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From equation 0-11 the amplitude for the interaction of a graviton 

with an electron via the exchange of a graviton is given by 

If we take 

K 2 m 1 -tg 
S "" ---r " r q 

K m = (- ""11") s 
G 

(0-15 ) 

(0-16) 

as the propagator of the graviton then we may put the diagrams of fig. 15 

and fig. 16 together to get the diagram of fig.- 13. 

We should note that the above analysis which leads to 0-16 as the 

propagator for a graviton is based on the solution to the wave equation 

given in 0-8. This solution relied on the assumption that the 

source of the emitted or absorbed graviton is conserved. If the source 

or absorber of a particular virtual graviton is not conserved we must 

deal with the full wave equativn 0-8. For the diagram of fig. 13 both 

the source and absorber and of the virtual graviton have a 

divergence which is higher order in K. We are calculating the diagram 

to lowest order in K and may assume that these sources are conserved. 

We are now in a position to calculate the gravitational Compton 

effect. The diagrams fvr the process are 



f 
p 

i 
p 

I 

f 
p 

II 

/e,c 
~ 

~'b 
IV 

Fig. 17 

III 

where we have chosen the sign of the graviton momenta to represent 

the absorption of these gravitons. 

We will use the following notation. Band C are the p01ari-

zation tensors of the two external gravitons and band c are their 

associated momenta. 

1 
b=q 

The variable p will be the average electron momentum 

i + f 
P - P P - 2 

(0-17a) 

(O-17b) 

To eliminate the complication of subscripts in the calculation 

we shall use a form of matrix multiplication. explained by the following 



examples. 

-183-

1 
"V 0. eo.f3pf:3 = "V Bp 

1 2 
"V0.8a.pepj3pp = yBCp 

e!p "VQe~(3p" = (C)y Bp 

ple~(3e!f3 = ,J(BC) 

(O-l7c) 

In this notation capital letters with the exception of K represent ten-

sors; small letters, vectors. A capital letter surrounded by two small 

letters represents the dot product of that tensor into the two vectors. 

A parenthesis around capital letters indicates that the first subscript of 

first tensor in the parenthesis is dotted into the last subscript of the 

last tensor. 

The amplitude for absorption of gravitons by an electron is given 

by equation N-3l 

1 A 3K2 K Z 
'! {Pf3"Va.[ Ken,,- -:r enpe p(3 + T e ppen(3] 

A K2 K2 
+ (p - m)[ -KeQn + r eo.o.e 1313 + Z eo.(3eQ(3]} 

(N-3l) 

... 
where PI' is the average of the electron momenta just before and after 

the point of emission of a gravitono 
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In the notation described above, the amplitude for the diagrams 

I, II, and III of fig. 17 are 

K2 b '1 ~ 
(I) = T[(p +c)Cy +y(C)] 2 [yB(p -I) -y(B)] 

P +)I-m 
(0-18) 

(0-19) 

K2 3 3 
(III) = T[ - l'Y BCp - l' yCBp + (BhCp + (C)(y Bp) 

(0-20) 

After some standard algebra the sum of these three diagrams is 

given by 

+ 1 c (p + ~)C(2Yp + by - yc - )I + llti)B(p - 1) ) 
2b(p - 'I ) 

+ the same terms with B exchanged for C, b for c 

(0-21) 

For additional examples of notation, we have 

pC",Sp = ~pC Bp 

Suppose we try to check these terms alone for gauge invariance. 
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We do this by replacing the polarization tensor etJY for.2!!! of the ex­

ternal gravitons by 

(0-6a) 

Under this 8ubstitution the cross section should be unchanged provided 

we have all the diagrams for a real physical process" Let us make this 

substitution on the graviton B, 

B - B + bs +;b 

or if we replace B by bt +;b we, should get zero. 

Making the substitution in 0-21, 

B - b£ + ~b (0-22) 

we do not get zero. In fact 0-21 becomes under this substitution 

B - b~ + ~b 

K2 
(I) + (n) + (IIt) - T [ -2(pCS)~ - 2(gCy)bp - 2(pCy)cs] 

(0-21a) 

Thus the diagrams (1) + (II) + (III) alone are not gauge invariant and there-

fore do not completely describe the Compton effect. 

To get a gauge invariant amplitude we must include diagram IV. 

