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ABSTRACT

Energy transport by conduction and diffusion is considered in
chemically-reacting, gaseous mixtures which have a pressure gradient
parallel to the temperature gradient. As a consequence of pressure dif-
fusion and other mechanisms, the pressure gradient can influence energy
transport, and this effect is given particular emphasis. The use of an
idealized flow model and a perturbation technique makes it possible, with
a relatively simple analysis, to deduce many of the features of energy
transport in multicomponent, gaseous media,

The dissociation reaction of a diatomic gas, with the ratio
(reaction rate/diffusion rate) either large or small, is studied. When
the flow is chemically frozen, the extension of the analysis to include any
number of components would be straightforward, in principle. However,
when the gas is in local chemical equilibrium, the binary case is unique
in that the diffusion velocities are then proportional to the local tempera-
ture gradient, but independent of the local pressure gradient. Conse-
quently, there exists an effective thermal conductivity. The order of the
governing set of equations is therefore the same as for a simple, sngle-
component gas, and the effect of the wall surfaces on reaction rates is
confined to reaction boundary layers. Two other examples illustrate that
the order of the equations is higher when the equilibrium flow comprises
more than two components, although there are still reaction boundary
layers. The additional boundary conditions associated with the higher
order are determined, through integral conditions, by the proportions
of the chemical elements present.

The results show that in many high-temperature gasdynamics
problems of current interest the presence of a pressure gradient may

have an important influence on energy transport.
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I. INTRODUCTION

The temperatures encountered in many gasdynamics problems of
current interest are high enough to induce extensive dissociation, and
sometimes ionization, of the gas molecules. As a consequence, it has be-
come necessary to consider the influence of chemical reactions within the
gas and interdiffusion among the various species present. When dissoci-
ation is present, the accompanying diffusion processes provide an energy
transport mechanism which supplements the ordinary conductive heat
transfer, and it is this diffusive energy transport and associated effects
which will be of particular interest in the present work.

In recent years several problems concerned with energy trans-
port in hot gases where diffusion plays a role have been discussed in pa-
pers by a number of authors. One such problem which is of considerable
practical interest arises in connection with the recovery of space vehicles
when they return to a planetary atmosphere at hypersonic speeds. Ele-
vated temperatures are generated in the re-entry process, becausenearly
all of the enormous kinetic energy of the vehicle must be dissipated in the
form of heat. When the hypersonic, blunt-nosed body penetrates the at-
mosphere, the surrounding flow exhibits a bow shock wave, a layer of
dissociated and ionized hot gas between the shock wave and the body, and
a "boundary layer' over the surface. Heat energy is transferred through
the boundary layer to the vehicle primarily by thermal conduction and dif-
fusion processes, and also by radiation from the layer of hot gas. Vari-

ous aspects of the heat transfer problem in the dissociated boundary layer
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have been studied by Reshotko and Cohen (1), * Lees (2), Denison and
Dooley (3), Fay and Riddell (4), and others.

Other authors have considered similar problems from a some-
what different viewpoint, in an effort to provide a better understanding of
the details of the solution, such as composition profiles and the influence
of catalytic wall surfaces, as well as the associated heat transfer effects.
Hirschfelder (5) has studied diffusion and energy transport processes in a
reacting gas which is in local chemical equilibrium and is at rest, con-
fined between two parallel plates at different temperatures. Clarke (6)
considered a dissociated diatomic gas, also in local chemical equilibrium,
but in a Couette flow. In an effort to show at least qualitatively the effect
of varying the chemical reaction rates, Broadwell (7) has adopted a sim-
ple, linear approximation to replace the complicated, non-linear,
reaction-rate law, or law of mass action. Using this approximation,
Broadwell studied the motionless dissociating gas, a Couette flow, and a
boundary layer flow. His analysis provides some insight into the general
behavior of the energy transport, composition profiles, and temperature
profile as the gas shifts from the chemically frozen regime to a state of
local chemical equilibrium.

One feature shared by all of these flow models is the absence of
a pressure gradient in the direction of energy flux and diffusion. Con-
sistent with this, it has been common practice to describe the diffusion
process mathematically by means of the well-known Fick's law, which

treats the concentration gradients as the sole driving forces for diffusion.

s

Numbers in parentheses designate references listed at the end of the
text.
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On the other hand, the kinetic theory of gases shows that in general there
are two other driving forces. If the molecular masses of the diffusing
species are unequal, there is a tendency for the heavier particles to dif-
fuse toward a region of higher pressure, while the lighter particles tend
to diffuse toward a region of lower pressure. This phenomenon is gener-
ally called "pressure diffusion'. In addition, a diffusion flux can also a-
rise as a result of a temperature gradient; this is usually termed '"'ther-
mal diffusion'. However, when there is appreciable concentration diffu-
sion and pressure diffusion, thermal diffusion is ordinarily negligible.

The diffusion currents due to pressure gradients are not so
clearly negligible. In fact, pressure diffusion plays a significant role in
the atmosphere, for example, and may be important in many physically
interesting flow problems. Any flow with curved streamlines will have a
pressure gradient normal to the streamlines, leading to the possibility of
pressure diffusion if two or more components are present. Among the
simplest examples are the cylindrically-symmetric, rotating flows with
high tangential velocities, in which there is a radial pressure gradient.

Of particular current interest is the vortex flow of very high
temperature gases, which is receiving much attention as the basis for a
magnetohydrodynamic power generator (8), for example. In this device,
power is extracted from a hot, partially ionized gas spiralling inward
through an axial magnetic field between two concentric, cylindrical elec-
trodes. Kerrebrock and Meghreblian (9) have shown that the vortex also
has potential as a containment mechanism for a gaseous fission rocket.
Their study indicated that it may be possible to retain the heavy fission-
able material, in gaseous form, in the pressure field of a vortex, while

the low-molecular-weight propellant diffuses radially inward through it.
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This would enable the direct transfer of energy from the fissioning gases
to the propellant, through radiation and molecular collisions, without
the interposition of any solid surface.

It is clear that in these applications, and in others of a similar
nature, the energy transport may be strongly influenced by the pressure
gradient, through the mechanism of pressure diffusion and by means of
other less direct effects on the chemical reactions. To learn more about
the magnitude of this influence, the author and Kerrebrock (10) considered
a vortex flow of a dissociating, diatomic gas in local chemical equilibrium
between concentric, porous cylinders which rotate with the flow. The
non-linear equations corresponding to this system were programmed for
a digital computer, and selected calculations were performed for the spe-
cific example of oxygen dissociation. The results showed that for given
temperature boundary conditions, the energy transport is quite sensitive
to the tangential Mach number of the vortex, even when the degree of dis-
sociation is quite small. The Mach number is a measure of viscous dis-
sipation as well as of the pressure gradient, of course, but only a small
part of the effect can be attributed to the former. It was also found that
even very small radial flows through the walls, corresponding to Reynolds
numbers of the order of one, have a large effect on the energy transport,
especially when dissociation is present. This can be anticipated, because
a convection current acts in essentially the same way as the diffusion
mechanism in transporting energy.

The objective of the present work is to achieve a better under-
standing of diffusive energy transport processes in chemically-reacting

gas flows which incorporate pressure gradients. The analysis is carried
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out within the framework of a flow model which may be considered as a
limiting case of the vortex; the flow is assumed to be constrained between
concentric cylinders whose radii of curvature greatly exceed the separa-
tion distance. This '"channel-flow approximation' effects a considerable
simplification in the mathematical formulation of the problem, and by
putting suitable restrictions on chemical parameters such as reaction
rates and equilibrium constants, it is possible to obtain analytical solu-
tions. The limitations imposed by these approximations are not a handi-
cap to describing the qualitative behavior of the solution, although quanti-
tative results based on the analysis are not strictly suitable for every
situation of interest. However, even 'exact' solutions, which could only
be obtained numerically, might be of somewhat limited quantitative value
in some cases, due to the present indefinite knowledge of certain parame-
ters, such as chemical reaction rates. In view of this, the advantages
associated with the analytical solutions seem to more than justify the ap-
proximations employed to obtain them.

In the following section the basic features of the theory of trans-
port processes in gases are outlined. There are two approaches to this
theory, and both are discussed. One of these, kinetic theory, may be
classified as '""microscopic'" in character, while the other method, irre-
versible thermodynamics, is a '"macroscopic' approach. Both methods
lead to the same phenomenological form for the transport equations, al-
though only kinetic theory is capable of a truly complete formulation of
the problem; the coefficients in the equations depend on the details of the
collisions between the particles, which must be studied on a microscopic

basis. However, only the phenomenological form of the equations will be
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required for the analytical work of the subsequent sections, and no con-

sideration will be given to the details of collision dynamics.
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II. DIFFUSION AND ENERGY TRANSPORT IN GASES:

THE MATHEMATICAL FORMULATION

There are currently two basic methods of studying transport
phenomena in gases. A great deal of success in understanding thesenon-
equilibrium processes has been achieved through the application of sta-
tistical principles to provide a theory of non-equilibrium statistical me-
chanics, usually called "kinetic theory'. Although the kinetic theory is
generally regarded as a separate subject, complete in itself, in a broad
sense it can be thought of as an extension of equilibrium statistical me-
chanics to include non-equilibrium phenomena. More recently, a second
means of considering these phenomena has been formulated. This ther-
modynamic theory of irreversible processes is an extension of the prin-
ciples of classical thermodynamics to include non-equilibrium, or irre-
versible processes. Thus, in a general way, irreversible thermodynam-
ics bears the same relationship to kinetic theory as does classical
thermodynamics to equilibrium statistical mechanics; the two methods of
treating irreversible processes in gases and gaseous mixtures are com-
plementary, each having its merits and shortcomings.

It will be the purpose of this section to briefly review the im-
portant features of kinetic theory and irreversible thermodynamics, as
applied to transport processes in gases, and to summarize the results

needed for the analysis to follow.

The Kinetic Theory of Gases

Maxwell, Boltzmann, and others first used statistical methods
to study transport properties in dilute gases about a century ago, and the

development of modern kinetic theory since then has been associated with
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the work of these men as well as the more recent contributions of Chap-
man, Enskog, and others (11, 12). The book by Chapman and Cowling (11)
devotes one section to an interesting history of the development.

The theory for a binary mixture of gases is given an elegant
presentation by Chapman and Cowling, and the extension to a multicom-
ponent mixture is contained in the book by Hirschfelder, Curtiss, and
Bird (12). In the summary of the results of kinetic theory to follow, the
notation of the latter will be followed closely in most cases.

To describe the exact dynamical state of a system of particles,
it is necessary to prescribe the momentum and position coordinates at a
given time. If this is done, it is possible to predict exactly the dynamical
state at any future time, according to the laws of classical mechanics. Of
course, it is a practical impossibility to give the exact state of so com-
plex a system as a gas, and this leads to the use of statistical methods.
In kinetic theory, it is shown that the macroscopic properties of a dilute
gas can be accurately described in terms of a distribution function,

f(v, r, t). The distribution function is defined so that f(v, r, t)dr dv is the
probable number of molecules having at time t position coordinates be-
tween r and r +dr and a velocity between v and v + dv. The mathe-
matical basis for the kinetic theory of gases is the Boltzmann equation,
an integro-differential equation which specifies the distribution function.
The Boltzmann equation involves complex '"collision integrals'' which ac-
count for the effect of binary collisions on the distribution function, and it
is valid only for densities low enough so that three-body collisions are
unimportant.

If conditions are such that the gas behaves like a continuum, i.e.
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if the mean free path is much less than the characteristic physical di-
mension of the system, the hydrodynamic equations of conservation of
mass, momentum, and energy can be derived from the Boltzmann equa-
tion without solving explicitly for the distribution function. In the course
of this derivation the fluxes of mass, momentum, and energy are identi-
fied with integrals involving the distribution function. These fluxes are,
of course, directly related to the diffusion velocity, pressure tensor, and
energy transfer. Thus one can represent these latter quantities in the

following symbolical manner:

w(nt) = [g () av, (1)
P(r,t) = P jgz(fj)dvj ) (2)
Q) = o (e vy ) (3)

where P and Q are the pressure tensor and flux of kinetic energy, re-
spectively, and functions of the indicated integrals; g,, g, and g3 are
functions of the distribution function.

The diffusion velocity of species J is defined by:

uj(r,t) £ Vj - Vo (2)

where V.= average velocity of species j relative to a fixed coordinate
system,

VO = mass average velocity = % Z Mj Vj .

For later reference the hydrodynamic conservation equations,
derivable from the Boltzmann equation as previously stated, will belisted

here. In the presence of chemical reactions the continuity equation for
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the j = species is:

on.

J . =
gt + W nJ. (V0+ uj) = Kj (5)

Kj is the rate of production of j in rnoles/cm3 - sec due to chemical

reactions. Since total mass in the system is conserved,
Z m: K. = 0 6
s B (6)

where mj = molecular weight of species j . Multiplying equation 5 by
rnj and summing therefore leads to the familiar continuity equation of

fluid mechanics:

Op -
= F{TepV ) =0 & (7)
The equation of motion is:
oV
o _ i 1
W'*‘(VO- V)VO— -—5(‘7 P)+—‘—)— ZnJFJ (8)

where P is the pressure tensor and Fj is the external force per unit
mass acting on species j.

The energy equation is:
de ] _ . .
p[~éz+(Vo-V)e = -V-Q-(P.VVO)+ an(\/'j Fj) (9)

where e is the thermodynamic specific internal energy of the gas, and
does not include the kinetic energy associated with VO » nor the potential
energy associated with Fj . Q is the energy-flux vector.

Although these conservation equations are valid under any cir-
cumstances in which the concept of a fluid continuum is applicable, it is
not possible to obtain simple expressions for uj s Py ), and Kj , which
are the non-equilibrium or irreversibility factors in the equations. The

primary concern of kinetic theory is in obtaining approximate solutions to
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the Boltzmann equation so that the diffusion velocity, pressure tensor,
and heat flux can be expressed in terms of the macroscopic thermody-
namic variables, using the equations represented symbolically by equa-
tions 1, 2, and 3. (The reaction rate Kj is given by chemical kinetics. )

If a gas mixture is allowed to achieve chemical, thermodynamic,
and mechanical equilibrium, so that no irreversible processes are occur-
ring, the distribution function will be locally Maxwellian. This is ex-
pected from the viewpoint of equilibrium statistical mechanics, which ap-
plies in this case, and it can also be shown to follow from the Boltzmann
equation for this special case. Anticipating that the distribution function
might not be radically changed from the local Maxwellian distribution
when irreversible processes of a physically interesting magnitude are
present, Enskog obtained an approximate solufion to the Boltzmann equa-
tion using a perturbation technique. (Chapman independently arrived at
the same result by a more intuitive and less mathematically rigorous
means. ) Enskog introduced an expansion parameter &, where 1/ is
a measure of the frequency of collisions., Thus if ¢ is extremely small,
collisions are very frequent and the gas mixture achieves local equilibri-
um everywhere. The distribution function for the jth species, for ex-
ample, is expanded in the series:
£ o= 2% ety P2 plBy .,

J J 0 J

The zeroth-order term is the locally Maxwellian distribution function,
and the hydrodynamic conservation equations which correspond to this
term alone are the Eulerian equations. Addition of the first-order cor-

rection leads to the Navier-Stokes equations. Higher order approxima-

tions are of less interest here and will not be considered.
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When this series is substituted into the Boltzmann equation, a

set of integro-differential equations is obtained for each of the functions

g0 (1) )
J ]

is the Maxwellian function, as already mentioned. The solution for fj(l)

. The equations for fj(o) correspond to equilibrium and fj(o

has been obtained by Chapman and Cowling (11) in terms of a rapidly con-
verging series of Sonine polynomials.

By introducing the resulting approximate solution for the distri-
bution functions into the expressions represented by equations 1, 2 and 3,
it is found that the diffusion velocity, pressure tensor, and heat flux can
be expressed in terms of the thermodynamic variables. The diffusion

velocity u, of species i can be written:

2
.. @ 1
s Rl Zmi @ijdj'n.m. Y ln T (10)
1 i 1 1
j#
where
. T U e
s Pkt~ an-pT(Hij—%nka) . {11}

The Qij are the multicomponent diffusion coefficients, and the o(i are
the thermal diffusion constants for the mixture. These will be discussed
later.

Equation 10 shows that under the conditions implied by the Chap-
man-Enskog approximation, the diffusion velocity is proportional to the
concentration gradient, pressure gradient, difference in the external
forces acting on the different species of molecules, and temperature gra-
dient. The last effect, called thermal diffusion, was unknown theoretical-
ly and experimentally prior to the work of Chapman and Enskog. Subse-

quently, experiments showed that the predicted thermal diffusion does
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occur, and this constituted a major verification of the kinetic theory.

It is sometimes convenient to express the diffusion velocity in a
multicomponent mixture in terms of the binary diffusion coefficients,
Dij , which are practically independent of the composition, unlike the
multicomponent diffusion coefficients, Oi' « (The Gij are defined so
that they reduce to the Dij in the case of a binary mixture. ) If this is

done the result is:

n.n, n.m.di - nm,X.
ZTJi—(ui—uj)zdj—VlnTZJJ W0 (12)
; n Dji :

i nzrn.m.D..
S N

The pressure tensor which is obtained from the Enskog solution

together with the equation represented by equation 2 can be written:

P=p(l)- p[vv +(vv) -2(v. v 1) (13)

where (1) is the unit tensor and the symbol + indicates the transpose

tensor obtained by interchanging rows and columns. The coefficient K
is called the coefficient of viscosity, and p is the static, or '"thermo-

dynamic'', pressure.

Similarly, equation 3 leads to:

kT "k
Q& - %VT-’-Znihiui_n—Zr_ani(uk"ui) (1)
. 2 14k
i ik
where hi is the enthalpy per mole of species i, A is the thermal con-
ductivity, and k is Boltzmann's constant. This is a generalization of
Fourier's law of heat conduction. The first term gives the heat transfer-

red by thermal conductivity, and the second is the flux of energy carried

by the diffusion process. The last term is usually very small and is an
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interference, or cross-effect with diffusion, somewhat analogous to the
effect of a temperature gradient on diffusion, i.e. thermal diffusion
(which is also usually a small effect).

The detailed dynamics of the collisions between molecules of the
various species enter in the evaluation of the transport coefficients, d;'.j’
Dij 5 O(i » M, and A. The Enskog solution for the first-order pertur-
bation leads to equations for the transport coefficients in terms of the
Sonine polynomial expansions, but the expansion coefficients are compli-
cated functions of collision integrals, and these depend on the intermo-
lecular force laws between all types of molecules present. No effort will
be made here to discuss the elaborate calculations which workers in ki-
netic theory such as Hirschfelder, et al (12) (Chapter 8), have performed
to obtain the transport coefficients. However, considerable success has
been achieved in this direction, and the results are generally in excellent
agreement with experimental values for the gases with relatively simple
molecular structures.

