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SALE

. A1l the time I design programs for nonexisting
machines and add: "if we now had a machine comprising
the primitivés here assumed, then the job is done".

. In actual practice, of course, this ideal
machine will turn out not to exist, so our next task--
structurally similar to the original one--is to pro-
gfam the simulation of the "upper" machine....But this
bunch of programs is written for a machine that in all
probability will not exist, so our next job will be to
simulate it in terms of programs for a next Tower level
machine, etc., until finally we have a program that can
be executed by our hardware.

---E. W. Dijkstra1

1Notes on Structured Programming, in Structured Programming,

edited by 0. J. Dahl and C. A. R. Hoare (Academic Press, New York,
1972), pp. 1-81.
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ABSTRACT

A proof procedure verifies relative consequence relations

Gtz (1)
in first-order logic with equality by generating a refutation (or proof
of contradiction) for some clause-representation C of Q? v{~C},
using the axioms and inferences of some sound and effective calculus
for |5 . Performance of the procedure depends upon two forms of

£

heuristic knowledge about |== which it may embody:

£

(S) Structural knowledge is formalized by a refinement (or

decidable subset) of the deductions admitted by the proce-
dure's calculus which acts as a "search-space filter":
only those deductions from C contained in the refinement

are generated.

(P) Procedural knowledge is formalized by a search strategy

(or enqueuing function): it determines which of the ad-
missible inferences will be generated next on the basis of

the current deduction.

This investigation develops a general hierarchical method for the
design of refinements embodying structural forms of heuristic knowledge
characteristic of expert human problem solvers in an axiomatized problem

domain.
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Initially we design a refinement A for £ -resolution deduc-

tions, whose inferences have the form

{B]v_q_.l,---,angn} - C (2)
where (B]- q])e ¥ osms W (Bn- qn)e 2C 2 (BTG -q1e) Vxam v(Bne-—qne)
and 0 1is a substitution (of terms for variables) which makes

{q16,---,qné} contradictory in £ . The unit-clause set {q1,---,qn}

is called a latent £ -contradiction.

€ -resolution is not in general effective: each inference (2)
must be realized by finding a "lower level" refutation for
E'\J {q],---,qn} and extracting © from it. For this sub-problem we

design an &£ '-resolution refinement A' where £ 5 £' . The normal

composition A+ A' consists of deductions in A wherein each infer-
ence (2) is "realized" by a refutation in A'; A<A' s actually an

€'-resolution refinement.

Iterating the above (with £' for £ ), we obtain an fo—resmution

refinement By = ("'(An'An-l)'”Ao) where A, s an Ek-restﬂutwn

refinement and £ = EnD--- 330 = unit clauses of € . An 80-
resolution inference is realized by refuting a latent (1 -contradiction
{p,q} where Q is a set of equations including Eou{[x=x]} . For

this sub-problem we design an ( E -) resolution micro-refinement AU

)
for the set of deductions composed of factoring, binary resolution, and

paramodulation inferences.

Normal refinements Ay -A]J combine the composite structural know-
ledge embodied in AM with the effectiveness, efficiency, and most-

general inference properties of AU .
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Hyperiiifreso1ution (HR(E,>,s)) exemplifies € -resolution

refinements. It relativizes to € a previously investigated refine-
ment known as hyper-E-resolution with literal-ordering (>) and
renaming (s).
Theorem A. Suppose that Ak=HR(€k,>k,sk) where each’ é]ause of
Ek contains at most one "positive" literal under the renaming "
(k=0,++4,n). ‘ Then 4y is refutation complete.

ﬁ—nor‘ma] deduction (ND(E, >)) exemplifies A > 1is an

Lo
“invariant complexity ordering" which well-orders constant terms. For
each resolution inference {Avp, Bvg} |- (AvB)® or paramodulation
inference {Av[s=t], Bvg[r]} |- (AvBvq[t])e in a member of

ND(E ,>) , underlined literals must have been reduced to a "least
complex" normal form by a chain of > -ordered replacement operations
based on equations of £ and current derived equations; moreover, t6
cannot be "more complex" than s6 . "Functional reflexivity" equations
[fx]---xn = fx1---xn], being subsumed by [x=x] , are excluded from

éi;norma] deductions by strong subsumption-deletion constraints.

Theorem B. ND(E,>) is refutation complete on unit-clause sets.

Corollary. If € and by are as in Theorem A and no non-unit
clause of € contains a (positive) equation then Ay ND(80,>) is
refutation complete on clause-sets whose non-unit clauses each contain
at most one equation.

Normal refinements are illustrated in the solutions of several
refutation problems in Group Theory and Integer Arithmetic, where use-

ful normal forms and comp]exity orderings are employed.
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1. THE DESIGN PROBLEM FOR REFINEMENTS

We are only just beginning, it seems to me, to
get a feel for these growth processes based on resolu-
tion or indeed on any other analogous logical prin-
ciples. 1 believe that there is still much to be
discovered in the way of controiling the rate and
direction of growth intelligently yet automatically,
without disturbing the basic completeness property.

I believe that there is nothing inherently conflict-

ing in the two leading concepts--heuristic control of
the process and systematic, combinatorial control of

the process, and I have tried to illustrate how these
two concepts overlap and merge into each other.

—~ J. A. Robinson (1965)

‘The first section of this chapter describes and motivates the
problem of designing good refinements for proof'procedures, Proof
procedures are viewed as well-defined components of deductive problem
solving systems, which provide the basis for measuring their perform-

ance.
It is shown in §1.1.3 that much of the structural knowledge

available to the human specialist in an axiomatized problem domain can
Be formally represented by refinements. In §1.1.4, the design method
outlined in the Abstract is viewed as a contribution to the structured
programming of specialized proof procedures.

Subsequent sections (§1.2 and §1.3) lay the foundations for a
solution to the refinement design problem in Chapter 2; these are in-

tended more for reference purposes than for detailed reading. Terms

1H-euristic and complete processes in the mechanization of
theorem proving. In Systems and Computer Science, edited by John F.
Hart and Satoru Takasu (University of Toronto Press, Canada, 1967),
pp. 116-124. '
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-defined therein are cross-referenced in the text: §i means "Chapter i'
and §1.j means "Section j in Chapter i".

The method of solution is summarized in the overview (§2.0) for
Chapter 2. Chapter 3 summarizes the main results, relegating the more
technical proofs to an appendix (8A). For illustrative purposes, it
may be helpful to examine §C and 8D at several points in the reading of
this repdft.

Related research--especially that which has contributed to or
motivated the research described herein--is briefly reviewed in Chapter4,
A highly readable and more comprehensive overview of deductive

problem solving in relation to Artificial Intelligence (research and

applications) is available in Nilsson's recent overview [55].

1.1 Introduction

1.1.1 Deductive Problem-Solving Systems

Proof procedures. In this investigation, the term proof procedure

is given a somewhat specific meaning (§1.3.5). A proof procedure is
essentially a (partial) computable function I , defined on sets of
clauses, such that H(Cf) is a deduction (51.3.3) from C based on
the axioms and inference rules of some effective calcuius over clauses
(§1.3.2). Normally this calculus is sound relative to some set £ of
clauses, and we speak of a specialized proof procedure for £ (or

b? » §1.2.7). The usual function of such a procedure is to derive, if

possible, a refutation (or proof of contradiction) from C using this
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calculus; in this case we speak of it as a refutation procedure.

A system (whether human, mechanical, or hybrid) which periodically
invokes one or more specialized proof procedures as a part of some larger

problem-solving process will be referred to as a deductive problem-

solving system. Automated and "on-line" theorem provers, computer
program verifiers and generators, and plan-generators for robotic systems
are typical examples of deductive problem-solving systems currently being
developed and used [55].

Problem domains. In theory we can select a specialized proof

procedure for € in a given deductive prob]em—So]ving system and con-
sider the set 1{5 of clause-sets to which this procedure would be
applied by the host system under appropriate conditions: i%o is the

problem domain of the proof procedure.

Application Environments. The long-term behavior of the proof-

procedure's host system determines a probability measure 1 on Z€€ ¥
where pu(¥) reflects the expectation that the host system will apply
the proof procedure to some clause-set in U . An application
environment (146 »u) provides a realistic basis for perfdnnance analysis

and comparison of alternative proof procedures (§B).

1.1.2 Performance and Behavior Parameters of Proof Procedures

Given an app]iéation environment, we can formalize various meas-
ures of (expected) performance of a proof procedure in that environment.
Domain of completeness, cost, efficiency, and "expected" or "average"
versions of these performance measures aré defined on this basis in §B.

The major obstacle to the use of proof procedures in realistic

application environments, amply documented in [55] and elsewhere, has
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been the poor performance of proof procedures on at least one of several
performance measures. Generally speaking, refutation completeness and
reasonable (at least finite) expected relevancy (or efficiency ratios)
have been difficult or impossible to achieve simultaneously.

Behavior of a proof procedure of the sort described in §1.3.6
can be analyzed in terms of two parameters which determine the computa-

tion it performs when applied to a set ¢ of premises:

(i) A search space A(C) of deductions (from € ) which the
procedure could generate, where A is a refinement of the
set of deductions based on the procedure's ca1cu1us;land

(ii) A search strategy, represented by an enqueuing function
which determines the order in which initial or derived
clauses will be inserted in thg procedure's current
deduction and used in the generation of new admissible in-

ferences.

In effect, the search strategy determines which of the deductions in
A(C) the proof procedure will generate, but does not prevent the com-
putation of a complete deduction in A(C) (5§1.3.4) by forever excluding
an 1nitia1 or derived clause from incorporation into the deduction.

(See §1.3.5, "fair schedulers".) Both (i) and (ii) can significantly
affect the prdof procedure's expected-performance measures.

‘Search-strateqy design, for a given search space A((C), is

fairly well understood (although not at all trivial in practice).
Basically, one combines a "cost function" on deductions with a heuristic
"cost of completion" predictor in order to determine which clause to

select from the current clause queue in order to minimize overall cost
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of completing the deduction [40]. There is no real reason why this
heuristic prediction function cannot utilize "advice" attached to the
clauses by some other component (e.g., the human) in the proof proce-
dure's environment,

The design of refinements, however, appears to be a potentially

more fruitful area for initial investigation. It is difficult to
design and efficiently implement a good search strategy for a large
unstructured search space. The exponential growth rate of search-cost
as a function of simplest-refutation complexity has been a notorious
obstacle to the successful use of proof procedures. Only by drastic-
‘ally refining the search space will we enable the computer's forte,
high-speed search, to be of any real assistance in deductive problem-
solving applications.

Moreover, refinements are the proper place to investigate refuta-
tion completeness, which has been difficult to analyze in specfalized
proof procedures with "ad hoc" refinements [29],

The scope of this 1nvestigation, consequently, has been limited

to the design of refinements Br specialized proof procedures. Before
asking which refinements to design or how to design them, it is appro-
priate to ask what kinds of structural heuristic knowledge are available
to an expert human problem solver in an axiomatized problem domain .

Then we may consider the problem of facilitating the formalization of

his knowledge by means of refinements.

1.1.3 What Does the Human Specialist Know?

The design of refutation procedures for F?- will ultimately be

done in cooperation with human specialists in the theory of £ . A
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good design method should facilitate the design of refinements which
incorporate the proof-structuring modes exhibited by human specialists.

The following proof-structuring modes figure prominently in
many problem domains: '

(i

normal form representations;

(ii) semantical abstraction;

)

)

(ii1) subcase analysis; and

(iv) restricted use of axioms and theorems.

Normal form representations allow us to work with one (or a

small number of) representatives of each &£ -equivalence class of

formulas or terms. In addition to the clause-representation of
formulas, E' may admit a useful representation of terms for a given

domain ng. For example, suppose £ contains the "Commutative Ring

Theory" fragment D = {D1,-.-,D4} :
D1. [(x+y)+z = x + (y+z)] (+ is associative);
D2. [(x+y) z = x*(y = 2)] (+ is associative);
D3. [(xty)ez = x+z + y-z] (right distribution);
D4. [z+(x+y) = x+z + y-z] (Teft distribution and commuta-

tivity)
By treating each of these equations as a "reduction rule" we obtain a

D-normal form NF(D, >.) for terms (§1.2.9,8C) wherein each term is in

n)
"right-associative, fully distributed" form. It is shown in §C that
in fact NF(D,>b) is a D-canonical form: any two D-congruent terms

"reduce" to a unique term in NF(D, >b).
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The human specialist eliminates much rédundancy and recognizes
many useful equality relations (mod £) by keeping terms and formulas
in an appropriate € -normal form while searching for a proof.

Semantical abstraction refers to the strategy of initially out-

Tining a broof based on high-level, semantically defined inferences
(or lemmas), typically of the same form ( A?Ij?=c) as the original
problem statement. Having completed an outline, the specialist may
then verify any questionable constituent inference by means of lower-
level proofs.

Subcase analysis involves postponing logical disjunctions in

order to construct a "case by case" refutation of €°-inconsistent sets
of unit clauses. In the context of (i) and (ii), subcase analysis

yields € -resolution inferences of the form

{Byvays+++B v } |- (Byv--vB o (3)

where {q]e,---,qne} is an &€ -contradictory (§1.2.6) unit-clause set.

It follows that
BTV%)m-u,wnviﬁﬂ ﬁ?(B1V“-VBM8 (4)

Recognizing a latent € -contradiction {q1,---,qn} and "solving" for

& 1is often a task at which the human specialist exﬁeTs; he may even
have developed efficient algorithms for this task. For example, £

may axiomatize Integer Arithmetic (§D) or Ordered Fields, and the
specialist may have developed fast algorithms for solving linear systems
of equations and inequalities [8,37 ] or prov1n§ “Timit-theorems" in-

volving continuity [7 1.
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 Restricted use of axioms and theorems is exhibited by the above

specialized procedures for the unit-clause sets {q],--a,qn} , as well
as by constraints on which clauses may appear‘in the premises of ( 3)
and which designated literals (qi) shall be selected from these clauses
for the subcase analysis. For example, we may require that Bi v g; not
be (subsumed by) a clause of & '(i=1,-+-+,n) where £' ¢ £, leaving
most of € to be represented algorithmically (by linear solvers,

algebraic simplifiers, etc.) instead of axiomatically.

Example. Suppose € 2 D, =D v {D5} :
D5, [x tylvIy+tzlvI[xc<z] (Transitivity)

Let the vocabulary V contain only {<,+,+,0,1} as extra-logical con-
stants, Now D< has a feature common to many subsystems of interest:
D_ s a Horn system. It follows that each smallest Tatent D.-
contradiction has the form {pl""'pn-I’a} where Py is positive and
q 1is negative: Py must either be an equation [Si = ti] or an ine-
quality [si < ti] . There is a very natural refinement AD for

y <
"basic" deductions (§2.2) which has the following features:

(a) Each refutation in AD< has a decomposition into basic
deductions realizing D_-resolution inferences (3) where
no axiom of D< occurs among the premises.

(b) Each unit-clause set {q1,-~-,qn} has the above form
{pysr=esPp_qslF

(¢) 1In essence, D5 is used only implicitly in the transitivity

rule:
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{AQ!s<tl,Bv[u% v]} |~ AsvBe v[u ¢ sle

where 6 is a simplest unifier (§2.2.1) for {t,v} , and
s,t,u,v are in the above D-canonical form NF(D,>bL

(d) Paramodulation is used only in the very restricted form
Rp(D, Pb) (§2.3.7). Generally speaking, only three kinds
of replacement-inferences are allowed (stated in the unit-

clause case, for simplicity):
(1) {[t=s1,[x=x]} |- [s=t] , where t ;s .

(i1) {[s=t1,qlr]} +~qlte]l , where r = s0 >, to
and [r] 1is a "left-most" occurrence of a "reducible"

term r in the current set of equations (in D w
{q-l,.'.’qn})'

(iii) {[s=tl,qlr]} }—qlt] where ©& is a simplest unifier
of {r,s} , te *D s , and each subterm of [s=t] or

qlr] s in NF(D,>b ). Moreover, each equation of D

is strictly ordered by >

D -

It follows by Theorem B (Corollary) in the Abstract that A contains

D

} <
a refutation for each D<-1nconsistent clause-set € wherein no clause

contains more than one positive equation., (Thus, if C contains the

"integer domain axiom"
ID. ([x-y # 0] v [x=0] v [y=0])

and € - {ID! s D _-consistent, then AD might conceivably filter

out all refutations of Cw D, . This is an open question.)
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The present point, however, is not the completeness of some
systematically designed refinement for the problem-domain of D,

The point is that A, is a natural refinement, fully representative

D<

of at least one human's "expertise" at solving problems in this very
simple domain. The following observation may facilitate an intuitive
grasp of the kind of "efficiency" achieved by this refinement on its
domain: .
Proposition. Llet B be a smallest set of constant clauses in
the vocabulary of D, » none of which contains an equation, such that
Ap contains a realization gzjc) for a D_-resolution inference

<
(B |- C). Then C and J(C) are uniquely determined by AD< and
a .

Indication of proof. AD is actually a normal composition
<

5 ND(D,>D) (82.4) where HR(D<,>b,s) defines a D_-

resolution refinement, AD5 restricts the use of D5 as in (¢), and

HR(D<,>b,s) - Ay

ND(D,>D) restricts the use of equations in D .
Suppose that AD< contains a realization 8 (c) for (g -2}, |

with premises in 83 h’D<kl[x=X] and conclusion C . Then HR(D(,?b,s)

requires that 8 = {B] VPgstt B 1 vﬁn_], an_ﬁn} where

{po,---,pn_],ﬁn} is a D_-contradiction, p; is a maximal atom of

B vp; (with respect to >b)’ and s(Bn'vﬁn) = ﬁn . Thus, the conclu-

sion C = Ua)v--- an) is uniquely determined by the premises.

Now it suffices to show that {po,...,pn_],ﬁn} v D, has a

unique refutation §' in ND(D_,>;) (because & (C) s obtained by

"embedding" such a refutation in @& uD().



-

Case 1: Pn is an equation [u=v]. Then fﬁ( [uzv], because
none of {p,,---,p,_q} s an equation (by assumption) and
{po,---,pn~1,ﬁn} is a minimal D<—c0ntradiction (by minimality of 6').
Therefore n =0 and @B = {BO viu # v]} . By definition of
ND(D_,>,) and 5C.5 it follows that ND(D_,>) contains a unique D_ -
normal reduction from [u # v] to an inequality [v' # v']; this is then
refuted in B' by a Cut-inference ({[x=x],[v' # P lk |- 10)

Case 2: p_ s an inequality [u £ v] . It follows by minimal-
ity of & that QZJ contains n+l unique Q<-norma1 reductions from
members of {p ,.--,p _y:P,} to members of a set {[t <tyl,---,[t, ¢ <
t 1, [ty # £ 1} . (Thus, [u # v] is reduced to [t £ t.] by replacement
inferences based on equations of D . As in Case 1, ti is irreduc-
ible with respect to the equations of D (i=0,...,m).) The completion

of the refutation has the form
[tm-1 L [to £yl
[tm-z <tm-I] [to A tm-]]

N

[ty < t;] [ty £ tq]

where ({[tk-1‘<tk]’ [to # tk]} - [t, # tk—]]) is realized by two

(binary) Cut inferences,
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[t, £ 81 ([Ix 2yl vy #z]v[x<z])
[ty <t d [t Ayl vy £¢t]

[ty 7 t, ;]

Uniqueness of this completion follows by
(i) minimality of @ (and hence {po,---,pn_],ﬁn}) :
(ii) the rule-like réstriction (c) imposed on the use of D5

by ADS in AD< ; and

(i11) the requirement (actually imposed by ND(D,>b)) that the

premises of each Cut inference be irreducible with res-

pect to D .

Thus,‘jjf' and hence o (C) are uniquely determined by Ap and
- - <
6 .
Remarks.

1. There are at least (2!) alternative refutations of the set

{ql""’qn} in Case 2, where & is the total number of Replacement

or Transitivity inferences contained in the unique refutation in Ap -
<
For we may think of this refutation abstractly as a "transitivity

argument" (involving both < and =) which "extends" ¢ given relations

1] n
(v0 j_v],---,v£_1_§ VQ) so as to "connect L to Vo - There are
2 ways of choosing a pair {(Vi ; & %51, (vi < vipq)} 50 as to obtain
(Vi-] 5—Vi+1) and "eliminate v, from consideration". The conclusion

follows by induction on £ . A "uniform" refutation procedure using no
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refinement and a pure "breadth-first" search strategy could generate
each of these (2!) deductions before finding the first complete refuta-
tion.

2. The "unique realization" property for D -resolution infer-
ences on constant clauses is "essentially" preserved at the general
level. For example, given a system {[t0 < t1]""’[tn-1 < tn]}\z

[x £ x] where t, = t, , there would be at least n distinct refuta-
_”tipnsrin AD : ane_for gagh initial transitiyity inference

€

{[t1< t'i.ﬂ}’ [x § x1} [1.31'.” ) t'i]'

1.1.4 How Can Heuristic Knowledge be Formalized?

By heuristic knowledge about an axiom system € (or about

ﬁ? )s I refer to that knowledge or skill which aids a deductive problem-
solving system (human, mechanical, or hybrid) in the éo]ution of
"relative consequence problems" 02 b? & »

In the context of a basic schema for proof procedures (§1.3.5)
I have isolated two logically independent parameters, a refinement and

a search strategy ((S) and (P) in Abstract), and have advocated the

concept of an'application environment (§1.1.1) as a basis for evalua-
tion and comparison of refinements in terms of proof-procedure per-
formance (§B).

The review of "structural" heuristic knowledge possessed by
human specialists (§1.1.3) suggests a basic approach to the formaliza-

tion of this knowledge in refinements. This approach should be hier-

archical for several reasons:
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(a) Structural heuristic knowledge about £ s available at
the non-effective, semantically defined level of € -

réso]ution inferences, whereas the refutation procedure
operates at the (generally much lower) level of uniformly
effective inferences with at most two premises.

(b) The natural sub-problem of finding refutations for & -
inconsistent unit-clause sets {ql,---,qn} is normally
too complex to be structurally refined by the human spec-
ialist in a single step.

(c) If an effective refinement can be expressed as a composi-
tion (An- ceev A ) e A

¢ H
refinements obtained by a hierarchical design process,

of increasingly lower level

then it becomes feasible to obtain strong results on per-
formance characteristics of (An' cae e AO)- Au (domain of
completeness, expected efficiency (8B), etc.) by a simpler
analysis of
(1) corresponding characteristics of the constituent re-
finements; and

(11) preservation of these characteristics under the "com-

position" operation (-).

These reasons correspond closely to several of Dijkstra's arguments in
support of structured programming [18].

| Structured programming, as evidenced by the quotation from
Dijkstra (p. 33), is a hierarchical method for the specifidation of
a]gorithmé and the data structures upon which they operate [32]. The

striking parallelism between the design-process for refinements
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(Abstract) and the iterative process outlined by Dijkstra can be ex-
p1aihed by viewing the refinement-design process as the data structure
design component of a structured method for the specification of proof
procedures. It seems appropriate to conclude this introduction by
outlining this larger process of which refinement-design is a part.

The highest level in the structured programming of specialized
proof procedures is exemplified by the refutation procedure Ref
specified in §1.3.6. In essence, Ref has two free parameters or vari-

ables (in addition to its bound variable C )

A , a refinement of the set of deductions generated by a
calculus T ; and
Enq , representing a search strategy (actually a "fair en-
queuing function") for deciding which admissible infer-

ences to generate next in the current deduction from

Cuv€ in a.

Merely by stipulating two axiomatic properties (finitary and fair) for
A and Eng, we obtain a clean conceptual and functional separation of

the structural knowledge ( A ) and the procedural knowledge (Eng) com-

ponents of proof procedures. This separation is the basis of a simple
completeness result for Ref (Proposition 6) which tells us something
useful about closure properties we should consider incorporating into
the design of our refinements (Proposition 5).

Now consider a normal refinement By AU where AM =

(---(An eA )+ -+ A ) and A, s an Ek-rescﬂution refinement as

n-1 o

in the Abstract. Recall that By is designed for the subproblem of
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refuting systems. {q],-",qn} (V) (<‘::k+1 - €k) where {q1,---,qn} is
a latent gkﬂq—contradiction (k=n-1,---,0). Now it seems most natural
to design a search strategy E, for the purpose of "deciding which
g€ g-resolution inferences to generate next" in finding such a refuta-
tion; similarly, for Au with a search strategy Eu (Ek and Eu
being enqueuing functions).

Using a composition operation (+) for search strategies outlined

in §2.4, we obtain a "composite" search strategy EM for use with AM
and a "norma]“ search strategy Ey -Eu for use with Ay * Au ;

Thus the structured programming (or design) of a refutation pro-
cedure begins with a procedure Hﬁ = ggL[AM/A, En/Enq] which computes
deductions based on Sg—resolution.

Suppose we have designed Hi+1 = 52£[A&+],Eé+]] , a refutation
procedure based on 8k+]-reso]ution inferences, where A&+] = An if

kt1 = n and AL+1 = (von (A e An—l)"' Ak+1) otherwisé. We realize

n
Hk+1 by a "more effective" procedure H& based on Ek-resolution
s s [ [ . | ” -
inferences as follows: Hk = ggi(ﬂk+1 Ay Ek+1 Ek). If k=0 then.
- ]
Finally, we realize HM by an effective refutation procedure
HL' based on factoring, binary resolution and paramodulation in the ob-
vious manner using Au and Eu . In Dijkstra's words,
We have described the program in terms of
levels and each level contained "refinements" of
entities that were assumed available in higher

levels. These refinements were either dynamic
refinements (algorithms) or static refinements
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(data structures) to be understood by an

appropriate machine].

The major data structures of a proof procedure are the deductions which
it is allowed to compute (i.e., its "refinemeht"). The major algorithm
is its enqueuing function.

The structured programming of specialized proof procedures by
the methods described above has not heretofore been described or in-
vestigated. The present investigation may be regarded as a contribu-
tion to the largertask of designing useful proof procedures by struc-

tured programming methods.

1.2 Predicate Logic with Equality

. A predicate logic is a certain kind of formal lanquage with a
semantics consisting of interpretations of the language into rela-
tional structures. These interpretations assign Boolean truth-values
to each formula in the language.

For concreteness, in the remainder of this report we shall be
concerned with a first-order predicate Togic having equality as a
built-in logical concept. The following paragraphs summarize aspects
of this logic which are relevant to the subsequent discussion of re-

finements. More detailed treatments may be found in [19] and in

[71].

]Notes on Structured Programming [18].
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1.2.1 First-order Vocabularies

A first-order vocabulary is a set V having the following

decomposition:

=
=i
]

an infinite set of variables;

VD - the set of operation constants of degree n ; Vg is the
set of individual constants;

V! - the set of relation constants of degree n Vg is the
set of propositional constants.

V, - {0,1,v,v,A,3,Y .=} representing falsity, truth, negation,
disjunction, conjunction, existential quantification,

universal quantification, and equality, respectively.

Let Vp = kJ{VF:n e N} and Vg = Ll{Vg:n e N}, where N
is the set of natural numbers. Let VE = VF “'VR : VE is the set of

extra-]ogica] constants.

Metavariables will be used as follows: w,x,y,z for variables;
a, -+,f for operation constants; P,Q,R,S for relation constants and =;

and h for extra-logical constants and = .

1.2.2 Terms

The set :1V of terms over V is the domain of a (totally) free
q]gebra with generating set VI and operations indexed by VF . This
free algebra is uniquely determined by an application function which
assigns to each nt+l-Tist f,t],-'-,tn where f ¢ VF and t],--;,tn €
Q7V » @ unique object (ft]---tn) in ;fv . Thus, £7V is the small-

est set of objects such that
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: 0 ¢ .
('l) VIUVF -jvs

(11) "If f e V? ,n>0, and t]""’tn € J7V then
(ft]---tn) e éTV "

Notation. Metavariables r,s,t,u,v will vary over terms.

(ft]---tn) and f(t],---,tn) will also denote ftq---t . Moreover,

if T & VE then we may denote f by a commonly used infix operator

(e.g., =) and denote ft]t2 by, e.g., (ty-to) .

1.2.3 Formulas

The application operation used for terms is assumed to be ex-
tended to -VR u/VL in the manner described below, yielding a (totally)

free partial algebra with domain é?@ , the formuias over V .

Atoms. The set L?v of atomic formulas or atoms is the smallest

set of objects such that

(9. Vg Sﬁzv ; (Notice that the truth values 0 and 1 are

not in Vp .)

(ii) If P evg

(Pty--t )e av )

»,n>0, and t],---,tns ;7& » then

(iii) [s=t] EézV for all s,te:£7Q )

Infix notation may be used when P € Vﬁ . Thus, [s<t] denotes the

inequality of s and _t » where < s a relation constant in Vg a
The set QZV of formulas is constructed from [ZV and VL in

the familiar manner of [ 71 ]; free and bound variables are defined,
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and the sentences ( 4Jw) are defined to be the formulas having no free

variables. The definitions

[A > B] =df [vAv B] 3

[A — B] “df [(A=B) A (B~ A)] 5

are assumed for convenience. The operation V' of universal closure

sending ézv onto */V is defined by

V' (B) =df E/x]---\/an where XpsteosX are the free variables

of B 1in standard order;
Metavariables Lz,jz,ﬁi,éiaéi will range over sets of formulas.

For the purposes of this report we need only give a precise treatment
of those formulas known in the literature as literals (va) and

clauses ( CV) .

The'set ;{V of literals consists of atoms and their comple-
ments. The complement of an atom p 1is the formula ~p . Metavari-
ables P,q , and sometimes r,s,t,u,v will vary over ;fv ,
Metavariables J,K,L,M will vary over subsets of i& « 1T P 1s &

binary relation constant (or =) then we define [sPt] by

[sPt] = A[sPt]

Complementation is defined on i; by

NG, if qe Clv 5

q:
df p . if g=~p where pedl,
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A clause is either 0 (the empty clause), a lTiteral (a unit
clause), or a disjunction (q}v cee qm) of m distinct literals.
(q]v --»vqm) contains the literals qq,---,q_ (and no others), and

g contains itself. Where context permits, A, B, C, and D may be

restricted to range over CV without explicit mention.

Convention. Except where otherwise indicated, the order of
literals in clauses is ignored, and we treat (qyv---vq_ ) as denoting
the logically equivalent disjunction of Qpsec 0y in some standard
order. The first literal of a clause A 1is called the designated
literal of A . Avp 1is the clause whose literals are those of A
and p , and whose designated literal is p ; This convention is essen-
tial for the representation of occurrences in clauses (§1,2.4).

[AvB] =df the clause whose literals are those of A and those
: of B .

Thus, [OvA] = A= [Av0] , and [PvP] =P .

[A-B] =dF the clause whose literals are those of A 1less those
of B .

A <€B =45 every literal of A is a literal of B .

A nonempt& clause is positive if it contains only positive
literals, and negative if it contains only negative literals. A non-
positive clause is either empty or contains at least one negative
literal.

Clauses A and B are separated provided that the variab]es
occurring in A are disjoint from those occurring in B (i.e., A

and B share no variables).
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A constant term, literal, or clause is one which contains no

variables.

1.2.4 Occurrences in Terms and Clauses

An occurrence in a term or atom u 1is represented by a pair
(u,a) where o 1is a position in u . Positions are lists of natural
numbers. Metavariables «,B,y,§ vary over positions, and <+ denotes
the concatenation operation. The empty list is denoted by * . The

occurrence of a term t at position o in u is defined formally by

(t occurs in u at a) =df
u = (hu]---un), o = i<g, and

t occurs in uj at B .

If o 1is a position in u , in the sense that some term ¢t

(or atom) occurs in u at o , then we denote t by u, - Formally,

Uy, is defined by

The set of positions in a term or atom u constitutes a
(finite) tree domain D , characterized by the property that if

a*jeD then aeD and a-+i e D (i=0,.--,j-1) .
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An occurrence of u in a literal ~ p at position a is
represented by (¢p,a) where u occurs at o« 1in the atom (p) of
ri«p " An occurrence of u in A v q at position o 1is repre-
sented by (A v g,o) where u occurs at a in q . Thus,

(A v g.*) repfesents the occurrence of the atom of the designated

literal q .

Notation. It is often convenient to implicitly designate an
occurrence of a term or atom t by [t] , where [t] has been used
in a nearby expression denoting a term or clause. Thus, u[t] is

a term or literal wfth a designated occurrence [u] at some unspeci-

fied position; similarly, A v g[t] is a clause with a designated

occurrence [t] in its designated literal q[t] .

1.2.5 Substitutions

The instantiation of variables x1,-'--,xn in a term of formula

u by corresponding terms t1,---,t is the result of simultaneously

n
replacing each free occurrence of X; in u by tis and is denoted

u[t]/x],---,tn/xn]. The mapping O: ijfrJZQ'+ ;7V v 5@ which carries
out this instantiation operation is also denoted by [t1/x],---,tn/xn],

and is called a substitution.

Thus, the substitution o such that X;0 = ti (i=1,-+-,n) and

yo=y for y¢ {x],~",xn} is denoted by [t]/x],---,tn/xn] or, more

succinctly, by [ti/xi: 1 <ix<n]. o 1is extended to terms, clauses,
and clause-sets in the obvious manner:

(i) co=c , for c ¢ Vg ,

(i1)  (Fty--+ty)o = F(t7)---(tyo)), for feVRp ,n >0
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(i11)  (Pty--+t )o =4¢ P(to) -+ (t0), Pe Vs n 20
(iv) (vpla =4¢ ~(po)

(v) [qqv---vaJo =4 [qqov--- vaol

(vi) Bo=y4p {Bo: BeB1 .

Metavariables n , 8 , o , T will vary over I, , the set of

substitutions on :KI . The identity substitution is denoted by € .

go-f} denotes the composition of o and T , defined by

u{o*t) = (uo)t

The substitution o such that x.o0 = t, (i=1,-+-,n) and

yo =y for y¢ {x1,---,xn} is denoted by [t]/x1,---,tn/xn] , or

[ti/xi 1 <is<n].

A substitution n is invertible provided n-+6 = e for some 6 .
Each invertible substitution (other than e ) is of the form

[Xi /x],---,xi /xm] where (i],~--,1 is a permutation of (1,--+,m).
1

m m)

Variants. Formulas B and C are variants provided B® = C
for some invertible substitution 6 . Similarly, substitutions o and
T are variants provided that o6 = t for some invertible substitu-

tion 8 .
‘Bq‘=df [C: C is a variant of a member of & }

Subsumption. A clause B subsumes a clause C provided that

Bo € C for some substitution o ; if C 1is not a variant of B

then B properly subsumes C . More generally, a formula B subsumes

a formula C provided that Bo = C for some substitution o .
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Closure of a set d? of formulas under instantiation is denoted
by * :
B* =4 (Bo: B el (and o e Ty -

+
The constant closure of @ s denoted by 8 :

| e =4¢ (B€ #* =B is a constant formula} .

1.2.6 Interpretations

Given a nonempty set U , we extend V to a vocabulary V[U]
by adjoining members of U as individual constants; V[U] is just
Tike V 1in §1 except for the facts that V[U]g = VEUIJ and V[U]g_
is not necessarily disjoint from VI . The sets ;7V[U] s 5zv[u] ’
ZV[U] , etc., are defined by substituting V[U] for V in the

definitions of éjv s JZV » EV , etc..

