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ABSTRACT 

The observ ed polarization of starlight is regarded 

as being due to absorption by interstellar dust . A 

mechani s m for alignment of the dust grains , due to Davis 

and Greenstein , is analyzed . A dissipative torque / due 

to paramagnetic relaxation in the grains , tends to line 

up a spinning dust grain in the interstellar magnetic 

field . This aligning torque i s opposea by the random­

izing effect of collisions with interstellar hy rogen . 

The a im of this paper i s to find the distribution of 

orientations wh ich results . The analysis is c arried out 

through use of the Fokker-Planck equation , The solution 

is carried to completion for the case of small magnetic 

fields and nearly spherical dust grains , and the resulting 

polarization parameter is found . The spectrum of relaxa­

tion times due to the collisions is also found . 
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I . Introduction 

The polarization of starlight was first discovered 

in 1949 (1) . It has been found that there is a correl­

ation of the planss of polarization of the light from in­

dividual stars over considerable areas of the sky. 

There is also a correlation between the degree of polar­

ization and the magnitude of the interstellar red ening . 

These observations are almost universally regarded as 

show~ng that the polarization is due to the interstellar 

dust . A non-spherical dust grain will in general 

scatter and absorb light of one plane of polarization 

more than another . If there is some mechanism to par­

tially align these dust grains , then the transmitted 

light will be partially polarized , the amount being re ­

lated to the total extinc t i on . Since the short wave 

lengths are absorbed more than the long , this ext inc ­

tion can be observed as reddening . Various mechanisms 

have been proposed that might align the grains . This 

paper will analyze some aspects of one due to Davis and 

Greenstein . (2) The necessary anisotropy in space is here 

that of the inters tellar magnetic field . With this 

model , then , some information can be obtained about the 

magnetic field. 

Data on the reddening of starlight show that the 
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dust grains to be considered probably have radii in the 

range of (lO- 5)cm . Platt (3) has proposed a mechanism 

involving the quantum mechanical effects due to unfilled 

energy b ands which requires much smaller grains . The 

model analyzed here , however , is based on classical ab­

sorption and scattering of light , and grains of about 

(lO- 5 ) cm . will be considered . In the details of the com­

put ation the~ will be taken to be spheroids . The align­

ment mechanism of Davis and Greenstein , . one of para-

magnetic relaxation , produces a dissipativ e torque wh ich 

tends to align the angular momentum of the grain para­

llel to the applied magnetic field and the long axis 

of the grain perpendicular to this direction . Oppos-

ing this aligning mechan~sm will b e the randomizing 

effect of impacts from the h y drogen atoms in t e e i nter­

stellar gas clouds. The aim of this analysis \ ill be to 

find the equilibrium distribution of grain orientations 

produced by these two opposing effects . This is carried 

to completion for the case of small magnet ic field and 

nearly spherical dust grains . The mathematical tech­

nique used is an approximate solution of the Fokker­

Plank equat ion . 

In the rest of t h is chapter some of the observa­

tional data is briefly given , the mechanical and optical 

model for the dust grains and the alignment mechanism 
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is described , and the Fokker-Planck equation is intro-

duced . The dust grains are ultimately taken to be homo-

g eneous ellipsoids of revolution , either prol a te or 

oblate , and their absorption and scattering is taken 

to be given by the Rayleigh-Gans theory . (~) A collision 

with a hydrogen atom will be assume to occur rapidly 

enough so that during the collision only the grains' 

angular momentulll. is changed , but not the grainS ' orien­

tation in space . In Chapter II the differential equa-

tion for the entire alignment ~rocess is formulated . I n 

Chapter III a perturbation solution of this equation for 

nearly spherical grains an sm~ll magnetic fields is 

found , and the results are usel to deduce t h e polar iza-

tion parameter for this case . Chapter IV contains a 

brief summary of the calculational procedures which may 

be useful as a guide to the rest of t he paper . A sum-

mary of the res ult s is g iven in Chapter V. 

1. Polarization Observations 

Let In and Ia be the intensities of the lisht in 

the t -' o perpendicular plans of polarization , -lith In in 

the plane of maximum intensity . In the model of Davis 

and Greenstein , I is the intensity of the light which 
n 

has its electric vector in the p l ane formed by the 

galactic magnetic field direction and the direction of 

propagation . Then the degree of polarization is de-
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fined by 

I - I n cr 
p = In + I;- C 1 ) 

The observed values of p are of the order of . 05 . As -

tronomical results are usually expressed in magnitudes . 

The polarization in magnitudes is defined by 

CIa) 

For small p , the two expressions for polarization are 

approximately related by 

tlm = 2 . 2 P p Clb) 

The polarization in magnitudes will be proportiona~ to 

the amount of polarizing material along the light ' s 

path . This will also be true of the total extinction 

of the light . The total extinction , also in magni-

tudes , can be defined by 

[~~~:~;~~yi~;e~~i!t- 1 (2) 
sorbing dust were 
present 

Because of the dependence of extinction on wave length, 

it is observed as a reddening of the light . This is 

usually described by a quantity called the color excess , 

1 El , which is about 9 tlm . Since it is independent of 

material along the path , the quantity tlmp/ El or , for 



5 

small values of p , p/El is of direct theoretical interest . 

The observed values of p/El are of the order of . 1 . 

The value . 1 given for p/El is an average value 

only and is gi ven to illustrate the magnitude of the 

effec t - we are dealing with . Of much more astronomical 

importance is the maxim.m.m value, since we are then sup­

posedly looking perpendicularly to the direction of the 

magnetic field at the location of the effective dust 

cloud . (see equation 3 below) . Maximum values have 

been given as p/El < . 25 · (5) 

2 . Mechanical and Optical Model 

To calculate the expected polarization , or the 

ratio p/El ' produced by the interstel lar dust , it is 

necessary to 

(a) assume some model for the grains and 

the torques which act on them , 

(b) calculate the distribution of grain 

orientations resulting from the as ­

sumed model , and 

(c) calculate the extinction vs plane of 

polarization for light incident on 

the oriented grains . 

In this paper , (b) will be consi ered in detail and the 

results of Davis and Greenstein wil~ be used for (a) 

(6) and (c ) (7). 
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One of the principal results of the consideration 

of the grains ' structure is that thef€ will show the 

phenomena of paramagnetic relaxation . (8) The induced 

magnetization in a grain \' ill have a fin ite relaxation 

time , so that in a time varying external field the mag­

netization ~ill be out of phase with the field . In 

particular , if the g rain is rotating with respect to the 

with respect to the field , the field and magnetization 

will not be parallel , thus producing a torque on the 

grain . The result is that this torque tends to make 

the angular momentum vector of the grain parallel to 

the magnetic field direction and the long axis of the 

grain perpendicular to this direction . This orienting 

torque will be opposed by the randomizing torques due 

to impacts of hydrogen atoms from the surroun ing gas 

clouds on the grain . 

The magnitude of these effects is small , so that 

the grain can be considered to be a free body ith the 

torques producing slow changes in the free bo y rota­

tion parameters . In figure 1 , let B be the magnetic 

'" field , H the angular momentum of the grain , and A a 

unit vector along its symmet~r axis . I n the free rota­

tion of a rigid body the angular momentum stays constant . 

Thus ft , the angle between H an B stays constant . For 

a solid of rotational symmetry , the symmetry axis ro-
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Figure 1 . Definition of the orientation angles . 

~ i s the magnetic field , H i s the angular 

momentum o f the grain , and A i s the symmetry 

axis of the grain . 
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tates uniformly around the angular momentum , the angle 

between them remaining constant . That is , Q , the angle 

between H and-A , stays constant, while Y I the angle be­

tween the H, ~- plane and the H, A- plan~increases uni­

formly. The effect of the torques is to produce gradual 

changes in », Q , and the magnitude of H. The use of 

" slow" in the beginning of this paragraph means that 

the fractional changes during one nutation are much less 

than one . The orientation of the figure around ~ will 

be ran om , so that in all calculations quantities will 

be averaged over this orientation and the angle '1 . (9) 

The effect of the oriented grains on the starlight 

was computed by Davis and Greenstein using the theory 

of Gans . (4) The applicability of this theory to visible 

light being scattered by grains as large as (10-5) cm . is 

questionable . Thus , for instance , it cannot be expected 

to yield the correct dependence of polarization on wave­

length . (lO) However , much recent discussion considers 

smaller grains , (11) and ev en for the larger grains the 

theory gives some estimate of the effect and no really 

better theory is available . In any case , the results 

found here for the distribution of orientations could 

be used with any future scattering theory . Their use 

with the Gans theory at least 5 ives the opportunity to 

compare the results of a more accurate statistical 
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theory with the simpler estimate of Davis ana Green-

stein . 

The result which Davis and Greenstein find upon 

applying the Gans theory is that the effect of the 

grains can be expressed in terms of three quantities : crA, 

the extinction cross- section for a spheroid whose axis 

of symmetry is parallel to the electric vector of the 

light , crT' the extinction cross-section for a spheroid 

cvhose transverse axis is parallel to the electric vec-

tor , and F , a qu antity giving a measure of the deviation 

from randomness in the orientation of the dust grains . 

The ratio crA/crT is given for grains of various eccen­

tricities in table 2 of Davis and Greenstein . The de-

finition of F is in terms of an integral , given below , 

over the orientation distribution function , done in 

such a way that for grains obeying the Gans theory , 

p/EI is proportional to F . Let the direct ion of pr~­

agat ion of the light make an angle ( v + n/2) with B . 

Then , if all of the grains are of the same size and 

shape , the result is 

Q 18 . 6 F 2 (crA/crT) - l 
(3) 

El 
= cos v (crA/crT) +2 

If the grains are of various sizes the result must be 

expressed in terms of integrals over the grain sizes . 

However , what we might think of as the polarizing cross-
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section for a single grain is proportionaJ to the value 

of F for that size . Thus , for the Gans theory, crA and 

crT giv e the scattering properties of inuividual grains , 

while F contains the information necessary bout the 

distribution of orientations . 

