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ABSTRACT

The one-dimensional, time-dependent equations describing
laminar deflagration are solved by an integral method, under the as-
surnption of a physical model for the flame structure and behavior,
with restrictions on the type of deviation {rom steady-state behavior.
By virtue of application of a hot-boundary approximation of the von
¥arman type, certain sensitive integrals are expressed in a form inde-
pendent of the temperature profile assumed. Two cases are considered:
the thermal theory' neglecting diffusion, and the case of unity Lewis
number {tempgrai:uref concentration similarity). Only first order re-
actions are considered. Arguments s;zppcrt!ng the generality of the
resulto are included, along with a discussion of accuracy, and sorne
comparison with experimental work. Craphical display of the results
anticipates the utility of the theory for correlating and cross-checking
experimental data.

It is concluded that the relaxation time is closely related to the
time required for the gas undergoing rapid chemical reaction to pass

through the flame.
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TERMINQLOGY

P density {gm/ecc)
velocity (em/sec)

temperature (OK)

3

thermal conductivity (c:al/t:.mZ - sec - OK)

k

Cp specific heat capacity {cal/gm « °K)
¥ fuel mass fraction (dimensionless)

n normalized fuel mass fraction (V/ Yo)

W{T) reaction rate (sec'l)

fuel heating value {cal/gm)

He
D diffusion coefficient (cmzlsec)

dimensionless temperature (T/Tf)
Lop characteristic length associated with T
L, characteristic length associated with n {or V)
t time {sec)
% distance {cm)
v dummy variable
A average value of A

Subscripts

o original, unburat gas -- upstream conditions

£ final, burnt gas -- downstream conditions



I. INTRODUCTION

Consider a steady, laminar deflagration standing in a stream of
premixed, combustible gas. The gae approaches the flame from the
ieft at temperature T -~ density Py * and velocity Uo s with a fuel
masgs fraction T " {see fig. 1.1). The gas is heated on approaching the
zone of chemical reactions, begins to burn, and finally passes out the
hot end of the flame with temperature Tf » density Pg » and velocity
?jf . Assume all the fuel is consumed in the reaction. For simplicity,
further assume that the reaction is first order‘ so that the rate of con-
sumption of the fuel is proportional to the fuel concentration -~ the
‘constant” of proporiionality is the temperature-~dependent reaction
rate W(T). The flow is along the = axis, positively directed, and can
be coneidered wniform over any y-z plane. Assume that everywhere
the gas velocity is very much smaller than the local speed of sound, so
the change in pressure is everywhere negligible, and the kinetic energy
of the gas is small compared t6 thermal enthalpy. The perfect gas law
rnay be used in the form pT = constant, assuming small change in mean
molecular weight due to reaction.

The analyseis of the situation described has been effected in vari-

ous approximate forms(l’ Z).

Special cases frequently treated are that
in which the diffusion of chemical species is neglected (the so-called
tthermal theory' ), (3) and that in which there is a strict relationship be-
tween temperature and chemical composition by virtue of mathermatical
analogy (the case of unity Lewis number). (4) The results of such cal-

culations are in adequate agreement with experiment.

Now consider the problem of this same flame, perturbed slightly
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from the steady-state structure in some manner. It is desired to com-
pute the “relaxation time' -- i.e., the characteristic time it takes for
the flame to restore itself to steady state behavior. This problem has
not been so successfully attacked. The problem as stated is of limited
practical importa.nce*. but the determination of the parametric depend-
ence of the relaxation time and an order-of-magnitude estimate for it
would be of considerable interest to designers and analysts of com~
bustion-operated machines. To this end, the following effort is di=~
rected.

Writing the governing equations for the simplified flame model
outlined above reveals immediately the difficulty of obtaining an "exact"
solution:

Conservation of mass

%+ ps oU) = 0 (1. 1)

Conservation of energy

= (pC,T) + ] (pUC,T) = o (k 3T+ pnT, (T~ T IW(T) (1.2)

Conservation of fuel species

a) Diffusion~-free (thermal theory)

9 a Ty g

5t () + 33 (pUR) = - pui(T) (1.3)
b) Diffusion included

& 2] 8 én

B (pn) + 5 (pUn) = 5= (p D5z ) ~ pnW(T) (1. 4)

In (1. 2) use has been made of the gross thermodynamic relationship:

t ig of importance in establishing the stability of the deflagration,
but theoreticians as yet have not agreed among themselves on the ap-
proach or interpretation of such calculations. The mathematical sub-
tleties are numerous, and many arguments have existed. See refer-
ences 5 to 15,
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Y H = 'cp (T, - To) ; {1. 5)

and the fuel {raction has been normalized everywhere by the initial fuel
fraction Yo .

