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Abstract 

In this thesis, we study the weak unique continuation property for higher 

order elliptic differential operators with real coefficients via Carleman in­

equalities. We get several Carleman inequalities with sharp gaps for operators 

in a reasonable class, which lead eventually to the weak unique continuation 

property for differential inequalities with optimal conditions on potentials. 

We also get some Carleman inequalities for general operators with simple or 

double characteristics. The gaps here are not as good as in the first case. But 

we may prove the gaps in these inequalities are sharp in general. Actually 

we will provide counterexamples to prove such gaps are sharp in Carleman 

inequalities for operators in some subclasses of simple or double characteris­

tics class. In particular, we prove that there is no Carleman inequality with 

positive gap for the highest order term for any operator whose symbol has 

double characteristics. 
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0.1 Introduction 

It is well known that if P(x, D) is an elliptic differential operator with real 

analytic coefficients, then any solution u of P(x, D)u = 0 in an open con­

nected set V C R d is real analytic. So P(x, D) has the so-called unique 

continuation property (u.c.p.), i.e., if a solution u of P(x,D)u = 0 in V van­

ishes in an open subset V' of V, then u == 0 in V. In many situations, the 

analyticity assumption can be dropped. In 1958 A.P. Calderon proved the 

following u.c.p. result [3, 10]: 

Theorem([Ni]): Let P(x, D) be a linear partial differential operator of order 

m with smooth coefficients defined in a neighborhood V of the origin in Rd. 

Suppose for each fixed x E V the corresponding polynomial P( x, .) satisfies 

the double characteristic condition (see below). Assume that the plane x d = 0 

is non-characteristic at the origin (i.e., P(O, ed) i- 0). Then if a COO function 

u in V satisfies 

(*) IPu(x)l::::: 2: lVaIIDau(x)l, x E V and u == 0 in Vn{Xd ::::: O} 
lal:om-l 

then u = 0 in V if all Va E L~c. 

One will see the definitions of the simple/ double characteristics conditions 

later (or see [10] or [13]) . The essential point in the proof of this theorem is 

a so-called Carleman inequality, the first version of which was introduced by 

T. Carleman in 1939. A version given in [10] states that: 



~ IIet</>D"'uIIU(Rd-' x (O,T)) ~ c(rl + T2)IIe
t

</> PullL2(Rd-'x(O,T)) 
l"'I:'Om 

Vu E ego, Vi > 0, where rj(x) = rj(Xd) = (T - Xd)2 and T > O. 
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Later when people continue to study the u.c.p. for differential inequali­

ties under different conditions, the Carleman type inequalities still play an 

important role. We will be concerned with questions where Va E Lloc with 

r < 00, and then one needs inequalities IIet</> D"'ull q ~ ellet </> Pullp, where 

what is important is the size of the gap ~ - ~ > O. For example, with 

certain convex smooth functions rj, the following Carleman inequalities (see 

[1 , 9, 12]) 

IIet</>u ll Lpl(Rd) ~ c ll et</>6.ullLP(Rd) 

II et</>vullU(Rd ) ~ elle
t

</> 6.ull LP' (Rd) 

Vu E Cgo, Vi > 0, hold with positive gaps ~ - ? = ~ and p~ - ~ = 3d~2' 
d 3d-2 

and give u .c.p. for (*) with P = !:::. and VI E L~c and Vz E Llo~ . The 

proofs of these inequalities depend on estimates for oscillatory integrals in 

harmonic analysis. One such approach is to study the restriction of the 

Fourier transform to hypersurfaces Sk = {~ E Rd : Re(E1=l(~j + ikj)2) = O} 

which contains the real variety Nk = {~ E Rd : E1=l(~j + ikj )2 = O}, where 

k E Sd-l. In this case, Sk is the unit sphere which has nonzero Gaussian 

curvature so that the Fourier transform of the surface measure decays fast at 

00 and this leads eventually to weighted Sobolev inequalities with good gap 

conditions as mentioned above. 

In this paper, we are interested in the unique continuation property for 

higher order elliptic differential operators with real coefficients whose symbols 
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are homogeneous polynomials via Carleman type inequalities. Except when 

p = q = 2, such inequalities were known previously only for the operators 

b. T and in that case only for the zero-order term in the left-hand side [7]. 

As usually, it is natural to study oscillatory integrals which are related to 

the set Sk = {~ E Rd : reP(~ + ik) = D} for k E Sd-l. When the set Sk 

satisfies suitable conditions, we will have an appropriate decay of the Fourier 

transform of the surface measure at 00. For example, if a surface satisfies 

Stein's finite type of order m, then the decay of the Fourier transform is of 

order ~ (see [11]). If a surface is convex and satisfies Bruna-Nagel-Wainger's 

finite type of order m, then there is a sharp rate d;;/ of decay of the Fourier 

transform (see [2]). In order to apply these results, the problems are that in 

one hand we don't know how to get a sharp Carleman inequality from the 

first weaker estimate of the decay of the Fourier transform and on the other 

hand our surface will satisfy Bruna-Nagel-Wainger's finite type whenever it 

is a submanifold but in general will not be convex. So just like in studying 

of oscillatory integrals, it suggests to narrow the operator P into some class 

so that the set Sk satisfies some curvature conditions. The natural one is to 

hope Sk having nonzero Gaussian curvature. But the class of P with this 

kind condition is too small to contain our model operator dd: +- .. + dd: when 
Xl xd 

m ~ 4. What is new here is that instead of studying the hypersurface Sk, we 

study the real variety N[ = {e E Rd : pce + ik) = O} such that locally N[ 

may be contained into some hypersurface with nonzero Gaussian curvature, 

if P satisfies some conditions which is easy to check. We always use P to 

denote a polynomial and use P to denote the corresponding operator. Here 
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is one of our crucial results: 

Proposition 0.1 If PEG (see definition in Section 1), then there is an 

open set I< of Sd-l such that for each k E I< and any e E 7rk(NP), i.e., 

p(e +ik) = 0, there is a hypersurface in Rd with nonzero Gaussian curvature 

containing P(· + ik)-l(O) locally near e. Moreover, 7rk(NP) is a submanifold 

of codimension 2 for each such k E I<. 

Remark. Actually the conclusion in the above Proposition is what is needed 

in the proofs of the following theorems 0.2, 0.3 and 0.4. The condition G is 

a sufficient condition which is easy to state and to verify in examples. 

Our main results are weak u.c.p. with what are expected to be sharp 

conditions on the potentials for operators in class G. Here are two of them: 

Theorem 0.2 Suppose PEG is of order m. Let 2 ::; fJ, ::; m be an integer. 

Suppose u E Wm,p has compact support and satisfies that IPul ::; Vlvm-"'ul 
with V E Lr~. Then u = 0 in Rd if 

(1) r" = !£ and p is such that! < ! + (d-l)(~-m) where s 
~ ,.. P 8 d-3' 

I/. <~. 
r - 2' 

(2) r,.. = ~ and p = 1, if ~ < fJ, < dj 

(3) r,.. > 1 and p = 1, if fJ, 2: d. 

2(d+l) xJ 
d+3 ' 

Theorem 0 .3 Suppose PEG is of order m < ~ with s = 2(;:;). If a func­

tion u E W m
, 8 has compact support and satisfies IPul ::; Ll~,..~m V,..lvm-"'ul 

with V,.. E L ~ for all 1 ::; fJ, ::; m, then u = 0 in Rd. 
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Here in Theorem 0.3, we have a restriction on the degree m of P. In 

section 3, we will see that we may take m a slightly larger and p = s slightly 

smaller. 

As we mentioned before, the proof of these theorems are based on several 

Carleman inequalities with sharp gaps. For P is in the class G which will be 

defined in Section 1, we have the following sharp Carleman inequality. 

Theorem 0.4 Suppose PEG is of degree m and k E Sd-l is as in Propo­

sition 0.1. For any integer 2 :S p, :S m, let (p, q) be such that (;, ~) E A n AI' 

(see definitions of the sets A and AI' at the beginning of Section 2). Th en 

there is a constant C such that 

for all u E Wm,p with compact support. 

On the other hand, we are interested in Carleman inequalities for opera­

tors in some more general classes Sand D of simple/double characteristics 

which will be also defined in Section 1. Here is our main result: 

Theorem 0.5 (1) Suppose that P E D is of degree m. Then there are an 

open subset K of Sd-l and a small constant (3 and a big constant C such that 

for each k E K, with <p(x) = <Pk(X) = k· x + (3lxl2 we have for each integer 

1 :S p, :S m, 

for all u E Wm ,2 with compact support, where q E [2,00] is such that 0 :S 

1 1 < . (I±.::l J1:.) "2 - q - mm d-l' d • 
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(2) If PES, the same inequalities hold with better gaps 0 < ~ - ~ < 
. (I'-~ 1') I'. _ d mm d-l' d . J q - DO, assume I-" > 2' 

The methods used there are only real analysis and general properties of 

the Fourier transform and so the gaps obtained are not sharp as in Theorem 

2.2. But we will prove that our gap conditions are sharp for general P. In 
) 

fact, we will prove in section 5, for general 1-" , that the gaps ~:] and ~t:.:i are 

sharp in the Carleman inequalities for operators in some subclasses of Sand 

D respectively. One may see Proposition 5.3 and 5.2. Furthermore, for I-" = 1 

we will show in section 5 that there is no Carleman inequality with positive 

gap for any operator in the double characteristics class (see Proposition 5.1). 

