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ABSTRACT 

Many resonances in the scattering of fundamental particles have 

been recently discovered, which may be interpreted in terms of unstable 

particles. One of these may be a vector meson coupled to the hyper charge 

current, whose decay rates are calculated. Predictions are given for the 

total decay rate, and branching ratios, in terms of 2 
Y
h 

/4rc, the strength 

of the hyper charge coupling Another resonance may be correlated with the 

missing member, X , of an octet of pseudoscalar mesons in the "Eightfold 

Way" of Gell-Mann; a reaFlonable estimate of the branching ratio 

PX'" 2y)/ rex ... 1(- + rc+ + y) is obtained. A resonance in the K-rc 

system may be Gell-Mann's M-meson; the role of M in the associated pro-

duct ion of A's by pions and in A production by K's is examined. The 

existence of a new class of asymptotic cross section equalities, which 

are generalizations of the Pomeranchuk relations, is demonstrated. The 

pion plus leptons decays of the kaon are considered, and it is shown 

that they cannot be determined by an intermediate M-mesono The fraction 

of ;o's, the vector mesons that appear as a resonance in the two-pion 

system, that decay into four pions is estimated to be less than 1%. 
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1. INTRODUCTION 

In the last two years many resonant configurations of mesons 

have been discovered, which may be interpreted i n terms of unstable mesons . 

If one examines the mass spectrum of two-pion systems produced by the 

annihilation of antiprotons, a very prominent peaki ng is visible at 

750 Mev. Since this peak occurs in the n+no mass spectrum but not 

in the n+n+ spectrum, this resonant configuration is an isotopic triplet. 

The full width of the peak is near 100 Mev, and at present t here are con-

flicting indications as to the question of fine structure. If we assume 

that statistical fluctuations account for the observation of multiple peaks 

within this 100 Mev region, the peak may be thought of as being due to an 

unstable meson with angular momentum J = 1. This vect or meson is called 

the jJ. 

Also in experiments on the multipion annihilations of protons and 

antiprotons, the mass spectrum of three-pion systems has been studied. 
: 

A very sharp peak has been found at 787 Mev. The wi dth of the peak is 

determined by the experimental resol ution; the decay wi dth of t he corre-

sponding meson could be of the order of 1 Mev or less. This meson comes 

i n only a neutral variety, and so is an i sotopic s inglet, I O . It 

also i s vector, wit h J = 1 and negative parity. The accepted des i gnati on 

for it is (I) . 

I n the reactions + :rt + d - P + P + 3:rt and K- + p " 11. + 3:rt another 

spike appears at 550 Mev . Recent experimenns have shown it t o be in the 
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isospin I = 0 channel, but its spin and parity are still uncertain. 

The associated meson was originally called the 7l ' but if its spin-parity 

assignment turns out to be 0-, it will probably be rechristened as the X 

In the K-n system, which has one unit of strangeness, a 30 Mev 

* wide resonance, called K , appears at 884 Mev in the reaction K + N ~ N + 

K + n. The corresponding meson has I = 1/2, and it very likely is vector. 

The existence of unstable vector mesons is demanded by two very 

noteworthy theories of the strong interactions: Sakurai ' s "vector Theory 

of the Strong Interactions,,(l) and (lell-Mann's "Eightfold way,,(2,3). By 

assuming the identity of the observed particles with the mesons of these 

theories, one is able to make predictions concerning various phenomena 

in which they are involved. In this thesis, we shall study many production 

and decay processes from the hopeful point of view that the amplitudes 

may be dominated by intermediate states of vector mesons. 

In Chapter 2, we shall consider the decays of a vector meson 

coupled to the hyper charge current. Such a meson is present in both the 

theory of Sakurai and that of Gel l-Mann. In Sakurai 's scheme i t would 

be identified with the three -pion resonance at 550 Mev, whereas in Gell-

Mann's classification it would correspond to the 787 Mev peak. Predictions 

will be given for the total decay rate, and branching ratios J of such a 

meson in terms of the strength of the hypercharge coupling. 

In Chapter 3 the decays of a neutral pseudoscalar meson of mass 

550 Mev are investigated, under the assumption that this meson is even 

under charge conjugation. A r .easonable estimate of the ratio of decay rates 

r(X -+ 2y)/rO(" n- + n+ + y) will be obtained. 
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We have no theory of strong interactions which we can test 

rigorously because we do not have the mathematical means of extracting 

the quantitative dynamical predictions of our theories. We thus must 

content ourselves, for the time being, with testing our basic ideas in a 

qualitative, or at best, a semi-quantitative manner, and with correlating 

the phenomena of particle physics. In the research summarized in this 

thesis examples of both of these aspects of the investigation of high 

energy physics will be found. 

Today we have a new hypothesis about the semi-quantitative behavior 

of amplitudes in field theory to check. The Regge pole hypothesis is 

very attractive for three reasons. First of all, it shows promise of 

alleviating some of the divergence problems in relativistic quantum 

mechanics. It also may enable us to group many of the particles into 

new families. And finally, it indicates a clear way to test whether 

many of our particles behave as composites or as el ementary objects. In 

Chapter 4, we are concerned primarily with using this hypothesis to 

elucidate the role of the M-meson in the phenomena of the strong inter-

actions .. 

Under the hypothesis that the K-n resonance is vector, we 

* examine the role of the K in the associated production of A by n 

and in A production by K. We shall demonstrate the existence of a 

new symmetry between two reaction amplitudes. This symmetry may be 

regarded as a generalization of Pomeranchuk's relations and should 

appear at high energies and low momentum transfers when both amplitudes 
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are dominated by the same pole or pseudo-pole, as is to be expected 

according to the Regge pole hypothesis. Specifically, we find, in 

* considering the details of the role of the K in the processes 

1( + N ..... A + K and K + N + A + 1(, that the associated production 

amplitude in the forward direction (for the K) at high energies is 

asymptotically equal to the negative of the amplitude characterizing 

A production by a K. The contribution of the dominant pole terms in 

these amplitudes is constructed for the high energy limit and the energy 

and momentum transfer dependences are compared for the alternative 

hypothesis of composite or elementary particle behavior of a pole term. 

We discuss experiments which are needed to supply data for a test of the 

Regge pole hyopthesis. The results of these experiments, which are 

feasible with the new large accelerators, will be most important as 

guides for the construction of theories of the strong interactions. 

A theory base d on a vector K-1t resonance with I = 1/2 is 

not capable of accounting for the facts in the decays of a kaon into 

a pion plus leptons. This negative result will be discussed in Chapter 5, 

where a more general analysis of the form factors will be proposed. 

The meson associated with the two-pion resonance at 750 Mev, 

the ~, is capable of decaying into four pions . Experiment s have been 

suggested in which these four-pion decays should show up as a peak i n the 

mass spectrum of four-pion systems. An order of magnitude estimate 

of the branching ratio r'(f'-' 41t)/ I(P~ 21t) is derived in Chapter 6. 

This branching ratio is estimated to be less than 1%. 
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2. DECAY OF A HYPERCHARGE MESON 

I. Introduction 

Three resonances in multipion systems have been discovered, whose 

existence has been predicted by many theorists. Among the more specific 

of thes.e predictions are those of Sakurai's vector theory of the strong 

interactions, (1) Gell-Mann's eightfold way, (2) and similar work by Ne'eman, 

and Salam and Ward. (3) The two-pion resonance at 150 Mev, (4) the f" 
fits the description of a vector meson coupled to the conserved isotopic 

spin current, which is a common feature of all of these theories. The 

identification of the three-pion resonances at 781 Mev, (5) the co, and at 

550 Mev, (6) the ~, is still uncertain. Two possibiliti es are suggested 

by these theories. Sakurai.has proposed(1) that the ry is a vector meson 

coupled to the conserved hyper charge current, and that the co is a vector 

meson coupled to the conserved baryon current. On the other hand, the 

concept of unitary symmetry}2) which predicts an associat ed resonance in 

the p -wave K~ system that seems to exist also, leads one to conjecture 

that the co is a vector meson coupled to the hypercharge current , and t hat 

the ~ is the missing member, the )(, of an octet of pseudoscal ar mesons. 

The other members of that octet would be the three pions and the four kaons. 

In this article we shall calculate the decay rates of a vect or meson 

coupled to the hyper charge current. We shall give predictions for the t otal 

decay rate, and branching ratios, in terms of one parameter~ r2 /4~, t he 

strength of the hyper charge coupling. If one of the observed I = 0 three -

pion resonances can be described as a vector meson coupled to a conserved 

hyper charge current, then one will be able straightforwardly to obtai n a 
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good estimate for the strength of the coupling. It must be noted that our 

approximations and results are based on the hopeful assumption that either 

there is no vector meson coupled to a baryon current, or the mixing of a 
I 

baryon meson and a hyper charge meson is not so strong that t he sources of 

both mesons are dominated by the more strongly coupled baryon current. 

We shall show that even with a Q of 375 Mev, the decay widths t o be 

expected for the triple pion decay of a vector meson with mass 787 Mev 

are quite small (of the order 1 Mev) With reasonable matrix el ements. And 

finally, we shall show tha~due to electromagnetism, the ratio of two pion 

to three pion decays of a vector meson with zero isotopic spin could 

easily range from 14% to 56% if the mass is 550 Mev, ' and could wel.l be as 

much as about 4% if the mass is 787 Mev. 

II. Neutral Decays 

Since the hyper charge meson is characterized by the quant um numbers: 

isotopic spin, I = 0; 

angular momentum, J = 1; 

parity, P = -1; 

isoparity, G = -1; 

charge conjugation, C = -1, 

the neutral decays of a hyper charge meson are not allowed by the selection 

rules valid for the strong interactions. (For convenience i n the fol.low­

ing discussion, let us introduce the symbol h for the hyper charge meson . ) 

For example, the decays h _ nn?, where n is any i nt eger, and the mode 

h ---+ X + 1(0 are forbidden by charge conjugati on. AD. neutral decays, 

therefore, must be mediated by electromagnetism. The simplest and most 
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probable of these decays is h -'-+ '1(0 + r The second mqst likely neutral 

mode should be h ~ x. + r , if the X exists with a mass less than that 

of the h, since the reduction in phase space resulting from additional 

particles in the final state inhibits greatly modes like h- 2'1(0 + rand 

h _ 3'1(0 + r. The decay h - 2r is forbidden by charge conjugation, as 

is any other neutral mode involving two photons. 