The definition of F is g iven by equation (~~) of 

Davis and Greenstein . (2) If we change variables to 

r cosB 

s cose (~) 

- 1 ~ r , s ,;;l 

and let 

be the probability density of orientations , i . e . pdrds 

is the fraction of the grains in the range between r and 

r+dr and betwe en s and s+ds , with Pe being the equili­

brium density in the absence of a magnetic field , then 

the definition becomes 
I I 2 2 1 

F =~f!, [r s + 2(1 - r 2 )(1- s2)] Pl (r , s)drds (6) 

The main results of this paper will b e the calculation 

of per , s) and F . If the Gans scattering theory is used , 

F contains all the information necess a ry about the dis­

tribution of orientations . For any other scattering 

theory, the complete description contained in p will 

have to be used . 
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3 . Paramagnetic Relaxation echanism 

. e now give the results of the analysis of the 

p aramagnetic relaxation mechanism wh ich are of inter-

est here . (12) As stated before , in a time varying ex­

ternal field the magnetization 'ill not exactly follow 

the applied field . A dust grain rotating in a constant 

external field can be thought of as standing still with 

the field rotating around it. This equivalent varying 

field will produce a component of magnetization perpen-

icular to itself . Thus , there is an apparent dragging 

of the magnetization away from the direction of the 

applied field by the motion of the grain . Analyzing the 

s ituation on this basis , Davis and ~reenstein found that 

the important term in the magnetization perpen icular 

to the applied field is given by (9) 

ff 

( 7) 

where ~ is the imag inary part of the complex s uscept-

ibility, and measures the angle through which M is 

dragge away from] , and ~ is the g rain ' s angular vel -

ocity . For the expected grain compositions and internal 

g r ain temperature , Tg , they 

f~ 2 . 5(lO-12 )~ 
g 

cases of interest , T g 

find that 

is expected to be abou t 

Let V be the volume of the grain , 

(8) 

I be the moment of inertia about the symmetry 
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axis , 

and yI be the moment of inertia about an axis 

perpendicular to the symmetry axis . 

Define D, a constant for a given grain , by 

" 2 · 2PO- 122 D 'f V V 
= W Iy = 

Tg Iy 

The magnetization will produce a torque given by 

V( t~]) . Then , further , this torque produces changes 

in the orientation variables at the rates (13) 

(9) 

~ = _DB2 sinS cosS (ycos2e + sin2e) (10) 

and 

de 2() 1 2 dt = +DB y- l sine cose (1 - 2sin S) (11) 

and decreases the magnitude of the angular momentum , H, 

at a rate given by 

2 
~~H 2 ___ 2DB2H2 . 2Q ( 2 . 2 ) Sln ~ ycos e + Sln e (1 2 ) 

For a spherical grain 6f density 1 gm/cm3 , internal 

temp erature lOoK , and radius (10- 5) cm , D = 6x(10- 3) 

sec - l gauss - 2 . For a magnetic field of (10- 5 ) gauss , this 

gives a typical time rate of DB2 = 6x(10-13) 

4 . The Fokker-Planck ~quation 

-1 sec 

The grains will also be subject to random torques 

due to bombardment by the a toms of the surrounding hy­

drogen gas . These will give random changes in the orien­

tation variables in addition to the steady changes de -

~ribed by equations 10, 11 , and 12. The Fokker- Plank 
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equation is a differential equation of the diffusion 

type for describing the effects on a probability dis­

tribution of such rand om c h anges of the variables . 

There is an extensive d i scussion of it , as well as other 

stochastic problems in physics , in an article by S . 

Chandrasekher . (14) ~he equation , a s it app lies to the 

present case , will be given here . The justification 

for this particular statement of it will be given in 

Appendix I . 

Let us suppose for a moment that the set of variables 

whose probability distribution interests us are xl ' ... , x n . 

Let w(xl , .. , xn,t) be the probability distribution at 

time t . That is , Wdxl .. dxn is the probability that 

at the time t the ith variable is in the range dxi 

around xi for i = l , .. , n . The x. of a representative 
l 

particle will have a law of motion for small ~t such as 

~Xl' = x.~t + ox. 
l l i = l , ... , n , 

where ~xi is the change in xi during the time interval 

~t , xi is a steady rate of change due to some known ex­

ternal force which may be a function of the x.,(i . e . the 
l 

rates given by equations 10 , 11 and 12) and oXi are ran-

dom changes , the knowledge of ',"hich is only statistical 

(i.e . the effects of colli s ions with hydrogen gas atoms) . 

Thus oXi will be described by some transition probability 

t (oxl , .• , Oxn ; xl , .. , xn ; ~t) d(oxl) ·· d(oxn ) which gives 
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the probabil ity of having changes oxl ' . . . , oXn in 

d(Oxl) ... d(oxn ) during time ~t if the current values 

of the variables are xl' " " xn ' Denote the expectation 

values of the oXi and their products , i . e ., the various 

moments of the distribution 'f , by Ei~t and Eij~t . That 

is define Ei an Eij by 

E.~t= r .. f ox . 'f (ox ; x ; ~t)d(oxl ) ' . d (ox ) 
l' l r r n 

and 

E .. ut =J •. j' ox.ox. 'f (ox ; x ; ~t)d(Oxl) ·· d(Oxn) lJ l J r r 
The notation anticipates that the first an - second 

moments will be proportional to ~t i n c ases of inter-

est . If , f urther, the third and h i gher moments a r e 

proportional to higher powers of ~t , the Fokker-Pl anck 

equation of the probability istribution \, is 

L: ~('Nx . ) 
i ox. l 

l 

(14 ) 

(16) 
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II. Formulation of the Alignment ~quation 

1 . Plan of the calculation 

The computation will then run as follows.. . Select 

a suitable set of variables, x. ; find the coefficients 
l. 

Ei and Eij in terms of these variables for a dust grain 

immersed in a cloud of hydrogen gas ; find the xi from 

equations 10, 11 , and 12 ; fin the solution of the 

Fokker- Planck equation 16 for equilibrium , ow/?t = 0 ; 

c alculate F from its definition , equation 6 . Chapter 

IV contains a brief summary of the calculational pro-

ce ures which may be useful as a guide to the rest of 

the paper . 

The variables ~hich the author found most conven-

ient for formulating the Fokker-Planck equation are 

11 = H cos Q 

= H cos ~ 

= H2 

wi th r anges - «>< 11 < 00 05,( <, co . 

H must be included along ith the angular variables 

since , as will be seen , the effects of g rain-atom 

(17) 

collisions depen on the grain ' s angular momentum in 

an important way . It is much easier , ho~ever , to first 

fin the expected values of the changes in the compon-

ents of the angular momentum in some cartesion coor-

dinate system and then relate these to the changes in 
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')1 , 'T" , by 

" ')1 = n-A 
"'l n -YB (18) 

C R'R 
A collision between a hydrogen atom and a grain 

will take place so quickly that it can be con~idered to 

produce an impulse , oR , of angular momentum, so that 

only H, and therefore ~ and 9 "ill be changed , but not 

the orientation of the grain in space . The grain ' s 

reorientation will follow from its n utational motion 

around the new R. 
For a coordinate system fixed in the grain, the 

ex)ectation values of oR ~ill be independent of the 

orientation in space of the grain and it s attached 

coordinate system , being the same for all grains of the 

same size and shape . If the expectation values of 

components of oR resolved along axes fixed in space 

are computed , however , they will depend on the orien-

tation of the grain . Thus it -ill be c:; implest to con-

sider oR resolved into components along axes fixed in 

the grain vnd then find the effect on the orientation 

variables by using equations 18 , hich are scalar 

equations and true in any coordinate system . 

The plan followed will be to first analyze the 

effect of a single hydrogen atom impact , then, from the 
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probability of a given type of impact, find the moments 

of the distribution of oR, using a coordinate system 

fixed in the grain , and finally to translate these into 

~, n, C by us ing equations 18. In all of this , only 

terms of lowes t order in the r a tio of hydrogen atom to 

grain mass will be kept . 

2 . Effect of a Single Coll i s ion 

First let us find the effect of a single impact . 

Let 

~ be the velocity of the hydrogen atom initially, 

b l be the velocity of the hydrogen a tom af ter the 

impact, 

m be the mass of the hydrogen atom , 

£ be the point of impact on the grain ' s surface , 

~ be the angular velocity of the grain , 

The 

J be the inertia tensor of the dust grain, and 

M be the grain ' s mass . 

angular momentum delivered to the grain by the 

pact will be that lost by the hydrogen atom . Thus 

0.& = m£ x (~ - b l ) 

The resulting atom velocity, ~l ' -'ill be a function 

im-

(19) 

of 

b, ~ and the model chosen for the collision . If it is 

supposed that the atom hits, sticks , and then is thrown 

off with the loc al velocity of the grain surface , 

b l = ~ x £, and 
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For a second model suppose that the atom makes an 

elastic collis ion and that the outgoing velocity is 

parallel to the incoming velocity in the coordinate 

(20) 

system in hic~ the local gr ain surface is stEt ionary . 

In t h i s l at ter coordinat e system , in the lowes t o rder 

of atom to grain mass , the atom rrill be making an elas­

tic collision with an infinitely h eavy target , and so 

ill merely reverse its velocity . In t h is coordinate 

system the incoming velocity ~ill be ~ - (~x £) . When 

this is r e versed and t r ansformed b ack to the original 

coordinate system , it gives for the outgoing velocity 

~l = - (£ - ~ x £ ) + ~ x £ = - £ + 2(~ x £) . Thus , 

this model giv es 

oM = m£ x (~-~l ) = ~ x (~-~£) (21) 

The difference betveen quot a tions 20 an 21 is only in 

the factor of 2 . Vari ous other r easonable models give 

the same results , i . e . ex ression ( 21 ) with a different 

numerical factor . Th is can be taken into a ccount by 

always u s ing equation 21 , and assigning to the hydrogen 

atom an effective mass , m .... , " hich depends on the col -

lision model chosen . e will therefore use 

(21 

where m~=m for an el as tic collision and m*= m/2 for a 

complet e ly inelas tic collision . 
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3 · Calculation of Moments of oli 

The next step in finding the diffusion coefficients 

in the Fokker- Planck equation is to calculate the mo-

ments of the distribution of oR from the collisions . 

