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ABSTRACT 

A Stokes parameter description is developed for synchrotron 

radiation from a group of ultrarelativistic electrons with any specified 

distribution of positions, energies and directions of motion. This 

description is used to study the radiation from a shell of ultrarelativistic 

electrons trapped in a dipole field. It is found that the polarization ob­

served for the 31 cm radiation from Jupiter could be obtained from such 

shells provided a large number of the electrons have relatively flat 

helices . 

The problem of obtaining high energy. flat-helix electrons in 

a planetary magnetic field is considered. In particular, the effects of 

large scale magnetic disturbances on trapped particles are studied by 

following the particle guiding center motions through a disturbance. 

The guiding center motions of relativistic particles are determined by 

using relativistically correct drift velocity expressions obtained by 

applicati on of an asymptotic approximation method of Bogolyubov and 

Z ubarev. It has been found that these magnetic disturba nces might lead 

to a high density of high energy. flat helix electrons; however. many 

disturbances are required for appreciable diffusion to occur. Magnetic 

activity at Jupiter must be very great if this type of mechanism is to 

provide the relatively flat helix electrons required for the decimeter 

radiation from Jupiter to be synchrotron radiation. 
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I. INTRODUCTION 

The synchrotron radiation mechanism has been mentioned several 

times since 1958 in connection with decimeter radiation from the planet 

Jupiter. In this thesis, we shall consider in more detail the possibility 

that this mechanism i s responsible for Jupiter's decimeter radiation. 

The published data on intensities are summarized in tabular form 

in Appendix A. The equivalent blackbody temperatures at 3 cm range 

from 140 0 K to about ZOO·K and are not too different from the 130· K 

infrared (radiometric) value given by Menzel, Coblentz. and Lampland 

( 1926). A t the longer wavelengths, however, the equivalent blackbody 

temperatures are seen to be much higher. Thus, at 10 cm, published 

temperatures range from around 300·K to over SOO·K. at 21 cm, from 

2000 0 K to ar ound 3500·K; at 31 cm. around 5S00·K; and at 68 cm, 

from 10, OOO·K to 70, OOO·K. The indication is that the flux density i s 

roughly constant with wavelength in the decimeter range of wavelengths . 

I n Figure 1. the flux density corrected for a thermal radiation of 130·K 

is plotted as a function of wavelength. 

It is rather difficult at this stage of the observations to reach 

very definite conclusions about time variations in the inten .. ities. Ap­

parently, much of the scatter in values may be attributed to noise prob­

lems inherent in the observations. On the other hand, it appears that 

there might be some time variations in the intensities arising from 
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other causes. Most noticeable in Figure I are the variations at 10 cm 

and 68 cm. More revealing in this connection is the graph of Figure 2 

(patterned after a similar plot appearing in Field ( 1961 » in which the 

flux densiti e s corrected for a thermal radiation of 130-K are plotted 

as a function or the time of observation. The low intensities measured 

at 10 cm and 68 cm correspond to observations made in October, 1959. 

and might sugiut that the general level of the intensity changed in a 

time of the order of a few months. The three series of observations 

at 31 cm made in the middle of 1959. the middle of 1960 and the begin-

ning of 1961 --- none were made in October. 1959 --- do not show any 

evidence of a long term variation. Some success seems to have been 

achieved in correlating short term variations (of the order of hours) 

with rotation of the planet. although these results are not conclusive. 

A complete picture of the variations must await the results of further 

observations. 

In addition to the flux measurements. the polarization and the 

E-W angular extent of the radiation at 31 cm have been measured with 

a variable spacing interferometer by Radhakri shnan and Robert . (1960). 

The radiation was found to be .trongly linearly polarized. the radiation 

with the electric vector parallel to the equatorial plane of the planet 

being apPl' oximately 1.7 times as intense as in the orthogonal polariza­

tion (givini a percentage polarisation of 100 [ ~: ~:~ ] ~ 26%). The 
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observations (which were made in April. 19(0) were insufficient to 

determine a detailed distribution of intensity. but are consistent with 

an equatorial ring of mean diameter about three times the diameter of 

Jupiter. The polarization of these observations are represented 

schematically in Figure 3 (which has been copied from Davis and Chang 

(1961a». In this figure the lengths of the double-ended arrows are pro­

portional to the intensitie.s observed for the radiation with electric 

vectors in the indicated directions. 

To explain the relatively flat decimeter spectrum. theoretical 

investigations have been made of four possible sources: (1) thermal 

emission from a deep atmosphere with a thermal gradient [Field (1959); 

Giordmaine (1960)]. (2) free-free transitions in an ionized atmosphere 

( Field (1959); Roberts and Stanley (1959)]. (3) cyclotron radiation from 

nonre1ativistic electrons in a Jovian Van Allen belt [Field (1959. 1960, 

1961)1. and (4) synchrotron radiation from relativistic electrons in a 

Jovian Van Allen belt (Drake and Hvatum (1959); Field (1959. 1960, 

1961); Roberts and Stanley (1959); Davis and Chang (1961a); Kellogg. 

(1961) J • 

In investigating the thermal emission possibility. both Field 

(1959) and Giordmaine (1960) assumed the favorable case of an atmos­

phere with a steep adiabatic temperature gradient in which the only 

absorption is due to ammonia. Both concluded that. although thermal 

emiuion could account for a sizeable portion of the 3 em radiation ---



3
0
-
4
0
~
 

1
5
-
2
5
~
 

3
0
-
4
0
~
 

+
 

+
 

+
 

\+
 +

)
 

+
 

D
IS

K
 

1 
I 

. _
_

 1 
1 

0.
9'

 
0

.6
' 

0
.3

' 
o 

0
.3

' 
0

.6
' 

0.
9

1 

r 

F
ig

u
re

 
3

. 
S

c
h

e
m

a
ti

c
 
d

is
tr

ib
u

ti
o

n
 
o

f 
p

o
1

a
ri

z
e
d

 
3

1
cm

 
r
a
d

ia
ti

o
n

 
fr

o
m

 
J
u

p
it

e
r
. 



7 

in fact, Giordmaine concluded that all of the 3 cm radiation could be 

explained in terms of thermal radiation, it could not explain the very 

high equivalent disk temperatures at the long wavelengths. 

In investigating the free-free transition possibility, both Field 

(1959) and Roberts and Stanley (1959) found that if the radio emission 

were to originate from an area equal to that of the optical disk. quite a 

high value would be required for the integral of the square of the electron 

density over the thickness of the radiating region: 

J 2 25 - 5 
ne ds ~ 10 cm • 

Roberts and Stanley explored the poseibility that Jupiter could collect 

the required atmosphere from hot interplanetary material. They found 

that gravitational forces alone are insufficient. but remarked that a 

magnetic field might prove adequate. 

Field discounted an ionospheric free-free transition source by 

combining the 10
25 

cm -5 figure with the results of observations made 

of radiation from Jupiter at wavelengths of around 20 meters. To date. 

apparently three types of radio emission have been recorded from 

Jupiter. Thermal emission and the relatively-fiat - spectrum decimeter 

radiation comprise two. while the third type consists of bursts of radi-

ation which last seconds or minutes and which occur only in a narrow 

band of frequencies between abo'.lt 15 and 25 Mel sec. Right-hand 

circular polarization haa been reported for a number of bursts [Franklin 
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and Burke (1958)}. The bursts seem to originate in a small area, and 

the determination over a five year interval of the Jovian period of 

rotation from the bursts has indicated a quite constant period [Carr, 

Smith, Pepple, and Barrow (1958»). This constancy haa led to the 

suggestion that the source is rather close to the planet. possibly in the 

ionosphere --- and that the circular polarization is due to the propa-

gation of only a sinale magneto-ionic mode through the ionosphere. 

According to Carr (1959). this polarization implies a magnetic field 

of about 7 gauss. Field concludes that for a magnetic field of this 

Z5 -5 
magnitude. the ionosphere required by the 10 cm figure is too 

dense to allow transmission of the 18 Mcl sec bursts. Field notes that 

high magnetic fields (600 gauss or more) would transmit the 18 Mel sec 

bursts. but that then the particle flux neees sary to maintain the iono-

sphere would not be able to penetrate the fields to do 10. (Field 

estimates that the radiation flux from the sun is too small by a factor 

of 3000 to maintain an ionosphere of such high density at Jupiter.) 

A conclusive objection to both the thermal radiation and free-free 

transition sources is provided by the observations of polarization which 

were made after these sources were first proposed. 

On the basis of the large amount of energy available in non-

relativistic electrons from the sun. Field. until recently [Field (1961)]. 

has favored an explanation of the radiation in terms of cyclotron radiation 
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from nonrelativistic electrons (Field (1959. 1960)]. However. this 

explanation requires an exceedingly high magnetic field: a polar field 

of 18.500 gauss. in order to have the 31 cm radiation originate at three 

5 
Jovian radii. An even higher polar field on the order of 1. 6 x 10 gauss 

is required if in addition a relatively flat frequency spectrum of Xl/3 

is desired [Field (1961)]. Such high fields imply a stiff field pattern 

with few fluctuations or irregularities that could produce diffusion or 

acceleration of the electrons; on the one hand. this suggests a very long 

time constant for variations in the radiation. and on the other hand. it 

is difficult to see how the solar wind could penetrate into such high 

field regions either to supply nonrelativistic electrons or to replenish 

the energy radiated by the trapped electrons. In his late8t article. 

Field (1961) has ruled out his cyclotron model on the basis of the time 

variation at 10 and 68 cm. The cyclotron model predicts that for a 

variable flux. the spectrum is not flat but quite Bteep (varying as xP 

withp$O;> 4 1/3). 

The synchrotron radiation mechanism was first proposed by 

Drake. He suggested that the emission might emanate from relativistic 

particles trapped in the Jovian equivalent of the terrestrial Van Allen 

belt!. It was estimated that a magnetic field in the radiating region of 

5 gauss and a total number of particles 10
6 

times greater than in the 

terrestrial system would suffice to explain the observations. this 

estimate being based on the assumption that the particle energy spectrum 
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was s imilar to the rather steep spectrum observed in the terre strial 

Van Allen belts [Drake and Hvatum (1959). Drake (19 61)]. Roberts 

and Stanley (1959) observed that if the energy distribution were the 

same at all points of the field, a diRtribution as steep as that (- E-
6

dE) 

observed by Vernov et a1. (1959) in the earth's Van Allen belt would lead 

to a very steep radio spectrum (- AS / Z) instead of the relatively flat 

spectrum observed. They remarked that if the Jupiter radiation iR 

synchrotron emission, e ithe r the energy distribution of the relativistic 

electrons is quite different from that in the earth's Van Allen belt, or 

the more energetic electrons are trapped in the s tronger parts of the 

field. Assuming electrons present in a field of 7 gauss with the steep 

-6 
E dE energy spectrum, they estimated the density of relativi s tic 

electrons required in a radiating region which subtended the same solid 

angle as Jupiter's disk and which had a thickness 1.4 times Jupiter's 

radius . A density of 10-
2 

electrons per cm
3 

with eneriies greater than 

I Mev was obtained, a density which they estimated to exceed that in 

the earth's Van Allen belt by a factor 
4 

3 x 10 • 

Field (19 59) discussed the number of relativistic electrons which 

could be expected from various sources. He estimated that the total 

observed radio emission is 5 x 10
16 

ergs sec -1 Taking the source to 

be the size of Jupiter, this would correspond to an outward flux through 

a spherical surfac e of radius R J • 7.18 x 10
9 

cm of -5 
- 8 x 10 ergs 

-2 -1 
cm sec Field estimated that at the earth, the upper limit on the 
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energy flux of electrons in the primary co s mic radiation is only S per 

cent of this figure; that the energy flux of secondary electrons leaving 

the top of the earth's atmosphere is only 4 per cent of this figure; and 

that the rate at which relativistic electrons from the SW"l are supplied 

to Jupiter's disk is105 erg sec-I, only 1/50 of the radio emission rate . 

Field concluded that these relativistic electron sources were not ade-

quate. He decided, however, that the energy flux of nonrelativistic 

particles from the sun was adequate to aCCOW"lt for the emission, but 

that a rather high efficiency would have to be postulated for any local 

acceleration process which would convert part of this flux to relativi stic 

energiea. 

These considerations were made before the large angular extent 

of the radiating region was known. With a larger radiating region. the 

energy requirements are not as severe. The discovery of Radhakrishnan 

and Roberts that the 31 cm radiation {rom Jupiter is polarized and that 

the source is likely to be several times the diameter of the planet. led 

Davis to re-examine the synchrotron radiation possibility [Davis an d 

Chang (l961a}). Energy considerations were supplemented by consicier -

a tions bearing on the containment. time scale and geometric aspects of 

the problem. Table I. taken from Davis and Chang (l961a ), lists some 

relevant quantities calculated for uniform fields of 0.1. 1 and 10 gaus s . 

The entries giving the electron denfiity and the electron energy density 

{ -I are based on I} an energy spectrum n{E}dE • kE dE between the 
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Table 1. Quantities to be considered in connection with the energetic s . 

containment a.nd time variation aspects of the synchrotron 

radiation explanation. E ('\), the critical energy for the 
c 

wavelength A, is the energy for which Schwinger's critical 

frequency is equal to e/A . 

Magneti c field B • a . 1 gaus ,; 1 gauss 10 gauss 

Criti cal energy E for radiation 
c 

at wavelengths of: 

(in lJ!l>,v) 
3em 75 25 7 . 5 

30 cm 2S 8 2.S 
300 em 8 2 . 5 0. 8 

Ti me for energy to go from 
E (30 em) to *E (30 cm) (in years) c • c 30 I 1/30 

Gyrora.dius (or E (30 cm) (in km) 10 1/3 10- 2 
c 

3 
No. of electrons per cm if total 

2x1O - 2 2x l O- 3 - 2xlO - 4 
volume is IOV

J 

Electro~:f.nergy per u-T1i t volume 
(erg em ) 8xlO-7 

2.Sx lO 
-8 8xlO- 10 

B2 ( -3 4xlO-4 
0.04 4.0 s;- erg cm ) 
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critical energies- for wavelengths of 3 cm and 300 cm with sharp 

cut-ofls beyond, (Z) a source volume ten times that of Jupiter, 10V
J

, 

and (3) a figure of Z.8 x 10
16 

erg/sec for the total synchrotron radiation 

power emitted by Jupiter at wavelengths greater than 3 cm. Magnetic 

fields on the order of 1 gauss look attractive: the relativistic electron 

energies required are not ex cessive; the time scales compare favorably 

with those of the observed variations, and it is not difficult to fin:1 rea-

sonable combinations of wave velocities and interaction lengths which 

give characteristic Fermi acceleration times of this magnitude [Davis 

(1958)]; and finally. the fields are not 90 large that the solar wind cannot 

transfer energy to the fields for acceleration processes, but are large ' 

enough to contain the required densities of electrons. 

While discussions based on uniform magnetic fields are sufficient 

to establish certain orders of magnitude, an investigation of the polar-

ization and angular extent of the radiation requires some discussion of 

the actual field configuration and the distribution of electrons in this 

field. Davis has suggested that if Jupiter's field resembles that of a 

dipole, a large fraction of the radiating electrons might have to be in 

fiat helices near the equatorial plane in order to give the observed 

polarization. The general idea is that electrons with steep helices would 

radiate most efficiently from regions of the field which are too close to 

-See page 13 5, 
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the planet to give an extended source or for which the inclination of the 

magnetic field leads to the wrong polarization. Davi s suggests that 

the observational result that the outer regions of the source are more 

strongly polarized than the central region might be explained if the 

equivalent of two shells of electrons are present, the outer shell com-

prieing electrons with very flat helices and the inner shell having a 

somewhat larger proportion of its electrons in steeper helices. A 

more reasonable distribution is a thick shell with the proportion of steep 

helices rising as one goes inward. 

The difficulties encountered by the thermal radiation, free-free 

transition. and cyclotron explanations. and the more favorable circum-

stances provided for the synchrotron source explanation by the recent 

observation of a large source region. have made it worthwhile to study 

in more detail the dipole model and the related problem of obtaining 

relativistic electrons in the desired spatial and energy distributions. 

This thesis presents the results of this study •• 

Section n discussea the radiation from a shell of relativistic 

electrons trapped in a dipole field. Numerical calculationa for this 

radiation are summarized in Appendix D. 1£ it is assumed that Jupiter 

has a magnetic field resembling that of a dipole with axis near the axis 

of rotation. the results of section U and Appendix D show that a large 

~ome of these results appear elsewhere: Chang (1960). Davis and 
Chang (1961a). Davis and. Chang (l961b). 
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portion of the electron. must be confined near the equatorial plane in 

order for the synchrotron radiation to give the observed polarization. 

In section III the problem of obtaining relativilltic electrons in this type 

of spatial difltribution is discussed. Investigation of a model describing 

the effects of large scale magnetic fluctuations on trapped electrons 

yields some encouraging results. A summary of the results is presented 

in section IV. 

The results of a more general nature are presented in Appendices 

Band C. In Appendix B. the properties of synchrotron radiation are 

discussed: A Stokes parameter description is developed for the radiation 

from a group of ultrarelativistic particles with arbitrary energy and 

angular distributions. This treatment provides the basis for the dis­

cussion of the dipole field model in section II. In Appendix C. the 

asymptotic approximation method of Bogolyubov and Zubarev is used to 

obtain a systematic derivation of relativistic drift velocities. These 

drift velocities play an important role in the diffusion model investigated 

in section III. 
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II. SYNCHROTRON RADIA TION FROM ULTRARELATIVISTIC 

ELECTRONS .IN A DIPOLE FIELD 

The Stokes parameter description of synchrotron radiation 

developed in Appendix B is applied here to describe the radiation from 

ultrarelativistic electrons trapped in a dipole field.'" A complete 

definition of the Stokes parameters is given on page 138 of Appendix 

B. Briefly, I measures the total intensity, VI the amount of elliptical 

polarization, and Q and U the amount and orientation of the plane polar-

ized component. Q and U are defined in .terms of the intensi ty • '(,,) . 
. passed by a receiver that measures only the plane polarized component 

whose electric vector makes a specified angle '1 with an appropriately 

selected reference direction. Then Q:: /(0-) - ,1(90-) and 

U:: /(4S-) - 1(13S-). If the source bas a known plane of symmetry 

and this is used as the zero for '1. then U should be zero and the classical 

deg ree of polarization is p:: IQ I I I ,the plane of polarization being 

'1 = 0- if Q > 0 and TJ ",. 90- if Q < 0 . 

In the frequency range df at i, the Stokes parameters of the 

synchrotron radiation from ultrarelativistic electrons in the differential 

volume dV a re: 

·The results of Appendix B are summarized in Table IV on page 145 
a nd in Table V on pages 154-156. 
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I(f}dVdf II: CBdVdf 

RZ f · f p(E, (1 )F{ I.e. ) dE 

a(f}dVdI. • - CB cos zXc.\VdI. 

R Z 

U(f}dVdI. • - CB ain 2X dVdf 

RZ 

V'(!)dVdI. • 0 

f • f p(E, (1 »)" (""TT) dE 
p e 

f · f P{E, a. )F (Ti"'") dE 
p c 

(1) 

(z) 

(3) 

The meaning. of the various aymbola are "iven below. R is the distance 

from the differential source volume dV to the obaerver; B is the magnetic 

field tntenaity at the source; p(E,a.)dVdEda is the number of electron. 

in the volume dV with energles in the range dE at E and helix angles in 

the range de. at a. (where an electron's helix angle a. is the angle between 

the magnetic field i and the electron's velocity); Cl· is the anile between 

the magnetic field and a (unit) vector r directed toward the obeerver. 

The angle X is the angle measured clockwi.e by the obaerver from .. 
the (arbitrary) coplanar vector 1, involved in the definition of the 

Stokes parametera to the projection of the malnetic field onto a plane 

at right angle. to the line olliiht --- i. e •• QdV is the part of the in-

-tensity IdV with electric vector &long the direction i, minus the part 

of IdV with electric vector &lona the direction Tr a r, x t 
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The functions F and F are given by 
p 

CD 

Fq-!.) c /. J K 5 ('1) dTJ 

c f '3 
( 5) 

c 

and 

f .-f • 
c 

-f • 
c 

(6) 

in which K2 and K5 are modified Bessellunctiona of the second kind. 

and 
3 3 

• • 2 
f = LB sin a. E 
c 

The constants C and L have the values: 

-23 -1 -1 
C c 3.13 x 10 erg soc gauas 

13.1 -1 -2 
L : 1.608 x 10 soc gauss Bev 

The foregoing equations indicate that the parameters of the 

radiation from a differential volume dV in the dipole field may be 

• evaluated providing that 1· the magnetic field B, 2· the angle Q • 

• 

(1) 

3- the angle X • and 4° the distribution function P(E. Q ) are known. 

The first three quantities are simply matters of geometry, while the 

fourth depends on the way in which the electrons are injected into the 

field and on their subaequent motion in the field. The differential 

volume dV may be selected arbitrarily. but a proper choice simplifies 
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the integration over the volume to give the tota.l intensity; the behavior 

of an electron in a magnetic fi eld provides a guide in this choice. 



zo 

nA. Geometry 

Conaider first the geometry. The coordinate system adopted is 

shown in figure i. The dipole is taken to lie normaLto the line of sight. - .. The unit vector i haa been taken a.long the dipole. The unit vector i 
r 

is directed towa.rd the ob8erver. and r I a i X r r is in the equatorial 

plane. Polar coordinates (r. 6 •• ) are employed; the length J shown 

-it the projection of r onto the i J direction. A " planet" of radius R
J 

is shown centered at the origin. 

The magnetic field line which runs through the point ( r . e. +) 

11 
intersects the equatorial plane (6 a 2) at the radiull r

E
, where 

r 
r a 

E . Ze 81n 

The line intersecta the planet at the colatitude 6
J

• where 

(8) 

(9) 

11 
In terms of B(rE'I)' the field at the radius r

E 
in the equatorial plane. 

the field at (r, 6 •• ) 18 

z 1/ Z 
(l + 3 cos 9) 

. 68 Sln 

+ having been dropped in the argument because of the symmetry. 

(10) 
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B(r
E
,!.) is related to B(R

J
• !.), the field at the equator of the planet, 

2 Z 
by the equation 

(11) 

The angle a • is f all along the field lines which lie in the plane 

at right angles to the line of sight (+ • 0, + • 11'), and is ~ for all field 

lI' 
lines where they crollS the equatorial plane (6 • Z), At a general e 

and •• it i8 given by: 

and 

. .. ... 
cos a Z i· B 

B 

• 3 sin () cos (} sin, 

(1 + 3 COIIZe)l/ Z 

• Z Z 2 Z 1/ Z 
sin a • (1 + 3 cos e - 9 sin () cos (} sin t> 

(1 + 3 coa 2e)l/2 

(12) 

(13) 

The quantities co. ZX and sin ax entering into the second and third 

Stokes parameters may be found from the relations! 

C08 Z'X • Z _ 1 : 

and 



6in 2X 

• z 
2 2. 

5 sin Q 

For the dipole field, 

and 

- .... 

23 

...... ~ -P ... 

