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ABSTRACT

The purpose of this investigation has been to study
in detail the development of deformation fabrics in some
naturally deformed limestones, with a view of testing the
geological applicability of experimentally deduced origins
of such fabrics in these materials. Flexurally folded
limestones have been used to make comparisons between experi-
ment and nature, by taking advantage of the approximately
known character and variation of strain in these structures
and using this information to deduce theoretically the de-
formation fabrics from place to place to compare with those
actually observed in the structures. Two kinds of fabric
problems are treated, ones dealing with gross changes in
crystal orientation accompanying large strain, and those
treating the origin of twinning lamellae in carbonate
rocks in relation to applied stress, the so-called dynamic
analysis. An extension of this analysis is made which al-
lows quantitative information as to rock strain due to
twinning (and translation gliding) to be obtained from thin
sections.

Current theoretical treatments used in predicting
fabric changes with strain in marble are found inadequate
for predicting fabric changes with strain in flexure folds.
Exact derivations of these fabrics for folds have not been
made. Instead, an implication of a more general theory
treating development of fabrics in metal aggregates i1s used
to derive approximately the changes in c-axis orientations
with large strain by analogy with fabrics obtained from
experimental deformed Yule marble. Well defined fabric
changes with large strain involving both twinning and
translation gliding in individual crystals have not been
observed in the folds studied.

Predicted results for the dynamic analysis of an
aggregate with isotropic c-axis distribution are derived
_with special reference to one of the folds studied. The
stress distribution in plane strain is calculated for the
structure starting with an already partly folded unconfined
layer of circular cross-section, and assuming it to be
loaded elastically with simple compressive forces applied
in the limbs directed normal to the axial plane. Twinning
deformation in individual crystals is treated by assuming
that the law of maximum resolved shear stress determines an
active twin set in each grain. The results obtained are
compared favorably with those observed in a natural fold.



Deformation fabrics from two small folds are given.
The first fold occurs in a large anticlinorium in western
Washington County, Maryland, in thinly bedded limestones
and shales of the Silurian McKenzie Creek formation. The
second is a drag fold on the eastern limb of a north-
trending anticline in Carboniferous limestones and shsales
located in upper Darwin wash, Darwin Hills, Inyo County,
California. In the Maryland fold, c-axis fabrics obtained
from the axial region show no preferred orientation due to
deformation, but a dynamic analysis of the twinning lamel-
lae is in good agreement with that expected in theory.
The dynamic analysis is shown to be sensitive in depicting
small changes in twinning deformation throughout portions
of the body examined. The strains due to twinning are
compatible with bending in part of the structure. More
guantitative comparisons of the observed and expected de-
formation have shown that under a derived system of stress
at the axial plane, twinning deformation in 80% of the
grains in the aggregate has followed the law of maximum
resolved shear stress. The amount of twinning strain within
individual crystals varies with their orientation in the
stress field. The calculated visible (twinning) strains of
about 0.01 are considerably less than the strains computed
from the geometry of the fold of 0.25, and much of this
discrepancy may be due to fracturing (Slip on planes paral-
lel to bedding) during folding.

In the fold from Darwin wash, observed fabrics
cannot be related simply to the megascopic deformation in
the fold. Preferred orientations of c-axes are thought to
be partly due to veining in the rock. Fabric changes due
to twinning are however qualitatively correlated with
shortening in the fold perpendicular to the axial plane,
and a2 shear similar to that necessitated by the relation
of The drag fold to the major anticline with which it is
associated., Calculated visible strains are considerably
less than those approximately deduced from fold geometry,
but can be partially correlated with the observed deforma-
tion in the structure. Analysis of the deformation in
nonhomogeneously strained individual crystals of these
aggregates (Appendix II) shows that in addition to e f0112%
twinning, translation gliding has occurred on most types
of glide planes deduced for calcite from laboratory experi-
ments. Microscopically these rocks appear to have under-
gone large deformation, exhibiting local cataclastic tex-
ture, much twinning and warping of individual crystals.
However, well defined formation fabrics due to large strain
have not been observed in them.



L second part of this investigation has dealt with
the so-called nontwinned lamellae in calcite and dolomite.
From these studies it has been concluded that such struc-
tures are extremely thin (a few mlcrons) but otherwise
normal_twin lamellae parallel to e{0112¢ in calecite and
f{b??l}_n dolomite, and are for this reason renamed micro-
twinned lamellae. In addition to interference colors,
these lamellae exhibit four different types of interfer-
ence fringes. A new method is presented, which utilizes
the optical properties of the twins, for obtaining the
orientation of lamellaze inclined at small angles to the
plane of a thin section. The utility of this technique
lies in the fact that it may be used fo eliminate the
central "blind-spot" in twin lamellae fabric diagrams.
Some measurements of twin thicknesses, made using the new
orientation method, are given, together with calculations
which show that only an average and not a cumulative op-
tical thickness for a stack of lamellae superposed in thin
section may be obtained using the method.
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INTRODUCTION AND PURPOSE OF THE INVESTIGATION

The purpose of this study i1s to test in detail the
applicability of experimental studies on the origin of de-
formation fabrics in carbonate rocks to the origin actually
observed in such rocks in nature.

The geological literature contains abundant petrofsbric
data bearing on the problem of preferred crystal orientation
in many kindé of deformed rocks. Investigations of this type
were first carried out by Sander (1911) who applied the methods
of petrofébric analysis to complexly deformed rocks in the
eastern Alps. The purpose of these investigations was to
understand the deformational history of the rock as defined
by their fabrics. The central problem in interpreting all
fabric data has been to understand how preferred crystal
orientations arise in nature--whether intracrystalline plastic
deformation, cataclasis, recrystallization, or some combina-
tion of these processes is responsible for the fabrics. Such
understanding is obviously necessary if any certain conclusions
are to be drawn from the fabrics either as to the strain the
rock has undergone or as to the forces that acted upon it
during deformation. Prior to the efforts of Griggs (1936,
1939) most experimental data on the mechanism of plastic de-
formation of a poly-crystalline material pertained to metals.
It was natural therefore to look to deformed metal textures

to provide insight as to how deformation fabrics arise in rocks.



Close comparisons between rock and metal fabrics have been
justified on the grounds that both rock forming minerals and
metal crystals deform by the same mechanisms, translation
gliding and twinning, and through recrystallization. Rock
and metal deformation is alsc similar in that both types of
material show plastic flow, work hardening, and creep, and
both may be annealed at high temperatures after cold working
(Griggs, 1940; Griggs et al., 1960). On the other hand, the
atomic structure and bonding of metals is profoundly different
from that of most common rock forming minerals. Nevertheless
the results of 25 years of experimental work have largely
shown the validity and usefulness of these comparisons,
Griggs et al. (1960, p. 104) thus conclude:

Our [experimental] results with rocks and rock
forming minerals without exception follow the empirical
laws developed in the study of metals. This implies
that the vast body of data collected in experiments on
metals may be applied in some detail to the interpre-
tation of deformed rocks . . . .

In accord with experience in metals we find that
flow. by intracrystalline gliding obeys the law of
maximum resolved shear stress and that deformation is
nearly homogeneous. It follows that if the active
glide systems of the component crystals are known
fabric changes resulting from plastic strain without
recrystallization may be predicted for any stress and
strain system.

As an example, Turner et al. (1956) have had great success
in predicfting fabric changes which occur in Yule marble

during uniaxial testing under laboratory conditions using

methods akin to those of the metallurgist.



The present work is an effort to gain further under-
standing of how crystal fabrics develop in nature by attempt-
ing to test the geological applicability of the experimental
fabric studies of marbles. Comments of DeSitter (1956, p. 112)
are pertinent to the argument for this kind of study:

In my opinion the [fabric] interpretation problems

can be solved only by careful fabric studies of struc-
tures whose major features and microstructures are both
well known beforehand. The tendency to depend on de-
formation experiments in the laboratory in order to find
the solution is to my mind a wrong road; we have . . .
not the slightest guarantee that the experiment arrives
at an identical structure by the same path as in nature.

There are well recognized reasons for believing that
some differences exist between laboratory experiments and
nature. Strain rates in the laboratory are probably in most
cases much greater than those experienced by naturally de-
formed rocks, and this may determine that the magnitudes of
the stress differences involved in the flow of rocks under
natural circumstances may be small, below experimentally
determined yield stresses. Extending the analogy with
metallurgical findings, it can be said that if rocks do deform
naturally in slow creep and at elevated temperatures with pro-
longed times of loading, opportunity is given for processes
to operate which have larger than average activation energies
(Cottrell, 1953, p. 213). Thus recovery, recrystallization,
grain growth, diffusion, and slip at grain boundaries could
contribute to the deformation of rocks during high temperature

creep, in addition to the various intracrystalline slip proc-

esses which are active to some extent at all tTemperatures



and which provide the dominating mechanism of deformation in
laboratory experiments on carbonate rocks.

Carbonate rocks are the most advantageous types of
geological material one might choose for the comparative
investigation pursued here for several reasons. (1) Of
greatest importance is the fact that the mechanical behavior
and the corresponding development of crystal fabrics in
response to strain in the laboratory are rather well under-
stood in calcite ahd dolomite rocks. Detailed comparisons
between laboratory and natural experiments are thus possible.
(2) Caleite and dolomite aggregates in thin section show a
variety of intragranular features which are direct evidence
of mechanical deformation, and which permit detailed studies
of how individual grains have participated in the deformation
of the aggregate. (3) Calcite and dolomite are also compara-
tively simple minerals structurally and this fact makes
feasible a stuay of their deformational properties in terms
of the atomic mechanisms involved.*

The present investigation proceeded in the following
steps:

(1) A search was first made for naturally deformed

*In Appendix IITI e {OlTE} mechanical twinning in calcite
is treated using a dislocation mechanism like that applied to
twinning in body centered cubic and hexagonally close packed
metals. Though this study is not of direct concern to the
major topic dealt with here, a geologically important reason
for establishing such a twinning mechanism for calcite 1s to
form a basis upon which a structural theory of recovery creep
might be established for this material.



limestone having approximately known strain distributions,
and in which observable fabric changes produced by the de-
formation could be expected.

(2) For ostensibly suitable samples, g-axis* and
e-lamellae fabrics were measured and the degrees of fabric
change as a function of the estimated amount and character
of the strain were evaluated. These data should make it pos-
sible in principle to distinguish syn{ectonic fabrics from
pre- and post-tectonic ones, and enable fabrics predicted on
the basis of laboratory experiments to be compared with the
fabrics observed in the naturally deformed specimens that have
been subjected to approximately known strain.

(3) The "dynamic analysis" technique of Turner (1953)
- was then applied to the fabric data. An extension of this
technique was also developed that made possible a quantitative
determination of the strain history recorded in the rock. The
results cbtained in this step make possible an evaluation of
the geological applicability of both the qualitative (Turner,
1953) and quantitative approaches (p.56 this thesis).

(4) PFrom the data obtained in investigation of (2)
and (3), an attempt was made to draw conclusions about the
mechanics of limestone deformation under natural conditions.
In particular, the following questions were treated:

(a) Can the mechanisms of plastic deformation

of calcite crystals in nature be distinguished

*
Crystallographic notation is explained in Appendix I.



.

from those known from laboratory experiments?

(b) To what extent may the fundamental assumptions
embodied in predicting fabrics for experimentally
deformed Yule marble be shown to apply in nature?
For example, is the "law of maximum resolved shear
stress" applicable to both twinning and transla-
tion gliding in naturally deformed aggregates?

(¢) To what extent can the macroscopic rheological
laws governing the deformation of limestone under
natural condifions be determined from the petro-
fabric data?

(5) A natural but unexpected outgrowth of the above
studies has been an investigation of the optical properties
and crystallographic significance of the so-called non-
twinned lamellae of calcite and dolomite (Turner et al.,

1956, p. 896), a type of intragranular structure that is a
conspicuous feature of the deformed rocks studied. In this
work a useful new technique for carbonate petrofabric measure-
ment has been discovered.

The material outlined above may be rather naturally
divided into two parts, one dealing with the detailed fabric
studies and the other with microscopically observable features
in naturally deformed carbonate aggregates. In the first part,
pertinent experimental studies and previous applications of
the laboratory investigations to petrofabric problems are

first summarized. Basic concepts and methods relating to the
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fabric studies are then developed, viz., the nature of the
geologic structures selected for this study--flexurally folded
limestones, a discussion of the strain distribution in flexure
folds, principles upon which comparisons of theoretical and
observed fabrics are based, the development of a method for
calculation of bulk strain from petrofabric data, a method

for obtaining the rheological laws of natural limestone de-
formation in nature, and the various petrofabrics techniques
used in the investigation are then treated in this order.

The detailed fabric results are then given. Following the
fabric studies attention is devoted to the problem of the

non-twinned 1lamellae, and other microscopic deformation

features observed in the rocks studied here. Glide mechanisms
observed in individual crystals of naturally deformed rocks
studied here, and the problem of a dislocation mechanism of

mechanical twinning in calcite are treated in appendices.
PREVIOUS WORK

From the various experimental and supporting micro-
scopic studies of Griggs, Turner, and co-workers (Griggs
and Miller, 1951; Handin and Griggs, 1951; Turner and Ch'ih,
1951; Griggs et al., 1951, 1953; Turner et al., 1954; Turner
gﬁ_glh:1956; Griggs and Handin, 1960; Handin et al., 1960) a
good understanding has emerged of the mechanical behavior
and development of preferred crystal orientations with strain

in Yule marble. The following results are of importance to



= B
the present study. Many of these matters are treated in more

detail later and are only summarized here.

(1) For confining pressures of from 3,000-10,000 kgm./'cm2
and over a temperature range of 2&0—5000 C, both Yule marble
and single calcite crystals deform by intracrystalline gliding,
the principal mechanisms being twinning on g_{bli?}* and trans-
lation gliding on r {1071} . At 24° C and between 500° and 600°
g, £ {OE?l}translation gliding also has been found active to
some extent, but never dominant over r translation gliding.
at 800° ¢ ¢ (0001) gliding may occur.

(2) In both single crystals and with aggregates the
law of maximum resolved shear stress has been found to apply
approximately. This law states that from all accessible glide
systems in a crystal of a given type, the system which operates
during deformation is that one upon which the resolved shear
stress is greatest. For the available glide systems in cal-
cite, the critical resolved shear stress for e twinning is
lower by a factor of about 102 than that for translation
gliding on r. With increasing temperature the difference
decreases and between 5000—600O C the critical values for
each type of glide are equal approximately.

(3) In deformed marble, each crystal of the aggregate
undergoes the same microscopic strain as the strain of the
aggregate in bulk. This is the homogeneous deformation hypoth-

esis of Taylor (1938).

*Experimentally determined glide mechanisms are crystallo-
graphically defined and summarized in Appendix I.



(4) 1In predicted fabric studies supporting the experi-
mental work, it has been found satisfactory to assume for pur-
poses of calculation that each grain of a marble aggregate
experiences the same stress as the aggregate as a whole during

deformation.

(5) Experimental deformation of Yule marble in uniaxial

compression and extension causes significant reorientation of
the original strongly preferred optic-axis orientation of the
marble. For deformation of L40% or greater in compression,
strong preferred orientations of c-axes develop at 10—30O to
the axis of compression. With elongations of 90-120%, axes
concentrate at 60—80o to the principal axis of extension. In
each case the symmetry of the deformed fabric corresponds to
the symmetry of the developed strain. Preferred orientations
become more sharply defined with increasing temperature and
corresponding increases in deformation.

From time to time general summaries in English of the
relationship between the experimental deformation of rocks
and the evolution of tectonite fabrics have been compiled
(Knopf and Ingerson, 1938; Turner, 1948; Fairbairn, 1949;
Turner, 1952). More recently there have been several attempts
to apply results of experimental carbonate deformation to some
particular geologic problems. (Turner, 1952; McIntyre and
Turner, 1953; Gilmour and Carman, 1954; Weiss, 1954; Crampton,
1956; Turner, 1957; Christie, 1958; Nickelsen and Gross, 1959).
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However, as far as I have been able to discern from the abundant
and widely scattered petrofabric literature, there has been no
attempt to make a detailed comparative study of the type con-
templated here. Petrofabric applications of the experimental
work on calcite deformation are summarized below.

Turner (1952) provides some qualitative comparisons
between experimental and natural fabrics. He suggests that
fabrics resulting froh various degrees of laboratory deforma-
tion are to be compared with fabrics from three kinds of
natural marbles: (a) marbles showing cataclastic micro-
structures, cloudy grains, numerous warped twinning lamellse,
a single strong lineation and no foliation (the B-tectonites).
Rocks of this class have strong c-axis girdle fabrics with
the girdle plane normal to the lineation. These rocks are
thought, by analogy with experimental studies, to be the sub-
Ject of squeezing on all sides (Einenggng) at right angles
to the lineation, and extension parallel to the lineation.

(b) Marbles comprised of clear equant grains showing no
cataclastic effects and only limited twinning. Fabrics are
considered the result of post- or para-kinematic recrystal-
lication and show c-axis girdles with the pole to the girdle
plane parallel to the b-lineation (fold axes). (c) Other
marbles with fabrics resulting from recrystallization, have

a well defined foliation and no lineation, and show single
c-axis maxima which may or may not coincide with directions of

maximum compression.
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More specific comparisons between experimental and
natural fabrics have been made by Turner et al. (1956, p. 1292)
in noting that c-axis fabrics obtained by Sander (1950, D60,61)
closely resemble those resulting from 40% shortening of Yule
marble in uniaxial compression normal to its initial foliation.
However these authors feel that the resemblance may be fortui-
tous. This in fact must be the case unless Sander's material
had a pre-tectonic fabric similar to that of Yule marble and
was subsequently naturally deformed in a similar manner to
the experiments. Sander's fabric is discussed below (p. 44 ).

Another comparison is made by McIntyre and Turner
(1953), who maintain that observed c-axis preferred orienta-
tions in marbles from Mid-Strathspey and Strathavon, which
conform to a B-tectonite pattern (a symmetry axis (B) coinci-
dent with the b-axis of the megascopic fabric of lineation
and fold axes) are, by analogy with experimental studies, the
result of a regional compression normal to the regional
tectonic axis (B).

Weiss (1954) has studied in detail a highly complex
area of folded marbles and quartzites, part of a roof pendent
lying in granite near Barstow, California. He believes that
preferred orientations of c-axes in the calcite marbles in-
vestigated coincide in orientation with an axis of maximum
compressive stress immediately before cessation of deformation
in the area, an opinion based on analogy with results from the

experimental studies. All c-axis maxima are approximately
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normal to the foliation, and normal to the trend of fold axes
throughout the aresa.

Many studies have also been made using the "dynamic"
interpretation of deformation lameilae in calcite, a technique
due to Turner (1953). The method is used to determine simple
systems of stress that could account for observed deformation
in twinning in carbonate rocks. It is discussed in greater
detail later (p. 44). Turner (1953) has applied the dynamic
analysis technique to Yule marble and to marbles from Sonora,
California, and Moray Firth, Scotland. In each case it was
concluded that the twinning 1amellaé regulted from a late
minor deformation unrelated to the deformation responsible
for the major c-axis patterns observed in the rocks. A number
of other workers have since applied the technique to some
specific structural problems, and have attempted to show that
the results obtained are not incompatible with the grosser
aspects of the structural environment from which the specimens
were obtained. VWith one exception, none of these investiga-
tions deal with details of the structures examined. For
example Crampton (1956) compares fabrics of coexisting calcite
and dolomite in the Loch Shin limestone. The c-axis fabrics
for both calcite and dolomite are isotropic. He finds that
the dolomite is much less twinned than the calcite, an ob-
servation consistent with the experimental deformation of

these materials (Turner et al., 1954; Griggs et al., 1953).
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Dynamic analysis of the twinning lamellae fabric indicates

a compression normal to foliation in the marble and a direc-
tion of tension parallel to a lineation defined by elongated
grains in the rock. Crampton (1958) has also studied lime-
stones (both calcite and dolomite) adjacent to thrust faults
in the northwest highlands of Scotland. He maintains that
the dynamic analysis defines an axis of rotation (this axis
being normal to the plane of a compression axis girdle) which
is consistent with the generally accepted direction of move-
ment on the thrusts--northwest-southeast. However, other
results obtained from the same area and specimens also suggest
movements in a nearly perpendicular direction.

Gilmour and Carman (1954), using the dynamic analysis,
suggest that the sense of movements on thé northwest 1imb of
a northeast trending (Cowal) anticline in the Strachur region
(southwest Highlands of Scotland) are not inconsistent with
shapes of associated minor folds and strain-slip cleavages.

Results of a dynamic interpretation of the marble
fabric obtained by Weiss (1954) from the Barstow area disclose
no obvious or consistent relations with either foliation or c-
axis maxima in the rocks (pp. 56-57 of his report).

Christie (1958) has applied the dynamic analysis to a
dolomite with mylonitic textures from the Moine thrust zone in
northwest Scotland, and has concluded that the results of the
analysis are statistically correlative with similar data ob-

tained from an analysis of internally rotated lamellae in some
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grains. The associafted deformation is considered to be late,
low temperature and post-crystalline in age, and is not
directly correlative with known deformation associated with
the Moine thrust.

McIntyre and Turner (1953) studied marbles from widely
separated localities (maximum of 20 miles apart) in Mid-
Strathspey and Strathavon. Results of the dynamic analysis
indicate a sub-horizontal compression of the rocks from each
locality in a direction transverse to a ftectonic axis (the
axis being defined by lineation and axes of overturned folds)
plunging 306 southeast.

Nickelsen and Gross (1959) have made a petrofabric
study of the Conestoga limestone from Hanover, Pennsylvania.

A dynamic analysis of the twinning lamellae fabric of these
rocks yields a direction of compression which is normal to
slaty cleavage and normal to the plane of flattening of grains,
pebbles, and boulders in associated limestone conglomerates.
Directions of shear in the rock, constructed by plotting glide
directions and glide planes in twinning, are parallel to the
b-lineation defined as the intersection of bedding with slaty
cleavage. Pebbles and boulders are elongated along the a-axis
of the megascopic fabric, which is perpendicular to the b-axis
in the cleavage plane. They conclude that the low grade (green-
schist facies) rocks studied yield good preferred orientations

of c-axes and compression and tension axes from the dynamic
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analysis method, and that the methods of Turner (1953) are
therefore definitely applicable to rocks on this meta-
morphic grade.

In neither type of fabric study discussed above,
either comparisons of gross fabric belween experiment and
nature or applications of the dynamic .analysis, has there
been an attempt to correlate gquantitatively rock fabric with
deformation, although the work of Nickelsen and Gross (1959)
with the dynamic analysis in an apparently secondary way,
approaches this objective to some extent. In the present
study the attempt is made to make such correlations.

To effectively carry out these correlations it is
necessary, as in the case of Nickelsen and Gross (1960), to
find rocks which have undergone a known strain. In the next
section arguments for using flexure folds for this purpose
are developed. TFabric studies involving folds have pre-
viously been made in carbonate rocks by Sander (1930, D 180,
181), and in quartzite by Ladurner (1954), Christie and
Raleigh (1959) and most recently by Jones (1959). Sander's
results are discussed below (p. 44). Christie and Raleigh
(1959) have used folds as an index of deformation to study
deformation lamellae in quartz. Jones has made detailed
application of a technique used by Ladurner for analysing
folding in quartzite. The method involves plotting c-axis

orientation maxima from various partis of folded layers
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relative to a line tangent to the layer at the places where
fabrics are measured. By flattening out a stratum (or "unroll-
ing" it) the combined effects of bending and folding due to
shear parallel to the axial plane are assessed. If the
angle between the directions of the maxima and the line
tangent To the bed is constant, simple bending is indicated.
If maxima are disposed at different angles, though tilted
nearly symmetrically about a plane containing the axis of
flexure, then shear parallel to the axial plane is thought
to be involved. It is perhaps significant to this work that
fabric changes (reorientation of c-axis maxima) due to bend-

ing in quartz are not observed in the crests of these folds.



BASIC CONCEPTS AND METHODS

Nature of the Structures Selected for Study

Choilce of folded limestones as subject

A variety of possibilities can be considered in the
search for deformed carbonate rocks that might be used in
this investigation. The principal requirement with any such
naturally strained bedy ié to be able to discern from geo-
metrical evidence the nabture and spatial variation of the
strain within the body so that observed fabrics can be
compared with fabrics theoretically predicted to evolve under
similar strain. The nature and amount of strain rocks have
undergone may in some instances be indicated by boudinage,
deformed fossils, oolites, pebbles, and the like (Cloos,
1047), However, in the present study small flexural folds
have been chosen. The purpose here is To deal with a lime-
stone body of a type that is available under a variety of
geological conditions, a body in which the strain distribu-
tion can be approximately deduced from geometry on the basis
of general mechanical principles, and in which fThe wvariation
in character and amount of rock strain and rotation from
place to place in the body can alsoc be used as a tool To
distinguish pre-deformation, syn-deformation, and post-
deformation fabrics., Thus fabrics from relatively unstrained

portions of a fold, i.e. the 1limbs, can be used as a guide to
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the pre-deformational fabric of the rock which then in turn
can be used as a basis for calculation of the fabric changes
expected for strain in other portions of the structure, par-
ticularly the axial region. As will be examined in more
detail below, it appears that fabric changes in a deformed
rock should be functions of the strains imposed and not the
deforming forces. In principle it should be possible to
distinguish fabrics due to bending strains from post-deforma-
tional fabrics unrelated to bending. In the axial region of
a fold two similar Tabrics of different orientation will
ideally emerge ﬁith strain, those due to shoftening and ex-
tension perpendicular to the axial plane, the symmetry of
the fabrics being that of the deformation. RBecause of the
decrease in strain away from the axial region, deformation
fabrics will be less sharply defined than those at the axial
plane. These smaller strain fabrics will possess the same
symmetry but will be symmetrically rotated about the fold
axis., Ideally it is thus possible to obtain a variety bf
fabrics from a fold and to definitely relate these to the
deformation within the layer. In following sections sone
general remarks are made concerning strains and related de-
formation fabrics in folds, but interest is primarily con-
fined to the axial region for reasons of simplicity. First,
mechanical and geometrical requirements are established for

the structures used in this study.
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Detailed requirements for the folds

Folded limestones actually selected for this study
were ideally required to meet the following specifications
to simplify the problems of determining the strain distribu-
tion and the carrying out of comparisons of observed and pre-
dicted fabrics. The requirements are that:

(1) The folds should be of the flexure type so that
large variations of predominantly bending strain throughout
the structure could reesonably be expected.

(2) The folds should have simple geometry, ideally
with approximately circular cross-section in the axial region,
to simplify calculation of the strains.

(3) The folds should have small radii of curvature
relative to thicknesses of individual beds to assure large
internal strains,

(4) Individual strata comprising the folds should
be free of fractures, cracks, cleavage, Jjoints, veinlets,
etc., to insure that strain has not been accommodated by
these means,

(5) Individual beds comprising the fold should be

mechanically competent and‘intercalated with shales or other
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less competent materials so that shear stresses on the bound-
aries of layers are low compared to shear stresses within the
folded layers themselves. When the boundary shear stresses

are reduced to negligible values, then, aside from normal
pressures on the boundaries, only stresses acting on trans-
verse sections of the beds need be specified in the boundary
conditions for calculation of stresses and strains in the layer
for an elastic or plastic material.

(6) The limestones should be homogeneous and equi-
granular with crystals sufficiently large to be accessible to
measurement with the universal stage. To facilitate compari-
sons with experiments,rocks texturally similar to Yule marble
would be ideal. There is an additional reason for choosing
coarsely crystalline rocks, for as is discussed below (p.168),
finely crystalline calcite rocks may deform by different
mechanisms than ones with coarser crystal.

(7) The aggregates should ideally show some evidence
of plastic deformation (twinned crystals, warped twin 1amellaé)
to assure at least to some extent that effects of deformation
have not been remcved by an annealing recrystallization after
deformation.

(8) After folding the limestones must not have under-
gone recrystallization of sufficient intensity to obliterate

fabrics and microstructures produced by the deformation.
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Strain Distribution in Folds

In the following sections a model of the distribution
of strain throughout an unconfined layer that has been sub-
Jjected to large bending will be developed as a basis for
establishing theoreticallyrpredicted fabrics to compare with
observed fabrics in actual folds. The question of calculating
these strains which accompany large bending is then treated

for the case of an elastic-plastic body.

Simple model for the bending strains in flexure folds

Consider a series of stratified sediments consisting
of thin alternating strata of limestone and shale in which
the limestone layers are of much greater competence than
layers of intervening shale. Suppose that the sequence is
warped into a series of regular folds, andlthat the folding
represents an instability (buckling) developed during uniform
squeezing of the whole sequence normal to the axial planes of
the folds. Under these conditions it is possible to describe
qualitatively the state of stress and strain in a particular
limestone stratum, neglecting at first the effects of stresses
imposed by the assumed weaker shales. As the tightness of fold-
ing increases, details of fthe stress distribution within the
strata will change progressively. Initially, all strata experi-
ence compression parallel to the layering. As folds develop,
the material in the crests and troughs of individual folds

experiences a bending moment as well as compression, with the
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moment increasing in magnitude as the folding becomes tighter.
In the limb regions there are shearing and normal stresses on
transverse cross-sections of the layer. 1In real folds, the
surrounding sediments will also impose shearing and normal
stresses over all bounding surfaces of the limestone strata.
The resulting deformation in a éingle crest or trough will
thus be the result of an interplay of all these stresses, but
a simplified and useful picture is obtained if only the axial
region of the fold is considered and the deformation there is
imagined to result predominantly from bending. It is well
known that the qualitative distribution of the bending strain
is characterized by a relative extension of the layer normal
to the axis of flexure near one boundary and shortening near
the other, the amounts depending on the tightness of folding.
A calculation of the exact distribution of strain in a layer
which is not deformed in pure bending and which is not cir-
cular in cross-section can be a very complex problem. When
the strains are finite and complicated distributions of surface
forces and bending stresses are included in the analysis, an
exact solution is not possible. The strain distribution will
in any case depend upon the nature of the deforming forces,
the allowed displacements at the boundaries of the folded
stratum, and the rheological properties of the materials

involved.
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Figure 1. A simple model of the strzins developed
with large bending in a flexure fold. (a) Part of a long
train of simple, regular folds 1n an unconfined layer;
2b; strein distribution in a bent bar (after Sander, 1€37);

¢ ) scheuwatic representation of strains in the hachured
area of a} for the compressive force applied as shown in
(2) and (c) assuming mostly bending 2s in (b). ILeft half

s 'ows principal strain trajectories with dashed lincs rep-
resenting compressive strains, solid lines extending strain,
the right half distortion of an originally (ncarly) square
grid of lines connecting centers of reference circles in
the undeformed slab. Dotted portion represents 2 region

A o

of "no strain."
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In order to obtain a more graphical picture of the pos-
sible distribution of strain in a fold a hypothetical example
is presented. (See fig. 1.) The problem is reduced to its
simplest form by considering an unconfined stratum (fig. la)--
all boundaries stress-free--in which the deformation has béen
produced by a simple compressive force applied along the center
line of the wave train shown in the figure. This set of bound-
ary conditions leads to an unstable system of the kind shown
because a slight departure from the regularity and symmetry of
the strain distribution in any one fold or deflection of the
series of folds from the supposed line of application of the
deforming force will cause the system to change to another
more stable configuration. Stability requires application of
lateral constraining forces on the layer. These are neglected
in this necessarily qualitative treatment, and this further
restricts the results outlined below. Figure 1lb forms the
basis for further discussion of the strain distribution
throughout the layer, and is taken from Sander (1930, p. 34).
Sander's experiment consisted of bending slabs of plasticine
(modeling clay) into the shape outline in the figure after
first inscribing ink circles on one side of the slab. The
resulting distribution of ellipses graphically depicts the
amounts of strain, and directions of the principal axes of
strain at points throughout the body. The description of this
experiment is incomplete, for there is no mention of the pre-

cise manner in which the deformation was carried out or whether
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Simple experiments illustrating the dis-

Flgure 2, S
tribution of strain in a bar deformed in buckling (left half)
and through bending (right half). Plane strain parallel to
.The plane of bending. Reference markings were originally
circular in shape. The material is plasticine, For details
of fhe strains see Table T.
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the bending was in plane stress or plane strain. There is
also no discussion of the mechanical properties of plasticine
and the extent to which this material might be expected %o
simulate the mechanical properties of rocks.* A series of
very simple experiments of a type similar to Sander's were
therefore carfied out by this writer. Model slabs of plas-
ticine approximately 8 inches long, 1 1/2 inches wide, and 1/2
inch thick were arranged between fixed glass plates lubricated
with vaseline to simulate approximately plane strain conditions.
Different kinds of deforming forces were then applied to the
ends of the slabs. The results are shown in Figure 2, (2a)
being the result obtained when the slab is grasped at the

ends and bent about an axis normal to the drawing, and (2b)
when the slab is pushed from the ends until a fold develops
through buckling. The two patterns of strain differ in de-
tail, particularly with regard to the position of the neutral
line (line of no strain parallel to the longitudinal direction

of the slab). In (2b) the neutral line is situated farther

*Plasticine might be useful in simulating the properties
of rocks under certain conditions. Green (1951) has used
plasticine models to simulate the plastic flow of metals. He
shows that under conditions of plane strain, the material de-
forms similarly to an ideal, isotropic, non-hardening metal,
Stress-strain curves depict a plastic-elastic behavior, and
show a sharp bend after which the material deforms essentially
at constant stress. The deformation characteristics are very
sensitive to temperature. The permanent compressibility of
plasticine is about 0.2%. It consists of finely ground cal-
cite, mineral oil, and an organic dye. The tensile stress-
strain curve of this substance is quite similar in shape to
that obtained with "T-cylinders!" of Yule marble and other
rocks deformed at 5 kb. and 800° C (Griggs et al., 1960).
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from the center of curvature than in (2a), an effect due to

the presence of a longitudinal shortening as well as bending
strain in the layer. The general agreement of these results
with Sander's, except for the exact positioning of the neutral
line, is apparent. In these experiments surfaces of the models
are planes of principal strain, except near the ends. The
principal axes of strain, depicted by the major and minor axes
of the ellipses, are arranged so that axes of principai exten-
sion, which are parallel to one boundary, are perpendicular to
the other boundary across the layer. Between the boundaries,
the principal axes assume intermediate orientations. In the
axial regions of these "folds," the deformation is symmetrical
about the axial plane. As the amplitude of the bending deflec-
tion becomes greater, strains due to bending dominate over
those due to compression of the layer for the case shown in
Figure 2b. In a wave-like series of folds in nature this
situation would arise only when the amplitude of the wave
train becomes appreciably greater than the wave length.

