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ABSTRACT

Rieger asked in 1951 if there exists a free complete Boolean
algebra on w complete generators, Crawley and Dean proved in
1955 that there does not exist a free complete lattice on three complete
generators, but their method does not extend to Boolean algebras.
In this thesis Rieger's question is answered in the negative. The
following more general result is then proved. Let y be an infinite
regular cardinal, Then there does not exist a free complete weakly

(y, @) distributive Boolean algebra on y complete generators.
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I. INTRODUCTION

In the study of algebraic systems it is often useful to investigate
a "free" system of a given type, i.e. a system which has any other
system of that type as a homomorphic image. Intuitively, one may look
upon it as the "least constrained" system of the given type. Thus free
groups, free Abelian groups, free lattices, and free Boolean algebras
have been investigated extensively. In each of the above cases there
is no difficulty in proving the existence of such a free system. The
polynomial method of Birkhoff (1), p. viii, yields the desired result.

If we consider algebraic systems which have operations applicable

to arbitrarily many arguments, however, such as complete lattices

and complete Boolean algebras, even a generalization of this polynomial
method may not suffice to prove the existence of a free system. The
difficulty in such cases arises from the fact that the "algebra" formed
may have too many elements, i.e. may not be a set. Crawley and

Dean (2) have in fact shown that there does not exist a free complete
lattice on three complete generators. Their proof, reproduced in
Chapter 3, depends upon an effective characterization of when two for-
mally distinct polynomials are actually equal.

In 1951 Rieger (3) asked whether or not there exists a free com-
plete Boolean algebra on w complete generators. The technique of
Crawley and Dean does not apply. Rieger's question is answered in the
negative in Chapter 4 of this thesis. The method involves constructing

a class of examples which establish the inequality of certain formally
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distinct polynomials. This result was obtained independently by
H. Gaifman (4) and the author in the summer of 1961

In Chapter 5 the following more general result is proved in a
similar fashion. Let y be an infinite regular cardinal. Then there
does not exist a free complete weakly (y, o) distributive Boolean

algebra on y complete generators.



e
II. PRELIMINARIES

In this thesis lattice (also Boolean algebra) unions and inter-
sections are denoted by U and n respectively. Set unions and inter-
sections are denoted by v and /\ respectively. In either case in-
clusion and proper inclusion are denoted by < and < respectively.

If A is a subset of a given set or an element of a Boolea.n.a.lgebra., its
comp;le;r;ent is denoted by A°. Ordinal numbers are usually denoted
by small Greek letters and small Latin letters. Cardinal numbers are
identified with the corresponding initial ordinals.

Let a be an infinite cardinal. A lattice (or Boolean algebra)

L is said to be weakly a-complete if every subset of L with cardinality
less than a has aleast upper bound (union) and a greatest lower bound
(intersection) in L. A sublattice (subalgebra) L' of a lattice (Boolean
algebra) L is said to be a weakly a-complete sublattice (subalgebra)

if unions and intersections in L of subsets of L' with cardinality less
than a lie in L'. A sublattice (subalgebra) L' of a lattice (Boolean
algebra) L is said to be a weakly a-regular sublattice (subalgebra)

if unions and intersections in L' of subsets of L' of cardinality less
than a are also unions and intersections in L. A field of subsets of

a set S (a collection of subsets of S closed under finite union, finite
intersection, and complementation, and hence a Boolean algebra) is
said to be a weakly a-complete field of sets if it is a weakly a-complete
subalgebra of the Boolean algebra of all subsets of S.

If A is a subset of a lattice (Boolean algebra) L, then the sub-
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lattice (subalgebra) of L. weakly a-generated by A is the smallest
weakly a-complete sublattice (subalgebra) of L containing A. If S
is a set and A is a collection of subsets of S, the field of sets weakly
a-generated by A is the subalgebra of the Boolean algebra of all sub-
sets of S weakly a-generated by A. The word "generated" is used
as an abbreviation for the words "weakly w-generated."

A homomorphism of a lattice (Boolean algebra) L is said to be
a weakly a-complete homomorphism if it preserves unions and inter-
sections of subsets of L with cardinality less than a.

A lattice (Boolean algebra) which is weakly a-complete for
every a is called complete. A sublattice (subalgebra) of a lattice
(Boolean algebra) which is a weakly a-complete sublattice (subalgebra)
for every a is called a complete sublattice (subalgebra). A sublattice
(subalgebra) of a lattice (Boolean algebra) which is a weakly a-regular
sublattice (subalgebra) for every a is called a regular sublattice (sub-
algebra). If A is a subset of a lattice (Boolean algebra) L, the small-
est complete sublattice (subalgebra) of L containing A is called the
sublattice (subalgebra) completely generated by A. A homomorphism
of a lattice (Boolean algebra) which is a weakly a-complete homomor-
phism for every a 1is called a complete homomorphism.

Any lattice L may be embedded as a regular sublattice of a
complete lattice L*, the "normal completion”™ of L. This was proved
by MacNeille (5). Stone (6) and Glivenko (7) have shown that if L is a
Boolean algebra, then L* is a Boolean algebra.

Let y be a non-zero cardinal. A lattice (Boolean algebra) L
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is said to be a free lattice (Boolean algebra) on y generators if L
contains a subset A of cardinality equal to Yy which

generates L, and if any mapping f of A onto a subset A' ofa
lattice (Boolean algebra) L' which generates L' can be extended
to a homomorphism f* of L. onto LY.

A free lattice on y generators can also be defined in a manner
which automatically establishes its existence. We denote the generators
by A BB where 0 < i< y. Then polynomials of rank r
for each finite r are defined inductively as follows.

Definition 1. For each i with 0 <i<y, a, is a polynomial of
rank r(ai) = 0. If A is a finite set of polynomials previously defined,
and if A4 has cardinality n, then the symbols U;4 and nﬁ' are
polynomials of rank r(U}4) - r(ﬂ}q) = masx (n, rAna.)z [ra) +1]).

The collection of all such polynomials is c;-enoted by Lw(y). We
now define a valuation of Lw(y) as a mapping f of {ai:O < i< y} onto
a subset of a lattice L which generates L. Such an f can be extended
in a natural way (f*(LJA) = UA’ f*(A), etc. ) to a mapping f* from
Lw(y) to JL.. X Al and AZAel-ie in Lw(Y)' and if, for every valuation
f of Lm(Y)’ we have f*(All) = f*(AZ), then Al and AZ are said to be
equal. Then Lw(Y) is a lattice in the natural manner (under U and
n), and moreover it is a free lattice on the y generators a;.

We can extend Definition 1 as follows: if A is a previously de-
fined polynomial, then the symbol A€ isa polynomial of rank r(AC) =
r(A) + 1. We denote the extended collection of polynomials by B(Y).

A valuation of B (y) is defined as a mapping f of {a;:0<i<y} onto

a subset of a Boolean algebra B which generates B. Equality in Bw(Y)
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is then defined analogously to that in Lco(Y)' Bw(y) thus becomes, in
the natural way, a free Boolean algebra on the y generators a..