Gell-Mann and zachariasen(8) showed that it is possible to predict 

the rate of the '1(0 + r decay mode of a hyper charge meson in terms of the 

lifetime of the o '1( • The crucial step in the calculati on is to use the 

facts that the isotopic scalar piece of the electroma~etic current is the 

hyper charge current, and the isotopic vector piece of the electromagnetic 

current is the third component of the isotopic spin current. By way of 

introducing the calculational technique that will be empl oyed in this 

article, we may paraphrase some of their work. 

Since the h i s coupled to the isoscalar electromagnetic (EM) 

current, and the f is coupled to the isovector EM current, the following 

four amplitudes are related. 

f F (s,t,u) € e'k' e'l k't 
IT'1( IT'1( I..I:V ct 't' Il v 0( 't' 

= 

f h F h (s,t,u) € _ .... rn: r'1( ll1Jv \ 
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= 

= 

~o-

-o­
re 

e and k are polarization and momentum four vectors of the particles . 
J..I J..I 

We use the metric 123 (x , x , x , 

In the first amplitude (k,)2 = -s, 

(kY)2= -tj in the third Ckl')2 = -s, (kY)2 

( (>.)2 1C 2 k = -tj and in all of them (k) = -u. 

it), and ;( = c = m L 
1C 

-tj in the second (kh)2 = - s, 

-tj in the fourth (~h.)2 = -s, 

The constants 

are defined by the normalization F (0, 0, 1) 
IT1C 

f IT1C, fh.yre' ~Y1C' 

= F (0, 0, 1) = 
h.Y1C 

1) = F (0, 0, 1) = 1. 
hp1C 

strictly speaking, in the theory of the strong interactions diagrams 

inVOlVing? 's and h.' s do not exist since these particles are unstable. 

Such diagrams are always pieces of more complicated diagrams which syIDbolize 

interactions. inyolving quite a few particles which are stabl e with respect 

to the strong interacti ons. Many of these multiparticle amplitudes are 

dominated by resonant terms which are due to poles located on sheets other 

than the physical sheet. These terms are the same as those associated 

with unstable particles, and the analysis of the phenomena of particle 
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physics is greatly facilitated by the approximation of working wit~ , 

amplitudes involving unstable particles. 

In a field theory -containing isospin 

sources are the renormalized currents jP 
0: 

and hyper charge mesons whose 

and j~, respectively, the 

relations (8) 

(lI . la) 

v 
<m I j~ I n> = (lI.lb) 

between electromagnetic isospin, and hypercharge current matrix elements 

are valid in the limit of infinite bare mass for the h and the,P . In 

these equations, 2Yp is the universal coupling constant of the p to the 

isospin current when the square of the momentum transfer, -s , vani shes, and 

Y
h 

is the universal coupling constant of the h to the hyper charge current 

at s = 0. In the notation of unitary symmetry(2), Y = -v3 y . From 
h (J) 

these equations, it is apparent that the first three amplitudes are rel ated 

as follows : 

f F (s , t, u) = (e/2Y) yyre yyre p (1 _ s/m2) -1 f F (s, t , u) + p pyre yre 

(II .2) 

Making use of the normalization definitions at s = t 0, and u = 1, 
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(e/2Y) fh. . h. yn: 

Furthermore, the second and fourth amplitudes are related by 

~ Fh. (s, t, u) = (e/2Y) I"lyn: yn: p (1 

and the third and fourth are also connected, 

f F (s, t, u) = (e/2Y) 
fyn: pyn: h 

(1 

so that 

f = (e/2Y ) f , 
hyn: F 'hpn: 

f = (e/2Y ) fhpt 
, 

pyn: h 

and, from Eq. II.3, 

f = (e jy
h

) f (e jy
p

) f 
rYn: hyn: Pyn: · 

(II.3) 

(II.4) 

(II.5) 

(II .6) 

(II.7) 

(II.B) 

calculations the amplitudes on the mass shell are needed. Specifically, in 

the unstable particle approximation for complicated reactions, quantities 

such as 

2 = m 
h. 
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enter. In the pole approximation, such quantities are unity. Their 

deviation from unity may be neglected to the same extent that more massive 

intermediate states may be neglected in a calculation of the dispersion 

theory. Since we are making use of the latter simplification in this 

paper, we shall follow a consistent course and employ also the former. 

The rate for the two photon decay of the neutral pion is 

(II.9) 

where the relativistic phase space factor, P, for this final state of two 

( 2 )-1 massless particles is 32rr mrr ' 

"IE e ' k ' e"k"1.2 L.. . ~Vcl''l'f..l "V a r(, 
(II.10) 

(the sum being over the polarizations of the gamma rays), and where the 

factor of 1/2 results from the indistinguishability of the two photons . 

Putting this together, we obtain 

frrrr 1 mrr / 64rr 
I
' 2 3 (II.n) 

where we recall the m 1 with our choice of units. rr 
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III. Decay into ~+ + ~ + o 
~ 

The decay of a hyper charge meson into three pions can be treated in 

an approximation which is the basis of all practical calculations in 

dispersion theory, namely, that of keeping only those intermediate states 

with low masses in the dispersion integral. We shall assume the dominance 

of two pion intermediate states in dispersing the matrix element for 

~ + h -. ~ + ~. In addition, the two pion intermediate states will be 

treated in the {,-meson pole approximation(8), isotopic spin selection 

rules together with the generalized Pauli principle allow only states of 

off angular momentum in the two pion system, and p-wave scattering should 

be much more important than f-wave scattering at these low energies. 

Included in the h decay matrix element are three terms, which are obtained 

from one another by switching the electric charges of the pions, and which 

may be described graphically by the diagram of Fig. 1. The analytic 

expression for the matrix element is 

T = 

where DCk2) is the p -meson propagators, e h is the polarization 
~ 

four-vector of the h, and k..., is a pion momentum four-vector. In the 

pole approximation 

= r -1 
i mf' p ) 

The expreSSion for the decay rate is complicated by the fact that 

the square of the matrix element is not a constant and by the necessity 

(III.2) 
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Figure. 1 . Dominant diagram in ~ decay 
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of treating the pion kinematics relativistically. In terms of the pion 

energies as variables 

= m~ \ (E
02

_l)(E-
2

_l) - Hm~ + \1 - 2mh,(EO+E-) + 2E- EOF} / 3, 

(III.3) 

where L indicates an average over the initial h polarizations. It has 

o - 0-been found that convenient variables are y = E - E ,and x = E + E J 

in terms of which 

r (h + 3lf) = (III.4) 

where 

2 2 2 2 2 222 
A = 2mh x(x -y ) - mh (5x -y ) - mlf (3x + y ) 

(III.5) 

B = 

(III.6) 

and the integral extends over the region in which A is positive. 

The integral can be evaluated explicitly in the non-relativistic 

limit. The rate for the three-pion decay may be expressed conveniently 

in the form 

J (III.7) 
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Where W(mh) is a relativistic correction factor; W(3m) = 1. This 
11: 

function has been computed numerically in such a way that we also obtained 

the spectrum of anyone of the pions. If we denote the energy of the 11:+, 

for example, by E, 

W(m) = j(m
2

-3)/2m S(m,E) dE , 

where the spectrum S(m,E) may be expressed as 

2 2 

S(~,E) = A(m,E) J. + 
(mp-l-m+2mE) 3a 

2 · 3 (mp -J. -mE) t 
( 2 2) (a+t) t -a J.og a:t 

+ 

in terms of the functions 

and 

a = a(m,E) = {3 (m~ - 1 - mE) / m(m-3) 

J. 

t = t(m,E) = [6 m (E-l~(E+~) [(m
2

- 3)/2m - E~2 
l (m-3) (m + J. - 2mE) J 

A(m,E) 

2 223 2(m + J. - 2mE) (ro p - 4) t 

222 
911: (m - 3) (mp + 2mE - m - J. ) 

, 

, 

(III.8) 

+ 2at 

(III.10) 

(III .ll.) 

( III.J.2 ) 

The spectrum of the pion in the decay for the case mh = 5.7 m = 787 Mev 11: 

is shown in Fig. 2. It will be noted that the deviations from the statis-

tical spectrum due to pion-pion scattering are very small. for this case. 

This absence of structure in the spectrum may be traced to two factors. 
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The maximum energy available to any two pions is well below the mass of 

the p, so that only the tail of the resonance is effective. The symme­

trization required by the generalized Pauli principle tends to smooth out 

any departure from uniformity in the matrix element. More specifically, 

there are three diagrams in the class shown in Fig. 1, and whenever one 

of them contributes a relatively +arge term to the decay matrix element, 

the other two terms are smaller than average. 

For the numerical work, the mass of the pion was taken to be 138 Mev 

wbichis the ,average mass of the three pions in this decay mode. In this 

unit, the mass of the CJ.) is 5.70 and that of the y/ is 3.99. The 

spectrum and the correction factor, W(m), were computed by an IBM 7090 

for the mass values: m = 3.10, 3.99, 5.00, 5.70, 6.20. The results are 

given in Tables 1-6. In Fig. 2 the comparison of the spectrum and the 

statistical prediction has been shown for the CJ.) mass; the differences 

between the two, if the hyper charge meson is taken to be the y/ , are much 

smaller. 

The ratio of the o + - 0 n + y and the n + ~ + n decay rates of 

the h meson is independent of the hyper charge coupling constant , 

= 

(III.13) 
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Table 1: Relativistic Correction Factor, W(m) 

m W(m) 

3.10 1.033 

3·99 1.430 

5·00 2.286 

5·70 3·558 

6.20 5.687 
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Table 2: Pion Spectrum in 11.-... + + + 0 m = 3.10 7( 7( 7( , 
E = 1 + X(m-3)(m+l)/20Om , S(m,E) = 20 m P / (m-3) (m+1.) 

