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ABSTRACT. 

In part I of this thesis we study theoretically the problem 

of forced acoustic os ciIlations in a pipe. The oscillations are 

produced by a moving piston in one end of the pipe, while a 

variety of boundary conditions ranging irom a completely closed 

end to a cOITlpletely open I.TIouth are considered at the other end. 

All these boundary conditions are modelled by two parameters: a 

length correction and a reflection coefficient equivalent to the 

acoustic impedance. 

Tbe linear theory predicts large amplitudes near reso

nance and non-linear effects becolTle crucially irnportam:. By expand

ing the equations of alotion in a series of the Mach num.ber, both 

the amplitude and wavefoTlTl of the oscillations are predicted there. 

In both the open and closed-end cases the need for shock 

waves in SOITle range of parameters is found. The aITlplitude of 

the oscillation is different for the two cases, however, being 

proportional to the square root of the piston amplitude in the 

closed end case, and to the cube Toot in the open end. 

This part of the thesis was first published in the Journal 

of Fluid Mechanics. 

In part II we lTlodify the averaged Lagrangian m.ethod 'c.sed 

by Whitham. to analyze slowly varying non-linear wavetrains to 

include cases with a small dissipation. To do this, we use a 

pseudo-variational principle introduced by Prigogine in which the 
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Lagrangian depends on the variable and the solution of the prob

lem 9 and which can be used to describe irreversible proces se s. 

We prove the corresponding averaged equations to all 

orders and describe practical ways to use them to lowest orde r. 
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1. 

1. NONLINEAR GAS OSCILLATIONS IN PIPES. 

1. Introduction. 

The problem we consider is the oscillation of a gas inside 

a pipe of length Ljl and whose transverse dimension is small 

with respect to the length. At one end of the pipe (x = 0) a piston 

executes small harmonic oscillations with a frequency that we 

choose to be of the order of the resonant frequency associated 

with L. At the other end (x = L) we want to model a range of 

physical conditions progressing from a completely closed to a 

completely open tube, including different kinds of perforated end 

plates or other mouth configurations, thereby producing varying 

arnounts of coupling to the room. 

If the pipe we study is slender a reasonable assumption 

is that there exist an equivalent one-dimensional probleITl, approx

imating the actual one and characterized by "effective!' cross 

sectional conditions. This is usually a good assumption every

where in the pipe except near the mouth section where the 

m.atching of the flow in the tube to the three-dimensional flow 

in the rOOITl gives rise to local transverse effects. The clas sical 

way to model these effects in linear acoustics is the use of an 

equivalent impedance of the end section. (Morse & Ingard 1968) 

The real and imaginary part of this impedance can be considered 

quite separately. 
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The imaginary part corresponds simply to a length correc

tion. The effective length of the pipe is different from the rea] 

length. and this difference accounts for part of the two-dimen

sional effects at the mouth section. There are some classical 

theoretical results (Rayleigh 1945) aiming to predict the value 

of this correction, based on assumptions like potential flow near 

the pipe end, and no viscous effects. In the real world, however, 

these assumptions are hardly ever fulfilled except for the small

est amplitudes of the gas oscillations. In any case, as the cor

rection arises from transverse effects, the general order of 

magnitude can be expected to be no more than a few pipe diam

eters, and this should cause no qualitative difference in the behav

iour of a slender pipe. 

In a similar way. the real part of the impedance can be 

interpreted as a partial reflection coefficient. The general idea 

is that, from some diameters away, the pipe end should look 

like a virtual plane section. A long wave running into this section 

from the pipe is partially reflected and partially transmitted, or 

somehow dissipated. The simplest model for this process, which 

was also proposed by Seymour & Mortell (1973), is to assume 

that the reHected wave is proportional to the incorning one, with 

a proportionality coefficient ranging between + I and -1. In the 

same fashion as with the length correction there are theoretical 

estimates for the value of this factor, but they cannot be trusted 

for waves of any reasonable amplitude. 
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In summary, although the impedance model was created 

for linear oscillations, it still provides a very compact way of 

treating a wide range of physical cases. In fact, there have bc(~n 

several attempts to justify its use in the treatment of acoustically 

absorbant materials at high radiation intensities where nonlinear 

effects appear. Thus, in 1967, Ingard and Ising. using experi

ments with resonators, proved that the behaviour of orifices 

could be successfully approximated at moderated intensities by 

the use of an amplitude-dependent impedance coefficient. 

The experiments undertaken to complement the present 

work (Sturtevant 1973) have been carried out at much higher 

intensities than in previous cases. Therefore it is of interest to 

check them against the predictions of the impedance m.odel and, 

in that way, to judge the validity of the model itself. 

Here we, therefore, develop a nonlinear theory applicable 

to those cases in which resonance peaks occur with sufficient 

amplitude that linear analysis is inadequate. The first suggestion 

of the importance of nonlinear effects was rnade by Lettau (1939) 

who observed experimentally the appearance of traveling shock 

waves near the linear resonance frequency in both closed and 

open tubes. 

Using these expe riments as a guide Betchov (1958), con

structed a theoretical solution of the flow in a closed pipe, in 

which, with a few well chosen assumptions on the general form 
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of the solution, he was able to prove that the nonlinearity of the 

equations alone bounds the resonant amplitude away from infinity 

without recourse to dissipation, as well as to compute waveforms 

in qualitative agreeITlent with the experimental results. 

Saenger and Hudson (1960) further refined the experimental 

observations and atteITlpted to account theoretically for the effects 

of viscous shear and heat conduction. Finally, Chester (1964) 

developed a consistent theory for the closed pipe in which, with-

out any special assumption, the appearance and strength of shock 

waves, as well as the detailed waveforms for all frequencies, 

were predicted. One important result of his paper was to show 
1 

that the amplitude of the pressure oscillation is O(02j whereas 

the piston amplitude is alUch smalle:c, 0(6). Temkin (1968) ob-

tained still rrwre experim.ental data on the closed tube and gave 

a simple but elegant account of the different effects present in 

the probleIYl using energy balance considerations. 

Wijngaarden (1968) treated the case of an open pipe at 

resonance using a nonlinear boundary condition in which viscous 

dissipation caused by flow separation at the pipe exit was as-

surned to dominate radiation losses and. in fact, the nonlinear 

behaviour of the gas in the pipe itself. This is probably true 

for some range of the geometrical parameters of the pipe and 

represents the opposite extreme to the case treated in the pres-
1 

ent work. The pressure amplitude he derives is again 0(6 2 ) 
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but this is governed primarily by the dissipation boundary con-

dition. 

Mortell (1971) attempted a straightforward generalization 

of Chester' s analysis of the closed pipe to other cases of non-

linear oscillations, including the open pipe with a perfectly 

reflecting exit. It turns out, however, that the method does not 

generalize to this case without special precautions, and Mortell 

derived the wrong result. In particular, the amplitude of the 
1 

oscillation was mistakenly given as 0(6 2). 

The first author to point to the correct result was Collins 

(1971). who studied the problem of a nonlinear wave equation 

applied to the vibration of a string. He correctly expanded the 

equation in terms of the resulting amplitude, instead of the 

forcing amplitude, pointed out the similarity to the open pipe, 
1,. 

and predicted the resulting amplitude to be 0(0 3
). He did not 

present detailed calculations for the gas dynamics case. and. 

in particular, failed to point out the presence of shock waves 

in the solution. 

A closely related class of problems was treated by Chu 

and Ying (1963), when they studied thermally induced oscillations 

in closed pipes. They used a characteristics perturbation proce-

dure due to Lin (1954) which is very close to the one used in 

this work. 

Finally. Seymour and Mortell (1973) describe an extension 
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of Chester's m.ethod to a nearly closed pipe with radiation 

dam.ping and obtain results very sim.ilar to the ones in section 

4 of this work. 
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2. General equations. 

Consider the pipe along the x axis. The passive end of 

the pipe is located at x= L. At x= 0 a piston oscillates according 

to the law 

,... 
x = -1. cos wt 

and this causes the gas to vibrate around an equilibriuITl state 

given by a sound speed a and zero gas velocity. By making 
o 

velocity and tiITle non-diITlensional with a and TT /'US respectively, 
o 

we have the sound speed fluctuating about the value 1 and the 

period of the oscillation fixed for all driving frequencies and 

equal to 2. 

When we change the driving frequency, however, the 

uni t of length change s and the pipe ha s a va ria ble length in the 

new coordinates, with the passive end located at 

where 

,..., 
wL 

x=-TTa 
o 

..... 
WL 

W = ---
a 

o 

ill 

TT 

is a non-diITlensional measure of the forcing frequency. 

(2. 1) 

(2.2) 

The 

motion of the piston, however, has a constant frequency, and 

is given by 

x= 
[) 

-- cos TTt . 
IT 

(2. 3) 



The parameter 6 

6 = wi, 

a 
o 

8. 

i, 
-wL 

(2.4) 

is now a good indicator of the strength of the forcing terms. 

and is in fact a Mach number for the motion of the piston and 

for the motion of the gas near the piston. 

One might assurne then that 0 also measures the strength 

of the gas oscillation everywhere in the pipe, so that, if 0 is 

small the linearized acoustic equations would be applicable. 

If one tries to do that, one gets consistent results for all 

values of w except for those pipe lengths which are near reso-

nance with the piston frequency. At these values of w the motion 

of the gas is much larger, in general, than 6 and it becomes 

necessary to include higher order nonlinear terms in the equa-

tions of motion. It should be noted, therefore, that the correct 

expansion parameter should be the typical Mach number of the 

gas, which we take to be <::. not the velocity pararrleter of the 

piston 0, and that one of the aime. of the theory should be to 

find the relation between 6 and €. 

We first write the general equations of rnotion, consid-

eTing the gas to be ideal and isentropic, and the motion to 

be one-dimensional. The velocity of the gas is u and the sound 

speed l+a; x and t are Eulerian coordinates and a. and 13 the 

corresponding characteristic coordinate system. Under these 

circumstances the equations and boundary conditions are (Cou-



rant & Friedrichs 1948) 

On 

9. 

~~ = (u-a-l) ~~ 

ax (it as = (u+a+1)as 

2a 2£(13 ) -- -u = y -1 

2a 2g(0.) Y-1 +u = 

, 

a. = 13 , x = 0 and t =0.. 

On 
o 

x = TI cos TIt, u = g(o.)-f(l3) = 0 sin TIt. 

(2. Sa) 

(2. Sb) 

(2. 6a) 

(2. 6b) 

(2.7) 

(2. 8) 

Equations (2.5) define the geoITletrical coordinates, x and t, in 

the characteristic plane, and (2.7) ITlakes the definition unique 

by choosing a. and 13 to be the tiITle t at x = O. In the pipe a. is 

constant along the C+ characteristics and 13 along the C charac-

teristics. Equations (2.6) define the invariants riding each faITlily 

of characteristics. In particular g(o.) can be considered as a 

"'simple" wave going to the right, and £(13) as the left-going 

reflected wave. Equation (2.8) is the boundary condition at the 

piston. 