Let Nd~dSdt be the number of collisions on an element , 

dS , of the grain ' s surface during a time dt due to 

hydrogen atoms in a range of velocities d~= db db db x y z 

around the velocity b . Further , suppose that t is much 

less than the average time between collisions on a given 

grain . Then NdbdSdt "'ill also be the probability of 

having a collision of the type indicated during time 

dt . Note that the ove r whelming probability is to have 

no collision . As discussed in Appendix I , the moments 

of oR calculated on the distribution for a time ~t » 

dt during which many collisions can be expected to 

occur give the same results for Ei and Eij as a c alcu­

lation based on the distribution for the t ime dt . That 

is 

and 

i =x , y , z 

E .. dt = dtJ·(oR.)(oR.)NdbdS i,j=x , y , z 
1.J 1. J -

(22) 

(23) 

where the integrations are taken over all of t h e grain 

surface and atom velocities . 

The velocity of an atom relative to a point on the 

grain surface is ~ -(~ x £ ) . For a collision to occur , 

the normal component of t ~.is v e locity must be toward the 

grain . This , combined with the assumpt ion of a Maxwell 
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distribution of atom velocities , gives 

~
_Ae _mb2/2kT Q{b- (~OC1:)] d.Qds t 

Ndbds t = for n { b - (,WX£)]5 0 (24-) 

o for Q{ Q-(,WX£)] ~ 0 

Her e !! is a unit. vector drawn outward normE 1 to the 

grain ' s surface , and A is a constant to normal ize the 

hydrogen atom density to nH atoms per cm3 . Thus 

2 
n

H 
= fAe - mb /2KTd~ 

or 

where in the last form we have introduced the hydro -

gen atom characteristic velocity , given by 
2kT 1/2 

c = (IiI) (26) 

To simplify some of the calculations , let us denote the 

vector composed of the three first moments by 

(27) 

and the symmetric matrix of the six second moments by 

Ellli = 

E xz 

E yz 

Ezx Ezy Ezz 

(28) 

Also let (&H)(&H) be either the dyadic or its matrix 

representation . The x , y , z coor inates , as implied 

before , refer to a system fixed with respect to the 

grain , not with respect to space . ~ e have not yet 
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specified how it is oriented in the grain . 

The definitions of equations 27 and 28 then give 

Eri = / N(oH) db ds (29) 

and 

~ = J N(o!D (o!! ) d12dS (30) 

Equations 21 and 24 give oR and N. These must be sub­

stituted in equations 29 and 30 and the indicated five-

fold integrat ions must be carr ied out . The results , to 

lowest order in the ratio of atom to grain mass , turn out 

to depend on a simple matrix whose elements are cert ain 

integrals over the surface of the grain ana on the in-

ertia tensor of the grain. (See equations 42 and 43 

below . ) The result holds for an arbitrary grain shape , 

and can then be specialized to the spheroids being con-

sidered here . 

When we estimate the order of magnitude of various 

terms in the integrals, a term involving ~ and £ can in 

general be estimated to have the magnitude wr/c , c 

being the characteristic velocity of the atoms . (see 
_ 121 2 2 

equation 26) For orders of magnltude, kT .... 2 Iw ........ 2Mr w , 

M being the mass of the grain . Thus -e have 

(31) 

and only terms of lowest order in this ratio are to be 

kept . 
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To handle the limits on the velocity integrations 

implied by equation 24 , introduce the velocity § given 

by 

(32) 

At each point on the surface of the grain attach a 

coordinate system for § , as shown in figure 2 , with 

components u, v , w oriented so that the u-axis is along 

n, the v- axis is normal to n and to the z - axis , i . e . 

is parallel to the xy-plane , and the w- axis is in the 

n , z-plane . ,ith this coordinate system , n ·~ = cu , so 

that the region of integration in velocity space im-

plied by equation 24 is 

n · (u.ucr) 
- 00 s U ~ ,...,.,,'--'-~="'-

c 

Further , we will break up the u integration into two 

parts , first integrating for _=,~c O and then adding 

the integral for u between 0 - and n · (~~)/c . 

If we substitute ~quation 21 and 24 in 29 , using 

the R coordinate system , we get 
fT~/2 o 

-2nHm 1<c2 ~ = p ' ( I ) 
surf ' v,w=-~ u=-ro 

u vdw dS 

... <j# 
suef 

J n:rvc( 
vw=·OO u=O 

I ) dudvdw dS 
, 

The integrand in both integrals is the same , and is 
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Figure 2 . Placement of R space coordinate system 

for velocity integrations . 
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given by 

) _( £x(wx£) ][ n ' (wx£) l _( u2+v2+w2) 
- rx"'- u- e 
~ """ c c 

[ 
rx(wxr) n · (wxr) n · (wxr) = u(rxs ) +~ ~ ~ ~ = = - (rxs)~~ 

~ ~ c c ~ 2 ~2~ c 
_ Q£~(WX£ )] e-(uL+v +w ) 

( I C34- ) 

Consider the first integral of equation 33 . The velocity 

space integral of the first term is 

o 

If I 
VW=-w u= -= 

I (X) 

= £ x II 
o 
I 

2 2 2 
e - (u +v +w ) u.§. d.§. 

v,w= -w U= - <>:> 

The integrals for the v an w components of this will 

give zero , leaving only the u, or normal , compon~nt , 

resulting in a constant times £ x n. But 

## 
surf 

£xn dS = - II 
volume 

(2 x £)d(vol . ) = 0 

since 

Thus, the first term gives no contribution. 

= o. 

By the estimate of equation 31 , the secon t erm is 

of higher or er in m/ than the thir or fourth terms 

and so is to be neglected. This then gives for the 

first integral 

)(l [ n . (wxr) ~ 0 (u 2+v2+w2) 
- !r.J> c £xQ J I ue - dudvdw + 
surf VW= -tX> U= -oo , 

( ) QD 0 222 ] 
£x ~£ II I ue-(u +v +w ) dudvdw dS 

. y;R=- «> u= - .", (35) 

= ~c it f (£xQ) (£XQ) . ~ + £x(WX£)} dS 
surf 
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Now consider the second integral of equation 33 . 

In it , the maximum value of lui is IQ ' (mx£)/cl which is 

of the order (m/~r/2« 1 by equation 31 . Thus , for this 
2 

integral , e-u = 1 plus second order terms. The four 

terms in the integran will once again be those given by 

equation 34 . "nen integrated over v and w, they become 

a constant times 

[ u2(£XQ) + £x~mx£) Q . (~r) _ u(£XQ)n . ~.wx£) 

Since u is limited to Q' (mx£)/c , al l of these terms 

will be of second order in ~r/c in the range of integ-

ration . The integration 

J
ll ' (,wx£) / c 

[J du 
u =O 

then makes them contribute only in third order in 

wr/c , so that they are completely negligible, and 

- n 3/ 2EH/ n~~ c2 is given by equation 35 . 

To evaluate ERH , e must substitute equations 21 

and 24 in equation 30 . The regions of integration will 

be the same as those for Ea in equation 33 , but the 

integrand will be ifferent . The jntegrand for 

c 
(36) 

-[rx(wxr~(rxs) ~ ~u- ~ ' (~Xll)J 
c 



26 

Each term in the first set of curly brackets is a dyadic. 

The term of lowest order will be the dyadic 

uC.£x.g)(.£x§) exp [ _ Cu2+v 2+w2)] . AIJ.y terms which are 

odd functions of v or w in the expansion of this dyadic 

will integrate to zero . The matrix representing this 

dyadic , written out in the u, v, w coordinate system , and 

leaving out terms odd in v or w, is 

2 2 2 2 Cr v +r w) w v - r r w u v 
2 2 - r r v u w 

222 -Cu +v +w ) ue 
2 - r r w v u 

Cr 2w2+r 2u2 ) -r r u 2 
u w v w (37) 

2 
- r r v w u 

2 2 2 2 2 
- r wrvu Crv u +ru v ) 

where r u ' r v ' and r w are the components of .£ along the 

u, v , waxes . Note that the matrix is symmetric . If 

this is integrated over the range of velocity variables 

in the first integral of equation 33 , the result is 

2 2 
Crv +rw ) -r r - r r u v u W 

'IT 2 2 - 2r r -Zj: - r r C2rw +ru ) v u v w 

-r r w u - 2r r w v C2rv2+ru2) 

For the same reasons as used in anatyzing Eli ' the 

tegral over the second region of equation 33 will 

tribute only higher oraer terms , s o tha t 

(38) 

in-

con-

_'lT3/2~/~fi Cm* )2c3 will be given by the integral over _ H 

the surface of the g r ain of equation 38 . 



27 

To do this sur face i ntegral , we must first t r ans-

form equation 38 , "'hich is written in terms of a co -

ordinate system whose orientation depends upon the loca-

tion of the element of surface of the grain , to a co-

or inate system which is fixed in direction ~ i th r es -

p ec t to the grain . This can be done most easily by 

putting equ ation 38 in a form which contains no refer-

en ces to a coordinate system at a l l . Direct expansion 

in the u , v, w coordinate system "'ill sho that equa-

tion is equal to the matrix representing the yadic 
- 2 -* Lr U + ( l:Xl!)(l:Xl!) - (l:)(l: ) ] 

where U is the unit dyaaic . This finally giv es 

71 ~r/ r2
U. (l:X11)(l:X1!) - (l:)(l:)] (39) 

d(surf . ) 

The results for EH and ~H ' equations 35 and 39 , 

can be unified . 80nsider the integrand in equation 

35 . If l: x(~l: ) is expan ed , the integrand can be 

wri tten a s (l:X11 ) (XX!!) • !:!J + r 2
w - (l:) (X ' !:!J) "'hich equals 

[ (l:Xm (XX11) + r
2

U - c.!J (l:) 1 . !:!J . 

