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ABSTRACT 

In this thesis finite groups whose maximal subgroups are of 

prime or prime square index are studied. The main problem considered 

is to find out to what extent this property is inherited by subgroups. The 

principal results are: this property is inherited by all subgroups if the 

group considered has odd order. This is not necessarily true if the 

group has even order. Let n be a positive integer. A group G of 

even order is constructed which contains a subgroup H, and H contains 

a maximal subgroup W with I H:W I larger than n. 



-1-

I. INTRODUCTION 

The object of this thesis is to investigate finite groups all of 

whose maximal subgroups are of prime or prime square index. 

A short but ingenious arithmetic argument was given by P. Hall 

which showed that groups with the above property are solvable. 

B. Huppert proved that a finite group all of whose maximal sub­

groups are of prime index is supersolvable. We recall that a super­

solvable group is a group in which all of the chief factors are of prime 

order. The essence of Huppert's theorem is that if all maximal sub­

groups of a group G are of prime index, then this property is inherited 

by all subgroups of G. 

Let G be a group all of whose maximal subgroups are of prime 

or prime square index. We shall prove that all subgroups of G inherit 

this property, if G has odd order. In case the order of G is even, 

this need not be true. In fact, given a positive integer n, we shall 

construct a G of order Zapb, where p is any odd prime, such that 

G contains a subgroup and this subgroup in turn contains a maximal 

subgroup of index greater than n. This is done in section V. 
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II. NOTATIONS, DEFINITIONS AND RESULTS 

FROM THE LITERATURE 

The following is a list of notations which will be used: 

I G I = the order of G; H ~ G means H is a subgroup of G. 

here H = G is permitted; H < G means H is a subgroup of G, ,but 

H '* G; H ~ G means H is a normal subgroup of G, possibly H = G; 

H <l G means H is a normal subgroup of G, but H,* G; Z(G) = the 

center of G; ~(G) = Frattini subgroup of G; 6(G) = the intersection 

of the non-normal maximal subgroups of G; r (G) = the p-rank of the 
p 

solvable group G; GL(2, p) = the group of all non-singular 2 x 2 mat-

rices with entries in the field of p elements; < A. B> = the group 

generated by A and B where A and B are subsets of a group G; 

J = the field with p elements, 
p 

A detailed discussion of the Frattini subgroup ~(G) can be found 

in Ref. 1. The remaining terms with the exception of p-rank are clear. 

The definition of p-rank is given below. 

The following is a list of definitions which will be used: 

Let p be a prime which divides the order of the solvable group 

G . Suppose that among the chief factors of G, which have order a 

power of p,. the exponent s is the largest one which occurs. Then s 

is the p-rank of G and is denoted by r (G). It is possible that G has 
p 

several chief factors of order pS . 

A group G is said to have an ordered Sylow tower if it possesses 

a series 
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si s· 
with G/Gi+l of order Pi • where PI < P2 < . " < Ps and Pi 1 is the 

highest power of p. which divides I G I. 
1 

Let G be a group of all whose maximal subgroups are of prime 

or prime square index. We shall say that G has property M . 

The results from the literature not found in the standard texts 

are: 

2. a. Let G be solvable. 
jp 

Let p be the highe st power of 

p which occurs as an index in some maximal chain of subgroups of 

G. Then jp = rp(G) ((3) pg. 411). 

2. b. If N is a normal subgroup of G and A a subgroup of 

G such that N ~ fjI(A), then N ~ fjI(G) ((4) pg. 162). 

2. c. In a group G the subgroup .0.(G) is nilpotent ((4) pg 167). 
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III. THE MAIN THEOREMS 

Let G be a group with property M. By Theorem 10. 5. 7 of 

Ref. 1 G is solvable. The proof of this theorem yields more informa­

tion than just the solvability of G. This we state as 

Theorem 3.1. (P. Hall) Let G be a group with property M. Then 

there exists a series G ~ K ~ 1 with I KI prime to 6. I G/K I = Za 3b 

and K has an ordered Sylow tower. 

Proof: See the proof of Theorem 10.5. 7 of Ref. 1. 

If Z does not divide I G I in the above theorem. then G has 

an ordered Sylow tower.. The same is true if 3 does not divide the order 

of G. 

Lemma 3. 1. Let K be a subgroup of GL(Z, p) which has odd order 

and order prime to p, with P > 3. Then K is abelian. 

Proof: The group GL(Z, p) has a normal subgroup G of index Z con-

sisting of those matrices whose determinant is a square. We observe 

that G ~ K and G ~ Z, the center of GL(Z, p) consisting of all scalar 

multiples of the identity. 

A list of subgroups of G/Z can be found in Ref. Z on pages 

447-450. The subgroups of odd order and order prime to p are cyclic 

and have order a divisor of p + 1 or p - 1. Thus KZ/Z is cyclic. 

and hence KZ is abelian. This implies that K is abelian. 
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LeInIna 3. 2. Let G be a finite subgroup of the Inultipliative group 

of a field F. Then G is cyclic. 

Proof: Clearly G is abelian. Suppose G is of exponent n. Then 

every eleInent of G is a root of xn - 1 = O. But the roots of this equa-

tion forIn a cyclic group. Since G is a subgroup of this group it follows 

that G is cyclic . 

LeInIna 3. 3. Let G be an abelian group, and let p be an irreducible 

representation of G over the field F. Then p(G) is cyclic. 

Proof: Let A be an F - G Inodule which yields the representation p. 

Then A is irreducible. By Schur's LeInIna (TheoreIn 16. 6. 2 on p. 269 

of Ref. 1) the ring of operator endoInorphisIns of A forIns a division 

ring. This division ring is isoInorphic to the ring of n x n Inatrices 

whose eleInents a satisfy 

p(x)a = ap(x) 

for every x in G (C orollary 16. 6. 1 on p. 268 of Ref. 1). But the Inat-

rices p(x) for x in G are aInong the choices for a and are therefore 

in the center of this ring of endoInorphisIns . The center of a division 

ring is a field so that p(G) is a subgroup of the Inultiplicative group of 

a field. Thus, by leInIna 3. 2, p(G) is cyclic. 

