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ABSTRACT

Many resonances in the scattering of fundamental particles have
been recently discovered, which may be interpreted in terms of unstable
particles. One of these may be a vector meson coupled to the hypercharge
current, whose decey rates are calculated. Predictions are given for the
total decay rate, and branching ratios, in terms of ﬁf/hﬂ, the strength
of the hypercharge coupling Another resonance may be correlated with the
missing member, X , of an octet of pseudoscalar mesons in the "Eightfold
Way" of Gell-Mann; a reesonable estimate of the branching ratio
rYX - QY)/I—YX - 717+ a1t + ) is obtained. A resonance in the K-=
system may be Gell-Mann's M-meson;.the role of M in £he assoclated pro-
duction of A's by pions and in A production by K's is examinedl The
existence of a new class of asymptotic cross section equalities, which
are generalizations of the Pomeranchuk relations, is demonstrated. The
pion plus leptons decays of the kaon are considered, and it is shown
that they cannot be determined by an intermediate M-meson. The fraction
of /o?s, the vector mesons that appear as a rescnance in the two-pion

system, that decay into four pions is estimated to be less than 1%.



TABLE OF CONTENTS

CHAPTER ' PAGE

1. Introductioh, : 1
2. Decay of a Hypercharge Meson . 5
3. | Decay of the X-Meson 31
L, The M-Meson and Tts Effect on A-K Associlated 36

Production and K-N Scattering st High Energies

5. The Decays of a X idnto a Pion Plus Leptons . 53
6. Four«Pion becays of the L-Meson ' 60
APPENDIX A: Partial Wave Décomposition for n+ K+ A+ N 66

APPENDIX B: Contribution of the M Pole to the Amplitudes in 7O

ﬁ_-P/9~* A+ K°

REFERENCES ' 72



3 iNTRODUCTION

Tn the last two years many resonant configurations of mesons
‘have been discovered, which may be interpreted iﬁ terms of unstable mesons.
If one examines the mass spectrum of two-pion systems préduced by the
annihilation of antiprotons, a very prominent peaking is visible at
750 Mev. Since this peak occurs in the n+n° mass spectrum but not
in the ﬂ+ﬂ+ spectrum, this resonant configuration is an isotopile triplet.
The full width of the pesk is near 100 Mev, and at present there are con-
flicting indications as to the question of fine structure. If we assume
that statistical fluctuations account for the cbservation of multiple peaks
within this 100 Mev region, the peak may be thought of as being due to an
unstable meson with angular momentum J = 1. This vector meson is called
the/zD.

Also in experiments on the multipion annihilations of protons and
antiprotons, the mass spectrum of three-pion systems has been studied.
A very sharp peak has been found ét T87 Mev. The width of the peak is
determined by the experimental resolution; the decay width of the corre;
sponding meson could be of the order of 1 Mev or less. This meson comes
in only a neutral variety, and so is an isotopic singlet, I = O . It
also is vector, with J = 1 and negative parity. The accepted designation
for it is w.

In the reactions % +d -+ p+p+ 3n and K"+ p > A+ 3x another

splke appears at 550 Mev. Recent experiments have shown it to be in the



isospin I =0 channel,‘but its spin and parity are stili uncertain.
The associated meson was originaliy called the 72 s> but if its spin-parity
assignment turns out to be 0~, it will probably be rechristened as the X .
In the K-n system, which has one unit of strangeness, a 30 Mev
wide resonsnce, called K*, appeears at 884 Mev in the reaction K + N -+ I +
K + . The corresponding meson has I = 1/2, and it very likely is vector.
The existence of unstable vector mesons 1s demanded by two very
noteworthy theories of the strong interactions: Sakurai's "Vector Theory
of the Strong Interactions”(l) and Gell-Mann's "Eightfold Way“(2’3). By
assuming the identity of the observed particles with the mesons of these
theories, one is sble to make predictions concerning various phenomena
in which they are involved. In this thesis, we shall study many production
and decay processes from the hopeful point of view that the amplitudes
may be dominated by intermediate states of vector mesons.
In Chapter 2, we shall consider the decays of a vector meson
coupled to the hypercharge current. Such a meson is present in both the
theory of Sakurai and that of (Gell-Mann. In Sakurai's scheme it would
be identified with the three-pion resonance at 550 Mev, whereas Iin Gell-
Mann's classification it would correspond to the 787 Mev peak. Predictions
will he given for the total decay rate, and branching ratios; of such a
meson in terms of the strength of the hypercharge coupling.
In Chapter 3 the decays of a neutral pseudoscalar meson of mass
550 Mev are investigated, under the assumption that this meson is even
under charge conjugation. A reasonable estimate of the ratio of decay rates

(X = 2¢)/["(X > =z~ + « + y) will be obtained.
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We have no theory of strong interactions which we can test
rigorously because ﬁe do not have the mathematical means of extracting
the quantitative dynamical predictions of our theories. We thus must
content ourselves, for the time being, with testing &ur basic ideas in a
qualitative, or at best, a semi-quantitative manner, and with correlating
the phenomena of parficle physics. In the research summarized in this
thesis examples of both of fhese aspects of the investigation of high
energy physics will be found.

Today we have a new hypothesis ebout the seml-quantitative behavior
of amplitudes in fileld theory to check. The Regge pole hypothesis is
very attractive for three reasons. First of all, it shows promise of
alleviating some of the divergence problems in relativistic quantum
mechanics. Tt also may enable us to group meny of the particles into
new families. And Tinally, it indicates a clear way to test whether
many of our particles behave as composites or as elementary objects. In
Chapter 4, we are concerned primarily with using this hypothesis to
elucidate the role of the M-meson in the phenémena of the strong inter-
actions.

Under the hypothesis that the K-n resonanée is vector; we
examine the role of the Kf in the associated production of A by =n
and in A production by K. We shall demonstrate the existence of a
new symmetry between two reaction amplitudes. This symmetry may be
regorded as a generalization of Pomeranchuk's relations and.should

appear at high energies and low momentum transfers when both amplitudes



are dominated by the same pole or pseudo-pole, as is to be expected
according to the Regge pole hypothesis. Specifically, we £ind, in
considering the details of the role of the K* in the processes

t+ N->A+K and K+ N+ A+ n, that the associated production
amplitude in the forward direction (for the K) at high energies is
asymptotically equal to the negative of the amplitude characterizing

A production by a K. The contribution of the dominant pole terms in
these amplitudes is constructed for the high energy limit and the energy
and momentum transfer dependences are compared for the alternative
hypothesis of composite or elementary particle behavicr of a pole term.
We discuss experiments which are needed to supply data for a test of the
Regge pole hycopthesis. The results of these experiments, which are
feasible with the new large accelerators, will be most important as
guides for the construction of theories of the strong interactions.

A theory based on a vector K-m resonance with I = 1/2 is
not capable of accounting for the facts in the decays of a kaon into
a pion plus leptons. This negative resulﬁ will be discussed in Chapter 5,
vhere a more general analysis of the form factors will be proposed.

The meson associated with the two-pion resonance at 750 Mev,
thﬁ,/g’ is capable of decaying into four pions. HExperiments have been
suggested in which these four-pion decays should show up as a peak in the
mass spectrum of four-pion systems. An order of magnitude estimate
of the branching ratio r( P> hn)/ r( /P> 2n) is derived in Chepter 6.

This branching ratio is estimated to be less than 1%.
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2. DECAY OF A HYPERCHARGE MESON

I. Introduction

Three resonances in multipion systems have bheen discovered, whose
exlstence has been predilcted by many theorists. Among the more specific
of these predictions are those of Sekurail's vector theory of the strong
interactions,(l) Gell-Mann's eightfold way,(a) and similer work by Ne'emen,
and Salam and Ward.(3). The two-plon resonance at 750 Mev,(h) the fp,
fits the description of a vector meson coupled to the conserved isotoplc
spin current, which is & common feature of all of these theories. The
identification of the three-pion resonances at 787 Mgv,(s) the w, and &t
550 Mev,(6) the 1] , is still uncertain. Two possibilities are suggested
by these theories. Sakurai has proposed(7) that the ﬁ is a wvector méson
coupled to the conservéd hypercharge cufrent, and that the o is a vector
meson coupled to the conserved baryon current. On the other hand, the
concept of unitaiy symmetryge) wﬁich predicts an associated resonance in
the p~wave Kn system that seems to exist also, leads one to conjecture
that the w is & vector meson coupled fo the hypercharge current, and that
the q is the missing member, the )(, of an octet of pseudoscalar mesons.
The other members of that octet would be the three pibns and the four kaons.

In this article we shall calculate the decay rates of a vector meson
coupled to the hypercharge current. We shall give predictions for the total
decay rate, and branching ratios, in terms of one parameber, 72 /hnj the
strength of the hypercharge coupling.' If one of the observed I = O three-
pion resonances cen be described as a vector meson coupled to a conserved

hypercharge current, then one will be able straightforwardly to obtain a
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good estimate for the strength of the coupling. It must be noted that our
approximations and results are based on the hopeful assumption that either
there is no vector meson coupleg‘to a baryon current, or the mixing of a
baryop meson and & hypercharge meson is not so strong that the sources of
both mesons are dominated by the more strongly coupled baryon current.

We shall show that even with a Q of 375 Mev, the decay widths to be
expected‘for the triple pion decay of a vector meson with mass 787 Mev
 are quite small (of the order 1 Mev) with reasonsble matrix elements. And
finally) we shali show that, due to electromagnetism, the ratio of two pion
to three pion decays of a vector meson with zero isotopic spin could
easily range from 14% to 56% if the mass is 550 Mev,' and could well be as

much as sbout 4% if the mass is 78T Mev.

II. Neutral Decays
Since the hypercharge meson is characterized by the guantum numbers:

isotopic spin, I = 0;

angulsr momentum, J = 1;

parity, P = -1;

isoparity; G = -l;

charge conjugation,‘c = -1,
the neutral decays of a hypercharge meson are not allowed by the selecticn
rules valid for the strong interactions. (For convenience in the follow-
ing discussion, let us introduce the symbol h for the hypércharge meson. )
For example, the decays Pt—a.nno, where n is any integer, and the mode
h—» X + n° are forbidden by charge conjugation. All neutral decays,

therefore, must be mediated by electromagnetism. The simplest and most
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probable of these decays is [7__,,n° + v . The second most likely neutral
mode should be h —> X + 1, if the X exists with a mass less than that
of the h , since the reduction in phase space resulting from additional
particles in the final state inhibits greatly modes like A—» 2n° + 1 and
h ->3:r° + v « The decay h— 2y is forbidden by charge conjugation, as
is any other neutrsl mode involving two photons.‘

Gell-Mann and Zacha.ria.sen(a) showed that it is possible to predict
the rate of the 7° + T decay mode of & hypercharge meson in terms of the
lifetime of the n°. The crucial step in the calculation is to use the
facts 'Ehat the isotopic scalar plece of the electromagnetic current is the
hypercharge current, and the isotopic vector piece of therelectromagnetic
current is the third component of the isotopic spin current. By way of
introducing the calculational technique that will be employed in this
article, we may paraphrase some of their work.

