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ABSTRACT

Presented is an analysis of wave propagation in an infinite elastic
plate or beam on an elastic foundation. The results are presented in
two parts:

1. The frequency spectra (frequency as a function of wave number)
for the problem based on existing approximate bending theories are
compared with the spectra based on the exact equations of motion from
linear elasticity theory. The existence of complex wave numbers is
established in each case. A distinct similarity is found between the
spectrum representing the more exact theory of bending (Timoshenko
bending mechanism) and the exact Rayleigh-Lamb spectrum for
symmetric waves in a free elastic plate. Good agreement between
approximate theories and the exact equations is found for soft foundations
under the usual restrictions of low frequency-long waves.

2., The transient response is considered for the exact theory and
the more exact theory of bending. In both cases suddenly applied line
loads are considered. In the latter case the related point load problem
is also studied. Two distinct integral transform methods of solution are
presented and used in these problems. For one of these methods the
contributions from the various modes, including the complex arms, are
identified with certain integrals that are components of the solution.
Results from numerical computation of these integrals are presented and
analyzed for the more exact theory of bending using two different foundation

stiffnesses.
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NOTATION

ratio of speeds, ¢, /c

d "s
constants
bezam cross sectional area

Bromwich integration paths
1/2

]1/2

limiting wave speed, [k'/.l //O]
dilatation speed, [( A+ Z/u )//O

plate speed, [E//o(l-vz) ] L2

shear speed, [/le] 1/2
Rayleigh surface speed
integration paths

plate modulus, Eh3/12(1-v2)
constant,\/l—Z (for a plate)
modulus of elasticity

point load (force)

line load (force per unit length)

frequency function defined on page 54

dimensionless point load
dimensionless line load

cutoff frequency

frequency function defined on page 73

plate thickness

function defined on page 73

moment of inertia of beam cross section
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K, K_

D p a. » ¥ Z

H

integrals representing transient response for Wy and w _,
respectively, defined on page 59 s

integrals representing transient response for w of exact
theory, defined on page 77

shear correction factor

foundation constants for exact and approximate theories,
respectively (force per unit deflection per unit area)

integration path

order of lowest nonzero derivative dN.I). /arl B at spectrum
branch points

Fourier transform variable

: .th
poles in p-plane for j~ mode
transverse shear load per unit area
dimensionless shear load

: ¢, GLH ;

body force per unit volume in i~ direction
radial coordinate
dimensionless radial coordinate, er/h

(maximum kinetic energy of rotation)/(maximum kinetic
energy of translation)

Laplace transform variable
. .th
poles in s-plane for j  mode
branch points in s-plane
time
dimensionless time of occurrence, tcp/x
dimensionless predominant period, chp/wh
. o BB i :
displacement in i~ direction
vector displacement with components u,

displacement velocity



transverse plate deflection

transverse plate deflection due to bending and shear,
respectively

total transverse plate deflection, wb-i-wS
total transverse plate deflection under point of loading

dimensionless plate deflection, w/h

dimensionless plate deflections due to bending, Wy /h, and
shear,w /h respectively

Cartesian coordinate
; . -, g ’
Cartesian coordinate in i~ direction
real part of r
dimensionless station of occurrence, x/tc
Cartesian coordinate
imaginary part of I"
Cartesian coordinate

inner root of Pj

[P 2-trn/a)?] /2

[o24(s2)%] /2

[ 2-(re)?] 12

[pz +sz] 1/2

wave number

dimensioaless wave number, h¥
dimensionless wave number, h ¥ /e
ratio of speeds, c/c

Dirac delta function

strain



11 R&%s A

e € e o

small quantity, & < 1

dimensionless Cartesian coordinate, z/h
dummy variables

angular coordinate

Lamé constant

dimensionless predominant wave length
Lamé constant

Poisson's ratio

dimensionless Cartesian coordinate, x/h
dimensionless Cartesian coordinate, ex/h
mass density

stress onj 0 face in ith direction
dimensionless time, tcs/h
dimensionless time, etC/h
dimensionless time, tcp/h

scalar potential

dimensionless scalar potential

vector potential component

vector potential

dimensionless vector potential component
angular frequency

dimensionless frequency, mh/m:5 (exact theory) and wh/ec
(approximate theories)

real part
imaginary part

gradient operator



Laplacian operator
Laplace transform
Fourier transform
Hankel transform of order zero

pertaining to real-complex arm intersection



INTRODUCTION

It is well known that in an unbounded, homogeneous, isotropic,
linear elastic solid two basically different types of waves (dilatational
and equivoluminal) can propagate independently, each with a different
speed. Superposition of these waves in various ways determine the
dynamic deformation of the elastic solid.

The introduction of a traction free boundary requires the coupling
of the two basic waves in order to satisfy the boundary conditions. For
example, in the plane strain case of an elastic half space with a traction
free boundary, an obliquely incident harmonic plane dilatational (or a
vertically polarized shear) wave will, in general, give rise to two
reflected waves: a vertically polarized shear wave and a dilatational
wave. This process is commonly referred to as mode conversion. The
characteristic angles of reflection and amplitudes of the reflected waves
are dependent only on the angle of incidence of the incident wave and the
two basic wave speeds which are defined by the material properties. If
a second stress free boundary parallel to the first is introduced, the same
laws of reflection exist for an incident plane wave on this boundary. For
instance, in the case of symmetric deformation with respect to the mid-
plane of the two boundaries the two plane waves combine to form a single
wave that propagates parallel to the boundaries., For this wave to satisfy
the traction free boundaries of such a wave guide it is necessary that its
phase velocity be dependent on its wavelength, This dependence is called
dispersion and is described by the frequency equation. A mathematical

treatment of this physical argument describing dispersion has been



accomplished by Harrison (1) for the example cited above. The present
work is concerned primarily with related transient problems. In par-
ticular, interest is focused on such problems involving a restraining
elastic boundary.

The effect of a restraining elastic boundary has been the subject of
several recent investigations on the dynamic excitation of beams and
plates. Of note are the works of Kenney (2) and Mathews (3) on the steady
vibration of a beam on an elastic foundation based on the elementary
bending theory (Bernoulli-Euler), Mathews and Kenney also studied the
related problem of the traveling load. Crandall (4) treated similar
problems later on the basis of the more exact theory of bending due to
Timoshenko. Das Gupta (5) considered the influence of an elastic boundary
on one face of an infinite plate using the equations of motion from linear
elasticity theory. Das Gupta's interest was focused on the Rayleigh surface
waves in a plate. He described this surface motion in terms of an equi-
valent system composed of a rigid base with a thin plate resting on the
foundation. Boley (6) in an investigation concerned with a dynamic Saint
Venant's Principle, used as an example a mechanical system of two Timo-
shenko beams connected by springs. This problem relates to the present
general interest. Mindlin (7) has made use of a restraining elastic
boundary to study, in accord with the exact theory, the development of
coupling between uncoupled dilatation and equivoluminal waves. This
development occurs in a plate under mixed boundary conditions on its
faces (normal displacement, shear stress zero) as these conditions are
relaxed to the traction free case. In all of these studies concerned with

the influence of the elastically restrained boundary no consideration has



been given the behavior of the various propagation modes under transient
loading. Such consideration is the main theme here,

The response of a mechanical system to transient loading requires
the superposition of waves with different frequencies and wave lengths to
match the loading function and the remaining boundary conditions. In the
absence of dispersion the frequency and wave length superpositions may
be carried out independently provided the spacial and time variations of
the loading function are separable. This is due to the independence of the
wave length and frequency. The resulting waves remain unchanged in
shape as they propagate. However, in the case of dispersion the afore-
mentioned superpositions may not be carried out independently, because
of the relations existing between the frequency, wave speed, and wave
length. To illustrate this consider a transient normal point load on a
free plate. At the point of application of this load the stress in the plate
must have a Fourier spectrum to match the load's functional dependence
on time. An infinite number of stress waves having different frequencies
are involved and propagate away from their source. Each travels at a
different speed depending on its particular frequency, and at a station
remote from the source the stress will not have the same Fourier spectrum
in time as the original stress at the point of loading. In terms of oper-
ational calculus the response is described by a double transform (in space
and time).

Efforts to solve transient problems in elasticity which involve dis-
persion have been impeded by the complex forms of the frequency equations

for even the simplest boundary conditions. Closed form solutions are not



possible with the mathematical tools available. Two distinct methods of
approximation have been used in the literature:
1. Approximation of formal exact solutions

The double inverse transform which represents the formal solution
of a transient problem can be approximated by restricting interest to
particular regions of time and space. For the far field (large time and
station) the integrals can be estimated by summing the normal mode
solutions making use of methods such as stationary phase and saddle point
integration. For the near field and short time information ray theory
and wave front expansions are possible.

For moderate values of the spacial and time variables these

integrals have eluded approximation.

2, Approximation of the governing equations

Returning to the formulation of the gover;ing equations, it is possible
with certain restrictions to incorporate boundary conditions into the
governing equations. For example, the deflection of a very thin plate
(thickness small compared to wave length) in steady-state, low frequency,
transverse vibration will be negligibly influenced by the shear distortion
and rotatory inertia of the plate elements. The maximum energy in this
system is exchanged between the potential energy due to the stretching and
compression of the longitudinal plate fibers and the kinetic energy due to
the transverse motion of a beam section. The boundary conditions on the
plate faces are incorporated by making suitable approximations. In this

case all stresses and strains are assumed zero except those parallel to the

mid-plane; and they are assumed proportional to the distance from the



mid-plane. Writing the equations of motion results in the classical
Lagrange equation. This elementary theory has the dispersive nature of
the linear elasticity theory for low frequency-long waves. More refined
approximations are possible such as those found in the Timoshenko bending
mechanism (8) which includes, in addition to elementary bending, the
effects of shear force and rotatory inertia of the plate element on the
transverse deflection. Generally, however, these higher order approxi-
mations are accompanied by an increased order in the governing differ-
ential equations. Provided the order of these equations is not too large,
the transient loading problem can be solved exactly. The interpretation
of these results must then be restricted in accordance with the limitations
of the theory. This method of approximation was pioneered by Davies (9)
when he solved the Love equation (10) for the elastic rod which includes
the effects of radial inertia on the longitudinal displacement. In this case
the frequency spectrum is dispersive and is in agreement with the linear
elasticity theory for the rod only for low frequency-long waves. The
transient response is therefore accurate only where these waves govern,
The two methods of approach are supplementary but as yet have not
been used cooperatively to bring out further understanding of the complex
problem of dispersive transient wave propagation. The subject under study
here, of an infinite plate bounded on one side by an elastic foundation whose
local deformation is proportional to the local interface stress, has
afforded a good opportunity to do so. This particular boundary con-
dition generates an unusual frequency spectrum which includes complex

and imaginary wave numbers for real frequencies. As will be shown in



the present work, it is possible using approximate theories to develop
methods of handling the transient response in problems based on the exact
theory of linear elasticity which have similar spectra. It will also be
shown that by considering the approximate theories one is able to quali-
tatively discuss the influence of the various parts of the spectrum on the
transient response.

The direct methods of solving transient loading problems for approxi-
mate beam and plate theories of the Timoshenko type (Timoshenko (8),
Uflyand (11), and Mindlin (12) ) have been clearly demonstrated by
Miklowitz (13, 14) using only a Laplace transform in time. Miklowitz (15)
has established a systematic procedure for handling the multiple branch
points existing in the Laplace transform plane that occur in this method
of solution. Later Jones (16) used a method of handling these problems
which made use of a Fourier transform in the spacial variable and did
not require the consideration of the existing branch points.

The former method followed by Miklowitz, though requiring some
branch point analysis, is shown here to have distinct advantages for in-
terpreting the various modal contributions.* It is also shown here that
the integrals generated in this method are easily transformed to different
integrals that retain this interpretation but lend themselves to rapid
numerical computation for long time solutions. A direct application of
this method can be adapted to the solution of the exact problem where the

frequency spectrum is known.

=
An inversion path is used which is similar to that used by Miklowitz (15)

in a related problem for compressional waves in a rod.



The relation of these two methods of solution is discussed in detail
later in terms of the spectrum and associated wave dispersion. In
particular the behavior of the complex and imaginary wave numbers and
their role in the transient response is considered in both methods. The
discovery of such general wave numbers has only recently been made.
The existence of large complex wave numbers for real frequency was first
established by Adem (17) in 1954 in his study of the Pochhammer frequency
equation for axially symmetric waves in an elastic rod. Mindlin and
Onoe (18) described in more general detail the nature of similar roots
found in the Rayleigh-Lamb frequency equation and higher order approxi-
mate theories of the free elastic plate. The influence of these complex
modes on the steady state vibration of a free elastic plate in symmetric
excitation have been discussed by Gazis and Mindlin (19) and related to
the experimental results of Shaw (20). Both experimentally and theoreti-
cally a characteristic edge frequency was observed, which arises as a
result of coupling between the real extensional mode and the modes
corresponding to two complex wave numbers at that frequency. In
reference 19 a straight-crested extensional wave is considered to impinge
normally on a free edge of a plate. The resulting amplitude of the
reflected extensional wave and the '""complex waves' necessary to satisfy
the boundary condition are shown. At the edge frequency this incident
wave gives rise to a maximum '"complex wave'' amplitude (approximately
eight times the incident wave amplitude for Poisson's ratio v = .31). The
amplitude of the displacements from this mode decays exponentially from

the edge in agreement with the complex wave number associated with this



frequency. The transient influence of these edge modes, however, has
not been investigated.

The higher order approximate theory developed for the lowest three
modes of the symmetric excitation of a plate by Mindlin and Medick (21)
do not lend themselves to easy transient analysis even though they do
contain the desired complex wave numbers. The present work has an
advantage in this respect, since the problem of an elastic plate on an
elastic foundation gives rise to these complex wave numbers in a lower
order theory. These general wave numbers are studied here in detail
for the cases of steady and transient wave propagation. Due to the
simplicity of the approximate theory, however, there is no coupling
between real and '""complex waves''. Therefore, a characteristic edge
mode frequency does not exist for steady waves impinging on a free

boundary.



I. GOVERNING EQUATIONS AND STEADY WAVE PROPAGATION
CHARACTERISTICS OF AN ELASTIC PLATE ON AN ELASTIC
FOUNDATION

A, Exact Theory

The equations of motion for the solid continuum can be written by
considering equilibrium of a volume element (figure 1) and making use of

Newton's second law, with the result

Bo’ij dzui
+Q = - (1)
ij i dtz

where (‘.Y'ij is the stress tensor, Q.1 the body forces per unit volume, u,
the displacements at a point defined by the Cartesian coordinates Xiy /2
the material mass density, and t the time. For a displacement component,

say u = uy,

&

o+

2

d«a 0 Ju

L S oo ot (2)
oz =L V(t) Bt(at)

where v is the position velocity vector and V the gradient operator.
Imposing small strain rates and position velocity (first term on the right
hand side of equation 2 small compared to second term) and neglecting the

body forces reduces equation 1 to

acrij 9 ug
. SO s (3)
8xj /o atZ

Now assuming an isotropic, homogeneous, linear elastic solid,

Hooke's law given by

;= AA Sij +2u€ (4)
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Figure 1. Volume element of solid continuum.
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governs. Here éij are the strains

1 Bui Buj
E.. == + o
ij ~ 2 ij axi

and A the dilatation
K= R w
ii
The quantity &ij is the Kronecker delta, and A and x4 are the Lameé

constants

A _ vE _ E

Ty -2y M= 2T

in which E is the modulus of elasticity, and v is Poisson's ratio.
Substituting equation 4 into equation 3 yields, after some algebra, the
displacement equations of motioa

where VZ is the Laplacian 82/8xj8xj. Equation 5a can be written in

vector form

22U

at?

