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ABSTRACT

The observed polarization of starlight is regarded
as being due to absorption by interstellar dust. A
mechenism for alignment of the dust grains, due to Davis
and Greenstein, is analyzed. A dissipative torque,due
to paramagnetic relaxation in the grains, tends to line
up a spinning @ust grain in the interstellar magnetic
field. This aligning torque is opposed by the random-
izing effect of collisions with interstellar hydrogen.
The zim of this paper is to find the distribution of
orientations which results. The analysis is carried out
through use of the Fokker-Planck equation. The solution
is carried to completion for the case of small magnetic
fields and nearly spherical dust grains, and the resulting
polarization parameter is found. The spectrum of relaxa-

tion times due to the collisions is also found.
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I. Introduction

The polarization of starlight was first discovered
in 1949 (1). It has been found that there is a correl-
ation of the planes of polarization of the light from in-
dividual stars over considerable areas of the sky.
There is also a correlation between the degree of polar-
izaetion and the magnitude of the interstellar reddening.
These observations are almost universally regarded as
showing that the polarization is due to the interstellar
dust. A non-spherical dust grain will in general
scatter and absorb light of one plane of polarization
more than snother. If there is some mechanism to par-
tislly a2lign these dust grains, then the transmitted
light will be partially polarized, the amount being re-
lated to the total extinction. Since the short wave
lengths are absorbed more than the long, this extinc-
tion can be observed as reddening. Various mechanisms
have been proposed that might align the grains. This
paper will anslyze some aspects of one due to Davis and
Greenstein.(2) The necessary anisotropy in space is here
that of the interstellar magnetic field. With this
model, then, some information can be obtained about the
magnetic field.

Data on the reddening of starlight show that the
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dust grains to be considered probably have radii in the
range of (lO's)cm. Platt (Bj has proposed a mechanism
involving the guantum mechanical effects due to unfilled
energy bands which requires much smeller grains. The
model analyzed here, however, is based on classical agb-
sorption and scattering of light, and grains of about
(lo—s)cm. will be considered. In the details of the com-
putation theype will be taken to be spheroids. The align-
ment mechenism of Davis and Greenstein,. . one of para-
magnetic relsxation, produces a dissipative torque which
tends to align the angular momentum of the grain para-
llel to the applied magnetic field and the long axis
of the grain perpendicular to this direction. Oppos-
ing this aligning mechanism will be the randomizing
effect of impacts from the hydrogen atoms in the inter-
stellar gas clouds. The aim of this analysis will be to
find the equilibrium distribution of gresin orientations
produced by these two opposing effects. This is carried
to completion for the case of small magnetic field and
nearly spherical dust grains. The mathematical tech-
nique used is an approximate solution of the Fokker-
Plank equation.

In the rest of this chapter some of the observa-
tional data is briefly given, the mechanical and optical

model for the dust grzins and the zlignment mechanism
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is described, and the Fokker-Planck equation is intro-
duced. The dust grains are ultimately tasken to be homo-
geneous ellipsoids of revolution, either prolate or
oblate, and their absorption and scattering is tsken
to be given by the Rayleigh-Gans theory.(4) A collision
with a hydrogen atom will be assumed to occur rapidly
enough so that during the collision only the grains'
angular momentum is changed, but not the graims' orien-
tation in space. 1In ChapterkII the differential equa-
tion for the entire alignment process is formulated. 1In
Chapter III & perturbation solution of this equation for
nearly spherical grains and smz21l magnetic fields is
found, and the results are used to deduce the polariza-
tion parameter for this case. Chapter IV contains a
brief summary of the calculational procedures which may
be useful as a guide to the rest of the paper. A sum-
mary of the results is given in Chapter V.
1. Polarization Observations

Let Im and Io be the intensities of the light in
the two perpendicular plsns of polarization, with I1T in
the plane of maximum intensity. In the model of Davis
end Greenstein, In is the intensity of the light which
has its electric vector in the plane formed by the
galactic magnetic field direction and the direction of

propagation. Then the degree of polarization is de-



fined by
g " IU
O e——
£ Ia (1)

The observed values of p are of the order of .05. As-
tronomical results are usually expressed in magnitudes.
The polarization in magnitudes is defined by

I
am, = ~(3)108)4(7%) (12)

For small p, the two expressions for polarization are
approximately related by

Amp = 2.2 p (1v)
The polarization in magnitudes will be proportionad to
the amount of polarizing material along the light's
path. This will slso be true of the total extinction
of the light. The total extinction, also in pagni—
tudes, can be defined by

Observed intensity
Am = —(g)loglo Intensity if no ab- [(2)

sorbing dust were
present

Because of the dependence of extinction on wave length,
it is observed as a reddening of the light. This is
usually described by a quantity called the color excess,
El' which is about % Am. Since it is independent of

material along the path, the quantity AmP/El or, for
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small values of p, p/E; is of direct theoretical interest.
The observed values of p/El are of thg order of .l.

The value .1l given for p/El is an average value
only and is given to illustrate the magnitude of the
effedat- we are dealing with. Of much more astronomiczal
importance is the maximmm value, since we are then sup-
posedly looking perpendicularly to the direction of the
magnetic field at the location of the effective dust
cloud. (see equation 3 below). Meximum values have
been given as p/El < .25. (5)

2. Mechanical and Optical Model

To calculate the expected polarization, or the
ratio p/El’ produced by the interstellar dust, it is
necessary to

(a) assume some model for the grains and
the torques which act on them,

(b) calculate the distribution of grain
orientations resulting from the as-
sumed model, and

(c) calculate the extinction vs plane of
polarization for light incident on
the oriented grains.

In this paper, (b) will be considered in detsil and the

results of Davis and Greenstein will be used for (a)

(6) and (c) (7).



6

One of the principal results of the consideration
of the grains' structure is that theye will show the
phenomena of paramagnetic relaxation.(8) The induced
magnetization in a grain will have a finite relaxation
time, so that in a time varying external field the mag-
netization will be out of phase with the field. 1In
particular, if the grain is rotating with respect to the
with respect to the field, the field and magnetization
will not be parallel, thus producing a torque on the
grain. The result is that this torque tends to make
the angular momentum vector of the grain parallel to
the magnetic field direction and the long axis of the
grain perpendicular to this direction. This orienting
torque will be opposed by the randomizing torques due
to impacts of hydrogen atoms from the surrounding gas
clouds on the grain.

The magnitude of these effects is small, so that
the grain can be considered to be a free body with the
torques producing slow changes in the free body rota-
tion parameters. In figure 1, let B be the magnetic
field, H the angular momentum of the grain, and 3 a
unit vector along its symmetep axis. In the free rota-
tion of a rigid body the angular momentum stays constant.
Thus B, the angle between H and B stays comnstant. For

a solid of rotational symmetry, the symmetry axis ro-
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tates uniformly around the angular momentum, the angle
between them remaining constant. That is,© , the angle
between H and-j ,stays constant, while ¥, the angle be-
tween the H, B- plane and the H, A- plane, increases uni-
formly. The effect of the torques is to produce gradual
changes in B, © , and the magnitude of H. The use of
"slow" in the beginning of this paragraph means that
the fractional changes during one mutation are much less
than one. The orientation of the figure around B will
be random, so that in all calculations quantities will
be aversged over this orientation and the angle ¥. (9)

The effect of the oriented grains on the starlight
was computed by Davis and Greenstein using the theory
of Gans.(4) The applicability of this theory to visible
light being scattered by grains as large as (10"5) cm. is
questionable. Thus, for instance, it cannot be expected
to yield the correct dependence of polarization on wave-
length.(10) However, much recent discussion considers
smaller greins, (11) and even for the larger grains the
theory gives some estimate of the effect and no really
better theory is available. In any case, the results
found here for the distribution of orientations could
be used with any future scattering theory. Their use
with the Gans theory at least gives the opportunity to

compare the results of a more accurate statistical
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theory with the simpler estimate of Davis and Green-
stein.

The result which Davis and Greenstein find upon
applying the Gans theory is that the effect of the
grains can be expressed in terms of three quantitiesﬁcA,
the extinction cross-section for a spheroid whose axis
of symmetry is parallel to the electric vector of the
light, Ops the extinction cross-section for a spheroid
whose transverse axis is parallel to the electric vec-
tor, and F, a quantity giving a measure of the deviation
from randomness in the orientation of the dust grains.
The ratio GA/UT is given for grains of various eccen-
tricities in table 2 of Davis znd Greenstein. The de-
finition of F is in terms of an integral, given below,
over the orientation distribution function, done in
such a way that for grains'obeying the Gans theory,
p/El is proportional to F. Let the direction of pro-

agation of the light make an angle (» + n/2) with B.
Then, if all of the grains are of the same size and

shape, the result is
B 5 (UA/UT)-l

El = 18.6 F cos" v W (3)

If the grains are of various sizes the result must be
expressed in terms of integrals over the grain sizes.

However, what we might think of as the polarizing cross-
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section for a single grain is proportionad to the value
of F for that size. Thus, for the Gans theory, 94 and
O give the scattering properties of individual grzins,
while F contains the information necessary sbout the
distribution of orientations.

