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PART I 

The rearrangement of renchone (1.3. 3-trimethylbicyclo( 2 . 2 . 1}-

h eptan-2 - one) to 3. 4 - dimethylacetophenone hab been car ri ed out using 

a sample labeled with carbon - 14 in the methyl groups of the 3-position. 

In concentrated sulfuric acid at 90 · . 960/0 of the reaction takes the follow-

ing cour se: 

> 

*CH 3 

PART II 

Optically active methacrolein dimer.labeled with deuter i um at 

the a ldehyde hydrogen. rearranges thermally with complete retention 

of optical activity to the isomer in which the deuterium is shifted to 

the vinyl position on the ring. The rearrangement is accompanied by 

HOCH
3 

I C-D 
I 1/ 

° CH
3 

D00 CH 3 

I C-H 
II 

° CH 3 



substantial competitive formation of methacrolein by a Diels-Alder 

dissociation, lending support to the presumption that this and analogous 

isomerizations represent partia l reverse Diels-Alder reactions. The 

results rule out the inte rventi on of a linear intermediate in the Di els­

Alder reaction of methacrolein, and make it unlikely that similar inter­

mediates are involved in other Diels - Alder reactions. 
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PART I 

MECHANISM OF THE REARRANGEMENT OF FENCHONE 
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PART I 

Introduction 

The oxidative rearrangement of fenchone (1.3. 3 - trimethyl­

bicyclo[2. 2. j ]heptan-Z-one. I) in conc entrated sulfuri c acid at 80 - 100 · 

affords 3. 4 -dimethylacetophenone (II) in a bout 45% yield ( 1. Z). Under 

7 

I II 

similar conditions. camphor (III) fur nishe s a small amount of 3.4 -

III 

dimethylacetophenone (3. 4). and camphenilone (IV) is converted to 

p - methylacetophenone (V) in 15% yield ( s). 
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IV V 

At first sight, the overall conversions appear to involve drastic 

and unusual molecular displacements, but on closer inspection they 

can be rationalized, as N oyce has proposed ( 5), by a series of more 

or less conventional t r ansformations . These are illustrated in F igure 1 

for the rearrangement of fenchone; wavy lines in the formulas designate 

bonds whose configurations are unspecified , and starred atoms trace 

the courses of the indicated methyl groups. 

Step 1 requires no comment other than the observation that 

simple ketones have been found to behave as fully ionized base s in 

sulfuric acid (6). The 1, 2 · shift of the methyl group represented by 

S tep 2 is an example of a well known proc ess in the reactions of cal· 

bonium ions ( 7), and is known as a Nametkin rearrangement when it 

occurs in bicyclic systems (8,9)* . S tep 3, the overalll, 2 - shift of a 

hydroxyl group , has few precedents, but it undoubtedly occurs in the 

isotope - position r earrangement of l4C - labeled benzopinac010ne (VI ) 

indicated below, under conditions similar to those used in the rearrange-

ment of fenchone (1 0) . However, an analogous rearrangement was not 

*Reference 8 is a recent comprehensive review, mechanis tic ­
ally oriented , of the carbonium - ion rea rr ang ements of bridged bic y c1ic 
s ystems. 
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observed when labeled pinacolone (VII) was heated with concentrated 

C 0 
I II 

C-C-*C-C 

I 
C 

vn 

sulfuri c acid for 18 days at 40 · (11) . 

Step 4 is another example of a 1, Z- alkyl shift, leading here 

to a rearrangement of the carbon skeleton commonly known as a 

Wagner -Meerwein rearrangement (8) (alll, 2 - alkyl shifts are some -

times classified as Wagne r-Meerwein rearrangement6 ( l2) .) , Step 5 

is typical of fragmentations frequently encountered in the carbonium-

ion reactions of substituted bicyclic compounds, another example of 

which is the conversion of a. - pinene (VIII) to limonene (IX ), among other 

products (13). 



VIII 

( 
-H+ 

IX 

The final dehydrogenation in Step 6 is thought to take place 

by an aromatization mechanism proposed by Doering and Beringer (14) 

for similar reactions, according to which a pyrosulfate intermediate 

loses the elements of sulfur dioxide and sulfuric acid. In the rear­

rangement of fenchone, this mechanism could operate as followS!: 



(¥ 
{-SO-O- S O H 
\..>0 2 3 

7 

> + + 

Dehydrogenation woul d be c o mpleted in an analogous manner. What-

ever may be the precise mec hanism of ~te? 6, the reality of an inter-

mediate such as that leading to it is made plausible by the observation 

that I - methyl - 4 - acetylcyclohex- l - ene (X) is converted to ,e- methyl -

a cetophenone by concentrated sulfuric a cid (15) . 

X 



a 

Noyce has also proposed ( 5) that the rearrangement of campho r 

to 3. 4-dimethylacetophenone takes place by the initial formation of 

fenchone which then yields product as outlined in Figure 1. A mechan-

ism for the conversion of camphor to fenchone was not suggested. but 

a possible route i s illustrated in Figure Z. A four-membered-ring 

intermediate such as XI has been proposed by Noyce to account for the 

formation of a-terpineol (XIU) in the nitrous-acid deamination of endo-

fenchylamine (XU) (1 6) (Figure 3) . 

Although the sequence of steps shown in Figure 1 plausibly 

accounts for the products observed in the rearrangement of fenchone. 

the available evidence by no means compels acceptance of this mech-

ani sm. particularly in view of the profound skeletal rearrangements 

which are known to accompany the carbonium-ion reactions of even 

the simplest bicyclic systems. F or example. Roberts. Lee and 

Saunders (17) have observed the following l4C distribution in the alcohol 

obtained by lithium-aluminum-hydride reduction of the acetate produced 

14 
in the acetolysis of ~-norbornyl - ~. 3- C ,e-bromobenzenesulfonate 

(XlV): 

OH 

0-8s 15% 

H 40 % 

XIV 
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The scrambling was accounted for by a combination of Wagner-Meerwein 

rear rangements such as Step 4 in F igure 1 and a series of overalll, 3-

hydride shifts whi ch were represented as taking place through the pos­

s ible intermediacy of the ion XV or its equivalent in terms of an equi­

libration of ion s involving intermediates such as XVI. Similar 1,3-

xv XVI 

hydride shifts were postulated to c ompete unde r c ertain c onditions with 

I, 2 -migrations of methyl groups in th e racemi zati on of o ptica lly a ctive 

l4c -labeled camphene (XVII) (18) , and wer e i nvoked to ac count for certain 

XVII 

of the products observed in the dehydration of fenchyl alcohol (XVIll)(l9). 



X V III 

Their occurrence is fully confirmed by these and numerous other 

examples ( 20) . 

In add! tion to the potential intervention of I, 3 -hydride shifts in 

the rearrangement of fenchone. there exists the possibility that 1.3-

alkyl shifts may be involved. This type of shift. rarely observed. has 

been postulated to account for the formation of 2. 4 - dimethyl - 3 - ethyl-2-

pentene (XX ) along with unrearranged olefin in the dehydration of 4 .4-

dimethyl-3 - ethyl - 2 - pentanol (XIX) {21} . 

C OH 

I I 
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I I 
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I 
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) 
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I ! 
C C 

I 
C 

j C L 3-.hif, 

+ I 
C-C-C-C-C 

! ! 
C C , 
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In consideration of the conceivable complications discussed 

above. additional evidence pertinent to the mechanism of the rearrange-

ment of fenchone was thought desirable and was obtained by rear rang-

14 
ing a sample labeled with C in the methyl groups of the 3-position. 

and determining the distribution of the label in the methyl groups of 

the resulting 3. 4-dimethylacetophenone. According to the mechanism 

postulated by Noyce. the l4c label (the starred atoms in Figure 1) 

would be equally distributed between the methyl group adjacent to the 

carbonyl and the one in the para position of the ring. The results of 

the labeling experiment have essentially verified this prediction. 

In the course of this study. the complete product mixtures 

obtained in the rearrangement of fenchone and of camphor were 

examined. 

Synthetic and Degradative Methods 

Radioactive fenchone was prepared as outlined in Figure 4 

by a procedure based on that of Beckmann and Schaber (22). The final 

product after dIlution with inactive fenchone had an activity of 

12.3 !. 0.05 pc/mmole (as the oxime) and was rearranged by heating 

at 90· for 30 min. with ten times its weight of concentrated sulfuric 

acid. The reaction mixture was diluted with water and extracted with 

pentane to isolate the crude product, which was found by vapor phase 
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o Il CH OH 
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Fi g o 4 - S yn the s i s of r a d i o a cti v e fe n chone o A mixture of 

the e xo a nd e n d o produc t s . 
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CHI
3 

(44o/~ ) 

0.810+0.006 
jJ.c ,l ;;;mole 

O-CH 
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3 
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1 KMn04 , t -OH 

O-CH 
3 

COZH 
COZH 

(78%) 
0.876+0.004 

,.c/mmole 

Fig. 5.- Degradation of radioactive 3.4-dimethylacetophenone. 

A c tiviti es are in microcuries per millimole C~c/mmole) and were de­
termined by the vibrating-reed electrometer method as described by 
O . K . Neville. J. Am . Chern. S oc •• 70, 3499-3502 (1948). Errors are 
expressed as average deviations in thecase of duplicate determinations 
or as standard deviations when three or more measurements were made 
(see Experimental). aMeasured as the Z,4-dinitrophenylhydrazone; all 
other compounds whose activities are indicated were assayed directly. 
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chromatography (v. p. c.) ( Fig. 7 -A ) to contain a bout 700/0 of 3 , 4-

dimethylacetophenone in addition to several other components who s e 

identity is discussed in a later section. Inactive 3. 4-dimethylaceto-

phenone was added to the mixture to facilitate isolation of the radi o-

active sample . The yield of radioactivity in the rea r rangement wa s 

44%. 

The degradation of the radioactive 3. 4-dimethylacetophenone 

and the activities of the degradation products are summarized in 

Figure 5; reaction yields are given in parentheses. The radioactive 

samples were not diluted with inactive material at any stage of the 

degradation. 

Results and Discussion 

14 
The distrihltion of radioactivity in the C-3.4-dimethyl-

acetophenone is summarized in Figure 6 . The sum of the activitie s 

48 .0 + 0.6"/0 CH
3 -----------~----

c=o 0.00/0 

1. 2 .:!: 0.0% 

50.8.±. o. 5"/0 

Figure 6 
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of iodoform and of 4 - m eihoxy-l, 2 -benzenedicarboxylic acid wa s taken 

as 100'0/0. and the radioactivity in the 4 - methyl group was taken as the 

difference between the value for 4 - methoxy - l, 2 - benze nedicarboxylic 

acid and that for 2. 4 - dibromo-5-methoxybenzolc acid. It is assumed 

tha t the a ctivity of the latt e r rep r esen t s the activity of the 3-methyl 

group. If the radioactivity in the 4 - methyl group i s actually significantly 

greater than 50%. it may represent the operation of a small l4C _isotope 

effect in the decarboxylation reaction {23}. The a g r eement between the 

activities of 3, 4 - dimethylbenzoic acid and 4-methoxy-l, 2-benzenedi-

carboxylic acid indic ates that isotope effects were not important in the 

res t of the degradation aeqllence . 

The results of the tracer experiment show that about 960/0 of the 

r ea r rangement can be accounted for by the mechanism discussed in the 

Introduction; this appears to be the most reasonable and straightforward 

way of representing the transformation. The remaining 4,. involves 

either a different pathway ( one pOGsibility is presented on page 24) 

or a prior equilibrati on of the l - methyl group in fenchone with one, but 

not both, of the methyl groups in the 3 - position . 

The major by - product of the rearrangement of fenc hone was 

the isomer . camphor . identified by its infrared spectrum and retention 

time in vapor phase chromatography {Figure 7 - A }. When ca.mphor was 

treated with sulfuric acid under conditions identical to those of the 

fenchone rearrangement. fenchone was one of the products (Figure 7-B), 



A 

a 

B 

17 

I 
b 

I I I 
c d e f 9 

F ig. 7 . - Vapor - phase chromatograms of rear rangement product 
mixtures analyzed at 190' using p ol yethylene glycol (Carbowax 1500) 
on a diatomaceous earth support. The indica t ed peaks represent the 
following compounds : (a), 3, 4-dimethylacetophenone; (b), carvenone; 
(c), unidentified; (d), camphor; (e), uni dentified; (f), fenchone; (g) , 
solvent. The distance between a and g on the time scale is 17 min . 
(A) - Rearrangement of fenchone at 90' fo r 30 min. (B ) - Rearrange ­
ment of camphor at 90' f or 1 hr.; the same mixture, except for rela­
tive proportions, was obtained after 30 min. at 90' . 
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lending credence to the sugges tion of Noyce t..~at fenchone is an inter­

Inediate in the l'earrangement of campho :' to 3 . 4 - dimethylacetophenone . 

The same mixture was o b tained in both rearrangements. although the 

relative proportions of the individua l components were diffe.ent . The 

major product of the camphor rearrangement, in a dditi on to 3. 4-dimethyl­

acetophenon e, is known to be carvenone (XXI) (4); the designated peak 

was assigned on this basi s . Carvacrol (XXII) and .e- c y mene (XXIII) 

have been formed from camphor under either dehydrating or acidic 

OH 

XXI XXII XXIII 

conditions ( 24). but authenti c samples of these compounds could not 

be correlated by their v.p.c . retention times with the other by-produ.cts 

in the rearrangements of fenchone and camphor . 

Subsequent to Noyce's formulation of the mec hanism for the 

rearrangement of fenchone, there have been made important dis­

coveries concerning the nature of the intermediates involved i n the 

carbonium ion reactions of bicyclic compounds ( 8); of parti cular interes t 

is the evidence which has l e d to the acceptance of bridged ions as 
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acc urate representat-icno jf these intermediates (17,25)* . Although 

the results of the l4C - tracer experiment provide no new i nformation 

in thib regard, the mechanism for fenchone rearrangement may be 

-~ef0rmlllated in the mo r e sophistica ted manne r shown_ i n Figure 8, 

",tarting from a first-formed b ridged ion (XXIV) . Because of the partial 

~ond between C - 6 and C -2. migration to ion XXV probably involve6 the 

~-me thyl group. Formation of ion XXVI then requir:;:s the ovel'a ll 

endo :nigration of the hydroxyl group. but this transfo:mation is not 

likely to be severely impeded by the partial bond between C -5 and C-3 

sinc e this bond is weak (because it concentrates positive charge at a 

secondary cen ter) with respect to the bond between C- 5 and C -4 (whi ch 

con centrates positive charge at a tertiar y cente r ). Fragmenta~ion of 

ion XXVI as shown leads to XXVII which could dehydrogenate as s ug-

gested previously. 

The in,erconver si ons of fenchone a nd camphor may be refor -

mula ted in a similar fashion (Figure 9). starting with the ion XXVIII 

whIch should be formed less readUy than XXIV since the strained 

four.membered ring structure implied by the partial bond between C-7 

and C-l is relatively less stable than the str uctur es implied by the other 

partial bonds in XXIV and XXVllI. 

.For a detailed description of the bridged ion. see reference 8 . 
Streitwieser (2 6) gives a pi ctorial orbital representation. 
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On the basis of evidence obtained in other systems, it is po ssible 

to speculate on the existence of intermediates such as XXIX or XXX. 

-:.c H:; 

OH 

XXIX XXX 

which could conceivably take part in the 1. 2 -alkyl shift which converts 

XXIV to XXV. The availabl e information requires neither of these 

formulations. In the reaction of 2 -£-anisylcamphenilol (XXXI) to yi eld 

2-£-anisylapocamphene (XXXIII), the symmetrical intermediate XXXII 

XXXI 

\ 

/ T :;.-

XXXIII 

i 
L 

XXXII 

I 

- - - :Ii-O- C H 
" 'f :; 

l 
J 
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was not involved since the product was o p ti cally a ctive (27). ( T he 

intermediate XXXII is not strictly analogous to XXIX, however, sinc e 

formation of XXXII requires an initial relatively unfavorable migr a tion 

of an ~ - methyl group . ) The symmetrical bridged intermediate X XXI V 

was found not to be important in the carbonium ion reactions of pen ta-

methylethyl derivatives (28). 

~H 
He,' \ 3 CH 

3 , + , / 3 c=-t 
H c / "CH 

3 3 

XXXIV 

It has been c oncluded ( 29,30) that protona ted cyclopropanes 

s uch as XXXV, analogous to XXX , are not intermedia tes in the neopentyl 

XXXV 

carbonium ion system . 