Since the h is coupled to the isoscalar electromagnetic (EM)
current, and the €> is coupled to the isovector EM current, the following

four amplitudes are related.

YI
I » » ? 1 1% " - i et ki 4
fwn Fwﬁ(s,t,u) Euvo"r ep.k-u e’ L o
Yh
h
h b v,y _
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e and. k:[_L are polarization and momentum four vectors of the particles.

We use the metric (xl, xe, x3, xu) =(x, y, 2, it), end f = ¢ = w =1

In the first emplitude (k')° = -s, (k")2 = ~t; in the second (K)2 = -s,
(k)2 -t; 1in the third ()2 = -s, (&7)2 = -t; in the fourth (K92 = -s,
(kfo)Q = -t; and in all of them (kﬂ)E = =u. The constants fwﬁ, fhm, i/’o -
‘and %HD“ are defined by the normelization FTTﬂ(O’ 0, 1) = F;_nm(()j 0, 1) =

B;Dﬁ(o, 0, 1) = thﬁ(o, 0, 1) = 1..

Strictly speaking, in the theory of the strong interactions diagrams
involving/;;'s and A 's do not exist since these particles are unstable.
Such diagfams are always pieces of more complicated diagrams which syﬁbolize
interactions inveolving quite a few particles which are stable with respect
to the strong:interactions. Many of these multiparticle amplitudes are
dominated by rescnant terms which are due to poles located on sheets other
than the physicai sheet. These terms are the same as those associated

with unstable particles, and the analysis of the phenomena of particle
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physics is greatly fa.cili‘bated by the approximation of working with.
- amplitudes involving unstable particles. |

In a field theory containing isospin and hypercharge mesons whose

r h

sources are the renormalized currents Ja and ‘ja s respectively, the

relations (8)

<m‘ ,j;;s I n_> = (e/ETA) (1 - .=.v,/1:1)’2‘)":L <m ‘ ,jc/;' ' n>> (I1.18)

<a| | 2> - (ef2r) (1 -wﬁfh<m|51ﬁ> (11.10)

between electromagnetic isospin, and hypercharge current matrix elements
are valid in the limit of infinite bare mass for the A and the /0 . In

these equations, is the universal coupling constant of the p to the

27/0

isospin current when the square of the momentum transfer, =-s, wvanishes, and

Y/z is the universal coupling constant of the A to the hypercharge current
at s = 0. In the notation of unitary sy‘mmetry(e), Th = '\/_é_ : From
these equations, it is apparent that the first three amplitudes are related

as follows:

(5 6w = (efor) Q-shdTe w (o6 w4

£ F £
YYn ~yym orn

(e/2r) (1 - sfu) ™ g, (s5 65 u)e (11.2)

TR Fh*rn

Making use of the normalization definitions at s =t = 0, and u = 1,
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we find

£ = (efey ) £ + (e/Qr } (11.3)

Tre P PYT hyn °

Furthermore, the second and fourth emplitudes are related by

(e % w) = (efor) (1 - t/m,'f‘,)‘ (85 5 u)y (II.h)

hTﬂ hJﬂ hpw h .
and the third and fourth are also connected,
N - 2,-1
L opn Fpm(s’ ) = fellp) B - fm) 5. o wm, s, u), (II.5)
so that
i = 2 f i Ex
e = (&f rP) o {II 6)
f“}m = (e/zrh) £ o (11.7)
and, from Eq. II.3,
fTYﬂ = (e/}%) Ex?ﬂ = (e/tp) %o?ﬂ' . (11.8)

[
Cur equalities hold for vanishing (k )2 and (kﬁ)g, but in the
calculations the amplitudes on the mass shell are needed. Specificall&, in
the unstable particle approximation for complicated reactions, quantities

such as

i mhrh @[ F (8 0, 1) ] /ds} g i mi
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enter. 1In the pole gpproximstion, such quantities are unity. Their
deviation from unity may be neglected to the same extent that more massive
intermediate states may be neglected in a calculation of the dispersion
theory. Since we are making use of the latter simplification in this
paeper, we shall follow a consistent course and employ also the former.

The rate for the two photon decay of the neutral pion is

(v +71) = 21 % 35 ZlTle P, (II.9)

where the relativistic phase space factor, P, for this finel state of two

massless particles is (32ﬂ2mﬂ)_l,

1 (] " 1 2 o )4'
Py kel kT = mﬂ/E " (IT.10)

°y

Z’TJE B |f~mr

(the sum Ybeing over the polarizations of the gamma rays), and where the
factor of 1/2 results from the indistinguishability of the two photons.
Putting this together, we obtain

[t + 7)

2
vfw“] / 6hn, (II.11)

= m3 / 6hx = \f
n Yyn

where we recall the m1r = 1 with our choice of units.
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III. Decay into n+ + 1 o+ 7

The decay of a hypercharge meson into three pions can be treated in
an spproximetion which is the basis of all practical calculations in
dispersion theory, namely, that of keeping only those intermediste states
with low masses in the dispersion integral. We shall assume the dominance
of two pion intermediate states in dispersing the matrix element for
T +h-—>n .+ . In addition, the two pilon intermediate states will be
treated in the f)-mesoﬁ pole approximation(a), isctopic spin selection
rules together with the generalized Pauli principle allow only states of
off angular momentum in the two pion system, and p-wave scattering should
be much more important than f;wave scattering at these low energies.
Included in the h decay matrix element are three terms, which are obtained
from one another by switching the electric charges of the pions, and which
mey be described graphically by the diagram of Fig. 1. The analytic

expression for the matrix element is

2
o b T Ty S gk x° k,z,{l) (™ + x*)2 1+ p[(x" + xH)?)

D[ (" + k")E]}(III.l)

where D(kg) is the p -meson propagators, eJ‘ is the polarization

four-vector of the h, and k,is a pion momentum four-vector. In the

pole approximation

D(E®) = (¥ + m3 . 1m, Iy i (1TI.2)

The expression for the decay rate is complicated by the fact that

the square of the matrix element is not a constant and by the necessity
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Figure 1. Dominant diagram in A decay
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of treating the plon kinematics relativistically. 1In terms of the pion

energies as varlables
- 2 0 —n 2
Z|eu,uo,1,eu k_uko,k,rl = m (B"xT) /3

5 mi IL(E°2-1)(E'2-1) " %—[mi +1 - 2mh(E°+E") + 28" Eo]g}/ 3,
(III.3)
where 2, indicates an average over the initial h polarizations. Tt has
been found that convenient varisbles are y = E° - E” s 8nd X = E° + B ’

in terms of which

Nih + 3;;) = (96 )ty TEmP hor Bk HA B dx dy ., (1IT.14)
where
& = omp x(xyF) - ul (55757 -t (3" + ¥°)
+ 4 my, x (mi+ mi) + L mi - (mrf\ 4 mi)g ’ | (III.5)
B = (mEF, + mi - m:‘: - 2mkx)“l + [ing - mi - mi + mh{x»y)]'j'
+ [m% - mﬁ - mi +my (x+-y)] 7 . (I11.6)

and the integral extends over the region in which A is positive.
The integral can be evaluated explicitly in the non-relativistic
limit. The rate for the three-pion d.eéay nmay be expressed conveniently

in the form

‘ 2 2 2 L

F(h—>n+ i w ) e (Ymrp/lm) fhp:r B (mh - Sm“) W(mh) (ITT.7)
12 N3 (g - but)
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Where W(m,) is & relativistic correction factor; W(Bm“) = 1. This
function has been computed numerically in such a way that we also obtained
the spectrum of any one of the pions. If we denote the energy of the n+,

for example, by E,

2
W(m) = fl(m '3.)/21“ S(mE) dE , (111.8)
where the spectrum S(m,E) may be expressed &s
( 2 2
(mg =L -m"+2mE) )
S(mE) = A(mE) |1+ mpe -3% (¢%-a%) log (ZL) + 2at
‘ (mP -1 -mE)
\ >
2 2 2
(mp~l—m +2mE )
3a 2, 2y .. t+a
+ (t+a%) log ( =—=) =~ 2at||(III.9
L (mg .} _mE)2 21;3 [ a-t ]a )

in terms of the functions

a=a(mE) = V3 (m‘ﬁ -1 -E) / mm-3) , (I11.10)
1 |
t = t(mE) = {6 = @'l%@"%) [(-3)/om - E]F y (IIT.11)
(m=3)° (m" + 1 - 2mE)

and

E(m? + 1 - 2mE) (m% n'h)a 3
A(myE) = : 5 = 5 K (1I1.12)
9 (m -_3) (mp-+ omE - m” - 1)

The spectrum of the pion in the decay for the case m, = 5T mn = 87 Mev
is shown in Fig. 2. It will be noted that the deviations from the statis-
tical spectrum due to pilon-pion scattering are very small for this case.

This absence of structure in the spectrum may be traced to two factors.
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The maximum energy available to any two pions is well below the mass of
the F), so that only the tail of the resonance is effective. The symme-
trization required by the generalized Pauli principle tends to smooth but
any departure from uniformity in the metrix element. More specifically,
there are three diegrams in the class shown in Fig. 1, and whenever one
of them contributes a relatively large term to the decay matrix element,
the other two terms are smaller than average.

For the numerical work, the mass of the pion was taken to be 138 Mev
which is the average mess of the three pions in this decay mode. In this
unit, the mass of the w 1s 5.70 and that of the 1 is 3.99. The
spectrum and the correction factbr, W(m), were computed by an IBM TO90
for the mass values: m = 3.10, 3.99, 5.00, 5.70,'6.20. The results are
given in Tables 1-6. In Fig. 2 the comparison of the spectrum and the
statistical prediction has been shown for the w mass; the differences
bétweén the two,1f the hypercharge meson is taken to be the ¥ , are much

smaller.

