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ABSTRACT

In this thesis primitive finite vermutation groups G with
regular abelian subgroup H are studied. It is shown that if, for
an odd prime p, H has a Sylow p-subgroup which is the direct pro-
duct. of two cyclic groups of different order, then G is doubly

transitive,



I Introduction

The object of this thesis is to show that certain finite
abelian groups cannot occur as regular subgroups of uniprimitive
(primitive but not doubly transitive) permutation groups. Thus we
conclude that primitive groups with such a regular abelian subgroup
are necessarily doubly transitive.

The first result of this nature was obtained by Burnside who
showed that cyclic groups of order pm (p prime, m > 1) do not oc-
cur as regular subgroups of uniprimitive groups. The proof is
given in [ 17] , p. 343.

For this reason Wielandt has chosen to call such abstract
groups B-groups. ~

Burnside conjectured that every abelian group which is not
elementary abelian is a B-group. This conjecture is not correct.

A class of counter-examples was found by Dorothy Manning in 1936.
This class of counter-examples has been generalized by Wielandt and
will be given below. The first advance beyond Burnside's result
was obtained by Schur [:2] in 193%. He showed that every cyclic
group of composite order is a B-group.

In 1935 Wielandt [:3:] generalized this result by showing that
every abelian group of composite order which has at least one cyclic
Sylow subgroup is a B-group.

In 1937 KochendBrffer [:4:] generalized the Burnside result
in a different direction by showing that every abelian group of
type (p™°, p® ) with e >B is a B-group.

This thesis is a simultaneous generalization of the results
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of Wielandt and KochendBrffer. We show that for any odd prime p
every abelian group of composite order which has at least one
Sylow subgroup of type (px, pﬁ) with o¢ >B is a B-group.

We now give the Wielandt class of counter-examples to the
Burnside conjecture.

Let H = Hl X Hé woe X Hd with

)Hll = lHZl 2 wen = IHdI =a »2 and d > 1 (where
'Hi' is the order of H,).

Then H is not a B-group. Thus for any such H there exists a
uniprimitive group with a regular subgroup isomorphic to H. No as-
sumption is made on the structure of the Hi‘

The proof is given in [j5:], an unpublished set of notes from
lectures given by Wielandt at TUbingen in 1954.

We mention that two classes of non-abelian B-groups are known
as well.

Wielandt [:6i] showed that every dihedral group is a B-group,
and Scott [:7:] has shown that every generalized dicyclic group is
a B-group.

This thesis is a direct generalization of lrﬁ:] in the sense
that the arguments apply whether or not the regular subgroup is a
p-group or not. The case in which the Sylow subgroup is cyclic
(i.es B = 0) requires a slightly different argument, however.

Thus we mention that the arguments given in this thesis can be
adapted to give a somewhat different proof of Wielandt's result in
the case B = 0, but for clarity of the presentation, we assume that
the regular subgroup has a non-cyclic Sylow subgroup of type

ol
ks pB) with 0(>ﬁ (i.e. we assume that P?ﬁ 0 holds).
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ITI Notation, Definitions, and Theorems from the

Theory of Schur Rings

Let G be a given permutation group on the letters al,..., a,

with regular subgroup H.

We denote the image of the letter as under the permutation

g € G by aig.

We regard G as a permutation group on H in the following way.

We distinguish the letter aqe

Since H is regular there is a unique h € H, which we call

hj’ taking a, into aj for j = 1lyee¢ey no.

1

Clearly h. = 1, the identity element of H.

1
The one-to-one mapping j &> hj enables us to replace the

letters Bigeeey @) by the elements h ""’hn of H.

J:

To the permutation g &€ G (on {al,...,an} ) corresponds the
permutation ( ig) (on B) where hS is the element of H uniquely
determined by the formula

n® hg
a, = a,
Let R(H) be the group ring of H over the ring of rational
integers,

For 2{(h) h € R (H) and any integer j we put

L =w"z5
'1(3) =h%‘H ¥ (n) n?, and 'Q’:’Z‘O’(h) h’ = ZX(h)o
With X € H we associate X € R(H) defined by
» 48 &
K = ZZ(h)hwhere X(h):{ll o -
= h €H 0 if h ¥ K
Thus ’ X , is the number of elements in XK.

Let Gl be the subgroup of G (considered as a permutation group
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on H) consisting of those elements of G fixing 1, the identity ele-

ment of H (thus G. corresponds to Ga Ye

1
Let {1:} = TO, Tl,...,Tk be the sets of transitivity of Gl’

1

where T° € H for i = O,...,k.

Clearly the elements :g; z’i 21 ( 2(1 integers) form an
1=

additive subgroup of R(H).

Definition 1:

A Schur-module (S-module) over H is an additive subgroup of
R(H) which has a basis K 1++2sK, where K. & B for £ = lywenyly
K: N Kj = g6 for 1€ i <j <t and
t
= kK =K.
L = X
Let R(H, Gl) be the additive subgroup of R(H) spanned by the
i

T ’ i = O,ao-,k.

o

Then clearly R(H,Gl) is an S-module.

Definition 2:

A Schur-ring (S-ring) over H is an S-module over H which is
in addition a subring of R(H) containing the multiplicative identity
1 and containing ﬁL(-l) = Zi_ykh)h-l whenever it contains
N = Z_Y¥(h) h.
Theorem 1l: (Schur, 1933)

R(H,Gl) is an S-I‘ing.

Definition 3:

An S-ring ASL is called primitive if K = 1 and K = H are the

only subgroups K of H for which K e.él holds.



Theorem 2:

G is a primitive group if and only if R(H,Gl) is a primitive
S-ring.
Theorem 3:

Let & ve a primitive s-ring, 2¢-€ , 4 Y +1,

Then the elements h € H actually appearing in /2 (i.e. with
non-zero coefficient) generate H.
Theorem 4:

Let ~éz be an S-ring over the abelian group H of order n.
Let j be an integer. Let 7 € <g.
Then:

@ Gym=1 => nWed,

(b) If j = p is a prime divisor of n and if i is primitive,
then

fl‘p)'EE S:l (mod p)

holds for an appropriate integer (f .
(The congruence is understood, of course, to hold for the coeffi-
cients.)

Proofs of theorems 1l-4 are found in reference 2. They are

given in terms of somewhat different, but equivalent, concepts.

Definition &4:

Let N & R(H).

If (Jyn) = 1, ILFJ) is said to be conjugate to A} .

Definition 5:

Iz ¥l = fL(J) for all j with (j,n) = 1, i.e. if [ is its

only conjugate, fl 1is said to be rational.



Definition 6:

Let N € R(H)

Then the sum of all (distinct) conjugates of fU is called
the trace of r , and is denoted by tr. ( /1).

Tr. () is obviously rational and by theorem 4(a) lies in

the S-ring i whenever 7] 1lies in i .

Definition 7:

For h € H, the trace of {ht is called the elementary trace

associated with h and is denoted by tr. (h).

Clearly if k has non-zero coefficient in the elementary trace
associated with h, then the elementary traces associated with h and
with k are identical.