Of course it cannot be argued that Figure 1lb or Figure
2 describe with accuracy the strain situation to be expected
in a real fold. However the pictures do qualitatively depict
the strain which could be expected to accompany simple bend-
ing of large magnitude.

Figure lc represents an attempt at further graphic
portrayal of the orientation of principal strain axes through-

out a fold. The left half of the drawing is a schematic
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representation of the principal strain trajectories in the axial
region, and the right half shows the strain as distortion of an
originally square network of lines through centers of circles
in the undeformed state. The strain trajectories are drawn
so that the tangent and normal direétions to any one of them
at any point are the directions of the principal axes of an
ellipsoid at that point. A trajectory is constructed by first
drawing a line parallel to one of the principal axes of an
ellipse, for instance an axis of extension, at some point in
the fold. At a small distance from the original point along
the line, another line is placed parallel to the greatest prin-
cipal axis of the ellipse at that point. The same process is
repeated until the particular trajectory is traced throughout
the entire fold, or the regions for which the deformation data
are available. If the orientations of the principal axes of
these reference ellipses are single valued and continuous
functions of position, which will be true if there are no
fractures or faults in the body, then the strain trajectories
as drawn are unique. As shown, these trajectories traverse
regions of varying degrees of strain, and do not necessarily
denote lines along which strains of a given type are equal in
magnitude.

To summarize briefly, the idealized example given in
Figure 1 shows a number of important properties of the expected
strain distribution in a flexure fold: (a) symmetry of the

strain to either side of the axial plane, (b) shortening of
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one side of the layer and extension of the other, (c) a de-
crease in the amounts of strain discussed in (b) in the limbs,
(d) the approximately linear change in strain along a transverse
section of the layer in the axial region, (e) the small scale
roughly homogeneous deformation, (f) the property of transverse
cross-sections of the beam remaining nearly planar and perpen-
dicular to the layer in the axial region during the deforma-
tion (g) the approximately circular shape of the slab in the

axial region.

The approximate calculation of strains in folds

As discussed above, there is generally no easy method
available for determining analytically the distribution of
strain in a natural fold, and some sort of approximate cal-
culation must be made. In practice deformed ooiites, pebbles,
and fossils may be used to determine the strain in a fold
(Cloos, 1947), but lacking features such as these, independent
estimates of the strain--particularly in the axial region--
may be obtained only in special simple cases.

An analysis of the strain in a buckled unconfined
thin slab could be made for small deformations proceeding in
a manner similar to von Karman (1910). The distribution of
strain in a transverse cross-section of the sheet follows
from the conditions of static equilibrium provided that a
stress-strain relationship for the material is known and reason-
able values of the applied longitudinal compression can be

selected. But for geologically interesting situations there
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is usually no way a priori of estimating either of these un-
knowns. Kienow (1942) and more recently Ramberg (1961) have
analysed the distribution of strain folds due to bending and
buckling respectively, and both give expressions for the longi-
tudinal strain for small deformation the same as Equation 1
below.

To obftain some idea of the magnitude of the strains
associated with large bending in a fold, we proceed in the
following manner. Consider an'obviously oversimplified but
straightforward example, the originally rectangular plate of
thickness £, whose cross-sectional dimensions are not neces-
sarily small compared with its length (L). Imagine that the
plate is deformed by pure couples applied at its ends, and
that there is no strain parallel to the axis of bending. ILet
all other surfaces of the plate be stress-free and suppose
that the material is incompreséible, isotropic, non-hardening,
and elastic-plastic. For small elastic deflections, the trans-
verse stresses are negligible compared to those induced by
bending (Hill, 1956, p. 79). The neutral surface, where
stresses and strains parallel to the longitudinal direction
produced by bending vanish, is located in the center of the
plate and can be considered circular with radius R (Hill,
1956), The strain E parallel to the surfaces of the plate
are linearly distributed over the cross-section, that is,

E = z/R (1)
where z is the distance measured normally away from the neu-

tral surface. Suppose now that the bending i1s allowed to become
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greater so that the induced stresses exceed the yield point
of the material. Plastic zones first develop near the
boundaries of the layer and move inward as the bending in-
creases (Hill, 1956, p. 79-84). We now imagine that the
bending is allowed to become very large under the pure ter-
minal couples so that the plastic zones move inward and the
material is yielding everywhere. Under these conditions it
is possible to describe some general geometrical properties
of the deformation (Hill, 1956, p. 290). If the angle of
bending a (per unit length) is increased by an amount da, the
displacements of elements in the plate are such that: (1) the
surfaces of the plate remain cylindrical with further bending,
(2) radial sections remain planar, (3) the thickness of the
plate remains constant. Thus the strains at the boundaries
of the layer may easily be found by equating the original and
final areas of the plate. Doing this we find that the maximum
strains at the inner and outer edges of radii a and b (b > a)

respectively to be:

= = (2)

1 + }1‘,2 = 2b/(a + b) (E, = shortening)

1+E, = 2a/(a + b) (Ea = extension)

where the strains Ea and Eb are defined as AI(Q)/L and
AL(b)/L, AL(a) and AL(k) being the changes in length of
the inner and outer surfaces of the original rectangular

plate of length L.
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In order to derive the above conclusions and equa-
tions 2, it is not really necessary to assume that the material
possesses ény special rheological properties, only that it be
incompressible and that circumferential displacements of ele-

ments within the plate at any stage of the bending be given by

= N e
uy = (r - R) S da

_G
r, © (6 being measured positive clockwise from the plane of

That is, the displacements u, of points with polar coordinates

symmetry in bending) must be linearly distributed both about
the instantaneous position of the neutral surface of radius R,
and with the angle 6.

Undoubtedly most folds in nature cannot be the result
of simple pure bending. In fact, it is hard to visualize a
situation where this kind of deformation would prevail. How-
ever at present the above development appears to be the simp-
lest geometrical argument which can be used to determine the
strains of interest here. Equations 2 are used in subsequent
sections to calculate the approximate maximum strains for the
observed geometries of the structures studied (p. 112 and p. 141).

To get an idea of how well equations 2 might be ex-
pected to estimate bending strains, we have used them to cal-
culate the deformations in the previous model experiments. The
results are presented in Table 1.

For the case of the fold deformed in pure bending the

agreement between observed and calculated strains, especially
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at the "outer" boundary of the fold, is surprisingly good. In
the "buckling" experiment the agreement is not as good, but

this is perhaps to be expected considering the assumptions under
which Equations 2 are valid. Agreement in the case of Sander's

experiment is rather poor.

Principles for the Comparison of Theoretical

and Observed Fabrics in Folds

Types of fabric comparisons

The foregoing discussion has attempted to show the pur-
pose for using folds in these investigations, and has developed
some of the expected properties of the strain distribution in
these structures. The question of fabrics produced in response
to the imposed strains in folds is now examined theoretically.
Two tTypes of carbonate fabric studies are considered in the
present work. The first type is concerned with gross changes
in crystal orientation which accompany large strains, while
the second type, based on the "dynamic analysis," deals only
with carbonate twinning lamellae in relation to applied stresé.
It is possible to treat twinning lamellae from the standpoint
of the strain they represent rather than the applied stresses

causing them, and this argument is developed in detail below

(p. 44).

Gross changes in crystal fabric arising from strain

Metallurgists have long noted preferred crystal orien-

tations resulting from cold working (sheet rolling, extrusion,
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drawing) of metals (Barrett, 1952, p. L42-48L), In an anal-
ogous manner changes in crystal fabric are also brought about
in highly deformed marble. These have been extensively studied,
and the way in which fabric changes develop in response to
strain is now understood (Turner et al., 1956). In all experi-
mental work with carbonate rocks it has been shown that the
geometrical symmetry of the fabric of a deformed aggregate is
the same as the symmetry of the strain the aggregate has under-
gone (Griggs et al., 1960, p. 104). For small strains, less
than 10% in either extension or compression, fabric changes in
Yule marble are negligible (Handin and Griggs, 1951, p. 882-
884). With greater strain, stable orientations of crystals
develop with respect to the principal axes of distortion, and
these persist and become more sharply defined with higher de-
formation.

Generally speaking, theories for predicting deforma-
tion fabrics of polycrystalline aggregates are of two types
depending upon whether assumptions are made as to the sftress
or the strain in each grain. Most of these can be criticised
in several respects, and Bishop (1954) has made such an analysis.
Two principal requirements must be met: (1) the aggregate must
fit together after straining, i.e., the strain must be homog-
eneous and (2) stresses acting through grain boundaries must be
continuous during deformation. In order to satisfy (1) it is
necessary that at least five independent glide systems be avail-

able to operate in a crystal (Bishop, 1953). However it can be
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shown that under these circumstances condition (2) cannot be
met if the critical resolved shear stress law is to hold in
each crystal (Bishop and Hill, 1951b). This in general leads

to the conclusion that the strains in individual crystals

will benonhomogeneous (Bishop, 1954). Two separate treatments
will be briefly outlined below, that of Bishop (1954) because
of its possible application to the present work, and the theory
of Handin and Griggs (1951) as modified by Turner et al. (1956),
because of its prior application to prediction of deformation
fabrics in Yule marble.

The theory of Bishop (1954) forms the most successful
approach for predicting deformation fabrics in metals. The
theory is an approximation as it does not incorporate effects
due to possible grain boundary slip, changes in crystal size,
or nonhomogeneity in the deformation of individual grains.

It is assumed that each grain comprising the aggregate under-
goes the same strain as the aggregate in bulk, an assumption
originally due to Taylor (1938). The critical resolved shear
stress law is also assumed to hold for glide in the individual
crystals. On a2 microscopic basis crystals are required to de-
form by glide on at least five independent glide systems (as-
suming no volume change with deformation). Substances with
fewer than five possible glide systems are not covered by the
theory. The five systems actually operative during deformation
are those which maximize the plastic work of deformation, or,

phrased differently, satisfy the principle of maximum plastic




work (Bishop and Hill, 1951a), which can be written,

(Tyy - T.7) de,.> 0 . (3)

1J 1J

In words Equation 3 states that the work done by stresses Z?ij

in causing a crystal to deform plastically through a certain

strain increment deij relative to the axes of the crystal, is

*
1d
producing the same strain increment and not violating the maxi-

not less than the work done by any other set of stresses T

mum critical stress criterion in the current state of harden-
ing for the crystal. For metals of high symmetry to which the
theory has been applied (face centered cubic metals in partic-
ular) a range of possible engineering shear strains can be
assigned to each of the available glide systems which satisfy
this criterion (Bishop, 1954; p. 135). This means that the
external rotations each grain undergoes (rotations of the
crystal axes relatiﬁe to the principal axes of strain) are not,
in the absence of work hardening determined uniquely by the
maximum work principle. Bishop argues that the actual choice
of glide systems is determined by the amount of work hardening
each suffers during deformation. Once shears have been deter—
mined for the various glide systems which give the strain in-
crement deij’ the rotation components of fthe crystals du)ij
relative to the principal axes of strain can be obtained from
geometrical considerations (Bishop, 1954, p. 135). Thus fabric
changes associated with any desired macroscopic strain may be

determined. It is not immediately obvious that this theory



cannot be applied to calcite aggregates. Individual crystals
possess sufficient independent glide elements, even if e twin-
ning and r translation are the only available glide mechanisms.
One possible restriction lies in whether twinning in caleite
obeys a critical resolved shear stress law. Experimental
evidence indicates that it does approximately (p. 8, this
thesis), but current theoretical treatments suggest otherwise
(see Appendix III).

The importance for petrofabrics of the Bishop theory
is that under the assumptions involved, changes in fabric are
functions only of the deformation occurring, not the forces
used to bring about the deformation. This is because the
microscopic strainé and rotations are determined from pure
geonmetry, together with the maximum plastic work principle,

By this last assumption, the permissible stresses in each
grain are fixed during yielding.

A theory formulated by Handin and Griggs (1951), as
rmodified by Turner et al. (1950), has been applied to deformed
calcite aggregates, and also follows closely the ideas of
Taylor (1938). In their analysis of uniaxial experiments with
Yule marble, each crystal is considered to be strained the
same amount as the aggregate in the direction of extension or
shortening. The law of maximum resolved shear stress 1s also
assumed to determine an active glide element in each grain.
This particular assumption is applied by assuming further thet

each grain sees the same stress as the aggrezate as a whole.
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Work hardening is neglected. External rotations of crystals
due to strain are computed from analogy with rotations in
single crystal experiments. In uniaxial strain of single
crystals, poles to glide planes move toward the axis of com-
pression, and glide directions toward an axis of extension,
the amounts of rotation depending on the strain. Appropriate
formulas are given by Handin and Griggs (1951, p. 869) for
computing these rotations. By specifying only one component
of strain for each crystal, the theory only partly fulfills
the condition that continuity of the aggregate be maintained
after deformation.

The assumptions needed to compute fabric changes for
calcite aggregates according to the method of Handin and Griggs
(as modified by Turner et al., 1956) are:’

(1) The law of maximum resolved shear stress deter-
mines the active glide system in each grain (this effectively
adopts the maximum plastic work criterion). Only one glide
system operates at any one time unless the resolved shear stress
is equal on two or more systems, in which case multiple slip
occurs on these systems.

(2) The available and potentially active glide systems
are {IOTI} translation gliding with the edges between {1OT1}
and {0221} as glide directions, with glide sense negative;

&ﬂjé} twinning, glide direction parallel to the edge between

*
See Appendix I.
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adjacent {1011} planes, glide sense positive.* Other types
of glide occurring at room temperature and above 500—600O C
are neglected.

(3) A particular crystal will twin on {0112} rather
than translate on {10?1} when the resolved shear stress coef-
ficient S0 (the ratio of the resolved shear stress in the
slip plane and in the direction of slip to the applied stress)
for a particular {OlTQ}system is algebraically greater than
-0.05 (negative sign refers to shear stress oriented in wrong
sense on the twin plane). If a crystal cannot twin, it trans-
lates so that its deformation is equal to that of the aggregate
as a whole,

The Handin-Griggs method, mecdified by Turner et al.
(1956) to account for r-translation gliding rather than e-
translation gliding, cannot be used in its present form to
predict fabrics in folds, because the theory permits specifica-
tion of only one component of strain in each grain, and there-
fore for theraggregate as a whole., In the axial region of a
fold deforming in plane strain parallel to the fold axis, it

is evidently necessary to specify the following strains:

— —

E 0 0

1J

for the region of the fold which is extended parallel to the

*See Appendix I.



bedding, and

2 o O]
Ej =0 0 0 {5)

for those portions where elements are shortened parallel to
the bedding. The strains Eij are referred to principal axes
chosen so that x is perpendicular to the fold axial plane, ¥y
is parallel to the fold axis, and z is perpendicular to the xy
plane. The material is considered incompressible. Strains
(4) and (5) differ only by a rotation of 90° about the y-axis.
The Bishop theory on the other hand allows specifica-
tion of arbitrary strains, but because of the geometry of the
calcite lattice, becomes extremely complicated when applied
to this material. Unfortunately i1t has not been possible to
carry through a detailed application of the theory for the
strains (4) or (5) because of the time which would be required
for such a calculation. However it is possible to gain an ap-
proximate picture of the fabrics to be expected for these
strains in the following manner. As pointed out above, the
theory suggests thaf fabric changes occurring during nonhomog-
eneous deformation of an aggregate should be functions of the
strains imposed, not the forces used to bring about the de-
formation. Therefore we could use the experimental results as

to development of deformation fabrics in Yule marble if the
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strains in any of the experiments approximated those given
in (4) and (5). This would of course restrict the results
obtained so that tﬁey would strictly apply only in situations
where the initial fabric of the undeformed rock was exactly
the same as that of undeformed Yule marble. This fabric
(Turner, et al., 1956) consists of a well defined maximum of
c-axes normal to foliation 1in the marble, with no preferred
orientation of the other axes (gl, 2ns 23) in the folia%tion

plane. The strains (4) and (5) are those which approximately

develop during homogeneous deformation of T-cylinders* of Yule
marble (Turner, et al., 1956, figure 8 G,H) in compression
and-extension. That is, an originally circular cylinder be-
comes ellipsoidal in cross-section with one axis of the ellipse
remaining approximately equal to the diameter of the original
cylinder. The fabrics which evolve under these strains are
shown in figures 3 a, b. Figure 3¢ is the fabric of undeformed
Yule marble. Figure 3a is the c-axis fabric associated with
extension parallel to the foliation and the c-axis fabric ob-
tained from shortening parallel to the foliation. The fabrics

consist of c-axis maxima lying in a plane perpendicular to the

*

This nomenclature describes orientation of experimentally
deformed cylinders with respect to the foliation (and geo-
graphic coordinates) in Yule marble (Turner et al., 1956),
"T-cylinders" are those cut with longitudinal axis parallel
to the foliation. The c-axis fabric thus consists initially
of a maximum along a radius of a circular basal section.
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Figure 3. Approximate c-axis fabrics to be expected with large
deformation in a flexure fold. (A) Fabries associated with the position
marked "A" in the reference diagram (D); (B) fabrics from positiocmn "B" in
(D); (C) assumed original (undeformed)g-axis fabric of the material. In
each diagram ff represents trace of bedding. Stippled regions are areas
of high concentrations of c-axes. Arrows denote senses of strain. The
above diagrams were prepared by analogy with experimental results given
by Turner (1957, p. 15). (See p. 42, this thesis for further details.)

In particular (A) is the orientation diagram for ¢-axes in a T-cylinder

(see bottam pe 42). shortened 40.7% at 400°C, 3000 kgm/cmz, (B) the
diagram for g-axes in a T-cylinder extended 118%, at 500°C, 5000 kgm/bmz,
(C) the fabric of undeformed Yule marble. All fabric diagrams plotted on
equal area projections, lower hemisphere.

."{é :
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axis of approximately no strain in the specimen, situated in
each case 10—300 to the direction of shortening. The princi-
pal axes 5f‘strain in fhe deformed specimens in the two cases
differ only by a rotation of 900 about the axis of least strain
(or approximately zero strain).

We might then draw the following rough analogy between
these experiments and fold fabrics. Start with a calcite ag-
gregate having the initial c-axis fabric shown in Figure 3ec.
Subject the aggregate to strains given by the strain tensor
matrices (4) and (5). The stable fabrics which evolve through
operation of the deformation mechanisms prevalent in laboratory
experiments will be very roughly those given in Figures 3a and
3b respectively. It is interesting to note that Sander (1930,
D181) has measured a c-axis fabric from a tight fold in calcite
phyllite from the southern Tirol esséntially the same as that
shown in Figure 3a.

Fabric changes associated with an incremental deforma-
fion of an inifially isotropic c-axis fabric are considered

in the next section.

Dynamic interpretation of deformation lamellae

The dynamic analysis of e-lamellae fabrics in calcite
(and f-lamellae fabrics in dolomite) is due to Turner (1953).
This method is based on the fact that twin gliding on g in
calcite is most easily promoted by stresses which make the

twin plane & plane of maximum shearing stress with the shear
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having the sense favorable for twinning. This condition is
fulfilled if either a tension is applied to a crystal at an
angle of 190 to the c-axis or if the crystal is compressed at
an angle of 71° to the c-axis, with these axes of stress lying
in the plane containing the c-axis and the pole to e. Twinning
may of course be induced by a combination of these stresses.
Diagrams produced from the analysis may show clusterings of
compression (C) axes and tension (T) axes (cf. Turner, 1953)
and such groupings presumably center around the appropriate
stress direction or directions which could be responsible
for the observed twinning in the aggregate.

Since the C and T axes for a particular crystal are
fixed geometrically with respect to the crystal lattice, a
preferred crystal orientation automatically introduces a pat-
tern into data derived from dynamic analysis of the twinning
lamellae fabric. For example, in a calcite aggregate éhowing
a single well defined c-axis maximum, a dynamic analysis will
tend to give T-axis maxima which colncide with the c-axis
pattern or are displaced from this pattern by about 359, &-
axes will form a girdle or will cluster into several maxima
lying within a zone 20° from the plane which is normal to the
direction of the c-axis maximum. Breached C-axis girdles may
or may not be real features produced by the analysis. Such
openings can in part be attributed to the central "blind-spot"
in the associated e-lamellae diagram, which arises because of

observational difficulties (p.192),
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In strict terms, the stress state defined by the
dynamic analysis for an individual crystal is not generally
the actual state of stress at that point in the aggregate.

If it is assumed that two adjacent crystals are at the yield
point for twinning, with principal axes of stress in each
defined by the analysis, then the stresses across their mutual
~ grain boundary will generally not be in equilibrium, i.e.,
components of stress acting through the boundary will not be
continuous from one crystal to the next. The analysis gives
only the best possible distribution to promote twinning on a
grain for grain basis, and it therefore might be expected
that results will have meaning only if applied to a large
number of grains in random orientation throughout the ag-
gregate.

With this discussion of the_method, we now proceed to
develop theoretically the expected results for a dynamic
analysis of an aggregate with an isofropic distribution of
c-axes, which has undergone an increment of deformation under
the system of stress prevailing in the axial region of a
flexure fold. Knowing the stresses, the operative twin set
in each crystal may be found from the law of maximum resolved
shear stress. The particular model developed below is meant
to apply specifically to one of the natural folds whose de-
formation fabrics are discussed later (p. 90 ). In particular,
we start with an already deformed body, and consider only the

elastic state of stress within it. This simplifying provision
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is made because the observed plastic deformation in the natural
fold is slight (p.11ll), and it is presumed that the material
was always close to The elastic state during deformation. The
body is assumed to be elastic, incompressible, homogeneous,
and macroscopically isotropic.

Consider again the axial portion of a fold with circular
cylindrical cross-section perpendicular to the fold axis (fig.
L), The inner radius of curvature is a and the outer radius b.
For purposes of simplifying the calculation the ends of the
structure considered are taken at right angles to one another.
The angle 6 is measured positively from the left side clock-
wise. The fold is imagined to be compressed by a force F
directed along the normal to the axial plane. Referred to
polar coordinates r and 6 the components of F parallel and
perpendicular to the cross-section 6 = 0 are T and P respec-
tively. For equilibrium these must be balanced by resultant
forces -P and -T acting parallel and perpendicular respectively

to the cross-section at 6 = 7/2. The boundary conditions are:

b b
@ © =0, /T—éedr=P;/fredr_
a a

b b
@ o =T/2, //Cee dr = -T ; f Z:re dr = -P (6)
a a

N
CIT = f:re =0 atr =a and b for all @ .

I
=



Figure 4. lModel assumed in calculation of stress
distribution in an alrecdy partially deformed layer of

circular cross-section which is loaded elastically by the
force F applied to the "ends"” of the body. For 6 = O,

the components of F normzl znd tangential to the end of
the heam are P and T respectively, and for & =70/2, T
and P. In the case chosen, P 1is equal to T. This model
is meant o8 an approximetion to the situation in one of
the naturzl feolds discusscd later (p. 90).
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The stress distribution satisfying these conditions may be ob-
tained by superposition of solutions to the following problems:
(a) pending of a curved bar by a force applied tangentially at
one end (Timoshenko, 1951, p. 73), (b) bending of a curved bar
by a force applied normally to one end. The resultant stress

distribution is

2
- (T sin @ + P cos 8)

_ 4
Z?rr - N

A % - . 2% (T sin @ + P cos ©) (7)
50 N T

2
T, = % (r + agb a® ) P sin & - T cos 0)
b
a

r0

where N = a~ - b~ + (a )1

For purposes of dealing with the natural fold we
consider the special case of the dimensions where b = 2a and
the stresses at the cross-section 8 = 7¢/4. For P = T,

Equation 7 reduces to

L 2
Ll N : r3 r
Vo p Hau 5a2
f — 31"- = 8
ee N o - (8)

C.=0

re

In plane strain, {}y” the stress along the axis perpendicular

to the plane of the fold is %(Z;r+i;e (Poisson's ratio is
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equal to % for an incompressible material.) We now evaluate
these three non-zero components of stress for r = (5a)/4 and
(72)/4, which are the approximate "mean" positions of thin
sections examined in the natural fold the present analysis is

intended to describe (p. 95, fig. 10). Thus

T, (3 =" 22
T, (Ao =~ B2 VE By ()
Ty () E - %‘@ (£)

and
T, G2 = b
Cos (1B 7 1851“1‘/5 (E) (10)
Tyy (B~ Tal‘;{? (£)

To compute the resolved shear stress on a slip plane in the
direction of slip for a given crystal, it is necessary to use

the transformation formulae for stresses (Sokolinkoff, 1956,

p. 43)

3 3
T&a = ; ; Adi}BJTiJ‘

!
where the z?aﬁ are components of stress referred to Cartesian



, Figure 5. Predicted results for the dynamic analysis
of the twin lamellae fabric in a fold using the model shown in
Figure L for the radial section at 6 =T/4., The original dis-
tribution of c-axes and lattice orientations chosen are those
shown in Figure 12. In each diagram "C" refers to a compres-
sion axis and "T" to a tension axis. The operstive twin set in
2 grain was assumed to be that for which Sé given by Equations

12 is greatest, with fthe sense of shear favorable for twinning
(i.e. values of 8! algebraically greater than -0.,05). Arrows

on the diagram show the sense of the stress acting along the
a-axis of the fold, or the x-axis as defined in Equations 12,
Thus (2) is for the region which is compressed parallel to the
layering during deformation and (b) for the region which is
extended parallel to the layering.
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axes fixed with respect to the slip plane and slip direction
and where the 1?13 are given by Equations 9 and 10, defined
now with respect to a set of Cartesian axes with 4x parallel
to the positive © direction, +y parallel to the fold axis and
+2z parallel to +r. ?\ai is the cosine of the angle between
the positive end of the a'th coordinate axis fixed in the
grain and the i'th principal stress axis. Define the shear

stress on a slip plane perpendicular to the x' axis in the

1 1
direction of the y axis as ?Txy . Then

g = Pax gy Lap = Tg) + A Ay (T, - Ty (21

2 NAA =2 " 45 " B2 Iy

where the orthogonality relations between the direction cosines,

"/\an‘,’/\ 5l = Sij (Sij = Kronecker & ), have been used. (fxx =

| T@e5 /CXK = TH 3 [ﬂ =Tg)' Evaluating Equation 11 for
each set of stresses given by Equations 9 and 10 we obtain as
the values for the resolved shear sftress coefficient written

in terms of the stress 2?

= ! ~ 16
Tor - Sy (-51?) = %—3 (2&;\}& +% ;\l@;\y_é)
o ' - (12)
5o () ¥& (A ﬂ %?\_ZﬂLz)

For each product of ?\'s on the right side of Equation 12 a

graphical solution like that presented by Handin and Griggs
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(1951, p. 868) may be used to obtain the final value for S;
for any particular plane in the lattice.

Consider now a calcite aggregate with isotropic c-axis
distribution* subjected to the system of stresses given by
Equations @ and 10. Assume further that the operative twin
plane in each crystal during deformation is that upon which
the value of S; is greatest, and that twin gliding does not
occur unless S; is algebraically greater than or equal to -0.05,
in accordance with the assumptions in the Handin and Griggs
(1951) and Turner et al. (1956). Ve may then construct C and
T axes for the appropriate active twin set in each crystal.
The results of this procedure are presented in Figuresb5a and
5b. In the region where there is shortening parallel to the
x-axis, the dynamic analysis gives a broad clustering of C-
axes about this direction. T-axes form a general equitorial
girdle in the axial plane (XE plane) of the fold. For the
other case of extension parallel to the x-axis, the concentra-
tion of C-axes is about the y-axis with a T-axis girdle lying
in the xy-plane. These results will be compared more fully
with those obtained from the natural fold in a later section
(p. 106). For the present it will only be remarkad that the
results obtained above show qualitative good agreement with
those actually observed to develop in nature.

With the above picture of the dynamic method it is pos-

sible to go further and examine qualitatively the fabric changes

*
The actual distribution used is that given in Figure 12a.
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due to mechanical twinning which would develop for the deforma-
tion imagined szbove. For twinning in calcite the c-axis of the
host and twin crystal are symmetrically disposed about the pole
in the twin plane, 52%0 apart, and lie in the plane conbtaining
the original c-axis and pole to the twin plane. The C-axis de-
rived from the dynamic analysis also lies in this plane, 710
from the host c-axis. Therefore as a first approximation a
clustering of C-axis also depicts a general concentration of
optic axes for the twinned part in each of the crystals, and
the C-axis patfern will thus grossly conform to the major
fabric change which develops through mechanical twinning. The
optic axis patterns obtained in this manner are generally
similar to the stable orientations of c-axes which have been

discussed above (p. 43 ) for the special situation adopted here.

Calculation of Bulk Strain from Petrofabric Data .