We will discuss some basic geometric properties and provide some exam­

ples of operators in class G and then prove Proposition 0.1 in Section 1. Then 

we may prove some Carleman type inequalities with sharp gaps, including 

Theorem 0.4, in Section 2. As application, in Section 3, we will prove Theo­

rem 0.2 and Theorem 0.3. In Section 4, we study Carleman inequalities for 

the operators in wider classes Sand D (see defini tions in Section 1) and prove 

Theorem 0.5. In Section 5, we give several counterexamples above Carleman 

inequalities for general operators. Finally we would like to give some general 

discussions about the simple characteristics and state some further questions 

in Section 6. 
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1 Several classes of higher order elliptic dif-

ferential operators 

Let P be a homogeneous polynomial of degree m in d variables. We call 

N P = {z = e + ik E d- \ {OJ : P(z) = O} the characteristic variety. For 

any fixed k, we denote by 7fk(NP) = {e E Rd : e + ik E N P } the zero set 

of P(· + ik) in Rd. In this paper, we are always interested in the case when 

P has real coefficients and the related differential operator P is elliptic, i.e., 

N P n (Rd + iO) = 0. We call such P an elliptic homogeneous polynomial. 

Let's first define two classes of such polynomials (operators) which we will 

study later. 

Definition 1.1 (1) Let S be the set of all elliptic homogeneous polynomials 

P satisfying ~~ = (;;""" ;;.) =I 0 on NP. S is called the simple charac­

teristic class and if PES, we say P has simple characteristics. 

(2) Let D be the set of all elliptic homogeneous polynomials P such that there 

is a non empty open subset K of Rd \ 0 and a constant C such that the fol­

lowing hold: 

(Dl) IP(e + ik) 1 :2:: Cdist (e, 7fk(NPW for all e and all k E K. 

(D2) Nt; = {(e, k) E Rd X K : p(e + ik) = O} is a submanifold of codi­

mension 2 in R d x Rd and Nk and ilk = {(e,l) E R d X Rd : 1 = k} are 

transverse in Rd x R d for all k E K. D is called the double characteristic 

class and if P E D , we say P has double characteristics. 
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Our class S is also called Hormander's nonsingular characteristics class, 

which contains the elliptic homogeneous polynomials which have the Calderon's 

simple characteristics (see Definition 1.8). In the last section, we will prove 

the fact that generic elliptic homogeneous polynomials are in class S (see 

Proposition 6.2). When PES, we have a property that \lereP(~ + ik) 

and \leimP(~ + ik) are linearly independent on 7rk(NP) for generic k, which 

implies that 7rk(NP) is a submanifold of codimension 2. This is a direct 

conclusion of Cauchy-Riemann equation and the transversality theorem (see 

page 68 in [4]) because P(~ +ik) is harmonic in (~, k) variables. We also will 

give a short proof for this in the last section (see Proposition 6.4). In fact it 

is also very easy to check that the set of k which satisfies the above property 

is open. An example in the class S is dd: + ... + dd:. 
Xl Xd 

We now discuss the conditions in the definition of D, In the last section, 

we will show that if PES then the submanifolds N P and Ilk are transverse 

in Rd x Rd for generic k E Rd (see Proposition 6.3). So if PES with order 

';, then p 2 E D with order m. And in this case, both (Dl) and (D2) hold 

for generic k. A typical example is the bi-Laplacian operator 6.2 E D with 

order 4. 

As we mentioned in the introduction, in order to get a sharp Carleman 

type inequality for a higher order elliptic differential operator P, one needs 

some curvature conditions on the intersection 7rk(NP) of the characteristic va­

riety. We know that for generic k, 7rk(NP) is a d-2 dimensional submanifold. 

There are two natural d - 1 dimensional hypersurfaces reP(· + ik)-l(O) and 
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imP(· + ik)-l(O) which contain 7rk(NP). In general these two hypersurfaces 

don't satisfy good curvature conditions, say nonzero Gaussian curvature. But 

on the other hand, the singular points of oscillatory integral related P which 

we are interested in only occur on 7rk(NP) so that we may look for a third 

hypersurface other than those special two, which may have a nice curvature 

condition and contains 7rk(NP). This is the role of Proposition O.l. 

Now let's start with some basic facts from geometry and algebra which 

we will use to find a class of operators for which we will be able to prove 

sharp Carleman inequalities in the next section. 

Lemma 1.2 Suppose f is a real smooth function on Rd with f(a) = 0 and 

\J f( a) -=f. 0 for a point a E Rd. Let S = f-l(O). Then the following are 

equivalent: 

(1) S has nonzero Gaussian curvature at a. 

(2) PHf(a)IT has rank d -I, 

where T is the linear subspace (\J f( a)).1, P is the orthogonal projection onto 

T and H f is the Hessian matrix of f at a. 

Proof: First we need to show that (2) is independent of f, i.e., if we have 

another function g with \J g( a) -=f. 0 such that f = 0 if and only if 9 = 0, 

then we need to prove (2) is true for 9 if it is true for f. In fact, by the 

following Lemma, which is independent of this lemma, there is a function 

h with h( a) -=f. 0 such that g = h . f. It is easy to see that the linear 

subspace Tg = (\Jg(a)).1 is same as T. And the Hessian matrix of 9 at a is 

Hg(a) = h(a)Hf(a)+\Jf(a)@\Jh(a)+\Jh(a)@\Jf(a). Where @is as usual 
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defined as following. If x, y and are three real vectors in R d
, then x @ y is a 

matrix such that (x @ y)z =< z,y > x. So PTgHg(a)ITg = PHj(a)IT' 

Now let's show our lemma. After a rotation and translation, we may 

assume that a = 0 and with ~ = (6, {), f(() = 6 - 6W where 6(0) = 
fe6(0) = O. Hence locally S is the graph of function 6({). We know S 

having nonzero Gaussian curvature at a = 0 is equivalent to Hessian matrix 

of 6 ({) having maximum rank at { = o. So (2) is true if and only (1) is true. 

Lemma 1.3 Suppose that fl and 12 are two smooth functions on a neigh­

borhood U of some point a E Rd with ft(a) = 0 and h(a) = 0 such that 

'V It (a) and 'V h( a) are linearly independent. If a function f with f( a) = 0 

is such that f- l (O) contains fl- l (O) n f;I(O) locally near a, then there are 

two smooth functions gl and g2 on another neighborhood U' of a such that 

f = gIft + g2h near a. 

Remark: This lemma is true in general for any number of functions instead 

of two functions. 

Proof: Let's first prove the lemma in the simple case where a = 0, fl (0 = 6 
and f2(0 = ~2' Actually one may write 
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In the general case, there are smooth functions h,"" h such that \l fl(a), 

... , \l h(a) are linearly independent and Js(a) = ... = h(a) = o. So 

F = (il,"" fd) is a diffeomorphism from a neighborhood of a to a neigh­

borhood of 0 by the inverse function theorem. Let G = F-1 and let IjJ = 
foG. Note that fi 0 G(~) = ~i. Then if 6 = ~2 = 0 then !I(G(~)) = 

h(G(O) = 0 so that f(G(O) = 0, i.e., ¢(O = o. So by the simple 

case, ¢(O = ~1'lj;1(0 + '2'lj;2(0 with smooth functions 'lj;i and therefore 

f(') = ¢(F(~)) = ilW'lj;l(F(~)) + h(0'lj;2(F(~)). We finish the proof by 

taking gi(O = 'lj;i(F(~)). U 

Lemma 1.4 Let V is a real linear space of dimension r. Suppose K is an 

r x r symmetric matrix of rank r - 1 on V. Let e be a vector of V. For 

x E V, define Ax = K + x @ e + e @ x. Then 

(1) If e ¢ ImK, then there is an x such that rankAx = r. 

(2) If e E ImK and e = K f for some f E V, then 

rankAx ::::: r - 1 for any x E V, when < f, Kf >= O. 

rank Ax = r for some x E V, when < f, K f ># o. 

Note: We notice that the element f in (2) is not unique. But it is easy 

to see the inner product < f, K f > is independent of the choice of f. In 

fact, suppose 9 is another element such that e = Kg. Then < f, K f >=< 

g,Kg> + < f - g,Kg >=< g,Kg > since f - 9 E KerK. 

Proof: (1) Without loss of generality, we may assume that under an orthog­

onal bases {el,"" er }, {I{ el,' .. , I{ er } = {O, C2e2,' .. , erer} with C2,' .. , Cr 

nonzeros since K is assumed to be of rank r - 1. The assumption e rf. ImK 
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(c,. + 2 < e, er > )er + 2::: < e, ej > ej+ < e, e1 > e1} 
j=2 

which forms another basis and hence Aer has rank r. 

(2) Now let's assume e = Kf. 

Case 1: < f, K f >= O. Let a E (ImK).l. 

Claim: a and f are linearly independent. 

12 

Proof Suppose for some constants sand t, sa+tf = O. Then sK a+tK f = O. 

Since K is symmetric, K a = O. Hence t = 0 and so s = o. 
Now let's compute Axa and Axf for any fixed x E V. 

Axa = K a+ < e, a > x+ < x, a > e 

= 0+ < Kf,a > x+ < x,a > Kf 

=< x,a > Kf 

Axf =Kf+<e,f>x+<x,f>e 

= (1+ < x,f »Kf 

since < e, f >=< K f, f >= O. So for any given x there are nonzero numbers 

sand t such that Ax(sa + tf) = O. Since sa + tf =/= 0 by claim, this means 

rankAx :S r - l. 

Case 2: < f, K f >=/= O. Let a E (ImK).l and choose x = a. Let's denote 

A = Aa. Suppose that {U3, · ·· , ur} together with {a, K J} is a basis of V 

and U3,··· ,Ur E (Span{a,KJ}).l. 
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Claim: {a, f, U3,···, ur } is a basis of V. 