ATV U) +uV°U =0 (5b)

where U is the vector displacement with components u,. By introducing
the relation
2
VU= 7(V.U) -Vx7xy

equation 5b is sometimes written as

2
a U
A+ 2 V(7. U) -4V xVxU :/JBTE (5¢)
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Using Lamé's general solution to equation 5b (or equation 5c),

U=Vy+VxV (6)
gives the wave equations
2
2 1
V Lp: 2 g éﬂ (73—)
Cq ot
2
8"y
2 1
b o 2 (70)
= & ot

s
where { is a scalar potential and Q a vector potential, both being

functions of position and time. Th= quantities ¢, and cg, are the infinite

d
medium, dilatation and equivoluminal wave velocities, respectively, given
by

Equations 7a and 7b, together with the appropriate boundary and
initial conditions, can be used to derive a unique solution to a problem
involving a bounded, isotropic, elastic solid. Problems of this nature

are of interest here. In particular, for the plate and beam, equations

7a and 7b for plane strain become

2
1 od

2
= 8
v § a2 87'2 el
2
"7
2
= (8b)
i S
where
2 9? 8%
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The Cartesian coordinates for the plate are shown in figure 2. The

related displacements and stresses are given by

u 8¢ a7y
W=E—=a—§—'+§ (93.)
u 3§ Y
S e (9b)
B 93 8%
2 2 2
. .y 278 9°¢ o
AL . + 2 + 10
857 ( a2)87.2 552 3% oE {10a)
2 2 2
9 ) 2° Y
% - Oxz _, . i f— (105)
M 9359 8% 9E
where
= S o X
$ =S ¥ 5
tCS zZ X
Te=gs  S=F. $=%
2
2 _ %4 _2(1-v)

& = C 2 )
S

and h is the plate thickness,

Frequency Spectrum

The frequency equation for an infinite plate resting on a foundation
has been derived by Das Gupta (5) using the equations from linear
elasticity theory. The boundary conditions for this problem require that

one face of the plate be traction free and the other face be free of shear
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Figure 2. Cartesian coordinates for a plate.
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stress but subject to 2 normal stress proportional to the displacement of
that face:

KS = () at S= 0,1
%

w
gS:——r/U at S:O

3

g= 0 at §5=1 (11)
e

where Ke is the spring foundation constant with dimensions of force per

unit area per unit deflection., Assuming solutions of equations 8a and 8b

in the form of straight-crested (plane strain) traveling wave trains,

propagating in the positive ¥ direction, the potential functions are of the

form
§ = [Al coshalS + A, sinh aS] ei(rlg -mQ7) (12a)
P = [.A3 coshPBY + A, sinhBS] JME -maT) (12b)
where 2
a2=r‘2-("a“ : B> = 1% ~(r1)’?
e
[’ =¥h =K ¥ ¥, _{)_:w/u)s, (...>S=-—h—s

and ¥ is the wave number and w the angular frequency. Substitution into
the boundary conditions 11, making use of equations 12a, 12b and 9a, results
A non-

in a set of four equations in the four unknowns Al‘ A A3 and A

2" 4°
trivial solution results by setting the determinant of the coefficients equal
to zero. The resulting characteristic equation gives an implicit functional
relationship between the wave number and the frequency, which describes

the dispersive nature of the system. A convenient form of this equation

is given by
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2
B 2 2
Y Kea_Q. [01 tanh {3-02 tanh u]

_(l4cosha)(l+coshp) 2 a B 2 B a
" cosh a cosh B 6, tanh 5 -0, tanh 5 (16, “tanh 5 -0, tanh 5

(13)
where 0, =2 .(r)®, 0,=40pM?
The most interesting feature of this equation is the symmetry it
exhibits of the displacements about the base of the foundation. Consider,
for example, a sandwich of two flat plates separated by an elastic layer,
figure 3, All displacements can be assumed symmetric about the center
plane. For an infinite spring constant equation 13 reduces to the Rayleigh-
Lamb frequency equation for symmetric straight-crested waves in a free
plate of thickness 2h. At the other extreme for Ke = 0 equation 13 reduces
to the Rayleigh-Lamb frequency equation for both symmetric and anti-
symmetric waves for a free plate of thickness h. The behavior of the
frequency equation for intermediate ranges of Ke must exhibit this
transition of modes.

It is interesting to note that for very high frequencies, the term
containing the Ke becomes negligible compared with the remaining term.
This means that for any finite foundation stiffness the spectrum represent-
ing equation 13 must approach the spectrum of a free plate in the limit for
very high frequencies. This characteristic can be observed for small
foundation stiffnesses at fairly low frequencies.

The frequency spectrum of equation 13 for steady state analysis is

described physically only for {1 real. Imposing this condition the cutoff



-17=-

Figure 3.

Sand wich of two plates in symmetric
wave excitation.
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frequencies, which are characteristic of infinitely long waves, can be

found by setting [ = 0 and are given by

Ch . & i, IR . P (14a)

n

and the roots of

T T Keh
tan = =01 25 wne (14b)

2 ?
ol

The frequencies given by equation 14a are independent of the founda-

sle

tion stiffness and indicate a thickness-shear motion at the cutoff which is
independent of an applied normal force. Only the cutoff frequencies from
equation 14b depend on the foundation stiffness. These cutoff frequencies
vary from £l =amto 1= a(m + %) as the foundation stiffness increases
from zero to infinity. No cutoff frequencies depending on the foundation
stiffness are found in the range a(m + %) < QL.< a(m+l) since this would
require a negative spring constant which is not permissible physically.
These cutoff frequencies which depend on the foundation hardness
are the limiting long wave, symmetric thickness-stretch mode frequencies
for the system indicated in figure 3. For very small foundation hardness

these cutoff frequencies are given by

K h 1)2 K 1/2
ﬂ = g or w = ['_—e—':]
o 1r2/u h/o
and (15)
K h
_()_m= ma+——e—-—2- ek, 2,35 660
a/um'n'

The classification of the various plate motions at the cutoff frequencies
have been presented by Mindlin (7). Thickness-shear denotes elemental
motions that give rise to transverse shear and are parallel to the mid-
plane. Thickness-stretch describes motions normal to the mid-plane.
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The first of equation 15 corresponds to the one degree of freedom spring-
mass oscillator where the entire plate vibrates as a rigid mass. The
second of equation 15 shows a small perturbation due to the spring foun-
dation which slightly increases the mth symmetric thickness-stretch
mode cutoff frequency for a plate of thickness h. As the foundation stiff-
ness increases to infinity this cutoff frequency becomes the ('m+1)th
symmetric thickness-stretch mode frequency for a plate of thickness 2h.
The frequency spectrum transition is sketched in figures 4 through
7 showing real and imaginary arms* for four foundation stiffnesses and
Poisson's ratio v = .31.** (Real arms which have negative slope are
actually associated with negative wave numbers and are shown with positive
wave numbers for convenience.) Figure 4 shows the symmetric wave
branches (solid lines) and antisymmetric wave branches (dotted lines) of the
Rayleigh-Lamb frequency equation for a free plate of thickness h. Figure
7 shows the symmetric wave branches of the Rayleigh-Lamb frequency
equation for a free plate of thickness 2h. The dotted portions of the curves
in figure 7 indicate their antisymmetric wave origin. The transition
mechanism is indicated in figures 5 and 6.

Note the exchange of arms of the different branches in figure 5. This

phenomenon has been observed for the symmetric Rayleigh-Lamb

The terminology used to identify the parts of the spectrum follows that
given by Mindlin and Onoe (18): a group of intersecting curves of wave
number against real frequency is called a branch, and the real, imagin-
ary, and complex portions of such a branch are its arms. Each real
arm is associated with a particular mode of wave transmission.

F% ’ ; . , _
This value of Poisson's ratio has been used in order to facilitate com-

parison to the complete spectrum for a free plate sketched in reference
18. Figures 4 and 7 are reproduced from that reference.
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Figure 4. Frequency spectrum for no foundation.
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Figure 5.

Frequency spectrum for a soft foundation.
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Figure 6. Frequency spectrum for a hard foundation.
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Figure 7.

Frequency spectrum for a rigid foundation.
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spectrum by Mindlin and Onoe (18) for varying Poisson's ratio, where
the effect of increasing Poisson's ratio is similar to that found for in-
creasing spring stiffness. This is in agreement with the qualitative nature
of Poisson's ratio. Further comparison between the influence of a
foundation and Poisson's ratio is reflected by the cutoff frequency de-
pendence on Poisson's ratio. For example, consider a foundation stiff-
ness Ke = 0. The cutoff frequencies given by equations 14a and 14b are
then the cutoff frequencies for the symmetric spectrum for a plate of
thickness 2h. Equation 14a remains unchanged and the associated
frequency is independent of Poisson's ratio as it was for the case of a
spring foundation. Equation 14b becomes

_O_m— —5— m = I 2 s
and shows the frequency dependence on a and consequently on Poisson's

ratio., Differentiation shows that

dQ__
—— >0

dv

This shows that the cutoff frequency _O_m increases with increasing
Poisson's ratio; a dependence on foundation stiffness already established.

The lowest three branches of the spectrum for equation 13 were
calculated using an IBM 709 computer and are shown in detail in
figures 8 through 12 for five foundation hardnesses and Poisson's ratio
v = .35.* The spectrum is composed of real, imaginary, and complex
arms. The real arm emanating from the lowest cutoff frequency

and its associated complex arm have been shown reflected in the

plane X = 0 and superimposed on a second complex arm. For

=
This Poisson's ratio permits the study of a typical interchanging of two

real arms of the same branch without resorting to the investigation of
higher modes. The exchange is anticipated for v>1/3, since at v = 1/3,
the critical Poisson's ratio, the first two cutoff frequencies of the
symmetric Rayleigh-Lamb spectrum are equal.
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Figure 8. Frequency spectrum for no foundation.
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Figure 9. Frequency spectrum for a soft foundation.
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Figure 10. Frequency spectrum for an intermediate foundation stiffness.
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simplification in comparing these spectra with the approximate theories,
to be discussed later, only the lowest cutoff frequency (L = g is listed in
each figure. The foundation stiffness corresponding to a given cutoff
frequency is found from equation 14b. Figure 8, which is for g = 0

(Ke = 0), shows the lowest symmetric and the first two antisymmetric
modes of a free plate of thickness h. Figure 12 is for an infinite foundation
hardness and reflects the lowest three symmetric modes of a plate of
thickness 2h. Figures 9, 10 and 11 show in detail how the transition pre-
viously mentioned takes place. For very small foundation stiffness the
lowest mode which has its origin at {1 = [7 = 0 behaves like a symmetric
dilatation mode until a frequency slightly less than the cutoff frequency
) = g. At this point it bends sharply and now associates itself with what
used to be a purely antisymmetric mode (but now a symmetric mode with
respect to the base of the foundation). The real arm emanating from the
lowest cutoff frequency now has a minimum and an associated complex
arm. For increasing wave number the real arm then bends to associate
itself with what used to be a purely symmetric mode.

The characteristics of the arms are discussed with generality in
Appendix A for frequency equations like 13, The only information required
to describe the arm intersections is the order N of the first nonzero
derivative at these intersections. Expansion in the neighborhood of the
lowest cutoff frequencies shows that N = 2 except for the third branch when
gz = 1. In this special case the first derivative is nonzero and no

imaginary arm exists. The value of N at the intersection of the complex
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arm with the second real arm can be deduced to be N = 2 from the
corresponding intersection in the symmetric spectrum for a free plate
(see reference 18 and figures 8 to 12). Further details may be found in

Appendix A,

B. Approximate Theories

1. Elementary Theory

The deflection equation of motion from the classical theory for the

bending of a thin plate (Lagrange's equation) is given by
2

DVZVZW +/Oh% =q (16)

where w is the mid-plane deflection of the plate, D is the plate modulus
given by Eh3/12(1-v2), and q is the transverse loading per unit area. The
first term of equation 16 accounts for the shear force due to bending and
the second term is due to the transverse inertia of a plate element.
For a plate resting on a foundation of stiffness K, q is given by
qg = -Kw (17)
Substituting equation 17 into equation 16, and writing the result in

dimensionless form,gives

vivlw + §Zg%w + §° ——-=0 (18)
1
oT
where
- = E5E. & ™
W = w/h, T'=5 s 5 EOOU v')
2_ 2 2 2 _ & 2 2
g—c/cp, g-hK/(epc), e =12
The VZVZ operator is made dimensionless using variables like E,z E})l—c %

The quantity ¢ is an arbitrary velocity at this point. but is introduced to
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facilitate comparison of frequency spectra.
Equation 18 is the same for a Bernoulli-Euler beam (classical
theory) on an elastic foundation if the VZVZ operator is replaced by

84/8§'4t and the following parameters are redefined:

2
c 2. E K—_u..__h ezzAbh (19)
P ot Ab 2 I

where Kb is the spring constant of the beam foundation with dimensions
force per unit length per unit deflection, Ab the beam cross section, I the

moment of inertia of this section about the neutral axis of bending, and

h/e the radius of gyration of the beam cross section.

Frequency Spectrum

In the usual manner the frequency spectrum for equation 18 is found
by assuming a solution in the form of a straight-crested traveling wave
train v .

w=acll§07 (20)
where 5 , the dimensionless wave number, and L1, the dimensionless
frequency, are given by

) Do r":‘%: (X +iY) (21)

ec ?

® |~

and A is a constant.

Substituting equation 20 into equation 18 gives the frequency equation
14 2o md 2
m o= 87T (22)

Since interest is confined to only real values of ), the four roots of

equation 22 may be real or imaginary for .O.Z P g2 and are complex for
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_O_Z< gz. Only two distinct roots exist since the remaining two are the
negative of the first two. The two roots considered will be those which
are positive real and positive imaginary for _O_Z > gz, corresponding to
waves traveling in the positive gl-direction and standing waves decaying
exponentially in the positive E'-direction, respectively. These branches
may be traced without ambiguity to frequencies below g by examining
equation 22 in the neighborhood of its branch point, £L = g. Here, d4_n. /
dr"“1 is the first nonzero derivative, i.e., N = 4, Reference to Appendix
A shows that the complex arm associated with the real arm falls in the
first r"-quadrant and makes an angle of w/4 with the r"-axes. The
complex arm related to the imaginary arm is in the second r"-quadrant,
and when reflected in the plane X = 0 falls on the other complex arm.

The frequency spectra for equation 22 may be compared with those from

the exact theory by noting, for a plate of thickness h, the dimensionless

2 2 2 ‘n’2 2
frequencies are equivalent and [*° =12 if ¢~ = 17 g °

Using this
equivalence equation 22 is plotted in figures 8 through 12 for v = .35 as
indicated. The cutoff frequencies are the same as those given by equation

14b provided the foundation stiffness in the classical theory has been

adjusted by using the relation

re
K
K~ aTr (23)
e tan
a

It is well known that the classical theory is a good approximation only for
low frequencies and long waves. Therefore, comparison of the elementary
theory with the exact spectrum must necessarily be confined to this region.

The introduction of a finite cutoff frequency and a complex arm, with the
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addition of an elastic foundation, is the important feature here. This
cutoff frequency is again due to the uniform oscillation of the plate on the

foundation and is given by
1/2

w = [TI;;] (24)

If small frequency, wave number, and foundation hardness are
imposed on equation 13, the lowest mode of equation 13 which possesses a
cutoff frequency approaches equation 22 for a plate. This limit is indicated
in figure 9. Furthermore,the correction factor for the foundation hardness,
equation 23, approaches one. For cutoff frequencies higher than a/2 the
classical theory has no exact theory counterpart, because Ke would have

to be negative according to equation 14b.

2, More Exact Theory of Bending

A more accurate deflection equation of motion than equation 16 was
contributed by Uflyand (l1), whose plate theory is the analog of the Timo-
shenko beam theory, and which includes in a similar manner the effects of
shear force and rotatory inertia of the plate element on the deflection. A
more complete analysis of this theory, including a statement of admissible
end conditions, was presented later by Mindlin (12). The governing
equations for the case of zero in-plane rotation, as given in a recent paper
by Miklowitz (22) are

h3 Bzwb

2
DV Wb+k'/l,ths—PT-2-—-E;t—2*—-— =

I
o

(25a)

82

2 q
! AV =2 = —_—{w + w

1
o

(25b)
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where wy and w, are the coupled deflections (WT

bending and shear, respectively, figure 13, The quantity k' is a shear

= ws+wb) resulting from

: Z . . . . :
correction factor. V is the two-dimensional operator for cylindrical
symmetry 10 (r —a—) or the one-dimensional operator 82/8:{2

Y Y ridr or ‘

Equation 25a is the equation of rotational equilibrium for the plate
element where the first term is the moment due to bending, the second
term is the moment due to the transverse shear, and the last term is
the moment due to the rotatory inertia. Equation 25b is the equation of
transverse equilibrium where the first term is the force due to transverse
shear on a plate element, and the last term is the force due to the

transverse inertia. The plate shear force (per unit length) and moments

(per unit length) are given by

h \
Z
S = G_ _dz
rz
b
"
b
2
Mr = c/rzdz > for cylindrical symmetry
.
TR
L
2
MO = o’ozdz
h
T2

and
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(o) bending deflection

(b) shear deflection

(c) total deflection

Figure 13. Coupled deflections resulting from bending and shear for the
more exact theory of bending.