A free Boolean algebra on y generators can also be described
as follows. Let S =27, i.e. the set of all functions from y to {0,1}.
For each p less than vy, let ep be the evaluation map corresponding
to p;i.e., if f is in S, then ep(f) = f(p). Then the subsets of S
of the form e;l(l), for p <y, generate a field of subsets of S. This
field of subsets is a free Boolean algebra on the y generators e;]'(l).

In this thesis we shall be chiefly concerned with free complete
lattices and free complete Boolean algebras, defined as follows. Let
Y be a non-zero cardinal. A complete lattice (Boolean algebra) L is
said to be a free complete lattice (Boolean algebra) on y complete
generators if L contains a subset A of cardinality equal to y
which completely generates L, apd if any mapping f of A onto
a subset A' of a complete lattice (Boolean algebra) L' which com-
pletely generates L' can be extended to a complete homomorphism
£ of L onto L.

We can attempt as above to define a free complete lattice on Yy
complete generators in terms of (infinite) polynomials, thus establishing
the existence of such a system. We denote the generators by

ayp@p---,3a,... where 0 <i<y Then polynomials of rank r for

1

each ordinal r are defined inductively as follows.

i

Definition 2. For each i with 0 <i<vy, a, is a polynomial of
rank r(a;) =0. If A is a set of polynomials previously defined, and

if A has cardinality B, then the symbols U// and n;‘I are poly-
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nomials of rank r(LJA) = rﬂ/[) = max (B, Asu]% [r(A) +1]).

The collection of all such polynomialseis denoted by L(y). A
valuation of L(y) is defined as a mapping f of {ai:O < i< vy} onto
a subset of a complete lattice L which completely generates L.

B A€
to a mapping f from L(y) to L. If A, and A, liein L(y), andif,

Such an f can be extended in a natural way (f*(Ui‘?) = U}4 i*(A), etc. )
for every valuation f of IL(y), we have f*(Al) =f*(A2), then A1 and
AZ are said to be equal. At this point we are in trouble, however, for
we cannot say that I(y) is a complete lattice in the natural manner.

It may (after the identification of equal elements) not be a set, but a
proper class instead--i. e., it may have too many elements.

If I(y) (after identifications) is a set, then in the natural man-
ner (under U ,n) it is a free complete lattice on y complete genera-
tors. If there does exist a free complete lattice on y complete genera-
tors, then its cardinality is an upper bound for the cardinality of any
complete lattice with y complete generators. Finally, suppose any
complete lattice on y complete generators has cardinality less than
or equal to B. Let PB' be the smallest cardinal greater than P, and
let Lﬁ,(y) be the collection of polynomials in L(y) with rank less than
B'. It is easily shown, by induction on p', that LB,(y) is a set. Then
LB'(Y) (after identifications), in the natural manner, is a weakly B'-
complete lattice with y complete generators. Its normal completion
L;,(y) is complete and has y complete generators--hence the cardi-
nality of L;,(y) is less than or equal to B. But then Lﬁ,(y) (after

identifications) has cardinality less than or equal to B. This implies
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that any U or ﬂ of elements of L|3'(Y) is equal to an element of
Lﬁ,(y). Thus, by induction on its rank, every polynomial in I(y) is
equal to one in Lﬁ,(y), so L(y) (after identifications) is a set.

We can extend Definition 2 in the same way we previously
extended Definition 1: if A is a previously defined polynomial, then
the symbol A€ is a polynomial of rank r(A€) =r(A) + 1. We denote
the extended collection of polynomials by B(y). A valuation of B(Yy)
is defined as a mapping f of {ai:O < i<y} onto a subset of a complete
Boolean algebra B which completely generates B. Equality in B(y) is
then defined analogously to that in I(y). The conclusions of the pre-
ceeding paragraph carry over--i. e. the following are equivalent: B(y)
(after identifications) is a set; B(y) is a free complete Boolean algebra
on Yy complete generators; there exist a free complete Boolean algebra
on Yy complete generators; and the cardinality of complete Boolean
algebras with y complete generators is bounded.

To prove the nonexistence of a free complete lattice (Boolean
algebra) on y complete generators we need only show that the cardi-
nality of complete lattices (Boolean algebras) on y complete generators
is unbounded. Alternatively, we may exhibit an ordinal-indexed col-
lection (hence not a set) of pairwise unequal polynomials in L{(y)

(B(y) ), proving inequality by exhibiting an appropriate valuation for
each pair. The actual method used is a combination of the two; in the
more difficult case, for Boolean algebras (Chapters 4 and 5), the choice
of the polynomials suggests the method of constructing complete Boolean

algebras with y complete generators of arbitrarily large cardinality.
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These complete Boolean algebras, in turn, establish the pairwise in-

equality of the chosen polynomials.
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III. FREE COMPLETE LATTICES

In this chapter we investigate the existence of a free complete
lattice on y complete generators. A free lattice on one generator
is finite, consisting of one element (the polynomial a in Lw(l) ). A
free lattice on two generators is also finite, consisting of four elements
(the polynomials ﬂ {ao, al}, a_, a;, and U {ao, al} in Lm(Z) ). Thus
they coincide, respectively, with free complete lattices on one and two
complete generators.

Crawley and Dean (2) have shown that there does not exist a free
complete lattice on three complete generators. Their proof is repro-
duced here. The first step is to define inductively a partial order on
L(3).

Definition 1. If A,B lie in I1{(3), then A = B. if and only if one
of the following conditions holds:

(1} A= B= a; for some 0 <i<3,

(2) A’=‘U74 and A'> B for some A' in A,

(3) A=[)A and A'>B forall A" in A,

(4) B=|)B and A =B' forall B' in 5,

(5) BEnE and A = B' for some B' in A.

We establish some elementary properties of =.

Lemmal. Let A=JA4, B=[)4, and C be polynomials in
1(3). Then

(1) If 0<i<3 a, >B implies a, > B' for some B'in B,

and A = a; implies A' = a; for some A' in A.
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(2) A = B implies either A > B' for some B' in A or
A' > B for some A' in A.

(3) C>A implies C > A' for all A' in A, and B> C
implies B' = C for all B' in A.

Proof. The proofs of (1) and (2) are clear from Definition 1
above. We prove the first half of (3) by induction on r(C); the second
half will follow by duality. If r(C) =0, then C= a; for some i with
0 £ i< 2, and the result follows from part 4 of Definition 1. Assume
the result for all C' with r(C') less than j, and suppose we have
C=A with r(C)=j. If C= U C, then either part 2 or part 4 of
Definition 1 applies. If part 4 applies, we are done. 7 If part 2 applies,
there is a C' in C such that C' = A, But then r(C') is less than
j» so by induction hypothesis C' =2 A' for all A' in A. Thus C > A!
for all A'in A by part 2 of Definition 1. A similar proof applies if
¢ En £

We now prove that = is a partial order.

Lemma 2. For A, B, C in L(3), we have

(1) A=A and

(2) A=B and B = C imply A = C.