(] +

The ratio of the #° + y and the i + = + =  decay rates of

the h meson is independent of the hypercharge coupling constant, Th &
2 2, 2 2
]'1( A _’KO + T) ‘/_3_ (01 (mh - 1.) (IHF = )4')

R = = : .
F(h-—r;{"- o+ n0) 32 (Ts Jha) (riﬁp/h:r) m’: (mhm3)4w(mh)

(117.13)
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Table 1: Relativistic Correction Factor, W(m)

@ W(m)

3.10 | 1.033
3.99 1.430
5.00 | 2.286
5.70 3.558

6.20 5.687



Table 2:

X

Ui £ Ww P

o 0 3 O

10

11
12
13
1k
15

16
AT
18
19

20

P

.00k
.012
022
.033
.0k6
.059
.073
.088
.104

.120

136
153
.169
.186

.203

220
.237
.254
270
.287

Pion Spectrum in

X
21
22

.23
24

25

26
2T
28
29
30
31
32
33
34
35

36
37
38

39
Lo

1 + X(m-3)(m+1)/200m ,

P

303
.319
335
»350
<365

380
395
ko9
oo

.h35

b8
L60

A2

1483
493

.503
+513
521
529
537

h—»x" +

S(m,E) =
X P
b1 .5hk
L .550
L3 .556
Lk «561
L5 «565
4 .569
L7 572
L8 5Tk
o] 576
50 STT
51 STT
52 576
53 <575
sh 573
59 571
56 567
57 56k
58 «559
59 554
60 .548

%19 =

n

20
X
61
62
63
6L
65

66
67
68
69
TO

TL
T2
3
7
5

6
(i
T8
(5
80

(o)

+ n , m= 3.10

mP/ (m=3)(m+l)

P X
541 81
.53k 82
.526 83
517 8k
.508 85
498 86
.188 87
LT6 88
165 89
453 90
A4ho o1
JoT o 92
413 93
+399 ol
384 95
.369 96
+353 o7
337 98
321 99
.304 100

g

287
.270
-253
-235
217

.200
.182
164
LT

.130

.113
.096
.080
.065
.050

.036
.02k
-013
.005

-000



Table 3:

E =1+ X(m-3)(m+l)/200m ,

v & Ww e "~

WO 3 O

10

12

13

1k

16
iT
18
19

20

P

005
.013
.023
.036

.050

064
.080

097

<115

«113

.152

172

191

.212

.232

253
27k
296
« 317
-339

X
21
22
23
2L
25
26

27
28

.29

30
31
3
33
3k
35
36
37
38

39
Lo

P

.360
.382
403
pit-)
hh5

66
18T
.508
.528
.548

56T
.586
605
.623
L6k

658
675
691
- 706

721

Pion Spectrum in h —»
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o4

ki G

S(m;E)

X
41
4p
43
I
L5

b6

W7
48
k9

50
51

52
24

: N

5%

56
5T
58

59
60

P

+ 735
. Th9
762
<TTh
. 785

795
.805

.81k
821
.828

.83k
839
-8lily
8L
849

.850

-850

.849
847
.SM

-+

20

X
61
62
63
64
65

66
67
68
69
T0

TL
T2

13-

Th
(]

76
7

G

9
80

o
n )

P 4
.8ko0 81
.83k 82
.828 83
.820 8l
811 85
.801 86
190 87
.78 88
. T65 89
750 90
- 735 91
.18 92
» TO0 23
681 o
661 | 95
639 9
617 97
59k 98
569 99
.54k 100

m = 3.99
mP/ (m-3)(m+l)

P

.518
Jho1
463
A3k
ko5

375
.34
314
.283
-251
+ 220
189
159
.130;

- 101

07k
Nelils)
.028
.010

.000



Teble 4:

1 + X(m-3)(m+l)/200m ,

X

v F W

O o 4 (6)

10

11
12
13
1k

15

16
17
18
19

20

P

.006
.018
032
.0kg
.068

.089

112

«135
.160

.186

.213
.2ko
269
.298
.328

.358
.369
2o
451
.483

X

21
22

23
ok

25
26
27

28

29
30
31
32
33
3h
35
36
51
38
39
40

o
.515
54T
.579

612
6hl

676
.708
. ThO
-T2
.80k
.836
867

.898

.928
.958
987
1.016
1.0L45
1.073

1.100
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Pion Spectrum in h —p 7

S(m,B) =

X P
41 1.126
b2  1.152
43 1.176
Ky 1.200
45 1.223
46 1.245
b7  1.266
L8  1.286
49  1.305
50  1.323
51 1.340
52  1.35h
53 1.368
54 1.381
55 1.392
56  1l.h01
57 1.410 -
58  1.h416
59  1l.hel
60 1.h2h

-+

o

T

20

X

61
62
63

64

65

66
67
68
69
T0

TL
T2
3
Th
(&

76
T
8

79
80

1.

L.

I A I

[

i i

L

(o]

n

P

hos
Lo5

423
419

12

9:To)%
. 394
.382
367
.351

.332.
«311
.287

261

-233

.202
.169
.13k
-096
.056

X

81
82
83
8k
85
86
87
88
89
90

o1
92
50
ok
95

96

o7
98
99
100

n= 5.00
m P / (m-3)(m+l)

285

.22k

166
112
.063
.023

.000



Table 5: Pion Spectrum in h—rn+ + =

E =1+ X(m-3)(m+l)/200m ,

i
12
13
1h
15

16

18

19
20

X
21
22
23
=1
25

26
a7
28
29
30

3
32
33
34
35

36
37

38

39
40

P

.89

834
.880
.925
970

1.015
1.060
1.105
1.150
1.194

1.239
1.283
1.327
1.370
1.113

1.456
1.498
1.539
1.580
1.621

S(mE) =
X P
b1 1.661
k2 1.700
43 1.738
L 1.776
ks  1.812
L6  1.848
L7 1.883
48 1.916
k9 1.949
50 1.980
51 2.010
52  2.039
53  2.066
54 2.092
55 2.116
56  2.139
57  2.159
58 2.178
59 2.194%
50 2.209

s DY &

20

X
61
62
63
6L
65
66
67
68
69

T

L
T2
13
Th
>
T6

7
78

(&)
80

(o]
n ’

P
2.221
2.231
2.238
2.243
2.245

2.245
2.241
2.234
2.223

2.209

2.192
2.171
2.1h6
2.116

2.083

2.045
2.002
1.955
1.903
1.846

m= 5.70

o
81
82
83
8h
85

86
87
88
89
o
o1
92
93

ol

95

96
o1
98
99
100

m P/ (m-3)(m+l)

P
1.784
1.717
1.644
1.567
1.48k4

1.396
1.303
1.205
1.103

<997

.887
-T75
661
546
-433
.322
.218
.123
.05

.000
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Teble 6: Pion Spectrum h -—->:r+ + 1 o+ = , m= 6,20

E = 1+ X(m-3)(m+l)/200m , S(mE) = 20 m P / (m-3)(m+l)
X P X P X P X P X P
1. .052 21  1.346 41 2.381 61 3.337 8L 3.262
2 ,129 22  1.399 42  2.433 62  3.37h 82 3.175
3 211 23 1.451 43 2.484 63 3.L409 83 3.07h4
b .293 2k  1.503 L 2.536 6Lk 3.hh1 84  2.960
5  .373 25 1.554 45 2,587 65 3.47L 85 2.830
6 4hg 26  1.606 W6 2.638 66 3.L98 86 2.686
7T .53 27 1.657 4T 2.689 67 3.522 87 2.527
8 .593 28  1.709 L8 2.740 68  3.543 88 2.352
9 660 29 1.760 k9 2.790 69 3.560 89 2.16L

10 .725 30 1.812 50 2.8hk0 o 3.5 20 1.962
11 . 788 31 1.863 51 2.890 7L 3.580 9L 1.748
12 .8k 32 1.915 52 2.§39 72 3.582 92  1.526
13 .908 33  1.966 53 2.987 73 3.578 93 1.297
1k .966 3% 2,018 54 3,03k 7% 3.569 94 1.066
15 1.023 35 2.070 55 3.08L 75 3.552 95 837
16 1.078 3% 2.112 56 3.127 76 3.527 96 .618
17 1.133 37 2.173 57 3.172 77 3.kok 97  .hi2
18~ 1.187 38 2.225 58 3.215 78 3.h52 98 .230
19 1.24 39 2.277 59 3.257 79 3.500 99  .083
20  1.29h Lo 2.329 60 3.298 80 3.337 100 .000
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IV. Decays into Pairs of Charged Particles

As is evident from Eq. II.2, the coupling of the photon to the p and
to the h in the sense of dispersion theory must be em% /ErP and em?1 /e-rh 3
respectively. An estimate of the rates for the decay of the hypercharge
meson into pairs of charged particles may be obtained by assuming the
dominance of the single -phqton intermediste state in the imeginary part of
the e , pu , end =x ' vertices. For the matrix elements involving

lepton pairs, such an spproximstion leads to the following expressions
2 h =
T=1 (e /E-rh ) ey ur, v o, (Iv.1)

h .
where e, 1s the polarization four-vector of the hypercharge meson, u
is a Dirac spinor for the lepton, and v is a Dirac spinor for the anti-
lepton. A straightforward calculation of the decay rate from this matrix

element results in

h—e+e) = o m, (L - hmg/m'i)l/2 {1 4 2m§/m%L )/ la(r;‘: Jhx) ;

(1v.2)

the corresponding expression for ['(h -—-’ L + ) is obtained by
replacing m, by mu.

Such an spproximation would not be very good for the two-pion mode,
becguse there we obviously have an additional physical effect to consider.
The T pair will be in a state with the quantum numbers J*=17. In
this configuration there 1s a resaonance in pibn-pion scattering due to the
p -meson, and so final state interactions will be important in the decay

h —»a" + x'. The effect of these may be included by putting in the pion
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electromagnetic form factor, qu_(qg), which, neer the two pion resonance,
takes the form

(@) = w5 (g, /ry) (&€ + w5 - tmplp) (1v.3)

Fmtv nrp TP

In'the decay matrix element, the form factor is to be evaluated at q2 = -nmeh »
and thus if m, 1is cloéé to m e’ 8 very strong -enhancement of the decay
rate will result. This effect has recently been discussed qualitatively

by Fubini, (9) Glashow, (10) a.nd Nambu and Sakurai, (11) but we are able to

give a seml-quantitative estimate of the magnitude of the branching ratio
P(h—s 2"+ x") / h—>x" +x + n°) because our calculations give

a prediction for the latter rate. The decay'fa.te of the h -meson into a

pair of charged pions is given, in our approximation, by

of my (- b/my )32 ml; Tanp Mo

(‘rfl Jix) L8 [(mi - mi )2 + m‘zo PPQ}

)2

Nth—x" +a) = w IV
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V. Conclusions
On the basis of Egs. II.15, III.1l3, IV.2, and IV.L4, the partial widths
for the decay of a hypercharge meson are determined in terms of the three
parametersrcharacterizing the strengthé of vector meson couplings; (yﬁ [,
n“P/hu), and (Th./hﬁ) One of these 1s known experimentally; using 100 Mev

for the width of the two pion resonance, one finds that
P fum o= 1/2.
I

Next we note that the ratio r /r np is the zero momentum form factor of
the P meson,( ) and can be related to the strength of the P meson ''pole"
term in the pion electromagnetic form factor. This can be measured in
experiments with colliding beams of electrons and positrons, which are
now under consideration at many lesboratories. But for the present, we
shall h#ve to0 be content with the observation that this ratio is likely to
be quite close to unity, since we know that the analogous zero momentum
nucleon ~f> form factor departs from unity by not more than about AO%.(B’lg)
The only parameter that is reall& unknown is, thus, the hypercharge coupling
strength Ti /hn. This may be determined from any one of the partial
widths, and then be used to predict the branching ratios for all the modes.
For illustrative purposes, however, we shall display the decay rates for
two reasonable values of the hypercharge coupling strength: rﬁ /hn' = 1.5,
as would be suggested by unitary symmetry, and ri /hn = 3; these are
given in Tables 7 and 8. The tables were constructed using rﬂﬂqq-T+Y = 3 ev,
and r /hﬂ = 7? /i = 1/2.