"

F for plane strain

|

M = (fxzdz

| 5

where z is the plate thickness coordinate. The shear force- and

moment-displacement relations are given by

\
8ws
- k! e
S = k/uh e
[ ow. BZW
M =-D|1 P4y —P )
r r or 81'2 for cylindrical symmetry
2
FB W ow
B b v b
Kig® =B 2 trem
| or
/
and
Bws )
P
S= k/u h B
? for plane strain
Bzwb
M = -D /
% Z
ox

The primary limiting assumptions made in the derivation of equations
25a and 25b are:
1. Straight line elements normal to the mid-plane of the unstressed

plate remain straight when the plate is deflected.
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2. Variations of the transverse shear and inertia over the cross
section are neglected.
This assumes that only the lowest antisymmetric thickness-shear mode
of the plate motion is considered. In this assumption shear distortion
over the plate thickness is taken into account only through an average.
This results in a theory applicable to cases involving only moderately
high frequencies and moderately short waves.

Again the transverse loading is assumed to be of the form

g = —K(Ws + wb)

where K is defined the same as in equation 17. The dimensionless forms

of equations 25a and 25b are

2 BZWb
2 +c2 = —— =0 (26a)

vow, W 'S 5712
2 2 82
754

where
W, =w /h, W, = wb/h
2 2 c2 kt
c :k"/%s 5 =C2=—2—(1-V)

P

The remaining terms are the same as defined for equation 18. Also if the
VZ operator is replaced by 82/8 ‘gi . and the constants are defined by
equation 19, equations 26a and 26b describe the motion of a Timoshenko
beam on an elastic foundation.

The beam shear force and moment are given by

2= jjcrxszb
Ab
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M = fffxszb
Ab

and the shear force- and moment-displacement relations are

Bws
— 1
= -k/uAb 9x

Bzwb
M= -El ——
2
ox

Frequency Spectrum

Assuming a solution in the form of straight-crested waves,

W_= A ei(rg'ﬂT) (27a)

_— Azei(r"gi.m')

B (27Db)

and substituting into equations 26a and 26b results in two algebraic equations
in A, and A,. The nontrivial solution {AI # 0# AZ) gives the frequency

equation
SZ SZ_(‘LZ_ P‘Z
=0 (28)
2 2 12 2 2
o -g -r £} ~§

This can be regarded as a biquadratic in [7' as a function of L

S 12, 22 212 A
p'f:;,_l-{n"‘m sz)-gz) (1) (ﬂ Le5) -8 ) - Pef-ad -0 1,2

(29)

Again the dimensionless frequency and wave number are defined by
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equation 21.

In general there must be four roots of equation 29, but as in the
case of equation 22 only two distinct roots exist corresponding to j=1 and
j=2. The roots l"‘l and I"'Z can be either real, imaginary, or complex
depending on the particular parameters 82 and gz and on the value of ) .
The frequencies at which real and imaginary arms of the I'"j become
complex correspond to the zeros of the radical in equation 29 and are

given by
2 . 1 2 > . 1j 2 . ! /1 2 1 52
Jlj* = "(';:g: (g”- I_S—Z) -(-1) 'I""ng ~g (=87} (30)

Since only real positive frequencies are being considered there may be
zero, one, or two such transitions. Figure 14 shows this dependence as a
function of. S . and gz. Regions I and II have no transitions, region III
has one _Q.*, and region IV has two different (2 ,'s. General interest will
be confined to III and to values of g2< 1+ - where the one transition
occurs on a real r"arm. This choice is dictated by the limits of Poisson's
ratio of engineering interest, and the greater accuracy of the approximate
theory for a softer foundation.

The branches of equation 29 which will be studied are chosen to be
those, which for large {1, have positive wave numbers. These modes can
be traced for decreasing {1 by studying equation 29 in the neighbornood of
the branch points as in Appendix A. It is found that the lower branch (j=1)
has a complex arm that extends into the first r"-quadrant. The upper
branch has two zeros on the L) -axis at {) = 1and {1 = g. A positive
imaginary arm connects these two cutoff frequencies. The arm emanating
from the lower of these cutoff frequencies extends into the negative

! -plane. This branch has a complex arm which is the reflection in the
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plane X=0 of the complex arm from the lower branch.
Figures 8 through 12 show this spectrum as indicated, again with
arms having negative wave numbers being shown reflected in the plane

X=0. The cutoff frequency which is independent of the foundation stiffness
2

has been made to correspond to the other two theories by setting k' =% .

The other cutoff frequency has been adjusted by correcting the spring
constant of the foundation in accordance with equation 23, In figure 12 the
complex arm intersection in the imaginary F”-plane results from the
values of gz and 82 that fall in the region IV of figure 14.

Again the cutoff frequency due to the foundation hardness is related
to the uniform oscillation of the plate and is given by equation 24. For very
small foundation hardness the lowest mode of equation 29 approaches
equation 22 for small wave numbers. As in the case of Lagrange's equation
no additional cutoff frequencies are found which depend on the foundation
stiffness since no symmetric thickness-stretch motion was assumed in the
derivation of equations 16 and 25a and 25b. The existence of a second
cutoff frequency is due to the inclusion of the transverse shear effect on the
deflection in the more exact theory. The elemental motion which results
from transverse shear is the same as that due to the lowest symmetric
thickness-shear mode for the configuration of figure 3. It is not surprising,
therefore, to find this frequency to be independent of the foundation hard-
ness.

Though the highest mode of this theory always associates itself with
the third mode of equation 13, the lower mode splits its affiliation between

the two remaining exact modes. This is expected since nowhere in the



~-43-

approximate theory is symmetric thickness-stretch motion considered.
Consequently this arm is closest to the exact mode which has the most
bending character, The influence of bending is quite large for small
foundation hardness and consequently the approximate bending mode agrees
well with the two exact modes where they have bending behavior. It is
interesting to note that for very stiff foundations the lowest symmetric
mode of the exact theory still tends to approach the bending mode of the
more exact theory for a plate on a foundation. For very short waves the
severe bending of the outer fibers of an exact beam may account for thié
behavior.

Note that whereas the complex modes of the spectrum from equation
29 have a real mode with which to couple for frequencies below [1,, no
such mode exists for either approximate theory. Therefore, when a wave
in this frequency range reaches an edge, mode conversion is unnecessary
to satisfy boundary conditions in the approximate case. It will be possible
using these simpler equations to study the influence of these complex
modes under transient loading.

It is not surprising to find that the biquadratic form of equation 29
describes a spectrum which has these characteristics. This behavior has
been shown to be very much like the second and third symmetric modes of
the Rayleigh-Lamb frequency equation. These lowest three symmetric
modes are approximated by a bicubic equation very closely up to wave
numbers slightly greater than r"* by Mindlin and Medick (21). In this
range the lowest mode is almost linear and in principle can be factored

out of the bicubic to leave a biquadratic to describe the upper two modes.
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This similarity suggests that the influence of Poisson's ratio on the
variable cutoff frequency is equivalent to the effect on this frequency of a
spring coupling between the inner fibers of a plate with the outer fibers
as suggested previously. Since an infinite Ke gives these symmetric
modes for a plate thicknéss 2h an equivalent spring constant, Kp’ which
will correlate the cutoff frequencies of the two spectra is given through

(see equation 14)

where g_is related to K_ and h_ by
P P p

h K
P

2
e pc

The quantity Kp is the equivalent spring constant, and hp is the equivalent

gp=

thickness of the outer plate (or fibers) figure 15a. This comparison has
been made by Boley (6) using a similar model.

The value of hp may be chosen to make the approximate spectrum
match more closely that of the exact plate which is being modeled. For

example, if the slopes of the arms for the two theories are made the same

at " = 0 for the critical Poisson's ratio, v = % , then
2
l6¢
25, o . ork'=12-1,62, b /h=8 VI/vP=1.40
P 172 1r2 P

since dw/wdY¥ = hp/Ze «+... for the approximate theory (from equation 29)
and dw/wd¥ = 2h/11'2 «.... for the exact theory (18). The resulting spectrum
is shown in figure 16.

The similarity of the frequency spectrum described by the symmetric
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Pochhamer frequency equation to the symmetric Rayleigh-Lamb

spectrum suggests a simple model to describe the behavior of a circular
rod in symmetric excitation. Consider a thin cylindrical shell connected
to a rigid center rod by an elastic sublayer. Taking into account the built
in spring character of the thin shell, this system can be further modeled,
approximately, by a plate on an elastic foundation, figure 15b. In order to
establish the equivalent plate parameters and spring constants, reference
is again made to the frequency spectra of the two systems. The symmet-

ric Pochhammer frequency equation is given by (23)

®.)
¥ 0 2 2
pC J—(-—y = 2( r' )CLC

Jolal)
2.% o .

(r2.p2) STy 4l

where 2
2 (M18c 2 2 2 2
%e h( a-) - e Pe —(vlﬂc)- ke
0N =owle,, w, =ve /T, rlc=\‘1'
€ c

and T is the rod radius, and v, = 3.8317 is the first zero of JO(Vl) = 0.

The two cutoff frequencies for the second branch are (23)

£, =1
flm=a 2
& vy
where vy is the first root of
2 Jolv) s
* Wy Jltvzf -

For a plate made of the same material as the rod being modeled, the

adjustment of the cutoff frequencies gives
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vz hz vz h2
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Again matching the slopes at this Poisson's ratio gives

2 h [
ot = 198 _ 4 35 B RAER -9 g
2 s v, Vv
% o 1l 3
3
Zazr
where 2 f& = ——2 for the exact theor y (23) and v Z = azv Z-4a2+4.
w dyY vy V3 3 1

A comparison of these frequency spectra is shown in figure 17,
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II. TRANSIENT RESPONSE OF AN ELASTIC PLATE ON AN ELASTIC
FOUNDATION

A, Approximate Theory (more exact bending theory)

In this section two types of transient problems are considered for
which equations 25a and 25b are applicable. In the first use is made of
the plane strain form of these equations in treating the problem of a plate
resting on an elastic foundation subjected to a line loading, figure 18a. In
the second the related problem of point load excitation is treated using the
cylindrically symmetric forms of equations 25a and 25b, figure 18b. In
each case the loading is a step function in time. The linearity of the
governing equations permits other forcing functions to be considered

through the Duhamel integral.

1. Statement of Problems and Formal Solutions

a. Line Load

For this case the dimensionless transverse loading is given by

Q= g = Qg - (W W) .
e Pc
where
Q (g' 1" = Fg (7") Sp(gh (32)

Ff— {7') being the step function

0 L0
Ff_(T')=
Tty T 2°

ch( ') is the Dirac delta function defined by
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(a) line load

rigid base

(b) point load

Figure 18. Transient loadings considered.
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foo Splghdg! =1

SplEY =0, g'#0

The dimensionless line loading magnitude is given by

where fl is the line loading with dimensions of force per unit length,
%k
The remaining constants have been defined previously. The plate is

assumed to be initially at rest and undisturbed at infinity for all time:

BWS BWb
= = — = ——— = b= :
WS = Wb = 877-:]—' F) T 0 at ’7’ 0 (33)
BWS oW
lim (WS’ Wb, a—g—t 3 a—'g—'—- ’ etC.) =0 (34)

g'—-:too

Substitution of equation 31 into equation 25b and rewriting equation 26a

gives two coupled, nonhomogeneous linsar differential equations, which

in dimensionless form, are

2 2
8°W 9°W
— D W -8 — B0 (35a)
pE* s %
azWs F/ 82
ok € W Ry W R e e B

x
The line load solution is directly applicable to the solution for a beam sub-
jected to a point load if the constants are redefined in accordance with

equation 19 and £
0= ..._._._.h_q__.._ . FE = __‘.Q__
A e cZ . A eoc?
b 2 452

where fb has dimensions of force.,
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Taking the Laplace transform of equations 35a and 35b using the initial

conditions,equation 33 gives

Ao,
d W

>+ 8w, - §%5°W, = o (36a)
4 €'
W, g NW_+ W) = -0, (e 36
dgl?_-(s g W, + W) = -Qy (€', 5) (36b)

where the bar over the variable denotes the Laplace transform, i.e.,

Q0

Wb(g'ns)=j— e-ST' Wbtgr ’T")d'T'
0

Taking now the Fourier transform of equations 36a and 36b subject to the

boundary conditions, equation 34, gives

2= Zre 2 2 .
-pW,+ S ws-é s"W, =0 (37a)
p Rt 2 v -
-p WS -(s" +g )(‘NS + Wb) = -Qlfp, s) (37b)

where the tilde over a variable denotes the Fourier transform, i.e.,

@
= B ip€' =
Wb(p,s) = f e Wb(E',S)d‘g'
-00
Solution of the two algebraic equations 37a and 37b for the double trans-

formed variables gives

pliee] gL(P) s)
Fis :p")
~ - o (p, s)
W oo (lapligl L7 (38b)

° F(s?, p?)
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where
2

2 2 B 21 2 1 2 2 A 2
F(s',p)=s +s[p(1+—-2-)+1+g:|+g +—Ez-(g +p) (39)
- s
This characteristic equation is the same as frequency equation 28 pro-
vided s = -i {1 and p= M', The inversions (formal solutions) of

equations 38a and 38b are

1 e 6 (P: s)dp

1 sT i€'p

w (e', 7' = je ds f e e (40a)
b'S - F(s2, o)

oo 2. 2..2=
' e (371P7 /8 7)Q (p, s)dp
e [T [ BRI

> (40b)
F(S »P)

W, (8T =

471

where Br1 is the well-known Bromwich contour taken to the right of all

=
singularities of W

S~

b and Ws in the s-plane.

Transformation of the particular loading condition 32 gives

_Q-L (p, s) = s

b. Point Load

In this case the transverse loading is assumed to be of the form

Q= = Q (R, -g* (W, +Wy) (41)
epc
where cs (R)
R
1} = 1 D
Q (R, 7" = F_(7r) — (42)

FP(’T') being the step function
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0 ' L0
Fp("r'): |
FpO T >0

Here the Dirac delta function is given by

Q0
1
[ gD(R)dR =5
0

c‘,’D(R) =0, R#0

and R = er/h is the dimensionless radial coordinate in the plane of the

plate. The dimensionless point load is

f

¥ o ouF
pO 2 2
'rr/ac h

where fp has dimensions of force.
The initial and boundary conditions are

BWb . BWS

W= W= = = 0 at T'= 0 (43)
S A !
BWb 8WS
" lim (Wb, WS’ ——BT, ﬁ.— ’ etc.) = 0 (44)
.-—bm

Substituting equation 41 into the cylindrically symmetric forms of

equations 25a and 25b results in two equations analogous to equations

36a and 36b
2
oW a“w
1 3 b 2 2 b _
® 3R (R sR| t 6 W § o (452)
oW 2

1 9 s 2 3 . |
| 3% (R—-BR -g (W _+W,) - —a_’rﬁ'z (W_+W,.) = -Qp(R,'T ) (45b)



B

Again taking the Laplace transform and using equation 43 gives

dw

1 d b 2= 2 B

Tax |(Rar | * S W,m §s"W,=0 (46a)
dwW

1 d s 2. Begms oy L

T ar |Rag | -le+ )W+ W) = -Q (R, s) (46b)

Taking the Hankel transform and using equation 44 gives

—pZWO + gz \_IVO - 5252 WO = (47a)
b s b
20 , 2. 2 ;%0 , =0 _ =0

-p W, -(sT+gT) (W + W)= -Q (p, s) (47b)

where the superscript '"0" denotes the Hankel transform of order zero, i.e.,
Q0
—0 ~ —
0

Equations 47a and 47b may be seen to have the same form as equations

37a and 37b. Hence the formal solutions are

1 T [ Q(p, s)ap
Wb(R., T!) = S f e ds j pJO(pR) ——i—z——z—— (48a)
Br, 3 Fls“yp)
1 Tt ~ 5 g 2 50 (P’ S)dp
W (R, T") =5+ e® ds I pJy(PR){(s"+p 1$°) ——92—2— (48b)
Er, F(s",p)

Transformation of the loading function Qp(’T', R) gives

F
ﬁg(s’ p) = _2_0_

-]
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2. Evaluation of Formal Solutions

Evaluations of the double transforms given by equations 40a, 40b,
48a, and 48b may be carried out by performing the indicated integrations
in either order. ¥ Future reference to the order of inversion will be de-
noted by '""Method 1" for Fourier or Hankel transform inversion carried out
first and '"Method 2" for Laplace transform inversion first. It is con-
venient to express the function F(‘sz, pz) in the following two equivalent

forms:

F(s%, p%) = (s%+s,%) (s%+s,%) (49)
and
o ‘5‘1'2" (pz-plz)(pz-pzz)
where
> 1/2
sj2 = % [p (1+ Z-) + 1+g ] (—)—- [pz(l— —éz)-l+g2:| + 4p2
1/2

J 2
p,z = - %[SZ(H 82)+g2:l + —(-2—1—)—- [sz(l+ éz)+g2] S Sz(g2+sz)(1+sz)

2 2
8 83 82 (p° +1:'01)(p * Poz)

1 2 j 1/2
130j = [f g 1+ (-1) iZO)]

and 1/2

¥ , :
Justification of this inversion in the order of integration results from the
fact that the integrand is continuous in s and p and the individual infinite
integrations converge uniformly for all parameters 7' and g'(24).
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a. Line Load

The particularly simple forms of the integrands of equations 40a
and 40b for the loading assumed yields a closed form result for the first
integration performed.

