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ABSTRACT 

In this thesis primitive finite permutation groups G with 

regular abelian subgroup H are studied. It is shown that if, for 

an odd prime p, H has a Sylow p-subgroup which is the direct pro­

duct . of two cyclic groups of different order, then G is doubly 

transitive. 
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I Introduction 

The object of this thesis is to show that certain finite 

abelian groups cannot occur as regular subgroups of uniprimitive 

(primitive but not doubly transitive) permutation groups. Thus we 

conclude that primitive groups with such a regular abelian subgroup 

are necessarily doubly transitive. 

The first result of this nature was obtained by Burnside who 

m 
showed that cyclic groups of order p (p prime, m » 1) do not oc-

cur as regular subgroups of uniprimitive groups. The proof is 

given in [1] , p. 343. 

For this reason Wielandt has chosen to call such abstract 

groups B-groups _ / 

Burnside conjectured that every abelian group which is not 

elementary abelian is a B-group_ This conjecture is not correct. 

A class of counter-examples was found by Dorothy Manning in 1936. 

This class of counter-examples has been generalized by Wielandt and 

will be given below. The first advance beyond Burnside's result 

was obtained by Schur [2J in 1933- He showed that every cyclic 

group of composite order is a B-group_ 

In 1935 Wielandt [3] generalized this result by showing that 

every abelian group of composite order which has at least one cyclic 

Sylow subgroup is a B-group. 

In 1937 Kochend~rffer [4J generalized the Burnside result 

in a different direction by showing that every abelian group of 

type (po(, pI?> ) with ~"> /3 is a B-group. 

This thesis is a simultaneous generalization of the results 



- 2 -

of Wielandt and Kochend8rffer. We show that for any odd prime p 

every abelian group of composite order which has at least one 

Sylow subgroup of type (po<., pf» with 0( >{!> is a B-group. 

We now give the Wielandt class of counter-examples to the 

Burnside conjecture. 

Let H = Hl x &2 ••• x Hd with 

1 Hl ' = I H2 f =. •• = J Hd ' = a > 2 and d > 1 (where 

IHil is the order of Hi). 

Then H is not a B-group. Thus for any such H there exists a 

uniprimitive group with a regular subgroup isomorphic to H. No as-

sumption is made on the structure of the H .• 
~ 

The proof is given in [5], an unpublished set of notes from 

lectures given by ~ielandt at TUbingen in 1954. 

We mention that two classes of non-abelian B-groups are known 

as well. 

Wielandt [6] showed that every dihedral group is a B-group, 

and Scott [7] has shown that every generalized dicyclic group is 

a B-group. 

This thesis is a direct generalization of ~4~ in the sense 

that the arguments apply whether or not the regular subgroup is a 

p-group or not. The case in which the Sylow subgroup is cyclic 

(i.e. f3 = 0) requires a slightly different argument, however. 

Thus we mention that the arguments given in this thesis can be 

adapted to give a somewhat different proof of 11.'ielandt' s result in 

the case ~ = 0, but for clarity of the presentation, we assume that 

the regular subgroup has a non-cyclic Sylow subgroup of type 

(p 0<., P p) with 0<. "> f3 (i.e. we assume that 13 1=- ° holds). 
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II Notation, Definitions, and Theorems from the 

Theory of Schur Rings 

Let G be a given permutation group on the letters a
l
,···, an 

with regular subgroup H. 

g 

We denote the image of the letter a. under the permutation 
~ 

g 
G by a .• 

~ 

We regard G as a permutation group on H in the following way. 

We distinguish the letter a lo 

Since H is regular there is a unique h E: H, which we call 

h
j

, taking a
l 

into a
j 

for j = 1, ••• , n. 

Clearly hI = 1, the identity element of H. 

The one-to-o~e mapping j ~ h. enables us to replace the 
/ J 

letters a l , ••• , an by the elements hl, ••• ,hn of H. 

To the permutation g f G (on {al, ••• ,a
n

} ) corresponds the 

permutation (~g) (on H) where h
g 

is the element of H uniquely 

determined by the formula 

h
g 

hg 
a l = a l 

Let R(H) be the group ring of H over the ring of rational 

integerso 

For '1. = £ 
h t H 

l(h) hER (H) and any integer j we put 

n (j) - ~ 
'L - h-T-H ~ (h) h j, and I '1.1 = li.'l( (h) h I = ~ i (h) • 

With K C H we associate K E R(H) defined by 

K = h ~ ?f (h) h where ¥ (h) = [ 0
1 if h l:. K 

if h ~ K 

Thus I!' is the number of elements in K. 

Let G
l 

be the subgroup of G (considered as a permutation group 
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on H) consisting of those elements of G fixing 1, the identity ele-

ment of R (thus G
l 

corresponds to G ). 
a

l 

° 1 k = T , T , ••• ,T be the sets of transitivity of G
l

, 

where Ti c: H for i = O, ••• ,k. 

Clearly the elements k 

i?u ¥ i Ti ( ~ i integers) form an 

additive subgroup of R(R). 

Definition 1: 

A Schur-module (S-modu1e) over R is an additive subgroup of 

R(H) which has a basis !l' ••• '!t where Ki c.. H for i = l,o •• ,t, 

Ki (\ Kj = /1 for 1 ~ i .::::: j ~ t and 

t 
~ K> = H. 

i = 1-J. 

Let R(R, G
l

) be the additive subgroup of R(R) spanned by the 

Ti, J.> ° k = , ••• , • -
Then clearly R(R,G

l
) is an S-module. 

Definition 2: 

A Schur-ring (S-ring) over H is an S-module over H which is 

in addition a subring of R(R) containing the multiplicative identity 

1 and containing 'L (-1) = i. i(h)h- l whenever it contains 

Cl = 2:. ¥(h) h. 

Theorem 1: (Schur, 1933) 

R(H,G
l

) is an S-ring. 

Definition 3: 

An S-ring ~ is called primitive if K = 1 and K = H are the 

only subgroups K of H for which ! ~ ~ holds. 
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Theorem 2: 

G is a primitive group if and only if R(H,G
l

) is a primitive 

S-ring. 

Theorem 3: 

Let ..i. be a primitive S-ring, 1.. e.g, 'L ~ y.};. 

Then the elements h t H actually appearing in ~ (i.e. with 

non-zero coefficient) generate H. 

Theorem 4: 

Let -i be an S-ring over the abelian group H of order n. 

Let j be an integer. Let 'l. t J . 
Then: 

(a) (j, n) = 1 

(b) If j =/p is a prime divisor of n and if ~ is primitive, 

then 

Q(p) = S'};(modP) 

holds for an appropriate integer <f . 
(The congruence is understood, of course, to hold for the coeffi-

cients.) 

Proofs of theorems 1-4 are found in reference 2. They are 

given in terms of somewhat different, but equivalent, concepts. 

Definition 4: 

Let '1. ~ R(H). 

If (j,n) = 1, r.L(j) is said to be conjugate to ~ • 

Definition 5: 

If 'l = fl(j) for all j with (j,n) = 1, i.e. if fl is its 

only conjugate, (,L is said to be rational. 
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Definition 6: 

Let '1. t R(H) 

Then the sum of all (distinct) conjugates of tL is called 

the trace of '1 , and is denoted by tr. (Il). 

Tr. (rz..) is obviously rational and by theorem 4(a) lies in 

the S -ring g whenever rz. lies in .£ . 

Definition 7: 

For h E:: H, the trace of ih} is called the elementary trace 

associated with h and is denoted by tr. (h). 