Several points appear to be worth noting concerning these :esults.

(1) The charged particle-pair decays of the w and the ), should be
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Table T: Typical decay rates of a hypercharge meson of mass 550 Mev

(T’Et [hn) = 1.5 (‘ri fhx) = 3
R—we+e 1.6 kev 0.81 kev
h—=p+p o 1.6 0.81
R+ " o % | _ 0.55
h—a" + 71 21.5 43.0
h— o+t + 2° 2.0 | 4.0

Ph 27.8 49.2
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Table 8: Typical decay rates of a hypercharge meson of mass T8T Mev

(Ti fan) = 1.5 (5 fun = 3
h—c+2 2.3 kev 1.2 kev
h —»p+p - | 2.3 1.2
o ™ s 17 ' 8.5
h—°+ 7 69 138
h—n"+ 0 +n° 394 788

l"h 485 937
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searched for, since it is quite conceivable that up to'l5% of the r( 's or
up to 5% of the w's decay in this manner. (2) The ratioc of neutral decays
to charged decays is supposed to be less than 30% for the m, and in the
renge 3—T for the n . If either the w or the n were to be
identified with a hypercharge meson, this piece of data would be consistent
with our predliction. But perhaps it would be more reascnsble to wait for
additional statistics at this stage of the game. (It may be of interest

to point out here that if the n ‘turns out to be pseudoscalar, the X ,

one expects the branching ratio‘ PX—DT‘*-Y' /r;(_’ ol ® 3.6.)
(3) Sakurai has recently claimed that the reported narrow width of the
(13)

T - < 30 Mev, (5) is quite a mystery, and gives an explanation of
this fact -on the basis of R invariance. Coleman and Glashow, however,
showed(lh) that R invariance would lead to a vanishing magnetic moment for
the neutron and no mass differeﬁce between 23, and Z',+ « They considered
these unacceptable results to be sufficient grounds for abandoning R invar-
iance. Our calculations indicete that a very tiny width for the w is to
be expected with reascnable coupling strengths, and hence it does not seem
that a selection rule based on some invariance principle is needed to
explai:d the small width. (4) Electromagnetism causes a mixing of an I = 1
vector meson and & hypercharge vector meson with I = O, so that the correct
decaying states are given by(lo) g = (1—32)1/2}1 + aPO and
[50 = (:L--a.g};]‘/2 po -ah . 1t is easy to see that a2 must be given by
r hsstin ! r‘P , and thus we find that a = .OL17 for m), = 787 Mev,
and a = .0033 for my = 550 Mev.

Some of the results of this article were reported in a letter to the

Physical Review.(lB) Other communications on these decay modes have also
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appeared. Unfortunately, there appear to be serious errors in the Feinberg

(16)

calculations , so that most of his conclusions are not valid. Brown and

(17)

Singer have quoted estimates for the ratio R =rﬂ(hr—§ﬂo +7v) /

. +
rﬂ(h”“ +a o+ ﬁo) which are very much smaller than our estimates; their
subsequent conclusion that the?? nmust be pseudoscalar is unreliable from

a theoretical standpoint.
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3.  DECAY OF THE X-MESON

Recent experimental evidence on the decay of the neutral meson at

550 Mev(6)

into three pions suggests that for this object the most

likely quantum numbers are (spin O, parity =, G = +1), 0_'+, although
statistical 1imitatiohs and uncertainties in subtracting background do
(18)

not permit the assignment J“G =1~ to be ruied out. Since it is
known that this neutral meson hes isospin I = 0,(l9) if it were pseudo-
scalar with G = +1, it would fit the description of the missing member,
called X, of'an octet of pseudoscalar mesons in the "Eightfold Wayf of
Gell-Mann.fa)*‘ The three pion decay modes of the X are forbidden by
the conservation of G, and occur only through the intermediary of
virtual photons. Accordingly.it is very difficult to estimate their

- rates; perhaps the only statement one may trust is that the ratio of the
rates of the two decays into three pioms, (37°)/(x" + n~ + x°), must be
less than 3/2 since charge conjugation invariance requires the final
three pion state to have I = 1. It is possible, however, to obtain a
reasonable estimate of the branching ratio f‘()(-,znﬁ//r})(>->n? + 1+
by assuming et Yhe 5F & % & ¥ nabvi slensnt i8 doainated by the
p-meson intermediate state, in the sense of dispersion theory, and by
using the eightfold way to estimate the ratio of the X' yr to the)(f?r
vertex. A ratio(lB) of neutral to charged decay modes of the 550 Mev
meson near 3 implies that the two photon decay will be the dominant
decay mode if the meson is pseudoscalar; since the only other two body

neutral decays, X —> n_ + v and X} —>2 x°, are strictly forbidden by

T)»

angular momentum and parity selection rules, and decays into more particles
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are highly inhibited by phase space factors. rThus essentially we will
be able to give an estimate of the fraction of X 's that decay into |
‘.rt+ + % + v , & number which may be compared with experiment.

First, let us set up the expression for the rate of the decay

X——a' 2y . We define the constant f such that the T-matrix element

X

for this decay has the form

B o= e'. k]':l e" k':ro K} (l)

f e L B a
erf ypnot v o

where e - and k‘u are polarization and momentum four vectors of the
gammse, rayé. This form is uniquely determined by the pseudoscalar nature
of the X .- In terms of this deca.y constant, the decay rate is found to

be

M(x—2r) = |fwx|2 m, /6l (2)

+ - ;

The phase space integral for the mode X— n + m + y 1s con-
siderably more complicated, and we shall outline the calculation in more
detail. The matrix element is taken to be that resulting from keeping

only a P -meson intermediate state, which is

= L I R Y | [ + =2 g]
T 2 xp Cwar (P =P, + P ) e Ky prX/ (2" + 2% + mp)
(3)
where 1 __ o is the pmx coupling constent, and fPrX is a number

characterizing the PYX vertex. The geometric factors in the latter -
vertex are identical to those in the 1294 vertex. Putting in the

density of states, we find for the decay rate
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r'- (hmx/ﬂ)('r /lm)(f /lm) [IGE aE (E+2 2)(E 2 2)(1 - cosee)

[(P +p ) + m?] = ’
where cos © = [(mX SE -5 s 2"‘12: _g2 _ g 2] /[u(E"Q 2)(E 2_m§ ]
(5)
3 o

This integral may be simplified by changing variables toy = E -~ E
+ - 2 2 .
and x = EmX(mX -E -E")/ (my -km’); the integral over y may be done

analytically, but the other must be done numericelly. The formula for

the rate is
ba)(£2 ., /hx) (o, = bm®
[(X—r + 5 +7) = (T’mf/ A X/ i (2>g ) v (6)
: 2h x m (mP
where
fl 3 . 3/2 (.2 2 2 ]2; " ]"2
U = 4 x° (1 = x) [mX/(mX- mﬂ) - x] [1 + x(mxn m )/( P x) dx

» 0183 « 1/ . (7)

In order to complete thé calculation; we must be able to estimate

£, £ . That we shall do by dispersing the vertices, assuming the
PTX/ Yryc oy dispersing , & g the
dowinance of the P-meson and w-meson 1ntermediate states,and using

the unitary symmetry( ) value for the ratio of the Pf; X eand the
am')( vertices. The calculation is most conveniently summerized by
diagrams; see Fig. 3 and 4. Analytically, we have

(e/2p® £ppx + 7§ (efor,)® : (8)

fwx'k'u o 3¢

and fPTX ~ (e/g«rP) fPPX . | ‘ (9)
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B-23/2

Figure 3: Dominant diagrams for the yyX vertex

B-23/3

Figure 4. Dominant diagram in the pXy vertex
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since the transformation of the f?—meson and the w-meson into photons

(8)

in the sense of dispersion theory have the amplitudes ;em;,/QﬁD) and

(eqi/E Jgnn), respectively. In the limit of unitary symmetry, Wy * np 3
and f = =f « Thus we obtain 3y, /e as an estimate for the

PAX ™ Tanx P

desired ratio.

Our final result for the branching fraction comes out
[(x— o+ 2w/ T(X—>2r) = (9/8) (r;’m/m (¥5/kx) , (10)

using unitary symmetry to estimate the relative importance of the p-meson
and the w-meson intermediate states. (ﬁfﬂﬂ/h“) = % for a p -meson
decay width of 100 Mev, and yg/hn shouid be about the same. The actusal
estimate of .28 for the branching ratio is not in violent disagreement
with the preliminary data of Bastien, et al. t0)

A celculation such as the one described here may not necessarily be
expected to be quentitatively valid. Its purpose is to provide, at worst,
the correct order of magnitude of the quantity under consideration, and
hopefully it should be conéiderably'bettero The important result of
thié calculétion, therefore, is that because of an inhibiting phase
space factor, the mode n+ + % + 7 is expected to be somewhat rarer

than the 2y decay mode of & X , even though the rate of the latter

involves the electromagnetic fine structure constant to one higher power.
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b, THE M-MESON AND ITS EFFECT ON A-K ASSOCTIATED
PRODUCTION AND K-N SCATTERING AT HIGH ENERGIES
I. Introduction
A resonance has been found in the K-n system which is most likely to
have angula: momentun J = 1. It is quite possible that this resonance
belongs to the octet of vector mesons predicted by Gell-Mann and Ne'eman;
adopting the notation of Gell-Mann, we shall call it the M—mgson, or simply
the M. There are two important general questions to be raised regarding
this object: (l) How strongly is it coupled to the other particles?
(2) -Does the assumption that the M contribution dominates a given ampli-
tude enable us to umderstaﬁd any important . features of reactions in which
it is‘eXchanged?
Both questicns will be considered in this paper. In Part II, the
strength of the coupling of the M to the K-n system will be related to
the width of the resonance. The same coupling constant is involved in the
production of the M in the reaction K + P—b M ol wﬁich wé shall also
investigate. In Part IIT, the contribution of the M to the associated
production amplitude will be studied. We shall treat the M according to

the Regge pole hypothesis there, and shall discuss how experiments at beam

energies within the range of existing accelerators can be used to decide whether

the M behaves as predicted by ‘the Regge pole hypothesis. The crossed hyperon

- =
production reaction, K° + p—wA +  , will be examined in the same spirit in

Part IV. Finally, the existence of a new class of symmetries in asymptotic

amplitudes, which are generalized Pomeranchuk relations, will be illustrated

in Part V.
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II. Properties of the M-Meson