Method 1

Consider first the inversion of the Fourier transform. Integration
of the transform along the real p-axis can be accomplished using the
Cauchy integral theorem and residue theory. Integration along an infinite
arc in the upper (lower) half of the p-plane vanishes for ¥€! greater than
(less than) zero. This can be shown by applying Jordan's lemma, noting
that for large p the integrand behaves like l/pk where k >0 (24). The

formal solution reduces to

ip,§' ip, €' ‘
pl(pl 'pz)

Nlr—l

2w

T W gL T =
- b'E 72
$°Fy Br, PP, -pp )

2 2,21 ipp®! 2 2, 27 ip¥
s tp, /& | e s"tp, /& |e
_Z_E._ Ws(g's'f') :_é_ f [ 2 ] +[ 1 ]

es'f' ds
2 2 Z 2 Z s
5 FE 0 Brl pz (pz "Pl ) PI(P]_ 'PZ )

-]

(50b)
where the branches Pj in equation 49 are selected according to Im pj >0

for agreement with Re s>>0 on Br It is thus assured that Py and P, in

1.
equations 50a and 50b are in the upper half of the p-plane. Similarly for

§'<0, Im pj £ 0 dictates the selection of the branches of pj on Br., and

1

the solution is seen to be symmetric in §'. The remaining inversion must

be carried out by means of a contour integration in the complex s-plane

due to the multivalued character of P, and Py- The details of this inversion
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are given in Appendix B for the integral of equation 50b. The results
may be applied to equation 50a by simply neglecting the factor due to
(s°

figure 19. The results of the integration for 0 4g2< 1 are as follows:

+pj2/§ 2) in each term. The inversion contour employed is shown in

For 7' < §E!
W lgWT)= W AEW 7 =0

For S§'< 'r'< g'
I

b
2w " .. B
E— WAlsh¥=> +1b1+1b2+1b3+1b6+1b7 (51a)
0
I
s W '7')=i+1 +1 +1 +1 +1 (51b)
’SZFLQ s § ? ] sl 55 S5 S¢ o
For £§<7‘
5
2m
- W ( '.’r')=zl (52a)
2 b'E b.
$°Fy -0 *
5
2T
ot . W (g‘, ¥ = z I (52b)
F] s S.
$"F o =0 *

where the IS are given by
i

2 2 'Pozg'
I = nRe [-POZ/S ]e

S (-ZiZO)PO2




Figure 19. Inversion contour for second integration of Method I
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f

2
1 _jg [-r°+Ph1s°]
3 (-2z2))p),

cos (7’7" +P12‘§') %z—

5y

]e-ing'
. . d
s = ZImj 7_212 2 31n7')' 72_
(ReP2>0)
11 , d
j (ZZ )P cos(77 —Pn‘g )—7—-4Z
By
SI 2] -i(PZ§=+?"r')
j ( ZiZ))F, (ReP, > 0)
0
2 2,2 §F Pyl
+[7 "3 /g]e dy (Re P, > 0)
—(ZZZ)pB 7‘ 3
S P 1
2r 2 . 2 p7T -P3%
I Rej [7 RENL ]e -
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and



s.2
j

=P

2 : Led
Py, = [%- 1+ (-1 iZO)]

1/2
48°
2= |2 -1
g
2 . 1/2
P); = 71 72(1+$2) -5 - () 2
> 1/2
By= (o ?2(1+32) - & 57
5 1/2
Py = % ?2(1+gz) +%—+i22
2 1/2
B 2 e Zig o2 2
iy 5 ‘(7 -5 W7 7+5,7)
2 1/2
g 1-?% ‘('72 +5,%07%-5,%)
. 2 2
1 j S 2 23S
= (-1) lZ -g -
(1- %) g -8

l-gz(l- %)

The Ib 's are equal to the IS 's when the square bracketed terms are set

i
equal to one

i

If a case is treated for 1 £ g2< 1+ S,Z the limits of IS and Is must

be changed such that 1 becomes g and g becomes 1.

1 2

The integrals Is and IS may be written in an equivalent form by

considering

7
the integral
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3 t
2, Zix2. B8 g9
(s tpp /&) e e ds
( 2 2) s
Br, P\P; -P;
over Brz, figure 19, for $E' £ 7'« g'. Noting that the integral along

Br1 has already been shown to be zero, the integrals along Br‘Z may be

combined directly with Isé and 137 to give the same solution as found for
7T'> ¥ '. It follows then that the solution for 7' > ' is also valid

for § €' <« r'. Inspection of these integrals shows that each corresponds
to the contribution of a particular portion of the frequency spectrum,

including the complex and imaginary arms. This will be discussed in

more detail later,

Method 2
Now consider the inversion of the Laplace transform first. In the
s-plane simple poles occur at = isl, + isz and zero. Residue theory, as

in Method 1, gives the first inversion as

oo 2 2 ;
2eWRlE T 4 Ly - &5
7r "z —F g eesel togmpeem AT T2
Zo -® | ) o
(53a)
2..2 2.2 2..2 B 2
ZTTWS(E|,T') 1 - 2 (P /£ "52 )Sl (P /5 ""Sl )52
=i e o coss, T'+ cos s.T!
Zr {2 2 22 2 L2, 2 1
£0 -00 2 1 1 2
i
, T (53b)
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The first term in each of these integrals can be evaluated directly
yielding the static solution. Again restricting interest to the positive
€'-axis, so that the integration around the large arc in the upper half of
the p-plane vanishes, these terms can be evaluated by adding the residues
at 1P01 and 1P02.

form of the solution is

Here the POj are defined by Re POj > 0. The final

-P wg'
ST Wolgh ) = 21Re | Srpep
§F,0 “1%0' 02
> cos sZ‘T' cos s8.T!
+g?j 5 5 > + ) >—|[cOos pE'dp (54a)
8 > (s2 -s; ) s (s1 -5, )
p? /2 Po2%
2t 702
= W _(g', 7') = 27Re <l
. . -2iZ P,
2 2 B
é—z— —5—5 3 CO0s s '7' +_§—ZT cos sl’T‘ cos pE'dp
0 .2(3 5 ) s (8 =837
(54b)

where §'> O0Oand 7'> 0. The leading term in each expression is the

static solution in agreement with those in equations 52a and 52b.

b. Point Load

Method 1

Again a first integration in equations 48a and 48b can be obtained in
closed form. Consider first the Hankel inversion. Writing the Bessel

function in terms of Hankel functions
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23 (pR) = HY) (pR) + HZ) (pR)

equation 48a can be written in the form

. 5T ds j PH( )(pR)dp r PHE)Z)(PR)dP 55)

W, (R,T) = ;B2
B Sk Br F(S s P ) 0 F(SZ’PZ)

Consider the integration of the first term by completing the contour in
the upper half of the p-plane as indicated in figure 20. A branch cut has
been made on the negative real axis due to the logarithmic singularity of

the Hankel function at the origin. Making use of the asymptotic form

Lf2
(1) o |1 i(pR-m/4)
Hy' (pR) (‘ﬁﬁ e

and noting that the order of the integrand is llpk, k >0, for large p,
the integral along the infinite arc can be shown to vanish by applying
Jordan's lemma. Again as in the analogous method for the line load
problem, the branches of Pj are selected according to Im pj >0 on Brl.

The contour integration therefore gives

o gV ,Rr) TIPS
f’L_z 3 d?‘f! o 2“‘1/
Fia"y 21 3 Fis » ")

o G2 |
~E [Hg)(le) -Hgl)(pZR)] (56)
.pz -pl

where the last two terms are the residues at Py and Py- Substituting

equation 56 into equation 55 and using the identity

= -H)(z)

Hg)(zeiﬂ) =
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F-plane

Figure 20. Inversion contour for first integration of Method | applied
to the point load problem.
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yields the solution

(1) (1)
!
WplR T Ho (ppR) Ho iR | o1 as _—
2y 2 (0.2 ) 0202 ¢ 5

p0 Br, | P "Pp

Similarly it can be shown from equation 48b that
2. Zr.2 H) x 2.2 H
wS(R:’Tq) ) _l (S +P2 /é )HO (PZR)+ (S +P1 /S )HO (le) aT? ds
FC (p.2-5 2) 0202 M
pO Br, P2 7P P; “P;
(58)

Method 2

Consider now the inversion of equations 48a and 48b by integrating
out the Laplace variable first., Using the same arguments that led to

equations 53a and 53b it can be shown that

[ 2 2
2W, (R, T) 5 o 5 g s, " pJ,(pR)dp
_:g_z;._._. =? 1+ v — cos 32 + 53" cos s1 s
p0 0 o P | %1 ~%2 "1 %2
(59a)
2W_(R, T") Pl 2 s
__s ' "_2 p_+___1__ ( 2/52-3 2)cos " e ol
e Tz 222 P 2 2
po0 0 &
2
= 2icd 2 pJo(pR)dp
+ > 3 (P /S 'Sl ) cos SI’T' TS—— (Sgb)
Sl —SZ S]. SZ

The first term in each of these integrals can be evaluated in closed form

by following the same integration procedure applied in equation 56. Here
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the residues to be evaluated are at POl and POZ' The final forms of the

solution become

Wb(R,"r') KO(POZR) 1 ® [cos sZ‘T' cos s, 7"
zE——— = ~ERe camr—{ Yo 7 7 Y7 | PRI
$ FpO 0 S s, (s2 -8, ) s (sl -8,
(60a)
2
W_(R,7") [-Pozlgz] K, (Py,R)
e -2Re VAN
$°F 0
pO
@
1 > o cos 8.7T! cos s.7T'
+_zj (0°18°%-2,") ——5—- + 0%18%-0") 57—
IS 5 S5 (52 -8, ) s (31 -8, )
X pJ,(pR)dp (60b)

where Re P02> 0,and KO is the zero order modified Bessel function of
the second kind.

This solution is valid for 7' > 0. The first term in each expression
is the static solution, which could have been found directly from equations

57 and 58 by evaluating the residue at the origin, s = 0.

3. Correspondence Between Line Load and Point Load Solutions

Noting that the particular 62 (p, s) chosen is even in p as is the
function F(sz, pz), the Fourier transform inversion path for the line load
problem may be considered to be the positive real p-axis. This gives,
from equation 40a, the cosine transform solution for this symmetric

loading problem,
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1 s.,.,l (0 0] :g
. ds cos
W, (e,T')= lim s . J’ P_ dap (61)
b'S £ 270 . Fta, o)
Br1

Here the limiting process is introduced with no loss of generality.
Differentiating equation 61 with respect to E', substituting R cosh; for

E ', and integrating with respect to ; from zero to infinity yields

o 1 1 1 Qo
awb(g »T') drn = L B Fro 0 i ds pdp
— g’ el W T s 22,
E—.o B F(S 2 p
g':Rcosh? | &
oo
X % Oj sin(pRcosh ; )d; (62)

where the limit process and the orders of integration have been exchanged
in light of the integrands continuity and the integrals' uniformity of con-
vergence (24). Making use of the Mehler-Sonine form of the Bessel

function (25)

ER I

5

@
j sin(pRcoshp)dp = Jo(pR)
0 Py

where Re pR > 0, equation 62 becomes

P aw, (g, 7" Fy o ST oopJO(pR)dp

f —— = dp = lim |- = j >—— (63)

§ 13 E»0 Br F(s,p)
§‘=RcoshP 1 €

The limit can now be taken, and comparison of equation 63 with equation

48a shows the correspondence between the two solutions:
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lo oW, (g',7")

1 _
Wb(R,'T ) R 3 §' dl;. (64a)
Point load 0 El= Rcosh7
line load
similarly
| ?0 BWS(E's'T") \
W_(R,T') = _zf A dyp (64b)
Point load 0 E'= Rcosh
line load
where Fﬂ 6= FpO and

To- T VT

The upper limit of integration, ?0, results from the condition
Wb(g','r') = Ws(g',"r‘) = 0for A4'4 § E'found in Appendix B, The
choice of the positive sign in the quadratic solution for e 70 is required
by ?O > 0.

This correspondence is indicated by Ewing, Jardetsky, and Press

(26) for the half space, surface point and line load problems.

B. Exact Theory

In this section the line load problem is solved for the case of an
infinite foundation stiffness. This simplification permits a clearer
parallel to be drawn between approximate and exact problems. The
method can be applied to the more difficult boundary value problems,
which include a finite foundation stiffness or point loading, with only the

addition of algebraic obfuscation.,
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1. Statement of Problem and Formal Solution

A transverse line loading is assumed to be of the form

Q:.q;‘;:_:%(g,n,,at S=1 (65)

where

Q,(%5.7)=Fp(7) SplE)

FE (7)) being the step function

0 T<0
¥lo T> 0

and SD( g) is as defined previously in equation 32. The dimensionless
line loading is now
Fp,.-= —f£

Lo~ uh
where fl— is again the line loading per unit length.

The plate is assumed to be initially at rest and undisturbed at

infinity for all time:

§=@=§$=§$=0 at T=0 (66)
lim (&,9P, etc.)=0 (67)
‘g-—»:l:cx)

Subject to these conditions the Liaplace and Fourier transformations of
the governing equations 7a and 7b lead to the following equations:

2 X ot
8° % _ 23

83
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aZWf_ - pr?
&5

HH|?

where

™
"
w
+

©

The solutions of these equations are given by

1l

$ = A cosha'S +A, sinha'§

2
and

~

‘P A3 cosh B'% +A4 sinh B'S

The transformed boundary stresses 10 are

5 ~ 2 F T

- 2, 2 3¢ . a8 ¥

= s 2 ai 82% Z% -0 = @ 1
1 A ey S 5=

~

{A:fz 8§ +ipf

Substituting these expressions into the transformed boundary conditions
11 with Ke = o (or W= 0at § = 0) and using equations 12a and 12b results
in a set of algebraic equations for the Ai' Solving for the Ai gives the

following results:
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A - Lo (8% +p°) tanhp

1
1 G(sz, pZ) cosh a
A2 = A3 = 0
and
e Fl O(Zipa') tanh a'
- 1
4 sG(sz,pz) cosh B
where
2
2
G(s",pz) — (ﬁ'2+p2) sinh B' cosh a' -4p20,'l3' sinh a' cosh B! (68)

As pointed out by Miklowitz (27) in his study on the related symmetric
loading problem, G(sz, pz) is the Rayleigh-Lamb frequency equation for
symmetric waves in a plate of thickness 2h, if the Laplace transform
variable 32 is replaced by - _f')_zrrz. (Refer to equation 13 with Ke = 00.)
This makes the present plate foundation problem equivalent to that of the
symmetric excitation of a plate of thickness 2h, as noted in reference 27.
A generalization of this equivalence is an underlying theme in the present
work, particularly in Part I. The formal solution for the vertical dis-

placement, W, is

F sT o i§p
WEE, T 5) = 2p | S—ds f s
4 (0 0]

where

H(sz,pz, %) =a' [(ﬁ'z‘l—pz) sinh B' sinh o'y -sz sinh a' sinh ﬁ's:[
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2. Evaluation of Formal Solution

The evaluations of the integrals indicated in equation 69 are
accomplished using the same methods applied previously to the approxi-
mate problems with, however, greater algebraic complexity. The
integrations can again be performed in either order with the first through
simple residue theory.

