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ABSTRACT 

Theoretical analysis and experimental measurements have been made 

of the propagation of electromagnetic waves in a structure consisting of 

two planar superconductors which are of the order of a penetration depth 

apart. One superconductor is tantalum and is much thicker than a pene-

tration depth; the other is a vacuum evaporated indium film and may be 

as thin as a penetration depth. 

It is shown that such a structure will propagate waves at a phase 

velocity less than the speed of light in the medium separating the 

superconductors, a phenomenon that is the result of an inductive com-

ponent in the surface impedance of the superconductors. The exact 

velocity is shown to be a function of the thickness parameters in a 

manner which depends on the law relating the vector potential and the 

supercurrent in the indium. 

Experimental measurements indicate that the relationship between 

vector potential and current in the vacuum evaporated indium is charac-

terized by a coherence distance which is considerably smaller than that 

found for pure metals by the measurements of Pippard and the theory of 

Bardeen, Cooper and Schrieffer. 

The penetration depth at zero temperature is deduced from dependence 

of phase velocity on the thicknesses of the indium and dielectric. For 

indium ~ is found to be 650 ± 75~, in good agreement with Lock's value 

of 640~ and Toxen's range from 625 to 725~. For tantalum ~ is found 

to be 500 ± 175~. This is believed to be the first measurement. The 

value of ~ for indium is also deduced from the dependence of phase velo­

city on temperature. It is found to be 704 ± 120~. 

as 

Surface resistance of the two superconductors is found to increase 

m
2

, in good agreement with theory, and to depend on temperature accord-

ing to an empirical law proposed by Pippard. 
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I • INTRODUCTION 

In 1947 Pippard (1) noted that the surface impedance of a super-

conductor is inductive, and that therefore a transmission line constructed 

of super conducting metals would exhibit a velocity of propagation less 

than that of light. He also mentioned that for transmission lines of 

macroscopic dimensions the difference would be so small as to be 

immeasurable by a direct velocity measurement; he therefore proposed and 

used a resonant frequency technique which measured the change in velocity 

between the normal and super conducting state. 

In 1959 Young et al (2) measured the slowing in a strip transmission 

line in which each of the metallic elements was a vacuum deposited thin 

film. Pulse techniques were used to observe a slowing to about 90'1> of 

the velocity of light in the dielectric medium. 

At about the same time that Young was proposing his experiments, we 

independently deduced the slowing based on the analogy between the London 

model of a superconductor (3) and the ideal collisionless gaseous plasma. 

In the London model the superelectrons are free to move within the metal 

influenced only by electric and magnetic forces, since they do not 

interact with the lattice; in a collisionless plasma the electrons are 

free to move, and again only electric and magnetic forces influence them, 

since the positive ions are so massive that they do not move nor do the 

electrons lose energy by collisions. Thus in both cases application of 

Newton 's laws and Maxwell's equations leads to a complete description of 

the motions of the particles. The principal experimental difference is 

in the density of particles, for one can perform experiments at the plasma 

frequency of a gaseous plasma (defined by pe) but for the 
mE ' o 
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superconductor the plasma frequency lies in the optical region where 

metals no longer behave as superconductors. 

Here we seemed to be at an impasse, for nearly all plasma effects 

are exhibited in the region of the plasma frequency. 

However, at this time Trivelpiece was studying a mode of propaga-

tion in a plasma which exhibited plasma effects at frequencies far below 

the plasma frequency as described by Trivelpiece and Gould (4). This 

mode depended on the fact that the plasma was bounded rather than 

unbounded in some dimension*. If this dimension :Was small compared to 

the penetration depth of the plasma (the depth below the surface at 

which an external DC magnetic field would be reduced to lie in 

intensity), then the phase velocity would be very much smaller than the 

speed of light. 

While the analogy cited above is a rough one, it is shown in 

Chapter II that an analysis using the London phenomenological equations 

(which should be approximately valid for macroscopic phenomena) does 

indeed yield these slow plasma guide modes. Further, an exact analysis 

using the Bardeen-Cooper-Schrieffer (BCS) theory (5) yields nearly the 

same results, but with some interesting and experimentally verifiable 

differences. 

When Gould pointed out the applicability of Trivelpiece's work 

to superconductors, we proposed to verify the existence of these slow 

waves. In the middle of our experimental work we learned of Young's 

discovery of these waves (2), so we broadened our objectives to include 

*In Trivelpiece's case the radius of a cylindrical plasma; in a planar 
case, the finite thickness of a plasma of infinite extent in the other 
two dimensions. 
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a detailed investigation of the dependence of the phase velocity on 

such factors as temperature, physical dimensions, and magnetic field. 

We also were interested in trying to verify the effects which a 

non-local theory such as the BCS or the Pippard (6) theories* would 

produce. 

We give a brief description of our experiment here in order to 

clarify the theoretical discussion of Chapter II. A more detailed dis-

cussion of experimental procedures is given in Chapter III. 

An insulating film of tantalum oxide was formed on a tantalum 

sheet by an electrical anodization process. Its thickness ranged in 

different experiments from 300~ to 3000~. Over this was vacuum 

deposited a strip of indium about 3.5 mm. wide by 65 mm. long, with 

thickness ranging from 4002 to 11,5002. This formed a strip trans-

mission line of very low characteristic impedance, of the order of 

fractions of a milliohm. A cross section of this line along the long 

axis is shown in Figure 1, which also defines the coordinate system 

and geometrical parameters**. A signal generator of 50 ohm source im-

pedance is connected to one end, while a detector also of 50 ohm 

impedance is connected to the other. Since the source and load are 

very badly mismatched to the line, we have the necessary conditions 

for the line to act as a resonant transmission cavity. Transmission 

will take place only when the line is very nearly an integral nuniber 

of half wavelengths long, for at these frequencies the load impedance 

will simply be referred to the input and perfect matching of load to 

*The Pippard theory proposed a non-local relationship between the 
vector potential and the current on a phenomenological basis. The 
BCS theory gave a theoretical justification for this relationship. 

**The tantalum sheet substrate is so thick that it may be considered 
infinite; hence no thickness parameter is shown. 
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source will exist. Since the physical length of the line is kno"WU, a 

calculation of phase velocity is readily made. Since essentially all 

of the energy is transmitted between the planes, this phase velocity 

would be v
K 

= c/ JK ,where c is the free space velocity of light, 

and K is the dielectric constant of the tantalum oxide, if the IIEtal 

films were simply perfect conductors rather than superconductors. The 

ratio of the actual phase velocity v to 

effect of the superconductors. 

is a measure of the 

It is also possible to calculate the Q which the resonant 

transmission peak should have, considering the losses in both the 50 ohm 

loads and in the superconductors. Measurement of Q thus enables us to 

estimate the losses on the superconductor, or if we use the Gorter­

Casimir two-fluid model (7), we can calculate the normal current. 

The absolute gain through the transmission line is also easily 

measured, but the theoretical calculation here is almost impossible, 

since the transition from the coaxial cable, which is used to connect 

to the signal source and load, is very imperfect and furthermore varies 

from experiment to experiment. 

During the measurement of each film, the temperature is readily 

varied by pwnping on the helium bath in which the film is immersed. In 

these experiments the temperature ranged from 4.20 K to about 1. 35°K in 

some cases. The critical temperature of tantalum is 4.38°Kj that of 

bulk indium is 3.41oK, but that of the films was found to be a few 

hundredths of a degree higher, probably due to impurities and thermal 

stresses. 
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For a few of the films a longitudinal (z-directed) magnetic field 

was used. But for several reasons discussed later, accurate determina-

tion of magnetic field dependence had to be postponed. 

The experimental results are best interpreted by assuming a coher-

ence length considerably shorter than that predicted by the Pippard and 

BCS theories for pure metals. (In the limit of zero coherence length 

these theories reduce to the London local theory). Dependence on the 

thickness parameters follows fairly well the t heoretical form if we 

assume that the penetration depth of indium at zero temperature is 650~, 

and that of the tantalum is 580~. Slowing of the wave, extrapolated to 

zero temperature, ranged from v/v
K 

= 0.807 for the thickest films, to 

0.388 for the thinnest. 

The velocity was also strongly temperature dependent, approaching 

zero rapidly as the temperature was raised to the critical temperature 

of indium. For the thinnest film v/vK was 0.388 at OOK (extrapolated) 

while at 3.449°K it was 0.113 . 

Losses in the indium were also strongly dependent on temperature. 

Q's ranged from 13 near the critical temperature of indium to 1670 at 

the lowest temperature (1.35
0
K). 

Phase velocity was found to depend on magnetic field. In one case 

a field of 300 gauss caused a decrease of 30% in v/ c • Q also drop-

ped as the field was increased. 
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II. THEORY OF SIDW WAVES IN THIN SUPERCONDUCTORS 

A. Phase Velocity 

1. London Theory. The basic equations which London (3) proposed 

as describing the relation between t he super current and fields in a 

superconductor were 

'V x (AJ ) 
s 

4- (it J ) 
at S 

- ~ H o (II .la) 

(II .lb) 

where J is the supercurrent; A = m / p e is a constant; m , p and s s s s s s 

e
s 

are the mass, density, and charge of the superelectrons respectively, 

and Hand E are the usual magnetic and electric field intensity vec-

tors*. Equations la and lb** may be restated as 

(II .2) 

in a gauge in which 'V • A O. 

An elementary phenomenological derivation of the London equations 

may be given in a manner which shows the analogy between superconductors 

and plasmas. 

Consider a collisionless gas of particles of mass m , charge s 

and density p • 
s 

D'Alembert's principle requires that the force on the 

particle equal the time rate of change of momentum. We consider only low 

- -velocities so that mass is constant and v x B forces may be neglected. 

We have 

m dv /dt s s (II. 3) 

*We restate the equations here in rationalized MKS units, which are used 
throughout; London uses Gaussian units. 

**Equations referred to in the text without chapter numbers are in the 
same chapter. 
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We can also identify the super current as 

J 
s 

Then if the density Ps 

E 
d 
dt 

P v 
s s 

is a constant we eliminate v 
s 

Using Faraday's law we have 

= 

If we integrate this we have 

d 
I-l -H 

o dt 

'V x (AJ) = -I-l [ H(t) + H ] s 0 0 

(II.4) 

(II.5) 

(II.6) 

(II.7) 

Equation 7 allows a solution which is not found in a superconduc-

tor, i.e., H = H o 
This would imply that if normal metal is changed 

to a superconductor (as by lowering the temperature through the critical 

value) in a magnetic field, the magnetic field would still enter the 

superconductor. However, Meissner and Ochsenfeld (8) discovered that the 

superconductor ejects the field so that inside H = 0 , except for a very 

thin layer at the surface. To account for this London proposed to set 

H O. In doing this he abandoned any pretense at a microscopic des-
o 

cription, i.e., the resulting equations la and lb are simply phenomeno-

logical descriptions of superconductivity. They are surprisingly 

successful in describing the phenomenon, however. As we shall see, the 

non-local theory which is based on a macroscopic quantum mechanical model 

gives results which differ little in most respects from the London theory. 
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In addition to the London equations discussed above, ~e make use 

of Maxwell's equations relating the total current J to E and H, 

\lxH J + 
dE 

= € ot 0 
(II.Sa) 

\lxE 
oR 

- 1-10 ot (II.Sb) 

\l . H 0 (II.Sc) 

\l . E ---.E.... 
€ 

(II.8d) 
0 

the equation of continuity 

; 

the assumption that total current is composed of the super current plus 

a normal current 

J J + J 
s n ; 

and finally, Ohm's law for the normal current 

J 
n 

rJ E 

(H.lO) 

(II.ll) 

We now take the curl of equation Sa and using the vector identity 

\l x \l x H = \l(\l • H) - \l2H and equation Sc, we modify the left hand 

side to -\l~. On the right we use equations la, Sb, lO and II to 

eliminate J, J ,J and E, leaving 
s n 

(II.l2) 

which would be the usual damped wave equation for H if the term 
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~o -A H , due to the superelectrons, were not present. 

We now wish to obtain a similar equation from equation 8b, but 

we find that \l. E = p/ E • Hence we use equations lb, 10 and 11 to 
o 

eliminate J from equation 9, obtaining 

(II .13) 

This has solutions of the form 

-, t -, t 
As 1 + Be 

2 
p = (II.14) 

where , = a/E (1 +Vl _ 4Eo'j"" a 
"" 1019/sec 

1 o Aa2 € 
, 

0 

a/ E (1-1/1 - 4EO')"" 
2 12 * and '2 l'ia "" 10 /sec 

o Ai 

Any free charge will decay to zero in 10-
12 

sec. Therefore, \l . E 0 

and we can obtain an equation for E of the same form as equation 12. 

us. 

~o - oE o~ 
-A E + ~ a 3"""" + ~ E ---,., 

o ut 0 0 ote: 
(I1.15) 

We ask now which terms of equations 15 and 12 are of interest to 

If we assume sinusoidal time dependence, i.e., E = Ee
jillt 

we have 

2 
-ill~E o 0 

(1 - j 
a 1 

illEO ill2AE 
o 

) E (II.16) 

Hence if ill = l:.a "" 10
12 

, the first two terms will be equal, while if 

* a"" 108 mho/meter, E = 8.85.10-12, and A may be deduced from mea­

sured values of the p~netration depth; A. = VA/~o "" 500~ for most 
materials. From this l'i = 3 . 1032 • 
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(1) = J ): EO "'" 10
16

, the first and last will be equal. It is clear then 

that the first may be omitted, but the losses due to the second may be 

10 important above frequencies of perhaps 10 gigacycles/sec (10 cps). 

Actually, however, the losses are primarily a quantum mechanical 

effect and according to the BCS theory should start to appear relatively 

3·5 kTc 
abruptly at about h (about 250 gc for indium). Glover and Tinkam 

(9) by measuring transmission of infrared through films about 2O~ thick, 

found that resistive losses first appeared at about 2kT ,and reached 
c 

the value for the normal metal at about 10 kT c 

given in Section II -B. 

Further discussion is 

A fundamental parameter of a superconductor is the penetration 

depth A. To show how this arises we consider the solution of equation 

12 for the static case, in which the last two terms vanish. We consider 

a superconducting sheet filling the half plane y < 0 as in Figure 2. 

A magnetic field H is tangential to the plane at y = 0+ , say in the 
o 

x direction. Since there is no x or z dependence, equation 12 

becomes 

whose solution is 

where 

H 
x 

~o 
-H A x 

For y < 0 we must set B = 0 , since 

y<O (11.17) 

y<O (11.18) 

(II .19) 

H would become infinite at 
x 

y = - co otherwise. Hence our final solution is 
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y 

I A \ /. 

\ , 
/ 

/ 
, 

Ho \ '\ / \ 

/ e \ \ 
, I 

/ \ 

I 

Figure 2. Decay of a Magnetic Field in a Superconductor 
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y.(O (II.20) 

Thus the field decays to 1/ e of its surface value in a distance 

A into the metal •. Equation la becomes 

a(AJ ) 
J.l H eY/ A sz e 

dy = e x x o 0 
(II, 21) 

or 

J 1 y/A = - - H e sz A 0 
(II.22) 

Hence supercurrents flow in the z direction, acting to shield the mag-

netic field from the interior. The value of E for the static case is 

zero from equation lb. 

When we consider other theories of superconductivity we will use a 

generalized definition of A which reduces to 19 for the London case 

dy (II.23) 

Having obtained electrodynamic equations for the superconductor we 

now wish to solve the boundary value problem of transmission along the 

strip line of Figure 1. Since our interest in the problem has been 

inspired by plasma devices in which slow waves are a fundamental part 

of the operation and by a theor y which finds slow waves well below the 

plasma frequency, we shall attempt to find solutions of this type. We 

cannot exclude the possibility of fast wave solutions, but in all prob-

ability they would exist at such high frequencies that the metal would 

no longer behave as a superconductor. 
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In Appendix A we consider the solution in detail. We show that 

for two-dimensional geometry (infinite extent in the x-direction and 

hence no x-dependence) and assuming wave motion in the z-direction, an 

E mode solution can be found whose form in a dielectric is 

E z (II.24) 

(where y
D
2 = ~2 _ m2~ E K , K being the relative permittivity of the 

o 0 

dielectric) and whose form in a superconductor is 

(II.25) 

where A is the London penetration depth. 

2 
We solve the boundary value problem, obtaining as a result YD ' 
222 

from which ~ and therefore (c/v) = 2
c 

2 can be found. (v is 
m I~ 

the phase velocity m/~ of the ~ave.) The final solution for a London 

material is (see equation A.26) 

(II.26) 

Here we write Kid outside the bracketed expression, since Kid and d 

are the experimentally measured parameters. d and T are defined in Fig. 