There is at 884 Mev an object which appears as an I = 1/2 resonance(go)
in the Xn system. Assuming it to be a wvector pérticle, we define the
coupling constant T\ S© that the matrix element for the decay M#—>K+ + ﬁo

is

M
T = YM:K‘IE € (Pﬂ = pK) ] (II:]—)
where eM is the polarirzation four-vector of the M, and pn"PK are the

four-momenta of the decay products. The rate for the decay is

& o
MM —x% + ) :'jﬁKﬁ k3/6nm§ 3 (11:2)

where
P 2

2
2 2 2
K= = . = | [ " . ‘
P e [ ) [ -y rm) ) ()
Since the M has I = 1/2, the charged M decays more often into a charged
pion and neutral kaon; the branching ratio is two. Neglecting other decay
modes, which certainly have much smaller widths, the decay rate for the

M-meson is

= 3B | o :
(jM (v /) 58 Mev . (IT:h)
" ; (21)
The width of the M i1s quoted to be 30 Mev , so that

2
TMKﬂ/uﬂ R 7 (II:5)

2
According to the unitary symmetry scheme( ), this number should be
comparable to the coupling of the P -meson to the two pion system, which

is Ygﬂﬁ/hﬂ = U5 if we assume 90 Mev for the f)—widthggg)
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The coupling constant TMKﬂ enters also in the pion pole approxima-

tion to the M production amplitude in the reaction X + N-——# M + N. One

finds
-1 -
Yo /im = Limit {!+ (& /) (p/By) & (b - mf) as g ,
& - (=) [ (g + myg -t) by m}%] o,
(11:6)

where s is the square of the total energy in the center-of-mass system, and

2 2
bemy = [o- Gyem) [[o- Gmytm) ] (IL:7)
5 2 2
bsme = [s- (my-m) ][5~ Gy +md ] (11:8)
2V By = s +nf-nl (11:9)
2ys B = 8% mé - m§ 4 (1I1:10)
2
% e (EM - EK) - pﬁ - P t2pmp cos e . { LIed1)

Aﬁgular distributions for this reaction are not yet available, so that the
coupling constant cannot be determined by this extrapolation procedure.
However, Bagi-Beg and DeCelles(ES)and Chan(gu) have proposed that existing
experimental data on the total production cross. section be fitted in the

pion pole approximation. M. Alston, et gl.(go) state that at s = 3.48 Gev®

the total cross section for M production 18 Tl + 0.3 mb. If it is assumed
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that the pion pole dominates the amplitude, this leads to a value of

ST+ 20% for TﬁKﬁ/Mﬂ, which 1s not in agreement with the value obtained
from the M width. Theoretically, however, we have no reason to expect

the pion pole to dominate the total cross section at such low energies, and
one suspects strongly that any agreement would be fortuitous. That it
indeed must be so has recently been demonstrated by a measurement of the
total cross sectlon for MO production by_the Alston group(25). Their

value of O.7 mb is 1/8 of what should be expected if the pion pole dominates.
It is thus spparent that angular distributions at considerably higher
energlies are needed to test the correlation‘expected between M production

and its decay width.
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IIT. Associated Production
In considering the amplitude for associated production by pions, we

shall treat the reaction

- +P-—)A +Ko.

All other amplitudes can be obtained from it, since when [\fs are produced,
the reaction is in a pure I = 1/2 state. The amplitude contains only two

independent functions of the relativistic invariants; and can be written as
T = ﬁy\ {A(s,t) - 1 B(s,t) (d + f)/e} u, (ITI:1)

.since the relative (KAN) parity is almost certainly negative. In our
work we designate the four-momentum of the N, /A, n, K by », »', @, T,

respectively, and we adhere to the convention that

2
5="(P+q_) 3
2
t ==« (p'-p) ’
2
u=-(r-p) 2 (171:2)
The subsidiary condition
s+t+u = m§ + u§i+-mi + m§ (T71:3)

expresses the well-known fact that there are only two relativistically

invariant variables in the problem.

Let us proceed by enalyzing the t-exchange channel. In this channel
only a system with unit hypercharge, zero baryonic charge, and I = 1/2 can
be exchanged. By developing the = + K —> j\ + N amplitude in partial

waves, as is done in Appendix A, it can be shown that the exchange of a
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state of spin J, which must necessarily have the parity (—OJ, gives the

following expressions for the invariant functions A and B:
aet) = My 7, ' (TTT.4)

J-1

B(s,t) — J'ng) () s (1I1:5)

Only the leading term at high energles has been retained.

(26)
If the Regge pole hypothesi& is correct, then at high energies in the

forward direction, i.e., s = o0, and t small, the functions A and B
will be dominated by a term associsted with the exchange of a vector meson
with one unit of hypercharge: the M-meéon, which is presumably the K-n
resonance (K*) at 884 Mev. The asymptotic form of these functions at high

energies will be:

R e iéii-ifﬁ? { T gy ) i
(m_ ) b,(\%ﬂ (t) (111:6)
Bet) > ;iﬁ'i;amb(’f;) 2a,t)
{(mN-I-m T +mK) ) ) 2 9{@3@ (t) -(III:7)

The signature of the Regge trajectory is negative, since the resonance has

J = 1, and the two functions, b(t), are independent. The fact that there
are two is a reflection of the two possible spin states, S = O or 8 = 1,

for the AN system with a given total angular momentum J.
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On comparing these asymptotic expressions with those resulting from
the exchange of the M-meson in the pole approximation, which are derived
in Appendix B, one can identify various quantities at t = mi. First of
all, since the resonance occurs in p-wave K-n scattering, we have
Re Oﬁ(mﬁ)
Tm ah(mﬁ)

trajectory, €

1. The width of the resonance is proportional to

]

IM’ and inversely proportionael to the slope of the Regge

= Re (da:/dt)t

2 3
=y
|_\M = Ly/myey - 7 (111:8)

And finally, (leaving off some of the subscripts where their omission

results in no ambiguity), we have:

i

v @) /rey = = B Ny (p +m) am (111:9)

and

i}

b(z)(mﬁ)/“eM A6 Ny [amv * A ) A ) | -

(IIT:10)

where rMKﬂ and n\NM are the coupling constants of the M to the Kn and
the AN currents, respectively, HATIM is the anomalous magnetic moment in the

AWM vertex, is an "anomalous"” anomalous moment term in that

1
and 1A v
vertex. The last term is unfamiliar because in many reactions it can be
eliminasted on some symmetry consideration; in electrodynamics, the conser-

vation of the current requires its absence.

To calculate the cross sections and polarizations, it is convenient

o write T in a reduced form which is subsequently sandwiched between two
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component spinors. Defining in such a manner functions T' and T" such that

T T 4+ i7" B,‘E)xi"/qr , one finds

1

1/2 :
((EptmA) (Bytm )} i (Bptmp) (By+m ) [A + B(B_+E,) /2]

£

B [(EA+mA)q2 + (EN+mN)r2] /2 (III:11)

+ g T cos 6[-A + %—B(E VB + mA-t-mN)J .
lo . 1 .
[(EA+mA)(EN+mN) ™ =gqr sin & [A - -§B(2,‘/E' + mp + mN)] . (III:12)

In these reduced expressions, E refers to the energy of the particle and
dq,r the magnitude of the three-momentum in the center-of-mass system. The
A's produced will be partially polarized in the Ti x 3‘ = = a b -1?

direction; the degree of polarization is P, which is easily shown to be

_ 2 Im T'* T" sin © |
o |T'|2 + |T"|2 gin 0 (I11:13)

The cross section for assoclated production is

ST = - -12 o %{ITWE # | ee ), (TIT:1Y4)
6hn"s

where (r/q)2 = [s - (mA—mK)e][s - (mA+mK)2]/[s - (mN-mﬁ)E] [s - (mN+mﬂ)2].

This may be rewritten in terms of the functions A and B, in which case it

becomes

%%—: = {16“ [S " (mN-mﬂ)E][s - (mN+mﬂ)2]} . %‘—ZIT E ,

where
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2Ll - Al [tmpm)® - ] + 7e w3 [(ayemy) (2ovtoniond)
- empufl - emyn® |+ [B[? [52.- 5 (mm st e’ ~t) (TT1:15)
- pelyymy)® ¢ Rop)® ¢ el ¢ mm )]
In units of the mass of the charged pion,

16 ¢ (s - 32.7) (s - 59.7) §=

i

|A|2 (217 - t) + Re A*B (29.4 s + 14.7 & - 1797)

(I11:16)
+ ]BI2 (s - 122.9 & + st - 54.2 £ + 3737) .
At high energies the cross section in the baékward (A)
direction will approach
a1 1 - o imc (t)l { 5 g }.2 o M(t) -2 .
at Bx 12 sin e () (mptm) (m+m ) -
(M) + o (8) 2@ (1)|2 - —2 | P w)] }

(rrwl-mN

We may recall that at large s in the center-of-mass system,

- - ; 1 2 2 8
t = WA+ my - 2B\E. + 2p'p cos & —> - 2(5 - mp - m - mp - mﬁ)(l - cos 8)

(I11:18)
or, in units of the n— mass,
1
et (s = 122.9)(1 = cos &) .

Data on this reaction at high energies are not yet available. The

@7)

best one has at this time are those of Eislenet al. ‘at the pion lab
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2

momentum of 1.43 Gev/c, which corresponds to s = 3.58 Gev™ = 184 mi_
This is certainly not a large enough energy to suggest that the Regge pole
on the M trajectory must dominate the associated production émplitude; at
ten times this energy, which is now possible with the CERN and Brookhaven
machines, we would expect the QOminance of this Regge pole in the forward
(KP) direction. The A is backward peaked even at these low energies;
however, the degree of peaking appears to be too small to fit the prediction
of a dominant Regge pole. This latter statement is made assuming that the

M-meson behaves as a composite particle with €, of the order 1 (Gev)"2 .