The momentum equation is conspicuous by its absence from the
above system. As mentioned above, this is a result of the low Mach
number condition prevalent in laminar deflagration waves. To be ex-
plicit, the pressure change across a one-dimensional steady velocity
change in frictionless flow is of the form AP/P1 = ny(AU/U}_) » 8o the
constant of proportionality between dimensionless pressure change and
dimensionless velocity change is -»,'Mlz » where y is the ratio of spe-
cific heats and M, is the initial Mach number. For a plane deflagra-
tion, a high speed would be ~ 3.0 meters/sec, and assuming an initial
temperature of 60{3. the speed of sound iz ~ 300 meters/sec, s0

12 ~ 10"%. Thus for all intents and purposes, the pressure may be

M
assumed constant, and the equation of state simplified to pT = constant.
This fundamental observation removes completely all dynamical effects
from the problem, an important point in the assignment of coordinates
later.

An "exact" solution to the problem, then, would consist of the
solution of the three eguations (1. 1), (1. 2}, and (1. 4), with an initial
distribution p(x), U(x), T(x), and n(x) at time zero. These distribg—
tions will vary with the passage of time and, if they reach stable condi-
tions, eventually describe the steady-state flame. Although such a

description is desirable and, in theory possible, the practical difficulty

of obtaining such a general solution is prohibitive.
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In many cases a set of equations such as those above is rendered
tractable by the approximate method of perturbation analysis. (113} In
such an analysis, each dependent variable is described by the sum of
two terms, the steady-state function of x plus a {(very small) non-steady
"perturbation quantity. ! The substitution of such formas into the set of
equations and subsequent dismissal of products of the emall gquantities
results in a system of linear, coupled, partial differential equations
with spatially-dependent coefficients. The reader can easily verify that
this procedure applied to the present problem results in a very compli-
cated system of equations, which does not permit simple solutions -=-
in fact, there is little other than linearity to recommend this approach
to the present problem. The fundamental assumption of perturbation
analysis is that conditions are not far removed from steady state, so
the ratio of the periurbation correction term to the steady state term is
much less than unity. In the present problem, the controlling factor
which limits the size of the perturbations permitted is the reaction rate
W(T). DBecause of its extreme sensitivity to temperature, temperature
perturbations must be severely restricted, a fact apparently overlooked
by some investigators in this area. (8,9)

Another method of solution hae enjoyed certain popularity.
Spalding, (15 following the example of Marble and Adamson, AL em-
ployed an integral technique to solve several interesting initial~value
problems in flame propagation. His method and the techniques of appli-
cation are remarkably similar to the calculations displayed later here,
but his work was not consulted until well afiter the effort was essentially
complete. His remarks concerning the validity and accuracy of the

technique are encouraging but felt to be slightly optimistic.
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Apparently some such method is required if tractable analytical

procedure is to be effected. The method employed in this work consists
basically of three steps:

1) The assumption of a simplified physical model for the flare
in non-steady behavior, with simplifying restrictions placed
on the permitted perturbations;

2) The application of an integral formulation to this simple,
restricted model;

3) The employment of an approximation developed for steady-
state analysis which relates temperature and fuel concentra-

tion behavior at the hot edge of the flame.

With the aid of these three steps, a generalized analysis of the
transient behavior of a laminar flame driven by a first-order reaction is
eifected for the two special cases mentioned above -- the thermal theory,
and the case of unity Lewis number. No rigorous estimate of error is
generated, and litile justification of the physical model is attempted. (14)
The procedure is remote from exactness and limited in scope, but
physical insight coupled with the (generally accepted but seldom proven)
notion that the relaxation time is only weakly dependent on the nature of
the restirictions on and the form of the perturbation provide a feeling of
credibility for the attack. Each of the steps listed above will be dis-

cussed under separate headings below.
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il. A SIMFLIFIED MODEL OF THE NONSTEADY FLAME

First assume that an adequate simplified model of the flame is
to be given by a finite length in which all processes occur. (%, 14, 16} In
other words, let us attach a coordinate system to the hot end of the
flame. For all positive x, all observables are constant, and for all
% £ - LT all cbservables are again constant. Physically this cannot

be a bad approximation, for flames are generally observed to be of mil-

(18,19, 20) Mathematically, it is permis-

limeter measurable thickness.
sible to attach the coordinate system to the (possibly) accelerating hot
end of the flame because all inertial effects have been disregarded in
formulating the problem. This assumption may seem trivial, but is of
fundamental importance to the application of the integral method. Em-
mons, et al. sea) have demonstrated by numerical calculation the in-
sensitivity of flame speed to the initial temperature derivative assumed,
thus fortifying the physical-reasoning conclusion that the mathematically
troublesome cold boundary has litile to do with determining the observ-
able characteristics of the steady flame. This conclusion is carried
over into the transient calculation here, and T is assumedtogoto T -
with zero slope. This might be viewed as a finite-distance ""heat front"
approximation to the conduction-heating portion of the flame upstream.
The same applies as a ''diffusion front' approximation in the unity
ILewis number case.

The arbitrary forcing of the hot end temperature profile to a
limit with zero slope must be treated much more gingerly. Von Kdrmén
early recognized and often emphasized the dominant importance of the

{1-3)

hot end of the flame zone. Thus although an arbitrary, =zero end



-8-

slope approximate profile will be used later to evaluate certain inte«
grals, a special treatment of the reaction-rate integral will involve the
Ka{rmé.n—Millan(S) steady-state hot boundary expansion. Thus it is felt
that the relevant and important physical processes are not being mis-
treated by this approximation -~ rather it is made to strengthen as well
as expedite the calculations.