1. We can understand the import of this equation best by considering 

some of the limiting cases. If d is very large compared to ~a and 

~n ' and if T is not so small as to make coth T/~n large (it 

approaches ~iT for small T), then we have simply 

(II.27) 

that is, the wave moves with the velocity of light in the dielectric 

just as in a strip line made with perfect conductors. 
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If d is not large, but if T» Arn ,i.e., we have two infinitely 

thick sheets of superconductor spaced the order of a penetration depth 

apart, then 

(II.28) 

Since the factor multiplying K can be much larger than 1 , slow waves 

are possible here. Also in theory at least, if K/d, d , and one of 

the A'S is known, the other can be found. We know ~n fairly well, 

for example, so we should be able to deduce A.ra' Thus the method 

might be useful in finding the A'S of metals such as tantalum which 

cannot easily be made into thin films. 

In the limit of very small T, coth T/Arn approaches Arn/T 

which dominates the other terms so we have 

A2 
In = K-­dT 

For the general case we show in Figure 3 a family of plots of 

(II .29) 

(~)2 for 
v 

a number of values of d. Also shown are the results for the nonlocal 

theory discussed in the next section. The values for the important para-

meters are values deduced from our experimental work as discussed in 

Chapter IV. It would perhaps be better in theory to show the 

ratio of the speed of light in the dielectric to the wave velocity, but 

since K is an experimentally measured parameter with considerable un-

certainty we preferred to plot 

It is also useful to plot versus 1 
d 

with T as a para-

meter. This is simply a straight line with zero intercept at K and 

slope A.ra + ~n coth (T/~n) • Such a plot is shown in Figure 4. 
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2. Non-Local Theories. As first proposed on empirical grounds 

by Pippard (6), and later put on ~ound theoretical foundation by Bardeen, 

Cooper and Schrieffer (5), it is necessary to modify the relationship 

between J s and A in such a way that the current at a point is a 

weighted integral of A over a sphere of radius roughly ~,the 

coherence length. From his measurements Pippard deduced a value of ~ 

-4 of the order of 10 em. This means that in general we do not expect 

J s to change much in distances ~. Clearly interesting properties 

should appear as we investigate the penetration depth in films of the 

order of ~ or less. In particular we might expect the phase velocity 

to depend upon thickness of the films in a manner dependent upon the 

exact penetration law. 

Schrieffer (10), in an evaluation of the magnetic susceptibility 

of thin super conducting films according to various theories, gives the 

following expressions for the relationships between J (r) and A(r) 
s 

where r is the radius vector, and also between their Fourier trans-

forms J (k) and A(k), where k is the wave vector, i.e., the Fourier 
s 

transform variable. The former are, except for the London theory, inte-

gral relationships, while the latter are algebraic. 

London: 

J (r) 
A(r) 

s -y (II.30a) 

J (k) A(k) 
s - -X- (II.30b) 

Pippard: 
R[R . A(r')Je-R/~ 

J (r) 3 dT' s 4rc~ A R4 
0 

(II. 31a) 
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(II.31b) 

Here R == r - r' , d T' is the element of volume, S is the coherence 

length which is equal to So for pure metals and decreases for impure 

metals, and light face values are the lengths of the corresponding bold 

f t l.re note that the factor e-Rf s . th . f ace vec ors. "' ~n e express~on or 

J (r) indicates that the major contributions to the integral come from 
s 

a sphere of radius roughly s around the tip of r . 

BCS: 

(II. 32a) 

J Ck) s 
3 (6k) ( k ) - -) - 4A k.en 1 + 6k A(k (II.32b) 

Here 6k is the reciprocal of the range of the BCS integral and 

(II. 33) 

K, the kernel, is defined for all three cases by 

A(k) K(k) = - ~ J (k) o s (II. 34) 

so that 

London: 

~ fA o (II. 35) 

Pippard: 

1 

~ 
(II. 36) 



BCS: 

~CS 
3 1 
"4 A. 2 

L 
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(II. 37) 

Another non-local theory, that of Schafroth and Blatt (11) has the kernel 

K k 
(II. 38) 

. but the penetration depth calculated from it increases indefinitely for 

increasing thickness, in direct contradiction to our experiment, so we 

have not included it. 

We now wish to sol ve for the dependence of 
2 (c/v) on film thick-

ness for various theories. The detai l s of the calculation are given in 

Appendix A. The results may be summarized as follows: 

(c/v)2 = ~ (d + ~a + 1m) (II. 39) 

where 1m, which is a length associated with the indium film and which 

is proportional to its surface impedance, is given in the three cases by: 

= 
T 

coth ~ 

1 

( 
2-1 

2 3 
[ 

1 + sk) tan sk-
( k £ ) n n 

n p + 2 sk 
n 

Here A.L is the London penetration depth and 

(II.40) 

(II.41) 

(II.42) 
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k £ 
n:n:£ 

(II.43) n - T 

£ p ~ Jli 4:n:s ~ ~/~ for pure metals (II.44) 

~ - [i; ~ (II.45) 

It is convenient to -write these expressions as functions of dimension-

S £ 
less parameters. Since sk may be -written in the form (-)(n:n: ....R) 

n .£ T 
P 

and since k .£ = n:n: .£ /T , the expression for ~IPPARD/.£P is a func-
n p p 

tion only of the dimensionless parameters s/.£ ,a measure of the range 
p 

of integration, and T/.£ ,the dimensionless 
p . 

Similarly, since b.k/k may be -written 
n 

thickness. 

\ 
in the form b.k\/n:n: -:; 

~CS/ \ is a function only of an inverse range parameter b.k \ and a 

dimensionless thickness T/1a . 
We have left and \ in the equations since their values are 

actually not found from equations 44 and 45, but are adjusted to fit the 

observed curve of Lrn versus T. 

Figures 5 and 6 show plots of LpIPP~.£P versus T/ .£ and p 

~CS/ 1a versus T/.£B' respectively. For very short range (small s , 

large b.k) both expressions reduce to the London expression coth T/.£ 

The most striking feature of both the non-local theories is the 

minimum in the value of Lrn as compared with the monotonic decrease of 

Lrn in the London theory. For data with sufficiently small scatter ..... 

one should be able to make a good estimate of the range parameters s 

or b.k • Even with considerable scatter, one might be able to observe 

the minimum qualitatively and hence be able to say that a non-local 

theory should be used. In attempting to fit a theoretical curve to the 
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experimental data, one would probably choose £ to give the best fit 

for small T, on the steeply falling part of the curve. Then the other 

free parameter ~ or 6k would be chosen to give the best fit at large 

T , where ~n is nearly constant. This might not fit precisely in the 

region of the minimum so that some compromise might be necessary. 

As it happens, our data appear to fit best with the range equal 

to zero, i.e., the London or local theory seems to be most valid •. In 

this case a fairly straightforward fitting procedure may be used as dis-

cussed in Chapter IV. 

In order to compare the Pippard and BCS lengths we have plotted 

two curves together in Figure 7. We have chosen t:. k£ = 0.186 for the 

BCS theory, then found a value ~/£ = 7.0 for the Pippard theory which 

gave the same large T limit. As may be seen, the major difference 

occurs in the region between T/£ = 2 and T/£ 10 and is at most 

2-1/2i. Since these values are so close compared to the uncertainties 

of our data, and since the Pippard theory is phenomenological, while the 

BCS theory is based on a fundamental model, we shall usually omit 

separate discussion of the former. ~n any case, our films appear to 

obey the London theory. 

The choice of t:.k£ of the BCS theory is somewhat difficult since 

there are no very well agreed-on data. Toxen (12) discusses this point 

at some length and finally concludes that l/t:.k (or in his notation, 

~o) lies somewhere between 2600~ and 4400~. For Lock's value fer ~ 

of 640~ (which agrees fairly well with our data), this corresponds to 

0.145<t:.k~ < 0.246. Schrieffer used a value (for tin) of 0.186, in 

his discussion of the magnetic properties of thin films (10). We will 
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use this value in most of our discussion. 

We have also plotted in Figure 2 ( c/v) 
2 

versus T for the BCS 

theory with d = 300, 625, and l755c;,. . We take K = 21.5, A.ra = 580~ , 

and "-In = 640~ , yielding the values of A.r/
d and "-I/d given on 

the figure. These values are taken from our data, as discussed in 

Chapter IV. The minimum associated with the non-local theory is most 

pronounced for the smallest value of d, the dielectric thickness. 

3. Temperature Dependence of Phase Velocity. Our basic expres-

sion for phase vel ocity 

(II.46) 

contains two terms which are temperature dependent; A.ra and ~n • 

The exact form of Lrn will depend upon -the theory used, but we have 

shown in Figure 3 that it is fairly close to the London dependence, 

(II.47) 

In the non-local theories we have also shown that T- / n is a function -In k 

of the dimensionless parameters and for Pippard theory, or 

b.k/ ~ for the BCS theory. Since and are simply proportional 

to ~ the whole problem of temperature dependence of 2 
(c/v) reduces 

to the problem of the temperature dependence of for indium and tan-

talum. 

If one combines the two-fluid theory of Gorter and Casimir (7) 

with the London electrodynamic equations one obtains a dependence of 

the form 
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,,(T) (II.48 ) 

If we define T/T
crit

": t we may also express this in the form 

(II.49) 

where "0 is the zero temperature value and T is the critical tem-
crit 

perature of the metal. 

Experimental measurements verify this quite well. In particular, 

Daunt, Miller, Pippard and Shoenberg (13) show that the exponent is quite 

close to 4. Their discussion is based primarily on earlier measure­

ments on mercury and tin cylinders of radius 10-3 em by Desirant and 

Shoenberg (14), and o~ mercury colloids by Shoenberg (15). Both these 

investigators measured the normalized magnetic susceptibility of a 

specimen in a uniform field by measuring the voltage generated in a coil 

when the specimen is suddenly displaced. For a cylinder of radius r 

this is related to " by 

(II.50) 

where 'Xo is the value of 1- for infinite radius. 

This same method was applied in 1951 by Lock (16) to vacuum 

evaporated thin films. He determined 1../X 0 for films of tin, indium 

and lead for films ranging from 1000 to 8000~. He found excellent 

agreement with the following relationship based on equation 48 and the 

London theory. 
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[ 
\y a ] k 1 - - tanh-

a AY o 
(II-51) 

where 2a is the thickness, Y == l/Vl- t 4 , and k is a factor near 

unity which is necessary to adjust for the fact that the film is not 

qui te parallel to the applied magnetic field. From his data, Lock was 

able to obtain values of the universal constant AO and of k and 

T both of which varied from film to film. He finds A 
crit ' 0 

for tin, 640 ± 30'A. for indium, and * for lead • 

500 ± 10'A. 

In 1958 Schieffer (10) carried out an analysis of Iv 1 Iv for t hin o 

films according to the London theory, the Bardeen-Cooper-Schrieffer 

t heory (5), the Pippard theory (6) and the Schafroth-Blatt theory (11). 

His results showed that Lock's data agreed best with the London theory. 

However, Lock used equation 48 to find a value of A ,which is neces­o 

sary in order to interpret his results. Since the BCS theory predicts 

a somewhat different dependence at temperatures close t o critical, 

Lock's results may be slightly in error. Also, as Lock himself showed, 

the theoretical results are not very sensitive to the exact form of t he 

penetration law. 

The temperature dependence of A(T) is demonstrated by Figure 8 

in which [A(0)/A(T)]2 is plotted versus t • Equation 49 yields 1- t 4 

while the BCS theory falls somewhat above this for t between 0.8 and 

1.0. Since Lock established AO by obtaining the best fit to such a 

curve, his results depend on the fit between the theory and the data in 

*These data seem somewhat open to question. For the four indium films 
he mentions, for example, A.o ranges from 450<A. to 708'A. with a mean of 
624'A. and a standard deviation of 7tA. Presumably his figures are 
based on more extensive data, although he does not mention any. 
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Figure 8. Temperature Dependence of Penetration Depth 
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the region where the deviation from A. o 
is largest, i.e., just this 

same region near t = 1. We should note, however, that the deviation 

between the two theories is not large. Furthermore, as Bardeen himself 

notes (17), the experimental data fall between the curves predicted by 

his theory and that of the Gorter-Casimir model. 

In our case we have the additional complication of the presence 

of a temperature dependent term due to the tantalum. However, Tcrit 

so that A.Ta changes from A. 
o 

at T = 0 to 

.8A. at 3.41oK, the critical temperature for indium. Thus if we know 
o 

A.oTa' we can subtract out this factor accurately. Unfortunately ~ 
'ra 

apparently has not been measured. As sho~ in Chapter IV, we obtain a 

value of 580<it, but with considerable uncertainty. If we assume A.Ta 

as known, then we may write, assuming London theory and the two-fluid 

model, 

d (c 2 - -) - d - ~ 
K v'ra = (II.52) 

or if we use the non-local models, we write 

where both A.(T) and G(A.(T)J are known, but are not expressible 

analytically. G( T/A.) when multiplied by coth (T/A.) yields the L/ j, 

function discussed in part 2 of this chapter. 

In Chapter IV, we discuss and use the method used by Lock to 

extract Tcrit and A. o from the data, using equations 49 and 53. We 

shall use the Gorter-Casimir temperature dependence, since the experi-

mental evidence seems to agree as well with this as with the BCS theory. 
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B. Losses 

1. Transmission Line Analysis. In this part we consider our 

strip as an ordinary transmission line characterized by the usual 

parameters per unit length L, C, R and G in henries, farads, ohms 

and mhos per meter. We will apply transmission line theory to deter-

mine the Q of the line when it is nearly a half wavelength long. A 

general reference for this part is "Reference Data for Radio Engineers" 

(18) which summarizes the material presented in any standard text on 

transmission lines. 

We consider a transmission line of characteristic impedance 

Z 
o 

Z is of the order of milliohms. 
o 

It is terminated in 

impedances Zl on each end (the 50 ohms of the signal source and 

load). It has a phase velocity v¢ = l/~. Since at low frequencies 

such as we consider, the electric field pentrates the superconductor 

very little, C is that measured at D.C. and calculated from the usual 

strip line formula C = € Wid where € is the dielectric constant, W 

is the width, and d the dielectric thickness. L, on the other hand, 

is not that calculated from the strip line, but is calculated from the 

theoretical or experimental phase velocity. That is, L varies to 

account for the properties of the superconductor. If we define as 

the velocity on a strip line made of the same dielectric and perfect 

conductors, ~ as the inductance of such a line, 1K as its impedance, 

and a = v¢/VK ' then 

ya2 (I1.54a) h 
0 

and 

Z = 
0 ~/a (I1.54b) 
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Thus the slower the phase velocity, the higher the characteristic 

impedance. 

The transmission line also has a conductance per unit length 

G due to the dielectric, and a total series resistance per unit length 

R , which is the sum of the series resistance of the indium and the tan-

talum. 

We will also use the customary attenuation constant a and phase 

constant ~,defined by 

E( z) 
E(O) 

-az -j~z 
e e 

For small losses per unit length a is defined by 

a = 

~ is given by 

= 

R 
2Z o 

GZ 
o 

+ -- = ~ ff+Q ~ 
2'11. 2'1 C 2 

2:n:/WAVELENGTH 

(II.55) 

(II .56) 

We also use the parameter Q. It may be defined for a resonant circuit 

either as the ratio of stored energy to energy lost per radian, or in 

terms of the resonant frequency 

between half power points l!.(J): 

Q (J) / l!. (J) 
o 

(J) 
o and the frequency difference 

(I1.57) 

In reference (18~ it is shown that if there are several sources of 

loss, each of which acting alone yields a Q = ~ , then the total Q 

for all acting is given (if the total Q is much greater than 1) by 

1 

~ 
(II.58) 
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Reference (lS) also gives the following expression for a resonant 

line n quarter wavelengths long with a load Zl at the high voltage 

end: 

l 
Q 

= (II.59) 

For a resonant line n half wavelengths with high voltage points 

(nearly open circuit) at each end, loaded with Zl at each end, the 

same formula holds. We join the two low voltage ends, doubling both 

the stored energy and the losses. Since the Q is a ratio of stored 

energy to losses, it is unchanged. We may also eliminate f3 and a 

by the use of the definitions above, so 

l 
Q 

vrl, R GZ 
.....J:.. (- +-2.) 
(l) 2Z 2 

o 
(II.60) 

For a given length line, n will be directly proportional to (l). 

Hence, if R, G, Z 
o 

and are independent of frequency, Q should 

rise linearly with frequency. Experimentally, however, R appears to 

increase with frequency. and appear to be constant. 

We now show that we can neglect the term containing Zl 

Z = 50 ohms and 
l 

is approximately l milliohm or less, Q 

Since 

would be 

~ 4o,OOOn ,if R and G were zero. Since observed Q's were less 

than 2000, this term must contribute less than 5'1> to l/Q, and for our 

accuracy may be ignored. 