Proof Suppose there are constants s, t, S3,···, Sr such that sa + tf + 

Ej=3SjUj = o. By the same reason as in case 1, Ka = O. So tKf+EsjKuj = 

o. Consider the inner product oftK f + E sjK Uj and f. Since < f, K Uj >= 0 

by the choice of Uj, t < f, K f >= 0 which implies t = O. As a, U3,···, Ur 

are linearly independent by the choice of uj's, S = S3 = ... = Sr = o. This 

proves claim. 

Now let's compute the image of another basis {a, f - l+<a,/> au··· U } <a,a> ' 3, ,r 

under A. Remember e = Kf, < uj,a >=< uj,Kf >= 0 and < a,Kf >= o. 

Aa = K a+ < e, a > a+ < a, a > e =< a,a > Kf 

On the other hand, we have AU - 1~~,~;> a) = K f+ < e, f > a+ < a, f > 

e - (1+ < a,j »Kf =< Kj,j > a. By the assumption, Span{Kj, 0 = 

K a, K U3, ... , K ur} = IrnI{ has dimension r - 1. Since a E (ImK)l., we 

have 

Span {ImK, a} = V 

So because < a, a >=/= 0 and < K j, j >=/= 0, we have 

Span{Aa, AU - 1+ < a, f > a), AU3,···, Aur} = V 
< a,a > 

This means rankA = r. U 
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Let's now come back to discuss some geometric properties of zero sets of 

elliptic homogeneous polynomials. In the rest of this section, we will assume 

that P is an elliptic homogeneous polynomial. We use V to denote the gra­

dient operator for functions on Rd with respect to the real part variable ~ 

of z = ~ + ik E d while k is fixed. Let ZO = ~o + iko be a zero point of P. 

Let's further assume that l:1=1 ~~ (ZO) . ImzJ =I- 0, which says that P satisfies 

Calderon's simple characteristic condition at zO, and the complex Hessian 

matrix HCp = (d d
2

d P) of Pis nonsingular at zoo The Calderon's condi-
I z, z, 

tion above immediately implies that 'lreP(zO) and 'limP(ZO) are linearly 

independent because P is homogeneous polynomial. 

We will usually omit ZO in what follows and always keep in mind that 

every function will be evaluated at zoo Finally we introduce some nota­

tions. For t E C, we denote H = H(t) = Hrep(+iko)+timP(.+ikO)(~O) = 
Hrep(+ikO)(~O) + tHimP('+ikO)(~O), the Hessian matrix of reP + timP with 

respect to the ~ variable at zoo By the Cauchy-Riemann equations, we know 

H(i) = H C,p(ZO). Let T = ('lreP).L n ('limP).L be the (real) linear sub­

space of codimension 2 in Rd and TI = ('lreP + tv imP).L a linear subspace 

of codimension 1 in Rd when t is fixed in R. PT, is the orthogonal projection 

onto TI . 

Lemma 1.5 For all t in R except finitely many points, H(t) is nonsingular. 

Proof: detH(t) is a polynomial in the t variable and detH(i) = detH C,p(ZO) =I­

O. So by the fundamental theorem of algebra, detH(t) has only finitely many 

zeros. ~ 
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Lemma 1.6 Let aCt) and bet) be any two rational functions on R with 

nonzero real coefficients. Then for any t in some dense subset of R, 

aCt) 'V reP + bet) 'V imP rf. ImHIIT 

where HI = HI(t) = PT,H(t)IT,. 

Proof: Let pi = ~~ which is 'VreP + i 'V imP, and let fn = 'VreP - i 'V imP. 

We use < , > to denote the inner product in Cd. Since P and pi are 

homogeneous functions, we have l:: ~~ . zJ = mP(zO) which is zero, and , 
H(i) zO = (~d ...!L( dP) . ZO ... ~d ...!L( dP) . z9) = (m _ 1)( dP ... dP) 

wJ=l dZj dZ1 J' 'L....3=1 dZj dZd J dZ1 ' , dZd 

= (m - l)P' . So we have the following two formulas: 

d dP I:- .zo =0 
j=l dZ j J 

Now let's assume our conclusion is false. That means for each t in some 

nonempty open subset of R, there is au E T such that aCt) 'V reP + bet) 'V 

imP = H1u, i.e., 

aCt) 'V reP + bet) 'V imP = 

_ H _ < Hu, 'VreP + t 'V imP> p. 
- u P . P . ('Vre +t'VlmP). < 'Vre + t 'V ImP, 'Vre + t 'V ImP > 

This shows that u is a solution of a linear system which depends on t in 

polynomial sense. In other word, we may write the above equations into 

a usual form, A(t)u = fit), where A(t) and fit) are corresponding matrix 

and vector, respectively from the above system, which elements are rational 

functions of the t. So the basic linear algebra theory tells us there is another u 
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Substitute \lreP = HP' + PI), \limP = -b(P' - PI) into the above formula 

and notice that R(i) = detH(i)· H(i)-l with detH(i) =f. O. We have 

G + c~!)) < H(i)-lpl ,PI > + G -t)) < H(i)-lPI,PI >= O. 

Since < H(i)-l pI PI >=< _1_ z 0 PI > = _1_ 2.: dP • zO = 0 by (*) and (**) 
, m-l' m-l dZj J ' 

the above formula becomes 

as ~-W =f. O. H(i)-l is symmetric, so using (**) we have < H(i)-l PI, PI >= 

< PI H-(i)-l PI >=< PI _1_Z0 >. Then 
, 'm-l 

dP -
"'-. zQ = O. 0dz. J 

J 

Combine this formula with (*), we get 

d dP L: - . ImzJ = O. 
j=l dZj 

This is a contradiction with the assumption. 

Case 2: c(i) = i. Let t -+ i in (* * *)+. By the same process as in case 1, we 

may get 

G + c~~)) < H(it1 pI, P' > + G -c~~)) < H(i)-l PI, p' >= 0, 

i.e., < H(i)-lPI,PI >= O. This is, by using (**), 

which will lead to a contradiction as in case 1. 

Case 3: c( i) = 00. As c is a rationalfunction, we may write c( t) = (t -i) -k d( t) 
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with some integer k 2: 1 and another rational function d(t) which is finite at 

i. So multiply (t - W in the both sides of (* * *)_ and let t -t i. The result 

IS 

< R( i) \l imP, 15' >= 0 

or 

1 R(')P' p-, 1 R( ')P-' p- , - 0 - < Z , > --2' < Z , >-. 
2 Z 

This will lead to a contradiction as in case 1. 

So we prove our lemma. ~ 

Lemma 1.7 Let's keep the assumptions as before. Let e(t) = t \l reP -

\limP - <tszrep-vimP,wep+tszimP> (\lreP + t \l imP) be the projection of 
<vrep+tvlmp,vrep+tvlmp> 

vector t \l reP - \limP onto the subspace (Span {\lreP + t \l imP}).L. Then 

for any t in R except finitely many points, there is an x E TI such that 

rank(PT, H(t) + e(t) Q9 x + x Q9 e(t))IT, = d - 1. 

Proof: First notice that for any t E R, e(t) E T1 • Moreover, e(t) ~ T because 

\lreP and \limP are linearly independent. So we have TI = Span(T, e(t)). 

As e(t) is a linear combination of \lreP and \limP with rational func­

tions, which are not identity zero, as coefficients, Lemma 1.6 applies to e(t). 

So let t E R be such that Lemma 1.6 and Lemma 1.5 hold. We have 

e(t) if; ImHIIT and rankH = d, where HI = PT,H(t)IT, and H = H(t). By 

the definition of HI, rankH1 2: d- 2 since rankH = d. If rank HI = d-l, then 

we are done by taking x = O. Now let's assume rankHI = d- 2 = (d-l)-1. 

We will apply Lemma 1.4 to V = TI , J{ = HI, 'I' = d - 1 and e = e(t) E TI . 
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Case 1: e(t) rt ImHI . Then part (1) of Lemma 1.4 implies our conclusion is 

true, i.e., there is an x E Tl such that 

rank(PT,H(t) + e(t) @x + x @ e(t)) IT, = d - 1. 

Case 2: e(t) E ImHl . So we may assume there are a u E T and a constant 

c E R such that 

e(t) = H1 (u + ce(t)) 

since Tl = Span(T, e(t)). As u E T, u .l. e(t). So < e(t), u + ce(t) >= 

c < e(t), e(t) > which is zero if and only if c = o. If c =I- 0, then part (2) of 

Lemma 1.4 implies our conclusion is true. If c = 0, then e( t) = HI U E ImHIIT 

which is a contradiction with e(t) rt ImH1IT . This proves the lemma. « 

Now let's define our class of operators which we will study in the next 

section. Notice that the assumption 2:1=1 ;;, (ZO) .imzJ =I- 0 is nothing but the 

Calderon's simple characteristic condition ( [3, 5]). So we have the following 

natural definition. 

Definition 1.8 Let G be the set of all such elliptic homogeneous polynomials 

P that there is a k E Sd-l such that for any e E 7rk(NP) the following 

conditions are satisfied: 

(GJ) (Calderon's simple characteristic condition) 2:1=1 k j ~: ce + ik) =I- 0 
J 

(G2) (Curvature condition) D(p)(e + ik) =I- O. 

where D(P) is the determinant of the complex Hessian matrix of P, which 

is also a homogeneous polynomial. 
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Remark 1.1 We notice that the conditions (G1) and (G2) have open prop­

erty, i.e., there is an open neighborhood J{ of k in Sd-l such that for any 

other k' E J(, (G1) and (G2) hold too. This is because P is elliptic. On the 

other hand, the condition (G1) implies that for such kin (G1), \lrep(e + ik) 

and \limp(e + ik) are linearly independent for all e E 7rk(NP) since P is 

homogeneous. This property is also open. So we conclude that if PEG 

with some k E Sd-l, then there is a neighborhood J{ of k in Sd-l such that 

for each k' E J(, (G1) and (G2) hold and 7rkl(NP) is a smooth submanifold 

of dimension d - 2. 