- 1 Let J be the inverse of the inertia tensor of the 

grain , so that '~e can write the angular momentum by the 

relation!:!J = J-l~ . Define the dya ic , or its matrix 

representation , G, by 
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G = IF.P [ r 2U_ (J: ) (J;:t+ (J;:xQ)(J;:xQ)] d( surf) 
surf 

and the constant 

Then 

""H = - "rl g\7 H 

and = gm c 2 ,., 
HI! 

u-

(~O) 

(~l) 

The results so far are valid for arbitrarily 

shaped grains . They must now be specialized to the 

spheroius that are of interest here . Take the axis of 

symmetry of the grain as the z- axis . It can easily be 

seen that the matrix G ~ill be diagonal in this co-

or~inate system . For consider the Qefinition of G, 

equation ~O . The first two terms, ~rlr2U- (J;:)(J;:)] S 

are just the inertia tensor for a hollow grain of unit 

surf ace density of mass , and this coordinate system is 

certainly a principle axis system for such a bo y . 

For the thiru term, (J;:Xll) ill be a vector parallel to 

the x , J-plcne , tan~ent to the grain surface , and of 

constant magnitude for a given value of z , so that the 

integral of the off diagonal components of (J;:xQ)(J;:X!!) 

around a zone of constant z ill be zero . Thus i~ the 

cooruinate system with z- axis along the axis of rota-

tional symmetry of the grain , 

oh 0 

o o.h 0 

o 0 h 
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and is determined by the t~o constants a and h . 

This coordinate system will also be a principal 

axis system for the tensor of inertia of the actual 

grain , which may be written 

100 

yI 0 

o I 

o 0 

o l/yI 0 

o o III 

and its inverse is 

Putting equations 44 and 45 into equations 42 and 43 

then gives 

and 

E h a 
Hx = - gr -x y 

E h a H - g- -
Y I y Y 

h -E = g - H z I z 

tf 2 
E gm c ha xx 
E gm* c 2ha 

yy 

Ezz = gm* c 2h 

E =E =E = 0 xy xz yz 

(46) 

(47) 

These results , equations 46 and 47 hold for any 

axially symmetric grain . The surface integrals of 

equation 40 must now be carried out for the particular 
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grain shape under consideration . For a spheroid with 

diameter along the rotation axis 2b and perpendicular 

diameter 2a , some elementary integrations give 

h =na451+ 2€2 +[ 2-
( (€ - 1)2 (48) 

(49) 

Here €=b/a , and sinh- l( ) is to be used for an oblate 

spheroid (a )-b) , sin- l( ) for a prolate spheroid 

(a<b) . The moments of inertia can easily be found if 

it is supposed that the spheroid is of uniform density . 

They are 

(50) 

For the case of dust grains which are nearly spheres , 

b/a will be approximately one . If we expand the ex-

pressions for h an ah , equation 48 an 49, in po~ers 
~ 

of (b/a)-l up to first order we get 

h . na4[~ + i~ [(b/a) 2_1]] 

ah . na4[~ + ~~ [(b/a)2-1]J 
(51) 

• 



31 

and 

(52) 

An expansion to first order , using equation 50 'ill give 

(53) 

Thus , the relation between the two parameters which 

a ccount for the non- sphericity of the grain , for g rains 

of uniform density , is 

(a- l) • 4- (y - l) 
5 

up to an error of second order . 

(54-) 

4- . Calculation of Terms in the Fokker- Planck Equation 

Equations 4-6 and 4-7 give the effects of the colli -

sions on the value of H relative to a coordinate system 

fixed in the g rain . These must be related to the var-

iables describing the orientation of the grain by use 

of equation 18 , /\ 
'Il = H -A 

(18 ) 

( = H-H 
1\ 

where now B is a unit vector in the direction of ~_ 
A 1"1 

This can easily be done , since in a collision A and B 

remain fixed , only H changing , so that 
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A 1\ " 

o~ = A oR + A oR + A oR x x Y Y z z 
" /' A 

B oR z z = B oR + B oR + x x y y 

(J!+oH) 2 _ R2 2[ R oR +R oR +R oR ] 
(55 ) 

x x y y z z 

+(OH
X

)2+ (OH
y

)2+(OR
Z

)2 

Thus what remains to be done is to express the com-
A " ponents of H , B, and A in terms of ~ , 'r , and ~ 

To do this we must further specify the orientation 

of the x, y , z coordinate system . So far , it has been 

chosen so that the z-axis is along A, the symmetry axis 

of the grain . Now fix the orientation around the sym-
/'\. 

metry axis so that the y - axis is in the R, A- plane . 

( See figure 3) . To fit the direction of ~ we must also 

'" /\ gi ve V, the angle between the H, B and H , A planes . 

This is the nutational angle , and , as previously dis -

cussed , all effects are to be a veraged over this angle . 

In this coordinate system , 

A " 
Ax = Ay 0 (56) 

A 

Az = 1 

R 0 
x 

Ry = - R sin Q 
(57) 

Hz = R cos 9 = ~ 
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z 

H 

x. 

F i gure 3 . Orientation of the x , y,z coordinate 

system . 



and 

This g i ves 

34-

1\ 
B = sin " sinf3 x 
" B = cos sin~ cose 

y 
g cos sinf3 sine 

z 
for equation 4-6 

E = 0 x 

E g!!~ H sinQ 
y I Y 

g!! Ez I 11 

and equation 55 becomes 

0 = oH z 
1\ A /'\ 

0" = B oH + ByOH + B oH x x y z z 

- cosf3 sine (58) 

+ cos~ COS Q 

(59) 

(60) 

or = 2H[ - sinQOHy + ] 222 COSQOHz +(OHx ) +(OHy ) +(OHz ) 

Since o~, 0" , and OC are all scala rs , and remain scal~rs 

when averaged over the collisions , they can be evaluated 

using any coord.inate system, in particular , the prin-

cipal axis system used here . 

If equation 60 , an the pro ucts of equation 60 

giving (011)2 , (0,,)2 , (0()2 , (o~o~) , (o~OC) , and (o~OC) 

are now evaluated using equations 4-7 , 59 , and 58 , the 

average over W performed , and then rewritten using the 

definitions of~ , " , and ( given by e quation 17, the 

results will be 

, 
.i!J 
~ 

= g!!~ 
I 

E g!! ,,[~ -
a.~2 ~2J = - + 

" I "'Ie 
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~[m¥c2I(1 "'2a) 
2 

+ 2a( I E 2u. ~r - a2 
y 

E 'flU ghmlf c 2 

E hm "'" 2[< a +12 (a- l)( 2 2 .2 .,.,2'fl2 )] -nn g C 2 + 2 .,... +'fl -

EC(= 4-ghm*c 2 [ a + (1 _a)'fl2 ] (61) 

E 
'fl" = ghm" c 2 u'" 

C 

E'flC = 2gh.nf c 2'fl 

Ene = 2ghm *c2 L aT] -w.
2

] + (l - a)y-

In these results , equation 61, all traces of the special 

x , y , z coordinate system have now vanished , and the 

moments are in their final form ready for us e in the 

Fokker-Planck equation, 16 

aw 
at 

a - ~ -a - ( WE . ) + 
i Xi l 

1 a2 
- ~ ~~(IYE . . ) 2 . ' ax. ax. lJ 

~J l J ' 

~(Wx.) 
Xi l 

(16) 

The Xi ' S appearing in equation 16 mu st now be iden-
. 

tified with the variables~ , ., and C. It still re-

mains , however , to express the 'fl , ,." and C in the last 

term of equation 16 in proper form . Equations 10 , 11 , 

and 12 g ive the rates of chang e of ~, 9 , ana H2, and 

these can be related to~ , ~ , and C by equation 17 and 
. 2 

the relation H=(1/2H) d/dt(H) . Thus 
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= Hcose-H~ sine DB2{~(Y_l)p2~3 ~(Y_l)~3 

+ [l-~(y-l)l ,,2)1 - [l+~(Y-l )j )1 J 
(62) . . 

n = Hcosl3 - H:3sinl3 = 0 2 2 
' 2 2 2 .!.Ll!- 2 ? 

= ( H ) = DB ( - 2 ( y- l)p. - 2 +2( y-l ~ , +2p S 
The middle one of these equations , "=0 , is to be ex-

pect ed , since the torque produce by the Davis - Green-

stein mechanism is such as to leave the projection of 

li on B, "hich is just T1 , constant . 15 

e can write equation 16 in the form 

07 - [ 1 a at = - z: ax . .- "2L: -a - (7:E··) + wxi ] 
i ll j Xj lJ 

hich has the obvious interpretation as an equation of 

continuity for a flow of probability en sity ff , ~ith 

the terms in brackets being the components of current . 

Thus WEi-~L:j c/ ~Xj( ~ij) is the ith component of cur­

rent caused by collisions and WXi is the ith component 

c aused by the magnetic field . Letting the three 

components of the current be denoted by J , J , end 
r 'll: 

J
C

' we find that using equation 61 and equation 62 

and performing the indicated differentiations gi ves 
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J = _ghm" c 2 ) [ (1 - a)4l
2 

aT' 
T" t.. 2 (2 +2C + (64-) 

""'112 ] l1"W [ 1 , (a- 1) T'2 112 
+ 2 W + 2C 11 + 4(a+l)+ 4- (-C+-r 

lIn c ( 

-3T"~~2)1 w" + [ aT" +(l-a) T1}j.2] wc 5 
J ,( 2 { 112 2l12

(y - a2+2a ]w - ghm c [a+(l - o)-- + ~~--~2~~~ 
C m.x c yI 

2 
+[ an+(l - a)l1c"Jwn +2[ aC+(1 - a)112 jwc 

2 { 2 22 2J - DB W 2(y - l)11 +2( _2(y_l)-(11 - 2'1"' 

A subscript on ~ indicates a partial derivative with 

respect to that variable . 

The equation of the aligning process can now be stated 

simply as 

at = J 
" 

(66) 

5 . Conservation of Total Probability . 