It is also féirly easily seen that the conjugates of the 2}
are again of this form:

Theorem 5:
- L)

(jyn) =1 => T =2q for some.q with o = q < k.

Proof:

To see this we note that by theorems 1 and &

(3) .
21 = EE b4 gf where
S: Q: S

)K; = B orl for S= Ojeensk since (Jn) = 1.
We proceed by induction on ' zi‘ (the statement obviously
nolding for TO 1} .
Unless ¥ = 1 for some q and :K; =0 for all S £ q, in

4
;1 ()
which case T = gq as asserted, we have

t

S .
'EL' 4.\23' for all § for which 3;.£ 0, since in any cese we

have
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| - (2],
We therefore assume that lglsl <j‘2f‘ holds for all S
with ¥ # o.

Now let j' satisfy jj' = 1 (n).

then 2t - [21(3>J(3')= K YS[ES]U')-

sy S=O

The[‘l‘5J(J ) are 23 for appropriate q by the induction
hypothesis. We have thus expressed gi as a linear combination of
smaller Eq which is not possible since by definition Ti[1 T = ]
for i # q.

Now tr.(gi) is a sum of distinct conjugates of 21 hence a sum
of distinct gq.

Thus tr. (2}) has only coefficients O and 1 and tr. (gi) = §i
where Si C H is the set of elements of H with non-zero coefficient
in tr. (gi).

We note first that the Si need not in general be different.
If necessary by renumbering the Ti we may assume without loss of
generality that sl,..,,sr are distinct and that for any J > r there
is an i & r with Si = Sj.

Clearly §O = Fre (go) = tr. (1) = 1.

We now assert that for i, j € r, i # j we have Si'f\ sd = g

Suppose the contrary, say h € Si{1 Sj. Then h = x° = yt
where (s,n) = (t,n) = 1, x e_Ti, Yy € Tj.

Let t' satisfy tt' = 1 (n).

st! i(st")

Then x =Yy, thus T and 23 have the element y in
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common, and. gl = gj.
Thus we have TY < st.

Now since s:L is rational we conclude that SJ < Sl. Since ESl

—

and S:i here play symmetric roles we have sig :3‘.j by the same argu-
ment, hence Si = S'j, which is in contradiction to the way we
numbered the Ti.

The si(i = Oyese4yr) are therefore disjoint subsets of H, we

r ; i
clearly have Z §_1 = H, and therefore the §_l span an S-module
i=0

over He.

;=1

Since SO = and S

§_l (since §l is rational) for

T

i = Ogeee,yr the S generate on S-ring over H provided only that
they generate a subring of R(H).

To show thié'we prove the following:
Theorem 6:

Let 1 £ i,j <r.

S r
Then §_l §J = = b,t _s_t for appropriately chosen integers

.

t

Proof:

8 8 R(H,G,) => s'sd = Z c§ T - = ¥wn.

hel
We need show that if h, keés® X(h) K(k) We may then put

¥, - B = Y.
. . t X
Clearly it suffices to show that for h&Tt, k €5 )(n) = ¥(k).
Clearly if k¢ 'I.‘t holds, we have {(h) = K(k) o St' Now
kéSt =k = n°® for some heTt, where (s,n) = 1.
¥ (h) is the number of ordered pairs (u,v) with ues T,

Vé,SJ, uv = ho
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For each such (u,v) the pair (us, v°) satisfies u®v® = n® = x
and conversely.

Moreover u° & st & u € Si, v’ e Sj &S v € s¥ sinve
§i and §j are rational.

Thus (u,v) <§—€>(us,vs) is a one-to-one correspondence between
the akh) pairs of solutions uv = h and the X (k) pairs of solu=-
tions uv = k.

Thus X(h) = x(k) and theorem 6 is proved. Since _S_i is in
R(H,Gl) for i = Oyeeeyr, it is clear that the S-ring generated by
the §i is a subring of R(H,Gl).

We will use theorem 6 in the following weaker form:

Theorem 6':

Let [§1J2 = Z G, » n.

h € H
Then h, k & 89 => G, = G (x).
To assist in computing these coefficients we introduce the
following notation:
Let h € H, R < H.
Then R(h) = {r € R [ r''n € R} .

The coefficient of h in [-3:12 is the number of solutions

€ R can occur in at most one such pair and it occurs in

1 h & R holds.

such a pair precisely when r, = r

Thus ,_13__(_11), is the coefficient of h in fg]z, and the ele-
ments of R(h) are precisely those elements of R which "hit" other
elements of R in such a way as to produce an h.

We introduce the following further notation.

For any set K, let [ K I be the number of elements in K.
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K < H means that K is a subset of H.

{ K > is the smallest subgroup of H containing K and for
h &€ H,

&n> = L} 2>,

K < H means that K is a subgroup of H.

We now state the two theorems proved in this thesis.
Theorem A:

Let G be a primitive permutation group of degree n.

Let p be an odd prime.

Let H = A xB x C be a regular abelian subgroup of G, where

£ a> is cyclic of order p o (p prime)
8

A

B
el
and K >p >0 holds,

<b ™ is cyclic of order p

It

m where (m,p) = 1,

Then G is doubly transitive.
Theorem B:
Let the hypotheses of theorem A hold.

TO, Tl,...,Tk be the sets of transi-

1}

In addition let 4 1}

"

tivity of G, and let tr. (I7) = H-1 for i = l,+..,k. Then G is

1
doubly transitive.

It is clear that theorem A includes theorem B. They are stated
separately since we will first prove theorem B by a not too diffi-
cult counting argument, and then devote the greater part of the
paper to the proof that under the hypotheses of theorem A, tr. (gi)

= H-1 necessarily holds for i = l,...,ke.
Throughout this thesis, k will denote the number of non-

trivial (i.e. # {.1}‘ ) sets of transitivity of Gy and r will de-

note the number of distinct non-trivial traces of these gl.
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Thus G is doubly transitive if and only if k = 1.
The additional hypothesis of theorem B is that r = 1.
Let P = AB.

Since ( ]C] y P) = 1, P is a Sylow p-subgroup of H.

We have |A| = pé~
|2 ="
[p] = p**F

Since H is regular we have
n = IH' = |p Cl = ‘P‘ lCl = mp“*’s.
K-1
We let u = a® .
Put U = {u . Thusl<u>|= P
Let K S H, 0 < A<PB.

We may express k € K uniquely in the form
A ;

E = asPVbtp ¢ where (s,p) = (t,p) = 1, ¢c € C.
Let K (y y be the set of all such k € K for which V= 0.
Let KY()\) be the set of all such k € K for which V#£ 0,
but K=V )>P-)\.
Let KZ(A) be the set of all such k € K for which
AV EB-A - p

ket iy = XU KX (\)

Ctn

K
Xy o T(N)
K
" 5 ,\k(), Kz ()

Koay =%y YU 5ay Y K00

KL&) is then the subset of K consisting of all elements which
A

have a power of b exactly divisible by p .