We also will consider that G is approximately zero, based on the 

following argument. Q's were highly temperature dependent, ranging from 

l 3 at 3.33SoK (very near the critical temperature of indium, 3.4l 00 K) 
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for one film to 1670 at 1.350 K for another. Also the Q was rising 

steeply in the region near 1.35°K. Since we would not expect the G 

of the dielectric to be a rapidly varying function of temperature in 

this region, it should be essentially constant and very high. Hence 

the temperature dependent part of l/Q must come from the superconduc-

tors. Even if we assign only the Q of 1670 to the dielectric, a Q 

of 1670 at the frequency and phase velocity of interest would require a 

G of about 1 mho/cm. Since G was found to be of the order of 10-9 

mho/em. at D.C., and since losses in reasonable dielectrics do not 

change drastically at 100 mc, it appears that 1 mho is unreasonably 

high. 

Hence we concl ude that the only important contribution to l/Q 

comes from R , which is the sum of the series resistance of the indium 

and the tantal um. Since Q drops rapidly toward zer o near the critical 

temperature of indium, it appears that the major part of the loss is due 

to the indium. 

In order to decide whether we can reasonably assign all of the 

loss to the indium, we ask whether the reduced temperature t (defined 

as T/T "t) for tantalum at 3 . 410 K (the critical temperature for indium) 
cr~ 

is low enough so that losses are essentially constant. If at the same 

t for indium the Q is nearly constant, then we may assume, since 

losses appear to depend primarily on t, that the tantalum losses below 

3.4loK are constant. 

The correspond-

ing absolute temperature for indium is .78x3.41
0
K or about 2. ~K. At 

this poi nt Q is changing rapidly so it appears that we cannot neglect 
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the temperature varying losses in the tantalum. Of course, the magni-

tude of the tantalum losses may be much smaller than those of the indium, 

but we have no way of telling. 

There appears to be no satisfactory way to separate the losses due 

to the indium and those due to the tantalum except perhaps near Tcrit 

for indium. This is one of the reasons that the use of two different 

metals is unsatisfactory. We are forced to assume that all of the 

variation with temperature is due to the indium, but we realize that our 

results will not be very accurate. 

If we do make this assumption, then we conclude that the surface 

resistance of the indium, as discussed in the next section, is linearly 

proportional to R and hence to 
2 w/a Q • This follows because the 

superconductor is a linear material for small fields and currents. This 

was checked experimentally by comparing resonant frequency and Q mea-

sured at different signal levels. 

2. Physical Theory of Losses and Experiments. Most of the papers 

which have been written on this topic discuss loss mechanisms in terms of 

a surface resistance R defined by 
s 

R 
s 

Re 
~AN (Surface) 

1 JTAN(X) ax 
o 

(II. 6l) 

where the x coordinate extends normal ly into the metal. For our purposes 

we need note only that 

section, and hence to 

R is proportional to the 
s 

2 w/a Q 

R of the previous 

As many investigators have noted [for example, Sturge (l9) and 
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Kaplan, Nethercot and Boorse (20] the surface resistance is extremely 

sensitive to surface condition. For this reason, comparison of data 

taken on different samples is seldom meaningful. Hence variations of 

R of one sample with frequency and temperature are of the most interest. 
s 

Since no absolute value can be given, the proportion between 

2 
ill/a Q is sufficient. 

R 
s and 

We have discussed in Section II-A the fact that loss effects in t he 

London two-fluid model appear as a modification to E. (See equation 

16). However, Pippard (21) considered the general two-fluid, two-parameter 

theory, i.e., one in which two non-interacting currents are present, and 

in which each is related to the fields by a single parameter. In parti-

cular, the London theory assumes nJ = E s 
and J = oE . 

n 
He found 

from dimensional arguments that the dependence of surface resistance on 

frequency must be as 
2 

ill This has been verified for tin from 220 to 

1500 mc/sec. and for indium from 220 to 5000 mc/sec. by Sturge (19). He 

finds a slower increase above these frequencies. 

In an experimental paper closely related to reference (21), Pippard 

found (22) that R 
s 

may be expressed in general as 

R(s) = B(ill) ¢(t) 

He found empirically that 

¢(t) 

where the reduced temperature t = T/Tcrit 

this has been found, although Kaplan et al 

on a two-fluid theory by Serber in which a 

(II . 62) 

(II. 63) 

No theoretical basis for 

(20) mention unpublished work 

t4/(1_t~)2 dependence is 
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found. Their data fit equation 63 more closely, however, so they 

used the latter. 

A great deal of experimental work has been reported on surface 

impedance (usually described in the literature in terms of r, defined 

as Rs/RN' where ~ is the normal resistance just above the transi ­

tion temper ature). In nearly all of the work equation 63 was found to 

be a satisfactory temperature dependence. For exampl e, Sturge (19) 

found it adequate between 20 K and the transition temperature at fre-

quencies from 220 mc/sec. to 8000 mc/sec. for tin and indium. Kaplan 

et al (20) verified it for tin from 17 gc/sec. to 77 gc/sec. 

A full theoretical analysis of the surface impedance for either 

the two fluid theory or the BCS theory is quite complicated, inasmuch 

as in the frequency range of interest the anomolous skin effect plays 

an important part . Physically, this is the region where the electron 

mean free path becomes long compared to the skin depth. It is 

therefore important at low temperatures and high frequencies. In view 

of the uncertainty of our data, and of the agreement of other workers 

with a frequency dependence of the form 
2 

00 and temperature dependence 

of the form of equation 62, we shall not attempt to use the more accu-

rate but complicated theories. We shall discuss briefly how losses 

arise in the BCS theory, however, and some predictions that show that 

2 
B(oo) ~ 00 and that equation 62 is a reasonable approximation to the 

temperature dependence. 

The BCS theory visualizes the superelectrons as being bound in 

pairs. The two members of a pair have equal and opposite momentum and 

spin. A finite amount of energy t g is required to separate a pair. 
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At zero temperature this energy gap is found to :be -'V 3·5 kTcrit where 

k is the Boltzmann constant. Because of this gap the pairs cannot 

interact with the lattice, and there is no resistance to current flow. 

However, if enough energy is supplied, as by a photon of frequency 

higher than t-g/h, some pairs separate into normal electrons. These 

normal electrons can interact with the lattice when set in motion by an 

electric field. At D.C. no field can exist in the superconductor but 

by equation lb there can be an A.C. field which will accelerate the 

normal electrons, allowing loss of energy to the lattice, so that the 

metal will show some normal resistance. The net effect is that at zero 

temperature the metal will show no resistance at frequencies below 

3.5 kT /h which is about 250 gc/ sec. (250 x 109 cps) for indium and will 
c 

show an abrupt increase above this frequency, eventually reaching the 

normal val ue. 

At finite temperature two effects occur. First, the energy gap 

decreases, reaching zero at the critical temperature. Second, some 

electrons are excited thermally over the energy gap, where they become 

normal electrons which can be acted on by an A.C. field. Since the 

electric field is proportional to frequency, t he normal resistance must 

be dependent on both frequency and temperature. At any finite frequency 

and temperature, some normal resistance will be found. This will in-

crease from zero slowly as the frequency is raised, then abruptly as 

the frequency reaches f!-g/h. Since cg is a function of temperature, 

the exact frequency of the knee will depend on temperature. Biondi and 

Garfunkel (23) in an elegant measurement of energy absorption in 

a luminum have shown this effect quite cl earl y. 
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The theory of the surface impedance has been worked out by 

Mattis and Bardeen (24) under the assumption that 5/£« 1 and 

A/ ~ «1. The skin depth 5 is defined by 
o 

, 

and £ is the electron mean free path. The first inequality defines 

the condition that we be in the extreme anomalous region; the second 

that the penetration depth be much less than the coherence distance. 

The derivation has been carried out for the more general case by 

Miller (25). The most important results for our use are, the justifica-

tion of the 
2 

(j) dependence below about 10 gc/sec. and the justification 

of equation 63 for ¢(t) • He finds the latter valid within 10~ for 

0.4<t<0.8 He points out that the lower bound on t is somewhat 

less than 0.4 for hv < 0.1 . He sets a lower frequency bound of 
kTc 

0.01 ~ (about 2.5 gc/sec. for indium) but it is not clear whether 

he means that he has not investigated ¢(t) below this, or that he 

actually found a difference. In view of Sturge I s work we shall assume 

that ¢(t) does represent the temperature dependence over the frequency 

range of our experiment. 
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III. EXPERIMENTAL APPARATUS AND PROCEDURES 

A. Preparation of Films 

As discussed in Chapter I, and shown in cross section in Figure 1, 

the experimental transmission line was formed of a sandwich of tantalum, 

tantalum oxide, and indium. Since in thin film experiments the results 

are often influenced considerably by the exact method of preparation, we 

shall discuss this in some detail . For the same reason a standard 

preparation procedure was developed and followed for all films. In this 

way it was hoped to minimize unknown variations so that the results 

would be as meaningful as possible. It is this standard procedure which 

is described •. 

Actually, of course, the procedure evolved somewhat during the 

series of experiments described here, and in particular, we did not 

discover the effect of storage of the anodized tantalum in water for a 

time as short as a day, until two-thirds of the films had been tested. 

Further discussion is given in Chapter IV. 

Certain procedures in the purification of tantalum and in the 

evaporation of indium which might also improve reproducibility or 

modify our results came to our attention too late to be incorporated in 

our experiments. These are discussed in Chapter V. 

1. Electropolishing. The substrate was formed from a cold­

rolled sheet of tantalum, 0 .013" thick, of 99.% purity obtained from 

Fansteel Metallurgical Company. It was cut to 1" by 3-1/4", then 

washed with trichloroethylene, acetone, reagent methanol and distilled 

water in that order. It was then electropolished in a bath of 90i 

36N H2S04 and loi concentrated HF, following the method listed by 



-40-

Tegart (26) . The tantalum was the anode, and a half-inch rod of 

graphite was the cathode . We used a current of 4.5 to 5.0 amps at 

ll-12 volts. The current rises linearly as the voltage is increased 

from zero, levels out on a plateau, then rises sharply again. We 

found, as Tegart recommended, that the best polishing was obtained 

at the high end of the plateau. Too little current etches, while too 

much causes excessive gassing and formation of large pits. We found 

that much closer control of temperature than Tegart recommended was 

necessary for best results. We controlled to 40 ± 20 C by a water 

bath. The polishing solution was also stirred, both to maintain uni­

form temperature and to mix the solution which tended to be used up in 

the vicinity of the tantalum. Usually we polished for 30 minutes, 

which seemed to give the best finish. 

A few films were made without electropolishing, but they were 

invariably shorted between the indium overlay and the tantalum. 

Apparently the electropolishing removed surface roughness which caused 

the shorting. 

2. Anodization. After electropolishing the metal was washed 

with wateraand a soft tissue, then cleaned with acetone, methyl alcohol 

and distilled water . Our next step was anodization to form the insu­

lating layer. To anodize, one applies a positive voltage to the metal 

and negative voltage to a counter electrode, in our case another piece 

of tantalum, in an oxygen-rich solution. This forms a layer of tantalum 

oxide whose thickness is accurately proportional to voltage, though per­

haps with dependence of the form 
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danodize = d + KV 
o (III. l ) 

This relationship was investigated by Vermilyea (27) who used a weighing 

method to obtain 

d di ano ze 19 + 16 ·32V (III.2) 

where thicknesses are in angstroms. Later Charlesby and Polling (28) 

used a spectrophotometer to observe the brilliant colors formed by the 

anodization. 

less than 50R 

They obtained K = 16 .0 R/v , but stated only that d 
o is 

As discussed in Chapter I V, we found from capacitance measurements 

that if we used K = 16 .0 R/v , d must be taken to be 138R , somewhat 
o 

at variance with the results above. 

Charlesby and Polling's explanation of the formation of the colors 

is incorrect, since they assume the insulator to be perfect and the metal 

substrate to have zero resistance. As MacSwan (29) points out, under 

these conditions no colors would be formed, since all energy would be 

reflected. Using a Smith chart and the analogy between plane waves and 

a transmission line, he gives the correct explanation. Charlesby and 

Polling's experimental results are correct, however. 

In order to be as close to their results as possible, we used 

Charlesby and Polling's method. That is, we used a saturated solution 

of ammonium borate at room temperature; we maintained a constant current 

of 2.5 ma/cm
2 

until the desired voltage was reached, then constant 

2 voltage until the current dropped to 0. 1 ma/ cm . 

The brilliant coloring of the Ta20
5 

film and consequent ease of 

determination of thickness was one of the principal reasons for the 
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choice of tantalum as a substrate. It also had a conveniently high 

transition temperature (4 .38°K) , so that the variation of its penetra-

tion depth with temperature contributed relatively little to the change 

of phase velocity. At t he time that t he experiment was started, 

anodization appeared to be virtually the only way to get insulating 

films of sufficient uniformity and freedom from hole s . New methods of 

forming thin insulating films, and t he reasons why we would not use 

tantalum if we were starting the experiments now, are discussed in 

Chapter V • . 

After anodization the films were either used immediately or stored 

in a covered beaker of water so that no deposits from the drying of the 

water could be formed. 

3. Evaporation of 8iO and Indium. To prepare for the evapora-

tion t he following cleaning process was used . 

a) Wash with Aerosol OT (a wetting agent) and distilled water. 

b) Wash with reagent grade acetone and distilled water . 

c) Immerse in a beaker of distilled water i n an ultraSOnic 
cleaner for at least five minutes. 

d) Immerse in cleaning solution (chromic acid) in an ultra­
sonic cleaner for five minutes. 

e) Rinse thoroughly, then again immerse in distilled water 
in an ultrasonic cleaner. 

f) Allow the film to drain; observe while draining to see that 
the water flows off smoothly, indicating absence of dirt 
and grease. 

All handling during and after the cleaning procedure was with tools 

cleaned with acetone, to avoid contamination by grease . 
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The apparatus used for evaporation is shown in Figure 9 and 

sketched in Figure 10. The basic system was a Vacuum Electronics Cor-

po ration 4~inch system with an oil diffusion pump, nitrogen and water 

baffles and high vacuum valve. This system could attain a vacuum of 

- 6 
about 10 mm Hg. in a 14" bell jar. However, as is shown in Figure 10, 

nitrogen" pot number 1 was attached to a cold plate of copper in the top 

of the jar. When liquid nitrogen was in this pot the cold plate acted 

as a very rapid pump for condensible vapors such as water, CO2 and pump 

oil. Vacuum as measured by the nude Baird-Alpert ionization gauge on 

-8 
the top plate was 5xlO mm Hg. The charges (indium, SiO and silver) 

were held in the boat holder, so arranged that each boat was rotated 

to the same position during its heating. Tantalum boats were used, 

heated by a Variac and step down transformer as shown. Over the charge 

was a shutter which was kept in place during degassing, but swung aside 

during actual evaporation. 

The substrate was fixed to the copper block on nitrogen pot num-

ber 2, with high vacuum grease between to insure good thermal contact. 

o 
Measurement showed that the surface of the substrate was about 110 K 

compared to 770 K for the nitrogen in the pot. 

The cooling of the substrate reduced the mobility of the indium 

atoms, thus reducing the clumping of the material into small isolated 

spots. We found that the thi=est continuous films we could make were 

of the order of 400i. 

Just below the substrate was a rotating disc which carried the 

several maska necessary to form the final film. A mechanical stop in-

sured that each mask was located in the proper position to about .005". 
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Figure 9a. Complete Evaporating Apparatus 

Figure 9b. Top Plate Assembly with Mask in Place. 
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Omitted in the sketch for clari ty is the holder for a glass slide 

whose resistance was used to monitor thickness during evaporation and 

as a calibrator for accurate measurement of thickness. This holder was 

a copper block attached to the cold plate by aluminum stand offs. It 

was parallel to and about 1. 3" (center to center ) from the tantalum as 

sho-wn in Figure 11. The temperature of the surface of the glass was 

within 100 of that of the tantalum substrate. 

The glass calibrator was cleaned in the same way as the tantalum 

and was also backed with high vacuum grease. Electrical leads 2" apart 

were formed on the gl ass with indium solder. A mask was so arranged 

that a strip of indium 3" long by 1/8" wide was evaporated over t he 

leads. An ohmmeter monitored the resistance of the film continuously 

during evaporation, allowing us to obtain the desired thickness within 

± '2.01> 

The sequence of events during evaporation was as follows: 

The tantal um boats were outgassed by heating in vacuum to white heat. 