The second major step in constructing a simple model is the
agsumption that initial and final fluid properties are unaltered under
perturbation. That ia, Yot P and T, a8 well as p £ and Tf do
not change durix;.g the relaxation process. Thus we permit velocity per=
turbation and/or length-scale perturbation, but not density, temperature
or fuel mixture perturbation. These restricticns are defended on the
basis that any perturbation calculation assumes some restrictive form

of variation, (7, 16)

which may not even be physically realizable -- the
same physical~intuitive ratiomalization which justifies that procedure
justifies the restrictions placed on this calculation. Furthermore, the
variations admitted here are certainly realizable. Again the restric-
tions are fell not to impair any fundamental mechanism of relaxation,
but are imposed for the sake of convenience.

The third and final step in the construciion of the flame model is
the most tenuous and least susceptible to justification. It is asgurned at
this point that T is a function of x/ LT(t} enly, and n is a function of
- xf Ln(t) only. As a means of rationalizing this "similarity assumption’)
consider the following (typical) argument. If we employ steps one and

two in this model~constiruction and integrate the continuity equation

from - LT(t) te 0, we find:



Q i) 0 aL
9L g + f 9 (pU)dx = & dx | - z
t 1 B P dt p Po ~F
-LT "er "'.LST

Weriting p for average density, we have:

_ AL, i dL.,
P—gr * Ly " Pomr t Pl Polp = 0 ok

an elaborate expression of the conservation of mass. Note that the
"similarity’’ assumption has not yet been imposed, for under that as-
sumption p becomes a constant in time. Now let us recall the defini-
tion of Lip o It is defined as that distance which lies between the points
where initial and final gas conditions are reached -- and herein we re-
quire that such conditions are met with zero slope. Therefore, the only
mechanism by which p can change is through distortion of the profile
p{x) in time. Since we permit no changes in initial and final conditions,
the only distortions which appear physically realizable are depression of
the p(x} profile near x = ~ LT ,» elevation of the profile near x = 0,
and steepening or lessening the slope near the middle of the zone. In
the first case, Lo ia forced to increase, encompassing more high-
density cold gas; in the second, Lo must be increased at the other
end, taking in more low density hot gas. DBoth effects tend to stabilize
P » obvicusly. In the other cases, the physical processes are easily
duplicated by expanding or contracting the length scale, without disturb-
ing the end conditions -- {. e., by representing p as p(x/LT(t)) y

The above discussion may or may not convince the reader of the
soundness of the assumption of ''similarity'’ for this restricted problem.

The author feels that it is not an inherently unsound approximation, as
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it leaves the basic physical processes free to operate, thus forcing L'I‘
to describe, as best it can, what is occurring. But with or without jus-
tification, the approximation ig inserted at this point into the simplified
transient flame model. The dividend in ease of calculation is generous,
for all average quantities are then invariant.

Under the similarity assumption, p = p{x/L..), equation (2. 2}

becomes simply:
B dL.,
P = ot =g ¥ pglp~ U, = U
The physical interpretation of this and other integrals will be discuased

more fully ia the following section.



iIl. DEVELOPMENT OF INTEGRAL RELATIONS

Zach of the conservation equadons will be integrated through the
flame, using the restrictions of the simplified model outlined above. A

useful integral relationship is given first:

i O
f 5%— (F(x/a.(t)))dx 2 %% fF(y)dy - FP{-1}}. (3. 1)
-a -1

The conservation of mass équation (2. 2 above) is then:

4
dl...,
e fpw)dv <Pyt *+PeUp - p U = 0. (3. 2)
~1

Fhysically, the first term represents the rate of increase of mass con-
fined in the flame thickness; the second term is the rate at which mass
is ingested by virtue of the expansion of the flame thickness; the last
two terms are the convective efflux and influx contributions to the stored
mass.

The equation for the conservation of energy is simplified if Cp
is replaced everywhere by EP » and use is made of the perfect gas re-

lation pT = constant. Then equation (1.2) becomes:
ay T
T pTva-— = —5-—-—(1( x)+pnﬁp (Tg=T )W (T). (3. 3)

Cn integration through the flame there results:

0
Ep p T [Uf-UO] = 'CP(T{.TO) j npW(T) dx (3. 4)

n-LT

which is a statement to the effect that the efflux of energy {first term,
lhs) is greater than the influx of energy (second term, lhs) by the

amount of heat liberated by chemical reaction per unit time within the
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flame. Conduction of heat into or out of the zone is zero hecause -g—;—f

has been assumed zero at the ends of the zone. The fact that there ap-~
pear no storage-of-energy terms is not due to the restrictions oﬁ the
problem discussed in Chapter two , but is a direct consequence of the
perfect gas law/constant pressure/constant (mean) specific heat as«
sumptions. If a rate-of-change of stored energy term were added, of
the form:

