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ABSTRACT 

The purpose of this investigation has been to study 
in detail the development of deformation fabrics in some 
naturally deformed limestones, with a view of testing the 
geo logical applicability of experimentally deduced origins 
of such fabrics in these materials. Flexurally fo l ded 
limestone s have been used to make comparisons between experi
ment and nature, by taking advantage of the approximately 
Imo1tm charac ter and variation of strain in these structures 
and using this information to deduce theoretically the de 
formation fabric s from place to place to compare with those 
actually observed in the structures . Two kinds of fabric 
problems are treated, ones dealing with gros s changes in 
crystal orientation accompanying large strain, and those 
treating the origin of twinning l amellae in carbonate 
rocks in relation to applied stress, the so - called dynamic 
analysis . An extension of this analysis is made which al
loviS quantitative information as to rock strain due to 
twinning (and translation gliding) to be obtained from thin 
sections . 

Current theoretical treatments used in predicting 
fabric changes with strain in marb le are found inadequate 
for predicting fabric changes with strain in flexure folds. 
Exact derivations of these fabrics for folds have not been 
made . Instead , an i mplication of a more general theory 
treating development of fabrics in metal aggregates is used 
to derive approximately the changes in c - axis orientations 
with large strain by analogy with fabrics obtained from 
experimental deformed Yule marble . vIe ll defined fabric 
changes with large strain involving both b"inning and 
translation gliding in individual crystals have not been 
observed in the folds studied . 

Predicted results for the dynamic analysis of an 
aggregate with isotropic c - axis distribution are derived 
1tnth special reference to- one of the folds studied . The 
stress di stribution in plane strain is calculated fo r the 
structure starting with an already partly folded unconfined 
layer of circular cross-sectio , and assuming it to be 
loaded elastically with simple compressive forces applied 
in the limbs directed normal to the axial plane . 'l\-linning 
deformation in individual crystals is treated by assuming 
that the law of maximum resolved shear stress determines an 
active blin set in each grain . The results obtained are 
compared favorab l y with those observed in a natural fold . 



Deformation fabrics from two small folds are given . 
The first fold occurs in a large anticlinorium in v.,estern 
Hashington County , [vIaryland , in thinly bedded limestones 
and shales of the Silurian McKenzie Creek formation. Tne 
second is a drag fo l d on the eastern limb of a north
trending anti cline i n Carboniferous limestones and shales 
located in upper Danrin Hash , D2.rwin Hills, Inyo Coun t y , 
California . I n the Mary12nd fold, s:-axis fabrics obtained 
from the axial region shoVl no preferred orientation due to 
deformation, bu t a dynamic analysis of the twinning lamel
lae is in good 2greement with that expected in t heory . 
The dynamic analysis is shown to be sensitive i n depicting 
small ch2nges in twinning deformation throughout portions 
of t he body examined . The strains due to twinning are 
compatible VIi t h bending in part of the structure . More 
quantitative comparisons of the observed and expected de 
formation have sho'lm that under a derived system of stress 
at the 8..,'{ial plane, tI'!inning deformation in 80% of the 
grains in the aggregate has follovred the la"T of maximum 
resolved shear stress . The amount of twinning strain I,vi thin 
individual crystals varies ,'Ti th their orientation in the 
stress field . The calculated visib l e (twinning ) strains of 
about 0 . 01 are considerably less than the strains computed 
from t he geometry of the fold of 0 . 25, and much of this 
discrepancy may be due to fracturing (slip on planes paral
lel to bedding) during folding . 

In the fold from Darwin "\Ilash , observed fabriCS 
cannot be related simply to the megascopic de formation in 
the fold . Preferred orientations of c - axes are thought to 
be partly due to veining in t he rock. - Fabric changes due 
to twinning are however qualitatively correlated with 
shortening in the fold perpendicular to the axial plane, 
and a shear similar to that necessitated by the relation 
of the drag fold to the major anticline with 'i-Thich it is 
associated . Calculated visi b le strains are considerably 
less than those approximately deduced from fold geometry , 
but can be partially correlated with the observed deforma 
tion i n t he structure . Analysis of the deformation in 
nonhomogeneously strained individual crystals of these 
aggregates (Appendix II) shows that in addition to e [ 0112J 
tvrinning, translation glidi ng has occurred on most types 
of glide planes deduced for calcite from laboratory experi
ments . ~ticroscopically these rocks appear to have under 
gone large defor mation, exhibiting local cataclastic tex 
ture, much bvinning and warping of individual crystals . 
Hm·,rever, well defined formation fabrics due to large strain 
have not been observed in them . 



A second part of this investigation has dealt with 
t he so - called nontwinned lamellae in calcite and dolomite . 
From t hese studies it has been conc luded that such struc 
tures ar e extremely t hin (a fe vT microns) but otherwise 
normal twin l amel l ae parallel to e {Ol I 2J in calcite and 
f {022 l} in do lomite, and are for t his reason renamed wi cro 
twinned lamel l ae . In addi tion to interference co l ors , 
these lamellae exhi bit four different t ype s of interfer 
ence f ringe s . A new me t ho d is presented , which uti l izes 
the optical properties of t he twins , f or obtaini ng t he 
orientation of l ame llae i nclined at small angles to the 
p l ane of a thin section . The utility of this techni que 
lies in the fact t hat it may be used to e liminate the 
central "b lind - spot " in twin lamellae fabric diagr ams . 
Some measurements of twin thicknesses , made using the new 
orientation me t hod , are given , together with calculations 
whi ch show t hat only an average a nd not a cumulative op
tic a l thickness for a stack of lamellae superposed in t hin 
section may be obtained using the method . 



TABLE OF CONTENTS 

TITLE PAGE 

INTRODUCTION AND PURPOSE OF THE INVESTIGATION 1 

PREVIOUS HORK . . . . . . . 

BASIC CONCEPTS AND rl[ETHODS 

Nature of the Structures Se lected for Study 

Choice of folded limestones as subject 

Detailed requirements for the folds 

Strain Distribution in Folds . 

Simple model for the bending strains in 

flexure folds 

Approximate calculation of strains in fold 

Principles for the Comparison of Theoretical 

7 

17 

17 

17 

19 

21 

21 

and Observed Fabrics in Folds 34 

~JPes of fabric comparisons 34 

Gross changes in crystal fabric arising from strain 34 

Dynamic interpretation of deformation lamellae 44 

Calculation of Bulk Strain from Petrofabric Data 55 

Visible bulk strain due to hrinning 56 

Strain due to translation gliding 61 

Accura6y of the strain calculations 65 

Relation between the strain calculations and 

dynamic analysis . . . . . . • . . . . 70 



TITLE 

Petro fabric method for determining the bulk 

rheological properties of lime stone under 

deformation in nature . . . 

Petrographic Techniques Employed 

Petrofabric analysis procedure 

New deve lopments in carbonate petro fabric study 

FABRIC STUDIES OF FOLDED Ln1ES'IDN~S 

Introduction . 

Locali ties Examined 

Folds from the Cacapon Mountain Anticlinorium 

Geologic setting . . 

Detailed description 

Petrographic character of the rock 

Fabrics from the fold 

c - axis fabrics 

e - lamellae preferred orientation 

Dynamic analysis results 

cl - axis orientations . 

Calculation of strains due to t,vinning 

Fabric s of highly deformed vein material 

Application of the law of maximum resolved 

shear stress 

PAGE 

71 

74 

74 

76 

79 

79 

81 

90 

go 

93 

97 

101 

10 1 

101 

105 

110 

III 

121 

124 

Fold from the Dar\llin Hills, I nyo County, California 131 

Geologic setting . . . . . . . 131 

Description to the fo ld studied 139 

Petrographic character of the roc k 143 



TITLE PAGE 

Results of t he fabric studies 147 

c - axis fabrics . 147 

c ' - axis fabrics 149 

e [0112f orientation data 153 

Dynamic analysis of ~- lamellae 155 

Calcu lation o f strain du e to mechanical twinning 158 

Interpretation of the DarilJin fabric results and 

comparisons l'li th experimental studies 166 

Summary and Conclusions Drmm from the Fabric Studies 169 

Future Studies . . 

NATURE AND PROPERTIES OF e [ 01121 LArllELLAE IN CALCITE 

AND f [ 02211 LAMELLJI.E I N DOLO!VlITE 

Introduction . . 

Previous Studies 

Description of r,licrotvlinnecl. Lamellae 

Interference colors and fringes 

Origin of the fring e features and interference 

colors . . . .. 
A Nevi Method for Neasuri ng Or ientations of 

ThQnning L~ellae 

The "b lind spot " problem 

Physi c al principles of the me t hod 

Me t h o d for me asuring orientation of lamella e used 

in practice 

Difficu l ties in t~1e method 

Principle use of t h e orienta tion meth o d 

173 

174 

17iJ. - , . 

1"6 - ( 

178 

179 

184 

192 

192 

197 

198 



TITLE 

Determin at i on of Lamella Thickness . • • . . 

Optical Effects Produced by Superposition of 

Several T'nin Lamel l ae 

Introduction 

Exact calculation for the two - lamel l ae case 

Experimental test of the results for tvlO 

superposed l ame l lae 

Extension of the calculations to the case of 

three or more lamel l ae . . . 

S·o.:nmary of re sults of previous sections 

APPENDIX I . 

APPENDIX II . 

CRYSTALLOGRAPHIC NOTATION AID A SUMHARY 
OF EXPERH 'lENTALLY DETERI'iHlED GLIDING 
ELEHENTS I N CALCITE . . .. . ... 

GLIDE j·IECHANI SHS OBSERVED I N THE 
DAR1HN FOLD . . . . . . 

APPENDIX III. DISLOCATION ffJODEL FOR THE GROVJTH OF 
]·'iECHANICAL TlHNS IN CALCITE 

REFERENCES 

fAGE 

199 

204 

204 

207 

218 

222 

224 

228 

235 

250 



FIGURE 

1. 

3 . 

4 . 

5. 

6 . 

7 . 

8 . 

o 
--' . 
10 . 

11. 

12 . 

13 . 

14 . 

15 . 

16 . 

17 . 

18 . 

19 . 

20 . 

21. 

22 . 

23. 

LIST OF FI GURES 

PAGE 

23 

25 

~3 

. 1.!-8 

52 

58 

91 

92 

94 

95 

99 

102 

103 

109 

120 

123 

126 

129 

132 

133 

137 

138 

145 



FIGURE PAGE 

24 . 148 

25 . 151 

26 . 152 

27 ; 154 

28 . l r:;~ 
./ ( 

29 . 161 

30 . 161 

3l. 180 

32 . 182 

33 . 186 

34 . 186 

35 . 187 

36 . 195 

37 . 202 

38 . 206 

39 . 212 

40 . 212 

4l. 212 

42 . 226 

43. 245 

lj.4 . 248 



LIST OF TPBLES 

TABLE PAGE 

l. 33 

2 . 189 

-, 
J ' 203 

1J. 227 .. 
5 . 232 
,-
o . 234 

7 . 243 



- 1 -

INTRODUCTION AND PURPOSE OF THE INVESTIGATION 

The purpose of this study is to test in detail the 

applicability of experimental studies on the origin of de 

formation fabrics in carbonate rocks to the origin actually 

observed in such rocks in nature. 

The geological literature contains abundant petrofabric 

data bearing on the problem of preferred crystal orientation 

in many kinds of deformed rocks. Investigations of this type 

were first carried out by Sander (1911) who applied the methods 

of petro fabric analysis to complexly deformed rocks in the 

eastern Alps. The purpose of these investigations was to 

understand the deformational history of the rock as defined 

by their fabrics. The central prob lem in interpreting all 

fabric data has been to understand how preferred crystal 

orientations arise in nature- - whether intracrystalline plastic 

deformation, cataclasis, recrystallization, or some combina

tion of these processes is responsible for the fabrics . Such 

understanding is obviously necessary if any certain conclusions 

are to be drawn from the fabrics either as to the strain the 

rock has undergone or as to the forces that acted upon it 

during deformation. Prior to the efforts of Griggs (1936, 

1939 ) most experimental data on the mechanism of plastic de

formation of a poly-crystalline material pertained to metals . 

It was natural therefore to look to deformed metal textures 

to provide insight as to how deformation fabrics arise in rocks. 
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Close comparisons behleen rock and metal fabrics have been 

justified on the grounds that both rock forming minerals and 

metal crystals deform by the same mechanisms, translation 

gliding and twinning, and through recrystallization. Rock 

and metal deformation is also similar in that both types of 

material show plastic flow, work hardening, and creep, and 

both may be annealed at high temperatures after cold working 

(Griggs, 1940; Griggs et al., 1960). On the other hand, the 

atomic structure and bonding of metals is profoundly different 

from that of most common rock forming minerals. Nevertheless 

the results of 25 years of experimental work have largely 

shown the validity and usefulness of these comparisons. 

Grigg s et al. (1960, p. 104) thus conclude: 

Our [experimental] results with rocks and rock 
forming minerals without exception follow the empirical 
laws developed in the study of metals. This implies 
that the vast body of data collected in experiments on 
metals may be applied in some detail to the interpre
tation of deformed rocks . . . . 

In accord with experience in metals we find that 
flow by intracrystalline gliding obeys the law of 
maximum resolved shear stress and that deformation is 
nearly homogeneous. It follows that if the active 
glide systems of the component crystals are known 
fabric changes resulting from plastic strain without 
recrystallization may be predicted for any stress and 
strain system. 

As an example, Turner et al. (1956) have had great success 

in predicting fabric changes which occur in Yule marble 

during uniaxial testing under laboratory conditions using 

methods akin to those of the metallurgist. 
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The present work is an effort to gain fUrther under

standing of how crystal fabrics deve lop in nature by attempt-

ing to test the geological applicability of the experimental 

fabric studies of marbles. Comments of DeSitter (1956, p. 112) 

are pertinent to the argument for this kind of study: 

In my opinion the [fabric] interpretation problems 
can be solved only by carefUl fabric studies of struc
tures whose major features and microstructures are both 
well known beforehand. The tendency to depend on de
formation experiments in the laboratory in order to find 
the solution is to my mind a ;'lrong road; ;'le have . . . 
not the slightest guarantee that the experiment arrives 
at an identical structure by the same path as in nature. 

There are well recognized reasons for believing that 

some differences exist between laboratory experiments and 

nature. Strain rates in the laboratory are probably in most 

cases much greater than those experienced by naturally de-

formed rocks, and t his may determine that the magnitudes of 

the stress differences involved in the flow of rocks under 

natural circumstances may be small, belov, experimentally 

determined yield stresses. Extending the analogy with 

metallurgical findings, it can be said that if rocks do deform 

naturally in slo;., creep and at elevated temperatures with pro-

longed times of loading, opportunity is given for processes 

to operate which have larger than average activation energies 

(Cottrell, 1953, p. 213). Thus recovery, recrystallization, 

grain growth , diffUsion, and slip at grain boundaries could 

contribute to the deformation of rocks during high temperature 

creep, in addition to the various intracrystalline slip proc-

esses '''lhich are active to some extent at all temperatures 
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and which provide the dominating mechanism of deformation in 

laboratory experiments on carbonate rocks. 

Carbonate rocks are the most advantageous types of 

geological material one might choose for the comparative 

investigation pursued here for several reasons. (1) Of 

greatest importance is the fact that the mechanical behavior 

and the corresponding development of crystal fabrics in 

response to strain in the laboratory are rather well under-

stood in calcite and dolomite rocks. Detailed comparisons 

between laboratory and natural experiments are thus possible. 

(2) Calcite and dolomite aggregates in thin section show a 

variety of intragranular features which are direct evidence 

of mechanical deformation, and which permit detailed studies 

of how individual grains have participated in the deformation 

of the aggregate. (3) Calcite and dolomite are also compara-

tively simple minerals structurally and this fact makes 

feaSible a study of their deformational properties in terms 

* of the atomic mechanisms involved. 

The present investigation proceeded in the following 

steps: 

(1) A search was first made for naturally deformed 

*In Appendix III e {Ol12} mechanical twinning in calcite 
is treated using a dislocation mechanism like that applied to 
bdnning in body centered cubic and hexagonally close packed 
metals. Though this study is not of direct concern to the 
major topic dealt with here, a geologically important reason 
for establishing such a twinning mechanism for calcite is to 
form a basis upon ",hich a structural theory of recovery creep 
might be established for this material. 
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limestone having approximately known strain distributions, 

and in which observable fabric changes produced by the de-

formation could be expected. 

(2) For ostensibly suitable samples, * c-axis and 

e-lamellae fabrics were measured and the degrees of fabric 

change as a function of the estimated amount and character 

of the strain were evaluated. These data should make it pos-

sible in principle to distinguish syn~ectonic fabrics from 

pre- and post-tectonic ones, and enable fabrics predicted on 

the basis of laboratory experiments to be compared with the 

fabrics observed in the naturally deformed specimens that have 

been subjected to approximately knO\1n strain. 

(3) The "dynamic analysis" technique of Turner (1953) 

was then applied to the fabric data. An extension of this 

technique was also developed that made possible a quantitative 

determination of the strain history recorded in the rock. The 

results obtained in this step make possible an evaluation of 

the geological applicability of both the qualitative (Turner, 

1953) and quantitative approaches (p.56 this thesis) . 

(4) From the data obtained in investigation of (2) 

and (3), an attempt was made to draw conclusions about the 

mechanics of limestone deformation under natural conditions. 

In particular, the follovdng questions \1ere treated: 

(a) Can the mechanisms of plastic deformation 

of calcite crystals in nature be distinguished 

* Crystallographic notation is explained in Appendix I. 
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from those known from laboratory experiments? 

(b) To what extent may the fundamental assumptions 

embodied in predicting fabrics for experimentally 

deformed Yule marble be shown to apply in nature? 

For example, is the "1m" of maximum resolved shear 

stress" applicable to both twinning and transla

tion gliding in naturally deformed aggregates? 

(c) To what extent can the macroscopic rheological 

laws governing the deformation of limestone under 

natural conditions be determined from the petro

fabric data? 

(5) A natural but unexpected outgro'\lfth of the above 

studies has been an investigation of the optical properties 

and crystallographic significance of the so-called non

twinned lamellae of calcite and dolomite (Turner et aI., 

1956, p. 896 ), a type of intragranular structure that is a 

conspicuous feature of the deformed rocks studied. In this 

'\IlOrk a useful ne,,, technique for carbonate petro fabric measure

ment has been discovered. 

The material outlined above may be rather naturally 

divided into two parts, one dealing with the detailed fabric 

studies and the other with microscopically observable features 

in naturally deformed carbonate aggregates. In the first part, 

pertinent experimental studies and previous applications of 

the laboratory investigations to petro fabric problems are 

first summarized. Basic concepts and methods relating to the 
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fabric studies are then developed, viz., the nature of the 

geologic structures selected for this study--flexurally folded 

limestones, a discussion of the strain distribution in flexure 

folds, principles upon which comparisons of theoretical and 

observed fabrics are based, the development of a method for 

calculation of bulk strain from petro fabric data, a method 

for obtaining the rheological Im'ls of natural limestone de-

formation in nature, and the various petrofabrics techniques 

used in the investigation are then treated in this order. 

The detailed fabric results are then given. Follpwing the 

fabric studies attention is devoted to the problem of the 

non-twinned lamellae, and other microscopic deformation 

features observed in the rocks studied here. Glide mechanisms 

observed in individual crystals of naturally deformed rocks 

studied here, and the problem of a dislocation mechanism of 

mechanical twinning in calcite are treated in appendices . 

PREVIOUS vTORK 

From the various experimental and supporting micro

scopic studies of Griggs, Turner, and co-workers (Griggs 

and MilJer, 1951; Handin and Griggs, 1951; Turner and Ch'ih, 

1951; Griggs et al.,1951; 1953; Turner et al., 1954; Turner 
, 

et al., 1956; Griggs and Handin, 1960; Handin et al., 1960) a 

good understanding has emerged of the mechanical behavior 

and development of preferred crystal orientations with strain 

in Yule marble. The following results are of importance to 
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the present study. Many of these matters are treated in more 

detail later and are only summarized here. 

(1) For confining pressures of from 3,000-10,000 kgm/cm2 

and over a temperature range of 240 -5000 C, both Yule marble 

and single calcite crystals deform by intracrystalline gliding, 

the principal mechanisms being twinning on ~ {0 112}* and trans

lation gliding on r [lOll}. At 240 C and between 5000 and 6000 

C, f [ 0221}translation gliding also has been found active to 

some extent, but never dominant over r translation gliding. 

At 8000 C c (0001 ) gliding may occur. 

(2) In both single crystals and with aggregates the 

law of maximum resolved shear stress has been found to apply 

approximately. This law states that from all accessible glide 

systems in a crystal of a given type, the system which operates 

during deformation is that one upon which the resolved shear 

stress is greatest. For the available glide systems in cal-

cite, the critical resolved shear stress for ~ twinning is 

lower by a factor of about 102 than that for translation 

gliding on r. With increasing temperature the difference 

decreases and between 5000 -6000 C the critical values for 

each type of glide are equal approximately. 

(3) In deformed marble, each crystal of the aggregate 

undergoes the same microscopic strain as the strain of the 

aggregate in bulk. This is the homogeneous deformation hypoth-

esis of Taylor (1938). 

* Experimentally determined glide mechanisms are crystallo-
graphically defined and summarized in Appendix I. 
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(4) In predicted fabric studies supporting the experi

mental work, it has been found satisfactory to assume for pur

poses of calculation that each grain of a marble aggregate 

experiences the same stress as the aggregate as a whole during 

deformation. 

(5) Experimental deformation of Yule marble in uniaxial 

compression and extension causes significant reorientation of 

the original strongly preferred optic-axis orientation of the 

marble. For deformation of 40% or greater in compression, 

strong preferred orientations of ~-axes develop at 10-300 to 

the axis of compression. With elongations of 90-120%, axes 

concentrate at 60-800 to the principal axis of ex tension. In 

each case the symmetry of the deformed fabric corresponds to 

the symmetry of the developed strain. Preferred orientations 

become more sharply defined with increasing temperature and 

corresponding increases in deformation. 

From time to time general summaries in English of the 

relationship between the experimental deformation of rocks 

and the evolution of tectonite fabrics have been compiled 

(Knopf and Ingerson, 1938; Turner, 1948; Fairbairn, 1949; 

Turner, 1952). More recently there have been several attempts 

to apply results of experimental carbonate deformation to some 

particular geologic problems. (Turner, 1952; McIntyre and 

Turner, 1953; Gilmour and Carman, 1954; WeiSS, 1954; Crampton, 

1956; Turner, 1957; Christie, 1958; Nickelsen and Gross, 1959 ). 
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Hm'iever, as far as I have been able to di scern from the abundant 

and widely scattered petrofabric literature, there has been no 

attempt to make a detailed comparative study of the type con

templated here . Petrofabric applications of the experimental 

work on calcite deformation are summarized beloi'T. 

Turner (1952) provides some qualitative comparisons 

between experimental and natural fabrics. He suggests that 

fabrics resulting from various degrees of laboratory deforma

tion are to be compared i'Ti th fabrics from three kinds of 

natural marbles: (a) marbles showing cataclastic micro

structures, cloudy grains, numerous warped twinning lamellae, 

a single strong lineation and no foliation (the B-tectoni tes) . 

Rocks of this class have strong c-axis girdle fabrics wi th 

the girdle plane normal to the lineation. These rocks are 

thought, by analogy i'ath experimental studies, to be the sub

ject of squeezing on all sides (Einengung ) at right angles 

to the lineation, and extension parallel to the lineation. 

(b) Marbles comprised of clear equant grains showing no 

cataclastic effects and only limited ti'anning. Fabrics are 

considered the result of post- or para-kinematic recrystal 

lication and show c-axis girdles with the pole to the girdle 

plane parallel to the b-lineation (fold axes). (c) Other 

marbles >nth fabrics resulting from recrystallization, have 

a well defined foliation and no lineation, and show single 

c-axis maxima which mayor may not coincide with directions of 

maximum compression. 
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f10re specific comparisons between experimental and 

natural fabrics have been made by Turner et al. (1956, p. 1292) 

in noting that £-axis fabrics obtained by Sander (1950, D60,61) 

closely resemble those resulting from 40% shortening of Yule 

marble in uniaxial compression normal to its initial foliation . 

However these authors feel that the resemblance may be fortui 

tous. This in fact must be the case unless Sander's material 

had a pre-tectonic fabric similar to that of Yule marble and 

was subsequently naturally deformed in a similar manner to 

the experiments. Sander's fabric is discussed below (p. 44) . 

Another comparison is made by McIntyre and Turner 

(1953), who maintain that observed £-axis preferred orienta

tions in marbles from Mid-Strathspey and Strathavon, which 

conform to a B-tectonite pattern (a symmetry axis (B) coinci 

dent with the b-axis of the megascopic fabric of lineation 

and fold axes) are, by analogy with experimental studies, the 

result of a regional compression normal to the regional 

tectonic axis (B). 

vleiss (1954) has studied in detail a highly complex 

area of folded marbles and quartzites, part of a roof pendent 

lying in granite near Barstow, California. He believes that 

preferred orientations of c-axes in the calcite marbles in

vestigated coincide in orientation with an axis of maximum 

compressive stress immediately before cessation of deformation 

in the area, an opinion based on analogy with results from the 

experimental studies. All c -axis maxima are approximately 
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normal to the foliation, and normal to the trend of fold axes 

throughout the area . 

fl[any studies have also been made using the II dynamic II 

interpretation of deformation lamellae in calcite , a technique 

due to Turner (1953 ). The method is used to determine simple 

systems of stress that could account for observed deformation 

in twinning in carbonate rocks . It is discussed in greater 

detail later (p . 44 ). Turner (1953 ) has applied the dynamic 

analysis technique to Yule marble and to marb les from Sonora, 

California, and Moray Firth, Scotland . In each case it was 

concluded that the t winning lamellae resulted from a late 

minor deformation unrelated to the deformation responsible 

for the majo r £ - axis patterns observed in the rocks . A number 

of other workers have since applied the technique to some 

specific structural problems, and have attempted to show that 

t he results obtained are not incompatible with the grosser 

aspects of the structural environment from which the specimens 

,,!ere obtained . vii th one exception, none of these investiga

tions deal with details of the structures examined. For 

example Crampton (1956) compares fabrics of coexisting calcite 

and dolomite in the Loch Shin limestone . The c - axis fabrics 

for both calcite and do lomite are isotropic . He finds that 

the dolomi te is much less twinned than the calCite, an ob 

servation consistent va th the experimental deformation of 

these materials (Turner et al . , 1954 ; Griggs et al., 1953) . 



- 13 -

Dynamic analysis of the twinning lamellae fabric indicates 

a compression normal to foliation in the marble and a direc

tion of tension parallel to a l ineation defined by elongated 

grains in the rock. Crampton (1958) has also studied lime

stones (both calcite and dolomite) adjacent to thrust faults 

in t he northwest highlands of Scotland. He maintains that 

the dynamic analysis defines an axis of rotation (this axis 

being normal to the plane of a compression axis girdle) which 

is consistent with the generally accepted direction of move

ment on the thrusts--northwest-southeast. However, other 

results obtained from the same area and specimens also suggest 

movements in a nearly perpendicular direc t ion . 

Gilmour and Carman (1954), using the dynamic analysis, 

suggest that the sense of movements on the northwest limb of 

a northeast trending (Cowal) anticline in the Strachur region 

(southvfest Highlands of Scotland) are not inconsistent with 

shapes of associated minor folds and strain-slip cleavages. 

Results of a dynamic interpretation of the marb le 

fabric obtained by Heiss (1954) from the Barstow area disclose 

no obvious or consistent relations with either foliation or c 

axis maxima in the rocks (pp. 56-57 of his report). 

Christie (1958 ) has applied the dynamic analysis to a 

do lomite with mylonitic textures from the Moine thrust zone in 

northwest Scotland, and has concluded that the results of the 

analysis are statistically correlative with Similar data ob

tained from an analysis of internally rotated lamellae in some 
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grains. The associated deformation is considered to be late, 

low temperature and post-crystalline in age, and is not 

direct l y correlative with known deformation associated .nth 

the Moine thrust. 

McIntyre and Turner (1953) studied marbles from vddely 

separated localities (maximum of 20 miles apart) in Mid

Strathspey and Strathavon. Results of the dynamic analysis 

indicate a sub-horizontal compression of the rocks from each 

locality in a direction transverse to a tectonic axis (the 

axis being defined by lineation and axes of overturned folds) 

plunging 300 southeast. 

Nickelsen and Gross (1959) have made a petrofabric 

study of the Conestoga limestone from Hanover, Pennsylvania. 

A dynamic analysis of the twinning lamellae fabric of these 

rocks yields a direction of compression which is normal to 

slaty cleavage and normal to the plane of flattening of grains, 

pebbles, and boulders in associated limestone conglomerates. 

Directions of shear in the rock, constructed by plotting g lide 

directions and glide planes in t.nnning, are parallel to the 

b-lineation defined as the intersection of bedding with slaty 

cleavage. Pebbles and boulders are elongated along the a-axis 

of the megascopic fabriC, which is perpendicular to the b-axis 

in the cleavage plane. They conclude that the low grade (green

schist facies) rocks studied yield good preferred orientations 

of c - axes and compression and tension axes from the dynamic 
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analysis method, and that the methods of Turner (1953) are 

therefore definitely applicable to rocks on this meta

morphic grade. 

In neither type of fabric study discussed above, 

either comparisons of gross fabric between experiment and 

nature or applications of the dynamic .analysis, has there 

been an attempt to correlate quantitatively roc k fabric i'Ti th 

deformation, although the vmrk of Nickelsen and Gross (1959) 

with the dyna'Tlic analysis in an apparently secondary way, 

approaches this objective to some extent. In the present 

study the attempt is made to make such correlations. 

To effectively carry out these correlations it is 

necessary, as in the case of Nickelsen and Gross (1960), to 

find rocks 1'Thich have undergone a knm'ffi strain. In the next 

section arguments for using flexure folds for this purpose 

are developed. Fabric studies involving folds have pre

viously been made in carbonate rocks by Sander (1930, D 180, 

181), and in quartzite by Ladurner (1954), Christie and 

Raleigh (1959) and most recently by Jones (1959). Sander's 

results are discussed below (p. 44). Christie and Raleigh 

(1959) have used folds as an index of deformation to study 

deformation lamellae in quartz. Jones has made detailed 

application of a technique used by Ladurner for analysing 

folding in quartzite. The method involves plotting £-axis 

orientation maxima from various parts of folded layers 
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relative to a line tangent to the layer at the places where 

fabrics are measured. By flattening out a stratum (or "unroll

ing" it) the combined effects of bending and folding due to 

shear parallel to the &~ial plane are assessed. If the 

angle between the directions of the maxima and the line 

tangent to the bed is constant, simple bending is indicated. 

If maxima are disposed at different angles, though tilted 

nearly symmetrically about a plane containing the axis of 

flexure, then shear parallel to the axial plane is thought 

to be involved. It is perhaps significant to this work that 

fabric changes (reorientation of £.-axis maxima) due to bend

ing in quartz are not observed in the crests of these folds. 
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BASIC CONCEPTS AND rllETHODS 

Nature of the Structures Selected for Study 

Choice of folded limestones as subject 

A variety of possibilities can be considered in the 

search for deformed carbonate rocks that might be used in 

this investigation. The principal requirement \vi th any such 

naturally strained body is to be able to discern from geo

metrical evidence the nature and spatial variation of the 

strain wi thin the body so that observed fabrics can be 

compared ,'Tith fabrics theoretically predicted to evolve under 

similar strain. The nature and amount of strain rocks have 

undergone may in some instances be indicated by boudinage, 

deformed fossils, oolites, pebbles, and the like (Cloos, 

1947), However, in the present study small flexural folds 

have been chosen. The purpose here is to deal with a lime

stone body of a type that is available under a variety of 

geological conditions, a body in >vhich the strain distribu

tion can be approximately deduced from geometry on the basis 

of general mechanical principles, and in ",hich the variation 

in character and amount of rock strain and rotation from 

place to place in the body can also be used as a tool to 

distinguish pre-deformation, syn-deformation, and post

deformation fabrics. TI1US fabrics from relatively unstrained 

portions of a fold, i.e. the limbs, can be used as a guide to 



- 18 -

the pre-deformational fabric of the rock ,-Thich then in turn 

can be used as a basis for calculation of the fabric changes 

expected for strain in other portions of the structure, par

ticularly the axial region. As will be examined in more 

detail below, it appears that fabric changes in a deformed 

rock should be functions of the strains i mpo sed and not t he 

deforming forces. In principle it should be possible to 

distinguish fabrics due to bending strains from post-deforma

tional fabrics unrelated to bending. In the axial region of 

a fold two similar fabrics of different orientation will 

ideally emerge wi th strain, those due to shortening and ex

tension perpendicular to the axial plane, the syrrrrnetry of 

the fabrics being that of the deformation. Because of the 

decrease in strain avmy from the axial region, deformation 

fabrics wi ll be less sharply defined than those at the axial 

plane. These smaller strain fabrics "Till possess the same 

symmetry but will be synnnetrically rotated about the fold 

axis. Ideally it is thus possible to obtain a variety of 

fabrics from a fold and to definitely relate these to the 

deformation wi thin the layer. In follm'l"ing sections sone 

general remarks are made concerning strains and related de

formation fabrics in folds, but interest is primarily con

fined to the axial region for reasons of simplicity. First, 

mechanical and geometrical requirements are established for 

the structures used in this study. 
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Detailed requirements for the folds 

Folded lime stones actually selected for t his study 

\'Tere ideally required to meet the fol101'ling specifications 

to simplify the problems of determining t he strain distribu

tion and the carrying out of comparisons of observed and pre 

dicted fabrics. The requirements are that: 

(1) The folds should be of t he flexure type so that 

large variations of predominant l y bending strain throughout 

the structure could re2sonably be expected . 

(2) The folds should have simple geometry , ideally 

with approximately circular cross-section in the axial region, 

to simplify calculation of the strains. 

(3) The folds should have small radii of curvature 

re l ative to thicknesses of individual beds to assure large 

internal strains. 

(4) Individual strata comprising the fo l ds should 

be free of fractures, cracks , cleavage, joints, veinlets, 

etc . , to insure that strain has not been accommodated by 

these means. 

(5) Individual beds comprising the fold should be 

mechanically competent and intercalated 't,i th shales or other 
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less competent materials so that shear stresses on the bound

aries of layers are low compared to shear stresses within the 

folded layers themselves. When the boundary shear stresses 

are reduced to negligible values, then, aside from normal 

pressures on the boundaries, only stresses acting on trans

verse sections of the beds need be specified in the boundary 

conditions for calculation of stresses and strains in the layer 

for an elastic or plastic material. 

(6) The limestones should be homogeneous and equi

granular with crystals sufficiently large to be accessible to 

measurement with the universal stage. Tb facilitate compari

sons with experiments, rocks texturally similar to Yule marble 

would be ideal. There is an additional reason for choosing 

coarsely crystalline rocks, for as is discussed below (p.168), 

finely crystalline calcite rocks may deform by different 

mechanisms than ones with coarser crystal. 

(7) The aggregates should ideally show some evidence 

of plastic deformation (twinned crystals, warped twin lamellae) 

to assure at least to some extent that effects of deformation 

have not been removed by an annealing recrystallization after 

deformation. 

(8) After folding the limestones must not have under

gone recrystallization of sufficient intensity to obliterate 

fabrics and microstructures produced by the deformation. 
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Strain Distribution in Folds 

In the following sections a model of the distribution 

of strain throughout an unconfined layer that has been sub

jected to large bending will be developed as a basis for 

establishing theoretically predicted fabrics to compare with 

observed fabrics in actual folds. The question of calculating 

these strains which accompany large bending is then treated 

for the case of an elastic-plastic body. 