(i '5) (i '5) 
r J 

i • 5 2 
r 3 cos (J • 1 

I: 

5 (l + 3 co/-(J)ll Z 

BO that 

(IS) 

(16) 

(P) 

cos zX I: 
[ 

2 Z Z l ] 1 9 sin e cos (J (1 + cos cp) - (1 + 3 cos 0) 
2 • l 

sin Q (1 + 3 cos 6) 

2 2 2 Z 
:: ·9 sin (kos 0(1 + cos t) + (1 + 3 cos 0) 

9 sinGe cos' (J Sin't • (1 + 3 cosle) 
(18) 

and 

sin 2% I: [ 2] 1. 3 cos 0 - 1 z. 6 sm e COB e cos ~ ( 2 ) 
sin a. (3 cos (J + 1) 

• 6 sin (J cos (] cos t (3 cosZ(J - 1) 
2 2 2 2 

1 + 3 cos e • 9 sin (] cos e sin , 
(19) 
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It is convenient to take the differential volume dV to be that 

along a tube of nux, since the trajectory of an electron traversing a 

region of the maenetic field with a small gradient encloses a constant 

flux. l£ at (1'. a, 4» the cross section of a tube of flux is dA(r. EI) and 

the differential distance along the tube is d5(r. 9), then 

dV(I'.8): dA(r.8)ds( r.8) • (20) 

The crOBS sectional areas at any two points along the tube of flux are 

related by the condition that B(r, 9)dA (1',8) ia a constant along the tube. 

Thus. ciA (I'. 9) can be expressed in terms of dA (I' E' .! ). the cross 
2 

sectional area in the equatorial plane. Expressing the latter as 

we have, 

B (1'.9) 

6 
II sin 9r Edr Ed+ 

(1 + 3 cO\!lZe)I/Z 
(2l) 

Since the dilterential arc length ds is 

2 1/2 cb(r.8): r
E 

sin 8(1 + 3 cos 8) d6. (l3) 

this gtv .. 



2 7 
dV(r.8) : rEsin eded~dr E • (24) 

The volume decreases considerably as the polar regions are approached. 

An additional geometrical factor which may be taken into account 

is the obscuration of the radiating region by the planet. The planet 

lies between the observer and the radiating region when both of the 

following hold: 

i 2(J(1 . Ze . 2 )1/2 R J Ii n - Sin sln.p, < 

17" < q. < 2". (25) 
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IIB. Distribution of Electrons Along a Tube of Flux 

Neglecting scattering, Liouville's theorem may be applied to 

expres s the distribution density of electrons at any point along a line 

of force in terms of the distribution density at the point where the line 

of force intersects the equatorial plane. Since we have p(r. E. a)dadEdV 

particles in the range indicated and since their directions of motion 

occupy a solid angle 21'" sino. dn. then if the distribution has cylindrical 

symmetry about a Une of force, the associated nux density per unit 

solid angle is p/2 1lvsino. , where v is the velocity. Assuming that 

there is no cha.nge in energy, v is constant. Appealing to the well·known 

theorem (a consequence of Liouville's theorem) that the nux per unit 

solid angle in any beam of noninteracting charged particles in a static 

magnetic field remains con stant, we have 

D 
Dt 

:I 0 (26) 

D 
where Dt denotes the total time derivative. In other words. a particle 

sees the same value of p(t, E. o.)/sin a. in all region" acceuible to it. 

The adiabatic invariant 

. 2 
Sin (l 

B 
• const. (27) 

defines these accessible regions. Thus. if the distribution density at 

the equator is p( (r
E

, 2!.) E. <lE} ••• it will be assumed that particle 
2 



drift. result in azimuthal 6ymmetry 90 that. need not be specified --­

-2 
then, with r E • r 8in f), 

~Cr, O).E,(\) = p(CrE,;}.E,UE - sin-I ( 1 SCrE'i) ainll)) 
B(r.9) 

• (1+ 3 cos 20)1/4 
. 3 

8m e 

B(rE • .!> 
., 2 

B(r.O) 

A s an example, 8uppose that 

: 

o 

: sin -1 ( 8in
3
88in; 1/4)) . 

(1 + 3 cos 9) 

(28) 

otherwise. (29) 

(where. lor instance, I1L might be determined by the condition that 

particles with sin 0. < sin I1L would collide with the planet and be ab-

sorbed, i. e •• 

=B(r ,11'). 
E­z 

6 
ain 8

J 

(30) 



Then 

i. e •• 

o 

o 
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if sin
2a<B(r. e) sinla

L 
B(r E'.!) 

2 

otherwise 

(31) 

. Z . 2 1/2 
1£ sin a < (1 + 3 cos 6) 

6 sin () 

otherwise 
r sin 3(p - 1) 8 sinP a 

N( --.,;~ • E) p _ 1 
. 28 _ 

sIn 2 4 
(1 + 3 cos 8) 

(32) 

The angular and energy distributions are the same all along the line 

of force, except for the cutoffs for the lormer. The spatial density is 

not necessarily constant; in fact, only when p .. 1 and a
L 

: 0, i. e. , 

when the velocity distribution is isotropic. is the spatial density con-

stant along a line of force. Up: 1, but a.
L 

> 0, the density decreases 

as the polar regions are approached. Also, if steeper helices are 

favored (p> 1), the density decreases towards the po1ell. 

, 
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DC. Radiation from a Thin Shell of Electrons 

The only quantity which remains to be specified before the 

radiation is determined is the distribution density function at the equator, 

peer E ' ; ), E, (1£). This will depend on the particular source as sumed 

for the radiating electrons, and we shall have to discuss the injection 

and acceleration details of the source. Before doing this, however, we 

consider in this section the properties of the radiation originating Crom 

a thin shell oC electrons. More specifically. we take 

RE < r E < R£ + ORE 

and 
sin (1£ > sin (lL I 

otherwise 

(33) 

where oRE «1. This is a distribution which at the colatitude 9 18 
R 

isotropic for helix angles (1 between the cut ofls (11(9) and 7T-a.
1
(9) • where 

(1 + 3 co. ZO)1/4 
. 38 Sln 

(34) 

Some relatively easily calculable functions are obtained by taking 

three special cases* of Tj .(E): 

(1) 

(ii) 

,,(E) • C1o(E-EO) 

,,(E) • CIE-(~+l) 

-See page 151 of Appendix B. 

(35) 

(36) 
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5 

E . <E<E 
nun max 

(37) 

(i i i) ,,(E) a 

o otherwise 

The first case gives rise to expressions containing trigonometric {unc­
Q) 

tions and the tabulated functions F(x). x J KS(x)dx and F p(x) C xK
2
{x) • 

x 3 3 

The second case is expressible entirely in terms of trigonometric func-

tions. The third case gives rise to expressions containing trigonometr ic 
1 1 

.. W 3"! 3 "! 
functions and the tabulated functions G (x). 2' x K!.{X)- '4x [F{x)-F p(x) ] 

1 3 
W 3 

and G (x) • x ~ (x). Case ( i ) enables one to determine. by superposition, 
p -

the radiation pro:auced by any specified energy distribution; cases (ii) 

and (iii) are chosen to resemble distributions associated with galactic and 

solar cosmic rays and. the relativistic electrons responsible for radio 

noise in other sources. 

The calculation of the Stokes parameters for these d i stributions 

is straightforward. It is apparent that in addition to the fourth Stokes 

parameter V '{f)dV being zero (eq. 4), the parameter obtained by integ­

rating U{£)dV over any region symmetric about ~ : ~ is also zero. 

This is due to the combined effect of the symmetry of the field and the 

presence of the factor sin zX in the expression for U(f)dV. Conse-

quently, we calculate only the first and second Stokes parameters. Also. 

because of the symmetry , it is necessary to integrate only over one 

octant of the shell if the effect of shielding is taken care of properly. 
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The exprel8ions for the first two Stokes parameters of the 

radiation originating from the reiion of the neld contained between the 

planes J 1, and" Z > '1 and between the planes -A l and -A Z (where 

. 3 
J • r sin e cos, • r E lin (1 cos ,) are summarized iDl Table II for cases 

(i) • (iii) .• In each of the three cases, the expressions are in the form 

of a double intelral over 6 and, of integrands which are zero when 

either condition I or condition n holds. Condition I expresses the fact 

that only the radiation originating from the region between the planes 

J 1 and 12>~ ' and between ·'1 and -I. Z is being described. ConditionII 

accounts for the variation ot the cut .. off helix angle ~1( 8) with 6, the. 

dependence ariling from the fact that only those electrons with helix 

anglea very close to 0.* radiate . Provision for the obscu r ation of the 

radiating region by the planet is obtained by the factor ~ in the integrand 
R 

whenever sin 
4

6(1 .. 8in
2
98in

2.)< ( -1. )z. It ill assumed in the expressions 
- r E 

that a.
L 

has been selected so that no electrons collide with the planet. 

The integrands alao depend on 8 and 4> through the variation with position 

of the density distril:Jution function p(E.a..). the volume element dV. 

the orientation of the field - -- as described by the angles X and 0.*, 

the field intensity B . and the dependence of the radiation efficiency on 

the lattar two • 

• The briihtnesa pattorn in the y • r cos8 : rEllinZecos9 (polar) direc­
tion can b2 obtained from th~ table simply by replacing condition 1 there 
by "rEsin 9c os9<Yl Or rEBin Ocos8>yZ'" and replacing the remaining 
I 's by yls . 
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TASLE II. FIRST AND SECOND STOKES PARAMETERS FOR SYN­

CHROTRON RADIATION FROM A DIPOLE FIELD. 

The table lists expressions for the contributions of electrons 
in the strips. * 

'l~ /r E sin 30 cos +1 ~'2 • 

(See Fig. 4) for an equatorial distribution function 

6R
E 

where - « 1 . 
RE 

'1(E)sina
E 

ZcosllL RE°R.E 

o 

if RE<rE<RE+ORE 
and 

sin (lE>sin elL • 

otherwise 

The expressions contain the functions ~(fJ.cp) and u( tJ •• ): 
1 

6 2 Z 2. 2 · 2 
~( B.' ) • G sin (J [1 + 3 cos 0-9 sin (kos OSln +1 

u(O.,) _ 
( 

where 

*See the footnote on page :31. 

o 

1 
Z 

when either condition I or condition 
II holds 

when neither condition I nor condition 
II holds and 

1 when neither condition I nor condition 
II holds and 

. 4 all . 2(J . Z ) > ( R J ) 2 
81n <7\ -Sln sin cjl -

r E 
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condition n: . 3(j[ 1 Z(J 9 . 2 2 2 1 t sm ... 3 cos - 8m cos Eisip<p . 
3/4 < 81n a L 

2 
(1 ... 3 COli 9) 

The constants G. AI ' An and ~II are defined: 

Ga 

fR3 
E 

.L:!. 
2 (~) 

2· Y 3 -'If (yH) 

¥ 
COB (lL R~E 

4 

CC LIla [B(R !. )]3 R .4 
1 . J' 2 J 
.1/3 2 Z 

81tr cos O-L R RE 

11" 1f 

y 

CC L2 
1 . 

'2 2' 2 2 2 Z 1/2 
1('1' Z) a AlII u(9,+)(1+ 3 cos £J-9 sin 8cos £Jsin ,) sin+ 

o 0 F( t ( O;,»d8d+ 

"IT "IT 

'2 2' 2 2 2 2 
A 11 u(o .) ll+3eos 8-98in Bees 8(1+cos cp)]8in~ 

I • Z. 2 2 2 1/ z - {1+3 cos (J-9 sm (Jcos 8sin +1 
o 0 



where 
eo 

F( ; ) I: ~ J KS (x)dx ; 

t 3 
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i' peG) • ~KZ(s) 
3 

CASE (li) ,, (E) II C E -(-y-l) 
1 

rr rr 

Z 2: 

IJ 
:t!! z z Z Z 4 

[lUcos 9-9 sin 'kos 88in +1 
(sin 6)3,(-1 

o 0 

rr rr 

Z Z 2 Z 1. Z 
y+Z A 1 Ju(o.,) [ 1+3 cos 6-9 sin eeos 9(1+cos .)] 

~ II z Z Z Z z- 'i" .3-1 
'( 3 0 0 [1+3 cos 9-9 sin 8cos hin +1 *"'II(sl.n9) 'Y 

CASE (iii) E . <E<E 
mln max 

otherwise 
rr rr - -z z Z z Z Z 2/3 ( J J [1+3 cos 8·9 sin 9coe 8sin +1 

1'1" Z) • Am u(e,.) sin 9 

o 0 [GW(~ i (9,,pJ-GW
(f, (8,+»] d8d4> 

m n max 

rr rr 

Z Z 1. Z Z z 
0 (' , ) • A.... __ 1 J (8 .) (1+3 cos 8-9 sin Bcoe 8(1+ cos . )] 

l' Z ··W u. Z Z Z Z '/3 
[l+3eos 6-9 sin Bcos 85in ~l lin 8 

o 0 

where 
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00 

OW( ; ): ~ ;1/3~ ( ~) _! £;4/3 [ J 
-3 ~ 3 3 

(~ i (e.,) and S (e, ,) are S (e,,) evaluated for E II E and 
m n max max 

E : E i • respectively) 
mn 
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The Fourier cosine transform of a Stokes parameter is more 

dosely related to radio interferometric measurements than the para-

meter itself {Brown and Lovell (1957)]. The cosine transform with 

respect to the (equatorial) vaFiable' • r sin 9 eos • of the parameters 

listed in Table 11 are obtained simply by multiplying the integrands by 

3 
cos kl • cos [k l'E sin 6 cos +1 (38) 

and setting jl • O. 1 Z • rEo Similarly, the costne traneforms with 

respect to the polar dimension y • r cos 9 are obtained. by multiplying 

the lntegr.ande by 

Z 
coe ky • co. [11: rg sin 9 COli e] (39) 

and lIetting 'I • 0, 'Z • r E • 

The lntelrals of Table II have been evaluated on a Boeing IBM 

"1 J Z 1 L . ' 
7090 computer for the ten stripe - • - - - • h : 0.1, •••• 9), r

E 
r

E 
10 10 

and for sin elL • O.lS. 0.4. 0.7. In the calculations, the equatorial 

radius of the shell bas been sot equal to three times the radius of the 

plaflet. l' E • 3,R J' The limiting mirror points for sin "L • 0.15. 0.4 and 

0.7 are shown in Fl,Ul'e S. in which are plotted 80me lines of force in 

the dipole shell I' E • 3 R J al aeen from a direction perpendicular to 

the dipole. In case (1). the parameter a entering into the argument 

;( e.~ of the radiation efficiency functions F(~) and F (s) baa been set 
p 

equal to 0.01. 0.1. 1. 0 and 10. The parameter a is the value of t for 
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electrons in the equatorial plane; the parameter G depends on the observed 

frequency f, the magnetic field where the shell crosses the equatorial 

plane and the energy E of the source electrons. In case (U), the 
o 

parameter '{ defining the steepness of the electron energy spectrum 

haa been set equal to 0, 2 and 4: and in case (UI), the pair (~min' Smax> 

which defines the upper and lower cutoffs of the energy spectrum, haa 

been determined by setting the corresponding pair (G
mi 

,G ) equal 
n max 

to the ten ordered pairs wbich can be formed from the numbers 0.01, 

0.1,.1.0 and 1000. In addition to the first and second Stokes parameters, 

the Fourier cosine transforms corresponding to equations 38 and 39 bave 

also been evaluated for these examples, with the transform variable k 

equal to 0, 1/3, 1./3, 1, 3/1. and 1.. 

The computer results are displayed in graphical form in Fig-

urea 12 through 20 in Appendix D. Figures 12-14 apply to case (i). 

Figure 12 dllplaya the first and second Stokes parameters and the per-

centage polarization; more specifically, the figure conslsts of bisto-

a J 3 
grams of I/AI , a/AI and p - r VII. r

E 
• sin 8 cos + (where the sym-

bols have the meanings assigned in TablelI). In Figure 13 are plotted 
co 

the normalized coaine traneforms rJ, .(1 
~AI 

co 
cos kJ dJ and "i- (a COl lddJ , 

iAI 
OJ 

and the degree of polarization based on the transforms P, I / 

e.tl 



39 

Figure l ' presents the transform results with respect to the polar 

direction; i. e •• in this figure are plotted the cosine transforms 
00 

J y : J ~ cos kydy and 
o I 

polarization p • Q I,J • y y y 

00 

Q • J Q cos kydy and the degree of 
y -

o AI l 
where y. r cos 9 • rEsin 9cos 9. Figures 

15-17 and Figures 18-Z0 are the anAlogous plots for cases (U) and (lii). 

respectively. 

For the details of the way in which the intensity and polarization 

behave as a result of the variation over the source region of the field 

intensity and direction and the electron angular and spatial distribution, 

reference may be made to the graphical results . The results 8eem to 

confirm Davis I suggeetion that the proper polarization is achieved only 

when a la-rge fraction of the electrons have relatively fiat helices. It 

seems necessary to hypothesise a second. inner group of electrons with 

relatively steep helices in order to explain the decrease in the degree 

of polarization with increasinll interferometer .pacing.. The graphs 

show that with a .ingle shell of relatively fiat helix electrons, the 

degree of polarization based on the cosine transforms increases with 

increasing transform variable k over an appreciable range of k. as the 

transform "selecte" those portions of the radiating .hell where field 

alignment, radiation efficiency. electron density and radiating angle 

combine to give higher degrees of polarization. 

*See Figure 3. 
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The polarization results, although depending strongly on the 

helix angle distribution of the electrons are s een not to depend very much 

on the frequency observed or on the energy of the electrons, as long as 

the electron energies are not so low all to give radiation at the observing 

frequency from inefficient radiating conditions corresponding, for in­

stance, to G : 10. Thus, the polarization does not depend very strongly 

on the value of the spectral index or on the value of the energy cutoffs, 

as long as the radiation at the frequency of interest originates from 

particles some of which radiate relatively efficiently at that frequency. 

It seems possible to achieve the observed polarization and intensity 

behavior by means of synchrotron radiation from ultrarelativistic elec­

trons in a dipole field provided that there are present enough electrons 

with relatively flat helices. 
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III. SOURCE OF HIGH ENERGY ELECTRONS FOR JUPITER 

In this section. some of the problems involved in obtaining 

high energy. relatively flat-helix electrons in a region three Jovian radii 

from the center of Jupiter are discussed. The discussion concerns 

mainly the diffusion and acceleration of trapped electrons due to large-

scale magnetic fluctuations: this is the subject of section IIIB. By way 

of introduction. section IlIA briefly mentions in connection with Jupiter 

some results that investigators of cosmic rays and of the earth's Van Allen 

belt have obtained on energy loss. scattering and neutron albedo. 

IlIA. General Considerations 

1. Energy loss 

To estimate the electron energy loss in the region. reference 

is made to the work of Ginzburg (1959) on the origin of cosmic radiation. 

Ginzburg gives expressions for the energy loss of relativistic electrons 

due to ionization. bremsstrahlung. Compton processes and synchrotron 

radiation. The ionization loss of a relativistic electron of energy E in 

atomic hydrogen i 9 

dE 
dt 

-9 
--7.62xlO n(20.l+31n ~) 

2 
m c 

o 

-1 
ev sec ( 40) 

where n is the number density of hydrogen in cm -3. m is the electron 
o 

rest mass and c is the speed of light; in ionized hydrogen. the 
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ionization loss is 

dE 9 E 
dt : -7. 62 x 10 - n (1 n l 

m c 
o 

- 1 n n + 74 . &) ev sec 
-1 

An approximate result for the energy loss due to bremsstrahlung in 

hydrogen is given by 

dE -16 -1 
.. - 8 x 10 nE ev sec 

dt 

where E is in ev; and the los s due to the inver se Compton effect is 

dE = -1. 9 x 10 -14 p ( 
dt 

E 2 
2. ) 

m c 
o 

-1 
ev sec 

( 41) 

( 42) 

(43) 

-3 
where p is the average density of radiation energy in evcm Finally. 

the energy loss due to synchrotron radiation is 

dE 
dt 

: -3 2. 
0.98 x 10 B.l. 

2 
E -1 

2) ev sec 
m c 

o 

( 44) 

where B.l. , measured in gauss , is the component of the magnetic field 

perpendicular to the direction of motion. 

To obtain an order of magnitude estimate of the energy loss in 

the Jovian Van Allen belt. assume the region at three Jovian radii to 

-3 
contain a hydrogen plasma with density equal to the 1 em of the inter-

6 -3 
stellar medium in the galactic disk-; take p :: 10 ev em ,corresponding 

) 

: -3 
.T~e assumption of 1 proton em may be bad. However . the study of 
the background plasma to be expected will have to be deferred until an­
other time.

S 
In passing . we remark that even an increase in density by a 

factor of 10 gives a lifetime 10n ger than that due to synchrotron radiation. 
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17 
to - 7.5 x 10 watts of solar radiation falling on Jupiter's di sk; and 

set B.l. equal to 1 gauss. An electron with E .10 m c
Z 

• 5.1 x 10
7 

ev 
o 

-9 -1 -7 -1 
then loses 4 x 10 ev sec due to bremsstrahlung, 5.86 x 10 ev sec 

-6 -1 
due to ionization. 1. 9 x 10 ev sec due to the inverse Compton effect 

-1 -1 
and 10 ev sec due to synchrotron radiation. The loss due to synchro-

tron radiation dominates the other three by several orders of magnitude. 

and this is true alao at higher energies. Synchrotron radiation causes 

an electron with E • 10 m c
2 

in a one gauss field to lose half of its 
o 

energy in a time of the order of a year. 

2. Scattering 

Several authors have pointed out in connection with the earth's 

Van Allen belt that particle lifetime in a dipole field is determined both 

by the energy loss in the trapping region itself and by the scattering of 

the particles into trajectories which carry them down into the denser 

atmosphere. Thus, Christophilos (1959). Welch and Whitaker (1959). 

Wentworth , MacDonald and Singer (195 9) . and Kellogg (1960) have 

estimated the lifetime determined by coulomb scattering. From Went-

worth et a1.. we obtain an approximate expression for this lifetime for 

relativistic electrons: 
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T : 2.245 x 10 
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E E 3/2 
(2+-~) 

2 2 
m c m c 

o 0 

)In D 
sec, (45) 

where n
E 

is the background electron density, and k' is a constant which 

depends on the line of force and is of the order of 100 for a line of force 

which intersects the equatorial plane at r
E 

• 3R
J

. The quantity InD is 

the slowly varying function of the energy, temperature and density which 

enters into the coulomb scattering formulas;!, and will be taken to be of 

the order of 30. 
-3 2 

For n
E 

I: 1 cm and E/moc .10, equation 45 gives 

12 
T"",lO sec. 

To estimate the scattering due to the inverse Compton effect, 

we refer to Hel tler (1954) and F eenberg and Primakoff (1948). In a 

collision, a high energy electron is scattered through an average angle 
m c Z 1/2 

of the order (+) (with the photon's energy not changing appreci-

ably). The cross-section for Compton scattering (in the rest frame of 

the electron) is given by the Klein -Ni shina formula, which for low and 

high energies is approximately 

8 Z 

and 

*3ee, for instance, Spitzer (1956) . 