0
Hd; J p'c“;'pde = sptorage rate (3. 5)
-1

o

T

it would be exactly balanced by the increased influx rate due to the
flame zone rate of expansion:
dLT
Po 'C'p TO o i expansion=-influx term . {3.6)
Thus the same mechanism which removes the time derivative from the
differential form of the energy equation removes the length dependence
from the integrated energy equation -~ i, e., the assumed constancy of
T and C_.
P p
The integration of the diffusion-iree species conservation equa-~
tion {1. 3) brings to light the possibility that n could have a different
characteristic length from T . Thus it is assumed that n=n (.Eit-&-)- o
n

with Ln < Ligp s Integrating (1. 3) gives, then:

0 . o, 0
f s (pn) + f 5% (pUn)x = - J’ pnW (T )dx (3.7)
L

T T Lo



0 0
d 4L
T [ pndx] ~Ps " * poUo = - j pn'W(T)dx . (3.8)
~L'l‘ .'LT

Expanding the first integral gives:
0 O 0

Jpndxs jpdx- Jr {len)pdx . (3.9)

The last integral can be easily approximated if Lo is much smaller

than 1L, for in that case

T L]
0 0

J’ {l-n)pdx > Ps f {l-n) dx . {3. 10)
=1

-1
n
It will be shown later that in the diffusion-free case, Ln is ordinarily

about (0. 1){L thus making the lower bound estimate of (3. 10) a fairly

T)'
accurate approximation. For the moment, however, (3. 10) must be re-
garded as an approximation of unassessed validity. Using the lower

bound of {3. 10), equation (3. 8) becomes

0 dL., g dL_
Jp(v)dv “Po )| 3E " P I(l-ntv))dv e~ * P ™
1 -1

0

= f pnW{T)dx , (3.11)
© S,
the physical interpretation of which should be obvious.
In order to assess, in some degree, the influence of diffusion
on the properties of the transient flame, equation (1. 4) could be sub-

gtituted for {1.3). But, of course, if (1. 4) is integrated through the



flame, the result should be identical to what was already obtained using
{1.3) because I enters multiplied by 9n/8x, vanishing at both limits.
Therefore, a special case is chosen which permits an immediate simi-
larity identification to be made. Writing the energy equation (1. 2) in

terms of the variable G = (Tf-'I')/(Tf-T°) gives

B%— {(pG) +§£ (pUG) = -é-m “gt‘:‘:' (k g-g‘-) - punW(T) (3.12)
P

which is remarkably similar to the species equation (1. £):
) ] 9 9 "
5z (pn) + 3z (pUn) = 5= (pD 33) - pn W(T) . (3. 13)

Now if pD = k/ ﬁp , n and G eatisfy the same equation. It is true
that for a one-component gas, simple kinetic theory predicts the di-

meneionless group known as the "Lewis number” to be constant:

-

Le = L = constant of Of1) . {3. 14)
p_CP i

5o it is not a highly reasonable assumption to equate the Lewis number
to unity, thus making G and n satiafy the same equation. If the fur-
ther restriction is imposed that

Gix,t=0) = n(x,t=0), (3. 15)
then G and n are equal for all time. This further restriction is
easily admitted to the simplified model and the other assumptions un=-
derlying the calculations up to this point. So without further elabora-
tion, these two resirictions will be placed on the species equation with
diffusion [(3. 14) and {3. 15)] . Therefore, in this case, the species
conservation equation contributes the basic identity:

n = (Tf-T)/(Ti-TO) ’ (3. 16)



which implies, of course, that

L = L., . 3. 17)
¢ le =1 4

At this point, "taking stock' of the set of equations generated
reveals that they are insufficient in number to specify the dependent
variables, L Lo Uo. and Uf . Some further approximation might
be made to supplement these equations, or the differential equations
might be invoked o give a relationship between variables at some point
in the range of integration. (For example, one might write the continu-
ity of mass equation in the form

d

%%*ga; (pU) = --J:T’% —;;?-a-ﬁ%%g +1-{-r-m’i‘7t;r—,(pm= g,

then, assuming some profiles for p and U as functions of x/LT .
evaluate the expression at some value of x/LT and impose this as a
supplementary equation. ) But to do so would be to ignore one of the
powerful tools available to the integral method ~- the imposgition of in-
tegral conditions on the solution. Use of the integral method allows
complete liberty in constructing "'moments'' of the equations employed.