KX(A ) is the subset of KCA ) consisting of elements of order
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divisible by p .- .

KY()\) is the subset of K(‘X) consisting of the elements k
not in IS((/\) for which uC N <k > #¥ 4 holds.

KZ(A ) consists of the remaining elements of K(A.)' the k for
which wc N<k D = 4.

Without loss of generality we may assume that u ¢ Tl holds.
We put Sl = S.

Let ¢, = feec | acés} .

We show that by appropriate choice of generators of P we may
assume that C_ £ b

Since G is primitive, < S 7> = H by theorem 3.

oK
Thus § must have an element of order divisible by p , Say

A
a® btp c where (s,p) = (t,p) = 1, ¢ &€ C.
i A
Let a, = a® btp .
1
< -1 A& -1 L =1 +A A =1
alP = BF btP - aSP
ol ~1
since o{~-1 Zﬁ == N = 1.
& K =1
ues = u = a P € S since § is rational.

L
Obviously we have P = <fal':> ¥ £8
Thus we may replace a by a
-1 .
alyés and alp & S as well.

We therefore assume that a has been chosen in such a way that

and put u = a

Co is non-empty.
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III Preliminary Lemmas

We prove five preliminary lemmas; the first two of which to
be used in the proof of theorem B and the remaining three to be
used in the proof of theorem A.

Because of theorem 6' we know that in [’§i:]2 certain coef-
ficient equalities must hold. ILemmas 1-5 will tell us that such
equalities can occur only if the Si have a special structure. Re-
peated application of these lemmas shows that this structure is
incompatible with the existence of more than one non-trivial Si.
We will therefore be able to show directly that § = H-1l.

Lemma 1:

Let x € P, 1/16 <x>,x&.U, ¢ &€ C. Then for any

j = 1lyeee,p-1 there exists v prime to n with v = 1 (p) such that

(xc)v = u’ xc.

Proof: .

s v t A
Since x ¢ P, we may write x = a P p"P

where 0 £ YV £ £ , O éXéB.
(s4p) = (t,p) = 1.
u & <x>‘—"—'—?>a(-v> ﬁ’Ao
ice. x € B U Hy, and x § U => X £ V-1

Choose s',m' satisfying s's = 1 (p°° )
mm = 1 (p %)
(where m = |C| ).
Then,
uj Xc = ajpoc ™ asPV btp)\ c

-V -1 -V -1

A : . K -V-1
asp\( (l+mm's' jp )btp (l+mm's* jp )c(l+mm's'3p )



<-V+ A -1
since bp = cm =t e
Thus,
. v A X - V-l
w(xe) (5P il c) Lestnt st ip = (xc)V
K-V -1

where v = 1 + mm's'jp
Now a(-‘y/jyﬂa‘-)\zzéQ V# <
and x % T = V£ «-1,

<- V-1

thus p lp and we have v —= 1 (p).

Clearly v =—1 (m), thus ( v ,n) = 1 as asserted.

Lemma 2:

Let K < H.

Let h & H such that hK = K. Then in K k"% h has coeffi-
cient 'K,.
L oo

In K _I-g('l), 1 has coefficient |K|. Thus in h K _i_c(’l) = hK o=l
= K 5(-1) h has coefficient | K|.
Lemma 3:

Let R € H such that R is rational.
L= -
Let R* = (qu RY) uc
Then R* < R(uJ) for J = lyswns® = Lo

Proof:

R rational =3 RX' Ry, R NUC rational —= R* rational.
ox (-1 1

R* rational =3 R* = R* s thus r € R* & r -~ & R*. Moreover
by Lemma 1,

rte g —Qr-l ud ¢ r=.

-1
r

Thus r € R* — r-l € B* == ule Rr* —=3 ¥ € R(u‘?).

and R* < R(u?),
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We are now in a position tc prove the important.

Lemma 4:
Let x € By (i.e. let x be of order divisible by 7).
Let R & H such that R is rational.
Then lR(x)' < 'R(uj)' holds for j = lyee.,p-1 and
lR(x)) = ‘R(uj), for every j = lye004p-1 only if
(i) n enx,
h e R(uY) - ROX) => (11) »™x ¢ &,

and (iii) u™9h € R(x) for j = 1l,ee.,p=1

Proof:

Let j & il,...,p-l} « To each element z ¢ R(x)-R(uJ) we

wish to associate in a 1-1 fashion an element of R(uJ)-R(x).

2 € RO-RG)) = x er, IR

By lemma 3,
z § R@u)) —> z § R* = (R, U Ry) - UC

Now if z = u¢c (c € c), u- £ u) we have

z-l =u " c“l & R (since R is rational) and

z°l uwd = wd™t c-1 € R since we can always simultaneously satisfy

the congruences
v = q (p) q € {1,...,p-1}

v

(il

1 (m)

since (m,p) = 1.

This would violate z * R(uj).

Thus z & R(uJ)\“—b z )ﬁ,(RXU RY) - uJC,
ie. 2z €R, U (R N u%e)

Now z € R(x) —> " € R,
thus z-lx & RX'
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Now by lemma 1, we may conclude that

udz g &R, indeed we have

e &R, & R*

Now by lemma 3, we have qu-lx € r(uY).
We claim that u‘]z—:lk éR(uJ) ~ R(x).
Suppose the contrary, i.e.

(uaz-lx)-lx € R, thus zu” 9 & R.
(-1)

Since R=R we have z~l uJ & R contradicting z * R(uj).

Thus with each z € R(x) - R(ua) we have associated uY z-lk

in R(uY) - R(x). This completes the proof that IR(uJ)IJZ IR(X)(
holds.

Now suppose IR(ul)' = ‘R(x)' for i = 1lyese4p-1. Then the

only elements of R(uJ),- R(x) can be the elements u’ z—lx where
z € R(x) - R(ua), thus z E,RZ U (R f\uJC). For such an h = ujz'lx,
., we have
(1) h € HX’
-4 -1
(iii) u Yh = z "x € R(x)

-1 1

(since (z7%%) x = z € R) and b "x = w9 €& B, U (u”9).

Now h € b =—>h & R* => h & R(u’) for i = l,.u.,p-1.
Thus from h é_R(uJ) - R{(x) for some j we conclude that
h & R(ul) ~ R(x) for every i = l,s..,p-1

We conclude from h-lx € HZ \J(u-lc) for ¥ = 1lye0e,p-1 and
p 7 2 that

433 B B H,

Lemma 4 says that if ’R(x), = 'R(uj)’ for every j = lyees,D~1,

then in {jBi]z only elements of HX can "hit" some u’ but fail to

"hit" x. Such elements h fail to "hit" x because the element

h-lewhich they must "hit" belongs to HZ- R. For each such h there
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are p-1 other elements in tr. (h), the udn (j=1l4ee¢eyp-1), which do

"hit" x. In particular since all elements of (RXU RY) - UC do "hit"

every ul it follows that RY - UC € R(x), and indeed if any element

J

of R not in HX "hits" any u% it must hit x as well. Moreover, any

element h of RX which "hits" an element of I-‘IY to yield an x (i.e.
an h for which h-lx G_HY holds) must belong to R(x). Thus for such

an h we may conclude that h-lx €R holds.

