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ABSTRACT 

Energy transport by conduction and diffusion is considered in 

chemically - reacting, gaseous mixtures which have a pressure gradient 

parallel to the temperature gradient. As a consequence of pressure dif ­

fusion and other mechanisms , the pressure gradient can influence energy 

transport, and this effect is given particular emphasis . The use of an 

idealized flow model and a perturbation technique makes it possible , with 

a relatively simple analysis , to deduce many of the features of energy 

transport in multicomponent, gas e ous media. 

The dissoci ation reaction of a diatomic gas, with the ratio 

(reaction rate/diffusion rate) e ither l arge or small, is s tudied. When 

the flow is chemically frozen , the extension of the analysis to include any 

numbe r of components would be straightforward, in principle . However , 

when the gas is in local chemical equilibrium, the binary case is unique 

in that the di ffu sion velocitie s are then proportional to the local tempera ­

ture gradient, but independent of the local pressure gradient. C onse­

quently , the r e exists an effective thermal conductivity . The order of the 

governing set of equati ons is therefore the same as for a simple, single­

component gas, and the effect of the wall surfaces on reaction rates is 

confined to reaction boundary layers . T wo other examples illustrate that 

the orde r of the equations is higher when the equilibrium flow comprises 

more than two components , although there are still reaction boundary 

layers . The additional boundary conditions associated with the higher 

order are determined, through inte gral conditions, by the proportions 

of the chemical elements present. 

The results show that in many high - temperature gasdynamics 

problems of cur rent interest the presence of a pressure g r adient may 

have an important influence on energy transport. 
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1. INTRODUC TION 

The teITlperatures encountered in ITlany gasdynaITlics probleITls of 

current interest are high enough to induce extensive dissociation, and 

sometiITles ionization, of the gas ITlolecules. As a consequence, it has be­

COITle necessary to consider the influence of cheITlical reactions within the 

gas and interdiffusion aITlong the various species present. When dissoci ­

ation is present, the accoITlpanying diffusion processes provide an energy 

transport ITlechanisITl which suppleITlents t he ordinary conductive heat 

transfer , and it is this diffusive energy transport and associated effects 

which will be of part icular interest in the present work. 

In recent years several probleITls concerned with energy trans ­

port in hot gases where diffusion plays a role have b een discussed in pa ­

pers by a nUITlber of authors . One such probleITl which is of considerable 

practical interest arises in connection with the recovery of space vehicles 

when they return to a planetary atITlo sphere at hype rsonic speeds. Ele ­

vated teITlperatures are generated in the re - entry process, because nearly 

all of the enormous kinetic energy of the vehicle ITlust be dissipated in the 

form of heat. When the hypersonic, blunt - nosed body penetrates the at­

ITlosphere, the surrounding flow exhibits a bow shock wave , a layer of 

dissociated and ionized hot gas between the shock wave and the body, and 

a "boundary layer" over the surface. Heat energy is transferred through 

the boundary layer to the vehicle priITlarily by therITlal conduction and dif ­

fusion processes , and also by radiation froITl the layer of hot gas . Vari ­

ous aspects of the heat transfer probleITl in the dissociated boundary layer 
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i.o:: 
have been studied by Reshotko and Cohen (1), 

Dooley (3), Fay and Riddell (4), and others . 

Lees (2), Denison and 

Other authors have considered similar problems from a some-

what different vievtpoint, in an effort to provide a better understanding of 

the details of the solution, such as composition profiles and the influence 

of catalytic wall surfaces, as well as the associated heat transfer effects . 

Hirschfelder (5) has studied diffusion and energy transport processes in a 

reacting gas which is in local chemical equilibrium and is at rest, con-

fined between two parallel plates at different temperatures . Clarke (6) 

considered a dissociated diatomic gas , also in l ocal chemical equi librium, 

but in a Couette flow. In an effort to show at least qualitati v ely the effect 

of varying the chemical reaction r a tes , Broadwell (7) has adopted a sim-

pIe, linear approximation to replace the complicated, non - linear, 

reaction-rate law, or law of mass action. Using this approximation, 

Broadwell studied the motionless dissociating gas , a Couette flow, and a 

boundary layer flow. His analysis provides some insight into the general 

behavior of the energy transport, composition profiles , and temperature 

profile as the gas shifts from the chemically frozen regime to a state of 

local chemical equilibrium. 

One feature shared by all of these flow models is the absence of 

a pressure gradient in the directi on of energy flux and d i ffusion. Con-

sistent w i th this, it has been common practice to describe the diffusion 

process mathematically by means of the well-known Fick's law, which 

treats the concentration gradients as the sole driving forces for diffusion. 

* Numbers in parentheses desi gnate references listed at the end of the 
text. 
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On the other hand, the kinetic theory of gases shows that in general there 

are two other driving fo rces. If the molecular masses of the diffusing 

species are unequal, there is a tendency for the heavier particles to dif­

fuse toward a re"gion of h i gher pressure , while the lighter particles tend 

to diffuse toward a region of lower pressure. This phenomenon is gener ­

ally called "pressure diffusion". In addition, a diffusion flux can also a ­

rise a s a result of a temperature gradient; this is usually termed "ther ­

mal diffusion" . Howeve r, when there is appreciable concentration diffu­

sion and pressure diffusion, thermal diffusion is ordinarily negligible . 

The diffusion currents due to pressure gradients are not so 

clearly negligible. I n fact, pressure diffusion plays a significant role in 

the atmosphere , for example, and may be important in many physically 

interesting flow problems. Any flow with curved streamlines will have a 

pressure gradient normal to the streamlines, leading to the possibility of 

pressure diffusion if two or more components are present. Among the 

simplest examples are the cylindrically - symmetric, rotating flows with 

high tangential velocities , in which there is a radial pressur e gradient. 

Of particular current interest is the vortex flow of ve r y high 

temperature gases , which is receiv ing much attention as the basis for a 

magnetohydrodynamic power generator (8) , for example . In this device, 

power is extracted from a hot, partially ionized gas spiralling inward 

through an axial magnetic field between two concentric , cylindrical elec­

trodes . K errebrock and Meghreblian (9) have shown that the vortex also 

has potential as a containment mechanism for a gaseous fission rocket. 

Their study indicated that it may be possible to retain the heavy fission ­

able material , in gaseous form, in the pressure field of a vo rtex, while 

the low - molecular-weight propellant diffuses radially inward through it. 
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This would enable the direct transfer of energy from the fissioning gases 

to the propellant, through radiati on and molecular collis ions, without 

the interposition of any solid surface. 

It is clear that in these applications, and in others of a similar 

nature , the energy transport may be strongly influenced by the pressure 

gradient, through the mechanism of pressure diffusion and by means of 

other less direct effects on the chemical reactions . To l earn more about 

the magnitude of this influence, the author and Kerrebrock (10) considered 

a vortex flow of a dissociating, diatomic gas i n local c hemical equilibrium 

between concentric, porous cylinders which rotate with the flow. The 

non - linear equations corresponding to this system were programmed for 

a digital computer, and selec ted calculations were performed for the spe ­

cific example of oxygen dissociation. The results showed that for given 

temperature boundary conditions, the energy transpor t is quite sensitive 

to the tangential Mach number of the vortex, even when the de gree of d is­

sociation is quite small. The Mach number is a measure of viscous dis­

sipation as well as of the pressure gradient, of course, but only a small 

part of the effect can be attributed to the former . It was also found that 

even very small r adial flows through the walls , corresponding to Reynolds 

numbers of the order of one , have a large effect on the energy transport, 

especially when dissociation is present. T his can be anticipated, because 

a convection current acts in essentially the same way as the diffusion 

mechanism in transporting energy. 

The objective of the present wo r k is to achieve a better under ­

standing of diffusive energy transport processes in chemically - reacting 

gas flows whi ch incorporate pressure gradients . The analysi s is carried 
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out within the framework of a flow model which may be considered as a 

limiting case of the vortex; the flow is assumed to be constrained between 

concentric cylinders who se radii of curvature greatly exceed the separa ­

tion dis tance. Thi s "charmel-flow approximation" effects a conside rable 

simplification in the mathematical formulation of the problem, and by 

putting suitable restrictions on chemical parameters such as reaction 

rates and equilibrium constants, it is possible to obtain analytical solu­

tions. The limitations imposed by these approximations are not a handi­

cap to describing the qualitative behavior of the solution, although quanti­

tative results based on the analysis are not strictly suitable for every 

situation of interest. However, even "exact" sol utions, which could only 

be obtained numerically , might be of somewhat li!Tlited quantitative value 

in some cases , due to the present indefinite knowledge of certain parame ­

ters, such as chemical reaction rates. In view of this, the advantages 

associated with the analytical solutions seem to more than justify the ap ­

p roxi!Tlations employed to obtain the!Tl . 

In the following section the basic features of the theory of trans­

port processes in gases are outlined. There are two approaches to this 

theory, and both are discussed. One of these, kinetic theory, may be 

clas sified as "rnic roscopic " in character, while the othe r !Tlethod, irre ­

versible thermodynamics, is a "!Tlacroscopic" app roach. Both methods 

lead to the same phenomenological form for the transport equations, al ­

though only kinetic theory is capable of a truly cO!Tlplete for!Tlulation of 

the problem; the coefficients in the equations depend on the details of the 

collisions between the particles , which !Tlust be studied on a !Tlicroscopic 

basis . However, only the pheno!Tlenological form of the equations will be 
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required for the analytical work of the subsequent sections, and no con ­

sideration will be given to the details of collision dynamics . 
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II. DIFFUSION AND ENERGY TRANSPORT IN GASES: 

THE MATHEMATICAL FORMULATION 

There are currently two basic methods of studying t ranspor t 

phenomena in gases. A great deal of success in understanding these non­

equilibrium processes has been achieved through the application of sta­

tistical principles to provide a theory of non-equilibrium statistical me­

chanics, usually called "kinetic theory". Although the kinetic theory is 

generally regarded as a separate subject, complete in itself, in a broad 

sense it can be thought of as an extension of equilibrium statistical me ­

chanics to i n clude non-equilibrium phenomena. More recently, a second 

means of considering these phenomena has been formulated. This ther­

modynamic theory of irreversible processes is an extension of the prin­

ciples of classical thermodynamics to include non-equilibrium, or irre­

vers ible processes. Thus, in a general way, irreversible thermody nam­

ics bears the same relationship to kinetic theory as does classical 

thermodynamics to equilibrium statistical mechanics; the two methods of 

treating irreversible processes in gases and gaseous mixtures are com­

plementary, each having its merits and shortcomings. 

It will be the purpose of this section to briefly review the im­

portant features of kinetic theory and irreversible thermodynamics , as 

applied to transport processes in gases, and to summarize the results 

needed for the analysis to follow. 

The Kinetic Theory of Gases 

Maxwell, Boltzmann, and others first used statistical methods 

to study transport prope r ties in dilute gases about a century ago, and the 

development of modern kinetic theory since then has been associated with 
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the work of these men as well as the more recent contributions of Chap-

man, Enskog, and others (11,12) . The book by Chapman and Cowling (11) 

devotes one section to an int eresting history of the development. 

The theory for a binary mixture of gases is given an elegant 

presentation by Chap man and Cowling, and the extension to a multicom-

ponent mixture is contained in the book by Hirsc hfelder , Curtiss, and 

Bird (12) . In the summary of the results of kinetic theory to follow, the 

notation of the latter will be followed closely in most cases . 

To describe the exact dynamical state of a system of particles, 

it is necessary to prescribe the momentum and position coordinates at a 

given time . If this is done, i t is possible to predict exactly the dynamical 

state at any future time, according to the laws of classical mechanics. Of 

course , it is a practical impossibility to give the exact state of so com-

plex a system as a gas , and this leads to the use of statistical methods. 

In kinetic theory, it is shown that the macroscopic p roperties of a dilute 

gas can be accurately described in terms of a distribution function, 

The distribution function is defined so that f(v , r, t) dr dv is the 
- - --

probable number of molecules having at time t position coordinates be-

tween rand r + dr and a velocity between v and v + dv. The mathe-

matical basis for the kinetic theory of gases is the B oltzmann equation, 

an integro-differential equation which specifies the distribution function. 

The Boltzmann equation involves complex "collision integrals" which ac-

count for the effect of binary collisions on the distribution function, and it 

is valid only for densities low enough so that three-body collisions are 

unimportant. 

If conditions are such that the gas behaves like a continuum, i. e . 
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if the mean free path is much less than the characteristic physical di-

mension of the system, the hydrodynamic equations of conservation of 

mass, momentum, and energy can be derived from the Boltzmann equa -

tion without solving explicitly for the distribution function. In the course 

of this derivation the fluxes of mass, momentum, and energy are identi-

fied with integrals involving the distribution function. These fluxes are , 

of course , directly related to the diffusion velocity , pressure tensor, and 

energy transfer . Thus one can represent these latter quantities in the 

following symbolical manner: 

u.(r, t) = J g l (fj) dVj J 
( 1 ) 

P(r, t) = pC J gZ(fj) dVj ) (Z) 

Q (r, t) = Q( ) g3(fj) dV j ) (3 ) 

where P and Q are the pressure tensor and flux of kinetic energy, re -

spectively, and functions of the indicated integrals ; g l' gz and g3 are 

functions of the distribution function . 

where 

T he diffusion velocity of species j is defined by : 

u.(r, t) = V. - V 
J J 0 

( 4) 

V. = average velocity of species j 
system, 

relati ve to a fixed coordinate 
J 

v = mass average velocity = ~ L M. V . . 
o P J J 

F or later r eference the hydrodynamic conservation equations, 

derivable f r om the Boltzmann equation as previously stated, w ill be listed 

here . In the presence of chemi cal reactions the continuity equation for 
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'Y. n . (V + u.) 
J 0 J 

= K . 
J 

(5) 

K. is the rate of production of j in mole s / cm 
3 

- sec due to chemical 
J 

reactions. Since total mass in the system is conserved, 

~ m. K. = 0 
J J 

(6) 

where m. = molecular weight of species j 
J 

Multiplying equation 5 by 

m. and summing therefore l eads to the familiar continuity equation of 
J 

fluid mechanic s: 

op + ('Y- p V ) = 0 at 0 

The equation of motion is: 

oV 
o + (V • 'Y) V = 

at 0 0 
1 ('Y' P)+.!.. Ln. F . 
P P J J 

(7 ) 

(8 ) 

where P is the pressure tensor and F. is the external force per unit 
J 

mass acting on species j . 

The energy equation is: 

= - 'Y ·Q-(P:'YV)+ Ln,(V,·F.) 
o J J J 

(9) 

where e is the thermodynamic specific internal energy of the gas, and 

does not include the kinetic energy associated with V ,nor the potential 
o 

energy associated with F . • Q is the energy-flux vector . 
J 

Although these conservation equations are valid under any cir -

cumstances in which the concept of a fluid continuum is applicable, it is 

not possible to obtain simple expressions for u . , P , Q, and K. , which 
J J 

are the non-equilibrium or irreversibility factors in the e q u ations. The 

primary concern of kinetic theory is in obtaining approximate solutions to 
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the Boltzmann equation so that the diffusion velocity, pressure tensor, 

and heat flux can be expressed in terms of the macroscopic thermody -

narnic variables, using the equations represented symbolically by equa-

tions 1,2, and 3 . (The reaction rate K. is given by chemical kinetics. ) 
J 

If a gas mixture is allowed to achieve chemical, thermodynamic, 

and mechanical equilibrium, so that no irreversible processes are occur -

ring, the distribution function will be locally Maxwellian. This is ex-

pected from the viewpoint of equilibrium statistical mechanics, which ap -

plies in this case, and it can also be shown to follow from the Boltzmann 

equation for this special case . Anticipating that the distribution function 

might not be radically changed from the local Maxwellian distribution 

when irreversible processes of a physically inte re sting magnitude are 

present, Enskog obtained an approximate solution to the Boltzmann equa-

tion using a perturbation technique . (Chapman independently arr ived at 

the same result by a more intuitive and less mathematically rigorous 

means . ) Enskog introduced an expansion parameter 17", where li t) is 

a measure of the frequency of collisions . Thus if 17" is extremely small , 

collisions are very frequent and the gas mixture achieves local equilibri­

um everyw·here. T h e distribution function for t h e /h species, for ex-

ample, is expanded in the series: 

f. = f.( 0) + (1" £.(1) + (J 2 f.( 2) + . . . 
J J J J 

The zeroth-order term is the locally Maxwellian distribution function, 

and the hydrodynamic conservation equations which correspond to this 

term alone are the Eulerian equations. Addition of the first - order cor-

rection leads to the Navier - Stokes equations. Higher order approxirna-

tions are of less interest here and 'Nill not be considered. 
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When this series 1S substituted into the Boltzmann equation, a 

set of integro - differential equations is obtained for each of the functions 

f.(o) , f.(l) . h f f (0) d d (0) T e equations o r . cor r espon to equilibrium an f. 
J J J J 

is the Maxwellian function, as al re ady mentioned. The solution for f.( 1) 
J 

ha s been obtained by C hapman and C owling (11) in terms of a rapidly con -

v erging series of Sonine polynomials . 

By introducing the resul t ing approximate solution for the distri-

bution functions into the expressions represented by equations 1, 2 and 3 , 

it is found that the diffusion velocity, pre ssure tensor, and heat flux can 

be e xpres s ed in te rms of the thermodynamic variables . The diffus ion 

velocity u. of species i can be written: 
1 

Z 
1 n L .6 .. d. 0(. In T u. = m. V 

1 niP 1 1J J n.m. 1 
j:;ti 1 1 

(l 0) 

where 
n. n. n .m. n.m. 

d. = '1(....1) + (....1 __ J_J 
)'1 lnp __ J_J (LF. L n k F k ) 

J n n P pp m . J 
J k 

( 1 1 ) 

The ..6 .. a re the multicomponent diffus ion coeffi cients , and the 0( . are 
1J 1 

the thermal diffusion constants for the mixture . These will be d is cussed 

late r. 

Equation 10 shows that under the conditions i mplied by t he C hap -

man -Enskog approximation, the diffus i on velocity is proportional to the 

concentration g radient, pressur e gradient, difference in the external 

force s acting on the different species of molecules, and temperature gra-

dient. The last effect, called the r mal diffusion, wa s unknown theoretical -

l y and experimentally prior to the w ork of Chapman a nd Enskog . Subse -

quently, experiments showed that the predicted thermal diffusion does 
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occur, and this constituted a major verification of the k i netic theory. 

It is sometimes convenient to express the diffusion velocity i n a 

multi component mixture in terms of the binary diffusion coefficients , 

D . . , which are practically independent of the composition, unlike the 
1J 

m ulti componen t diffusion coeffi cien ts, iJ .. . (The 
1J 

tJ- . . are defined so 
1J 

that they reduce to the D. . in the case of a binary mixture.) If this is 
1J 

done the result is: 

(u. - u.) = d. - \l in T 
1 J J 

n.m . 0( . - n .m . 0<. 
L:JJ111J 

. 2 D 
1 n m . m ... 

( 12 ) 

1 J J1 

The pressure tenso r which is obtained from the E n skog solution 

together with the equation represented by equation 2 can be \,vritten : 

P=p(l)- ( 13 ) 

whe re (1) is the unit tensor and the symbol + indicates the transpose 

tensor obtained by i nte r changing r ows and columns . The coefficient I-l 

is called the coefficient of v is cos ity , a nd p is the static , o r " t he r mo -

dynamic" , pressure. 

Similarly , equation 3 leads to: 

n L m. D· k ik 1 1 

Q = I\\7 T + 1... n . h. u. 
11 1 

kT 

i 

0<. (u.. - u.) 
1 1< 1 

( 14) 

where h. is the e nthalpy pe r mole of species i, A is the thermal con -
1 

ductivity , and k is B oltzmann's constant. This is a generalizati on of 

F ourier's law of heat conduction. The fir st term gives the heat t r ansfer -

red by thermal conductivity, and the second is the flux of energy carried 

by t he diffusion process . The last term is usually very small and is a n 
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interference, or cross-effect with diffusion, sOITlewhat analogous to the 

effect of a teITlperature gradient on diffusion, i . e . therITlal diffusion 

(which is also usually a sITlall effect) . 

The detailed dynaITlics of the collisions between rrlOlecules of the 

various species enter in the evaluation of the transport coefficients, ;:J. ., 
1J 

D .. , 0( . , II, and 1-.. The E nskog solution for the first - order pertur -
1J 1 r 

bat ion leads to equations for the transport coefficients in te rITlS of the 

Sonine polynoITlial expansions , but the expansion coefficients are COITlpli-

cated functions of collision integrals , and these depend on the interITlo -

lecular fo r ce laws between all types of ITlolecules present. No effort will 

be ITlade here to discuss the elaborate calculations which workers in ki-

netic theory such as Hirschfelde r , et al (lZ) (Chapter 8), have perforITled 

to obtain the transport coefficients. However , considerable success has 

been achieved in this direction, and the results are generally in excellent 

agreeITlent \vith experiITlental values for the gases with relativel y siITlple 

ITlolecular structures. 

