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ABSTRACT

A precision bent-crystal gamma-ray monochromator with stationary
source has been built. The instrument comsists of three physically
independent units: The line source (a radioactive source or the anode
of an x-ray tube), the two-meter-radius bent-diffraction-crystal with
its pivot and sine-motion mechanism, and the heavy-duty curved-track
framework which supports the collimator, detector, and shielding. The
motions of the crystal-pivot unit and of the detector-carriage unit
are linked together in such a way that the reflection condition is
satisfied.

Results are presented showing that the precision of the mono-
chromator for measurement of gamma-ray wavelengths is 0.003 x-units.
The line width at half-maximum observed when the (800) planes of a bent
germanium-crystal are used is 0.080 x-units. The resolution which has
been attained with the germanium crystal is illustrated by a measure-
ment of the 244,264 kev, 246.056 kev, and the previously unobserved
245,237 kev gamma line in the decay of wls3,

Nuclear-resonance scattering from the first-excited states in
F19 and Mn>’ has been observed with the bent-diffraction-crystal mono-
chromator. The experiment was performed by observing the scattered
radiation from nuclei exposed to nearly monoenergetic x-rays selected
by crystal diffraction from the bremsstrahlung spectrum of an x-ray
tube. Gamma rays scattered at 135° from samples of lithium fluoride
and manganese placed in the diffracted beam were observed as a function
of the incident photon wavelength. With the lithium fluoride sample
three measurements were made under different experimental conditionms.
In each case pronounced resonance peaks 10 to 15 percent above back-
ground were observed. A least-square analysis of the data gives
109.894 = 0.005 kev for the energy position of the first-excited level
in F19, From the observed yield the width of this level was deduced to
be (5.1 & 0.7)10"7 ev., Measurements with a Mn35 scattering sample
gave 125.95 % 0.01 kev for the position of the first-excited level
and (1.1 £ 0.3)107% ev for the resonance width.
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PART ONE

THE GERMANIUM BENT-CRYSTAL MONOCHROMATOR
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I. INTRODUCTION

Curved-crystal diffraction monochromators and spectrometers have
been described by several authors. A review article including a complete
list of references has been written by DuMond (1). The instruments make
use of the focusing Bragg-reflection property of a curved crystal,
such as quartz. In the monochromator arrangement the line-shaped
source is situated on the focal circle through the curved crystal.
Gamma-rays scattered at the Bragg angle are detected by a large Nal
counter after having passed through a collimator. The monochromator
has considerably higher luminosity, per unit wavelength interval, as
compared to the spectrometer arrangement in which the role of the
source and counter is interchanged. It is, therefore, well suited for
experiments where gamma-ray or x-ray lines are scanned in a point-by-
point manner o@er a certain wavelength interval.

The California Institute of Technology monochromator (Mark I) built
by DuMond (1, 2, 3) uses a stationary collimator and detector system.
Both source and crystal move in such a fashion that the Bragg condition
is maintained at all times. For many applications, however, it is
desirable to have a stationary source, for example, if the source is
connected to a reactor, an accelerator, or an x-ray tube.

The instrument described in this paper is a monochromator with
stationary source. It has been primarily designed for nuclear-resonance
scattering-experiments using a powerful x-ray tube. It also is being
used as a precision wavelength measuring device. It has am accuracy

somewhat superior to Mark I.



II. DESIGN OF THE MONOCHROMATOR
A. Description of the Crystal Pivot and the Detector Carriage

The monochromator consists of three physically independent units:
(i) the crystal pivot, (ii) the detector carriage, and (iii) the line
source (a radioactive source or the anode of an x-ray tube). The crystal-
pivot and detector-carriage units are illustrated by a line drawing in
Fig. 1. A photograph of the crystal pivot is shown in Fig. 2. Im this
section we will present a brief description of these two units and
refer the reader to Appendix I for a detailed description of the ﬁechani-
cal design.

The crystal-pivot unit (Fig. 1) contains the bent-diffraction
crystal, the pivot bearing, and the precision sine-screw mechanism. The
precision lead screw moves the lever arm which turns the diffraction
crystal about an axis provided by the pivot bearing. The sine of the
Bragg angle is determined through the sine-screw mechanism and can be
read off directly on a dial. This reading is, of course, directly
proportional to the wavelength. The design is such that on the mono-
chromator dial the''screw division"(s.d.). corresponds to one x-unit
when the diffraction is from the (310) planes of quartz. Included in
the sine-screw mechanism is a calibration cam which is used to correct
for small non-linearities in the pitch of the lead screw.

The detector-carriage unit (Fig. 1) provides for the motion of the
heavily shielded detector and collimator system in such a way that the

Bragg reflection condition is satisfied. The shielded detector and
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Fig. 2. A photograph of the monochromator crystal-pivot unit show-
ing the curved-crystal clamping-blocks, the pivot bearings, the
lever arm, and the sine-screw mechanism.
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collimator are carried on a platform which is constrained by circular
tracks to rotate about an axis through the pivot bearing. The motion
of the platform is electrically linked to that of the crystal pivot.
The design of the detector carriage as a unit mechanically separate
from the crystal pivot has the advantage that mechanical strains result-
ing from the motion of the heavy shielding have no effect on the pre-

cise crystal setting which is determined by the sine-screw mechanism.
B. Description of the Diffraction Crystals and Crystal Holder

The Bragg reflection is provided by a thin optically ground lamina
of quartz or germanium clamped between stainless steel blocks which
have been profiled to a two-meter radius of curvature. The single
crystals are oriented so that the quartz (310) and germanium (400) planes
are used in the reflection. The quartz crystal is a square lamina
7.5 cm by 7.5 cm and 2 mm thick. Excellent results have been achieved
in the energy resolution and reflection power obtained using the
germanium crystal. The germanium crystal is a rectangular lamina
7.5 cm by 3.8 cm and 1.3 mm thick. The crystal slab was cut from an
oriented cylindrical single crystal ingot of germanium¥*. Before bend-
ing, the dislocation density of the crystal was less than 5,000 pits/cmz.
The slab was optically polished on both sides to a flatness of about

10 fringes of sodium light and then mounted in the crystal clamping-

* The crystal slab was prepared by Mono Silicon, Inc., Gardena,
California, under the direction of Dr. Simon A. Prussin.



. -
blocks described below. This crystal is smaller than the optimum

size and will be replaced with a larger one as soon as larger ingots
become available.

The method developed by DuMond, Lind, and Cohen (4) is used to
grind the concave and convex cylindrical surfaces of the clamping
blocks. The blocks have a 5.5 x 4.5 cm aperture. The convex-block
aperture has two ribs rumning normal to the generators of the cylinder.
The surface of this block is lapped against the mating concave surface
of a cast iron block which has been checked by the Foucault knife-
edge test and corrected to better than one quarter of a fringe of
sodium light.

The microscopic scratches in the surface and edges of the quartz
lamina present a danger when the crystal is being bent. To minimize
the possibility of fracture the quartz is etched with concentrated
hydrofluoric acid. The scratches are etched preferentially eliminat-
ing the sharp V character of the grooves. No treatment was applied
to the germanium crystal before bending.

The crystal bending is done in a dust-free box. For the quartz
crystal, optical contact is checked by observing the interference
fringes in the interface between the crystal lamina and the convex
surface of the clamping block. A thin neoprene gasket (0.5 mm) is
placed on the crystal; then the concave block is slowly clamped in
place with four spring-loaded screws., When bending a germanium-
erystal lamina, interference fringes cannot, of course, be observed;

therefore great caution must be exercised to insure a dust free



B
interface. When finally clamped in place the concave surface of the
germanium can be checked with the Foucault knife-edge test to verify

its conforming to the convex crystal clamping block.

IITI. MONOCHROMATOR WAVELENGTH CALIBRATION

A. Gage Block Calibration

In the initial wavelength calibration of the monochromator, precision
gage blocks were used to determine the linearity of the monochromator
screw. The calibration cam described in the section on the crystal
pivot in Appendix I is used to correct for small deviations in the
linearity of the precision ground and lapped screw. The calibration
curve A shown in Fig. 3 1is obtained when a linear cam is used. The
curve shows the deviation in the screw position from that measured by
gage blocks as a function of the position on the screw. Scales on
the figure show the measured dimensions in inches and also in screw
divisions. Curve B of Fig. 3 shows a calibration measurement using
a cam profiled to correct for the deviations shown on curve A, For
the curve B the RMS deviation of the points from linearity is 0.002 s.d.
Data points are not shown in the region +200 to +400 s.d. Imn this
region an error was discovered which required a change in the shape
of the calibration cam. A new cam was installed which now results
in an overall linear monochromator setting to within the accuracy shown

on the curve B.

B. Gamma-Line Wavelength Calibration

A check on the final calibration has been made by measurements of

several gamma lines using germanium and quartz diffraction crystals.
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Consistency checks have been made in two ways: (i) by comparing the
measured wavelengths of a single gamma line in various orders, n, of
reflection from the germanium crystal and in first order from the
quartz, (ii) by making use of certain well-established gamma-ray energy-
combination equations known from the decay schemes.

With these two methods interrelated measurements are possible
covering the entire range of the monochromator and an overall linearity
check has been established. 1In this section the results of the con-
sistency check (i) are analyzed to determine a formula for estimating
the error of the wavelength measurements. Errors calculated using the
derived formula are then compared with the deviations observed in the
consistency check (ii). Finally possible sources of monochromator
error are examined.

For the calibration investigation gamma lines from the well-known
decay of Tal82 and Tal83 were used. The gamma decay schemes of these
isotopes have been established by Murray, Boehm, Marmier, and DuMond (5).
These two isotopes supply intense gamma lines over a comnsiderable por-
tion of the useful energy range of the monochromator. Using standard
techniques (2) a 0.005 inch diameter tantalum wire was irradiated at
the Material Testing Reactor in Arco, Idaho. With this source the
wavelength results listed in Table I were obtained. Also listed in
the table are the results of Murray, et al. (5) which were obtained
with the Mark I instrument.