M
If the M contributes in the fashicn of an elementaryjpartiele;(T) the trajec-
tory degenerates to a point, and the amplitude will not drop off exponeﬁ—
~tially in the momentum transfer.

It is very important that the angular distribution at small angles
and high energies be measured in order to determine the character of the

M-pole. The formulae we have derived will be useful in analyzing such

experiments.
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IV. Hyperon Production in KN Scattering

As & specific case of the I = 1 reaction K+ N > A + n, let us con-
sider K° + P - A+ n~, which corresponds to the u-channel of the assoc-
ilated production reaction studied in the preceding section. If q and r
again denote the pion and kaon four momentum, respectively, then the

'amplitude for this KN inelastic scattering process is given byf

T = G'A [A(s,t) % %-i B(s,t) (4 + ;‘)} uy, s (Iv:1)
where
s = -(-9° = u,
2
t = - (p' -p)° =t (Iv:2)
u = = (p+ r)2 =85,

and the functions A and B are analytic continuations of those in the preced-

ing section.

According to the Regge hypothesis, at high energies in the forward
direction, (su——é @, u, —> -0, tu small), the functions A and B are
dominated again by the pole associated with the M-meson. In fact; all our
results on the asymptotic form of the functions, and cross sections for
the reaction n + N — A+ K apply also to this inelastic KN scattering
process. In particular, as u = su-—) 00 » for small ©; the following

asymptotic relations will be valid:

| 1 - g~ina () 2u u(E) (l)"
Als,t) u_-))oo ) Sj’_i e M(t) {(m +mN)(mK+m ) ) a (mK‘-kmﬂ) bANm{ﬁ(t) 3
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X

B(s,t) —
u-» 00

1 . elma (%) { - } o, (t) -1
2 sin ngy M(t) (%Afmmj(mK%mﬁ)
" (TV:k)

2 o M(t) g&ﬁ&éﬂ (ty .

But, we can go further then this. The functions b and b' are character»
istic of the cross channel, the t chennel, which is the same for both the
associated production and the KN reactions. Therefore, the functions b

and ' are essentially one and the same, provided only that we put in the
angular functions in a consistent fashion. This latter requirement is
easily fulfilled just by continuing to write ¥, = cos et as

(s + EE_ - m§ - mi)/(eqpt). On going from the 8 channel to the u
channel, therefore, in the asymptotic region the only change is that of the
sign of Xy - But such an interchange gives back the same amplitude except
for the factor (”)0‘ ; where < is the signature of the Regge pole.

Accordingly, we see that

?ﬁﬁ&&h (t) = - ?ﬁﬁ&xﬁ (t) : | (IV:5)
e - o e

(The sign change coming from (d + f)‘ on going from the s to the u
channel is fesponsible for the spparent asymmetry betwsen Eq. IV:5 and

Eq. IV:6.) At a given center-of-mess energy in the asymptotic region and
et & given small momentum transfer, the smplitudes for = + N — A + K and
K+ ¥ = AN+ are relsted by & minus sign, and thus the differential

cross sections, polarizations, etc., will be the same for the two processes.
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The changes in the cross sectlon formulae are very slight and may be
obtained by the interchanges: mes>m , 8 €8 =u . For example, from
Eq. ITI:15 ahd Eq. ITI:16 we get the differential cross section for g + P

—> A+ s

%%1 2 |Al2 (217 - ) - Re AXB (29.k s + 1h.Tt -1827) +
. (IV:T)
|3/° [55 - 5,(122.9 -1t) -5h.2 ¢t + 3737] )

16 x [s - 10.0] [s " 106.0]

in units of mi_.

Data on this reaction at high energies are not yet available. The
CERN and Brookhaven machines do produce meson beams with energies in the
10-15 Gev regions; however, experiments with these beams so far have not
been designed to measure the two body inelastic processes. It is essential
that such experiments be undertaken because of the greater simplicity in

the analysis of these reactions.
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V. Generalization of the Pomeranchuk Relations

In the course of this work we have found a new set of relationships

(28)

between asymptotic cross sections , which may be regarded as generali-
zations of the Pomeranchuk relations. Our basic result that Regge pole
dominance implies that the two asymptotic amplitudes in the s and u channels
are equal to each other for small values of t (except possibly for a sign),
is quite general for the case of scalar pérticles. In our problem we saw
that going from one channel to the other in the asymptotic region amounts

to changing the sign of cos © This change of sign results in the factor

£
O , which is the orbital parity, or "signature", of the Regge pole in the
t channel.

In the dilagrammatic representation of ampiitudes two channels of a
scattering process are related to each other by the reversal of two
external lines. If the lines to be reversed involve scalar bosons, the
effect is unambiguous and simple. We are dealing with a three point
vertex representing the coupling of two spinless particles to an inter-
mediate boson of spin J, which we take to be integral for the purpose of
formulating the rule. Such an intermediate boson may be represented by a
tensor field of rank J, which is symmetric and divergenceless in all
indices, and traceless in any pair. The vertex must also be a completely
lsymmetric tensor of rank J constructed from the four-momenta ru and r&
of the two bosons. It is more convenient, however, to consider the linear
combinations, ZZH = rH + rﬁ ahd qp = rp - r& , which have simple trans-

formation properties under line reversal when the energies are high

enocugh that any mass differences may be neglected, namely:iiu-—a- - E:H ’
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%J——b-+ %¢ . We also note that the tensor must be Qopstructed solely from
§:M5 the other wvector q}J is 1neffective because it gives zero for the
residue of the pole when it is dotted into the propagator of rank 2J
representing the intermediate state of spin J. ©Since the tensor is thus
the direct product of J::JS, under line reversal we get the factor (-)J,
which is the signature of the intermediate state.

In the case of KN-scattering, our result is in agreement with that
of Ferrari et §;€29), and in contradiction to that of Lee(BO).

For the reversal of baryon lines we must consider as well the trans-

formation of the Dirac matrices. This transformation is the same as for

particle-antiparticle conjugation, under whichj
e o8 - - - "
s TV TVl Fiw Ty = = Tys o’!“,--» Sy

A cﬂ¢1) term will always appear here in the combination.oh qQJ which 1is

v
a vector and is odd under line reversal. It is apparent that our signa-
ture rule does not hold in complete generality because of the peculiar

transformation properties of YMY In vertex tensors of rank J involving

5
the pseudovector Dirac matrices, the operation of line reversal results in
the factor - (—)J, the negative of the sgignature. Our simple éignature
rule remains valid, however, whenever (signature)(parity) = +1. This is
the case for the exchange of the K¥, the FS, and the w.
In some caseg, the existence of particular symmetries damong the

baryonsrprovides an alternaﬁe rule. These gsymmetries obviously must be
such as to prohibit the mixing of the two pseudovector forms ESMY5 and

THT5 . Charge conjugation C and more generally the isoparity operation G

yield the desired selection rules when the object belng exchanged has a



- 51 -
definite value of C and/or G. Reversal of baryon lines in the same
isotopic multiplet introduce the factor (—)IG, which is C for the neutral
objects. |

We must stress that the result of line reversal is a function of the
type of couplings. Only when the particles being reversed belong to the
same ilsotopic multiplet does the factor reduce to (—)IG or C. It is easy
to imagine fossible couplings where this last rule would fail. As an
example, one may consider the coupling of w and )(to a fictitious particle
with quantum numbers JP, ICT = l_, 1

It is interesting to note that our above result when applied to the
relation between that part of the interaction between N and N due to the
exchange of pilons and the corresponding part in the NN interaction yields
a conclusion differing from that usually quoted(Bl).

Apparently, no symmetry exists if the exchanged cbject has half-
integral spin.

We may close this article by listing some quadruplets of asymptotic

amplitudes which should be equal, except for the "signature" factor, on

the basis of the Regge pole hypothesis.

ASYMPTOTIC

POLE " AMPLITUDES
M ‘ T(xx + N— A + K) (1a)
- (K + N=+A + ) (1b)
- D(x + A—T + K) (1c)
(K + A—N + ) (14)
M T(x + N— 5+ K) (25})
- (K + N—=* L+ n) (2b)
- T(x +5 % + K) (2¢c)

(K +&E T + %) (24)
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ASYMPTOTIC
POLE AMPLITUDES

M (N + N—>=A +
- TN+ N—=A +

- (i + AT+

(A +Aeaf +

M (N + N—J, +
- T(Z."I’ N3 +
- (N +S =N +

P T(irc(,J + nesw
- T(n+ + n-ex’
- (x° + p

g
(x + p=wn"

P ‘ T(p + n=»p
- T(fl T N—eD
-Tp+p—=>n

T(n + p—+n

A

=

+ o+ o+ o+

N
A

D)
n)

p)

(3a)
(3b)
(3e)
(3d)

(ka)
(4b)
(ke)
(Ld)

(5a)
(5b)
(5¢)
(54)

(62)
(6b)
(62)
(6d)

We note that our result about the asymptotic equality of (5a) and (5b) is

actually aquite weak, since by charge independence we know that the two

amplitudes are negatives of each other at any energy and angle.

for (5c¢) and (5d). Also G conjugation is sufficient to guarantee strict

Similarly

equality between (5a) and (5S¢ ), (5b) and (5d), (6a) and (6d), and (6b) and

(6c). We may also remark that the Pomeranchuk relations hold when the

amplitudes are dominated by the Pomeranchon pole

(32, 26)

4 Tor which © =

& Lie
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5. THE DECAYS OF A K INTO A PION PLUS LEPTONS
Bernstein, Fubini, Gell-Mann, and Thirring(33) and, independently,
Khang-Chao(3u) have presented & reasonable explanstion of the remarkable

(35) relating the axial vector coupling constant in nuclear beta-

formula
decay to the decay rate of the charged pion. The Goldberger-Treiman
relation may be understood to be a consequence of the dominance, at low q2,
of the pion pole in the dispersion relation for the matiix elements of the
divergence of the axial current in beta-decay. The divergence is assumed
to be a highly non-singular operator; that is, its matrix elements obey
unsubtracted dispersion relations or, equivalently, wvanish st infinite qg.

The success of such a hypothesis invites its further use in attempts
to correlate the phenomena of the weak interactions. Extensicns to other
processes, such as L—+NAN+4 +2 and A —p + £ +2, have been
proposed(33’36l'but unfortunately most of them are dependent on the many
parameters which are quite difficult to determine. However, the pion plus
leptons decay modes of the kaon do offer the possibility of making definite
predictions based on a straightforward extension of the hypothesis stated
above. It is possible to specify the branching ratio of muons to electrons
and the pion specttrum in these decays. This fact was noted by Bernstein
and Weinberg in their discussion(BY) of the possible existence of a scalar
resonance in the K-n system.