Proof. (1) If A= a, with 0 <i<3, partl of Definition 1 gives
the result. Suppose (1) is true for all A' with r(A') less than j, and
suppose r(A) =j. If AEU%I, then A' = A' for all A' in A by in-
duction hypothesis. Parts 2 and 4 of Definition 1 then give A = A. A
similar proof applies if A En A.

(2) We prove this by induction on the ordered triples



=J.2

<r(A), r(B), r(C)>, ordered lexicographically. When <r(A), r(B), r(C)>=
<9,0,0>, part 1l of Definition 1 applies. We assume that (2) is true for
all triples less than < j,j'sj" >,

and that < r(A), r(B), r(C)> =<j,j'»j"> with A > B and B = C. There
are ten cases to consider: (i) j=j'=0, C= UC, (ii) j=j'"=0,

c=[] (C (i) j* =0, a=UA; v j =0, a=[14; v) B=UJA, j=o;
(vi) B= Uﬁ, & EUC; (vii) B EU A, C Eﬂ C; and the duals of (v),
(vi), and (vii). We give proofs of (i) and (vii); the proofs of the other
cases are very similar.

i) j=j'=0, c=J (. Since B = C, it follows that B > C'
for all C' in C. But < r(A),r(B), r(C') > is less than < j, j'j" >,
sothat A = C' for all C' in C by the induction hypothesis. Hence
A=C.

(vii) BEUE, G Eﬂ( Since B = C, we have either B = C!
for some C' in C ‘or B' = C for some B' in A . In the first case,
by the induction hypothesis, A = C', and hence A = C. In the second
case, Lemma 1 gives A = B'. Then, again by the induction hypothesis,
A= C.

We have thus shown that = is reflexive and transitive, and is
therefore a partial order (where we identify A and B if and only if
A>=B and B=A). I A is a subset of 1.(3), then U}‘? and nﬂ
are, respectively, the least upper bound and greatest lower bound of
A under this partial order (this follows from Definition 1 and Lemma 2,
Part 1). Thus, if B is an infinite regular cardinal, and Lﬁ(3) the

subset of I(3) consisting of polynomials of length less than @, Lﬁ(3)
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is a weakly P-complete lattice with three complete generators (under
the partial ordering). Its normal completion L};(ES) is a complete
lattice with three complete generators. Thus, if A, B in I(3) are
not identified by = (i.e. not both A =2 B and B = A), then, taking P
greater than max (r(A),r(B) ), A and B are unequal in the natural
valuation of L(3) in L;(3), and hence A and B are unequal in the
sense of Chapter 2. Finally, by induction on the ordered pairs
< r(A), r(B) >, ordered lexicographically, it is easy to show that A > B
implies f*(A) = f*(B) for all valuations f of L(3). Thus elements
in I{3) are identified by = if and only if they are equal in the sense
of Chapter 2, i.e. coincide in every valuation. Thus Definition 1 gives
us an effective method of deciding when two polynomials in I(3) are
equal.

For convenience we write, for A, B in I(3), AUB = BUA =
Jta, B} ana AllB=38()a= Na, B

Now define polynomials x, in I1(3) for all ordinals i as
follows:

3% =
o

a_,
o = 2 Ve Je NaUe T,

and, if i is a limit ordinal,

X

x, = U{xj:j<i}
We next prove that the x, are a pairwise "unequal" collection
of polynomials.

Lemma 3. If i<}, X, = x; but x, P2 xj.
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Proof. We first prove two preliminary statements:

(a) If 0<1i, then X, é apa, and aapa, )é ;. We easily
verify that, for 0<i, aOU (alﬂ(aZLJao) >x, > aOU (alnaz). From
this (a) follows.

(b) If A,B arein L(3), then a_(Ja, > A,B>a, and
aOU(alﬂA) = aoU(alnB) imply alnA = alnB. Suppose
aoU(alnA) = aOU (alnB) = a.lnB. Then if aOU(alnA) = ap,, we
have aOUaZ = aOUA Za;, a contradiction. If aoU(alnA) = B, we
have aoU a, = ay a contradiction. If a, = aIUB, we have a, = alnaz,
a contradiction. Thus the only remaining alternative is alnA = alnB.
Note that (b) is valid if a ap and a, are permuted.

Now from (a) it is clear that X = X X p2 X:s for 0<i. Sup-
pose that j < k implies x xk whenever k< i. If i is a limit

ordinal then x;= U {xJ 5 & 3 1} > x, for all j<i. If iand i-rl’aré nat limit

ordinals, X, 2 :sc1 2 implies a U(a n(a U(a n(alLJ (a nxl 1))))) >

(!J(a. ﬂ(aZU(a n(aIU(aﬁ«. p))), i. e. X > X 1 If i-1 is a limit
ordinal, then x;=a U(a ﬂ(a U(a n(a. U(a nxl 1))))) =
aOU(aln(aZU(aon(aU (aznxj))))) = xj+1 for all j < i-1, and hence
X, ZU {xj: j<i-1} = X, 12 x; for all j<i. Thus, by induction,
Xj < X whenever j < k.

To show this inclusion is proper, assume the contrary. Then

there is a smallest ordinal i such that x, = x, far some j<i. Then

i is not a limit ordinal, since otherwise xiEU {xk<i}s X; im-

plies xj = xj+1, a contradiction to the minimality of i. Suppose j is

not a limit ordinal. Then Xj = aOU (aln(aZU(aoﬂ(aIU(aznxj_l))))),
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and successive applications of (b) give xj-l = a x5_1 > azﬂxi_l. If
j-1 is not a limit ordinal, Xj—l é a, and a2 ﬁ a % imply that
. Z X _p 2 contradiction. If j-1 is a limit ordinal, then xj-l =
Ay X s and hence X = aznxi_l for some k< j-1. Continuing in this
way if k is a limit ordinal, we get a descending chain of ordinals
which must end in a finite number of steps at an ordinal k', not a limit
ordinal, But then, as above, X 2 a'ani-l implies X1 2 X _p 2
contradiction. Finally, if j is a limit ordinal, we conclude from
= : j 2 xX.= ?

x, # apay and x=Ubqsr<ide =z al) @f Va,Uke e U f )
that X Z X for some k< j. If k is a limit ordinal we repeat the pro-
cess to obtain a descending chain of ordinals which must end in a finite
number of steps at an ordinal k', not a limit ordinal. This is just the
preceding case, however, and hence yields a contradiction. Thus
X, = x, but x, # x. whenever i<]j.
J i 1 J

We are now in a position to prove

Theorem 1. There does not exist a free complete lattice on
three complete generators.

Proof. From Lemma 3 the x, form an ordinal indexed col-
lection (hence not a set) of pairwise unequal polynomials in L(3). Alter-

: " . o o
natively, given any infinite regular cardinal B, Lﬁ(3) is a complete
lattice with three complete generators and has cardinality greater than
*

or equal to B (since Lﬁ(3) contains the B unequal elements x,, for
i< B). Thus the cardinality of complete lattices with three complete

generators is unbounded.
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Iv. FREE COMPLETE BOOLEAN ALGEBRAS

We now investigate the existence of a free complete Boolean
algebra on y complete generators. If n is finite, the free Boolean
algebra on n generators is finite, and in fact is isomorphic to the
collection of all subsets of a set of cardinality n. It therefore coincides
with the free complete Boolean algebra on n complete generators.

