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ABSTRACT

A Stokes parameter description is developed for synchrotron
radiation from a group of ultrarelativistic electrons with any specified
distribution of positions, energies and directions of motion. This
description is used to study the radiation from a shell of ultrarelativistic
electrons trapped in a dipole field. It is found that the polarization obe
served for the 31 cm radiation from Jupiter could be obtained from such
shells provided a large number of the electrons have relatively flat
helices.

The problem of obtaining high energy, flat-helix electrons in
a planetary magnetic field is considered. In particular, the effects of
large scale magnetic disturbances on trapped particles are studied by
following the particle guiding center motions through a disturbance.

The guiding center motions of relativistic particles are determined by
using relativistically correct drift velocity expressions obtained by
application of an asymptotic approximation method of Bogolyubov and
Zubarev. It has been found that these magnetic disturbances might lead
tc 2 high density of high energy, flat helix electrons; however, many
disturbances are required for appreciable diffusion to occur. Magnetic
activity at Jupiter must be very great if this type of mechanism is to
provide the relatively flat ‘helix electrons required for the decimeter

radiation from Jupiter to be synchrotron radiation.
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I. INTRODUCTION

The synchrotron radiation mechanism has been mentioned several
times since 1958 in connection with decimeter radiation from the planet
Jupiter. In this thesis, we shall cansider‘in more detail the possibility
that this mechanism is responsible for Jupiter's decimeter radiation.

The published data on intensities are summarized in tabular form
in Appendix A, The equivalent blackbody temperatures at 3 cm range
from 140°K to about 200°K and are not too different from the 130°K
infrared (radiometric) value given by Menzel, Coblentz, and Lampland
(1926). At the longer wavelengths, however, the equivalent blackbody
temperatures are seen to be much higher. Thus, at 10 cm, published
temperatures range from around 300°K to over 800°K; at 21 ¢m, from
2000°K to around 3500°K; at 31 cm, around 5500°K; and at 68 cm,
from 10,000°K to 70,000°K. The indication is that the flux density is
roughly constant with wavelength in the decimeter range of wavelengths.
In Figure 1, the flux density corrected for a thermal radiation of 130°K
is plotted as a function of wavelength.

It is rather difficult at this stage of the observations to reach
very definite conclusions about time variations in the intensities. Ap-
parently, much of the scatter in values may be atiributed to noise prob-
lems inherent in the observations. Cn the other hand, it appears that

there might be some time variations in the intensities arising from
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Figure 1, Observed radiation flux from Jupiter, corrected
for a thermal emission of 1300K, (See Table II of Appendix
A.) (The large circles correspond to the entries in Table
Il for which the error is not indicated.)
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other causes. Most noticeable in Figure | are the variations at 10 cm
and 68 crm. More revealing in this connection is the graph of Figure 2
(patterned after a similar plot appearing in Field (1961)) in which the
flux densities corrected for a thermal radiation of 130°K are plotted
as a functiorlz of the time of observation. The low intensities measured
at 10 cm and 68 cm correspond to observations made in October, 1959,
and might suggest that the general level of the intensity changed in a
time of the order of a few months. The three series of observations
at 31 cm made in the middle of 1959, the middle of 1960 and the begin-
ning of 196! --- none were made in October, 1959 --- do not show any
evidence of a long term variation. Some success seems to have been
achieved in correlating short term variations (of the order of hours)
with rotation of the planet, although these results are not conclusive.
A complete picture of the variations must await the results of further
observations.

In addition to the flux measurements, the polarization and the
E-W angular extent of the radiation at 3! cm have been measured with
a variable spacing interferometer by Radhakrishnan and Roberts (1960).
The radiation was found to be strongly linearly polarized, the radiation
with the electric vector parallel to the equatorial plane of the planet
being approximately 1.7 times as intense as in the orthogonal polariza-

1.7-1

tion (giving a percentage polarisation of 100 [ T ] = 26%). The



observations (which were made in April, 1960) were insufficient to
determine a detailed distribution of intensity, but are consistent with
an equatorial ring of mean diameter about three times the diameter of
Jupiter. The polarization of these observations are represented
schematically in Figure 3 (which has been clopied from Davis and Chang
(1961a)). In this figure the lengths of the double-ended arrows are pro-
portional to the intensities observed for the radiation with electric
vectors in the indicated directions.

To explain the relatively flat decimeter spectrum, theoretical
investigations have been made of four possible sources: (1) thermal
emission from a2 deep atmosphere with a thermal gradient [ Field (1959);
Giordmaine (1960)], (2) free-free trancitions in an ionized atmosphere
[Field (1959); Roberts and Stanley (1959)], (3) cyclotron radiation from
nonrelativistic electrons in a Jovian Van Allen belt [Field (1959, 1960,
1961)], and (4) synchrotron radiation from relativistic electrons in a
Jovian Van Allen belt [ Drake and Hvatum (1959); Field (1959, 1960,
1961); Roberts and Stanley (1959); Davis and Chang (196la); Kellogg,
(1961)].

In investigating the thermal emission possibility, both Field
(1959) and Giordmaine (1960) assumed the favorable case of an atmos-
phere with a steep adiabatic temperature gradient in which the only
absorption is due to ammonia. Both concluded that, although thermal

emiesion could account for a sizeable portion of the 3 cm radiation -=--
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in fact, Giordmaine concluded that all of the 3 cm radiation could be
explained in terms of thermal radiation, it could not explain the very
high equivalent disk temperatures at the long wavelengths,

In investigating the free-free transition possibility, both Field
(1959) and Roberts and Stanley (1959) found that if the radio emission
were to originate from an area equal to that of the optical disk, quite a
high value would be required for the integral of the square of the electron

density over the thickness of the radiating region:

/nez ds 2 1029 cm.5 .

Roberts and Stanley explored the possibility that Jupiter could collect
the required atmosphere from hot interplanetary material. They found
that gravitational forces alone are insufficient, but remarked that a
magnetic field might prove adequate.

Field discounted an ionospheric free-free transition source by
combining the 1025 cm"5 figure with the results of observations made
of radiation from Jupiter at wavelengths of around 20 meters. To date,
apparently three types of radio emission have been recorded from
Jupiter. Thermal emission and the relatively-flat-spectrum decimeter
radiation comprise two, while the third type consists of bursts of radi-
ation which last seconds or minutes and which occur only in a narrow
band of frequencies hetween about 15 and 25 Me¢/sec. Right-hand

circular polarization has been reported for a number of bursts [ Franklin



and Burke (1958)]. The bursts seem to originate in a small area, and
the determination over a five year interval of the Jovian period of
rotation from the bursts has indicated a quite constant period [Carr,
Smith, Pepple, and Barrow (1958)]. This constancy has led to the
suggestion that the source is rather close to the planet, possibly in the
ionosphere --- and that the circular polarization is due to the propa-
‘gation of only a single magneto~ionic mode through the ionosphere.
According to Carr (1959), this polarization implies a magnetic field
of about 7 gauss. Field concludes that for a magnetic field of this
magnitude, the ionosphere required by the 15> cm™ figure is too
dense to allow transmission of the 18 Mc/sec bursts. Field notes that
high magnetic lields (600 gauss or more) would transmit the 18 Mc/sec
bursts, but that then the particle flux necessary to maintain the iono-
gphere would not be able to penetrate the fields to do so. (Field
estimates that the radiation flux from the sun is too small by a factor
of 3000 to maintain an ionosphere of such high density at Jupiter.)
A conclusive objection to both the thermal radiation and {ree-free
transition sources is provided by the observations of polarization which
were made after these sources were first proposed.

On the basis of the large amount of energy available in non-
relativistic electrons from the sun, Field, until recently | Field (1961)],

has favored an explanation of the radiation in terms of cyclotron radiation



from nonrelativistic electrons [Field (1959, 1960)]. However, this
explanation requires an exceedingly high magnetic field: a2 polar field
of 18,500 gauss, in order to have the 31 cm radiation originate at three
Jovian radii. An even higher polar field on the order of 1.6 x 1(1‘5 gauss
is required if in addition a relatively flat frequency spectrum of )LUB
is desired [Field (1961)]. Such high fields imply a stiff field pattern
with few fluctuations or irregularities that could produce diffusion or
acceleration of the electrons; on the one i:and. this suggests a very long
time constant for variations in the radiation, and on the other hand, it
is difficult to see how the solar wind could penetrate into such high
field regions either to supply nonrelativistic electrons or to replenish
the energy radiated by the trapped electrons. In his latest article,
Field (1961) has ruled out his cyclotron model on the basis of the time
variation at 10 and 68 cm. The cyclotron model predicts that for a
variable flux, the spectrum is not flat but quite steep (varying as AP
withps 41/3).

The synchrotron radiation mechanism was first proposed by
Drake. He suggested that the emission might emanate from relativistic
particles trapped in the Jovian equivalent of the terrestrial Van Allen
belts. It was estimated that a magnetic field in the radiating region of
5 gauss and a2 total number of particles 106 times greater than in the
terrestrial system would suffice to explain the observations, this

estimate being based on the assumption that the particle energy spectrum
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was similar to the rather steep spectrum observed in the terrestrial
Van Allen belts [Drake and Hvatum (1959), Drake (1961)]. Roberts
and Stanley (19593) observed that if the energy distribution were the

same at all points of the field, a distribution as steep as that (~ E-6

dE)
observed by Vernov et al. (1959) in the earth's Van Allen belt would lead
to a very steep radio spectrum (~ }\5/2) instead of the relatively flat
spectrum observed. They remarked that if the Jupiter radiation is
synchrotron emission, either the energy distribution of the relativistic
electrons is quite different from that in the earth's Van Allen belt, or
the more energetic electrons are trapped in the stronger parts of the
field. Assuming electrons present in a field of 7 gauss with the steep
5-6 dE energy spectrum, they estimated the density of relativistic
electrons required in a radiating region which subtended the same solid
angle as Jupiter's disk and which had a thickness 1.4 times Jupiter's
radius, A density of 10.2 electrons per cm3 with energies greater than
1 Mev was obtained, a density which they estimated to exceed that in
the earth's Van Allen belt by a factor ~ 3 x 104.

Field (1959) discussed the number of relativistic electrons which
could be expected from various sources. He estimated that the total
observed radio emission is 5 x 1016 erge sec-l. Taking the source to
be the size of Jupiter, this would correspond to an outward flux through
a spherical surface of radius R, = 7.18 x 109 cmof ~8x l'i)'-5 ergs

J
c:m“2 sec -1. Field estimated that at the earth, the upper limit on the
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energy flux of electrons in the primary cosmic radiation is only 5 per
cent of this figure; that the energy flux of secondary electrons leaving
the top of the earth's atmosphere is only 4 per cent of this figure; and
that the rate at which relativistic electrons from the sun are supplied
to Jupiter's disk is 105 erg sec-l, only 1/50 of the radio emission rate.
Field concluded that these relativistic electron sources were not ade-
quate. He decided, however, that the energy flux of nonrelativistic
particles from the sun was adequate to account for the emission, but
that a rather high efficiency would have to be postulated for any local
acceleration process which would convert part of this flux to relativistic
energies.

These considerations were made before the large angular extent
of the radiating region was known. With a larger radiating region, the
energy requirements are not éa severe. The discovery of Radhakrishnan
and Roberts that the 31 cm radiation from Jupiter is polarized and that
the source is likely to be several times the diameter of the planet, led
Davis to re-examine the synchrotron radiation pessibility { Davis and
Chang (196la)]. Energy considerations were supplemented by consider-
ations bearing on the containment. time scale and geometric aspects of
the problem. Table I, taken from Davis and Chang (196la), lists some
relevant quantities calculated for uniform fields of 0.1, 1 and 10 gauss.
The entries giving the electron density and the electron energy density

are based cn (1) an energy spectrum n(E)dE = kE “laE between the
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Table I. Quantities to be considered in connection with the energetics,

containment and time variation aspects of the gynchrotron

radiation explanation, Ec( A), the critical energy for the

wavelength A, is the energy for which Schwinger's critical

frequency is equal to c/X.

Magnetic field B = 0.1 gauss 1 gauss 10 gauss
Critical energy Ec for radiation
at wavelengths of:
(15 wav) 3 cm 75 25 7.5
- 30 cm 25 8 2.5
300 cm 8 2.5 0.8
Time for energy to go from
EC(3O cm) to %EC(Z«IO cm) (in years) 30 1 1/30
Gyroradius for EC(BO c¢m) (in km) 10 i/3 1072
No. of electrons per cm3 if total ) -3 -4
volume is IOVJ 2x10 2x10 7 2x10
Electron.fnergy per unit volume y .8 -10
(erg ecm 7) 8x10 2.5x10 8x10
2
2 (erg cm's) 4x10° 0.04 4,0

87
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critical energies® for wavelengths of 3 cm and 300 cm with sharp
cut-offs beyond, (2) a source volume ten times that of Jupiter, IOVJ.
and (3) a figure of 2.8 x 1()16 erg/sec for the total synchrotron radiation
power emitted by Jupiter at wavelengths greater than 3 cm. Magnetic
fields on the order of 1 gauss look attractive: the relativistic electron
energies required are not excessive; the time scales compare favorably
with those of the observed variations, and it is not difficult to fird rea-
sonable combinations of wave velocities and interaction lengths which
give characteristic Fermi acceleration times of this magnitude [Davis
(1958)]; and finally, the fields are not so large that the solar wind cannot
transfer energy to the fields for acceleration processes, but are large
enough to contain the required densities of electrons.

While discussions based on uniform magnetic fields are sufficient
to establish certain orders of tﬁagnitude. an investigation of the polar-
ization and angular extent of the radiation requires some discussion of
the actual field configuration and the distribution of electrons in this
field. Davis has suggested that if Jupiter's field resembles that of a
dipole, a large fraction of the radiating electrons might have to be in
flat helices near the equatorial plane in order to give the observed

polarization. The general idea is that electrons with steep helices would

radiate most efficiently from regions of the field which are too close to

#See page 135.



the planet to give an extended source or for which the inclination of the
magnetic field leads to the wrong polarization, Davis suggests that

the observational result that the outer regions of the source are more
strongly polarized than the central region might be explained if the
eéniv&lent of two shells of electrons are present, the outer shell com-
pﬂsing electrons with very flat helices and the inner shell having a
somewhat larger proportion of its electrons in steeper helices., A

more reasonable distribution is a thick shell with the proportion of steep
helices rising 25 one goes inward.

The ﬁfﬁcﬂﬁes encountered by the thermal radiation, free~free
transition, and cyclotron explanations, and the more favorable circum-
stances provided for the synchrotron source explanation by the recent
observation of a large source region, have made it worthwhile to study
in more detail the dipole model and the related problem of obtaining
relativistic electrons in the desired spatial and energy distributions,
This thesis presents the results of this study.®

Section II discusses the radiation from a shell of relativistic
electrons trapped in a dipole field. Numericzl calculations for this
radiation are summarized in Appendix D. If it is assumed that Jupiter
has a magnetic field resembling that of a dipole with axis near the axis

of rotation, the results of section Il and Appendix D show that a large

*Some of these results appear elsewhere: Chang (1960), Davis and
Chang (196la), Davis and Chang (1961b),
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portion of the electrons must be confined near the equatorial plane in
order for the synchrotron radiation to give the observed polarization.
In section III the problem of obtaining relativistic electrons in this type
of spatial distribution is discussed, Investigation of a model describing
the effects of large scale magnetic fluctuations on trapped electrons
vields some encouraging results. A summary of the results is presented
in section IV,

The results of a more general nature are presented in Appendices
B and C. In Appendix B, the properties of synchrotron radiation are
discussed: A Stokes parameter description is developed for the radiation
from a group of ultrarelativistic particles with arbitrary energy and
angular distributions. This treatment provides the basis for the dis-
cussion of the dipole field model in section II. In Appendix C, the
asymptotic approximation method of Bogolyubov and Zubarev is used to
obtain a systematic derivation of relativistic drift velocities, These
drift velocities play an important role in the diffusion model investigated

in section III,
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II. SYNCHROTRON RADIATION FROM ULTRARELATIVISTIC

ELECTRONS IN A DIPOLE FIELD

The Stokes parameter description of synchrotron radiation
developed in Appendix B is applied here to describe the radiation from
ultrarelativistic electrons trapped in a dipole field.* A complete
definition of the Stokes parameters is given on page 138 of Appendix
B. Briefly, I measures the total intensity, V' the amount of elliptical
polarization, and Q and U the amount and orientation of the plane polar-
ized component. Q and U are defined in terms of the intensity, [,//('q).
passed by a receiver that measures only the plane polarized component
whose electric vector makes a specified angle n with an appropriately
selected reference direction, Then Q = [/(0‘) - D/(?D‘) and
U= 3/(45°) - c,[(135'). If the source has a known plane of symmetry
and this is used as the gero for 7, then U should be zero and the classical
degree of polarizationis p = IQ/II » the plane of polarization being
n=0"4Q>0 andn =90*if Q<O0.

In the frequency range df at f, the Stokes parameters of the
synchrotron radiation from ultrarelativistic electrons in the differential

volume dV are:

*The results of Appendix B are summarized in Table IV on page 145
and in Table V on pages 154-156.
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1(f)dvdf = CBdVdf f p(E.a‘)F‘(-i!T) dE (1)
2 c
R
Q(f)avdf = - CB cos 2XdVdf /'p(E.n‘)Fp(-{—.—) dE (2)
2 ¢
R
U(f)dVdf = - CB sin 2X dVdf j’ p(E,n.)Fp(T%— ) dE (3)
RZ c
vY{f)avai = 0 . (4)

The meanings of the various symbols are given below. R is the distance
from the differential scurce volume dV to the observer; B is the magnetic
field intensity at the source; p{E,a)dVdEda is the number of electrons

in the volume dV with energies in the range dE at E and helix angles in
the range da at a (where an electron's helix angle a is the angle between
the magnetic field B and the electron's velocity); n‘ is the angle between
the magnetic field and a (unit) vector i1 directed toward the observer.
The angle X is the angle measured clockwise by the observer from

the (arbitrary) coplanar vector T‘ involved in the definition of the
Stokes parameters to the projection of the magnetic field onto a plane

at right angles to the line of sight --- i.e., QdV is the part of the in-

tensity IdV with electric vector along the direction T‘ minus the part

of IdV with electric vector along the direction Tr s T‘ x1T .
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The functions F and F_ are given by

P
©
Fa) s 75 | Kg(n) e (5)
* i) 5 N/ G
c c =
f 3
f*
c
and
f f f
Fp(r;) r s K, (%) ) (6)
c c - ¢
3
in which KZ and KS are modified Bessel functions of the second kind,
Y E !
and
® #*
fc 2 LB sina Ez . (7)

The constants C and L. have the values:

-1

Ce3.73x 10"‘"3erg sec gauss
L =21.608x lousec'lgauss-lBev'z

The foregoing equations indicate that the paraméters of the
radiation from a differential volume dV in the dipole field may be
evaluated providing that 1° the magnetic field B, 2° the angle o.‘.
3° the angle X , and 4° the distribution function p(E,u..) are known.
The first three quantities are simply matters of geometry, while the
fourth depends on the way in which the electrons are injected into the
field and on their subsequent motion in the field. The differential

volume dV may be selected arbitrarily, but a proper choice simplifies
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the integration over the volume to give the total intensity; the behavior

of an electron in a2 magnetic field provides a guide in this choice.
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I1A. Geometrz

Consider first the geometry. The coordinate system adopted is
shown in flgure 4. The dipole is taken to lie normal to the line of sight.

The unit vector 1 . has been taken along the dipole. The unit vector 1

is directed toward the observer, and 'i" =7

plane. Polar coordinates (r, 6, ¢) are employed; the length £ shown

x ?r is in the equatorial
is the projection of r onto the T‘ direction. A '"planet' of radius RJ
is shown centered at the origin.

The magnetic field line which runs through the point (¢, 6, ¢)

intersects the equatorial plane (G = %) at the radius oo where

r
Te = 3 " {(8)
sin @

The line intersects the planet at the colatitude §_., where

J
1 [ R,\2
GJ s sin” ( J) . (9
re ;
In terms of B(rz.% ), the field at the radius e in the equatorial plane,

the field at (r, 6, ¢) is

2 1/2 ,
B(r,0) = B(rE.I) (1 + 3 cos™0) ‘ (10)

‘ ain68

¢ having been dropped in the argument because of the symmetry.
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B(rE' 7)) is related to B(RJ. @), the field at the equator of the planet,
2 2
by the equation

Blrg, 1) % B(R ;. 1) (R_J) S (1y)
Z e

*

The angle a is % all along the field lines which lie in the plane
at right angles to the line of sight (¢ = 0, ¢ ®= ), and is -;— for all field
lines where they cross the equatorial plane (6 = %). At a general @

and ¢, it is given by:

® -»> >
coea 3 1i-+B t 3sin 0 cos 6 sin ¢ (12)
B (1+3 conze)l,z
and
-
sina = (143 cosza 9 sin 28 cos 9 sin ¢)1/Z . (13)
(1 + 3 cos 6)1/2

The quantities cos 2X and sin 2X entering into the second and third

Stokes parameters may be found from the relations:

cos 2% ¢ T (TxB) x T % -1 ———‘,_7{(1 B)2(7_B)% e

sin a

i *
B sina

and



P[T (FTxB) xT)] [ +[7T, (TxB) xT]
=2= r - 1
= (15)
l__ B sin a B sin a
: s BT, P
B sin o o
For the dipole field,
iI.B 38inf cosBcos ¢
: 2 172 %)
B (1+ 3 cos 8)
and
LB 3 cesfe .l
: 2 172 ‘ (7)
B (14 3 cos 8)
go that
, 2 2 2 2
can T 1. 931:16::039(l+c;s¢)-(i+3cos€)
sin“a (1+3cos™ 6)
-9 Binzﬂcoszﬂl + couzQ) +{l+3 coszﬂ) (18)
9 59 canB sinz¢ -(1+3 cosze)
and
1 (3 con i = 1)
sin 2X B 6 sin 6 cos 6 cos ¢ 3
sin"a (3 cos™g +1)

6 sin O cos 8 cos ¢ (3 coso - 1)
143 cosas -9 einze coaze sinatt;

(19)
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It is convenient to take the differential volume dV to be that
along a tube of flux, since the trajectory of an electron traversing a
region of the magnetic field with a small gradient encloses a constant
flux. If at(r, 8, ¢) the cross section of a tube of flux is dA(r, 6) and

the differential distance along the tube is ds(r, 8), then

dv(r,8) = dA(r,6)ds(r,6) . (20)

The cross sectional areas at any two points along the tube of flux are
related by the condition that B(r, 8)dA (r,8) is a constant along the tube.
Thus, dA (r,0) can be expressed in terms of dA (rE, % ), the cross

2
sectional area in the eguatorial plane, Expressing the latter as

dA (rE. z)z Te drE dé . (21)
2

we have,

dA (r,0) = B(rE. %) re drE dé

B (r.0)

6
s sin QrEdrEd@

. (22)
(1+ 3 cosae)uz
Since the differential arc length ds is
ds(r,6) = r_ sin 6(1 + 3 cos?0)t 2 ag , (23)

this gives



r
w

dv(r,8) = ré

-
sin’ 0d@dgdr . . (24)
The volume decreases considerably as the polar regions are approached.