A resonance has been found(go) in this system, the K# at 884 Mev, so
that the idea of treating the K-n intermediate states in the particle
spproximation now has considerable merit. However, this particle is most
likelj'to be vector, in which case it fits the description of Gell-Mann's

M—meson.(e) Tt would thus seem to be of interest to carry out the
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calculation of the features of the decay of the K into n + 4 + 2 for

the case of the vector K*, hereafter called the M. Such an investigation

was undertaken, and it was found that the hypothesis is incompatible with

experiment. Specifically, the result that the form factqr in the electron
decay venishes at the maximum pion energy is almost certainly ruled out

by the data of Brown et E&.(ES) on the K: decay interaction and by the

3
data of Luers et gl.(39) on Kg decays. The other result that the branch-
ing ratio of muons to electrons should be 3:5 also disagreesrwith
experiment; Roe et El.(uo) give the value 1.0 + 0.2 for the ratio in K+
decays; and Luers et g;.(39) quote O0.T79 +-0.19 in the case of the Kg.
Very recently, Ely et g;.(gl) have reported the breakdown of the
AS = AQ rule and, consequently, the AI = 1/2 rule in the pion plus
electron decay of the neutral keaon. The absence of a AT = 1/2 rule, of

course, has the very important consequence that it renders intolerable

any analysis based on the dominance of the M pole for both the K* and the

o]
o
other than those related to the M must be prominent in the form factors.

K The decays of both particles must be treated separately, and terms

In view of these facts, we are forced to abandon any hope of using a
generalized Goldberger-Treiman relation in this problem. We have analyzed
these decays in terms of much more general formulae for the form factors,
which contain three parameters. It is our hope in so doing that the
parameters we define will serve as convenient links between future experi-
mental and theoretical studies on these decays.

Since the K is almost certainly pseudoscalar, only the vector current

of the weak interactions contributes to the non-leptonic half of the matrix
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element which, written in invariant form, involves two form factors. To

fix the notation, let us write the T-matrix element as
T o= (G/ﬁ)<n‘va|K>u£Ya(l+r5)uu (1)
with

(6/4B) (x| vyl k) = (-1/2)[ 7 (a®) (®] + B) + Fo(a®) (2] - 2)]

(2)

where PK and Pﬂ are the four-momenta of the K and n, and g = . PK.

2 2 2
In the rest frame of the kaon, g = amK - mjt + EmK Eﬂ. The decay
rate may be written conveniently as an integral over the pion energy

spectrum;

’ L ""ml
P+l +2) = (16 m.i_)d/ 5 pﬂ(qg) (%) ad® (3)
: -(m-m_)

where Pn is the magnhitude of the pion momentum in the rest frame of

the kaon,

0}1/2 ; (4)

am p (a%) = {(f - o -d®) 4kl

and

2h (1 + uf /a%)F g(v) -
% {2 [(fn2)® + oP(eng + 2nf) + 0°) - mf (2m + 2] + o)

+ 4(m12{-mi)2/q2]} - 67,¥, mf (ninl) - 3mp o°F . (5)
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We note that in electron decays, because of the presence of the factor mi,

only the form factor denoted by F1 is of interest. (There is very little

likelihood that the form factor F. would be so small, relative to F3, that

1
the latter could be significant in the electron decays.)
We suggest that the data on the spectrum and the rates be analyzed

in terms of the following representations for the form factors:

) = &+ cnP/(Pad) (6)

]

(®) = B + DuR/(a%md) . (7)

bt
Using the tables of Brene, et EE*( 2)

we have carried out the calculation
of the twelve numerical integrals occurring in the formulae for the decay

rates. In bterms of the mass of the charged pion,

P(K—n+e+2) (48 x> m )™ (285 A%+ 595ac + 311 %), (8)

(48 o mK) ek ( 179.5 B & 390 AC + 210 e?

I

(K —»x+p+)
- 40.9 CD - 37.3 AD - 37.3 BC - 34.0 AB

+6.200° + 11.1 8D + 5.008 ) . (9)

Recause of the low values of q? which cccur in this decay (qE ranges
from -6.6 to 0), the form factors are quite well represented by the con-

stant plus linear term in the power‘series expansion of Egs. 6 and T:

Fl(qe) 2 A+C - c:;.g/ml\e,I . (10)

r(®) = B+D - DCAZ . SNCEY
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In the vector pole approximation the coefficients ¢ and D are not
independent. If the resonance behavior is not to appear in the s-wave

K- system,
D = C (mf{-mi)/ml?I = 0.201 ¢ . (12)

The parameter C is proportional to the coupling constent of the M to the
K=-n current and to the constant in the weak coupling vertex of the M and

the leptons. The first constant is related simply to the width of the M,
2 5 2 2qr.2 24y 3/2
My = COrygeg/26mu) {[mM - (mem ) ] [m, - (mem ) }\] , (13)

but we can see no clear way to determine the second constant. For refer-

ence, though, we record the fact that
cC = 2f Tk (14)

where +1 J_QM& f is the effective weak lagrangian for the vertex coupling
the M with the leptons.
The s-wave piece of the Kn matrix element is proportional to the

divergence, D(qg), of the metrix element.
D(@®) = (me -mo) F(d7) + @€ FF) . (15)
In our representation, restricted by Eq. 12, the divergence is
(¢ = @) arC) + a®B . (16)

Now, since it is likely that there is not a resonance in the s-wave K-xn

system, one might be tempted to assume that the divergence is almost a



- 58 -

constant. If one sets B = O, the ratio of the muon rate to the electron
rate and the spectra in these decays are determined in terms of one

constant, x = C/A. The ratic of the rates is

MkKer+p +2)/(Kon+ e +2) = (180 + 379 x + 198 x°)/(285 + 595 x
+ 311 x°)

(17)
This ratio is 0.63 + 0.03 for all reasonable values of x. {Near
x = =1 +the right side of Eg. 17 is indeterminate since it approaches
O/O. But there is no question thst the ratio of the rates remains approxi-

(40) on the K%,

mately 3:5.) Such a ratio is incompatible with the data
but falls within the error bars in the case(39) of the Kg.

Theoretically, however, we do not have a good reason for the vanish-
ing,éf B, and so we propose that the experimental data be analyzed so as
rto provide the values of A, B, and C. TFuture theoretical studies should
be directed towards expressing these parameters in terms of measurable
guantities in other strong and weak interaction processes.

Let us conclude by showing how the existing experimentsl data may be
analyzed to provide estimates of A, B, and C. If the consbant terms

dominate the form factors, the ratio of the rates and the spectra are

determined by the parameter

]

£ - F3/Fl -(B + .291 ¢)/(a + ) (18)

(Lo

This case was considered by Brene EE.EE" ) who found that

Fxsx+p+2) /TE»n+e+v) = 0.65+ .1248 + .019082 i (19)
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For the K+, where this ratio is 1.0 + 0.2, the corresponding value of &
is either -8.7 % 1.0 or +2.1 + 1.0 . Very recent experimental
(43)

results: on the muon spectrum show that

The determination of the plon spectrum in the decays giving electrons
provides a convenient way to measure the ratio C/A . Early results(38)

show that
-2 < ¢f(a+c) < 10 (21)

with 95% confidence. For the neutral kaon, € is either <=7.5 ¥ 1.k

or +1.0 + 1.k , and the data of Luers et al.(39) indicate that
0 < c¢f(ac) < 8 (22)

(It may be of interest, with respect to this last piece of data, to point
out that the effect of an intermediate boson in the theory of 'bherwea.k
interactions is indistinguishable from the effect of the form factors.)
Finally, we recall that when the ratios are accurately fixed,; the magni-
tude of the parameters A, B, and C may be found from one of the decay

rates.
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6. FOUR-PION DECAYS OF THE ﬁ)—MESON

Tmalp-meson appears strikingly as a peak in the mass spectrum of
two-pion systems which are created in the annihilation of antiprotons.

The average multiplicity of pions in these annihilations is about five, so
that these events may be analyzed to determine whether there are peaks in
the mass spectra of three and four-pion configurations. Because its G-
parity is +, the P_meson cannot decay strongly into three pions, but the
four-pion decays are allowed by the strong interactions. Accordingly, one
expects a peak in the four-pion mass spectrum located at about 750 Mev.

It is the purpose of this article to present an estimate of the branching
ratio I_'(P —-;Lm)/r'(P—-'Qﬁ) so that some idea of fhe prominence of the
four-pion peak msy be obtained.

Four models have been considered in order to estimate the relevant
matrix element. They may be described simply by stating the composition
of the intermediate states included in each model. They are: (1) a
neutral vector meson of mass 550 Mev; (2) a neutral vector meson with mass
787 Mev; (3) two f)—mesons; (k) a single pion.

If the neutral object at 550 Mev has the quantum numbers of our hyper-

P _G

charge meson, i.e. J I = 1 O—, the decay of the fJ—meson into four

pions will be dominated by the two step process.
f)—pﬂ+/L—»l+ﬂ (1)

The decay rate [q(f)—+hﬂ) will be quite rapid due to the fact that it is
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governed by a two-body phase space factor. Explicitly,

M(p—n) = [(p=t+ =) r</1—.3u>/rh , (2)

where the branching fraction [ (4 — Bﬂ)/ﬂi would be expected to be close

to 1/ from the experimental data(lg) The matrix element for the decay
f;—*ﬁ_+ n is
2 2 2 P &
s fhfnr Fhloﬂ(r%’ "o’ ) euumi? v (3)

where the symbols are the same as those employed in Part II of Chapter 2.

We shall again approximate the form factor foi the vertex by unity, and

make use of Egs. II.6 and II.8 of Chapter 2 in order to relate the parameter
qﬂ”“ to the parameter fYYﬁ which enters into the formula for the life-

time of the neutral pion:

fipr (ey }ra/eg) £y 3 (1)
[ or) = € wd / G . (5)
The rate for the strong decay is
F<;,o—»/a + 9} = ffpﬂ K3/ 12n (6)
wheré '
b ul 12 = [;- (m - m )% [ -y +m)%] - (7)

Using 3 ev for the ﬂo decay rate and 33%_/hﬂ = Yi /un = 3/2, we obtain
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r“(f9—+ A+ ) = 0.8 Mev. (8)

On the basis of this model, the branching fraction r(/()m;lm)/r‘(f}—pe:r)
would be expected to be of the order of 0.2%, since the width of the/O
is about 100 Mev.

If the 550 obJject does not have guantum numbers which allow the
strqng decay of a’!-o into it plus a pion, then one must conéide'r more com-
plicated models. One that immediately springs to mind is very similar to
the first, except that in this case the hypercharge meson is to be identi-
fied with the vector meson at 787 Mev, the w. There is no resonance term
in the physical decay region, so that we must compute the four-body phase
space factor. This factof is quite small and the matrix element in the
model with the w intermediate state is not large. The fraction of 6)'3
that decay into four pions is less than 10—7, which is so small that the
details of this calculation do not appear to be of great interest.

