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and, to a larger extent, in mixed flow con "g; regsors., The problem is
simplified by assuming an infinite number of infinitely thin blades in

each blade row, so that axially symmetric fluld motlion results,

he effect of variable hub and tip radii of the annulus walls is
investigated when the tangeuntial velociiles are small but arbitrary,
and when they are large but of speclal form. The combined effect of
heavily loaded inlet guide vanse and variable hub radive is also inves-
gated for the case in which the inlet guide vanes impart & motion
very nearly of the solid-body type. The boundary conditions for the

[

variable hub radiue require lincarization, thus restricting the magni-
tude of perturbation to be induced by the wall. Finally, the effect of
z loaded blade row placed behind the inlet guide vane is determined.
The local axial and tangential velocities induced by the variable
wall radive wers found to be of the same general magnitude as the
velocities induced by & normal rotor or stator blade row. Although
che forme of the solutions sre somewhat complex for routine applica-
tion in turbomachine design, & sufficiently simple approximate resull

ow the method of approwxi-

&

ndicated

[

ig obizined for one case apnd it iz

mation may be extended.
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Cylindricel coordinates

Velocity in dirvection ¢
Veloeity in divection &
Velocity in dirvectlion £

Vorticity in direction

D

Vorticity in direction
Vorticity in divection =

Blade force imparted in direction

Blade force imparted {n direction 2

Blade force imparted in direction Z

Bessel function of first kind and order zerc

Besgel function of second kind and order zero

Beesel function of first kind and order one

Bessel function of second kind and ordey one

Linear combinetion of Bespgel functions of order sero

Se(BNIN(T = JEr) T (8r) % is dummmy variable here.

iinear ¢ombination of Resseal functions of ordey one
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Linear combination of Begssl funcitlons of ordey zaro
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Linear combination of Pessel functions of order one
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Characteristic numbser for Beseel function

Linsar combination of Bessel functions of order zero
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Dinear comblnation of Bessel funciions of ovder one
U (.0
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Fluld statie pressure

Stream function in evlindrical coordinates
Veloeity in meridional plane

Angular velocity of blade row

L

Axial velocity perturbation about mean flow
Dimensionless tangential velocity '\V'ifm
Fourier transform of radial velocity

SR —UKE

Jamw Al € e
Rotational parameter to describe tangential veloeity
Parameter to describe tangential velocity imparted by
rotor row

Ave = O

Asdal position of votor row
One half axial length of wall contraction
Masdmum slope of wall contraction
Tip radiug
Fub radius

L

CUne half of radizl contraction of wall ghape

A
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Contraction ratio

Transiorm of boundary condition
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It hae become ueual in the theory of turbormachine fdow to divide

el flow about the individas] blades, This

aot strictly accurate, since it does not

important problems of secondary flow and

other strictly threa-dimmensgional phenomena,
The flow field calculated in the first step iz designated the

hWilow, and ig almos

this implic ¥ of infinitely thin, lightly
loaded bladee In each blade row, Some geneval, qualitative consid-

erations of the throughflow were given by Ruden {1} and, although he
did not develop any method for caloculating the flow fleld in detall, he

didnde many of the simplifying features that have since gone into the

development of the theory, The fret actual calevlation was a rather
highly simplified treatment wheve only the flow fleld fay downstream

of a gingle blade row was determined when the flow far upstrearn: was

g

given, Thig caleulation, which has become known as

arently concelved by several peonle almost

shed an early account emploving

neral time period.
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The only shortcomings of the radial equilibrium theory were that
it applied only to compressgor or {urbine stages where the inner and
cuter radil were constant for & conslderable distance upstream and
downstream of the blade row, and that it gave no lndication as to how
this change in flow fisld developed between the stations far upstream
and downetresr of the blade row or through the blade row,

Thip latter difficulty was overcome to a large extent by Marble
{4}, who developed solutions for detalled flow field in the mighsmrh@mé
and through a blade row of arblirary loading, The blade row was, of
course, congidered to produce an axially symmetric flow fleld and
congsequently, the approximation within the blade row was likely to be
poorer than that a short distance outsids it These caleculations
probably give more detall than the approximations of infinite blade
number merit. Conseguently, Mavble (5), and later Marble and
Micheleoni{b), developed a rather elementary approximation which,
although less accurate than the original Unesrised treatment, is much
slmpler and couvenlent to apply in practice. This technlque, which
has become known gs the exponentlal approximation, has since been

zploited to a coneiderable extent by Rallly {7) and by Hozrlock{8, 9)

The problem of caloulating turbomachine throughflow in the
presence of variations in hub and tip shroud radil has, to the preseat,
been treated only by numerical means., The nuwmerical calgulations
of Wu {10, 11) are more or less typical of the techaigues emploved.

It iz not vartlicvlarly 4ifficult, it turns out, to extend Marble's ovig-
inzl lnearized analysis to include bub and lp radil that vary by a

srmall fraction of the total blade length., This analysis carried out



in Chapter 1 of the following work, permits rather simaple caleulaiion
of wall shapes of a rather general type In the presence of g lightly
loadsd blade row. Furthermore, it proves pospible to extend the
principle of the exponential approximation to include some of the wall
shapes and hence the computations become extremely elementary,
Unfortunately, the most important problems are associated with
the hub expansion in the neighborhood of the entraance vans and first
rotor of an sxial flow compressor. Here, because of the high loading
of the entrance vane, the foregolng calculation is gubject to some
gquestions. This particular problem is treated in detall, therefore,
employing a particular radial blade loading on the entrance guide
vane, one that is fairly close to 2 solid body rofation. The equations
of motion then become linear even in the presence of & large loading,
in a manner slmilar to that of Bragg and Hawthorne {12}, and ig
proves poesible to obtain explicit solutions for an arbitrary, but
small, variation of hub radiue in the presence of beavily loaded guide

vane and rotor.
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the axially syrametric stream surface in a fived meridional plane,
then the derivative along the stream surface, moving with the fluid, is

lQ/

e
i
ey,
o
g

where V=V ui+w? is the meridional velocity along the stream

surface. Since the rate of work input to the fluid by the blades is

53
o
Prile
bt
!
)
Pt
]

wr £, where (W is the angular velocity of the blade, the first law
o ! Y

may be writien

Feonation T, vsed with eguaticns 1, 3 and 5 leads to
% b4 %

%erg

Eauations 8 and 2 may then be combined to glve the d
4 &

forrn of the Fuler turbine squation as applicable to incompressibls How
o b i s
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Now, it is & simple matter to calculate the variaton of total

7 : —E 4 £, & r\c\) { fi 5\\
nead R normal to the streamsuriace, by taking g\ ¢ ) froin

iy

, .2 (B - I
equation 4, and '?32'.&? ) rom equation 6, Substitutin

values into the right side of sqguation 13 glves
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Eguation 14 may be interpreted as a relation for the tangential
vorticity. The two groups of terme appearing on the right side of the
eguation, with the tangential vorticity, may be simplified somewhat.
Equations 1, 3 and 13 give

8t v o[woave oy vl

w , VT
\/g\/r ' Vs\/g Tor u\jg B Ny %

) @Vf
v% o \‘) €§.