Z 
hv' « m c 

o 
(46) 
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['n~::~ +~] Z 
hv' »m c 

o 

e
2 

-13 
respectively . where ro a Z: Z.8 X 10 cm is the classical 

m c 

(47) 

radius of the electron and h~' is the energy of the photon in the rest , 

frame of the electron. The energy hv of a photon in a system in which 

the electron has a · speed v and in which the electron and photon are 

moving at an angle e with respect to one another. is related to the 

energy hv ' by 

(1 -
v 
- COB e) 

hv 
c 

hv' • a 
Z l/Z 

(1 -
v 

) 
Z 

(48) 

c 

6 - l 
The energy density of sunlight at Jupiter is of the order of 10 ev cm, 

i. e. , Bxl0
5 

10 35 ev photons cm -3 ~ Thus, in the re s tfra m e of ahi gh energy 

electron moving with speed v in the vicinity of Jupiter. there exists 

a practically unidirectional stream of photons with a density of 

5 v 2 -l/Z -3 
8 x 10 (1 - -) cm and with energies 

2c
Z 

on the order of 
2 -lIZ 

1.35 (1 _ v 2 )-1/2 ev. v 
Consider an electron for which (1- 2 ) 

c c 
In the electron rest frame. the electron encounters on the order of 

: 10. 

5 v 2 - l/Z 
8 x 10 (1 - 2) CO'L E 

c 

- ·7 
10 I photons per unit time. In Jupiter's 

frame of reference. the electron therefore encounters on the order of 

5 -8 
8 x 10 cIT

L
: 10 photons per second. and thus in one second is 

scattered through a mean square angle of the order of 
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2 
5 mc -9 

(8 x 10 cIT
L

) ~ : 10 • Appreciable scattering due to the inverse 

9 
Compton effect thus requires on the order of 10 seconds. 

To estimate the scattering due to bremsstrahlung, we refer 

again to Heitler (1953). A high energy electron is scattered through 
2 

mc 
an average angle of the order of E . In a hydrogen plasma of 

density n, the electron is therefore scattered through a mean square 
m c Z 2 

o ' 
angle of order nCIT

S
( E' ) in unit time, where ITa is an effective 

scattering crollll section for bremsstrahlung.. We shall determine 

2 
ITS by setting it equal to lI'b c ' where b c is the impact ~arameter 

m c 
o 

for which Coulomb scattering give. a deflection of E ' i. e. , 

and 

2 
m c 

o 
E 

ITs 10 

b 
c 

2e
2 . - Z 

mC 
o 

-13 
: 5.6x10 cm 

2 Z -Z5 2 
1rb • 4l1'r I 9.85 x 10 cm. 

c 0 

(49) 

(50) 

E 
Then, taking n z 1 and --Z 10 10, we find that an electron is scattered 

me 
o 

in one second through a mean square angle of the order of 

. Appreciable scattering 

-The total crollS section for bremlllltrahlung diverges for photons with 
low wave number, but jUllt as it is poseib1e to define an effective 
cross section for energy 10s8 due to bremsstrahlung, since a low wave 
n umber photon contributes Httle en.ergy, we employ the eame reason to 
define a finite effective cross section for scattering. 
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due to bresmstrahlung thus requires on the order of 10 seconds. 

The change in the electron's helix angle due to synchrotron 

radiation is easy to estimate by noting that the velocity component along 

the magnetic field is unchanged due to the radiation. Thus, from equa-

44 for the rate of energy loss, we obtain 

cos <1
Z 

cos <11 
(51) 

where <11 and IlZ are the helix angles when the 
El E Z 

enerlrtes are El and E Z' 

respectively. For -z: : 10, and 

cos III 

m c 
o 

1/ z 
. i [ 100-1 1 : 1 015 

10 25-1 • 

Z 
m C 

o 

: 5, we have 

Not much change in the helix angle 

Z 
occurs in the time required for an electron with E : 10 m C to lose 

o 

half of its energy (which in a 1 gauss field is of the order 10
7 

sec.). 

This is understandable since at these high energies the energy radiated 

causes mainly a change in the relativistic mass rather than a change 

in the velocity. It appears, then, that the change in the helix angle due 

to ionization, the inverse Compton effect, bremsstrahlung, and syn-

chrotron radiation is not appreciable in the time required £01' the 

energy to change by an appreciable amount due to synchrotron radiation. 

In addition to the change in the helix angle due to the fore-

g oing processes, the helix angle can also change due to interactions 

with electromagnetic wave.. It is convenient in studying these 
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interactions to discuss individually waves with time scales shorter 

than or on the order of the Larmor period of the electron, waves with 

time scales long compared to the Larmor period but shorter than or on 

the order of the mirror period ••• where the mirror period is the time 

that it takes an electron to drift back and forth between its mirror 

points, and finally waves with time scales lon, compared to the mirror 

period but shorter than or on the order of the azimuthal drift period ••• 

where the azimuthal drift period is the time that it takes an electron 

to drift once around the planet. In the absence of all three types of 

waves, the actions associated with the Larmor, mirror and Illlimuthal 

drift periods are all adiabatic invariants (Northrup and Teller (1959». 

In the presence of waves of the first type, none of the actions are in-

variant; for waves of the second type, only the action associated with 

the Larmor period (i. e., the magnetic moment) is an adiabatic in-

variant; and for waves of the third type, both the Larmor and mirror 

actionll are adiabatically invariant. 

To get some idea of the time scales involved, the Larmor 

period T L' mirror period T m and azimuthal dritt period T a are 

given by the expressions [Hamlin, Karplus, Vik and Watson (1961)]: 

T : 
L eBc 

, (5Z) 
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where 
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41' 
e 

T .­m v 

Z liZ 
ain 9{1+ 3c:oa 9) dB 

7I1l. 

J Z lIZ 
ain 9(1+3 C:OII 6) dO 

. 69 Bm t Z 
--~Z II ain G

E 1+3 cos B
t 

v 18 the IIpeed of the particle, and the other armholll have the same 

meaning aa in the diac:u .. lon of the geometry of the dipole field in 

(53) 

(54) 

(55) 

Sec:tion II. Hamlin, KarpluII, Vlk and Watson (1961) ahow by numeric:al 

ince,ration of equationa 53 and 54 that good approximation. to T and 
m 

Tare 
a 

T a 

(56) 

1 
[ 0.35 + 0.15 ain flE ]. (57) 



so 

z ~ 
For E • 10 moc , r E 8 3R

J 
and B(rE , '2) • 1 gauss, these eCiuations 

-6 J. 
give TL"" 10 ,T "" 1 aec and T ::::: 5x1lr s6O , 

m a 

Wentzel (l961a, 1961b) and Dragt (1961) have discu8Bed, in 

connection with the earth, the effect on trapped particles of hydromag-

netic waves with time ! scales on the order of the Larmor periods. 

Both find that appreciable scattering of a particle occurs only for the 

resonance condition when the particle sees a hydromagnetic wave with 

frequency eCiual to it. Larmor frequency. Thia does not require that 

the frequency of the hydromagnetic wave be equal to the Larmor fre-

quency, but ,'ather that the "Doppler shifted" wave frequency be the 

aame as the Larmor frequency. Dragt lives for the lifetime: 

T= 
Z 1 
ZZ 
'11 " 

B Z 
o -

BZ 
hm 

(58) 

where B is the original (average) maanetic field, Bh h the amplltucle o m 

of the hydromaanetic wave, and" is the number of half wave lengths 

satisfying the resonance condition which an electron Bees in one mirror 

period. From W ent.el we obtain a lifetime: 

T-== 
1 -Z" 

B Z 
o 

;r 
hm 

(59) 

Dragt remarks that the spectrum of the hydromagnetic waves is likely 

to contain a cutoff at the ion cyclotron frequency due to the inability of 
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hydromagnetic waves to propagate acrosS magnetic field lines if the 

hydromagnetic wave frequencies exceed the ion cyclotron frequency. 

Thus, for an electron to see a wave with frequency equal to its Larmor 

frequency , it must either be in a rather steep helix or be quite rela ­

tivisti c (Elm c
2 

• C-(1840». Unless either of these two conditions is 
o 

sati sfied, waves of this type will not cause appreciable scattering of 

electrons •• 

Parker (1961) haE' investigated the effect of waves with time 

scales long compared to the Larmor period but on the order of the 

mirror period. He finds for a lifetime: 

B Z 
T ~ l2( If-) Tb • 

hm 
(60) 

Bhm 
where B is the relative amplitude of hydromagnetic disturbances 

o 
with time scales close to the mirror period. For a rough estimate of 

Bhm 

B 
, assume first that the solar wind stops where the pressure of the 

o 
magnetic field balances the pressure of the wind. For a wind at Jupiter 

" f 10 - 2 ill d f 500 -1 conSlsting 0 25 atoms em trave ng at a spee 0 km sec , 

this occurs for a magnetic field B such that 

(61) 

*DesBler (19 61) has suggested that the resonance condition can be achieved 
for electrons at Jupite r by interaction with whistlers (Helliwell &. Bell 
(1960». The details of this interaction have not yet been investigated. 
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-4 
1. e •• for B = 2 x 10 gauss. (This would mean that the wind stops at 

fifty Jovian radii from Jupiter if the field is that of a dipole and B ~ 1 

gauss at three radii.) Next aSSume that in the region where the wind 
B

hm 
is stopped. s-- : I (Parker (1958». Then. requiring that the 

o 
energy transported inward toward the planet by hydromagnetic waves 

be constant. we have that 

(62) 

B 2 28 

Thus, when Bo : 1 gaues, (r ) : ()'(10 3 ). For Tm = 1 sec, 

hm 10 
this type of scattering leads to lifetimes on the order of 10 sec. 

Finally, Parker (1960) has suggested that hydromagnetic 

disturbances with time scales longer than the mirror period but shorter 

than the azimuthal drift period are ef£ective both in determining the 

radial distribution of particles and also in obtaining particles with 

relatively fiat helices. Because of thh last feature. we have inves-

tigated this type of disturbance in some detail, and thii is the subject 

of Section IllB. The results we obtain differ from the results obtained 

by Parker. 

3. Electrons from Neutron Albedo 

It might be thought that since Jupiter has such a larie surface 

area the production of neutrons by the stoppage of cosmic raya in the 
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atmospher e would lead to an ample number of electrons through the 

decay 

n __ p+e+", 

a process which yields electrons with an energy distribution peaked 

around 300 kev and with maximum energies of 780 kev. On the other 

hand, since the decay ha s a half·Ufe of only 12 minutes and upward 

moving neutronil are moetly slow, we are concerned essentially only 

with those neutrons that decay near where the line of force that reaches 

the equator at 3R
J 

enters the top of the atmosphere. i. e., 55· latitude 

unless Jupiter has a very high atmosphere. The decay electrons would 

then be in steep helices at the equator. M oreover. the fact that light 

elements (H.He) form the bulk of Jupiter's atmosphere is unfavorable 

for the albedo source explanation: the neutrons due to spallation from 

excited heavy nuclei are lacking here. while for light nuclei. the reac. 

tion products could be strongly peaked in the direction of travel of the 

incoming high energy particles and would be directed mainly toward 

the planet rather than out toward the radiation belt. 

Another factor which acts against the albedo Bource explanation 

is that the large dipole moment which Jupiter must have to give the 

magnetic fields appropriate for the radiation, serves to keep cosmic 

rays from penetrating to the atmosphere. In fact. it seems that thi 9 

one fact is enough to nullify the advantage of the large surface area. 
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Thu s, in the Stormer cone approximation , at the latitude I\. on the 

surface of Jupiter, cosmic rays with momentum of magnitude p can 

arrive only from directions lying within a cone whose axis lies in the 

ea s t-we s t direction and whose half angle IT -X may be found from the 

equation 

P & 

4 
cos I\. 

3 1/ Z Z 
[[l-cosXcosl\.] +lJ 

(63) 

where M
J 

is Jupiter's dipole moment [Hooper and Scharff(1958)]. The 

number of cosmic rays incident per unit time on the surface between 

latitudes I\. and I\. + dI\. is 

Pmax 

F I\. dI\. : 21TR J 
2 

cosl\. dI\. J 
Pmin 

IT-X(p) 

J 21TCOS X dx I(p)dp • 

o 

assuming an isotropic distribution of cosmic rays at infinity with an 

(64) 

intensity of l(p)dp particles with p in the range (p, p+dp) per- steradian 

per unit time. Taking 

l(p) : 

o 

and 

Up> P . 
min 

if P < Pmln 

(65) 
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(where p is the value of p for which equation 64 gives X a ... ), we 
c 

have 

with 

F ciA a 
A 

R Zy+Z 
J 

M 'I 
J 

S(A) dA (66) 

CD 

S(A) : ZlrC~C08A J , 
2 

cos A 
1/2 

x 

Z Z 1/2 

)] ] dx. 

cRJPc 

eM
J 

(67) 

From the definition of Pc' it is seen that S(A) does not depend on R
J 

or 

For orders of magnitude, compare FA dA for Jupiter to if A dA 

for earth, taking the field three Jovian radii from the center of Jupiter 

to be the same as that at the surface of the earth: 

(F A dA) Jupiter 

(F A dA) Earth 

(for A at which p 1 < P ). m n c 

.. (68) 

Equation 68 shows that when the magnetic cutoff energy is greater than 

the minimum cosmic ray energy, the number of cosmic rays arriving 

in a given belt of latitudes is greater by a factor of 200 on the earth 
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than on Jupi ter. Taking the minimum cosmic ray kinetic energy to be 

1 
~ Bev. equation 63 shows that p . < p at l atitude 55' on both earth 
" mIn c 

and Jupiter so that equation 68 appliea. Field (1959) estimated that if 

the particle energy flux of secondary electrons leaving the top of 

Jupiter ' s atmosphere were the same as that leaving the top of the 

earth's atmosphere. this would equal only four percent of Jupiter's 

decimeter radiation flux •• Combining this estimate with the 1/ ZOO 

factor strongly suggests that neutr on albedo is an inadequate source 

of electron ... 

• See page 11. 
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IllB. Effect of Large-Scale Magnetic Fluctuations on Trapped 

Electrons· 

A variety of mechanisms have been explored recently in effort s 

to explain the origin and los$ of the electrons in the earth's Van Allen 

zone. Presumably the same type of mechanisms might operate in a 

magnetic field about Jupiter. Parker (1960) has pointed out one mech­

anism that is likely to operate. Any moderately rapid deviation from 

cylindrical symmetry in the magnetic field perturbation will lead to a 

violation of the third adiabatic invariant and radial diffusion of the 

. charged particles that are normally confined to a particular shell in 

the magnetic field. If the features of the magnetic perturbation are 

.uch that the first and second adiabatic invariants are not violated . 

those particles which di{fuse inward both gain energy and attain flatter 

helices. The last two feature, have led us to a clo;er study of this 

mechanism. It appears that although the basic plan of Parker's 

analysis is correct his diffu ~ ion equation is not adequate and hi d ex­

pression for the average radial motion of a particle in a single mag­

netic ;torm Is not carried to high enough order to give the coefficients 

in the Fokker-Planck equation that must be used. This section is an 

attempt to remedy these deficiencies. The new diffusion equation is 

.This section is based closely on Davis and Chang (196lb). 



58 

then solved and it is found that while many of the characteristic s of 

P arker ' s solution are pres erved. the number of particles to be expected 

at small radii is relatively very much greater. 

The m odel used for a magnetic storm. both by Parker and 

here. is the original model of Chapman and Ferraro (1931) for the initial 

phase. In this. the s olar plasma is represented by a plane. perfectly 

conducting front pressing into the magnetic field. Even if a diffe.rent 

model of a storm wel'e used. essentially the same results should be 

obtained provided the perturbation were ,n o t axially symmetric. In 

both analyses the particles are assumed to have mirror points near the 

magnetic equatorial plane. Presumably the effects for particles in 

steep helices will have the same general character. but a reasonably 

complete analysis of this case would be much more difficult. Il' r 

denotes the distance from the center of the planet of a particle and L 

that of the plane plasma front. both analyses assume that r l L i.s small 

and they will break down near the oute r boundary of the magnetic field. 

However. in this region diffusion to the outer boundary and 109s of 

particles is very rapid and for our purposes an accurate treatment in 

this region should not be necessary. The particle energies are assumed 

to be low enough so that the radii of curvature in the magnetic field are 

small compared to r and the motion is treated by following the guiding 

center. The energies must be high enough 90 that the particles will 
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drift a substantial fraction of the distance around the planet while the 

initial phase of a magnetic storm is d y ing out. " 

1. Particle Motion 

In terms of the guiding c enter motion. a storm causes a particle 

to change its radial coo rdinate because the drifts resulting from the 

induced electric fields and the geometry of the di"torted magnetic field 

are not in the same direction as the steady state drifts. The essential 

features of the diffusion mechanism may be understood from a treat-

ment of the motion of thos e particles that remain in the planet's magnetic 

-equatorial plane where the field is B ( r )i . Thus. we have a two-
z 

dimensional diffusion problem in whi ch the only drift velocities present 

a re normal to this field and are due to gradients in the magnetic field 

and the presence of elec.tric fields . A particle of mass m. charge e 

an d speed w will experienc e a dr ift veloci t) . ,. 

Z 
mcw 

ZeB
Z 

-(i x \7 B) 
z 

(69) 

(where c i. the velocity of light) due to the presence of a gradient in the 

magnetic field intensity. and will have a drift velocity - -Ex i 
z 

B 
(70) 

. S ee page 49 . 
•• S ee Appendix C . 
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-wheneve r an electric field E i s present . Corre oponding to the geo-

magnetic situation in whi ch the earth's magneti c field experiences on l y 

a n occasional large scale disturba nce. let us consider an equilibrium 

-- -field configuration B 0 Z B (r) i whi ch is subject to an occasional 
o z 

distortion. In the equilibrium configuration and during any later static 

periods. the particles drift along countours oC constant magnetic field 

intensity. Thus. the coordinate that describes the shell on which the 

particle is drifting is the magnetic field strength at the guiding center. 

and this becomes the m o st useful coordinate with which to dest:ribe the 

location of the particle. During the disturbance of the magnetic field. 

which is assumed not to change the symmetry about the equatorial 

plane. the drift is compounded of a motion along the distorted contour 

of constant B passing through the par ticle and a drift due to the induced 

electric fields. The latter carries the guiding center to a new shell 

where B has a different value . Corresponding to the geomagnetic case 

in which a magnetic storm consis ts of a sudden commencement phase 

followed by a gradual return to n ormal. let us consider diBturbances 

to consist of two phases. The initial phase. although long compared to 

the gyroperiod. is of such short time scale that the particle drift 

velocities are essentially all due to the induced electric fields. 1. e • • 

we have only an essentially instantaneous displacement of the plasma 

and the trapped particle guiding centers . In the second phase. the 

magnetic field returns to the equilibrium c:onfiguration so gradually that 
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I-;B 1 »I-;-E' . We must now find the change in B experienced by a 

guiding center during these processes. 

The change in magnetic field f:l B when the guiding center 

undergoes a small displacement P
D 

: (vB + vEl ot in the time interval 

ott is given by 

- -. B • oB + p • VB. 6B + P • 'i/ B D E (71) 

where 6B denotes the change in B at a fixed point • 

. -• 0 Slnce vB is perpendicular to 'i/ B . From the Maxwell 

-­.... i 
'lxE: -2-equation 

aB 
&t and the hydromagnetic condition for a perfect 

c - ... "'" conductor , E + v
E 

x D/c : 0, it follows that 

(72) 

Equations 71 and 72 may be combined to give 

dB : _ B( 'i/ • 'V ) 
dt E 

(73) 

or 

(74) 

In equation 74, and in the following, the approximation sign indicates 

that the displacement p is so small that the variation of -;- and B during 

the displacement is being neglected. The suffix 1 in equation 74 indicates 

that this equation gives the change in magnetic field experienced by a 
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..... 
particle during the initial phase of the disturba nce . PEl being th e dis-

placement of the plasma i n the first phase a t the position of the particle. 

After thi s sudden change is over , ea ch pa rticle then drifts without chang-

ing its own B a s long as the field is static . but diffe rent par ticles drilt 

on different contours. 

The dura tion, T. of the second phase of the storm is 9uch that 

I VBI »1 Vi: I . This means that a particle mainly drifts around a mov-

ing contour of constant magnetic field during the second phase, but it 

also has a slower drift , governed at each instant by equation 73, to 

new c ontours . Since this drift varies with position around the contour, 

a suitably weighted average must be used. Assume an adiabatic change; 

i. e •• one i n which there i s no correlation between the location 0 11 th e 

contour of the guiding cente r and the ·rate of distortion . The a mount of 

time dt spent traveling a differential arc d s a long a distorted contour 

i s 

ds 
dt • 

.2 
mcw IV B I 

(7 5) 

The time to make one revol utiol1 is f dS/v
B

, and the fraction of the 

time . either in one revolution or the entire interval T , spent in a par-

ticular ds is 

dt 
T 

(76) 
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For small distorti on s of th e equilibd1lm co"ftgl~ration. PEZ( s ) c~E T 

evaluated at any posi tion given by 3 , the di stance along the c ontour , 

would be the di spl a cement experienced in the second phase by a particle 

that r ema i ned at s dur ing the entire inte r val T and di d not move along 

the c o n tour . Thu s . taking the fraction 76 of the chang e in B. 

r7 ... ---B v' PEZ(s). associated with PEZ by 74. and integrating over the 

centour . the change in B at the guiding c.enter d\lTing the second pha s e 

is found to be 

(77) 

This is valid for adiabatic changes and has been checked in a simple 

example by comparison with the result obtained from the third adiabatic 

invariant. The total net change in B experienced by a particle during 

a storm is 

(78) 

thus. a particle that initially dr ifted around an equilibrium contour Bo 

will. after the storm. drift aroWld a contour B + t, B. 
o 

The total change in B is seen to depend only on B and the 
o 

position on the B contour of the particle during the first. non-adiabatic 
o 

phase. This po s ition may be indicated by an arc length s along the con-

tour . Then if P(B os) ds is the probability that a particle drifting around 
o 



a contour is in ds at s and if 6B(s) is the ensuing change given by 7i. 

the average t.B taken over all particles on one contour is 

·z 
for one storm. Similarly. the average per storm of (6B) is 

If before the storm the density does not vary with time. P(B ;s) dB 
o 

(80) 

(81) 

must be proportional to the amount of time spent by a particle drifting 

with velocity VB through the arc length ds at 5; that Is. by equation 

76. (Actually. the result is the same if the density does vary since the 

onset of a storm is uncorrelated with the electron positions.) This 

then gives: 

(82) 

j .!!! V . 
B 

and 

(83) 

The effect of many storms may be described by forming a 

Fokker-Planck equation with the coefficients in this equation being 

determined by equations 82 and 83 [Chandrasekhar (1943»). 1£ the 
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expres sions of equations 82 and 83 depend on a parameter ~ (which 

de scribes the details of the storm, generalization to the case where a 

set of parameters is needed being obvious), then, letting n indicate 

the number of storms and X(B, n)dB the number of particles in the 

magnetic field range dB at B after n storms, the Fokker-Planck equation 

is 

, 
ax a 

[D
B

;(] + 1 a· 
lDBBX] . -

an 8B 2 
aB

2 
(84) 

where 

D • 
B ( tJ.B)av • J R(~) (tJ.B)~ di; (85) 

DBB • ~tJ.B)2>av· J ~(O ~tJ.B)2> (; d~ (86) 

a nd where .@ ( ~)d ~ is the probability of finding the parameter ~ 

i n the range d~ at ~ • The s ubscript S on the brackets denotes 

that the averages are evaluated for a particular ~. 