Simple model for the bending strains in flexure folds 

Consider a series of stratified sediments consisting 

of thin alternating strata of limestone and shale in which 

the limestone layers are of much greater competence than 

layers of intervening shale. Suppose that the sequence is 

warped into a series of regular folds, and that the folding 

represents an instability (buckling) developed during uniform 

squeezing of the whole sequence normal to the axial planes of 

the folds. Under these conditions it is possible to describe 

qualitatively the state of stress and strain in a particular 

limestone stratum, neglecting at first the effects of stresses 

imposed by the assumed weaker shales. As the tightness of fold

ing increases, details of the stress distribution within the 

strata will change progressively. Initially, all strata experi

ence compression parallel to the layering. As folds develop, 

the material in the crests and troughs of individual folds 

experiences a bending moment as well as compression, with the 
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moment increasing in magnitude as the folding becomes tighter. 

In the limb regions there are shearing and normal stresses on 

transverse cross-sections of the layer. In real folds, the 

surrounding sediments will also impose shearing and normal 

stresses over all bounding surfaces of the limestone strata. 

The resulting deformation in a single crest or trough will 

thus be the result of an interplay of all these stresses, but 

a simplified and usefUl picture is obtained if only the axial 

region of the fold is considered and the deformation there is 

imagined to result predominantly from bending. It is well 

known that the qualitative distribution of the bending strain 

is characterized by a relative extension of the layer normal 

to the axis of flexure near one boundary and shortening near 

the other, the amounts depending on the tightness of folding. 

A calculation of the exact distribution of strain in a layer 

which is not deformed in pure bending and which is not cir

cular in cross-section can be a very complex problem. When 

the strains are finite and complicated distributions of surface 

forces and bending stresses are included in the analYSiS, an 

exact solution is not possible. The strain distribution will 

in any case depend upon the nature of the deforming forces, 

the allowed displacements at the boundaries of the folded 

stratum, and the rheological properties of the materials 

involved. 
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(a) 

(b) ( c ) 

Figure 1. A simple model of the strains developed 
wi th large bending in a flexure fo Id . ( 2.) Part 0 f a long 
train of simple, regular folds in an unconfined layer ; 
(b ) strdn distribution in a bent b ar ( aft er Sander, 1<:,:: :-' ); 
(c) scherllatic representation of strains in the hacllUred 
area of (a) for the compressive force applied as shown i n 
( 2.) and (c) assuming mostly bending a s :Ln (b ). I..<: ft r.alf 
s >ows principal strain trajector1es wi t li d2,sl1ed l irLt-:'s rep 
resenting compressive strains, solid line s extendi ng strain, 
the right half distortion of an originally (nearly) squar e 
grid of lines connecting centers of reference circ les in 
the undeformed slab . Dotted portion r epresents a region 
of "no strain. It 
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In order to obtain a more graphical picture of the pos

sible distribution of strain in a fold a hypothetical example 

is presented. (See fig. 1.) The problem is reduced to its 

simplest form by considering an unconfined stratum (fig. la)-

all boundaries stress-free--in which the deformation has been 

produced by a simple compressive force applied along the center 

line of the wave train shown in the figure . This set of bound

ary conditions leads to an unstable system of the kind shown 

because a slight departure from the regularity and symmetry of 

the strain distribution in anyone fold or deflection of the 

series of folds from the supposed line of application of the 

deforming force will cause the system to change to another 

more stable configuration. Stability requires application of 

lateral constraining forces on the layer. These are neglected 

in this necessarily qualitative treatment, and this fUrther 

restricts the results outlined below. Figure Ib forms the 

basis for fUrther discussion of the strain distribution 

throughout the layer, and is taken from Sander (1930, p . 34). 

Sander's experiment consisted of bending slabs of plasticine 

(modeling clay) into the shape outline in the figure after 

first inscribing ink circles on one side of the slab. The 

resulting distribution of ellipses graphically depicts the 

amounts of strain, and directions of the principal axes of 

strain at pOints throughout the body. The description of this 

experiment is incomplete, for there is no mention of the pre

cise manner in which the deformation was carried out or whether 
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Figure 2 . Simple experiments illustrating the dis
tl"ibution of strain Ll c. bar deformed in buckling ( l eft half) 
and through bending (right hal f) . Plane strain parall el to 
the plane of bending . Reference markings t,'lere originally 
circular in shape . The material is plasticine . For details 
of the strains see Table I. 
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the bending was in plane stress or plane strain. There is 

also no discussion of the mechanical properties of plasticine 

and the extent to which this material might be expected to 

* simulate the mechanical properties of rocks. A series of 

very simple experiments of a type similar to Sander's were 

therefore carried out by this writer. Model slabs of plas

ticine approximately 8 inches long, 1 1/2 inches Wide, and 1/2 

inch thick were arranged between fixed glass plates lubricated 

with vaseline to Simulate approximately plane strain conditions. 

Different kinds of deforming forces were then applied to the 

ends of the slabs. The results are shown in Figure 2, (2a) 

being the result obtained when the slab is grasped at the 

ends and bent about an axi s normal to the drai'ling, and (2b) 

when the slab is pushed from the ends until a fold develops 

through buckling. The two patterns of strain differ in de-

tail, particularly with regard to the position of the neutral 

line (line of no strain parallel to the longitudinal direction 

of the slab). In (2b) the neutral line is situated farther 

* Plasticine might be useful in simulating the properties 
of rocks under certain conditions. Green (1951) has used 
plasticine models to simulate the plastic flow of metals. He 
shows that under conditions of plane strain, the material de
forms similarly to an ideal, isotropic, non-hardening metal. 
Stress-strain curves depict a plastic-elastic behavior, and 
show a sharp bend after which the material deforms essentially 
at constant stress. The deformation characteristics are very 
sensitive to temperature. The permanent compressibility of 
plasticine is about 0.2%. It consists of finely ground cal
cite, mineral Oil, and an organic dye. The tensile stress
strain curve of this substance is quite Similar in shape to 
that obtained with "T-cylinders" of Yule marble and other 
rocks deformed at 5 kb. and 8000 C (Griggs et al., 1960). 
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from the center of curvature than in (2a), an effect due to 

the presence of a longitudinal shortening as well as bending 

strain in the layer. The general agreement of these results 

with Sander's, except for the exact positioning of the neutral 

line, is apparent. In these experiments surfaces of the models 

are planes of principal strain, except near the ends. The 

principal axes of strain, depicted by the major and minor axes 

of the ellipses, are arranged .so that axes of principal exten

sion, which are parallel to one boundary, are perpendicular to 

the other boundary across the layer. Between the boundaries, 

the principal axes assume intermediate orientations. In the 

axial regions of these II folds, II the deformation is symmetrical 

about the axial plane. As the amplitude of the bending deflec

tion becomes greater, strains due to bending dominate over 

those due to compression of the layer for the case shown in 

Figure 2b. In a wave-like series of folds in nature this 

situation would arise only when the amplitude of the wave 

train becomes appreciably greater than the wave length. 

Of course it cannot be argued that Figure lb or Figure 

2 describe with accuracy the strain situation to be expected 

in a real fold. However the pictures do qualitatively depic t 

the strain which could be expected to accompany simple bend

ing of large magnitude. 

Figure lc represents an attempt at further graphic 

portrayal of the orientation of principal strain axes through

out a fold. The left half of the drawing is a schematic 
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representation of the principal strain trajectories in the axial 

region, and the right half shows the strain as distortion of an 

originally square network of lines through centers of circles 

in the undeformed state. The strain trajectories are drawn 

so that the tangent and normal directions to anyone of them 

at any point are the directions of the principal axes of an 

ellipsoid at that point. A trajectory is constructed by first 

drawing a line parallel to one of the principal axes of an 

ellipse, for instance an axis of extension, at some point in 

the fold. At a small distance from the original point along 

the line, another line is placed parallel to the greatest prin

cipal axis of the ellipse at that point. The same process is 

repeated until the particular trajectory is traced throughout 

the entire fold, or the regions for which the deformation data 

are available. If the orientations of the principal axes of 

these reference ellipses are single valued and continuous 

fUnctions of position, which will be true if there are no 

fractures or faults in the body, then the strain trajectories 

as drawn are unique. As shown, these trajectories traverse 

regions of varying degrees of strain, and do not necessarily 

denote lines along which strains of a given type are equal in 

magnitude. 

To summarize briefly, the idealized example given in 

Figure I shows a number of important properties of the expected 

strain distribution in a flexure fold: (a) symmetry of the 

strain to either side of the axial plane, (b) shortening of 
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one side of the layer and extension of the other, (c) a de

crease in the amounts of strain discussed in (b) in the limbs, 

(d) the approximately linear change in strain along a transverse 

section of the layer in the axial region, (e) the small scale 

roughly homogeneou s deformation, (f) the property of transverse 

cross-sections of the beam remaining nearly planar and perpen

dicular to the layer in the axial region during the deforma

tion (g) the approximately circular shape of the slab in the 

axial region. 

The approximate calculation of strains in folds 

As discussed above, there is generally no easy method 

available for determining analytically the distribution of 

strain in a natural fold, and some sort of approximate cal

culation must be made. In practice deformed oolites, pebbles, 

and fossils may be used to determine the strain in a fold 

(Cloos, 1947), but lacking features such as these, independent 

estimates of the strain--particularly in the axial region-

may be obtained only in special simple cases. 

An analysis of the strain in a buckled unconfined 

thin slab could be made for small deformations proceeding in 

a manner similar to von Karman (1910). The distribution of 

strain in a transverse cross-section of the sheet follows 

from the conditions of static equilibrium provided that a 

stress-strain relationship for the material is known and reason

able values of the applied longitudinal compression can be 

selected. But for geologically interesting situations there 
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is usually no way a priori of estimating either of these un

lmm'ffis . Kienow (1942) and more recently Ramberg (1961) have 

analysed the distribution of strain folds due to bending and 

buckling respectively, and both give expressions for the longi 

tudinal strain for small deformation the same as Equation 1 

be 10,,>, . 

To obtain some idea of the magnitude of the strains 

associated 'tri th large bending in a fold, ,'>'e proceed in the 

following manner. Consider an obviously oversimplified but 

straightforward example, the originally rectangular plate of 

thickness i, whose cross-sectional dimensions are not neces

sarily small compared ~nth its length (L). Imagine that the 

plate is deformed by pure couples applied at its ends, and 

that there is no strain parallel to the axis of bending . Let 

all other surfaces of the plate be stress-free and suppose 

that the material is incompressible, isotropic, non-hardening, 

and elastic-plastic. For small elastic deflections, the trans

verse stresses are negligible compared to those induced by 

bending (Hill, 1956 , p. 79). The neutral surface, where 

stresses and strains parallel to the longitudinal direction 

produced by bending vani sh, is located in the center of the 

plate and can be considered circular ~Nith radius R (Hill, 

1956) . The strain E parallel to the surfaces of the plate 

are linearly distributed over the cross-section, that is, 

E = y'R (1) 

vrhere z is the distance measured normally a,'JaY from the neu

tral surface. Suppose now that the bending is allowed to become 
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greater so that the induced stresses exceed the yield point 

of the material. Plastic zones first develop near the 

boundaries of the layer and move inward as the bending in

creases (Hill, 1956, p. 79-84). We now imagine that the 

bending is allowed to become very large under the pure ter-

minal couples so. that the plastic zones move inward and the 

material is yielding everywhere. Under these conditions it 

is possible to describe some general geometrical properties 

of the deformation (Hill, 1956, p. 290 ). If the angle of 

bending a (per unit length) is increased by an amount da, the 

displacements of elements in the plate are such that: (1) t he 

surfaces of the plate remain cylindrical with fUrther bending , 

(2) radial sections remain planar, (3) the thickness of the 

plate remains constant. Thus the strains at t he boundaries 

of the layer may easily be found by equ ating the original and 

final areas of the plate. Doing this we find that the maximum 

strains at the inner and outer edges of radii a and b (b> a) 

respectively to be: 

1 + Ea = 2~(a + b) 

1 + Eb = 2Q/(a + b) 

(E = extension) a 

(Eb shortening) 

where t he strains Ea and Eb are defined as ~L(a)/L and 

LlL(b )/ L, J:j, L(a) and LlL(b) being the changes in length of 

the inner and outer surfaces of the original rectangular 

plate of length L. 

(2 ) 
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In order to derive the above conclusions and equa

tions 2, it is not really necessary to assume that the material 

possesses any special rheological properties, only that it be 

incompressible and that circumferential displacements of ele

ments "lithin the plate at any stage of the bending be given by 

~ = (r - R) ~ da . 

That is, the displacements ~ of points \u th polar coordinates 

r, e (e being measured positive clockwise from the plane of 

symmetry in bending) must be linearly distributed both about 

the instantaneous position of the neutral surface of radius R, 

and \'lith the angle e. 

Undoubtedly most folds in nature cannot be the result 

of simple pure bending. In fact, it is hard to visualize a 

situation where this kind of deformation would prevail. How

ever at present the above development appears to be the simp

lest geometrical argument which can be used to determine the 

strains of interest here . Equations 2 are used in subsequent 

sections to calculate the approximate maximum strains for the 

observed geometries of the structures studied (p. 112 and p. 141). 

Tb get an idea of how well equations 2 might be ex

pected to estimate bending strains, we have used them to cal

culate the deformations in the previous model experiments. The 

results are presented in Table 1. 

For the case of the fold deformed in pure bending the 

agreement bet\-,een observed and calculated strains, especially 



I.
 

II
. 

I
I
I
. 

I
. 

I
I
. 

I
I
I
. 

-x-

-)C
. -)

C. 

0
~
i
g
i
n
a
1
 

re
fe

re
n

c
e
 

cj
.r

c
le

 
d

ia
m

e
te

r 

0
.1

9 
(0

.3
2

) 

0
.1

9 
(0

.3
2

) 

C
ha

ng
e 

ln
 

d:
L

am
et

er
 

-x-
* 

0
.0

6 
a
t 

b
, 

-(
0

.1
5

) 
-)c

. -x-
a
t 

a
, 

0
.0

5
 

-
(0

.1
3

) 

-X
--)C

-
a
t 

b
, 

0
.0

5
 

-(
0

.1
5

) 
-X

--J
(. 

a
t 

a
, 

0
.0

5
 

-(
 0

.1
5

) 

a
t 

b
, 

0
.0

4 
-(

 0
.1

0 
) 

a
t 

a
, 

0
.0

2
 

-
(0

.0
5 

T
A

B
L

E
 

1 

In
d

ic
a
te

d
 

s
tr

a
in

 

0
.3

2 

-0
.2

6 

0
.2

6 

-0
.2

6 

0
.3

3 

-0
.1

6 

Fo
 I

d 
d

e 
fo

rm
ed

 
ln

 p
u

r
e 

b
en

d
in

g 
(f

ig
. 

2
a

);
 

Fo
 l

d 
p

ro
d

u
ce

d
 
in

 b
u

c
k

li
n

g 
(f

ig
. 

2b
);

 
a 

=
 

Sa
n

d
er

's
 

ex
p

er
im

en
t 

(f
ig

. 
lb

);
 

a 
=

 0
.3

6"
 

-x·
* 

a 
=

 
0

.7
8

" 

(0
. s

n 

C
a
lc

u
la

te
d

 
st

ra
:L

n
 

0
.3

3 

-0
.3

3 

0
.3

7 

-0
.3

7 

o
. L

~6
 

-
0

.)
1-6

 

R
ad

iu
s'

x-
o

f 
n

eu
tr

a
l 

su
rf

a
c
e

, 
c
a
lc

. 
&

 o
b

s
. 

R
 

1 
1

.3
6 

(3
.4

5
) 

c
a
.c

 

R
ob

S 
1

.6
2

 
(4

.1
0

) 

R
ca

1
c 

0
.6

5
 

(0
.1

6
) 

R
ob

s 
0

.5
2 

(0
.1

3
) 

*
-X

-
1

.0
9

" 
(2

.7
7 

cm
),

 
b 

=
 2

. 1
5

" 
(5

. L
I6

 
cm

) 

(4
.2

6 
cm

) 
( 1

. 9
8 

cm
),

 
b 

=
 I

! 
68

" 
cm

),
 

b 
=

 
1

. 2
0"

 
(3

 . 
21

 
cm

) 

H
it

h
 p
u
r
~
 

b
e
n

d
in

g
, 

p
la

n
e
 
s
tr

a
in

 i
n

 
a 

m
a
te

ri
a

l 
o

b
ey

in
g 

th
e
 

!l
U

se
s 

y
ie

ld
 
c
ri

te
ri

o
n

 

R
 =

y(
ab

)
. 

(H
i
l
l

, 
1

95
6

, 
p

. 
28

9
) 

a 
an

d
 b

 
h

e
re

 
r

e
fe

r 
to

 
ra

d
ii

 
o

f 
p

o
in

ts
 1

;T
he

re
 

m
ea

su
re

m
en

ts
 
o

f 
s
tr

a
in

 w
er

e 
m

ad
e

, 
n

o
t 

in
n

e
r 

an
d

 
o

u
te

r 
ra

d
i

i 
o

f 
th

e 
b

a
rs

 

M
ea

.s
u

re
m

en
ts

 g
iv

e
n

 
in

 i
n

c
h

e
s 

an
d

 
c
e
n

ti
m
e
te

rs
 

(p
a
re

n
th

e
se

s)
 

w
 

w
 



- 34 -

at the "outer" boundary of the fold, is surprisingly good. In 

t he "buckling" experiment t he agreement is not as good, but 

t his is perhaps to be expected considering the assumptions under 

"Thich Equations 2 are valid. Agreement in the case of Sander 's 

experiment is rather poor. 

Principles for the Comparison of Theoretical 

and Observed Fabrics in Folds 

Types of fabric comparisons 

The foregoing discussion has attempted to show the pur

pose for using folds in these investigations, and has developed 

some of the expected properties of the strain distribution in 

t hese structures. The question of fabrics produced in response 

to the imposed strains in folds is nm., examined theoretically . 

1'\'10 types of carbonate fabric studies are considered in the 

present work. The f i rst type is concerned "l'Ti th gross changes 

in crystal orientation ,.,hich accompany large strains, ,.,hile 

t he second type, based on the "dynamic analy sis, " deals only 

with carbonate twinning lamellae in relation to applied stress. 

It is possible to treat t\'finning lamellae from the standpoint 

of the strain they represent rather than t he applied stresses 

causing them, and this argument is developed in detail below 

(p. 44). 

Gross changes in crys tal fabric arising from strain 

Metallurgists have long noted preferred crystal orien

tations resulting from cold ,vorking (sheet rolling , ex trusion, 
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drawing) of metals (Barrett, 1952, p. 442-484 ). In an anal

ogous manner changes in crystal fabric are also brought about 

in highly deformed marble. These have been extensively studied, 

and the way in which fabric changes develop in response to 

strain is now understood (Turner et al., 1956). In all experi

mental work with carbonate rocks it has been sho1'm that the 

geometrical symmetry of the fabric of a deformed aggregate is 

the same as the symmetry of the strain the aggregate has under

gone (Griggs et al., 1960 , p. 104 ). For small strains, less 

than 10% in either extension or compression, fabric changes in 

Yule marble are negligible (Handin and Griggs, 1951, p. 882-

884 ). \-li th greater strain, stable orientations of crystals 

develop with respect to the principal axes of distortion, and 

these persist and become more sharply defined ~dth higher de

formation. 

Generally speaking, theories for predicting deforma

tion fabrics of polycrystalline aggregates are of two types 

depending upon whether assumptions are made as to the stress 

or the strain in each grain . Mo st of these can be criticised 

in several respects, and Bishop (1954) has made such an analysis. 

Two principal requirements must be met: (1) the aggregate must 

fit together after straining, i.e., the strain must be homog

eneous and (2) stresses acting through grain boundaries must be 

continuous during deformation. In order to satisfy (1) it is 

necessary that at least five independent glide systems be avail

able to operate in a crystal (Bishop, 1953 ). However it can be 
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shown that under these circumstances condition (2) cannot be 

met if the critical resolved shear stress Im'l' is to hold in 

each crystal (Bishop and Hill, 1951b) . This in general leads 

to the conclusion that the strains in individual crystals 

will be nol1homogeneous (Bishop, 1954). Two separate treatments 

will be briefly outlined below, that of Bishop (1954 ) because 

of its possible application to the present work, and the theory 

of Handin and Griggs (1951) as modified by Turner et al. (1956 ), 

because of its prior application to prediction of deformation 

fabrics in Yule marble. 

The theory of Bishop (1954) forms the most successful 

approach for predicting deformation fabrics in metals . The 

theory is an approximation as it does not incorporate effects 

due to possible grain boundary slip, changes in crystal size, 

or nonhomogeneity in the deformation of individual grains. 

It is assumed that each grain comprising the aggregate under

goes the same strain as the aggregate in bulk, an assumption 

originally due to Taylor (1938 ). The critical resolved shear 

stress law is also assumed to hold for glide in the individual 

crystals . On a microscopic basis crystals are required to de

form by glide on at least five independent g lide systems (as

suming no volume change with deformation). Substances with 

fei'ler than five possible glide systems are not covered by the 

theory. The five systems actually operative during deformation 

are those which maximize the plastiC work of deformation, or, 

phrased differently, satisfy the principle of maximum plastic 
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work (Bishop and Hill, 1951a), which can be written, 

In vmrds Equation 3 states that the \'mrk done by stresses '[ .. 
lJ 

in causing a crystal to deform plastically through a certain 

strain increment deij relative to the axes of the crystal, is 

not less than the work done by any other set of stresses L. ~ 
lJ 

producing the same strain increment and not violating the maxi -

mum critical stress criterion in the current state of harden-

ing for the crystal. For metals of high symmetry to which the 

theory has been applied (face centered cubic metals in partic

ular) a range of possible engineering shear strains can be 

assigned to each of the available glide systems which satisfy 

this criterion (Bishop, 1954, p. 135). This means that the 

external rotations each grain undergoes (rotations of the 

crystal axes relative to the principal axes of strain) are not, 

in the absence of work hardening determined uniquely by the 

maximum work principle. Bishop argues that the actual choice 

of glide systems is determined by the amount of work hardening 

each suffers during deformation. Once shears have been deter-

mined for the various glide systems which give the strain in-

crement de .. , the rotation components of the crystals d w .. 
lJ lJ 

relative to the principal axes of strain can be obtained from 

geometrical considerations (Bishop, 1954, p. 135). Thus fabric 

changes associated with any desired macroscopic strain may be 

determined . It is not immediately obvious that this theory 



- 38 -

cannot be applied to calcite aggregates . Individual crystals 

possess suffi cient independent g lide e lements, even if e tvlin -
.' -

ning and r translation are the onl y available glide mechanisms . 

One possible restriction lies in vlhether twinning in calcite 

obeys a cri t i cal resolved shear stress Im'l . Experimental 

evidence indicates that it does approxi mate ly (p. 8 , this 

thesis ), but current theoretical treatments sugge st otherNise 

(see Appendi x III). 

The importance for petrofabrics of the Bishop theory 

is that under the assumptions involved, changes in fabric are 

fnnctions only of t he deformation occurring , not the forces 

used to br ing about the deformation . TI1is is because the 

microscopic strains and rotations are determined from pure 

geometry , t ogether 1'li th t he maximum plastic l'lork principle. 

By this last assumption, the permissible stresses in each 

grain are fixed during yielding . 

A theory formu lated by Handin and Griggs (1951) , as 

modified by Turner et 0.1. ( 1956 ), has been applied to deformed 

calci te aggregates, and also follovm closely the ideas of 

Taylor (1938 ). In their analysis of uniaxial experiments vrith 

Yule marble, each crystal is conSidered to be strained t he 

s&'ile amount as t he aggregate in the direction of extension or 

shortening . The law of maxi mum r eso l ved shear stress is also 

assumed to deter mine an active glide e l ement in each grain . 

This particular assump tion is applied by as suming further the.t 

each grain sees the same stress as the aggregate as a 1-lhole . 
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Work hardening is neglected. External rotations of crystals 

due to strain are computed from analogy with rotations in 

single crystal experiments. In uniaxial strain of single 

crystals, poles to glide planes move toward the axis of com-

pression, and glide directions toward an axis of extension, 

the amounts of rotation depending on the strain. Appropriate 

formulas are given by Handin and Griggs (1951, p. 869) for 

computing these rotations. By specifying only one component 

of strain for each crystal, the theory only partly fulfills 

the condition that continuity of the aggregate be maintained 

after deformation. 

The assumptions needed to compute fabric changes for 

calcite aggregates according to the method of Handin and Griggs 

(as modified by Turner et al., 1956) are: 

(1) The law of maximum resolved shear stress deter

mines the active glide system in each grain (this effectively 

adopts the maximum plastiC work criterion). Only one glide 

system operates at anyone time unless the resolved shear stress 

is equal on two or more systems, in which case multiple slip 

occurs on these systems. 

(2) The available and potentially active glide systems 

are {lOIll translation gliding with the edges between flOI1 ~ 

and [ 0221r as glide directions, with glide sense negative;* 

[olI2} twinning, glide direction parallel to the edge between 

* See Appendix I. 
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adjacent [lOll} planes, glide sense Positive.* Other types 

of glide occurring at room temperature and above 500-6000 C 

are neglected. 

(3) A particular crystal will twin on [01121 rather 

than translate on {lOIl~ when the resolved shear stress coef

ficient So (the ratio of the resolved shear stress in the 

slip plane and in the direction of slip to the applied stress) 

for a particular [0112}system is algebraically greater than 

-0.05 (negative sign refers to shear stress oriented in wrong 

sense on the twin plane). If a crystal cannot twin, it trans

lates so that its deformation is equal to that of the aggregate 

as a whole. 

The Handin-Griggs method, modified by Turner et al. 

(1956) to account for r-translation gliding rather than e-

translation gliding, cannot be used in its present form to 

predict fabrics in folds, because the theory permits specifica-

tion of only one component of strain in each grain, and there-

fore for the aggregate as a whole. In the axial region of a 

fold deforming in plane strain parallel to the fold axis, it 

is evidently necessary to specify the following strains: 

E o o 

o o o (4) 

o o -E 

for the region of the fold which is extended parallel to the 

*See Appendix I. 
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bedding, and 

-E 0 0 

E .. 0 0 0 (5) 
lJ 

0 0 E 

for those portions \ .. here elements are shortened parallel to 

the bedding. The strains Eij are referred to principal axes 

chosen so that x is perpendicular to the fold axial plane, y 

is parallel to the fold axis, and ~ is perpendicular to the ~ 

plane. The material is considered incompressible . Strains 

(4) and (5) differ only by a rotation of 900 about the y-axis. 

The Bishop theory on the other hand allows specifica-

tion of arbitrary strains, but because of the geometry of the 

calcite lattice, becomes extremely complicated when applied 

to this material. Unfortunately it has not been possible to 

carry through a detailed application of the theory for the 

strains (4) or (5) because of the time which \'JOuld be required 

for such a calculation. However it is possible to gain an ap -

proximate picture of the fabrics to be expected for these 

strains in the following manner. As pointed out above, the 

theory suggests that fabric changes occurring during nonhomog

eneous deformation of an aggregate should be functions of the 

strains imposed, not the forces used to bring about the de-

formation. Therefore \ .. e could use the experimental results as 

to development of deformation fabrics in Yule marble if the 
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strains in any of the experiments approximated those given 

in (4) and (5). This would of course restrict the results 

obtained so that they would strictly apply only in situations 

where the initial fabric of the undeformed rock was exactly 

the same as that of undeformed Yule marb le. This fabric 

(Turner, et al., 1956) consists of a wel l defined maximum of 

c-axes normal to foliation in the marble, .. lith no preferred 

orientation of the other axes (~l' a2 , a
3

) in the foliation 

plane. The strains (4) and (5) are those which approximately 

* develop during homogeneous deformation of T-cylinders of Yule 

marble (Turner, et al., 1956, figure 8 G,H) in compression 

and extension. That is , an originally circular cylinder be-

comes ellipsoidal in cross-section with one axis of the ellipse 

remaining approximately equal to the diameter of the original , 

cylinder. The fabrics which evolve under these strains are 

sho\ffi in figures 3 a, b. Figure 3c is the fabric of undeformed 

Yule marble. Figure 3a is the £-axis fabric associated with 

extension parallel to the foliation and the £-axis fabric ob

tained from shortening parallel to the foliation. The fabrics 

consist of c-axis maxima lying in a plane perpendicular to the 

* This nomenclature describes orientation of experimentally 
deformed cylinders with respect to the foliation (and geo
graphic coordinates) in Yule marble (Turner et al., 1956). 
liT-cylinders" are those cut with longitudinalaxis parallel 
to the foliation. The c-axis fabric thus consists initially 
of a maximum along a radius of a circular basal section. 
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Figure). Approximate S-axis fabrics to be expected with large 

deformation in a flexure fold • . (A) Fabrics associated wit h the position 
marked "A" in the reference diagram (D)j (B) fabrics from position "B" in 
(D) j (C) assumed original (lllXleformed) 2-axis fabric of the material. In 
each diagram ft represents trace of bedding. Stippled regions are areas 
of high concentrations of c-axes . Arrows denote senses of strain. The 
above diagrams were prepar;d by analogy with experimental results given 
by Turner (1957, p. 15) . (See p. 42, this thesis for fUrther details .) 
I n particular (A) is the orientation diagram for 2-axes in a T-cylinder 

(see bottom p. 42) . sh ortened 40 .7% at 400°C, 3000 kgm/am2, (B) the 

diagram for 2-axes in a T-cylinder extended 118%, at 5OQoC, 5000 kgm/am2, 

(C) the fabric of undeformed Yule marble. All fabric diagrams plotted on 

equal area projections, l ower hemisphere . 
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axis of approximately no strain in the specimen, situated in 

each case 10-300 to the direction of shortening. The princi

pal axes of strain in the deformed specimens in the two cases 

differ only by a rotation of 900 about the axis of least strain 

(or approximately zero strain). 

'V-!e might then dra,'l the following rough analogy between 

these experiments and fold fabrics. Start with a calcite ag

gregate having the initial c-axis fabric shown in Figure 3c. 

Subject the aggregate to strains given by the strain tensor 

matrices (4) and (5). The stable fabrics which evolve through 

operation of the deformation mechanisms prevalent in laboratory 

experiments will be very roughly those given in Figures 3a and 

3b respectively. It is interesting to note that Sander (1930, 

D181) has measured a £-axis fabric from a tight fold in calcite 

phyllite from the southern Tirol essentially the same as that 

shown in Figure 3a. 

Fabric changes associated with an incremental deforma

tion of ru1 initially isotropic c-axis fabric are considered 

in the next section. 

Dynamic interpretation of deformation lamellae 

Tne dynamic analysis of ~-lamellae fabrics in calcite 

(and f-lamellae fabrics in dolomite) is due to Turner (1953). 

This method is based on the fact that b'lin gliding on e in 

calcite is most easily promoted by stresses which make the 

twin plane a plane of maximum shearing stress with the shear 
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having the sense favorable for hl'inning. This condition is 

fulfilled if either a tension is applied to a crystal at an 

angle of 190 to the c-axis or if the crystal is compressed at 

an angle of 710 to the £-axis, ~'I'i th these axes of stress lying 

in the plane containing the £-axis and the pole to e. Twinning 

may of course be induced by a combination of these stresses. 

Diagrams produced from the analysis may show clusterings of 

compression (C) axes and tension (T) axes (cf. Turner, 1953) 

and such groupings presumably center around the appropriate 

stress direction or directions which could be responsible 

for the observed t~'I'inning in the aggregate. 

Since the C and T axes for a particular crystal are 

fixed geometrically v1i th respect to the crystal lattice, a 

preferred crystal orientation automatically introduces a pat

tern into data derived from dynamic analysis of the twinning 

lamellae fabric. For example, in a calcite aggregate showing 

a single well defined £-axis maximum, a dynamic analysis will 

tend to give T-axis maxima which coincide ,nth the £-axis 

pattern or are displaced from this pattern by about 20°. C

axes will form a girdle or will cluster into several maxima 

lying within a zone 200 from the plane which is normal to the 

direction of the c-axis maximum. Breached C-axis girdles may 

or may not be real features produced by the analysis. Such 

openings can in part be attributed to the central Itblind-spot lt 

in the associated e-lamellae diagram, which arises because of 

observational difficulties (p.192). 
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In strict terms, the stress state defined by the 

dynamic analysis for an individual crystal is not generally 

the actual state of stress at that point in the aggregate. 

If it is assumed that two adjacent crystals are at the yield 

point for tWinning, "Ti th principal axes of stress in each 

defined by the analysis, then the stresses across their mutual 

grain boundary will generally not be in equilibrium, i.e., 

components of stress acting through the boundary will not be 

continuous from one crystal to the next. The analysis gives 

only the best possible distribution to promote twinning on a 

grain for grain basis, and it therefore might be expected 

that results will have meaning only if applied to a large 

number of grains in random orientation throughout the ag

gregate. 

With this discussion of the method, we now proceed to 

develop theoretically the expected results for a dynamic 

analysis of an aggregate with an isotropic distribution of 

£-axes, which has undergone an increment of deformation under 

the system of stress prevailing in the axial region of a 

flexure fold. Knowing the stresses, the operative twin set 

in each crystal may be found from the law of maximum resolved 

shear stress. The particular model developed below is meant 

to apply specifically to one of the natural folds whose de

formation fabrics are discussed later (p. 90). In particular, 

we start "dth an already deformed body, and consider only the 

elastic state of stress 'rVi thin it. This simplifying provision 
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is made because the observed plastic deformation in the natural 

fold is slight (p.lll), and it is presumed that the material 

was always close to the elastic state during deformation. The 

body is assumed to be elastic, incompressible, homogeneous, 

and macroscopically isotropic. 

Consider again the axial portion of a fold with circular 

cylindrical cross-section perpendicular to the fold axis (fig. 

4). The inner radius of curvature is a and the outer radius b. 

For purposes of simplifying the calculation the ends of the 

structure considered are taken at right angles to one another. 

The angle e is measured positively from the left side clock-

wise. The fold is imagined to be compressed by a force F 

directed along the normal to the axial plane. Referred to 

polar coordinates rand e the components of F parallel and 

perpendicular to the cross-section e = 0 are T and P respec-

tively. For equilibrium these must be balanced by resultant 

forces -P and-T acting parallel and perpendicular respectively 

to the cross-section at e = 7C/2. The boundary conditions are: 

b b 

@ e = 0, ! Lee dr = P J Cre dr = T 

a a 

!~oo 
b 

@ e = 1[/2, dr -T ; ! ere dr = -P (6 ) 

a a 

1; 
rr = -ere = o at r = a and b for all e . 
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z 

Y(dn) 

F 

T 

Figure l ~ . r·bde l a ssuned in calculation of stress 
distribution in an a lreu.dy parti a lly deformed l ayer of 
circular cross-section whi ch is loaded elastically by the 
force F applied to the "ends " of the body. Fur 9 = 0 , 
the components of F normal nnd t angentia l to t he end of 
the bea~ are P and T r espec tively, and for e =1[/2, T 
and P. In the case chosen, P is equal to T. 'Ihis model 
is meant a s an approximation to the situation in one o f 
the na tura l folds discu ssed l a t er (p. 90 ). 