We now prove that there does not exist a free complete Boolean
algebra on @ complete generators. To do this we would like to use a
technique similar to that of Chapter 3, but this does not appear to be
possible. In Chapter 3 we were able to give an effective method of de-
ciding when two polynomials were equivalent. The presence of the dis-
tributive law in Boolean algebras appears to prevent this. We must
therefore use a more subtle technique.

The first step is to choose an ordinal indexed collection of poly-
nomials in B(w) which we wish to prove pairwise unequal. To do this
we must first establish how strong a distributivity condition holds in
Boolean algebras. Theorem 1 is due to Tarski (8) and Von Neumann (9),
Appendix, p. 7.

Theorem 1. A Boolean algebra is continuous; that is, whenever
nbi exists, we have n (ani) exists, and
i€l i€l

a1op =N @by  (anaavany).
i€l i€l
Proof. Trivially we have aU(n bi) < aLJbi for all i in L

iel
Now assume x < a.L_Jbi for all i in I. Then acnx < -aenL(ani) =
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ﬂb for all i€l. Then a nx < n (a nb ) —aﬂ( n b) Thus

i€l
aLJ(anx) aU(an(nb)), soi}t U(nb), so x <
i€l
aU(n b. ) Thus aU b ) is the greatest lower bound of {an i€ I},
so aU( n b. ) = .). The dual is proved similarly.
() 161 E

We now ask if, in a Boolean algebra, a stronger distributive law
than continuity holds. The following theorem shows that the answer is
no.

Theorem 2. A continuous lattice can be regularly embedded in
a Boolean algebra.

Proof. Let L be a continuous lattice. Since L is distributive
it is isomorphic to a collection C of subsets of a set S under finite set
union and intersection (Birkhoff (1), p. 140). We now look at the field
F of subsets of S generated by C. Then F is a Boolean algebra
in which C (or L) is embedded. To show this embedding is regular,
let {ci:iE I} be a collection of elements in C with least upper bound c
in C. Suppose f in F is an upper bound for {ci:i(—; 1}. We may
write f as (f1Vf§)/\(f3VfZ)/\. " 'A(on—lvfgn)’ where n is finite
and fi is either ¢ (the null set), S, or an element of C (this follows
from the way F was constructed). Then flVfé is an upper bound

for {c -iEI} Now, since the lattice C 1is continuous, we have

f n(Uc ) = U(fznc ). But since c; < foC for all iEI, we have

i€l €T

£, Ve, < &N U = £, for ant e Thus U (e[ e)) < e[\,
€1
In other words f ﬂ( U c,) < £ nf Thus fCU& ﬂ( Ue. ) <

i€l

£ U(f nf y, & f?.U( I2‘4 ¢,) < £5|Jf;. This implies c < f Vf

Similarly, for 1<k <n, c < ka-l f(.?:.k' Thus c < f. We have there-
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fore proved that ¢ is still the least upper bound for {ci:i(: 1} in F.
A dual argument shows that all greatest lower bounds are preserved,
so C is regularly embedded in F.

It is easy to show, using continuity and inducting on r(A), that
any polynomial A in B(w) is equal to a polynomial of the form
(a nB)U(a ﬂC), where neither a_ mnor a appear in either B or
C. But if we define on = (x nB)Ux nC), = (xln B)U(xfrb),

.y we obtain at most 223 unequal xi's, since ?.?*3 is the size of a

free Boolean algebra on three generators (ao, B, C). Thus we cannot
choose our polynomials in as simple a way as we did in Chapter 3.
Roughly, we cannot build just one chain (or a finite number of chains),
but must instead build @ chains simultaneously.

First, for notational convenience, let us relabel our w genera-
tors. We thus suppose that the set of generators is
{ag, 70 <3< w}V{bi’j: i#j,0<1i,j<w} We define polynomials a, .,

is ]
where 1 is arbitrary and j< w, as follows:

3541, 5" U{a’i,jnai,k bj,k: 0<sk<w k#j}

and, if i is a limit ordinal,

ﬂ{a 0 <k<i)

We wish to show that, for fixed j, the a; 3 are pairwise un-
b4
equal. To do this we construct, for each cardinal a, a field of sets

containing elements Ai 3 (for 0 j<w, 0<i<a) and Bi 3 (for
2 $ ]

0 <i,j<w i# j), with Ai 3 & Ai' . whenever 1i> i'. We take the
t |
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normal completion of this field of sets. We then show, if f is the

valuation such that f(ao J.) = Ao . for 0 <j<w and f(b, .) =B

3 s ) 1s) i, j

for 0<i,j<®, i# j, that £*(ai,j) =A,  for 0<j<w, 0<i<a
This establishes that, for fixed j, the ai,j are pairwise unequal.
We have also, in the process, constructed complete Boolean algebras
with @ complete generators of arbitrarily large cardinality.

Our construction will, in fact, be more general, depending on
a cardinal parameter y (the number of complete generators) in addition
to a. The case y =w is the relevant one for this Chapter. The
general construction will be used in Chapter 5.

Let a, y be infinite cardinals with y regular. Let B = y2+ a Y,
and S = 2P, 1. e. the set of all functions from B to {0,1}. For each
6 < B, let es be the evaluation map corresponding to &; i.e., if £
is in S, 36('{) = £(8). Note that each 6 <P can be uniquely written in
one of the following forms: y-i+ j, where 0<1i,j< y; or y2+ a® § 4 i,
where 0< j<y and 0=<i<a.

Define subsets B, 3 (0<1i,j<vy, i# j)of S as follows:
¢

_ -1

By, 5= ey i) -

Define subsets Ai 3 (0<i<a 0<j<y) of S as follows:
3

-1

A =8 (1) »
) Y2+u~j
syl Vo, Aag N VO A 1,
) oskgy ) B J» O<k<i+l _2, .
o y“+a- jtk

and, if i is a limit ordinal,
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Let F be the field of subsets of S weakly y-generated by
{Bi’j:O <i,j<vy, i# j} V {Ai,j:o <i<a 0<j<vy}. Then F is

a Boolean algebra in which we denote union and intersection by U and
n » respectively (where U and n coincide with V and /\ , respec-
tively, when applied to finite collections).