The problem of interpreting deformation lamellaze in
carbonate aggregates may be approached from a different and
more natural standpoint than fthat suggested by the dynamic
analysis. This approach involves consideration of the bulk
strain* in an aggregate represented by twinning and/or in-
ternally rotated lamellae (Turner, et al., 1956) rather than

the stresses involved in producing these features. As has

*Bulk strain is synonymous with macroscopic strain, and
refers to the strain of a volume of material which includes
many individual crystals. The microscopic strains are the
strains of individual crystals.
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already been discussed, the intragranular stress distribution
defined by the dynamic analysis is not an actually possible
distribution of stress for each crystal, and therefore the
analysis is to some extent unreal. The new method presented
below allows a quantitative estimate to be made of the amount
of visible strain an aggregate has undergone, and also permits
the directions of the principal axes of strain to be computed.
Contributions of individual grains to the total strain are
also weighted in a prescribed manner, thus allowing for non-
homogeneity of grain size and distribution of strain among

individual crystals to be taken into account.

Calculation of visible bulk strain due to twinning

When a crystal of calcite is deformed in twinning, it
undergoes a shearing strain, the amount of strain depending
on the degree of twinning. Twinning deformation in a grain
is characteristically heterogeneous. That is, most grains
are usually only partially twinned, and contain completely
twinned layers separated by layers of the untwinned or host
crystal. Within each twinned band the deformation is homo-
geneous by virtue of the atomic movements involved in the
twinning process. The plane of shear in twinning is perpen-
dicular to the twin plane and includes the twinning direction.
A twinned crystal is thus in a state of plane strain (this is
proved by Jaswon and Dove (1960) for deformation twins) parallel
to the shear plane in twinning, provided that only one set of

lamellae is developed in the crystal.
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In a given partially-twinned grain, the average shear
strain induced by partial twinning is computed by thinking of
the deformation as uniformly distributed throughout the grain.
The situation is depicted diagrammatically in Figure 6. An
original rhombohedral shaped crystal ACDB viewed in the (1210)
plane, of height h, is deformed by twinning on layers of thick-

nesses h., and EQ into the shape shown in dashed lines, AEFB.

1
The average engineering shear strain in the plane of the draw-

ing referred to the Cartesian axes X and y is

Y - tanP = ——=- tan (0 /2) (13)

where 0/2 is one-half the angle between r(1011) in the host
crystal and r'(I011) in the twinned crystal, and equal to 19°
08.5' in calcite. 1In order to compute the average shear strain
in a2 grain due to mechanical twinning, it is only necessary to
measure therrelative lengths of twinned and untwinned crystal
traversed along a line normal to the operative twin plane.

For infinitesimal Y , the principal axes of strain for
twinning lie at &50 to the twinning plane as shown in Figure 6a,

and the magnitudes of the principal strains along these axes are,

1 1 _
e§.= Etan_YV
' 1
EX = - §tan ‘]U (1Ll—)
1
e_= 0

where tanyf is given by Equation 13. These strains can be re-

ferred to any arbitrary set of coordinate axes, for example a
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Figure 6. Illustration of strain due to mechanical
twinning on {0112} in calcite. (2) Orientation of the
principal axes of strain in twinning relative to the plane
of the shear. Xx' and y' axes are those to which the
engineering shear strain in the grain is referred, x, ¥
the principal axes associated with the deformation.” (b)
Geometry of the twinning strain. Tan ¥ is the engineer-
ing shear strain associated with twinning.
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set parallel to the edges of and normal to a thin section, by

using the infinitesimal strain transformation formulae,

eiJ =

M
>

1
?\ia 7\,_15 eczB (15)
g=l Bl

where the eij are components of the strain tensor referred to

1
the arbitrary coordinate system and the eaﬁ are components of
the strain tensor referred to the principal axes in each grain.

1
The eaB written in matrix form are:

7 N
stany 0 0
' 1
eup = | © -stany 0 (16)
0 0 0

is the cosine of the angle between the positive end of

o arbitrary axis and the positive end of the a'th prin-

ia
the i!
cipal axis in each grain. In the present study the particular

reference axes chosen for purposes of calculation are as follows:

+ X = north universal stage direction in the
thin section (long edge).

+ ¥y = east universal stage direction of the
thin section (the short edge).

+ z = normal to the plane of the thin section
(XK ) with positive direction downward.

In a particular grain the axes, defined by their positions on

the lower hemisphere of an equal area projection, are:



(6)
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+ x = extension axis, positive end making an angle
of 19° with the c-axis position on the lower
hemisphere, and lying on the great circle con-
taining the poles of ¢(0001) and e {Oli?} away
from the pole to e. -

+ y = compression axis, positive end making an angle
of 71° with ¢ in the great circle containing c
and e, and measured from ¢ in the direction
of e,
! t
+ z = normal to the X y plane.
1
The 51 and y axes are coincident respectively with the tension
and compression axes of the dynamic analysis (p. 45).

Equations (5) and (5a) combined and written out in

full are:
eﬁ=%(7\§§- 7\21) tan
emzé()eﬁ_?\fm) tan y
ey = 30 Aoy - Agy) tan ¥ (17)
eg:%(?\}ﬂkﬂ— ?\ﬂ ?\m) tan W
exe = B A e Agx - Ayy Agy) ten ¥
°yz ~ 3 Ap Am - Ay Agy) tentp

For each set of twin lamellae visible in a grain the six

angles whose cosines are ?\xx’ ’A ete., must be measured

Xy’
from the projection net. The factor tanl}fis equal to 0.59v,
v being the ratio of the width of twinned crystal to the total
width of the crystal, that is, (h; + hy)/h in the example of

Figure 6.
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The strain components given by Equation 17 represent
thé visible strains due to twinning in each grain referred
to the arbitrary axes. Each grain does not deform indepen-
dently of its neighbors, but the amount of observed strain
and the grain size do vary from grain to grain in the aggregate.
Thus in order to obtain an average for the deformation of the
aggregate, contributions of individual grains to the total or
bulk strain must be weighted in an appropriate way. This is
done by multiplying the calculated components of strain eij
for each grain by the ratioc of the area of the grain to the
total area of all the grains involved in the computation. The
areal extent of each grain gives an unbiased estimate of its
volumetric contribution (Chayes, 1956, p. 13), and the contribu-
tions of the individual grains to the bulk strain are in pro-
portion tc thelr individual volumes. The sum of the weighted
individual components eij make up the components of what is
here termed the bulk strain tensor Eij' Once the Eij have
been obtained the three principal bulk strains and associated
principal-strain-axis directions can be computed using either

the procedure given by Sokolnikoff (1956, p. 17, 47) or an

iterative procedure (Nye, 1957, p. 165).

Strain due to translation gliding

By a procedure exactly analogous to that described
above, shearing strain due to translation gliding alone may

be included in the analysis of strain provided its amount can



=
= Q7 =

be determined through analysis of internally rotated lamellae
(Turner, et al., 1954, p. 883-934), or by some other means.
The engineering shear strain s associated with such internal
rotation is calculated from the following equation (Turner,

et al., 1954, p. 900):
cota - cot B =8 sin¥& , (18)

where o and B are the angles between a given lamella and the
operative glide plane before and after internal rotation (B
arbitrarily chosen greater than a), and B is the angle between
the glide direction and the axis of internal rdtation which

is the line of intersection of the lamella and glide plane.
Under the assumption that s is infinitesimal, the principal
axes of strain for this deformation lie at‘450 to the active
glide plane in a plane normal to the plane of gliding which
includes the glide direction. Which axis is the axis of ex-
tension or shortening depends on the sense of gliding. As

*
an example, for negative 1r., translation gliding in calcite,

pli
with one glide system in operation, the principal axis of
extension is QBO from the pole to r, nearly coincident with
the pole to my and the axis of compression of the deformation
is almost coincident with the c-axis.

The strain tensor matrix for negative Ty translation
gliding shear strain, written in a coordinate system defined

by the particular axes given above is:

*
See Appendix I.
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H 1
eaﬁ - 0 -§§_ 0 ( 19 )
0 0 0

For positive T, translation gliding, these two strains simply
change signs. The components of strain given in Equation 18
may be referred to the arbitrary reference axes of the previous
section by use of relations, Equation 5.

It must be emphasized that these strain calculations
omit perhaps the majority of strain experienced by a given
rock. If a grain has undergone translation gliding strain
prior to the development of visible twin lamellae, then this
strain is necessarily neglected. It is also not possible to
detect readily the strain adsorbed as graih boundary slip,
recrystallization, or through fracturing of the material.
However these are probably not the major sources of the dif-
ficulty as will be discussed below. As has already been
mentioned (p. 30 ), it is generally necessary that at least
five glide systems operate in each grain for continuity of a
deforming aggregate to be maintained. But, it is generally
difficult to identify more than three operative systems in
any grain of the deformed rocks studied here. It is there-
fore quite probable that translation gliding strains are not
detected and hence remain unaccounted for in an evaluation of
the bulk strains. The identification of translation gliding

in calcite is ordinarily made by measurements of internally



rotated lamellae (Turner et al., 1954; see alsoc appendix II).
Sometimes such lamellae can be noted and identified in warped
crystals where large local strains have developed through
plastic bending (see appendix II), but the procedures used
are time consuming, and seldom yield unambiguous identifica-
tion of the operative translation gliding systems. Using
Equation 18 we can estimate how much internal rotation of a
given lamella is to be expected for any value of s. The
maximum amount of strain in twinning observed in some of the
rocks studied here is 0.05 (see p.163), and it is not un-
reasonable to expect that at least this amount of translation
gliding strain exists undetected in the aggregates. TFor the
case of an e, lamella, rotated by glide on Ty with s equal
to 0.05, (a - B) is equal to 2.5°. For negative glide on T,
& A = would équal approximately 240, and for positive glide
290. The smaller angle 1s just within the limits of measure-
ment, while the larger angle lies in a region where a true
effect is difficult to separate from one involving constant
discrepancies for the angle ¢ A e, which may arise through
curmulative error involved in locating ceaxes and e-lamellae
(Borg and Turner, 1953). For the above reasons translation
gliding strain has generally not been included in any of the

strain calculations presented below.
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Accuracy of fThe strain calculations

There are two ways in which inaccuracies can enter
into the calculation of the observable part of the strain in
an aggregate using the above method. The first comprises
errors due to the assumption that the strains are infinitesimal
so that Equations 5 apply. The second kind of errors are those
of observation including measuring errors with the universal
stage, errors in visually estimating the amount of twinned
material in a grain, and especially in establishing which part
of a crystal represents twin and which host. To the extent
possible, these questions are considered below.

The validity of applying infinitesimal-strain trans-
formation formulae to actual observations representing finite
strain cannot be investigated thoroughly without entering
into the mathematically cumbersome subject of finite strain.
However, it can be expected on general grounds that the errors
and uncertainties introduced in this way will be of the order
of the squares of the observed strain components, because
terms of this order are of the lowest order omitted in all
calculations that assume infinitesimal strain. The nature of
these errors can be illustrated in the following way. In a

deformed body the rotation components tui are in general of

J
the same order of magnitude as the strain components eij‘
When a body that has been strained by amounts eij is rotated
by components Luij’ the strains with respect to axes fixed in

space change by amounts (Kamb, 1961, p. 264),

Ae w W

13 = S5 k3 © P Yk ¢
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where the tensor summation convention has been used. Thus

since the external rotations UJij remain always unobservable
in the individual crystals of naturally deformed specimens,

the calculated components of strain e are always uncertain

e B
to the order e2, no matter what strain transformation forﬁulae
are used. Since the maximum observable strain component in a
calcite crystal deformed 50% in twinning is normally 0.17, the
maximum errors introduced by assuming infinitesimal strain and
by neglecting the aJij's are about 20% of the strain components
themselves. Such errors, in view of the general uncertainty

of observational fabric data are not intolerable.

Observational errors are quantitatively about as im-
portant as those introduced by the mathematical approximations
discussed above. For example the adopted practice for deter-
mining the degree of twinning in a grain is to estimate visually
this quantity while making the other normal petrofabric meas-
urements. With visibly twinned lamellae it is unlikely that
any such estimate is accurate to any better than 10%. This
means that the principal strains given by Equation 14 are
uncertain to about 3%, or for a grain that is 50% twinned
about 20% of the strain components themselves. A special
problem is presented by deformation lamellae in calcite

commonly termed nontwinned by most investigators. For reasons

developed later (p.199) these are here renamed microtwinned

lamellae. They have been taken into account in the strain

calculations by assuming that the crystal is on the average
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0.1% twinned by each set of microtwinned lamellae it possesses
regardless of the spacing index* of the set. In practice it
has been found that the contribution of the mierotwinned
lamellae to the total strain is usually dwarfed by that of
the more prominently twinned sets in a grain.

The most serious observational difficulty arising in
determining the visible strains is as follows. It has been
indicated that a distinction must always be made for each
partially twinned grain as to which part is twin and which
host (or original) crystal. In effect changing the choice
reverses the principal axes of strain for the crystal, and
this will in turn alter its contribution to the computed
bulk strain components Eij because of the summation process
in the weighting of strains from individual crystals.
Commonly it is rather loosely assumed that the twinned part
of a grain is that represented by the smaller volume of
crystal. If this criterion is rigidly adhered to it will
set an upper limit to the observable amount of strain due
to twinning in the aggregate, for it then becomes apparent
that distinction of host and twin in a2 crystal 50% twinned
is not possible unless some independent means is available
for establishing one of these orientations. In an aggregate

containing randomly oriented crystals each 50% twinned, the

*
The spacing index for a lamellae set is defined as the
number of lamellae per millimeter encountered in a traverse
normal to the set. (Turner and Ch'ih, 1951, p. 896.)



maximum strain per crystal is, from Equation 14 roughly %-X % ®
0.69 x (1/3) or 0.06, where a weighting factor of 1/3 enters to
take account of the supposed random orientation.on the strain.
If the rock is equigranular and the strain homogeneous from
grain to grain, the maximum observable strain in the aggregate
is also approximately ©.06. In the event a random choice is
made between host and twin in grains that are 50% twinned,
then on the average, the contributions to the total strain
from these grains should cancel. Errors will enter the cal-
culated magnitudes of the principal strains if the wrong
choice for the host (or twin) is made. In all of the rocks
examined in the present work, the number of crystals showing
greater than 40% twiﬁning is always less than 10% of the total
number of grains examined. The errors likely to enter the
calculations because of faulty assumptions as to the deforma-
tion in this many crystals can be estimated as follows. If
100 grains are measured in a section of equigranular rock with
random c-axis fabric, and 10% are 50% twinned, then the cal-
culated components of strain will be in error by + 0.1 x 0.06
or 0.6%. The minus sign applies when choices between host and
twin are random so that contributions of these grains cancel,
and fthe plus sign applies if all wrong choices have been made.
Thus for a rock where the Eij are 0.04, the errors due to this
observational difficulty are about 15% of strains themselves.
Unfortunately 1t is not possiblé to cite general

criteria which will enable a clear distinction to be made be-
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tween host and twin orientation in a twinned crystal. In
rocks showing a good preferred orientation before deforma-
tion, this problem is not so serious because the original
fabric of the rock can sometimes be used as a guide to the
behavior of material that has undergone deformation. This

is an important reason for examining fabrics of specimens

from both limb and axial regions of folds that have undergone
large deformations. In selected situations it is sometimes
possible to distinguish host from twin, particularly where

the host contains two sets of twins. If an early formed

set of twin lamellae is disrupted by twinning on a later

set, the appearance of the early twins changes, and they be-
come thicker, darker, and serrated in appearance in the twin,
while remaining sharp and straight in the host. A distinction
between the two orientations can thus be made relatively easily.
It is clear that very careful observations will be necessary
if calculations like those described above are to be carried
out on highly deformed material.

The combined effects of all the different kinds of
errors enumerated above are difficult to assess. This could
be done if the strains could be measured in an experimentally
deformed aggregate in which the bulk strains are known, but
this calculation has not been made in the present work. It is
however certain that the estimates of visible strain derived
by this procedure are no better than the errors introduced at

any step, i.e., roughly 20% of the strain components themselves.




For geological situations, particularly where no other meas-
ure of the strainé are possible, such errors are perhaps
acceptable.

A convenient numerical check is available for some
parts of the computations used in obtaining the bulk strain

components. The sum of the principal strains for each grain

1 1 1
is e, + ?E + g, = 0. This sum forms the first invariant of

i - E 4
the strain tensor eij’ so that ?EE ?MX F éEE and XX + ?XX

are zero as well, and this fact may be used to partially

™
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check the numerical work. No very convenient means such as
this is available for checking the off-diagonal components

of strain.

Relation between the strain calculations and dynamic analysis

Results of strain calculation for a particular fold
which allow comparison with a dynamic analysis of the associ-
ated twin lamellae fabric are given in Figurel?2 (p.102). The
principal axes of strain and values of the principal strains
have been cbtained using most of the available twin lamella
data for the rock, but the associated diagram giving the dis-
tribution of C and T axes has been modified from the original
data (fig.14) by simply striking out closely spaced peirs of C
and T axes (< 50 apart). In this particular example 17 pairs
of axes were removed from a total of 100, and in doing so
more distinct maxima have been generated in the diagram. It
can be noted that an alteration of the data of this type does

not change the general nature of the result, at least for this
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particular case, but does serve to clarify somewhat the picture
presented by the dynamic analysis. In essence a comparison of
the strains and dynamic analysis data shown that groupings of
C-axes (in both the complete and reduced data ) are associated
with a direction of shortening and T-axes with a direction of
extension for the rock. BAn unlimited cancellation of the sort
suggested here cannot be made however, for clusterings obtained
in this manner are probably not significant in view of the
likely possibility that some grouping could occur just through
superposition of random patterns of C and T axes (B. Kamb,
oral communication). Lacking a statistical study of this
problem it is not possible to place precise limits on the
degree of cancellation permissible.

Petrofabric method for determining the bulk rheological
properties of limestone under deformation in nature

The strain analysis procedure described above in
practice turns out to be relatively sensitive in detecting
small changes in strain throughout a body if these strains
are near zero (p.119, this thesis). This indicates that the
method may be used to investigate the detailed distribution
of strain in a fold, giveﬁ suitable specimens with which to
work. Knowing the strain distribution, it is in principal
possible to distinguish between broadly different kinds of
mechanical behaviour in calcite aggregates deformed under
natural conditions, viz., Newtonian viscosity and perfect

plasticity obeying the Mises of Tresca yield condition for
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plane strain. In order to illustrate this idea, a very simple
example is considered. Imagine again the flexure fold of
circular cross-section which is deformed in plane strain by
pure couples applied in the limbs, the fold axis being the
axis of bending. Let all other surfaces of the layer be
stress-free. For an incremental increase in the angle of
bending, the strain distribution will vary throughout the
body in a way which depends upon_the rheological nature of
the material. In particular the position of the neutral sur-
face will be different for the two types of bodies mentioned
above, and if the deformation proceeds from an initially
annealed state of the material, the difference in position
could be detected by sufficiently refined measurements of
the étrain. As a2 numerical example, if the outer radius of
the fold is twice the inner radius, the difference amounts
to approximately 3% of the inner radius, the smaller value
being associated with plastic behaviour. This result can be
obtained by comparing results for circular beams given by
Hill (1956, p. 289), and Timoshenko (1951, p. 64).

Numerous difficulties make it difficult to apply this
method to natural folds, Even 1f a numerical method could
be used to deal with complicated boundary shapes and stress
and displacement boundary conditions, the strain history of
any element would have to be known. For the critical region
of the body, particularly just inside the neutral surface,

elements first undergo compression followed by extension for



an increase in the deformation in bending, and the neutrsl
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surface moves boward bthe inner boundary (Hill, 1956, p. 282).

It is nard to imagine the precise effects on individual

o
®

crystals which would be produced when the neutral surface

moves through a given part of the aggrezate, bhut the resuls

o

would probably complicate exact location of the surface. Th

fication of small

[

problem is partly circumvented by the spec
deformations from an initially annealed state of the material,
buﬁ this demand is contradicliory to the requirement that the

folded structures have small radii of curvature. Another dif-

it

ficulty in applying the method is that in "real” folds pressures

on transverse cross-sections of the beds will also tend to dis-

place the neutral surflace, and perhaps remove it from the layer.
Though the method described above is probably inap-

plicable to most folds in practice it does illustrate in

principle an approach by which pefrofabric data can be used

on a detailed basis to obtain zeological information about

the rheological properties of limestone. It turns out to be

inepplicable to the folds studied here, because in the single

example whilch approaches some of the necessary reguirements

~
4

(p. 112), the difference in position of the neutral surface
between the cases of viscosity and perfect plasticity is only
0.1 inches. PFurthermore, it 1s not certain that the neutral

surrace has not been considerably disturbed by compression

throughout the fold.
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In reality one would perhaps not need to carry through
the complicated procedure described above, because a simple
examination of thin sections from all parts of a fold could
reveal variations in amount of strain due to twinning, which
would qualitatively accomplish the same purpose as the strain
analysis. Folds containing ocolites would also be especially

valuable for this purpose.

Petrographic Techniques Employed

Petrofabric analysis procedure

Petrofabric observations for this study were made
using a Letiz P.III M petrographic microscope equipped with
a Leitz four-axis universal stage. Universal stage measure-
ments were made using hemispheres of index 1.649 and mounting
0il of index 1.638. Universal stage techniques described by
Turner (1949) have been used throughout this investigation
except as described below.

Where possible, two mutually perpendicular thin sec-
tions were examined in the various parts of each of the folds
studied. In all cases orientation data from at least 100
grains were taken from thin sections from each position in
the fold. In linearly traversing a thin section, all grains
along the line of the traverse were measured rather than at
equally spaced intervals. Orientation data taken in highly
warped crystals were measured as close as possible to the

same spot in a given crystal. These data were plotted on
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the lower hemisphere of a Schmldt equal area projection net
of 20 cm diameter. Interfacial and zonal measurements were
made on.this net and the values obtained were recorded for
future reference along with net coordinates of individual
grains. Descriptive data such as amount of twinning, lamella
warping, grain boundary structures, and special or anomalous
features (internally rotated lamellae, evidence of recrystal-
lization) were also recorded. Positions of grains were located
on photomicrographs of the thin sections. Orientation data
are presented as scatter diagrams rather than as conventionally
contoured orientation densify diagrams. This is advantageous
because the irregular detail in conventionally contoured
diagrams has no statistical significance (Kamb, 1959, p. 1909)
and further serves to obscure the picture presented by the
original data.

For reference purposes in describing orientation
data, a system of orthogonal coordinate axes fixed with
respect to a particular fold has been adopted as follows:
facing the outcrop, the (+) b-coordinate axis is into the
outerop along the fold axis: (+) a 1s along the normal fto
the fold axial plane directed to the right if the flexure is
convex upward (anticline) and to the left if convex downward
(syncline); (+) c is normal to the ab-plane directed outward
in the convex direction of the flexure. These directions are
noted on each fabric diagram presented in subsequent sections.

Positive directions are specified along the axes to allow
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comparison of diagrams of different orientation. The fold
coordinate axes are not generally coincident with the arbi-
trary reference axes of the strain analysis procedure. They
coincide for cases in which a thin section is cut exactly
parallel to the fold coordinate plane with edges parallel

to the coordinate axes. Orientation of thin sections rela-
tive to the fold_axes are known to approximately + 30. The
accuracy of orientation data from individual crystals, as
established through repeated measurements are: for c-axes

5 0, 0
on the average + 37 ; for e-lamellae + 1°.

New developments in carbonate petrofabric study

Twinning lamellae in calcite and dolomite present
certalin problems in microscopic fabric analysis. The first
of these is an interpretational one concerned with the de-

formational significance of the so-called "nontwinned"

lamellae parallel to e in calcite, structures often observed
in rocks used in this investigation as well as in both ex-
perimentally and naturally deformed marbles (Borg and Turner,

1953). Nontwinned lamellae are described as being so narrow

that when tilted intc the vertical plane they appear as hailr-
sharp lines, rather than as lamellae, but are distinguished
from cleavage parallel to r by the tendency to femain clearly
visible between crossed nicols even when tilted at large
angles to the vertical. They are further distinguished

by the fact that when in the vertical position twinned ma-

terial cannot be recognized within them through symmetrical
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extinction about the lamella plane with the host crystal
(Turner, 1949; Borg and Turner, 1953). Actually, such
lamellae can be shown to contain optically recognizable
twinned material and to average a few microns in thickness
(p.203, this thesis). Methods are also developed below in
detail for determining optically the thicknesses of twinned
material in these lamellae both individually and when several
are superimposed through orientation of the grain in thin sec-
tion., BAs a result of the studies described below, it seems

appropriate to redesignate these structures as microtwinned

lamellae, a term which more correctly describes their nature.
They will henceforth be referred to by this name.

Another problem presented by deformation lamellae in
carbonate minerals is that of obtaining orientation data on
these lamellae when they are inclined at angles of less than
350 to the plane of the thin section. Such lamellae are
normally inaccessible to measurement using conventional uni-
versal stage orientatioh methods, and this fact accounts for
the central "blind-spot"” in e and f lamellae pole diagrams,
and necessitates‘examination of two perpendicular thin sec-
tions in a carbonate rock to obtain an accurate picture of
" the distribution of lamellae (Turner, 1949). The study of
microtwinned lamellae has led to discovery of an optical
technique for obtaining orientation data on shallowly in-
clined lamellae of both the visibly twinned and microtwinned

-varieties. The technique turns out to be more readily ap-
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plicable to dolomite than to calcite. 'Since the three f §0221%
twin planes in dolomite are oriented at approximately 80° to
one another and this determines that one set of these lamellae
will be inaccessible in most grains (Christie, 1958, p. 162).
The method developed here utilizes the optical properties of
the twins and is described later in detail (p.196). Ibts dis-
covery came rather late in these investigations and 1t

consequently was not used during the fabric studies.



FABRIC STUDIES OF FOLDED LIMESTONES

Introduction

Fabric data from two geographically widely separated
folds are presented in this section. The first fold to be
~discussed was found in western Maryland, and the second was
obtained from Darwin wash in Inyo county, California. The
fold from Darwin was originaliy collected by Kamb (personal
communication) who also measured a preliminary fabric in
the structure. When fabric analysis of the fold was com-
pleted by this writer in other portions of the structure, it
became clear that no simple relation existed between the
fabrics and the megascopically observable deformation in the
fold. A new search was then instigated for other examples
of simply folded carbonate rocks, and this search ultimately
led to the folds in western Maryland. A number of other at-
tempfs were made to find deformed rocks suitable for the pur-
poses here. Studies of folds visited in the field during
these searches (folds which were rejected for various reasons)
are summarized below.

In general we have foﬁnd that although there are
numerous examples of folded limestones, any of a combination
of factors can limit the usefulness of a particular structure

or eliminate it completely as a desirable object of study.
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Many folds are located in undesirably complicated geologic
envircnments. Others examined contained strong axial plane
cleavage, and still others were highly fractured or contained
vein-like or irregular masses of secondary calcite. Where
cleavage, veining, or fracturing were subordinate;the rocks
were sometimes too finely crystalline to permit microscopic
determination of c-axis fabrics. Another sort of development
has emerged from one example (see "Mule canyon" below)., In
this case no deformation fabrics were observed in a fold in
coarse grained limestone in which well developed fabrics,
for the observed large strain, could have been expected.
This indicates that either recrystallization intervened to
destroy the fabric or that a fabric never developed in the
rock as a result of the deformation. The conclusion derived
from these searches is that simple flexure folds ("simple"
here being used in the context of the requirements laid down
in the Introduction) suitable for this study are rather hard
to find. This by no means weakens the case for using such
folds in these investigations, because under the special
considerations here invoked, these structures still present
the most straightforward examples of bodies where local
variations and amount of strain can be independently estimated
and fabric changes compared with those expected in theory.

As will be discussed in detail below, the examples of
folds actually studied have not yielded deformation fabrics

resulting from large strain which can be simply related to



the observed deformation. As a result of this it is not pos-
sible to draw any certain conclusions as to the relevancy of
past experimental studies in describing the detailed behavior
of carbonate rocks during natural deformation. Where appro-
priate, some comparisons are made below.

Before giving the results of the fabric studies, the
other fold localities visited and examined in the field are

treated in summary form.

Iocalities Examined

A search for deformed limestones suitable for purposes
of the present investigation has been carried out in a number
of areas. These are given below, and pertinent information
as to location, geoclogic seﬁting, descriptions of the folds
examined, and petrographic characteristics of the rocks are
also included. The two folds which are reported on in detail
in following sections are not included here.

I. Fold from the Talc City Hills, Inyo County,
California.
A. Iocation - The fold occurs on hillside just
northeast of road connecting
California State Highway 190 with
the Sierra Talc mines, 3/8 miles
southwest of the Talec City mine.

B. Geologic Setting - The fold is developed in
limestone of the Pogonip group
(Gay and Wright, 1954) in a posi-
tion roughly 200 feet vertically
below a large thrust fault which
has placed Ordovician and Silurian
sediments over those of Carboniferous
age. The thrust fault is itself



- 3R =

warped (?) into a gentle syncline
about an axis trending N. 50° W,

The minor fold is perhaps related

to the thrusting. Cretaceous in-
trusives crop out 1/4 mile to the 8V,

C. Details of the Structure - The fold cccurs in
light gray, finely crystalline,
slabby bedded, calcareous limestone
which is highly veined with secon-
dary white calcite. 1In outerop its
plan is asymmetrical. The axial
plane strikes N. 16° W., dips 61° E.,
and the fold axis plunges 18° to the
northwest. At the axial plane the
radius of curvature is about one foot.
Cleavage parallel To the axial plane
is well developed in the structure.

D. Petrography - In thin section the limestone
appears considerably deformed, with
abundant visible twinning and warped
lamellae.

E. Remarks - Although the rocks appear highly de-
formed in outcrop and thin section,
the presence of axial plane cleav-
age in the fold, its complicated
geologic setting below a large
thrust fault, and position immedi-
ately adjacent to plutonic intrusive
rocks render it undesirable for the
purposes intended here.

IT. Bullfrog District, Bull Frog Hills, Nevada.
A. Tocation - Approximately two miles south of
Beatty, Nevada.

B. Geologic Setting - A section of predominantly
quartz biotite schist of pre-
Silurian (?) age (Ransome, 1910)
contains thin lenses of calcite
schist and calcite marble., The
calcareous bands are flat lying
or dip gently south, and range in
thickness from 5-40 feet. Folia-
tion within the marble units 1is
parallel to layering in the en-
closing schists.
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C. PFolded Structures - Small microfolds and
irregular wavy Tfoliation are well
developed in the marbles. No
consistent trend was noted in the
structures. The marble is gray to
brovwn, and consists almost completely
of ecalcite, but locally contains a
few percent muscovite. The rock is
equigranular with grainsize of about
one millimeter,

D. Petrographic Data - none

E. Remarks - Original intent here was to find
some well developed flexure folds
in this homogeneous coarsely crys-
talline material. The small micro-
folds as such probably reflect 2z
complicated deformation pattern and
are not useful in terms of the type
of folds sought. The observed
folds were not considered further,

ITIT. Grapevine Mcuntains, lower Titus Canyon.
A, Iocation - Approximately 1.5 miles from the
mouth of Titus canyon, along the
canyon bottom, north side.

B. Geologic Setting - General geologic relation

of small folds developed in Pogonip
(?) limestone (Ball, 1907) to larger
structures in the Grapevine mountalins
is unknown. Ball describes isoclin-
ally appressed folds with horizontal
axes which trend parallel tc fthe

axis of the range, and which are as-
sociated with a large anticlinorium
that forms the backbone of the range.

C. Description of the Fold - Fold (anticline)
located low on north wall of Titus
canyon. The fold axis trends about
N. 30° W. and is nearly horizontal.
The axial plane dips 30° SW. The
radius of curvature is about 3 feet.
The rocks consist of massive to
slabby bedded, fine grained, dark
gray limestone. In hand specimen
a few coarse crystals ( ~ lmm) are
visible. The lower limb 1s covered
by alluvium filling the canyon
bottom.
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D. Petrography - Coarsely crystalline material
composes roughly 10% of the rock
and displays only incipient twinning
(microtwinned lamellae). The rest
consists of finely crystalline cal-
cite (0.01 mm), which shows no evi-
dence of deformation.