From equation 0-14 we see that we get 

by expanding ~ KF3d4x in plane waves. Let F3 be represented by the 



-186-

diagram 

Fig. 16 

where A is e!vo 

In terms of the fields h .... v • F3 is given by equation C3-6 as 

To expand F3 in plane waves we take all pos sible combinations of each 

term. (For reference. see the example given in equations 0-14c and 

0-14d.) Using the notation described in 0-17. the momentum space 

representation of F3 is 

+ (CA)aBa + 2(ABC)cc + 2(ACB)bb + 2(ABC)aa - 4cA~Bc 

- 4b.A~Cb - 4aBACa + 4c~A~ + 4a'A'l!'"e'c + 4aA ~ 1Jb 

+ aAa(BC)+ b~b(AC)+ c~c(AB) + ~ aAa(B)(C) 

+ ~ blrb(A)(C) + ~ c~c(A)(B)] (0-23) 
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In equation 0-23, the coefficient of e
3

• or A is -!i t~v. More 

conveniently, the coefficient of A is - .!it~v. Since the electron in 

diagram IV is free, the matrix element for diagram IV is from equation 

0-16 

(0-24) 

This matrix element may be obtained simply by replacing A or i~v 

in 0-23 by 

-3 
e -.... v 

As, an example of the substitution 0-25b we have 

K K2 
"'! aBACa - -::--,; [(aByHpCa) + (aBp)("Ca)] 

2a 

(0-25a) 

(0-25b) 

Before making tbe substitution 0-25b in 0-23, we note that 0-23 

may be simplified. Consider the factor 

~,.. 3 3 
&I\. • q_ e 

l.l Ilv 

Under the substitution 0-25a this becomes 

(0-26) 
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This expression is zero because 

-(f..J3 i -fA Ii. i-up)", u(p ) = u(p )(,~ - ,r)u(p ) = u(m .. m)u = 0 

and 

i f i f iZ fZ Z Z 
Zp· q = (p + p ) • (p - p ) = (p) - (p) = m .. m = 0 

Thus any expression in 0-Z3 containing a factor aA is zero. 

We al80 have conservation of momentum which gives us the re-

lation 

3 Z 1 
~=-~-'\t 

a = - b - c (0-Z7) 

This relation CaD be used to eUminate a in o-Z3. There are various 

manipulations possible in 0-Z3. For example, we get 

(AC") = (XC) 

(!,C) = (BC) .. t(B)(C) 

by manipulation of the operation -bar". Using conservation of momen­

tum and the fact that aA is zero, we can get 

bj( = - c1r etc. 

A convenient form for 0-Z2. using aA = 0 is 
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3 K IT "T"'" KF = tr[ Z,.t-'.C)c:Bc + (BC)b.f'ob + Z(.liBC)bc 

- 4CACBc .. ZcBACb] (a) 

+ the same terms with B exchanged for C, b for c 

+ ~ [4bZ(ACB) - bZ(C)(AB) .. bZ(A)(CB) .. bZ(B)(AC) 

+ t b 2(A)(B)(C) + 2b~b(AC) + 2b'!'c(AC) .. b"m,(A)(C) 

.. 4blJ"XCb + ZblJCb(A') + Zbl!A'b(C)] (b) 

+ the same terms with B exchanged for C, b for c 

(0-l8) 

It is more convenient to test for gauge invariance by making the 

substitution O-Zl, 

B - b~ + sb (0-l2) 

before making the substitution 0·25 b for "A. In using O-ZZ we will have 

for example 

(ABC) - ~ACb + bAC~ 

(B) - lb· ~ 

blTb - b· ~ 

Making this substitution O-Zl in part a of 0-28 (including the terms 

with B and C, b and c exchanged) we simply get 



¥ 2bc[ (7C)c .; t 2bAC~] (O-29a) 

The su.bstitution n - b~ + gb in part b of 0-28 (including the 

exchanged terms) does not give a simple result. We only get a simple 

result if we a.awne that the granton e 2,. is free. or that (q2)2 = o. p ... 

If this graviton is free it satisfies the wave equation for free fields. 

equation BI-l. This equation au.tomatically implies that q~'i!" = 0 (see 

2 
part Bl). Thus if e .... " or C is free. 

2 c = 0 

c'e' = 0 

3 
and the only part of KF(b) that remains is that shown explicitly in 0-Z8b 

without the exchange of B lor C. b for c. Under this condition KF3 

becomes under the substitution B - bG +;b 

(0-30) 

If we now make the substitution 

K 
A - -:y [Vp + py] 

a 

we get 

Z 2 
MIV(~) = f- (b + ;bC) [ Z(pC;>l' + Z(~Cy)bp + 2(pCy)ct] (0-31) 

a 

However a Z = b Z + Zbc + c Z = b Z + Zbc for c Z = O. and 0-31 just cancels 

0-21a. Thus the amplitude for the scattering of gravitons by electrons 

is gauge invariant. provided we include all four diagrams. and provided 
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that the external graviton which is not tested for gauge invariance 

(namely C) b free. 