F 
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The stress distribution satisfying these conditions may be ob

tained by superposition of solutions to the following problems: 

(a) bending of a curved bar by a force applied tangentially at 

one end (Timoshenko, 1951, p. 73), (b) bending of a curved bar 

by a force applied normally to one end. The resultant stress 

distribution is 

T 
rr 

'Cre ~ (r + 
a~2 a 2+b2 )(P sin e - T cos e) = ---;3 -

r 

2 _ b 2 2 2 b vlhere N = a + (a +b )In a 

For purposes of dealing with the natural fold we 

consider the special case of the' dimensions where b = 2a and 

the stresses at the cross-section e = 1[/ 4. For P = T, 

Equation 7 reduces to 

"err = 1/2: P (r + 4a 
4 

_ 5
a2

) 
N · r3 r 

t e e 
V2p (3r - 4a4 

_ 5;2 ) = 
r3 N 

t[re 0 

(8 ) 

In plane strain, fy y ' the stress along the axis perpendicular 

to the plane of t he fold is ~('[rr+t;;e). (Poisson's ratio is 
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equal to ~ for an incompressible material.) 1-le no", evaluate 

these three non-zero components of stress for £ = (5a)/4 and 

(7.2,)/4, which are the approximate "mean" positions of thin 

sections examined in the natural fold the present analysis is 

intended to describe (p. 95, fig . 10). Thus 

Lrr (~) "" - 7a f2 (p) 
10 N 

'Cee (1r-)~-
23a V2 (p) 

10 N (9 ) 

1:yy (;r) ~ - 3a (2 (p) 
2 N 

and 

1; (1j) "..., - 4a J2 (p) 
rr 11 N 

'fee (~) ~ 
18a Vi (p) 

' 11 N 
(10 ) 

1:'yy (J;-)"¥ 7a Vi (p) 
11 N 

To compute the resolved shear stress on a slip plane in the 

direction of slip for a given crystal, it is necessary to use 

the transformation formulae for stresses (Sokolinkoff, 1956, 

L=J 1= I 
-r-' ",here the L Ct~ are components of stress referred to Cartesian 



- 51 -

Figure 5 . Predicted results for the dynaJi1ic analysis 
of the tHin lamellae fabric in a fold using the Dode l shol'm. in 
Figure Lf for the radial section at e = 7!j4 . The original dis 
tribution of c - axes and lattice orientations chosen are those 
ShONi'l in Figure 12 . I n each diagram "e" loefers to a cO!.1pres 
sion axis and "T" to a tension axis . The operative ti'lin set in 
a grain "laS a ssumed to be that for vrhich S~ g iven by Equations 

12 is greatest, ",ith the sense of shear favorab le for twinning 
(i. e . values of S~ algebraically greater than - 0 . 05) . JI.rroVIS 

on the diagram ShON the sense of the stress acting along the 
a -&~is of the fo l d , or the x - axis as defined in Equations 12 . 
Thus (a) is fo r the region '1'Thich is compressed parall el to the 
l ayering during defornation and (b) for the region which is 
extended parallel to the layering . 
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axes fixed with respect to the slip plane and slip direction 

and ,'There the r:. . are given by Equations 9 and 10, de fined l J 
now with respect to a set of Cartesian axes with +x parallel 

to the positive e direction, +~ parallel to the fold axis and 

+z parallel to +r. ~ . is the cosine of the angle between - - al 
'th the positive end of the a coordinate axis fixed in the 

grain and the i'th principal stress axis. Define the shear 
, 

stress on a slip plane perpendicular to the x axis in the 

direction of the y ' axis as 1. ~y Then 

where the orthogonality relations between the direction cosines, 

Aa5A a j = bij (8 ij = Kronecker S)' have been used. ('[xx = 

'Lee; 1:Y]l = fu; ~zz = 'frr )· Evaluating Equation 11 f or 

each set of stresses given by Eq~ations 9 and 10 we obtain as 

the values for the resolved shear stress coefficient v~itten 

i n terms of the stress t: xx 

L~y , 
(if) rv 16 

(Axx 1\ +l 1\ ~ 
;!.:!) /[xx 

So = 23 YE 2 xz 

, 
(~) rv 11 (AxxI\YE + 

1 I\~A~) SO =0 2 7 

For each product of ~ 's on the right side of Equation 12 a 

graphical solution like that presented by ' Handin and Griggs 

(12) 
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I 

(1951, p. 868) may be used to obtain the final value for So 

for any particular plane in the lattice. 

Consider now a calcite aggregate 'Ili th isotropic c-axis 

* distribution subjected to the system of stresses given by 

Equations 9 and 10. Assume further that the operative twin 

plane in each crystal during deformation is that upon which 
I 

the value of So is greatest, and that twin gliding does not 
I 

occur unless So is algebraically greater than or equal to -0.05, 

in accordance with the assumptions in the Handin and Griggs 

(1951) and Turner et al. (1956). vle may then construct C and 

T axes for the appropriate active twin set in each crystal. 

The results of this procedure are presented in Figures5a and 

5b. In the region where there is shortening parallel to the 

x-axis, the dynamic analysis gives a broad clustering of C-

axes about this direction. T-axes form a general equitorial 

girdle in the axial plane (~ plane) of the fold. For the 

other case of extension parallel to the x-axis, the concentra

tion of C-axes is about the y-axis with a T-axis girdle lying 

in the ~-plane. These results will be compared more fully 

'Ilith those obtained from the natural fold in a later section 

(p. 10~. For the present it will only be remarked that the 

results obtained above show qualitative good agreement with 

those actually observed to develop in nature. 

vii th the above picture of the dynamic method it is pos-

sible to go further and examine qualitatively the fabric changes 

* The actual distribution used is that given in Figure 12a . 
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due to mechanical twinning which "muld develop for the deforma

tion imagined above. For twinning in calcite the c-axis of the 

host and t~tin crystal are symmetrically disposed about the pole 
o 

in the twin plane, 52~ apart, and lie in the plane containing 

the original £-axis and pole to the twin plane. The C-axis de

rived from the dynamic analysis also lies in this plane, 710 

from the host c-axis. Therefore as a first approximation a 

clustering of C-axis also depicts a general concentration of 

optic axes for the hTinned part in each of the crystals, and 

the C-axis pattern will thus grossly conform to the major 

fabric change which develops through mechanical tWinning. The 

optic axis patterns obtained in this manner are generally 

similar to the stable orientations of c-axes which have been 

discussed above (p. 43) for the special situation adopted here. 

Calculation of Bulk Strain from Petro fabric Data 

The problem of interpreting deformation lamellae in 

carbonate aggregates may be approached from a different and 

more natural standpoint than that suggested by the dynamic 

analysis. This approach involves consideration of the bulk 

* strain in an aggregate represented by twinning and/or in-

ternally rotated lamellae (Turner, et al., 1956) rather than 

the stresses involved in producing these features. As has 

* Bulk strain is synonymous with macroscopic strain, and 
refers to the strain of a volume of material \,Thich includes 
many individual crystals. The microscopic strains are the 
strains of individual crystals. 
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already been discussed, the intragranular stress distribution 

defined by the dynamic analysis is not an actually possible 

distribution of stress for each crystal, and therefore the 

analysis is to some extent unreal. The new method presented 

below allows a quantitative estimate to be made of the amount 

of visible strain an aggregate has undergone, and also permits 

the directions of the principal axes of strain to be computed. 

Contributions of individual grains to the total strain are 

also weighted in a prescribed manner, thus allowing for non

homogeneity of grain size and distribution of strain among 

individual crystals to be taken into account. 

Calculation of visible bulk strain due to twinning 

When a crystal of calcite is deformed in twinning, it 

undergoes a shearing strain, the amount of strain depending 

on the degree of twinning. Twinning deformation in a grain 

is characteristically heterogeneous. That is, most grains 

are usually only partially twinned, and contain completely 

t~dnned layers separated by layers of the untwinned or host 

crystal. Within each twinned band the deformation is homo

geneous by virtue of the atomic movements involved in the 

twinning process. The plane of shear in twinning is perpen

dicular to the twin plane and includes the twinning direction. 

A twinned crystal is thus in a state of plane strain (this is 

proved by Jaswon and Dove (1960) for deformation twins) parallel 

to the shear plane in twinning, provided that only one set of 

lamellae is developed in the crystal. 
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In a given partially-twinned grain, the average shear 

strain induced by partial twinning is computed by thinking of 

. the deformation as uniformly distributed throughout the grain. 

The situation is depicted diagrammatically in Figure 6. An 

original rhombohedral shaped crystal ACDB viewed in the (1210) 

plane, of height h, is deformed by twinning on layers of thick

nesses hl and h2 into the shape shown in dashed lines, AEFB. 

The average engineering shear strain in the plane of the dravl-

ing referred to the CarteSian axes x and Z is 

2(h + h ) 
Y = tan 1/1 = -1 h -2 tan (8/2) (13) 

where 0 /2 is one-half the angle between r(IOll) in the host 

crystal and r'(lOll) in the twinned crystal, and equal to 190 

08.5' in calcite. In order to compute the average shear strain 

in a grain due to mechanical twinning, it is only necessary to 

measure the relative lengths of twinned and untwinned crystal 

traversed along a line normal to the operative twin plane. 

For infinitesimal Y , the principal axes of strain for 

twinning lie at 450 to the twinning plane as shown in Figure 6a, 

and the magnitudes of the principal strains along these axes are, 

, 
1 r e = 2tan . x 

, 1 (14) e = - 2tan 'f y 

, 
e z = 0 

vlhere tan yr is given by Equation 13. The se strains c an be re

ferred to any arbitrary set of coordinate axes, for example a 
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Figure 6. Illustration of strain due to mechanical 
twinning on {Ol12} in calcite. (2) Orientation of the 
prinCipal axes of strain in twinning relative to the plane 
of the shear. ~'and Z' a.xes are those to which the 
engineering shear strain in the grain is referred, :x, Z 
the principal axes associated with the deformation.- (b) 
Geometry ot the twinning strain. Tan If is the engineer
ing shear strain associated wi th twinning. 
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set parallel to the edges of and normal to a thin section, by 

using the infinitesimal strain transformation formulae, 

3 3 

L L (15) 
CL=l (3=1 

where the eij are components of the strain tensor referred to 
, 

the arbitrary coordinate system and the ea (3 are components of 

the strain tensor referred to the principal axes in each grain. 
, 

The ea (3 \vri tten in matrix form are: 

~tan'P 0 0 

, 1 
ea (3 = 0 -2tan lj' 0 

0 0 0 

is the cosine of the angle between the positive end of ia 

(16 ) 

the i,th arbitrary axis and the positive end of the a,th prin-

cipal axis in each grain. In the present study the particular 

reference axes chosen for purposes of calculation are as follovvs: 

+ x = north universal stage direction in the 
thin section (long edge). 

+y 

+ z 

= east universal stage direction of the 
thin section (the short edge). 

= normal to the plane of the thin section 
(~ \'I'i th po si ti ve direc tion dmmward. 

In a particular grain the axes, defined by t heir positions on 

the lower hemisphere of an equal area projection, are: 
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+ x = extension axis, positive end making an angle 
of 190 ,dth the c-axis position on the lO\,ler 
hemisphere, and lying on the great circle con
taining the poles of £(0001) and e [01I2J away 
from the pole to e. -

+ Y.- = compression axis, positive end making an angle 
of 710 with c in the great circle containing c 
and e, and measured from c in the direction 
of e-: 

I I I 

+ Z = normal to the x y.- plane. 
I I 

The x and y.- axes are coincident respectively with the tension 

and compression axes of the dynamic analysis (p. 45) . 

Equations (5) and (5a) combined and written out in 

full are: 

exx = 1 A 2 
2( xx- /I~) tan ljJ 

1 ~ 2 ~ 2 ) eiEl. = 2( E:.- tan If 
iEl. 

1 'A2 2 
e zz = 2( zx- A~) tan tp 

e!:Jl = ~( "xx A E:. - ~!:Jl AiEl.) tan ljJ 

exz = ~( A xx A zx - AiEl. ?t~) tan yJ 

e ~( AE:. ~zx - AiEl. ~~) tan If 
"E.. 

For each set of twin lamellae visible in a grain the six 

(17 ) 

angles whose cosines are A I ~' 1\!:Jl' 
etc., must be measured 

from the projection net. The factor tan tp is equal to 0.69v, 

v being the ratio of the width of twinned crystal to the total 

width of the crystal, that is, (hI + h2 )!b in the example of 

Figure 6. 
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The strain components given by Equation 17 represent 

the visible strains due to twinning in each grain referred 

to the arbitrary axes. Each grain does not deform indepen-

dently of its neighbors, but the amount of observed strain 

and the grain size do vary from grain to grain in the aggregate. 

Thus in order to obtain an average for the deformation of the 

aggregate, contributions of individual grains to the total or 

bulk strain must be weighted in an appropriate way. This is 

done by multiplying the calculated components of strain e .. 
lJ 

for each grain by the ratio of the area of the grain to the 

total area of all the grains involved in the computation. The 

areal extent of each grain gives an unbiased estimate of its 

volumetric contribution (Chayes, 1956, p. 13), and the contribu-

tions of the individual grains to the bulk ' strain are in pro-

portion to their individual volumes. The sum of the weighted 

individual components eij make up the components of what is 

here termed the bulk strain tensor Eij . Once the Eij have 

been obtained the three principal bulk strains and associated 

principal-strain-axis directions can be computed using either 

the procedure given by Sokolnikoff (1956, p. 17, 47) or an 

iterative procedure (Nye, 1957, p. 165). 

Strain due to translation gliding 

By a procedure exactly analogous to that described 

above, shearing strain due to translation gliding alone may 

be included in the analysis of strain provided its runount can 
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be determined through analysis of internally rotated lamellae 

(Turner, et al., 1954, p. 883-934), or by some other means. 

The engineering shear strain ~ associated with such internal 

rotation is calculated from the following equation (Turner, 

et al., 1954, p. 900): 

co t a - co t 13 = ~ sin '5 , (18 ) 

where a and 13 are the angles between a given lamella and the 

operative glide plane before and after internal rotation (13 

arbitrarily chosen greater than a), and ~ is the angle beti>reen 

the glide direction and the axis of internal rotation which 

is the line of intersection of the lamella and glide plane. 

Under the assumption that ~ is infinitesimal, the principal 

axes of strain for this deformation lie at 450 to the active 

glide plane in a plane normal to the plane of gliding which 

includes the glide direction. ~lliich axis is the axis of ex-

tension or shortening depends on the sense of gliding. As 

* an example, for negative r l translation gliding in calcite, 

with one glide system in operation, the principal axis of 

extension is 450 from the pole to r l nearly coincident with 

the pole to ml , and the axis of compression of the deformation 

is almost coincident with the c-axis. 

The strain tensor matrix for negative r l translation 

gliding shear strain, written in a coordinate system defined 

by the particular axes given above is: 

* See Appendix I. 
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1 
0 0 -s 2-

II 1 e
af3 = 0 --s 0 (19 ) 2-

0 0 0 

For positive r l translation gliding, these two strains simply 

change signs. The components of strain given in Equation 18 

may be referred to the arbitrary reference axes of the previous 

section by u se of relations, Equation 5. 

It must be emphasized that these strain calculations 

omit perhaps the majority of strain experienced by a given 

rock. If a grain has undergone translation gliding strain 

prior to the development of visible twin lamellae, then this 

strain is necessarily neglected. It is also not possible to 

detect readily the strain adsorbed as grain boundary slip, 

recrystallization, or through fracturing of the material . 

However these are probably not the major sources of the dif-

ficulty as will be discussed below. As has already been 

mentioned (p. 36 ), it is generally necessary that at least 

five glide systems operate in each grain for continuity of a 

deforming aggregate to be maintained. But, it is generally 

difficult to identify more than three operative systems in 

any grain of the deformed rocks studied here. It is there-

fore quite probable that translation gliding strains are not 

detected and hence remain unaccounted for in an evaluation of 

the bulk strains. The identification of translation gliding 

in calcite is ordinarily made by measurements of internally 
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rotated lamellae (Turner et al., 1954; see also appendix II). 

Sometimes such lamellae can be noted and identified in ~larped 

crystals where large local strains have developed through 

plastic bending (see appendix II), but the procedures used 

are time consuming, and seldom yield unambiguous identifica-

tion of the operative translation gliding systems. Using 

Equation 18 we can estimate how much internal rotation of a 

given lamella is to be expected for any value of s. The 

maximum amount of strain in twinning observed in some of the 

rocks studied here is 0 . 05 (see p.163), and it is not un-

reasonable to expect that at least this amount of translation 

gliding strain exists undetected in the aggregates. For the 

case of an e l lamella, rotated by g lide on r l , with ~ equal 

to 0.05, (a - ~) is equal to 2.50
. For negative glide on r l , 

.£ 1\ ~l would equal approximate ly 240
, and for po si ti ve glide 

290
• The smaller angle is just ~li thin the limits of measure-

ment, while the larger angle lies in a region where a true 

effect is difficult to separate from one involving constant 

discrepancies for the angle.£A~, which may arise through 

cumulative error involved in locating caxes and e-lamellae 

(Borg and Turner, 1953) . For the above reasons translation 

gliding strain has generally not been included in any of the 

strain calculations presented below. 
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Accuracy of the strain calculations 

There are bm ways in which inaccuracies can enter 

into the calculation of the observable part of the strain in 

an aggregate using the above method. The first comprises 

errors due to the assumption that the strains are infinitesimal 

so that Equations 5 app ly. The second kind of errors are those 

of observation including measuring errors ",ith the universal 

stage, errors in visually estimating the amount of twinned 

material in a grain, and especially in establishing which part 

of a crystal represents twin and which host. To the extent 

possible, these questions are considered below. 

The validity of applying infinitesimal-strain trans-

formation formulae to actual observations representing finite 

strain cannot be investigated thoroughly Itithout entering 

into the mathematically cumbersome subject of finite strain. 

However, it can be expected on general grounds that the errors 

and uncertainties introduced in this way ''iill be of the order 

of the squares of the observed strain components, because 

terms of this order are of the lowest order omitted in all 

calculations that assume infinitesimal strain. The nature of 

these errors can be illustrated in the following way. In a 

of deformed body the rotation components LV i j are in general 

the same order of magnitude as the strain components e ij . 

vmen a body that has been strained by amounts eij is rotated 

by components LV • • , the strains with respect to axes fixed in 
- lJ 

space change by amounts (Kamb, 1961, p. 264), 
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where the tensor summation convention has been used. Thus 

since the external rotations 0) .• remain always unobservable . lJ . 

in the individual crystals of naturally deformed specimens, 

the calculated components of strain e .. are always uncertain . lJ 

to the order e2 , no matter what strain transformation formulae 

are used. Since the maximum observable strain component in a 

calcite crystal deformed 50% in twinning is normally 0.17, the 

maximum errors introduced by assuming infinitesimal strain and 

by neglecting the CDij's are about 20% of the strain components 

themselves. Such errors, in view of the general uncertainty 

of observational fabric data are not intolerable. 

Observational errors are quantitatively about as im

portant as those introduced by the mathematical approximations 

discussed above. For example the adopted practice for deter-

mining the degree of tWinning in a grain is to estimate visually 

this quantity while making the other normal petrofabric meas-

urements. With visibly twinned lamellae it is unlikely that 

any such estimate is accurate to any better than 10%. This 

means that the principal strains given by Equation 14 are 

uncertain to about 3%, or for a grain that is 50% twinned 

about 20% of the strain components themselves. A special 

problem is presented by deformation lamellae in calcite 

commonly termed nontwinned by most investigators. For reasons 

developed later (p.199) these are here renamed microtwinned 

lamellae. They have been taken into account in the strain 

calculations by assuming that the crystal is on the average 
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0.1% twinned by each set of microtwinned lamellae it possesses 

* regardless of the spacing index of the set. In practice it 

has been found that the contribution of the micro twinned 

lamellae to the total strain is usually dt'i'arfed by that of 

the more prominently t~dnned sets in a grain. 

The most serious observational difficulty arising in 

determining the visible strains is as follows. It has been 

indicated that a distinction must al'l'i'ays be made for each 

partially twinned grain as to which part is tvdn and which 

host (or original) crystal. In effect changing the choice 

reverses the principal axes of strain for the crystal, and 

this t>lill in turn alter its contribution to the computed 

bulk strain components E .. because of the summation process 
lJ 

in the weighting of strains from individual crystals. 

Commonly it is rather loosely assumed that the twinned part 

of a grain is that represented by the smaller volume of 

crystal. If this criterion is rigidly adhered to it t>lill 

set an upper limit to the observable amount of strain due 

to titinning in the aggregate, for it then becomes apparent 

that distinction of host and twin in a crystal 50% twinned 

is not possible unless some independent means is available 

for establishing one of these orientations. In an aggregate 

containing randomly oriented crystals each 50% twinned, the 

* The spacing index for a lamellae set is defined as the 
number of Hllnellae per millimeter encountered in a traverse 
normal to the set. (Turner and Ch'ih, 1951, p. 896.) 
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1 1 maximum strain per crystal is, from Equation 14 rough ly 2 x 2 x 

0.69 x (1/3) or 0.06, where a weighting factor of 1/3 enters to 

take account of the supposed random orientation on the strain. 

If the rock is equigranular and the strain homogeneous from 

grain to grain, the maximum observable strain in the aggregate 

is also approximately 0.06. In the event a random choice is 

made between host and twin in grains that are 50% twinned, 

then on the average, the contributions to the total strain 

from these grains should cancel. Errors ",Till enter the cal-

culated magnitudes of the principal strains if the wrong 

choice for the host (or twin) is made. In all of the rocks 

examined in the present work, the number of crystals showing 

greater than 40% t"linning is ahmys less than 10% of the total 

number of grains examined. The errors likely to enter the 

calculations because of faulty assumptions as to the deforma-

tion in this many crystals can be estimated as fol101'lS. If 

100 grains are measured in a section of equigranular rock with 

random ~-axis fabric, and 10% are 50% hJinned, then the cal

culated components of strain will be in error by + 0.1 x 0.06 

or 0.6%. The minus sign applies when choices behleen host and 

twin are random so that contributions of these grains cancel, 

and the plus sign applies if all "rrong choices have been made. 

Tnus for a rock where the E .. are 0.04, the errors due to this 
lJ 

observational difficulty are about 15% of strains themselves. 

Unfortunately it is not possible to cite general 

cri teria ",lhich ,,-,,ill enable a clear distinction to be made be-
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t~'Teen host and tvrin orientation in a tvJinned crystal. In 

rocks showing . a good preferred orientation before deforma-

tion, this problem is not so serious because the original 

fabric of the rock can sometimes be used as a guide to the 

behavior of material that has undergone deformation. This 

is an important reason for examining fabrics of specimens 

from both limb and axial regions of folds that have undergone 

large deformations. In selected situations it is sometimes 

possible to distinguish host from twin, particularly where 

the host contains two sets of twins. If an early formed 

set of twin lamellae is disrupted by twinning on a later 

set, the appearance of the early twins changes, and they be-

come thicker, darker, and serrated in appearance in the twin, 

while remaining sharp ·and straight in the host. A distinction 

between the two orientations can thus be made relatively easily. 

It is clear that very careful observations v,ill be necessary 

if calculations like those described above are to be carried 

out on highly deformed material. 

The combined effects of all the different kinds of 

errors enumerated above are difficult to assess. This could 

be done if the strains could be measured in an experimentally 

deformed aggregate in which the bulk strains are knovm, but 

this calculation has not been made in the present work. It is 

however certain that the estimates of visible strain derived 

by this procedure are no better than the errors introduced at 

any step, i.e., roughly 20% of the strain components themselves. 
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For geological situations, particularly \lThere no other meas-

ure of the strains are possibl~ such errors are perhaps 

acceptable. 

A convenient numerical check is available for some 

parts of the computations used in obtaining the bulk strain 

components. The sum of the principal strains for each grain 
I I I 

is ex + eX + e z = O. This sum forms the first invariant of 

the strain tensor eij , so that e , exx + e and E + En -,-xx zz xx 
E are zero as ,,,ell, and this fact may be used to partially zz 
check the numerical work. No very convenient means such as 

this is available for checking the off-diagonal components 

of strain. 

Relation between the strain calculations and dynamic analysis 

Results of strain calculation for a particular fold 

,,,hich allow comparison 'I'li th a dynamic analysis of the associ-

ated t,vin lamellae fabric are given in Figure 12 (p. 102). Th.e 

principal axes of strain and values of the principal strains 

have been obtained using most of the available t\lTin lamella 

data for the rock, but the associated diagram giving the dis-

tribution of C and T axes has been modified from the original 

, .. 

data (fig. 14) by simply striking out closely spaced pcirs of C 

and TaXes « 50 apart). In this particular example 17 pairs 

of axes 'I'[ere removed from a total of 100, and in doing so 

more distinct maxima have been generated in the diagram. It 

can be noted that an alteration of the data of this type does 

not change the general nature of the result, at least for this 
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particular case, but does serve to clarify somewhat t he picture 

presented by the dynamic analysis. In essence a comparison of 

the strains and dynamic analysis data shmm that groupings of 

C-axes (in both the complete and reduced data) are associated 

\'/i th a direction of shortening and T-axes with a direction of 

extension for the rock. An unlimited cancellation of the sort 

suggested here cannot be made however, for clusterings obtained 

in this manner are probably not significant in view of the 

likely possibility that some grouping could occur just through 

superposition of random patterns of C and T axes (B. Kamb, 

oral communication). Lacking a statistical study of this 

problem it is not possible to place precise limits on the 

degree of cancellation permissible. 

Petro fabric method for determining the bulk rheological 
properties of limestone under deformation in nature 

The strain analysis procedure described above in 

practice turns out to be relatively sensitive in detecting 

small changes in strain throughout a body if these strains 

are near zero (p.119, this thesis). This indicates that the 

method may be used to investigate the detailed distribution 

of strain in a fold, given suitable specimens with which to 

\'lOrk. Knowing the strain distribution, it is in principal 

possible to distinguish between broadly different kinds of 

mechanical behaviour in calcite aggregates deformed under 

natural conditions, viz., Newtonian viscosity and perfect 

plasticity obeying the Mises of Tresca yield condition for 
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plane strain. In order to illustrate this idea, a very simple 

example is considered. Imagine again the flexure fo Id 0 f 

circular cross-section which is deformed in plane strain by 

pure couples applied in the limbs, the fold axis being the 

axis of bending. Let all other surfaces of the layer be 

stress-free. For an incremental increase in the angle of 

bending, the strain distribution vTill vary throughout the 

body in a way which depends upon the rheological nature of 

the material. In particular the position of the neutral sur

face itill be different for the two types of bodies mentioned 

above, and if the deformation proceeds from an initially 

annealed state of the material, the difference in position 

could be detected by sufficiently refined measurements of 

the strain. As a numerical example, if the outer radius of 

the fold is boice the inner radius, the difference amounts 

to approximately 3% of the inner radius, t he smaller value 

being associated with plastic behaviour. This result can be 

obtained by comparing results for circular beams given by 

Hill (1956, p. 289), and Timoshenko (1951, p. 64). 

Numerous difficulties make it difficult to apply this 

method to natural folds. Even if a numerical method could 

be used to deal with comp licated boundary shapes and stress 

and displacement boundary conditions, the strain history of 

any element ",ould have to be knolm. For the critical region 

of the body, particularly just inside the neutral surface, 

elements first undergo compression followed by extension for 



an increase in ti-,e defon,1ation in bending, and the neutr2.1 

surface moves toward tlle inner boundary (Hill, 1956, p. 229). 

It is hard to imagine ti,e precise effects on individual 

cr;{stals "Thich T'Jould be produced when the neutral surface 

moves through a given part of the aggregate, but the result 

vmuld probably complicate exact location of the surface. The 

problem is partly circ'J.mvented by the specification of small 

deformations fraIn an initially annealed state of the material, 

but this demand is contradictory to the requirement that the 

folded structures have small radii of curvature. Another dif-

ficul ty in applying the method is that in i;real" folds pressures 

on transverse cross-sections of the beds vrill also tend to dis-

place the neutral surface, and perhaps remove it from the layer. 

TI10ugh the method described above is probably inap-

plicable to most folds j.n practice it does illustrate in 

principle an approach by which petro fabric data can be used 

on a detailed basis to obtain geological information about 

the r],eological properties of limestone. It turns out to be 

inapplicable to the folds studied here, because in the single 

example which approaches some of the necessary requirements 

(p. 119), the difference in position of the neutral surface 

between the cases of viscosity and perfect plasticity is only 

0.1 inches. Furthermore, it is not certain that the neutral 

surface has not been considerably disturbed by compression 

throughout the fold. 



In reality one vmuld perhaps not need to carry through 

the complicated procedure described above, because a simple 

examination of thin sections from all parts of a fold could 

reveal variations in amount of strain due to tWinning, '",hich 

"lOuld qualitatively accomplish the same purpose as the strain 

analysis. Folds containing oolites would also be especially 

valuable for this purpose. 

Petrographic Techniques Employed 

Petro fabric analysis procedure 

Petro fabric observations for this study were made 

using a Letiz P.III M petrographic microscope equipped with 

a Leitz four-axis universal stage. Universal stage measure

ments were made using hemispheres of index 1.649 and mounting 

oil of index 1.638. Universal stage techniques described by 

Turner (1949) have been used throughout this investigation 

except as described below. 

\',lhere possible, tvlO mutually perpendicular thin sec

tions were examined in the various parts of each of the folds 

studied. In all cases orientation data from at least 100 

grains were taken from thin sections from each position in 

the fold. In linearly traversing a thin section, all grains 

along the line of the traverse ,,[ere measured rather than at 

equally spaced intervals. Orientation data taken in highly 

1iTarped crystals \.,rere measured as close as possible to the 

same spot in a given crystal. Tnese data Vlere plotted on 
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the lower hemisphere of a Schmidt equal area projection net 

of 20 cm diameter . Interfacial and zonal measurements were 

made on this net and the values obtained \'lere recorded for 

future reference along v,i th net coordinates of individual 

grains . Descriptive data such as amount of tvrlnning, lamella 

>,mrping, grain boundary structures, and special or anomalous 

features (internally rotated lamellae, evidence of recrystal

lization) were also recorded. Positions of grains 'I'1ere located 

on photomicrographs of the thin sections. Orientation data 

are presented as scatter diagrams rather than as conventionally 

contoured orientation density diagrams. This is advantageous 

because the irregular detail in conventionally contoured 

diagrams has no statistical significance (Kamb, 1959, p. 1909 ) 

and further serves to obscure the picture presented by the 

original data. 

For reference purposes in describing orientation 

data, a system of ~thogonal coordinate axes fixed \'lith 

respect to a particular fold has been adopted as follows: 

facing the outcrop, the (+) b-coordinate axis is into the 

outcrop along the fold axis: (+) a is along the normal to 

the fold axial plane directed to the right if the flexure is 

convex up\'lard (anticline) and to the left if convex dO\'ln'l'1ard 

(syncline); (+) c is normal to the ab-plane directed outward 

in the convex direction of the flexure. Tnese directions are 

noted on each fabri c diagram presented in subsequent sections. 

Positive directions are specified along the axes to allovl 
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comparison of diagr&~s of different orientation. The fold 

coordinate axes are not generally coincident with the arbi-

trary reference axes of the strain analysis procedure. They 

coincide for cases in which a thin section is cut exactly 

parallel to the fold coordinate plane with edges parallel 

to the coordinate axes. Orientation of thin sections rela

tive to the fold axes are known to approximately + 30
. The 

accuracy of orientation data from individual crystals, as 

established through repeated measurements are: for c-axes 

o 0 on the average + 3 ; for e-lamellae + 1 . 

Nei'r developments in carbonate petro fabric study 

~~inning lamellae in calcite and dolomite present 

certain problems in microscopic fabric analysis. The first 

of these is an interpretational one concerned ,~th the de-

formational significance of the so-called "nontwinned" 

lamellae parallel to e in calcite, structures often observed 

in rocks used in this investigation as well as in both ex

perimentally and naturally deformed marbles (Borg and Turner, 

1953). Nontwinned lamellae are described as being so narrow 

that "\~hen til ted into the vertical plane they appear as hair-

sharp lines, rather than as lamellae, but are distinguished 

from cleavage parallel to r by the tendency to remain clearly 

visible between crossed nicols even when tilted at large 

angles to the vertical. They are further distinguished 

by the fact that "\~hen in the vertical position twinned ma-

terial cannot be recognized within them through symmetrical 
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extinction about the lamella plane with the host crystal 

(Turner, 1949; Borg and Turner, 1953). Actual ly, such 

lamellae can be shown to contain optical l y recognizable 

twinned material and to average a few microns in thickness 

(p.203, this thesis). Methods are also developed below in 

detail for determining optically the thicknesses of twinned 

material in these lamellae both individually and when several 

are superimposed through orientation of the grain in thin sec

tion . As a result of the studies described below, it seems 

appropriate to redesignate these structures as micro twinned 

lamellae, a term which more correctly describes their nature. 

They will henceforth be referred to by this name. 

Another problem presented by deformation lamellae in 

carbonate minerals is that of obtaining orientation data on 

these lamellae when they are inclined at angles of less than 

350 to the plane of the thin section. Such lamellae are 

normally inaccessible to measurement using conventional uni

versal stage orientation methods, and this fact accounts for 

the central "blind-spot" in e and f lamellae pole diagrams, 

and necessitates examination of two perpendicular thin sec

tions in a carbonate rock to obtain an accurate picture of 

the distribution of l ame llae (Turner, 1949 ). The study of 

microtwinned lamellae has led to discovery of an optical 

technique for obtaining orientation data on shallowly in

clined lamellae of both the visibly twinned and micro twinned 

varieties. The technique turns out to be more readily ap-
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plicable to dolomite than to calcite . 'Since the three f £02211 

twin planes in dolomite are oriented at approximately 800 to 

one another and this determines that one set of these lamellae 

will be inaccessible in most grains (Christie, 1958 , p. 162) . 

The method developed here utilizes the optical properties of 

the twins and is described later in detail (p.196 ). Its di s-

covery came rather late in the se investigations and it 

consequently ,'Tas not used during the fabric studie s. 
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FJI.BRIC STUDIES OF FOLDED LIMESTONES 

Introduction 

Fabric data from two geographically widely separated 

folds are presented in this section. The first fold to be 

discussed was found in western Maryland, and the second was 

obtained from Darwin wash. in Inyo county, California. The 

fold from Darwin was originally collected by Kamb (personal 

communication) who also measured a preliminary fabric in 

the structure. When fabric analysis of the fold was com

pleted by this writer in other portions of the structure, it 

became clear that no simple relation existed between the 

fabrics and the megascopically observable deformation in the 

fold. A new search was then instigated for other examples 

of Simply folded carbonate rocks, and this search ultimately 

led to the folds in western Maryland. A number of other at

tempts ,'lere made to find deformed rocks sui table for the pur

poses here. Studies of folds visited in the field during 

these searches (folds which were rejected for various reasons) 

are summari zed be Im'l . 

In general we have found that although there are 

numerous examples of folded limestones, any of a combination 

of factors can limit the usefUlness of a particular structure 

or eliminate it completely as a deSirable object of study. 
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Tilany folds are located in undesirably complicated geologic 

environments. Others examined contained strong axial plane 

cleavage, and still others ,,,ere highly fractured or contained 

vein-like or irregular masses of secondary calcite. vfuere 

cleavage, veining, or fracturing were subordinate, the rocks 

were sometimes too finely crystalline to permit microscopic 

determination of c-axis fabrics. Another sort of development 

has emerged from one example (see "Mule canyon" below). In 

this case no deformation fabrics were observed in a fold in 

coarse grained limestone in '"hich ,,,ell developed fabrics, 

for the observed large strain, could have been expected . 

This indicates that either recrystallization intervened to 

destroy the fabric or that a fabric never developed in the 

rock as a result of the deformation. Th~ conclusion derived 

from the se se arche sis that simp Ie flexure fo Ids (" simp Ie II 

here being used in the context of the requirements laid dOl'm 

in the Introduction) suitable for this study are rather hard 

to find. TI1is by no means weakens the case for using such 

folds in these investigations, because under the special 

considerations here invoked, these structures still present 

the most straightfor\'Tard examples of bodies \'There local 

variations and amount of strain can be independently estimated 

and fabric changes compared with those expected in theory. 

As ,-rill be discussed in detail below, the examples of 

folds actually studied have not yielded deformation fabrics 

resulting from large strain which can be simply related to 
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the observed deformation. As a result of this it is not pos-

sible to draw' any certain conclusions as to the relevancy of 

past experimental studies in describing the detailed behavior 

of carbonate rocks during natural deformation. vfuere appro-

priate, some comparisons are made below. 

Before giving the results of the fabric studies, the 

other fold localities visited and examined in the field are 

treated in summary form. 

Localities Examined 

A search for deformed limestones sui table for purposes 

of the present investigation has been carried out in a number 

of areas. These are given below, and pertinent information 

as to location, geo logic setting, descriptions of the folds 

examined, and petrographic characteristics of the rocks are 

also included . The two folds v,hich are reported on in detail 

in follovling sections are not included here. 

I. Fold from the Talc City Hills, Inyo County, 
Cali fornia. 
A. Location - The fold occurs on hillside just 

northeast of road connecting 
California State Highway 190 with 
the Sierra Talc mines, 3/8 miles 
southwest of the Talc City mine . 