The remaining irreversibility factor, Kj s Which is the rate of
production of species j by chemical reactions, is given by the law of
mass action, discussed in textbooks on chemical kinetics (13). The ki-
netics of the reacting mixture can be represented by a set of stoichio-

metric equations of the form:

VEA )+ BEAL) + aes # T/jg(Aj) =i wlg(AI)-l- WAL )+ +wJ.g(Aj)

(15)
The I/J.g and wjg are the stoichiometric coefficients of reaction g and
h

are integers. The symbol (Aj) denotes the chemical formula of the jt

: ; . th : :
species. The forward reaction rate in the g reaction is then:
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vEe V8 vEe
x8a,) ! @) ° (n,)
f 1 2 - o @ nj

and the backward reaction rate is:

w 8 w8 w8

o 1 i
kSm)  (ny) £ o (n;) J

where kfg and kbg are the forward and backward rate constants for re-
action g, respectively, and nj is the molar concentration of species j.

The total rate of production of j is then:

vlg vzg Ve
_ g .8 [8 j
K, = %(wj -vf) [kf (n) " (my) ey ) -

w& w8 wb
- kb (nl) ! (nz) 5 % % L) d ] (16)
The mathematically rigorous kinetic theory of transport pro-
cesses based upon the Boltzmann equation is extremely powerful, pro-
viding not only. the correct generalizations of familiar phenomenological
laws such as Fick's law of diffusion and the Fourier law of heat conduc-
tion, but also the means by which the transport coefficients appearing in
those equations can be evaluated, at least in principle. Perhaps the chief
shortcoming of the theory is that it affords little clarification of the phys-
ical mechanisms underlying the phenomena. A better physical under-
standing can be obtained by following closely the microscopic processes
which result in diffusion, heat conduction, and viscous effects. With this
approach it is possible to '"derive", in a manner of speaking, many of the
important terms in equations 10, 13, and 14, but of course without the
mathematical exactness of the Chapman-Enskog solution. In his book,

Jeans (14) uses this method to provide a clear discussion of concentration
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diffusion (i.e. diffusion due to the first term on the right-hand side of
equation 11), viscosity, and ordinary heat conduction (given by the first
term on the right-hand side of equation 14).

The logic behind this approach is quite simple., For example,
consider concentration diffusion. Suppose a binary gaseous mixture of
species A and B has a composition which depends only on the z -coordi-
nate; for definiteness, the concentration, or number density of A in-
creases with increasing =z while that of B decreases. Because of their
thermal motion, some fraction of the molecules of A contained in the
space corresponding to a mean free path on either side of the plane z = z
will cross that plane in a given time interval. However, since the aver-
age number density of A molecules above the plane is greater than that
below, there will be more molecules crossing the plane in a downward
direction than in the opposite direction. Thus, there is a net mass flux,
or diffusion, of species A away from the region of higher concentration.
The same is true of the B molecules, of course, so that in this example
the two species undergo concentration diffusion in opposing directions.
This non-equilibrium process will continue until equilibrium has been
achieved, i.e. until the concentrations of A and B are uniform.

Viscosity and heat conduction can be explained by similar argu-
ments. In treating the former the discussion is quite analogous to that
for concentration diffusion, except that the quantity which varies with =z
is the mean momentum of the molecules rather than the concentration.
Thus, while diffusion is a transport of mass, viscosity is a transport of
momentum. Heat conduction is, of course, a transport of energy, and

the z-dependent variable in the argument is the mean thermal energy of
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the molecules. These elementary and mathematically inexact treatments
of transport processes, which are valuable primarily for the physical
understanding they provide, are generally well known and need not be

pursued further here.

The Mechanism of Pressure Diffusion

Less attention has been given to providing a lucid explanation of
the physical mechanism of pressure diffusion (the second term on the
right-hand side of equation 11). Since the effects of a pressure gradient
are to be considered in subsequent sections, it seems worthwhile to pre-
sent a brief mechanistic discussion of pressure diffusion here. To do
this as simply as possible, consider a binary gas mixture comprising a
heavy and a light species, whose molecules have mass M and m, re-
spectively. Disregarding viscous effects, and assuming that the only ex-
ternal forces acting are body forces (i.e. forces proportional to mass,
such as the force due to gravity), the-ma.croscopic, steady-state equation
of motion obtained from equation 8 is:

1
(VO-V)VO=-EVP+§9 (17)

where p is the static pressure and & is the body force. Next, con-
sider the equations of motion for the individual molecules. It will be con-
venient to write these equations in a coordinate system which is moving
with the local velocity and acceleration of the gas mixture. Accordingly,
the equation of motion of a heavy molecule (species 1), valid at some
point x,y,z of a stationary coordinate system, but written in terms of a
coordinate system moving with the flow at that point, is

dV1 dv

(¢]
Mg = By 78, M o
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or
dv,

M-—d-—j:-— = Fb+FC_M(VO. V)VO (18)

where Vl is the velocity of the molecule of mass M relative to the
mass-average flow, Fb is the body force acting on the molecule, and FC
is the average force due to collisions. The average collision force should
be proportional to the velocity of the molecule reative to the flow Vl ; B
effective collision cross-section O, the average concentration of parti-
cles of both kinds n, the mean thermal velocity c of the particles, and
some complicated function of the average momenta f(mc) which depends
on the detailed dynamics of the collisions and accounts for the average

exchange of momentum in a collision. Thus:

]:"C = V Onc f(mc) = V 0 n /_ f(mc) (19)

where the proportionality factor is absorbed in f{mec). Furthermore,
the body force is

F, = M F : (20)

By combining equations 17, 18, 19 and 20 one obtains:
_ kT —
M — = V 0 n / f(mc)-{-M:T' -M(Vo V)VO

or

1 .} o Io— M
M—a-t— = VIO'n ———f(mc)+-P— vp {21}

m

Similarly, for the light molecules:

dVv
Z 3k m
et = Yy B / @)+ 2 ogp . (22)
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Assuming that the acceleration of the particles relative to the moving co-
ordinate system is small and can be neglected (d'\f’l /dt =0, dVZ/dt =~0),
then subtracting equation 22 from 21 and averaging over a large number

of particles (since the diffusion velocities are by definition u; = Vl and

u2=V2):

M-m
ul = uZ = g(P: T)n19n2!n)(_P___) VP (23)

where the function g depends on the average momentum exchange in the
collisions and can be evaluated only by considering the details of the col-
lision dynamics.

For comparison, equation 12 leads to the following result for an

inviscid binary mixture, disregarding thermal diffusion:

(FI_FZ)}

n
-1 =

= p o _l2 Mm | - A
2 nn, 12 | - I T

n pn 5 VP - PP

2 ‘_‘l T n.n,m m
(24)
The mechanistic argument just given therefore leads to the correct phe-
nomenological form for the pressure diffusion term, since the details of
the collision dynamics are embodied in the binary diffusion coefficient in
equation 24, This shows that pressure diffusion is a result of the body
forces or inertial forces acting on the particles and arises because heav-
ier particles must have a higher frequency of collisions if the collision
force acting on them is to balance the greater body force and inertia
force. As a consequence, the heavier particles must move faster rela-
tive to the mean flow, which leads to the difference in diffusion velocities
expressed by equation 23. If the forces on the particle are initially un-

balanced in the inertial coordinate system used in the discussion, the

particle will accelerate until a steady state is reached in which there is
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practically no acceleration relative to the mass-average flow. The as-
sumption dVl/dt =40, dVZIdt ~0 1is therefore reasonable, and is in fact
implicit in the definition of a steady-state diffusion velocity.

Since the effect of forces proportional to the mass is accounted for
by pressure diffusion, the term in the diffusion equation due to external
forces is identically zero if all acting external forces are proportional to
mass, such as gravity or inertial forces. In that case the Fj and Fk of
equation 11 can be replaced by & for all j and k, and upon carrying
out the summations indicated in equations 10 and 12, the external-force
term vanishes. This is immediately obvious in the binary case, equation
24. This term will be important only if forces such as the coulomb inter-
action in an ionized gas are present. In that instance, for example, the
total force acting on an electron and an ion due to the charge will be the
same, but the force per unit mass will differ by a factor of ~1800 or
more,

The diffusion process in the atmosphere is a good example of
pressure diffusion., The pressure diffusion due to gravity will cause both
heavy and light constituents to drift downward, but the heavier particles
will tend to sink with a greater velocity if this cause is considered alone,
as has been explained. This effect must be counter-balanced by concen-
tration diffusion, since there can be no net mass flow toward the earth.
Thus, in a perfectly still atmosphere in equilibrium, all constituents will
have larger concentrations near the earth, creating a concentration diffu-
sion upward. The concentration gradients for the heavier components
will be steeper to provide an upward concentration diffusion which will

balance the corresponding pressure diffusion. Of course, this example is
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greatly over-simplified, because in the real atmosphere effects due to
turbulence will be present.

All the kinetic theory results needed for the analysis to follow,
specifically the equations governing transport processes in gases, have
been stated. However, before proceeding with that analysis, the other
important means of studying transport phenomena, i.e. the thermody-
namic theory of irreversible processes, or irreversible thermodynamics,
will be considered briefly. It is hoped that this limited discussion will
serve to contrast the kinetic theory and irreversible thermodynamics,

and point out the relative advantages of each.

The Thermodynamic Theory of Irreversible Processes

Many of the basic ideas underlying irreversible thermodynamics
were either observed experimentally or accepted as intuitively reasonable
a long time ago, but it is primarily in the last three decades that substan-
tial progress has been made in unifying these ideas to form a macroscopic
theory of irreversible processes. The impetus to the theory was pro-
vided by Onsager in 1931, when he showed that certain relationships exist
between coeifficients associated with the '"fluxes'" and 'forces'" which pro-
duce entropy in irreversible processes (15). Subsequent developments
have been closely affiliated to the names of Onsager, Prigogine, Casimer,
de Groot, Biot, and others. An expositon of the basic concepts of irre-
versible thermodynamics is given in a paper by Miller (16), and a com-
prehensive discussion is provided in the book by Prigogine (17). The sub-
ject is presented in greater detail in the book by de Groot (18), in which
many applications are studied. The review given here will be based pri-

marily on these three references.
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Irreversible processes are usually associated with gradients or
potentials in the system, such as a temperature gradient, pressure gra-
dient, concentration gradient, chemical potential, electrical potential,
etc. In irreversible thermodynamics these quantities are referred to as
"forces', although usually they are not related to true forces in the New-
tonian sense. The irreversible phenomena which arise due to these
"forces', such as heat flow, diffusion flow, chemical reaction rate, elec-
trical current, etc., are called "fluxes'', It has long been well known
that in a large class of problems involving irreversible processes, the
"fluxes' and '"forces' are related through simple, linear expressions.
Familiar examples of these phenomenological laws are the Fourier law of
heat conduction, Fick's law of diffusion, and Ohm's law. In a completely
general case, where a number of irreversible processes are occurring
simultaneously, any given 'flux'" might receive contributions from all of
the '"forces' present. It is therefore natural to try to generalize the

simple phenomenological laws by writing them in the form:

n
dy = Z Lix ®x {22)
k=1

where the Ji and the X, are the fluxes and forces, respectively, in the

k

sense of irreversible thermodynamics. The Li are called the '"phe-

k
nomenological coefficients'. For example, the diagonal members of this
coefficient matrix, the Lii s, are the thermal conductivity, diffusion coef-
ficient, electrical conductivity, etc.

The linear form of these generalized phenomenological laws can-

not be theoretically justified, in general; instead, equation 25 is a postu-

lated form which must rely on experimental verification. It is found that
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the linear phenomenological laws adequately describe the irreversible
processes in most situations of physical interest. The Onsager principle
which led to the development of irreversible thermodynamics is con-
cerned with the relationships among the phenomenological coefficients and
applies only when the linear laws given by equation 25 are valid.

It is shown in irreversible thermodynamics that if the system is
not too far from equilibrium the entropy production can always be ex-

pressed in terms of fluxes and forces in the following way:

I - Z e T (26)

The entropy production is defined as the rate at which entropy is produced
within the system by irreversible processes. According to the second law

of thermodynamics,

d
o>

where the equality applies to a reversible process, and dQ is the heat
supplied to the system by the surroundings at the local temperature T.
This can be restated as an equality,

ds 188 . ™

T T TE@ T E (27)
and this expression may be regarded as a definition of the local entropy
production.

The statement of equation 26 relies on the hypothesis that the state
of a system sufficiently close to equilibrium can be described by the clas-
sical thermodynamic variables, such as internal energy, pressure, tem-
perature, entropy, etc. This hypothesis has been accepted and used for a

long time on an intuitive basis, being implied, of course, in Fourier's law,
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Fick's law, and others, but in recent years it has been examined more
carefully, notably by Prigogine (19). He has studied the hypothesis with
respect to the specific case of transport processes in gases, using the
Chapman-Enskog theory as a basis. Strictly speaking, the thermodynam-
ic variables are defined only when the distribution function is given by
£ = f(o) (the Maxwell-Boltzmann distribution). The use of thermodynamic
variables outside equilibrium is conditioned by the proper convergence of
the Enskog series:

f o= g gEttl L Bl

Taking this approach, Prigogine showed that for transport processes in
gases the hypothesis upon which equation 26 is based, and therefore irre-
versible thermodynamics itself, is valid when the linear phenomenological
laws, such as expressed by equation 25, are applicable.

The central feature of irreversible thermodynamics is the Onsager
principle. This theorem states that if the proper choice of fluxes J.1 and
forces Xi is made, the matrix of phenomenological coefficients Lik in
equation 25 is symmetrical, i.e.:

Ly = d4a

These identities are known as the Onsager reciprocal relations. They

G,k = 1, 2, oo, 1) . (28)

express a connection between mutually-interfering, simultaneous, irre-
versible phenomena. One example is the effect of the temperature gradi-
ent on diffusion, i.e. thermal diffusion, and the analogous effect on the
heat flux,

The "proper choice' of the fluxes and forces is made by calculating
the entropy production for the process in question and expressing it in the

form of equation 26. The proper choices are then defined by equation 26.
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Some freedom in the choice usually exists, because ordinarily the terms
of equation 26 can be split into several alternative sets of forces and
fluxes. However, for any given choice the Onsager reciprocal relations
will hold for the corresponding phenomenological coefficients.
The calculation of the entropy production, leading to an expression

with the form of equation 26, is based on Gibbs' relation:

1

1
Tds = de +pd(7) - Z M, n, (29)
1

where e is the specific internal energy, p the pressure, p the den-
sity, /ui the chemical potential of species i, and n, the concentration
of i . This equation is thus used away from equilibrium and implies that
the thermodynamic variables still are meaningful in the near-equilibrium
state. This is how the hypothesis previously discussed in connection with
equation 26 enters.

Before discussing diffusion and energy transport from the view-
point of irreversible thermodynamics, the main features of the theorycan
now be summarized. The thermodynamic theory of irreversible proces-
ses utilizes the laws of classical thermodynamics, Newton's laws, and
linear phenomenological laws describing irreversible processes, as well
as a new hypothesis and a new law (Onsager's principle). The hypothesis
states that near equilibrium the state of a system can be completely de-
scribed by classical thermodynamic variables, and Onsager's principle
provides symmetry relationships among the coefficients in the phenome-
nological laws. In practice, the theory consists of first finding the proper
fluxes and forces from equation 26 by calculating the entropy production,
and then studying the phenomenological equations in connection with the

Onsager reciprocal relations. Like classical thermodynamics, it is en-
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tirely a macroscopic theory, as opposed to the microscopic viewpoints
of statistical mechanics and kinetic theory.

The application of irreversible thermodynamics to the problem of
diffusion and energy transport in continuous media is considered in detail
by de Groot (18) (Chapter VII), and only the basic features of that discus-
sion will be presented here. Viscous effects will be neglected.

The equations needed to calculate the entropy production are the
continuity equations for the individual species,5, the equation of motion,
8 (where only the diagonal elements of the pressure tensor P are used,

i. e. the static pressure p ), the energy equation, 9 (with the same com-
ment regarding the pressure), and Gibbs' equation, 29. In accepting the
Gibbs' relation it is implied that the entropy depends explicitly on the in-
ternal energy, density, and concentrations, and only implicitly on the
space and time coordinates. This equation is therefore supposed to be

correct when the differentials are convective derivatives, defined by:

d 9
-dT = —QI +(V0‘V) L (30)

By taking the convective derivative of the Gibbs' equation and in-
troducing equations 5, 8 and 9, the entropy production can be evaluated.

The result is:

oy _ (Jq—Zkak)+Jq-Xq+ 2T - X +AT
P = "V T T

" (31)

This is a continuity equation for entropy. It states that the local change
in specific entropy is due to the negative divergence of an entropy flux
plus the entropy production (divided by temperature). The latter has al-

ready been written in terms of 'fluxes' and '"forces', which are defined

by:
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Jq = Q (heat flux)
X = - ¥T/T
q

Jk = ppYy = mpnou = diffusion flux

Xk = B, ~T V(,uk/T) = diffusion force
Jc = kak = mass rate of production of species k
A = -

/uk T/k , called the chemical affinity, where I/k are

the stoichiometric numbers.

The corresponding phenomenological equations are:

forces Xq and XK. .

1
d; = ZLika+Linq
k=1
n
J = ZL ¥ 45 = 32
q gk Tk Qq " q (32)
k=1
J = LA
C

The chemical reaction rate has been written as independent of the

X This is because JC and A are scalars, while the

remaining forces and fluxes are vectors, and the tensorial character

must be

uniform in the equations. As a consequence of the definition of

the diffusion velocity, equation 4, Z Jk = 0 ; this leads to auxiliary
k

conditions on the coefficients

n
ZLik:O Ho= L Z wsuyn)
el
n
ZLik—O fio = 3, B, -ouydi)

=
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These are not all independent, of course.

As a specific example, consider the binary case. The formalism

just described then leads to:

[ ar E o ]
I, = =J; = =Ly, (_én—l-)TPEg 1'11—(vl-'v'z)T7p+Fl—F2
VT
- [qu - L11”11'11.2)1 T )
o
- 1 1 .
Tq= " Lq1 [(Wl)’l",p E‘?:vnl - (vy=vy) Ve + FI—FZ}
VT
- [qu - qu (hl_hz):i . (34)

In obtaining these results, it was noted that the chemical potential

My is a function of temperature, pressure, and concentrations, so that:

o
V/uk = =By VT+kaP+ Z —W;{Vni (35)
i=1

where 51 and v, are the partial specific entropy and volume of species
k , respectively. The partial specific enthalpy hk = ﬂk + Tsk o Ehe
Gibbs-Duhem relation, nld,l.i(1 2 nzd,u2 = 0 at constant T and p, was
also used.

The appearance of the same coefficient, qu , in the last term of
the diffusion flux equation (thermal diffusion) and the first term of the
heat flux equation is a result of the Onsager reciprocal relation

L qu . Thermal diffusion and the corresponding effect on the en-

1q=

ergy flux are '""mutual interference' effects, which accounts for this

reciprocity.
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By comparing equations 33 and 34 with the equivalent kinetic the-
ory results, equations 10 and 14, it can be seen that irreversible thermo-
dynamics leads to the correct phenomenological form for the diffusion
flux and heat flux. In a relatively simple way, this macroscopic theory
shows that in the absence of a temperature gradient and external forces
not proportional to mass, the proper "driving force'" for diffusion is the
chemical potential, not the concentration gradient alone, as in Fick's
law. Pressure diffusion is therefore included in the formalism.