(i
Ry

, W
T A4 - F : tlae fos e T
The group v F. v = is simnply the force component

normal to the stream suriaces and consequently it ie convenient to

defins

Vs (18}
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Substitution of equations 13 and 16 inle eguation 14 leads to
,-(2 { F:;\ A\_’ —
T A R o S
= Cop\ed Vg o Y (17}
This result was obtained for the more general case of com-

prassible flow by Marble (13), as well as in more vestricted form by

3

larble and Michelgon (6 ), and Bragg and Hawthorne (12, In this

y E 2 2 i QL e i e e DB B R
not very uaeful for determining the tangential

Pt
&z

fsrwn, the eqguation

vorticity since differentiation occurs with respect to the unknown

2

streamfunction, howaver, it iz a very convenient gulde for phavsical
H &

reagoning. The tangential vorticity associated with the force component

&

F. iz sasentially a "bound vorticity” and is of the same ovigin ss
]

the bound vorticity connected with the 15t of a wing. If the angular

momentum were invarient with \p and the tangential verticity depended
on the total head only, then the flow oulside of the blade row becomes
relatively simple., It is clear {rom equation 8 that with no blade forces

the total pressure remains constant along stream suriaces, and hence

N , . . .
U~ is constant alon 1g a streamsurface. It is easily shown (4 ) that

this result follows from the fact that the circulation about & physical
annular vortex tube rewmaing constant as it moves outside of a force
field, On the other hand, if the total head was uniform, and again the

space outside a blade row is considered, the tangential vorticity arises

ngulaz

o

only from the angular momenturn, Dut {rom sguntion 9, the

momenturn i8 constant slong stream surfaces, and hence the quantity
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Nr is constant along o stream surface. This result is related

£,
b
Q

fact that the cirvculation about a given helical stream tube remains

constant, but the stream tube itself may have a greater or smaller

component in the tangentizl direction, depending upon how the stream
tube is deformec by the flow.
The MMathematical Problem The velocity components U and W are

of central interest, and thus the tangential vorticity, eguation 17, will

be the focus of attantion. From equatione 2, 11, and 12, it follows that:

iy

Bt
g3
e

The total head and angular momentum are described by eguations
8 and 9 reapectively.

It iz now possible to make some statements regarding the formu-
lation of the inverse problem, that s, where sormething other than the
blade geometry is prescribed, The statements are not really conclusive
because the non-linear nature of equation 19 precludes the guaranies of

well behaved solution under boundary conditions of any generality,
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The results ave of interest, however, because they do delineate the
maximum araount of informetion that must be prescribed,
If one prescribes
£ -
1y N 7 . TN - &b o 25 o .
) Q‘Q Jiv2) or r\/m%, O ey throughout the machine
cf, squations 8, 9, 10},

2.) The blade shape or loading at the leading edge {cf. Ref. (6 ) ),

3.} That the flow be tangential to inner and outer walls of given shape ’
4.) The values of streamfunction, total head and angular momentum

far upsiream of any blade row,

o) That the streamfunction, totzl head and angular momenturn be

(%3]

regular far downstream,
then the details of the throughflow can be determined through

solution of equation 19 together with such of equations 8, 9, 10 and 17
as are required for the quantity given under (1) above.

in the past considerable work has been done on the theory that
the three dimensional flow field {2 agsumed to be axlally symumetzical,
{4), (5)and (6) Physically thie gaicmz:«;: impémﬁa that the blade rows
must conslst of an infinite number of infinitely thin blades. This theory
succeeds very well in describing the induced flow field in which the
individual blades may be considered to be operating., However, while
the description of the flow field induced by the blades is covered
adequately by these theovries, the effect of a variable hub radius or

tip radius has not been considered.



It is noarly alwaye the case in actuzl turbomachines that hub
reading, tip redius or both vary along the direction of flow. In many

ingtances, for example ia the early steges of & multistage com-

pressor, the hub and tip'é;*&zﬁi vary so much that the change of rodius
through a given blade row must be taken into sccount in determining
the throughflow. While it is true that 2 sipunificant portion of this
change in radive may be to compensate for density changss ia the
fludd which, in this anzlysis, are belng neglected, the general flow
pattern about the mean flow is not 86 greatly changed by thie com-
preseibility effect, so that the incompreessible flow pattern gives
mogt of the necessary information. It is the e*.?iﬁ'@ﬁ of 2 veriable
wall radius that is most thoroughly favestigated in the following

sactions,

%

ihe resulte of the follovwing snalyeis could aleo be a
to the description of throughflow in audal flow water pumps, in
which of course, the comproesibllity io not a fuctor. 1The so-called
mixzed flow compreseor, in which the hub and tip radii are both
increasad should also be sulteble for analysis by the followiag
tochrniques, though cere should be taken that the awmplitude of the
wall variation chould not be such ag to invalidate the Unserizing

asgumptions used in the epplication of the boundery conditions,
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Hi, EFFECT OF VARIABLE HUB AND (1P RADI

The effect of variable hub and tip radii on the flow fleld is to
be determined, and thea the reesults so found may be superimposed
on the resulte previously obtained for the effocts of blade loading (4 ?o
The equation to be used for uniform inlet flow with no rotation may

be sesn from equation 19 to becomse

o o(LeWy To_iow

z\r 02/ Y Le\r S/ T O {20)
In this case, it s convenient to work with the radial velocity

itself, and thus taking the derivative by Z of equation 20, and

making use of eguation 11, we {ind that

age = O {a1)

The problem of througbflow with variable hub and tip radid is

ﬁémi’% described by equation 41 together with the boundary conditions

U(ﬂ—m\ = \J((lfm) = O (2@%
M ok
w = dz e {23)

sic
Kix
.

5

L
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a lnear, and it s thus

conditions ¢
nacessary t

UYUnesrization is cchicved

5 s oy - Fh gy ey oy % el wnd Pra A Vol s
wirance velocity at iafinity, W™ . 7This conditio

2 perturbation in wall shape to be of gmall ordey

undery conditions now become

Ui -o0) = Lo voe) = O {22)

“4o ok -
we T 4z (GRAT: (25)

L ¢
Wer = . (2

1

oy

Throughflow with V

ub RPadiue, ~ Conglder the

dh 0
partiendar ingtance where J3°0 , and 4z = (&) ia equations 25

5 a

e Laan i

transform with reapect to £, the axdial J

o

Denoting the Fourier transform of the radial velodty come-

-ﬂmi (27)
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g

the homogenoous differential eguation 21 becomes

2’/\ A
d \J L ) ){ ; . . \_/\
(H“ Torde T 1 F’M‘M} = (5.’; ?
The boundary conditione transformn ag
A\ - .
A A I {29)
O
i 7 s — “5
ﬁdzi == W © E\ () f:ﬁ@
T, N
The differcutial squation 28 hae solutions o« and Y.(xn)

and the constants obtalned with substitution of eguations 29 and 30

lead to the value for the transform variable of

k/\'u"‘,(\ = ) T T T e

= W ©} o ) J &mr\ \(\\u(\’ﬂ V.‘J\UKM\‘(\ Wxr) {
3\ Qmm\(\(mv‘t\ - J.(mrtm‘ (ere )

(£
e
b

o

The Fourier jpvergion theorera states that the value of the

8

origiaal function ez 18 given ia terme of the trausform variable

N . R
ey by the relation

[.(2‘3
} i T
e zy = ﬁ&}":/ (A}(rm (’ih S5 {

L3
St
S



radial velocity induced

l //F- Tkmr\\((u«a - )\kmrt\\( e} eixi ( 3}
N ) V’T{ AN WRaY Y, (iwry) - .\\.K%‘t)\‘ o) :

t%

oo

Emplicit solutione for particular forms of the hub shaps are
glven by evaluation of the integral in squation 33; most gencrally
thie iavolves contour integration,

Simple Sinusoidal Fteg. ~ Gonsider a particulsr example where

the hub slops ig given by

0 TZ
T (2) = A cos 2l s lziel {34)
T, (@) = 0 s olZiz (35)

hen, the Fourder transform of the boundary

A R Ak

] - Tl af

F;{K\, F oLy e T e (&fé}
el T

In anticipation of employing contowr integration to svaluate the
integral of sguation 33, the inteprand way be rewritten in terms of
. Uy . (2) . a -
the Hankel functions H wr  and W (o) of the firet and seeond

iade to give, together with equation 36,



I {2y | S (G .
U'\{\g\ \"‘\\ () H, W) H, (0w ) Hy (G ’p‘&Kﬁ % (5?3
W« AP e B o~ P e 10 ey O
v 0 s p -+ T o
Nowthe integral has poles at K=¥ - and at the roots of the
, USSR O Q@ - , _

dencwmidnator H| () VUkR) - W (k) B ded =0 . There are in fact
an infinite nuwmber of these roots on the positive and negative

imaginary K axis. These roots are given by W =ryg  where

the £, are the roots of the eguation
I e : oy WY o — )
<) (gnr\n\ Y\an(t\ TGy \‘5_;”,\(4\ ) \(\ \gﬁﬂ(w\ =) (35}‘}

Uging the contour Fvwn below, indented about the two singu-
laritise on the reeal axis, the integral along the axis maoy be
evaluated in terms of the residues on the imaginary awie provided

the lotegral along the arc vanishes.