Remark 1.2 The condition (G2) is not trivial. When d ~ 3 we know, by a 

basic fact of algebraic geometry (Lemma 1.3 on p29 in [8]), that N P nNQ =1= 0 

for any two homogeneous polynomials P and Q. SO it is impossible for (G2) 

to hold for all k E Sd-1, (G2) holds. 

We have a lot of homogeneous polynomials in the class G. In particular, 

if a P satisfies the Calderon's simple characteristic condition and the Hessian 

matrix (d
2

re;J:,+ik)) of the real part of P has full rank for all e E 7rk( N P) and 

for some k, then PEG. on the other hand, there are also a lot of operators, 

for which we don't know if the above condition works, which are in G. 

Examples 1.3 (1) dd: + ... + dd: E G. Its symbol is P = zi + ... + zd'. 
Xl xd 

When k = e1 = (1,0,· .. ,0),2:1=1 ~:, . k j = m(6 + ir-1 =1= 0 for all e E Rd. 

So (G1) holds for this k. When k = (k1 ,"', kd) with kj =1= 0, j = 1"", d, 
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D(P)(~ + ik) =I- 0 for any ~ E Rd. Then by Remark 1.1 it is easy to show 

that there is a small open subset K of Sd-l close to el (el rf- K) such that 

(G1) and (G2) hold and 7rk(NP) is smooth submanifold of dimension d - 2 

for all k E K. 

(2) P(D) = lx~ + Q(d~2"'" d~J E G for any homogeneous polynomial 

Q of degree m in d - 1 variables such that the determinant of the Hessian 

matrix detHQ ([) of Q in [ = (6," . ,~d) variable is an elliptic polynomial, 

i.e., Q is a strictly convex homogeneous polynomial. In fact, let k = el. 

'V p . k = m(6 +ir-1 =I- 0 for any ~ E Rd. On the other hand, if ~ E 7rk(NP), 

then im(6 + i)m = imP(~ + ik) = O. So re(~l + i)m =I- O. Hence Q([) =I- 0 

and so [ =I- 0 because Q is elliptic. So by the assumption, D(P)(~ + ik) = 
m(m - 1)(6 + i)m-2detHQ([) =I- O. Hence, PEG. 

Finally before we end this section, let's prove Proposition 0.1 stated in 

Introduction. 

Proof of Proposition 0.1: Let PEG. Remark 1.1 tells us that there is an 

open subset K of Sd-l such that for each kO E K and any ~o E 7rkO (NP), the 

conditions (G1) and (G2) hold and 'VreP(~O + ikO) and 'VimP(eD + ikO) are 

linearly independent. These conditions are all requested in Lemma 1.7. Let 

x and t be as in Lemma 1. 7, and let ICI;') = rePCe + ikO) + timPce + ikO)+ < 

x, ~ - ~o > [treP(~ + ikO) - imP(~ + ikO) - c(reP(~ + ikO) + timP(~ + ikO))], 

where c = <tV'rep(zOl-V'imp(zol .V'rep(zol+tV'imP(zol> is a constant. Then the 
V'rep(zO )+tV'lmP(zO). V'rep(zO )+tV'lmP(zO» 
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Hessian matrix of 1 at ~o is 

Hi = Hrep+timp + x 0 e(t) + e(t) 0 x 

where e(t) is as in Lemma 1.7. Lemma 1.7 says PT,HilT, has rank d -1. So 

by Lemma 1.2, 1-1(0) has nonzero Gaussian curvature at ~o. ~ 

Remark 1.4 Notice that if we define a function 1(~, k) by substituting ko 

by k in the function 1 in the above proof with t and x fixed, then f(~, k) is 

continuous in both ~ and k and 1(~, ko) = 1(~). This shows that there is a 

small open ball U containing ~o in Rd such that for any k sufficiently close to 

ko, 7rk(NP) n U may be contained in a hypersurface with nonzero Gaussian 

curvature which is bigger than or equal to half of the Gaussian curvature of 

1-1(0) at ~o. 
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2 Carleman inequalities with linear weights 

for the operators in class G 

We will prove a sharp Carleman inequality for higher order elliptic differential 

operators of class G in this section. First let's introduce some notations. Let 

a = (~, 0), b = (1,0), c = (I,!) and d = (~, -!-) where s is always the number 

2Sd:
3
1) with s' its conjugate number. Let A be a subset of R2 consisting of 

the quadrilateral abcd and two sides ad and bc. Let J.L be a positive integer. 

Let AI' = {(x,y) E R2 : 0 < y :::; x :::; 1,x - y :::; J}. Then we know when 

J.L 2: 2, A n AI' is nonempty. Now let's state a technical lemma which will be 

useful in proving our theorem. 

Lemma 2.1 Let H be a piece of smooth hypersurface in Rd with nonzero 

Gaussian curvature and N c H be a d - 2 dimensional sub manifold. Sup­

pose that m(e) is a smooth function on Rd satisfying Im(OI :::; dis4€,N) for 

all e E Rd with some positive constant C. Then for any (p, q) with (~, ~) E A 

and each eo E N there are a small neighborhood U of eo in Rd and a constant 

C such that 

'V f E S with suppj C U 

where Tmf = (mjt· 

Proof: Let n be a normal vector of H at eo. By the Tubular neighborhood 

theorem (see page 76 in [4]), there is a neighborhood U of eo which may be 

written as U = (-8,8) X H = UtE(-5,5)Ht for some small 8 > 0, where H t is 
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the translation of H n U by distance t along the direction n. Moreover, since 

m(e) satisfies Im(e)1 :5 dlst~e,N) and N n U is ad - 2 dimensional submani­

fold, we have the following estimates by choosing U small enough: 

J~5I1mIlU(H,)dt < 00 

IImllu(u) < 00 

V r E (0,00) 

V r E (0,2). 

In fact, after making U small enough, there is a diffeomorphism F : U -+ 

B(O,l) C Rd = {(x,s,t) : x E Rd-\s E R,t E R} such that F(eo) = 0, 

FH c ((x,s,O) E B(O,l)}, FN c {(x,O,O) : x E R d- 2
} and FHt = 

F H + (0,0, t), F Nt = F N + (0,0, t). This is because H n U is a graph when 

U is small enough and N CHis a submanifold of co dimension 2. We notice 

that when ~ E Ht, i.e., F(~) E F Ht , dist(~, N) ~ dist(F(~), F N) ~ It I + lsi 
by the triangle formula. So J~5I1mllu(H,)dt = J~511m 0 F-1Ilu(FH,)dt :5 

CJ~5(J~l(lt1 + Isl)-rds)~dt which is finite number for any r E (0,00). Sim­

ilarly, IImllu(u) = 11m 0 F-1Ilu(FU) :5 C(J~5 J~l (It I + Isl)-r dsdt) ~ < 00 for 

all r E (0,2). 

Since U is small, Ht is also a piece of hypersurface with nonzero Gaussian 

curvature which is same as H's. Applying the dual version of the restriction 

theorem and interpolation, we have II(gdO"H,tIlLq(Rd) :5 Cllgllp-P(H,) for all 

9 E CO' and all t E (-6,6) with some positive constant C, where s' < q < 00 

and p is a (small) positive number depending only on q. Then we have for 

any! E S with supp! c u, 
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IITmfllq = III _5(mfduH,)Vdtllq 

:::; I~511(mjduH,tdtllq 

:::; C I~5 II mjllu-p(H,)dt 

:::; cI~511jllu(H,)IImil 2(2iP) dt 
L (H,) 

:::; cllfllpI~511mll 2(2ip) dt 
L (H,) 

:::; CIIfilp 

where p is arbitrary in [1, s] with s = 2~:31). 
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(Minkowski's ineq.) 

(duality restr. thm) 

(Holder ineq.) 

(restr. thm) 

(estimate for m) 

Furthermore, by the Hausdorff-Young theorem and the second estimate 

of m, for any q > 2, IITmfllq :::; IImjllql :::; IIjiloollmllql :::; Cllflh. Combining 

the previous inequality and this one and using interpolation, we prove our 

lemma. H 

Now let's prove our Theorem 0.4 stated in Introduction. 

Proof of Theorem 0.4: It is sufficient to prove the inequality in Theo­

rem 0.4 for all u E Cgo. After substituting u by ek.xu(x), it is easy to see that 

it is equivalent to II (mv)V IIq :::; Cllvllp for all v E Cgo, where m(e) = ,e;(;17~". 
By the assumption of P and Proposition 0.1, for each e E 7rk(NP) there 

are a small ball D(e) C Rd with center at e and a hypersurface He with 

nonzero Gaussian curvature such that D(e) n 7rk(NP) c D(e) n He. Since P 

has simple characteristics which implies that IP(e + ik)1 2 Cdist(e,7rk(NP)) 
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with some constant C for all e, we have Im(e)1 :s: d' t( G ( P» with another 
IS e.7rk N 

constant C for all e. So Lemma 2.1 says by making D(e) smaller, one has 

IITmfllq :s: Cllfllp for all f E S with supp} c D(e) and for (p, q) as in 

Lemma 2.1. By the compactness of 'lrk(NP), there is a finite cover {D j }f=l 

of 'lrk(NP
) such that for each j, IITmfllq :s: Cllfllv for all f E S with supp} c 

2Dj . Let NJf=o be a partition of unity for {2Dj}f=1 U(Rd 
\ Uf=lDj), i.e., 

'£'I/;j = 1 and 'l/;j E Cgo(2Dj) for j ~ 1 and '1/;0 = 0 on Uf=lDj. Now let's 

decompose v(O into v(O = ,£'I/;j(Ov(O = vo(O + '£!=lVj(O. Then for each 

j ~ 1, 

for all (p, q) with (~,~) E A. 