An additional geometrical factor which may be taken into account
is the obscuration of the radiating region by the planet. The planet

lies between the observer and the radiating region when both of the

following hold:

sinze(l - sinze sinZ ¢)1/2 < E(_.I

:

E
7< ¢ < 27 . (25)



I1IB. Distribution of Electrons Along a Tube of Flux

Neglecting acattering.’ Liouville's theorem may be applied to
express the distribution density of electrons at any point along a line
of force in terms of the distribution density at the point where the line
of force intersects the equatorial plane. Since we have o(T, E, a)dadEdV
particles in the range indicated and since their directions of motion
occupy a solid angle 27 sinade, then if the distribution has cylindrical
symmetry about a line of force, the associated flux density per unit
solid angle is p/27vseina , where v is the velocity. Assuming that
there is no change in energy, v is constant. Appealing to the well-known
theorem (2 consequence of Liouville's theorem) that the flux per unit
solid angle in any beam of noninteracting charged particles in a static

magnetic field remains constant, we have

D P
Dt [sinu ] ¥ . (26)
where %{ denotes thetotal time derivative. In other words, a particle

sees the same value of p(T, E, a)/sin a in all regions accessible to it.

The adiabatic invariant

. &
sin a

B g const. (27)

defines these accessible regions. Thus, if the distribution density at

the equator is p( (rE, ) E, aE) --- it will be assumed that particle

(]



drifts result in azimuthal symmetry so that ¢ need not be specified ~=--

then, with ro ®r oin"2g ,

p{(r.O).E.a) e P((rE,l).E,uE s sin.l B(rE._g_) sinu))
2 ..
B(r,0)

{1+ 3 cmi?'ﬂ)ll4
]

s sin™{ sin’sina »
sin38 PRI ) e
(1+3cos 0)
(28)
As an example, suppose that
P _ .
N(rE. E)sin ap if o < apS7-a
p(rE.%)‘E.QE H
0 otherwise , (29)

(where, for instance, a_ might be determined by the condition that

L

particles with sin a € 8in a_ would collide with the planet and be ab-

L

sorbed, i.e.,

. 2 6 3, 3
sin o =B(rE._72.'_) = sin 9, = RJ be E .

2. /2 .. . .1/2
E!RJ.BJ) 14 3cos BJ) (Q-SRJIrB)

(30)
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Then
o] if sin2u<B(r,H) sinzuL
B!rz,_{)
p((r. 9),E.,a| = .
E;l
N(r_,E)[ B(r_. @ sinfa otherwise
E E 3
B(r,0) (31)
i. €. »
; 2 2.1/2 . 2
[C if sin"a<(l+ 3 cos 8) sin” a
sin69
p((r,e).l‘:.a} : <
. 3p-1), . p
N( rz ,E) == g ‘:l otherwise
\ s8in 8 £

(1+3 cosze)

(32)
The angular and energy distributions are the same all along the line
of force, except for the cutoffs for the former. The spatial density is
not necessarily constant; in fact, only when p ;1 and ay €0, t.e.,
when the velocity distribution is isotropic, is the spatial density con-
stant along a line of force. If p 21, but ar > 0, the density decreases:

as the polar regions are approcached. Also, if steeper helices are

favored (p > 1), the density decreases towards the poles.
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11C. Radiation from a Thin Shell of Electrons

The only quantity which remains to be specified before the
radiation is determined is the distribution density function at the equator,
p((rE.% ) E, az). This will depend on the particular source assumed
for the radiating electrons, and we shall have to discuss the injection
and acceleration details of the source. Before doing this, however, we
consider in this section the properties of the radiation originating from

a thin shell of electrons. More specifically, we take

n‘E[sin“E R_<r_<R_ ++8R

E E E E
] REBRE and
P((TE»E),E. aE) = sin ap > sin a; (33)
O otherwise

where 6RE << 1., This is a distribution which at the colatitude @ is
R
isotropic Ear helix angles a between the cut offs al(G) and w-al(e) » where

2..1/4
sin ul(ﬂ) s {14 3cos’d) sin a (34)

sin" @ -

Some relatively easily calculable functions are obtained by taking

three special cases* of n(E):

(1) n(E) * C 8(E-E ) (35)

(ii) n(E) 2 C.E ~{y+) (36)

#See page 151 of Appendix B.



C.E E , <E<E : (37)
min max

(1ii) n(E) =

0O otherwise

The first case gives rise to expressions c%z;taining trigonometric funce

tions and the tabulated functions F(x) = xf Ks(x)dx and Fp(x) “ sz(x) .
x 3 3

The second case is expressible entirely in terms of trigonometric func-
tions. The third case gives rise to expressions 1conta.ining {,rigonometric

functions and the tabulated functions Gw(x) . % x.sl_(l (x)- -i—xg[i‘(x) -Fp(x)]

1 3
and G‘:(x) = x3 Kl(x) Case (i) enables one to determine, by superposition,

the radiation prn%uced by any specified energy distribution; cases (ii)
and (iii) are chosen to resemble distributions associated with galactic and
solar cosmic rays and the relativistic electrons responsible for radio
noise in other sources.

The calculation of the Stokes parameters for these distributions
is straightforward. Itis apparent that in addition to the fourth Stokes
parameter V'(f)dV being zero (oq. 4), the parameter obtained by integ-
rating U(f)dV over any region symmetric about ¢ = % is alsoc zero.

This is due to the combined effect of the symmetry of the field and the
presence of the factor sin 2X in the expression for U(f)dV. Conse-~
quently, we calculate only the first and second Stokes parameters. Also,
because of the symmetry, it is necessary to integrate only over one

octant of the shell if the effect of shielding is taken care of properly.
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The expressions for the first two Stokes parameters of the
radiation originating from the region of the field contained between the
planes 4, and £, >4, and between the planes -4 and -1, (where

L=srsinfcos¢sr lin39 cos ¢) are summarized ia Table II for cases

E
(i) = (iii).* In each of the three cases, the expressions are in the form
of a double integral over 6 and ¢ of integrands which are zero when
either condition I or condition II holds. Condition I expresses the fact
that only the radiation originating from the region between the planes
!1 and 12 > ll' and between “1 and -12 is being described. Condition I
accounts for the variation of the cuteoff helix angle f;l(G) with 8, the ¢
dependence arising from the fact that only those electrons with helix

angles very close to a* radiate. Provision for the obscuration of the

radiating region by the planet is obtained by the factor 13 in the integrand

4 2 2 RJ 2
whenever sin” 6(1 - sin 0 sin"¢)< (;— ) . Itis assumed in the expressions
E
that a. has been selected so that no elecirons collide with the planet.

L
The integrands also depend on § and ¢ through the variation with position

of the density distribution function p(E,a*), the volume element 4V,
the orientation of the field --- a8 described by the angles X and a®¥,
the field intensity B, and the dependence of the radiation efficiency on

the latter two.

#The brightness pattern inthe y 8 r cosé 5 r sinzecosﬂ (polar) direc=
tion can bg obtained from the table simply by replacing condition I there
by '"r_sin Bczc:mG*‘ly1 or r_sin @cosf>y_," and replacing the remaining
2's byEy‘s. = .
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TABLE 1I. FIRST AND SECOND STOKES PARAMETERS FOR SYN-
CHROTRON RADIATION FROM A DIPOLE FIELD.

The table lists expressions for the contributions of electronse
in the strips.®

3
< i < "
!1_ rsin 6 cos ¢ _12

(See Fig. 4) for an equatorial distribution function

q(E)BinaE
if R _ <
(e XY Era ) s 2cosa, R GR _ TRt Ry
E'2"7"E and
sin aE>ain QL 3
0 otherwise
6R
where <1,
E
The expressions contain the functions £(8,¢) and u(6,4):
1
£(6,4) = G sin’0 [1+3 cos®6-9 sinzecoszeeinzﬂ 2
( O when either condition I or condition
I1 holds
f
uW(B,¢) = < L when neither condition I nor condition
2
I1 holds and R
ain49(1-sin296inz $) < ( J )Z
\ 1 when neither condition I nor condition
II holds and R
sin49(1-sin263inz¢) >( & )z
r
E
where

conditionI: r sin36cos¢<!1 or r

3
E sin 9cos¢>lz

E

*See the footnote on page 31.
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[N

condition II: sinaﬁ[l +3 cosze-‘) sinacoszesinzﬂ < 8in a
3/4 L

(1+ 3 cos®0)

The constants G, AI' AII and AXII are defined:

3 3
mE . 2CC B(RJ = )}?J

G= .
2 z..3 1 z.2
LE"B(R ;)R] TR“R

4
1/3 T3
cc.L [B(RJ. -2-)] R

n - 1
A

a5 8:(”3 cosa RZR;

4
J

L

CASE (i) n(E) = C,5(E-E )
Y e
z 2 , V2

I(! ) z A jfu(ﬂ ¢)(1+3cos 8+9 sin 29cos0sin ¢) sing

F(£(0,¢))d6de

{6, ¢) [1+3 ::0529-9 sinzecosza(li-cos ?'¢)] 8in 6
[1+3 cosze-‘) sinzecoszesinzﬂuz

O%NH

w

¥

ale,.1,) » f
O

F P( £(6, ¢)dode,
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where

Rl st [ Ky (axs B 0) e ()
3 3

CASE (ii) n(E) = CIE'(’"”
nTm
Zz 2 4 2 2 %Z
[143¢cos 6-9 sin"Bcos Osin ¢]
I(e.2,) = A, ff w(6,$) 31 dod¢
E e (sin 6)

‘-
2 2
+2 [1+43 c0338-9 sinzecosze(li-coezqa)]
Qle,.e) = 5 A f w0, 4) |
o]

10 1I
Y*—; o {143 cos 6—9 sin Bcos Gs!n Q] (aine)’h 4
doceé
CASE (iii) wn(E)={C g3/3 E ., <E<E
n I 1 min max
o] otherwise
R
2 2 2/3
W..2.) A (8, ¢) Ll+3cos?'8—9 sinzecoszesinz¢1
1’72 f f ¢ sin 6
o o W W
[67 (6 (000G (6, (6.4))] dode
E T
2 2
[143 c08%0-9 sin®0cos®0(1+ cos’s)]
(f),2,) = Ay ff u(0.¢) P 2 2 273
[143co8™0-9 sin Ocos Osin ¢] sin @
o o '

(G (6 06D - G (5 (6,4))] a0d¢

where
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1/3

Wi o )
cp(;) £ k. (0

a¥(e) =36 %k (0 - 2 ‘”3[j K g(x)ax « K, ()]
3 3 3 3

(gmin(e,ﬂ and gmax(G.Q) are £(6,¢) evaluated for E s Emax and

E2E .. respectively)
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The Fourier cosine transform of a Stokes parameter is more
closely related to radio interferometric measurements than the para-
meter itself [Brown and Lovell (1957)]. The cosine transform with
respect to the (equatorial) variable £ » r sin 6 cos ¢ of the parameters

listed in Table 1I are obtained simply by multiplying the integrands by

cos kd s cos [kr sin>6 cos ¢] (38)

E

and setting ‘1 s 0, ‘2 *rp. Similarly, the cosine transforms with

respect to the polar dimension y ® r cos 0 are obtained by multiplying

the integrands by

cos ky s cos [k r sin20 cos 6] (39)

E

and setting !1 s 0, lz .rp .

The integrals of Table II have been evaluated on a Boeing IBM

2 1
7090 computer for the ten strips i N WP X {1 20,0, 06.9),
T T 10 10

and for sin a, *® 0.15, 0.4, 0.7. In the calculations, the equatorial

radius of the shell has been set equal to three times the radius of the

planet, r_ = 3R _. The limiting mirror points for sin a

E J L

0.7 are shown in Figure 5, in which are plotted some lines of force in

s 0.15, 0.4 and

the dipole shell r!_; = 3R, as seen from a direction perpendicular to

J
the dipole. In case (i), the parameter G entering into the argument
£(6.4) of the radiation efficiency functions F(£) and Fp(g) has been set

equal to 0.01, 0.1, 1.0 and 10. The parameter G is the value of { for



T ‘p23edTIpPUT aae /[°
pue {° ‘Gy* = "o urs J03J sjurod Joxxtw SuryTWIT oyl ‘orodIp ay3 o031 Jernorpusd
-xod uoT}09aTP ® wWOIF uses se TTays o27odTIp ® UT 92I0F JO SOUTT 2wog °§ a2anITy

3, 3,

h



38

electrons in the equatorial plane; the parameter G depends on the observed
frequency f, the magnetic field where the shell crosses the equatorial
plane and the energy Eo of the source electrons. In case (ii), the
parameter y defining the steepness of the electron energy spectrum

has been set equal to 0, 2 and 4; and in case (iii), the pair (gmm. gmax)
which defines the upper and lower cutoffs of the energy spectrum, has

been determined by setting the corresponding pair (G Gmax) equal

min’

to the ten ordered pairs which can be formed from the numbers 0.01,
0.1, 1.0 and 1000. In addition to the first and second Stokes parameters,
the Fourier cosine transforms corresponding to equations 38 and 39 have
also been evaluated for these examples, with the transform variable k
equal to 0, 1/3, 2/3, 1, 3/2 and 2.

The computer results are displayed in graphical form in Fig-
ures 12 through 20 in Appendix D, Figures 12-14 apply to case (i).
Figure 12 displays the first and second Stokes parameters and the per-

centage polarization; more specifically, the figure consists of histo-

grams of ”AI' QIAI and p s '19 vs. -‘; = sin> 6 cos ¢ (where the sym-
E
bols have the meanings assigned in Tablell). In Figure 13 are plotted

[¥ <] o0
the normalized cosine transforms b[‘ 'j‘i cos kf df and O;' Qcos kide,
A A
o I I

]
Z -

and the degree of polarization based on the transforms P *
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Figure 14 presents the transform results with respect to the polar

direction; {.e., in thie figure are plotted the cosine transforme

@
©
2
tJy j 5 cos kydy and Q= j Q cos kydy and the degree of
o AI y 3
polarization Py = Qy/dy , wherey = rcos @ s re

15-17 and Figures 18-20 are the analogous plots for cases (ii) and (iii),

i

sinzﬁcol 6. Figures

respectively.

For the details of the way in which the intensity and polarization
behave as a result of the variation over the source region of the field
intensity and direction and the electron angular and spatial distribution,
reference may be made to the graphical results. The results seem to
confirm Davis' suggestion that the proper polarization is achieved only
when a large fraction of the electrons have relatively flat helices. It
seems necessary to hypothesize a second, inner group of electrons with
relatively steep helices in order to explain the decrease in the degree
of polarization with increasing interferometer spacing.* The graphs
show that with a single shell of relatively flat helix electrons, tl;se
degree of polarization based on the cosine transforms increases with
increasing transform variable k over an appreciable range of k, as the
transform ''selects' those portions of the radiating shell where field
alignment, radiation efficiency, electron density and radiating angle

combine to give higher degrees of polarization.

#See Figure 3.
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The polarization results, although depending strongly on the
helix angle distribution of the electrons are seen not to depend very much
on the frequency observed or on the energy of the electrons, as long as
the electron energies are not so low as to give radiation at the observing
frequency from inefficient radiating conditions corresponding, for in-
stance, to G 2 10, Thus, the polarization does not depend very strongly
on the value of the spectral index or on the value of the energy cutoffs,
as long as the radiation at the frequency of interest originates from
particles some of which radiate relatively efficiently at that frequency.
It seems possible to achieve the observed polarization and intensity
behavior by means of synchrotron radiation from ultrarelativistic elec-
trons in a dipole field provided that there are present enough electrons

with relatively flat helices.
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III. SOURCE OF HIGH ENERGY ELECTRONS FCR JUPITER

In this section, some of the problems involved in obtaining
high energy, relatively flat-helix electrons in a region three Jovian radii
from the éenter of Jupiter are discussed. The discussion concerns
mainly the diffusion and acceleration of trapped electrons due to large-
scale magnetic fluctuations: this is the subject of section IIIB., By way
of introduction, section IIIA briefly mentions in connection with Jupiter
some results that investigators of cosmic rays and of the earth's Van Allen

belt have obtained on energy loss, scattering and neutron albedo.

II1A., General Considerations

1, Energy loss

To estimate the electron energy loss in the region, reference
is made to the work of Ginzburg (1959) on the origin of cosmic radiation.
Gingburg gives expressions for the energy loss of relativistic electrons
due to ionization, bremsstrahlung, Compton processes and synchrotron
radiation. The ionization loss of a relativistic electron of energy E in

atomic hydrogen is

%-? = -7.62:(10-9 n (20.1+ 34n 2‘,) ev sec-l, (40)
m C
o
where n iz the number density of hydrogen in cm 7, m is the electron

rest mass and ¢ is the speed of light; in ionized hydrogen, the
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ionization loss is

-Inn+ 74.6) ev seec-l . (41)

%E : -7.62x 10-911 (4n

m ¢
o
An approximate result for the energy loss due to bremsstrahlung in

hydrogen is given by

%1—5 = .8 x 10.16 RE o see ) (42)

where E is5 in ev; and the loss due to the inverse Compton effect is
: 1

2 5 ) evsec , (43)
moc

dE 14

dt

= -1.9x10" " p(

where p is the average density of radiation energy in ev cm-a. Finally,

the energy loss due to synchrotron radiation is

2
dE 0.98 x 10-3 Bf ( = ) ev sec-l . (44)
dt 7
m c
o
where By , measured in gauss, is the component of the magnetic field

perpendicular to the direction of moticn.

To obtain an order of magﬁitude estimate of the energy loss in
the Jovian Van Allen belt, assume the region at three Jovian radii to
contain a hydrogen plasma with density equal to the l cm-3 of the inter=-

) -
stellar medium in the galactic disk®; take p 10 ev cm 3, corresponding

*The assumption of 1 proton iy may be bad. However, the study of

the background plasma to be expected will have to be deferred until an-
other time._ In passing, we remark that even an increase in density by a
factor of 107 gives a lifetime longer than that due to synchrotron radiation.
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to ~T.d x ].017 watts of solar radiation falling on Jupiter's disk; and
set By equal tol gauss. An electron with E =10 rnoc2 = 5.1x 107 ev
then loses 4 x 10.9 ev sec-l due to bremsstrahlung, 5.86 x 10-7 ev sec‘l
due to ionization, 1.9 x 10'6 ev sec:-1 due to the inverse Compton effect
and 10'1 ev sec = due to synchrotron radiation. The loss due to synchro-
tron radiation dominates the other three by several orders of magnitude,
and this is true also at higher energies. Synchrotron radiation causes
>

an electron with E = 10 moc"‘ in a one gauss field to lose half of its

energy in a time of the order of a year.

2. Scattering

Several authors have pointed out in connection with the earth's
Van Allen belt that particle lifetime in a dipole field is determined both
by the energy loss in the trapping region itself and by the scattering of
the particles into trajectories which carry them down into the denser
atmosphere. Thus, Christophilos (1959), Welch and Whitaker (1959),
W entworth, MacDonald and Singer (1959), and Kellogg (1360) have
estimated the lifetime determined by coulomb scattering. From Went-
worth et al., we obtain an approximate expression for this lifetime for

relativistic electrons:



E (2 + E )3/2
me me »tr
1
T 22,245 x 10]'3 2 2 (1- 10Zk ) sec, (45)
nE(l + 3 )n D
m ¢

where ne is the background electron density, and k' is a constant which
depends on the line of force and is of the order of 100 for a line of force

which intersects the equatorial plane at r_ = 3R

E 3 The quantity £nD is

the slowly varying function of the energy, temperature and density which
enters into the coulomb scattering formulas¥ and will be taken to be of
the order of 30. For ng ® 1 Cm.s and E/mo&:2 = 10, equation 45 gives
T 1012 sec.

To estimate the scattering due to the inverse Compton effect,
we refer to Heitler (1954) and Feenberg and Primakoff (1948). Ina
collision, a high energy electron is scattered through an average angle

m c? 1/2
of the order ( g ) (with the photon's energy not changing appreci=

ably). The cross-section for Compton scattering (in the rest frame of
the electron) is given by the Klein-Nishina formula, which for low and
high energies is approximately

. 8 2 " 2
o0, 3377, hv' <<m ¢ (46)

and

*3ee, for instance, Spitzer (1956).