We now prove a further lemma which says essentially that every
elementary trace of PX(/\) has some element "hitting" an element of
any elementary trace of PY(/\ )U PZ(/\) in such a way as to yield
the element a. Thus if we know that there is a whole elementary
trace of Pyo A )UPZ(,\) in R belonging to R(a), we will be able to
conclude that every elementary trace of PX(/\) occurs in R.

Lemma 5:

A
Let abtp &

Pv SP'\
Let a” b° € Py y WP,

()

Then there exist e,f with (e,n) = (f,yn) = 1 such that

v A
(abtPA yE = (P 5P ) &

Proot:
For any integer j, let j' be an integer satisfying jj' —_T—_l(p‘x).
Let e = t(tpY -s)! (mod p°()
f :—_—,s(tpv -s)! (mod p“)
Then [(apv bsPA . a:] - (apv bsP'\ )-ef' af'
s (oY psPt gt st (88 m8) | 10V (st testt) gpA |t
Thus we have (ap\( bsP,\ Y% a = (abtp’\ )f as asserted.

We now proceed to the proof of theorem B, making use of
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lemmas 1 and 2. We will then make use of lemmas 3, 4 and 5 with
R = 8 (occasionally R = Sl with i >1) in order to show that S = H-1

necessarily holds.
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IV Proof of Theorem B

In this section we use lemmas 1 and 2 and a counting argu-
ment to show that r = 1 (i.e. tr. (21) =H =1, 1= 1yees,k) im=

plies k 1.

Theorem B:
Let G be a primitive group with regular abelian subgroup
H=A4AxB x C where

{a> is of order p°<.

o
n

{b> is of order pB, <L 2?B>%.

v
1}

Ic| = m where (myp) = 1.
¢
Let {]:} = T, T gomey T be the sets of transitivity of G
Let tr. (2 ) = H"l for i = 1,..., ke
Then k = 1, i.e. G is doubly transitive.
Proof:

Since U is a subgroup of H we have whenever (v,n) = 1 that

h'eU & hev.

Since all elements appearing in Tr. (21) = H - l are obtained

by taking such vth powers of elements of Tl, it follows that
T'NU £ 4 for i = 1yeee, ke

Let T = Tl be the set of transitivity of Gl in which u occurs.

As we let j take on values congruent to 1 through p-1 modulo
()

p and prime to n we have that the T run through sets of transi-

tivity of G1 (by theorem 5). All such sets of transitivity are
obtained in this way since every element of U-~l appears in some
(3

such T

Now suppose T has s elements of U. Then each Ti has s
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elements of U, and we have ks = lU—ll = p-l.
We note that theorem B holds even in the case p = 2, since
from what we have just shown it follows that T1 = Sl.
Since the gi are all conjugate to T (i=l,...,k) we have that

1

elements. It is easily seen that

the n-1 elements of H-1l are divided by G, into k sets of transi-

n-1

k
PX(A) consists of §(p°‘) @(pa"\) elements

tivity, each with

for A= O’ooo,ﬁo
Py( yy comsists of (p"<'-l - pP-X) @(pg_’\) elements
for A = Oyessy Bo

P (r* 5% = X+ P15
p°(+B-l _ (p2ﬂ+l +1)
(p+1)

Thus ' PX '
| Py

Except for the p-1l elements, x, of U-1l, for any element xc

i

with XQPXUP s C&€C and for any j Qil,...,p—l} s there exists

Y
v = 1(p) with (v,n) = 1 such that

uj xc = (xc).

But since v =1 (p) holds

_';‘_(V) and T have s elements of U in common. Since distinct Ti
are disjoint it follows that _'Z_[‘_(v) = T holds; thus ujxc €T,

Now taking vth powers where (v,n) = 1 takes elements of

[(Px\) PY) - U] C into other such elements.

Therefore if we put

E(PXUPY) - ij\T we have that

T*
| z+| -}1; ‘(PXUPY) -U‘ jc)

=2 [Py« P L PPy (p-@ n
(p+1)

i

i
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[‘po(+? _(p2[3+l+ )]
(p+1)

Now for xc & T* we have wIxe &€ T*, thus ud T < ¥y

=B

Now since T* is a finite set it follows that
uJ T* = T* fOI‘ j = l’oco’ p-lo
Thus by lemma 2 we have that the coefficient of wd in

is IT*'.

Thus the coefficient of uY in 2 2(_1) is E:IT*'. The coef-

(l)

ficient of 1 in T is |rl = |r+].

Now, since the Schur-ring R(H, Gl) has the 21 as generators,

it follows that

1YL 2yt

i=o
Now each Ti4(i = Oyeeeyk) has an element of U.
Thus we have EE_EZ'T*l for i = Oyeeey ko
Thus we get the inequality,
2 Nrat - | 2 1] 2 A xl
2l =)_T__T_ l:'i_zo g, 7 > |14 i—zo'T'i = |+l ln

<+ P
Now 'Tl - n;l _ mp - -1

JEl=n = mp™**P,

Thus we have that

[e<+?>]

wis
r—’\
3
+
=
o
~ ™
3] o+
+1 =
|
~}+
i
o
Mol
B
el
A
+
w

Y
=B

thus

A
mp +ﬁ -1 [,(""F - (pzﬁ"‘l & pz)]
k (p+1)
Since P >0 holds, we have

m,,(_._g [0(4. - 2P+l+ 2‘3]>m °(+ﬁ_p28]
k (p+1)
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Thus
k & mp* P -1

Now

2mp2P o1 < 2up?P < pnp2P - mp FHL PB < np<+P

-@mp"(J'p -1 <2mp"<+B - Zmpaﬁ.

Thus we have

mp -1
k< <2 U
m§<+p_mp2ﬁ

Thus k¥ = 1, and theorem B is proved.
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V Proof of Theorem A

#1

We now wish to show that S (the trace of the set of transi-

tivity of G, in which u occurs) is all of H-1.

1

We first show that if 8§ ) # 6 we have that s(/\ ) consists

X(A
of most of Pia) C(A) where C(A) is a subset of C, and C(B)
=Co= {céC lacéS}.

We will then show in #2 that if A€ is the smallest A for
which SX(/\) # 6 holds, we have that SX(/\) £ 4 for N\ = MyeeeyfB,
that C(A)=Co for A=/‘(,ooo,p, that S(A)'—'P(A)co for

A= ACyeeey B-1, that Sgp) = AC,-1, and that L= 0 or [
must hold. 1In #3 we show that the hypothesis A= 3 leads to a
contradiction. In #4 we show that Co* = C. We are thus able to
conclude that 8§ = PC -1 = H ~l.

We now prove two lemmas, the first dealing with the structure
of the sl{B)) which have elements of order divisible by pc‘, and the

second dealing with the structure of the sl( A)’ A=z 0yeeey P -1,

which have elements of order divisible by p°<.