X P X P X P X P X P 

1 .004 21 ·303 41. .544 61. ·541 81 .287 

2 .012 22 ·319 42 ·550 62 ·534 82 .270 

3 .022 . 23 ·335 43 .556 63 .526 83 .253 

4 .033 24 .350 44 .561. 64 .51.7 84 .235 

5 .046 25 .365 45 .565 65 .508 85 .21.7 

6 .059 26 .380 46 .569 66 .498 86 .200 

7 .073 27 .395 47 .572 67 .488 87 .182 

8 .088 28 .409 48 .574 68 .476 88 .1.64 

9 .1.04 29 .422 49 .576 69 .465 89 .1.47 

1.0 .1.20 30 .435 50 ·577 70 .453 90 ·1.30 

1.1 .1.36 31. .448 51. ·577 71 .440 91. .1.13 

12 ·1.53 32 .460 52 .576 72 .427 92 .096 

13 .1.69 33 .472 53 ·575 73 .41.3 93 .080 

14 .1.86 34 .483 54 .573 74 ·399 94 .065 

1.5 .203 35 .493 55 ·571 75 .384 95 .050 

1.6 .220 36 ·503 56 .567 76 .369 96 .036 

:17 .237 37 .513 57 .564 77 ·353 97 .024 

1.8 .254 38 ·521 58 ·559 78 ·337 98 .01.3 

19 .270 39 ·529 59 .554 79 ·321 99 .005 

20 .287 40 ·537 60 .548 80 .304 1.00 .000 
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Table 3: Pion Spectrum in h.-,l - 0 m = 3.99 + 1t + 1t 1 

E = 1 + X(m-3)(m+l)/200m 1 S(m,E) = 20 m P / (m-3)(m+l) 

X P X P X P X P X P 

1 .005 2l .360 41 ·735 61 .840 81 .518 

2 .013 22 .382 42 .749 62 .834 82 .491 

3 .023 23 .403 43 .762 63 .828 83 .463 

4 .036 24 .424 44 .774 64 .820 84 .434 

5 .050 25 .445 45 .785 65 .8ll 85 .405 

6 .064 26 .466 ·46 ·795 66 .801 86 ·375 

7 .080 27 .487 47 .805 67 · 790 87 .344 

8 .097 28 .508 48 .814 68 .778 88 .314 

9 .ll5 29 .528 49 .821 69 .765 89 .283 

10 .ll3 30 .548 50 .828 70 · 750 90 .251 

II .152 31 .567 51 .834 71 ·735 91 .220 

12 .172 32 ·586 52 .839 72 . 718 92 .189 

13 .191 33 .605 53 .844 73 .700 93 .159 

14 .212 34 .623 54 .847 74 .681 94 .130 

15 .232 35 .641 55 .849 75 .661 95 .101 

16 .253 36 .658 56 .850 76 .639 96 .074 

17 .274 37 .675 57 .850 77 .617 97 .049 

18 .296 38 .691 58 .849 78 · 594 98 .028 

19 .317 39 .706 59 .847 79 .569 99 .010 

20 ·339 40 .721 60 .844 80 .544 100 .000 
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Table 4: Pion Spectrum in h-.:If+ + :If + :If 
0 

1 m = 5.00 

E = 1 + X(m-3)(m+l)/20Om , S(m,E) = 20 m P / (m-3) (m+1) 

X P X P X P X P X P 

1 .006 21 ·515 41 1.126 61 1.425 81 1.013 

2 .018 22 ·547 42 1.152 62 1.425 82 .968 

3 .032 23 ·579 43 1.176 63 1.423 83 .920 

4 .049 24 .612 44 1.200 64 1.419 84 .871 

5 .068 25 .644 45 1.223 65 1.412 85 .819 

6 .089 26 .676 46 1.245 66 1.404 86 .765 

7 .ll2 27 .708 47 1.266 67 1.394 87 .709 

8 .135 28 .740 48 1.286 68 1.382 88 .651 

9 .160 29 ·772 49 1.305 69 1.367 89 ·592 

10 .186 30 .804 50 1.323 70 1.351 90 ·532 

II .213 31 .836 51 1.340 71 1·332 91 .470 

12 .240 32 .867 52 1.354 72 1.3ll 92 .408 

13 .269 33 .898 53 1.368 73 1.287 93 .346 

14 .298 3~ .928 54 1.381 74 1.261 94 .285 

15 .328 35 .958 55 1.392 75 1.233 95 .224 

16 .358 36 ·987 56 1.401 76 1.202 96 .166 

17 .389 37 1.016 57 1.410 77 1.169 97 .ll2 

18 .420 38 1.045 58 1.416 78 1.134 98 .063 

19 .451 39 1.073 59 1.421 79 1.096 99 .023 

20 .483 40 1.100 60 1.424 80 1.056 100 .000 
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Table 5: Pion Spectrum in h~,l - + nO + l{ , m = 5.70 

E = 1 + X(m-3)(m+1)/20Om , S(m,E) = 20 m P / (111-3)(m+1) 

X P X P X P X P X P 

1 .012 21 .789 )+1 1.661 61 2.221 81 1.784 

2 .033 22 .834 42 1.700 62 2.231 82 1.717 

3 .059 23 .880 43 1.738 63 2.238 83 1.644 

4 .088 24 ·925 44 1.776 64 2.243 84 1.567 

5 .121 25 ·970 45 1.812 65 2.245 85 1.484 

6 .155 26 1.015 46 1.848 66 2.245 86 1.396 

7 .192 27 1.060 47 1.883 67 2.241 87 1·303 

8 .230 28 1.105 48 1.916 68 2.234 88 1.205 

9 .269 29 1.150 49 1.949 69 2.223 89 1.103 

10 .309 30 1.194 50 1.980 70 2.209 90 ·997 

11 .350 31 1.239 51 2.010 71 2.192 91 .887 

12 ·392 32 1.283 52 2.039 72 2.171 92 ·775 

13 .435 33 1.327 53 2.066 73 2.146 93 .661 

14 .478 34 1.370 54 2.092 74 2.116 94 .546 

15 · 522 35 1.413 55 2.116 75 2.083 95 .433 

16 ·566 36 1.456 56 2.139 76 2.045 96 ·322 

17 .610 37 1.498 57 2.159 77 2.002 97 .218 

18 .654 38 1.539 58 2.178 78 1.955 98 .123 

19 .699 39 1·580 59 2.194 79 1 ·903 99 .045 

20 . 744 40 1.621 50 2.209 80 1.846 100 .000 
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Table 6: Pion Spectrum h .....".1(+ + + 
0 m = 6.20 1C 1C , 

E = 1 + X(m-3)(m+l)/20Om , S(m,E) = 20 m P / (m-3)(m+l) 

X P X P X P X P X P 

1 . .052 2l 1.346 41 2.381 61 3·337 81 3.262 

2 .129 22 1.399 42 2.433 62 3.374 82 3·175 

3 .211 23 1.451 43 2.484 63 3.409 83 3.074 

4 .293 24 1.503 44 2·536 64 3.441 84 2.960 

.5 ·373 25 1.554 45 2.587 65 3.471 85 2.830 

6 .449 26 1.606 46 2.638 66 3.498 86 2.686 

7 ·523 27 1.657 47 2.689 67 3·522 87 2·527 

8 ·593 28 1.709 48 2.740 68 3·543 88 2·352 

9 .660 29 1.760 49 2·790 69 3.560 89 2.164 

10 .725 30 1.812 50 2.840 70 3·572 90 1.962 

11 .788 31 1.863 51 2.890 71 3.580 91 1.748 

12 .849 32 1.915 52 2.939 72 3.582 92 1.526 

13 .908 33 1.966 53 2.987 73 3· 578 93 1.297 

14 .966 34 2.018 54 3.034 74 3.569 94 1.066 

15 1.023 35 2.070 55 3.081 75 3·552 95 .837 

16 1.078 36 2.112 56 3·127 76 3·527 96 .618 

17 1.133 37 2.173 57 3.172 77 3.494 97 .412 

18 1.187 38 2.225 58 3·215 78 3.452 98 .230 

19 1.241 39 2.277 59 3·257 79 3.400 99 .083 

20 1.294 40 2·329 60 3.298 80 3·337 100 .000 



- 24 -

IV. De~ays into Pairs of Charged Particles 

As is evident from Eq. II.2, the coupling of the photon to the p and 

to the h · 2 · 2 
in the sense of dispersion theory must be emf /2Tp and emh /2T

h
, 

respectively. An estimate of the rates for the decay of the hypercharge 

meson into pairs of charged particles may be obtained by assuming the 

dominance of the sing1e-ph~ton intermediate state in the imaginary part of 

the ee , - + 
J..LJ..L , and n n vertices. For the matrix elements involving 

. lepton pairs, such an approximation leads to the following expressions 

h 
e-v u TvV , (IV.1) 

It 
where e v is the polarization four-vector of the hyper charge meson, u 

is a Dirac spinor for the lepton, and v is a Dirac spinor for the anti-

lepton. A straightforward calculation of the decay rate from this matrix 

element results in 

r(h _ e + e) = 0
2 mh (1 - 4m:/m~ )1/2 (1 + 2m:/m~ )/ 12(T~ /4n) ; 

(IV.2) 

the corresponding expression for r ( h. ~ J..L + ;:1) is obtained by 

replacing m by m • 
e J..L 

Such an approximation would not be very good for the two-pion mode, 

because there we obviously have an additional physical effect to consider. 