45

m ¢
2 o Zhv' 1 i 2
-_— >>
oy " A in 3 * 5 hv m ¢ (47)

m c

o

ez -13
respectively, where r0 ® 3 s 2.8x10 cm is the classical
m ¢

radius of the electron and hv' is the energy of the photon in the rest
frame of the electron. The energy hv of a photon in a system in which
the electron has a speed v and in which the electron and photon are
moving at an angle 0 with respect to one another, is related to the

energy hv' by

(1--};:038)
1]
hy vz 7T hv'. (48)
G- =
¢

The energy density of sunlight at Jupiter is of the order of 106 ev cm,

. 5 - .
i,e.,8x10" 1.35 ev photons cm 34_ Thus,intherestframe of a high energy
electron moving with speed v in the vicinity of Jupiter, there exists

a practically unidirectional stream of photons with a density of

2 -1/2

8 x 105 (1- -‘-r-‘-,‘-) cm - and with energies on the order of

ch -1/2 vz ~1/2
1.35(1 - - ) ev. Consider an electron for which (1- —2-) = 10.

c c
In the electron rest frame, the electron encounters on the order of

5 vz -1/2 7
8x107(1 - -—2-) co, = 10 ° photons per unit time. In Jupiter's
c

frame of reference, the electron therefore encounters on the order of

8 x 105 co, = 10.8 photons per second, and thus in one second is

scattered through a mean square angle of the order of
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2
m; = 10.9. Appreciable scattering due to the inverse

(8 x 105 ch)
Compton effect thus requires on the order of 109 seconds.
To estimate the scattering due to bremsstrahlung, we refer

again to Heitler (1953). A high energy electron is scattered through

2
mc

T In a hydrogen plasma of

an average angle of the order of

density n, the electron isztherefore scattered through a mean square
m ¢~ 2

angle of order ncch( --%-—-) in unit time, where °g is an effective

scattering cross section for bremsstrahlung.®* We shall determine

’g by setting it equal to rbcz. where bc is the impact garameter

m ¢
for which Coulomb scattering gives a deflection of ; s Lo8.,
2
m ¢ 2 2
o 2e 2e = =13
= ¥ = 3 bcl et B 5,6 x10 " cm (49)
c m ¢
o
and
oy * :rbcz s 4 % 29.85 x107%% em?. (50)

Then, taking n =1 and £ 10, we find that an electron is scattered

m ¢
o
in one second through a mean square angle of the order of

(1)(3 x 1010)(10'2)(9. 85 x 10.25) ~ 10-18 . Appreciable scattering

#The total cross section for bremsstrahlung diverges for photons with
low wave number, but just as it is possible to define an effective

cross section for energy loss due to bremsstrahlung, since a low wave
number photon contributes little energy, we employ the same reason to
define a finite effective cross section for scattering.
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due to bresmstrahlung thus requires on the order of 1018 seconds.,

The change in the electron's helix angle due to synchrotron
radiation is easy to estimate by noting that the velocity component along
the magnetic field is unchanged due to the radiation. Thus, from equa-

44 for the rate of energy loss, we obtain

2 272
cos a E E -m c
2 2 1 ()
i [} imn (51)
cos a E 2 2
1 1 E_-mc
2 o

where a, and a_ are the helix angles when the energies are E. and E

L]
1 2 El s 1 2
respectively. For - £ 10, and s 5, we have
m C m C
© o
cos a, 100-1 1/2
—— s
co8 o 10 [ = 3501 —_] 1.015 . Not much change in the helix angle

1l
occurs in the time required for an electron with E = 10 mocz to lose

half of its energy (which in a 1 gauss field is of the order 107 sec.).

This is understandable since at these high energies the energy radiated

causes mainly a change in the relativistic mass rather than a change

in the velocity. It appears, then, that the change in the helix angle due

to ionization, the inverse Compton effect, bremsstrahlung, and syn=-

chrotron radiation is not appreciable in the time required for the

energy to change by an appreciable amount due to synchrotron radiation.
In addition to the change in the helix angle due to the fore-

going processes, the helix angle can also change due to interactions

with electromagnetic waves. It is convenient in studying these
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interactions to discuss individually waves with time scales shorter
than or on the order of the Larmor period of the electron, waves with
time scales long compared to the Larmor period but shorter than or on
the order of the mirror period ~-- where the mirror period is the time
that it takes an electron to drift back and forth between its mirror
points, and finally waves with time scales long compared to the mirror
period but shorter than or on the order of the azimuthal drift period ===
where the azimuthal drift period is the time that it takes an electron
to drift once around the planet. In the absence of all three types of
waves, the actions associated with the Larmor, mirror and asimuthal
drift periods are all adiabatic invariants (Northrup and Teller (1959)).
In the presence of waves of the first type, none of the actions are in-
variant; for waves of the second type, only the acticn associated with
the Larmor period (i.e., the magnetic moment) is an adiabatic in-
variant; and for waves of the third type, both the Larmor and mirror
actions are adiabatically invariant.

To get some idea of the time scales involved, the Larmor
period Ty mirror period Tm and azimuthal drift period Ta are
given by the expressions [Hamlin, Karplus, Vik and Watson (1961)]:

27E

TL eBc '

(52)
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/2

T s f_?_ sin 9(1+3co¢28)”2 L) (53)
m v 2 PG e Py
[lesin a_ (143 cos 6 ]
Gt(as) E
sin @
aand
7/2
j sin (143 cc:m?'ﬂ)”3 dé
0(a_) [L-sinzn (143 cosaeluz /2
eB(r lr-)1-?'@. ¥ - b, (54)
T e E'2"'E sin @
. (3/2mEva e dn38(1+c0528) [l-lz-sinza 143 cos 9 ,z]de.’
J sin @
6 (a_) 2,.1/2_1/2
ok (I'I-.%1:ouzt9)3/2[l-sinzuE Zees? ]
sin @
where
sin 8
5 . lin?' ag (585)
l+3 cos Ot

v is the speed of the particle, and the other symbols have the same
meaning as in the discussion of the geometry of the dipole field in
Section II. Hamlin, Karplus, Vik and Watson (1961) show by numerical

integration of equations 53 and 54 that good approximations to 'I'm and

T are
a
TE
‘l‘m s _ [5.20 - 2. 24 &in aE] (56)
2
eB(r_, 1) r.. ¢

2 (3/2mEv® l 33570.15an ag e
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For E =10 mocz. r
6

g ¥ 3R;and B(rE. %) = ] gauss, these equations

give T 1077, Tm::-. 1l sec and Taz.- 5:10!’ sec,

La:
Wentzel (1961a, 1961b) and Dragt (1961) have discussed, in
connection with the earth, the effect on trapped particles of hydromage
netic waves with time: scales on the order of the Larmor periods.
Both find that appreciable scattering of a particle occurs only for the
resonance condition when the particle sees a hydromagnetic wave with
frequency equal to its Larmor frequency. This does not require that
the frequency of the hydromagnetic wave be equal to the Larmor fre-

quency, but rather that the ''Doppler shifted"’ wave frequency be the

same as the Larmor frequency. Dragt gives for the lifetime:

2
B
.21 %
T3 =33 3% (s8)
= 9 ma

where B  is the original (average) magnetic field, B o 18 the amplitude

h
of the hydromagnetic wave, and n is the number of half wave lengthse
satisfying the resonance condition which an electron sees in one mirror

period. From Wentzel we obtain a lifetime:

T = —Zl'; g Tb : (59)

Dragt remarks that the spectrum of the hydromagnetic waves is likely

to contain a cutoff at the ion cyclotron frequency due to the inability of
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hydromagnetic waves to propagate across magnetic field lines if the
hydromagnetic wave frequencies exceed the ion cyclotron frequency.
Thus, for an electron to see 2 wave with frequency equal to its Larmor
frequency, it must either be in 2 rather steep helix or be quite relz-
tivistic (E/mocz s (1£40) ). Unless either of these two conditions is
satisfied, waves of this type will not cause appreciable scattering of
electrons,. ®

Parker (1961) has investigated the effect of waves with time
scales long compared to the Larmor period but on the order of the

mirror period. He finds for a lifetime:

B 2
) T,
B~ b

T >12(

(60)

B
B
o
with time scales close to the mirror period. For a rough estimate of

ma
B

o
magnetic field balances the pressure of the wind., For a wind at Jupiter

10

B -1
consisting of 35 atoms cm £ travelling at a speed of 500 km sec ,

this occurs for a magnetic field B such that

where is the relative amplitude of hydromagnetic disturbances

» @assume first that the sclar wind stops where the pressure of the

2
Bs_zr . (%9-5-) (2 x 10'24) (5 x 107)2 (61)

*Dessler (1961) has suggested that the resonance condition can be achieved
for electrons at Jupiter by interaction with whistlers (Helliwell & Bell
(1960)). The details of this interaction have not yet Leen investigated.
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i.e., for B 22 x 10™* gauss. (This would mean that the wind stops at
fifty Jovian radii from Jupiter if the field is that of 2 dipole and B x 1

gauss at three radii.) Next assume that in the region where the wind
B

hm

B
o

energy transported inward toward the planet by hydromagnetic waves

is stopped, 2] (Parker (1958)). Then, requiring that the

be constant, we have that

BZ
=2 «:?B% 38’3 (62)
2 E o o
B
hm
Thus, when B_ =1 gauss, (== ) = Q0 ). For T =1 sec,
o ma m

this type of scattering leads to lifetimes on the order of 1010 sec.
Finally, Parker (1960) has suggested that hydromagﬁeﬁc
disturbances with time scales longer than the mirror period but shorter
than the azimuthal drift period are effective both in determining the
radial distribution of particles and also in obtaining particles with
relatively flat helices. Because of this last feature, we have inves-
tigated this type of disturbance in some detail, and this is the subject
of Section IIIB. The results we obtain differ from the results obtained

by Parker.

3. Electrons from Neutron Albedo
It might be thought that since Jupiter has such a large surface

area the production of neutrons by the stoppage of cosmic rays in the
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atmosphere would lead to an ample number of electrons through the
decay

n _.pte + v,
a process which yields electrons with an energy distribution peaked
around 300 kev and with maximum energies of 780 kev. On the other
hand, since the decay has a half-life of only 12 minutes and upward
moving neutrons are mostly slow, we are concerned essentially only
with those neutrons that decay near where the line of force that reaches

the equator at 3R, enters the top of the atmosphere, i.e., 55° latitude

J
unless Jupiter has a very high atmosphere. The decay electrons would
then be in steep helices at the equator. Moreover, the fact that light
elements (H,He) form the bulk of Jupiter's atmosphere is unfavorable
for the albedo source explanation: the neutrons due to spallation from
excited heavy nuclei are lacking here, while for light nuclei, the reace
tion products could be strongly peaked in the direction of travel of the
incoming high energy particles and would be directed mainly toward
the planet rather than out toward the radiation belt.

Another factor which acts against the albedo source explanation
is that the large dipole moment which Jupiter must have to give the
magnetic fields appropriate for the radiation, serves to keep cosmic

rays from penetrating to the atmosphere. In fact, it seems that this

one fact is enough to nullify the advantage of the large surface area.
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Thus, in the Stormer cone approximation, at the latitude A on the
surface of Jupiter, cosmic rays with momentum of magnitude p can
arrive only from directions lying within a2 cone whose axis lies in the
east-west direction 2nd whose half angle 7-X may be found from the

equation

J cos4l

, (63)
2
J [[1- cosX cos3.\]1/z+ 1]

where MJ is Jupiter's dipole moment [ Hooper and Scharff(1958)]. The
number of cosmic rays incident per unit time on the surface between

latitudes A and X + d\ is

7-X(p)

Prax
F?xd}" = ZWRJZCOSXdA f f 2wcos xdx I(p)dp , (64)
p1.'1'1in

o

assuming an isotropic distribution of cosmic rays at infinity with an
intensity of I(p)dp particles with p in the range (p, ptdp) per steradian

per unit time., Taking

I(p) = (65)
) if p< pm‘n

and
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<
l:‘min l;c

(where P, is the value of p for which equation 64 gives X = T), we

have
RJZ\H'Z
F)_dl 2 S(A) ar (66)
MY
J
with
o . 2 2 1/2
p «(y+1) 1 cos A
S(A) = 2#C]cosn f * 1-——3[1-(1- 3 ) ] dx.
chp cos A x
J' ¢
eMJ (67)
From the definition of P’ it is seen that S(A) does not depend on RJ or
MJ.

For orders of magnitude, compare F_d\ for Jupiter to F_dA

A A
for earth, taking the field three Jovian radii from the center of Jupiter

to be the same as that at the surface of the earth:

S (68)

< )

(for A at which Ponin < Po )

Equation 68 shows that when the magnetic cutoff energy is greater than
the minimum cosmic ray energy, the number of cosmic rays arriving

in a given belt of latitudes is greater by a factor of 200 on the earth



m
o

than on Jupiter. Taking the minimum cosmic ray kinetic energy to be
-]?2— Bev, equation 63 shows that Poitn < P, at latitude 55° on both earth
and Jupiter so that equation 68 applies. Field (1959) estimated that if
the particle energy flux of secondary electrons leaving the top of
Jupiter's atmosphere were the same as that leaving the top of the
earth's atmosphere, this would equal only four percent of Jupiter's
decimeter radiation flux.® Combining this estimate with the 1/200
factor strongly suggests that neutron albedo is an inadequate source

of electrons.

*See page 11.
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IIIB. Effect of Large-Scale Magnetic Fluctuations on Trapped

Electrons®*

/A variety of mechanisms have been explored recently in efforts
to explain the origin and loss of the electrons in the earth's Van Allen
zone. Presumably the same type of mechanisms might operate in a
magnetic field about Jupiter. Parker (1960) has pointed out one mech-
anism that is likely to operate. Any moderately rapid deviation from
cylindrical symmetry in the magnetic field perturbation will lead to a
violation of the third adiabatic invariant and radial diffusion of the

.charged particles that are normally confined to a particular shell in
the magnetic field. If the features of the magnetic perturbation are
such that the first and second adiabatic invariants are not violated,
those particles which diffuse inward both gain energy and attain flatter
helices., The last two features have led us to a closer study of this
mechanism. It appears that although the basic plan of Parker's
analysis is correct his diffusion equation is not adequate and his ex-
pression for the average radial motion of a particle in a single mag-
netic storm is not carried to high enough order to give the coefficients
in the Fokker-FPlanck equation that must be used. This section is an

attempt to remedy these deficiencies, The new diffusion equation is

#This section is based closely on Davis and Chang (1961b).
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then solved and it is found that while many of the characteristics of
Parker's solution are preserved, the number of particles to be expected
at small radii is relatively very much greater.

The model used for a magnetic storm, both by Parker and
here, is the original model of Chapman and Ferraro (1931) for the initial
phase. In this, the solar plasma is represented by a plane, perfectly
conducting front pressing into the magnetic field. Even if a different
model of 2 storm were used, essentially the same results should be
obtained provided the perturbation were not axially symmetric. In
both analyses the particles are assumed to have mirror points near the
magnetic equatorial plane. Presumably the effects for particles in
steep helices will have the same general character, but a reasonably
complete analysis of this case would be much more difficult, If r
denotes the distance from the center of the planet of a particle and L
that of the plane plasma front, both analyses assume that r/L is small
and they will break down near the outer boundary of the magnetic field.
However, in this region diffusion to the outer boundary and loss of
particles is very rapid and for our purposes an accurate treatment in
this region should not be necessary. The particle energies are assumed
to be low enough so that the radii of curvature in the magnetic field are
small compared to r and the motion is treated by following the guiding

center. The energies must be high enough so that the particles will
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drift a substantial fraction of the distance around the planet while the

initial phase of 2 magnetic storm is dying out.*

1. Particle Motion

In terms of the guiding center motion, a storm causes a particle
to change its radial coordinate because the drifts resulting from the
induced electric fields and the geometry of the distorted magnetic field
are not in the same dirsction as the steady state drifts. The essential
features of the diffusion mechanism may be understood from a treat-
ment of the motion of those particles that remain in the planet's magnetic
equatorial plane where the field is B(r)?z. Thus, we have a two-
dimensional diffusion problem in which the only drift velocities present
are normal to this field and are due to gradients in the magnetic field
and the presence of electric fields. A particle of mass m, charge e
and speed w will experience a drift velocity  *#*

- m wz o
vp * - (iz x {UB) (69)

ZeB -

(where c is the velocity of light) due to the presence of a gradient in the

magnetic field intensity, and will have a drift velocity

- -
e Ex iz
Ve = c T :(70)

#See page 49.
*%See Appendix C.
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whenever an electric field E is present. Corresponding to the geo-
magnetic situation in wlich the earth's magnetic field experiences only
an occasional large scale disturbance, let us consider an equilibrium
field configuration _1.3-0 z Bo(r) Tz which is subject to an occasional
distortion. In the equilibrium configuration and during any later static
periods, the particles drift along countours of constant magnetic field
intensity. Thus, the coordinate that describes the shell on which the
particle is drifting is the magnetic field strength at the guiding center,
and this becomes the most useful coordinate with which te describe the
location of the particle. During the disturbance of the magnetic field,
which is assumed not te change the symmetry about the equatorial
plane, the drift is compounded of a motion along the distorted contour
of constant B passing through the particle and a drift due to the induced
electric fields. The latter carries the guiding center to a new shell
where B has a different value. Corresponding to the geomagnetic case
in which a magnetic storm consists of 2 sudden commencement phase
followed by 2 gradual return to norﬁ:al. let us consider disturbances
to consist of two phases. The initial phase, although long compared to
the gyroperiod, is of such short time scale that the particle drift
velocities are essentially all due to the induced electric fields, i.e.,
we have only an essentially instantaneous displacement of the plasma
and the trapped particle guiding centers. In the second phase, the

magnetic field returns to the equilibrium configuration so gradually that
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-
[_V'B| >>| VEI . We must now find the change in B experienced by a
guiding center during these processes.

The change in magnetic field AB when the guiding center

-

undergoes a small displacement FD = (vrB + '\TE) &t in the time interval

&t, is given by

B-&B+'{D-VB-GB+[‘3’E-VB (71)

where 6B denotes the change in B at a fixed point, ?E B ?Eét. and

-

¥B

—pe
v

5tV B = 0 since B
—

i cB
equation V x Ez-1 e and the hydromagnetic condition for a perfsct

is perpendicular to V B. From the Maxwell

c
conductor, E+v _xBles 0, it follows that

E
8B -
6B 2 == 6t 2.V -(BpE) ; (72)

Equations 71 and 72 may be combined toc give

L:.p(yT) (73)
or
ABE -B(V* b, ). (74)

In equation 74, and in the following, the approximation sign indicates
that the displacement § is so small that the variation of ¥ and B during
the displacement is being neglected. The suffix |l in equation 74 indicates

that this equation gives the change in magnetic field experienced by a
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particle during the initlal phase of the disturbzance, being the dis-

—-
PE1
placement of the plasma in the first phase at the position of the particle.
After this sudden change is over, each particle then drifts without chang-
ing its own B as long as the field is static, but different particles drift
on different contours.

The duration, T, of the second phase of the storm is such that
’_ Er'ﬁ] >>'\'r'£':| . This means that a2 particle mainly drifts arcund a mov=-
ing contour of constant magnetic field during the second phase, but it
also has a slower drift, governed at each instant by equation 73, to
new ccntours. Since this drift varies with position around the contour,
a suitably weighted average must be used., Assume an adiabatic change;
i.e., one in which there {s no correlation between the location on the
contour of the guiding center and the rate of distortion. The amount of
time dt spent traveling a differential arc ds along a distorted contour

4
15

e
ars 32 o ‘.2.59_.%5___ , (75)
b mecw IV Bl

The time to make one revolution is fds/va. and the fraction of the
time, either in one revolution or the entire interval T, spent in a par=-

ticular ds is

(76)
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-
‘\!

ET

for small distortions of the equilibriurm configuraiion, 'E'EZ(R) =
evaluated at any position given by s, the distance along the contour,
would be the displacement experienced in the second phase by a particle
that remained at 5 during the entire interval T and did not move along
the contour. Thus, taking the fraction 76 of the change in B,

-B V- B—Ez(s), associated with :3‘;:2 by 74, and integrating over the

coniour, the change in B at the guiding center during the second phase

iz found to be

"1 i § -}. >
! . B . &
A B §VB BV pEst . IVsl™ ¥ pEqu : (77)

S S fivel

This is valid for adiabatic changes and has been checked in 2 simple

example by comparison with the result obtained from the third adiabatic
invariant. The total net change in B experienced by a particlelduring

a storm is

AB=AB+ AB L (78)

thus, a particle that initially drifted around an equilibrium contour Bo
will, after the storm, drift around a contour BO + AB.