E. Remarks - Though the fold has good geometry,
relatively good exposure it shows no
appreciable evidence of deformation
and is too fine grained to permit
study with the universal stage.

Alexander Hills, Inyo and San Bernardino counties,

California.

£, TLocation - The areas of concern are in the
Alexander Hills which form a south-
ern extension of the Nopah range,
about 5 miles east of Tecopa,
California. (See Wright, 1954.)

B. Geologic Setting - A reconaissance was made of
outcrops of the lLower Cambrian
Johnnie formation in search of
folds in a 5-10' layer of brown
weathering oolitic dolomite. The
Johnnie formation in the Alexander
Hills generally strikes N. 30° W.
and dips 45-550 east. It is offset
by a number of small both right and
left hand strike slip faults. Drag-
ging of the oolite bed along these
breaks was searched for but not
found.

C. Petrography - The oolitic dolomite is cream
colored on fresh surfaces weathers
to a brown, colitic texture. The
rock consists almost completely of
nearly spherical oolites 0.5 mm in
average diameter. The rock is well
cemented, breaks across individual
oolites on fresh surfaces. Each
oolite is concentrically layered,
contains a nucleus of finely crys-
talline material (dolomite (?)).

D. Remarks - Though no folds were found in the
Johnnie in this region, it would be
interesting to observe such struc-
tures for study of strain through-
out a fold much as has been carried
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through by Cloos (1947). Subse-
quent searches have been made by
this writer for folds in a dolo-
mitic layer of the Johnnie (%)
formation in the Bare Mountains
and Grapevine Mountains near
Daylight Pass, but no folds in
the oolitic dolomite layer have
vet been discovered.

Mule Canyon, Calico Mountains, San RBernardino

County, California.

A. Location - One mile above the mouth of Mule
canyon, in the NW 1/4 sec. 25,
T. 10 N., R. 1 E. and SW 1/2 sec.
24, T. 10 N., R. 1 E.

B. Geologic Setting - The Calico Mountains con-
sist of Miocene (?) volcanic and
sedimentary rocks resting on a
basement ol Paleozoic sedimentary
and Mesozoic intrusives and are
intruded by Pliocene (?) andesites
and rhyolites. In Mule canyon a
sequence of these Miocene (?) lake
beds (Erwin and Gardner, 1040) in-
cluding shale, sandstone, tuff and
limestone members, is thrown into
a series of folds trending N. 70 E,
which are overturned slightly to
the north. The folds have ampli-
tudes between 50-100'; a few are
broken in the crests and ftroughs.
Folds in fthe limestone member are
rounded, but zig-zag folds are
almost always developed in the
clastic sediments.

C. Description of the Fold - Febric studies were
made (see Remarks) on rocks from
the inner part of the bend in a
broken, over-turned (45° N) syncline
in the limestone member. The
layer examined, part of a 3 to 5 0O
section of dark brown limestone, is
4-L 5" thick and is surrounded by
loosely consolidated sandstones and
shales. The radius of curvature of
the central section is approximately
5 inches indicating a maximum bend-
ing strain of roughly Lo%.
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D. Petrography - The rock consists primarily of
calcite and a small amount of hema-
tite. A number of bulbous algal-
like structures are apparent in
thin section and consist of hema-
tite strained calcite crystals con-
nected to one another by patches of
clear calcite. Numerous 1-2 mm
irregular cavaties occur in the
rock, occupy roughly a volume of
20%. A1l of the material is almost
completely untwinned but some grains
give an anomalous undulatory-like
extinction. Grainsize about 0.01 mm.

E. Remarks - Kamb (personal communication) has
made fabric studies of this material
and has found that no c-axis pre-
ferred orientations whatsoever can
be seen. The results are definitely
negative, in that there is no sug-
gestion of a reorientation of the
¢-axis fabric around the a-axis of
the fold, as could be expected from
material in the part of the fold
studied.

VI. Johnny Lyon Hills, Cochise Cdunty, Arizona.
A. Iocation - NE 1/4, sec. 22, T. 15 3., R. 21 E.,
between Tres Alamos Wash and Javelina
Hill.

B. Geologic Setting - Southeast of Javelina Hill
a2 major fold is developed in the
upper plate of a large thrust fault
(Silver, 1955, p. 315-316). The
fold involves beds of upper Paleozoic
age, the Horquilla and Earp forma-
tions. A north-striking limb of
beds in the Horquilla formation dips
east and steerens southward until the
beds overturn and strike southeast-
ward. The inverted 1limb dips 45° SU.
In the core of this large fold thin
shales and limestones of the Earp
formation are tightly folded. B2Axizl
planes of the minor folds strike S.
850 E,, dip 45° S. Axes plunge 30°
SE. BAxial plane cleavage is well
developed in the rock. Right lateral
faults with large strike slip dis-
placement offset the core of the fold



€

B,

Q7
(W -

and displace the overturned limb
westward relative to its original
position. The folded parts of the
Earp formation consist mainly of
shale with subordinate thin bedded
siltstones and sandstones, a con-
glomerate and a number of thin to
medium bedded light green, yellow,
and pink limestones.

Petrography - These limestones consist for the

most part of calecite, are inequi-
granular, containing large rounded
calcite grains up to 3 mm in diame-
ter to small angular fragments 0.01
mm in diameter. The rock is rich

in fossil debris (Triticites (?) and
other fauna) (Silver, 1955). All of
the rock appears to have a cataclas-
tic texture, although this may repre-
sent the original depositional tex-
ture of the material. ILocal patches
of untwinned (recrystallized (?))
calcite are present.

Remarks - Folds in the Earp formation are from

a very complicated structure and
contain well developed cleavage.

The rocks are also relatively poorly
exposed on low slopes adjacent to
Tres Alamos wash, and are partly ob-
scured by thin alluvial and colluvial
deposits. The strong axial plane
cleavage has also allowed cobbly
poorly constituted outecrops to form
which make difficult the problem of
sampling. Oriented specimens were
not collected from these structures.

VII., Washington County, Maryland.

A,

Iocation - Eight large folds were examined in

various parts of Washington county,
as listed below:

(1) 1 1/2 miles north of Spickler--
anticline in the Conococheague lime-
stone axial plane strikes N. 35 E.,
fold axis plunges 5° (?) north.

(2) 2 miles southeast of Williams-
port Station--syncline 1n Beekman-
town and Stones River formations,
strikes N. 30° E., plunges 5° north.
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(3) Pinesburg Station--series of
drag folds (?) along a vertical
fault trending N. 20 E. Folds in
Chambersburg limestone strike
roughly parallel to the fault dip
north approximately 50,

(4)Y 1/4 mile east of Downsville--
two anticlines with intervening
syncline in Conococheague limestone,
strike N. 26 E., plunge 5° north.
(5) 2 miles northeast of Funks-
town--anticline in the Conocheague
limestone, strikes N. 20 E.,
plunges 50 N.

(6) 2 miles southeast of Funks-
town--syncline in Conococheague
1%mestone strikes N. 20 E., plunges
B2 M.

(7) 1 mile southwest of Beaver
Creek--anticline in Waynesboro
formation, strikes N. 30 E.,
plunges 10° (?) north.

(8) 1 mile east of Chewsville--
anticline in Tomstown dolomite

and Waynesboro formation, strikes
N. 419 E., plunges south 50,

B. Geologic Setting - The geology of Washington
County has been discussed in de-
tail by Cloos (1951). Folds in
the Paleozoic rocks throughout
the county trend N. 20-300_E. and
plunge between 5° N. and 5° S.
They are generally asymmetrical
with axial planes consistently
overturned to the west. The de-
gree of overturning increases to
the east. Thus at South Mountain,
the axial plane of the South Moun-
tain fold dips 30° E., while near
Hancock the axial planes of folds
dip roughly 80° E. Either axial
plane or fan cleavage is present
in almost all folds listed in (A)
above except those at Pinesburg
Station, where the Chambersburg
limestone is very fine grained to
sublithographic. Cleavage gesnerally
dips to the east and becomes more
prominent in that direction.
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C. Description of the Folds - Most of the folds
(except at Pinesburg Station) are
sharply bent in the axial region
with strata standing vertical along
the axial plane. Cloos (1947) has
shown from an analysis of the oolite
deformation in most of the folds
given above where oolites are pres-
ent, that individual ooids are con-
sistently flattened in the plane
of cleavage and usually are elongated
normal to the fold axis. The folds
are of large dimensions, having

wavelengths of 1/4 - 1 1/2 miles
and amplitudes of 1/4 mile or
greater.

D. Petrography - Petrography of the Paleozoic
carbonate rocks east of South
Mountain has been discussed in
great detail by Cloos (1947). The
major petrographic features are
only summarized below. QOolites are
found in the Conococheague, Stones
River, Chambersburg, Beekmantown,
Elbrook, Waynesboro, and Tomstown
formations. Individual ooids are
spherical or deformed into ellip-
soidal shapes which develop ragged
ends with "elongation'" of approxi-
mately 60% or greater. Oolites
are often concentrically layered
or show radial structure, but may
also consist of single crystals
or rounded groups of small crystals.
They may contain shale pellets,
shell fragments, quartz or other
grains as nucleae. Secondary
growths of coarsely crystalline
calcite and quartz and finely
crystalline calcite form the matrix
of the rocks.

Cloos (1947) gives the follow-
ing sequence of events in the growth
and deformation of the oolites: (1)
ooid growth around nucleus, (2) sedi-
mentation, (3) deformation before
induration of the rock and before
the growth of secondary "aprons"
of calcite around the ooids, (4)
growth of new crystals in the de-
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formed rock, (5) deformation of
the interstitial calcite, forma-
tion of cleavage, fracturing, (6)
healing and annealing.

E. Remarks - Although the deformed oolites form
a ready index of the strain through-
out these structures, the oolite
deformation is indicated to be
earlier than crystallization of
the matrix calcite. Thus the de-
formation recorded as twinning in
the matrix calcite may not be re-
lated to that indicated by the
oolites. (Fabric studies like
those persued here could perhaps
shed light on the relation if one
exists). Since the purpose here
has been to study folds where large
variations in strain throughout
small portions of the structure
could be observed, and which are
not cut by cleavage (whose mechan-
ical significance and effects are
uncertain), these folds were by-
passed in favor of other struc-
tures discovered in western Mary-
land which are discussed below.

Folds from the Cacapon Mountain Anticlinorium

Geologic setting

Small folds occur on the limbs and in the axial region
of the large Cacapon Mountain anticlinorium which traverses
western Washington County, Maryland, in a northeast direction.
Figure 8 is a geologic map and cross-section (after Stose and
Swartz, 1921) of the area adjacent to and including the so-
called Cacapon section of the anticlinorium. The location of
the fold studied here is also shown. The index map of Figure

7 shows the position of the map area in western Maryland.
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ILike most folds of the Appalachian Valley of this
region the major anticlinorium and the minor folds it em-
braces are overturned toward the west by 20°. Beds in the
western limb of the major structure dip 550 west and those
of the eastern limb 35-450 east. The cross-section in
Figure 8 is drawn along a line forming the lower boundary
of the geologic map given above it. Schematically depicted
are the minor even wave length crenluations which occur in
thinly bedded Silurian strata of the McKenzie, Tonoloway,
and Wills Creek formations. The actual fold studied is
not shown because its position is north of the line of the
cross-section. However its relationship to the larger fold
is similar to that of the structures shown in the drawing.
These minor folds appear to have arisen through a simple
squeezing of sediments in the core of the large Cacapon

anticlinorium.

Detailed description

Figure 9 shows the fold studied here (designated
hereafter as fold PC) which occurs in the McKenzie Creek
formation about 10 feet below the upper contact of this
unit with the overlying massive Bloomsburg sandstone. Figure
10a is a drawing from the above photograph of the particular
limestone layer studied in this investigation (for convenience
this horizon is designated layer A). The medial plane of the

layer is deformed into a nearly circular curve whose radius
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(a) thin section

+C

" boudinage-iike"
structures

white calcite
veinlets

(b)

Figure 10. ©Sketch of the fold in Figure 10, layer
A, axial portion. (a) Dimensions of the layer, positions
and orientations of thin sections approximately to scale.
Region I 1lies inside the circular dashed line (which marks
approximately the mediczl plane of the layer) and Region IIX
outside. Stippled areacs are white calcite filled veinlets.
(b) PFracture and veinlet pattern in the axial portion of
the fold. The composite fracture and velnlet trending
diagonally across the layer zt the top of the drawing
makes an angle of approximately 30° with the ab-plane of
the fold. Stippled areas are white calcite veinlets.
Reference axes with positive directions are as shown.
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of curvature is 6.6 inches (16,8 cm). Both the upper and
lower boundaries of the layer are nearly circular as well,
and have a common center of curvature with the medial plane.
Figure 10b shows the details of the veining and fracture pat-
terns in the axial region. The rock is laced by two sets
of'caléite filled veinlets, with the veinlets in each set
" being asbout one millimeter in width. One set lies parallel
to bedding inthe layer and The other is tilted at a small
angle To the axial plane. The veinlets parallel to bedding
are offget by and are therefore later than veinlets of fthe
other set. In addition to the veinlets, three mutually per-
pendicular sets of fine fractures have been superposed upon
the rock. These fractures are oriented parallel To the planes
defined by the coordinate axes in the fold (see p. 75). Bed-
ding is mainly manifested in the rock by ostracod and other
broken shall debris. Within the stratigraphic column, layer
A is sandwiched between thin one-half inch thick layers of
dark gray, fissle shale above and shaly limestone below. The
rocks stratigraphically sbove the layer are broken and crumpled
in the axial region (fig. 9), but below the layer they are un-
broken and maintain continuity arcund the bent region. The
limbs of the fold are broken by fractures which are filled
with secondary calcite, but some fractures of this type are
apparently later and are not mineralized.

Axial plane cleavage is not developed in this fold.

However, both flexural and shear (?) folds have supposedly



been described from the Cacapon section (Cloos, 1951, p. 153).
The following points indicate that the fold studied here is
at least partially flexural. (1) There is no development

of axial plane cleavage or fan cleavage ih the fold, (2)
radial fractures are developed in other beds beneath layer A
(fig. ¢, area labeled "B"), (3) white veinlets (fig. 9, area
"C") show differential offset of individual beds in the
proper sense for the folding. (&) There is no significant
thickening of the strata near the axial plane as 1s common

in shear (?) folds of this area (Cloos, 1951, p. 153).

Petrographic character of the rock

| Figure 11 givesa photomicrograph of the material from
layer L. The rock consists of wvariable amounts of partly
recrystallized shell detritus (5-30% flattened and deformed
ostracod sheels 0.5-5 mm in length), accessory amounts of
rounded quartz, and large (up to 3 mm) subhedral dolomite
grains which appear rust brown in plane light. Finely
divided sericite and a small amount of opagque material
(carbon ?) have also been noted. From the standpoint of
this study, there are texturally five types of calcite
visible in thin section: (1) ostracod and other shells
made of exceedingly fine (ca, 1}1) equant crystals which
show some preferred optical orientation within individual
shell fragments, the c-axes of most crystals lying perpen-

dicular to the margins of the shells. This material is not

discernibly twinned. Quartz appears to replace some shells
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Figure 11. Photomicrographs. Material from layer A
(region I). The rock consists of variable amounts of shell
material (1), coarse and finely crystalline calcite (2)
through (4). See text page 97 for further description. The
wavy structure containing elongate crystals marked (5) on the
right side of the photograph in {(c) is part of the diagonal
veinlet near the inner boundary of the layer in region I,
Figure 10a., Several dark fractures traverse the veinlet.
Crystals marked (3) in (a) and (b) are btwinned variable
amounts, A dark grain near the left maergin of (b), center,
contains thinly twinned (monotwinned) lamellae showing
type I (2%) interference fringes (see page 179, this thesis).
A1l pictures taken with crossed nicols. Scales as shown.
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and a few consist of coarse calcite. (2) Surrounding many
shells are radiating saw-tooth-like groups of elongate crys-
tals and clusters of equant crystals 0.05-0.1 mm in sicze.
Most grains of this type are twinned. (3) The third type
of material consists of individual equant crystals 1-2 mm
in diameter scattered through the rock embedded in a coarse
matrix of crystals of types 1 and 2. Type 3 are distinguished
from these latter groups by their larger size and by having
no apparent association with these groups (as, for example,
type (1) and type (2) appear to be associated). (4) Often
enclosed within complete outlines of shells and forming an
interstitial matrix for all of the above groups of crystals
are small (0.01 mm) equant crystals which are not discernibly
twinned. (5) Included within the fifth category are all
ages of veinlet material. Specifically two ages of veinlets
are present as noted previously. These are easily distinguished
from one another in thin section by the fact that the later
(radial) set containg undeformed calcite crystals. Crystals
of the earlier set (parallel to bedding) locally appear
highly sheared out (fig. 15 ). Profuse twinning (micro-
twinned lamellae), undulose extinction, development of ex-
tremely elongate crystals are common. Fabric studies
reported here utilized crystals of groups (2) and (3),
but a special study of material from a deformed veinlet is

also presented.
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Fabrics from the fold

Fabrics from fold PC are presented in Figures 12, 13,
and 14, Separate parts of the fold are distinguished in dis-
cussing the data. "Region I" is designated as occupying the
part of the axial plane region toward the center of curvature
from the medial plane: '"region II" lies outside the medial
plane.

(1) c-axis fabrics: Scatter diagrams of c-axes
from regions I and II are shown in Figures 12a and 13a.
Neither of these diagrams discloses a tendency for preferred
orientation in the specimens analysed, and there is no sym-
metrical distribution of c-axes with respect to the coordinate
axes in the fold (these axes are defined on p. 75 s

(2) e-lamellae preferred orientation: The dis-
tribution of poles to all e-lamellae in grains from regions
I and IT are given in Figures 12b and 13b. In both figures
solid dots represent positions of poles to the most prominently
twinned lamellae set in each grain (designated gl) and open
circles represent subordinate or incipient lamellae sets
(designated 92). In region I, 76% of grains measured showed
only one set of lamellae per grain, while 7% showed two lamel-
lae sets with one set incipient and poorly developed (micro—
twinned). In region II, 70% of the grains measured showed
only one set of lamellae, 20% two sets and 5% no twinning
at all. One percent of the grains in region II showed recog-
nizable twinning, with the remainder of the lamellae being

microtwinned.
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Fabric and strain data from Region I. (a) c-axes;
Closed circles represent positions of poles to most

Figure 12.
(b) e-lamellae data.
prominently twinned set of lamellae in a grain (gl). open circles less

); (¢) dynamic analysis (reduced diagram) of

C = axes of compression, T = axes of tension; (d)
orientation of the principal axes of twinning strain, magnitudes and

well developed sets (22, gy

twin lamella fabrice.

senses of the principal strains. El. Ez. and E3 refer to the algebraically

least, intermediate, and greatest strains (negative values compressive),
the magnitudes of which are given below the diagram. The dashed lines
outline areas of concentration of C and T axes from the dynamic analysis.
All diasgrams equal area projections, lower hemisphere. Position in the
fold from which these data were obtained is given by the circled mmber
in the drawing at the center of the figure. As the coordinate system is
drawn, the (+) b-axis is down in this figure.
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Figure 13. Fabric data from Region II. (a) c-axes; (b) e-
lamellae data. Closed circles represent positions of poles to the most
prominently twinned set in a grain (gl), open circles less well de-

veloped sets (9_2, e8,); (¢) dynamic analysis (reduced diagram) of the

twin lamella fabric. C = axes of compression, T = axes of tension;
(d) orientation of the principal axes of t winning strain, magnitudes
and senses of the principal strains. El’ 32. and E3 refer to the

algebraically least, intermediate, and greatest strains (negative wvalues
compressive), the magnitudes of which are given below the diagram. The
dashed lines outline areas of concentration of C and T axes from the
dynamic analysis. All diagrems equal area projections, lower hemisphere.
Positions in the fold from which these data were obtained is given by
the circled number in the drawing at the center of the figure.
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Scatter diagrams of e-lamellae poles deserve some
special comment. In both regions I and II there is a tendency
for these poles fo lie in a broad girdle about the b-axis of
the fold, the girdle being somewhat stronger in region II.
This distribution of points for each region must partly
result from the optical inaccessibility of e-lamellae lying
parallel tc the ac-plane of the fold. In preparing each
of these diagrams mutually perpendicular thin sections were
examined from each region, but more grains were measured in
the ac-sections than in sections cut from the parallel to
the ab-plane. In particular, in region II, 70% of the data
were obtained from ac-sections, and in region I 75% of the
points were measured in thin sections of this orientation.
The e-lamellae data are thus somewhat biased by this weight-
ing. In both regions practically all of the visible lamellae
measured in ab-sections were incipient in development (micro-
twinned, showing very low 1lst order interference colors (see
p. 199)) and were widely spaced, so that they do not con-
tribute significantly to the strain in twinning. In region I
the degree of twinning is much greater in section (1) (see
fig. 10a) than in section (2). In region II, sections (3),
(4), and (5) show on the average the same amount of twinning
per grain (most grains contain only microtwinned lamellae).
1b appears that the girdle fabric in each region is to
some extent due to observation. This will be taken into
account in later discussions of results given by the dynamic

analysis of these lamellae fabrics.
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When these diagrams are examined in detail, openings
in the girdle pattern may be noted in region I around the c-r
axis of the fold. No such distinct opening can be seen in
the diagram from region II. 1In region I there is a marked
tendency for e,-lamellae to be distributed around the a-
axis of the fold, with e,-lamellae scattered throughout the
rest of the girdle pattern. In region II the pattern is
not as straightforward, gl—lamellae are generally distributed
about the c-axis of the fold. ge-lamellae appear to be more
numerous around the a-axis, but this density variation may
not be significant statistically.

(3) Dynamic Analysis Results: Figures 12c and
13¢c also show results of a dynamic analysis of the twinning
lamellae in regions I and II respectively. These particular
figures are "reduced" diagrams, prepared by the method sug-
gested on p. 70. The composite scatter diagrams of compres-
sion and tension axes obtained from all sets of e-lamellae
in all grains for each region are given in Figure 1l4a,b.
Referring to the reduced diagrams the major features of
the pattern in region I are maxima of compression axes
around the a-axis of the fold, and tension axes around the
c-direction. These latter points tend to form a girdle in
the be-plane of the fold.  The situation in region II is
that broad clusterings of C-axes occur around the c-axis of
the fold, and a very broad T-axis maximum 1s situated about

the b-axis. In the composite diagrams (fig. 14) the situation
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described above for region I is again portrayed, while the
patterns for region II consist roughly of a T-axis girdle
in the ab-plane and a C-axis girdle in the ac-plane which
overlap in a portion of the diagram corresponding to the
direction of the a-axis.

As far as the dynamic interpretation is concerned,
the above results indicate the following points: in region
I compfession of the rock along the a-axis, tension along
a direction normal to this axis, or a combination of such
stresses could account for the twinning observed. In
region II the analysis indicates compression parallel to
the c-direction in the fold, a tension along the b-axis,
or some combination of these could produce the observed
twinning. These results are to be compared with those
derived above (p. 52 ) for an aggregate obeying the maximum
resolved shear stress law. The simple model for the fold
chosen there consisted of an unconfined circular beam de-
forming in plane strain and loaded elastically by forces
applied at the ends of fthe beam perpendicular to the axial
plane. A comparison will show that qualitatively there is
reasonable agreement between the model and the observed
natural fabrics, and this indicates that a stress system
like that in the axial region of the model could account
for the observed twinning in the natural fold.

Concerning the major concentrations of axes in each

diagram, the dynamic analysis indicates a reorientation of
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the principal axes of stress as one passes from region I %o
region II, such that the axis of compression lies parallel
to the a-axis in region I and parallel to the c-axis of

the fold in region II.

We can estimate the effect produced on the dynamic
analysis results by the observational "blind-spot" problem
mentioned above (p. 104), by considering what pairs of C and
T axes are omitted from the C-T diagrams which correspond
to lamella pcle positions at the center of a lamella pole
scatter diagram. For a pole exactly at the center of a
diagram, the associated c-axis of the crystal could lie any-
where on a’small circle 26%? about this pole. The C and T
axes would then occupy positions on aAsmall cirecle of half
angle 450 about this pole. The exact positions of a pair .
of C and T axes will naturally depend on the orientation
of the c-axis and the applied stresses, but qualitatively
if polar e-lamellae are not measured, then associated points
on the C and T diagrams are omitted which fall in a zone
about the small circle with half angle h50 wnich has its
>center on the pole to the plane of the C-T diagram and about
the pole to the diagram. In the complete fabric diagrams
shown in Figures 1l4a and 14b, a low density of T-axes about
the pole in the diagram may result from this difficulty.

The above dynamic analysis results were obtained
from an original isotropic distribution of c-axes in each

region of the natural fold. Thus the data are not restricted



Figure 14&. Complete dynamic analysis data for the fold.
(2) Region I; (b) Region II. Previous diagrams (fig. 12c¢, 13c)
were prepared using data given here by striking out closely

spaced pairs of C and T axes (see text, p. TO).
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by the considerations which have been mentioned for ag-
gregates showing highly preferred c-axis orientations.

(4) c'-axls orientations: The distribution
of c'-axes (that is orientations of the optic axes of the
twinned parts of each crystal) have not been plotted directly
for the fold but an idea of the distributions resulting from
the deformation can be gained from results of the dynamic
analysis. These distributions will represent a first ap-
proximation to the resulting deformation fabric. For cal-
cite the c¢'-axis lies 52%-O from the c-axis of the host
crystal and is symmetrically related to the host c-axis
position about the pole to the operative twin plane. From
the geometry of the twin plane in calcite the compression
axis of the dynamic analysis lies 710 from the c-axis of
the host cfystal along the great circle containing c¢ and c',
and the difference in position between the compression axis
and the c'-axis is only 190. Clusterings of compression
axes fthus foughly approximate new c-axis positions developed
in a calcite aggregate through twinning. By referring to
Figures 12¢ and 13¢ the new optic axis orientations due to
twinning will be around the a-axis bf the fold in region I
and about the b;axis in region II. As pointed out earlier
these are approximately the new orientations to be expected

from twinning on the approximate model of the flexural fold

given on page 47 .



- 111 -

(5) <Calculation of Strains due to Twinning:
the calculation of visible strain due to mechanical twinning
has been carried through for the fold using the procedure
presented earlier (p. 56). In region I, 85 sets of lamellae
have been used to determine the amounts of strain and orienta-
tion of the principal axes of strain. Orientation of the
principal strain axes with respect to the fold coordinate
axes are given in Figure 12d. The strain tensor matrix

referred to these axes (§ = a-axis; y = b-axls; z = c-axis) is:

=145 0.03. o0.21| x 1072
0.03 0.15 0.36
Bl 0.36 1.29

Referred to principal axes the strain components become

In the figure the areas enclosed by dashed lines
correspond roughly to the areas of concentration of C and T
axes in the dynamic analysis. The general agreement between
the dynamic analysis result and the calculated strain re-
flects the fact that the C and T axes for each grain are
the principal axes of strain associated with twinning for
a particular grain. Since the final calculated strains rep-
resent weighted averages of the individual contributions,

the agreement is inherent.
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Two important points emerge from these results. (1)
The calculated principal strains agree with the type of strain
to be expected in the folded layer in region I if the deforma-
tion increment represented by the twinning lamellae has been
such as to more tightly fold the layer. That is, there has
been shortening parallel toc the a-axis, extension parallel
to the c-axis and only a slight deformation along the b-axis.
The region has therefore deformed approximately in plane
strain (IEZJ~<< I%EE"IEXXD' (2) These calculated values of
strain are_gignificantly less than the geometrically indicated
total strain near the boundaries of the fold of 0.25, which
is calculated from Equations 2 using the dimensions of the
fold shown in Figure 10.

Instead of carrying through the lengthy strain compu-
tations for region II an estimate can be made of the strains
for this region using the agreement between the calculated
directions of the principal axes of strain and results of
the dynamic analysis, as has emerged from the analysis in
region I. By this analogy, the c-axis of the fold in region
ITI is the axis of greatest shortening, and the b-axis is a
direction of extension. The magnitudes of the principal
strains are estimated in the following way. The average
spacing index (number of lamellae per millimeter traversed
normal to the twin set) of microtwinned lamellae measured
in 170 grains throughout region II is about 7. Microtwinned

lamellae in these rocks are, on the average about one micron



in thickness, i.e., they show gray to dark gray interference
colors when oriented with the pole to the twin set nearly
parallel to the microscope axis (see p. 199). The average
strain in the direction of the c-axis of the fold can thus

be approximately deduced from Equations 14 , p. 57 and is
E, = -(7 - 1073 - 0.69)/2 = -0.0024

or about -0.24%. The deformation along the b-axis of the
fold (E3) is then also 0.24% because of the fact that in
this calculation the sum of the principal strains must equal
zero. In detail the strain distribution is probably not this
simple, for in arriving at the above results, C and T axes
lying near the a-axis of the fold have been neglected,
Tre magnitudes of these principal strains are also probably
too high because there is considerable dispersion of the
principal axes of strain (the C and T axes) in region IT.

The important features of the strain distribution
that has been approximately derived for region II are: (1)
the principal axis of greatest compressive stfain is oriented
differently than that in region I by 20°. (2) The axis of
greatest extension is along the b-axis of the fold rather
than along the c-axis as in region I, showing that the fold
is not deforming in plane strain in region II. (3) The
average strain in region IT is much smailer than the geometri-
cally indicated maximum strain of about 25%, and is an order

of magnitude less than that computed for region I.
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On the basis of the above discussion it seems that
twinning lamellae in both regions I and II represent either
a minor deformation (essentially bending) of the material,
and record only a final increment of the deformation cor else
they indicate that most of the permanent deformation of the
rock has been accomplished by crushing and development of
displacements along fractures such as are visible in the
drawing of figure 10, and not by plastic deformation. The
possible strains to be accounted for by fracturing are dis-
cussed next.