The reason that C must be £ree for a test of gauge invariance 

is as fol1ows. If C is not free, it was recently emitted from another 

source. Including this source the four diagrams of fig. 17 become 

Fig. 18 

There is however another physical process that can occur, namely 

B 

Fig. 19 v 

If the gravlton B is to interact with a complete conserved system, 

we must include the possibility of diagram V. We pointed out in de­

riving the gauge test 0-6 that the external graviton must interact with 

a con.erved source for the gauge teat to work. For the case C is not 

free, we must include the interaction of B with the source of C. as 

shown in diagram V. 
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Only if C is free, or nearly free. is its source 80 far away that 

we do not need to include the possibility of B interacting with that source. 

It is then that we are able to succe •• fully test B for gauge invariance. 

Finally. we give the complete amplitude for the scattering 

of gravitons by electrons. 

K2 3 1 
M = T [ - '% ~BCp - 4 Cl.2x B 

+ 1 c (p +~) C(2~p + ~ - ~c - t" + .xb.)B(p - ~ ) 
2b(p - y) , 

+ 2 1 2 { 2~CpcBc - cBp~Cb - cB~pCb + bc~BCp 
b + 2bc + c 

+ bcpBC~ - 2cp~CBc - 2¢pCBc + bpl"(BC) + 2b2pCB~ 

+ 2b'BCbp + b'Bypb(C) + b1Jp~(C)}] 

+ the same terms with B exchanged for C, b for c. 
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VI. DIVERGENT CALCULATIONS 

The subject of divergences in the quantum theory of gravity is 

quite complicated. For the case of gravity interacting with spin-zero 

particles Feynman haa worked out the lowest order divergent diagrams 

for such processes as the gravitational self-energy of the particle, 

vacuum polarization, and the corrections to the scattering iu an ex­

ternal potential. At present there are still some problems with this 

last calculation. 

Because of the added complication of the graviton-electron 

interaction, the corresponding divergent calculations are even longer 

when gravity interacts with electrons. For this rea80n we shall pre­

sent only the calculation of gravitational self-energy of the electron, 

and the most divergent part of the vacuum polarization. The rest of 

the vacuum polarization calculation involves considerable algebra which 

the author has not yet had time to check. 

Harold Yura has been applying dispersion theory techniques 

to the problem of divergences in the quantum theory of gravity. This 

leads to a slightly different emphasis of what is to be calculated, for it 

is assumed that one is already working with a gauge invariant renor­

mali zed theory. Thus certain renormalization constants are not calcu­

lated. However the calculation of the remaining quantities appears to 

be far simpler. It therefore seems reasonable that any further divergent 

calculations involving electrons, with the more complicated electron 

graviton interaction, should be done using the dispersion theory technique. 



-194-

P. GRAVITATIONAL SELF-ENERGY OF THE ELECTRON 

The diagrams for the self-energy of the electron are the follow-

ing 

q qQ 
:;, ~ 

~ ~ ~ 
p p P 

VI VII 

q q qyq 
VIII IX 

Fig. 20 

To calculate diagrams VI and VII we will use the graviton­

electron coupling N-19 and the graviton propagator 0-16. The matrix 

element for diagram VI becomes 

[ t 4 [ / 2 
x .. + 6 x 66 +6 6 -6 6 y..,.(p )v IJ.) ..,.p Vcf vp IJ.cf ..,.v p~ q (P-l) 

..1 2 2 Using p = m; p = m eince the external electron lines are free this 

matrix element becomes 
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¥[A(-4p.q + i q2) .. 4mp· q + -i mZqZ + Zm~ 

x [qZ(qZ_ Zp' q)] -1 

The matrix element for diagram VII is 

x (6 6 + 6 6 - 6 6 )/ Z] 
JiP vo 1-'-0 vp I-'- v po q 

(P-Z) 

(P-3) 

Due to the symmetry of the propagator, the term in the interaction that 

is proportional to the antieymmetric combination of three y matrices 

gives zero. The matrix element P-3 reduces to 

VII == ¥ [-~ 1 (P .. 4) 
q 

It i8 interesting to think of these two diagrams, VI and VII, as 

being obtained by connecting the external gravitons in the Compton 

effect. The relevant Compton effect diagrams are given in fig. ZL 

I II III IlIa 

Fig. 21 

U we connect the external gravitons in these diagrams by the propa-

gator 0-16, we will get just twice the self-energy diagrams VI and VII. 
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We get the factor two because connecting the gravitons of diagram I 

gives tbe same result as for diagram II. and each will give diagram 

VI. Similarly diagrams III and IlIa will each give diagram VII when 

the external diagrams are connected. 

For the complete self-energy of the electron we should include 

diagrams VIII and IX. However. the calculation of these diagrams is 

not straightforward since the graviton that connects the electron with 

the external loop carries zero momentum. The propagator for that 

graviton. being inversely proportional to the square of the graviton's 

momentum. i. therefore 1/0. 