For the conversion oC XXV to XXVI , possible intermediates 

are the protonated and unprotonated oxides, XXXVI and XXXVII . There 

is at present no proof that either of these is an intermediate in the 

fenchone rearrangement, or that similar species are intermediates in 

the isotope-position rearrangement of 14C - benzopinacolone (VI) (10) 
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+ 

XXXVI XXXVII 

or other acid-catalyzed rearrangements of ketones (31). 

VI 

The approximately 4"70 of reaction in the rearrangement of 

fenchone which leads to radioactivity which is assumed to be in the 

~-methyl group at the expense of the methyl group adjacent to the 

carbonyl may be rationalized by the sequence of steps shown in Figure 

10 . Other schemes could undoubtedly be devised, but the advantage of 

the one given is that only one additional transformation is required 

over those proposed as the main reaction path. For the purpose of 

clarity, bridged structures are not explicitly fo rmulated, but are 

implied wherever applicable. 
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Species XXXVIII is formed by a relatively unfavorable Wagner-

M eerw ein rearrangement leading from a tertiary to a secondary c arboni-

urn ion. A 1, 2-hydride shift converts XXXVIII to XXXIX. In terms of 

bridged structures, the critical transformation is the conversion of 

XXIV, involved in the main reaction path ,to its mirror image (except 

14 
fo r C), XL. 

) 

OH 

XXIV XL 

Similar 1, 2-hydride migrations, although frequently encounte red 

in other carbonium-ion systems (32), are rar ely observed with bicyclo -

heptane derivatives. One rearrangement which does appear to involve 

this type of shift occurs in the formoly sis of ~-7-methyl-2-~-

nm'bornyl acid phthalate (XLI, Y : acid phthalate) (33). The produc ts 

are I-methyl-2-~-norbornyl formate (XLII ) and 5-~-methyl-2-~-

norborny l formate (X LIII); the latter may be derived by the conventional 

y 

XLI XLII 

o CH 
2 

XLIII 
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XL I V 

3 

2 

26 

1, 3-h y d ri de 
s h i f t 

1
1, 2 - h Ydr i de 

s h i f t 
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X LV 

HCO OH .. 

F IG . II 
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j 

II I 
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combination of Wagner-M eerwein rearrangement a nd 1, 3-hydrid e shift. 

A plausible route for the former is given in Figur e 11 ( s tarting f r om 

the first-formed carbonium ion (XLIV) represented for clarity as the 

unbridged structure). A shorter route for obtaining the intermediate 

XLV (actually its mirror image) from XLIV. shown below as the 

5 

XLIV 

bridged structure, would be the direct 1, 2-migr ation of the endo 

hydrogen at C -7, but this path is thought to be rela ti vely less likely 

because of interference to migration by the partial bond between C-6 

and C -1 (8). 

A pparenUy the familiar 1, 3-hydride shifts are not involved i n 

the rea r rangement of fenchone in either the main reaction path or the 

accompanying reaction leading to a different isotope distribution. 



Experimental 

. 14 
PreparatlOn of C -Labeled Fenchone* 

2-Hydroxymethylbicyclol2.2.l}hept-5-ene.- Dicyclopenta-

diene (119 g., 0.902 mole) and allyl alcohol (116 g. ,Z. 00 mole) were 

sealed into a SOO-mI. stainless-steel autoclave and were heated under 

autogenous pressure for 15 hr. at 165-180·. The reaction was repeated 

using the same quantities of materials, with heating at 175-180° for 

11 hr. The combined crude products were dried over anhydrous cal-

dum chloride and distilled through a lO-in. Vigreux column equipped 

with a variable take - olf head; 217 g. (49% yield and conversion) of 

product was collected at 89 - 95° (13 mm.), with practically all boiling 

at 93-94° (13 mm. ) , lit. (34) b.p. 92-95° (13 mm.). Analysis by 

v . p. c. (Column A, 174° ) indicated that the product consisted of greater 

than 90% of a mixture of two poorly resolved components, probably 

the exo and endo isomer s of the alcohol. 

2-Hydroxymethylbicyclo[ 2 . 2.1]heptane.- A total of 213 g. 

(1. 72 mole) of 2-hydroxymethylbicyclo( 2. 2.1]hept-5-ene as a 10% 

solution in dry ethyl acetate was hydrogenated at room temperature in 

a Par r shaking apparatus using platinum oxide catalyst . The hydrogen-

*Based on the procedure of Beckmann and Schaber (22). 



ation was carried out in se:veral batches, each time (except the last) 

using 25 g . of the unsaturated alcohol and 0 . 25 g . of plati num oxide. 

The cataly s t was rec overed and u sed in subsequent runs; only two 

separate portions were used. Hydrogenation was complete in about 

5 min . with fresh catalyst ( starting at 52 pSig . ) , and about 10 min . 

with used c a taly st. 

The crude product , after removal of the ethyl acetate , wa s 

distilled through a 10 - in . Vigreux column equipped with a variable take-

off head . T h e yield of mate r ial b oiling at 95-97. S· (13 mm.) was 206 g. 

(95% ; lit. ( 34) b. p . 95 - 96 · (13 mm .» . Analysis by v. p. c . (Column A , 

165 °) showed one main peak whose area was about 95% of the total peak 

areas . 

l - Methylenebicyclo[Z. 2.1 ]heptane (Nor oampllene) . - The ........ _ .... .............. .. .... - --
saturated alcohol fr o m the above preparation was converted to n o r -

camphene in three separate reacti ons; the m o st satisfactory procedure 

is reported here . 

Ten grams (0.43 mole) of sodium was add ed t o 50 g. (0.40 

mole) of the saturated alcohol dissolved in 50 ml. of dry toluene; a slow 

evolution of hydrogen began immediately . The mixture was slowly heated 

to r eflux and maintained there for 21 hr. A solid alcoholate began to 

precipitate after about 2 hr . The mixture was cooled to r OOID temper-

ature, the excess s odi um removed mechanically , and 150 ml. of an-

hydrous ether added followed by 40 g. (0 . 53 IDole) of carbon disulfide. 
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The mixture was maintained at reflux for 4 hr. , wi th occasional inter­

ruptions to stir the viscous mass and break up the lumps of alcoholate. 

Fer the last hour, the suspension was stirred magnetically. It was 

then cooled in ice and 60 g. (0.42 mole) of cold methyl iodide was a dded 

in small increments. The mixture was stirred at reflux for 4 hr., then 

overnight at room temperature. 

The sodium iodide was allowed to settle , and as much of the 

supernatant liquid as pOosible decanted and gravity filtered. The solids 

in the remaining sludge were dissolved in the minimum amount of water 

and the re oulting mixture extracted twice with ether. The extracts wer e 

combined with the main ether solution which was then dried over an­

hydrous sodium sulfate and distilled without fractionation to remove ether . 

Most of the toluene was removed under the reduced pressure of a water 

aspirator , and the crude xa.nthate distilled through a short Vigreux col­

umn to yield 22 g. of forerun boiling at 95 -167 " (14 .5 mm.) and 62 g. 

( 121'. yield) of the xanthate ester boiling at 167-169· (14. 50101 .), li t . ( 35) 

b.p. l8Z· (1 5 mm.). 

F-yrolysis of the xanthate was carried out in 10 OIl. of magne t ­

ically stirred silicone oil (General Electric SF - 8l (50» in a 100-ml. flask 

equipped with an addition funnel and a small Claisen head and condenser 

with an ice-cooled receiv~r conne cted to a Dry -Ice trap. The silicone 

oil was heated to 250· and the xanthate added dropwise . The decompo­

&ition products distilled out of the mixture, and heating at 250· was 
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continued after the completion of addition of the xanthate until no more 

liquid distilled. The last of the product was brought over under reduced 

pressure. The contents of the Dry lee trap were evaporated into a 

second trap and the liquid remaining at room temperature was combined 

with the main sample of crude product; the total wa~ taken up in 25 ml. 

of ether and wafihed with two 25-ml. portions of 10'0 aqueous sodium 

carbonate. The aquE'ous washings were extracted once with 10 ml. of 

ether. and the combined ether solutions dded over anhydrous sodium 

sulfate and distilled out of fre shly cut Rodium through a short Yigreux 

column. The material boiling at 120-1Z2° was redistilled fro m sodium 

and yielded 21. 7 g. of norcamphene boiling a.t l21-1lZo (7 49 mm.). 

25. 25 
n D 1. 4 715 (Itt. (Z2) b.p. 123-, n D 1.4719). A nalysis by v.p.c. - ~ - ~ 

(Column A . 95°) indicated a product of greater than 970/9 purity; the yield 

was 5010 based on the starting alcohol and 700/0 based on the xanthate used 

in the pyrolysis. 

I-Methyl-~-bicyclo[ 2. 2.1)hept -2-yl Formate (l-Methyl-~-

norbornyl Forrnate).- In the p r ocedure of Beckmann and Schaber (22). 
~~ 

norcamphene was converted to l-methyl-~-no!"borneol by the acid-

catalyzed addition of acetic acid to nor c amphene and subsequent !';apon-

ification of the acetate with methanolic potassium hydroxide; the result-

ing alc ohol was reported to be homogeneous I -methyl-~norborneol. 

In the present work, it was found that the lithium-aluminum-hydride 

reducti on of the acetate yielded a mixture which was shown by v. p. c. 
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(Column K . 144°) to contain about 650/. of I - methyl-~-norborneol and 

350/0 of 2-methyl- Z-hydroxynorbornane. The structure of the latter was 

assign ed on the basis of its acid-catalyzed equilib :- ation wi th I-methyl­

exo -norborneol. Variations in the experim ental conditions fo r the pre­

paration of the acetate l'esulted in only minor c hanges i n the proportion 

of the two product& . but about 95% of I -methyl-~-norborneol could be 

obtained by preparation and reduction of the formate ester. A repre ­

sentative procedure is given here. 

Norcamphene (1 0 . 5 g ., 0.0972 mole) was stirred a nd heated at 

60 _6 5 8 for 11 hr . with 30 g . of 9 0 '70 formic acid containing 10 drops of 

50'10 £1uoboric acid. The solution was diluted with lOO ml. of water and 

extracted with 60 ml. of ether in three portions . The combined ether 

extracts were dried over anhy drous sodium sulfate and used directly 

in the following reaction. 

I -M ethyl -~-norborneol. - The ether s olution of the formate 

was added dropwlse to 4.0 g. ( 0.11 m ol e) of li thium aluminum hydride 

suspended with stirdng in 30 ml. of anhydrous ether . Sti rring was con ­

tinued for 7 hr . afte r tho) completion of a ddition (several hours required 

for complete reaction). The excess hydride was decomposed with water 

and the mixture was acidified with 10% hydrochloric acid. The ether 

layer was decanted and the aqueous layer extracted twice with ether, 

then c ontinuously wi th pentane. The combined ether solutions were dried 
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over anhydrous sodium sulfate and distilled to remove the solvent. 

The pentar.e solution was dried and distilled to yield a 3mall aITlOunt of 

prod uct which was com bi ned with the main sample. which was then sub­

jected to high vacuum (lcsl' than 1 mm . ) to remove the last of the 

solver.ta . The rema~ning material, ohown by v . p. c. (Column K , 144-) 

to consist of a quite p u re mixture of the two alcohols c ontaining about 

95% of I - methyl -~-norborneol , weighed 11. 5 g . ( '340/& yield) and was 

used without furthe r p urification . 

l - M ethylbicyclol2 . 2 . 1 J heptan - 2 -one (l - Methylnorcamphor). ­

rhe conversion CIt I - methyl -~-no;:b(jrneol to the k e t one ,Jas carried 

out in several reac tions under varying conditions. The follow i ng iii 

, epr esentative of a satisfactory proc edure . 

Alcohol from the above preparation (11. 5 g., 0 009 13 mole) 

was dispersed with a magnetic stirrer in 75 m!. of water containing 

4 g . of ilulfuric a cid. To the stirred mixture was added ever a period 

of 2 . 5 hr . a solution of 8 . 9 g . (0 . 030 mol e) of potassium dichromate 

and 10 g. of :mlfuric acid i n 100 ml. of water; the m ixture was stirred 

at room temperature for a total of 36 hr . The progress of the reaction 

was followed by allowing the phases to separate and examining the 

organic liquid by v.p.c. (Column K . 145 °) ; after the first IG hr ., an 

add i tional 4.0 g . ( 0.014 mole) of potassium dichromate in 30 ml. of 

water was added , and at one point about 12 hr. before the completion 
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of reaction, the mixture was heated at 50" for 1 hr . 

The organic layer was taken up in pentane and the aqueous 

layer extracted twice, then continuously extracted overnight, with pen-

tane. The combined pentane solutions were dried over anhydrous 

sodium sulfate and distilled to remove solvent. The crude product was 

distilled through a 25-cm. Wheeler center-rod column to yield, after 

0.4 g. of forerun, 3.6 g. of I-methylnorcamphor boiling at 58-59· (11. 5 

mm.) and 0.7 g. of a higher-boiling fraction. The main fraction con-

tained less than 210 of impurities by v. p. c. (Column K, 141"); the impure 

fractions were combined for distillation with the crude product from a 

subsequent run. The yield of l-methylnorcamphor, including the estim-

ated amounts in the impure fractions, was 40~. 

In other runs, the I-methylnorcamphor in impure fractions was 

isolated by preparation of the semicarbazone and regeneration of the 

ketone using pyruvic acid. A sample of I-methylnorcamphor semi-

carbazone recrystallized three times from 500/0 aqueous ethanol had 

m. p. 201-20Z" (lit. (22) m. p. 209°). 

Anal. Calcd. for C
9
H

15
N

3
0 : C, 59 . 64; H , 8.34; N, 23.19. 

Found: C, 59.73; H, B.37; N , 22.85. 

14 . 14 
C -Methyl Iodide from C - Methanol.- In a representative 

reaction , 3.77 g. (0.118 mole) of methanol with an activity of about 

16 !-,-c/mmole was dissolved in 50 ml. of 55-58% hydroiodic acid in a 

100-ml. flask equipped with a 30-cm. wire-spiral-packed column with 
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an ice-water-cooled condenser and Dry-lce-cooled receiver protected 

by a Dry Ice trap . The reaction mixture was maintained at about 65° 

for two hours while the product distilled as it formed. The mixture 

was gradually heated to 80·. and the last of the product was distilled 

out of solution under reduced pressure. The crude product was distilled 

without fractionation from phosphorous pentoxide to yield 14.9 g . ( 89 '7.) 

of methyl iodide which was shown by v . p . c . ( Column A. 70 °) to be about 

99% pure . 

I-Methyl - 3. 3-di _(14C -methyl)bicyclo[ 2 . 2 . 1 J heptan-2-one 
~ ~ 

(Radioactive Fenchone).- To an ice -cold magnetically stirred suspension 
~--.,,,,~ 

of sodamide in 50 m1. of ether, prepared by the procedur e described by 

Vogel (3 6) from liquid ammonia and 3 . 1 g. ( 0.13 mole) of metallic sodium, 

was added 4 . 5 g. ( 0 .036 mole) of I - methylnorcamphor. The mixture 

was heated at reflux for 1. 5 hr., cooled in an ice bath, and 7 .0 g . 

(0.049 mole) of radioactive methyl iodide (about 16 ;J c/mmole) was added 

all at once , causing the immediate precipitation of a white solid . The 

mixture was hea.ted at reflux for I hr . , the coolant ( ice water) then 

drained out of the reflux condenser, and the ether and excess methyl 

iodi de were allowed to distill over to be collected at -7 8". The last of 

the low-boiling liquids was brought over under reduced pressure . In a 

pilot reaction prior to this particular run. a sample of the residue l'e-

maining after removal of ether and methyl iodide was quenched with 

wate r and t.~e ketone mixture isolated by extraction with pentane and 
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r emoval of the solvent. Analysis by v . p . c. (C olumn C, 162°) showed 

that it contained about 40% of fenchone. 600/. of fenchosa n tenone (I . 2-

dimethylbicyc10 l 2. 2.1]heptan-2-one) a nd a trace of I-methylnorcamphor. 

The residue was cooled in ice, and a fresrJ.y prepa red suspen­

sion of soclamide (fr o m 3 . 1 g . (0.13 mole) of sodium) i n 50 ml. of ethe r 

a dded. The mixture was refluxed for 1. 5 hr .• then cooled in i ce; 4 . 4 g . 