- + n -The 1C 1C pair will be in a state with the quantum numbers J = 1. In 

this configuration there is a resonance in pion-pion scattering due to the 

f> -meson, and so final state interactions will be important in the decay 

+ 
1C • The effect of these may be included by putti ng in the pion 
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electromagnetic form factor, 2 F (q), which, near the two pion resonance, 1ury . . 

takes the form 

(IV.3) 

In the decay matrix element, the form factor is to be evaluated at q2 ~ -m~ , 

and thus if mh is close to mp , a very strong enhancement of the decay 

rate will result. This effect has recently been discussed qualitatively 

by Fubini, (9) Glashow, (10) and Nambu and Sakurai, (11) but we a~e able to 

give a semi-quantitative estimate of the magnitude of the branching ratio 

r (h _ )f - + )f+) / r(h _ )f- + )f+ + )fo) because our calculations give 

a prediction for the latter rate. The decay rate of the h -meson into a 

pair of charged pions is given, in our approximation, by 

~ (IV.4) 
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V. Conclusions 

On the basis of Eqs. II.15, III.13, IV.2, and IV.4, the partial wi dths 

for the decay of a hyper charge meson al"e determined in terms of the three 

parameters characteri~ing the strengths of vector meson couplings; 2 
(, p /41C), 

(l /41C), and (lh /41C). One afthese is known experimentally; using 100 Mev up 
for the width of the tyro pion resonance, one finds that 

Next we note that the ratio y.p/" is the zero momentum form factor of 
1C1Cf> 

the f meson, (8) and can be related to the strength of the f meson "pole" 

term in the pion electromagnetic form factor. This can be measured in 

experiments with colliding beams of electrons and positrons, which are 

now under consideration at many laboratories. But for the present, we 

shall have to be content with the observation that this ratio is likely to 

be quite close to unity, since we know that the analogous zero momentum 

nucleon -f form f actor departs from unity by not more than about 40%. (8,12) 
" . 

The only parameter that is really unknown is, thus, the hypercharge coupling 

strength ,~/41C. This may be determined from anyone of t he part ial 

widths, and t hen be used to predict the branching ratios for all the modes . 

For ill ust rative purposes, however, we shall display the decay rat es for 

two reasonable values of the hyper charge coupling strength: ,~/41C . = 1 .5, 

as would be suggested by unitary symmetry,and ,~/41C 3; these are 

given in Tables 7 and 8. The tables were constructed using r 0 - 3 ev, 
1C~,+, 

and ,2 /41C = ,~/41C 1/2. 
1C1Cp . 1 

Several points appear to be worth noting concerning these results . 

(1 ) The char ged particle -pair decays of the (J) and the il should be 
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Table 7: Typical decay rates of a bypercharge meson of mass 550 Mev 

2 (,~ 141C) ('I\. 141C) = 1.5 = 3 

h _e + e 1.6 kev 0 .81 kev 

h -Il + il 1.6 0.81 

h - + __ 1C+1C 1.1 0 · 55 

0 n_1C+, 21.5 43.0 

h - + 0 _1C+1C+1C 2.0 4.0 
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Tabl.e 8: Typical. decay rates of a hypercharge meson of mass 787 Mev 

(r~ /4re) 1.5 (r~ /4re = 3 

h - -e + e 2·3 kev 1.2 kev 

h-IJ.+i! 2·3 1.2 

h _re - + + re l.7 8.5 

h _reo + r 69 l.38 

- + h - re + re+ re 
0 394 788 

485 937 
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searched for, since it is quite conceivable that up to ,15% of the I( ' s or 

up to 5% of the CI)' s decay in this manner. (2) The ratio of neutral decays 

to charged decays is supposed to be less than 30% for the CI), and in the 

range 3 -7 for the rz. If either the CI) or the rz were to be 

identified with a hyper charge meson, this piece of data would be consistent 

with our prediction. But perhaps it would be more reasonable to wait for 

additional statistics at this stage of the game. (It may be of interest 

to point out here that if the 1{ turns out to be pseudoscalar, the X, 

one expects the branching ratio r / r: + - 3 6 ) X_')"I-, X_1f"'+lt +, - •• 
(3) Sakurai has recently claimed that the reported narrow widt h of the 

CI), r < 30 Mev, (5) is quite a mystery, (13) and gives an explanation of 
CI) 

this fact on the basis of R invariance. Coleman and Glashow, however, 

showed(14) that R invariancewould lead to a vanishing magnetic moment for 

the neutron and no mass difference between ~ - and L+ . They considered 

these unacceptable results to be sufficient grounds for abandoni ng R invar -

iance. Our calculations indicate that a very tiny width for the CI) is to 

be expect ed with reasonable coupling strengths, and hence it does not. seem 

that a selection rule based on some invariance principle is needed to 

explain the small width. (4) Electromagnetism causes a mix.ing of an I = 1 

vector meson and a hyper charge vector meson with I = 0, so that the correct 

(10) ~ 2 1/2 0 decaying states are given by n. = (l-a) h + a p and 

""0 ( 2)1/2 0 h 2 f = l-a p - a • It is easy to see that a must be given by 

r + - Ir h_lt +It P , and thus we find that a = .Oll7 for m h = 787 Mev, 

and a = .0033 for mit = 550 Mev. 

Some of the results of this article were reported in a letter to t he 

Physical Review. (15) other communications on these decay modes have also 
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appeared. Unfortunately, there appear to be serious errors in t he Feinberg 

calculations(16), so that most of his conclusions are not valid. Brown and 

Singer(17)have quoted estimates for the ratio R = r(A.--+rco + y) / 

L - + 0 
r(fl-'rc + rc + rc ) which are very much smaller than our estimatesj their 

subsequent conclusion that the Ti must be pseudoscalar is unreliable from 

a theoretical standpoint. 
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3. DECAY OF THE X ~SON 

Recent experimental evidence on the decay of the neutral meson at 

550 Mev(6) into three pions suggests that for this object the most 

likely quantum numbers are (spin 0, parity -, G = +1) , 0 - +, although 

statistical limitations and uncertainties in subtracting background do 

not permit the assignment J1CG = 1- - to be ruled out . (lB) Since it is 

known that this neutral meson has isospin I = 0,(19) if it were pseudo-

scalar with G = +1, it would fit the description of the missing member, 

called X, of an 

Gell-Mann. (2)" 

octet of pseudoscalar mesons in the "Eightfold Way" of , 

The three pion decay modes of the )( are forbidden by 

the conservation of G, and occur only through the intermediary of 

virtual photons. Accordingly-it is very difficult to estimate their 

rates; perhaps the only statement one may trust is that the ratio of the 

· 0+ 0 rates of the two decays into three pions, (31C )/(1C + 1C- + 1C ), must be 

less than 3/2 since charge conjugation invariance requires the final 

three pion state to have I = 1. It is possible, however, to obtain a 

reasonable estimate of the branching ratio r{X~2y)/r( X--,) 1C+ + n:~ + y) 

+ by assuming that the 1C + 1C + Y matrix element is dominated by the 

p-meson intermediate state, in the sense of dispersion theory, and by 

using the eightfold way to estimate the ratio of the X IT to t he X Py 
vertex. A ratio(18) of neutral to charged decay modes of the 550 Mev 

meson near 3 implies that the two photon decay will be the dominant 

decay mode if the meson is pseudoscalar, since the only other two body 

neutral decays, X ~ 1CO + Y and X -'72 1Co, are strictly forbidden by 

angular momentum and ~arity selection rules, and decays into more particles 
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are highly inhibited by phase space factors. Thus essentially we will 

be able to give an estimate of the fraction of X' s that decay into 

1C+ + 1C- + y , a number which may be compared with experiment. 

First, let us set up the expression for the rate of the decay 

X~2y • We define the constant f such that the T-matrix element rrX 
for this, decay has the form 

T = EO" k" 
cf or' ' 

where e1l and k 11 are polarization and momentum four vectors of the 

gamma rays. This form is uniquely determined by the pseudoscalar nature 

of the X' 'c . In terms of this decay constant,the decay rate is found to 

be 

r(X~ 2y) = 

+ The phase spe.ce integral for the mode X ~ 1C + 1! + r is con-

siderably more complicated, and we shall outline the calculation in more 

detail. The matrix element is taken to be that resulting from keeping 

only a jO-meson intermediate state, which is 

T = 

where y is the p1C1C coupling constant, and f X is a number 
1C1Cp' pr 

characterizing the Pyx vertex. The geometric factors in the latter 

vertex are identical to those in the rrx vertex. Putting in the 

density of states, we find for the decay rate 

(1) 

(2) 
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, (4) 

1 

where cos e = [(mx - E- - E+)2 + 2m; - E+2 _ E-:2] / [ 4(E+2 _m;)(E-2 -m;)] 2" 

This integral may be simplified by changing variables to y = E+ - E 

and x = 2mX (mX -E+ -E-)/(mX -4m;); the integral over y may be done 

analytically, but the other must be done numerical ly. The formula for 

the rate is 

where 

2 5 . 
- 4m) U n: 

= .0143 = 1/70 • 

'. ' 
In order to complete the calculation, we must be abl e to estimate 

ff'y)(/fyy)( ' That we shall do by dispersi ng the vert ices , assuming the 

dowinance of the jO-meson and ro-meson intermediate states, and using 
. . (2) 

the unitary symmetry . value for the rati o of the ffX and the 

0Xl)'X vertices. The calculation is most conveni ently summarized by 

dia~_rams; see Fig. 3 and 4. Analytically, we have 

and 

fyyX% (e/2yF
2 

ffPX + ~ (e/2Yro)2 f= X 

fpyX ~ (e/2Yp) fpfX ' 

, 

(5) 

(6) 

(7) 

(8 ) 

(9) 
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B- 23/2 

x x 

y 

Figure 3. Dominant diagrams for the yyX vertex 

8-23/3 

x 

x 

Figure 1.. Dominant diagram in the f't.y vertex 
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since the transformation of the p-meson and the ill-meson into photons 
(8) , 2 

in the sense of dispersion theory have the amplitudes ,emf /2Yp) and 

(em~/2 )3y
ill

), respectively. In the limit of unitary symmetry, Yill = Yp , 

and f PI'X = -fClIDX 
desired ratio. 