Lemma 1.1
Let 1 €1 < r,
i il
Let C (p) = fdec 'adés (P)}
Let c&Ce.
Then the coefficient of ac in[sl(p)-J & is less than or

equal to the coefficient of u’ for J = 1lyeeeyp=-1 and equality

holds for every such j only if
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(1) S(py - (D B oy

where C"‘i < C.
(i1) ¢ (ple = ¢ (B)
Proof:

Put R

i

S(g)

e B )a

§i rational ::;:S?E) rational.

Thus since ac éHX holds we may conclude immediately from

D

lemma 4 that
,R(ac), < |R(uj)’ holds for j = l,eseyp=1e
We now assume that 'R(ac)l = ,R(uj)’ for j = l,eee9P-1e

1

Since (m,p) = 1, for any s with (s,p)

and any t with (t,m) 1

i

we may find s', t' with
s' = s(pX), s' =1 (m)
o= ™), B = % (e
Thus for x¢ P, d¢C we have tr. (xd) =‘ tr. (x) tr. (d)
Thus R has every element of tr. (a) D and no other element of

tr. (a) C. Now tr. (a) = ;EE_ a®.
(S,P)-'-'-l

Again by lemma 4, the only elements x of tr. (a) D which might
not satisfy x-lac(R must satisfy x—lac QHZ. Now x € AC -@x-lac
in AC and AC/\HZ = Co

Thus the only elements x of tr. (a) D which might fail to
satisfy x-lac €R are the elements of aD.

1+pw

Now as we let x run through the elements a d of tr. (a) D

-pw d-l

(w # o), the elements x-lac that we get are the elements a c
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which must all lie in R.
Now since D is inverse closed, we have that

>
R =2 AYDc

Now, were R to have a further element, y, of Ayc it would
satisfy y-luéR by lemma 3, thus
y—lac €R by lemma 4.
This is clearly not possible by the definition of D.

Hence the only elements of A,C which can occur in R belong

b 4

to AYDC and all such elements do occur.

Thus we have that

i *
S(p)°iK?+AYDC+Ci'

Now, again by lemma 3% since p >2 holds, we have
(azd)-l u &R for d €D, hence by lemma 4,
2..-1 -1 ,-1 g

(a7d) "ac = a d ¢ €R. But the only elements of A)(C in
R lie in AXD.

Thus d-lc €D holds for d€D. Again since D is inverse closed
we have Dc = D as asserted.

Thus we have that

f_i@)z [AX+AY]Q+0; =[A-1]D+c;=[;x —1]01(43) + Ct

We now assume that A < ﬁ , and prove a lemma similar to

lemma l.1.

Lemma 1.2
LetR-—-SJ(-A)Where i({l’.'o’r}, A<B Y

Let Ry £ 4.

. A
Let CT(\) = %déc l ab°?  d¢ R for some s with (s,p) = l}

- {apennr o}
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Let c&C.
Let ZE (A) be the subset of PZ(,\) such that
Zs (A) d-?]:} Cc = Rznp d--:'l_j- ¢ for J = l’ooo' Ve
v
-1
* % <. - * : * %
Let z2**(A) < H, such thatiz_ 5 25(A) d o+ Z (A)

Then the coefficient of ac in[B]Z is less than or equal to the co-
efficient of u’ in [3]2 for j = 14404y, p=1le If equality holds for

all such j then

1]

(1) B

. i
(i) Ry = Pyeay © (A)e

i

I

(iii) The coefficient of u‘-j in ( RZ ] “ is
v
. i
2 Zizllzj(,\)l -»lPZ(,\) Ay |

(iv) Ci(/\ Je = C?.'(/\)
Again by Lemma 4 since R = Si(,\ ) is rational, we have
| R(ac)] € .R(uj)' for j=ly,eeeqp-l.
We now assume that |R(ac)| = 'R(uj)’ for all j.
Put D = CT(A ).

Since RX £ @ holds there is some elementary trace say

A e 1oy A
tr. (ab"?P 4) in Rye Then al=PpW(1-P)P d €R, holds.

- Y e S
Now (al~PpW(1-P)PT 4y=1 o _ Py ¥W(1-P)D? 4=l | 1ies in ®

Y

unless we have A = O and = P+ l. We exclude this case for

A
the moment. Then by Lemma 4 we may conclude that al pbw(l 1284 d

is in R(ac) since the only elements h € R, such that h#R(ac)

X
satisfy h-lac QHZ. Thus we conclude that

——— Ao
p,~w(1-p)p y a1

tr. (a c lies in R.
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Put s = w(l-p). Again by Lemma 4 we have that y ¢ R(ac) for
every y occurring in tr. (aPp®P ) d.:L Ce

p. s A

By lemma 5 we have that as y runs through tr. (a’b Py the
elements y-la occur in every elementary trace of PX()\)' It thus
follows that PX(/\) D &R.

By the definition of D = CT (A )y no further elements of Hy
can be in R. Thus we have that

; i
= P .
(1) Ry (x) € (A

We now turn to the case A=0, o= IB + 1.

Again from lemma 4 we have that p-1 of every p elements in
every trace of PX(/\) occurring with dj €D in R must lie in R(ac).
From lemma 5 we have that as we let x run through such an elementary
trace of PX(/\) th/e elements x-lac lie in distinct traces of PZ(/\)’

indeed one in each trace of PZ(/\ ye It follows that we must have

) Z:]f(/\)l > % ‘Pz(/\)l for j=l,e.e,v where

i = {dL,...,dv}.

Now for some z 62.3(/\) we must have uzéZB()\) as well. Now
(uz)z™t = u =2 uz&R(u).

(uz)®, z7%¢ 23(A) hold if (s,p) =

t
'.—l
.

Thus (uz)sé R(us) .

By lemma 4 since by hypothesis ‘R(ac)l ,R(us) lfor all such
s we have that every element in tr. (uz) dglc belongs to R(ac).

As we let x run through the elements of tr. (uz) dglc we get
that the elements x-lac belong to every trace of PX(/\)dj°

It follows that PX(/\) D ERX as before. Again from the defi-

nition of D we have



= P8 w
i = .
(1) By X(A) P
We now show that in either case ( A =0, « = B+ 1 or
not) (ii) and (iii) hold.
Let y€P

ELA D
-1

Th = .

en we have y acéPX(/\) D Rx

Dce.

By lemma 4 since y&Hz we have y-lac €R(ac), thus yé€ R.
j f > .
We therefore have that RY = PY(/\) Dec
If RY had any further element, it would necessarily be of

the form xd, x &P, d&_Dc, and such an element cannot belong to
R(ac) Since RX = X(A) Do
Thus we conclude that
(ll) RY = X(/\ ) Dce.
It follows exactly as above that
/ L N
% = = e e e L}

Now it is not possible that z &R, belongs to R(u) but not to

Z
R(ac). Thus the coefficient of u in[RZ]E is
|rw AR, | = |R(WARGINER, .