(0.31 mole) of th e radioactive methyl iodide was added and reflux con­

tinued for an additional 30 min. At this point wa s added 15 g . of a 17 1~ 

(by weight) solution of radioactive methyl iodide ( 2 . 6 g .• 0 .018 mole) 

·~n ether; this sol ution was recovered from c. previous preparation of 

ra dioactive fen r:hone and was used as such. since it was found imprac-

ti cal to separate the methyl iodide from the solvent ether. Reflux wa s 

continued for. 1 hr .• then the ether and excess methyl iodide were r e­

moved as before. 

The excess s oclamide was cautiously decomposed by the dropwi se: 

addition of water, and the mixture acidified with 10% sulfuric acid ( until 

the 100-ml. reacti on vessel was airp o s t full ) followed by the dropwise 

additIon of concentrat.ed sulfuric acid . The o rganic layer was examined 

by v.p.c. (Col umn A. 167 ·) and louncl. to contain about 75% of fenchone, 

13"/0 of 1-rnethylnor camphor and 12% of what are believed to be exo-

and endo - !enchosantenone . 

Inactive fenchone (4. 5 g . ) was added to the reaction mixture 

and the total continuously extracted for 28 hr. with pentane . The pentane 
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was removed by distillation, and the residue set aside for 45 hr. in 30 

ml. of methanol containing the semicarbazide acetate prepared by tri­

turating 4.5 g. of semicarbazide hydrochloride w i th 6.8 g. of anhydrous 

sodium acetate. ( Fenchone forms the semicarbazone very slowly, 

whereas I-methylnorcamphor and fenchosantenone react readil~) The 

solution was diluted with 100 m!. of water, extracted with two 40-ml. 

portions of pentane and continuously extracted for 48 hr. with pentane. 

The pentane solution containing the principal sample of product was 

filtered to remove semicarbazone which had separated out within one 

day, dried over anhydrous sodium sulfate and distilled to remove solvent. 

The crude fenchone was distilled through a short Vigreux column to 

yield 0.20 g. of forecut, 6 . 7S g. boiling at 69-'/2· (11 mm.) and 0.15 g. 

which was distilled using the full pump vacuum with strong heating of 

the pot and column. Analysis by v. p. c. (Column A. 16S·) indicated that 

the forerun contained about 100/0 of low-boiling impurities and that the 

other fractions contai.ned less than 1% of impurities. 

The pentane solution from the continuous extraction was separ­

ated from precipitated semicarbazones, dried and distilled; the residue, 

found by v.p.c. to contain a large proportion of impurities, was treated 

as before with semicarbazide acetate. The fenchone which was isolated 

and distilled (0. 40 g.) contained less than 1% of impurities. The combined 

weights of all the fenchone fractions represent a yield of 55 0/0 for the 
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methylation reaction if it is assumed that the inactive fenchone added 

to the crude product mixture was recovered quantitatively . 

The oxime of the radioactive fenc hone was prepared in 86% 

yield by heating a sample, quantitatively diluted with inactive fenchone. 

with hydroxylamine hydrochloride in pyridine solution on the steam bath 

for 8 hr •• and subliming the crude product; m. p. 159-160· (sealed 

capillary; lit. ( 22.37) m. p. of the c.-oxime. 158-160·). Radioactivity 

analysis (duplicate) indicated an activity for the undiluted fenchone of 

12.3+ O. OS I--c/mmole. 

Rearrangement of Radioactiv e F enchone 
~~..-.~ 

A sample of radioactive fenchone (6.52 g •• 0.0429 mole) was 

added all at once to 35 ml. of 95.5-96.50/0 sulfuric acid maintained at 

90· and the mixture was magnetically stirred and heated at 90· for 

30 min.; during this period a gas p06sessing the characteri stic odor of 

sulfur dioxide was evolved . The dark-brown reaction mixture. contain-

ing a considerable amount of charred material. was cooled to rooro 

temperature . poured over crushed ice, diluted to about 400 ml., and 

continuously extracted with pentane for 24 hr. A sample of the extrac t 

was withdrawn . the solvent removed, and the residue examined by 

v.p.c . (Column K . 192·; s ee ~~ ig. 7 - A). The boiler was replaced with 

a flask of fresh pentane, 5 . 0 g. of inactive 3,4-dimethylacetophenone 
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was added to the extraction vessel, and extraction continued for an 

additional 3 6 hr. The pentane solution from the first extraction was 

filtered through a bed of anhydrous magnesium sulfate mixed with an­

hydrous sodium carbonate; the solution from the second extraction was 

filtered through the same bed, followed by 1. 0 g. of inactive 3,4-

dimethylacetophenone to flush out the radioactive material. 

The combined filtrates and washings were distilled to remove 

solvent. an additional 7 .0 go of inactive 3. 4-dimethylacetophenone was 

added to the residue, and distillation continued (using a 30-cm. wire­

spiral-packed column) to yield 1. 2 g. of material boiling at 31-71 0 (0.1 

mm.). This fraction contained the by-products of the rearrangement. 

the priacipal one of which was shown to be camphor by a compari son of 

its v . p. c. retention time and infrared spectrum with those of an authentic 

sample . The camphor solidified in L'le head and condenser during dis­

tillation and was remelted with a small flame. 

Distillation was discontinued and the column washed down with 

1. 0 g. of inactive 3.4-dimethylacetophenone. Then 1.1 g . of a mixture of 

inactive by-products obtained from the rearrangement of inactive fenchone 

was added to the boiler. Distillation was continued using a 22-cm. 

heated vacuum-jacketed Vigreu:x Column equipped with a fractionating 

head; the fractions were examined by v . p. c. (Column K. 200 0
) as they 

were collected. Ten fractions (total weight: 4 . 4 g.) were taken before 



the p rincipal one (13.7 g . , 57 . 8 - 59 " (0.3 mm .». When as much of the 

p::-oduct as possible had be en collected, 1. 0 g. of inactive 3.4-dimethyl-

ac e tophe none was added to the r esidue and dis tilled t o yield 1.1 g. of 

sample which was combined with the main frac tion. Fractions 5-10 were 

combined and redis tilled to yield, in addition to thr e e for efractions. 

3 . 6 g . of a c ceptably pur e mat e rial which was added to the main sample 

( total weight = 18 . 4 s . ). which was then diluted to 20 . 0 g . wi th inactiv':'J 

3,4 - dimethy l a cetophenone . 

The 2 . 4-dinitrophenylhydrazone was pr·epar ed in 97% yield by 

heating on the stearn bath for 20 min ., I DS mg . (0. 729 mmole) of the 

final di luted p roduct. wi th 10% exces s of a 0 .15 F stock methanolic solu-

tion ( 0 . 3 F' in sulfuric a cid) of 2 , 4 -dinitrophenylhydrazine. The dr ied 

product was recrys tallized three times from dioxane alld vac uum d ri ed; 

m . p . 256-257· (Kofler bloc k , with some pre- melting at 253 °). Duplicate 

:,adioactivity anal ys es gave the value 1. 701 + 0 . 006 lJ.e /mmole. The - . 

yield of radioactivi ty in the r earran gem e nt was 441a. 

Degradation of Radioactive 3, 4 -Dimethylacetophenone 
~--~------~~~~~~--~----~~~--~~~~ 

Haloform Reaction of 3. 4-Dimethylacetophenone.- The pro-

cedure used was an a.daptation of that given in Shriner, Fuson and 

Curtin (39). A sample of the radioactive 3.4-dimethylacetophenone 

(SOl mg •• 3.38 mmole) was dissolved in 15 mI. of dioxane, and 5 ml. of 

10% sodium hydroxide was added. To the magnetically stirred !!Suspension 
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was added all at once 23 ml. of a solution prepared by dissolving 10 g. 

of iodine and 20 g . of potassium iodide in 80 mI. of water . After 1.5 

min. , sufficient 10% sodium hydroxide (about 2 ml. ) was added to react 

with the excess iodine ( the yellow-brown mixture became lemon yellow), 

and most of the sample was poured into 110 ml. of water. The remain~ 

lng yellow-brown sticky globules were dissolved in a little dioxane, and 

a few drops of 10"/0 sodium hydroxide was added to destroy the dark 

coloration . The solution was added to the main aqueous mixture and 

refrigerated overnight. 

The iodoform was collected and air - dried (586 mg . , 440/. yield), 

then recrystallized three times from 950/8 ethanol and vacuum - dried 

(l49 mg . ; m . p . 123 0 d. , Kofler block). Radioactivity analyses in quad­

ruplicate gave 0 . 810 :t 0.006 p.c/mmole fo r this material. 

The aqueous filtrate from above was evaporated to near dryness 

on the steam bath under reduced pressure (rotary evaporator); the residue 

was redissolved in 20 ml. of water , filtered , and acidified with 15 ml. 

of 100/0 hydrochloric acid . The resulting precipitate was suction - filtered 

from the iodine ~colored solution, washed well with water and air - dried 

( 221 mg., 44% yield) . It was l'ecrystallized three times from 60% (vol.) 

aqueous acetic acid , but since the product was still cream - colored, it 

was redissolved in the combined mother liquors and heated with two 

separate portions of activated charcoal. About 1 ml. of water was added 

to the hot solution; the 3 , 4 - dimethylbenzoic acid was allowed to crystallize 
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slowly to yield a clean whit~ product which was collected and dried unde r 

reduced pressure (71 mg . ; m. p. 165 -166· . sealed capillary; lit. ( 40) 

m . p. 166.5-). Radioactivity analyses i:l triplicate gave for the pure 

material O.873!:. 0 .005 p.c/mmole. 

3. 4-Dimethylphenyl Acetate.- The procedure was adapted from 

that of Emmons and Lucas (41). Peroxytrifluoroacetic acid was prepared 

by the dropwise addition (over a period of 1 hr.) of 48.5 g. (0 . 231 mole) 

of freshly distilled trinuoroacetic anhydride (3 8 - 40 ·) to an ice -cooled 

suspension of 6.5 g . ( 0 .19 mole) of hydrogen peroxide (as a 900/. solution) 

in 40 ml. of dichloromethane. The resulting water-clear solution was 

added dropwise over 1 hr. to 18.5 g . (0.125 mole) of radioactive 3.4-

dimethylacetophenone in 160 ml. of dichloromethane containing 83 g. 

(0.58 mole) of finely powdered disodium hydrogen phosphate; the solvent 

refiuxed from the exothermic reaction. and efficient stirring of the 

viscous mass was required to keep the reaction under control. The 

mixture was stirred and heated at reflux for I hr. after the completion 

6f addition. 

The solids were filtered out with suction and washed with lOO 

ml. of dichloromethane. and the filtrate and washings were extracted 

with 75 ml. of 6% sodium carbonate and dried over anhydrous magnesium 

sulfate. The aqueous layer was washed with a little dichloromethane 

which was added to the main body of solution; the solvent was removed 
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heated vacuum - jacketed Vigreux column to yield 0 . 4 g . of bright yellow 

forecut (52-59- ( 0 . (;; mm. ) and 16.7 g . of pale yellow liquid boiling at 

62 - 65" (0.6 - 0 . 7 mm.) . Flash distillation of the residue using a semi-

micro apparatus afforded an additional 0.8 g . of !Sample. The infrared 

spectra of the first two fractions were virtually identical to that of an 

authentic water - clear sample of 3. 4-dimethylphenyl acetate. The spec-

trum of the third fraction indicated that it was mainly the desired product 

contaminated by easily detectable impurities. The combined weights of 

the threa fractions represent an 87'7'0 yield . 

3 . 4 - Dimethylph:mol.- A s olution of 17 . 8 g. (0.108 mole) of _ ... - - ..-

radioactive 3. 4 - dimethylphenyl acetate in 150 mI. of anhydrous ether 

was added dropwise. at a rate sufficient to maintain a moderate reflux. 

to 4 .0 g . (0.11 mole) of lithium aluminum hydride suspended with stir-

ring in 30 ml. of ether. Stirring at room temperature was c()ntinued 

for 1 hr. and 15 min. after the completion of addition . The excess lithium 

aluminum hydri.de was decomposed with water and the mixture acidified 

with 130 ml. of 100/1 sulfuric acid. The aqueous layer was separated . 

fur ther acidified with 20 ml. of 100/0 8ulfuric acid and extracted with 40 

ml. of fresh ether. The aqueous layer was again acidified with 20 ml. 

of the dilute acid and continuously extracted with ether for 12 hr . 



44 

The combined ether solutions were dried over anhydrous m ag-

nesium sulfate and distilled through a 30-cm. wire-spiral-packed column 

to remove solvent. The boiler contents were transferred to a smaller 

flask, and distillation was continued with a bath temperature up to 165 -

to yield 1.5 g. of ethanol (70 - 77 . 5 °). The residue, which solidified on 

refrigera.tion, was recrystallized from !:-hexane, and the; mother liquors 

repeatedly concentrated until no more 3, 4-dimethylphenol could be ob-

tained; the combined air-dried samples weighed 11.7 g . (89% yield). 

3, 4-Dimethylphenyl-3, 5-dinitrobenzoate.- A portion of the - ~ --~ ..... - ........... - ,., 

radioactive 3. 4-dimethylphenol was recrystallized once more from !:-

hexane; 104 mg. (0.852 mmole) of the recrystallized ma.terial was mixed 

intimately with 0.Z5 g . (1.1 mmole) oi 3,5-dinitrobenzoyl chloride and 

heated on the steam bath until most of the mixture had liquified. Pyridine 

(1 mJ..) was added to dissolve the -sample completely, and the solution 

heated on the steam bath for 10 min. The 801ution was cooled to room 

temperature, 6 m1. of 5% sodium carbonate solution was added, and the 

resulting precipitate was collected by suction filtration, washed with 

water and vacuum dried (131 mg •• 49% yield). The sample was twice 

recrystallized from 959'0 ethanol (activated charcoal was used in the first 

recrystallization) and dried for 3 hr. at 60· (< 1 mm.); m . p. 181-18Z· 

(Kofler block). with some peripheral melting at 171-174 ° followed by 

14 
resolidifica.tion (lit. ( '2) m.p. 181. 0·) . Duplicate C analyses gave 
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O.868.:!:. 0.001 floc/mmole. Further recrystallization of this derivative 

would probably have brought the radioactivity into closer agreement 

with the values for 3, 4-dimethylbenzoic acid and 4-methoxy-l, 2-

benzenedicarboxylic acid ( see below). In view of the agreement between 

the latter two , no further purification and analysis of the 3 , 5-dinitrobenzo­

ate was carried out. 

3 . 4-Dimethylani801e.- The procedures for the p r eparation and 

oxidation of 3, 4-dimethy1anisole were adapted from those given by 

King (43). The radioactive 3 , 4-climethylphenol (11 . 5 g . , 0.0942 mole) 

as a solution in 55 ml. of 2 Ii' sodium hydroxide was stirred magnetically 

and heated to 95 0 in a 300-ml. flask equipped with two dropping funnels 

and a reflux condenser. The temperature was maintained at 92-<)7-

during the simultaneous dropwise addition (over a period of 10 min.) of 

55 ml. of 2 F sodium hydroxide and 18 ml. (about 14 g • • 0.11 mole) 

of methyl sulfate , and for 30 min. after the completion of addition. 

The mixture was cooled to room temperature and extracted 

with 70 ml. of ether in. two portions; the aqueous layer was then extracted 

continuously wi th ether (or 30 hr. The combined ether solutions were 

dried over anhydrous magnesium sulfate and distilled to remove the 

solvent. The crude product was distilled through a 22-cm. vacuum­

jacketed heated Vigreux column to yield 0.3 g . of product boiling at 

66 _69 0 ( 5 mm.) and 12. 0 g. b.;)iling at 68.5-69° (5 mm . ; full vacuum 



was used to bring over the last of the product). with 0 .3 g . of undistilled 

residue . The weight of the combined fractions represents a 96% yield. 

4-Methoxy-l. 2-benzenedicarboxylic Acid.- Eleven grams 

(0.0808 mole) of the radioactive 3 . 4 - dimethylanisole was suspended in 

30 ml. of 100/0 sodium hydroxide in a 2-l. flask equipped with a stirrer, 

reflux condenser and dropping funnel. It was heated on the steam bath 

while a solution of 80 g. ( 0 .51 mole) of pota ssium permanganate in noo 

ml. of water was added dropwise over 6 hr . Heating was continued for 

l . S hr. after the compietion of addition . 

