: o. 

(0-3) 

Taking the tracos in 0-2 and 0-3 the amplitudes X and XI 

may be written 

XI(q::O) :: S [-3pABP z (A)PlP + (B)pAp ] d4p (Q-5) 

P - m 

where we have left out terms of the form 

(0-6) 

Feynrnan's technique for evaluating integrals appearing in vacuum 

polarization problems involves calculatlng the integral for two different· 
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maeses of the electron, namely the normal mass and a very large mass. 

and taking the difference. Therefore any integral such a8 Q- 6 which 

does not involve the electron m&8S will not contribute. 

Before evaluating 0-4 and Q-5 let us include the amplitude for 

the emission of a single graviton from a closed electron loop. This 

process only OCcurS for zero momentum of the graviton. We are there-

fore calculating the ampUtude of the following diagrams. 

XII 

q=-?~f\.3~ 
A,_,r~B--

Xa 

Fig. 23 

~=o 
~=o 

B 

Xla 

The amplitude for XU is 

r't{l ;1..4 
XU = J i r=-m [2yAp - Z(p - m)(A)~d p 

The total amplitude for diagrams Xa., XIa and XII for q = 0 

may be written in the following form 

.. p P"P P 
Xa .. Xla .. XU == 2A ,yF a \ 1='=2 Pz a d

4
p 

\J p J (p -m ) 

+ [2A - 4( ABy)] C p .... pv d4 
uv u J z 2 p 
r r- (p -m ) 

(Q-7) 
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Using Feynman'& methods for evaluating vacuum polarization integrals 

we get 

(0-8) 

2 Z 

j-' p~p v 4 6 v 1 23 m + A. 
--'-i",--"""Z d p = ~ x-z [p (In p - 11'] m· Z 
(p .om ) i6;Zi ':t ~ 

(0-9) 

The complete contribution of theae diagrams for q = 0 is 

m
2+A.Z 

l6
1
tr%i [ p2(ln P .. i)l m Z x [ ~ .. ~ (AB) + ~ (A)(B)] CQ-IO) 

2 Z 
23m +A. 

The divergent part of [p (In p - -Z )] mZ - may be obtained in 

the following way. Using 

Z 2 2 Z A. Z m' m 4 
In(m +A. )= In [~(1" ~)] :: In., + --:-2' - -::4 + ••• 

m A. m ~ Z~ 

we get 

Z 3 4 A. Z ,2 ~2 4 A. Z 
[p (In p .. -Z » = .. '" In., - 2m ~ In ., - m In.., 

m m m 
(Q-ll) 

where we have dropped all terms that are finite or contain only a factor 

2 4 of A. or "'. (See Feynman (24). ) 

From 0-10 and 0-11 we get the most divergent part of the vacuum 

polarization diagrams X and XI: 
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Z 
x + XI = - 1 Z ).41n ~ [-2(AB) + (A)(B)1 

1281T i m 

+ le •• divergent terms (Q-lZ) 

This is the same degree of divergence for the vacuum polarization as 

for the caee of gravity interacting with spin-zero particles. 

In the case of electromagnetism the amplitude for vacuum polari-

zation Is les8 divergent for electrons than for spin-zero particles, 

namely In). Z 1m2 compared to A 2 IneAZ 1m2). This mildness of the 

divergence for electrons is not repeated in the case of gravity, and 

both spin-zero particles and electrons give rise to the higher divergence 

A 4 In (",21m2). 

Finally let us return to the ampUtude 0-10 representing the 

diagrams of fig. 23. 0-10 may be written 

N("')[ ~ (A) .. ~ (AB) + ~ (A)(B)} (Q ... I0a) 

where N("') is a divergent constant. Suppose we added to the action 

the quantity 

«(J-13) 

The term 0-13 is a scalar quantity in the space of metric glJ. v and thus 

preserves the lnvariance properties of the action. 

Expanding (_g)1/2, we bave added to the action 

(0-14) 
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This term in the action give. riae to the diagrams 

XIII 
$:

::0 A 

=N(~) 

q=O B 

=N(~)~ 

XIV 

Fig. 24 

The amplitude for these diagram. (treati~ A and B symmetrically 

in XIV) is 

)[ I 1 I 
-N(). "Z CA) • "Z (AB) + '4 (A)(B)] 

which exactly cancels 0-10. Thus 0-13 may be considered the countel' 

term in the action that removes the effect of the diagrams in fig. 23. 

The physical1nterpretation of the diagrams in fig. Z3 is as 

follows. The vacuum state in field theory is not repre8ented by a real 

vacuum, but by the lowest state of the oscUlators of the fields, in this 

case the electron field. The energy of the lowest state of a quantum 

oscillator i. not zero but liw/Z, thus the vacuum state ha8 an energy, 

equal to 1ic..,,/2 for each o.cillator of the fie ld. 01' an infinite energy. 