Thus we obtain as an estimate for the 

Our final result for the branching fraction comes out 

, (10) 

using unitary symmetry to estimate the relative importance of the jD-meson 

and the ill-meson intermediate states. (y2 /4~) = -21 for a ~-meson 
p~~ 

decay width of 100 Mev, and ~/4~ should be about the same. The actual 

estimate of .28 for the branching ratio is not in violent disagreement 

with the preliminary data of Bastien, et al.(18) 

A calculation such as the one described here may not necessarily be 

expected to be quantitatively valid. Its purpose is to provid~at worst, 

the correct order of magnitude of the quantity under consideration, and 

hopefully it should be considerably better. The important result of 

this calculation, therefore, is that because of an inhibiting phase 

space factor, the mode + ~ + ~ + Y is expected to be somewhat rarer 

than the 2y decay mode of aX , even though the rate of the latter 

involves the electromagnetic fine structure constant to one higher power. 
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4. THE M-MESON AND ITS EFFECT ON A-K ASSOCIATED 
PRODUCTION .AND K-N SCATTERING AT HIGH ENERGIES 

1. Introduction 

A resonance has been found in the K-~ system which is most likely to 

have angular momentum J 1. It is quite possible that this resonance 

belongs to the octet of vector mesons predicted by Gell-Mann and Ne'eman; 

~dopting the notation of Gell-Mann, we shall call it the M-meson, or simply 

the M. There are two important general questions to be raised regarding 

this object: (1) How strongly is it coupled to the other particles? 

(2) Does the assumption that the M contribution dominates a given ampli-

tude enable us to understand any important features of reactions in which 

it is exchanged? 

Both questions will be conSidered in this paper. In Part II, the 

strength of the coupling of the M to the K-~ system will be related to 

the width of the resonance. The same coupling constant is involved in the 

production of the M in the reaction K + p~ M + p, which we shall also 

investigate. In Part III, the contribution of the M to the associated 

production amplitude will be studied. We shall treat the M according to 

the Regge pole hypothesis there, and shall discuss how experiments at beam 

energies within the range of existing accelerators can be used to decide whether 

the M behaves as predicted by the Regge pole hypothesis. The crossed hyperon 

production reaction, KO + p -+ A + ~ +, will be examined in the same spirit in 

Part IV. Finally, the existence of a new class of symmetries in asymptoti c 

amplitudes, which are generalized Pomeranchuk relations, will be illustrated 

in Part V. 
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II. Properties of the M-Meson 

There is at 884 Mev an object which appears as an I = 1/2 resonance(20) 

in the Kn system. Assuming it to be a vector particle, we define the 

coupling constant YMKn so that 
+ + 0 

the matrix element for the decay M _K + n 

is 

T = Y MKn 

where eM is the polarization four-vector of the M, and Pn' PK are the 

four-momenta of the decay products. The rate for the decay is 

where 

[~ 

(II:l) 

(II:2) 

Since the M has I = 1/2, the charged M decays more often into a charged 

pion and neutral kaon; the branching ratio is two. Neglecting other decay 

modes, which certainly have much smaller widths, the decay rate for the 

M-meson is 

(Y~/4n) 58 Mev (II :4) 

The width of the M is quoted to be 30 Mev(21), so that 

·51 (II:5) 

(2) . 
According to the unitary symmetry scheme ,thls number should be 

comparable to 

. 2 /4n 
lS Ypnn 

the coupling of the p -meson to the two pion system, which 

.45 if we assume 90 Mev for the f _width~22) 
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The coupling constant YMKn enters also in the pion pole approxima­

tion to the M production amplitude in the reaction K + N --f> M + N. One 

finds 

= Limit 
2 

t-tm 
n 

222 
(PK/PM) s (t - mn) ~ d6 ( 

(-t) [(~ + mi -t) 4~ mi] dJl) 

(II:6) 

where s is the s~uare of the total energy in the center-of-mass system, and 

2 2 
2 

4 s ~ = [s - (~ - ~) ] [s (~ + ~) ] 

2 2 2 
4 s % [s - (~ - nx) ] [s - (~ + nx) ] (II:8) 

2-Vs~ 
2 2 

s + ~- ~ (II:9) 

2l/s EK 
2 2 

= s + nx - ~ (II:IO) 

2 
2 2 

t (EM - EK) - PM - PK + 2 PMPK cos g (II:ll) 

Angular distributions for this reaction are not yet available, so that the 

coupling constant cannot be determined by this extrapolation procedure. 

However, Ba~i-Beg and DeCelles(23)and Chan(24) have proposed that existing 

experimental data on the total production cross section be fitted in the 

pion pole approximation. M. Alston,et al. (20) state that at s = 3.48 Gev2 

the total cross section for M- production is 1.4 ~ 0.3 mb. If it is assumed 
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that the pion pole dominates the amplitude, this leads to a value of 

.21 + 20% for YMK
2 /4rr., which is not in agreement with the value obtained - rr. 

from t h e M width. Theoretically, however, we have no reason to expect 

the pion pole to dominate the total cross section at such l ow energies, and 

one suspects strongly that any agreement would be fortuitous. That it 

indeed must be so has recently been demonstrated by a measurement of the 

total cross section for MO production by the Alston group(25). Their 

value of 0.7 mb is 1/8 of what should be expected if the pion pole dominates. 

It is thus apparent that angular distributions at considerably higher 

energies are needed to test the correlation expect ed between M production 

and its decay width. 
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III. Associated Production 

In considering the amplitude for associated production by pions, we 

shall treat the reaction 

All other amplitudes can be obtained from it, since when I\'s' are produced, 

the reaction is in a pure I = 1/2 state. The amplitude contains only two 

independent functions of the relativistic invariants, and can be written as 

T = i B(s,t) (i + .,)/2} up , (III :l) 

.since the relative (K)\N) parity is almost certainly negative. In our .. .. 
work we designate the four-momentum of the N,J\, ~, K by p, p', q, r, 

respectively, and we adhere to the convention that 

s = _ (p + q)2 , 
t _ (p t 2 

- p) , 
2 u = - (r - p) (III:2) 

The subsidiary condition 

s + t + u (III : 3) 

expresses the well-known fact that there are only two relativistically 

invariant variables in the problem. 

Let us proceed by analyzing the t-exchange channel. In this channel 

only a system with unit hypercharge, zero baryonic charge, and I = 1/2 can 

be exchanged. By developing the 1( + K ~ A + if amplitude in partial 

waves, as is done in Appendix A, it can be shown that the exchange of a 
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state of spin J, which must necessaril y have the parity (_)J, gives the 

following expreSSions for the invariant functions A and B: 

, (III.4) 

(III:5) 

Only the leading term at high energies has been retained. 

,(26) . 
If the Regge pole hypotheSiS is correct, then at high energies in the 

forward direction, i.e., s-+ 00, and t small, the functions A and B 

will be dominated by a term associated with the exchange of a vector meson 

with one unit of hypercharge: the M-meson, which is presumably the K-~ 

resonance (K*) at 884 Mev. The asymptotic form of these functions at high 

energies will be: 

A( s, t) 

B(s,t) 

4 

s~oo 

1. _ e -ilta: M( t ) 

2 sin lta: Met) 

1 _ e -ilta: M( t ) 

2 sin lta: Met) )( 

, (III:6) 

The signature of the Regge trajectory is negative, since the resonance has 

J = 1, and the two functions, bet), are independent . The fact that there 

are two is a reflection of the two possible spin states, S = 0 or S = 1, 

for the )\N system with a given total angular momentum J. 
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On comparing these asymptotic expressions with those resulting from 

the exchange of the M-meson in the pole approximation, which are derived 

in Appendix B, one can identify various quantities at t =~. First of 

all, since the resonance occurs in p-wave K-rr scattering, we have 

Re ~(~) = 1. The width of the resonance is proportional to 

Im ~(~) =~, and inversely proportional to the slope of the Regge 

trajectory, EM = Re (da/dt)t=~ 

And finally, (leaving off some of the subscripts where their omission 

results in no ambiguity), we have: 

-,[6r MKrr 
, 

and 

(III:8) 

(III;9) 

b(2)(~)/rrEM = $' YMKrr [1Joo1 + J..I.ANM(mj\ -~) + J..I.j\NM(mA +~) J ' 
(III:IO) 

where YMKrr and Y~ are the coupling constants of the M to the Krr and 

theANcurrents, respectively, J..I.ANM is the anomalous magnetic moment in the 

l\.NM vertex, and J..I. ANM is an "anomalous" anomalous moment term in that 

vertex. The last term is unfamiliar because in many reactions it can be 

eliminated on some symmetry consideration; in electrodynamics, the conser-

vat ion of the current requires its absence. 

To calculate the cross sections and polarizations, it is convenient 

t o write T in a reduced form which is subsequently sandwiched between two 
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component spinors. Defining in such a manner functions T' and Tn such that 
. ~ ....... , 

T ~ T' + i Tn iJ.qxr,qr, one finds 

1/2 
«EA+mJ\.)(EN+~)} T' = (EA+mll)(EN+~) [A + B(En:+EK) /2 ] 

+ B [(ENmtJq2 + (EN+~)r2] /2 (III :11) 

+ q r cos e[-A + ~B(2 ..;s + mg~)J 

[(EA+m.l\)(EN+~t/2 Ttl = q r sin ~ [A - ~B(21s + mA + ~)] . (III:12) 

In these reduced expressions, E refers to the energy of the particle and 

q,r the magnitude of the three:-momentum in the center-of-mass system. The 

.... ~ ~ ~ 
A' s produced will be parti ally polarized in the q x p ' = - q x r 

direction; the degree of polarization is P, which is easily shown to be 

(III:13) 

The cross section for associated production is 

(III:14) 

This may be rewritten in terms of the functions A and B, in whi ch case it 

becomes 

, 

where 
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2 2J -~ - 2m1f11( + (III:15) 

In units of the mass of the charged pion, 

16 1( (s - 32.7) (s - 59.7) ~~ = 

IAI2 (217 - t) + Re A*B (29.4 s + 14.7 t - 1797) 
(III:16) 

+ IBI2 (s2 - 122.9 s + st - 54.2 t + 3737) 

At high energies the cross section in the backward (A) 

direction will approach 

(III :17) 

We may recall that at large s in the center -of-mass system, 

2 2 122 2 2 
t = ml\+ ~ - 2Ej\.EN + 2p'p cos e -7 - 2(s - mA - ~ - nx - m1( )(l - cos e) 

(III:1S ) 

or, in units of the 1(- mass, 

t--} 1 - 2 (s - 122.9)(1 - cos e) 

Data on this reaction at high energies are nat yet available . The 
. (21) 

best one has at this· time are those of Eisler, et. al. at the p i on lab 
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momentum of 1.43 Gev/c, which corresponds to s = 3.58 Gev2 
= 184 m;_ . 