The hot mixture was suction filtered and the solids washed with 

130 ml. of l "ln sodium hydroxide; the combined filtrate and washings 

(still permanganate - colored) were cooled to room temperature, acidified 

with 40 ml. of concentrated hydrochloric acid (which destroyed the ex­

ces!> permanganate) and ref r i g erated overnight. The mixture was filtered 

to remove 0.2 g . 0:( 2-methyl-4-metho>"'Ybenzoic acid; the filtrate was 

concentrated under reduced pressure on the steam b ... th (rotary evaporator) 

until crystallization began (about 200 ml.), and then cooled slowly to 

room temperature and refrigerated overnight. The precipitate was 

collected by !Suction filtration , washed with ice water. and vacuum -dried 

to yield 12.9 g . of material which, when recrystallized from water, 

yielded three c rop s weighing i . 9 g •• 1. 2 g •• and 0 . 4 g . No more acid 

could be obtained from the mother liquor . indicating that the original 

12.9 g. of precipitate probably contained inorganic salts . 



The filtrate was extracted continuously for 30 hr. with ether. 

and the extract was evaporated to dryness in a stream of nitrogen to 

yield Z. 9 g. of a solid who8e infrared spectrum as a mineral-oil mull 

was similar to that of the recrystallized acid. but which contained an 

-1 
additional broad band at 3500 cm.. The combined weight8 of the three 

recrystaHized samples and the residue from the ether extraction 

r epresent a yield of 78%. Melting points were not determined since the 

acid readily form s the anhydride on heating. 

A sample of Crop 1 from above was recrystallized twice fro m 

ethyl acetate and vacuum-dried overnight at room temperature. Radio-

activity assay in quadruplicate showed the activity to be 0.876 .:!:. O. 004 

f.l c/mmole . 

Brominative Decarboxylation of 4-Methoxy-l . Z-benzenedi -
~- .... ~ -- ........... 

carboxylic;' Cid.- The procedure was based on that given by Berman and 
~ WI... ...... 

Price (44) for the decarboxylation of 4 -methoxybenzoic acid. Three 

grams (0.015 mole) of radioactive 4 - methoxy-l. 2 - benzenedicarboxylic 

acid (from Crop 1 of the above preparation) was dissolved in 30 mI. of 

10% sodium hydroxide. and 50 ml. of water was added. The solution 

was stirred magnetically and heated to about 5S·. then 4 .8 g. (0.030 mole) 

of bromine was added dropwise over the period of a few minutes. The 

resulting turbid solution was heated at 55-60· Cor 15 min •• and acidified 

while still hot with a solution of Z5 mI. of concentrated hydrochloric acid 

in an equal volume of water . Some carbon dioxide was evolved and a 
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dense precipitate formed. The mixture was heated on the steam bath 

fo r 45 min •• and filtered hot to collect the 2 . 4-dibromo-5-methoxy­

benzoic acid. which was washed with hot water and vacuum-dried; 1. 5 g . 

(320/0 yield). m . p. 197 - lO2" (Kofler block) with peripheral melting from 

17 6 0
• A portion of the acid was recrystallized from 500/0 aqueous ethanol 

and twice more from chlorofo r m; m. p. 205 0 (Kofler block preheated to 

195". lit. (45) m . p . l03°). 

~. Calcd . for C
S

H.
6

0
3
Br

l
: C. 31.00; H. 1.95: Br. 51.56 ; 

neut. equiv •• 310. Found: C . 30.92; H. 2.06; Br, 51.60; neuL equiv.., 

314. 

The n. m. r. spectrum of the acid in acetone showed the two ring-

proton resonances as well separated singlets, consistent with the struc-

ture of 2, 4-dibromo-4-methoxyphthalic acid. Duplicate radioactivity 

a nalyses of a vacuum-dried sample showed the l4C activity to be 

O. OlOl,! 0.0002 f-lc/mmole. 

The original filtrate from above deposited a second crop of 

c r ystals when allowed to cool to room temperature; 0 . 4 g., m. p. 135-165 " . 

The filtrate was then chilled in i ce for several hours to precipitate 4 -

methoxy-5 -bromo-l, Z- benzenedicarboxyHc acid which was collected a nd 

d r ied; 1. S g., 36'0 yield. A sample was recrystallized twice from water 

(it was treated with activated charcoal in the first r ecrystallization) a n d 

vacuum-dried over phosphorous pentoxide; m. p. 201-201. 5" (Kofler block 
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preheated to 195"). The acid forms the anhydride on heating and the 

melting point depends on the rate of heating. Faitis et al. (46) observed 

foaming at 192" and melting at 195. 5·. 

Anal. Calcd. for C
9

H
7

0
5
Br: C, 39.30; H, 2 . 57; Sr, 29 . 05. 

Found: C, 39.16: H, 2.49; Br, 29.14. 

A potentiometric titration showed a distinct inflection point at 

one-half the end point. The ring-proton resonances in the n. m . r. spec-

trum of the acid in methanol appeared as well separated singlets . Both 

of these observations are consistent with the structure of 4-methoxy-5-

bromophthalic acid. 

Rearrangement of Camphor 
~ ... ..."" ... 

One gram of resublimed camphor was added to 6 ml. (about 11 

g.) of 95.5-96.50/0 sulfuric acid maintained at 90". Samples were with-

drawn periodically , quenched with water and extracted with pentane. 

The solvent was pumped off under reduced pressure and the residue 

examined by v. p. c. (Column K, 192"). The vapor-phase chromatogram 

of the product of rearrangement for 1 hr. is given in Figure 7-B; earlier 

samples showed the same constituents in different proportions. The m a in 

product was designated as carvenone on the basis of the known behavior 

of camphor in sulfuric acid ( 4) . Carvacrol (2-methyl -5-1sopropylphenol) 

and .e.-cymene, which might also be formed under the conditions of the 

rearrangement (24). were examined by v. p. c., but could not be correlated 
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with any of the unidentified products. Carvacrol apparenUy reacted 

with the column packing, since only a few small broad peaks appeared 

in the analysis of a relatively large liIample. It is obvious from a com­

parison oC vapor -phase chromatograms (Figures 7-A and 7 .. B) that the 

same mixture of components, in different proportions, is produced in 

the rearrangements of both camphor and fenchone. 
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PAR T II 

MECHANISM OF THE DIELS-ALDER REACTION 



P AR TIl 

Introduction 

The thermal isomerization of optically active a - l-hydroxy-

dicyclopentadiene (1) at 140· yields an equilibrium mixture containing 

appr oximately equal amounts of I and s yn-8-hydroxydicyclopentadiene 

(II) (47). The optic al activity of I recovered from the mixture is un-

f - ____ 

OH 

I II 

changed from the original value, and the same equilibrium composition 

is obtained starting with the pure isomer II. Similarly. optically active 

p - l -hydroxydicyclopentadiene (Ill) is converted to active anti-8 - hydroxy-

dicyclopentadiene (IV). the equilibrium in this case lying strongly in 

III IV 
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favor of IV. No rearrangement is observed at temperatures substan­

tially below 135-, and above 150· the compounds decompose uncleanly to 

yield a mixture of products. 

To account for the complete geometric and optical stereo­

specificity of the isomerizations, Woodward and Katz (47) proposed that 

they were effected by the rupture of bond ~ of the dicyclopentadiene 

skeleton and the f o rmation of a bond between c and f while the bond ed 

remained intact. At some point in the transformation , the reactant (I, 

for example) would assume the configuration V in which one bond is 

being broken at the same time that one is being formed . 

a 

v 

These reactions are interesting as unusual cases of the Cope 

rearrangement (48). a typical example of which is the thermal isomer­

ization of l - ethylpropenyl allylmalonitrile (VI) to (1- ethyl - 2-methyl-4-

pentenylidene)-malonitril (VII). but they possess an additional sig ­

nificance since the co mpounds undergoing isomerization are Diels -Alder 

adducts, which ordinarily cleave thermally into two addends . The 



55 

VI VII 

Diels - Alder reaction has been reviewed adequately and repeatedly 

els ewhere (4~) . and its mechanism will be discussed in a later section. 

It may be defined as the reversible thermal addition of a conjugated 

diene (VIU) and an olefin (IX, known as the dienophile) to yield a cyclo-

+ II o 
vm IX X 

hexene adduct (X) . A single component may serve both as diene and 

dien ophile. 80 that the overall reaction is a dimerization as in the add! -

tion of cyclopentad!ene (Xl) to its elf to yield dicyclopentadiene (XII). 

o + o 
Xl XI XU 



56 

This dimerization takes place readily at room temperature and the 

r everse reaction proceeds cleanly at about 150 0 ( 50). 

Since the hydroxydicyclopentadienes at the higher temperature s 

very probably undergo the same k ind of dissociation. which in this case 

is complicated by the instability of hydroxycyclopentadiene. * Woodward 

and Katz presumed that in the dissociation to give two molecules of 

a ddends. one of the bonds was broken first to g i ve species V which then 

yielded products by the rupture of the second bond. (Species V was 

identified as occurring at some point on the energy surface for the di s -

sociation reaction but was not defined further as r epresenting a maxi-

mum or minimum on this surface.) It was then proposed that all reverse 

Diels -Alder reactions proceed in a similar manner and consequently, 

on the basis of the principle of microscopic reversibility ( 52,53 . 54), *. 
that the forward Diels-Alder reaction involves some species in which 

one of the new bonds is fully established while the other is in the process 

of formation. 

Whether or not the isomerizati ons of the hydroxydicyclopentadi-

enes are related to the Diels-Alder reaction , other Diels - Alder dimers 

are expected to r earrange in a similar manner, and, indeed, the con-

versions of 8-ketodicyclopentadiene (55) and a chlorinated derivative ( 56) 

*Hydroxycyclopentadiene has apparently never been isolated as 
a pure compound. Di 8sociation in this case yields cyclopentadiene and 
cyclopent-2-en-l-one (51), the latter presumably arising (rom the first­
formed hydroxycyclopentadiene • 

•• Which may be stated here as follows: For a reversible reac­
tion, the forward and reverse reactions occur on the same energy surface. 
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to their respective I-keto isomers have been interpreted as involving 

analogs of species V. In the study reported in the following section, 

optically active methacrolein dimer (XIII). labeled with deuterium at 

the aldehyde hydrogen was exami n ed. It should rearrange thermally 

XIII 

and reversibly through species XIV •• (analogous to V) to yield XV , the 

J~D 
0 

JE r~ ~D ' , , , 
, "D 

~ , I 
~ I I 

ot CH ----·0 0( 

CH CH 0 3 3 

XIII XIV XV 

overall proce ss converting the aldehyde dellterium to a vihyl substituent 

*A structure proof of methacrolein dimer has not been can"ied 
out, but the typical behavior of Diels-Alder reactions (d. Discussion) 
and the known structures of the closely related dimers of acrolein (51) 
and methyl vinyl ketone (58) leave no doubt that formula XIII is the cor ­
rect one . 

• -The bicyclooctane formulation above is used only to make clear 
the general character of the transformation which is taking place and 
should not be taken as a precise description of the geometry of the 
species involved. A more detailed representation of XIV is given on 
page 90. 
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and occurring with retention of optical activity. The extent of rearrange­

ment could be followed by nuclear magnetic resonance en. m . r .) spec­

troscopy. since the vinyl and aldehyde proton resonances should appear 

in widely separated regions of the spectrum and deuterium absorption 

occurs completely out of the range of proton resonance. 

The rearrangement was observed as anticipated (59) .with the 

added feature that the reverse Diels - Alder reaction to yield methacrolein 

occurred in competition with it. 

Experimental Results 

The Diels -Alder addition of methacrolein to itself yielded the 

dimer which was converted to optically active XIII by a Cannizzaro re ­

action to the corresponding acid. followed by resolution through the 

brucine salt, conversion of the sodium salt of the acid to the acid chlor­

ide with oxalyl chloride, formation of the corresponding N -methyl-N­

phenylamide and reduction with lithium aluminum deuteride . 

The experimental data for the rearrangement of XUI at its 

boiling point (171-) are summarized in ~~ igl1re 1. Methacrolein distilled 

fr om the r eaction mixture and was condensed at -78-; no other by­

products were detected. The optical activity of the rearranged dimer, 

which represents 99 . So/!. retention of configuration, was determined for 

a sample twice vacuum-distilled to remove traces of methacrolein which 
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H 0 CH 3 H 0 CH 3 D 0 CH3 9 hours CH,()1-n D~-D I 

+ :(j~-H at reflux 
CH 0 (l71-)a CH 3 3 

XIII XIII XV 

a 27D _ 71.35.!. 0.05- b 71.2% 28.8% 

-
a 26D - 71. 00 .!. 0.04-(neat, !. " 1 dm) -(neat, !. = 1 dm) 

CH
3 

0 
I II 

CH
3 

0 
I II 

+ CH =C - C-H 
2 

+ CH =C-C-D 
2 

XVI XVII 

a 
Fig. 1.- Rearrangement of XIII at 17 1-. Thermometer bulb 

immersed in the boiling liquid; rearrangement proceeded at an incon­
veniently slow rate at 160-. Hydroquinone (0.80/0) was used to inhibit 
polymerization; nonetheless, 4 . 10/0 of polymeric residue was formed. 
In a sealed tube in the absence of inhibitor, 3g% of the starting material 
was converted to polymer in 7 hours at 180-. Root-mean-square error. 
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XIII 7 hours • 
n

26
D -71.44!. O.OS · 

at180·
a 

-
(neat. ! = 1 dm) 

XIII + XV 

48. 5'7. 32. 1% 

+ 

D(fi~~ D CH

, 
CH I 0 

+ I t-H 

CH 0 
3 3 

XVIII 

2. 90/0 

= 

XIX 

2.8% 

{neat. ! : 1 dm} 

+ lXVI + XVII) 

13.7% 

Fig. 3.- Rearrangement of XliI in a sealed tube at 180·. 
The product distribution is given in mole percent. aHydroquinone 
( 0 . 9%) added; <2 . 7% of polymeric residue wa s formed. 
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remained persistently dissolved. The relative amounts of XUI and XV 

were determined by electronic integration of the n. m. r . absorption 

signals of the aldehyde and vinyl protons in the distilled dimer mixture 

{Fig. 2-A} . 

A second rearrangement was carried out in a ~ealed n. m. r. 

tube; the experimental results are summarized in Figure 3. The relative 

a mounts of rea r ranged and unrearranged mmers and of methacrolein 

formed were determined directly in the reaction mixture by n. m . r. 

spectroscopy (Fig . l - B ). The amounts of dideuterated (XVIn ) and 

undeuterated (XIX) dimers, expected through random recombination of 

XVI and XVll by a forward Diels - Alder reaction (with a corresponding 

loss of optical activity) were determined with a mass spectrometer . 

Their values are slightly below that expected (3. 20/0 each, of the total 

product) if the only pathway for the observed 14. 9% loss of optical activity 

involves dissociation to methacrolein followed by random recombination . 

If it is assumed that the non - dissociative rearrangement is a 

homogeneous first - order r eaction, an approximate value for the rate 

con stant k , may be calculated using the equation , 
- r 

A -B 
in -- = - 2 k t , 

AO -r 

derived from the expression for opposing fi rs t - order reactions ( 60) , in 

which A and B refer respectively to the concentra tions of Xln and XV at 

time t , and AO to the concentration of Xln at time zero. The calculated 

k at 180· is 1. 8 x 10 - 3 min . - 1. F or the reverse Diela - A1der reaction at 
-r 
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180·, the approximate first-order rate consta nt , ~, calculated using 

th . 1 A k . 5 2 10-4 . -1 e equation n A = -~ t , 19 • X mlf:'.. 
o 

The dif£erence in 

the two constants repre !l ents a difference of free ene r gy of activation of 

1.1 kcal . per mole. Details of these calculations are given in Appendix 

II. 

Discussion 

The experimental observation of the reverse Diels -Alder 

reaction occurring in competition with and energetically close to the 

internal isomerizations provides support for the presumption of Wood-

ward and Katz that the two reactions proceed on the same energy surface. 

The results do not, however, rigorously exclude the possibility that 

separate and unrelated energy paths are involved, with the heights of 

the energy barriel"s for the two r eactions fortuitously close to each 

other . There is apparenUy no way to prove unambiguously that the re-

arrangement represents a partial reverse Diels-Alde r reaction. 