For vo, since on suppvo, IP(e + ik)1 ~ C(1 + leI2 )'f, we have Im(OI :s: 
C(1 + leI2)-~ on suppvo. Hence, the Bessel Potential theory implies that 

for all (p, q) with (~, ~) E Aw So combining the above two inequalities, for 

all all (p, q) with (~, ~) E A n AI-' we have 

for all v E Cgo. This proves Theorem 004. U 

An immediate corollary is the following. 
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Corollary 2.2 Suppose PEG is of order m. If m < ! = ;f~!il, then for 

any integer 2 :::; I" :::; m, with p = s = 2~:31) and ~ - q~ = j, there is a 

constant C such that 

for all u E Wm,p with compact support. 

Proof: When m :::; ! = ~f~!il, for each 2 < I" :::; m, the points (~, ~ - j) 

are in the set A n AI'" That means the inequalities in Theorem 0.4 hold for a 

common p = s with the corresponding qp,'s. This is the proof of Corollary 2.2. 

R k L t - 2d(d+l)(d-3) h' h' 1 th - 2(d+1) If d emar e Po - d3 -5d-4 W lC IS ess an s - d+3' m < Po 

(which is, of course, bigger than! = ;f~!il), then the above inequality holds 

with p = Po and qp, = (~ - j )-1. The proof of this is the same as the proof 

of Corollary 2.2. 
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3 Application to weak unique continuation 

In this section we will use the Carleman inequalities in the last section to 

prove weak unique continuation theorems. A direct corollary is Theorem 0.2 

stated in Introduction. In Theorem 0.2, we don't have any restriction on 

degree m of P. We think that if m is large, one doesn't need P having such 

strong curvature condition in G to get a Carleman inequality. For example, 

we may relax the assumption that the complex Hessian matrix He p has rank , 

d when m :::: d. So we will mainly consider the case where the dimension d 

is greater than the degree m of P. Let's first state and prove another weak 

unique continuation theorem as a corollary of Theorem 0.4 as follows and 

then prove Theorem 0.2 because both proofs are same. 

Theorem 3.1 Suppose PEG is of degree m < !!. Suppose a function s 

u E Wm,s has compact support and satisfies IPul ::; 2:;:'=2 VI'IVm -l'ul with 

VI' E L~. Then u _ 0 in Rd. 

Proof: Let k be a direction which is as III the assumption of G for P. 

Since suppu is compact, there is a point eo on the boundary of suppu and 

a hyperplane such that u _ 0 on the one side of the hyperplane and the 

normal vector of this hyperplane is k. So after a rotation and translation, we 

may assume that 0 E 8(suppu) and suppu C R! and ed is that k. Consider 

Sp = {x E R d : 0 ::; Xd ::; p}. Let p > 0 be chosen small enough so that 

max2<I'<mllVl'll .r!. ::; 21
C where C is the constant in Corollary 2.2. 

- - LI' (SpflSUPpu) m 

Let's denote S: = Sp n suppu. Then with p and ql' as in Corollary 2.2, by 



applying Corollary 2.2 and the Holder inequality, we have for t < 0, 

So, 

2: lIetxd lvm-l'ulllul'(sp) ~ mClletxdPuIILP(Rd) 
2~I'~m 

~ mC (1l etxd 2: VI'IVm-l'uIIILP(Sp) + lIetxd PUIILP(S~)) 
2~I'~m 

::::: mC ( 2: IIVI'II.d. lIetxdlvm-l'uIIlLql'(Sp) + lIetxdPUlb(Sc)) 
LI' p 

2~I'~m (st) 

~ ~ 2: letxdlvm-l'uIIILq,,(Sp) + mCetPIiPuIlLP(S~). 
2~I'~m 

2: Ilet(Xd-P) Ivm -l'u IIlLql'(Sp) ~ 2mCII Pu IlLP(sZ)· 
2~I'~m 

Let t -t -CX), we get contradiction if suppu =1= o. # 
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Remark 3.1 Let Po be as in Remark in Section 2. Then the same conclusion 

as in Theorem 3.1 is still true if replacing s by po and m < 4 by m < .!L. 
a Po 

The proof is exactly same as the previous one. 

Now let 's give a sketch proof of Theorem 3.1. 

Sketch of Proof of Theorem 0.2: In the first case, Jl ~ ~. The Carleman 

inequality holds, by Theorem 0.4 in particular, for (~, ~) in the set A n AI' n 

{( !, !) : ! - ! = !!:'d}. Let p be as small as possible in that region and then 
P q P q 

the remainder of the proof is same as the proof of Theorem 3.1. Similarly, 

when ~ < Jl < d, with p = lone may find a q such that ~ - ~ = J and 
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(~, ~) E A n AI'" This leads to (2) of Theorem 0.2. When p, ~ d, with p = 1, 

for any r I' > 1 there is a q < 00 such that 1-! = ..!.. and (1, !) E A n An = A. 
q r~ q ,-

So the Carleman inequality implies (3) of Theorem 0.2. " 

We already noticed that we didn't involve the highest order term, Vm-1u, 

neither on the right-hand side of a differential inequality as in Theorem 3.1 

nor on the left hand side of a Carleman inequality as in Theorem 0.2. In fact 

one cannot expect such Carleman inequality for the highest order term with 

the gap ! - ! = -d
1

, just as in the case of the Laplacian operator. But by 
p q 

using the technique in [12], we may also prove a weak unique continuation 

theorem for a differential inequality having the highest order term with a 

nice Ld_ condi tion on the coefficient. Let's first state a Carleman-Wolff type 

inequality. 

Lemma 3.2 Suppose PEG is of order m and the open set J{ of Sd-l is 

as in Proposition 0.1. Assume m < ~ and p = s. Then there is a constant 

o = O(p) < ~ such that for any t E Rl \ {O} and any set E C Rd with 

lEI ~ Itl-d
, we have 

for all u E Wm,p with compact support and k in any fixed compact subset of 

J{ where! = ! - !. , q p d 

Proof: Let's only prove the above inequality for all u E Cfr'. Fix any k E J{ 

and let t = 1. The proof of Theorem 0.4 shows that one may decompose the 
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multiplier m(~) = 1e;(~k17k)' into two parts m(~) = ml(O + m2(~) where ml 

has compact support and m2 is bounded by (1 + 1~12)-L Moreover, one has 

for all v E S 

for all (p , ql) with (1,.1.) E A and 
P 91 

for all (p, q) with (~,~) E AI, where A and Al are defined in the beginning 

of Section 2. 

Let p = s, q be such that! - ! = -d
i and qi be very close to s'. Combine 

P 9 

those two inequalities and use the Holder inequality. For any set E, we have 

Let B = ! - .1.. Computing out, we have B < !d' 
9 91 

Notice that Remark 1.4 implies the above process is actually true uni­

formly in k' E Sd-l near that fixed k. So by a compactness argument and 

scaling in k, we prove this lemma. ~ 

Remark 3.2 (1) Again as before, with p = Po and m < :0 as in Remark 3.1, 

the same conclusion as in Lemma 3.2 is still true with some other B < ~. 

(2) From the above Carleman-Wolff type inequality, one may get the Carle­

man inequality with some convex weight instead of linear weight k . x there. 

See Remark in the next section. 
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Now we are ready to prove Theorem 0.3 stated in Introduction. 

Proof of Theorem 0.3: The proof is very similar to the one in Theorem 

1 of [12]. Because of homogeneity of P, after a change of scale and rotation 

and translation, we may reduce to the following case: (1) suppu C R~; (2) 

there is a cone C, = {k E Rd \ {O} : ki + ... + kLl ~ ak,D for some a > 0 

such that the inequality in Lemma 3.2 is true for all k E r" and lEI ~ Ikl-d 

(with t = 1 there). Since suppu is compact, with C being its convex hull, we 

may choose a CO' function ¢l : Rd -4 R such that ¢l = 1 on a neighborhood of 
d 

BC and Ll<l'<m IIVI'II;;" < (3, where (3 is a sufficiently small positive 
- - L" (SUPPcP) 

number depending only on d and m to be chosen later. Let v = ¢1u. Then 

by a simple calculation 

IPvl ~ L VI'IVm -l'vl + X 
l$l'$m 

where X E LP and suppx C C n supp V ¢l. After making a small enough 

depending on the diameter of C and ¢l, i.e., on u and d and m, the same 

proof as Lemma 7.1 in [12] shows that if k E r" and Ikl is sufficiently large, 

we have an estimate 

(t) Ilekoxxllp ~ Ile
kox L VI'IVm-l'vlllp' 

l$l'$m 

Now we may apply Wolff's measure lemma in [12] to the measure 

( L VI'IVm -l'vI)Pdx. 
l$l'$m 
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Let M be large enough so that B(pM ed, [!o) C f ". Then the Wolff's lemma 

says that there are {kj } and disjoint convex sets {Ej } such that 

"i < Ikjl < 2M, kj E B(pMed, [0%) C f a 

(tt) II ekj o" L:l:<:;1":<:;m VI" Ivm-I"vIIILP(Ej) 2=: 2-t Ilekjo" L:l:<:;1":<:;m VI" Ivm-I"vilip 

L: IEjl-1 2=: C-1Md and IEjl2=: M- d for eachj 

with an absolute constant C which is independent of M and {Ej}. 