This is certainly not a large enough energy to suggest that t he Regge pole 

on the M trajectory must dominate the associated producti on amplitude; at 

ten times this energy, which is now possible with the CERN and Brookhaven 

machines, we would expect the dominance of this Regge pole in the forward 

(Ko) direction. The A is backward peaked even at these l ow energies; 

however, the degree of peaking appears to be too small to f it the prediction 

of a dominant Regge pole. This latter statement is made assuming that the 

M-meson behaves as a composite particle with EM of the order 1 (Gev)-2 . 

If the M contributes in the fashion of an elementaryparticle j (7) the trajec-

tory degenerates to a point, and the amplitude will not drop off exponen-

tially in the momentum transfer. 

It is very important that the angular distribut ion at small angles 

and high energies be measured in order to determine the character of the 

M-pole. The formulae we have derived will be useful in analyzing such 

experiments. 
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IT. Hyperon Production in KN Scattering 

As a specific case of the I = 1 reaction K + N ~)\+ n, let us con­

sider ~ + p ~ A + n- , which corresponds to the u-channel of the assoc-

iated production reaction studied in the preceding section. If q and r 

again denote the pion and kaon four momentum, respectively, then the 

amplitude for this KN inelastic scattering process is given by: 

T = uA [A(s,t) + ~ i B(s,t) (Ii + r); up , 

where 

(p 2 s = - - q) = u 
U 

(pI 2 t = - - p) t u 

2 u = - (p + r) s , 
u 

(IV:l) 

(IV:2) 

and the functions A and B are analytic continuations of those in the preced-

ing section. 

According to the Regge hypothesis, at high energies in the forward 

direction, (s ---} 00 ,u ~ - 00 ,t small), the funct i ons A and B are 
u u u 

dominated again by the pole associated with the M-meson. In fact, all our 

results on the asymptotic form of the functions, and cross sections for 

the reaction n + N --t A+ K apply also to this inelastic KN scattering 

process. In particular, as u = s ~ 00 , for small t, the foll owing 
u 

asymptotic relations will be valid: 

A(s,t) 
1 _ e -ina: it) 

2 sin na: M(t) 

(rv:3) 



B( s, t) 
1 _ ein:o: M(t) 

2 sin 1fO: M(t) 
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- 1 
x 

(IV:4) 

BUt, we can go further than this . The functions band b' are character-

istic of the cross channel, the t channel, which is the same for both the 

associated production and the KN reactions. Therefore, the functions b 

and b' are essentially one and the same, provided only that we put in the 

angular functions in a consistent fashion. This latter requirement is 

easily fulfilled just by continuing to write xt = cos 9t as 

2 2 
(s + 2ENE1f - ~ - m1f)/(2~Pt)' On going from the s channel to the u 

channel, therefore, in the asymptotic region the only change is that of the 

sign of xt • BUt such an interchange gives back the same amplitude except 

for the factor (-y:! , where 0- is the signature of the Regge pole. 

Accordingly, we see that 

== 

= + b(2) (t) 
ANMKn: 

, 

(The sign change coming from (Ii +:1) on going from the s to t he u 

channel is responsible for the appare~t asymmetry between Eq o IV:5 and 

(rv:5) 

(rv:6) 

Eq. IV:6.) At a given center-of-mass energy in the asymptotic region and 

at a given small momentum transfer, the amplitudes for 1f + N ~ j\ + K and 

K + N ~ A + 1f are related by a minus sign, and thus the differential 

cross sections, polarizations, etc., will be the same for the two processes. 
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The changes in the cross section formulae are very slight and may be 

obtained by the interchanges: Dl.. <;:-? m , 
. K. 1( 

s ~s =u • 
u 

For example, from 

Eq. III:15 and Eq. III:16 we get the differential cross section for ~ + p 

~1\+1(+ : 

2 in units of m • 
1(-

16 1( [s - 10.0] [s - 106.0] 

+ 

Data on this reaction at high energies are not yet available. The 

CERN and Brookhaven machines do produce meson beams with energies in the 

10-15 Gev regions; however, experiments with these beams so far have not 

been designed to measure the two body inelastic processes . It is essential 

that such experiments be undertaken because of the greater simplicity in 

the analysis of these reactions. 

(IV:7) 

, 
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V. Generalization of the Pomeranchuk Relations 

In the course of this work we have found a new set of relationships 

between asymptotic cross sections(28), which may be regarded as generali-

zations of the Pomeranchuk relations. Our basic result.that Regge pole 

dominance implies that the two asymptotic amplitudes in the sand u channels 

are equal to each other for small values of t (except possibly for a sign)9 

is quite general for the case of scalar particles. In our problem we saw 

that going from one channel to the other in the asymptotic region amounts 

to changing the sign of cos G
t

• This change of sign results in the factor 

a' , which is the orbital parity, or "signature", of the Regge pole in the 

t channel. 

In the diagrammatic representation of amplitudes two channels of a 

scattering process are related to each other by the reversal of two 

external lines. If the 'lines to be reversed involve scalar bosons, the 

effect is unambiguous and simple. We are dealing with a three point 

vertex representing the coupling of two spinless particles to an inter-

mediate boson of spin J, whi ch we take to be integral for t he purpose of 

formulating the rule. Such an intermediate boson may be represented by a 

tensor field of rank J, which is symmetric and divergenceless in all 

indices, and traceless in any pair. The vertex must also be a completely 

symmetric tensor of rank J constructed from the four-momenta rand r' 
Il Il 

of the two bosons. It is more convenient, however, to consider the l inear 

combinations, l:1l = r
ll 

+ r~ and ~ = r
ll 

- r~ , which have simple trans­

formation properties under l ine reversal when the energies are high 

enough that any mass differences may be neglected, namely: LIl - - Ell' 
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q~~+ ~. We also note that the tensor must be constructed solely from 

~~; the other vector q~ is ineffective because it gives zero for the 

residue of the pole when it is dotted into the propagator of rank 2J 

representing the intermediate state of spin J . Since the tensor is thus 

J the direct product of J~ts, under line reversal we get the factor (-) , 
~ . 

which is the signature of the intermediate state. 

In the case of KN-scattering, our result is in agreement with that 

. (29) (30) 
of Ferrarl et al. ,and in contradiction to that of Lee • 

For the reversal of baryon lines we must consider as well the trans-

formation of the Dirac matrices. This transformation is the same as for 

particle-antiparticle conjugation, under which; 

A d ~I term will always appear here in the combination cr q which is 
~.... ~-V 'V 

a vector and is odd under line reversal. It is apparent that our signa-

ture rule does not .hold in complete generality because of the peculiar 

transformation p~operties of Y~Y5. In vertex tensors of rank J involving 

the pseudovector Dirac matrices, the operation of l i ne reversal results in 

J 
the factor - (-) , the negative of the signature. Our simple signature 

rule remains valid, however, whenever (signature)(parity) = +l. This i.s 

the case for the exchange of the K*, the p, and the (1). 

In some cases, the existence of particular symmetries among the 

baryons provides an alternate rule. These symmetries obviously must be 

such as to prohibit the mixing of the two pseudovector forms ~~Y5 and 

Charge conjugation C and more generally the isoparity operation G 

yield the desired selection rules when the object being exchanged has a 



- 51 -

defini te value of C and/or G. Reversal of baryon lines in the same 

isotopic multiplet introduce the factor (_)IG, which is C for the neutral 

objects. 

We must stress that the result of line reversal is a function of the 

type of couplings. Only :when the particles being reversed belong to the 

I 
same isotopic multiplet does the factor reduce to (-) G or C. It is easy 

to imagine possible couplings where this last rule would fail. As an 

example, one may consider the coupling of nand )(to a fictitious particle 

P G 
with quantum numbers J , I = I , I 

It is interesting to note that our above result when applied to the 

relation between that part of the interaction between Nand N due to the 

exchange of pions and the corresponding part in the NN interaction yields 

a conclusion differing from that usually qUoted(3
1
). 

Apparently, no symmetry exists if the exchanged object has half-

integral spin. 

We may close this article by listing some quadruplets of asymptotic 

amplitudes which should be equal, except for the "signature " factor, on 

the basis of the Regge pole hypothesis • 

ASYMPTOTIC 
POLE AMPLITUDES 

M T(n + N~A + K) (la) 

- T(iC + N-+A + n:) (lb) 
-

- T(n: + A-+N + K) (lc) 
-

T(K + A-+N + n:) (ld) 

M T(n: + N4l:;+ K) (2a) 

- T(iC + N~E+ n:) (2b) 

- T(n: +E4N + K) (2C) 

T(iC +r:.4N + n) (2d) 



- 52 -

ASYMPTOTIC 
POLE AMPLITUDES 

-
M T(N+N-A + A ) C3a) 

- T(A + N - A + N ) (3b) 
- -

- T(N + A _ N +A ) C3c) -
T(A + A _ N + N ) (3d) 

M T(N + N_~ + t } (4a) 

- T(L;+ N- L. + N ) (4b) 

- T(N +~- N + f. ) (4c) 

T(L:+L: - N + N ) ( 4d) 

o -
+ p) ( 5a) p T(1i . + n~ll 

+ 0 
- T(ll + n-+ ll + p) (.5b) 

o -T(ll + P -+ ll 
- + n) ( 5c) 

(+ - 0 T 11 + p .... ll + n) ( 5d) 

P T(p + n _ p + n) (6a) 

- T(n + n _ p + p) (6b) 

T(p 
-

+ p - n + n) (6c ) 

T(n + p - n + p) (6d) 

We note that our result about the asymptotic equality of (5a) and (5b) is 

actually quite weak, since by cha rge independence we know that the two 

amplitudes are negatives of each other at any energy and angle. Similarly 

for (5c) and ( 5d). Also G conjUgation i s sufficient to guarantee stric t 

equality between (5a) and ( 5c ), ( 5b ) and (5d), (6a) and (6d) , and (6b) and 

(6c ). We may also remark that the Pomeranchuk relati ons hold "Then the 

amplitudes are domi nated by the Pomer anchon pOle(32 , 26), for which C = + 1. 
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5. THE DECAYS OF A K INTO A PION PLUS LEPI'ONS 

Bernstein, Fubini, Gell-Mann, and Thirring(]3 ) and, independently, 

KUang_Chao( 34 ) have presented a reasonable explanation of the remarkable 

formula(35) relating the axial vector coupling constant in nucl ear beta-

decay to the decay rate of the charged pion . The Goldberger-Trei man 

relation may be understood to be a consequence of the dominance, at low q2, 

of the pion pole in the dispersion relation for the mat r ix elements of the 

divergence of the axial current in beta -decay. The divergence is assumed 

to be a highly non- singular operator; that is, its mat r ix el ement s obey 

unsubtracted dispersion relations or, equival ently, vanish at infinite q2 . 