The errors € listed in Table I were obtained from the formulas

£ = €§ + Ei . €gn= 0.003 s.d. (1)



i

*1X93 2yY3 ur () BrNWioj woay pyndwiod aie pejsi| §I0449 Y10

S

*8JTWI] DOUIPIFUOD 9,06 ©3 puodsaiiod

82UBI8YAI WOX] U] BT B[FAD] Y] JO UOLEIIIIUAPL Ay, =
%

1® 3@ Aeaanpy Aq uaard srox1a oyy x

o1 02°0 ¥ ¥0O"PSE 010°0 ¥ ¥00 'pSE 010070 ¥ 066 b€ 11000 F 676 "PE 91000 F 066 "vE 1€00°0 ¥ 166 "¥E
ar 600 F G0 '9¥? 200°0 ¥ 950 °9¥2 G000°'0 ¥ £82 0% 01000 ¥ PBZ '0§ 80000 ¥ £82 '06 TT100°0 ¥ 182 '09 S100°0 ¥ 282 '0§ 2€00°'0 ¥ £82 09
aq 8000 ¥ LE2"G¥2 91000 ¥ 16¥ 05 9100°0 ¥ 16%'06
ar 60°0F 92°VbZ  900°0 F $92 ‘bh2 2100°0 ¥ 25905 0500°'0 ¥ 169 '0§ 910070 ¥ 159 0§ L100°0 ¥ ¥59 '0S ¥£00°0 ¥ 679 05
o lo] LOTOF LR'602  G00°0 ¥ 0987607  GI100'0 F V568§ 2000 F €568 91000 ¥ ¥56 '8¢ OFI0'0 ¥ 266 °'8S
v L0°0F 18'807  L00°0F PIR'B0Z  0200°0 F 16265 1200°0 ¥ ¥52°65 05100 ¥ ¥EZ 65
g3 vO0F £E ,wo- 200°0 ¥ £2¢ "791 /0000 ¥ 122 °9L 60000 ¥ 222 '9L T100°0 ¥ 122 '9L 91000 * 122 °9L 08000 ¥ 022 9!
oa 20°0 ¥ £6°L01 100°0 % ££6°L01 8000°0 ¥ 0£9 "PI1 010070 % 0£9 11 ST00°0 % 0E9 P11 0£00°0 ¥ 529 k11
ik} 10°0 ¥ 6929 100°0 ¥ 865 '29 0£00°0 ¥ 922 "9€2 0£00°'0 F 922572
¢g1 umsfuny Ul SUOBISURL],
AN 01°0 ¥ 60 '¥92 600°0 ¥ GL0°¥92 ST00°0 # 258 9% 91000 ¥ 268 '9¥ FEO0 "0 ¥ €S8 9F
aD 80°0 F L7622 €10°0 ¥ L2¢ 622 1£00°0 ¥ 166 €S 09000 ¥ 256 €5 PEO0 "0 ¥ 196°€S
DM LO'0 F 507222 v00'0 ¥ P11 222 6000 °0 F €0L°'SS 01000 # £0L 798 0200°0 ¥ S0.L°SS £500°0 ¥ 20L°SS 1€00°0 ¥ LO! "5S
ar 90°0 ¥ I£ "861 S00°0 ¥ 95¢ "861 ¥100°0 ¥ GL€ 79 S100°0 ¥ 9.¢ "29 GE00 0 ¥ 025 °7
HM G000 F 9t ‘6L ¥00 0 ¥ P6E "6L1 ST00°0 ¥ 896 "89 9100°0 ¥ B96 89 2£00°0 ¥ 99689
or ¥0°0 ¥ Lt '991 £00°0 ¥ 98¢ 961 9100°0 F GI1 6L LT00"0 F LTT 6L OE00"0 F 111761
aH €00 F 1P 261 £00°0 # 1¥¥ 261 G100°0 F 29118 91000 % 19118 PEOO 0 F L9T TR
™ 20°0 F 0¥ 911 £00°0 F 12v 911 9200°0 F €.2 901 PE00 "0 F €47 '901 2r00°0 F 222 '901
HI 20°0F 9911 200°0 F ¥L9 €11 ST00°0 F 1¥8 801 9100°0 ¥ T¥8'RO1 PE00 "0 F LERRHOT
ve 20°0 F 60 °001 100°0 ¥ LOT 001 2100°0 # 265 €21 9100°0 ¥ 266 €21 1£00°0 F £6G°€21 1£00°0 ¥ 685 €21
JH 20°0 ¥ L9°v8 100°0 # €69 '¥8 ST00°0 580 "9¥1 1200°0 ¥ ¥BO "9b1 ££00°0 F LRO 9P
ad 10°0 % ¥L°L9 100°0 # T5L°L9 2100°0 ¥ 619 '281 9100°0 ¥ $19 "281 1€00°0 ¥ 819°281 1£00°0 # #19 281
ry 10°0F IL°S9 100°0 ¥ £22.°99 $200°0 ¥ 152 881 2€00°0 ¥ PSZ "881 €E00°0 * BYZ "8B]
781 usysfuny, Ur sUOHITEUBRI],
X X1 TITA IIA 1A A Al III T I
#*:oﬁﬁuﬂﬂ:uﬂ_ &nwuvscﬁuunm juswitaadxy sty afleaoay A9PIO WG 19pI0 Uiy 12PI0 P FOPI0 B¥e b, e 2 SRPEOAT
I daeW aferoay parydrom 1e3sh1n wnprewszan 1e1shany zyaenp
ADYy ABasug Aey rwwen sjrun-x yiBuosjaaepm Aey rwwen

‘uonjeLqi[es ayj ul pasn saurf Aex euwwed

€81

ualsduny pue

281

uaisfuni Jo uoniernqe]y,

‘1 ITEVL



=

where the standard deviation 65 is the error in the position of the
gamma line resulting from the statistical counting error in the data.
The monochromator error E‘m represents the non-statistical part of
the error and gives an indication of the overall reproducibility and
self-consistency of the instrument. The monochromator error is a

measured quantity which was determined from the data in Table I

through the formula

i 2 i 2
Y[ - AL, ] N
EZ - ij (2)

where n is the order of the reflection and is the average wave-
ave
length found for the group of measurements of the gamma line j. The

ij ij :
symbols ;\ and E‘c represent respectively the observed wavelength

and statistical counting error of the ith

measurement of the line j.

In the sum three or more independent measurements labelled i were taken
from columns I to VI of Table I of the following gamma-rays; FD, BA, KG,
in W82 ang DC, EB, GC, IE, ID, IC in W83, The total number N of
points summed was 32. From this procedure the value of E‘m was found
to be equal to 0.003 s.d.

Making use of the gamma-ray energy combination-equations known from
the decay schemes of w82 and w83 g check has been made on the magnitude
of E‘m in Eq. 1. The combination equations are given in column I and II
of Table II. A list of the observed values of the left (columm 1) and

right (column II) sides of the combination equations is presented in

columns III and IV respectively. The statistical consistency of the
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Energy combination equations for tungsten 182 and tungsten 183.

Observed Values
for Column I

2 5 8

Observed Values
for Column II

Iv

TABLE 1I.

Combination

Equation

i % L
KJ + JF = KF
KJ 4+ JG = KG
JH 4 HF = JF
KJ + JH = KH
HF + FD = HD
ID 4+ DC = 1IC
ID+DC+CB = IE+4EB

Tungsten 182

264.079 * 0.005
222,109 + 0.003
198.367 + 0.002
179.397 = 0.002

152,444 + 0.001

Tungsten 183
353.989 + 0.002

406.587 =+ 0.002

264.075 4+ 0.009
222.114 % 0.004
198.356 + 0.005
179.394 + 0.004

152.441 + 0.003

354.004 =+ 0.010

406.587 + 0.006




= [

deviations between the values in columns III and IV and the errors listed
represents a check on the magnitude of E‘m. Based on the results of
the two methods of checking the wavelength calibration we conclude that
the error in the monochromator is given by Eq. 1 with the value of €
equal to 0.003 s.d. :

Monochromator errors which contribute to the overall error € o
result from (i) screw non-linearity, (ii) lack of complete reproduci-
bility of settings, and (iii) deviations caused by temperature variations.
The contribution from screw non-linearity is found to be less than
0.002 s.d. as measured with gage blocks. No deviations have been
measured which can be attributed tec a lack of reproducibility of mono-
chromator settings. Deviations due to temperature variations can con=
tribute significantly to the error of the monochromator reading. The
temperature coefficient due to the thermal expansion of the mechanical
parts of the monochromator is estimated to be -(5 to 13)10~° A s.d.
per °C where )\ is the monochromator setting in screw divisions. The
temperature coefficient (6) due to the expansion of the diffraction
crystal is 10.4 x 10'6‘A‘ s.d. per °C for the quartz crystal and
6.9 = 10'6‘A_ s.d. per °C for the germanium crystal. The variation
of room temperature during the accumulation of data in Table I was
less than 3°C. The error due to temperature variations is thus com-

parable to the error from screw non-linearity.

IV. MONOCHROMATOR RESOLUTION AND REFLECTION POWER
Use of the germanium diffraction crystal in place of the quartz

crystal gives considerable improvement in the resolution and intemnsity
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obtained with the monochromator. The higher order-reflections of the
germanium (400) n planes provide sufficient intensity to be useful for
high resolution measurements. The best resolution we have obtained was
achieved with a 0.002 inch diameter tantalum wire source. For this
source the full width at one-half maximum of the gamma lines in Wl82

and W183 is

2

0.16 ; -5 E
A l - —— X-units, or AE =1.3 x 10 © — kev (3)

where E is the energy in kev and n is the order of reflection. Some
resulté obtained with this source are presented in Chapter V.

In an attempt to better understand the reflectivity laws of the
germanium crystal, measurements of gamma lines were made in various
orders of reflection. The results have been analyzed by a least-
square fit to an equation based on the assumption (7) of a mosaic
crystal. With this assumption it can be shown (8) that neglecting the
atomic absorptioﬁ the reflectivity R(E, n) is approximately given by

R(E,'ﬂ) = (4)

e ) 4
- e -~ s

A -
where M(\J) is a Gaussian with a half-width given by the crystal

mosaic. The range of the integration, 2[& , is the angle projected

at the crystal by the source. The function RH is given by

_—

Ry = dy )2 (£Fg/N)2 ¢ e ~2W(O) (5)

where dH is the lattice spacing, V is the volume of the unit cell,

~
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t is the thickness of the crystal, f is the atomic scattering power (9),
FH is the lattice structure factor, and e~ 2W (@) is the Debye factor
w;ich is a function of the Debye temperature & . In the limit of a
thin crystal and a narrow source the energy dependence of the reflecti-
vity (Eq. 4) approaches the well-known E"% law (7; 10).

Experimentally we have determined the ratio of the reflectivity

th

for an energy E in the n™" order to that for energy E_ in the noth order.

The experiment furnishes this ratio in the following way:

R(E,n) _ _I(E,n)  T(Eo) . Ly Vol -€(E°) (6)
R(Eg;ng)  I(Eg,ng)  T(E) Iy ()  €(E)

where I(E,n)/I(E,,n,) is the observed ratio of counts in the detector,
T(E) is the transmission through the crystal derived from the atomic
absorption coefficient, 17/ (E) is the intensity of the gamma line

as measured by Edwards (11), and € (E) is the efficiency of the detector
(including air and source absorption). The values of I(E,n) were
measured for several tungsten lines. Ratios were then determined from
Eq. 6 with n, equal to one and with Ej equal to 100.107 kev and

107.933 kev, respectively, for gamma lines in Wl82 and w83, These
ratios have been plotted in Fig. 4.