The definition of F is given by equation (44) of
Davis and Greenstein.(2) If we change varisbles to

k

cosB

S

cose (€9)
-1 £ r,s<l
and let
p(rys) = p (r,s) + py(r,s) (5)

be the probability density of orientations, i.e. pdrds
is the fraction of the grains in the range between r and
r+dr and between s and s+ds, with Pg being the equili-
brium density in the absence of a magnetic field, then
the definition becomes

F =3ﬁf[f252 + %(1-r2)(l-sz)]pl(r,s)drds (6)
The main results of this paper will be the calculation
of p(rys) and F. If the Gans scattering theory is used,
F contains all the information necessary about the dis-
tribution of orientations. For any other scattering
theory, the complete description contained in p will

have to be used.
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3. Paramagnetic Relaxation Mechanism

We now give the results of the analysis of the
paramegnetic relaxation mechanism which are of inter-
est here.(l2) As stated before,'in a time varying ex-
ternal field the magnetization will not exactly follow
the applied field. A dust grain rotating in a constant
external field can be thought of as standing still with
the field rotating around it. This equivalent varying
field will produce a component of magnetization perpen-
dicular to itself. Thus, there is an apparent dragging
of the magnetization away from the direction of the
applied field by the motion of the grain. Anaslyzing the
situation on this basis, Davis and Greenstein found that
the important term in the magnetization perpendicular
to the applied f%eld is given by (9)

¥ = Zie® (7)
where F"is the imaginary part of the complex suscept-
ibility, and measures the angle through which M is
dragged away from B, and w is the grain's angular vel-
ocity. For the expected grain compositions and internal
grain temperature, Tg’ they find that
x'= 2.5(10715)8 (8)

In the cases of interest,gig is expected to be gbout
10°K.

Let V be the volume of the grain,

I be the moment of inertia about the symmetry
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axis,
end yI be the moment of inertia about an axis
perpendicular to the symmetry axis.

Define D, a constant for a given grain, by

B«

'y 2.5(10
E) I_'y = T I'y (9)

The magnetization will produce a torque given by
V(iixB). Then, further, this torque produces changes

in the orientation variables at the rates (13).

%% = —DB® sinB cosp (ycos“e + sine) (10)
and
%% - +DBz(y-l) sine cose (1 - %sinzﬂ) (11)

and decreases the magnitude of the angular momentum, H,

at a rate given by

%%Egl = -2DB2H2 sin28 (ycos2e + singe) (12)
For a spherical grain 6f density 1 gm/cms, internal
temperature 10°K, and radius (10'5) cm, D = 6x(10‘3)
sec_lgauss-a. For a magnetic field of (10'5) gauss, this

2 . 6x(lo‘13) sec T,

gives a typical time rate of DB
4. The Fokker-Planck Equation
The grains will also be subject to random torques
due to bombardment by the atoms of the surrounding hy-
drogen gas. These will give random changes in the orien-

tetion variables in addition to the steady changes de=-

sribed by equations 10, 11, and 12. The Fokker-Plank
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equation is a differential equation of the diffusion
type for describing the effects on a probability dis-
tribution of such random changes of the varigbles.
There is an extensive discussion of it, as well as other
stochastic problems in physics, in an article by S.
Chandrasekher. (14) The equation, as it applies to the
present case, will be given here. The Jjustification
for this particular statement of it will be given in
Appendix I.

Let us suppose for s moment that the set of variables
whose probability distribution interests us are  SEREEEE.
Let w(xl,..,xn,t) be the probability distribution at
time t. That is, del..dxn is the probability that

at the time t the i'D

variable is in the range dxi
around Xy FfoRr i = 15.u5@t« TPhe X5 of a representative
particle will have a law of motion for small At such as
Ax; = %;At + x4 § a it (13)
where Axi is the change in X; during the time interval
At, ii is a steady rate of change due to some known ex-
ternal force which may be a functioﬁ of the xi,(i.e. the
rates given by equations 10, 11 and 12) and 8x; are ran-
dom changes, the knowledge of which is only statisticél
(i.e. the effects of collisions with hydrogen gas atoms).

Thus 6xi will be described by some transition probability

ff(éxl,..,6xn;xl,..,xn;At) d(éxl)..d(éxn) which gives
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the probability of having changes 6xl,...,6in in
d(éxl)...d(5xn) during time At if the current values
of the variables are Xy eeerX o Denote the expectation

values of the 6x. snd their products, i.e., the wvarious

= 1
moments of the distribution ¥, by E;At and EiJ.At. That

is define Ei and Eij by
E;At=[..[ 6% ¥ (8x_;x_;At)d(sx;)..d(8x ) (14)
and
5 14 :] E . . 1 l
ﬁ,.lJ.At-J &l 6xiéxjf(6xr,xr,At)d(6xl) . .d(8x ) (15)

The notation anticipates that the first and second
moments will be proportional to At in cases of inter-
est. If, further, the third and higher moments are
proportional to higher powers of At, the Fokker-Planck

equation of the probability distribution W is

T 2
F -z (wE) + 2 3

22 Segina 16
at i axi ¥ axiaxj ) el

a .
(WEZ’LJ) ] )‘: %}:(Wil



15
II. Formulation of the Alignment Equation

1. Plan of the calculation

The computation will then run as followsa Select
a suitable set of variables, Xy s Iind the coefficients
Ei and Eij in terms of these variables for a dust grain
immersed in a cloud of hydrogen gas, find the ii from
equetions 10, 11, and 12; find the solution of the
Fokker-Planck equation 16 for equilibrium, aw/at = 0,
calculate F from its definition, equation 6. Chapter
IV contains a brief summary of the calculational pro-
cedures which may be useful as a guide to the rest of
the paper.

The varisbles which the author found most conven-

ient for formulating the Fokker-Planck equation are

1 = H cos o

n = H cos B (17)
¢ = B
with ranges -o<n<wo — LN o 020 <o,

H must be included along with the angular variables
since, as will be seen, the effects of grain-atom
collisions depend on the grain's angular momentum in
an importent way. It is much easier, however, to first
find the expected values of the changes in the compon-
ents of the sngular momentum in some cartesion coor-

dinate system and then relate these to the changes in
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sy mny C by
n=g2
n = H-B/B (18)
¢ = BH

A collision between a hydrogen atom and & grain
will taeke place so guickly that it can be considered to
produce an impulse, §H, of angular momentum, so that
only H, and therefore B and e will be changed, but not
the orientation of the grain in space. The grain's
reorientation will follow from its mutational motion
around the new H.

For a coordinate system fixed in the grain, the
expectation values of 8H will be independent of the
orientation in space of the grain and its attached
coordinatg system, being the same for all grains of the
same size and shape. If the expectation values of
components of 8H resolved along axes fixed in space
are computed, however, they will depend on the orien-
tation of the grazin. Thus it will be simplest to con-
sider 8H resolved into components a2long axes fixed in
the grain and then find the effect on the orientation
variables by using equations 18, which are scalar
equations and true in any coordinate system.

The plan followed will be to first analyze the

effect of a single hydrogen atom impact, then, from the
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probability of a given type of impact, find the moments
of the distribution of 6H, using s coordinate system
fixed in the grain, and finally to éranslate these into
Ny, Ny C by using equations 18. 1In all of this, only
terms of lowest order in the ratio of hydrogen atom to
grain mass will be kept.
2. Effect of a Single Collision
First let us find the effect of a single impact.

Let

b be the velocity of the hydrogen atom initially,

pl be the velocity of the hydrogen atom after the

impact,
m be the mass of the hydrogen atom,
r be the point of impact on the grain's surface,
w be the angular velocity of the grain,
J Dbe the inertia tensor of the dust grain, and
M be the grain's mass.

The anguler momentum delivered to the grain by the im-
pact will be that lost by the hydrogen atom. Thus

8 = mg x (R - R)) (19)
The resulting atom velocity, hl' will be 2 function of
b, w and the model chosen for the collision. If it is
supposed that the atom hits, sticks, and then is thrown
off with the local velocity of the grain surface,

2, =wxyz, and
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8 = mg x (R - gxr) (20)
For a second model suppose that the atom mzkes an
elastic collision and that the outgoing wvelocity is
parallel to the incoming velocity in the coordinate
system in which the local grain surface is stationary.
In this latter coordinate system, in the lowest order
of atom to grain mass, the atom will be meking an elas-
tic collision with an infinitely heavy target, and so
will merely reverse its velocity. 1In this coordinate
system the incoming velocity will be b - (w x £). When
this is reversed and transformed back to the original
coordinate system, it gives for the outgoing wvelocity
1 =-(QR-@xg +@xg=-p+2(exy). Thus,
this model gives
8H = mr x (b-b;) = 2mr x (Q-wxr) (21)
The difference between quotations 20 and 21 is only in
the factor of 2. Various other reasonable models give
the same results, i.e. expression (21) with a different
numerical factor. This can be taken into account by
always using equation 21, and assigning to the hydrogen
atom an effective mass, m*, which depends on the col-
lision model chosen. We will therefore use
8H = 2n*r x[b - (wxz)] (21)
where m"=m for an elastic collision and m™= m/2 for a

completely inelastic collision.
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3. Calculation of Moments of &H

The next step in finding the diffusion coefficients
in the Fokker-Planck equation is to calculate the mo-
ments of the distribution of 8H from the collisions.
Let NdbdSdt be the number of collisions on an element,
dS, of the grain's surface during a time dt due to
hydrogen atoms in a range of velocities dh:dbxdbydbz
around the velocity b. Further, suppose that dt is much
less than the average time between collisions on a given
grain. Then NdbdSdt will also be the probability of
having a collision of the type indicated during time
dt. Note that the overwhelming probability is to have
no collision. As discussed in Appendix I, thé moments
of 8H calculated on the distribution for a time At >>
dt during which many collisions can be expected to
occur give the same results for Ei and Eij as a calcu-
lation based on the distribution for the time dt. That
is

E,dt = dtféHiNd:QdS i=X,y5,2 (22)

and B 4dt = dt,;"(éHi)(aﬂj)Ndhds i,J=%,5s2 (23)
where the integrations are taken over all of the grain
surfece and atom velocities.