Diagrams VI and VII lead to an infinite contribution to the self· 

energy of the electron. but only in the limit that q, the momentum of 

the virtual gravUon. goes to infinity. U we cut off the momentum of 

the virtual graviton to a finite value, say ~ then the diagrams give 

only a finite contribution to the electron ~el£.energy. However. no 

such cutofi can be used for diagrams VIn and IX since the connecting 

graviton has identically zero momentum and therefore a propagat.9r that 

is always proportional to 1/0. 

Despite this factor 1/0 in diagrams VIII and IX. we will show at 

the end of the next part that tbese diagrams give no contribution to the 

self-energy of the electron. thus the total contribution to the gravita-

t ional self-energy is from diagrams VI and VII. 

The complete matrix element is obtained from P- Z and P-4 

by integrating over all possible momenta q of the virtual gravlton. The 

result is 
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(-4mp. q + 2m2) ~ 
2 Z :-:--:-4 q (q .. 2p· q) ( ltr) 

(b) 

(P-5) 

In terms of this matrix element M the correction to the mass is given 

by 

- 1- • Amuu III ru Mu 

We shall calculate only the most divergent part of the seU­

energy. This means that the integral P-5b, which is not as divergent 

&8 P .. 5a. will not contribute. Using Feynman's (23) technique for calcu= 

lating integrals. P-5a becomes 

23 K Z,\ 2 
M l\. 

= 1'Z'lr Z m 
'II' i 

(P .. 6) 

where we used the cutoff ~ 4 /(q2 _ ~ 2) in calculating the integrals. 

The value of K2 is given in equation B2-22 as 

thus we get for Am 

* 

Am 
m 

23 G'\2 = - 'I01T I\. 

See Feynman (22). 

(P-7) 
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Let us compare this value of am/m with the value of Amo/mo 

for a spin-zero particle. Feynman gives the result that gravitational 

self-energy of a spin-zero particle is 

.6.mo a a 
- = - - G)" + finite terms 
mo 'I\' 

which i8 not the same correction as for an electron. 

It would be interesting if all gravitational mass corrections were, 

the same. We can take as a basic unit of length the Compton wave length 

of any of the fundamental particles. These units of length are propor-

tional to the mass of the particles. Thus if the mass of these particles 

were all renormallzed by the same factor, each unit of length would be 

changed by the same factor and the gravitational mass renormalization 

could be interpreted as merely a uniform change in the scale of lengths. 

Since the electron mass renormallzation is not the same as for a spin-

zero particle, this interpretation is not correct. 

O. VACUUM POLARIZATION 

The diagrams for vacuum polarization are the following 

B c 
q q A 

x XI 

Fig. aa 
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The matrix elements for these diagrams are 

25 tr {I [ ..L 1 X • K 4" 4 ~Bp - (B)(p - m)] J p. -m p+ -m 

x[ ~Ap - (A)(p - m)]} d4
p 

• 
(0-1) 

2 S tr { 1 [ 3 3 XI • K T () _ m (A)yBp + (B)yAp - -z ~ABp - '2 ~BAp] 

+ ~~ : :~ [ Z(AR) - (A)(B) l} d4
p (Q-Z) 

where we are using the notation given in equations 0-17. This notation 

is very convenient for taking traces. For example 

¥[ "j~~] :I: [ (ab)(cd) + (ad)(cb) - (ac)(bd)] 

Therefore the trace of a quantity such as P'VBpA'VAp may be done by 

inspection: 

¥ [ P~BpA~Ap] :I: pBpqAp + qBppAp - p. qpBAp 

The matrix elements X and XI may be evaluated by techniques 

entirely similar to those used by Feynman (Z4) for the problem of 

vacuum polarization in quantum electrodynamics. The traces and Inte­

grals involved have been done by the author. but are not yet checked. 

There are no inherent difficulties or complicated integrals involved in 

'The part of the second order interaction proportional to l!l. does not 
not c ontrlbute in the trace since 'VI:!; 'V v 'V e :I: Co V vpa 'Va 'VS· 
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calculating the divergent parts of X and Xli but quite a few pages of . 

algebra are involved. The £inite parts of X and XI involve one final 

integral that is rather difficult, but for physical interpretation there 

is apparently little gained by performing this integral. 

It is far ea8ier to calculate the most divergent part of X and 

XL The most divergent part of these amplitudes is independen.t of 

the momentum q of the external particles and may be calculated for 

q :: O. In this case the amplitude X reduces to 

t -P'YAp~B}=~BP.(A} ... (A)(B)} d 4p 
p - m 

There 1s no change in the form of Xl for z:: o. 