A least-square fit was made of the observed ratios to those cal-
culated through Eq. 4 with the crystal mosaic width and the Debye
temperature as the variable parameters. The curves shown in Fig. &
were calculated based on the values 7.5 seconds for the mosaic width
and 275°K for the Debye temperature which were determined through the

least-square analysis. The crystal thickness was 1.3 mm. The
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first-order reflection of the gamma lines at 100.107 kev and 107.933 kev
(hollow points). The curves show results obtained using Eq. 4 in a
least-square fit to the germanium-reflectivity data., The solid square
points represent the reflectivity of the quartz crystal relative to

the germanium crystal.
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calculated curves and observed data points are in agreement to within
the estimated accuracy of the data. It is of interest to conclude from
this that Eq. 4 based on a mosaic crystal seems to account for the
experimental findings.

We have also compared the reflectivity of our germanium-crystal
(400) planes to that of our quartz-crystal (310) planes. The ratio of
the monochromator counting rate with the germanium crystal to the
counting rate with the quartz crystal was observed for several gamma
lines of W'82, The observed ratio was multiplied by 1.5 to account
for the differences in the areas of the crystals. The ratios
IGe/18102 are given in Table III. (The thickness of the two crystals
is given in Chapter II.) The ratio of the reflectivities RGE/RSiOZ
presented in Table III is equal to the product of IGe/ISiO2 and the
ratio of the crystal transmissions 5102 (E)/TGe(E). For a graphic
comparison of the reflectivities the values of the quantity
(RSiOZ/RGe) R(E,n) /R(100,1) for the three gamma energies are

shown as solid squares in Fig. 4.

V. PERFORMANCE OF THE MONOCHROMATOR:

A New Line Observed in Decay of wl83

In the decay scheme of Wls%'Murray et al. (5) predicted the
transition FB (see Table I) with an energy of 245.23 kev. This
transition has not previously been observed because of the existence
of the transitions with energy 246.056 and 244.264 in w83 both of

which are considerably more intense than the 245.23 kev transition.



TABLE III. Comparison of reflection from
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germanium and from quartz.*

Gamma-Ray 16e /15102 rGe /g5102
Energy kev

67,751 0.6 £ 0.1 1.4 4 0,2
100.107 2.4 £ 0.6 3.1 + 0.8
222.114 11.1 =+ 2.3 11.5 4+ 2.4

* IGe/ISiOZ is equal to the observed ratio of counts multiplied by
1.5 to account for the differences in areas of the crystals.
RCe/R5102 j5 the ratio of the reflectivities.
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We have looked for this line with the present instrument. The source
used in the measurement was a 0.002 inch tantalum wire. Figure 5
shows the results which were obtained. The 245.23 kev transition is
well resolved between the lines at 246.056 and 244,264 kev, Shown

in Fig. 6, for comparison, are results which were obtained with the
quartz crystal with a standard 0.008 inch diameter source. From a
least-square analysis of the data the ratio of the intensity of the
245.24 kev line to that of the 246.056 kev line was found to be

(1.15 % 0.03)10'2 and the energy of the tranmsition was determined

to be 245.237 £ 0.008 kev.
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PART TWO

NUCLEAR-RESONANCE EXCITATION IN F1° AND Mn>?
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I. INTRODUCTION

In this part of the thesis we will present the results of
measurements of the resonance energy and width of the first excited
levels of Flg and Mn°>. The experiment was performed by observing
the scattered radiation from nuclei exposed to nearly mono-energetic
x-rays selected from the bremsstrahlung spectrum of an x-ray tube by
the bent-crystal monochromator described in Part One. It has long
seemed desirable to use this technique; however, previous to the
research reported here no successful measurement of nuclear-resonance
excitation using this method has been reported.

Experimenters have used a variety of different techniques to
excite low-lying nuclear states from their respective ground states.
The techniques which have been most useful in the energy region below
a few Mev can be placed into four groups:(i)'"'Coulomb-excitation"
reactions in which the nuclear excitation results from interaction of
the nucleus with the electromagnetic fields of bombarding particles,
(ii) resonance excitation by means of gamma radiation emitted by a
radioactive source, (iii) techniques which use a nuclear reaction
to provide a Doppler shifted source of gamma radiation for nuclear
excitation, and (iv) techniques using a portion of the continuous
bremsstrahlung radiation.

The different experimental techniques for nuclear-resonance
excitation mentioned above have a great deal in common in the methods
of measurement and in the analysis of the experimental results obtained.

The experimental techniques both supplement and check each other



«25=

regarding the information they supply about the properties of the
nucleus, Below we summarize the experimental techmniques which have
been used for observing nuclear excitation according to methods

(i) through (iv) and the results which can be obtained from the measure-
ments.

As discussed in a review article by Alder, Bohr, Huus, Mottelson,
and Winther (12) one can determine from Coulomb-excitation yield
measurements the nuclear-transition energies, transition probabilities,
and to some extent the multipole order of the transitions. The
Coulomb-excitation technique has been especially fruitful in the
determination of the electric-quadrapole transition-probability B(E2).
Measurements of the energy distribution and angular distribution of
the decay radiation have given information about the nuclear decay
scheme including the spins and energies of the resonance levels and
the multipolarities and mixing ratios of the transitions observed.

Several successful experimental techniques which use a radio-
active source to supply the excitation have been developed recently.
The main goal of these resonance-excitation studies has been the
determination of tramsitionm probability of the nuclear energy levels.
The experimental procedure is to use gamma rays emitted fromvradio-
active nuclei in transitions to their ground states to supply
radiation in the narrow energy region of the absorption line in
identical target nuclei. Early experiments using the radioactive
source‘technique were not successful because the recoil energy loss to
the nucleus in the emission and absorption process is large compared

to the energy width of the nuclear level, As a result the cross
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section for the interaction between the radiationm and the target nuclei
is very small. Once this problem was recognized several methods for
restoring the resonance condition by the creation of special source
and absorber conditions were found.

Metzger (13) reviews some of the basic formulas used in the
analysis of resonance-excitation experiments and describes the follow-
ing methods through which nuclear excitation has been observed using
a radioactive source: (i) Moon and Storruste (1l4) have observed
nuclear excitation by an ultra-centrifuge technique. They attach
the source to the periphery of an ultra-centrifuge and use the gamma
rays emitted tangentially in the direction of the motion. The
increase in the energy of the radiation due to the Doppler shift
caused by the motion of source nuclei with respect to the laboratory
is sufficient to compensate for the recoil emergy loss and restore
the resonance condition. (ii) Malmfors (15) and later Metzger (16)
have used the line broadening caused by the thermal motion of the
emitting and absorbing nuclei to observe a nuclear-excitation effect.
In the free recoil approximation the half-widths of the emission and
absorption lines are proportional respectively to the square root
of the source temperature and the absorber temperature. In certain
cases the increase in the overlap between the emission and absorption
lines by heating the source and (or) the absorber is sufficient to
result in an observable resonance effect. (iii) Resonance-excitation

experiments which use the Doppler-shifted gamma-rays emitted from
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source nuclei which are in motion as a result of a preceding nuclear
gamma decay or beta decay have been described by Metzger.

A special type of nuclear-excitation measurement with a radio-
active source by the method of recoilless resonance absorption has
recently been discovered by Moessbauer (17, 18). Moessbauer found
that for a fraction of events, gamma emission and absorption take
place with no change in the energy state of the crystal lattice.

For these transitions the recoil momentum is absorbed by the crystal
as a whole and the recoil energy loss is negligibly small. As a
result the resonance condition is satisfied, and by suitable experi-
mental arrangements sharp absorption lines approximately twice the
natural nuclear-resonance width can be observed,

Nuclear reactions on light nuclei have been used by several
experimenters (19, 20) as a source of gamma radiation for nuclear-
resonance excitation. In these experiments resonance excitation is
observed using the Doppler-shifted gamma-rays emitted by recoiling
excited nuclei formed as a result of a nuclear reaction. The technique
is best suited for the measurement of nuclear 1lifetimes which are
short compared to the time between consecutive collisions of the
recoiling nuclei with the surrounding material.

The possibility of observing nuclear-resonance excitation using
continuous radiation from a betatron was first discussed by Schiff (21).
A review of some experiments using betatron bremsstrahlung for nuclear
excitation at energies greater than 5 Mav is given by Devomns (22).

Some more recent work on resonance scattering of bremsstrahlung in

the region from 3 to 20 Mev from a linear accelerator is described
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by Seward (23). Booth (24) has successfully used bremsstrahlung from
an electron Van de Graaff for nuclear excitation in the energy region
from 0.5 to 2.5 Mev.

The method of nuclear excitation with a diffracted x-ray beam
has not been successfully used previous to the research in this thesis.
With this method one is not restricted by special absorber conditioms
or by recoil problems occurring in resonance-excitation experiments
with a radioactive source. The use of crystal diffraction to select
a narrow band of x-rays from the bremsstrahlung spectrum results in
a considerable reduction in problems due to the background from non-
resonance radiation present in experiments in which the entire brems=-
strahlung spectrum is incident on the scattering sample. The infor-
mation on nuclear properties which can be obtained is in many ways
similar to the information obtained through Coulomb-excitation experi-
ments. In addition to the excitation through the electric transitions
one can study excitation of nuclei through magnetic multipole transi-
tions. From the yields of the magnetic dipole excitation, for example,
one can directly determine the magnetic transition probability B(ML1).
Also, from angular correlation measurements in an external magnetic
field at the target nucleus one can obtain the magnetic moments of
excited states.

The advantage of the diffracted x-ray beam technique is obvious.
However, the energy resolution which can presently be obtained from
x-ray diffraction is several orders of magnitude larger than the energy
width of nuclear-resonance absorption-lines. As a result the nuclear-

excitation effect has to be observed in the presence of a large
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background from non-resonant electronic scattering. The main problems
in the experimental technique are therefore: (i) that of obtaining
sufficient x-ray intensity in the narrow region of the absorption line
and (ii) that of reducing the non-resonant background effects to a
minimum. In Chapter II cross-section formulas for the various infer-
actions of photons with nuclei and atomic electrons are discussed.
Chapter III contains a description of the experiment and the analysis

of the data. Chapter IV gives a summary of the final results obtained

and a comparison of these results with those of other experiments.
II. INTERACTIONS OF ELECTROMAGNETIC RADIATION WITH MATTER

There are a number of processes through which photons can interact
with matter. Following Fano (25) and Evans (26), interactions of
electromagnetic radiation with matter can be classified in the following
systematic form:

Kinds of interaction Effects of interaction

I. Interaction with atomic electrons A. Complete absorption
II. Interactions with nucleons B. Elastic scattering

III. Interactions with electric field C. Inelastic scattering
surrounding nuclei or electrons

IV. Interaction with mesons field
surrounding nucleons

The twelve different ways of combining the two columns give the
processes by which photons can be absorbed or scattered, In this experi-
ment we observe the ratio of the cross section for nuclear-resonance
scattering II B to the cross section for the Compton scattering I C.