The velocity of an atom relative to a point on the
grain surface is b -(w x r). For & collision to occur,
the normal component of this wvelocity must be toward the

grain. This, combined with the assumption of a Maxwell
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distribution of atom velocities, gives
-mb2/2KT
-Ae a{2-(wxz)] dbdsdt
Ndbdsdt = for pfb-(wxr)J<0 (24)
0 for pb-(wxzp)20
Here np is a unit vector drawn outward normel to the

grain's surface, and A is a constant to normalize the

hydrogen atom density to 0y atoms per cm3. Thus
2
= ) :

or

272 (25)
A = nH(EEET) = 1'1-3/2an—3

where in the last form we have introduced the hydro-

gen atom characteristic velocity, given by
2k, /2

c = (-ﬁ- (26)
To simplify some of the calculations, let us denote the

vector composed of the three first moments by

By = ( E1BooE, ) (27)

and the symmetric matrix of the six second moments by
Bx Exy Sxz

By = E B E 28

Jotel yx y¥y 3z (28)

“ox J:'zy Ezz
Also let (8H)(8H) be either the dyadic or its matrix
representation. The x, y, 2 coordinates, as implied
before, refer to a system fixed with respect to the

grain, not with respect to space. We have not yet
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specified how it is oriented in the grain.

The definitions of equations 27 and 28 then give

Eg J" N(8H) dbds (29)

and

Eﬁﬂ J' W(8H) (8H) dpds (30)
Equations 21 and 24 give 8H and N. These must be sub-
stituted in equations 29 and 30 and the indicated five-
fold integrations must be carried out. The results, to
lowest order in the ratio of atom to grain mass, turn out
to depend on a simple matrix whose elements are certain
integrals over the surface of the grain and on the in-
ertia tensor of the grain. (See equations 42 and 43
below.) The result holds for an arbitrary grain shape,
and can then be specialized to the spheroids being con-
sidered here.

When we estimate the order of magnitude of wvarious
terms in the integrals, a term involving w and r can in
general be estimated to have the magnitude wr/c, c
being the characteristic velocity of the atoms. (see
equation 26) For orders of magnitude, kT"%Iweﬁ'%Mrzwzv

M being the mass of the grain. Thus we have

1/2 12 1/2
wr 2kT 2kT m
3-'“(—ﬁ-) (—a-) e (E) : (31)
and only terms of lowest order in this ratio are to be

kept.
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To handle the limits on the velocity integrations
implied by equation 24, introduce the velocity § given
by
R = cg (32)
At each point on the surface of the grain attach a
coordinate system for §, as shown in figure 2, with
components u, v, W oriented so that the u-axis is zlong
R, the v-axis is normal to p and to the z-axis, i.e.
is parallel to the xy-plane, and the w-axis is in the
n, z-plane. With this coordinate system, p-h = cu, so
that the region of integration in velocity space im-
plied by equation 24 is
- ©Osy, W< 0
—oosu ¢ B{UXE)
Further, we will break up the u integration into two
parts, first integrating for -o<«<0 and then adding
the integral for u between O and p-(wxzr)/c.
If we substitute eguation 21 and 24 in 29, using

the g coordinate system, we get
S By = & [ J  (.I) dudvdwdS

2n.m™c R - o
H surf ‘yw=-© U=-e (33)

’ o n-oxr/c
r5¢ i) ( I ) dudvdwds

suef vyw=-% u=0

The integrand in both integrals is the same, and is
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given by
i e a
(I )=[1X§- Eff%ffz][u- %_£§§£Z]e—(u +VT+w") (34)
=[u(5:xq§)+;@)_ E_.Q%X_g% % (gxé)g-((:ggxx)

c .
y,axauexg)]e-(uav?w?)
c

Consider the first integral of equation 33. The velocity
space integral of the first term is

@ o 2)

f,f f e—(u2+v2+w

‘?’W=-w U=-co

u(gxg) dg

w (4] ZLag 2
xx P S TV 4 4
YW=-0 U=-

The integrals for the v and w components of this will
give zero, leaving only. the u, or normal, compongnt,
resulting in a constent times r x p. But
F mxp ds = - [JJf (¥ x g)d(vol.) =0
surf volume since ¥xr = O.
Thus, the first term gives no contribution.

By the estimate of equation %1, the second term is
of higher order in m/M than the third or fourth terms
and so is to be neglected. This then gives for: the

first integral

" o ) 2 2 oD
- £F {Q———(%XE) xaJS [ ue-(11 +VTHWT) dudvdw +

surf YW=-e U=-00
o () 2 .2 2
J—:]-CL%E) 5 J ue"(u +VTHW) dudvdw} ds
ki (35)

= 5 #f{ (zxp) (zxn)-@ + rx(gxg)f ds
sur
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Now consider the second integral of equation 33.
In it, the maximum value of |u| is |n-.(wxr)/c| which is
of the order (m/Mf/2<<l by equation 31. Thus, for this
integrel, e_u2= 1 plus second order terms. The four
terms in the integrand will once agasin be those given by
equation 34. When integrated over v and w, they become

a constant times

zx(uxz) n-(wxg)
L+ c

2 n-(wxr
[ v?(zxa) + s u(pg)lt) _  Exlup) ]
Since u: is limited to p°*(wxr)/c, all of these terms
will be of second order in wr/c in the range of integ-
ration. The integration

n-(wxr)/c
[] du
u=0

then makes them contribute only in third order in
wr/c, so that they are completely negligible, and
rﬁB/aEg/ nHm’c2 is given by equation 35.

To evaluate EBE’ we must substitute equations 21
and 24 in equation 30. The regions of integration will
be the sazme as those for Ea in equation 33, but the

integrand will be different. The integrand for

_n5/23ga/4nH(m*)2c5 will be

e"‘(u2+v2+w2) { (.-r,x.ﬁ.) (£X§'> +[£x(,@x£é][£x(&m£)] _ (fxa:_ﬁ'_x(&x‘g)]
) (36)
_[gxchfﬂ(£§glggu_ EES%EE%{
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Each term in the first set of curly brackets is a dyadic.
The term of lowest order will be the dyadic
u(zrxs) (£xs) exp[f-(u2+v2¢w2)]. Any terms which are
odd functions of v or w in the expansion of this dyadic
will integrate to zero. The matrix representing this
dyadic, written out in the u, v, w coordinate system, and

leaving out terms odd in v or w, is

2.2 2. 2 2 2
(r “voer w R W ~T TV
~(uZrvZ ) £ we (r.%wP+r_2u?) -r_r_u®
s P % Bl vw | (37)
2 2 e. 2 2 s
e -r, r u (rv ut+r TV )

where r , T

% o and r, are the components of r along the

uy, vy W axes. Note that the matrix is symmetric. If
this is integrated over the range of velocity variables

in the first integral of equation 33, the result is

5 .
(Fy . 3 S -r Ty

i 2 2\

=l -rr (2e_"#%r ) @ =2r %

+ il | w u VW 3 (38)
-r, T, -2r r_ LEr_“4re )

For the same reasons as used in amna}yzing E., the in-
tegral over the second region of equation 33 will con-
tribute only higher order terms, so that

—ﬂa/zEEE/4§H(h')203 will be given by the integrasl over

the surface of the grain of eguation 38.
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To do this surface integral, we must first trans-
form equation 38, which is written in terms of 2z co-
ordinaste system whose orientation depends upon the loca-
tion of the element of surface of the grain, to & co-
ordinate system which is fixed in direction with res-
pect to the grain. This can be done most easily by
putting equation 38 in a form which contains no refer-
ences to a coordinate system at gll. Direct expansion
in the u, v, w coordinate system will show that equa-
tion is equal to the matrix representing the dyadic

- 2%+ (zxp) () - @@]

where U is the unit dyadic. This finally gives

- s 2 3 Bgg -5 5 [ r°Us(zxn) (zx0)-(x) (2)] (39)
EE§(57) c surf
d(surf.)

The results for EH and EHH’ equations 35 and 39,
can be unified. Consiger théw;ntegrand in equation
35. If r x(wxr) is expanded, the integrand can be
written as (rxn)(zxn) - w + r?@ - ()(z - w) which equals
[(zx). (zxa) + £°U -(£)(2)] - @
Let J—l be the inverse of the inertia tensor of the
grain, so that we can write the angular momentum by the
relation w = J_lg. Define the dyadic, or its matrix

representation, G, by
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G = &P [rgU-(z) (23+(zxn) (zxn)] d(surf) (%0)
surf
and the constant E = “-l/anHm‘C (41)
Then >l
By = - 8@ H (42)
2
and Eyg = 8m ¢ G (43)

The results so far are valid for arbitrarily
shaped greins. They must now be specialized to the
spheroids that are of interest here. Take the axis of
symmetry of the grain as the z-axis. It can easily be
seen that the matrix G will be diagonsl in this co-
ordinate system. For consider the definition of G,
equation 40. The first two terms,i%;f[rzU-(Q)cxlldS
are just the inertia tensor for a hollow grain of unit
surface density of mass, and this coordinate system is
certainly & principle axis system for such a body.
For the third term, (rxn) will be 2 vector parallel to
the x, y-plane, tangent to the grain surface, and of
constant magnitude for a given value of z, so that the
integral of the off diasgonal components of (rxn)(rxn)
around a zone of constant z will ©be zero. Thus in the
coordinate system with z-axis along the axis of rota-
tional symmetry of the grain,

ah 'O © (44)
G 0 @b ©

0 O h



29

and is determined by the two constants o and h.