The foregoing will now be applied to particle diffusion in the 

particular model of the solar wind-perturbed geomagnetic field adopted 

by Parker. Thus, let us consider the magnetic field configuration that -should be produced by a magnetiC dipole M in the presence of a per-

fecUy conducting infinite plane, which simulates the front of the solar 

wind. Introducing a polar coordinate system with the dipole directed in 

the e c 0 direction at the origin, and with the conducting plane at a 
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distance L away in the direction Q • 
7r 

2 
and oj> = 3; , the field at 

a point (r, (J , oj» on the dipole side of the conducting plane is given by 

B : 2M cos 
r 3 

r 

M 
f) +--

8L
3 

M sin f) 
B(J • 3 .. 

r 

3 r 
[ - cos Q + ZL 

2 
sin 2 (J sin oj> + 0 ( "::" ) 

L2 

2 
[ sin (J + ~~ cos 2 f) sin cf> + O ( ~ ) 

L 

r 3Mr z_ 

l6L 
4 cos e cos 4> [1 + OIL'] 

The expression B differs from that of Parker ' s 
cf> 2 

equation 13 

(87a) 

(87b) 

(87c) 

. M ( r m which B '" -- 0 - ) 
oj> 8L 3 L 2 

The equilibrium configuration is to be 

given by equations 87 with L: (X) ; the initial phase occurS when the 

• ( rr 3~ ) conducttng plane is suddenly brought up to L, "2' -;: and the second 

phase when the plane i s slowly withdrawn t o infinity. 

The displacement P
E 

is easily cal c ulated by using the fact 

that in a perfecUy conducting plasma the particles move with the lines 

-of force during a disturbance . ConsequenUy, P
E 

may be determined 

from the equations for the lines of force in bo th the undistorted and 

distorted configurations providing one can identify which line of force 

in the distorted state corresponds to a line in the undistorted state. 

For the case of the dipole and its i mage, the identification is easily 

made since sufficiently close to the dipole the field i s essentially un-

disturbed by the presence of the image. The equations of a line of 

force are: 



dr 
B 

r 

or, from equation 87, 
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• r sin 8 ~ 
oj> 

(88) 

1 dr - . 
r d8 

B 
lcos 9 • sin 9 

3 3r cos 9 

8L 38in 9 

l 

[1 +~ :ii:*0(1-3 SinZe)+o(~ l)1 

21. 
dB 

4 
• 3r COli 6 cos cj> 

4 
16 L sin 6 

(89) 

(90) 

These can now be integrated by successive approximations. If all term s 

of order (r/L)3 or higher are neglected, integration gives 

l 
r ~ R sin 6. oj> a oj> 

o 
(91) 

where Rand <> are constants of integration. If equations 91 are Bub­
o 

stituted into the higher order terms, they become functions of e only. 

Integration and simplification then give 

3 6 ZRsinesinlj> , 3 Rl 
r a R sinle [1- \:: / [1 - ---:L:----

o
'- (ain'"e-'7)+ o( L 2)]J (n) 

4 7 
3R sin B cos 4> 

4> = 4> + 0 [1 + o( ~L ») 
o 7 : 16L4 (93) 

We must now show that 92 and 93. with Rand q. fixed, always describe 
o 

the same line of force and that it is not necessary to replace R and oj> 
o 

by functions of two other constants and of L. The electric field that 
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moves the plasma with the lines of force should be finite eve rywhere 

and hence the displacement is expected to be proportional to B -\ i. e •• 

3 3 3 6. 
to r IL • (R/L) sin 8. Inspection of 92 and 9 3 shows that they do 

have the required character and that it would not be possible to replace 

R and ~ by functions of L. 
o 

When L __ DC. R and oj> are just the coordinates where the 
o 

line of force inter.ects the equatorial plane 8 • 17/2. After the dis-

turbance the corresponding coordinates are 

4 
R sin ~o 

4 
, • 4> + 3 R co. '0 

o 
llZ L 

4 

14L 4 

The field In the equatorial plane is. by equation 

3 Z 
M [r 3r r ] B : - I + - (I - - sin ~ + o( -Z )] 
r3 8L3 ZL L 

87b. 

Before the disturbance the particle is at R. oj> where the field is 
• 0 

(94) 

(95) 

B : M/R 
3

• Afterward. the field Is found by substituting equations 94 
o 

in equation 95 and the change is 

45 ( r 4 r
5 

- ill B y) sin ~ + B o( S ) 
L 

(96) 

Likewise. by equation 77. 
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3 

II + O(~)] 
L 

where the higher order terms arise from the use of the undisturbed 

contour in the integration. Thi s then gives for nB. 

so that 

and 

~B : -
45 
HZ 

5 
( r 4. (r 

B L) sm ¢> + B 0 5 ) 

5 
• 0 + B O(~ ) 

L
5 

L 

since in the final state :s • M/ r 
3

• 

The foregoing simple calculation only shows < 6.:8) to be 

(97) 

(9 8) 

(99 ) 

(100) 

zero up to terms of order (R / L) 
5

; however. it may be shown that <AS) 

is zero up to terms of orde r (R I LlS. This follows when somewhat more 

care is taken in exhibiting the cancellation effect that the second phase 

has on the change in field experienced during the initial phase. In an 

infinitesimal perturbation of the field configuration away from its un-

distorted state, the change in field experienced if the perturbation i s 

applied adiabatically is only very slighUy different from the average of 

the changes experienced if the perturbation is applied suddenly. This 

suggests that if in a larger perturbation the particle motion were to be 

expressed in terms of Iluantities evaluated on the initial undistorted 
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contour - by a series expan sion, say , in va r iabl e s de sc ribing the extent 

to which the particles a r e di splaced from the undistorted contour - then 

the expression for the change in field experienced during the adiaba tic 

perturbatio"n might contain some t erm!> identical to Bome of those 

contai ned in an expression for the aver age of changes in a sudden per -

turbation. Such a procedur e would then be useful in exhibiting the can-

ce11ation effect occurring in a n adiabatic release of a suddenly applied 

perturbation. The uncancelled terms would be associated with the dif-

ference in the motion of a particle away from i ts undistorted contour 

in an adiabatic perturbation from that in a. sudden perturbation. That is , 

when the cancellation effect has been exhibited. the eva luation of the 

remaining terms involves consideration of the effect of distorted con-

tours which was neglected in "obtaining equation 99. The series expansion 

suggested above, coupled with an iteration procedure, has proved 

useful in t reating this problem. 

More explicitly, define l to be the distance the front of the 

solar wind is from the dipole and define quantities j3 and P
L 

by 

3 
PL • M/8L • 

Next let $( i3 ,B,<l» be the total rate (with respect to 13) at which the 

magnstic field is changin g for a line of force a t the point defined by 

(101) 

Band ol> when the field configuration is given by 13 . In terms of PL and 

e (P. B, ol», the change in magnetic field experienced by a particle during 
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the sudden initial phase of a storm i s 

P L 

.6.1B = J e ( >l ,B,,) dp , 

o 

(lOZ) 

where Band cp are evaluated along a trajectory appropriate to the start-

ing position of the particle, 1. e., Band cp are given by equations 9Z, 

93 and 87b. In terms of e( tJ ,B, <!» , the change in magnetic field 

experienced during the adiabatic ret urn to the undistorted field is 

.6.Z B = !2.t 

I~I 
] ~ (103) 

in which the B in the integrands is to be taken along trajectories ap-

propriate to the adiabatic pha se . We shall later determine the func-

tional form of this B by Iteration. 

The form of e (l' , B, <!» may be determined from equations 

87b and 94 Thus, substitution of equations 94 and 101 in equation 

8 7b yields 

B( ~ ,B , <I» =B [1+-
2
5 

000 

where we have set 

B = M /R
3 

o 

4 5 5 

~ 45 P 3. 3 31 
B --7 (i3) Stn¢ +O( P IB ) , o 0 _ 

(104) 
o 0 

(105) 
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($ a nd B now identifying the po s ition of the line of fo r c e w h en 
o a 

1 ___ (0). Differentia ting e qua tion 104 with r espect to ,:; give s 

dB 
dp 

1 
5 60 e 3 

: - - - (-D' ) sin 
2 7 

o 

Replacing 4> in this equation by the expression for 4> obtained by 
o 0 

inverting equation 9~ ,and replacing B by the expression for B 
o 0 

obtained by inverting equation 104, gives the de sir ed result: 

5 60 i3 1/3 j3 
8(." B,4»: 2-T (5) 9in4>+£1(4), B) , 

f( il )" "fO( , 2/ 3/ B 2/3) S " "1 1 l"f where 1 4>'8 15 an express10n 0 '"" , . lml ar y, 

p( P ,B,cj» is the rate (with respect to p) at which ¢ is changing for a 

(1 06) 

(107) 

line of force at the point defined by Band 4> when the field configuration 

is given by ,:l , we find 

" t. ) 
B 

where ~(4), ~ ) 
" " . 2/3 2/3 
'"~ an expresslOn of 0 ( ;0 /B ) 

We may now calculate ~lB according to equation 102. As 

described earlier, 8 ( tJ ,B,cp) in the integrand will be written as a 

series expres 5ion. Then. 

dp , 

(108) 

(109) 
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where the partial derivatives are evaluated at (a .4> ). i. e .• 
o 0 

ae 
aa 

a8 
8", 

1 2 _ 

a 
o 

60 . --7 

Elf 
~ ( .E.. )1/3 . ... + ~ 
7 a 81n "0 8a 

o 

af 
( ..£.)1/3 ... +-.1 

B cos"o 31> 
o 

In equation 109. a - Band 4> - <? may be determined by iteration: 
o 0 

~ 

5 -5 : J e ( ;3 . 5 1,4> l)df) • 5 1 : 5 
n 0 n- n- - 0 

o 

f:) 

4>n - 4>0· J P( i3·5
n _l "n_l)dP . cj> 8", • 

-1 0 

o 

(UO) 

(111) 

(Uz) 

(U3) 

To obtain an expression for A
1
5 accurate through terms of Q(j38/3 /508/3)_ 

and as we shall see, this order is sufficient - it is only necessary to 

4 / 3 4/3 
express 5 -5 through terms of 5 0(13 15 ) and 4>-4> through 

000 0 

, 4/3 4/3 
terms of Q( p 15 ). This is obtained by setting n • 1 in equations 

o 

ilZ and 113: 

(115) 
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Combining equations 109 and 115, we obtain directly 

o 

in which the integral of p :~ is of O(pS/ 3 /S 0 S/ 3). The average of 

the L\B i s 

21T ilL 

-2
1 II 8 (p,B cj> )dpd¢ +; 
'iT 0 0 0 'tlT 

o 0 

3·540 
8·49 

(116) 

(117) 

Now calculate .c..
2

B according to equation 103. From equa­

tions S7b and 94 , we find 

" 33 ., 4/3 
L + _ (L) sincj> 
B 7 B 0 

o 0 

(l1S) 
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Factoring out (1 - 5
3
.l
B 

) after expressing Band. in terms of B. 
00 · 

q, and 13. give. 

r/ l¥rl (1l9) 

Thus. 

o ZB . 4/3 

aZB. ;11' J[J e( f3 . B •• )[1-6( !) Bin~+j(' . ~)] d+] [ 1- (j(' .~ » ] df3 

"L 0 (lZ0) 

211' 

< j(+.f3!B» : ;1r J j(+.f3IB ) d+ • 

o 

Again expanding e ( !3.B •• ) in series, 

In the integrand, B -B may be determined by an iteration procedure 
o 

(121) 

(122) 

analogous to that of equation 11Z . The first approximation is given by 
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P Zlf 

B1·B 0 : 41B + j. J [J e ( ~. B 0 +41B • • ) [1.6( I: )4/3 sin + + 

ilL 0 

+ J(+. -/:)1 d+J[ 1+ (j(+. s!» ] d~ • 

Noting that an expression for 42B ac:c:urate through terma of . 

(U3) 

. 8/3 8/3 . 
B 0(13 /B ) require8 B.B in equation loll to be expreaaed only 
000 . 

'/3 4/3 . through terms of B ~( Il /B ). we &ee that the first approximation o 0 

of equation lZ3 h adequate. giving 

B.B • 
o 

Evaluation of equation III then gives 

From equationll 117 and ll5. we find 

(1l4) 

(llS) 
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8/3 
(.1..) B + B 0(13 3/B 3) 
Boo L 0 

o 

9 
• _ 3 ( ~)2 ( !. )8 B + B O(!-) 

112 L 0 0 L 9 
(l Z6) 

Since in the initial and final states r depends only on B, we may then , 

to the order indicated, calculate the corresponding averages of the 

change in the radial coordinate r from equations 100 and 126 by the 

approximate relations 

: :r [~ 1 (ar) + ~ 
r 

This gives finally 

with 

1 15 2 
a: 9, k z '4 ("""iIT) , II Z S. 

·2 a 

• 

These results are different from those obtained by Parker. 

His analysis gives 129 and 130 but with 

(lZ7) 

(1 28) 

(129) 

(130) 

(131) 
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1 15 2 
a • 9, k & "2 ( 112) , g : 0 . 

Moreover, the actual differential equation that he solves is not the 

Fokker-Planck equation based on his analysis but is a heuristically 

derived diffusion equation. However, his equation is obtained if one 

tal<es 

a • 9, 15 2 
k· (112 ) , g • a + b + 1 • 49/4 • 

(132) 

(133) 

Hence Parker's treatment may be regarded as a discussion of case 133. 

Note that the three cases have the same values of a and nearly the same 

values of k. Differences in k are trivial, affecting only the time scale, 

and the value will depend on the precise model used for the magnetic 

disturbance. The essential difference between the treatments arises 

from the dilference in the values of g. In order to treat all these cases, 

and perhaps others that may arise from different models of magnetic 

disturbances, the equations will be solved with general values of a, k, 

and g insofar as this is practical. 
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Z. Particle Diffusion 

Denoting by ,*(r, n) dr the number of particles in dr at r 

following n storms, the diffusion is governed by the Fokker-Planck 

equation. 

a .--Br [(Ar) +*1 (134) 

Following Parker's notation, one may let",. ,*/21Tr be the density 

per unit area in the equatorial plane and ~. tJ-/2z (r) be the density 

per unit volume, where z(r) is the small distance above and below the 

equatorial plane within which the particles are confined. From Parker 

_5/45/4 
we get z(r) • z(R)R r or .more generally, 

2 b 
r z(r) 8 t<L (r/L) 14fT, (135) 

with b 8 9/4 for the actual model. Thus, 

2 b ,7 • • * : Z nljl • L K (r/L) r (136) 

This can be substituted in equation 134 to get dHferential equations 

in l! instead of ,*, but it aeems easier to solve equations in ,* and 

to use equation 136 to expres& the boundary conditions in terms of ,*. 

In terms of the new variables 

T • kn, x. rlL (137) 

and on substitution from equations 129 and 130, equation 134 reduces to: 



a 
: _ g ..;;,a(~x~;,-*~) 

ax 

so 

(138) 

In the above derivation it has been assumed that L is the same for all 

storms. If L is replaced by a s ui table average value and the connection 

between nand,. is suitably smoothed. equation 138 remains valid even 

if the r e are variations from storm to s torm. 

3. Steady State Solutions 

The difference between solutions with different values of g may 

be illustrated by a simple example which may have some relevance in 

tha discussion of trapped particles. althouglb we do not urge here tha t 

it be rega rded a s particularly reali s tic. Consider the steady state 

situation where the left -hand side of equation 138 is zero. Suppose the 

electron density in the interplanetary plasma is i'l and suppose that 

theae electrons diffuse into the planetary magnetic field. starting at 

r a r
1

• where the magnetic field is assumed to terminate at the equator . 

Assume further that the particles are removed at r 8 ro < rl' which 

may be regarded as the position of either the surface of the planet or 

as the point where 80me unspe cified process removes particles fae t e r 

than they can diffuse in. Thus we have the bow\dary conditions 

Z b 
4>*( r ) ==.* • L K (r I L) ~; ~*( r ) • 0 
III I 0 

(139) 

It i s then easily found tha t the solution of equation 138 is 



and that the particle density is 

-(a+b) 
: (_r_) 

r
1 

8-1 g-l 
r -r 

o 
g -1 g-l 

r -r 
1 0 

(140) 

l!l (141) 

Equation 141 is plotted in Figure 6 for the case. r 1 : 10 r 0 with a .. 9. 

b • 9/4. g • e. 4. 0 and 49/4 . which correspond. respectively. to our 

model. to a model in which ( AB). OCR 9 IL 9). to the model with 

Parker 's (~r) and «61")2) • and to Parker's diffusion equation. 

Note that the cases g • 8. 4 and 0 predict a high peak in the particle 

density whereas the case g .. 49/4 has no peak. 

Thu8 far we have lumped together all electrons regardless of 

energy. If we define N ( r. E ) dE to be the density at r of particles with 

kinetic energies between E and E + dE; i.e •• i(r) .fN (r.E)dE. we 

can determine N from the above discuBsion by i r.eluding in it only par-

ticles of the appropriate energy. We have assumed throughout that the 

first adiabatic invariant 

2 2 
R.", sin (JIB: I. (142) 

where It". is the magnetic rigidity. is not violated and hence. as pointed 

out by Kellogg (1959). when a particle drifts in it is accelerated by the 

electric fields associated with the drift motion. For non-relativistic 

.See page 52 . 
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~ ...... 
""--.::-
~ 

~ 

104 

o 9 =49/4 
10 r/--------------------------------~~ 

2 6 r/ro 8 10 

Figure 6 . The ratios ~(r)/~l of the particle density at r to 

the density at r
l

• as given by eq. (141) for the case r l = lOro ' 

a = 9 and b = 9/4 • 
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particles, R..,is proportional to the velocity and R! to E. Since we are 

-3 
concerned with the case where (J "" 90· and B "'" r ,equation 142 gives 

3 
E(r)r a const. (143) 

and the particles which at r 2 are spread out over a range o£ energies 

dEl at El will at r be found spread out over 

3 
energy E • (r/r) £1' Thus we get 

g-l g-l 
r -r 

N(r, E) 8 (2:...) -(a+b-3) __ -,0:;;,..-_ 
r

l 
g -l g-1 

r 1 -r 0 . 

3 
N (Er 

1 3 
r

l 

) (144) 

where N (r
l

, E)a N(E) is the density in interplanetary space. If relativ-

istic effects are significant, the equations are more complicated unless 

one goes to the highly relativistic limit, in which case equation 143 

becomes 

3/2 
. E(r) r : const. (145) 

with corresponding changes in equation 144. 

The peak shown in Figure 6 becomes much more prominent 

if one considers a differential energy spectrum that has the usual de-

pendence on energy. If the time average of the electron energy distribu­

tion at r 1 should be given by (N
l
(r

1
,E» dE: CoE-S-ldE, then the 

time average at other radii is given by 

) ( - s-1 (N(r ,E) dE. C r)E dE (146) 
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a+b+1-g+38 
where for most of the range C( r ) .:::: (rlr) Co when g > 1 

and C(r) ~ (~)a+b+3S when g < 1. For the case of major interest where 
r 

4+3& 
a. 9, b. 9/4, andg. 6, this gives C(r) "" (rl/r) Co. 

In the above solution it has been assumed that the source of the 

electrons is the interplanetary plasma which reaches r II r
l 

. . Actually, 

nothing would be changed if a steady source produced the density N1(E) 

well within the planetary field and the particles dlffused both inward and 

outward to a termination of the planetary maanetic field farther out. 

The source could even fluctuate with time provided we let Nl(E) denote 

the average density produced at r
l 

and then regard the above solutions 

as giving the time energy densities as a function of .,. If the time con-

stant of the fluctuations is le88 than that for diffusion to r
l 

the actual 

density will be essentially constant in titne and given by the expre6llions 

above. The solution in the region r > r
1 

for this case is obtained from 

the above solutions by replacing r 0 by r Z' the radius at which 41* drops 

to zero at the outer boundary of the lIl'lgnetic field, and by taking 

r
l 

< r < r
Z

• If this is done for equation 144 and r
Z 

is then allowed to 

approach infinity, one finds that for the situation treated in evation146, 
r 

C(r) "'" (r1/r)a+b+3Sc for g > 1 and C(r) '" (...!..)a+b+3s+l-g
c when II < 1; 

oro 

C(r) - (r1/r)1l+3 SCo i th of . th - n e case lnterest, in e region outside the 

source. 

The source strength required at r
1 

is easHy obtained from the 

net flux away on each side. Let the net flux o,utward at radlus r per 
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unit magnetic storm be denoted by J(r.n). Since the right hand side 

of equation 134 mu:;;t give the negative of the divergence of this flux. 

one finds that 

(147) 

The literature contains various suggestions that interplanetary 

electrons could diffuse into or be trapped by a planetary field or that 

low energy electrons from the magnetosphere could be accelerated by 

magnetic fluctuations or plasma oscillations to provide the source of 

higb energy electrons. Davis bas suggested the following variant of 

these proposals. The boundary between a planetary field and the inter-

planetary plasma is almost surely unstable because of the relative 

motion due to the earth's orbital motion and perhaps the solar wind. 

Particularly when interplanetary plasma presses with greater than usual 

force. the instabilities may well allow bubbles of plasma to penetrate 

into the planetary magnetic (ield. These diamagnetic bubbles will tend 

to be expelled again by magnetic pressure. but they will also tend first 

to break up by flute instabilities. to become very long and slender, and 

then by their finite conductlvity to allow the planetary field t o run uni-

formly through them. During this process, the particles in the plasma 

experience an increase in magnetic field strength and consequently should 

be accelerated in a direction normal to the magnetic field. 
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4 . Transient Solution 

The nature of the transient solution to equation 138 depends 

somewhat on the value of g. We shall conclude by presenting the time 

dependent solution of equation 138, subject to the condition that initially 

there is a ring of N particles at r • r 1 • xlL. i. e •• that 

(148) 

The equation obtained by taking the Laplace transform of equation 138 

ia 

Z a a,l:. a a+l ... 
-g - (x '1') + - (x '1') 

ax axZ 
(149) 

00 

where ip (x, s) is the Laplace transform of <1>*, ~. J e -s,. cp.d-r. The 
o 

last equation is thrown into a more familiar form by Introducing the 

a+l ... 
new variable 6 C x 'I: : 

s 
- -)6 • -cp.(x.o) • 

a+l 
x 

(150) 

From Jahnke and Emde (1945), a soluti on to the corresponding homo-

geneous equation is: 

where 

..a!L 
/I. x Z [C I ( 218 

1 P la.ll 
1 ) C K ( zS; a:r + Z P la-I I 
x-z-

~l_)l 
a-I 
2 x 

(151) 
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• I.i..:!.J p a-l (152) 

and where I and K are modified Bessel functions of order p. 
p p 

1£ the 

initial distribution consists of a ring of N particles a t xl' then equation 

150 becomes 

a 111/ "" Nd .... + (...&.-~:-;--)6 • - -L ",X-x.) x ax 2 a+l 1 

(153) 

x x 

Requiring q.* to be finite at the origin x ,. 0, and placing an absorbing 

boundary at xz"'oo, the solution to equation 153 bas the form 

A .s!!.. I (2Ji 1 .x 2 a:i ) x ~ "1 p a-I x-~(x, 8) .{ 
2 (154) 

A .s!!.. K(Ui ~ o~x~"1 _x 2. p a-l a-x-
2 

when a > I, and 

~ C x K (1i! 1 
) x ~ "1 + P l-a a-I 

x-
e(x, 5) 2 

(155) 
.s!!.. 