Since ~ is a probability density , (o/~t) J mdudrdC 

must vanish for the integral taken over the entire range 

of the variables . By using equation 66 and Gauss ' 

theorem , it follows that this ill be true for any W 

if the normal component of the current , (Jl1 , JT" , J() , 

vanishes on the boundary. From equation 17 , we see 

that the range of the variables is 

2 £ (67) 
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This will be the inside of the volume formed by the 

intersection of the two parabolic cylinders , ~2= ~ and 

2 
~ =( . Their projections on the n , ( and~ , ( planes are 

shown in figure~ . The boundary ~2=( is called I and 

~2= ( is called II . The slope of surface I is 2~ . The 

slope of the normal vector will be - 1/2 , so that one 

normal vector has components n~=2~ , nC= - l, ~=O , and the 

normal component of the current will be proportional 

to 

(68) 

The situation on surface II is exactly similar , so 

that 

(69) 

Equation 68 evaluated from equa tion 6~ and equation 65 

with n2=( , and equation 69 evaluated from equation 63 

and equation 65 with ~2= C ~ill both be found to vanish, 

so that the necessary condition of cons ervation of pro-

bability holds . 

6 . Maxwell - Boltzmann Solution 

Another c ondition which the equation of the pro-

cess should satisfy is that the Maxwell - Boltzmann is­

tribution for an appropriate temperature should be an 
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Figure 4- . Projections of the bounding su rface 

in 1l , r , C spac e . 
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equilibrium solution for zero magnetic field . Davis 

and Greenstein found that this distribution for a tem-

perature L is, up to a multiplicative constant, in 

16 terms of ~ , ~, and H, 

fe d~d~dH = exp[_H2(sin2~+ycos2~ )/2Iyk r]H2sin~ sin~ 
d~d~dH 

The inverse Jacobian for the transformation to the 

variables ~ , n, ( is easily found from equation 17 to be 

(70) 

This , then , gives , up to a multiplicative constant , 

the Maxwel l - Bol t zmann distribution in terms of ~ , n, 

{: as 

= 1 1 exp [_ (+~2(y_l)) /2IYk "c'J (71) 
"2 2(1/ 2 

Substitution of this into equation 63 through equation 

66 with B=O shows that it is an equilibrium solution 

of equation 66 with temperature . 

7:' = (m .... )T 
m 

(72) 

t/; 
For the case of elastic collisions , for which m =m, 

the distribution is at temperature T , the hydrogen gas 

temperature . However , for non- elastic collision models , 

for which m~< m, the distribution , while still Maxwellian , 
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is characterized by a temperature less than that of 

the gas cloud . This is to be expected, since in the 

non-elastic collisions some of the energy is going into 

internal energy of the grains and is then not avail­

able to maintain as high a kinetic energy as other­

wise . The hydrogen temperature is not affected , how­

ever, since its state is determined overwhelmingly by 

hydrogen-hydrogen collisions, which are elastic . 

7. Final Form for the Equation 

The mathematical problem of the orientation process 

is now that of solving. equation 66 with the currents 

defined by equation 63 through equation 65 for BI O 

This has the form of a diffusion equation, and 've would 

expect the time dependent solution to be expressible 

as a sum of terms, each of which decays exponentially 

with time . Of primary interest for the polarization 

problem is the term with infinite time constant, that 

is, the equilibrium solution . The ti~e constant of 

the next most slowly decaying term is what we will call 

the relaxation time for the process . 

From the algebraic complexity of the current 

terms , equation 63 through equation 65 , we should not 

expect to be able to write down an exact solution . 

Certain changes of variable have been found which sim­

plify the equation, or at least put it in a form where 
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its parts are more familiar, but even after these are 

carried out , the resulting equation must still be 

solved by approximate methods . What the simplest form 

of an equation is , and , therefore , what the best 

changes of variable are , is , of course, a matter of 

taste . The author has found a set which he considers 

most convenient . They were found mostly by a process 

of trial and error . 

The changes of variable are , first , to substitute 

new independent variables, q , r , s, defined by 

r - = cos13 « 
s = E: cose « 

c 
q = ,, 2 

m c Iy 

- 1 ~s.d 
(73 ) 

Secondly , substitute the new dependent variable f 

defined by 

II = Uf 

U = ! e-~(1+s2(Y-l)) 
v'-q 

(74) 

Except for the factor of 1/2 in the exponent , U i3~~he 
Maxwell - Bolt zmann distribution of equation 71 . 

, 
When 

\ 

these changes of variable are carried out, the govern-

ing equations, 63 through 66 become 
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1 af ! f (l+a)(l- 2)f _ (1+a)2sf Q at q 2a s ss 2a s 

2 2 2 2 
_ s (l - r )f + s r f + ~f 2 

2aq rr aq r a qq j 
2 2 

+ (l_L)qs f a 

(75) 

[ 2 ,1 2 [ 1 2 4- 2 2 +2 l+s (y-l ~ (r - l)qfq+ 2(y-l) (s +s )(u +l )q 

_ (1+2(y_l)s2)(r2_1 )q 

1 2 2 24-2 - 2(y-l)(s +l)(r +1) - 2(y-l ) s r q 

+ 2(y_l)s2r 2 - 2] f I 
where 

h ah m~nH 2kT 1/ 2 
Q = ~~1 = 2y1 fT lt~ ( Ill) (76) 

For spherical grains of density 1 gr/cm3 and radius 

(lO- 5)cm and hydrogen clouds of n
H

Tl / 2=lOO (oK) 1/2/cm3 , 

which Davis and Greenstein consider typical , this gi ves 

Q = 3x(lO- 13) sec- I . 

~he fundamental equation is now equation 75 . We 
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will find the approximate solution for the case of 

small magnetic fields and nearly spherical dust grains . 
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III . Solution for Small agnetic Fields and Nearly 

Spherical Grains 

For small magnetic fields and nearly spherical 

grains we will find a solution in a perturbation series . 

On the right hand side of equation 75 , the t erms in 

the first curly brackets will give the unperturbed 

equation . This division is used , since , as will be 

seen , these terms g ive a self- adjoint operator , thus 

guaranteeing that its eigenfunctions will form an ortho-

gonal set suitable for expanding the solution of the 

complete equation . As can be seen, they are also in a 

form suitable for solution by separation of variables , 

with the solutions being well known functions . The 

terms in the second set of curly brackets , multiplied 

by (I - a) give the perturbation due to the non-sphericity 
J 

of the grain surface ; the next term, containing the 

factor (1 - y2/a)gives the perturbation due to the non-

spherical mechanical properties ; the terms in the last 

curly brackets , multiplied by (DB2/Q) , give the pertur-

bat ion due to the magnetic field . 

Let us denote the unperturbed operator by Ro . 

Thus 

= ! S( l +a) (1_s2)f _ (l+a) 2sf 
q [ 2a ss 2a s 

+ (12~)(1-r2)frr - Cl~~)2rfr (76) 

+ 4q2f + 2 Cl +2a )qf + [ C1.+2)q_q2]f 2 
qq a q a J 



, 

4-6 

Denote the perturbation by RI . It will prove conven­

ient to have RI broken up into four parts , 

Rlfff= Ry [f ] + RB t f] + RBy Lf]+ Rx ff] 

with 

"Titing the differential parts as the sum of three 

operators of the self- adjoint form w(x)d/dx(p(d/dx)f) , 

where p(x) vanishes at the ena points of the range of 

x. This form ill be self- adjoint if the scalar pro­

duct of two functions , say a(x) and b(x) is define by 

(a , b) =fw-Iabdx ~ Expansion will show d irectly that 

"" Call anyone of these operators L . Then (a , Lb) = 
fw -' aw /dx(p(d/dxjb)dx= p(da/dx) (db/dx)dx by integra­
tion by parts , since p vanishes at the endpoints of the 
range of x . This last form is symmetric in a and b , 
so that ( a , Lb)=(b , La) , the con ition for L being self­
adjoint . 
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Rof i]=( a2~)i ~.o s [ Cl- s
2
)fs) +~r [(1 - r

2
)fr J] 

+q-l/2al ~q(4ql+I/2afq)+[ (2+~)ql/2a_ ql+l/2alf } 

So that Ro l f ] is self-adjoint with the scalar product 

of two arbitrary functions , say f and g , defined with 

the weight function q~a as 

(f , g) = JIJ ql / 2afg dqdrds 
(78) 

• 
With our notation of R for the unperturbed opera­

o 

tor and Rl for the perturbation , the governing equation 

for the alignment process , equation 75 , is 

If we look for solutions of the form h(t)f(q , r , s ) we 

get the usual result that 

h = eQ4t 

Ro l f] + RI ff ] = Ll f 

These eigenvalues , A , will give the spectrum of relaxa-

tion times . ~e will solve these equations by the per-

turbation series method . In particular , we want to 

solve the equilibrium equation 

(79) 

The solution wi ll be given as a series in f lmn , the 

solutions to the unperturbed ~quations 

(80) 
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The solution to equation 79 mu s t be normal ized so 

that the total probability i s one. In terms of the 

original variables this condition is expressed as 

fff W du.dndC =l 

From equation 73 , the Jacobian of the transformation 

to q , r , s is given by 

(81) 

When combined with the substitution of defendent vari a -

ble, equation 74 , this makes the normalization con ition 

ff (m ~c2I'Y ) 2 ql/2exp [_~(1+s2(Y_l ))] f dqdrds 

= 1 
(82) 

Most of the effect of non-spheric ity of the g rains 

is contained in RI Cf ] . Not all, however , since the 

definition of Ro ' equation 76 has some coefficients con­

taining a and 0 , and the independent variable substi-

tution has a non-spherical factor in the exponent. Be­

cause of this , Ro [ f } = 0 is not g enerally the equation 

for spherical grains , and we shoul not expect the 

unperturbed eigenvalue correspon ing to the equilibrium 

d istribution, ~ooo ' to be zero . This turns out to be 

the case, but upon correction by the perturbation 

(fooo ' Rl [ ~ooo] ) it becomes zero to first order as it 



4-9 

should. 