The integrand is even in a' and B' and consequently does not have
branch point character due to these functions even though a' and B' them-
selves are multivalued. Physically this can be interpreted as reflecting

the finiteness of the domain in § as argued in reference 27.

Method 1

For sufficiently large p the integrand behaves like 1/p. Making use
of Method 1, by inverting the Fourier transform first, integration along
an infinite arc in the upper half p-plane vanishes for § > 0. It remains

o
2,p2). For

only to evaluate the residues that arise from the zeros of G(s
i : : 2 2

a given s an infinite set of pnex1sts for which G(s » P, Y0, 8=20, 1,2,¢c.

These zeros correspond to the modes of symmetric wave transmission of

the Rayleigh-Lamb frequency equation provided s = -in{L., Again

Im pn> 0 on Br, is required for £ > 0, and this assures that no zeros

1

fall on the real p-axis., The remaining integration is given by

ipn’g

2 2
2T eST & H(S »Pn 3 F)
W(E,T‘,‘g): = ds E (70)
F s a 2 2
10 Br1 n=0 [55 G(s",p )] ep
n

¢

* 5 . 5 3 2 2
The zero at B'=0 does not give rise to a simple pole, since H(s ,p ) also
has a zero there.
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where the p, are functions of s given by G(sz, pnz) = 10,
To invert the remaining transform consideration must be given to
the singularities of the integrand in equation 70. Consider an inversion

path which completes Br, to the left and follows the imaginary s-axis

1
except for indentations to the right at possible branch points and poles of
the integrand. Existence of poles and branch points in the right half s-
plane is not permitted, since the solution is expected to be bounded in
time. (The branch point s = S2 in the right half of the s-plane found in the
approximate case exists only for times less than the arrival time of the
second wave. For large time and far stations such a branch point can be
shown, through Watson's lemma, to contribute at most a term of order

1 \/_F ; hence stability is assured there (15).)

The determination of possible branch points for the exact problem
unfortunately is not as easy as in the case of the approximate problem
where merely an inspection of the algebraic expressions reveals the
multivalued character. Any branch points must be a result of the par-
ticular function P, since the integrand is still even in a' and B'. Using
the fact that s = -im{) and referring to Appendix A, the only points on the
imaginary s-axis at which branch points occur are where ds/dpn =0, In

the neighborhood of such a point (denoted by the pair 8 4s Pn*) the p, are

given by
PP x ~ [ s-5,

Note that this is in agreement with the results from the approximate theory.

The denominator of the integrand in equation 70 may be written as
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G ; 2 2 _ oG ; 2
[B—P (3 » P )] o zpn[ (S ] ?)] (71)
=n,
When P x is zero the branch character is conveniently removed from the
derivative and is contained only in the leading P,- When P x is not zero
the apparent complication can be handled by considering the two conjugate

complex arms together as demonstrated in the example that follows.

Inversion for Modes n=1and n = 2

The inversion path in figure 19 is used with the exception that the
path around the branch cut on the real axis is replaced by a small in-
dentation at the origin. The cutoff frequencies correspond to s = * iw
and s = £ inmg, and the minimum in the first mode is assumed to be at
§E & iTrSi (Sl not defined the same as for equations 52a and 52b). Subject
to the condition that Im pn> 0 on Br, and referring again to Appendix A
and the computed spectra of figure 12, for example, the P and p, are

easily traced along the paths. Their arguments are indicated in Table I.

Path Arg P; Arg P,
1 0 0
L, 0 5
I"3 0 m
L, 0<arg pl<% 1—21-<a.1'g p, <™
Table I
The argument of the term [g—G- sz, pz)] _ follows directly from
P PEP1s Py

equation 71 for Isl > nSl. For |sl <1rS1
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B i

O

[a% G(sz.p2>] - - [%Ci(sz,pz)]
pP=p ¥ P=P
il 7

where

oG 2 2
—— (s, n) = Re ——Gs s } 0
: [a 7o ] 2 [ 8(p°) e ] 4

n=p, P=P,

Analytic continuation to the upper half s-plane gives the result that
integrations, along paths corresponding to those in the lower half plane,
contribute the complex conjugates of the integrations from the lower half
plane. It is therefore only necessary to consider integral contributions
in the lower half plane taking twice the real part of each integral. The

following set of integrals result for the vertical displacement W:

=27
w ) = I. (72)
WIS TS E:
ip.§
e ! 1HU%IHZ.§)
IO = 7 Im (Im p1>0)
pla? (0, » w
- P’
® H(‘ 'Z:P 2: g) 1
I1 = ? 2 , cos(ng- ?'T ) d?Zr (pz real and > 0)
T P2 5% 37 (-7 v )|
7=p,"
m ing

H(-n'%,p,%, 5 )e

s dp' = :
I =- ']’ Te3 > sin 7'7’ —72,- (p2 imaginary)
(-ipy) 5 (-p'", h)
g 2°9 ? ? ? > Imp, >0
- Pe

The wavy line denotes the complex conjugate.
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Trg H(— lz! 2! S) 1
I, = - 7 i cos(-p,§+ »'T) 227
3 (-py) g (- )l 4
7 pZ (p2 real and <0)

1 > 2 ipS
H(' : ’P » )e 1
I = Zlmj BG’] z L 3 — sin7‘7"§?2,— (Impl> 0)
0 Pléj(? ') 5
=

0 o]

2 2
H(' ',P ’ )
B, = j 7 1 >

-cos(plg-?'/“')% (pl real and > 0)
'rrSl

pe P]L
i : - : 4 - 2 2
where n'isa dummy variable. This solution is valid for [/ g +(5-1) Da
: 2 2

which corresponds to t/ \/x +(z-h) >1/cd

The results indicated in equation 72 may be compared integral by
integral with the results of the approximate theory presented in equations
52a and 52b. These integrals in turn establish a direct relationship of the
various portions of the exact frequency spectrum to their contribution to
the transient response. The term IO is only the partial static deflection.
The total static deflection as well as the entire transient response must
include the contributions from the remaining modes.

The example considered here has demonstrated the similarity in the
exact and approximate theories, and a related method of solving transient
wave propagation problems. A similar approach can be applied to other

modes provided complex arms are taken in conjugate complex pairs,



s

Method 2

Since the integrand of equation 69 is of order llsk, k >0, inte-
gration along an infinite arc to the left of Br1 in the s-plane will vanish.
The integral along Br, is simply equal to the sum of the residues of the
integrand at simple poles corresponding to the zeros of G(sz, pz) and a
zero at the origin. Since pis real (imposed by the Fourier transform path
of integration), these zeros of G(sz, pz) are the roots of the Rayleigh-Lamb
frequency equation where s =% iﬂnri’ and they fall on the imaginary

s-axis. Evaluation of the residues gives

, 0 2 2
H(? s P ’S.)
2
le(g T 'S)—chos‘gpdp 8(87 )G(
— s P
0 a(» ) / 72=o
= H(-nznz,pz 5)
Z 2 2T cos (xL_T) (73)
n=0 nB ’
p=-Qpm

Here it has been noted that in the neighborhood of s = 0 the quantities
H(sz, pz, %) and G(sz, pz) are proportional to sz. Again the denominator
is studied for possible branch points in the ‘n'n' Using arguments similar
to those of Skalak (28), that there are no points of infinite slope dﬂn/dp: G0,
it can be shown that no branch points fall on the real p-axis. This is
discussed in greater detail later drawing on the results of Appendix A.

The first term in the integral of equation 73 is the static solution,and
the terms of the series represent traveling wave contributions from the

various modes of wave transmission described by the Rayleigh-Lamb
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frequency equation. In his work on the symmetric loading problem related
to equation 73, Miklowitz (27) evaluated the lowest mode waves for the far

field with the method of stationary phase.

C. Discussion of Methods and Their Relation to Certain Wave Features
The relatively simple algebraic properties of the approximate
theories permits a significant degree of flexibility for computation and
approximation. The interpretation of the results may be applied to the
exact problem. It is seen by examining the forms of the transient
solutions that the similarity in the frequency spectra is reflected in the
transient response. The important feature here is not necessarily the
numerical values but.rather the behavior of the response resulting from
the various arms that make up the frequency spectrum. For this purpose
the results from the approximate theory demonstrate clearly the influence
and behavior of the complex and imaginary arms, as well as the real arms.
A direct correlation exists between the integral solutions presented in the
previous sections in Part II and the frequency spectra presented in Part I.
Each of the integrals of equations 52a, 52b, 54a, 54b, 57, 58, 60a, 60b,
72, and 73 can be seen to correspond directly to the contributions from
one of the arms of the frequency spectrum. In each case the pn(s), where
s is proportional to -i{L , is the functional dependence of wave number on
frequency which described such an arm. For example, compare equation

49 with equation 28,

1. Comparison of Methods 1 and 2

Two distinct forms of solution result depending on the order of

inversion of the double transform. Method 1, which inverts the Fourier
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transform in the spacial variable first, has been used by Folk, Fox,
Shook, and Curtis (29) and Jones (30), for example, in problems in-
volving solutions based on the exact linear elasticity theory. In these
references the second inversion was approximated by the methods of
stationary phase and saddle point integration. Detailed branch point
study was not employed, since the lowest symmetric mode does not have
a branch point and the higher modes were not investigated in the vicinity
of their branch points. The relative simplicity of the lower order approxi-
mate theories of the Timoshenko beam type has permitted more detailed
study of this method by other authors. For examples, see Miklowitz
(14, 22) and Boley and Chao (31). In the approximate theories the principle
advantage arising from this order of inversion has been the analytic
separation of the solution into time regions delineated by the arrival of
two distinct waves. Method 2, which inverts the Laplace transform in
the time variable first, has been used by Skalak (28) and Miklowitz (27),
for example, in problems using the exact linear elasticity theory. Again
the details of the second inversion were not considered, and the use of
the approximations was made as in the former case. This method has
been applied by Jones (16) and Boley (32, 6) for the Timoshenko beam
theory. The main benefit in applying this order of inversion lies in the
simplification of the details required to reduce the solution to real integrals.
For the sake of discussion compare the forms of equations 5Z2a with
54a. In the former case where Method 1 has been used the correspondence
between the integrals and the frequency spectrum is through the condition
that the frequency is real. This results in integrals which have complex,

imaginary, or real wave numbers, pJ., which may be identified with the
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corresponding branches of the spectra shown, for example, in figure 9.
Where Method 2 has been used, equation 54a, the resulting integrals
contain only real wave numbers (as a function of real frequency) in
agreement with the undeformed Fourier inversion path. All branch points
of the integrals in equation 54a fall above or below the integration path
but not on it. This result may be interpreted in terms of the conformal
mapping properties between the wave number and frequency planes
discussed in Appendix A. Subject to the condition that along real arms

of the frequency spectrum there are no points where d" /d(l= 0, following
the procedures of Appendix A shows that no branching points can be found
which result in complex frequencies. Points where d()/dM= (%—%_ = 0)
correspond to waves which travel at an infinite group velocity and are
physically unacceptable in a hyperbolic system of governing equations.
Such points do not occur in either the approximate or the exact frequency
spectra, where the steepest slope, dQ/dl, corresponds to waves

traveling at the plate speed, cp, and the dilatation speed, respectively.

cq
Though the solutions of both methods necessarily result in the same
ultimate response, the interpretation of the individual integrals in each
must be considered independently, To illustrate this, the integrals of
Method 1 which are related to the real arms of the frequency spectrum, Il’
13 and 15, have stationary phase points corresponding to waves traveling
away from the source in agreement with the infinity condition. Only the

integral 13 has negative phase velocities in agreement with the computed

spectrum for real frequencies. In terms of the frequency spectrum the
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infinity condition is contained in Im pn> 0 which is the same as
Im pn> 0 on Br1 and Brz, figure 19.

The integrals resulting from the use of Method 2 can be each re-

written using the trigonometric identity

cos p_ 'g’cos o =% cos(pn'g ok s ) % cos(png '-sT")
Thus the integrals from Method 2 can be separated into two types of
integrals: the first with positive traveling wave groups (away from the
source) and the second with negative traveling groups (toward the source).
This may be interpreted to mean that two groups of waves traveling in
opposite directions and infinite in extent are superimposed to give the
transient response. These waves necessarily cancel for stations which
the front of the transient wave has not yet reached. Only the outward
traveling waves have points of stationary phase and offer the principle
contribution to the result for the far field. The negative traveling waves
give rise to integrals governed by the Riemann-Lebesgue lemma (33)
which decay as (1/7'), whereas the stationary phase integrals (33) are
of the order (1//77).

It can be shown by a change of integration parameters, without
resorting to algebraic computation, that the integrals of the outward
traveling waves for both Methods 1 and 2 are equivalent. This means that
integrals of negative traveling waves from Method 2 are equivalent to the
contributions from the integrals of Method 1 which correspond to the
complex and imaginary arms of the frequency spectrum. Integrals
governed by the Riemann-Lebesgue lemma, which do not have points of

stationary phase but arise in wave propagation problems, have been
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discussed by Havelock (34) and termed'nonwave. Their function in the
solution is to satisfy boundary and initial conditions. Consider as an
example the integrand of one of the negative traveling wave integrals
from Method 2 for fixed time, 7', and positive station, 13 '. A point of
stationary phase does not exist. However, if the integrand is plotted for
negative values of the variable of integration, the wave number p, then
such a critical point does exist as sketched in figure 21. This means that
the integration which involves only the positive p-axis is an integration
over the canceling portion of a stationary phase integral. The more
negative this stationary phase point is, the less is the contribution from
the oscillatory integrand in the positive region. The position of this
stationary phase point corresponds directly to the stationary phase point
for its positive traveling wave counterpart, but it is negative. Therefore
in the case of the approximate theory, where the head of the wave is at
large wave numbers, the contribution from such a negative traveling wave
will be small in the vicinity of the wave front. For a fixed time this con-
tribution is larger for stations closer to the origin. This result agrees
with the integral forms of Is and Is of equation 52a, which have negative

2 4
real exponents proportional to g'.

2, Extensions of Method 1 and Approximations

a. Wave Front Approximations

Working directly with equations 50a and 50b after the inversion of the
Fourier transform, it is possible to make a wave front expansion which
will serve as a check on the results from numerical integration. This is

made possible using Method 1 since the wave front is clearly defined
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through the fact that the Bromwich contour, Brl, lies to the right of all
singularities. Since Br1 lies at an arbitrary positive distance from the
imaginary axis, this distance may be made large and the integrand
approximated for large (s| accordingly. Termwise integration of the
resulting Gamma function integrals gives the wave front expansion good
for small times after the wave front arrival. Expansions for equations
50a and 50b, where the first three terms in the expansion have been in-

cluded, are at the first wave front, ' > £ § ',
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Here the expansions at the second wave front are due to the second terms
in the integrands of equations 50a and 50b. The results of this expansion
show the continuity of the displacement at the wave front arrivals., At the
arrival of the second wave the shear displacement has a discontinuous
slope which indicates a jump in shear stress. This result is in agreement
with and due to the shear nature of the source loading function. Notice
that the derivative of this term at the shear wave front does indeed result
in a jump in dimensionless load of Q = _Fl 0/2 in agreement with the

input function.

b. Stationary Phase Approximations

Integrals Isl, ISZ and ISS, equation 52b, are of the stationary phase
type. Through the use of the stationary phase method, but subject to its
limitations, evaluation of these integrals is simplified considerably.
Unfortunately in the present work the limitations are rather severe. A
criterion for estimating the range of parameters over which the stationary
phase approximation of an integral is valid is developed in Appendix C.

It is based on the higher order derivatives involved with the approximation
of the integrand and the truncation of integration due to its limits. Specific
numerical examples related to the problems studied numerically later

are considered in Appendix C. The results indicate that the applicability
of this form of approximation is limited to extremely far fields. Several
detrimental features of the integrals in the present work influence this
difficultys

1. The close proximity of the stationary phase point to the integral

limit does not permit the highly oscillatory nature of the integrand to take
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place before the limit is reached. As a result the stationary phase
approximation includes contributions that should not be incorporated.
This close proximity may be seen easily in terms of the frequency
spectrum when €'/7' is small. The points of stationary phase are
defined by the points on the real arms where the slope is equal to §'/ 7",
i.e., da/drM'= €'/ 7' (the group velocity). Since the real branches
have zero slope at the cutoff frequencies and the minimum at _(]_*, the
points of stationary phase approach these three frequencies for small
$'/7T' (the tail of the wave). These frequencies are in turn the limits

of the integrals.