LeInIna 3 . 4. Let G be an irreducible subgroup of GL(2, p), which has 

odd order and order priIne to P. with p > 3. Then G is cyclic, and 

't d . d" f 2 1 1 S or er 1S a 1V1sor 0 p - . 
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Proof: By lemma 3. 1 G is abelian, and by lemma 3. 3 G is cyclic. 

Suppose < g > = G. If the characteristic equation of g were reducible 

over J • then g would be similar to a diagonal matrix. This con­
p 

£licts with our hypothesis. 

Suppose lJ!(x) is the characteristic polynomial of g and is ir-

reducible over J. Then lJ!(x) has degree 2. By Theorem 11 on p. 128 
P 

of Ref. 5, it follows that lJ!(x) is a divisor of 

2 
g(x) = x P - x . 

2 
Hence lJ!(x) is also a divisor of x P -1_1. By the Cayley-Hamilton theorem 

we must have 

2 
P -1 g 1 = o. 

Thus 
2 

P -1 
g = 1. 

proving the lemma. 

Lemma 3. 5. 2 Let G be a cyclic group whose order is a divisor of p - 1. 

Then every irreducible representation of Gover J p has degree one 

or two. 

Proof: Since I G I is prime to p the representations we are concerned 

with are ordinary. Let p(G) be an irreducible representation of G 

over J. Consider the matrix A = p(g) where G = < g>. 
p 

We have 

2 
AP -1 

= 1. 



-7-

where A has entries in J and p(G) = <A>. The rn.inirn.urn. poly-
p 2 2 

norn.ia1of A is a divisor of xP -1_ 1 and hence also a divisor of x P - x. 

Let p(x) denote an irreducible po1ynorn.ia1 over J which divides 
2 p 

x P - x. By Theorern. 11 on p. 128 of Ref. 5, it follows that p(x) has 

degree one or two. Thus the characteristic equation of A is a product 

of irreducible po1ynorn.ia1s of degree one or two lOver J , since every 
p 

irreducible polynorn.ial which divides the characteristic po1ynorn.ial 

also divides the rn.inirn.urn. polynorn.ial. 

We rn.ay therefore write 

where the p.(x) are rn.onic irreducible po1ynorn.ia1s of degree two over 
1 

J and the q.(x) are of degree one over J . 
P J P 

Since the representations we are dealing with are ordinary, it 

follows that A is sirn.ilar to a diagonal rn.atrix over a suitable finite 

extension of J. We rn.ay write 
p 

where E .• O. are the roots of p.(x) and y. is the root of q.(x). The 
1 1 . 1 J J 

elern.ents Yl"'" Ys are in J p but the Ei and 0i are not in J p ' 

The rn.atrix 

A. 
1 

where p.(x) = x
2 + b.x + c. is sirn.ilar to the rn.atrix 

1 1 1 
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(

Ei 0) 
o 0. 

1 

because they have the same invariant factors. 

This implies A is similar to the matrix Al $ ... E.l)AtE.l) [ VI] $, .. 

E\)[ V
t
] ' We note that p can be irreducible over J p only if t = I and 

s = 0 or if t = 0 and s = 1. This proves the lemma. 

Lemma 3.6. 
2 

Let G be an abelian group of exponent dividing p -)" 

over the field J. Then every irreducible representation of G ove1' 
p 

J has degree one or two. 
p 

Proof: Let p be an irreducible repre sentation of Gover J. By 
P 

lemma 3. 3 the group p(G) is cyclic and by our hypothesis p(G) hag 

order dividing p2 - 1. This means p(G) is an irreducible representation 

of a cyclic group whose order divides p2 - 1. By lemma 3. 5 we are done. 

Theorem 3. 2. Let G be a group of odd order which has property rv1. 

Then r (G) ~ 2 for all primes p which divide the order of G. 
p 

1?roof: Assume the theorem is false. Choose G to satisfy the hypo th-

esis but not the conclusion and to be of minimal order subject to thet#e 

conditions. Note that if N is any normal subgroup of G larger tha n 

the identity. then GIN satisfies the hypothesis and hence the conclu,sion 

because of the minimal nature of G. 

If G contained two distinct minimal normal subgroups, say NI 
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and N Z' then Nl would be isom.orphic to a chief factor of G/NZ so 

that G would satisfy our conclusion. contrary to assum.ption. We m.ay 

therefore assum.e that G contains only one m.inim.al norm.al subgroup 

which we denote by N. 

By Theorem. 3.1 G has an ordered Sylow tower. Let P be a 

Sylow p-subgroup of G where p is the largest prim.e which divides 

1 G I . The group P is norm.al in G and therefore contains N. Note 

that p > 3 since, if p = 3. G is a 3-group and would satisfy our con-

elusion. 

Since cf>(P) is a characteristic subgroup of P and P is norm.a.l 

in G, it follows that If>(P) is norm.al in G. Thus either If>(P) = .1" or 

Let 1 = P .::; N < P l < ... < G be the upper p-series for G. o 0 

Then P l = P x N since both Nand Pare norm.al in G. We m.ust o 0 

have N = 1, since otherwise G would contain m.ore than one m.inim.al o 

norm.al subgroup, i. e. P l = P. By Theorem. 18. 4. 5 (p. 333 of Ref. 1) 

G/ p is faithfully represented by transform.ation on P / If>(P). and furtheT-

m.ore G/p has order prim.e to p. 

Consider the case ~(P) = 1. Then P m.ay be regarded as a spa.ce 

on which G/ p operates. Also N is a subspace of P. 

Assum.e N is a proper subgroup of P. Then by the theorem. of 

com.plete reducibility we can find a com.plem.ent to N, i. e. P = M x N 

where M is not the identity and M <1 G. This is a conflict, since M 

does not contain N. 

Assum.e P = N. Then P is a m.inim.al norm.al subgroup of G. 
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Since G is solvable it contains a p-complement M. Then I G;MI = 

I pl. Suppose M is not a maximal subgroup of G. Let T be a maxi-

mal subgroup of G between M and G. Then T has order divisible 

by p, and therefore has a non-trivial intersection with P. If T (\ P 

were equal to P, then T would be all of G 80 that 1 < T (\ P < P. 