Clearly if k has non-zero coefficient in the elementary trace 

associated with h, then the elementary traces associated with hand 

with k are identical. 

It is also fairly easily seen that the conjugates of the Ti 

are again of this form: 

Theorem 5: 
. ( j ) 

(j .n) = 1 ~ T~ = Tq for some. q with 0 ~ q ~ k. 

Proof: 

To see this we note that by 

. (j) 
T~ = 

K 

~ 't T
S 

$= o. ~ -

theorems 1 and 4 

where 

Ys = ° or 1 for s = O, ••• ,k since (j,n) = 1. 

We proceed by induction on ,!il (the statement obviously 

holding for TO = £l} ). 

Unless ¥ = 1 for some q and )"S = ° for all 
. (j) q 

which case T~ = Tq as asserted, we have 

S P q, in 

I!..$ I <. \i"1 for all S for which Ys p 0, since in any case we 

have 
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We therefore assume that I! S I <: , Ti ( holds for all S 

with ¥s j O. 

Now let j' satisfy j j' = 1 (n). 

Then Ti = [ !i ( j) J (j') = 

(j' ) 
The[T SJ are T

q 
for appropriate q by the induction 

hypothesis. i 
We have thus expressed! as a linear combination of 

smaller T
q 

which is not possible since by definition Ti(l Tq = ~ 

for i j q. 

Now tr. (!i) is a sum of distinct conjugates of Ti hence a sum 

of distinct T
q

• 

Thus tr. (!~) has only coefficients 0 and 1 and tr. (!,i) = gi 

where Si <= H is the set of elements of H with non-zero coefficient 

i 
in tr. (! ). 

We note first that the Si need not in general be different. 

If necessary by renumbering the Ti we may assume without loss of 

1 r 
generality that S , •• O,S are distinct and that for any j > r there 

is an i ~ r with S i = S j. 

Clearly ~o = tr. (!o) = tr. (1) = 1. 

We now assert that for i, j ~ r, i j j we have gi n sj = ~. 

i sj. Suppose the contrary, say h ~ S n 
where (s,n) = (t,n) = 1, x ~ Ti

, y ~ T
j

• 

Let t' satisfy tt' __ 1 (n). 

s t 
Then h = x = y 

st' i(st l
). 

Then x = y, thus T and TJ have the element y in 
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common, 
i(st ' ) 

and.T 

Thus we have T j c. Si. 

Now since si is rational we conclude that S j c. Si. Since Si 

and sj here play symmetric roles we have si~ sj by the same argu­

ment, hence Si = sj, which is in contradiction to the way we 

i 
numbered the T • 

The Si(i = O, ••• ,r) are therefore disjoint subsets of H, we 
r 

clearly have 2- Si = !!, and therefore the Si span an S-module 
i=O 

over H. 
i(-l) 

Since SO = 1 and S = Si (since Si is rational) for 

i = O, ••• ,r the Si generate on S-ring over H provided only that 

they generate a subring of R(H). 

To show this we prove the following: 

Theorem 6: 

Proof: 

Le t 1 ~ i, j ~ r. 
r 

Then Si sj = ~ 
t=o 

~t st for appropriately chosen integers 

k 
~i, §.j ~ R(H,G

l
) ~ Si sj = L-

q = ° 
We need show that if h, k £S t, <S' (h) = <S'"(k). We may then put 

~t = ~(h) = ¥(k). 

Clearly it suffices to show that for h~Tt, k (S t, i(h) = c5(k). 

Clearly if k( Tt holds, we have 1S"(h) = 1S"(k) = 6
t

• Now 

= h S for some h f.T t, where (s,n) = 1. 

i 
is the number of ordered pairs (u,v) with u ~ S , 

v f. s j, uv = h. 
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and conversely. 

Moreover uS l:.... Si # u (. Si, V
S t sj ~ v E. sj since 

Si and sj are rational. 

s s 
Thus (u,v) ~(u tV ) is a one-to-one correspondence between 

the ~(h) pairs of solutions uv = h and the ~(k) pairs of solu-

tions uv = k. 

Thus '6 (h) = ~ (k) and theorem 6 is proved. Since Si is in 

R(H,G
l

) for i = O, ••• ,r, it is clear that the S-ring generated by 

the Si is a subring of R(H,G
1

). 

We will use theorem 6 in the following weaker form: 

Theorem 6 t : 

= :£ 
h ~H 

G. (h) h. 
~ 

Then h, k l:. sj y U. (h) = 
~ 

6. (k). 
~ 

To assist in computing these coefficients we introduce the 

following notation: 

Let h ( H, R c H. 

Then R(h) {r E. R I -1 
E. R 1 = r h • 

The coefficient of h in [B.J 2 is the number of solutions 

r
l 

t R can occur in at most one such pair and it occurs in 

such a pair precisely when r
2 

= r -1 hER holds. 

Thus 'R(h) I is the coefficient of h in [B.J 2, and the ele­

ments of R(h) are precisely those elements of R which "hit" other 

elements of R in such a way as to produce an h. 

We introduce the following further notation. 

For any set K, let I K I be the number of elements in K. 
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K c: H means that K is a subset of H. 

< K ;> is the smallest subgroup of H containing K and for 

h ~ H, 

K ~ H means that K is a subgroup of H. 

We now state the two theorems proved in this thesis. 

Theorem A: 

Let G be a primitive permutation group of degree n. 

Let p be an odd prime. 

Let H = A x B x e be a regular abelian subgroup of G, where 

A = c( a / is cyclic of order p 0(.. (p prime) 

B = < b""/ is cyclic of order p f3 

tel= m where (m,p) = 1, 

and 0("> f3 > ° holds. 

Then G is doubly transitive. 

Theorem B: 

Let the hypotheses of theorem A hold. 

In addition let {I} = TO, Tl, ••• ,Tk be the sets of transi­

tivity of G
l 

and let tr. (!i) = H-l for i = l, ••• ,k. Then G is 

doubly transitive. 

It is clear that theorem A includes theorem B. They are stated 

separately since we will first prove theorem B by a not too diffi-

cult counting argument, and then devote the greater part of the 

paper to the proof that under the hypotheses of theorem A, tr. (!i) 

= !!.:.! necessarily holds for i = l, ••• ,k. , 

Throughout this thesis, k will denote the number of non­

trivial (i.e. f. f I} ) sets of transitivity of G
l

, and r will de­

note the number of distinct non-trivial traces of these Ti. 
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Thus G is doubly transitive if and only if k = 1. 

The additional hypothesis of theorem B is that r = 1. 

Let P = AB. 

Since (Jol, 
We have I A I = 

p) = 1, P is a Sylow p-subgroup of H. 

k = 

but 

}B I = 

<A 
P 

P 
p 

= p 
""+f; 

Since H is regular we have 

n = I H' = Ip 0 , = I p I 101 
0(-1 

We let u = a P 
• 

Put u = < u "/. Thusl~u/I = p. 

Le t K ~ H, 0 <f:. A ~ f3 • 

o( • .-t 13 = mp • 

We may express k f. K uniquely in the form 

aSpY btpA 
c where (s,p) = (t,p) = 1, c f. 

Let ~(-\) be the set of all such ktK for 

Let Ky()...) be the set of all such ktK for 

o(-v :>P-A • 

o. 

which 

which 

Let KZ()"') 

oi..-V~P-A · 
Let ~ = 

be the set of all such k t K for which 

v= 
V# 

o. 