At first it might seem desirable to utilize this information in the
mathematical formulation of diffusion problems, replacing the concentra-
tion diffusion and pressure diffusion by a single term which is propor-
tional to the gradient of the chemical potential, A solution conforming
to a single set of boundary conditions on the chemical potential would cor-
respond to a continuous array of different boundary conditions on the
pressure and concentration. This would show the change in concentra-
tion boundary conditions required to maintain a constant total diffusion
strength when there is a given adjustment in the pressure boundary con-
ditions, for example. In a sense, the relative strengths of pressure dif-
fusion and concentration diffusion might be demonstrated in this way.

However, for anumber of reasons this approach is unattractive
and impractical. The foremost argument against such a procedure is the
fact that 2 clear physical explanation can be ascribed to the individual
mechanisms of concentration diffusion and pressure diffusion. In con-
trast, the chemical potential is a more-or-less formal device which is
not directly measurable. The quantities which can be easily measured

and controlled at the boundaries are the pressure and temperature, and it
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is therefore desirable to express the boundary conditions directly in
terms of these variables. Also, introducing the chemical potential into
the formalism will not simplify the problem by eliminating a variable,
such as the pressure, because pressure diffusion is not the only mechan-
ism through which the pressure gradient can influence the solution when
chemical reactions are present, as will be shown.

Unlike kinetic theory, irreversible thermodynamics cannot pro-
vide detailed information about the phernomenological coefficients. For
this reason, the kinetic theory is the more satisfactory approach in most
cases concerned with transport properties in gases, since it yields every-
thing given by irreversible thermodynamics as well as numerical values
for the coefficients, although at the expense of much greater complexity.
The chief merit of irreversible thermodynamics is that it provides a
simple means of correlating the various irreversible phenomena present
and showing how they are interrelated. However, microscopic theories
baséd on the transport equations for the particles, such as the kinetic
theory of gases, are available for only special kinds of irreversible phe-
nomena, and are based on an idealized model. On the other hand, irre-
versible thermodynamics is a general macroscopic theory for irrever-
sible processes, capable of treating problems such as viscoelastic phe-
nomena in solids, for example. Therefore, the importance of this theory
is much greater than it might seem to be from the example given here.

In this section the fundamental features of the theories of trans-
port processes in gases have been surveyed, and the pertinent equations
stemming from these theories have been summarized. In subsequent

sections these equations will be treated as phenomenological relations
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describing the transport phenomena, and the details of the underlying
theory will not be considered further. Taking this approach, the effects
of diffusion on heat transfer in a reacting gas mixture will be studied, and
in particular, the effect of a pressure gradient in the gas will be investi-
gated. Thermal diffusion and the related energy flux phenomenon givenby
the last term in equation 14 are usually relatively small effects and will

be neglected here.
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III. THE BINARY DISSOCIATING GAS IN THE
CHANNEL-FLOW APPROXIMATION

As the transport equations of the previous section show, pressure
diffusion may either promote or impede energy transport, depending on
whether the pressure gradient is aligned with the temperature gradient,
or against it. If the mixture is undergoing chemical reactions, the pres-
ence of a pressure gradient can affect energy transport in another, some-
what less direct, way. The reaction rate at any point in the flow depends
on the frequency of collisions between molecules of the reacting species,
and therefore on the local density. By influencing the density distribu-
tion in the reacting gas, the pressure gradient therefore changes the con-
centration distributions of the various species, and so the concentration
gradients. Thus the energy transport is indirectly affected by the pres-
sure gradient through the mechanism of concentration diffusion. Fur-
thermore, the reactions act as heat sources or sinks distributed through-
out the flow, due to the heat of reaction expelled or absorbed, and the
pressure gradient changes this distribution by means of the effect of den-
sity on the reaction rates. This also influences energy transfer to some
extent.

Of course, the last two effects mentioned are, strictly speaking,
influences of the local pressure (not the local pressure gradient) on the
density, and indirectly on the energy transport. However, the local
pressure is determined by specifying the pressure at an arbitrary point
together with the value of some parameter which characterizes the pres-
sure gradient, and changes which depend on the value of that parameter

are termed ''‘pressure gradient effects' here. As examples of such a
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parameter, the pressure gradient in the atmosphere would be character-
ized by the gravitational constant, and in a vortex flow by the Mach num-
ber.

As previously mentinned, a situation of considerable practical in-
terest in which pressure gradient effects may play a role occurs when a
reacting gas mixture rotates about an axis, as in a vortex or a solid-body
rotation. The radial acceleration of the fluid creates a pressure gradient
normal to the streamlines, and under some circumstances, this may
strongly influence radial heat transfer. Flows of this kind might there-
fore serve well as a fré.mework for the study of energy transport in re-
acting gases in general, and pressure gradient effects in particular. The
simplest example is a vortex or a solid-body rotation of a pure, diatomic,
dissociating gas, but even this is a formidable problem, involving the so-
lution of coupled, non-linear differential equations. The difficulty is com-
pounded by the many geometric factors introduced into the equations by
the cylindrically-symmetric nature of the problem.

To reduce the complications associated with this problem so that
analytic solutions are practical, while still retaining the interesting fea-
tures, a limiting case will be used as the model for the present work.

The flow of a pure two-component dissociating gas is assumed to be con-
fined between two concentric, infinitely long cylinders, which rotate with
the flow. The radius of the inside cylinder T is much greater than the
difference in radii of the cylinders, w . Therefore, curvature effects can
be neglected and the flow treated as if it were in a channel of width w .
The hot wall is taken to be at the inside cylinder (r = ro) , and the tem-
perature and pressure there are TO and P, » respectively. A pressure

gradient normal to the walls can be induced by a high rotational velocity



-34-
of the cylinders.
The dissociation reaction can be represented by the symbolical

equation:

2 A (36)

where AZ and A1 represent the chemical symbols of the molecular and
atomic species, respectively, and kf and kb are the forward and back-
ward rate constants. The steady-state equations appropriate to this re-
action and the model just described can be obtained from the general
equations given in the preceding section. Here, they will be written in
terms of dimensionless variables.

If the gas obeys the perfect gas law, p = n/K T, the radial equa-

tion of motion, given by equation 8, can be written

d mw _ 2B ( v )

B R P
where 7 = p/pO g B T/TO » V = tangential velocity, and Y= r—ro/w ;
The parameter $ characterizes the pressure gradient, and within the
framework of the present model,

W MZ
p = 7\%? (37)

where M is the Mach number at the hot wall (] = 0), and vy is a mean
specific heat ratio, y = —C;fq . In the channel-flow approximation, the
tangential velocity appears only in the equation of motion and can there-
fore be specified with some freedom. Recognizing this, it is consistent

with the geometry approximation to rewrite the equation of motion:
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dlnm _ 2B
~dn 1 - gy

(38)

where T("] = l)/TO I E(O) . This form of the equation will be used

in the work to follow.

According to the definition of the diffusion velocity, given by

equation 4:

nym,u, +n,m,u, = 0 (29)

or, since mz/rn1 =2
B cpppriie 40
"2 T THI= =)

where x is the mole fraction of the atomic species, defined by x = nl/n,
and n, has been eliminated by noting that n; +n, = n.

The energy equation is obtained from equation 9. Since the tan-
gential mass-average velocity vanishes (no radial mass flow), this equa-
tion can be integrated at once to obtain Q = constant. The energy flux Q
is given by equation 14; ignoring the last term (which is relatively small)

and eliminating u, with equation 40:

de wQ

-E+HF = 3T = E (41)
o
where
e = T/TO
' = nlul/nDlZ (nD,, = constant)
m, ) .
H = Le(h; - ?n—z hz)/ffp T, ¥ Le(AHﬂ-EAHfz)/Cp T,
E = total dimensionless energy transport = constant.

In this expression the small temperature dependence of nD A, and

121

Cp have been ignored. The quantity [  is the dimensionless diffusion
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flux of the atomic species; H will be regarded as a constant here, given
by the approximate expression, where AHﬁ is the heat of formation of
species i, and Le is the Lewis number, defined by Le = Ep nDIZ/ N s
The approximation regarding the enthalpy-difference bracket is exactly
true if Cpl & o sz , and is usually quite reasonable in view of the rela-
tively large values of the heats of formation. The first term of equation
4] represents the energy transport due to ordinary conduction, and the
second represents the energy carried by diffusion.

The diffusion equation follows from equations 11 and 12. Thermal

diffusion, given by the last term in 12, is disregarded in the present work.

In terms of the dimensionless variables chosen here, the result is:

B 2x . d Inx 2x(l-x) d Inn
I 5 = kgl dq (Z-x? dn

: (42)

The remaining equation needed to describe the problem is the con-
tinuity equation for one of the reacting species, say, the atomic species.
This is obtained from equations 5 and 16. The dissociation of the pure gas

will be assumed to proceed according to the reaction

TR, B Ak & H (43)

where Y represents the third particle needed for the three-body recom-
bination reaction; this can be either an atom Al or a molecule AZ .
Therefore, in equation 16 the concentration corresponding to Y is that
of the total mixture, n .

The recombination rate constant kb is given by the Arrhenius

law (20) (pp. 57-61):
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- EA/kT

k, = Ze (44)

where EA is the activation energy, k is Boltzmann's constant, and Z
is usually called the 'frequency factor'. This equation can be crudely in-
terpreted as the total number of collisions between molecules or atoms
entering into the reaction, represented by Z , multiplied by the fraction
of those collisions resulting in a chemical reaction. The activation ener-
gy for atom recombination is found to be either zero or very small, and
in the present work it will be neglected, i.e., EA =0.

It has already been assumed in connection with equation 37 that
the mixture is a perfect gas, i.e.:

b=nR T (45)

The continuity equation for the atomic species can then be written:
E 2

_ n
HT = ZR[QU_X)—X -éj T

=}

2 gm—Z (46)

where Kn is the concentration equilibrium constant, i.e.,

2
K, = (n;/n;) = kelky s

equil,
n is the total concentration at the hot wall, and R, a dimensionless
constant, is a rate parameter defined by:

wzkbn3
=g |

R = nDlZ

(47)
=0
: : i 2. m-2 .
Since R is evaluated at the hot wall, the factor = 6 is re-
quired to account for the variation of n, kb , and DlZ with pressure
and temperature. According to the first-approximation kinetic theory
calculation based on the billiard-ball model, the product nD

1
portional to T#? and independent of pressure. If the activation energy is

12 is pro-
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Zero, kb = Z , and the frequency factor Z is generally independent of
pressure but proportional to some moderate power of the temperature.
Therefore, kb/nDlz can be represented as proportional to P

The magnitude of the rate parameter R determines the chemical
state of the dissociating gas. It is essentially the ratio of recombination
reaction rate to diffusion rate. To be more precise, R has the order-of-
magnitude of a characteristic diffusion time for the length w divided by a
characteristic reaction time. For example, if R >> 1, compensation
for any temporary local departure from chemical equilibrium resulting in
a local excess of atoms will be accomplished by recombination very quick-
ly relative to the time required for diffusion to remove the excess atoms
from the region. As a result, the gas composition will be very nearly in
chemical equilibrium at the local temperature. Conversely, if R << 1,
the flow will be nearly chemically "frozen',

Equations 37, 41, 42 and 46 are sufficient to completely describe
the flow in terms of the dependent variables €, w, [", and x. Although a
considerable simplification has been introduced by the channel-flow ap-
proximation, nothing has been done to eliminate the coupled, non-linear
character of the system of equations. To alleviate these difficulties and
make analytic solutions feasible, additional restrictions must be imposed
on the problem. These consist primarily of (a) considering only small
degrees of dissociation, i.e., x << 1, and (b) considering only near-
frozen (R << 1) or near-equilibrium (R >> 1) flow. With these two re-
strictions, a perturbation technique can be used to investigate limiting
cases of particular interest, corresponding to different boundary condi-
tions and different chemical regimes., The details of the perturbation

treatment are developed in subsequent sections, where the various cases
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IV. CHEMICALLY FROZEN AND NEAR-FROZEN FLOW
OF THE BINARY GAS

In this section the channel-flow approximation is used to study
transport phenomena in a chemically frozen, or nearly frozen, pure,
dissociating, diatomic gas. This chemical state prevails when the reac-
tion rate is low relative to the diffusion rate for the characteristic length
w . In general, under these circumstances the rate parameter R << 1,
as explained in the preceding section. This provides the basis for a per-
turbation solution expressed as a series in a small parameter § propor-
tional to R . The appropriate parameter § is not necessarily equal to
R , however, because the chemical state also depends on the local extent
of dissociation, which is not accounted for by R . For example, if the
gas is at a relatively low temperature and only slightly dissociated, even
a large change in R which tends to enhance recombination cannot alter
the chemical state radically, because extensive recombination clearly
requires the presence of a high proportion of atoms. Conversely, at high
temperatures a small adjustment in R may affect the chemical state ap-
preciably. The definition of & should therefore recognize that the chem-
ical reaction rate depends on the concentrations of the species involved
as well as the rate constant and other factors.

The analysis is also confined to low degrees of dissociation. This
restriction is introduced into the formalism through a second small, di-
mensionless number €, and the solution is expressed as a two-parameter
expansionin € and & . The extent of dissociation can be controlled in-
directly by limiting the pressure and temperature range of the gas,

through the boundary conditions. The mole fraction of the atoms is re-
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lated to the equilibrium constant K » which in turn depends on the tem-
perature. When the gas is in local chemical equilibrium, the mole frac-
tion x is determined at each point in the mixture by the local value of
Kn » since in equilibrium Kn/n = xzfl-x s where n is the molar concen-
tration of the mixture. On the other hand, when the gas is chemically
frozen, the mole fraction tends to assume a value somewhere between the
large and small extremes which correspond to chemical equilibrium at the
temperatures of the hot and cold walls, respectively., Therefore, the ex-
tent of dissociation can always be restricted by putting suitable bounds on
the equilibrium constant, or really on the ratio Kn/n , through the tem-
perature and pressure boundary conditions. It follows that the parameter
€ can be defined in terms of the equilibrium constant. The specific defi-
nitions of € and & will be given presently,

The dependent variables, as well as the eigenvalue E of equation
41, are expressed according to the following expansions:

o = 8° 4+ 0! +56) 1 )+ o(e?) + 0(5%)

0+ e(x(lo} + 6 x(ll) b e N GH ez) + 0(62)

X

(48)
r

I

o+ ar'' sy y+01%) + o5%)

(10)

50t g2 4 )+ o(ed) + 069

The eigenvalue E corresponds physically to the total energy transport;
therefore it has to be expressed in the same form as the dependent vari-
ables, because perturbations in the temperature profile or diffusion flux
lead to changes in the energy transport.

When €= 0 there is no dissociation. Thus, the zeroth-order so-
lution corresponds to a simple gas composed entirely of the molecular

species, and the O(€) solution gives the leading effect of dissociation.



42
When 6 = 0 the mixture is chemically frozen, i.e. there are no chemi-
cal reactions occurring. The leading effect of a departure from the com-
pletely frozen state is given by the O(e§) solution. There are no terms
O(6) , which reflects the dependence of rate effects on the degree of dis-
sociation present.

Only the terms which contain the leading influence of dissociation
and rate effects are retained in the present work. For example, the
Of 62) solution gives the second-order influence of dissociation. Since
this is essentially a correction to the first approximation given by the
O(e) terms and provides qualitative information of secondary import-
ance, it is discarded.

When these expansions are substituted into equations 41, 42 and
46, and coefficients of equal powers of € and § are equated, a set of
linear differential equations for each of the groups of unknown functions
of a given order in € and § (e.g. 8(10), x(lo), and [ (10)) is ob-
tained. The zeroth-order solution is particuarly simple, because it
corresponds to a single, non-reacting gas transporting energy by heat

conduction alone. It is given by the energy equation

(o)
de _ (o) = wQ
- g = E = —M,O (49)
from which:
ool = 1. gloh (50)

The eigenvalue E(O) is the zeroth-order dimensionless heat transfer and
is determined by specifying the temperature ratio 6 = T/TO at the cold
wall (= 1).

The form of the equation of motion to be used in the channel-flow
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approximation was given by equation 38. According to equation 50, this

can be written:

d Inw _ 2B _ 2B (51)

d*l T = E(O)n 9(0)

Integration of this equation gives the pressure distribution in the channel:

_ Zﬁ/E(O)

r = (1-E°y) (52)

Before proceeding with the solution, the dimensionless expansion
parameters ¢ and § can now be defined more specifically. The small
number € is defined by restricting the magnitude of the equilibrium con-
stant. Using the temperature expansion given by equation 48 and noting

that Kn/nO can be closely approximated by an exponential function of

temperature:
K_ -6,/8 -ea/e(o) eao(lo)
-ﬂ: = Ce = QCe 1+ eW)Z—-
gae(11)
+ €6 + .
(87012

where K TO Ga = E the activation energy for dissociation, and C is

A. 2

a dimensionless constant. Since the hot wall must be at a relatively high
temperature to provide appreciable dissociation in the gas, practically
all problems of interest will be such that the temperature difference be-

tween the walls is much less than the temperature of the hot wall, or

E(O) << 1., Therefore:

(o) (o) (o)
. R g A feaSly o, 8EEh
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Let:
-8_ 2 K (m=0) |3}
€=(Ce 3 = |2 " e 1 (53)
(e}
o= o E© (54)
a
Then in equation 46:
K o gto) o o)
S . + e 2 + 55)

As discussed previously, this definition of € is clearly related to the
degree of dissociation, since when the gas is in local equilibrium,

K znzfn

- 1 In fact, when € << 1, it is approximately equal to the

> -
equilibrium mole fraction x, at the temperature of the hot wall. This
can be seen by substituting equations 48 and 55 into 46 and letting R—s
(which corresponds to chemical equilibrium), so that at the hot wall,
xZ = (l-x)Kn/n0 . Since the perturbation analysis requires that e << 1,
there is an effective upper limit on the hot-wall temperature TO which
can be considered. The range within which To must fall depends on the
particular gas under study, of course.

The remaining expansion parameter § is defined by the relation:

6 = €R << 1. (56)

This definition recognizes that rate effects are not independent of the de-
gree of dissociation. If there is very little dissociation, even large
changes in the rate parameter R will be of little consequence in altering
the chemical state, and the magnitude of & will be almost unchanged;
when dissociation is extensive, a small change in R may have a large

influence on the chemical state.