Since P is abelian, T (\ P <l P. Als 0 T (\ P <l T and finally 

T (\ P <1 G which contradicts the fact that P is a minimal normal 

subgroup of G. Thus M is a maxi:mal subgroup of G . By property 

M it follows that IG: MI =p or p2. Hence Ipi =p or p2. This 

completes the proof for the case cf>(P) = 1. 

Consider the case cf>(P) ~ N. Using the theorem of complete 

reducibility we may write 

p/;(P) = S/'(P)x ... xS/cf>(P) 

where each S./ q,(P) is a space on which G/ p operates irreducibly. 
1 

Note also that each S./cf>(P) is a chief factor of G/cf>(P). Since cf>(P) ~ N 
1 

it follows that each of the groups s./ cf>(P) has order p or p2. 
1 

From le:mma 3. 4 G/ p is iso:morphic to a subdirect product of 

2 cyclic groups each with order dividing p - 1 i. e. G/ p is an abelian 

group with exponent dividing p2 - 1. 

Now consider the representation 

N is a minimal normal subgroup of G, 

P of G on the group N. 

P is irreducible over J . 
p 

group Z(P) is a characteristic subgroup of P not the identity and 

Since 

The 

hence is normal in G. This implies Z(P) ~ N. Hence the representa-

tion of G on N contains P in its kernel. Thus the group p(G) is a 
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homomorphic image of G/p" and therefore p(G) is an irreducible 

representation over J of an abelian group with exponent dividing p2 - l. 
p 

By lemma 3. 6 p(G) has degree one or two. This completes the proof 

of the theorem. 

Theorem 3. 3. Let G be a group of odd order which has property M. 

Then all subgroups of G also have property M. 

Proof: This is an immediate consequence of Theorem 3. 2 together with 

2. a. 
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IV. FURTHER THEOREMS ABOUT GROUPS WITH PROPERTY M 

Theorem 4.1. Let G be a group with property M. Then G/.6.{G) is 

a subdirect product of primitive solvable groups on a prime or prime 

square number of letters and .6. (G) is nilpotent. 

Proof: Decompose the maximal subgroups of G into conjugate classes 

and represent G by conjugation on these classes of subgroups. This 

gives a permutation representation 1T of G where the sets of transi-

tivity are just the sets of conjugate maximal subgroups. Consider the 

restrictionof 1T to one of these sets. Let M be an element of this set. 

* This restricted representation 1T is equivalent to that arising from 

the cosets of NM. the normalizer of M in G (p. 242 of Ref. 1). 

The group NM is either M or G. If NM is G then the per-

mutation representation 1T * is just the identity. If NM = M then * 1T 

is primitive since M is maxim3.1 and has degree I G:M I which is a 

prime or the square of a prime. Since G is solvable the permutation 

representation 1T * is solvable. This proves that G mo1u10 the kernel 

of 1T is a subdirect product of primitive solvable groups on a prime 

or prime square number of letters. 

We determine the kernel of 1T. An element x of G will be in 

the kernel of 1T if and only if it normalizes every maximal subgroup 

of G. A normal maximal subgroup of G has G for its norm3.lizer 

and a non-normal maximal subgroup is its own normalizer. Hence x 

will normalize every maximal subgroup of G if and only if it is con-

tained in the intersection .6. (G) of the non-normal maximal subgroups 
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of G. This completes the proof of the theorem except for the nilpotency 

of ~(G). which follows at once from 2. c. 

A number of theorems dealing with primitive solvable permu-

tation groups will be proved. These theorems are well known but will 

be convenient to have in the form given below. 

In what follows n will denote a set of objects permuted by a 

group G. We shall also assume that the identity of G is the only 

element of G which fixes every element in n. The elements of n 

will be denoted by small Greek letters. 

By the orbit under G of the element a in n we mean the set 

We denote the subgroup of G fixing a by G • 
a 

We shall use Sn to denote the group of all permutations on n. 

Lemma 4.1. Let G be primitive on nand N ~ G. Then N is 

transitive on n. 

N N 
Proof: Let a • j3 , be the orbits of N. We first show that an 

element g of G permutes these orbits among themselves. Select 

an orbit. Then 

(aN)g 
-1 

= gg Ng 
a 

= (ag)N 

= j3N 

N 
a 



-14-

is an orbit of N. This shows that these orbits form sets of imprimitivity 

for G and hence there can be only one of them. Thus N is transitive 

on n. 

Lemma 4. 2. Let A be transitive on n, C the centralizer of A in 

Sn and N the normalizer of A in Sn' Then an element of C which 

fixes an object in n must be the identity. Hence for a in n the 

group N is faithfully represented by the automorphisms it induces 
a 

on A. 

Proof: Let aE n such that c E C fixes a. Now c = c
a 

for all a in 

A. We also have c a fixing aa for every a in A. Since A is 

transitive c fixes n. 

Theor.em 4. 2. Let G be primitive on n where n has n > 1 objects. 

If G is solvable then 

i) t here is exactly one minimal normal subgroup A of G. 

ii) A is elementary abelian. transitive and regular. 

iii) n = pk = I A I where p is a prime. 

iv) G/ A ;; G ~ to some group of automorphisms of A. 
a 

v) G ~ N the normalizer of A in Sn' 

vi) G = G A and G (\ A = 1. a a 

Proof: Let A be a minimal normal subgroup of G. Since G is 

solvable A is elementary abelian. A is transitive by lemma 4.1 

Select aE n. Since A .is contained in its centralizer C in Sn 

it follows that A ~ C. But lemma 4. 2 implies C = 1 and hence a a a 

A ::0: 1. This proves that A is regular. Hence I A I equals 
a 
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the number of elements in n. But A is elementary abelian and thus 

of prime power order, 
k 

say p . 

Now 

IG AI:: a 

IG I IAI a :: 

IA(\ G I a 

Ie I IAI a 

IA I a 

= I G II A I :: a IG In. a 

The degree of a transitive permutation group is equal to the index of 

the largest subgroup which fixes a letter. 