An interpretation for V (with domain U) is a mapping ¢

from V[U]E to elements of U , operations on U , and relations on

U such that
(a) ¢(u) e U, if ueVwVg 3
(b) o¢(a) =a , if acecl 2

(c) ¢(P) e (0,1} , if P ¢ vﬁR’ ;

(d) ¢(h) = an operation or relation of degree n on U,

if he VE (n>0) .

¢ has a standard extension to Q7V[U] “/“ZL[U] defined as follows:

(e) ¢(ft]"'tn) = ¢(f)(¢t]s"'s¢tn) 3
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| 1 (] if (¢t'|:“‘:¢tn) € ¢(P) H

n
e

(f) ¢(Pty---t)

L . 0 , otherwise

(1, if ¢(s) = ¢(t) ;

L 0 , otherwise

(h) ¢(0) =035 ¢(1) =1 ;5 ¢(vA) =1 - ¢(A) ;5 ¢(AAB)=
min(¢(A),9(B)); ¢(AvB) = max(¢(A),4(B)) .

(g) ¢([s=t])

It
3

1, if o¢(Blc/y])=1 for some c e U ;
(1) 6(3p) - [

0 , otherwise

1 5 FF ¢(B[c/x]) =1 for all ce U ;
(3) #(V,B) = { .

0 , otherwise

The set” U 1s called the domain or the universe of individuals of ¢,

and is uniquely determined by ¢

A formula B is satisfied by ¢ (or true under ¢ ) provided.
that ¢(B) = 1 ; otherwise B is falsified by ¢ . B is valid under
¢ provided that ¢(B6) =1 for all 0 ¢ ZV[U] ; otherwise B is
invalid under ¢ . Notice that B is valid under ¢ iff
o(¥xq-+- Vx.B) = 1 , where x;,-++,x ~are the free variables of B .
| A formula B is satisfiable provided B is true under some

interpretation; otherwise B is unsatisfiable. B 1is valid provided-

that B is valid under every interpretation. B is consistent pro-
vided that B is valid under some interpretation; otherwise B 1is

inconsistent.

Examples. [x=x] 1is valid . [x=y] 1is valid under ¢ only
if the domain of ¢ has a single element. ([x # y] Ay = z]) s

satisfiable even though it is inconsistent.
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" The preceding concepts extend naturally to sets of formulas.
B is satisfied by ¢ (and hence @ is satisfiable) provided that
¢ satisfies each formula in 3] ; otherwise B is falsified by ¢
@ is valid under ¢ provided that each member of @ s valid under

¢ ; otherwise @ is invalid under ¢ . 43 is consistent provided that

&3 is valid under some interpretation; otherwise @B is inconsistent.
Notice that consistency implies satisfiability, but not conversely.

€ -interpretations are those intepretations under which g is

valid.
Conventions. The preceding concepts are relativized to the
class of g-interpretations by prefixing them with §_—_ . Thus, 6’ is

g-satisfiab]e iff &8 is satisfied by an € -interpretation, and A s

€ -inconsistent iff @ 1is invalid under every 5-1‘nterpretat1’on.

Subsequent concepts are defined relative to (normai]y consistent)
sets £ € “;V . When & is the empty set, the prefix &£- is
deleted.

Latent € -contradictions. An € -unsatisfiable set C is also

referred to as an g—contradiction. A set ﬁ is a latent

& -contradiction provided that B 5 is an £-contradiction for some
g€ EIV :

Example. The set &Y = {[f(gx) # x] 5 [g(fx) = x]} 1is incon-
sistent because, if @ were valid under some interpretation ¢ then
[f(g(fx)) # fx] would be true, whence [fx % fx] must be true,
which is impossible. Since Bo is satisfiable for all o Ly s 2,
1'sr not a latent contradiction. However, fhe pair C - {[f(gx) # x1,

[g(fy) = y]} is a latent contradiction.
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1.2.7 Logical and Relative Consequence

The relation of logical consequence holds between sets of

formulas and formulas:

(B F ¢) =q¢ C is true under every interpretation which
satisfies @ :

(B I_—t: C) =4¢ C is true under every £ -interpretation
which satisfies (8 ;
(A |=€ B) = if {A} I__é B
7 B g ltl B s

C for each C e C

(B1zC) =4 Br

It is easily verified that if{(&)F C then (@) - W(C).
The following notation for E- equivalence will occasionally

be useful:

A B} = A B and B A .
T ERRTTRCRY"
Notice that if A |4 B then¥W(A) =MB] . (That the converse is not

true can be seen by taking A = (P(fx) v Py) , B = P(fx) .)

An equality theory is a set C such that C = {B: le B
i.e., C is closed under logical consequence relative to itself.

is axiomatizable provided that C = {B: {} I? B} for some decidable

set € , in which case we refer to £ as an axiom system (for € ) .

Notice that for every equality theory € , either € is valid

under some interpretation or C = jv ‘
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Completeness. A set @ < JV is g~com91ete for a set € EJV
provided that either @ | C or U] IE ~C for each CeC . If
C = jV » then 6 is simply g—comglete.

Remark. The usage of complete is compatible with, but more

general than, traditional usages. In the present context, it is con-
venient to be able to say that K is complete for efv (or CV)
provided that either K = p or K = ap for every p e .fv :

Notice, incidentally, that no satisfiable set K € i\l can be com-

plete for { ¥x(Px)}

1.2.8 Models and Congruence Relations

In this report, an £ -model is an arbitrary € -satisfiable set

of Titerals (either in va or in "TV[U])‘

on

A congruence relation on ‘7\!' is an equivalence relation

éjb such that r = s implies u[r] = uls] (ulw] ¢ 57V) . It is
easily verified that the intersection of an arbitrary set of congru-
ence relations on é7v is also a congruence relation on £7V .

. Consequently, every set K S‘i} determines a unique congruence

relation = defined by

S Tdf the smallest congruence relation = on JV

such that [s=t] ¢ K implies s = t .

= is extended to °tv by

[(Pu]"'un) EK-(pV]"'Vn)] “df ui EK Vi (i:];...’n)
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U =V

A K-derivation (from u to v) is a list u = Ugs™ " sUy

such that uy = vk[sk] and Uppp = vk[tk] where either [sk= tk] e K
or [tk= Sk] A K (k=03"',n-]) .

Congruence compactness lemma. u =V iff there exists a

K-derivation from u to v . Consequently, u =V iff u S v
for some finite set K' of equations in K .

Proof. It dis easily verified that the relation n , defined
on £7V by
(u~v) =df there exists a K-derivation from u to v

is a congruence relation with the property that [s=t] e K implies

s vt . Thus, E Vv

Conversely, let = be any congruence relation on va such

that [s=t] ¢ K implies s =t , and suppose u ~ v on the basis of

the K-derivation u =u “ gy, = ¥ (above). Then u = vk[sk]

o

vk[tk] (k=0s---,n-1) and hence u = v by transitivity. Thus,

o=z

K by minimality of = -

Model Characterization Lemma. M is satisfiable iff

(2) wu =y v implies fu#v]¢M; and

(B) p =ya and peM implies qé M.

Proof . Suppose ¢ satisfies M . Define ", Oon Ty by

(U V) o=ge o(u) = olv) .
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Then %¢ is a congruengg relation on éjb such that [s=t] e M

implies s %¢ t , whence =, < ¢¢ . Now (@) holds because u =V

implies ¢(u) = ¢(v) , whence [u # v] ¢ M, and (B) holds sihi]ar]y.
Conversely, (a) and (B) imply that M is satisfied by ¢y ,

where .
(a) uy =q¢ the first term v such that u =y v , according

to some standard well ordering;
(b) yu) =uy (ue dy);
. PeH j _
s PEN (PeV]) ;
{1 , AF (Py_-+ov) €M where uy =y v,

1
(c) &,(P) = {0

ORMQICIE 0 (1=1,+--m)

M o, otherwise (Pe V"

R
by is evidently an interpretation of V with domain éfM = {uM:

UEJv}‘

Model compactness lemma. Suppose K is unsatisfiable. Then

some finite subset of K 1s unsatisfiable.

Proof. By the Model Characterization Lemma, one of the follow-
ing cases must hold:

Case 1: K contains an inequation [u # v] such that
u EK v . Then (by the Congruence Compactness Lemma) u =gV for some
finite subset K' of K , whence K' v {[u # v]} is a finite unsatis-

fiable subset of K .



-32-

Case 2: K contains p,a where p EK q . Then p =x @ for
some finite subset K' of K , whence K' v {p,q} is a finite unsat-

jsfiable subset of K . §

An equality relation (on Cfv) is a congruence relation = on

CTV which is invariant under substitutions in the sense that u = v

The relation =, , defined on éTV by

v (6 e & 3

v) -

implies wu®

(W=g v) =4 (g [u=vl)
is easily seen to be an equality relation.

Example. Let K = {[(x-y):z = x+(y-z)]} . Then = s the
characteristic equality relation (associativity) for semigroups with
operator - , whereas = is a much smaller congruence relation on
;TV in which, e.qg., (y-k)-z e y*(x+z) . Thus, =y s not in gen-
eral an equality relation.

Remark. It is easily shown that if K 1is a model then “x =
S -

1.2.9 Normal Forms and Clause Representations

An € -normal form for a set f/ of terms and formulas is a de-

cidable set “¥7 CZ/ such that
(i) if u e A then there exists v ¢ 7/ such that u ?h' Vo
(i1) if A e # then there exists B e ¥/ such that Fe [A < 8]

if # = 53& uka then 7 is simply an < -nomal form (for V). If
U uniquely détermines v in (i) and A uniquely determines B in

(ii) then ﬁﬁz is an € -canonical form for % .
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An & -normal mapping is a computable partial function

'E JV u]v —-;{, v J, such that

(i) v(v(u)) = v(u) for all u e Domain(v) ;
(ii) if A e Domain(v) then A Pj; v(A)

(iii) if u e Domain(v) then u =g v(u) 3

'

(iv) Range(v) 1is decidable, and is therefore an £-normal
form for Domain(v) .

If v(A) # v(B) implies v(A)hﬁ? v(B) and v(u) # v(v) implies

ufe v, then v is an & -canonical mapping.

€ -normal forms and mappings are relevant to the design of re-
finements for a problem-domain tgf because it is desirable that only
a small number of representatives of an & -equivalence class of formulas
should be derivable frdm given premises within the refinement.

One application of these concepts is that every finite set C

of formulas can be represented by a finite set (¢ of clauses such that

o h?{c)?* , where £(€) 1is a set of Skolem axioms of the form

JyB — B[fg_yB(x] seex )y (2)

where B 1is a formula containing only those extra-logical constants
in C UG(C) and having free variables Xq.-:*sX, » and 1’3

is a corresponding operation constant of degree n which does not

occur in C .] It is easily shown that € 1is consistent iff

]See [71] for details of a similar treatment of quantifier elim-

ination.
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C vE(C) is consistent. It follows from (C* '=€|f6) T*) that

€ is consistent iff € is consistent. The clause-representation

mapping from € to € s a simple &((€)-normal mapping; it is
clearly described in [54] . Since the calculi and refinements inves-
tigated in this report operate exclusively on clauses, it js unneces-
sary to define the mapping here. Clause representations for several

familiar axiom systems are given in the appendices.

1.3 Calculi, Refinements, and Proof Procedures

1.3.1 Inferences
An inference consists of a finite set of formulas called premises
and another formula, the conclusion. We may think of an inference as
an ordered pair (6 ,C) or as an asserted relation (B -c¢). @ wvic}
is normally a set of clauses. |
An inference ( 8 | C) is £ -sound provided that V() }? & .
An allegedly £ -sound inference (B b C) may be represented by the
relation (V(R®) I? c).
Example. ({[x¥y],Pa,me} -0) is a sound inference because
{ VxVy[x=y].Pa,"Pb} }= 0 . |

1.3.2 Calculi

A calculus is a set I of formulas and inferences. Normally the
formulas are clauses and the inferences consists of clauses, and we say
that T s a calculus over clauses.

A T-axiom is a variant of a clause in T

Ax (T) =df {A: A eTt" :
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The result of extending T to include members of a as

axioms is denoted I'[Q]:

A T-inference is a "variant" of an inference in T

(@ =€) =4¢ (@n,Cn)eT  for some invertible n in I, .
A I'-theorem is either a I'-axiom or the conclusion of a T-

inference whose premises are all T-theorems:

Th(T) =4¢ N{T: Ax(r') €T and, if @ €T and QITC then
GeT ks (B |7 C) =4¢ CeTh(r[B]).

Soundness, completeness, and effectiveness are three basic

characteristics of calculi. The following definitions are appropriate
for clause-based refutation-oriented systems where universal quanti-

fication of free variables is implicit.

I is £-sound, or sound for Fji’ provided that (i) and (ii)

hold:
(i) If B e Ax(r) then l? Vv (B)
(1) If @z C then V(B) IFC-
r is &-complete, or refutation complete for F?: » provided

that (iii) holds:

(iii) . If Y (C) }£=.0 then C’Lf*o

r is £-adequate, or adequate for IE , provided that I' is

€ -sound and £-complete.
I is effective provided that the axioms and inferences of T

constitute a decidable set.
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1.3.3 Deductions
A deduction is a partially ordered clause-set gz = (19,4);
P is normally finite.
£ is a refutation provided that 0 e J .
The inferences in gz are the pairs (£,C) where & is the

set of immediate predecessors of C in <

(&® }5 C) =4¢ (B,C) 1is an inference in ?__

The base of L is the set of minimal clauses or premises of

D

Base (D) =df [Bed: A< B implies A =B (Ae &)}

The conclusions of F are the maximal clauses of gzz.

g is a I-deduction (from & ) provided that

(i) Base(s¥) € B v Ax(T) ; and

(ii) If @ |§ C' then @' ]T C' --i.e., each inference in

P is a r-inference.

A T-refutation of & 1is a I'-deduction from (8 which contains

0 .

A I'-realization of an inference (B |- C) is a I'-deduction i

from B such that C is a conclusion of £1=.
The ancestors of C in El are the set J?(c) defined by
J(C) = 46 (A ed : A=<l
The deduction & (C) = (P(C),<) is an initial subdeduction of & .

If & =D(c) then & may be referred to as a proof tree; observe

that Th(r) = {C: there exists a I'-deduction él(c) from Ax(T)} .
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More generally, a subdeduction of §L:= (J,<) is a deduction

O = (P',<") satisfying (i)-(iii):

(i) §'eH .
(ii) If aygé? C then a?éé C .

(ii1) If @50 and A <C where A,C e &' then G’IE G«
.) = i<n} of sub-

A decomposition of & is a collection L£11(61 <

deductions of £ satisfying (i)-(iii):
(i) & =¥ (c)): i <n}
(ii) Base(glj(Cj)) € Base(d) v {C;: 1 < §} .
(i11) Tf i< then P Cm Bi(cy) e icy) .

Thus, a decomposition of dJ breaks :gz up into a set of essentially

disjoint subtrees.

1.3.4 Refinements
- Let T be a calculus (over clauses). A (I'-)refinement is a set
A of (finite I'-deductions sdch that |
(i) & s decidable in T' ; and

(1'1) If & €A and Q' is a subdeduction of ﬁ such that

Base(dJ ') < Base(dJ) then £1' e A .
A may pe complete relative to Ef , a calculus, or another re-
finement, each in an intuitively natural sense. Let A be a T'-refine-

ment and let A' be a I''-refinement.

]Decidable in (or relative to) a set means {effectively) decid-

able on- the basis of the characteristic function of the set.
r (e.g., € -resolution) need not be a decidable set of inferences.
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A is € -complete provided that if V(C) Ig 0 then

A(CvE€ v [x=x]) contains a refutation, where
AM@B) = df [D e A: Base(D) 5(8’\'}

A is I-complete provided that if @l-f.-* 0 then A(C v Ax(T))
contains a refutation.

A is (weakly) A'-complete provided that if A'(C) contains a
refutation then so does A(C).

A is strongly A'-complete provided that if A'(#) contains a

refutation then so does A (B) n A'(B).
A and A' are compatible provided that A is strongly A’

complete and A' is strongly A-complete:

Proposition 1. If A and A' are compatible and either A

or A' is £ -complete, then A AA* 1is also g-complete.

r-Closure completeness. There is another completeness concept

for refinements which turns out to be quite useful in their formal

analysis. Given a I'-refinement A , define A~ , the closure of A by

A =dF {Q Q is a (possibly infinite) deduction such that

for each finite subdeduction JJ' of & where

Base(dJ') < Base(d) , &' e A}

A deduction Q is complete in A™({3) provided that either 0 ¢ 3:3: or
Q is a maximal member of A ({5) (with respect to the subdeduction
relation).

Definition 2. A I'-refinement A 1is r'-closure complete provided

that if 6 is I'-refutable then each complete deduction in
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AT (@ v Ax(T)) contains 0(B € C’V).

Proposition 3. Suppose that T s E—adequate and A s

I[-closure complete. Then G is E-consistent iff some complete deduc-
tion in A (@ v Ax(T)) fails to contain O .

The proof is straightforward.

1.3.5 Refutation Procedures

Intuitively, we think of a refutation procedure 1 for a

I-refinement A as a procedure which, when given a (finite) clause-set
6, iteratively computes a sequence (gzk: keN) of finite deductions
in A(@ w Ax(T)) such that

_.(1) 52« is a subdeduction 0f‘£2*+]

(1) if Fipy =y then Doy = Ly (keN) 5 and

(keN);

_ B
(111) if sziﬁj then £2ﬁ+] Bs

If gzj+] = gzd for some j then we say that I(C) terminates, and

set 1(€ ) =£J. where Qjﬂ = Qj . Otherwise, we define 1(C)

W

(12

to be the limit of (&.:

:'I

in AT(€ vax(T)) (§1.3.4) defined by

ieN), which is the deduction gl = (&7,4)

d =df ‘/{iji: ieN} ; and

< =4 U<y TeN]

The following definition is motivated by this intuitive concept:

Definition 4. A refutation procedure for (I',A) is a total

function I' from finite clause-sets to I'-deductions in A such that

(1) m(B) e A" (B v Ax(T)) ;
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(i) if 0 e n(B) then M(B) is finite ;
(iii) {(@ ,n(B)): (B ) = A} is computable.

I is complete (for (I',A)) provided that, in addition to (i)-(iii), -
(iv) H(@)' is a complete deduction in A (@ v Ax(T)).
I is &-complete provided that, in addition to (1‘)-(1‘1’1‘),

(v) If @ 1is E-inconsistent then 0 e N(R).

Proposition 5. Suppose that 1 "is a complete refutation pro-

cedure for (F,A), where T s an E—adequate calculus and A 1is
I'-closure complete. Then 0 e N(B) iff V(@) I? 0, and I may be
viewed as a partial decision procedure for €-inconsistency on the
basis of the following classification of I(8): |
Decided: I(®) is finite, whence @B is £-inconsistent iff

0e I(B).

Undecided: T(® ) is infinite, whence B is &-consistent.

Proof. Suppose 0 ¢ T(f). Then V(®) |é=,0 by & -soundness
of T and the fact that I1(#) is a I'-deduction from @", and (@)
is finite by definition of 1 .

Now suppose 0 ¢ I(@). Then & is not r-refutable, because
(@) is a complete deduction in A (& vAx(r)). Thus, & is E-con-
sistent by £ -completeness of T . If T(#) is finite then & -consis-
tency of & has been verified"effectively" rather than "in the Timit"J

Remark. Suppose that I' is €—adequate and I is a refutation

procedure for (I',A). Then in the absence of further conditions on I
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and A , we can only use II as a partial verification procedure for

f-inconsistency: if 0e I(#H) then I{F) is finite and B 1is £ -

inconsistent; otherwise & may or may not be & -inconsistent.

1.3.6 A Complete Refutation Procedure

Consider the intuitive model of a refutation procedure in (T,A)
" used to motivate Definition 4 in §1.3.5. Evidently, the behavior of I
in computing (iliz i eN) is a function of three more or less independent
parameters (in addition to the set of premises):

(a) a set € of axioms ( €= Ax(T));

(B) a I'-refinement A ;

(y) a search strategy, which selects the inferences to be gen-
erated next in obtaining &, ., from glk .

The proof procedure Ref below represents (B) by a "resolving

function" and (y) by an "enqueuing function".

A resolving function for (I',A) (or for A ) is a function Res
which, given a clause A and a deduction iz in A , computes a set

Res(A,éZ) where

Res(A,g)m = {C: B viA} PT‘ ¢ where @ Qﬂ , and the deduction
9, obtained by adding (B {A} |5 C) to &,

is in A} .
Notation. ResA will denote the (essentially unique) resolving
function for A . (T is used only to simplify the description of Res

above: Res | is essentially determined by A .)

A is finitary provided that Res(A,&) is finite (£ e 4,

A e CV)
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Enqueuing Functions. A queue over CV is a pair (Q,Enq) where

Q is a (finite or infinite) sequence in CBV and Enq is an "enqueuing
function" (over C?V). Let Seq(CV) be the class of all sequences
(finite or infinite) of clauses (CV)’ and Tet Set( C’V) “ be the class

of all finite sets of clauses. An enqueuing function is a computable

functional Eng: Seq( CV) x Set( CN) > Seq((?v) satisfying (i) and (i)
for each pair (Q,T) in Seq((gv) x Set( f&):

(i) {Eng(Q.T)(k): ke Domain(Enq(Q,T))} = {Q(k): k ¢ Domain(Q)} v T.
(i) If Q(k) # C (keDomain(Q)) and Enqg(Q,T)(i) = Enq(Q,T)(J)
then i=j .

We say that Enq is fair, or that Eng implements fair scheduling,

provided that in addition to (i) and (ii),

(i1i) For any sequence Q in Seq(ev), any clause C in Q , and
any class {T.: ieN} ESet(CV), C is the first clause of
some sequence Qi in {Qk: k e N} , where Q0 = Q and Qk+]

is defined from Q by

Q1 =gr Ea(QisTy)
where Q; is the result of deleting the first element
(Q (0)) from Q, .

Remark. If Enq 1is fair then no element will "remain in the
queue (Q) forever" during a computational process which alternately re-
moves the next (first) element of the queue and "enqueues a finite set

of (new) elements" by means of Enqg .



-43-

Bound parameters of Ref consist of C , a constant parameter of

type Set(C’V). C is the set of premises from which Ref attempts to
derive a I'-refutation.

Free parameters of Ref consist of &, A, and Enq :

£: a set of axioms ;
A: a finitary (I'-)refinement (where Ax(I‘)‘= E?).

Enq:  a fair enqueuing function over clauses.

State variables of Ref consist of Q, R, A, T:

Q: a variable over Seq(@v) :
(R,*R), a variable over (finite) deductions in A ;
a variable over CV ; and

T a variable over Set(C’V) :
Now Ref is defined on Set( c’v) by

Ref(C) =,¢[Q: = Enq(Enq(Nil, €),C) ;
R = (0,0) ;
Result: If Q = Nil
then R
else [Next(A,Q) ;
Subsume (A,R);
If A=0
then R
else [ResA(Axg,T) :
Q: = Eng(Q,T) ;
Result }]]
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Notes on operation. Evaluation of Ref(C) determines a com-

putation sequence ((Qiﬂii): ie N) as follows:

1. Q. = a bijective sequence onto

0
2. R, = (0,0), the empty deduction.
o M Qk_= Nil then Qg = Qk and Bk+2 - Bk (2eli); other-

wise Qk+1 and Rk+1 are defined in steps 4-9 below.

4, next (A,Q) sets A = Qk(O), the first element of Qk , and
sets ( = (Qk(1+1): iei).
B Subsume(A,B) normally inserts A 1in R, thereby defining

R = B v {A} . However, this operation may delete A from R if

k+1
A s subsumed by a member of Rkh {A} , and it may delete clauses of
R~ {A} subsumed by A .

6. If A =0 then a refutation has been found: let Quiy = QL
§k+2 = (Rk+1"<k) (Leil). Otherwise continue with steps 7-9.
7. Res,(A,R,T) sets T = Res,(A,R) (as in the definition of

resolving function) and extends -<k to '<k+1 in order to include meri-

pers of T - Rk+1 E which will subsequently be selected from Q .

8. Q: = Eng(Q,T) inserts the clauses of T into Q , defining

Ut
9. The recursive conditional expression labeled Result is now

evaluated with (Q,R) = (Qk+]’ﬁk+]) » as described in Steps 3-8.

Proposition 6. Suppose Subsume(A,R) simply inserts A into R.:

Then Ref s a complete refutation procedure for (I',A).

Proof. Suppose the contrary: EQL(C) is not a complete deduc-

tion in AT (€ v Ax(T)). Then it is easily verified that 0 ¢ Ref(C)
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and Ref(€) is infinite. Let &' be a member of A™( C v Ax(I))
such that Ref(€) is a proper subdeduction of &' = (P',<'),
whence &' - Ref((?) #0 . It follows that &' - Ref(€) contains a
clause C which is minimal with respect to <' . C 1is not in
(& ul-‘\x(l“)_)m due to the initialization of Q and the assumption that
Enq is fair. Therefore @& I.B'C 7, where & < Ref(€C) by mi-nimath of
C. Let @=1{A;}v @ where A; is the last clause of & to be
transferred from Q into R . We claim that C e Qj+] ~=1:8.5 that
G Res(Aj,Rj) (wheré the transfer of Aj to Q occurs when Q = Qk).
Indeed, (Rj v {C}, <') is a finite subdeduction of iZ' and is there-
fore in A(C v Ax(T')) by the definitions of A  and refinement. It
follows (by the assumption on Eng) that C e Ref(€), a contradiction.
Discussion. The procedure Ref shows how easily the proof-
structuring aspects (A) of a refutation procedure can be separated from
the proof-search aspects (Eng). The fairness constraint on Eng is the
mildest constraint one could reasonably expect; it merely excludes the
pitfalls of pure depth-first search. It is easily shown that Ref is
also 1rfedundant in the sense that it generates each proof-tree in
A(€ vE€ ) only once. The elimination of redundancy due to subsumption
relations among clauses in R is easily handled by letting Subsume
delete certain subsumed clauses of R v {A} ; this is illustrated by a
closure-computation procedure for reduction systems in §3 . A refuta-
tion search illustration in §D is based on a simulation of Ref(@€)
with appropriate choices of Eng, A , Subsume, and ¢ . In general,

it can be said that Ref 1is an appropriate refutation procedure for

use with I'-closure complete refinements (Proposition 5).
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1.3.7 Analysis of Resolution-Based Deductions

A resolution-based deduction is one which is generated by a

resolution-based calculus (for £ ), whose inferences are all required
to be generalized £-resolution inferences (below). Each calculus in-
vestigated in §2 is resolution-based.

There is a small class of basic relations and transformations on
resolution-based deductions which is so frequently useful in the design
or analysis of refinements that it deserves to be treated as a part of
the basic theory of proof procedures rather than as a part of the solu-
tion to some particular design problem. Some of these relations and
transformations are described below so as to avoid duplication of effort
in §2.

A generalized £ -resolution inference has the form

{B,:

ji 1 <n} l— (BO- Co)e v --- v (B

where
(1) €; €B; (i=0,-+-,n-1);
(i1) {Cje: i<n} = C.0;
(iii) 6-+86 =0; and

(iv) if x does not occur in {Ci: i<n} then x0 =x .

{Ci:

induced substitution of (3).

i<n} 1is the kernel of (3), C_. the residual of (3), and 8 the

n

Convention. While the kernel, residual, and induced substitution
of (3) are not in general uniquely determined by (3), an appropriate
choice function will often be tacitly employed to select a unique kernel,

residual, and induced substitution for each generalized £ -resolution
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inference.

Remarks

1. Each inference (3) is f-sound; for suppose ¢ is an & -
interpretation wherein B; is valid (i=0,--+-,n-1). Then ¢(Bie) = ]
(i=0,---,n-1) . Suppose ¢((Bi- ci)e) =0 (i=0,+-+,n-1). Then
¢(Cj6) =1 (i=0,.--,n-1), whence ¢(Cn8) =1 due to (ii), and the con-
clusion of (3) is true under ¢ .

2. Generalized éf—reso1ution inferences relativize to &€ the

generalized resolution principle of Robinson [67].

3. Conditions (iii) and (iv) can be imposed without loss of gen-

erality provided that 6 1is a m.g.s.u. of some collection of sets of

terms occurring in {Ciz i < n} , which is normally the case.

Descendants. -For each r-deduction o, the relation of descen-
dants is the smallest reflexive and transitive relation on occurrences
of atoms in clauses of :gl such that for each inference (3) inJ ,
each occurrence (Bi V q,*) where q e B; - C; has a descendant
(C v g8,%) in the conclusion.

Ancestor is the converse of descendant.

The transformations on I'-deductions described below do not always
yield I'-deductions. However, most of them do provided that T satis-

fies the following:

Assumption 1. T 1is a resolution-based calculus for h?= such
that f? Ax(r) and, for each r'-inference ( B PT‘ C) with kernel {C;: i< n},

residual Cn , and induced substitution © , conditions (v)-(viii) hold:
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(v) @n Ff Cn for each invertible substitution n , and this
inference has kernel {Cin: i<n} , residual Cnn , and
induced substitution n'] «Ben .

(vi) {C;: i<n} Ff C,0, and this inference has kernel {C;: i< nt,

residual Cn , and induced substitution © .
(vit) {A; v Cyzi<n} |5 (Ajv---vA )8 v Copo .

(viii) If 8 divides t then {C;t: i<n} l?cnr.

Remark. If T satisfies Assumption 1 then T is generated from

the set of "kernel" I'-inferences (vi). Each resolution-based calculus
defined in §2 is representable as a refinement of a calculus satisfying
Assumption 1. In future developments it may be useful to‘incorporate

this assumption into the definition of resolution-based so as to avoid

overlapping functions of calculi and refinements in research on proof

procedures.

A unit deduction is a deduction & such that J < va . The

embedding transformation defined below is useful for defining refinements
in terms of classes of unit I'-deductions.

Embeddings. The embedding of ({Bi: i<n} Ff C) (satisfying (i)-
(iv)) in {A; vBy: i<n} is the ( €-sound) inference ({A; vB;: i<n} s

((A0 vBO) - Co)e VeV ((An_]v Bn-l) -C_ ,)ov C,0 . Whether or not this

n-1

is a I'-inference depends upon the choice of AO,---,A (In any case,

n-1
the embedding of the "kernel inference" (vi) in {B;: i <n} 1is the I'-
inference . {(B;: i <n} |5 C). Let J' be a I'-deduction from {B,: i<n},

and Tet @& = {A; vB;: i<n} . The embedding of ' in B is defined
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on the basis of the I'-inference embedding by induction on the number of
inferences in ' . If ' contains no inferences then the embedding
is just (& ,0). Suppose i' contains an initial inference (61' !? C]‘).
Let (B4 |- C;) be the embedding of (@{ | ¢{) in & (or in
{A; vB;: Bieﬁg}) , and let i]' be the result of deleting (& l~1: Cy)
from QL' (so that Cis:Base(gli)). Let d?] =fF v {c;} , and com-
plete tne embedding gi] of Hi in G, . Let & be the result of
prefixing the embedded inference (@1 | C]) to £1 & Q is the
embedding of &' in & . Again, whether or not & is a I'-deduction
depends upon the choice of (Ai: i<n).

Ground deductions. A ground I'-inference is one whose induced

substitution is € , the identity substitution. A ground I'-deduction
is one whose constituent I'-inferences are all ground I'-inferences. If
D (C) is a ground I'-deduction based on @@ , then @ AR

General deductions. A T-deduction & s general provided that

it satisfies (i) and (ii):
(i) If B and C are two clauses of :gi which share a vari-
able, then either Be J(C) or Ce &(B) . (Thus, if

Q?l;; ¢ then & is separated.)

(i1) If (8; lzg-ci) has induced substitution @,(i=1,2) and

C-I # C2 then either xe] =X or x82 = x (x ¢ VI).

Composite substitutions. Let & be a general I'-deduction, and

let 0.: i <n) be a list of all the induced substitutions ordered so

i

that if 6; is induced by (61- ’o_@- C;) and 8; is induced by

493 ﬁii Cj where Cie:Jj(Cj) then i < j . The composite substitution
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% (induced by %) is defined by

o Zdf (8" 7t " Ony)

%

Proposition 7. o is well defined, and 6 divides o

)

(k=0,+++,n=1).
The proof is based on the simple observation that if 1 # j then

either X0; = x or xej = x (because éz is general).

Instantiation of I'-deductions. Let =£2 be a ground or-general

r-deduction (£ ,<), and suppose that the induced substitution for each

inference in & divides o . Then 229 , the instantiation of géz by

o , is the deduction (iab,‘%) where A0-<b Bo iff A<B and
Ac # Bo . The following property of instantiation is easily verified:

Proposition 8. If EL is a general I'-deduction where T sat-

isfies Assumption 1, then Eip is a ground I'-deduction.

1.3.8 Liftable Calculi and Refinements

The branches in a deduction él:= (13,4) are the maximal chains

in (< n (ﬁxﬁ)). A branch mapping (for g , or for (;Qm, Q@)) is a

mapping m from the branches of ® into a clause-set @ such that
(i) w(B) subsumes the initial (<-minimal) element of & ; and
(i) if n(@.') shares any variables with ﬂ(@z) then
¢.-Q,.
Tnus, the image of w in a is a separated set of clauses.
Let I' be a resolution-based calculus for £ . T is liftable
provided that if {Bi: i <n} |5 C' and {B;: i<n} is a separated
clause-set such that B; subsumes Bj (i=0,-+-,n-1), either Bj sub-

i
sumes C' where j <n , or {B;: i<n} FF C where C subsumes C' .
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Ir-1iftings. Let I be a liftable calculus, and let Q' be a
I' -deduction. Let m be a branch mapping for &'. A I'-lifting -§=
of Q' is obtained from (§:‘ ,m) by induction on the number of infer-
ences in ', aé follows.

Suppose __@__' contains no inferences. Then the trivial deduc-
tion ({n{B'}: B' eBase(ff'),<) is a I-1lifting of o' |
 be the

1
result of deleting this inference inference. Let {61‘: i<} be

Suppose a'{?u. C' where (@' = {Aj: i<n} . Let &

the set of branches in &' which contain C', and let {n(&.): i<n}

i
= {A.:

; i<n} where Ai subsumes A1'- and 11(6’3-) =A1- for some j

such that Aje @ijase(ﬂ') (i=0,:-+,n-1).

Case 1: Aj subsumes C' where Jj < n . Define ™ oon the

branches of gﬁ_]' by

A, L if e @
“1(‘3)=df{ :
' w(f3) , otherwise.

Let ;3_11 be a I'-1ifting of @i (using w]), and let Q = £"I ;

Case 2: A, does not subsume C° (i=0,---,n-1). It follows
oy Tiftability of I that ({A;: i<n} I_l“ C where C subsumes C'
Suppose without loss of generality that C shares no variables with
other clauses of @, and let a] = (lv{cy . Define M on

oranches of gi by

C ,if C'e@®
" (8) -

(@ ) , otherwise .
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Let £11 be a ﬂ]-]ifting of éli (using induction), and let é2=

be the result of prefixing ({A;: i<n} LT C) to QL

i
Remark. While the induced substitutions in the inferences of
£1 ‘are not mentioned explicitly, we may assume without loss of gen-

erality (on the basis of 57.3.7) thatvgz_is general. (Property (ii)

of m justifies this assumption.) -Thus, we have the following:

Proposition 9. Suppose that I is liftable and él' is a
I-deduction. Let = be a.branch-mapping for (éZ“,Cl). Then each
Ir'-1ifting QZ: of ng obtained from Qgi',ﬁ) is a general I'-deduc-
tion gl such that Base(dj) c (1 and each conclusion of éi‘ is

subsumed by a conclusion of éz: i

Let A be a I'-refinement where T s liftable. A is
liftable provided that for each ground refutation &' in A and each
branch-mapping = for &' , some T-1ifting of &' based on (& ',m)
also in A ;A 1is strongly liftable provided that A contains each
r-1ifting of &' based on (& ',m).