)
p {2
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Inspection of the lmiting behavior of the Hankel functions

{see Copson {10) Pages 335 and 336) shows that this condition is
assured when 2 > , that is downstrearm of the wall curvature.

The two singularities on the real axis do not contribule ia this case,

and svaluation of the residues on the imaginary axs gives the value

of the definite integral 37 to be

;
Moo ATy coshs) R (39)
W T g RS e Lezem

=y

where V,&r) is the frequently occurring group of Bessel functions

T\i}ﬂ Y (€)= o1 (Gall) X (Fal) (40)

i1
V,(gar) = r 3T
e T : T g T Y,
% RASA QY\'\"?&) - J\cq“m\((,\grh‘ﬁ + QLJ, CXARGCASEERNE-AAR (F- XN |

In exactly the same manner, with the exception that the arc

of the contour be drawn in the lower half plane, the solution for

Z<-L may be written

o
U \\ ! e LEALY T
o s-4T) SN R (41)
W SR (EY C 0 Vi) e ;
A

To find an appropriate solution in the region -S> 2sL.  gome-

what more consideration is required, The cosine of eguation 36

o i sl et . . -
may be written as (oskka-1(c 12", and it may be sean that when the

& kd l’K'i- 9 -
product of these terms is taken with o » the value of the integral

2

varges over the large are whether the are is taken in the upper or
& & e



lower half plane, However, when the exponentials are coneildered

W . . . L (ke
separately, the integral invelving = o converges in the upper
o L —ue . s
half nlane, and the integral involving = ¢ converges in the lower
& & = (= &

nalf plane. Thus these separate integrals may be svelusted, and the
degired result cbtained by summing the solutions, Carrying out ths
evaluation in detail, it iz found that the residues on the rezl asis

a

contribute aleo, so that the radial veloeity ie given by

N £ 1
T oshiigaz) 8-, | “
DR 5‘3 - ‘ TT\L & \/\&‘g\-\\r) €‘§'e€.¢§
z.w,..;"‘ ! o+ —L$ES'_

w1l

" (S g i I o » " .
Where UL and UUE) are the linear combinations of Bessel

functionz of order one

UGS =TT YT — 1) {43}
U WUE) = TTER YRR - TTEED) YU (44)

The continuity equation for axdally symmetric fiow may be

written

DL T UF B ()

It ie thus an elementary matter to integrate thic eyuation to develop

the euxpressions for the axizl velocity porturbations. It follows from

equation 45 that
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\!V'.o) o

Aoy .
the appropriate representation of i muet be employed in

;g%gﬁug@s

gach of the three regions., Assuming the axial velocity to be un-

distorted fay uwstream of the hub curvature, the axial valocity

perturbation in the region ~oo<zé-L may be written, using equation

40, ae

2 (47

1

R sl VA 1 R

Jo @O Y (gaf) ~ 5 @l Yo lgur)

Vo (&at) = p - I 7
“ho’\am\({aém S CRACRN R ATAAR AR N TR
[

L

Simdlarly, it is found

- <
. . T . oA L,
W LS T 2] AL*B LY e swniER) .
wee —b = = A ml‘_l rawgy 1 -/ [gE (=) Vo(Ear) {49)

[

Where ULTR) is the svoun of Bessel functions
o\ T A :

e Trr) \,‘/ 0 MRy LT Tj:ft \ \Tc (i i {E@}

= | (N :
e\t g
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It should be noted that computation of the groups i) and
U rogquizes that these groups be rewritten in the following

form to facilitate use of the taebles of fuactions of Jalimkie and

(175
L&Sﬁi&&u
- SR 7
L ._lo\b%{l 3—; d‘-)L H; \ﬂt‘)‘j + L g u\k =3 I \-Hc v Lg) {é”i}
TUTTRYN S T g ot 2
G f- O owgy .QT ‘vrhj
oL } Hl\LL\-/J ‘“\Jl\"a.)LHlk )

Finally, downstream of the wall distortion,

. — ~E 2
W ‘ N U BEY N ATS - 5 wosh (@)
e} O e a— o i e e £ .
o ) AT C LA (52)
e

LeZ oo

Asymptotic Approzimations., - While equations 47, 49 and 52

describe the axdal veloeity throughout the machine, computation is
laboricus because of the presonce of the infinite saries throughout
the sguations, Consideration of the axdal velocity préﬁla at infinity
leads to a useful asymptotic approximation. If now the axdal velocity
profile is uniform and the tangential velocity vanishes (or has the
distribution of a vortex) {or upstream of the contraction, then the
axial velocity profile for downstrearm will be wniform. By con-
tinuity, the uniform perturbation on the axial velocity for downstream

is just

W 1.0, ,
‘i\'&;‘:o) -l = Wéi;"— ’ (53)
t Tl
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I

and according to eguation 52 it is clear then that

- R s ald
Al - }j o\ %—.:t {54 }
(s G N

+ - RIRA

In varticular, the radial dependence of the two functions on the
right side of equation %4 cancels to give a constant repult. This
same rasult could have been obtained directly by a symmmetry argu-
ment about the point ¥=-0" . In this case eguation 49 with =-0
should ba used. Noting that < may be written as = 255 ;‘i"; S

the summation of eguation 54 is seen to be

oD

AL X 1

Y Vo l&nl ) R U

/ T A :"_ = T T | (55}
/oL s (E) ol

This surmmation is actuslly 2 special case of the following

more general summation which is used extensively in later chapters,

O

N Ve (g [ aUeen e | 56
A A A (56)
Loy daTX Y e RN

ne | - )

In equation 56, © may be any constant, real or complex,
This result is relatively easy to check by Fourler-Eeesel expangion
of the right side.