B. Geologic Setting - The fold is developed in 
limestone of the Pogonip group 
(Gay and vTright, 1954) in a posi
tion roughly 200 feet vertically 
below a large thrust fault which 
has placed Ordovi cian and Silurian 
sediments over those of Carboniferous 
age. The thrust fault is itself 



,'larped (?) into a gentle syncline 
about an axis trending N. 500 vi . 
The minor fold is perhaps related 
to the thrusting. Cretaceous in
trusives crop out 1/4 mile to the Sl/1 . 

C. Details of the Structure - The fo ld occurs in 
light gray, finely crystalline, 
slabby bedded, calcareous limestone 
which is high l y veined ,·rr th secon
dary ,·,hi te calcite. In outcrop its 
plan is as~metrical. The axial 
plane strikes N. 160 1'[., dips 610 E., 
and the fold axis plunges 180 to the 
northwest. At the axial plane the 
radius of curvature is about one foot. 
Cleavage parallel to the axial plane 
is ,,,ell developed in the structure . 

D. Petrography - In thin section the limestone 
appears considerably deformed, \'lith 
abundant visible t\'linning and warped 
lamellae. 

E. Remarks - Although the rocks appear highly de 
formed in outcrop and thin section, 
the presence of axial plane cleav
age in the fold, its complicated 
geologic setting below a large 
thrust fault, and position immedi
ately adjacent to plutonic intrusive 
rocks render it undesirable for the 
purposes intended here . 

I I. Bullfrog District, Bull Frog Hills, Nevada. 
A. Location - Approximately t,'TO miles south of 

Beatty, Nevada. 

B. Geologic Setting - A section of predominantly 
quartz biotite schist of pre
Silurian (?) age (Ransome, 1910 ) 
contains thin lenses of calcite 
schist and calcite marble. The 
calcareous bands are flat l ying 
or dip gently sou th, and range in 
thickness from 5-40 feet . Folia
t ion ,,,i thin the marble units is 
parallel to layering in the en
closing schists. 



C. Folded Structures - Small microfolds and 
irregular l'Javy foliation are well 
developed in the marbles. No 
consistent trend "laS noted in t he 
structures. ~1e marb le is gray to 
brown, and consists almost completely 
of calcite, but locally contains a 
few percent muscovite. The rock is 
equigranular with grainsize of about 
one millimeter. 

D. Petrographic Data - none 

E. Remarks - Original intent here was to find 
some well developed flexure folds 
in this homogeneous coarsely crys
talline material. The small micro 
folds as such probab l y reflect a 
complicated deformation pattern and 
are not useful in terms of the type 
of folds sought . The observed 
folds were not considered ~~rther. 

III. Grapevine f!icuntains, lower Titus Canyon. 
A. Location - Approximately 1.5 miles from the 

mouth of Titus canyon, along the 
canyon bottom, north side. 

B. Geologic Setting - General geologic relation 
of small folds developed in Pogonip 
(?) limestone (Ball, 1907 ) to larger 
structures in the Grapevine mountains 
is unkno,qn. Ball describes isoclin
ally appressed folds with horizontal 
axes "rhich trend parallel to the 
axis of the range, and "\>1hich are as
sociated with a large anticlinorium 
that forms the backbone of the range . 

C. Description of the Fold - Fold (anticline) 
located low on north vmll of Titus 
canyon. The fold axis trends about 
N. 300 1:1 . and is nearly horizontal. 
The axial plane dips 300 SH. 'Ene 
radius of curvature is about 3 feet. 
The rocks consist of massive -to 
slabby bedded, fine grained, dark 
gray limestone. In hand specimen 
a few coarse crystals ("" lrrun) are 
visible. The 101"rer limb is covered 
by alluvium filling the canyon 
bottom. 
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D. Petrography - Coarsely crystalline material 
composes roughly 10% of the roc k 
and displays only incipient twinning 
(microtwinned lamellae). The rest 
consists of finely crystalline cal
cite (0.01 mm), which shows no evi
dence of deformation. 

E. Remarks - Though the fold has good geometry, 
relatively good exposure it shows no 
appreciable evidence of deformation 
and is too fine grained to permit 
study with the universal stage. 

IV. Alexander Hills, Inyo and San Bernardino counties, 
California. 
A. Location - The areas of concern are in the 

Alexander Hills which form a south 
ern extension of the Nopah range, 
about 5 miles east of Tecopa, 
California. (See vlright, 1954 .) 

B. Geologic Setting - A reconaissance was made of 
outcrops of the Lower Cambrian 
Johnnie formation in search of 
folds in a 5-10' layer of brown 
weathering oolitic dolomite. The 
Johnnie formation in the Alexander 
Hills generally strikes N. 300 vI. 
and dips 45-550 east. It is offset 
by a number of small both right and 
left hand strike slip faults. Drag 
ging of the oolite bed along these 
breaks "laS searched for but not 
found. 

C. Petrography - The oolitic dolomite is cream 
colored on fresh surfaces ''leathers 
to a brown, oolitic texture. The 
rock consists almost completely of 
nearly spherical oolites 0.5 mm in 
average diameter. The rock is well 
cemented, breaks across individual 
oolites on fresh surfaces. Each 
oolite is concentrically layered, 
contains a nucleus of finely crys
talline material (dolomite (?)). 

D. Remarks _ . Though no folds "lere found in the 
Johnnie in this region, it would be 
interesting to observe such struc
tures for study of strain through
out a fold much as has been carried 
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through by Cloos (1947). Subse
quent searches have been made by 
this writer for folds in a do lo 
mi tic layer of the JohrL.'1.ie (?) 
formation in the Bare J'llountains 
and Grapevine I\10untains near 
Daylight Pass, but no folds in 
the oolitic dolomite layer have 
yet been discovered. 

V. T'·1ule Canyon, Calico I'ilountains, San Bernardino 
County, California. 
A. Location - One mile above the mouth of r'fu.le 

canyon, in the Nlil 1/4 sec. 25, 
T. 10 N., R. 1 E. and mol 1/2 sec. 
24, T. 10 N., R. 1 E. 

B. Geologic Setting - The Calico Mountains con
sist of J'lliocene (?) volcanic and 
sedimentary rocks resting on a 
basement of Paleozoic sedimentary 
and f'Ieso20ic intrusives and are 
intruded by Pliocene (?) andesites 
and rhyolites. In I\fule canyon a 
sequence of these rvliocene (?) lake 
beds (Erwin and Gardner, 1940) in
cluding shale, sandstone, tuff and 
limestone members, is throvffi into 
a series of folds trending N. 70 E. 
vlhich are overturned slightly to 
the north. The folds have ampli 
tudes between 50-100 f; a fevr are 
broken in the crests and troughs. 
Folds in the limestone member are 
rounded, but zig-zag folds are 
almost always developed in t h e 
clastic sediments. 

C. Description of the Fold - Fabric studies 'were 
made (see Remarks) on rocks from 
the inner part of the bend in a 
broken, over-turned (450 N) syncline 
in the limestone member. The 
layer examined, part of a 3 to 5 OC 
section of dark brm'ffi limestone, is 
4-4.5" thick and is surrounded by 
loosely consolidated sandstones and 
shales. The radius of curvature of 
the central section is approximately 
5 inches indicating a maximum bend
ing strain of roughly 40% . 
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D. Petrography - The rock consists primarily of 
calcite and a small amount of hema
tite. A number of bulbous algal
like structures are apparent in 
thin section and consist of hema
tite strained calcite crystals con
nected to one another by patches of 
clear calcite. Numerous 1-2 mm 
irregular cavaties occur in the 
rock, occupy roughly a volume of 
20%. All of the material is almost 
completely untwinned but some grains 
give an anomalous undulatory-like 
extinction. Grainsize about 0.01 mm . 

E. Remarks - Kamb (personal communication) has 
made fabric studies of this material 
and has found that no c-axis pre
ferred orientations whatsoever can 
be seen. The results are definitely 
negative, in that there is no sug
gestion of a reorientation of the 
c-axis fabric around the a-axis of 
the fold, as could be expected from 
material in the part of t he fold 
studied. 

VI. Johnny Lyon HillS, Cochise County, Arizona. 
A. Location - NE 1/4, sec. 22, T. 15 S., R. 21 E., 

between Tres Alamos 1,vash and Javelina 
Hill. 

B. Geologic Setting - Southeast of Javelina Hill 
a major fold is developed in the 
upper plate of a large thrust fault 
(Silver, 1955, p. 315-316) . The 
fold involves beds of upper Paleozoic 
age, the Horquilla and Earp forma 
tions . A north-striking limb of 
beds in the Horquilla formation dips 
east and steerens southl>J'ard until t he 
beds overturn and strike southeast
ward. The inverted limb dips 450 SioJ . 
In the core of this large fold thin 
shales and limestones of the Earp 
formation are tightly folded. P~ial 
planes of the minor folds strike S. 
850 E., dip 450 S. Axes plunge 300 

SE. Axial plane cleavage is well 
developed in the rock. Right lat eral 
faults with large strike slip dis 
placement offset the core of the fold 
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and displace the overturned limb 
T/.esb·,rard relative to its original 
position. Tne folded parts of the 
Earp formation consist mainly of 
shale with subordinate thin bedded 
siltstones and sandstones, a con
glomerate and a number of thin to 
medium bedded light green, yellow, 
and pink limestones. 

C. Petrography - These limestones consist for the 
most part of calcite, are inequi
granular , containing large rounded 
calcite grains up to 3 mm in diame
ter to small angular fragments 0.01 
mm in diameter. The rock is rich 
in fossil debris (Triticites (?) and 
other fauna) (Silver, 1955). All of 
the rock appears to have a cataclas
tic texture, although this may repre
sent the original depositional tex
ture of the material. Local patches 
of untwinned (recrystallized (?)) 
calcite are present. 

D. Remarks - Folds in the Earp formation are from 
a very complicated structure and 
contain well developed cleavage. 
The rocks are also relatively poorly 
exposed on low slopes adjacent to 
Tres Alamos wash, and are partly ob
scured by thin alluvial and colluvial 
deposits. The strong axial plane 
cleavage has also allowed cobbly 
poorly constituted outcrops to form 
""hich make difficult the problem of 
sampling. Oriented specimens "'Jere 
not collected from these structures. 

VII. Washington County, Maryland. 
A. Location - Eight large folds were examined in 

various parts of 1,lashington county , 
as listed below : 
(1) I 1/2 miles north of Spickler-
anticline in the Conococheague lime
stone axial plane strikes N. 35 E., 
fold axis plunges 50 (?) north. 
(2) 2 miles southeast of Wil liams
port Station--syncline in Beekman
tm'/Yl and Stone s River formations, 
strikes N. 300 E., plunges 50 north . 
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(3) Pinesburg Station- -series of 
drag folds (?) along a vertical 
fault trending N. 20 E. Folds in 
Chambersburg limestone strike 
roughly parallel to the fault dip 
north approximately 50 . 
(4) 1/4 mile east of Downsville -
two anticlines with intervening 
syncline in Conococheague limestone, 
strike N. 26 E . , plunge 50 north . 
(5) 2 miles northeast of Funks
to~~ --anticline in the Conocheague 
limestone , strikes N. 20 E., 
plunges 50 N. 
(6 ) 2 miles southeast of Funks
t ovm-- syncline in Conococheague 
limestone strikes N. 20 E ., plunge s 
50 N. 
(7) 1 mile southvJest of Beaver 
Creek--anticline in vJaynesboro 
formation , strikes N. 30 E., 
plunges 100 ( ?) north . 
(8) I mi le east of Chewsville- 
anticline in Tomstown dolomite 
and "Iaynesboro formation , strikes 
N. 410 E. , plunges south 50. 

B . Geologic Setting - The geology of Washington 
County has been discussed in de 
tail by Cloos (1951) . Folds in 
the Paleozoic rocks throughout 
the county trend N. 20 - 300 E . and 
plunge betv,een 50 N. and 50 S. 
They are generally asymmetrical 
with axial p lanes consistently 
overturned to the ",est . The de 
gree of overturning increases to 
the east. Tnus at South Mountain, 
the axial plane of the South Moun
tain fold dips 300 E., v,hile near 
Hancock the axial planes of folds 
di p roughly 800 E . Either axial 
plane or fan cleavage is present 
in almost all folds listed in (A) 
above except those at Pinesburg 
Station, ,'i'here the Chambersburg 
limestone is very f ine grained to 
sublithographic . Cleavage generally 
dips to the east and becomes more 
prominent in that direction . 
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C. Description of the Folds - r·'iost of the folds 
(except at Pinesburg Station) are 
sharply bent in the axial region 
with strata standing vertical along 
the axial plane. Cloos (1947) has 
shown from an analysis of the oolite 
deformation in most of the folds 
given above where oolites are pres
ent, that individual OOids are con
sistently flattened in the plane 
of cleavage and usually are elongated 
normal to the fold axis. The folds 
sre of large dimensions, having 

'i'ravelengths of 1/4 - 1 1/2 miles 
and amplitudes of 1/4 mile or 
greater . 

D. Petrography - Petrography of the Paleozoic 
carbonate rocks east of South 
Mountain has been discussed in 
great detail by Cloos (1947). The 
major petrographic features are 
only summarized belovl. Oolites are 
found in the Conococheague, stones 
River, Chambersburg, Beelanantovm, 
Elbrook, Waynesboro, and Tomstovm 
formations. Individual ooids are 
spherical or deformed into ellip
soidal shapes >-Thich develop ragged 
ends with "elongation" of approxi
mately 60% or greater. Oolites 
are often concentrically layered 
or show radial structure, but may 
also consist of single crystals 
or rounded groups of small crystals. 
Tney may contain shale pellets, 
shell fragments, quartz or other 
grains as nucleae. Secondary 
growths of coarsely crystalline 
calcite and quartz and finely 
crystalline calcite form the matrix 
of the rocks. 

Cloos (1947) gives the follovl 
ing sequence of events in the grovlth 
and deformation of the oolites: (1) 
ooid growth around nucleus, (2) sedi
mentation , (3) deformation before 
induration of the rock and before 
the growth of secondary "aprons" 
of calcite around the ooids, (4) 
grovlth of new crystals in the de-
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formed rock, (5) deformation of 
the interstitial calcite , forma 
tion of cleavage, fracturing, (6) 
healing and annealing. 

E. Remarks - Although the deformed oolites form 
a ready index of the strain through
out t hese structures, the oolite 
deformation is indicated to be 
earlier than crystallization of 
the matrix calcite . Thus the de
formation recorded as t,,'inning in 
the matrix calcite may not be re
lated to that indicated by the 
oolites. (Fabric studies like 
those persued here could perhaps 
shed light on the relation if one 
exists). Since the purpose here 
has been to study folds where large 
variations in strain throughout 
small portions of the structure 
could be observed, and which are 
not cut by cleavage (whose mechan
ical significance and effects are 
uncertain), these fold s were by
passed in favor of other struc
tures discovered in western Mar y 
land which are' discussed below. 

Folds from the Cacapon Mountain Anticlinorium 

Geologic setting 

Small folds occur on the limbs and in the axial region 

of the large Cacapon Mountain anticlinorium which traverses 

VJestern 1tlashington County, Maryland, in a northeast direction . 

Figure 8 is a geo logic map and cross-section (after Stose and 

Swartz, 1921) of the area adjacent to and including the so-

called Cacapon section of the anticlinorium. Tne location of 

the fold studied here is also shown . The index map of Figure 

7 shows the position of the map area in western Maryland. 
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Like most folds of the Appalachian Valley of this 

region the major anticlinorium and the minor folds it em

braces are overturned tovrard the west by 200
. Beds in the 

western limb of the major structure dip 550 west and those 

of the eastern limb 35-450 east. The cross-section in 

Figure 8 is dra\m along a line forming the lower boundary 

of the geologic map given above it. Schematically depicted 

are the minor even wave length crenluations which occur in 

thinly bedded Silurian strata of the Jl1cKenzie, Tonoloway, 

and vlills Creek formations. The actual fold studied is 

not shown because its position is north of the line of the 

cross-section. However its relationship to the larger fold 

is similar to that of the structures sholm in the drm'fing. 

These minor folds appear to have arisen through a simple 

squeezing of sediments in the core of the large Cacapon 

anticlinorium. 

Detailed description 

Figure 9 shows the fold studied here (designated 

hereafter as fold PC) which occurs in the r-1cKenzie Creek 

formation about 10 feet below the upper contact of this 

unit with the overlying massive Bloomsburg sandstone. Figure 

lOa is a drawing from the above photograph of the particular 

limestone layer studied in this investigation (for convenience 

this horizon is deSignated layer A). The medial plane of the 

layer is deformed into a nearly circular curve whose radius 
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Figure 9. Fold in thL1ly bedded lill'_e stones and shales 
of t:1e Silurian IklCenzie Creek formatio:'1, appro:zimately lC) :~eet 
below contact Hi t h the overlying Blooi":1sburg sandstone . T:1e 
particlJ_lar horizon L1vestigated. here is labeled "A . " At place 
r,larked liB-I other layer in the fold is broken by rad::'al tension 
fract-Llres thc:t are filled ,'Tit]: secon6ary ':.r}-:.ite calcite. These 
1-rhi te veinlets a'c "c" ShO\'7 right differential of:'set by slip 
along t:1e bedding pl2.:1es. 'I'l1e position of this structure is 
approximately ShOK'1 0:'1 t:1e geo log ic map in Figure 8. Laye:." A 
is approxi!':lately 4 inches t hick . 
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(a) thin section 

(b) 

+ b(dn) 

+C 

" boudinage-iike" 
str;Jctures 

Figure 10. Sketch o f t he fold in Figure 10 , l uyer 
A, axial portion. (a) Dimensions 0 f the layer, po s1 tions 
and orientations of thin sections approximately t o scale. 
Region I lies inside t he c ircular dashed line (which marks 
approximately tre medl ::! l plane o f t he layer) and Region II 
outside. Stippled area s are white calcite f illed veinlets. 
(b) Fracture and vei,~let pattern i n the axial portion o f 
the fold. '!he composite fracture and veinlet trending 
diagonally across the layer a t the top of t he drawing 
makes an angle of approx:l,.mately 300 with the ab -plane of 
the fold. Stippled areas are white calcite veinlets. 
Reference axes with positive directions are as shown. 
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of curvature is 6 .6 inches (16.8 cm). Both the upper and 

lovier boundaries of the layer are nearly circular as \'lell , 

and have a corrunon center of curvature "ri th the medial plane . 

Figure lOb ShOVlS t he detai ls of the veining a.l1d fracture pat

terns in the a,~ial region. T'ne rock is laced by tHO sets 

of calcite filled veinlets , with the veinlets in e ach set 

being about one IPi llimeter in l'ridth. One set lies parallel 

to bedding inthe layer and t he other is tilted at a small 

angle to the axial plane . The veinlets parallel to bedding 

are offset by and are therefore later than veinlets of the 

other set. In addition to the veinlets, three mutually per

pendicular sets of fine fractures have b een superposed u pon 

the rock. T'nese fractures are oriented parallel to the planes 

defined by the coordinate axes in the fold (see p . 75) . Bed 

ding is mainly manifested in the rock by ostracod and other 

broken shall debris. ,.'.Ji thin the stratigraphic column, layer 

A is sandwiched beh'leen thin one-half inch thick l ayers of 

dark gray , fissle shale above and shaly limestone below . The 

rocks stratigraphically above the layer are broken ~md crumpled 

in the axial region (fig. 9), but belo;;; the layer they are un

broken and maintain continuity around the bent region . The 

limbs of the fold are broken by fractures which are fil le d 

'\·ri th secondary calcite, but some fractures of this type are 

apparently later and are not mineralized . 

ft~ial plane cleavage is not developed in this fo l d . 

}lOloJever, both flexural and shear (?) folds have supposedly 
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been described from the Cacapon section (Cloos, 1951, p. 153). 

The following points indicate that the fold studied here is 

at least partially flexural. (1) There is no development 

of axial plane cleavage or fan cleavage in the fold, (2) 

radial fractures are developed in other beds beneath layer A 

(fig. 9, area labeled "B"), (3) T/Jhite veinlets (fig. 9, area 

"C") ShOi-J differential offset of individual beds in the 

proper sense for the folding. (4) There is no significant 

thickening of the strata near the axial plane as is common 

in shear (?) folds of this area (Cloos, 1951, p. 153). 

Petrographic character of the rock 

Figure 11 gives a photomicrograph of the material from 

layer A. The rock consists of variable amounts of partly 

recrystallized shell detritus (5-30% flattened and deformed 

ostracod sheels 0.5-5 mm in length), accessory amounts of 

rounded quartz, and large (up to 3 mm) subhedral dolomite 

grains which appear rust brown in plane light. Finely 

divided sericite and a small amount of opaque material 

(carbon ?) have also been noted. From the standpoint of 

this study, there are texturally five types of calcite 

visible in thin section: (1) ostracod and other shells 

made of exceedingly fine (ca. 1 F) equant crystals which 

show some preferred optical orientation within individual 

shell fragments, the c-axes of most crystals lying perpen

dicular to the margins of the shells. This material is not 

discernibly t'\"inned. Quartz appears to replace some shells 
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Figure 11. Pho t omicrograph s. Material from layer A 
(region I). Tl'l.e ro ck consists of vari able 81nounts o f shell 
material (1 ), coarse and finely crystalline calcite (2) 
through (4). See t ex t page 97 for further de s cri ption. T'ne 
wavy struc ture containing e longate crystals marked (5) on the 
ri ght side of the pho tograph in (c) is part of the diagonal 
veinlet near t he inner boundary of the layer in reg ion I, 
Figure l Oa . Several dark fr2.ctures traverse the veinlet. 
Crystals marked (3) in (a) and (b) are tvrinned vari ab le 
mnounts . A dar k gr ain near 'che left margi n of (b ), center, 
contains thi n l y twinned (monotNinned ) lamellae s howi ng 
type I ( 7 ) interference fringes (see page 179, t his t hesis). 
Al l p ictures t aken ,'lith crossed nicols . Scal es as shol'm . 



( a ) y c;c ) 

;, \ · -1 " 
\ ,' ~ '. '" ~ -~~., , . ' .-. '-'~/ : -.. 

(c) .... : ) 

Figur e 11 
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and a few consist of coarse calcite. (2 ) Surrounding many 

shells are radiating saw-tooth- like groups of elongate crys

tals and clusters of equant crystals 0.05-0 .1 mm in size. 

Most grains of this type are twinned. (3) The third type 

of material consists of individual equant crystals 1-2 mm 

in diameter scattered through the rock embedded in a coarse 

matrix of crystals of types 1 and 2, Type 3 are distinguished 

from t he se latter groups by their larger size and by having 

no apparent association with these groups (as, for example, 

type (1) and type (2) appear to be associated). (4) Often 

enclosed within complete outline s of shells and forming an 

interstitial matrix for al l of the above groups of crystals 

are small (0 .01 mm ) equant crystals which are not discernibly 

twinned. ( 5) Inc l uded within the fifth category are all 

ages of veinlet material. Specifically t wo age s of veinlets 

are present as noted previou sly. These are easily distinguished 

from one another in thin section by the fact that the later 

(radial) set contains undeformed calcite crystals . Crystals 

of the earlier set (parallel to bedding ) lo cally appear 

highly sheared out ( fig . 15). Profuse twinning (micro-

t winned la~e llae) , undulose extinction, development of ex 

tremely e longate crystals are co~~on. Fabric studies 

reported here uti lized crystals of groups (2) and (3), 

but a special study of material from a deformed veinlet is 

also presented . 
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Fabrics from the fold 

Fabrics from fold PC are presented in Figures 12, 13, 

and 14. Separate parts of the fold are distinguished in dis 

cussing the data. "Region I" is designated as occupying the 

part of the axial plane region toward the center of curvature 

from the medial plane: "region II" lies outside the medial 

plane. 

(1) c-axis fabrics: Scatter diagrams of c-axes 

from regions I and II are shown in Figures l2a and l3a. 

Neither of these diagrams discloses a tendency for preferred 

orientation in the specimens analysed, and there is no sym

metrical distribution of £-axes with respect to the coordinate 

axes in the fold (these axes are defined on p. 75 ). 

(2) ~-lamellae preferred orientation: The dis-

tribution of poles to all e-lamellae in grains from regions 

I and II are given in Figures l2b and 13b. In both figures 

solid dots represent po si tions 0 f poles to the most prominently 

twinned lamellae set in each grain (designated e l ) and open 

circles represent subordinate or incipient lamellae sets 

(designated e 2 ). In region I, 76% of grains measured showed 

only one set of lamellae per grain, while 7% showed two lamel

lae sets with one set incipient and poorly developed (micro

twinned). In region II, 70% of the grains measured showed 

only one set of lamellae, 20% two sets and 5% no twinning 

at all. One percent of the grains in region II showed recog 

nizable twinning, with the remainder of the lamellae being 

microtwinned. 
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Figure 12. Fabric am strain data frClll Region I. (a) c-axes; 
(b) !-lamellae data. Closed circles represent positions ot pol;s to most 
pran1nently twinned set ot lamellae in a grain (!l)' open circles less 

well developed sets (!2' !3); (c) dynamic analysis (reduced diagram) ot 
twin lamella tabric. C· axes ot ccmpression, T • axes of tension; (d) 
orientation ot the principal axes of tvinning strain, magnitudes and 
senses of the principal strains. E

l
, E

2
, and E

J 
refer to the algebraically 

least, intermediate, and greatest strains (negative values compressive), 
the magnitudes ot which are given below the diagram. The dashed lines 
outline areas of concentration of C and T axes from the dynamic analysis. 
All diagrams equal area projections, lower hemisphere. Position in the 
fold fran which these data were obtained is given by the circled number 
in the drawing at the center of the figure. As the coordinate system is 
drawn, the (+) b-axis is down in this figure. 
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Figure 13. Fabric data fran Region II. (a) g-axes; (b) 1-
lamellae data. Closed circles represent positions of poles to the most 
pran1nently twinned set in a grain (!l)' open circle s less well de-

veloped sets (!2' !3); (c) dynamic analysis (reduced diagrlUll) of the 

twin lamella fabric. C. axes of cClllpression. T • axes of tension; 
(d) orientation of the principal axes of t winning strain, mqnitudes 
aM senses or the principal strains. El , 1 2, aM E3 refer to the 

algebraical.ly least. intenaediate, and greatest strains (negative values 
caapressive), the magnitudes or which are gben below the diagram. The 
dashed lines outline areas of concentration of C and T axes fran the 
dynamic analysis. All diagrams equal area projections, lower hemisphere. 
Positions in the fold fram which these data were obtained is given by 
the circled number in the drawing at the center of the figure. 
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Scatter diagrams of e-lamellae poles deserve some 

special comment. In both regions I and II there is a tendency 

for these poles to lie in a broad girdle about the b-axis of 

the fold, the girdle being somewhat stronger in region II. 

Tnis distribution of pOints for each region must partly 

result from the optical inac cessibility of ~-lamellae lying 

parallel to the ac-plane of the fold. In preparing each 

of these diagrams mutually perpendicular thin sections were 

examined from each region, but more grains were measured in 

the ac-sections than in sections cut from the parallel to 

the ab-plane. In particular, in region II, 70% of the data 

".ere obtained from ac-sections, and in region I 75% of the 

pOints ".ere measured in thin sections of this orientation. 

The e-lamel1ae data are thus somewhat biased by this weight

ing. In both regions practically all of the visible lamellae 

measured in ab-sections were incipient in development (micro

twinned, showing very low 1st order interference colors (see 

p. 199)) and were widely spaced, so that they do not con

tribute significantly to the strain in twinning. In region I 

the degree of twinning is much greater in section (1) (see 

fig. lOa) than in section (2). In region II, sections (3), 

(4), and (5) show on the average the same amount of twinning 

per grain (most grains contain only microtwinned lamellae). 

It -appears that the girdle fabric in each region is to 

some extent due to observation. This will be taken into 

account in later discussions of results given by the dynamic 

analysis of these lamellae fabrics. 
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When these diagrams are examined in detail, openings 

in the girdle pattern may be noted in region I around the c

axis of the fold. No such distinct opening can be seen in 

the diagram from region II. In region I there is a marked 

tendency for el-lamellae to be distributed around the a

axis of the fold, with e2-lamellae scattered throughout the 

rest of the girdle pattern. In region II the pattern is 

not as straightforward, el-lamellae are generally distributed 

about the c-axis of the fold. ~2-lamellae appear to be more 

numerous around the a-axis, but this density variation may 

not be significant statistically. 

(3) Dynamic Analysis Results: Figures 12c and 

13c also show results of a dynamic analysis of the twinning 

lamellae in regions I and II respectively. These particular 

figures are "reduced" diagrams, prepared by the method sug

gested on p. 70. The composite scatter diagrams of compres

sion and tension axes obtained from all sets of e-lamellae 

in all grains for each region are given in Figure 14a,b. 

Referring to the reduced diagrams the major features of 

the pattern in region I are maxima of compression axes 

around the a-axis of the fold, and tension axes around the 

c-direction. These latter pOints tend to form a girdle in 

the bc-plane of the fold. The situation in region II is 

that broad clusterings of C-axes occur around the c-axis of 

the fold, and a very broad T-axis maximum is situated about 

the b-axis. In the composite diagrams (fig . 14) the situation 
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described above for region I is again portrayed, while the 

patterns for region II consist roughly of a T-axis girdle 

in the ab-plane and a C-axis girdle in the ac-plane which 

overlap in a portion of the diagram corresponding to the 

direction of the a-axis. 

As far as the dynamic interpretation is concerned, 

the above results indicate the following points: in region 

I compression of the rock along the a-axis, tension along 

a direction normal to this axis, or a combination of such 

stresses could account for the twinning observed. In 

region II the analysis indicates compression parallel to 

the c-direction in the fold, a tension along the b-axis, 

or some combination of these could produce the observed 

tWinning. These results are to be compared with those 

derived above (p. 52 ) for an aggregate obeying the maximum 

resolved shear stress law. The simple model for the fold 

chosen there consisted of an unconfined circular beam de

forming in plane strain and loaded elastically by forces 

applied at the ends of the beam perpendicular to the axial 

plane. A comparison will show that qualitatively there is 

reasonable agreement between the model and the observed 

natural fabrics, and this indicates that a stress system 

like that in the axial region of the model could account 

for the observed twinning in the natural fold. 

Concerning the major concentrations of axes in each 

diagram, the dynamic analysis indicates a reorientation of 
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the principal axes of stress as one passes from region I to 

region II, such that the axis of compression lies parallel 

to the a-axis in region I and parallel to the c-axis of 

the fold in region II. 

We can estimate the effect produced on the dynamic 

analysis results by the observational "blind-spot" problem 

mentioned above (p. 104 ), by considering what pairs of C and 

T axes are omitted from the C-T diagrams which correspond 

to lamella pole positions at the center of a lamella pole 

scatter diagram. For a pole exactly at the center of a 

diagram, the associated 

where on a small circle 

£-axis of the crystal 
10 

264 about this pole. 

could lie any-

The C and T 

axes would then occupy positions on a small circle of half 

angle 450 about this pole. The exact positions of a pair 

of C and T axes will naturally depend on the orientation 

of the c-axis and the applied stresses, but qualitatively 

if polar e-lamel1ae are not measured, then associated points 

on the C and T diagrams are omitted which fall in a zone 

about the small circle with half angle 450 "'hich has its 

center on the pole to the plane of the C-T diagram and about 

the pole to the diagram. In the complete fabric diagrams 

shown in Figures 14a and 14b, a low density of T-axes about 

the pole in the diagram may result from this difficulty. 

The above dynamic analysis results were obtained 

from an original isotropic distribution of c-axes in each 

region of the natural fold. Thus the data are not restricted 
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Figure 14 . Complete dyn2Jnic analysis data for the fold . 
(a) Re gion I; (b) Region II. Previous diagrruTIs (fig. 12c, 13c) 
,',ere prepared using data given here by striking out closely 
spaced pairs of C and Taxes (see text, p . 70) . 
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by the considerations \,Thich have been mentioned for ag-

gregates showing highly preferred £-axis orientations. 

(4) c'-axis orientations: The distribution 

of c'-axes (that is orientations of the optic axes of the 

tI''linned parts of each crystal) have not been plotted directly 

for the fold but an idea of the distributions resulting from 

the deformation can be gained from results of the dynamic 

analysis. These distributions will represent a first ap-

proximation to the resulting deformation fabric. For cal-
o 

cite the c'-axis lies 52~ from the c-axis of the host 

crystal and is symmetrically related to the host £-axis 

position about the pole to the operative twin plane. From 

the geometry of t he twin plane in calcite the compression 

axis of the dynamiC analysis lies 710 from the £-axis of 

the host crystal along the great circle containing £ and c' - , 

and the difference in position between the compression axis 

and the c'-axis is only 190
. Clusterings of compression 

axes thus roughly approximate new c-axis positions developed 

in a calcite aggregate through twinning. By referring to 

Figures 12c and 13c the new optic axis orientations due to 

twinning will be around the a-axis of the fold in region I 

and about the b-axis in region II. As pointed out earlier 

these are approximately the new orientations to be expected 

from tWinning on the approximate model of the flexural fold 

given on page 47 . 
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(5 ) Calculation 0 f Strains due to Tl-linning: 

the calculation of visib le strain due to mechanical twinning 

has been carried through for t he fold using the procedure 

presented earlier (p. 56). In r egion I, 85 sets of lamellae 

have been used to determine the amounts of strain and orienta

tion of the principal axes of strain. Orientation of the 

principal strain axes ,'ii th respect to the fold coordinate 

axes are given in Figure 12d. The strain tensor matr ix 

referred to these axes (x = a-axiS; ~ = b-axis; ~ = c-axis) is: 

-1.43 

0 .03 

0.21 

0.03 · 

0 .15 

0 .36 

0 .21 

0 .36 

1. 29 

-2 x 10 

Referred to principal axes the strain components become 

-1. 5 

o 

o 

o 

0.2 

o 

o x 10 - 2 

o 

1.3 

In the figure the areas enclosed by dashed lines 

correspond roughly to the areas of concentration of C and T 

axes in the dynamic analysis. The general agreement behreen 

the dynamic analysis result and the calculated strain re 

flects the fact that the C and T axes for each grain are 

the principal axes of strain associated with hvinning for 

a particular grain. Since the final calculated strains rep

resent weighted averages of the individual contributions, 

the agreement is inherent. 
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Two important points emerge from these results. (1) 

The calculated principal strains agree with the type of strain 

to be expected in the folded layer in region I if the deforma

tion increment represented by the twinning lamellae has been 

such as to more tightly fold the layer. That is, there has 

been shortening parallel to the a-axis, extension parallel 

to the c-axis and only a slight deformation along the b-axis. 

The region has therefore deformed approximately in plane 

strain (IEzJ« IFxx I, 1E..xt.\)' (2) 'lhese calculated values of 

strain are significantly less than the geometrically indicated 

total strain near the boundaries of the fold of 0.25, which 

is calculated from Equations 2 using the dimensions of the 

fold shown in Figure 10. 

Instead of carrying through the lengthy strain compu-

tations for region II an estimate can be made of the strains 

for this region using the agreement between the calculated 

directions of the principal axes of strain and results of 

the dynamiC analysis, as has emerged from the analysis in 

region I. By this analogy, the c-axis of the fold in region 

II is the axis of greatest shortening, and the b-axis is a 

direction of extension. The magnitudes of the principal 

strains are estimated in the following way. The average 

spacing index (number of lamellae per millimeter traversed 

normal to the twin set) of microtwinned lamellae measured 

in 170 grains throughout region II is about 7. Microtwinned 

lamellae in these rocks are, on the average about one micron 
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in thickness, i.e., they show gray to dark gray interference 

colors "lhen oriented with the pole to the twin set nearly 

parallel to the microscope axis (see p. 199 ). The average 

strain in the direction of the c-axis of the fold can thus 

be approximately deduced from Equations 14 , p. 57 and is 

~ = -(7 . 10-3 . 0.69)/2 = - 0 .0024 

or about -0.24%. The deformation along the b-axis of the 

fold (E
3

) is then also 0.24% because of the fact that in 

this calculation the sum of the principal strains must equal 

zero. In detail the strain distribution is probably not this 

simple, for in arriving at the above results, C and Taxes 

lying near the a-axis of the fold have been neglected. 