Liftability results for calculi and refinements can be very

useful in the derivation of completeness results (§3).
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2. PROBLEM SOLUTION

The purpose of this chapter is to define a class of normal
refinements which can be designed hierarchically, and to show how this
design process relates to the structured programming of specialized
proof procedures.

In addition to r'-refinement (§1.3.4), two related concepts will

be useful in the overview which follows. A I'-macro-refinement is a

[-refinement A, such that for some "higher level" calculus T , each

refutation in Ay has a decomposition into realizations of Pmninfer-

ences. A T'-micro-refinement is a Tu-refinement Au wherein each

refutation has a decomposition into realizations of I'-inferences. (I‘u

is a "lower level" calculus than T .)

Thus, if €& d, then a normal refinement A, “n, for € s
a composition (§2.4.1) of a resolution macro-refinement Ay with a
resolution micro-refinement A, - Resolution is the calculus which ad-
mits € -resolution inferences (Abstract, or §2.1.1) where & 55[x=x}f.

€ -resolution refinements are the topic of §2.1. Hyper-£ -
resolution is the higher-level calculus for an € -resolution macro-

refinement HR(E ,»,s) (§2.1.2). A useful lifting transformation on

£ -resolution deductions is described in §1.3.8 This transformation
takes a ground ( €-resolution) deduction f' , and a clause-set ]
such that each member of Baseggl') is Subsumed by a corresponding
member of @ , and produces a general deduction g?_ such that each

conclusion of ' is subsumed by a conclusion of & .
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The investigation of resolution micro-refinements begins in §2.2
with the definition of a basic calculus I'c based on the following
axiom and.rules:

(i) Simple reflexivity: [x=x] ;
(ii) Simple factoring (SF), a restricted form of factoring ;
(ii1) Replacement (Rp), a restricted form of paramodulation ;

(iv) Cut, a restricted form of binary (or pairwise) resolution.

A normal deduction is a basic deduction gl wherein SF is not

applied to conclusions of Rp-inferences; if C 1is a conclusion of a
binary resolution inference in & then il(c) is uniquely decompos-
able into realizations of resolution inferences. Each normal refinement
(below) is a subset of the normal deductions.

The sole function of a resolution micro-refinement Au is to
specify, for each resolution inference (1), a set of admissible Pp—
realizations. In the case of normal refinements, PU =Tg and Au‘ is
defined from the unit Tg-deductions in A, by means of a normal embed-

ding transformation (§2.2.3).

The class ND(f ,») of é-ﬂormal deductions (52.3.8) exemplifies
the above remarks on AlLl . Each unit g;normal deduction has a decom-
position into é;-normal reductions and highly restricted Rp or Cut

inferences. An éi;norma] reduction reduces a literal p to a literal

g by a chain of (ground) Rp-inferences based on equations (s6 = t0)
in £* such that s6 > t6 . The restrictions on Rp and Cut are essen-

tially that the (unit) premises must be irreducible with respect to

(&,>).
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Subsequent completeness results (§3.2) require that > be an

£ '-complexity ordering for some set &' of equations in & --i.e.,>

is a decidable monotone (§2.3.2) partial order on J7V which is pre-

served under certain " £'-normal" substitutions and which well-orders

constant terms.

Normal compositions of refinements are defined in §2.4.1. Given

an &-resolution refinement A and an £'-resolution refinement A'
where JV?E 2 € A+A is an &' -resolution refinement wherein
éagh refutation has a decomposition {gég(ci): i <n} such that ;ég(ci)
realizes an &€ -resolution inference (B; F¢;) (i<n),

{Bi - Ci: i < n} defines a refutation in A , and ﬁi(ci) is obtained
by embedding (§1.3.7) a unit &'-resolution refutation which is in A’
(i <n) . If Ay s a reso]ufion refinement (§2.1.1) and Au is a
normal resolution micro-refinement, then Ay - Ap is defined similarly.

A normal refinement (for £ ) is an & -resolution micro-refinement

Dy * D where Ay is a resolution refinement and Au is a resolution

Y
micro-refinement. Normally Ay = (---(A, 'An-])"'Ao) where 4, s an
€ -resolution refinement, & 2€,2---2 50 and &, éozav :

A normal refutation procedure (fbr‘F? ) is one whose search space
is a normal refinement (for £ ). The clause representation and Level
function in §2.4.2, based on an analysis of ancestors of atoms océurring
in members of Ay * Ap » makes it clear that A, - Au can be efficiently
incorporated into the design of a normal refutation procedure for b;

Moreover, an intuitive description of a search strategy for use with

By °Au is given in terms of search strategies En""’Eo’Eu , under the
assumption that Ek is characterized by a cost function on deductions

and a heuristic "cost of completion" estimator.
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2.1 £ -resolution Refinements

2.1.1 € -resolution

An € -resolution inference is a generalized &-resolution infer-

ence
{Bjvag;: i<n} |~ (By - Cy)6 v -+ v (Bn-]. - C,q)0 (1)
where
(v) q; € C; € By vy (i=0,+++,n-1) 3
(vi) C;6 = {q;6} (i=0,--+,n-1) ; and
(vii) {q;6: i<n} fis € -contradictory.

Thus, the kernel of (1) is {C1-: i<n} , and the residual of (1) is O
(61.3.7). Equivalently, we can define an &-resolution inference to be

an inference
{Bjvqy: i<n} |- ¢C | (2)

where (B - Qp)O v +er v (B 1-9,_1)6 2 C2(B,6-q8) v---v (B, 10 -
d,-18) » {g;0: i <n} s £ -contradictory, and © satisfies (iii) and
(iv) in §1.3.7 with C; = CA(B;- q;)0 (i=0,---,n=1). The conclusion

C dis an E-resolvent of any set which includes the premises.

An € -resolution inference (2) is E-Eur‘e provided that it satis-
fies (i)- (iv): '

(i) ‘By vq; is not subsumed by any clause in B ulx=x].

(i1) B; vg; shares no variaoles with By v q; (0<i<j<n).
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(iii) If (Bi vgi) subsumes (Bj VQJ) then (Bi‘lgd)” and (Bj vqj)
are variants (i.e., (Bi vgd)n = ijgg where n is in-

vertible) (0 <1 < Jj < n).

(iv) C 1is not a tautology and is not subsumed by any clause in

1By vagy: i<n} v [x=x].

£ -resolution refers either to the calculus which consists of all

E-reso}ution inferences {(no axioms), or else to the class of all €—

resolution deductions. Thus, an € -resolution refinement is defined as

in §1.3. (See Remark 2 below, and Footnote 1 in §1.3).

Convention. If £ € [x=x]* then we drop the pfefix £E-.

Remarks .

- ‘8 -resolution is not in general decidable. (If € axiomatizes
aroup Theory and Vg is infinite, then &-resolution is undecidable by
the undecidability of the general word problem for finite extensions of
the group theory axioms (§8C,[71]).

2. &-resolution inferences realized by proof procedures will
normally (or ideally) be E-pure. However, it seems most appropriate

to let the refinement determihe which of (i)-(iv) are to be satisfied.

2.1.2 Hyper- € -resolution

A renaming is a mapping r: GV + ef& such that
(1) r(p) e {p.p} 3
(i1) r([s=t]) = [s=t] ; and
(ii1) r(pe) = r(p)o
r 1is extended to clauses by

(1V) r(’bp) =df ’W‘(p) 3 and
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(v) rlqgv---va)) =4e rlq) v---vr(q).
If r(C) is a positive (negative) clause then C is r-positive
(r-negative).

A (negative literal) selection function (for a renaming r) is

a mapping s: CV +CV such that

0, if C is r-positive or empty ;
s(C) =

some r-negative literal q 1in C , otherwise.

Evidently, r 1is definable as a function of s :

]
o

p , if s(p)

r.(p) =
’ = p , if s(p)

]
o

Let £ = (€.,~s) where > is a substitutive partial ordering
on CLV wherein equations precede all other atoms and s is a selec-
tion function.

A hyper=-5-¢eso1ution inference is an inference

{By VPgs = +aBy 1 VByys Byvagv v, g} - C (3)
satisfying (i)-(vii):

(1) €= (Byo - pg@) v ===V (B 10 - py10)v (B, - {q 05+ +5q,.16})-
(i1) R CJCFEERN ETR (608 Voo vah_le)} is an E-contradiction.
(p) is a maximal atom in

(iii) B;vp; is rc-positive and r,

rs(BiV pi) with respect to > (i=0,---,m-1).
(iv) B, is r.-positive or empty and q; is rs—positive'(i=0,---,

n-1).
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(v) Bjvp; is not subsumed by a member of € v [x=x] (i=0,---,
m=1).
(vi) If B Vao Voo Van-1 is subsumed by a member of & u [x=x]
then B =0 and (q v---vq, ;) € e .
(vii) 1If (Bjvagy) subsumes (Bj ng) then (B; vg;) and (Bj vqj) are

variants.

From (ii) and (iii) it follows that the conclusion C (a hygertsi-

resolvent of the premises) is r -positive or empty. The major premise

of (3) is Bm Vao Voo van“]; B; vy is a minor premise of (3).

Hyper1£L—resolution refers either to the calculus which consists

of all hyper- €& -resolution inferences (no axioms), or else to the class

of all hyper- € -resolution deductions.

*
Convention. If € € [x=x] » > is the trivial ordering, and Py

is the identity renaming then the infix "-$i:" is replaced by "-E-".

Thus, a hyper-E-resolution inference has the form
By vpgstesBy VP7s BV V--- v q. ) FC

where B; vp; is positive (i=0,---,m-1), B is positive or empty,

m-1
(q0 Voo vqn_1) 1; negative, and {poe,---,pm_]e,qje} is a contradic-
tion (j=0,.-.,n-1).

An Ji;reso]ution inference is an £ -resolution inference

{Byvpgs*-sByq VP,-1> By, v dp,} - C (4)



-60-

satisfying (i)-(vi):

(1) C= (B8 - q®)v---v (B, 18 - q, ¢6)
(i1) {poe,--.,pm_],e, ame} is an & -contradiction.
(ii1) B; vp; s rg-positive and r (p;) is a maximal atom in
ro(B; vp;) with respect to > (i=0,.--,m-1).
(iv) q, 1is rc-positive.
(v) B, vp; is not subsumed by a member of £ v [x=x] (i=0,---,
m-1).
(vi) 1If B, vﬁm is subsumed by a member of £ < [x=x] then
& % § o *
B,vg, is ri-negative and (B vq )¢ E™ .
The major premise of (4) is Bm v§m; Bi"Ed is a minor premise.
£ -resolution refers either to the calculus which consists of all
& -resolution inferences (no axioms), or else to the class of all é;—
>re$0]ut10n deductions.

Proposition'l. Let gi(c) be an g;-reso]ution deduction

where C s ro-positive or empty. Then £1(C) has a unique decomposi-
tion Lgii(ci): i < 2} such that izj(cj) realizes a hyper-gi-resolution

inference @j — Ci (§=0,--+,2).

Remark. This proposition is easily proved by induction on the
number « of rS-posifive or empty clauses in J5(C)- The following
"converse" to Proposition 1 is also easily verified:

Proposition 2. Each hyper-gi;reso]ution inference (2) has a

unique €-resolution realization.
Thus, the maximal &€ -resolution refinement HR(E ,7,s), where

HR(E ,7,s) =4¢ (¥: B is an € -resolution deduction} , is
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also a hyper-<¢€ -resolution micro-refinement (§2.0).

2.2 A Basic Calculus

The following subsections define a basic calculus I'q over Cb :

I¢ nas one axiom, [x=x] (the Simple reflexivity axiom)and three basic

inference rules: Simple Factoring (SF), Replacement (Rp), and Cut.
Cut is the binary (or pairwise) restriction of Resolution.

A basic deduction is a IS—deduction.

2.2.1 Unification and Simplest Unifiers

The conclusion of each basic inference is constructed by instan-
tiating certain constituents of the premises. In order to ensure that
the cqnc]uSion is as general as possible, fhe concept of a simplest or

most general unifier is used to define the instantiating substitution.

Given a property P of substitutions, we say that o is a simplest

(or most general) substitution such that P(c) .provided that

(i) P(o) ; and
(ii) if P(t) then o divides T , in the sense that o«6 =1

for some © .

Now o 1is said to unify a finite nonempty set U of terms or formulas
provided that uc = vo (u,v € U). Robinson [63] verifies a unification
algorithm which computes a most-general unifier mgu(U) of U , pro-

vided that U 1s unifiable, and otherwise returns nil.
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It is easily verified that if o 1is any most general unifier for U
then
(i) o*c = ¢ (i.e., o is idempotent); and

(i1) mgu(Uu)e = ¢ for some invertible substitution 6

A substitution o simultaneously unifies a collection U of

subsets of dV W oy provided that g unifies each member of . It

is shown in [69] (and elsewhere) that there exists a total computable
function mgsu from finite collections of finite subsets of é7VtJ6fV to

Zyv{nil} such that

a most general simultaneous unifier (mgsu) for U« ,
provided that U 1is simultaneously unifiable;
mgsu(Y)=

nil , otherwise.

It is easily verified that if ¢ 1is any most general simultaneous uni-

fier for I then

(i) o0 = o 3 and

(ii) mgsu(U)e = ¢ for some invertible substitution 6 .

Notation. Given a predicate P(x) which holds for only a finite

subset {x],---,xn} of VI , we define the substitution

[F(x)/x:P(X)] =g [FOKG)/xq e oF (% )/, ]
Thus the quotient of o by t , [o/1] is defined by

[1/0] =¥ [xt/x:xc = x and xt # x] .
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Lemma 3. Suppose ¢+c = ¢ and o divides T . Then o-[1/c]

1]
&

Proof. Suppose o+6 =1 . If xo = x then clearly xo[t/o] =
XT . Suppose xo # x . If y occurs in xo then yo =y because
Xoo = X0 , whence y8 = (yo)6 = yt = y[t/0] . It follows that if

xo # x then (xo)[t/0] = (xo)6 = xt .1

The following lemma shows that mgsu(Y) can be computed by apply-

ing mgu (in any order) to members of U .

Lemma 4. If gy = mgsu(%ﬁ) and o, = @gsu(ﬂzo]) then o0, fis
a mgsu of YU, v ﬂz .

Proof. C]eérly 010, simultaneously unifies u] v ﬂé . Sup-
pose T Simultane_ous]y unifies ‘[1] V‘Uz . Then 0]°[T/U]] =T ',
because T simultaneously unifies ?A] . Therefore [T/Ul] simultane-
ously unifies ‘UZG] , whence 02?{[T/c]]/02] = [T/O]J by definition of
ay . Since (0]-02)-[[1/01]/02] =1, it follows that Gy 0, is a
mgsu of Zl] v, A

2.2.2 Basic Inferences

Basic inferences consist of SF, Rp, and Cut inferences.

A Simple Factoring (SF) inference has the form

{A v p} |~ Ao v pe (5)

where 6 1is a m.g.u. of a set {p],---,pn} of literals in A which

contains p . A8 v p8 is said to be a simple factor of Av p on p.
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Remark. Notice that the designated literal of the premise in (5)
is irrelevant, and that p6 , the designated literal of the conclusion,
is the "image" of {p1,---,pn} under 6 . In cases where 6 =€ , SO
that A6 v p6 = A v p , it may be useful in the definition of a refine-
ment to distinguish Avp and Avp if Avp has a different
designated literal than p . (See §1.2.3, Convention).

A'reE1acement (Rp) inference has the form
{A v [s=t], Bvg[r]} |- Cvg[t]e . (6)

where
(i) C= (A - [s=t])e v (B - g[r])e ; and

(ii) o 1is a m.g.u. of {r,s} .

(6) is general provided that A v [s=t] shares no variables with
B‘v gqlr] . The major premise of (6) is B v gq[rl; A v [s=t] is the
minor premise.

Remark. Hotice that the kernel {[s=t], q[r]} of (6) (§1.3.7)
is defined by the designated literals in the premises, and that the
residual q[t]6 is also the designated literal of the conclusion in (6).
Thus, Rp is a restriction of paramodulation [62].

A Cut inference has the form
{Avp,Bvdgt | (A-plev (B-q)e (7)

where 6 1is a m.g.u. of {p,q} , (7) is general provided that A v p
shares no variables with Bvq .

Remark. Again, note the requirement that the kernel {p,q} of
(7) be the set of designated literals of premises. The residual of (7)

is 0 .
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2.2.3 Normal Embedding Transformations

Each basic inference is evidently a generalized resolution in-
ference. Thus, the analysis of resolution-based deductions in §1.3.7
applies to the class of basic deductions. The fo]]owihg extension of
the embedding transformation for resolution-based deductions will be
quite useful in subsequent developments.

Let @' be a basic unit deduction from {p;: i<m} . A normal
embedding of £ ' in {B v q,: k<n} is an embedding of &' in
{A; v py: i<m} (81.3.7) where A, v p; is a simple factor of some
clause Bk Vg, on g (i=0,---,n-1), prefixed by all SF-inferences
({By v q} F A; v pj) used in obtaining {A; v ps: i<m} from
(B vay: k<n} .

Thus, if & is a normal embedding of &' in {B, vg,: k<n}
then Base(d) < 1{B; va;: i <n} L/{[x=x]}% . Note that the designated
literal of B; vq; is irrelevant.

Remark. A normal deduction from {B;vg;: i<n} is a I¢-

deduction from {B; vq;: i<n} and may therefore contain any number

of variants of [x=x] in its base (§1.3.3).

2.2.4 Analysis of Normal Deductions

A normal deduction is a basic deduction & wherein

(i) the premise of each SF-inference is either an initial (base)
clause or the conclusion of a Cut inference ; and
(ii) each Rp or Cut inference is general.

Proposition 5. For each normal deduction 51' there exists a

general normal deduction o such that Base(&d) < Base(&')" .
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Indication of Proof. Let w be a branch mapping (81.3.8) for

(ﬁ',a) where @ < Base(&') . While [ is not liftable, we

heverthe]ess obtain a 1‘5- ifting Q of Q' based on (m, (@), for the
reason that each basic inference in &' 1is general and therefore
"Tifts" to an inference whose indﬁced substitution is a variant of the
induced substitution of the inference being lifted. There is, in

fact, a mapping from induced substitutions in inferences of gz onto
variant induced substitutions at corresponding positions in él' 2

That gz; is general and Base(&) < BaseLiZ')m follows by Proposition

7 in §1.3.8. Clearly éz is normal.

A normal realization of a reso]utidn inference
{B; vaqj: i<n} | C (8)

where (Bov an_])e 2C 2(Byo - q0) v - (Bn_]e ~ qn_]e) is a

ee ¥
normal embedding ngC) of a unit refutation gZ'(O) in {Bjvag;: i <n}.

Thus, Base(£'(0)) = {pi: i<m} where p; = qjej for some j<n and

some m.g.u. Oj of a set of literals in ij 9; which contains a -

Proposition 6. If &I (C) is a normal realization of (8) then

%

(C) is normal and is a Fs-realization for (8).
The proof is trivial.

Proposition 7. Each normal refutation &(0) has a unique

decomposition ngi(cf): i<n} into normal realizations of resolution

inferences.

Indication of proof.. Use induction on the number n of Cut

inferences in & (0).
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Remark. Propositions 6 and 7 justify the analysis of normal
deductions in terms of still simpler unit deductions, such as the
class of &-derivations which follows.

A derivation is a basic unit deduction consisting entirely of
Rp~inferences. '

An & -derivation is a basic unit deduction

[s,=t,] 4lry]
[5n-17tge1] * Gpeilfpord

3,0, ] (9)

where [5i=ti] e &V, q1+][ri+]] = qi[tiei] ,» and 8; is a simplest
substitution such that ri= 540 (i=0,---,n-1).
Remarks.
1. ({[sy=t;1,q4[r;1} |- q;[t;831) is an Rp-inference because
6; s a m.g.u. of {ri,si} such that qi[ti]ei = qi[tiei] -
2. 'For each £-derivation (9 ) there is a corresponding gen-

eral £ -derivation

Lso=todng %Lrod

[sn-1=tp-11n-1

anlr,] (10)
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where n; is an invertible substitution such that [Si=t1]”j shares
no variables with qo[ro] or with {[Si=ti]”i: i€ §F
Recall the definition of 0}5 i §1.3.7.

Proposition 8 (Induced Subs??%utions). Suppose .£Z is a gen-

eral basic deduction. Then Gij is a m.g.s.u. of the set

{{p.q}: D contains a factoring inference B | B8 , {p.,q} € B,

and pé = go}

v{{p,q}: & contains a Cut-inference

{Avp,Bval |- (Re vBo)}

v{{r,s}: Q contains an Rp-inference {Av [s=t], Bvgq[r]} |
Cvgltle}.

Moreover, @o_ is a ground basic deduction with the same conclusion(s)

as & , and 5;5 is a simplest substitution o such that &o has

this property.
The derivation of this lemma from the results of §2.1.1 (by

induction on the number of inferences in £L) is straightforward.

2.3 Resolution Micro-Refinements

2.3.1 Positional Order of Replacements in Derivations

Given a derivation from p to q based on a set € of equations,
there are typically many alternative derivations from p to q based on
€ . A good refinement should filter out all but one of these, so that
proof procedures based upon it will not waste resources by generating

many or all equivé]ent derivations "in parallel" while searching for the
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first refutat1on.

Example. Let £ - {[a1=bi]: 1<i<nri,and let p = (Qal"'an)

The "prefix" derivation
[a,=b,] (Qay---a,)
(Qb]aZ"'an)
(23205 (db1°°'bn—1an)

(Qb_l...b )

n—]bn
is just one of n! equivalent derivations from p to (Qb]---bn) based
on € . Even if subsumption were used, a proof procedure using a
"complexity-order" search strategy would derive all of the 2" atoms
(Qu]---un) where u; € {ai’bi} (i=1,+++,n) in the process of generat-
ing the first derivation from p to (Qb]-~-bn), unless some refinement
were used to impose an ordering constraint on positions of occurrences
replaced in "independent" Rp inferences (of which there are n above).

Such an ordering constraint is used in the definition of normal
derivations and reductions (§2.3.5).' The following total ordering on
positions of occurrences in terms and literals is useful in this defi-
nition. (It formalizes the "left-to-right, bottom-to-top" order of
positions in a familiar prefix-tree representation of terms).

End-order of positions (and occurrences at those positions) is

defined (following Knuth [38 ]) by

(i) o+ B precedes o 1in end-order if g # * . (Thus, * is
preceded by every other position, in end-order.)

(i) a~i+g precedes o-j+y 1in end-order provided i < j .

We say that an occurrence (u,a) precedes an occurrence (v,8)

(in end-order) provided that o precedes B
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A position « dominates B provided that a*y = B for some
position y ; if Yy # * then o properly dominates B .

Two positions are independent provided that neither dominates
the other.

It is sometimes useful to extend the relation of domination

from positions to occurrences :

(u,a) dominates (v,B) =4f © dominates R .

The relation of independence is extended similarly.

2.3.2 Invariant Relations on Terms and Clauses

Subsequent developments make use of various ordering relations
on terms and occasionally on clauses. Let R be a binary relation on

J

particularly useful.

V- The following attributes and transformations of R will be

Reflexive: (tRt)

Anti-reflexive: (tRt)

Transitive: If rRs and sRt then rRt
Symmetric: If sRt then tRs.

Anti-symmetric: If sRt and tRs then s=t .

Monotone: If sRt then wu[s]Ru[t].
Substitutive: If sRt then spRte (6 ¢ ZV).

Invariant: Monotone and substitutive.

Quasi-Ordering:Reflexive and transitive.

Partial-Ordering: Anti-symmetric and transitive1

Mhis definition of II'pav‘tia] ordering" leaves open the question
of whether or not R is reflexive. (See Notational conventions below).
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Total ordering: Partial ordering wherein either (sRt), (tRs),

or (s=t) (s,t € Uw).

Well ordering: Total ordering wherein each subset of C7V
has a first element.

A descending chain in R 1is a set {ti: ieN} such that

iRty OF ty =ty (W),

i i+]
 Descending Chain Condition (D.C.C.): Every descending chain

in R 1ds finite.

Equivalence, congruence, and equality relations (51.2.8) are

easily defined in terms of the above concepts.

Notational conventions. Quasi-orderings will normally be

denoted by = or =* ; =* denotes the smallest reflexive and tran-

sitive extension of a generating relation -+ . Partial orderings will

normally be denoted by » or 2= , and it is normally assumed that

t #t . =z denotes the smallest reflexive extension of » , and is

also a partial ordering. < generally denotes either the converse of
> or a well-ordering unrelated to > .

~ Standard extensions to clauses. Frequently it is useful to

tacitly extend a relation from ch to J7V bd tTV without distin-
guishing the extension notationally. To this end we define two

standard extensions of a relation from :7V to .7% v CV . The

monotone extension applies to all quasi-orderings. It has the property

that if =» preserves an equality relation =—-8 on ‘7V then ==

preserves F=%f on @V . The lexical extension is based on a stand-
are well-ordering of V (precedes) where = 1is the first member of

{=}uVR .
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The monotone extension of a quasi-ordering = on J\.’ is the

smallest extension of = from gv to a quasi-ordering (=) on

Ty v C’V satisfying (i)-(v):

(i) If s=t then u[s]= u[t]
(i1) If s] = t] and s, = t, then [s]=t]] s [52=t2] .
(1i1) If sy = t; (i=1,.--,n) then (Psy--:s ) = (Pty.--t,)

1
n
(P e Vp).
(iv) If p=>q then p= q .
(v) If p;= q; (i=1,--.,n) then (pyv---vp,) =
(ay v--vay) .

The lexical extension of an anti-symmetric relation > (nor-

mally not a quasi-ordering) on ‘7V is the smallest extension of »

from 7\.’ to a relation ( ») on ‘7VV C’V which satisfies (a)-(d):

(a) (Qu]---um) >(Pv]---vn) iff either
(i) P precedes Q 1in the well-ordering of Vp ¥ {=} ; or

(11) Q“_" P and .uj>vj

where j = min{k: U o vk};
(b) If q>p then q>p .
(c) If q; =p; (i=1,:--,n) then

(qy ve--vay) =(pyve--- vpy).

(d) If m<n then (q.lv-~-vqn)>'(p]v---vp) .

m

It is easily verified that if > 1is a partial ordering on ‘.7'\, then
its lexical extension is a partial ordering on ‘7V uCV

2.3.3 Reducibility Relations and Determinative Systems

An € -reducibility relation is a quasi-ordering = such that

(u-> v) implies (u ¢ v) (u,v e J'V) ; - is tacitly extended to CV
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by the standard monotone extension transformation (§2.3.2), whence

(A= B) implies (A |=}8 B).

Determinative systems]. A clause-set £ 1is determinative pro-

vided that for each clause A v[s=t in € , each variable which

occurs in A v [s=t] also occurs in s . A clause B is determinative

provided that {B} is determinative. Thus, an equation [s=t] is

determinative provided that each variable in t 1is also in s .
Determinative equations can naturally be interpreted as defini-

tions. Two concepts of "definitional reduction" are formalized by the

*
€ -reducibility relations e and =ﬁ2¢ » respectively, generated by

the relation 43 of E-contraction and its restriction ;E , called

normal €£-contraction:

(u a? V) =df (u=u'[r] and v = u'[te] where € contains a

determinative equation [s=t] such that r = s8).

(u=ﬁ2 v) =df (u=u'[r] and v=u'[t6] where [E] is the first

occurrence of a term r such that E contains a

determinative equation [s=t] and r = s6).

Observe that +E is an invariant € -reducibility relation,
whereas #ﬁ? is normally neither monotone nor substitutive.

One useful property of determinative systems is revealed by the
following characterization of ¢

£ is equational provided that each clause of £ s an equation.

T¢F. the notion of determinative rule in Curry [15].
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Proposition 9. Suppose £ is determinative and equational.

-,un) such that u_= u,

Then u ¢ V iff there exists a Tist (u s

0
U= v, and either u *e Uy Or Uy % U (k=T,---un).

Proof. Let ﬂ? be the relation whereby u e Vv iff there

exists such a list (ug,---,up). Clearly (u~g v) implies (u =g v).

Conversely, is an invariant equivalence relation such that

ny
[
s ve t for each equation [s=t] in g ; since = 1is the smallest

such relation, (u =g v) implies (u e v) .

Remark. If £ 1is not determinative then “e need not be in-
variant. For suppose € = {[s=t]} where y occurs in t but not
in s. Then swe t,but sfu/yl# tluy] for u# y . Thus

%5 is monotone but not substitutive.

2.3.4 Reduction Systems and Ordered Normal Forms

A reduction system is a pair (€ ,¥) where € isa (normally

finite) set of clauses and > 1is a monotone guasi-ordering on va .

Conventions.

1. As in §2.1.3, € may denote either a reduction system
(€,”) or‘ a triple (&€ ,»,s) where (£€,¥) is a reduction system.
Normally we assume & = (£,>) .'

2. If > is an € -reducibility relation (e.g., +§ ) then we
assume > to have been extended to .y by the standard monotone
extension; otherwise we assume the (stronger) st;ndard lexical exten-
sion (§2.3.2).

An £ -reducipility relation is an E-reducibility relation =*

such that (u=* v) implies (uzv). If u=*v where v # u then
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* i 4 § i .
:-otherwise u 1is irreducible in =

u is reducible in = =

The following development parallels and extends §2.3.3, beginning

with an € -contraction relation (=, ) and a more restrictive normal

£

===

& -contraction relation (=>E'):

=

(u +E v) =df (u=u'[r] and v = u'[te] where € contains a
w determinative equation [s=t] such that r=s8 >to6)

(u=_ v) =df (u=u'[r] and v = u'[té] where [r] 1is the

£

first occurrence of a term r such that £ contains

a determinative . equation [s=t] and r=s8 > t8).

Observe that u 1is irreducible in f->6* iff u  is irreducible in

as =
. & _
- NF(E,») =4¢ {ue Ty v Cy: u is irreducible in +’:£}

An € -normal form (for '7V v CV) is a decidable set
WSJVVC'V satisfying (i) and (ii):

(i) For each term s , s +*5 t for some term t in A . 7

(ii) For each clause A, A -* B for some clause B in M

g

==

If t and B are uniquely determined by s and A in (i) and (i)

respectively, then % is an £-canonical form.

Thus, NF(E ,>) may or may not be an £ -normal form. The follow-

ing development is useful in investigations of such matters. We define

pertinent attributes of a reduction system & = ( €,») as follows:

Equational: £ is a set of equations.

Determinative: & is determinative.

Finite: £ s finite.
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Finitary: Finite, and > is a partial ordering which satisfies
D.CiCs

Total: - s >t for each equation [s=t] in €

Complete: If r=p s then r+’:€ t and s+’é t for some
term t .

Normally Complete: If reg s then r©}t and s =g t
for some term t . I m:

Normal: NF(€ ,») is an € -normal form.

Canonical: NF(€ ,¥) is an € -canonical form.

Observe that if € s finitary then & is normal, and that € can be
(normally) complete without being normal.

Proposition 10. Suppose £ 1is finitary. Then & 1is complete

iff £ is canonical. |
Proof. If £ s canonical then clearly £ is complete.
Suppose £ is complete. It suffices to show that for each term
s there exists a unique term t in NF( & ,¥) such that s ‘=>":§ B .
Suppose s =2 t; and s =7 t, where tsty € NF(E ,»). Then

£ £
Y ¢ t2 > whence t; =i§ t (i=1,2) for some t (by completeness).
Therefore t] =t=t ﬂEy definition of NF(E ,=).|
This development is continued in 8C.3 with an effective partial

characterization of canonical reduction systems. (Completeness is not

an effectively decidable attribute of reduction systems.)

Notice that (-8) = (+E) and (=>€ ) = (*be) where £ =

(5,42 ). In this sense, % and e are special cases of the

above concepts defined for reduction systems.
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Convention. Whenever a concept is defined with a reduction-

system parameter £ , substitution of € in the definition is equi-

valent to substitution of the reduction-system parameter (€,+E ).

Thus, the concepts total, normal, canonical, finitary, and

complete apply to sets of clauses as well as to reduction systems;

moreover, NF(E ) is defined:

NF(E) =4¢ NF(E,—*E )

Similarly, following the useful definition

ZE =df {6 ¢ Dy: X0 € NF(E.,» (xe VI)}

the substitution set ZE is also defined.

Observe that £ is total because +§ orders each equation

of £

2.3.5 Complexity Orderings and Weighting Functions

An €-complexity ordering is a decidable monotone partial

ordering > on Dw satisfying (i)-(iv ):

(i) > well-orders the constant terms of ‘7V .
(ii) u[tl >t
(iii) If s >t then se >to (6 ¢ L )
(iv) NF(E) contains at least one constant term.
Notation. If & =0 then the prefix £ - is omitted.
Remark. If > 1is a complexity ordering then Zo =-ZV and
> is invariant, whence > satisfies D.C.C. by (i) and (iii). More

generally, if s >t then s8 >t® where x8 is a constant term in

NF( &) (using (iv)). It follows that every &-complexity ordering
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satisfies D.C.C. Thus, by Proposition 9 we have

Proposition 11. If £ is finite and determinative, and > is

an &'-complexity ordering, then NF(&,») is an €-normal form.
Remark. Subsequent completeness results for ND( & ,») presup-

pose that > is an E£'-complexity ordering where &' €E

A weighting function for V is a mapping . w: VF + N such that

(i) w(c) >0 (ce Vg) ; and
(ii) w(f) >0 for all f in V} except for the last member
of VF , if any, in the standard well-ordering

of V .

Weighting functions can be used to define complexity orderings for :7V
in several ways. The basic method follows. Applications and exten-
sions of this method are investigated in §C and 8D .

Let w be a weighting function for V and let Wo Tdf

min{w(c): c € V?}. Extend w to JV by
Wg if uce VI i

wlu) =g¢ n | N
: w(f) + ) w(ui), if u =(fu]---un) where f e V¢ (n>0).
i=1 : '

Let n(x,u) be the number of occurrences of x 1in u , and let the

first symbol of u be u provided that ue V; v V? and f provided

that u = (fu]~--un) where f ¢ V2, and n> 0 :

op(u) =q4¢ the first symbol of u.

Now > is defined from w and the standard well-ordering of

V  (precedes) wherein operation constants precede variables:
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(u 2y v) =4¢ [lﬁ_ n(x,u) 2 n(x,v) (xe Vq)
then if w(u) > w(v)
then true
else if w(u) = w(v)
then if ve Vy
then (u # v)
else if op(v) precedes op(u)

then true

else if u = fug---u
Fv= fvr--vn

aE Yy % Yy

where j = min{k: u #v,}

then true

else false

else false

else false]

It is easily verified that e is a complexity ordering on -7V .