The asymptotic approximation, then, consists of noting that
the terms of principal importance ia the auramation are those

covraesponding to the first characteriatic valve =, . Thusg,
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agsurndng that the Z  dependance of the summation termms is that

of the first term in the sories, and uvsing the resulis chitained in

o

eguations 84, 55 and 56, the awxial velocity digtribution may be

o anvrarimate forms

=i

denated in the {nllowin

. Fooy e 0
W ot o[ UMEL s u (57)
\l\\v::\, W\"’x gd\))ﬂ\§\~)~ o E L
W s T g T2 |
W e | = “\( 4.)‘ [ LIRS E) — DI Z;T_,‘
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W TR r“w[ Zloshisiie + T(GE-6F) (59
LEL2<0

The axial velocity profiles hove been caleuleted at several axial
positions ueing these approximate forme, aad the resulis are shown in
figure 4. It is evident from the equations that the axial velocity is
antisyrametric with respect to the origin, and for this resson, only
gtations upstream of Z2:-0 have been plotted. It will bs noted that

enly the nerturbation chout the mean haeg boen graphsd { W ), The
y & &

approximate velocity profiles have been compared to thogse obtained

&,{«

Loge g ’uéi ey s, °€;E§ Qg' o Gaviae mg arey stalions Bamet ¢ m;:&&ﬂé’g oo g
‘@% QJZKEJ S3AL5 WG L8 DOXI0E 4% VWO DeatlLE, L4040 LA TESUALE are

o

comparaed in fig

I

ree 5 and 6. It may be ceen that the csymptotic

[

approdmations are indsed quite accurate, and are cortainly in-
comparably casier to calculate than are the full Fourler-Zosseal

expansions.
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The radial dependence of the solution has besn

3 %, % -] = ./ (;“ 5
gseveral valuse of hub to tip ratic ¢, and for two valuos of

te

-

ovarall contraction in figures 7 and 8, 1o order to obtain a velocity
profile at any given valus of axdal position, it ie then simply necessary
o gelect the curve for the appropriste value of < and [ F s and
then to multiply by the sppropriste factor as obtalned from the
dependent portions of eguations 57, 58 and 5%

Throughflow With Variable Tip Radiue. - When it is the tip

radius rather than the root radius that varics along the direction of

flow, the procedure for calculating the flow is chaaged only slightly.

- f‘“’t (') " ’u‘\‘h - “ .
Haow 7 =1 &) and g =0, oguation 30 is replacad by
e )
) @[ .
N . o4 mLKRE O )] %
U o= s T (&) @ az =2 W R («) {607

~ KD

Similarly the Fourier inversion givee, corresponding to

eguation 33

Cﬁ
Uwa / - . — .
B TV SR Y e = e Yk LE
We g_\;‘{ hcm) ,_‘“ 3‘ ‘ - € dw (61)
J Ll X (@) - Jirek) Y, ()
—CX

MNote here that only the numerator of the bracketed term is
changed from its value in equation 33 where the hub radiue is
varving. Heace in the ensulng contour integration, the only differeonces
that appear from the previous case are modifications of the numerator.

i, for exarpls, the slope of the tin contour had heen given asg
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While the hub dasotor ro;

solutions for the radizl a

subgtituting the expressions

Mg = N BACAR _;l*\hrr) el ey
M}:}; CARR AT FARNRE T AR SO ‘5 2 J\TZ”J\T (‘;“nft\ (%’&\\({(‘s‘“x.h_;
AR R Y () 3 (5\«\") RACHANE e
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ELLUEY = TR YOCTE) — T ()Y, (2
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‘t\/\ Q"ZL\ \\-"ZL"L\ \(c(\zn. :)0("/%_{} \\\ﬂfk / éaﬁ}

respectively in place of the previously obtained expresesions for
Vigar Vg, A\J[‘@Tg_{'“ UEY . eguations 39, 43, 48, 50,
In addition, it should be noted that the sguivalent summation

to cgquation 55 becomes

\> t\/; @n‘_) B .i, \LJ Ll ( 1’:?:_) e _1 {64)
et S5 Bl 'i\é'“\"fu LT e
B \

The equations for the vaviation of axdal velocity thea become

| P AR -
W - ‘ Ltug'\‘u%‘_} 4L.r§ bg Y - S Z (65)
LA 0 = : - T Lomnag, : e
V\/LM g A )‘ - ?r( ) ‘ﬂ’(ﬂ ) . L.}
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It ghould be noted that the term B , the maximum slope of the
wall, will be negative for a contraciing wall shape, It is clear also
that since the problem s 2 linear oune, the situation where both hub
and tip radii vary can be treated by superposition of the perturbations
caused by hub variation only and tip veriation only.,

Hub Shape Counsisting of Cosine and Exponential Curves. -

Conelder a particular exarnpls where the hub slope is given by

%"\2} = O —oo L B L -l
; T o
r&) = A cos gy -LgZ<0o (68)

¢ - =%
@ = Aec

as shown in figure 9. In this case the Fouricr transiorm of the

boundary shaps, equation 30 yiclds

. /i f'ﬁﬂyww l’w AT T Z;x_“z,j ,A A/ s ",“K (5&?)
G BT e R C I T O r A
i El K 4 ‘/“\/u‘“K

The radial veloeity is thus given in terms of the two integrals
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In which the groups \«n and Ly are directly analogous
to the groups of equations 43 and 44 and are given by
WL i) = e Yotkm) = T e Ciiwen)
{71)

Ua () = Jy () Y Gy = RGN ATETN

These integrals are evalusted in & similer manner as was the
integral of equation 36, The polee of the first integral of equation 70
are located exactly a8 wers the poles of the integral in equation 36,
The second integral of aguation Y0 again has poles at the seros of
the denominator \L\6.6)-0 , and aleo has a single pole at =L
but does not have any poles oa the real exis. This latter situation
is shown in the sketch below.

1t can be scen from
ingpection of the integrals

in eguation 70, together

with the previouely mentioned

‘\ consideration of the limiting
\
\ / bebavior of the groups of
\\ x //
~ o l P Beseel functions, that

evaluvation of the portion of the frst integral of eguation 70 involving
< o ) » . . 4 ; 5
e requires that the are of the contour be drawn in the upper half

plage for Z>-o , and be drawn in the lower hzlf nlane for = <-o
& & Fe

Sirmilarly the portion of the {irst integral not fuvolving the sxpeonential,
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and the second integral both require that the arc be drawn in the
upper half plane for Z<c , and that the arc be drawn in the lower

half plane for z>0 . Carryiag out the reguived integrations, the

radial velocity is found to be

® o
s g-T e ‘ 1 i~
W TH eEY T B, e e (72)
Lﬁ:i“‘ Se Y\ZL n < o E S
o iad UAED) e (73)
P A ~ .\,' ! io(s P
@ e ZL
W \\th%ﬁk_\
2. U A -
Uiy pen A T @IET 0 ] e (74)
e A T A - - A Ve AV
\V\/\“ L A'Lrn / n ,‘H‘L A/ 2 TR
A [ e (1) - Sa o cx <om
Consideration of the equations 73 and 74 at the station
leads to the evaluation of another scries, the general form of
which is
o0
2
) SeMn _ L Uer) (7%)
L. Ba-gt <R
Ay

Again, 3 ray be any constant, real or complex. This series,
like sguation %’ig aagy to check by Fouwrier-Hessel oxpansion, This
raguit will bs used extenszively in later chapters,

The awial veloclty iz again computed by uss of sguation 46, and

found to be
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An example get of curves hae been plotted in figuve 10, The

's
geometry conslidered here was & bub to tip ratio of ?‘1 =04 o The
*

contracticn in the “cosine! section of the hub was put egual to that
in the “exponential” section, and both were given a comtraction ratio
o(:é‘\_ﬁ\ Gf T O,

It will be noted that the magnitudes of the perturbations in the
exponential section of the bub are in general somewhat smaller than
thoae found in the cosine section. This might be expected when the
behavior of the flow through the simple sinusocidal step is reviewed,

In that case the {low wes antisyvmmetric with respact to £=-0, and

wag seen to reduce in axdal velocity near the hub, till the countraction

wae reached. It them reversed thiz tendency throughout the contraction,



the sxial velocity specding up throughout-Lszen . This may be seen
to be dnterpreted as the flow "seeing an obstacle” on approaching
Z--L , and starting to flow out away from the obstruction, Within

Lezen, the {dudd is forced upward, however, 8o that an increase

£y

in velocity takes place. (he effect of the exponential wall shape,
howaever, is to combine the two disturbaacses, in that though the
fluld sees a rising wall approaching, it is at the same time forced
graduslly upward, the two eoffccte tending to cancel.