~magnitudes of these principal strains are also probably 

too high because there is considerable dispersion of the 

principal axes of strain (the C and T axes) in region II. 

The important features of the strain distribution 

that has been approximately derived for region II are: (1) 

the principal axis of greatest compressive strain is oriented 

differently than that in region I by 900
. (2) The axis of 

greatest extension is along the b-axis of the fold rather 

than along the c-axis as in region I, showing that the fold 

is not deforming in plane strain in region II. (3) The 

average strain in region II is much smaller than the geometri

cally indicated maximum strain of about 25%, and is an order 

of magnitude less than that computed for region I. 
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On the basis of the above discussion it seems that 

twinning lamellae in both regions I and II represent either 

a minor deformation (essentially bending) of the material, 

and record only a final increment of the deformation or else 

they indicate that most of the permanent deformation of the 

rock has been accomplished by crushing and development of 

displacements along fractures such as are visible in the 

drawing of figure 10, and not by plastic deformation . The 

possible strains to be accounted for by fracturing are dis 

cussed next. 

The fracture systems in fold PC which are filled 

with secondary white calcite may record several different 

kinds of accommodation to the bending strain. In region I 

a calcite filled fracture traverses this part of the fold 

at an angle of 300 to the bedding. In thin section crystals 

of the filling are high l y elongate parallel to the walls of 

the fracture (see photomicrograph, fig. 15). These crystals 

shm<'l considerable microtwinning and undulatory extinction 

which is indicative of high deformation. In region II and 

near the medial plane of the fold, thin calcite filled frac

tures cut the layer parallel or at a small angle to the bed

ding. The lowest of these veinlets appears to be intensely 

stretched out into a number of boudinage -like segments (lowest 

veinlet, fig. lOb; also fig. 15). In thin section, crystals 

in these veinlets are also highly elongate and show abundant 

microtwinning . On the other hand, calcite crystals which 
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fill cracks running perpendicular to the plane of bedding 

are almost completely undeformed. The highly deformed nature 

of the fracture f illings could indicate localized deformation 

along these discontinuities . This is considered likely be 

cause crystals immediately adjacent to the veinlets in the 

host rock are relatively undeformed compared to those in the 

fractures. The diagonal fracture in region I is properly 

oriented (near 300 to an axis of compression as measured in 

the plane containing the axes of greatest and least principal 

stresses) for Coulomb type fracture of the material in this 

region. Crystals within the fracture appear to be bent over 

in a manner indicating a left hand displacement across the 

fracture in the ac-plane of the fold looking along the 

positive direction of the b-axis. However slickensides 

observed on the planar surface of the fracture make an angle 

of 180 in the ab-plane with the a-axis (620 with the (-) b

axis). Fractures parallel to bedding in region II could 

represent planes along ~lhich the rock has slipped during 

flexural folding. This is indicated by slight right hand 

offsets (fig. lOb) of nearly vertical veinlets in several 

planes. Part of region II does lie slightly to one side 

of the axial plane, so that some slipping of this type might 

be expected, although from symmetry it should vanish at the 

axial plane of the fold. The amount of strain in bending 

in the axial region could be considerably reduced depending 

on the closeness of these slip planes in the layer and upon 
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the amount of slip along each. A rough calculation using 

Equation 1 shows that if slip has ahlays occurred along the 

lowest fracture parallel to bedding in region II so that 

only the small layer of bed between the fracture and the 

boundary deformed in bending, the maximum strain to be 

expected at the outer boundary (radius equal to 8.6 inches) 

is only about 4%. This type of strain accommodation might 

well account for a significant part of the discrepancy 

between observed and geometrical strain in the fold. There 

appears to be little or no displacement on most of the un

mineralized fractures which lace the rock. These often cut 

through shell fragments, which are not offset by the frac

tures. The amount of displacement along the various sets 

of mineralized fractures is difficult to assess. The elon

gate nature of many crystals in the central parts of the 

veinlets could certainly be a feature partly inherited from 

the crystal habit of the undeformed vein material, so that 

the extreme elongation of the crystals would not be totally 

due to deformation. The diagonal fracture in region I does 

not produce offset of the stratigraphic lower boundary of 

layer A so that deformation along it must be absorbed within 

the layer, but at any rate outside the area designated 

region II in Figure l Oa . Therefore the strain in region II 

cannot be influenced by this discontinuity. The amount of 

strain to be accounted for along the diagonal fracture in 

region I can be approximately estimated as follows. As-
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suming that crystals in a portion of t he veinle t (nov, 2 mm 

in width) originally were elongate perpendicular to its 

plane, they can be observed to have been sheared through 

an angle of approximately 400
. This amount of shear would 

indicate relative displacement of opposite walls of the 

filling (assuming fUrther that no change in thickness normal 

to its plane has occurred) of roughly 2 mm. The associated 

displacement parallel to the a-axis of the fold is 2 x cos 

(300
) or 1.7 mm. Since the distance parallel to the a-axis 

over which the fracture runs is not knoVln, we approximate 

this by taking the distance which can be observed in hand 

specimen of 80 mm. The presently determinable "strain" 

accomodated by this fracturing is thus of the order of 

-1.7/80 or-0 .02 in region I. By a similar calculation, 

the amount of strain due to fil ling of fractures parallel 

to the bc~plane of the fold in both regions i.e., extension 

parallel to the a-axis, is estimated at 0 . 01 . The net effect 

o,f fracturing is then shortening of about 1% in region I, and 

extension of 1% in region II. 

The possibility that significant amounts of strain 

(relative to the strain actually observed due to twinning) 

have developed by translation gliding on r [lOll} should be 

conSidered. Theoretically it can be expected that this 

strain will be of the same order as the twinning strain. 

From Equation 18 the maximum expected internal rotation of 

an ~l lamella by glide on r l for a shear of this amount is 
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less than one degree, and this difference is almost always 

undetectable in practice. It is therefore not surprising 

that unequivocal evidence of internal rotation was not 

noted in the examination of these rocks. 

In addition to the question of the low amount of 

strain recorded in hTinning, there is also the discrepancy 

bet\'leen the amounts and senses of twinning strain recorded 

in regions I and II. If deformation in the fold were in 

pure bending and plane strain, then it would be natural to 

expect strains from these two regions to be of approximately 

equal magnitude though !"eversed in sense except along the 

b-axis if the fold has deformed in plane strain. Equations 

9 and 10 indicate that for the points in the fold ''lhere 

these equations apply and under the assumption of the model, 

the ratio of the elastic strain parallel to the a-axis (x -

direction in the calculation at the axial plane) in regions 

I and II is Ei~ix= -1.25. However the observed ratio in 

this fold is zero (see p.ll1and113). Aside from the pos

sible pecularities introduced into the strain picture by 

the fracturing discussed above, the strain distribution 

calculated for the fold in the axial region might represent 

a combination of different types of deformation, (1) bending, 

with the strain distribution reflecting stresses like those 

given in Equations 9 and 10, and (2) uniform shortening paral

lel to the a-axis of the fold. Thus bending would extend 

elements of the layer in region II while uniform shortening 
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would tend to cancel out the bending strain. Both deforma

tions would act together in region I to accentuate the 

strain there. 

The foregoing analysis illustrates that the dynamic 

analysis and the strain interpretation based thereon can 

be quite sensitive in detecting minor changes in strain in 

a deformed carbonate rock. There is thus a possibility of 

applying such calculations in finding the position of the 

"neutral surface" in a flexure fold and therefore of carry

ing through an analysis like that suggested on p. 71 

Applying these earlier considerations to the present fold 

it can be calculated that for its dimensions (inner radius 

12.15 cm, outer radius 22.7 cm) the difference in position 

of the neutral surface for a Newtonian vi.scous material 

and one showing perfectly plastic behavior is about 0.25 cm 

with the neutral section in the viscous body lying nearer 

the center of curvature. However, the computed result that 

the strain in the direction of the a-axis in region II is 

small or zero makes it unclear that a neutral surface still 

exists in the layer. Furthermore the fold has not deformed 

in plane strain parallel to the fold axis, and above all 

has probably not deformed in pure bending. Nor is it pos

sible that its surfaces were stress-free, though orientation 

of the principal axes of strain (stress also) normal to the 

boundaries of the layer in both regions of the fold suggest 

that the boundaries were in fact free of shearing stress in 
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Figure 15. Photomicrograph . Stretched out vein 
material from region II, Im'rest veinlet sho\',m in s ketch 
in Figure l Ob . Note elongate nature of the crystals. Dark 
bands in individual grains are e [ Ol12 tlamellae. A small 
crack (dark line) runs irregularly 'ith sub-horizontal at
ti tude Just belovr the center of the picture . Partly crossed 
nicols tx 200) . 
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the axial region ("lhich is required by the symmetry of the 

deformation). These difficulties preclude the possibility 

of applying the method of page 71 for discriminating 

plastic from viscous behavior in this fold. 

Fabrics of highly deformed vein material 

Crystals in a mineralized fracture in region II that 

appear to have been highly deformed have been studied in 

some detail (fig. 15 ). The vein material greatly resembles 

highly deformed Yule Marble (Turner, et al., 1956, plate 5) 

in that in bo th individual crystals are stretched out into 

lensoid shaped grains with ragged boundaries and both Sh011l 

considerable evidence of development of micro twinned lamellae. 

Figure 16a is a scatter diagram of 50 £-axes for calcite from 

the veinlet shown in Figure 15. In this diagram solid dots 

represent positions of £-axes of what appear to be excep

tionally highly deformed, elongate grains which show undula

tory extinction, and numerous twinning l amellae . The main 

£-axis pattern of the relatively few grains accessible to 

measurement is approximately normal to the trace of the 

veinlet in thin section and normal to the direction of 

elongation of the crystals. Part of this pattern is perhaps 

remnant from the original fabric of the vein. Highly de

formed individual grains were too nearly destroyed optically 

to permit detailed work to be done with them. However their 

distribution generally coincides with the main pattern. The 
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_ Figure 16 . Petrofabric data from highly deformed vein 
material in Region II . (a) c - &~is fabric. Solid dots are 
positions of c - axes of highly- deformed, e l ongate grains show
ing undulatory or vlavy extinction. (b) e - lamell ae fabric . 
VV mark s trace of veinlet in plane of t he- thin section and a l so 
the approximate di rection of elongation of the grains. Equal 
area projection, lOI-Fer hemisphere . 
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distribution of e-lamellae poles is shown in Figure 16b. Tne 

relatively few measured show a tendency to c luster around the 

same direction as the c-axes. Earlier it was suggested that 

these fractures represent places where the rock has sheared 

during fl exure. With this in mind it is interesting to 

compare these orientation data (inconclusive though they 

are statistically) with marble experimentally deformed in 

shear (Turner, et al., 1953, p. 1341). The experiment re

ferred to consisted of 37% compression of a cylinder of Yule 

marble (cut normal to the folitation) at 3000 C. A shear 

zone developed in the barrel shaped cylinder at an angle of 

400 to the axis of compression because of eccentric loading 

of the specimen during deformation. Individual grains within 

the deformed zone are flattened parallel to a plane which 

makes an angle of 700 to the axis of compression. The re

sulting fabrics consist of maxima of both c -axes and e

lamellae about the normal to this plane. Thus there is 

some similarity between the fabric resulting from experi

mentally imposed shear of a marble aggregate and the fabric 

from what is thought to represent an example of a naturally 

sheared aggregate. 

Application of the law of maximum resolved shear stress 

As previously discussed, several different theories 

have been proposed to account for the development of deforma

tion fabrics in metals (Tay lor, 1938; Bishop, 1954 ) and in 
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carbonate rocks (Handin and Griggs, 1951; Turner et al., 

1956) and the applicability of each of these treatments to 

the present work has been pointed out. During deformation 

of a polycrystalline aggregate, the Bishop theory states 

that within a single crystal the strain takes place in 

accordance with the principle of maximum plastic work 

(Bishop, 1954). According to the principle (Bishop and 

Hill, 1951a) the work done in a given plastic strain incre

ment by any stress physically capable of producing it is 

greater than or equal to the work done by any other stress 

not violating the critical shear stress law on the active 

glide planes in the crystal. The maximum resolved shear 

stress "law" used by Turner et al. (1956) (see p. 8 , this 

thesis) can be interpreted a special case of this principle 

modified to account for deformation on a single slip plane. 

As applied to an aggregate, this "law" as used would strictly 

apply only in situations where individual crystals could ac

commodate themselves to the macroscopic strain and to strains 

in surrounding grains by glide on a single glide system. 

Otherwise five independent glide systems would generally 

be required to operate in each grain for the aggregate to 

remain cohesive after straining. A consideration of this 

type can naturally account for the observation that crystals 

in the rocks studied here (especially throughout region I) 

do contain more than one set of twins per crystal, \'lhich 

is a clear violation of the maximum resolved shear stress 
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"law." However, it is still required that for slip to take 

place in a crystal the critical shear stress must be reached 

on each active system. It is shown belovf that the "law" does 

apply as an approximation. 

A comparison of the results predicted theoretically 

for the dynamic analysis assuming operation of the maximum 

resolved shear stress law and those actually observed for a 

natural fold, qualitatively suggests the applicability of 

this law in the present case. A more detailed comparison 

has been made in Figure 17. Since it is not possible to 

speak in terms of the magnitudes of the stresses responsible 

for the observed deformation in fold PC, the resolved shear 
, 

stress coefficient So' defined by Equation 12 is computed 
, 

instead. In Figure 17, So for the three twin sets in each 

of 54 randomly selected crystals from region I are shown. 
, 

The vertical axis gives the value of So computed from the 
, 

first of Equations 12. Above the horizontal axis (So = 0), 
, 

So is favorable for bfinning and below unfavorable. For 

each grain the data are plotted along a sing le vertical 
, 

line, each point representing the value of So for a 

particular twin set in the grain. Solid points represent 

twin sets actually developed in a grain and open ones sets 

that are undeveloped. Triangles represent the most prominent 

hl'in set in a particular grain (designated as e l ), squares 

the next best developed set (e2 ), and circles t he remaining 
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set (e
3

). Obviously this designation between .§.2 and .§.3 is 

arbitrary from an observational standpoint when only one 

set of tvnns is developed in a grain and is only made in 

the interests of organizing the data during actual calcula

tion. When two sets of twins are equally developed (each 

microtwinned for example) the designation between e l and e 2 
is also arbitrary observationally. Figure 17 shm'ls that 

deformation in about 75% of the grains examined in this 

analysis of the aggregate in region I conforms to expecta-

tion on the hypothesis that the maximum resolved shear stress 

lai'l applies if it is assumed that Equations 9 and 10 describe 

the stress situation in the fold . In 80% of the grains shm'l-

ing two sets of lamellae, twinning is in accordance with the 

law under the assumed stresses in that the most prominent 
r 

set has the highest value of So and the next most prominent 
, 

set the next greatest value of So. I n an earlier attempt at 

this kind of analysis it i'laS assumed that the observed de

formation was in uniaxial stress (an assumption approximately 

equivalent to plane stress deformation in the fold ) i.e., 

all stresses zero except along the a-axis of the fold and 

the x-axis in Equation 12. For this assumption the agree -

ment bet,'leen observation and theory for 37 randomly selected 

grains from region I (not necessarily the same grains as used 

above) was only slightly poorer, in that in only 70% of the 

grains measured was the set \fl th best developed twinning 
r 

also that Id th the highest value of So. Furthermore in 
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about 70% of the grains with two sets of lamellae, ~2 was 
! 

associated with the next highest value of S . 
o 

Figure 18 illustrates the relation be t~Teen the 

amount of strain individual crystals have undergone along 

the a-axis of the fold, and their orientation with respect 

to the applied stress (uniaxial case) . Each point in the 

figure describes a single crystal. The indication from 

the apparent relationship is that for the strain increment 

recorded as t~dnning throughout the portion of region I 

covered by the present petro fabric analysis, the deformation 

is nonhomogeneous from grain to grain, and is dependent on 

orientation of the grain in the stress field. Considering 

the texturally nonhomogeneous and fractured state of the 

material in this fold it is perhaps surprising that such 

qualitative good agreement between theory and observation 

is actually possible. 

It is concluded that under the plausible assumption 

that the stress distribution in region I is given by the 

first of Equations 12, twinning deformation in the aggregate 

appears to follow reasonably well the la~7 of maximum resolved 

shear stress. Agreement is only slightly poorer, however, 

~Then a uniaxial stress situation is assumed. 
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Fold from the Darwin Hills, Inyo County, California 

Geologic setting 

The Darwin Hills are located in the south-central 

part of the Darwin quadrangle in central Inyo County, Calif

ornia, 35 miles southeast of Mt . vfuitney, and 40 miles west 

of Death Valley (see index map, fig. 19). The most recent 

geologic report concerning this area is by Hall and MacKevett 

(1958). Hopper's (1947) excellent regional study also in

cludes considerable information on the Darwin quadrangle. 

In the present study geologic mapping has been done in only 

a small area in upper Darwin Wash, the area of principal 

concern in the present work . General information concerning 

the regional stratigraphy and geo logic history is drawn 

from the publications given above. 

The Darwin Hills and adjacent areas in Darwin Wash 

consist of folded and faulted Pennsylvania and Permian sedi

ments which have been intruded by gabbroic to granitic rocks, 

considered to be of similar age to the lower Cretaceous in

trusives of the adjacent Sierra Nevada batholith. The sedi

ments consist of thinly bedded gray and brown, locally 

crinoidal and nodular limestone, shale, quartzite, and bedded 

chert whose combined thiclcness is somewhat in excess of 8000 

feet. In upper Darwin Wash these sediments have been warped 

into several north-south trending gently north-plunging folds 

of moderate size, which are terminated at the Darwin tear 

fau lt, near the head of the wash. This fault, which is pre-
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Cenozoic in age (Hopper, 1947, p. 421) dips south 800
, trends 

east-west, and has about 2200 fee t of predominantly left 

lateral and some dip-slip displacement, with the north side 

moving westward and up with respect to the south side. 

Figure 20 is a geologic map of part of upper Darwin 

Wash south of China Garden spring. The principal structural 

feature of this area is a large north-plunging anticline, 

the axis of which follows the western margin of the map area 

and veers southeastward near the southern boundary. The fold 

includes sediments of Pennsylvania and Permian age which have 

not been differentiated by either Hopper, Hall and MacKevett 

or this writer. These sediments consist of several thousand 

feet of locally crinoidal and coral- and fusulinid-bearing 

l imestones interbedded with thin units of black and red 

shale. The western limb of the fold is partly covered in 

the map area by Quaternary alluvium. The nose of the fold 

is transected by a nearly vertical, left lateral (~) strike 

slip fau lt which is perhaps subsidiary to the Darwin Tear 

fault. The amount of displacement across this structure 

is uncertain but is estimated from the offset anticlinal 

axis at 700' (?). Exposed along the eastern limb and in the 

nose of the anticline is a 20-50 foot section of interbedded 

slabby dark gray, fine grained limestone, compact red and 

yellow shale, and gray shaly limestone in which is developed 

a series of drag folds. 

nated Cls in Figure 20. 

This limestone-shale unit is desig

Figure 21 shows hO"T typical folds 
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in unit CIs are developed and is a photograph of the outcrop 

from which specimens for this study ,,[ere taken. The attitudes 

of the minor fblds are some~>[hat variable due to the fact that 

t he drag folds themselves have been folded, but generally are 

nearly the same as that of the anticline \uth which they are 

associated, with plunge 100 N. and strike N. 300 w. At this 

particular outcrop, designated on the geologic map as "folds," 

strata on the limb of the larger anticline dip 600 west and 

strike N. 300 E. Stratigraphically above CIs are massively 

bedded, nodular, shaly limestones of yellowish color. Belm'l 

it the rocks consist of massively to slabby bedded finely 

crystalline, dark gray lime stone. The intensity of drag 

folding varies from place to place on the exposed limb of 

the major anticline. A fe~>[ hundred feet south of the locality 

shown in Figure 21a, the axial planes of individual folds are 

considerably folded. At the nose of the anticline, the rocks 

are essentially unfolded. The degree of folding appears to 

be dependent upon the amount of shale in the unit. vlliere 

layers of limestone and shale are of approximately equal 

thickness, folding is most intense, but as the amount of 

shale decreases, the folding deformation also decreases. 

Strata on the limb of the large anticline are cut 

and displaced in a left lateral sense 250 feet by an east

west trending, north-dipping fault whose trace passes a fe\'l 

feet south of the outcrop pictured in Figure 21a. 
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Figure 21. Drag folds in limestone-shale unit (Cls) in 
upper Darivin Hash. (a) General vie,,; (facing north) of the folds 
as they appear at the position marked "FOLDS" on the geologic 
m2.p, Figure 20. The folds strike N.200 1:1., plunge 100 N. En
closing strata strike N.20 H., dip 600 E. Tl'lree white calcite 
filled veins (approximate iv"idth 2 inches) cut across the folded 
strata and enclosing rocks. The large veins strike parallel to 
the bedding, dip 35° 1'[' (b) Closeup view of the folds studied. 
Plastic rule (six inch) gives scale. Note change in attitude of 
axial plane from top to bottom of photograph. Fabrics obtained 
from layer marked "X" in the photograph. Slabby beds are lime
stone, recessed strata shale. Area outlined in the figure is 
sketched in Figure 22. 
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(a) 

(b) 

Figure 21 
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Figure 22. Sketch of the fold. Nain drawing 
shows locations of specimens (outlined by dashed lines) 
and positions of thin sections cut in each position in 
the fold. The individual locations are designated 1, 2, 
3, 4 . Offset drawing shows traces of coarsely crystal
line calcite veinlets. The coordinate system to t he 
ri~~t designates positive directions of the axes. 
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Description of the fold studied 

Figure 21b is a close-up of the fold studied and 

Figure 22 is a sketch of the area outlined by a dashed line 

in Figure 21b. The folded rocks pictured in the sketch 

consist of six inch to one foot beds of dark gray, finely 

crystalline limestone, with irregular tabular portions of 

very coarsely crystalline dark gray calcite. Separating 

the limestone beds are thin red and yellow compact shale 

uni ts of variable thic lmess. There has been marked thicken-

ing of both limestone and shale units in the axial region of 

the fold. Individual limestone beds within the fold are 

broken by a number of fractures which run approximately 

normal to the boundaries of the individual layers. Dis

placements were not noted along these breaks. Axial plane 

cleavage is not present in the particular structure studied, 

although a series of thin (~l mm) veinlets filled with 

white calcide do cut individual layers within the fold 

parallel to the axial plane (these features are now shown 

in fig. 22). At other places in the outcrop cleavage is 

\'J'ell developed, especially where the folds are extremely 

tight. This cleavage is manifested on .. leathered surfaces 

by sharp V-shaped grooves which trend irregularly parallel 

to the axial planes of the folds. On fresh surfaces there 

is no visible trace of the weathered surface pattern except 

"lhere individual flutes are developed along thin calcite 

filled veinlets. 
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The uppermost folded layer sketched in Figure 22, 

the particular strattnn studied here in detail, is slightly 

greater than one foot (30.5 cm) thick in the axial region. 

The limbs are from six inches (15.2 cm) to ten inches (25.4 

cm) thick. The radius of curvature of the upper surface is 

about 5.5 inches (14 cm), and the lov,er boundary has a radius 

of curvature of about three inches (7.6 cm). Their respec

tive centers of curvature are about nine inches (23 em) apart. 

From the geometry of the upper limestone layer, this 

layer has not been deformed simply by bending alone, because 

such deformation cannot account for the observed variations 

in thiclmess in the limbs and crest. The numerous radial 

fractures >'rhich cut across this bed, as vTell as other beds 

belov, it in the fold, suggest that there has been some flexural 

folding. However it is perhaps very doubtful that such frac

tures could remain preserved from a time ~.,hen the rock ';'TaS 

obviously in a very plastic concIi tion. Tne dissimilar shapes 

of the various layers comprising the fold and the fact that 

boundaries between the upper limestone layer and shale strata 

surrounding it do not sho'l, significant irregulari ty or offset 

parallel to the axial plane of the fold suggest that the struc

ture is not a 'shear' fold. 

In order to account for the present geometry of the 

fold in a simple manner, it seems necessary that in addition 

to bending, the upper strata have undergone shortening per

pendicular to the CL"'{ial plane as well, so as to thicken the 
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bed. Thus in attempting to unravel the strains imposed upon 

the rock it is necessary to reconstruct a possible strain 

history involving each of these deformations. In order to 

accomplish this it is assumed that the original thickness 

of the layer was about eight inches, the present average 

thickness of the limbs. Undoubtedly the present limb thick

nesses or their average cannot represent the original thick

ness very accurately, because both have probably been deformed 

as well. However, there is no basis for assuming another 

figure. Now assuming that uniform compression was super

posed on the bent layer of this thickness a widening of the 

bed in the axial region to the present dimension of one foot 

corresponds to a shortening perpendicular to the axial plane 

of about 30%. To obtain an idea of the bending strains, the 

30% shortening along the axis of the fold must be removed. 

It is further assumed that this was uniformly imposed over 

the cross section of the layer in the be-plane of the fold 

(definitions of coordinates as on p. 75 ). Removing this 

strain and assuming the resultant fold to be circular in 

shape, the dimenSions obtained are approximately: 

Inner radius of curvature 

Outer radius of curvature 

5 inches 

13 inches 

(13 cm) 

(33 em) 

Using Equations 2a and 2b, the resultant extension and com

pression at the outer and inner boundaries respectively are 

both about 45%. Superposing the shortening and bending 
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strains indicates that the outer layers of the fold have 

undergone a net extension of 15% while material near the 

opposite boundary has been shortened 75%. This picture of 

the strain is undoubtedly oversimplified as is discussed 

belovl in greater detail. 

Macroscopically, rocks from this fold are very non

homogeneous. In the axial region of the flexure, the material 

consists of approximately 70% finely crystalline dense dark 

gray limestone, with patchy limonite stained areas, and 

roughly 30% very coarsely crystalline dark gray calcite, 

with individual crystals as large as one cm in diameter. The 

coarse material is distributed in three approximately mutually 

perpendicular sets of irregularly tabular-shaped masses one 

millimeter to six or seven millimeters in thickness, which 

are oriented throughout the entire axial portion of the bend 

nearly parallel to the fold coordinate planes. In general, 

veins of this material parallel to the coordinate plane are 

thicker and more numerous than those of the other two sets. 

These coarsely crystalline masses are confined to the lime

stone strata in the fold, and do not extend into shaly layers 

separating individual beds. No unequivocal evidence has 

been found which established precisely the age of develop

ment of this coarsely crystalline material \uth respect to 

the folding of the rocks. In nearby layers of t his fold 

thin veinlets of the dark calcite follow around the bend of 

the fold parallel to bedding within the rock. In other folds 
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found elsewhere along Darwin wash in the unit Cls (fig. 20) 

megascopic ally similar dark colored coarsely crystalline 

calcite masses have been contorted along with enclosing 

bedding in the limestone, but post-deformational preferen

tial recrystallization or replacement along bedding surfaces 

cannot be ruled out in either of these cases. In fact, frac

tures parallel to the minor fault adjacent to the fold loca

tion, and which must post-date the folding, are also filled 

vlith dark calcite. fllicroscopic evidence presented beloN sug

gests hovTever that this vein filling material has participated 

to a considerable extent in the deformation. 

~~o other minor, nearly perpendicular sets of vein

lets mentioned earlier cut the rocks of this small fold. The 

veinlets are about one millimeter in average ,rldth, and con

sist of coarsely crystalline white calcite. The veinlets lie 

in the ac- and ab-planes of the fold. They offset (by dilita

tion) veins of the dark gray calcite where the bolO intersect, 

and often persist through shale units separating individual 

limestone beds in the fold. 

Petrographic character of the rock 

The general petrographic character of the rock com

prising the small fold is shovm in the photomicrographs of 

Figure 23. The rock is composed of 95% calcite, up to 5% 

0 . 05 - 0 .1 mm subangular, strained quartz grains, and a 

small amount of red hematite in streaks and as grains about 
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Figure 23 . Photomi crogr aphs. Coarse and f i ne l y 
crystalline materia l from the fo l d . (a) r,1aterial at location 
2 in t hin section cut in the ac - plane of the fo ld, nearly 
p arallel to the plane of a vein of coarse material. Crystal s 
i n plane of the photograph are elongate in a skeN direction 
Hi t h re spec t to the coordinate axe s. In por tions 0 f t he 
field there i s a su gge s t i on of catac lastic tex ture ("C") . 
Vertical scratches near the top of the photograph are due 
to grindi ng of the thin s ection . TI1e verti cal U- shaped 
groove is an orientation reference notch and the black 
streak in one corner a p lace of separation in the r ock 
slice . (b) !',1aterial from location 4 . Note veined nature 
of the r ock and e l ongati on of cry stals perpendicu l ar t o t h e 
trace of t he veinlets in thin section . Dark s t reak s near 
the t op of the pi cture are quartz - rich layers i n the r ock . 
Al l coarse crystals in these and other locations in the. f old 
contain at least one and often t~!ro or t h ree sets of lamel-
l ae, and r:12.ny of the l amellae are bent and t vristed . I n 
general t here are no noticeable f r actures' or other dis 
continuities (other than grai n size< beh<Teen patcb es of 
coarse and fine calcite (marked "F") . Crossed. nico ls 
(x 10) . 



(a) 

(b) 

Figure 23 
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0.05 m.'TI in size. TVlO distinct types of calcite are noted 

in thin sections: (1) large 0.5-10 rum elongate, highly 

bdnned clear calcite crystals compose about 25% of the 

volume of the rock. !',1ost large crystals contain blO sets 

of tW'in la.mellae and some contain three. Specifically, 18% 

of the grains measured contain three sets, 60% tVTO, 20% one, 

and 2% no lamellae. About 25% of the grains containing two 

sets of lamellae have one set microtwinned, and 40% of those 

vii th three sets have one or blO sets microt\-'inned. T>'linning 

lamellae are often bent and b;-listed and many given anomalous 

values for the angle S:.../\ e. Bending of these lamellae is 

discussed in Appendix II, vlhere the observed warping is used 

as a clue to establish glide mechanisms within individual 

crystals using the method of Turner et al. (1954). Curiously, 

the smaller twinned set in many grains is consistently off

set by twinning in the major sets, and is therefore con

sidered to be earlier in origin. Grain boundaries are both 

straight and sutured, and there is often a breccia-like zone 

of finely crystalline material bet,'leen adjacent grains that 

are highly t''linned. (2) TDe second type of material dis-

tinguished in thin section consists of finely crystalline 

calcite (average crystal size about 0.01 mm) which comprises 

the bulk of the rock. Individual crystals are large enough 

to be easily resolvable under high povTer. These crystals 

are generally equ&lt, but are locally elongate except as 

noted in the fabric diagram in a similar manner to ad-
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jacent coarsely crystalline material . Twinning is not present 

in the fine grained material of crystal size less than about 

0.1 mm. Both of the above types of calcite may be noted in 

Figure 23. A patch of fine calcite in the top central part 

of the figure is labeled "Fl!. Only the coarsely crystalline 

material was studied in this investigation, as the finer 

calcite was too small to permit measurement of c-axis orienta

tions. 

Results of the fabric studies 

Fabrics have been measured in a number of specimens 

from t he upper layer sketched in the figure, and individual 

locations of specimens are designated 1, 2, 3, and 4. 

Orientation data from the fold are given in Figures 24, 25, 

27, and 28 . 

(1) c-axis fabrics : The distribution of host 

c-axes at locations 1-4 are given in Figure 24. In each 

diagram the fold coordinates are shown as well as the trace 

of bedding in the specimen (BB), shown as a dashed line ,,,,hen 

projected on the loltrer hemisphere of the net. EE marks the 

direction of elongation of grains in the plane of the thin 

section for sections where a consistent elongation can be 

noted, and VV are attitudes of veined structures on the 

rock. At locations 1 and 3, the distributions are charac

terized by broad concentrations of c-axes around the a-axis 

of the fold. In location 2, c -axes are distributed in a 
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Figure 24. c-axes from the Darwin fold. Orienta
tion data from each-location indicated by numbers. The 
dashed great circles marked BB, and VV denote planes o f 
bedding and veined structure respectively projected onto 
the horizontal plane. EE is the direction of elongation 
of grains in the plane of the thin section. At location 
3, "fol" marks direction of prominent foliation in fine ly 
crystalline material. In all diagrams only t he minus 
directions of coordinate axes are so designated, and the 
point of emergence of a particular axis on the projection 
is designated 4-). '!he cross in the center o f each 
di agram is the pOle to the thin-section plane and 3traight 
r eference marks lying goO apart in t he equitorial plane 
denote directions para llel to the edges of the thin sec
tion. All diagrams egual ar ea , lower hemispher e . (Fabric 
a t location l~ by Kamb ). 



broad girdle in the ab - plane, and tend to cluster around the 

b-axis (fold axis). In location 4, the c-axis of the fold 

is the center of a diffuse maximum of optic axes. 

(2) 
I . 

c -axis fabrics: Figure 25 shov<s po si tions 

of optic axes for the most prominently twinned set of e-

lamellae in each grain for each position. Closed triangles 

designate measured points, and open ones positions constructed 

from host c-axis ande-Iamellae data in each grain. In many 

cases a twin set ,,,as observed to be visibly twinned, but the 

cl-axis position could be measured because of t he thinness 

of the twins. Common to all of the diagrams is the tendency 

for these axes to form distinct maxima, which are broader 

and less well defined in some of the figures. As presented, 

these differ in orientation. In order to. compare orienta-

tions from the different positions in the fold, the approxi -

mate positions of maxima are plotted on a Single diagram 

,,,hich is given in Figure 26. This projection is oriented 

so t hat the (+) b -axis of the fold is the pole to the equi

torial plane, (+) a is to the right, and (+) c at t he top. 

Orientation of these axes vnth respect to the fold itself 

is shoi'ffi l n the small figure at the center of the diagram. 

The numbered crosses which are enclosed by dashed small 

circles on the net are positions of the approximate geometric 

centers of c '-~~is concentrations for t he diagrams in Figure 

25, with the small c ircles representing the approximate limits 

of each maxima. As far as individual positions in the fold 
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FigL.1.re 25. c' - axi s data from the DarI'Tin fo Id. 
Orientation data from each lo cation j_ndic ated by numbers. 
At location L!. data gathered from sections in the ab - p l ane 
(location 4 - A) and ac-plane (location 4 - B) are pr esented 
separately to illustrate difference in fabrics obtained 
from adj acent sections (see text , p . 154) . I n each dia
gram solid triangles represent positions of measured 
£'-axes, and open triangles constructed £'-axis positions. 
The dashed great circles marked BB and VV denote planes 
of bedding and veined structure respectively projected 
onto the horizontal plane. EE is the direction of elonga
tion of grains in the plane of the thin section. At 
location 3, "fol" marks direction of prominent foliation 
in finely cry stalline material. Equal area projections, 
lOl'Ter hemi sphere. ( Fabri c s 4 - A and 4 -B by Kamb and Cone 1. ) 
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Figure 26. c' -axiS data from locations 1-4 
compared in one diagram. The approximate geometriC 
center of each clustering of axes given in Figure 25 
are located at the small circles and are identir1ed 
by the appropriate number . The approximate extent 
of each maximum is indicated by dashed lines. The 
small drawing at the center of the diagram gives the 
position of the fold with respect to the axes in t he 
drawing . Note how maxima from the two posi tiona 4 -A 
and 4- B do not eoincide, and a lso how there is a 
genera l tendeney for all maxl ma to fall about t he 
a-axis of the fold or to li e in portions of the 
dlagr?ffi de fined by t he -a, b , c , and a , b ,-c axes. Equa l 
area pr oJection, lower hemispher e . 
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are concerned, there is considerable variation in the location 

of these maxima with respect to the fold coordinate axes. 

(3) ~ fOl12} orientation data: e-lamellae orien

tation diagrams for locations 1-4 are presented in Figure 27. 