The total change in B is seen to depend only on BQ and the
position on the Bo contour of the particle during the first, non-adiabatic
phase. This position may be indicated by an arc length s dlong the con-

tour., Then if P(Bo;s) ds is the probability that a particle drifting around
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a contour is in ds at s and if AB(s) is the ensuing change given by 7§,

the average AB taken over all particles on one contour is

<AB> = f&B(s)P(BD;s) ds (80)

2
for one storm. Similarly, the average per storm of (AB) is

<(Aa)§= f (AB(s) P(B_;s) ds . (81)

If before the storm the density does not vary with time, P(Bo;s) ds
must be proportional to the amount of time spent by a particle drifting

with velocity V_ through the arc length ds at s; that is, by equation

B
76. (Actually, the result is the same if the density does vary since the

onset of a storm is uncorrelated with the electron positions.) This

then gives:

ds
(s8) - g a2 o (82)
&
and
2 ds
((8)%) j( o v (83)
EE
VB

The effect of many storms may be described by forming a
Fokker-Flanck equation with the coefficients in this equation being

determined by equations 82 and 83 [Chandrasekhar (1943)]. If the
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expressions of equations 82 and 83 depend on a parameter £ (which
describes the details of the storm, generalization to the case where a
set of parameters is needed being obvious), then, letting n indicate
the number of storms and X(B,n)dB the number of particles in the

magnetic field range dB at B after n storms, the Fokker-Planck equation

is
Z .2 pgxl+ i ing x) (84)
oB
where )
p, = (aB) = f ag) (o), a (85)
Bon ((AB)2>av= fp(g) <(AB)Z>gd§ (86)

and where Q(§)dé is the probability of finding the parameter ¢
in the range df at £ . The subscript £ on the brackets denotes
that the averages are evaluated for a particular &,

The foregoing will now be applied to particle diffusion in the
particular model of the solar wind-perturbed geomagnetic field adopted
by Parker. Thus, let us consider the magnetic field configuration that
should be produced by a magnetic dipole ﬁ in the presence of a per-
fectly conducting infinite plane, which simulates the front of the solar
wind. Introducing a polar coordinate system with the dipole directed in

the 0 = 0 direction at the origin, and with the conducting plane at a
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distance L away in the direction 0 = —7; and ¢ = g—g— , the field at

a point (r, 6, ¢) on the dipole side of the conducting plane is given by

2

B =2Mcosa+-§-¢-— {-cosﬁ-i‘éisinzesin{p-bo(-z—) (87a)
r 3 3 2L 2
T 8L L
6 2
B = M + L [51n6+£c08285in¢+ O(r— ) (87hb)
6 3 3 2L < i
T 8L L
B 2BE,  son il end ¢ [1+ O('Ea] : (87¢)
¢ 6L

The expression B  differs from that of Parker's equation 13

¢ 2
M
in which B, = — 0(1- ) . The equilibrium configuration is to be
¢ 3 . 2
8L L
given by equations 87 with L. = oo ; the initial phase occurs when the

conducting plane is suddenly brought up to (L, -723 : é:;i) and the second
phase when the plane is slowly withdrawn to infinity.

The displacement ;-E is easily calculated by using the fact
that in a perfectly conducting plasma the particles move with the lines
of force during a disturbance. Consequently, ;-E may be determined
from the equations for the lines of f.orce in both the undistorted and
distorted configurations providing one can identify which line of force
in the distorted state corresponds to 2 line in the undistorted state.
For the case of the dipole and its image, the identification is easily
made since sufficiently close to the dipole the field is essentially un-
disturbed by the presence of the image. The equations of a line of

force are;



g 5 IS4 , r sin 8 - ‘ (88)
B B B
r 8 $

B 3 2

1l dr T 2cosf  3rcos@ rsin* - ¥
28 s 2 s - (14 (1-3 8in"6)+0(— )]
r dé BG sin 8 8L38in 8 L sin 6 LZ
(89)
B 4
d¢ ® 3r cosficos ¢ x
39  sin6B. 7 [1+0(1)] (90)
8 16 L. sin 6

These can now be integrated by successive approximations. If all terms

of order (r/L)3 or higher are neglected, integration gives
2
r =R ain" 8, ¢ ® ¢, - (91)

where R and ¢;° are constants of integration. If equations 81 are sub-
stituted into the higher order terms, they become functions of 6 only.

Integration and simplification then give

3.6 2R sin@ sin¢ 2
2 R™sin 0 =) 2, 3
r = Rein’6[1- £ (sin®6-2 1+ 0(3=)] (92)
[ 161..3 . L ? LZ ]
3R4 sin79 cos ¢ R
$=¢ + [1+0O( )] (93)
o 716 L4 L

We must now show that 92 and 93, with R and ¢° fixed, always describe
the same line of force and that it is not necessary to replace R and ¢o

by functione of two other constants and of L. The electric field that



68

moves the plasma with the lines of force should be finite everywhere
and hence the displacement is expected to be proportional to B-l; i.e.,
to 2717 (RlL)ssinbﬂ. Inspection of 2 and 33 shows that they do
have the required character and that itwould not be possible to replace
R and ¢° by functions of L.

When L =00, R and ¢° are just the coordinates where the

line of force intersects the equatorial plane 8 = #/2. After the dis-

turbance the corresponding coordinates are

3 4

5

R R¥sin ¢ R
r SR|l e = 4 ° +0(=—=)] (94)
1 WL” 14L 23 L

3R4 s R5
b+ %% 4o(R;)

o 4 LS
Nz L

The field in the equatorial plane is, by equation 87b,

3 2
M 3
Bz._i[l.g.f__s[l-z—; sin¢+O(L§)]] (95)
r 8L L

Before the disturbance the particle is atR, ¢° where the field is
Bo s MIR3. Afterward, the field is found by substituting equations 94

in equation 95 and the change is

3 5
5 Br 45 r. .4 T
AIB H W - m B(-i:) sin ¢+BO(;—5) (96)

Likewise, by equation 77,
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3
A,B = . (AIB) [1+o(f-3)] ; (97)
L

where the higher order terms arise from the use of the undisturbed

contour in the integration. This then gives for AB,

43 r 4 2
AB = - = B(E:) sin¢+BO(L—5)_ (98)
so that
5
<¢B> =o+30(i-§) (39)
and
5 2 K
(o) = () 5 UE o5 (100)

since in the final state B = M/rs.

The foregoing simple calculation only shows <AB> to be
zero up to terms of order (RIL)S; however, it may be shown that <AB>
is zero up to terms of order (R;’L)s. This follows when somewhat more
care is taken in exhibiting the cancellation effect that the second phase
has on the change in field experienced during the initial phase. In an
infinitesimal perturbation of the field configuration away from its un-
distorted state, the change in field experienced if the perturbation is
applied adiabatically is only very slightly different irom the average of
the changes experienced if the perturbation is applied suddenly. This
suggests that if in a larger perturbation the particle motion were to be

expressed in terms of quantities evaluated on the initial undistorted
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contour = by a series expansion, say, in variables describing the extent
to which the particles are displaced from the undistorted contour - then
the expression for the change in field experienced during the adiabatic
perturbation might contain some terms identical to some of those
contained in an expression for the average of changes in a sudden per-
turbation. Such a procedure would then be useful in exhibiting the can-
cellation effect occurring in an adiabatic release of a suddenly applied
perturbation. The uncancelled terms would be associated with the dif-
ference in the motion of a2 particle away from its undistorted contour
in an adiabatic perturbation from that in a2 sudden perturbation. That is,
when the cancellation effect has been exhibited, the evaluation of the
remaining terme involves consideration of the efiect of distorted con-
tours which was neglected in obtaining equation 99. The series expansion
suggested above, coupled with an iteration procedure, has proved
useful in treating this problem.

More explicitly, define £ to be the distance the front of the

solar wind is from the dipole and define quantities 5 and ﬁL by
3 3
B=M/817, B, ®M/8L". (101)

Next let O(3,B,¢) be the total rate (with respect to ) at which the
magnetic field is changing for a line of force at the point defined by
B and ¢ when the field configuration is given by 3. In terms of PL and

6(3,B,¢), the change in magnetic field experienced by a particle during
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the sudden initial phase of 2 storm is
ﬁL
ap s [ ewBa e, (102)
o

where B and ¢ are evaluated along a trajectory appropriate to the start-
ing position of the particle, i.e., B and ¢ are given by equations 92,
93 and 87b. In terms of e(ﬁ,B.¢) » the change in magnetic field

experienced during the adiabatic return to the undistorted field is

a,B = fo[jg(ﬁ.s.¢)ﬂf/jﬁ i ] @ (103)
< |:_?| ° %’f

in which the B in the integrands is to be taken along trajectories ap-
propriate to the adiabatic phase. We shall later determine the func-
tional form of this B by iteration.

The form of & (;,B,¢) may be determined from equations
87b and 94 . Thus, substitution of equations 94 and 10l in equation

87b yields

a § s
. 5B 85,58 3, 3,53
B(¢,B_, ) Bo[1+ :E 7 (BO) sing +0(°/B )] . (104)

where we have set

B_=Mm/r’ (105)
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(¢ and Bo now identifying the position of the line of force when
o
£ — o). Differentiating equation 104 with respect to  gives

1
8 .3 . 2
( 'f;'; )" sin ¢_+O(5

2
i ek (106)
Replacing 4:0 in this equation by the expression for q:-o obtained by
inverting equation 94 , and replacing Bo by the expression for Bo

obtained by inverting equation 104, gives the desired result:

u 5 60 ,p \1/3 . 3
‘ E e o [ Hak
By, s ,213,,2/3 _— .
where £1(¢.-1-3- ) is an expression of O(3 " 7/B ). Similarly, if

é(I";.B.¢) is the rate (with respect to ) at which ¢ is changing for a
line of force at the point defined by B and ¢ when the field configuration

is given by 3, we find

$(5.B,¢) = % i;(g- °s¢+h1(¢.%) ] (108)

2/3/B2/3) )

where h1(¢, % ) s an expression of O(p
We may now calculate &-‘1B according to equation 102. As

described earlier, 8 (4,B,¢) in the integrand will be written as a

series expression. Then,

:
L
22 [ BB )+ 5 (B ) s Blens T a. (109)
[}



T3

where the partial derivatives are evaluated at (B°.¢o). L

80 5 .1 %

=g B Py (110)
Q o

80 60 , B .1 >

= 3.7(%)’3@3%»{—8; : (111)

In equation 109, B - Bo and ¢ - ¢;° may be determined by iteration:

B
Bn-an f 8(;3,13“_1.4;“_1)&;:‘: » B =B (112)

[+

4, " _[ ém'Bn-l'¢‘n-l)d{j ! F s T (u3)

[+]

B accurate through terms of O(p )-

To obtain an expression for A 8f3 0 8/3

1
and as we shall see, this order is sufficient - it is only necessary to

4/3 4/3

express B-B _ through terms of B O{,.s ) and ¢=¢_ through

4/3 4/3

terms of O(p } . This is obtained by setting n = 1 in equations

112 and 113:

5/3”3 5/3
()

% in ¢, * ofp )], (114)

m MYy, (115)

pah % ( % )43:/3:“36 ¢°+C(§5/

o
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Combining equations 109 and 115, we obtain directly

Py
3 9 8
fe(p, 48+ 5B () Peine 350 B () Paine,-
L et
1 3
3130 B 8/3 2 .5 [ pes dp+B O3 116
—5—49—{%3';)/ COE¢°+'£j oB P 0(}50) ( )

o

ef

in which the integral of 3 Eﬁl_ is of O(}iSIBIBOSI 3) The average of

the L\lB is

27!!3 21?53

@*13) jf O (5. B ¢ )dpd¢_ + 7 ff ﬁ

-3 B (1)8’3+B ofs’8 %) )

Now calculate AZB according to equation 103. From equa-

tions 87b and 94 , we {ind

, 43
oB (.EL S 58,338y,
I , (B 1‘zB += (g7) singg

(118)
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Factoring out (1 -% -ﬁ?- ) after expressing Bo and ¢_ in terms of B,

¢ and 3, gives

4/3 5/3,.5/3

an| o 1-6(E) sin ¢ + O(p~ °/B

/|5 ¥ (119)

Thus,

T

o 2
g EI;IUG“*- 4 1- 6(E) Bin¢+j(¢.%)] %][1-@(1».%))] ap
B, o

L (120)

5/3% 5513

where j(¢,3/B) is of O(p ) and

2w
(K813 = 2= [ e.6/) o4 . (121)

Again expanding G (B,B,¢) in series,

5)4/ sin ¢ +

[+]
Aa-—f[f B@¢G.B ¢)+ (B-B )+ Jl1-8(=

e, )] @][ 1- (K¢, %))} ds . (122)

In the integrand, B-Bo may be determined by an iteration procedure

analogous to that of equation 112. The first approximation is given by
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) an
Bl'Bo :AIB +-zl; j [IQ(D.B +AB é)[1- 6(5—-) sin ¢ +
f51..
oo g0 eal[ 10 Gton g2 oo (123)
[+ °

Noting that an expression for AZB accurate through terms of -

8/3 8/3

B (s ) requires B-B_ in equation 122 to be expressed only

l/.‘! 4/3

through terms of B O(ﬁ ), we see that the first approximation

of equation 123 is adequate, giving

B, 4/3
B-B_s %a -3.72 (-33-‘) B_sin 448 %38 5”) . (129)
(]
Evaluation of equation 122 then gives
o 2« o 27 of
1 5 1
(a,B)e -2-;[ f@(ﬁsBooﬂd‘Mﬁ A v f jﬁ‘gﬁ d¢dp -
B, o B, o
o b (125)
B, 8/3
3:360 3 3
8- 1k ( B+ Boﬁ(ﬁL IBo ).

From equations 117 and 125, we find
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8/3

@B) = (a,B) + (a,B) = 2500 ¢ £y B_+ B;O(ﬁL:;IB

~ 849 'B
o

15 .2

3(m3)° (£)° 8, +3,0(5)

(126)

Since in the initial and final states r depends only on B, we may then,

to the order indicated, calculate the corresponding averages of the

change in the radial coordinate r from equations 100 and 126 by the

approximate relations

2
() + ik (s ok &

or
{(aB)*) 2 [—g-r % ]} (R
This gives finally
ary = gL () [140o(1)]
{an) = 2® (3)** (100 (£))

with

1 15 .2
a=9.k3‘a‘(—n3). 238-

These results are different from those obtained by Parker.

His analysis gives 129 and 130 but with

(551 {(an)®)

(127)

(128)

(129)

(130)

(131)
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20. (132)

Moreover, the actual differential equation that he solves is not the
Fokker-FPlanck equation based on his analysis but is a heuristically
derived diffusion equation. However, his equation is obtained if one

takes
15 2
as9, k:(ﬁ)' g=a+b+1=49/4. (133)

Hence Parker's treatment may be regarded as a discussion of case 133.
Note that the three cases have the same values of a and nearly the same
values of k. Differences in k are trivial, affecting only the time scale,
and the value will depend on the precise model used for the magnetic
disturbance. The essential difference between the treatments arises
from the difference in the valuee of g. In order to treat all these cases,
and perhaps others that may arise from different models of magnetic
disturbances, the equations will be solved with general values of a, k,

and g insofar as this is practical.
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2. Particle Diffusion

Denoting by ¢#®(r,n) dr the number of particles in dr at r

following n storms, the diffusion is governed by the Fokker-Planck

equation.
e 2
e ar) 043 = [ ((an)®) ¢v] (134)
gr

Following Parker's notation, one may let § = ¢*/27r be the density
per unit area in the equatorial plane and ¥ = &/22 (r) be the density
per unit volume, where z(r) is the small distance above and below the
egquatorial plane within which the particles are confined. From Parker

-5/4 5/4
we get z(r) = z(R)R % ; or,more generally,

rz(r) s KL?'(rIL)bﬁlw . (125)

withb ®# 9/4 for the actual model. Thus,

o 2 27ry » LK (r/L)° ¥ (136)

This can be substituted in equation134 to get differential equations
in ¥ instead of %, but it seems easier to solve equations in ¢* and
to use equation 136 to express the boundary conditions in terms of ¢%.

In terms of the new variables
T ekn, xs3r/L (137)

and on substitution from equations 129 and 130, equation 134 reduces to:
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a 2, a+l
?;': . g a(xa:*L ; 8 (a Zw (138)

In the above derivation it has been assumed that L. is the same for all
stormse. If L is replaced by a suitable average value and the connection
between n and ¢ is suitably smoothed, equation 138 remains valid even

if there are variations from sterm to storm.

3. Steady State Solutions

The difference between solutions with different values of g may
be illustrated by a simple example which may have some reievance in
ths discussion of trapped particles, although we do not urge here that
it be regarded as particularly realistic. Conaider the steady state
situation where the left -hand side of equation 138 is zero. Suppose the
electron density in the interplanetary plasma is i’l and suppose that
these electrons diffuse into the planetary magnetic field, starting at
rEr., where the magnetic field is assumed to terminate at the equator.

Assume further that the particles are removed atr ¢ r°< r., which

1'
may be regarded as the position of either the surface of the planet or

as the point where some unspecified process removes particles faster

than they can diffuse in. Thus we have the boundary conditions
o*r )=t = Li(r/L)” 35 48(r ) = 0 (139)
) A ! 1  § o

it is then easily found that the solution of squation 138 is
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A LT

o¥(x) = [(2)7] BT g ¢ (140)
1 1 o

and that the particle density is

=(a+b) P B
Y(r) = () _ 7 - (142)

I'1 T

Equation 14l is plotted in Figure 6 for the case® r, 3 10 r with a = 9,
be9/4, ge8, 4, 0 and 49/4, which correspond, respectively, to our
model, to a model in which (AB) e O(Rgng). to the model with
Parker's (A r) and <(Ar)2} ,» and to Parker's diffusion equation.
Note that the cases g = 8, 4 and 0 predict a high peak in the particle
density whereas the case g = 49/4 has no pea.i:.

Thus far we have lumped together all electrons regardless of
energy. If we define N (r,E} dE to be the density at r of particles with
kinetic energies between E and E + dE; i.e., U(r) lfN (r,E)dE, we
can determine N from the above discussion by ircluding in it only par-

ticles of the appropriate energy. We have assumed throughout that the

first adiabatic invariant
2 2
R, 8in 0/B 31, (142)

where R,,is the magnetic rigidity, is not vioclated and hence, as pointed
out by Kellogg (1959), when a particle drifts in it is accelerated by the

electric fields associated with the drift motion. For non-relativistic

*See page 52
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Figure 6. The ratios ‘i’(r)/‘l’l of the particle density at r to

the density at r,, as given by eq. (141) for the case r, = lOro,

a=9 and b =29/,
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rticles, is proportional to the velocity and RZ to E. Since we are
pa Prop ty i

concerned with the case where § = 90® and B r's, equation 142 gives
3
E(r)r” = const. (143)

and the particles which at r,are spread out over a range of energies

c’iE1 at El willat r be found spread out over dE = (rllr)sdEl at an

energy E = (Jit'l./r)3 E.. Thus we get

1
g-l g-1
- 3
={a+b<3 ’ i Er
NGz E) = () e (B (144)
1 B e B
4 T T
1 o 1

where N (ri.E)a N(E) is the density in interplanetary space. If relative
istic effects are significant, the equations are more complicated unless
one goes to the highly relativistic limit, in which case equation 143

becomes
3/2 .
-E(r) r 2 const. (145)

with corresponding changes in equation 144.
The peak shown in Figure 6 becomes much more prominent
if one considers a differential energy spectrum that has the usual de-

pendence on energy. If the timeaverageofthe glectron energy distribu-

tion at r 1 should be given by (Nl(r X E)) dE = COE-B-ldE, e ton

time average at other radii is given by

(N(r,E)) dE = c(r)E'E"1 dE (146)
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where for most of the range C(r) =~ (rlh )a+b+l-g+38

and C(r) ~ (?)a+b+35- when g € 1, For the case of major interest where

C when g>1
o

a®9, be9/4, andg = 8, this gives C(r) = (rllr)4+3aco .

In the above solution it has been assumed that the source of the

electrons is the interplanetary plasma which reaches r 2 r ..Actually,

1.
nothing would be changed if a steady source produced the density NI(E’
well within the planetary field and the particles diffused both inward and
outward to a termination of the planetary magnetic field farther out.