Cross sections for these interactions are discussed in detail below.
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Also Rayleigh scattering from the atomic electrons I B is observed in
the experiment as a background effect and is discussed in Appendix V.
For completeness the names associated with some of the other inter-
actions in the table are listed: photoelectric effect I A, Thomson
scattering by nucleus II B, Delbruck scattering III B, pair production

II1 A, photodisintegration of nuclei II A, and meson production IV A.
A, Cross Sections for Nuclear-Resonance Excitation

The dispersion theory cross section for nuclear-resonance photo-

excitation followed by de-excitation through the btB channel is (13, 27)

5. = x> en+ 1 [a b %)
a,b 2 (2e+ 1) (E - ED? 4+ ([/2)2

where Jq and Jo are the total angular momentum of the excitated state
and the ground state, respectively, E. is the resonance energy, E is
the energy of the incident photon, ;( is the corresponding wavelength
divided by 2 7T , r; is the partial width for the direct gamma-ray transi-
tion to the ground state, [_L is the partial width for de-excitation
through the pth decay chamnel, and rﬂ = §: r; is the natural width of
the level. The factor of two in the deno;inator of Eq. 7 expresses
the multiplicity caused by the two possible polarizations of the
photons.

In our use of this equation the exit cﬁannel b corresponds to

the entrance channel a. Therefore,

= I ©
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We note that in this case the interaction described by Eq. 7 has the

classification II B, elastic nuclear scattering. Small terms result-

ing from nuclear Thomson scattering have been neglected. When b

does not correspond to the entrance channel the interaction described

by Eq. 7 has the classification II C, inelastic nuclear scattering.
In our application it is convenient to rewrite Eq. 7. When

the effect of internal conversion is included the natural width of

the first excited level is

=1 + X)) 9
FoL s ar F e

where (O is the conversion coefficient. Then Eq. 7 becomes

& = 0 ([/2)?
a,a € - )2 + ([/2)? =

where

2
N 2T X (231 + 1)
0 = TvroZ  ~@,+ D oy

B. Crystal Binding and Doppler Effects

In analysis of nuclear-resonance excitation one must use cross-
section formulas which take account of the dynamics of the atomic
motion. Lamb (28) has treated this problem in conmnection with neutron
resonance experiments, and his discussion also applies to the gamma-
ray problem. Singwi and Sjolander (29) give an analysis in which
they account for the dynamics of the atomic motion through a space-

time self-correlation function. For our purposes the results they
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obtain for the effective resonance-excitation cross sections are the
same as those obtained from Lamb's analysis.

Through an application of the formalism of Singwi and Sjolander
the cross section for resonance absorption of gamma rays by atoms in
a crystal lattice can be evalﬁated. For the case of weak binding

(ZW'>>' 1) and using the Debye approximation the nuclear cross section

is given by

O.(B) = d°r2' =
n 4 (& - B+ ([/2)?

+ o0

Ool dz 2 2
+ -0 72\)°(x -z ) (12)
NS, 4 = 724 )

xE =2(E - Ep - R)/I_'; R = E%/Zl-lc2 = recoil energy; (13)

js

©/
2 3 3
= 4RkT|3( I f y(expy *+ 1)dy|= s4perf3 . (14)
A 2(@) i s s | @/T)

of ©
- RI|1 I ydy =3R|1, I
L k@ 4 +(@) 0 (exp vy - 1) k@ % -+ @X(@/T) (15)

where T is the crystal temperature, &) is the crystal Debye temperature,
Mc2 is the rest energy of the nucleus, and k is the Boltzmann's
constant, Numerical values for the functionﬁ (x) and X (x) are given
in Table IV, Tables of values for integral in Eq. 12 are given by
Rose, Miranker, Leak, Rosenthal, and Henrickson (30).

The first term in Eq. 12 is the sharp resonance cross section

for recoilless absorption and agrees with the formulas given by
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TABLE IV, Tabulation of Values for X (x) and }3 (x)

X X (x) B (x)
1.0 0.777 1.05
2.0 0.607 1.19
3.0 0.480 1.41
4.0 0.388 1.68
5.0 0.321 1.99
6.0 0.271 2.33
7.0 0.234 2.68

8.0 0.205 3.04
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Moessbauer (17) and Lipkin (31). The second term in Eq. 12 can be
compared with the usual effective absorption cross section which is
obtained when one considers resonance excitation of nuclei in a perfect
gas (13). In this comparison the results are found to be identical
except for the value assigned to the Doppler width ZX . For the

perfect gas case the Doppler width is
2 = 4
ANp = G4RKT. (16)

In the limit of high temperature the value for [& given by Eq. 14
approaches the value of A P

Finally we obtain the resonance-absorption cross-section formula
used in Chapter III for analysis of the experiment. The effect of
first term of Eq. 12 is negligibly small compared to that of the
second term; therefore, we neglect it. Also we approximate the second
term using the fact thatA >> [and RS < E.. Then, as is shown
by Metzger (13), the effective resﬁnance excitation cross section

is given by

g~ - .
g0 = _Q;z%ﬂ’_ o [(E Er)/A]' (17)

We will also be interested in the integral of Cfn(E) over energy.

Extending the integration from -o0 to+ oo

+co
<>‘:‘O’H(E) & = g,/ (18)
This result is true for anyA / r\ (13).

C. Cross Section for Compton Scattering

The Compton scattering process is described in a number of

places, e.g., Evans (26) Heitler (32). For later reference we give
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here a summary of some of the formulas related to this process. The
formulas are for the case of incident photon being scattered by an
electron which is assumed to be unbound and initially at rest.

The equation for the energy of the scattered photon is obtained
from the laws of conservation of energy and momentum. The equation

is (26)

B o= E/[1+ a0 - cosg):l; X, = E/me’  (19)
where E and E' are the energies of the incident and scattered photons,

respectively, me?

is the rest energy of an electron, and é; is the
scattering angle.
The differential collision cross section per unit solid angle
for incident unpolarized radiation is given by (26)
dgc_ rg L =5 cos?'§ 1 & dg(l - cos§ )2
a) ~ 2 [L+o, - cosE 12 (1 + cos® ¢ ) (14 (L-cos))

where r_ is the classical electron radius. Replacing d§? in Eq. 20

(20)

by 2 7Tsin§ d§ and integrating over all possibleg gives the

total collision cross section (26)

14 1+ 2l 4+ 1
dc(E)zf d0c= 27Tr2[ Ao (20 # °)-—1n(1+2do)

2
by s i 1L+ 2q, (= P9

1+ 3a,

* 2
(1L + 2a)

In(l+ 20,)

20X (21)

Grodstein (33) discusses the effect of electron binding on the
Compton cross section for atoms. For our purposes the atomic Compton
cross section is given by the product of the atomic number and Cfc

given by Eq. 21.
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III. DESCRIPTION OF THE EXPERIMENT

The monochromator described in Part Ome of this thesis was used to
supply a beam of monoenergetic x-rays. Figure 7 shows the arrangement
for the experiment. A bent-germanium (or quartz) crystal is used to
diffract a nearly monoenergetic beam of x-rays from the bremsstrahlung
spectrum of the x-réy source (anode of an x-ray tube). The dif-
fracted beam passes through the collimator and is incident on the
scattering sample. Radiation scattered through an angle of about
135 degrees is observed with a Nal scintillation detector. The scat-
tering sample is mounted in a vacuum scattering chamber, and the
radiation shielding is arranged so that the detector observes scatter-
ing from the sample only. Pulses from the detector are amplified by
a standard "Hamner model No. 300" amplifier. Two '"Hamner model
No. N 302" pulse-height analyzers are connected to thé amplifier out-
put. One of these is set to select pulses from the detector whose
height corresponds to that of elastically scattered photons. The
second pulse-height analyzer is set to select pulses whose height
corresponds to that of inelastically Compton-scattered photons. Also
a "Penco' 100-channel pulse-height analyzer is periodically used
dufing the experiment to observe the entire pulse spectrum from the
scintillation detector.

With this experimental equipment several different measurements
of the scattered radiation from scattering samples of lithium fluoride
and manganese were made. Essentially, the experimental observations

give the ratio of the number of elastically-scattered photons to the
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number of inelastically Compton scattered photons as a function of the
wavelength of the incident x-ray beam. A nuclear-resonance excitation-
peak is observed at the wavelength corresponding to the energy of

the nuclear level; therefore, the wavelength position of the peak
gives directly the energy position Er of the level. The energy

width r1of the level is determined from the observed yield through

a formula which is derived in Section A. The experimental observa-

tions and results are presented in Section B.
A. Formula for the Experimental Determination of the Resonance Width

In this section we obtain the formula used in the analysis of
the experimental data to obtain the width,[ﬁ of the nuclear resonance
observed. We assume that no multiple scattering of photons occur
in the scatterer, that the detector efficiency is independent of
photon energy, and that the Compton and nuclear scattering is isotropic.
In the analysis of the data with the formula to be derived here, cor-
rections resulting from the neglect of these effects are required
and are discussed in Appendix III. We consider here the case of a
thin scattering sample. The case of a sample of arbitrary thickness
is discussed in Appendix II.