This coordinate system will also be a principal

axis system for the tensor of inertia of the actual

grain, which may be written

I0 O
Jd =0 yI O
0 0 I
Iy 0 o
ol SR S
R T

and its

inverse is

(45)

Putting equations 44 and 45 into equations 42 and 43

then gives

h a
R = - 8%
h a
Ey = - gIhy H
By <878,
and
e = gm”ceh(l
Eyy = gm*caha
B, = gm*czh
Exy=EXZ=EyZ= 0

(46)

(47)

These results, equations 46 and 47 hold for any

axially symmetric grain. The surface integrals of

equation 40 must now be carried out for the particular
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grain shape under consideration. For a spheroid with
diameter along the rotation axis 2b and perpendicular

diameter 2a, some elementary integrations give

h=na4§1+ 82 +| 2= £2 82 x
(£2-1)2 [ 2(82-12]|52—l|l]2 (48)
(s:Ln _1 |s —l]l/z)‘{
sinh

hanat ] lee” ———zi—- 2 e e
an=1ra ®E - +
{ 4 < J A=y (49)

g =1
sin l(ls --1[1/2
51nh— .f

Here €=b/a, and sinh"l( ) is to be used for an oblate
spheroid (a> b), sin—l( ) for a prolate spheroid
(a<b). The moments of inertia can easily be found if
it is supposed that the spheroid is of uniform density.
They are
R (50)
?
a

‘}'I:M

For the case of dust grains which are nearly spheres,
b/a will be approximately one. If we expand the ex-
pressions for h and ah, equation 48 and 49, in powers

2
of (b/a)-1 up to first order we get

ma [5 E [(v/2) 2—1]]
a [g + 15[(b/a)2—11]

h
(51)

ah
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and

a-1 = % (b/a)z-{] (52)

An expansion to first order, using equation 50 will give

y-1 = 3[(v/a)°-1] (53)

Thus, the relation between the two parameters which
account for the non-sphericity of the grain, for grains

of uniform density, is
(a=1) = & (y-1) (54)
>

up to an error of second order.

4. Calculation of Terms in the Fokker-Planck Equation
Equations 46 and 47 give the effects of the colli-

sions on the value of H relative to a coordinate system

fixed in the grain. These must be related to the var-

iables describing the orientation of the grain by use

of equation 18,

n = g4

.A
n = H°B (18)
¢ =HE ‘

A
where now B is a unit vector in the direction of B.

3 3 - . ~ A
This can easily be done, since in a collision A and B

remgin fixed, only H changing, so that



A A A
M = Axéﬂx + Ay&Hy + Azéﬂz
A ~ ”
6'\“ = BX6HX+ By&Hy + BZBHZ
5 _ 2 . (55)
8¢ = (H+6H)C = H = 2[onﬂx+Hy6Hy+H26HZ]

+(58,) 20 (65,) 2+ (8H,)

Thus what remains to be done is to express the com-
ponents of H, %, and A in terms of By m, and C .

To do this we must further specify the orientation
of the x, y, 2 coordinate system. BSo far, it has been
chosen so that the z-axis is along A, the symmetry axis
of the grain. Now fix the orientation around the sym-
metry axis so that the y-axis is in the H, K—plane.
(See figure 3). To fit the direction of 2 we must also
give ¥, the angle betieen the H, ﬁ and H, ﬂ planes.
This is the nutational angle, and, as previously dis-
cussed, all effects are to be averaged over this angle.

In this coordinate system,

Ay = y (56)
T |
Az =
Hx = 0
H = -H sin e (57)
J
H = Hcos e =1
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and
A
Bx = sinV sinf
%y = cosV sinf cose - cosp sine (58)
ﬁz = cosY sinP sine + cosf cose
This gives for equation 46
E_ =0
x
B = 5% % H sine
(53)
. _§gh
Ez M TP
and equation 55 becomes
on = 6HZ
= B sH_ e B sm_ + B eH (60)
Sw = B OH, » . g AT AR -

5¢ = 28[-sinesH « coseéHzJ+(6Hx)2+(6Hy)2+(6HZ)2
Since 61, 6n, and 8¢ are all scalars, and remain scalars
when averaged over the collisions, they can be evaluated
using any coordinate system, in particular, the prin-
cipal axis system used here.

If equation 60, and the products of equation 60
giving (8n)%, (82, (80)%, (8u6n), (sndC), and (8n60)
are now evaluated using equations 47, 59, and 58, the
average over ¥ performed, and then rewritten using the
definitions of B, n, and ¢ given by equation 17, the

results will be

Wity |
E, = = n
2 2
& h ja _op - n
B == %— “[y yc ¥ C_]
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2
E, = %g[h*c21(1¢2a) - n (g-a) = 2ar—]

R« ghuthe

- 2l
E__= ghm*cgl(agl) + (%El)(“2+n2— é:fE— )]
ECC= 4ghm*02[ al + (1-a)u2] (61)

E = gb.m'c2 E%

EuC= 2ghﬂfceu

2
B, = 2ghm*c” [an + (1—a)‘?1—]

In these results, equation 61, 2ll traces of the special
Xy Yy 2z coordinate system have now vanished, and the
moments are in their final form ready for use in the
Fokker-Planck equation, 16

2

oW 3 1 d :
W_ 52 ey +1z2 _ (wE, )
3 ; axi i 2 %,axiaxj‘ - I (16)
3
- ; axi(Wii)

The xi's appearing in equation 16 must now be iden-
tified with the variables #, #, and €. It still re-
mains, however, to express the n, m, and ¢ in the last
term of equation 16 in proper form. ZEquations 10, 11,
and 12 give the rates of change of $, e, and H2, and
these can be relsted to f, +, and ¢ by equation 17 and
the relation H=(1/2H) d/g,(H°). Thus
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. 2.3 3
Hcose-H8 sine = DBe{%(y—l)3¥%— - %(7—1)%“
c C

2
+[1—%<v-1>} = -[1+%<v—1>]n }
n ﬁcosB-Hé51n3
; - 2
{ = (H*) = DB { —2(y—1)u —2C+2(y-1) +2r
The middle one of these equations, n=0, is to be ex-

B
1l

(62)

]

pected, since the torque produced by the Davis-Green-
stein mechanism is such as to leave the projection of
H on B, which is just m, constant..”

We can write equation 16 in the form
$£--2 %X_l [ we;- '12‘§ %E‘.(“Ei;j) + Wy |
which has the obvious interpretatgon as an equation of
continuity for a flow of probability demsity W, with
the terms in brackets being the components of current.

th component of cur-

X . :
Thus WEi'Ezj a/éxj(WEij) is the i
rent caused by collisions and Wxi is the ith component
caused by the magnetic field. Letting the three
components of the current be denoted by J_, J&' end

JC’ we find that using equation 61 and equation 62

and performing the indicated differentiations gives

I, = —ghm*c? f (_T BV + lwn » B+ wW
-DE7W §- 2(r- 1)—5— '2()’—1)11—' (63)

—{l— %(7—1)116‘& + [1 + %('y-l)]n§
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2 2
2 l-0)m an no m-o
J = -ghn"ec g[ + m= + - (64)
- S R S aialsar
2 g
™ nn 1 v, (o-1),n" 9
+ W+ ==V +[—(a+l)+ (—=+—
Tai Czr] 2C N 4 + Lot
2 2
'éif%??]w +[aﬂ+(l-a)3E_}W §
r n C C
J_ = —ghm*c® [a+(1-a)EE + 2“2(7‘“)+2“’Jw + W

+[0ﬂ+(1—Q)E§r]Wﬂ s2[ac+(1-a)n?[w,

>
_DB2W{2(y-1)n2+2r-2(y-1)2;2- L, 2n2}

A subscript on W indicates a partial derivative with
respect to that variable.

The equation of the aligning process can now be stated

simply as
L 3, 2 2
R~ Sl T T L)

5. Conservation of Total Probability.

Since W is a brobability density, (3/3t) S Wand-dc
must vanish for the integral taken over the entire range
"of the wvariables. By using equation 66 snd Gauss'
theorem, it follows that this will be true for any W
if the normal component of the current, (Jun, Jn, JC),
vanishes on thé boundary. From equation 17, we see
that the range of the variables is

ne ¢ (67)

ﬂ2§ZC
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This will be the inside of the volume formed by the
intersection of the two parabolic cylinders, u2=c and
r2=(. Their projections on the n, { and n, ¢ planes are
shown in figure 4. The boundary r2=( is called I and
u2=c is called II. The slope of surface I is 2n. The
slope of the normal vector will be - 1/2n, so that one

normal vector has components nh=2r, n_ =-=1, nu=0, and the

C

normal component of the current will be proportional

to

JIn = 2"‘Jr Seas JC (68)

The situation on surface II is exactly similar, so

that

EE L n € (69)

Equation 68 evaluated from equation 64 and equation 65
with n2=r, and equation 69 evaluated from equation 63

2:( will both be found to vanish,

and equation 65 with n
so that the necessary condition of conservation of pro-
bability holds.
6. Maxwell-Boltzmann Solution

Another condition which the equation of the pro-

cess should satisfy is that the Maxwell-Boltzmann dis-

tribution for an appropriate temperature should be an
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1 Ria

}1

Figure 4. Projections of the bounding surface

in n.Ns{ space.
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equilibrium solution for zero magnetic field. Davis
and Greenstein found that this distribution for a tem-
perature U is, up to a multiplicative constant, in

terms of B, o, and H,16

29+ycosee)/2lykt]Hgsine sinp

-
f dpdedH = e -H(sin
€ P xp[ dBdedH

The inverse Jacobian for the transformation to the

variables n, mny,  is easily found from equation 17 to be

0
%%%fﬁ?é%l = _ 2HPsine sinB (70)

This, then, gives, up to a multiplicetive constant,

the Maxwell-Boltzmann distribution in terms of 1., mn,

{ as
. : A 3a(H,B,e X
Wy dndndf = fela el l dndndc

- 3 T2 o[- (1) 20T (71)
" dndndc
Substitution of this into equation 63 through equation
66 with B=0 shows that it is an equilibrium solution
of equation 66 with temperature.
v- (Er (72)

For the case of elastic collisions, for which m*=m,
the distribution is at temperature T, the hydrogen gas
temperature. However, for non-elastic collision models,

for which m%<m, the distribution, while still Maxwellian,
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is characterized by a temperature less than that of
the gas cloud. This is to be expected, since in the
non-elastic collisions some of the energy is going into
intérnal energy of the grains and is then not avail-
able to maintain as high a kinetic energy as other-
wise. The hydrogen temperature is not affected, how-
ever, since its state is determined overwhelmingly by
hydrogen-hydrogen collisions, which are elastic.
7. Final Form for the Equation

The mathematical problem of the orientation process
is now thet of solving equation 66 with the currents
defined by equation 63 through equation 65 for B£O
This has the form of a diffusion equation, and we would
expect the time dependent solution to be expressible
as a sum of terms, each of which decays exponentially
with time. Of primary interest for the polarization
problem is the term with infinite time constant, that
isy the equilibrium solution. The time constant of
the next most slowly decaying term is what we will call
the relaxation time for the process.