(See Knuth and Bendix [39] for proof.)

2.3.6 € -normal Reductions

Let € be a reduction system (§2.3.4).

An € -normal reduction is an & -derivation

[So=t91-ﬁ,,_‘jf[r03

1 a,q0r, 4]

aplry] (10)
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where

(i) t e NF(E,» for each term t which occurs in a;0ry]
| before [ri] (end-order);
(ii) rs = 5181 > t1.e..l ; and

then [si=t1] is a variant of [sj=tj] g
(10) is complete provided that, in addition,

(iv) q,lr ] e NF(E ,>).

Remarks

1. If > satisfies D.C.C. then every € -normal reduction has
an extension to a complete £ -normal reduction, because qi[ri] >

qiﬁt"‘ﬂﬂ by monotonicity of >

4 . Lk
2. If (10) is an E-normal reduction then a4l ] —>£ anlr, 1.

2.3.7 & -normal Inferences

€ -normal inferences are effective inferences defined in terms
of a reduction system £ = (&£,»). Their definition facilitates the
definition of £-normal deductions in §2.3.8. Two sorts of &£ -normal
inferences are described below:

(i) Basic éi—norma] inferences consist of SF, Rp_, and Cut

£
(ii) Composite £ -normal inferences are realized by basic

e
€-normal inferences, and are the inferences most naturally
produced by refutation procedures “Based on" ND(E ,»)
(83.2.3).

BRS : {Av [s=t], Bvg[r]} |- Ao vBovqg[t]o where

(?) A v [s=t] shares no variables with B v g[r] ;



(vi)

(vii)

where

(i)
(iii)
(iv)
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® is a m.g.u. of {r,s} ;

[s=t] € NF( & - [s=t]".») ;

if [s=t] 1is properly subsumed by an equation [u=v] in
£ then r =s6 >t6 and q[r]e = q[so],

if qg[r] ¢ NF(& ,») then r = s6 >1t06 , q[r]e = q[so],

and each term which occurs in q[r] before [r] 1is in

NF(E s>)3

if q[r] e NF(€,”) - [x=x]* then r ¢ V; and to ¥ s6;

and

if q[r] e [x=x]m then B = 0, [s=t] e NF( £ ,>), and

re =s ¥+t.

{Avp,Bvgl |-As v Be

A v p shares no variables with B v q ;

8 1is a m.g.u. of {p,q} ;

p,q € NF(€ ,>); and

if either p or q is an equation, then {p,q} = {[y=y],

[u#v]} and & is a m.g.u. of {u,v} .

Composite &£-normal inferences are of the forms SF, CRp ¢,

and CCut8 H

CRp_:
£

where
(i) e
p
P

(Avp,Bvagl |- A6 vB9 vq[t]e

ither p = [s=t] and q ﬁi% q'[t]; or
=* [s=t] and q 1)

q'[fTIn‘ ps or

q'[r] ; and

]

=>

t*jm

[t=s] and q

li
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(ii) ({A v [s=t], B v q[r]} - A6 v Be v q'[t]e)
is an RpE -inference.

CCut : {Avp,Bvaql | Ae v Bs

where

(1) P——>£_ p' € NF(€ ,» ; and
(i1) ({K*i p's Bvql |-A6 vBg) isa CutE-inference.

P

2.3.8 € -normal Deductions

An &€ -normal deduction is a normal deduction whose constituent
normal resolution inference realizations (52.2.3) are embeddings of

unit & -normal deductions. Thus, the class ND(E ,») of & -normal

deductions is a resolution micro-definement defined in terms of unit
£ -normal deductions.

Define S(p) by

('
p* , if p 1is not an equation;
S(p) =
df < {[u-v] e [s=t]*: either some variable of v is not in
u or else v = tn where n 1is the
simplest substitution such that
A u=sn} , if p 1is an equation [s=t].

S(p) is the set of literals q such that p subsumes q and p can
be used in any normal inference where p  can be used. Observe that
~if p = [fx=qy] and fx > gx then [fx=gx] ¢ S(p) because [fx=gx]
can be used in an éi;norma] reduction whereas [fx=gy] cannot.

decomposition {®&.(q;): i<n} satisfying (i)-(iii):
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(1) Base(®,(q))) < Base(®) v {qy: j <k} (k=0,---,n-1).
(i1) If q is not a conclusion of & then Qk(qk)
realizes a unit CRpgk—inference ({p.q} qk) where
€, is defined by & =4: € v Base(D) vigy: j<k}
(k=0,++«+4n).
ity If -—k(qk) does not realize a unit CRpe -inference
then §=k(qk) is an £ —normal reductwn
(iv) .If‘ P,q € Base(ﬁ) and p subsumes q then p and q
afe variants.
(v) If q e S(p) where pe €, then q, s a conclusion
of £ ‘
vl If p e S(qk) and q ¢ S(p) then p ¢ Baseua (qJ))
(j=k+1,--+,n-1).
A unit refutation & is £-normal provided that & has a
decomposition {ﬁi(qi): i<n} v {Qn(o)} where
(vii) The subdeduction Q:' composed of {;Q_i(qi): i<n} s
an € -normal derivation; and

(vn_1) __@n(o) is a CCutén-mference realization.

An € -normal realization of a resolution inference (8) is a

normal embedding g@_;(c) of an &£-normal refutation & (0) in
{B; v g;: i<n}.
A normal deduction & is &-normal provided that & has a

‘decomposition {=3-—8:1'(C1') i<n} satisfying (i)-(vi):
(1) Base(f, (C,) < Base(d) v {C;: je kb (k=0,--+,n-1).
(ii) If Ck is not a conclusion of ez then ﬁk(ck) is an
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€  -normal realization of a resolution inference with

premises in Base () v {C;: j<k} , where ik = 4f
€ v Base(d) v {C;: j<kl.

(311 1F gzk(ck) is not an ézk-norma1 realization of a resolu-
tion inference then éZ%(Ck) is a normal embedding of an
;gk—norma1 derivation in Base(ézk(ck)); moreover, izﬂ(cj)
is not an & .-normal realization of a resolution inference

(j'k’*‘],"',ﬂ'])-

(i) If &8 = Base(éZ) and A subsumes B then A and B
are variants.

v} IF ii k(Ck) is an éi*-norma] realization of a resolution
inference and Ck is subsumed by B in 8k then either
C, 1s a conclusion of’£2: or C, and B are equations
such that Ck ¢ S(B).

(vi) If gik(ck) is an égk-normal realization of a resolution in-
ference and Ck subsumes B then either B ¢ Base(jzj(tj))

(i=k+1,+++,n-1) or Ck and B are equations such that
B ¢ s(ck).

The class of normal gi;deductions is defined by
ND(E ,») = ¢ {D: & is &-normal}

Composite &£-normal deductions are defined essentially as above
(with SF vrestricted to initial clauses and conclusions of CCut -
inferences), but on the basis of the composite &-normal inference rules

(42.3.7) instead of the basic ones.

CND(E ,¥) = ¢ {£: f is a composite &-normal deduction}.
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Remarks.

1. CND(E ,» 1is a non-basic &-resolution micro-refinement;
however, a member CND( £ ,») can be effectively "interpolated" so as to

obtain a corresponding member of ND(&,>).

2. Unit subsumption-deletion constraints are imposed within
resolution-inference realizations in ND( € ,») by (iv)-(vi) in the
definition of é—% derivations and unit refutations. |

3. A similar set of subsumptioh—de]etion constraints is im-

posed by (iv)-(vi) in the definition of £ -normal deduction.

2.4 Normal Refinements and Their Proof Procedures

2.4.1 Normal Compositions

Recall that a generalized € -resolution refinement is a class

A of deductions composed of generalized £-resolution inferences (§1.3.7):
{Bj: i<n} |- (B~ Cjev ... v (B ;vC _q)evCpe | (11)

where C; £ B, (i=0,...,n-1) and {C;6: i<n} h§ 6. The kernel

inference of (11) is the generalized &£-resolution inference

{ci: 1 <n} |- C.0 ; (12)

Given a generalized E -resolution refinement A and a general-

ized £'-resolution refinement A' where &€ 2 €' , a normal composi-

tion of A and A' 1is a generalized €'-resolution refinement A-A'
wherein each deduction & has a decomposition {D,(C:): i<n}

satisfying (i)-(iv):
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(1) Base({zj(cj)) = Base(éZ)lJ {Cis i<i} L0, won0<1) .
(ii) If C; 1s not a conclusion of £? then ézi(ci) realizes

a generalized € -resolution inference

{Bl: k< n} | ¢ | - (13)

with kernel inference

{Cli(: k<n1-} - C:l.f (14)

(ii1) {({Bl: k<ni} |- C;): C; is not a conclusion of Y}

defines (the set of inferences in) a deduction in A

(iv) If C; fis not a conclusion of & then (13) is
realized by embedding in {Bl: k<n.}u £V
generalized §£'-resolution deduction 523(0;_) realizing

. i ;
(14), where glg(c; ) is in A' and Base(j@Q(C;_)) =

. i o i
i N
{C: k<n;l v £
Remark. It 1is not appropriate to define a unique normal com-
position A-A' for the following reasons:
(a) If we take A+A' to be the set of all subdeductions of
refutations in A.p , then A-A' is not necessarily de-

cidable in the class of all E&'~resolution inferences--

i.e., A*A' is not necessarily a refinement.

(b) If we take A<A' to be the class of all £'-resolution
deductions .£2: satisfying (vi)-(ix), then we may be ad-

mitting many deductions which, due to specific
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information we have about A obviously cannot be ex-

tended to complete deductions in (AsA')".

It is also unnecessary to define a unique normal composition at the
present level of formal analysis.

For the purposes of this report it is necessary to understand
normal composition in two basic cases:

Case 1: A is an E-resolution reffnement HR(& ,>s) and &'
is an €'-resolution refinement HR( €',>' ,s'). Then c;e is an r_-

s

-negative literal,

1

positive literal fof k=0,+..,n,;-2, o 1 is an r
n.i" S

and C;‘= 0. (In the similar case of hyper-E -resolution, Ci__] is
an rs-n;gative clause.) 1

Case 2: A 1is an &-resolution refinement where £ € oﬁv '
and A' s an € -resolution micro-refinement, such as ND(£ ,») or
CND( € ,>), wherein each deduction is normal in the sense that (simple)
factoring applies only to initial clauses and conclusions of Cut

inferences. Then again CLS is a literal and C;_= 0 . In this case,

" i
igi(o) is simply a normal refutation of {C&: k<ni} B «

2.4.2 Normal Refinements

A normal refinement is a normal composition ANrAU where Ay
is an € -resolution refinement, A, is an € -resolution micro-refine-

ment, and £ 1is a finite subset of va .
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Convention. If Au is a basic refinement then it is also a

resolution micro-refinement, and A, is easily formulated as a

resolution refinement instead of an € -resolution refinement. Thus,
there is no loss of generality in supposing that AM is a resolution

refinement and Au is a basic resglution micro-refinement.

2.4.3 Normal Refutation Procedures

A normal refutation procedure is a refutation procedure I for

a pair (T',A) where A 1is a normal refinement AM-A“ (§2.4.2). The
structured programming of normal refutation procedures based‘on'the
schema Ref is outlined in §1.1.4. Thus, we assume below that

I = Ref[E/Eng] where E = EM'Eu » the enqueuing function obtained by

"composing" enqueuing functions Ey for 4y and E]J for Au . Re-

call that Ref uses A = Ay, where Ay = (B, €moe ¥h F 5 B 580

n
E'k-r'esolution'refinement, and £ = gn:'”j 50 where é,°0 < Gncfzv.
The purpose of this subsection is to suggest computationally

efficient representations for A and for E . Being presently con-

cerned with the design of refinements, I shall make only a few
plausible assumptions and remarks about E .

A representation for A . Recall that Ref uses Res, , a

procedural representation for A . The real problem before us is the

design of a computationally efficient realization for ResA' on the

basis of 4 ,--,4,, and AU . The so]ution outlined below is based
upon an analysis of the ancestors of each literal in a clause of R s
the "current deduction" of Ref(C) (§2.2.3). This analysis of ances-

tors relies on the following definition:
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"~

Ek =df Ek - {B,: Bef§ for‘_some E’k-resoTution
inference (6 |- C) occurring in

a member of Ak} ,

Thus, if 4 = HR( Ek,ﬁ(,sk) then Sk = {Be Ek: B is non-negative

under the remaining rs} "

Note. In the following definition, the residual q[t]lé in an
Rp-inference {Av[s=t], Bvq[rl}}|~ AvBvg[t]8 is considered to be
a descendént of q[r]; otherwise descendant is extended reflexively
and transitively as in §1.3.7.

Levels of clauses. The following description of ResA can be

clarified by representing each clause C of a deduction gl in A in
the form

E={6 v iosnl

! » (12)

where, relative to the proof-tree :£Z(C),

1

(i) C_ 1is the set of descendants of literals’ from initial

n
clauses in €" - g: (§2.2.3);

(i1) C, 1s the set of additional descendants of literals from
initial clauses in EL]— éi’(‘ (k=n-1,-+-,%); and

(ii1) CQ f‘O ;

The current Tevel of € is & :

Level (C) =, & where C satisfies (12) (i-iii).
¥, 2 T

]That is, Cn is the set of literals whose atoms are descendants

of atoms occurring in ...,
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Notice tnat j # k implies Cj N Ck =0 due to (ii). Moreover the

designated literal of C must be in C, , because if L < n then any
Egﬂ—reso]ution inference realization of which C 1is a constituent
must be completed as a subdeduction of any é“k—resmution inference
realization of which C 1is a constituent (k=&+2,.-.,n).

gk-resomt'ion premises. If £ s a refutation in A then

& has a decomposition into realizations of -‘?k—reso] ution inferences,
the premises and designated literals of these inferences being deter-
mined by An vy B (k=0,+--,n). Thus, for any clause C in J "
we may select the nearest set of ancestors of C 1in 51 which are in
the set of premises of the 3k-resolution inference realization which

contains C . These are called the _&_’k-resomtibn premises of C in
ﬁ .

Now suppose 2 e A . Using the Level function, it is not dif-
ficult to define for each clause C in £ a set ﬁk of ancestors of
C wnich will be the Ek—reso]ution premises of C 1in any extension
of g to a refutation in A . @k is the set of E’k-r‘esolution
premises of C in ¢8. It turns out that Leveloa(B) > k for each

member of &, . Indeed, @ is the set of nearest ancestors B of
k k

C in Q_ such that Level(B)ﬁzk and B is (a simple factor of) a
member of Base(_g) or a conclusion of a Cut-inference .

Given clauses A,B _in o7 such that ({A,B} - C) is an admis-
sible Rp- or Cut-inference based on _-_2_ according to Au’ we can use
A (in(ag ««-+ -4 )) to determine whether the union of the Ek-reso1u-

tion premises of A and the € -resolution premises of B in &

could possibly be included in the premises of some €k-resolution
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inference realized by some extension of & in A (k=n,---,min{LeveE£;A),

Leve]ig(B) ). If the answer is no for any of these choices of k ,
then the inference ({A,B} |~ C) should be rejected by Res, -
Factors. Constraints on SF-inferences in A are equally easy

to obtain from AO,---,A Basically, the premise of each SF-inference

by &
{AvB} |- AB vB® in a member & of A must either be in Base(®)

or be the conclusion of a Cut-inference. The choice of key literal is

determined by A (AvB)’ and B € CR wheke AvB = (C_v - VCE)

Leve]R n

satisfying (i)-(iii) following (12).

Composition'of enqueuing functions. The basic fact to remember

is that (ideally) E, was designed by an "expert" so as to quickly lead
to refutations of &€ -inconsistent sets, and that Ek was designed by an
"expert" at refuting Sk-inconsistent sets {q],‘--,qm} v ( E?('H - é;:)
Thus, once En has:"decided“ that a clause A of level n should be
selected from Q as a premise for a "useful" €n-resolution inference,
En-] should be used to decide what other clauses of Q , if any, should
be brought in to efficiently complete a realization for the Sn—
resolution inference by En_1—re561ution inferences. E . will in

turn relinquish control to E 2> etc., until finally all of the lower
level search strategies have been hierarchically invoked in "deciding"
how best to realize a good €-resolution inference based on thé current

deduction.

Enqueuing functions and merit orderings. For present purposes

it is assumed that Eng is a procedure which defines an enqueuing

function (§1.3.6). Thus Eng(Q,T) may use other parameters of Ref ,
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such as R (the current deduction), € (ihe input premises) and &

(the axioms), in computing the sequence Enq(Q.T) . Specifically, it

is assumed.that Enq(Q,T) 1is ordered in decreasing order of merit, as
defined by a completion cost estimation function f: (3V--(Non—negat1ve
Reals «s {=}). Intuitively the merit of B 1is inversely proportional

to its completion cost (relative to Q, R, and A(C v £ v [x=x])),

which is the minimal cost of a complete ”extension":gi of R (in
AT(C v & h;[x=x])) which contains B . Thus the merit of 0 should be
maximal, and the merit of a clause which cannot contribute to a refuta-
tion shou]d.be less than the merit of one which can.

Completion cost estimators. On the basis of previous research

[58.74,40], it is reasonable to assume that f 1is defined on clauses
of Q by.
(B) = g(R(B)) + n(Q,R,B) ‘ (13)

where g defines the "cost" of the proof-tree for B and n{Q.R.B)
estimates the (additional) minimal cosf of a complete deduction & in
A" (€ v € v [x=x]), containing B , which might be computed from the
current state (Q,R). (Whether or not R is actually a subdeduction of

iz depends upon another parametric procedure, Subsume, in Ref.)

The definition of E from En,---,E ’Eu now reduces to the

0
definition of f from {hn""’ho’hu’gu} where E_k is essentially
defined by a cost-function 9 and an "additional completion cost

estimator" h, - It suffices to set g = g, - The design of h should

insofar as possible implement the "hierarchical control structure"
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hinted at in Compositions of Enqueuing Functions so as to utilize each

search strategy Ek or Eu to an appropriate degree in its intended

application environment.

Remark. It should be clear that the above is a heuristic design

strategy for defining E from En""’Eo’Ep rather than an outline of
some alleged formal definition. The claim that one can design better
search strategies by this hierarchical approach rather than by design-
ing E "from scratch" on the basis of AM-AIJ is at present an unsub-
stantiated intuition. Thus, the use of an explicit composition

(EM'EU) notation is (at the present time) somewhat misleading.

The representation of deductions within a normal refutation

procedure based on Ref should optimize retrieval of most-frequently

needed information in the operation of Res, and Enq while suppress-

A :
ing irrelevant details. Suppose that Ay = A = ...t A, A = ND( Eo,>0

n 0

and P is in A = Ay, - Then for each clause C in D , the com-
ponent C, in (12) and Leveta (C) should probably be "immediately
available", as should the des;;ﬁated literal within C£ . The com-
posite restrictions of By will require efficient access to the Gk—

resolution premises of C (k=n,---,Level . (C)), and A will require

%)
efficient access to the equations among the designated literals of

g€ ,-resolution ancestors of C , in addition to the derived equations
in & vE, .

The representation of terms and atoms in Ref can also be

optimized for the given initial normal form NF( 80,>j used by A, s
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- assuming that ND(Ecp>ﬂ will be used frequently enough to juﬁtify
"specializing" a proof procedure at this basic level. Normally this

is accomplished by incorporating into Ref specialized algorithms and
data structures fof processing associative or associative and commuta-
tive operators; these facilities are invoked for each operator
declared to have the pertinent axiomatic properties. Hardware-
representations for "integers" or "reals" and hardware-evaluation of
constant tefms (and atoms) both illustrate this form of proof-procedure

specialization [22].
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3. CUMPLETENESS RESULTS

This chapter derives completeness results for (generélized)
€ -resolution refinements and their normal compositions. The basic
results (including those in the Abstract) are summarized by Theorems
1-10 and their corollaries. Lemmas used in the proofs of these
theorems are proved in §A.

In §3.1 it is shown that HR(E ,>s) is &-complete, and that
hyper:iiyresolution has a "strong liftability" property whereby ground
deductions from a clause-set €' can be generalized to general deduc-
tions from a clause-set € where each clause of ' is subsumed by a .
clause of ¢ ‘

The completeness of ND(& ,>) on sets of unit clauses is derived

in §3.2, where it is shown that if € 1is “closed" under certain opera-

*

tions then — +

is a complete reducibility relation on constant terms.
A derivation procedure C1(€), similar to the proof procedure Ref(E),
is shown to derive a closed reduction from ( €,#) provided that » is
an E'—éomp1ex1ty ordering where €' ¢ £ (Theorem 6).

Preservation of strong liftability and completeness under normal
compositions is investigated in §3.3. Theorem 9 describes sufficient
conditions for a resolution micro-refinement Au to yield a compTete
normal refinement AM'Ap when composed with a strongly liftable resolu-
tion refinement Ay - Theorem 10 (Corollary of Theorem B in Abstract)

describes a partial completeness property of normal refinements

A ND(E ) .
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Convention. In order to ensure that 6* (the set of constant
instances of members of € ) is not empty below, we assume that Vg # 0.
The following well k&bwn result is used in several of the com-
pleteness proofs below:

(Relative) Compactness Theorem. Suppose € is E-contradictory.

Then so is some finite subset of C

Corollary. Suppose € s €-inconsistent. Then so 1is some
finite subset of €

Remark. One simple way to derive the theorem is to construct an
(exhaustive) finitely branching €-model tree ¥/ where each vertex M
is an € -model whose successors M],---,Mv | are finite extensions of M
such that M F§= Bpwesawl, where CJ mis the conjunction of liter-
als in Ms-M . (The 1nit1a1mvertex of M is the empty set of literals.)
It follows by Konig's Lemma that each branch in v/ passes through some

failure vertex which falsifies C , and the set of such vertices is

finite. Since the set‘of clauses constructable from literals in fai]ure
vertices is also finite, some finite subset of C s 5—c0ntradictory.
The Corollary follows from the fact that if € 1is E-inconsistent, then
C* s €-contradictory. Similar model-tree constructions are used by

Robinson [65] and others.

3.1 Completeness of E-Resolution Refinements

It is assumed below that £ = (€ ,»s) where
(i) € 1is a consistent set of clauses;
(ii) > s a substitutive partial ordering on Clv wherein
equations precede other atoms; and

(ii1) s 1is a (negative literal) selection function.
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Similar assumptions hold for §:1. = (£,.%,5;).

3.1.1 Horn Systems and H_yper-_e;_-'-Resolution

8 is a Horn system with renaming r provided that no clause of
€ contains more than one r-positive literal. If r is the identity
renaming then € s a Horn system.

Horn systems occur in many axiomatizations of mathematical systems.
The following result indicates that HR(E& ,»>,s) 1is an appropriate re-

finement to use when € 1is a Horn system with renaming re

Theorem 1. Suppose that &€ s a Horn system with renaming Fe
and € is E-inconsistent. Then HR(E.>,s) contains a general refuta-
tion of €V E

The proof of this theorem, based on Lemmas 1-4, is completed in
§3.1.3. iotice that a general refutation of € v&€ in HR(E ,~s) has
a decomposition into hyper—i—reso]ution inference realizations, and

that these hyper—é-reso]ution inferences constitute a general hyper—___«i—

resolution refutation (by Proposition 1 in §2).

3.1.2 A Ground Completeness Proof Schema

Many completeness results for liftable E-resolution refinements
A will be based on the following:

Proposition S. If C is a finite E-contradictory set of

constant clauses then A contains a refutation of € v &
Such a proposition can often be proved by induction on x(C), the

excess literal parameter of C , defined by

(C) =df (number of occurrences of atoms in € )
- (number of clauses in € ).
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Thus, if C’ is a set of unit clauses then k() = 0 . The method of

argument is given by the following:

Proof schema (by induction on k = «(C)) [4].
Base: Suppose k = 0 . [Prove Proposition S for case where(
is a set of constant literals.]

Induction step: Suppose k > 0 and Proposition 2 holds for all

C such that ®(€) <k . Select a clause AvB in C where
ANB=0 and AB#0 . Let €' = €- {AvB} and () = C'u{A} .
Then C’A is f-contradictory and «( (',’A) < k . It follows by induction
that A contains a refutation ;QA(O) of C’A y

let £,,5(B') be the embedding of &,(0) in € . Then
B'SB . If B'=0 then let & = &, o(0) . Otherwise let Cp, =
€' w{B'} , and observe that C;, 1is E-contradictory and «k(Cp.) <k,
whence A contains a refutation Q__B.(O) of CB. . Let o7 be the |
result of prefixing LvB(B’) to ﬁa.(O) p

Now & is a refutation of €v& , and is in A provided that

AvB and A have been chosen "appropriately" for the given refinement
AL |

This proof schema is exemplified by the proofs of Lemma 1 and
Lemma 2 in 8A.1.

Lemma 1. Suppose that E'Safv and € is a finite €-contradic-
tory set of constant clauses. Then thére exists a hyper-_€-resolution
refutation of € v §

The following corollary, useful in the proof of Lemma 2, provides

a clear semantical motivation for the use of hyper- €-resolution or
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HR(E ,~s) when € 14s a Horn system:

Corollary. Suppose that € 1is a Horn system and {pi: i<m} s
a minimal € -contradictory set of constant Iiterﬁ]s. Then {pi: i<m}
contains at most one negative literal, and if each literal of
{pi: i<m} 1is positive then ‘E+'conta1ns a negative clause

~

Qy Vv -+ vq,_; such that {py: i<m} FEf q; (§=050055n=1)

Proof. It follows by the Compactness Theorem (Corollary) that
some minimal (hence finite) subset € of €+ Lf{piz i<m} 1is contra-
dictory. It fo]]owé by Lemma 1 that there exists a hyper-E-resolution
refutation Q__(O) of € , and {p}.: i%m} gBase(i(O)) by minimality
of {p;: i<m} .,

Suppose ({Biv CPE 1% m},"{pj} - C) 1ds a hyper-E-resolution in-
ference where p.

J

B; = 0 because C is a Horn system (i=0,-+-,n-1). Therefore C =0 ,

whence 51(0) contains at most one such inference and pj is the only

is negative. Then Biv q; is positive, whence

negative literal in {pi: i<m} .

Suppose p, positive (i=0,+++,m-1) and let ({q3: i<m'}
{(ﬁO Voo vﬁn_])} I~ 0) be the final inference in & (0). Clearly,
(a;}v---vﬁn_]) isin &7, and {ps: i<m} I? a; because
{pi: i<m} h; {gj: i<m'} and {q: i<m'} v {aj} is €-contradictory
(§=0,+++,m'=1).1 |

Lemma 2. Suppose that € is a Horn system with renaming re s
and € 1is a Finite € -contradictory set of constant clauses. Then

there exists a hyper‘-zg—resowtion refutation of € v €
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3.1.3 Strong Liftability of Hyper- € -Resolution

In view of the fact that the hyper-€-resolution refinement is
the class of all deductions composed of hyper-&€-resolution inferences,
strong liftability (§1.3.8) of the hyperfgifresolution refinement

amounts to the following:

Lemma 3. Suppose that
({By v Pgs+==>Ba 1 VPh_1s Br;iva(;v e a;]__]} - (3)

is a hyper-C -resolution inference where

CI

(Bae' - pée’)v ceey (q;_]e' - pé_]e’)v B'me'

and that @ = {B0 vpo,k--,Bm_1v Pm-1° qnvch)v--- vqn_1} » & separ-
ated set of clauses such that an < B& > Qyn = q%n(1=0,---,n—1) .
Bin €B! , and p;n €p} (i=0,---,n-1). Let 6 be any divisor of
n+6' such that
(1) {Pg0s ++sPy1® » (4,0 v 9,_10)} s an € -contradiction;
and '

(11} if p e By and pno' = pine' then p6 = p.6 (i=0,+<,m-1).

Then the inference

~

'{%)VPO"”’Bm—1me-1’ BV agV -+ an—1} ¢ (4)

where C = (B® - p0)v--- v(B, 16 - p _6)vB 6 is a hyper-€-

resolution inference, and C[n+6'/06] €C' .
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Corollary. Suppose that € is a Horn system with renaming r.
and & is an €-inconsistent set of clauses. Thenlthere exists a
general hyper-__éj_—reso]ution refutation of & v € .

Proof. @+ is &£-contradictory. By Relative Compactness
there exists a finite £-contradictory subset ¢ of 8 . By Lemma 2
there exists a hyper-€-resolution refutation &'(0) of C v € . Let
Q(O) be a hyper-€ -resolution 1ifting of JJ'(0) based on some branch
mapping 7 (§1.3.8). It follows by Lemma 3 that Q(O) is a general
hyper‘—i—reso]utiori refutation, and Base(g(o)) c(8vE) .1

HR(E ,»s) 1is not in general strongly liftable; s may select
negative literals from (anvﬁon Voo Van_ﬂl) in an entirely different
order than that in which it selects negative literals from Bmvaov .
v an—] . However, the following lemma shows that if we include a suf-
ficient number of variants among the premises of a hyper—=€—r'eso]ut1'on
inference (4), then (4) can be realized by an __g_-reso]ution deduction
containing n inferences:

Lemma 4. Suppose that (4) is a hyper- & -resolution inference with

separated premises 8 - @OU ---UBn_]v{Bmvﬁov---vﬁn_]} where

(1) 8, = {Bﬁvpl: k<mg} € {Byvpy: J<mb (i=0,---,n-1);

J
(ii) {pie: k<m;} v {q.8} is an E-contradiction (i=0,.--,n-1);
k i i
and

(111) if i#3 then B;n 8 =0 (i,j<n).

Then (4) is realized by an £ -resolution deduction ﬁ(c):



Cy | (5)

where
(iv) (¥ = Bm and {qg,---,qg } = {qon"'sqn_'l} >
0

~1 s{ o . wf
(v) s(Cyvayv --vc:\,i) = 9,

(vi) C1'+1 & (ng_i - poe-i)v...v(Bm_ By ~ B 8.)VC1-61

j-1 j-1 !

where J= M s

81- [x6 /x: x occurs 1in fj u{qj}] ; and

” i+] i+1
(ett) g st
° Y5

o I:3 i i
} - {qoeis“'sqvi_]ej} & {qviei}
Corollary. For each general hyper-é—reso]ution deduction 2' 5
HR(E ,»s) contains a general deduction ﬁ such that Base(ﬁ) <
Base(# ')¥ and & has the same conclusions as '

Indication of proof. Let & be the deduction in HR(& ,>s)

having decomposition {Qi(c.

1): i<n} where Q.(C.) is a realiza-

T*1

tion of a hyper-i—reso?ution inference (@, |- Ci) (obtained asin

.i
Lemma 4) and { @i L C.: i<n} s the set of inferences in L.

Proof of Theorem 1. By Lemma 3 (Corollary) there exists a gen-

eral hyper—é—resolution refutation _;_ﬂ_“'(O) of B v & . 1t follows by
Lemma 4 (Corollary) that HR(E ,»s) containsﬂgenera] refutation Q_(O)
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3.2 Completeness of Resolution Micro-Refinements

It is assumed below that _€ is a reduction system (& ,») where

¢ is a set of clauses.

3.2.1 Uhit Completeness of ND( €& ,»)

A refinement A is unit € -complete provided _that if & s an

€ -inconsistent set of unit clauses (literals) then A contains a refu-
tation of B v € v[x=x]. :
Theorem 2. Suppose > is an €' -complexity ordering where
€ <€ . Then ND(&.,») is unit &E-complete.
This result is a trivial corollary of Theorem 3, which also des-
cribes a restricted "1ifting property" of ND(E ,»). Define [t]g for
t in jV‘ by | |

[t]E = 4f {s2 s =E t}

Theorem 3. Suppose that p shares no variables with q and
pe |=|5 q6 where x6 is the first constant term in [xe]g (with
respect to > ) for each variable x occurring in .p or g . Then

ND( € ,) contains a general refutation Q(O) of {p,q} such that

X X: X occurs in or divides 6 ,
[j.'t?_(o)/ _ p qld

This r‘estﬂt follows from Theorem 5, Lemma 9 (Corollary 2), and Theorem
6 (§3.2.3). Lemma 9 covers the case where € 1is a closed reduction
system (§3.2.2). Theorem 6 shows that given any reduction system ( € ,”)

where > 1is an €' complexity order and £ < £ , ND( € ,»)” contains
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a general deduction of .a set C1(E) from € such that (CI(€),») is

closed.
| Cordﬂarz. Suppose Avp shares no variables with Bvg and
po [=[E q0 where x& is the first constant term in [xe]E for each
variable x occurring in (Avp) or (Bvg) . Then ND(E ,”) con-

tains a general realization & for an E-resolution inference

Bvp, BY D) b (Ao - pag) v(Bog - dog)

where [xoﬂ'/x: x occurs in Avp or Bvqg] divides 6 .

PLOE. Obtain §£(C) by embedding a general refutation «0'(0)
for (€ vx=x])" v {p,q} in (€ v[x=x])" w{Avp, Bvg} , where
L' (0) £ ND(E ,») .

Remark. The corollary is essentially a "lifting Temma" for

constant deductions realizing resolution inferences

@ v {(Avp)e,(Bvi)e} - (e -ps) v (Bo -qe) (6)

where p, g, and © are as above, {p' € Avp: p'o’ﬁ = pU.D}

=

= {p'" e Avp: p'o =po} , and {p' € Bvq: p'og= E:iob} ={p' € Bvq:
p'e=ﬁoﬂ}. -

3.2.2 Completeness Properties of Closed Reduction Systems

Unit 5-comp1eteness of ND(€ ,”) intuitively involves the com-
pleteness of some reduction system ( €',”) where §g' is derived from
.« 3 = . 1 * ' -
£: if pe e 90 then po >£=. q' and qe:bi,' q' . Under cer

tain circumstances, it follows that p -, p' and q > i+ p' where
£ £

subsumes q' . The following theorem- is useful in the analysis of

P
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a specific refinement ND(€,%) in §C and 8D :
Theorem 4. Suppose that &' satisfies (i)-(v):

(i) €' is a finite set of equations [s=t] where each variable
in t is also in s.
(ii) 2 s an invariant partial ordering on ‘7\! ;
(iii) Every descending chain in > is finite.
(iv) s »t for each equation [s=t] in &' .
(v) For each separated pair {[s=t],[u[r] ='v]} & g'r\’ such
that r ¢ V; aﬁd mgu{r,s} = 6 ¢ Ly » there exists a term

v' such that ul[t]e ¥, v' and ve +’;_:. v'

Then E' is normally complete and canonical. That is, for each pair
of terms r,s such that r =g s , NF( £',») contains a unique term
t such that r—i‘é t and s =>:€=. 6 a

This result is derived in §C.4. In cases where we cannot derive
a system €' satisfying (i)-(v) from £ , we can nevertheless obtain
somewhat weaker completeness properties (expressed in terms of wb’é.)
by requiring that §£' be closed under certain operations such as
normal replacement inferences and reductions of equations to normal

form with respect to all other equations.

Closed reduction systems. Specifically, we say that & s

closed provided that it satisfies (i)-(iii) for each equation [u=v] in
€ :
(i) If u#v and [usv] € NF(€,”) then [v=ule E£F.
(ii) If [u=v] ¢ S[s=t] for all [s=t] in E£- [u=y]" and
[u=v] ¢ [x=x1* then [u=v] +*S[u'=v'] e NF( £,>) where



-106-

(€ v [x=x1)* contains [u'=v'] or [v'=u'l.