The only remaining equation is the boundary condition 

at the pas sive end of the pipe, and, following the discussion in 

the introduction, we assume it to be: 

On 
w 

x= n' f(l3) = bg(o.) , (2. 9) 
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where b is a number between + 1 and -1, which gives the frac-

tion of the right-going wave that is reflected back into the tube. 

The condition that b be bounded between + 1 and -1 obviously 

means that no energy is created at the passive end, or, more 

specifically. that any radiated energy is transmitted from the 

pipe to the room, and not vice versa. It is easily seen that the 

value b = 1 corresponds to zero velocity at the end section and 

is equivalent to a perfectly closed pipe, while b = -1 implies 

a = 0 and represents an ideally open end, at which the pressure 

is always equal to room pressure. 

Equations (2.5) to (2.9), plus the periodicity condition 

which says that we are looking for a steady oscillation of the 

sam.e period as the piston, completely define the problem. 

If we assume now that u and a are 0(0) and O~ I, we 

can neglect the second order terms on (2. 5) and apply the 

piston condition at x = o. The result is the classical linear 

theory. The characteristics are parallel straight lines and 

the solution for f(!3) is sinusoidal with amplitude 

(2.10) 

When b is close to ± 1 this aITlplitude has sharp resonance peaks 

in w. There the oscillation is rn.uch larger than 0(0), and the 

nonlinear effects m.ay be expected to be important. For b fa r 

from these values, however, the linear theory is correct for 

o small, as only broad resonance peaks occur and amplitudes 
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remain of order o. 

A particularly interesting case arises for b=O, when the 

amplitude of the oscillation is completely independent of frequency. 

This is, of course, because no wave is reflected from the pipe 

end and the oscillation is just the simple wave produced by the 

piston, travelling undisturbed to infinity. 

Therefore, the only regions in the b-w plane where linear 

theory should not be expected to hold are very small regions 

whose extent logically depends on the size of E:. Their location 

can be derived f:com the linear theory and falls into two families. 

Almost-closed pipes, where b is near +1, have resonance peaks 

at w~n,2n,3n, ... , and almost-open pipes, with b near -1, 

n 3n Sn 
resonate at w~2 ' Z- ' -2- •... 

An asymptotic theory tTying to explore these regions for 

small E: should include, then, expansions for band w as well as 

for the other quantities. We develop such a theory in the follow-

ing sections, dealing primarily with the first resonance peaks 

for both the open and the closed cases. 



3. Perturbation scheme. 

3. 1 Basic expansions. 

12. 

The first question to be solved is the relation between 

€, the Mach number of the gas, and fl, the piston motion. We 

have seen that assuming both to be of the same order leads 

to a first order solution for the velocity that is inadequate near 

resonance. This suggests that the nonlinear behaviour of the 

wave should be made to balance the forcing term, and as this 

nonlinearity can be expressed as a power series in €, it is 

logical to expect that fl can be equated to SOITle integer power 

of €: 

(3. I) 

The value of N has to be assumed at the beginning of the pertur

bation procedure, and the test of the a~sumption is the consis

tency of the resulting analysis. If the as sumed value of N is too 

low, we will get essentially the linear theory (N=l), and if too 

large the solution will be identically zero to the first order, 

contrary to the assurrlption that € is the order of the oscillation. 

It seems to be iITlportant to work the problem directly in 

characteristic coordinates, as working with approximate charac

teristics in the x-t plane gives rise to secular terms in the solu

tion. The problem seems to be the same as with weakly nonlin

ear oscillators, where the period depends on the amplitude, and 
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the cor rect perturbation procedure is by Poincare's method. 

The use of characteristic coordinates here corresponds to the 

expansion of the independent variables used in that case. 

If a. and [:3 are, then, considered as the independent 

variables, the appropiate expansions for u and a are 

a u 
f( [:3 ) 

z 
Y-l - "2 = = 8f1 ([:3) + 8 fZ(~) + 

(3. Z) 
a u 

g( a.) € g 1 (a.) + € 
2 

g2(a.) + Y-l +"2 = = 

The geom.etrical coordinates x and t must be expanded too in 

powers of €. We take 

2 
x=xo(0..,~)+8xl+8 x Z +··· 

2 
t = to (a., ~) + HI + E: t z + ... 

(3. 3) 

Using these expansions in the equations for the characteristics 

(2. 5) and separating orders, we get for all n 

n 
() 

-~ { Y+l y-3 } -2- t "a. (x +t ) - -2- f. (~)+ -2- g. (a.) 
d n n 1 1 80.. n-i 

1=1 

n (3.4) 

a L { Yi 3 £i(!3)+ Y;l gi(U) } ..2...t - (x -t ) = 
8[:3 n n 

i=l 
813 n-i 

The corresponding boundary conditions (2.7) are expanded to: 

At a. = [:3 ; x = 0 and t = a. , o 0 

x=t=O; n:2:1. 
n n 

(3. 5) 
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The system of (3.4)-(3.5) can be solved recursively in 

terms of the f's and g's. The first two orders in x and tare 

x =1-(I3-a), t =1-(13+0.), o 0 
(3. 6) 

which correspond to the linear characteristics, and 

where 

xl = Y;l (l3-a)[ f l (I3)+gl(a)] +Y S3 ['l'l(I3)+~l(I3)-'l'l(o.)-~l(o.)] 

(3. 7) 

tl = Y;l (\3-0.)[ f 1(\3)-gl(o.)] + Y;3 ['l'I(I3)-~I(\3)-'l'I(o.)+~I(o.)] , 

a. 
'1'. (a) 

1 
= J gi(S)dS 

a. (3. 8) 

~.(o.) 
1 

=J £.(S)dS 
1 

Similarly, x 2 and t2 can be computed as functions of f 1 , g I' f2 

and g2' and xn and tn as functions of the fi , gi up to n only. 

This fact makes for an ordered expansion procedure in which 

higher order terms do not "feedback" to lower orders. 

It should be noted that the system (3.4)-(3.5) together 

with the definitions of f. and g. in (3.2) contain all the equations 
1 1 

of motion of the gas, and,. in particular.,. all the nonlinearities 

of the probleITl. All that remains now is to apply the boundary 

conditions to find f and g. 

The first boundary condition is the one at the piston (2. 8). 

With the assumption made above on 0, we can write it, to O(€N) 

as: 
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g.(a) = f.(a) ; i< N 
1 1 

(3.9) 

This condition halves the nUITlber of unknown functions by elimi-

nating the g .. Physically, the wave in the pipe does not "see" 
1 

the piston up to order N, and if N > I, the solution is essentially 

a free standing wave, with its shape deterrr"lined by the piston 

only through the higher order terms. As N = 1 corresponds to the 

clas sical linear theory, near resonance we must actually have 

the situation N> 1. 

Next it is necessary to introduce the condition (2.9) at the 

pas sive end; this condition includes the parameters wand b. 

From the discussion in the last section we know that these param-

eters should be expanded around their values at resonance, 

(3. 10) 

I 
.J , 

where the two first resonance peaks correspond to 

Open end: b = -1 w = TT /2 , 
0 0 (3.11) 

Closed end: b = +1 w = TT 
0 0 

The position x = ill ITT of the passive end will now be mapped into 

a certain line in the a.-t3 plane 

(3.12) 
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To compute it expand 

(3.13) 

Then substitute (3.12) in the right hand side of (3.13), expand 

the x.(~,a.) in Taylor series, and equate like orders to solve 
1 

,...., 
for 13: 

2w 
j3 (a.) = 0.+ _0 

o TT 

(3.14) 

Equations (3.14) can be expressed in terms of the f .. Once 
1 

again, the solution is ordered in the sense that f3 (a.) does not 
n 

contain terms from orders higher than n. Finally, we use all 

these expansions in the reflection condition (2.9), which can 

now be written as: 

Expanding the right hand side in Taylor series and 

separating orders: 

0(8 ): (3. 1 Sa) 

f 2 (a.) -bof 2 (So) =blfl(a.)+boSl(a.)f~(So)-ON2sinTTa.. 

(3.15b) 

(3.15c) 
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where 0NM denotes the Kronecker delta. 

This hierarchy by itself does not allow the calculation 

of the f., unless we impose some conditions on the solution, 
1 

which, in fact, correspond to the initial conditions neces sary 

in the hyperbolic problem. As we are looking for steady 

oscillations. we impose the condition that the solution must be 

periodic with the same period as the piston. But, since a. and 

~ correspond to real time at x = 0, periodici ty in time means 

directly periodi city in a. and ~. So, the desired condition is 

that the f. (a.) be periodic with period 2, i. e. 
1 

£.(0.) =£.(a.+2} for all l. 
1 1 

(3.16) 

These conditions enable us to eliminate the left hand sides frorn 

(3. 15) and get finally a set of equations for f. The details of 

the elimination vary slightly from the open to the closed end 

cese, so that the two cases must be considered separately. 
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3.2 Closed-end case. 

Doing first the closed end case, we start by assuming 

that N = 2 (N = 1 would give the classical linear theory). From 

(3.11) and (3.14), ~ =0.+2, and the left hand sides of (3.15) 
o 

a re of the type 

£.(0.) -£.(0.+2) , 
1 1 

and, because of periodicity, they are all identically zero. The 

desired set of equations is then given by the right hand sides 

of (3.15) equated to zero. 

The equation for 0(8), (3. 15a), is satisfied identically 

and gives no information, but the second equation 0(8
2

), gives 

an equation for i1 

(3. 17) 

with 

2 
<f1>=iJOf1(S)dS (3.18) 

representing the rnean value of f1 over one period. For b I = O. 

the completely closed end, (3.17) reduces to the equation obtained 

by Chester (1964). We delay the analys'is of (3. 17) until the next 

section. 
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3. 3 Open end case. 

For an open end b ::: -1 and 13 ::: 0.+ 1, so that the left hand 
o 0 

sides of (3.15) are of the type"; 

£.(0.) +£.(0.+1) 
1 1 

(3.19) 

and do not vanish in general. However, if the f. have period 2, 
1 

the expressions in (3.19) have period 1, and that imposes restric-

tions on the right hand sides, which give the desired equations. 

In pa rticula r. 

[ R. H. S. ] . (a) ::: [R. H. S. ] . (0.+ 1) 
1 1 

(3. 20) 

is an equation involving only the f up to order i-I. FraIn the first 

order in (3.15) we get 

(3.21) 

so that the waveform changes sign as we advance a semiperiod. 

This is important because it means that any shock wave in the so-

lution implies an expansion shock half a period away. It should be 

:remembered that the original equations were isentropic, so expan-

. 
sian discontinuities are not really inconsistent in lower order ap-

proximations. On the other hand. we will see later that fl cannot 

be calculated until we include third order effects, so that the isen-

tropic assumption breaks down with the presence of shocks of 

O( E:). We will come back later to this problem. 

As sume now N ::: 2, and consider O( e: 2) in (3. 15). Forming 
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the corresponding equation (3. 20) we get, after some algebra, 

i 

b 1 f 1 +w 1 f 1 = s in TT a. • (3.22) 

which is linear and has no bounded solution for the case 

b
l 

=WI =0. corresponding to resonance. That means that the as

sumption N=2 was wrong and that we should go to higher order. 