I G In = I G I I G: G I :: I G I· a a a 

Thus n:: I G:G I so that 
a 

Hence G A = G and since A = 1 it follows that G (\ A = 1. 
a a a 

Now G /G (\ A 'i G A/A = G/A and since A is regular 
a a a 

G (\ A:: 1. Hence G/A;; G ~N where N is the normalizer of A 
a a a 

By lemma 4. 2 N is isomorphic to some group of automor­
a 

phisms of A. 

Assume there exists B a minimal normal subgroup of G 

different from A. Then A (\ B :: 1. Consider (A. B). It is contained 

in both A and B so that (A, B) = 1. Thus A and B centralize each 

other. The group D:: <A. B> also centralizes A and D is transitive 

on n . since it contains A. Let a be an element of n and consider 

D . By lemma 4. 2 D = 1 and hence I D I = n. But I A I = nand 
a a 

hence D = A. a conflict, since D ~ B. This proves that A is the only 

minimal normal subgroup of G. 

Let G be a primitive solvable group on 9 letters. Let A be 

the unique minimal normal subgroup of G which we know exists by 



-16-

part i) of Theorem 4. 2. By part ii) of Theorem 4. 2 we may, after 

suitably labeling the objects permuted, assume that A is generated 

by a and b where 

a = (037)(142)(568) 

b:: (051)(364)(782) . 

Let N be the normalizer of A in the symmetric group on 

n = {O, 1, ... ,8}. Note that N is the normalizer of the regular repre-

sentation of A and hence the holomorph of A. Thus by Theorem 6.3.2 

of Ref. 1 the subgroup fixing 0 is isomorphic to the group of all auto-

morphisms of A. This group is just the group of all non- singular 

2 x 2 matrices with entries in GF(3) and hence of order 48. Thus 

INI=432. 

By part v) of Theorem 4. 2 G is a subgroup of N. Note that 

N is itself a solvable group and that A is a chief factor of N. The 

remaining chief factors of N are also chief factors of N/A which is 

isomorphic with the group of all non- singular matrices over GF(3). 

This latter group modulo its center is of order 24 and is isomorphic 

to the symmetric group on 4 letters. Hence the chief factors of N are 

2 2 
2,3,2,2,3 

Let G be a primitive solvable group on 4 letters. Then G is 

a subgroup of the symmetric group S on 4 letters which is itself 

solvable. The chief factors of S are 
2 

2,3, 2 

A primitive group G on 3 letters is a subgroup of the symmetric 
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group on 3 letters and a primitive group on 2 letters is just cyclic 

of order 2. 

Lemma 4.3. Let G be a primitive solvable group on a prime or prime 

square number of letters. Then for all primes p which divide I G I 

we have r (G) ~ 2. 
P 

Proof: Let A denote the unique minimal normal subgroup of G. If 

IA 1 = p, a prime, then G/A is cyclic with order dividing p-l. Hence 

r (G) = 1 for all primes q which divide I G I. 
q 

Assume IA 1 = p2 with P > 3. Then G/A is isomorphic to a 

solvable group of 2 x 2 matrices over GF{p). Let T be any solvable 

group of 2 x 2 matrices with entries in GF{p) where p > 3. Form the 

group TZ = R where Z consists of all non-zero scalar multiples 

of the identity . The group R is solvable and the chief factors of T 

are among those of R. The group R has a normal series 

where Rl consists of those elements R with determinant one. The 

group R1/Z is a solvable subgroup of the group H defined on page 436 

of Ref. 2. All of the pos sible subgroups of H are given in articles 

325 and 326 of Ref. 2. The solvable groups S among these are: 

1) S has a normal subgroup of order p which is its own cen-

tralizer. 

2) S is cyclic. 

3) S is dihedral of order 2d where S contains a normal cyclic 
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subgroup of order d. 

4) S is isomorphic to the alternating group on 4 letters. 

5) S is isomorphic to the symmetric group on 4 letters. 

In 1) S has a normal series S > P> 1 where I pi z p and sip 

is isomorphic to a group of automorphisms of P. Hence sip is cyclic 

with order dividing p-l. Hence r (S) = 1 for all primes q which 
q 

divide I S I. For S cyclic we also have r (S) :: 1 for all primes q q 

which divide I S I. In 3) S has a normal series S > D> 1 where siD 

has order 2 and D is cyclic. The group D has a series of charac-

teristic subgroups each of prime index in the one above it. Hence 

r (S) = 1 for all primes which divide q 

for q /: 2 and r (S) = 2 for q = 2. 
q 

The groups R/Rl and Z are cyclic 

lsi. In 4) and 5) we have r (S)=l q 

Thus r q(R/Z) ~ 2 in all case s. 

so that r (R) ~ 2 for all primes 
q 

q which divide I R I. The same als 0 holds for T. 

For p = 3 we have a primitive group on 9 letters i. e. a sub-

group of N the group of order 432. The chief factors of N are 

2.3,22,2,32 
so that any primitive solvable group on 9 letters has chief 

factors which are divisors of 2,3,4 and 9. 

primes which divide I G I. 

Thus r (G) ~ 2 for all 
q 

For p = 2 we have a primitive group on 4 letters. Such a 

group is a subgroup of the symmetric group on 4 letters and therefore 

has chief factors which are divisors of 2, 3 and 22. This proves the 

lemma in all cases. 
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Lemma 4.4. A subdirect product G of any finite number of primitive 

solvable groups on a prime or prime square number of letters has 

r (G) ~ 2 for all prime s which divide I G! . 
p 

Proof: First we show this for direct products and observe that subdirect 

products. whenever the number of factors is finite, are subgroups of 

the direct product. The chief factors of a direct product are just those 

of the individual groups used to form the direct product. By lemma 4. 3 

we are done. 

Theorem 4. 3. Let G/ L'l.(G) be a subdirect product of groups each of which 

is isomorphic to a primitive solvable group on a prime or prime square 

number of letters. Then G has property M. 

Proof: By lemma 4.4 rp(G/ L'l.(G)) ~ 2 for all primes which divide its 

order. Now consider rp(L'l.(G)/cP(G)) for any prime p which divides the 

order of L'l.( G)/ cP( G). 