(iii) Suppose &€ contains [s=t] such that ({[s=t]n, [u'[r]év]}

 [u'[tn]=v]e) is an Rpi-inference where u=u'[r] and

n is a simplest substitution such that [s=tln shares no

variables with [u=v]. Then [u'[tn]=v]e +E

(€ v [x=x1)* contains either [u"=v"] or ﬁ"=u"] .

[u"=v"] where

In order to make up for the fact that (iv) in Theorem 4 does not
hold in general, we work with &' , the set of constant equations in
E* , instead of £

Theorem 5. Suppose £  is a closed reduction system. Then
for each constant term u , u =>*+v where v 1is the first constant
term of [u]g (according to >).

The proof of this theorem is based on Lemmas 5-8 below.

Lemma 5. Suppose u and v are constant terms such that

u=Ev.Thenu vV .

Define &€ by

E=df ils*=t"] e 5 IF E’m contains [s=t] such that s'=sn
for some simplest n then t'¥ tn} .

Lemma 6. For each term u there exists a unique term T,

such that u=>"é,* U e NF(E ,»).

~

U =4¢ the unique term in NF( & ,>») such that u m:-,t} u .

U =4¢ @ minimal term in [u]l, with respect to > .

£

Let .7\) = {sa: a<v} , an enumeration of the constant terms

in .‘7v such that if B > a then s

g > S - (Recall that > well-

orders constant terms.) Define fB for each ordinal number RB<v by
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88 = 4 {[50‘.:1:'] e & sB>-sa>-t‘}

Lemma 7. Suppose u =g v where s=t for each equation
B

[s=t] in 86 ’

Corollary. Suppose s=t for each equation [s=t] in &% .
Then U=u (ue .7\)) .

Then U=V .

Proof. Suppose u € Jv . Then u g U for some B < v .

It follows by Lemma 7 that G =u =10 .l

| Lemma 8. Suppose i is closed. Then s=%t for each equation
[s=t] in g+ . |

Theorem 5 follows from Lemma 8 and the preceding corollary.

Lemma 9. Suppose that € is a closed reduction system, us
is a constant term, and © € ZS’ . Then there exists an -nOrmaT‘
derivation &£ from € v{Pu} to (Pv) where (Pv) subsumes (Pug)

and [xo‘ﬂ/x: X occurs in u] divides 6 .

Corollary 1. Suppose that jr___, is c_Tosed,l € consists entirely
of equations, po6 1is a constant literal, and 6. £, . Then there
exists a general i—norma] derivation Q from € v{p} to q where q
subsumes pb , the first constant literal of {q': q' |==|E pe} ;

moreover, [xo_ /x: x occurs in p ] divides @6 .

&

Proof. It suffices to prove this corollary for the case where
Qul"'“n , an atom. Then pb = (Q(u]e) (une)). It follows by the
- lemma that there exists a general £ -normal derivation £1 from

g™ u(Qu].---un) to (Qv1(u201 ---(uno])) subsuming
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Q(ﬁ}?)(uze)...(une) where 9q= crg:]and [xcgllx: x occurs in p] divides
® . Proceeding by induction, we eventually derive (Qvl---vn) sub-
suming (Qﬁ'i_e}'---qé") by means of an € -normal derivation ﬁn where

| [xcﬁn/x: x occurs in p] divides 6 .|

Corollary 2. Suppose that & 1is closed, £ consists entirely
of equations, p and q share no variables, © e Zg , and po6,gqe are
constant literals such that pe ]=-|E Q6 . Then -ND(E,>-) contains a
general refutation ﬁ of & v{p,q} , and [xoﬁ/x: X occurs in
p or in q] divides 6 . N

Proof. Observe that p6 = g6 . Corollary 1 implies the exis-
tence of general i—normai derivations §=1 from p to p' subsurm’ng

P6 , and Q_z from q to q' subsuming g6 , such that Q] and

&, share no variables and o' divides © , where

o' =, [X0g *0& /x: x occurs in p or in q]
o =y,

It follows that p'[8/0'] = q[68/c'] . Let & be the result

of suffixing the Cut(&,»)-inference
{p',qt |- ©

to =.le(p‘) and =9.;2(6'). Clearly [xai/x: X occurs in p or in q]
divides 6 , and £ s in ND(E,>) .l

3.2.3 Convergence of an € -normal Derivation Procedure

The procedure Cl below is a modification of Ref (§1.3.6)
which, given a set € of equations, defines a composite L—normal
deduction C1(E), where £ = (£,”) for some E£'-complexity order-

ing > such that €' < € . We show below that (] , applied to € ,
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"converges" to a set CI1(€) such that (C1(&€),>) is a closed reduc-

tion system.

Define Par(f,>) by
Par( £, =4¢ (€ u{lultn] = vle: € contains [ulr]l=v],

[s=t] such that v #u[r],
[ulr]=v] e NF( & - [u[r]=v]",>) and
({[s=tIn,[ulrl=v]} | [ultn]=vle)

is an Rp -inference, where n is a standard
(€,”)
simplest substitution such that [s=t]n shares no

variables with [u[r]=v] and 6 = mgu{r,sn}}.

TLEE 4&, be the partial ordering of Par(€,>) such that [s=t] <£

[u[tn]=v]e and [u(r) = v] -<€ [u[tn] = v]e for each RPE —inference

({[s=tIn, [ulrl=v]} I [u[tn]=v]e) used in generating an equation
in Par(€,»)-E€ .
Define =+ on equations by
(0 , 1f u=v 3
{Lu=v]}, if u>v ;

—
[u=v] = . 4
X {[v=ul}, if v>u ; and

[ {[u=v],[v=ul} , otherwise.

Define CI(€) by
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C1(€) =4¢ [Q: = Enq(nil,Par( €,>)) ;
R: ( E s '<E) H

Result: If Q = nil

e

]

then R

else [Next(A,Q) ;
Subsume(A,R) ;3
ResA(A,g,f) -
Q: = Enq(Q,T) 5
Result]].

Notes on Operation

1. The operation of C1(€) is basically Tike the operation of

Ref(€) (51.3.6) except for differences in Next, Subsume, and Res,

noted below,
2. On the kth iteration of Result (starting with k = 0),
Next(A,Q) deletes Py = Qk(O) from Q and sets ﬂ = q, where

*

. 1 ‘ i I =g

3. Subsume(A,R) sets R =R, =R v @, . For formal analysis
purposes we do not actually delete subsumed equations; we merely re¥
strict their role in subsequent inferences, in accordance with ND(E,>).

4. On the kth iteration, Res,(A,R,T) sets T = U vy

U = {[ultnle = vel: R, 2 {[s=t],[ulr]=v]}

where (ak- RE) A {[s=t],[ulr]=v]} # 0,
v¥ulrl, and ({[s=tIn,[ulr]=v]} F [ultn]=v]e
is an RpR -inference, where n 1is a standard simplest

=k _
substitution such that [s=t] shares no variables with
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[u[r] = vl and © = mgu{r,sn}

v, = [lu=v] € Rk ANF(R ,>): [u=v] ¢ S([s=t]) for all
[s=t] in (Rk- [u=v]") , and ak‘ contains [s=t] such
that r=s6 >t8 where r occurs in [u=v] and
6 s a simplest substitution such that r=se b
Uk is the set of new normal Rp inferences based on a member of ‘Ek ’
and V, s the set of equations in R, which have become reducible as
a result of including ak in Rk+1 : gg._A(A,ﬁ,T) also extends <§ .
recording the new inference with conclusions in T-R, .
The following result completes the proof of Theorem 3.
Theorem 6. Suppose > is an €'-complexity ordering where
'€ & . Then CI(E) 1is a composite £ -normal deduction (C1(€),>)
such that (C1(£€),») 1is closed and € € C1(E) .
Proof. If Q... =nil for some first teN then set
Peag = Py and ap, = q, (keN) . Then C1(&) = € v U{ak: k eN} and
Ry = Ev U{a_i: i<k} . Let @, be the composite £ -normal deduction
with inferences all of the form {p,.,q} - q' where q ¢ Ry . FEach
such inference is a CRPR -inference. It is easily verified that
CI1(&), with decomposithn {Qk: ke N} (finite or infinite) is a com-
posite € -normal derivation. It suffices to prove that CI1(E) satis-
fies conditions (i)-(iii) in the definition of closed with C1(€) for
£ . let [u=v] be an equation in CI(E) .
(i) Suppose u *v and [u=v] e NF(C1(&),>). In view of
the facts that € < Range(Q,) and Enq is a fair en-

queuing function, it follows that [u=v] € Ek for some
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k>0 . Therefore [v=u] e Ek < C1(€) also.

(ii) Suppose [u=v] ¢ NF(C1(E€), ) and [u=v] ¢ S[s=t] for
all [s=t] in CI(€) - [u=v]" . Due to the fact that
> satisfies D.C.C., there exists.‘a maximal increasing
sequence (j, : k<n) such that p. = [u=v] and q. N pr

" Yo Ik Ik

# 0. Let Oy be a simplest substitution such that

ad: A Ps 8, # 0 (k=0,:++,n-1). It follows that
Ik kH1

Cu=v] +E1(£) [u'=v'] € NF(C1(E ),») , where either
[u'=v'] or [v'=u'] is anen_]-----eo . Thus, CI(E)*

contains [u'=v'] or [v'=u'l.

(ii1) Suppose C1(€) contains [s=t] such that ({[s=t]n,
[u'lrl=v]} b [u'[tn]=v]8) is an RpCl(E) inference
where u=u'[r] and n is a simplest substitution such

that [s=t]n shares no_variab]es with [ﬁ=v].

Case 1: Neither [s=t] nor [u=v] is in \J{ai: ieN} . Then
[s=t] and [u=v] are both in € , whence [u'[tnl=v]e is in
R, = Enq(nil,Par(€ ,>»)). Therefore p = [u'[t 1=vle for some
keN (by fairness of Enq), whence‘[u'[tn}==v]e-ﬁzL(s ) [u"=v"] e
NF(C1(E),>), where either [u"=v"] e CI(E)* or [v'=u"] e CI1(&)*
(using (ii)).

Case 2: One of [s=t], [u=v] is in {ai: ieN} .+ Then there
exists a number k such that Rk+1 2 {[s=t],[u'[r]1=v]} and (ak—R;)
N {[s=t],[u'[r]l=v]1} # 0, whence [u'[tn]=v]o ¢ U, by Note 4 above.

. The conclusion follows as in Case 1.}
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Remark. It can be shown that (C1(€),>) remains a closed
reduction system even if we delete subsumed and reducible equations
from R, ,, at each step of the computation- (by means of a modified
Subsume(A,R) operation). While this is a useful thing to know (or to
verify) where computational efficiency is important, the incorporation
of deletion operations based on ND(E ,>) into Subsume(A,R) makes the

proof of Theorem 6 appreciably more difficult.

3.3 Properties Preserved under Normal Composition

Given a generalized € -resolution refinement A and a general-
ized €'-resolution refinement A' where £'< £ , we may find it
useful to derive formal properties or expected performance estimates
of the normal composition A-+A' as a function of formal properties or
expected performance estimates of A-A' ., The results stated below
pertain to liftability and completeness properties necessary for the
proofs of Theorem A and of Theorem B (Corollary) in the Abstract.

Strong 1iftability is a useful property in the results stated
below. Since HR(E,»s) '15 not strongly 1iftable, as noted in §3.1.3,
we define HR(E,=,s) by

AR(E,7s) =4 {D: Each inference in © 1is an (€,7s')-
resolution inference, for some selection

function s' such that r., = r.} .

S

The following Temma is easily unified on the basis of Lemma 4.

Lemma 10. HR(€ ,»,s) 1is strongly liftable,

The following lemma holds by a similar argument:
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Lemma 11. For each general deduction &' in HR(E&,>,s), there
exists a general deduction £ in HR(E,»s) such that Base(il) -
Base(&') and B has the same ro-positive or empty conclusions as
.

Theorem 7. Supposer that A 1is a strongl'y lTiftable E-resolu-
tion refinement and A' is a strongiy'liftab1e €'-resolution refine-
ment where £ 2 g'. . .Then the normal composition A-A' is a strongly
liftable £'-resolution refinement.

Theorem 7 {proved below) has the following simple corollaries:

Corollary 1. - Suppose A ,E, €' as in Theorem 7. Then
A-HR(E',5,s") is a strongly liftable £'-resolution refinement.

Corollary 2. If EnD--- DEO where Enn "fv =4 Eo then
WR(En,>h?5

n) e tHROE . >,5,) 1s a strongly liftable € -resolution

refinement.

Proof of Theorem 7. First we should verify that the €-resolu-

tion calculus is lTiftable. Given an €-resolution inference

{Bj: i<n} |- C' with kemel {C;: i<n} and induced substitution o',
and a separated set {B;: i<n} where B; subsumes B; butnot C',
let n be a simplest substitution such that Bin = B1! (i<n) . Let
C1- = {peBi: pﬁ EC%]’ . Then given any divisor 6 of n-8' such that
{Ci8: i<n} s a set of unit clauses and {C;8: <n} |z 0 , we have
an €-resolution inference ({Bi: i<n} | C) where C = (Bo- co)e

¥ e % (8, g - Cqoq)8 - This is a Tifting of {Bj: 1<n} - Cc' be-
cause C[n+6'/6] € C' . The g£'-resolution calculus is similarly 1ift-

able.
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Each ground refutation in A+A' has a decomposition {g24(c%):
i<m}  into £'-resolution realizations of &-resolution inferences
(ﬁ?% - C%) where @&;: = Base(él%(t%)). By strong liftability of A
it suffices to show that if BHD'(C') 1is a ground E&'-realization of a
(ground) €-resolution inference ({B%: i<n} |- c') with kernel
{Ci: i<n} , B(C') is the embedding in {B}: i<n} v €% of a
refutation &"(0) of {Cj: i<n}v E* where H"(0) e A, T s a
branch mapping for (&.'(C').&) where @& s{Bk': k<m} v &Y,
Bn € Bjk > and C = {peBy: pns:Cjk} (k=0,+-+,m-1), then there exists
an €'-resolution lifting £(C) of H'(C') based on (m,B) such
that C subsumes C' ; moreover, :EZ(C) is the embedding in & of a
general &'-resolution refutation £1(0) of {Ck: k<m} v € , where
431(0) S

Suppose that ), n, B ,n, {Ce: k<m} , and £"(0) are
as above. Let m be the branch mapping on QZ"(O) such that wl(E}%)
= C, where 7r(61.) = B, and @1. is the branch of F'(C') correspond-
ing to the branch 6% in "(0) . Let £1(0) be an E'-resolution
lifting of 52"(0) based on (W1,{Ci: i<m}) . Then éi](o) e 40 A"
by strong liftability of A' . Let Z(C) be the embedding of &, (0)
in B3 . Then éz(c) has the desired properties provided that C sub-
¥

Clearly C < (Bo- Co)og](o)v swie \f (Bm_]- (Im_])cr:;._;.I (0) ° by
definition of #(C) and @ . Define o by

LI L 1 e ! -
sumes €' = (Bj = Cl)v ---v (B _;-Cp ;

o =4f [xo__g](o)/x: X occurs in B, where k<m]

Then it suffices to show that o divides n , which is plausible
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because Byn < By € Base(D'(C')) and o

NS

g {1y
Each inference (CZ. - Ay) in 2 (0) is the "1ifting" of a
corresponding inference (! |~ A!) D "(0); moreover, the induced
substitution 84 of (Qi - Ai) has the property that nj divides

n , where

Ny =q¢ [X65/x: x occurs in {Cp: k<m}]

(If CJ- is a premise in Cli then er)i € ofv.) Moreover, if

=9 where {Gk: k <2} 1is the set of substitutions

ﬁ_[(e) 0-.-.-82‘1
induced by inferences in 3 ( ) , then o =n_+*-..= Ng-1 - It follows

0
from these relations that o divides n .l

A refinement A is ground €-complete provided that A is
& -complete on sets of constant clauses--i.e., if C is an €-contra-
dictory set of constant clauses then A contains a refutation of
Cv&ulx=x].

Theorem 8. Suppose that A is a ground €-complete €-
resolution refinement and A' s an €'-complete generalized £'-
resolution refinement where £ > £' . Then A-A' s a gr'oﬁnd
E-—comp]ete generalized &'-resolution refinement.

Proof. It suffices to show that if ({Bjvq:: i<n} |- C') is

a ground &-resolution inference where (' = (Bo'v -vB' .) then

n-1
A' contains a refutation £'(0) of {gj: i<n} v € , which is ob-
vious because {q}: i <n}v € s inconsistent and A' is £'-
complete (hence complete). | -

From Theorems 7 and 8 we easily obtain the following:
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Coro]lér‘y 1. Suppose that A 1is a strongly liftable and
ground E-complete E-resolution refinement and A' {s a strongly
liftable and ground €'-complete E£'-resolution refinement where
€ 2 £ . Then A-A' is a strongly liftable and &£-complete g£'-
resolution refinement.

Corollary 2. If & 2 .--2 €  where £ nifv < € and

Ek is a Horn system with renaming r. (k=0,-..,n) then

s

K _
HR(E o755, ) <+ <HR( € ,>,s,) is a ground & -complete £ -
resolution refinement.

Let &€ = (€,») where > is an £'-complexity ordering for

some £'c €n aV . A refinement A is strongly £ -complete on a
collection. U of clause-sets provided that for each latent £ -contra-
diction & in U where &6 is £-contradictory and 6 & % . ,

A contains a general refutation &£ of a finite set € <( l?v Y
[x=x])q’ such that g divides n+6 for each invertible substitution

n where Ane @ for each clause A in C- (€ v [x=x])*.

A clause-set {Ci: i<n} 1is a latent unit-clause set provided

that {cie: i<n} is a unit-clause set for some substitution 6 .
Theorem 9. Suppose that £ = (£,>) where € 1is a set of
equations and > is an €'-complexity ordering for some €' < £ ,
and suppose that AM is a strongly liftable ground €-complete re-
finement and % is a generalized f—resolution refinément which is

strongly i—comp]ete on latent unit-clause sets. Then A,*A

MA, is
5-comp1ete.
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Corollary. Suppose that £ 2 E‘n > -2 €, where € f\éfv

.C,Eo and Ek is a Horn system with renaming v, {k=0,--+,n) , and
k

suppose that Ap is a basic refinement (consisting of normal deduc-

~ tions) which is strongly ( EO,>6)-c0mplete on latent unit-clause sets,

where > s an £'-complexity ordering for some §£' < & - Then
HR(E o2 08, ) * + o o HR( 80,%,50)-:3” is a normal &-complete refine-

ment.

Indication of proof. The refinement A = (HR( gn’;'n’sn)

e+« HR( EO,%,SO))-AM is normal and €-complete, by Theorem 7
(Corollary 2), Theorem 8 (Corollary 1), and Theorem 9. A corollary of
Lemma 4 can be used to transform a member of A into a member of
HR(En,>-n,sn) « ...« HR( Eo”B’So)'Ap ’

Proof of Theorem 9. Let & be an € -inconsistent clause-set.

Then @™ includes a finite latent &£-contradiction € where Crt is
an € -contradiction and T € ZL . Ay contains a refutation £ '(0)
of Cruv § , by ground €-completeness. Suppose without loss of
- generality that = 1is a branch mapping for Lﬁl'(o),(f v Sqﬁ . HWe
"1ift" £'(0) to a general refutation B "(0) in &y in such a way
that each inference in d&"(0) can be realized by some embedding of a
general refutation in Au . By "interpolating" these embeddings in
"(0) we obtain a refutation J(0) in AM'Au s

Suppose that ({B1! vq1!: i<n} |- C') is an inference in
£"(0) with kernel {qj: i<n} , and that {B;: i<n} 1is a separated

clause-set, consisting of conclusions of "lifted" subdeductions

Hi(B;) based on w and H"(Bjvaj) , such that B;0 € B} vq; where
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and Bi does not subsume C' = (B(‘)v cany BT'M) (i=0,+--,n-1).

8 e x
X
Let C; = {qeB;: g0 = q%} . so that {C;: i<n} is a latent £€-

contradiction and a latent unit-clause set. It follows by strong

£ -completeness that Au contains a general refutation D J'.(O) of a

i c L _ "
finite set CJ ._({01. i<n} v € y[x x])  such that Uﬁj‘(o)
divides n+6 where n ' 1is an invertible substituion such that

An € {Ci: i<n} for each clause A in Cj - (Eux=x])* . Let

ﬂ-(Cj) be a general deduction obtained by embedding Qj(o) in a

separated set @j < ({Bi: i<n}v & v [x=x]

“variants" of the deductions Qi(Bi) (i<n) where appropriate.

)r\' and prefixing

=% and C. subsumes C' . These ob-

) £ J

servations complete the induction step in a systematic construction of

H(0) from £'(0).

Ubserve that [n+6/0¢,
425(0

Theorem 9 and its corollary emphasize the crucial role of a
generalized €-resolution refinement Au which 1s strongly é—comp]ete
on latent unit-clause sets. Unfortunately, ND(E ,>) s not strongly
& -complete on Tatent unit-clause sets; Theorem 3 asserts a weaker
property, which yields the following strengthening of the Corollary
to Theorem B (Abstract).

Theorem 10. Suppose that no non—unit.clause of € contains a
(positive) equation, € 2 EnD-u 2 EO where 6 N fvg E'O and fk

is a Horn syétem with renaming r_ (k=0,---,n) , >' is an §£'-

S

k
complexity ordering where §£' ¢ EO , and Ay = HR( En’?n’sn) R
HROE ;»7»S,) - Then (ay-ND(E_,»)) N ND(E ,>') contains a gen-

eral refutation of C v €u[x=x] for each €-inconsistent clause-set
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C wherein each non-unit clause contains at most one (positive) equa-

tion.
The proof is based on Lemma 12, which makes use of the set

1~  of "constant" substitutions:

g =df {6 e Lys if x8 # x then x6 is the first constant
£ | term in [x8], according to > (x ¢ VI)}

€

Lemma 12. Let > be a monotone partial ordering of v
which well-orders constant terms, and suppose that {81: ieN} satis-
fies (i)-(iii):

(1) 6, & %,
K™y

where Ek is a set of equations and
£y mar (Eo7)

(1) Epyq = E v {[s =t} .

(111) x84, g - X6, (x e Vp)

Then 8n+k = eh (k € N) for some n>0 .

Proof of Theorem 10. Suppose that €, 1is an £ -inconsistent

clause-set wherein each non-unit clause contains at most one equation.

Suppose without loss of generality that EO contains all of the equations
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in C’ou € v [x=x] .
It follows by ground Eo—completeness of AM that AM contains
)+

a refutation P'(0) of some finite subset C(‘) of (CouE , Where

Co (L vEN 0
Eeo
of Coug

o for some 6, in Zio . Let 860 = &’0 , and let

‘be the set of all equations which occur (positively) in clauses

Due to the assumptions that &  contains all equations of
coufu [x=x] and that no non-unit clause of CO vE€ contains more

than one equation, each (Eo—reso1ut1'on) inference in ﬁ'(o) has the form

@ vi{A' vp', B v{illLA vB (7)

where @' 1is a set of constant equations derived by "previous" infer-

ences in &'(0) and p' }I|a_'u£ q'
0

equation, then A' =0 because equations precede all other literals in

Moreover, if p' s an

each literal-ordering > (i=0,---,n) .
. E . - : =
Case 1: H'(0) is € -stable, in the sense that_ s £, t
for eacn &€ -resolution inference (@' |~ [s=t]) in L'(0). Then we
define a general refutation Q"(O) for C’OUE in ND(EO,H) induc-

tively as follows, assuming without loss of generality that @' = 0 in
(7).

Suppose (7) is an initial inference in Q'_(O). Then choose A,
B in (coug)"' so that An €A' v p' and Bng B' v g' , selecting
A and B according to some branch mapping for £'(0) so that all the ini-
tial premises of &J'(0) will ve separated.

Suppose that (7) is a non-initial inference of $'(0) and we

have defined &£"(A), D"(B),n so that An€A' vp' and Bn€B' v§',
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but neither A nor B subsumes A' v B' . (Assume A,B separated.)

Let & be a m.g.s.u. of {{peA: pn =p'} , {§eB: Gn = '}t . Let

Ag v po be a simple factor of A on- p where pn =p' , and let

q

B6 v 8 be a simple factor of B on 4 where an
It follows by Theorem 3 (Corollary) that ND( 80,>3) contains a

general realization iZﬂ g for an EO—resolution inference

3

B3y b o g -mg g g ) | (8)

whnere 0 divides ) and
=A.B

[xalﬁ /x: x occurs in (A v B)] divides 60
a8
Let £"(C) be the result of prefixing & "(A) and :gl“(B) to
QA,B . It follows that CGQ:.;(C)S C' . Let xn_= xc;@u(c) for x
in C .
Having defined £ "(0) in WND( EO,>J), we can easily transform

£"(0) into a refutation D (0) in (ay - ND(E,»)) AND(E %) . In

the first place, if P"(0) contains a simple factoring inference

B |- B0 v 3o (9)

where & is r_ -negative and Level pr i (d) = k (52.4.3), then the

Sk i(o)
€ ,-resolution inference ({A,B} |- C) realization of which (9) is a
constituent must be replaced by a chain of similar realizations wherein
SF is not applied to B and the conclusion subsumes € . In other words,
a realization of {A,B} |~ C containing (9) where B ='B0 vﬁo Voo vﬁn_1

and 6 1is a m.g.u. of {qo"'”’qn-]} is replaced by a subdeduction
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containing n 'Eo—resolution inference realizations. Assuming that
£ "(0) has had all illegal SF-inferences removed in this manner, we
obtain & (0) in (8 *ND( E,,%')) n ND(EO,S) by reordering & -resolu-
tion inference realizations common to a hyperzizo—resolution inference
(realization) as in Lemma 4.
Case 2: &'(0) is not £ -stable. Let ﬁ'([so=to]60) be a

subdeduction of & (0) such that s} # g to and D) s
0
€ ,-stable for each proper subdeduction of ® ([s -t 18,). Then by

essentially the same argument as in Case 3 there exists in (AM- ND(SO,#))
N ND( €,,>) a deduction Q([so-tojno) (where [s =t ] e éc,o) and

T divides BO . Ubserve that ST #Eo to”o because 5080 #Eotoeo .

3 such that

ket By Fe the unfaue sleneit 8F (o le =g T, a8

X8y = EonJ[So=t0]”0 x8, (x € VI)

and let ?e] = Ee v [5‘.0=1:0]n0 ;
0

It follows that ( Co vE) 8, 1includes an £, -contradictory

0
1
subset €4 € ((‘,’Owﬁ)+ . whence Ay contains a refutation Q]'(O)
of C] .
Iterating the preceding case analysis with (‘3]' for C(', 2

6, for o, E’e] for Eeo= E, » and §:(0) for HJ'(0) , we find

that "Case 1" is applicable at most a finite number of times, for

otherwise Lemma 12 is contradicted. Thus, there exists a set
£
%

0
an € -resolution refutation H;(0) which is €, -stable, whence
L

S Eé‘ , of equations derivable from (C’Ou E’)q' by a deduction
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ﬁi(o) can be "lifted and interpolated" by a general deduction =gi_?=1(0)

in (AM- ND(EO,#)) N ND( &’0,>-') based on (C’O'vE o Eeg)m . Prefix-

ing variants of subdeductions in ﬁo where appropriate to support
equations in Er; - Eg , we obtain a general refutation £ (0) of
L
v 3 U I
(€, ,vE)" in (8, -ND(E_.>")) NND(E_,>) .08



-125-
4. RELATED RESEARCH

This chapter briefly reviews research which has contributed to or
motivated the present investigation. The lack of comprehensiveness is
partially compensated by the initial review of readily available over-
views and textbooks.

The research most directly relevant to the technical results of
this investigation is reviewed more carefully in §4.3. Relations to
current research on calculi for enriched Togical systems are described
in §4.4.

Research on high-level programming languages with "deductive"
capabilities, reviewed much more thoroughly in [9 ], is viewed briefly
in §4.6 as a rapidly growing application area for specialized proof

procedures.

4.1 Overviews and Textbooks

There are now several easily accessible overview articles and
textbooks describing the research mentioned below and showing its rela-
tion to other areas of Artificial Intelligence (Al) research.

Nilsson's analysis of Al research [58] provides a lucid and com-
prehensive overview of research on proof procedures in the context of
several types of deductive problem-solving systems: automatic theorem
proving, automatic programming, question answering, and robotic problem-
solving systems. This survey clearly documents a growing trend toward
recognition of the importance of secondary "heuristic advice" informa-
tion along with the-primary (descriptive or axiomatic) information in

the data bases of deductive problem-solving systems.
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Resolution-based calculi and their applications in AI are
thoroughly treated in two recent textbooks [59,12]. Luckham [47]
provides a concise development of the basic results supporting the

resolution principle of J. A. Robinson (essentially a combination of

the Cut and Factoring rules (§2.2.2).

In [67], Robinson presents a more general version of his resolu-
tion principle which admits resolution inferences (§2.1.1) but not
€ -resolution inferences in general. This article includes a useful
overview of research in mechanical theorem proving, augmented by a com-

prehensive bipliography.

4.2 Formal Foundations and Background

Completeness and undecidability. Well known studies in the

foundations of mathematics have shown that the logical consequence rela-
tion |= 1is semi-decidable but not decidable ; similar conclu-
sions hold for EE under the assumption (implicit throughout this
report) that & 1is consistent. Gddel (1930) and others presented ef-

fective calculi for first-order logic and showed them to be complete.

Resolution principle. Following the completeness results for

first-order predicate calculi and the later advent of high-speed, pro-
grammable digital computers, a number of investigators began to exper-
iment with basically complete proof-procedures for first-order

predicate logic [66,17]. ~ The resolution principle formulated by

J. A. Robinson [63] grew directly out of efforts to systematically

eliminate major and (practically speaking) combinatorially disastrous
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sources of inefficiency in these procedures. This principle, embodied
in the simple Factoring and Cut rules of inference (§2.2.2) is based on
the concept of most general (simultaneous) uhifier developed by Prawitz

[59] and refined by Robinson [67].

Heuristic methods. The latter part of [63] is devoted to several

uniform (problem-independent) heuristics for eliminating redundant
clauses and inferences. Heuristics (both uniform and problem-dependent)
for the control of refutation procedures based on the resolution prin-
ciple have been the subject of intensive investigations for nearly a
decade. Several refinements of resolution, while originally conceived
of as being heuristic in the sense of being "the sort of thing an in-
telligent human problem-solver would do" [63,p. 118], were subsequently
shown to preserve the refutation completeness property of resolution.
These developments are reviewed more extensively in Robinson's article
[66].

Refinements. In[a4g], D. Luckham defined a general class of
restrictions on binary (or "pairwise®) resolutjon, which he called
refinements, deriving completeness and compatability results for model
partition and ancestry filtering refinements. The latter, also known
a$ linear resolution [ 4,43,46] was probably the first example of a
refinement which cannot be defined without reference to the proof-trees
supporting the premises of admissible inferences.

Model partition, or resolution relative to a model, is one of
several generalizations of P]-deduction or its “non-basic" form hyper-
resolution, defined and shown to be complete by J. A. Robinson in 1965

[64]. Slagle [73] and Kowalski [40] investigated certain literal-
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orderings and renamings (82.1.2) 1in conjunction with these refinements.

Refinements for equality calculi were obtained from each of the

above types of refinements by imposing restrictions on the use of para-
modulation [42,78]. Hyper-E-resolution [ 3] was an extension of
hyper-resolution to equality theory, and renamable paramodu]ation.[12]
incorporated renamings and certain Titeral-orderings into this refine-
ment. Kowalski [41] notes the equiVa]ence of refinement-restricted
uses of equality-axioms and special inference rules such as paramodula-
tion.

Special inference rules for fragments of set theory and other

theories of partial order are investigated by Slagle [75,76]. Com-
pleteness and efficiency results for these rules are based on previous
results for refinements and axiomatizations of set membership and par-
tial orders.

Special refinements and search strategies for Horn systems
(§3.1.1) are investigated by D. Kuehner in [45], where he shows the com-
p]etenesslof a purely linear (or input) resolution strategy for Horn
systems. Since the addition of equality axioms to a Horn system yields
a Horn system, it seems likely that these results can be extended to

first-order logic with equality.

Functional reflexivity axiohs {fx]---xn = fx]---xn] are re-
quired to be present for each of the above completeness results per-
taining to resolution augmented by paramodulation. L. Wos and G. A.
Robinson discuss possible ways of showing that only simple reflexivity

([x=x]) is needed for completeness; however, their conjecture to this
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effect [64] remains'open.]

Performance analyses, particularly by empirical measures of ef-

ficiency ratio (5§B.2) have been conducted by several of the above

authors (e.g., [51] and [63]). The foundations for a theory of effi-

ciency for proof précedures are investigated by R. Kowalski in his doc-
toral thesis and discussed by B. Meltzer in [651]. The development in
6B is based on essentially the same model of proof procedures used by

Kowalski.

4.3 Research on Equational Simplification Refinements

4.3.1 Studies in Combinatory Logic

Much of the research described below is motivated by the word
problem for an equational system €

Given terms u and v , decide whether or not u =€ P . (1)

It is well known that the word problem is unsolvable for many finite
equational extensions of Semigroup or Group Theory [71].

However, basic research by Church [14], Rosser  and Curry
[16] on lambda-calculi and their equational equiva]ent;, the combinatory
calculi [30], have established a paradigm for solutions to the word
problem: they investigated several finite equational reduction systems

(8: % ) (as defined in §2.3.4) and showed them to be complete (§2.3.4):

]Unit«comp1eteness results for paramodulation with simple reflex-

ivity have been derived independently by Richter [60] , and _
myself (§3.2.1, Theorem 3). It appears quite likely that partial com-
pleteness results for the non-unit case (e.g., Theorem B) will be ex-
tended in the near future.
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* *
If r ?? s then r~» t and s+ t for some term t . The

various completeness theorems became known as Church-Rosser theorems.

The following basic combinatory system (IKS) has been investigated

extensively. Vp is empty, and V. = Vg szg where Vg = {I,K,S} and
VE = (__) s (__) fis the binary application operator and I,K,S are

the basic combinators. Defining (u]---un) for n>2 by

(up-up) =gp ((ugupluge--up)
we define (IKS) = {(I),(K),(S)} :

I: [(Ix) = x]
kK& [lew) = &)
S: [(Sxyz) = (xz(yz))]

It turns out that every partial recursive function is represented in
=(IKS) by some constént term, in a very natural sense [39].

A basic Church-Rosser theorem asserts that ((IKS),l+?IKS)) is
complete. However, the word problem for (IKS) is undecidable, and

* -
NF({IKS), +(IKS)) is not an (IKS)-normal form.

4.3.2 Completeness of Reduction Systems Based on Complexity Orderings

Knuth and Bendix [39] derive a completeness characterization and
a procedure for computing complete reduction systems, working with
finite, total, equational reduction systems ( €’>1v) where 59 is de-
fined from a weighting function w as in §2.3.5. Their basic result
is an effective characterization of complete (and therefore canonical)

reduction systems in this class (Proposition 2 in §C.4).