2 I (lJ! 1 
) O~x~"1' c x a-I p I-a 

x-&;-

when a < 1. The constants are determined by requiring e("1. )e -e ("1- ) 

and (~) - (~) • - NL ' the latter condition being obtained ax "l + ax "1-
upon integrating equation 153. For equation 154, this gives 



e(x. s) = 

N 2 
L~ 

88 

)1 (1..! 
p a -l 

(156) 

N 2 
r;a:r 

!.:L 1+g Us 1 ZIS 1 
2 2 1 (-1 --=~) K (- - ) o<x<x.. 

~ x p a- a-1 p a-1 a-I - - 1 

when a ::.. 1 and 

~~ 
~ _ 2_ x 2 x 2 1 ( 2/5 
L 1- a 1 p I-a ~ 

e(x. s) : 

!.:.s.. !!l. e 
N 2 2 2 K (l.:!! 
L r:;- "J. x p l-a 

T T 

1- a 

2) 1 ( 2.fS 
"J. p I-a 

x 

I-a 
2 

I- a 
(157) 

when a < 1. From Erdelyi. Magnus. Oberhettinger and Triconi (1954) • 

.+, -(a+1) 
we find as the inverse Laplace transform of the 1:'. x fJ cor-

responding to both equations 156 and 157: 

N 
~*(x • .,.) = L\a-l\ T 

exp [_ 1 (1 
.,.(a_1)2 x a+1 

1 

--:~1~_\ 
a-I a-l I. 
TT 
~ x 

(158) 

The result is in the standard form of solutions to diffusion problems. 
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The particle density per unit volume obtained from equation 158 i& 

Nla-ll 
l'(s,.,) = 3 (M1) ~ 

21<L "l 
-1 1 1 1 

" exp[ - -z (1+ -1)] I ( 1 ) v .. a- p a-

where the new variables 

x 
~ . 

"l 
: r 

and " . 2 (a-l) 
2 

a-l 
"l or 

I; "rt"" 
(159) 

(160) 

have been introduced to simplify the expression. Equation 159 reduces 

to Parker 's corresponding solution for the case g = a+b+l. 

The nature of the solution may be seen by considering its 

various asymptotic forms. The following calculations paral,lel Parker's 

treatment of the case g = a+M1. Equation 159 has the following asymp­
a-l 

totic forms. For ,,~-r« 1, the asymptotic expression 

I (y) • "Y (ny)-1/2 (1 +0(1/y)] is used to obtain 
p 

: Nla-11 

2
3/2 1/ 7 L3 (b+1) 

11 K "l 

Zg-3-3a-4b 
4 -1/2 

" 

1 2 
exp[-..!...(1- a-1 ) Jll+O("~ 2 ») 

2" -
~ 2 

(161) 
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Wh en v becomes large compared to unity. a useful form of this ex-

pression obtains on s eparating out exp( -1/ 2,,): 

2g-3-3a-4b 
N la-l l 

Hs.v)= 31z l/ l 3 b+l 
l 7r KL ~ 

4 -1/2 
v 

a-I 

. [ 1 
I 

t a-I 

v~" 

2 1 
)[ltO(v~ ;-)] exp - 1 2vsa- v 

a-I 

th th , 2 1 At eo er extreme. suppose v <; ». Then the expres sion 

-1 p l, 
I (y) • [r(P+l)] (y/2) [HO( y )] i~ used to obtain 
p 

g-1-l(atb) -p(a-l) 

1>< s . v) = .;..;N..:..;I a~-..;;;II~;--__ -:-:­
KL 3~ btl r(p+l)l,pt1 

_ 2 -(ptl) 
~ v 

or. on expanding the exponential. 

g-I-l,(atb) -p(a -1) 
2. -(ptl) 

v 

1 
exp( -1/ 2v) [l to( 2. a-I 

v ~ 

1 
a-I 

v ~ 

») • 

(16 l ) 

(163) 

(164) 
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When v becomes very large. 

g-l-Z(a+b) -p(a-l) 

},(;.v) = .:.,;N;,:..la;;;,-,..::l.:..,'...,-:o ___ -._ ; Z v -(pH) 

KL 3"l. bH r(pH)ZP+l 

1 1 1 
[1+0{ 2 1: 1;-»)· (165) 

v ~a- v;a- v 

The total particle flux (net number of particles flowing past ~ per mag-

netic storm) may be calculated from the expression 

For the it(;.") of equation 159. 

a-I 
J(r n) : _ N , a-l ' ~ 

1 2 

~ !.:!.. 
• 2 -1 1 1 .-!.:i. 2 a-1 
" v exp[ - 21' (1+ . a-l) h.- 2 ~ + z;-

t; 

where the argument of the Bessel function and its derivative is 
a-1 a-I 

(166) 

( 
-2- -1 T 

v~ ) . When v; »1. the Bessel function and its derivative 

may be expanded to give 

- N la-11k a -1 g-p{a-l)-l 

J(r.n): "l. (l~g_p{a _l)s 2 v-(p+l)exp{_l/Zv) 
IiP+l)2P+1 (1(7) 

1 
-""::'-'1-) ] . 

,, ~ a -

1 
[l+O ( 2 1 

v ~a -
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When \I is large. 

J( r. n) 

Nla-lIkx a-l g-p(a-l)-l 
• ____ --~!- (1..:1 _ p(a-l~ 2 \I -(pH) 

r(p+l) 2P+l 2 

[1+ o( 
1 1 

2 a-l; a-l 
\I ~ \It 

1 
; ; ) J • (168) 

This can be expressed in terms of a mean drift velocity U toward 

increasing ~ 

Equations 165 and 168 yield: 

1 1 
a-l; v») 

\It 

cm per magnetic storm. At the other extreme. when \I; 

a-l 
2 

(169) 

« 1. the 

asymptotic expressions of the Bessel function and .its derivative give 

J(r. n) 

2 a-l 
-kN(a -1) "l 

= ---,--=--4 

g+l-la 
Z. -2 1..l- 2 

\I exp[--(l-a-l)J 
2" -

~ 2 

a-1 a-l 

[1+ 0(\1; ~,,~a-l; (2)] (170) 

The 1'(;.") resulting from <t>*(x.o) • ~ 6(x-"l) may be 

described as a "wave." for setting :i : 0 in ~oth equations 161 and 163 

shows the maximum of 1'(;.\1) to occur at a position \; given by: 
c 
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£ a -1 : o( !.) . 
c " 

(171) 

Equation 171 in conjunction with equation 163 leads to a simple expre8sion 

for ~(~.,,) in the vicinity of the wave. For in equation 163. we are 

neglecting terms of 
1 o ( ) and in the wave 2 a-l • 

" S 

(17 2) 

which is small in the limit as " becomes large. Thus. when,,» 1. 

g-1-2(a+b) -p(a -1) 

y(£.v).N1a-ll ; 2 v-(p+l) 

KL 3"l. btl r{p+l)2P+l 

exp(- (173) 

is a valid expression anywhere ;p is not negligibly small. The crest 

of the wave. where :: • O. has the position ;c' where 

a-l a-l 
£c : [ 2(a+b)+l+p(a-l) -g ) 

1 
v 

(174) 

The total number of particles n in the wave for v »1 may be found 

by integrating the <1>* corresponding to equation 173 over r • "l.L£: 
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(Xl ( ) 1-g+p(a-1)+2(a-l) 

J 
_N_v_-_P+_1:-:- (1-g+p(a-1)+2(a-l) ) (2) 2(a-l) 

cp* dr • 1 r 2( a -1) v 
r(p+l)2P+ 

n • 

o (175) 

If~:~ >0, equation 175 gives 

N -p 
n: v (176) 

r(p+1)ZP 

" -1 whereas if "'-'-1 < 0, equation 175 gives 
a-

naN. (177) 

In the latter case, the number of the particles in the wave does not 

decrease with time, but remains equal to the original number injected. 

Assuming that the first adiabatic invariant is not violated, 

the energy E of a particle at ; which had an initial energy E at;: 1 
o 

is 

E : E ;-J. 
o 

(178) 

with J. : 3 for nonrelativistic energies and J. • 3/2 for ultrare1ativistic 

energies. Thus, the total particle energy in the wave due to the injec-

tion of N particles of energy E i9 for large " 
o 

(Xl NE (2vj(p+l) 

€ J -1 0 • Eo; 4> *d r • '"Or""":;( p-+-"I""') --

o 

r (l-g+p(a-1)+ ZH2(a-l) 
Z(a -1) 

(2\1) 

l-g+p(a-l)+2J. +2(a -1) 
2(a-1) 

(179) 
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J.:!. When a-I > 0, equation 179 states 

1 +J -i 

C : NE (Z,,) a-I 
o 

and when i:!.. < 0 a-I t 

1 

E. NE (ZII)i:r 
o 

t'( Ha-l ) 
a -I 

r(p+l) 

r(.!:1) 
a-I 

The mean eneriY per particle i8 

when g-l
l 

> 0 and 
a-

... -1 
when a....;;..1 < 0 , 

a-

r(.!.:B) 
a-I 

(180) 

(181) 

(18Z) 

(183) 

Finally, in terms of the position ~<of the wave, the mean energy 

per particle i6 

when 
,,-1 
M-- > O. and 
a-I 

(184) 



r( Ha-g ) 
• E a-I 0----'---

(~ r a-I) 
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1 
( a-I )~ 

a+b+l-g 
-I 

~c 

" -1 when ~l < O. The number of particles in the wave 1 n terms of 
a-

the position of the crest Is 

n = 

a-I 
when ~ 

a-I 

N 
r{p+l) 

> 0, and does not depend on the position when .i.:!..l < 0 . 
a-

(185) 

(186) 

.i.:!.. The form of the solution, especially when 1 < 0, suggests 
a-

that the particle diffusion resulting from large-scale magnetic fluctua-

tions might be of importance in transferring electrons from the Bolar 

wind to the outer Van Allen belts of planets. If the other features of 

the magnetic storm are such that the first and second adiabatic invari-

ants are not violated, the electrons both gain energy and attain flatter 

helices on inward diffusion . The last two features make attractive the 

hypothesis that this mechanism might provide the relativistic flat-helix 

electrons required if the decimeter radiation from Jupiter is to be 

synchrotron radiation. The time scales involved in the diffusion might 

present some problem. For instance, estimating the number ~ of 

storms required to cause a particle to di£!use a distance D by setting 

2 2 ~ 
~ • D / < (Ar» ,and taking the < (Ar) } given by equations 130 and 

131, we have 
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(187) 

Setting r • D and taking (r / L) • 1/5 as a typical value, this gives 

1 8 
~ "" '2 x 10 . Parker (1960) estimates that on the order of fifteen sudden 

commencements occur per year on the earth, so that this would indicate 

7 
that of the order o£ 10 years is required for appreciable diffusion. 

This is a much longer time scale than that estimated in section IlIA for 

scattering and 108s by other mechanisms. On the other hand, it might 

be that magnetic activity at Jupiter is much greater than on the earth. 

in which case shorter diffusion times could obtain. 
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IV. SUMMARY 

The Stokes pa rameter d~scription developed in Appendix B 

for synchrotron radiation from a group of ultrarelativistic electrons 

with an arbitrary angular distribution. is summarized in Table IV. 

paie 145 • and Table V. page 154 The results of applying this 

development in section II to the radiation from a shell of relativistic 

electrons trapped in a dipole field are presented in graphical form in 

Figures 12.2.0 of Appendix D. As diaculISed in section 11. the results 

conflrm Davis' suggestion that the degree of polarization observed for 

the 31 em radiation from Jupiter i. obtained for synchrotron radiation 

from ultrarelativistic electrons in a dipole field if the electrons have 

relatively fiat helices. As suggested by Davis. the observational result 

that the outer regions of the source are more strongly polarized than 

the central region might be explained if the equivalent of two shells of 

electrons are present. the outer shell comprising the electrons with 

flat helices and the inner shell having electrons with steeper helices. 

The overall polarization does not depend very strongly on the frequency 

or on the energy distribution of the electrons as long a8 the electrons 

radiate efficiently at the frequency of interest. For the details of the 

variation of the polarization and intensity and the corresponding cosine 

transform quantities. reference is made to the graphs of Appendix D. 

The result. to be expected if the dipole axis is not at right angles to 
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the line of sight have not been studied here . 

Discussion in section III of the problem of obtaining high energy. 

flat helix electrons in a dipole field has centered on a study of the 

particle drift and diffusion due to the effects of large s cale magnetic 

fluctuations. The asymptotic approximation method of Bogolyubov and 

Z ubarev has been used in Appendix C to show that the relativistic drift 

velocity expressions differ fr om tho s e of nonrelativistic particles only 

by the presence of the relativistic mass in place of the rest mass. These 

drift velocity expressions have been used in the particle diffusion analysi s 

of section III to derive the coefficients of an appropriate Fokker Planck 

equation by following the particle guiding center motions through a 

large-scale magnetic fluctuation. It has been found that this mechanism 

might lead to a high density of high energy. flat helix electrons; on the 

o ther hand. many fluctuations are r equired for appreCiable diffusion to 

occur. Magnetic activity at Jupiter must be very great if this type of 

mechanism is to provide the relatively flat helix electrons required fo r 

the decimeter radiation from Jupiter to be synchrotron radiation. The 

effectiveness of this type of mechanism depends in part on the scatter ­

ing. loss and diffusion to be expected from other causes. and these have 

yet to be studied. 
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APPENDIX A 

• Summary of the Published Observations 

of Jupiter's Decimeter Radiation 

In this appendix. the published. data on intensities are sum-

marized in tabular form. The brightness of radio sources is con-

ventionally given in terms of the equivalent blackbody temperature 

TD ; i.e .• the temperature at which a blackbody subtending the same 

solid angle as the source would emit the observed radio noise in the 

frequency interval under consideration. In Table ill. the second column 

H ets these temperatures as given by the various authors or as deduced 

from their data. The temperatures are derived from the Rayleigh-Jeans 

law assuming the source to subtend a solid angle OJ equal to that of 

the optical disk. More explicitly, if P (£)df is the flux in watts per square 

meter received in the frequency interval df at f. then TO in degrees 

Kelvin is determined by the equation 

c 
p( r) • 

-23 
where k = 1. 380 x 10 joule per degree Kelvin is Boltzmann's 

constant, A is the wavelength in meters and f is given in cycles/ sec. 

n -31 -30 
For Jupiter, 2k) (J varies between 5.16 x 10 and 1.118 x 10 joules 

*And also the prepublication results of Morris at 31 em. 
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per degree Kelvin. depending on the position of the earth in its orbit. 

For nonthermal sources TO i s not particularly significant. and it is 

sometimes more revealing to give a quantity proportional to the £lux. 

Thus. the third column gives T oX - Z, which is proportional to the flux 

received at the earth and also. if multiplied by 211kR~ .4.46 x 10-
1 

where R
J 

is the radius of Jupiter. is equal to the watts per steradian 

per unit frequency radiated in the direction of the earth. Column 4 

lists (T
O

-130·)/X
2

• which is proportional to the actual flux minus the 

flux corresponding to the infrared disk temperature of 130· obtained by 

Menzel. Coblentz and Lampland (1926). The remainder of the table is 

self-explanatory. The general nature of the remarks in columns 1 and 8 

of various observers on variability point out the difficulties and uncer- . 

taintieeo presented by noise in the observations. For completeness, 

no attempt has been made to avoid duplication; L e., some of the entries 

refer to the same observations but are different due presumably to 

reinterpretation of the data. 
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TABLE III. OBS ERVATIONS OF JUPITER'S RADIA TIONS 

Wave- Disk Flux TD/A2 T
D

-130 Date of Angle between Variability and Correlations 
length Temp. 

A2 
Obser- Jupiter's equa-

-2 -2 
vation torial plane. and Variability Correlations Source 

cm TD "K "K cm "K cm the plane of polar. 
ization of antenna 
(delirees) 

3.03 17 a20 I S. 6+<:. 2 4.5+2.2 Aug. 22- Giordmaine(1960)in eummar-
Giord-

Sept.4 . 195S lzing the 3-cm. observations maine. et 

reports" - -One can conclude al. (1959) 
3. 15 140+56 14.1+5.6 1. 0+5. 6 May 13 80 - that there are detectable nuctu- Mayer. et 

May 31.1956 ations in the 3 cm radiation al. (1958) 
temp. of the planet. with the sug-

145+26 14.6+2.6 1. 5+2. 6 Mar.23- gntion that changee in the ap-
Apr.l.1957 parent temp. may be correlated 

with changes in the appearance 
3. 17 173+20 17.2+2.0 4.3+2.0 May 24- of the planet. No correlation was Giord-

Jul. i9.l958 observed between the apparent maine. et 
Jan.3 i - temp. and the rotation of the al, (1959) 
Feb. 7.1959 planet. nor between apparent 

temp. and Bolar activity ae 
3. 18 165+17 :6.3+ 1. 7 3.5+ 1.7 April. 1958 " •• any va ... iation in apparent measured by the 10 cm lolar Alsop. et 

blackbody temp. with rotation nux intensity . There was no de-
al. (1958) 3.36 189+20 16.7+1.8 5.2+ 1.8 Apr.16- of Jupi t e r i s less than 10",. " tectable linear polarization. " 

May 8.1958 " •• evidence of an anomalously Giord-
(except for high temp. approx. 26S"K. on maine. et 
Apr. 30-May 1) ./30 - 5/1/ 58. " 

al. (1959) 
3.75 slightly 140 5 None given Drake .. 

greater (but maybe Ewen 
than 200" off by iac tor (1958) 
(but may be of 2) 
in errorby 
factor of 2) 

10.3 860-395 8.1-3.7 6. 9-2.5 5 days duri ng 67+0. ~ It -_measured equivalent black- " --Attempts to correlate the McClain 
(estimated (est. rel. period: June . body temp. varied from 860 to variations in equivalent black- .. Sloan-
rel. uncer- uncertainty 10-28.1958 ~95 "K wi th an estimated rel. body temp. with the planet rota- aker 
tainty of of .!,l. 5) 

uncer tainty of +160"K;" "during tion. while slightly suggestive. 
(1959) one night'e observation. the are by no meane conclusive." 

.!, 1 (0) ,qulva lent blackbody temp. 
ave . 580 ave. 5.5 ave. 4.2 varied from 860 to 390" K." 

*Sloanaker .. Bola nd ( 1961) 
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Wave­
length 

crn 

10. Z" 
10.3 

10. Z .. 
10.3 

21 

Disk 
Temp. 

T ·K 
D 

640+85 

315+65 

- 6200 

-2 ·K ern 

6.0+0.8 

3.0+0.6 

-14 

esloanaker .. Boland (1961) 

103a 

4.8+0.8 

1.7+0.6 

103b 

Da te of 
Obser­
vation 

}\ngle between Variabllity and Correlations 
Jupiter's equa-
torial plane, and Variability Correlations Source 

June 
Aug. 
1958 

10-
20, 

Oct.16-30, 
1959 

the plane of polar. 
ization of antenna 
(degrees) 

67+0.5· 

79+0.5-

May 16-
,June 2.1959 

" - -measured apparent black­
body temp. ranged from 300· K to 
10 looK about a mean of 64°K+8s-K 
e at. standard error--." 

" ••• The measured temps. 
show no long-time trends over 
the 71 day measurementinter­
val. but show a suggestion of a 
cyclical variation of about 300/0 
correlated with a rotation rate 
between 40" and 2' longer than 
the rotation period of System 
ll. II 

Sloanaker 
( 1959) 

" ••• present measurements give 
a roughly normal dist. of apparent 
temp.witha standarddev. of 
190 o K. On the basis of the est. 
measurement errors, the ex­
pected standard dev. is about 
145°K. which is in reasonably 
good agreement with the observed 
scatter. but does not preclude the 
possibility of a variable component 
in the intensity of the radiation. II 

" ••. observedehangeinintensity " ••• the 1958 measurements show 
of about 2 to 1 between 1958 &: 1959 is correlation for all rotation peri­
real and may be related to polariza.. ods between about 1 min. and 
tion of the radiation or to a corre- 2 112 min. longer than the period 
l ation with solar activi ty .1n add! - of System II.however. itis COI1-

tion. the 1958 measurements show sidered that the number of meas­
some evidence of ahort-time vari- urements h too small to decide 
ability. possibly correlated with whether this correlation ia really 
the rotation of the planet." connected with the rotation of 

Jupiter." " ••• the solar activity 
was 3. 5 to 6 times as intense im­
mediately preceding and during 
the period olthe lO-cm. observa­
tions in 19S8asitwasforthe19S9 
measurements ... II 

" ••• the amount olthe emission 
varies wi th time. by as much as a 
factor of Hn a period of a few 
hours _to 

Sloanaker 
.. Boland 
(1961) 

Epstein 
( 1(59) 
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TABLE ill (cont.) 

Wave- Disk Flux TD/Xl. TD -130 
length Temp. 

Xl. 
-l. -l. 

cm TD oK oK cm oK cm 

l.1 2496+450 5.6+ 1 • 0 5.3+ 1. 0 

21 2860+380 6.5+0.9 6.2+0.9 

2410+340 5.4+0.8 5.1.+0.8 

2050+430 4.6+ I. 0 4.3+1.0 

104b 

Date of Angle between Variability and Correlations 
Obser- Jupiter's equa-
vation to rial plane. and Variability Cor r elations Source 

the plane of polar. 
ization of antenna 
(degrees) 

May 14-
June 18. 
1959 

May 15-
June 1.1959 

June 1-
June l.3. 1959 

June 23-
July 31 . 1959 

67.9-

67.9-

" ••. the measure­
ments are h ighly 
s uggestive of a 
cyclical variation." 

" •.. suggestive of 
a c y clical change." 

" ... average temp. 
in each gr oup de­
creases suc ces­
sively with time" 

" .•. An attempt has been made to cor relate 
this data with System I andSystemII rota­
tion. In the case of System II an elevated 
temp. has been noted at a longitude of 200·. 
This enhancement of about 30% appears to 
lie between 75° to 225°. While rather aig­
nificantwhen subjected to a statistical test. 
the amounto! data is limited. and this con­
clusion should be considered tentative. Cor­
relation might actually be more pronounced 
witha system differing from both Sys t em I 
and II but sufficient data is not available at 
the time this is written." 

The remarks on the attempt to correlate 
these data with solar activity are essen­
tially the same as those reported in , 960. 
[McClain. et a1.(1960)]. 