The reITlaining irreversibility factor, K. , which is the rate of 
J 

production of species j by cheITlical reactions , is given by the la,,,, of 

ITlass action, discussed in textbooks on cheITlical kinetics ( 13). The ki -

netics of the reacting ITlixture can be represented by a set of stoichio -

ITletric equations of the forITl: 

V l
g

(A 1 ) + Vl(A Z) + .•• + Vjg(Aj ) ~ W 1
g

(A 1)+wl(A Z )+' .• H u f (A
j

) 

( 15 ) 

The V land wl are the stoichioITletric coefficients of reaction g and 

are integers . The sYITlbol (A.) denotes the cheITlical forITlula of the / h 
J 

species . The forward reaction rate in the 
th 

g reaction is then: 
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and the backward reaction rate is : 

v.g 

(n . ) J 
J 

w g 

(n.) j 
J 

where and k
b

g 
are the forward and backward rate constants for re -

action g , respectively, and n . is the m.olar concentration of species j . 
J 

The total rate of production of j is then: 

K . = 
J 

v g JI g 
2 . 

• • . (n . ) J 
J 

(16 ) 

The m.athem.atically r i gorous kinetic theory of transport pro -

cesses based upon the Boltzm.ann equation is extrem.ely powerful , pro -

viding not only_ the correct generalizations of fam.iliar phenom.enological 

laws such as Fick ' s law of diffusion and the F ourier law of heat conduc -

tion, but also the m.eans by whi ch the t r ansport coeffic i ent s appearing in 

those equation s can be evaluated, at least in p rincipl e . P erhaps the chi ef 

shortcom.ing of the theory is that it affords little clar ification of the phys -

ical m.echanism.s underlyi ng the phenom.ena. A bette r physical under -

standing can be obtained by following closely the m.ic r oscopic processes 

which r esult i n diffusion, heat conduction, and viscous effects . With this 

approach it is possible to " derive" , in a m.anner of speaking , m.any of the 

im.portant term.s i n equations 10, 13, and 14, but of cour s e w i thout the 

m.athem.atical exactness of the C hapm.an-En s kog solution. In his book, 

Jeans ( 14) uses this m.ethod to provide a clear discussion of concentration 
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diffusion (i. e . diffusion due to the firs t term on the right - hand side of 

equation 11), v is cosity, and ordinar y heat conduction (given by the fir st 

term on the ri ght - hand side of equation 14). 

The logi c behind this app r oach is quite simple. For exaITlple , 

consider concentr a tion diffusion. Suppose a b inary gaseous ITlixture of 

speci es A and B has a composition whi ch depends only on the z - coordi ­

nate; for definiteness , the concentration, or number density of A i n ­

c r eases with increasing z while that of B dec r eases . Because of their 

therITlal ITlotion, some fraction of the ITlolecules of A contained in the 

space cor r esponding to a mean free path on either side of the plane z = z 

w i ll cross that p l ane in a given tiITle inte r val. H owever , since the aver ­

age number density of A molecules above the plane is g reater than that 

below, there w ill be ITlore molecules crossing the plane in a downward 

direction than in the oppos i te direction. Thus , there is a net ITlass flux, 

o r diffusion, of species A away froITl the region of highe r concentration. 

T h e same is true of the B molecules , of course , so that i n thi s example 

the two species undergo concentrati on diffusion in opposing directions . 

This non - equilibrium process will con tinue unti l equilibrium has been 

achieved, i. e . until the concentrations of A and B are uniform. 

Viscosity and heat conduc t ion can be explained by s i milar a r gu ­

ments . In treating the former the discussion is quite anal ogous to that 

f o r concentrati on diffusion, except that the q uan ti t y w hich va rie s with z 

i s the mean momentUITl of the molecules rather than the concentration. 

Thu s , whi le diffusion is a transport of mass , viscosity is a transport of 

momentum. H eat conduction is , of course, a transport of energy, and 

the z -depend ent variable in the argu ment is the ITlean therITlal energy of 

o 
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the molecules. These elementary and mathematically inexact treatments 

of transport processes, which are valuable primarily for the physical 

understanding they provide, are generally well known and need not be 

pursued further here. 

The Mechanism of Pressure Diffusion 

Less attention has been given to providing a lucid explanation of 

the physical mechanism of pressure diffusion (the second term on the 

right-hand side of equation 11) . Since the effects of a pres sure g radient 

are to be considered in subsequent se ctions , it seems worthwhile to pre -

sent a brief mechanistic discussion of pressure diffusion here . To do 

this as simply as possible, consider a binary gas mixture comprising a 

heavy and a light species, whose molecules have mass M and m , re-

spectively. Disregarding viscous effects , and assuming that the only ex-

ternal forces acting are body forces (i . e . forces proportional to mass, 

such as the force due to gravity), the macroscopic, steady - state equation 

of motion obtained from equation 8 is: 

(V . \l) V = 
o 0 

1 \lp + ~ 
p 

(17 ) 

where p is the static pressure and ;;t is the body force. Next , con-

sider the equations of motion for the individual molecules. It w ill be con -

venient to write these equations in a coordinate system which is moving 

with the local velocity and accelerati on of the gas mixture. Accordingly, 

the equation of motion of a heavy molecule (species 1 ), valid at some 

point x , y, z of a stationary coordinate s ystem, but written in terms of a 

coordinate system moving with the flow at that point, is 

= 
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= Fb + F - M (V . \1) V coo 
(18 ) 

where VIis the velocity of the molecule of mass M relativ e to the 

mass - average flow, Fb is the body force acting on the mol ecule, and Fe 

i s the average force due to collisions . The average coll i sion force should 

be proportional to the velocity of the molecule relative to the flow VI' an 

effective collision cross -section 6, the average concent r ation of parti-

cles of both kinds n, the mean thermal velocity c of the par ticles , and 

some complicated function of the average momenta £(me) which depends 

on the detailed d ynamics of the collisions and accounts for the average 

exchange of momentum in a collision. Thus: 

f(mc) ( 19) 

where the proportionality facto r is absorbed in f(me) . Furthermore , 

the body force is 

F == MJ. b 

By combining equations 17, 18, 19 and 2.0 one obtains : 

dV 1 /3kT' _ 
M crt = VI () n m f(mc) + M;} - M(Vo ' \1 )Vo 

or 

Simila rly, for the light molecules: 

= V2. O""n !3kT ' f(mc) + ~ \1 P 
m P 

(2.0) 

(2. 1 ) 

(2.2.) 
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Assuming that the acceleration of the particles relative to the moving co -

ordinate s y stem is small and can be neglected (dV 1 / dt zo, dV Z/dt Z 0 ) , 

then subtracting equation ZZ from Zl and averaging over a large number 

of particles (since the diffusion velocities are by defini tion u
l 

= V 1 and 

U z = V Z) : 

(23) 

where the function g depends on the average momentum exchange in the 

collisions and can be e v aluated only by considering the details of the col -

li sion dynamics . 

For comparison, equation 12 leads to the follow ing r esult for an 

inviscid binary mixture , disregarding thermal diffusion: 

n l n Z M n l nZm l m Z ] 
- pn( ; m)\7P _ pp (F I -FZ) 

(Z4) 

The mechanistic a r gument just given therefore leads to the correct phe-

nomenological form for the pressure diffusion term, since the details of 

the collision d y namics are embodied in the binary diffusion coefficient in 

equation Z4. This shows that pressure diffusion is a result of the body 

forces or inerti al forces acting on the particles and arises because heav-

ier par t icles must have a higher frequency of colli sions if the collision 

force acting on them is to balance the greater body force and i nertia 

force. As a consequence, the heavier particles must move faster rela-

tive to the mean flow, which leads to the difference in diffusion v elocities 

expressed by equation Z3 . If the forces on the particle are initially un-

balanced in the inertial coordinate system used in the discussion, the 

particle will accelerate until a steady s tate is r eached in which there is 
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practically no acceleration relative to the mass - average flow. The as-

sumption dVl/dt ~O , dV
2

/dt ~O is therefore reasonable, and is in fact 

implicit in the definition of a steady - state diffusion velocity. 

Since the effect of forces proportional to the mass is accounted for 

by pressure d i ffusion, the term in the d i ffusion equation due to external 

force s is identically zero if all acting external forces are proportional to 

mass , such as gravity or inertial fo r ces. In that case the F j and Fk of 

equation 1 1 can be replaced by :if. for all j and k , and upon carrying 

out the summations indicated in equations 10 and 12, the external - force 

te r m vanishes . This is i mmediately obvious in the b i nary case , equation 

24. Thi s term will be important only if forces such as the coulomb inter -

ac t ion in an ionized gas are present. In that instance , for example, the 

total fo r ce acti ng on an electron and an ion due to the charge will be the 

same, but the force per unit mass will differ by a factor of ~1800 or 

more . 

The diffusion process in the atmosphere is a good example of 

pressure diffusion. The pressure diffusion due to gravity will cause both 

heavy and light constituents to drift downward , but the heavier particles 

will tend to sink with a greater velocity if this cause is considered alone, 

as has been explained. This effect must be counter - balanced by concen-

tration diffusion, since there can be no net mass flow toward the earth. 

Thus , in a perfectly still atmosphere in equilib r ium, all constituents w i ll 

have larger concentrations near the earth, creating a concentration diffu -

sion upward. The concentration gradients for the heavier components 

will be steeper to provide an upward concentration diffusion which will 

balance the corresponding pressure diffusion. Of course , this example IS 
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greatly over-simplified, because in the real atmosphere effects due to 

turbulence will be pre sent. 

All the kinetic theory results needed for the analysis t o follow, 

specifically the equations governing transport processes in gases, have 

been stated. However, before proceeding with that analysis, the other 

important means of studying transport phenomena, i. e . the thermody ­

namic theory of irreversible processes , or irreversible thermodynamics, 

will be considered briefly. It is hoped that this limited discussion will 

serve to contrast the kinetic theory and irreversible thermodynamics, 

and point out the relative advantages of each. 

The Thermodynamic Theory of Irreversible Processes 

Many of the basic ideas underlying irreversible thermodynamics 

were either observed experimentally or accepted as intuitively reasonable 

a long time ago, but it is primarily in the last three decades that substan­

tial progress has been made in unifying these ideas to form a macroscopic 

theory of irreversible processes . The impetus to the theory was pro ­

vided by Onsager in 1931, when he showed that certain relationships exist 

between coeffi cients as s ociated with the "£luxe s" and " force s " which pro ­

duce entropy in irreversible processes (15). Subsequent developments 

have been closely affiliated to the names of Onsage r, Prigogine , Cas imer, 

de Groot, Biot, and others . An expositon of the basic concepts of irre­

versible thermodynamics is given in a paper by Miller (16), and a com­

prehensive discussion is provided in the book by Prigogine (17). The sub ­

ject is presented in greater detail in the book by de Groot (18), in which 

many applications are studied. The review given he re will be based pri ­

marily on these three references. 
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Irreversible processes are usually associated with gradients or 

potentials in the system, such as a tempe rature gradient, pre s sure g ra -

dient, concentration gradient, chemical potential , electrical potential , 

etc . In irreversible thermodynamics these quantities are referred to as 

"forces" , although usually they are not related to true forces in the New -

tonian sense . The irreversible phenomena which arise due to these 

"forces", such as heat flow , diffusion flow, chemical reaction rate , e1ec -

trical current, etc . , are called "fluxes " . It has long been well known 

that in a large class of problems involving irreversible processes , the 

"fluxe s" and "force s" a re related through simple , linear expre s sions . 

Familiar examples of these phenomenological laws are the Fourier law of 

heat conduction, F ick's law of diffusion, and Ohm's law. I n a completely 

general case, where a number of irreversible processes are occurring 

simultaneously, any given "flux" might receive contributions from all of 

the "fo rces " present. It is therefo r e natural to try to generalize the 

simple phenomenological law s by w r iting the m in the form: 

J. = 
1 

(25 ) 

where the J
i 

and the X
k 

are the fluxes and forces , respectively, in the 

sense of irreversible thermodynamics . The Lik are called the "phe ­

nomenological coeffic i ents" . F or example , the diagonal members of this 

coefficient matrix, the L . . , are the thermal conductivity, diffusion coef-
11 

ficient, electrical conductivity, etc . 

The linear form of these generalized phenomenological laws can-

not be theoretically justified, in general; instead, equation 25 is a postu-

lated form whi ch must rely on experimental ve rifi cation. It is found that 
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the linear phenomenological laws adequately describe the irreversible 

processes in most situations of physical interest. The Onsager principle 

which led to the development of irreversible thermodynamics is con-

cerned with the relations hips among the phenomenological coefficients and 

applies only when the linear laws given by equation 25 are valid . 

It is shown in irreversible thermodynamics that if the system is 

not too far from equilibrium the entropy production can always be ex-

pressed in terms of fluxes and forces in the following way: 

ds. 
1 

crt 

n 

(26 ) 

The entropy production is defined as the rate at which entropy is produced 

w i thin the system by irreversible processes . According to the second law 

of thermodynamics, 

ds 

where the equality applies to a reversible process, and dQ is the heat 

supplied to the system by the surroundings at the local temperature T . 

This can be restated as an equality, 

ds 1 dQ dS i 
(ft= Tdt+crr- (27) 

and this expression may be regarded as a definition of the local entropy 

production. 

The statement of equation 26 relies on the hypothesis that the state 

of a system sufficiently close to equilibrium can be described by the clas-

sical thermodynamic variables , such as internal energy, pressure, tem -

perature , entropy, etc . This hypothesis has been accepted and used for a 

long time on an intuitive b3.sis , being implied, of course, in Fourier's law, 
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Fick's law, and others, but in recent years it has been examined more 

carefully, notably by Prigogine (19). He has studied the hypothesis w ith 

respec t to the specific case of transport processes in gases, using the 

Chapman -Enskog theory as a basis . Strictly speaking, the thermody nam-

ic variables are defined only when the distribution function is given by 

f = f(o) (the Maxwell - Boltzmann distribution). The use of thermodynamic 

variables outside equilibrium is conditioned by the proper conv ergence of 

t h e E nskog series : 

Taking this approach, Prigogine showed that for transport processes ln 

gases the h y pothesis upon which equation 26 is based, and therefore irre -

versible thermodynamics itself, is valid when the linear phenomenological 

. laws, such as expressed by equation 25, are applicable. 

The central feature of irreversible thermodynamics is the Onsager 

principle . This theorem states thal if the proper choice of fluxes J . and 
1 

forces Xi is made, the matrix of phenomenological coefficients Lik ln 

equation 25 is symmetrical , i. e. : 

(i, k = 1, 2, ... , n) • (28 ) 

These identities are known as the Onsager reciprocal relations . They 

express a connection between mutually -interfering, simultaneous, irre-

versible phenomena. One example is the effect of the temperature gradi -

ent on diffusion, i. e. thermal diffusion, and the analogous effect on the 

heat flux. 

The "proper choice" of the fluxes and forces is made by calculating 

the entropy production for the process in question and expressing it in the 

form of equation 26. The proper choices are then defined by equation 26. 
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Some freedom in the choice usually exists, because ordinarily the terms 

of equation 26 can be split into several alternative sets of force s and 

fluxes . However, for any given choice the Onsager rec ip rocal re l ations 

will hold for the corresponding phenomenological coefficients . 

The calculation of the entropy production, leading to an expression 

with the form of equation 26 , is based on Gibbs I relation: 

T ds = de + pd ( .!. ) 
p 

(29 ) 

where e is the specific internal energy, p the pressure, p the den -

sity, 

of i 

fJ- . 
1 

the chemical potential of specie s i , and n. the concentration 
1 

This equation is thus used away from equilibrium and implies that 

the thermodynamic variabl es still are meaningful in the near - equilib rium 

state. This is how the hypothesis previously discussed in connection with 

equation 26 enters . 

Before discussi n g d i ffusion and energy transport from the v iew-

poin t of irreversible thermodynamics , the main features of the theory can 

now be summari zed. The thermodynamic theory of irreversible proces -

ses utilizes the laws of cla s sical thermodynamics , Newton ' s laws , and 

linear phenomenological laws describing irreve r sible processes, as well 

as a new hypothesis and a new law (Onsager's principle). The hypothesis 

states that near equilibrium the state of a system can be completely de -

scribed by class i cal thermodynami c variables, and Onsager's principle 

provides symmetry relationships among the coefficients in the phenome-

nological laws . In practice , the theory consists of first finding the proper 

fluxes and forces from equation 26 by calculating the entropy production, 

and then studying the p henomenological equations in connection with the 

Onsager reciprocal relat ions . Like classical thermodynamics , it is en -
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tirely a macroscopic theory, as opposed to the microscopic viewpoints 

of s tatistical mechanics and kinetic theory. 

The application of irreversible thermodynamics to the problem of 

diffusion and energy transport in continuous media is considered in detail 

by de Groot (18) (Chapter VII), and only the basic features of that discus-

sion will be presented here . Viscous effects will be neglected. 

The equations needed to calculate the entropy production are the 

continuity equations for the individual species,S, the equation of motion, 

8 (where only the diagonal elements of the pressure tensor P a re used, 

i . e . the static pressure p), the energy equation, 9 (with the same com-

ment regarding the pressure), and Gibbs I equation, 29 . In accepting the 

Gibbs I relation it is implied that the entropy depends explicitly on the in-

ternal energy, density, and concentrations , and only implicitly on the 

space and t i me coordinates. This equation is therefore supposed to be 

correct wh~n the differentials are convective deriv atives , defined by: 

d 
ill 

a = at + (V 0 • \l ) (30) 

B y taking the convective derivative of the Gibbs I equation and in -

troducing equations 5, 8 and 9, the entropy production can be evaluated. 

The result is: 

ds 
P crt = (31) 

T his is a continuity equation for entropy. It states that the local change 

in specific entropy is due to the negative divergence of an entropy flux 

plus the entropy production (divided by temperature). The latter has al-

ready been written in terms of "fluxes" and "forces" , which are defined 

by: 
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Q (heat flux) 

- 'VT / T 

Pkuk = mk~~ = diffusion flux 

F k - T V'(Pk / T ) = diffusion force 

mk~ = mass rate of production of species k 

~k V
k

, called the chemical affinity, where 11k are 

the stoichiometric numbers . 

The corresponding phenomenological equations are: 

forces 

J . = 
1 

J = 
q 

n 

L L' k X k + L. X 1 lq q 
k=l 

n 

L Lqk X k + Lqq Xq 

k=l 

J = LA 
c 

(32) 

The chemical reaction rate has been written as independent of the 

This is because J and A are scalars, while the 
c 

remaining forces and fluxes are vectors, and the tensorial character 

must be uniform in the equations . As a consequence of the definition of 

the diffusion v elocity, equation 4, 2 J
k 

= 0 ; this leads to auxiliary 
k 

conditions on the coefficients 

n 

L Lik = 0 (i = 1, 2, ... , n) 

k= 1 

n 

L Lik = 0 (k = 1, 2, . . • , n) 

i= 1 
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These are not all independent, of course . 

As a specific example , consider the binary case . The formalism 

just described then leads to: 

J = 
q 

\7T 
- T- (33) 

(34) 

In obtaining these results, it was noted that the chemical potential 

J-i-
k 

is a function of temperature , pressure , and concentrations, so that: 

n - l 

L 
i= 1 

\In. 
1 

(35 ) 

where sk and v
k 

are the partial specific entropy and volume of species 

k, respectively. The partial specific enthalpy hk = flk + TS
k 

The 

Gibbs -Duhem relation, n l df-<l + nZd "uZ = 0 at constant T and p, was 

also used. 

The appearance of the same coefficient, Lql ' in the last term of 

the diffusion flux equation (thermal diffusion) and the first term of the 

heat flux equation is a result of the Onsager reciprocal relation 

Thermal diffusion and the corresponding effect on the en -

ergy flux are "mutual interference" effects , which accounts for this 

reciprocity. 
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By cOITlparing equations 33 and 34 with the equivalent kinetic the­

o ry re sults, equations 10 and 14, it can be seen that irreve r sible the rITlO­

dynaITlics leads to the cor rect phenoITlenological forITl for the diffusion 

flux and heat flux. In a relatively siITlple way , this ITlacroscopic theory 

shows that in the absence of a teITlperature gradient and external forces 

not proportional to ITlass, the proper "driving force" for diffusion is the 

cheITlical potential, not the concentration gradient alone, as in Fick's 

law. Pressure diffusion is therefore included in the forITlalisITl . 

At first it ITlight seeITl desirable to utilize this inforITlation in the 

ITlatheITlatical forITlulation of diffusion probleITls, replacing the concentra­

tion diffusion and pressure diffusion by a single terITl which is propor­

tional to the gradient of the cheITlical potential. A solution conforITling 

to a single set of boundary conditions on the cheITlical potential would cor ­

respond to a continuous array of different boundary conditions on the 

pressure and concentration. This would show the change in concentra­

tion boundary conditions required to ITlaintain a constant total diffusion 

strength when there is a given adjustITlent in the pressure boundary con ­

ditions, for exaITlple. In a sense, the relative strengths of pressure dif­

fusion and concentration diffusion ITlight be d e ITlonstrated in this way. 