For a thin scattering sample NLCf(Er)<:<:1 where N is the atomic
density, L is the sample thickness, and CY(Er) is the total cross
section at the resonance energy for interaction of photons with
the atoms of the scatterer. The counting rate R'n(Em) due to

nuclear scattering in the sample is given by

RI(E,) = ONL L°°o’n(n) PE - E) & (22)
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where Cfn(E) is the nuclear-scattering cross section given by Eq. 17,

o (E-Em) is the flux of photons incident on the scattering sample
with energy between E and E+4 dE when the monochromator is set at
the energy Ep, and C is a constant which is determined by the solid
angle and the efficiency of the detector. The lower limit of integra-
tion can be changed from 0 to -oco with no significant change in the
result. With no further mention we will do this in all the follow-
ing formulas. In the experiment @ (E-E ) is approximately given by
a Gaussian with an energy width several orders of magnitude larger
than the Doppler width of the nuclear resomance. Therefore we can
replace @ (E-Ey) by @ (Er-Ey) in Eq. +2§° and obtain

RI(E) = CNLO(E, - Emj' Oq(E) dE. (23)

-0
Substitution of.Eq. 18 gives

RUE) = 7TCN;-O’QI_' o (E -E). (24)
The counting rate R;(Em) from Compton scattering is given by
40
R;(Em) = cm‘{ o’c(E) @ (E - Ep)dE (25)
—c0

where Cfc(E) is the Compton scattering cross section given by Eq. 21,
C is the solid angle and efficiency factor, and Z is the atomic number
of the scattering atoms. Since (J,(E) is slowly varying in E com-

pared to @ (E-E,), wve replace (j;(E) by (fc(Em) in Eq. 25 and obtain
+c0
R'(E) = ONLZ Uc(Em)f 0 (E - Ep)dE. (26)
—_e0

Taking the ratio of Eqs. 24 and 26 at Ep = E. and solving for r" gives.
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Further we note that from Eq. 23
B(E - Er) o Ry(E) (28)
Therefore Eq. 27 becomes +00
ro- 22 . (Ep) _ _OORAFE)dE .
T 0o Re(E,) (29)

Assuming that (J_(E.) is known and that the information required to
calculate do from Eq. 11 is known, Eq. 29 gives the nuclear-resonance
width in terms of the experimentally observed quantities Rr;(E) and Ré(E).
In Appendix II a formula similar to Eq. 29 is derived for a
scattering sample of arbitrary thickness. The formula obtained can

be written

+00
6[ Rp(E)dE ACTY)
=Cq 1 = r‘ (30)
Re(Ep)

where A( [) is given by Eq. 56 , R,(E) and R (E) are the counting
rates observed due to nuclear and Compton scattering in the scatter-
ing sample, and 6 is a correction factor which is discussed in
Appendix III. The correction factor 6 is introduced into the equation
to account for the effects of multiple scattering of photons in the
sample, variation of detector efficiency with incident photon energy
and anisotropy in the Compton and nuclear scattering. Eq. 30 is
an implicit equation frbm which the nuclear-resonance width can be
determined from the observed experimental results.

We now obtain the form of Eq. 30 which is used for the analysis

of the experimental data. It is convenient to assume a Gaussian
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distribution* in wavelength for the incident flux. Then according
to Eq. 28 (or for the thick sample case Eq., 52 ) we canm write

Ra(Ep) = Ry(Ep) exp - 2773 [ (A, - )Lr)/T]Z (31)
where T is the full-width at one-half maximum.

Multiplying by dE and integrating gives

+00

Foo dA. 2
[ R(E) @& = Ra(E) | S5 E ew-2.773 [(A -Xori7]? (a20)
-~ E

o0 = 1.065 —j:fr— Ro(E,) (32b)

where we have replaced E/)‘ by Er/ ,lr.in the integration. Insert-

ing this result into 30 gives

S Ry (EL) T
Ry (Ep = 1065\, A([") = B([") (33)
R (E,) tx 2
r

This equation is used in the following sections for the deter-
mination of the nuclear-resonance width from the observed experimental
results. The nuclear width [ﬂ is determined by comparing the experi-
mental value obtained for the left side of Eq. 33 with the tabula-
tion of the right side given for various values of (ﬂ in Tables V

and VI of Appendix II.

* Several authors, DuMond ( 3), Lind (34), and Edwards (11), have discus-
sed factors which contribute to window profile for a curved crystal
monochromator. The correct distribution function consists of a fold
of functions describing the crystal reflectivity, the source spacial
distribution, the source spectral profile, and imperfections in the
focus of the bent crystal. The assumption of a Gaussian distri-
bution made in the analysis of the data in this experiment has been
justified to the accuracy of the results obtained.
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B. Results of the Experiments With a Lithium Fluoride Scattering Sample

For the study of the first-excited level in Fl2 a scattering
sample was prepared using powdered lithium fluoride. The physical
dimensions of the samplewere 3.0 x 8.0 x 1.9 cm. Two sheets of
0.0025 cm thick mylar bound the lithium fluoride powder and form
the window through which the electromagnetic radiation passes. Their
£ontribution to the total scattering and absorption is completely
negligible. By weighing the sample during the comstruction, the
thickness of the lithium fluoride was determined to be 1.32 gm/cmz.

With this sample, three experiments were performed in which
nuclear-resonance excitation of the first-excited level of FL19 was
observed.

1. In the first experiment performed with the lithium fluoride
scattering sample, a quartz crystal in first-order diffraction
from the (310) planes was used in the monochromator, and the nuclear-
excitation peak was observed on both sides of the monochromator
zero position. Figure 8 shows a typical pulse-height spectrum
observed from the Nal detector during the experiment. As indicated
by the arrow on the figure, this pulse spectrum was observed at an
incident photon energy of 109.887 kev. The large peak at 81.0 kev
results from the photons which are Compton scattered by the electrons
in the sample. The elastic peak from the nuclear-resonant scattered
photons which occurs at 109.887 kev is too small to be seen on the

figure. This elastic peak has been observed by comparing pulse



RELATIVE COUNTS

l3e

| | I J T
81.0 kev 109.887 kev
20 l l s
15 -
[0] o _
i—-=f| e

5} ' a3
0] e aeriiiie .

= | N ] ] ]

0 10 20 30 40 50

CHANNEL NUMBER

Fig. 8. Pulse spectrum observed from Nal detector resulting from
scattering of 109.887 kev incident photons by a lithium fluoride
sample. The regions "e" and "{" correspond to the pulse height
settings for the two single channel analyzers used to observe
respectively the elastically and inelastically scattered radiationm.
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spectra with monochromator settings on and off the resonance posi-
tion and will be discusséd on page 47 . In this experiment the two
pulse-height analyzers mentioned on page 36 were set to observe,
respectively, elastically and inelastically scattered radiation.
The analyzer settings are indicated by "e" and "i" on the figure.
We will denote the counting rates observed at a monoéhromator
setting )Lm as Re()\m) for the elastic channel and Ri()km) for
the inelastic channel.

Figure 9 shows a resonance peak resulting from resonance
excitation of the first-excited level in Flg. The ordinate of the
figure is the observed ratio Re()\m)/Ri()gn), and the abscissa is
the monochromator wavelength setting}~ . The data shown in the
figure were accumulated in the followi:g manner., With automatie
recording equipment the monochromator was caused to record counts
from the pulse-height analyzers for two minutes sequentially at
each of ten monochromator wavelength positions spaced at intervals
of 0.08 x-units over the resonance position. At the completion
of this 20 minute cycle the monochromator automatically returned
to the starting position and repeated the cycle. A data run
consisted of data accumulated on one side of the monochromator
zero wavelength position for 63 cycles. The points shown on
Fig. 9 represent the average of four data runs taken alternately
on one side (positive side) then on the other side (negative side)
of the monochromator zero wavelength position. Periodically

during each data run the W, x-ray calibration line from the

“1
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tungsten x-ray tube was measured to obtain a check on the mono-

chromator zero position. The wavelength settings of the monochro-

mator shown on Fig. 9 were determined relative to 208.571 x-units

for the W  x-ray calibration line.

Some typical counting rates observed in the experiment are

given in the following table;

Monochromator Wavelength Position
112,590 x-units 112.190 x-units
i counts counts
Re(Am) 8.88 = 0,17 == 7.74% 0.18 ——=—
Ri()km) 12,340 " 12,375 "

The curve drawn through the data in Fig. 9 is given by the equation

R () )

e 2
—I = aj+ a, exp-2.773 {: (A - X )/T] (34)
Ri(/km) mor

where A is the monochromator setting and
m

8 = (6.26+ 0.06)107%, a, = (8.5 * 1.2)10’5,
_ (35)

T = 0.23 £0.04 x-units, A = 112.592 +0.012 x-units.

T

The parameters a T , and /\ were determined by a least-
X

19 a2}
square fit of the formula to the data points. The use of this
equation for fitting data is justified in Appendix IV.

From the value of /\ we deduce directly the resonance energy
r

E_ =109.887 + 0.012 kev. (36)
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The nuclear-resonance width is determined from the values of

a, and T . "It is shown in Appendix IV that
Rn(Er) € Ri(;kr)

Re®) 2 € [ROU) - ) |

(37)

where ¢ and € are efficiency factors which result from the
e i ‘

finite width of the single-channel pulse-height analyzers and
Rzgd(,kr) is the counting rate observed in the inelastic counting
channel when the diffracted beam is not incident on the scattering
sample. As is discussed in Appendix IV the efficiency factors and
the quantity in the brackets in Eq. 37 were determined from experi-
mental data obtainéd preceding and following the collection of
data for the points in Fig. 9.

From Eq. 37 the value (11.1% 1.6)107° was determined for the

ratio Rn(Er)/Rc(Er)' When the correction factor(5 obtained in

Appendix III is included we obtain
O%E) = (11.6+ 1.6)107°. (38)
Ro(Ep)
The nuclear resonance width is determined by comparing
the left side of Eq. 33, given by the experiment through Eq. 38 and
the value of 7 in Eq. 35,with the tabulated values of B((ﬂ) given
in Appendix II, Table V, From this comparison
M =2(51E L2107 ev. (39)
2. In the second experiment performed with the lithium fluoride
scattering sample, the resonance-excitation peak was observed in

the pulse spectrum from the detector. In this experiment the
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detector-pulse~height spectrum obtained using the 'Penco' 100-channel
analyzer was observed for monochromator wavelength settings |
A, = 112.092 x-units, A m= A, = 112.592 x-units, and

)‘m-: 113.092 x-units. In the data accumulation five minute
observations were taken alternately on and off the resonance for a
total of 40 hours at each position. The pulse spectrum H(channel
number) obtainedrfrom the sum of the data observed at A~m:: ;Lr
is shown in Fig. 10 by the curve labeled H(N). Also illustrated in
Fig. 10 is the background pulse-spectrum G(channel number) obtained
from the sum of the spectra observed in the two off-resonance posi-
tions. The nuclear-excitation peak is seen in the difference
H(N) - G(N) between these two spectra. The size of the excitation
peak is more clearly illustrated in Fig. 11. Curve A of this figure
is the ratio [H(N) - G(Nﬂ /H(N). Curve B gives the values observed
for H(N) - G(N) in the region of the elastic peak. Curve C
indicates the pulse-height distribution obtained for the 122.05 kev
gamma ray from a Co>7 source. The line shape and center position
for the curve B was determined from that of the 122.05 kev cali-
bration line.