In each diagram, solid Circles represent the positions of 

poles to the most prominently twinned e-lamellae set in each 

crystal (~l-lamellae), and open circles the less prominently 

twinned sets (e2 or ~3-lamellae) in each location with the 

exception of 4, only one thin section was used in obtaining 

orientation data from the aggregates. This restriction 

weakens the results of the e-lamellae studies statistically, 

and is responsible for the "blind-spots" in the lamella pole 

diagrams. The initial studies on this fold consisted of 

measuring fabrics from a single thin section at each location 

to obtain some idea of the possible consistency of the ob-

served fabrics in relation to the supposed deformation in 

the structure. When the result emerged, as will be discussed 

more fully below, that these fabrics were not Simply related 

to the geometry of the structure, further studies to simply 

improve statistics seemed pOintless. Furthermore it is likely 

that merely examining more thin sections vvould not measurably 

improve the statistical picvJre at each location. As has 

already been described, the material in all locations studied 

is very nonhomogeneous well below the scale of a single thin 

section, and the assocIated deformation is probably nonhomo-

geneous on as fine a scale. Hence sampling other sections 
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Figure 27. ~ [0112f lamellae data. SoUd 
circles mark poai tions of poles to most prominently 
twinned set of lamellae in each grain (e l ), open circles 
other sets (e2 and e

3
). Bl3 and VV are planes of bedding 

end veins projected onto t he horizontal plane. EE is 
the direction of elongation of gra1ns and at location 3 
l'fo111 marks the trace of foll e. tion 1n the finely crystal
line material (fabric at location 4 by Kamb ). 
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would only effectively amount to measuring fabrics from other 

points in the fold, not improving statistics for any single 

location. 

In these ~-lamellae fabrics, there is a general 

tendency for maxima in the diagrams to correspond to the c

axis maxima from the same location. This is, no doubt a 

reflection of the contro l of the possib le lamellae orienta

tions by the preferred orientation of c - axes. A more exact 

comparison may be made between the e-lamellae diagrams and 

those for c' - axes . In each case the maxi ma of el- lamellae 

correspond to those in the £ '-axis diagrams. 

(4) Dynamic analysis of ~- lamellae: Data from 

a dynamic anal ysis of the twinning lamellae from locations 

1-4 are presented in Figure 28. TI1e analysis of ~l-lamellae 

is given in these figures, in order to simplify interpreta

tion of the diagrams . Only at location (2) "strong" pat

terns of C and T axes observed, and this mostly reflects t he 

preferred orientation of host 'c - axes in this particular place. 

The primary result of the analysis is that, though 

there is considerab le dispersion in most of the data, a nearly 

common direction of compression is indicated from the several 

locations, and this direction coincides roughly with positions 

of concentration of c' - axes . Like these £ ' -axis maxima, the 

C-axis maxima are not generally symmetrically disposed with 

respect to t he fold coordinate axes. 
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Figure 28. Dynamic analysis of the most prominently 
twinned set of ~-lamellae in each crystal (~l). C = axes of 

compression, T = axes of tension. Diagrams from each location 
as numbered. Data from location 4 are presented in two dia
grams, in the ab- and ac-planes of the fold. I n each diagram 
BB marks the plane of bedding, VV plane of vein struct-u.re, EE 
the direction of elongation of grains. 11 fol ll at location 3 is 
the trace of foliation in finely crystalline material. All 
diagrams equal area projections, lovler hemisphere. 
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(5) Calculation of Strain due to Mechanical 

Twinning: The great textural non-homogeneity of the rock 

comprising this fold, and t he associated statistical un

certainties in orientation data for twinning lamellae 

preclude the possibility of obtaining any very accurate 

picture of the strains throughout the fold. However to ob

tain some idea of the orientation of the principal axes of 

strain and magnitude of strains due to twinning for some 

places in the fold, the available data have been used to 

compute strains at locations (3) and (4) by the exact method 

(p. 55 ), and at locations (1) and (2) by an approximate 

method. 

Values of the components of the ~train tensor re

sulting from the exact calculation for position 3 are: 

-0.7 

0.9 

0.4 

0.9 

1.4 

0.5 

0.4 xlO-2 

0.5 

-0.7 

This matrix, as well as that for position 4, is referred to 

a coordinate system which is fixed with respect to the thin 

section from which the data for the calculations were taken. 

The axes are approximately: x = a-axis of the fold, y = 

b-axis, and z = c-axis. Referred to principal axes the 

matrix becomes 
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-1. 8 0 0 x 10-2 

0 -1.1 0 

0 0 -0.7 , 

where the positions of the principal axes of strain are given 

in Figure 29. 

For po.si tion 4 components of the strain tensor are: 

and referred to 

-2.2 

-2.7 

3.2 

principal 

-5.0 

o 

o 

-2.7 

-1.1 

- 0.6 

axes, 

o 

-0.2 

o 

3. 2 x 10-2 

- 0 .6 

3.3 , 

o x 10-2 

o 

5.2 

where the directions of the principal axes are shown in 

Figure 30. 

The strains at locations 1 and 2 have been calculated 

by the approximation method suggested on page 112. This 

requires using the results of the dynamic analysis data (or 

alternatively and more approximately the £J-axis fabric 

data). It has been noted that relatively distinct groupings 

of the C and T axes data are eVident at location 2, but are 

dispersed and uncertain at 1. For location 2, assuming as 

before that the mean direction of each grouping of axes rep

resents the position of the corresponding principal axis of 



- 160 -

Figure 29 . Orientation of the principal a~es of 
blinning strain and values of the principal str ains at loca
tion 3 . Negative val ues indicate compression , positive , 
extension . Calculations carried out using procedures given 
on p . 56 . Equal ar ea projection (dn) indicates + b - direction 
is dOl'ffi\'lard . 

_ Figure 30 . Orientation of the pri ncipal axes of 
t winning strain and values of the principal strains at 
location 4 . Negative values indicate compression, positive , 
e x tension . Calculations carried out using procedure given 
on p. 56 . Equal area projection (dn) indicates -;- b -dire c tion 
is downward . 
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strain, the amounts of strain along these axes can be ob 

tained from the average degree of twinning. The average 

amount of twinning in 100 grains from location 2 is 13%. 

This degree of tI'linning corresponds to principal strains 

of 0 . 045 by Equations 14. The principal strains written 

in matrix form are: 

- 4 .5 

o 

o 

o 

4.5 

o 

o x 10-2 

o 

o 

where this matrix is referred to Cartesian axes oriented 

so that the x-axis makes an angle of approximately 500 with 

the a - axis, and the y-axis is along the b - axis of the fold . 

vJhen referred to the fold coordinate axes the above strains 

become 

- 1.9 

o 

2 . 2 

o 

4 . 5 

o 

2.2 

o 

- 2 .6 

x 10- 2 

, 

where the axes are as previously chosen (p . 75 ). It may be 

seen that according to this approximate calculation the fold 

has been shortened (though relatively slightly) parallel to 

the a - axis at location 2 . 

At location 1 the dynamic analysis data are very 

unclear, but nevertheless the same approximate calculation 

has been made here, assuming that the principal axis of 
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shortening now coincides I'll th the geometric center of the c ,_ 

axis maximum. (In any given crystal the position of c' is 

200 from the principal axis of shortening in twinning.) The 

dynamic analysis results show a clustering of T-axes about 

the b -axis of the fold (fig. 28). The principal axes of 

strain are thus taken to be: (1) axis of extension along 

the b-axis of the fold, (2) axis of compression approximately 

250 from the +a-axis toward -c-axis in the ac-plane of the 

fold (this is the position of the geometric center of the 

c'-axis fabric at location 1). The average amount of twinning 

in 100 grains from location 1 is 15% which, using equations 

14, indicates principal strains of + 0 .05. In matrix for 

these strains are 

-5 

o 

o 

o 

5 

o 

o 

o 

o , 

and referred to the fold coordinate axes, 

- 4 

o 

2 

o 

5 

o 

2 x 10-2 

o 

-1 

The data presented above from all positions in the 

fold, in spite of their approximate nature, sho\', that the 

strain recorded as twinning throughout the fold is not 

compatible with a simple deformation such as bending of 
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the layer nor simple uniform compression parallel to the 

a-axis of the fold. In fact, in a component for component 

examination of the strains from the various positions in 

the layer the deformation is very complicated. However 

tt-1O consistent features can be noted about the strains 

everywhere, (a) compression parallel to the a-axis of the 

fold, i.e. the strain Exx is negative, (b) the strain Exz 

is positive, ",hich geometrically indicates that sides of 

a unit cube of material in the unstrained state originally 

parallel to the x and z-axes now make an acute angle with 

one another, which is given by 1t/2 - 2Exz (Nye, 1957, p. 97). 

Some other features of the strains throughout the layer are: 

(c) at no position is the fold deforming in plane strain 

(E = 0 ) parallel to the b -axis, (d) the principal axes of 
YJL 

strain at locations 2 and 4 are not parallel to one another 

as might be expected on a hypothesis of simple bending or 

shortening in the layer, (e) -at positions 1, 2, and 3, the 

rock has been extended parallel to the fold axis and compressed 

along the c-axis, whi le the reverse has occurred at position 4. 

It is almost impossible to account for these observed 

irregular variations in strain. The nonhomogeneity of the 

deformation may, in part, reflect the nonuniform grain size 

and the distribution of coarse and fine material in the rock. 

However there is no indication that the coarsely crystalline 

material has been more highly deformed than the fine even 

though one is tempted to assume this because of the high 
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degree of twinning in the large crystals. Fractures, shear 

zones, or other discontinuities between areas of coarse and 

fine calc'i te, such as might be expected if one type of ma

terial had preferentially deformed have not been noted (note 

for example contacts between coarse and fine material in 

fig. 23). 

The strain recorded as tWinning throughout the fold 

is also considerably less than that calculated approximately 

from fold geometry. General reasons why such discrepancies 

can always arise in calculating the strains due to twinning 

in aggregates that have undergone large deformation, have 

already been discussed with particular reference to the 

present fold (p.67 ). Aside from the neglect of translation 

gliding strain, which could increase the computed visible 

strains by a factor of two, deformation could have been 

accomodated in the aggregate through grain boundary slip 

and brecciation within the coarser material. Cataclastic 

textures can be noted in the Darwin rocks (see fig. 23 ), 

and such texture perhaps indicate regions of very great 

(though local) strain. It is not possible to estimate this 

strain with any certainty, so that its relative magnitude 

must remain unknown. The simplest (but probably not the 

complete) explanation of the overall discrepancy between 

visible and geometrically indicated strain in the fold is 

that the coarsely crystalline material originated later 

than a significant part of the deformation indicated by 

the present shape of the beds. 
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Interpretation of the Darwin fabric results and 
comparisons with experimental studies 

A common feature of nearly all fabric and dynamic 

analysis data presented from the Darwin specimens is the non-

symmetrical distribution of orientation density maxima with 

respect to the coordinate axes of the fold. This indicates 

that these fabrics in general must reflect a complicated non-

homogeneous deformation, and do not represent fabrics which 

are expected theoretically (fig. 3) on the hypothesis of 

simple deformation in predominantly bending in the body. 

Some of the results may perhaps be partially explained in 

the following manner. As previously indicated, the strain 

calculations show a small shortening everywhere in the 

body perpendicular to the axial plane as well as a small 

positive shear in the ac-plane of the fold. From the geome -

try of the fold a macroscopic shortening perpendicular to 

the axial plane is clearly indicated although to a much 

greater extent than is suggested by the calculated strains. 

A small positive shear in the ac-plane of the fold is also 

indicated arrlthis type of shear is compatible with that ex

pected iri the l"lhole series of drag folds as a result of de

fOrmation in the larger structure (anticline) with which 

they are associated. Referring to the c-axis data, broad 

groupings of data pOints about the a-axis in locations 1 

and 3 are approximately normal to the direction of grain 

elongation in the plane of the thin sections and in the 

same direction as the indicated direction of shortening in 
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the f old. The c -axis fabric from location 2 does no t agree 

with this picture, and measurements at location 4 are also 

not in agreement with simple shortening parallel to the a

axis. As f or the c'-axis measurements (fig. 26 ), maxima 

in these diagrams tend to be conf ined to the portion of the 

projection defined by the (+) a and (-) c-axes (or -a and +c). 

The collective maxima diagram shows a very crude monoclinic 

symmetry. 

Experimental de f ormation of Yule marble in compres-

sion produce s maxima of £-axes and ~-lamellae which coinci de 

with the axis of compression in the deforme d spe cimens 

(Griggs et al., 1951; fig. 7a; Turner et al. , 1956 , fig. 9c). 

c - axis from locations 1 and 3 may result from such compression. 

In experiments involving shear within the deformed specimen 

(see p . 114 , this thesis), ori entation density maxima show 

skew ori entations with respec t to the p l ane of shear. The 

£'-axis fabrics from Darwin, from their crude symmetry, might 

arise from shear of the type indicated by the calculated 

strains (orientation of the principal strain axes on c ' data 

are not completely independent ) and necessitated by the ob 

served geometry of the drag folds as they are related to the 

larger anticline in Darwin wash . 

In order to develop anything resembling a stable, 

well defined deformation fabric, wherein rotations of the 

crystal axes of individual grains relative to t he principal 

axes of strain in the specimen cease with further deformation, 
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translation gliding must also occur (Turner et al., 1956). 

This kind of deformation mechanism can be observed in non

homogeneously deformed single crystals from these rocks 

(appendix II), and does , in some cases, account for develop

ment of a range of c- and c'-axis orientations within a 

single crystal of as much as 400
. But significant transla

tion gliding leading to development of an unquestioned stable 

fabric, as in the experimental work, has not been found. 

Though the purpose of this study has been to investi

gate the mechanical behavior of material texturally similar 

to Yule marble, a comment on the nature of the finely crystal

line portions of the rock is appropriate. Lack of microscopic 

"evidence" for deformation of this material is an important 

point. This observation may be accounted for in at least 

three ways: (1) the finely crystalline material has not de

forme d . This is discounted by the fact already mentioned 

that discontinuities between coarse and fine material are 

not apparent. (2) The finely crystalline material has de

formed by the same processes observed in larger crystals, 

but has undergone an annealing recrys tallizat ion which has 

removed all evidence of deformation. (3) Due to the large 

area of grain interfaces per unit volume in the fine material, 

the 'normal' deformation processes are i~~ibited, and the 

aggregate has essentially deformed through grain boundary 

slip and/or recrystallization. On the basis of available 

evidence, a choice between (2) and (3) canno t be made, and 
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a future investigation bearing on this problem would be of 

considerable interest. 

Summary and Conclusions Drawn 

from the Fabric Studies 

The underlying purpose of the fabric investigations 

has been to quantitatively compare crystal fabrics of naturally 

deformed limestones with deformation fabrics produced experi

mentally in marble. To achieve this, simple examples of 

naturally deformed rocks, flexurally folded limestones, have 

been selected. Folds in limestone are relatively numerous, 

and more importantly, flexural ly folded structures as such 

are ideally examples of nonhomogeneous deformation, the nature 

of which is to some extent determinable from geometrical 

considerations. With a knowledge of the strains, deforma

tion fabrics can in principle be approximately predicted for 

any combination of glide mechanisms and the results compared 

with the naturally observed fabrics developed under these 

strains. In detail, the problem of theoretically predicting 

fabri c changes in a homogeneous aggregate associated with 

even the simple deformation in an ideal flexure fold is dif

ficult and can be computed only with a theory like that de 

veloped by Bishop (1954), which allows sufficiently arbitrary 

deformations to be specified in individual crystals so that 

the whole aggregate may u ndergo the prescribed strains and 

still maintain continuity after deformation. At present it is 
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in principle possible but not feasible to derive exactly 

the fabrics to be expected in folds. However, an impli ca

tion of the Bishop theory is used to derive approximate 

stable fabrics to be expected with bending in a fold de

forming approximately in plane strain, in a material which 

has an initial c-axis fabric identical with that of un

deformed Yule marble. The utility of the result is thus 

definitely impaired, but does give some idea of the deforma

tion fabrics which ideally would arise in folds under the 

special assumptions employed . 

. To insure maximum success in either substantiating 

or disproving the applicability of the experimentally de 

duced behavior of marble aggregates to naturally deformed 

rocks, it is evidently advantageous to apply these results 

under the most favorable natural conditions where they could 

reasonably be expected to apply. This consideration to

gether with the inherent time consuming nature of the fabric 

studies is the reason for making very careful choices of the 

actual material s investigated here. Neither of the folds 

studied meet in detail all of the variou s fundamental re

quirements presented in the Introduction, but from the stand

point of the strains indicated in these bodies, it would not 

be unreasonab le to expect development of good deformation 

fabri c s within them. The observed host and twin c-axis 

fabrics do not clearly reflect the observed macroscopic 

deformation in either structure. In the fold from Maryland 
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this is because the micro scopic deformation of t he material 

is slight, indicating either a recrystallization of t h e ma

ter ial just prior to t h e las t increment of deformation ex 

perienced by the rock or bending l'Ii th crushing and fracturing 

r2,ther than plastic deform2tion of the m2terial. In the 

se cond example from Danlin wash, the deformation in t he fold 

and 2ccompanying fabrics 2re also not clearly re12ted, and if 

a gross re12tion between then is postu12ted, t h e fabric changes 

cl - axis orientations actually observed reflect r e latively sm21l 

strains of a rather uncertain kind. 

The conclusion derived from these consider2tions is 

t h 2t, vlith in the limitations posed by the small number of 

folds investigated, significant development of deformation 

fabrics in response to knmm large str2in h ave not been ob 

served and the intended comparisons Inth experimental studies 

are therefore not possible. The above investigations ob

viously do not exh2ust the possibilities for using folds 

in the manner indicated here, and further work l'Iill most 

probably disclose other and better eX2Jnples to be used in 

t his kind of analysis . 

Posi tive results of the fabric studies ere the fol l o,,,

ing : (1) the dynarnic an21ysis "Ihen applied in de tail to one 

of the folds studied (r.1aryland) yields results compatible 

"lith the expected deform2tion, and although complications 

in the actual deformation within the layer 2re evident, is 

sensitive in depicting changes in deformation due to twinning . 

(2) A.!'l analysis of the twinning deformat ion in this aggregate 



- 172 -

carried through using a plausible simple model of a..'1 elas

tically deformed fold with circular geometry, shows that tVlinn

ing in the aggregate follo~rs the law of maximum resolved 

shear stress in a semi-quantitative ma.."1ner. The implication 

of this result is that, to a first approximation, if the macro 

scopic stress distribution in an aggregate were knOlm, then at 

least the first order fabric changes due to mechanical h,inning 

alone could be computed. The converse of this is not true, 

i.e., if the c'-&"'(is fabric (or a result of the dynamic 

analysis) is knovm a unique system of stresses causing the 

deformation is indicated. (3) For the small increment of 

deformation recorded in t he rock as twinning, the strains 

vary from grain to grain and (from the rough data available) 

depend upon orientation of the crystal &"'(es relative to the 

principal axes of strain in the rock. T:f1e twinning deforma-

tion is thus nonhomogeneous throughout the aggregate. (If) Un-

equivocal situations where "stable," fabrics have been achieved 

in response to large strain through twinning and translation 

gliding have not been observed. 

A subjective conclusion is to be derived fror.l these 

studies, and concerns the use of folds in the Nay attempted 

here. As mentioned before there is no other commonly occurring 

geologically deformed carbonate body wherein large strain from 

one place to another can be expected to occur in a somewhat 

predictable manner. However it is in a sense contradictory 

to expect a simple deforr.lation and recrystallization history 
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to be associated .'lith a homogeneous material coarsely crystal

line enough (grain size> 0.1 mm) so that conventional micro

scopic methods can be brought to bear. A possible exception 

~lould be folded crinoidal limestones. Use of folds here has 

thus required the rocks to have undergone an incipient re

crystallization, or alternatively to contain secondarily 

deposited calcite. 

Future Studies 

The limitation posed by grain size has greatly 

limited the number of examples of deformed limestone bodies 

which could be used in this investigation. This constraint 

on the method could be greatly eased by the use of X-ray 

techniques for determining fabrics of fine grained carbonate 

rocks (Higgs, et al., 1960). However the problems attacked 

in such a study l"ould perhaps be quite different from those 

associated with plastic deformation and development of fabrics 

in coarsely crystalline aggregates (P. 168). Investigations 

of the deformation of finely crystalline rocks \'lOuld thus form 

an interesting extension of the present work. 
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NATURE AND PROPERTIES OF §.. [0112)- LAHELLAE I N 

CALCITE AND f {0221r LAMELLAE IN DOLOMITE 

Introduction 

~Ji thout question the commonest planar features noted' 

in the deformed calcite rocks used in this investigation are 

lame llae parallel to e f0112f. In thin section features of 

this type are readily divided into two general categories 

twinned and nontwinned lamellae (Borg and Turner, 1953, p, 

1345). Ti'linned lamellae are those wide enough to allow 

crystal in twinned position.to be unambiguously identified 

by its symmetrical extinction with the host crystal about the 

vertically oriented interface between the two. The so-called 

nontwinned lamell·ae in contrast are so thin that vJhen til ted 

into the vertical position they appear as sharp dark lines 

with no twinned material discernible. Knopf (1949b, p. 562-563) 

describes nontl1inned lamellae from experimentally deformed Yule 

marble as possessing "color-banding" 1tThich "disappears when 

the lamellae are t;urned into a position "Ihere their bounding 

surfaces are parallel to the axis of the microscope" thus 

giving the whole surface of the grain a uniform interference 

color in polarized light . She attributes the "color-banding " 

to a "l;edge effect caused by the diagonal position of the 

boundary surfaces of discontinuity" (P. 563). 

The investigations described below involve a detailed 

examination of thin tvlin lamellae in calcite and doland te rocks 
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which exhibit all of the features ascribed to nontwinned 

lamellae by Knopf (1949b~ In fact it is possible to recognize 

five distinctly separate types of interference colors and 

fringes which arise through t he presence of the lamellae. 

These interference phenomena may be used to investigate the 

properties and internal nature of the structures. 

In particular it is shown below that nontwinned lamellae 

(lamellae exhibiting the properties described by Knopf (194gb ) ) 

are in fact exceedingly thin, but otherwise normal twin lamellae. 

A method is presented, which utilizes a standard optical tech

nique, for obtaining the thicknesses of these twins and this 

information allows an estimate to be made of the strain re

corded in an aggregate through deformation of this type. Cal

culations are also presented which show that only an average 

thickness (and hence only an estimate of the average strain 

per lamellae) may be obtained for a series of thin lamellae 

which are superposed under the microscope. The most important 

result of these studies is a new method for measuring the 

orientation of twins that are shallowly inclined to the plane 

of the thin section. This method allows a complete picture 

of the orientation-distribution of e-lamellae in a calcite 

rock (or f-lamellae in dolomite) to be obtained from one thin 

section rat her than from two or more perpendicular sections 

as heretofore required. 



- 176 -

Previous Studies 

Nontwinned lamellae have been widely noted in both 

na turally and experimentally de formed marb Ie s . In fac t they 

are the mo st abundant deformation feature to be seen in many 

naturally deformed rocks (McIntyre and Turner, 1953; Gilmour 

and Carman, 1954; Turner, 1949). Knopf (1949~, 1949b) and 

Turner (1949) were perhaps the first to point up the peculiar 

nature of these features, but they had of course been noted 

much earlier by various workers (Adams and Nicolson, 1901) 

being termed "twin bands" and "lamellae" (Knopf and Ingerson, 

1938) or "translation lamellae" (Sander, 1950, p. 232-235) . 

Adams and Nicolson (1901, p. 375) indeed do mention that 

"fibrous" structure developed during their experiments on 

the deformation of marble appeared to conSist of extremely 

minute polysynthetic twinning, but they present no evidence 

for this conclusion. In the exhaustive study of experimentally 

deformed calcite single crystals carried out by Turner et al. 

(1956), the suggestion is forwarded that these lamellae may 

be "stacking faults due to ultramicroscopic twinning or some 

other disturbance of the lattice." Garber . (1947) has made 

extensive and interesting studies on the mechanism of twinning 

in calcite which appear to deal with structures resembling 

non twinned lamellae. Garber did not use a universal stage 

in his investigations and so the features he discusse s cannot 

be compared directly with those studied here. He describes 

interference phenomena similar to one of the five types 
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described, here. Garber has recognized four distinct stages in 

the process of twinning in calcite: (1) elastic deformation 

of the crystal, ( 2) formation of "elastic" tWins, twins which 

disappear when the load is removed, (3) formation of stable 

twin layers, (4) thickening of the twin layers. Elastic and 

stable twins supposedly show reflection (?) interference 

colors and fringe s, which Garber describes as resembling Ne\~

ton's rings. He computes the thicknesses of the elastic twins 

by assuming that the lamella and surrounding crystal are iso-

tropic and that the interference colors observed are due to 

( 63)* reflection his unnumbered equation p. within the lamella. 

A further assumption is made in taking nl_2 cos r equal to 

unity, where r is the angle of refraction inside the lamella. 

This will not in general be true except for special arrange-

ment,of the specimen in his optical system, but such arrange-

ments are not described in the text. Nevertheless, the thick-

nesses obtained are about 1 p, which are similar to those ob

served in the present studies. 

The approach developed below is adapted to universal 

stage methods and depends upon measuring between crossed nicols, 

the phase difference produced in waves transmitted by the aniso-

tropic crystal slice, when the lamella is in special orientation. 

* The equation is !s. = 2nl _2 V::>- , where k is the order of 
an interference fringe, n l _2 is the average index of the 

lamella, d is the lamella thickness, and A is the wave length 
of light.-
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Nontwinned lamellae are especially significant in the 

present investigation . For example, in fabric studies of the 

fold from Maryland, the dynamic analysis, strain calculations, 

and investigations concerned with the law of maximum resolved 

shear stress are all based on deformation features of this type. 

It is suggested that the term non twinned lamella be 

replaced by microhlinned lamella, which suggests the truly 

twinned nature of the lamellae as established in the present 

study, and suggests also in a qualitative way the thicknesses 

of these structures (usually from one to four microns). 

Description of Microtwinned Lamellae 

Microtwinned lamellae in calcite and dolomite show a 

variety of interesting optical features which do not appear , 

to have been described in detail previously. These features 

consist of interference colors and several types of inter fer-

ence fringes . The same optical phenomena can also be noted 

wi th twinning lamellae ''''hich contain I visibly twinned I crystal. 

The interference colors and fringes have practical importance 

because they can be used to indicate the horizontal orienta-

tion of microtwinned or visibly twinned lamellae. A technique 

for accomplishing this is described below. These interference 

phenomena are also used to determine the internal nature of 

the lamellae. 
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Interference colors and fringes 

In general microtwinned lamellae are easily visible 

in thin section because they show overall low order (first to 

occasionally fourth) interference colors when viewed between 

crossed nicols with the host crystal at extinction (fig. 31 ) 

and when they are not in the vertical or edge-on position. 

They appear as broad, mostly uniform colored bands traversing 

a grain with a color spectrum at each tapered edge (fig. 31 ). 

Depending on their inclination to the plane of the thin sec

tion, the boundaries of the bands may be sharp, or they may be 

highly serrated owing to irregularities in the ground surface 

of the thin section. Hhen tilted into the vertical position, 

the interference co lors progressively disappear, and the 

lamellae assume their well known, sharp, dark, linear appear

ance, with the properties described previously. In plane 

polarized light, without crossed nicols and with reduced il

lumination, these lamellae display uniform colors of different 

character from those observed between crossed nico ls. These 

colors are more faded in appearance and seem to be generally 

of a higher order than the colors seen under crossed nicols. 

The colors visible in plane polarized light are probably du e 

to internal r ef l ection within the lamellae. The origin of 

these particular colors has not been studied in the present 

work. 

Distinc t from the overall, more or less uniform inter

ference colors of the lamellae are several types of interference 
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Figure 31. Photomicrograph. Uniforn i_nterference 
colors associated \'Ii tJo shallo1>Tly inclined tloin twin lamellae 
in do lomi te para le 1 to f 0221r (darkened grains). The se are 
best displayed in the l'!ide 18.l~ellae, left -;;rain, .hich are 
inclined at an angle of about 150 to the plane 0::' the pic 
t-J.re . Their thiclmess varies from zero to approximately 6 p . 
Near edges of each of the bri ght bands, for e;:ample one 
shoVTing second order blue, green, and yello"r interference 
co lors (lo~ler le ft hand corner) the co lor spec -:;rum, producer" 
by the tapered edge of the lamella '·rhere it intersect s the 
surfa.ce of the thin section, is visible. i-lea_r the upper part 
of tl:.e le ft hand darl{ grain , four lamellae are disposed so 
that there is over l apping among them. In the nost visible 
pair, each ShOHS second order yel l ow and red and third order 
blue interference co lors. The colors fro71 tIle overlappin2; 
portion of the t·JO lamel l ae are the same as 'chose of t'1e t':10 
lamellae separately, not the addi ti ve colors of -:;:1e -:;VIO 

lamellae. TI1is effect is one predicted according to tl:.eory 
(see p . 215) . Crossed nico ls (x 35). 
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fringes v,hichare superimposed upon the overall interference 

colors for some positions of the crystal between crossed 

nicols. Four types of fringes have been distinguished under 

the microscope, and these are designated types I, II, III 

and IV. All of the fringes are parallel to the trace of the 

lamellae in thin section. Types I and II may be observed in 

most lamellae, but observation of type III seems to depend to 

some degree upon the thickness and inclination of the lamellae, 

and upon the degree of development of the type II fringes. 

Type I V are not commonly observed. These fringe features are 

most easily seen under medium or high power in association 

with microtwinned lamellae that are inclined at a low ang le 

to the plane of the thin section. They are also much more 

prominent in f [0221} lamellae in dolomite t h an "T1th e [Oll2J 

lamellae in calcite, presumably because of the higher bire-

fringence o f dolomite. The observed properties of each of 

the fringe types are listed below, and the positions of the 

fringes as seen in a section which includes t he normal to the 

lamella are shown in Figure 32. The characteristics of the 

fringes are as folloVlS: 

Type I: Visible when microscope is focussed on 
lower edge of lamella in both plane 
polarized light and under crossed nicols. 
Not visible when host is at extinction. 
Fringes begin at the inner edge of the 
color spectrum produced by the tapered 
edge of the lamella and the order of the 
fringes increases rapidly im-lard toward 
the center of the pro j ected lamella width 
from the lower edge. As the host crystal 
passes through extinction, the fringe pat
tern shifts position corresponding to a 
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path difference of ;"/ 2 . 
torted by irregularities 
surface, and ~'There 0 t her 
cut t he lamella . 

Fringes are dis
in the thin section 
twins or cleavage 

Visible ~'Then the microscope is focusse d on 
upper edge of t he lamella only under crossed 
nico ls. Not visible v;hen host is at ex 
tinction . Fringes begin at the inner edge 
of the color spectrum produced by t he tapered 
edge of the lamella, and the order of the 
fringes increases rapidly inward toward t he 
center of the projected lamella width from 
the upper edge . The fringe pattern shifts 
position corresponding to a path differenc e 
of A/ 2 as the host crystal passes t hrough 
extinction . They are generally not as prom
inent as fringes of type I. The fringes are 
distorted in a manner similar to that of 
type I. 

Type III: These fringes may be sharply visible in a 
posi tion of focus halfvl'aY betl-leen upper a.Dd 
lower edges of a lamella. They are visible 
between crossed nicols, and are most prom
inent when the host is in a position of 
maximum illumination . They are sometimes, 
but not generally, visible when the host is 
at extinction. Especially prominent fringes 
of this type may be visible in both plane 
polarized light and betl-;een crossed nicols. 
The fringe pattern shifts position corres
ponding to a path difference of /I / 2 when 
the host crystal is rotated through extinc 
tion. The distribution of fringes is such 
that the zeroth order fringe is located 
exactly halfway bet,,;een t he edges of the 
types I and II fringe patterns, with the 
order of the fringes increasing rapidly 
out~'lard in each direction from the center 
tm'lard the edges of the lamella. Upon 
insertion of a quartz wedge (thin edge 
first) such that its fast direction is 
perpendicular to the trend of the fringe 
pattern , the fringes shift toward the 
lower edge of the lamella. The spacing 
of t he type III fringes is approxi mately 
one - half that of types I and II. Type 
III fringes ultimately merge with those 
of the other types when both are persis
tent enough . 
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Broad band-like variations in interference 
color across the projected width of the 
lamella. Zeroth order fringe in middle 
of the projected width, increasing in 
order outward from the center. Visible 
only between crossed nicols. Fringe 
spacing much t-lider than for types I-III, 
for lamellae with the same angles of tilt. 
Most plainly visible when host crystal is 
near extinction. 

Figures 33-35 illustrate the optical features described above. 

In Figure 33, which sho\V' f [0221} lamellae in dolomite, seven 

orders of type I fringes are visible across the lamellae shot-m. 

Type II fringe are not visible but greatly resemble those pic

tured. Type III fringes , may be noted in Figure 34. Figure 35 

illustrates type IV phenomena. All figures show these features 

as they appear in dolomite. 

Origin of the fri~e features and interference colors 

Although a complete explanation of the causes of the 

fringe features described above cannot be given here, con-

siderable light can be shed on their origin. The function of 

the lamella in producing the fringes of types I and II may be 

understood when the lamella is considered as a slice of crystal 

of different optical orientation than the host which, because 

of the difference in indices between the two, gives rise to 

preferential transmission of light vibrating in a plane per-

pendicular to the lamella. Thus with fringes of type I, the 

lamella can act, in a way owing to its different orientation, 

as an analysing nicol prism, and the fringes can be seen 
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_ Figure 33 . r:p,Jpe I fringes associated vii th microtNinned 
[ 0 22 1} l amellae in dolomi te . Fringes of lovlest ordei~ are located 
a t the i ntersection of the lamella p l ane vii th t h e l ower surface 
o f th e t hin section . Seven orders of these fringes are visible . 
The l ame llae are inclined at an angle of approximately 150 to t h e 
plane o f t he thin section (and t he photograph) . A second s et of 
l'lear ly ve r t ical microtwinned {0221f l amel l ae cuts across the photo 
a t a s mall ang le to the ho rizontal . Crossed nicols (x 125) . 

Figure 34 . T-ype III fr i nges along microtvlinned [ 0 221f 
12.mellae in dolomite . Tne fringes are closely spaced dark lines 
l o c a ted in the cel'lter of the pl~ojected \'ridth of the lamellae . 
The zerotl1 order fringe occurs in t he middle and fr:i.nges increase 
i n o r der to either side . Fringe s of both types I and II are also 
fain tly visib le . Tne fringes are distorted by other microscopic 
c r acks crossing t_e lamellae and by irregularities (?) in the sur 
fac e o f t he thin section . Th.e lame llae dip tOl'.rard the top of the 
photograph a t an an~le of about 20 0 • Ano t her discontinuous set 
o f ste eply dipping ! 0 221f lamellae cut across the photograph in a 
no r theast d irection. Crossed nico ls (x 125) . 
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Figure 33 

Figure 34 
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Figure 35 . Type IV interference bands in {0221} 
lamellae, dolonli te (in broad colored lamellae). The other 
sharp, planar features trending horizontally across the 
field are also steeply dipping micro twinned lamellae parallel 
to {0221r . The irregular dark zone running diagonally across 
the field is a crac!( (irregularly) parallel to .[lolH . T:'1e 
lamellae showing T-ype IV "fringes" dip 40 0 to the left. Crossed 
nicols (x 125). 
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without the aid of the microscope analyser. With type II 

fringes the lamella can act as the lower polarizer, and the 

fringes are visible with the microscope polarizer removed and 

the upper nicol prism inserted. 

The relationships of t he types I and II fringes to 

the edges of a lamella, with many orders of fringes visible 

and increasing in order toward the center of the projected 

width of the lamella, suggests that these fringes are related 

to the wedges of host crystal at the lower and upper edges of 

the lamella. If this is so, the spacing of the fringes 

will be simply related to the inclination of the lamella and 

the orientation of the host crystal. In monochromatic plane 

polarized light between crossed nicols, fringe minima (dark 

fringes) will occur when 

(k = 1, 2, 3, ... ) (20 ) 

where A is the "lave length of light, and where ~ S is written 

.t1 S = ..1 n· X . tan e (21) 

In Equation 21, x is the distance measured outward perpendicu

larly from the edge of a lamella toward the center, and e is 

the angle betvmen the plane of the section and the lamella . 