The proper charges of SiO ( select grade, manufactured by Kemet Company), 

indium (spectroscopic grade, guaranteed 99.9~ pure, obtained from 

Johnson, Matthey and Company), and pure silver, were then pl aced i n the 

boats and heated in vacuum below evaporation temperature for several 

minutes, then raised well above evaporation temperature long enough to 

evaporate perhaps one quarter of the charge. This removed most of the 

absorbed gases. 

The top plate with cleaned substrates was then placed on the sys ­

tem and the system pumped do-wn over night with liquid nitrogen in t he 

baffle between t he diffusion pump and t he bell jar. Vacuum was t hen 
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- 6 
1 or 2 x 10 mm Hg. Liquid nitrogen was then put in pot number 1, 

-8 
bringing the vacuum to 5xlO mm Hg. Then SiO was evaporated to 3000 

to 5000R on the ends to form protective pads for subsequent soldering. 

Vacuum was usually less than 10- 5 during this evaporation. Figure 12 

shows the location of these pads. Their inside edges al so serve to 

define the length of the resonant strip. 

Liquid N2 was t hen placed in pot number 2, reducing the tempera­

ture of the tantalum surface to 1100K. The indium was then evaporated 

in four parallel strips as shown in Figure 12. Each was 70 mm long by 

3.18 mm wide (these are mask dimensions--actual dimensions are increased 

by parallax and finite source size and distance). Vacuum during the 

-7 evaporation was usually less than 5xlO mm Hg with a properly outgassed 

source. For thin films, thick indium dots were also evaporated over 

the ends to pr ovi de enough mater ial for soldering. 

The substrate was then warmed to room temperature over a period 

of an hour to avoi d peeling due to thermal str esses. At room tempera­

ture an overl ay of SiO 3000 to 4000~ thick was put on all except the 

ends in order to prevent oxidation of the indium. The cold plate and 

calibrator were then warmed to room temperature and the two substrates 

removed. The completed test strip was immediatel y placed in a vacuum 

dessi cator while the thickness of the calibrator was determined as des -

cribed below. 

4. Preparation of Test Strip for Experiment and Auxiliary Mea-

surements. After t hickness measurements of the calibrator, which tOOk. 

about two hours, the test strip was prepared for measurement. It was 

fastened in the t est fixture shown in Figure 13. The copper grounding 
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straps were soldered to the coaxial shield, then clamped to the scraped 

tantalum substrate by brass screws. The slip joint shown was necessary 

to allow for relative expansion of the tantalum and the bakelite fixture. 

A fine wire (about No. 40) was soldered to the center conductor 

of the coaxial cable, carefully bent into an S shape to relieve thermal 

stresses, then indium soldered to the ends of an indium strip--one of 

the center ones if possible, but in one or two cases these were shorted. 

This latter solder joint proved to be one of the major experimen-

tal difficulties, for it frequently broke when cooling to nitrogen 

temperature or from nitrogen to helium temperature, causing much loss 

of time. Apparently the rapid heat l oss to the tantalum prevented high 

enough temperature to get a good solder joint, but if a hotter iron was 

used, the indium film was ruined and the indium solder badly oxidized. 

A partial solution was the use of a hot iron and a weak solution of 

rosin in alcohol as a flux, but it finally proved necessary to lower 

temperature from nitrogen (770 K) to helium (4 .20 K) temperature over a 

period of a half hour by introducing smal l amounts of the helium blow-off 

from the storage dewar. The resistance of the indium strip was monitored 

as a measure of temperature [a standing wave meter was used to measure 

vo ltage drop for a constant 1000 CPS current, thus providing probably the 

first (and last) measurement of temperature in decibels. The resistance 

o 0 
at 4.2 K was from 5 to 7.2 db below that at 77 KJ. 

After the test strip was placed in the fixture, the capacitance 

between the indium and tantal um, the dissipation factor, and the end to 

end resistance of the film were measured. The film was then placed in 

the test dewar, the dewar evacuated, and the system cooled to liquid 
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nitrogen temperature. C, D and R measurements were repeated, as they 

were at 4.2oK, and again in several cases at temperatures as low as 

o 1.35 K. No measurable difference in C was seen in the latter two cases 

even though this might be expected when the indium became superconduct-

ing. These measurements were repeated at room temperature after the test. 

Also at this time the width and length of the indium were measured 

by a microscope with a vernier mechanical stage. Accuracy was .05 rom. 

The part of the strip on the 8iO solder pad was then cut from the rest 

and its capacitance measured. 

5. Measurement of the Thickness of the Indium. We have des-

cribed in the preceding section the measurement of all the important 

phySical parameters except the resonant frequency and the thickness of 

the indium. The latter was measured using Tolansky's method of multiple 

beam interferometry (30). In essence the method is as shown in Figure 14. 

A half silvered mirror is placed in contact with the film to be measured, 

which has been overlaid with a fully reflecting coating of silver, and 

illuminated with monochromatic light. When viewed from the mirror side, 

narrow interference fringes are seen. For details one should see 

Tolansky's book. 

In our case we could not use the test specimen directly since the 

tantalum was not flat enough. Instead the calibrator mentioned above, 

which was on a glass microscope slide, was used. The slide was flat 

enough over small areas to be entirely satisfactory. Also, in order 

to increase accuracy, a narrow channel was made in the indium by cutting 

through to the glass with a screwdriver blade. This was found to give 

far more reproducible results than measuring across the relatively broad 
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edge formed by the mask. Figure 15 shows a photograph of typical 

interference fringes. This film is 1.64 fringes (4520~) thick. Mea-

surements were made on the photographs using the microscope and 

mechanical stage mentioned above. Typical reproducibility in readings 

on ten fringes was about 20~ in the thin films (5%) up to 50~ in the 

thick ones (1/2 to 1%). The thickness of the calibrator was increased 

by ~ to account for the greater distance from and tilt with respect 

to the source, as shown in Figure ll. 

B. Cryostat and Auxiliary Apparatus 

The apparatus for producing the low temperatures was entirely 

conventional. A glass double dewar was used with a nitrogen heat 

shield enclOSing the helium dewar. Thermocouple leads entered through 

a soldered-in glass header, while the RF signals entered through BNC 

pressurized coaxial connectors. The helium dewar had a one-inch 

pumping tube attached, which connected by rubber pipe to a pressure 

regulator, which was simply a scaled-up version of an ordinary dia-

phragm regulator as described by Sommers (31). Another pipe led from 

the regulator to a pump, either a Welch 1397 of 6 liters/sec capacity, 

or a Kinney KD-110 of 50 liters/sec capacity. With the latter a tem-

o 
perature of 1.35 K could be reached. 

A mercury and an oil manometer were connected to the system to 

measure helium vapor pressure and hence temperature. 

C. Pulse and R.F. 

1. Pulse Apparatus and Tests. In order to locate the RF 

resonances, we found it very helpful to use pulse techniques. The ap-

paratus is shown in Figure 16 . A Spencer Kennedy Laboratories mercury 



Figure 15. 

-55-

Multiple Beam Interference Pattern. Film about 
1.64 Fringes (4520~) Thick. 
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switch delay line pulse generator emitted a pulse about 2 nanoseconds 

long. This pulse was transmitted through the strip, then detected by 

a Lumatron sampling oscilloscope with a rise time of 0.4 nanoseconds. 

Both these instruments and t he interconnecting coaxial cables were of 

50 ohm characteristic impedance, while the test strip had a z o 
of 

the order of 0.001 ohm, so that the pulse was reduced to about 15 mv 

at the junction between the input line and the strip. Further, when 

it reached either end it was reflected almost completely. Thus the 

pulse was trapped on the line until it decayed to zero. Typical input 

and response pulses are shown in Chapter IV. 

On the sampling scope a series of pulses spaced two transit times 

apart was observed. Since the line was resonant in the lowest mode when 

it was one-half wavelength long, the reciprocal of the observed pulse 

spacing gave the resonant frequency. Once one resonance was located, 

that at a slightly different temperature was easy to find, so the 

apparatus was not necessary. As a matter of interest, however, a number 

of photographs of pulses were made, usually at the highest and lowest 

test temperatures. 

We could also measure the decrement and hence the expected Q 

of the resonant peak. In a few cases this was calculated and agreed 

very well with the Q measured by RF techniques. 

Amplitude calibration was done by replacing the test strip by a 

60 db attenuator. Comparison of the input pulse with the transmitted 

pulse could then be made photographically. 

2. R. F. Apparatus and Tests. The RF apparatus is shown in 

Figure 17. A Hewlett Packard (HP)608A signal generator supplied the 
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test s i gnal. This instrument delivered +7 dbm (0.5 vol ts into a 50 

ohm load) at frequencies from 10 mc/ sec to 500 mc/sec. It has a pre ­

cision attenuator with a range from +7 dbm to -125 dbm with an accuracy 

of ± 0.5 db. Si nce the output varied considerably as frequency was 

changed, we added a feedback l oop which monitored the output, amplified 

it, and then changed the bias on the output tube. With this loop in 

operation the output was constant within 0.1 db over the entire range. 

The signal generator output passed through the test strip, then 

was detected on a superheterodyne receiver consisting of a General 

Radio (GR) 1208-B l ocal oscillator modulated at 1000 cps, a GR874-MR 

mixer rectifier, an Instruments for Industry M- 230 30 mc/ sec IF 

amplifier, a HP 420B crystal detector, and finally a HP415 standing 

wave meter. This is a sensitive vo l tmete r (10-7V) tuned to 1000 cps 

and calibrated to read decibels directly, correcting for the crystal 

square law characteristic . The system shown could just detect a signal 

of - 75 dbm. The limiting factor was noise rather than gain. 

Since outputs of higher than 0 dbm proved impractical, we could 

test only films which had less than 75 db l oss . In fact our films 

a lways had l ess than 62 db loss. Whenever possible the source was set 

to -10 dbm (70 mv) in or der to avoid effects of change of power, al-

though several checks were made which showed no measurable effect. 

For frequency calibration we used a Hewlett Packard 524 10 mc 

counter with a 525 converter head useful up to 220 mc. The counter 

accuracy was not necessary for resonant frequency measurements, but 

proved very helpful in obtaining Q measurements by finding the half 
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power points. Above 220 mcps the HP608 signal was heterodyned with a 

harmonic of a GR l215B oscillator. An oscilloscope was used to detect 

frequency coincidence. The GR l2l5B fundamental frequency was then 

measured with the counter. 

Several attenuators were used to isolate the components. These 

reduced sensitivity, but were found necessary to prevent rapid variations 

in power output of the GR l208B as frequency was changed . The sensitivity 

of the system shown was constant within ± 2 db over the range of 100 to 

500 mcps. 

All interconnecting cables were 50 ohm coaxial cables, either 

RG-55U or RG-58u, except in the dewar itself, where Microdot Inc. 

subminiature 50 ohm coaxial cable was used to minimize heat leaks into 

the dewar. 

RF readings were made first at the highest temperature at which 

pulses were visible on the oscilloscope, then at successively lower 

temperatures. This avoided the thermal lag problems present when the 

temperature increased. In a few cases it proved easier to work up 

toward the critical temperature from a known point, since in this region 

the film insertion loss was greatest and Q lOWest, increasing the dif­

ficulty of finding the peak. We could follow the resonant peak as the 

temperature slowly increased, hence we could tell that thermal equili­

brium had been reached when the resonant frequency ceased moving. 

To obtain readings at a given temperature, we first set the HP608 

test oscillator to the expected resonant frequency with an output (in 

most cases) of -10 dbm. The GR l208B local oscillator was tuned 30 mc/sec 

away so that the I-F amplifier output would be a maximum. We often had 

to search over 10 or 20 mc for the peak, a rather tedious procedure 
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since the test and local oscillators had to be tuned separately. The 

search was particularly difficult if the width of the peak was about 

the same as the width of the I-F amplifier bandpass, about 2 mc, since 

we had difficulty telling whether a given peak was due to the test 

strip characteristic or the I-F amplifier. Some sort of coupling 

between the two oscillators ~uld have been very convenient , but as 

we gained skill in finding the peaks, we felt that it was not necessary 

to take time to do this. When the peak was found by maximizing the 

output signal with both the test and local oscillators, we set the gain 

of the I-F amplifier so that the HP415 standing wave meter read -40 db. 

(In this region the cr ystal output was very close to square law as 

checked using the HP608 attenuator). We then bypassed the test strip, 

increased the precision attenuator setting to bring the meter reading to 

the same pointA and recorded the attenuation. (Attenuation in the co­

axial l eads within the dewar was 1.7 db over the frequency range of 

interest.) Thus the only factors involved were the short term amplitude 

stability of the system, the short term temperature stability (since we 

had to remain at t he resonant peak) and the a ccuracy of the attenuator 

calibration . We checked stability by reconnecting the test strip, return­

ing the attenuator to -10 dbm and checking that the meter reading was 

still -40 db. We then switched the test oscillator to the counter (or 

above 220 mc, to the zero beating circuit) and recorded frequency. 

To determine Q we offset the test oscillator frequency (and 

shifted the l ocal oscillator to match) until the reading of the meter 

fell 3 db, i.e., to half power. We recorded the frequency of the two 

half power points. Here we depended upon the accuracy of the meter, 
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which was checked, and the amplitude stability of the system both with 

respect to time and to frequency change, but these were found to be 

quite good. In fact the principal problem was the temperature stability 

of the helium bath, particularly near the critical temperature where 

resonant frequency changed very rapidly with temperature. A swept 

oscillator with visual display of the peak would have been more accu­

rate, but suitable apparatus was not at hand, nor was it felt worth the 

time to build it. 

For some of the early films we measured the effect of magnetic 

field on velocity. To generate the field we placed a solenoid outside 

the helium dewar in the nitrogen contained in the outer dewar. Since 

the solenoid was coaxial with the dewar, the generated field was nearly 

parallel to the film. The solenoid was about 6 inches long (about twice 

as long as the film) so that the field was uniform to about 3% over the 

film. However, our test fixture was supported only by a thin rod from 

the dewar cap; this was not perfectly straight, so that the fixture was 

not quiteevertical. Hence several degrees of misalignment existed 

betwe~n the film and the field. As several investigators have noted 

[see, for example, (32)], if the thin super conducting film is not quite 

parallel to the field, very large demagnetization fields are generated 

perpendicular to the film. Since we did not have time to rebuild the 

fixture, we made a few preliminary measurements to explore the effect. 

These are discussed in Chapter IV. 
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IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Phase Velocity 

It is convenient to divide this discussion into two parts: 

1) zero temperature dependence of clv on thickness parameters T and 

d , and , 2) dependence ov clv on temperature for fixed thickness. 

The first is possible because our data can be extrapolated easily to 

zero temperature . 

1. Zero temperature results. We first discuss the extrapola-

tion to zero temperature. As shown in Figure 18, (c/v)2 varies rapidly 

near the critical temperature, but becomes extremely flat at the lowest 

temperatures, which range from 1.9°K for early experiments to 1.4°K 

later. Since the dependence of ~ on temperature is very close to 

the form 

~ I )1 - (TIT Ot) 4' 
o cr~ 

(IV-l) 

the total variation in \ra from 1.9°K to OOK is 2%, while that of 

~n is 5%. The dependence of 
2 (c/v) on the ~'S is given by 

2 T 
(c/v) = (K/d)(d+ A.ra + "rn coth ~n) (IV-2) 

for the London local theory, but the results of the non-local theories 

do not differ much. 

In the worst case, where 

we have 
2 

o( c/v) 

(c/v)2 

is small enough so that 

(I V-3) 

2 (Iv-4) 
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T oK , 

Figure 18. Experimental Dependence of Velocity Function (c/v)2 
on Temperature. Film 28 . 



A 510 change in 
2 

A- l eads to a 1010 change in (c/v) . 
. "In In fact, for 

the thi=est films we examined, d'" 300~ and T =400~ , the factor 

multiplying 5"T/~n was close to 1 so we would expect only about 

510 change in (c/v,? 

To extrapolate we considered a dependence of the form 

2 (c/v) K 
d 

By an iteratiYe procedure and T .t cn. 

(IV-5) 

were chosen to fit 

the curve to the experimental data at three points : at the lowest mea­

sured temperature, at 2.8°K, and at the highest temperature, usually 

so close to the critical temperature that 
2 (c/v) was two to four 

times its low temperature value . The value of this function at T = 0 

(c/v)2 
o 

was then taken as 

at some arbitrary value, and 

As might be expected, if A- was fixed ·'l'a 

and T .t were used to fit the crJ. 

data at the lowest and highest temperatures, then the result was ver y 

insensitive to the choice of "Ta • Changes of 

would change 
2 (c/v) by less than a percent. 
o 

from 0 to 1000~ 

The values of 
2 (c/v) for all films are shown i n Figure 19 

plotted versus T. The film identification number is shown beside 

each point. Theoretical curves for "Ta = 580~ and "Tn = 640~ are 

also shown. The solid curves are for a London material, while the 

dotted are for a BCS material with 6k = 0. 186 , the value used by 
":In 

Schrieffer (10). The penetration depths were chosen by a method des-

cribed below, to be a best fit to all t he data for a London material. 