Lemmal. If 0 Sk<i<a 0 <j<y, then Ai,j is properly

contained in A

ky j°
Proof, Suppose that i < h implies Ai 3 < Ak 3 for all k <1i
’ t ]
(this is obviously true for h =1), Trivially Ah 3 < Ah i IE L isa
] ’

limit ordinal, then Ah : /\ Ah

= = A, - forall k<h, H h is not
»J 0 pep  Pe K, J

a limit ordinal, then

=1 V (Ah-l-,j/\Ah-l,k/\Bj,k)] Vi A e ()]

0 <k<y 0<k<h y“+a-j+k
k# j

Ap

But it is obvious that

v (Ah-l,j/\Ah-l,k/\Bj, i €A, 5

0-51(('\/
k#j

If h-1 is not a limit ordinal, then A e:'.l2 (1) < /\ e-1 (1)<
0<k<h y +arj+tk  0<kSH-1 yP#a jk
Ah-J., 3 so A ' js Ah-l, i Finally, if h-11is a limit ordinal, then

el (1) < /\ e'l2 (1) for all k'< h-1, so
0<k<h vy +arjtk 0sk<k'+l y“+asjtk

e-l2 (1) < Ay, ; forall k'<h-l. But, if k' is a limit
0<k<h y“+asj+k el

: , " . .
ordinal less than h-l, Ak‘+1,j Ak',j by induction. Thus

A e (1) <A, . forall k'<h-], so /\ e’f,_ (I)SAh i g
0<k<h y“+asj+k ») 0<k<h y“+arj+k ~ad
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But by induction A < A, . for all k < h-1,

S *e -« =
Thus Ap 5 = #hey, hl,j = Ak, j
so Ah § < Ak j for all k < h. We have thus proved, by induction, that
i g : < ‘
k > i implies Ai,j Ak,j

To show that the inclusion is proper, let k be given and define
a function f from B to {0,1} as follows:
f(y2+<1-_j +h)=1 for 0 <h <k, and
f = 0 otherwise.

If k is not a limit ordinal, then { is an element of /\ e-1 (1),
0<hs<k y“+a- j+h

so f is an element of A If k is a limit ordinal, then f is an

k,j"

element of /\ e—1 (1) for all t < k,so f is an element of
0<hst#l y“+a-j+h

Ath : for all t < k, and hence of At 3 for all t< k. Thus f is an ele-

ment of A But f is not an element of B, for any h <y, since

k,j’ j»h

f(y-jth) = 0, and f is not an element of /\ e_lz (1), since
3 0s<h<k+l y“+a:j+h
f(y +a.j+h+l) = 0. Hence f is not an element of Ak+1 3 and therefore
’

is not an element of Ai j for any i = ktl. Therefore Ak j properly
£ ’

contains Ai . for all i > k, and the lemma is proved.

Lemma 2. Every element of F can be written in the form

AV o,

€Y zeZ Y,
* 4

where the XY’Z are chosen from a subset of {Ai, j}V{AiC,j}V{Bi,j}V{BE,j}

which has cardinality less than y (the subset varies with the element).
Proof, We must show that elements of the stipulated form are

closed under intersection and unions of less than y elements, and also

closed under complementation. That they are closed under intersections

follows from the regularity of y. To show that they are closed under
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unions, note that by distributivity /\( V X z) - V ( x -
€Y zeZ T qﬁeHZy yey v, 0ly)

yeY
where the x come from the same set as the x . But elements
Ve ¢( ) Y, z
of the form V ( x z), with the same restriction on the .~
b 2

€Y zeZ
4 ¥

are closed under unions, again by the regularity of y, Then another
application of the distributive law returns us to the original form. To

show that elements of the stipulated form are closed under complemen-

tation, note that [ /\Y( @ ) An application of
zeZ Y er Z€

the distributive law returns us to the original forrn. Thus the lemma
is proved. (Note that we have also proved that every element of F can

be written as V ( /\ x ), with the same restriction on the x )
yeY z€ZY L 2
Lemma 3, If 0si<a, 0 €j<vy, then

=T W U (5 jnAi,knBj,k)

’J 0$k<.¥ ¥

k#j
Proof, We must show that Ai+1 5 obviously an upper bound,
2
is the least upper bound of {(Ai jnAi knBj k):0 £k<vy, k#j} in F,
2 ’ 3

Suppose x in F is an upper bound for this collection, We have, from

Lemma 2, that x = /\ ( V X z), with the stipulated restriction on the
yeY zeZY -

> . Then each X is an upper bound for this collection., If
Y,z y Z
zZ€Z
37
we can prove that each V X contains A. ., then x will con-
Vs Z 14l J
ZE Zy

tain A, 4, " and we are done, (Note that the stipulated restriction on
J

the xy - implies that Zy may be assumed to have cardinality less than
]

Y+)
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Let us therefore assume that

a=(Va_ WV as )V(VB )V(VB .

p<y, 0’ e p<y, Pplp T <y, <y, P up

where Y 2Y2:¥3:Y4<Y, is an upper bound for {(Ai, jnAi, kn Bi 1O Sk<y, k#j}.

We wish to prove that A = A,

.« Without loss of generality we may
1¥l5.3

assume that Yy > 0, B, i+l, and 9, = j» since A is disjoint from

14,
Ai-l-l, )

Let X\ = max (supn , sup qp, sup s _, sup tp’ sup u_) +1. Since
FeY1 P<Y2 ~ P<Y3 P<yq4 P<Y4

Yy 1is regular, \ is less than y. Now define a function f from B to
{0,1} as follows:
iy +u.-qp+k) =1 for 0 € k < min (p +, u), 0 <p<y,;
flyet tu )=1 for 0 €sp< 3
by + Bt} P=Y¥yi

f(yz-l’ao)u +k) =1 for 0 <k <1i;

fly- j+N=1

and
f=0 otherwise,
: ; Gt -1 o
Since flyejf\)=1, f is in ey-j+x(l)’ so f is in Bj,)\ (note
that A > q = j). Since f(y2+a.x +k) =1 for 0 Sk <i, f isin e-l2 (1)
2 2 Y +O.Ik+k
for 0 <k <1i, and hence in A, i Since f(y +a. q_o+k) =1 for 0 <k < P.s
’
where p =1i+1 and q.= i, £ is in M (1) for 0 <k < itl, so
o :
Y GFae jtk
f isin A, .. Hence f is in A /\A B.,, and hence f must
iL,j 2SN PR S

be in A,

Since f(y2+o.- qp+k) =1 for 0 € k < min (pp+1, a)y, 0 =p< Yy We
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have that f is in /\ e_é (1) for 0 s p< Y,s SO
05k<min(pp+1,a) vy ta- qp +k

fisin A . for 0 <p<y, Thus f isnotin V ac

PP 0<p<y, Pprp
. " -1
Since f(y tp+up)-1 for 0 Sp<vyy, f isin e-y-t ta (1) for
PP
0-€p<y4, so f is in Bt 4 for 0Sp<y4. Thus f is not in
P’ P
Vo ose
O<p<yy ‘o7 %
There are two remaining possibilities: f is in V B P
0<p<y; 'p’°p
or f is in V A g * Suppose f 1is in V B 5 Then,
0<p<y, T 0<p<ysy "o’ %p
for some o with 0 So<y;, f isin B . Thus f(y-r +s )=
r,s oo

o’ o

But, since \ > S 0 this implies that = ;2 - s = s for some T with

(e
< . = =
0 T <Yy But then we have A = r,sVB U Br,sVBr,s
¢’ o
S= A, ., and we are done,
itl, )
Now suppose f is in V A . Then,for some o with

m n
Osp<y; "p"p
0<og<y, fisin A_ L+ H AZA° then

m
[ o

> % > ' s
A Am -no.\/ Amo_.na_ =S Ai+1,j and we are done. Suppose A 7 Amo" n;

Then let T be the smallest ordinal such that there exists an ordinal

0# N\ with f in A but A # A .0 (since )L>nu,m0_ is such an

m, 0

ordinal). Now 7 cannot be 0; if it were, fin A would imply

0,0
f(y2+a- 0) =1.,. This, since © # \, would imply that there exists a ¢

with 0 < ¢ <y, suchthat q =6. Butthen A=A = A g K
2 T Posd,  ©,0

contradiction, Also T cannot be a limit ordinal; if it were, the

minimality of 7 would imply that A = A:, o forall ' with 0<7'< 7.
]
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c S
But then A = V A,,- 0 Aﬂ’ o 2 contradiction.