We may write 

cP(G) = T n L'l.(G) 

T < G m.ax 

T <1 G 

zn [T n L'l.( G ) ] 

T < G 
max 

T <J G 
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A maximal subgroup which is also normal must be of prime in-

dex. By repeated use of the second isomorphism theorem we obtain a 

series of subgroups from b.(G) to ;(G) each of prime index in the 

one above it and normal in the entire group G. 

b.(G) 

<I>{G) • 

All indices marked with a p in the diagram. are primes and therefore 

r (b.{G)/<I>(G) ) :: 1 for all primes p which divide 1.6.(G)/f(G) I. By 2. a 
p 

all maximal indices between G and <I>{G) are either prime or the square 

of a prime. Hence G/f{G) has property M. 

There is a 1 - 1 correspondence between the maximal subgroups 

of G and those of G/,(G). Therefore the maximal indices of G are 

the same as those of G/ f( G). This shows that G has pr operty M. 

-It now follows that whenever G/<I>(G) is a subdirect product of 

primitive solvable groups on a prime or prime square number of letters 

or if G/<I>(G} is any homomorphic image of such a group then G has 

property M. 

Lemma 4. 5. Let G be a group with an ordered Sylow tower. Then 

every subgroup of G has an ordered Sylow tower. 
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Proof: By hypothesis G has a series 

si 
with G/Gitl of order Pi ~ where PI < P2 < . ". < P2" G 2 is a 

characteristic subgroup of G since it is a normal PI-complement of 

G. Similarly, G
3 

is a characteristic subgroup of G 2. A characteris­

tic subgroup of a characteristic subgroup is characteristic in the en-

tire group. Thus. G 3 is a characteristic subgroup of G. Continuing 

this procedure shows that each G. is a characteristic subgroup of G . 
1 

Consider the series 

where Hi z H (\ Gi · Since G i <l G it follows that Hi <l H. The order 

of Hi is divisible only by primes in the set {Pi~ Pitl' ...• ps} and 

IH:Hil is divisible only by primes in the set {Pl"P2~ ...• Pi-l}. This 

means H has an ordered Sylow tower. 

Theorem 4.4. Let G be a group whose order is not divisible by 6. 

If every maximal subgroup of G has property M then G is solvable. 

Proof: Use induction on 1 G I. The hypothesis is satisfied by all factor 

groups of G. Let M be any maximal subgroup of G. By Theorem 3. I 

M has an ordered Sylow tower. Let p be the smallest prime which 

divides I G I and let P be a Sylow p- subgroup of G. Let N be the 

normalizer in G of P. 

Every proper subgroup of G is contained in a maximal subgroup. 
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By lemma 4. 5 every proper subgroup of G has an ordered Sylow tower. 

Assume G is p-normal. . If N = G then Z(P) is a solvable 

normal subgroup of G and we are done by induction. If N is ,a proper 

subgroup of G then it has an ordered Sylow tower. Since p is the 

smallest prime which divides 1 N 1 it follows that N contains a normal 

p-complement. By Theorem 14. 4. 6 of Ref. 1 G contains a normal 

subgroup with a p-factor group. Since the normal subgroup is proper 

it has an ordered Sylow tower. Thus, G is an extension of a solvable 

group by a p-group and hence is ~tself solvable. 

Assume G is not p-normal. By lemma 19. 3. Z of Ref. 1 G 

satisfies the hypothesis of a theorem of Burnside. By Theorem 4. Z. 5 

of Ref. 1 G contains a p-subgroup H =hlhZ~·: .h r " where each hi<l H . 

The groups hI' hZ' . . . , hr form a complete set of conjugates in N(H), 

the normalizer of H in G. The number r is prime to p. If H is 

normal in G then we are done by induction. If H is not normal in G 

then N(H) is a proper subgroup of G and has, therefore, an ordered 

Sylow tower. Thus, N(H) has a normal p-complement K. This implies 

(K. H) x 1 so that N(H) = K x H. Hence N(H) cannot induce an auto­

morphism of order prime to p on H. But hI' h Z' ... , hr form a com­

plete set of conjugates of hI in N(H). This means that N(H) must 

induce an automorphism of order prime to p on H. This contradiction 

proves that H <l G. 

This theorem is not true if we allow 6 to divide I G I. The linear 

fractional groups LF(Z. p) are simple for p> 3. From the discussion 

given in chapter XX of Ref. Z it follows that the maximal subgroups of 
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LF(2, p) all have property M. if p is not congruent to + 1 modulo 5. 

This raises the following question. Are there any other simple groups 

whose maximal subgroups have property M? 
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v. CONSTRUCTION OF EXAMPLES 

5.1. a b In this section examples of groups of order 2 p ~ with 

p ~ 3, will be constructed which have property M but also contain sub-

groups which do not have this property. In fact given any positive in-

teger m such a group will be constructed which has a subgroup con-

taining a maximal subgr oup of index at least m. 

In order to construct the examples it will be necessary to use 

facts about Kronecker products and commutators. These results are 

given in 5. 2. They are followed in 5. 3 by a brief discussion of the 

construction procedure. This is followed by 5.4 which gives the details 

of the construction. The final step, 5. 5, will be to show that the groups 

constructed have the properties mentioned in the first paragraph. 

5. 2. Let A and B be groups. Suppose p is an absolutely 

irreducible representation of A of degree m and T is an absolutely 

irreducible representation of B of degree n both over the same field 

F. Form the direct product A x B of A and B and consider the 

representation 

(a. b) - p(a) ® T(b) . 

This also yields a representation of the group ring of Ax B over F. 

Since p is abs olutely irreducible there exists an element x
ik 

in R
A

, 

the group ring of A~ such that P(xik) = e
ik

, the matrix with a 1 in 

position (i. k) and zeros elsewhere. For the same reason there exists 

a Yji in RB such that T(Yjl) = ej,l" Here the indices i. k run inde-



-25-

pendently from 1 through m and the indices j.l run independently 

from 1 through n. 

Forming the 
2 2 

m n Kronecker products 

2 2 we obtain the m n one spot matrices which span the full mn x mn 

matrix ring over the field F. Hence the representation 

(a. b) ~ p{a) e T{b) 

is an absolutely irreducible representation of Ax B. 