As already mentioned, the solution will be carried to O(€8d) ,
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which will show the first-order effect of dissociation (€) and the first-
order effect of rates (€6). The equations pertinent to near-frozen flow
are obtained by substituting equation 48 into 41, 42, and 46, and com-
bining the results with equation 51. The zeroth-order energy equation
and solution have already been given by 49 and 50. The higher-order

equations are:
1j 1j .
- yar 4 o gl i=0,1 (57)

where the eigenvalues E(IJ) are perturbations on the energy transport
due to dissociation and rate effects.
After eliminating the pressure gradient with equation 51, the dif-
fusion equation leads to:
axl 1) gylLd)

(13) _ ; "
l_l - - ‘dn ]_E(O)v] J= 0,1 (58)

From the continuity equation:

(10)
a0, e £

= constant (59)

and

(11) (o)
ar ~ - (10),2 (o) ,-(1+ 28/E'""y |,
T = 2 [ e = (X ) (l—E Y]) ]

m-2 - 4g/E()

=(1—E(O)V]) (60)

Solutions to these equations will be obtained for two kinds of
boundary conditions, representing limiting cases. In the first case, the
walls are assumed to be perfectly catalytic, enhancing the reaction so
that at each wall the composition is forced into local chemical equilibrium

at the surface temperature. In the other case, the walls are non-catalytic
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and no reactions take place at the surface. Therefore, every particle
which strikes the wall is repelled unchanged, and the diffusion velocity

vanishes at the surface.

Perfectly Catalytic Walls

With the aid of equation 59, the O(e) diffusion equation given by

58 can be integrated at once to give the concentration distribution:

{3/E(°)

10) 19 _gloy) + pl10) (l—E(O)YH (61)

(
74 =
% g

where F(lo) is the integration constant. The Of(e) diffusion flux P(lo)
is determined by the catalytic wall boundary conditions on the concentra-
tion. When the gas is in chemical equilibrium, the composition is deter-

mined by the equilibrium constant (see equation 46):

% = K
e . &8 (62)
I-x% n =
e o

When equations 48 and 55 are substituted into 62, the boundary conditions

(

on x 1) for catalytic walls can be obtained by equating terms Of{€).

Thus:
x(lo)(O) =
(63)

10) 1y o o= &/ 14a/El°)

2(1-!9))

!
Therefore, from equation 61:

iE
o) _ @) [1-em*?0E0)2)

(o)1 - g/

¥ = {108

(10)
(10) _ r

]__
E(Oj-ﬁ

(64)
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Since I“(lo) = constant, the energy equation, given by 57, yields:

gft0) _ gptiif) | g(10) 10)

M +G(

The boundary conditions on the ttmperature are exactly satisfied

by equation 50. Therefore, 9(10)(0) = 8(10)(1)
a1 o, g0 g0}, .nq 6119

= 0, which means that
= 0, everywhere. In particular,
the perturbation on the heat transfer due to dissociation is a result of

energy transport by diffusion and is given by:

1
210) _ 00 _ HECp) (1 e M2 _plo))z)

(0).1 - /E'®)

1 - {LaEtody

This result is valid for a completely frozen flow where &§ = 0,
such as a mixture of two inert gases with the molecular weight ratio
mZ/m = 2. To determine the first-order effect of non-zero rates, con-

1

sider equation 60. Making use of equation 61, it becomes:

a1 L aasl0) o)
drdv, - gemo (y_glolyym-2 - 4/E) 26, (1-EChym ! 68 /E
(o). .m-2 -58/E!°) (10).%,. (o). .m-3 - 4g/E(°)
- 4G, (1-E'%Mn) - 2710 (1ol
where
~(10) r{10)(10)
=L O

For most cases of interest, & is in the range 4 < <10. Therefore
- = oM : sty 12
the term containing e can be integrated by parts, and it is reason-

able to neglect terms of order 1/OL3 . Thus:
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juij  _ ze™™% (o). .m-2-48/E(®) 2g(°) 48
1—' =" d (]-"E Y,) +7 (m—Z"E(B-)‘ )'
(o)
(o) 2C (o) -6B/E
. (1_E(o)n)m-3—4ﬁ/E % I J-ESm g

= (motp N,

1. (o)
4C2(1-E(O)Y])m 1-58/E

+

E®) (m-1-58/E(°))

(10).2 m-2-48/E'°)

)“ (1-E'°)9)
E{°) (m-2-48/6'°) )

L 2F Wity

(66)

(11)

where F is an integration constant.
The rate effect on the concentration distribution is determined by

the diffusion equation,

s A1) (11)
dx +{3x = = P
Y l—E(o)n

(11)

where I"(ll) is given by equation 66. Integration yields:

(o), \m+1-6g/£(°)
(11) 2 —an (o), m-2-4p/El®)  ZC{{1-E i
W imemge TH=ETWD ()2 (o) G
oA () (m-6p/E")ym+1-78/E1°)
(o)
4c2(1-E(°’v,)m’Sﬁ/E #(10) 2
- + 2 )
(£°)%(m-68/E°)m-1-58 /80 £
(o), ym-1-48/E°) MY to) (o)
(1-£°) (1-£%%) | Ja1)_glo), B/E
(m-z-4ﬁ/E(°))(m-1-5(3/}3(05) ( (1-8/E'°))
(67)

The appropriate boundary conditions are obtained as before from

equation 62. This givest
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L)

O (1) = 0 .

)

Application of these boundary conditions determines the constants D(11

and F(ll) %
{1y 2 2 B
B T2 T T (o)2 (o) (o)
% (BN (m-6p/E)(m+1-18/E')
) 4 CZ
(£ (m-6p/E°)m-1-58/¢°)
_2(1:410) 2 5 F11)

) -
gt (m-2-4[3/E(o))(m—1—5[3 /') E(O)(I-S/E(O))

l

11) _ el)1-g/8°)) {5 [1- e-d(l_E(o))m-Z-BB/E(O))]
o

1_(1_E(o))1—B/ETO)

(o) (o)
ZC]_ [l _ (l_E(O))m+l—7[3/E ] 4(:2 [1_ (l_E(O))m'-éﬁ/E }

()2 (m-65/E ) m+1-78/EC) () (m-6p/E)(m-1-5p/E()

-2 (68)

gt )2 [1- (l-E(O))m'l'Sﬁ/E(O)} }
glo) (m-Z—éﬁ/E(oj)(m—1—5{3/E(Oj)

With F(ll) given by 68, equation 66 can be substituted into the

energy equation, given by

(11)
de - (11) (11)

‘——a‘—y_l——‘i“H :E

and integration yields:
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(o)
olll) H{_ ~.2_2_ L% (l_E(o)mm-z-ng/E
o

m+1-6p/E\°) m-58/E(°)

ac,(1-£%)
z

zcl(l-E(o)m
+

+
(E(O))Z(m-éﬁ/E(o))(m+l-6B/E(o)) &) (m—5B/E(O))(m—l-5ﬁ/E(a

(o)
F(10)) (I_E(o)mm_l-z;;a/E

o

+ 2
£(°) (m-2-48 /E'®))(m-1-48 /£'°))

(11)
) F(ll)n } __gll) +G

(69)
The boundary conditions are:
ey = o1y = o .

Therefore:

ZC1

2

(11) 2
G'=HuJ- %
{ & (E(O))Z(m—()ﬁ/E(B))(m+l—6[3/E(o))

1

4C +(10) 2
)
£ (m-2-48/E'%)m-1-4p &%)

4 + Z4

+
(m-58/E°))(m-1-58/E!°))

(el°))=

e - g {- -5 [1-e‘“(1_E(°))m'2-4ﬁ/E(O)J
o

m+1-6l3/E(°)} m-Sﬂ/E(O)]

i, [1-g-u"Y

ac, [1-0-l%)
+ +

el®q-p/El°))
))1-;3/}:@]

iy [1-p-glolyn-i-46/E' ]

+ B¢
£ (m-2-48/E'))m-1-45/£(7))

+
[1—(1-E(0

(o)
-1 [1"3’“(1-E(°))m'2-5B/E(°)] _ By gl-(l-E )
: (E(O)) (m'bﬁ/E(OB(m-i»l-?ﬁ/E(oT)

m+1-7B/E(O)]
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(o)
ac, [1 ~ (1—E(O))} m-63/E

(E(O))Z(m-éﬁ 1Ey(m-1-58 /E°))

£(0) 2 [y glolym-i-58/E)]

= B (70)
E©® (m-2-48/E%))(m-1-58 /£(°)
Since o > 4 ordinarily, e can usually be neglected compared
with one. Furthermore, it has already been mentioned that E(o)<< P in

e ek . . . . o
most cases, and if this is true, the binomial expressions in E( ) can be

expanded to yield a simpler, approximate equation in place of equation 70:

(o) (o)
i mE (m-1)E
E(H)-—H[S ﬂ1_+cl [1+7(5'_T_)] 2¢, [1+3(5-——3)~——~)]
OLZ B InE(o) 5 (m—l)ElO)
e - EEy bRy
(o)
(10),2 [1 $ 2 -0l ]
p A ) . (71)
& (m-2)E'°)

As reactions begin to occur and the gas tends away from a completely
frozen state, the energy transfer is affected (to order O(ed) ) ony in the

presence of a pressure gradient, if the walls are catalytic.

Non-Catalytic Walls

In this case, there are no reactions at the wall surfaces, and ev-
ery atom or molecule that strikes the wall rebounds into the flow un-
changed. The corresponding boundary condition is that the diffusion flux

vanishes at both walls. From equations 58 and 59 then:

ax10) 5, (10)

I + 1_E(°Tv} =

- l_'(lo) = 0
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and

(o)
L10) - (10) B/EY

1 - ey : (72)

Since 3 St PO , the energy equation yields:

apttil £(10)
- g = .

The temperature boundary conditions are again satisfied exactly

(10)

by the zeroth-order energy equation, so that 6 (0) = 9(10)(1) =0,

6(10)

Therefore, = 0 everywhere, and

E(IO) = 0 . (73)
With non-catalytic walls, there is no first-order effect on the heat
transfer due to a small degree of dissociation, if the mixture is com-

pletely frozen,

To examine the effect of reaction rate with non-catalytic walls,

(10)

equation 72 can be used to eliminate x from equation 60:

- (o} (o)
d—l:rv]— = s gy Bl - 2-BETS o 02, ), a-B-28 fE
Therefore:

3 (o)
pi) o 2 - (1_E(0)Y])m,2_4B/E(O)+ Z(FEIO))Z(I_E(O)Y‘ ()rr; 2-4B/E .
« E'° (m-2-4/E'°)
iy -

Since E(O)<< 1 and o0 ¥ 4, terms O(E{O)/cxz) have been neglected

here. The boundary conditions are I"(H)(O) = 1_.(11)(1) 20 Thrs:

2
] 2 (#(19),

(11) _ 2
K =
o  gl)m 245/
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(o) (o)
E {l_e—d(l_E(o))m-2-4{3/E ]

[ m-2-48/E(°)

[ = (1-E(°))m'2'4ﬁ/E(0)

The energy equation is:

11)
de (11) _ (1)
- + 821" = E

where I““ H is provided by equation 74. Integration gives:

-an (o)
ol11) ZH{ e (1-E! Yl)m—Z-4B/E
o’

= g0} 2 oy gloly o1~ ap /e [ (F(10))2 1],]
+ ) g
E©C (m-1-48/E)m-2-48/E°))  [E)(m-2-48/E1)) «
RS A (76)
(11) (11)

The integration constant F and the eigenvalue E are de-

termined by the boundary conditions, 9(11)(0) = 9(11)

(10).2
F(11):2H[ (F 0 __1_}
(O)(m—2-4ﬁ/E(o)) a

{1)=10 3

(o)
(11) {1 ) d(F(IO))Z [(l E(o)m 1-43/E _ 1]
OL e (m-1-48/E))(m-2-48 /%))

pl10) 2 glo)

)
)" (m-2-48/1%))

(o)
_1_[1_e-u(1_E(o))m-z-4s/‘E ]} 77)
A

(o) <<

If e x is negligible compared with 1 and E 1, a simpler

approximate expression can be obtained from equation 77 as before:
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) s B ] , 3-mEC) 4 4p J (78)

H {1 2
o o 2
This equation shows that with non-catalytic walls there is an ap-

preciable increase in the heat transfer as the gas departs from a com-

pletely frozen state, whether or not there is a pressure gradient.

A Numerical Example: Bromine Dissociation

To illustrate the results obtained for the near-frozen case, a
numerical example has been calculated for bromine dissociation. Very
good agreement between equation 55 and tabulated values of the equilib-
rium constant (21)* is obtained by letting Ba = 22.5 . The hot wall is as-
sumed to have a temperature To = 1500°K and a pressure p = 1. 0 atm.
Then according to equation 53, € = 0.298. This means that if the walls
are perfectly catalytic, the mole fraction of atomic bromine at the hot
wall is 0, 298. It is also assumed that the temperature ratio at the cold
wall T]./TO = 0.75, i.e. the cold wall is maintained at 1125OK. In this
calculation, B 2 0, which means that energy transport by pressure dif-
fusion tends to counteract ordinary heat conduction, because the temper-
ature gradient and pressure gradient are oppositely oriented.

The results for completely frozen flow (6§ = 0) are shown in figure
1. When the walls are catalytic the gas behaves like a mixture of inert
species except at the wall surfaces, where the catalytic effect causes re-
actions which drive the composition to local chemical equilibrium at the

surface temperature. As figure 1 shows, there is an appreciable pres-

The tabulated equilibrium constant, given in terms of partial pres-
sures, is converted to the equilibrium constant in terms of concentrations
by means of the perfect gas equation of state (22).
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sure-gradient effect, amounting to a 23 per cent reduction in the energy
transport as B reaches 0.75. This corresponds to a pressure ratio
across the channel of about 5 to 1, i.e. the pressure at the cold wall is
about 5 atm. To interpret this, it is worthwhile to note that if the radius
of curvature were on the order of ten times the channel width in an en-
closure comprising two concentric cylinders, such a pressure ratio
would be achieved with Mach numbers of 2 to 3. This would be a case
where the channel-flow approximation would be quite reasonable. With a
relatively small radius of curvature the present analysis could not be
expected to yield accurate quantitative results, but it should still give a
reasonable indication of the relative magnitude of the pressure effect,
and in this case, the pressure ratio of 5 to 1 would be achieved at sub-
sonic Mach numbers.

It should also be remembered that figure 1 corresponds to a max-
imum degree of dissociation of about 30 per cent ( € = 0. 298 at the hot
wall). Again, the linearized analysis is not strictly valid for much
greater dissociation, but it can give some indication of relative magni-
tudes for such cases. Thus, if the mole fraction of atomic bromine at
the hot wall were doubled to about 0. 6 (corresponding to a temperature
increase of only about ISOOK, i.e. from 1500°K to approximately 165OOK),
the total energy transport would increase by about 50 per cent, and a
pressure ratio of 5 to 1 would reduce the energy transport by roughly 40
per cent (assuming the same temperature ratio between walls as in fig-
ure 1).

Since there are no reactions in the flow except at the wall surfaces,
the pressure effect illustrated by figure 1 is a direct result of the pres-

sure gradient, or in other words, it is due to pressure diffusion alone.
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Because of concentration diffusion, atoms tend to travel from the hot wall
toward the cold wall, carrying thermal and chemical energy, but pres-
sure diffusion opposes this transport. Of course, if the temperature gra-
dient and pressure gradient were in the same direction, energy transport
would be enhanced by pressure diffusion, rather than retarded as in fig-
ure 1

The same figure shows the energy transport when the walls are
non-catalytic and the gas is chemically frozen. In this case, the diffusion
flux must vanish everywhere to satisfy the continuity equation and the
boundary conditions. Energy transport is therefore by thermal conduc-
tion alone, so there can be no pressure gradient effect.

The effect of non-zero chemical reaction rates is illustrated in
figure 2. There is no general agreement on the temperature dependence
of the collision frequency factor Z for three-body recombination, so the
quantity m (defined by equation 46) is arbitrarily chosen as zero for
figure 2. The results are nearly independent of m anyway.

The analysis of chemical equilibrium flow in the next section
shows that for given temperature and pressure boundary conditions and
catalytic walls, the energy transfer is the same (to O(€) ) whether the
flow is in equilibrium or frozen, provided there is no pressure gradient
(B = 0). This is not very surprising, because with no pressure gradient
only concentration diffusion occurs, and if the composition is in local
equilibrium at both walls the average concentration gradient between the
walls is approximately the same whether the flow is frozen or in equilib-
rium. It follows that in the absence of a pressure gradient there is no

first-order change in the heat transfer as the mixture departs from a
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frozen state (or an equilibrium state), if the walls are catalytic. This is
shown by equation 71 and reflected in the curves of figure 2 for catalytic
walls.,

If there is a pressure gradient, a rate effect exists with catalytic
walls. This is an "indirect" result of the pressure gradient, since it is
really due primarily to the effect of local pressure (which is a function of
B) on the recombination reaction rate. For a given pressure at the hot
wall, a higher pressure gradient provides a greater density near the cold
wall. This increases the recombination reaction rate due to the more
frequent three-body collisions involving two atoms. As explained before,
the recombination reactions act as heat sources, reducing the total energy
transport between the walls for given temperature boundary conditions.
An increase in the pressure gradient therefore has the net effect of inten-
sifying the reduction in energy transport which accompanies a departure
from the frozen state.

This argument implies that the recombination reaction will pre-
dominate over dissociation when the gas mixture departs from equilib-
rium. This is the case, because in a frozen state the atomic mole frac-
tion varies almost linearly between the local equilibrium wvalues at the
catalytic walls (see equation 61), while it has an exponential character
(equation 62) when the gas is in chemical equilibrium. As shown in figure
3, the equilibrium mole fraction of atoms at any point in the flow is less
than the frozen mole fraction, except at the walls, of course, where they
are the same if the surfaces are catalytic. Therefore, as the flow de-
parts from a chemically frozen state recombination predominates, since

the composition tends toward local chemical equilibrium.
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Figure 2 also shows that with non-catalytic walls the energytrans-
port increases as the flow leaves the chemically frozen state. The in-
crease is due to diffusion, which is not present in the frozen flow. In this
case, the recombination reaction does not predominate everywhere. The
equilibrium composition with non-catalytic walls again has the exponential
character of the equilibrium constant, except very near the walls, as
shown in the next section. The frozen composition is given by equation
72; at every point the concentration diffusion just balances the p ressure
diffusion so that there is no net diffusion, and the mole fraction falls be-
tween the equilibrium values at the cold and hot walls. This situation is
illustrated in figure 4.

As the gas departs from the frozen state, the reactions tend to
drive the composition toward local equilibrium, which results in an in-
creased concentration gradient. This in turn leads to concentration dif-
fusion (except at the walls, where the diffusion flux must vanish) and the
consequent increase in energy transport indicated by figure 2. The ef-
fect is intensified by a pressure gradient, and this is again an indirect
effect due to the influence of density on the local reaction rate. For ex-
ample, a higher pressure near the cold wall(corresponding to a greater
value of B ) enhances the recombination and steepens the concentration
gradient. This strengthens the increase in energy transport with a de-

parture from frozen flow.
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V. CHEMICAL EQUILIBRIUM AND NEAR-EQUILIBRIUM
FLOW OF THE BINARY GAS

In this section the extreme opposite from frozen flow, in the sense
of chemical reaction kinetics, is considered. Although the recombination
reaction associated with simple dissociation involves a three-body colli-
sion, in many cases there may be a close approach to local chemical
equilibrium in the gas mixture. This implies that the reaction rate is
very fast relative to the diffusion rate, so that atoms or molecules travel
through only a short distance between reactions, and the equilibrium con-
centrations at the local temperature are closely approached. This situa-
tion will prevail if, for example, the gas density is high, making three-
body collisions relatively frequent. More precisely, the criterion for a
close approach to local chemical equilibrium is that R >> 1 in equation
46, since the rate parameter R is essentially the ratio of reaction rate
to diffusion rate. This restriction forms the basis for a perturbation
treatment similar to that given for near-frozen flow, where the expansion
parameter is now 1/€R rather than eR .