" •.. No correlation was found with the 10-
cm. Bolar index . In the case of solar par­
ticles . the fact that Jupiter was in oppoai tion 
at the time of the measurements would lead 

McClain 
( 1959) 

McClain, 
et al. 
(1960) 

one to expect that particles causing magnetic 
storms on the earth following a solar flare might 
reasonably be expected to arrive in the vicinity 
of Jupiter a few days later(fi r at suggested by 
Drake) . No definite correlation of this scrtwas 
found in these measurements. However ,there 

-Calculated from correction factors used in Field ( 196 1). 

is a slight suggestion of elevated temp . follow­
ing an important 3+ £lare on May 10, 1959 and the 
intense aurorae of May 11 and12 , 1959." 
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TABLE III (cont.) 

2 
T

D
-130 Wave- Disk Flux TDIA 

length Temp. 
A2 

-2 -2 cm TD ·K oK cm oK em 

2 1.4 7.4+3.7 
, 

-3000 - 6.2 - 5.9 

31 - 5500 - 5.7 - 5.6 

3 1 

31 

(800/. of the (8~. of the 
value!slie values lie 
betweejl between 3.9 
3.8xl0

3
• and 0.7) 

6.4><10 • K) 

5500+1500** 5.7+1. 6" 

5100+1300 5. 3+ 1.3 

5175+1300 5.4+1.3 

5.6+ 1.0** 

5.2+1.3 

5.3+1.3 

l05b 

Date of Angle between Variability and CorrelatlonlJ 
Ob ser- Jupiter's equa-
vation torial plane. and Variability Correlations 

the plane of polar. 
ization of antenna 
(degrees) 

May.1959 

April 15-
June 17. 
1959 

Ma r.-May . 
1960 

Jan.-Feb .• 
1961 

67.9* 

77· 

I II zo 

80· 

" ••• An extensive set of observa­
tions at ZZ cm suggests that vari­
ations of the order of lO"Ao occur 
in the flux in time of the order of 
days." 

" ••• the apparent variations in 
the Jupiter values were not sig­
nificantly greater than those 
for the other presumably non­
varying weak 80urces." 

" ••• The possibility oHntrinsic 
variations i 9 not excluded. " 

" .. •. appear s that there Is 
no significant correlation 
between the low frequency 
events and the hlghfre­
quency data on Jupiter. 
Based on the limited amount 
of data we have available. 
the Zl-cm radiation from 
Jupiter seemstovaryata 
rate quite dOlle to that of 
System II or System W." 

" .•• There is no statistically 
Significant correlation Ibe­
tween the apparent variations 
and planetary rotation." 

" •. • we did check for a cor­
relation with Jovian longi­
tude . both systeml " system 
II. and also for a correlation. 
either direct or delayed. 
wi th the Sacramento Peak 
Flarelndex. In no case was 
there any significant cor­
relation. " 

*Calculated from cor r ection factors used in r i eld ( i.96 () . 
-Bolton &. Roberts quoted by rie1d(1959). 
I Drake as quoted by Field (19 59). 

Sour c e 

Drake .. 
Hvatum 
( 1959) 

Roberts .. 
Stanley 
( 1959) 

Morris 
(1961) 
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TABLE III (cont.) 
106b 

Wave­
length 

Disk 
Temp. 

Date of 
Obser­
vation 

Angle between 
Jupiter's equa­

Variability and Correlations 

cm T oK 
D 

-2 oK cm 
torial plane. and Variability 
the plane of polar. 

68 70.0001.30.000t 151.6.51' 

68 - 70. 000 -15 

-30.000 - 6. 5 
(les s certain 
than the 70. 000 
meas. ) 

15+6.5i 

- 6. 5 

May 26 
" May 27. 
1959 

July 20-
July 30. 
1959 

ization of antenna 
(degrees) 

... .•. r·· 68 [40.000+50001 [8.6+1.1) [8.6+1.1 [end of May. 
- - - 1959)··· 

~.. j.. r·· [3 1.000+50001 [6.7+1.1 [6.7+1.1 [end of July. 
- ' - - 1959J··· 

[8500+9500 r" .•. r·· [1. 8+2. 0) [1. 8+3. 0 [end of Oct •• 
- - 19591"·· 

••• [ ) estimated from Figure 1 (and correction factors) of Field (1961) . 

• Calculated from correction factors used in Field (1961). 

: Drake as quoted by Field (1959). 

' 'High sensitivity monitor­
ing of the planet at 440 Mc 
showed no statistically sig ­
nificant short period vari­
ations in flux during two 
nights of observing." 

Correlations Source 

Drake & Hvatum 
(1959) 

Drake (1960 as 
quoted by Field 

(1961) 
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Wave- Disk 
length Temp. 

em TD OK 

73···· <Z9.300 

< 7450 1 

<10.100
2 

<18.600 3 

<39.400
4 

<64.000 

FluxTD!'A 
2 

OK em -2 

<5.5 

< 4
1 

l. 

<1. 9
2 

<3.5
3 

<7.4
4 

<12 

107a 

Tn-PO 

A' -z OK em 

<5.5 

< l. 4 1 

< I. 9
2 

<3.5
3 

<7.4
4 

<12 

Date of 
Obser ­
vation 

Sept.l6 r.. 
17.1959 

Angle between 
Jupiter's equa­
torial plane, and 
the plane of polar­
lzation of antenna 
(degrees) 

Mar .4-9. 
1960 
Mar .l5-18. 
1960 

Mar.20 -
Z3.1961 

•••• These results are based on Figures j " 2 of Long 80: Elsmore ( l 960). 
1 1£ source diameter < l' when J'upi tar is 4.375 A. U. from the earth 
2 \I" II < 2' It 'I II II II II "II (D =45") 
3 II II II <3' II If If II II " 11 II J 
4 II II II <4' II II II II II II " II 

l07b 

Variability and Correlations 

Variability Correlations Source 

Long & 
Elsmore 
( 1960) 
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APPENDIX B 

Properties of Synchrotron Radiation 

Synchrotron radiation, the radiation of relativistic electrons 

gyrating in a magnetic field, has been discussed in a variety of con­

texts. Fifty years ago, calculations of the spectral and angular dis­

tributions of the radiation from an electron in a circular orbit were 

presented by Schott (1912) as an example of radiation from an acceler­

ated charge. In 1940, Pomeranchuk published a paper on the maximum 

energy which primary electrons in the cosmic radiation could have on 

reaching the earth's surface, the maximum being determined by loss 

of energy due to radiation in the earth '8 magnetic field. Schwinger 

(1949) and Arzimovich and Pomeranchuk (1945) are among those who 

have investigated the radiation in connection with energy loss in synch­

rotrons. The possibility that high speed electrons might be of impor­

tance in radiation from the sun was raised by Giovanelli (1948) and Hoyle 

(1949). Alfven and Herlofsen (1950) suggested that radio star emission 

might be due to cosmic ray electrons in the trapping field of a star. 

In 1950 Kiepenheuer, and in 1952 Hutchinson, discussed the possible 

relation of galactic radio noise to cosmic rays. Ginzburg and 

Shklovskii in 1953 suggested that relativistic electrons exist in space 

and that they give rise to the emission from nonthermal sources. And 
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since then. many artic:1ea l Twin (1954. 1958). Hoyle (1954. 1957. 19(0). 

Dart and Walraven (1956). Burbidge (1956&. 1956b. 1959). Korcbak 

(1957) . Oinsburl (1959). Tunmer (1959). Takakul'a (1959). Wallis (1959). 

Dyee and Nakada (1959). Biermann and Davis (19 60)] have di.cl1ued 

synchrotron radiation in an astronomical context. 

The interest in synChrotron radiation led Weatfold (1959) co 

study in more cletan the polarization prop.rti... He studied the synch­

rotron radiation from an electron moving in a helical orbit. obtaining 

the polarization propertiee as ... ell as the spectral and anaular distrl­

blation 01 the radiation. His method was to straightforwardly FOl1rler 

analyze the field obtained from the Lien&l'd-Wiechert potendah. ne 

radiation was also calculated fol' a arollp of particles wUh an isotropic 

velocity di.trlblation. Oster (1960. 1961) has recently studied the effects 

of colUsiona on the llpectral and angular distrlblatlon of synchrotron 

radiation. In hi. 1960 paper. the spectrum is calculated by Fourier 

annlyz1na the electric £leld obtained from the Lienard-Wiechert potential 

of a. aln"le particle moving in a circular orbit. The resultll are gener­

aU.ed in hi. second paper CO a particle moving In a helical orbit. both 

by direct Fow-ier analYlis. and by l..orentz transforming the spectrum 

for a partide In a circular orbit. The power spactrulP due to an as­

sembly ot particle. having an isotropic Maxwellian di.triblatioQ function 

is aho obtalned. It Is found that for practical applications. colli81on 
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broadening of the spectral lines i s of much less importance than the 

broadening due to purely relativistic effects. 

M ore recently. synchrotron radiation has received a lively 

discussion in the literature in connection with power losses from pro­

posed controlled thermonuclear reactors. This problem has been 

studied by Trubnikov (1958. 1961). Beard (1959. 1960). Drummond and 

Rosenbluth (196O. 1961a. 1961b). and Beard and Baker (19 61a. 1961b). 

Recent related contributions have been made by Bekefi. Hirshfield and 

Brown (196la. 1961b). Hirshfield, Baldwin and Brown (1961). and Hirsh­

field and Brown (1961). The concern here is mainly with the power loss 

from mildly relativistic plasmas. Calculations are based either on the 

spectrum of a single electron or on a group of electrons all moving in 

a plane or distributed isotropically. 

In spite of these numerous references. an abbreviated deriva­

tion of the properties of synchrotron radiation is presented below. There 

are two reasons for this. First. none of the references give results 

for the radiation from a group of particles with an arbitrary angular 

distribution. and we need to consider such distributions in connection 

with the dipole model of Jupiter IS field. Secondly, we wish to obtain 

a Stokes parameter d escription of the radiation. The derivation is 

divided into two parts. The first part develops the expressions for the 

component power spectra from a single electron moving ultrare1ativ­

istically in a helical orbit. This is done by using Feynrnan's " effective 
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transverse acceleration" to obtain the properties of the radiation from 

an electron in a cir c ular orbit. and then using a Lorentz transformation 

to obtain the results for a helical orbit. In the second part. the Stokes 

parameters are developed for a group of electrons with an arbi.trary 

angular distribution. * 

1. Synchro tron Radiation from a Single Electron 

(a) Radiation from an elec tron in a circular orbit. 

Feynman ( 191Oe. ) has pointed out that it is physically revealing 

to express the radiation electric field of an accelerated charge as being 

" .. 
simply proporti onal t o an effective transverse acceleration d . It is an 

acceleration transverse to the line of sight since the fields at great 

distances from the charge appear to be those of plane waves . It is an 

effective a c celeration --- rather than an instantaneous projection of 

the actual acceleration onto a plane transverse to the line of sight ---

since allowance must be made lor the fact that light has a finite velocity. 

and that therefore the radiation emitted in an interval., by an acceler-

ating charge moving toward (away from) an observer will arrive at the 

observer in an interval less (greater) than.,.. The effective transverse 

acceleration is the acceleration which would be required of an electron 

*The derivation in this form has appeared in Chang (1960). The method 
of obtaining the single electron results for helical motion by Lorentz 
transforming the results for circular motion has also been employed 
independently by Oeter (196l). 
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moving always at right angle s. to the line of sight in order for it to give 

the same radiation as that produced by the electron in its ac tual orbit. 

It is the acceleration a naive observer would give for the electron i£ 

he viewed it by light which actually travelled with velocity c but which 

he regarded as traveling with infinite velocity and if he could not per-

ceive the motion along the line of sight. 

-The expression for the radiation electric field e(t') in terms .. -of d (t) in rationalized MKS units is*: 

-+-
c (t') . - (Bl) 

where -q is the charge of an electron, E is the permitivity of free 
o 

space, c is the velocity of light. and R is the distance from the trajectory 

to the field point at which we wish to know the electric Held at the time 

t '. The time t is related to t' by the time that it takes light to travel 

the distance R from the Bource region to the observer: c(t'-t) • R . The 

!+. 
prescription for finding d ( t) in terms of the actual motion of the electron -is straightforward. Thus. define a unit vector i to be directed from 

the trajectory to the £ield point (it being assumed that the dimensions 

of the source region are much smaller than tile distance to the observer). 

If tl(t lO
) iii the position vector of the elec tr on in its t rajectory. then .. ..... -. 

d (t) - from which d (t) is obtained by diffe .rentiating twice with respect 

• fhis expression can be shown to follow from the usual e,. .. preasion ob­
tained from the Lienard-Wiechert potentials whenever the dimensions 
of the lIource region are much less than the distance to the observer. 
See, for instance. Chang (1960). 
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to t - is the (retarded) projection of ~( t" ) on the plane of sight (i. e •• 

-on any plane in the region of the s o u rce perpendicular to I ): 

......... ...... ~-
d(t) = r ( t" ) - (r ( t") · i ) i 

I I 

(B2) 

-. 
We wi sh here to evalua t e d ( t) for an electr on moving in a 

circular orbit. For this purpose, consi de r the diagram of Figure 7. 

The diagram depicts the circular orbit of the electron about the m agnetic 

field as seen from different direction s . In particular, the view in whi ch 

the orbit appears as an ellipse represents that seen by an observer for 

which i' is the angle between the line of sight a nd the orbital plane . 

.. 
I n this view. d ll is the value of the effective transverse acceleration 

component along the projection of the magnetic field onto the plane 

perpendicular to the line of s ight --- a nd i s shown in its positive sense; 

-dol i s the value of the effec tive transverse acceleration component 

along the direction in the plane perpendicular to the line of s ight, per-

pendicular to the projection of the magnetic field --- and is shown in 

its positive sense. In the plan view, a is the r adius of the circle, 

2 2 2 - ~ 
which for an elec tron of ~peed v (and energy E a m C (1 - v I c) ) 

o 

in a magnetic field of magnitude B is 

a • vE 
2 

qBC 
(B3) 



Figure 7. Coordinates used in describing an electron in a 
circular orbit. 
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P i5 the distance {rom the origin to the electron; and 9 is the angle 

--between p and the direction of dJ. 

From the geometry: 

d.l. • P co s 9 • a sin ZO 

d, • p sin e sin~ a Z a sin
2

61 8in~ 

From the definition of the times. 

t-t" • .£. sin 8 cos t 
c 

2a 2 
• - sin (J cos~ 

c 

From the geometry and the fact that the electron has a frequency of 

2 
w. qBc IE. 

de 
Ci"i' ' : '" 

2 

From equations B4-B7. form 

giving 

and 

.. -d 8-, 
dt~ 

a 

-d [dd dt" J 
• ~ (Ci"i") ( dt )J 

dt" 
dt 

2 II _ W a 
[ ~ cos i- + sin 20} 

c 

[1 + ~ COB It sin 29} 3 
c 

(84) 

(85) 

(86) 

(87) 

(B8) 

(89) 



J.l b 

l l 
sin 'i! cos Zii d d ll "' a (BIO) .. 

d ll - : wa Ul ]3 - ;;r fl + - c o s '*' s in 
L c 

Both d.J.. and dll have a resonance denominator. It is apparent 

that for (wal c) ~ I, the field is effectively confined to ~ near O . 

.. 
The perpendicular component d ,L will have its maximum magnitude in 

the plane ~. 0, whereas d. , being zero in the plane '*' • 0, will 

have its maximum magnitude for some angles +~I J. 0 where 1}1I ap­

proaches zero as wal c approaches unity. 

.. 
Some feeling for the radiation can be had by examining dJ.. 

in the plane i>:t O. From equations B5 and B9, it is easy to obtain 

the picture of Figure 8 --- where the "widths" shown are obtained by 

equating the areas under the appropriate humps to the products of the 

maximum values and the "widths." 

From the duration of the pulse (Fig. 8), 

1 l Z 
T • '2 (mc IE) (m/qB), (Bll) 

we can infer that the electron eff ectively radiates into a " cone of 

radiation" whose axis lies along the electron's direction of motion, and 

whose apex angle is about mc l l E . Thus, in the interval At :t T, the 

electron turns through an angle 

wAt" : ~At" I A t) or • (Bl 2) 
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From equations 136 and 137. we have that at () • 311 14 (the condition 

for the resonance denominator to give a maximum). 

dt" 
dt 

• 

0=371 /4 

-1 
• (1 - wale) 

which for (w al c) 0:; 1 can be written approximately as 

dt" 
d t 

2 -1 2 2 
a 2[ 1 - (wale) 1 • 2 (E/mc ) 

0" 37114 

Equation 1312 can then be written: 

2 2 2 
wt>t" : 2w (E /mc ) .,. " me IE • 

(1313) 

(1314) 

(1315) 

the second equality resulting from equation 1311 and the expression for w. 

Equation 1315 gives the a ngle that the electron turns through 

while contributing appreciably to the intensity at the observer. (The 

positive and negative areas Wlder the curves of Figure 8 cancel. s o 

that the contribution of the positive pulse to the Intensity ( cs: a2
) is 

much greater than that of the negative portions.) The i mplica tion is 

that in the plane of the orbit, the radiation is confined to angles within 

+ mc
2

/2E on either side of the electron's direction of motion . 

For 0 ~ 3·11/4 and ii :>:. 0, the resonance denominator can be 

written as 



where 

wa 
(1 + -

c 
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l v v 2.t.3 
cOBl!sin 29) • [(1 - -) + -2 n +E 11 , c c (BU» 

3 .. 
€ • Z 9 - T (B17) 

E 
and is the angle through which the electron turns in a time • Thus, ... 
by noting the appearance of iJi 2+ ,,-Z in equation Blb, one can infer from 

equation B15 --- the equation giving the angular extent in the orbital 

plane only --- that in three dimensions the radiation is effectively con-

fined to lie within a cone of apex angle 

2 
mc 

'I ""-~ 

whose axis lies along the electron's direction of motion. 

It might be well to summarize here some of the properties 

(B18) 

which have been obtained from the foregoing equations of the synchrotron 

radiation from a relativilltic electron moving in a circular orbit. (In 

the following, E is the total electron energy and B is the magnetic field.) 

(1) The radiation is uBentia11y limited to within a cone of 

2 
apex angle - mc I E who .. axis lies along the 

electron's direction of motion. 

(2) The radiation comes to an observer in pulse. of duration 

.,. proportional to IIBE 
2

, which are separated by an 

interval 2 .. I .... which ie proportional to B/E. 

(3) The maximum value of the electric field is proportional 

to BEl. 
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From these properties. the following statement s can be made: 

(4) The- energy per revolution received at a point which is 

inside the radiation cone s ometime during a period of 

"Z 4 
gyration is proportional to d ., "" BE • 

(5) The power received at a point which ie inside the radia-

tion cone sometime during a period is proportional to 

·IZ Z 3 
WQ T c BE. 

(6) The rate at which an electron loses energy is proportional 

" Z Z Z Z Z 
to (we{ T (mc IE) ~B E (where the factor mc IE is 

proportional to the area of the strip on a sphere swept 

out by the radiation cone as the electron follows its cir-

cular orbit). 

Furthermore. it is apparent that a &pectral decomposition of the r a di-

ation will show that: 

(7) each frequency component of the electric and magnetic 

fields is elliptically polarized. both d. and d.l. being 

periodic with the same period. the radiation being left-

handed if the angle between the direction of observation 

and the magnetic field is less than 1rIZ. and right-

hahded if it is g r eater than ttlz: and 

(8) the radiation will contain frequencies up to at least 

1 ., II Z (E/mc~ZqB/m • 
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To obtain the spect ' al decomposi tion of the radia tion. it is 

necessary to evaluate 

21f/.., , .., J In''' t 

n 

and 

.. 
~I 

n 

• - e 21f dli t) dt • 

o 

21f/.., : ~ J e in"'t d.( t) dt 
Z1T 

o 

By substituting the expressions of equations B 6 . B7. B9. and BlO in 

.. .. 
the above. d 1. and d 11 can be expressed as integrals over (). 

n n 

'IT 

: ~J exp[ iZn(e + ~ 
IT C 

n 
o 

'IT 

: ~Jexp[ iZn(e + ~ 
'IT C 

n 
o 

[l + ~cos ~ sin Z e] Z 
c 

_ sin ~C08 2 e 

ll+ ~ cos '¥ sin 2 e) 2 
c 

de 

(B19) 

(BZO) 

(BZ1) 

(BZZ) 

The main contribution in each of the integrals comes near 'f>. 0 and 

8 = 371/4. so that for!:!! "" 1. a g ood approximation to the integrals 
c 

comes by expanding the trigonometric functions about their values a t 

these two angles . On expanding () and "i> about these angles. we obtain: 



2 
'" a a_ 

." 
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exp [in ( !. cos 'f' + l!)] 
c 2 

CD 2 2 

J exp[~{«~) + 
2 E 

Z 2 
+t"e]clE 

2 Z 2 
me ,T,Z. ,2 1 [( -) + r ~ 

E 

" Zwla . v 3r 
dl! a -;;- exp [in( ~ COB V + 7)] 

n 

",here 

"- : 28 _O!! 
Z 

(In obtaining equations Bl3 and Bl4. we have set (v • ",a) 

_ 1 Z Z 
l-v/c - - (l-v Ic ) 

Z 

and have employed our knowledge of the short duration of the pulse 

to claim that the important harmonica will be at large n. and that. 

therefore. by the usual stationary phase argument. the limits of 

.3:r ." 
integration can be changed from (T . Z) to (-CD. +CD) without 

introducing appreciable error.) 

(BZ3) 

(BZ4) 

(BlS) 

(Bl6) 

The exponential appearing in equations Bl3 and B24 is of the 

form of that occurring in the Airy integral ••• as given on page 190 of 

Watson (1944): 
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(X) (X) 

Ai(x) -J 3 J [i(t
3

+xt)] dt cos(t +xt)dt • 1/2 exp 

0 -(X) 

fX K (Zx IX ) (BZ7) s - • 3 1/3 3 13 

and. in fact. by integrating by parts. equations BZ3 and BZ4 can be 

expressed in terms of an Airy integral and its derivative. and hence 

in terms of modlfied Bessel functions (West£old 1959). To obtain the 
Z 2 

power spectrum. one forms I dll I and I d.l. I 
n n 

As will be seen later. the quantities which enter the calculations 

of the radiation power spectrum fr om a group of electrons are not 
Z 2 2 2 

Idu I and Id.l. I . but rather I dll I and Id.l. I integrated over solid 
n n n n 

angle. The integrals involved have been evaluated by West£old (1959). 

The resulting expressions for the mean total power radiated in the 

frequency band (f. f+d!) _ •• at high n the harmonics are so closely 

spaced that the radiation is essentially continuous ••• are the folllowing. 

Let Pf(l) d! equal the mean integrated power radiated into (f. f+d!) 

associated with the electric vectors parallel to the projections of the 

magnetic field B in the planes normal to the lines of sight; and let 

P
f
(2) d! equal the mean integrated power radiated into (!.f+d!). associ-

ated with the electric vectors perpendicular to the projections of the 

magnetic field B in the planes normal to the lines of sight. 