Lemma 5.1. Let G be a group and let G
t
+

l 
be the {ttl)st term in 

the descending central series of G. Then 

modulo Gttl' 

Proof: We use induction on t. For t = 2 we have the relation 

(see relation 10.2.1. 2 on p. 150 of Ref. 1). Reading this relation modulo 

G 3 gives the desired result since (x. a2~ y) is in G 3. 

The induction hypothesis asserts 

mod G
t
. Then 
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The right side is then equal to 

where a is an element of Gt . 

Using the rules on page 150 of Ref. 1 we expand (abc. d) as follows 

(abc, d) = (ab. d)( ab. d. c)( c. d) 

Set 

= (a. d)(a. d. b)(b. d)(ab, d. c)(c. d) 

c = a 

d=a t 

and read the result mod Gt+l" Note that the elements (a. b, d). (ab. d. c) 

and (c, d) are in Gt+l" Therefore (a. d) and (b. d) are the only terms 

not reducing to the identity mod Gt+l" Thi s gives the desired result. 

Our next step will be an extension of the preceding lemma. Con-

sider 

(a •...• xy •...• at) 

where a. = xy. We may write this as 
1 
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Note that 

Set 

Using lemma 5. 1 we may write 

mod Gttl" Corollary 10. 2. 1 on page 151 of Ref. 1 together with ,the fact 

that (Xy aitl' ...• at) is in Gttl yields 

mod Gt+l" We state this result as Lemma 5. 2. 

Lemma 5. 2. Let G be a group and let G
tt1 

be the (tt1)st term in 

the descending central series for G. Then 
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5. 3. Before proceeding with the actual construction a brief 

discussion of what is being done will be given. 

We pegin with K = Al* ... *Ae the free product of elementary 

abelian groups each of order p2. Let A. = <a._ b.>. 
1 1 1 

The automorphism group of K has a subgroup H = 

HI x H2 x ... x Ht • where Hi induces the identity automorphism on 

A. for j * i and a dihedral group of order 8 on A .. 
J 1 

Let G denote the semi-direct product of K by H. The details 

of the construction and the properties of the semi-direct product are 

given in section 6.5 of Ref. 1. One of these properties is that K ~ G. 

Since K ~ G and Kttl is characteristic in K it follows that 

~+l ~ G. We consider the finite group G/Kttr 

A commutator (al• a2~' . " at) is said to be of type A if each 

a. is either a. or b. for i = 1_ 2_ ... _ t. Thus there are 2t commuta-
1 1 1 

tors of type A. We make no assumptions regarding any commutators 

not of type A. The subgroup of K/Kttl we are interested in is the 

group W generated by all elements of the form 

where (aI' a 2 •...• at) is of type A. From our choice of H and the 

properties of commutators it will follow that this subgroup W is nor­

mal in G/Kttl' Moreover it is elementary abelian and can therefore 

be regarded as a vector space on which G/K
ttl 

operates. 

We shall prove that the structure of this group W as a vector 

space is isomorphic to the Kronecker product of t two dimensional 
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vector spaces and that the representation which arises is just the 

which are induced by H. on A.. Each of the representations p. 
1 1 1 

will be faithful representations of H. and absolutely irreducible. 
1 

In order to do this we must identify this group with the Kronecker 

product of two dimensional spaces. The linear transformations induced 

on the commutators 

by the elements of G/~+l will have the right properties. The problem 

will be to prove the independence of these commutators in order to insure 

that we do indeed have the Kronecker product space and not some quotient 

space of it. 

The proof of the independence will be divided into two stages. 

The first stage will be to show that a dependence relation among the 

commutators of type A mod Kt+l leads to another relation in the free 

product of cyclic groups of order p modulo the (t+l)st term in its 

descending central series. We shall then show, by constructing an 

example, that such a relation cannot hold. This conflict will prove the 

independence of the commutators of type A mod Kt+l" 

5.4. Let p be an odd prime. Let D be the subgroup of 

GL(2, p) which is generated by 

and 
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Then D has defining relations 

2 
x = 1, 

4 
y 

~l ~l = 1 and x yx = y 

and ID I = 8. 

This group is absolutely irreducible. If D were reducible 

over some extension E, of J , 
P 

then it would be completely reducible 

because I D I and p are relatively prime. This would mean that D 

would be similar to a group of diagonal matrices and thus abelian. 

But D is not abelian. Hence D is absolutely irreducible. 

Let K = Al * ... * At be the free product of the groups 

2 
AI' . . . ,At where each Ai is elementary abelian and of order p . 

Any automorphism cr. of A. can be extended to an automor~ 
1 1 

phism of K by having cr. induce the identity automorphism on A. 
1 J 

for j '* i. 

Suppose A. = < a., b. >. Now define 
111 

x· Yi ~l 1 
a. = a. a. = b . 

1 1 1 1 

x· ~l y. 
b. 1 

= b. b.
1 

= a. 
1 1 1 1 

for i = 1,2, ... , t. Then < x., y. > = H. is a group of automorphisms 
1 1 1 

of A. which is isomorphic to D. We extend H. to a group of auto~ 
1 1 

morphisms of K by assuming that each element of H. induces the 
1 

identity on A. for j '* i. 
J 

The group <~, H 2 , ... , H
t 

> = H is also a group of automor~ 

phisms of K and in fact this group is the direct product i. e. 

H = HI x H 2 x . .. x H t' 



-31-

Now let K and H be the K and H of Theorem 6.5.1 on 

page 88 of Ref. 1. Form G the semi-direct product of K by H. 

By Theorem 6.5. 3 on page 89 of Ref. 1 K is a normal sub-

group of G and H is a subgroup of G. Also K (\ H = 1 and G = HK. 

Let Kttl be the {t+l)st term of the descending central series 

of K. This group is a characteristic subgroup of K and since K is 

normal in G it follows that Kt+l is normal in G. 

A commutator of the form (al,.··. at) where a. = a. or 
1 1 

a. = b. is said to be of type A. 
1 1 

Consider the subgroup of K generated 

by all commutators of type A and Kt+l' By Corollary 10. 2.1 on page 

151 of Ref. 1 the commutators of type A commute with one another 

Our next assertion is that anyone of the commutators 

(alP' ..• at) of type A has order p mod Kttl or else is congruent 

to the identity mod Kt+I' Note that 

because ai = ai or ai Z bi both of which are the identity of K. But 

by lemma 5. 2 which proves the assertion. 