From the algebraic complexity of the current
terms, eguation 63 through equation 65, we should not
expect to be able to write down an exact solution.
Certain changes of varieble have been found which sim-

plify the equation, or at least put it in a form where
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its parts are more familiar, but even after these are
carried out, the resulting equation must still be
solved by approximate methods. What the simplest form
of an equation is, and, therefore, what the best
changes of variable are, is, of course, a matter of
taste. The suthor has found a set which he considers
most convenient. They were found mostly by a process
of trial and error.

The changes of variable are, first, to substitute

new independent variables, q,r,s, defined by

r === cosf -l<¢rc<l

14
s = & = cose =les<l

N . (73)
Qg = g = 4 O.‘q¢¢n

9 m"czI-y 2711{"1‘(%'-)

Secondly, substitute the new dependent variable f

defined by
W =0
q 2
with ¥ - b gERAREAL LI (74)

Except for the factor of 1/2 in the exponent, U isr%he
Maxwell-Boltzmann distribution of equation 71. Wﬁe?
these changes of variable are carried out, the govern-

ing equations, 63 through 66 become
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% _g é % {(%;'Ta)(l“s )£ (1’““)2er (75)

(o)

+(3E (1-r5)2 (1+“)2rfr+4q2qu+2§lggﬁqu

+[(%+2)q—q2]f ;
4, 3 28 =35 +1 s
" (l—a){a(s—s Yoy + —%q—fss . Bt

2
_ B l=r £ & S Ty M 43 grqq.§

2
+ (1-1)as®r
2
- B 5%(7-1)(r2+1)(55-5)fs ~[1+s%(r-D)] (P2,

+2[i+32(7-11](r2-1)qfq+ %(y-l)2(54+52)(u2+1)q

~(1+2(y-1)52)(r°-1)q

- A(r-1)(s21)(2%41) -2(7-1)2*r%g
+ 2(7—1)521'2 B ajf.?

h m*n 1/2 2
el P
where Q = %% = 55T ) (76)

5

and radius
1/2

For spherical grains of density 1 gr/cm

1/2

(10'5)0m and hydrogen clouds of nHT =100 (°K) /cm

which Davis and Greenstein consider typical, this gives
Q = 3x(lo'15) sec'l.

The fundamental equation is now eguation 75. We
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will find the approximate solution for the case of

small magnetic fields and nearly spherical dust grains.
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ITT. Solution for Small Masgnetic Fields and Nearly
Spherical Grains

For small magnetic fields and nearly spherical
grains we will find a solution in a perturbation series.
On the right hand side of equation 75, the terms in
the first curly brackets will give the unperturbed
equation. This division is used, since, as will Dbe
seen, these terms give a self-adjoint operator, thus
guaranteeing that its eigenfunctions will form an ortho-
gonal set suitable for expanding the solution of the
complete equation. As can be seen, they are also in a
form suitable for solution by separation of variables,
with the solutions being well known functions. The
terms in the second set of curly brackets, multiplied
by'(l-azgive the perturbation due to the non-sphericity
of the grain surface, the next term, containing the
factor (l—ye/a)gives the perturbation due to the non-
spherical mechanical properties, the terms in the last
curly brackets, multiplied by (DB2/Q), give the pertur-
bation due to the magnetic field.

Let us denote the unperturbed operator by Ro'

Thus
R L] = D -8t - (FED2st,
(l+a)(l r )f (l+cz)2rf (76)
+ 4q2qu - 2(l§22)qfq +[C§+2)q-q2Jf}
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Denote the perturbation by Rl. It will prove conven-

ient to have Rl broken up into four parts,

R /= R, [£] + Rple] + Rg, (e}+ B _(£]

with
4 , 2 3 2 2
R (£] - -(1—"’—‘1;4(5 L =8 52 +lr”+;—rs- ’—%a—r—)-rrr
"TI + 432qr e} 0 x_)qs
Rplf) = {(r -r)f, ~2(r®-1)qf e _1)q+2]rf (77)
R, [f] = Q§_(y-l) -~ (r +l)(s -s)f +8 (r -r)f
By

-2s (r -l)qf +[232(r -l)q+ (s +l)(r +l)
DB 2 -
Rx[f] B _Q—(y-l) [- §(S +8 )(r *l)q+25 r q]f

If the usual perturbation theory is to hold, Ro
must be self-adjoint. That it is can easily be seen by
writing the differential parts as the sum of three
operators of the self-adjoint form w(x)d/dx(p(d/dx)f),
where p(x) vanishes at the end points of the range of
X. This form will be self-adjoint if the scalar pro-
duct of two functions, say a(x) and b(x) is defined by

*
(2,0)=fw tabdx. Expansion will show directly that

uall any one of these operators L. Then (a,Lb)=

Jw awd/dx(p(d/dx)b)dx=/p(da/dx) (db/dx)dx by integra-
tion by parts, since p vanishes at the endpoints of the
range of x. This last form is symmetric in a and b,

so that (a,Lb)=(b,la), the condition for L being self-
adjoint.



47
2 (£]=(%) 1§a [(1-s2)t ] +2= [1-r%)£ ]}
+q—l/2i? 2 _(4q l+l/2af ) [(2+Z)q1/2a l+l/2%]f3

So that R [f]} is self-adjoint with the scalar product
of two arbitrary functions, say f and g, deflned with
the weight function qyéa
(£,8) = S o1/%tg dqdras
(78)
With our notation of RO for the unpérturbed opera-
tor and Rl for the perturbation, the governing equation

for the alignment process, equation 75, is

% %% = R,[g] + By [g)

If we look for solutions of the form h(t)f(g,r,s) we
get the usual result that

h = o4t

R If] + R [£] =42
These eigenvalues, A, will give the spectrum of relaxa-
tion times. We will solve these equations by the per-
turbation series method. In particular, we want to
solve the equilibrium equation

Ro[f] + R [f] =0 (79)
The solution will be given as a series in flmn’ the
solutions to the unperturbed equations

Ro[f f

(80)

lmn] = Mmnfimn
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The solution to equation 79 must be normalized so
that the total probability is one. In terms of the
original variables this condition is expressed as
SIS W andndc=1
From equation 73, the Jacobian of the transformation

to q, ry s ié given by

3 r'yS

3(nynyC

A
‘ = a(m*e®1y)? (81)

When combined with the substitution of dependent varia-

ble, equation 74, this makes the normalization condition

SIL (n%e®1y)2 ql/gexp[-g(l+sg(7—l))lf dgdrds

Most of the effect of non-sphericity of the grains
is conteined in R;[f]. Not all, however, since the
definition of Ro’ equation 76 has some coefficients con-
taining @ and &, and the independent variszble substi-
tution has & non-spherical factor in the exponent. Be-
cause of this, Ro[f]= O is not generally the eguation
for spherical grains, and we should not expect the
unperturbed eigenvalue corresponding to the equilibrium

distribution, A s to be zero. This turns out to be

000
the case, but upon correction by the perturbztion

(£ Rl[fooo]) it becomes zero to first order as it

ooo’
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should.
l. BSolution of the Unperturbed Equation
We must now solve equation 80. Inspection of the
definition of Ro’ equation 76, shows that for r and s

we have the differential parts of Legendre's equation,
n
(1-5°)B; (s) - 2sP)'(s) + 1(1+1)P;(s) = O

For the solution to be properly behaved at s=+1, 1 must
be an integer, and the solutions are the Legendre poly-

nomials. This suggests that we let

£ = Py(s)P (r)y(a)

where Pl and Pm are the Legendre polynomials. The
definition given in the Bateman Manuscript Pro,jectl7
will be used. Substituting this in equation 80, gives
for y(q) the eguation
4q%y" + 222 gyt 4 [ (L+2)q-0%]y
~(F%vy = My
with b=1(1+()+m(m+l). If we make the substitution
'r
Sl v GRBI® =37 g2

y
this last equatlon becomes

qZ" tE [ldl a+l)b)1/2

where y
172
o - fE {2 - @) -]

This is Laguerre's equation, and the properly behaved

- g]z' +nz = 0
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solutions are the Laguerre polynomials Li(q)

for which Bim Osle24s00

Here a = %[ a+l)4

The definition given in the Bateman project will be

18

used. The condition on n gives for the allowed

values of A,

182
. a+l
Mmn = o -[a + (== N‘E’] - 4n (83)
We thus finally arrive at
8l
“4a -q/2 a
ALY e P, ()P (r)L (a) (84)
1/2
g I 1 o+l
with a =3 [—2 + ( )b]
a
b = 1(1+() « n(m+1)
19mln = 031,2’0..
Nlmn is a normalization constant, to be chosen so that
(flmn’flmn) =1 for 1,m,n # 0,0,0 (85)
and

/1 @© 2
SIT (m*cl1y)? 1/ o~ /2[1+s%(y-1)] £ oodadrds  (86)

~1
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Condition equation 86 makes the flmn orthonormal, and
equation 87 gives agreement to the normalization con-
dition,equation 83, to zero order.