To get the correct vacuum 8tate this energy should have been subtracted. 

This 1s not usually done for the zero of energy has no meaning in most 

problems. 

However gravity couples to all forms of energy including the 

energy of the Bo .. called vacuum .tate, thus we must be careful to .ub .. 
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tract this energy. In terms of diagrams the energy of the vacuum ap

pears to lowest order in the form 0.£ an unconnected closed loop. That 

this closed loop is a source of gravity is seen in the diagrams of fig. Z3. 

Thus when. we add the counter term 0-13 to the action, we are sub

tracting ofl the energy of the vacuum state as well as the gravitational 

fields produced by that energy. 

We can now return to the diagrams VUI and IX for the seU

energy of the electron. 

q ::II: 0 q = 0 

VIII IX 

Fig. Z5 

Diagram VUI represents the energy of the vacuum producing a graviton 

of zero momentum which later interacts with the electron. Since the 

vacuum state of the gravitational field also has an energy. diagram 

IX has the same interpretation a. VUL 

We have already introduced a counter term in the action 80 that 

the amplitude for the emission of a single graviton from a. closed 

electron loop is zero. A 8imilar counter term should be introduced 

80 that the amplitude for a closed graviton loop to emit a single gravtton 

is zero. With these counter terms the amplitude for diagrams vm and 

IX will be proportional to zero times the propagator of the zero momen

tum graviton, or 0/0. Thus the magnitude of the contribution from 
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these diagrams is undefined. 

These dlagrams will atUI have no physical effect for the following 
I 

reason. All particles are affected by the gravitational field h .... v from 

the closed loops, thus these nelds may be replaced by a space of metric , , 
8",v :I 6 .... " + Kh .... " in which all particles move. Furthermore these 

nelds are constant (there is an equal amplitude for the graviton to , , 
arrive at any point in space) and the metric g .... v = 6",v + Kh .... v is a 

nat space metric. Thus by a suitable choice of the scales of length and 

time the effects of these fields will not be noticed. 

This argument, invented by Feynman, shows that although the 

amplitude for diagrams VIII and IX may not be zero (they are proportional 

to 0/0), their physical effecta are inob.ervable and should not be included 

in the calculation of the self-energy of the electron. 
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APPENDIX I 

At the beginning of section n we pointed out that a potential theory 

could. not be set up for: a halt integer-spin meson. Tho reason for this 

ts simple. A •• urne am arrangement of the source. of this meson that 

give. rise to a static potential. II one of these sources is moved, the 

potential is changed. As with electric potential., the change in potential 

must be brought about by the raeliation of an infinite number of very low 

energy mesons. (This ia the source of the infra-red divergence in 

quantum electrodynamics. ) 

Let us assUme that a proton ie tbe source of the mesons. To 

conserve angular momentum the proton could emit an integer-spin meson 

into a state of the opposite angular momentum and not change its own 

etate. However, there are no angular distributions of radiation that 

COl respond to halt a unit of angular momentum, thus the proton must 

change its own state when emittina a half integer-spin meson. But this 

cannot happen in the limit that the proton emits an infinite number of 

such meSODS correspoDding to a change in potential. Thus a potential 

theory does not exist foJ' a half integer-spin meson. 

A potential theory may 'be constructed tor integer spin mesons, 

but for even integer spina the force ia attractive while tor odd integer 

apins tbe force ia repulsive between static like objects. Thls is a 

consequence ot the tact that the energy in radiation fields must be posi .. 

tive and theretore tho.e components of a meson field that contribute to 

the radiation field must have positive eneJ'gy. 

For the example of a single component spin-zero meson field 
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the energy In the field mut be positive. This immediately leads to an 

attractive force between Uke objects exchanging spin-zero me8ons. 

Consider the case 01 two like parallel plates. The lield between them 

will be uniform a8 long as the spin-zero meson bas zero rest mass. 

(The 1/1' Yukawa potential glves a force field of the same form as 

electrostatics.) As the plates are brought together the region of the 

fields, and thus the energy in the fields decreases. Thus the force must 

have been attractive. Thl. result is also true for non-zero rest mas. 

spin-zero mesons as is seen in the blnding of nuclear matter by 11' 

mesons. 

For a spin-one or vector meson the vector field consists of a 

time component, a longitudlnal ~d two transverse spatial components. 

By a proper choice of gauge the longitudinal component may be eliminated 

(Coulomb gauge). The radiation fields are made up of the transverse 

components, thus these components must carry positive energy. Thus 

for electromagnetism like objects interacting via the transverse com

ponents of the field, such as para1lel currents, attract each other. 