The group G/Kttl has a normal Sylow p-subgroup. namely 

K/Kt+l' A Sylow 2-subgroup of G/Kttl is HKtt/Kt +1 which is iso­

morphic to H. We shall use H to denote this subgroup of G/~+l' 

Any element of G/~tl has a representation in the form kh where k 
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is in K/Kt+l and h is in H. Consider [(al , ... , at)K
t
] kh. This 

equals, 

by Corrolary 10. 2.1 on page 151 of Ref. 1. Now h can be written 

h = ~h2' .. h t where hi is in Hi for i = 1,2, ... t t. Since h. and 
1 

h. commute for i 4: j and h. centralizes A. for i 4: j it follows that 
J 1 J 

h hI h t 
(~, ... , at) Kt+l = (~ , ..• t at )Kt+l 

But 
h. E" 

a. 1 is either a. or b~ where E = + 1 and 0 = + 1. From lemma 
1 1 1 

5.2 it follows that a commutator of type A mod K
t
+
l 

under an element 

of G/Kt+l is replaced by another commutator of type A or the inverse 

of such a commutator. This proves that the group generated by the 

elements 

where (~, ... , at) ranges over all commutators of type A is a normal, 

elementary abelian p-subgroup of G/Kt+l' Hence W can be regarded as 

a vector space on which G/K
t
+l operates. 

t 
Assume the 2 elements (~t ... , at)Kt+l where (aI' a 2 , ... , at) 

t 
is of type A are independent i. e. I wi = p2 

If h = hlhZ' .. h t is an element of H and (~, a 2 , ... , at) is of 

type A then 
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Here the product extends over all commutators of type A. From lemma 

5. 2 E (131' 13 2, ... ,13t ) is the product of the exponents which occur on 

131" 13 2, ... ,13t · For example, if (131' 13 2, ... ,13t ) :: (aI' b 2, a 3, ... , at) 

then E(al , b 2, a 3,·· ., at) x r l s 2r 3··· r t . 

Let V. a {u., v.} i x I, 2, ... ,t be t two dimensional vector 
1 1 1 

spaces over J and suppose the representation of H. on V. is the 
p 1 1 

group of matrices D relative to the basis {u., v.}. Suppose also that 
1 1 

the representation of H. on V. for j *- i is the identity. 
1 J 

spaces 

Form the Kronecker product VI ® V 2 ® .•. ® Vt of the vector 

V. i x I, 2, ...• t. 
1 

A basis for this space is given by the vector s 

where Q. is either u. or v .. 
1 1 1 

For h x h
l
h 2 ... ht 

an element of H we have 

Expanding this gives 

( r lUI )( s 1 vI) ® (r 2 u 2 )( s 2 v 2) ® . .. ® (r t ut )( s tV t ) 

z l 0(131' 132, ... ,13t )13l ® 132 ® ... ® 13t 
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where 6(131,132 •...• 13t } is the product of the coefficients of 131' 1Jz' ... , 13
t
. 

Hence, assuming the independence of the elements (al' ... ' at}K
t 

+1 

where (al , ...• at) is of type A, the representations which arise on W 

and V are equivalent. But the one arising on V is the Kronecker 

product of groups each isomorphic with D and thus absolutely irreducible. 

Hence the representation induced on W by G/Kt +1 is absolutely irre-

d ucible. Thus W is a chief factor of G/Kttl. 

We now prove the independence of the elements (al' ...• at}K
ttl 

where (al , ... , at) is of type A. 

Consider the group K. Among its elements are those which 

become the identity if we set each b. :or 1 for i x 1,2, ... ,t. The set 
1 

of all such elements forms a normal subgroup X of K. 

Let K:or <al >* <aZ> * ... * <at> be the free product of the 

groups < a
l
>, ... , < at>· Then K <l K and l{ (\ X x 1. Every coset 

of X in K contains an element which belongs to K. Consider the 

coset kX where k is any element of K. Set all of the bls which 

occur in k equal to the identity. Suppose the resulting element is k
l
. 

-1 -1 
Then kX x klkl kX and kl k is in X. Thus kX x klX and kl is in 

X By Theorem 6.5. 3 on page 89 of Ref. 1 K is the semi-direct 

product of X by X. Thus the correspondence 

is an isomorphism between K/X and K. 

Suppose there is a dependency relation among the commutators 

of type A i. e. 
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where the product extends over the commutators of type A and at least 

one c (aI' ... , at) is not congruent to zero mod p. 

The terms in this product may be ordered in any way we wish 

since they commute mod KUl" They will be ordered as follows. Let 

('VI' ..• , 'V
t

) and (131, ..•• I3t > be two commutators of type A. Then 

hl' ...• 'Vt ) shall precede (13l'···' I3t > if 'VI = 131, ..• P 'Vi-l = l3 i - l but 

'V' • a. while 13·:: b .. 
1 1 1 1 

Suppose this ordering to have been carried out and that 

is the first element in the product with an exponent not congruent to zero 

mod p. If this term is not (al , ...• at> relabel als and bls and make 

it this element. This may alter the order of the other terms. However~ 

this will be of no consequence. We shall take the groups X and K 

after this relabeling has been done. 

Then 

(I) 

where the product extends over all the commutators of type A with the 

exception of (al , .•. , at>. Each of the terms in the product 

qal' ... II at> 
II (al' . . • , at) 

has a b i in some position. Also t (al' ••.• at> is not congruent to zero 
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mod p. 

Relation 1 becomes 

Since c (aI' ..•• at) is not congruent to zero mod p we also have the 

relation 

Thus for some x in X 

(ap • . . , at) :II x IT commutators of wt(t + 1). 