(0-3) 

Taking the tracos in 0-2 and 0-3 the amplitudes X and XI 

may be written 

XI(q::O) :: S [-3pABP z (A)PlP + (B)pAp ] d4p (Q-5) 

P - m 

where we have left out terms of the form 

(0-6) 

Feynrnan's technique for evaluating integrals appearing in vacuum 

polarization problems involves calculatlng the integral for two different· 
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maeses of the electron, namely the normal mass and a very large mass. 

and taking the difference. Therefore any integral such a8 Q- 6 which 

does not involve the electron m&8S will not contribute. 

Before evaluating 0-4 and Q-5 let us include the amplitude for 

the emission of a single graviton from a closed electron loop. This 

process only OCcurS for zero momentum of the graviton. We are there-

fore calculating the ampUtude of the following diagrams. 

XII 

q=-?~f\.3~ 
A,_,r~B--

Xa 

Fig. 23 

~=o 
~=o 

B 

Xla 

The amplitude for XU is 

r't{l ;1..4 
XU = J i r=-m [2yAp - Z(p - m)(A)~d p 

The total amplitude for diagrams Xa., XIa and XII for q = 0 

may be written in the following form 

.. p P"P P 
Xa .. Xla .. XU == 2A ,yF a \ 1='=2 Pz a d

4
p 

\J p J (p -m ) 

+ [2A - 4( ABy)] C p .... pv d4 
uv u J z 2 p 
r r- (p -m ) 

(Q-7) 
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Using Feynman'& methods for evaluating vacuum polarization integrals 

we get 

(0-8) 

2 Z 

j-' p~p v 4 6 v 1 23 m + A. 
--'-i",--"""Z d p = ~ x-z [p (In p - 11'] m· Z 
(p .om ) i6;Zi ':t ~ 

(0-9) 

The complete contribution of theae diagrams for q = 0 is 

m
2+A.Z 

l6
1
tr%i [ p2(ln P .. i)l m Z x [ ~ .. ~ (AB) + ~ (A)(B)] CQ-IO) 

2 Z 
23m +A. 

The divergent part of [p (In p - -Z )] mZ - may be obtained in 

the following way. Using 

Z 2 2 Z A. Z m' m 4 
In(m +A. )= In [~(1" ~)] :: In., + --:-2' - -::4 + ••• 

m A. m ~ Z~ 

we get 

Z 3 4 A. Z ,2 ~2 4 A. Z 
[p (In p .. -Z » = .. '" In., - 2m ~ In ., - m In.., 

m m m 
(Q-ll) 

where we have dropped all terms that are finite or contain only a factor 

2 4 of A. or "'. (See Feynman (24). ) 

From 0-10 and 0-11 we get the most divergent part of the vacuum 

polarization diagrams X and XI: 
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Z 
x + XI = - 1 Z ).41n ~ [-2(AB) + (A)(B)1 

1281T i m 

+ le •• divergent terms (Q-lZ) 

This is the same degree of divergence for the vacuum polarization as 

for the caee of gravity interacting with spin-zero particles. 

In the case of electromagnetism the amplitude for vacuum polari-

zation Is les8 divergent for electrons than for spin-zero particles, 

namely In). Z 1m2 compared to A 2 IneAZ 1m2). This mildness of the 

divergence for electrons is not repeated in the case of gravity, and 

both spin-zero particles and electrons give rise to the higher divergence 

A 4 In (",21m2). 

Finally let us return to the ampUtude 0-10 representing the 

diagrams of fig. 23. 0-10 may be written 

N("')[ ~ (A) .. ~ (AB) + ~ (A)(B)} (Q ... I0a) 

where N("') is a divergent constant. Suppose we added to the action 

the quantity 

«(J-13) 

The term 0-13 is a scalar quantity in the space of metric glJ. v and thus 

preserves the lnvariance properties of the action. 

Expanding (_g)1/2, we bave added to the action 

(0-14) 
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This term in the action give. riae to the diagrams 

XIII 
$:

::0 A 

=N(~) 

q=O B 

=N(~)~ 

XIV 

Fig. 24 

The amplitude for these diagram. (treati~ A and B symmetrically 

in XIV) is 

)[ I 1 I 
-N(). "Z CA) • "Z (AB) + '4 (A)(B)] 

which exactly cancels 0-10. Thus 0-13 may be considered the countel' 

term in the action that removes the effect of the diagrams in fig. 23. 

The physical1nterpretation of the diagrams in fig. Z3 is as 

follows. The vacuum state in field theory is not repre8ented by a real 

vacuum, but by the lowest state of the oscUlators of the fields, in this 

case the electron field. The energy of the lowest state of a quantum 

oscillator i. not zero but liw/Z, thus the vacuum state ha8 an energy, 

equal to 1ic..,,/2 for each o.cillator of the fie ld. 01' an infinite energy. 

To get the correct vacuum 8tate this energy should have been subtracted. 