Now let's denote Et = Ej n supp</>. By the Holder inequality, we have 

Ilekj"" L VI" Ivm-I"vl IILP(Ej) 
l:<:;1":<:;m 

:::: C( L IJVI"IILJl(Et) llekj"" lvm-I"vlllq~ + IIViIlLd(Ej)llekjo"lvm-lvIIILq(E»). 
2:<:;I":<:;m J 

For the first terms above, we apply Corollary 2.2. For the second term above, 

we apply Lemma 302. Then the above is bounded by 

Because of (t) and (:j:), we have 

Ilekjo" PvllLP :::: Clleko., L VI"IVm-I"vlllpo 
l:<:;1":<:;m 

Finally using the second fact in (tt), we get 

lIekjOX L VI"lvm-I"vIIILP(Ej) 
l:<:;1":<:;m 
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X ekj
.
x L: VJLlvm-JLvl 

l:OJL:om Y(Ej) 

Hence, 

for some positive constant C. By the assumptions on the functions VI' and 

choosing fJ small enough which depends only on d and m, we have by the 

third fact of (t t), for a new constant C, 

since () < ~ by Lemma 3.2. So raise to the dth power and sum over J 

obtaining 

fJ 2: IIViI11d(suPP4» 2: C- l L:(MdIEjl)-l 2: C- l 

j 

because of the third fact of (tt) in for the last step above. This is contradic-

tion if fJ is small enough. ~ 

Remark 3.3 The same conclusion as in Theorem 0.3 is true after replacing 

s by Po and m < £ by m < L, because of the proof of Theorem 0.3 and (1) 
s Po 

of Remark 3.2. 
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4 Car leman inequalities for operators in classes 

Sand D 

In this section, we continue to study Carleman inequalities for a wider class 

S or D which doesn't have any curvature assumption for operators. In fact, 

most results here are improvements of results in [12]. The proof of the Car­

leman inequalities for an operator P in class S is very similar to the one for 

P in class D. So we will give a detail proof of the result when P in class D 

and only mention the result for P in class S. Let's start with several simple 

lemmas. 

Lemma 4.1 Suppose ifJ E CO"([O, 1)) with ifJ(O) = ifJ'(O) = O. Then 

t ifJ~:)2 dt :::; C (t ifJ(t)2tdt + t ifJlII(t)2tdt) 

with some universal constant C. 

Proof: If ifJ"(O) = 0, then we have 

ifJ(t) = ~ f~(t - s)2ifJlII(S)ds 

- ~ f~W + s(s - 2t))ifJlII(S)ds 

- ~t2 J~ ¢/"(s)ds + J~(~s - t)ifJlII(s)sds, 

I.e., 

1 lot 1 </>(t) = -t2</>,,(t) + (-s - t)</>III(s)sds. 
2 0 2 
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If ¢/'(O) of- 0, let's apply the above formula to ¢(t) - ~¢"(OW. We get 

¢(t) - ~¢//(0)t2 = ~t2(¢//(0) - -2
1 

¢//(O)· 2) + r(~s - t)¢lII(s)sds. 
2 2 h 2 

This is the same as above. So for any if> E ego with if>(0) = if>'(O) = 0 we have 

the following inequality 

by the Holder inequality. Divide by t3 and integrate the above inequality. 

We have 

r ¢(t)2 dt::; fl tif>//(t)2dt + fl t r if>1II(s?sds. 
Jo t 3 Jo Jo Jo 

The second integral on the right-hand side is bounded by J~ if>1II(S)2Sds. So 

let's compute the first one. Notice that tif>//(t)2 = [(t¢'(t))' - ¢'(t)]· ¢//(t). So 

by integration by parts, the first integral in the right-hand side is 

t¢' . if>//Ili - J~ t¢' . if>lIIdt - J~ ¢' . ¢"dt 

- J~ tif>' . if>1II dt 
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here we used ¢>(O) = ¢>'(O) = 0 and ¢>(1) = 0, and the triangle inequality in 

the last step. Once again using t¢>' = (t¢>)' - ¢>, 

f~ t¢>'(t)2dt = f~(t¢>)'. ¢>'dt - f~ ¢>. ¢>'dt 

t¢>· ¢>'16 - f~ t¢>· ¢>"dt - ~ f~(¢>2)'dt 

- - f~ t¢>· ¢>"dt 

by the triangule inequality. So we have proved 

Absorb the 1st term on the right-hand side into the left-hand side, 

On account of the above calculation, we have 

Lemma 4.2 Suppose ¢> E Cgo(D(O, 1)) where D(O, 1) is the unit ball of R2. 

Then for 2 ::; q ::; 00 and R 2': I, we have 

Proof: Let's first prove the inequality with R = 1. Since q' ::; 2, the Holder 

inequality implies II¢>II~, ::; II¢>II~ which is fSI f~ (r2<1>~~x'»2 drdO"(x'). Let's apply 
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G(N) C B d -2. Then for any 2 ::; q ::; 00 and any function <.p E Cgo(U) there 

is a constant C depending on q, <.p, upper bound of finitely many derivatives of 

G and lower bound of the gradient of G such that for all R :::: I, the following 

inequality 

II <PI * <.pvllq ::; C Rl+~ II (1 + I~I ?<p2112 

holds for all Schwartz functions <PI and <P2 such that SUPpJl U SUPpJ2 C B 

and IJl(~)1 ::; (dist(~,N))-2 'IJ2(~)1 for all~. 

Proof: Let's denote by z, x the points in Bd-2, D(O,l) respectively. As G 

is a diffeomorphism, Ixl ::; Cdist(G(z,x),N). Now let 1f; = ¢2(fx(I~'x)). Then 

by using Lemma 4.2, 

111f;llr.,(u)::; C r r 11f;(G(z,x)W'dxdz 
JB d-2 JD(O,l) 

"-
::; CRq'(l+~) kd-2 (fv(O,l) (iIX I21f;(G(z,x))1

2 
+ R-

6
IV;(lxI

2
1f;(G(z,xmn dX) 2 dz 

"-
= CRq'(l+~) r (r 1 ~2(G(Z,X)W + R-6 1 V; ~2(G(z,X)WdX) 2 dz J Bd-2 J D(O,l) 

::; CRq'(l+~) (11~2112 + R-3 11 V 3 ~2112r' 

where we used Holder inequality, the change of variables, and the interpola­

tion in the last step. 

Now by the Hausdorff-Young inequality, 

, Ixl2 
II <pl * <.pv ll q ::; CII<pl . <.p llq' ::; ci l dist(~, N) 1f;. <.pllq' 

::; CII1f;IIL"(U) ::; CR(l+~) (11~2112 + ~II v 3 ~2112) . 
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This is the proof of the lemma. 

Now let's start our main lemma in this section. 

Lemma 4.4 (1) Suppose P E D is of order m. Then there is an open cone 

r with vertex at 0 such that for any q E [2,00) and any integer 0 < J.L :::; m 

with ~ 2: ~ 2: ~ - J' or for q = 00 and J.L > ~, the following inequality 

holds for all u E W m ,2 with compact support, VR 2: Ikl-1 and all k E r. If 

P is of form Q2 for some Q E S of degree ';, then the above inequality holds 

for almost all k E R d. 

(2) If PES, then with the same notations as above, we have 

for almost all k E R d
, VR 2: Ikl-1 and U E Wm,2 with compact support. 

Proof: The proof of part (2) is very similar to the one of part (1). The 

similar proof may be also found in [12]. So we will only prove part (1) for 

u E CO'. In the following proof, we use C to denote a constant depending 

only P, p, d. 

Let's fix a ko E Sd-l n J{ where J{ is the open subset of Rd \ 0 as in the 

definition of D for P. We first prove the following. 

Claim: For any ~o E 'irko (NP
) there are a neighborhood U of eo and a con­

stant s > 0 such that for any function 'P E CO'(U) and k E Sd-l with 
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[k - ka[ ::::: s, the following inequality 

[[(c,o(ek-x \lm-p. u)"t[[ ::::: CRI+~[[ekox(1 + [~[? Pu[b 

holds for the same u, R as in the lemma. 

By the assumption, Nt; is a submanifold of codiemsion 2 in R2d and 

Nt; and Ih are transverse for k E K. By Proposition 6.5 in the appendix, 

there are a neighborhood U of ~a in Rd and a number s > 0 such that for 

any k E Sd-l n K with [k - ka [ ::::: s there is a diffeomorphism Gk : U -t 

B d
-

2 X D(O, 1) satisfying that Gk(7rk(N)) C B d- 2 X {O} and [\l Gk[ 2 C-l 

for all ~ E Uo Now let rPl = (ek-x \lm-p. uy and rP2 = ek-x Pu. Then we have 

[¢1(~)[ ::::: Cdist(~,7rk(N))-2[¢2(~)[ by the assumption P E D in definition 

l.l. So by applying Lemma 4.3 to rPl and rP2, we prove the claim. 

Now since 7rko(N) is a compact submanifold, there are a number sand 

finitely many open sets {Uill=1 and a partition of unity {c,oj}f=a with c,oj E 

Co(Uj) for j 2 1 such that the inequality in the claim is true for each c,oj 

and suppc,oa n (UkESd-l.lk-kol~s7rk(NP)) = 0. Let's write 

J 

ekox Vm-p. U = Lo)c,oj(ekox Vm-p. u)")V + (c,oa(e kox Vm-p. u)")v. 
j=1 

For the last term, since [c,oaW ,e:(t17~" [ ::::: C(l + [W-p., by using the Bessel 

potential and Plancherel theorems we have 

for all q with t 2 ~ 2 t - 1 if fL ::::: ~ and q = 00 if fL > ~. For the other 

terms, by using the claim, we finally get 
J 

[[ekoXD"'u[[q::::: I:: [[(c,oj(ekox Vm-p. u)"t[[q + [[(c,oa(ekox Vm-p. u)"t[[q 
j=1 
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::; C(J + l)Rl+~lIek.x(1 + I~I? Pul12 

for all k E J{ with Ik - kol ::; s. Finally by scaling, we prove our inequality. 