To illustrate the principle involved, consider the following sim-
ple example:

[Ny = sz y) (3. 18)
where r‘(y) is some non-linear operation on y . Now suppose that,
as in the restricted flame problem above, variations of y occur only
over a limited region a L x £ b, with well-defined boundary condi-

 tions. If some approximate expression y(x) is assumed, with some
loose parameters to adjust for some degree of "fit", then the integral

method permits the imposition of a number of integral conditions on
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this agssumed form, untll the number of equations generated is sufficient

to specify the parameters. For instance,

y{b) y(b)
My dy = j i, y)dy . (3. 19)

vi{a} y{a}

But as well one can impose "moments” of the form:

y{b} y{b)
f My vhay = f £z, y)y' dy (3. 20)
y{a) yia)

b b
j [Tyy s «Nax = jf(x.y) s dx (3. 21)
a2 a

or of any other form felt suitable to the problem. There is little de-
gree of assurance that in general the "solution’ thus obtained is of a
desired accuracy, but there is the strict assurance that the approximate
result satisfies at least as many integral relations as have been im-
posed -~ velations which the exact solution also would have to satisfy.
Intuitively one feels that the procedure here is somewhat akin to the
steps taken in performing a Fourier series expansion of a defined func-
tion, and that the agreement of the approximate with the exact expres-
gion is better on the average with this type of condition imposed than
would be expected if a "'point expansion" were emploved.

In any event, the opportunity to impose an integral rather than a
point condition on the solution will not be ignored here. It would be
physically pleasing to be able to generate an equation which has some
undersitandable physical interpretation. This could be done, for ex-

ample, by dividing the energy equation through by T -- on integration
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one would obtain & gross entropy-~-continuity relationship. But it is also
important to make the most of the existing knowledge about the flame
structure and the processes occurring in the flame, Specifically, it is
felt that it is more important to emphasize the dominant hot end of the
flame by weighting integrals towards that end than to be able to physi~
cally interpret the resulting expression. (To weight the cold end of the
flame, division by T would suffice; to weight the "middle" of the flame,
multiplication by 9T/9x would do; to weight the hot end of the flame,
multiplication by T is implicated. ) So for this reason, and because
the results are easily managed, the energy equation will be multiplied
by the temperature and integrated through the flame. The expression

' so derived will be a genuine requirement of the solution in an "average"
sense, and will be a differential equation relating U o Uf » and Lops
vaguely resembling an entropy equation. Writing the energy equatioa in

the form
o 8y _ 9 aT i
P I‘ﬁp % T B (k ﬁ) + pn.c‘p (TI'TO) W{T) , {3. 22)

multiply both sides by T and integrate.

0 0 0
f p“c'pT"‘ e dx= T o (k 35 )ax + PTT,(T-T,) f AW (T)dx
"'LéT "Lrlq "LT

(3. 23)
The mathematical manipulations will require an expression for

U{x/L..), which can be obtained from the continuity equation in the

)
form of (3.18):

d{pU) _ _x T d
Hix;LTi - 'I'.'._,I': dt mx?LTi : (3. 24)
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Integrating:
x/L x/L
aL.. i dL x/LT T
- U = ; 4 dp S T . d
P Po"o g5 Yay &Y T Ye | - pay
"'1 - —1
(3. 25)
— dLT . x/LT
pU = P.U, +~q "L—T' p+ Py ™ j ply)dy (3. 26)
-1
Integrate (3. 23) by parts and obtain:
1] 0
C_T U’T‘O - v2lax} = - k(BT)de+
Po e ox =
T ‘LT —LT
0
& pﬁpT('Zz’f—To) j aW(T)dx (3. 27)
0 0 2
; . . dT{y) .. 1 dT(y)
w - - 4 - ]
-1 -1
0 -
+ pTﬁp(Tf-To) J aW(T)dx (3. 28)
~Lo
The task at hand is to integrate the term
0
dT
= dy . (3.2
1 j A (3. 29)

Using (3. 26),
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(3. 30}

0
at(y) )y Po 'I‘(
I = U+ 7 -
f T 5 r* ptﬂ iy P"’dﬂ Ay
Therefore
) ‘ T
de di., 0 0 de
1*%%] < tE TY'_I - fT(y)dwpof 8 -
T, % | T
o

l aT

Or
Uo 2 L‘ TE'T(ZJ
where
0 Yy
- T _drf -
J = -T;F; . o (j- p(s)dS)dy =
- -1
: 4 y=0 0
“E‘ET"' {:’?TZI pls)s | - f 3T7p dy
il -1 y=-1 ~-1

{3.31)

(3.33)

(3. 34)



g ]
1 ol . _
J*'zp—:f: ﬁ'fjp(?)df-<_[TdY>Poio =
-1 -1
0 (¥
2 oy
= 3T f m; - J/T(y)dy . {3.35)
K vl

Mence for I is obtalned

z 0 ~2 0
T(y)dvmq-f—f ’I%iy (3. 36)
]

b3 (»] 1

2 dLT TZ-Q-T
ol tra ) T T

-1

Using this expression in (3. 28) gives

. i Talen? o .2
T pT ) U,T,oU T g (TooTT) o gk | e = 3| [ (74 =
“pf = £°f "o o ET‘O £f "o df Z’I‘O * - YT

0 3 0
1 aTt - ) .
pepe fk(-a?) dy +ﬁppT(1£—T0)Jn“i(T)6¢y (3. 37)
i o

L
i

which simplifics to the form:

thete | ang (ke P 2Pgnd
YT~ VYoi 2T ("2 @ )T, T ] T Y T
1
1 K ° ar? ’
s -t 2 [ x(&Eyay+(z,-T) | nw(Tdy (3.38)
1 g dy £ "o
T ToreTy -1y =,