Shown in Figure 20 is the same data but with theoretical curves drawn 
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o 
Ato: 580 A) A in : 640 A) T : 0 0 K 

London Theory 
-- - BCS Theory, Llk } : 0.186 

------
o 

d : 300 A 

0 32 

o 
d : 625 A 15 ,16 _~ __ -D_ 

0_- v l4 

6 

18 

t-~-~--- __ ~~ ____ 2~~2~=~750 A 

.e} d = 3400 A 

2000 
I 

4000 
o 

1' , A 
6000 8000 10,000 

Figure 19 . 2 Comparison of Experimental and Theoretical Values of (c/v) 
versus T. "'rn and ~a Averaged for All Values of d. 

12 ,000 
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Figure 20. ( c/v) versus T . >-rn and A.ra Best Values for Each Value of d 
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with ~a and ~n chosen for best fit for each value of d 

Three data points are particularly subject to question. These are 

for films 15, 27 and 29. Films 27 and 29 showed a very high and nearly 

constant dissipation factor of about 0.5 when measured as a capacitor 

at 1000 cps. This contrasted sharply with the normal film, such as 

No. 28, whose dissipation factor was 0.113 at room temperature but 

dropped to .007 at liquid nitrogen and less than .001 at liquid helium 

temperature. In the normal cases the dissipation was clearly due to 

the series resistance of the indium film, which drops in much the same 

ratio. Since the series resistance of films 27 and 29 showed normal 

behavior with temperature, we conclude that the dielectric was the source 

of the loss. A recheck of the preparation of 27 and 29 showed that they 

(and 15) were anodized, then placed in water for storage for several 

days before deposition of the indium strip. Apparently this affected 

the dielectric seriously. 

The measurements of c/v showed no particular difference either 

in terms of temperature dependence or of the Q of the resonant peaks. 

However, at such a low characteristic impedance a shunt conductance of 

0 .2 mho/cm such as these films showed would be completely unimportant. 

Probably the dielectric constant of the material was affected, however, 

leading to the anomalous values shown for c/v . 

It should be mentioned that film 15 did not show the high dissipa­

tion factor. However, the dielectric layer is more than twice as thick 

so that even if a 300~ surface layer showed a high conductance, the 

remaining 300~ would act as a good insulator, but the total dielectric 
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would still show an effective dielectric constant different from films 

prepared in the normal manner. We note that film 15 shows about half 

t he deviation from the majority of t he data that 29 does, which agrees 

with the hypothesis that the effect is due to the modification of the 

surface of the tantal um oxide by a reaction with the water. Perhaps a 

hydrated tantalum oxide has been formed, but we do not pretend to have 

investigated whether this is even theoretically possible. We simply 

note that very little weight should be given to these three points. 

After the effect was noted, film 33 was made as , similar to 29 as pos-

sible but with evaporation immediately after anodization. The excellent 

fit of 33 wtth the general trend of the data shows that film 29 must be 

held very suspect. 

The first observation to be made from our data is that 
2 (c/v) 

follows the expected general trend of nearly constant value as T is 

decreased, until a sharp rise commences at about 

2 
point the value of (c/v) should follow a l iT 

Below this 

dependence. Our data 

is somewhat sketchy in this region but a large increase is clearly shown. 

The thinnest continuous film that we could make was of the order of 4oo~ 

due to the clumping of the incoming indium atoms. This well known 

effect results from the kinetic energy which the incoming atoms have, 

enabling them to bounce on the surface until they reach preferred posi-

tions on the substrate surface (33). Because the effect is reduced by 

low temperature of the substrate, we held ours at liquid nitrogen tem-

perature. Liquid helium temperature would be better but much more dif-

ficult and expensive. (But not impossible; Glover and Tinkam (9) formed 

indium films thought t o be 2O~ thick by evaporation in the experimental 

dewar at helium temperatures). In this region the films are about 1/7 
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fringe thick, making accurate measurements by interferometer difficult. 

The next important point to observe is that our data agree quite 

well with the London l ocal theory. The minimum expected according to 

the non-local BCS theory (and also the Pippard theory which is so close 

to BCS that we have not shown a separate curve) is simply not there. If 

one could believe that points 27, 29 and 15 were valid, perhaps a case 

could be made for the non-local theory, but our reliable data clearly 

indicate no such effect. This is in good agreement with Lock's results 

which agree much better with the London theory than the BCS or Pippard 

theory, at least for a range large enough to be significantly different 

from the London case. (See Figures 5 and 6 for dependence of Lrn on 

the range . Note that as ~ decreases and ~k increases the value 

tends to the London value.) 

The London theory is equivalent to the non-local theories with 

range zero. The BCS and Pippard theories predict a range or coherence 

-4 
distance for pure metals of about 10 cm, equivalent to ~k.e "" 0 .2 or 

This has been verified by numerous experiments discussed by 

Bardeen and Schrieffer in a recent review paper (34) . 

Hence we conclude either that the non-local theories do not apply 

to our experiments (which seems unlikely) or that our materials differ 

from those of other investigators in some way which affects the range. 

The most obvious difference is in the purity of the deposited film. 

As Pippard (6) points out, a small amount of impurity (of the order 

of 3i indium in tin in his experiment) will double the penetration 

depth. I n fact this unexpected effect led him to propose the ori-

ginal non-local theory. He postulates a coherence distance of the 
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-4 order of 10 cm. He then supposes that the impurities act to reduce 

this distance according to the formula 

1 
~ 

1 1 
+-

• a£ So 
(IV-6) 

where £ is the mean free path of a superelectron in the metal and a 

is an experimentally determined factor near 1. If £ is infinite, 

~ ~ ~ ,but if £ is reduced either by impurities which act as scat­
o 

tering centers or by a smallest dimension of the sample which is of 

the order of ~ ,then ~ is reduced. That our conditions of evapora­
o 

tion do not yield a pure film is verified by Caswell (35), who found 

that a vacuum of the order of 10-9mm Hg is necessary if the supercon-

ducting properties of thin tin films are to be those of the bulk metal. 

Our vacuum was at best 10-7mm Hg during evaporation and typically 

-7 5 x 10 • We do not have a system at present which can reach the neces-

sary vacuum, so we cannot examine the effect of a better vacuum. 

A second way in which our films differ from the bulk material is 

that there may be large strains in the material. It is well known (45) 

that vacuum deposited materials are..highly strained. Furthermore, Lock 

(16) showed that the strain affects the critical magnetic field and 

critical temperature of thin films. However, he also found that the 

penetration depth and critical field were not much affected by the 

strain. It is not unreasonable to expect that any strain effect would 

vary with thickness. We do anneal our films by bringing them to room 

temperature before measurements are made. We see a definite effect on 

the nitrogen temperature resistance, which is lower when the film is at 
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nitrogen temperature just before addition of helium. Perhaps annealing 

at a temperature nearer the melting point of indium would improve the 

strain relief. 

on 

We cannot completely rule out the effect of the tantalum substrate 

(c/v)2, but it seems that it should add random scatter to the data 

rather than cancel a definite trend. 

Another possibility is that the surface roughness of the indium 

affects the value of 
2 

(c/v) • Electron micrographs (46) show that films 

which are just thick enough to be continuous are quite irregular due to 

the clumping effect mentioned earlier, but that as the films become 

thicker they tend to sIOOoth out. Since this smoothing occurs just about 

400~ , and since this is the region in which we expect the minimum, it 

is possible--though unlikely--that the effect of surface roughness just 

cancels that of the non- local theories. This question could be answered 

by making depositions of thinner films at lower temperatures and by 

electron micrographs of the surfaces. The dependence of the 
2 

(c/v) on 

d , the thickness of the anodized layer, is shown in Figure 21. Since 

we may write 

(~)2 = K ( 1 + 'T. + 'I~("'rn) ) (IV-7) 

2 it is natural to plot (c/v) versus l/d, which should result in a 

straight line of intercept K on the ordinate, and with slope 

K ( A.ra + ~n (T, A:rn) ) ~n is an expression which is constant for 

fixed d, but depends on T /A-rn For a London material, i : e., one 
T 

is zero, Lrn = A-rn coth A-rn' The resulting curves 

402, 1500 , and 8800~. Also shown are the theoreti-

in which the range 

are shown for T = 

cal lines for K = 21.5 , \ra = 580~ , ~n = 640~ • 
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Figure 21. 
2 

Comparison of Experimental and Theoretical Values of (c/v) 
versus l i d. 
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The data fits the experimental curves extremely well for T = 402~ ) 

but shows distinct curvature for the larger T'S. However, the theo-

retical line is close to a best linear fit to the data. 

All curves tend to an intercept quite close to the value of 21. 5 

which agrees well with value of K obtained a& discussed below. In 

order to extend the data to smaller l /d , one film was made with a 

value of d = 3400~ and with T = 1500~ This is film 34 on Figure 

19. 

The value of K is obtained from measurements of capacitance at 

1000 cps by conventional bridge techniques. Since C varies with tem­

perature, the values used were those found at 4 .2oK 

C K • A 
d 

Since 

(IV-8) 

and since A, the area, is known by measurements on the film, K/d can 

be calculated. We assume that 

d do + 16~/volt V d ano (IV- 9) 

(see equation 111 -1 ) . d i s an unknown to be determined from our data. 
o 

Combining equations 8 and 9, we have 

A 
C 

d + 16(~/v)V d o ano 
K 

(IV-10) 

Thus if we plot A/C versus Vanod we should obtai n a straight line 

whose intercept on the ordinate is d / K and whose slope is 
o 

16/K . 

We used a least-squares fit of our data for all films to obtain a slope 

of .744 with a standard deviati on of .012 and an intercept of 6 . 41 with 
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These yield K = 21·5 ± .3 and d = 138~ ± 21 
o 

Using this least-squares data we also obtain best values for d and 

K/d for the various anodizing voltages. These are summarized in Table 

IV-I. 

Table IV-I. 

V V anod' 
d ~ 

anod' K/d,/~ 

10.05 300 13·89 

30 ·5 625 29·11 

101 1755 81.55 

204 3400 158 .2 

danod and K/d for various anodizing 

voltages. 

We also wish to deduce from the values of 2 
(c/v) the values 

o 

of and ~n at T = 0 • To do this we must assume a functional 

form for the dependence of Lrn on T Since our data seems to 

agree with the London theory best, we shall use it. We have then 

d (~)2 _ d 
K v = A- + A coth -2-

·'ra In A-
(IV-ll) 

·-In 

~ (~)2 _ d T 
should yield a straight Thus a plot of versus coth ~n K v 

line of slope ~n whose value for large T/~n ' i.e., coth T/~n= 1, 

is A.ra + ~n Since we do not know ~n ' to enter in coth T/~n we 

must assume a value, plot the line, then measure the slope. The value 

of the slope is used as a new value of A in the coth T/~n expression. 

After a few cycles the process converges on ~n. The data points, 
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first line, and final line are shown in Figure 22 for d 300)/. • 

Results are summarized below: 

d,)/. ~n')/. "Ta' )/. 

300 685 374 

625 566 682 

1755 700 702 

Table II 

The average L 
Tn 

remarkably close to Lock's val ue of 

640~ . We can say that 

while 

Average "Ta is 

"Ta = 580 .± 175 . Apparently the iterative procedure forces the 

to be consistent while the \ra is forced to absorb the deviation 

2 
of (c/v) from expected linear dependence on lid. 

The points for T = ~n ' where coth T/~n becomes large are 

most important in determining slope. More data in this region would 

make the result more accurate. 

2. Temperature Dependence of 2 (c/v) . 

18 a typical plot of 2 (c/v) versus temperature. 

experimental curve to an equation of the form 

We have shown in Figure 

We wish to fit the 

(IV-12) 

The factor G(T/A) ~is simply a computational convenience. If G(T/A) = 1 

the right hand side of equation 12 (which we call Lrn) is that derived 
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from the London theory. By suitable choice of G(T/A) we can approxi -

mate ~n for any value of 6. k£ of the BCS theory. In particular, 

for 6. kA = 0.186, we found that if we chose 

G(T/A) = 1.1574 + 0 .1715 tanh [0 .525(X - 2 . 90) ] , (IV-13) 

then G(T/~) coth(T/A) fit the exact value of ~n/A for the BCS theory 

given by equation 1+-42 within 2i. Since the exact expression is a 

slowly convergent infinite series, it is convenient to use Lscs/A 

(T) (_T) G - coth A A 
for machine computation. 

We will a ssume that 

~n(T) 
~n 

o 
~n y (IV-14) 

o 

That is, we assume the Gorter- Casimir two - fluid model rather than the 

BCS model . As di scussed in Chapter II, the di fference is small, and the 

experi mental evidence seems to fal l between the two. 

The basi c data we wish to obtai n are t he val ues of the penetration 

depth, A- and the critical temperature of the indium f i lms, T .t ' 
~no crl 

Wecwould l ike to obtai n A- also , but as we shall show, the technique -'I'a 

we use is extremely i nsensi ti ve to ~a ' This is fortunate, however, 

since ~a is not known except by the methods of part 1 and it would be 

quite difficult to extract 

temperature data. 

A- as well as -'r a ~n and Tcrit from the 
o 

We follow a method devised by Lock (16) to obtai n Tcrit and 

Arn ' In brief, we first pl ot 1/A
2

(T) versus T4 to obtain Tcr it 
o 
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Using this value we then plot Lrn versus x to obtain ~no 

are defined by 

Lrn 

and 

x 

These 

(IV-15) 

(IV-16) 

(For convenience we write A = A- for the remainder of this section.) 
o ·-rn 

o 

To obtain Tcrit we note that equation 14 may be rewritten 

Thus a plot of 

2 
~n 

o 

~n(T) 
4 

1 _ ( T ) 

Tcrit 

2 
l / AIn versus should intercept the T4 

(IV- 17) 

axis at 

While the actual data does not yield the theoretical straight 

line, an accurate curve may be drawn through the data to obtain the 

intercept. Figure 23 shows the curve for film 10. For machine computa­

tion we fit a quadratic through the three points nearest the T4 axis. 

To obtain A for the above plot we solved the following equation 

for each 
2 

[(c/ v) ,T] data pair. 

A (T) = (IV-18) 

Equation 18 results from calculating Lrn from equation 15, then sub­

stituting in equation 12. To solve equation 18 we assumed A(T) = 640~ 

on the right side, calculated A(T), then used the new value of A(T) on 
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Figure 23 . Determination of Tcrit for Film 10 
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the right. Since G and coth were slowly varying functions in the 

range of interest, the process converged to the solution in three or 

four iterations. 

Having obtained T "t crl. we now found ).. 
o 

by the following 

method. Note that equations 12, 14 and 16 may be combined to obtain 

).. x 
o (IV-19) 

Hence the slope of a plot of k versus 
-:In 

x should be ).. 
o 

depends on ).. ,we must again use an i terati ve procedure. 
o 

Since 

The actual computation was done using a digital computer. A 

least-squares fit was made to the data of versus x with the 

constraint that the curve go through the point 0,0. The resulting 

plot and least-squares fit is shown in Figure 24. Since the value of 

x 

~a is uncertain, the data was computed for )..Ta ranging from 400 to 

1000. We also computed 0LSQ' the standard deviation of the least­

squares fit for each film. The average value of ).. and the average 
o 

0LSQ for all films is shown in the tables below. Also given is the 

0).. which is the standard deviation of the values of ).. for all films. 
o 

0LSQ measures the accuracy of fit to equation 19, while 0).. gives the 
o 

spread of ).. for the different films. 
o 

Table IV gives the data assuming a London material (one with 

t.,k ~n = co) , while Table V assumes a BeS material with ~k ~n = 0.186, 

i.e., a range of 5.38 times the penetration depth, or about 3500~ . 

The value of ).. 
o 

shows a steady decrease as is increased. 

The total range from 730 to 679~ for ~a ranging from 400 to 700~ (the 

range found in part 1) is well'within the smallest 0).. value, 115 . 
o 
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6000r------.------.------.------.-----~------~----_. 

5000 

400 0 

o 
Lin, A 

3000 

2000 

1000 

Slope = 791 = Ao 
Ate = 580 

o L------4-------+------~------+_------~----~------~ 
o 

Figure 24. 

2 3 4 5 6 

x = y G ( {oY) GOTH ( A~ ) 

Graphical Calculation of 

on Temperature. Film 10. 