This 1s not usually done for the zero of energy has no meaning in most 

problems. 

However gravity couples to all forms of energy including the 

energy of the Bo .. called vacuum .tate, thus we must be careful to .ub .. 
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tract this energy. In terms of diagrams the energy of the vacuum ap­

pears to lowest order in the form 0.£ an unconnected closed loop. That 

this closed loop is a source of gravity is seen in the diagrams of fig. Z3. 

Thus when. we add the counter term 0-13 to the action, we are sub­

tracting ofl the energy of the vacuum state as well as the gravitational 

fields produced by that energy. 

We can now return to the diagrams VUI and IX for the seU­

energy of the electron. 

q ::II: 0 q = 0 

VIII IX 

Fig. Z5 

Diagram VUI represents the energy of the vacuum producing a graviton 

of zero momentum which later interacts with the electron. Since the 

vacuum state of the gravitational field also has an energy. diagram 

IX has the same interpretation a. VUL 

We have already introduced a counter term in the action 80 that 

the amplitude for the emission of a single graviton from a. closed 

electron loop is zero. A 8imilar counter term should be introduced 

80 that the amplitude for a closed graviton loop to emit a single gravtton 

is zero. With these counter terms the amplitude for diagrams vm and 

IX will be proportional to zero times the propagator of the zero momen­

tum graviton, or 0/0. Thus the magnitude of the contribution from 
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these diagrams is undefined. 

These dlagrams will atUI have no physical effect for the following 
I 

reason. All particles are affected by the gravitational field h .... v from 

the closed loops, thus these nelds may be replaced by a space of metric , , 
8",v :I 6 .... " + Kh .... " in which all particles move. Furthermore these 

nelds are constant (there is an equal amplitude for the graviton to , , 
arrive at any point in space) and the metric g .... v = 6",v + Kh .... v is a 

nat space metric. Thus by a suitable choice of the scales of length and 

time the effects of these fields will not be noticed. 

This argument, invented by Feynman, shows that although the 

amplitude for diagrams VIII and IX may not be zero (they are proportional 

to 0/0), their physical effecta are inob.ervable and should not be included 

in the calculation of the self-energy of the electron. 
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APPENDIX I 

At the beginning of section n we pointed out that a potential theory 

could. not be set up for: a halt integer-spin meson. Tho reason for this 

ts simple. A •• urne am arrangement of the source. of this meson that 

give. rise to a static potential. II one of these sources is moved, the 

potential is changed. As with electric potential., the change in potential 

must be brought about by the raeliation of an infinite number of very low 

energy mesons. (This ia the source of the infra-red divergence in 

quantum electrodynamics. ) 

Let us assUme that a proton ie tbe source of the mesons. To 

conserve angular momentum the proton could emit an integer-spin meson 

into a state of the opposite angular momentum and not change its own 

etate. However, there are no angular distributions of radiation that 

COl respond to halt a unit of angular momentum, thus the proton must 

change its own state when emittina a half integer-spin meson. But this 

cannot happen in the limit that the proton emits an infinite number of 

such meSODS correspoDding to a change in potential. Thus a potential 

theory does not exist foJ' a half integer-spin meson. 

A potential theory may 'be constructed tor integer spin mesons, 

but for even integer spina the force ia attractive while tor odd integer 

apins tbe force ia repulsive between static like objects. Thls is a 

consequence ot the tact that the energy in radiation fields must be posi .. 

tive and theretore tho.e components of a meson field that contribute to 

the radiation field must have positive eneJ'gy. 

For the example of a single component spin-zero meson field 
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the energy In the field mut be positive. This immediately leads to an 

attractive force between Uke objects exchanging spin-zero me8ons. 

Consider the case 01 two like parallel plates. The lield between them 

will be uniform a8 long as the spin-zero meson bas zero rest mass. 

(The 1/1' Yukawa potential glves a force field of the same form as 

electrostatics.) As the plates are brought together the region of the 

fields, and thus the energy in the fields decreases. Thus the force must 

have been attractive. Thl. result is also true for non-zero rest mas. 

spin-zero mesons as is seen in the blnding of nuclear matter by 11' 

mesons. 

For a spin-one or vector meson the vector field consists of a 

time component, a longitudlnal ~d two transverse spatial components. 

By a proper choice of gauge the longitudinal component may be eliminated 

(Coulomb gauge). The radiation fields are made up of the transverse 

components, thus these components must carry positive energy. Thus 

for electromagnetism like objects interacting via the transverse com­

ponents of the field, such as para1lel currents, attract each other. 