It is shown in Appendix A that when a binary reacting mixture is
very nearly in local chemical equilibrium the energy flux can be described
by a generalized Fourier equation. The effective coefficient of thermal
conductivity, given by equation 161, includes the influence of chemical
reactions and diffusion. Formally, the binary gas in chemical equilibri-
um is like a single-component gas, since the diffusion equation need not
be included in the mathematical formulation of the problem. In either the
single-component or binary case, the required conservation equations are
the continuity equation, momentum equation, and the energy equation

(using the effective coefficient of thermal conductivity in the binary case).



-60-
The order of the system of equations is the same in both cases. Hirsch-
felder (5) indicated that a similar effective coefficient of thermal con-
ductivity could be defined for a mixture in equilibrium at constant pres-
sure, but equation 161 shows that this generalized Fourier law is valid
for a binary mixture even when a strong pressure gradient is present. It
cannot be concluded that a pressure gradient in the gas will have no influ-
ence on the energy transport, however. The effective thermal conductiv-
ity is a function of the pressure as well as the temperature. Therefore,
for a given pressure level at an arbitrary point in the flow, changes in
the pressure gradient will influence the energy transport.

Hirschfelder (5) has pointed out that even if the main body of the
mixture is nearly in local chemical equilibrium, there may be large devi-
ations from equilibrium near the wall surfaces. This is particularly evi-
dent when the walls are non-catalytic, for example. If the surfaces are
completely inert, the diffusion velocities of both species must vanish at
the walls. However, the presence of a temperature gradient and local
chemical equilibrium will lead to non-zero diffusion velocities. There-
fore, in the neighborhood of the wall, the diffusion velocities must adjust
from their non-zero values in the main stream to meet the boundary con-
dition. In this adjustment region second derivatives of the diffusion ve-
locity, which are usually negligible in the main stream where the gas is
nearly in equilibrium, may become large and have to be considered.
Thus, in the neighborhood of the wall the order of the system of differen-
tial equations is effectively raised, and by analogy to the viscous bound-
ary layer, the adjustment region can be called a reaction boundary layer.

Large changes in the diffusion velocity within the boundary layer

do not necessarily imply that the composition deviates extensively from
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chemical equilibrium at the wall. According to the diffusion equation, the
concentration gradient may change considerably along with the diffusion
velocity, but if the boundary layer is thin, the composition itself should
remain nearly in equilibrium throughout the layer. The thickness of the
boundary layer is the average distance molecules or atoms starting at the
wall will cover through diffusion before reactions have brought the compo-
sition into local equilibrium. If the reaction rate is large compared with
the diffusion rate, the layer will be thin. The criteria for a close ap-
proach to chemical equilibrium in the main stream, and for thin boundary
layers containing moderate departures from the equilibrium composition,
are therefore identical.

The treatment of a simple dissociating gas which is nearly in
chemical equilibrium is similar to that for frozen flow in the last section.
However, it can be observed at the outset that the classical perturbation
technique will not yield a uniformly valid result throughout the channel be-
cause of the reaction boundary layers. Since certain derivatives which
are negligible in the main stream may become important near the walls,
the perturbation is singular at the walls, and a special treatment is re-
quired in‘ the boundary layers.

The dependent variables and energy transport eigenvalue are again

expressed in two-parameter expansions:

o = 019 4 ¢01® L e8Il 4 |y 0(?) + 0D

(10) 2,

w
I

0+ ex +§x(“)+...)+0(ez)+0(§

(85)
0+ "1 4 e Ly 1 o) + o)

"3
I

E = B9 e+ e 1 )10+ o
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where € is still defined by equation 53 and

£ = 1/eR <<1 . (86)
It is therefore implied by the expansion that "near-equilibrium' here

means:

1R g E=A] .

As in the frozen flow case, the zeroth-order solution is given by
equation 50 and higher order energy equations by equation 57. The diffu-
sion equations are again given by 58. The basic difference between the
two cases appears in the continuity equation, because the rate parameter
appears there. Substituting equations 85 into that equation and equating

coefficients of equal order in € and £ leads to:

(o) (o)
i lhE , eﬂ e (l-E(O)Yl)l ¥ 2BE (87)
dr—.(lO) . [4x(10)( = )3+m:|‘{(ll) . [48—%("1(1”}3(0) )n_%_Sﬁ/E(O)J X(ll)
—av 5(0) "
(88)

Perfectly Catalytic Walls

When the walls are perfectly catalytic, driving the composition to
chemical equilibrium at their surfaces, the boundary conditions to be ap-
plied on x are obtained by substituting the expansions 85 into the expres-

sion

i
Ao

K
_n
n
o
where Kn/n0 is given by equation 55 . Equation 87 corresponds to an

infinite reaction rate (§ = 0) , so it satisfies the O(€) catalytic wall

boundary conditions automatically.
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From equation 87:

(10) (o) (10)
e = D gl D
L | 1-E'7'n 1-E*" '
and the diffusion equation gives:
(10) (10) (o)
1—.(10) . dx i px - Lo+ E ) (10) ) (89)
an 1. : 1-E% )

This equation again demonstrates that the diffusion velocity can be writ-
ten in terms of the local pressure, temperature, and temperature gra-
dient when the binary mixture is in chemical equilibrium. (Note that

ol= QaE(O) ; and E(O) = o dG(O)/dY] 2 x(lo) = x(lo)(T,p) . ) However, from

equation 87:

l(oc+—(T—E(O) )e—%q(l-E(o)q)%Jrﬁ/E(O) (90)
: 1-E'“'n

As mentioned before, the diffusion flux is affected by the pressure gra-
dient to the extent that the local pressure depends on B .

The O(€) energy equation is

] 519‘;_?1 s g (10) _ (10)
where T'V'Y 45 piven by equation 90, Inteprating and retsining terms
o(E®) /) but not oe°)/)?
o0 o [1 2B . %Y‘u-}:(o) t4p/El® _ _(10) . _(10)
—————)—(l_ (OY])] M) E n+ F
(91)
he bosndary condibons aze PO OND)= 8V 1= 0 . Thevefore
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X

= (o) -2 1 (o)
£(10) _ H{ 1 - e (1- ol )2+6/E ? [1-e z(l_E(o))-gmlE ]}

(92)

|

A comparison of equations 65 and 92 shows that with catalytic
walls the energy transfer is the same to O(€¢) whether the flow is frozen
or in equilibrium, if there is no pressure gradient.

Equation 88 is the starting point for an examination of the effect of
small departures from local equilibrium. The derivative dI-'(lo)/dY] is

obtained from equation 90 ; thus:

-0 N (1-e1°0)°

_ o
7 glolpd + B/E)

« e

(93)

After substitution of 93, equation 88 is an algebraic expression

for x(“) and is therefore incapable of satisfying the boundary conditions

Mgy = L1

turbation technique neglects derivatives of x

for catalytic walls, (1) = 0. This occurs because the per-

(11)

, which appear in

(11)

dl—'(ll)/d"] . It is a singular perturbation, failing because x has a

boundary layer character such that in the neighborhood of the boundaries

(

the neglected derivatives, particularly d ll)/dY] , grow to the same

order of magnitude as terms in equation 88.
If the neglected term dI” ul)/dY] is included and evaluated in
(11

terms of x ) from the diffusion equation, the equation which is valid

throughout the channel and capable of satisfying boundary conditions is:
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o
m - —
. ngm

2_(11) (11) (o) z
d™x B dx BE _ 4 T (o)

(o) (0),~(0) (o) 2 - o
_ 1 2(E'+'B) _EV(E"'-2B) e 2
- 4E OL[D( ¥ e{oi ] (6(0))2 ( =1 ® (24)

(o)
where 9(0) = (I-E(O)v}) and w = (I—E(O)Y])—ZFHE .

It is expected that
the derivatives are important only near the walls, so that this reduces to
equation 88 in the main stream. In principle, equation 94 can be solved,
because it is linear with variable coefficients. However, this is imprac-
tical because of the very complicated coefficients. For example, if the
solution were in terms of a power series in Y], many terms would be
required to accurately describe the rapidly changing behavior near Y = 0
and Y} = 1 combined with a slowly varying character in the main stream.
Instead, it is convenient to divide the flow into three regions: the
main stream, where the solution is given by equation 88 ; and the two
boundary layers, where the second derivative is important. This pro-
cedure implies that the solution has a true boundary layer character, i.e.
that the main stream solution is independent of the boundary conditions.
To demonstrate that this is reasonable, it is helpful to consider a simpler
equation which retains the character of 94. The dominating variable in
the coefficients of equation 94 is the exponential, which for realistic val-
ues of o can change by a factor of 102' or more in the range of 0 € 1 < 1.

Therefore consider:

- &9 - S]
dZ C,e . C,e “
X—{ }x:- o< <1
dn® 5 £

where the boundary conditions are x(0)=a and x(l1)=b, and C1 and
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CZ are constants. A new independent variable is defined by

and this simplifies the equation to one having constant coefficients:

4
dzx_clxz_c2 -z} = =
de® B kY x(-ge‘“/‘*) . B

For £ << 1, which is the case of interest here, the solution reduces to:

@]

2
i
C1

If the &, C1 , and £ appearing here are associated with the cor-
responding quantities in equation 94, typical values would be & ~ 4 and
2

C,/t 310 Therefore, if (a-czfcl) and (b-C,/C;) are negligible

ot \/Cllg

compared with g X ’»:,’CZ/Cl except near the boundaries, re-
gardless of the boundary conditions a and b . This conclusion is also
appropriate to equation 88.

Returning now to equation 94, to find the boundary layer behavior

at the hot wall (v = 0) it is convenient to define a new independent variable:

1
z = /g2

WIS

Then neglecting terms O(£2) or smaller, 94 becomes:

a1 11}

—
dz

= - C (94a)

where C :% {O{[Ot + Z(E(o)+ﬁ)] - E(O)(E(O)ﬂﬁ)} . The boundary con-

ditions are:
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z = { = X(ll) - 0
(11) ’ .
Z — 00 X = C/4 (given by equation 88 at n = 0).

Therefore, in the boundary layer at the hot wall:
i
at L {O([OH 2(el0hg)] - E(O)(E(O)—ZB)} [1-e218% (05

Similarly, at the cold wall:

(o)
1) _ (1-g(0))3-mi6R/E offoc+ Z(E(°)+l3)] ) E(O}(E(O)—ZIS)}“
1o 1-e(°y (1-E00y)?

(96)
where:

] 2(1_.E(O))%{m—%—SS/E(O))e—q/4(l_n)

[]= [1-e21E5 £ ].

From equations 88, 93, 95 and 96, a composite approximate so-

o=

lution can be formed which is valid throughout the channel for £ << 1:

(o)
11y _ q-glo)y>-mieB/E {a[cu Z{E(°)+E3)] _m' 9wl g, ]
% 1500y 1500 )2
(97)
_ Z(I_E(o))%(m-%-SB/E(O))e—a/4

where:

5 1-")
2

()= [ . 1

Since E(O)<< X and B<<X , the third term in the first bracket can
be neglected. In the main stream, where the exponentials of equation 97

are unimportant:
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a2 )
= CEO) (56 E) 1 gy 2mes /B

dw 16

{o)
- Z [(1-?)E(0)+3ﬁ] (£(©)4p)(1-(0)y )L -mH6B/E

When this expression is substituted into equation 58, the diffusion equa-

tion, the result is:

I m)E : o (o)
e 16 [(3- ) ( )+5ﬁ] (1—E( )Y])Z-m+6[3/E:
l + migE E(O)
g [(Z_m)(E( ))2 5[32 (7_ )ﬁ (O)] (l_E(O) )l—m"'éﬁ/ .

This in turn can be substituted into the energy equation, given by equation

57, and integration yields:

3-m+6p /E\°)

_gll _ g o (3-m+58 /BN (1-5%))
18 (3-m+6p/E°))

(o) (o
+ &E [(z-m)+(7-m)5/E(°)+5(p/E(°))ZJ (1-g(0) jl-m+6p/E }

= E(“)vl s plth) (98)

Applying the boundary conditions:

2 (o)

(11) (1) A" (3-m+5p/E'°)
FUo = -0 (0) - HY T

» { 16 (3 my6p/E'Y))

, 9B [2-mi(7-m)p/E158/E0°)% ]
5 (2-m+6p/E°)
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g (o)
1) 2 ol1)gy - ol11)yy 4 H{ e 3‘“““5”’"3(0))
3-m+6B/E

.[1_(1_E(0))3—m+6[3/E(O)] L 0B [2omu7-mp/E s (p/E(?)? ]
. (2-m+6p/E'°))

(o)
. [1_(1_E(o))2—m+6{3/E ]} ' (99)

The main-stream boundary conditions, 9(11)(0) and 6(11)(1) 3

are found by integrating the energy equation through the boundary layers.

i

Using equation 58 to eliminate

(11) (11) (11)
de dx Bx
o By

» the energy equation is:

y = mlll)

-y '
As equations 95 and 96 show, the appropriate length scales in the hot and
1 1
cold boundary layers are %M/E2 and (1-M)/E2, respectively. If
1 1

z = /£€2 and terms O(£?) are neglected, the energy equation in the
boundary layer at the hot wall is:

dG(ll) s o dx(11) o

T dz Toas :
oz, sinee 89Ny M0,

9(11)(2 —s ) = - Hx(ll)(z —> ) .

This gives the boundary condition on the temperature in the free stream:;
i. e. in equation 99, 8(“)(\'] = 0) = = Hx(ll)(\f] = 0) . Similarly, at the cold
wall, 9(11)(V| = Ly = = Hx(“)(ﬂ = 1) . Using equation 88 to determine

x(ll)(v] = 0) and x(”)(\q = 1), equation 99 becomes:
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2
(11) _ Ha
& = -1 |

p , [1- (1-g(0)3-m+6s /By

£l (3-m+6p /E°))

[l _ (I_E(o))Z-m+6ﬁ/E(o)]

(2-m+6B/E\°))

Hap B
- g 1t —igy)

(100)

This result shows that with catalytic walls, as the gas departs
from local equilibrium, there is a change in the dimensionless energy
transport variable only in the presence of a pressure gradient. This is
what would be expected, because it was found that the dimensionless en-
ergy transport variable with catalytic walls is the same (to O(e)} ) whether

the flow is frozen or in equilibrium, if there is no pressure gradient.

Non-Catalytic Walls

In this case, the diffusion flux I wvanishes at both walls. The
composition cannot be in equilibrium in the neighborhood of the walls,
even to O(€), because this is incompatible with the boundary condition.
For example, the equilibrium composition given by equation 87 leads to
the non-zero diffusion flux of equation 90.. These equations are valid in
the main stream, but in obtaining equation 87, derivatives have been ne-
glected which become important near the boundaries. That the solution
has a true boundary layer character, i.e. that equation 87 is valid in the
main stream regardless of the boundary conditions if £ << 1, can be
demonstrated by an argument which parallels that given for catalytic
walls (after equation 94); it need not be repeated here. The boundary lay-
er effect is more important with non-catalytic walls, however, because

the singular perturbation occurs in O(€) terms rather than O(e£) terms.
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New independent variables are appropriate in the boundary layers,

as before:

o=

z = M/§

1
2 = 1- YIER (cold wall, M— 1)

(hot wall, M —0)

From equations 46 and 85:

2 (10) 2
d"x 3 (10).2 = - oM ™ (0)ym

The vanishing of the diffusion flux at the wall puts a condition on
the concentration gradient, but there is no reason to expect that the con-
centration itself will depart strongly from local equilibrium. This leads

to the assumption;

(10) (10) glo) 3 -5
% B +y = (— — ) e +vy
(10) . —— (10)
where X, is the local equilibrium value as shown, and y << X, .

With this substitution, equation 101 can be linearized, noting that

dzxfalo)/dz‘2 = O() :

2 5/2 = G
dy _ ™ (o)ym ~ 2 ~
o [ @ e

where C, can be treated as a constant in the boundary layer (to O(f) )
and is evaluated at Y= 0 or Y= 1, depending on which boundary layer

is being considered. The solution is:

= Elz + :/'Eiz
v = B e +Be . (102)

One boundary condition is:
Z —» Q0 ; v—>0 .

Therefore B = 0. The remaining boundary condition is given by the dif-
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fusion equation:

45 (10 ({10)
r(m):_xe ) Pxg _dy By
0 ey W gl
- 1-'-(10) _dy _ By
€ le I—E(O)Y]
where
() -37 1 (o)
]_';(10) = 3(a+ 1__—5;]—3(3’\1_ ) e g (I—E(O)Y;)2 +pI/E (see equation 90).

From equation 102:
sgewsag, | ey
ay A YC, =~ ¥C,=
dn - T T T e

gi

Therefore, from the boundary condition 1_'(10) =0 at M= 0 (where C1: 4):

o tfesEl) et erml®)
2(2-£28)

Then in the boundary layer at the hot wall,

1 1
7 (e)y _ 3
10 = 21000y 4y = 1 EHEHE ) -ZN/EE (103)
. (10) 3 . o . B Brenlels
Since y/xe = O(g?), the linearization of equation 101 is justified.
Similarly, in the boundary layer at the cold wall,
1 (o) -5 3 (o) z
2yC 1-E

(104)
where

o
@ = 4(1-E(°))m’%‘5ﬁ/E(o)e z

In the main stream the temperature distribution is given by equation 91.

However, the boundary conditions 8(10)( v]= 0) and 9(10)(‘\‘]: 1) are to
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be found by integrating the energy equation through the boundary layers.

As before, in the boundary layers:

(10) (10)
de dx
—— + H —ag— = 0.

Since 9(10)(0) = 0 and at the hot wall x(lo) is given by equation 103:

1
ol10) _ 4 [X(lo)_x((elo)(Z _ 0)] - Ef—i (o+E()y1-e 727
18
6(10)(W—+0) = 9(10)(2 —> ) = - %‘ﬁ (oc+E(°)) (105)

Similarly, at the cold wall

1 o
(10) _ HEZ (o) 2+p/E®) 32 £(0)
" 2yC l—EiO;
where
5 o} -2
& 4(1_E(0))1’n g 58/E . 2 )
The energy transport is then given by:
- & _
2% - n {1 -e Z(I-E("’ﬁ*ﬁ’E{O)-% [1-e 2 (_gl0)1+B/E)]

[

g -5 1L —m+7p/E!Y))
-% [OC+E(O)-(0(+1—EE—:m je Ta-pi™y" 2 13 (106)

The O(€¢£) energy transport term is given by equation 99, with
the boundary conditions again obtained by integrating the energy equation
through the boundary layer. The procedure is the same as that which led
to the O(eg%) term in equation 106, but in this case it leads to an

O(EE,B/Z) term. To be consistent with the previous calculations, which

have been carried only to O(€&), this term will not be included here,

Consequently,
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2 (o) (o)
(I} o (3-m+5B/E') (0),3-m+6B/E
E = 4 S5 1 - (1-el°h
. (3-m+6;5/}-:(°7) [ ]

% dE(O) [2—m+(7-—m)ﬁ/E(o)+5(5/E(O)}2] [1 . (1_E(0))Z—m+6ﬁ/E(o?