The fracture systems in fold PC which are filled
with secondary white calcite may record several»different
kinds of accommodation to the bending strain. In region I
a calcite filled fracture traverses this part of the fold
at an angle of 30o to the bedding. In thin section crystals
of the filling are highiy elongate parallel to the walls of
the fracture (see photomicrograph, fig. 15). These crystals
show considerable microtwinning and undulatory extinction
which is indicative of high deformation. In region II and
near the medial plane of the fold, thin calcite filled frac-
tures cut the layer parallel or at a small angle to the bed-
ding. The lowest of these veinlets appears to be intensely
stretched out into a number of boudinage-like segments (lowest
veinlet, fig. 10b; also fig. 15). In thin section, crystals
in these veinlets are also highly elongate and show abundant

microtwinning. On the other hand, calcite crystals which
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fill cracks running perpendicular to the plane of bedding

are almost completely undeformed. The highly deformed nature
of the fracture fillings could indicate localized deformation
along these discontinuities. This is considered likely be-
cause crystals immediately adjacent to the veinlets in the
host rock are relatively undeformed compared to those in the
fractures. The diagonal fracture in region I is properly
oriented (near 300 to an axis of compression as measured in
the plane containing the axes of greatest and least principal
stresses) for Coulomb type fracture of the material in this
region. Crystals within the fracture appear to be bent over
in a manner indicating a left hand displacement across the
fracture in the ac-plane of the fold looking along the
positive direction of the b-axis. However slickensides
observed on the planar surface of the fracture make an angle
of 18° in the ab—piane with the a-axis (62° with the (-) b-
axis). Fractures parallel to bedding in region II could
represent planes along which the rock has slipped during
flexural folding. This 1s indicated by slight right hand
offsets (fig. 10b) of nearly vertical veinlets in several
planes. Part of region II does lie slightly to one side

of the axial plane, so that some slipping of this type might
be expected, although from symmetry it should vanish at the
axial plane of the fold. The amount of strain in bending

in the axial region could be considerably reduced depending

on the closeness of these slip planes in the layer and upon
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the amount of slip along each. A rough calculation using
Equation 1 shows that if slip has always occurred along the
lowest fracture parallel to bedding in region II so that
only the small layer of bed between the fracture and the
boundary deformed in bending, the maximum strain to be
expected at the outer boundary (radius equal to 8.6 inches)
is only about 4%. This type of strainaccommodation might
well account for a significant part of the discrepancy
between observed and geometrical strain in the fold. There
appears to be little or no displacement on most of the un-
mineralized fractures which lace the rock. These often cut
through shell fragments, which are not offset by the frac-
tures. The amount of displacement along the various sets
of mineralized fractures is difficult to assess. The elon-
gate nature of many crystals in the central parts of the
veinlets could certainly be a feature partly inherited from
the crystal habit of the undeformed vein material, so that
the extremé elongation of the crystals would not be totally
due to deformation. The diagonal fracture in region I does
not produce offset of the stratigraphic lower boundary of
layer B so that deformation along it must be absorbed within
the layer, but at any rate outside the area designated
region II in Figure 10a. Therefore the strain in region II
cannot be influenced by this discontinuity. The amount of
strain to be accounted for along the diagonal fracture in

region I can be approximately estimated as follows. As-
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suming that crystals in a portion of the veinlet (now 2 mm

in width) originally were elongate perpendicular to its
rlane, they can be observed to have been sheared through

an angle of approximately 40°, This amount of shear would
indicate relative displacement of opposite walls of the
filling (assuming further that no change in thickness normal
to its plane has occurred) of roughly 2 mm. The associated
displacement parallel to the a-axis of the fold is 2 x cos
(300) or 1.7 mm. Since the distance parallel to the a-axis
over which the fracture runs is not known, we approximate
this by taking the distance which can be observed in hand
specimen of 80 mm. The presently determinable "strain"
accomodated by this fracturing is thus of the order of
-1.7/80 or<0.02 in region I. By a similar calculation,

the amount of strain due to filling of fractures parallel

to the bc-plane of the fold in both regions i.e., extension
parallel to the a-axis, is estimated at 0.01l. The net effect
of fracturing is then shortening of about 1% in region I, and
extension of 1% in region II.

The possibility that significant amounts of strain
(relative to the strain actually observed due to twinning)
have developed by translation gliding on g_{loii} should be
considered. Theoretically 1t can be expected that this
strain will be of the same order as the twinning strain.
From Equation 18 the maximum expected internal rotation of

an g, lamella by glide on ry for a shear of this amount is
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less than one degree, and this difference is almost always
undetectable in practice. It is therefore not surprising
that unequivocal evidence of internal rotation was not
noted in the examination of these rocks.

In addition to the question of the low amount of
strain recorded in twinning, there is also the discrepancy
between the amounts and senses of twinning strain recofded
in regions I and ITI. If deformation in the fold were in
pure bending and plane strain, then it would be natural to
expect strains from these two regions to be of approximately
equal magnitude though reversed in sense except along the
b-axis if the fold has deformed in plane strain. Equations
9 and 10 indicate that for the points iﬁ the fold where
these equations apply and under the assumption of the model,
the ratio of the elastic strain parallel to the a-axis (x -
direction in the calculation at the axial plane) in regions
I and II is Eii/EiX= -1.25. However the observed ratio in
this fold is ;roTsee p. 111and 113 ). Aside from the pos-
sible pecularities introduced into the strain picture by
the fracturing discussed above, the strain distribution
calculated for the fold in the axial region might represent
a combination of different types of déformation, (1) vending,
with the strain distribution reflecting stresses like those
given in Equations 9 and 10, and (2) uniform shortening paral-
lel to the a-axis of the fold. Thus bending would extend

elements of the layer in region II while uniform shortening
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would tend to cancel out the bending strain. Both deforma-
tions would act together in region I to accentuate the
strain there.

The foregoing analysis illustrates that the dynamic
analysis and the strain interpretation based thereon can
be quite sensitive in detecting minor changes in strain in
a deformed carbonate rock. There is thus a possibility of
applying such' calculations in finding the position of the
"neutral surface" in a flexure fold and therefore of carry-
ing through an analysis like that suggested on p. 71 .
Rpplying these earlier considerations to the présent fold
it can be calculated that for its dimensions (inner radius
12.15 cm, outer radius 22.7 cm) the difference in position
of the neutral surface for a Newtonian viscous material
and one showing perfectly plastic behavior is about 0.25 cm
with the neutral section in the viscous body lying nearer
the center of curvature. However, the computed result that
the strain in the direction of the a-axis in region II is
small or zero makes it unclear that a neutral surface still
exists in the layer. Furthermore the fold has not deformed
in plane strain parallel to the fold axis, and above all
has probably not deformed in pure bending. Nor is it pos-
sible that its surfaces were stress-free, though orientation
of the principal axes of strain (stress also) normal to the
boundaries of the layer in both regions of the fold suggest

that the boundaries were in fact free of shearing stress in
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the axial region (which is required by the symmetry of the
deformation). These difficulties preclude the possibility
of applying the method of page 71 for discriminating

plastic from viscous behavior in this fold.

Fabrics of highly deformed vein material

Crystals in a mineralized fracture in region II that
appear to have been highly deformed have been studied in
some detail (fig. 15). The vein material greatly resembles
highly deformed Yule Marble (Turner, et al., 1956, plate 5)
in that in both individual crystals are stretched out into
lensoid shaped grains with ragged boundaries and both show
considerable evidence of development of microtwinned lamellae.
Figure 16a is a scatter diagram of 50 c-axes for calcite from
the veinlet shown in Figure 15. In this diagram solid dots
represent positions of c-axes of what appear to be excep-
tionally highly defbrmed, elongate grains which show undula-
tory extinction, and numerocus twinning lamellae. The main
c-axis pattern of the relatively few grains accessible to
measurement is approximately normal to the trace of the
veinlet in thin section and normal to the direction of
elongation of the crystals. Part of this pattern is perhaps
remnant from the original fabric of the vein. Highly de-
formed individual grains were too nearly destroyed optically
to permit detailed work to be done with them. However their

distribution generally coincides with the main pattern. The
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) Figure 16. Petrofabric data from highly deformed vein
material in Region II. (a) c-axis fabric. Solid dots are
positions of c-axes of highly deformed, elongate grains show-
ing undulatory or wavy extinction. (b) e-lamellae fabric.

VV marks trace of veinlet in plane of the thin section and also
the approximate direction of elongation of the grains. ZEqual
area projection, lower hemisphere.
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distribution of e-lamellae poles is shown in Figure 16b. The
relatively few measured show a tendency to cluster around the
same direction as the c-axes. Earlier it was suggested that
these fractures represent places where the rock has sheared
during flexure. With this in mind it is interesting to
compare these orientation data (inconclusive though they

are statistically) wifh marble experimentally deformed in
shear (Turner, et al., 1953, p. 1341). The experiment re-
ferred to consisted of 37% compression of a cylinder of Yule
marble (cut normal to the folitation) at 300° C. A shear
zone developed in the barrel shaped cylinder at an angle of
10° to the axis of compression because of eccentric loading
of tThe specimen during deformation. Individual grains within
the deformed zone are flattened parallel to a plane which
makes an angle of 700 to the axis of compression. The re-
sulting fabrics consist of maxima of both c-axes and e-
lamellae about the normal to this plane. Thus there is

some similarity between the fabric resulting from experi-
mentally imposed shear of a marble aggregate and the fabric
from what is thought to represent an example of a naturally

sheared aggregate.

Bpplication of the law of maximum resolved shear stress

As previously discussed, several different theories
have been proposed to account for the development of deforma-

tion fabrics in metals (Taylor, 1838; Bishop, 1954) and in
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carbonate rocks (Handin and Griggs, 1951; Turner et &l,.
1956) and the applicability of each of these treatments to
the present work has been pointed out. During deformation
of a polycrystalline aggregate, the Bishop theory states
that within a single crystal the strain takes place in
accordance with the principle of maximum plastic work
(Bishop, 1954). According to the principle (Bishop and
Hill, 1951a) the work done in a given plastic strain incre-
ment by any stress physically capable of producing it is
greater than or equal to the work done by any other stress
not violating the critical shear stress law on the active
glide planes in the crystal. The maximum resolved shear
stress "law" used by Turner et al. (1956) (see p. 8 , this
thesis) can be interpreted a special case of this principle
modified to account for deformation on a single slip plane.
As applied to an aggregate, this "law" as used would strictly
apply only in situations where individual crystals could ac-
commodate themselves to the macroscopic strain and to strains
in surrounding grains by glide on a single glide system.
Otherwise five independent glide systems would generally

be required to operate in each grain for the aggregate to
remain cohesive after straining. A consideration of this
type can naturally account for the observation that crystals
in the rocks studied here (especially throughout region I)
do contain more than one set of twins per crystal, which

is a clear violation of the maximum resolved shear stress
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"law." However, it is still required that for slip to take
place in a crystal the critical shear stress must be reached
on each active system. It is shown below that the "law" does
apply as an approximation.

A comparison of the results predicted theoretically
for the dynamic analysis assuming operation of the maximum
resolved shear stress law and those actually observed for a
natural fold, qualitatively suggests the applicability of
this law in the present case. A more detailed comparison
has been made in Figure 17. Since it is not possible to
speak in terms of the magnitudes of the stresses responsible
for the observed deformation in fold PC, the resoclved shear
stress coefficient Sé, defined by Equation 12 is computed
instead. In Figure 17, S; for the three twin sets in each
of 54 randomly selected crystals from region I are shown.
The vertical axis gives the value of S; computed from the
first of Equations 12. Above the horizontal axis (S; = 0),

1
S is favorable for twinning and below unfavorable., For

o}
each grain the data are plotted along a single vertical

line, each point representing the value of S; for a
particular twin set in the grain. Solid points represent
twin sets actually developed in a grain and open ones sets
that are undevéloped. Triangles represent the most prominent

twin set in a particular grain (designated as gl), squares

the next best developed set (92)’ and circles the remaining



set (93). Obviously this designation between e, and eg 1is
arbitrary from an observational standpoint when only one

set of twins is developed in a grain and is only made in

the interests of organizing the data during actual calcula-
tion. When two sets of twins are equally developed (each
microtwinned for example) the designation between e, and e,
is also arbitrary observationally. Figure 17 shows that
deformation in about 75% of the grains examined in this
analysis of the aggregate in region I conforms to expecta-
tion on the hypothesis that the maximum resolved shear stress
law applies if it is assumed that Equations ¢ and 10 describe
the stress situation in the fold. In 80% of the grains show-
ing two sets of lamellae, twinning is in accordance with fthe
law under the assumed stresses in that the most prominent

set has the highest value of S; and the next most prominent
set the next greatest value of S;. In an earlier attempt at
this kind of analysis it was assumed that the observed de-
formation was in uniaxial stress (an assumption approximately
equivalent to plane stress deformation in the fold) i.e.,

all stresses zero except along the a-axis of the fold and

the x-axis in Equation 12. For this assumpftion the agree-
ment between observation and theory for 37 randomly selected
grains from region I (not necessarily the same grains as used
above) was only slightly poorer, in that in only 70% of the

grains measured was the set with best developed twinning

1
also that with the highest value of So' Furthermore in
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about 70% of the grains with two sets of lamellae, e, was
associated with the next highest value of Sé.

Figure 18 illustrates the relation between the
amount of strain individual crystals have undergone along
the a-axis of the fold, and ftheir orientation with respect
to the applied stress (uniaxial case). Each point in the
figure describes a single crystal. The indication from
the apparent relationship is that for the strain increment
recorded as twinning throughout the portion of region I
covered by the present petrofabric analysis, the deformation
is nonhomogeneous from grain to grain, and is dependent on
orientation of the grain in the stress field. Considering
the texturally nonhomogeneous and fractured state of the
material in this fold it is perhaps surprising that such
qualitative good agreement between theory and observation
is actually possible.

It is concluded that under the plausible assumption
that the stress distribution in region I is given by the
first of Equations 12, twinning deformation in the aggregate
appears to follow reasonably well the law of maximum resolved
shear stress. Agreement is only slightly poorer, however,

when a uniaxial stress situation is assumed.
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Fold from the Darwin Hills, Inyo County, California

Geclogic setting

The Darwin Hills are located in the south-central
part of the Darwin quadrangle in central Inyo County, Calif-
ornia, 35 miles southeast of Mt. Whitney, and 40 miles west
of Death Valley (see index map, fig. 19). The most recent
geologic report concerning this area is by Hall and MacKevett
(1958). Hopper's (1947) excellent regional study also in-
cludes considerable information on the Darwin guadrangle.

In the present study geologic mapping has been done in only
a small area in upper Darwin Wash, the area of principal
concern in fthe present work. General information concerning
the regional stratigraphy and geologic history is drawn

from the publications given above.

The Darwin Hills and adjacent areas in Darwin Wash
consist of folded and faulted Pennsylvania and Permian sedi-
ments which have been intruded by gabbroic to granitic rocks,
considered to be of similar age to the lower Cretaceous in-
trusives of the adjacent Sierra Nevada batholith. The sedi-
ments consist of thinly bedded gray and brown, locally
crinoidal and nodular limestone, shale, quartzite, and bedded
chert whose combined thickness is somewhat in excess of 8000
feet. In upper Darwin Wash these sediments have been warped
into several north-south trending gently north-plunging folds
of moderate size, which are terminated at the Darwin tear

fault, near the head of the wash. This fault, which is pre-
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Cenozoic in age (Hopper, 1947, p. 421) dips south 800, trends
east-west, and has about 2200 feet of predominantly left
lateral and some dip-slip displacement, with the north side
moving westward and up with respect to the south side.

Figure 20 is a geologic map of part of upper Darwin
Fash south of China Garden spring. The principal structural
feature of this area is a large north-plunging anticline,
the axis of which follows the western margin of the map area
and veers southeastward near the southern boundary. The fold
includes sediments of Pennsylvanlia and Permian age which have
not been differentiated by either Hopper, Hall and MacKevett
or this writer. These sediments gonsist of several thousand
feet of locally crinoidal and coral- and fusulinid-bearing
limestones interbedded with thin units of black and red
shale. The western limb of the fold is pértly covered in
the map area by Quaternary alluvium. The nose of the fold
is transected by a nearly vertical, left lateral (?) strike
slip fault whiéh.is perhaps subsidiary to the Darwin Tear
fault. The amount of displacement across this structure
is uncertain but is estimated from the offset anticlinal
axis at 700' (?). Exposed along the eastern limb and in the
nose of the anticline is a 20-50 foot section of interbedded
slabby dark gray, fine grained limestone, compact red and
yellow shale, and gray shaly limestone in which is developed
a series of drag folds. This limestone-shale unit is desig-

nated Cls in Figure 20. Figure 21 shows how typical folds
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in unit Cls are developed and is a photograph of the outcrop
from which specimens for this study were taken. The attitudes
of the minor folds are somewhat variable due to the fact that
the drag folds themselves have been folded, but generally are
nearly the same as that of the anticline with which they are
associated, with plunge 10° N. and strike N. 300 W. At this
particular outcrop, designated on the geologic map as "folds,"
strata on the limb of the larger anticline dip 60° west and
strike N. 300 E. Stratigraphically above Cls are massively
bedded, nodular, shaly limestones of yellowish color. Below
it the rocks consist of massively to slabby bedded finely
crystalline, dark gray limestone. The intensity of drag
folding varies from place to place on the exposed limb of
ﬁhe major anticline. A few hundred feet socuth of the locality
shown in Figure 21la, the axial planes of individual folds are
considerably folded. At the nose of the anticline, the rocks
are essentially unfolded. The degree of folding appears to
be dependent upon the amount of shale in the unit. Where
layers of limestone and shale are of approximately equal
thickness, folding is most intense, but as the amount of
shale decreases, the folding deformation also decreases.

Strata on the limb of the large anticline are cut
and displaced in a left lateral sense 250 feet by an east-
west trending, north-dipping fault whose trace passes a few

feet south of the outcrop pictured in Figure 21la.
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Figure 21. Drag folds in limestone-shale unit (Cls) in
upper Darwin wash. (a) General view (facing north) of the folds
as they eppear at the position marked "FOLDS" on the geologic
map, Figure 20. The folds strike N.20° W., plunge 10° N, En-
closing strata strike N.20 V., dip 50° E. Three white calcite
filled veins (approximate width 2 inches) cut across the folded
strata and enclosing rocks. The large veins strike parallel to
the bedding, dip 35° W, (b) Closeup view of the folds studied.
Plastic rule (six inch) gives scale. Note change in attitude of
axial plane from top to bottom of photograph. Fabrics obtained
from layer marked "X" in the photograph. Slabby beds are lime-
stone, recessed strata shale. Area outlined in the figure is
sketched in Figure 22,
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Figure 22. Sketch of the fold. Main drawing
shows locations of specimens (outlined by dashed lines)
and positions of thin sections cut in each position in
the fold. The individuzl locations are designated 1, 2,
3, 4. Offset drawing shows traces of coarsely crystal-
line calcite veinlets. The coordinate system to the
right designates positive directions of the axes.
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Description of the fold studied

Figure 21b is a close-up of the fold studied and
Figure 22 is a sketch of the area outlined by a dashed line
in Figure 21b. The folded rocks pictured in the sketch
consist of 8&ix inch to one foot beds of dark gray, finely
crystalline limestone, with irregular tabular portions of
very coarsely crystalline dark gray calcite. Separating
the limestone beds are thin red and yellow compact shale
units of variable thickness. There has been marked thicken-
ing of both limestone and shale units in the axial region of
the fold. Individual limestone beds within the fold are
broken by a number of fractures which run approximately
normal to the boundaries of the individual layers. Dis-
placements were not noted along these breaks. Axial plane
cleavage is not present in the particular structure studied,
although a series of thin (~ 1 mm) veinlets filled with
white calcide do cut individual layers within the fold
parallel to the axial plane (these features are now shown
in fig. 22). At other places in the outcrop cleavage is
well developed, especially where the folds are extremely
tight. This cleavage is manifested on weathered surfaces
by sharp V-shaped grooves which ftrend irregularly parallel
to the axial planes of the folds. On fresh surfaces there
is no visible trace of the weathered surface pattern except
where individual flutes are developed along thin calcite

filled veinlets.



The uppermost folded layer sketched in TFigure 22,
the particular stratum studied here in detail, is slightly
greater than one foot (30.5 cm) thick in the axial region.
The limbs are from six inches (15.2 em) to ten inches (25.4
cm) thick. The radius of curvature of the upper surface is

—

about 5.5 inches (14 cm), and the lower boundary has a2 radius
of curvature of about three inches (7.6 cm). Their respec-
tive centers of curvature are about nine inches (23 cm) apart.
From the geometry of the upper limestone layer, this
layer has not been deformed simply by bending alone, because
such deformation cannot account for the observed variations
in thickness in the limbs and crest. The numerous radial
fractures which cut across this bed, as well as other beds
below it in the fold, suggest that there has been some flexural
folding. However it is pérhaps very doubtful that such frac-
tures could remain preserved from a time when the rock was
obviously In a very plastic condition., The dissimilar shapes
of the various layers comprising the fold and the fact that
boundaries between the upper limestone layer and shale strata
surrounding it do not show significant irregularity or offset

parallel to the axial plane of the fold suggest that the struc-

o)
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ture is not a 'shear' fold.
In order %to account for the present geometry of the
fold in a simple manner, 1t seems necessary that in addition

to bending, the upper strata have undergone shortening per-

pendicular to the axial plane as well, so as to thicken the
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bed. Thus in attempting to unravel the strains imposed upon
the rock it is necessary to reconstruct a possible strain
history involving each of these deformations. In order to
accomplish this it is assumed that the original thickness

of the layer was about eight inches, the present average
thickness of the limbs. Undoubtedly the present limb thick-
nesses or thelr average cannot represent the original thick-
ness very accurately, because both have probably been deformed
as well, However, there is no basis for assuming another
figure. Now assuming that uniform compression was super-
posed on the bent layer of this thickness a widening of the
bed in the axial region to the present dimension of one foot
corregponds to a shortening perpendicular to,the‘axial plane
of about 30%. To obtain an idea of the bending strains, the
30% shortening along the axis of the fold rust be removed.
It is further assumed that this was uvniformly imposed over
the cross section of the layer in the bec-plane of the fold
(definitions of coordinates as on p. 75 ). Removing this
strain and assuming the resultant fold to be circular in

shape, the dimensions obtained are approximately:

Inner radius of curvature 5 inches (13 em)

Outer radius of curvature 13 inches (33 cm)

Using Equations 2a and 2b, the resultant extension and com-
pression at the outer and inner boundaries respectively are

both about 45%. Superposing the shortening and bending
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strains indicates that the outer layers of the fold have
undergone a net extension of 15% while material near the
opposite boundary has been shortened 75%. This picture of
the strain is undoubtedly oversimplified as is discussed
below in greater detail.

Macroécopically, rocks from this fold are very non-
homogeneous. In the axial region of the flexure, the material
consists of approximately 70% finely crystalline dense dark
gray limestone, with patchy limonite stained areas, and
roughly 30% very coarsely crystalline dark gray calcite,
with individual crystals as large as one cm in diameter. The
coarse material is distributed in three approximately mutually
rerpendicular sets of irregularly tabular-shaped masses one
millimeter to six or seven millimeters in thickness, which
are oriented throughout the entire axial portion of the bend
nearly parallel to the fold coordinate planes. In general,
veins of this material parallel to the coordinate plane are
thicker and more numerous than those of the other two sets.
These coarsely crystalline masses are confined To the lime-
stone strata in the fold, and do not extend into shaly layers
separating individual beds. No unequivocal evidence has
been found which established precisely the age of develop-
ment of this coarsely crystalline material with respect to
the folding of the rocks. In nearby layers of this fold
thin veinlets of the dark calcite follow around the bend of

the fold parallel to bedding within the rock. In other folds
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found elsewhere along Darwin wash in the unit Cls (fig. 20)
megascopically similar dark colored coarsely crystalline
calcite masses have been contorted along with enclosing
bedding in the limestone, but post-deformational preferen-
tial recrystallization or replacement along bedding surfaces
cannot be ruled out in either of these cases. In fact, frac-
tures parallel to the minor fault adjacent to the fold loca-
tion, and which must post-date the folding, are also filled
with dark calcite. Microscopic evidence presented below sug-
gests however that this vein filling material has participated
to a considerable extent in the deformation.

Two other minor, nearly perpendicular sets of vein-
lets mentioned earlier cut the rocks of this small fold. The
veinlets are about one millimeter in average width, and con-
sist of coarsely crystalline white calcite. The veinlets lie
in the ac- and ab-planes of the fold. They offset (by dilita-
tion) veins of the dark gray calcite where the two intersect,
and often persist through shale units separating individual

limestone beds in the fold.

Petrographic character of the rock

The general petrographic character of the rock com-
prising the small fold is shown in the photomicrographs of
Figure 23. The rock is composed of 95% calcite, up to 5%
0.05 - 0.1 mm subangular, strained quartz grains, and a

small amount of red hematite in streaks and as grains about



Figure 23. Photomicrographs. Coarse and finely
crystalline material from the fold. (a) Mabterizl at location
2 in thin section cut in the ac-plane of the fold, nearly
parallel to the plane of a vein of coarse material. Crystals
in plane of the photograph are elongate in a skew direction
with respect to the coordinate axes. In portions of the
field there is a suggestion of cataclastic texture ("C").
Vertical scratches near the top of the photograph are due
to grinding of the thin section. The vertical U-shaped
groove is an orientation reference notch and the black
streak in one corner a place of separation in the rock
slice. (b) Material from location 4. Note veined nature
of the rock and elongation of crystals perpendicular to the
trace of the veinlets in thin section. Dark streaks near
the top of the picture are quartz-rich layers in the rock.
All coarse crystals in these and other locations in the fold
contain at least one and often two or three sets of lamel-
lae, and meny of the lamellae are bent and twisted. In
general there are no noticeable fractures or other dis-
continuities (other than grain size) between patches of
%oars? and fine calcite (marked ”F“ﬁ. Crossed nicols

x 10).






- 146 -

0.05 mm 1n size. Two distinct types of calecite are noted

in thin sections: (1) large 0.5-10 mm elongate, highly
twinned clear calcite crystals compose about 25% of the
volume of the rock. Most large crystals contain two sets
‘of twin lamellae and some contain three., Specifically, 18%
of the grains measured contain three sets, 50% two, 20% one,
and 2% no lamellae. About 25% of the grains containing two
sets of lamellae have one set microtwinned, and 40% of those
with three sets have one or two sets microbwinned. Twinning
lamellae are often bent and twisted and many glven anomalous
values for the angle cAe. Bending of these lamellae is
discussed in Appendix II, where the observed warping is used
as a clue to establish glide mechanisms within individual
erystals using the method of Turner et gl; (1954). curiously,
the smaller twinned set in many grains is consistently off-
set by twinning in the major sets, and is therefore con-
sidered To be earlier in origin. Grain boundaries are Dboth
straight and sutured, and there is often a breccia-like zone
of finely crystalline maeterial between adjacent grains that
are highly twinned. (2) The second tType of material dis-
tinguished in thin section consists of finely crystalline
calcite (average crystal size about 0.01 mm) which comprises
the bulk of the rock. Individual crystals are large enough
to be easily resolvable under high power. These crystals
are generally equant, but asre locally elongate except as

noted in the fabriec diagram in a similar manner to ad-



= T

Jacent coarsely crystalline material. Twinning is not present
in the fine grained material of crystal size less than about
0.1 mm, Béth of the above types of calcite may be noted in
Figure 23. A patch of fine calcite in the top central part
of the figure is labeled "F". Only the coarsely crystalline
material was studied in this investigation, as the finer
calcite was too small to permit measurement of c-axis orienta-

tions.

Results of the fabric studies

Fabrics have been measured in a number of specimens
from tThe upper layer sketched in the figure, and individual
locations of specimens are designated 1, 2, 3, and 4,
Orientation data from the fold are given in Figures 24, 25,
27, and 28.

(1) c-axis fabrics: The distribution of host
c-axes at locations 1-4 are given in Figure 24, 1In each
diagram the fold coordinates are shown as well as the trace
of bedding in the specimen (BB), shown as a dashed line when
projected on the lower hemisphere of the net. EE marks the
direction of elongation of grains in the plane of the thin
section for sections where a consistent elongation can be
noted, and VV are attitudes of veined structures on the
rock. At locations 1 and 3, the distributions are charac-
terized by broad concentrations of c-axes around the a-axis

of the fold. In location 2, c-axes are distributed in a
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Figure 24, c-axes from the Darwin fold. Orienta-
tion data from each location indicated by numbers. The
dashed great circles marked BB, and VV denote planes of
bedding and veined structure respectively projected onto
the horizontal plane. EE 1is the direction of elongation
of ns in the plane of the thin section. At location
3, "fol" marks direction of prominent foliation in finely
crystalline material. In all diagrams only the minus
directions of coordinate axes are so designated, and the
point of emergence of a particular axis on the proJjection
is designated (¢ ). The cross in the center of each
diagram is the pole to the thin-section plane and straight
reference marks lying 90° apart in the equitorial plane
denote directions parallel to the edges of the thin sec-
tion. Al1 diagrams equal area, lower hemisphere. (Fabric
at location 4 by Kamb??
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broad girdle in the ab-plane, and tend to cluster around the
b-axis (fold axis). In location 4, the c-axis of the fold
is the center of a diffuse maximum of optic axes.

(2) g'-axis fabrics: Figure 25 shows positions
of optic axes for the most prominently twinned set of e-
lamellae in each grain for each position. Closed triangles
designate measured points, and open ones positions constructed
from host c-axis ande-lamellae data in each grain. In many
cases a twin set was observed to be visibly twinned, but the
c'-axis position could be measured because of the thinness
of the twins. Common to all of the diagrams is the tendency
for these axes to form distinct maxima, which are broader
and less well defined in some of the figures. As presented,
these differ in orientation. In order to compare orienta-
tions from the different positions in the fold, the approxi-
mate positions of maxima are plotted on a single diagram
which is given in Figure 26. This projection is oriented
so that the (+) b-axis of the fold is the pole to the equi-
torial plane, (+) a is to the right, and (+) ¢ at the top.
Orientation of these axes with respect to the fold itself
is shown in the small figure at the center of the diagram.
The numbered crosses which are enclosed by dashed small
circles on the net are positions of the approximate geometric
centers of c'-axis concentrations for the diagrams in Figure
25, with the small circles representing the approximate limits

of each maxima. As far as individual positions in the fold
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Figure 25. c¢'-axis data from the Darwin fold.
Orientation data from each location indicated by numbers,
At location & data gathered from sections in the ab-plane
(location 4-4) and ac-plane (location 4-B) are presented
separately to illustrate difference in fabrics obtained
from adjacent sections (see text, p. 154). In each dia-
gram solid ftriangles represent positions oIl measured

-axes, and open triangles constructed c¢'-axis positions.
The dashed great circles marked BB and VV denote planes
of bedding and veined structure respectively projected
onto the horizontal plane., EE is the direction of elonga-
tion of grains in the plane of the thin section. At
location 3, "fol" marks direction of prominent foliation
in finely crystalline material. Equal area projections,
lower hemisphere. (Fabrics L4-A and 4-B by Kamb and Conel.)



Figure 25



Figure 26. c'-axis data from locations 1-4
compared in one diasgram. The approximate geometric
center of each clustering of axes given in Figure 25
are located at the small circles and are identified
by the appropriate number. The approximate extent
of each maximum is indicated by dashed lines. The
small drawing at the center of the dizgram gives the
position of the fold with respect to the axes in the
drawing. HNote how maxima from the two positions 4-A
and 4-B do not coincide, and also how there is a
general tendency for all maxima to fall about the
a-axis of the fold or to lie in porticns of the

diszgram defined by the -a,b,c, and a,b,-c axes. Egual

area projection, lower hemisphere.
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are concerned, there is considerable variation in the location
of these maxima with respect to the fold coordinate axes.

(3) e {OlTQ} orientation data: e-lamellae orien-
tation diagrams for locations 1-4 are presented in Figure 27.
In each diagram, solid circles represent the positions of
poles to the most prominently twinned e-lamellae set in each
crystal (gl—lamellae), and open circles the less prominently
twinned sets (e, or gS—Iamellae) in each location with the
exception of 4, only one thin section was used in obtaining
orientation data from the aggregates. This restriction
weakens the results of the e-lamellae studies statistically,
and is responsible for the "blind-spots" in the lamella pole
diagrams. The initial studies on this fold consisted of
measuring fabrics from a single thin section at each location
to obtain some idea of the possible consistency of the ob—
served fabrics in relation to the supposed deformation in
the structure. When the result emerged, as will be discussed
more fully below, that these fabrics were not simply related
to the geometry of the structure, further studies to simply
improve statistics seemed pointless. Furthermore it is likely
that merely examining more thin sections would not measurably
improve the statistical picture at each location. As has
already been described, the material in all locations studied
is very nonhomogeneous well below the scale of a single thin
section, and the associated deformation is probably nonhomo-

geneous on as fine a scale. Hence sampling other sectiocons
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Flgure 27. e {01T12f lamellae data. Solid
eircles mark positions of poles to most prominently
twinned set of lamellae in each grain (gl), open circles

other sets (92 and gs). B2 and VV are planes of bedding

end veins projected onto the horizontal plane. EE is

the direction of elongation of grains and at location 3
"fol"™ marks the trace of folistion in the finely crystal-
line material (fabric at location 4 by Xamb).
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would only effectively amount to measuring fabrics from other
points in the fold, not improving statistics for any single
location.