1 . Solution of the Unperturbed Equation 

.• e must now solve equation 30 . Inspection of the 

definition of Ro ' equation 76 , shows that for rand s 

we have the differential parts of Legendre ' s equation~ 

For the solution to be properly behave at s=±l , 1 must 

be an integer , and the solutions are the Legendre poly­

nomials . This suggests that we let 

where PI an Pm are the Legendre polynomials . The 

definition g iven in the Bateman Manuscript project17 

will be used . Substituting this in equation 80 , gives 

for y(q) the equation 

4-q2y" + 2(1~2a)qy ' + [ (~+2)q_ q2] y 

_ ( ~~a)bY = i\qy 

with b=l(l+ l )+m(m+l ) . If we make the substi tution 

Y = q 
l- ( , ( ~ ) I ) ":>. .L ] ~, ;.. + ~ :>.<ll P - 0( 

this last equation becomes 

1 1 1 )
1/2 J 

qz" + [ l +li - + 4-(a~a)b - q z ' 
2{ a2 

;vhere 
+ nz = 0 

l [ 1 a 1 ) 1/2 ] 
n = 2j: ~ - ( - 2 + (2~ )4b - II. _ 

a 
This is Laguerre ' s equation , and the properly behaved 
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solutions are the Laguerre polynomials L~(q) 

for which n = 0 , 1 , 2 , ... 

Here 

1/2 
1[ 1 (a+l) J 

a = 2 ~2 + ~ 2a 1 
The definition given in the Bateman project will be 

u sed . l ffi The conditio~ on n gives for the allowed 

values of A. , 
1 / 2 

A.lmn = ~ - [ ~2 + (~~1)4-~ - ~n 

We thus finally arrive at 

a ·1 

N
lmn 

q2-4U e-q/ 2 Pl(s)Pm(r)L~(q) 

with 

b = 1(1+ / ) + m(m+ l ) 

l , m, n = 0 , 1 , 2 , ... 

(84-) 

Nlmn is a normalization constant , to be chosen so that 

for l , m, n f 0,0 , 0 

and 

= 1 
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Condition equation 86 makes the f lmn orthonormal , and 

equation 87 gives agreement to the normalization con-

dition, equation 83 , to zero order . 

19 ' 2 2 
From Bateman , we have .f,G\ (s)1 ds = 21+~ 

and p a - q [La ( )12d r (a+n+l) With the definition Jo q e n q q n ~ 

of the scalar product , equation 78 , these give 

(N )2 = ~ 'i/"'ql/ 2uqa - l/2u e- q [p (s)1 ~ (r)j 2 
lmn /.. _, _, 0 1 m 

= (21+ 1 ) (2m+ I ~n ~ 
4 (' (a+n+ / 

[L~(q)I 2 dqdrdSr l 

for l , m, n f 0 , 0 , 0 

(87) 

The evaluation of N is given in Appendix II , (II- 10) . 
000 

Equations 83 , 84 , an 87 , together with the efini-

tions in Bateman17 , 18, give the solutions of the un­

perturbe equation , 80 . The relaxation times for the 

process will be determined to zero order by the spectrum , 

equation 83 . The ~ next in magnitude to ~ooo will be , 

for spherical grains for which u =y=l , 

~ - ~ = - 2 1 , 0 , 0 - ~ ,rp, O (88) 

From the exponential form for the time dependence , 

exp(~t) , this will give a relaxation time of 1/2Q . 

For the typical situation described following equation 
) 

76 , this ~ill hav e a value of about 2x(1012) sec ., or 

about 7x(104) years . 

2 . Perturbation Coefficients to be Calculated . 
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We must now carry out the perturbation solution of 

equation 79 . The lowest order terms of the perturba-

tion series which wil l be iUlportant for the tlolariza­

tion problem ill be those of order (y_l)DB2/Q and 

( ~-1)DB2/Q Jthat is , those which depend both on the 

magnet ic field and the non- sphericity of the grains . 

As will be seen, some terms of this order will arise 

from the second order perturbation terms . Because of 

the large amount of numerical labor involved , not all 

of the coefficients of this order will be evaluated , but 

instead only those will be found which contribute to 

the polarization parameter , F . The definition of F 

i s given by equation 6 , 

F 
1/ 22 1 2 2 - /'!.I [r s + 2(1- r )(l- s )] Pl(r , s) drds (6) 

where Pl(r , s) i s the deviation from the Maxwell- Boltzmann 

d istribution in the anguler var iables , rand s , a lone . 

The equations governing the alignment process 

have been written in t erms of the probability distri-

bution in terms of the variables ~ , ~ , and c. In order 

to see which will be important terms in the perturbation 

series , let us see how to change this to a probability 

distribution in the angular v ariables . First l et us 

change into a distribution over r , s , and q . Using the 
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transformation equations , 73 , the Jacobian of the trans-

formation from~, ~, to r , s , q i Q easily found to be 

(r , s , q) 
oC , ,., , r) 

1 
(m* c2. l y )q 

Define P(r , s , q) to be the distribution over r, s , and 

q . Then 

P( ) d d d = W(u ~ )1 (~ ' ~ ' (~I r , s , q r s q " oCr , s , q drdsdq 

(m~c2Iy) q~drds q 

If we also use the transformation from W to f given by 

equa tion 74 , thi s becomes 

P(r , s , q) = (m"' c 2I}')2ql/2 eXP t - ~ [1+s2(Y-l)Jf 

f(r, s , q) 

To find the distribution ov er the angular variables 

(89) 

alone , ~e must integrate P with respect to q . Letting 

per , s) be the distribution over r and s , ~e have 

~ 

per , s) J P(r , s , q) dq 
o 

(90) 

The perturbation solution will give us Pier , s) , 

the deviation of p from the Maxwell-Boltzmann distribu-

tion , as a series of Legendre pol ynomials . From the 

1-
definition of the Legendre pol'nomials ! , 
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(91) 

so that F can be expressed in terms of these as 

(92) 

If PI expressed as a series , 

(93) 

is substituted in equation 92 , the integrals involved 

will be just integrals of products of Legendre poly-

nomials over their range of orthogonality , so that , 

because of this orthogonality, only a oo and a 22 will 

contribute to F . However , because of the normalization 

condition on per , s) we know immediately that a oo must be 

zero . The argument runs as follows.: . The normaliza-

tion con ition is 

, / 

1. per , s) drds = 1 
. ( - I 

From their definitions p(r , s)=Pe(r , s)+Pl(r , s) , and 

p (r , s) is the Maxwell-Boltzmann distribution , so that e 
, , 

If p (r , s , ) dr s = 1 
-, _ I e 

Us ing the expansion , equation 93 , we thus have 
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. , 
I + E a . rJ P.(r)Pk(s) drds = I 

Jk!,' -. J 

Since P j is orthogonal to Po=l exce?t if j=o, all the 

terms in the sum except j=k=o are zero, leaving a =0. 00 

Thus a 22 , the coefficient of the P2 (r)P2 (s) term in the 

series expansion of PI (r, s) , is the only coefficient 

which nee be computed . 

The calculation of the coefficients of the f lmn 

in the perturbation solution of equation 79 follows the 

same method as used in, for example , quantum mechanics . 

The only difference is in the normalization of the 

solution. In the usual appl ic ations , the solution is 

normalized to have the integral of its square equal to 

one , ~Thile here V'e want the total prob ability to be 

one , h ich results in the condition on the integral of 

the first power of the solution , equation 82 . 'e wil l 

give a brief derivation of the necessary formulae and 

pick out those parts of the solution "hich contribute 

to a 22 . 

We wi sh to sol ve equation 79 , Ro[f l+RI [rJ=Af 
with A =0 . Suppose that r and 1 are given by the series 

••• j 
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with go and ~o independent of , u 1 and gl proportional 

to the first power of , and g2 and ~2 proportional to 

the second power of the expansion parameter , that i s/ the 

strength of RI . If these are substituted in equation 

79 an terms in like powers of the expansion parameter 

are collected , we get the usual infinite set of equations , 

the first three of which are 

(94) 

(95) 

(96) 

We are interested in the solution o f equation 94 with the 

smallest value of ~o . This solution is 

U o = 11.000 

go fooo 

Now expand gl ' in a series of the e i genfunctions of Ro ' 

gl = ~ A(l) f 1mn lmn lmn (97) 

If we substitute this expansion in equation 95 , and 

take the scalar product of both sides with f1 we get 'mn 

the usual results 
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and (98) 

A (1) = 
Imn for 1 , m,nf O, 0 , 0 

ere e have made u se of the facts that Ro[ f Imn] = 

A-lmn f lmn and , for 1 , m, n f 0 , 0 , 0 , (f Imn ' f Imn) = 1 . 

Also expan g2 as 

g2 = L: A(2) f (99) 
Imn Imn Imn 

Substitute this in e qu ation 96 an take the scalar 

product of both sides ~ith f lmn . This g ives the usual 

results that, for l, m, n f 0 , 0 , 0 

(100) 

The coef ficients A~;~ and A~;~ would have to be deter­

mined from the normalization condition , equation 82 . 

Ie h e ve previously , equ a tion 77 , divi e Rl up 

into four pieces , Rl =Ry +RBy+Rx"~8· Let u s u se t Gis 

division in equation 98 and define 
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(101) 

(1) 
Then Almn = b lmn + c l mn + d lmn + x lmn . 

From its definition , equation 77 , Rx Jan therefore 

xlmn Jis proport i onal to (y_l)2DB2/ Q. We are only go ing 

to c arry the c a lculation to lowest order , tha~ is to 

order (y-l )DB2/QJ and xlmn is therefore of higher 

order and can be disregarded . 

If we simil arly use this ivision of Rl in equ a ­

tion 100 , the expression (flmn , Rl [ f ijk] ) (fijk , Rl [ foool ) 

will have four possibilities for each of it s f actors , 

thus giving rise to sixteen different kinds of terms . 