-131-

They describe a partial algorithm (essentially the one specified
n §3.2.3 for deriving a coﬁp]ete sysfem o >h) from
( €Q.>w), and they illustrate its applications to the word problem by
means of numerous computer-generated "completions" of simple equational
systems (é.g., fhe Group Theory example in §C.2).

The completeness results for basic refinements of the form ND(E ,»)
in §3.2 were motivated by, and constitute an extension of, the research

of these two investigators.

4.3.3 Refinements Based on Composition with € -Canonical Mappings

Suppose that € is an equational system and v 1is an £ -canonical
mapping on jVuC’V , whence (s ¢ t) iff (v(s) = v(t)). Given a cal-
culus T over CV" it is natural to ask how v may be used to "refine"
I' for greater efficiency in proof procedures.

Plotkin [57] describes his objectives as finding a complete

calculus T such that the calculus T , defined by

(@}T C')=df(68}—rc where v(C) = C') (1)
AV

1

is also complete’'. Actually, there is a straightforward modification

of ND(E ,-ﬁ; ) which appears to satisfy this objective, provided that

u —>E v(u) € NF(E,—»é‘ ) (ue JVUCV). However, Plotkin's development

]Plotkin uses N for v , and states his objective thus: "We

shall Took for a complete set of rules Py AP such that r]ON,---,
renN is also a complete set. (If r 1is a rule, reN 1is the rule
which outputs N(C) iff r outputs, with the same inputs, C)".

[57, p. 74]. (Underlining mine).
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is quite different; parts of it are outlined in the following paragraphs,
given € and v as above.

Instantiation2 and composition are defined as follows:

u* o =4e viug) (ue ‘7\{ v CV);

n*8 =4 v(ne) 3

where v(o) = 4f [V(xg)/x: xo # x].

A substitution o € -unifies a set U provided that u* o =v *x ¢

for all wu,v in U .

Example 1.3 Let € = {[(x*y)ez = x=(y*z)]} , and let v(s) be
the unique term in [S]E N NF(E ,a; ) (whence v((wex)<(y+z)) =
(We(x+(y=z)))). Let U = {w-x, a-(bfc)} . [a*b/w,c/x] and
[a/w,(b-c)/x] are both &-unifiers of U .

Deﬁ'nition.4 o is a simplest € -unifier of U provided that

(i) o E-unifies U ;
(i) If n*6=v(s) and n E-unifies U then 8 is

€-invertible: 6 * 6' = ¢ for some ©' .
4

Definition.” n £-divides o provided that n + 6 = v(o) for

some © .
Observe that in Example 1, [a-b/w,c/x] and [a/w,(b-c)/x] are

both simplest €-unifiers of U , and that neither €-divides the other.

2P]otkin refers to this operation on JTV xZ, as v-application.

3A11 examples taken from [59]. '

4My own, to simplify exposition without altering content. (I am
assuming only that n %= 6 = v(n) = v(8) in this presentation.)
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Thus, no " € -unification algorithm" based on * could possibly return a

single "simplest € -unifier" for each finite E-unifiable set.

Definition. o and o' are £ -independent provided that. neither
o €-divides o' nor o' E-divides o . |

Example 2. Let 8,\) be as 1in Exampie 1. The ‘set of simplest
£ -unifiers of {g(x,x+a), g(y.a*y)} contains the infinite set of
mutually g-independent substitutions {[an/x,an/y]: ne N}

Observing that with problems such as these one must invent a spec-
ial unification algorithm for each equational system (p. 74), Plotkin
defines the function of an " & -unification" procedure as the generation
from U of a set containing exactly one representative of each "€ -
variant" class of simplest £ -unifiers of U .

Finally Plotkin defines two inference rules for use with E.v
one corresponding to (factoring and resolution), the other correspond-
ing to-(factoring and paramodulation). In the former case, inferences
of the form

{AvC,BvD - (AvB)wc (2)
where '
(i) A v C shares no variables with Bv D ;

~

(i) C#0,D# 0, and neither C nor D contains an equa-
tion; and '

~

(iii) o 1is a simplest E-unifier of C v D , where D = df
{g: qe D}
are admitted. In other words, given C,ﬁ where CvD is €-unifi-

able, we generate each inference (2) where o is a simplest substitu-

tion such that v(Co) wv(Do) is a singleton.
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Remark. In view of the stated objective (1), we might expect

resolution inferences of the form

"{AvC,BvDI H(AVB)*xo (3)

where o ds a m.g.u. of C~ D to be defined. Such inferences do not

require the computation of simplest €-unifiers. Plotkin does not con-

sider (3), even though it corresponds to his stated objective and (2)‘
does not. (3) is essentially the form of factoring-resolution incor-
porated into WD( £.,»* ).

In any case, P]dtkin proves refutation completeness of his cal-
culus on functionally reflexive € -inconsistent sets of clauses,
| assuming the existence of a complete generator for simplest 8—unifiers.
He argues that this calculus should yield greater efficiencies than the
resolution-paramodulation calculus which uses ordinary unification and

gives no special treatment to equations of E

4.3.4 Demodulation and Simplification Strategies

The idea of using the current set of derived equations as the
basis for a "simplification mapping" to be applied to other derived
clauses has been investigated extensiﬁe]y by L. Wos et al. [81], and
by Luckham et al. [1 ] on the Interactive Theorem ProVer.

"Demodulation" with respect to a set £ of equations is defined

in [BTJ from the E-reducibi]ity relation *i; defined on terms by

(u[r] =% ultel) =4 € contains [s=t] where 8 is a m.g.u. of

{r,s}, r=sg, and té contains strictly fewer symbols

than s6 .
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>§ is the reflexive, transitive extension of -ﬂk ; B2

(+
Evidently, NF(@,—»E* ) is an &€ -normal form for JV uC’V . As the
authors note, it is not in general an &-canonical form.

Demodulation of a derived clause A consists of replacing A

with C where A +>g C ENF(E,»>F ) .
Noting the incompleteness of refinements wherein exhaustive de-
modulation is used, Wos et al. define a finitary variant of binary

resolution, called k-modulation, wherein some of the demodulation re-

placements can be "undone" before the resolvents of two premises are
generated. |
A similar simplification strategy, based on a user-specified

list of equations, is a built-in strategy of the Interactive Theorem
Prover. The conclusion of each inference is "simplified" (e.qg.,
demodulated) with respect to this 1ist before being added to the proof-
procedure's current deduction.

| The utility of these strategies_is amply documented in [81] and
in [52]. The data of Wos et al. show that appropriate strategies based
on demodulation and k-modulation can significantly reduce the cost of
refuting typical inconsistent clause-sets corresponding to theorems
such as "Boolean rings of charactéristﬁc 2 are commutative." Cost (in
time) for PG5 with demodulation was typically one-tenth the cost for a

similar program (PG4) without demodulation [81, Table 1].

4.4 Enriched Logics and Their Calculi

First-order logics and their proof procedures are well suited for
decision-making within states or world-models, but poorly suited for-

reasoning about actions or processes based on transitions between states
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or world models. Temporal and other modal logics [11.44,50] are
needed for robotkdeSign and automated programming applications, which
can afford neither the inefficiency of a uniform embedding of space-time
in a predicative framework [23 ] nor the conceptual chaos likely to
ensue from an ad hoc synthesis of deduction and simulation. The simi-
larity between certain modal logic systems [44] and the formal structure
of experimental problem-solving systems such as STRIPS [20 ] suggests the
possible emergence of an appropriate interface, in which state-
transformation operators are selected by deductively evaluating their
applicability conditions in current and alternative world models. Such
an interface would have the desirable property of making the dynamic or
_ modal aspects of the environment more or less transparent to the "class-
ical" deductive component of the system.

Independently of the modal dimension, there is a demand for in-
creased richness in the predicate logics amenable to automated proof
procedures. Both mathematicians and users of higher-level programming
languages find it natural to work with type-structured languages instead
of pure first-order languages with a single type of individual variable.
The mathematician using a deductive problem-solving system will fre-
quently be communicating and thinking in terms of a higher-order logic,
quantifying and defining predicates over infinite sets of functions and
re1ations‘as well as over individuals. Higher-level programming lang-

uages have equally sophisticated type structures, allowing many indi-

vidual types (sorts) as well as functional types, denoting classes of

functions which take individuals and other functions as arguments.
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Extensions of resolution to higher-order logic have been dis-

cussed [24 ], advocated [22]or proposed [70,5] = by a number of in-
vestigators, although no really satisfaétory exténsions have been
described. Andrews'  proposed extension, modeled on Henkin's theory
of simple types [27 ], abandons the "most-general inference" property
of first-order resolution systems, relying instead on a "truth-func-
tional” cut rule and a separate instantiation rule.

The doctoral dissertation of Gould [21 ] has occasionally been
referred to as evidence for the non-existence or, at best, extreme
complexity, of a unification algorithm for a calculus with abstraction
("A-expressions") and conversion rules. The dissertation itse]f, how-
ever, is a brief, technically correct demonstration that Gould's
particular concept of unification or matching, in A-calculus with types,
is in féct a computationally untenable synthesis of unification (or
instantiation) and simplification (A—conversfon). Nothiﬁg is said of
the (dubious) justification for Gould's definition of "matching" in
higher-order logic as an analogue of the first-order unification algor-
ithm, nor is the possibility of a more feasible approach discussed.

In essence, Gould's approach is the same as the approach inves-
tigated by Plotkin (§4.3.3) for incorporating "algebraic simplification”
or "evaluation" (relative to an equational system € ) into the unifi-
cation process. In Gould's case, € corresponds to a set of "typed"
versions of equations in (IKS) (8§4.3.1).

In view of the alternative approach noted in §4.3.3, it appears
that the "difficulties" encountered in extending resolution proof pro-

cedures to higher-order logics [33,51] are purely formal difficulties
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associated with one approach to the desired extension; these difficul-

ties do not appear to be intrinsic to the extension itself.

4.5 Theorem-Proving Systems

The Interactive Theorem Prover of Allen and Luckham [1] is
basically a comp]ete'refutation procedure augmented by a flexible man-
machine 1nterface.inc0rporat1ng powerful facilities for the specificé-
tion of refinements and search strategies. The system has been used to
obtain proofs of new mathematical results announced without proof in

Wotices of the American Mathematical Society.

A much more specialized proof procedure for Integer Arithmetic
was developed by Floyd and King [37 ] as part of a computer program
verification system. Incorporating powerful facilities for algebraic
simplification and linear system solving on its intended domain, this
refutation procedure efficiently decides a small but useful class of

propositions1

and quickly gives up on the others.

The on-Tine systems of Bledsoe et al. [ 7.8 ] are being used to
explain the potential of specialized theorem-proving systems in domains
such as real analysis, set theory, and topology. Based on powerful
sub-goaling facilities, these systems incorporate limited facilities
for handling typed variables (e.g., interval types in real analysis).

A linear system solver makes good use of these facilities.

The systems of Luckham and Bledsoe reflect and facilitate the

important role of the human operator in many deductive problem-solving

]Averaging about ten seconds each on an IBM 360 Model 67 [ 37].
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applications. Appreciation for this role in theorem-proving applica-

tions is reflected in the following remarks by Bledsoe [6 ]:

There is a real difference between doing some mathe-

matics and being a mathematician. The difference is
principally one of judgement: in the selection of a problem
(theorem to be proved); in determining its relevance; in
‘choosing reference theorems to help prove the given theorem;
in selecting techniques for use in the proof; in knowing
when to abandon one Tine of attack in favor of another,
perhaps using as evidence information derived from the at-
tempted proof; in knowing when to prove a convenient lemma;
in knowing how to restructure the proof into a more lucid
form once a proof has been found; in knowing how to balance
the search for a proof with the search for a counterexample.
It is precisely in these areas that machine provers have
been so lacking. This kind of judgement has to be supplied
by the user, and hence the system is in reality a man-
machine system. '

4.6 Deductive Problem-Solving Languages and Systems

Une of the primary functions of Computer Science is to develop
formal languages which facilitate computer usage in various applications
areas. Language in this sense refers to syntax, semantics (as defined
by interpreters and compilers), and various support facilities (e.g.,
on-line editing and date-base management facilities). Research in Al
nas stimulated the development of several new languages designed to

facilitate construction of the complex deductive problem-solving systems
needed for automatic theorem proving, automatic programming, and robot

problem-solving applications.



-140-

There have been two distinct trends in language development.
Une, the "structured programming" trend, is characterized by a con-
servative approach toward new built-in concepts and a strong emphasis
on syétematic program verification methods. Another, the "ad hoc
programming" trend, is characterized by liberal experimentation with
built-in concepts designed for "high-level" programming, where the
level of a programming language reflects “the extent to which a pro-
grammer may specify what he wants accomplished without specifying how
it is to be done..." [9].

The "structured programming" trend is represented by languages
such as Pascal [371 ] and Concurrent Pascal [10 ]. Axiomatic formaliza-
tions of semantics and program verification systems are currently
being developed for Pascal [31] .

The "ad hoc programming" trend is répresented by languages such
as Planner [29] , Conniver [ 9], and QA4 [9]. Unlike the "struc-
tured programming" languages, these languages incorporate "deductive"
facilities directly in the form of subproof generators, search strat-
egies, and pattern-directed procedure 1nv0cation‘[9].

The terms "structured" and "ad hoc" are not intended to indicate
any intrinsic distinction or dichotomy between the two classes of pro-
gramming languages references above. Indeed, I believe that the basis
| for ‘any such distinction will disappear within a few years. The "ad
noc programmers" developed their philosophy of language design at a
time when no convincing method for systematic or hierarchical construc-
tion of specialized problem-solvers was available. The "structured

programmers'' are just beginning to develop promising approaches to
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automatic program generation and verification [ 867, and it will be
a while before these methods are fully integrated with Tanguages such
as Conniver and QA4. The synthesis of "structured" and "ad hoc"
programming concepts will probably result in very high-level program-
ming languages with built-in facilities for program generation and
verification, based partially on powerful proof-procedures whose re-
finements and search strategies will be developed along with the

application-system being programmed.
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5. CONCLUSIONS

This chapter summarizes accomplishments (§5.1) and Timitations
(85.2) of the research described in Chapters 1-3 and appendices.l Ex-
tensions and applications are outlined in &5.3.

The principal limitations discussed in §5.2 are the lack of
empirical performance measures for the normal refinements developed
in this research and the limited domain of completeness for refine-
ments of the form A, - ND( € ,>). Mays of overcoming these limitations
are discussed in §5.3.1 and §5.3.2. |

Extensions of normal refinements and proof procedures to en-
riched logics (84.4) are outlined in §5.3.4 and §5.3.5. While these
sections are concerned more with the definition of the enriched logic
than with the details of the extensions; the extensions do appear to
' be feasible.

Extensions to type-structured logics based on the lambda-
calculus syntax of Church are described in §5.3.4. The unification
algorithm for such extensions is a natural restriction of the first-
order unification algorithm based on a compatability requirement for
types of variables and terms. Maintenance of terms in normal form is
ensured by the use of an extension of ND(£ ,») in the proof procedures.

A class of type-structured "procedural logics" is outlined in
55.3.57 These logics and their refutation procedures, if success-
fully developed on the basis of normal refinements, will be well
suited for reasoning about (or reasoning within) the computational

procedures of deductive problem-solving systems.



-143-

5.1 Accomplishments

5.1.1 Structured Design of Specialized Refinements

A basic contribution of this research has been the introduction
of structured programming methodology into the design and specifica-
tion of specialized proof procedures. The procedure Ref (5§1.3.6)
exemplifies the separation of structural knowledge (A) ahd procedural
knowledge (Enq) in the specification of proof procedures.

The concepts of T'-closure completeness for refinements (§1.3.4)

and fairness for search strategies (§1.3.5) formalize useful guide-
lines for the design of proof procedures, as shown by Propositions 5
and 6 in §1.3.

However, the feasibility of the structured programming method-
ology in this context depends upon the avai]abi]ity-of a rich class
of generalized € -resolution refinements and a method of composing
them which preserves their completeness and efficiency properties.

The principa] contribution of this research has been the definition
and analysis of a class of such refinements.

The concept of a generalized E-resolution inference relativizes
the generalized resolution principle of Robinson [67] to an arbitrary
relative consequence relation hf , enabling the proof-procedure
designer to partition the design problem into two logically indepen-
dent stages: the design of a (generalized) £ -resolution refinement
(and corresponding search strategy), and the design of a refinement for

the effective and efficient realization of (generalized) £ -resolution
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inferences by lower-leyel inferences.

The normal composition operation (§2.4.1) provides a natural

method for composing a generalized E-¢e501ution.refinement with a
generalized £'-resolution refinement where € 2 €', so as to obtain
a generalized €g'-resolution refinement which preserves useful fea-
tures of its constituents (83.3). It is this preservation property
which makes it feasible for the designer to reduce the (typically
intractable) problem of designing a refinement for € by designing

and then composing refinements for well understood subsets of E

5.1.2 CompIeteness‘Results for Hyper- £€-Resolution

Hyper:éi—reso]ution and the "equivalent" £ -resolution refine-
ment HR(§ J;) ‘provide a specific class 0% (generalized) €-resolution
refineﬁents with known completeness properties. These refinements are
useful in the design of normal refinements, provided that £ is a
Horn system with the renaming specified by € .

The completeness result for HR( € ,”,s) (Theorem 1) 111ustrafes
several useful concepts in the design and analysis of & -resolution
refinements: 1ndependehce of completeness and effectiveness, ground
comp]eténess and the excess literal parameter (Proposition S in

§3.1.2), and strong liftability.

5.1.3 Design of Resolution Micro-Refinements

The concept of a normal refinement and the associated conven-

tion (§2.4.2) focuses attention on two major stages in the design of

proof procedures: the non-unit stage is concerned with the
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-~ specification of a refinement for € in terms of an Ed—reso1ution
refinement By where EOfW ib g Eg £ i} ; the unit stage (Au) fs
concerned with the efficient realization of Eo—reso1ution inferences
py means of normal basic deductions.

Theorem 9 describes a property of Au (strong gio-compIeteness
on latent unit clause sets) which yields a general comp1eteness re-
sult under composition with a wide variety of Eb-reso1ution refine-
ments.

The resolution micro-refinement ND( EO,r), while not strongly
éiﬂ—complete, does have a more restrictive completeness property
(Theorem 3) which yields a less general (but nevertheless useful)
completeness result for certain normal refinements (Theorem 10).

ND( >) eliminates many redundant and irrelevant inferences

0
from unit refutations, as evidenced by the examples in §1.1.3 and
§D.4. Theorems 9 and 10 together strongly suggest the desirability

of extending ND(€0,>-') to a refinement Au which behaves like

ND( 80,>-') (on the known domain of completeness of ND( 80,}-' )) and
is also strongly Eﬁ—comp]ete on latent unit clause sets. Thus, these
limited results and observations provide useful guidelines for subse-

quent research on specialized refinements which preserve general

completeness.

5.2 Limitations

Empirical Support. The concept of an app]icatidn‘environment

(1{5 ,u) provides a precise and realistic formal framework for perform-

ance evaluation and comparison of specialized proof procedures and,
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indirectly, the refinements upon which they are based (§B). However,
this framework has yet to be applied to the performance-evaluation of
normal refinements (§5.3.1). The examples and performance estimates
in §1.1.3, §C, and 8D are at best indications that the normal refine-
ments and completeness results developed in this research may con-
stitute a significant contribution to the design of specialized proof
procedures; such claims rely heavily upon the reader's experience and
intuitions in the absence of a more thorough empirical investigation.

Analytical support (other than completeness results) for the

alleged usefulness of this research is also minimal. Many potential
users of normal proof procedures would be more convinced by empirical
"efficiency" reSults than by hypothetical-analytical arguments such
as the following.

Example. Suppose that Ay s an € -resolution refinement and
Au’Aﬁ are E-resolution micro-refinements. Suppose that the expected

"complexity" of a refutation of a member of 1[6 in Ay isn £-

reso]utibn inferences. (i{e ,i) and AM define an application en-
vironment (1(M,uM) which reflects the class and distribution of
refutable sets which will be encountered by Au (or AL) in the con-
text of Ay °Au (or Ay *A') . Suppose that the expected number of
alternative refutations of a member of ilM in A is m , and that

U
the expected number of alternative refutations of a member of ?{M in

A& is m/2 . Then, assuming that a "breadth'first" search strategy
is used, we should expect the expected efficiency ratio of a procedure
based on AM 'Au to be close to r"/2n where r' 1is the expected

efficiency ratio of a similar procedure based on By -Aﬁ , because a
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refutation in Ay with n inferences has (approximately) m alternative

realizations in By A" and (m/2)n alternative realizations in Ay AL.

Domain of completeness. I doubt that general completeness

results for normal refinements of the form AM * ND( EO,>“) can be
extended significantly beyond the domain of clause-sets wherein each
clause contains at most one equation (Theorem 10), even though I

nave no specific example to support this doubt. The following intui-
tive argument may suggest a specific example and a subsequent modifi-
cation of ND(E ,» which does have the strong &£ -completeness
property required for the proof of Theorem 9.

Consider a refinement A = AM-'ND(E,>Q where Ay 1s a strongly
liftable ground €-complete E-resolution refinement, € 1is a set of
equations, and > 1is an £&'-complexity ordering for some &' s €.

In order to prove general £ -completeness of A by the argument used
for Theorem 10, it suffices to verify the following:

Proposition. Suppose that g 1is in zé., that xs # x for

each variable x occurring in {Bivcﬁ: i<n} , and that

{(Bi vqi)e: i<n} |- €'
is an € -resolution inference where C'= (B8 -9 8) v -+- v (B _18 -0, _10).
Let C = {qeB;va;: g6 =q;} (i=0,---,n-1). Then ND( &,>) contains a
general refutation 52(0) of {C;: i<n} v£ such that for each in-
vertible substitution n where Cne {Ci: i<n} (CeBase(H(0)) - £%),

q{j(u) divides n-g .

Theorem 3 tells us that this proposition holds when hE a5

for each equation Q; in {qi: i<n} . However, if q. 1is an equa-

J

tion and Bj - Cj # 0 then we cannot assume that qjs 5?*' because
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to do so would require us to use q; (thereby introducing clauses of
Bj' Cj) in subsequent €-resolution inference realizations. (This
remark should be comprehensible in the context of the proof of Theorem
10.) The above proposition does not hold in general--not even when
> is an Elcomplexity ordering for some g£' € E.

| Other minor iimitations, while evident, need not be discussed
in detail. Clearly, the relation between normal refinements and their
realizations in normal proof.procedures needs to be explored in greater

detail. The "structured" specification of search strategies outlined

in §2.4.3 (Composition of enqueuing functions) is particularly tenta-

tive; however, a simple breadtn-first search strategy would suffice
for inftia] implementations of normal proof procedures.

The limitation to first-order syntax with typeless variables is
a matter of initial convenience and simplicity of presentation rather
than of basic barriers to extension; however, the basis for this

assertion is only hinted at in §4.3.3.

5.3 Extensions and Applications

5.3.1 Preliminary Empirical Investigations

It is feasible and appropriate to begin an empirical investiga-
tion of normal proof procedures based on the performance evaluation
framework of §B. Such an investigation will be based on (i)-(iii):

(i) A collection of benchmark application environments, each
effectively represented by a‘finite (or at least decidable)
axiom system and a finite weighted sample of refutation

problems based on this axiom system.
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(ii) An implemented refutation procedure with facilities for
the specification of various normal refinements and
(optionally) various search strategies.

(iii) Appropriate computational facilities and resources.

In order to facilitate comparison with previous and ongoing
research, the sample problems should include problems brevious]y at-
tempted by experimental refutation procedures. Numerous problems in
group tﬁeory and other equational theories have been previously in-
vestigated and would provide comparative information on the usefulness
of ND(E,>). Problems in Integer Arithmetic have been undertaken by
several proof procedures being used in program verification applica-
tions. Bledsoe et al have developed specialized proof procedures and

‘applied them to problems in real analysis [ 7 ] and in general topology

[8]. In view of my claim (5§1.1.4) that many forms of structural

heuristic knowledge can be formalized within normal refinements, it
would also be useful to investigate application envifonments where a
'great deal of heuristic knowledge has been developed (e.g., sentence
recognition in context-free languages), in order to see how much of
this knowledge can be formalized without resorting to ad hoc methods.
The Interactive Theorem Prover of Luckham et al (11 prqvides
an appropriate basis for -initial implementations and investigations of
normal proof procedures. This LISP-based system, based on pairwise
resoiution and paramodulation, includes numerous facilities for the
specification of refinements by means of user-programmable pre-editing

and post-editing strategies. Comparison with existing refinements
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would be particularly simple, because many of these are built-in options

of the Interactive Theorem Prover. This system is portable, and can be

set up on most PDP-10 computer systems with sufficient storage capacity '

and a teletype or (preferably) graphic display terminal.

5.3.2 Investigation of Generalized € -Resolution Refinements

This research has shown the need for an extension of ND( & ,»)
havng a property called strong £ -completeness (§3.3, Theorem 9).
The extension eventually arrived at will probably realize an €-resolu-

tion inference

{B;vasr i<n} |- ¢ (1)
by first finding a deduction ﬁ((ﬁ') based on {B]. vVa,: 1'<n}v\E
in ND(E ,») . If B; = 0 for each equation q; , then C' =C .
Otherwise, C' 1is converted to C by an "inversely" £ -normal
derivation based on variants of clauses in {Bi vt i <n}
This derivation will replace only certain occurrences of terms in C'

which are obtained from (BO~ Co)v «ss ¥ (B Cn;]) by instantiation

n-1"
(where C' = ((BO- CO) Voreo V(Bn-1_ Cn—1))°£1(C'))’ and the ultimate
(derived) replacement for each such term must be in NF( € ,>) . The
purpose of the derivation from C' to C 1is simply to "undo" any
local identifications of terms in C' which may have been introduced
by using equations q; from non-unit clauses in fhe refutation.of

{C:: i <n}v & fromwhich £(C') is obtained.

i
In the realm of non-unit (generalized) &€ -resolution refine-

ments, there are numerous unexplored alternatives to HR(E ,»,s).

For instance, a linear (generalized) &-resolution deduction is a

(generalized) & -resolution deduction ¥ wherein each non-initial
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clause C has a near parent (one of its premises) and a set of far
parents; each far parent (also a premise) is either an initial (iﬁput)
clause or an ancestor of C in éz . The only class of linear
generalized € -resolution deductions heretofore investigated is essen-
tially that in which the only inferences allowed are pairwise
resolution and paramodulation. Perhaps the lineqr resolution experts
will find it possible to relativize some of their refinements to

generalized € -resolution while retaining useful completeness and ef-

ficiency results such as those of Kowalski and Kuehner [43].

5.3.3 Formal Improvements

The definitional hierarchy developed in the course of this re-
search could be usefully altered in several respects. Much conceptual
clarity would be gained by formally requiring that no premise of a
(generalized) €-resolution inference be subsumed by a clause in &
(Theorem A would then have to be restated: the negative clauses must
be excluded from & .)

The concept of a refutation procedure for T could be usefully

generalized to incorporate the following paradigm:
(i) The procedure is activated with a set € of input

clauses.

(i) A TI-refinement A to be used for the refutation of
€ v Ax(r') is selected by the procedure.

(ii11) An enqueuing function (or search strategy) E is selected
by the procedure for the search of A i

(iv) A complete deduction in A(= A(CWVAx(T')) 1is generated

as in Ref [E/Enq](C).
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Step (ii) might inQo]ve an analysis of € v Ax(T) by a procedure with
special knowledge of extensions of Ax(I') representing years of re-
search by human specialists. The generalized concept differs from the
present one in that A is selected after € (the particular problem)
is kﬁown, and E 1is selected after the space to be searched (A) is
known. The performance-evaluation measures for proof procedures de-
veloped in B remain applicable. |

This strategy of transforming the search space (and search
strategy) as a part of the problem-solving process has been anticipated

and advocated by Simon [72] and Amarel [2 ].

5.3.4 Extensions to Type-Structured Logics

The following paragraphs outline a family of extensions of
resolution-based calculi and proof procedures to the applied logical
systems mentioned in §4.4. The basic motivation for these extensions
is simplicity and naturainess in the forma!ization of various meta-
linguistic concepts such as application (of an operation or relation
to an operand) and interpretation (of a constant or variable symbol).

Applicative systems. Conceptual and computational simplicity

will be enhanced by the adaptation of a uniform representation for
terms and atomic formulas based on the binary operation (__) known

as application (54.3.1). A'vocabularg'w111_consist of (__) plus a
countably infinite set of atoms, which will be used as constants énd
variables dehoting individuals, operations, and relations under vari-
“ous interpretations. Forms constitute the smallest class 9& of
expressions which includes all atoms and all expressions (uv) where

u and v are forms. The application of an “"n-ary function" f to
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may be represented either by the n-fold appli-

arguments t1,---,tn

cation (ft]---tn) =df (---(ft1)---tn) or by an application
(f <t1,---,tn>) where <t1,---,tn> is a defined form which represents
the n-tuple (t1,---,tn). f represents an n-ary relation provided

that (ft1---tn) (or (f <t1""tn>)) denotes one of the designated

truth values (0 for false, 1 for true) under the class of admissible

interpretations.

Applicative logics will be formulated on the basis of four

additional primitive concepts:
| a) Equality, represented by an atomic constant = and appro-
priate inference rules (essentially Rp) operating on
Boolean forms (below):

[u=v] =4 ((=u)v)

b) Extensionality, represented by an atomic constant #

(the discriminator or choice functor) and the extension-

ality axiom (a Boolean form):

(#) [[x{#xy) = y(#xy)] = [x=y1]

Under each admissible interpretation wherein u # v ,
(#uv) is an object such that (u(#uv)) # (v(#uv)). Thus

[x(#xy) = y(#xy)] 1is true iff [x=y] 1is true.

c) Functional abstraction, represented either by the con-

stants I,K,S and corresponding axioms (§4.3.1), or by
a primitive functional abstraction operation (A__) in addi-
tion to (__), wherein (Axu) is a A-form with bound

variable x (an atom)and body u (a form or A-form).
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The former representation (wherein (353) is a defined
form constructed from I,K,S and subterms of u) is
algebraically cleaner and is useful in establishing formal
results such as completeness and consistency. The latter
(well known to be equivalent) is definitely superior for
computational purposes. In either case, ((Axu)t) denotes
u[t/x] provided that the type of t is a subtype of the
type of x (see below).
d) Grammar, represented by a formal metalinguistic system
which specifies
(i) A class of grammatical (admissible) interpretations
of the primitive operations (__) and (optionally)
(A__) and atoms;

(i1) A class of grammatical forms, which have a denotation

under each grammatical interpretation.

(iii) A class of Boolean forms, which denote a truth value

(normally O or 1) under each grammatical interpreta-
tion. A calculus T for such a.logic is over the

class of Boolean forms--i.e., Ax(r') is a class of
Boolean forms, and if BI—F C then @ v{C} is a

set of Boolean forms.

On the basis of the above, it is possible to formﬁlate all of
the usual logical concepts of first-order logic and of the theory of

finite simple types [26,27,70]. The usual logical operators may be
defined--e.q.,

VxB =4f [AxB = xx1]
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or they may be introduced as additional primitives (depending upon

whether the primary objective is conceptual simplicity or computa-
tional efficiency). In either case, a normal-form representation

(clause form) can be defined for Boolean forms much as in first-order

logic. The principal difference here is the necessity of deciding

how to treat embedded Boolean forms such as (Cond[x=0] 1 [x - fact(x-1])

in the familiar Boolean form
[fact(x) = (Cond[x=0] 1 [x + fact(x-1)1)]

(more commonly expressed as
[fact(x) = If [x=0] then 1 else x - fact(x-1)]

Normal form logics will be based on the combinatory form of

(c) (I,K, and S) and the normal form grammar, wherein the grammatical

forms are essentially those wherein every subform has a strong normal

form in the sense of combinatory logic [30]. Boolean forms in this
logic consist essentially of those equations [u=v] wherein each sub-
term of u or v has a strong normal form. The "Russell paradox"
form (cc) where c¢ represents Ax((xx)=0) is not Boolean in this
grammar because it has no strong normal form. Thus, the fact that
(cc) ¢ |:(c(:)r= 0] (where &€ = {(I),(K),(S),(#)}) does not render
the logic inconsistent by identifying O and 1; (If.we add [cc=0] as
an axiom then we derive [[cc=0]=0], [[0=0]=0], and [1=0] --a
'contradiction. If we édd [cc=1] as an axiom then we derive
[[cc=0]=1], [[1=0=1] --also a contradiction. These derivations
will be admitted by any of the anticipated extensions of Cut, Rp ,

and ND(E,» to the present applicative framework.
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' The extension of ND(€& ,>) for theorem-proving applications in
normal form logics is particularly appealing. Even though the set of
grammatical forms in this logic is only semi-decidable, the bottom-to-
top £ -normal reductions performed by ND(&,>) efficiently incqr‘porate
grammaticality proofs into proofs of theorems; every literal must be
reduced to strong normal form before it can be used in Rp or Cut in-
ferences involving other clauses.

Type systems. The grammaticality concepts in (d) can be

formalized by the concept of a type system & = ( E,r;VC) satisfying
(a)-(c):

(a) € is a decidable set of forms in #, .

(b) = is a monotone quasi-ordering for 'gV :

(c) VC is -a decidable set of constant atoms in V, and
{=,#,Nul1,Ni1,Bool ,Any} = V. . 7

(d) Each member of £ contains at most one free variable (in

v -VC).

Additional constraints on £ ensure that & defines a unique type
structure T(E) = (T, ,Null,Any,Nil,Bool,Co,t) satisfying (e)-(h),
wherein

(0eB) =4¢ (anB=0a)n(anB#g),
(0 €8) =4¢ (0 €B) v (a=8), and
1 e =Yy

(e) T is a decidable set of objects called types.
(f) M s a computable binary operation on T such that

(T, N ,Null,Any) is a dual semi-lattice with zero-element
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Null, unit element Any, and an atom Nf1, where Nullc
Nil < Bool.
{4) Co: TxT+T, the_codomafn function, is a computable
| operation on T such that
(i) Co(Null,a) = Co(a,Null) = Null;
(ii) If Null €ca' o and Null cB' €B , then
Null < Co(a',8') € Co(a,B); and

(iii) For each type o in T , Co(a,Any) = Bool.

(h) = é’v »~ T s a computable function such that
(1) t(u) # Null and t(u,v) € Co(t(u),t(v)) (u,v e F);
(ii) 7t(u) = Bool, for each form u in €
(iii) € contains (t(v)v) for each atom v in V ;
(iv) if € contains u where a variable x occurs free in
u, then u = (t(x)x);
(v) if t(t) e (x) then t((Axu)t) = t(u[t/x]); and
(vi) if 1(t) n1(x) = Null then t((Axu)t) = Nil,

Notation. Given a homomorphism ¢ on & = (F,.(_)), let
Uy =q¢ ¥(u) (ue #).

Let A be a mapping on V. v {{__),(A__)} such that Any, s
a set and (__)A is a binary operation on AnyA . Let V[A]=Vwv
AnyA . Extend A to constant forms (i.e., foraﬁ containing no free

variables) in ézV[ﬂj as follows:

(1) ay = a (a e Anyp)
(i) (;Q)A = (upvp)y 5 and
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ulb/x]JA, if ('r(x)Ab)A =1
(iii) ((Axu)ﬂp)é‘= -

0 , otherwise (b e AnyA).