In these e-lamellae fabrics, there is a general
tendency for maxima in the diagrams to correspond to the c-
axis maxima from the same location. This is, no doubt a
reflection of the contreol of the possible lamellae orienta-
tions by the preferred orientation of c-axes. A more exact
comparison may be made between the e-lamellae diagrams and
those for c'-axes. 1In each case the maxima of e,-lamellae
correspond to those in the c'-axis diagrams.

(4) Dynamic analysis of e-lamellae: Data from
a dynamic analysis of the twinning lamellae from locations
1-4 are presented in Figure 28. The analysis of gl—lamellae
is given in these figures, in order to simplify interpreta-
tion of the diagrams. Only at location (2) "strong" pat-
terns of C and T axes observed, and this mostly reflects the
preferred orientation of host c-axes in this particular place.

The primary result of the analysis is that, though
there is considerable dispersion in most of the data, a nearly
common direction of compression is indicated from the several
locations, and this direction coincides roughly with positions
of concentration of c'-axes. Like these c¢c'-axis maxima, the
C-axis maxima are not generally symmetrically disposed with

respect to the fold coordinate axes.



Figure 28. Dynamic analysis of the most prominently
twinned set of e-lamellae in each crystal (gl). C = axes of

compression, T = axes of tension. Diagrams from each location
as numbered. Data from location 4 are presented in two dia-
grams, in the ab- and ac-planes of the fold. In each diagram
BB marks the plane of bedding, VV plane of wvein structure, EE
the direction of elongation of grains. "fol" at location 3 is
the trace of foliation in finely crystalline material. All
diagrams equal area projectiocns, lower hemisphere.
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Figure 28,
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(5) Calculation of Strain due to Mechanical

Twinning: The great textural non-homogeneity of the rock
comprising this fold, and the associated statistical un-
certainties in orientation data for twinning lamellae
preclude the possibility of obtaining any very accurate
picture of the strains throughout the fold. However to ob-
tain some idea of the orientation of the principal axes of
strain and magnitude of strains due to twinning for some
places in the fold, the available data have been used to
compute strains at locations (3) and (4) by the exact method
(p. 55 ), and at locations (1) and (2) by an approximate
method.

Values of the components of the strain tensor re-

sulting from the exact calculation for position 3 are:

0.7 0.9 0.1] x1072
0.9 1.4 0.5
0.4 0.5 -0.7| .

This matrix, as well as that for position 4, is referred to
a coordinate system which is fixed with respect to the thin
section from which the data for the calculations were taken.
The axes are approximately: X = a-axis of the fold, y =
b-axis, and Z = c-axis. Referred to principal axes the

matrix becomes



where the positions of the principal axes of strain are given
in Figure 29,

For position 4 components of the strain tensor are:

2.0 2.7 3.2] x 1072
-2.7 -1.1 -0.6
3.2 —0.6 3‘3_J 3

and referred to principal axes,

E5.O 0 0 |x 10~
0 -0.2 0

0 0 5.2
L i

where the directions of the principal axes are shown in

Figure 30.

The strains at locations 1 and 2 have been calculated
by the approximation method suggested on page 112, This
requires using the results of the dynamic analysis data (or
alternatively and more approximately the c'-axis fabric
data). It has been noted that relatively distinct groupings
of the C and T axes data are evident at location 2, but are
dispersed and uncertain at 1. For location 2, assuming as

before that the mean direction of each grouping of axes rep-

resents the position of the corresponding principal axis of



Figure 29, Orientation of the principal axes of
twinning strain and values of the principal strains at loca-
tion 3. ©Negative values indicate compression, positive,
extension. Calculations carried out using procedures given
on p. 56. Equal area projection (dn) indicates + b-direction
1s downward.

) Figure 3C. Orientation of the principal axes of
twinning strain and values of the principal strains at
location 4. Negative values indicate compression, positive,
extension., Calculations carried out using procedure given
on p. 56. Equal area projection (dn) indicates + b-direction
is downward.
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Figure 30
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strain, the amounts of strain along these axes can be ob-
tained from the average degree of twinning. The average

amount of twinning in 100 grains from location 2 is 13%.

This degree of twinning corresponds to principal strains

of 0.045 by Equations 14. The principal strains written

in matrix form are:

_L.5 0 ol x 1072
o) 4.5 0
0 0 ol ,
1

where this matrix i1s referred to Cartesian axes oriented
so that the x-axis makes an angle of approximately 50O with
The a-axis, and the y-axis is along the b-axis of the fold.

When referred to the fold coordinate axes the above strains

become
El 9 0 2.2 = 10'—2
Q 4.5 0
2.2 0 -2.6] ,

where the axes are as previously chosen (p. 75 ). It may be
seen that according to thilis approximate calculation the fold
has been shortened (though relatively slightly) parallel to
the a-axis at location 2.

At location 1 the dynamic analysis data are very
unclear, but nevertheless the same approximate calculation

has been made here, assuming that the principal axis of
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shortening now coincides with the geometric center of the c!'-
axis maximum. (In any given crystal the position of c¢!' is
20° from the principal axis of shortening in twinning.) The
dynamic analysis results show a clustering of T-axes about
the b-axis of the fold (fig. 28). The principal axes of
strain are thus taken to be: (1) axis of extension along
the b-axis of the fold, (2) axis of compression approximately
250 from the +a-axls toward -c-axis in the ac-plane of the
fold (this is the position of the geometric center of the
c¢'-axis fabric at location 1). The average amount of twinning
in 100 grains from location 1 is 15% which, using equations
14, indicates principal strains of + 0.05. In matrix for

these strains are

-5 0 ol x 1072
O 5 0]
0 0 of ,
and referred to the fold coordinate axes,
[y 0 2] x 107°
0 5 0
2 O -l .

The data presented above from all positions in the
fold, in spite of their approximate nature, show that the
strain recorded as twinning throughout the fold is not

compatible with a simple deformation such as bending of



the layer nor simple uniform compression parallel to the
a-axis of the fold. In fact, in a component for component
examination of the strains from the various positions in
the layer the deformation is very complicated. However
two consistent features can be noted about the strains
everywhere, (a) compression parallel to the a-axis of the

fold, i.e. the strain E__ is negative, (b) the strain B o

is positive, which geometrically indicates that sides of

a unit cube of material in the unstrained state originally

parallel to the x and z-axes now make an acute angle with

one another, which is given by TC/2 - 2E_, (Nye, 1957, p. 97).

Some other features of the strains througggut the layer are:

(¢) at no position is the fold deforming in plane strain

(EEX = 0) parallel to the b-axis, (d) the principal axes of

strain at locations 2 and 4 are not parallel to one another

as might be expected on a hypothesis of simple bending or

shortening in the layer, (e) at positions 1, 2, and 3, the

rock has been extended parallel to the‘fold axis and compressed

along the c-axis, while the reverse has occurred at position b,
It is almost impossible to account for these observed

irregular variations in strain. The nonhomogeneity of the

deformation may, in part, reflect the nonuniform grain size

and the distribution of ccarse and fire material in the rock.

However there is no indication that the coarsely crystalline

material has been more highly deformed than the fine even

though one is tempted to assume this because of the high
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degree of twinning in the large crystals. Fractures, shear
zones, or other discontinuities between areas of coarse and
fine calcite, such as might be expected if one type of ma-
terial had preferentially deformed have not been noted (note
for example contacts between coarse and fine material in
fig. 23). |

The strain recorded as twinning throughout the fold
is also considerably less than that calculated approximately
from fold geometry. General reasons why such discrepancies
can always arise in calculating the strains due to twinning
in aggregates that have undergone large deformation; have
already been discussed with particular reference to the
present fold (p.67 ). Aside from the neglect of translation
gliding strain, which could increase the computed visible
strains by a factor of two, deformation could have been
accomodated in the aggregate through grain boundary slip
and brecciation within the coarser material. Cataclastic
textures can be noted in the Darwin rocks (see fig. 23 ),
and such texture perhaps indicate regions of very great
(though local) strain. It is not possible to estimate this
strain Wiﬁh any certainty, so that its relative magnitude
must remain unknown. The simplest (but probably not the
complete) explanation of the overall discrepancy between
visible and geometrically indicated strain in the fold is
that the coarsely crystalline material originated later
than a significant part of the deformation indicated by

the present shape of the beds.
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Interpretation of the Darwin fabric results and
comparisons with experimental studies

A common feature of nearly all fabric and dynamic
analysis data presented from the Darwin specimens is the non-
symmetrical distribution of orientation density maxima with
regpect to the coordinate axes of the fold. This indicates
that These fabrics in general must reflect a complicated non-
homogeneous deformation, and do not represent fabrics which
are expected theoretically (fig. 3) on the hypothesis of
simple deformation in predominantly bending in the body.
Some of the results may perhaps be partially explained in
the following manner. As previously indicated, the strain
calculations show a small shortening everywhere in the
body perpendicular to the axial plane as well as a small
positive shear in the ac-plane of the foid. From the geome-
try of the fold a macroscopic shortening perpendicular to
the axial plane is clearly indicated although to a much
greater extent than is suggested by the calculated strains.
A small positive shear in the ac-plane of the fold is also
indicated anithis type of shear is compatible with that ex-
pected in the whole series of drag folds as a result of de-
formation in the larger structure (anticline) with which
they are associated. Referring to the c-axis data, broad
groupings of data points about the a-axis in locations 1
and 3 are approximately normal to the direction of grain
elongation in the plane of the thin sections and in the

same direction as the indicated direction of shortening in
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the fold. The ¢-axis fabric from location 2 does not agree
with this picture, and measurements at location 4 are also
not in agreement with simple shortening paralilel to the a-
axis. As for the c!'-axis measurements (fig. 26 ), maxima
in these diagrams tend to be confined to the portion of the
projection defined by the (+) a and (-) c-axes (or -a and +c).
The collective maxima diagram shows a very crude monoclinic
symmetry.

Experimental deformation of Yule marble in compres-
sion produces maxima of c-axes and e-lamellae which coincide
with the axis of compression in the deformed specimens
(Griggs et 21., 1951; fig. Ta; Turner et al., 1956, fig. 9c).
c-axis from locations 1 and 3 may result from such compression.
In experiments involving shear within the deformed specimen
(see p. 114, this thesis), orientation density maxima show
skew orientations with respect to the plane of shear. The
c'-axis fabrics from Darwin, from their crude symmetry, might
arise from shear of the type indicated by the calculated
strains (orientation of the principal strain axes on c' data
are not completely independent) and necessitated by the ob-
served geometry of the drag folds as they are related to the
larger anticline in Darwin wash.

In order to develop anything resembling a stable,
well defined deformation fabric, wherein rotations of the
crystal axes of individual grains relative to the prinecipal

axes of strain in the specimen cease with Turther deformation,
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translation gliding must also occur (Turner et al., 1956).
This kind of deformation mechanism can be observed in non-
homogenecusly deformed single crystals from these rocks
(appendix II), and does, in some cases, account for develop-
ment of a range of c- and c'-axis orientations within a
single crystal of as much as 40°. But significant transia-
tion gliding leading to development of an unquestioned stable
fabric, as in the experimental work, has not been found.
Though the purpose of this study has been to investi-
gate the mechanical behavior of material texturally similar
to Yule marble, a comment on the nature of the finely crystal-
line portions of the rock is appropriate. Lack of microscopic
"evidence" for deformation of this material is an important
point. This observation may be accounted for in at least
three ways: (1) the finely ecrystalline material has not de-
formed. This is discounted by the fact already mentioned
that discontinuities between coarse and fine material are
not apparent. (2) The finely crystalline material has de-
formed by the same processes observed in larger crystais,
but has undergone an annealing recrystallization which has
removed all evidence of deformation. (3) Due to the large
area of grain interfaces per unit volume in the fine material,
the 'normal' deformation processes are inhibited, and the
aggregate has essentially deformed through grain boundary
slip and/or recrystallization. On the basis of available

evidence, a choice between (2) and (3) cannot be made, and
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a future investigation bearing on this problem would be of

considerable interest.

Summary and Conclusions Drawn

from the Fabric Studies

The underlying purpose of the fabric investigations
has been to quantitatively compare crystal fabrics of naturally
deformed limestones with deformation fabrics produced experi-
mentally in marble. To achieve this, simple examples of
naturally deformed rocks, flexurally folded limestones, have
been éelected. Folds in limestone are relatively numerous,
and more importantly, flexurally folded structures as such
are ideally examples of nonhomogeneous deformation, the nature
of which is to some extent determinable from geometrical
considerations. With a knowledge of the strains, deforma-
tion fabrics can in prineciple be approximately predicted for
any combination of glide mechanisms and the results compared
with the naturally observed fabrics developed under these
strains. Inldetail, the problem of theoretically predicting
fabric changes in a homogeneous aggregate associafed with
even the simple deformation in an ideal flexure fold is dif-
ficult and can be computed only with a theory like that de-
veloped by Bishop (1954), which allows sufficiently arbitrary
deformations to be specified in individual crystals so that
the whole aggregate may undergo the prescribed strains and

still maintain continuity after deformation. At present it is



= I70 &

in principle possible but not feasible to derive exactly

the fabrics to be expected in folds. However, an implica-
tion of the Bishop theory is used to derive approximate
stable fabrics to be expected with bending in a fold de-
forming approximatelyin plane strain, in a material which
has an initial c-axis fabric identical with that of un-
deformed Yule marble. The utility of the result is thus
definitely impaired, but does give some idea of the deforma-
tion fabrics which ideally would arise in folds under the
special assumptions employed.

To insure maximum success in either substantiating
or disproving the applicability of the experimentally de-
duced behavior of marble aggregates to naturally deformed
rocks, it is evidently advantageous to apply these results
under the most favorable natural conditions where they could
reasonably be expected fto apply. This consideration To-
gether with the inherent time consuming nature of the fabric
studies is the reason for making very careful choices of the
actual materials investigated here. Neither of the folds
studied meet in detaill all of the various fundamental re-
quirements presented in the Introduction, but from the stand-
point of the strains indicated in these bodies, it would not
be unreasonable to expect development of good deformation
fabrics within them. The observed host and twin c-axis
fabrics do not clearly reflect the observed macroscopic

deformation in either structure. In the fold from Maryland



this is because the microscopic deformation of The material
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ght, indicating either a recrystallization of the ma-
terial just prior to the iast inerement of deformation ex-
perienced by the rock or kending with crushing and fracturing
rather than plastic deformation of the materiazl. In the

second example from Darwin wash, the deformation in the fold
and accompanying fabrics are also not clearly related, and if
a gross relation between them is postulated, the fabric changes
c'-axis orientations actually observed reflect relatively small
strains of a rather uncertain kind.

The conclusion derived from these considerations is
that, within the limitations posed by the small number of
folds investigated, significant development of deformation
fabrice in response To known large strain have not been ob-
served and the intended comparisons with experimental studies
are therefore not possible. The above investigations ob-
viously do not exhaust the possibilities for using folds
in the manner indicated here, and further work will most
probably disclose other and better examples to be used in
this kind of analysis.

Positive results of the fabric studies are the follow-
ing: (1) the dynamic analysis when applied in detail to one

folds studied (Maryland) yields results compatible
with the expected deformation, and although complications

in the actual deformation within the layer are evident, is

sensitive in depicting changes in deformation due to twinning.

(2) An analysis of the twinning deformation in this aggregate



carried through using a plausible simple model of an elas-
tically deformed fold with circular geometry, shows that twinn-
ing in the aggregate ollowé the law of maximum resclved

shear stress in a2 semi-quantitative manner. The implication

of this result is that, to a first approximation, if the macro-
scopic stress distribution in an aggregate were known, then at
least the first order fabriec changes due to mechanical twinning
alone could be computed. The converse of this is not ftrue,
L8, 31E the B'-axls fabric (or a result of the dynamic
analysis) is known a unique system of stresses causing the
deformation is indicated. (3) For the small increment of

deformation recorded In the rock as twinning, the strains

rary from grain to grain and (from the rough data available)

-

depend upon orientation of the crystal axes relative to the

-

he twinning deforma-

3

principal sxes of stralin in the rock.
tion is thus nonhomogeneous throughout the aggregate. (4) Un-

' Fabrics have been achieved

equivocal situations where "stable,'’
in response to large strain.through twinning and translation
gliding have not been observed,

A subjective conclusion is to be derived from thesge
studies, and concerns the use of folds in the way attempted
here. As mentioned before there is no other commonly occurring
geologically deformed carbonate body wherein large strain from
one place to another can be expected to occur in a somewhat

predictable manner, However 1t is in a sense contradictory

to expect a simple deformabtion and recrystallization history
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to be associated with a homogeneous material coarsely crystal-
line enough (grain size ) 0.1 mm) so that conventional micro-
scopic methods can be brought to bear. A possible exception
would be folded crinoidal limestones. Use of folds here has
thus required the rocks to have undergone an incipient re-
crystallization, or alternatively to contain seccondarily

deposited calcite.

Future Studies

The limitation posed by grain size has greatly

limited the number of examples of deformed limestone bodies
which could be used in this investigation. This constraint

on the method could be greatly eased by the use of X-ray
techniques for determining fabrics of fine grained carbonate
rocks (Higgs, et al., 1960). However the problems attacked

in such a study would perhaps be quite different from those
associated with plastic deformaticn and development of fabrics
in coarsely crystalline aggregates (p. 168 ). Investigations
of the deformation of finely crystalline rocks would thus form

an interesting extension of the present work.
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NATURE AND PROPERTIES OF e {Oli?} LAMELLAE IN

CALCITE AND f {0221} LAMELLAE IN DOLOMITE

Introduction

Without question the commonest planar features noted
in the deformed calecite rocks used in this investigation are
lamellae parallel to g_{Oli?}. In thin section features of
this type are readily divided into two general categories

twinned and nontwinned lamellae (Borg and Turner, 1953, p.

1345)., Twinned lamellae are those wide enough %to allow
crystal in twinned position.to be unambiguously.identified
by 1ts symmetrical extinction with the host crystal about the
vertically oriented interface between the two. The so-called

nontwinned lamellae in contrast are so thin that when tilted

intc The vertical position they appear as sharp dark lines

with no twinned material discernible. Xnopf (1940%b, p. 562-563)

deséribes nontwinned lamellae from experimentally‘deformgd Yule
marble as possessing "color-banding”" which "disappears when
the lamellae are turned into a position where their bounding
surfaces are parallel to the axis of the microscope' thus
giving the whole surface of the grain a uniform interference
color in polarized light. She attributes the "color-banding"
to a "wedge effect caused by the diagonal position of the
boundary surfaces of discontinuity" (p. 563).

The investigations described below involve a detailed

examination of thin twin lamellae in calcite and dolomite rocks
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which exhibit all of the features ascribed to nontwinned

lamellae by Knopf (18490p). In fact it is possible to recognize
five distinctly separate types of interference colors and
fringes which arise through the presence of the lamellae.
These interference phenomena may be used to investigate the
properties and internal nature of the structures.

In particular it is shown below that nontwinned lamellae

(lamellae exhibiting the properties described by Knopf (194<h))
are in fact exceedingly thin, but otherwise normal twin lamellae.
A method is presented, which utilizes a standard optical tech-
nique, for obtaining the thicknesses of these twins and this
information allows an estimate to be made of the strain re-
corded in an aggregate through deformation of this type. Cal-
culations are also presented which show that only an average
thickness (and hence only an estimate of the average strain
per lamellae) may be obtained for a series of thin lamellae
which are superposed under the microscope. The most important
result of these studies is a new method for measuring the
orientation of twins that are shallowly inclined to the plane
of the thin section. This method allows a complete picture

of the orientation-distribution of e-lamellae in a calcite
rock (or f-lamellae in dolomite) to be obtained from one thin
section rather than from two or more perpendicular sections

as heretofore required.



-~ 176 =

Previous Studies

Nontwinned lamellae have been widely noted in both
naturally and experimentally deformed marbles. In fact they
are the most abundant deformation feature to be seen in many
naturally deformed rocks (McIntyre and Turner, 1953; Gilmour
and Carman, 1954; Turner, 1949). Knopf (1949a, 1949b) and
Turner (1949) were perhaps the first to point up the peculiar
nature of these features, but they had of course been noted
much earlier by various workers (Adams and Nicolson, 1901)
being termed "twin bands" and "lamellae" (Knopf and Ingerson,
1938) or "translation lamellae" (Sander, 1950, p. 232-235).
Adams and Nicolson (1901, p. 375) indeed do mention that
"fibrous" structure developed during their experiments on
the deformation of marble appeared to consist of extremely
minute polysynthetic twinning, but they present no evidence
for this conclusion. In the exhaustive study of experimentally
deformed calcite single crystals carried out by Turner et al.
(1956), the suggestion is forwarded that these lamellae may
be "stacking faults due to ultramicroscopic twinning or some
other disturbance of the lattice." Garber (1947) has made
extensive and interesting studies on the mechanism of twinning
in calcite which appear to deal with structures resembling

nontwinned lamellae. Garber did not use a universal stage

in his investigations and so the features he discusses cannot
be compared directly with those studied here. He describes

interference phenomena similar to one of the five types
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described here. Garber has recognized four distinct stages in
the process of twinning in caleites (1) elastic deformation
of the crystal, (2) formation of "elastic" twins, twins which
disappear when the load is removed, (3) formation of stable
twin layers, (4) thickening of the twin layers. Elastic and
stable twins supposedly show reflection (?) interference
colors and fringes, which Garber describes as resembling New-
ton's rings. He computes the thicknesses of the elastic twins
by assuming that the lamella and surrounding crystal are iso-
fropic and that the interference colors observed are due %o
reflection (his unnumbered equation p. 63)* within the lamella.
A further assumption is made in taking n, , cos r equal to
unity, where r is the angle of refraction inside the lamella.
This will not in general be true except for special arrange-
ment.of the specimen in his optical system, but such arrange-
ments are not described in the text. Nevertheless, the thick-
nesses obtained are about 1 p, which are similar to those ob-
served in the present studies.

The approach developed below is adapfted to universal

stage methods and depends upon measuring between crossed nicols,

the phase difference produced in waves transmitted by the aniso-

tropic crystal slice, when the lamella is in special orientation.

*
The equation is k = 2n, _, 4/ , where k is the order of
an interference fringe, n,_, is the average index of the

lamella, d is the lamella thickness, and A is the wave length
of light. :



Nontwinned lamellae are especially significant in the
present investigation. For example, in fabric studies of the
fold from Maryland, the dynamic analysis, strain calculations,
and investigations concerned with the law of maximum resolved
shear stress are all based on deformation features of this type.

It is suggested that the term nontwinned lamella be

replaced by microtwinned lamella, which suggests the truly

twinned nature of the lamellae as established in the present
study, and suggests also in a qualitative way the thicknesses

of these structures (usually from one to four microns).

Description of Microtwinned Lamellae

Microtwinned lamellae in calcite and dolomite show a
varietj of interesting optical features which do not appear
to have been described in detail previouslj. These features
consist of interference colors and several types of interfer-
ence fringes. The same optical phenomena can alsc be noted
with twinning lamellae which contain 'visibly twinned' crystal.
The inferference colors and fringes have practical importance
because they can be used to indicate the horizontal orienta-
tion of microtwinned or visibly twinned lamellaze. A technique
for accomplishing this is described below. These interference
phenomena are also used to determine the internal nature of

the lamellae,
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Interference colors and fringes

In general microtwinned lamellae are easily visible
in thin section because they show overall low order (first to
occasionally fourth) interference colors when viewed between
crossed nicols with the host crystal at extinetion (fig. 31 )
and when they are not in the vertical or edge-on position.
They appear as broad, mostly uniform colored bands ftraversing
a grain with a color spectrum at each tapered edge (fig. 31 1
Depending on their inclination to the plane of the thin sec-
tion, the boundaries of the bands may be sharp, or they may be
highly serrated owing to irregularities in the ground surface
of the thih section. When tilted into the vertical position,
the interference colors progressively disappear, and the
lamellae assume their well known, sharp, dark, linear appear-
ance, with the properties described previously. In plane
polarized light, without crossed nicols and with reduced il-
Jumination, these lamellae display uhiform colors of-different
character from those observed between crossed nicols. These
colors are more faded in appearance and seem to be generally
of a higher order than the colors seen under crossed nicols.
The colors visible in plane polarized light are probably due
to internal reflection within the lamellae. The origin of
these particular colors has not been studied in the present
work.

Distinct from the overall, more or less uniform inter-

ference colors of the lamellae are several types of interference






fringes which are superimposed upon the overall interference
colors for some positions of the crystal between crossed
nicols. Four types of fringes have been distinguished under
the microscope, and these are designated types I, II, III

and IV. A1l of the fringes are parallel to the trace of the
lamellae in thin section. Types I and II may be observed in
most lamellae, but observation of type III seems to depend to
some degree upon the thickness and inclination of the lamellae,
and upon the degree of development of the type II fringes.
Type IV are not commonly observed. These fringe features are
most easily seen under medium or high power in association
with microtwinned lamellae that are inclined at a low angle
to the plane of the thin section. They are also much more
prominent in £ {0221} lamellae in dolomite than with e J01Te}
lamellae in calcite, presumably because of the higher bire-
fringence of dolomite. The observed properties of each of
the fringe types are listed below, and the positions of the
fringes as seen in a section which includes the normal to the
lamella are shown in Figure 32 . The characteristics of the
fringes are as follows:

Type I: Visible when microscope is focussed on
lower edge of lamella in both plane
polarized light and under crossed nicols.
Not visible when host is at exftinction.
Fringes begin at the inner edge of the
color spectrum produced by the tapered
edge of the lamella and the order of the
fringes increases rapidly inward toward
the center of the projected lamella width
from the lower edge. As the host crystal

passes through extinction, the fringe pat-
tern shifts position corresponding to a
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Type II:

Type III:

"'lf:"?)"

path difference of A/2. Fringes are dis-
torted by irregularities in the thin section
surface, and where other twins or cleavage
cut the lamella.

Visible when the microscope is focussed on
upper edge of the lamella only under crossed
nicols. Not wvisible when host is at ex-
tinction. Fringes begin at the inner edge
of the color spectrum produced by the tapered
edge of the lamella, and the order of the
fringes increases rapidly inward toward the
center of the projected lamella width from
the upper edge. The fringe pattern shifts
position corresponding to a path difference
of )/? as the host crystal passes through
extinction. They are generally not as prom-
inent as fringes of type I. The fringes are
distorted in a manner similar to that of
type I.

These fringes may be sharply visible in a
position of focus halfway between upper and
lower edges of a lamella. They are visible
between crossed nicols, and are most prom-
inent when the host is in a position of
maximum illumination. They are sometimes,
but not generally, visible when the host is
at extinction. Especially prominent fringes
of this type may be visible in both plane
polarized light and between crossed nicols.
The fringe pattern shifts position corres-
ponding to a path difference of A /2 when
the host crystal is rotated through extinc-
tion. The distribution of fringes is such
that the zeroth order fringe is located
exactly halfway between the edges of the
types I and II fringe patterns, with the
order of the fringes increasing rapidly
outward in each direction from the center
toward the edges of the lamella. Upon
insertion of a quartz wedge (thin edge
first) such that its fast direction is
perpendicular to the trend of the fringe
pattern, the fringes shift toward the

lower edge of the lamella. The spacing

of the type III fringes is approximately
one-half that of types I and II. Type

III fringes ultimately merge with those

of the other types when both are persis-
tent enough.
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Type IV: Broad band-like variations in interference
color across the projected width of the
lamella. Zeroth order fringe in middle
of the projected width, increasing in
order outward from the center. Visible
only between crossed nicols. Fringe
spacing much wider than for types I-III,
for lamellae with the same angles of tilt.
Most plainly visible when host crystal is
near extinetion.

Figures 33-35 illustrate the optical features described above.
In Figure 33, which show f {0251} lamellae in dolomite, seven
orders of type I fringes are visible across the lamellae shown.
Type II fringe are not visible but greatly resemble those pic-
tured. Type III fringes.may be noted in Figure 34. Figure 35
illustrates type IV phenomena. All figures show these features

as they appear in dolomite.

Origin of the fringe features and interference colors

Although a complefe explanation of the causes of the
fringeAfeatures described above cannot be given here, con-
siderable light can be shed on their origin. The function of
the lamella in producing the fringes of types I and II may be
understood when the lamella is considered as a slice of crystal
of different optical orientation than the host which, because
of the difference in indices between the two, gives rise to
preferential transmission of light vibrating in a plane per-
pendicular to the lamella. Thus with fringes of type I, the
lamella can act, in a way owing to its different orientation,

as an analysing nicol prism, and the fringes can be seen



Figure 33. Type I fringes assoclzated with microtwinned
{“291}78 mellae 1n dolomite. Fringes of lowest order are located
2t the intersection of the lamella plane with the lower surface
of the thin section. Seven orders of these fringes are visible.
The 1“ﬂeﬁlae are inclined at an angle of approximately 15° to the
plane of the thin section (and the pﬂotONPapn) A second set of
ﬂﬂchv vertical microtwinned $0221}lamellae cuts across the photo
at a small angle to the horizontal. Crossed nicols (x 125).

Figure 34. Type III fringes along microtwinned {6251}
lamellee in dolomite. The fringes are closely spaced dark lines
located in The center of the pLOJECtEO width of the lamellae,

The zeroth order fringe occurs in the middle and fringes increase
in order to either side. Fringes of both types I and II are also
Ffaintly visible The fringes are distorted by other microscopic
racks crossing the lamellae and by irregularities (?) in the sur-
face of the thin section. The lamellae dip toward the top of the
photograph at an angle of about 20°. Another discontinuous set

T steeply dippling %0221f1ame11ae cut across the photograph in a
northeast direction. Crossed nicols (x 125).
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without the aid of the microscope analyser. With type II
fringes the lamella can act as the lower polarizer, and the
fringes are visible with the microscope polarizer removed and
the upper nicol prism inserted. _

The relationships of the types I and II fringes to
the edges of a lamella, with many orders of fringes visible
and increasing in order toward the center of the projected
width of the lamella, suggests that these fringes are related
to the wedges of host crystal at the lower and upper edges of
the lamella. If this is so, the spacing of the fringes
will be simply related to the inclination of the lamella and
the orientation of the host crystal. In monochromatic plane
polarized light between crossed nicols, fringe minima (dark

fringes) will occur when

%é§=£ﬂ (k =1, 2,3, ) (20)

where ) is the wave length of light, and where A S is written
AS = An-.x-tan © (21)

In Equation 21, x is the distance measured outward perpendicu-
larly from the edge of a lamella toward the center, and 6 is
the angle between the plane of the section and the lamella.
An is the "effective" birefringence of the host crystal and

1

depends on orientation of the crystal. An is equal to n, - n.

where n, is the ordinary index of refraction of the host crystal,

and gé is its apparent extraordinary index which is given by
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- - e

'\2 [sin® g , cos” @\ _
n n
=0 =

In Equation 22, n_  is the frue extraordinary index of the host,
and ¢ is the angle between the c-axis of the host and the plane
of the section. Using Equations 20 and 21, the spacing Ax

between fringes of order Ak apart is

Az = Ak- A/ (an-tan o) . (23)

Fringe spacings computed using Equation 23 may thus be compared
with those measured with a micrometer ocular to test the concept

suggested above. This is done in Table 2.
TABLE 2

Comparison of Computed and Measured

Fringe Spacings (White Light)

Ak An tan © Xoale X eas mineral
550 m p 4 0.159  1.428 10 p 10 j ¢
550 m M Iy ©.157 0.900 16 p 12 n (2) ¢
550 m p b4 0.133 1.235 13 p 14 p C
550 m L 0.168 1.540 8 il 9 p '8
550 m p bt 0.128 2.246 7T p T p C
550 m p L 0.136  1.664 10 p 9 p D
550 m m L 0.180  0.900 14 p 14 p D
550 m p L G.100 ©0.287 77 p 7L pm D

*

Data on calcite from the Darwin fold; the dolomite used was
obtained from a series of dolomites and dolomitic limestones
in San Antonio canyon, San Gabriel mountains, California.
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The general agreement in these two results is surprisingly
good in view of the difficulties in making many of the measure-
ments involved in construction of the table. Measurements on
both caleite (C) and dolomite (D) are included, and measure-
ments on each of these minerals contain about the same dis-
crepancies.