However, for anuITlber of reasons this approach is unattractive 

and iITlpractical. The foreITlost arguITlent against such a procedure is the 

fact that a clear physical explanation can be ascribed to the individual 

ITlechanisITls of concentration diffusion and pressure diffusion. In con­

tras t, the cheITlical potential is a ITlore - or - les s forITlal device which is 

not directly ITleasurable . The quantities which can be easily ITleasured 

and controlled at the boundaries are the pressure and teITlperature, and it 
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is therefore desirable to express the boundary conditions directly in 

terms of these variables. Also, introducing the chemical potential into 

the formalism will not simplify the problem by eliminating a variable, 

such as the pressure, because pressure diffusion is not the only mechan ­

ism through which the pressure gradient can influence the solution when 

chemical reactions are present, as will be shown. 

Unlike kinetic theory, irreversible thermodynamics cannot pro­

vide detailed information about the phenomenological coefficients. For 

this reason, the kinetic theory is the mo re satisfactory approach in most 

cases concerned with transport properties in gases, since it yields every­

thing given by irreversible thermodynamics as well as numerical values 

for the coefficients, although at the expense of much greater complexity . 

The chief merit of irreversible thermodynamics is that it provides a 

simple means of correlating the various irreversible phenomena present 

and showing how they are interrelated. Howeve r, microscopic theories 

based on the t ransport equations for the particles, such as the kinetic 

theory of gases , are available for only special kinds of irreversible phe­

nomena, and are based on an idealized model. On the other hand, irre­

versible thermodynamics is a general macroscopic theory for irrever­

sible processes, capable of treating problems such as viscoelastic phe­

nomena in solids, for example. Therefore, the importance of this theory 

is much greater than it might seem to be from the example given here. 

In this section the fundamental features of the theories of trans ­

port processes in gases have been surveyed, and the pertinent equations 

stemming from these theories have been summarized. In subsequent 

sections these equations will be treated as phenomenological relations 



-31-

describing the transport phenomena, and the details of the underlying 

theory will not be considered further . Taking this approach, the effects 

of diffusion on heat transfer in a reacting gas mixture will be studied, and 

in particular, the effect of a pressure gradient in the gas will be investi­

gated. Thermal diffusion and the related energy flux phenomenon gi ven by 

the last term in equation 14 are usually relatively small effects and will 

be neglected here. 
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Ill. THE BINARY DISSOCIATING GAS IN THE 

CHANNEL-FLOW APPROXIMATION 

As the transport equations of the previous section show, pressure 

diffusion ITlay either proITlote or iITlpede energy transport, depending on 

whether the pressure gradient is aligned with the teITlperature gradient, 

or against it. If the ITlixture is undergoing cheITlical reactions, the pres­

ence of a pressure gradient can affect energy transport in another, SOITle ­

what less direct, way. The reaction rate at any point in the flow depends 

on the frequency of collisions between ITlolecules of the reacting species, 

and therefore on the l ocal density. By influencing the density distribu­

tion in the reacting gas, the pressure gradient therefore changes the con­

centration distributions of the various species, and so the concentration 

gradients . Thus the energy transport is indirectly affected by the pres­

sure g radient through the ITlechanisITl of concentration diffusion. Fur­

therITlore, the reactions act as heat sources or sinks distributed through­

out the flow, due t o the heat of reaction expelled or absorbed, and the 

pressure gradient changes this distribution by ITleans of the effect of den­

sity on the reaction rates. This also influences energy transfer to SOITle 

extent. 

Of course, the last two effects ITlentioned are, strictly speaking, 

influences of the local pressure (not the local pressure gradient) on the 

density, and indirectly on the energy transport. However , the local 

pressure is deterITlined by specifying the pressure at an arbitrary point 

together with the value of SOITle paraITleter which characterizes the pres­

sure gradient, and changes which depend on the value of that paraITleter 

are terITled "pressure gradient effects " here. As exaITlples of such a 
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parameter, the pressure g radient in the atmosphere w ould be character-

ized by the gravitational constant, and in a vortex flow b y the Mach num -

ber. 

As previously mentinned, a situation of considerable practical in -

terest in which pressure g radient effects may playa role occurs when a 

reacting gas m i xture rotates about an axis , as in a vortex or a solid - body 

rotation. The radial acceleration of the fluid creates a pressure gradient 

normal to the streamlines , and under some circumstances , this may 

strongly influence radial heat transfer . Flows of this kind m i ght there -

fore serve well as a framework for the study of energy transpo r t in re -

acting gases in general , and p r essure gradient effects i n particular. The 

simplest example i s a v ortex or a solid - body rotation of a pure , diatomic , 

dissociating gas , but even thi s is a formi dable problem, involving the so -

lution of coupled, non- linear differential equations . The difficulty is com -

pounded by the many geometric factors intr oduced into the equations by 

the cylindrically - symmetric nature of the problem. 

To re d uce the complicati ons associated w i th this problem so that 

analytic solutions are practical, while still r etaining the interesting fea -

tures , a limiting case will be used as the model for the present work. 

The flow of a pure two - component dissociating gas is assumed to be con -

fined between two concentric , infinitely long cylinders , which rotate with 

the flow. The radius of the inside cylinder r is much greater than the 
o 

difference in radii of the cylinders , w . The r efor e , curvature effects can 

be neglected and the flow treated as if it we r e in a channel of width w . 

The hot wall is taken to be at the inside cylinder (r = r ) , and the tem ­
o 

perature and pressure there are T and p , respectiv ely . 
o 0 

A pressure 

g radient normal to the w alls c an be induced by a high rotational velocity 
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of the cylinders. 

The dissociation reaction can be represented by the symbolical 

equation: 

(36) 

where A2 and Al represent the chemical symbols of the molecular and 

atomic species, respectively, and k
f 

and kb are the forward and back­

ward rate constants. The steady - state equations appropriate to this re -

action and the model just described can be obtained from the general 

equations given in the preceding section. Here, they will be written in 

terms of dimensionless variables . 

If the gas obeys the perfect gas law, p = n~ T, the radial equa-

tion of motion, given by equation 8, can be written 

d In 'IT 

d~ 
= 213 

9 

2 
V ) 

V("J=O) 

where 'IT = pip , e = TIT , V = tangential velocity, and Yj = r-r Iw . 
000 

The parameter 13 characterizes the pressure gradient, and within the 

framework of the present model, 

13 = 
2 

w'{M 
Z r 

o 
(37) 

where M is t he Mach number at the hot wall ("1 = 0), and '{ is a mean 

specific heat ratio, '{ = C
p

! C
V

. In the channel-flow approximation, the 

tangential v elocity appears only in the equation of motion and can there-

fore be specified with some freedom. Recognizing this, it is consistent 

with the geome try approximation to rewrite the equation of motion: 
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1 - E (o) 1 
(38 ) 

where T( '1 = 1 )/T = 1 - E (o) 
o 

This form of the equation will be used 

in the work to follow . 

According to the defini tion of the diffus i on veloc i ty, given by 

equation 4: 

= 0 (39 ) 

x 
(40 ) 

where x is the mole fraction of t he atomic species , defined by x = n
l 
I n, 

and n
Z 

has been eliminated by noting that n
l 

+ n
Z 

= n . 

The energy equation is obtained from equation 9 . Since the tan-

gential mass - average velocity vanishes (no radial mass flow) , this equa-

tion can be integrated at once to obtain Q = constant. The energy flux Q 

is given by equation 14; ignoring the la s t t e rm (which is relatively small) 

and eliminating u z w i th equati on 4 0: 

where 

e = TIT o 

d 9 - - + Hr 
d ~ 

v.rQ 
= --,;r 

o 
= E 

r = n l li l /nD lZ (n D 1 Z ~ constan t) 

m 
H = Le(h 1 - m~ hZ)/C p To ~ Le (L'-. Hfl- iL'-. HfZ)/ C p To 

E = total dime n s i onless energy t r ansport = constant. 

(4 1 ) 

In thi s express i on the small temperature dependence of nD
1Z

' A, and 

C have been ignored. The quantity r i s the dimensionless diffus i on 
p 
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flux of the atomic spe c ies; H will be regarded a s a constant he re, given 

by the approximate e:l.rpression, where 6H
fi 

is the heat of formation of 

species i, and Le is the Lewis numbe r , defined b y Le = C
p 

nD
12

/ A • 

The approximation regarding the enthalpy-difference bracket is exactly 

tr ue if C
pl 

= i C
p2

' and is usually quite reasonable in view of the rela­

tively l a rge values of the heats of formation . The first term of equation 

41 r ep resents the energy transport due to ordinary conduction, and t he 

second represents the energy carried by diffusion. 

The diffusion equati on follows from equations 11 and 12. Thermal 

diffusion, given by the last term in 12 , is disregarded in t he present w ork. 

In terms of the dimensionless variable s chosen here , the result is: 

f' = ( 2x ) d in x 
2 - x d~ 

2x( I-x) 
2 

(2 - x) 

d In 7r 

dYJ 
(42) 

The remaining equation needed to describe the problem is t h e con -

tinuity equation for one of the reacting species, say, t he a tomic species . 

T his is obtained from equations 5 and 16 . The dissociation of the pure gas 

w ill be assumed to proceed according to the reaction 

(43 ) 

whe re Y represents the third particle needed for the three - body recom-

bination reaction; this can be either an atom Al or a molecule A
2

. 

Therefore, in equation 16 the conc e ntration corresponding to Y is that 

of the total mixture , n . 

The recombination r a t e constant kb is gi v e n by the Arrh enius 

law (20) (p p . 57 - 61): 
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( 44) 

where E A is the activation energy, k is Boltzmann's constant, and Z 

is usually called the "frequency factor" . This equation can be crudely in-

terpreted as the total number of collisions between molecules or atoms 

entering into the reaction, represented by Z, multiplied by the fraction 

of those collisions resulting in a chemical reaction. The activation ener-

gy for atom recombination is found to be either zero or very small, and 

in the present work it will be neglected, i . e., E A = 0 • 

It has already been assumed in connection with equation 37 that 

the mixture is a perfect gas , i. e. : 

p=nl(T 

The continuity equation for the atomic species can then be written: 

= K ) n 2 1T 
2R[n(1-X)-X e-

o 

where K is the concentration equilibrium constant, i. e ., 
n 

K = n 
2 

(n l /n2 ) "1 equl 0 

- k /k - f-b 

(45 ) 

( 46) 

n IS the total concentration at the hot wall, and R , a dimensionless 
o 

constant, is a rate parameter defined by : 

R = 
vv

2 
kb n

3 

) (47) 
'1 = 0 

Since R is evaluated at the hot wall , the factor 
2 m - 2 

1T e is re-

quired to account for the variation of n , k
b

, and D12 with pressure 

and temperature. According to the first-approximation kinetic theory 

calculation based on the billiard-ball model, the product nD
12 

is p ro-
1 

portional to T2 and independent of pressure. If the activation energy is 



-38-

zero, l'b = Z , and the frequency factor Z is generally independent of 

pressure but proportional to some moderate power of the temperature. 

Therefore, kb/nD12 can be represented as proportional to Tm. 

The magnitude of the rate parameter R determines the chemical 

state of the dissociating gas . It is essentially the ratio of recombination 

reaction rate to d iffusion rate. To be more precise , R has the order-of­

magnitude of a characteristic diffusion time for the length w divided by a 

characteristic reaction time . For example , if R » 1 , compensat ion 

for any temporary local departure from chemical equilibrium resulting in 

a local excess of atoms will be accomplished by recombination very quick ­

l y relative to the time required for diffusion to remove the excess atoms 

from the region. As a result, the gas composition will be very nearly in 

chemical equilibrium at the local temperatu r e . Conversely, if R « 1, 

t he flow will be nearly chemically "frozen" . 

Equations 37, 41, 42 and 4 6 are sufficient to completely describe 

the flow in terms of the depen dent variables e , 'IT , r, and x . Although a 

considerable simplification has been introduced by the channel - flow ap­

proximation, nothing has been done to eliminate the coupled, non-linear 

character of the system of equations . To alleviate these difficulties and 

make analytic solutions fe asible , additional restrictions must be imposed 

on the problem. These consist primarily of (a) considering only small 

degrees of dissociation, i. e. , x « I , and (b) considering only near ­

frozen (R « 1) or near-equilibrium (R » 1) flow. With these two re ­

strictions, a perturbation technique can be used to investigate limiting 

cases of particular interest, corresponding to different boundary condi ­

t i ons and different chemical regimes . The details of the perturbation 

treatment are developed in subsequent sections, where the various cases 
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a re cons idere d separately . 
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IV. CHEMICALLY FROZEN AND NEAR- FROZEN FLOW 

OF T HE BINARY GAS 

In this section the channel - flow approximation is used to study 

transport phenomena in a chemically frozen, o r nearly frozen, pure, 

dissociating, diatomic gas . This chemical state prevails when the reac­

tion rate is low relative to the diffusion rate for the characteristic length 

w . In general , under these circumstances the rate parameter R« 1, 

as explained in the preceding section. T his provides the basis for a per­

turbation solution expressed as a series in a small parameter & propor ­

tional to R. The appropriate parameter & is not necessarily equal to 

R, howeve r, because the chemical state also depends on the local extent 

of dissociation, which is not accounted for by R. For example , if the 

gas is at a relatively low temperature and only slightly dissociated, even 

a lar ge change in R which tends to enhance recombination cannot alter 

the chemical state radically , because extensive recombination clearly 

requires the presence of a high proportion of atoms . Conversely, at high 

temperatures a small adjustment in R may affect the chemical state ap ­

preciably. The definition of & should therefore recognize that the chem­

ical reaction rate depends on the concentrations of the species involved 

as well a s the rate constant and other factors. 

The analysis is also confined to low degrees of dissociation. This 

restriction is introduced into the fo rmalism thr ough a second small , di­

mensionless number E, and the solution is expressed as a two -parameter 

expansion in E and & . The extent of dissociation can be controlled in­

directly by limiting the pressure and temperature range of the gas , 

through the boundary conditions. The mole fraction of the atoms is re-
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lated to the equilibrium constant K • w hich in turn depends on t h e tem ­
n 

perature. When the g a s is in local chemical equilibrium, the mole frac -

tion x is determined at each point in the mixture b y the local value of 

K , since in equilibrium K In = x 2 I I-x , where n is the molar concen-
n n 

tration of the mixture. On the other hand, when the gas is chemically 

frozen, the mole fraction tends to assume a value somewhere between the 

large and small extremes w hich correspond to chemical equilibrium at the 

temperatures of the hot and cold walls, respectively. Therefore , the ex-

tent of dissociation can always be restricted by putting suitable bounds on 

the equilibrium constant, or really on the ratio K In, through the tem­
n 

perature and pressure boundary conditions. It follows that the parameter 

€ can be defined in terms of the equilibrium constant. The specific defi -

nitions of E. and (, will be given presently. 

The dependent variables, as well as the eigenvalue E of equation 

41 , are expre s sed acc ording to the following expansions : 

e = e(o) + £(8(10) + (, e(11) + ... ) + O( Eh + 0(6 2) 

x = 0 + ( 10) ( 11) 2 2 
.. (x + 6 x + . . • ) + O ( e. ) + O ( 6 ) 

[' = 0 + E(r ( 10 ) + 6 r (11) + .. . ) + O ( to: 
2 ) + O( 6 2) 

(48) 

E = E(o) + E.(E(lO) + (, E(ll) + •.. ) + O( /) + 0(6 2 ) 

The eigenvalue E corresponds physically to the total energy transport; 

therefore it has to be expressed in the same form as the dependent vari-

ables, because perturbations in the temperature profile or diffusion flux 

lead to changes in the energy transport. 

When E. = 0 there is no dissociation. Thus, the zeroth- order so-

lution corresponds to a simpl e gas composed entirely of the molecular 

species, and the O( E: ) solution gives the leading effec t of dissociation. 
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When 6 = 0 the mixture is chemically frozen , i. e . there are no chemi-

cal reactions occurring. The leading effect of a departure from the com -

p l etely frozen state is given by the 0(E.6) solution. There are no terms 

0(6) , which reflects the dep endence of rate effects on the degree of dis -

sociation present. 

Only the terms which contain the leading influence of dissociation 

and rate effects are retained in the present wo rk . For example , the 

O( € 2) solution gives the second - order influence of dissociation. Since 

this is essentially a correction to the first approximation given by the 

O( €) terms and provides quali t a tive information of secondary import -

ance, it is discarded. 

When these expansions are substituted into equations 41, 42 and 

46, and coefficients of equal powe rs of €. and 6 are equated, a set of 

linea r differential equations for each of the groups of unknown functions 

f · d · d < ( e( l O), x(lO) , and r (10)) l·S ob -o a glven or er ln E: an u e . g . 

tained. The zeroth - order solution is particularly simple , because it 

corresponds to a single, non - reacting gas transporting energy by heat 

conduction alone . It is given by the ene r gy equation 

= (49) 

f rom which : 

(50 ) 

The eigenvalue E(o) i s the ze roth-order dimensionless heat transfe r and 

is determined by specify ing the temperature ratio e = TIT at the cold 
o 

wall ('1 = 1). 

The form of the equation of motion to be used in the channel - flow 
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approximation was gi ven b y equation 38 . A c cording t o equation 50, this 

c a n be w ritten : 

d in 1T 
dYj 

= = Zj3 
8(0) 

(51) 

Integration of this equa tion gives the pressure distribution in the channel : 

/ 
(0) 

1T = (1 - E (0) 1 ) - Zj3 E (52) 

Before proceeding with the solution, the dimens i onless expansion 

parameters €. and 0 can nov" be defined more specifically . The small 

number E is defined by restricting the magnitude of the equilibrium con -

stant. Using the temperature expansion given by equation 48 and noting 

that K /n can be closely approximated by an exponential function of 
n 0 

temperature: 

K 
n 

n 
o 

= C e 
-8 / 8 

a 
C e 

where K To 8a = E A' the activation energy for dissociation, and C is 

a dimensionless constant. Since the hot wall must be at a relatively high 

temperature to provide appreciable dissociation in the gas, practically 

all problems of interest will be such that the temperature difference be-

tween the walls is much less than the temperature of the hot wall, or 

1. The refore: 

- 8 /8(0) - 8 / l _E (o) '1 
Ce a = Ce a 
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Let: 

-8 1 

[ K ( "1 = 
0) 1 i a 2 n 2 

€ = (Ce ) = « 1 n 
0 

(53) 

0(= 8 E(o) 
a 

(54) 

Then in equation 46: 

K 
€ 2 [ 

G g~o) 8 8 (11) 

+ ... ] n -"''1 
1 + EO 

a + e O a 
= e 

(g(0))2 (8(0))2 n 
0 

(55) 

As discussed previously, this definition of E. is clearly related to the 

degree of dissociation, since when the gas is in local equilibrium, 

2 
Kn = n l In 2 • In fact, when € « 1 , it is approximately equal to the 

equilibrium mole fraction x at the temperature of the hot wall. This 
e 

can be seen by substituting equations 48 and 55 into 46 and letting R_co 

(which corresponds to chemical equilibrium), so that at the hot wall, 

x
2 

= (l-x)K In Since the perturbation analysis requires that €« 1, 
n 0 

there is an effective upper limit on the hot - w all temperature T which 
o 

can be considered. The range within which T must fall depends on the 
o 

particular gas under study , of course. 

The remaining expansion parameter 0 1S defined by the relation: 

o = E R « 1. (56 ) 

This definition recognizes that rate effects are not independent of the de-

gree of dissociation. if there is very little dissociation, e v en large 

changes in the rate parameter R will be of little consequence in altering 

the chemical state , and the magnitude of 0 will be almost unchanged; 

when dissociation is extensive, a small change in R may have a large 

influence on the chemical state. 

As already mentioned, the solution will be carried to O( E. O) , 
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which will show the first - order effect of dissociation ( €) and the first -

order effect of rates ( e.&) . The equations pertinent to near - frozen flow 

are obtained by substituting equation 48 into 4 1, 42, and 46, and com -

bining the results with equation 51. The zeroth-order energy equation 

and solution have already been given by 49 and 50. The higher - order 

equations are: 

d9( l j) (lj) E(lj ) 
dYJ + H r = j = 0, 1 (5 7 ) 

where the eigenvalues E(lj) are perturbations on the energy transport 

due to dissociation and rate effects . 

After eliminating the pressure g radient with equation 51, the dif -

fusion equation leads to: 

(3) Ij) 

l-E{ 0 )"] 
j = 0, 1 

From the continuity equation: 

and 

= 2 [ 
-CiYJ 

e 

= 0 , or r (lO) = constant 

Solutions to these equati ons will be obtained for tv,ro kinds of 

(58 ) 

(59 ) 

(60 ) 

boundary conditions , representing limiting cases. In the first case, the 

walls are assumed to be perfectly catalytic, e nhancing the re action so 

that at each wall the composition is forced into local chemical equilibrium 

at the surface temperature . In the other case, the walls a re non - catalytic 
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and no reactions take place at the surface. Therefore, e v ery particle 

which strikes the wall is repelled unchanged, and the diffusion v elocity 

vanishes at the surface. 

Perfectly Catalytic Walls 

With the aid of equation 59, the 0(£ ) diffusion equation given by 

58 can be integrated at once to g ive the concentration distribution: 

( 10 ) 
x = 

r(l O)(l _E (o) '1 ) 

E( O) -13 
(61) 

where F(l O) is the integration constant. The O( E) diffus ion flux r(l O) 

i s dete r mined by the catalytic wall bou nda r y conditions on the concentra -

tion. When the gas is in chemical equilibrium, the composition is d eter -

mined by the equilibrium constant (see equation 46): 

2 

= (62 ) 

When equations 48 and 55 are substituted int o 62 , the b ound a r y conditions 

on )10) for catalytic walls can be obtained by equati ng terms O ( €) . 