.111 is the "effective" birefringence of the host crystal and 

depends on orientation of the crystal. 
I 

A_n is equal to n - n 
... -0 -e' 

where n is the ordinary index of refraction of the host crystal, 
-0 , 

and n is its apparent extraordinary index which is given by -e 
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(D~) 2 cos
2 Ii ) - 1 2 -

~ 
(22 ) 

In Equation 22, ~ is the true extraordinary index of t he host, 

and )i is the angle betvreen the £ - axi s of' the host and the plane 

of the section . Using Equations 20 and 21, the spacing A ~ 

beh-Teen fringe s of order A k apart is 

11 x = . A k . ~ / ( t::. n · tan 8) . 

Fringe spacings computed using Equation 23 may thus be compared 

vii t h those measured vli t h a micrometer ocular to test the concept 

suggested above . This is done in Table 2 . 

TABLE 2 

Comparison of Computed and Measured 

Fringe Spacings (1:fui te Light) 

Ali l1~ tan e x -calc x 
~eas 

mineral 

4 1. 428 * 550 m p 0 .159 10 P 10 P " v 

550 m p 4 0 . 157 0 . 900 16 P 12 P ( ? ) c 
550 m p 4 0 .133 1. 235 13 P 14 P C 

550 mp II 0 . 168 1.540 8 p 9 p (' 
"T v 

550 m p 4 0 . 128 2 .246 7p 7 p C 
4 0 . 136 1. 664 * 550 m p 10 p 9 p. D 

550 m p 4 0 . 180 0 . 900 14 P 14 P D 

550 mp 4 0 . 100 0 . 287 77 P 71p D 

* Data on calcite from the Darvvin fo l d; the do l omite used "TaS 

obtained from a series of dolomites a nd dolomitic limestones 

i n San Antonio canyon, San Gabriel mountains, Cali f ornia . 
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The general agreement in these two results is surprisingly 

good in view of the difficulties in making many of the measure

ments involved in construction of the table. Measurements on 

both calcite (C) and dolomite (D) are included, and measure

ments on each of these minerals contain about the same dis

crepancies. 

Type III fringes, which are generally invisible except 

when viewed between crossed nicols, are situated such that the 

zeroth order fringe is exactly halfway between the extremes 

of the projected width of a lamella. This relationship sug

gests that the upper wedge of crystal is in some manner com

pensating for the path difference produced in waves travelling 

through the lower wedge, with compensation occurring only 

where the path differences produced by the two wedges are 

equal. 

The band-like variations in interference color referred 

to as type IV also have a zeroth order fringe located in the 

center of the projected width of the lamella, and this suggests 

that they, like type III arise through presence of both upper 

and lower wedges of host crystal. When type IV fringes are 

visible, they usually completely subdue effects of the other 

fringe types, and it is therefore difficult to discern a 

quantitative relationship between these and types I-III. 

ifuen a lamella is oriented horizontally under the 

microscope either between crossed nicols (horizontal orienta

tion being such that the pole to the iamella is parallel to 
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the axis of the microscope) or in plane polarized light, the 

fringes are no longer visible. In this orientation, lamella 

and host are indistinguishable optically because of the 

symmetrical arrangement of their respective lattices with re

spect to the twin plane, and the lamella thus cannot make its 

influence apparent. Also, none of the fringe types described 

above may be seen on cleavage planes parallel to {IOllf in cal

cite or dolomite. This fUrther illustrates the important role 

the lamellar material must play in producing these fringe pat

terns, for cleavage is thought to represent actual separation 

of adjacent parts of the crystal along the cleavage plane, not 

development of a crystallographically intact slice of material. 

Fringe phenomena are visible along grain boundaries between 

grains in different optical orientation, and especially when 

the grain contact is inclined at a small angle to the plane 

of the thin section. The fringes may be seen at each of the 

tapered edges of the grains. Fringes at the upper tapered 

edge are visible with either the polarizer or analyser removed 

or between crossed nicols when the grain below is in a posi

tion of extinction. Those at the lower edge may be seen be

tween crossed nicols or with only the analyser removed ~'lhen 

the grain above is in a position of extinction. Type III 

fringes are not visible. Although there is generally no 

regularly crystalline zone between grains along the grain 

boundary, as is true of the twin lamella, the situation is 

somewhat analogous, because there is a change in optical 
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properties at the interface which gives rise to a preferential 

reflection of light vibrating parallel to the interface. 

The uniform interference colors produced by the micro

twinned lamellae, when the parent crystal is at extinction, 

arise in the following manner. When the host is at extinction, 

its permitted vibration directions are parallel to the analyser 

and polarizer directions in the microscope. In general this 

'l'lill not be true of the lamella. Thus in this setting the 

lamella acts simply like a thin anistropic plate between crossed 

nicols which is not at ex tinction. These interference colors 

may be used to determine thicknesses of microtwinned lamellae, 

as "fill be demonstrated below (p. 199). 

A New Method for Measuring Orientations 

of Twinning Lame llae 

The Itblind spot" problem 

An inherent difficulty in studying carbonate rocks 

with the universal stage has been to obtain the spatial 

orientation of planar features such as twinning lamellae and 

cleavage which are inclined at angles less than about 350 to 

the plane of the thin section. The difficulty may arise either 

because of mechanical limitations of the stage or because of 

total reflection of light coming from the polarizer at the 

interface between the lower hemisphere and the glass stage 

plate. Thus, all orientation diagrams for poles to ~ {Ol12} 

lamellae, which are prepared from anyone thin section, contain 
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a central "blind-spot," a region about the pole to the diagram 
o 

of half-angle 35 , in which lamellae poles are not present. 

In order to obtain a complete picture of the distribution of 

lamellae throughout a given volume of rock, it has therefore 

ahmys been necessary to examine two or more perpendicular 

thin sections from the rock. However in some situations, 

particularly those ariSing in small scale applications of the 

dynamic analysis or where the rock fabric is nonhomogeneous on 

the scale of a thin section, it is desirable and necessary to 

obtain a statistically complete picture from one section. The 

method described herein helps overcome the "blind-spot" problem. 

It uses the optical properties of twin lamellae (either micro

twinned or visibly twinned varieties) to place the lamellae in 

horizontal orientation, i.e., with the pole or a lamella par-

allel to the microscope axis. This technique has proved use-

ful with calcite and is even better and easier to use with 

dolomite. Unfortunately its discovery came after completion 

of the major portion of the fabric studies reported on above, 

and it was therefore not available for use throughout this ''lork. 

Since the method utilizes an optical property arising 

from the t"linned nature of material enclosed in the lamellae, 

it cannot be applied to cleavages or other planar partings 

which are physical separations of adjacent parts of the crystal 

lattice. 
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Physical principles of the method 

The new method makes use of the interference colors 

visible in the projected \'l'idth of a shallowly inclined lamella 

when the host crystal i s at ex tinction. The object of t he me t hod 

is to bring the lamella to such a position that both it and the 

host crystal are in positions of darkness Simultaneously, that 

is, with the permitted vibration directions in each parallel to 

one another (as seen in the microscope) and parallel to the 

nicol directions. In any given situation there are three posi

tions of lamella and host where this may be achieved, as may 

be illustrated by reference to Figure 36 The diagram is a 

stereographic projection on the Im'ler hemisphere of the projec

tion sphere. The pole of the diagram is the microscope axis 

(MA). Let the cross labeled e represent the position of the 

pole to an arbitrarily chosen, but not too steeply inclined, 

e-lamella in calcite, the open circle marked C the position 

of the c-axis of the host crystal, and C' (solid circle) the 

position of the twi n optic axis. \tlith each optic axis position 

are sho1'm the permitted vibration directions in host and lamella, 

and these are also projected onto the plane. If the trace o f 

the lamella in thin section is brough t parallel to the north

south (NS) stage axis, then its pole will lie along the great 

circle perpendicular to NS (which is shown in the figure as a 

dashed line labeled N-S). Tilting the stage about NS moves 

the plotted £-axes along small circles and e along a great 

circle, all three of which are shown as short dashed lines in 
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Figure 36. Stereographic projection used in 
illustrating method ror orienting twinning l~~ellae 
horizontally with the universe.l stage (hori zontal mean
ing with the plane or lamella parallel to the micro-
scope stage). Solid triangles labeled "E" represent 
positions of the pole to the lame II?, open circles 
marked li e" positions or the host optic a.xis, and solid 
circles "e'" positions of the optic axis in twin orien
tation. Through e ~ch optic axis position are a lso 
marked vibration directions in the crystal projec t ed 
into the horizontal plane. The pole to t he dingram is 
I,lA (down), and NS represents the north-sout!: horizontnl 
axis of the universal stage . As the drawing is con
structed, for each of the positions of C and C' corres
ponding to lamellaposltions e l , e2 , and e

3
, rota tion on 

r>1S will produce extinction of host and twin s imultaneously. 
~l as shown is t he l amella pole position for true hori-
zontal ori entation. 
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the figure. As can be seen, there are three positions for the 

optic axes where their respective vibration directions are 

parallel to one another. These have been labeled Cl , C2, and 

" , C
3 

for the host positions, and Cl , C2 , and C
3 

for the twins. 

The corresponding positions for poles to the twin plane are 

e l , e 2 , and e 3 . One pole position, ~l' is parallel to MA 

while the other two are symmetrically disposed about this 

point, one to either side on the great circle containing e 

and e l . The symmetrical distribution of these points is re

lated to the fact that host and twin lattices are symmetrically 

di spo sed about the twin plane. I>.[i th the stage ti 1 ted on NS to 

any of these configurations , rotation of the microscope stage 

(MS) will produce extinction of both host and h'in together. 

The true horizontal position of the lamella can be distinguished 

from the two "false" positions by the fact that the fringes of 

types I-III disappear at the true horizontal setting (see dis

cussion p. 191). The host c-axis and the measured lamella pole. 

If the true lamella position has been found, this angle should 

approximate 260
. In practice, both of the "false" positions 

have never been observed, but two positions are commonly ob-

tained. 

Method for measuring orientation of lamellae used in practice 

In practice the following procedure can be used to 

place the lamella plane horizontal while simultaneously arrang-

ing the vibration directions in host and twin parallel to the 

vibration directions in the microscope : 
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(1) With MS set at the zero reference mark, the trace 
of the lamella is brought parallel to the north
south cross hair in the microscope by rotation 
on the inner vertical stage axis (IV). 

(2) The host crystal is then rotated to extinction 
on MS so that the trace of the optic plane is 
east-west. Normally at this point the lamella 
will exhibit interference colors very different 
from those of the host crystal when the host is 
not at extinction. 

(3) The stage is now tilted about NS (which is of 
course no longer parallel to the north-south 
cross hair) in the proper direction to banish 
the interference colors of the lamella. Since 
the host is generally not now in a position of 
minimum light, a further adjustment on MS is 
necessary, and this may have to be followed by 
further rotation on NS to bring the lamella to 
darkness. The nicols are now uncrossed and the 
grain is checked to see if the fringes remain 
invisible during a rotation on MS. 

(4) For the special case when both the pole to the 
lamella and c lie in a vertical plane, so that 
the lamella and host are Simultaneously at 
extinction for any rotation on NS, the nicols 
may be uncrossed, and the disappearance o f the 
fringes (type I) used to indicate that the 
lamella is horizontal. 

(5) The NS and IV stage settings are noted and the 
lamella pole is plotted on the stereographic 
(or equal area projection) using the same pro
cedure as for polar oriented c-axes (Faribairn, 
1954, p. 279). -

Difficulties in the method 

In general this technique is not as easy to apply as 

the conventional one for obtaining the orientation of twinning 

lamellae with th~ universal stage (Turner, 1949). Difficulties 

are particularly apt to arise when working with grains on which 

more than one set of lamellae are present. This is because 
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"Then one set is dark, the others are not, and the fir st is 

t hen illumi nated by t he second. This makes it difficult 

to obtain t he .desired extinction in both host and twin 

simultaneously. 

Principle use of t he orientation method 

The principle use to i'lhich this technique may be put 

is in obtaining the orientation of "inaccessible" twinning 

lamellae in carbonate rocks. The se structures are termed 

"inaccessible" ",hen they inclined at a suff iciently small 

angle to the plane of the thin section so that they cannot 

be measured by tipping about NS into a vert ical position 

(pole horizontal). A number of factors ent er to set t his 

upper limit of tilt. The relative indices of hemispheres 

and oils (n = 1.649) and glass stage plate (n = 1.516) set 

a maximum upper limit for total reflection o f about 670
. 

However vii t h t he Leitz microscope and Leitz uili versal stage, 

the maximum tilt attainable is less t h an 550 because the 

upper hemisphere mounting screws hit the ob jective a t this 

angle. In effect, a feature i nclined at an angle of less 

t han 350 to the plane of the t hin section is thus not 

measurab l e . 111 th t he method described above tilts of 40 -500 

can be measured, t hough only with difficulty at higher tilt 

angles, so that there is ideally effective coverage of the 

normal "b lind-spot H region. Tne usual corrections for di f 

ferences in refractive index between crystal and hemispher es 

must be applied for high tilt angles. 
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Another application of the present method is in ob

taining the thicknesses of micro twinned lamellae, and this 

is discussed next. 

Determination of Lamella Thickness 

The question of determining the thicknesses of lamel

lae is important from at least two standpoints. First, if 

lamella thicknesses determined optically by making assumptions 

about the crystallographic nature of the lamella can be favor

ably compared with thicknesses determined by independent means, 

then this is evidence that the assumed nature of the lamella 

is correct. Secondly, insofar as microtwinned lamellae repre

sent deformation by twinning, it is of interest to obtain some 

idea of the amount of strain they record. If thicknesses of 

individual lamellae or aggregate thicknesses of lamellae can 

be determined, then by Equation 13, the amount of strain re

corded in twinning may be evaluated. In this section a stan'

dard optical technique for determining thicknesses using 

interference colors is applied to determination of lamella 

thicknesses. In the next section, the question of obtaining 

the aggregate thickness of a group of superimposed lamellae 

is discussed in detail. 

If a twin lamella is oriented ~'li th its pole parallel 

to MA (horizontally) or nearly so, and the optic plane of the 

host crystal is east-west, then the c-axis positions of host 

and twin are symmetrically disposed about the lamella pole, 
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10 

each lying 26If from Jv'JA in opposite directions along the great 

circle containing £, 
, 

e, and £ . Between crossed nicols both 

are at extinction. When the lamella pole is almost vertical, 

and the trace of the optic plane of the host is east-west, 

the ordinary wave vibrating north-south (parallel to the lower 

nicol vibration direction) is resolved into two waves of dif-

ferent velocity in the lamella. On passing through the lamella 

a path difference ~ S is produced between these two waves which 

is given by (Ditchburn, 1957, p.370) 

.1 s = t.. tl !l ( 24 ) 

where all of the symbols have been defined on p.188 . Ll n is 
, 

now defined by writing!!.e' the "effective" extraordinary index 

of the lamella as 

where, for example, e is the angle cAe in calcite, equal to 
0 , 

261 n = 1.658, n = 1.486, and n = 1.618 , for which If -0 -e -e 
. .6 n = 0.040. Estimates of lamella thicknesses have been made 

using Equation 24 for microtwinned lamellae in both calcite 

and dolomite. The value of ~S is obtained using either a 

quartz wedge or rotation compensator. Of course, no colors 

are seen with the lamella horizontal and with the vibration 

directions of host and twin parallel to the nicol directions 

in the microscope, and it is necessary to rock the lamella 
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through extinction on the north-south axis of the stage and 

observe the colors on either side of the true horizontal 

position. For any rotation of the lamella from the true 

horizontal position, the apparent thickness of the slice as 

seen in the microscope increases as ~/cos (de), where t is 

the true thickness and de is the angle of tilt from the hori

zontal. For de equal to 50 the change in-t is not very 

great. On the other hand the change in 6n depends on the 

direction of tilt. Take the special case where the axis of 

rotation lies parallel to the trace of the lamella in the 

plane of the thin section. By differentiating the last equation 

d( 6 n) 
, 

= -dn = e 
sine cose de 

2 2 n -n o e 
2 2 

no ne 

All terms in the expression on the right are positive, and 

d ( 6 n) thus depends on 

For 8 equal to 

the sign 

10 
264 and 

of de. 

the indices of calcite the 

constant part of this equation equals 0.150. The apparent 

thicknesses on either side of the true horizontal position 

are thus not the same. In practice, the color 'average' for 

these two positions has been used to compute t from Equation 

24. 

The values of t obtained in this manner are compared 

with measurements under oil immersion (x 1000 ) of the width 

of the color spectrum produced at the tapered edge of the 



- 202 -

Figure 37. Positions of the color spec trum 
associated with the tapered edge of the lamella and 
the constant interference color across the constant 
thickness part of the lamella. Orientation of t he 
indicatrix (for calcite) in the horizontal lrunel1a 
is also shown in the position where both c and e 
the pole to the lamella e lie in t he ea st-west p!ane. 
n represents the true extraordinary index (1.486), n 
~ , -<> 
the ordinary index (1.658 ), ne the apparent extra-
ordinary index 06 the horizontal lamella (1.618 ). For 
calcite, 9 = ~. For a horizontal f l0221J1ame11a in 

10 , 
dolomite, 9 = 6~2 ' ~ = 1.515, ~ = 1.700 , and ~ = 1.550 . 
'!he values of ~ are computed from the equation on p. 200. 
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lamella (fig. 37 ). The measured i~dths are multiplied by 

sin S where S is the angle between the lamella and the plane 

of the thin section, to get the true lamella thickness t. The 

results of these measurements are given in Table 3. Measure

ments on both calcite and dolomite are included. 

Meas. 

* 

No. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9 . 

TABLE 3 

Comparison of Lamellae Thicknesses Determined 

by Optical and Direct Measurement 

500 -570 m }.l 

325 m J.l 

640- 650 m }.l 

400 m J.l 

250-300 m J.l 

500-550 m ).1 

820 m p 

325 m p 

83 mp 

t opt 

0.150 3-4 Y 37° 

0.150 2 P 50° 

o. 150 4 }.l 15° 

0.150 3 }.l 44° 

0.150 1.7-2}.l 44° 

0.150 3-4 p 44° 

0.150 6 P 500 

0.040 8 P 430 

0.040 2 Y 430 

Spectrum min-
width t meas eral 

5p 

3 ).1 

14 )l 

3)1 

3).1 

4)1 

8 p 

12 J.l 

3 p 

3p 

2).1 

4)1 

2)1 

2)1 

3}.l 

6 }.l 

8 p 

2p 

D* 

D 

D 

D 

D 

D 

D 

C 

C 

D = dolomite, C = calcite. 
The general agreement bebleen thicknesses based on the 

two types of observations is taken as proof that the lamella 

is composed of a thin slice of crystal whose optical orienta-

tion in relation to the host crystal is given by the normal 

tvrin lavl, as shown in Figure 37 . 
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Ina survey of thin sections of limestones used in the 

fabric studies reported on above (about 35 sections) it \!las 

found that the majority of microtwinned lamellae showed inter

ference colors of 10 .. , first order (gray to black). This in

dicates lamella thicknesses in calcite of one micron or less. 

The retardation corresponding to such low order colors is very 

difficult to measure with the quartz wedge, so that a compen

sator (in this case an Ehringhaus Compensator with quartz com

bination plate) must be used. On the other hand, thin lamel

lae in dolomite may easily be measured below a thickness of 

one micron, since the birefringence of a lamella in dolomite 

in a nearly horizontal position is greater (0.150) than that 

of calcite (0.040). 

Optical Effects Produced by Superposition 

of Several Thin Lamellae 

Introduction 

In some situations, when thin lamellae are inclined at 

a low angle to the plane of a thin section and are closely 

spaced, they overlap*so that light travelling through the 

crystal must pass through several superimposed lamellae as 

well as thicker slices of host crystal. The question arises 

as to what information may be obtained by observing the inter

ference colors produced by the superimposed thin plates, when 

they are oriented in the same manner as for determining thick

nesses of single lamellae. The purpose of the calculations 

* See Figure 31. 
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given below is to demonstrate that only the average and not 

the cumulative thickness ~or the lamellae is shown by their 

inter~erence colors. It also develops that a good approxima

tion to the exact calculation is obtained by neglecting path 

dif~erences produced in waves travelling in the host crystal, 

i~ these crystal slices are much greater in thickness than 

the twins. This consideration allows the cumulative inter

~erence e~~ects produced by any number of lamellae to be 

calculated in a relatively simple manner. The exact two 

lamellae calculations written out below proceeds by a straight

forward treatment of optical ef~ects produced by each lamellae 

and layer of host crystal successively. After this develop

ment the approximate calculation is carried out. In all of 

these calculations dispersion, absorption, and reflection are 

neglected. 

Fresnel (1821) "laS the first to consider the problem 

of optical effects produced by several superimposed crystal 

plates. In particular he treated the case of two superposed 

anisotropic crystal plates between crossed nicol prisms. 

Airy (1833) extended this calculation to the situation "There 

the two plates have their principal planes inclined at an 

angle to one another, and used the results in determining the 

optic sign of crystals. The problem treated here is some

\-That different, as will be made clear below. 

Suppose a crystal containing several closely spaced, 

thin e-lamellae in calcite (or f-lamellae in dolomite) is 
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orien ted I'd th the universal stage so that the lame llae overlap 

along the axis o~ the microscope. Suppose also that the lamel

lae are nearly horizontal, and let the host crystal be at 

extinction . Under these conditions, the allovled vibration 

directions o~ the t.tinned parts o~ the crystal wi l l in general 

make some angle a vdth those o~ the host ( and a l so the direc 

tions o~ polarization in the microscope). This situation is 

illustrated in Figure 38 I n this position the lamellae lidll 

shm-r some combination o~ inter~erence colors, and in order to 

understand the combined inter~erence e~~ects produced with this 

con~iguration o~ crystal plates, we consider ~irst the simplest 

case, that o~ two superimposed lamellae "l'li th vibration direc

tions parallel, separated by a much thicker slice o~ host 

crystal in di~~erent orientation and arranged bet.-reen crossed 

nicols as in Figure 38 . 

"I, Y2 P 
\ 
\ Vi 
\ X2, V2 
\ , XI ,X2 \ ./ X'V' ....- , 

\ 
,,-

./ 

\ a XI , VI A A' 
./ X' /' \ /' ,,- \ /' ,,-

\ '/ 

\ 
\ 

\ 
\ 

Figure 38 . Relationship o~ l amellae vibration direc 
tions (Xl' x 2 : Yl' Y2) to host crystal vibration directi ons 

( ' ' ) and the planes o~ polarization o~ the nicols (pp' x ,y , 
and AA ' ) . 
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Exact calculation for the two - lamell ae case 

Suppose that a plane po l arized l i ght Vlave wi th elec-

. . . t ( 2 1Lc * tric dlsplacement D = Do Sln L.0 t..)= --,;-) vi brating paral l el 

to PP ' i mpinges on the lowest lame lla ( I- SUbscripts ) and is 

resolved into tVIO components vibrating a l ong Xl and Yl' 

After passing through the lamel l a, the components of D a l ong 

these directions are : 

D = D sino. sin ( w t , 0'~ ) T 

Xl 0 

D = D sino. sin ( w t + 0'i) 
Yl 0 

"There 0'~ and 0'i are the phase shi ft s of the >'laves vibrating 

along the X and Y axes respectively. 0'~ - ~i is the phase 

difference produced betvleen the t"IO waves in traversing the 

fir s t lame lla . After pa s sing through the inte rposed s l ice 

of host c rystal the components .are : 

, 
a l ong x D x ' [ ( + riXl+riX I ) D sino. coso. sin W t '" '" o 

(25) 

- sin( W t + 0'i + 0'Y' ) ] (26) 

, 
along y D = :D y' 0 

[ 2 ( riX riV') + sin a sin w t + "' 1 + ",v 

+cos 2 a sin( LA) t + 0'i + 0'Y' ) ] 

,:,her e 0'x ' and 0'Y ' are the phase shifts introduced by the host 

crystal. Emerging" {rom t he second t hin l amel l a . the components 

of D along the directions x 2 and Y2 are : 

* c is the ve l ocity of light in vacuum . 
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along x 2 : DX2 = Do sin3 a. sin (LJt + ~ + rjY I +~) 

+ Do siner. cos
2

a. [sin( w t + ~ + ¢yl + ¢~) + sin(W t~+rjX I +rj~) 

+ sin (w t + ¢I + rjX I + ~)] ( 27 ) 

2 'Y X' x 2 I 
+ cos a. sin(wt+rjl+r) +r)2)] - Dosin a. co sa. [sin(w t+rjI+rjX +rj~) 

- sin (tJ t + ¢I + r;x I + rj~)] 

~ and rj~ likewise being the phase shifts introduced in the 

second lamellae along the x and y directions respectively. 

"Then these components are resolved along the direction AA' the 

expression for D in this direction is: 

I I 

+ sin ( w t+ 11
3

) - sin ( w t + Ll 4) ] ( 28 ) 

I 

- sin(wt + L)4) - sin(t.Jt + .1 2 )] 

where 

~l = rj~ + ¢yl + ¢~ ; !1 ' 
1 = rj~ + rjyl 

+ rj~ 

~2 = rjI + rjy l + rj~ 
I 

¢I 
+ ¢yl + rj~ ; 6 2 

1:::.3 = rj~ + ¢XI +~ ,6' 
3 =~ 

+ rjX 1 + ¢~ 

~4 = ¢I 
+ rjX I + ¢~ ; 4 1 

4 
- ¢y - 1 

+ ¢XI + ¢~ 
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Now separating the time varying part of the above expre s s i on 

from that involving the phases, one gets, after some mani pula-

tion, 

where 

Al sin2a 
1ft::" S1 

sin 
1T 11 S2 

= cos A A 

A2 sin2a sin 
1T /). S1 

sin 
1f8S2 = 1\ i\ 

1f fl S1 1r /), S2 7TA S 
, 

A = sin4a sin sin sin 
3 A 1. 1\ 

/I. A ' ..1' 
Ll 12= Ll 1 + .1 1 + fl 2 + 2 

In Equation 29 the various phase di fferences have been r e

~ITitten as fol l ows : 

~r _ :y 
¢;: - ¢1 = ~ Sl 

cjx ' _ cjy' = fj s ' 

The expression for the i ntensity of light transmi tted 

by the analyser is given by the sum of the squares of the 

terms in square brackets in Equation 29 (see Ditchburn, 1952, 
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p. 386). After some rurther calculation and rearrangement 

of terms the resulting intensity ratio I can be written as: 

I " ( ~:)" " sin 
4

2a 

" 1T + sin2_ 1 (.t.s A 1 

I 

_ AS) sin2 rr 6S 
2 1\ ] 

1 2 . 2 17: t::,. Sl 
+ 2 sin 4a. [sln 1\ + 

. 2 1ll)S2 
Sln 1\ ] sin2 

and where 2 2 1( 
cos 2a sin ;r (6S1 + 6 S2) 

sin ¢ II: [ 2 2 1r t::,. Sl 2 7l: ~ S2 2 f[ 2 L ] 172 
4cos 2asin A sin A sin ?;(A Sl+~S2)+cOS 2aSin4*(~1+~2) 

I 
vlhen AS is made equal to zero (i. e., the interpo sed 

host crystal is removed or is optically isotropic), the result 

(eqn. 30) reduces to the familiar relation for the intensity of 

light transmitted by two superimposed anistropic plates between 

crossed nicols (Ditchburn, 1952, p. 386): 

I 

For .6S
1 

= b.S
2 

= 0, (AS ~ 0), I is zero, since the host 

crystal is in a position of extinction. 

Equation 30 is graphically represented in Figure 39 . 

Data used in plotting the curve were obtained with the 
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Figure 39. Graphical representation of Equation 30 . 
Along the horizontal axis is plotted rc l1 S/A , with the vertical 
axis the intensity I. a = 22.50 • At the top of the dravling 
the range of rr 6 S/).. throughout the visible spectrum is plotted 
for a number of specific values of ,.6.S1' The relationship of 

. , 
t he variables given in Equation 30 is ll S2 = 2 6 S1 , ti S = 25.1S1 . 

Figure 40 . The intensity I given by Equation 30 for 
a = 50, fJ. S2 = 2 A S

1
, fJ.S I = 25 .fJ. Sl . 

Figure 41 . Illustration of contributions of the 
various terms in Equation 30 . (a) First two terms of the 
expression, designated 16 and 1 2; (b) t he ~hird term of 

Equation 30 (1
3

), a = 5 , ll S2 = 2 AS1 , £1 S = 25 £1 S 1 . 
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* Burrough s 220 digital computer . Since Equation 30 contains 

five parameters ~ Sl' 
, 

!l S , a and A , it has been neces-

sary in plotting the curve in two dimensions to assume a re-

lationship between the first three of these, and to consider 

fixed values of a. Thus, fj S2 has been taken equal to 2 A Sl' 
, 

and DS equal to 25 Sl' The example in Figure 39 is for a = 

22 . 5
0

• 1/;\ increases to the right along the horizontal axi s 

along '!Thich 7[ !lSi i\ is plotted. The vertical axis is the in

tensity I. Equation 30 gives a curve, outlined by the dashed 

boundary line, which is s~etric about As/" = m)n: , there 

being mirror s~metry in the curve for each set of values 

m = 0 , 2, Lf , ••• , and m = 1, 3, 5, ... • 

It is convenient to think of the variation of I as a 

function of II/-. for a fixed value of DSI . Thus in Figure 39 

regions are marked off for the variation of I throughout a 

rang e of A corresponding to the visible spectrum (410-710 my) 

for D Sl equal to 80, 160, 240, 320, and 400 m p (in calcite 

the se VTould correspond to lamella thicknesses of 2, 4, 6, 8 , 

and 10 microns respectively). Equation 30 then states, for 

example, that for a choice of b. 31 equal to 80 m)J- the re

sultant visible color 1>lould be a combination of orange -yellow, 

gpeenish - blue, and violet . 

* t Computation of the curves ,,;as carried out on he computer 
at the Ca lifornia Institute of Technology, using the standard 
fixed point subroutines for sin x and cos x in th xgi ven in 
righ t ang les. 1fASl/ f.- ,'las taken as t h e independent variable, , . 

1'lith b.S2 =2.131 , and D.s = 25 631, and v2.1ues were calcu lated 

at an interval of 0 . 0072727272 right angles or 0.0114239733 
radians . Sample values were checked against 6-place hand 
compu ted value s . 
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As it stands Equation 30 is very cumbersome to deal 

with, but a simplification of this result is possible which 

has practical importance. When a 

Equation 30 is of order a 4 , while 

is small, the first term of 

the second two are of order 

a
2 

(for a = 100
, the coefficient of the first term is about 

0.07 that of the second, and 0.12 that of the third). The 

latter two terms thus dominate in the expression for I which 

becomes: 

I Z 8a2 [Sin2 fl.b Sl 2 1fIl S2] 2 1[ AS 
, 

/I + sin A sin 
~ 

(32 ) 
+ 4Aa2 . (21f.1S' 

+ ~) Sln II 

where A has been written for the square root factor in the 

third term of Equation 30. The resultant intensity is thus 

composed of color contributions from each of the thin lamellae, 

represented by the first term on the right of Equation 30, and 

a contribution which depends in a very complex manner upon 8 Sl' 

Cl S2' and A J but _"hich oscillates with very high frequency 
, 

( !:l S ) > 8Sl and 1). S2) about zero because of the unsquared 

sine factor in the second term. The effect of the third term 

may be evaluated by referring to Figures 40 and 41. Figure 40 

represents the total intensity I plotted as a fUnction of 

1[ 6S/ 'A for 

DSl , 6 S2 , 

a equal to 50, and with the relationships between 
, 

and D S previously designated. The curve in 

Figure lla shows the first two terms of the intensity given by 

Equation 30, or effectively only the second term for this choice 

of a, and Figure 4lb is the third term. The surprising fact 
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which may be noted from comparison of Figures 40 and 41 is 

that the positions of the maxima and minima in the boundary 

curves (dashed lines connecting closely spaced maxima) of 

these expressions are not shifted relative to each other by 

subtracting out the third term. The amplitudes of the maxima 

are also unaltered, but the value of one of the minima in the 

boundary curve is increased by a factor of two. This means 

that the net effect of the third term in determining the colo,rs 

visible in the microscope is to alter the intensity of some 

colors already present. The distribution of wave lengths is 

not changed. Thus if one were to analyse the light for the 

distribution of wave lengths present there would be no dif-

ference observed in the results predicted by Equation 30 if 

the last term of this expression were neglected. Practically 

speaking differences in color would be observed which, for 

example, would be more prominent for a choice of AS l = 160 mjU, 

but almost unobservable for AS l = 320 m p. (Compare ",rith fig . 39.) 

A good approximation for I, under the restriction that 

a is small is thus 

[ sin
2 1f .1S1 ~tS2] 1[" AS 

I 

1- + sin 2 sin 2 
(33) 1\ It 

Equation 33 shows that light transmitted by the analyser consists 

of a sum of colors (for incident white light) representing each 
2 1['AS' 

thin lamella separately. The effect of the factor sin ( ~ ) 

can be evaluated by considering that the terms enclosed in 
I 

AS square brackets form the amplitude of I as a function of --~--
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T'ne actual wave lengths present are thus governed for the most 

t b . d " . . 2 (1rLl S' ) par y mwnma an mlnlma In Sln i1 ' but the separate 

color intensities are controlled by the terms involving AS
I 

and AS2 , vfnen AS' is very great, individual maxima and 

ninima in Equation 33 fall very close together so that essen-

tially a "continuolJ_s l! spectrum is visible, Hi th the intensity 

of individual vIavelength s governed by the factor involving lI Sl 

and fl S2' In this case, I given by Equation 33 indicates ti:e 

colors present to be functions only of A SI and LlS2 • 

A second special case is a = 117/4, for which Equation 

30 becomes exactly 

, I 

I = sin
2 ~( .1S1+Ll S2) · cos2(1f~S )+sin2~(4 Sl- .1 S2) ·sin2(Jr~S ) 

(34 ) 

Thus t h e light transmitted by the analyser for t his setting 

of the crystal plates is a mixture of the additive and sub-
I 

tractive colors of the two thin plates, vrhen t.S is very great. 

Experimental test of the results for t.'TO superposed lamellae 

TI1e effects depicted by Equations 33 and 34 have been 

qualitatively verified in the follOldng manner, Four t h in 

pieces of muscovite (L1s = 2020,2640, 1100, and 570 my as 

determined approximately ,\,Ti th an Ehringhaus calcite compen

sator in "Thite light) 'I'Tere cut in rectangular strips with the 

principal plane of the indicatrix parallel to the long di

mension of the strips. The ti'TO thicker mica -sheets separated 

by an Ice land spar r h omb (/!J S= 3,08 x 105 m p) were then 

arranged vTi th the principal planes of the mica sheets parallel 
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and making an angle a of about 450 with the traces (in the 

cleavage plane of t he rhombohedron) of the vibration direc

tions in the calcite crystal. This arrangement of plates 

was then placed on a glass slide on the microscope stage and 

rotated until the calcite crystal was in a position of ex

tinction (optic planes of the mica sheets lying NW-SE). This 

is the arrangement for which Equation 34 is valid. A calcite 

* compensator was then inserted in the accessory slot of the-

microscope tube and rotated until compensation was achieved. 

Two positions of compensation could be observed (under re

duced illumination and with some difficulty) one correspond

ing to a retardation of about 4600 my, and the other at 

about 500 my, which are the values Equation 34 predicts to 

be observed. This variance from true additive and subtrac-

tive colors might occur because of variations in thickness 

of the mica sheets (maximum observed variation of 40 mjl in 

each) or miSinterpretation of the pOSitions of compensation, 

which for the additive color was particularly difficult. 