The success of such a hypothesis invites i t s furt her use in attempts 

to correlate the phenomena of the weak interactions. Extensions to ot her 

pr ocesses, such as E _ " + J. + v and A _ p + 1. + ii, have been 

proposed(33,36 ~ but unfortunately most of them are dependent on t he many 

parameters which are quite difficult to determine. However, the pion plus 

leptons decay modes of the kaon do offer the possibility of making definite 

predictions based on a straightforward extension of the hypothesis stated 

above . It is pos sibl e to speci fy the branching ratio of muons to electrons 

and the pion spectrum in these decays. This fact was noted by Bernstein 

and Wei nberg in their discussion(37) of the possible existence of a scalar 

resonance i n the K-n system. 

A resonance has been found(20) in this system, the K* at 884 Mev, so 

that the idea of treating the K-:J( intermediate states in the particle 

approximation now has considerable merit. Howeverj this particle is most 

l ikely to be vector, in which case it fits the description of Gell-Mann's 

M-meson.( 2 ) It would t hus seem to be of int erest to carry out t he 
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calculation of the features of the decay of the K into It +.i. + v for 

* the case of the vector K , hereafter called the M. Such an investigation 

was undertaken, and it was found that the hypothesis is incompatible with 

experiment. Specifically, the result that the form factor in the electron 

decay vanishes at the maximum pion energy is almost certainly ruled out 

by the data of Brown et al.(38) on the K!3 decay interaction and by the 

data of Luers et al.(39) on K~ decays. The other result that the branch­

ing ratio of muons to electrons should be 3 :5 also disagrees with 

experiment; Roe et al.(40) give the value 1.0 + 0.2 for the ratio in K+ 

decays, and Luers et al.( 39) quote 0.79 ±'0.19 in the case of the ~. 
Very recently, Ely ~ al.( 41) have reported the bre8L~down of the 

II S = II Q rule and, consequently, the 6. I = 1/2 rule in the pion plus 

electron decay of the neutral kaon. The absence of a L:,. I = 1/2 rule, of 

course, has the very important consequence that it renders intolerable 

+ any analysis based on the dominance of the M pole for both the K and the 

o K2 • The decays of both particles must be treated separately, and terms 

other than those related to the M must be prominent in the form factors. 

In view of these facts, we are forced to abandon any hope of using a 

generalized Goldberger-Treiman relation in this problem. We have analyzed 

these decays in terms of much more general formulae for the form factors, 

which contain three parameters. It is our hope in so doing that the 

parameters we define will serve as convenient links between future experi-

mental and theoretical studies on these decays. 

Since the K is almost certainly pseudoscalar, only the vector current 

of the weak interactions contributes to the non-leptonic p~lf of the matrix 
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element which, written in invariant form, involves two form factors, To 

fix the notation, let us write the T-matrix element as 

T (1) 

with 

(G/--I2) <It \ Va \ K) = (-i/2) [Fl(q2) (p~+ p~) + F3(q2 ) ( p~ - p~)] 

(2) 

where ~ and plt are the four-momenta of the K and It, and q = plt _ pK, 

In the rest frame of the kaon, 222 
q = -~ - mlt + ~ Elt' The decay 

rate may be written conveniently as an integral over the pion energy 

spectrum; 

, 

where p is the magnitude of the pion momentum in the rest frame of It 
t he kaon, 

and 

{ 
2 2 2 2 2 2 } 1/2 

(nx - mlt - q) + 4 nx q , 

2{ [ 222 2 2 2 2 Fl 2 (nx-mlt) + q (2m}( + 2mlt + q ) 

222 
- 3 mi q F3 

(4 ) 
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2 We note that in electron decays, because of the presence of the factor m , 
e 

only the form factor denoted by Fl is of interest. (There is very little 

likelihood that the form factor Fl would be so small, relative to F
3

, that 

the latter could be significant in the electron decays.) 

We suggest that the data on the spectrum and the rates be analyzed 

in terms of the following representations for the form factors: 

Fl(q2) '" A + 2/ 2 2 C ~ (q +~) , 

F3(q2) = B + 2/ 2 2 D ~ (q +~) 

Using the tables of Brene, et a1. (42) we have carried out the calculation 

of the twelve numerical integrals occurring in the formul ae for the decay 

rates. In terms of the mass of the charged pion, 

(6) 

(7) 

r (K--+1( + e +v) = (48 1(3 ~)-l (285 A2 + 595 AC + 311 C2 ), (8) 

rCK _1( + I-.l +2.1) '" (48 1(3 ~)-l ( 179.5 A2 + 390 AC + 210 C2 

- 40.9 CD - 37.3 AD - 37.3 Be - 34.0 AB 

+ 6.21 D2 + 11.1 BD + 5.00 B2 ) 

2 2 Because of the low values of q which occur in this d.ecay (q ranges 

from -6.6 to 0), the form factors are quite well represented by the con­

sta.nt plus linear term in the power series expansi on of Eqs. 6 and 7: 

, 

(9) 

(10) 

(11) 
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In the vector pole approximation the coefficients C and D are not 

independent. If the resonance behavior is not to appear in the s-wave 

K-l{ system, 

0.291 C (12) 

The parameter C is proportional to the coupling constant of the M to the 

K-n current and to the constant in the weak coupling vertex of the M and 

the leptons. The first constant is related s i mply to the wi dth of the M, 

(13) 

but we can see no clear way to determine the second constant. For refer-

ence, though, we record the fact that 

C (14) 

where +i J~M~ f is the effective weak Lagrangian for t he vertex coupling 

the M with the leptons. 

The s-wave piece of the Kn matrix element is proporti onal to the 

divergence, D(q2), of the matrix element. 

In our representation, restricted by Eq. 12, the divergence i s 

= 

Now, since i t is likely that there is not a resonance i n the s-wave K-n 

system, one might be tempted to assume that the divergence is almost a 

(15) 

(16) 
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constant. If one sets B = 0, the ratio of the muon rate to the electron 

rate and the spectra in these decays are determined in terms of one 

constant, x = CiA. The ratio of the rates is 

r (K_li + f.l + lI)/r(K .... li + e +v) = (180 + 379 x + 198 x
2

)/(285 + 595 x 

+ 311 x
2

) 

This ratio is 0.63 ~ 0.03 for all reasonable values of x. (Near 

x = -1 the right side of Eq. 17 is indeterminate since it approaches 

0/0. But there is no question that the ratio of the rates remains approxi­

mately 3:5.) Such a ratio is incompatible with the data(40) on the K+, 

but falls within'the error bars in the case(39) of the K~. 

Theoretically, however, we do not have a good reason for the vanish-

ing of B, and so we propose that the experimental data be analyzed so as 

to provide the values of A, B, and C. Future theoretical studies should 

be directed towards expressing these parameters in terms of measurable 

quantities in other strong and weak interaction proces ses . 

Let us conclude by showing how the existing experimental data may be 

analyzed to provide estimates of A, B, and C. If the constant terms 

dominate the form factors, the ratio of the rates and the spectra are 

determined by the parameter 

~ - F/Fl = -(B + .291 C)/(A + C) 

This case was considered by Brene et al.(42) who found that 

0.65 + .124 ~ 
2 

+ .0190 ~ 

(18) 

(19) 
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:+-For the K , where this ratio is loO + 0.2, the corresponding value of ~ 

is either -8.7+ 1.0 or +2.1 + 1.0 Very recent experimental 

results(43) on the muon spectrum show that 

e = - 8.7 + loO 

The determination of the pion spectrum in the decays giving electrons 

provides a convenient way to measure the ratio C/A. Early results(38 ) 

show that 

- 2 < C/(A+C) < 10 

with 95% confidence • . For the neutral kaon, ~ is either - 7.5 + 1.4 

or +1.0 t 1.4, and the da~a of Luers et al.( 39 ) indicate that 

o < C/(A+C) < 8 

(It may be of interest, with respect to this last piece of data, to point 

out that the effect of an intermediate boson in the theory of the weak 

interactions is indistinguishable from the effect of the form factors.) 

Finally, we recall that when the ratios are accurately fixed, the magni-

tude of the parameters A, B, and C may be found from one of the decay 

rates. 

(20) 

(21) 

(22) 
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6. FOUR-PION DECAYS OF THE P -MESON 

The p-meson appears strikingly as a peak in the mass spectrum of 

two-pion systems which are created in the annihilation of antiprotons. 

The average multiplicity of pions in these annihilations is about five, so 

that these events may be analyzed to determine whether there are peaks in 

the mass spectra of three and four-pion configurations. Because its G-

parity is +, the p ·-meson cannot decay strongly into three pions, but the 

four-pion decays are allowed by the strong interactions. Accordingly, one 

expects a peak in the four-pion mass spectrum located at about 750 Mev . 

It is the purpose of this article to present an estimate of the branching 

ratio r(p-.411)/r(f-t211) so that some idea of the prominence of the 

four-pion peak may be obtained. 

Four models have been considered in order to estimate the relevant 

matrix element. They may be described simply by stating the composition 

of the intermediate states included in each model. They are: (1) a 

neutral vector meson of mass 550 Mev; (2) a neutral vector meson with mass 

787 Mev; (3) two f -mesons; (4) a single pion. 

If the neutral object at 550 Mev has the quantum numbers of our hyper-

. JP IG 1 charge meson, l.e. = 0-, the decay of the f.-meson into four 

pions will be dominated by the two step process. 

f -t 11 + It -t 411 (1) 

The decay rate r(f-+411) will be quite rapid due to the fact that it is 
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governed by a two-body phase space factor. Explicitly, 

(2) 

where the branching fraction r'(~ -+ 3~)/~ would be expected to be close 

to 1/4 from the experimental data(19)The matrix element for the decay 

f-+It + ~ is 

T = 

where the symbols are the same as those employed in Part II of Chapter 2. 