For N > 2, (3.22) appears with right hand side zero. Therefore, 

b I and wI have to vanish in the resonance band, as the homoge

neous part of (3.22) has no non-trivial periodic solution. 

The physical interpretation of this result is that the res-

0nance band in this case is, at most, 0«(';2) and the piston motion 

O(e: 3). Outside this region we recover again the linear theory. 

As suming then 

(3.23) 

and repeating the proces s for (3. 15) up to third order. we get, 

after a great deal of algebra, an equation for fl 

(3.24) 

where 

(3.25) 

2 
It is, in fact, easy to prove from (3.15) that <fl> is proportio-

nal to <f2 >, and, so, to <f>, as the mean value of fl over one 
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period is zero because of (3. 21). 

The correction to the frequency given by (3. 24) in the 

open-end case is then of the same type as the one given in (3. 17) 

for the closed end, and both can be interpreted as a shift in the 

linear resonant frequency due to the difference between the 

real mean pres sure and the pres sure defined a priori as mean. 

It is interesting, in fact, to examine the validity of the 

separation of the pressure (sound speed) waveform into a mean 

value and a perturbation, particularly as this separation is usual-

ly not clearcut in nonlinear problems. In this case, however, a 

clear definition of a=O is introduced by the boundary condition at 

x=L, as this condition is linear. In fact the reflection condition 

is equivalent to making a ....... u. except for b exactly equal to 1. 

With that exception, then, a=O corresponds to the state at the pi-

pe exit when u=O, and that can, in principle, be related to am-

bient conditions. 

The special case b=l corresponds to the completely closed 

pipe and the gas in the tube, having no connection with the atmo-

sphere,does not have any clearly defined reference pressure. 

This is reflected in the equation (3. 17) where <£1> can be deter

rn.ined for all cases except b
i 

=0. Integrating (3. 17) over one 

period. we get 

2 w < f' > - (y + 1 ) < f i > + b < f > = < sin TT a. > . 
1 III 1 1 

The first two terms are perfect differentials and vanish because 
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of periodicity as does the right hand side, so we get 

b
1 
<f

1 
> =0. 

If b 1 f:. 0, fl has to have zero mean. If b 1 =0. <f1> is not fixed 

and we know from the previous discussion that we can define it 

arbitrarily. To preserve continuity of the solution with b
1 

we 

define a5 

<fl> =0 (3.26) 

for all b
1

, and use this to simplify (3. 17). 
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4. Analysis of the closed-end case. 

We now corne to the problem of actually solving the equa

tions (3. 17) and (3.24) to find the response of the system near the 

two resonances. The first difficulty is that both equations are 

singular for some values of the parameters, and the effect of 

these singularities must be studied before we attempt a numer

ical treatment of the equations. 

Consider first (3.17), representing the closed ended case. 

Following the discussion at the end of the last section, it can be 

simplified to 

with the boundary conditions 

f
l
(0.+2)=f

l
(0.) • 

<f1 >= iS~fI(S)dS = ° 

(4. 1) 

(4. 2) 

(4. 3) 

For all b
l 

f 0, (4.3) is redundant and follows directly from peri

odicity. In numerical calculations, moreover, (4.2) proves to be 

much easier to use. as it reduces the order of the problem by 

one. When b
l 

=0, however, (4.2) is automatically satisfied and 

(4.3) must be used. In this case, though, the equation can be 

integrated exactly, and there is no need for nume rical work. 

It may be well at this point to remember the significance 

of the parameters b
i 

and W l' To do this we rewrite the expan

sions for wand b 
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W~ TT ( 1+ E:W I) , 

(4.4) 
b~ 1- E: b 

I 

and note that W I represents the distance in frequency from exact 

resonance, and b
I 

indicates the deviation of the end condition 

from the perfectly reflecting closed end, or, in other words, 

the amount of wave radiated to the exterior. It follows that 

negative values of b
I 

have no physical significance, and that the 

range of parameters to be studied is the upper-half plane in 

b l-w 1 space. 

The origin of this plane represents the perfectly closed 

pipe at resonance, and so, as we move away from it, we should 

approach the results of the linear theory. In fact, if in (4. 1) we 

let b
I 

or WI grow large. the nonlinear term can be neglected and 

we get asymptotically the linear result 

-I 
X = tan 

(4, 5) 

Another useful property of the system (4.1)-(4.3) is that it is 

invariant to the transformation 

f (0.)'- -f (-a.) 1 1· , 

WI -+ -w 1 ' (4. 6) 

.... 

and so, it is possible to study the solution for W 1 ~ a and extend 
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it to all frequencies by using (4.6). In what follows we always 

assume that wI is positive. 

We now solve (4.1) for the special case b
1

=O, and,as 

stated before, the solution should reduce to the results given by 

Chester for the completely closed end. The equation can be inte-

grated directly to 

y+ I 2 1 
2w 1f 1 --2- f 1 +TI cosTIa. = const. (4. 7) 

or 

2W 1 2 1. 1. 
fl = Y+l - [TT(Y+l)J2 (K+COSTIa.)2 (4. 8) 

where K is an integration constant to be determined with the 

help of (4.3). In attempting to do this, however, we get a 

transcendental equation in K involving elliptic functions which 

has a real root only if 

(4. 9) 

For all other values of wI' then, there is no continuous solution 

satisfying (4.1) and (4.5). Chester (1964) interprets this fact as 

an indication of the appearance of shock waves in the flow, and 

this is confirmed by experiment. 

In fact, in deriving (4. 1), we only used the equations of 

motion up to O(€2), and to this order, a shock wave of amplitude 

O(€) produces no change in entropy and can be treated simply as 

a discontinuity in the solution (Courant & Friedrichs 1948). The 
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speed of propagation of this discontinuity is just the arithmetic 

mean of the wave velocities immediately in front of and behind 

it. This property. and the fact that a shock travelling along one 

set of characteristics does not modify waves travelling along the 

other set, contains the cmnplete shock relations to the order 

needed. 

By using periodicity, the jump conditions across the shock 

discontinuity can now be determined. 

Denote by + and - superscripts the conditions in front and 

behind the discontinuity and consider first a shock, as AB, travel-

ling to the right (see fig. 2). To first order, this shock is 

always located at a given value of a., 

or, expressed in terms of f 1 , 

Therefore, along the shock 

say a. , and its speed is 
s 

(4. 11) 

V 
dx =(1+E:V

l
)dt =dt +E: -21 d~ 

s s s 
(4.12) 

Integrating this equation from A to B, and using the known values 

of x (A) and x (B). we get 
s s 

(4.13) 
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Note that, here, we can not use the condition that <fl> = 0, which 

was derived using the continuity of the solution. Repeating the 

proces s for the left going shock, BA', and combining both re-

suIts, we get 

(4. 14) 

But periodicity imposes that this difference be exactly 2, 

so the shock relation reduces to: 

(4. 15) 

This is, however, still not enough to completely determine 

the solution, as <f > is left unknown. 
1 

We can get this informa-

tion by integrating (3. 17), in much the same way as with the con 

tinuous case, from just in front of the shock to just behind the 

shock one period ahead. Then 

+ -
[w"- _ y+l f 1H

1J 
+ 

[ f-
1
-f

1
J +b

l 
<f

l 
> =0 • 

12 2 
(4.16) 

and using (4.15) we have 

(4.17) 

for all cases except b
l 

= 0, where (4. 17) can be 

fixed by definition as before. 

We may. then, simplify the shock condition with (4.17), 

and use both to construct discontinuous solutions by piecing to-
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gether segments of continuous solutions of (4. 1) with jumps sat-

isfying (4. 15). Detailed examples of waveforms constructed in 

this way are given by Chester (1964) for b
1 

= 0 , so we turn our 

attention to the more general case where b
1 
~ O. 

We can expect that in those cases, too, it will be neces-

sary to introduce shocks for some range of parameters and, so, 

we must study first of all the question of existence of continuous 

solutions;this obviously depends on the behaviour of the singular-

ities of (4. 1). We study these singularities next. 

They occur in the f1 - a. plane, when the coefficient of 
I 

f1 vanishes, or 

2w 
f =_1 
1 y+ 1 (4. 18) 

and the solution f1 (a.) is only affected by them when it has to 

pas s trough that value. For large values of wI' that can only 

happen for very large amplitude waves. However, the asymptotic 

solution (4.5) suggests that the amplitude really decreases as wI 

increases, so condition (4.18) is never realized for large w1 and 
'-

continuous solutions should be expected for that range. Once a 

continuous solution has been shown to exist, it is easy to convince 

oneself that it is unique. 

As W I approaches zero, though, the wave amplitude in

creases and (4.18) decreases, so that, at some sufficiently small 

frequency the solution will touch the singularity at some point. We 

need to consider, then the behaviour of (4. 1) near those points, 
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and, to do this, we expand the equation for small displacements 

around (4.18). In particular, let 

(4.19) 

where cP is some general value of a. in the neighborhood of which 

we want to study the solution. Substituting in (4. 1), we have 

(y + 1) g g! - big = ( Y ~ 1 b 1 WI - sin nip) - ( nco snip) x + .... 
(4.20) 

There are two pos sible cases, depending on the cP chosen. In 

most instances the constant on the right hand side of (4.20) is 

not zero, and the behaviour of the solution is then given by 

(4. 21) 

The exact shape of g depends on the sign of the constant in brack-

ets, but it always includes a branch point at x = 0, giving two-val-

ued solutions which are inadmissible from a physical point of 

view (see table I). 

If, however b W ::; y+ 1 there are two points in every 
1 1 2 I 

cycle in which the constant term in (4. 19) vanishes. Name these 

point as 

(4. 22a) 
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- + ~ =TT - ~ (4. 22b) 

The leading ter:ms of (4.20) near those points are 

(y+1)gg' -bIg+(TT cosTTi.P)x= 0 . (4.23) 

This is now a bilinear equation, which can be solved exactly 

(Birkhoff & Rota 1969). The type of the solution depends on the 

behaviour of a particular quadratic algebraic equation involving 

the coefficients of (4. 23). As the value of q, in (4. 23) can be ex-

pres sed through (4. 22) III terrns of b l and wI' the nature of the 

singular points can be classified in ter:ms of these paraITleters 

alone. 

A su:mITlary of the ITlost iITlportant results of this c1as sifi-

cation is given in table 1. Fro:m this table it is clear that if a 

continuous solution is to cross the singular line (4.18) anywhere, 

it has to do it through one point of type III or IV. In fact, if it 

crosses the line at all, it has to cross it twice, + once at q, and 

another at q, • and because of the shape of type III, it has to 

eros s at ~ + going up, and co:me back at q, - going down. If now, 

:maintaining the sa:me b
I

, we start decreasing wI' the point at 4+ 

starts to flroll-up" fro:m type III to a spiral point of type II. At 

the ITlo:ment that this happens, and <I> + becoITles of type II, the so-

lution is no longer able to cross the singular line through that 

point, although it is still able to get back through ip • At this 

+ rnOITlent an incipient shock develops at ip and it grows bigger and 

bigger as the spiral rolls tighter with wI approaching zero. 
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Thus, the nature of the singular points divides the b
l 

-w 1 

plane into regions, and in each region the pos sible types of so-

lution are different. This classification is presented in figures 3 

and 4. These, and all subsequent figures are drawn for air 

(y = 1. 4), although a simple change in scale will adapt them for 

other values of Y. The waveforms given in figure 4, are those 

of the pos sible singular solutions in each region. In each case it 

is pos sible, in principle to have. besides, a continuous solution 

which never crosses the singular line, like that in region a.. The 

existence of this solution can be best decided by trying to inte-

grate the equations numerically to find it. 