The complete retention of optical activity rules out the inter-

venti on , in both the rearrangement and the reverse Diels - Alder reaction, 

of a diradical intermediate such as xx (d. p . 91 ) with a sufficiently 

long lifetime to permit l.'acemization 
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xx 

These findings may now be incorporated with other evidence 

in a general dis cussion o£ the mechanism of the Diels - Alder reaction 

as it is understood at present. It should be noted at the outset that the 

mechanism is still very much open to debate and that the £ollowing 

survey leads to no all - embracing conclusion. But if. after examining 

evidence which is more or less universally valid or diagnostic mechan-

isticall y . it is not possible to reach any Cirm positive conclusions ex-

cept the meat obvious ones . it is oc casionally po ssible to make a con-

nndng statement about what the path o£ the Diels - Alder reactions does 

not involve . 

One-Step and Two-Step M echanisms.- The traditional views 

concerning the formation o£ the adduct (X) from the diene (VIU) and 

dienophile (IX) may be classified in their extremes as one - step and 

I 

2~ 
3~ 

4 

VIII 

+ 

IX 

I 

0( :0: 
4 

X 
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two-step mechanisms. In the former (61). it is supposed that both of 

the two new bonds of the adduct are formed simultaneously in the rate-

determining step . involving a transition state . symbolized by XXI. 

having a steric configuration similar to that of the product molecule 

and occupying the position indicated in Figure 4-A . a representation of 

the energy profile for a one-step reaction. The distinction between a 

symmetrical and an unsymmetrical one - step mechanism is not ordinarily 

made. but in the reaction of unsymmetrically substituted components. 

the hybridization changes which represent bond formation (from!!2.2 to 

3 
!!2. at the centers 1. 4. 5. and 6) may very well have occurred to a dif-

ferent extent in a transition state symbolized by XXII. 

x 

2((" 1(oY 
3 ". )5 

' . ,. .,. 
4 

XXII 

According to the two-step formulation. only one of the bonds 

is formed in the rate-determining step. leading to what is frequently 

represented as an open-chain diradical intermediate (XXIII) (62) which 

occupies a minimum position on an energy profile such as that shown in 

Figure 4-B. In discussions of the two - step mechanism. the diradical 

intermediate is assumed to be in the electronic triplet state. but pre-

sum ably it could just as well be a singlet (61a). 



Rea ction Coordinate • 

G6 

;F\J--. . , . , 
I 

Reaction Coordinate 
• 

F ig . 4 . - Possible energy profile s for the Diels -Alder reaction. 
The direction of the reaction coordinate represents the forward re­
a ction. The adduct i s pla ced below the a ddend s on the energy s c a le t o 
accord with the observed exothermicity of the forward reaction ( 50). 
A. One- s tep mechani s m. The p osition of m a ximum energy i s s hown 
displaced to the right of center , s in c e Arrhenius pre-exponen tia l fa c­
tors for the forward and reverse rea ctions ( r eferred to in the text) 
indicate that if the reaction is one- step , the transition state haa a geo ­
metrical fo rm re s embling that of the adduct . This conclus ion violates 
the Hammond postulate ( 63), which states (as one of its a pp lications ) 
that the transition state for a highly endothermic reaction {a con di tion 
met by m any reverse Di els -Alder rea ctions ( 50» is expected to re­
s emble the p roduc t (in this case , the a dden d s ). B. E ner gy profile for 
a two-step mechanism. The i mplica tions of pre-exponential factors 
ar e less clear in thi s case and the tran sition state i s drawn i n the con­
ventional p o s ition ( 63). 
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Kinetic Evidence; R ate Laws a nd Activation Parameter s .-

Simple rate evidence may be accommodated by either picture. The 

rates of forward Diels-Alder reactions are usually fir s t order with 

respect to each component, indicating that both take part in the rate­

determining step. and the reverse reactions are fir s t orde r with respec t 

to the adduct (4ge). Activation energies range from 8.0 kcal. per mol e 

for the reaction of benzoquinone and cyclopentadiene in benzonitrile 

s olution (64) through the typical values of 16.0 - 17. 7 kcal. per mole 

fo r the dimerization of cyc10pentadiene in the gas and liquid phas e s a nd 

in various solvents, to 22.0 kcal. per mole for the gas-pha s e addition 

of crotonaldehyde to butadiene (50). For the reverse reaction, activation 

e n ergies from 29 to 3S kcal. per mole, respectively. have been observed 

for the dissociations of the benzoquinone-cyclopentadiene adduct in 

benzene solution and of dicyclopentadiene in the gas phase (50). 

Arrhenius pre-exponential factors for the forwar d reaction 

are consistently low. Typical values of 10glOA (A expressed in 

1./mole-s ec. for all values quoted for the forward reaction) range f rom 

about 4.0 to 7 . 5, observed for the reaction of benzoquinone and cyclo­

pentadiene in carbon disulfide and acetic acid solutions , respectively 

(50). The values represent very large negative entropies of activation 

(loglOA '" 4.7, .65'" :: -39 e. u. for the reaction of maleic anhydride wi th 

dimethylanthracene (65» and indicate either a highly improbable electronic 

transition or a severely restr icted geometry of the transition state 
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relative to starting materials (66). The pre-exponential factors for the 

-1 
reverse Diels-Alder reaction (typically. 10glOA (A expressed in sec. ) 

:: 12.1 and 13.1. respectively, for the dissociations of the a.-naphtha-

quinone - cyclopentadiene adduct in be!'1zene solution, and dicyclopenta-

diene in the gas phase (50') are in the 6ame range as those observed for 

a large number of homogeneous unimolecular decompositions (67) and 

are interpreted as implying no change in electronic multiplicity (50) or 

significant change in geometry (4ge) in forming the transition state from 

the adduct. 

Either mechanistic picture can accommodate the low factors of 

the forward reaction. but the one-step process more easily rationalizes 

those of the reverse reaction . II indeed the one-8tep formulation is the 

correct one, the implied lengths of the partial single bonds in a transition 

state such ali XXI are suffiCiently short to insure the singlet as being 

the only energetically feasible electronic state . 

Solvent Effects.- Solvent is often asswned to have little effect 

on the Diels -Alder reaction (47), but examples of substantial solvent-

induced changes in activation parameters have been observed. Increases 

in solvent polarity promoted the reaction of benzoquinone with cyclopenta-

diene (64). but retarded the addition of maleic anhydride to anthracene 

(65). The change in loglOA for the addition of benzoquinone to cyc1o -

pentadiene in two different solvents was cited above. More and almost 

unbelievably dramatic effects were found in the reaction of diphenyliso-
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benzofuran with acrylonitrile (68); in chloroform. loglOA 0 2.2 and 

AE* * S.7 kcal. per mole. whereas in carbon tetrachloride 10g10A • 14.5 

(an astoundingly high pre-exponential factor for the forward Diels -Alder 

reaction. considerably higher than the next highest value (9. 6» and 

AE* • 22 kcal. per mole. The effects could not be correlated with 

either the dipole moments or the dielectric constants of the large number 

of solvents studied. It was found that a change in temperature could 

reverse the relative effectiveness of two solvents in promoting the re­

action. (In the above study . it was not clearly established that complex 

formation was not a complicating side reaction.) 

Quite recenUy Berson and Mueller (69) studied the effect of 

solvent on the relative activation parameters for the formation of the 

~ and eodo isomers (refer to the section on stereochemistry) in the 

reactionil of cyclopentadiene with methyl acrylate and with methyl 

methacrylate . In general a change to more polar solvents reduced the 

relative activation energies for ~ with respect to ~ addition. but 

seemed to favor the ~ product on the basis of changes in the pre ­

exponential factors. (A more thorough study ( 70) has since shown that 

the effect of solvents on the pre-exponential factors was more or less 

random.) 

Effect of Substituents.- The effect of substituents on the xe -

action rate has not been thoroughly examined. Steric factors are cer-

tainly important. as shown by the lack of reactivity of maleic anhydride 
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with ~piperylene (XXIV) compared to a facile reaction with the trans 

isomer (XXV) (71). It is usually assumed (4ge) and generally true that 

XXIV XXV 

electron- donating substituents on the diene and electron - withdrawing 

aubstituents on the dienophile promote reaction. In the reactions of 

.e- substituted 1- phenylbutadienes with maleic anhydride, the rates 

i ncreased with the increasing capacity of the para substituent to function 

as an electron donor , in the order NO 2 < Cl < H < CH
3 

< OCH
3 

(rate 

constant ratios at 25° were ~O I~ • O. 23, kCl/~ . 0< 5-9, 
2 

kCH I~ : 1.1, kOCH I~ • 2. 7) (12). A series of E.- substituted N-
3 3 

phenylmaleimides showed the following decreasing order of dienophlle 

reactivity toward 6, 6-diphenylfulvene: N0
2 

> Cl > COCH
3 

> COZH > I> 

C6H5 >H>CH
3 

> OCH) > N(CH
3

)Z (73). However, in a series of Diels-

Alder additions in which acrolein served as the diene component, high 

yields of adducts were obtained with dienophile s pos s essi ng electron-

donating subatituents (e. g., 840/. with methylvinyl ether) whereas those 

with electron- withdrawing groups reacted in low yield ( e . g. 5% with <1 -

methylacrylonitrile) (74a). There was thought to be a positive correlation 

between yield and reaction rate of adduct formation. 
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Substituents have an effect on the product composition which 

may be generalized by the statement that the isomer usually observed 

is the one predicted on the basis of the most stable diradical inter-

mediate (74) . For example. the most stable intermediate expected in 

the reaction of l - phenylbutadiene and acrylic acid is XXVI to give the 

observed product XXVII (75). rather than intermediate XXVIII or some 

) 

XXVI XXVII 

other to give XXIX. One exception to this generalization. among other s 

(74b). is the reaction of methyl acrylate with Z-phenylbutadiene to yield 

I 
/ 

XXVIn XXIX 

XXX as a minor product along with the "correct" adduct. XXXI (76). 

XXX XXXI 
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As a whole, substituent effects favor a two - step over the ex-

treme {symmetrical} one-step mechanism. but any advantage possessed 

by the two-step mechanism applie s equally well to the unsymmetrical 

one-step picture. Ground-state polarizations which might be expected 

to influence the direction of addition through a symmetrical one-step 

process usually lead to an incorrect prediction of products. P olar force s 

in the dimerization of acrolein should favor XXXII over XXXIII, but only 

the latter is formed {57} •• 

8. 

~08-
H 

XXXII XXXIII 

Isotope Efiects.- No carbon isotope effect ( 77) was found i n 

the Diels-Alder addition of ;3 _nitrostyrene _a_1
4

C to 2, 3-dimethylbuta-

diene (78). The reason for the absence of effec t is not apparent. The 

bonding to the isotopically substituted carbon atom is undoubtedly altered 

in the transition state relative to the ground state, so an isotope effec t 

is anticipated. 

Catalysis.- The effect of catalysts is not clearly established. 

Several forward Diels -Alder reactions, including the dimerization of 

cyclopentadiene. have been found to be acid-catalyzed (with the cata-

lytic activity increasing with acid strength) wher eas others were cata-

lyzed by phenols {the catalytic activity of the phenols decreased with 
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inc r eas ing acid strength) ( 79). L ewis a cids such a s a luminum c hloride . 

stannous chlo ride, boron tr ifluoride, f e r ri c c h l ori d e and ti tanium tetra ­

chloride appear to b e gene r al ca talysts in those cases where they i nd uce 

no undesirable side reactions (80, 81). Aluminum chloride . for exam ple . 

when present in eQuimolar amounts with the reactants. caused an e s ti m ­

ated 200 . OOO -foid increase in the reaction rate of anthracene with 

maleic anhydride (80). Catalysis was observed in the reactions of the 

simplest diene. butadiene. with a number of dienophiles (81). 

The relevance of the catalyzed reactions to the mechanism of 

the uncatalyzed Diels -Alder reaction is not clear. particularly since a 

careful comparison of products in the two cases has not been made 

where more than one homer might be formed. It is Quite conceivable 

that the catalyzed reactions proceed by a completely unrelated mechan ­

ism . The Lewis acid. I may form polar complexes with appropri ately 

substituted dienophile s . such a s maleic anhydride . which then react 

rapidly with the diene . Alternatively , the initial interaction may be 

with the diene . Anthracene rapidly forms the positive ion r adical by 

the direct transfer of an electron to a l u mi.num chloride ( 82). and a 

number of diphenylpolyen e s . including 1. 4 - di phenylbutadiene. form 

dipositive ions by electron transfer to titanium t etra chlo ride (83). 

Electron - transfer complexes in which the dienophile serves as electron 

acceptor have been proposed to account for catal y si s by phenols (79) . 
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Analogous charge transfers have in fact been postulated as 

leading to (ion.radical).pair intermediates in the uncatalyzed Diels­

Alder reaction (84) . and the formation of complexes from such typical 

Diels-Alder addend combinations as maleic anhydride with piperylene or 

isoprene hali been verified experimentally (85) . However . the fact that 

molecular complexes usually have small negative heats of formation ( 86) 

makes them energetically inappropriate models for the transition state 

01 the uncatalyzed Diels · Alder reaction . 

Although the simple expedient of shining an ultraviolet lamp 

on a solution of Diels -Alder addends usually has no effect (87). some 

examples of photocatalYiis have been observed. The reaction rate of 

anthracene with maleic anhydride in dioxane solution to yield the normal 

adduct is increased by light of wave length 3650 J.. (8S). and maleic an­

hydride undergoes a photocatalyzed addition to benzene (89) to yield 

XXXIV (whose stereochemistry is not yet fully elucidated (90 . (1». The 

XXXIV 

latter case may involve an initial photocatalyzed addition to form the 

four-membered - ring adduct followed by an uncatalyzed Dicls . Alder 
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reaction. This explanation is made more probable by the observation 

that the photocatalyzed addition of diethyl acetylenewcarboxylate to 

beazene yields a substituted cyclo!:ktatetrene (XXXVI) (9 2) which could 

r esult from the isomerization of an i nitially formed cyc:lobutane adduct 

(XXXV). 

(:o(
y 

~ I 
y O

~ y 
~ # y 

( }: 
XXXV XXXVI 

However, the isomerization of a first - formed Diels - Alder adduct 

(XXXVII) could also lead to the substituted cyclotlctatetrene. either 

directly or through an intermediate such as XXXVIII . 

XXXVI 

XXXVII XXXVIII 

It is perhaps especially significant to the mechanism of the 

Diels - Alder reaction** that the dimerization of butadiene , which gives 

predominantly the Diels -Alde r adduc t , 4 - vinylcyclohexene (XXXIX), 

.As pointed out by M r. George Whitesides of this laboratory • 
•• Suggested by Professor George S . Hammond. 
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when carried out therm" llj' (93), yi elds principally the ~- and trans-

1, 2 - di vinylcyc1obutanes (XL ~nd XLI) {94} when %e reaction is induced 

b y ac etophenone in the triplet state (95). The induced reacti on ve ry 

XXXIX 

60/. 

+ 

X L 

21% 

XLI 

73% 

probably involves a triplet dira dical intermediate. and the fact that the 

Diels - Alder adduct is not favored under these conditions argues agains t 

the participation of a similar intermediate in the thermal Diels -Al de r 

1.'eaction. 

(Competi tion between cycloaddi tiona to give Diels - Alder adducts 

and substituted cyc lobutanes brings up the unresolved question of the 

relation of the mechanisms of these two p r ocesses (96). Examples of 

significant competitive formation of cyclobutanes in the thermal Diels-

Alder reac tion ar e rare; apparently the only instances which are not 

special cases are the reactions of butadiene to gi ve both four - and six-

membered - ring adducts with perfluoropropen e . perfluoroacryloni trile 

and 1. 1. l - trifluoro - 4 - bromobut- l - ene (n }.) 

Effect of P resaure.- The Diels - Alder dimerization of isoprene 

is strongly a cc elerated by pressure (62c). Interpretation of the effect 
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is ambiguous , however, and from the same data i t is possible to con -

elude that the transition state is non - cyclic , leading to an open-chaln 

diradical ( 62c) , or, diametrically opposed. cyclic a s in the one - step 

mechanism (98) . 

Stereochemi8try .- The stereochemistry of product formation 

has been generalized by two empirical rules (99) called (1) the rule of 

=.!!. addition and ( 2) the principle of maximum accumulation of unsatur a ted 

centers . The first states that the stereochemical relationships of sub-

stituents on the dienophile are maintained in the product. For example. 

the reaction of maleic acid (XLII) with butadiene yields the isomer 

X LIII but not XLIV (99a). This rule is the most firmly held generalization 

( + 

XLII XLIII XLIV 

concerning the Diels-Alder reaction and apparently no exception to it is 

known . It is readily rationalized by the one-step mechanism. but imposes 

a. r estriction on the two-step mechanism by requiring that the lifetime of 

the intermediate ( such as XLV) be so brief that rotation abound bond ~ 
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"O-H 

X L V 

cannot take place before formation of the second bond. 