Thus : 

(63) 

The refore , f r om equation 61: 

r (10) = 
(E( O)- !3 ) [1 - e - c(/2(l_E(O\~ J 

/ (0) 
1 - ( l_E (o))1 - !3 E 

r ( 10) 
( 64) 

F( 10) 1 -= 
E (o) - !3 
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Since r (lO) = constant, the energy equation, given by 57, yields: 

The boundary conditions on the 1emperature are exactly satisfied 

by equation 50 . Therefore, 
(10) (10) . 

6 (0) = 6 (1) = 0 , whlch means that 

G(1 0) = 0, E(lO) = Hr (lO) , and 6(10) = 0 , everywhere. In particular, 

the perturbation on the heat transfer due to dissociation is a result of 

energy transport by diffusion and is given by: 

(65 ) 

This result is valid for a completely frozen flow where [, = 0 , 

such as a mixture of two inert gases with the molecular weight ratio 

m2/ml = 2. To determine the first-order effect of non - zero rates , con ­

sider equation 60. Making use of equation 61, it becomes: 

d r (11) 

dY) 

where 

c -2 -

and CI... = 6 E(o) 
a 

f'(10)F(10 ) 

E( o) _ f3 ) 

For most cases of interest, ex. is in the range 4 <' CI. <' 10. Therefore 

- 001 
the term containing e can be integrated by parts , and it is reason-

3 
able to neglect terms of orde r 1 lex. . Thus: 
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,,(1 1) = _ Ze -0<'1 (oj m-2- 4i3/E{o) ZE {o) 
i d.. (l - E 1') ) + c{ Z 

{oj ZC 
(1 _E {o) '1 )m - 3-4i3 /E + ~ 

E 1o , 

(6 6 ) 

h F
{ 11). . . 

were 1S an 1ntegratlon constant. 

The rate effect on the concentration distribution is dete r mined by 

the diffusion equation, 

, (11) 
ax f3 

(ll) 
+ x 

1_E( o )Yj 
= _ r (11) 

where r ( II ) is given by equation 66 . Integration yields: 

(ll ) 
x = 

(6 7 ) 

The appropriate boundary conditions are obtained as before from 

equation 6 Z. This gives ~ . 
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)11)(0) = )11)(1) = 0 . 

Application of these b oundary conditions determines the constants D (ll) 

a nd F(11). 

D(11) = _2_ 

eA Z 

- (E(0))Z(m_6j3/E(0))(m_1 _5i3/ e (0)) 

~10) Z 1 F(ll) 

Z ( E(o)) (m-Z - 4i3/E(0))(m - 1-5i3/E(0)) - E(o)(l_j3/E{o)) 

(0) 
leI [1 - (1_E(0))m+1-7i3/ E 1 

- (E{0))z(m_ 6i3/ E (0))(m+1 _7 i3/ E (0)) -

- Z (68 ) 

With F( 11) given by 68, equation 66 can be substituted into the 

energy equation, given by 

d9(11) + Hr (11) = E(ll) 
dYJ 

and integration yields: 
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9(11) + H __ 2_ e -c:("l (1 _E(0 ) Y) )m - 2 -4~ E 
{ 

I (0) 

d...
2 

(0 ) 
2C (l_E(o)'I'] )m+I - 6j3 / E 

+ I 
(E( 0 ))2 (m- 613 I E( 0) ){m+ 1- 613 I E ( 0)) 

F(IO) 
+ 2 ( ---r:::\ ) 

E \o, 

(0 ) 
( I _ E (0)'1 ) m - I - 413 I E 

The boundary conditions are: 

Therefore: 

_ F(ll)y) } = _ E(l1) + G(1I) 

(69 ) 

(ll) { 2 2C I 
G = H - ex. 2 + -(E~( 0~)~/~(-m---6-f3-1 E':""""( 0~)-)(-m-+-1---6-f3-1 E~( o~)-) -

F{IO) 2 
+ 2 (-r:::\) 

E\ o, 

[ 
(0) m+I -7 f3 /E(0)] 

[ 

-c:( (0) m-2 - 5~/E(0)] 2C I l - (1 -E ) 
1- e (1 - E ) - -,....::,---.,-------,.---,-____ ,.........._ 

(E ( 0 ))2 (m-6f3 I E( 0 ~m+1-7f3 I E( 0)) 
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-0(. 

Since 0<. '> 4 ordinarily, e can usually be neglected compared 

with one. Furthermore , i t has a l ready been mentioned that E (o)« I in 

most cases, and if this is true, the binomial expressions in E(o) can be 

expanded to y ield a simpler, approximate equation in place of equation 70 : 

[ 

[l+2.(13 _ m E (O))] 
E (11) = _ H13 C(.lZ + .s. ___ 2 _·_~7.--_ _ 

[ 
(0) ] 

2C 1 + 3(13 _ (m - l)E ) 
+ 2 3 

o E (o) 
(13 - m6 ) 

----s- (13 _ (m_;)E(O) ) 

(0) 
[ 1 + i (13 - 2(mS2)E 

(m _2)E(0) 
(13 - 4 ) 

(7 1) 

As reactions begin to occur and the gas tends away from a completely 

frozen state , the energy transfer is affected (to order O( E. 6) ) orly in the 

presence of a pressure gradient, if the walls are catalytic . 

Non - Catalytic Walls 

In this case, there are no reactions at the wall surfaces , and ev-

ery atom or molecule that strikes the wall rebounds into the flow un -

changed. The corresponding boundary condition is that the diffusion flux 

vanishe s at both wall s . From equati ons 58 and 59 then: 

= _ r ( l O) = 0 
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and 

(72) 

Since r (10) = 0 , the energy equation yields: 

The temperature boundary conditions are again satisfied exactly 

by the zeroth - order energy equation, so that e(10)(0) = 9(1 0)(1) = 0 • 

Therefore, e(l O} = 0 everywhe r e , and 

E(l O) = 0 (73) 

With non-c atalytic walls , there is no first - order effect on the heat 

transfer due to a small deg ree of dissociation, if the mixture is com -

pletel y frozen. 

To examine the effect of reaction rate vvith non-catalytic walls , 

equation 7 2 can be used to eliminate )10) from equation 60: 

(0) = 2e -0('1 (1_E( 0) 'r'] )m - 2 - 4f3/E 

Therefore: 

I (0) 
2 -0/.'1 (0) m-2- 4f3/ E( 0) 2(F(10»2(1_E(o)V] )m -2- 4[3 E 

-- e (l-E'1 ) + 
c(, E( 0) (m-2- 4f3/ E( 0) ) 

+ K(ll ) . (74) 

S · E (o) 1 d ~ 4 O(E(0)1",2) h b 1 d Ince « an 0<. > , terms '-"0 ave een neg ecte 

here . The boundary conditions are r (ll)(O) = r(ll )( 1 ) = O. Thus: 

K(11) = Z 
0<. 
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(F ) =-

ex. 

- 53-

1 (0) [1 _ e - ct (1_E(0))m-Z -4(3 E ] 

[ 

m - Z - 4(3 1 E ( 0 ) -j 
• (0) 

1 _ (1 _E( 0))m -Z-4j3 /E 

The energy equation is: 

where r(ll) is provided by equation 74. Integration gives: 

(7 5) 

[ 
(F(10)/ 1 ] } 

+ -ET
( oc-T)--'-( m---Z-- --'-4{3-I-E'(-=-o )'-) -;;. ~ 

(76 ) 

The integ r ation constant F(ll) and the eigenvalue E (ll) are de­

termined by the boundary conditions, 8(11)(0) = 8(11)(1) = 0 : 

ZH [ 

(F (10))2 

E( 0) (m _ Z-4(3/E( 0») 

E (II)=Zcx.H{l O(.(F(lO))Z 
- ( 0) 

E 

(77 ) 

If e - ct. is negligible compared with 1 and E( o) « 1 , a simpler 

approximate expression can be obtained from equation 77 as before: 
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(78 ) 

This equation shows that with non - catalytic walls there is an ap -

preciable increase in the heat transfer as the gas departs from a com -

pletely frozen state, whether or not there is a pressure gradient. 

A Numerical Example : Bromine Dissociation 

To illustrate the results obtained for the near-frozen case, a 

numerical example has been calculated for bromine dissociation. Very 

good agreement between equation 55 and tabulated values of the equilib -

* rium constant (2 1) is obtained by letting e = 22. 5 . The hot wall is as ­
a 

sumed to have a temperature T = 1500
0

K and a pressure p = 1. 0 atm. 
o 0 

Then a ccording to equation 53 , E. = 0 . 298 . T his me a ns that if the walls 

a re perfectly catalytic , the mole fraction of atomic bromine at the hot 

wall is 0 . 298. It is also assumed that the temperature ratio at t he cold 

wall T 1/To = 0.7 5, i.e . the cold wall is maintained at 1 125
0

K . In this 

calculation, f3 ~ 0 , which means that energy transport by pressure dif -

fusion tends to counteract o rdinary heat conduction, because the temper-

ature g r adient and pressure gradient are oppositely oriented . 

The results for completely frozen flow (6 = 0) are shown in figure 

1. When the walls are cataly tic the gas behaves like a mixture of inert 

species except at the wall surfa ces , where the catalytic effect causes re -

actions which drive the composition to local chemical equilibrium at the 

surface temperature. As figure 1 shows , there is an appreciable pres -

* The tabulated equilibrium constant, given in terms of partial pres -
sures, is converted to the equilibrium constant in terms of concentrations 
by means of the perfect gas equation of state (22) . 
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sure - gradient effect, arrlOunting to a 23 per cent reduction in the energy 

transport as f3 reaches 0. 75. This corresponds to a pressure ratio 

across the channel of about 5 to I , i . e. the pressure at the cold wall is 

about 5 atm. To interpret this, it is worthwhile to note that if the radius 

of curvature were on the order of ten times the channel width in an en ­

closure comprising two concentric cylinders, such a pressure ratio 

\,vould be achieved with Mach numbers of 2 to 3. This would be a case 

where the channel - flow approximation would be quite reasonable. With a 

relatively small radius of curvature the present analysis could not be 

expected to yield accurate quantitative results, but it should still give a 

reasonable indication of the re lative magnitude of the pressure effect, 

and in this case , the pressure ratio of 5 to 1 would be achieved at sub ­

sonic Mach numbers. 

It should also be remembered that figure I corresponds to a max­

lmum de gree of dissociation of about 30 per cent ( ~ = 0.298 at the hot 

wall) . Again, the linearized analysis is not strictly valid for much 

greater dissociation, but it can give some indication of relative magni ­

tudes for such cases. Thus, if the mole fraction of atomic bromine at 

the hot wall were doubled to about 0.6 (corresponding to a temperature 

increase of only about 150
o

K, i. e. from 1500
0

K to approximately l650
o

K), 

the total energy transport would increase by about 50 per cent, and a 

pressure ratio of 5 to 1 would reduce the energy transport by roughly 40 

per cent (assuming the same temperature ratio between walls as in fig ­

ure I). 

Since there are no r eactions in the flow except at the wall surfaces, 

the pressure effect illustrated by figure 1 is a direct result of the pres­

sure gradient, or in other words , it is due to pressure diffusion alone. 
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Because of concentration diffusion, atoms tend to travel from the hot wall 

toward the cold wall , carry ing thermal and chemical energy, but pres­

sure diffusion opposes this transport. Of course, if the temperature gra­

dient and pressure gradient were in the same direction, energy transport 

would be enhanced by pressure diffusion, rather than retarded as in fig­

ure 1. 

The same figure shows the energy transport when the walls are 

non - catalytic and the gas is chemically frozen. In this case , the diffusion 

flux must vanish everywhere to satisfy the continuity equation and the 

boundary condi t ions. E nergy transport is therefore by thermal conduc­

tion alone, so there can be no pressure gradient effect. 

The effect of non - zero chemical reaction rates is illustrated in 

figure 2. There is no general agreement on the temperature dependence 

of the collision frequency factor Z for three - body recombination, so the 

quantity m (defined by equation 46) is arbitrarily chosen as zero for 

figure 2 . The results are near ly independent of m anyway. 

The analysis of chemical equilibrium flow in the next section 

shows that for given temperature and pressure boundary conditions and 

catalytic walls , the energy transfer is the same (to 0( £ ) ) whether the 

flow i s in equilibrium or frozen , provided there is no pressure gradient 

((3 = 0.) . This is not very surprising , because with no pressure g radient 

only concentration diffusion occurs , and if the composition is in local 

equilibrium at both walls the average concentration gradient between the 

wall s is approximately the same whether the flow is frozen or in equilib­

rium. It follows that in the absence of a pressure gradient there is no 

first - order change in the heat transfer as the mixture departs from a 



- 57-

frozen state (or an equilibrium state), if the walls a re catalytic . This is 

shown by equation 71 and reflected in the curves of figure 2 for catalytic 

wall s . 

If there is a pressure gradient, a rate effect exists with catalytic 

walls . This is an "indirect" result of the pressure gradient, since it is 

really due primarily to the effect of local pressure (which is a function of 

~) on the recombination reaction rate . For a given pressure at the hot 

wall, a higher pressure gradient provid es a greater density near the cold 

wall. This increases the recombination reaction rate due to the more 

frequent three-body collisions involving two atoms . As explained before , 

the recombination reactions act as heat sources , reducing the total energy 

transport between the walls for given temperature boundary conditions . 

An increase in the pressure gradient therefore has the net effect of inten­

sifying the reduction in energy transport which accompani es a departure 

from the frozen state . 

This argument implies that the recombination reaction will pre­

dominate over dissociation when the gas mixture departs from equilib­

rium. This is the case , because in a frozen state the atomic mole frac­

tion varies almost linearly between the local equilibrium values at the 

catalytic walls (see equation 61), while it has an exponential character 

(equation 62) when the gas is in chemi cal equilibrium. As shown in figure 

3, the equilibrium mole fraction of atoms at any point in the flow is le ss 

than the frozen mole fraction, except at the walls, of course, where they 

are the same if the surfaces are catalytic . Therefore, as the flow de­

parts from a chemically frozen state recombination predominates , since 

the composition tends toward local chemical equilibrium. 
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Figure 2 also shows that with non-catalytic walls the energy trans­

port increases as the flow leaves the chemically fr ozen state. The in­

crease is due to diffusion, which is not present in the frozen flow. In this 

case, the r ecombination reaction does not predominate everywhere. The 

equilibrium composition with non-catalytic walls again has the exponential 

character of the equilibrium constant, except very near the walls, as 

shown in the next section. The frozen composition is given by equation 

72; at every point the concentration diffusion just balances thep ressure 

diffusion so that there is no net diffusion, and the mole fraction falls be ­

tween the equilibrium values at the cold and hot walls . This situation is 

illustrated in figure 4. 

As the gas departs from the f rozen state, the reactions tend to 

drive the composition toward local equilibrium, which results in an in­

creased concentration gradient. This in turn leads to concentration dif ­

fusion (except at the walls , where the diffusion flux must vanish) and the 

consequent increase in energy transport indicated by figure 2. The ef ­

fect is intensified by a pressure gradient, and this is again an indirect 

effect due to the influence of density on the local reaction rate. For ex­

ample, a higher pressure near the cold wall(corresponding to a greater 

value of (3) enhances the recombination and steepens the concentration 

gradient . T his strengthens the increase in energy transport with a de ­

parture from frozen flow . 
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V. CHEMICAL EQUILIBRIUM AND NEAR-EQUILIBRIUM 

FLOW OF THE BINARY GAS 

In this section the extreme opposite from frozen flo"v , in the sense 

of chemical r eaction kinetics, is considered. Although the recombination 

reaction associated w i th simple dissociation involves a three-body colli­

sion, in many cases there may be a close approach to local chemical 

equilibrium in the gas mixture. This implies that the reaction rate is 

very fast relative to the diffusion rate , so that atoms or molecules travel 

through only a short distance between reactions, and the equilibri um con­

centrations at the local temperature are closely approached . This situa ­

tion will prevail if, for example, the gas density is high, making three ­

body colli sions relati vel y frequent. More preci sel y, the crite rion for a 

close approach to local chemical equilibrium is that R » 1 in equation 

46, since the rate parameter R is essentially the ratio of reaction rate 

to diffusion rate . This restriction forms the basis for a perturbation 

treatment similar to that given for near - frozen flow, where the expansion 

parameter is now l / e R rather than €o R . 

It is shown in Appendix A that when a binary reac t ing mixture is 

very nea r ly in local chemical equilibrium the energy flux can be described 

by a generalized Fourier equation. The effective coefficient of thermal 

conductivity, given by equation 161 , includes the influence of chemical 

reactions and diffusion. Formally, the binar y gas in chemical equilibri ­

um is like a single - component gas , since the diffusion equation need not 

be included in the mathematical formulation of the problem. In either the 

singl e - component or binary case , the required conservation equations are 

the continuity equation, momentum equation, and the energy equation 

(using the effective coefficient of thermal conductivi ty in the binary case) . 
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The order of the system of equations is the same in both cases . Hirs ch ­

felder (5) indicated that a similar effective coefficient of thermal con­

ductivity could be defined fo r a mixture in equilibrium at constant pres ­

sure, but equation 161 shows that this generalized Fourier law is valid 

for a binary mixture even when a strong pressure gradient is present. It 

cannot be concluded that a pressure gradient in the gas will have no influ­

ence on the energy transport, however . The effective thermal conductiv ­

ity is a function of the pressure as w ell as the temperature . Therefore , 

for a given pressure level at an arbitrary point in the flow, changes in 

the pressure gradient will influence the energy transport . 

Hirschielder (5) has pointed out that even if the main body of the 

mixture is nearly in local chemical equilibrium, there may be large devi­

ations from equilibrium near the wall surfaces. T hi s is particularly evi­

dent when the walls are non- catalytic, fo r example. If the surfaces are 

completely inert, the diffusion velocities of both species must vanish at 

the walls . However, the presence of a temperature gradient and local 

cheITlical equilibrium will lead to non-zero diffusion velocities. There­

fore, in the neighborhood of the wall , the diffusion velocitie s must adjust 

from their non - zero values in the ITlain stream to meet the boundary con­

dition. In this adjustment region second derivatives of the diffusion ve ­

locity, which are usually negligible in the main stream where the gas 1S 

nearly in equilibrium, may become large and have to be considered. 

Thus , in the neighborhood of the wall the order of the system of differen ­

tial equations is effectively raised, and by analogy to the viscous bound ­

ary layer, the adjustment region can be called a reaction boundary layer . 

Large changes in the diffusion velocity w ithin the boundary layer 

do not necessarily imply that the composition deviates extensively from 
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chemical equilibrium at the wall . According to the diffusion equation, the 

concentration gradient may change considerably along with the diffusion 

velocity, but if the boundary l ayer is thin, the composition itself should 

remain nearly in equilibrium throughout the layer. The thickness of the 

boundary layer is the average distance mol ecules or atoms starting at the 

wall will cover through diffusion before reactions have brought the compo­

sition into local equilibrium. If the reaction rate is large compared with 

the diffusion rate, the layer will be thin. The criteria for a close ap ­

proach to cheITlical equilibrium in the ITlain stream, and for thin boundary 

layers containing moderate departures from the equilibrium cOITlposition, 

are therefore identical. 

The treatment of a simple dissociating gas which is nearly in 

chemical equilibrium is simil ar to that for frozen flow in the last section. 

However , it can be observed at the outset that the classical perturbation 

technique will not yield a uniformly vali d result throughout the channel be ­

cause of the reaction boundary layers . Since certain derivatives which 

are negligible in the main stream ITlay become important near the walls , 

the perturbation is singular at the walls , and a special treatment is re ­

quired in the boundary layers. 

The dependent variables and energy transport eigenvalue are again 

expressed in two-paraITleter expansion s: 

x = o + E. (x( 10) + ~x(ll) + ... ) + O(Eh + 0(~2 ) 

E(r ( 10) + ~r(ll) + ... ) + 0(€2) + 0(~2) 
(85 ) 

r = o + 

E = E(o) + € (E(o) + ~E(ll) + ... ) + O( E2) + 0(£ 2) 
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where E is still defined by equation 53 and 

s = 1 I E. R «1 . (86 ) 

It is therefore implied by the expansion that "near-equilibrium" here 

means: 

l/R« E «l. 

As in the frozen flow case , the zeroth- order solution is given by 

equation 50 and h igher order energy equations by equation 5 7. T he di£fu -

sion equations are again given by 58 . The basic difference between the 

two cases appears in the continuity equation, because the rate parameter 

appears there . Substituting equations 85 into that equation and equating 

coefficients of equal order in E and S leads to: 

- ~.., 
e 

Perfectly Catalytic Walls 

(87 ) 

"''1 5 ~ I (0) 

[ 
- Z (0) n - Z-::)~ E ] (11) 

4e (1 - E 1 ) x 

(88 ) 

When the wall s are perfectly catalytic, driving the composition to 

chemical equilibrium at their surfaces , the boundary conditim s to be ap-

plied on x are obtained by substituting the expansions 85 into the expres-

sion 
2 

x 
1 - x 

= 

where K In is given by equation 55 
n 0 

E quation 8 7 corresponds to an 

infinite reaction rate (s = 0), so it satisfies the O( E ) catalytic wall 

boundary conditions automatically. 