2. The integrals ISI, ISZ, and 155 are improper at their finite
limits. Consequently when the stationary phase points are near these
limits the coefficient of the exponential term is no longer slowly varying.

3. The third derivative of the phase and the first derivative of the
amplitude function are not negligible compared to the lower derivatives.

In each case if the field of interest is chosen far enough from the

source,the error in the stationary phase method of approximation can be

made negligible,

c. Alternate Path of Integration

The path of integration along the imaginary axis of the Laplace
transform plane haé been taken to illustrate the influence of the various
portions of the frequency spectrum. These integrals are not easily
integrated numerically as a result of the oscillatory. nature of their
integrands. This difficulty becomes worse for long time evaluation due

to the increased frequency of this oscillation.
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The original path of integration can be deformed as indicated in
figure 22, The resulting infinite real integrals may still be related to
the various integrals of equations 52a and 52b by using the Cauchy integral
theorem. This correspondence is indicated in figure 22 where the inte-
gration paths are labeled as in figure 19. A quarter residue is included
in path Ll'

This path deformation is prompted by the advantage of exponentially
decaying integrands. For long time this decay causes the greatest con-
tributions to occur in the neighborhood of the branch points, in agreement
with the discussion of the stationary phase method of approximation. One
would expect this also on the basis of Watson's lemma (24), which may
be applied to integrals arising from paths such as those in figul"e 22,

Again only the lower half plane is considered, and along a given
path the net contribution is twice the real part. The multivalued character
of pj and its inner root require the branch cuts shown in figure 22, If the
two terms of equations 50a and 50b are taken together, the zeros of the
inner root that fall on the real axis are not branch points of the composite
integrand. Using the results of Appendix B, where analytic continuation
was used to establish the branches of pj and its inner root, Z, on the
imaginary s-axis, the arguments of these functions have been established
on the new paths. These results are indicated in figure 22. (Note that the
points s = -i and s = -ig are not branch points of Pl') The corresponding
integrals may be evaluated numerically with the aid of complex arithmetic.
The merits of this direct method of integration are somewhat offset by the

greater numerical effort required to evaluate each integrand. Though
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integration along the imaginary axis may require a finer mesh to maintain
accuracy, the integrand involves considerably less computation time. For
long time, however, the direct method becomes superior because of the
aforementioned difficulty of an oscillatory integrand along the imaginary
axis.
As pointed out earlier for very long time the integrals along the
paths of figure 22 are of the type amenable to approximation using Watson's
lemma. This method is applied by expanding the integrand in the neighbor-
hood of the branch point retaining the exponential term. Term by term
integration leads to an asymptotic expansion valid for long time.
Unfortunately the limitations of this method, as in the case of
stationary phase, relegate its possible use in the present work to times
greater than the range of interest. The cause of this difficulty is the
close proximity of the branch points, whichgives rise to severe restrictions
on the necessary expansions. For example, a crude estimate of the range
of validity can be made by expanding the pj in the neighborhood of a branch
point of their inner root, s = -iSl. The result is

1/2

o o :
p.=(2 [slz(u SZ)-gz] Senf LR \/;sl(slz+szz)\/? +0(”)

J

2 * 2 *
where s = —iSl—P. For the case of &“ = .28375 and g~ = .9079 this

expansion is numerically

‘ 1/2
p; == |.071 - (-1 .55+/p" +O(h)

In order to expand further, 7 must satisfy the inequaltiy

h <. 0166

3
These values of 82 and g2 relate to one of the numerical examples
studied in detail later.
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This rather small value of 7 is what causes difficulty and results from
the close proximity of the zero of the inner root to the zero of the pj.
Consider now an exponential integral of the Watson's lemma form

a0

I= j f(f)e'ﬁ' dy

0
where f(? ) is slowly varying. If f( 7 ) is assumed constant, say unity,
the error introduced by truncating this integral at 7 = ?0 is given by
_707—|
Error = e
Since the necessary expansion cannot be carried out beyond P = 0160,

the truncation error will be approximately given by

-. 0166 7!

Error =~e
For an error of 10% this would require ~-' == 140 (t =260 CL )s
This estimate is very crude but shows how the nearness of the zeros
of the P; to the zeros of its inner root causéa simple expansion to be
impossible for an adequate range of integration for exponential decay to
take place. For times sufficiently large, however, this method may be

applied.

D. Discussion of Results from Numerical Computation

The transient response of a plate on an elastic foundation has been

computed using the integrals IS and Ib of equations 52a and 52b for the
i i



.

more exact theory of bending. )

The value ,SZ = .28375 has been assumed. This corresponds to
k! = n2/12 and v = .31 and in turn causes the cutoff frequency, which is
independent of the foundation stiffness, to be equal to the cutoff frequency
of the third symmetric mode of an exact plate of thickness 2h with
Poisson's ratio v = ,3l. Two values of g2 have been used; g2 = .9079 and
g‘2 = .04, representing a stiff and soft foundation, respectively. The
former value makes the cutoff frequency at )= g equal to the correspond-
ing cutoff frequency of the symmetric mode for the exact plate of thickness
2h and Poisson's ratio v = ,31; the latter value has been arbitrarily
selected to study the influence of the foundation stiffness.

For reference the frequency spectra for these two foundation stiff-
nesses are shown in figures 23a and 23b. The corresponding frequency
spectra from the exact theory (equation 13) are also shown in these figures
for spring constants adjusted by equation 23. In figure 23a the exact
spectrum is for an infinite foundation stiffness in agreement with the

choice of gz.

All numerical evaluation of integrals was carried out on an IBM 703
electronic computer using a nine point Gaussian quadrature (35). Each
interval step was compared with the results from an eight point integration
over the same interval. This permitted an estimate of the error, which
was maintained between 10-4 and 10-© by adjusting the interval. Infinite
integrals were truncated when the contribution over a specified interval
(at least one wavelength for oscillating integrands) was 10-% that of the
previous integrations of that same integral.

In order to facilitate numerical evaluation, improper integrals were
mades regular in the neighborhood of their improper limit by a change of
variables (32).

The numerical results were checked in the neighborhood of the wave
fronts and found to agree with the wave front expansions within the

specified error of 104,
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Figure 23a. Frequency snectrum for a zard foundation.
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The transient solution is presented in two different ways:

1. The response is computed for a fixed station with time as the
variable, as would be recorded from a strain gage, for example. It is
possible, making use of stationary phase arguments, to predict the
predominant period character of such a time record from th= frequency
spectrum. The greatest contribution at any station x and time t will be
from wave groups having a group velocity cg = x/t. These waves are
characterized by their frequency (or predominant period), which on a
time recording may be determined from the observed period of oscillation
where such a recording has harmonic character., Noting that the group
velocity is given by dw/d X for real arms of the spectrum, the pre-
dominant period can be related to the time of occurrence. These relations
are shown in figures 24a and 24b and are derived from the spectra of

figures 23a and 23b, respectively.

5 . _ P _ _-n- 1
Predominant period T_ = % et a
tcP 1
Time of occurrence Ta = = = - S a0

The correspondence between the pairs of curves for the exact theory
is indicated by the encircled numbers. To illustrate this relation consider
the points @, @ and . In figure 23a the slopes of the associated
modes are the high frequency limiting group velocities at these points.
Figure 24a shows these speeds to be the Rayleigh surface wave speed CRr

for @ and the shear speed G, for @ and . The cutoff frequencies,

@ and @ , and the minimum of the second mode, @ ; are points of
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zero slope for their modes, figure 23a, and correspond to a vanishing
group velocity. Their influence is felt at infinite time as indicated in
figure 24a. The point @ in figure 23a is not a cutoff frequency but is
the low frequency limit of the lowest mode, which has its maximum slope
there. Though this limit cannot be shown in figure 24a, the limiting
speed is the plate speed, cp. The remaining points shown indicate in-
flection points in figure 23a and reflect points of higher order stationary
phase., These points appear as extrema in figure 24a.

2, The response is computed at a fixed time with the station as the
variable. Such a record of displacements would be observed in a photo-
graph. Again using the arguments of stationary phase, it is possible to
relate the observed predominant wave length to the station at which it
occurs. These relations are depicted in figures 25a and 25b and corre-

spond to figures 23a and 23b, respectively.

/\_ZTT_Z'IT

Predominant wave length - \?1_—1 = é——r-T,

Station of occurrence X =c0—= egd_f_)'
a tcp dX

The related points of the exact theory are again indicated. Further

reference to these two sets of curves will be made in later discussion.
The response records from numerical computation are shown in

figures 26a, b through 46a,b. ¥ The times have been normalized such that

s tcp/h = T'/e&, and the stations are given by E° = x/h = E'/e.

» . :

The origin of time in these records corresponds to the time of arrival of
the fastest waves represented in the more exact theory of bending (speed
e.)s

P
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Figure 25a. Predominant wave-length station-of-occurence for hard
foundation.
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(a) hard foundation (gz = ,9079)

(b) soft foundation (gz = .04)

Figure 42. Bending deflection station response.
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(b) soft foundation (gz = ,04)

Figure 43. Shear deflection time response.
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(a) hard foundation (gZ = .9079)

(b) soft foundation (g2 = . 04)

Figure 44. Shear deflection station response.
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Total deflection

(g% = .9079).

station

resnonse for hard foundation
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Figure 46b.

Total deflection station response for soft foundation

(g

2

= . 04).
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All deflections are normalized by the total static deflection, w = w_+w

0 s b’
at the source, § © =0, For the two values of foundation hardness con-

sidered, this deflection is given by

$F
—__@_h(l +L )
™ S0 0
From equations 52a and 52b
f
2
g = .9079, Wo = .5169%
, f£ for a plate
g = 304, Wo = 3.348-1—3—

The presentation and discussion proceeds first with the individual

integral contributions to the total deflection, W = W + w,, and in some

b

cases w_ separately. Then the sum of these integrals is considered for

W , and w

wb Tl
Higher Real Arm (Irxtegr:als;_lb and I_)
1 1
Figure 26a shows a time record response for the total deflection,

W ops computed from integrals Ib and IS for gZ = .9079. The dispersive
1 1
nature of the response is reflected in the variation in the predominant

period with time. Near the wave front the predominant period is small

and increases with time until a definite limit is reached. By measuring

oo

the predominant period at its time of occurrence on this record, " the

Near the wave front of this record (and others) the predominant period
has been estimated >y considering quarter waves (peak to zero) and
calling the mid-point of such a quarter wave the time of the related full
wave occurrence. For later times, when the frequency approaches its
cutoff value and the predominant period is relatively constant, it has been
measured over several wavelengths. Except in the neighborhood of wave
fronts the points for all curves were computed at an interval AT® = .5,
which in the case of figure 26a corresponds to approximately eight points

per wave length, This accounts for some inaccuracy in measurements from
these curves and results in point scattering.
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behavior can be compared with that predicted by the stationary phase
analysis shown in figure 24a.

Figure 26a shows that the total deflection, after reaching a fairly
early occurring maximum, decays quite rapidly. It may also be noted that
the entire curve is severely influenced by the long time predominant
period corresponding to the cutoff frequency ()L =1 as figure 24a also
shows. Miklowitz (36, 37) noted the same behavior in his study of waves in
an elastic rod in which an approximate theory similar to the present
governed. It is of interest to analyze this behavior further. Considering
the results from integral Isl alone, figure 27a, it is seen that the shear
deflection, W does not decay as rapidly. Further, it can be deduced
that w, is approximately equal to = for long time. This resultis

b

obvious from the inspection of the bracketed term
2 Z 2
[s +p, /1§ ] (74)

of equation 50b, which distinguishes the integral solutions for Wy and W
For long times the wave number P, approaches zero and 52 = -1. The
elemental motion of the plate for this mode for long time appears to be
independent of the normal forces and results in an internal energy transfer
between the potential energy of distortion and the kinetic energy of rotation.
This can be shown more easily by considering the comparison of the
translational and rotational kinetic energy maxima in the vicinity of the
cutoff frequency. For a plate element of length Ax and unit depth these

energies are

K.E.

1[enax||® ¥
Z Y 12

rotational
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2
A d
e B, =z {phax) | 5¢ bty

translational

Assuming w_ = nw = Ael(YX—wt) for the long time response, the ratio of

these energies is

K.E,

rotational . =

R
(1+n)2

(75)

E ~ K.E.
| translational

where n= 02 + P'ZISZ and F"Z = Y2h2/12 at the points @, @, and
@ of figures 23a, b through 25a,b. Near the cutoff frequency () =1,
n approaches -1 and M ' approaches zero. Noting that the derivative
dQ/dM' = 0 for this mode at ) = 1, the 1'Hospital limit of equation 75
gives this ratio to be infinity. This implies that for this upper mode the
governing equations 25a and 25b are uncoupled for long time and all the
energy is in the form of rotation and distortion. As time approaches
infinity this energy approaches zero, and the deflections W and Wy
approach zero as 1/ ‘\/?? in accordance with the stationary phase
approximation.

Figure 26b shows the total deflection for the softer foundation
g2 = ,04. As before the predominant period, time of occurrence analysis
is shown, figure 24b. Again the total deflection decays rapidly near the
cutoff frequency, and figure 27b indicates the same rotation-distortion
coupling and its predominance. One important distinction is the relative
amplitude of the deflections. For the softer foundation the normalized

deflections for this mode are considerably less. This reflects a smaller

plate distortional energy relative to other energy forms associated with
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modes such as found in the total deflection, spring foundation coupling
(translational energy).

Figures 28a and 28b show the plate deflection for two different times
as a function of position for gz = .9079 and g2 = .04, respectively. In a
manner similar to that applied to the predominant-period, time-of-
occurrence curves, the wave lengths have been measured and their
stations noted. The results are shown in figures 25a and 25b. The
response is characterized by infinitely short waves at the wave front and
infinitely long waves at the loading station, §° = 0.
Lower Real Arm, | X| >|X*|, (Integrals Ibs and 135)

The total deflection as a function of time for g2 = .,9079 is shown in

figure 29a and is computed from the integrals Ib5 and ISS. Reference to
figure 24a shows that no stationary phase points exist for this mode of
transmission for g°4 ¥ '§°/§ , which describes the time range
x/cp(t <x/c.* The record of figure 29a shows that in this time range
the response is a low amplitude, long period wave. At the time of the
shear speed arrival the integrals have a point of stationary phase. The
abrupt change in slope in the deflection reflects a jump in shear force,
conforming with the results from the wave front expansion. The remaining
time response indicates that an infinitely short wave at TC = EO/S

becomes progressively a long wave at long time corresponding to the cutoff

frequency at () = _O_*. This demonstrates the dispersive nature of this

For the softer foundation, figure 24b, a point of higher order stationary
phase is seen to exist prior to the arrival of the shear wave front for
this mode.
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mode. In the time range where the integrals have points of stationary
phase the predominant periods and wave lengths have been measured and
are indicated in figures 24a and 25a. Similar results are indicated in
figures 24b and 25b for the softer foundation response shown in figure 29b.
For long times the wave number and frequency of this mode approach

X4 and ) ., respectively. The energy ratio given by equation 75 becomes

X*2
Rg = (76)
B i X;ZIJ 2-_()_*2
For g = .9079 \
2
Xy = .0694
%= .816
<. RE:.162 and ws/wb:-.S'iO >
(77)
2
Forg = .04
2
X, = .00560
2
N, =.0398
< Rpo= . 00572 and wslwb = sy Q2

The value of RE shows the relative importance of the two governing
equations for this mode at long time. For the softer foundation the
greatest energy carried by the plate in the lowest mode is translational.
Furiher, for the softer foundation the shear deflection is small and the

relatively long waves at long time cause the shear force to be negligible,

even though the loading force was shear in nature. The governing
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equations for the plate on a soft foundation become uncoupled at long

time for this mode, the primary energy transfer being between the
kinetic energy of the bending deflection and the potential energy contained
in the deflected foundation.

Comparison of figures 29a to 30a and 29b to 30b implicitly indicates
the relative magnitudes of the bending deflection and shear deflection for
the two foundation stiffnesses. These figures also show that just after the
shear wave front these deflections, L and W, are of comparable magni-
tude., This indicates the significant coupling of the governing equations at
the shear wave front and the shear nature of the forcing function.

Figures 3la and 3lb for the two foundations show the total plate de-
flection as a function of position for two times. The jump in the shear
stress at the wave front is indicated by the discontinuous slopes there.
For the softer foundation the discontinuous slope is almost obscured by
the steep slope of the deflection before the wave front. This is also true
for the time record in figure 29b, indicating that shear stresses result
from coupling with the bending deflection before the arrival of the shear
wave. (The effect will be demonstrated more clearly in figure 44b where
the shear deflection from all of the spectrum arms is shown.)