For each type a in T, a, will normally be identified with the set

=

{a € Any,: (cga), = 11

A A"A
éi:structure is a mapping A on V v{(__),(A__)} satis-
(f

fying (a)-(f):

(a) (_ )A is a binary operation on AnyA such that
W b e BA and c e YA then (bc)Ae: Co(B,y)A (b,c EAnyA)

: 1 5 ¥ b= 3
b) [b=c], =
A 0 , otherwise (b,c e Anyy);

¢

(c) (b(#bC))ﬂ = (C(#bc))ﬂ;
(d) (omB)A Soap N By (a,B e T) 3
(e) Nully = 0 ; and

(f) u, = 1, for each constant form (or axiom) in &
A axiom

An assignment in A s a mapping 6:Vy > V; v Any,  such that
(i) if xe e Vi then x6 =x ; and
(11) 1f »o e Any, then x6 e T(x)A p
If x;6 =a; (i=0,...,n-1) and x& = x(x ¢ {x;: i<n}) then & is
denoted by [aifxi: i<n] . If x6 ¢ Any (x e VI), then 8 1is a

total assignment in A .

An € -interpretation is a mapping ¢ = A-0 where A is an

& -structure and 8 is a total interpretation in A .
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Remarks.

1. A consequence relation |— is defined in terms of the

&
“class of all € -interpretations, much as in §1.2.7.
2. Given an £ -interpretation ¢ in A and a Boolean form

B, (Vx B)¢ =1 iff B[a/x]¢ =1 for all a in T(X)A . (Clearly
this holds if Vx B =qf (AXB = Ax1).)

A unification algorithm mgu for finite sets of £ -grammati-

cal forms is easily defined on the basis of a type structure lji

for £ : given a finite set {ugseemsu b of & -grammatical forms,

mgu{uy,---5u} s either nil or a substitution 8 in EE’ such

that w0 = ... =u 6 , an £ -grammatical form.

ZJ;:=df {9 € Iy c{x8) & t{x] »

=§ ==, dand

Given variables x and y (variables of V being defined by £ ),

mgu{x,y} is mil if <1(x) nt(y) = Null; otherwise mguix,y} =

[z/x,2/y] where f(z) T(x) r\%(y). If ¢ s a constant atom and
t(c) & t(x) then mgu{c,x} = nil; if <(c) & (x) then mgu{c,x} =
[c/x].

5.3.5 Type-Structured Procedural Logics

Current research on operating systems, robotic systems, and
automatic programming is leading to the development of high-level
programming languages with facilities for specifying and reasoning

about concurrent and continuous processes [10,26]. It is becoming
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increasingly necessary to develop logics and proof procedures which
are well suited to the verification and synthesis of such processes.

Procedural logic is an extension of first-order (or type-structured)

predicate logic wherein forms may contain certain state variables

‘and a structure may contain mappings, called states, from the state

variables to their values in the structure. Modal quantifiers, ex-

pressing truth or falsity of Boolean forms under various states

related to the current (or initial) state of the structure, may also

be present. A procedural Togic based on first-order logic is inves-
tigated by McCarthy and Hayes in [50].
For several programming languages currently under development

[35,36,10] a rich concept of type structure such as that of §5.3.4

will clearly be a part of the language's procedural logic. The con-
cept of a type-structufed procedural Togic outlined below is a
syntactical and semantical extension of the'type—structured logics
described in §5.3.4 (as opposed to a mere axiomatization exercise
within first-order or type-structured logic). The ultimate practical—‘

ity of this approach depends upon the successful extension of normal

refinements and proof procedures from first-order logics to the enriched

logics.

A modal type system has the form £ = ( E,>3VC,VS) where

(i) ( E,?;VC) is a type system (§5.3.4);

(i1) VS, the set of state variables, is a finite subset of
(iii) T contains a type £ , the type of states, such that
Co(z,a) = ala e T), where T(E) = (T,nNull,Any,Nil,Bool,
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Co,t) as in §5.3.4; and

(iv) VC contains a symbol Ty 3 the initial or current state,

such that T(GO) = % s

An € -structure is a mapping A on V. v {(_ ).(x__)} such

that
(i) (€.7,Ve,Vg) is an €-structure as in §5.3.4;
(i) I, is a set of states [a;/x;: i <n] in A, where
Vg = {xy: i<n} and (T(xi)ﬂ:ai)§:= 1 (i <n);
(ii1) (cu)é:= [ucli (o e zé); and
(iv) ué = [UGOA]A (ue gv[i'l)
Observe that T may contain numerous state types o < I and
that VI may contain variables of type o . o may be formally

represénted as a defined type Xo(oB) where B 1is a Boolean form

containing state variables and (o) = I: Ao(oB)A = {o EZy: [Bcr]A = 1},
Thus we may formalize the concept of an gzijgg_as ::form :}

type [c ~ 8] where a<Z,8 <Z, and Co([a »~B]l.a) =8 @ is the

precondition of the form, and A2 1is the postcondition of the form.

~Actions in higher-level programming languages are expressed by
assignment conditional actions, for-statements, while-statements, and
blocks (grouped sequences of actions).

Mappings from states to other objects (value-blocks), mappings
from objects to actions (procedures) and mappings from objects to

value-blocks (operations) can be formalized similarly.
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Synthesis and verificatiqn of these program objects will be
facilitated by allowing a block w to contain, in addition to pre-
conditions, other assertions such as the following "modal quantifier"
assertions, which are relative to the cdmputation sequence(s) defined

by (W,A,UO):

Invariant(B): (oB)A = 1 for each state o achievable from
9, in this block;

Achievable(B): (oB), = 1 for some achievable state o ; and

I>=

Inevitable(B): There exists no comp]ete;computation sequence
from (ﬂaé,oo) wherein B 1is false for each

state.

The latter operator should be useful for reasoning about termination
properties of program entities.

Refutation procedures for a type-structured procedural logic

such as the above must include state-space generation and search pro-
cedures for evaluating modal formulas such as Invariant(B) or
Achievable(B) , in addition to the usual facilities for reasoning
within a state. For example, in order to prove Achievable(B) we
would either construct an explicit derivation of a state o from Ty
by means of w (possibly a "nondeterministic" block with optional
and concurrent actions) wherein (=B)o 1is inconsistent with other

assertions which hb]d in ¢ . (o may be a symbolic expression com-

posed of actions applied to od)
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5.3.6 Relevancy of Present Research

The extension of normal refinements and proof procedures to the
type-stfuctured,procedura] logics outlined in §5.3.4-55.3.5 is both
complex and sketchy. Nevertheless, progress toward completing such an
extension has been encouraging, and the advantages of extending the
logic rather than axiomatizing the concepts of type and state in a
standard first-order logic are becoming clearer.

The present investigation of normal refinements is relevant to
the proposed extension in at least two respects. I pointed out in §4.3
that refinements of the form ND(E& ,») offer attractive alternatives
to earlier (and I believe unfortunate) attempts to synthesize algebraic
simplification and unification in theories containing many “reduction
equations”. Thus, much of the potential redundancy resulting from a
"A-calculus" formalism can be eliminated by extensions of refutation
procedures based on ND(€ ,>).

Moreover, fhe structure of normal refinements and proof proce-
dures is well matched to the structure of axiom systems which arise
from programs expressed in languages having built-in procedural logics.
Consider, for example, block B] in the context

B3:

When B] is entered, the assertions of 51 are evaluated in the cur-

rent state and appended to assertions obtained similarly from 83 and
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€,. It seems natural to require that B, specify, either explicitly
or by default, both a refinement jA] and a search strategy E] to
use when non-unit clauses of 81 are involved. Thus, whenever the
refutation procedure is invoked by the current processor of B3
(whether for verification, compilation, or decision-making during
execution), a normal refinement (A3-A2-A1-A0)Au with a well-matched
search strategy based on (E3sEp,Eq) is automatically available.

In conclusion, I see the structured design method developed in
this report as a basic contribution to the develqpment of powerful
deductive problem-solving systems based on type-structured procedural
logics for arbitrary éxiomatizable problem domains. The present
results, while only a small fragment of the extensions and applications

outlined in §5.3, shed sufficient light on the remainder to support its

feasibility and worthiness of further investigation.
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APPENDICES
A. PROOFS OF PRINCIPAL LEMMAS

This appendix contains the proofs of Lemmas 1-12 as stated and
used in §3. Definitions and results from §3 are mentioned without

duplication below.

A.1 Proofs for E-resolution Completeness Lemmas

Proof of Lemma 1 (by induction on n=x(C)). Suppose without

loss of generality that every proper subset of € is E-satisfiable
(whence € 1is finite by the Relative Compactness Theorem (§3.0)).

Suppose n =0. Then C v € vlx=x] 2 {p,q} where r's(p) is
positive, r.(q) is negative, and pé =, g6 where Q= (CvEv
[x=x1) r\(lv . If p 1is an equation then assume without loss of gen-
erality that p = [x=x]. It follows that (Qwv {p,q} |~ 0) is the
unique‘inferencé in a hyper-ii;reso1ution refutation of &

Suppose n > 0 and Lemma 1 holds for all € such that «(&)
< n . Suppose without loss of generality that each proper subset of
€ is E-satisfiable.

Case 1: Each non-unit clause of € is rg-negative. Then e
contains a unique non-unit clause G voees ¥, « lek €° = € -

{§ v v} » and Tet € = €'u{d;} . Then €, is E-contradic-
tory and Ci) =0 . It follows by induction that there exist; a
hyper:ﬁi—réso]ution refutation izi(o) of 81 consisting of a single
hyper‘—é—resmution inference (31. u{c”]i} - 0 . Therefore C is

refuted by the single hyperiiigreso1ution inference

B, w8, (v e viy) 0.
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Case 2: =(Case 1). Let £ = (€.7.s) where > is the

ordering of (1, wherein equations precede other atoms. Let

Q= {q: € contains a non-unit clause Avq where q
is rs—pdsitive} .

Let p be a literal of @ such that rs(q) 3 rs(p) (qe ), and

let Avp be a non-unit clause of ¢ where A n{p} =0 . Let

e' = € - {Avp}, €, = C'viA}l , and ep= ¢' v {p} . It fol-

Tows by induction that €, has a hyper-& -resolution refutation &,

P
the result of embedding £, in C v e . %vp is a hyper-£€ -

and € has a hyper- £ -resolution refutation Qp Let i'a——Avp be

resolution refutation because p is rs-positive and rs(p) is mini-
mal (hence, "last to be selected") in {re(q): qe @ } with respect

to > . Suppose @Avp is not a refutation. Then gAvp = QAvp(p)’

Prefixing ‘ﬁA - to .ﬁp , we obtain a hyper-g-resolution refutation
e - = ;
of €& .

Proof of Lemma 2 (by induction on n

<(C)).

Suppose without loss of generality that every proper subset of C is

€ -satisfiable (whence € is finite).

Suppose n =0 . It follows by Lemma 1 (Corollary) that E
contains at most one rs-negative literal, and if each cTaﬁsé (Titeral)
of c is rs-positive then € contains an rs—negative clause
(4 v-++ vG,_q) such that CIE__ a; (j=0,---,n-1).

' Case 1: C contains q , an rs—negative literal. Then
( € | 0) is the unique hyper-& -resolution in a hyper-E£ -resolution
refutation of € , by minimality of C
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Case 2: =(Case 1). Then € contains an r -hegative clause
B where B8 =g v..-vq _; and (.?I? q; (i=0,...,n-1). Therefore
(€ v {B} |~ 0) is the unique inference in a hyper- €-resolution
refutation of €

Suppose that n > 0 and Lemma 2 holds for all € such that
k(€) <n . |

Case 1: Each non-unit clause of C is r_-negative. Then C
contains a non-unit rs-negatilve clause qgv.-.vq, . The conclusion
(of Lemma 2) follows by induction and the proof (Case 1) of Lemma 1.

Case 2: -(Case 1). Define A, p, Avp, Cp, Cos Dps By
£ from C, re, > as in the proof (Case 2) of Lemma 1. That O

is a hyper-i—reso]ution refutation of € follows by the same argument.l

Proof of Lemma 3. That (4) is a hyper-i—resolut'ion inference

follows by (i) and substitutivity of > . (If p; is »-maximal in
B1! v p1! then p. must be >-maximal in By v pi.) That C[n-6'/6] & C'
follows by (ii).}

Proof of Lemma 4. It suffices to verify (using (i)-(vii))
that ((B}i |- Cp v ﬁ'; V osery ﬁk ) s an E-resolution inference. This
 Hg Yk =
is straightforward. That (5) is general follows by the definition of

@ - G, v "'u@nJV‘{Bn VgV oeeevo gy gt
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A.2 Proofs for Resolution Micro-Refinement Lemmas

Proof of Lemma 5. It is easily verified (by §1.2.8) that

s =gt iff there exists an E£*-derivation from s to t . Given
that u and v are constant terms, we can instantiate each free
variable in an &*-derivation from u to v by a constant atom e

: o
in VY , obtaining an € -derivation from u to v .8

Proof of Lemma 6. Notice that the set (E?;) , as opposed to

(E)*', is referred to in Lemma 6. For each pair [s=t1],[s=t2] of
distinct equations in 8+ , at most one may appear in 8+ , because
either t1 >t or t, >t . In view of the definition of ==e-.g~+ .
it is clear that there exists at most one v & NF( £ ,» such that
u=—> @_ v . However, there exists at least one by monotonicity of >

and the descending chain condition satisfied by > .1

Proof of Lemma 7. Let &{u,v) be the minimal length of an

Eé-derivation sequence from u to v . If 8(u,v) =0 then U=V
because u =v .

Suppose §(u,v) =n >0 and Lemma 7 holds for all u,v such
that S§(u,v) <n . Then u = u'[s] where é?s contains [s=t] or
[t=s] such that &(u'[t],v) = n-1 . It follows by the induction
hypothesis that JTEEj =V . Let £'(PV) be a realization for

~

(u'[t]) =¥
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*
Obtain & (PV) realizing (u —&

follows. Replace [t] by [s] in Pu'[t] and its descendants in

V) from &'(PV) as

& '(PV), until all occurrences preceding [s] in one of these descen-
dants have teen reduced to € -normal form., At this point we use the
fact that s = t , reducing [s] to [t]. The containing literal

Pu"[t] is in H'(PV) . Q(P?) is obtained by suffixing the € -normal

- A ~
reduction from Pu"[t] to PV .}

Proof of Lemma 8. It suffices to prove that @8 = ¥d for

each equation [u=v] in € such that [u=v] ¢ S[s=t] ([s=t]1 e € -
[u-v]¥), u6>ve , and [u6 = vele &

Let ud = Sg > and suppose for the induction hypothesis that
we have proven w = vd for all u,v,0 such that [u-v] ¢ S[s=t]
([s=t] ¢ € - [u—v]r"), ub > ve , and [ud = vo] 5.88 . It follows
that s = Tt for each equation [s=t] e EB |

Case 1: Every proper subterm of u8 ds in NF(ET,>) , and

vé s the first member of {v': [ud = v']e €+} . Then

*
ub r——>é; vo ﬁé; v8 , whence u6 = v8 by Lemma 6.

Case 2: Every proper subterm u6 is in NF(E+,>) and
s8' = ub =vd >18' where £ contains [s=t], sharing no variables
with [u=v], such that [s=t] ¢ S[s'=t'] ([s'=t'] e & - [s=t]"),
either x8 = x or x6' =% (x & VI), and to' is the first member
of {v': [ue = ¥*] & E+} 2

Suppose ue Vy . It follows by normality of € that €

contains [x=y] where x,y ¢ V; , whence E+ includes
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‘{u6=e].[ve=ele} (e being the first constant term). Consequently,
us = v8-.

Suppose u ¢ V; , and let n = mgu{u,s}. Then n divides
8+8', whence each proper subterm of un or of sn is in NF(E£*,»)
(because u6-6' = ud = s6+6"'")., It follows by the definition of closed

((ii) in 83.2.2) and minimality of t8' that tn e NF(E,»). It

follows by (iii) in §3.2.2 that

*

[th = vn] +_ [u" = v"] (1)

flere

where (€ v [x=x])* contains [u" = v"] or [v" =u"].
Let &' be a general realization for (1), and let ¢ = [e-e'/nJ._
Evidently there exists a simplest substitution o' such that o

d-ivides o' and, for each ihfer‘ence
{[S'izt_'i]’q“i[r'i]} = q'i[t'i]ei

: | = | B 1 1 = ' -
in 13__5, rye = ryo 540 r-ticr . Therefore [51. ti]o £ EB be

cause U@ > tno >s;0' > t;o' . Moreover, either u"c’ = v's' or _
E:B contains one of [u"=v"]o', [v"=u"Jo', because u6>t8'> u" and

ub>ve = v's' . Thus, & 'c' shows that to' =gg VO .

A

It follows by Lemma 7 that €b' = v6 . Let " be a realiza-

tion for ((Pte') =>_é+ (Pv8)), and let Q be the result of prefixing

{[se'=t6'],(Pus)} | (Pto')

to F" . Then F realizes (ud=>n~, v8), whence ub = vo .

N £
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Case 3: u contains x where x0 ¢ NF( £%,>), and every
proper subterm of u[x0/x: x8 # x] is in NF( &*,%).
Let T = [x8/x: x8 # x]. It follows that ué > ut ,

vé = vt , and EB contains either [u=v]t or [v=u]t , whence

Gt = vt by the induction hypothesis. Thus u® = v6 because

0o = ¢t and vr = v& (by induction hypothesis).

Case 4: © ¢ Ee , and some proper subterm of u® is not in
NF( £*,»). It foﬂowszthat u=u'fr] where r ¢ Vy and tb €
NF( € ,») for every term t' which occurs in u'[r] before the
position of [r]. Moreover, €™ contains [s=t] sharing no variables
with ['[r] = v] such that r6 = s8'> t06' and t8' 1is first in
{[s6' = t']: [s6' =t'Je £*} , for some 6' such that x8 = x or
x0' = x (xe VI) . Let n = mgu{r,s} . it follows by (iii) in
53.2.2 that |

[u'[t]n = vn] +*E [u"=v"] (2)

where (€ v [x=x])* contains [u"=v"] or [v"=u"].

Let &' be a general realization for (2), and define o,0'
from 6,0',n, and 'ﬁ' as in Case 2.

It follows by essentially the same argument as in Case 2 that
u'[tIno = g Vo , whence uﬁnc = v by Lemma 7. Let Q__"(PVAB) be

a realization for (u'[tlno @E.._r ve ) . By prefixing the inference

{[s=tle', Pu'[rle} |- Pu'[tlhe ,

we obtain a realization for u6 ra“»i‘}, VB , whence ud = vo .|
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Proof of Lemma 9. If u® = ub then the trivial deduction

({Pu},0) satisfies the conclusion. Suppose for the induction hypothe-
sis that u® >ud and the Temma holds (with y' for u, 6' for 8 for all
u',8' such that u'e' e [ue]‘E and ué »u'od’

Case 1: ue NF(E,»). Let §' be the realization for
(Pud =% . Pug) guaranteed by Theorem 5. Let r' be the term in u6
replaced by tﬁe first inference in él' . r' does not occur in x8
for any x in V , because r' ¢ NF(£+,>-) and x0 € NF(E+,7-) "

Therefore the first inference of @J' has the form

({[s=tlt,Pu'[rle} |- Pu'[trle) (3)

where
(i) [s=t]le £" and [s=t] shares no variables with u ;

(i1) 1 = [xt/x: x occurs in [s=t]] e &

b

m

(ii1) r* =re =st >tr ; and

(iv) u=u'[r] where r ¢ v -

Observe that t+8 = 8-t because of (i) and (ii).

The above conditions define an Rpfl-inference
({[s=t],Pu'[r]} | Pu'[tln) | (a)

where n divides 8-t , [6+7/n] ¢ ;ﬁi , and

u'lrle >u'ltr]e
u'[t]e-t
(u'[tIn) [B-T/n] .

il

It follows by the induction hypothesis that there exists an &-normal
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derivation 41 from Pu'[t]ln to Pv where Pv subsumes Pw, and

[xoﬁ_ /x: x occurs in u'[tIn] divides [6-t/n]. (5)
£,

Obtain @ from &8 by prefixing (4). £ s an £ -normal
derivation from € w{Pu} to Pv , and op = n-o ;
< 1

Case 1 is completed by showing that [xaa /x: x occurs in u]

divides 6 . It follows from (5) that
n-[xci /x: x occurs in u'[t]n] divides 8.1 (6)
& :
(In general, if o divides T then no divides nt (n e zy).) Now

n- [xcp /x: x occurs in u'[tln]
= [xcﬁ_/x: xn # X or x occurs in u'[tln]
= D“’QQ/’“ x occurs in [s=t] or in u] .

Thus,

[xcrﬂ_/x: x occurs in [s=t] or in u] divides 6.1 (7)

Since [s=t] shares no variables with u'[r] and <t acts only on

variables of [s=t], it follows from (7) that

[xoﬂlx: x occurs in u] divides 6 .

Case 2: u ¢ NF(E,>). Let L be a realization for (Pu) “g

(Pu;) where wu; e NF(&,»). It follows that u >u; , whence
ud >~u]e . It follows by the induction hypothesis that there exists an

£ -normal derivation &, from Pu; to Pv where Py subsumes PUS
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and [xoﬂ_ /x: X occurs in u]] divides 8 . Let ﬂ be the result

of prefixing & to g@:], so that oy =ogp *og . & s clearly
£ 5 =

an € -normal derivation. Observe that
{11 xoﬁo=x(x in u);
(i1) {x: x occurs in u} 2 {x: x occurs in u1} . and
(iii) Xog = X (x in u but x not in u]) 3

whence

[xoﬂ=/x: X occurs in u = [XG£1IX: X occurs in u;] (8)
Thus, [xcrg_/x: x occurs in u] divides 8 by the induction hypothesis.l

A.3 Proofs for Normal Composition Lemmas

Proof of Lemma 10. Let & = (€,»s), and consider an £ -

resolution inference
({levq%: i<n} |- (B(')e' - q(')e') Ve V(Brll-le' - qr.t-'lel))

It suffices to observe that if (B.i v qT.)T;E. Bivai, q;n = qi ,
‘ . (ol ER———— — 1 1 _ Al !
B“i v, does not subsume (Boe qoe ) v v(Bn_1B qn__]e )

(i=0,---,n-1), and 6 is a divisor of n-8' such that

(1) {q;8: i<n} is an E€-contradiction; and

. ('i'i) if qne. = q%B' then q@ = C|1-8 (CI (52 B.|) (-i=09"'sn"1);
then

({Bivqi: i<n} |- (Boe “ Qul)y vus g (Bn-'le - qn-1e))
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is an ii'-reso1ut10n inference whose conclusion subsumes (866' - qée')
V oo ¥ (Bﬁ_]e' - qﬁ—lel)’ where £' = (€ .,>s"), Pg1® Fs s and

3 (Bn-] v qn_]) = 9.1 (where S(Bn—] v qn—]) = qn-l)‘ This follows
by substitutivity of > and definition of HR(E ,>s).l

Proof of Lemma 11. It suffices to consider a general deduction

in HR(E ,»,s) of the form

Q-]\(jn'} . an_]cn_z |
C (9)

where
(1) (B v (€ v o vV o) b Caq Vigaqopan Voo v
an—1°k+1) is a general (£ ,>3sk)-resolution inference
with induced substitution By » where P P (k=0,:.v,
k
n-1);

(i11) o, =¢ and o4y = 0 -8, (k=0,.-.,n-1); and

¢}

(ii1) Cn is rs-positive or empty.

(Each rs—positive or empty clause of:éL' is either in Base(él’) or
the conclusion of some such deduction.) Using essentially the same
argument as for Lemma 4, we can construct a "permutation" of (9),

having the same conclusion, which is in HR(E ,»,s).}
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Proof of Lemma 12. Observe that X0y 2 X8y 4 (ke N). There-

fore x8 6. (k e N) for some n, ® 0, because otherwise >
X

nx+k e
has an infinite descending chain. Let n = max{nx: xeo # x} . Then

X8, = X8, (x & VI) for all m>n .8
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B, Utility-Measures for Refinements

The key question in the development of automatic

‘proof procedures is efficiency, but it is rather surpris-
ing how Tittle serious discussion and analysis of it
there has been . . .. In this field there has also been
a great deal of discussion of the relative merits of
‘complete' or 'incomplete' or 'heuristic’' procedures,
often without too clear notions of what these are and
certainly seldom with any serious consideration of how
their different characteristics affect their effective-
ness in finding proofs.

--- B, lVIeH;zelr"I

Utility of a refinement is a function of expected (or "average")
performance of a proof procedure which uses it (in a given application
environment (f(e su) (§1.1.1). This appendix provides a basis for
evaluating refinements to be used by the refutation procedure Ref
(51.3.6).

The behavior of Ref on C s essentially a function of

three parameters:

(1) A, a I-refinement defining the search-space of Ref(C);

(ii) Eng, an enqueuing function representing a search strategy
for generating new inferences on the basis of the current
deduction; and |

(ii1) Subsume,a "deletion strategy" whereby certain theorems
are deemed unnecessary for completion of the current de-
duction.

]Pro1egomena‘to a Theory of Efficiency of Proof Procedures, in
Artificial Intelligence and Heuristic Programming, ed. N. V. Findler
and Bernard MeTtzer (American Elsevier Publ. Co., Inc., New York, 1971).
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Here as in §1.3.6, however, Subsume is assumed to be a fixed procedure

such that Subsume(A,R) simply inserts A in R ; most subsumption-

and tautology-deletion strategies can be incohporated into the
r-refinements under investigation, in the sense that a subsumed or other-
wise deletable clause is not used in subsequent inferences.

In.addition to providing a formal basis for investigating rela-
tions between refinements and (expected) performance of refutation
procedures which use them, &B.1 also provides a basis for investigating
relations between search strategies and (expected) performance of refu-

tation procedures which use them.

B.1 A Framework for Performance Evaluation

A performance-evaluation system for Ref has the fol-
lowing constituents:

(a) a class {a;: 1eN} of I-refinements;

(b) a class {Ei: i eN} of fair enqueuing functions;

(c) an application environment (1ﬁ€ ,u) where € = Ax(T); and

(d) a cost functional K: N x N x i(s + R, (= extended posi-
tive reals) such that K}(C ) < 0 iff l}(C) is finite,

i
where I, =.c Ref[A,/A , Ej/Enq].

Recall that u is a probability measure on ﬂk(gl.].]), and that

u(U) is intended to be the expectation that Ref will be applied to
some clause-set € in U . K}(C) is intended to represént the com-
putational effort (a function of time and storage space) required to

compute g%(c.) using g% :
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‘Expected values. A number of real-valued performance

measures for g} on Ug are defined below. Given f: U +R ,

the expected valﬁe of f on ZCg is given by J f du.

In the event that p is a "finite weighted sample" measure such that
n
w(W) = Z(“H: Ci eld ) where () wi) =1, J f dn 1is just the
n i=1 :
weighted average value ( ) f(ci)'wi) of f on the sample space
i=]

(€1, €}

Remark. Questions of when f f du 1is defined are not dis-
cussed below, partly because f f du 1is always defined when u is a
finite weighted sample measure. In general there may well be
interesting performance measures f , such as cost, for which f s
measurable and f f du (expected cost) is « .

Cost of deductions. Define K on VW {a;: ie N} by

R(B) =4 min{K}(Base(Q)): & is a subdeduction of
i

__J(Base(i)) and 1i,j € N}

'K(i) is intended to represent the minimal cost of computing i
from Base(Q_) v E using Ref with some pair (Ai'Ej)’ Given
that {A : i € N} contains each finite I'-refinement, this intention

is satisfied.

Assumption 1. {Ai: i € N} contains each finite I'-assignment.

Completeness concepts defined below will be relative to

completeness of the underlying calculus T . Consequently it is con-
venient to assume that {4y i € N} contains the maximal T'-refinement

consisting of all r-deductions:
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‘Assumption 2. A, is the maximal T'-refinement

B.2 Local Measures

The concepts defined below are concerned primarily with at-
tributes of specific refinements and search strétegies as opposed to
global measures which relate these attributes to other refinements
and search strategies. Local measures can be effectively evaluated

by a combination of analytical and empirical techniques.

Refutable clause-sets (in iqg ) for a refinement b; are

defined by

ag(i) =45 1 szzggz A4 contains a refutation of € V€ } |
Thus, J(0) = {¢€ euE: € has a T-refutation} by Assumption 2,

Completeness of a refinement A; may be defined probabilis-

tically as the expectation that a I'-refutable set € in ﬂg has a

I-refutation in Ai £

Comp1 (1) =y u((1)/(u(L(0))

Notice that Compl1(i) may be 1 even though A; is not T-complete.

Relevancy (also known as efficiency ratio [49]) is an attri-

bute of refutation procedures which compares the cost of the first

solution found with the total cost of the computation:

reti(c) - R@(C))/KL(E) , i 1i(E) is a refutation;
J df "
R(C )/K}(C) , otherwise,
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If g;(C) is a refutation then g}(@)(o)_ is the first solution found.
If M(C) is not a refutation then the "first solution” is to read
C into the output queue and halt.

The expected relevancy [ Re]} du depends upon both the
"irredundancy" of Aq and the "goal directedness" of Ej .

Power. Even if A; 1is a strong and complete I-refinement, it
does not follow that the expected cost of Hi will be less than the

J
expected cost of Hg » Which uses the weakest I'-refinement. The reason
is that all the simplest refutations in A (C) may be filtered out by
A; » so that the refutation g}(c ) is quite costly to generate. Thus

we define Power(i) on *3(1) by

minK(D): Fea (€ vE)}
min{R(D): Fea,(€vé)}

Power(i)(C ) “ o

The expected power LgPower(i) du/u(f(i)) is a fair indication of
(i)

how many "simple" refutations Ay filter out on its domain of com-

pleteness.

Convergence. Consider the problem-domain 1[} defined by

u; =4 1 C E‘L(f: € has a r-refutation g such that
k(D) = ki€

1{; is the collection of clause-sets C having a T-refutation which
is no more costly than the deduction g}(C), regardless of whether
the latter is a refutation or not. The convergence of H} on Zﬂ!

is given by
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Convj. =d4f u({ € ¢ u‘i].: H}(C) is a refutatio-n})/u(‘l(;)

Conv} compares the expected completeness of H} with the expected

completeness of an "ideal" proof procedure under the constraint that the
1
_ J
Convergence is dependent upon (expected) completeness, rele-

"ideal" procedure never exerts more effort than 1, on a given problem,

vancy, and power. A search strategy which satisfies "Kowalski's maxim"

[41],

Search strategies should attempt to generate simpler
before more complex proofs,

would appear more likely to yield highly convergent proof procedures

than one which does not.
i
J
sets € ¢ ‘UE, 5 Af g} fails to find a refutation for € after a given

amount c¢ of computational effort, then there exists no I'-refutation

Suppose Conv. = 1. It follows that for "almost all" clause-

of C with complexity less than ¢ . As ¢ » <« , our conviction that
€ s consistent approaches certainty! For this reason, convergence

is a far more useful performance measure for proof-procedures than is

completeness, which alone tells us little or nothing about the relation
between computational effort and probability of eventually finding a

refutation.

B.3 Global Measures

A global performance measure compares the expected performaﬁce

of a refutation procedure g} with the best expected performance of
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any other procedure (in the space ‘{H}: i,j € N}). Consequently,
global performance measures can be quite difficult to investigate
empirically. The following paragraphs define several global measures
pertaining to "efficiency" of proof procedures.

Search efficiency. Recall that A' 1is complete relative to

A provided that if A contains a refutation for € then A
also contains a (possibly different) refutation for € (€ ¢ 15?).

Search efficiency of g% compares the costs of g% with the costs

of other proof procedures g%. where Ai is complete relative to

SEl S ap min{ I (K;./K})du: Ay s complete relative to
Bys 17,3 eN}}

Convergence efficiency simply compares convergence of H}

with "best possible" convergence obtainable by relatively complete

refinements:

. -
CE} =df (min{Conv}.: Ayy is complete relative to

| = 1 .i
Bs,1t,] EN}/Convj).

Remark . While the concept of "best possible" proof procedure
for a domain 1{5 may be impossible to define empirically or even
theoretically in general, there do exist restricted problem-domains
such as sentence-recognition in context-free languages, for which
near-optimal decision procedures have been developed. If ilg. is such

a domain, then it will usually be possible to represent a known
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near-optimal procedure in the form m' for some Ai’Ej . Estimates

J
of efficiency for a proof-procedure H} on possibly larger domains
Zlg (where £'¢ € ) can then be obtained empirically by comparing
= 1
H} with H}. on ?Ie. . Some very interesting research along these

lines has already been conducted.
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C. THE DESIGN OF COMPLEXITY ORDERINGS

This appendix describes and illustrates two related methods of

defining €-complexity orderings (§2.3.5) for terms over a given

VYocabulary V . Each method has the same underlying motivation. We
are given a finite axiom system &€ wherein the order of terms in
equations is assumed to have some "intuitive significance". Specifi-
cally, it is intended that specialized proof procedures for ¥=

&
will treat most or all of the equations [s=t] in & as reduction rules

whereby Rp-inferences

{[s=t]1,Bvg[r]l} - (Bvq[t]) mgu{r,s}
~are admitted but their symmetrical counterparts

{[s=t1,Bvqlr]l} - (Bvg[s]) mgu{r,t}

are never admitted. Our objective is to approximate this "intuitive
significance" while preserving completeness of our proof procedures.
This objective may be accomplished by using ND(E,» (§2.3.8) as
the resolution micro-refinement (§2.3.0) in a normal proof procedure
for ]—E—= (62.4.2), where (8.,2-) is a reduction system (§2.3.4). In
general, however, not all equations of € can be strictly ordered by
>. For example, if £ contains a "commutativity" axiom [xey = yex]
and xe+y »=y*x , then y+x > x*y by invariance of > under substitu-

tions ([y/x,x/y]). Moreover, presently available completeness results
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for ND(E&,») (83) require that > be an 31comp1exity ordering for some

Fige

C.1 Introduction

How does the choice of the ordering relation = affect the
performance of a normal proof procedure based on ND(€,»)? Two per-
formance-oriented features of > might be described loosely as

strength and direction.

Strength. > is stronger than > provided that {(s,t):
s 7 t or t>:ls} s {(s,t): s Z t or t:>-zs} . For example, each
"proper extension" of >—1 is stronger than > - In view of the role
of > in restricting the class of Rp-inferences admitted by ND(E& ,>)
we should make > as strong as feasible without significantly increas-
ing the computational cost of evaluating relations (s>t) in a normal
proof procedure.

Direction. Let us say that a reduction system &= ( €,») con-
verges to (a subset of) an & -normal form 7 provided that if
A = ND(£ ,») then NF(Ce(£).») s # (for each fair enqueuing function
Eng). If _"___8; converges to ‘77 then a normal proof procedure based on
ND( &,») will eventually begin reducing terms to members of 41 before
unifying them in Rp and Cut inferences. % may be thought of as a
"direction" for _£€ in a partially ordered space of normal form repre-
sentation.