The second principle may be stated as follows: I.f there are 

two possible modes of combination which could lead to different con-

figurations of the product, that mode is favored which results from the 

maximum accumulation of unsaturated centers in the presumed trans-

Hion state. To illustrate, the l-eaction of cyclopentadiene with methyl 

acrylate should yield the endo product (XL VII) from a species such as 

XLVI which permits some interaction of the unsaturation elect:-ons of 

the carbonyl group with those of the diene, rather than the exo isomer 

XLVI XLVII 

(XLIX) from XLVIII, where the interaction is not possible . Numerous 
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H 

XLVllI XLiX 

exceptions to this principle are known (100). however, as , for example, 

the reaction illustrated above; both the ~ and ~ isomers are 

formed as kinetically controlled products (101). Furthermore. in the 

reaction of cyclopentadiene with methyl methacrylate. the relative 

activation energies actually favor the exo isomer (L) by 0. 71 kcal. 

per mole (101). 

L 

Rearrangements of Diels - Alder Adducts.- Some recent in-

vestigations have focused on the behavior of Diels - Alder adducts when 

subjected to the conditions of the reverse reaction . as illustrated by 

the rearrangement s of the hydroxydicyclopentadienes and labeled 
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methacroleh1 dimer which have been discussed. The ~ adduct. LI. 

exclusive* procluct of the addition of maleic anhydride and cyclopenta-

diene. aha rearranges thermally by an internal path. which may 

represent a partial reverse Diels-Alder reaction. to the thermodynamic -

ally more stable ~ adduct (LII) (103). The il!ternal route was demon ­

strated by rearranging l4C -labeled (in the maleic anhydride portion) 

~ adduct in the presence of inactive maleic anhydride . The amOlL"1t 

of radioactivity in the ~ adduct showed that a.bout 500/, of the reaction 

was internal while the reat involved dissociation into Idnetically free 

maleic anhy dride and cyclopentadiene followed by recombination. The 

internal isomerization could not involve a caged aggregate which col-

lapsed to yield the ~ (or endo) compound before the addends were able 

to diffuse apart. since the measured rate of the addition reaction was 

too slow by six to nine powers of ten to be diffusion-controlled (104) . 

It was proposed (104) that if the internal reaction represented a partial 

reverse Diels - Alder reaction, it involved a high-energy complex, with 

both bonds between the maleic anhydride and cyclopentadiene fragments 

weakened. which occupied a minimum position on the reaction coordinate 

as would the intermediate of a two-step Diels-Alder reaction. It was 

recognized that the isomerization could also proceed on an energy surface 

different from that of the Diels -Alder reaction. The mechanism of the 

*In a recent study of this reaction. 1. 40/. of the exo adduct was 
observed (102). 
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internal isomerization is currenUy under investigation in these labor-

atories by Mr . John Baldwin . 

Two other Diels -Alder adducts which could conceivably rear~ 

range by an internal route did not do so . Conversion of the optically 

active ~ adduct (L) of cyc10pentadiene and methyl methacrylate to 

the endo homer (LUI) occurred with complete loss of optical activity 

LUI 

( 7 4b. 101) , indicating that the reaction took place by dis sociation to the 

kinetically free addend!! followed by recombination. Rotation about bond 

~ of a possible diradical intermediate such as LIV (o r a simi.lar species 

LIV 

proposed in the next section) would have yielded the optically active 

~ compound. The result is actually not unexpected, since a similar 

rotation if it occurred in an intermediate of the forwa rd Diels - Alder 

reaction would lead to a loss of stereospecificity which is not observed 
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~. the rule oC cis addition, p. 77). 

Racemization of the optically active adduct (LV) of maleic 

LV 

anhydride and 9-phenylanthracene might proceed by an intramolecular 

process through a complex such as that postulated for the ~-~ 

isomerization of the cyclopentadiene-maleic anhydride adduct. However 

no intramolecular mechanism was observed; the rates of loss of optical 

activi ty and exchange wi th l4C - labeled maleic anhydride were identical 

to the rate of dissociation measured spectrophotometrically (104). 

Recent Mechanhtic Proposa1e. - Woodward and Katz have 

made what is perhaps thl3 most explicit proposal to date concerning the 

mechanism of the Diels -Alder reaction (47). It is based on the presump­

tion that the rearrangements of the a - and p -1- hydroxydicyclopentadienes 

represent partial reverse Diels - Alder reactions and, consequently, 

that the forward Diels -Alder reaction involves some species in which 

one of the bonds is fully established while the other is in the process of 

formation <;,!: Introduction, p. 56 ). This mechanism may now be 
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examined in more detail i n the light of the addi tional eviden ce p r esented. 

I t is stated as follow s : 

" (1) The diene a ssumes , if it does no t alr eady ha ve , 
the quasi ~ conformation (LVI). 

LVI 

(2) The rate-controlling process conlilists in the 
formation of a single bond between one terminus of the 
diene system and one of the unsaturated centers of the 
olefin. Accordingly, the diene and olefin approach one 
another initially in parallel planes, orthogonal to the 
direction of the bond about to be formed (!:£. LVII). 

LVII 

(3) Conformational specificity about the newly­
forming bond is determined by secondary attr active forces 
involving the electrons not directly associated with the 
primary bonding process (ef. LVIII) •• Thus, as electrons 
at c, d, and e are progressively freed of their involve­
m~t -;ith th~r former partners at a and b, attractive 
electrostatic, electrodynamic. and ";ven t~ some extent 
exchange forces (dotted lines ed and ec in LvnI) stabilize 
the conformation shown as co;;;Paredwi th other a priori 
available alternatives . 

*Solid, dashed and dotted lines represent. respectively, iT 

bond s . par tial bonds a nd secondary attr active force s . 
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LVIII 

(4) Afte r p a ssage of the barri er, forma tion of 
the single bond.!!? is first completed (~ L IX) and 
the reaction p r oceeds to its conclusion wi th the r ela­
tively facile construction of a second full bond at 
!!! (LX). " 

LlX 

:~ 
d 

LX 

This scheme accounts satisfactorily for the empirical gen-

e ralizations discussed in the foregoing sections. It meets with the 

r equirement of stereochemical rigidity in the transition state but al-

lows the same substituent effects which would be predicted using the 

di r adical intermediate as a model. It is in fact very close conceptually 

to an unsymmetri.cal one-step mechanism. the major difference being 

the substitution of secondary a ttractive forces for partial .bonds. 

Secondary attractive forces come into play simultaneously with the 

inception of formation of the first bond a.nd exist at all stages from the 
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ground lltate to the transition state; a partial bond would behave in the 

same way . Perhaps the biggest distinction between the two pictures is 

that use of secondary attractive forces allows for the possibility of a 

second transition state, whereas a symmetrical one-step mechanism, 

by definition, possesses only one transition state . Leaving definition 

aside, however , it is possible to conceive of a second energy barrier 

involving geometrical reorientation in a 8pecies possessing two partial 

bonds (a partial bond between two approaching centers being defined 

as a change in hybridization at these centers from ~z. to ~3; pre-

swnably the centers at which secondary attractive forces originate are 

still ~1. 

According to Woodward and Katz's model, secondary attractive 

forces , which account for the principle of maximum accumulation of 

unsaturated centers, would favor {ormation of the endo adduct from 

transition state LXI for the addition of methyl methacrylate to cyclo-

pentadiene. As has been discussed (cf., p . 79 ), both the endo and 

LXI 

~ products are formed, with the ~ actually favored and the ~~ 

ratio dependent on solvent. In this case, the secondary attractive forces 
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(or whatever forces are responsible for the principle of maximum 

accumulation of unsaturated centers) are overshadowed by other factors 

including interaction with solvent. 

Secondary attractive forces would seem to allow rotation about 

bond ab of species LXII, presumably involved in the dissociation of the 

~ adduct of methyl methacrylate and cyclopentadiene. The fact that 

LXII 

such rotation is actually not observed (£., p. 82) prompted Berson, 

R emanick and Mueller ( 7~ b,lOl) to suggest that these forces could more 

appropriately be designated as partial bonds. 

The internal endo-exo isomerization of the cyclopentadiene­

maleic anhydride adduct is not readily rationalized as a partial reverse 

Diels -Alder reaction by Woodward and Katz's model, which predicts 

t.~e array LXIII in the reverse reaction. Conversion to the correspond­

ing LXIV for exo addition cannot take place without at some point breaking 

bond abo If it is assumed that the isomerization is on the path of the 

reverse Diels-Alder reaction and that in fact a mechanism such as 
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LXIII 

b 
O~ 
b-X

b
::" " " o .. 

a . ~ . , 
~ ,.- ..> 

LXIV 

Woodward and Katz propose is the c orrect one, the energy profile for 

this partic ular reac tion might resemble Figure 5, with the minimum 

representing a high-energy complex from which either LXIII or LXIV 

may be formed , the activation energy for ~ addition being higher than 

that for formation of LXIII . 

Reaction Coordinate 
'> 

Fig. 5 

The rearrangement of optically active deuterium-labeled 

methacrolein dimer with competing formation of methacrolein by the 

reverse Diels - Alder reaction is of course in complete accord with the 
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theory of Woodward and Katz . The rearrangement very probably p r o-

c~eds through spedes LXV; assuming that it actually takes place on 

the energy surface for a partial reverse Diels - Alder reaction, LXV 

could represent an intermediate occupying the position indicated in 

Figure 6 . The energy profile for the rearrangement itself would then 

be represented by Figure 7. It is entirely possible, however, that 

1 
F 

Reaction Coordinate 

Fig . 7 

species LXV occurs at some point before the transition state of a 

one-step reverse Diels - Alder reaction (d. Fig. 4 - A) , 80 that the 

energy profile for the rearrangement would possess a single maximum. 

If it is argued that the rearrangement occurs on a separate 

energy surface from that of the Diels-Alder reaction, it is necessary 

to maintain that the excess energy in the bond undergoing rupture in 

the rearrangement must be redistributed in the molecule before an 

additional small increment of iree energy may be incorporated to effec t 
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Reac tion Coordinate 

Fi g. 6. - The difference in the h eights o f the two ener gy bar­
riers at 180' i s the L 1 kcal. per mole observ e d ( c f. po 63) . 
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complete dissociation, or that a molecule activated for rearrangement 

must return to the ground state before it can be activated for the reverse 

Diels-Alder reaction. 

It may also be argued that species LXV is on the path of the 

revers e Diels-Alder reaction, but that similar opportunities are avail­

able only to Diels-Alder dimers because of the special structural features 

which relate them to the Cope rearrangement (~, p. 54 ). This point 

of view leads to the idea of a continuum of mechanisms for the Diels­

Alder reaction (74b . lOI), represented at one extreme by the symmetrical 

one-step mechanism and at the opposite by a mechanism such as that 

proposed by Woodward and Katz. These authors in fact admit the pos­

sibility that some Diels-Alder additions may involve a second energy 

barrier in the formation of the second bond (d. step (4». whereas 

others do not. 

The firmest conclusion which the experiments with optically 

active labeled methacrolein dimer permit is the unequivocal exclusion 

of an open-chain diradical intermediate, such as LXVI, as being im­

portant in the Diels-Alder reaction of methacrolein or dissociation of 

CH
3 

LXVI 



the dimeI'. Species LXVI is symmetric and would lea d to racemization 

of the undissociated dimeI'. whereas essentially complete retention of 

optical activity is observed. This conclusion makes it highly improb­

able that open-chain diradica.ls (or linear intermediates of any kind) 

a r e involved in other Diels-Alder reactions. 

Summary . - There is at present no all -embracing mechanistic 

picture which readily accounts for the available evidence concerning the 

mechanism of the Diels-Alder reaction. The evidence strongly favors 

an unsymmetrical bond - forming process, with one of the new bonds 

largely or completely formed while the other is in the process of for­

mation . A linear diradical inter media te ha s been rigorously ruled 

out as taking part in the Dial s - Alder reaction of methacrolein. and is 

probably not involved in other Diels - Alder reactions. 
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E,tperimental 

Methacro1ein Dimer (2. 5-Dimethyl-3. 4-dihydro-1. 2-pyran-
~~~".----~~ ........... -..--- .. ...-.. -.~~ 

2-aldehyde).- The procedure was based on that of Stoner and McNulty 

(IOS)~. that of Whetstone (106)). Freshly distilled methacrolein 

{144 g •• 2.05 moles} containing 1% of hydroquinone was heated under 

autogenous pressure at 130-140· for 8 hr. in a SOO-ml. stainless-steel 

autoclave. Distillation through a short Vigreux column yielded 43 g. of 

recovered methacrolein and 83 g. (82% yield. 58% conversion) of 

methacrolein dimer, b.p. 64-66" {19 mm.}, n
25

D 1.4514 {lit. (lOS) b.p. - -
63" (20 mm.), n

20
D 1.454). Analysis by v.p.c. (Column K, 143·) - -

indicated a product of about 99% purity. The carbonyl absorption in the 

infrared spectrum occurred at 1735 cm. -1 and double-bond absorption 

-1 
at 1668 cm. . 

Cannizzaro Reaction of Methacrolein Dimer.- The procedure 
__ ...........-...~-. _~ ~~ . .--...r~ ............... ~ 

was based on those given in references 105 and 106 . Methacro1ein dimer 

(170 g., 1. 21 mole) was added dropwise to 115 g. (2.87 mole) of sodium 

hydroxide as a 40% aqueous solution. The mixture was stirred by hand 

during the addition (it became progressively more viscous), and was 

maintained at 40-50· by cooling in ice (the temperature rose to 70· at 

one point). The semi-solid mass was stirred with 170 mI. of water to 

dissolve the solids, and the resultant mixture was extracted with four 
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2S0-ml. portions of ether. The combined extracts were discarded. 

The aqueous layer was cooled in an ice-salt bath and maintained 

at 5_10 0 during neutralization (to about pH 2) by the dropwise addition of 

30~o sulfuric acid. The resultant sludge was extracted with four 250-ml. 

portions of ether. and the combined ether solutions were concentrated 

in a stream of air. then under reduced pressure u sing a rotary evapor-

ator. Two 15-ml. portions of pentane were added to the viscous residue 

and each was pumped off again . Crystallization was induced by removal 

of the last of the solvent under high vacuum. The crude acid was re-

crystallized from petroleum ether and yielded. in three crops. 76.3 g. 

of 2, 5-dimethy1-3. 4-dihydro-1. 2-pyran-2-carboxyllc acid. in 900/0 of 

the theoretical yield. A sample of the acid recrystallized further from 

petroleum ether had m . p . 62.5-64 ° (lit. (106) m. p. 61 - 62 .5 °) . Infrared 

-1 -1 
carbonyl absorption occurred at 1718 cm. • double-bond at 1674 em. ; 

-1 
a weak band at 1780 cm. was unassigned . 

Resolution of Z. 5-Dimethyl-3. 4-dihydro-l. 2 - pyran-2-carboA-ylic 
~~~ ~ 

Acid.- A solution of the brucine salt was prepared by adding 110 g . 

(0.704 mole) of the acid to a slurry of 278 g . (0.706 mole) of brucine in 

550 mI. of reagent-grade acetone. and heating at reflux for a few min-

utes to dissolve the solids completely. The solution was refrigerated. 

and crystallization allowed to take place over the period of several days. 

The supernatant liquid was decanted from the hard solid cake which was 

then recrystallized from methanol; 155 g. of the brucine salt was obtained 
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in four crops. 

The separate crops were combined. and 128 g . ( 0 .232 mole) 

of the mixture dissolved in 800 ml. of warm water. The solution was 

cooled i n an ice bath and maintained at 0-10· during neutralization (to 

about pH 2) by the dropwise addition of 100/. hydrochloric acid. Extrac-

tion of the acid solution with 1000 ml. of ethe r in five portions. and 

evaporation of the combined ether extracts in a stream of air followed 

by pumping under high vacuum afforded 33 . 7 g. (93%) of the acid as a 

viscous liquid which could not be induced to crystallize. Its infrared 

spectrum was virtually identical to that of a sample of the solid d • ..!­

acid, and its optical rotation was found to be L.~) 25D - 23. O· (~ :c 4 .35 

in 950/0 ethanol) . 