S (2-m+6B/E'°))
(107)

A Numerical Example: Bromine Dissociation

To illustrate the near-equilibrium case, a numerical example has
been calculated for the pure bromine dissociation. Although the near-
equilibrium state usually corresponds to pressures and temperatures dif-
ferent from those for a frozen flow (since the rate parameter R 1is pro-
portional to p3 , for example), the boundary conditions used here are ex-
actly the same as for the frozen flow example represented in figures 1
and 2; B, = 1 atmosphere, 'I‘o = 1500°K , and E(O) = 0.25. This per-
mits a direct comparison of the near-frozen case and the near-equilib-
rium case.

Figure 5 shows the energy transport to O(e). This corresponds
to infinite reaction rates (§ = 0) . If the reaction rate is so large that §
is completely negligible, the energy transport is given by figure 5 inde-
pendently of the degree of catalytic action provided by the wall surfaces.
Reaction boundary layers at the walls may be of the order of 10 mean free
paths or less in thickness, under these circumstances. As a result, the
temperature itself does not change appreciably through the boundary lay-
er, even though the temperature gradient at the wall may be quite steep,
particularly if the diffusion flux vanishes at the wall and all energy trans-
port there is by conduction. It follows that when reaction rates are ex-
tremely high the main stream ''sees'' essentially the temperature and

pressure of the wall as boundary conditions, regardless of the boundary
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layer, and is therefore independent of the catalytic nature of the wall. In
treating the oxygen dissociation example, Hirschfelder (5) does not con-
sider rate effects, but he points out that the chemical profile and heat
transfer are practically independent of the boundary conditions on the dif-
fusion flux. The conditions he chose for his example correspond to
g ~v 10-6 , and according to figures 6 and 7, which give the correction on
figure 5 due to finite rates, his conclusion is valid even for muchlarger
values of § .

Figure 5 shows that the energy transport depends quite strongly on
B in equilibrium flow; in fact, the dependence is nearly as great as infro-
zen flow with catalytic walls, figure 1. However, the explanation is dif-
ferent. In frozen flow, the effect is traceable to pressure diffusionalone.
Here, it is due primarily to the shift in equilibrium caused by changes in
the local pressure. As equation 89 shows, the diffusion flux depends on
the local concentration. As the pressure increases the concentration of
atoms decreases, because the recombination reaction is strengthened by
the greater frequency of three-body collisions; the diffusion flux then de-
creases, reducing the contribution of diffusion to the energy transport.

This pressure gradient effect is particularly strong in the bro-

mine example, however, because the activation energy for bromine dis-
sociation is relatively small. As equation 92 shows, the smaller this ac-
tivation energy (&= GaE(O)) the greater the importance of the term pro- ]
portional to B . For example, with oxygen, which has a dissociation ac-
tivation energy roughly three times that of bromine, the pressure gradient

s

effect would be reduced by a factor of about three.

x

It should also be noted that with a larger value for 6, , much higher
wall temperatures are required to achieve an equivalent degree of disso-
ciatinn. See the definition of € , equation 53.
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As has already been mentinned, with catalytic walls the energy
transport is the same (to O(€) ) whether the flow is frozen or in equilib-
rium, as long as B = 0. Therefore, the absence of a first-order rate
effect as the flow departs from equilibrium with $ = 0, as shown in fig-
ure 6, is expected. When there is a pressure gradient, the energy trans-
port decreases as the gas departs from equilibrium. This again is pri-
marily an indirect effect, due to the influence of pressure on the local
composition., It is the inverse of the effect described in connection with
a departure from frozen flow. When the gas departs from equilibrium
the dissociation reaction predominates, and the greater the pressure
the more frequent the reactions. With a pressure gradient the pressure
is highest near the cold wall, and hence the increase in atom concentra-
tion is highest there. This tends to reduce the concentration g radient
and therefore the diffusion flux of energy.

The rate effect with non-catalytic walls is given by figure 7. It is
a much stronger effect that that with catalytic walls, because there is an
O(eti%) term (given by \&3) as well as an Oleg)term (given by \,[/‘4). As the
mixture departs from equilibrium, the energy transport decreases be-
cause the transport by diffusion is diminished. (In the limiting case of
frozen flow, the diffusion vanishes for these boundary conditions. ) The
pressure gradient enhances this effect through the influence of pressure

on reaction rate, as already explained in connection with catalytic walls.
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VI. SUMMARY: THE BINARY DISSOCIATING GAS

In the previous two sections the energy transport behavior of the
two-component reacting gas has been considered when the gas is nearly
chemically frozen and when it is nearly in local chemical equilibrium.
The numerical examples for bromine dissociation show the effects of a
pressure gradient and of varying rates within these opposite realms.
However, the individual curves presented for frozen and equilibrium flow
do not provide any easily interpreted picture of the nature of the solution
throughout the reaction-rate regime. Of course, the very basis of the
perturbation technique makes it impossible to give an accurate descrip-
tion of the behavior when the chemical reaction rate is neither large nor
small relative to the diffusion rate, but it is possible to obtain some no-
tion of the general character of the overall solution.

For this purpose, it is convenient to display the results of the
bromine dissociation calculation with a linear scale for the dimensionless
energy transport and a logarithmic scale for the ratio (reaction rate/dif-
fusion rate). This makes it possible to include the entire rate spectrum
on one graph. The chief disadvantage is that the logarithmic scale tends
to distort the curves somewhat.

Figure 8 shows the calculated results for bromine dissociation
with perfectly catalytic walls and three different pressure gradients. The
solid curves correspond to the solutions given by the perturbation tech-
nique of the previous sections. When there is no pressure gradient
(B = 0), the total energy transport in either completely frozen or com-
pletely equilibrium flow is exactly the same, Furthermore, the perturba-

tion solutions show no first-order rate effects in either case. Conse-
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quently, it seems reasonable to expect that the dimensionless energy
transport is constant in the absence of a pressure gradient, independently
of the chemical regime, and the solid curves are joined by a dashed line.

It should be noted that the same pressure and temperature bound-
ary conditions, po and T0 » were used throughout the calculations.

This provides solutions for near-frozen and near-equilibrium flow which
can be compared simply and directly, as in figure 8. However, it also
means that changes in the reaction rate parameter plotted along the ab-
scissa must be accomplished by varying the physical dimensions of the
system, specifically the channel width w . Therefore, although the di-
mensionless energy transport variable remains constant when B = 0, the
actual energy flux Q (units: energy/time/area) decreases as the chemi-
cal regime changes from frozen to chemical equilibrium flow with the
pressure and temperature boundary conditions held fixed.

The remaining curves of figure 8 show the effects of a pressure
gradient when the walls are catalytic. In either completely frozen or
completely equilibrium flow, an increasing pressure gradient reduces the
energy transport (when the pressure gradient and temperature gradient
are opposite in direction. ) The explanation for this reduction is quite dif-
ferent in the two cases; although the effect is approximately of the same
magnitude for frozen or equilibrium flow in the bromine association ex-
ample, this is not necessarily true in general. In frozen flow the energy
transport decreases with increasing pressure gradient because of pres-
sure diffusion alone. In equilibrium flow the ultimate effect is similar,
but the cause is more complicated and less direct. Because the local re-
combination rate depends on the local density, and therefore the local

pressure, changes in the pressure gradient influence the concentration
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distribution. This in turn changes the concentration diffusion flux, and
thus the energy transport. In equilibrium flow the size of the p ressure
gradient effect depends on the activation energy of the reaction, which is
not surprising in view of the mechanism just described.

Figure 8 also indicates that if there is a pre'ssure gradient, the
dimensionless energy transport has a minimum somewhere in the region
where the gas is neither frozen nor in equilibrium. The perturbation
technique provides no basis for a reasonable estimate of the character of
the solution in this region. The minimum is apparently absent when
B =0, and the curves suggest that it becomes more pronounced as the
pressure gradient increases.

The corresponding curves for non-catalytic walls are shown in
figure 9. When the gas is completely chemically frozen, the diffusionflux
must vanish everywhere if it vanishes at the walls, to satisfy the continu-
ity equation. Therefore, the energy transport is entirely due to ordinary
heat conduction, and there is no pressure gradient effect, of course. As
the gas '"'unfreezes' a diffusion flux can occur except at the walls, and
this accounts for the indicated rise in the energy transport.

At the other extreme of the rate parameter scale, where the gas
is in chemical equilibrium, the situation is very similar to that just de-
scribed for catalytic walls. In fact, the concentration and temperature
profiles are identical in the two cases, except in the thin reaction bound-
ary layers near the walls. The non-catalytic influence of the walls is
confined within these boundary layers, which remain extremely thin rela-
tive to the channel width when the ratio (reaction rate/diffusion rate) is

very large. As was shown in the preceding section, under such condi-
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tions the solution has a true boundary-layer character, in that it is es-
sentially independent of the catalytic nature of the walls. Accordingly, a
comparison of figures 8 and 9 shows that as the gas nears a state of local
chemical equilibrium, the energy transport (for a given B ) approaches
the same value whether the walls are catalytic or non-catalytic. As the
gas leaves the equilibrium state, a much stronger reduction in energy
transport is felt with non-catalytic walls than with catalytic walls. The
boundary layers grow rapidly, carrying the non-catalytic influence of the
walls into the main stream and reducing the diffusion flux. Ultimately,
when the gas is frozen, the wall influence dominates everywhere; there is
no diffusion flux and therefore no diffusive energy transport. It seems
reasonable to expect that the solution will have a smooth, continuous be-
havior, and on this assumption, the solid curves obtained with the pertur-
bation technique have been joined by dashed curves.

One of the most interesting features of the binary reacting gas is
the fact that the order of the governing system of equations is reduced
when the gas is in local chemical equilibrium. It is shown in Appendix A
that the equations for the two-component gas in equilibrium can always be
made formally identical with the corresponding equations for a single-
component gas. The effects of diffusion in the former are accounted for
by an '"effective thermal conductivity'. Thus, the order of the set of
equations for a binary reacting gas in local equilibrium is the same as for
a single-component gas. This is true only when the gas is in local chem-
ical equilibrium, and it is this property which leads to the reaction bound-
ary layers characteristic of the equilibrium solution.

In the following section a gas composed of three species, with the
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reacting components in equilibrium, is investigated within the framework
of the channel-flow approximation already used. The primary purpose is
to show in what respects the gas of three (or more) components in local
chemical equilibrium may be similar to, or different from, the binary

gas in equilibrium.
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VII. THE THREE-COMPONENT GAS IN LOCAL CHEMICAL
EQUILIBRIUM

The treatment of the binary reacting gas in the preceding sections
has shown that the character of the chemically frozen flow is quite differ-
ent from that of the flow which is in local chemical equilibrium. When
the mixture is frozen, the order of the system of equations is two higher
than for a single, non-reacting gas; this is due to the addition of a diffu-
sion equation and a continuity equation to the other conservation equations
of the set., The higher order is necessary and sufficient to satisfy bound-
ary conditions which physically correspond to specification of the cata-
lytic nature of the walls. Consequently, the energy transport is strongly
coupled to the catalytic influence of the wall surfaces. The extension of
the analysis to include the general multi-component, chemically frozen
gas is apparently straightforward in principle, although the complexity of
the calculation grows rapidly as the total number of components involved
in the gas increases. With the addition of each component the order of
the set of equations will be raised by two, and so will the number of
boundary conditions to be satisfied. If more than one chemical element is
present in the gas, as will usually be the case when the mixture includes
three or more chemical species, the boundary conditions to be satisfied
by the mole fractions will depend not only on the catalytic nature of the
walls, but also on the total mass of each of the various chemical elements
initially introduced into the system. In other words, when more than one
chemical element is present in the chemically frozen gas mixture, the en-
ergy transport will depend on the proportions of the various elements in

the system and also on the catalytic action of the wall surfaces. The de-



—83-

pendence on initially-present proportions of various elements does not ap-
pear in the frozen-flow solution for the simple binary dissociation reac-
tion, because only one element is present.

On the other hand, it is shown in Appendix A that when the binary
gas is in local chemical equilibrium, the order of the system of equations
is the same as for a single-component gas. This feature leads to the re-
action boundary layers characteristic of the equilibrium flow. In the im-
mediate vicinity of the walls the catalytic action of the surfaces may cause
reaction rates to become important, effectively raising the order of the
set of equations by two. This is the mechanism by which the necessary
boundary conditions on the mole fractions are satisfied. The boundary
layers ''shield' the main stream from the catalytic action of the walls, so
that the temperature and composition profiles in the main body of the gas,
and the energy transport, are practically independent of the chemical in-
fluence of the boundary surfaces.

Hirschfelder (5) has indicated that an effective coefficient of ther-
mal conductivity can be defined not only for the binary gas, but for the
multi-component mixture in general, as long as the gas is in a state of lo-
cal chemical equilibrium. This implies that the order of the set of equa-
tions for a general, multi-component gas in chemical equilibrium is the
same as for a simple, single-component gas. Under these circumstances
the solution for any number of components would clearly have a boundary
layer character similar to that of the binary gas, for the main-stream so-
lution would be completely determined when boundary conditions on the
pressure and temperature were specified. It would also follow that the

profiles in the main stream, and the energy transport, are essentially
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independent of the proportions of the various chemical elements initially
present in the system, just as in the binary example where only one ele-
ment was present. These mass proportions must in some way affect the
mole fractions of the various species, presumably by providing the infor-
mation which, together with specification of the catalytic nature of the
walls, will determine the boundary conditions on the various mole frac-
tions. However, if the main-stream mole-fraction profiles are com-
pletely determined by the pressure and temperature boundary conditions,
then the influence of the initially introduced mass proportions of various
elements, as well as rate effects, must be confined to the boundary lay-
ers.

It is not too difficult to anticipate that the multi-component gas in
equilibrium will have a behavior which is practically independent of the
catalytic nature of the walls, with rate effects and the wall influence re-
stricted to thin reaction boundary layers, as in the binary case. If the
boundary surface retards the reaction, for example, forcing the compo-
sition away from local equilibrium, and if the reactions in the gas are
very fast compared with the rates of diffusion processes, the composition
should reach local chemical equilibrium within a few mean-free-paths of
the wall. This will occur in a very narrow region relative to the charac-
teristic length of the system, regardless of how much the composition
deviates from equilibrium at the wall; the ratio (reaction rate/diffusion
rate) >> 1 ensures this. Thus the solution is practically independent of
the chemical action of the walls, whose influence on the rates is confined
to very thin regions near the boundaries. This crude physical argument

seems to apply equally well to any number of reacting components.
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On the other hand, it seems intuitively unreasonable that the en-
ergy transport and composition profiles should be essentially independent
of the masses of various elements originally introduced into the system.
In fact, this cannot be true. Large changes in the proportions of ele-
ments involved in the reaction must ultimately result in extensive changes
in the total amount of each of the components (composed of these ele-
ments) which will finally be present when local equilibrium is reached;
this is required to conserve mass. This means that the various mole
fractions must be strongly influenced by the proportions of various chem-
ical elements present, and furthermore, that this influence is not re-
stricted to boundary layers. By definition, the boundary layers are thin
and contain only a small fraction of the total mass in the system. Large
changes in the mole fractions within the boundary layers alone would not
appreciably alter the total proportion of each constituent present, and
therefore could not answer the requirements of large changes in the pro-
portions of various chemical elements present.

The addition of each component beyond two does, in fact, raise the
order of the set of governing equations by two. This precludes the possi-
bility of defining a generalized coefficient of thermal conductivity and de-
scribing the flow with a formalism similar to that for a simple, single-
component gas, except in the special case of a binary mixture in local
chemical equilibrium.

The solution given by this set of equations corresponds to the main
stream, and the extra constants made available by the higher order of the
set are necessary and sufficient to ensure that mass is conserved. In this
way the solution becomes strongly coupled with the proportions of ele-

ments introduced into the system, as expected intuitively. With any num-
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ber of reacting species in equilibrium, rate effects are confined to the
reaction boundary layers, just as in the binary case, and the behavior is
practically independent of the catalytic nature of the walls.

Because the equations acquire an immense complexity when many
components are present, it is hardly feasible, even if desirable, to dem-
onstrate the character of the multi-component, equilibrium flow in a
general way. However, the features which have just been described can
be illustrated by means of two simple examples involving three compo-
nents and analogous to the channel-flow perturbation analyses of the two-
component dissociation reaction. At the same time, these examples show
how the three-component gas may differ from the binary case with regard

to the dependence of energy transport on the pressure gradient.

The Three-Component Gas in the Channel-Flow Approximation

The physical significance of the channel-flow approximation has
been explained in Section III and requires no further discussion here. The
primary difference between the equations presented there for the binary
mixture and those for the three-component gas is that an additional diffu-
sion equation and an additional continuity equation (or stoichiometry rela-
tion) are required in the latter case. The problem can be formulated in
terms of the mole fractions and diffusion velocities of species 1 and 2
alone, eliminating the mole fraction of species 3 with the equation

%, o, 452, = I (108)

and eliminating the diffusion velocity u, through the following relation,

3

which stems from equation 4:

uy = 0 (109)

s T s ' NI 1
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The equation of motion is independent of the number of compo-

nents:

dlInm _ 2B
v O

(110)

The symbols have already been defined in connection with equation 38,
and these definitions are unchanged.
The energy equation reduces to:

de

- aﬁ + H13 I"l + HZS 1"‘2 = B (11.1)
where
B = T/TO
Iy = nju,/nDy,

I, = nyu,/nD),

H13 = (hl - rnl/m3 h3) Le/Cp TO
H,, = (h; - m,/m, hy) Le/Cp T,
E = total dimensionless energy transport = constant.

The appropriate diffusion equations may be obtained from equa-

tions 11 and 12. They are:

m

1 2
x Ty -y T - T X1 i Ty T Ty - ayloxy-xp) I
-m,/m,
o=, % o ("*‘1)[1”"1'(71—‘“)}‘2} dinw
T a1 A-m,/m an (112)
Ao ey - (— 2, |
TRkar ,u 2]
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21 | a; my 2 2 a,H A | ag
m
2. 1 M= 1
(-0 [1 3, - (i x|
B de = 5 s | L dlnmw
= —Y] +X2. T am (113)
f"’[l - (H_l )x -( 2- ].X
M 1 Js pis
where
a :Pﬁ A ]_:)ﬁ - E - /u: .111_3_
T 2 D3 3 Dy, my

The form of the chemical equilibrium relation depends on the spe-
cific reaction being considered. The simplest reaction involving three
components, and one of the two which will be considered here, is the bi-
nary dissociation reaction in the presence of a third, inert species, e.g.
bromine dissociation in the presence of argon. Such a reaction can be

represented symbolically by:

A+ A

Ay ¥ g (114)

%

When the composition is in chemical equilibrium:

K X
s (E) P . (115)

where Kn is the equilibrium constant, and n_ is the total concentration
at M= 0.