2 
~n(O) from Dependence of (c/v) 
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"'ra,5{ i ,1l 
0 

400 730 

500 717 

580 704 

600 700 

700 679 

800 655 

900 629 

l OOO 60l 

aLSQ,ll 

27 

22 

l 8 . 6 

l 8 

l 6 · 3 

l 6 .l 

l7.6 

20 . 4 

(\. ,5{ 
0 

l 43 

l28 

l20 

ll8 

ll5 

ll5 

l20 

l27 

(Average L) 
'ra 

Table IV. Ao from Temperature Data, London Theory 

The value of Ao for t he average ~a (5801l) is 704 ± l20~. This 

agrees fairly well with the zero temperature value obtained i n Part l, 

of 650 ± 70~ . 

We have included three values outside the range of "'ra' at 800, 

900 and lOOO~ to show that both a
LSQ 

in the vicinity of ~a = 700 to 8001l. 

and aA show a broad minimum 
o 

This tends to Show, although 

not very strongly, that L should be larger t han 5801l. 
"Ta 

~a,5{ i o,ll aLSQ,ll 0 

af,. ,A 
0 

400 685 19·1 l28 

580 648 l 3· 6 l 32 

800 595 l 6 . 0 l47 

Table V . A from Temperature Data, BCS Theory 
o 

.t.k A = 0 .l86 
o 

Again we note a decrease in Ao as L is increased. " 'I'a All values 

lie about 50~ below those for t he London t heory. The minimum a
LSQ 

is 
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somewhat smaller, but the aA is slightly larger, so we cannot make 
o 

a very strong case for either theory. 

In Table VI we present a summary of the results for each film, 

on the assumption that ~a = 580~ , the value deduced in Part 1. For 

the BCS theory we assumed 6k~n = 0.186 The values from the London 
o 

theory are fairly close to those from the BCS for T small, but deviate 

increasingly as T increases. This agrees with the fact that the ~ND 

and ~CS approach each other for small T/A. Since A increases with 

temperature, the agreement is best for high temperatures. Thus the dif-

ference between the two at larger TIS is due primarily to the low 

temperature behavior of the metal. 

The values of A for the London case fall in the range 500~ to o 

79~ except for films 12 and 23.2. Film 23.2 was a second run of film 

23, and data was taken at only a few points so that we can probably 

disregard it. I n particular, no data near the critical temperature 

(which is most important in determining A ) was taken. 
o 

The data of 

23.1 shows a critical temperature of 3. 349°K which is probably much 

more accurate than the value of 3.407 obtained from 23.2. Film 12, 

however, was a perfectly normal film. We have checked over our experi-

mental data carefully, but have failed to find any reason for its wide 

deviation, 34o~, from the average A 
o 

Since the standard deviation 

of A over all films is 120~, we cannot discard the point entirely, 
o 

but we do regard it with some suspicion. 

The critical temperatures derived using the two theories agree 

within 1 or 2 millidegrees in most cases. For a few of the thickest 

films it is somewhat larger; the maximum being 17 millidegrees for 
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LONOON BCS LONDON BCS 
b.kA. = 0.186 b.k}.. = 0.186 

0 0 
~ ~ 

FILM DS T,~ A. ,~ (JLSQS A. ~ (JLSQ'~ 0 0 

0 0 Tcrit K Tcrit ' K 

31 300 402 773 9.6 771 9.8 3·510 3·510 
27 " 1497 567 4.2 563 6.7 3·430 3.431 
28 " 2110 500 12.7 495 9·5 3·413 3.414 

33 II 4520 652 11.2 583 25·0 3·422 3.420 

29 " 5210 532 33·6 554 7.6 3.409 3.415 

32 " 7560 606 8.1 461 7.2 3·411 3.405 

30 " 11500 651 5·6 469 5·5 3.408 3.402 

25 625 455 688 7.8 685 7·9 3.483 3.483 

16 " 1080 670 10. 6 667 8.6 3.449 3·449 
14 " 3025 784 8·3 76J- 10·3 3.440 3·440 

15 " 4720 772 17 .5 761 6·3 3·439 3·440 
26 " 8785 753 10.6 545 5·5 3.432 3.415 

18 1755 413 775 3·5 773 3·8 3J505 3·505 

13 " 496 745 1.4 743 1.4 3·499 3·499 
11 " 1740 688 52.2 706 41.3 3·427 3.432 

9 " 2375 644 28·3 638 12·5 3·411 3·415 

12 " 3140 1042 34.2 1022 36.1 3·470 3.469 

10 " 5800 791 42.8 714 13·3 3·410 3.402 

23·1 " 8548 601 40.4 517 23·5 3·349 3·347 

23·2 " 8548 883 5.0 653 3·1 3.407 3·390 
22 " 8844 716 25.4 522 20.7 3.415 3·404 

34 3400 1456 650 36.8 649 33·6 3·439 3.439 

AVG 704 18.6 648 13· 6 

Table VI. Values of L and T . t Deduced from Temperature . -J.no 2 crl. 
Variation of (c/v) ,assuming ~a = 580~ . 
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film 26. This again was a film for which data was not taken very close 

to the critical temperature. 

In order to illustrate the qualitative features of the dependence 

of phase velocity on temperature, we have plotted v/c versus T for 

two extreme cases; in Figure 25, film 31, the thinnest film (40~) on 

the thinnest dielectric (300~) and hence propagating at the slowest 

phase velocity; and film 34, the thickest dielectric (340o~) with an 

intermediate thickness film (1497~). v/c rather than (c/v)2 is 

plotted because the differences show more clearly. 

We may write 

v/c (IV-20) 

A large value of d tends to dominate the increase in ~n as we 

increase the temperature, until Lrn becomes large; hence we expect 

the curve to be much flatter and with a sharper knee. We observe that 

this is indeed the case; 34 shows a very sharp knee while 31 drops off 

quite gradually. Another interesting point is that critical temperature 

of the thinner film is considerably higher, as may be seen by extrapo-

lating the curves to zero velocity (a 

exactly in our plots of versus 

process we have carried out more 

T\. discussed earlier.) 

We also show the effect of varying T with d constant in 

Figure 26. We see that the velocity is very slow for thin films, but 

very nearly the same for t he two thicker films. The rapid approach of 

the T dependent term ~n coth T/~n to ~n as T/~n becomes 

large is evident here. We also see that the knee becomes sharper as T 

increases. 
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d = 3400 A 
T = 1456 A 
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Figure 25. Phase Velocity versus T for t he Fastest and 
Slowest Films 
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To illustrate the dependence of vic on d, we have graphed 

vic for films with T'S as close together as possible in Figure 27. 

Fortunately, vic is a slowly varying function of T in the region 

of interest so the difference in T'S is unimportant. We see the 

strong dependence on d which was evident in Figure 19. We also see 

the increase in the sharpness of the knee. 

B. Losses 

We measure losses in the test strip by measuring the Q of the 

resonant peak. There are four sources of losses; the loads at the 

ends, the dielectric layer, the tantalum substrate and the indium film. 

The first two should be nearly independent of temperature over the 

range of the test; the third will vary appreciably; while the fourth 

will be strongly dependent, since the Q tends to zero at the critical 

temperature of the indium. As discussed in Chapter II, the comparison 

of data taken from different films does not give meaningful results. 

In order to check thiS, we graphed the Q of several different films 

in Figure 28 . 

Film 10 shows a low, nearly constant Q which was typical of 

several early films, i.e., 10, 11, 14 and 15. None of the later films 

showed this behavior. It is probable that this change is due to some 

improvement in technique. Vacuum during evaporation decreased from 

-6 -7 
about 5 • 10 mm Hg for the early films to about 5 • 10 mm for the l ater 

ones. However, films 9, 12, and 13 showed normal behavior so this is 

not the entire answer . The work by Caswell (35) mentioned earlier in 

this chapter showed that if the partial pressure of 02 was kept below 
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Figure 27. vic versus T, T Approximately Constant, d Varied. 
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-8 -7 
5 • 10 mm Hg and that of H20 and CO2 was below 4 . 10 mm, the films 

were nearly as good as those made in a vacuum of total pressure < 10-9mm 

regardless of other gases present. It is possible that our later tech-

nique of outgassing the indium charge may have helped. In any case, it 

appears that the low Q is dependent on the exact method of preparation 

rather than being an intrinsic property of the indium. 

We have also tabulated the data in Table VII. Each group has 

constant d and is in order of increasing T We have given Q at 

two temperatures; the first at 1.9
0

K, and the second at .985 T The 
c 

latter was chosen rather than a fixed temperature because theory indi-

cates that the losses are functions of the reduced temperature. As we 

have discussed in Chapter II, the losses at the higher temperature 

should be due almost entirely to the indium, whereas those at 1.90 K may 

be influenced by the tantalum substrate also. In neither case is there 

any definite trend to the data, either as a function of T for fixed d 

or as a function of d for fixed T. This agrees with experience of 

other observers. 

In view of the lack of any definite trend we have not graphed the 

data, nor do we feel that it is worth attempting to fit it to the 

general expression for the London two-fluid theory with losses due to 

the normal current and the dielectric, which has been derived recently 

by Swihart (36). 

There are two possible sources of variation which we should 

point out. The first is the vacuum. It seems likely that improvement 

-9 to 10 mm Hg would lead to much more consistent results. The second 

source of variation is the tantalum substrate. Budnick has shown that 

careful purification of tantalum causes a great improvement in the 
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Q Data 

FIlM d T Q1. 9 Q. 985T c 

31 300 402 550 51 
27 " 1497 183 30 
28 " 2110 406 70 

33 " 4520 153 40 
29 " 5210 340 79 
32 " 7560 309 49 
30 " ll500 208 60 

25 625 455 481 58 
16 " 10~ 96 21 
14 " 3025 35 16·5 
15 " 4200 28 16.5 
26 " 8785 165 46 

18 1755 413 265 31 
13 " 496 520 37 
II " ll40 52·5 16·5 

9 " 2375 19 
12 " 3140 770 45 
10 " 5~0 87 16 

23·1 " 8548 ll60 94 
23·2 " 8548 1040 
22 " 8844 960 63 

34 3400 1456 998 38 

Table VII. Q at Two Temperatures for All Films 
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superconducting properties (37). The sharpness of the temperature and 

magnetic field transitions is greatly increased, while the trapped flux 

is reduced. The latter would be especially important in our case, since 

small areas of normal metal caused by the trapped flux would lead to 

high losses, but would not affect the phase velocity much. Since trapped 

flux is roughly proportional to the flux present during transition, we 

cancelled earth's field to less than l~ with a Helmholtz pair of coils. 

It is possible that this cancellation was not correct in some cases, but 

one would expect this to occur at random r ather than just for the early 

films. 

Examination of the data for a single film gives much more consis-

tent results. The discussion given in Section II-B-2 showed that a 

suitable though semi-empirical expression for the surface resistance of 

a superconductor in the frequency and temperature region of interest is 

(IV-2l) 

where 

Equation 22 is valid within lei for 0.4 ~ t ~ 0 .8 according to Miller 

(25), who compared it with the results of the BCS theory. We also 

showed in Chapter II that the surface resistance is related to the mea-

sured Q and the slowing factor a:, defined as v/vk ' by 

(IV-23) 

We make the assumption in this discussion that all of the loss 

may be assigned to the indium. This is certainly not true (see Section 
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II-B-2), but we have no clear way to separate the two. This assumption 

is satisfactory for frequency dependence, but will cause errors in the 

temperature dependence. 

We first examine the frequency dependence. For fixed temperature 

a and ¢(t) are constant. Combination of equations 21 and 23 gives 

(t fixed) (IV-24) 

Thus if we graph m/Q versus m on log log paper we should find a slope 

of 2. As shown in Figure 29, this very nearly is the case, for the actual 

slope is 1.85. 

Unfortunately, data over a wide frequency range were taken for 

only one film. Since we can measure Q only at resonances which are 

integral multiples of the fundamental frequency, we must cover a wide 

frequency range in a technically difficult region. Film 31 had the 

lowest fundamental frequency, 98 mc, of all our films, so we were able 

to measure up to the fifth harmonic with our signal generator. For 

several other films data were taken at the second harmonic. 

Table VIII summarizes the results for all films on which measure-

ments at harmonics were made. We show f/Q and also fQ. The latter 

should be constant with frequency if for fixed temperature, as 

may be seen from equation 24. This is seen to be roughly true. Com-

parison of Figure 29 with the data for film 31 in the table shows that 

rather wide variations in fQ do not seriously affect the fit of the 

log log plot. The points of largest deviation in fQ seem to occur for 

high temperatures, 3.0 or 3.2
0

K, as in films 9, 25, 29 and 30. For 31, 

32 and 33 agreement is fairly good at 3 .2
o
K. 
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Table VIII. Effect of Frequency on Phase Velocity and Q 

Film T,oK f ,mc/sec vic Q f /Q f Q/l04 
0 0 0 

9 3·003 346 .1492 108 3.21 3·73 
694 .1500 167 4.15 1.16 

13 1.549 350·92 .1500 
696 .0 .1487 

16 1.832 281 .1196 
560 .1192 
839. 5 .1191 

25 3·198 175·17 .0758 108 1. 62 1.89 
353 .45 .0764 105 3·36 3·70 

2·999 205 ·30 .0887 148 1.38 3·04 
415·94 .09()l 76 5.48 3·10 

2.796 223·72 .0965 203 1.10 4.54 
451.81 .0977 104 4.34 4.70 

2.504 241.31 .1041 299 .807 7.21 
487. 38 .1054 107 4.55 5.21 

28 3·202 180 .82 .0778 116 
366 .03 

29 3·200 171.95 .0736 149 1.15 2·56 
340 . 34 .0731 106 3·22 3·60 

30 3·202 174.72 .0755 102 1.71 1. 79 
345.2 .0746 80 4.31 2.76 

31 3·297 98.07 .0424 176 ·556 1. 72 
191.00 .0413 99 1.93 1.89 
282.30 .0407 103 3·65 2·90 
344 .75 .0405 59 5.82 2.05 
466 .84 .0404 49 9.4 2·31 

32 3·202 180 .53 .0784 123 1.465 2.22 
356·36 .0773 69 5·16 2.45 

33 3·202 180 · 33 .0780 81 2.23 1.45 
356.54 .0771 42 8 .5 1.50 

1. 361 230.50 .0997 237 ·976 5·45 
455.10 .0984 105 .434 4.77 
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We have also shown in Table VIII the quantity vic, which is 

proportional to a This quantity should be, and in general i s, 

nearly independent of frequency . The variations present were probably 

due to small discontinuities in the properties of the structure, such 

as changes in thickness of dielectric or film. In most cases where v 

depended on frequency, pulse tests showed small reflections indicating 

discontinuities. 

In order to examine the effect of temperature, we must correct 

our data for the change in rn and a as the temperature was lowered. 

For measurements at a given harmonic (the fundamental in all cases 

described here) a was proportional to rn We assumed that R was 
s 

proportional to 
2 

rn Our frequency range was less than an octave in 

all cases; the difference between and 2
1

•85 (as found in Figure 29) 

was only 10~ which was satisfactory for our data. 

Combining equations 21 and 23 with a oC rn gave 

1 oC ¢(t) 
rn3Q 

In Figure 30 we plotted versus 

(IV-25) 

¢(t) for a number of films . 

For the best of these, e .g., films 31 and 18, the r esult was quite linear 

for ¢ < 0 .424 , which corresponded to t < 0.8, the upper limit set by 

Miller (25). Others, such as 26, showed a definite curvature for small 

¢ . In all cases it was necessary to assume a dependence of the form 

1 

rn3Q 
~ ¢(t) + C (IV-26) 

This was a l so found necessary by Kaplan, Nethercot and Boorse (20) 
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and Biondi and Garfunkel (23). Presumably the energy losses at zero 

temperature are those we have ignored; the effect of the 50 ohm ter-

mination, the losses in the dielectric, and possibly some energy losses 

out the sides of the strip, although these should be very small. In 

any case, we cannot definitely conclude from our experiment that the 

superconductor itself exhibits loss at zero temperature. 

Since our graphical results showed a fairly good fit to a straight 

line for most of the films for t < 0 .84 ,(¢(t) < 0 .6), we performed a 

least-squares fit over this range for all films. The results are given 

in Table IX. The slope, fractional expected error in slope, intercept 

and fractional error in intercept are given, as well as the standard 

error of estimate, which is a measure of the total scatter of the data 

from the line of best fit. 

The films noted as being poor previously, 10, 11, 14 and 15, 

show up again as very poor fits. Film 23.2 is based on only three 

points, hence the good results here are not too meaningful. Several 

films show poor fit because of one bad point; these are 9, 11, 12 and 

14. Probably this is due to some error. Several show distinct curva-

ture, clearly failing to obey the expected dependence. These are 10, 

26, 30 and 33. The rest fit quite well, with the three films with 

smallest T, namely, 18, 25 and 31, showing excellent fit. 