By using this lemma, we may prove our Carleman inequalities with weaker 

gaps for P E D or S which is stated in Theorem 0.5 in Introduction. 

Proof of Theorem 0.5: We only prove (1) because the proof of (2) is 

very similar. Since P E D, there is a cone r such that for each k E 2r, 

the inequalities in Lemma 4.4 (1) hold. Let J{ = r n Sd-I, ko E J{ and 

¢Y(x) = ko· x + .8lxI2• Divide the unit ball into about ttd's disjoint little cubes 

Bj of radius t~d, which are paralleled to the coordinate system and centered 

at aj. Let v(x) = u(x - aj) E C~(Bl). Now apply Lemma 4.4 to v, we have 

by taking a change of variable x --+ x - aj, with (p, q) as in Lemma 4.4, 

for all k E 2r. Hence for all such k, 

Now choose .8 to be small enough such that for each j, t 'V ¢Y(aj) E 2r. Let's 

substitute k by t 'V ¢Y(aj) and R by r~ in the above inequality. Notice that 

when x E B j , It· O(lx - ajl2)1 is bounded by a universal constant. So the 

above inequality implies that 
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:::; Cetq,(aj)-t9q,(aj).ajlt \l cfo(aj)ld(~-~)-I'(t \l cfo(aj)' r~)H~ ·lietq,(x)AjPuI12, 

where Aj = ct[q,(x)-q,(aj)-(t9q,(aj»)(x-aj](1 + dlx - ajl?· Since I \l cfo(x) I :::; 1 

and cfo( aj) - \lcfo( aj) ·aj :::; 0 because cfo is convex, the above inequality becomes 

if ! - ~ :::; ~=:. Take qth power to both sides and sum over j, 

Iletq,\lm-l'ull~ = L Iletq,\lm-l'u lllq(Bj) 
j 

:::; C L Iletq,. Aj . Pull~ 
j 

:::; C[JLIAAxW(etq,Pu)2dxl~ 
J 

by Minkowski inequality since q 2:: 2. Now we need to estimateI:j Aj(X)2 

pointwisely. We can assume x = O. Let C/ = {Bj : lajl :::; It-~}. Then 

#C ~ (lr~)d-l - Zd-l S 
/ ~ rf(d-l) - . 0 

L AJ = L L [e- t [q,(O)-q,(a j)-9q,(aj)(O-x)](1 + t1210 - aj I?l 
j 1 JEO, 

:::; LA; = L L e-ctlajl2 (1 + e2lajl3) 
j / JEO, 

:::; CLld- 1 e-c/
2
(1 + [3):::; C < 00. 

1 

This proves that lIet q,\lm-l'ullq :::; Clletq, PUll2 for all u E C8"(B(O, 1)). 
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Remark (1) The Carleman-Wolff type inequalities in Lemma 4.4 may imply 

some weak u.c.p. theorem as we did in Theorem 0.3 with potentials in Lr,., 

where 7';1 is very close to the gaps in the above. And here we may use the 

Carleman inequality in Theorem 0.5 to prove some weak u.c.p. theorems by 

a simple proof as we did in Theorem 0.2. 

(2) If PEG is of order m < ~, then by the Carleman-Wolff inequality in 

Lemma 3.2, with the same function <p as in Theorem 0.5 we have 

for all u E Wm,s with compact support, where q E [s, 00) is such that 0 :::; 

~ - ~ :::; (2d-{)(d+1) which is better than the gap in (2) of Theorem 0.5. 
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5 Some counterexamples and application to 

UCP for operators in D 

In Section 4, we only used real analysis and general properties of Fourier 

analysis to obtain some Carleman inequalities in Theorem 0.5. One may 

already see that we didn' t get Carleman inequality for the highest order 

term in the left-hand side (p, = 1) with positive gap when P E D. In fact, 

the following proposition will tell us that there is no such inequality with 

positive gap. Moreover, for the other terms with p, ~ 2, we will point out 

such gap conditions in the Carleman inequalities in Theorem 0.5 are also 

sharp in some sense. 

Proposition 5.1 Suppose that P is a homogeneous polynomial of order m 

with real coefficients. Assume that P(zo) = 0 and \1 P(zo) = 0 for some 

nonzero Zo E Cd. Then with any smooth function ¢> of one variable which 

has nonzero derivative at 0 the following inequality with k = rezo and some 

constant C 

for all u E Cgo(B(O, 1», Vt > 0 will imply that q ::; p. 

Proof: We may assume that ,p(O) = 0 and ,p'(O) = 1. Let Zo = k + il. 
By assumption, P(k + il) = \1P(k + il) = 0, i.e., P(e-(k+i1).x) = 0 and 

(\1P)(D)(e-(k+i1 ).x) = O. Let R = B(O, (max(lkl, Ill»-t). Define'I/J E cgo 
such that 'I/J = Ion !R, = 0 on RC and l\1i 'I/Jl ::; Clk+ illtj for some absolute 
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constant C. Then 

and 

Apply the inequality in the statement to e-(k+i l).x'Ij;. We have IlRI~ ::; CIRI~. 
Letting Ikl or Ill--+ 00 (this is possible because P is homogeneous), we obtain 

q ::; p. ~ 

The idea of the proof above proposition comes from [6] and [1]. A typical 

example of such a polynomial operator is the bi-Laplacian .6.2
• 

When f.l ::; 2, we provide the following result to say the gap ,i::::~ in Theo­

rem 0.5 is sharp in some sense. 

Proposition 5.2 Fix f.l to be a positive integer with f.l < d. Then for any 

smooth function ~ with \7~(0) f: 0, the following inequalities with gap 0 ::; 

Vu E C;:'(B(O, 1)), Vt > 0 

are sharp in the class of P E D with P(\7~(O) + it) = (\7 P)(\7~(O) + il) = 0 

for some I E R d. 

Proof: After a rotation, we may assume that ~(x) = Xl + O(lxI2). So 

consider P = Po(6,6) + Q(6, ··· ,ed) E D be of degree m such that Po is 

a two variables elliptic homogeneous operator having double characteristics 
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and Q is another d-2 variables operator. Choose Po such that P(et (Xl+ix2)) = 
V P( et (Xl+ix2)) = o. We should mention such operators exist. For example, we 

may construct such P from (t? +tl)2+ . . by a rotation. Let r = r(XI' X2) = 
t( +. ) I I e- XI oX2 and ep(XI' X2) = epO(t2XI, t2X2) where epo E Cgo(D(O, 1)) and epo = 

1 on D(O, ~). Let 1j; = 1j;(X3,·· ·, Xd) = 1j;O(t~;;:l X3,···, t~;;:1 Xd ) for some 

1j; E Cgo(B(O, 1)). Then 

IP(rep ·1j;)1 = IPo(rep)·1j; + rep· Q(1j;)1 

and 
dm-I" 

Ivm-I"(rep · 1j; )1 ~ 1 d m I" rep ·1j;1 ~ C-Ie-txltm-I"X1R 
Xl 2 

1 1 2 m-l m-l d 2 . where R = (-t-'i, t- 'i) x (-r-m, t--m) - . So applymg the Carleman 
I I 

inequality for rep .1j;, we get tm-I"IRlq ::::; Ctm-IIR Ii>. As t may be large, 

~ - ~ ::::; d-~-=~. That means the gap ~ - ~ ::::; ~t~ is sharp in the sense of 

m --t <Xl . n 

It is interest ing to point out that for the class S of simple characteristics, 

we may also prove the gap in Theorem 0.5 is sharp. 

Proposition 5.3 Let J.l and rP be as in Proposition 5.2. Then with the gap 
I 

o ::::; ~ - ~ ::::; ~=-i I the following inequalities 

Vu E Cgo(B(O, 1)), Vt> 0 

are sharp in the class of PES with P(VrP(O) + il) = 0 for some I E R d. 
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Remark: We may replace the class S by the class of polynomials which 

have Calderon's simple characteristics (see Definition 1.8). This is because 

the class of Calderon's simple characteristics is invariant under rotation. So 

we may always assume \jrp(O) = e1 and test the polynomial function el + 
e;, + ... + ed' which satisfies the condition (1 + ih)m + (ij2)m = 0 for some 

1 = (/1,/2,0, ... ,0). 

Proof: As in the proof of Proposition 5.2 and the discussion in the above 

Remark, we may assume rp(x) = Xl + O(lxI2) and choose a P = Po(6,6) + 
Q(6,"" ed) of degree m such that P(et (x1 +ix2 )) = O. Let f, r.p and 'ljJ be as 

in the proof of Proposition 5.2. Then we have 

IP(fr.p· 'ljJ)1 = IPo(fr.p) . 'ljJ + fr.p· Q('ljJ)1 

since the main contribution comes from \jm-1f· \jr.p because Po(f) = O. On 

the other hand, 

where R is as in before. Then by the same argument as in the proof of 
1 

Proposition 5.2, we obtain ~ - ~ ::; ~:::~. ~ 

This proposition says in particular that there is no Carleman inequality 

with gap J for all PES if we don't add any curvature condition. 

Before we end this section, we would like to give an application to weak 

UCP by using Wolff's version Carleman inequality in Lemma 4.4 for P E D. 
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d-'l. . d 1 
Theorem 5.4 Let d 2: 2 and f.L 2: 0 an integer. Let 1'" = ;=t if f.L :::::: "2 + 4' 

rp' = 2 if f.L > ~ +~. Suppose P E D is of order m. If a function u E W m
,2 

with compact support and satisfies that IPul :::::: L25,,5m A"lvm-"ul, then u 

vanishes identically if Ap. E LI~c for all 2 :::::: f.L :::::: m. 