The ratio of the integrated area under curve B of Fig. 1l to
the area under the curve in Fig. 10 with a small background correction
gives the value (7.9% 1.9)10"° for the ratio Rn(Er)/Rc(Er)‘

Multiplying by the correction factor (5 from Appendix III we obtain

5 Ra®)
Ry (E,)

5

= (8.3% 2.0)10° (40)
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Fig. 10. Pulse spectra observed from the Nal detector resulting
from photons scattered by the lithium fluoride sample. Curve H(N)
is the spectrum observed with the monochromator set at the resonant
position (112,592 x-units). Curve G(N) is the sum of pulse spectra
obtained with the monochromator set at 112.092 x-units and

113,092 x-units.
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Fig. 11. Nuclear-excitation peak corresponding 109.887 kev photons
observed in the pulse spectrum H(N) shown in Fig. 10, Curve A shows
the relative effect observed. Curve B is the actual difference
observed in the spectra. Curve C is a_calibration curve obtained by
using 122.05 kev gamma-rays from a Co°7 source.
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which is in agreement with the result given in Eq. 38 for experi-
ment one.

Now using the result for 7 from experiment one we obtain the
nuclear resonance width from Eq. 33

M = (3.7 1.2)1077 ev. (41)

3. The procedure in a final measurement of nuclear excitation
in Fl9 was identical to experiment one except that (i) a germanium-
crystal (800) plane diffraction was used in the monochromator and
(ii) the data was observgd on only one side of the monochromator
zero. Fig. 12 shows the results which were obtained. The wave-
length settings of the monochromator were determined relative to

208.571 x-units for the ka x-ray calibration line. Some typical
1§

counting rates observed in the experiment are given in the follow-

ing table:
Monochromator Wavelength Position
112.584 x-units 112,342 x-units
+ counts counts
Re(Am) 13.66 T 0.19 e 12.24+ 0.19 Sieste
Ri().m) 10,096 r 10,118 o

A least-square fit of Eq. 34 to the data points gave the following

values for the parameters:

1

a, = (1L.96F 0.12)107, e, (16.2 + 1.8)107°
(42)
T = 0.162% 0.026 x-units, )| = 112.582* 0.005 x-units.
r
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The curve shown on Fig. 12 was calculated from Eq. 34 and the para-
meters. given in Eq. 42

From the value of )k the resonance energy is
r

E. = 109.897% 0.005 kev. (43)
Proceeding as described for experiment one, the resonance width was
determined to be

"= (6.5+ 1.2)1077 ev. (44)
C. Results of Experiments With a Manganese Scattering Sample

For the study of the first-excited level in Mn°° a scattering
sample was prepared using powdered manganese. The physical dimen-
sions of this sample are 8.0 x 8.0 x 0.48 cm. The thickness
determined from the weight and area of the sample is 3.21 gm/cm?.

The procedure for the experimental measurement of nuclear excita-

35 is the same as the lithium fluoride experiment described

tion in Mn
on pages 42 to 47 except that (i) a germanium-crystal (800) plane
diffraction was used in the monochromator and (ii) the data were
observed on only one side of the monochromator zero. As in the
previous experiments on lithium fluoride the tungsten Wkal line
from the x-ray tube was used to determine the monochromator wave-
length setting.

Although the width of manganese resonance studied is actually
larger than that of fluorime, the size of the relative nuclear-

excitation effect observed in manganese is smaller. This results

from an increase in the value for the observed ratio Ré(/{ )/Ri(A~ )
m m
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caused by electronic Rayleigh scattering in the sample. This effect
is discussed in Appendix V. Combining Eqs. 63 and 68 in the appendices
the contribution of electronic scattering to the observed ratio

3
2 _
Re(Am)/Ri()Lm) is seen to be (B, + nzz A m)/6  where Bl and B2
are constants. For the case of manganese the term in Zz)t due
m
to Rayleigh scattering contributes significantly to the observed
ratio and thus reduces the size of the relative resconance effect.
3
The term in zz;km, also introduces a non-resonant variation with
)Lm in the observed ratio Re()\m)/Ri(A_m). After correcting for
this effect as discussed in Appendix V we find the results shown in
Fig. 13. The figure shows the corrected ratio [R () /R ( i :
€ )Lm i ;km corrected
as a function of the monochromator setting ,A. . The curve shown on
m
the figure is the result of a least-square fit of Eq. 34 to the data.
From the least-square fit the parameters in the equation were found
to be
a; = (1.464 + 0.003)1072 = (2.8%* 0.4)107%
1_(. . ) 5 az—( .8 0.4)10 7,

. (45)
T = 0.205 * 0.027 x-units, /Lr: 98.233+ 0.008 x-units.

Some typical counting rates observed in the experiment are given in

the following table:

Monochromator Wavelength Position

98.233 x=-units 97.951 x-units
counts counts
Re(,{m) 7991 0.8 S 7864 0.3 S=mnt

R, ( Am) 5,337 " 5,362 "
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Fig. 13. Nuclear-resonance excitation of the first-excited state in
Mn>5 observed with a germanium-diffraction crystal in the monochromator.
The figure shows the corrected ratio of the elastic to the inelastic
radiation from a manganese sample as a function of the wavelength of

the incident beam.
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From the value of )“r given above, the resonance position was
found to be
E,. =125.95 + 0.01 kev, (46)
Proceeding as described in the analysis of the lithium fluoride
experiment one,the resonance width for the 125.95 kev level in Mnss

was found from Appendix II, Table VI to be

M= (1.1% 0.3)10 v, | (47)

IV. FINAL RESULTS AND CONCLUSIONS
The final results on the fluorine resonance are obtained by
taking weighted averages of the results of the scattering experiments
on lithium fluoride given in Eqs. 36 and 43 for the resonance energy
position and Eqs. 39, 41, and 44 for the resonance energy width.
19

From these we find for the first-excited state of F

E 109.894 £ -0.005 kev;

r

(48)
[ = (5.1« 0.7)107 ev or Ty = (09% 0.1)1072 sec

where 7; is the half-life of the state. The resonance-energy value
obtained is in good agreement with result Er:: 109.87 - 0.04 kev
obtained by Chupp, DuMond, Gordon, Jopsom, and Mark (35) in some Coulomb-
excitation experiments with a bent-crystal spectrometer. The resonance
half-life obtained can be compared with the value (1.0 X 0.25)].0”9 sec
which was obtained by Thirion, Barnes, and Lauritsem (36) in a
Coulomb-excitation experiment.

The final results for the Mhss resonance energy and width are

given by Eqs. 46 and 47:

E. = 125.95% 0.01 kev;

(49)
[ﬂ 9

(1.1+ 0.3)107° ev or Ty = (0.4% 0.1)107 sec.
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Chupp et al. (35) also measured the emergy of this level. They

found Er:=125.873t 0.05 kev for the resonance emergy. Using fast'
timing techniques Holland and Lynch (37) have measured the half-1ife of
this level to be (0.34 X 0.10)10'9 sec. The B(E2) transition
probability of this level in manganese has been measured by Temmer

and Heydenburg (38). From their result the E2 half-life is cal-
culated to be 4.8 x lo'ﬁxn.Comparing this with our result one

obtains 0.8 percent for the ratio between the intensities of E2

and M1l radiation. This is in agreement with angular correlation
measurements by Bernstein and Lewis (39) which indicate that the

value of this ratio is less than two percent.

The results obtained in this experiment through the technique
of nuclear excitation with a diffracted x-ray beam are in good agree-
ment with those obtained through other techniques. As can be seen
from the results this method gives a precise determination of the
energy position of the levels which are excited. In the determina-
tion of resonance widths the accuracy obtained in this experiment
was limited by the available intensity in the incident diffracted
beam and by background from atomic scattering in the sample.

In conclusion we comment on experimental work required for the
future application of this technique of nuclear excitation. The
observations made here indicate two general directions in which
further work is required. (i) Experimental work directed towards
increasing the intensity and resolution of the incident diffracted

beam. This might be attained through the use of larger diffraction
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crystals in the monochromator and through the use of a more intense
x-ray source. (ii) A second problem which needs to be solved is
that resulting from the background coming from electronic scatter-
ing in the sample. Rayleigh scattering from the atomic electronmns
places a severe restriction on the size of the nuclear scattering
effect which can be observed. This problem might be solved by
taking advantage of the instantaneous character of atomic scatter-
ing as compared to the life time of the nuclear states excited.
Through the use of a pulsed x-ray beam and a properly gated
detector it should be possible to observe only the nuclear excita-

tion events in the sample.
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APPENDIX I
MECHANICAL DESIGN OF THE MONOCHROMATOR

Many considerations leading to the design of the present monochro-
mator are similar to considerations discussed in references 1 amnd 40.
Practical requirements such as the availability of two-meter-radius
curved-crystal clamping-blocks, length, pitch and precision of lead
screws available, the optimum lever arm length to allow large angular
magnification with a minimum of bending, determined the over-all
dimensions of the instrument. With these proportions established
an analysis of all calculable mechanical errors was made. Each error
was to be limited to 3+ 0.001 s.d. which corresponds to 0.001 x-units
in wavelength resolution for the quartz (310) planes, The design

we have finally adopted is illustrated in Fig. 1.
A, Design of Crystal-Pivot Unit

The crystal-pivot bearing, lever arm, and sine-screw assembly is
mounted on an octahedron constructed of welded square steel tubing,
provided with three leveling screws. The pivot shaft, shown in Fig. 14,
is ground and lapped and rotates in two "Oilite'" bearings. The
inside diameter of each bearing is first fitted accuragely to the
pivot shaft then milled out leaving two narrow strips, 90° apart, as
shown in the insert in Fig. 14 . A wedge bottom groove is machined
opposite the two strips. A bronze spring with a mating wedge projection
is inserted in the groove. The spring has two strips that are machined

to a slightly larger radius than the pivot shaft. A "T" slot in the
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top of the spring is engaged by a button on the adjusting screw which
raises or lowers the spring thus decreasing or increasing the bearing
pressure on the pivot shaft. The two bearings are mounted 180° from
each other so that the moment, due to the weight of the lever arm,

is taken up by the solid strips of both "Qilite" bearings. The axial
thrust of the pivot shaft is carried by a ring of ball bearings. The
whole pivot assembly is enclosed in an oil filled housing with a

felt dust seal at the top.

The crystal-block-mounting assembly consists of four parts. The
convex crystal clamping-block is screwed to the upper plate shown in
Fig. 14 . The upper plate is provided with a large hole which clears
the conical portion of the centering button. Four radial set screws
in the upper plate clamp the centering button allowing small adjust-
ments in the horizontal plame. The cylindrical end of the centering
button pivots in a bored hole in the crystal platform. A differen-
tial screw, mounted on the platform, provides small rotational adjust-
ment of the upper plate. The lower part of the platform is fitted
to a taper on the main pivot shaft and clamped with a cap screw.