I n general our results show that there is fair agreement with 

a temperature dependence of t he form of equation 22. In view of the 

many sources of error, this is the best we can hope for. 

It might also be pointed out that a dependence of the form 

get) = 
-c (T) jkT 

e g 
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INTERCEPT 
aSIDPE l~)t =o 

STANDARD 
d SIDPE 

aINTER. ERROR OF n T 
SIDPE INTER. ESTIMATE 

31.0 299 402 25.45 .Ol7 1.05 .085 .l49 
27.0 299 l 497 l7.88 .03l 3· l5 .04l .220 
28.0 299 2110 8. l5 .048 1.3l .072 .l58 

33·0 299 4520 l 8.80 .084 3.84 .097 .627 

29·0 299 5210 9.42 .076 2.47 .on .295 
32 .0 299 7560 lo.45 .052 1.77 .074 .220 

30 .0 299 ll500 l5·52 .098 3·l0 .ll8 .6l7 

25·0 626 455 8 .93 .04l .42 .l82 .l28 

l 6.0 626 lo80 lO. 65 .027 3.94 .020 .084 

l 4.0 626 3025 20 .69 .l90 l3·02 .073 1. 362 

l5.0 626 4720 20.72 .256 l7.26 .086 1.595 
26.0 626 8785 8 .59 .094 l. 73 .l08 . 308 

l 8 .0 l754 413 5.83 .043 .57 .089 .082 

l 3·0 l754 496 l. 87 .038 .28 .063 .024 

ll.O l754 l740 3·3l .427 3·52 .ll4 .433 
9.0 l754 2375 .94 .684 .94 .233 .l52 

l2.0 l754 3140 ·95 .205 .24 .2l9 .056 
l O.O l754 5800 2.ll . 274 2. l 8 .079 .l89 

23·l l754 8548 .86 .048 .ll .lOO .ol8 

23·2 l754 8548 1.03 .Ol5 .ll .022 .002 

22.0 l754 8844 .8l .082 .l3 . l 3l .024 

34 .0 3402 l 456 .59 .05l .lO .064 .Oll 

Table IX. Least-Squares Fit of l/w3Q versus ¢(t) 
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could reasonably be expected from the energy gap model if we do not 

take the anomalous skin effect into consideration . This is reasonably 

close (within 20%) to the value of ¢(t) over the temperature range of 

interest, so that the data would probably agree about as well with 

g(t) as with ¢(t) • Since our data is rather inaccurate, and since 

g(t)' is not the correct temperature dependence, we have not attempted 

to see if this would give a better fit. 

c. Dependence of Tcrit on Film Thickness 

If we pl ot the cr itical temperatures of the indium films against 

their thickness, we see a systematic increase as the film is made 

thinner, as in Figure 31. This same effect was found recently by Toxen 

(12). He discussed the theory at some length. He considered the tem-

perature change to be due to stresses in the film caused by relative 

contraction of the substrate and the film on cooling. He found that 

the i ndium must flow plastically. He was abl e to compute the amount 

of stress in the film, and from the work of Jennings and Swenson (38) 

was able to relate this to the change in critical temperature. 

For indium on a vitreous quartz substrate, he found that 

T = T (OJ) + 52 _ 750 
crit crit T T2 

(IV-27) 

where T is in angstroms. He found that Tcrit(OJ) = 3.408 ± .0030
K. 

This function was plotted in Figure 31 as a solid line. The agreement 

with our data was quite good, although rather scattered and not as good 

as Toxen's. He found agreement in most cases within 2 millidegrees. 

His substrate was vitreous silica rather than tantalum, so it seems 
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surprising that the fit should be so good. However, if we examine the 

o contraction of the materials from room temperature to 4.2 K, we find 

that for indium 6. £/ £ = -7 .3x 10-3, while for silica _ it is -to.lx 10-3 . 

We have no data for tantalum at low temperature, but the room temperature 

coefficient is about 1/7 that of indium, so presumably the total contrac-

tion of the tantalum is also small. Hence the dominant effect in both 

cases is the contraction of the indium. Also, since plastic flow occurs 

in each case, the yield stress of the indium will be the determining 

factor. 

D. Effect of Static Magnetic Fields 

A few measurements were made of the effect of static magnetic 

fields on the phase velocity and Q A rather large effect was noted 

as compared with little or no effect observed by several other workers, 

for example,- Pippard (39) who found less than 3'1> change for a static 

field near the critical value. 

Our measurements were made with considerable misalignment between 

the film and the magnetic field, as discussed in Chapter III. As a 

result, parts of the tantalum substrate and the indium film may have 

been in the intermediate state, so our results are not very meaningful. 

Results for a film 14 are shown in Figure 32. A decrease of 2O~ 

in vic was observed. Q also decreased, but in more random fashion. 

The highest reading was as close to the critical field as possible. This 

was determined by the fact that no signal could be observed above this 

point. For other films the critical field ranged from 150 to 575 gauss. 

This was probably very dependent on the exact substrate - -film misalignment. 
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E. Pulse Response 

In order to locate the resonance, we first measured the pulse res-

ponse of t~e film. Since both ends were approximately open circuited, 

the reflection coefficient at each end was approximately +1 , so the 

pulse was trapped on the line. At the output we observed a pulse every 

two transit times. Since the line is one-half wavelength long, the 

fundamental frequency was the reciprocal of the pulse spacing. 

Figure 33 shows typi cal wave forms. The input pulse shown in (a) 

was the shortest possible from the mercury-switch delay-line generator, 

about 2 nanoseconds (2 x 10-9sec .). Figure 33(a) shows the pulse after 

attenuation by 60 db. 

o 
Figure 33(b) is the response at 3.380 K. Peaks are about 3.7 n sec 

apart corresponding to 265 mc/sec. Measured resonant frequency was 

275 mc/sec. The amplitude of the first pulse is 1/2000 that of the 

input pulse. For a line of impedance Zl feeding a line of impedance 

Z ,the signal should be attenuated by the factor 2Z / (Zl+ Z ) • For 
000 

this line whose spacing is 1750c;,., and whose width is ~. 35 cm, the per-

fect conductor impedance Zok would be ~ 5 milliohms. As given by 

equation II-54b, Zo for the super conducting line must be divided by a 

which is about 1/2. Using these numbers the expected attenuation is 

1/2500; fairly close to that observed. 

The pulses also show a decrease in amplitude. This may be con-

verted to an equivalent Q which agrees quite well with that found from 

resonant measurements. 

Figure 33(c) shows the response at 1.5860 K. a is larger, so 

response should be smaller, as observed. Pulse spacing is now 2.75 n sec 
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showing the result of the decrease in A. 

Figure 33(d) shows the same response after 1 ~-sec, i.e., after 

about 350 cycles. Ampli tude is down by a factor of about 1/2, while 

pulse shape is preserved well. The degeneration of pulse shape is 

caused by the relatively larger attenuation of the higher harmonics 

of the pulse. Clearly a super conducting transmission line would be 

satisfactory for storage of data pulses in a digital computer. Various 

switching techniques could also be used by causing magnetic fields to 

force certain parts of a pulse path into the normal state. 

In some cases fairly large spurious pulses were observed in 

between the usual pulses (those of Figure 33b are normal, caused by 

the shape of the input pulse.) Presumably these Were caused by reflec­

tions from discontinuities. When they were observed, the second 

harmonic was quite far from a multip~e of the fundamental, as would be 

expected. 

Measurements by Young, Swihart, Tansal and Meyers (2) were done 

entirely by this pulse technique. The principal disadvantage was the 

limited accuracy, probably not better than 5% for phase velocity mea­

surements. Resonance methods, on the other hand, are accurate to better 

than 1% and probabl y to 0.5%. 

F. Summary and Conclusions 

We have derived a theoretical expression for the dependence of the 

phase velocity in a transmission line formed of two different super con­

ducting materials; one conductor is of finite thickness; the other is 

assumed infinitely thick but our derivation may be readily modified for 
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finite thickness. We have specialized our equations to two important 

cases: first to the London phenomenological, two-fluid, two-parameter 

theory (3), which assumes a local or point relation between vector poten-

tial and supercurrent; and second to the Bardeen-Cooper-Schrieffer theory 

(5), based on a quantum mechanical microscopic model. The latter yields 

a dependence of current on the integral of the vector potential over 

-4 
volume of radius approximately 10 cm, the coherence distance. (The BCS 

theory gives a quantum mechanical justification of a phenomenological 

non-local theory proposed by Pippard (6); we have not discussed the latter 

separately.) For zero range, i.e., 6k = 00, the BCS theory reduces to the 

London theory. 

We find that the theoretical dependence of the quantity 2 (c/v) on 

t he finite film thickness T differs significantly in the two cases. For 

the London theory 
2 (c/v) decreases monotonically to a fixed value as T 

increases. 2 For the BCS theory, (c/v) decreases to a minimum, then rises 

to a fixed value somewhat above that for the London theory. 

Our experimental results, which are based on a structure using 

tantalum for the thick superconductor and vacuum evaporated indium for 

t he thin one, show no minimum. In general they seem to fit the expected 

curves derived from the London theory quite well. We conclude that our 

material has a very short coherence lengt h compared to a penetration 

depth (a coherence length of zero corresponds to the London theory). This 

may be the result of impurities in the thin film resulting from the 

vacuum evaporation process used to form the thin film.' 

For T large, the experimental value of 
2 (c/v) approaches a 

constant. This is in direct contradiction to the predictions of 

another non-local theory--that of Schafroth and Blatt (11). 
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Extrapolation of the data to zero temperature gives values for 

the penetration depths ~n(O) and \ra(O) at zero temperature. 

~n(O) is found to be 640 ± 75~ , quite close to Lock's value of 640~ 

(16), and also Toxen's values for thick films, 625 to 725~ (12). 

The value for \ra(O) is found to be 580 ± 175~ Apparently 

no other investigat6~s have measured \ra . 

The penetration depth A, which enters into the expression for 

2 
(c/v) , is temperature dependent. The London theory and the BCS theory 

predict slightly different dependence, but experimental results of other 

investigators do not show clearly which is correct. We have used t he 

London dependence, since it is somewhat Simpler . 

The phase velocity tends to zero at the critical temperature Tcrit 

of indium; therefore suitable extrapolation of our phase velocity data 

yields T . 
crit 

Once T 0t is found we may use either the London or BCS thickness 
cr~ 

dependence to find a value of ~n(O) + \ra(O) . It has been found that 

the value of ~n(O) is relatively insensitive to the choice of a value 

Hence we assumed the latter and calculated t he former. For 

the London dependence the average values of ~n(O) over all films 

ranged from 730 ± 140~ for \ra = 400~ , to 680 ± 115~ for \ra = 700~. 

Values derived using the BCS theory were about 50~ lower, with about the 

same spread. For the BCS theory we used a value of 6 k'Ln = 0.186, cor­

responding to a coherence length of about 3500~. 

Accuracy of fit to the data was about the same for the two theories. 

Hence we cannot use these results to decide which is a more valid des-

cription of the superconductor. 
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The critical temperature of indium, T 0t' was found to depend crJ. 

on film thickness T, in good agreement with a theoretical expression 

derived by Toxen (12). 

Dependence of losses on frequency follows quite well the theoreti-

2 
cal increase as ill 

Losses from the 50 ohm load at each end, and from the dielectric 

are shown to be negligible. Losses from the tantalum and indium 

cannot be separated. We show that losses due to the tantalum are vary-

ing appreciably in the temperature range of interest, but we cannot show 

whether they are small enough to be neglected. Nevertheless, we find 

that if we assign al l of the l osses to the indium, a moderate l y good 

fit to an empirical temperature dependence proposed by Pippard (22) is 

found. 

Preliminary measurements of the dependence of 2 (c/v) on static 

magnetic field show a much larger dependence than would be expected 

from the results of Pippard (39), and others. This may be the result 

of the existence of regions in the superconductor which are in the 

intermediate state. 
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V. IMPROVEMENTS AND EXTENSIONS 

A number of improvements in technique have been mentioned in the 

previous chapters . In this chapter we review these in more detail. 

A. Vacuum 

The change most likely to improve the results is better vacuum. 

This may increase the coherence length of the evaporated superconductor 

and may also lead to less scatter in 
2 

(c/v) and Q data. Improvement 

in technique (primarily in oil diffusion pumps with reduced oil back-

streaming and liquid nitrogen cooled traps which prevent creep of oil 

along warm surfaces into the working vacuum) has made possible demount­

-8 
able systems with vacuum better than 10 rum Eg . during evaporation. 

Other possible techniques include the use of gettering type pumps which 

-10 have nearly constant pumping speed at least to 10 rum Hg. A recent 

improvement has increased the pumping speed for noble gases. 

As discussed earlier, Caswell has shown that selective pumping for 

oxygen, water vapor and carbon dioxide produces films at an over-all 

- 6 
vacuum of 10 which are identical in super conducting characteristics 

to those in a normal vacuum of 10-9rum (35). Selective pumping is done 

by the use of getters for oxygen and a cold plate for water and CO2 . 

We use a liquid N2 cooled plate pump now, but have no special mechanism 

to pump oxygen. 

Another possible improvement is pumping with a finger containing 

liquid He2. If this were done we might at the same time hold the sub­

strate near liquid He2 temperature to reduce clumping and hence obtain 

thinner films and more uniform thickness. In fact, we might do the 
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entire evaporation in the experimental dewar, as did Glover and Tinkam 

(9). This would eliminate exposure of the film to atmosphere as well. 

It does pose some problems in accurate thickness measurements, however. 

Gl over and Tinkam ~sed resistance but our experience on reproducibility 

has been poor. One method that has become widely used recently is 

measurement of the change in resonant frequency of a crystal which has 

been exposed to the evaporation. The frequency shift is linearly pro­

portional to mass deposited to good accuracy, even though repeated 

evaporations are made without removing the previous deposit. The method 

is not absolute, but calibration against measurement by interferograms 

would be easy. 

B. Elimination or Improvement of Tantalum 

A second major improvement would be the elimination of the tantalum 

and tantalum oxide. This would remove the uncertainties in super conduct­

ing properties of tantalum, which is well known to be a rather poorly 

behaved superconductor unless it is extremely pure. Even if we purified 

the tantalum we would still not know \ra or the l osses which we might 

expect from the normal current. 

At the time our experiments were started, the use of anodized 

tantalum seemed to be the only way to prepare thin, uniform, pin-hole 

free dielectrics of known thickness. Since that time two new techniques 

have been developed for making thin dielectric films. The first is 

simply an improved method of evaporating SiO. By evaporating the SiO 

in a hollow chimney structure, rapid deposition can be made euen 

though the hot SiO is shuttered from t he film. Since the high velocity 

particles from t he SiO appear to cause the pin holes observed in thin 
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films, this method yields much thi=er pin-hole free films. 

A second method, developed by Christy (40), uses an electron 

beam to polymerize silicone pump oil vapor into a dielectric layer. 

Pin-hole free films as thin as 200i have been prepared this way in 

our laboratories. 

By using the dynamic thickness measuring method described above 

and one of the two methods of forming dielectric films, we could con-

struct a transmission line using indium of the same thickness for both 

strips. This should reduce the uncertainties involved in calculating 

L. and in measuring the losses in superconducting indium. -In 

Once the properties of indium are accurately known, it would be 

interesting to return to the tantalum-Ta20
5
-indium structure in order 

to measure the properties of tantalum. To date there appears to be no 

measurement of A.ra' probab;t.y because until recently it has been a 

difficult material to work with, showing poor super conducting proper-

ties. Recently, however, Seraphim, Budnick and Ittner (41) have 

developed a method of purification which yields tantalum of excellent 

and reproducible properties. This has been reported by Budnick (37). 

To purify the tantalum it is heated to about 2700 to 2900
0
K in a 

-8 
vacuum of 1 or 2 x 10 IIDn fig. This is followed by introduction of 

oxygen at pressures in the range of 1 to 4 xlO- 5mm for several hours 

to remove carbon. -9 Residual resistivity was 10 ohm.cm, about 100 times 

better than previous results and was of the order of that reported for 

zone refined copper and silver. Temperature and magnetic field tran-

sitions were extremely sharp and reproducible. Such a process should 

be carried out on tantalum before further measurements of penetration 
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depth and surface resistance are made. Another interesting possibility 

is the use of evaporated tantalum films. Marchand and Venema (42) 

produced films with the critical temperature and field of bulk metal 

-ll by evaporation from a hot tantalum filament in a vacuum of 10 rom Eg. 

This was obtained by using a sealed glass system pumped by liquid 

nitrogen trapped mercury diffusion pumps. 