(Elements of R,, must be multiplied by other elements of RZ to yield

Z
u since R C_—H(,\) where A\ £ B.)

Only elements of PDc can belong to R(ac).

i i i De - R

It is not possible that both z and uz be in PZ()\) 2

since then we would have
2" Yac and (uz)-lac both belonging to R(u) - R(ac)

which is impossible by lemma 4.

Thus z€ P, 5 yD¢ - R, —>> uz€R(ac) - R(u). uz€R, - R(u)

. -1
can only hold if =z *_R holds. Thus the coefficient of u in

[&]2 is
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'PZ(A)DCI-'PZ(A)Dc-RZ’-‘RZ-R(u)'
'PZ(,\)Dc' -2|P, (5 yDe - Ry |
2|rzn Pz(,\)Dc, - 17 a 0]
2%“3"‘” = 12 a2 |

i

A
In addition since p # 2, we have asz djééR(ac) for j=lyees,v

A o -
thus (aZbp dj) - ac €R, and d ?c €D for j=lyesce, v .
Since D is inverse closed it follows that D = Dc.
This completes the proof of lemma 1l.2.

We now put i=1 in lemmas l.l1 and 1.2 thus Sl = Sl = S

Since3f</\ @H(y)ﬂu) <H
|sm] = é]s()\) (h)|for neac.

it follows that

($)

Nowls(,\ )(ac)‘ \’S(,\)(ua), holds for A = Oyessy B and
'S(ac)l = Z,S(A)(ac)' ZIS(/\ )(u )’ ,S(u‘]), for c €C_ and

j:l,...,p—l by theorem 6 since uésg —=y u é%s since § is rational,
and Co is by definition the subset of C satisfying ac€S8. Thus we

conclude that for cé:Co
,S( A)(aC)’zjs( \)(uj)i fOI‘ all j‘:'-l’ooo,p-lc

Let Co = {—cl,..., c;} .

From lemma 1.l we conclude that s( B) = A -1 Co + C*o

Moreover, letting c¢ run through the elements of Cb we have

; . 2
since p £ 2, that C_ ¢; = C  for i=l,...,q, thus C_~ = C_.
C0 was already known to be non-empty and inverse closed. Thus

we have

Lemma 1.3

Co is a subgroup of C.
By lemma 1.2 we havg that SX()\) P S
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v(A) A
Sx(A) =[Px(/\) E}[PY(/\) 1_’3} ;.:Zf 23(A)8 5oy + 27 (A)
for cieco where D = {dl”"’dv(A)} , Z**(A) EHZ(,\) a5l
[23(A)] >%|pz(,\)|_

Choosing c, =1 (since 1€Co holds) we get from De, = ch
(dlgialyeewyg) that D = ch for j=l,...,9, thus that D consists of
full cosets of Co' Choosing ci‘,...,c;\(/\) as the coset repre-

sentatives (thus v(A ) = q(A)g = q(A) 'Col) we have that if

s £ 0
83 g ql)
S [ (,\)"PY(A)_J [1“"” (»\] *é 34(._2 (Aeged
+ Z**(f\)

* > S
where 'Zij(x )' 1% IPZ(X ) ’ bolds for S=l,ses,4
= j=l’ooo,q(A )
It also follows from lemma 1.2 that the coefficient of u in

[Z""‘(;\ )]2 is zero.

#2

We now let A be the smallest A such that SY(A) # # holds.

We will show in this section that for any /\ with

AS/\sﬁ-lwehave

S = P .
(A) (Ao
We will then show that A{= 0, C, = C and that S )-P(F)
thus proving directly that § = H - 1.
AC

; . tp
By hypothesis, SX(/“L) # #. Thus there is an element ab

in S where (t,p) = 1, c€C. Now by theorem 6, we have

M
’S(abtp c)’ = ls(u)' . By lemma 4 we know that this can occur only

if S has a special structure.

c



w B -

From #1 we have that for any ‘x we have either
B ky =8 ==
- A A
S(A) 'fpx(A) . PY(»\)‘)C_O [01 ""'*Cq(m]

g q(A) A
+5§1 j%l Zij(’\)ci"j + Z**(A).

Lemma 2.1
Let AL < A< p- 1.
(i) q(A) =1

A
(iii) ¢ €c
q
3 = ' 2 * * %
where Z;(A ) is the subset of PZ(/\) which we earlier denoted by

23, (A).

Proof:

We first note that if A{ =}3 the lemma is vacuously true.

Thus we assume that _47 £ B holds. Let abtpMcES,
((typ) = 1, c€C).

Let 0 < Y & P~M.. Then since § is rational it follows
that (abtpac)eés holds where e is chosen to satisfy the con-
gruences

e =1-p" (p™),
& =l (m)

~ M <
By lemma 3, (abtp c)eéis(u) holds. Now ('abtp c) e(abtp c)

MV
s (ap® P &H.
Z
. tp”{ e '
Thus we may conclude from lemma 4 that (ab ¢) cannot be-

tp*1
long to S(u) - s(ab c), thus
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A A~
(abtp c)eé .S,(abt:p ¢) holds,

M A
ie.e. (abtp c) . (abtp c)ES.

| \'
Thus (ab®® )P € § holds for 0 < V< B -H.
M+vV i .
tp ol iS5
But ab - € g _.-...—7s = X(MJV)UPY(HW) by lemma 1l.2.
M
P ,tp

+V i :
Thus a € s would also hold. Now Sf\s o @ or

8* = 5. Thus we conclude that 8% = S, and that apt?” & S holds

for 0 L V< B-A. SX(M) # # holds by hypothesis. Thus SX(/\) £ 98
for A £ \N< p-— 1s

gy P o
We have (ab? )

ésx(/{) fOI‘ J 1,.-.,q(/‘t)

We conclude from lemma 4 that

M M . B=M =1 p-~ -
[abp c'{‘] [(abp )l p c;' .= a? c?(c?) 165 holds.

By the definition of C_ and by lemma 1.1 it follows that

c?e_c ¢.' holds for j=l,...,q(4).

o 1
Since the c¢’.! were coset representatives it follows that

a(AM) =
p p>‘ A
Now y = a’b € S holds by lemma 1.2 for A =/~1+l,...,ﬂ-l.
By lemma 4 we conclude that yéS(abp ) must hold, thus
A A4
(aPpP cJ’.\ )-':L ab® c'? & S holds.

Thus by what we have just shown, since this is clearly an ele-
ment of SX(/“()’ we have (r.:A ) for A= AM+lye.., B -1,
J=lyeeesa(A).
Thus q(A\) =1 for N\ = M+ Llyees, ﬂ-l and we may choose
A
c:L = ls

-
Since p £ 2 have T (c/‘]:l ) lé SX(M),hence

M 1 A
2. ep M =11 . p"" M -1 -p A2
(a"® (cl ) 7)) Tab ¢, =a’b (cl ) €Sy ()"
MM M
Thus (! ) éC ¢, 4 and ¢ £C .



Thus we may choose c']t( = 1,
This completes the proof of lemma 3.1.