T
This equaiion, together with the three others derived above, specifies

Loplt) L (t), Uo(t) , and Uf(t) » once the profile T(x/LT(t)) is



known. It must be obvious at this point, however, that no attempt will
be made to insert a cumbersome expression for T into the integrands
above -~ instead, the profile for T(x) will be approximated by some
""reasonable looking' functions and the coefficients obtained for the dif-
ferential equations in that manner. Defore this is done, however, it will
be necessary to make a more adequate approximation to the highfty-
sensitive rate integral
0
I = f n T W(T) d (/L) r=-1,0 (3.39)
-1
which appears so often. It would not be legitimate to ignore the fact
that singular nature might be introduced into the steady-etate results by
virtue of an arbitrary profile inserted into (3. 39). Just for tidy house-~
keeping, however, the set of equations to be solved in the two cases
are grouped together and put into a standard form to close this chapter.
The dimensionless temperature ratio T/ T,= 8 will be used.

Conservation of mass

0

[+ s . ’

(s} - ;
f-g-dy-l Lp+8, Up-U =0 (3. 40)
A

Conservation of energy

0
Ug-U, = (1-8) f %W(T)‘dx (3. 41)

Conservation of fuel species
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(a2} Thermal Theory

04 0 0
O . . n ..
JA -g—dy-l LT-GO J {(1-n)dy Ln-Uo-.GO J- -é-’ﬁc(T)dx
-1 -1 oL
X (3. 42)
{(b) Unity Lewis Number
L= L , b= 159 (3. 43)
L n I - go
Temperature/Energy moment equation
1+0 g 2 1+02'
e 1+e d l‘ - U + U “
230 28 “T £ 250 o
-1
ka;l 0 . 0
- - z\(e)(_d_) dy = - {1-8) f n W(T) dx (3. 44)
T.p 4 ®
p'f =1 -L .

T
In the following section, the von Kdrmdn type hot-boundary ap-
proximation is derived for the two cases, and the rate integrals are

expressed in more manageable form.



1V. THE HOT BCUNDARY APPROXIMATIONS

A phy_sical look at the processes occurring in the steady-state
laminar flame will be enlightening in the development of the hot bound-
ary approximation. As memioned above, von Kdrmdn early recognized
the significance of the hot boundary in determining the flame speed, so
the work of von Kdrmdn and Milldn will be duplicated to some extent
here to illustrate the reasoning which underlies the approximation.
The steady-state equations of importance are written for the thermal
itheory case:

Continuity of mass

pU = m = constant (4. 1)

Conservation of energy

mﬁp(T-To)hz k % - 'C'p(’l‘f- To)m(n-l) (4. 2)

Conservation of fuel species

mg% = - pnW(T) (4. 3)

It is important to recognize at this point the character of W{T).

This function, the ''reaction rate’, is generally expressed as
W(T) = B T exp («T,/T), (4. 4)

a semi-empirical expression used to correlate experimental data, usu-~
ally with r = $ or 0. The dimensional constant B is a measure of the
frequency of collisions between molecules, and is known as the 'fre-
quency factor’. Ta is the "activation temperature', and in all the
work presented herein it is understood that

T, g Tf » T, > To . {4. 5)
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Thus "i,:’-f("i‘o} is completely negligible and (4. 4) has a pronounced end-
point maximum at T = Tf . By a consideration of this factor alone it is
evident that by far the greatest portion of chemical activity occurs in
the region near the hot boundary of the flame. In fact, many theoreti-
cians have based flame speed theories on a "two-zone' calculation
founded on the physical model that the early, cold-boundary side of the
flame is to be described by a constant-composition gas ( W{T)= 0,
n=1 ) undergoing preliminary heating, while the later, hot-boundary
side of the flame is dominated by chemical heat release balanced by
heat conduction. The matching point of such solutions is to be inter-
preted physically as the point at which the gas is heated to "ignition
temperature’’, afier which it can react, but before which it cannot.

Von Kdrmén reasoned that the “ignition temperature’' then,
being mostly 2 mathernatical artifice, could have little physical signif-
icance and hence the flame speed should be highly insensitive to its as-
sumed value. Ilis calculations verified this. 3) Furthermore, as the
cold-side temperature profile is so completely established, the success
of a theory is generally a monotonic function of how well the hot-side
profile is approximated. This, he reasoned, is not accidental -« the
unique, identifying {and hence controlling) portion of the flame struc-
ture is the chemically-reacting hot boundary zone. The appropriate
calculation is therefore one which concentrates on accurately represent-
ing the structure of the flame as the composition approaches that of the

burnt gas, and the temperature approaches its upper limit.