0, 

K(A) is then the subset of K consisting of all elements which 

have a power of b exactly divisible by pA • 

~(A ) is the subset of K(A) consisting of elements of order 
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ICy ( )..) is the subset of K( A) 

in KXCA) for which uC () < k "/ 

consisting of the elements k 

not ~ ~ holds. 

KZ (A ) consists of the remaining elements of KC A. )' the k for 

which uC fl < k:> .. ~. 
Without loss of generality we may assume that u ~ Tl holds. 

1 
We put S = s. 

Let Co = [c ~ c t ac t: s} • 

We show that by appropriate choice of generators of P we may 

assume that C fi~. o 

Since G is primitive, < S""/ = H by theorem 3. 

since 

Thus S must have an element of order divisible by P 
A 

as b tp 
C 

s / tpA 
Let a l = a b 

a p 
1 

0(. -1 

01..-1 2. f3 

where (s,p) = (t,p) = 1, c ~ C. 

• 

= 1. 
~-l 

Q(,. 

s p 
u ~ S ~ u = a l E S since S is rational. 

Obviously we have P = 

, say 

....<. -1 
Thus we may replace a by a

l 
and put u = alP to get 

0(-1 
and alP E:: S as well. 

We therefore assume that a has been chosen in such a way that 

C is non-empty. 
o 
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III Preliminary Lemmas 

We prove five preliminary lemmas; the first two of which to 

be used in the proof of theorem B and the remaining three to be 

used in the proof of theorem A. 

Because of theorem 6' we know that in [~i]2 certain coef­

ficient equalities must hold. Lemmas 1-5 will tell us that such 

equalities can occur only if the si have a special structure. Re-

peated application of these lemmas shows that this structure is 

incompatible with the existence of more than one non-trivial Si. 

We will therefore be able to show directly that S = H-l. 

Lemma 1: 

Let x E: P, 11. E. <. x ;:>, x ~ U, c ~ C. Then for any 

j = l, ••• ,p-l there exists v prime to n with v 

(xc)v = u j 
xc. 

Proof: . 

Since x ~ P, we may write x 

where 0 ~ V ~ ~ , 0 ~ .x ~ J3 ' 
(s,p) = (t,p) = 1. 

ul::. <x/ ~oZ-.\t> f3-A, 
i • e. x c HX \J Ry, and x ~ U ~ 0( f V-I 

tP~ 
b 

. f . 1 (pO< ) Choose s',m' sat1s y1ng s's == 
m'm 1 (p"<") 

(where m = I C I ). 

Then, 

1 (p) such that 
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::: 1. 

v A c:o<. - V-l 
(asp btp c) l+mm's'jp v = (xc) 

where v = 1 + mm'sljp 
0(- V-l 

Now 0<.,- Y>1=:>- A 9 V-J. ~ 

and x ~ U ~ VI. 0(-1, 

thus plpC:<- V-I and we have v =1 (p). 

Clearly v _1 (m), thus ( v ,n) = 1 as asserted. 

Lemma 2: 

LetK~H. 

Let h ~ H such that hK = K. Then in K K( -1) h has coeffi-

cient/KI· 

Proof: 

I K K(-l) 1 h ff" " t IK( Thus in h K K(-l) = hK K(-l) n _ _ , as coe 1C1en • 

= K K( -1) h has coefficient I KI • 

Lemma 3: 

Let R C H such that R is rational. 

Let R* = (~ V Ry)-UC 

Then R* c= R(u
j

) for j = 1, ••• ,p - 1. 

Proof: 

R rational ~ ~, Ry ' R fl UC rational '7 R* rational. 

R* rational ~ g* = g* (-IT, thus r E:. R* ~ r -1 E. R*. Moreover 

by Lemma 1, 

-1 -1 J" 
r ~ R* 3> ruE. R*. 

Thus r (. R* ===;> r -1 (;; R* "9 r -luj~ R* ~ r E R(uh. 

and R* S R(uh. 
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We are now in a position to prove the important. 

Lemma 4: 

Let x E ~ (i.e. let x be of order divisible by po<.). 

Let R ~ H such that R is rational. 

Then (R(X) I ~ I R(uj)1 holds for j = 1, ••• ,p-l and 

lR(x)J = IR(Uj)I for every j = l, ••• ,p-l only if 

(i) 

(ii) 

h ~H X' 

and (iii) u-jh ~ R(x) for j = l, ••• ,p-l 

Proof: 

Let j ~ f 1, ••• ,P-l}. To each element z ~ R(x)-R(u
j

) we 

wish to associate in a 1-1 fashion an element of R(Uj)-R(x). 

-1 
z x E: R, 

By lemma 3, 

z ~ R(u
j

) ~ Z \ R* = (RX \.J Ry) - UC 

Now if 
i 

(c '- C), u i j u
j 

have Z = u c we 

-1 -i -1 
~ R (since g is rational) and z = u c 

-1 
u

j j-i -1 
f:. R since can always simultaneously z = u c we 

the congruences 

v - q (p) q £ fl, ••• ,p-l} 

v - 1 (m) 

since (m,p) = 1. 

This would violate z ~ R(u j
). 

Thus z ~ R(U
j

) -==::;> z \ (RX U Ry) - ujC, 

Le. z E. R
Z 

U (R n ujC) 

Now z E R(x) ==:::;> 
-1 

thus z x E~. 

-1 
Z x ~ R, 

satiefy 
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Now by lemma 1, we may conclude that 

ujz -1 c. R, indeed have x we 

ujz -1 
~RX c::::::.. R* x 

Now by lemma 3, we have ujz -1 E: R(u
j
). x 

Suppose the contrary, i.e. 

(ujz-lx)-lx t R, thus zu- j f R. 

RC-l) -1 j Since R = we have z u t R contradicting 

Thus with each z f R(x) - R(U
j

) we have associated u j Z-~k 

in R(u
j

) - R(x). This completes the proof that IR(uj)1 2 /R(x)( 

holds. 

Now suppose IR(u
i >/ = IR(X)I for i = l, ••• ,p-l. Then the 

only elements of R(u
j

) - R(x) can be the elements u
j 

z-lx where 

For such an h j -1 = u z ~, 

• we have 

(i) h E: HX ' 

(iii) u-jh = z-lx f R(x) 

(since (z-lx)-lx = z f R) and h-lx = u-jz (HZ V (u-jC). 

Now 
i 

h i: HX 3>h ~ R* = '/ hE R(u ) for i = l, ... ,p-l. 

Thus from h £R(U
j

) R(x) for some j we conclude that 

h 6 R(u
i

) - R(x) for every i = l, ••• ,p-l. 

-1 -i 
We conclude from h x ~ HZ \..l(u C) for i = l, ••• ,p-l and 

p ~2 that 

(ii) 

Lemma 4 says that if , R(x) I = J R(uj)/ for every j = 1, ••• ,p-l, 

then in [g] 2 only elements of HX can "hit" some u
j 

but fail to 

"hit" x. Such elements h fail to "hit" x because the element 

-1 h x which they must "hit" belongs to H
Z

- R. For each such h there 
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are p-l other elements 4n tr. (h~, the ujh (J' 1 p 1) wh 4 h d • } = , ••• , - , .c 0 

"hit" x. In particular since all elements of (RX U Ry) - UC do "hit" 

every u
j 

it follows that Ry - UC ~ R(x), and indeed if any element 

of R not in HX "hits" any u
j 

it must hit x as well. Moreover, any 

element h of RX which "hits" an element of Hy to yield an x (i.e. 