From equation 87: 

dx (I 0) 

d YJ 

and the diffusion equation gives: 

:r ( I 0 ) = _ dx ( I 0 ) 
d 'l] + 
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(89 ) 

This equation again demonstrates that the diffusion velocity can be writ -

ten i n terms of the local pressure, temperature , and temperature gra -

dient when the binary mixture is in chemical equilibrium. (Note that 

C/..,= 8 E (o) , and E (o) = _ d 8(0) IdYJ ; x( 10) = x( 10)(T, p) .) H owever , from 
a 

equation 8 7 : 

(90 ) 

As mentioned before , the di ffu s ion flux is affected by the pressure gra-

dient to the extent that the local pressure depends on 13 . 

The O( E) energy equation is 

d8(10) ( 10) = E ( 10) 
d Y) + Hr 

where r (lO) is given by equation 90 . Integrating and retaining terms 

O (E (o) l a ) but not O (E (o) j(j.l 

_ 8 (1 0 ) _ H [1-
_~'1 1 (0) 

213 ] e 2 (1_E(o) '1) 2 + J3/E = E (10) y] + F( 10) 
(l - E(o)11 ) 

(91 ) 

The boundary conditions are 8(10)(0) = 9(10)( 1 ) = O. Therefore : 

F ( 10) = - H [ 1 - ~ ] 



-64-

1. I (0) - ~ ) 1 I (o) } 
(I_ E( 0))2 + [3 E _ ~ [l - e 2(1_E(0 )- 2+[3 E ] 

(92) 

A comparison of equations 65 and 92 show s that with catalytic 

walls the ene r gy transfer is the s ame to O( E ) whethe r the flow is f rozen 

or in e quilibrium, if there is no pressure gradient. 

Equation 88 is the sta r ting point for an examination of the effect of 

small departures fr om l ocal equilibrium. The derivative d r (lO) IdYJ is 

obtaine d from equation 90; thus: 

d r (lO) 1 
dY] = - "4 

. e (93 ) 

After substitut ion of 93, equation 88 is an algebraic expression 

for x( 11) and is therefore incapable of satisfying the boundary conditions 

for catalytic walls, x(11)(O) = x(11)(l) = O . This occurs because the per ­

turbation technique negl ects deriva ti v es of )11) , which appear in 

d r (l l )/d Y] . It is a singular perturbation, failing because )11) has a 

boundary laye r character such that in the neighborho od o f the boundaries 

the neglected derivat ives , particularly d
2
)1l) I dY]2 , grow to the same 

order of magnitude a s terms in equation 88 . 

If the neglected term d r (ll) Id Y) is included and evaluated in 

te r ms of )11) f r om the diffu s ion equation, the equation whi ch is valid 

throughout the c hannel and capable of satisfying boundary conditions i s : 



= 

where 8(0) = (l -E(o)y)) and iT = 
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E (o)( E(o)_2f3) } 

(8(0})2 

x 
(11 ) 

I 
8(0) "'Z - ~Y) 

( - ) e 
iT 

(94) 

(0 ) 
(I _E (o)Yj )-2J3/E It is expected that 

the derivatives are important only near the walls , so that this reduces to 

equation 88 in the main stream. In principle, equation 94 can be solved, 

because it is linear with variable coefficients. H oweve r, this is imprac-

tical because of the very complicated coefficients . For example, if the 

solution were in terms of a power series in y), many terms would be 

required to accurately describe the rapidly changing behavior near YJ = 0 

and Y) = 1 combined with a slowly varying character in the main stream. 

Instead, it is convenient to divide the flow into three regions : the 

main stream, where the solution is given by equation 88; and the two 

boundary laye r s, whe re the second derivative is important. This pro-

cedure implies that the solution has a true boundary layer character , i. e . 

that the main stream solution is independent of the boundary conditions. 

To demonstrate that this is reasonable , it is helpful to consider a simple r 

equation which retains the characte r of 94. The dominating variable in 

the coefficients of equation 94 is the exponential, which for realistic val ­

ue s of ex. can change by a factor of 10
2 

or more in the range of 0 ~ '1 ~ 1. 

Therefore consider : 

whe re the boundary conditions are x(O) = a and x(l) = b , and C
l 

and 



- 66 -

C 2 are constants. A new independent variable is defined by 

ex '1 
4 4" 

s = - - e ex 

and this simplifies the equati on to one having constant coefficients: 

4 
x( - ex. ) = a 

x( _ ±. e - ex/ 4) = b 
0<. 

For I; « 1 , which is t he case of interest here, the solution reduces to: 

C
2 

-
x = (a - - ) e 

C I 

4 - r 1 
- (l - e ) 
<X. + (b 

If the ex, C I ' and I; appearing here are associated with the cor ­

responding quantities in equation 94, typical value s would be C/.. ~ 4 and 

Therefore, if 

compared with 
+ IC

I 
II;' 

e , x ~C2/CI except near the boundaries, re-

gardless of the boundary conditi ons a and b. T h i s conclusion is also 

appropriate to equation 88. 

Returning now to equation 94, to find the boundary laye r behav ior 

at the hot wall (YJ = 0) it is convenient to define a new independent va r iable: 
1 

z = YJ / (2: 

1 

Then neglec ting terms 0 (1;2 ) or smaller, 94 becomes: 

d 2)11) ( 11) 
- 4x = -C 

dz
Z 

where C = { {O([cx. + 2(E(o)+!3)] - E( O)( E(O )+!3 )} 

ditions a re: 

(94a) 

The boundary con-
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)11) = 0 

z -+- 00: x( ll ) = C/4 (given by equation 88 at ~ = 0) . 

Therefore, in the boundary layer at the hot wall: 

1 

) 11 ) -rk { 0( [ Ci. + 2 (E (0) +13 )] - E (0) (E (0) _ 213 ) } [1 _ e - 2"rJ / I; 21. (95 ) 

Similarly, at the cold wall: 

( 11 ) 
x = 

(96 ) 

where: 

( ) 1.( 5 5 / (0) 00: /4 
2 (I-E 0)2 m --Z- 13 E )e - (1- 1') 

[] = 

1 

I; 2 ] • 

From equations 88, 93 , 95 and 96, a composite approximate so -

1ution can be fo rmed which is valid throughout the channe l for I; « 1-

(11 ) 
x = 

(1- E ( ° ) ) 3 - m + 613 / E ( 0 ) 

16 

where: 
( ) 1.( 5 5 / (0) 0( /4 

2(1_Eo)2 rn -Z-f3 E )e- (1 -"1) 
1 

1;2 J 

Since E (o) « ex and 13 « 0<.. , the third term in the first bracket can 

be neglected. I n the main stream, whe r e the e xponentials of equation 9 7 

are unimportant: 
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c( ZE( 0) ( ) ( ) 6 I (0) = 16 (rn-3-6[3/E 0 )(l-E 0 '1 )Z-rn+ [3 E 

(0 ) _ ~ [(1- ~)E(o) + 3[3] (E(o)+[3)(l-E(o)'r') )1-rn+6[3 /E 

When this expression is substituted into equation 58, the diffu s i on equa -

tion, the result is: 

This in turn can be substituted into the energy equation, given by equation 

57, and integration yields: 

(11) {(XZ (3_rn+5[3/E(0»)(1_E(0)'l'j)3-rn+6i3/E(0) 
-6 -H TIl 

1 (3-rn+6[3/E(0» 

+ "',EI 0 I [ 12 _= 1+ 17 _= I~ I EI 0 I +51~ l EI 0 11 2 J 1'-EI 0 I I 1 -m+6~ IE I 0 I} 

= E(ll)'1 + F(ll) . (98) 

Applying the boundary conditions: 

F(ll) = _ 8(11)(0) _ H ex: (3-rn+5j3/E ) 
{ 

Z (0) 

. TIl (3_rn+6j3/E(0» 

[Z-rn+(7-rn)[3/E(0)+5([3 / E(o»ZJ } 

(Z-rn+6[3/E(o) ) 
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2 

E(11) = 8(11)(0) _ 8(11)(1) + H{ ex (3 - m+5f3 /E (O)) 

TIl 3 - m+6f3/E(o) 

(99 ) 

The main - stream boundary conditions, 8(11 )(0) and e(lI)(1), 

are found by integrating the energy equation through the boundary layers. 

Using equation 58 to eliminate r (11) , the energy equation is: 

d 
(11) 

H (
X 

---'dr-,-
) = E( 11) 

As equations 95 and 96 show, the appropriate length scales in the hot and 
1 1 

cold boundary layers are 'l /S2 and (1 -~ )/s2, respectively. If 
1 1 

Z = '1 /S2 and terms O(S2) are neglected, the energy equation in the 

boundary layer at the hot wall is: 

d 9 ( 11 ) H dx ( 1 1 ) 
dz + dz = 0 

or , since g(11)(0) = x(ll)(O) = 0 , 

This gives the boundary condition on the temperature in the free stream; 

i. e. in equation 99 , e(11)( '1 = 0) = - Hx(ll)( ~ = 0) . Similarly, at the cold 

wall, g(11)( Y) = 1) = - Hx(ll)( y) = 1 ). Using equation 88 to determine 

) 11 )( ""] = 0) and ) 1 1)( '1 = 1), equation 99 becomes: 
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3 (0) 
[I - (I_E(o)) - m+6j3/E ] 

H cx: j3 (l+~) 
----g-- E \ 0 J 

(3 -m+6j3 / E (0») 

(0 ) [l - (I _E(0)/ - m+6j3/E ] 

(2-m+6j3/E(0») 
(I 00) 

This result shows that with catalytic walls , as the gas departs 

from local equilibrium, there is a change in the dimensionless energy 

transport variable only in the presence of a pressure gradient. This is 

what would be expected, because it was found that the dimens i onless en -

ergy transport variable with catalyti c walls is t he same (to O ( e:) ) whether 

the flow is frozen or in equilibrium, if there is no pressure gradient . 

Non - Catalytic Walls 

In this case , the diffusion flux r vanishes at both walls. The 

composition cannot be in equilibrium in the neighborhood of the walls, 

even to O( E ), because this is incompatible with the boundary condition. 

For exampl e, the equilibrium composition given by equation 87 leads to 

the non - zero diffusion flux of equation 90 • . These equations are vali d in 

the main stream, but in obtaining equation 8 7, derivatives have been ne -

glected which become important near the boundaries . That the solution 

has a true boundary layer character, i . e . that equation 87 is valid in the 

mai n stream regardless of the boundary conditions if S « I , can be 

demonstrated by an argument which parallels that given for catalytic 

walls (after equati on 94); i t need not be repeated here . The boundary lay -

er effect is more important with non - catalytic walls , however, because 

the singular perturbation occurs in O ( E. ) terms rather than O( €. S) terms . 
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New independent variables are appropriate in the boundary layers, 

as before : 
1 

Z = '1 n"2 (hot wall, Y) -- 0) 
1 

Z = 1 - "1 nZ (cold wall, lJ--- 1) 

From equations 46 and 85: 

- e 
_CXYJ] 

( 101 ) 

The vanishing of the diffusion flux at the wall puts a condition on 

the concentration gradient, but there is no reason to expect that the con -

centration itself will depart strongly from local equilibrium. This leads 

to the assumption: 

(10) 
x = ) 10) + y 

e 

e( o) i - 7~ 
= (--) e 

'IT 
+ y 

where )10) is the local equilibrium value as shown, and y « )10) 
e e 

With this substitution, equation 101 can be linearized, noting that 

d Z)10)/dz Z = O(S): 
e 

where C
1 

can be treated as a constant in the bcundary layer (to O(S) ) 

and is evaluated at '1 = 0 or Y) = 1 , depending on which boundary layer 

is being considered. The solution is: 

y = A e (l 0 Z) 

One boundary condition is: 

Z --+- OO ; y _ O. 

Therefore B = O . The remaining boundary condition is given by the dif-



fusion equation: 

whe re 

dx( 10 ) 
e 

d'r] 

= [, (10) d y (3y 
e - d Yj - 1-E(0)y) 
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dy (3y 
- d '1 - 1_E(0)Yj 

,,(1 0) 
le = t (0: + (see equation 90). 

From equation 102: 

dy = 
d'1 

e 
- IC' z 

1 

The refore , from the boundary condition r (lO) = 0 at Y) = 0 (whe re C
1
= 4): 

A = 

Then in the boundary layer at the hot wall , 

( 10) ( 10) t: t(CH E (0)) 
x = x (0) + y = 1 - ~ 

e 4 

Since y/)10 ) = O (st) , the linearization of equation 101 is justified. 
e 

Similarly, i n the boundary l ayer at the cold wall , 

( 103) 

1 

[ 1 + S 2 
E( o) -2(1- Y))lt; t 

(<X+ ())e 
2 rc 1-E 0 

(104) 

whe re 
5 (0) _ 0<. 

C = 4(1 _E( 0) m--r 5)3/E e "7 

In the mai n stream the tempe rature distribution is given by equation 91. 

Howeve r , the boundary conditions 8(10)( Y) = 0) and 8(10)("1= 1) are to 
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be found by integrating the energy equation through the boundary layers . 

As before, in the boundary layers: 

de (10) 

dz 

d (10) 
+ H _x~_ 

dz = O . 

(10) (10) . 
Since 9 (0) = 0 and at the hot wall x 1S given by equation 103: 

1 

e(10) = _ H [ ) 1 0) _x~1 0)(z = 0) ] = _ ~ (CX +E(o»)(l _e - 2z) 

1 

e(10)(..,_0) = g(lO)(z _ 00) = _ ~ (CX+E(o» (105 ) 

S i ITlilarly, at the cold wall 

t ± ( ) 1 / (0) ex 
= ~ (l -E 0 )2+13 E e - 2« (;( + 

2 {C 
where 

The energy transport is then given by: 

s 2 [ (0) E(o) - '4 (0) 2 ( 2 - ITl+ 7 [3 E )1 1 ex I 7 / (0) } 

-4o(+E - «(;(+l_ E (O»e (I -E ) _ (106 ) 

The O ( E S) energy transport terITl is given by equation 99 , with 

the boundary conditions again obtained by integrating the energy equation 

through the boundary layer . The procedure is the saITle as that which led 
1 

to the O( ES 2) terITl in equation 106, but in this case it leads to an 

3/2 
O( E S ) terITl. To be consistent with the previous calculations, which 

have been carried only to O ( ES), this terITl will not be included here . 

Consequentl y, 
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[2-m+(7 - m)[3/E(0)+5([3/E(0))2 ] 

(2-m+6[3/E(o)) 
[ 1 _ (l_EloI12-m+6~/Elol} 

(107 ) 

A Numerical Example: Bromine Dis sociation 

To illustrate the near - equilibrium case, a numerical example has 

been calculated for the pure bromine dissociation. Although the near -

equilibrium state usually corresponds to pressures and temperatures dif -

ferent from those for a frozen flow (since the rate parameter R is pro­

portional to p 
3 

, for example), the boundary conditions used here are ex -

actly the same as for the frozen flow example represented in figures 1 

and 2; P = 1 atmosphere , 
o 

~ 0 (0) 
T = 1::>00 K , and E = 0.25 . 

o 
This per -

mits a direct comparison of the near - frozen case and the near-equilib -

rlum case . 

Figure 5 shows the ene r gy transport to O( E ) . This corre sponds 

to infinite reaction r ates (£ = 0) . If the reaction r ate is so la r ge that £ 

is completely negligible, the energy transport is given by figure 5 inde -

pendently of the degree of catalytic action provided by the wall surfaces. 

Reaction boundary layers at the walls may be of the order of 10 mean free 

paths or less in thickness, under these ci r cumstances . As a result, the 

temperature itself does not change appreciably through the boundary lay-

er , even though the temperature gradient at the wall may be quite steep, 

particularly if the diffusion flux vani shes at the wall and all energy trans -

port t here is by conduction. It follows that when reaction rates are ex -

tremely high the main stream "sees" essentially the temperature and 

pressure of the wall as boundary conditions , regardless of the boundary 
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layer, and is therefore independent of the catalytic nature of the wall. In 

t reating the oxygen dissociation example, Hirs chfelde r (5) does not con-

sider rate effects, but he points out that the chemical profile and heat 

t ransfer are practically independent of the boundary conditions on the dif -

fusion flux . The conditions he chose for his example correspond to 

S rv 10 - 6 , and according to figures 6 and 7, which give the correction on 

figure 5 due to finite rates , his conclusion is valid even for much larger 

values of S . 

Figure 5 shows that the energy transport depends quite strongly on 

f3 in equilibrium flow; in fact, the dependence is nearly as great as in fro -

zen flow with catalyti c walls , figure 1. However , the explanation is dif-

ferent. In frozen flow, the effect is traceable to pressure diffusionalone . 

Here , it is due primarily to the shift in equilibrium caused b y changes in 

the local pressure . As equation 89 show s , the diffusion flux depends on 

the local concentration. As the pressure increases the concentration of 

atoms decreases, because the recombination reaction is strengthened by 

the greater frequency of three - body collisions; the diffusion flux then de -

creases, reducing the contribution of diffusion to the ener gy transport . 

This pressure gradient effect is particularly strong in the bro -

mine example , however , because the activation energyfur bromine dis -

sociation is relatively small. As equation 92 s how s, the smaller this ac ­

tivation energy (CX = 8 E{o)) the greater the importance of the term pro ­
a 

portional to f3 . F or example , with oxygen, which has a dissociation ac -

tivation energy roughly three times that of bromine, the pressure gradient 

:{~ 

effe c t would be reduced by a facto r of about thr ee. 

:.t, 
It should also be noted that ,>"rith a larger value for 8a , much higher 

wall temperatures are required to achieve an equivalent degree of disso­
ciation. See the definition of ( , equation 53 . 
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As has already been mentioned, with catalytic walls th e energy 

transport is the same (to O( E ) ) whether the flow is frozen or in equilib -

rium, as long as !3 = O . Therefore, the absence of a first - order rate 

effect as the flow departs from equilibrium with !3 = 0, as show n in fig-

ure 6, is expected. When the re is a pressure gradient, the energy trans-

port decreases as the gas departs from equilibrium. T h is again is pri-

marily an indirect effect, due to the influence of pressure on the local 

composition. It is the inverse of the effect described in connection ,vith 

a departure from frozen flow. When the gas departs from equilibrium 

the dissociation r eaction predominates, and the greater the pressure 

the more frequent the reactions . Wi th a pressure gradient the pressure 

is highest near the cold wall , and hence the increase in atom concentra -

tion is highest there . This tends to reduce the concentration gradient 

and therefore the diffusion flux of energy. 

The rate effect with non - catalytic walls is gi v en by figure 7. It is 

a much stronger effect that that with catalytic walls , because there is an 
1 

O(EOi}) term (given by 'fr
3

) as well as an O(ES)te rm (given by ¥r4)' As the 

m i xture departs from equilibrium, the energy t ransport decreases be -

cause the t ransport by diffusion is diminished. (In t h e li miting case of 

frozen flow, the diffusion vanishes for these boundary conditions . ) T h e 

pressure gradient enh ances t h is effect through the influence of pressure 

on reac t ion rate, as already explained i n connection with catalytic w alls . 
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VI. SUMMARY : THE BINARY DISSOCIATING GAS 

In the previous two sections the energy transport behavior of the 

two - component reac ting gas has been considered when the gas is nearly 

chemically frozen and when it is nearly in local chemical equilibrium. 

The numerical examples for bromine dissociation show the effects of a 

pressure gradient and of varying rates within these opposite realms . 

Howeve r, the individual curves presented for frozen and equilibrium flow 

do not provide any easily interpreted picture of the nature of the solution 

throughout the reaction - rate regime . Of course , the very basis of the 

perturbation technique makes it impossible to give an accurate descrip­

tion of the behavior when the chemical reaction rate is neither large nor 

small relati v e to the diffusion rate , but it is possible to obtain some no­

tion of the general character of the overall solution. 

For this purpose , it is convenient to display the results of the 

bromine dissociation calculation w ith a linear scale for the dimensionless 

energy transport and a logarithmic scale for the ratio (reaction rate/ dif ­

fusion rate). This makes it possible to include the entire rate spectrum 

on one graph. The chief disadvantage is that the logarithmic scale tends 

to distort the curves somewhat. 

Figure 8 show s the calculated results for bromine dissociation 

w ith perfectly catalytic wall s and three d ifferent pressure gradients . The 

solid curves correspond to the solutions given by the perturbation tech ­

nique of the previous sections . When the r e is no pressure gradient 

(13 = 0 ), the total energy transport in either completely frozen or com ­

pletely equilibrium flow is exactly the same . Furthermore, the perturba­

tion solutions show no first-order rate effects in either case. Conse-
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quently, it seems reasonable to expect that the dimensionless energy 

transport is constant in the absence of a pressure gradient, independently 

of the chemical regilne, and the solid curves are joined by a dashed line. 

It should be noted that the same pressure and temperature bound ­

ary conditions , Po and To ' were used throughout the calculations . 