However , using the definitions of equation 77 , all but 

two will be of second or higher power in (y - l) , (a- I) , 

or DB2/Q an can be disregarded . The t wo remaining terms 

are 

+ (flmn , RB Lf ijkl )(fijk , Ry [f ooo] ) · 

The factor [A;;~ -~l/(~ooo-~lmn)] is of first oraer in the 

perturbation , so that , similarly , the only contributions 
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in the final term of equation 100 ~hich cannot be dis ­

regarded will be 

Thus , define 

(102) 

(103) 

Each of these coefficients has an explicit dependence 

on the perturbation parameters through the definitions 

of Hy ' RB, and RBy given by e 4uation 77 . These depen­

dences are gi ven by the following tabl e : 

Coefficient Order 

DB2/Q 

(y - l) or (a- I) 

(y _l)DB2/Q 

( _1)DB2/Q or (a_l)DB2/Q 

We must now see which of the terms of the pertur-



60 

bat ion solution will g ive a contribution to the a 22 

of equation 93 . As remar ed before , the unperturbed 

solution , f , is not the axwell - Boltzmann soluti~n , 
000 

since some of the effects of the non-sphericity of the 

dust grain , even in the absence of a magnetic field, are 

contained in the perturbation R . The coefficients y 

Glmn represent the first order correction for these 

effects , and thus contribute to the Maxwell - Boltzmann 

distribution , Peer , s) , and therefore not to the Pl(r , s) . 

of equation 93 . 

The remaining terms of the perturbation solution 

must now be put into the integral in equation 90 to 

find their contribution to P1(r , s) . Keeping terms up 

to first order in (y - 1) the integral in equation 90 

can be expanded as 

00 1/2 - q/2f ( )d l( 1) ~ 3/2 2 - q/ 2 ,} q e r , s , q q - '2 y - q s e 
o 0 (104-) 

f(r , s , q)dq 

The expansion functions , f lmn , are given by equation 

84- as the products of the Legendre polynomials P1(s) 

and Pm(r) and a function of q alone . The integration 

of equation 104 is over q only , so that f lmn contri­

butes Pl(s) Pm(r) to Pl(r,s) from the first integral 

of equation 104 and (Y -l)s2pl(s)Pm(~ from the second 

integral. Since, according to Table 1 , dlmn and 

elmn already h8.ve a factor of (y - l) or (0 - 1) , terms 
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involving them will not contribute from the second 

integral to the order to ~hich we are ' orking . It 

wi ll a l so turn out tha t the only non-zero b lmn will be 

bomn ( See the discussion preceeding equation (11- 5) ), 

so that the second integral contributes only terms of the 

form 

b (y _l)s2p (r) = b (y - l) 2P2 (s)+Po (s) 
omn m omn 3 

According to equation 84 , we have 

a - l 

f lmn = Nlmnq2 4a e - q/2 L~(q)Pl ( s)Pm(r) (84) 

If this is used in e quation 90 as expanded in equation 

104, we finally find that the coefficient of the 

<0 ~+.2._L a 
- 2 (y - l) ~ b02nNo2n f q2 2 4ae-q~ (q)dq 

3" 2 non 

a 
e - qLn(q)dq 

(1°5) 

The four sets of coefficients , b o2n ' b _22n ' -<122n ' and 

e 22n , and then finally a 22 will be evaluated in 

Appendix II . 

3 . Results for Small agnetic Fields and Nearly 

Spherical Grains . 

The expressions for b 02n ' b 22n , d 22n , and e 22n 
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are given in Appendix II in equations 11-13 , 11- 5 , 

11-14 , and 11- 16 . The expression for a 22 is given by 

equation 11-17 . It is 

DB2 
= - 0 . 176 (Y-l)~ + 0 . 032 

The physical parameters are contained entirely in 

(y - l) , (a- l) , and DB2/Q , the numerical coefficients 

being independent constants . Expressions for (y- l) 

and (a-l) for nearly spherical grains are given by 

equations 51 through 5~ . 

(106) 

The effect on the polarization parameter , F , is 

found from equation 92 and equation 93 · They give 

, '[ 2 
!p 0 (r)P 0 (s )j F = - ,'/ ~P2 (r)F2(s) + 

-, -, IX> 

ajkP/r)Pk(s) 1 i ·I; drds 
J,It~ O 

All the integrals except those involving aooPo(r)Po(s) 

and a 22P2 (r)P2 (s) will vanish because of the orthogon-

ality of the Legendre polynomials . According to the 

discussion following equation 93 , a =0, so the only 
00 

term left g ives 

(107) 
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Using the results given by e 'luation 106 , "e have , to 

first order in the magnetic fi e ld and non-sphericity of 

the grain , 

DB2 [ 1 + F = +(Y-l)~ 90 

+ 0.0188 

1 
~-2) 1 

n~ 

(108) 

r (n+~) 
--n-~ -

If ~e assume that the grain is homogeneous then we may 

use the relation between ()'-l) and (a-l) given by 

equation 54 to obtain 

DB2 
F = + 0.0161 (y -l)~ 
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IV Summary of the Calculation 

We will give a brief outline of the structure of 

the calculation done in the preceding pages . 

The equation describing the alignment process is a 

Fokker- Planck equation . 14 The coefficients in the 

equation are found from various averages over the assumed 

probability of dust grain-hydrogen atom collisions . 

These coefficients are given in terms of the variables 

~=Hcose , r=Hcos~ , and C=H2 by equations 61 and 62 . 

The governing equation for the probability density 

w(~ , ~ , () in~ , r, r space is then given in equations 63 

through 66 . 

To render the equation more tractable a change of 

variables is made . The independent variables are 

changed to 

r = cos~ 

s = cose 

q 
m~ c 2IY 

where c is the characteristic hydrogenatom velocity , 

c = 
2kT 1/2 

(- ) m (26) 

and the dependent variable is changed to f , defined by 

(74-) 
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The result is equation 75 . 

For the case of small magnetic fields and nearly 

spherical grains , it is convenient to write the equation 

as the sum of two parts , Ro l f ] + Rl [ f ] = ~ ~f/ t , with 

Ro ' the unperturbed operator defined by equation 76 , 

and Rl [f J the perturbation given by 

Rl [f ] = Ry If] + RB [fJ + RBy [ f j +Rx [f] 

The perturbations Ry ' RB, RBy ' and Rx are defined in 

equation 77 . We are interested in the equilibrium 

sol ution , 

(79) 

This is solved in a perturbation series , the ex-

pansion functions being the eigenfunct i ons of Ro ' 

a 1 
2 - 4-a q/2 

f
lmn 

= Nlmn q e - Pl(s)Pm(r) L~ (q) (84-) 

The solution up to secon order in the perturbation , 

Rl , is given by equation 97 an 99 as 

The formula for the first order coefficients , A(l) Imn 

is given by 

efficients , 

equation 

A(2) by 
Imn ' 

98, and for the second order co-

equation 100 . 
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made of which of the AI(l) 
mn 

An analysis is then 

and A~~ will contribute to the polarization parameter , 

F , to the order we are working, that is , ~hich will 

contribute in order (y _l)DB2/Q or (a_l)DB2/Q . ~o aid 

in this, \1'e have the formula equation 90 for changing 

the solution f(q , r,s) into a probability density , 

per , s) , in the space of the angular variables r an s . 

The results of this analys is are that four sets of 

coeficients must be found . They are called b 2 ' o n 

b 22n , d22n , and e 22n , and are defined by equations 101 

and 102 . 

If we let p (r,s ) be the distribution of r and e 

s in the absence of a magnetic field , and then expand 

P l (r , s) in terms of Legendre polynomials as 

per , s) p , s ) + 

we find that only the a oo term and the a 22 term wi ll 

contribute to F , and that further aoo =O so that only 

a 22 is needed . (See discussion following equation 

93 . ) . In fact the result is that 

F 

This result is true in general . In the perturbation 

and 

(93) 

(107) 
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case that we are working out here , a 22 is given in terms 

of b 02n ' b22n , 22n ' and e22n by equation 105 · 

The evaluation of b02n ' b22n , d 22n , and e 22n is 

done in Appendix II . The results are 

DB2 1 1 
N b 020 020 = ~ 2n1/2 3 (II- 13) 

o for n = 0 

o 
DB2 

(y - l) ­
Q 

The expression for a 22 is then found to be 

(II- 13) 

(II- 5) 

(II- 14-) 

(II- 16) 

DB2[ 2- 4 ~ 
- (y -l)~ 48 + 3/ 2 n~o 

3fT 

1 
(n+~) (n-~) r (n- 2 ) ] 

(n+~)2(n+~)(n+~) n ~ 

(~-n) r (n+~) 
(n+~)2(n+~)(n+~) n ~ 

DB2 . DB2 
= - 0 . 176 (Y -l)~ +0 . 032 (a-l)~ 

(II- 17) 
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(108) 

DB2 32 
- (a-l)~ 3/2 

225n 

= (;- n) 

~;9 (n+;) 2(n+~) (n+~) 

DB2 DB2 
+0 .0188 (y-l)~ - 0 . 0034 (a-l)~ 
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V. Conclusion 

The alignment of the dust gr ains , and , thus , their 

effectiveness as polarizing agents is determined by 

the equilibrium between t wo competing processes , the 

orienting torque due to the paramagnetic relaxation 

process and the randomizing torques due to collisions 

with the hydrogen gas . The relative effectiveness of 

the two processes depends on the ratio of their rate 

constants . 

The rate of the orienting process depends on the 

internal parameters of the grain and the external 

magnetic field . 

Let V be the volume of the grain , 

I be the moment of inertia about the symmetry axis , 

yI be the moment of inertia about an axis perpen-

dicular to the symmetry axis , 

Tg be the internal temperature of the grain , 

and B be the strength of the external magnetic field . 

Then the rate constant for alignment of the grains is 

DB2 where the constant D is given by equation 9 as 

in c . g . s . units and degrees Kelvin . The value of the 

(9) 

( - 12) numerical constant, 2 .5 10 , depends on the assumed 
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composition of the grain material . Its value is dis­

cussed by Davis and Greenstein . 23 For conditions con-

sidered typical , Tg=lOoK , and 

radius (10-5 )cm and density 1 

spherical grains of 

- 2 gauss A magnetic field of (10- 5 ) gauss woul 

giv e 2 ( -13) -1 DB =6x 10 sec. 

- 1 sec 

then 

The rate of the r andomizing process depends on 

the surface shape and dynamical properties of the grain 

an~ the kinetic properties of the hydrogen gas . 