Type III fringes, which are generally invisible except
when viewed between crossed nicols, are situated such that the
zeroth order fringe is exactly halfway between phe extremes
of the projected width of a lamella. This relationéhip sug-'
gests that the upper wedge of crystal is in somé manner com-
pensating for the path difference produced in waves travelling
through the lower wedge, with compensation occurring only
where the path differences produced by the two wedges are
equal.

The band-like variations in interference color referred
to as type IV also have a zeroth order fringe located in the
center of the projected width of the lamella, and this suggests
that they, like type III arise through presence of both upper
and lower wedges of host crystal. When type IV fringes are
visible, they usually completely subdue effects of the other
fringe types, and it is therefore difficult to discern a
quantitative relationship between these and types I-IIT.

When a lamella is oriented horizontally under the
microscope either between crossed nicols (horizontal orienta-

tion being such that the pole to the lamella is parallel to
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the axis of the microscope) or in plane polarized light, the
fringes are no longer visible. 1In this orientation, lamella
and host are indistinguishable optically because of the
symmetrical arrangement of their respective lattices with re-
spect to the twin plane, and the lamella thus cannot make its
influence apparent. Also, none of the fringe types described
above may be seen on cleavage planes parallel to {1OT1} in cal-
cite or dolomite. This further illustrates the important role
the lamellar material must play in producing these fringe pat-
terns, for cleavage is thought to represent actual separation
of adjacent parts of the crystal along the cleavage plane, not
development of a crystallographically intact slice of material.
Fringe phenomena are visible along grain boundaries between
grains in differenﬁ optical orientation, and especially when
the grain contact is inclined at a small angle to the plane

of the thin section. The fringes may be seen at each of the
tapered edges of the grains. Fringes at the upper tapered
edge are visible with either the polarizer or analyser removed
or between crossed nicols when the grain below is in a posi-
tion of extinction. Those at the lower edge may be seen be-
tween crossed nicols or with only the analyser removed when
the grain above is in a position of extinction. Type IIT
fringes are not visible. Although there is generally no
regulafly,crystalline zone between grains along the grain
boundary, as is true of the twin lamella, the situation is

somewhat analogous, because there is a change in optical
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properties at the interface which gives rise to a preferential
reflection of light vibrating parallel to the interface.

The uniform interference colors produced by the micro-
twinned lamellae, when the parent crystal is at extinction,
arise in the following manner. When the host is at extinction,
its permitted vibration directlions are parallel to the analyser
and polarizer directions in the microscope. In general this
will not be true of the lamella. Thus in this setting the
lamella acts simply like a thin anistropic plate between crossed
nicols which is not at extinction. These interference colors
may be used to determine thicknesses of microtwinned lamellae,

as will be demonstrated below (p.199).

A New Method for Measuring Orientations

of Twinning Lamellae

The "blind spot" problem

An inherent difficulty in studying carbonate rocks
with the universal stage has been to obtain the spatial
orientation of planar features such as twinning lamellae and
cleavage which are inclined at angles less than about 350 to
the plane of the thin section. The difficulty may arise either
because of mechanical limitations of the stage or because of
total reflection of light coming from the polarizer at the
interface between the lower hemisphere and the glass stage
plate. Thus, all orientation diagrams for poles to e {Olié}

lamellae, which are prepared from any one thin section, contain
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a central "blind-spot," a region about the pole to the diagram
of half-angle 35°, in which lamellae poles are not present,
In order to obtain a complete picture of the distribution of
lamellae throughout a given volume of rock, it has therefore
always been necessary to examine two or more perpendicular
thin sections from the rock. However in some situations,
particularly those arising in small scale applications of the
dynamic analysis or where the rock fabric is nonhomogeneous on
the scale of a thin section, it is desirable and necessary to
obtain a statistically complete picture from one section. The
method described herein helps overcome the "blind-spot" problem.
It uses the optical properties of twin lamellae (either micro-
twinned or visibly twinned varieties) to place the lamellae in
horizontal orientation, i.e., with the pole or a lamella par-
allel to the microscope axis. This technique has proved use-
ful with calcite and is even better and easier to use with
dolomite. Unfortunately its discovery came after completion
of the major portion of the fabric studies reported on above,
and it was therefore not available for use throughout this work.

Since the method utilizes an optical property arising
from the twinned nature of material enclosed in the lamellae,
it cannot be applied to cleavages or other planar partings
which are physical separations of adjacent parts of the crystal

lattice.



- 194 -

Physical principles of the methdd

The new method makes use of the interference colors
visible in the projected width of a shallowly inclined lamella
when the host crystal is at extinction. The object of the method
is to bring the lamella to such a position that both it and the
host crystal are in positions of darkness simultaneously, that
is, with the permitted vibration directions in each parallel to
one another (as seen in the microscope) and parallel to the
nicol directions. In any given situation there are three posi-
fions of lamella and host where this may be achieved, as may
be illustrated by reference to Figure 36 . The diagram is a
stereographic projection on the lower hemisphere of the projec-
tion sphere. The pole of the diagram is the microscope axis
(MA). Iet the cross labeled e represent the position of the
pole to an arbitrarily chosen, but not too steeply inclined,
e-lamella in calcite, the open circle marked C the position
of the c-axis of the host crystal, and C! (s0lid circle) the
position of the twin optic axis. With each optic axis position
are shown the permitted vibration directions in host and lamella,
and these are also projected onto the plane. If the trace of
the lamella in thin section is brought parallel to the north-
south (NS) stage axis, then its pole will lie along the great
circle perpendicular to NS (which is shown in the figure as a
dashed line labeled N-S). Tilting the stage about NS moves
the plotted c-axes along small circles and e along a great

circle, all three of which are shown as short dashed lines in
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Figure 36. Stereographic projection used in
illustrating method for orienting twinning lamellae
horizontally with the universal stape (horizontal mean-
ing with the plane of lamella parallel to the micro-
scope stage). Solid triangles labeled "E" represent
positions of the pole to the lamells, open circles
marked "C" positions of the host optic axis, and solid
circles "C'" positions of the optic axis in twin orien-
tation. Through ecch optic axis position are zlso
marked vibration directions in the crystal projected
into the horizontal plane. The pole to the diagram is
1A (down), and NS represents the north-south horizontal
axis of the universal stage. As the drawing is con-
structed, for each of the positions of C and C' corres-
ponding to lamella positions e,, e,, and &3> rotation on

MS will produce extinction of host and twin simltancously.

e, as shown 1is the lamella pole position for true hori-

zontal orientation.



the figure. As can be seen, there are three positions for the
optic axes where theilr respective vibration directions are

parallel to one another. These have been labeled Cl’ Cos

1
Cy for the host positions, and Cy, C,, and C, for the twins.

3

The corresponding positions for poles to the twin plane are

and

€15 85, and Eqe One pole position, e,, is parallel to MA
while the other two are symmetrically disposed about this
point, oﬁe to either side on the great circle containing e

and e,. The symmetrical distribution of these points is re-
lated to the fact that hosﬁ and twin lattices are symmetrically
disposed about the twin plane. With the stage tilted on NS to
any of these configurations, rotation of the microscope stage
(MS) will produce extinction of both host and twin together.
The true horizontal position of the lamella can be distinguished
from the two "false" positions by the fact that the fringes of
types I-III disappear at the true horizontal setting (see dis-
cussion p.191). The host c-axis and the measured lamella pole.
If the true lamella position has been found, this angle should
approximate 26°, In practice, both of the "false" positions

have never been observed, but two positions are commonly ob-

tained.

Method for measuring orientation of lamellae used in practice

In practice the following procedure can be used to
place the lamella plane horizontal while simultaneously arrang-
ing the vibration directions in host and twin parallel to the

vibration directions in the microscope:
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(1) With MS set at the zero reference mark, the trace
of the lamella is brought parallel to the north-
south cross hair in the microscope by rotation
on the inner vertical stage axis (IV).

(2) The host crystal is then rotated to extinction
on MS so that the trace of the optic plane is
east-west. Normally at this point the lamella
will exhibit interference colors very different
from those of the host crystal when the host is
not at extinction.

(3) The stage is now tilted about NS (which is of
course no longer parallel to the north-south
cross hair) in the proper direction to banish
the interference colors of the lamella. Since
the host is generally not now in a position of
minimum light, a further adjustment on MS is
necessary, and this may have to be followed by
further rotation on NS to bring the lamella to
darkness. The nicols are now uncrossed and the
grain is checked to see if the fringes remain
invisible during a rotation on MS.

(4) For the special case when both the pole to the
lamella and ¢ lie in a vertical plane, so that
the lamella and host are simultaneously at
extinction for any rotation on NS, the nicols
may be uncrossed, and the disappearance of the
fringes (type I) used to indicate that the
lamella is horizontal.

(5) The NS and IV stage settings are noted and the
lamella pole is plotted on the stereographic
(or equal area projection) using the same pro-
cedure as for polar oriented c-axes (Faribairn,

1954, p. 279).

Difficulties in the method

In general this technique is not as easy to apply as
the conventional one for obtaining the orientation of twinning
lamellae with the universal stage (Turner, 1949). Difficulties
are particularly apt to arise when working with grains on which

more than one set of lamellae are present. This is because
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when one set is dark, the others are not, and the first is
then illuminated by the second. This makes it difficult
to obtain the desired extinction in both host and twin

simultaneously.

Principle use of the orientation method

The principle use to which this technique may be put
is in obtaining the orientation of "inaccessible" twinning
lamellae in carbonate rocks. These structures are termed
"inaccessible" when they inclined at a sufficiently small
angle to the plane of the thin section so that they cannot
be measured by tipping about NS into a vertical position
(pole horizontal). A number of factors enter to set this
upper 1imif of tilt. The relative indices of hemispheres
and oils (n = 1.649) and glass stage plate (n = 1.516) set
a maximum upper limit for total reflection of about 670.
However with the Leitz microscope and Leitz uniliversal stage,
the maximum tilt attainsble is less than 550 because the
upper hemisphere mounting screws hit the objective at this
angle. In effect, a feature inclined at an angle of less
than 350 to the plane of the thin section is thus not
messurable. With the method described above £ilts of 40-50°
can be measured, though only with difficulty at higher tilt
angles, so that there is ideally effective coverage of the
normal "blind-spot" region. The usual corrections for dif-
ferences in refractive index between crystal and hemispheres

mist be applied for high tilt angles.
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Another application of the present method is in ob-
taining the thicknesses of microtwinned lamellae, and this

is discussed next.

Determination of Lamella Thickness

The question of determining the thicknesses of lamel-
lae is important from at least two standpoints. First, if
lamella thicknesses determined optically by making assumptions
about the crystallographic nature of the lamella can be favor-
ably compared with thicknesses determined by independent means,
then this is evidence that the assumed nature of the lamella
is correct. Secondly, insofar as microtwinned lamellae repre-
sent deformation by twinning, it is of interest to obtain some
idea of the amount of strain they record. If thicknesses of
individual lamellae or aggregate thicknesses of lamellae can
be determined, then by Equation 13, the amount of strain re-
corded in twinning may be evaluated. In this section a stan-
dard optical technique for determining thicknesses using
interference colors is applied to determination of lamella
thicknesses. In the next section, the question of obtaining
the aggregate thickness of a group‘of superimposed lamellae
is discussed in detail.

If a twin lamella is oriented with its pole parallel
to MA (horizontally) or nearly so, and the optic plane of the
host crystal is east-west, then the c-axis positions of host

and twin are symmetrically disposed about the lamella pole,
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10
each lying 26E from MA in opposite directions along the great
circle containing c, e, and ¢ . Between crossed nicols both
are at extinction. When the lamella pole is almost vertical,
and the tracé of the optic plane of the host is east-west,
the ordinary wave vibrating north-south (parallel to the lower
nicol vibration direction) is resolved into two waves of dif-
ferent velocity in the lamella. On passing through the lamella

a2 path difference AS is produced between these two waves which

is given by (Ditchburn, 1957, p. 370)
AS =t-An (24)

where all of the symbols have been defined on p.188. An is
’ 1
now defined by writing ng, the "effective" extraordinary index

of the lamella as

2 2
'\2 ]| cos™ 8 sin” 6\_
(n.) SRl -a o 1,
=0 =e

where, for example, © is the angle cAe in calcite, equal to
26%9. n, = 1.658, n, = 1.486, and Q; = 1.618, for which
"An = 0.040, Estimates of lamella thicknesses have been made
using Equation 24 for microtwinned lamellae in both calcite
and dolomite. The value of AS is obtained using either a
guartz wedge or rotation compensator. Of course, no colors
are seen with the lamella horizontal and with the vibration
directions of host and twin parallel to the nicol directions

in the microscope, and it is necessary to rock the lamells
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through extinction on the north-south axis of the stage and
observe the colors on either side of the true horizontal
position. PFor any rotation of the lamella from the true
horizontal position, the apparent thickness of the slice as
seen in the microscope increases as t/cos (de), where t is
the true thickness and do is the angle of tilt fromrthe hori-
zontal. For de equal to 5O the change in -t is not very
great. On the other hand the change in An depends on the
direction of tilt. Take the special case where the axis of
rotation lies parallel to the trace of the lamella in the

plane of the thin section. By differentiating the last equation

g 2
n_-n
N _ Sine cos6 de . _o e
d(An) = -dn, = = 7375 " 2.2
cos 8 4 Bin S n, ng

2 2

n n

=0 -

211 terms in the expression on the right are positive, and
d( An) thus depends on the sign of de.

For @ equal to 26%—O and the indices of calcite the
constant part of this equation equals 0.150. The apparent
thicknesses on either side of the true horizontal position
are thus not the same. In practice, the color 'average' for
these two positions has been used to compute t from Equation
el

The values of t obtained in this manner are compared

with measurements under oil immersion (x 1000) of the width

of the color spectrum produced at the tapered edge of the
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Figure 37. Positions of the color spectrum
associated with the tapered edge of the lamella and
the constant interference color across the constant
thickness part of the lamella. Orientation of the
indicatrix (for calcite) in the horizontal lamella
is also shown in the position where both ¢ and e
the pole to the lamella e lie in the east-west plane.
n_ represents the true eytraordinary index (1.4 ),

the ordinary index (1.658), n the apparent extra-
ordinary index og the horizontal lamella (1.618). For
calcite, 8 = 26%'6 For a horizontal f {0271} lamella in
L}
dolomite, 8 = 6?% , n, = 1.515, n_ = 1.700, and n_ = 1.550.

The values of n, are computed from the equation on p. 200.



_203_
lamella (fig.37 ). The measured widths are multiplied by
sin S where § is the angle between the lamella and the plane
of the thin section, to get the true lamella thickness t. The
results of these measurements are given in Table 3. DMeasure-

ments on both calcite and dolomite are ineciuded.
TABLE 3

Comparison of Lamellae Thicknesses Determined

by Optical and Direct Measurement

Ml%??' AS An top’C § Sgigzgum meas Ieralzjtgi
1. 500-570 mp  0.150 3-4pu  37° 5 p 3p D
2. 325 mp 0.150 2 p 50° 3 2n D
3. 640-650 mu  0.150 A4 p 15° 14 p Ly D
L, LoO m p 0.150 3 p u4° 3 nm 2n D
5. 250-300 m p  0.150 1.7-2 n  44° 3n 2p D
6. 500-550 mp  0.150 3-4 g 44° b u 3n D
T 820 m p 0.150 6 p 50° 8 n 6 n D
8. 325 mp 0.040 8p 43° 12 p 8um ¢
9. 83mpm 0.040 2np 43° 3 p 2p C

%D = dolomite, C = calcite.

The general agreement between thicknesses based on the
two types of observations is taken as proof that the lamella
is composed of a thin slice of crystal whose optical orienta-
tion in relation to the host crystal is given by the normal

twin law, as shown in Figure 37 .
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In a survey of thin sections of limestones used in the
fabric studies reported on above (about 35 sections) it was
found that the majority of microtwinned lamellae showed inter-
ference colors of low first order (gray to black). This in-
dicates lamella thicknesses in calcite of one micron or less.
The retardation corresponding to such low order colors is very
difficult to measure with the quartz wédge, so that a compen-
sator (in this case an Ehringhaus Compensator with quartz com-
bination plate) must be used. On the other hand, thin lamel-
lae in dolomite may easily be measured below a thickness of
one micron, since the birefringence of a lamella in dolomite
in a nearly horizontal position is greater (0.150) than that

of caleite (0.040).

Optical Effects Produced by Sugerposition

of Several Thin Lamellae

Introduction

In some situations, when thin lamellae are inclined at
a low angle to the plane of a thin section and are closely
spaced, They overlap*so that light travelling through the
crystal must pass through several superimposed lamellae as
well as thicker slices of host crystal. The question arises
as to what information may be obtained by observing the inter-
ference colors produced by the superimposed thin plates, when
they are oriented in the same manner as for determining thick-

nesses of single lamellae. The purpose of the calculations

%See Figure 31.
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given below is to demonstrate that only the average and not
the cumulative thickness for the lamellae is shown by their
interference colors. It also develops that a good approxima-
tion to the exact calculation is obtained by neglecting path
differences produced in waves travelling in the host crystal,
if these crystal slices are much greater in thickness than

the twins. This consideration allows the cumulative inter-
ference effects produced by any number of lamellae to be
calculated in a relatively simple manner. The exact two
lamellae calculations written out below proceeds by é straight-
forward treatment of optical effects produced by each lamellae
and layer of host crystal successively. After this develop-
ment the approximate calculation is carried out. In all of
these calculations dispersion, absorption, and reflection are
neglected.

Fresnel (1821) was the first to consider the problem
of optical effects produced by several superimposed crystal
plates. In particular he treated the case of two superposed
anisotropic crystal plates between crossed nicol prisms.

Airy (1833) extended this calculation to the situation where
the two plates have their principal planes inclined at an
angle to one another, and used the results in determining the
optic sign of crystals. The problem treated here is some-
what different, as will be made clear below.

Suppose a crystal containing several closely spaced,

thin e-lamellae in calcite (or f-lamellae in dolomite) is
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oriented with the universal stage so that the lamellae overlap
along the axis of the microscope. Suppose also that the lamel-
lae are nearly horizontal, and let the host crystal be at
extinction. Under these conditions, the allowed vibration
directions of the twinned parts of the crystal will in general
make some angle o with those of the host (and also the direc-
tions of polarization in the microscope). This situation is
illustrated in Figure 38 . In this position the lamellae will
show some combination of interference colors, and in order to
understand the combined interference effects produced with this
configuration of crystal plates, we consider first the simplest
case, that of two superimposed lamellae with vibration direc-
tions parallel, separated by a much thicker slice of host
crystal in different orientation and arranged between crossed

nicols as in Figure 38

Y, Y. P
1» "2
%
\ '
\ Y th Y2
\ -
\ - XI:XZ xl’ Yn
\ ~
Q
A \L-T 5 XY
s -~ k\ xl
-~
-7 \
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\
\
Figure 38 . Relationship of lamellae vibration direc-

tions (Xl’ Xpt ¥ps yg) to host crystal vibration directions

(x', y'), and the planes of polarization of the nicols (PP!
and AA').
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Exact calculation for the two-lamellae case

Suppose that a plane polarized light wave with elec-

2TCc %
)c) vibrating parallel

tric displacement D = D sinwt (V=
to PP' impinges on the lowest lamella (l—subscripts) and is
resolved into two components vibrating along xq and V-
After passing through the lamella, the components of D along

thege directions are:

: ' .

Dxl = D, sina sin(wt + g7) (25)
_ s s . oY

Dyl = D, sino sin(wt 4 ﬁl) g

where Qﬁ and Qﬁ are the phase shifts of the waves vibrating
along the x and y‘axes respectively. Qﬁ = Q{ is the phase
difference produced between the two waves in traversing the
first lamells. Aftef passing through the interposed slice

of host crystal the components .are:

3 . : . X X!
along x : D, = D_ sina cosa [sin(wt + g7 + )

—sin(wt + g+ )1 (26)

. !
along y Dy' =.DO {sin2 o sin (Wt + gﬁ + Qﬁ ¥ 2

!
+cos® o sin{ wt + Qg + o7 )]

X! ! 2 i
where ¢ and ¢ are the phase shifts introduced by the host
crystal. Emerging from the second thin lamella’ the components

of D along the directions Xp and ¥y, are:

o

3 s
¢ is the velocity of light in wvacuun,
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_ - - '
along x,: DXE =8 sin3 @ sin (Wt + Qﬁ + 7+ 92)

+ D, sinmo cos<a [sin(wWt + g? ¥ Qy' + gg) Y sin(th+¢§+¢K'+Q§)
+sin (wt + @ + ¢+ 95)] (27)

and along y,: Dy2 = Do cosa [sin? o sin(wt + gﬁ . QV' + Qg)

+ cos® a sin(u)t+¢§+¢xl+¢§)] - Dosinzacosa [sin(u)t+¢§+gxl+¢g)
- sin (0t + F + @& 4 )

Q% and Qg likewise being the phase shifts introduced in the
second lamellae along the x and y directions respectively.
When these components are resolved along the direction AA!' the

expression for D in this direction is:

3 g . o '
D, = D sin“acosa [sin(wt + Al) sin(wt + 4,)

2 sin(wt-!-Aé) - sin(wt + A ,)] (28)
+ D simucos’e [sin(wt + A,) + sin(wt + As)
- sin(wWt + Au) - sin(Wt + Aé)]
wheré
Bo=gi+d 4o 5 Ay =g+ 4o
Bo= 7 w5 By=d 4+ + A
Ay =L +0 +d5 5 Ay=01 + 9 + 4]
#o+ o gy s A =g 4

=
Il
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Now separating the time varying part of the above expression

from that involving the phases, one gets, after some manipula-

tion,
D - A An +
5? = - A181n ——Elg - A2 sin &Lﬂiﬁ-+ A351n by 128 ASM) sinwt
i (29)
r A Avn £ ]
+ Ay wﬁﬂfg + B, g—u‘ﬂ * Agcos 0012 M3 | cos ot
where

TAS, TAS,

sinfPa cos sin
1 A

mAS,  MAS,

=
Il

A2 = s8inZ2a sin ) sin o\
TAS T AS T A’
AS = sinla sin 7 1 gin : 7 2 sin —l%%§—
1 1
Ajo= B+ 4, 4+ A2+ 4,

1

Boy= By + By + Ay + By,

In Equation 29 the various phase differences have been re-

written as follows:

7 - gﬁr = As,
ﬂxt— ¢y|= AS'
g5 - #% = A5,

The expression for the intensity of light ftransmitted
by the analyser is given by the sum of the squares of the

tefms in square brackets in Equation 29 (see Ditchburn, 1852,
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p. 386). After some further calculation and rearrangement

of terms the resulting intensity ratio I can be written as:

2
L= (g—i) - sin'z0 [sin2 7—{— (Bsy +A82)c032 —77—,?\—5-‘;
+ sm;—-x-— (Asy - AS,) sin® -"f—;\i ]

+%sm4a [sin 2ﬁ%+ singlr—;\ﬁ ] sine’ﬂ:/+s‘l (30)
+ sin22oc [ltcoszEcxsin %S—l sin2 L‘;& s:'Ln2 % (AS1 + ASE)

+ cos 2asin —2{'— Asl +AS2)]1/2 . sin (g_ﬂ_‘;\A_S' & Q)
. cos® 20 sin® = ;\L (85, + AS,)
sinf =T WAS, ,7As, 72

Leos“2asin rsin 2 2gin> (AS +AsS )+coszzasin /-|(.A‘S +As )

When AS' is made equal to zero (i.e., the interposed
host crystal is removed or is optically isotropic), the result
(egqn. 30) reduces to the familiar relation for the intensity of
light transmitted by two superimposed anistropic plates between

crossed nicols (Ditchburn, 1952, p. 386):

I = sin® 2a sin® % (AS1 + ASQ) ; (31)

For AS1 = Ase = 0, (_ASI % 0), I is zero, since the host
crystal is in a position of extinction.
Equation 30 is graphically represented 1in Figure 39 .

Data used in plotting the curve were obtained with the



Figure 329. Graphical representation of Equation 30.
Along the horizontal axis is plotted MAS/A , with the vertical
axis the intensity I. a = 22,5°, At the top of the drawing
the range of TTAS/A throughout the visible spectrum is plotted
for a number of specific values of ZlSl. The relationship of

the variables given in Equation 30 is A82 = 2A8,, As' = 25081.

" Figure 40. The intensity I given by Equation 30 for
a =5, A82==2Asl, AS'::ZSASl.

Figure 41. Illustration of contributions of the
various terms in Equation 30. (a) First two terms of the
expression, designated I% and IE; (b) the third term of

Bquation 30 (I,). a = 5°, AS, = 248, As' = 2548, .
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Burroughs 220 digital computer.® Since Equation 30 contains
five parameters AS,, AS,, AS', ¢ and A, it has been neces-
sary in plotting the curve in two dimensions to assume a re-
lationship between the first three of these, and to consider
fixed values of a. Thus, AS, has been taken equal to 24 S;,
and AS' equal to 25 S;. The example in Figure 39 1s for o =
22.50. 1/A increases to the right along the horizontal axis
along which MAS/ A is plotted. The vertical axis is the in-
tensity I. Equation 30 gives a curve, outlined by the dashed
boundary line, which is symmetric about AS/Z = mAT , there
being mirror symmetry in the curve for each set of values
m=0, 2, 4, «ev , andm =1, 3, 5, e+ ,

It is convenient to think of the variation of I as a
function of 1/A for a fixed value of ASl. Thus in Figure 39
regions are marked off for the variation of I throughout a
range of A\ corresponding to the visible spectrum (410-710 map)
for AS, equal to 80, 160, 240, 320, and HOOIn}l(ln calcite
the se would correspond to lamella thicknesses of 2, 4, 6, 8,
and 10 microns respectively). Equation 30 then states, for
example, that for a choice of ASl equal to 80 m the re-
sultant visible color would be a combination of orange-yellow,

greenish-blue, and violet.

Computaulon of the curves was carried out on the computer
at the California Institute of Technology, using the standard
fixed point subroutines for sin x and cos x with X given in
right angles. 'TEAsl/j\ was taken as the independent variable,

with A82 = 2AS and B8 = 25AS8,, and values were calculated

at an interval of 0.0072727272 right angles or 0.0114239733
radians. Sample values were checked against 6-place hand
computed values.



-~ 21l =

Ls it stands Equation 30 is very cumbersome to deal
with, but a simplification of this result is possible which
has practical importance. When o is small, the first term of
Equation 30 is of order du, while the second two are of order
a® (for a = 10°, the coefficient of the first term is about
0.07 that of the second, and 0.12 that of the third). The

latter two terms thus dominate in the expression for I which

becomes:

TAS mTAS '
T & 80&2 sin2 —_Z_l + sin2 __2__2_ s:l.n2 —-ﬂ:—%—s—

1]
+ 4an® sin 2—71‘—%—8 +@

where A has been written for the square root factor in the

(32)

third term of Equation 30. The resultant intensity is thus
composed of color contributions from each of the thin lamellae,
represented by the first term on the right of Equation 30, and
a contribution which depends in a very complex manner upon zxsl,
ASE" and A, but which oscillates with very high frequency
(AS'>> ASl and AS,) about zero because of the unsquared
sine factor in the second term. The effect of the third term
may be evaluated by réferring to Figures 40 and 41 . Figure 40
represents the total intensity I plotted as a function of
MTAS/A for a equal to 5°, and with the relationships between
AS:L, ASE’ and AS' previously designated. The curve in
Figure 1la shows the first two terms of the intensity given by
Equation 30, or effectively only the second term for this choice

of a, and Figure 41bis the third term. The surprising fact
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which may be noted from comparison of Figures Lo and L1 is
that the positions of the maxima and minima in the boundary
curves (dashed lines connecting closely spaced maxima) of
these expressions are not shifted relative to each other by
subtracting out the third term. The amplitudes of the maxima
. are also unaltered, but the value of one of the minima in the
boundary curve is increased by a factor of two. This means
that the net effect of the third term in determining the colors
visible in the microscope is to alter the intensity of some
colors already present., The distribution of wave lengths is
not changed. Thus if one were to analyse the light for the
distribution of wave lengths present there would be no dif-
ference observed in the results predicted by Equation 30 if
the last term of this expression were neglected. Practically
speaking differences in color would be observed which, for
example, would be more prominent for a choice of AS1 = 160 m p,
but almost unobservable for 1&81 = 320 n{p” (Compare with fig. 39.)

A good approximation for I, under the restriction that

o is small is thus

o A3, o "—‘7552} 2 TTAS'
Siln S

I~ |sin + sin® ———= (33)
[ A A p)
Egquation 33 shows that light transmitted by the analyser consists

of a sum of colors (for incident white light) representing each
2, TTAS'
(=)

thin lamella separately. The effect of the factor sin

can be evaluated by considering that the terms enclosed in

1
AS
—Tx_ :

square brackets form the amplitude of I as a function of
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The actual wave lengths present are thus governed for the most

2 ,TC
(-{%§L), but the separate

part by maxima and minima in sin
color intensities are controlled by the terms involving 'Asl
and ASE. When AS' is very great, individual maxima and

rninima in Equation 33 fall very close together so that essen-

"eontinuous" spectrum is visible, with the intensity

tially a
of individual wavelengths governed by the factor involving ASl
and ZXSE. In this case, I given by Equation 33 indicates the
colors present to be functions only of ‘Asl and .Asg.

A second special case is a = TC/L, for which Equation

30 becomes exactly

27

z )+sin°2(4 8, - 48,) sin

A

24 g'

2, TAS
3 ( )

I = sin® (AS,+ AS,)-cos
1 2
Thus the light transmitted by the analyser for this setting

of the crystal plates is a mixture of the additive and sub-

1
tractive colors of the two thin plates, when AS is very great.

Experimental test of the results for two superposed lamellae

The effeéts depicted by Egquations 33 and 34 have been
qualitatively verified in the following manner., Four thin
pieces of muscovite ( AS = 2020, 2640, 1100, and 570 mp as
determined approximately with an Ehringhaus calcite compen-
sator in white light) were cut in rectangular strips with the
principal plane of the indicaftrix parallel to the long di-
mension of the strips. The two thicker mica-sheets separated

by an Iceland spar rhomb ( AS = 3.08 x 105 m ju) were then

arranged with the principal planes of the mica sheets parallel
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and making an angle a of about h5° with the traces (in the
cleavage plane of the rhombohedron) of the vibration direc-
tions in the calcite crystal. This arrangement of plates
was then placed on a glass slide on the microscope stage and
rotated until the calcite crystal was in a positibn of ex-
tinction (optic planes of the mica sheets lying NW-SE). This
is the arrangement for which Equation 34 is valid. A calcite
compensator* was then inserted in the accessory slot of the-
microscope tube and rotated until compensation was achieved.
Two positions of compensation could be observed (under re-
duced illumination and with some difficulty) one correspond-
ing to a retardation of about 4600 m p, and the other at
about 500 m p, which are the values Equation 34 predicts to
be observed. This variance from true additive and subtrac-
tive colors might occur because of variations in thickness
of the mica sheets (maximum observed variation of MOxn}lin
each) or misinterpretation of the positions of compensation,
which for the additive color was particularly difficult.