Osm'<r

Thus 7 = w'+l. There are then two possibilities: f is in

A e’} (o, ok tadn W (A, e/\A', k/\Be ). Suppose
0<k<T y +a°* 6+k 0<k<y ’ 4 i
k#6
. . | - .
that f is in /\ o (1). Then f(y +a*6+x) =1. Since 0 # )\

O<k<® yZ+a- B+k
this implies that, for some o with 0 < e < Y,» we have q =8, p_=>

But ghen A > AS = A= , a contradiction.
Pgr 9 X 8
Now suppose f is in ' J\A . ) Then, for
0<k<y 1r g k 9,k
*60

some k' with 0 < k'< vy, k'# 6, we have that f is in
Aﬂ,’ GAA‘H', k'[\BB, k' We distinguish two further cases: k'# A and
k' =A. Suppose k'# A. Since f isin A, o and T was chosen mini-

mal, we must have A = AC, o Since f is in A', Kt where k'# )\,
5

and 7 was chosen minimal, we must have A > Aﬂ, K Since f is in

Be k1> We must have f(y- 6+k') = 1. This implies, since k'# A\, that

for some ¢ with 0 < ¢ < Y4 We have i =0, u = k'. But then

b Bttr’ uo'- Be-k" e & 2 1r' VA‘II" k'VB k! = Ay g0 3

contradiction.
Finally suppose k' =\X. Since f isin B . =B » we must
6, k 6, \

have f(y- 8+\) =1. But since \ > sup u this implies that © =j. Thus

P<Y4
c c _ .
A# A1r, i But we know that A = Apo’ a AS i41, j° Thus > i+l, or
7' > i+l. Since { is in A',’ K= Aw,,)\, f must therefore be in A, i+1, X
In other words, f£ is either in /\ e-l (1) or £ is in

0<k<i+l yZ+a Mk

V (A ) /\Ai’k/\Bx’k). € fisin [\ el (), shen

0<k<y 0<k<itl yZ+a-A+k
N
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f(y2+a- A+i+l) = 1. But, since X > sup q_, this is impossible. On the
P<Y2

other hand, if f is in V (A. AB)\ i)» then for some ™

0<k<y
k#A

with 0 < k"< vy, k®# \, we know that f is in B

< [

X, kT Thus
£

f(y* A+k"™) = 1, But, since A > sup t , this is impossible. The existence
P<Y 4
of T has thus led to a contradiction, and the proof of Lemma 3 is com-

plete.
We note that, if 0 €i<a, 0 £j< y, and i is a limit ordinal,
then A. . = A A

1,] 0<k<i : ’

Let us write F = F'Y 5 o indicate its dependence on y and a.
»

Then we denote the normal completion of F by F
Y, Q Y, Q

- *
Theorem 3. FY o and hence F o is completely generated by

’ Y

{AO j :0 Sj<y }V{B 0< i,j <y, i# j}, and has cardinality at least a.

Proof, From Lemma 3 it follows that {A }V{B .} com-

i,j
3
pletely generates FY o’ and hence FY . From Lemma 1 it follows that,
’ ]
for fixed j, the Ai . for 0 €£i < a are pairwise unequal, Thus F s
] s

and hence F:’ - have cardinality at least a.
Theorem 4. There is no free complete Boolean algebra on w
complete generators.
Proof, F: " is completely generated by
{A 8, § 0<_]<w}V{B OS i,j <w, i# j} a set of cardinality w., Also
Fz’ a has cardlna.hty at least a. Hence there exist complete Boolean

algebras with w complete generators of arbitrarily large cardinality.

Alternatively, consider the valuation f such that f(ao j) = Ao §
E] Ll
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for 0 € j<w and f(bi J): B. . for 0 €4i,j,<w, i# j. Then, by
t

>

)= A, . for 0 €i<a, 0 £j<w. Hence, for fixed

%
Lemma 3, f (a. . :
1y ) 1, )

js we conclude from Lemma 1 that the a; § for all ordinals i are
’

pairwise unequal,
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V. WEAK (a, ) DISTRIBUTIVITY

In this chapter we generalize the results of Chapter 4, We shall
be concerned with Boolean algebras in which a certain type of distribu-
tive law holds.

Definition 1. A Boolean algebra B is said to be weakly (a, p)

distributive, where a and P are cardinals with a 2 w and B = 2, if
the following identity is valid whenever Y has cardinality less then aq,

Z has cardinality at most B, and all the U 's and n 's exist in B:

N Y *y,z) = U, (N = 8(y)

yeY zeZ dez¥ yey ¥’
Note that this identity implies its dual and vice versa.

If B is weakly (a,p) distributive for all B, then it is said to
be weakly (a, 00) distributive.

A complete weakly (a, p) distributive Boolean algebra B is
said to be a free complete weakly (a,p) distributive Boolean algebra
on y complete generators if B contains a subset A of cardinality
Yy which completely generates B, and if every mapping f of A onto
a subset A' of a complete weakly (a, ) distributive Boolean algebra
B' which completely generates B' can be extended to a complete homo-
morphism f* of B onto B,

Replacing (a,pB) by (a,®) everywhere in the above definition,
we obtain the definition of a free complete weakly (a,o00) distributive
Boolean algebra on y complete generators,

We can define a new equality on polynomials in B(y) as follows:
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Al’ A2 in B(y) are equal (a,p) if and only if, for every valuation f

from {ai:O < i<y} into a complete weakly (a,p) distributive Boolean

algebra, f*(Al) = f*(AZ). Then the statements of Chapter 2 carry over,
i. e. the following are equivalent: B(y) (after the identification of equal
(a, B) elements) is a set; B(y) (after the same identification) is a free
complete weakly (a,p) distributive Boolean algebra on y complete
generators; there exists a free complete weakly (a,p) distributive
Boolean algebra on y complete generators; and the cardinality of com-
plete weakly (a, B) distributive Boolean algebras with y complete
generators is bounded.

Defining equal (a, ®) in the obvious way, the above statements
carry over if (a, ) is replaced by (a, ) everywhere.

We wish tovinvestigate the existence of a free complete weakly
(a, B) distributive Boolean algebra on y complete generators., Theorem 1
which was first proved by Tarski (10), settles the question for y < a.