The process used by us was a second order "shooting" 

scheme (Keller 1968), starting from large wI for a fixed b
l 

with 

the asymptotic solution (4.5) and working inwards keeping b
l 
co~ 

stant and decreasing wI ' until the solution touched the singular 

line. The points in the bI-w
i 

plane where the solution first touch 

ed this line are given by 00' in figure 3. To the right of that 

line the solution is continuous and nonsingular. To the left, the 

solution has to cross the singular line and the best way to find 

+ . it numerically is to start integrating from ~ wlth the slope giv-

en by the analysis of the singular points and integrate forward 

and backwards until the solution crosses the singular line again. 

A shock can then be fitted, if needed, -using (4.15). 

The calculations show that, in the regions a. and ~, it is 

always possible to find a continuous solution for f
1

, although the 
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derivative may be discontinous at ip- in some cases. The region 

of the b l -WI plane where the solutions contains shocks is then 

only the part OCA of Y lying to the left of 00'. 

All this discussion belongs, of course, only to the case of 

wI> O. For negative wIthe results are completely symmetric, ac

cording to the transformation (4. 6). 

Finally, figure 5 gives some examples of waveforms com

puted for three different values of b l and several wI' using the 

method outlined above. Figure 6 is a plot of wave amplitudes as a 

function of wI for various values of b l . The four quantities repre

sented in each plot are respectively the maximum and minimum 

values of f 1 , and the values at the top and foot of the shock. 

It is to be noted that, although a shock is present in the 

solution for relatively large values of b
l

, its strength becomes 

very small for much lower values of the radiation coefficient, to 

the point of being practically negligible for the larger b I s. 
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5. Results for the open end case. 

We now turn our attention to the pipe with the open end. 

The pertinent equation is (3.24) 

sin TTa. 

(5. 1) 

and is to be integrated in the interval (0,1) subject to the condi-

tion 

(5. 2) 

The results can be extended to the full period (0,2) by using 

fl (0.+1) = -f1 (a.) (5. 3) 

The significance of the parameters b
Z 

and W z is similar to the 

corresponding ones in the previous section, and, here too, b
2 

is essentially a non-negative number. 

The whole problem is mathematically very similar to the 

closed end case, and most of the analysis carries through direct-

ly to (5. 1). The singularities in this case are located at 

so they form two singular lines, instead of one. From (5.4), 

too, these lines are only real when w
2

:S;; O. For positive w
Z

' we 

can expect no trouble with singularities and the solutions are 
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continuous and well behaved; this is of course also true for w
2 

sufficiently negative. 

For intermediate values of the frequency, however, the 

solution eros ses the singular lines and exhibits the same kind 

of phenomena as the closed end solution. The analysis of the 

singular points runs exactly parallel to the one there, and, in 

fact, the approximate equation near (5.4) is also bilinear in this 

case, the only difference being that the roles of the points ip+ 

and ip are interchanged. The fact that there are two singular 

lines instead of one does not affect the results much, because it 

turns out that each line interacts with only one half period of the 

waveform, as could be suspected from (5.3). In particular, the 

interval (0,1) is only involved with the plus sign in (5.4). 

There are, however, several important differences between 

this and the closed end case. The first one is the existance of a 

shift between the effective frequency w
2

' and the physical quantity 

w
Z

. This shift vanished in the closed pipe, as we were able to 

show that <f 1 > was always zero. In (5.1), however, the shift de-
... 

pends on <f~ > which is a strictly positive number. 

The significance of this shift was dis cus sed in section 3. 

and its effect in the system is to tilt the resonance peak toward 

lower frequencies, this effect being more pronounced as b 2 be-

comes smaller and the wave amplitudes grow larger. 

Numerically, of course, all the work is done first using 
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W2 as a paraITleter, and after the solution is found, w
2 

is COITl

puted using (5. 1). The results presented in this section are for 

Y=l. 4, but, due to (5.1), the change to other gases no longer 

corresponds to a siITlple change in scale. 

The division of the b
2

-W
2 

plane according to the type of 

singularities is plotted in figure 7. where the naITle of the regions 

correspond roughly to the descriptions given in section 4. The 

solution pas ses through the singular lines in the region between 

the 00' line and the b
2 

axis. The only region qualitatively dif

ferent froITl the closed case is the one to the right of the ordinate 

axis, where no singularities exit and the solution is always contjn-

uous. The shock region is given by the .area of region y to the 

right of 00' and, in figure 8, it is plotted in "physical" b 2 -w 2 

coordinates. 

A very iITlportant difference with section 4 occurs, however, 

in the behaviour of the solution within the shock region. The 

main reason for it lies in equation (5.3), for this equation as-

sures that anything that happens in one seITliperiod. will happen with 

opposite sign half a period later. In particular. any cOITlpresion 

shock in the wave must be followed by an expansion shock of the 

saITle strength, which is physically quite unlikely. 

Even ITlore iITlportant is the fact that (5. 1) really derives 

3 
froITl the equations of ITlotion used up to 0(8 ). and assuITled 

isentropic. Now, the entropy production of a shock of aITlplitude 
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of O(e:) first appears in the equations at O(e: 3), so that the 

assumption of isentropic flow is inconsistent with the existence 

of shocks. This is reflected mathematically in the impossibility 

of finding any condition for a discontinuity in the solu-

tion to represent a shock, equivalent to (4.15) for the closed 

case. In fact, as we try to repeat the process in section 4. to 

get this kind of condition, we run into the difficulty that any 

effect produced by the shock is cancelled by the opposite expan

sion shock somewhere during the period. 

The influence of entropy production on the solution has 

another effect on the attempt to formulate a physical model includ

ing this influence. The flow in the pipe is supposed to be peri

odic, so that the entropy produced by one passage of the shock 

at one point has to be removed somehow before the next passage. 

The way this entropy is removed is, of course, by cooling the 

fluid through the walls of the tube, and the modelling of this 

cooling depends on the exact experimental set up, and introduces 

new parameters in the problem. 

To avoid these complications, and in view of the fact that 

the reflection condition is probably not very good for shocks at 

an open end, we decided to abandon the attempt to compute dis

continuous waveforms in this case. The boundary of shock forma

tion, plotted in figure 8. should remain valid, however, as it is 

essentially a negative result establishing the impossibility of 

continuous solutions. 



38. 

Some representative waveforms computed for three differ-

ent values of b 2 and several frequencies are given in figure 9. 

For the first two values of b
2 

the solution cuts across the shock 

region so that only results for the frequencies on either side of 

the boundary are shown; in those cases, the tendency for shocks 

to form can already be seen quite clearly. The third value of b
2 

is above the shock boundary and so the waveforms can be com-

puted for all frequencies and is always continuous. In figure 10, the 

half amplitude of the wave is plotted versus frequency with b
2 

as 

a parameter. The gaps in the curves correspond to regions with 

shocks. 

The most important result in connection with the open end 

case is, however, connected with orders of magnitude. Going 

back to the definition of O. as measuring the amplitude of the 

piston motion and E: as measuring the strength of the gas motion, 

we see that in the closed end E: =0 i, while in the open end 8 = 0 ~, 
and the oscillation is in fact stronger when the end is open. 

This result, which may seem somewhat surprising at first 

sight, is however easily explained. The effect of a closed end on 

an incoming wave is to reflect it with the same sign in pres sure" 

Thus, a compression wave is reflected as a compression wave, 

and never changes sign. Consider now a small pressure step 

produced, say, at the piston in a closed pipe. 1£ the step was 

initially a compression, it remains a compression forever, and 

the steepening of the wave, that is, the interaction of the wave 
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with itself, acts continually and becom.es eventually im.portant. 

This nonlinear effect appears in the equation at 0(8
2

) and helps 

"kill" the linear resonance. 

For an open end the sign of the wave in the pipe changes 

eve ry tim.e it is reflected at the open section, and so any pa rtic

ular signal is a com.pression half of the tim.e and an expansion 

the other half. So, the steepening by interaction of the wave 

with itself never accum.ulates, and it is only after third-order 

interactions com.e into play that the linear resonance can be 

lim.ited. 

It is im.portant to realize on the other hand that, from. 

the point of view of the energy, an ideal open end is as closed 

as a rigid wall. In fact the energy flow out of the end section 

is given by 

E=§pdV (5.5) 

where V is the volum.e of the gas originally in the tube. For the 

closed pipe dV=O at all tim.e and the energy flow vanishes. But 

for the open pipe the pres sure is constant at the exit, so that 

E=p§ dV=pL'lV= 0 > (5.6) 

by periodicity, and the energy flow vanishes too. 

Therefore, the only rem.aining factor to decide the strength 

of the wave is the order of the nonlinearity, and a weaker effect, 

like the one in the open end will not lim.it the resonance peak 
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until the higher amplitudes necessary to make the nonlinearity 

important are attained. 

In the real world, of course, open ends do radiate a lot 

of energy, which means that the perfect open end, bZ=O, is pro

bably a limiting case with no physical reality. 
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6. Conclusions 

The breakdown of linear acoustic theory at resonance in 

both closed and open pipes can be remedied by appeal to higher 

order non-linear effects. A consistent perturbation analysis of the 

non-linear equations is presented for the case of oscillations pro

duced by the sinusoidal motion of a piston in one end of the pipe. 

At the other end of the pipe, it is supposed that the wave profile 

reaching that end is reflected with a factor b. This reflection co

efficient ranges from b = 1 for the completely closed end to b = -1 

for the "ideal" open end used in acoustics. Resonance occurs for 

b in the neighborhood of b = 1 and b = -1. Particularly for the near 

open end, this boundary condition is obviously a severe simplifica

tion of a complicated situation. In fact, the reflection characteris

tics may depend on the freguency, the shape of the particular wave 

profile and so on. The attitude here is not, however, to insist 

that the reflection is independent of these influences, but rather 

to learn about the "eguivalent b" by comparison of the results with 

experiment. As reported by Sturtevant (1973), it was possible to 

correlate theory and experiment in this way, and indeed the theo

retical results were invaluable in developing a correct rational in

terpretation of the experiments for a variety of input conditions 

and end conditions. This information on the effective reflection co 

efficient, its dependence on frequency etc. should be valuable in 

other situations. 
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For the open and near-open pipes the am.plitude of the os
l 

cillations in the pipe are 0(0"3), where 0 is the piston am.plitude. 
1 

This is in m.arked contrast to the result O( 0 2 ) obtained by earlier 

investigators for the closed end case. In the closed or nearly 

closed cases, b R:l 1, the result stem.s from. a balance between non-

linear steepening and forcing by the piston. For the open end 

cases bR:l -1, however, the second order distortion effect alternates 

in sign for the successive runs up and down the tube, and the 

forcing can only be balanced by third order terms in the gas am.-
1,.. 

plitude. The resulting amplitude proportional to 0 3 is then higher 

than in the closed end case. This is confirm.ed by experiment for 

appropriate ranges of the parameters. The detailed comparison of 

this and other predictions with the experimental observations is 

given by Sturtevant (1973). 
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II. WAVETRAINS WITH SMALL DISSIPATION. 