If this relation is read mod X then the left side can be the identity 

only if (a
l
, ... ~ at) is the identity of K because K (\ X :II 1. Also 

reading mod X replaces a commutator of wt(t + 1) by another com-

mutator of wt(t + 1). Thus the element 

of K/X is a product of commutators of wt(t + 1). This implies 

(al' ...• at) is a product of commutators of wt(t + 1) in K because 

of the isomorphism between K/X and K. From this we conclude that 

whenever we have a free product K:IE <a1> * ... * <at > of cyclic 

groups of order p it is also true that 

By Theorem 12.1.1 on page 312 of Ref. 1 any group T which 

is generated by t elements of order P. say T:IE < c 1, ..•• ct > with 
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cf x I, is a homomorphic image of K :It < a l > >!c • •• * < at> under the 

correspondence 

a. - c .. 
1 1 

If Tttl is the identity then the kernel of this homomorphism 

contains Kttl' Hence the mapping 

is also a homomorphism from K/K
ttl 

onto T. 

Suppose it is possible to construct a group T z < c l ' •.. , c t > 

Wl'th cPo x 1 f . 1 2 t d T 1 1 or 1 z • , ••• , an tt l:lt . Suppose further that 

(c
l
' •.. ,c

t
) is not the identity. This will be in conflict with the relation 

because this relation implies (c l •..•• c t ) Z 1. 

In this event the assumption which led to the relation 

cannot hold. 

We now proceed to the construction of the group T. It will be 

a group of matrices with (ttl) rows and (ttl) columns under matrix 

multi plic a ti on. The entries of these matrices will be from J . 
p 

Let I denote the identity matrix and let E.. be the matrix with 
IJ 

a 1 in position (i. j) and zeros elsewhere. The group T. < cl' .•.• ct> 

where 
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The inverse of c. is I - E'
t1 

..Consider the commutator 
1 1 .1 

and then 

:c I + E41 

Continuing we have 

where E. = t 1 depending on whether t is even or odd. In either case 

(cl' c 2' ···, ct ) * l. 
Now T is a subgroup of P consisting of all matrices of the form 

1 o 

1 
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where the starred portion can be filled in arbitrarily and the zero means 

all entries above the main diagonal are zero. 

Every element of P can be uniquely expressed in the form I + A 

where A is a strictly triangular matrix. Let I + A and I + B be 

two elements of P. The inverse of I + A has the form I - A + A 2_ 

This series terminates since A is a nilpotent matrix. The same applies' 

to the element I + B. 

If C and D are any two strictly triangular matrices then their 

product has zeros on the main and second from main diagonals i. e. 

CD has the form. 

o 
o 0 

o 

* 

o 

o 
o 0 

Consider the commutator of I + A and I + B i. e. 

22 · 
{I - A + A - .•• ){I - B + B - ••• )(1 + A)(I - B). 

Our remarks about the product CD show that this commutator has the 

form I + E where E has zeros on the main and second from main 

diagonals. Thus the group (P, P) consists of elements of the form 

1 
o 1 

o 

* 

o 

1 
o 1 
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We shall assume the group P., the ith term of the descending 
1 

central series of P, consists of elements of the form I + E where E 

is a triangular matrix with zeros on the main, second from main and so 

d · 1 d' th . th f . di 1 on up to an Inc u Ing e 1 rom maIn agona s. 

element of P and let I + E be any element of P .. 
1 

Let I + A be any 

We verify by 

direct calculation that a strictly triangular matrix multiplied on the left 

or right by a matrix, which is strictly triangular and has zeros on the 

ith from main as well as on all preceding diagonals, yields a matrix 

which is again strictly triangular and has zeros on the (i+l)st from 

main as well as on all preceding diagonals. Using this to compute the 

commutator (I + E, I + A) we see that (Pp P) = P i +l consists of 

elements of the form 

1 
o 1 

o • o 

i+l O. 
o 

* 1 
o . o 1 

From this it follows that PHI it 1. Since T ~ P it follows that T
HI

% 1. 

Hence T:z < c l ' c Z, •.•• c t > with cf it 1 for i z 1,2, ... , t and 

(cl ' c Z' .• , c t ) "* 1. Also THI it 1. Therefore the relation 

is not valid. Hence our as sumption about a dependency relation among 

the commutators of type A mod KHI is invalid. 
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5.5. We now show that G/Kttl has property M and that it COn­

tains subgroups which do not possess property M. 

Using the collection formula of P. Hall we may write the elements 

of K/~+l in the form 

a l at 131 I3t 
a l ... at PI .. " b t n c i Kttl 

where c. ranges over some set of commutators of weight at least two. 
1 

Reading this modulo the derived group R of K/Kt +l we obtain an ele-

mentary abelian group generated by the cosets 

This group is elementary abelian so that R ~ .(K/~+l)" But the Frattini 

subgroup contains the derived group and therefore R. ;(K/Kttl). The 

representation of G/Kt +l on R is a sum of t representations of 

degree 2. This proves that the p-rank of G/Kt+/'(K/~+l) is 2. 

We shall apply 2. b with A • K/Kttl and N = ;(K/K
ttl

). Note 

that N is normal in G/K
ttl 

since it is a characteristic subgroup of A 

which is normal in G/Kttl" Now 2. b says that 1>(K/Kttl) ~ ;(G/Kt +l ). 

Hence the p-rank of G/~+/;(G/Kttl) is at most 2. 

The maximal indices of G/Ktt/;(G/Kttl) are the same as the 

maximal indices of G/K
ttr 

But by 2. a the maximal indices of 

G/Ktt/~(G/Kt+l) which are powers of pare p or p2. Hence a maxi­

mal subgroup of G/Kttl which has index a power of p is of index p 

2 
or p . 

The only other prime which divides the order of G/K
ttl 

is . 2. 

Since the Sylow p-subgroup of G/Kttl is normal we have r2(G/~+1)zl. 
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By 2. a any maximal subgroup of G/K
ttl 

which has index a power of 2 has 

index 2. 

Since G/Kt +l is solvable all maximal subgroups have prime 

power index and therefore we have accounted for all possible maximal 

indices. 
2 

They are 2. p or p so that G/K
ttl 

has property M. 

Consider the subgr oup HW of G/Kttl' Then W will be operated 

on absolutely irreducibly by H and therefore H is a maximal subgroup 

2t 
of HW. But IHW: HI :Ie Iwi :II: p • 
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