The lever arm is clamped rigidly to the main pivot shaft. Im
the horizontal plane the lever is parabolic in shape to achieve maxi-
mum rigidi;y with minimum weight.

The sine-screw mechanism is shown in Fig.1l5 with one bearing
plate and cheek plate removed for clarity. Figure 16 shows a photo-
graph of the sine-screw unit. The precision ground and lapped lead
screw engages a bronze split nut. End thrust on the lead screw is

borne by a hardened and polished spherical button bearing against a
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Fig. 16. Photograph of the sine-screw mechanism with a cover plate
removed. The upper guide-bar, precision lead-screw, and main guide-
bar can be seen. Also seen is the radial projection from the

bronze split-nut held to ride on the calibration cam by the spring.
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flat hardened plate, not shown in the figure. The bronze split nut
has an adjusting screw to achieve proper thread contact. Part of the
split nut projects radially and is fitted with a small roller which
rides on the calibration cam. When the lead screw is rotated clock-
wise the calibration cam constrains the split nut in the tangential
direction. If the contact surface of the cam were straight the axial
motion of the split nut would be determined only by the pitch of
the lead screw. However, as shown in Fig. 15, the cam is profiled
to correct for nonlinearities in the pitch of the lead screw. As
the split nut projection rides along the cam the profiled surface
imparts additional rotation to the split nut that appropriately
adds to or subtracts from the pitch of the lead screw. The total
correction range of the cam is equivalent to 0.1 x-units of gamma-
ray wavelength.

Straddling the split nut is the sliding assembly provided with
two split bronze bearing plates that slide on the main guide bar.
A projection on the 'Meehanite' spacer block is held against the
upper guide bar by a flat spring. The sliding assembly clears the
lead screw and is constrained to move in a straight line by the
two guide bars. The ends of the bronze split nut are polished flat
and contact two hardened and polished cheek plates. These plates
extend down to contact a hardened and polished steel disc which is
clamped in the end of the pivot lever arm.

The pressure on the main pivot bearings, seen in Fig. 14, is
partially relieved by providing a hardened and polished button, at

the end of the lever, which rides on the main guide bar.



66

The pitch of the lead screw is such that the crystal pivots
through 3 minutes of arc per turn. One-half turn is denoted as one
'screw division'' (s.d.). When using the (310) planes of quartz as the
diffraction crystal ome screw division is exactly equal to one x-unit
of wavelength. A revolution counter and a vernier dial on the lead
screw give direct readings to 0.001 s.d.

Precision stepwise motion of 0.02 s.d. per step is obtained by
using a solenoid actuated pall te drive a 100-tooth racket wheel
attached directly to the lead screw. A direct current motor provides
rapid motion from one setting to another. This motor is automati-

cally disengaged when not running.
B. Design of Detector Carriage

The collimator and detector are mounted om a platform which
rides on a circular track assembly shown in Fig. 1. The platform
must rotate about a center which coincides with the crystal-pivot
bearing through twice the angle of rotation of the crystal. The
top of the outer track is machined to form a 90° triangular cross-
section. The platform is fitted with two pairs of ball bearings
that ride on the two 90° faces of the outer track constraining the
platform to rotate in a circle. The two innmer bearings, close to the
pivot, are conical and ride on a conical rail whose apexes coincide
at the crystal pivot. This is to allow the platform to roll with
a minimum of sliding friction. The unit is designed to carry a

6,000 1b. load.
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The position of the collimator and detector relative to the
crystal is not, of course, related to the precision of the instru-
ment but affects only the intensity of the transmitted gamma-ray beam.
The collimator presently used is 18 inches long consisting of 29
stainless steel strips, 0.016 inch thick and 2 inches high. Each sheet
is clad on both sides with 0.002 inch thick lead foil. The tapered
openings measure 0.050 inch at the entrance end and 0.061 inch at
the exit. With this collimator an error in the position of the
collimator and detector platform at the outer rail of 0.010 inch
results in a 3 percent decrease in the intensity of the transmitted
beam. With this in mind the following simple tracking solution
was used.

A square groove was machined in the outer track to accommodate
a curved rack which meshes with a spur gear driven by a selsyn motor
attached to the carriage. The motor is coupled to a selsyn generator
whose rotor is conmected to the lead screw of the sine-mechanism.
Since the rotation of the lead screw is proportional to the sine of
the crystal rotation )) and the spur gear and rack mechanism is pro-
portional to )) a linear rack would introduce an error of 0.1 inch
at each end of the travel. A special rack was cut with a gradual
increase in tooth spacing to correspond to the difference between )/
and sin }) as )/ increased from 0 to % 18°. The greatest deviation
of tooth spacing from normal pitch was 0.002 inch, which is less than

the normal allowance for back lash (0.003 inch) of commercial gears.
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APPENDIX II

DETERMINATION OF NUCLEAR RESONANCE WIDTH USING A SCATTERING SAMPLE
OF ARBITRARY THICKNESS

Here we obtain the expression used to evaluate B(rj) in Eq. 33
and present tables of this function which were used to analyze the
experimental results. The procedure used to relate the experimentally
_observed quantity Rn(Em)/Rc(Em) to the resonance width is similar
to that used in the thin sample approximation given in Chapter III (4).

For the case of a scattering sample of thickness L the counting

rate Rn(Em) due to nuclear scattering is (compare Eq. 22)
+co L

R (E,) = CN| dE dx dntn)acz-zm>exp-nx( 0,EB)+ g (®)

o

-0

* exp-Nx

0. ® + g, ® ) /|eos€ | (50)

where é;o is the average scattering angle and Cfe(E) and Cfn(E)

are respectively the electronic and nuclear interaction cross sections.
The first exponential factor in the equation gives the attenuation

of the photon intensity which arrives at the position x in the target.
The second exponmential factor gives the attenuation of the scattered
photon intensity resulting from scattering in dx which arrives at

the detector. We integrate Eq. 50 over x and note that since

G(E-Em) and Cfe(E) are slowly varying functions of E in comparison

to (f (E) we can substitute their values for E equal to E..
n
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Then Eq. 50 bec:omes_”(><3

dEUn(E)[l - exp-NL( 0. () + dn(E)J(1+ 1/ won| §°I) (51)
(5

Rn(zm)zcw(ﬁr'Em’_go (O;(Er)+ o’n(E))( L+ 1/|°°s§ol)

As for the case of a thin scattering sample we notice that
#(E - E.) oc RL(E), (52)
Now we obtain the expression for the counting rate Rc(Em) result-

ing from Comptgg scLattering. This is given by (compare Eq. 25)

Rc(Em) = CNZ dE [dx [GC(E)Q(E-Em)exp-Nx {de(E) + Jn(E)]

2SO o

-.exp-Nx([fe(E')-F O;(E')J /lc°s§°l] (53)

where E' is the energy of Compton scattered photons given by Eq. 19
with § equal to §o. This equation is integrated over x. Then
since UC(E), Ue(E), and de(E') are slowly varying functions
of E compared to ﬁ(E-Em), we can replace them by (j c(Em), de(Eﬁ_),
and O’ (E' ). Also we can replace G (E) and d (E') by zero

e m n n
without introducing significant error to the value of the integral.

Then Eq. 53 becomes

$00
~ cz O;(Em)[l - eXP-NL(O;(Em) + Ue(E'm)/]cos§°|)] ¢(E-Em)dE,
R.(Ep) — (54)
o/e(Em) - Ue(E'm)/ lcosgo, -00
From Eqs. 51, 52, and 54
+ 0O 2}
R, (E)dE
— = &) (55)
Rc(Er)



where + &0

€ g (@ [1- exP-NL(O;(E Y4 0 ®)] [1+1/feos £ |)]

{o’e(Er) + g ®)[1+1/eos & [}

—c0
z O;(Er) [1 - exp-NL (O’e(Er) + O;(E;)/]cos §ol)]
O B+ Ep/[eosg |
e

A = *(56)

The above expression for A([_') becomes a function of r‘ when Eq. 17
is substituted for d(E).

Eq. 55 reduces tonEq. 29 in the limit of small thickness L. There
are two interesting limits for the case of a thick foil. First, suppose
that m.o’e(zrv? 1 and o’e (&) > >o;(zr) then Eq. 55 gives

40
o szc(Er)' O;(Er)[l +1/lcos§°[] [okg(ﬁ)dz

. L] . (57)
mg, O0,®)+ Ue(Er”|°°5§°1 R (E)
Now consider the case NL d (Er)>> 1 wherede(Er) = O’ (Er).
e n
In this case Eq. 55 gives
+00
0.93Z (V(E_.) |1+ 1/|cos J R_(E)dE
= O; r [ l §°|] oo (58)
0, () + O _(B')/|cos §°| R (E_)

indicating that for this case the size of the observed effect is

determined by the Doppler width rather than nuclear-resonance width.
Eq. 55 is an implicit equation from which the nuclear-resonance

width is determined from the observed experimental results. In the

analysis of the data the right side of the equation was numerically



-
determined for each scattering sample as a function of r1. The value
of [ﬂ corresponding to the experimental results for the left side of
the equation gives the nuclear-resonance width.

In the determination of f’from the experimental data it is

convenient to use (see Eq. 33)

Ar A,
65 e (59)

r

M) = 1.0

Tables V and VI give calculated values of B(r“) versus [ﬁ for the

lithium fluoride and manganese samples used in the experiment.
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TABLE V., Tabulation of B(fﬂ) for lithium fluoride scattering sample.

Resonance Resonance

width[ ev  B([') x-units width [ ev B([") x-units
0.5 x 107/ 0.27 x 107° 5.5 x 10~7 2.90 x 10°°
1.0 0.53 6.0 3.16

1.5 0.79 6.5 3.42

2.0 1.06 7.0 3.68

2.5 1.32 7.5 3.95

3.0 1.59 8.0 4,21

3.5 1.85 8.5 4,47

4.0 2.11 9.0 4.73

4.5 2.38 9.5 4,99

5.0 2.64 10.0 5.25

TABLE VI. Tabulation of B(F“) for manganese scattering sample.