1. Introduction. 

The concept of a stationary wavetrain is a very useful 

one in ITlatheITlatical physics. For the siITlple case of a linear 

partial differential equation, wavetrains have the forITl 

ie u::.ae e = kx - wt , (1. 1) 

where wand k are related by a dispersion relation 

w = w(k) (1. 2) 

which can be derived froITl the original equation. More general 

solutions can, then, be constructed by Fourier superposition of 

wavetrains with different values of k. 

The best known exaITlple of approxiITlate wavetrains COITles 

froITl the theory of linear dispersive waves (Brillouin 1960). In 

these cases the dispersion relation (1. 2) is assuITled to be real 

with Wi 1 (k) i= o. It can, then, be shown that for appropiate (loca

lized) initial conditions the solution tends. after a long tiITle. to 

a forITl 

i8 
u=ae 

with 

k=8 
x 

(1. 3) 

(1. 4) 

and the aITlplitude. a. no longer constant but depending on x and 
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t. This dependence, however, is slow, in the sense that the 

characteristic scales for the variation of wand k are much lar-

ger than the period of the oscillation (1. 3). In this sense, the 

solution can be considered locally as a wavetrain with parameters 

varying slowly over a much longer scale. 

The rigourous way of showing this is to use Fourier anal-

ysis and study the asymptotic behaviour of the solution as t .... CX>. 

But a simpler way of studying the final asymptotic state is to use 

the WKB method in which we look specifically for solutions of the 

type (1. 3) with slowly varying w, k, and a. In this method we 

define slow variables 

X=E:x, T=E:t, 

and look for solutions of the form 

i 
u = a(X, T) e 

8(X, T) 
E: 

e -1 where has been written as E: G(X, T) and 

w = -8 = -8 
t T k= e = e 

x X 

(1. 5) 

(1. 6) 

(1. 7) 

are functions of X and T. Substituting this foral In the original 

equation and separating different orders in E: we are able to get 

the "modulation" equations satisfied by w, k, and a. 

In nonlinear PDE's we also find stationary wavetrains. 

although in this case we can not use them to generate other 

solutions by superposition. However, the concept of slowly vary-

ing wavetrains, not depending directly on the additivity of the 
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solutions, is still useful, and is introduced in much the same 

way as in the linear case, with the appropiate form for the 

wavetrain substituted instead of (1. 6). 

The methods used to study these problems are usually 

called two-timing methods, because a solution of the type (1. 6) 

can be considered as depending in x and t in two different 

scales: a fast oscillation in e =8 -Ie with period of 0(1), and a 

slow modulation in X and T, in which the relevant times are 

-1 
0(8 ). 

The existence of two widely separated scales presumes 

the existence of some small effect forcing the slow variation 

on the fundamental wavetrain. In the case of the dispersive 

waves the small effect is the dispersion, which acts slowly once 

the wavetrain is strongly dispersed after a long time and each 

point in space contains essentially a single wave number. 

In this part of the thesis we study the case in which the 

slow variation is induced by a small dissipation term in the 

equation. The perturbation ITlethod we use is Whitham's averaged 

Lagrangian technique. 

The averaging two-timing methods were introduced by 

Kuzmak (1959) for ordinary differential equations. The general 

idea is to integrate over a few periods of the wavetrain so as to 

"smooth out" the fast oscillations and recover the equations 

satisfied by the large scale variations of k, w, and a. 

Whitham (1965) generalized the method to dispersive 
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partial differential equations by averaging on the conservation 

equations of the system and, later (1970), developed a way of 

treating the problem by averaging directly on the Lagrangian of 

the system. This last version of the method offers a remarkably 

compact way of deriving the slow equations for the problem, and 

has the advantage of being as effective in nonlinear as in linear 

problems. One drawback is that it can not be used in its origi

nal form if the system under study does not derive from a known 

variational principle, as is the case with most dissipative sys

tems. 

In this work we remove this limitation. To do that we use 

a pseudo-variational principle introduced by Glansdorff and Pri

gogine (1954) for irreversible systems. This principle is discus

sed in § 2. 

In § 3 we present the original averaged Lagrangian method 

and illustrate its generalization to irreversible systems with a 

few simple examples. The general method is presented and jus

tified in § 4. 
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2. Variational principles for irreversible systems. 

2. 1 Reversible and conservative systems. 

The clas sical use of variational principles has been in 

mechanics, in processes which are normally characterized as 

reversible. 

In fact,it has long been mantained that a Lagrangian 

formulation of the usual type does not exist for irreversible 

systems, although, while probably true, this has never been 

rigourousl y proved. 

Part of the difficulty seems to be the lack of a proper 

definition for irreversibility. A reversible system is usually 

thought of as one for which the internal production of entropy 

is zero. Entropy, however, is not a quantity clearly defined 

for all cases. Thus, for instance, although most people would 

agree that a damped oscillator is irreversible, it is quite 

difficult to argue about its entropy production unless it is 

considered part of a rrlUch larger system including a heat sink, 

etc. 

When the problem at hand is to decide if a given equation. 

which physically "looks" irreversible, is going to derive from 

a Lagrangian formulation or not, the entropy argument seems 

fairly hopeless. 

The other usual definition of irreversibility, namely that 

the equation be invariant under the change of t into -t, while 
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very useful in ITlechanical systeITls, looses ITluch of its utility 

when used in partial differential equations. In particular, to 

recover the original equation froITl a "physically reversible" PDE, 

we need sOITletiITles to reverse not only the tiITle, but the space 

coordinates, or, in nonlinear cases, the sign of the dependent 

variable. 

On the othe r hand, ITlany irreversible systeITls can be 

reversed by changing the sign of "too ITlany'i variables, and, in 

any given case, the nUITlber of variable's that we are allowed to 

change is very ITluch deterITlined by the physical ITlodel. 

in fact, the feeling that the daITlped oscillator is not 

reversible COITles ITlainly froITl the fact that it is not conservative. 

Conservative systems are usually defined as those which conserve 

energy. The concept can be made more appropiate to PDE's 

by requiring theITl to conserve all cOITlponents of the energy 

tensor. For ITlechanical systeITls these include, of course. mo

mentUITl. 

Irreversible systeITls, at least mechanical 'ones, are 

usually not conservative. The converse is, however, not true. 

and there is a wide clas s of systeITls which do not conserve 

energy but are perfectly reversible. These are all those which 

interact with variable external fields or moving constraints. 

The feeling that those systems are reversible steITlS 

froITl the fact that, in reversing the time, we are allowed also 
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to reverse the evolution of the external conditions, and the 

behaviour of the new system is qualitatively the same as before 

the change in time direction. What this means is that the non

conservation of energy does not worry us because we know 

where it comes from, and its source is simple enough for us 

to recognize explicitly in our calculations. 

The problem of finding variational principles for these 

systems is generally not more complicated than for the equiva

lent systems with constant external conditions. The only differ

ence is that we get Lagrangians depending explicitly on time. 

There is a close relationship between Lagrangian repre

sentation and conservative systems. It is well known (see Gelfand 

& Fomin 1963) that any system possesing a time-independent 

Lagrangian satisfies an energy conservation law. Additional invari-

ances in the Lagrangian induce in turn corresponding conserved 

quantities. 

The point is that, if a system derives from a variational 

principle and does not conserve energy, the only possible reason 

is an explicit dependance on time within the Lagrangian. And 

this dependance is physically allowable only if it is explicit in 

the systea'J. itself, All these dependances are usually grouped 

under the generic name of external conditions. 

The non-conservation of energy in a damped oscillator is 

of a different type. In this case, also, the energy lost by the 

system is lost because of interaction with the external medium. 
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but now this interaction is not so simple as before, and we can 

not expect to reverse it easily by manipulating the external 

world. 

Thus, a pendulum running backwards will still eventually 

stop. A profound enough manipulation of its bearings might 

enable us to produce a negative friction' coefficient, in which 

case the system might be considered reversible. But we know 

experimentally that this manipulation has to be drastic enough 

to produce what must be considered a different physical system. 

Irreversibility then arises from a failure to analyze prop

erly the external universe. For example, although it is possible 

to find a time dependent Lagrangian for the damped oscillator, 

this dependence derives from. artificial transformations instead 

of frorn any intrinsic understanding of the interactions with the 

outside world, and we do not consider it physically relevant. 

In fact, it is well known that any SturITl-Liouville system 

can be put into self-adjoint forrn by a simple change of variable. 

But this transformation involves the time in a way that has 

nothing to do with the forces acting on the system. 

As noted above, it is impossible to find a time indepen

dent Lagrangian for a non-conservative system. 

The problem is very much the same as the distinction 

between heat and work in thermodynarnics, with work being 

defined as the effect of external fields, ordered and controllable, 
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and heat as the rest of the interactions with the exterior, which 

are not counted as fields. and are not completely described. 
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2. 2 The beauty of conservation laws. 

The easiest cases of conservation laws appear in ITlechan-

ical systeITls depending on a single variable. In these cases, 

conservation of a quantity siITlply ITleans that this quantity is an 

integral of ITlotion. This is the result of integrating an equation 

of the type 

dE 
cit = O. (2. 1) 

In systeITls described by PDE's the forITl of a conserva-

tion law is sOITlewhat ITlore cOITlplicated. A typical example is 

~ + ~ = 0 (2.2) at ox ' 

where e is the density of the conserved quantity, and q is called 

its flux. AssuITling appropiate boundary conditions, equation (2.2) 

can be integrated over all space to give 

d~ S e dx = 0 (2. 3) 

which defines again a global conserved quantity as in (2. 1). 

The great significance of these quantities is that they 

relate initial and final states of a system without any regard to 

the details of the ITlotion in between. In this way it becomes 

possible to characterize SOITle aspects of the entire evolution of 

the systeITl by a single nUITlber, instead of a cOITlplete function 

of time, and conservation laws occupy a central position among 



65. 

the laws of nature. 

The slowly varying wavetrains that we study in this work 

can be considered as almost conservative systems. In fact, any 

periodic motion is conservative in some sense, as it repeats 

itself every cycle, and the idea of the two-timing method in 

mechanics is precisely to explore the slow modulation of the 

integrals of motion (see Cole 1968). 

It is not surprising, then, that Whitham (1965) extended 

the method to PDE's by applying the two-timing to the conserva-

tion laws, and later (1970), using the relation between these and 

the Lagrangian formulation, was able to treat the whole slow-

modulation problem directly from the variational principle. 