-1 
an h for which h x~Hy holds) must belong to R(x). Thus for such 

an h we may conclude that h -Ix; e..R holds. 

We now prove a further lemma which says essentially that every 

elementary trace of PX(A) has some element "hitting" an element of 

any elementary trace of py ( A ) \J P
Z

( A ) in such a way as to yield 

the element a. Thus if we know that there is a whole elementary 

trace of py ( A ) U PZ( A.) in R belonging to R(a), we will be able to 

conclude that eve:y elementary trace of P
X

()\) occurs in R. 

Lemma 5: 

Let 

Let 

Then there exist e,f with (e,n) = (f,n) = 1 such that 

~ ")t.. 
(abtp )f = (aP b SP )-e a 

Proof: 

For any integer j, let j' be an integer satisfying j j' = l( po<..) • 

Let e = t(tpV -8)' (mod po() 

f :::;:.s(tp" -s)' (mod po<.) 

" spA )-e J fl v " ) -efl f' 
Then (a

P b = (aP b SP a 

p" spA v 
= al+P"(s't-s't)btP~ tP~ 

= (a b ~ )Slt a-s'(tp -s) 
= ab 

" s A e ~ 
Thus we have (aP b p )- a = (abtp )f as asserted. 

We now proceed to the proof of theorem B, making use of 
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lemmas 1 and 2. We will then make use of lemmas 3, 4 and 5 with 

R = S (occasionally R = Si with i >1) in order to show that S = H-l 

necessarily holds. 
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IV Proof of Theorem B 

In this section we use lemmas 1 and 2 and a counting argu­

ment to show that r = 1 (i.e. tr. (!i) = H- - 1, i ::: l, ••• ,k) im­

plies k = 1. 

Theorem B: 

Let G be a primitive group with regular abelian subgroup 

H ::: A x B x e where 

A = <. a '> is 0 f order po<.. 

B = <: b > is of order p 13 o(";)~ ;>0. 

Ie , ::: m where (m,p) = 1. 

o 1 k 
::: T , T , ••• , T be the sets of transitivity of G

l
• 

i . 
Let tr. (! , ::: H-l for i ::: 1, ••• , k. 

Then k = 1, i.e. G is doubly transitive. 

Proof: 

Since U is a subgroup of H we have whenever (v,n) ::: 1 that 

hV£U ~h(:U. 

Since all elements appearing in Tr. (!i) = H - 1 are obtained 

by taking such vth powers of elements of Ti , it follows that 

TiA U t ~ for i = 1, ••• , k. 

Let T 
1 = T be the set of transitivity of G

l 
in which u occurs. 

As we let j take on values congruent to 1 through p-l modulo 

p and prime to n we have that the T(j) run through sets of transi-

tivity of G
l 

(by theorem 5). All such sets of transitivity are 

obtained in this way since every element of U-l appears in some 

such T (j) • 

Now suppose T has s elements of U. 
i Then each T has s 
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elements of U, and we have ks = I U-l I = p-l. 

We note that theorem B holds even in the case p = 2, since 

1 1 from what we have just shown it follows that T = S • 

Since the Ti are all conjugate to T (i=l, ••• ,k) we have that 

the n-l elements of H-l are divided by G
l 

into k sets of transi­

tivity, each with n;l elements. It is easily seen that 

PX(A) consists of .f (p~) ~(p&--\) elements 

for A= 0, ••• ,13. 
<>(-1 p-\.l; ~-A 

py ( A) consists of (p - p ) ~ (p ) elements 

Thus 

for A = 0, ••• , f3 • 
= p..( + fJ -l( p-l) 

p<:>(+ [3-1 _ (p2/3+ l +1) 

( p+l) 

Except for the p-l elements, x, of U-l, for any element xc 

with x E. PXU Py' c (;; C and for any j (, \ 1, ••• ,p-l} , there exists 

v = l(p) with (v,n) = 1 such that 

are 

u j xc = (xc)v. 

But since v -=.1 (p) holds 

T(v) and! have s elements of U in common. Since distinct Ti 

disjoint it follows that T(v) = T holds; thus ujxc ~T. 

Now taking vth powers where (v,n) = 1 takes elements of 

[(PXV Py) - uJ C into other such elements. 

Therefore if we put 

T* = (Px U Py) - ~ C (\T we have that 

I T*I = ~ 
= ; [ p co<. + f3 -1 ( p-l ) 

\ (PX V Py > - U \ J C I 
-<+13-1 (213+1 

+ p - p + 
(p+l) 

1) - (p-~ m 
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Now for xc £. T* we have ujxc (; T*, thus u
j 

T* c. T*. 

Now since T* is a finite set it follows that 

u
j 

T* = T* for j = 1, ••• , p-l. 

Thus by lemma 2 we have that the coefficient of u
j 

in 

T* :£*(-1) is IT*I. 

. (-1) 
Thus the coefficient of u J in T T is 2IT*I. The coef-

ficient of 1 in T T(-l) is 'TI ::> 'T*I. 

Now, since the Schur-ring R(H, G
l

) has the Ti as generators, 

it follows that 
k 

Z 
i=o 

i 
Now each T ,(i::: 0, ••• ,k) has an element of U. 

Thus we have 'lf
i

:> 1T* I for i = 0, ••• , k. 

Thus we get the inequality, 

ITI2 ~ I! !<-l)\ u Ii; "lfi!i \ > IT-I I i~ !il ~ IT-I IHI 

Now ITI = n-l 
k 

= mp'"" + J3 -1 
k 

Thus we have that 

thus 

Since j3 >0 holds, we have 

( 2 ~+l 
- p + 

(p+l) 

( 2 13+1 
- p + 

(p+l) 

2)~ -'+ ~ 
p . J mp 

p mp 2)J( .<><-+13 -1) 

..<. + ~ 1 00<. + (.? (2 ~ +1 2 f3 ~ ""> mp -::> m p r - p + P _ 
k - (p+l) 

r. 0( + f3 2 ~J m LP - p 
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Thus 

Now 

2mp2 t3 -1 "'- 2mp2 fJ ~ pmp2f3 = mp p+1 p fJ 

~ mpo<.+f3 -1 <.. 2mpo<.+ 13 _ 2mp2f3 • 

Thus we have 

Thus k = 1, and theorem B is proved. 
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V Proof of Theorem A 

#1 

We now wish to show that S (the trace of the set of transi-

tivity of G
l 

in which u occurs) is all of H-l. 

We first show that if SX(A) I- ~ we have that SeA) consists 

of most of P (.A ) C (A) where C ( ~) is a subset of C, and C (f3 ) 

= Co = f c 6. C J ac" s} · 
We will then show in #2 that if /( is the smallest )\ for 

Whi~h SX( ~) I- ~ holds, we have that SX( A) I- ~ for A = ,"f , ••• , f5 , 

that C(~) = Co for "'=~ , ... , (3, that S(~) = PeA) Co for 

~ = ~ , ••• , f3 -1, that SC;j) = AC o -1, and that ..A-1.. = ° or ~ 

must hold. In #3 we show that. the hypothesis ~ = f3 leads to a 

contradiction. In #4 we show that C = C. We are thus able to 
o. 

conclude that S = PC -1 = H -1. 

We now prove two lemmas, the first dealing with the structure 

of the site») which have elements of order divisible by po(, and the 

i \ 
second dealing with the structure of the S (A)' 1\ = 0, ••• , 'P -1, 

which have elements of order divisible by p~. 