This provides solutions for near - frozen and near - equilibrium flow which 

can be compared simply and directly, as in figure 8. However, it also 

means that changes in the reaction rate parameter plotted along the ab ­

scissa must be accomplished by varying the physical dimensions of the 

system, specifically the channel width w . Therefore , although the di­

mensionless energy transport variable remains constant when f3 = 0 , the 

actual energy flux Q (units: energy/time/area) decreases as the chemi ­

cal regime changes from frozen to chemical equilibrium flow with the 

pressure and temperature boundary conditions held fixed . 

The remaining curves of f i gure 8 show the effects of a pressure 

gradient when the walls are catalytic . In either completely frozen or 

completel y equilibrium flow, an increasing pressure gradient reduces the 

energy transport (when the pressure gradient and temperature gradient 

are opposite in directi on. ) The explanation for this reduction is quite dif ­

ferent in the hvo cases; although the effect is approximately of the sam.e 

magnitude for frozen or equilibrium flow in the bromine association ex­

ample , this is not necessarily true in gen eral. In frozen flow the energy 

transport decreases with increasing pressure gradi ent becau se of pres ­

sure diffusion alone . In equilibrium flow the ultimate effect is similar, 

but the cause is more complicated and l ess direct . Because the local re ­

combination rate depends on the local density, and therefore the local 

pressure , changes in the pressure gradient influence the concentration 
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distribution. T hi s in turn changes the concentration diffusion flux, and 

thus the energy t ransport. In equilibrium flow the size of the pressure 

gradient effect depends on the activation energy of the reaction, which is 

not surpris i ng in view of the mechanism just described. 

Figure 8 a l so indicates that if there is a pressure gradient, the 

dimensionless energy transport has a minimum somewhere in the re gion 

where the gas is neither frozen nor in equilibrium. The perturbation 

technique provides no basis for a reasonable estimate of the character of 

the solution in this region. The minimum is apparently absent when 

j3 = 0 , and the curves sugge st that it becomes more pronounced as the 

pressure gradient increases . 

The corresponding curves for non- catalytic walls a re shown in 

figure 9 . When the gas is completely chemically frozen , the diffusion flux 

must vanis h e ve rywhere if it vanishes at the walls , to satisfy the continu ­

ity equation. T he refore , the energy transport is entirely due to ordinary 

heat conduction, and there is no pressure gradient effect, of course. As 

the gas "unfreezes " a diffusion flux can occur except at the walls , and 

this accounts for the indicated rise in the energy transport. 

At the other extreme of the rat_e parameter scale, whe re the gas 

is ln chemical equilibrium, the situation is very similar to that just de ­

scribed for catalytic walls. In fact , the concentration and temperature 

profiles are identical in the two cases , except in the thin reaction bound­

ary layers near the walls . The non - catalytic influence of the walls is 

confined within these boundary layers , which remain extremely thin rela ­

tive to the channel width when the ratio (reaction rate / diffusion rate) is 

very large . As was s hov,rn in the preceding section, under such condi -
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tions the solution has a true boundary - layer character , in that it is es ­

sentially independent of the catalytic nature of the walls . Accordingly, a 

comparison of figures 8 and 9 shows that as the gas nears a state of local 

chemical equilib rium , the energy transport (fo r a g i ven f3 ) approaches 

the same value \vhether the walls are catalytic o r non - catalytic . As the 

gas leaves the equilibrium state, a much stronger reduction in energy 

transport i s felt with non-catalytic walls than with catalytic walls. The 

boundary layers grow rapidly, car rying the non-catalytic influence of the 

walls into the main st r eam and r educing the diffusion flux. Ultimately, 

when the gas is fro zen, the wall infl uence dominates everywhe r e; there is 

no diffusion flux and therefore no diffusive energy transport. It seems 

reasonable to expect that the solution will have a smooth, continuous be ­

havio r, and on this as s umption, the solid cur ves obtained with t he pertur­

bation technique have been j oi ned by dashed curves. 

One of the most interesting features of the binary reacting gas is 

the fact that the order of the governing system of equations is reduced 

when the gas is in local chemi cal equilibrium. It is shown in Appendix A 

t hat the equations for the two - component gas in equilibriuITl can always be 

made formally identical w i th the cor r esponding equations for a single ­

cOITlponent gas . T h e effects of diffusion in the forITler are accounted for 

by an "effective thermal conductivity" . Thus , the order of the set of 

equations for a binary reacting gas in local equilibriuITl i s the same as for 

a single - coITlponent gas . This is true only \'vhen the gas is i n local chem ­

ical equilibrium, and it is this property which leads to the reaction bound ­

ary layers charac teri sti c of the equilib r iuITl soluti on. 

I n the followi ng se c tion a gas composed of three spec i es , with the 
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reacting components in equilibrium, is investigated within the fr a mework 

of the channel - flow approximation already used. The primary purpose is 

to show in what re spec ts the gas of th r ee (or more) components in local 

chemical equilib rium may be similar to, or different from, the b i nary 

gas in equilibri um. 
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VII. THE THREE-COMPONENT GAS IN LOCAL CHEMICAL 

EQUILIBRIUM 

The treatment of the binary reacting gas in the preceding sections 

has shown that the character of the chemically frozen flow is quite differ­

ent from that of the flow which is in local chemical equilibrium. When 

the mixture is frozen , the order of the s y stem of equations is two higher 

than for a single , non- reacting gas; this is due to the a ddition of a diffu ­

sion equation and a continuity equation to the other conservation equations 

of the set. The higher order is necessary and sufficient to satisfy bound ­

ary condi t ions whi ch physically correspond to specification of the cata ­

lytic nature of the walls . Consequently, the energy transport is strongly 

coupled to the catalytic influence of the wall surfaces. The extension of 

the analysis to include the general multi - component, chemically frozen 

gas is apparently straightforward in principle, although the complexity of 

the calculation grows rapidly as the total number of components involved 

i n the gas increases . With the addition of each component the order of 

the set of equations will be raised by two, and so will the number of 

boundary conditions to be satisfied. If more than one chemical element is 

present in the gas , as will usually be the case when the mixture includes 

three or more chemical species, the boundary conditi ons to be satisfied 

by the mole fractions will depend not only on the catalytic nature of the 

walls , but also on t he total mass of each of the various chemical elements 

initially introduced into the s ys tem. In other words , when more than one 

chemical element is present in the chemically frozen gas mixture, the en ­

ergy transport will depend on the proportions of the various elements in 

the system and also on the catalytic action of the wall surfaces . The de -
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pendence on initially -present proportions of various elements does not ap­

pear in the frozen - flow sol ution for the simple b inary disso c iation reac ­

tion, because only one element is present. 

On the o t her hand, it is shown in Appendix A that when the binary 

gas is in loc a l chemical equilibrium, the order of the system of equations 

is the same as for a single - component gas . T his feature leads to the re­

action boundary layers characteristic of the equilibrium flow. In the im ­

mediate vicinity of the walls the catalytic action of the surfaces may cause 

reaction rates to become important, effectively raising the order of the 

set of equations by two. This is the mechanism by which the necessary 

boundary conditions on the mole fractions are satisfied. The boundary 

layers "shield" the main stream from t h e cataly tic action of the walls , so 

that the temperature and composition profiles in the main body of the gas, 

and the ene r gy transport, are practically independent of the chemical in ­

fluence of the boundary surfaces . 

Hirschfelder (5) has indicated that an effective coefficient of ther­

mal conductivity can be defined not only for the binary gas , but for the 

multi - component mixture in general , as long as the gas is in a state of lo ­

cal chemical equilibrium. Thi s implies that the order of the set of equa­

tions for a general , multi - component gas in chemical equilibrium is the 

same as for a simple , single - conlponent gas . Under these circumstanc es 

the solution for any number of components would clearly have a boundary 

layer character s i milar to that of the binar y gas , for the main - stream so ­

lution would be completely determined when boundary conditions on the 

pressure and temperature were specified. It would also follow that the 

profiles in the main stream, and the energy transport, are essentially 
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independent of the proportions of the various cheITlical eleITlents initially 

present in the systeITl, just as in the binary exaITlple where only one ele­

ITlent was present. T h ese ITlass proportions ITlust in SOITle way affect the 

ITlole fractions of the vari ous spec ies, presuITlably by providing the infor ­

ITlation which, toge t her with specification of the catalytic nature of the 

walls, will deterITline the boundary conditions on the various ITlole frac ­

tions . How-ever, if the ITlain-streaITl ITlole-fraction profiles are COITl ­

pletely deterITlined by the pressure and teITlperature boundary conditions, 

then the influence of the ini tiaIl y introduced ITlas s proporti ons of various 

eleITlents , as ,,,ell as rate effects, ITlust be confined to the boundary lay -

ers . 

It is not too difficult to anticipate that the ITlulti - coITlponent gas in 

equilibriuITl will have a behavior which is practically independent of the 

catalytic nature of the ,valls , w ith rate effects and the wall influence re­

stricted to thin reaction boundary layers , as in the binary case . If the 

boundary surface retards the reaction, for exaITlple , forcing the COITlpO ­

sition away froITl local equilibriuITl, and if the reactions in the gas are 

very fast cOITlpared with the rates of diffusion processes, the cOITlposition 

should reach local cheITlical equilibriuITl within a few ITlean -free-paths of 

the wall. This will occur in a very narrow region relative to the charac ­

teristic length of the systeITl, regardless of how ITluch the cOITlposition 

deviates froITl equilibriuITl at the wall; the ratio (reaction rate/diffusion 

rate) » l ensures this. Thus the solution is practically independent of 

the cheITlical action of the w-aIls , whose influence on the rates is confined 

to very thin regions near the boundaries . This crude physical arguITlent 

seeITlS to apply equally well to any nUITlber of reacting cOITlponents . 
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On the other hand, it seems intuitively unreasonable that the en ­

ergy transport and composition profiles should be essentially independent 

of the masses of various elements originally introduced into the system. 

In fact , this cannot be true . Large changes in the proportions of ele ­

ments involved in the reaction must ultimately result in extensive changes 

in the total amount of each of the components (composed of these ele ­

ments) which will finally be present when local equilibriuITl is reached; 

this is required to conserve mass . This ITleans that the vari ous ITlole 

fractions must be st r ongly influenced by the proportions of various chem ­

i cal elements p r esent, and furthermore , that this influence i s not re ­

stricted to boundar y layers . By definition, the boundary layers are thin 

and contain only a small fraction of the total mass in the system. L arge 

changes in the mole fractions within the boundary layers alone would not 

appreciably alter the total proportion of each constituent present, and 

therefore could not answer the requirements of large changes in the pro ­

portions of va r ious chemical elements p r esent. 

The addition of each component beyond two does, in fact , raise the 

order of the set of governing equations by two. Thi s precludes the possi ­

bility of defining a generalized coefficient of thermal conductivity and de ­

scribing the flow with a formalism similar to that for a simple , single ­

component gas, e x c ept in the special case of a binary mixture in local 

chemical equilibri um. 

T he solution given by thi s set of equations corresponds to the main 

stream, and the extra constants made avai lable by the higher order of the 

set are necessary and suffi cient to ensure that mass is conserved. In this 

way the solution becomes strongly coupled with the proportions of ele ­

ments introduced i nto the system, as expected intuitively. With any num -
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ber of reacting species in equilibrium, rate effects a re confined to the 

reaction boundary layer s, jus t as i n the binary case, and the behavior is 

practically independent of the catal ytic nature of the walls . 

Because the equations acquire an immense complexity when many 

components a re present, it is hardly feasible, even if desirable, to dem­

onstrate the character of the multi - component, equilibriuITl flow in a 

general way. H owever , the features which have just been described can 

be illustrated by means of two simple examples involving three COITlpO­

nents and analogous to the channel - flow perturbation analyses of the two­

component dissociation reaction. At the same time, these examples show 

how the three - component gas may differ from the binary case \vith regard 

to the dependence of energy transport on the pressure gradient. 

The Three - CoITlponent Gas in the Channel - Flow Approximation 

The physical significance of the channel-flow approximation has 

been explained in Section III and requires no further discussion here . The 

primary difference between the equations presented there for the binary 

mixture and those for the three - component gas is that an additional diffu ­

sion equation and an additional c ontinuity equati on (or stoichiometry rela­

tion) are required in the latter case . The problem can be formulated in 

terms of the mole fractions and diffusion veloc i ties of species 1 and 2 

alone, eliminating the mole fraction of species 3 with the equation 

= 1 (108 ) 

and eliminating the diffusion velocity u
3 

through the following re lation, 

which stems from equation 4: 

o (109 ) 
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The equation of motion is independent of the numbe r of compo -

nents : 

d In 'IT 

dY] 
= (11 0) 

The symbols have already been defined in connection with equati on 38, 

and these definitions are unchanged. 

The energy equation reduces to: 

where 

e = TIT 
o 

H 13 = (h l m l /m 3 h3) L e / C p To 

H 23 = (h2 - m2 / m3h3)Le/CpTo 

E = total dimens i onless energy transport = constant. 

( 11 1 ) 

The appropriate diffusion equations may be obtained from equa -

tions 11 and 1 2. They are: 

a
1 

m
2 

xl r 2 - x 2 r 1 - --;u x l r 1 - m 3 a 1 x 1 r 2 - a 1 ( 1 - x 1 - x 2) r 1 

}J. - m
2
/m

l 

{

( ,u- l) [ l - Xl - ( )-i.-I )x2 ] } 

[ 
).A- l fl- m 2!m 1 1 

fJ.. 1- (f:l )x 1 - ( fJ. )x 2 J 

d in 'IT 

d "Y] 
(l12 ) 
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d In 'IT 

d Y) ( 11 3 ) 

The form of the chemical equilibrium relation depends on the spe-

c i fic reaction being cons i de red . The simple s t reac tion invol ving three 

components , and one of the two which will be considered here , is the bi -

nary dissociation reaction in the presence of a third, inert species , e . g . 

bromine dissociation in the presence of argon. Such a reaction can be 

represented symbolically by: 

k 
f 

>-

( 114) 

When the composition is in chemical equilibrium: 

where K 
n 

at YJ = 0 . 

K 
n 

n 
o 

(~) = 
'IT 1 -

is the equilibrium constant, and n 
o 

( 1 15) 

is the total concentrati on 

The addition of a third species also adds a new continuity equation 

to the set. This equation follows from equation 5 . Since A
Z 

is inert in 

the reaction of equation 114, the production rate K
Z 

in equation 5 van -
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ishes, and if nD
1Z 

is t r eated as a constant as before, 

'1 . :r = 0 
Z 

In the channel - flow approximation r Z is a function of Yj alone; the r e ­

fore, the continui ty equation can be integrated at once to y i eld (for the re -

action of equation 114) 

r Z = constant . ( 116) 

The second example of a three-component reaction to be con-

sidered here can be represented symbolically by the expression: 

(117 ) 

When this reaction has achieved local chemical equilibr i um, the mole 

fractions w i ll be related th r ough the equilibrium cons tant : 

K = 
n 

( 11 8 ) 

In addition, a continuity equation is required. F or this example, 

it is convenient to use a stoichiometry relation which arises fr om the re-

action of equation 117 and corre s ponds to a linear combination of two con -

tinuity equations. It follows from equation 117 that for every mole of Al 

produced locally by the dissociation of A3 ' a mole of A Z is also created. 

This leads to the equation: 

Dividing by n D
1 Z

' which is treated as a constant, this can be integrated 

at once to obtain: 

[' = C ' 
Z 

(cons tant) ( 11 9) 
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Using the equations just presented, a perturbation technique simi-

lar to that of the binary analysis can now be used to study the reactions of 

equations 114 and 117, in an effort to demonstrate some of the features of 

the three - coITlponent flow and the ITlulti-coITlponent gas in general . 

The CheITli cal EquilibriuITl Flow of Two Reacting COITlPOnents in the Pres ­

ence of an Inert Species 

In this case, the reaction to be considered is given by equation 

114. When the mass of the inert component A
Z 

originally introduced into 

the system vanishes , the solution must reduce to that previously obtained 

in the binary chemical equilibrium analysis for S = 0 (infinite reaction 

rate), because the reaction then becomes the binary dissociation studied 

there . 

In the present analysis the dependent variables and energy trans -

port eigenvalue (total energy transport E of the energy equation) are 

expressed as follows: 

Xl = 0 + 0 + •.. + E (x( 10)+v) 11 )+ .. • )+0( E. Z) 

r
l 

= 0 + 0+ ... + E([' 1 10 )+ vril1)+ .•. )+0(EZ) 

O+ V x(Ol)+ 
X z = z ( 11 ) .L Z + E (0 + Vx Z + • .. ) . O( 11 ) 

['Z = 0 + vri01) + . .. + E(O + v r fl) + ..• ) + O(:"-Z) 

E = E(o) + lIE( OI) + . •• + E:(E(o) + VE(lI ) + ... ) + 0 ( E2 ) + O(:..-Z) 

(IZ0) 

The expansion parameter E is defined exactly as before , i. e. by 

equation 53 , and K In is app r oximated by an expression similar to 
n 0 

equation 55: 
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o 
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(1Z1 ) 

The purpose of the second expansion parameter V is to conven -

iently introduce another res triction into the formalism. T he mole frac-

tion of the inert species will be a ssumed to be small, i . e . X z « 1. 

T his can be accompli shed by restricting t he total mass of A
Z 

initially in-

jected into the system. to some s mall fraction of the total mass of reacting 

components, which leads to a definition for V It will be assumed arbi -

trarily that xZ(Ol)( I'J = 0) = 1, x
Z
(1l)( y) = 0) = 0, etc . Then V is de -

termined by the equation: 

(lZ Z) 

whe re MA is the mass per unit volume of A
Z 

in the system, and m
A Z Z 

is the molecular weight of A Z • 

As before, the zerot h -order ene rg y equation corresponds to ordi-

nary heat conduction in a s ingle-component gas: 

= ( 1 Z3 ) 

The solution is: 

( lZ4) 

The 0(11) energy equation is : 

+ H
Z3 

r ~Ol) = E(Ol) . (lZ 5) 

According to equation 116, which is the continuity equation for the iner t 

speci es , r Z = constant. Since A Z is inert, molecules of this spe cie s can­

not undergo a chemical reaction at the wall s, regardless of the catalytic 
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nature of the surfaces. The diffusion flux 1
Z 

therefore vanishes at the 

walls, and consequently : 

r z = r (01) -Z -
,. (11) _ 
1 Z - = [' i mn

) = 0 (e v erywhere)(IZ6) 

Equation 1 Z5 can be integrated at once, and since equation 124 satisfies 

the boundary conditions on the temperature , it follo'ws that e(Ol )(0) = 

e (01) (l) = 0 and 

E(OI) = 0 . ( 1 Z 7 ) 

When the solution is carried only to O( E ) , it gives the firs t - order effect 

when the binary dissociation takes place in the absence of any other gas 

(V = 0). To thi s orde r , the problem is the refore identical with that 

solved in Section V . From this, it can be anticipated that x?O), rilO
) , 

(10) (10) , 
e ,and E are glven by the corresponding solutions obtained in 

that analysis, equations 8 7, 90 , 9 1 and 92, respective l y . Substitution of 

the expansions of equation 120 into equations I ll, 1 12, 1 1 3 and 115 (with 

K In given by 121) does, in fact , give for the O( E ) terms exactly the 
n 0 

formalism obtained in Section V , and this procedur e w ill not be repeat ed 

here . 

The effect of the inert component first appears in the O( EV ) 

terms. Recalling that r i l l) = 0 , the energy equati on of this order is: 

de(11) + H 1' (11) = E(ll) . 
dY) 13 1 ( 128 ) 

T f ' d r (11) 
o ln 1 ' so that this equation can be integrated and the leading ef -

fect of the inert species determined, i t is necessary to turn to the equi -

librium relation and diffusion equations. By equating the coefficients of 

O( EZy) in equation 118, a relation between the mole fractions is obtained: 

(01) 
X z = 2 (11)1 ( 10) 

Xl Xl ( 129 ) 
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Assuming a
1 

= a
2 

= a
3 
~ 1 , which has no essential influence on the 

character of the solution, equation 113 provides: 

d 
(O 1) 

x
2 

dYj 

f.J. - m2/m 1 (01) d 1n 1T 

+ ( fA ) x 2 d YJ = r {OI) = 0 
2 • ( 13 0) 

With the aid of equation 110, this expression can be integrated at 

once . When 11 was defined, it was arbitrarily assumed that 

x
2
{OI ){0) = 1 ; therefore: 

I (o) 
{OIl (0) (J-l - m 2 m l )213 /E l fA 

x 2 = (1 - E 1'"/ ) 

The O{E.v) terms of equation 112 give: 

r {ll) = 
1 

d (II) 
x l 

d'1 
( }J- - 1 ) x ( 1 1) d i n 1T 

p 1 d YJ 

1 ( m 2) ( 10) (O 1) d in 1T + --f-l--x x 
f!2 m 1 1 2 dYJ 

( 13 1 ) 

(13 2) 

Equations 129 and 131 can be combined to give x
1
{l1) . Then with the aid 

of equation 8 7 and equation 131 , r?l ) can be obtained from 132: 

2fJ- -1- m 1m 
() _~ '1 f-t- l +{ 2 1)2f>./E{o) 

( II ) 11 1 E °r-)e 2 (l_E{o» U Il t-' r --(~){a.+--r- r" I-
I - f!2 l _E {o y) 

(133) 

When equation 133 is substituted into 128, the energy equation can be in -

tegrated to obtain: 

m
2 2?- -1-­m
1 

{----

1 -

(134 ) 
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_ ~I'J "u -l + 
[] = e 2 (l_ E (o)'1) jJ-

m
2 

2ft - 1--
_ _ __ m_l_ ) 2f3/ E (0) 

fJ. 