‘from Bateman’ 7, v have Jiﬁh(slfz ds = E%II
and [ qae‘q[Lz(q)qu_P(i‘.fn*ll . With the definition

of the scalar product, equation 78, these give

2 =2]fﬂf q1/2(1 a—l/2a -q[Pl(sllﬁ? (r212
=1
[LE(Q)IE dqdrds} (87)

_ (2l+ ) (Pm+t)n
4[‘(a+n+l)

for lgmgn f O’O!o

The evaluation of N oo 15 siven in Appendix II, (II-10).

Equations 83, 84, and 87, together with the defini-
17,18

tions in Bateman s give the solutions of the un-
perturbed equation, 80. The relaxation times for the

process will be determined to zero order by the spectrum,

equation 83. The A next in magnitude to hooo will be,
for spherical grains for which a=y=1, |
A,0,0 = M3,p,0 = ~° (88)

From the exponential form for the time dependence,
exp(QAt), this will give a relaxation time of 1/2Q.
For the typical situation described following equation
76, this will have a value of about 2x(1012) gsec., or
about 7x(104) years.

2. Perturbation Coefficients to be Calculated.
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We must now carry out the perturbation solution of
equation 79. The lowest order terms of the perturba-
tion series which will be important for the polariza-
tion problem will be those of order (y—l)DBe/Q and
(m;l)DBe/Q,that is, those which depend both on the
magnetic field and the non-sphericity of the grains.
As will be seen, some terms of this order will arise
from the second order perturbation terms. Because of
the large amount of numerical labor involved, not all
of the coefficients of this order will be evaluated, but
instead only those will be found which contribute to
the polarization parameter, F. The definition of F

is given by equation 6,

F =~—#ﬁf‘?282 + %(l—re)(l—sz)]pl(r,s) drds (6)
where pl(r,s) is the deviation from the Maxwell-Boltzmann
distribution in the angular variables, r and s, alone.
The equations governing the alignment process
have been written in terms of the probability distri-
bution in terms of the variables 1, n, and (. In order
to see which will be important terms in the perturbation
series, let us see how to change this to a probability
distribution in the angular wvariables. First let us

change into a distribution over r, s, and gq. Using the
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transformation equations, 73, the Jacobian of the trans-
formation from ny, ny, ¢ to r, s, q is easily found to be
B(I‘,S,q) = l
a(nymyC) (m™c*1y)q

Define P(r,s,q) to be the distribution over r, s, and

q. Then

P(rys,q9) drdsdq = W(n,w,c)lg g,;’é | drdsdq

- (m*caIy) qﬁldrdsdq
If we also use the transformation from W to f given by

equation 74, this becomes

P(ry5,0) = (@c’1y)%q"/? expf- §[1+s°(r-1)]¢ (89)
£(ry8,9)

To find the distribution over the angular wvariables

alone, we must integrate P with respect to q. Letting

p(r,s) be the distribution over r and s, we have

D
{ P(r,s,q) dq

I

p(r,s)

(m*e®Ty)° J?ql/eexrég(.hse(y-l)lf f(rés,q) (90)
3 q

The perturbation solution will give us pi(r,s),
the deviation of p from the Maxwell-Boltzmann distribu-
tion, as a series of Legendre polynomials. From the

™

definition of the Legendre polynomialsl’,
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P (r) =1 Py(x) = %(5:2 - i) (91)

so that F can be expressed in terms of these as

JJ[B 2(r)P2(s/+3P (r)P (S)]pl(r,s) drds (92)

1f Py expressed as a series,

P = E gk ()P, (s) (93)

is substituted in equation 92, the integrals involved
will be just integrals of products of Legendre poly-
nomials over their range of orthogonality, so that,
because of this orthogonality, only 850 and 855 will
contribute to F. However, because of the normalization
condition on p(r,s) we know immediately that 8,, Must be
zero. The argument runs as follows: The normaliza-

tion condition is

,ﬁf p(rys) drds = 1

From their definitions p(r,s):pe(r,s)+pl(r,s), and

pe(r,s) is the Maxwell-Boltzmann distribution, so that

' I
Jr P (rys,) drds = 1

-f =1

Using the expansion, equation 93, we thus have
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AL [pe(rrs) + 2 ajkfj(r)Pk(s)Idrds -

e z:ajkﬁf P, (r)Py(s) drds = 1

Since Pj is orthogonal to Po=1 except if j=o0, all the
terms in the sum except j=k=0 are zero, leaving 8,0=0"
Thus 8559 the coefficient of the P2(r)P2(s) term in the
series expansion of pl(r,s),is the only coefficient
which need be computed.

The calculation of the coefficients of the flmn
in the perturbation solution of equation 79 follows the
same method as used in, for example,quantum mechanics.
The only difference is in the normalization of the
gsolution. In the usual spplications, the solution is
normalized to have the integral of its square equal to
one, while here we want the total probability to be
one, which results in the condition on the integral of
the first power of the solution, equation 82. We will
give a brief derivation of the necessary formulse and
pick out those parts of the solution which contribute
to 855

We wish to solve equation 79, R_[f£]+R;[f]-Af

with A =0. Suppose that f and.@ are given by the series

f=go+gl+g2+...!
F Ny + N+ 0+ e
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with 8o and n, independent of, g and 21 proportional
to the first power of, and P and n, proportional to
the second power of the expansion parameter, that is, the
strength of Rl' If these are substituted in equation
79 and terms in like powers of the expansion parameter
are collected, we get the usual infinite set of equationms,

the first three of which are

Bol8o] = %08, (94)
Ry[8,] + Rol81] = mo81 + 18, (95)
Rif 8] + Ro[gél = N 85 + N8 + N8> (96)

We are interested in the solution of equation 94 with the

smallest wvalue of no. This solution is

1 =
10 7\.000

8o = L 500

Now expand 811 in a series of the eigenfunctions of Ro’

(1)
g, = = A B 97
3 Lmh lmn “1lmn
If we substitute this expansion in equation 95, and
take the scalar product of both sides with flmn we get

the usuzl results
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11 = Coo0rBilfo00l 2/ (0001 T000? and (98)
£1
Where we have made use of the facts that Ro[rlmnjz
A.lmn flmn a_nd, fOI‘ 1’ m, n # 0,0’O’ (rlmn,flmn)=lo
Also expend g, a8
AR . | (99)

1lmn

Substitute this in equation 96 and take the scalar
product of both sides with flmnf This gives the usual
results that, for l,m,n # 0,0,0

(£1mn2 By [E5 53] (25 530 By [£5500)

420 1}
= f%é; (lbOO"hlmnj(hooo'hijk)

(100)

5 (flnm’Rl[foocp [A(l) gl ; ]

(hooo'hlmn) DO (hooo'hlmn

g o (1) (2)
The coefficients Aooo and Aooo would have to be deter-
mined from the normalizstion condition, equation 82.

We have previously, equation 77, divided Rl up
into four pieces, RlzRy+RBy+Rx*h“Let us use this

division in equation 98 and define
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1mn = F1n2Ra(fo00] 7/ Moo~ M1nn)
1mn =E1an2 By [2560] 7/ Po00~ 1 mn)
(£33 Bay [£00 / Mooo~™1ma)

(flmn’Rx[fooaol(kooo'Klmn)

(101)

xlmn

+ € + d + X a

(1)
Then Ay - =D lmn lmn

lmn lmn

From its definition, equation 77, Rx,and therefore
Xqpn)is proportional to (7-1)2DB2/Q. We are only going
to carry the calculation to lowest order, that is to
order (y-l)DBz/Q,and X1nn is therefore of higher

order and can be disregarded.

If we similarly use this division of Rl in egua-
tion 100, the expression (f; . . Rl[rijk]) (fijk,Rl[Iooo])
will have four possibilities for each of its factors,
thus giving rise to sixteen different kinds of terms.
However, using the definitions of equation 77, all but
two will be of second or higher power in (y-1), (a-1),
or DB2/Q and can be disregarded. The two remaining terms
are  (f3.0R [£556])(f540Rs]E00d ) .

+ (L pp By [T 53l ) (L5 530 B T2 501) -

The factor A(l) —nl/(h )]is of first order in the

000 ooo-hlmn

perturbation, so that, similarly, the only contributions
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in the final term of equation 100 which cannot be dis-

regarded will be

(N A ) 000 A= . —A
000 1lmn

(flmn’Ry[fooo])+(flmn' B[fooo}) [A(l) [t
000 ""lmn

Thus, define

(£ 1am 2By [£5 5 E5 5300 B [£ 5001

e =2 (102)
- Hone Ao00~Mmn? Pies = A, )

- (10 Belfs 33D (F5 5100 [£55,1)

g (hooo"hlmn)(hooo'hijk)

(hooo'hlmnj

Then finally, to the order to which we are working,

+ (flmn’Rxffooo])+(flmn’RB[fooo]) (1) o] A
Do Moo00~Mmn

(1)
Almn % blmn % clmn L dlmn
(2} _
Almn = ®1mn (103)

Each of these coefficients has an explicit dependence
on the perturbation parameters through the definitions
of Ry. RB, and RBy given by equation 77. These depen-

dences are given by the following table:

Coefficient | Order
&
blmn DB</Q
O/ s (y-1) or (o-1)
e (y-1)DB%/Q
€ 1mn | (y-1)DB2/Q or (o-1)DBZ/Q

We must now see which of the terms of the pertur-
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bation solution will give a contribution to the 855
of equation 93. As remarked before, the unperturbed

solution, f is not the Maxwell-Boltzmann solution,

ooo’
since some of the effects of the non-sphericity of the
dust grain, even in the absence of a magnetic field, are
contained in the perturbation Ry. The coefficients

c represent the first order correction for these

lmn
effects, and thus contribute to the Maxwell-Boltzmann
distribution, pe(r,s), and therefore not to the pl(r,s).
of equation 93.