Lemma 1.1 

Let 1 ~ i ~ r. 

Let C
i

( F) = 1 d (:; C , ad E S\ P ) } 

Let c l:: C • 

Then the coefficient of ac in [ Si ( i3 )] 2 is less than or 

equal to the coefficient of u j for j = l, ••• ,p-l and equality 

holds for every such j only if 
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C* . 
~ 

i 
S«(3)= -----..-;.. 
where C*. c. C. 

~ 

(ii) C
i

( f3)c = C
i

( f.3 ) 

Put R i 
=S (13)' 

D = C
i
(f3). 

S i rational =~ _S ~ ~) rational. 

Thus since ac ~Hx holds we may conclude immediately from 

lemma 4 that 

'R(ac)' ~ IR(u
j

) t holds for j = 1, ••• ,p-l. 

We now assume that 'R(ac) I =, R(U j
), for j = 1, ••• ,p-l. 

Since (m,p) = 1, for any s with (s,p) = 1 

and any t with (t,m) = 1 

we may find s', t' with 

1 (m) 

t' l(po(), t' _ t (m). 

Thus for x~ P, dE C we have tr. (xd) :: tr. (x) tr. (d) 

Thus R has every element of tr. (a) D and no other element of 

tr. (a) C. Now tr. (a) = ~ 
(s,p)=l 

s 
a • 

Again by lemma 4, the only elements x of tr. (a) ~ which might 

-1 -1 -1 
not satisfy x ac (. R must satisfy x ac (HZ. Now x ~ AC 3> x ac 

in AC and AC t1 HZ = C. 

Thus the only elements x of tr. (a) D which might fail to 

satisfy x-lac E:: R are the elements of aD. 

Now as we let x run through the elements al+Pwd of tr. (a) ~ 
L -1 -pw -1 (w F 0), the elements x ac that we get are the elements a d c 
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which must all lie in R. 

Now since D is inverse closed, we have that 

Now, were R to have a further element, y, of AyC it would 

-1 satisfy y u~R by lemma 3, thus 

y -lac (. R by lemma 4. 

This is clearly not possible by the definition of D. 

Hence the only elements of AyC which can occur in R belong 

to AyDc and all such elements do occur. 

Thus we have that 

Now, again by lemma 3 since p :>2 holds, we have 

2 -1 ' 
(a d) u E R for d ~D, hence by lemma 4, 

(a
2
d)-lac = a- l d- l c ~R. But the only elements of ~C in 

R lie in AXD. 

Thus d-lc ~D holds for dE: D. Again since D is inverse closed 

we have Dc = D as asserted. 

Thus we have that 

i r AX + ~J~ + C! S (13) = l. 

We now assume that A < p , and prove a lemma similar to 

lemma 1.1. 

Lemma 102 

Let R = S~A) where i E: fl , ••• ,r}, A < f3 • 
Let ~ J ~. 

. ~ } 
Let cl.(A) = ~d{C labsP d(R for some s with (s,p) = 1 

= {dl ,···, dv } ' 
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Let c~ C. 

Let Zj (A) be the subset of PZ(A) such that 

-L -1 
Zj (,A) d j c = RZ t1 P d j c for j = 1, ••• , v. 

v -1 
Let Z**(~)£:HZ such that R

Z 
= z.. Z":(~) d .c + Z**(.A) 

i=l J J 

Then the coefficient of ac in [ .E 12 is less than or equal to the co-

efficient of u
j 

in [g12 
for j = 1, ••• , p-l. If equality holds for 

all such j then 

(i) 

(ii) 

(iii) 

i 
Rx=PX(A)C(A). 

Ry :: Py(~) CiC"'). 

The coefficient of u
j 

in ( R
Z 

] 2 is 

2 ~ I Zj( ~ )' ... ) PZ ( A) C
i

( A) J 

(iv) Ci(,\)c = Ci(,A) 

Proof: 

Again by Lemma 4 since R 
i 

= S (A) is rational, we have 

, R(ac)J ~ tR(U j ), for j=l, ••• ,p-l. 

We now assume that 'R(ac)1 = tR(U
j

) I for all j. 

Put D = Ci(~ ). 

Since RX ~ ¢ holds there is some elementary trace say 

tr. 
wp~ l-p w(l-p)p~ 

(ab d) in RX. Then a b d (R
X 

holds. 

Now (al-Pbw(l-P)P~ d)-l ac = aPb-w(l-P)pA d- l c lies in Hy 

unless we have ,;\ = 0 and 0( = f3 + 1. We exclude this case for 

'" the moment. Then by Lemma 4 we may conclude that al-Pbw(l-p)p d 

is in R(ac) since the only elements hE RX such that h fR(ac) 
-1 

satisfy h aC'H
Z

• Thus we conclude that 

tr. (aPb -w(l-p)p ~) d- l c lies in R. 
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Put s = w(l-p). Again by Lemma 4 we have that y c: R(ac) for 

}.. -1 
every y occurring in tr. (aPbsP ) d c. 

A 
By lemma 5 we have that as y runs through tr. (aPbsP ) the 

-1 
elements y a occur in every elementary trace of P

X
( A ) • It thus 

follows that PX(\.) D ~R. 

By the definition of D = Ci
( A ), no further elements of ~ 

can be in R. Thus we have that 

We now turn to the case A = 0, 0.( = f3 + 1. 

Again from lemma 4 we have that p-l of every P elements in 

every trace of P
X

( A) occurring with d j ~D in R must lie in R(ac). 

From lemma 5 we have that as we let x run through such an elementary 

trace of P
X

( A) the elements x-lac lie in distinct traces of Pz (A)' 

indeed one in each trace of PZ(A). It follows that we must have 

J ZjL\) J >12IPZ(A)j for j=l, ••• ,v where 

D = f d1 t ••• ,dv 1- • 
Now for some z f Z~ <.A) we must have uz l: Z~ (A) as well. Now 

J J 

(uz)z-l = u ~uzE.R(u). 

(uz)6 t Z -s f Z~(;\) hold if (s,p) = 1. 
J 

Thus (uz)StR(us ). 

By lemma 4 since by hypothesis IR(ac)/ = JR(U
S

) Ifor all such 

-1 
s we have that every element in tr. (uz) d . c 

J 

As we let x run through the elements of 

belongs to R(ac). 

-1 tr. (uz) d. c we get 
J 

-1 
that the elements x ac belong to every trace of Px (A ) d r 

It follows that Px (A ) D s: ~ as before. Again from the defi­

nition of D we have 
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( i) P RX = X("') D. 

We now show that in either case ( A :: 0, 0(:::: f3 + 1 or 

not) (ii) and (iii) hold. 

Le:t y ~ PYLA) Dc. 

-1 
Then we have y ac E. Px (~) D = RX. 

By lemma 4 since y\Hz we have y-lac ER(ac), thus yf:.. R. 

We therefore have that Ry ~ py ( A) Dc. 

If Ry had any further element, it would necessarily be of 

the form xd, x ~ P, d 4DC, and such an element cannot belong to 

R(ac) since ~ = PX ( A ) D. 

Thus we conclude that 

( ii ) Ry:: P X (A ) Dc. 

It follows exactly as above that 

I Zj(A)I = lpZ(A )d-~CnR' >~JpZ(~») for j=l, ••• ,v. 