Then 

where 

f 
c . 3 4 

4um c 

a:> 
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F(1)(x) : ~[j KS/3 ( 'l)d'l - K z/ 3(X)] 

x 

a:> 

F(Z\x) • ~[j KS/3 ('l)~ + K Z/ 3(X)] 

x 

(B28) 

(B29) 

(B30) 

(B3l) 

(B32) 

a nd KZ/3 and KS/3 are modified Bessel functions. B is the magnetic 

field, E is the total energy of the electron, e the electronic charge, 1.1. 

the permeability of free apace, m the electron mass, and c the velocity 

of light. All are expressed in rationalized units. 

By integrating the above expressions over frequency, one can 

obtain the expression for the total rate of energy loss. Alternatively, 

the total rate can be obtained directly by evaluating Poynting 's vector 

from equation Bl, and integrating over solid angle, this procedure 

having the advantage that the procedure is independent of any assumption 

regarding the magnitude ot the el~ctron velocity. The total rate of 

energy 10s8 is found to be: 



dE 
dt 

in rationalized MKS units. 

1Z5 

(b) Radiation from an electron in a hell cal orbit 

(B33) 

Having obtained the desired properties of the radiation from 

a relativistic electron in a circular orbit. there is more than one way 

of proceeding t o obtain the properties for an electron in a helical orbit. 

The direct method would be to find the effective transverse acceleration 

for an electron in a helical orbit and then perform the usual Fourier 

analysis. This is essentially Westfold's (1959) procedure. although he 

does not expUcitly take the effective transverse acceleration as his 

starting point. Alternatively . one could obtain Schwinger's (1949) result 

for a relativistic electron in an arbitrary orbit by noting that the short 

duration T of the pulse in Figure 3 suggests that the large scale 

features of the orbit are not important in determining the radiation at 

any instant. Thus, if equations BZa and B3Z are expressed in terms 

of the radius a of the circular orbit. the equations for an electron in 

an arbitrary orbit can be obtained simply by replacing a by the instant-

aneoue radius of curvature. (The radiation that would be associated 

with an actual change of speed in the general case would not usually be 

appreciable since a relativistic particle in an accelerating field appears 

to experience a change in mass rather than in speed.) 
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In the following, the transition from the circular orbit case 

to the helical orbi t case will be accomplished via a Lorentz transforma-

tion. The transition is based on the fact that only the relative motion 

of the observer and the source electron is important in determining 

the radiation characteristics. Thus, the two situations depicted in 

Figure 9 are equivalent: the same physical occurrence is simply pic­

tured in two different frames of reference. In the reference frame 'L' 
the electron appears to be following a helical orbit, the velocity com-.. 
ponent along the helix axis - - - i. e., along the magnetic field B ---

, 
being v II '. The reference frame L is taken to be the observer's 

, 
frame of reference - -- i. e., in 'L , the observer is at rest. The 

, 
frame 'L move s relative to L with the axial velocity vn ' of the 

electron. In 2: ' then, the electron executes a circular orbit while 

... 
the observer moves with a velocity vI 

We shall need to keep in mind the following Lorentz transfor-
, 

mation relations (primed and unprimed quantities referring to Land 

L , respectively): 

1. The electron in the circular orbit which has the energy 

E in 'L has the energy 
• 

E'in ,,' 
L.., , where 

(B34) 

II. If the line of sight in 'L makes an angle }> with the 
, 

plane perpendicular to the magnetic field, then in 'L the 

angle is 



L' Helical orbit and 'stationary" observer 

--------1> 

L Circular orbit and 'moving" observer 

_---"'Vt.11 -----

Figure 9. Electron motion in a uniform magnetic field as 

seen in the two reference frames [ and [' • 
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sin'JI +(VII I c) 
[----] 
l+(vll/c)sin~ 

(5 35) . 

the + sign being used if :;,~ 
.. 

is in the same d i rection as 5 

a nd the - sign if in the opposite. 

Ill. A differential solid angle d!l. at the angle i> in I trans -

forms into the differential solid a ngle dfl.' at the a n gle 
/ 

~ 'in L . where 

da' 
Z 2 

I-v, I c 
: 2 

[l+(v, I c)Sinyj 
dn. 

the same rule holding for the sign. 

(536) 

IV. The time interval or in I . associa ted wi th the reception 

of a signal by an obs erver. is measured i n the observer's 
/ 

frame L: to be of duration T '. where 

, 2 .11 Z 
T -T [l-(vlI Ic) ] (537) 

and so a signal of frequency f in I will be a signal of 

frequency f' in 'L' , where 

(538) 

V. The transformation laws for the electromagnetic fields .. .. 
t; and J8 are: 
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..e" : par -'Cpar 

(B39) -fB' 
perp 

2 -liZ -- - - 2 • [I-(vil Ic J [-'i'-(Vg xc.)/c ] 
perp 

--C' 
perp 

2 -1/2 -.... -= [l-(vil Ic) J (€+ VII x..6') 
perp 

where the subscript "par" indicates components parallel -to the field Band "perp" indicates components perpen-

--dicular to B. 

VI. Power is an invariant under Lorentz transformations. 

Relations n and VI enable us to make a statement. independent 

of any aS8umption regarding the magnitude of the electron energy. 

concerning the ratio of the two power components associated with the 

radiation electric vectors parallel and perpendicular to the projection 

of the magnetic field onto the plane normal to the line of sight. namely. 

that: 

VII. for an electron of energy E' following a helical orbit. 

the ratio of the two power components of frequency f' 

radiated at an angle 'l" is the same as the ratio of the 

powers radiated by an electron of energy E in a circular 

orbit at the frequency f and at the angle jI. where E. f. 

and i> are given by relations I. II. and IV. 
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That this is 80 follows immediately from expressing E:I/e~ in 

terms of Ell / Col where the subscripts refer to components parallel 

and perpendicular to the Hne o! eight. Thus. we have from V. 

• (B40) 

which. using II. leads to 

(B41) 

Using V. and the fact that 

- - -.P> • i x c.tc • (B42) 

we find 

(B43) 

Finally. then. from the equation 

E ll . -
C.l 

(B44) 

we see that the ratio of the associated primed and unprimed Poynting 

vectors are equal. 

Applying the information of relation VI to the power emitted 

into the corresponding differential solid angles dn.' and dn • one 

can then make the statement that 



131 

VIII. fOT an electron of energy E' following a helical orbit, 

the ratio of the in tegrated power components at a 

frequency C' --- where Integration refers to integration 

over aU solid angle --- is the same as that at frequency 

f for an electron of energy E In a circular orbit. where 

f and E are given by IV and II. 

From relations I-VIII and the results for the circular orbit. 

we can now state the properties of synchrotron radiation from an electron 

in a helical orbit. We note fir st that for a relativistic electron. 

sin Cl " (B45) 

COSCl ~ va Ic. 

.. ... 
where Cl Is the helix angle. i. e .• the angle between B and v' The 

results will be stated in terms of Cl. the energy E of the electron, the 

speed v of 'the electron. and the magnetic field B, where now the primes 

are dropped from the expreu!ons. (The brackets [ J contain the rela. 

tlons and equations involved in obtaining the expressions.) 

(1) The radiation is essentially limited to within a cone of apex 

angle 

z 
..,'" mc IE 

whose axis lies along the electron's direction of motion. 

(B46) 

Thus, whereas In the circular orbi t the radiation was emitted 
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essentially only about directions at right angles to the mag-

netic field. now the radiation will be essentially restricted 

to di r ec tions making an angle <l with the magnetic fi eld. 

[(B13 . B34 . B36]. 

(2) The r adiation corneD to an observer in pulses of duration 

., c 
2 

!. (~ ) 2 -::,...m::.:..._ 
2 E eBsina 

which are separated by an interval 

- II 
w 

E 
2 

qBsinac 

[ Bll. B34. B37. B39J. 

(3) The maximum value of the electric field h proportional to 

B sin a. E3 [B34, B39, and the fact that the distance hom 

(B47) 

(B48) 

the source to an observer in the radiation cone is greater by 
/ ' 

a factor 1/ sin Q on going from L to L ]. 
(4) The energy per revolution received at a point which is inside 

the radiation cone sometime during a period of gyration is 

proportional to B sin a E4 [B47. B49J. 

(5) The power received at a point which is inside the radiation 

. d ' . d' . 1 B 2 . 2 E3 cone sometime urlng a perlo 19 proportiona to sin a. 

(B47. B48. B39J. 
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(6) The total rate of energy loss is [833, 8)4, VI] 

dE 
dt . - 4 Z Z Z Z 

e v 8 E sin Q 

4 7 
6'l1'€ m c 

o 

(849) 

(7) Each frequency component of the electric and mainetic 

.. ., 
fields is elliptically polarized (both d" and d.l. being 

periodic with the same period). the radiation being 

left-handed if the angle between the magnetic field and 

the direction of observation is less than the helix angle 

Q and right-handed H it is larger. 

(8) Let Pf(l) df equal the power radiated into all directions 

in (f, f+df) associated with the electric vectors parallel 

to the projections of the magnetic field 8 in the planes 

normal to the lines of sight; and let Pf(Z) df equal the 

power radiated into all directions in (f, f+df) associated 

with the electric vectors perpendicular to the projec-

tions of the magneti.: field 5 in the planes normal to the 

line B of sight. 

Then [828-832. 838, 539, Vlli ], 

P (1) 
f • 

p (2) = 
f 

(850) 

(851) 
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f 
c 

3eB sin (1 E
Z 

• 3 4 
4lrm c 

00 

F(l)(x) • x [J K S/ 3(")d,, • K Z/ 3(x) 1 Z 
x 

co 

F(Z)(x) • x [J KS!3(")~ + K Z!3(x) Z 
x 

(B5Z) 

(BS3) 

1 (BS4) 

and K Z/
3 

and KS/3 are modified Bessel functions. E is the total 

energy of the electron, e the electronic charge, .. the permeability of 

free space, m the electron mass and c the velocity of light. These 

results are expressed in rationalized MKS units. Equations BSO.BS4 

agree with the results of Westfold (1960). 

Z. Radiation from a Group of Electrons 

In this section, the properties of the radiation from a group 

of electrons are derived from those for a single electron. The power 

spectrum is derived first. Following this, a complete description of 

the radiation is obtained through a calculation of the Stokes parameters. 

The effects of any intervening or ambient plasma are neglected. 

The frequency of the radiation is taken to be much greater than the 

plasma and gyro frequencies: the index of refraction is considered to 

be unity. Faraday rotation is neglected, which amounts to a requirement 
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on the relation of the frequency to the number of electrons and the 

strengths and orientations of the fields between the source and observer. 

(From Yeh and Gonzalez (1960), we obtain an approximate exprellsion 

for the rotatioll of the plane of polarization, 

,- ~ J NMds , 
f . 

(B55) 

where 

M-Bcos+ (B56) 

and where {, is the rotation of the plane of polarization in radians, 

K E 2.972 x 10 -2 (MKS rationalized units), £ is the frequency in c / s, 

N is the electron density in electrons/m
Z

• B is the magnetic field 

strength in amp/m. 4> is the angle between the ray and the field, and 

ds is the dif!erentia1 distance along the ray.) Collective plasma effects, 

such as bunching, are neglected: this is valid when the average energy 

of the random motion of the particles is much greater than average 

coulomb interaction energiee. Absorption and stimulated emission 

are ignored. (Twlu (1958) has stated that for net stimulated emission 

to be Significant. it is necessary that 

(B5 7) 

where E (f) i s the critical energy at frequency f --- 1. e., the energy 
c 

which an electron must have for f to equal the critical frequency f of 
c 

equation B52, k ie Boltzmann's constant, and T£ is the effective blackbody 

temperature of the radiation at frequency f.) 
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(a) D erivation of the power spectrum 

The properties of the radiation Crom a group of electrons are 

obtained Crom those Crom a single electron by superposition. For elec-

trons whose motions ' are uncorrelated, the radiation ia incoherent: the 

total power spectrum ,M>(f) is obtained by simply adding the power 

spectrum P j(f) of the individual electrons, i. e • 

.@(f) • 2:> j (f) • (B 58) 
j 

For a group of uncorrelated relativistic electrons emitting synchrotron 

radiation, this addition 18 a simple matter, made ao mainly by the fact 

that a relativistic electron effectively radiates only into a small cone 

Z 
of apex angle mc /E about its direction of motion. 

ThUB, suppose one whhes to calculate power spectrum of the 

... 
radiation in a direction denoted by the unit vector i ,from the uncor-

related electrons in a differential volume dV at the position -;. Let 

the magnetic field have the value B (~, Suppoee that the number density 

distribution function of the electrons is given by p(r. E. G). 1. e,. let 

p(r. E. n) dVdEdn equal the number of electrons in the volume dV at r 
with energies in the range dE at E and helix angles in the range dn at 0. , 

Furthermore. let Pr(B.E.n,f) dfdo. denote the power emitted in the 

frequency range df at f into the differential Bolid angle dfl. whoae axis 

... . 
Ues along the unit vector i • by an electron of total energy E whose 

... . ~ 

velocity 11es along the unit vector s. With the angle between 8 and D 
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being a. then {P(t'. E.a)/2 ir sin Q )dVdEd", gives the number of elec-

-trons in the interval dVdE with ~ in the differential solid angle dw. 

The total power radiated into dn df by the electrons In dV with energies 

in the interval dE at E ie 

; --'f-t( r ;f)dfd1ldV dE • 
1 

(B59) 

- ... Since p,..(B. E. s; f) for a relativistic electron is practically zero unless 
1 ... 

ij liee within a very small solid angle about i. equation B59 may be 

written 

E.s; f) dw. (860) 

w 

- ... where a'" is the angle between i and 8. In the integral of equation 

.. .. ':I: ... 
860. s is what varies and i and J:) are fixed. But if £ Is a small 

vector perpendicular to ;. 

(861) 

- - -If in equation 861 we set s + £ • i and substitute the resultini expres-

eion into the integral of equation 8bO. we find 

J Pres. E.;; f) dw .!Pi+;(B.E.T; f) dw • pCB. E. l; f). (862) 
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where Pr _(S, E, 1; f) dfdf'l. is the power emitted in the frequency 
+f 

interval elf into the ",oHd angle df'l. 
...... 

whose axis lies along i + E by an 

-electron of energy E whose velocity vector liee along the unit vector i. 

Since the dependence of the radiation power spectrum of an electron on 

its direction of motion occurs only through the angle C1 between its 

-velocity and B. we may now write for the total power per steradian .. 
emitted in the frequency interval df at f in the direction i by the elec-

trons In dV, 

p.,{r; f} dVdf • 
1 

I 

Zrsina '" 

E 

J
max 

E 
min 

p(r, 

- -where a. is the angle between i and B. 

(B63) 

(b) Stokes parameters for synchrotron radiation from electrons with 

an arbitrary angular distribution 

To completely specify the nature of radiation. four real 

quantities must be specified in each differential frequency Interval, 

the four quantities relating to the Intensity. the degree of polarization, 

the plane of polarization, and the ellipticity of the radiation (Born and 

Wolf (1959». O. O. Stokes in 1852 pointed out that it would be con-

venient for the four quantities to have the same physical dimensions, 



and introduced four such parameters in his investigation of partially 

polarized light. The Stokes parameter description will be employed 

here in specifying the nature of synchrotron radiation from a group 

of electrons. 

Chandrasekhar's (1960) terminology will be used. Thus, select 

- -two mutually orthogonal directions i
J

, ir at right angles to the 

- -direction of propagation; i r' i
J 

and the direction of propagation forming 

a right-handed coordinate system. For a beam resulting from a mixture 

of several independent streams of elliptically polarized light, the 

Stokes parameters are 

1 ,. L l(n) (B64) 

0 .. L O(n) = L l(n)col 2(:1 cos 2X (B6S) 
n n 

U = L U(n) = L I(n)cos .2j3 s u 2X (B66) 
n n 

V' .. L V(n) = I l(n) sin 213 
n 

(B67) 

where l(n), ~(n), and 13(n) define the average intensity, the plane of 

polarization, and the ellipticity of the component streams, the latter 

two through the following r elations: (a) The principal axes of the ellipse 

traced by the end point of the electric vector are in direction .. making 

angles X and .:z:+! /2 to the direction i, and (b) tan f:\(n) is the ratio 

of the axis in the "+"/2 direction to that in the ~ direction of the elUpse 

traced by the end point of the electric vector (the numerical value of f:I 

11 
lying between 0 and Z' and the sign being positive or negative according 

as the polarization is right handed or left handed). 
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These are ·to be evaluated as functiona of the frequency r. 

An experimental procedure for determining the propertiee of 

the radiation consists of introducing a known amount of retardation in 

the phase of vibrations in one direction relative to the phase of vibrations 

at right angles to it, and then measuring the intensities in various direc--tiona in the transverse plane. Thus, suppose the component in the i 
r -direction is retarded by a phase E' from that in the i, direction; in 

termll of the Stokee parameterll, the intensity received. in a direction -making an angle '" with respect" to i, is (Born and Wolf (1959)) 

I(t, () = 1/2[1+0 COli 2'" + (U COSE. -V sindsin 2'1'J • (B68) 

One finds, then, that 

1 ':' 1 (0" ,0) + I (90",0) (B69) 

Q = 1 (0" ,0) - 1 (90" ,0) (B70) 

u ~ 1(45",0) - I (135",0) (B71) 

V' .. 1(45", f) -1(135", ;) (B72) 

The parameter I is the total intensity. Q h the amount by which the 

intensity transmitted by a polarizer which accepts linear polarization 

-in the i, direction is greater than that transmitted by a polarizer which 

-accepts linear polarization in the i direction. U has the same inter-
r 

pretation with respect to the directions ;t: .. 45" and 135". V I is the 

amount by which the intenSity of. the radiation transmitted by a device 
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which accepts right-handed circular polarisation is larger than that 

transmitted by a device which accepts left-handed circular polarization. 

The calculation of the Stokes parameters for the synchrotron 

radiation from relativistic electrons in dV is straightforward. Denoting 

the parameter. at the frequency f for the radiation in the direction r 
and at a distance R from the differential '~f)lume dV( r) by , , ' , 
Ir; R (7. !)dV • Or; R (7.!)dV. Ur; R (1'. !)dV al\dV T. R (7. f)4V. we have 

immediately that 

E ' 

1 • f ~r. E. Cl.)p(Cle. E. f)dEdV 

E
min 

(B73) 

Furthermore. it is apparent that 

(B74) 

slnce for every right-handed (~>O) contribution. there will be an equal 
. n i 

left-handed (13 <0) one (a reeult of the .mall ranae of helix angle. Cl 
. n 

contributing. and the fact that if the line of sight makes a smaller anale 

0.*.- , with the m~8netic field than Cl. the radiation is left-banded. whereas 

if the line of sight maku a larser anile ",* with the masnetlc field 

than 11. the radiation i s right-handed). 

The parameters Or.R(7.f)dV and Ur.R(7.f)~V are easily evalu­

ated by recalling that in the direction r the princ:i~ ax .. of the 
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... 
radiation ellipse from an electron in a magnetic field B are in the 

directions 

......... .... 
(i x B) xi 

lalain 0.. 
...... 
B xi 

and 
Islsin 0.. 

Thh means that to a good approximation the angles X appearing in 
n 

(B7S) 

the definitions of Q and U in equations B6S and B66 can be regarded as 

equal for all electrons in the differential volwne dV. Thus, 

E 1t 

J
max

J Qr,R(r,f)dV"" c~22X PtB(r),E,Cl;f)COB2 f3 P(T,E,Cl)do.dEdV (B7 6) 

E i 0 mn 

E 1f 

U (T, f)dV "" sin Z~ 
t,R . R2 

max 

J J P.~Brr>, E, o.;f)cos Z p p(t', E, Cl)do.dEdV 

E 0 
dn (m7) 

Take 

I C09~1 
... +- ~ 

• [ 
i1 ' (ixB) x i I 

' sin;!: 
IBl sin Cl. 

Z 1/ Z 
: +(1.co8;t) , (B78) 

( 
... ~ ~ ~ ( ... ;If: 

the sign of cos-;t:. to be positive if either ixB)xi or lX iXD) lies between 

..... ..... 
i, and ir' and negative otherwise. 

Then, since 

(B79) 

it is seen that 
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.. 
P-rB(t),E,C1;1) COB l fj • 

(1) - (l) -. 
Pi (B(r),E,C1;1) - F-r (B(r), E,n;1) (B80) 

(1) (2) . 
where Pr and P-po ,respectively, are the portions of P~aB80c:iated 

1 1 

with the electric vectors parallel and perpendicular to the projection 

- -of B In the plane normal to i. 

By exactly the same arguments as were used with P~to obtain 
1 

equation B63 from equation B59, the following approximations may be 

employed: 

'If 

Jpr(l) (-(-) 1) p('" ) B r ,E,a; r,E,a dn -

o 

'J[ 

p(r, E, n.) 

asin a.. 

(1) (-_ 
P B (r),E,a.;1) 

J (l) (--Pi B(r),E,a.:1) p(r,E,a)da -

(B81) 

o (B84 

p(r,E,a) p(2) (B(r),E,a*;1) 

2Ein a. 

(1) (2). . 
where P and P are the mtegrated functions for a single electron 

defined by equations B50 and 557. Equations B76 and B82 yield: 



0.... (1.f)dV 
1.R 

E
min 

COB Zx. ;;: 

(Z) .. _ 
-P (B(r).E.o.*;f)] dEdV 

and 

Ur. R (1. f)dV i!! 
sin Zx. 

E 
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J
max 

(1) ... 
P(l. E, 11.) [R (Bm,E,I1.:f) 

Emin 

(Z) ... 
-p (B(1), E, a.if) ] dEdV 

(B83) 

(B84) 

Equations 873, 874, B83, and 884 give the Stokell parameters 

for the synchrotron radiation from the electrons in dV. The functionll 

J1) and JZ) are given by equations 850 and B51. and 

(885) 

For a given magnetic field configuration, if the density distribution 

function p is known, we have here a complete description of the proper-

ties of the synchrotron radiation. The results are summarized in Table 

IV and Figures 10 and ll. In Table IV, the cumbersome 8ubscript8 and 

. ... ... 
arguments, R, 8("r~ i, have been omitted, and the combinations of 
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T ABLE IV. STOKES PARAMETERS FOR SYNCHROTRON RADlAnON 

This table lists the Stokes parameters of the synchrotron 
radiation in the frequency range df at f from a distribution of electrons 
p( E, u*) in the dilferential volume dV. The observer is taken to be a 
distance R from the source; B is the magnetic Held intensity at the 
source; p(E, "*)dVdEd,, is the number of electrons in the volume dV 
with energies in the range dE at E and helix angles in the range d" at 
,,* - where an electron's helix angle" is the angle between the magnetic 
field and the electron's velocity, ,,* is the angle between the magnetic 
field and a vector T directed toward the observer. The angle 'X. is the 
angle measured clockwise by the observer from the (arbitrary) coplanar 
vector l"', involved in the definition of the Stokes parameters to the pro­
jection 0 the magnetic field onto a plane at right angle& to the line of 
sight . (1. e., QdV is the portion of the intensity IdV with electric vector 
along the direction r, minus the portion of IdV with electric vector 
along the direction Tr • T. x T). The functions F(lC) • x jK5/3('l)d'fl 

and F p(x) • xK
z/3

(x) are plotted in Figure tel x 

where 

and 

l(!)dVdf • CBdVdf J P(E. ,,*)F(f/f *)dE 
. RZ c 

Q(f)dVdf • -CBcos ZXdVdf jP(E'!l*)F (f/f *)dE 
RZ P c 

U(f)dVdf a -CBsinZXdVdfj p(E.,,*)F (f/£ *)dE 
RZ P c 

V'(!)dVdf .. 0 

Z 
£ * • LB sin ,,* E c 

-Z3 -1 -1 
C • 3.73 x 10 erg sec gauss 

13 -l-Z 
L : 1. 608 x 10 cl s gauss Bev 
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constants have been evaluated. In Figure 10 (plotted f r om figures 

given by Westfold (1959». the functions F. F p an,d F /F are presented. 