The boundary conditions are 8( 11 )(0) = 8(1 1 )(1) = o . Therefore: 

m
2 

2fA -1 - -

F (l l ) = 2 ( ,u.- 1 ) 
- H 13 #2 

j.J.- 2 E(o) 
(- ) -­

fA ex 
__ !-'-_ m_1_ ) ~ } (13 5) 

and 

where 

) 4P J } 

)2 f3 / E (0)l{} 

( 136 ) 

A Numerical E xample: Bromi ne Dissociation in the Presence of Argon 

To illustrate the effect of adding an inert component to the binary 

reacti ng gas , an example of b r omine dissociation in the presence of argon 

has been calculated, and the results are presented in f i gure 10. The quan ­

tity lj;"5 is equal to E. E(ll), with E(l l ) obtained from equation 136 for 

the given temperature and pressure boundary conditions. It will be re -

called that V i s the mole fraction of the inert gas , in this case argon, at 

the hot wall ( Y] = 0); V is determined when the total mass of argon and 

the total mass of bromine initially introduced into the system are speci -

f i ed. When no argon is present, V = 0 , and the r eaction reduces to the 

two - component bromine dissoc i ation in local equilibrium, which was con -

side red in Section V and i llustrated by an example in figure 5. The pres -
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sure and temperature boundary conditions used in obtaining figures 5 and 

10 are identical. Consequently, t he se two figures can be used together to 

illustrate the influence of the presence of argon on the energy transp ort. 

When no argon is present, the energy transport is given by figure 5 alone; 

if the composition includes a small proportion of argon, there is an addi­

tional contribution vY5' which can be obtained from figure 10. 

Since the contribution of )V:- is negative, the effect of an increas­
~ 

ing proportion of the inert gas (with fixe d temperature and pressure 

boundary conditions) is to reduce the energy transport. This is to be ex-

pected, because the inert species itself can make no contribution to the 

diffusive energy flux; the diffusion flux of the inert gas necessarily van -

ishes at the walls. The contributi on of diffusion to the energy transport 

is due to the atomic bromine, whi ch tends to form at the hot wall , diffuse 

to the cold wall , and there recombine, giving up its chemical heat of for-

mati on. The magnitude of this contribution depends on the mole fraction 

of atomic bromine (or really on the change in this mole fraction from the 

hot wall to the cold wall, which is a measure of the net extent of recom -

bination of the atoms as they diffuse to the cold wall) . As the mole frac-

tion of argon increases, the mole fraction of bromine is proportionately 

reduced. This leads to a smaller contribution by the diffusion process to 

the energy t ransport. 

The qualitative forms of the curves in figures 5 and 10 are the 

same . This can be anticipated, because figure 10 simply represents a 

reduction in the influence of the diffusion mechanism illust r ated in figure 

5. The s l opes of the two curves are diffe r ent, because the strength of the 

pressure - gradient effect depends on differences in the molecular weights 
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of the components involv ed, and the molecular weight of argon plays a 

role in figure 10, but not in figure 5. 

This simple example shows that even the addition of an inert com­

ponent to the binary reacting gas in equilibrium changes the mathematical 

formulation of the probl em, raising the order of the set of equations by 

hvo . This does not alter the boundary-layer character of the solution 

with respect to the catalytic nature of the walls . Although no analysis of 

rate effects has been included in this example, it seems clear that such 

effects are confined to the reaction boundary layers , just as in the two ­

component case , and the treatment of these effects would parallel that 

given in connection with the binary problem. 

When the third species is inert, the two additional constants pro­

vided by the higher order of the equations are determined by (a) the fact 

that the diffusion flux must vanish at the walls (and therefore everywhere, 

due to the continuity equation), and (b) the total masses of inert and re ­

acting elements present in the s y stem. 

In a sense, the inert component is "uncoupled!! from the reacting 

components. Its presence does not change the basic quali tative character 

of the problem. Instead, the inert component has the effect of !!shifting " 

the solution corresponding to a binary reacting gas . When t he composi ­

tion includes an inert ga s as well as two reacting ones, the total energy 

transport and the composition profiles of the reacting species behave al ­

most as they would in a system containing only the reacting components, 

but with effective temperature and pressure boundary conditions different 

from those which are ac tually imposed. In other words, the addition of 

an inert species to a binary reacting gas in equilibrium, while holding the 
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temperature and pressure boundary conditions fixed , has nearly the same 

effect on energy transport and composition profile shapes as does adjust-

ing the boundary conditions to provide a lower degree of dissociation in 

the original , pure , binary gas. 

The Chemical Equilibrium Flow of a Gas with Three Reacting Compone nts 

The second example involving three components is based upon the 

reaction of equation 11 7. The dependent variables and energy eigenvalue 

E are expressed by the following expansions: 

e = g(o)+ E e(l)+ • .. 

xl = 0 + t x(l) + 

PI = 0 + 
(1) 

E r 1 + ... 

x
2 = 0 + 

( 1 ) 
E x

2 
+ . . . 

(137) 

r
2 = 0 + Er(1 )+ 

2 

E = E(o) + E E( 1) + 

The dimensionless expansion parameter E 1S defined very much 

as i t has been in the previous perturbation analyses , and it corresponds 

to a restriction on the extent to which A3 dissociates into Al and A2 in the 

gas . However, it is conventional to define the equilibrium constant for 

this reaction as in equation 118, and for most actual reactions which fit 

the scheme of equation 117 this means K decreases exponenti ally with 
n 

increasing temperature, rather than increasing exponentially as before. 

Therefore , although the definition of € is similar to that of previous 

cases in principl e, it is formally diffe rent. In the present example, the 

equilibrium constant can be represented by the equation: 

K 
n = Ce 

+ e /e a (138 ) 
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As in the procedure leading to equations 53, 54 and 55, this provides the 

definition of ~ and the suitable approxiITlate expression for K 
n 

where 

( = 

K = E
Z 

n 

ex = g E(o) • 
a 

e 

+ 8 
(C e a ) 

-0O') 
[ 1 + E 

1 1 
2: 2: 

= (K (Yl = 0)) n 

8 6(1) 

+ .•. ] 
a 

(g(o))Z 

(139) 

(140 ) 

The zeroth - order solution corresponds to a gas cOITlposed entirely 

of A3 and is given by the energy equation alone , as in the previous pertur ­

bation analyse s: 

(141 ) 

When the expansions of equation 137 are substituted into equation 

l IZ , again as sUITling a 1 = a Z = a
3 
~ 1 , the O( E) te rITlS provide: 

SiITlilarly, froITl equation 113: 

d 
(1) 

x l 

d Y] 

) (1) Zf3 
X z 1 _ E(o)Yl 

( 14Z) 

(143 ) 

The ITlole fractions are related through the equilibriuITl constant. FroITl 

equations 118, 137 and 140: 

- dYJ = e (144) 

Also, froITl equation 119: 

C' . (145 ) 



-99-

Equations 14Z , 143 , 144 and 145 can be combined to yield a single 

(1) (1) 
differential equation in x l (or X z ). Unfortunately , this equation is 

non - linear, in general , due to the nature of equation 144. However, this 

difficulty can be overcome by noticing that if the reactant A
Z 

has a low 

molecular weight while that of the other reactant is relatively large , then 

mZ/m l may be negligibly small. This situation applies to an interesti ng 

g r oup of re acti ons involving the halogens and hydrogen . For example , if 

A Z = HZ and A l = BrZ ' then m 2 /m l = 1 /80; if Al = 1Z ' then rnZ/m l = 

1/lZ7. It is entirely consistent w ith the perturbation treatment to neglect 

terms of this size . It follows from equati on 145 that 

(146 ) 

If the effect of changes in the molecular we i g h t ra tio mZ/rn
l 

were of s ome particular interest, the problem could have b een treated 

with a t wo -parameter perturbation te chnique, using mZ/rn
l 

as the second 

expans i on parameter. This would clearly have led to a result identi cal 

with equation 146 . F o r pre sent purposes it is sufficient to carry the so-

lution only to O(E). disregarding terms O( E mZ/m
l

) . (No terms 

O( mZ/m
l

) appear , because if E = 0 the re is no dissociation and there ­

fo r e no diffusion. ) 

With t he help of equations 146 and 110, can be obtained 

eas i ly from equation 142. The result is : 

whe re 

( fJ.- l )Z!3/ E (o) 
= G (1 - E(o) y] ) + F (1 _ E(o ) ,, ) fJ. ( 14 7 ) 
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Substitution of equations 144 and 147 into equation 143 and a 

straightforward i n tegration y iel d: 

- C(\'1 
e 

xl 

C' J 
( 1 ) (148 ) 

If E(o) <<: 1 , which has been assumed in the previous analy ses, 

and if also 13 « 1 , then can be approximated as follows: 

r ( 1) ~ 
2 

- 0( 1") 
e [ 

ex. (1 + U)) _ C'( 1 + 2Vl) J 
GtF (GtF)2 

where 

L = G tF 

(149 ) 

The l eading influence of the diffusion processes on the energy 

transport and temperature profile is obt ained from the O(e) terms of 

the energy equation, which provides: 

( 1 50 ) 

With r(l ) and 
1 

ri l
) given by equations 146 and 149, respec -

tively, the integration is straightforward. The appropriate boundary con ­

ditions are 6(l )(0) = 6(1)(1) = 0, and consequently : 

6
1 

= H C'Y) - H e -ct~ { [a:(GtF )-C'] 
13 23 (GtF)2 

where 

= H {[CX(GtF)-C'] 1 t 
23 (Gt F)2 a:: 

1 
- t 

ex. [
cx(Gt F)- 2C'] 

(GtF)2 

[
cx( Gt F)- 2C ' ] 

(GtF)2 ~q 

(151 ) 
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_0< 

{ [
O«G+ F)- C' J (I -e) 

+ 

(G+ F/ 

[
ex.(G+F) - 2C' ] 

(G+F)2 

ex. 

It will be recalled that the energy transport (to O( to) ) is given by: 

(152 ) 

Two independent constants, G and F , appear in the solution. 

(The constant C ' is related to G, equation 147 . ) These constants are 

dete rmined by the proportions of the two chemical elements involved in 

the reaction. For example, assume Al = r 2 and A2 = H 2 . If Mr and 

MH are the total masses per unit volume of the elements iodine and hy­

drogen, respec tively, in the container, the following equations must be 

satisfied: 

1 
I-x - x 

Mr 
pom l J (Xl + 1 2)2:. ( YJ ) dYj = tl\'T 2 e 

0 0 

(153 ) 

1 
I-x -x 

MH 

p
o

m
2 f (x2 + 1 2)2:. ('1)d l'] = I1{T 2 e 

0 0 

( 154) 

These equations determine the constants G and F for the hydrogen -

iodine example, and the procedure would be the same for any reaction fit-

ting the present formalism . 

No mention of rate effects has been made in this analysis, and the 

solution just obtained applies only in the main stream. In this respec t , it 
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is similar to the binary solution for chemical equilibrium with S = 0 , 

obtained in Section V. Because the analogy between the present problem 

and the binary case with regard to rate effects is so direct, and the for ­

malism of the two cases is so similar, it is apparent that the three ­

component reaction exhibits the same boundar y - layer behavior as the 

binary case; i . e . the energy transport and the composition profiles in the 

main stream are essentially independent of the catalyti c natur e of the 

walls when the composition is nearly in local chemical equilibrium. An 

anal y s i s of rate effects for the multi - component case in general would 

exactly parallel the boundary layer treatment of the binary case , and none 

wi ll be presented for the present example . 

It is the boundary - layer character of the problem with respect to 

rates which makes it possible t o eval uate G and F in the present ex ­

ample by means of equation s 153 and 154, using the main - stream solution 

for Xl ( '1 ) and x
2

(" 1) , and ignoring the boundary - layer behavior of the 

mole fractions . When the boundary l ayer concept is really valid, i t fol ­

lows that the boundary laye r s are very thin relati ve to the characteristic 

length of the system, as was shown in connection with the binary problem. 

Therefore , a negligible fraction of the total mass of the reacting mixture 

is contained within the boundar y layers , and the boundar y condition s on 

the mol e fractions themselves , which are di r ectly r elated to the total 

masses of various elements present, depend only on conditions in the main 

bulk of the mixture . With regard to this point, it may be worthwhile to 

repeat that although the gradients of the concent r ations change rapidly in 

the boundary l ayers , the concentrations themselves remain almost con ­

stant. This was shown in the boundary layer analysis for the binary 

problem. 
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A Numerical Exampl e : the Hydrogen - Iodine Reaction 

An example based upon reaction I
Z 

+ HZ .. ZHI has been 

calculated to illustrate the features of the three - component reacting gas 

in equilibrium. The hydrogen - iodine reaction was chosen because (a) it 

meets the requirement imposed in the analysis that mZ/m
l 

be negl igibly 

small, and (b) appreciable amounts of I
Z 

and HZ are present at relatively 

low temperatures, i. e . ZOOOoK or less . The results, given b y the per-

turbation treatment j ust discussed, are presented in figure 11. For this 

example the temperature at the hot wall is ZOOOoK, and at the cold wall it 

is 1500
0

K. It is assumed that the proportions of iodine and hydrogen in 

the system are such that the mole fraction of I
Z 

at the cold wall is 75 0
/0 of 

that at the hot wall . Formally, the dimensionless solution is independent 

of the pressure boundar y condition, p , because the parameter E is de­
o 

termined by the temperature a lone. However, the solution is actually 

valid only if p is about one atmosphere or more, because at low pres ­
o 

sures atomic hydrogen and atomic iodine would be present in appreciable 

portions, and the r eactions HZ 

omitted f r om the formalism. 

, 
ZH and I Z =.;:::::="~ ZI could not be 

When there is no iodine present, the gas is composed entirely of 

molecular hydrogen, and the energy transport is due to ordinary thermal 

conduction a l one. T his situation, in which there can be no pressure -

gradient influence , is shown by one of the curves in figure 11. Of course , 

if the pressure and temperature cond itions were such as to permit appre-

ciable dissociation of the HZ' the qualitative behavior would be quite dif -

ferent in the absence of iodine; in fac t, it would then be similar to t hat 

shown for bromine dissociation i n figure 5. 
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The second curve cor responds to a composition which is 30
0
/0 

molecular iodine at the hot wall. The energy transport is increased due 

to the diffusion mechanism, but not so extensively as in previous exam ­

ples . This is because the chemical heats of forma t ion involved in the 

hydrogen - iodine reaction are relativel y small. 

In contrast to the binary dissociation example of figure 5, the 

pressure gradient enhances the energy transport in the present case . 

This is because the diffusive energy flux is carried prima rily by the heavy 

iodine molecules, which have the highest heat of fo r mation in this case , 

rather than b y the lighter molecules, as in the bromine dissociation ex­

ample . The pressure diffusion mechanism tends to cause the heavier 

molecules to diffuse in the direction of increasing pressure, which in this 

case is al so the direction of energy flow. It follows that if the heavier 

molecules make the largest contribution to the diffusive energy transport, 

the pressure gradient will increase the energy flux . 

Summary: the Multi - component Gas in Local Chemical E quilibrium 

The extension of the approach presented for the frozen two - compo ­

nent flow to cover a general multi - component gas appears to be com ­

pletely stra ightforward. Unlike the frozen flow , the two - component gas 

in local chemical equilibrium is governed by a set of equations of the 

same order as those for a single - component gas, a feature which leads to 

the existence of reaction boundary l aye rs. The manner in which this 

characteristic carries over to the general multi - component gas is worthy 

of some attention, and in this section an effort has been made to clarify 

thi s point . 

Although only two example s of gases involving three components 
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have been considered in any detail, these examples provide a b a sis for a 

few conclusions that should apply to the multi - component case in general. 

The actual calculation for any number of components appears to be sim ­

i l ar to that for three components , in principle, although not in complex­

ity. In summarizing the discussion of the multi - component gas in equi ­

librium, the following remarks seem appropriate : 

(a) Only in the binary reacting gas in local chemical equilibrium 

is the order of the system of equations the same as fo r one component. 

This feature leads to the existence of reacti on boundary layers which 

cause the energy transport and composition profiles to be practically in ­

dependent of the catalytic nature of the walls. Furthermo r e, the compo­

sition is completely determine d in terms of the local pressure and tem­

perature . The addition of each component beyond two , whether reacting 

or inert, raises the order of the set of equations by two. Thi s does not 

change the bound ary layer character of the solution wit h r espect to wall ­

s u rface effec t s, but the compos i tion is no longer completely determined 

by the local temperature and pressure . The higher orde r of the equa ­

ti Dns provides (or resul t s from) the dependence of the composition and 

energy t r ansport on the proportions of various chemical elements in the 

system. 

(b) When an inert component is added to a system of reacting 

components in equilibrium, the qualitative behavior of the energy trans ­

port and composition profiles of the reacting species is unchanged. I n ­

stead, the effect is similar to that of shifting the pressure and tempera ­

ture boundary conditi ons imposed on the original system of reacting com­

ponents. O n t he oth e r hand, two systems involving different numbers of 
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reacting components in equilibr ium may behave quite differently, both 

qualitatively and quantitatively. 



- 107 -

VIII. C ONCLUDING REMARKS 

By using a siITlplified flow configuration and eITlploying a perturba ­

tion technique, it has been possible to deduce \,vith relative ease SOITle of 

the principle fea ture s of ene r gy transp ort in cheITlically - reacting gase s 

under the influence of a pressure gradient. 

When the gas is nearly cheITlically frozen, the energy transport 

depends very strongly on the degree of catalytic action provided by the 

walls . If the walls are cOITlpletely inert, the diffusion processes ITlake no 

contribution to the energy transport, which is therefore due to therITlal 

conduction alone and independent of the pressure gradient. On the other 

hand, if reactions at the walls tend to drive the cOITlposition toward local 

equilib ri uITl at the boundary surfaces, the energy transport is greatly In­

creased by the diffusion flux. Under these circuITlstances the energy 

transport is a function of the p r essure gradient, through the ITlechanisITl 

of pressure diffusion . A vortex flow operating at Mach nUITlbers of the 

order of one to three , for exaITlple , ITlight be expected to have as ITluch as 

forty to fifty per cent ITlore (or less) energy transport than a stationar y 

gas under siITlilar conditions, if appreciable dissociation is present. T he 

energy flux can be either increased or decreased, depending on the reac ­

tions involved and the direction of the pressure gradi ent r elative to the 

telnperature gradient . 

In contrast to the frozen flow, which is diffusion-dominated, the 

reacting gas which is nea r ly in local cheITlical equilibrium is character ­

i zed by energy transport which is practically independent of the catalytic 

nature of the walls . In this case the flow is reaction-doITlinated , and wall 

surface effects are confi ned to reaction boundary layers . The energy 
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transport can also be a strong function of the pressure gradient in equi ­

librium flow, but this is partly due to the effect of the pressure (or den ­

sity) on the chemical reactions, which in turn is influenced by the pres ­

sure gradient. 

The perturbation technique also provides an indication of the in­

fluence of rates on the energy transport. The strongest effect is felt when 

the flow is nearly in chemical equilibrium and constrained by non - cata ­

lytic walls . As the reaction rate decreases relative to the diffusion rate , 

so that the gas departs from equilibrium, the reaction boundary layers 

"grow " rapidly , carrying the damping influence of the non-catalytic walls 

into the main stream and sharply reducing the energy transport . The 

rate effects are not so strongly dependent on the pressure gradient with 

non - catalytic walls, but are influenced by it to some extent . It is par­

t i cularly interesting that with catalytic walls the rates have no effect on 

the dimensionless energy transport variable unl ess there is a pressure 

gradient . 

Although these conclusions are la r gely based upon an analys i s of a 

two - component reaction, the behavior of the multi - component frozen flow, 

at least, can be expected to be qualitatively similar, in general, to that of 

the binary frozen flow . In some respects, the general equilibrium flow is 

more interesting and less simple, because of the boundary layer charac ­

teristic. In the binary case, the equations which describe the flow are of 

the same order as for a simple gas, and this leads directly to the exist­

ence of boundary layers. It has been shown that the addition of each com ­

ponent beyond tv.ro to the equilibrium flow raises the order of the equations 

by two. The higher order does not alter the boundary layer behavior with 
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respect to rates, which persists with any number of components when the 

mixture is in chemical equilibrium. Instead, the proportions of va rious 

chemical elements present in the gas determ ine the additional constants 

provided in the solution by the higher order of t he equations. 

The effect of adding an inert species to a reacting system in equi ­

librium, with fixed temperature and pressure boundary conditions, is 

much the same as shifting these boundary conditions on the original s y s­

tem . On the other hand , two such systems containing different numbers 

of reacting components may exhibit very different qualitative and quanti ­

tative characteristics . 