The addition of a third species also adds a new continuity equation
to the set. This equation follows from equation 5. Since AZ is inert in

the reaction of equation 114, the production rate K, in equation 5 van-

y:
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ishes, and if nD is treated as a constant as before,

12

In the channel-flow approximation 1_'2 is a function of Y alone; there-

fore, the continuity equation can be integrated at once to yield (for the re-
action of equation 114) :
1_'2 = constant . (116)

The second example of a three-component reaction to be con-

sidered here can be represented symbolically by the expression:

2A (117)

When this reaction has achieved local chemical equilibrium, the mole

fractions will be related through the equilibrium constant:

(1 - X, - XZ)Z
B = = . (118)
n X %,

In addition, a continuity equation is required. For this example,
it is convenient to use a stoichiometry relation which arises from the re-
action of equation 117 and corresponds to a linear combination of two con-

tinuity equations. It follows from equation 117 that for every mole of Al

produced locally by the dissociation of A, , a mole of A, is also created.

3 2

This leads to the equation:

AVAR (nlulml) = P (nzuz .

Dividing by nD 5 which is treated as a constant, this can be integrated

1

at once to obtain:

e

1_'1 - A (constant) (119)
1
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Using the equations just presented, a perturbation technique simi-
lar to that of the binary analysis can now be used to study the reactions of
equations 114 and 117, in an effort to demonstrate some of the features of

the three-component flow and the multi-component gas in general.

The Chemical Equilibrium Flow of Two Reacting Components in the Pres-

ence of an Inert Species

In this case, the reaction to be considered is given by equation
114, When the mass of the inert component AZ originally introduced into
the system vanishes, the solution must reduce to that previously obtained
in the binary chemical equilibrium analysis for £ = 0 (infinite reaction
rate), because the reaction then becomes the binary dissociation studied
thexre,

In the present analysis the dependent variables and energy trans-
port eigenvalue (total energy transport E of the energy equation) are
expressed as follows:

g = 094+ a0 L 4 0 5 el 4y 5 0o(e?) + 039
x =0+0+...+e(x(lo)+vX(ll)+...)+O(ez)

T =0+ 0+...+ e(rl“o)+ vl“l(”)+...)+0(e7‘)

(120)

x, = 0 + 'sz(‘Ol)+... + €(0 + T/xz('ll)+...)+0('1/2)

FZ = 0 + vl"éOl)Jr... + €(0 + vl"éll)+...)+0(1/2)

= g2l s eEly yvell 4 )+ o(e?) + 03

The expansion parameter € is defined exactly as before, i.e. by
equation 53, and Kn/nO is approximated by an expression similar to

equation 55:
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e o(01) o of10)

H 2 = A a
B o= ¢“e [1+v ST + € RON: +] (121)

The purpose of the second expansion parameter ¥ is to conven-
iently introduce another restriction into the formalism. The mole frac-
tion of the inert species will be assumed to be small, i.e. X, << L =
This can be accomplished by restricting the total mass of A2 initially in-
jected into the system to some small fraction of the total mass of reacting
components, which leads to a definition for ¥V . It will be assumed arbi-

trarily that x, ' /(9= 0)=1, xz(ll)(")= 0i= 0, ste. Then ¥ is de-

termined by the equation:

1 il
M, =Vm x,n(n)d = ¥m x "o (1) d (122)
A, T 7™M Pl = PR 2 ®T_ o(m) 1
2 2 2 o
0 0
where M is the mass per unit volume of A, in the system, and m
A, 2 o

is the molecular weight of A, .
As before, the zeroth-order energy equation corresponds to ordi-

nary heat conduction in a single-component gas:

(o)
. %—93—— < g (123)
The solution is:
ol°) - 1. gl | (124)
The O(v) energy equation is:
(01)
A %— + H231_'?E01) - g (125)

According to equation 116, which is the continuity equation for the inert
species, PZ = constant. Since AZ is inert, molecules of this species can-

not undergo a chemical reaction at the walls, regardless of the catalytic
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nature of the surfaces. The diffusion flux I', therefore vanishes at the

2
walls, and consequently:
r, = 1"2(0” - I"?f“) = .. = I“?Emn) = 0 (everywhere)(126)

Equation 125 can be integrated at once, and since equation 124 satisfies

the boundary conditions on the temperature, it follows that 6(01)

(0)
9(01)(1) = 0 and

il S (127)
When the solution is carried only to O(e) , it gives the first-order effect
when the binary dissociation takes place in the absence of any other gas
(¥=0). To this order, the problem is therefore identical with that
1(10) 1_.1(10)

solved in Section V. From this, it can be anticipated that x

? ¥

9(10) , and E(lo) are given by the corresponding solutions obtained in
that analysis, equations 87, 90, 91 and 92, respectively. Substitution of
the expansions of equation 120 into equations 111, 112, 113 and 115 (with
Kn/no given by 121) does, in fact, give for the O(e) terms exactly the
formalism obtained in Section V, and this procedure will not be repeated
here.

The effect of the inert component first appears in the O{ev)

terms. Recalling that Féll) = 0, the energy equation of this order is:

(11)
_dgi_n +u, DU - gD (128)

To find 1—'1(11) » so that this equation can be integrated and the leading ef-
fect of the inert species determined, it is necessary to turn to the equi-
librium relation and diffusion equations. By equating the coefficients of

2 . . . : ; .
O( € V) in equation 118, a relation between the mole fractions is obtained:

XZ(OI) = —le(ll)/xl(lo) . (129)



ol -

Assuming a; =a,=a2a; =~ 1, which has no essential influence on the

character of the solution, equation 113 provides:

(01)
dx M- m /m
2 2 (Ol) dinwt _ (01) _
== ¥ { ) g = - I = I, (130)

With the aid of equation 110, this expression can be integrated at

once. When 7 was defined, it was arbitrarily assumed that

x (01)(0) = 1 ; therefore:

2
(p - m,/m)2p/E)
w9 = 1 gl ST (131)
The Of{ev) terms of equation 112 give:
(11)
rn) dx) ,u 1 (11) d inm
1 =y )x —dn
1 ™2 (10) (01) d in =
i _ = ) 132
to W m = an (138

Equations 129 and 131 can be combined to give Xl(“) . Then with the aid

of equation 87 and equation 131, Fl(“) can be obtained from 132:
(© -3" pot, S o)
ri - (B e 2 o ‘- F M
/LL 1-E

(133)

When equation 133 is substituted into 128, the energy equation can be in-

tegrated to obtain:

(o)
(11) B E
] - 7, )4 1 - ) -
13° pe { M a1-el%y)

Ty

2k -1- =
™ 4p }[] S gDy 4 gD g3y

( )
M a(1-%M)
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where .
2t -1e
- &h M-l 1L ) 25/l

[]= e Z (-l # -

The boundary conditions are 8(11)(0) = 9(11)(1) = 0. Therefore:

m

2
TT
(o) ™
(11) _ p-1 Befa B = y2B
P - 2 () 2 T - ] - e 129
1302 { M M * } |
and
Im
2 -1- =
ol Ak~1 1 (o)
= +( )2B/E
= 2w (2 [1-e %) # H B H}
J
(136)
where m
- VI PO

A Numerical Example: Bromine Dissociation in the Presence of Argon

To illustrate the effect of adding an inert component to the binary
reacting gas, an example of bromine dissociation in the presence of argon
has been calculated,and the results are presented in figure 10. The quan-

tity }b‘5 is equal to eE(ll), with E(ll)

obtained from equation 136 for
the given temperature and pressure boundary conditions. It will be re-
called that ¥ is the mole fraction of the inert gas, in this case argon, at
the hot wall (M= 0); ¥V is determined when the total mass of argon and
the total mass of bromine initially introduced into the system are speci-
fied. When no argon is present, ¥V = 0, and the reaction reduces to the

two-component bromine dissociation in local equilibrium, which was con-

sidered in Section V and illustrated by an example in figure 5. The pres-
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sure and temperature boundary conditions used in obtaining figures 5 and
10 are identical. Consequently, these two figures can be used together to
illustrate the influence of the presence of argon on the energy transport.
When no argon is present, the energy transport is given by figure 5 alone;
if the composition includes a small proportion of argon, there is an addi-
tional contribution T/WS » which can be obtained from figure 10,

Since the contribution of 1,!/'5 is negative, the effect of an increas-
ing proportion of the inert gas (with fixed temperature and pressure
boundary conditions) is to reduce the energy transport. This is to be ex-
pected, because the inert species itself can make no contribution to the
diffusive energy flux; the diffusion flux of the inert gas necessarily van-
ishes at the walls. The contribution of diffusion to the energy transport
is due to the atomic bromine, which tends to form at the hot wall, diffuse
to the cold wall, and there recombine, giving up its chemical heat of for-
mation. The magnitude of this contribution depends on the mole fraction
of atomic bromine (or really on the change in this mole fraction from the
hot wall to the cold wall, which is a measure of the net extent of recom-
bination of the atoms as they diffuse to the cold wall). As the mole frac-
tion of argon increases, the mole fraction of bromine is proportionately
reduced. This leads to a smaller contribution by the diffusion process to
the energy transport.

The qualitative forms of the curves in figures 5 and 10 are the
same. This can be anticipated, because figure 10 simply represents a
reduction in the influence of the diffusion mechanism illustrated in figure

5. The slopes of the two curves are different, because the strength of the

pressure-gradient effect depends on differences in the molecular weights
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of the components involved, and the molecular weight of argon plays a
role in figure 10, but not in figure 5.

This simple example shows that even the addition of an inert com-
ponent to the binary reacting gas in equilibrium changes the mathematical
formulation of the problem, raising the order of the set of equations by
two. This does not alter the boundary-layer character of the solution
with respect to the catalytic nature of the walls. Although no analysis of
rate effects has been included in this example, it seems clear that such
effects are confined to the reaction boundary layers, just as in the two-
component case, and the treatment of these effects would parallel that
given in connection with the binary problem.

When the third species is inert, the two additional constants pro-
vided by the higher order of the equations are determined by (a) the fact
that the diffusion flux must vanish at the walls {(and therefore everywhere,
due to the continuity equation), and (b) the total masses of inert and re-
acting elements present in the system.

In a sense, the inert component is "uncoupled'" from the reacting
components. Its presence does not change the basic qualitative character
of the problem. Instead, the inert component has the effect of '""shifting"
the solution corresponding to a binary reacting gas. When the composi-
tion includes an inert gas as well as two reacting ones, the total energy
transport and the composition profiles of the reacting species behave al-
most as they would in a system containing only the reacting components,
but with effective temperature and pressure boundary conditions different
from those which are actually imposed. In other words, the addition of

an inert species to a binary reacting gas in equilibrium, while holding the
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temperature and pressure boundary conditions fixed, has nearly the same
effect on energy transport and composition profile shapes as does adjust-
ing the boundary conditions to provide a lower degree of dissociation in

the original, pure, binary gas.

The Chemical Equilibrium Flow of a Gas with Three Reacting Components

The second example involving three components is based upon the
reaction of equation 117. The dependent variables and energy eigenvalue

E are expressed by the following expansions:

6 = ol 4 eotlt)y, ..

X, = 0 + EX(1)+...
_ (1)

1"'1 = 0 + eI"l + ...

o =0+ ExMe . (137)
_ (1)

1"2 = 0 + eFZ + oo

=50y xMy, ..

The dimensionless expansion parameter € is defined very much
as it has been in the previous perturbation analyses, and it corresponds
to a restriction on the extent to which A3 dissociates into Al and AZ in the
gas. However, it is conventional to define the equilibrium constant for
this reaction as in equation 118, and for most actual reactions which fit
the scheme of equation 117 this means Kn decreases exponentially with
increasing temperature, rather than increasing exponentially as before.
Therefore, although the definition of € is similar to that of previous

cases in principle, it is formally different. In the present example, the

equilibrium constant can be represented by the equation:

+6 /6
a

K = Ce . (138)
n
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As in the procedure leading to equations 53, 54 and 55, this provides the

definition of € and the suitable approximate expression for Kn :

6, -3 -G
€ = (Ce ) = (K (M =9])) (139)
(1)
2w g l1a e %a° + (140)

where & = QaE(o) .

The zeroth-order solution corresponds to a gas composed entirely
of A3 and is given by the energy equation alone, as in the previous pertur-
bation analyses:

ol = 1 _gloly | (141)

When the expansions of equation 137 are substituted into equation

112, again assuming a; = a,=a; ~ 1, the O(e) terms provide:

(1)
dx
(1) 1 M-1. (1) 2B
I = - - { ) % (142)
1 dn M 1 l—E(OiY]
Similarly, from equation 113:
m
2
1y p-_=
i P e I (1 () 2B ) (143)

The mole fractions are related through the equilibrium constant. From

equations 118, 137 and 140:

Xp0%, = e . (144)
Also, from equation 119:
1) ™2 1
1“1()——&1— Fé)zcm (145)

1
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Equations 142, 143, 144 and 145 can be combined to yield a single

(1) (1))
> )

1 Unfortunately, this equation is

differential equation in x (or x

non-linear, in general, due to the nature of equation 144, However, this

difficulty can be overcome by noticing that if the reactant AZ has a low

molecular weight while that of the other reactant is relatively large, then
rnz,/m1 may be negligibly small. This situation applies to an interesting
group of reactions involving the halogens and hydrogen. For example, if

A= H. and A. = Br

5 5 1 then mz/m = 1/80; if A =1, then mZ/ml =

2" 1

1/127. It is entirely consistent with the perturbation treatment to neglect

terms of this size. It follows from equation 145 that

I“l(l) 2 G . (146)

If the effect of changes in the molecular weight ratio mZ/rnl

were of some particular interest, the problem could have been treated

with a two-parameter perturbation technique, using mZ/rnl as the second

expansion parameter., This would clearly have led to a result identical
with equation 146. For present purposes it is sufficient to carry the so-
lution only to O(€), disregarding terms O(e mZ/ml). (No terms
O(mz/ml) appear, because if € = 0 there is no dissociation and there-
fore no diffusion. )

With the help of equations 146 and 110, xl(l) can be obtained
easily from equation 142. The result is:

- ga-8My+ra - gl

{ n)

(147)

where
C!

G =




-100-
Substitution of equations 144 and 147 into equation 143 and a

straightforward integration yield:

-an .
X]. Xl

If E(O) << 1, which has been assumed in the previous analyses,

and if also B << 1, then 1_'2(1) can be approximated as follows:

() o - [cx(1+LVI) } C'(1+7-LY”] (149)
2 GER (G+F)Z

where
cel®) 4 Z(i‘;_l) BF

S G+ F

The leading influence of the diffusion processes on the energy
transport and temperature profile is obtained from the O(e) terms of

the energy equation, which provides:

(1)
-—J—dgn +H13I"1(1)+H23 I“Zm = g | (150)

With 1"1(1) and l_'?fl) given by equations 146 and 149 , respec-
tively, the integration is straightforward. The appropriate boundary con-

ditions are 8(1)(0} = 6(1)(1) = 0, and consequently:

) . -an [ [a(G+F)-C'7 1, [oG+F)-2C"] L(l+an)
6, = H ,C'M- H,e {[——-———]a-}' [ l }

(G+F)° (G+F)* o’
gty 4 ) (151)
where
(1) _ [ot(G-i-F)—C'] 1 [O{(CHF)-ZC'] g
J = H ka2 [
23 (G‘i‘F)Z o (G+F)Z ch
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and
(1) _ . a(mF)—C'] (1-e~%)
EYlsH o+ B
13 23 {[ P~ =
. [oa(G+F)-zc'] L1 -e %+en] fi5E3
(G+F)% o

It will be recalled that the energy transport (to O(€) ) is given by:

wQ

AT
o

o)

= g4 et

Two independent constants, G and F , appear in the solution.
(The constant C' is related to G, equation 147.) These constants are
determined by the proportions of the two chemical elements involved in

the reaction. For example, assume Al = I2 and A2 = HZ « I I\/II and

MH are the total masses per unit volume of the elements iodine and hy-

drogen, respectively, in the container, the following equations must be

satisfied:
p m ; l-x%.-x
5 o 1 1 25
MI = ®T_ J’(xl+—2——)§(ﬂ)dﬂ (153)
o
0
p . m : l-x, -x
N 12 %
I\"IH -ﬁo—' J(XZ-I-_Z—)@(Y”dv‘ (154)
0

These equations determine the constants G and ¥ for the hydrogen-
iodine example, and the procedure would be the same for any reaction fit-
ting the present formalism.

No mention of rate effects has been made in this analysis, and the

solution just obtained applies only in the main stream. In this respect, it
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is similar to the binary solution for chemical equilibrium with § = 0,
obtained in Section V. Because the analogy between the present problem
and the binary case with regard to rate effects is so direct, and the for-
malism of the two cases is so similar, it is apparent that the three-
component reaction exhibits the same boundary-layer behavior as the
binary case; i. e. the energy transport and the composition profiles in the
main stream are essentially independent of the catalytic nature of the
walls when the composition is nearly in local chemical equilibrium. An
analysis of rate effects for the multi-component case in general would
exactly parallel the boundary layer treatment of the binary case, and none
will be presented for the present example.

It is the boundary-layer character of the problem with respect to
rates which makes it possible to evaluate G and F in the present ex-
ample by means of equations 153 and 154, using the main-stream solution
for xl(*l) and XZ(Y\) ,» and ignoring the boundary-layer behavior of the
mole fractions. When the boundary layer concept is really valid, it fol-
lows that the boundary layvers are very thin relative to the characteristic
length of the system, as was shown in connection with the binary problem.
Therefore, a negligible fraction of the total mass of the reacting mixture
is contained within the boundary layers, and the boundary conditions on
the mole fractions themselves, which are directly related to the total
masses of various elements present, depend only on conditions in the main
bulk of the mixture. With regard to this point, it may be worthwhile to
repeat that although the gradients of the concentrations change rapidly in
the boundary layers, the concentrations themselves remain almost con-
stant. This was shown in the boundary layer analysis for the binary

problem.
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A Numerical Example: the Hydrogen-Iodine Reaction

An example based upon reaction 12 + H ZHI has been

piA

calculated to illustrate the features of the three-component reacting gas
in equilibrium. The hydrogen-iodine reaction was chosen because (a) it

meets the requirement imposed in the analysis that rnZ/m be negligibly

1
small, and (b) appreciable amounts of I2 and I—I‘2 are present at relatively
low temperatures, i.e. 2000°K or less. The results, given by the per-
turbation treatment just discussed, are presented in figure 11, For this
example the temperature at the hot wall is ZOOOOK, and at the cold wall it
is 1500°K. It is assumed that the proportions of iodine and hydrogen in
the system are such that the mole fraction of I2 at the cold wall is 750/0 of
that at the hot wall. Formally, the dimensionless solution is independent
of the pressure boundary condition, P > because the parameter € is de-
termined by the temperature alone. However, the solution is actually

valid only if P, is about one atmosphere or more, because at low pres-

sures atomic hydrogen and atomic iodine would be present in appreciable

portions, and the reactions H ZH and 12 ——— 21 could not be

2

omitted from the formalism.