The source could even fluctuate with time provided we let NI(E) denote

the average density produced 2t r, and then regard the above solutions

1

as giving the time energy densities as a function of ., If the time con-

stant of the fluctuations is less than that for diffusion to r1 the actual

density will be essentially constant in tifne and given by the expressions

above. The solution in the region r > T for this case is obtained from

the above solutions by replacing T, by r_, the radius at which ¢* drops

2
to zero at the outer boundary of the magnetic field, and by taking

) <r<r,. If this ie done for equation 144 and r,is then allowed to

approach infinity, one finds that for the aitua.tion treated in e qaation 146,

a+b+3s atb+3s H-gc

C(r) =~ (rllr) C, forg>1land C(r) =~ (—) when g < |;

Cir) = (r /x )H‘MB o in the case of interest, in the region outside the

source.
The source strength required at r1

net flux away on each side. Let the net flux outward at radius r per

is easily obtained from the
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unit magnetic storm be denoted by J(r,n). Since the right hand side
of equation 134 must give the negative of the divergence of this flux,

one finds that

Irim) v (ar) ¢% -3 = [((Ar)2> o®)

atleg a+b+l-g
e-kLx8 HX 4% _ 2,48 ,a(x b) (147)
0x 8 x

The literature contains various suggestions that interplanetary
electrons could diffuse into or be trapped by a planetary field or that
low energy electrons from the magnetosphere could be accelerated by
magnetic fluctuations or plasma oscillations to provide the source of
high energy electrons. Davis has suggested the following variant of
these proposals. The boundary between a planetary field and the inter=
planetary plasma is almost surely unstable because of the relative
motion due to the earth's orbital motion and perhaps the solar wind.
Particularly when interplanetary plasma przsses with greater than usual
force, the instabilities may well allow bubbles of plasma to penetrate
into the planetary magnetic field. These diamagnetic bubbles will tend
to be expelled again by magnetic pressure, but they will also tend first
to break up by flute instabilities, to become very long and slender, and
then by their finite conductivity to allow the planetary field to run uni-
formly through them. During this process, the particles in the plasma
experience an increase in magnetic field strength and consequently should

be accelerated in a direction normal to the magnetic field.
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4. Transient Solution

The nature of the transient solution to equatien 138 depends
somewhat on the value of g. We shall conclude by presenting the time
dependent solution of equation 138, subject to the condition that initially

there is a ring of N particles at r = r . "ﬁL’ i.e., that

¢*(x,0) = (NlL)&(x-xl) . (148)

The equation obtained by taking the Laplace transform of equation 138

is
8 a BZ a+l
s -¢¥(x,0) » -g = (x"®) + T2 ("79) (149)

Qo
where $(x,s) is the Laplace transform of ¢*, s je'“ ¢*dr . The
C

last equation is thrown into a2 more familiar form by introducing the

+1
new variable 6 = x° @ 3

2

g 0 86
LB +iL. S8 (150)
Ox x

From Jahnke and Emde (1945), 2 solution to the corresponding homo-

geneous equation is:

gt
2 2{e 1 27s 1
0= x [ llp(la-ll s—— HCZKp(ta-h o )] (151)
2 < @

where
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pe |§-:-i—| (152)

and where Ip and Kp are modified Bessel functions of order p. If the

initial distribution consists of a ring of N particies at %, then equation

150 becomes

2

8”0 86 s N (153)
o 3 - e e wt LA A,

ox x b4

Requiring ¢* to be finite at the origin x = 0, and placing an absorbing

boundary at x_ s, the solution to equation 153 has the form

2

g+l 25 1

e R xﬂ) xZn
&(x, 5) -{ - (154)
+1 2V8 1
AxB= K(TT—3  esxsx

when a > 1, and

+1
C !I:B?-KP(ZE - ) x>

+ lea xt_t_:} ="
8(x, s) " é (155)
C =x 4 I 278 ;,_ ) 0<x<x .
- p l-a x "'ZL -7 "1

when a < 1. The constants are determined by requiring B(x1+ )= G(ﬁ' )

( -g—: ) g - g » the latter condition being obtained

X+ x-

upon integrating equation 153. For equation 154, this gives

and (%%)
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l-g 1+
N 2 2 2 278 1
- K ( )N ( ) %>
-1 * a1 . a-1
L a . p a xl—Z'L P a- 1 X
6(x, s) = (156)
l-g  itg
N 2 2 2 1 (-Z—ﬁ- i 1) LLI )o<x<x1
T g xl x p 2= a p a-l a-l - —
2 -]
% x
when a >1 and
SRR ks Joa
N 2 2.2 ,20% 2 205 2
L. l=a G " Ip( laa xl ) p(l a * ) xle
6(x, s) = (157)
l-a laa
log 1+
N 2 2 2 riEE . Py (BB 47y .
Tie X * p l-a p l-a -1

when a <1. From Erdelyi, Magnus, Oberhettiinger and Triconi (1954),
we find as the inverse Laplace transform of the @ = x'(aﬂ)e core

responding to both equations 156 and 157:
l-g g-2a-l
2 2

N e il
e+ B 3 e[l
(158)
2 S -
L, |oseimags Kol fel
Ple(a-l) xl.2 o2 /-

The result is in the standard form of solutions to diffusion problems.
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The particle density per unit volume obtained from equation 158 isa

g-1-2a-2b
Nla-1l 2 -1 1 1 1
B(E,7) 2 L3, () § v g s RN L )
KL % § vi?
(159)
where the new variables
x . a=l & a-l
g e ;Ll- *— and v® =" x ¢ (160)
1

have been introduced to simplify the expressicn. Equation 159 reduces
to Parker's corresponding solution for the case g = a+b+l.

The nature of the solution may be seen by considering its
various asymptotic forms. The following calculations parallel Parker's
treatment of the case g 2 atb+l. Equation 159 has the following asymp-

a-l

totic forms. For vg Z" <<, the asymptotic expression

Ip(y) e e’ (ew;,r).ll2 [1+0(1/y)] is used to obtain

2g=3-3a-4b
Nla-l| v-l/Z

{’(l.v) = &
23/ 2 xr1/ e L3:c1(b*1)
a=1
1 1 s “z
weil« gotie 2200 Mivole = 31>
£

(161)
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When v becomes large compared to unity, 2 useful form of this ex-

pression obtains on separating out exp(-1/2v):

. Zg=-3-3a-4b
Nla-1| . “ «1/2
I’(&.V) = t’_; v
23/2.#1/3%3 b+l
ae=l
'exp[--'————_— + a-l1 J{l+o(ve i =)] 162)
2v ga 1 " §T v
ael

At the other extreme, suppose v% 2 >>1. Then the expression

Ip(y) z [ I(p+1)] “ (y/Z)p [1+0(yz}] is used to obtain

g-l-2(a+b)-p(a-1)

" Nla-l] . 2 -(p+l
Heov) = =55 P © g
KL 5 r(pt+1)2

expl - o= (1 +1§-a_1nn+0(—2:;1-—)1 : (163)

v g

or, on expanding the exponential,

g-1-2(a+b)-p(a-1)

i Nl|a-l : 2 =(p+1)
Pev) = 5
¥ KL3x1b+1I'(p+1)2p+1 ’
exp(=1/2v) [1 +O( 21a-1 ; al-l )] . (164)
v § vE
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When v becomes very large,

Nla -1l E-I-Z(a;b)-?(a-l) (p+1)
(£,v) = —= 3 "o
Ple.v KL P (1) 2P "
[1+ O — ). (165)

vaga-l ael

ve

The total particle flux (net number of particles flowing past { per mag-

netic storm) may be calculated irom the expression

J(r,n) = -kLx® %x- (:lc'?”]wg ¢*) = -}KL3x1a+b gg_a__ (§3+b+1'8 -Q ).

9§
For the 7VP(&,v) of equation 159,
Nla-llkxf"l 5 ] 1 ET;.'I" a-l 1
Jepm) 2 - e vl eml- v SR e P 3 —
2 g a
a-l .,
138 p] (166)

where the argument of the Bessel function and its derivative is

a-1 a-l
(v ¢ )-1 . When v§ 2 > 1, the Bessel function and its derivative

may be expanded to give

-Nla-1|k ek g=pa-1-1
J(r,n) = xil (L'Es--p(a-l)g - v -(pﬂ)exp(-l/Zv)
n(p+1)2P (167)

1 1
(14— ]
L RS
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When v is large,

=1 a=l)-l
Nla-llkxla . > -
J’(')n- (..:E_M-lng v-p+
r,n Fipt) zpﬂ 3 a
1 1 I3
[1+ Of ; ;= )1. (168)
v?.ga-l vga-l v

This can be expressed in terms of a mean drift velocity 1 toward

increasing £

T sJ/¢®.

Equations 165 and 168 yield:

Ue okl £2(5E - plas))] (14 O(— s i — 5 )] (169)
Vs vi a=1

cm per magnetic storm. At the other extreme, when v§ << 1, the

asymptotic expressions of the Bessel function and its derivative give

'm(a'l)z’ﬁa-l sﬂ.;_?-i_ o2 § . e
J(r,n) = = 3 v exp[-—z—(l- a-l )]
= 2
3
a=l a=l
(+o(ve Zive* e 2] (170)

The P(f,v) resulting from ¢#*(x,0) = -? ﬁ(x-ﬁ) may be

described as a ""wave," for setting -g-g 2 0 in both equations 161 and 163

shows the maximum of Y(£,v) to occur at a position gc given by:
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a-l

£, = 1;) . (171)

Equation 171 in conjunction with equation 163 leads to a2 simple expression

for V(£,v) in the vicinity of the wave. For in equation 163, we are

1

neglecting terms of O (-—2—::-1- ). and in the wave
v g
ol —=—=)= o) (172)
Zga-l v ‘

which is small in the limit as v becomes large. Thus, when v >> 1,

- g-1-2(at+b)-pla-l) -
Pe,v) o 22 : ; et
" L3xlb+1 Hpt1) 2P v
expl- ;a_l Ja+o( 1) (173)
2v

is a valid expression anywhere P is not negligibly small. The crest

]
of the wave, where —— # 0, has the position éc, where

3%

¢ a<l _ a-l 1 L
c * 2(at+b)+lep(a-l)-g ° v °

(174)

The total number of particles n in the wave for v >>1 may be found

by integrating the ¢* corresponding to equation 173 over r = lez:-,:
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l-g+p{a-1)+2(a-1)
j ¢® dr = _..._..(..I.}.:l.)_. (_I:_E’fp(a-l)*'z(a-l) ) (?_V)J PZ(a-l)
r(p+)2P* 2a-1)

(175)

1f -g% > 0, equation 175 gives

n 2 . v'P (176)
n(p+1)2°
whereas if g-'l < 0, equation 175 gives
nsN, (177)

In the latter case, the number of the particles in the wave does not
decrease with time, but remains equal to the original number injected.
Assuming that the first adiabatic invariant is not violated,

the energy E of a particle at § which had an initial energy Eo at g =1
is

-4
E = Eoé (178)

with £ = 3 for nonrelativistic energies and £ # 3/2 for ultrarelativistic
energies. Thus, the total particle energy in the wave due to the injec-

tion of N particles of energy Eo is for large v

NE (Z ’(P‘H)

(1- l-g+pla-1)+22+2(a-1)
r (p+1)

l... -l)

(v ]
€ j' Eog-lcp*dr e
s

l-gtp(a-1)+22+2(a-1)
(2v) 2a-l) . (179)
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-1
When B > 0, equation 179 states

a-l
144 -
f+a-1
€ = NE (2v) SR - (180)
r(ptl)
and when -E-—l- <0,
a-=1
— f+a-g
Es m:o(z»)a"l o a-l ) : (181)
ae
f'(;'_-la)

The mean energy per particle is

4
(E) z -‘i—‘ z Enr(l:tfl )(.".'a.v)a":l (182)
when %1:.'1.1 >0 and
‘-g-r Iy L+a-g )
(E) =E (2v ael (183)

o)

when Ei <0.
a=1

Finally, in terms of the position ﬁcof the wave, the mean energy

per particle is

|
£4a-l a«l , a-l -
<E> ® ED r( a-l ) ( a+h ) g’c: (184)

when i:-l—l >0, and
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!
‘+a_ mm—
{ =] ] -1
ORLE e w ) ke )

(==&

mrn
(] L)
Lad Kl

when < 0. The number of particles in the wave in terms of

the position of the crest is

-

-]

N a+b , a-1 | g-l
(p+l) (a-l ) 5c

n-=

(186)

when % > 0, and does not depend on the position when -g—:—li- <0.
The form of the solution, especially when -E% < 0, suggests
that the particle diffusion resulting from large-scale magnetic fluctua-
tions might be of importance in transferring electrons from the solar
wind to the outer Van Allen belts of planets. If the other features of
the magnetic storm are such that the first and second adiabatic invari=-
ants are not violated, the electrons both gain energy and attain flatter
helices on inward diffusion. The last two features make attractive the
hypothesis that this mechanism might provide the relativistic flat-helix
electrons required if.the decimeter radiation from Jupiter is to be
synchrotron radiation. The time scales involved in the diffusion might
present some problem. For instance, estimating the number ny of
storms required to cause a particle to diffuse a distance D by setting
n, ® D2/<(Ar)z) , and taking the ((Ar)2>given by equations 130 and

131, we have
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1522 8

ay =D 5(5) 2 (500, (187)

Setting r ® D and taking (r/L) = 1/5 as a typical value, this gives

ny = %x 108. Parker (1960) estimates that on the order of fifteen sudden
commencements occur per year on the earth, so that this would indicate
that of the order of 107 years is required for appreciable diffusion.

This is 2 much longer time scale than that estimated in section IIIA for
scattering and loss by other mechanisms. On the other hand, it might

be that magnetic activity at Jupiter is much greater than on the earth,

in which case shorter diffusion times could obtain.
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Iv. SUMMARY

The Stokes parameter description developed in Appendix B
for synchrotron radiation from a group of ultrarelativistic electrons
with an arbitrary angular distribution, is summarized in Table IV,
page 145 , and Table V, page 154 . The results of applying this
development in section 1I to the radiation from a shell of relativistic
electrons trapped in a dipole field are presented in graphical form in
Figures 12-20 of Appendix D. As discussed in section II, the results
confirm Davis' suggestion that the degree of polarization observed for
the 31 ¢m radiation from Jupiter is obtained for synchrotron radiation
from ultrarelativistic electrons in a dipole field if the electrons have
relatively flat helices. As suggested by Davis, the observational result
that the outer regions of the source are more strongly polarizea than
the central region might be explained if the equivalent of two shells of
electrons are present, the outer shell comprising the electrons with
flat helices and the inner shell having electrons with steeper helices.
The overall polarization does not depend very strongly on the frequency
or on the energy distribution of the electrons as long as the electrons
radiate efficiently at the frequency of interest. For the details of the
variation of the polarization and intensity and the corresponding cosine
transform gquantities, reference is made to the graphs of Appendix D.

The results to be expected if the dipole axis is not at right angles to
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the line of sight have not been studied here.

Discussion in section III of the problem of obtaining high energy,
flat helix electrons in a dipole field has centered on a study of the
particle drift and diffusion due to the effects of large scale magnetic
fluctuations. The asymptotic approximation method of Bogolyubov and
Zubarev has been used in Appendix C to show that the relativistic drift
velocity expressions differ from those of nonrelativistic particles only
by the presence of the relativistic mass in place of the rest mass. These
drift velocity expressions have been used in the particle diffusion analysis
of section IlI to derive the coefficients of an appropriate Fokker Planck
eguation by following the particle guiding center motions through a
large-scale magnetic fluctuation. It has been found that this mechaniem
might lead to a high density of high energy, flat helix electrons; on the
other hand, many fluctuations are required for appreciable diffusion to
occur. Magnetic activity at Jupiter must be very great if this type of
mechanism ie to provide the relatively flat helix electrons required for
the decimeter radiation from Jupiter to be synchrotron radiation. The
effectiveness of this type of mechaniem depends in part on the scatter~
ing, loss and diffusion to be expected from other causes, and these have

yet to be studied.
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APPENDIX A

Summary of the Publiahed‘Observations

of Jupiter's Decimeter Radiation

In this appendix, the published® data on intensities are sum-
marized in tabular form. The brightness of radio sources is con-
ventionally given in terms of the equivalent blackbody temperature
‘I‘D ; i.e., the temperature at which a blackbody subtending the same
solid angle as the source would emit the observed radio noise in the
frequency interval under consideration. In Table III, the second column
lists these temperatures as given by the various authorp aor as deduced
from their data. The temperatures are derived from the Rayleigh-Jeans

law assuming the source to subtend a solid angle Q equal to that of

J
the optical disk, More explicitly, if P(f)df is the flux in watts per square

meter received in tha frequency interval df at f, then T_ in degrees

D

Kelvin is determined by the equation

where k 21,380 x 10-23 joule per degree Kelvin is Boltzmann's

constant, A is the wavelength in meters and f is given in cycles/sec.

31

For Jupiter, ZkQJ varies between 5.16 x 10" and 1.118 x 100 joules

*And also the prepublication results of Morris at 31 cm.
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per degree Kelvin, depending on the position of the earth in its orbit,
For nonthermal sources TD is not particularly significant, and it is
sometimes more revealing to give a quantity proportional to the flux.

Dh'z. which is proportional to the flux
received at the earth and also, if multiplied by ZIkRi = 4,46 x 10'7 .-

where RJ is the radius of Jupiter, is equal to the watts per steradian

Thus, the third column gives T

per unit frequency radiated in the direction of the earth. Column 4

lists (TD- 130')/A2. which is proportional to the actual flux minus the
flux corresponding to the infrared disk temperature of 130° obtained by
Menzel, Coblentz and Lampland (1926). The remainder of the table is
self-explanatory. The general nature of the remarks in columns 7 and 8
of various observers on variability point out the difficulties and uncer-
tainties presented by noise in the observations. For completeness,

no attempt has been made to avoid duplication; i.e., some of the entries
refer to the same observations but are different due presumably to

reinterpretation of the data.
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TABLE III. OBSERVATIONS OF JUPITER'S RADIATIONS
Wave. Disk Flux TD/lZ TD =130 Date of Angle between Variability and Correlations
length Temp. 3 Obser-  Jupiter's equa-
.2 A vation torial plane,and Variability Correlations Source
cm 'I'D ‘K *Kem *Kcm the plane of polar.
ization of antenna
(degrees)
g _ . Giord-
3.03 171420 18.6+2.2 4.5+2.2 Aug. 22- - Giordmaine(1960)in summar- A "
- - = Sept. 4,1958 izing the 3-cm.observations g
' reports' --One can conclude al. (1959)
3.15 140456 14.145.6 1.045.6  May 13 & - thatthereﬂ?re deteci:ible fluctu- Mayer, et
- - = ations in the 3 cm radiation al. (1958
ey Sk temp. of the planet, with the sug- G258)
145426 i4,642.6 1.542. 6 Mar, 23. gestion thatchanges intheap~
- - - Apr.1,1957 parent temp. may be correlated
with changes in the appearance
3.17 173420 17.2+2.0 4.342.0 May 24- - of the planet. No correlationwas Giorde
- Jul. 29,1958 observedbetween theapparent maine, et
Fan. $ie temp. and the rotation of the zl. (1959)
Feb' 7.1959 planet, nor between apparent
e temp. and solar activity as
3.18 165417 16.341.7  3.5+1 April, 1958 !'«-any variationinapparent SERRTad by Ihe 19 Gin solss Alsop, et
o o~ - blackbody temp. with rotation fluxintensity. There wasno de- _, (1958)
:Aay 8,t1f958 ;: -}rvidence of an arz:ggmiéouely Giord-
except for gh temp. approx. *K,on snkineg. &t
Apr.30-Mayl) 4/30-5/1/58." al. (?95;9)
3.75 slightly 140 5 None given . Drake &
greater (but may be Ewen
than 200°* off by factor (1958)
(but may be of 2)
inerrorby
factor of 2)
10.3 860-395 8.1-3.7 6.9-2.5 5 days during 6740, 5% ''«-measured equivalentblack- ‘''..Attempts tocorrelate the McClain
(estimated (est.rel. period: June - "body temp.variedfrom 860 to variations in equivalentblack- g gloan.
395K withan estimatedrel. body temp.with the planetrota-
rel.uncer- uncertainty 10-28, 1958 Y i aker
‘ot £ of 41.5 uncertainty of 4160°K;' "during tion,while slightly suggestive, 195
o -t ) one night's obgervation, the are by no means conclusive." (1959)
1160) equivalent blackbody temp.
ave. 580 ave. 5.5 ave. 4.2 variedfrom 860 to 390°K."

#Sloanaker & Boland (1961)
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Wave- Disk Flux TD/)L2 ‘I'D- 130 Date of Angle between
length Temp. e Cbser-  Jupiter's equae-
.2 AT vatiion torial plane,and
cm 'I'D *K ‘Kem *‘Kem the plane of polar.
ization of antenna
(degrees)
10.2 & 640485 6.0+0.8 4.8+0.8 June 10- 67+0.5%
10.3 Aug. 20, -
1958
10.2 &
10.3 315+65 3.040.6 1.740.6 Oct.16-30, 7940, 5¢
1959
21 ~ 6200 ~ 14 ~ 14 May 16-
June 2,1959

#Sloanaker & Boland (1961)

103b

Variability and Correlations

Variability

Correlations Source

"-emeasuredapparentblack-

body temp. rangedfrom 300°K to
1010°K abouta mean of 64°*K+85°K
est, standard error--." G

"...present measurements give
a roughly normal dist. of apparent
temp. witha standard dev. of
190°K.On the basis of the est.
measurementerrors, the ex-
pected standard dev.is about

145°K, whichisin reasonably
goodagreement with the observed
scatter,butdoes notpreclude the
possibility of a variable component
in the intensity of the radiation. "

"...observedchangeinintensity

of about 2 tol between 1958 & 1959 is
real and may be related to polariza-

tion of theradiationor toacorre=-
lation with solar activity.Inaddi-
tion,the 1958 measurements show
some evidence of short-time vari-
ability, possibly correlated with
the rotation of the planet."

"...the amount of the emission
varies withtime,byas muchasa
factor of 2ina periodof a few
hours -"

Sloanaker
(1959)

"... The measured temps.
show no long-time trends over
the 71day measurementinter=-
val, but show a suggestionofa
cyclical variation of about 30%
correlatedwitha rotation rate
between 40'' and 2'longer than
the rotation periodof System
n & 1

M e.thel958 measurements show

correlationfor all rotation peri-
ods between aboutl min. ang

2 1/2 min.longer than the period
of SystemII;however,itiscon-
sidered that the number of meas-
urements is too small to decide
whether this correlationis really
connected with the rotation of
Jupiter.' '"...the solar activity
was 3.5to 6timesasintenseime-
mediately preceding and during
the period of the 10-cm. observa-
tions in 1958asitwas for thel959
measurements...'

(1961)

Epstein
(1959)

Sloanaker
& Boland



TABLE III (cont.)

104a

104b

Wave- Disk Flux T /lz T _-130 Date of Angle between Variability and Correlations
length Temp. - —D—-z—- Obser-  Jupiter's equa-
.2 A . vation torial plane,and Variability Correlations Source
cm TD g . *Kcm ‘K em the plane of polar-
ization of antenna
(degrees)
21 24964450 5.6+1.0 5.3+1.0 May 14- 67.9% '""...the measure- '...Anattempthasbeenmadetocorrelate McClain
- - B June 18, ments are highly  thisdata withSystemlandSystemIlrota- (1959)
1959 suggestive of a tion.In thecase of SystemIl an elevated
cyclical variation.'" temp.hasbeennotedat alongitude of 200°.
This enhancement of about 30% appears to
liebetween 75° to 225°. While rather sig-
nificantwhen subjected toa statistical test,
the amountofdataislimited, and this con-
clusion should be considered tentative.Cor=-
relation mightactually be more pronounced
witha system differing from bothSystemlI
and Il but sufficientdataisnotavailableat
the time thisis written."
The remarks on theattempt to correlate
these data with solar activityare essen-
tially the same as those reportedin 1960,
[ McClain, et al.(1960)].
21 28604380 6.540.9 6.240.9 May 15- 67.9% "...s8uggestive of "...Nocorrelationwas found with thel10- McClain,
B - o June 1,1959 a cyclical change." cm.solarindex.Inthecaseofsolarpar- et al,
ticles, the factthat Jupiter was in opposition (1960)
24104340 5.4+0.8 5.2+40.8 June 1- "...averagetemp. atthetime of the measurements wouldlead
B - i June 23, 1959 in each group de-  neto expectthatparticles causing magnetic
Creases sUCCRB~- storms on the earthfollowing a solar flare might
20504430 4.6+1.0 4.3+1.0  June 23- sively withtime " reagonably be expected toarrive in the vicinity
July 31,1959 of Jupiter a few days later(first suggested by

®*Calculated from correction factors used in Field (196!).