Although problems incorpo r ating chemical reactions and d iffusion 

processes are inherently extremely complex, the techniques of the pres ­

ent work have made it possible to understand many of the features of en ­

ergy transport in reacting gases by employing a relatively simple analy ­

sis. To avoid unnecessary complication, the possibility of a mass flow 

parallel to the energy flux (e. g . through porous walls) has been excluded 

in the analysis. The effect of such a mass flow on the qualitative nature 

of the problem is usually relativ ely minor and is discussed briefly in 

Appendix B . 

As a result of this study, it is evident that energy t r ansport in 

high - temperature gas flows may be quite sensitive to the pressure g ra ­

dient. Thi s effect will require careful consideration in many applications 

of current and future interest in the field of gasdynam.ics . 
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NOMENCLATURE 

Following the definitions of symbols, the equation(s) in which the 

symbol is first used and / or defined is referenced in parentheses , when 

appropriate. 

The superscript (i) attached to any symbol, where "i" is an inte-

ger, designates the term of order "i" in a single - parameter expansion of 

the quantity represented by that symbol; similarly, the superscript (ij) 

designates the term of order "i" in the first parameter and of order " j " 

in the second parameter in a two - parameter expansion . 

The symbol O(A) means "of the order of A". 

An underscored symbol represents a vector . 

An overscored symbol represents a mean value . 

A chemical affinity (31); integ r ation constant (used repeatedly) 

A. abstraction for the chemical formula of any molecule appearing 
1 

a. 
1 

B 

C,C ' 

C . 
1 

c 

C 
P 

C 
Pi 

t:r . . 
1J 

D .. 
lJ 

E 

in a reaction equation (15, 36, 114, 117) 

r atios of diffusion coefficients , treated as equal to one (112.,113) 

inte gration constant (used repeatedly) 

integration constant (used repeatedly) 

integration constant (used repeatedly) 

mean thermal speed of particles (19) 

mean specific heat at constant pre s sure of mixture (41) 

specific heat at constant pressure of species i 

multi - component diffusion coefficient (10) 

binary d i ffusion coefficient (12.) 

dimensionless energy eigenvalue corresponding to total energy 

flux = w Q / AT (41) 
o 
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E A activation energy in Arrhenius law (44) 

e therrrlOdynamic specific internal energy of the gas (9) 

[J. body force , i . e . mass - proportional force (17) 

F, F(ij) integration constant (us ed repeate dl y ) 

F. total external force per unit mass acting on species j (S) 
J 

f . Boltzmann distribution function for species j (1) 
J 

G, G(ij) integration constant (used repeatedly) 

g. 
1 

H 

H .. 
1J 

a function of the distribution function of f. (1) 
Jm 

1 / -enthalpy paramete r in binary case = (h 1 - -- h Z )Le C T 
m Z p 0 

enthalpy parameter in three - component case 
m. 

= (h. - _ 1 h.)Le/C T 
1 m. J p 0 

J 

( III ) 

(41 ) 

standard chemical heat of formation at Z9S . 16 oK and 1 atm. (4 1 ) 

h. 
1 

partial specific enthalpy of species i 
T Z 

= 6Hf . (T 1 ) + J Cpo dT (14,41 ) 
1 1 

Tl 

J "flux" in the formalism of irreversible thermodynamics (Z5) 

J (ij) integration constant (used repeatedly) 

K . rate of production (moles / cm
3 

- sec) of species j (5,1 6) 
J 

K equilibrium constant expressed in terms of concentrations (46) 
n 

k Boltzmann's constant (14) 

kb backward (reverse) reaction rate ( 16) 

k
f 

forward reaction rate (16) 

Le Lewis number = C
p 

n D
1Z

/ II (4 1) 

Lik "phenomenological coefficient" in the formalism of irreversible 

thermodynamics (Z5) 

M molecular weight of "heavy" species (IS) Mach number (37) 
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total mass per unit volume of species A
Z 

in system (12Z) 

total mass per unit volume of e l ement hydrogen in system (154) 

total mass per unit volume of e l ement iodine in system (153) 

m molecular weight of "light" species (ZZ); temperature exponent 

(46 ) 

m mass flow 

m. 
J 

n 

n. 
J 

n 
o 

p 

p 

Q 

R 

r 

r 
o 

s 

s . 
1 

molecular weight of species A
Z 

(lZZ) 

molecular weight of species j (6) 

total concentration (moles/cm
3

) of the mixture (iO) 

concentration (mole s / em 
3

) of specie s j (5) 

total concentration (moles/cm
3

) at hot wall ( Y] :: O) (46) 

pressure (stress) tensor (Z, 13) 

static or thermodynami c pres sure (II) 

static pre s sure at hot wall ( Y] :: O) (38) 

energy flux vecto r (3, 14) 

universal gas constant in perfect gas equation of state (45) 

Z 3 
rate parameter :: (w kbn /nD IZ }'1 :: 0 (46,47) 

independent variable (length) (38) 

radius of inside cylinder of a concent ric pair (37) 

specific entropy (Z7 ) 

specific entropy associated with irreversible entropy production 

alone (Z6) 

sk partial specific entropy assoc i ated with species k (35 ) 

T temperature (IO) 

T tempe rature at hot wall in channel flow ( Y) :: O} (41) 
o 

T 1 temperatu r e at col d wall in channel flow (Y) :: I } 
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U velocity component of mixture parallel to temperature gradient 

u. diffusion velocity (4,10) 
J 

V tangential velocity component of mixture In cylindrically ­

symmetric flm,v 

V. 
J 

V 
o 

w 

x 

X. 
1 

y 

y 

z 

z 

mean veloc i ty of species j relative to fixed coordinate system (4) 

mass average velocity = l ip L m. V. 
j J J 

partial spec i fic volume associated with species k (35) 

channel width in channel - flow approximation (3 7 ) 

"force " in the formalism of irreversible thermodynamics (Z5) 

mole fraction of atomic species in binary case = n
l 
In (4Z) 

mole fraction of specie s i = n. In (108) 
1 

abstraction for the chemical formula of the third body In re ­

combination (43) 

extent of departure from local equilibrium by x( 10) In reaction 

boundary layer (lOZ) 

"frequenc y factor" in Arrhenius law (44) 

appropriate i ndependent variable in reaction boundary layer 
1 

= 1 / ;2 (94a) 

dimensionless parameter used to 

havior of equilibrium constant = 

characterize 

e E(o) (54) 
a 

temperature be -

ex. thermal diffusion constant ( 10 ) 
1 

f3 dimensionless parameter which characterizes pressure gradient 

(3 7, 38) 

r dimensionless diffusion flux of atomic species In binary case 

= v.r nl ul/nDlZ (4 1,4Z) 

r. dimensionless diffusion flux of species i i n three - component 
1 

case = W n
i 

uJnD
lZ 

(Ill, lI Z, 113) 
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mean specific heat rati o = C Ic (3 7 ) 
p v 

dimensionless expans i on parameter in perturbation analysis 

(48 , S6) 

dimensionless expans i on parameter in perturbation analysis 

( 48, S 3 ; 139 ) 

dimensionless independent variable = r-r Iw (38) 
o 

e di mensionless temperature va r iable = TIT (41) 
o 

G
a 

dimensionless activation energy = E A/kTo (55) 

" coefficient of thermal conductivity ( 14) 

fA coefficient of viscosity ( 13) ; molecular weight ratio m3/m l (llZ) 

f-A i chemical potential of species i (Z9,35) 

V expansion parameter in three - component analysis (IZ0) 

V g stoichiometric coefficient of species j in reaction g (15) 
j 

'IT 

p 

dimensionless expansion parameter i n perturbation analysis 

(85, 86) 

dimensionless pressure variable = pip (38) 
o 

mass dens i ty (mass per unit volume ) (7 ) 

expansion parame ter in C hapman-Enskog soluti on to Boltzmann 

equation; effective collision cross secti on (19) 

t stoichiometric coefficient in binary re action ( I SS) 

(h see f i gures 

'lt i see figu res 

w.g stoichiometric coefficient of species j in reaction g 
J 
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APPENDIX A 

The Generalized Fourier Heat Conduction Law for 

the Binary Reacting Gas in Chemical Equilibrium 

When a reacting gas mixture of two components is very nearly in 

chemical equilibrium, the concentrations are related by the equilibrium 

constant: 

= K (T) 
n 

( 155) 

where and n
Z 

are the concentrations of species Al and A Z ' respec -

tively, and the reaction is represented symbolically by: 

Since = x n and n
Z 

= (I-x) n , where n is the total concen -

tration: 

= 
K (T) 

n (156) 7"-1 
n 

The molecular weight ratio m Z / m 1 = 'l", and the density 

p = n m = n [ xml + (l-x)mZ ) , so the diffusion equation obtained from 

equations 11 and lZ can be written: 

= D [ 1 
lZ x(1 - x) 

l -'t 1 ] 
\7 x - ( (1 ) ) \7p. 'r -x + x P 

(15 7 ) 

The mole fraction x 1S a function of pressure and temperature, 

so that: 

\7x = ax 
aT 

p 
\7T + (ax) \7p 

ap T 
(158 ) 

If the mixture obeys the pe dec t gas l aw, p = n ~ T, then accord -

ing to equation 156: 
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= [ 
x( 1 - x) 1 

7"(l - x) + x 
(1 -1" ) 

P 
(159 ) 

When equations 1 57 , 158 and 159 are cOITlbined , the pressure gra -

d i ent terITlS cancel , and the diffusion equati on becoITles : 

(160) 

Since XITl
l 

u
1 

+ (1-x)ITl
2

U
2 

= 0 (according to equation 39), the en ­

ergy flux given by equation 14 can be written : 

Q = 
(1" h - h )( ox ) 

1 2 op T } 'V' T (16 1 ) 
x (l- x) P ' ( l - x }+x ] 

The ITlole fraction x and (ox/oP )T can be obtained in terITlS of 

pressure and teITlpe r ature frOITl equation 156 . T herefo r e , when the bi -

nary ITlixture is very nearly in cheITlical equilibriuITl, the energy flux can 

be described b y a generalized F ourier e quation, where the effective coef -

fic i ent of therITlal c onducti v i ty includes the effects of cheITlical reactions 

and diffu s ive transp o r t and is a function of the local pressure and teITlper -

ature . 
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APPENDIX B 

T h e Influence of a Mass F low Through the System 

In some of the gasdynamic applications in which the mechanisms 

studied here are important, such as the vortex containment device for the 

fission rocket, there is the possibility of a mass flow parallel to the tem ­

perature gradient, through the use of porous walls or by other injection 

techniques . Such a convection current may have a very considerable 

quantitative influence on the energy transport. For example, when t here 

is appreciable dissociation in the gas (e . g . 30 per cent at t he hot wall), 

even a relatively small mass flow , w i th a velocity U parallel to the tem ­

perat ure gradient of the same order as the diffusion v elocities, may 

change the energy transport by roughly a factor of two compar ed with that 

in the absence of convection (10) . The mathematical complexity of the 

present investigation has been reduced some"vhat by excludi ng the possi ­

bility of convection through the walls , primarily because the qualitative 

nature of the associated effects is relatively easy to understand. 

The convective mass flow carries with it the thermodynamic en ­

thalp y and chemical heat of formation of the various species , and in thi s 

way transports energy. The mechanism is very simila r to that of diffu ­

sion; in fact , the convection simply adds a velocity component.:!:. U to 

each of the diffusion velocities , so that it tends to either augment or 

counteract the influence of diffusion, depending on the direction of the 

mass flow . Ordinarily the convection does not change the qualitative be ­

havior of the energy transport, but merely alters the magnitu de . This is 

because In most applications of interest the convective velocity U IS 
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pra ctically independent of the pressure gradient and concentration gradi-

ents , unlike the diffusion velocities , and the latter therefore predominate 

in d i ctating the qualitative behavior . Of course , the velocity U is re -

lated to the local con centrations through the continuity equation, i . e . 

U = m 

where m is the mass flow per unit area. Therefore , the effect of the 

convection is not usually as straightforward as if a constant U were 

supe r imposed upon the diffusion velociti es . It should also be mentioned 

that the velocity component U is re l ate d to the pressure gradient through 

the momentum equation, but in most practical applications other velocity 

components are so much greater than U that this coupling is unimport-

ant. For example , in the previously mentioned vortex applications, the 

tangential velocity V » U , and the radial equation of motion is practi-

cally independent of U , i. e . : 

dp 
d r 

~ p 
r 

When the coupling between U and the pressure gradient is not negligible , 

convection '>vill ordinarily be the predominating mechanism of energy 

transport, and the qualitative and quantitative effects of diffusive trans -

port will be relatively unimportant. 

The presence of a mass flow through the walls also changes the 

manner in which boundary conditions are applied. In the previous section 

it was shown that with the addition of each component beyond one in frozen 

flow , or beyond two in chemical - equilibrium flow, the order of the set of 

equations is raised by two. This is true whether or not there is convec -

tion. It was demonstrated that the solution can be put in a form such that 
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the constants \vhi ch follow f rom the higher order of the equations corre -

spond to the mole f r actions of t he various species a t an arbit rary point, 

e . g. at one wall. W hen t he re is no mass flow, these constants a re de-

termined b y the total mas ses of the various chemical elements in the 

system, through expressions such as equations 153 and 154. On the other 

hand, when there is a mass flow through the s y stem, the constants are 

evaluated b y specifying the mass flows of the various species . For ex-

aITlple , the ITlole fraction of species j IS clearly proportional to the ITlass 

flow of j , i. e . ITl. = x.n(U+u.) . 
J J J 

The presence of convection does not 

alter the boundary layer behavior with respect to the catalytic action of 

the walls, which is always associated with cheITlical-equilibriuITl flow. In 

the binary gas in local equilibriuITl the profiles are completely deterITlined 

in terITlS of the pressure and teITlperature, just as with no convection, and 

specifying the mass flux fixes the pressure at SOITle arbit r ary point. 
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ENERGY T RANSPORT I N CHEM I CAL LY 
FROZEN OR NEAR-FROZEN CHANNEL 
-TYPE FLOW OF BROMINE WITH 30% 
DISSOCIATION AT THE HOT WALL 
WHEN WALL IS CATALYTIC . 

7]=0 

CATALYTIC WALLS: ~ - rl-. - 8 rl-. 
AT 't'l 't'3 o 

NON-CATALYTIC WALLS : wQ = cp + 8<p 
ATo 2 4 

T I = 11 25°K 

/11/11//1/1// II /I /lIlt 

//7////77 71/1/7777 7/71 

To = 1500° K 

Po=IATM 

d In p 2 {3 
= --=---

d7] 1-0.257] 

1/ 2 
= ( K n kb w 2 n 3 / 2 ) ~ REA C T ION RAT E 

8 0 12 7]=0 DIFFUSION RAT E 

0 .9 

0 .8 

0 .7 

~----~----~----~----~-'$ 
o 0 .2 0.4 0.6 0 .8 

FIGURE I. COMPLETELY FROZEN FLOW 
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ENERGY TRANSPORT IN CHEMICALLY 
FROZEN OR NEAR-FROZEN CHANNEL 
-TYPE FLOW OF BROMINE WITH 30% 
DISSOCIATION AT THE HOT WALL 
WHEN WALL IS CATALYTIC. 

7)=0 

CATALYTIC WALLS: wQ - rl.. -8"'/'" 
ATo '1"'1 '1"'3 

NON-CATALYTIC WALLS: wQ = cp + 8cp 
ATo 2 4 

(
K;(2 k W2 n3/ 2 ) 8 = b ~ 

D 7):0 
12 

0 .5 

0.4 

0.3 

0 .2 

0 . 1 

T = 112 5°K 
1 

/ //////// //////////// / 

7777777777 7777 77777777 
To=1500oK 

Po=IATM 

d In p 2{3 
-- = --'----

d7) 1- 0 .257) 

REACTION RATE 
DIFFUSION RATE 

o ~----~----~~----~----~--'$ 
o 0 .2 0.4 0 .6 0 .8 

FIGURE 2 . INFLUENCE OF REACTION RATE/DIFFUSION RATE 
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x 

HOT COLD 

EQUI LI BRIU M 

~----------------------~ ~ 
o 

F I GURE 3 . DISTR I BUT I ON OF ATOM I C MOLE FRACTION x 
WITH CATAL Y T I C WALLS 

x 

HOT 

E QUILI BR I UM 

I 
COLD 

FR OZ E N 

~--------------------~~ ~ 
o 

F I GU RE 4 . DI STRIB UT I ON OF ATOMIC MOLE FRACT I ON x 
WITH NON-CATALYT I C WALLS 
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ENERGY TRANSPORT IN CHEMICAL 
EQUILIBRIUM OR NEAR-EQUIL I BR IU M 
CHANNE L-TYP E FLOW OF BROM IN E 
WITH 30% DISSOCIATION AT THE 
HOT WALL. 

CATALYTIC WALLS: 

'T}=O 

TI = 11 25°K 

///1/// /1 11 1/11 / // 1/11 

- 2 Br 

7///171/171/717717/1 1/ 

To = 1500° K 

Po=IATM 

d Inp 2/3 
= ~""7":: 

d7] 1-0.25'T} 

NON-CATALYTIC WALLS : wQ = 1j.t_~ 1 /21j.t +~1J.t. 
XTo I 3 4 

( 
012 )...... DIFFUSION RATE 

~ = K ~2 kb w 2 n3/ 2 'T}=o REACT I ON RATE 

o ~----~----~----~----~-'$ 
o 0 .2 0.4 0 .6 0 .8 

FIGURE 5 . FLOW COMPLETELY IN EQU ILI BR IU M I WITH 
CATALYTIC OR NON-CATALYTIC WALLS 
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ENERG Y T RANSPORT I N CHEMICAL 
EQ U I LI B R I U M 0 R N EAR - E QUI LIB R I U M 
CHANNEL-TYPE FLOW OF BROMINE 
WITH 30% DISSOCIATION AT THE 
HOT WALL . 

CATALYT I C WALLS: 

NON-CATALYTIC WALLS : 

0.2 

0 . 1 

7]=0 

T,= 1125°K 

/11///1//// / 1/1/ / 1/ /1/ 

171/ / 1/7 11111111 111111 

T =1500 o K o 

Po = IATM 
d In p 2/3 

= --'--
d 7] 1-0.257] 

o ~----~----~----~------~$ 
o 0 .2 0.4 0 .6 0 .8 

FIGURE 6 . INFLUENCE OF DIFFUS I ON RATE/REACTION 
RATE WI TH CATALYTIC WALLS 
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EN E RGY TR ANS PORT IN CH EMIC AL 
EQ UI LI B R I U M OR NEA R-EQ IJIL I B RIUM 
CHANNE L -TY PE FLOW OF BR OM I NE 
WITH 3 0 % DI SS O C I AT I ON AT THE 
HOT WALL . 

T - 1125° K 1 -

/////11 1/11 / /1/ /I /I /1/ 

7] =0 71 7 77 l! 77/1 7/171 111717 

T = 1500 ° K o 

Po=IATM 

CATA LYT I C WAL LS : 
w Q din p = _2...:...f3::--::-:. 
ATo = tJ;, -C\jJ2 d7] 1-0 . 257] 

NON-CATALYTIC WALLS; wQ ( /2 t 
A To = \jJ ,- \jJ3 + \jJ4 

( 
0 ' 2 ) DIFFUSION RATE 

t= K'/2 k 2 3/2 7] : 0 REACT I ON RATE n b w n 

o ~----~----~----~------~~ 
o 0 .2 0 .4 0 .6 0 .8 

F I GU RE 7. I NFLUENCE OF DIFF US I ON RATE/REACT I ON RATE 
W I TH NON-CATALYTIC WALLS 
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ENERGY TRANSPORT IN CHANNEL-TYPE 
EQUILIBRIUM FLOW OF DISSOCIAT I NG 
BROMINE IN THE PRESENCE OF ARGON I 

wQ 
AT =tjJl- v tjJ5 

o 

v = Mo l e f r act i on of arg on at hot wall 

0 .4 

0 . 3 

0 ·2 

0 . 1 

T = 1125°K I 

/1/ 1///(1/ ///11/ II / 1/1/ 

k f 
AtBr2 ... .. 2B r+A 

kb 
Illll/nll !/ /I II IInl/ 
T =1 5 00oK o 
Po=IATM 

d lnp 2f3 
= ----'--

d1] 1-0.251] 

~----~----~----~------~$ 
o 0 . 2 0 .4 0 .6 0 .8 

o 

FIGURE 10 . 

ENERGY TRANSPORT IN CHANNEL­
TYPE EQUILIBRIUM FL OW OF 
HYDROGEN AND IODINE 

Mole fraction o f 12 at both walls is 
f i xed by mosses of I and H i n system. 
It i s assumed XI (1]= I)/ X1 (1]=0)= 0 .75 

2 2 

T
1

=1500 0 K 

///////////////!//////// 

k
f 

H2+ 12 ... .. 2 HI 
kb 

1] : 0 7IllJ7IJ/J/l/JI/l//lJ/J 
T=2000 o K o 

d In p _ _ 2.!-f3_ 
d1] - 1- 0.251] 

X ('TI=O)=O 1 2 "/ 

o L.....-__ --'--__ -----'----.$ 
o 0 .2 0.4 

F I G UR E II. 