When thereisnoiodine present, the gas is composed entirely of
molecular hydrogen, and the energy transport is due to ordinary thermal
conduction alone. This situation, in which there can be no pressure-
gradient influence, is shown by one of the curves in figure 11. Of course,
if the pressure and temperature conditions were such as toc permit appre-
ciable dissociation of the H,, the qualitative behavior would be quite dif-
ferent in the absence of iodine; in fact, it would then be similar to that

shown for bromine dissociation in figure 5.



-104-

The second curve corresponds to a composition which is 30%
molecular iodine at the hot wall. The energy transport is increased due
to the diffusion mechanism, but not so extensively as in previous exam-
ples. This is because the chemical heats of formation involved in the
hydrogen-iodine reaction are relatively small.

In contrast to the binary dissociation example of figure 5, the
pressure gradient enhances the energy transport in the present case.
This is because the diffusive energy flux is carried primarily by the heavy
iodine molecules, which have the highest heat of formation in this case,
rather than by the lighter molecules, as in the bromine dissociation ex-
ample. The pressure diffusion mechanism tends to cause the heavier
molecules to diffuse in the direction of increasing pressure, which in this
case is also the direction of energy flow. It follows that if the heavier
molecules make the largest contribution to the diffusive energy transport,

the pressure gradient will increase the energy flux.

Summary: the Multi-component Gas in Local Chemical Equilibrium

The extension of the approach presented for the frozen two-compo-
nent flow to cover a general multi-component gas appears to be com-
pletely straightforward. Unlike the frozen flow, the two-component gas
in local chemical equilibrium is governed by a set of equations of the
same order as those for a single-component gas, a feature which leads to
the existence of reaction boundary layers. The manner in which this
characteristic carries over to the general multi-component gas is worthy
of some attention, and in this section an effort has been made to clarify
this point.

Although only two examples of gases involving three components
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have been considered in any detail, these examples provide a basis for a
few conclusions that should apply to the multi-component case in general.
The actual calculation for any number of components appears to be sim-
ilar to that for three components, in principle, although not in complex-
ity. In summarizing the discussion of the multi-component gas in equi-
librium, the following remarks seem appropriate:

(a) Only in the binary reacting gas in local chemical equilibrium
is the order of the system of equations the same as for one component.
This feature leads to the existence of reaction boundary layers which
cause the energy transport and composition profiles to be practically in-
dependent of the catalytic nature of the walls. Furthermore, the compo-
sition is completely determined in terms of the local pressure and tem-
perature. The addition of each component beyond two, whether reacting
or inert, raises the order of the set of equations by two. This does not
change the boundary layer character of the solution with respect to wall-
surface effects, but the composition is no longer completely determined
by the local temperature and pressure. The higher order of the equa-
tinns provides (or results from) the dependence of the composition and
energy transport on the proportions of various chemical elements in the
system.

(b) When an inert component is added to a system of reacting
components in equilibrium, the qualitative behavior of the energy trans-
port and composition profiles of the reacting species is unchanged. In-
stead, the effect is similar to that of shifting the pressure and tempera-
ture boundary conditions imposed on the original system of reacting com-

ponents. On the other hand, two systems involving different numbers of



-106-
reacting components in equilibrium may behave quite differently, both

qualitatively and quantitatively.
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VIII. CONCLUDING REMARKS

By using a simplified flow configuration and employing a perturba-
tion technique, it has been possible to deduce with relative ease some of
the principle features of energy transport in chemically-reacting gases
under the influence of a pressure gradient.

When the gas is nearly chemically frozen, the energy transport
depends very strongly on the degree of catalytic action provided by the
walls. If the walls are completely inert, the diffusion processes make no
contribution to the energy transport, which is therefore due to thermal
conduction alone and independent of the pressure gradient. On the other
hand, if reactions at the walls tend to drive the composition toward local
equilibrium at the boundary surfaces, the energy transport is greatly in-
creased by the diffusion flux. Under these circumstances the energy
transport is a function of the pressure gradient, through the mechanism
of pressure diffusion. A vortex flow operating at Mach numbers of the
order of one to three, for example, might be expected to have as much as
forty to fifty per cent more (or less) energy transport than a stationary
gas under similar conditions, if appreciable dissociation is present. The
energy flux can be either increased or decreased, depending on the reac-
tions involved and the direction of the pressure gradient relative to the
temperature gradient.

In contrast to the frozen flow, which is diffusion-dommnated, the
reacting gas which is nearly in local chemical equilibrium is character-
ized by energy transport which is practically independent of the catalytic
nature of the walls. In this case the flow is reaction-dominated, and wall

surface effects are confined to reaction boundary layers. The energy
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transport can also be a strong function of the pressure gradient in equi-
librium flow, but this is partly due to the effect of the pressure (or den-
sity) on the chemical reactions, which in turn is influenced by the pres-
sure gradient.

The perturbation technique also provides an indication of the in-
fluence of rates on the energy transport. The strongest effect is felt when
the flow is nearly in chemical equilibrium and constrained by non-cata-
lytic walls. As the reaction rate decreases relative to the diffusion rate,
so that the gas departs from equilibrium, the reaction boundary layers
""grow' rapidly, carrying the damping influence of the non-catalytic walls
into the main stream and sharply reducing the energy transport. The
rate effects are not so strongly dependent on the pressure gradient with
non-catalytic walls, but are influenced by it to some extent. It is par-
ticularly interesting that with catalytic walls the rates have no effect on
the dimensionless energy transport variable unless there is a pressure
gradient.

Although these conclusions are largely based upon an analysis of a
two-component reaction, the behavior of the multi-component frozen flow,
at least, can be expected to be qualitatively similar, in general, to that of
the binary frozen flow. In some respects, the general equilibrium flow is
more interesting and less simple, because of the boundary layer charac-
teristic. In the binary case, the equations which describe the flow are of
the same order as for a simple gas, and this leads directly to the exist-
ence of boundary layers. It has been shown that the addition of each com-
ponent beyond two to the equilibrium flow raises the order of the equations

by two. The higher order does not alter the boundary layer behavior with
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respect to rates, which persists with any number of components when the
mixture is in chemical equilibrium. Instead, the proportions of various
chemical elements present in the gas determine the additional constants
provided in the solution by the higher order of the equations.

The effect of adding an inert species to a reacting system in equi-
librium, with fixed temperature and pressure boundary conditions, is
much the same as shifting these boundary conditions onthe original sys-
tem. On the other hand, two such systems containing different numbers
of reacting components may exhibit very different qualitative and quanti-
tative characteristics.

Although problems incorporating chemical reactions and diffusion
processes are inherently extremely complex, the techniques of the pres-
ent work have made it possible to understand many of the features of en-
ergy transport in reacting gases by employing a relatively simple analy-
sis. To avoid unnecessary complication, the possibility of a mass flow
parallel to the energy flux (e. g. through porous walls) has been excluded
in the analysis. The effect of such a mass flow on the qualitative nature
of the problem is usually relatively minor and is discussed briefly in
Appendix B.

As a result of this study, it is evident that energy transport in
high-temperature gas flows may be quite sensitive to the pressure gra-
dient. This effect will require careful consideration in many applications

of current and future interest in the field of gasdynamics.
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NOMENCLATURE

Following the definitions of symbols, the equation(s) in which the
symbol is first used and/or defined is referenced in parentheses, when
appropriate.

The superscript (i) attached to any symbol, where ''i'"" is an inte-
ger, designates the term of order '"'i" in a single-parameter expansion of
the quantity represented by that symbol; similarly, the superscript (ij)
designates the term of order '"i" in the first parameter and of order "j"
in the second parameter in a two-parameter expansion.

The symbol O(A) means '""of the order of A',

An underscored symbol represents a vector.

An overscored symbol represents a mean value.

A chemical affinity (31); integration constant (used repeatedly)

A, abstraction for the chemical formula of any molecule appearing

in a reaction equation (15, 36, 114, 117)

2; ratios of diffusion coefficients, treated as equal to one (112,113)
B integration constant (used repeatedly)

e &7 integration constant (used repeatedly)

Ci integration constant (used repeatedly)

=3 mean thermal speed of particles (19)

ﬁp mean specific heat at constant pressure of mixture (41)

Cp' specific heat at constant pressure of species 1

,G—ilj multi-component diffusion coefficient (10)

D.1j binary diffusion coefficient (12)

E dimensionless energy eigenvalue corresponding to total energy

flux = wQ/ ATO (41)
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activation energy in Arrhenius law (44)
thermodynamic specific internal energy of the gas (9)
body force, i.e. mass-proportional force (17)
integration constant (used repeatedly)
total external force per unit mass acting on species j (8)
Boltzmann distribution function for species j (1)
integration constant (used repeatedly)

a function of the distribution function of fj (1)

m
enthalpy parameter in binary case = (h1 -t h,)Le/C_T _(41)
m, 2 p @
enthalpy parameter in three-component case
m,
= th - e B JL&/C T {111)
i mj j P o

standard chemical heat of formation at 298. 16°K and 1 atm. (41)
partial specific enthalpy of species i

T

2
= AH, (T))+ f C,, dT (14, 41)
i T i

1
"flux'' in the formalism of irreversible thermodynamics (25)
integration constant (used repeatedly)
rate of production (moles/cm3—sec) of species j (5, 16)
equilibrium constant expressed in terms of concentrations (46)
Boltzmann's constant (14)
backward (reverse) reaction rate (16)
forward reaction rate (16)

Lewis number = C-p nDlZ/}\ (41)

"phenomenological coefficient' in the formalism of irreversible

thermodynamics (25)

molecular weight of '"heavy' species (18) ; Mach number (37)
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total mass per unit volume of species A, in system (122)

2
total mass per unit volume of element hydrogen in system (154)

total mass per unit volume of element iodine in system (153)

molecular weight of "light' species (22); temperature exponent

(46)
mass flow

molecular weight of species A, (122)

2
molecular weight of species j (6)

total concentration (moles/cm3) of the mixture (10)
concentration (moles/cm3) of species j (5)

total concentration (moles/cm3) at hot wall (N = 0) (46)
pressure (stress) tensor (2, 13)

static or thermodynamic pressure (11)

static pressure at hot wall (= 0) (38)

energy flux vector (3, 14)

universal gas constant in perfect gas equation of state (45)

rate parameter = (wzkbn3/nD (46, 47)

12)‘1: 0
independent variable (length) (38)
radius of inside cylinder of a concentric pair (37)

specific entropy (27)

specific entropy associated with irreversible entropy production
alone (26)

partial specific entropy associated with species k (35)
temperature (10)
temperature at hot wall in channel flow (M= 0) (41)

temperature at cold wall in channel flow (") = 1)
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velocity component of mixture parallel to temperature gradient
diffusion velocity (4, 10)

tangential velocity component of mixture in cylindrically-

symmetric flow
mean velocity of species j relative to fixed coordinate system (4)

mass average velocity = 1/p Z m. Vj
i

partial specific volume associated with species k (35)
channel width in channel-flow approximation (37)

"force'' in the formalism of irreversible thermodynamics (25)
mole fraction of atomic species in binary case = nlln (42)
mole fraction of species i = ni/n (108)

abstraction for the chemaical formula of the third body in re-

combination (43)

(10)

extent of departure from local equilibrium by x in reaction

boundary layer (102)
"frequency factor" in Arrhenius law (44)

approplriate independent variable in reaction boundary layer

= M/E% (94a)

dimensionless parameter used to characterize temperature be-

havior of equilibrium constant = BaE(O) (54)
thermal diffusion constant (10)

dimensionless parameter which characterizes pressure gradient
(37, 38)

dimensionless diffusion flux of atomic species in binary case

=wWn ul/nD (41, 42)

1 12
dimensionless diffusion flux of species i in three-component

case = Wn, u /nD , (111,112, 113)
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mean specific heat ratio = Cp?CV (37)
dimensionless expansion parameter in perturbation analysis

(48, 56)

dimensionless expansion parameter in perturbation analysis

(48, 53;139)

dimensionless independent variable = r—rO/w (38)
dimensionless temperature variable = T/TO (41)
dimensionless activation energy = EA/kTo (55)

coefficient of thermal conductivity (14)

coefficient of viscosity (13) ; molecular weight ratio my /ml (112}
chemical potential of species i (29, 35)

expansion parameter in three-component analysis (120)
stoichiometric coefficient of species j in reaction g (15)

dimensionless expansion parameter in perturbation analysis

(85, 86)
dimensionless pressure variable = p/po (38)
mass density (mass per unit volume) (7)

expansion parameter in Chapman-Enskog solution tc Boltzmann

equation; effective collision cross section (19)
stoichiometric coefficient in binary reaction (155)
see figures

see figures

stoichiometric coefficient of species j in reaction g
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APPENDIX A

The Generalized Fourier Heat Conduction Law for

the Binary Reacting Gas in Chemical Equilibrium

When a reacting gas mixture of two components is very nearly in
chemical equilibrium, the concentrations are related by the equilibrium

constant:

- K _(T) (155)

where ny and n, are the concentrations of species A1 and AZ ; respec-

tively, and the reaction is represented symbolically by:

M~

A, { Al

Since n, = Xn and n, = (l1-x)n , where n is the total concen-
tration:
< Kn(T)
T-x T- : (156)
n

The molecular weight ratio nnZ/rnl = 7, and the density

p=n m=n [xml + (l—x)mz) , so the diffusion equation obtained from

equations 11 and 12 can be written:

1 1 - 1
u,-u; = DlZ [—_X(l—x) VX - (—_’E‘(l-x)er) = vp]. (157}

The mole fraction x 1is a function of pressure and temperature,
so that:

vT + (55) vp . (158)

If the mixture obeys the perfect gas law, p=n®T , then accord-

ing to equation 156:
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x(1-x) (1-77
IwEaes] ‘5 - W

ox
(=)
op T

When equations 157, 158 and 159 are combined, the pressure gra-

dient terms cancel, and the diffusion equation becomes:

_ 1 Ox
Up~by = Iyg ['x(l-xi “ﬁ"p:{ VT » (160)

Since XUy + (l—x)mzuz = 0 (according to equation 39), the en-

ergy flux given by equation 14 can be written:

o~ 0x
B == {A taD, T I FxT [ VL KLy

The mole fraction x and (8x/8p)T can be obtained in terms of
pressure and temperature from equation 156. Therefore, when the bi -
nary mixture is very nearly in chemical equilibrium, the energy flux can
be described by a generalized Fourier equation, where the effective coef-
ficient of thermal conductivity includes the effects of chemical reactions

and diffusive transport and is a function of the local pressure and temper-

ature.
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APPENDIX B

The Influence of a Mass Flow Through the System

In some of the gasdynamic applications in which the mechanisms
studied here are important, such as the vortex containment device for the
fission rocket, there is the possibility of a mass flow parallel to the tem-
perature gradient, through the use of porous walls or by other injection
techniques. Such a convection current may have a very considerable
quantitative influence on the energy transport. For example, when there
is appreciable dissociation in the gas (e.g. 30 per cent at the hot wall),
even a relatively small mass flow, with a velocity U parallel to the tem-
perature gradient of the same order as the diffusion velocities, may
change the energy transport by roughly a factor of two compared with that
in the absence of convection (10). The mathematical complexity of the
present investigation has been reduced somewhat by excluding the possi-
bility of convection through the walls, primarily because the qualitative
nature of the associated effects is relatively easy to understand.

The convective mass flow carries with it the thermodynamic en-
thalpy and chemical heat of formation of the various species, and in this
way transports energy. The mechanism is very similar to that of diffu-
sion; in fact, the convection simply adds a velocity component + U to
each of the diffusion velocities, so that it tends to either augment or
counteract the influence of diffusion, depending on the direction of the
mass flow., Ordinarily the convection does not change the qualitative be-
havior of the energy transport, but merely alters the magnitude. This is

because in most applications of interest the convective velocity U is
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practically independent of the pressure gradient and concentration gradi-
ents, unlike the diffusion velocities, and the latter therefore predominate
in dictating the qualitative behavior. Of course, the velocity U is re-
lated to the local concentrations through the continuity equation, i.e.

m
n inmi

U =
where m is the mass flow per unit area. Therefore, the effect of the
convection is not usually as straightforward as if a constant U were
superimposed upon the diffusion velocities. It should also be mentioned
that the velocity component U is related to the pressure gradient through
the momentum equation, but in most practical applications other velocity
components are so much greater than U that this coupling is unimport-
ant. For example, in the previously mentioned vortex applications, the

tangential velocity V >> U, and the radial equation of motion is practi-

cally independent of U, i.e.:

dp -
dr - P -

When the coupling between U and the pressure gradient is not negligible,
convection will ordinarily be the predominating mechanism of energy
transport, and the qualitative and quantitative effects of diffusive trans-
port will be relatively unimportant.

The presence of a mass flow through the walls also changes the
manner in which boundary conditions are applied. In the previous section
it was shown that with the addition of each component beyond one in frozen
flow, or beyond two in chemical-equilibrium flow, the order of the set of
equations is raised by two. This is true whether or not there is convec-

tion. It was demonstrated that the solution can be put in a form such that
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the constants which follow from the higher order of the equations corre-
spond to the mole fractions of the various species at an arbitrary point,
e.g. at one wall. When there is no mass flow, these constants are de-
termined by the total masses of the various chemical elements in the
system, through expressions such as equations 153 and 154. On the other
hand, when there is a mass flow through the system, the constants are
evaluated by specifying the mass flows of the various species. For ex-
ample, the mole fraction of species j is clearly proportional to the mass
flow of j, i.e, rhj = xjn(U+uj) . The presence of convection does not
alter the boundary layer behavior with respect to the catalytic action of
the walls, which is always associated with chemical-equilibrium flow. In
the binary gas in local equilibrium the profiles are completely determined
in terms of the pressure and temperature, just as with no convection, and

specifying the mass flux fixes the pressure at some arbitrary point.
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INFLUENCE OF DIFFUSION RATE/REACTION
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ENERGY TRANSPORT IN CHEMICAL
EQUILIBRIUM OR NEAR-EQUILIBRIUM
CHANNEL-TYPE FLOW OF BROMINE
WITH 30% DISSOCIATION AT THE
HOT WALL.
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ENERGY TRANSPORT IN CHANNEL-TYPE

EQUILIBRIUM FLOW OF DISSOCIATING
BROMINE IN THE PRESENCE OF ARGON

T, = 125K
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FIGURE 10.
ENERGY TRANSPORT IN CHANNEL- = 1500° K
TYPE EQUILIBRIUM FLOW OF ILLLLLLLL L L LI L
HYDROGEN AND IODINE ' K
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