To observe the optical effects predicted by Equation 33 

the thinner mica plates were used. These were arranged with the 

* With thick muscovite plates the zeroth order fringe at 
compensation divides into two equally spaced zeroth order 
fringes, an effect due to dispersion in the muscovite. The 
true compensation position was determined for a given direction 
of rotation with the compensator by inserting greater and 
greater thicknesses of crystal and observing the separation of 
the zero pOSitions. 
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calcite rhomb as described above, except that the angle a was 

made small (around 100
). It was found through trial and error 

that mica sheets with relatively low values of AS yielded the 

clearest results in this situation. Using the compensator, 

compensation was achieved at values of AS equal exactly to 

1100 and 570 m y, as predicted by Equation 33. 

Extension of the calculations to the case of three 
or more lamellae 

The exact calculation of the intensity of light trans

mitted through two lamellae with an intervening plate of cry-

stal in different orientation described above is cumbersome, 

and its extension to the case of three or more lamellae would 

be impractically tedious. An approximation method (suggested 

by B. Kamb, oral communication) has therefore been employed 

to treat these cases. The purpose of this section is to ex

tend the conclusions expressed by Equations 33 and 34 to 

situations of three or more superposed lamellae . The case of 

two lamellae is discussed first to show the validity of the 

approximate method. 

The physical arrangement of lamellae under the micro-

scope between crossed nicols is the same as before. Starting 

with Equation 25, it may be sho~m that the intensity of light 

vibrating parallel to AA' (fig. 38 ) after passing through 

the first lamella is given by : 
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and that parallel to PP' by 

. . 2 2 1C /j 3 1 Ip = 1 - Sln 2ct sin ( A ) (36 ) 

As an approximation it is now assumed that the two beams of 

light emerging from the first thin plate, after passing through 

the thick slice of host crystal, are non-coherent in the sense 

that interference effects in white light are not produced be

tween them due to their large optical path difference in the 

host (see Ditchburn, 1952, p. ll8 ). 'tlith this assumption, it 

is no longer necessary to consider the phase difference pro-

duced by the thick plate. The upper lamella is thus illuminated 

by two beams of light vibrating in mutually perpendicular planes 

whose intensities are given by Equations 28 and 29. The inter-

ference calculation is nm"l" repeated for the second lamella 

considering each incident beam separately, and replacing fac-

tors like Do of Equation 25 by the square root of the appro-

priate Equation 35 or 36 The resulting intensity of light 

vibrating parallel to AA' can thus be shown to be: 

, 2 2 T[ I::::. Sl [ 
IA = sin 2ct sin ( ~ ) 1 

2 2 1[.1 S2 ] 
sin 2ct sin ( ?\ ) 

2 2 nl!. 3 2 [ + sin 2ct sin ( II ) 1- 2 2 1L/jSl] sin 2ct sin ( II ) 

and parallel to PP' 

2 { 2 1f bSl [ 2 2 17: Jj32 ] 1 - sin 2ct sin ( 1-. ) 1 - sin 2ct sin ( 1\ ) 

2 1C b. S2 [ 2 2 fC tJ Sl j} + sin ( A ) 1 - sin 2ct sin ( A ) 
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"I-1i th some manipulation Equation 37 can be rewritten as: 

I 1 . 4 
Ill. = 2 Sln 

+ 1 sin2 
2 

Comparing Equation 39 vdth Equation 30 it can be seen that 

(39 ) 

the approx imation method yields results in essential agreement 

vdth those of the exact method, the differences being that the 

complicated third term of Equation 30 is not present in Equa

tion 39 (its effects become small for small a, see P. 214), 
. I 

and the factors involving /j S are absent in Equation 39. 

These bolO equations also differ by a factor of ~ which appears 

in the second term of Equation 30 . As has already been dis-
I 

cussed, the factors of ~ S in Equation 30 become less impor-
I 

tant with increasing values of AS. For small a the first 

term of Equation 39 is small compared to t he second, and the 

equation is essentially the same as Equation 33. Setting 

a = 1rj 4, an expression like Equation 34 is obtained. 

Calculations for t he third, or for any number of 

succeeding plates may not.; be carried through treating each 

plate in the manner described above, neglecting the phase 

differences produ ced by t he intervening slices of host crys

tal. For three l amellae the expression for the intensity o f 

light vibrating parallel to AA' is given by 
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iI 2 
20 [ sin

2 1f ..1 31 
( 1 

.22 2 1f Ll 32 ) IA = sin 
1\ 

- Sln 0 sin 
/. 

sin 2 'if Ll 32 
( 1 - sin 2 20 sin 2 n-~ 31 rJ + ;1 

x [ 1 - 1lt1 3 ] sin
2 

20 sin2 .i\ 2 

+ { l - sin2 20 [ sin
2 1[ ,1 31 ( 

II 1 
. 22 - Sln 0 . 2 Sln 1r ~ 32 ) 

+ sin2 'f[ A 32 
( 1 - sin

2 
20 

. 2 1f : Sl ll} 
A 

Sln 

x sin2 2 7r t1 S
3 (40 ) 20 sin II 

Hhen 0 is sufficiently small Equation 40 yields 

(41) 

which predicts that the observed color intensities are functions 

of the retardations of each of the lamellae separately. In the 

other extreme, for 0 = 1Lj4, Equation 40 reduces to 

+ sin
2 A ( .131 - Ll 32 + 

+ sin 2 1C (~S - A S -,A 1 2 

Thus for t his case, additive and subtractive co l ors of all 

combinations of the lamellae are seen . Comparing Equations 

33 and 34 with Equations 41 and 42 suggests that when this 

kind of analysis is extended to the case of N thin plates 

superposed as described above, the colors from each plate in-

dependently are seen when the angle behJeen the permitted vi -

brat ion direc t ions of the lamellae and interposed slice is 
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small, and a mixtu.re of their addi ti ve and subtractive colors 

are visible "Then the angle is near 450
• 

Applying this result to the problem of determining 

thicknesses of t;'linned material by observation of interfer-

ence colors, it is seen that a median, not a cumulative thick-

ness for the lamellae may be obtained using the procedure out

lined previously. 

Summary of results of previous sections 

The so-called nont,'linned lamellae parallel to [01121 

in calcite and [0221} in dolomite sho", interference colors 

and four . types of interference fringes. Using the interfer-

ence colors displayed by the lamellae, their optical thick-

nesses may be determined,. and these agree ,'lell with measure-

ments made by direct means . This shows that the lamellae are 

extremely thin hlins, usually about one micron or less in 

thickness. p. technique is described for obtaining the orien

tation of shallowly inclined lamellae which makes use of the 

fact that the twinned crystal can be placed in a position of 

extinction between crossed nicols. The technique is usefUl 

in eliminating the IIblind-spot" from ~-lamella diagrams pre-

pared from one thin section. Calculations show' that \'lhen 

using the neVI orientation method and the interference color 

technique, only the average and not a cumulative interference 

color produced by a series of superposed lamellae may b e ob-
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tained. It is suggested on the basis of this work that the 

term nontwinned lamellae be replaced by microtwinned lamellae, 

which more correctly indicates the true nature of these fea

tures. 
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APPENDIX I 

CRYSTALLOGRAPHIC NOTATION AND A SUMMARY OF 

EXPERH'lENTALLY DETEmrrNED GLIDING 

ELEII'JENTS I N CALCITE 

Tv'lO different systems of crystallographic notation 

have been used in this thesis. The conventional notation 

adopted by Turner et al. ( 1954, p . 886) is used throughout, 

except in the sections discussing dislocations and mechan-

ical tvrinning where the I~iller or, rhombohedral system of 

indexing is employed. In Turner's notation, letter symbols 

have been adopted for various directions and planes as folloVl: 

For crystal a,"'{es: c (vertical) [0001] 

a l , a 2 , a
3 

(horizontal) 

For crystal planes : c = (0001 ) 

m f lOlO} 

r f lOll} 

e = fOl12} 

f = f0221} 

Individual planes of a form are differentiated by subscripts, 

(lI01); r3 = (OlIl). Faces of a differ -

ent form t hat have a common zone axis are given the same 

numbered subscript. Thus r = (1011)- _e l = (1012 ); fl = (2021), -1 ' 

and the zone axis is a 2 . All of these relations are depicted 
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in the equal area projection shovm in Figure 42 . Planar 

structures noted in individual calcite grains are identified 

by their angular relations to one another and to the £-crys 

tallographic ~~is. Tne following angles , measured between 

poles of faces are i mportant (Palache, Birman and Frondel, 

1951, p. 143) 

1
0 

1 0 

c /\ r = 44-2 e l l\ f 2 = 78=-2 

c 1\ e = 
10 

264 al/\ £1 = 520 

c /\ -" 630 
a2/\ £1 = 900 

l. 

~l A ~2 450 
fl /\ f2 = 79

0 

0 

rI A r 2 75° 
, 5,",1 (c. 

, 
is c.-axis c /\ c = c.r:; 

c: of the bv-in) 
0 

~l l\ r 2 = 70~ ~l l\ r 2 = 380 

In Appendix III ,v-here the problem of the growth of 

mechanical hlins in calcite is t reated in the light o f dis -

location t heory , it is convenient to index the planes accord-

ing to rhombohedral axes. The relationship between the 

rhombohedral and hexagonal indices for some important planes 

is the fo11o>v-ing: (Ill) = (0001); (110) = (0112); (100 ) = 

(1011); (111) = (0221) . The direction [110] = [r:f). In 

this coordi nate system a lattice vector of the true unit 

cell is ~ a [112], v,here a is the l ength of tl:.e side of the 

unit rhombohedron containing two CaC0
3 

molecules. 

A special notation has been developed by Handin et al. 

(1957 ) to describe internally rotated lamell ae (Turner et al., 
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Figure 42. Equal ~~ea projection (upper hemisphere) 
showing poles of common faces and crystn1 axes in calcite 
(after Turner et al., 1954). 
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1951.i- ) . A.n internally rotated lamella is designated L, and 

specific rotated lamellae defined 'I1i th respect to their 

original undeformed orientation in the lattice are designated 
n. 

r 2 , fy etc . Thus the symbol L J identifies m
k 

a lamella mk 
internally rotated by g lide on t he plane n, . The notation 

J 

can be extended to describe more complex gliding, but need 

not be considered here (see Handin et al., 1957) . 

Experimental studies on single crystals of calcite 

have disclosed a variety of g lide mechanisms i-Thich may 

operate at various temperatures. These results are pre -

sented by both Turner et al. (1954) and Higgs and Handin 

( 1959 ), and a summary of their findings is tabula ted be low. 

TABLE 4 

Rxperimentally Determined Glide Relations in Calcite 

Glide 
Glide Elane direction Sense ~ Tem2erature 

** 

{ lOll} * negative & 20° - 5000 C (neg ), r l [r l : f 2 ] 
~--1:- tr. 

8000 positive C (neg & pos ) 

fl [ 2021} r r . r ] 
' -1·~2 

negative tr . 20°, 600°C 

a2 fl210f ? '/ tr. ? 

c (0001) ? '/ tr . 8000 c 

~l lOll2r [~1:r2 ] positive two 200 -5000 C 

£1 flOll~ [fl :r2 ] positive t'\1. 20° C 

Tne sense of glide in e-tvlinning in calcite 
and for f - b,unning in do lomi te "nega ti ve . " 
definitions hold for translation gliding . 

is "positive " 
Similar 



- 228 _ . 

APPENDIX II 

GLIDE fYlECHANISJl1S OBSERVED IN THE DAmlIN ROCKS 

Though mechanical twinning is the most obvious mode 

of deformation in the rocks studied here, other glide mechan

isms can be deduced from analysis of nonhomogeneously de

formed single crystals containing kink bands and warped 

lamellae. The microscopic techniques used to do this are 

analogous to those developed by Turner et al. (1954). The 

method depends on the fact that when a crystal is deformed 

by translation or tWin gliding, lamellae present before 

deformation are rotated relative to the crystal lattice 

during the gliding process. Careful measurement of the 

position of such "internally rotated ll structures relative 

to the c-axis of the crystal can thus be used to deduce 

the operative glide mechanisms if the deformation is not too 

complicated . 

In the highly deformed Darwin rocks, close examina

tion reveals that twinning lamellae present in many grains 

are warped and twisted. The purpose here is to examine hm-r 

such nonhomogeneous distortion is accommodated in the crystals. 

There are at least two methods whereby the crystal 

lattice could undergo su ch bending: (1) the crystal could 

deform in plastic bending by means of slip similar to the 

way in which a thick sheaf of papers is bent (Cottrell, 1953, 

p. 29 ) or (2) the crystal could twin or unh,in to vary the 

. ./ 
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thickness of hTinning lamellae and bring about bending 

(Basinski and Christian, 1954). A consequence of (1) is 

that pre -existing lamellae shou ld be internally rotated in 

parts of the crystal 'I'There slip has occurred. For slip on 

a single system the axis of external rotation (bending) lies 

in the glide plane and normal to the glide direction. The 

poles of the gliding plane and the internally rotated 

lamellae in all positions of rotation ,'fill fallon a great 

circle when plotted on either a stereographic or equal area 

net. In prac~ice if the bending is due to unequal slip on 

two or more glide systems, the method becomes difficult to 

apply and the exact mode of deformation often cannot be 

deduced. If bending is accomplished by operation of (2) 

then it can be shown (Basinski and Chris,tian, 1954, p. 103 ) 

that the effect of Side ,·rays steps in the twin boundary is 

to bend the host and tVTin lattices, there being a rotation 

of Qlt about the normal to the twin direction for each step 

in the twin boundary. b is the magnitude of the Burgers 

vector of the twinning dislocation (see appendix III, this 

thesi s), and t is the total thickness of parent and twin 

crystal measured normal to the twin plane. If in two 

neighboring sections perpendicular to the twin plane there 

are n twins of thicknesses Pl and P2' then there are 2n 

twin boundaries and the total number of twinning steps 

betv.reen the h'fo sections i s (Pl - P2)!Yh (1'1 is the minimum 

step height). TI,e total rotation between the two sections 
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is be = .§.(Pl - P2)/t, where s = Q/h the twinning shear 

(0.69 for calcite). be, P2' PI' and t can then be meas

ured in the crystal. 6 e computed using this equation can 

be compared ,'ri th that measured. 

In attempting to de termine possible gliding ele

ment s responsible for warping in individual crystals, 

simply deformed grains 'l'Jere chosen for examination. Since 

the gross deformation the Dar'\1in rocks have undergone is 

not very ",ell known, it is not possible quantitatively to 

relate the microscopic deformation to the bulk strain. In 

addition, an entire grain can, and does participate in the 

deformation, so that no undeformed reference areas exist, 

as occur in and near the end cups in experimentally deforme d 

specimens, which may be used to establish absolutely the 

glide systems in operation. 

The procedure followed here is to plot orientation 

data from each part of a warped grain on a stereographic 

pro jec tion, arbitrarily choosing one portion to be the 

"reference" area. The axis of external rotation is then 

found relative to the crystal axes in the reference portion. 

The results of measurements on 12 grains are presented in 

Tables 5 and 6. Table 5 refers to grains where bending is 

thought to be predominantly accomplished by translation 

gliding, and Table 6 to those grains where change in thick

ness of the twins might account for the deformation. In 

t he tables starred symbols refer to data in the "rotated" 
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portion unstarred in the reference portion of each grain . 

No statistical significance can be attached to t he rela

tive frequency of occurrence of each of these modes of 

bending, because the grains were not randomly picked during 

traverses of the thin sections . 

Tne data given in Tables 5 and 6 indicate that: 

(1) in many grains the observed bending may result from 

translation gliding on planes observed to operate in labora 

tory experiments, i.e., rllOll} and ff0221} (appendix I), 

and on some that are not commonly observed in experiments, 

i.e., positive r flOll} gliding and £ (0001 ) and m~lOlOt 

gliding . (2) Examples of bending through accommodation to 

changes in thickness of twins can be found, but in the 

cases investigated the computed angles of , bending are rela

tively much greater than those observed. This is probably 

due principally to the crudeness of the measurements , but 

some influence of translation gliding in the bending can

not be discounted. (3) In the rocks used in this study, 

anomalously oriented lamellae such as those described by 

Borg and Turner (1953) are commonly associated .nth non

homogeneously deformed grains. 
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TABLE 5 

Summary of Translation Gliding Relations 

in Grains from the Darwin Fold 

Description Bending Data Angles 

Two sets of Bending axis £ /\ ~1=26 

£ 1\ ~2=26 

c* A e* =31 

equally developed for £ • .!!3 

microtwinned £ £* = 150 

- II - 1 
lamellae c*1\ e* =32 

- - 2 

Two sets of lamel- Bending axis £ 1\ ~l =25 

£ 1\ ~2=25 

C*I\ e* =28 

lae, ~l visibly is .!!3 

twinned, of vari- £ 1\ £* = 140 

able width; ~2 

microtwinned 

Three areas of 

different orien

tation; ~l is 

25% twinned. ~2 

is microtwinned 

One set of lamel

lae ~l' 20% 
twinned, constant 

width 

- -1 
c*1\ e* =25 
- - 2 

Axis of bend- £ 1\ ~l =36 

ing nearly £ 1\ ~2 =26 

coincides with £* 1\ 2*1=18 

the a -axis c*1\ e* =40 -3 - - 2 
C f\ c* =40

0 
c**1\ e**=33 - - --1 

o 
C 1\ c**=13 c**1\ e**=27 - - --2 o 
£*1\ £**=28 

Bending about 

a C 1\ c*=lOo 
-1 - -

£ I\ ~l =30 

C*/\ e* =29 
- - 2 

Possible Types of Glide 

f2 or ~2 active with 

bending about ~ 

Translation on any plane 

with .!!3 as zone axis, 

i.e., ~2' f 2, !!!2 

~2' f2 or !!!2 are 
possibly glide planes 

~l' ~2 each 

5% twinned 

Bending axis 

is near pole 

to !!!3 for £ 

£ 1\ ~l =37 Glide on either £ or !!!3 

£ 1\ ~2 =32 

£*1\ ~\=31 

£*/\ ~*2=26 



, 

Description 

One set of 

microtwinned 

lamellae 21 

!1 5% twinned 

!2 microtwinned 

visible twins or 

irregular width 

Crystal is 50% 

twinned on 21' 

twin bands 

vary in width 

!l' 22 both 
microtwinned 

1:3 cleavage 
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TABLE 5 (CONT.) 

Bending Data . 

Bending axis 

is 220 from 

~3· !1 has 
moved along 

the great -circle I3£'lI 2 
o 

£, A £,* = 20 

o 
£, A£,* = 14 
bending axis 

for £, is ap

proximately 

~2 

Angles 

£ /\ 21 =26 

c*1\ c* =11 - -1 

£, A!l = 26 

£ A!l = 27 

C*A e* = 33 - -1 
c*A e* = 33 
- - 2 

Possible Types of Glide 

Negative I2 glide. ~3 is 

perpendicular t~ glide line. 
-2 

!\ is thus a Le lamella 
(Appendix I) -1 

Positive (?) I2 glide could 

account for the observed 

bending of the crystal and 

for the observed internal 

rotation of lamellae 

£ /\ £,* = 36
0 

£, A!l = 320 Glide on £, (0001) (?) 

axis of bend- £,*/\ !\= 2JJo Internal rotation data in-

ing exactly !11\ !\= 100 dicate glide in opposite 

coincides 

with pole 

to !!!2 

o 
£, I\ £,* = 32 

axis of beIXi

ing is 90 from 

pole to !!! 

directions in two parts of 

the crystal. !l follows 

the great circ1e!J¥3 • 

Parts I, II Glide on £, (0001) or HIllo} 
£ A!l =22,19 with glide direction (OOOlJ 

£1\!2 =35,31 angular changes in rotated 

!ll\ !2=48.45 sector compatible with nega

£, 1\ I3 =48 ,43 tive translation on I1· 

I31\ !1=40.34 

I3/\!2=56,46 
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TABLE 6 

Twin Accommodation 8ending in Crystals 

from the Darwin Fold 

Description Pl(mm) P2(mm) t(mm) Q 
~ 

Amount of twinning 

changes from 35% to 

20% across bend. 0.01 0.005 0.015 8° 
Axis of bending 

perpendicular to 

glide direction in !l 

40% twinned on !l" 
contains micro-

twinned lamellae !2. 0.01 0.005 0.015 90 (?) 
. Axis of bending is 

perpendicular to 

glide direction in !l 

20% twinned on !ll 

with !2 as axis of 0.1 0.05 0.15 70 

rotation for £ 

and !l 

Internal 
Q rotation 
calc data 

130 £ I\ !ll = 28 
c*1\ e*= 28 - -1 

£ I\ !ll = 32 

130 £ 1\ !l2 = 25 

c*/\ e* = 25 - . -1 
£* I\ !l* = 30 

130 
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APPENDIX III 

DISLOCATION IlJ:ODEL FOR THE GROVITH OF 

IVJECHANICAL TtHNS IN CALCITE 

Introduction 

It is' reasonable to suspect that t he plastic 

behavior of calci te-- ti'linning , translation gliding, and 

.. mrk hardening -must be explicable in terms of' the theory 

of dislocations. This is because one is faced with es-

sentially the same problems as are posed in explaining 

the plastic behavior of metals. For one thing, i t is 

geometrically difficult to imagine all atoms on a par-

ticular slip or tv,in plane moving simultaneously during 

slip or hlinning, since thermal fluctuations throughout 

t he crystal would be likely to cause movement sooner in 

one place than another (Cottrell, 1953, p. 7). A second 

reason is that there are large discrepancies bet\'feen 

experimentally determined critical shear stresses for 

twinning and translation gliding and values for the 

theoretical shear strengt h of perfect crystal determined 

* using the approximation of Frenkel (see Cottrell, 1953, p. 9). 

* The Frenkel methods states that the critical stress at 

which slip take s p l ace in a crystal is 'lc = )1/2 , \'lhere p 
is the shear modulus, which for calcite is different for 

various planes and directions. p can be computed from the 



TIle discrepancy for t winning is much greater than for trans

lation gliding. Low experimentally observed values for 

hrinning in metals, particularly cadmium and zinc , have been 

interpreted as indicating (Cahn, 1954) that most investigators 

have measured stresses required to thicken already existing 

twins, not the stresses required to initiate twinning lamel

lae . It has in fact been recently proposed (Bi lby and 

Entvlisle, 1954) that the nuc leation of mechanical twins is 

controlled by large local stresses which 2.re set up in a 

crystal around inhomogeneities of various kinds (disloca

tions, impurities) and that twinning does not obey a cri ti

cal resolved shear stress lavr. Garber (1947) has shovm 

that stresses required to initiate tVlins in optically per 

fect calcite are very high (») 20 kgm/cm2 , see Cahn, 1954 , 

p . 427), bu t available experimental data on hJinning in 

calcite single crystals (see footnote , p . 235) indicate 

low values of the critical resolve d shear stress for 

twinning . 

TIlere is some direct evidence that movement of 

dislocations is responsible for translation gliding and 

single crystal compliance constants , v{hich are usually re

ferred to the cr y stallographic axes, by using the formulae 

S~jkl = A ia ;\ j~ AkS A Iy Sa~&Y (Nye, 1957 , p. 137). For e 

tVlinning 1:c = 0 .35x105 kgm/cm, and 'L ObS = 20 kgm/cm
2

; for 

r - gliding 'l c = 0 .45x l 05 kgm/cm
2 

and L obs = 180 - 1800 kgm/ 

cm2 . Experj_mental data are taken from Turner et al. (1954, 

p . 889 ). 
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twinning in calcite . Keith and Gilman (1959 ) have produced 

arrays of etch pits on glide planes around indentation 

pOints of ve.rious kinds of dies. The glide planes depicted 

in this manner are the same as those deduced in the more 

e l aborate experiments of Turner et 0.1. (1956 ). Etch pits 

.. Jere also produced along microtvTinned ( ? ) e-laJl\ellae (their 

figure 21). 

The present study shm·iS that at least geometrically 

the proper arrays of dislocations can be found to account 

for the tvlinning movements in calcite ''Thich satisfy the 

condi tions of the so - called "pole mechanism" of Cottrell 

and Bilby (1951). The treatment is thus the same as has 

been proposed to account for t,·tirming in metals . This ap

proach is phYSically more satisfactory th&~ the usual one 

invoked in explaining twinning in carbonate minerals ,·thich 

merely describes the tl'.rin process as one of simple shear 

vrith gliding on successive ionic layers in the proper sense 

and amount to develop a tHinned lattice from an original or 

host lattice (Higgs and Handin, 1959) . HOHever, a dis

location theory of twinning as applied to calcite is still 

restricted in its description of the actual process, as 

the theory can account only for the shear components of the 

tVTinning movements together with possib l e movement s perpen

dicular t o the tHinning plane . The structure of the brin 

boundary is not described, and no specific treatment of the 

required rotations of C0
3

- groups during twinning is pro -
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vided by the theory. Before turning to a discussion of 

'-h 11 1 l' 11 d' t l' v e po e meC 1anl sm an l s app lcation to calcite~ a 

previous theoretical treatment of twinning in calcite is 

discussed. 

Previous Hork on the Mechanism 

of 'l\-linning i n Calcite 

Lifshits and Obriemov (1948 ) have studied twinning 

in calci te using a model 'tlhich does not explicitly postulate 

the existence of dislocations to account for the t''linning. 

Ho,'lever, dislocations are created by allol'ling very large 

elastic strains, comparable in magnitude to the t'trinning 

shear, to exist near the point of application of load (a 

knife edge) "I'li thout causing fracture. T'nis allo'tiS atoms 

just under the loading point to be sheared throu gh large 

distances, and so to fall into twinned position one by one 

thus creating a t"I'linning dislocation (Cahn, 1953, p. 378 ). 

By these means it has been possible to qualitatively account 

for the observations of Garber (1947) on the stages of de

velopment of twins in calcite (p.177 this thesis). 
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The Pole Nechanisms 

Outline of the theory 

Cottrell and Bilby (1951) have proposed a mechan -

ism for the production of mechanical buns in metals by 

dislocation movements, the essential idea being that a 

single dislocati on accounts for the tvnnning deformation 

on successive twin planes. The mechanism requires that 

three dislocations meet at a node in the lattice . Desig

nate these three by their Burgers vectors b l , b 2, and b
3

. 

Then at the no de the relation 

must be satisfied (Cottrell and Bilby, 1951, p. 574). Let 

b
3 

be t he dislocation accounting for the ti,Tinning movements 

(in this theory the macroscopic shear of only atom centers 

and C0
3 

groups associated "Tith t he twinning) . If the hlin 

plane is specified by its vector normal k, and (b
3

' k) = 0, 

the tWinning dis location is free to continuously move in 

the t"lin pl&'1.e provided neither of the other tvlO disloca-

tion lines lie in the plane and interfere vii th its motion. 

The "pole" mechanism arises from t he case '"here the other 

tHO dislocation lines thread the twin plane (b l and b 2 thus 

acting as "poles" to the tv-lin plClne). RelCltion (i) 

requires thClt if b
3

'k = O,(b l + b2 ) 'k must equal zero as 

vIell . There is thus a component of eClch of the pole 
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dislocations 

(ii ) 

perpendicular to t h e tv,rin plane whi ch allows the line of b
3 

to 

be displaced by h (=I h I) for each revolution about the poles. 

If h is . equal to the spacing between successive twin planes, 

then b
3 

can S\1eep out t\-rinned material on successive planes 

as it climbs up the spiral ramp created by the pole disloca-

tion . 

The problem is therefore one of finding the proper 

array of dislocations meeting at a node . In particular the 

requirements to be satisfied are (Cottrell and Bilby, 1951, 

p. 576 ): 

(1) The S\'leeping dislocation (tvlinning disloca

tion ) must produce the correct shear dis-

placement to generate the transformed struc-

ture on the svreeping (twin) plane . 

(2) The Burgers vector of the po l e dislocation 

must have a component perpendicular to the 

s,'leeping planes that is equal to their 

spacing. 

(3) The pole dislocation must be anchored 

strongly enough so that it does not move 

under the stress causing the sVleepi ng dis -

location to move. 
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( L~ ) The sweeping and pole dislocations, together 

with perhaps other dislocations must form a 

node and in the node the m'feeping disloca-

tion must be free to move in the sweeping 

plane Vlhich i s intersected by the pole . 

. Bilby (1953) has reached a general conclusion that a gen -

e r ating node of the kind required above can ahmys be found 

in any crystal lattice . In the fo llo''ling , Bilby's result 

will be particularized for the case of calcite. 

Bilby (1953) ShOVlS that a generating node behleen 

two Bravais lattices P and C \<lith vectors P(n) = n jp
j and 

C(n ) = njco (sum over repeated indices i = 1,2,3) is 
J 

-P(n) + C(n) + (C( n) · k ) (roi + G k) . (iii) 

k and i are mutual orthogonal vectors, k being perpendicular 

to the h'lin plane, and i parallel to the direction of the 

tVlin shear. r describes the tvlin shear and E a contraction 

or extension parallel to k . -P is the pole dis location in 

P and C is the pole dislocation in C, ,'lith (C·k)(r i + E k) 

the hrinning dislocation. 
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The theory applied to calcite 

For calcite r is equal to tan ~ I (fig . 44), and E- = O. 

In order to investigate the various possibilities for P and C 

in calcite, we proceed by specifying the twin dislocation 

Burgers vector as (C'k)(tanlf' i), choosing C in the orig

inal lattice and then solving Equation iii for P. Accept

ible possibilities for P are complete or partial disloca

tions ,'li th P'k equal to h and which do not have large mis

fit energies i n the twin lattice. A restriction on the 

vectors C in ,the original lattice is possible. The re

quirement that the deformation in twinning be plane per-

pendicular to the shear plane in b·linning indicates that 

the Burgers vector C must originally lie in the shear 

plane, for othenTise the transformation a 'ssociated "Ii th C 

will not produce plane disformation of the type required. 

For calcite there are three possibilities for C 

which have reasonably short Burgers vectors and are com-

* plete dislocations in the C lattice . T:l1ese are a[llO], 
1 2a[112], and 2a[111]. A fourth lattice vector 2a[ 100 ] is 

excluded because it lies in the twin plane (110) (i~e. P.k=O). 

Proceeding as indicated above, the various vectors obtained 

from Equation iii for P are tabulated bela",. 

* See Appendix I. 
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TABLE 7 

pen) in rhaab. 
coordinates 

h - 11 - 1 - '2De + (cot~ - '2 t an'f) i J nearly '2 ji[llOJ 

- 2b [iC + (tant - 2 tan 'P' ) IJ neither a partial 
nor a complete 
dislocati on 

In the above . tab I e, the angle s, p , If' , t are de fined in 

Figure 44 . It appears that the only suitable choice for C is 

a vector of the type a[llO] for this yields a vector in the 

twin lattice which is exactly a[IIO ]. 

It can nOvl be established that all conditions on the 

node given above are satisfied . The first is satisfied by 

hypothesis . The second is accounted for if the dislocations 

C and P (a (no]) are of screw character . Condition (3) only 

requires that the pole dislocation in each lattice be immobile 

under the stresses causing the tvlin dislocation to move. Dis -

locations with Burgers vectors a[ l lO] are mobile in both the 

twin and original lattice (they are associated with transla

tion gliding on (100), i . e . , r) but experiments indicate the 

resolved shear stress for their motion at least at 101" temp -

erature is much greater than that needed to cause tvnnning . 

Hence the dislocations P and C are probably immobile under 

the stress required to move the sweeping dislocation . 
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Condition (4) is satisfied by Bilby's analysis together 

with (2), that is, specifying the pole dislocation to be 

of the pure screw type. 

Generation of the twin dislocations 

The theory outlined above and applied to calcite 

cannot account for the origin of twinned crystal from per

fect crystal which other,vise contains only a[llO] scre1t, 

dislocations. The theory also cannot describe the "re-

shuffles" '"hich accompany tWinning movements such as the 

rotation of C0
3

-groups. HbvTever it is possible to see ho\'l 

these twin dislocations may be generated in calcite. Con

sider an a[llO] scre\'l dislocation in the original lattice 

which passes through a thin lamella of t,'linned material and 

emerges again on the opposite side of the t'\vin. From the 

above analysis, a[llO] becomes a complete dislocation \'lith 

Bur gers vector a[llO] in the t1'lin lattice and the difference 

bet'\"een these two is precisely the Burgers vector of the 

twinning dislocation. 'I1'lin dislocations will thus be 

generated at the pOints of emergence of the pole disloca

tion from the t,vin. This argument is the same as that in

voked to account for the origin of twin dislocations in 

metals (Cahn, 1954, p. 437). 
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Figure 43 . Photomicrograph. Tapered [022l} h!in 
lamellae in dolomite . I n several of the bright bands cross
ing the dark fie l d of the host crystal, the interference 
colors produced by the lame l la range from 101'lest first order 
gray through blue of the second order . Because the lamellae 
are inclined approximately 400 to the plane of the thin sec 
tion , these colors do not reflect the trD.e thickness of the 
lamel l ae but some greater thiclmess than the true one . The 
true thickness varies f r om zero to appr oximately 2 )1 . Other 
br ight lines crossing t he photo at a smal l ang le to the hori
zontal are thi n l y tvlinned f022lr lamel l ae . Other faint dar!c 
lines are f lOI 1} cleavage . 
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Geometry of Twin Dislocations in Calcite 

l.fdcrotwinned lamellae in calcite and dolomite 

generally exhibit some variation in thickness along the 

linear projected trace of the lamellae in thin section. 

T'nis variation can easily be observed by noting changes 

in interference colors produced by the lamellae (see fig. 

43 ). For a change in thickness the twin boundary must 

be stepped, and such a step is shovm in the drawing of 

Figure 44, where a dashed, line separates material in twin 

and non-twin orientation. The step shown in the tvlin 

boundary is equal to the spacing betv.reen tv.ro successive 

(110) planes, equal to the step height h of the previous 

analysis. Frank and van Der Merwe (see Read .. 1953, p. 109) 

have termed a step of this type in an otherwise coherent 

tvrin-nonhrin interface a tWinning dislocation. In Figure 44 

the dotted atoms represent positions of transition between 

tV/'inned and nontwin states of the lattice. This drm'ling 

must of course be regarded as qualitative only, as for 

example the transition disturbance is probably distributed 

over a much greater area of twin plane than shoilm in the 

drm'Ting. Furthermore, it has tacitly been assumed that the 

structure of the twin boundary consists of a single twin

nonti'lin interface across which atoms and molecules are 

si tuated in tvlin position wi th respect to one another. 

Another possibility (Cahn, 1954 , p. 383 ) is that there is 
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Figure 44. Schematic representation of a step in twin 
boundary (to'Tinning dislocation) in calcite. Straight dashed 
line separates crystal in tv/in and non-twin orientation. Open 
circles are Ca atoms, planar groups of three circles CO?-groups 

..> 
(solid circles carbon atoms). At the step the dashed atoms and 
molecules are ,meant to represent approximately the positions of 
transi tion from host to t1IJin orientation. [3 =036 3/40, 8 = 
38 1/40 , t= 26 1/40 , ~' = 34 3/Ljo, a = 6 . 42 P. (Turner et a1., 
1954, p. 887) h = 7.64 P.. tan r' = 2 tan (0/2). 
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a layer at the twin interface ,,,here C0
3

- grou p s are parallel 

to t he twinning plane . This structure actually differs 

10 
from the one shovm in Figure 44 by only a 264" counterclock-

"lise r otation o.f C0
3

- group s at the t win boundary about an 

axis l ying in the hTin plane and perpendicu lar to the direc -

tion of twinning shear . A reshuffl e of this type may ac-

company the twinning movements, but is not described in 

terms of t he pole mechanism. 

The existence of t apered t wins (fig. 43 ) can provide 

i mportant evidence for t he me chanism of t\"inning discu ssed 

here. A consequence o f t .he Cottrell-Bilby mode l is that 

twins are built up conically in a vlay analogous to the 

growth spirals on crystal faces, since the portion of t h e 

si"eeping dislocation near the' po le has a h i gher angular 

velocity and can sweep out tiflinned material more rapidly 

(Cottrell and Bilby, 1957 ). Incipient mechanical twins can 

thus always be expected to be somewhat lens shaped. 
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