Theorem 1, If y < a, the free complete weakly (a, 3) distribu-
tive Boolean algebra on y complete generators is isomorphic to the
collection of all subsets of a set of cardinality AR

Proof, Let B be any complete weakly (a, p) distributive
Boolean algebra with the y complete get}erators {xi;OSKy}. Then, applying
the distributive law, we obtain

1= (1 U= U N x40

o<i<y ' ' ¢e2Y O<si<y

where Xi,d)(i) = x; if ¢(i) = 0, and xi,d)(i) = xg if ¢(i) = 1. Now choose

any ¢ in 2Y, Then ﬂ X, ., 1s either contained in or disjoint to
0=i<y i, 6(i)
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each x, and each x;. The collection of all elements in B which
either contain or are disjoint to 0Q<Y xi,qb(i) are easily seen to form
a complete sub-algebra of B containing the X:s and hence must include
all of B. Thus ﬂ X. ., is either 0 or an atom in B, Thus I
0<i<y 900
is a union of not more than 2Y atoms, so B is isomorphic to the
collection of all subsets of a set of cardinality at most 2Y, On the
other hand, the Boolean algebra of all subsets of 2Y is weakly (a, B)
distributive and is completely generated by {ei-l(l): 0 <i<y}. The
mapping f taking e{l(l) to x, for each i <y extends naturally to
a complete homomorphism f*, so Theorem 1 is proved.

We now suppose that y = a, and ask if there exists a free com-
plete weakly (a, oo) distributive Boolean algebra on y complete
generators, It is easily seen that, if a is a singular cardinal, weak
(a, o0) distributivity implies weak (a+, o) distributivity in a complete
Boolean algebra, where o’ is the smallest cardinal greater than a.
We thus assume that a is regular. If we can show that, for y = a,
such an algebra does not exist, the question will be settled for all y=a.

We therefore suppose that y is an infinite regular cardinal,
and prove that there does not exist a free complete weakly (y, o) dis-
tributive Boolean algebra on y complete generators. Our method will
be a direct extension of that of Chapter 4,

We first choose an ordinal indexed collection of polynomials in
B(y) which we wish to prove pairwise unequal (y,o). First we relabel
the generators as {ao,j:0€j<y}V{bi'j:0S i,j <y, i# j}. Then we define

polynomials a; 5 where i is arbitrary and j <y, as follows:
s
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= 0 i
ai H, j U {ai,j| Iai’] l ij’] : 0 k<y, k #3},
and, if i is a limit ordinal,

= 10 <k<i
3, n{ak,j.o k<i }.

Thus the polynomials are obvious generalizations of those in Chapter 4.

Now, for any infinite cardinal a, consider the valuation f from

% N o _
{ao’j} V{bi’j} to FY’Q defined by f(ao'j) = A and f(bi’j) =B, .

0,] s
%
It follows from Lemma 3, Chapter 4, that f (a.i j) = Ai 3 for 0 <i<a,
$ ] t
0 € j<%. Moreover, from Lemma 1, Chapter 4, the Ai 3 for fixed j
E

and for 0 € i< a are pairwise unequal. All that remains (to show the

%*
a; j for fixed j are pairwise unequal (y,®) ) is to show that F v, is
] s’

weakly (y, o) distributive. This will also, of course, show that there
exist complete weakly (y, ) distributive Boolean algebras on y com-

%
plete generators of arbitrarily large cardinality (namely the F'Y u)‘
»

*
To show that F_ is weakly (Y, o) distributive it is sufficient
s

to show that F - is weakly (y, o) distributive. (Pierce, (11) ).

Theorem 2, F " is weakly (y, o) distributive,
LSS i ?

Proof, Let us assume the contrary, Then, for some cardinal

Yo <Y, and for some choice of elements x in F_ , we have

ﬂ(U )*U(ﬂx

X Y
p<y, yeY PsY 7 geyYo p<y, P> 9(p)

where the U 's and n 's all existin F . But, since each U X
Y, a veyY PsYy
contains each n X , we know that
pey  Pa#ipl
o

n (Ux = U (n Xp,qb(p))'

p<y, yveY P'¥ devYo p<y_
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It therefore follows that

v N U= 0> U N < 0

p<y yeY Ps Y deYY0 p<'y
Let us denote ﬂ ( U x ) by b and U (n X é( ))
p<y, vey PY geyYo p<y_  PoPIP
by d. Intersecting both sides of (1) by d®, we obtain

NN Ux > e N =, gp=0-

PY e

pP<y, veY P<Y,
This is of the form of (1), and each dﬂ( n xp d’(P)) = 0. We may
Py,
thus assume, in (1), that each n xp é(p) = 0, Now intersect both
:

P<y,
sides of (1) by b. This gives

ﬂ [U (bﬂx U [bﬂ(n x .¢(p))]

P<y, VeEY ¢eyYo Py

This is of the form (1), and each U (bnxp Y) = b; also, each

yeY !
bn( n X 6 )) = 0, We may thus assume that, in (1), the U x
s Pyl yey PY
are all equal, and that each ﬂ X =0

From Lemma 2 of Chapter 4 it follows that each element of

F & can be written as a set union of elements of the form
]

(2) A=(/\A )/\(/\ G INCAE N B )

(r<yl o< Y3 o cr<y oo

where Y1r Yo Y3 Y4 <Y Now, for each o <¥ys write

Am n - [ V (Ak,n /\Ali-l-l,n )]VAo.,n
(i3 o o

[ ' mUSk<a
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(This follows from A 3 = /\ A j if i is a limit ordinal.) Then we
R S
have

a(N TV 4 nU/\A;;H,n Va, o DN & A

0’<\(1 mG_Sk<a. » 0'<'Y2

(Ns, OACNs

<Y Yo' 5 s 0' o
Now let

o= I [{(a, Aag,  )m <kalV{a 3.
o<y, o o et

Then, by distributivity,

A—V[(A¢(U))/\(/\Ap NN 5 N B0

oed o'<y1 o<y, o<Y3 To? <Yy cr o

Thus each element of F q Can be written as a set union of elements of
]

the form (2), with the added condition (condition C) that for each ¢ < Y,

< i < +H = = .
such that m_< o there exists a T Y, such that mo_l Pps» 0 =4,

Now write each x in (1) in this fashion, i.e. x =
P:Y PsY
V x , wWhere x is of the form (2) with condition C, Let
zeZ PsY,2 PsYs2Z
Py
®'= II {x tyeY, zeZ }» Then we have
< PaVZ Py
P<Ys
NcU x> U N sen
p<y, YeEY »7 pe d'  p<y
zeZ
PsY
where the U X are all equal, the ﬂ ¢(p) are all 0, and
Y PSZ’Y <
ye P
zeZ

Py
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each x is of the form (2) with condition C.
PsVs2
We thus assume that in (1) each ﬂ x = 0, all the
<« P:so(p)
i .
U x are equal, and each x is of the form (2), with condition C.
YEY , 2

For convenience assume Y is well ordered. Now define elements
yp(O <p< yo) in Y by induction as follows:
¥V * the first y in Y such that X, ¥ # 0 (since U x >0,
»

yeY %Y
such a y_ = must exist)

Yp = the first y in Y such that (Qp xk’ Yk)nXPsY # 0, or,
if no such y exists, yp =YV .