Now it is not possible that z E R
Z 

belongs to R(u) but not to 

R (ae) • Thus the coefficient of u in r R
Z 

] 2 is 

\R(u)fl RZ' = IR(u)I1R(ac)nRz I. 
(Elements of R

Z 
must be multiplied by other elements of RZ to yield 

u since R ~H( A) where ,\ p f3.) 

Only elements of PDc can belong to R(ac). 

It is not possible that both z and uz be in PZ(~)DC - RZ 

since then we would have 

z-lac and (uz)-lae both belonging to R(u) - R(ac) 

which is impossible by lemma 4. 

Thus z c PZ( A)Dc - Rz ~ uz ~ R(ac) - R(u). uz t.RZ - R(u) 

can only hold if z-l~R holds. Thus the coefficient of u in 

[ RZ 12 is 
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I P Z (~ ) Dc I - I P Z ( ~ ) Dc - RZ' - 'RZ - R (u) I 
= J PZ(,~ )DC I -2I p

Z ( ~ )DC - RZ I 
= 2JRZIlPZ ( ~ )Dcl - ,PZ(A )D I 
=2~IZj(")/-IPZ(A)D' 

2 ).. 
In addition since p J 2, we have a b P d. t: R( ac) 

J 

(a2b P X. dj)-l aciR, and d-~C ~D for j=l, ••• ,v 

Since D is inverse closed it follows that D = Dc. 

This completes the proof of lemma 1.2. 

for j=l, ••• ,v 

i 1 We now put i=l in lemmas 1.1 and 1.2 thus S = S = S. 

Since t3 J (, A ~ H( 5' )H(.t\ ) S H( y) it follows that 

IS(h)/ = L/s(A) (h)Ifor hE:AC. 
A=O 

Nowls( A ) (ac,)1 ~ Is( " ) (uj)J holds for A = 0, ••• , /3 and 

IS(ac)1 = i..Js( A )(ac)1 = :t Is( A )(uj)J =IS(uj)I for C EC o and 

~=O " =0 

j=l, ... ,p-l by theorem 6 since u<:S y uj£;S since ~ is rational, 

and C is by definition the subset of C satisfying ac E.S. Thus we o 

conclude that for c l::: C 
o 

)s(A)(ac)/=ls( \)(uj)i for all j=l, ••• ,p-l. 

Let Co = [cl ,···, Cq1. 
From lemma 1.1 we conclude that S ( 13) = A - 1 

Moreover, letting c run through the elements of C, we have 
o 

since p fi 2, that C o C • o 

Co was already known to be non-empty and inverse closed. Thus 

we have 

Lemma 1.3 

Co is a subgroup of C. 

By lemma 1.2 we have that SX( A) fi /J 
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SX()\l {:X( A) ~} b( A) DCJ+ 'i£.) Zj (.A )d-~ci + z" C>' ) 

for citCo where D = {dl, ••• ,dv(A)}' Z**(A) SHZ(~) and 

I Z j( A )' ::> ~ , P Z ( ~ ) f 

Choosing c. = 1 (since 1 t C holds) we get from Dc. = Dc. 
~ 0 ~ J 

(i,j=l, ••• ,q) that D = Dc . for j=l, ••• ,q, thus that D consists of 
J 

A A full cosets of Co. Choosing cl, ••• ,cq(A) as the coset repre-

sentatives (thus v( A) = q( ~ )q = q( A) I C ') we have that if 
o 

sx(A).i¢ 

s(~) =[pX(A)+pY(~)JCoE~+ •• +c~("J 
q qV\) A 

+2 z.. Z! .(A)cic. 
i=l j=l ~J J 

+ z**(A ) 

where' Zij (~)I > ~ I PZ( ~ )' holds for i=l, ••• ,q 

j=l, ••• ,q(t\ ) 

It also follows from lemma 1.2 that the coefficient of u in 

[z**( A il 2 
is zero. 

#2 

We now let.)-'l.. be the smallest A such that SX(A ) .j ¢ holds. 

We will show in this section that for any A with 

x ~ A ~ 13 - 1 we have 

We will then show that ~= 0, Co = C and that S(P)=p(f3)C o-l, 

thus proving directly that S = H - 1. 

By hypothesis, SX(rt) .j ¢. 
tp~ 

Thus there is an element ab c 

in S where (t,p) = 1, c~C. Now by theorem 6, we have 

'S(abtP~c) ) = ,S(u)l. By lemma 4 we know that this can occur only 

if S has a special structure. 
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From #1 we have that for any A we have either 

Sx( A) = ¢ or 

S ( A) =( Px( "\) + py( ~ )1 Co [c~ +. •• +C:( ~ ) J 
q q( ~ ) 

+ ~ z:. 
i=l j=l 

+ z**(A ). 

Lemma 2.1 

Let ~ 

Then (i) 

(ii) 

(iii) 

i.e. 

sA":; p- l. 

Sx ( ,\) -J ¢ 

q(,~ ) = 1 

C~ E. C 
1. 0 

+ ~ Zi(A) c i + Z"C,x) 
i=l ---

where Zi (A ) is t~e subset of PZ ( "') which we earlier denoted by 

Zil ( A). 

Proof: 

We first note that if ~ =p the lemma is vacuously true. 

t~ 
Thus we assume that ~ L.. f> holds. Let ab p cis, 

«t,p) = 1, c(C). 

Let 0 <:::. V c( ~ - J1..... Then since S is rational it follows 

tp.A{ e 
that (ab c) loS holds where e is chosen to satisfy the con-

gruences 

e = l-p v' (p.,.(.,) , 

e = 1 (m) 

tp.N. e tp--<' -e tp'" 
By lemma 3, (ab c) E-.S(u) holds. Now (ab c) (ab c) 

.I"f v~ 
= (ab

tp 
)p ~ HZ. 

tp~ e . 
Thus we may conclude from lemma 4 that (ab c) cannot be-

tp-"1 
long to sCu) - SCab c), thus 
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t p,.4.( e t p""'-
Cab - c) ~8(ab c) holds, 