2, 5-Dimethyl-3 . 4-dihy dro-l. 2-pyran-2-carbonyl Chloride.-
~~-~ ............ ~~~~~ 

In several preliminary attempts to prepare the acid chloride by reaction 

of the acid with thionyl chloride. it was found that the first-formed 

hydrochloric acid by-product catalyzed the conversion of the remaining 

-1 
acid to a lactone ( infrared carbonyl absorption at 1805 cm. ) which 

had the probable structure (105,107) shown below. The lactone was pre-

pared independently by treating an ether solution of the acid with a 

catalytic amount of hydrochloric acid. 



The acid chloride was prepared successfully by a modiiication 

of the procedure given by Wilds and Shunk (108) . The Elodium salt was 

prepa-,ed by neutralizing 33 . 7 g . (0.216 mole) of the optically active 

acid dissolved in 50% aqueous methanol, removi.ng the solvent under 

reduced pressu~' e ( rotary evaporator) and drying overnight at 65· 

( < 1 mm .) over phosphorous pentoxide. The dry powdel' ed salt was 

suspended with magnetic stirrb.g in 400 ml. of anhydrous ether con-

taining 1. 5 ml. of pyridine, and the mixture chilled in an ice-salt bath. 

V. hen a thermome ter immersed in the suspension registered _10 0
, 

34 ml. (about 47 g . , 0 . 3 7 mole) of freshly distilled oxalyl chloride 

(co. 50) was added dropwi s e as rapidly as the immediate evolution of 

gas permitted. The reaction mixture, which had warmed up t o 5 ° during 

the addition , was stirred for a few minutes and allowed to warm up to 

20·. The ether and excess oxal yl chloride were r emoved unde r the 

reduced pressure of a water aspirator , then a few ml. of benzene was 

added c,nd re moved with an oil pump. Th~ r esidue was taken up in 80 

ml. of benze ne and filtered; the filtrate was pumped at reduced pressure 

to remove several ml. of the solvent, and was us ed directly in the 

following pceparation . In a preliminal-Y experiment, the acid chloride 

was isolate d and found to exhibit infrared carbonyl absorption at 1780 

- 1 -1 - 1 
cm . and double-bond absorption at 1675 cm . ; a band at 1825 em. 

was unassigned. 



97 

2. 5-Dimethy1-3. 4-dihydro-l. 2-pyran-2-(N -methyl-N -phenyl)-

amide . - The benzene solution from the above preparation was chilled 
~~ 

in an ice bath and swirled by hand during the dropwise addition of. a 

solution of 23 . 2 g . (0.217 mole) ofN - methylaniline and 17 . 1 g. (0 . 216 

mole) of pyridine in 20 ml. of benzene . The resulting viscous mixture 

was heated to 60 · and maintained at that temperature for 10 min., then 

cooled to room temperature and poured into 50 mI . of 5'0 hydrochloric 

acid. The organic layer was separated and washed successively with 

saturated sodium bicarbonate solution and water . It was found by infra-

red spec troscopy that there still remained a considerable amount of 

unreacted acid chlo ride , 50 a one - to - one (molar ) mixture of N-methyl-

aniline and pyridine was added to the wet benzene solution until the odor 

of pyridine could be d e t e cted above it. About 7 g. ( 0 . 06 mole) of N-

methylaniline was added . (Apparently the acid chloride contained 

some r e sidual oxalyl chloride which consumed part of the N - methyl-

aniline . This difficulty was not encountered in several pilot reactions.) 

The wet benzene solution was washed cons e cutively with acid, 

base and water , then distilled directly to remove most of the solv ent , 

The residue was distilled at 1. 5 mm. through a short head without a 

condenser and yielded, in addition to 3.2 g. of forerun, 36.9 g . (700/0 

yield from the acid) of semisolid which was recrystallize d from !!,-

hexane and afforded 30.9 g . of product in f our crops. 
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A sample of the d,.! material recrystallized twice from ~-hexane 

had m.p. 58-59 . 6°. 

Anal . Calcd. for C15H190ZN: C, 73 . 44; H, 7 . 81; N. 5.71. 

Found: C, 73 . 74;H. 7 . 83;N. 6 . 08. 

Z. 5-Dimethyl-3. 4-dihydro-l, Z- pyran-2 - ( ~-aldehyde).- The 

procedure was based on that of Weygand et al . (109) . A magnetically 

stirred solution of 30 . 0 g. (0.122 mole) of the optically active amide in 

300 rnl . of anhydrous ether was chilled in an ice - bath and maintained at 

-15 to -10· during the addition over 1. 5 hr . from a powder - addition 

funnel of 3. 0 g . ( 0 . 072 mole) of lithium aluminum deuteride. The mix-

ture was stirred at o· for five hours after the completion of addition. 

then cooled to -10 · and the excess lithium aluminum deuteride decom-

posed with water . 

Following acidi£ication of the mixture with 100/0 sulfuric acid, the 

ether layer was separated and the aqueous layer extracted wi th three 

80-ml. portions of ether which were combined with the principal ether 

solution, washed with 40 ml. of 5% sulfuric acid , filtered through a bed 

of anhydrous sodium sulfate and dried over anhydrous sodium sulfate . 

The ether was removed by distillation, and the residue was flash dis-

tilled at 1 mm . and collected at _78 0
• It was redistilled using a 30-cm. 

wire - spiral-packed column and yielded 10 . 8 g. ( 63% yield) of material 

in five fractions boiling at 52-56 · (11-13 mm.) . The infrared spectra 

of the £ractions were virtually identical. as were the indices of refraction 



(!:.25D 1. 4511-1. 4514). and v. p . c . analysis (Column K . 145·) showed that 

each contained about the same amount of impurity (less than 110) which 

appeared as a broad flat peak just before the main peak. The infrared 

-1 
carbonyl absorption occurred at 17 20 cm . and the double bond absorp-

. 166-' -1 tion at I cm. • The n . m . r spectra exhibited no resonance absor p-

tion in the region expected for the aldehyde proton. 

The samples were S l ored at 5· in an atmosphere of nitrogen. 

and the separate portions used in the rearrangement reactions were 

flash distilled immediately before use . 

Rearrangement of Methacrolein Dimer at Atmospheric Pressure.-
~ " """"""",,-...r ........ -..-.r'-' -__ ~#-~, _~~ ,...... . ................. ,-,.,....., ~,.~ 

A 1. 5-g . sample of optically active deuterium-labeled methacrolein dimer 

was flash distilled at 12 mm . and the optical activity measured; 

a 27 D - 71 . 35 + 0.05 ° (neat . 1 • 1 dm) . A portion (1.329 g.) was care-- - - -
fully weighed into a lO-ml. flask, 10 . 0 mg . of h ydl"oquinone added ( 0 . 75%) , 

and the mixture heated at reflux (I7l 0) for 9 hr • • with the thermometer 

bulb immersed in the boiling liquid. The methacrolein which formed 

passed through a steam-heated reflux condenser and was condensed at 

-78°; 41 mg. was collected. I t was identified by a comparison of its 

infrared and n . m . r . spectra a n d v . p . c . l"etentior. time with those of an 

authentic sample . The weight of dimer remaini ng at the end of 9 hr . 

was 1. 154 g . I leaving 134 mg . to be accounted fot' by sample adhering 

(visibly) to the walls of the apparatus . 

The rearranged climer was found by n. m . r . to contain residual 

methacrolein. and was twice distilled at 12 mm. through a short micro 
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column. Each time, a few drops of forerun wa s removed before the 

main fraction was collected. Its optical activity was found to be 

.!30~ -70.59 .!. 0.06 ° (neat , !. ., 1 dm ) after the first distillation and 

26 
a I) -71. 00 + 0.04' (neat, 1 • 1 dm ) after the second . The latter value 
- = - -
represents a 99 . 5o/D retention of optical activity . 

The weight of the distillation residue, after it was dried over-

night at 60· (l mm.) was 54 mg. (not including hydroquinone) . or 4.10/0 

of the total dimer taken. 

It was found by elec tronic integra tion of the aldehyde and vinyl 

proton n. m. r. resonances (d. Fig. 2 -A ) that 28 . 8.!. O. 50/0 ( standa rd 

deviation in twenty-four consecutive determinations) of the rearranged 

dimer contained a proton in the aldehyde function. 

Rearrangement of Methacrolein Dimer in a Sealed Tube.- A -_ ....... ...... ~/"' ........ 

sample of flash-distilled optically active deuterium-labeled methacrolein 

26 
dimer (1.1 973 g. ) having a D _ 71. 44 + 0.05 ' (neat. 1 = 1 dm ) was 

- .-e - -

sealed into an n . m. r . tube with 10.5 mg . (0.870/.) of hydroquinone and 

heated at 180 + l' for 7 hr. The n.m.r. spectrum of the rearranged 

sample is given in Figure 2-B. The areas of the aldehyde and vinyl 

proton absorption resonances of the dimer and of methacrolein were 

integrated electronically in twenty-four consecutive determinations and 

gave the following relative values ( expressed in mm.; the standard devi-

ation is given) : 53 .0 + 1.1 for the sum of the aldehyde proton resonances 

of the dimer and methacrolein. 83.9 + 0.8 for the vinyl proton resonance 
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of the dimer plus one vinyl proton resonance of methacrolein buried 

under that of the dimer. and 17.5 .:!. 0.8 for the remaining vinyl proton 

resonance of methacrolein. The sum of the aldehyde and vinyl proton 

resonances of the dimer plus one vinyl proton resonance of methacrolei n 

was 128. 1.:!. 2.3. giving the value 13.7 .:!. 0.9 for the mole percent of 

methacrolein in the mixture. 

The reaction product mixture was twice distilled at 14 mm .• 

each time removing a few drops of forerun (it was found by n. m. r. that 

one distillation did not remove the methacrolein effectively) . and the 

optical a ctivi ty of the distillate found to be Q3lD - 60.83 + O. OS· (neat. - - -
! . 1 dm ). The distillation residue. after drying at 60· (1 mm .) . 

weighed 31. 9 mg •• (not including hydroquinone. but including traces of 

silicone grease from the distillation). or 2. 70/. of the weight of dimer 

taken. In a preliminary rearrangement carried out in the absence of 

polymerization inhibitor. 300/. of the dimer taken was converted to 

polymer in 7 hr. at 180·. 

The n . m. 1' . spectrum of the distillate was examined and the 

extent of rearrangement determined by electronic integration of the 

aldehyde and vinyl proton resonances. It was found that 39.8 .:!. 0 . 4% 

(standard deviation in twenty -four consecutive determinations) of the 

dimer contained the proton in the aldehyde functional group. 

The distillate was examined mass spectrometrically to determine 
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the a mounts of non-deuterated and di-deuterated material formed in the 

reaction. The spectrum of the rearranged material wa s compared with 

that of the unrearranged dimer, taking into account only the relative 

heights of tho s e peaks wi th mass numbers of approximately 140, 141 and 

142 for the unfragmented non-deuterated , rnono-deuterated, and di­

deuterated molecules, respectively. Minor changes in the peaks repre­

senting the approximate mass numbers, 138, 139, 143 and 144, were 

not considered. For the unrearranged dimer, the relevant peaks had 

the following heights: 140, 9.9 mm . ; 141, 790 mm . ; 142, 71. 3 mm . 

The following was observed for the rearranged matedal: 140 , 40.6 mm.; 

141, 788 mm . ; 142, 102.5 mm. These values indicate 3. 30o/~ of non­

deuterated and 3 . 350/0 of di-deuterated molecules in the distilled re­

arranged dimer mixture, or 2 . 85 and 2.89 mole percent, re 's Jec';ively, 

in the total rearrangement product mixture . 

The samples of unrearranged and real'ranged dimers described 

above were re-ana1yzed mass spectrometrically about two weeks after 

the original analY3is, during which time> they remained at room temper­

ature unprotected from the atmosphere. Changes were observed in the 

spectra of both samples, and the average amounts of non -deuterated and 

di-deuterated molecules in the distilled rearranged material, as cal­

culated above , were found to be 3.3590 and 4 . 600/0 , respectively . The 

reason for the change in the spectra was not establishec' ( llO). 
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Appendix I 

Melting points are uncorrected and were taken either in cap­

illary tubes in an electrically heated stirred oil bath or. where indicated. 

using a Reichert Kofler Block apparatus. Boiling points are uncorrected. 

Infrared absorption spectra were determined using a Beckman Model 

1R-7 Spectrophotometer . and nuclear magnetic resonance spectra were 

obtained at 60 Mc with a Varian A a sodates V -4300B high resolution 

spectrometer with a lZ - in. magnet and equipped with a flux stabilizer. 

field homogeneity coils and electronic integrator. Vapor phase chro­

matograpy was carried out with a Perkin-Elmer Vapor Fractometer. 

Model 154-C. The column designations refer to the following stationary 

phases: Column A. dUsodecyl phthalate; Column C. dimethylsiloxane 

polymer ( silicone oil DC-ZOO); Column K. polyethylene glycol (Carbo­

wax 1500) . 



l\ ppendix II 

Approximate Rate Constants for Non -di ssociative R earrang ement 

.lkr) and Dissociation (k
d

) of M ethacrolein Dimer at 180 0 (d. p. 62) 

R ea["rangement 

Opti cally active XIII = 48.5 2.9 :: 45.60/0 of total product. 

Optically a ctive XV = 32. 1 2.9 = 29.20/. of total product. 
74 . 8% 

F'raction of XIII -= 0 . 610 . 

F["a ction of YV = 0.3 90 . 

Integrated rate equation for opposing fi r st-order reactions: 

A-B 
In = 

AO 

/\ ssuming AO 

then A 

and B 

k 
r 

D issociation 

2 l<. t. 
r 

= ' .000 

= 0 . 610 

== O. 390 

= COlleen tl"a t ion 

== concentration 

= concen tra tion 

-3 -1 
:: 1.8 x 10 min. 

dXln at t = 0, 

ofXm a: t = 4 20 mln. 

of XV at t = 420 min . 

Di ssociation ,ield s on l y" optically il'2acti ve m a terial s . In 100 

moles of reac tion product, th e re are 13 . 7 ;r,oles of methacro-

lein (::-epr esenting 6 . g moles of dimer) and 2 .87 x 4 == 11. 5 moles 
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of optically inactive dimer; 100 moles of product represents 

100 - 6.9 :: 93. 1 moles of starting dimer. 

Fraction of starting dimer dissociated::: ( 6 . 9 + 11.5) 193. 1 ::: 

0.198. 

A 
Integrated rate equation for first-order reaction: In - :: - kdt. 

AO 

A ssuming AO = 1. 000 :: concentration of starting dimer at 

t::: 0 , then A '" 0.802 ::: concentra tion of undissociated 

dimer at t ::: 420 min. 

-4 - 1 
- 5.2 x 10 min . 

~F d-AF r 

RI 

where tl.F d and tl.F r are the free energies of activation, 

respectively, of dissociation and rearrangement, R = gas 

constant ( 1.99 cal. ! deg. mole) and T = absolute temperature • 

.l.\ F d - tl.F r ::: 1. J kcal. per mole. 
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PR OPOSI nONS 



1) 6 

1. There seems no longer to be much doubt that the Cope re-

arrangement ( 1), illustrated by the thermal conversion of 3. 4-dimethyl-

1.5 -hexadiene (c!. I and Ill) to 1.6-dimethyl - l.5 -hexadiene . is an 

intramolecular rearrangement involving a transition state of rigid 

geometry . Convincing evidence is the observation that meso - 3.4-

dimethyl - l. 5 -hexadiene (1) rearranges virtually exclusively to ci.s -

~s-1 . 6-dimethyl - l . 5-hexadiene (II) whereas the racemic 3 , 4-

dimethyl derivative (Ill) forms the trans - trans isomer (IV) (2). The 

stereochemistry seems compatible only with a transition state having 

a configuration resembling V (£or the rearr ange ment of III) . 

Still an open question. however. is the degree of bond breaking 

and bond formation in the transition state. It is usually assumed (i. 3) 

that these processes are concerted. 1. e. , that rehybridization from 

~2- to!!£3 at C - i and C-6 occurs simultaneously with a change from 

3 2-
~ to.!£ at C - 3 and C-4 . The evidence is by no means compelling . 