The great simplification of using the two-timing on conser-

vation laws can be seen from the following example. Assume 

that E is a quantity associated with some slowly changing oscil-

lation, and so is periodic on some phase 8 and modulated over 

s orne slow time T, defined in such a way that 

dE aE aE ill = W(T)8"8 + e: aT . (2.4) 

Assume first that E is a conserved quantity, so that 

~~ = 0 (2. 5) 

The two-timing of (2.5) is straightforward as, using (2.4) and 

integrating over one period in e. we arrive at 

d~ § E de = o. (2. 6) 
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As sume, however, that E satisfies some other equation, 

not in conservation form, such as 

dE -i.- E2 = 0 
dt ' (2. 7) 

When we try to use the same averaging procedure on this 

equation as we used on (2.5) we find that, not only we get two 

different integrals mixed in the resulting equation 

(2. 8) 

but this equation contains terms of several orders in E:. and we 

have to continue working on it before we get useful results. 

In general, the "averaging" versions of two-timing, like 

the one used above, although they offer great simplicity of compu-

tation, can only be used on conservation equations. 

The next step in simplification is Whitham's averaged La-

grangian m.ethod. in which the two-timing is carried directly on 

the variational principle. We will talk about it in section 3, but 

first we have to look into the problem of finding variational prin-

ciples for a given system. 
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2.3 Variational principles for irreversible systems. 

In section 2. 1 we discus sed which physical systems can 

be expected to be described by a variational principle. The 

ITlathematical problem of finding the Lagrangian given the equa

tions of ITlotion of the system is much lTIOre cOITlplicated. In fact, 

we do not even know the existance conditions for these principles. 

It is well known (Vainberg 1964) that a neces sary and 

sufficient condition for a system of equations to derive from a 

variational principle is that the linearized system be self-adjoint. 

And, given a system of this kind, it is easy to cOITlpute the 

corresponding Lagrangian. 

The property of self-adjointnes s. though, depends critical

lyon the exact way the equations are written, and in many cases 

a siITlple change of variables will convert an operator which is 

not self-adjoint in one which is. 

There have been many attempts to characterize which 

systems of equations can be thrown into the right form by some 

suitable trick, and recently (Seliger & Whitham 1968, Seliger 

1968, Myers 1972) some progress has been rn.ade in that direc

tion. 

A different problem. is to find some kind of useful extre

mum principle for systems for which we do not expect to find 

a c1as sical Lagrangian. These principles should have for these 

systems as many as possible of the useful properties that c1as-
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sical Lagrangians have for the conservative ones. 

In particular we are interested here in a pseudo-Lagran-

gian that is useful for approximate calculations and gives us the 

equa tions of ene rgy, momentum, etc. 

Suppose that we want to derive a real, arbitrary set of 

equations 

Mu= 0 (2. 9) 

from an extremum principle. Perhaps the simplest way is to 

minimize the functional 

J[ uJ = S (Mu)2dt = (Mu, Mu) , (2.10) 

where (.,.) is a suitable inner product. Obviously the solutions 

of (2.9) make J minimum, but the class of minimizing solutions 

for (2.10) is much wider. Assume, in fact, that M is linear 

and carry out the variation in u: 

oJ = 6 (Mu, Mu) = (MOu, Mu) + (Mu, MElu) = 2 (M':'Mu, eu) 

(2.11) 

:::;<: 

where M is the adjoint operator for M. The Euler equation for 

(2.10) is then 

(2.12) 

The interesting things about (2.12) is that the extra solu-
,', 

tions besides those of (2.9) are associated with the operator M"', 

and that, generally, the dis sipative properties of M are opposite 

to the ones of M. So. for a damped oscillator 
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d
2 

d 2 
M = -- + 28 dx + r3 , 

dx
2 

(2.13) 

':< 
and M is a negatively damped system which gives unstable 

solutions. 

The reason is that (2.12), corning from a Lagrangian, has 

to be conservative and the energy dissipated by M has to be 

transferred somewhere within the system. In this example it 

appears in M as a negative dis sipation. 

This is quite a general argument, and in all variational 

formulations of dissipative processes we can expect a "ghost!! 

system where the dissipated energy is fed, having no physical 

reality whatsoever, The main problem with the form (2.10) is 

that the physical and conjugate systems are completely inter-

mixed in the Euler equations and can not be separated effectively. 

Some ways to circumvent this difficulty have been inves-

tigated. specially in the field of irreversible thermodynamics, 

and, in particular, Glansdorff & Prigogine (1954) developed a 

pseudo- Lagrangian formulation that suits our problem quite well. 

They point out that practically any system, like (2.9), 

can be derived from a variational principle if the dependent varia-

ble is allowed in the Lagrangian in two forms, u and u, and in 

executing the variation only one of them, u, is varied, • while u 

is considered fixed. 
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Only after the Euler equations are obtained in this way 

do we drop the distinction between the two varieties of u, and 

set u=u. 

For example, a trivial pseudo-Lagrangian for (2.9) might 

be 

J(u, uJ= J uMudt, (2. 14) 

whose Euler equation after variation of u is 

Mu= 0; (2.15) 

and letting now 

u=u (2.16) 

we recover (2.9). 

It is easy to see where the conjugate divergent system 

is hidden in this m.ethod, for, if M is linear 

,'< 
J [ u, u] = (u, MIT) = (ii, M . u) , (2. 17) 

and, upon variation of u we recover the adjoint equation for (2. 9) 

(2.18) 

Although this method may look artificial at first Sight, 

its main usefulnes s resides in the clear separation between the 

physical system. (2. 9) and the conjugate one (2. 18). In fact, it 

can be argued that it represents a straight generalization of 

the cIa s sical va ria tional principle s. 

Consider a classical Lagrangian 
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J[uJ=JL(u)dt= (L(u),l), (2. 19) 

where L(u) is not to be considered as just a function but as the 

result of an appropiate operator on u. For instance, most La-

grangians are functions of u and u
t 

at least. 

The operation of varying u in (2. 19) can be considered 

a differentiation in function space of the functional J [uJ (see 

Vainberg 1964, Ch. II). In fact 

<5 J [uJ = <5 (L, 1) = ( ~~ , <5u) = ( ~~ • eu) = 0 (2. 20) 

DJ 
where Du represents the gradient of J with respect to u, and 

6L ou represents the variational derivative in the Euler equation 

for L under variation of u. Vainberg called operators that can 

be written as a gradient of a functional, potential operators, and 

they correspond to the ones that can be derived directly from a 

variational principle. 

Not aU operators are potential, and a natural step might 

be to explore forms of the type 

(2.21) 

where M is not potentiaL 

In fact, any equation Mu=O can be derived directly from 

(2. 21), and the problem of finding a Lagrangian for it is to 

reduce 6' J to a 'perfect differential" form like (2.20). This sounds 

a lot like the reduction of Pfaffian forms, and it would be inter-

esting to look into this idea further. 
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An earlier connection between the problems of finding a 

Lagrangian and reducing a Pfaffian was suggested by Seliger & 

Whitham (1968). 

In this sense. pseudo-Lagrangians like (2. 17) can be seen 

as giving rise to forms of the type (2.21) that can not be re_ 

duced to exact potentials. 

In choosing a pseudo-Lagrangian we have much more 

freedom than in the clas sical case. Besides being only determined 

up to the addition of any divergence term, it is clear that we 

can add to it any term depending only on 11, as it does not in

fluence the Euler equations. 

Moreover. we have the choice of retrieving the final 

operator in terms of u, u or both. For instance, the two 

Lagrangians 

uMu and uMu- uMu 

are perfectly equivalent representations of (2.9), but their 

Euler equations corrie out respectively as 

Mu=O and Mu+ M':<u- M':\i =0, 

which reduce to the same equation once we make u=u. This is 

just a particular example of the equivalence between 

L(u. u) and L(u, u)-L(u, u). 

The question of which form to choose for a particular 

case depends on the application desired. In our case, in which 

the important thing to be emphasized is the proximity of the 

system to a conservative one, it is convenient to display this 
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in the Lagrangian. Assume, in fact, that our system is described 

by 

M(u, E:)= 0 (2.22) 

where M(u,O) is conservative. and derives from the regular 

Lagrangian L(u), and M(u, E:)-M(u, 0) is 0(1). Then, the pseudo-

Lagrangian for (2. 22) can be written as 

A(u, u) = L(u) + I(u, u) ~ (2.23) 

. 
where I(u, u) is of o( 1) and represents the irreversible part of 

M(u,€). From now on we will always use a form like (2.23). 

Other forms have been developed for the original applica-

tion of this method in irreversible thermodynamics and numerical 

calculations. An extensive review of these applications can be 

found in Donnelly (1966). 
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3. The averaged Lagrangian technique. 

3. 1 Reversible systeITls. 

We will review briefly WhithaITl's technique of the aver

aged Lagrangian before we try to apply it to dis sipative sys

terns, A more extensive account can be found in WhithaITl's 

0wn papers (1970,1971). 

The method was developed primarily to treat slowly 

changing dispersive wavetrains, and it is in partial differential 

equations where it finds its main use. Howeve:c y all the essen

tial features can be illustrated using ODE's. and this perITlits 

a considerable reduction in computation. The extension to se v

era1 independent variables is straightforward and we will 

present later an exaITlple of that use. 

Consider now a perturbed oscillator described by a 

Lagrangian L(u, Ut' T), where T=et represents an explicit time 

dependence in L, but only in a time scale long with respect to 

the character lSUC period of the system.. The sITlall parameter 

E: m.easures the ratio between fast and slow tim.e scales. 

For E: = 0 the time dependence disappears. and the m.o

tion of the oscillator is periodic in thne y with some character

istic aITlplitude and frequency. For e I: 0 we can use a two

time representation for u 

u= U(8? T; e ). (3. 1 ) 
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where U is assumed to have period 2IT in 8, and 

(3. 2) 

In this representation, the instantaneous angular frequency w, 

and the amplitude implicit in U are considered functions only 

of T. The two scales of the motion are, then, e and T. 

The trick now is to consider U as a function of these 

two variables. Then. 

(3. 3) 

and 

(3.4) 

The Euler equation for the oscillator is 

~ L L = 0 , 
dt u

t 
u 

(3. 5) 

and using in it the transformation 0. 3) we get 

(3. 6} 

where Ll and L
Z 

are derivatives of L with respect to its first 

and second arguments respectively. But the Lagrangian now has 

the form 

(3.7) 

so that (3.6) can be written 
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(3. 8) 

which is just the Euler equation for the two-variable variational 

principle 

2IT 
OSSO L(U, wUS+e:UT;e: )dS dT=O, (3.9) 

where the integral in S is taken over one period. 

To obtain the modulation in the slow time T we can use 

the average Lagrangian 

(3.10) 

in 

(3.11) 

Equation (3.11) is the expression of the averaged varia-

tional principle. 

This principle is exact, as no approximations are invol-

ved in its derivation. In practice, though. to use it as such 

would m.ean that we knew the exact form (3.1) of U, and that 

is equivalent to solving completely the Euler equation" 

Using it as part of an asymptotic expansion, however, we 

can in principle solve the Euler equation (3. 6) in 8 to any order 

needed, while solving for the m.odulation from (3. 11). The ze-

roth order solution is particularly simple, because (3.6) becomes 

independent of T and the solution is just that of the unperturbed 
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system. 