To observe the optical effects predicted by Equation 33

the thinner mica plates were used. These were arranged with the

*With thick muscovite plates the zeroth order fringe at
compensation divides into two equally spaced zeroth order
fringes, an effect due to dispersion in the muscovite. The
true compensation position was determined for a given direction
of rotation with the compensator by inserting greater and
greater thicknesses of crystal and observing the separation of
the zero positions.
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calcite rhomb as described above, except that the angle o was
made small (around 10°)., It was found through trial and error
that mica sheets with relatively low values of AS yielded the
clearest results in this situation. Using the compensator,
compensation was achieved at values of AS equal exactly to
1100 and 570 m}P’ as predicted by Equation 33,

Extension of the calculations to the case of three
or more lamellae

The exact calculation of the intensity of light trans-
mitted through two lamellae with an intervening plate of cry-
stal in different orientation described above is cumbersome,
and ifs extension to the case of three or more lamellae would
be impractically tedious. An approximation method (suggested
by B. Kamb, oral communication) has therefore been employed
to treat these cases. The purpose of this section is to ex-
tend the conclusions expressed by Equations 33 and 34 to
situations of three or more superposed lamellae. The case of
two lamellae is discussed first to show the validify of the
approximate method.

The physical arrangement of lamellae under the micro-
scope between crossed nicols is the same as before. Starting
with Equation 25, it may be shown that the intensity of light
vibrating parallel to AA' (fig. 38 ) after passing through

the first lamella is given by:

TAS
2 1
( )
A

IA = Sin2 20 sin
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and that parallel to PP' by

ThS,
A

As an approximation it is now assumed that the two beams of

Ip =1 - sin® 2a sinz( ) (36)

"light emerging from the first thin plate, after passing through
the thick slice of host crystal, are non-coherent in the sense
that interference effects in white light are not produced be-
tween them due to their large optical path difference in the
host (see Ditchburn, 1952, p. 118). With this assumption, it

is no longer necessary to consider the phase difference pro-
duced by the thick plate. .The upper lamella is thus illuminated
by two beams of light vibrating in mutually perpendicular planes
whose intensities are given by Equations 28 and 29. The inter-
ference calculation is now repeated for the second lamella
considering each incident beam separately, and replacing fac-
tors 1like DO of Equation 25 by the square root of the appro-
priate Equation 35 or 36 . The resulting intensity of light

vibrating parallel to AA' can thus be shown to be:
o~
2 # ASE)J

TAS, J (37)

1 - sin® 2a sin (—~7x——0

I' = sin” 20 sin 1 - sin2 20 sin

TTAS
2 2
» ()

A S
+ sin® 2a sin® ( 2)[

and parallel tc PP!
2 {Sine( Ths, 2 A%,

1l - sin™ 2a 2
e (:E%%Eg)[ 1 - sin® 20 sin® QlE%%El)}}

) [1 - gin® fa sdn )}
(38)

+ sin
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With some manipulation Equation 37 can be rewritten as:

1 ! AS.+ AS AS.-AS
IA = % s,inlf 20 sin2 el %+ 2) + sin2 s % 2)]
=3 % sin® o [sin2 —~7¥—l + sin® Zzé%—iaJ

Comparing Equation 39 with Equation 30 it can be seen that
the approximétion method yields results in essential agreement
with those of the exact method, the differences being that the
complicated third term of Equation 30 is not present in Equa-
tion 39 (its effects become small for small a, see p.214),
and the factors involving .AS' are absent in Equation 39.
These two equations also differ by a factor of % which appears
in the second term of Equation 30. As has already been dis-
cussed, the factors of‘.AEf in Equation 30 become less impor-
tant with increasing values of Aff. For small a the first
term of Equation 39 is small compared to the second, and the
equation is essentially the same as Equation 33. Setting
@ = T/4, an expression like Equation 34 is obtained.
Calculations for the third, or for any number of
succeeding plates may now be carried through treating each
plate in the manner described above, neglecting the phase
differences produced by the intervening slices of host crys-
tal. For three lamellae the expression for the intensity of

light vibrating parallel to AA' 1s given by
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o TCAS TA S
IA = Sln 2a [ 2 ——————— ( 1 - Sin2 2a, sin2 ———i—ig)
JTAS o TCAS,\
-+ sin2 2 ( 1l - 51n2 20 sin —~———$L J
A A
TTA S5
X [l - sin2 20, sin2 —wjria}

| 7T AS TAS
- {1 - sing 2a [sin2 _—TX_E'(l - sin2 20 sing _;TT—E

AS T AS
+ sine jg%x—g-(l - sin2 2a sin2 —————l)]}

A
s
X sin® 2a sin® iy (40)

A

When a is sufficiently small Equation L0 yields

n TTAS, AS TAS
I, = 80 [sin2 ——jr—; - sing-zgjr—g + gin® zi%x—jl (41)

which predicts that the observed color intensities are functions

of the fetardations of each of the lamellae separately. In the

other extreme, for a = 7C/4, Equation 40 reduces to
W 2 I .2 T
I, —13[81n = (ASl-+A52~+AS3)+-su1 5 (ASl—#ASE-+A83)

§ et —An—_ (88, - As, + A8,) (2)
e T
p

Thus for this case, additive and subtractive colors of all

+ sin ( AS, - AS, - AS3)J
combinations of the lamellae are seen. Comparing Equations

33 and 34 with Equations 41 and 42 suggests that when this
kind of analysis is extended to the case of N thin plates
superposed as descfibed above, the colors from each plate in-
dependently are seen when the angle between the permitted vi-

bration directions of the lamellae and interposed slice is
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small, and a mixture of their additive and subtractive colors
sve vistble when the angle is near 45°,

Applying this result to the problem of determining
thicknesses of twinned material by observation of interfer-
ence colors, it is seen that a median, not a cumulative thick-
ness for the lamellae may be obtained using the procedure out-

lined previously.

Summary of results of previous sections

The so-called nontwinned lamellae parallel to {Oli?}
in calcite and {OE@I} in dolomite show interference colors
and four types of interference fringes. Using the interfer-
ence colors displayed by the lamellae, their optical thick-
nesses may be determined, and these agree well with measure-
ments made by direct means. This shows that the lamellae are
extremely thin twins, usually about.one micron or less in
thickness. A technique is described for obtaining the orien-
tation of shallowly inclined lamellae which makes use of the
fact that the twinned crystal can be placed in a position of
extinction between crossed nicols. The technique is useful
in eliminating the "blind-spot" from e-lamella diagrams pre-
pared from one thin section. Calculations show that when
using the new orientation method and the interference color
technique, only the average and not a cumulative interference

color produced by a series of superposed lamellae may be ob-
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tained. It is suggested on the basis of this work that the

term nontwinned lamellae be replaced by microtwinned lamellae,

which more correctly indicates the true nature of these fea-

tures.



APPENDIX I

CRYSTALLOGRAPHIC NOTATION AND A SUMMARY OF
EXPERTIMENTALLY DETERMINED GLIDING

ELEMENTS IN CALCITE

Two different systems of crystallographic notation
have been used in this thesis. The conventional notation
adopted by Turner et al. (1954, p. 886) is used throughout,
except in the sections discussing dislocations and mechan-
ical twinning where the Miller or rhombohedral system of
indexing is employed. In Turner's notation, letfter symbols
have been adopted for various directions and planes as follow:

For crystal axes: ¢ (vertical) [0001]

895 205 §3 (horizontal)

For crystal planes: ¢ = (0001)
m = {1070}
r = {1071}
e = {oi1Tg}

fo221}

I
I

Individual planes of a form are differentiated by subscripts,

as ry = (1011); r, = (1T01); r, = (01T1). Faces of a differ-

3

ent form that have a common zZone axis are given the same

numbered subscript. Thus r, = (1011); e, = (1012); £, = (2021),

1 1

eand the zone axis 1s a,., All of these relations are depicted
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in the equal area projection shown in Figure 42 . Planar
structures noted in individual calcite grains are identified
by their angular relations To one another and to the c-crys-
tallographic axis. The following angles, measured between
poles of faces are important (Palache, Birman and Frondel,

1951, p. 143)

1 1° -0
& = = = 78=
eAr =43 eyfvdy = Tog
g o}
cAe =205 2 ATy = 52
eA L =63° apA 1y = 90°
1A ey = 450 £1A £y = 79
0o 1 ﬁlo i = o
riAry, =75 ¢ Ac =52 (¢l is c-axis
" ©  of the twin)
a0
e AL, = TO% giNzry = 30

In Appendix III where the problem of the growth of
mechanical twins in calcite is treated in the light of dis-
location theory, it is convenient to index the planes accord-
ing teo rhombohedral axes. The relationship between the
rhombchedral and hexagonal indices for some important planes
1s the following: (111) = (0001); (110) = (0112); (100) =
(1011); (111) = (0221). The direction [110] = [r:f]. 1In

his coordinate system a lattice vector of the true unit
cell is % a [112], where a is the length of the side of the
unit rhombohedron containing two CaCO3 molecules.

A specilal notation has been developed by Handin et al.

(1957) to describe internally rotated lamellae (Turner et al.,



Figure 42, Equal arez projection {upper hemisphere)
showing poles of common faces and crystzl axes in calcite
(after Turner et al., 1954).
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1954). An internally rotated lamella is designated L, and
specific rotated lamellae defined with respect to their
original undeformed orientation in the lattice are designated

e O
Tos 23’ ete. Thus the symbol I, J identifies a lamella m

m k
internally rotated by glide on tie plane nj. The notation
can be extended to describe more complex gliding, but need
not be considered here (see Handin et al., 1957).

Experimental studies on single crystals of calcite
have disclosed a variety of glide mechanisms which may
operate at various temperatures., These results are pre-

sented by both Turner et al. (1954) and Higgs and Handin

(1959), and a summary of their findings is tabulated below.
TABLE 4

Experimentally Determined Glide Relations in Calcite

Glide
Glide plane direction Sense Type Temperature

r {1011} ¥r1:f2]* negative*ﬁ . 200—5000 ¢ (neg),

positive 800° ¢ (neg & pos)
£y {2021} (r,:f,] negative tr. 20°, 600°C
a, {IeTo} ¢ ? tr. ?
¢ (ooo01) ? ? tr. 800°¢
gy {OlT?} [eq:r,]  positive tw. 20°-500° ¢
ry {ioii} [f1:r,]  positive tw. 20° ¢

*;_1:1"2] designates the eége between ry {10_1‘1} and f, {2"2—01} ;

* ¥
The sense of glide in e-twinning in calcite is "positive"
and for f-twinning in dolomite "negative." Similar
definitions hold for translation gliding.
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APPENDIX IT
GLIDE MECHANISMS OBSERVED IN THE DARWIN ROCKS

Though mechanical twinning is the most obvious mode
of deformation in the rocks studied here, other glide mechan-
isms can be deduced from analyslis of nonhomogeneously de-
formed single crystals containing kink bands and warped
lamellae., The microscopic techniques used to do this are
analogous to those developed by Turner et al. (1954L The
method depends on the fact that when a crystal is deformed
by Translation or twin gliding, lamellae present before
deformation are rotated relative to the crystal lattice
during the gliding process. Careful measurement of the
position of such "internally rotated" structures relative
to the c-axis of the crystal can thus be used to deduce
the operative glide mechanisms if the deformation is not too
complicated.

In the highly deformed Darwin rocks, close examina-
tion reveals that twinning lamellae present in many grains
are warped and twisted. The purpose here is to examine how
such nonhomogeneous distortion isaccommodated in the crystals.

There are at least two methods whereby the crystal
lattice could undergo such bending: (1) the crystal could
deform in plastic bending by means of slip similar to the
way in which a thick sheaf of papers is bent (Cottrell, 10953,

p. 29) or (2) the crystal could twin or untwin to vary the
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thickness of twinning lamellae and bring about bending
(Basinski and Christian, 1954). A consequence of (1) is
that pre-existing lamellae should be internally rotated in
parts of the crystal where slip has occurred. For slip on
a single system the axis of external rotation (bending) lies
in the glide plane and normal to the glide direction. The
poles of the gliding plane and the internally rotated
lamellae in all positions of rotation will fall on a great
circle when plotted on either a stereographic or equal area
net. In practice if the bending is due to unequal slip on
two or more glide systems, the method becomes difficult to
apply and the exact mode of deformation often cannot be
deduced. If bending is accomplished by operation of (2)
then it can be shown (Basinski and Christian, 1954, p. 103)
that the effect of side ways steps in the twin boundary is
to bend the host and twin lattices, there being a rotation
of b/t about the normal to the twin direction for each step
in the twin boundary. b is the magnitude of the Burgers
véctor of the twinning dislocation (see appendix III, this
thesis), and t is the total thickness of parent and twin
crystal measured normal to the twin plane. If in two
neighboring sections perpendicular to the twin plane there
are n twins of thicknesses Py and Do then there are 2n
twin boundaries and the total number of twinning steps
between the two sections is (p1 = pg)g/h_(g_is the minimum

step height). The %total rotation between the two sections
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is A6 = §(p1 - Py)/t, where s = b/h the twinning shear
(0.69 for caleite). AQ, Pys Py, and t can then be meas-
ured in the crystal. Ae computed using this equation can
be compared with that measured.

In attempting to determine possible gliding ele-
ments responsible for warping in individual crystals,
simply deformed grains were chosen for examination. Since
the gross deformation the Darwin rocks have undergone is
not very well known, it is not possible quantitatively to
relate the microscopic deformation to the bulk strain. In
addition, an entire grain can, and does participate in the
deformation, so that no undeformed reference areas exist,
as occur in and near the end cups in experimentally deformed
specimens, which may be used to establish absolutely the
glide systems in operation.

The procedure followed here is to plot orientation
data from each part of a warped grain on a stereographic
projection, arbitrarily choosing one portion to be the
"reference" area. The axis of external rotation is then
found relative to the crystal axes in the reference portion.
The results of measurements on 12 gréins are presented in
Tables 5 and 6. Table 5 refers to grains where bending is
thought to be predominantly accomplished by ftranslation

gliding, and Table 6 to those grains where change in thick-
| ness of the twins might account for the deformation. 1In

the tables starred symbols refer to data in the "rotated"
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portion unstarred in the reference portion of each grain.
No statistical significance can be attached to the rela-
tive frequeﬂcy of occurrence of each of these modes of
bending, because the grains were not randomly picked during
traverses of the thin sections.

The data giveh in Tables 5 and 6 indicate that:
(1) in many grains the observed bending may result from
translation gliding on planes observed to operate in labora-
tory experiments, i.e., ;ilOTl} and iibE?I} (appendix I),
and on some that are not commonly observed in experiments,
i.e., positive r {10T1} gliding and c¢ (0001) and m {1010}
gliding. (2) Examples of bending through accommodation to
changes in thickness of twins can be found, but in the
cases investigated the computed angles of bending are rela-
tively much greater than those observed. This is probably
due principally to the crudeness of the measurements, but
some influence of translation gliding in the bending can-
not be discounted. (3) In the rocks used in this study,
anomalously oriented lamellae such as those described by
Borg and Turner (1953) are commonly associated with non-

homogeneously deformed grains.



Description
Two sets of

equally developed

mierotwinned

lamellae

Two sets of lamel-

lae, & visibly

twinned, of vari-

able width; e
microtwinned

2

Three areas of

different orien=-

tation; & is

is mierotwinned

One set of lamel-

lae g, 20%

twinned, constant

width

8 & each
5% twinned

2

2l; Lo g

TABLE 5

Summary of Translation Gliding Relations

in Grains from the Darwin Fold

Bending Data
Bending axis
for e, 2, .
g g*=15

Bending axis
is 2, "
14

2/\2* =

Axis of bend-
ing nearly

coincides with

the g.~-axis
i o
gAgh =40

(o)
E*A -c-**.':zs

Bending about
2, gAg*=10°

Bending axis
is near pole

te o, for ¢

Angles
g e =26
gne,=26
g*A g% =3l
.c'*/\ _3-*2=32

cA gl=25
cA g2=25
E*A §*1=28

E*/\ 2*2=25

cA _e_1=36
cA _e_2=26
g¥A e*, =18
c*A e*2=40

g**/\ §§*=33

c**/\ 25*=27

g/\gl =30
2*/\ 2*2=29

e |

i
o
]

W
g*/\2226

Possible Types of Glide

> active with
bending about 25

fyer:

Translation on any plane
with 24 as zone axis,

i.e., ;2, 22’ 22

_x;,izorg are

2 2
possibly glide planes

Glide on 1., Lqs z,

Glide on either ¢ or Iy



Description
One set of

microtwinned

lamellae g

G 5% twinned
g microtwinned

visible twins or
irregular width

Crystal is 50%

twinned on G
twin bands
vary in width

80 & both
microtwinned

23 cleavage

N
L
W

I

TABLE 5 (CONT.)

Bending Data

Bending axis
is 22° from
gy & has
moved along
the great

S ——
eirele 333%;2
cAe¥* = 20

eng* = 14°
bending axis
for ¢ is ap-
proximately

2y

gAgt = 36°
axis of bend=-
ing exactly
coincides
with pole

to o,

gAgk = 32°
axis of bend-
ing is 9° from
pole tom

Angles

2/\21 =26
* ¥ =
e*Nh e 1 11

Parts I, II

cAe; =22,19
9_/\ 22 =35,31
8/ 8,=48:45
EA .1:3 =48,43
£37\2,=56,46

Possible Types of Glide

Negative I, glide. 25 is
perpendicular tg glide line.
g*l is thus a 1;2 lamella

(Appendix I) =1

Positive (?) I, glide could
account for the observed
bending of the crystal and
for the observed internal
rotation of lamellae

Glide on ¢ (0001) (?)
Internal rotation data in-

© dicate glide in opposite

directions in two parts of

the crystal. Cl follows
——

the great circle 252,85 -

Glide on ¢ (0001) or‘§i2i0}
with glide direction [0001]
angular changes in rotated
sector compatible with nega-

tive translation om I



TABLIE 6

Twin Acconmodation Bending in Crystals

from the Darwin Fold

Desecription ﬁ(m) Pg(m) t(mm)

Amount of twinning
changes from 35% to
20% across bend.
Axis of bending
perpendicular to

glide direction in e

40% twinned on g
contains micro-

twinned lamellae 85+ 0,01 0.005 0.015
-Axis of bending is

perpendicular to

glide direction in g,

20% twinned on &

with 8, as axis of 0.1 0.05 0.15
rotation for ¢

and &

Internal
rotation
data

gAg) =28
g*nej= 28

cAg, =32
cAe, =25
A e¥ = 25



APPENDIX ITT

DISLOCATION MODEL FOR THE GROWTH OF
MECHANICAL TWINS IN CAICITE

Introduction

It is reasonable tc suspect that the plastic
behavior of calcite--twinning, translation gliding, and
work hardening-must be explicable in terms of the theory
of dislocations. This is because one is faced with es-
sentially the same problems as are posed in explaining
the plastic behavior of metals. For one thing, it is
geometrically difficult to imagine a2ll atoms on a par-
ticular slip or twin plane moving simultaneously during
slip or twinning, since thermal fluctuations throughout
the crystal would be likely to cause movement sooner in
one place than another (Cottrell, 1953, p. 7). A second
reason is that there are large discrepancies between
experimentally determined critical shear stresses for
twinning and translation gliding and values for the
theoretical shear strength of perfect crystal determined

using the approximation of Frenkel* (see Cottrell, 1953, p. 9).

*The Frenkel methods states that the critical stress at
which slip takes place in a crystal is {é =_p/? 5 wherejg
is the shear modulus, which for calcite is different for
various planes and directions. P can be computed from the
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The discrepancy for twinning is much greater than for trans-
lation gliding. ILow experimentally observed values for
twinning in metals, particularly cadmium and zine, have been
interpreted as indicating (Cahn, 1954) that most investigators
have measured stresses required to thicken already existing
twins, not the stresses required to initiate twinning lamel-
lae. it has in fact been recently proposed (Bilby and
Entwisle, 1954) that the nucleation of mechanical twins is
controlled‘by large local stresses which are set up in a
crystal around inhomogeneities of various kinds (disloca-
tions, impurities) and that twinning does not obey a criti-
cal resolved shear stress law. Garber (1247) has shown

that stresses required to initiate twins in optically per-
-fect calcite are very high ()) 20 kgm/cmg, see Cahn, 1954,
p. 427), but available experimental data on twinning in
calcite single crystals (see footnote, p. 235) indicate

low values of the critical resolved shear stress for

twinning.

o
5

There 1s some direct evidence that movement

o}
3
Oy

dislocations 1s responsible for tTranslation gliding

single crystal compliance constants, which are usually re-
ferred to the crystallographic axes, by using the formulae

Szz.jlcl =Aiq Agp Aus ﬂ’\wsaasv (Nye, 1957, p. 137). For e-

twinning ‘[; = 0.3 x10° kgm/cm, and T = 20 kgm/bng for

obs
r-gliding T, = 0.45x10° kgm/bmz and T g = 180-1800 kgm/
em®, Experimental data are taken from Turner et al. (1954,

p. 889).
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twinning in calcifte. Keith and Gilman (1959) have produced
arrays of etch pits on glide planes around indentation
points of various kinds of dies. The glide planes depicted
in this manner are the same as those deduced in the more

elaborate experiments of Turner et a2l. (1956). Etch pits

were also produced along microtwinned (?) e-lamellae (their
figure 21).

The present study shows that at least geometrically
the proper arrays of dislocations can be rfound to account
for the twinning movements in calcite which satisfy the
conditions of the so-called "pole mechanism" of Cottrell
and Bilby (1951). The treatment is thus the same as has

been proposed to account for twinning in metals. This ap-

proach is physically more satisfactory than the usual one

merely describes the twin process as one of simple shear
with gliding on successive ionic layers in the proper sense
and amount to develop a twinned lattice from an original or
host lattice (Higgs and Handin, 1959). However, a dis-
location theory of twinning as applied to calcite is still
restricted in its description of the actual process, as

the theory can account only for the shear components of the
twinning movements together with possible movements perpen-
dicular to the twinning plane. The structure of the twin
boundary is not described, and no specific treatment of the

required rotations of 003— groups during twinning is pro-
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vided by the theory. Before turning to a discussion of
the "pole mechanism" and its application to calcite, a
previous thecretical treatment of twinning in calcite is

discussed.

Previous Work on the lMechanism

of Twinning in Calcite

ILifshits and Obriemov (1948) have studied twinning
in calcite using a model which does not explicitly postulate
the existence of dislocations to account for the twinning.
However, dislocations are created by allowing very large
elastic strains, comparable in magnitude to the twinning
shear, to exist near the point of application of load (a
knife edge) without causing fracture. This allows atoms
Just under the loading point to be sheared through large
distances, and so to fall into twinned position one by one
thus creating a twinning dislocation (Cahn, 1953, p. 378).
By these means it has been possible to qualitatively account
for the observations of Garber (1947) on the stages of de-

velopment of twins in calcite (p.177 this thesis).
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The Pole Mechanisms

OQutline of tThe Theory

Cottrell and Bilby (1951) have proposed a mechan-
ism for the production of mechanical twins in metals by
dislocation movements, the essential idea being that a
single dislocation accounts for the twinning deformation
én successive twin planes. The mechanism requires that
‘three dislocations meet at a node in the iattice. Desig-

nate these three by their Burgers vectors Bl’ Eé, and Eé,
Then at the node the relation
Dy + by + by =0 (1)

must be satisfied (Cottrell and Bilby, 1951, p. 57Lh). Let

b., be the dislocation accounting for the twinning movements

3

(in this theory the macroscopic shear of only atom centers

and CO3 groups associated with the twinning). If the twin
plane is specified by its vector normal k, and (b,'k

3

the twinning dislocation is free To continuously move in

)=O:

the twin plane provided neither of the other two disloca-
tion lines lie in the plane and interfere with its motion.
The "pole" mechanism arises from the case where the other
two dislocation lines thread the twin plane (51 and Eé thus
acting as "poles" to the twin plane). Relation (i)

requires that if b3'k = O,(b1

well. There is thus a component of each of the pole

+ by) 'k must equal zero as



islocations

[oN

=

R = (b Kk = - (by-k)K (i1)

perpendicular to the twin plane which allows the line of Bé To
be displaced by h (=l7|) for each revolution about the poles.
If h is equal to the spacing belween successive twin planes,

then b, can sweep out twinned material on successive planes

3
as it climbs up the spiral ramp created by the pole disloca-
tion.

The problem is therefore one of finding the proper
array of dislocations meeting at a node. In particular the
requirements to be satisfied are (Cottrell and Bilby, 1951,
p. 576):

(1) The sweeping dislocation (twinning disloca-
tion) must produce the correct shear dis-
placement to generate the transformed struc-
ture on the sweeping (twin) plane.

(2) The Burgers vector of the pole dislocation
must have a component perpendicular to the
sweeping planes that is equal to their
spacing.

(3) The pole dislocation must be anchored
strongly enough so that it does not move
under the stress causing the sweeping dis-

location to move.
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(4) The sweeping and pole dislocations, together
with perhaps other dislocations must form a
node and 1ln the node the sweeping disloca-
tion must be free to move in the sweeping
plane which is intersected by the polé.

" Bilby (1953) has reached a general conclusion that a gen-

erating node of the kind required above can always be found

in any crystal lattice. In the following, Bilby's result
will be particularized for the case of calecite.

Bilby (1953) shows that a generating node between
two Bravais lattices P and C with vectors P(n) = njﬁ. and

J
G(n) = nJEJ (sum over repeated indices i = 1,2,3) is

-P(n) + T(n) + (T(n)-k) (T + €k) . (1i1)

k and i are mutual orthogonal vectors, &k being perpendicular
to the %twin plane, and i parallel to the direction of the
twin shear. ¥ describes the twin shear and € a contraction

or extension parallel to k. -P is the pole dislocation in

P and C is the pole dislocation in C, with (C-K)(P T + ¢ k)

the twinning dislocation.
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The theory applied to calcite

For calecite M is equal to tan\y' (fig. 44), and € = 0.
In order to investigate the various possibilities for P and C
in calcite, we proceed by specifying the twin dislocation
Burgers vector as (53E)(tanqﬂ i), choosing C in the orig-
inal lattice and then solving Equation iii for P. Accept-
ible possibilities for P are complete or partial disloca-
tions with P-k equal to h and which do not have large mis-
fit energies in the twin lattice. A restrictibn on the
vectors C in the original lattice is possible. The re-
guirement that the deformation in twinning be plane per-
pendicular To the shear plane in twinning indicates that
the Burgers vector C must originally lie in the shear
plane, for otherwise the transformaticn associated with C
will not produce plane disformation of the type required.

For calcite there are three possibilities for C
which have reasonably short Burgers vectors and are com-
plete dislocations in the C lattice. These are 3{110],*
%@[112], and 2a[111]. A fourth lattice vector 2a[100] is
excluded because it lies in the twin plane (110) (i.e. P-k=0).

Proceeding as indicated above, the wvarious vectors obtained

from Equation iii for P are tabulated below.

*
See Appendix I.
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TABLE 7
_ G(n) in rhomb. - P(n) in rhomb.
C(n) —coordinates P(n) —coordinates
= 1 1 = .1 :

hk-3h tany al110] hk+3htany' al110]

N

- - h . i -
B (K+cotpT) 5121 - 3K + (cotp - 3 tany)) 1 nearly 3 a110]

-2h (k+ tanyllz) 2a[111] = 2h [k + (tanZ - 2 tany’ )11 neither a partial
nor a complete
dislocation

In the above.table, The angles,p .,y’, Z are defined in
Figure 44 , It appears that the only suitable choice for C is
a vector of the type a2[l110] for this yields a vector in the
twin lattice which is exactly g[llo].

It can now be established that all conditions on the
node given above are satisfied. The first is satisfied by
hypothesis. The second is accounted for if the dislocations
C and P (2[110]) are of screw character. Condition (3) only
requires that the pole dislocation in each lattice be immobille
under the stresses causing the twin dislocation To move. Dis-
_ locations with Burgers vectors 5[110] are mobile in both the
twin and original lattice (they are associated with transla-
tion gliding on (100), i.e., r) but experiments indicate the
resolved shear stress for thelr motion at least at low temp-
erature is much greater than that needed to cause twinning.
Hence the dislocations P and C are probably immobile under

the stress required to move the sweeping dislocation.
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Condition (4) is satisfied by Bilby's analysis together
with (2), that is, specifying the pole dislocation to be

of the pure screw type.

Generation of the twin dislocations

The theory outlined above and applied to calcite
cannot account for the origin of twinned crystal from per-
fect crystal which otherwise contains only a[ll0] screw
dislocations. The theory‘also cannot describe the "re-
shuffles" which accompany twinning movements such as the
rotaticn of CO3—groups. However it is possible to see how
these twin dislocations may be generated in calcite. Con-
'sider an 3[110] screw dislocation in the original lattice
which passes through a thin lamella of twinned material and
emerges again on the opposite side of the twin. From the
above analysis, a[ll0] becomes a complete dislocation with
Burgers vector alll0] in the twin lattice and the difference
- between these two is precisely the Burgers vector of the
twinning dislocation. Twin dislocations will thus be
generated at the points of emergence of the pole disloca-
tion from the twin. This argument is the same as that in-
voked to account for the origin of twin dislocations in

metals (Cahn, 1954, p. 437).
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Geometry of Twin Dislocations in Calcite

Microtwinned lamellae in calcite and dolomite
generally exhibit some variation in thickness along the
linear projected trace of the lamellae in thin section.
This varlation can easily be observed by noting changes
in interference colors produced by the lamellae (see fig.
43 ), TFor a change in thickness the twin boundary must
be stepped, and such a step is shown in the drawing of
Figure LL | where a dashed. line separates material in twin-
and non-twin orientation. The step shown in the twin
boundary is equal to the spacing between twe successive
(110) planes, equal %to the étep height h of the previous
analysis. Frank and van Der Merwe (see Read, 1953, p. 109)
have termed a step of fThis type in an otﬁerwise coherent
twin-nontwin interface a twinning dislocation. In Figure 4L
the dotted atoms represent positions of transition between
twinned and nontwin states of the lattice. This drawing
must of course be regarded as qualitative only, as for
example the transition disturbance is probably distributed
over a much greater area of twin plane than shown in the
drawing. PFurthermore, it has tacitly been assumed that the
structure of the twin boundary consists of a single twin-
nontwin interface across which atoms and molecules are
situated in twin position with respect to one another,

Another possibility (Cahn, 1954, p. 383) is that there is

&
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Figure 44, Schematic representation of a step in twin
boundary (twinning dislocation)in caleite. Straight dashed
line separates crystal in twin and non-twin orientation., Open
circles are Ca atoms, planar groups of three circles CO,-groups

]
(s0lid circles carbon atoms). At the step the dashed atoms and
molecules are meant to represent approximately the positions of
transition from host to twin orientation. £ =,36 3/4°, 8=
38 140, L= 26 1/bo, W' = 34 3/40, g =6,42 ¥ (Turner et al.,
1954, p. 887) h = 7.64 £, tan 7;' = 2 tanl(&/2). o
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a layer at the twin interface where 003-groups are parallel
to the twinning plane. This structure actually differs

- from the one shown in Figure 44 by only a 26%—O counterclock-
wise rotation of CO3—groups at the twin boundary about an
axis lying in the twin plane and perpendicular to the direc-
tion of Twinning shear. A réshﬁffle of this type may ac-
cdmpany'the twinning movements, but is not described in
terms of the pole mechanism,

The existence of tapered twins (fig. 43 ) can provide
important evidence for the mechanism of twinning discussed
here. A consequence of the Cottrell-Bilby model is that
twins are builf up conically in a way analogous to the
growth spirals on crystal faces, since the portion of the
éweeping dislocation near the pole has a higher angular
velocity and can sweep out twinned material more rapidly
(Cottrell and Bilby, 1957). Incipient mechanical twins can

thus always be expected to be somewhat lens shaped.
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