i.e. (abtP.A1c)-e (abtP-"1.c)~S. 
tp....... V 

Thus Cab )p '=- S holds for 0 .::: V <.. f3 -}1. 
t ~+V . i 

But ab P ~ 8~ S7 8 ;2 PX~i'V) VPY(MtV) by lemma 1.2. 
V t ,Ao{+V " . . . i 

Thus a P b p f. 8 1 would al.so h01d~ Now 8 "S· = ¢ or 
i i t t'1 +V 

S = 8. Thus we conclude that S = S, and that ab P £ S holds 

far 

for 

0<. y<: p-J1. 8X(~) p ¢ holds by hypothesis. Thus 8
X
(A) ~ ¢ 

~~~~p-1. 
-.4.t J1 -K ..'( 

We have (abP )l-p c j ~SX(,A() for j=l, ••• ,q(..-'1..). 

We conclude from lemma 4 that 

[abP,o-i ci J [( abP~ ) l-p B -".... c; 1-1 

q (-"'t ) 

By the definition of C and by lemma 1.1 it follows that o 

c;~C.9 C;hOlds for j=l, ••• ,q(..4t). 

Since the c~ 
J 

were coset representatives it follows that 

= 1. 

\ 
Now y = aPb P 

By lemma 4 we conclude that 

c~ E 8 y holds by lemma 1.2 for ~ = ..A-f +1, ••• ,,-1. 

p"1 '"1 
y~8(ab c

l
) must hold, thus 

X "" 
( a Pb P c ~ ) -1 a b P c ~ t:.. 8 h 0 1 ds • 

Thus by what we have just shown, since this is clearly an ele­

ment of 8
X

(,.Ao()' we have (c~ )-lfC o for A= -""1 +1, ••• , J3 -1, 

j=l, ••• ,q(A). 

Thus q ( A) = 1 for A = ~ + l, ••• , 13 -1 and we may choose 

c~ = 1. 
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~ Thus we may choose c
l 

= 1. 

This completes the proof of lemma 3.1. 

We now show that Zi(A) = PZ(,A) for i=l, ••• ,q ).:)1, ..• ,/3-1-

The idea is to note that for Z t..PZ( A)' zC
i 
t S ;> zC

i 
E sj 

for some j ~ 2. 

S j would have to have some element xd (x ~ P, d ~ C) of order 

divisible by po<.. since ~sj ;> : H. 

Then IS(zci)1 : ,S(xd)l would have to hold by theorem 6. 

We will use lemmas 4, 5 and 7 to show that such an equality 

cannot hold. 

Lemma 2.2 

Proof: 

Assume the contrary. 
M 

Let K = < a > < b P > Co. 

We already know that S2KX by lemma 2.1. Thus there exists 

k~KyUKz - S with k.j 1-

Let k( sj and let xdES
j 

be an element of order divisible by 

p«', where x f.P, df.C. 

Since xd ~s, we have either xc P
X

( y) for some V < /-( or 

We treat these cases separately. 

Case (i): 

Let x t:. P X ( V) where V < A holds. By the minimali ty of 

~ , SX( f) = ¢ for f ~ ~ and therefore in( S( j»]2 xd has 

coefficient zero (since the a-exponent of every element occurring 

there is divisible by p and the a-exponent of x is prime to p). 
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Since in general, f.c. L =9 H( r )H( -C) ~ H( f), it follows 

that the only contribution to IS(xd)1 

from S pI ) [~t p X ( ") Co] . 

comes from S(V) SX' thus 

Were z and uz both to belong to s(V) the coefficient of u in 

[s(v;]2 would be greater than zero. This would contradict 

,s(u)1 = Is(a) I since tS(A)(a)/ -SlS(A)(u)/ holds for 

~ = 0, ••• , 'P and }S ( v) ( Q) I = 0. Thus at most half of the 

elements z of ~(9") 
-1 

which satisfy z xdc:.H(A) can 

occur in 

It therefore follows that for every element ofKX which be­

longs to S(xd) there is another element of KX which does not belong 

to S(xd). 

Now h f Sx = 1Sc ) h -1 k t KX c S 

Thus we have that Sx SS(k). 

Thus there is a 1-1 correspondence between the elements of 

S( \f) which belong to S(xd) and the elements of Sx which belong to 

S(xd) and since in this way we get at most one-half the elements of 

Sx it follows that 

IS(xd)( ~ lSxl holds. 

Moreover, we have just shown that S(k)~ SXo It not suffices 

to exhibit an element of S(k) which does not belong to SX. 

We claim that a P is such an element. aPt S holds by lemma 1.1, 

since 1'= C • o 

Thus since k £Ky U Kz holds, we have k 

0( -~~ ~-r~ ~-}{~J3-1. 

Thus we have). >1 and a-PkEKy~S. 

a
spA btp"C

c = where 
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Thus we have a P t:.S(k) - SX. 

This completes the proof that /S(k)1 ~'S(xd)1 holds, under 

the hypothesis x £ P X ( V) where V <:: ).1. 

Case (ii): 

We now suppose x ~ PX( Y') where V:> K holds ~ hence d ~C 0 ~ 

The contribution to IS(xd)1 now comes from 

+ 2 Z (PX(A) Co) (z**(A » 
~~".::.v 

Now precisely as in case (i) we conclude that the contribu-

tion from the 1st, 2nd and 4th terms is 

f:3 -1 

~ ~lpz(~)1 ICol 
1\ =.)-1 

Now only elements of the form xc. may be multiplied by an 
~ 

element of C* to yield an xd. 

Thus the contribution from term 3 is at most 2 f Col = 2q. 

Thus we have IS(xd)I ~ -£lpz(Xo)l q + 2q. 
~=-'1 

Again as in case 1 we have PX(A ) Co ~ S(k) for ). =)-(, ••• , f3. 
8 

Thus we have lS(k)f ? L fpX(~ )IICof, and 
A =1'1 

B-1 - ~~-l B _ ~J ( .I.. ,-' 
= q ~ P(~ (p-l) - p ~ + q LP -l(p_l) -2-1 

"',.~ 

....... B-1 
" q 2-.­

~=~ 
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since the 1st term is ~ 0 and the second term is ~ 0 since 

This completes the proof that k l:. S. We conclude that for 

A = -""( , ••• , ~ -1. 

SX( A ) = P( A )C o + Z**( .A ) .t "'" :: ~" ~,-, 

Lemma 2.3 

Let ~ ft P • 

Let S = 
y, -1 

Z**( A ) + ~J?( ..\ )Co+Z**C~ )) +[A-~]Co+~*· 
~ 

~a > < b P > C • 
Q 

Let K = 

Then Z**( A ) = ¢ for A = 0, ••• , f3 -1. 

Proof: 

We have that/,K-l S S and that a (:. K holds. Sx = KX. 
Since the coefficient of a in C Sy1 2 + 2Sy Sz + [ sz 1 2 is 

clearly zero, the contribution to I S(a) 1 comes solely from 

[ S~ 1 2 + 2SX ~y + SZ ] · 

Now since K is a subgroup of H, for k E K we may conclude from 

kh = a that h = k-la l:. K. 

Thus the total contribution to ' Sea) ' comes from [~J2. 

It is easily seen that [ K_l) 2 = q K t -2) [ K-l ) + (l KI-l) • 1 

Thus since ) S(a) I = I S(k) 1 for k f K-l by theorem 6, it follows 

that there can be no contribution to any k l:. K-l from any 

[ Z**( "\ Da. 
Now let zd f Z**( A ), (z ~ P, d E C) where 0 ~ )\ <. f3 -1. 

1 fj - A -1 
Then z -p d f Z**( A) holds. Thus we have 

f3 - " -1 
(zl-p d)-l (. Z**( ,x ). 

2 1- 13 - ). -1 -1 ~ - ..\ -1 
Thus in [Z**( ~ ~ , (z p d) zd = zP occurs with 
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non-zero coefficient. It is in PZ(P -1). 

PZ( ~ -1) C K holds since x:f:: f3 • 
Since p ~ 2 we have for zd ~ Z*"'(, -1), (z ~ P,d (C) that 

z2d f.PZ~~':t) holds, z-2(d)-lzd = z-lE: pz~~.;n. We conclude that 

Z··(' -1) =¢ as well. 

Now S (0) f. ¢ since < S"> = H requires that Shave a.n ele­