The remaining terms of the perturbation solution
must now be put into the integral in equation 90 to
find their contribution to pl(r,s). Keeping terms up
to first order in (y-1) the integral in equation 90
can be expanded as
?D

w©
[ a2V 2e(r,8,q)4q - %(7—1).}' ¥/25%e~ V2
0o

° (104)

f(rys,q)dq

The expansion functions, flmn’ are given by equation

84 as the products of the Legendre polynomials Pl(s)

and Pm(r) and a function of q alone. The integration
of equation 104 is over g only, so that rlmn contri-

butes PI(S) Pm(r) to pl(r,s) from the first integral

of equation 104 and.(y-l)sgPl(s)Pm(rD from the second

integral. Since, according to Table 1, dlmn and

€pn 2lready heve a factor of (y-1) or (o-1), terms
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involving them will not contribute from the second
integral to the order to which we are working. It
will also turn out that the only non-zero blmn will be
bOmn (See the discussion preceeding equation (II-5) ),
so that the second integral contributes only terms of the

form

by (7-1)8%0 (r) = b___(y-1) EPQ(S)+§O(S) =

According to equation 84, we have
a-1

- Ny @ 70 Y2 123(q)P (s)P, (1) (84)

flmn 1mn9

If this is used in equation 90 as expanded in equation
104, we finally find that the coefficient of the

Pz(s)Pz(r) term in p,(r,s), is given by

a+l-1
a © — a
22 23 Fa _-q
o il (Poontdoon*eson)Noond, 4 e "Iy(a)dg
X (105)
a 2
~ 2091V R0 % 25 %e -q.%(q)dq
5 5 o2n oEn,[ a I

The four sets of coefficients, b02n'.b22n s Qoop 9 and

€oon, and then finally 855 will be evaluated in

Appendix II.

3. Results for Smsll Magnetic Fields and Nearly
Spherical Grains.

The expressions for bo2n’ b22n’ d22n’ and €soon
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are given in Appendix II in equations II-13, II-5,
IT1-14, and II-16. The expression for 855 is given by
equation II-17. It is

[ b o B (n+3 )(n%) p(n_]

(et
322 i 3 M=o (n+é) (Il+i) (n+g) né
g (106)
#(a-1)28- o & (3-0) f’(nj%>
I W (ar) nen)(nrk).

P >
o DAl (y-l)% + 0.032 (a-l)l—)-g—

The physical parameters are contained entirely in
(7-1)» (a-1), ‘and DB°/Q, the numerical coefficients
being independeﬁt constants. Expressions for (y-1)
and (o-1) for nearly spherical grains are given by
equations 51 through 54%.

The effect on the polarization parameter, F, is

found from equation 92 and equation 93. They give

g i l
¥ - ~'_’[3 2()P () + 32 (2)B ()]
éab ajkPj(r)Pk(S)§ drds
All the integrals except those involving a_ P (r)P (s)

00" 0
and 322P2(r)P2(s) will vanish because of the orthogon-

ality of the Legendre polynomials. According to the

discussion following equation 93, a__=0, so the only

00
term left gives

JJ [P ()] 2[p ()] © ap2drd.s - = .%322 (107)
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Using the results given by equation 106, we have, to
first ordef in the magnetic field and non-sphericity of

the grain,

50w (045)(0-3) r(n-§> |

F = -1 -
+(y-1)22- {-§_ 225“3/2'mv(n+%)2(n+%)(n+%)
(108)
~(a~1)2 B iz3 e (37n) rT(n+é)
T o372 (n%>2<n+i>cn+2 i

i
+ - e — -— - -  e——
0.0188 (y-1)2 Q 0.0034 (a-1)2 Q

If we assume that the grain is homogeneous then we may
use the relation between (y-1) and (a-1) given by
equation 54 to obtain

2
F = + 0.0161 (7-1)23
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IV Summary of the Calculation
We will give a brief outline of the structure of
the calculation done in the preceding pages.
The equation describing the alignment process is a

14 The coefficients in the

Fokker-Planck equation.
equation are found from various averages over the assumed
probability of dust grain-hydrogen atom collisions.

These coefficients are given in terms of the varisbles
n=Hcose, n=HcosB, and C=H2 by equations 61 and 62.

The governing equation for the probability density
w(nyny¢) in B, mn, € space is then given in equations 63
through 66.

To render the equation more tractable a change of

variables is made. The independent variables are

changed to
r = cosf
s = cose
e
H (73)
q = —T-
m* e Iy

where ¢ is the characteristic hydrogenatom velocity,
. (252 1/2
% (26)

and the dependent variable is changed to f, defined by

1 - %[1+82(y—121 g

W == e
1/2
q/

(74)
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The result is equation 75.

For the case of small magnetic fields and nearly
spherical grains, it is convenient to write the equation
as the sum of two parts, R [f] + R [f] = % af/at, with
Ro’ the unperturbed operator defined by equation 76,

and Rl[fJ the perturbation given by

B, [£] = Ry[f] + Ro[£] + RBy[f] +B_[£]

The perturbations Ry' RB‘ RBy‘ and Rx are defined in
equation 77, We are interested in the equilibrium

solution,

R [t] + By [£] =0 (79)
This is solved in a perturbation series, the ex-

pansion functions being the eigenfunctions of Ro’

1

a — i
f1on = ¥imn qz 4o -0/2 Pl(s)Pm(r)Lgf(q) (84)

The solution up to second order in the perturbation,

Rl’ is given by equatiocn 97 and 99 as

(1) (2)
f =1 0" 1fin Xon * 1fin Almn f1mn

The formula for the first order coefficients, A&i&
is given by equation 98, and for the second order co-

efficients, Aéi%, by equation 100.
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An analysis is then made of which of the A{i&
and Aii& will contribute to the»polarization parameter,
F, to the order we are working, that is, which will
contribute in order (y—l)DB2/Q or (a—l)DB2/Q. To aid
in this, we have the formuls equation 90 for changing
the solution f(g,r,s) into a probability density,
p(rys), in the space of the angular variables r and s.
The results of this analysis are that four sets of

coeficients must be found. They are called bﬁ2n’

b22n’ d22n’ and €oop 9 and are defined by equations 101
and 102.

If we let pe(r,s) be the distribution of r and
s in the absence of a magnetic field, and then expand

pl(r,s) in terms of Legendre polynomials as

(5)
°ajkPJ.(r)Pk(s) and

(93)
we find that only the 840 term and the 855 term will

& @
p(rss) = pgrss) + 2

J) k=

contribute to F, and that further aoo=0 so that only
aso is needed. (See discussion following equation

93.). In fact the result is that

¥k % Riss (107)

This result is true in general. In the perturbation
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case that we are working out here, 8, is given in terms
of bogn- b22n’ doop s eand e, by equation 105.

The evaluation of bo2 y D

oont ooy tEREL NG, is
done in Appendix II. The results are

n

e pB° 1 1
Yo20%20 = 3" ;172 3 (II-13)
biop = O for n=0 (II-13)
| g i (II-5)
NPT ER il O W v I o (1I-14)
22n 22n Q 2”1/2 3 rl(%)(n’%)TW(n+%)
1
MR T (3-0) M (n+3)
22n%22n Y 2nt/2 3 T'(3)(ned) M (ned)
1 (I1I-16)
DB 1 1 I (03
+ (y=1)= 1725 w
Y 2n/% 3 [(3)(04d) M (nsh)
The expression for 855 is then found to be
1

( 1)D32[5§ 4 (2+3) (2-3) F(n?)]
322 = -\7= Q r * 3ﬂ3;§ n=0 (n+%)2(n+%)(n+%) nt

&
ey 22 4 @ (3-n) r'(rf.g)
U 303/ 850 (1,352 (ned) (mg) B

2 : 2 I11-17)
» <0.176 (y_l)Qg— +0.032 (a-l)gg— :
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This results in a final value for F of

2 o TR (R ["(a-%)
F=+(},_1)D_g_[91_0+ 3 .8 n+5)(n-5 -\

s b DGl
(108)
1
DBS 32 = (%‘n) I (n+3)

-(a-1)

Q. poggd/2 W (n%)g(n%)Cn%) B

2 2
= +0.0188 (y-1)2%- -0.0034 (a-1)2-
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V. Conclusion

The alignment of the dust grains, and, thus, their
effectiveness as polarizing agents is determined by
the equilibrium between two competing processes, the
orienting torque due to the paramagnetic relaxation
process and the randomizing torques due to collisions
with the hydrogen gas. The relative effectiveness of
the two processes depends on the ratio of their rate
constants.

The rate of the orienting process depends on the
internsl parameters of the grain and the external
magnetic field.

Let V be the volume of the grain,
I be the moment of inertia about the symmetry axis,
¥yI be the moment of inertia about an axis perpen-
dicular to the symmetry axis,
Tg be the internal temperature of the grain,
and B be the strength of the external magnetic field.