The contribution of the variation in hub radius to the distortion
fa axial velocity can be compared in magnitude to the distortion
obtained from the effects of blade loading as giveu for example in
refereace (%) . The masimum veloeity distortion for the geometery
considered here, can be seen from figure 4 to be approwimately
W, = "¢ « Comparison with the results of refevence ()  shows
that such a maxdmum distortion would be crsated by e blade row uader
sclid body loading that imparts a tangential velocity given approximately
by Xj;i =08 at the tip radive. This corresponds to fairly high
loading conditions, s0 that it can be seen that the effects of variation
of wall radius are of much the same magnitude as are the effects of

blade loading,
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IV, EFFECT OF LARGE INLET ROTATION

I often happens that the flow entering » turbomachine has a
large rotation associated with 4. This rotation affects the magni-
tude and rate of formation of the velocity profiles to & large degree,
In particular, the decreased decay rate of the velocity profile may
invalidate the assumption often made that the inlet guide vanes ave
located 2 large distance upsiveam,

The effect of 2 "solid body™ rotation at inlet is to be inves.
tigated, the inlet flow considered being described by

\/(r._oo) - "Jr(t%:' =y ©
‘V\/(rx-oo) = W

U(rs-co\ =0 (79)

The value of the stream function at infinity is given by

w - ; ‘ :
Y=-% " . With equation 79, the group in equation 19 becomes

2 e
-V op = - ke {80)

The total head at infinity must also be investigated. The

equation of meotion in the radial direction equation 5 gives

of vE 2 e ~
or = O = %ﬁ% wr (81}

as that the pressure distribution at infinity is seen to be



P = v

(82)

in which A may be considered to be the pressure at the hub.

Thus, the total head at inlet s given by
FD
”’é = .f)_ +-—‘<\/ce> “'\Nm‘%\)
/gt \NU’) W(os?i
N g‘ P+ (83)

With equations 832 and 80, equation 19 thus becomes

QQ: W(.O)
=

c-F ey (84)

It is again convenlont to work with the radial velocity
itself, and taking the derivative by 2 of equation 84 and muaking use
of equation 11, it is found that

‘-2. -
U \ EI8) X

4 T r;'& ML_ ] @.‘)&
Bdrz dr ¥ x‘)éb‘ rl{u * Hegr = O {t

o
(87
s

w problem of throvghflow with variable hob and tip radii,
and with solid body inlet ia then described by equation 85 and the

linearized boundary conditions, equations 22, 25, 26; that is

U(r-00) = L (r+oa) =0

{22}
o dr
we = Jz on =G {25}
g dan
W = L

dz on  r=r (263
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Once again dencting the Fourier transiorm of the radial

velocity component by

A i f" SUKE
U (rwy = 2ot g € Az {86}
'-—to
the differential equation iz obtalned
3 v
é@ . W\,__ \ig‘ /’ : 2 &) \ \\ ANy 4
dre T dre = iR me U= O (87)

AL A
L g, w) = O {29
o
NG KR
A WL ~~L o ) 30
i = e *} T.(z) € 2z =2 W5 (k) (39)

The differential equation 87 has solutions ) (T 1&0r) and

YU RER) s and with equations 29 and 30, there results

)“((LQK ) {88}
) TR

o
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A o R — T
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Thusg it is found that the radial veloeity is given in

the inversion integral as



L/\\f 2) \ ’. = "
—3Tl w~ . R r) JHE st
W =T ! P & ‘@; ?w;:\ dwe {99)
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Congidering the simple sinusoldal step, the Fourier trans.

form of the boundary conditlon is again given by

JA R cosine) 35
Fh(v() T LNE \g“\}?— - e (3%)

The integral for the radial velocity thus becomes

Ve A ( cos(ru)  UWREaE ) (wz {91)
We T ZL m o RE U e W © dx
; \m. - K \’\\\‘\ﬁ( w

. L ) v
The polea of the integral are now found at K=tz

» and

at [ 2" - 5, . the characteristic roots of equation 37, The limiting
behaviour of the large nrcs does not change from that found in evalu-
ation of the integral in equation 36, so that integrating avound the

appropriaste contour of the sketeh shown below, the exproselons for
cad

the radial velocity are found to be

iy Ea - /
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where - and . are defined by

PE—
: aViSi S
SoF MV eL, T

Again employing equation 46, equations 92, 93 and 94 lead

to the following expressions for the axdal velocity

{96}
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In chiaining cquations 97 and 96, 2 slightly generalized form

s was ased. That is

5
&
\

of equatio

Ay t ~
W : -
v — N -
e LA - . Loty Y ar) 5{3533
- - = S ..' seag
- ) 1t Cer L . ~
(R A= SR iAo MR TR

It will be noted that the equations for the radial and asial
velogities all possess the factor 1 in the denominator of the ex-
pressions. It is, of course, obvicus that this then introduces a
singularity into the equations, to be found at . - -, & charactere
istic root. Similar situations have been investigeted widely, and
are suromarized by L. B, Fraenkel (14) and G. W. Morgan {15}

In the case that the parameter v exceeds the flrst critical value -«
the solutions are not widque, and certaln assumptions regarding the
behaviour of the solution must be made, Though thie phenomencn is
certainly of mathematical interest, it is felt that the rolation found
at the first critical value of the parareter « is beyvond that to be
found in turbomachine practice, in that the rotation at this value cor-

responds to an angle of flow from the axial direction of almost seventy

degrees for a hub-to-tip ratio of -~ 4

[

Equations 96, 97, and 98 have been graphed for several

values of the parameter ' obtalned {rom the relation .« mg, and



the regulte ave shown in figuves 11, 12 and 13. The equations sim-

plify somewhat at the value \3=o, loe., when - | and this case

has been included {figure 14}, For this special case, the cquations

bavome
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It was evident in the derivation of eguation 19 that the
change of vorticity with vespect to the axdal direction is given by the
derivative by  of the right side of equation 19, or of equation 84.
That i, it s found thas |

= - u (103)

-~

o
M LS

It iz to be expected, then, to find 2 non-uniform velogity
profile at cutlet, and it can be seen from equation 98 that this is the

cage, This outlet profile is sasily obtained from equilibrivre theory,
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= expression will be developed

and the e

ed
&
i
]
©
el

outlet tangential velocity, immediat

gk
i

foy the
development of the tangential velocity equations
The equation of motion in the tangential direction, equation

for no blade forces gives

s GV r . 1
Ul W =0 Los)

) f‘/& ({7 VC y p fir
Thus V- VO = jw e de {105}
Now in tis case Vr=-«yp and is constent along a streamline,

from equation 9. Equation 12 may thus be used to give

S
@ LA A S oI
V-V = CFIwW e Az
— O
N N
{108}

—,?J L A
J e

the result of equation 106 is to be expecied intuitively, for
&
the integral J ;\\, 12 gives the radial distance that a stream
point 2 . The

surface moves in passing from fay upstream to &

angular momentum iz iransported along these stream surfaces so

that the angular momenturs which extsts at a distance Z downstream
z Y
. N L 3 . o £ S

and radius P iz not VvV, but rathe YN - YALEAE .
/

To fivet ovder then, the angular momentum g
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exists due to the radial transport of the initial angular momentum,
The radial transport term given above may also be expressed

conveniently in termse of the axial velocity, The radial and asxdal

velocity are related through the continuity equation, but the integral

Z
[ Udz' which is required can be glven in terms of the axial veloe.