The function ¢ such that ¢(p) = Yp for 0 € p< Y, lies in

YYo, Thus n x = 0, Let Po be the smallest p Syo such
p<vo P+ ¥y

that n Xy =
k<p * Yk

Suppose p_ 1is not a limit ordinal, i.e. p_= p'tl. Then, since

p'<p nx .Butnx \Ux '-'U x,.There—

k<p! k k<p'! ©Vk  yey >V  yey

fore, by continuity,

U[x.n(ﬂx ]-(ﬂxk,yk)ﬂ(U )= % #o.

Thus, for some y in Y, and hence for Yp" we have

2 yr] )# 0. Thus we have that ‘ l X #0, a contra-
k<p e F k<p ™
o
diction.

Now suppose that Po is a limit ordinal. We shall examine

ore closely. For each k< X is of the for 2

kOp xk:Yk more y re P k'Yk e m (2),

w1th condition C., Thus, forming the intersection n X1 formally
£

k<p " Yk
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(remember p_<vy, so n X, = A Xy ), and reindexing the
k<p, Yk k<p, Yk

terms, we can write

[ my=tAa, o NA S AA B, NVA =

k<p ’Yk cr<'y1 Mg ¢:|'<y2 °¢ <Yy o' o

with Y17 Yar Y30 Y4 <y, where each term occurs in the representation

(in the form (2), with condition C) of x for some k < Por

k, Yk

Now construct a function f in 2‘3 as follows:
f(y2+ a.n0_+x) =1 for 0 € x < min (m6+1,o.) y 0 So< Yy
fy. iy so_) =1 for 0 S0 <yj,

and f=0 otherwise.
Since, for 0 <o <y, fisin e-l2 1),
0 ~<-x<min(mu_+1, a) y ta- no_+x

; Ws 1 -1
<
f is in A A n* Since for 0 o <Y3, £ s In eY.r . (1), £

0‘<’Y1 Mg B s
is in B s Then, since ﬂ X = 0, { cannot lie in both
o<y3 T %6 k<p Yk
/\ B and /\ A . Thus f is either in V B or
0,< ] < ] q t ’ u
Y4 0' o <Y, 0' (o3 ar<\(4 A

in V Ap,q'

U<Y2 o o

Suppose f is in V B « Then, for some ¢ with

o'<'y4 cr o
0 S0 <vyy f(y- tcr+u0') =1, Therefore there exists a 7 with 0 €7 < Y3
suchthat r_ =t , s_=u_. But B occurs as a term in the repre-
T « T o Tos 5,

sentation (in the form (2), with condition C), of X v for some
2
k

k < Por SaY k = kl Likewise B: o occurs as a term in the repre-
a



P

sentation of x

N

Xk =
k<max(k,, k,)+ ** Yk

k'yk for some k<po, say k= kZ' Then

C e ;
< B A B = 0, a contradiction, since
r ;8 tU, u[r

max (k‘l’kz) +1<p_, and p_  was chosen minimal.

Finally suppose f is in V A q* Then, for some ¢ with

cr<y2 G0

0 o< Yoo f isin A . Suppose, for some p'< Por

o’ o

n xk < A « We know that A€ occurs as a term in the
k<p' ’Yk pU,qU po,:qcr

representation (in the form (2), with condition C) of By for some
i

c
< A A = 04
Puqu/\ pq’qg

k < Py S2Y k = kl' But then n xk,y <
k

k<max(p', k1)+1

This is a contradiction, since max (p’, kl) 1 <€ Py and P, was chosen
£ A

Now let i be the smallest ordinal less than or equal to a such

minimal, Thus, for all . p'< Por n

X °
k<p" K, ¥y Py 9,

that there exists a j, 0 <j<vy, with f in Ai 3

but, for all p'<p ,
. o

X A. . is such an ordinal),
k<p' k’ Yk # I’J (p(r )

Since f isin A, j, f isin A_ ,, and hence flyZ+aej) = 1.

Thus there exists a 7 <y, suchthat n_=j. Then A must occur
1 T m,_,n_

as a term in the representation (in the form (2) , with condition C) of

% for some k<p , say k:kl. If i=0, then

K o

p.&

k<k1 +1

k,y

< < .. . _
%, A 8 Ao, .» a contradiction, since k1+1 < Poe Sup
Yk T ly ’

pose 1 is a limit ordinal, Since ﬂ Xy ¥ Ai .» we must have
k<k'H Yk 4L
m,_ < i, Moreover, it follows from condition C that ¥ iy is a term

m_+l,n
T T

in x But m_r+1 <i and f isin A . Hence, by the mini-

EsYe. -

17 kl
mality of i, there exists a p'< p_ such that n x
k<p'

m_+H,n
T

< A
k,yk InT+1’nT



"

But then ﬂ x <A /\AC

= 0, a contra-
+ - ’
k<max(p’, lc1)+1 Vi m, 0, m, 0,
diction, since max (p’, kl) t1<p,.
The only remaining alternative is that i = i' +1. There are

then two possibilities: f is in /\ ol (1), or f is in
ksi y taejtk

V (Ai.’jAAi,,k/\Bj’k). f £ isin J\ el ), then

0 <k<y ksi y taejtk
K#j
f(y2+uoj+i) = 1, Thus there exists a § < Y, such that ng, = 5 m62 i.
But A occurs as a term in the representation (in the form (2)
mg,ng
with condition C) of Xy for some k<p , say k=k,., Thus
Y o 2
n X < A < A. ., a contradiction, since k2+ G
o R I "l E
Now suppose f is in V (A., .AA., k/\B. k). Then
0 <k<y 1) 17 Js
k#j

there is a k' with 0 < k'<vy, k'# j, such that f is in
Ay .AA., ,AS. 3« Since i was minimal and i' < i, there exist
1%) iL k ik

pY pE o such that n < Ai' . and n

x 3 s A,
k<p. ksyk s ) k<pm ksYk 1

* o

Since f is in Bj K" f(ys jtk') = 1. Thus there exists a \ <y such
3

that r, =j, s, = k!, Then B occurs as a term in the represen-
bN A s S
AT
tation (in the form (2), with condition C) of X ? for some k< Py
Ik
say k= k3. But then

A e ‘Ai'.j/\Ai', k'/\Aj.k" =l p

k<max(p®, p™, k3)+l k, Yk

a contradiction, since max (p®, p™, k3) t1<p,.

Thus our original assumption, that F o. is not weakly (y, o)
’

distributive, has led to a contradiction, and Theorem 2 is proved.
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Theorem 3., If y is an infinite regular cardinal, then there
does not exist a free complete weakly (y, o) distributive Boolean
algebra on y complete generators.

Proof, Theorem 3 follows from the remarks preceding Theorem

2 and Theorem 2 itself,



9.

10.

11,
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