ment whose b exponent is not divisible by p. 
p-l 

By what we have just shown, we have S - z::::.. P C +[A-il C 
- '" =~ (A) 0 - -:J 0 

+ C· unless ;A.{ = j3 • 

Thus there remain only two possibilities: 
fJ -1 

( i) ,.A-( = f3 ' ~ = Z.- Z • • ( A) + AC - 1 + C· 
~ =0 0 

(ii) -"'1.= 0, S 
i\ -1 

- . ..::;;-- /L-..-

#3 

+ AC o - 1 + C· 

In this section we assume throughout that..l"1 = fJ • We will 

show that this leads to a contradiction. 

Lemma 3.1 

Let h~Si where i?: 2. Then ,S(h) ~2. 

Proof: 

Si must contain some element x of order divisible by p 0( 

since <.. S i > = H. Then IS(h)1 

r ~12 = [sx + Sy12 + 

= Is ( x) , mus t 

+ [Sz12. 

hold. 

Clearly x cannot occur in 2Sy Sz + [sz 12 since such elements 

are products of elements with a exponent divisible by p. 

Now s +' S = [A - 11 C X y - - 0 
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In r AC 0 J2 the only elements of HX which occur belong to S. 

Hence the only contribution to the coefficient of x (which 

does not belong to S) is from 2 Sx ~Sz - Co~. 

-1 -1 
Suppose sl' s2~SZ - Co such that sl x~S, s2 xES. Since 

-1 -1 <: s1' s2fSZ and x~~ it follows that we have sl x, s2 x~SX_ACo. 

-1 -1 -1 -1 
Thus we have (sl x) (s2 x) = s l s2 ~ACo. 

In [AC o - 1J2 the coefficient of s l s2 -1 is IAc o 1- 2 which 

is the coefficient of a in [~12 • 

Thus sl t s2 -=? Is(s l s2-
1

) I > ls(a)1 which cannot occur. 

-1 
Thus there is at most one 51 ~ Sz - Co satisfying 51 x fS 

and if there exists such an 51 we have 

Is(x)~= 2 = lS(h)J. 

Thus we have either IS(h)J = 0 or IS(h)1 = 2 and lemma 3.1 is 

proved. 

It now follows that \S(h) I > 2 =.., h {S if h -# 1. 

Lemma 3.2 

Le t 0 ~ ~ ~ 13-1. 
v(A ) 

Let S( A) = ~ zj*( ~) d~ where Zr (A) ~ PZ( \) for 
J=l /\ 

j=l, ••• ,v(~). Then for all 1 ~i,j ~v(>'), we have that 

Zj* (~) = Zrl< (A) is a single elementary trace of P
z

(,.\ ). 

Proof: 

Then r ~ J 2 contributes to 
x-y" >-the coefficient of a dl(d j 

~ ~ 
Unless x = y, d l = d j 

since 'S(aX-Yci
i
)I = qpo(_2 = IS(a), 

~ ~-l 
we cannot have d

l 
(d.) E. C 

J 0 

= , S(ax -
y 
ci)r\ ACo I for 
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c i t: Co ' 

Z~*(X) 
J 

x-y 
a c i /: 1. Thus since 1 E:C 0 holds it is clear that 

cannot have two distinct elementary traces. Suppose we have 

x-y A >. -1 i a (d
l 

)(dj ) (S for some i?'2. 

X ~ -1 i By lemma 1.1 we have that adl (d j ) ~ S must hold. 

We have from lemma 3.1 that ls(ad1\ (d j" )-1' = 0 or 2. 

\s(adi (dj~ )-~ = 0 contradicts 's(aX-Ydi (dj )-11 .> o. 

I S (ad~ (d; ) -11 = 2 can occur only if C * has an element of 

Cod~ (d~ )-1. In this case it follows that in [S(;3)]2 

x-y .\ .\-1 a d
l 

(d
j

) occurs with coefficient 2 as well. Thus we get 

'S(a
X

-
y d~ (d; ) -~ > 2 = 'S(ad~ (d: ) -l~'. This contradiction 

is avoided only ifax - y d~ (d~ ) -l( SO = t 1 }, thus aX = a Y, 

d'\ = 
1 

~ d .• 
J 

This completes the proof of lemma 3.2. 

Since S(o) I ¢ (because the elements of S generate H) we 

have that S(o) =Zi*(O) (dl + •• +dvJ where d~ = di and v(o) = v. 

Lemma 3.3 

Let Zi* (0) = tr. (z), D = f dl ,.·.,dv1, hence S(o) = tr.(z)Q. 

Then S :::l < z > D - 1 

Proof: 

For A :> 0 and 

s -s+tp~ z d. z 
~ 

since S(o) is rational. 

For ~ = 0 there are p ~ -l( p-2) choices for s (excluding 

s-=..t(p». 
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Thus for f3"/ 1 we have IS (z tpA d
i 

d
k

) I > p ~ -l( p-2)? p;::> 2 

for any t with (t,p) = 1, any A = 0, ••• ,f3 and any i,k between 1 

and v. 

tp'" 
Thus z di dk~ Sunless f3 = 1. If 13 = 1 we have that 

S = ACo-l + D-l + tr. (z) D since S(p)== ¥'l (mod p) must hold. 

of at 

Now from[ S(o) J2 we still 

A-I 
least p'" (p-2) ~ 1. 

In addition if d. ~ 1 we get a further contribution of at 
1. 

t 
least 2 from 2 S(o) S(l)' namely from 2 (z dk)di • 

Thus we have IS(ztdidk)1 :>2 unless di = 1. 

This means 
t 

z d
i 

d
k 

E: S unless d. = 1 in which case we have ob-
1. 

viously zt didk = t 
Z d

k 
t: s. 

tp 
We also have z di dk 

= d
i 

d
k 

E: S in the case j3 = 1 unless 

didk = 1. 

Now with A = 0, t = 1, we get zd
i 

d
k 

(;.S for any i,k between 

1 and v. 

We know sinee S(o) is rational that D is inverse closed. 

Thus D is a subgroup of C. 

Now as we let t and A vary through all possible values, we 

get 
tpA , -1 

z didkf.S, unless 1\ = 15, di = dk , thus S ~(z"/ D - 1. 

We now calculate Is(z)l. Since D is a subgroup we have l~D, hence 
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Elements of the 3rd term have b exponent divisible by p and 

z C: S (0) does not. 

Thus the contribution to IS(z)I comes only from the 1st two 

terms. 

Since S(o) has only elements of < z > D, and we have 

only from 

'>D only fory {<z;>D, the contribution to I S(z)lcomes 

[ <::: z '> D - ~ 2 and this contribution is clearly 

JD I J' - 2 since z is of order p' (since it is in PZ(O)). 

Bu tis ( a) I = qp 0( -2 = 'C 0 , pO< -2. 

)S(a), = tS(z)1 ~ID'PP-2 = 'Co. , pO<_2. 

But 0<. ~ 13 ~ pllnl· 

Thus I D I = Ic , pal..-p. 
o. 

This is impossible since D is a subgroup of C which has order 

prime to p. Thus ...A-1.. = f3 cannot occur, and we conclude that .1'1 = 0, 

13-1 

S ;: ~ P ( A ) C 0 + AC 0 - 1 + C· 

A"'o 

#4 

To compDete the proof of theorem A we need now only show that 

C * = 0 and C :: C. o 

Lemma 4.1 

Proof: 

C· = 0. 

Since ( I c \, p ) = 1 C (p ) = C 
'0. 0 • 

Thus C·(p) has no element of C • 
o 

1 occurs in So, hence not in S. 

If 1 Ic· E: C* held, (c·)p would occur with coefficient 1 in 

This would contradict theorem 4. 
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We therefore conclude that C· = j) and that S = R! - 1 where 
0 

~C (since A = P ( P » •• 0 

Now (S> = H since G is primitive, but it is evident that 

<S>=FC. o Thus we have that PC = R! = Hand S = H - 1. o 

Since SO = 1, S = Sl = i 
H - 1 and S (l S = ¢ for 2 ~ i ~ r, it 

follows that r ~ 2 cannot occur. Thus we conclude that r = 1, and 

with the help of theorem B, we have a complete proof of theorem A. 
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