Resonance Resonance

Width[' ev B(fﬂ) X-units Width[' ev B([ﬂ) x-units
1.0 x 1077 0.29 x 1072 1.1 x 107 3.16 x 107
2.0 0.58 1.2 3.45

3.0 0.87 1.3 3.73

4.0 1.16 1.4 4,01

5.0 1,45 1.5 4,29

6.0 1.74 1.6 4,57

7.0 2.02 1.7 4,85

8.0 231 1.8 5.13

9.0 2.59 1.9 5.40

10.0 2.88 2.0 5.68
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APPENDIX III
CORRECTIONS APPLIED TO MANGANESE AND FLUORINE DATA

Through the factor'(j introduced in Eq. 30 correction was applied
to the data for: (1) variation in detector efficiency with incident
photon energy (denoted as (51), (2) anisotropy in the Compton
scattering (denoted as (52), (3) anisotropy in the nuclear scatter-
ing (dénoted as 633), (4) multiple scattering of photons in the
scattering sample (denoted as 634). The amounts of the corrections

applied for each of these effects are given in the following table:

Cemie. 6, 6, 6, 6, 6=06,0,60,

LiF 1.03 0.87 1.00 1.18 1.05

Mn 1.06 0.85 0.99 1.22 1.09

The correction term (5 1 was determined from the calculated ef-

ficiency of Nal crystals of Wolicki, Jastrow, and Brooks (41). The
(51 term is obtained by taking the ratio of the Nal-crystal efficiency
for photons at the Compton scattered energy to the Nal-crystal effi-
ciency for photons at the incident energy.

The correction term (5 o for asymmetry in the Compton scatter-

ing was determined using Eqs. 20 and 21 from the formula

62 _ 4ﬁ[d%/dQL§. - §°). (60)
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The correction term (5 3 for asymmetry in the nuclear scattering

can be determined from the theory of angular correlation of nuclear
radiation (42). The correction depends on the angular momentum of
the initial and excited states and the multipolarity and mixing
ratios of the tramsitions. For Flg the angular distribution is
isotropic, and therefore (53 = 1.,00. For Mn>> the angular dis-
tribution is not well determined because of an uncertainty in the
mixing ratio. However, angular distribution measurementsof the

126 kev gamma-rays emitted following Coulomb excitation by alpha
particles have been measured by Bernstein and Lewis (39). From
their experimental results the correction factor (5 3 was estimated
to be 0.99.

In the derivation of Egqs. 29 and 55 the effect of multiple

scattering events in which a photon arrives at the Nal detector after

two or more scattering events, was neglected. For a thin scatter-
ing sample this effect is negligible, but for a thick sample the
effect can become rather large. For the experiment with the lithium
fluoride scattering sample an experimental determination and also

a calculated estimate of (S 4, were made. The experimental deter-
mination was obtained through the following procedure. A thin
lithium fluoride scattering sample was placed in the incident beam,
and the counting rate of the inelastic scattering channel was
observed as a function of the position of the sample with respect

to the detector. Analysis of this data in comparison with the count-
ing rate observed with the thick lithium fluoride scattering sample

in place gives the value of the correction 64 = 1.18,
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A calculated estimate of (5 4 was made and found to be 1.24 for

lithium fluoride scattering sample and 1.22 for the manganese sample.

The calculated value was used to correct the manganese experiment,



=76=
APPENDIX IV

ANALYSIS OF THE INTENSITIES OBSERVED IN THE ELASTIC
AND INELASTIC COUNTING CHANNELS
Here we obtain the expression given in Eq. 37 for evaluation
the ratio Rn(Er)/Rc(Er) from the experimental data. We also give a
detailed description of the method used in the experiment to determine
the efficiency factors (¢ and €. and the quantity in the brackets
of Eq. 37. : ’

Eq. 37 was derived in the following'manner. The counting rate

Re(km) observed in the elastic channel is the sum of three terms;

" bgd
Re()\m) = € R (ED+ RA(AEH R, 20 D) (61)

where '3 Rn(Em) is”the contribution to RE(A ) resulting from nuclear
scattering, RA(/\ ) is the contribution from scattering by the atomic
electron (see Appendix V), and R (/\ ) is the crystal background
counting-rate present when the diffracted beam is not incident on

the scattering sample. Similarly the counting tate in the inelastic

counting channel is given by

bgd
RO = € REF RS () (62)

where €_RC(E ) is the contribution to Ri(/l ) resulting from Compton
i n

bgd

scattering and R,° ( A ) is the crystal-background counting-rate.

m
In the experiment the crystal-background counting-rates were observed
by setting the crystal to the position (A. - 10.000) x-units with

m

the collimator at the position corresponding to )\ . Under these
m
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conditions the diffracted beam cannot pass through the collimator

to the scattering sample. Placing Eq. 31 into Eq. 61 and using Eq. 62

gives
2
bgd
Re(&n) ) RA(/\EH— R (,\m) * €eRn(Er)exP-2'773[(/\m' )tr)/T] -
bgd
R ( )\m) €iRc(Em)Ri(Am)/[Ri(Am) “ B (Am)]

This equation is the basis for Eq. 34 which was used in the least-
square analysis of the experimental data. The variatiom in
Re()lm)lki()\m) with )k . resulting from changes in the non-resonance
terms of Eq. 63 is negligibly small in the experiment with the
lithium fluoride scattering sample. The effect of these terms in

the experiment with the manganese scattering sample is discussed in

Appendix V. Comparing Eq. 63 with Eq. 34 we obtain

R (E) €, Ry (A )
————— = az bgd (64)
R (E,) €, LR =R Q)

which is the expression given in Eq. 37 .

The efficiency factors ek.and E; and the quantity in the
brackets were determined for each experiment from data taken pre-
ceeding and following collection of data for the points in Figs. 9
and 12 for lithium fluoride and Fig. 13 for manganese. The efficiency

factor ¢ was determined from the equation
i

bgd

= BE (65)
€y L) - I () )
r r
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where I,() ,) is the integrated counting rate of the pulse spectrum
similar to that given in Fig. 8, and I:gd(;\r) is the integrated count-
ing rate of the pulse spectrum obtained when the monochromator crystal
is in the crystal background position. In Eq. 65 the values of

Ri()\r) and R:gd(;kr) were observed simultaneous to the observatioﬁ

of the pulse spectrum measurements. Alsc from these values the

factor in the brackets in Eq. 64 was determined. A formula identical
to Eq. 65 with i replaced by e was used to obtain | € - In this case
the single~-channel pulse-height-analyzer counting-rat: and the pulse

spectrum from the "Penco' 100-channel analyzer were determined with

the detector placed directly in the diffracted beam of the monochromator.
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APPENDIX V

CORRECTION FOR RAYLEIGH SCATTERING EFFECTS IN THE
MANGANESE EXPERIMENT

In Fig. 17 the observed ratio Re(Am)/Ri(Am) for the manganese
scattering sample is shown as a function of wavelength of the incident
beam. The sloping base line seen in the figure primarily results
from non-resonant variation of Re()km) due to elastic scattering
by the atomic electrons (Rayleigh scattering). A correction linear
in A~m was applied to the data in Fig. 17 to obtain the results
presented in Fig. 13 . We here discuss the effect of Rayleigh
scattering in resonance-excitation experiments and then derive the
equation (Eq. 70 below) used to correct the manganese data.

To understand the non-resonant Qﬁriation in RegA~m)/Ri(A“m) each
of the non-resonant terms in Eq.63 were investigated. Results of
the investigation indicate that the most significant term is RA()\ Dis
the counting rate due to scattering by the atomic electrons. :
This term is the sum of a contribution resulting from Compton
scattered photons and a contribution rgsulting from Rayleigh scat-
tered photons. To investigate the relative magnitude of these two
factors, pulse spectrums were observed using scattering samples of
various atomic number. Fig.1l8 shows pulse spectra (corrected for
background) obtained with a beam of 125.00 kev photons incident on
the scattering samples. In the measurements thin scattering samples

were used. The pulse spectra in Fig. 18 have been normalized to
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Fi§. 17. Nuclear-resonance excitation of the first-excited state in
Mn>> observed with a germanium-diffraction crystal in the monochro-
mator. The figure shows the ratio of the elastic to the inelastic
radiation from a manganese sample as a function of the wavelength
of the incident beam.
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Pulse spectra observed from the Nal detector resulting

from scattering of 126,00 kev incident photons by scattering
samples of various composition.
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show the spectrum which would be obtained from a scattering sample
of thickness such that NL o; (E) = 0.05.

In Fig. 18 the large peak at 89 kev is due to Compton scattering
in the samples. For each sample the integrated counting rate under
this peak is given by Eq. 26. The peak at 125 kev, which is most
clearly observed in the scattering from tantalum,is due to Rayleigh
scattering iﬁ the samples*, For a thin sample the integrated
counting rate under the Rayleigh peak is given by an equation similar
to Eq. 26 ' +00

Rp(E) = CNLO’R(Em) G(E-E_)dE (66)

Zoo
where (jﬁ(Em) is the cross section for Rayleigh scattering. Franz (43)

has derived an approximate formula for the Rayleigh-scattering
cross section

3
C&(E) _ 8.67 x 10'33( nm?Z) 1 c052£- cmz

sin3[§/2) E

where Z is the atomic number. Several authors (44,45) have discussed

(67)

2 ster

this formula. They find that the dependence of the cross section on
the atomic number and incident energy given by (Z/E)3 is approximately
correct., To the precision of the experiment we have observed the
(Z/E)3 variation in the elastic peak of pulse-spectra measurements
similar to those in Fig.1l8 at various incident energies from 110 kev

and 150 kev.

* Thomson nuclear scattering yields a negligible contribution to the
elastic scattering. The cross section for this process is
O;(E) = 1.19 x 10-32 (1 + cos2f) (z2/4)2 cm?/ster.
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We now use these results to obtain the correction formula which

was applied to the manganese data given in Fig. 17 . In the manganese

experiment the elastic-counting channel is set to observe pulses in

the region of channels 33 to 37. The counting rate RA(/l m) in this

region can be written as the sum of a term proportional to Rc(Em)

and a term proportional to RR(Em). Therefore, from Eqs. 26 and 66

we expect the wavelength dependence of RA( Am)/Rc(Em) to be given by

2,3
RyA V/R(By) = By + By27) (68)

where By and B, are constants. Expanding near the nuclear resonance

2

wavelength A 7 gives

2
2
Ry (A ) Ry ) 3B,2° ) _
= 1+ |———
3] A -AD 69
R, (Eg) R_(E,) B +8,72) > A A (69)

1

a non-resonant linear-change with the incident wavelength A :
m

2.3
Thus, if BZZ A is large compared to B, the observed ratio will show
o

The manganese data shown in Fig. 13 was corrected for the effect

of Rayleigh scattering through the use of the equation:

2
R (A ) Ro() ) 38,2
;T—&)_ ) f%_a)' o Bs(km—)\f) o B, 4+ B2z ) e
l/\m <:orre¢:t:§.d/{m 1% % /lr

The empirical value B3 = 0.024/x%-units was found from the slope

 of the observed base line. The ratio [Re()(m)/Ri(/{ )] g
m correcte

can be analyzed with Eq. 63 where Am = ) in the non-resonant terms.
r
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