To d.etermine the sign of the energy in the time component of 

the field, one may consider the HamUtonian density of the field. (See 

for example Schwebel' (25).) The over-all sign of the Hamiltonian 

density is determined by the fact that the transverse components of the 

field carry positive energy. The result, for the static vector field 

which we are considering, is that the energy in the time component is 

negative. Since the interaction of static particle. is only through the 

time component (Coulomb field) this implies that like objects (charges) 

repel each other when interacting via a spin-one meson. 
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For the spin-two field like objects interact only throuah the time-

time component of the t~nsor that describes the spin-two field. Here 

the aign of the energy is reversed again and static like objects attract. 

The general rule as stated earlier is that static like objects attract for 

the exchange of mesons of even integer spins, and ~epel for meaons of 

odd integer 'pins. 

To distinguish the physical effects of a spin-zero and a spin-two 

gravitational tbeory. we can look at the form of the coupling for the two 

fields. Consicier the cas. of gravity interacting with point particles. 

For atatic particles gravity must couple to the ma.s of the particle. and 

the only corrections to the coupUng can be due to the velocity of the 

particl •• 

For a spin-sero gravitational field" we might write the inter­

action part of the action aa 

(1) 

-where II is the coordinate of the particle. 

However. this action is not a scalar quantity under Lorentz 

transformations, and in the relativistic limit would not lead to conser-

vation of energy and momentum. This may be corrected by replacing 

cit in I by 

with the re.ult 

ro 2 1/2 
Sint = j,,[ m(l - v) ) dt '. 
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Thus for a spin-zero theory of gravity the couplina would be proportional 

to m(l - v 2)1/2. or would be reduced for a moving particle. 

For a spin-two gravitational field h",y' in order that the action 

be scalar. gravity must be coupled to the energy tensor of the particle. 

This ia because the energy tensor i. the only tensor constructed from 

the mas. and velocity of the particle that reduce. to the mas. when the 

velocity aoes to .ero. Thus for a mOving particle which has more 

energy than when it is at rest, the coupling to gravity would be increased. 

Finally we note that a theory of a spin-zero, zero rest mass 

me.on field does not exist N present. U we started with a .ero rest 

mas •• pin-zero particle, it would shortly create its own rest mass via 

virtual interactlons with itself. There are no such self energy cor­

rections for a photon, because of the gauge invariance properties of 

the electromagnetic field. We may alao prevent self energy correctiona 

of a zero rest mass spin-two meson by gauge invariance, but no gauge 

invariance exist. for spin-•• ro. 
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APPENDIX IL RELATIONS AMONG Y MATRICES 

The curved apace 'Y matrices are defined by the relation 

We define the antiaymmetric combination of Y matrices by 

1 
'Y ... 'Yt/ = Y h"'Y,, - 'Y",'Y,,) 

'Y it 'Y", 'Y e = i (Y Ilj Y ",.'YIP - "'" ~ + 'Y p ~it "",) 

1 
'Ye. 'YIIYe 'Ya = 1" (Y" ",,,,'Y.e :a - Y p ".J!; ",Y,Ya 

(1) 

(2) 

(3) 

(4) 

The quantities Y 'Y , 'Y 'Y Y and" 'Y 'Y Ya are all antisymlnetric in 
~ !i IV. ·2 I ~ v. Ie ' 

their indices fJ., v, p, a, and normalized to one. That is if A v' A • 
I' I'vp 

and AfJ.vpa are antiaymmetric tensors 

We can express the quantities 'Y ... 'Yv"e and YrYvYe'Ya in terms 

of the Y matrix 'Y5 = YxYy"z'Yt by the equations 

(5) 
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(6) 

where E"tJovpa i8 the antieymmetric unit tensor which is zero unle •• 

.... ", v ", p ¢ a and equal to + 1 or - 1 according to whether .,., v, p, a 

ie an even or odd permutation of x, y, Ii, t. 

The following are a set of relatione among the matrice •• 

(7) 

(8) 

( 9) 

(10) 

+ ;v,". ".e ~tJ: "a + ~ ,'Y 11 'YO' + ~a~v ~] (11) 

(lZ) 

l[ + ] _l[ + ] 
'! 'VI,·Y" ~.e.~C! ,'Ye~a YtJ:Yv - '! ~~vYa ~~ 

(13) 

From equation 11. 12, and 13 we get 
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(14) 

w. a180 have 

(15) 



APPENDIX III. THE MA TRIX r t1 

We wish to solve equation J-7 

v r""''' "r 'V it1 = t1 'V - 'V . t1 

Multiplying through by g and noting that the covariant derivative of pv 

g i8 zero. we get the equivalent equation pv 

(1) 

Now the commutation relation satisfied by y p i" 

(2) 

Taking the covariant derivative of both sides of 2 we get 

(3) 

Multiplying 3 on the left by yo., noting yQ'Yo. = 4. we get 

(4) 

But 

(5) 

Equation 4 becomes 

(6) 