To d.etermine the sign of the energy in the time component of 

the field, one may consider the HamUtonian density of the field. (See 

for example Schwebel' (25).) The over-all sign of the Hamiltonian 

density is determined by the fact that the transverse components of the 

field carry positive energy. The result, for the static vector field 

which we are considering, is that the energy in the time component is 

negative. Since the interaction of static particle. is only through the 

time component (Coulomb field) this implies that like objects (charges) 

repel each other when interacting via a spin-one meson. 
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For the spin-two field like objects interact only throuah the time-

time component of the t~nsor that describes the spin-two field. Here 

the aign of the energy is reversed again and static like objects attract. 

The general rule as stated earlier is that static like objects attract for 

the exchange of mesons of even integer spins, and ~epel for meaons of 

odd integer 'pins. 

To distinguish the physical effects of a spin-zero and a spin-two 

gravitational tbeory. we can look at the form of the coupling for the two 

fields. Consicier the cas. of gravity interacting with point particles. 

For atatic particles gravity must couple to the ma.s of the particle. and 

the only corrections to the coupUng can be due to the velocity of the 

particl •• 

For a spin-sero gravitational field" we might write the inter

action part of the action aa 

(1) 

-where II is the coordinate of the particle. 

However. this action is not a scalar quantity under Lorentz 

transformations, and in the relativistic limit would not lead to conser-

vation of energy and momentum. This may be corrected by replacing 

cit in I by 

with the re.ult 

ro 2 1/2 
Sint = j,,[ m(l - v) ) dt '. 
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Thus for a spin-zero theory of gravity the couplina would be proportional 

to m(l - v 2)1/2. or would be reduced for a moving particle. 

For a spin-two gravitational field h",y' in order that the action 

be scalar. gravity must be coupled to the energy tensor of the particle. 

This ia because the energy tensor i. the only tensor constructed from 

the mas. and velocity of the particle that reduce. to the mas. when the 

velocity aoes to .ero. Thus for a mOving particle which has more 

energy than when it is at rest, the coupling to gravity would be increased. 

Finally we note that a theory of a spin-zero, zero rest mass 

me.on field does not exist N present. U we started with a .ero rest 

mas •• pin-zero particle, it would shortly create its own rest mass via 

virtual interactlons with itself. There are no such self energy cor

rections for a photon, because of the gauge invariance properties of 

the electromagnetic field. We may alao prevent self energy correctiona 

of a zero rest mass spin-two meson by gauge invariance, but no gauge 

invariance exist. for spin-•• ro. 
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APPENDIX IL RELATIONS AMONG Y MATRICES 

The curved apace 'Y matrices are defined by the relation 

We define the antiaymmetric combination of Y matrices by 

1 
'Y ... 'Yt/ = Y h"'Y,, - 'Y",'Y,,) 

'Y it 'Y", 'Y e = i (Y Ilj Y ",.'YIP - "'" ~ + 'Y p ~it "",) 

1 
'Ye. 'YIIYe 'Ya = 1" (Y" ",,,,'Y.e :a - Y p ".J!; ",Y,Ya 

(1) 

(2) 

(3) 

(4) 

The quantities Y 'Y , 'Y 'Y Y and" 'Y 'Y Ya are all antisymlnetric in 
~ !i IV. ·2 I ~ v. Ie ' 

their indices fJ., v, p, a, and normalized to one. That is if A v' A • 
I' I'vp 

and AfJ.vpa are antiaymmetric tensors 

We can express the quantities 'Y ... 'Yv"e and YrYvYe'Ya in terms 

of the Y matrix 'Y5 = YxYy"z'Yt by the equations 

(5) 
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(6) 

where E"tJovpa i8 the antieymmetric unit tensor which is zero unle •• 

.... ", v ", p ¢ a and equal to + 1 or - 1 according to whether .,., v, p, a 

ie an even or odd permutation of x, y, Ii, t. 

The following are a set of relatione among the matrice •• 

(7) 

(8) 

( 9) 

(10) 

+ ;v,". ".e ~tJ: "a + ~ ,'Y 11 'YO' + ~a~v ~] (11) 

(lZ) 

l[ + ] _l[ + ] 
'! 'VI,·Y" ~.e.~C! ,'Ye~a YtJ:Yv - '! ~~vYa ~~ 

(13) 

From equation 11. 12, and 13 we get 
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(14) 

w. a180 have 

(15) 



APPENDIX III. THE MA TRIX r t1 

We wish to solve equation J-7 

v r""''' "r 'V it1 = t1 'V - 'V . t1 

Multiplying through by g and noting that the covariant derivative of pv 

g i8 zero. we get the equivalent equation pv 

(1) 

Now the commutation relation satisfied by y p i" 

(2) 

Taking the covariant derivative of both sides of 2 we get 

(3) 

Multiplying 3 on the left by yo., noting yQ'Yo. = 4. we get 

(4) 

But 

(5) 

Equation 4 becomes 

(6) 