Drake).No definite correlation of this sertwas
foundin these measurements.However, there
isa slight suggestion of elevated temp. follow-

ingan important 34 flare on May 10,1959 and the

intense aurorae of Mayll andl12,1959."
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TABLE III (cont.)
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Wave- Disk Flux TD/KZ TD-J.?)O Date of Angle between Variability and Correlations
length Temp. 5 Obser-  Jupiter's equa-
- A g vation torial plane,and Variability Correlations Source
cm TD K *Kcm ‘Kcm the plane of polar.
ization of antenna
(degrees)
"'...appears that thereis
no significant correlation
between the low frequency
events and the highfre-
quency data on Jupiter.,
Basedon thelimited amount
of data we have available,
the 2l-cm radiationfrom
Jupiter seems tovaryata
rate quite close to that of
7 _ System II or System III."
2i.4 350011700+ ‘?.613.‘?i 7.413.?'
22 ~ 3000 - ~5,9 May,1959 67.9% ",..Anextensive setof observa- ',..Thereisnostatistically Drake &

tions at 22 cm suggests thatvari- significantcorrelation be- Hvatum

ations of the order of 30% occur tween theapparentvariations (1959)

in thefluxin time of the order of and planetary rotation,"

days."

31 ~5500 ~5.7 ~5.6 April 15~ 77° ".s.theapparentvariations in "...wedidcheckforacor- Roberts&
(80% of the (80% of the June 17, the Jupiter values werenotsig- relationwith Jovianlongi- Stanley
valueslie wvalueslie 1959 nificantly greater than those tude, both system1 & system (1959)
betwee between 3.9 for the other presumably none- II,andalsofor a correlation,
3.8x10 3 & and 6.7) varying weak sources." either director delayed,
6.4x107 °K) with the Sacramento Peak

31 5500415004 5, 741, 6%% 5, 641, b¥# SO SRR

- o il there any significant cor-
relation."
31 510041300 5.3+1.3 5.241.3  Mar.-May, 1.1/2¢ ", .. The possibility of intrinsic Morris
1960 variations is not excluded. " (1961)
5175+1300 5.4+1.3 5.3+1.3  Jan.-Feb,, 80°
1961

#Calculated from correction factors used in Field (196 ).

#Bolton & Roberts quoted by Field (1959).

| Drake as quoted by Field (1959).
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Wave- Disk Flux T /lz T. .- Date of Angle between Variability and Correlations
D D g
length Temp. A, i Obser-  Jupiter's equa-
.2 A -2 vation torial plane,and Variability Correlations Source
cm TD *K °Kem *K cm the plane of polar-
ization of antenna
(degrees)
€8 70,000430,0001 1546.5]  1546.50
68 ~ 70,000 ~15 =15 May 26 24% '""High sensitivity monitor- Drake & Hvatum
& May 27, ing of the planetat 440 Mc (1959)
1959 showedno statistically sig-
nificant short periodvari-
ations influxduring two
nights of observing. "
~30,000 ~ 6.5 ~6.5 July 20~
(less certain July 30,
than the 70, 000 1959
meas.)

deie Bk L.t
68  [40,00045000] (8.6+1. 1] [3.63_1.11' [end of May,
1959 )***

L ] a ok
(31, oooisooof (6. 7+1. 11" 6. +1. 11** end of July,
1959 J***

_ *kk L1 *¥
(850049500 1" [1.8+2.0] [1.8+3.0 7" [end of Oct.,
1959 fF**

T
1] estimated from Figure 1 {and correction factors) of Field (1961).
#Calculated from correction factors used in Field (1961).

.Drake as quoted by Field (1959).

Drake (1960as
quoted by Field
(1961)
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TABLE III (cont.)
Wave- Disk Flux T /?\z T.+130 Date of Angle between Variability and Correlations
D D ;
length Temp. 3 Obser-  Jupiter's equae
.2 A .2 vation torial plane,and  Variability Correlations Source
cm TD K ‘Kem ‘K cm the plane of polare-
ization of antenna
(degrees)
SN
= <29,300 <5.5 <5.5 Sept.16 & Long &
17, 1959 Elsmore
1 1 1 ' L)
< 7450 <l.4 <1¢‘ Mar-4-9'
1960
<10,100% <1.9° <1.9%  Mar.15.18,
i960
<18,600° <3.5° <3.5°
<39,400% <7,4* <1.4*
<64,000 <12 <12 Mar. 20-
23,1961

s#98These results are based on Figures | & 2 of Long & Elsmore (1960).
i If source diameter < 1'when Jupiter is 4.375 A.U.from the earth

zZ " 1" e <Zl 3 1" 1] 1" " " T [ ] (D g
3 3} i " <3l "n 1 t M 2] " oo f4 )

4 2] " " <4| [ 2] LR b n 1y L1 1 it
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APPENDIX B

Properties of Synchrotron Radiation

Synchrotron radiation, the radiation of relativistic electrons
gyrating in a magnetic field, has been discussed in a variety of con-
texts. Fifty years ago, calculations of the spectral and angular dis-
tributions of the radiation from an electron in a circular orbit were
presented by Schott (1912) as an example of radiation from an accelers
ated charge. In 1940, Pomeranchuk published 2 paper on the maximum
energy which primary electrons in the cosmic radiation could have on
reaching the earth's surface, the maximum being determined by loss
of energy due to radiation in the earth's magnetic field. Schwinger
(1949) and Arzimovich and Pomeranchuk (1945) are among those who
have investigated the radiation in connection with energy loss in synch=
rotrons. The possibility that high speed electrons might be of impor-
tance in radiation from the sun was raised by Giovanelli (1948) and Hoyle
(1949). Alfven and Herlofsen (1950) suggested that radio star emission
might be due to cosmic ray electrons in the trapping field of a star.

In 1950 Kiepenheuer, and in 1952 Hutchinson, discussed the possible
relation of galactic radio noise to cosmic rays. Ginzburg and
Shklovskii in 1953 suggested that relativistic electrons exist in space

and that they give rise to the emission from nonthermal sources. And
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since then, many articles | Twiss (1954, 1958), Hoyle (1954, 1957, 1960),
Cort and Walraven (1956), Burbidge (19562, 1956b, 1959), Korchak
{1957), Gingburg (1959), Tunmer (1959), Takakura (1959), Wallis (1959),
Dyce and Nakada (1959), Biermann and Davis (1960)] have discussed
synchrotron radiation in an astronomical context.

The intcre;t in synchrotron radiation led Westfold (1959) to
study in more detail the polarization properties. He studied the synche
rotron radiation from an electron moving in a helical orbit, obtaining
the polarization properties as well as the spectral and angular distri-
bution of the radiation. His method was to straighiforwardly Fourier
analyze the field obtained from the Lienard-Wiechert potentials. The
radiation was also calculated for a group of particles with an isotropic
velocity distribution. Oster (1960, 1961) has recently studied the effects
of collisions on the spectral and angular distribution of synchrotron
radiation. In his 1960 paper, the spectrwm is calculated by Fourier
analyzing the electric field obtained from the LienardeWiechert potential
of a single particle moving in a circular orbit., The results are genere
alized in his second paper to a particle moving in a helical orbit, both
by direct Fourier analysis, and by Lorentz transforming the spectrum
for a particle in a circular orbit. The power spectrum due to an ase
sembly of particles having an isotropic Maxwellian distributicn function

is also obtained. It is found that for practical applications, collision
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broadening of the spectral lines is of much less importance than the
broadening due to purely relativistic effects.

More recently, synchrotron radiation has received a lively
discussion in the literature in connection with power losses from pro-
posed controlled thermonuclear reactors. This problem has been
studied by Trubnikov (1958, 1961), Beard (1959, 1960), Drummond and
Rosenbluth (1960, 196la, 1961b), and Beard and Baker (196la, 1961b).
Recent related contributions have been made by Bekefi, Hirshfield and
Brown (196la, 1961b), Hirshfield, Baldwin and Brown (1961). and Hirsh-
field and Brown (1961). The concern here is mainly with the power loss
from mildly relativistic plasmas. Calculations are based either on the
spectrum of a single electron or on a group of electrons all moving in
a plane or distributed isotropically.

In spite of these numerous references, an abbreviated deriva=
tion of the properties of synchrotron radiation is presented below. There
are two reasons for this. First, none of the references give results
for the radiation from a group of particles with an arbitrary angular
distribution, and we need to consider such distributions in connection
with the dipole model of Jupiter's field. Secondly, we wish to obtain
a Stokes parameter description of the radiation. The derivation is
divided into two parts. The first part develops the expressions for the
component power spectra from a single electron moving ultrarelative

istically in a helical orbit. This is done by using Feynman's "effective
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transverse acceleration' to obtain the properties of the radiation from
an electron in a circular orbit, and then using a Lorentz transformation
to obtain the results for a helical orbit. In the second part, the Stokes
parameters are developed for a group of electrons with an arbitrary

angular distribution.®

1. Synchroiron Radiation from a Single Electron

() Radiation from an electron in a2 circular orbit.

Feynman ( 1958 ) has pointed out that it is physically revealing
to express the radiation electric field of an accelerated charge as being
simply proportional to an effective transverse acceleration .E Itis an
acceleration transverse to the line of sight since the fields at great
distances from the charge appear to be those of plane waves. Itis an

-ef'fective acceleration ~-- rather than an instantaneous; projection of

the actual acceleration onto a plane transverse to the line of sight ===

" since allowance must be made for the fact that light has a finite velocity,
and that therefore the radiation emitted in an interval ¥ by an acceler-
ating charge moving toward (away from) an observer will arrive at the

cbserver in an interval less (greater) than #. The effective transverse

acceleration is the acceleration which would be required of an electron

#The derivation in this form has appeared in Chang (1960). The method
of obtaining the single electron results for helical motion by Lorentz

transforming the results for circular motion has also been employed
independently by Oster (1961).
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moving always at right angles to the line of sight in order for it to give
the same radiation as that produced by the electron in its actual orbit.
It is the acceleration a naive observer would give for the electron if
he viewed it by light which actually travelled with velocity ¢ but which
he regarded as traveling with infinite velocity andl if he could not per=
ceive the motion along the line of sight.

The expression for the radiation electric field g(t') in terms

of -t?l-(t) in rationalized MKS units is*:

oy %(t)
6(t') . v i ’
“eo R c:Z

\Bl)

where -q is the charge of an electron, €, is the permitivity of free
space, ¢ is the velocity of light, and R is the distance from the trajectory
to the field point at which we wish to know the slectric field at the time
t'. The time t is related to t' by the time that it takes light to travel

the distance R from the source region to the cbserver: c(t'=t) = R, The
prescription for finding ;d’(t) in terms of the actual motion of the electron
is straightforward. Thus, define a unit vector T to be directed from

the trajectory to the field point (it being assumed that the dimensions

of the source region are much smaller than the distance to the cbserver).
1f _r'l(t”) is the position vector of the electron in its trajectory, then

g(t) - from which a’(t) is obtained by differentiating twice with respect

*This expression can be shown to follow from the usual expression ob-
tained from the Lienard-Wiechert potentials whenever the dimensions
of the source region are much less than the distance to the observer.
See, for instance, Chang (1960).
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to t - is the (retarded) projection of ?i(t“) on the plane of sight (i.e.,

on any plane in the region of the source perpendicular to 4 ):
- i o
ar) = 5 () - (F(e) T) 1

(e=t)e = [F(e) T| o -F(e)- T . (82)

.

We wish here to evaluate -é.-(t) for an electron moving in a
circular orbit. For this purpose, consider the diagram of Figure 7.
The diagram depicts the circular orbit of t.he electron about the magnetic
field as seen from different directions. In particular, the view in which
the orbit appears as an ellipse represents that seen by an observer for
which ¥ is the angle between the line of sight and the orbital plane.
In this view, ;:in is the value of the effective transverse acceleration
component along the projection of the magnetic field onto the plane
perpendicular to the line of sight --- and is shown in its positive sense;
;:.E.L is the value of the effective transverse acceleration component
along the direction in tbe plane perpendicular to the line of sight, per-
pendicular to the projection of the magnetic field «-~ and is shown in
its positive sense. In the plan view, a is the radius of the circle,
which for an electron of speed v (and energy E = mocz(l - vzlcz)- )
in 2 magnetic field of magnitude B is

as ¥E ; (B3)

qB c?




Figure 7, Coordinates used in describing an electron in a
circular orbit,
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p is the distance from the origin to the electron; and 6 is the angle
between p and the direction of d; .
From the geometry:
d, ® pcosf =asin2b (B4)
d, = psin@siny s2a sin%9 sind . (B5)
From the definition of the times,
2a

tet'' ® -E gin § cosV = _— 311129 cos Y . (Bé)

From the geometry and the fact that the electron has a frequency of

w B qBCZIE.
dé | w
w23 (B7)
From equations B4-B7, form
% a4 g 6d,, 4 g ar
¥ sSh e W & (B8)
dt
giving
" dzd,_ » l_wza_ cos ¥ + sin 20]
d, = 2 Zew a == 3 (B9)
dt [t== cos ¥ sin 28]

and
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" dzd“ uza sin © cos 20

dlI S e 3

. wa 3
dtz 1+ = cos ¥ sin 26]

(B10)

Both ;i.J_ and 5“ have a resonance denominator. Itis apparent
that for (wa/c) = 1, the field is effectively confined to ¥ near 0.
The perpendicular component 34_ will have its maximum magnitude in
the plane T 2 0, whereas ;:i' , being zerc in the plane ¥ = 0, will
have its maximum magnitude for some angles _4_-_@, # 0 where ‘@" ap-
proaches zero as wa/c approaches unity.

Some feeling for the radiation can be had by examining .cij_
in the plane P 2 0, From equations B5 and B9, it is easy to obtain
the picture of Figure 8 --- where the '"widths' shown are obtained by
equating the areas under the appropriate humps to the products of the
maximum values and the "widths."

From the duration of the pulse (Fig. 8),

T ® %(mCZ/E)Z (m/qB) , (B11)

we can infer that the electron effectively radiates into a ''cone of
radiation' whose axis lies along the electron's direction of motion, and
whose apex angle is about mc?'/E. Thuse, in the interval at =7, the

electron turns through an angle

wAt! = wfat'/at) T . (B12)
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From equations B6 and B7, we have that at ¢ & 37 /4 (the condition

for the resonance denominator to give 2 maximum),

%:—-— s (1 -walc)-l (B13)
€ =3m/4
¥=0

which for (wa/c) = 1 can be written approximately as

dt“

- s 2[1 = (wale)?] ) & 2 (BlmeD)> (B14)

6= 37/4

Pe o

Equation Bl12 can then be written:

wAt" % 20 (ElmeS%r ® me’lE (B15)

the second equality resulting from equation Bll and the expression for w.
Equation Bl5 gives the angle that the electron turns through
while contributing appreciably to the intensity at the observer. (The
positive and negative areas under the curves of Figure 8 cancel, so
that the contribution of the positive pulse to the intensity ( < 32) is
much greater than that of the negative portions.) The implication is
that in the plane of the orbit, the radiation is confined to ang}es within
+ mczf 2E on either side of the electron's direction of motion.
For 0  37/4and ¥ = 0, the resonance denominator can be

written as



19

(1+= cosisin 26)° -[(1-§)+-§-c-(@2+e3)]3, (B16)
where
€220 -3‘5'. i (B17)

and is the angle through which the electron turne in a time % + Thus,
by noting the appearance of ¥ 2y e in equation Bl6, one can infer from
equation Bl5 --- the equation giving the angular extent in the orbital
plane only -« that in three dimensions the radiation is effectively con-
fined to lie within a cone of apex angle

2

whose axis lies along the electron's direction of motion.

It might be well to summarize here some of the properties
which have been obtained from the foregoing equations of the synchrotron
radiation from a relativistic electron moving in a circular orbit. (In
the following, E is the total electron energy and B is the magnetic field.)

(1) The radiation is essentially limited to within a cone of

apex angle ~ chIE whoee axis lies along the
electron's direction of motion.

(2) The radiation comes to an observer in pulees of duration
T proportional to IIBEZ. which are separated by an
interval 2% /w, which is proportional to B/E.

(3) The maximum value of the electric fleld is proportional

to BE>,
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From these properties, the following statements can be made:

(4) The energy per revolution received at a point which is
inside the radiation cone sometime during a period of
gyration is proportional to Ii"‘r < BE4.

(5) The power received at a point which is inside the radia-
tion cone sometime during a period is proportional to
uaz-r < BZE3 .

(6) The rate at which an electron loses energy is proportional
to (u;:.lz‘r (chIE) « BZE? (where the factor mczlE is
proportional to the area of the strip on a sphere swept
out by the radiation cone as the electron follows its cir-
cular orbit).

Furthermore, it is apparent that a spectral decomposition of the radi-
ation will show that:

(7) each frequency component of the electric and magnetic
fields is elliptically polarized, both 3, and E.L being
periodic with the same period, the radiation being left-
handed if the angle between the direction of observation
and the magnetic field is less than #/2, and right-

hatded if it is greater than #/2; and

(8) the radiation will contain frequencies up to at least

1
v & 2(E/me)B/m .
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To obtain the spect:al decomposition of the radiation, it is

necessary to evaluate

" 2nfw et &
d = -é“-'-; e d(t) 4t , (B19)
n
o
and
27fw
e = in“t e
4, = é-“; e dy(t) dt . (B20)
n
‘ o

By substituting the expressions of equations B6, B7, B9, and Bl0 in

the above, H.L and ;'i" can be expressed as integrals over 0,
n n

T
" ::-’-f exp|i2n(6 +E§* sin’0 cos?)] m[-‘-'-:;coa‘i 4+ ein 29] deé

o (B21)
[1 -I»E:—cosie sin 2 9]2

e
[ 1]

T
d, 3 %faxp[iZn(B +—":2 sinscosll’)] wa gin Pcos 2 6 de (B22)

=]

[1+-:3cos@ gin 2 9]2

The main contribution in each of the integrals comes near Vs 0 and
0 = 37z/4, so that for -w—:- ~ 1, a good approximation to the integrals
comes by expanding the trigonometric functions about their values at

these two angles. On expanding 6 and P about these angles, we obtain:
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wa . v ir
di‘n - exp [in ( - cos T+ —Z-)]

a
[ o 2B Y s 90+ 1B s 5 Pee
" 22 " 2
(ES) + 2% &)

(B23)

“ 2
d, s R exp [in( —cos ¥+ —)] f p[-—{((mcz)z+ -}Zje +—}]§e de

(== ) + Do €2 ]
(B24)
where
c 220- -?-2’1 (B25)
(In obtaining equatione B23 and B24, we have set (v 2 wa)
lev/c = -]-‘é-(l-vzlcz) (B26)

and have employeé—. our knowledge of the short duration of the pulse
to claim that the important harmonics will be at large n, and that,
therefore, by the usual stationary phase argument, the limits of
integration can be changed from ( -%31 i % } to (-co, +o0) without
introducing appreciable error.)

The exponential appearing in equations B23 and B24 is of the
form of that occurring in the Airy integral ~-~ as given on page 190 of

Watson (1944):
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Q0 o0
Ai(s) » j cos(t> #xt)dt « 1/2 f exp [({34x1)] at
o =00
x 2x {x
T — K (—) , (B27)
3 1/3 313

and, in fact, by integrating by parts, equations B23 and B24 can be
expressed in terms of an Airy integral and its derivative, and hence
in terms of modified Bessel functions (Westfold 1959). To obtain the
power spectrum, one forms I ;'iu ' and ldi. ] .
As will be seen later, ﬂ:le quantities which enter the calculations
of the radiation power spectrum from a group of electrons are not
2

"l and IHJ_ I , but rather ’3" ané IHJ- lz integrated over solid
n n n n

ld
angle. The integrals involved have been evaluated by Westfold (1959).
The resulting expressions for the mean total power radiated in the
frequency band (f, f+df) --- at high n the harmonics are so closely
spaced that the radiation is essentially continuous «-- are the folliowing.
Let pfu) df equal the mean integrated power radiated into (f, f+df)
associated with the electric vectors parallel to the projections of the
magnetic field B in the planes normal to the linés of sight; and let

pf(z) df equal the mean integrated power radiated into (f, f+df), associ-

ated with the electric vectors perpendicular to the projections of the

magnetic field B in the planes normal to the lines of sight.



Then
pfu) Eﬁf—@-— Fm(t‘lfc) (B28)
pl?) = J:'Zf'r;"_ Pt ) (B29)
where
£ 3.—9-3*%: (B30)
4rm’c
©
P00 e 3[[ kg5 (an - ky 0] (B31)
x(n
F(Z)(x). . 1;-[] Ky, (n)én + Kz!s("’] (B32)

and K and K

2/3 5/3 2Te modified Bessel functions. B is the magnetic

field, E is the total energy of the electron, e the electronic charge, p
the permeability of free space, m the electron mass, and c the velocity
of light. All are expressed in rationalized units.