To effect such a calculation, in light of the above arguments,
divide the expression for the composition derivative by the expression

for the temperature derivative, obtaining:



..

mdn -pnW(T)
KT ° 5 1ot PT(T 1 k)
mp['o“‘f‘ o"'n)}
Defining
= " W = W 8 z
E;p—;ﬁ T (T) = W(T,) w{8) (4.7)
and using the dimensionless temperature notation, this becomes:
dn _ -~ 8nw(8)
Agy * BT 8- (1-8_N(T-a) ° (4. 8)

Equation(4. 8) is singular at 8 =1, n= 0 it appears, unless the nu-
merator vanishes equally as rapidly as the denominator. Fhysically,
however, a singularity cannot be permitted -- bﬁt neither can a zero

" slope of n{8) be permitted if the statement of strong chemical activity
in the boundary zone is meaningful. What is required, then, is regu-
larity of {4. 8) at the boundary point. Expanding n about 8 = 1 gives,
then:

na~ 04 (g-’g)ezl. @ -1)+... . (4. 10)

Inserting this expression into (4. 8) provides:

(g_g)a-l x = 3-37\?-‘-)(1 -eo)“l ) (4.10)

Using (4. 10) in (4. 9) and {4. 9) then in (4. 2) gives rise to

mC

Lm 88 . R a-ej1+n)tn. (4.11)

Cme can see easily that since w(8) has a sharp end-point max-
imum at 8 = 1, the integral of (4. 8) will be nearly independent of the
lower limit -~ i.e., the 'ignition temperature.' The value of A is
given numerically by integrating both sides of (4. 8) with an adequate

approximation for n{8) near the hot boundary. The approximation
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given by (4. 10) is sufficient to give engineering accuracy answers or to
serve as a method of correlating experimental data. It is easily rec-
ognized that A is of the order 1/6 o » hence for later simplicity the
factor (1 + A )-1 in (4. 11) will be taken as unity. * Thus a "zeroth

approximation’ to the ratio of n (3%) is:

-1

. pUT
Moy ni%%) ”{—1;-3(1-90) (4. 12)

for the steady-state case.

At this point another basic etep enters the calculation procedure.
‘Since it is desired that the transient flame solution wed smoothly to the
steady~state condition (since small disturbances from normal steady
conditions were assumed at the outset), and since neither 6 nor n
‘was allowed perturbation in profile anyway, the limit (4. 12) will be
used to approximate the rate integrals in the thermal theory calcula-
tions. Let us see physically to what this corresponds. Writing (4.12)

as
T

its interpretation is clear: heat conduction balances the chefnical heat
release at the hot boundary. In other words, most of the density vari-
ation and fluid acceleration has already been accomplished, rendering
convective terms ineffective in transporting heat generated by the re-

action, go heat conduction alone remains to do the job. This is not an

unappealing picture of the process, and it seems to contain the vital

* {1 4+2 )_1 can be approximated by the term (1 - -I-Qé-—) , where &

is .;(1/8 ), for more accuracy.
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mechanism of flame propagation. Applied to the non-steady problem,
this relation implies that small time fluctuations of density and velocity
are equally ineffective at heat removal, and that time fluctuations of
cherical composition contribute negligibly compared to the steady-
state heat release.

Next the unity Lewis number case must be considered, and an

appropriate hot~end approximation generated. In this case there exists

the identity:

n = 117_339— (4. 14)

o
which is strikingly similar to the previous case. To derive the appro~
priate hot-end approximation -~ in this case for (1-9)/ (gg) » look to

the energy equation:
9 . 9 oT .
;o (pUEpT) ol {k -5-52) + pﬁp(TfuTo)an(T) . (4. 15)

Om the physical basis that 8U/3x should have small significance at the
hot boundary, expand the equation about T = T£ » with the left-hand side

set equal to zero.
0% Tg-T
7 - 2
R “‘z t pgCL (TyT,) T—T W(Ty) + (T=TW'(Tg) + } (4.16)

Ignoring second order terms in (T-Tf) gives

2
o ; =
ke g + pg T, {TFTI Wy 2 0, (4. 17)

ox
the solution to which ig an exponential form
1-6 = A exp (-bx) (4. 18)
with
b o= (W, pfa'p/kf)% . {4. 19)
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Hence the ratio of importance is given by:

: k
(1-9)/i§-§) = 1/b = <—-—--—-fm-»-) P {4. 20)

P fﬁ“p W

Bojies

Consider now the rate integrals of the previous chapter:

0
1, = j 5 W(T)ax ; I, = Jf aW({T)dx . (4. 21)
1 =L

™ fd ey
&

T

In order to evaluate these cnnsistently with the steady-state results of
accepted theory, insert the approximate expressions derived above,
change to variable of integration to 6, and find:

Thermal Theory

' & W(T) keWe ae
i, = W de = ( w{B)K(8) oy (4.22)
1 00, UT (1-0) v, % J L
g “Pe¥p o P t~p 8
] Q
. 1
1:£ ‘v's.-’f 1
I, = 5 fw(e) ¥(8) de (4. 23)
p U C Yo 9
£ f7p "
Unity Lewis Number
t = F W({T)de = (_.._._.) 4 (4.24)
1 (1-5_) @ = -5,
8 Pep 5
(=] o
1
' kw. i
o= (£ f) 4 f w(e) do . (4. 25)
2 . =8,
Pep ”Bo