We now show that Z:"{(/\) =P for izliussqg X:M,...,ﬂ-l.

Zz(C\)

The idea is to note that for z G_PZ( A zci*s ‘@ zciésj
for some j = 2.

Sj would have to have some element xd (x éP, d€C) of order
divisible by pd since 4Sj> = H.

Then ls(zci)l = ‘S(xd)‘ would have to hold by theorem 6.

We will use lemmas 4, 5 and 7 to show that such an eguality

cannot hold,

Lemma 2.2

~
p
D -

s 2<a> v >c -1
Proof: -
Assume the contrary.

pM

Let K = a > v >c_.
We already know that S = KX by lemma 2.l. Thus there exists

V) - i .
k€K, VK, ~ S with k £1

Let k¢ s? and let xd €SY be an element of order divisible by
p°<, where x ¢P, d&C.

Since xd%s, we have either X € Py for some VY < A or

ake..

We treat these cases separately.

(v)

Case (i):

Let x (—_Px where V < MM poilds. By the minimality of

(V)
Ay SX(?) = f for P £ M and therefore in‘:s(?y)]a xd has

coefficient zero (since the a-exponent of every element occurring

there is divisible by p and the a-exponent of x is prime to p).
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Since in general, f’ < @H(f’)H(t)QH(S’), it follows

that the only contribution to lS(xd)l comes from S(V) thus

. B
from S [ P C]
(V) A%t X(A) Jo

Were z and uz both to belong to 8§

Sys

the coefficient of u in
(v)

[S(v)]z would be greater than zero. This would contradict

{s(w)] = ls(a) | since lS(A)(a)’ S‘S(/\ )(u)/ holds for
A=0,...,B and |s (@ | = 0. Thus at most half of the

elements z of H?(V) which satisfy z-lxd éH(,\) can

occur in S(V’).
It therefore follows that for every element of'Kk which be-

longs to S(xd) there is another element of KX which does not belong
to S(xd).

Now h €5, =K, —Dh " k€K, €5

Thus we have that SX cs(k).

Thus there is a 1l-1 correspondence between the elements of
(V) which belong to S(xd) and the elements of SX which belong to
S(xd) and since in this way we get at most one-half the elements of
S, it follows that

|s(xa)| £ |sy| holas.

Moreover, we have just shown that S(k)= Sye It not suffices

to exhibit an element of S(k) which does not belong to S
P

X.
We claim that a~ is such an element. apés holds by lemma 1.1,
since 1€¢C .
o
V <M = MF0.
Thus since k €K, J K, holds, we have k = a
< -A& B-T < B-M<B-1.

Thus we have \ >1 and a Pk éKYE-.S.

A T
SP btp ¢ wWhere
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Thus we have aPéS(k) - Sx.

This completes the proof that Is(k)’ >‘S(Xd)’ holds, under

the hypothesis x ¢ P X ( where V<M,

V)
Case (ii):
We now suppose x &P (V') where /> M holds, hence d*_c .

The contribution to ls(xd), now comes from

B
2[?_ PreA) S?.]Z”w) ¥ B, 2 z+% (A ]

+ 2Py(yy Cp &1 + 2 Z(P(A)c)(z*(/\))
MEALY

Now precisely as in case (i) we conclude that the contribu-

tion from the 1lst, 2nd and 4th terms is

B-1
£ 2_-lpz(x)l Icol
A =M
Now only elements of the form xc, may be multiplied by an
element of C* to yield an xd.
Thus the contribution from term 3 is at most 2 ] Co‘ = 20
B-1
Thus we have 'S(xd)' < ,\%‘PZ(X ) l g + 2Q.

Again as in case 1 we have P X(A ) C < s(k) for X =Maeeer B

Thus we have .S(k)‘ i_' (A )”C ', and

s - lS(xd)' - 2\ ot & )\q.’z lpz( Mlq o

a g[§(p“) @(pg-’\) “ g A @(pﬁ"\)],, G(»=)q - 29
=<

i

i}

Q Aei (“{ Yp-1) - pB -\]+ q [p‘<-l(p-l) -2]

2 q = @(pﬁ-'\)£p8- pB"\] + q[p‘<-1(p—l) -2 >0
A
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since the 1lst term is = O and the second term is = O since
L>1 =>p t> p =3,
This completes the proof that k&S. We conclude that for
A= Myoeey p-Le

Bgc Ay~ Fraqgl, + E0LA) 0

Lemma 2.3

Let A £ P .

M -1 B-1
Let 8 = = z**(A P, 4 \C _+2%* -1 .,
st = = mA) ¢ (B Bt )| faeafo 0

Let K

La > <bpM >c,.

Then Z**(A\) = @ for A: O,...,ﬁ-l.

Proof:
We have that K-1 <SS and that a€K holds. SX = IS(.
. e 2 : 2 2 .
Since the coefficient of a 1n[i!] + ZS_Y _S_Z +[i§‘) is

clearly zero, the contribution to 'S(a)l comes solely from

Sa+25 S, + S »
[8g] + 28 |8y + 5y

Now since K is a subgroup of H, for k€K we may conclude from

kh = a that h = k'laex.

Thus the total contribution to ls(a)| comes fromf&}_jz.

It is easily seen that(l(_—__{)z = (|x] -2) rgi]+ (Ix|-1) - 1

Thus since |S(a)l= |s(k){ for k &k-1 by theorem 6, it follows
that there can be no contribution to any k € K-1 from any

[z**(/\)]?“.

Now let zd€2z**(\), (z ¢P, d€C) where 0 £ AL B -1.

l_p ﬂ -/‘ "l
Then z de¢z**( A) holds. Thus we have

o P-A-L
(1P &)™l ¢ z**(A).
8 -A-1 B-A -1

Thus in (Z"‘"‘(* )]2, (z+7P a)tza = 2P occurs with



- 37 =
non-ze effici ¥ is i %
ZEero co icient It is in PZ(ﬁ -1)

€ K holds since M#p

Z(B -1) =
Since p % 2 we have for zd €Z**(p -1), (z€P,d €C) that
2 - -2 -1 -1 5
2°d €P, (& 13 - e
Zi§~f) holds, z ~(d) "zd = z ePZ(Q_i,) We conclude that
z** (g -1) =¢ as well.
Now S(o) £# O since £ 8> = H requires that S have an ele-

ment whose b exponent is not divisible by p.

8-1
By what we have just shown, we have § = AZ P C, + é-_l]co

+ C* unless A = 3.
Thus there remain only two possibilities:

B -1
(1) M= ,8= 2 z**(A)+ AC_-1+C*
A =0

~~
}J
}J
L —
"
(&
--»
146
1
Nw
uv
~
Do
N
Q
o
+
e
a
{
I+
+
O
*

#3

In this section we assume throughout that A = f; » We will
show that this leads to a contradiction.
Lemma 3,1

Let hés® where i > 2. Then [s(h) £2.