Since thefﬁ—meson carries isoiopic spin, there must be a trilinear
coupling of the ,o's if thef) is to be identified with a meson that
couples tolthe isospin current. The magnitude of that coupling can be
estimated from the f;-width, and an estimate for the decay of the f)into
four pions mey be obtained by keeping only the intermediate state of two
f)-mesons. The spinology is somewhat complicated, and the four-body
phase space integral necessitates the numerical evaluation of a five-
dimensional integral. An exact computation, therefore, would not be
Justified unless we felt that the contribution of this intermediate state
dominated the matrix element. It is thus important to be able to make

estimates of the order of magnitude of the decay rates.
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The decay rate may be written as

M=ers <|7ff> 2 , (9)
where S is a factor depending on the statistics of the particles, <:jT|2:>
is an approﬁriate averagé of the square of the matrix element, and P is
the relativistic phase space factor. P may be evaluated simply in the non-
relativistic limit by a technique which we shall illustrate for our case.

Using non-relativistic kinematics, we write

- (2m)"9 b |
P = (2n) 2m I / 32 mkyﬁ i (10)
where
I= de3kl d3k2 d3ku d3k5 55(T k) 8( Tk - Q) , (11)
and
Q=2m (m,. - umﬂ). (12)

Dimensionally, I = A QY/E, and by using the relation
85 (Tk) = (Eﬁ)-3feizkx o - (13)

we find
" 2
-fI % aq = (7/2) A= (2m)73 fuﬁxa gn {/;lkx/\/?e-k dk}le (1)

Thus we see that

Ae2 n”/ 105 . _ (15)

+ =
For the decays of a PO into ' + 1 + 2 n°, the statistical factor

S = 1/2, and
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2m 2 mps - 4m 7/2 °< |
]_I(F:O-—-y 2+ +ond) = (e, )” P ﬂ)h S > . (16)
‘ 512 + 105 =« m
P
&)

Using the trilinearfjrcoupling with the constant 70 ,( we obtain the

following expression for the matrix element.

2 5 -1 2 -1

[+ 7))+ mp] [+ 6T m?J] (17)

2
T=327 v, B
ﬁﬁP\f)
+ kre—p k7",
where

Bexl (- w) of (6 - k) - i - k) 0 - k) (18)

+

+ ep-(k"-' + k-)‘ (x°" - k)« (x° - k) .

In the above formulae, e’fp is the polarization four-vector of the f)o,

O,

+ =
andk"o,k,k,k ; Boa

are the four-momenta of the particles. We

estimate <|T|"> to be less then 64/m° , and thus

%, (19)

I_'(f)o_.:r+ + 1+ en’) < 2 kev, [_'(’f)—ohar)/r'(i’on-fzn) o bk
according to this model.

The branching ratios are very small in the last two models because
the matrix element depends on a high number of pion momenta, i1.e. because
most of the pions are in p-states. We have begun to investigate a model
in which mest of the pions are in s-states. It is clear now that this
model will provide the largest estimate of the branching ratio because of

' (k) &

the very large enhancement of pion-pion scattering near threshold
' L
preliminary estimate using the results of Schnitzer( 5) for the s-wave

pion-pion scattering length gives a branching ratio rﬂgp-—phﬂ)/rﬂ(f)-—pEn)
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of not more than 1%. We feel that this estimate is so large that a detailed

calcuiation is desirable. BSuch a calculation is in progress.
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APPENDIX A

Partial Wave Decomposition for nw+ K — A + N

In the center-of-mass system, choose coordinates such that

5 = -p = (O’O) “thiEN) ?
p' = (0,0,p, ,1Ep). ,
t ¥,
A (A:1)
q = (-qt sin @, O, -g, cos O, iEﬂ) s
r = -r = (qt sin ., 0, q, cos ©

In terms of relativistic invariants, the momenta and energies are given

by
it - o g e o?] -
b oo = [+ - (mK—mﬁ)g] L+ - (mK+mn)2]' ) (A:3)
2 W By o= temp-m o, | (8:4)
2 /& B, = t+mf\-m§ , (A:5)
2 Wt EK=t+m§-—mi s ' (A:6)
2 48 B = t4u-mk (A:7)
and x, = cos 6 = (s+PBE -u - n°)/(2a,p,) - (A:8)

The first step is to evaluate the helicity amplitudes in terms of the
functions A and B appearing in Eq. III:1 . The computation is straight-
forward, and so only the results will be given here. If the helicity

states are denoted by (ML), the amplitudes are
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et

-

T(++) =T(;-;a) = [(E +m )(E +MN)] ) {-A Py (Bp+Etmpyim) _
A:9

+Baq (E +mN)(EA+mA-EN+mN) cos 6, + B Pt(E -E )(E[\+m/\ N-mN)} A
A
T(+-) = -Pl+) = - B g, [(EN+mN)/(EA+mA)] 2 (BptBpima-m) sin O . (A:10)

Secondly, for & partisl wave with angular momentum J, and parity (')J,
we must determine the form of..the helicity eamplitudes. The following

heliéity combinations are eigenstates of 8, and SZ with our sign conven-

tions:
(s,8,) (A7) o OR)
- 1
(0,0) 2 2l -(n] 2 B e s 0]
(1,1) ‘ () -+
_1 .
(1,0) 2 2 b+ (4] 2 2 () - 9]
(1,-1) _ (W) )

The projection of a partial wave amplitude onto & given helicity state is

<(WX) | 30> = Z Z /% Z<(k5:)IS,SZ;/g,m><S,Sz;f,m|J‘,O;/€;S>;,
S

m
Z

where

<(>J>C)|s,sz;/€,m> =<(xx)|s,sz> Yy (6;8) s

and < S,Sz;f,mlJ,O; /(;S> are the Clebsch-Gordan vector coupling coef-
ficients. In general, for a given J, there are four elements of the
T-matrix, corresponding to: S = O, ,@ = J; and 8 = 1, /F= gy J+l;J=1.
(For J=0, of course, there are but three.) If we choose to label fhem in

the following way
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T(3,0,%) = [(2J+l)/8n]32; < f=3,8=0]|T(t)||l7 > ,
T(3,1,8) = [(2J+1)/81tJ(J+l)] % < /f=3s=1]ln(s)| |la >,
T(3yL+,t) = [(J+l)/81r] % < A =g+1,8=1||7(2) | |7 > ,
and  T(J,1-,t) = [J/Bn] %<,(’=J-1, SO IE 3

the helicity amplitudes can be written in the rather simple form:

P(++) = T(30,t) Py(x,) - T(516,8) By, (x) + T(31-,%) P, (%),
(A.11)
(=) = T(30,8) Py(xy) + T(ILt) Ppy(x) - T(51-%) Pr(x,)

(A.12)

T(+-)/sin 6, = T(3,1,%) Pi(x) - T(31+,t) Py, (x)/(3+1)
- T(3,1-t) Py (x)/3 ; (A-13)

T(-+)/sin 0, = - T(3L,t) Py(x.) - T(314,%) PL . (x,)/(3+1)
» (A.1k)

- T(3,1-,%) Py, (x,)/3

Only two of these amplitudes, 7 (J,S,t), occur if parity is conserved.

In our case, T(J,l—l_—,t) = 0, since the parity of the system is (‘)Ja

From these formulae, we can read off the form of the functions A and
B resulting from the exchange in the t-channel of a pure J state with

parity (—)7:

' , i
B(s,t) = = T(J,1,t) P} [xt(s,t)] /{qt(EA-l-EN-!-mA-mN) [(EN+mN)/(EA+mA)] 2}
| (A.15)
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1
A(s;t) = - ‘TTJ}O:t) PJ(xt) [(%AfWA)(EN+mN)]2 [pt ﬂfEN+@ATmN)}

'.-l

- T(31,%) Bi(x,) [Emy) mpm)] 2 (BprEgem i)
(A:16)

(EATEN+mﬁ;mN)fl {(EK-En)(EAf%TEN.mN)/qt
- %, (Byrmy) (Bytmp Byt ) /2 |

where we recall that as s — o0, X%——}S/?Qtpto We may put these

formulse into a cbnvenient relstivisitic form by defining

1
PV = - T30 [(Bemy(E +mN)] [(2a,p,) b, BpsEgmpm)}
(A:17)
‘ 1
wa ¥20) = - T30 [Eym /] 7 {apy)™ o Eumpmm)
(A:18)
in terms of which we have our final result for the functions A and B
resulting from a pure J state:
Bs,t) = FO8) [(ep,0)" 2y [(sremm i) enea ] (4:19)
aest) =m0 {(pa)” By [(EJ“EENEK"‘“;"mi)/QPtq—t] ’

)J—l

P [(eap)™ wp} {(mgemg) (semym )/ [-(apimy)?]

+ (mA -mN)(mf{umi)/et} ; (A:20)
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APPENDIX B

Contribution of the M Pole to the Amplitudes in = + p—+A + K°

From this diagram
o] =

K\ n ,q.

Asp! DD

using the Feynman rules as in perturbation theory, we can compute the

"ﬁole" in the amplitude at t = mﬁ due to the exchange of the M-mesog.
(T write "pole", since this pole lies off the physical sheet because of
the instaebility of the M.) Near the pole, the amplitude for associated

production is given by
(-1) ()™ V6 rye (w), [Soq + (r-a)y(r-a) /my] Ty xXgu, 5 (B:)
where X = HZam s - Mam Tpy (P"P)y ol T O’BV(p'ﬂJ)U- (B:2)

MAM is the anomalous magnetic moment term in the coupling of the M to
AN. E&NM is an additional term which is seldom encountered since this
second type of tensor coupling is ruled out in electrodynamics and in

some other theories by a certain class of symmetries having to do with

the existence of mirror diagrams.

By using various formulase for the spinor matrix elements, one can

show that the pole contributions to the functions A and B are:
-6

5 5 Tiicn 2 {V\NM + %ANM(?Ame) + HANM(qumN)} ; (B:3)
"M

B(s,t) =



= T,
- J6 2 2 , 2
A(s,t) = 1—_:% { (mp-mye ) (g ) [YANM+ uAm(mNmN)]/mM
(B:}4)

+ g (i 28 ) - pm(t-_mﬁ)(mg-mi)/mﬁ}.

We note that %&NM contributes a singular term to the amplitude only

in the combination Tanm * “/{NM(m/\—mI\T) » and can be eliminated from

consideration near the pole by redefining v, to be

TAmm T A M (PA- Pyy) (B:5)
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