Lower Real Arm, |X| < lX*] , (Integrals Ib and Is )
3 3

Figure 32a shows the total deflection time response for the foundation

stiffness g2 = .9079 computed from Ib and Is . These integrals do not

3 3
have points of stationary phase until T°/ §° = 6, figure 24a. Then there
is a second order stationary phase point which results in an Airy phase

and accounts for the slight steady increase in the deflection amplitude
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before this critical point. The Airy phase behavior would be more
clearly defined for the far field, since for values of T°/E° < 6 the
integral is of the Fourier type governed by the Riemann-Lebesgue lemma
for improper integrals and therefore decays as 1/ 7°. For 7T°/ §'° >6
the integral has two points of stationary phase, figure 24a, and therefore
decays as 1/'\/??. For the softer foundation the higher order stationary
phase point occurs at such long time that this mode is not shown in scale
in figure 24b, and its influence is not apparent in figure 32b.

The amplitude of the response from this arm at long time is
comparable to that from the other lower real arm as can be seen by
comparing figures 29a to 32a and 29b to 32b. Long time analysis for
these two arms leads to a similar partition of energy between the governing
equations at the frequency ()= _('L*. At the cutoff frequency () = g, how-
ever, the rotational energy is zero, since the wave number X is zero
there. This result is independent of the foundation stiffness. The relative
magnitudes of the bending and shear deflections at this cutoff frequency are
given by ws/wb = -g2 from the expression 74, The prominant role of
bending for the softer foundations is thereby demonstrated for long time
at this frequency as well as at ﬂ*.

Figures 33a and 33b reflect the long wave nature of this mode.
Figure 33a in particular shows the aforementioned behavior at the higher

order stationary phase point, namely that the amplitude response is largest

for §o< Ter6,
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Imaginary Arm (Integrals I. and I )
L g
The response computed for the imaginary arm is oscillatory in

time and involves infinitely long waves that decay spacially. The integrals
Ibz and ISZ do not have points of stationary phase. The results from their
evaluation, therefore, cannot be compared with figures 24a, b or 25a, b.

Figures 34a and 34b show the time record of the total deflection
for the two foundation stiffnesses considered. In each case the average
period corresponds to the lower cutoff frequency {21 = g. This follows
from the fact that the contributions from regions outside the neighborhood
of the cutoff frequencies have spacially decayed (wave number being
imaginary), and the fact that the bending and shear deflections cancel at
the higher cutoff frequency. This latter fact is clearly demonstrated in
figure 35, where just the shear deflection is shown for the soft foundation.
Here two sinusoidal waves are superimposed which have periods corres-
ponding to the two cutoff frequencies, Q& = g and L =1, (Note that in
figure 34b the latter higher frequency is not present.) The reason the
shear deflection demonstrates this clearly is because its amplitude is
small near the lower cutoff frequency and is therefore comparable in
magnitude to the contribution near the higher cutoff frequency.

Figures 36a and 36b show the spacial decay and the absence of the
oscillatory behavior indicative of real wave numbers greater than zero.

For long times these integrals, Ibz and ISZ, decay as l/’i"0 accord-
ing to the Riemann-Lebesgue lemma for improper Fourier integrals. By

considering the amplitude of the response corresponding to the imaginary

and complex arms, it is possible to estimate the error introduced by
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approximating the net response, including all the arms, with only the
stationary phase method applied to the positive traveling waves. For
example, the maximum total deflection amplitude at T °%=401is .20 for
the positive traveling wave corresponding to the lowest mode for the soft
foundation, figure 29b. The corresponding contribution from the imaginary
arm is approximately .06, figure 34b. By neglecting this contribution
(considering only positive traveling groups) an error of approximately
30% could be introduced, On the basis of the amplitudes at 7 ° = 40 and
the decay rates of integrals having points stationary phase (llﬂ'_ol) and
integrals governed by the Riemann-Lebasgue lemma (1/ 7’0) the relative
importance will be 10% when 7T %= 360. The result indicated here
demonstrates a further shortcoming of the stationary phase method when
applied to the type of transient problems considered in this study without
regard to negative traveling waves.
Complex Arm (Integrals Ib4 and 134)

Integrals Ib and I do not have stationary phase points, and like

4 %4
the imaginary arm their contributions cannot be indicated in figures 24a,

24b, 25a and 25b. The time response of the total deflection is shown in
figures 37a and 37b for the two foundation stiffnesses. The period of
oscillation in both cases corresponds to the frequency _Q.*. This is again
due to the spacial decay at frequencies outside the neighborhood of _ﬂ.*,
and can be seen more vividly in figures 38a and 38b. These figures show
the plate deflection for fixed times. Here the long time limit of a half
static deflection is demonstrated. This is evidenced by comparing the

equivalent paths of integration that compose L, in figures 19 and 22. The

4
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spacial variation indicated in figures 38a and 38b also reflect a moderat;a-
ly damped (spacially) oscillatory motion about the static solution with a
wave length corresponding to the wave number X,. The important feature
here is the absence of a propagation speed and the appearance of nodal
planes. (In figure 38b the first nodal plane is not as well defined as in
figure 38a.)

The amplitude computed for this arm is considerably less than that
from the lower real arms at {1, (for example, compare figures 37a and
37b with 29a and 29b) though it does not appear to be bounded by a steep
exponential envelope as is evidenced in figures 38a and 38b. When the
integral is written along its equivalent path in figure 22 the time dependent
integral is governed by Watson's lemma and decays as 1/7° for large time.

For comparison the integral for the exact theory, I, of equation 72,

4
was computed* for this arm at the surface of the plate § = 1. As in the
approximate theory case, the predominant period indicates the primary
influence in the neighborhood of _O.* =~ .88, The previously observed
edgemode resonant frequency observed by Shaw (20) and computed by
Gazis and Mindlin (19) ({L ==, 65 for v = .31) is not evident here for long
time. In the case of the exact theory this may be explained in terms of
the coupling between the lowest symmetric mode and the complex arm.

Recall that the edge mode frequency was determined by Gazis and Mindlin

from the consideration of the relative magnitudes of the complex and real

" Here the complex wave numbers were computed at 200 evenly spaced
values of frequency, and intermediate values were interpolated from the
resulting table. A 50 point trapazoidal integration scheme was employed.
The integral was made regular at its improper limit by a change of var-
iables. Comparison with the results computed from a 200 point integration
mesh indicated an error of less than 1% for the several values of 77° and
EO tested. The initial wave arrival in the exact case occurs as a time
corresponding to the dilatation speed cj. The partial static deflection
under the load and at the surface was computed to be w,= . 756 fﬂ /E.
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waves resulting through mode conversion of a steady real wave impinging
upon a free edge. The results presented here, figures 39 and 40, do not
contradict the existence of the edge mode for steady wave propagation

but merely imply that the lowest symmetric mode in the transient case
does not contribute significantly in the vicinity of the edge mode frequency
for long time. The amplitude spectrum for the integral representing the
real wave, equation 69, has a minimum near the edge mode frequency due

to the smallness a' there.

Total Response (wb, W and wT)

The bending and shear deflection time records are shown in figures
4la and 43a for g2 = .9079. Both Wy and w_ are seen to be zero at the
arrival of the first wave and steadily increase into an oscillatory deflection
without discontinuities in the slopes before the second wave arrival. The
shear wave is marked by a discontinuous slope in the shear deflection W
reflecting a jump in shear load. The bending deflection, however, remains
relatively unaffected in agreement with the wave front expansion there.

For long time these deflections are out of phase, approximately of equal
amplitude, and are roughly bound in a long period sinusoidal envelope,
which decays as 1/1/'_7"_0‘ . The opposite phase and similarity in amplitude
are characteristic of the long time frequencies, {1 =1,{2=g, and Q1 =01,
for this foundation stiffness. This effect has been discussed previously

for the individual mode contributions. The bzhavior of the long period
envelope is a result of the superposition of the various modal contri-

butions near their long time frequencies. For example, the trigonometric

identity
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w, -w
1 Z)t sin — t

wl+w2
2 2

sin wlt+ sin wzt = 2 cos

may be used to estimate the magnitude of this period. It represents the
simple group with the amplitude and group velocity determined by the
cosine term, and the phase wave and velocity by the sine term. The
three possible combinations of frequencies that describe the envelope
of the group and their associated predominant period are

l-g = ,0472 —a= Tpf: 144

I

1-Q, = 0969 —=— T ==70

The predominant period measured from figures 4la and 43a gives Tp"—‘: 120,
reflecting the combination of the limiting frequencies g-, and 1-g.

The total deflection shown in figure 45a does not indicate the
presence of an envelope, partly because the total deflection contribution
from the upper cutoff frequency is negligible compared to the response at
L, and g. Recall the cancellation of W and Wy at the higher cutoff
frequency. The psriod corresponding to the remaining combination
between L1, and g is not evident because of the large transients at the
shear wave arrival. Such a period measurement is not possible con-
sidering the limited time record.

The large deflection at the shear wave front, figure 45a, indicates
that the bending and shear deflections are in phase and the governing
equations are highly coupled in the sense that the rotational and transla-

tional energies are exchanged through the foundation. For increasing

time the equations become relatively uncoupled, i.e., the rotational
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energy is exchanged with shear and bending distortion energy at the
higher cutoff frequency and the translational energy with the foundation
and shear deflection energy at the lower long time frequencies. In this
case the total response may be considered to be the superposition of two
independent solutions at two different frequencies, each corresponding to
a different type of motion. This behavior is more pronounced for the
softer foundation, figures 4lb and 43b, where the rotation-distortion
energy is small at the higher frequency and the shear deflection is small
at the lower long time frequencies. In this case almost all deflection is
due to bending as may be seen by comparing the magnitudes in figures 4lb
and 43b for long time. The egquation governing the rotation, equation 25a,
becomes unimportant for long time as does the shear term in equation 25b.
The only significant energy exchange is between the translational kinetic
energy and the potential energy due to the foundation deflection and plate
bending. Even the plate bending becomes insignificant for long enough
time leaving only the classical one degree of freedom spring-mass mode
of vibration with a slow amplitude decay of O(1/ 1/7'—“). For sufficiently
soft foundations the elementary bending theory could give accurate long
time information because of its applicability to situations where low
frequencies and long waves prevail.

Though the influence of the higher cutoff frequency is evident in the
bending and shear deflections this character is not observed in the total
deflection, figures 41b, 43b, and 45b. Again this is due to the cancellation,

W, = W at the higher frequency.

b

The deflections along the plate for fixed times are shown in figures

42a, 42b, 44a, 44b, 46a, and 46b. The rather complicated responses
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demonstrate the necessity of considering the individual contributions
separately for the various modes, where the particular characteristics

of these curves can be conveniently analyzed. Note should be made, how-
ever, of the shear deflections, figures 44a, and 44b, where the slope of
these curves is proportional to the shear force. For the softer foundation
the significant shear force preceding the shear wave arrival reflects the
coupling between the bending and shear deflections as mentioned
previously.

For the purposes of comparing the numerical results presented with
those expected from the related exact problem, some qualifications must
be made as to the regions of time and space where the approximate theory
adequately describes the exact theory. Reference to figure 24a, for
example, shows that in the time region preceding the time corresponding
to point @ the influence of the lowest mode and the complicated behavior
of the other modes considered for the exact theory are not adequately
duplicated in the approximate theory. For times beyond @ the behavior
of the approximate theory is qualitatively similar to the exact theory.
Times corresponding to @ are indicated in figures 4la, 43a, and 45a for
reference. Using this criteria in figure 25a shows a significant discrepancy
in the wave lengths of the two theories even to the left of @ , Which is
equivalent to the region of times greater than @ in figure 24a. The
behavior is, however, qualitatively correct and the point @ is marked
in figures 42a, 44a, and 46a for reference.

A similar criteria based on the point @ would lead to the conclusion
that the results are entirely in error for any region of dispersive response

for the softer foundation. However, if the longitudinal response is small
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compared to the bending response this statement is not necessarily true.
The type of loading considered here (transverse line load) gives rise to a
greater transverse deflection for the soft foundation, since the longitudinal
displacements and stresses would be excited only through a Poisson's
ratio effect. For long waves and low frequencies the influence of Poisson's
ratio coupling can be neglected. The longitudinal motion for long waves

is governed by the two mods segments @ - @ anc@ -@, figure 23b.
With the exception of these segments, the predominant-period, time-of-
occurrence curves for the exact and approximate theory are seen to agree
well for periods and wave lengths greater than @ in figures 24b and
25b, respectively., Because of the extrema at @ the validity of the
approximate theory in describing the exact response for the upper two
modes must be restricted accordingly, i.e., waves arriving before @
must be discounted. The point @ is indicated in figures 4lb, 42b, 43b,

45b and 46b for reference.
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CONCLUSIONS

The transient response of an elastic plate resting on an elastic
foundation has been computed in section II and correlated with the
frequency spectrum discussed in section I. The general conclusions

that can be drawn from this response fall into two distinct areas:

1. The mechanism of the transient response

The influence of restraining elastic boundary affects a redistri-
bution of the energy between the various modes of plate deformation. For
a soft foundation the transverse excitation of a thin plate is characterized
by the usual bending mechanism described by the elementary bending
theory. The principle energy is in the form of translational motion and
foundation and bending deformation. For the stiffer foundations the in-
fluence of rotational energy becomes significant, and the higher modes of
deformation are prominant. This latter result leads to greater transverse
shear as has been demonstrated in this study using the Timoshenko bending

theory.

2. The methods of analysis

Two types of integrals that describe a transient solution are found
which may be classified as "wave' and ''nonwave'. The'wave"integrals
are of the stationary phase type and have an associated group velocity
which is bounded. The "nonwave' integrals are governed by the Riemann-
Lebesgue lemma and do not have a group velocity. These waves, however,
serve mathematically to cancel contributions beyond the head of the wave.
The ''nonwave'' response is associated with integrals which have points of

stationary phase outside the limits of integration and appear to be waves
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traveling toward the source of the forcing function. The "nonwaves"
reflect the influence of the complex and imaginary arms in the related
frequency spectrum.

Though the method of stationary phase appears to describe
adequately the predominant periods and their related time of occurrence,
the amplitudes predicted by this method of approximation suffer from
rather severe limitations. Besides the de_ficiencies of this method in
describing a particular integral (Appendix C), the usual predominance
of this type of integral over the integrals governed by the Riemann-
Lebesgue lemma, which describe the ""nonwaves', occurs only in the
very far field. For the intermediate field, not governed by either wave
front expansions or the far field analysis, the only apparent means of
evaluation is through direct numerical analysis. In this regard it has
been possible to exploit the relatively simple forms of the approximate
bending theories of Uflyand and Timoshenko for the intermediate field
in terms of the frequency spectrum. Direct application of the methods
presented here with similar numerical analysis can be accomplished with
problems involving the exact theory of linear elasticity provided the

frequency spectra are known.
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APPENDIX A

The Geometric Behavior of Complex Frequency Spectra

Assume a functional relation of two complex variables (L and I

of the form

F(M,Q)=0 (A-1)

where F is analytic in each variable such that the derivatives a"F/arm®

and d"F/d Q" may be formed for all I’ and £L.. Then L)l is implicitly an

analytic function of M, since d™L/dT" is defined at every point. A

conformal mapping, therefore, exists between the {L- and {7 -planes.
Consider the functional relationship (A-1) to be a frequency equation

which is even in {)l. Assume ful;ther that branches are known which map

parts of the real [ -axis onto the real ()-axis. Because of the conformal

mapping between these planes each such branch must map the entire real

[ -axis onto the entire () -axis unless d{1/d T is zero at some point, say

M, on the real [T -axis. At such a critical point the mapping is no longer

conformal and the first nonzero derivative dN_Q./d rN must be

M=r,
determined. Expanding in the neighborhood of P*, {1 is given by

_ir‘— P*)N /dNﬂ

Q-0x =~ N LA-2)
\dP S
or
M-y = AN (- N (A-3)
where
Nl
% = .
dNn.
ary
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Consider a branch and its mapping in the ["- and () -planes which has
one critical point, [ %» as depicted in figure A-l. The real positive
) -axis is shown mapped onto the positive real [ -axis and a complex

t-3
curve which emanates from the real axis at an angle ¢ given by

™
A
Since the function F(r',ﬂ) was assumed even in {0 , the negative real

L) -axis must also map onto the same path as did the real positive (2 -axis.