Jeo
ity by some direct physical veasoning., The stream surface bounds
2 constant mass of fluld between the tip and the local radiug of the
stream suriace. It ip clear then, that the @u&i&mf&mﬂ be dig-
r'e
placed to accommodate a variation in mass flow J PAW-we) e de
.
This mass flow variation ig compensated by decreasing the radius
of the stream surface by an amount A7 through which the mase
flow is, to the first order (W¥awcar . The mass flow integral
and this last expression must be equal for the stream gurface fo

bound a constent mass flow. Conseguently,

z 4
, /
o e | { ! P . . .
WA r ==lude = Fjj (W-we)r Ae {3107
-—CRY r

Uging equation 107, equation 106 mayv then be written in the

aliternative form

(“[t
e : "
V-v® = - "“F;’/ WS wW e {108}
Jl’

either emuation 106 or equation 108, it iz then
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Th

e variation of axial velocity throughout the machine as
described by equations 109, 110 and 111 has been plotted ia figures

15, 16, 17, and 18, It should be noted that equations 109, 110 and

111 relate the local tangential velocity V to that at infinity V' along
a given radivs. The gsame value of ;“ij f:L cannot be used at both

% wy s
stations then, because a new location for zy  will be {found at
each station. The non-dimensional tangential velocity at inlet may

be written

e

=
3
ey



The radius at any given point is given in terms of the ratio [ 202
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In particular, the actual tangential velocity at any polnt of
the machine may then be computed from the relation

3

Vo= {(v-v®) o+ oy

. e f”;‘ o) Y 91 1&
= (o1 AR (€5 T { ~}
Ve-vigr = VW Co

in which the value (V-v' is to be obtained frorn eqvations 109,

. r .
1340, 1131, and the 1w ratio e shonld ba obe

tained from equation 113,



tangential and zodal velscity preofiles to be found infinitely far down-

stream are given by

Wir ool N

ST s L Aee dekd) 112
\l \0) A Tr LAY \.,g’trh\ g 3

Viteo) v 4k e

e o.. — PSR SN - - A i AN T ] ¢

Wy W T kD &33%%

It is apparent that these outlet profiles are a function only
of the inlet conditions, and the overall contraction, rather than of
the detalled wall shape., The resulis of equilibrium theory {13) may
be utilized to obtain equations 112 and 113, in 2 simple mannez.
The value of the streamfionction downstream of the contraction is

given by

P
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| ! W 3 4ALY,
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2

the last term in equation 114 arising from the increase in flow

found across the anmulus. When equation 114 is gubstituted into

equation 24, there results, for zere Z variation

r
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Taking the derivative of both sides by r , havse
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The two boundary conditions necessary for complete solu~
dw

tion of equation 116 may be obtained from the values of [

at

n amnd ¢ as given by equation 115 The value of the integral
[

J! (W-w @ rcle downstream of the contraction is =W @, so
rh
that the boundary conditions becoms
awl
%
(117}
Awl L .
PR oA
drj, AT e w"®
4]
The solution to equation 114 is
W*—W\O\ = A :’_; \V;g,(') + B ‘{Q\%‘&r) ggggzﬁ
Eguations 117 then give
W 4L ke ol k)
e s A S ekt (119)
w T k)

Application of equation 108 then gives
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I may be seen that equations 119 and 120 agree with equa-
tions 112 and 113, The outlet profiles as given by these equations
ere ghown in figures 18 and 19. Another interesting check has been
carried out, and iz indicated by the dotied line superimnposed on
figure 21. This dotted line represents the profile shape that would
be found if the angular momentum found upetream atl the hub radius
were to be smeared out over the entire annvlus. The curve repre-
gents a limit to the perturbations upon the fow.

It can be seen from the plotied regults that the perturbations
induced by the wall shape on the rotating fluid are several times
larger than the perturbations induced by the wall shape on the non-
rotating fluid. Examinsiion of the squations and curves rveveals that
the local wall effect is much as was found in the previous chapter,
but the overall displacerment of the vorticity steadily introduces a
velocity profile of the type shown in figure 19. Indeed, the effect of
vorticity displacement 15 so strong that the valldity of the resulis
for the case m= -g—i‘# = .8 ie somewhat dublous, In view of the ex-
tremely large perturbation in axial velocity found at the hub radius.
This result does emphasize, however, the lmportance of including

the rotational term in the equations.



V. WEAK ENTRANCE VANE AT ENTRY TO CONTRACTION

In thie chapter, the effect of an actuator dise at the entryv o
i ¥

the contraction is to be lovestigated. This configuration can be seen

2

to give quite a cloge approximation o the conditiong actually found
in an aircrafl gas turbine, because such a gas turbine would have a
uniform flow approaching from upstream, and then the inlet guide
vanes would lmpart some preacribed yrotation to the flow. It ie
maorse convenient in this case to consider the origin for Z to be lo-
cated at the disc ltseli, so that the configuration is that shown I
figure 22.

The equations describing the flow now have specific regions
of validity, in that the form of the differential equation changes
across the actuator disc. In this example, the disc iroparis a tan-

gential velocity to the fuid of

she

V=-_k (121}

Thus, the equations for the two reglons ave the same as

equations 21 and 85. That ie,
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Effect of Acthuator Dise on Flow in o Parallel Walled Armulus,

It will be useful for comparison purposes fo compute the effect of
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the actuator disc and paraliel walls only, and in this case, it is con-
venient (o assume solutions of the form

TO
A
| P 124
Uerzy &) AU & R P {124}
S
n=i
>0
N /
(/L . — "y t 5\ —ﬁ."‘ﬁ igﬁ}
Az =) Balldig.r) 2 e L icO {125
S |
a=i

The solutions aspumed in equations 124 and 125 satisly the
boundary conditions, and if is necessary to consider the matching
conditions acrose the disc in order to evaluate the ~a's and Ba's .
The agsuraption of tangential forces only within the disc insures that
the radial velocity is continuous across the disc so that

ae-) = Lol = s (126)

Eguation 19 may be written for the two yegions
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so that, noting that the axdal velocity is continuous across the disc,

there regulls

G
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Equation 126 leads irwnediately to A -8, , and appli-
cation of equation 129 then gives
Sy ©
\\ A«\ & R R ‘E...WWA. N )
/ %’n \ fn t Salia, dogarm = o F gi:%@}
A—
A=

The right side of equation 130 may be expanded in terms of

the orthogonal functions v .g.~ to give
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¥ should be noted that the ratio -

‘ ppearing
Uagr) vearing in

equation 131 is, of course, independent of r . However, the form

given here is the most convenient, for substitution of A, into equa-

tions 124 and 125 gives | mm@ﬁwmiy
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Application of the continuity equation, ¥° , then gives
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The tangential velocity is again obtained through nse of

eguation 105, though in this case the integration starts fyvom 2 =0
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From equation 139, there then regults
o - \l\z N , % %oy
VR F e 039)

Graphblcal resulis of these equations have been oblained fory
AR
. Vi . : 3 9 - .
values of - e e of ooes and - . {figures 23, 24, 25, 26,

and 27.)



the expression for radial velocity will be valld for only one region of
the flow, so that it is necesgary to describe transioymm variables for

esach region, Thus, write

~UKE

l i % &
U o) \[ZT;‘ U, € dz {143)
O
(]
A \ ~UKE
U, = Toay Wem @ dg {141}
—
The corvesponding inversion formulae are
oo
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Uz, = Qnrq! G(r Wy, € e O<E L0
Jw (142)
= O ool E L O
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Uing)_ = 2 € dw L EaD
{143}
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When the traceicrmation of equation 123 ie taken, usiag th
definition of equation 140, the valueg of the as vet unknown condi-

tioms at =Z=-0 remain, and the eguation fov the transfiorm varlable

hecormes
G L~ ro-
d (5} SIS ! 2 § RN | ‘ ik .
e - T [ ra — ] T ST . ! 2
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The boundary conditicns downstream of the disec arve now

e, 2) o

W T dx

LA, 2) af, TZ il
R sy S
\\f\{m\ = Ai = f—\%;,\N e S 3
N 'L\\SZ—“ oy éléé}

The transformed boundary conditions may then be writien
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Solution for Downstrearn: Transform Variable, The problem for

the solution of the downastream traneform variable o terms of con-
ditions at the actuator dise is thus described by equations 144, 147
and 148, The solution to the homogeneous form of equation 144 {8

eagily found to be

A o~ (RN
= ;’\ . [ g T o4 %
u\'\om. i J(fm"\ ‘(i"\f%i@(h.) %3&§f

The effect of the inhomogensous term may be determined by

firgt finding the Green's function for the equation and then integrating



the regull.