At this point the author has been unable to proceed without ex-

panding y in terms of the nat space matrices by the relations K-3 
p 
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From this we get 

where we have used (b ttYs:.) = b J: Y.t: since we are assllnling a 
pu u.V- pU.1l u 

representation I.)f the flat space 'V matrices where 

Yo = 0 .Il 

Using equation 7 we get 

Now 

a. a a. a + 2 a. 6a 
'V 'V 'Va. = - 'V 'Va. 'V 'V a. = 

Therefore 

a 
-Z'V 

(8) 

The author has been unable to obtain equation 9 directly from 

the commutation relations of 'V. It is not :mown whether this is a 
p 

failure on the part of the author. or whether the relation K-3 puts an 

added restriction on the curved s ?ace 'V matrices that allows us to 

obtain the relation 9. This question is not important for the quantum 

mechanics of gravity interacting with electrons. since the quantum 

mechanics is based on the expansion K-3. 
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Substituting equation 9 into 6 we get 

Comparing with eqclation 1 

we get 

Since 

we also get 

r = 
IJ 

which is the solution given in equation J -8. 

(10) 

(11) 

(12) 

Alternate forms of r in terms of the quantities a and b may 
p. 

be obtained in the following way. 

(13 ) 

Using eq'-lation 7 we get 

(14) 

In terms of the flat space 'V matrices 'Vo. this becomes 

(15) 



To lowest order in h we get 
tJ-v 
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In equation K-7 we desired the ql.lantity 

From equation 14 we get 

(16) 

(17) 

t (r.,. yfl + yflrJ-l) = ~(bf3(, • .,.b('(1 + 113 • \.IQHL,lY"'t.+ yfJi:l.) 

(18) 

From equations 8 and 9 in appendix II we get 

(19) 

Since r 13. flCl is symmetric in !J. and Cl. it gives zero when multiplied 

by y'Q./\J-l. Expressing the remainder of eq'lation 17 in terms of flat 

space matrices we get K-7 

!r [r "fl +"flr 1 alb a'a" " " 
£. fJ. ' , IJ. 4' (11-1. 13 (1 v 13 p , e ' v ' e 

, 
(20) 



APPENDIX IV 

To prove equation L-20 we use the relation 

, ... -1-
Substituting 'Y Q :: bQa(h )S 'YaS and noting that 

we get 

• • r-: -1- -1- - ]} + b (h )bA (h h'Y S "S 'Y - S KS 'Y 'Y) S c.p t'a p • Cf. P a 

where we have used 

and 

If we note that 

and that from equation K-3 

Qa. aj3"''''''' g r-b b A :: g (h)b (h )bt.:l.a(h ) 
ap t'Cf ap t' 
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we get 

However, froIn equations L-17 we get 

- ." - v 

since ~ ~ ~ ~ = Ij. Thus we have ,oroved equation 1-Z0. 
'p~'p 



APPENDIX V 

We wish to investiga.te the quantity 

where we used the relation 

We can see the meaning of the terms in 1 by the following investigation. 

The order of partiaJ differentiation is interchangeable. thus 

'\I -'\I -0 
1 P .... Vip, V ... 

(2) 

Now 

-Yp, ltV = r -y - -y r + r r -y - T -y r + rO" r -y 
,... .... v p P ... , v ... v P ... P v pv '" 0" 

(3) 

And in a 8imilar manner 

'\I -'\Ir r '\I+f'-yr'.-yrr+r"-yr 
- 1 p. "' ... - 'p "' .... - "' .... I P ..,. P v P... v pJ.l. C v 

(4) 
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Substituting 3 and 4 in Z we get 

The terms in the square brackets are Just RO' • If we define 
ptJv 

(5) 

r - r + r r - r r = c (6) !J..v V.tl fl v v f.1 flV 

we get 

(7 ) 

Try as a sohltion of equation 7 

(3) 

We get 

1 a.~ {30. = + "'2;' R A (6 'Y - 6 'Y ) 
. G o.l"'tJv P P 

which checks equation 8. 

Equation 8 may be written 



since R A=-R • p.VCLI-' VV(lP 
V/e now get frvm equation 1 

(9) 

CL f:J p. v The quantity -"i "i "i "i R tlVCLj3 may be written 

(10) 

We have 

II t:!. V CL II V CL A (.\v II, (l (lA II " 

"f"'"I-'"" = "f"'" " "I-' + Zgl-' ",." _ Zg 1-'"1""',, 

Therefore 

_ a. j3 ..,. "R __ 1 [ fJ " a. rJ(R + R + R ) 
" " "" CLf'P. V - 1''''''''' p. va.j3 1J.j3 \I(l p.a.13 v 

(It ) 

Using the identity 

equation 11 becomes 

Substitution of 12 into 9 gives 

which is relation M-1Z which we set out to [)rove. 
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