Proof:

S1 must contain some element x of order divisible by p

lS(x), must hold. § = SX + SY + SZ

since & ST > = H. Then |s(h)]

s] [s + '] +2sxsz+zsysz+[sz]2

[}

Clearly x cannot occur in 28 [’SZ] since such elements

Y

are products of elements with a exponent divisible by p.

Now S -+S [A = li]C
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In [ACO] the only elements of H, which occur belong to S.

X
Hence the only contribution to the coefficient of x (which

does not belong to §) is from 2 Sy [JSZ - Co_]'

Suppose Sy 8, 6SZ - Co such that s "lxes, s 'lxes. Since

1
Sy saé SZ and erx it follows that we have s

2

s CAc .

-1
Xy 8, x <

1

1l

Thus we have (sl- x)-l

-1

(s2 x) =

-1
152 é_ACoa

In}] AC_ =~ l]z the coefficient of s.s - is 'AC '- 2 which
0 - 172 o

s a—

is the coefficient of a in[g]z.

-1 :
Thus s, # 5, == |S(sls2 ) I > ‘S(a)l which cannot occur.

Thus there is at most one sle SZ - Co satisfying sl-lx S

and if there exists such an sl we have

sl =2 = |sml.
Thus we have either 'S(h)‘ = 0 or ‘s(h)l = 2 and lemma 3.l is
proved.,

It now follows that |s(n)] > 2 =y hes if h # 1.

Lemma 3.2

Let 0 € A < EA
(
Let S(A) = Z ‘*(/\) d}‘ where Z“‘" (A)EP 2(\) for

j=lyeeeyv(A ). Then for all 1 < i,j €v(AN), we have that

*x - 7xx i i f .
Z;j (N) z} (A) is a single elementary trace o PZ(/\)

Proof:
A A
Let a*b® d; , ab? d;és.
2 : - x=y . N XN -1
Then [S§ ! )] contributes to the coefficient of a dl(dj ) .
Unless x = Y, dl = dg\ we cannot have d (d )‘160

since 'S(ax-yci)' = qp°<-2 = |S(a)‘ ,S(a -yc )f\AC ' for



w B
ciéco, ax-yci # 1. Thus since 1eco holds it is clear ‘that

ZS"‘( A) cannot have two distinct elementary traces. Suppose we have

ax—y(d? )(djx )-l( st for some i22.

By lemma 1.1 we have that adlA (djk)_le s must hold.

We have from lemma 3.1 that ‘S(adlx (djx)_% = 0 or 2.
A P

‘S(adl (&) y

'S(ad’i (dg‘)'])‘
) WP W
> @)

X=-y A, A =1
a dl (dj )

i

0O contradicts Is(ax-yd; (d; )-l)‘ > 0.

2 can occur only if C* has an element of

§l

c d . In this case it follows that in [s ]2
o (8)

occurs with coefficient 2 as well. Thus we get

’S(ax_yd; (d;‘ )-]” = 2 = ‘S(adi (dg\ )'1“ « This contradiction

A

is avoided only if ax-yd? (dé\ )-lé g% = {l}, thus a~ = a’

-

This completes the proof of lemma 3.2.
Since S(o) { @ (because the elements of S generate H) we

‘ ’ (o}
- * i - ==
have that S( ) —\Zl (O) dl +ee+d where d; = di and V(O) = Ve

Lemma 3.3

Let Zi* (0) = tr- (Z)’ D = {dl’o'o,dv_}’ hence S(O) = tI‘.(Z)g.

Then S 2 {z>D -1
Proof:

For A DO and any of §(pB) choices of s we have

A A
a =th

5 -8+tp
i 2 k

B g -s+tp

didk with z dkes(o)

since S(o) is rational.

For A= O there are p B-l(p—Z) choices for s (excluding

s =t (p) ).
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Thus for B > 1 we have ’S(z d. d )I = p (p~2)2 p>2
i 'k
for any t with (t,p) = 1, any A = O,...,ﬁ and any i,k between 1
and v.

A
tp
Thus 2z di dkés unless ,3_ 1. If B =1 we have that
(p)

192}
it

AC -1 + D-1 + tr. (z) D since § "'=— ¥-1 (mod p) must hold.

2 : " ; t
Now from[‘s(lo)] we still get a contribution to 'S(z didk)l
of at least p F}-':"(13—2) = 1.
In addition if di #Z 1 we get a further contribution of at

t
least 2 from 2 S(o) s( y? namely from 2 (z dk)di.

1

Thus we have 'S(ztdidk), >2 unless di = 1.

This means ztdidkés unless di = 1 in which case we have ob-
R t t
viously z didk = Z‘dkES.

We also have ztpd.d
ik

= didkés in the case B: 1 unless
Now with /\ =0, t =1, we get Zdidk €S for any i,k between
1l and v.

Thus didkéb for any d;,d, €D.

We know since S( ) is rational that D is inverse closed.

[¢]

Thus D is a subgroup of C.
Now as we let t and A vary through all possible values, we
t}pA _ gl _
get z d;d, €8S, unless A=P, d; = 4. thus s 2z > D - 1.
We now calculate |S(Z),. Since D is a subgroup we have 1 €D, hence

zES.

B B
2
(s} - [S(o) & S(x))] i ‘[S(o)] ¢ Zs(o)[,\iﬂ S(x)]
B

# [AZ:I S(/\)]E'
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Elements of the 3rd term have b exponent divisible by p and
Zés(o) does not.
Thus the contribution to lS(z), comes only from the lst two
terms.

Since 8 has only elements of {z > D, and we have

(o)
¥y "z &<z >D only for y €<z > D, the contribution to I S(z)'comes
only from [<z> D - _]32 and this contribution is clearly

'D' pp - 2 since z is of order pB (since it is in P

z(o))'
But Is(a)l = qp"(-2 = 'Co ' p°< -2.

< =
Js(a)) = |s(2)] —= | D|pP-2 = lc | » -2. mhus |D| = lc_| p %~ B,
But K DB =» ol D] -
This is impossible since D is a subgroup of C which has order
prime to p. Thus 4 = [3 cannot occur, and we conclude that MM = 0,

P

B-1

= ZP(/\)CO+ACO—}_+Q"‘
A:O

itn

#4

To complete the proof of theorem A we need now only show that

c*=¢andco=c.

Lemma 4,1

C*:ﬁ.
Proof:
since (|c ) ) =1, C (» _¢
PP e T e
Thus g,(p) has no element of Co'

. o g
1 occurs in S, hence not in S.

If 1 # ¢*&C* held, (c"‘)p would occur with coefficient 1 in

§.(p).

This would contradict theorem 4.
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We therefore conclude that C* = g and that 8§ = PC - l where

2o

o
i < C (since A = P(P)

Now €8> = H since G is primitive, but it is evident that
L<s > = PC_. Thus we have that PC_ = FC = Hand S = H - 1.
Sinceso =1y 8 =Sl = H - landslﬂs =@F for2<i<r, it

follows that r 2 2 cannot occur. Thus we conclude that r = 1, and

with the help of theorem B, we have a complete proof of theorem A.
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