ad 18

a s foald \ | A . o ;
e A . - , i3
dre ~dr T A -k - r'-K‘«»i = alr-) {150}

together with the boundary conditions, and matching conditions
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Denoting the solutions to equation 150, K(rn),

valid in the regions v>v  and ry
that
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is the linear combination
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regpectively, it is then found
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Soelution Valld Upstream For the solution valid upstream, the
definition of equation 141, together with equation 122, leads to
SR :
a4 { ‘,‘} RN o r e -}
: T < y e g S ' I LY
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d M & i y .
In thig case, of upstreawm flow, |, = | =
to the homogencous portion of aquation 157 is identically zers. The

inhomogenecus solution 18 evaluated in the same way as was equa-

- =2

tion 144, leading {o
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Bounations 158 and 156 may now be substituted into eoustions

In particular, the inversion integral for the upstream velocity be-

COraes
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Investigation of the limiting behaviour of the integrand of
equation 159 shows that the inversion integral e convergent foy

negative values of Z when the contour of the large arc is taken in

the lower half plane. The only residues sppearing ave agsin roots
Y 24 21

tsd PR

of the eguation 8.0 =0 » so that interchanging the order of

integration, the eguation for the radial velocity becomes
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- {160}
-

P i

L4 f 1
4 sl A
4 . WA AR ~

~i £z e [N LY AT

+ Vinga z{ * 5, J“ FRCRE o AnRaTe) o



&
[
&

Now, Wig.r) and or) are elgenfunctions with the same
eigenvalue, and it thue follows that the ratic of the two lg independent
of the value ' . This can, of course, be checked by sxpanding the
groups and rearvanging the texmse. It is convenlent then to write

\/\«.\?m )

N which then
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fa
Inversion of Dowanstream Velocity, Ceonsidering now the inversion

futegral for the downstream velocity, equations 156 and 142 glve
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The same procedure ag was used to vbtaln equation 161 then

leads to the resull
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iz most convenlient, for the preseunt, fo lesave the inver-

]
o
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sion of the homogencous portion of the geolution in aymi
so that & more general resull may be obtained which will be more

diractly applicable to different wall shapes. For the present, then,
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in the particular case described by eyuation 148, the value

of /. iz found to be
L5

D
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which may be seen to be glmply the result of equations 93 and 94
transiated from Z-0  at the center of the contraction o £=-0 at

entrancse o the contraction.
sy G

The unknown quantities [z s 9 o,y Moo must be
O o

evaluated from the matching conditions at the dise, equations 126

and 129,

Application of Matching Conditiona. Conditions on either side of

he disc ave given by
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whare 6, is the value of /\ at z-- , and

- is the value of -
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Fyrom eguations 161 and 129, there resulis
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Fguations 171, 172 and
. E Y ; ) ,
three unknownsg, do i:' ) ‘zi . The solution of these
T es GE

three sguations requires evaluntion of the integral
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here the sxpression VS.G)  has been ewpanded into the

i hmr\ 3 t 2 # &
group — u L5 vele—, which follows from the original defi-
nition of Vigar) » eguation 39,

Eguation 174 then becomes, with the ald of the oxthogonality

of the functions W, (£,0)
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As previously discusgsed, the ratio
and it would seem appropriate to choose - 2s a most gultable

reference valus. In this case, the ratio becomes indeterminant,
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The summation of eguation 174 has thus been ghown to re-
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Une further integral is required for the solution of eqgua~

thons 171, 172, and 173;
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In ovder io solve for the texme (1, and s it is now

i
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necessary to expand the funciion L in terms of the characteristic

group Vig) 8o that the individual terms of the series in equa-

tons 179 and 180 may be equated. Densting the n'® coefficient of,
; A\
the series for the function /| taken at »-c , mul the function o

taken at z-c by o

LZa

ragpectively, equations 179 and

180 combine to give
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Expressions for Axial Velocity, The expressions for the

function A ould now be inserted in equations 183 and 184 to obtain
the exwplicit forms for thke radial velocity, but it is more convenlent
to continue with thie notation and obfain the corresponding expres-

siong for axial velocity. The continuity equation, 45, zives
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it should be noted in equation 186 that the function
to Z>2e . With the boundary cone

changes form from Z<2-
o # \\ o
ditiong of equations 145 and 146, the function ;. is as g

equations 165 and 166, and from these equations there resulis
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Substituting equations 187 and 188 into equations |
rE N
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and including the value of |~ A% as obtained from equationg
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165, 166, the resulis are obiained
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The tangential velocity follows {rom equation 137, and is

found o be
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The results of equations 189 to 193 have been plotited for the
ratio m = '; of 0. 025 and 0. 1 {figures 28, 29, 30 and 31). The
effect of the wall only on the axial velocity which would have been
present with the disc and parsllel walls (equations 135, 136, figures
23 and 24) has been plotted separately and is shown in figures 32
and 33. kK will be observed that the effects of wall shape are of the
same order as are the effects of the actuator disc.

The squations for axial velocity given above contain several
special cases, and comparisca to previously obtained results gives
some simple checks of the results above. If the glope A iz allowed
to go to zero, the resulis should be the same asg given in squations
135 and 136, and as iz easily seen, this is the case. The effects of
the rotation can be removed by allowing & to go to zexo, in which
case equations 189, 190 and 191 reduce o equations 47, 49 and 52,
except for the change in location of origin. It should be noted in the

e Uoler)

last case that the ratio TRV becomes in the limit

as_~ approaches zers. Inspection of the equations reveale that the
outlet velocity profile as given by equation 191 is simply the sum of

the profiles given by equations 136 and 102, Indeed, the only inter-



sction between the two flows represenied by these eguationsg ig the
g

term
I/E. _Qo A "r(n"\\-*z)
BN RN VoA SaT]
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which can be geen to decrease strongly both with decreasing & and
with distance from the actuator dizc. The composite result of the
entrance vane and shaped v%aﬂ;i ig thus very nearly the sum of the
results for the actuator disc and parallel walle, and for the simple
sinusoidal step and rotation at inlet, for the values of m= /gjz y COn-

\
sidered here. The entrance vane tends to introduce a large positive
axial velocity perturbation oz downstream at the hub radius, but
this effect is gorvewhsl compensated for by the opposite effect in-

CEY

duced by the increasing wall radius. This opposition of the two

effects relocates the maxirmum velocity perturbation.
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In actual flows, the rotation mav be quite larse, and it would
€3

A

thus be of interest to investigate the effect of wall shape as coupled
with inlet guide vane, a little more closelv., In the derivation of
equations 189, 190 and 191, the boundary condition of tangential
flow over the hub wae approximated by assuming VR « but
if large rotation is allowed, the more reasonable approsimation
would be \jv w0 %;;m » where W, is taken to be the axdal velocity
at the hub in the precence of actuator disc and paralicl walle only.