At this point the author has been unable to proceed without ex-

panding y in terms of the nat space matrices by the relations K-3 
p 
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From this we get 

where we have used (b ttYs:.) = b J: Y.t: since we are assllnling a 
pu u.V- pU.1l u 

representation I.)f the flat space 'V matrices where 

Yo = 0 .Il 

Using equation 7 we get 

Now 

a. a a. a + 2 a. 6a 
'V 'V 'Va. = - 'V 'Va. 'V 'V a. = 

Therefore 

a 
-Z'V 

(8) 

The author has been unable to obtain equation 9 directly from 

the commutation relations of 'V. It is not :mown whether this is a 
p 

failure on the part of the author. or whether the relation K-3 puts an 

added restriction on the curved s ?ace 'V matrices that allows us to 

obtain the relation 9. This question is not important for the quantum 

mechanics of gravity interacting with electrons. since the quantum 

mechanics is based on the expansion K-3. 
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Substituting equation 9 into 6 we get 

Comparing with eqclation 1 

we get 

Since 

we also get 

r = 
IJ 

which is the solution given in equation J -8. 

(10) 

(11) 

(12) 

Alternate forms of r in terms of the quantities a and b may 
p. 

be obtained in the following way. 

(13 ) 

Using eq'-lation 7 we get 

(14) 

In terms of the flat space 'V matrices 'Vo. this becomes 

(15) 



To lowest order in h we get 
tJ-v 
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In equation K-7 we desired the ql.lantity 

From equation 14 we get 

(16) 

(17) 

t (r.,. yfl + yflrJ-l) = ~(bf3(, • .,.b('(1 + 113 • \.IQHL,lY"'t.+ yfJi:l.) 

(18) 

From equations 8 and 9 in appendix II we get 

(19) 

Since r 13. flCl is symmetric in !J. and Cl. it gives zero when multiplied 

by y'Q./\J-l. Expressing the remainder of eq'lation 17 in terms of flat 

space matrices we get K-7 

!r [r "fl +"flr 1 alb a'a" " " 
£. fJ. ' , IJ. 4' (11-1. 13 (1 v 13 p , e ' v ' e 

, 
(20) 



APPENDIX IV 

To prove equation L-20 we use the relation 

, ... -1-
Substituting 'Y Q :: bQa(h )S 'YaS and noting that 

we get 

• • r-: -1- -1- - ]} + b (h )bA (h h'Y S "S 'Y - S KS 'Y 'Y) S c.p t'a p • Cf. P a 

where we have used 

and 

If we note that 

and that from equation K-3 

Qa. aj3"''''''' g r-b b A :: g (h)b (h )bt.:l.a(h ) 
ap t'Cf ap t' 
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we get 

However, froIn equations L-17 we get 

- ." - v 

since ~ ~ ~ ~ = Ij. Thus we have ,oroved equation 1-Z0. 
'p~'p 



APPENDIX V 

We wish to investiga.te the quantity 

where we used the relation 

We can see the meaning of the terms in 1 by the following investigation. 

The order of partiaJ differentiation is interchangeable. thus 

'\I -'\I -0 
1 P .... Vip, V ... 

(2) 

Now 

-Yp, ltV = r -y - -y r + r r -y - T -y r + rO" r -y 
,... .... v p P ... , v ... v P ... P v pv '" 0" 

(3) 

And in a 8imilar manner 

'\I -'\Ir r '\I+f'-yr'.-yrr+r"-yr 
- 1 p. "' ... - 'p "' .... - "' .... I P ..,. P v P... v pJ.l. C v 

(4) 
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Substituting 3 and 4 in Z we get 

The terms in the square brackets are Just RO' • If we define 
ptJv 

(5) 

r - r + r r - r r = c (6) !J..v V.tl fl v v f.1 flV 

we get 

(7 ) 

Try as a sohltion of equation 7 

(3) 

We get 

1 a.~ {30. = + "'2;' R A (6 'Y - 6 'Y ) 
. G o.l"'tJv P P 

which checks equation 8. 

Equation 8 may be written 



since R A=-R • p.VCLI-' VV(lP 
V/e now get frvm equation 1 

(9) 

CL f:J p. v The quantity -"i "i "i "i R tlVCLj3 may be written 

(10) 

We have 

II t:!. V CL II V CL A (.\v II, (l (lA II " 

"f"'"I-'"" = "f"'" " "I-' + Zgl-' ",." _ Zg 1-'"1""',, 

Therefore 

_ a. j3 ..,. "R __ 1 [ fJ " a. rJ(R + R + R ) 
" " "" CLf'P. V - 1''''''''' p. va.j3 1J.j3 \I(l p.a.13 v 

(It ) 

Using the identity 

equation 11 becomes 

Substitution of 12 into 9 gives 

which is relation M-1Z which we set out to [)rove. 
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