The proof of Theorem 5.4 is exactly same as the proof of Theorem 4 in 

[Wo] by using Lemma 4.4. Or one may look at the proof of Theorem 0.3. So 

we omit it. 

Remark Theorem 0.5 may also give a u.c.p. theorem directly. But our 

index 1'" here is smaller than the one got directly from Theorem 0.5. 
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6 Appendix and some further questions 

First we would like make a little remark about our class G in Section 1. We 

have already given a lot of examples of elliptic homogeneous polynomials in 

G. A natural question is to ask how large this class G is in the universal class 

of elliptic homogeneous polynomials. Professor Wolff tells me the following 

result: 

Proposition 6.1 For generic homogeneous polynomials PI,· .. , Pd, their com­

mon zero set is only {O} . 

Remark If we assume the degree of Pj is mj and write Pj = I:1" I=mj aj."z", 

then the" generic" means almost all of {aj."}I"I=mj.j=I ..... d. 

Proof: We believe that one may find a proof of this proposition III any 

regular text book of algebraic geometry such as in [8] . But we would like 

to give a short proof here instead of finding the exact reference. First let 's 

make a claim. 

Claim: Suppose PI,·· . , Pd are homogeneous polynomials of degrees ml, 

,md respectively. If the map \f! : z E Cd \ {O} I--t (PI,···,Pd) E Cd ~s 

transverse to 0, then there is no common zero with PI, ... , Pd except {O}. 

Proof: The assumption says that D\f! is surjective for all z of \f!(z) = o. 

Now assume that there is at least a nonzero z such that \f!(z) = O. Since 

Pi's are homogeneous, \lPj· z = mjPj(z) = 0, here a· b = I:ajbj . Hence 

DiII(z) . z = (0,···,0) which means detD\f!(z) = o. This is a contradiction 

with D\f! being surjective. Now let's prove our proposition. 

Proof of Proposition 6.1: let A = {aj."}I"I=mj.j=I ..... d be in RN for some 
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large number N. Consider \[I : c'-\ {OJ X RN -4 c'- by (z, A) f-4 (PI,.· . , Pd ). 

We claim that D\[I(z, A) is surjective. In fact, D\[I(z, A) is nothing but 

(D z \[I, D{",} \[I, D{j} \[I) which has a z'" I dxd submatrix from the last part. So 

D\[I is surjective. Now applying the transversality theorem (see [4]) to \[I, we 

prove the conclusion. ~ 

By the same proof, we have the following result. 

Proposition 6.2 For generic homogeneous polynomials P of degree m, \7 P 

Proof: We use almost the same notations as before. Write P = 2:1"'I=m a",z"'. 

Then \7P = (-· · ,2:I",I=maaajza-ei, ... ), where a = (al,···,ad) and ej = 
(0,· .. ,0,1,0, ... ,0) hence a = 2: ajej. Let A = {aa}lal=m be in some RN. 

By the claim in proof of proposition 6.1, we need to only show that 

by 

(z,A) f-4 ( ••• , L aaajZa-ei, ... ) 
lal=m 

is transverse to o. When z i= 0, we may assume Zl i= O. Consider the 

We know that \[I(z, A) 

... a 2Z
m - l + ...... a dZlm-l + ... ) where a l = mel = (m 0 ... 0) 

, Ct' 1 " Ot, " , , 

a j = (m -l)el + ej = (m -1, 0,···,0,1,0,···,0). So in D\[I(z, A), there is a 

d x d diagonal submatrix where elements are mzi"-l, zi"-l, ... , zi"-l respec­

tively. Of course it is invertible and hence D\[I(z, A) is surjective. Therefore, 

\[I (z, A) is transverse to zero. ~ 
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This fact tells us that the generic elliptic homogeneous polynomials are 

in our class 5. 

Our other remark is about the class D. In order to see the class P is a 

subset of D, the following proposition will be helpful. 

Proposition 6.3 If P E 5, then for generic k E Rd the sets N = {(x, y) E 

R d X R d \ (0,0) : P(x +iy) = O} and Ih = {(x ,y) E Rd X Rd: y = k} are 

transversal. 

Proof: \lzP =1= 0 on {z E d \ 0: P(z) = O} says that N is a submanifold 

of co dimension 2 in Rd x Rd and for generic k E R d
, \lxreP(x + ik) and 

\lximP(x + ik) are linearly independent on the intersection N n Ih by the 

transversality theorem in [4) (or one may see Proposition 6.4 and the proof 

of Proposition 6.5 below). Let (x, k) be a point on N n Ilk. At (x, k), the 

tangent space of N in Rd x Rd is 

by the Cauchy-Riemann equations. The tangent space of Ilk at (x, k) III 

R d X Rd is 

5 = Span ((eI, 0),,,,, (ed, 0)) 

where {ej}'s are the standard bases of Rd. We want to show T+5 = Rd x R d. 

We only need show both vectors (\lxreP, - \lx imP) and (\lximP, \lxreP) 

are in T + 5 because T is of dimension 2d - 2. Since \l xreP and \l ximP are 

linearly independent, there are two vectors a and b in Rd such that (a, - \l x 

imP) E T and (b, \lxreP) E T. So we have (\lxreP, - \lx imP) - (a, - \lx 
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imP) E Sand (V'ximP, V'xreP) - (b, V'xreP) E S and hence (V'xreP, - V'x 

imP) and (V'ximP, V'xreP) are in T + S. # 

Now let's prove a proposition which we mentioned in section 1. 

Proposition 6.4 If PES, then V'erep(e + ik) and V'eimp(e + ik) are 

linearly independent on 1rk(NP) for almost all k E Rd 

Proof: Let PES. Then tzP =1= 0 on NP which says for any z E N P there 

at least is a j such that one of the following is not zero at z: d~ reP, d~ . reP, 
' J J 

d~. imP, d~. imP. On the other hand, we know that d~. reP = d~. imP and 
.... , J .... , J 

d~ reP = - d~ imP by the Cauchy-Riemann equation since P is analytic. So 
J 'J 

this says the matrix 

( 

V'ereP V'eimP) 

V'kreP V'kimP 

has rank 2 for all e +ik E N P. If we consider the map (reP, imP) : Rd x Rd -+ 

R x R, the above fact tells us that this map is transverse to 0 E R x R. 

Hence by the transversilty theorem (see page 68 in [4]), for almost all k E Rd 

the map (reP(· + ik),imP(· + ik» : Rd -+ R is transverse to 0 E R. By 

the definition of transversilty, V'ereP(· + ik) and V'eimP(· + ik) are linearly 

independent on 1rk(NP) for generic k. This proves the proposition. # 
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Now we would like to prove a geometric proposition which we used in the 

proof of Lemma 4.4 in section 4. 

Proposition 6.5 Suppose N is a submanifold of codimension 2 in R2d. 

Suppose Nand ITk = {(x, I) E R2d : 1= k} are transverse for some k E Sd-l. 

Then for any eo E 1rk(N) = N n ITk there are a neighborhood U of eo in Rd 

and a small number s > 0 such that for any 1 E Sd-l with 11- kl ::; s there is 

a diffeomorphism G/ : U -+ B d- 2 X D(O, 1) satisfying the following properties. 

G/(1r/(N)) C B d- 2 x {O} and 1 'V G/(e)1 ~ C-1 for all e E U. Where B d-2 is 

the unit ball of dimension d - 2 and D(O, 1) is the unit disk. 

Proof: Since N is submanifold of codimension 2, for (eo, k) E N, there are 

a neighborhood M of (eo, k) in R2d and two smooth functions f and g such 

that f- 1 (0) n g-I(O) n M = N n M and 

has rank 2 on M. Now we claim that 

( 
'Vei) 
'Veg 

has rank 2 on M. 

Suppose not. Then for some point (e, I) E M there are two numbers 

a and b with a2 + b2 i= 0 such that a 'Ve f + b 'Ve 9 = O. We know that 
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(\ld, \lkf) and (\leg, \lkg) are two normal vectors to N. So a(\ld, \lk!) + 

b(\lW, \lkg) = (0, a \lk f + b \lk g) ..1. TN. On the other hand, it is obvious 

that (0, a \lk f + b \lk g) ..L TIT,. Since N and III are also transverse when 1 

is too close to k, this shows that a(\ld, \lhf) + b(\leg, \lkg) = 0 which is a 

contradiction. 

So now we may assume without loss of generality that ed-l = h({, 1) and 

ed = gl({, 1) define the submanifold 7r1(N) n U for some neighbohood U of 
. d - d-2 - - -eo III R, where e E R . Let FI(O = (e,ed-l - fl(O,ed - h(e),l). Then 

we may see that Fz(7rI) C R d- 2 x {O} and I \l FI(OI 2:: 2. Finally since 7r1 is 

compact, we may construct Gl as a composition of Fl with a certain dilation 

in the variables of R d
-

2
. ~ 

Finally let's state some further questions in which we are interested to 

end this paper. 

(1) Are generic elliptic homogeneous polynomials in the class G? Since we are 

interested in Carleman inequality, we may also ask another question like the 

following. Does Carleman inequality hold with a sharp gap as in Theorem 0.4 

for generic elliptic homogeneous polynomials? 

(2) In Theorem 0.2 and Theorem 0.3 we have a weak u.c.p. theorem with 
d 

the reasonable condition that VI" E Li' if m ~ ~. Do we have the same result 

with the condition on v" for m is close to d? 

(3) Can we have a Carleman type inequality for an operator in G such that 

which may be directly used to prove a u.c.p. theorem, instead of a weak 
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u.c.p. theorem as in Section 3? If it is not possible, what is a reasonable 

condition for the operator? In [12], T . Wolff gets a u.c.p. theorem for PES. 
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