By integrating the above expressions over frequency, one can
obtain the expression for the total rate of energy loss. Alternatively,
the total rate can be obtained directly by evaluating Poynting's vector
from equation Bl, and integrating over solid angle, this procedure
having the advantage that the procedure is independent of any assumption
regarding the magnitude of the electron velocity. The total rate of

energy loss is found to be:
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e
dE 4.8 vZB'?'F.ZZ (333)
dt 4 7
6weom c

in rationalized MKS units.

(b) Radiation from an electron in a helical orbit

Having obtained the desired properties of the radiation from
a relativistic electron in a circular orbit, there is more than cne way
of proceeding to obtain the properties for an electron in a helical orbit.
The direct method would be to find the effective transverse acceleration
for an electron in a helical orbit and then perform the usual Fourier
analysis. This is essentially Westfold's (1959) procedure, although he
does not explicitly take the effective transverse acceleration as his
starting point. Alternatively, one could obtain Schwinger's (1949) result
for a relativistic electron in an arbitrary orbit by ;Joting that the short
duration 7 of the pulse in Figure 3 suggests that the large scale
features of the orbit are not important in determining the radiation at
any instant. Thus, if equations B28 and B32 are expressed in terms
of the radius a of the circular orbit, the equations for an electron in
an arbitrary orbit can be obtained simply by replacing a by the instant-
aneous radius of curvature. (The radiation that would be associated
with an actual change of speed in the general case would not usually be
appreciable since a relativistic particle in an accelerating field appears

to experience a change in mass rather than in speed.)
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In the following, the transition from the circular orbit case
to the helical orbit case will be accomplished via a Lorentz transforma-
tion. The transition is based on the fact that only the relative motion
of the observer and the source electron is important in determining
the radiation characteristics. Thus, the two situations depicted in
Figure 9 are equivalent: the same physical occurrence is simply pic-
tured in two different frames of reference. In the reference frame Z’ i
the electron appears to be following a helical orbit, the velocity com-
ponent along the helix axis --- i.e., 2long the magnetic field -

being v, The reference frame Z is taken to be the observer's

]
ne
frame of reference «-=-i,e., in Z , the observer is at rest. The

,
frame Z moves relative to ): with the axial velocity -‘;n ' of the
electron. In E s then, the electron executes a circular orbit while
. == -
the observer moves with a velocity v, = -v, ',

We shall need to keep in mind the following Lorentz transfor-
mation relations (primed and unprimed quantities referring to E and
Z , respectively):

I. The electron in the circular orbit which has the energy

E in Z has the energy E'in Z » where
2, 2,-1/2
c

E'sE(lev /

) (B34)

II. If the line of sight in Z makes an angle ¥ with the
plane perpendicular to the magnetic field, then in Z the

angle ie



' Helical orbit and “stationary” observer

> Circular orbit and “moving” observer

e et = '—VIV't I

—

Figure 9, Electron motion in a uniform magnetic field as

1
seen in the two reference frames E; and.E: 5
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sin¥ (v, /<)

’1)/ 2 gin’ [ ] (B35)

1+(v, /c)ein P

the + sign being used if ¥, is in the same direction as B

and the - sign if in the opposite.

II1. A differential solid angle df1 at the angle ¢} in Z transe

IV.

V.

forms into the differential solid angle d.' at the angle

&
P'in E ,» where

lovzlc2
da' = ! > dfl, (B36)
145, /c)sin]

the same rule holding for the sign.
The time interval 7 in E » associated with the reception
of a signal by an observer, is measured in the observer's

rd
frame Z to be of duration 7', where

el/2

7'z27 [1-(v, /c)z] (B37)

and so a signal of frequency { in Z will be a signal of

frequency f' in }: » where

-1/2 (B38)

£ 5 11 - (v, /c)°]
The transformation laws for the electromagnetic fields

— R
€ and & are:;
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‘Qpar - ‘epar <"-:peu- ) <S1:;au:-
(B39)
e [1-{v, /21 Y 243 <€)<

perp perp

perp . []"'("""I / ) ] (E"’ i x—e)perp

where the subscript ""par' indicates components parallel
e
to the field B and "perp' indicates components perpen=
g
dicular to B.
VI. Power is an invariant under Lorentz transformations.

Relations II and VI enable us to make a statement, independent

of any assumption regarding the magnitude of the electron energy,

concerning the ratio of the two power components associated with the

radiation electric vectors parallel and perpendicular to the projection

of the magnetic field onto the plane normal to the line of sight, namely,

that:

VII. for an electron of energy E' following a helical orbit,
the ratio of the two power components of freguency f{'
radiated at an angle }'is the same as the ratio of the
powers radiated by an electron of energy E in a circular
orbit at the frequency f and at the angle ¥, where E, f,

and VY are given by relations I, II, and IV,
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That this is so follows immediately from expresesing E’,,/Ej_ in
termsof €, /&, where the subscripts refer to components parallel

and perpendicular to the line of sight. Thus, we have from V,
EjcosT = E‘.’" cos ¥, (B40)
which, using II, leads to

14(v, /c)sin D

. £ (B41)
" "
1w, /)%
Using V, and the fact that
:é- @ T x Elc " (B42)
we find
£l o 1#(v/c) sind £ ' (B43)
(1-vy /)12
Finally, then, from the equation
Ell . Eu ’ (Ba4)
C.L E_L

we see that the ratio of the associated primed and unprimed Poynting
vectors are equal.

Applying the information of relation VI to the power emitted
into the corresponding differential solid angles dfl' and dQ0 , one

can then make the statement that
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VIII. for an electron of energy E' following a helical orbit,

the ratio of the iz;tegrated power components at a
frequency f' --- where integration refers to integration
over all solid angle --- is the same as that at frequency
f for an electron of energy E in a circular orbit, where
f and E are given by IV and II.

From relations 1-VIII and the results for the circular orbit,

we can now state the properties of synchrotron radiation from an electron

in a2 helical orbit. We note first that for a relativistic electron,

= (1 - V';?I /callz

sin a (B45)

cos a = vnlc.

where a is the helix angle, i.e., the angle between E and _:‘ . The
results will be stated in terms of a, the energy E of the electron, the
speed v of the electron, and the magnetic field B, where now the primes
are dropped from the expressions. (The brackets | ] contain the rela-

tions and equations involved in obtaining the expressions.)

(1) The radiation is essentially limited to within a cone of apex
angle
2
n*= mc /E (B46)

whose axis lies along the electron's direction of motion.

Thus, whereas in the circular orbit the radiation was emitted



(2)

(3)

(4)

(5)

essentially only about directions at right angles to the mag-
netic field, now the radiation will be essentially restricted
to directions making an angle a with the magnetic field,
[(Bl18, B34, B36].

The radiation comes to an observer in pulses of duration

1 mc2 2 m
T® E( E ) eBsin a (B47)
which are separated by an interval
Z . = > (B48)
gBsinac

[ Bil, B34, B37, B39].

The maximum value of the electric field is proportional to

B sina E‘3 B34, B39, and the fact that th? distance from
the source {o an observer in the radiation cone is greater by
a factor 1/8in a on going from Z to Z/ ]s

The energy per revolution received at a point which is inside
the radiation cone sometime during a period of gyration is
proportional to B sina E4 [B47, B49].

The power received at a2 point which is inside the radiation
cone sometime during a period is proportional to B sinza E

(B47, B48, B39].
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(6) The total rate of energy loss is [B33, B34, VI]

dE - equBinsinzu (849)
dt 4 7
61r€°m c

(7) Each frequency component of the electric and magnetic
fields is elliptically polarized (both 3" andd, being
periodic with the same period), the radiation being
left-handed if the angle between the magnetic field and
the direction of observation is less than the helix angle
a and right-handed if it is larger.

(8) Let p!(l) df equal the power radiated into all directions

in (f, f+df) associated with the electric vectors parallel

to the projections of the magnetic field B in the planes
normal to the lines of sight; and let pi( 2) df equal the
power radiated into a2ll directions in (f, f+df) associated
with the electric vectors perpendicular to the projec-
tions of the magnetic field B in the planes normal to the

lines of sight.

Then 1328-332: B3B| 3391 Vil ]l

3
1 [3.e cBsina _(1) .
Pf() . e st a e ) (B50)
s ,
PJE(z) i Ep.;:iﬁina F(a) (€/1) (B51)
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where
2
3eB sin a E
£ o 3 (B52)
47m ¢
o0
(1) x f
Frix) e 5 [ K5/3(")d" - K, 5= ] (B53)
x
@
(2) x
F00 « 2 ([ kg man 4%, 00 ] (B54)
x
and K and K are modified Bessel functions, E is the total

2/3 5/3

energy of the electron, e the electronic charge, p the permeability of
free space, m the electron mass and ¢ the velocity of light. These
results are expressed in rationalized MKS units, Equations B50-B54

agree with the results of Westfold (1960).

2. Radiation from a Group of Electrons

In this section, the properties of the radiation from a group
of electrons are derived irom those for a single electron. The power
spectrum is derived first. Following this, a complete deacription of
the radiation is obtained through a calculation of the Stokes parameters.
The effecte of any intervening or ambient plasma are neglected.
The frequency of the radiation is taken to be much greater than the
plasma and gyro frequencies: the index of refraction is considered to

be unity. Faraday rotation is neglected, which amounts to a requirement
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on the relation of the frequency to the number of electrons and the
strengths and orientations of the fields between the source and observer.
(From Yeh and Gonzalez (1960), we obtain an approximate expression

for the rotation of the plane of polarization,

g - -lz‘-fNMda. (B55)
{ .
where
M =B cos¢ (B56)

and where { is the rotation of the plane of polarization in radians,
K=2.972 x 10'2 (MKS rationalized units), f is the frequency in ¢/s,

N is the electron density in electronslmz. B is the magnetic field
strength in amp/m, ¢ is the angle between the ray and the field, and

ds is the differential distance along the ray.) Collective plasma effects,
such as bunching, are neglected; this is valid when the average energy
of the random motion of the particles is much greater than average
coulomb interaction energies. Absorption and stimulated emission

are ignored. (Twiss (1958) has stated that for net stimulated emission

to be significant, it is necessary that

E_(1) = kT (B57)

f .
where Ec(f) is the critical energy at frequency f --- i.e., the energy
which an electron must have for f to equal the critical frequency fc of

equation B52, k is Boltzmann's constant, and T, is the effective blackbody

f

temperature of the radiation at frequency f.)
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(2) Derivation of the power spectrum

The properties of the radiation from a group of electrons are
obtained from those from a single electron by superposition. For elec-
trons whose motions are uncorrelated, the radiation is incoherent: the
total power spectrum _(f) is obtained by simply adding the power

spectrum Pj(f) of the individual electrons, i.e.
#(1) = ZPJ (0 . (B58)
J

For a group of uncorrelated relativistic electrons emitting synchrotron
radiation, this addition is a simple matter, made so mainly by the fact
that a relativistic electron effectively radiates only into a amall cone
of apex angle mczlE about its direction of motion.

Thus, suppose one wishes to calculate power spectrum of the
radiation in a direction denoted by the unit vector T ,» from the uncor-
related electrons in a differential volume dV at the position ¥. Let
the magnetic field have the value B (¥). Suppose that the number density
distribution function of the electrons is given by p(¥, E, a), i.e., let
p(F, E. o) dVdEda equal the number of electrons in the volume dV at ¥
with energies in the range dE at E and helix angles in the range da at o.
Furthermore, let Pi' (ﬁ.E.a;f) dfda denote the power emitted in the
frequency range df at f into the differential solid angle d{1. whose axis
lies along the unit vector 1. by an electron of total energy E whose

velocity lies along the unit vector s. With the angle between ? and B
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being a, then [p(T, E,a)/2¥ sin ¢ ]dVdEdw gives the number of elec-
trons in the interval dVAE with § in the differential solid angle dw.
The total power radiated into dfl df by the electrons in dV with energies

in the interval dE at E is

2% sin a
W

4 = e -
P47 if)afdQdVdE » [f" A3 P+(B,E,5; f)do ]dfdadVdE . (B59)

Since Br(E.E.;; f) for a relativistic electron is practically zero unless
§ lies within a very small solid angle about T. equation B59 may be

written

27sin a¥

ﬁ%(?'ﬂzm)ff’?(ﬁ, Eogif)d“- (360)

where a* is the angle between 1 and B. In the integral of equation
B60, S is what varies and { and B are fixed. Butif ¢ isa small

vector perpendicular to 3 .

+ ¢ f)= PT (E. E, 5 f). (B61)

If in equation B6l we set s + € s 1 and substitute the resulting expres=

sion into the integral of equation B60, we find

€8] W
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where PT+E(§' E, T, f) dfd)l is the power emitted in the frequency
interval df into tﬁe solid angle d{1l whose axis lies along T+7e by an
electron of energy E whose velocity vector lies along the unit vector 1.
Since the dependence of the radiation power spectrum of an electron on
its direction of motion occurs only through the angle a between its
velocity and E, we may now write for the totzl power per steradian

emitted in the frequency interval df at f in the direction 1 by the elec-

trons in dV,
max
’?T(?; f) dVdf = ml';lﬁ f o(T, E.u*)P(sm.E.a‘;ﬂdEdVdf
E
min

(B63)

where o¥ is the angle between 1 and B.

(b) Stokes parameters for synchrotron radiation from electrons with

an arbitrary angular distribution

To completely specify the nature of radiation, four real
quantities must be specified in each differential frequency interval,
the four quantities relating to the intensity, the degree of polarigation,
the plane of polarization, and the ellipticity of the radiation (Born and
Wolf (1959)). G. G. Stokes in 1852 pointed out that it would be con-

venient for the four quantities to have the same physical dimensions,
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and introduced four such parameters in his investigation of partially
polarized light. The Stokes parameter description will be employed
here in specifying the nature of synchrotron radiation from a group
of electrons.

Chandrasekhar's (1960) terminology will be used. Thus, select
two mutually orthogonal directions T .Tr at right angles to the

4
and the direction of propagation forming

-
1
r't

a right-handed coordinate system. For a beam resulting from a mixture

direction of propagation;

of several independent streams of elliptically polarized light, the

Stokes parameters are

D i (B64)
6 » LoWe L% 28 _cos 2%_ (B65)
v =Tu®. ¥ 1(“)cosapnah 2% (B66)
v o= nvi® . T, 28 (B67)

(@) ) g o)

where 1 define the average intensity, the plane of

polarization, and the ellipticity of the component streams, the latter

two through the following relations: (a) The principal axes of the ellipse

traced by the end point of the electric vector are in directions making

angles X and -#'*-?/2 to the direction T. and (b) tan ﬁ(n) is the ratio
X+u/2

of the axis in the " - direction to that in the X direction of the ellipse

traced by the end point of the electric vector (the numerical value of §

lying between 0 and 'g- » and the sign being positive or negative according

as the polarization is right handed or left handed).
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These are to be evaluated a2s functions of the frequency f.

An experimental procedure for determining the properties of
the radiation consists of introducing 2 known amount of retardation in
the phase of vibrations in one direction relative to the phase of vibrations
at right angles to it, and then measuring the intensities in various direc-
tions in the transverse plane. Thus, suppose the component in the ?r
T
y

terms of the Stokes parameters, the intensity received in a dir-ection

direction is retarded by 2 phase € from that in the direction; in

=
i

! is (Born and Wolf (1959))

making an angle V¥V with respect to
I(V,€) =1/2[14Q cos 2¥ + (U cose -V sine)sin 2V] . (B68)

Cne finds, then, that

I =1(0°,0)+1(90°,0) (B69)
Q@ =1(0",0) -1(90°,0) (B70)
U =1(45°,0) - 1(135°,0) | (B71)
v'  =1(45°, -;f) - 1(135°, %) (B72)

The parameter 1 is the total intensity. Q is the amount by which the
intensity transmitted by a polarizer which accepts linear polarization

in the T! direction is greater than that transmitted by a polarizer which
accepts linear polarization in the Tr direction. U has the same inter-

pretation with respect to the directions X = 45°® and 135°. V'is the

amount by which the intensity of the radiation tranemitted by a device



which accepts right-handed circular polariszation is larger than that

transmitted by a device which accepts left-handed circular polarization.
The calculation of the Stokes parametere for the synchrotron

radiation from relativistic electrons in dV is straightforward. Denoting

the parameters at the frequency f for the radiation in the direction T

and at a distance R from the differential }r?lume dv(7T) by

I 04V, O L (F.04V, Up  (F.0aV a,ngd Vi o (F.0V, we have

immediately that

E

Et(?:t')dv ) f N

er(?. f)av = 3 " p{r,E,a®)P(a*,E,f)dEAV
! R R 27sino® o
min
(B73)
Furthermore, it is apparent that
(] b
v?.R(r.t)dv =0 . (B74)

since for ev_rery right-handed (ﬁn>0) contribution, there will be an e,qua.l{ ;
left-banded (Bn'(O) one (2 result of the small range of helix angles a j
contributing, and the fact that if the line of sight makes a smaller angle
o* ', with the magnetic field than a, the radiation is left-handed, whereas
if the line of sight makes & larger’ angle e* with the magnetic field
than a, the radiation is rightehanded). |
The parameters Qr'R('r', f)dV and UT.R(?' !)dV are easily evalu-

ated by recalling that in the direction 1 the principﬂ axes of the
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radiation ellipse from an electron in 2 magnetic field 3 are in the

directions
E_:‘—B)_-ﬂ and BTL— . (B75)
|Blsin a* |Blsin a*

This means that to a good approximation the angles x appearing in
the definitions of Q and U in equations B65 and B66 can be regarded as

equal for all electrons in the differential volume dV. Thus,

Emax o
Q (Fi)aVa S‘-’?"'}- j f pT(E(?). E,a;f)cos 28 p(F, E,0)dadEdV (B76)
* R

Emin °
E T
max .
Y R(?. f)dv ~ ‘in:z f jP.i.(g(?) +E,a;f)cos 25 p(¥, E,a)dadEAV
! R
Emin ° (877)

Take

1/2

Tl- (?x-g) x1 2
l , BinX = #{lecos x) , (B78)

Icns‘t.l = o
|Blsin a®

the sign of cosX to be positive if either (?x-ﬁ)gor Tx(ixB) lies between

i andTr, and negative otherwise.

1

Then, since

cos 2p = coszii - slnzﬁ ¢ (B79)

it is seen that
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PT(EG‘).E.MQ cos 2 ®

P @B(7).E.ai) - 22 (B, E, i) (B80)

where Pr(l)

and Pr(z), reaspectively, are the portions of P-{- associated

with the electric vectors parallel and perpendicular to the projection
of B in the plane normal to T

By exactly the same arguments as were used with Pr to obtain
equation B63 from equation B59, the following approximations may be

employed:

i

f D (3.5, aif) oE E,a)da =
(]

(B81)
Bt ) (5(3), B am
ﬁsip a®
T
P{.(Z) (B(¥),E,aif) o{F,E,a)da =
- (B82)

of.E.a) p(2) (B(H),E,a%9)

2m:in o®

(2)

and P are the integrated functions for a single electron

(1)

where P

defined by equations B50 and B57. Equations B76 and B82 yield:
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i = COs8 Z%
Q{,’R(r.ﬂd\f

R 27sin a®

max
| wteeen (593, £ranin ' (B83)
E .
mn
B2 (B(), £, a%1)] dEQV

and

gin 2%

Us (T, f)av &
T,R R 2wsin a®

max
_/ P(?v E,a®) [P(].) (5(?). E,a®;f) (384)

Emin

-P( %) (E(?), E,a%;f) |dE4AV

Equations B73, B74, B83, and B84 give the Stokes parameters
for the synchrotron radiation from the electrons in dV. The functions

141) and P(z} are given by equations B50 and B5]1, and
ps g0y 42 © (B85)

For a given magnetic field configuration, if the density distribution
function p is known, we have here a complete description of the proper-
ties of the synchrotron radiation. The results are summarized in Table
IV and Figures 10 and 11. In Table IV, the cumbersome subscripts and

arguments, 'R.g(?).t have been omitted, and the combinations of
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TABLE IV. STCKES PARAMETERS FOR SYNCHROTRON RADIATION

This table lists the Stokes parameters of the synchrotron
radiation in the frequency range df at f from a distribution of electrons
p{ E, a*) in the differential volume dV. The observer is taken to be a
distance R from the source; B is the magnetic field intensity at the
source; p(E,a*)dVdEda is the number of electrons in the volume dV
with energies in the range dE at E and helix angles in the range da at
a® . where an electron's helix angle a is the angle between the magnetic
field and the electron's velocity; a*® is the angle between the magnetic
field and a vector 1 directed toward the observer. The angle X is the
angle measured clockwise by the observer from the (arbitrary) coplanar
vector 1, involved in the definition of the Stokes parameters to the pro-
jection ol the magnetic field onto a plane at right angles to the line of
sight, (i.e., QdV is the portion of the intensity IdV with electric vector
along the direction 1, minus the portion of 1AV with electric vector
along the direction -i'r = _i':l xT). The functions F(x) » x{mKsls(q)dn

and E‘p(x) = xK_ _(x) are plotted in Figure 19 .