Another improvement of interest would be the reduction of the 

dielectric thickness. Since d and ~n are added in the expression 

for (c/v)2, reduction of d would show the nature of the dependence 

of ~n on temperature and film thickness more clearly. Also, if the 

dielectric layer were thin enough, tunneling between the two super con-

ductors would take place. This should yield negative resistance, so 

that by proper biasing a microwave oscillator could be built. In fact, 

in their report of the initial work on super conducting tunneling, 

Giaever and Megerle report that such oscillations interfered with 

their measurements (43), but they do not discuss such details as amp-

litude or frequency. 

The principal difficulty in preparing films on very thin 

dielectrics is obtaining a pin-hole free dielectric. For this reason 

some sort of oxidation such as the tantalum anodization used for this 

experiment is probably necessary. 

C. Effect of Magnetic Field 

We have shown preliminary results of the measurement of the 

effect of magnetic field on phase velocity. By construction of ap-

paratus which would permit precise alignment of the magnetic field 

parallel with the film, we should be able to get an accurate measure­

ment of the dependence of A on magnetic field, a topic of theoretical 
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interest. The principal experimental problem is to insure that the 

entire film is in the same magnetic field, a condition which is not 

met if the film is not exactly parallel to the field . 
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APPENDIX A 

Derivation of the Velocity Function (c/v)2 

1. London Theory. A similar derivation is given 

we repeat it here both for completeness and because 

by Swihart (14) but 

(c/v)2 for the 

non-local theories is derived by a modification of the same method. 

We use the following definitions and conventions 

c = free space phase velocity = l/J u € o 0 

v = phase velocity of wave on super conducting line 

cr equivalent normal conductivity of superconductor 

€ permittivity of free space 
o 

~o permeability of free space 

K r elative dielectric constant of dielectric 

1\ London parameter = IDs/pses 

A = London penetration depth = JJ\/~o 

t3 

k 

Y 

k 
o 

propagation constant = (J)/v 

wave number = (J)~ € K o 0 

Vt32 _ k2 

and are for free space 

~F and YSF refer to the super conducting indium film 

~ refers to the super conducting indium film, and is about 600~ 

and refer to the dielectric between the film and the sub­
strate of relative permittivity K 

~S and YSS refer to the super conducting tantalum substrate 

\ra refers to the super conducting substrate and is about 500~ 

normalized surface impedance 
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We first give the solution of Maxwell's equations for a dielec-

tric; then we show that if we choose a suitably defined dielectric 

constant we can obtain similar solutions for the superconductor. 

We assume a wave propagating i n the z direction (see Figure 34) 

j(rnt- t3z) 
so that all field functions vary as e We neglect attenua-

tion. The structure extends to infinity in the x and 

very good assumption, since width/thickness is of the 

It is of thickness T in the y direction. 

z directions (a 

4 order of 10 ). 

From the curl equations one may derive the following relations* 

( 44) 

H 
x 

_ ~ [ j rnE dEz _ 
2 dY 

Y 

jt3 _z dH ] 
dX 

1 
H = 2 

y y [

dE 
jrnE d~ + 

dH ] 
jt3 a; 

. z . z 
[

dE dH ] 
Jt3 - + J£ql­

dX dY 

(A-la) 

(A- lb ) 

(A-lc) 

(A-ld) 

We have here the customary division into E modes and H IllOdes. If 

we assume E mode solutions (H = 0) and no x dependence, the rela-

tions become 

H 
x 

E 
x 

o (A-2a) 

(A-2b) 

*Ramo and Whinnery's y is our jt3. Also, their y2 + k2 is our 
2 

-y 



E 
Y 

jt3 
2 
Y 

dE 
z 

dy 
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(A-2c) 

Hence we need solve only for E . H and E are derived from it. z' x y 

In a dielectric of permittivity € = €oK ,permeability ~o 

with no free charges or currents, we have (44) 

2 
=-(1)~€KE 

o 0 Z 

2 
- k E o Z 

(A-3) 

Upon applying the assumptions of independence of x and dependence on 

of the form e- jt3z we have , Z 

or 

d~ 
Z 

= 

2 
r E n Z 

2 
kn E 

Z 

Since we wish slow wave solutions, i.e., (vic) 
(1)J~€K o 0 

(A-4) 

= 

~t3 < 1 , we see that Yn is real, hence the solution is of the form 

E 
Z 

or the equivalent exponential form. 

(A-5) 

In the superconductor we have the field equation (see equation 

II-16) 

Hence if we replace € K by 
o 

1 
2 (1) A € 

o 

E (A-6) 
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(A-7) 

we can use the above derivation, providigg we also replace ~ and 

Y
D 

by the appropriate 

~ 

k 
s 

and for the superconductor. 

low frequency approximation we neglect the first two terms so 

and 

2 
Ys 

€ 
S 

k 
s 

= 

A/ = -
1 

u}t;. 

2 
=-illf1€ o S 

13
2 

-
2 

k ~-s 

In the last equation we have 

this as follows: 

ill 

V 
= 

2rl' 
v 

~ = -

k
2 2 1 

4- ill f1 € 
")...2 s o s 

used the fact that 13 « ks 

2:n: 
wavelength 

Since t he wavelength is of the order of centimeters and since 

In the 

(A-8a) 

(A-Sb) 

(A-8c) 

We show 

k ~ .! ~_=l_~_ 
s ")... 5 xlO- 6 cm then k » 13 , so we neglect the 13

2 
in the s 

2 
expression for Ys • 

and the solution is 

E z 

Our result then is 

(A-9) 

(A-10) 

We now must match the boundary conditions at the three interfaces. 

These are usually stated as requiring that ~AN and H.rAN be con­

tinuous, but all t hat is really required is that the dimensionless 
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surface impedance 1] = ETAN/I-lo c BTAN be continuous. This is somewhat 

more convenient since we can choose our coordinate zero at different 

stages of the solution, then transform the impedances to a common point 

and match. 

is 

Assuming an E mode solution, the surface impedance in a dielectric 

1] 

E 
z 

cl-l H o x 
(A-ll) 

I n the superconductor we may substitute the values from equation 

A-8 into equation 2b. The surface impedance becomes 

(oo/c) E 
z 

j oE lOy 
z 

(A-12) 

We are now prepared to match surface impedances. We will first 

consider y = 0 at the upper film edge (see Figure 34), match imped-

ances across this interface, then transform the film impedance to the 

lower edge. 

In the region above the film (which we take to be free space), 
- Yoy 

E Ae , since we must z take only the solution which is not infinite 

at y = 00 . We have 

1] - Y I (001 c) o (A-13) 

In the superconductor both exponentials are permissible, hence 

(A-14) 

and 
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Figure 34. Superconducting Transmission Line 
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1') 
(tanh YSFY + C) 

( 1 + C tanh Y SFY ) 
(A-15) 

Equating A-13 and A-15 at Y = 0, we find that C 

Inserting in A-15 we have 

_ j (m/c) 
YSF 

(A-16) 

We now transform to the film dielectric interface by taking Y - T 

YoYSF 

_ j (m/c) 
YSF 

2 - tanh YSFT 
(m/c) (A-l7) 

We simplify this 
Yo YSF 

greatly by noting that C = (mjc)(mjc) is much 

larger than 1. Since 2 A2 m
2 

b d f· ·t· th f· t f t Yo = fJ - 2 Y e lnl lon, e lrs ac or 
c 

must be greater than 1. The second, if we use A-8a and note that 

(c/m) is the free space wavelength, becomes (wavelength/~n). Since 

the free 

is about 

space wavelength is of the order of centimeters, while 

-6 
5 xlO cm, this factor is very large . Since tanh YSFT 

at most 1, we may neglect it in the numerator. In the denominator, 

is 

however, we note that YSFT = T/~n ' and that this will never be ex­

tremely small, since we are unable to make films for which T« ~n 

so that tanh YSF T will never be much smaller than 1. Hence we may 

neglect the first term. We have then 
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- j (ill/C) coth Y T 
SF YSF 

(A-18 ) 

This approximation completely removes any effect of the volume above 

the film, since Yo no longer appears. Thus the film may be covered 

with a dielectric layer (as we do) or placed near metallic objects such 

as the silvered dewar with negligible effect on propagation velocity 

v In essence this occurs because nearly all the energy travels 

either in the superconductors or in the insulating layer. 

We now repeat the calculations at the dielectric-substrate inter-

face, which we now take to be y = o. After equating impedances, we 

will transform the impedance in the dielectric to y = d , i.e., the 

other side of the interface for which equation A-18 is valid. 

In the substrate we must choose 

E D 
YSSY 

e 
z (A-19) 

Hence 

11 - j (ill/C) 
YSS 

(A-19) 

In the dielectric we have 

E = F(sinh yDy + G cosh yDy) 
z 

Hence 

( YD 
tanh yDy + G ) 

11 j 
(ill!c)K l+G tanh yDy 

(A-20) 

Equating A-19 and A-20 we find 
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2 2 
G = - (ill /c )K which is much less than 1. 

'SS 'D We then substitute into 

A-20, and transform ~ to the dielectric-film interface by setting 

y = d. We have 

~ = j (ill!c)K 

2 2 
tanh r d _ (ill /c )K 

D 'SS'D 

2 2 
1- (ill Ic )K tanh r d 

'1 '2 D 

(A-21) 

(ill2/c2)K . 
~s very small compared 

'SS 'D We may again simplify by noting that 

to 1 , since (ill/c)K/'n is less than 1 and (ill/C)! • . = SS 

A.ra /Free Space Wavelength «1 by arguments used before. Also ,Dd 

is of the order of lOOO~/l meter and hence is so small that 

We now have 

2 
Equating A-22 and A-18 and solving for 'D we have 

We now find 

~2 = 

2 (c/v) by noting from the definition that 

2 
~K 

2 
c 

(A-22) 

(A-24) 
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c 

(J}2/fl 

2 c 
~ 
v 
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K [ 1 coth Y T ] _ d + __ + SF 
d , ySS Y 

SF 
(A-25 ) 

We have made use of the relationship that the phase velocity v = (J}/~ 

We can put this in a more familiar form by noting from A-Bc that 

2 
c 
"2 
v 

and ~n ' 
so 

~ [d + A.ra + '"In coth T/~n ] (A-26) 

2. Non-Local Theories. We wish to find the surface impedance of the 

upper film of Figure 34 at the film-dielectric interface. We will match 

this with the surface impedance of the substrate transformed to the 

lower side of the same interface. This latter impedance was derived 

in the previous section. 

We follow a method developed by Gould based on Schrieffer's 

derivation of magnetic susceptibility (10) of a thin super conducting 

film. Consider just the upper film, as shown in Figure 35. We assume 

a field B = B at the lower surface. We also assume that the surface 
x 0 

impedance is infinite and hence Bx o at the upper surface, as in 

Part 1. Surface currents flow in the z-direction at and near the x-z 

plane which shield H from the interior of the metal. 
o 

We calculate 

the vector potential A 
z 

from whi ch we obtain E 
z 

and hence the sur-

face impedance T} = E leB . z x 



-127-

y 

B x = 0 

z 

) x 
B x = Bo 

Figure 35. Boundary Conditions on Magnetic Field 
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We make two further assumptions; first that no free charge is 

present, which is strictly true only for the static case. Since the 

wavelength of our disturbances is of the order of centimeters as com-

pared to film thicknesses of a few thousands of angstroms, the neglect 

in the variation of surface current density in the z- direction is justi-

fied. We must consider time dependence of A, however, to compute 

- oA 
E = - ot ' so strictly speaking we analyze the quasi-static case. In 

this case, it is convenient to choose a gauge in which ~. A = 0 

Secondly we assume that an electron striking a surface is reflected 

specularly (as from a mirror). Schrieffer considers the case of diffuse 

reflection for the Pippard case, but shows that the magnetic moment is 

not very sensitive to the choice. Because of mathematical difficulties 

he does not solve the case of diffuse reflection for the BCS theory. 

To meet the boundary condition of specular reflection we must con-

struct a solution in which the B, E and J fields in the z directions 

are symmetric about each boundary, but in the y direction are antisymmet-

ric. Thus an electron approaching a boundary will be met by one with the 

same z velocity but opposite y velocity . Hence as the two cross the boun-

dary an apparent specular refl ection will take place. 

We construct the periodic solution whose general form is shown in 

Figure 36b. This satisfies all boundary conditions, but requires B field 

discontinuities of amount 213
0 

at y = 0 , ± T , ± 2T, etc. These are 

obtained by al lowing current sheets, J* at these pl anes, as shown in 

Figure 36b . Application of Biot and Savart's l aw to a small loop in the 

x-z plane yiel ds 

J* 213 /',). . 
o 0 

(A- 27) 

We now have a periodic problem to which we may apply Fourier analy-

sis, using the k space re l ationships between current and vector potential 

described in Chapter II. We shall solve with a general kernel, then special­
ize. 
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Figure 36 (a) Equivalent Current Sheets to Introduce Periodic DiscoD­
tinuities in Magnetic Field 

(b) Genera l Form of Final Solution 
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We require the representation of the source current sheets in a 

Fourier series. Since the currents are syl!lllletric about y = 0 , and 

are 5 functions of value 2Bo/~o' the space representation is 

2B 00 

J*(y) = e z ~o L 5(y- 2m) 
o n=-oo 

(A-28) 

USing the usual integral expression for the coefficients of the Fourier 

series, we find that 

= 
B 

o 
~ T o 

Thus the space representation is 

B [ - 0 
=e -- 1+2 

z ~ T o 

n F 0 

n o 

00 

L 
n =1 

n:rr ] cos -:; y 

The electrodynamic equation we wish to solve is 

\lxB 

(A-29a) 

(A-2gb) 

(A- 30) 

(A-31) 

Since B = \l x A and \l. A = 0 J we may use the vector identity 

\l x \l x A = \l (\l .Ii:) - \l2X to obtain 

We now Fourier transform this with respect to y, noting that for the 

quasi-static case we are considering all quantities as functions of y 

only, so 
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(A-33) 

Since the problem is periodic, we must express k as the discrete 

variable k 
n 

k 
n 

nl( = e 
T Y 

(A-34) 

We now make use of equations A-29a and A-29b and also equation 11-34 

which is 

J (k) 
s 

- 1:.. A(k) K(k) 
!-Lo 

We have two equations for the components 

2B 
= - A(k ) K(k ) 

n n 
o +­

T 

o = - A(O) K(O) 
B 

o +­
T 

Solving these and forming the Fourier sum 

A (y) 
z 

Bo [b + 2 f ;os knY ] • 
T K~OJ n= 1 k + K(k ) 

n n 

(U-34) 

(A-35) 

(A-36) 

(A- 37) 

We are now able to compute the surface impedance, since in the 

- OA.-gauge with 'V • A = 0, E - ot = -J ooA. Using this and recalling 

E.rAN that the surface impedance 11 == -- we have 
CB

TAN 

I 
j (00/ c) [1 2 11 = - :;:;:T;;"\ + 

T K~OJ o 

OJ 

L 
n = 1 k

2 
n 

(A-38) 

Comparing the impedance at the same point for the local theory, equation 
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A-1S,with the final expression for (c/v)2, equation A-25, we see that 

we might have written the latter as 

(A-39) 

Hence we can define a length associated with the indium film 

co 
L = j 

1 
L (A-40) 

T 
n= 1 

We cannot express this in closed form so we must use a computer to cal-

culate L for different kernels and for various values of T. 

For the Pippard theory we may express this in dimensionless form 

using the kernels from Schrieffer's paper (10) 

= £; [1 + 2 f 
n=l 

1 

(A-41) 

Here k n:n: as before and £ I:i For metals n T p ~~ pure 

reduces to ~o so that £ = A/~ For impure metals ~ becomes p 

smaller as discussed by Pippard (6). Note that k £ 
'- np 

that the expression sk may be written in the form 
n 

= nd IT and 
p £ 

(~I £ )(n:n: ---E) so 
p T 

that the entire function depends on two dimensionless parameters ~/tp 

associated with the r~ge of integration and 
, 

thickness of the film. 

For the BCS theory we have 

Tit , the normalized 
p 

~ 
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r..aCS ~ [1 + 2 
CD 

"'(1 + kn ) ] 
L 1 

~ T (A-42) 
n= 1 2 !:>.k 

(k
n 

.e
B

) + --k !:>.k n 

n1(~ & n1(~ 
and - =!:>. k£ /--

k B T 
n T 

Here ~ = J 4/3 "L. Again we may write 

so the entire expression is a function of a dimensionless range parameter 

!:>.k£B and a normalized thickness T / ~ 

We have chosen to leave in and ~ rather than reduce to 

AL because we wish to have these parameters free to adjust L to equal 

the best fit to our experimental data. 

Graphs of ipIPPARD 

various values of ~/.ep 

and 

and 

are given in Figures 5 and 6 for 
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