We shall again approximate the form factor for the vertex by unity, and 

make use of Eqs. II.6 and II.8 of Chapter 2 in order to relate the parameter 

f to the parameter f which enters into the formula for the life-
hp~ yy~ 

time of the neutral pion: 

(4) 

The rate for the strong decay is 

1'(1' -. h. + re) (6) 

where 

Using 3 ev for the reo decay rate and 3Yp/4re 
2 Yh /4re 
, . 

3/2, we obtain 
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r< r-+ h. + J1) = 0.8 Mev. (8) 

On the basis of this model, the branching fraction r<p-+4J1)/ r(p-+2J1) 

would be expected to be of the order of 0.2%, since the width of the f 
is about 100 Mev. 

If the 550 object does not .have quantum numbers which allow the 

strong decay of a,p into it plus a pion, then one must consider more com­

plicated models. One that immediately springs to mind is very similar to 

the first, except that in this case the hypercharge meson is to be identi-

fied with the vector meson at 787 Mev, the ill. There is no resonance term 

in the physical decay region, so that we must compute the four-body phase 

space factor. This factor is quite small and the matrix element in the 

model with the ill intermediate state is not large. The fraction of flS 
that decay into four pions is less than 10-7, which is so small that the 

details of this calculation do not appear to be of great interest. 

Since the p-meson carries isotopic spin, there must be a trilinear 

coupling of the f I s if the P is to be identified with a meson that 

couples to the isospin current. The magnitude of that coupling can be 

estimated from the P -width, and an estimate for the decay of the f into 

four pions may be obtained by keeping only the intermediate state of two 

p-mesons. The spinology is somewhat complicated, and the four-body 

phase space integral necessitates the numerical evaluation of a five-

dimensional integral. An exact computation, therefore, would not be 

justified unless we felt that the contribution of this intermediate state 

dominated the matrix element. It is thus important to be able to make 

estimates of the order of magnitude of the decay rates. 
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The decay rate may be written 'as 

r = 2lt S < I T 12 > p (9) 

where S is a factor depending on the statistics of the particles, '<IT 12 > 
is an appropriate average of the square of the matrix element, and P is 

the relativistic phase space factor. P may be evaluated simply in the non-

relativistic limit by a technique which we shall illustrate for our case. 

Using ,non-relativistic kinematics, we write 

(10) 

where 

(11) 

and 

Dimensionally, I = 

Q = 2 m (mp - 4m ). 
It It 

A Q7/2 , and by using 

(12) 

the relation 

we find 

Thus we see that 

0+- 0 
For the decays of ap into It + It + 2 It , the statistical factor 

S = 1/2, and 
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1 

(2mJr)2 (mp - 4mJr)7/2</T/2> 
4 

512 . 105 Jr mt' 
(16) 

Using the trilinear p_cOUPling with the constant yp ,(2) we obtain the 

following expression for the matrix element. 

T 

where 

+ 2 2-1 
+ k) + m

f 
] 

B;= kP ·(ko, - k-) e P .(ko" - k+) - kP .(ko" - k+) eF ·(ko, - k-) (18) 

In the above formulae, e'P is the polarization four-vector of the f 0, 

and k'f, k+, k-, kO" kO" are the four-momenta of the particles. We 

to be less than 641m2 
, and thus . Jr 

according to this model. 

The branching ratios are very small in the last two models because 

the matrix element depends on a high number of pion momenta, i.e. because 

most of the pions are in p-states. We have begun to investigate a model 

in which most of the pions are in s-states. It is clear now that this 

model will provide the largest estimate 

the very large enhancement of pion-pion 

of the branching ratio because of 

scattering near threshold(44). A 

preliminary estimate using the results of Schnitzer(45) for the s-wave 

pion-pion scattering length gives a branching ratio r(p-+41f)/r(p ~21f) 
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of not more than 1%. We feel that this estimate is so large that a detailed 

calculation is desirable. Such a calculation is in progress. 
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APPENDIX A 

Partial Wave Decomposition for 11" + K ~ A + N 

In the center-of-mass system, choose coordinates such that 

p = -p = (0,0, -pt,iE
N

) , 

p' = (O,O'Pt,iEA,) , 

q = (-~ sin at' 0, -~ cos at' iE) 
11" 

- (~ sin at' 0, iE
K

) r '" - r = ~ cos 6t , 

In terms of relativistic invariants, the momenta and energies are given 

by 

and 

2 Jt 

2 Jt 

2 .Jt 

E t + 
2 2 

N ~ - mA 
2 2 

EA '" t + mil. - ~ 

EK '" t + { - m~ 

E 
1( 

2 
'" t + m rc 

2 
-~ 

x '" cos at t 

, 

, 

, 

The first step is to evaluate the helicity amplitudes in terms of the 

(A:l) 

(A:2) 

(A : 3) 

(A:4) 

(A : 5) 

(A:6) 

(A:7) 

(A:8) 

functions A and B appearing in Eq. III:l. The computation is straight-

forward, and so only the results will be given here. If the helicity 

states are denoted by (~\), the amplitudes are 
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(A:9) 

+ B ~ (EN+~)(EA+mA-EN+~) cos 9t + ~B Pt(EK-En)(EI\+mA-EN-~)} , 

1 
T(+-) = -T(-+) = - B ~ [(EN+~)/(EA+mN] 2" (EA+EN+mA.-~) sin 9t . 

! 

(A:10) 

Secondly, for a partial wave with angular momentum J, and parity (_)J, 

we must determine the form of. ·the helicity amplitudes. The following 

helicity combinations are eigenstates of S, and Sz with our sign conven­

tions: 

(S,Sz) (A,N) (AX) 
-~ 1 

(0,0) 2 
2 [(1',1,) - (,1,1')] 2 

-2" 
[( ++) + (--) ] 

(1,1) (1t) - (+-) 
1 1 - - - -

(1,0) 2 2 [(tJ.) + (~t)] 2 
2 

[(++) - (--)] 

(1, -1) ( U·) (-+ ) 

The projection of a partial wave amplitude onto a given helicity state is 

where 

, 

and < S,S ;) ,mIJ,O; );S > are the Clebsch-Gordan vector coupling coef­
z 

ficients. In general, for a given J, there are four elements of the 

T-matrix, corresponding to: S = 0, .J. = J; and S = 1, )' = J , J+l, J-1. 

(For J=O, of course, there are but three.) If we choose to label them in 

the following way 



T(J,O,t) = 
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1 

[(2J+1)/81Cf < 1=J,8=0 IIT(t) IIJ > 
1 

, 

I'(J,l,t) = [(2J+1)/81CJ(J+1)] 2" <j=J, 8=11IT(t)IIJ > , 
1 

,(J,l+,t) = [(J+1)/81C] 2" <--f =J+1,S=11IT(t) IIJ > 
1 

and 1'(J,l-,t) = [J/81C] 2"<J=J-l,8=1[IT(t)IIJ > , 

the he1icity amplitudes can be written in the rather simple ~orm: 

(A.ll) 

T(--) = 1'(J,O,t) PiXt) + T(J,l+,t) PJ+1(xt ) - i(J,l-,t) PJ _1(xt ) , 

(A.12) 

Only two of these amplitudes, 1'(J,8,t), occur if parity is conserved. 

In our case, r(J,l~t) = 0, since the parity o~ the system is (_)J. 

(A.13) 

(A.14) 

From these ~ormu1ae, we can read off the ~orm o~ the functions A and 

B resulting ~rom the exchange in the t-channe1 o~ a pure J state with 

parity (_)J: 

1 

B(s,t) = - 7(J,1,t) Pj [xt(s,t)] / [<It(EJ\+EN+mK~) [(EN+~)/(E"tmNl2"} 
(A .15 ) 
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1 

A(s,t) = - Y(J,O,t) PiXt) , [(EJ\+mL\)(~+~)J2/ t Pt(EA'"EN+mA+~)} 
1 

- 7(J,l,t) Pj(xt ) [(~+IlJ\.)/EN+~)] 2 (EI\+EN+ml\+~)-l 

where we recall that as s ~ co, Xt~S/2~Pt' We may put these 

formulae into a convenient relativisitic form by defining 

1 

(A:16) 

F~l)(t) == - T(J,O,t) [(EJ\+m1\)(EN+~)f/ {<2~Pt)Jpt(E/\+EN+mL\+~)} , 

(A:17) 
1 

and F~2)(t) = - T(Jjl,t) [(EJ\+m.A)j(EN+~)] 2/ [(2~Pt)J-l ~ (EA+EN+mL\-~)} 

(A:18) 

in terms of which we have our final result for the functions A and B 

resulting from a pure J state: 

(A:19) 

(A:20) 
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APPENDIX B 

Contribution of the M Pole to the Amplitudes in 
o 

It + p-+A + K 

~ 

From this diagram 
o 

K ,r It , q 

p,p 

using the Feynman rules as in perturbation theory, we can compute the 

"pole" in the amplitude at 2 t = ~ due to the exchange of the M-meson. 

(I write "pole", since this pole lies off the physical sheet because of 

the instability of the M.) Near the pole, the amplitude for associated 

production is given by 

where 

(B:l) 

~ANM is the anomalous magnetic moment term in the coupling of the M to 

AN. ~ANM is an additional term which is seldom encountered since this 

second type of tensor coupling is ruled out in electrodynamics and in 

some other theories by a certain class of symmetries having to do with 

the existence of mirror diagrams. 

By using various formulae for the spinor matrix elements, one can 

show that the pole contributions to the functions A and Bare: 

B( s, t) = --2- YMKlt 
t-~ 

(B: 3) 



We note that ~ANM contributes a singular term to the amplitude only 

in the combination YI\NM + ~ANM(ml\-DN)' and can be eliminated from 

consideration near the pole by redefining YANM to be 

(B:4) 

(B:5) 
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