These approximations for the rate integrals are henceforth

divorced from the arbitrariness of assumed temperature and composi-
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tion profiles. Thus these profiles are relegated to the insensitive role
of determining constant coefficients in the differential equations for
Lo and L_. Several profiles will be used for this purpose, and the
sensitivity of the resulis to profile choice will be evaluated. Before
passing on to the solution for relaxation time, further use should be
made of the result for the thermal theory (4. 10} in justifying the length-
scale argument preceding the approximation of (3. 10). Recall that the
use of the lower bound estimate of (3. 10) was based on the fact that

L‘n 4 LT by some factor. It is possible now to more nearly prove the

gtatement, since it is required of the profiles that:

dn

3 -1
a.g- =
hot end

1-90

1+2
{ 3 ) . (4. 26)

If the restriction is made that the profile shapes are similar

B(x/LfI;) -8, )

Shape (1 - n(x/L_)) = Shape ( =%, (4. 27)
then (4. 26) translates into a requirement on Ln/ Lop s
1 dn
®T L@ T T Tee, § TTe, (TR .
'EE.' 3]::75,1.5
Hence the restriction:
-1
Lo/L_ a2 (1+27) (4. 29)

and as ] = 0(8;1 )+ then L. is ordinarily about one order of magni~-
tude greater than Ln , a8 mentioned in defense of (3. 10). This re~
striction, along with (4. 27), insures that the profiles are compatible
with the hot-end conditions and strengthens the assumptions underlying

the hot-end calculations by restricting the length scale of chemical
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activity to a region near the hot boundary.
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V. SOLUTION FOR RELAXATION TIME

From this point on, the derivation is largely a matter of al-
gai)ra. All the pertinent physics has been introduced, the approxima-
tions exhibited and discussed on physical grounds. What remains is
the calculation and presentation of the relaxation time, the flame
speed, and the flame thicknesses as they have been specified by the
above work. No new concepts, approximations, or interpretations are
introduced until the results are discussed in the following section.

The equations to be dealt with are listed below:

Thermal Theory

o
5 dy .
, .
k.w
b) Up- U, = —Lf K“”;"(e’ dae (5. 2)
PsUC o,
8 dy "
c) j j(l-n(y))dy L -U_ =
21
% k¥, : K(9)w(8)
a2 j R7i8) ae (5. 2)

o prf?:P 8,

0 2
140 2 149
o 1+8%(y) o
d) j(*zv;"mr)"y Lp - Ut zms Y
23
ft | ke )( dy /L j K(Q)w(0)de (5. 4)
PeCp o prfgp o

v}
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Unity Lewis Number

e) same as {a) above

EWe\E  e)ae

f) Ug- U, = (_,_;__) f“‘r“ (5. 5)
Psp 8,

8) Lyp=L_ (5. 6)

4] 2 2
1+8 2 1+8
o _ 1487y . o
h) f("zv; WJ)“Y Lop = Ug g U
-1

0 1 1 \
k 2 kW, 5
b3 . de £ 1\"
- _...E.... .J' 1~(9)(;:1.37‘_.) dY/LT = - (......._c....) j wi{@)de {5. 7)
PEep “-1 Pep e

o
In order to facilitate the algebra to follow, a list of abbreviated

symbols is given:

0
o 1w dy
a, = 1-89, j o) (5. 8)
A
1+8f
Y sl
3-3 = a.z "'f R dy (5.10)
w}
0
b, = 8_ [ f(l @ n(y))dy] (5.11)
4
kW kW
o S b S | (5.12)
pfﬁp potpﬂo
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i

1
M, j:{(e)w(e)de

o

[

_ [ me)w(e)as
2~ D
9
(1]

&
=

o

My = fw(e)de
(]

o]
i
v, = | ¥®)
.‘.‘;,‘1.4 -~ j-—"’r' dg
8
o
g
2 k
. e GO £
¥ o) e ()
-1 Po’o P

In terms of these symbols, the equations are simpler:

a) al}:?«fﬂ’ -BOU = 0

¢ =

Q

b) Uf"UO"

q o
by [
e
»

[\N]
(]

o o ._0 U =
c) al_«_a?-!—bl;..,ni-Uo T:E—O——U-f“Mz—wO

2
- N 3] -
d) 3'3“'1’+a'ZUo‘Uf'-LT +'U'—f Ml = 0

EX A R R

(5. 13)

(5. 14)

{5. 15)

(5. 16)

(5. 17)

(5. 18)

{5. 19)

(5. 20)

(5. 21)

(5. 22)

(5. 23)

{5. 24)



Taking first the set a) - d), note that ¢) is superfluous to solu~

tion for LT(t) . Eliminate Uo from a) and d) by using b).

2
a') aln,,,»fufu-eo)-%. M, = 0 (5. 25)
I £
: 2
d') a,f. 4 Ug(ay-1)