The effect of this modified boundary condition is to change the

value of the function  , and this effect will now be discvased.
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The portion of the inversion integral involving W ir, o Will
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remain of the same form as equation 148, but the summation of

equation 195 must be considered in detail. The integral becomes
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The definition of ' , equation 164, then gives
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The first integral gives exactly the resulie of equations 163
and 166, except that Wi~  replaces W™ | Investigation of
the limiting behaviour of the integrand of the second integral shows
that the arc of the contour in the complex plane must be taken in

the upper half plane for z>c. . In this case, the singularities

. ; iy 5 3,
at W=, = do aoct centeibute, because the numerator goes to

zero af the same thme, The only contributions come from the
zeroes of U\Wkia'h) , and there is thus obtained
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When the region O<Zszl  is considered, it is found
necessary to take the contour in the lower half plane for the portion
of the second integral luvolving o P=" %% | but the other part of
the integral must still be taken with the contour in the upper half
plane. In this case, the two singularities off axie contribute, and

the expression for /\ becomes
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The repults of sguations 199 and 200 may now be combined

with equations 185 and 136 to obtain the desired expresszions for

]

axial velocity., The suramations of equations 56 and 75 ave useful
in expanding the complex conjugate group of equation 250 into a

series that becomes purely real when multiplied by the coefficient
{

2¢ - The expressions for axial velocity become
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These equations for the axial velocity coutain only the per-
turbation aboutl the mean flow. Finally, the expressions for the
tangential velocity ave obtained {rom equations 200, 199, 184 and

i37. The resulting expressions are
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204 hag been calewlated for the valua me: £= af 3.1 and the effect
1

both at the dige and infinitely for downstream is shown in figure
34. It can be seen that for the geometry and rotation given here,
the effect is quite small, amounting to about 20 %o of the total wall
effect, but if the slope and overall contraction of the wall were in-

creased, this variation could well become significant,



VIL HEAVILY LOADED SHNTRANCE VANE FOLLOWED BY

LICHTLY LOADED ROTOR

The effect of a Hghily loaded rotor beldad a heavily loaded
wntrance vane will be consldered. It is assumed that becauss of
the low loading of the retor, the interaction between it and the
wall will be negligible, so that the effect of adding a loaded rotor
to the flow induced by an actustor dicc within parallel walls may be
comapubed, and the effect of actuator disc only subtracted out. The
differcnce may thon be added to the previously obtained reoguits in-
cluding effect of wall, to obtain the overall flow,

"Free vortex'! blade loading will be assumed in thie case, that

i, the blods inmpmarts o rotation oiven b
& ﬁm )

AV =

“)}f

The increase in total head acrose the blade row, is from

equation 10

AT = WAVK = w0 (207

~0l 0

for all streamlines.
The tangential velocity in the region behind the blade row i
(=) &

thus deseribed by

v - by o+ C {208}



80 that equation 19 becomes for this region
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Talking the derivative by % , it is found that the eguation
reduces to equation 88, The effect of the blads row s felt through
the matching conditions, however, because subtracting equation 209

from eguation 84 gives
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in which V is the value of z at the rotor,

The problem is thus defined by the equations
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The solutions valid in cach of the thvee regions are of the

form
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Application of the meatching condition eguation 213 requires

expansion of % in terms of the characteristic functions \/ (g.r] -

It is easily ghown that
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With these expansions, the four constants A, , B
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and [, may be evaluated by application of the four matching
conditions, equations 212 and 213,

The results for the radial
velocity then become
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The axial velocity equations follow by straightforward
application of the continuity ecquation and give
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Finally, application of equation 106 to equations 220 and 221

gives the expressions for tangential velocity as
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As discussed previously, the effect of the blade only is to be

from the actuator disc and parallel walls only, eguations 135 and
136 must be subtracted from the appropriate equations above, [he
results follow guickly, and are given by
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The results of equations 229, 228 and 229 are shown in
figures 35 and 36 for the values m =0 , 002w and
WE:o0ps , C=CWTg , with the blade positioned a¢ V=5
The entire solution, including effects of actuator disc at inlet,
loaded blade row and variable wall are obtained by adding the
curves of figures 35 and 36 to those of figures 28 and 29, The

final rogults are shown in figures 37 and 346,
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The effects of the loaded blade row only on the tangountial

3¢ Felo o 4 23 4 wwa s Sore O 3o fgn G F B, o g B BT e
veloeity are obtained in a similar manner to the above, and the

resultant equations become
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“he change in tangentizl velocity as given by these equations

) 2 - o iy )
is shown in figuwre 39 for wm=o. , Go2w® , The zero order
C
term v has not been included in the figure, but must be added on

once downstream of the blade row. The effect of the blade row on the

tangential velecity can be seen to be very small, except for the zero

C -
order term v , and in the case M =002% the resulis were found

to be negligibly small, the maximum perturbation being Alv-v®)=.003wW®

For the magnitudes of blade loading chosen in these examples,
the change in flow conditions caused by the rotating blade row being
supsrimposed on the flow from the inlet guide vanes is slightly less

than that of the inlset guide vanes alone, the maximum perturbations

in axdal velocily being respectively  20w®  and 25w for wn': ol

It is evident from the equation that the effect of the rotor on the axial

C=0awWw , and Oeaw and c1s W for mé: noes s CF0qwer

&
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velocity vanishes when the approaching rotation is removed. This is

2,

to be expected from the fact that the rotor imparits o free vortex
otion to the flow, which would be a radial squiliberium condition if

the approaching flow was lrrotational. For g given rotor laput, C,

the relative distortlon caused by the inlet guide vanes lncreases mors

%

. . [ M . . .
rapldly with increasing votation, & , than does the distortion caused

ey

by the addition of the rotor. This is, of course, a result of the fact
that the distortion caused by the inlet gulde vanes behaves as the
square of the parameter  , but the votor distortion changes almo
linearly with | . In the event that the rotor loading was considered
to become very large, the interaction bhetween 1t and the distortion
cauged by the variable hub radius would have to be considered, and

a solution similar to that given in Chapter VI ghould be carried out.
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are given, the distortionz induced may be allowed to become large.
This cbeervation led to the use of the approximate boundary condition
that the flow over the variable wall is that found with entrance guide
vanes and parallel walls only., In this case then, the overall velocity
distortions can be guite large, so long as the effect of the wall i
such as fo not lnvalidate the assumption of linearity.

The equations encountered throughout are quite complex, and the
need for some approximate forms simlilar to those developed foy the
case of non-rotating flow over a varying wall radiuvs, Chapter III, is
evident. In particular, the eguations aam%iéweﬁ for the wall perturba-

o
-

21y

tien of the flow induced by the entrance gulde vanes are extr
lengthy, and some further lavestigations of these exact analytical ex-
pressions could poesibly vield some welcome approximations. With
such approzximations, it would then be reasonable to extend the analy-
gis to the casge where the rotating blade vow is also heavily loaded,

so that the interaction betwesn it and the variable wall radius should
be fncluded, It iz clear that the caleulations to be carrled out undey
the sssumptions of perfect fluld and infinite blade number need he
carvied out only to an accuracy justified within the limits of these
phyveical approwimations, and the use of convenient mathamatical ap-
provimations within such limits is therefore reasonable,

The effecte of compressibility have not been included in the fove-
going analyeis, because it i felt that though a significant portion of
the change in radius of the compressor walls is to compensate for the
change in density of the fluld, the general flow pattern about the mean

flow is not so greatly changed so that the incompyessible flow pat-
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terns pive most of the necessary information. The analysis could

L2

thus ohvicusly be extended to cover flow in water pumps in which ths

5

compres:sibility iz not 2 factow,

The mixed flow compresgsor, or pump, in which both the hub
radiue and tip radius increase throughout the machine, shoul
he amenable to a similar asalvels as was given here, though cave

should be taken that the variation in wall radivs is not such as o

invalidate the linsarizing sssumptions.
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Figure 11 Axial Velocity Profiles About Mean Flow ’mz = 0.1
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