Let nHbe the number density of the hydrogen gas , 

T be the gas kinetic temperat u r e , 

K be Boltzmann~s constant , 

m be the mass of the gas atoms , 

and m~ be the effective mass of the gas atoms (discussed 

after equation 21) . 

-~ie also need , in ad ~ition , the surface shape parameters , 

a and h , defined by equation ~O and ~2 . They are evaluated 

in equa tion ~8 and ~9 . For nearly spherical grains 

they are given in equation 51 as 

h -_. ~[ 8 16 [( b/)2 ll] na 3" + 1 5 a -
(51) 

ah ,; na~[ ~ + ~[(b/a)2 - 111 

where 2b is the diameter of the shperoid along the ro­

tation axis and 2a the diameter along a perpendicular 

axis . Then the rate constant for the randomizing pro-
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cess is gi ven by equation 76 as 

Q (69) 

For the typical conditions , the same grains as above 

and nHTl / 2=100 (oK)1/2/cm3 and taking m~=m ( correspond­

ing to elastic collisions) , Q=3x(10- 13 ) sec .- l 

The type of distribution expected then depends on 

the ratio 

( 109) 

and the mechanical and surface shape factors , (y- l) 

and (a- I) . For our typical grain and hydrogen conditions 

DB7"Q=2x(l010)B2=2 for B=l0- 5 gauss . If (y_ l ) DB2/Q « 1 , 

the distribution will be nearly Maxwell- Boltzmann . If 

(Y-l)DB~ » l , the d istribution will approach complete 

al i gnment . 

Of primary interest is the polarization parameter , 

F . For the case carried to compl etion here , the nearly 

r andom situa tion , 

F = 
DB2 2 

+ 0 . 0188 (y -l)~ - 0 . 003~(a-l)D~ (108 ) 

to lowes t order in (y - l ) , (a- I) , and DB}YQ. For uniform 

spheroids , (a- I ) and (y - l) are related by equ ation 5~ , 

and we have 
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(110) 

We will still maintain the desired order in equation 108 

and 110 if ;ne set ad in the evaulation of DB2/Q by 

8 4- 4- 3 equation 109 . ~e will then have ah=3 na and V=~a , 

giving 

-1 2 1/2 2 
= 2 . 5(10 )(~)(_!!-.) ---..:B~_ 

T m'" 2mk 1/2 
g an T 

H 

(111) 

Putting in the numerical value for Boltzmann ' s constant , 

K, and the hydrogen atom mass , m, this becomes 

(112) 

and makes equation 110 

F = + 3 . 32 (y -l)(~~ 

':Ie also have obtained a value for the relaxation 

time . It is given follo~ing equation 88 as 1/2Q. For 

the typical conditions we have been using as an example , 

this is about 2x(1012) sec . If '~e evaluate Q from equa­

tion 69 , taki~g the case of a uniform sphere and putting 

in the numerical values for m and K, ~e find the relaxa-

tion time i s given by 
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(ll~) 

where Pg is the density of a grain . This last result 

can be compared 'ith the relaxation time obtained by 

Davis and Greenstein . 2 Their equation 16 is the same 

as our equation ll~ except that they have a numerical 

coefficient 5(1019 ) where we have 1 . 5(1019 )(m/m~ ) . 
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APPENDIX I 

We must first justify calculating the moments of the 

transition probability , Ei 

of a time ~t . That is , we 

and E .. , for 
lJ 

must justify 

a time dt ins tead 

the use of equa-

tions 22 and 23 instead of equations 14- and 15 . During 

a single collision the relative changes of the orientation 

variables will be much less than one . Thus , we can con-

sider tha t the orientation variables will be the same for 

many successive collisions . That is , there will be a time 

~t during which many collisions will occur , but also during 

which the orientation variables of the grain can be con-

sidered to remain constant . Therefore, e ill h a ve a 

series of collisions Fith each having the same transition 

probability . This i s the situation considered by 

Chandrasekhar in the section of his paper beginning with 

his equation 94- . 21 The result is his equation 103 and the 

paragraph following it : The first and second moments of 

the distribution of the total displacement due to a large 

number , N, of collisions , each having the same transition 

probability , wi ll be N times the corresponding moments 

of the distribution for a single collision . This is an 

example of the usu c l central limit theorem of statistics. 

As applied to the situation we are considering this means 

that (moment for a time ~t) = ( ~t/dt) x ( moment for a 

time d t ) , so that we may u se equations 22 and 23 instead 
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of equations 14 and 15 . 

Secondly, we have the additional result from 

Chandrasekhar ' s equation 103 that the distribution for a 

large number of collisions will be Gauss ian in form . 

For thi s case he finds (his equations 225 and 22622 ) 

that the third and higher moments of the distribution 

will be proportional to higher powers of ~t , so that we 

may use the Fokker- Planck equation , our equation 16 . 
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APPENDIX II 

n e must evalua te b 02n ' b 22n , d22n , and e 22n ac­

cording to their definitions , equations 101 and 102 . 

Let us first find RB [f ooo ] ' 

fooo = Noooe - q/2 (II- I) 

th t ~ f = ~ f 0 d 0 f _1 f 
so a ~s 000 ~r 000 = an ~q 000 2 000 . 

If we u s e this in the definitions of RB, Ry ' and RBy ' 

1 2 e quation 77, and also use P2(s)=2(3s - 1), so that 

2 1 s =3(2P2 (s)+1) , we find 

( II- 2) 

(II-3 ) 

2 
RBy [fooo] = Nooo ~(Y_l)D~ e-

q
/

2
{ 1 - P2 (s)P2 (r) 

(II-4-) 

+q [2P2(s)p2(r)-2P2(s)+p2(r)-~J 

Bec ause of the orthogonality of the Legendre polynomials , 

we now verify the statement aft er e quation 104- that 

"the only non-zero b \~ill b e b ." In f a ct e quation I mn omn 

11- 2 g ives us t h at the only non-zero b lmn are boon and 
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e thus h ve 

(II-5) 

From equations 101, 102, and 77 ' e can see that 

d22n and e 22n have factors of either (y - l) or (a- l) 

explicitly written in their definitions . The contri-

but ion of b o2n to a 22 as given in equation 105 also has 

an explicit dependence on ( y-l) . Thus , since we have 

just found b 22n=0 , all the terms which contribute to 

a 22 , according to equation 105, have an explicit depen­

dence on either (0-1) or ( ~-l ) . Since e are working 

to first order in these quantities , ~e c an se t 0 = =1 

in all c a lcula tions except for these exp licit appear-

ances . Tha t is, we get the follo "'ing simplifications.:.. 

E~uation 78 becomes 

I I It> 1/2 
(f , g) = fff q fg dqdrds (II- 6) 

-, -I 0 

and equations 83 through 87 become 

t...lmn = 1 - 2a 4n (II- 7) 
1 a 

f lmn = Nlmnq2-~e- q/2pl(S)Pm(r)L:(q) (II- 8) 

(N )2 = (2l+l)(2m+l)n ~ 
lmn 4 r Ca+n+l) 

for 1,m, n10 , 0 , 0 (II- 9) 
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.rith a = ~ [l + 41(1+ / ) + 4m(m+ I)] 
1/2 

or 

r.' " ~ ( " 21 ) 2 1/2 - gJ2 d 1 , m c y q e f 000 qdrds = 
-I -, 0 

( 
1(- 2 )2 

m c l y Nooo 
- 1 

= [ 4 r (~)] =_1...",.. 
2nl/2 

(II-IO ) 

The (m*c 2 1y)2 appearing in equation 11- 10 will be can-

celed by its appearance in the left side of equation 10 5 

so that we shall cease using it in either place . 

'¥e shall also need the integral given by Bateman20 , 

C<:) c qa f q e- L (q) dq 
o n 

r (C+l t r (n+a- c) 
n ~ r a - c) 

As a special case of this we have 

for n = 0 

for n t 0 

which is just the orthogonality relation between 

Lfi and L~= l . 

If we now combine equations 101 , 11- 2 , and 11- 6 

through lI- 12 , we find 

[ 

DB2 1 1 
Q 2nl/2 :3 

N b -02n 02n - 0 

for n = 0 

for n 1 0 

Similarly , using equation 11-4 , we find 

N22nd22n 
DB2 1 1 

= (y- l)Q 2nl/ 2 :3 
(~-n)r (n+~) 
r (~) (n+~)r (n+~) 

(II- ll) 

(II- 12) 

(II- 13) 

(II- 14) 
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V'e can also simplify the calculation of e 22n from 

equation 102 . Using equations 11- 2 and 11- 3 , we find , 

because of the orthogonality of the Legendre polynomials , 

that 

unless i;j,k,=o , o , n or 0 , 2 , n 

unless i , j , k =o , o , n or 2 , 0 , n . 

From equation 77 and the orthogonality of the Legendre 

polynomials , we find 

Because of the application of equation 11-12 we also 

find (f q 2}c ' RBfi 0001 ) = (f 2 , o,k , Ry [f 000]) = 0 for k f O. 

Thus , equation 102 becomes 

(f22n, Ry [ f 020 J ) (f020 , RB [foooJ ) 

= ( ~000-~22n ) (~000-~020 ) 

+ (f 22n ' RB [f 200J ) (f 200' Ry [f ooaI ) 
( ~000-~22n) (~000-~200) 

(Il- 15) 

Evaluation of these remaining terms using equations 77 

and 1t-6 through 11-12 and expanding the coefficients 

in e quations 77 by 

I - a. - (a.- I) + --a. 
. 2 

1- ~ = ( a.- I) - 2(y- l) + ••• 
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fin a lly gives 

(11- 16 ) 

The coefficients bo2n , b22n , d22n ' and e 22n are 

g iven by equations 11-13 , 11- 5 , and 11- 16 . If these 

are now put into equat i on 105 and the two integrals 

appearing ,there (setting a =l) ·are evaluated by 

equation II-ll~ we get 

= 

(~-n) r (n+~) 
(n+~) 2(n+~) (n+~) ---n-~-

2 
+0 . 032 ( a _l )DB 

Q 

(11-1 7) 
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