The experimental observations, including that discussed above . may 

be accommodated by assuming a restricted configuration resembling V 

in a radical-pair intermediate, where the hybridization at C - 1 and C - 6 is 

2 
still largely.!£ whereas that at C -3 and C - 4 has been converted from 

3 2 
~ to.!£. A potential means of deciding between the two pictures is 

provided by secondary hydrogen isotope effec ts (4) . 
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A current theory ( 5) predi cts that the reaction rate of a compound 

possessing a C -H bond which is not broken in the rate-determining s tep 

but which undergoes a hybridization change from!2,.3 in the ground state 

to ~2 in the transition state. will decrease (normal isotope effect) if 

the hydrogen is substituted by deuterium. Conversely . if the change i s 

from !2 2 
to !!2. 3 • deute rium substitution should cause an increase in rate 

(inverse isotope effect) . In the Cope rearrangement. substitution of 

deuterium at C-l and C-6 should result in an inverse isotope effect if 

the reaction process is concerted. but no isotope effect if a specie. such 

as a radical pair is involved. A normal isotope effect due to deuterium 

at C-3 and C - 4 is expected on the basis of either mechanistic picture. 

Sys tems suitable for study would be appropriately substituted 

l -cyclohexenyl allylmalonitrile (VI) or l-ethylpropenyl allylmalonitrile 

(VII). both of which rearrange by first-order processes having substantial 

rates at 120· ( 1). To enhance the magnitude of any potential isotope 

effects. the isomerizations could undoubtedly be examined at tempera­

tures below 100·. The isotope effects should be separately measured 

with samples deuterated in the positions corresponding both to C -lor 

C-6. and C-3 or C-4. 

The stereospecific rearrangements of the ~o and racemic 

3.4-dimethyl-1.5-hexadienes suggest that the reversibility of the Cope 

rearrangement might be examined by attempting to convert the ci s -trans 
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and tra n s -trans products to the corresponding s tarting i eomer s . The 

r eactions II ---- I and IV - III should take place at h igher temperatures 

t.ltan the reverse processes . Reversibility J:-.as been demonstra.ted in the 

interconversions of 3-methyl - l, 5 -hexadiene and I-methyl - l, 5-hexadiene 

(6), and an obvious extension would be to determine the stereospecificity 

of the rever se reactions. 

2 . At about 300· (7) , 1. 5 - hexadiene (vm) should undergo a 

reversible Cope rearrangement ( 1) to IX, a transfo r mation which could 

HlC = CH 12\ 
H C 6 3 CH 
2,\ 5 4/ l 

HC--CH
2 

vm IX 

not be detected chemically unless the starting material were isotopically 

substituted. At higher temperatures, the reaction would take place at 

an increasingly rapid rate until the I , 5-hexadiene began to dis sodate 

into allyl radicals; this dissociation begins at 690 - 700· and is complete 

at 890· (8). : t temperatures above 300· but below 690·, the system 

presents a unique opportunity for detecting spectrophotometrically the 

high-energy species involved in the interconversion. 

The probable configuration of this high - energy species. X ( the 

unsubstituted analog of V) is discussed in the previous proposition . 
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• It is expected to exhibit ultravi olet absorption at about 2200 A, close 

to the value for butadiene. wherea s the parent 1 . 5-hexadiene has its 

principal absorption near 1750 J.. (9). 

A n estimate of the concentration of X at 500· may be made from 

kT * transition-state theory (10). using the equation kr = h K ,where 

k is the fir st - order ra te constant for rearrangement, k the Boltzmann 
r 

constant, T the absolute temperature, h equals Planck's constant. 

and K* a constant having the form of an equilibrium constant and relating 

the concentration of the tr ansition state to that of unexcited 1 , 5-hexa-

diene. The rate constant. k • may be estimated from the familiar 
r 
-AE 

A rrhenius equation. k = A e R'T • where AE represents an activation 
r 

energy. R equals the gas constant. T the absolute temperature and A a 

frequency facto r having the same units as k . If it is assumed that 
r 

A E = 35 kcal. per mole (the highest known value is 28. 6 kcal. per mole 

for the rearrangement of ethyl( 1 . 3-dimethyl - l -butenyl)allyleyanoaeetate) 

11 -1 ( and A = 10 sec. close to the values observed for three different 

C '>pe rearrangements) ( 1). k at 500· is approxi mately 10 sec. - 1. The 
r 

value for K* at thi s temperature is then about 6 x 10-
13

. The coneen-

t ration of I .S-hexadiene in the pure liquid at 500· is about 6M. so that 

the concentration of transition state would be 4 x l O-12M . 

To Qetect ultraviolet absorption from a species of this low con-

centration. an extremely long path length would be required. possibly 

best obtained using a multi -pass cell ( 11, 12). As suming as the lower 
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-3 pr,"-cticable limit ior op tical den.>ity (D ) the vai .le :; x 10 , a path length (l) 

of l x . 0
4 

c m. and a m ola r d.b so r p ti on coefficient (E:) fo r the .ranGition 

s;.a te o[ 10
5 (probably a glightiy high t:sti mate). the detectable conc en -

tra tion ( c ) c alcula ted from the B eer-Lamb e r t absorption law, D ::: ~ cl , 

. 3 ' 0- 12" 1. s x.£. .\ ... . Thi s corre s poncis awficien tly w ell with the esti m ate,:; 

- 12 
c oncentr a ti on 01 tr a nsition state, 4 x 10 M, to suggest that it migh t 

actually be detected . 

T he experiment proposed i s admittedly f raught w i th p r actic a l 

d~fficulti e :! and a certain amount of improbability . The ho t bands of the 

parent I, 5-hexadiene m ight interfere at that temperature, but a careful 

examination of intensity versus temperature in the region about 2200 J.. 

should reveal absorption by the transition state even if it is superimposed 

on the spectrum of 1,5 - hexadiene . 

I, 5 - Hexadiene may prove to be un unfavorable case for detection 

of the transition state . Larger rate constants and consequently larger 

concentrations could be obtained with appr (",priately substituted 1,5-

hexadienes, but the substituents which enhance the rate of rearrange-

ment would be expected to 10'il.er the temperature at which dissociation 

into allyl radicals occurred. 

3 . Swal.n and co-workers ( 13) have proposed that the effect of 

substituents on the magnitude of primary hydrogen isotope effects ( 14) 

may be used to distinguish between proton-transfer and hydride-transfer 
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tran sition states . 1.1 brief. the 2.rgUl-nent state" tha~ the bonds in the 

tran sition s tate, R--H--R', for proton transfer should be longer , 

weaker. more ionic and more polarizable than those in the correspond-

ing transition state fo,' hydride transf er , and hence should be more 

:Hrongly affected by stlbstittlen~s on Rand R ' . Substituent effect.> on 

the bonding in R--H--R' would be reflected by changes in the magnitude 

of ~/kD (where the k's reCer to reaction rate constants for the un ­

deuterated and appropriately deutecated compound,;) . For a proton 

transfer, ~/kD is expected to vary as the electronic character of the 

5ubstituents is changed. In a hydride transfer , expected to have strong, 

short, highly covalent and non - polarizable bonds in the transi tion state , 

the substituents on Rand R I should have little e£!ect on the bonding and 

a negligible effect on the value of ~/~ . 

Substituent effects on ~/~ for the oxidation of 2-propanol to 

acetone with bromine in water at SO · were examined ( 13a) and t h e fol-

lowing rate constant ratios obse rved: 

k 
2-propanol 

k 
2-propanol-2-d - ol 

k 
Z-propanol 

k 
Z-propal101-d 

= 2. 94 

=: 1.49 

k 
I - fluoro-2 - propanol 

Ie ( 
1- luoro - Z -propan - 2 -~-ol 

k 
I-fluoro - 2 -propanol 

k 
I-fluol'o - 2-propanol-d 

=- Z.83 

= Z. 06 
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Since the effect of fluorine on the CH isotope effect was within experi-

mental error. it was concl uded. on the basis of the argument cited. 

that this hydrogen is transferred as a hydride . The considerable c hange 

in the OH isotope effect with the introducti on of fluorine was taken as 

evidence that the alcoholic hydrogen is transferred as a proton . 

Als o examined was the effect of substituents on kH/kD for the 

decarboxylation of substituted benzoylacetic acids (XI). assumed to pro-

ceed through a cyclic mechanism (i3b). The OH isotope effect varied 

from 2 .8 for the E::-nitro compound to 0.85 for the .l?- methyl. and led to 

the conclusion that the electron distribution in the OHO group at the 

transition state corresponded to that expected for a proton transfer. 

0 /"" + CO
2 

H CO H 
I I 

O~ CH Z 
~ 

o # CH z 
~C/ "'C~ 

I I 
C

6
H

4
Z C

6
H

4
Z 

XI 

Z :: m-NO 0 ~ 
- 2 ~ .l?-Cl C-CH 

H I 3 
.l?-CH 
£ - OCA

3 

Cc,H4 Z 

The use of sub:itituent effects on primary isotope effects to dis-

tinguish between proton and hydride transfers is potentially a valuable 

tool in establishing this particular aspect of reaction mechanisms. 
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However . before it may b e a ccepted as gener a lly vali d, o ther r eac t i on 

s ys t ems mus t be studied a nd the m echanis tic conclus ion s tested by other 

means if possible. In both of the systems examined by Swain =.!..:.!.:.. 

secondary deuterium i sotope e££ects should p r ovide useful information . 

either sllpporting o r militating against the conclusions reached . 

From the data on primary isotope effects, the mechanism for 

oxidation of 2-propanol was described as follow s: 

CH
3 

B~Br 
I~ 

OHZ ~-~-O-H t 

CH
3 

i 
9H

3 
H 0+ Br + BrH + c=o + 

I 3 
CH

3 

The low value for the OH isotope effect ( 1. 49) suggested that transfer 

of the alcoholic proton had not begun or had only barely begun in the 

transition state, whereas the much larger CH isotope effect ( 2.94) 

showed that this bond was broken in the transition state . The net resul t 

would be accumulation of positive charge at the central carbon atom. 

Formation of a positive charge at C -Z might be verified by an 

examination of secondary isotope effects (4). comparing the rates of 

oxidation of Z- propanol and l -d
3 
-2-pr opanol. The rate of the former 

should be the greater . (Rate retardation due to deuterium substitution 

at a position adjacent to a center which bears a positive charge in the 
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transi ti on s tate is the w ell k nown r - deuter ium i s o tope effec t , g ~nerally 

a t trib uted to the influence of hyperconjuga tion on C H vib r ation frequen -

cies (15»o A s imilar rate comparison between I-fluo r o - 2-propanol and 

I-fluoro -3-d - 2 -propanol should show a smaller ~ -isotope effect. since 
-3 

the value of the primary OH effect ( 2.09) i ndi cate s that transfer of the 

proton in the t ransi tion state has taken place to a greater deg ree than 

with the unfluorinated alcohol, and consequently that there is less Fositive 

charge at C -2. 

A ccording to the cyclic mechanism assumed for the decarboxyl­

ation of the benzoylacetic acids . the!j!3 hybridization a t the methylene 

carbon is partially converted to ::.:z2 in the transition state . Deuterium 

substitution at a center undergoing this transformation is expected to 

decrease the reaction rate ~ Proposition t). but Swain~. reported 

(13b) that the rates of decarboxylation of benzoylacetic acid-,2, and 

benzoylacetic-d
Z 

acid-d were identical within experimental error. ( The 

trideuterated derivative was examined only to determine what kinetic 

complications might result from the possible incorporation of deuterium 

in the methylene groups during synthesis of the a cids.) The absence of 

a secondary isotope effect suggests that the cyclic mechanism may not 

be the correct one (16). The trideuterated derivatives of the other sub-

stituted acids should be prepar ed. and the isotope effects compared with 

those of the acids monodeuterated in the carboxyl group. If the absence 

of a secondary effect proves to be genera.l. the concerted cyclic 



mechanism would be suspect and the presumed distinctlon between 

hydride- and proton-transfer transition states no longe r valid. 

4 . P hotosensitization of bicyc10heptadiene (XII) with acetophenone 

in the triplet state (17) leads to XIII (18). It is proposed that the unknown 

cubane (XI V) and its derivatives may be prepared by an analogous re-

action . 

A probabl e immediate precursor to octamethyl cubane is the 

known compound . ~-octamethyltricyclooctadiene (XV) (1',) . By analogy 

with XII. the diradical formed in the photosensitization should close to 

yield a four - membered ring. resulting in the desired octamethy1cubane. 

Unsubstituted cubane might be prepared directly by the photo­

sensitization of cyclooctatetr aere, XVI. conformationally suited ( ZO) to 

form the analog of XV , followed by final closure to cubane . 

5. On the basis of the available evidence concerning the mech­

anism of the Diels -Aider reaction ( Zl), the addition of trans - l - phenyl­

butadiene and a dienophile such as acrylyl chloride should proceed 

through species XVlIa (whose precise position on the energy profile 

is undefined; dotted lines represent either partial bonds or the so - called 

secondary attractive forces (22» to yield the "ortho" .si!..- adduct . XVIlIa. 

When the reaction is carried out at room temperature. XVllla is indeed 
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XI! XIII 

XIV 
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XVI 
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o_~ 

XVII 
a ) Y = COel 

XVIII 

b ) Y = CO
Z

CH
3 

y 

XIX XX 

) 

XXI XXII 

XXIII 
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::.hu ob&.c::, vcd prQduc~ ( 23), but. ~~~ t empera.tures Gve:- 100·, thi:! tran5-

;:;.dduct (XXb) is also f')l"med ( 23), lneSllmably thru~gh [J I-ecie s XIXb. The 

ci3 - adduct may also be conve,'ted to the trans by d~stillation 0.1: 170· 

(25 mm . ) ( 23), conditions under which any acrylyl chloride (b.p. 75-

(1 atm . », if it for med, would h 3.ve dis tilled o;,rt of solution before react­

ing signiticantly to yield thE; trans isomer . 

trans - l - Phenylbutadiene also yields mixtures of analogous ~ 

and ti'ans isomers with methyl acrylatoa ( 24), methyl methacrylate ( 24), 

acrylic acid ( 25), acrylamide ( 23) and methyl vinyl ketone ( 26), but the 

interconversior. of the cis and trans forms has not been studied . 

It is proposed that the cis adducts when prepared optically uctive 

may be c onverted thermally to the trans isomers with preservation of 

optical activity, by a pathway which represents a partial reverse Diels­

A lder reaction, involving formation of <).nal ogs of XVII followed by rota­

tion about bond!!: to give analogs of XIX which yield the trans isomers. 

The Qarne type of internal isomerization was not observed in the con­

version of the optically active ~ adduct (XXI) of methyl methacrylate 

and cyclopentadiene to the corresponding endo compound (XXII); the 

product was completely racemic , indicating that the isomerization took 

place by dissociation to the addends followed by recombination ( 27). 

However , this case is not a favcrable one, since rolation about bond ab 

in a species analogous to XVII would be severely hindered by the methyl 

group. 



A convenient example for study would be the optically a ctive 

cis adduct (XVIlIb) of trans -l-phenylbutadiene and methyl acrylate, 

which could be prepared by resolution of the cis adduct of acrylic acid 

followed by esterification. It would be a better system for stud,- than 

the acrylyl chloride adduct, since the isomerization of the latter could 

conceivahly be due to catalysis b y trace s of acid, formed by r eaction of 

the chloride with moisture in the system. 

Observation of the isomerization as anticipated would be an im­

portant contribution toward elucidating the pr ecise Ilature of the high­

energy species involved in the Diels - Alder reaction and would be most 

readily explained by species such as XVlIIb and XIXb . If the internai 

isomerization is observed under conditi ons where there is significant 

competitive formation of addends by the reverse Diels - Alder reaction 

(rendered irreversible by imm ediate distillation of one or both of the 

reactants out of solution) and the unreacted ~ adduct is found to have 

retained its original activity, it would provide confirming evidence for 

the exclusion of a linear intermediate (which is symmetric and would 

lead to racemization of the undissociated adduct) as being involved in 

the Diels-Alder reaction . This has been shown to be the case in the 

Diels - Alder dimerization of methacrolein ( 28), but the additional evidence 

with an undisputably "typical" Diels - Alder addllct is necessary as the 

death blow to linear intermediates in the Diels-Alder reaction . 
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If the internal isomerization is observed as what appears to be 

a partial reverse Diels-Alder reaction, it would represent a violati.on, 

as yet undetected, of the rule of ~ addition (which states that the 

stereochemical relationships of substituents at ~ and E. (..££: XVIl ) in the 

dienophile are preserved in the product) . In this case, a careful examin­

ation of the Diels-Alder additions of trans - l - phenylbutadiene and dieno­

philes such as methyl cis - p - methylacrylate should be undertaken in an 

attempt to detect kinetically contr olled products such as XXIII, in which 

the original cis relationship of the methyl and carbomethoxy group s is 

not maintained . 
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