Consider. for example, the linear oscillator with a varia-

ble spring constant 

2 
U

tt 
+ ~ (T) u = 0, (3.12) 

whose Lagrangian is 

(3.13) 

Using the change of variables (3.2) the Euler equation 

becomes, to zeroth order, 

2 2 
W Ue e +~ U = 0 . (3.14) 

If we force U to have period 2rT, we need W == 13, and the 

solution of (3. 14) is 

U = a. sin 9 (3.15) 

Substituting in the averaged Lagrangian we have, to the same 

approximation, 

12( 2_Q2) 4U W f-' • (3.16) 

Here the "constants" a. and lJ) are functions of T and 

become the variables in!. When we use (3.16) in the variation-

al principle, the functions that we have to vary are 0:., and a, 

which is now present thru w. 

Varying a. we get 
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8£ 
80. = 0 i. e. W = ~ , (3. 17) 

which gives the correct dispersion relation, and, varying ®, 

i. e. 
2 a. w = const. (3.18) 

This last expres sion is nothing else than the adiabatic invariant 

for the oscillator. 

We will now see the effect of introducing dissipation in 

the system. 
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3. 2 Irreversible systerns. 

Consider a slightly darnped linear oscillator 

(3. 19) 

If € is sm.all, its solution is clearly a steady oscillation dying 

away slowly in tirne. For 8 =0 we recover the conservative case. 

It should be possible, therefore, to treat it as a two-tirning 

perturbation problem, but, when we try to apply the averaged 

Lagrangian technique, we run into the difficulty that (3. 19), being 

irreversible. has no Lagrangian of the classical type. We can 

try, however, to use the pseudo- Lagrangian introduced in section 

2.3. 

A pseudo-Lagrangian for (3. 19) is 

(3.20) 

In order to understand the problerr .. involved, we proceed 

first in a flexible way without the forITlalities of two-tirning. To 

lowest order, the solution for u will be a modulated sinusoid 

of the form. 

U = a. s in 8 • ( 3. 2 1 J 

where ex. and w=8 t are slowly varying functions of tim.e. in the 

sense that changes in one period are O(€). In applying (3.20) 

we rnust also take 

u =a sine. (3. 22) 
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Then 

A l 2 2 28 1 2 . 28 - - . 8 -8 
~ Z-w a. cos -Z-a. SIn -ea.a.w SIn COS . (3.23) 

This quantity has oscillations with respect to t on the 

-1 
scale of the period and slow variations over the scale e The 

original averaging method eliminated the former by integrating 

over a few periods assuming that a. and w could be taken as 

approximately constant over this scale. With this in view, the 

expression. for A is iirst written 

AR:; i (w 2 
- 1 )0. 

2 +t ( w 2 + 1 )0. 
2 cos 28 - -!-ea.alii ( s in( 8 +8 )+ s in ( e -e )} 

(3.24) 

Now, the average value of cos 28 and sin( 8+8) over a few periods 

are zero. However, e -8 represents what will eventually be the 

variation of 8, and can be made to have a period as long as we 

want. Accordingly, the term in e -8 is retained, and the averaged 

variational principle is written 

t 

C St
2 

[ i( wZ 
-1) 0.

2 
-iea.alii sin( 8 -8)} dt = O. 

1 

Then, the variation of a. gives 

and the one of e give s 

d 2 -- (8-8 dt (w a. )+ e a.a.w cos -) = o. 

Letting now a.=a and 8=8. we get from (3.26) 

(3.25) 

(3.26) 

(3.27) 
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w = 1 (3.28) 

which is the dispersion relation, and from (3. 27) 

d 2 2 ill (w a. )+ € wa. = 0, (3. 29) 

which can be integrated to 

2 -€t 
wa. = const. X e . (3.30) 

These are, of course, correct results as can be seen from the 

exact solution of the problem.. 

In the two-timing approach we should expect to define an 

average Lagrangian in terms of A by 

/l 1 J2TT -
J[ =2TT 0 A(U,U)d8 , (3. 31) 

and, substituting in it the values for U and U we get 

Jl 1 2( 2 1 ) € --f2IT. e -ed8 = "4 a. W - - 2 IT a.a. w 0 s 1n cos . (3.32) 

The trouble arises 1.n the second terrn of (3.32), which is 

precisely the one representing the irreversibility. The problem. 

is that, to compute the integral in that term, we have to make 

up OUT minds about the relationship between e and e. 
If we consider thern independent of one another the inte-

gral vanishes. Moreover, this choice does not seem a good one 

since we know that the two variables will eventually be numeri-

cally equal. 

On the other hand, if we make them equal and integrate, 
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the integral vanishes again, and we COITlITlit the error of using 

the condition e =8 before carrying out the variations. 

The problem is to find a way of' using the fact that e and 

e are eventually the same thing, but rn.antaining their individuali-

ties until the Euler equations are computed. 

We ITlay argue that, e and e being both functions of tirn.e, 

we may consider them. as functions of one another, even if this 

functional dependence is is not a fixed one but changes for each 

particular choice of e and e. After the variational principle is 

carried out, we will set this function to the identity, so it seems 

useful to expres seas 

(3.33) 

where ~ is a new variable whose eventual value will be zero. 

Introducing (3.33) in the averaged Lagrangian. the value of the 

integral depends clearly on ~. But, in carrying out the variation-

al principle, we are only interested in the value of the function-

al and its derivatives at ljr =0. so that we only need the value 

of Jl up to O(~). Moreover} ~ is arbitrary, so that we can rn.ake 

it as srnooth as we want and take it out of the integral. Accord_ 

ingly, the integral in (3. 32) can be expanded to O(~) as 

S
2TI - S2TI - -o sin e cos e de = 0 sin( e +~) cos e de ~ 

(3. 34) 

S2TI - - - - 2 
~ 0 ( sin e + ~ cos e ) cos e d e ~ TI ~ :-0 (~ ) . 
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Using this result in (3. 32), we have 

Jl 1 2 (2 ) E: - - ,I, = 40. W - 1 -20. a. w '!' (3.35) 

and we can now use this expression in the variational principle. 

The variation of a is straightforward, 

= o. (3.36) 

Varying e, however, is a little different from the reversible case. 

In that case, e was present in the averaged Lagrangian only 

through the frequency fJJ=9t, and, so. the Euler equation was 

(3.18). But now the phase function is present itself trough ~, as 

(3.37) 

The corresponding Euler equation then becomes 

(3.38) 

After we have cOl"uputed these equations. it is time to 

rrlake a.:::a.. w=w and ~=O. If we carry out all these operations on 

the expression 10J:" .II:. in (3.35). we get exactly the same equa-

tions, (3.28) and (3.29). for the damped oscillator. 

Encouraged by these results we may now try a more 

complicated. nonlinear, case. Consider the systel'Yl 

(3. 39) 

which represents a nonlinear oscillator" with a nonlinear dissi-

pation term, and was proposed, and solved, by Kuzmak (1959) 
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as a model problem for developing two-timing methods. 

A pseudo-Lagrangian for it is 

1 2 -_ 
A = -zu

t 
- V(u)- e:futu ; (3.40) 

on introducing the two-timed expres sions fot u and u, it becomes 

12 2 ---A = -ZW Ue -V(U) - e: W f Ue U. (3.41) 

Before going any further we anticipate the trouble in the last 

term of A and introduce the variable ~, and the corresponding 

expansion of U, 

(3. 42) 

Introducing this expansion in A and dropping terms depending 

only on U, we get 

1 2 2 --2 
A = -ZW Ue - V (U) - e: w f Ue ~ . (3.43) 

To find the expression for U, we change to e variables 

in (3. 39) and integrate once to get the energy equation (Whitham 

1970). Solving in it for Ue, we get, to zeroth order 

U
2 _ a 2 -2V(U) 
e - ? 

w~ 

(3. 44) 

where a is an energy ~Iconstant" and is related to the amplitude. 

Using this result, the averaged Lagrangian can be brought into 

the form 

11 1 S2TT 2 2 a e: - S2TT - -2 -
Jl = 2TT 0 W Ue de -2" - 2TT w ~ 0 f(U)Ue de , (3. 45) 
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or 

ill..c 1. a e..r 1 Jl = Zn:r (a-ZV)2dU - '2 - zn $~ (a-ZV)2fdU (3.46) 

In this form we can already compute the Euler equations 

00.: (3.47) 

and 

(3. 48) 

The final results are 

-1 l..c _1. 
ill =Zn:r (a-ZV) 2dU, (3. 49) 

and 

d 1 1 

dT § (a-ZV) 2dU + cj f(U) (a-ZV) 2dU= 0, (3. 50) 

which are equivalent to the equations given by Kuzmak in his 

paper. 
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4. The general method. 

4. 1 The zeroth order approximation. 

After the examples in 3.2, we will now summarize the 

general application of the averaged Lagrangian ITlethod to irre-

versible systems. The formal justification will be postponed 

until the next section, where the extension of the formulas to 

all orders will also be given. In this section we will only 

attempt to get results to zeroth order in €, and, again, we will 

confine ourselves to ordinary differential equations. 

Assume that we have an irreversible system described 

by the pseudo-Lagrangian 

(4. 1) 

We define the slow time T = e t. as well as the phase function 8 

and angular frequency ill as in section 3. 

We add the appropiate form for u. which, to lowest order 

is 

u=U(e.T), (4. 2) 

and substitute it into (4. I), To that sa:tne approximation 

A = L(U, wUe) + € I(U. WU
8 

;U, WUe). (4. 3) 

Now we introduce the variable 

1js=8-8, (4.4) 

-
and expand U around 8. Then 
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(4. 5) 

and, similarly, 

(4. 6) 

Next, we substitute these expansions in the Lagrangian 

and expand again in ~. We are only interested in keeping those 

terms that will give lowest order contributions to the Euler equa-

tions (3.47) and (3.48). These are all the zeroth order terms, 

plus those linear in ~ and of order €. Carrying out the expan-

sion, we have 

where 

- - -
A=L(U,WUe)+e(IIUe+WUeeI2)~ • 

I =..2l.. (U', WUe;U, LUU
e

) 
2 aUt 

(4. 7) 

(4.8) 

A word about notation may be in order herE::. An through 

this work, for a function F{u, u). 

8: ( F(u. u)} (4.9) 

is intended to mean that both argu:rnents on F are first substi-

tuted by u, and then the derivative is cmnputed. while in 

8F 
au (u, u) , (4.10) 

the partial is taken first and then both arguments are made equal 

to u. 
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From (4. 7) we define the averaged Lagrangian 

1 S2TI € S2TI Jl =2'11 0 Lde +2'11 0 (IIUe+WI2Uee)de • 

(4. 11) 

where the bars inside the second integral can be dropped to 

zeroth order. The only problem remaining is to find the form 

of U(8) to use in computing the integrals. 

The best way to do this was shown by Whitham (1970) 

for reversible systems, and is only sketched here. 

To lowest order the system is described by the Lagran-

gian L(U, WUe), and it is clear that this Lagrangian does not 

depend explicitly on e. So, U obeys an energy conservation law 

dL 
Ue dUe - L =0. . (4. 12) 

The steps frOIn here on are the same as in the Hamiltonian 

transformation in mechanics. A momentum is defined 

dL n =dU ' 
6 

frorn which we solve for Ue• 

From (4. 12) we then find 

rr = 7T(U,o.). 