2/3

I(f)aves » EEE;I;‘ifp(s.ut)F(uf *)dE
c
. R
R p¢
u(f)avae = =<2 ’i";‘z“d‘ f o(E,a®)F (£/f #)dE
R L
VY(f)avas = 0
where
fc" s LB sin o® Ez
and
-1 -1

C «3.73 x10"% org sec”™ gauss

L 21,608 x 1013 cl/s gauss.1 ZB!W.Z
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constants have been evaluated. In Figure 10 (plotted from figures
given by Westfold (1959)), the functions F, Fp and Fp/F are presented.
The range of energies and magnetic fields which can be of
importance in giving rise to synchrotron radiation of given frequency
is shown in Figure 1l. In this figure, some flfc contours are plotted
for electrons on the energy - magnetic field plane. An electron of
energy E in 2 magnetic field B will radiate most efficiently at the

frequency f for which

%— s : = 0.3 .

c LB sin a Ez

In the upper left hand corner of the diagram, the function F( 96? - )

c
is plotted. The function would be simply shifted, shape unchanged,

perpendicular to the E/fc contours for different frequencies. Some
f/fc contours are also shown, where

27 eBcz

.t E " (B86)

is the Larmor frequency of an electron of energy E in a magnetic field
B. Points lying along these contours are of importance in defining

the radiation in the '"cyclotron radiation' region of the diagram. The
latter is the region of relatively low electron energies. The dotted
line at E = 5 Mev might (somewhat arbitrarily) be taken as the dividing

line between cyclotron and synchrotron regions.
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The region on the diagram for efficient synchrotron radiation
for wavelengths up to 68 cm is identified as being above the curve
£ 2000 o
=~ ® =——= and to the left of the curve B =1 gauss. The smaller the

£ £
c c

magnetic field, the higher the electron energies required; thus, at
B » 1 gauss, the minimum energy effective for synchrotron radiation
is on the order of 5 Mev, whereae at B s 1/100 gauss, the minimum

effective energy is about 20 Mev.

(c) An example: power law distribution function

To illustrate the type of behavior to be expected, consider the
radiation from a group of electrons with a power law distribution in

energy and 2n arbitrary angular distribution:

n r.a)E'( v E un<E<E___ l
(B87)

o(F,E,a) = {
o otherwise

Then, using the results of the previcus section,it is found directly that

(2g2in dropping T from the arguments):

xma
. x
v/2
1f)av » < — 8022 a(ain oY zdvf x (22 prnay
Rt | x:nin
x (B88)
max
v/ 2 5
Q(f)av s -Ci: B(y+2)/3n( u')(sina‘)yl zcos ZXde X(Y‘Z)/“ F (x)dx
2R “gY a 4 P

min

(B89)
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X

/2 e
«CLY (y+2)/2 v/ 2 (y-2)/2
U(f)av = W B n(a®)(sina®) '’ sin 2XdV 4 F‘p(x)dx
min
(B90)
vf)dv = 0 (B91)
where
f f
x @ 7% s 5 (B92)
c LB sin a®E
and
f f
x = » X s . (393)
min ;B osin g’ MAX | B sin o®E
max min

The integrals have been discussed by Westfold (1959)® who uses the

identity
® o @
jg"lf K, _y(n)dndt = v”f ¢" K (€)de- ""[_[ K, E)e-K, ()]
., ) (B94)
to write®;
xmax
[ <=2z g (e o j"‘mm AL (B95)
min

and the correspoading equation without the subscript "p", with

*The 7 and ,Jp functions here are obtained by replacing y in West-
fold's G and Gp functions by y+l.
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vy 2xY/
s s = ) - (P -F )] (B96)
g [ ek, (e (897)

The variation of the Stokes parameters with frequency depends

on the variation of the functions #(x) and %(x) with frequency. Cone
sider four cases in which .J(x) and ,3?(!) are expressible in terms
of easily calculable functions. The first case occurs when X in ™ 0

and x — oo: for then,
max

Y (2and * e, Hw)r Hleo) w0, (B98)

and the values at the lower limit are found from the formula

(o e}
f xs-lKv(x)dx x g r( -15 8 = %v) r(lz- s + -lz-v) Rs >Rv! (B99)
o

to be

3y+Z 3y+10

ﬁ()SZ(Y -2}/ 2 r(

)

L 10

) y>-= (B100)

T -
2(0) * (—,) go) « 2V H 2 )rplg‘—zpr(_‘{i) o 3

(B101)

(Biermann and Davis (1960) point out that practically, the condition
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s < 0, > 4.
X 0 and X oy © may be replaced by X ins 0.01 and X ax 4.)

The second case occurs when X ax € 0.0l. Series expansion of the

modified Bessel functions gives

1/3

F(x) = 2.15 x (B102)

(at x 8 0,01, this gives a value for F(x) 4% higher than the rigorous
formula) and

E‘p(x) ~1.078x Y3 | (B103)

the corresponding expressions for & (x) and gp(x) are

10 1
Yy
b e 3 o) -2, = BV (8104)
and
J(x) s ,é’(o) L (B105)

Z

The third case obtains when X in 210. The asymptotic forms of the

functions F(x), Fp(x), 4 (x) and .J/p(x) are:

Flx) s (5)/2 ™2 (14 2 4een) (2106)
F ( x) (3 = “‘" "‘xl"z(1+=f-72-;‘-+---) (B107)

(%)H2 STHE o (B108)

Hlx) = ,g{@(x) ~
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where the forms for &(x) and ,&p(x) are obtained from the asymptotic
form of the incomplete gamma function given by Erdelyi, et al. (1954)
x

f g(Y-I)IZ e-g ag = [( E-z:-l—) - (%)1/2 xh-l)’z e ™ 4 o] '1,:) . (B109)

o]

Westfold has pointed out that a fourth case occurs when

. In this case, use of the formula

&

3

a
f 6 K (8)dg o XY K
b4

vt Qv <1 (B110)

gives
TACEE A N (ve % (8111)
J(x) = % Fl K”s(x) -% /3 [F(x) . Fp(x)] , (ys -i-) (B112)

Westfold gives tables of & and ,éfp for this case.

The Stokes parameters for the power law distribution function
are summarized in Table V, along with the degree of polarization
P = .IQ% . The simplified forms which obtain for the four special

cases are also indicated. It is interesting to note that in the first three

special cases, the degree of polarization is independent of the frequency.
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TABLE V., STOKES PARAMETERS AND THE DEGREE OF POLARIZA-

TION FOR SYNCHROTRON RADIATION FROM THE POWER

LAW DISTRIBUTION:

> y=(y+1)
<E<
nkE )i E min E B
AT, E,0) =

0 ntherwise

In the table, x , = f and x @ i
mi

LB sin o®E mMaxX ;B gina®E°
max m

in

See Table 1V for an explanation of the remaining symbols. Again the T

is suppressed in the arguments.

Arbitrary y, x ., and x .
min max

/2 +2)/2 /2
W s (v*2)/ n(a®)(sino®)¥ “aV{&(x_ - H(x

I(f)av = max)]

)- &

. x )
min p max

& (x
Q(f)dV = - cos 2L —E

1(f)av
H(x . )~ J(Xméx)

min

Ulf)av = tan 22 Q(f)dV

vi{f)av s 0

PRNUNE.CHELE LN

‘g(xmin) - 'g(xmax)

where 10
y‘l'-—é- 2)‘\4/2
Y = 5 ) - g [FR)-F () ]

g [ 8%, (0
ACRN RO

X



TABLE V. (cont.)

. =0,

Special case:
min

x X —= OO

max
[CL\" .

R

Kf)av =

(1-4)l2 !+10/3 F(3I+3 i[_'(
12

(y+2)/2

(mu,v’ * n(as)av] T;Té.‘

Q(f)dv = - L — 2% 1(f)av
y+10/3

U(f)dV = tan 2X Q(f)dV

vV(f)dav = ¢

o X2
y+10/3

cos 2%

Special case: x £ 0.01
max

2
/3(

o 6.45 CB “n(a¥dv [ 1

2.1/3 1/3 (3y+2)/3
R7L™ “(sin a¥) Emin

I(f)av &

3 =cos 2%
2

-8in 2%
a

Q(f)av @ I(f)av

u(f)av & 1(£)av

VY{(£)av = 0

y

~ =c08 2%
B e
2

E

(3y+2)/3

max

] f1:‘3

Special case: x
m

. 210
in

1/ 1/2_3/2

CL B

;31252

I(f)av =

£

LB sin a® IEZa

max

n{a*)(sina* )U 2av I:exp{ -

fUZ Ey-l

exp( -

max

£

LB sin o® E

f1/2

y-1

E min

z.)}
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TABLE V. (cont.)

o(f)av & « cos 22 I(f)aV

U(f)dV & - sin 2X I(f)aV
V(£)dv = 0

/f =_] cos 2L

Special case: y » 2/3

1/3
1(f)av -—L—‘,_fl-h— B2 n(a#)(sin a9/ ?av6(x_ )-G(x__ )]
Q(f)av s -cos 2% & m‘“) “‘a") 1(f)av
G (x a:)
U(f)aV = tan 2X Q(f)dV
V{(f)dV = 0
Gh(x_. )-G (x )

*min P max

/f - "CO8 2K -
G (x )-G (x a.x)

where
w 1/3

1/3

" 3 x <3

K3 1 = [F(x)-F (x)] .

(G:(x) and G (x) are tabulated in W estfold (1959).)
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APPENDIX C

A Derivation of Relativistic Drift Velocities by the Asymptotic

Approximation Method of Bogolyubov and Zubarev

In this appendix, the asymptotic approximation method developed
by Bogeclyubov and Zubarev (1955) for the treatment of systems with
rotating phases will be used to provide a systematic derivation of drift
velocities for relativistic charged particles. Bogolyubov and Zubarev
have themselves applied this method to the derivation of drift velocities
for nonrelativistic particles in time-independent fields. Their treat-
ment has been extended by Fried (1960) to the case of nonrelativistic
particles in time-dependent fields. The purpose of this section is to
remove the restriction of Fried's work to nonrelativistic particles, and
so to obtain drift velocity expressions which are valid for relativistic
particles in time-dependent fields.

The asymptotic approximation method of Bogolyubov and
Zubarev is a formal method of solving a system of differential equations

having the general structure

dx
a s X (x, B.t)
29 o Ao(x.t) + Ax. 0,0 , (c1)

dt
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where x and X are vectors in a space of any number of dimensions,

@ is the rotating phase, X(x,0,t) and A(x, 0,t) are periodic functions of
6 with period 27, and A is a large parameter. Their form of solution
has the advantage that it is separated into a systematic partand a
"shivering." More explicitly, Bogolyubov and Zubarev show how to

perform a transformation of the form

§1(i. 8)

- 1
x®ex + Y + Of —5_-)
A
- (c2)
_ (x,8)
=6 + ! + Of 2. )
A 2
A
such that in the transformed equations of motion,
dx " 1 c 1
& * & 5 NE =)
A
(c3)
a0 » 1 - 1
3 freEDr e (KD 5 b+ o(5),
A
the angular variable 6 does not appear, and such that
(6(%,8)) = (uw(x.8) =0, (C9)

{(where the brackets indicate an average with respect to §). The ¥ and
] represent the averaged behavior of x and 6, whereas gl and w
represent the '"'shivering,"' i.e., the oscillations about this average.

The method begins by substituting equations C3 and C4 in equation CI:
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keeping terms up to Q(-%) and equating terms of the same order in
A, this leads to a systemlof four equations for the six functions é‘;l. U
Xo' Xl. \!Jo and 411. Equations C4 bring the total number of equations
up to six.

If the functions X(x,6,t) and A(x,6,t) are expressed in Fourier

series in 0 so that equation Cl takes on the form

dxc ©
- sX(o) + ). [E‘ncosne-an sinn 6 ]
1
(cs)
daé

©
-d—t-'kmi-A(o)i- ; [fncosnﬁ-rgnsinnﬂ] ’

then this method leads to the solutions

x=i+-1—§ -1- (P sin n#-G cos né) + 0(—1-)
@A 1 n o n lZ

9-5-1»-!—5{}-({ sinnf - g cosne)-—l—(i‘ cosnd + G slnne)-év"—)
wA 1 n'n n 2 n n ox

@n

& O( —E) ’ (C6)
A
and to the transformed equations of motion,
7
dx 1 1 8w 1
dt . X(o) + 2wA 1[5: (FnGn-GnFn) ox (fns‘n+ gnan)+ n
(€7)
SGn BGn 1
(Fn. dx .-Gn- 53 )] +O(F)
= 2
a9 1.1 8w , 1
dt A whh(o) + 2w 1 [Zmz(FnFn* c'nan)' Bx8x+ n (Fn Bgn- Gn éfn )
ax 0x

1
1 2 —)] -
vlito gr) e o 2g 00T

nw "n n
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(A dot has been used to indicate inner products in x-space. All quan-
tities on the right hand side are evaluated at X .)
To apply this result to the case of a relativistic particle in a

magnetic field, we shall start with the equations

(C8)

(where m is the (relativistic) mass, e is the particle charge, Vv is
the particle velocity, c is the speed of light, B is the magnetic field
and F represents the sum of electrical and gravitational forces.) Since

our interest is in drift velocities, we shall combine these equations to

give
K iFavaas. (BT (c9)
c
where we have also introduced the angular velocity
s« 2 (c10)
mc

To put equation C9 into the form of equation C5, the rotating phase
must be explicitly exhibited. For this purpose, introduce a coordinate

system with one axis parallel to the local magnetic field. Define three
:. T T
i 12 and i

order define a right handed coordinate system, and such that the third

orthonormal vectors, such that the three taken in this

lies along the magnetic field,
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In this coordinate system, we write

- - - -
v % W cos le-wsin612+ui3.

It is also convenient to introduce the unit vectors

T 341; cos 6 -Tz sin 8

and
A
o

:81-31

.

For then,
? s u?s + wo P

and equation C9 becomes:

ol DT N (Y" 01 sin 0)-woF 3
ul, + wo 3+ wlijcosf-i,sin )=w

= - (:E'Ts)ua (-E:‘ 7) =
Fewlw T -[ 3 + 3 wu-] 13
[ [~
e
- (F i3) uw + (E'?) wz] T
2 2 g
c c

where the dot over a quantity has been used to indicate the transport

derivative, i.e.,

. da
a = = +v Na

ot

(cu)

(C12)

(C13)

(C14)

(c15)

(C16)

(C17)

Taking the scalar product of equation Cl6 with?;. Tand T, and using

the relation
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- - - L=
13(11c059-izsin9) --u'-i3 . (C18)

the following equations are obtained for a, w and 6

) l"’-i (c19)

c
. F- —_ A - U —
9=AW-T +1-(i1c036-1 sxn6)+wf 3

2

The quantities 7, 04, andd,

pressions all contain the rotating phase 6, To put equation C19 into a

appearing in the foregoing ex-

form where the asymptotic expansion formalism may be easily applied,
the explicit dependence of quantities on 6 should be displayed. Thus,

following Fried, we write

r 8?3 - —_
-g'o_rs ] -0’" —Et— - G"(uia + WO’)'V 13
z (sin 61, e"')-éT3 Zo.g-~ ‘"””("Ti )Vi
sinBi 08 61i)) === Vi =
wein 260 7=~ > —
—— (1 + Zil) V13 ’ (c20)
-~ dv > 61,
. - =— + __
Tl 8 dBi -(COBBi sinﬂi) 2T
S e e T +
+lw stB(ilil 2 Z)+w cos 29(1112+izi1)] AN (Cal)
and
7. (l cos 9-1 sin 6) = —(il iz ll) = -11- Et_ -w i1° [(11coe 6-1251:1 9)-?12]
(cz2)

where
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3 = B A (C23)

1f we now identify the vector consisting of the displacement T and the

velocity components u and w as the vector x of the formalism,

e

x = u (C24)

the comparison of equations Cl2, Cl19-C23 with equation C5 for %x; gives

the following results:
-

2 3 3 "2
(-
- Wll =
Fos|w ¥ T - ( -il) _!%1 F,=|w (illl- 212): Vi,
2 € -uw 2
1 (F1T,) %
il
c
P
--.m‘2
- 3
e 63 -"T wu 2 - -
G1 | ewl, e (F- 2)—2' G2 2 | -w 1112+i2 l) Via
- - - 2 ¢ uw 2
-? 1 +(F=1 )L
2 2 2
?-T e ‘: e o T iy
f = 2 - wil'(Viz)'ll g * 1 + w12'(V12) il
w
= + : o' *
£, ® ufi)i, + T,0): Vi g, = ulii Lsz).Via (c25)
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with all other Fn. Gn' fn and 8, equal to zero. In these expressions,

the variable :-F? is given by:

o

T:eF-u %% (C26)

(=]

The expressions for X(o), Fl and Gl differ from those for the non-
relativistic case, although the remaining quantities are the same. To
obtain the relativistic drift velocities, we need only apply the results

of equation C7 to the _gl_i: components of Az . With the

dt dt
oG oF
da(x w! . 4 i
(FzGZ-GZFZ) el szzi-gzﬁz and F,* == - GZ, 5 terms

giving zero contribution, we find

d? - 1 _2 . Vs \%q8 __Z b g - - " -
It us tag (B iy e {01 L 0T )
+T(FT )-’(_b-?)-iiz{i i, vig- (F ), -(F1)1} )
AR TP R 1"V 457"V, 'z Y
2 sT. 5T 2
1 ey AW T TR 3 »%
+ o5 {FEDE-F-L)N15 + 50 {m @ i, = i —
c 6t &t Qe
FTT P T B FET AT L (FTT-FIT)
A Fr it oo g (Fifd - el ) = (Fi i -F i1 ,)}]
Qe
1
§ Gl ) (cz7)
x

The portion in the second square brackets is absent in the non-

relativistic case. Substituting



fAw . MAw O w WA w

ot = Bl Tl (C28)
c -V c =V
in this equation, and rearranging terms, equation C27 becomes
d-i'- - 1 R v - -~ > - -, B
— + — i, =i * eee— i =11 - - .
g * ot s (A AT 5 - ) 3*’({112 L)
- — —_ — - — - — -.b
+ T (i D)) T <V, 4w 11]} : (c29)

This is exactly the same as the expression obtained in the non-
relativistic treatment (Fried's equation 47) except that here the rela-

tivistic massm ® o must be used in evaluating Aw . This is

vz )
i ets] B
[1- =]
c
the result one would expect from the familiar kinematic-type derivations
of drift velocities.
The expression may be reduced to 2 more familiar form by

using the identities listed by Fried in his equations 48 and 4%:

T F o T o F T B« GR-TT)F pree)
and
(i vad) e T (v T )0 7)) o T, 0T A v A 6T v T,

.?‘Z(E'ZTZ),V?} =‘;2-v‘{1 ."1.v'i"2+ (-?1*1 +1,0) (0T)- i . (F49)

One obtains finally



- >
i -2 g1
ar [:’ '3 W o 3 > o 1
——— d — e, - ] i 'v —
T ¢ L8, x5 v e - Fralg? w9 ase()). (c30)

The first term u—‘:'s represents motion along the field line. The second

term is the B x VB drift:

: 2
v, * ﬂg_ (B xVvB) . : (c31)
ZeB
The third term is the ?xg drift; e.g., if F = -?-r%- , then this

describes the drift due to crossed electric and magnetic fields:

- _ ExB
Ve ® ¢ xz i (C32)
B
The last term is an F x B type drift, with the centripetal force®
hy
- 3, _» > -~ . ;
-mu[-—— ¥ uis' sz] playing the role of F. The relativistic drift
ot
velocities are obtained from those for the nonrelaiivistic case simply
2 -2
by replacing the rest mass m by the relativistic mass m = mofl- -Y-E)
c
wherever it appears.
#(That this is a centripetal force is made clear by noting that
T, . L
FTa +u i3- v 13. being the rate at which the velocity 313 is changing -

direction, may be written as the cross product of ’1'.'; with some angular

velocity ﬂ', i.e. 8"{
J i 2 mme= $ Y 2 . J .
' xi ot 1, i3

The assertion follows immediately, since the centripetal acceleration

associated with a velocity Ei_im'3 undergoing a rotation o' is F'x '\Z\T3 .
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APPENDIX D

Numerical Results for Synchrotron Radiation from

Ultrarelativistic Electrons in a Dipole Field

In this appendix, the numerical calculations described in
Table II, page 32 , and in the related discussion on pages 29-40
are summarized in graphical form. The calculations were done on an
IBM 7090 computer at the Plasma Physics Laboratory of the Boeing
Scientific Research Laboratories: the problem was programmed for the
computer by George Pettigrew and James May of the Applied Math-
ematics Section of the Boeing Airplane Company.

The symbols and cases mentioned in the following are explained
in Table II and in the related discussion. The first three figures,
Figures 12-14, apply to case (i) in which the radiation originates from
a group of monoenergetic electrons. Figures 15-17 apply to case (ii)
in which the radiation is due to a group of electrons with a power law
energy spectrum. The final three figures, Figures 18-20, apply to
case (iii) in which the radiation comes from a group of electrons with
a power law spectrum with cutoffs. Figure 12 displays for case (i) the
first and second Stokes parameters and the percentage polarization:

more specifically, Figure 12 consists of histograms of IIAI. Q/AI and
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pe® Q/Ivs, !/rE = sin°> 8 cos ¢. In Figure 13 are plotted for case (i)
the normalized cosine transforms JI -fm (IIAI) cos kf df and

QI "[m (Q/AI) cos ki df and the degre: of polarization p! s Ql/J‘.
Figur: 14 presents for case (i) the transform results with respect to
the polar direction; i.e., in Figure 14 are plotted the normalized cosine
transforms JY =fm(IIAI) cos ky dy and Qy 3jm(QIAI) cos ky dy ,
and the degree of p‘:alariaation P, B Qy/Jy ; whoere ysrcos@s

r ainzﬂ cos @, Figures 15-17 and Figures 18-20 are the analogous

E
plots for cases (ii) and (iii), respectively.#*

*Due to the limit on the accuracy obtained with the numerical computa-
tion, the ratios p, and p_ are not shown for those values of k where
the corresponding parameter transforms are very close to zero.
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