This is possible only if the mapping at @ is not conformal, i.e.,
ar ) = 0 (A-4)

since
df _dfT
4| n=-+0 U2 |Q= -0
Several conclusions can be drawn regarding the spectra indicated by
imposing real {) on the frequency equation F( F'Z, QZ) = 0. Consider, for
example, a three-dimensional plot of real () against complex i 5 Talig
M=x+ iY, as in figure 12. Real arms are assumed to exist. A complex
dQ) dQ d4dQ _
arm emanates only from a branch where 5T = 05 (-d—x— o 0). In the
neighborhood of this critical point the complex arm lies in the plane
e . . é ¢4 m .
Q =Q,, where () is real, making an angle ¢, 0 < -, with the X-
plane. The derivative dN_O./d F‘N at the critical point is the same in the

plane of the complex arm as ‘:5[1\'1_(2/dXN in the real arm due to the analytic

behavior of this quantity, Furthermore, if the complex arm intersects

%
This result has been established by Sherwood (38) using a slightly
different approach.
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Figure A-1. Mapping of frequency and wave number planes.
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the () = 0 plane, it intersects normally according to equation A-4.

Similar arguments hold for complex arms emanating from imaginary
arms as shown for the more exact bending theory in figure 12. Imaginary
arms connected to real arms is a special case of the complex arms

where r"* = 0 and N = 2,



-149-

APPENDIX B

Branch Point Analysis and Contour Integration of Equation 51b

Evaluation of the integral

(32+P22/82) 1p2§‘ (s” +p1 218%) iPE'| o7 ds
e e e 3 (B-1)

1
Is—f

tp,2-p,%) . 4-p,%)
Br, PP, -P; Py Pl P,

for Im pj > 0 on Br, is accomplished by completing Br1 in a closed path

4l
to the left.

Possible branch points in the s-plane correspond to the zeros of

Py» Pys and Z where

pjz = = l[ (1+ .SZ)+g J + (-1)3 Z

> (B-2)
£° = % [32(1+ 82)+g2] - 52(g2+sz)(1+s )
In the former case there are zeros of pj only for Pys which are seen to

be at £ i and + ig. The zeros of Z are located at = Sj where

2 _ j sf2 [ 3 .2
5. 1) 2———- k- 1-g“(1-8§°) (B-3)
J 1-5 ( ( 1- &8 g )+ 1-§2 1

Comparison of equation B-3 with equation 33 shows that

= l)_]+1 2

The regions shown in figure 14 describe the nature of the branch points
given by equation B-3. Since interest is no longer restricted to real

frequencies (imaginary s) as required to describe the frequency spectrum,
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all roots given by equation B-3 must be considered. The four regions

give the following values for szz

Region I sz complex
Region II 5124 o<sz2
Region III 0L sjz
Region IV 5224 0<le

Study will be confined to region III as before and with values of g2
less than l+$2. These branch points are sketched in figure 19 for g2< L.
The integration of B-1 is carried out along the path shown in
figure 19. (Later the results will be extended to include the range
1< gz <1 +$2.) This path is suggested by the stationary phase integrals
resulting from a similar contour used by Miklowitz (15). In the present
work the individual integrals comprising the final solution are related
directly to specific branches of the frequency spectrum. Before com-

pleting Br. to the left, the wave character of the governing equations

|

can be studied in detail by completing Br, to the right.

I

Completion of Br1 to the Right

The path of integration Br1 was necessarily chosen to the right of
all singularities. Integration around the closed path composed of Br1
and a large arc to the right of Br1 (Cl in figure 19) must be zero according
to the Cauchy integral theorem. As the radius of this arc becomes very

large the integrand of integral B-1 can be expanded for large s, and gives

for equation B-1

. 2
I~ ‘l—f '—1_—2- SHT'-88N, 8 s(T-F')M ds 5 4
s 2 Cl $0- 82) 82 84
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Since both terms in the integrand are of order 1/sk, k >0, (24), the
integration along C1 contributes nothing provided the coefficient of s in
the exponential is negative. This means that the value of IS is zero for
T'« £ E'. Only the first term contributes for times in the range
$E'L T 'L E'. Both terms contribute for 7! > E.
In terms of dimensional parameters (since § = c/cp) these time

ranges correspond to

t<

=
=
| &

=<t
P

ox

=Lt
c
indicating the arrival of two different wave fronts. Integrations are

carried out for the time ranges after first wave arrivals over a contour

obtained by completing the Bromwich contour to the left,

Completion of Br1 to the Left

When the coefficient of s in the exponentials become positive it can
be shown that integration along the small arcs Cz and C3 vanish (39). In

this case j: j
Br2

Brl

since no singularities are enclosed by the path of integration. It remains
only to write down the integrals along each of the paths using analytic

continuation of the selected branches of pJ. on Br The branch points of

1.
Z can be dealt with by writing it as
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1- ' 2
=<5 '\[ﬂl/oz/oaﬂ; .

where the ., and ¢ . are, respectively, the moduli and arguments of
g i P Y g

2
Zzl—_—zé— [(32+512)(32—SZZ)] (B-5)

the complex vectors emanating from the four branch points of Z, figure 19,
This type of representation has been used by Miklowitz (36) for a similar
function. Since on Br1 the variation of the argument, t# , of s must be
restricted to -m/2 44)4 w/2, the d} i also have the same restriction,
ice., -m/2L o, L /2.

The contour integration is carried out by continuing analytically the

integrand functions in integral B-1 from Br, to and on Br The complex

2

vectors defined in equation B-5 aid in this process.
Imposing |s|>>1 at the beginning of path Ll’ figure 19, the argu-

ments of the pJ. and Z (consistent with Im pj >0 on Brl) are 0 and -m,

12 L2 and L3

the argument of Z remains -m, since on these paths the Z¢1 remains

respectively. Using equation B-5 it follows that on paths L

fixed and Z does not go through any of its zeros in going from L1 to L3.

About the branch point -iSl just the argument 4) 3 changes from -7/2 to
m/2; hence the argument of Z changes to -w/2, the value it also has on
path L

On path L. it follows that

5° 1
2 . 1/2
p; = _21_[72(1+ ge . E - (1Y 21]
where
1/2
2
z,= 1z} =152 | (252 n+s,%)

2 e-i(‘rr/Z)

=77
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Expanding the pj in the neighborhood of s = -i and retaining only the

leading terms gives

id
ia $Cli-ghe
[gz-(l-l- g)] .

pj2 & % —é[gz-(H 52)]+ (-1 lgz-(1+ é?')‘ 1-

id
where s = -i +Poe © as shown in figure B-1l. Since g2< 1 has been
assumed, it is seen that s = -i is a zero of P, only as pointed out

earlier (and consequently not a branch point of pl). The term p, can then

be written as
1/2

_| $%1-g%)
Py S|yl A

1+8% -g

AR
e

where the branch of the square root has been chosen in agreement with
P, real and greater than zero on Ll’ i.e., when ¢0 = -w/2. The P> is
seen to behave in the usual mannsr in the neighborhood of a square root
branch point, and its argument increases by w/2 as 4)0 goes from -w/2

to w/2. This analytic continuation to path L2 gives P and Z unchanged

and p2 as ' 1/2
L=
2 1 i 2 1 2
p, = e [—-27(1+é)+-2g +zl:|
Along L2 the arguments of p‘j and Z remain unchanged. At -ig the pj can

be expanded in a manner similar to that applied at -i, This point is
also found to be a zero of Py and analytic continuation to path L3 gives

P and Z unchanged again and
1/2
= =] & B 055 g 2
P2=-27 B M|

The point —iS1 is a branch point of both pj as well as Z and analytic con-

tinuation to path L, gives
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Figure B-1. Detail of complex s-plane in neighborhood of branch point
§ = -i.
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1/2
_ it [ 12, 62 g’ (1)) ;
g™ L Ml b A e

where P has been carried along unchanged from path L1 to the branch

point -iS Note that for 372 >g2/1+ 82 the Im pj > 0, Continuing

1'
analytically to values of 4 . £ g2/1+ SZ, Im pJ. must remain greater than

zero, and the pj may be written in the equivalent form

2 ) T5f2
p; = i [52— - -é— 72(1+82) + (-1) iZJ

Continuing from path L, to L. results only in a change of form, since s

4 5

is real on path L5

2 . i3
P; 1[% +% 72(1+ %) + (1)) 12]

where

2 1/2
z, =155 | (p%s P 9%,

==

As a check on the procedure, the values of pj and Z can be continued
analytically from L5 around S, and along the real axis to Br,. It is
readily seen that on the real axis, for |s| > SZ’ pj is positive imaginary
as required.

Further simplification of the integration can be madz by noting that
analytic continuation onto the upper half s-plane will give the Pj to be the’
negative complex conjugate of the pj on the corresponding path in the
lower half s-plane. The integrands of B-1 must behave similarly. Since
the directions of integration along these equivalent paths are opposite
in sense, the contribution from such an integral pair is twice the real

part from either one of the paths.
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Expansions in the neighborhood of the branch points shows that the
contribution to the integral from the small arcs vanish in the limit, A
half residue results from the small arcs at the origin.

After some algebra the integral B-1is given by the integrals

presented on page 59 in the text.
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APPENDIX C

A Criterion for Estimating the Range of Validity of the

Stationary Phase Approximatioa

Consider an integral of the form

22

I=f f(?)eiT|X(7)d? (C-1)
|

where 7y ' is a large positive real parameter, X ( 7) a real continuous
function of the real variable 7 , and f(7 ) 2 real or complex continuous
function. It is assumed that 'X( 70) = 0* in alé 70_4_ as; i.e., integral
C-1 has one or more points of stationary phase (critical points) in the
range of integration.

It is well known that an integral of this type can be approximated
for sufficiently large values of the parameter ‘' by using the method of
stationary phase (33). Pekeris (40) has éstimated the range of ' over
which this approximation is valid by including the next term which is of
order (1/7'), the leading term being of order (1/+/7 7). In his work
Pekeris extended the integral limits to infinity, and only the higher deri-
vatives in X ( 7) were considered. In the present study the integrals
under consideration have finite limits close to the stationary phase point
and may not be conveniently extended to infinity. Further, the function
f(? ) is not assumed to be slowly varying. The following study attempts to

include these sources of error in the estimate of 7-'.

There exists an upper and a lower limit of integration around the

The dots ( )" will denote differentiation with respect to 7 .

s
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critical point, 7 beyond which further contribution to the integral C-1
may be disregarded as being less than some acceptable error £ . If this
bound is within the limits of the integral, does not contain other stationary
phase points, and specifies a range over which the higher order terms

of the Taylor's series expansions of f(? ) and X (7) satisfy the conditions

Ifm)( 7o)| I?c— 70 |n = B
o |-f( 70_)_| . o(€) 0= 1; 2550w
) > (c-2)
I'X(n)(?o)I 17(:- 70] ~ O(E) n=3,4,...

ni )
then the error introduced by approximating the integral C-1 by the methods
of stationary phase will be of order £ and hence acceptable. The following
establishes the value of ?c'
& . . B . 4
Assume there is one point of stationary phase, o in alé 7 < a,
and that X" *( PO) > 0. Expanding X ( ?) and f( 7) in a Taylor's series

about ;o and retaining only the terms f( Po), %k 70), and X" ( 70)

gives, upon rewriting integral C-1

da]
0

£ h,) iTX(p,)

A:-\[?:Z'_IX"(7O)|'

7:- (70-a1)\/'52'—\7m;0)

1 /2 .
eipz dh + ei7 d (C-3)
7] e

where

5y
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D= laye 70)\/7'—2'—‘#(%)

The integrals in equation C-3 are Fresnel's integrals and may be

approximated by an asymptotic expansion (33)
H i(HC2+1r/2)

C
W
i o Jin/4 vy e
J' e 7 d7 e - T -—z—l_i-——'—--'— + 5w
0 C

where 1 <K Hcé 71472 is assumed. The following inequality in the limit
for large HC prevails

H

C
. o il
ie’”’/‘lj 617 d? - 1 (C-4)

v 0 ﬁHc

The term on the right of equation C-4 is an estimate of the upper bound in
the error caused by using the ordinary stationary phase approximation on
integrals like those in equation C-3, where the integral limit is finite. A
similar expression to equation C-4 can be derived for X °°( FO) £ 0 and

is given by
H<:

. -
2 el"/4f 17 d? =1 £ 1 (C-5)

P d

=g V7H

€

Assume that it is desired to maintain an upper bound in the error
less than € such that

H_= e
VT £
This dictates an integral limit Hc beyond which further integration is con-

sidered negligible. In terms of the integral C-1 this limit is given by
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. 2 ‘ i
1e" Po are \f X ) o

where 7c must satisfy a; L 7C4 ase. This last condition imposes a

lower limit on 7' which is described by the inequalities

P 2 1 1
—wE" | X p )|y p,)°
} (C-7)
2 1
T S T— 2
eS| )| hgmap /

Writing the order terms O(€ ) = £ in equation C-2, this pair of

equations also dictates a lower limit on %

2/n

f(n)(?) \
2 o
> - . A= 1,2, cea

WE,ZI’}L"(?O)I g8 1% )

> (C-8)
ST 2/n

"> 5 "2 x&n'.?o . n=234,... J

Lt I’){ (?0) l

For a value of 7' that satisfies both equations C-7 aad C-8, the
approximation of integral C-1 by using the method of stationary phase will
produce an estimated error of order £ . The accuracy of this estimate
may possibly reflect a rather severe handicap on the method of stationary
phase, when in reality the error could be considerably less. The rough
error estimate made in equation C-2 is in general probably too hars.h,
since the maximum error in f( 7) and X ¢ ?) due to the neglect of the
higher order terms of their expansion occurs in the region of highest

oscillation of the integrand of integral C-1.
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Numerical Example

Examples are carried out for the two integrals IS and Is of
1 5
equation 52b. These integrals are of the stationary phase type and are

improper at their lower limit. The function f( 7 ) defined in this appendix

can be crudely approximated by letting the coefficient of the exponential

be some function of the form

f
tp) =~

The integrals under consideration are therefore of the form

e
I:foj .
a \/7-a1

where the ( ») defined in this appendix is
/

eiT'[7-Pij(7 )g'/*r'] »

X(p)=p -PylpI g T
and

2 1 T2, 2 2 j 2(1+$2)22222 2
[Pij(P’J= [? (1+g>-g]-(-1)3 [? e ] - §7(e"- pN-9)

]|

Eie

forl
S

1 % . 2= 2 §% 2 2
a =8 =] -2 3 + \/ O 1
A P W R :
5

Numerical evaluation of the pertinent information has been carried out

for 82 = .28375 and g2 = .9079. The results are indicated in Table

i
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C-1 and establish the value of “y' (and thereby define the far field) at

which the order of the error, £ ,is 0.1. Only the derivatives ) '""( 70)

and f*( ?o) have been considered. The values of 7'/ k3 ' studied are

tc
YU/ g'=1.3317, £ =2.5
tc
Y'/E'=.62590  —E =1.18

The former case corresponds to a point of stationary phase for both
integrals and represents a time at which significant dispersion is present,
In the latter case only integral Is1 has a stationary phase point, this time
being before the arrival of the second wave.

In each case considered the improper nature of the integrands at

their lower limit has necessitated severe requirements on 7T '. Recall

that for a plate

c t

N ct _ / ; _ P

o= /12__1;._ 128—%—-—1.84T
/_" I X

gl
For " = 10* and ’T'/'g' = 1.3317, for example,

¢ = 5,40 5 107 h/c

and

= B 16w 10° B
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Table C-1
I I
°5 i
/g 1.3317 1.3317 .62590
Po 1:2313 1,0632 2511983
Pij( 70) .97160 . 12488 . 94695
a, . 90307 1.000 1.000
a, o oo oo
[ ()| 774 4.00 .160
| X (?O)I 4,17 75.5 .270
|£ (1 /A 70)| 1.52 7.9 . 446
The minimum "' for £ =.1
from first of equation C-7 0 0 0
from second of equation C-7 Telb % 102 4.0 x 103 B, 102
from first of equation C-8 1.9 = 104 1,0 3 105 8.1 == 103
from secoad of equation C-8 3.0 % 102 4.0 x 102 2.3 % 102
o <+ 5 3
greatest minimum of ! 1,92 10 1.0x 10 8.1 x10