Ue = F(U,o.), 

and 

(4. 13) 

(4. 14) 

(4. 15) 

(4. 16) 

(4. 17) 
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Using these form.ulas in (4. 11) 

or 

(4. 19) 

where everything can be expressed as a function of U and (l.. 

The Euler equations, from section 3.2, are 

60.: 
1 ~ aT[ 

2TT ~ 00. dU = 1 • (4.20) 

The first of these equations is the dispersion relation, 

and is not changed, to this approxim.ation, by the dissipation. 

The second one gives the decay of the adiabatic invariant of the 

system. It is here that the effect of the dis sipation appears. 
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4.2 Formal justification of results. 

Up to now the theory has been developed at a purely 

heuristic level. and its only justification is that it seems to , 

work in all cases in which it has been tried. 

A particularly worrisome problem is the lack of assur-

ance that the equation (4. 21) is invariant under all pos sible choices 

of the irreversible term in the pseudo-Lagrangian. Also. although 

the averaged Lagrangian method is known to be accurate to all 

orders, we have only been able to implement it here to the 

lowest approximation. 

In this section we discuss all those problems. First we 

establish the rigor of the method. The way to do this is very 

similar to the one used for reversible systerns (Whitham 1970), 

but in this case there are some more subtleties involved. What 

we want to prove are the equations (4. 20) and (4. 21) for a. and e. 

In the simplest cases u can be expressed as u=U(8,o.), 

where the dependence on a parameter a. is taken to contain the 

explicit dependence on T=E:t. The crucial condition in the rnethocl 

is that U(8. 0.) be periodic in 8. {Without los s of geneTality the 

period m.ay be taken to be 2fT). One way to introduce the period-

icity is to express U as a Fourier series 

in8 
U(8,o.) = U (0.) e • 

n 
(4.22) 

and use a similar expansion for U. 
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(4.23) 

where we adopt the convention that repeated indices mean sum-

mation from -(I) to fGO • 

In any of these expansions we are trying to force a peri-

odic behaviour with respect to the explicit dependance on a. In 

this sense e is considered as independent of T, and the Fourier 

coefficient are defined as 

1 J 2rr r:' -inS 
Un(a) = 2TT 0 U(-:>,a) e dS. (4. 24) 

This is still so in more complicated cases in which the variable 

depends on a explicitly, and through 9
t
. For example, assume 

that the systeITl derives from a pseudo-Lagrangian A(u, u), where 

the arguments of A include in general u
t 

and u e even if they 

are not explicitly indicated. Substituting i.n A the expressions U 

and U, we get a function A(e,8;w,a,a
t
,w,a,a

t
) which we want to 

be periodic in e and e, but with wand ill considered independent 

of them and included in the slow dependence in T. So, the COT-

responding expansion is 

A i(rn8+ne J 
A = e mn } (4. 25) 

with 

(4.26) 
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Once the Fourier expansions are carried out, howeve r, we 

e always take 8 =- and a.=a.(T) as functions of time, with no 
E: 

attempt to consider them independent variables. 

The notations 

A , [A] 
mn mn 

or [A] 
m,n 

(4.27) 

represent the mn-th Fourier coefficient of the double series 

for A(8, (3) , while 

[A(8,8)] 
m 

(4.28) 

is the m-th coefficient of the simple series for A(9, (3) when we 

let 9 =8 before the series is computed. Finally 

A =_8 A . 
mn;W 8w mn 

(4.29) 

The variational principle can now be written as 

(4.30) 

We can perform the variations of e and a. in it, and extract 

the information we want. 

Varying e. and remembering that W = 6'T'. the Euler equa-
.L 

'Cion is 

which can be expanded to 

--A --A --
{ 

im d --=-i (~m;.;.;..w_+~n;,.:;w,-,-) A J 
€ mn dT mn;W E: mn;W 

(4. 31) 

e i (m8+n8)= 0 

(4.32) 
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Now, we let e =E~, w=oo, a.=<i, and (4.32) collapses into 

a simple Fourier series (t =m+nj 

'im A _ ~ A _ it ill A } e i t 8 = 0 . t e; m,t-m. dT rn,t-m.;w E: m,t-m;w ' 

(4. 33) 

this is the Euler equation corresponding to the variation of 9. 

It is still in the forITl of a doubly infinite series and is not very 

practical. It turns out, however, that we can sum one of the 

series. 

First we note (see Appendix) that 

A(8 • e ) ~ = [A(8 • e )] 9 
rn,'V -rn. 'V 

(4. 34) 

for any Fourier series, that 

. A L- aA J lITl ---rnn - as mn' (4. j 5) 

and 

~ A = [ aA J 
dT m.n; W aT rnn (4.36) 

Equation (4.33) can then be written as 

it6 
e = O. 

(4.37) 

This last expression is formally the Fourier expansion 

of the expres sion inside the squa re bracket. So, for functions 

which are regular enough. every coefficient has to vanish inde-

pendently, and, for every t, 
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1 [ aA d 1 . [ € as (8,8)]t -dT[Aw(8,9)]t -e-1tW 1\(9,8)Jt =0. 

(4.38) 

In particular, this has to be true for ,e, =0, in which case 

the last term drops out, and the Fourier cofficients turn into 

simple averages over one period. We conclude that 

I 8A d 8"[88 (8,8)J o - dT [Aw(8,8)J
o

=0, (4. 39) 

which is the averaged Euler equation for the variation of e. For 

t #0 we get information on the higher Fourier coefficients of A, 

and, in principle. solving (4. 38) for all -t. we could get the 

cornplete series. These equations, however, do not rnodify (4.39). 

Carrying out a similar derivation for a, we arrive at an 

equation 

1 [ 8A .., d -;:- ~(9,e)J -edT [A (8,8)J =0 
'" va 0 at 0 

(4.40) 

where the extra ~ in the second term arises because A depends 

explicitly on at=E:Cl T , as opposed to w=6JT . 

Equations (4. 39j and (4.40) are the required Euler equa-

Hans for the averaged principle. and they are exact, indepen-

dent of the size of €. In the practical use of them we work to 

the lowest order approximation only. 

We now show that these equations are equivalent, in that 

order, to the ones derived in section 4. 1. Assume 

A = L(U) + € I(U, tJ). (4.41) 
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The reversible part, L, depends only on 8, not on 8, so that 

~t becomes a total derivative, 

(4.42) 

and, in integrating over one period, the term in L cancels because 

of periodicity, and 

[ aA ] 1 J 2 n aA E: J 2 n , 
08 (8,8) 0= 2n 0 88 (e,e)de = 2n 0 (IuUe+lu

a 
Uee)de. 

(4.43) 

When we compute the second term of (4. 39), however, it is only 

the part depending on L that remains to lowest order. The final 

equation is 

which is easily seen to be equivalent to (4. 21). The equation for 

the variation of a comes out with equal ease. 

The derivation above also answers the question of unique-

ness of the averaged equations. as it shows that they are just a 

consequence of the Euler equation > and, for all forms of the 

pseudo-Lagrangian resulting in a given EuleT equation, the aver-

aged equations will also be unique. 

The only question remaining is if it is allowable to change 

the dependent variable in a variational principle. Specifically. if 

a system is described by L(u, u) and we let u be a given function 
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of a new variable e(t), we want to know if we can vary 8 instead 

of u. It is easy to see that this is indeed the case. 

Assume there are no more variables. The Euler equation 

derived from varying u is 

while that from e is 

But 

so that 

and 

d 
L (u, u) - cit L (u. u) = 0, 

u u
t 

u = u(8) , u t = ue e t ' 

La = L u e t u t 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

Multiplying now (4.45) by '.te and rearranging terms, we 

recover (4.46). It is this fact that allows us to vary e and a. 

in the averaged principle instead of u. 
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4. 3 Partial differential equations. 

The application of the averaged Lagrangian method to 

partial differential equations is well known from the work on 

reversible systems (Whitham 1970), and involves little more 

than the substitution of the time variable by a vector (~, t), and 

of the corresponding derivatives by gradients and divergenceso 

We still retain a single phase function. e. which characterizes 

the wavetrain, but the local frequency splits into a wave number 

vector and a scalar frequency, in such a way that 

e =k. 
X. 1 

1 

(4. 50) 

The averaged Lagrangian becomes a function of w, k and 

the energy. Assuming only one space dimension and a systern 

with only one energy constant, a., we have 

(4.51) 

The variation in Cl results, as before, in 

[0.=0, (4.52) 

which is the dispersion relation, giving w=w(k,o.). On the other 

hand, the variation in 6 results in 

(4.53) 

An extra condition is the consistency relation between k and w 

(4. 54) 
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The addition of dissipation does not introduce any essen-

tially new features. To first order, the averaged pseudo-Lagran-

gian defined in section 4. 1 will be now 

.A = [ (w, k, a) + E: W J (w, k, a) , (4. 55) 

and the equations (4. 52) and (4. 54) remain unchanged, but equa-

tion (4. 53) gets a new term representing the dis sipation, 

8~ lw- ;x[k+€ J=O. (4.56) 

As a siIYlple example consider a linear systeIYl. In those 

systems the ave raged Lagrangian turns out to be linear in a, 

and, as a first approxiIYlation, we can consider the dis sipation 

term to be also linear, 

.fl =aG(w,k)-r E: ~aD(w,k) 

The dispersion relation (4. 52) becomes independent of a. 

G(w,k)=O, 

so that we can write w=w(k), and (4. 54) becomeS 

where 

k
t
+ c k -- 0, 

g x 

c = g 
dw G k 
dk = --G 

w 

(4. 57) 

(4. 58) 

(4.59) 

(4.60) 

is the group velocity. Using these relations it is easy to trans-

fonn equation (4. 56) into the form of an energy equation I 
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with 
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at+(ca.) =-ea)"(k), g x 

A. (k) D =G
w 

(4.61) 

(4. 62) 

For a fixed wave number k, it is clear that a has so1u-

tions of the type 
-eAt 

e F(x-c t), so that A is a measure of the 
g 

energy decay rate. 

The equation (4. 61) was del'ived in a somewhat more 

heuristic way by Davey(l972). 
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Appendix 

In the first place we prove equation (4. 36), which we 

do, for sin-fplicity, for a simple Fourier series. Consider 

(1) 

In the integrand of (1) the only dependence on T is on the second 

argument of A, as S is c.. durnmy variable of integration, so 

that 

(2) 

where the partial derivative m.eans that 8 has to be considered 

an independent variable, and the derivative is only taken with 

respect to the rest of the dependance in T. Equation {2) is the 

result we wanted. 

We turn now to prove equation (4.34). We use the ex-

pres sian. 

A( e .ehrn. ~ -rn =~ J J ~n~(S, T) } e -i[ rnS+ (i-rn)r1] dS dT) , 
• l 4n 

(3) 

and rearrange terInS inside the integral 

A( e, e) =_l-J S2IT A(S. T)) e -ifT) I eirn(T) -s )dS dT). 
rn, f-rn 4n 2 0 rn 

(4) 
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Now we use the formula 

Z
in '\ e irnx __ L 6 (XI , (5 ) 

m 

where 6 (x) is the Dirac delta, and integrate in (4) over S 

(6 ) 

which is the desired result" 