The range of energies and magnetic fields which can be of 

importance in giving rise to synchrotron radiation of given frequency 

is shown in Figure 11. In this figure. some flf contours are plotted 
c 

for electrons on the energy - magnetic field plane. An electron of 

energy E in a magnetic field B will radiate most efficiently at the 

frequency f for which 

f 
f 
c 

f 
2 

LB sin Q E 
• 0.3 • 

. 960 Mc 
In the upper left hand corner of the diagram. the function F( f ) 

c 
is plotted. The function would be simply shifted, shape unchanged. 

perpendicular to the flf contours for different frequencies. Some 
c 

flf contours are also shown. where 
c 

2 
f .2 ;;.;.;..Ti _e;.;..B::c:,-_ 
L E (B86) 

is the Larmor frequency of an electron of energy E in a magnetic field 

B. Points lying along these contours are of importance in defining 

the radiation in the "cyclotron radiation" region of the diagram. The 

latter is the region of relatively low electron energies. The dotted 

line at E : 5 Mev might (somewhat arbitrarily) be taken as the dividing 

Une between cyclotron and synchrotron regions. 
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The region on the diagram for efficient synchrotron r adiation 

for wavelengths up to 68 cm is identified as being above the curve 

ff • l.fOOO and to the left of the curve B ~ 1 gause. The smaller the 
c c 

mainetic fi eld. the higher the electron energies required, thus. at 

B • 1 gaues, the minimum energy effective for synchrotron radiation 

is on the order of 5 Mev. whereas at B .1/100 gauss. the minimum 

effective energy is about ZO Mev. 

(c) An example: power law dhtribution function 

To illustrate the type of behavior to be expected. consider the 

radiation from a group of electrons with a power law dhtribution in 

energy and an arbitrary angular distribution: 

ncr. a)E -( '1+1) 

p(r, E, a.) z { 0 

E ,<E<E 
m.n max 

otherwise 

l 
(B87) 

Then. using the results of the previous section,it is found directly that 

(again dropping -; {rom the arguments): 

-CL'VI Z 
Q(l}dV. Z I Z 

ZR f'V 

x 
max 

B('V+Z)/Zn(~(8in a.,'V/zdvJ x (-.;-2) / Z F(x)dx 
x 

min 
x 

max 
(B88) 

{-.j+Z) I z 'VI Z J B n( a e)(aln a e ) cos ZXdV )"y - 2)/2 F (x)dx 
p x 

mln 

(B89) 
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x 
max 

-eL ,{I Z 
U(f)dV - Z I Z 

ZR f'l 
8 h +Z)1 2n(a.*)(sln<l*)'11 28in 2'XdVj xh -2 )1 Zf!' Jx)dx 

min 

V'(f)dV : 0 

where 

and 

f f xa- . { * . Z 
c L8 sin a.*E 

f x : 
min L8 sin G*E Z 

ma.x 

• x • 
max 

{ 
Z • 

L8 sin a.*E i 
mn 

The integrals have been discl1ssed by Westfo1d (1959)* who uses the 

identity 

CD CD CD (X) 

(890) 

(891) 

(897.) 

(893) 

J ~S -lJ K"_l('l)d'ld~ _":8J t8-1K,,(S)ds-~[J K"t1(t)dt-K,,(x)] 

o t x x 

to write*: 

x 
max 

J x(y-Z)/Z F (x)dx • .d:(x . ) - ..!(x \ 
p P mm P max' x . 

min 

and the corresponding equation without the subscript " p". with 

(894) 

(895) 

*The g and ..d.. functions here are obtained by replacing 'I in We.t­
p 

{old's G and G functions by '1+1. 
p 



B(x) • 

10 '{ +-
3 

'I + 2 

GO 

~51 

B (x): J ~'112 K ( ~) d~ 
p 2/3 

x 

[F(x) - F (x) 1 
p 

(B96) 

(B97) 

The variation of the Stokes parameters with frequency depends 

on the variation of the functions .h(x) and .B (x) with frequency. Con-
. p 

sider four cases in which ...h(x) and .B (x) are expressible in terms 
p 

of easily calculable functions. The first case OCCur8 when x i - 0 
mn 

and x - 00: for then, 
max 

.H(x ) • .b(x \. g(oo). ,b'(oo). 0, 
max p max' p . 

and the values at the lower limit are found from the formula 

00 

x K (x)dx. 2 r( - s -J s-l e-2 1 
v 2 

o 

to be 

g ( ) : 2. (,--2.)/2 r( 3y+2) r( 3y+lO) 
p 0 12 12 

2. 
'{>--

3 

(B98) 

(B99) 

(BlOO) 

2. ,,>- - . 
3 

(BIOI) 

(Biermann and Davis (19 60) point out that practically, the condition 
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x . -+ 0 and x _ 00 may be replaced by x
mi 

< 0.01 and x > 4.) 
min max It- max 

The second case occurs when x ~ 0.01. Series expansion of the 
max 

modified Bessel function8 gives 

F{x) "" 2.15 x 1/3 

(at x • 0.01. this gives a value for F{x) ,.,. higher than the rigorou8 

formula.) and 

1/3 F (x) <III 1. 075 x 
p 

the corresponding expressions for g(x) and ..8' (x) are 
p 

and 

+
10 

"1 -

.h(x) • "1 + : 
...&'(0) _.!B x (3)'+2)/6 

P 3"1 + 2 

.B «0) • $(0) _ 6.45 
P P 3"1+ 2 

(3~2)/6 
x 

(BI02) 

(BI03) 

(BI04) 

(BIOS) 

The third calle obtains when xi> 10. The a8ymptotic forms of the 
mn-

functions F{x). F (x). hex) and .#(x) are: 
p p 

F{x) • (! )1/2 e -x x1/l (1 + ~ + ___ ) 
2 12x 

(BI06) 

F (x) : ( .! )1/2 IS -x xI/2 (1 + ..l... + - - -) 
P 2 72K 

(BI07) 

hex) := ~(x) ~ ( ; )11 21y-))f 2 e -x • (BI08) 
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where the forms for 8{x) and .8 (x) are obtained from the asymptotic 
. p 

form o! the incomplete gamma function given by Erdelyi, et al. (1954) 

o 

Westfold has pointed out that a fourth case occurs when 

2 
'I • 3'. In this case, use of the formula 

gives 

f4..v < 1 

h • ~) 3 

(BI09) 

(B110) 

(Blll) 

3 1/3 3 1/3 [ ,1 ..b'(x). 2 x Kl / 3(x) -"4 x F(x) - F p(x)J h. ~) (B112) 

Westfold gives tables of Hand -Y for this case. 
p 

The Stokes parameters for the power law distribution function 

are summarized in . Table V, along with the degree of polarization 

1> : ~:~ . The simplified forms which obtain for the four special 

cases are also indicated. It is interesting to note that in the first three 

special cases, the degree of polarization is independent of the frequency. 
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TABLE V. S TOKES PARAMETERS AND THE DEGREE OF POLARIZA-

nON FOR SYNCHROTRON RADIA TION FROM THE POWER 

LAW DISTRIBUTION: 

{

n(r. a) E(y+l) 

p(r. E .a) • 

o 

E . <E<E 
mIn max 

otherwise 

f f 
In the table. x . = ---"--.....,,~ 

mm LB sin a* E2 
max 

and x • ---=--......".-
max Z 

LB sina* E i mn 

See Table IV for an explanation of the remaining symbols. Again the -; 

is suppressed in the arguments . 

A rbitrary y. x . and x . 
min max 

I(f)dV • 

.8(x . )- $(x ) 
p mm p max Q(£)dV. - cos 2~--'"--=';';""-~-~~~- I(£)dV 

$(x . )- ..9(x . ) 
mln max 

U(£)dV = tan 2X Q(f)dV 

V '(f)dV • 0 

g (x . ) - ff.-p(x max) 
• -c 0 S Z'X -",p--,m=ln"-_~_L--==_ 

where 

~(x . )- ..8'(x ) 
ml.n max 

• 10 / Z 
y 3" 2xY 

.H(x) =y - """.-=:2:- ~(x) - y • 2 

CD 

~(x) = J s 'iI 2K2 /3( S)d~ 
x 

[F(x)-F (x) ) 
P 
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TABLE V. (cont.) 

Specia l case: x ...... 0, x .... 00 
min max 

,,+10/3 r(3x+Z (,(3)+10) B(-yH)/Z 
'1+2 12 1Z 

( sin a *)'11 Z n(a*)dV] 1 
£'6/2 

O(f)dV • _ ... 'Y_+;;,2 __ 

'1+10/3 
cos 2~ I(£)dV 

U(f)dV • tan 2X O(£)dV 

V'(£)dV • 0 

1> • _ y+Z cos 21( 

'1+ 10/3 

Special case: x ~ 0.01 
max 

2/3 
I(£)dV '" 6. 45 C B n( a *)dV 

R2Ll / 3(sin a*)1 / 3 

O(f)dV ii -co; 2X I(£)dV 

U(f)dV i -81~ Zx. I(f)dV 

V'(f)dV • 0 

l' i -co~ 2X 

Special casel x . ;:: 10 
min 

1 

E 
max 

1 ] (-/3 
(3'1"+2) 13 

I(f)dV == 
1/2CLl/2B 3 /2 liZ £ 

'it / n(a*)(sin,,*} dv[exp(- __ ....;;;... __ ~_) 
23 ~ Z LB sin a. E2 

max 

f 
. exp(- 2 

LB sin a* E . 
min 

f 1/2 '1-1 
E min 



TABL E V. (cont .) 

Q(f)dV - - COB 22: I(f)dV 

U(f)dva - Bin 2X. I(f)dV 

V'(f)dV • 0 

1 - - 1 cos 2X-

Special case: 'I. 2/3 
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CL1/ 3 4/3 1/3 w W 
I(f)dV • 2R. 2~7 3 B n( (l.)(sin (1.) dV[ 0 (xmin)-O (xma,) ] 

U(f)dV • tan 2X Q(f)dV 

V'(f)dV • 0 

-cos 2X. 

w W o (x )-0 (x ) 
p min p max - OW(x

mt 
)_ow(x \ 

n max' 

where 

w 1/3 
0p (x) a X K 1/

3
(x) 

w _ 3 1/3 3 1/3 o (x) - "2 x K1/ 3 - '4 X [ F(x)-F /")] 

w W 
(0 (x) and 0 (x) are tabulated in W .atfold (1959).) 

p 
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APPENDIX C 

A Derivation of Relativistic Drift Velocities by the Asymptotic 

Approximation Method of Bogolyubov and Zubarev 

In this appendix. the asymptotic approximation method developed 

by Bogclyubov and Zubarev (1955) for the treatment of systems with 

rotating phases will be used to provide a systematic derivation of drift 

velocities for relativistic charged particles. Bogolyubov and Zubarev 

have themselves applied this method to the derivation of drift velocities 

for nonrelativistic particles in time-independent fields. Their treat-

ment has been extended by Fried (1960) to the case of nonrelativistic 

particles in time-dependent lields. The purpose of this section is to 

remove the restriction of Fried's work to nonrelativistic particles. and 

so to obtain drift velocity expressions which are valid for relativistic 

particles in time-dependent fields. 

The asymptotic approximation method of Bogolyubov and 

Zubarev is a formal method of solving a system of diIferential equations 

having the general structure 

dx dt • X (x. e, t) 

de 
dt • AW(X. t) + A(x, e. t) • (Cl) 
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where x and X are vectors in a space of any number of dimensions. 

9 is the r otating phase. X(x. 9. t) and A(x. 9. t) are periodic functions of 

9 with period 211 • and I\. iii a large parameter. Their form of solution 

has the advantage that it is separated into a systematic part and a 

"shivering." More explicitly. Bogolyubov and Zubarev show how to 

perform a transformation of the form 

x • x + 
~p.8) 

+ O( J..) 
I\. 1\.2 

(e2) 

9 : 9 + 
~(i.8) 

+ O( J..) 
I\. 1\.2 

such that in the transformed equations of motion. 

(e3) 

the angular variable 8 does not appear. and Buch that 

(e4) 

(where the brackets indicate an average with respect to 9). The x and 

6 represent the averaged behavior of x and 9. whereas ~l and 

represent the "shivering." i. e • • the oscillations about this average. 

The method begins by substituting equations e3 and e4 in equation el: 



k e eping terms up to 
1 

a( z ) and equating terms of the same order in 
A 

A, this leads to a system of four equations for the six functions e
l
, ~, 

Xo ' Xl' "'0 and "'1' Equations C4 bring the total number of equations 

up to six. 

If the functions X(x,9,t) and A(x,9,t) are expressed in Fourier 

series in 9 110 that equation Cl takes on the form 

dx co 
-d :I: X(o) + L [F COil n 9 + 0 sin n 9 ] 
tin n 

d9 co 
dt • AW + A(o) + L 

1 
[£ cos n9 + g sin n9] , 

n n 

then this method leads to the solutions 

1 00 1 
x :I X + - ~ - (F sin n8-0 COli n9) + 

uo>..ln n n 
0(1.. ) 

A
Z 

(CS) 

1 00 1 
9 • "9 + - '2:

1 
{- (f sin n 9 - g cos n9) 1 Ii.. l - 2 (F nCos n£1 + 0nsin n6)' b J WA n n n 

wn 

+ 0(-1-), (C6) 
A 

and to the transiormed equations of motion, 

dX 1 
- c X(o} +­
dt ZWA 

00 

L[1..(F 0 -0 F ).~ - (f F + g 0 )+!. 
1 wn n n n n 8x n n n n n 

80 SO 
(F • - - 0 ._) n n~ 

ndx · nax 

(C7) 

de 1 co [ 1 SZ 1 
- ilAW+A(o) +- ~ -(F F + 00 ): ~+-(F '8g -0 • af ) 
dt Zw A 1 Z Z n n n n GX&X n n n n n 

...,. ax ax 
! 

+1..(£ 0 _g F ). ~ -£n Z_ gn40(, z )] 
nw n n n n ox " 
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(A dot has been used to indicate inner produc t s in x-epace. All quan-

tities on the right hand side are evaluated at x .) 

To apply this result to the case of a relativistic p a rticle in a 

magnetic field, we shall s tar t with the equations 

d(m~ _ F .. ~ x Band 
dt c 

2 
d{ m c ) 

dt 

(where m is the (relativistic) mass, e is the particle charge, v is 

-the particle velocity, c is the speed of light, B is the magnetic field 

-

(C8) 

and F represents the eum of electrical and gravitational {orces.) Since 

our interest is in drift velocities, we ehall combine these equations to 

give 

dv - ... _ 
=F+VXAW 

dt 

... - ... (F· v) v 
- 2 

c 

where we have also introduced the angular velocity 

.... 
,-+ eB 
A,CIl • -

mc 

To put equation C9 into the form of equation CS, the rotating phase 

(C9) 

(ClO) 

must be explicitly exhibited. For this purpo8e, introduce a coordinate 

system with one axis parallel to the local magnetic field. Define three 

.... - .. 
orthonormal vectors, iI' i2 and i3 such that the three taken in this 

order define a right handed coordinate system. and such that the third 

lies along the magnetic field. 



-+ .... B 
i a 
3 B 
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In this coordinate system, we write 

~ ~ ----+ 
v = W COB () i1 - w sin () i Z + u i3 

It is also convenient to introduce the unit vectors 

and 
-<0- _ __ 

'r ai xu 
3 

For then. 

and equation C9 becomes: 

(ell) 

(CIZ) 

(Cl3) 

(C14) 

(ClS) 

(Cl6) 

where the dot over a quantity has been used to indicate the transport 

derivative, i. e., 

• aa 
a = at (Cl7) 

T a king the scalar product of equation C16 with t;. "t' and T. and us ing 

the relation 
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(C18) 

the following equations are obtained for u, wand B: 
2 

• -.... -- - ~ u -- ..... wu u-F·i -W<T·i -(F·i )--(F-<T)-
3 3 3 Z Z 

........... c. c 2 
· -- -~ F·i --- w W - F'<T - U<T'i -{ 3) uw - (F'<T)-

3 - Z 2 c 
(C1 9) 

-F - C. • · tT __ .... _ u_ ..... 
e S AW - - + T • (i cos 8 -i sin 0) + - T' i , 

w 1 2 w 3 .. . 
The quantities -;'~';{2 and-:i

3 
appearing in the foregoing ex-

pressions all contain the rotating phase B. To put equation C19 into a 

form where the asymptotic expansion formalism may be easily applied, 

the explicit dependence of quantities on 6 should be dillplayed. Thus , 

following Fried, we write 

and 

where 

-- <T' 

aT 
3 - -- .... -- - ",, (u i + W<T)'<;] i at 3 3 

__ a d~:' 

T:r a·-·i 
3 dB 3 

(c 20) 

(c 21) 

(C2Z) 
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(CZ3) 

--If we now identify the vector consisting of the displacement r and the 

velocity components u and w as the vector x of the formalism. 

x : (C Z4) 

the comparison of equations CIZ. C19-CZ3 with equation C5 for:: gives 

the following results: .,. 
U1 3 

X(o) • 
(F.i3P-:: ] + w: 'V'13 ) 

F1 : (wi. Ii i3 
1 Ii t 

G • 1 

f • 
1 

w 

... 
- wi 

Z 

(rl1-i}): 'Vi3 

Z 

G,' (~.,) 
uw 

~~....... -
(1

1
i
Z

H
Z
i
1
): 'V i3 

Z 

(C25} 
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with all other F , 0 • f and g equal to zero. In these expressions, 
n n n n 

-+ 
the variable "f i B given by: 

7 ~ &13 
T : 1" - u (CZ6) 

6 t 

The expressions for X(o), Fl and 0
1 

differ from those for the non-

relativistic case, although the remaining quantities are the same. To 

obtain the relativistic drift velocities. we need only apply the results 

dr" dX 
of equation C 7 to the dt components of dt With the 

(F 0 -0 F ). d(>.. w) 
ZZ ZZ dx 

giving zero contribution, we find 

~ .... - -+......... 2 ..... ~ -+ - -.. ...... ~ -~-
+l (f. i H (t , i ) -w f i ''1 i -i ''1 i J - (t . i ) \ -(;:. i ) i } ) 

I Z Z I \1 Z 2 lIZ Z 1 

(CZ7) 

The portion in the second square brackets is absent in the non-

relativistic case. Substituting 



a;\w 
au 

U;\w 

Z-:-z 
c -v 
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and 

in this equation, and rearranging terms, equation C27 becomes 

This is exactly the same as the expression obtained in the non-

(CZ8) 

(CZ9) 

relativistic treatment (Fried's equation 47) except that here the rela-

tivistic mass m 8 
m 

o must be used in evaluating ;\w. This is 

the result one would expect from the familiar kinematic -type derivation s 

of drift velocities. 

The expression may be reduced to a more familiar form by 

using the identities listed by Fried in his equations 48 and 49: 

(F48) 

and 

(F49) 

One obtains finally 
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dt 
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AU> -

Dr 
F + al--1. at 

.... 
The first term ui

3 
represents motion along the field line. The second 

..... 
t erm is the 8 xV'8 drift: 

2 mcw 

2e13
3 

..... 
(BxV' 8 ). (C31) 

....... ...... ..... 
The third term is the F x 8 drift; e. g., if F z • then this 

m 

describes the drift due to cros sed electric and magnetic £i elds: 

• c (cn) 

- ...... The last term is an F x B type drift, with the centripetal force. 

ai -mu[ _3 + iii. 'Vi 1 
at 3 :>1 

.. 
playing the role of F. The relativistic drift 

velocities are obtained from those for the nonrelativistic case ni mply 
2 -1/ 2 

by replacing the rest mass mo by the relativistic mass m = mo(l- v 2) 
c 

whereve r it appears . 

• (That this is a centripetal force is made clear by noting that 
aI3 _ ...... .... 
at" + ii i

3
• 'l7 i

3
, being the rate at which the velocity iii3 is changing 

~ 
13 with some angular direction, may be written as the cross product of 

velocity rt', L e. aT 
- - 3 ? ........ .n' xi: - + Ii 1 • \7i 

3 at :; 3 
The assertion follows immediately. since the centripetal acceleration 
associated with a velocity ii ~ undergoing a rotation rt' is ]t'x liT3 • 
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APPENDIX D 

Numerical Results lor Synchrotron Radiation Irom 

Ultrarelativhtic Electrons in a Dipole Field 

In this appendix. the numerical calculations described in 

Table n. pale 3Z, ,and in the related discuuion on pales 2.9-40 

are summarized in arapbical lorm. The calculations were done on an 

IBM 7090 computer at the Plasma Physics Laboratory of the Boeina 

Scientific Research Laboratories: the problem W&s programmed lor the 

computer by Oeorge Pettilrew and James May of the AppUed Math­

ematics Section of the Boeing Airplane Company. 

The symbols and cases mentioned in the following are explained 

in Table n and in the related dhcuesion. The first three ugures, 

Figures lZ -14, apply to case (i) in which the radiation origtnates from 

a group of monoenergetic electrone. Figures 15-17 apply to case (H) 

in which the radiation is due to a aroup of electrons with & power law 

energy spectrum. The final three £laures , Fiaures lS-ZO, apply to 

case (Ui) in which the radiation comes from a group of electrons with 

a power law spectrum with cutoffs. Fiaure 1Z displays for case (1) the 

first and second Stokee parameters and the percentage polarization: 

more spedncaUy, Fiaure U consists ot hhtoirame of I/A
I

, Q/A
I 

and 
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p. 011 vs. lirE. sin) 6 cos ~. 

the normalized cosine transforms 

0, • f 00 (O/~) cos kl ell and the 
o 

In Figure I) are plotted for case (i) 

.i, .1 00 

(II AI) co s kl ell and 
o 

deg ree of polarization p, a 0,1 ttl" 

Figure 14 presents for case (i) the transform results with respect to 

the polar direction; i. e •• in Figure 14 are plotted the normalized cosine 

transforms ./ a J 00(11 AI) cos ky dy and 0 : J 00 ( 0/ AI) cos ky dy • 
Y 0 Y 0 

and the degree of polarization p .0 1./ • where y • r cos 6 • 
y y Y 

2 
rEsin 6 cos 6. Figures 15-17 and Figures 18-20 are the analogous 

plots for cases (ii) and (iii). respectively .• 

*Due to the limit on the accuracy obtained with the numerical computa ­
tion. the ratios p, and p are not shown for those values of k where 
the corresponding para;J'eter transforms are very close to zero. 
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