Then the rate constant for alignment of the grains is
=4

DB™ where the constant D is given by equation 9 as
-12
B TaglS(10 B
DB“ = £ I (2

in c.g.s. units and degrees Kelvin. The value of the

g T

numerical constant, 2.5(10 depends on the assumed
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composition of the grain materigl. Its value is dis-
cussed by Davis and Greenstein.23 For conditions con-
sidered typical, Tg:lOOK, and spherical grains of
radius (10-5)cm and density 1 gm/cma, D=6x(10"3) sec™t
gauss_z. A magnetic field of (10_5) gauss would then
give D32=6x(10'13)sec.'1
The rate of the randomizing process depends on
the surface shape and dynamical properties of the grain
and the kinetic properties of the hydrogen gas.
Let nge the number density of the hydrogen gas,
T be the gas kinetic temperature,
K be Boltzmann!s constant,
m be the mass of the gas atoms,
and u' be the effective mass of the gas atoms (discussed
after equation 21).
We also need, in addition, the surface shape parameters,
a and h, defined by equation 40 and 42. They are evaluated

in equation 48 and 49. For nearly spherical grains

they are given in equation 51 as

ma [— - 15[(b/a)2 - 1{{

h
(51)

ah = ma [— + 2—[(b/a) - ll]
where 2b is the diameter of the shperoid along the ro-
tation exis and 2a the diameter along a perpendicular

axis. Then the rate constant for the randomizing pro-
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cess is given by equation 76 as

1/2
( )H( 2L (69)

For the typicel conditions, the same grains as above

l/2=lOO (° )1/2/cm eand taking m¥=m (correspond-

-1

and nHT

ing to elastic collisionms), Q:Bx(lO'lB)sec.
The type of distribution expected then depends on

the ratio

2 -12 2 ¥ 5
o b e oS (109)
)

and the mechanical and surface shape factors, (¥-1)
and (a-1). For our typical grain and hydrogen conditions
DB7=2x(101%)B%-2 for B=10"7 gauss. If (y-1)DBZ/Q«1,
the distribution will be nearly Maxwell-Boltzmann. If
(y—l)DB%ﬁ>>l, the distribution will approach complete
alignment.

Of primary interest is the polarization parameter,
F. TFor the case carried to completion here, the nearly

random situstion,

F

2 2
+ 0.0188 (y_l)Eg— - o.oo34(a_1)% (108)

to lowest order in (y-1), (a-1), and DQ?&- For uniform
spheroids, (o-1) and (y-1) are related by equation 54,

and we have
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F = +0.0161 (y-l)—m—32
" ? (110)
We will still msintain the desired order in equation 108

and 110 if we set o=l in the eveulation of DB°/Q by

equation 109. We will then have ah:% na4 and V=%na3,
giving
2§2 oJ 2.5&;0’12)(2_)( x )1/2 B2
Q T m* / *2mk (111)
g T1/2

&g
Putting in the numerical value for Boltzmann's constant,

K, and the hydrogen atom mass, m, this becomes

DB%= 2.06(10%)(_m) B> :
Q m* 1/2 (112)
aTgnHT
and makes equation 110
m B2 6
F=+ 3.32 (7-1)(5*) 172 (10%) (11%)
aTgnHT

We also have obtained a value for the relaxation
time. It is given following equation 88 as 1/2Q. For
the typical conditions we have been using as an example,
this is about 2x(1012) sec. If we evaluate Q from equa-
tion 69, taking the case of a uniform sphere and putting
in the numerical wvalues for m and K, we find the relaxa-

tion time is given by
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1.5(101%) ) Eﬂgm (114)
H

where pg is the density of a grain. This last result
can be compared with the relaxation time obtained by
Davis and Greenstein.2 Their equation 16 is the same
as our equation 114 except that they have a numerical

coefficient 5(1019) where we have 1-5(1019)(m/m").
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APPENDIX I

We must first justify calculating the moments of the
transition probability, Ei and Eij' for a time dt instead
of a2 time At. That is, we must justify the use of equa-
tions 22 and 23 instead of equations 14 and 15. During
a2 single collision the relative changes of the orientation
variables will be much less than one. Thus, we can con-
sider that the orientation variables will be the same for
many successive collisions. That is, there will be a time
At during which  many collisions will occur, but also during
which the orientation variables of the grain can be con-
sidered to remain constant. Therefore, we will have a
series of collisions with each having the same transition
probability. This is the situation considered by
Chandrasekhar in the section of his paper beginning with

2l Phe result is his equation 103 and the

his equation 94.
paragraph following it: The first and second moments of
the distribution of the total displacement due to a large
number, N, of collisions, each having the same transition
probability, will be N times the corresponding moments

of the distribution for a single collision. This is an
example of the usuzl central limit theorem of statistics.
As applied to the situation we are considering this means

that (moment for a time At) = (At/dt) x (moment for =

time dt), so that we may use equations 22 and 23 instead
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of equations 14 snd 15.

Secondly, we have the additional result from
Chandrasekhar's equation 103 that the distribution for &
large number of collisions will be Gaussian in form.

For this case he finds (his equations 225 and 22622)
that the third and higher moments of the distribution

will be proportional to higher powers of At, so that we

may use the Fckker-Planck eqguation, our equation 16.



76
APPENDIX II
We must evaluszte bo2n’ b22n’ d22n’ and €son ac-=
cording to their definitions, equations 101 and 102.

Let us first find RB[fOOO]; Rylfooo]’ and Ry [f ]

3 -q/2 :
tota = Nogo® (II-1)
3 L. . e d o N SRR )
so that 3g 000 Sp 200 = 0 and 3q 000 =73 “000.
If we use this in the definitions of R,, Ry, and RBy‘
equation 77, and also use P2(5)=%(352-1), so that
52=%(2P2(s)+1), we find
R b b ST 1 I1-2
B{fooo] = Nooo q ° ¥ ?IPE(r)- ]q} (11-2)
: 2
j -q/2
WL NOOO(—gg—)e [1+2P,(s)] q (II-3)
R, [f  J=N__ 2 1)2§2 e'Q/g{l P.(s)P.(z)
By[ ooo]“ ooo 3°77+/7Q e 2
(II-4)

+q[2P2(s)P2(r)—2P2(s)+P2(r)—J]J(

Beczuse of the orthogonality of the Legendre polynomisals,

we now verify the statement after eguation 104 that

n i " 2 3 3
the only non-zero blmn will be bomn' In fact equation

II-2 gives us that the only non-zero blmn are boon and
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bo2n' We thus have

byop, =0 (II-5)

From equations 101, 102, and 77 we can see that
dy,, end e,,, have factors of either (y-1) or (a-1)
explicitly written in their definitions. The contri-
bution of b0211 to 85, as given in equation 105 also hss
an explicit dependence on (y-1). Thus, since we have
just found b22n=0, all the terms which contribute to
8500 according to equation 105, have an explicit depen-
dence on either (c-1) or (¥-1). Since we are working
to first order in these quantities, we can set a=y=1
in all calculations except for these explicit appear-
ances. That is, we get the following simplifications:

Equation 78 becomes

(£,8) = J‘ffw a/2fg aqdrds (II-6)

and equations 83 through 87 become

1-2a-4n (1I-7)
1

Myt P28, (818, (m) (@) (11-8)

Mmn

: 3

1lmn

_ (2141)(2msl)nt

(Nlmn) = 4 (a+n+l) for 1,m,n#0,0,0 (I1I-9)
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1/2
with a = %[i + 41(1+1) + 4m(m+l1}
¥ e
Jf @ite?1)? qt/2 Y2 £ aqdrds - 1
S
4
or @l N, =[4r @] =1 (II-10)

173
The (m*c217)2 appearing in equation II-10 will be can-
celed by its appearance in the left side of equation 105
so that we shall cease using it in either place.

We shall also need the integral given by Batemaneo,

" (c+1) I (n+a-c)
n: (a-c)

=2}
S a% L (q) aq = (1I-11)

As a special case of this we have

{F’(ﬁwl) for n = 0
0 for n # 0

x>
S a%e"Li(a) dq =

o

(II-12)

which is just the orthogonality relation between
LR and 13-1.

If we now combine equations 101, II-2, and II-6
through II-12, we find

DB® 1

3
Q En—r]za for n =20
0 for n 40

A PIE3)

Similerly, using equation II-4, we find

B2 1 1 G (@)
U 2?3 D) @) (ard)

y=1)2 (II-14)

Noondoon = (
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We can also simplify the calculation of €5on from
equation 102. Using equations II-2 and II-3, we find,
because of the orthogonality of the Legendre polynomials,
that

(fijk’ RB[fOOO])=O unless 1i,j,k,=0,0,n Oor 0,2,n

and (fijk’Ry[Foocr)zo unless 1,j.k =0,0, Or 2,0,n.

From equation 77 and the orthogonality of the Legendre

polynomials, we find

(f22nsRylfoon]) = <f22n’RB[foon]) = 0.

Because of the application of equation II-12 we also

find (fq2k’RB[fooo]) 7 (f2,qk,Ry[?oooI) = 0 for k ¢ O.
Thus, equation 102 becomes

(f22n’R7[f0201 )(fOEO’RB[fooo])

e =
22n (kooo'hEEn)(hooo-KOEO)

(122n' B[f2ooJ)(f2oo’Ry[foooI)
(hooo—h22nj(kooo"k200)

(11-15)

+

Evaluation of these remaining terms using equations 77
and IT-6 through II-12 and expanding the coefficients

in equations 77 by

— -(Cl--l) * oo

2

1- L = (0-1) - 2(y-1) + ...
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finally gives
2 ;1 Go)rep)

N = .
2n'/2 3 1 (3)(n+d) M (0ed)

= (a—l)Dg

22n°22n
(II-16)
DB° 1 . 1 [ (a-3)

T3 P(%)(mg)r'(m%)

The coefficients bo2n’b22n’d22n’ and e22n are

+(y-1)2

given by equations II-13, II-5, and II-16. If these
are now put into equation 105 and the two integrals
appearing there (setting a=1) are evaluated by

equation II—ll} we get

" © (0+3)(n-2) f’(n—%) ]

. = =(y=1)— b T
(o) 222 S ol (3-) P (n+3)
a- T
: 30572 850 (0,3)2(ned)(nsf) 27 (TTD)

2 2
-0.176 (y—l)gg— +0.032 (a_l)Q%—
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