Efficient representations. Given reduction systems 5__] ={€,»)

and E, = €, >2-), we can compare > and > in terms of €-normal

forms to which. £, converges. Given that £, converges Ito > - we
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may be motivated to devise proof procedures for ﬁ? which represent
and process terms of 7&2 with optimal efficiency. Thus, we may
prefer >, to >, on grounds that normal proof procedures for [Ts———-
can be made to operate more efficiently on (the representation for
terms in) 7?1 than on 5?2 . (See 5D.0 (Remark).)

Two related approaches to the design of‘S-comp1eXity orderings
are investigated below. The first approach (§C.2) uses a weighting
function w: VF + N to define a complexity order >h (§2.3.5)
wherein the "complexity" of a constant term t is the sum of weights
of initial operators of subterms of t . This approach is illustrated
by an application to group theory described by Knuth and Bendix 39 ].
Beginning with a reduction system G = (G’>h) where G consists of
three standard axioms for group theory, we use a normal proof proce-
dure based on ND(G,:R) to derive a ten-axiom system R  such that

(R’>&) is canonical (82.3.4) and closed (§3.2.3).

The second approach (§C.3) defines an &€-complexity ordering

>-_E_ by means of an € -normal mapping v on ‘7\.' (81.2.9) and a
function ¢: ;7% > N which measures the "cost" of computing v(U)
from u . Given terms u,v such that v(u) = v(v) , we say that

u 3—8 v provided that either ¢(u) > ¢(v) or else ¢(u) = ¢(v)

and u R where >@ is some "weighting function" complexity

ordering. If v{ud) # v(ve) for all & then we say that u >El

v
provided that wv(u) > viv) .
The second approach is illustrated (§C.5) by a D-complexity

ordering >b for commutative rings, integral domains, and fields,
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where D 1is the canonical system {D1,D2,D3,D4} :

]

D1: [(x+y)+z
D2: [(x-y)-z
D3: [(xty)-z
D4: [z« (x+y)

x+(y+z)] ;
x(y-2)1

1l

Xz ¥ yeoz] 4

Xez + yez] .

It is easily vefified that (D’>b) converges to NF(D), and that
(D’>h) does not converge to NF(dT for any "weighting function" com-
plexity ordering ?& . (See §D.0, Remark.)

The analysis of >b is facilitated by an effective character-
ization of completeness for total determinative reducfion systems in

§C.4.

C.2 Complexity Orderings Based on Weighting Functions

Complexity orderings >W based on a weighting function
w: VF + N are defined in 82.3.5. These orderings yield very useful
refinements (ND(E-,);')) for applications in group theory and other
equational systems. The following application in group theory illus-
trates how the procedure C& (§3.2.3) may be used as a proof procedure
for equational systems.

The vocabulary VE for group theory contains three operation

constants (-,-,1); VR =0 ,

Axioms. G = {G1,G2,G3} :
Gl: [(x=y)ez = x-(y-2)] ; (Associativity)
G2: [1+x = x] ; (Left identity)

G3: [x =x=1] . (Left inverse)
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Complexity ordering. Define w by

w(l) =1 3
w(=) =0 3
w(+) =0
Then w 1is a weighting function for V , provided that - 1is taken to

be the last element of VF in lexical order. Define the complexity
- ordering B for'-Dm as in §2.3.5. Observe that each equation of
& is a reduction according to >h . |
The f " . . . .
e 011§w1ng deduction from G is complete in ND(& )
(61.3.4). It contains 101 clauses. Of these, 91 are deleted either

before or immediately after the last equation is generated, because

they reduce to identities in the context of the remainder (R):

RO: [17 =1]
R1: [x = x]
R2: [1+x = x]
R3: [x1 = x]

Ré: [x +x=1]

R5: [xex = 1]

R6: [(x-y)” =y -x7]
R7: [x+(x +2) = z]

R8: [x +(x-z) = z]

RI: [(x-y)ez = x-(y-2z)]

Each of these is a reduction according to s and each is irreducible
with respect to the others. Indeed, the reduction system (R,>a) is

closed, as noted (in effect) by Knuth and Bendix [39].
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Format of proof. Each 1ine has the format

(In Clause Source Out Disposition)

where

In = order of entry of Clause in Q ;

Clause Axiom or conclusion of an inference;

Source = Ax(iom) or inference rule used:
Cut{m,n)-pairwise resolution (on clauses m,n),
Rp(m,n)- replacement (from clause m into clause n),

CNR( m)- complete normal reduction from clause m
based on currently active equations;

Out = order of exit from Q ;
Qiggjositiqn): if Clause is deleted, how (why?) _
CNR(*) -.glggég_reduces to true (e,g., an identity) in
current equations;
CNR (+) - Clause reduces to useful result; and
C - Clause reduces to true following addition of

last clause (97 below).

When a clause is selected from Q , its entry number is prefixed by

"-" and its exit feature is assigned the next higher exit number. When
this clause has been "resolved" with all clauses currently prefixed by
"+', its "-" is converted to "+". When a clause reduces to true, or is
subsumed by the current output clause, its prefix is converted to "*" .

Output clauses (R) are those prefixed by + or = .



+10.
*11,
*12.
*13.
*14,
*15.
*16.
*17.
+18.
*19,
+20.
o B
*22.
+23.
*24,
*25,
*26.
*27 .
+28.
*29,
#*30.

Fig. 1.
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A Group Theory Derivation

Clause

Tex = x

X ox =1

(x+y)ez =x=(y-z)
= 1+(y+z)

z = X *(x-2)

(we(xey))ez =

X +(xez) =

T =z=z

x *1 = x

(x2y)" (x+(y+2)) =

yoz = w «((wey)-z)

Wez =w <+(1-2)

(x+y) = x(y"1)
x*z - x*(1-z)

X +x =1
17 =1
X B R
W= wel
1-1 =1

(wex)+(y-z)

Out

Disposition

Rp(1,3)
Rp(2,3)
Rp(3,3)
Rp(5,[x=x])
Rp(1,7)
Rp(2,7)
Rp(3,7) 1
Rp(7,3)
Rp(9,3) 9
Rp(9,7)
Rp(8,2)
Rp(8,3)
CNR(12)
Rp(16),[x=x]1)9
Rp(T? 2 18
Rp(17,3)
Rp(17,7) 14
Rp(17,9) 10
Rp(21,1)
Rp(21,2) 11
Rp(21,3)
Rp(21,3)
(
Rp(
Rp(
Rp(
Rp(

(
5
(
(

U ~N 00 IO bW N

Zl 9) 12
21517}
23,2}

4 CNR(*)

6 CNR(x)

23
21

28

23

28

28

22

21 |

CNR(*)
CNR(+)
C

CNR(+)
CNR ()

CNR(*)
CNR(*)

CNR(*)



*31.
*32,
*33.
*34 .
%35,
*36.
37
*38.
*39.
*40,
*41 .
*42 .
43,
*44
*45 ,
*46,
*47 .
*48,
*49,
*50,
*51].
52.
83
54,
25,
56.
57.
*58.
59.
*60,
61.
*62,

1_'(X_°(x-2))

(L2} =) 1

(%az2 ) e (% 1) =
(we{xy)) = (wex)*(y-2)
((wex)ey) = (we(x=(y2z)
{(xe(wey))™ (x (we (y-2)
yoew - ((wey)ez)) =
(X +%) 2 = %

(x W ) e(xez) = wez

17 (we(w +z)) =
(xey)7e(xe1) = z

W (xe ((x"ow)+2z)) =
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Source

Rp(23,7)
Rp(23,17)
Rp(28,2)
Rp(28,7)
Rp(1,18)
Rp(18,3)
Rp(3,18)
Rp(18,7)
Rp(23,18)
Rp(28,18)
Rp(1,20)
Rp(2,20)
Rp(3,20)
Rp(18,20)
Rp(21,20)
Rp(23,20)
Rp(28,20)
Rp(1,10)
Rp(1,10)
Rp(1,10)
Rp(2,10)
Rp(2,10)
Rp(2,10)
Rp(3,10)
Rp(3,10)
Rp(3,10)
Rp(7,10)
Rp(7,10)
Rp(7,10)
Rp(18,10)
Rp(18,10)
Rp(20,10)

23
18
20
23

20

21

Disposition
CNR(*)
CNR ()
CNR(*)
CNR (%)
(%)
(*)

CNR(*
CNR(*

[ 2]



In

*63.
+64.
*65,
66.
*67.
*68.
69.
/0.
il.
2.
3.
74,
75.
76.
17
78,
®79 ,
+80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
914
92.
93.

Clause

(xex ) »2z
(xey) +(xez) =y z
X o (x=(1-2))
(x+y) e (%=y)
y +(lez) = y .z
T sy sz) = x =2
(xe(yow)) = ({xey)e2) =
((xew)+y) +(x+(w-z)) =
W e(x +2) = {xew) -z
(x7ey) ez = y (x-2)
W=y e(yew)
woe ((xey) e2)
((xey) ew) -z
(y =w) = ((x-y)~ -((x w)-z)
(g )ont] "oy =g} =
xe(wey)) - (xe(y +2)) = w-z
Te(xez) = X ez
yoex
(Wey) -z
y {x"+2")

1 -z

Z

1t

il
._..IIN L

il

1

(x (yew))™

)(F-.‘(f'-\—l’—\’--.
>
L]
b
L
md
i

1}

y °1

. . .
—_— X X v~ N
1

(xey)~
«(1-2)

)7sl = 27

»z = (X» y)

= (x+z) >~

(y - x‘) =1.
<({xey) +(1-2))

(x-y)'
(y -x"
(we(x
z -1

= (xe(yez)) «(xy)”

« 7
Te(xe(y-2z))
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z

)~ =z
ey ) elwe({y ex7)e1)) =

Source

Rp(20,10)
Rp(20,10)
Rp(21,10)
Rp(21,10)
Rp(1,64)
Rp(2,64)
Rp(3,64)
Rp(3,64)
Rp(7,64)
Rp(7,64)
Rp(10,64)
Rp(10,64)
Rp(10,64)

- Rp(64,10)

Rp(64,10)
Rp(64,10)
Rp(18,64)
Rp(18,64)
)
)

Rp(20,64

Rp (20,64
Rp(21,64)
Rp(21,64)
Rp(1,80)
Rp(2.80)
Rp(3,80)
Rp(80,3)
Rp(7,80)
Rp(80,7)
Rp(80,10)
Rp(80,10)
Rp(10,80)

16

17

Disposition
CNR (%)
C
CNR(#)
C
CNR(*)
CNR(*)
C

C

C

CNR (%)
CNR(*)

& oy 6 Oy



In
9.,
95.
9.

-97.
98.
99,

100.

101,

Clause

17«1 = x " =*x
(xey)e(y >x) = ]

z2 1 = (x"*z) *x

(x2y)™ =y +x~

x-f] =Y ux" ‘

(y ez} o1 = (xez) e (xoy)”
(y ox7) "o {(xey) ez) = 1742
Loy < -1y~ ] = § <1
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Source

Rp(18,80)
Rp(80,20)
Rp(20,80)
Rp(21,80)
Rp(21,80)
Rp(64,80)
Rp(80,64)
Rp(80,64)

18

CNR(*)
CNR(*)

CNR ()
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c.3 & -Complexity Orderings Based on an € -Canonical Mapping

Let > be a weighting-function complexity ordering as defined

in §2.3.5, and suppose that € is finitary and complete--i.e.,
(i) &€ s finite;

(ii) ?? is a partial ordering which satisfies D.C.C; and

(ii1) if u=g v then u +; t and \i-»;' t for some term t.
It follows by Proposition 10 in §2.3.3 that NF(E, +; ) is an £-
canonical form. Indeed, for each term u there exists a term
veNF(E) such that u =>gf v , because of (ii). Moreover, v is
unique (because of (iii): Choose vq,v, ¢ NF(€) such that

*
Vo s whence v: =, v for some v .

u:>§ vi (i=1,2). Then vy { g

¢

Therefore Vi =V = vz).

v(u) =df (the unique term v € NF(£) such that u ﬁ»g ¥ ] .

The purpose of this section is to define from (8,>ﬁ) a class

of E—comp]exity orderings >-E wherein each equation of & is a

"reduction":

(iv) if [s=t] € € then s 7-£t :

It follows that

>'£-_ is actually defined so that
(vi1) v(s) >g v(t) 1ff v(s) >y v(t) 5 and

(viii) if s £ t then v(t) }w v(s) .

===
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In order to accomplish this purpose, let & = (E,)W,¢;Q) where
(ix) ¢: £7V > N is computable (a "cost function" for v); and

{x) Q: .7Vx¢7v+{0,]} is computable.

. - :
Define I by

kS *p ) Sgp [IE wls) = wit)
then if ¢(s) = ¢(t)
then (s > t)
else (¢(s) > ¢(t))
else if Q(s.t) = 0

then Q(s) e i)

else false].

A straightforward attempt to verify that >2’ is an éifcomp1exity

ordering (below) generates the following set of sufficient conditions:

(C1) w(ult]) e v(t) .

(C2) If wv(s) b v(t)
then v(u[s]e) > v(u[t]e) (8 e ZE |

(C3) If [s=t]le € and ¢(s) # ¢(t)  then ¢(s) = ¢(t) and
SF’h t . | |

(ca) o(ult]) > ¢(t).
(C5) If wv(s) = v(t)
then (¢(ulslo) > ¢(ultle)) = (é(s) > ¢(t)) (0 e 2g ).
(C6) If Q(s,t) = 0 then wv(se) # v(te) (8 ¢ Le ) .
(C7) If Q(s,t) =0 then Q(u[s]o,u[t]o) =0 (6 ¢ Le 9
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(c8) If v(s):gw v(t) or v(t):zuxds) then Q(s.t)} = D.

Proposition 1. Suppose £ satisfies (C1)-(C8). Then >1;

is an 8-comp1exity ordering satisfying (iv)-(viii).

Proof. We verify each condition in the definition of ji:

complexity ordefing in sequence (582.3.5).

>_1is decidable because each relation in the explicit defi-

£

nition ofzﬁﬁé is decidable. (We are assuming Q to be computable,

whence the relation (Q(s,t) = 0) is decidable.)

>7§j§_monotone. This we demonstrate by a subcase analysis:
S: s »>o t (Premise).

™

ST : w(s) = v(t), whence v(u[s]) = v(u[t]) by definition
of v
S1.1: ¢(s) = ¢(t), whence s >, t, and uls] e u[t] by
monotonicity of > . Now [¢(uls]) > ¢(u[t])]
[¢(s) > ¢(t))= false, and [¢(u[t]) > ¢(uls])]
[¢(t) > ¢(s)] = false by (C5), whence ¢(u[s]) =
¢(ult]).
It follows that wu[s] > ult].
$1.2: ¢(s) # ¢(t), whence ¢(s) >—¢(t by (s). It follows
by (C5) that ¢(uls]) > ¢(ult]), whence uls] > ult].

s2:  v(s) # v(t), whence v(s) > v(t) by (S).
It follows by (C2) that wv(u[s])> v(u[t]), whence u[s] >
ult] by (c8). B
Thus, (S) |= u[s] == u[t]
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B

is anti-symmetric (and anti-reflexive). It suffices to show that

=

S

5 >]§_t and t ?E;

S1: wis) = w(t).

is transitive by a subcpse analysis:

u (Premise)

§1.0% #ley = dlt), whenes = =t

81.1.12 =lt) = wla},
S1.1.1.7: ¢(t) = ¢{u). Then s > u because pe is tran-
sitive, whence s ?!L s
§$1.1.1.2: ¢(t) # ¢(u). Then ¢(t) > ¢(u), whence ¢(s) > ¢(u)
by (S1.1). It follows that s >}:_u because
v(s) = v(u) by (S1.1.1), (S1).
S1.1.2:  v(t) # v(u), whence Q(t,u) =0 and v(t) 9 v(u)
by (t > u). Therefore v(s) > v(u) by (S1) and
Q(s,u) i=b by (C8). It follows that 5 ?Ei,u :
§1.2: ¢(s) # ¢(t), whence ¢(s) > ¢(t).
§1.2.1:  w(t) = v(u), whence v(s) = v(u) by (S1).
S1.2.1.1: ¢(t) = ¢(u), whence .¢(s) > ¢(u) by (S1.2).
It follows that s ?ﬁ; U .
S1.2.1.2: ¢(t) # ¢(u), whence ¢(t) > ¢(u) (by (S)).
Therefore ¢(s) > ¢(t) by (S1.2), whence s ?}L u .
8.2 .2 v(t) # v(u), whence Q(t,u) = 0 and wu(t) > v(u).

Therefore

whence § > u .
hen 8

Q(s,u) = 0 and v(s) > v(u) by (C8) and (S1)
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82 v(s) # v(t), whence Q(s,t) = Ol and v(s) >‘;’ v(t)
by (S).
<Py v(t) = v(u), whence v(s) > v(u) by (S2) and
Q(s,u) = 0 by (C8). Therefore s >

&
5223 v(t) 7 v(u), whence v(t) Lo v(u) by (S) and

u.

v(s) >-W v(u) by (S2). Therefore Q(s,u) = 0 and
s )'i u by (C8).

() |—= (s = u).

>¢ well-orders constant terms of Jy . It suffices to show

that either (s >E 1t} oF (& > s) for each pair s,t of constant terms

(trivial, by (C8) and definition of :-w) and that >, satisfies D.C.C.
(§2.3.2). Let [t]v =qf (8¢ v(s) = vw(t)} . Clearly >-i well-orders
the constant terms of‘[t]\), by the fact that > is a complexity

ordering. It is equally clear from (C8) that >, well-orders the con-

£

stant terms of {v(t): t e J'V} . D.C.C. follows from the observation
that if wv(s) > v(t) where s and t are constant terms, then

u >£ v for all pairs (u,v) of constant terms in [s]v X [t]\) ;

uft] ». t. Again we consider subcases:

—=£

S1: ~w(uft]) = v(t).
S1.1: ¢(ult]) = ¢(t). Then (u[t] zé t) = (u[t] > t) = true.
S1.2: ¢(u[t]) # ¢(t). Then ¢(u[t])>¢(t) by (C4), whence
| ult] >.L t
s2: v(ult]) # v(t). Then v(u[t]) > v(t) by (C1), whence
Q(ult],t) = 0 by (C8).

= (ult] Ze t).



"S1: v(s) = v(t), whence v(s8) = v(ts) by definition of v
S1.1: ¢(s) = ¢(t), whence s >;v t by (S), and sé@ > to
because >h is a complexity ordering. Therefore
s6 %E; te by (S1).
S1.2: ¢(s) # ¢(t), whence ¢(s) > ¢(t) by (S).
Therefore ¢(s6) > ¢(te) by (C5). It follows by (S1)
that s9 >-i te .

S2:  v(s) # v(t), whence v(s) e v(t) by (S), and v(s8) >
v(te) by (C2). It follows by (C8) that seo > t6.

() |= (50 > t9).

It follows by (NF(E) # 0) that :78 is an E-complexity ordering.
Conditions (iv)-(viii) above are easily verified. ((iv) follows from

(€3).)1

.4 Canonical Reduction Systems

Suppose that £ = ( &,=) where € and > satisfy (i)-(iv):
(i) € is a finite set of equations [s=t] where each variable
in t s also in s .
(ii) 2= 1is an invariant partial ordering on ;7& %
(ii1) Every descending chain in = 1is finite.

(iv) s =t for each equation [s=t] in &

In other words, let =$L be an equational, determinative, total, and
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finitary reduction system (§2.3.4).
For the case where > is a complexity ordering P Knuth and
Bendix prove the following [40, Theorem 5 (Corollary)]:

Proposition 2. Suppose that (1) holds for each equation [u=v]

in €
If €V contains [s=t], sharing no variables with [u=v], and

u=u'l[r] where r ¢ VI and mguir,s} =8 ¢€ I then

V L]
u[t]e f}i v' and veo »;i‘ v' for some term v'. (1)

Then ;;: is finitary, complete, and canonical.

Corollary. Suppose that (1) holds for each equation [u=v] in
£ . Then E 1is normally complete.

Proof. If u ”TE v e NF( € ,>) then u=~>* v because & s

£ i —

canonical.
We show below that Proposition 2 holds for any reduction system
& satisfying (i)-(iv).

An £ -realization (for (u - v)) is a list (uO,---,un) such that

Uy= U, U= v, and either up fj; Ugsp OF Uy 7g Uy for k=0,-.-,n-1.

Define "o and §g on ;7V by

(uve V) =4 (there exists an € -realization for (u =g v).

F=—1

)

"min{n: there exists an &€ -realization (uo,---',un

for (u =g v)} ,z?f un

e

§ (u,v) =
0 WUV =4f
o @ , otherwise.
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Lemma 3. umiv iff u g v .
Proof. Clearly (u '\a_& v) implies that (u e v). Moreover,

e is a monotone equivalence relation on '7\! . It follows by (i)

and (ii1) that fbe is substutitive. Thus, mji is an equality rela-

tion on <, . Finally, (iv) implies that s vg t for each equation

[s=t] in & . Since v is the smallest equality relation on ‘7\!
such that s =, t for each equation [s=t] in € , it follows that
(u =L v) implies (u mi v).l

Now Proposition 3 in 82.3.4 shows that if &£ is complete
then =§= is canonical. Thus, it suffices to show that £ is complete,
The following lemma generalizes Theorem 4 in [39] to reduction systems
g satisfying (i)-(iv):

Lemma 4. £ is complete iff the following "lattice condition"

satisfied:

v

i

If u +i Uy and u - U, then there exists a term

* v such that us -2 v (i=1,2) (2)

Indication of proof. On the basis of Lemma 3, we use the proof

of Theorem 4 in [40] (_with " for

) for the proof of this lemma.

In essence, we prove (3) from (2) by induction on '68 (u,v):

If u ﬂg_v , U +} u' e NF(& ,»), and

v Ve Ve NF(E ,») , then u' = ', (3)

For the case where 5§=(u,v) =0 (i.e., u = v), the argument goes as

follows. Suppose (3) false. We may suppose by (iii) that u 1is a A.
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minimal term in {u: u falsifies (3) with u for v} with respect
to = . Now u ¢ NF(E ,»), because otherwise u' = u = v', Therefore
u#u', u# v', and there exist terms up,vy such that
* . * - 2 g
u ﬁé; Uy +!i: u' and u ﬁﬁ; v fii v' . By the lattice condition
. * * i T
there is a‘term t such that Uy +£i=t and i ﬁli_t , and by (iii)

there is a term t' such that t -* t' ¢ NF(€,>). However, (ﬁi) and

s

(iv) imply that wu >uy and u>vy, whence minimality of u implies
that u' = t' = v', a contradiction.
The induction step is straightforward.l
" Thus Proposition 2 reduces to the following:
Lemma 5. Suppose that (1) holds for each equation [u=v] in € .

Then £ satisfies the "lattice condition" (2).

Indication of proof. Suppdse u>g Uy and u +£i.u2 "

Case 1: wu = u'[r],rz] where uy = u'[t181,r2], Uy = u'[rl,tzez]
and € contains [si=ti] where r: = s.6; (i=1,2). The conclusion
follows with v = u'[t16],t282].

Case 2: u = u'[ri[ré]] where u; = u'[t]e]], u, = u'[ri[tzez]],

and €" contains [s.|=t]] where ri[ré] 5161 > [52=t2] where "'é =

5262 L]
The details of this case are spelled out in [40,§5], and need

not be repeated here. In each of two subcases (one of which uses (1)),

it is shown that the consequent of (2) holds.}

C.5 A D-Complexity Ordering

Let V be any vocabulary where +,« ¢ Vﬁ, + precedes « , and

let £€ be any axiom system which includes D = {D1,D2,D3,D4} :
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DI. [(xty)+z = x+ (y+z)]
p2. [leg)z = x(yzl]
D3. [(xty)ez = zx + z-y]1
D4, [z+(xty) = zex + z+y]

Define ~p, ¢§ , and NF(D) as in §2.3.2. (Briefly, uls]~»,
*

u[t] for all [s=t] in D +; is the transitive, refiexﬁve ex-
tension of +p to 3@ v (fv ; and NF(D) 1is the set of +5-1rreducib1e
terms and clauses.)
We show below that NF(D) is a D-normal form for </ (51.2.9)
The analysis of *B which follows is assisted by two functions # and
¢: ;Tv + N:
#(u) =4¢ [If u = (uytu,)
then #(UT) + #(uy) + 1
else if u =(u-u,)
then [#(uy)+1]1-[#(uy)+1] - 1
else 0]

]In the usual axiomatizations for commutative rings, D3 is re-
placed by Dé: [x+y)+=z = x*z + y-z], which is equivalent to D3 in the
presence of [(x+y) = (y*x)]. The "Church-Rosser Theorem" for +E
below does not hold when D3 is replaced by Dé .
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¢(u) =4p [If u = (vytvy)
then ¢(v,) + ¢(v,)
else if u =vy°v, -
then ¢(vq) + ¢(v,) + #(u)
else if ue Ve vy

then 0
else Z(¢(u1): 1 £ £#n)

where u = f”}"'”n]

Remark. It can be shown by structura}rinduction on u that

u u A

5
0 D
#(u) and v, 1is not of the form (s+t) (k=0,..+,n), and that

u = (Vo ¥ wes B (Vn-1+ vn)---) e NF(D) where

n
¢(u) is the number of {D3,D4}-contractions (u, *p Upep) n this
sequence, (If #(u) = 0 then = vol above.)

Let w be a weighting function for V wherein w(+) = w(+),
and et P~ be as defined in §C,1, The following relations are
easily verified: '

(res)-t = re(s-t) ;
(rts)+t > re(s+t) 5
tw*bs>h(ﬁs%t;

bor tes b telrs) . (4)

Lemma 6. Suppose u-p v . Then #(u) = #(v), and either

¢(u) = ¢(v) +1 orelse ¢(u) = ¢(v) and u oW

Indication of proof. The relation (#(u) = #(v)) is easily ver-

ified for each equation [u=v] in D* by expanding the definitions of
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#(u) and #(v). It foilows by structural induction on u that #(u) =
#(v) for all wu,v such that u Vo
Similarly, we have ¢(tf(r+5)) = ¢((r+s) t) = ¢(tfr + tfs)-kl,
¢((res)et) = ¢(r-(s-t)), and ¢((r+s)+t) = ¢(rt(s+t)), From these
relations and (4), the conclusion follows by structural induction on u .J

_ & _
Corollary 1. For each term u , u *p ¥ for some term v in

NF(D). Thus, NF(D) is a D-normal form for I .

Corollary 2. +; is an invariant partial ordering which satis-
fies D.C.C.. Thus, D is finitary.

Lemma 7: D satisfies (1) (with D for € , (D,+;) for £ ),
whence D is canonical,

Proof. Verification that D satisfies (1) is straightforward,
and is omitted. It follows by Proposition 2 that D is candnical.l

Define v on 3@ by

v(u) =df (the unique term v 1in NF(D) such that

| u +E‘v). |

Let Q: €7v X ‘3% + {0,1} be any computable function satisfy-
ing (C6)-(c8). ((C6) and (C7) are satisfied by the smallest relation |
Q satisfying (C8)).

Now let D = (D,>,¢,Q).

Proposition 8. D satisfies (C1)-(C8) with D for &£ . The

proof (based on Proposition 2) is fairly straightforward, and is omitted.
By Proposition 1 we have the following:

Corollary. >n is a D-complexity ordering.
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D. A NORMAL REFINEMENT FOR INTEGER ARITHMETIC -

Integer Arithmetic is the first-order theory of ordered integral

domains satisfying each induction axiom

I clo/x] A ¥x (NNx A C »~ C[(x+1)/x])~> ¥V x(NNx - C)

where C s a formula having extra-logical constants in {NN,0,1,-,+,}.

NN represents the set of non-negative integers or natural numbers.

~In practical theorem-proving applications we include only those
induction axioms deemed necessary for the problem at hand. Thus, we
work with finite extensions of an axiomatization IA for the theory of

ordered integral domains having no elements between zero (0) and unity

(1).

The existence of quotient and remainder operations (as shown by
the classical Euclidean algorithm) can be derived from IA \f{IC: Cﬁiéﬂ).

The clause-representation of the "Euclidean algorithm theorem"

Yo Y% Yy V,(NNz A NN(|y| - 2) A wey + 2 = x)

introduces a Skolem operator (%) representing division, By the addition
of this and other relevant theorems as lemmas, the basic axiomatization
IA is extended so that incréasing]y advanced results in number theory
can be stated and perhaps proved without further induction axioms.
Ideally, each such extension is supplied with a corresponding macro-
refinement which can be composed with a previously defined normal refine-

ment for the theory being extended,
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In this appendix, a normal refinement for a simple extension
of IA 1is defined and used by a normal proof procedure to generate a
refutation proof for the following classical result in number theory:

.The square root of a prime number is irrational. (1)

The refutation itself contains 49 clauses. Even with an "optimal"
search strategy, the normal broof procedure generates 230 ﬁTauses. Of
these, 52 can be eliminated by simp]iffcation and subsumption opera-

tions as soon as they are generated. Thus, the "efficiency ratic" of

the proof procedure on this problem is better than 0.2 (49/230 or
49/178; see §B).

The normal refinement has the form
A = HR(&,,?['),S) * ND( aI’D)

where HR and ND are as defined in 52 , > is a D-complexity order-

ing (8C.1), and D = {D1,D2,D3,D4} < IA :

D1: [(xty) +

N
i

x + (y+z)] ;

D2: [(x+y)-z
D3: [(xty)-z
D4d: [z+(xt+y)

x+{y-z)] ;

zex + z-y] : and

il

ZoX + Zey]

The D-complexity ordering :’D is of independent interest, in

that it makes each member of D a reduction (e.g., z-(xty) >'D

zex * z+y); moreover, the refinement ND(€,>) can be used with any

axiomatization £ where & 2D . Define °7D by
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J7D =4 (U € \gh: u contains no subterm of the form

tres] + £, fras)or, fie)as, o Boloadl .

The restriction of > to ;VD is essentially a “syntactical" com-
Plexity ordering > as defined in §C.2.

Remark. It may well be that > = and numerous other complex-
ity orderings yield refinements which perform just as well or better
than A.. on the problem-domain FxIA . My preference for ) is
based on the existence of a useful IA-canonical form J. <<% for
terms over the vocabulary V where VF = {+,+,0,1} . Each member
of {7b has the form (t1+ ---+;(tn_] * tn)---) where ti has the form
).--) and

(g w e vm 2 Xp)eee) or =g eee X g0 x

n-1"*n
t; # (-tj) (1sd &8 A1s~n nid) &

A normal proof procedure based on A computes increasingly

n

stronger IA-normal forms NF(E 7)) where € 2 IA and hence
JC = NF(€,>-D) € NF(P) . Thus, such a proof procedure "tends" to
keep terms in a convenient IA-canonical form. (See §C.0 (Efficient

representations.))

D.1 Integer Arithmetic

The clause-form axiomatizatibn IA(I1-115 below) formalizes

1

the concept of an ordered integral domain i:£ (1,d,+,+,-,0,1) having

no elements between zero (0) and unity (1):

TThe present treatment of Integer Arithmetic is based on "The
Integers and Integral Domains," Chapter 4 in Solomon Feferman's The
Number Systems (Addison-Wesley Publishing Co., Inc., Palo Alto, Cal-
1fornia, 1964). However, IA is not the axiom system used in Feferman's
development.




-210-

I1: [O+tx = x] ; 7\\ : ‘\\ N
12: [x+(-x) = 0] ; .
13: [(xty)+z = x+ (y+z)] ;
I14: [0+x = 0] ;
I56: [1-x = x] 3 Commutative
; r Ring
16: [(xy)ez = x+(y-2)] with Integral
Unity Domain Ordered
17: [(x+y)ez = z=xtz-y] ; | Integral
: > Doma1n
18: [z+(xty) = z*x+2z-y] : with
Nothing
19: [xty = y+x] 3 between
. 0 and 1
110: [x-y = y*x] ;3
It [0 #1] & ,)
I12: [x+y # 0] v [x=0] v [y=0] ;
P .
[13: “NNx v WNNy v NN(xty) s
I114: ~NNx v “NNy v NN(x-y) 3
I15: ~“NN-x v WNNx v [x=0] ;
I116: NN(x+ (-1)) v NN(-x) . ,/

Clearly IA is valid when interpreted into the"standard" system of in-
tegers defined in our metalanguage. On the other hand, IA is valid in
many "nonstandard" structures wherein the integers can be isomorphic-
ally embedded?.

2

It is well known that no decidable set of axioms can character-
ize the integers up to isomorphism. For an example of a system I
which satisfies IA but not {I.: Ce s} , let I be the set of all
“canonical form" polynomials in a single variable =z with integer co-
efficients, stipulating that n <z < z" for each n > 0.
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D.2 A Formalization of the Irrational Prime Root Theorem

Our first task is to express (1) in the language of Integer

Arithmetic. Define the predicate PN (Prime Number) by

PN(z) += [z #0]1Alz# 1] Alz# -1]
YV x Vy( Fulzew=x-y]+ Iw([z-w=x] v [zew=y])) (2)

The Irrational Prime Root Theorem (1) can now be expressed by
Vz(PNz » VxVy(z-y-y # x+x)) ‘ (3)

To see this, observe that every rational number has the form [x/y]
where x and y are integers, and that z = [x/y]-[x/y] iff
Zeyey = XoX .

Unfortunately, (3) appears not to be a logical consequence of
(IA) v (2), for the reason that instances of the 1'nduﬁt1'0n schema ic
are needed to prove that if a cec = b+b then there exist relatively
prime b',c' such that a-c'ec' =b'sb' . This existence lemma is a
sufficiently difficult sub-problem to make the automatic generation of
a proof for (3) from (IA) \r{IC} v (2) a virtually impractical task,
even with the best currently available proof procedures.

Remark. This direct but arduous approach would essentially in-

volve proving the "Euclidean algorithm theorem",

Vw VXINN(x + (-1) + Jy Fz([x-y + z=w] A NNz A NNx+(-2))] (4)

Now the Skolem functions for y and 2z in the clause form of (4) are

familiar arithmetical operators, + and mod :
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WNN(x+(-1)) v [x-(w+x) + (wmod x) = w] ;
ANN(x + (-1)) v NN(w mod x) ;
ANN(x +(=1)) v NN(x +-(w mod x) + (-1)) . (5)

(w+ x) 1s the integer quotient of w and x , and (w mod x} is the
residue of w modulo x --i.e., the "remainder" of (w=:x).

Having sufficiently appreciated the conniving which frequently
passes un&er the guise of "formalization" in a basically impractical
"automatic theorem-ﬁroving" task, we extend IA with the concepts of

quotient and, for brevity's sake, divides:

DXy v [xe[y+x] = y] (6)

Returning to the previously noted difficulty with (3), we avoid
it simply by "minimizing" x and y to relatively prime numbers in

(3):
Vx(PNz + Vx Vy( Yw(Dwx A Dwy » [w=1]) + zeyey # x+x))) (7)
The new theorem to be proved is (7). It is nof difficult to guess that

(7) follows from IA augmented by (6) and the following clauses obtained
from (2):

W(PNz) v ~v(Dz(x-y)) v (Dzx) v (Dzy) ;
v PNO;
~ PNT. . - (8)

Remark. Jw(zew = x+y) in (2) is translated into Dz(x-y) in

(8), and (6) will eventually translate a positive 1iteral Duv into
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[us[v=+ uJ='v]‘during.the proof of (7). We could have used the direct

"clause-representation” translation on Jw(z-w = x-y), introducing a

new Skolem function f and translating Jw(z'w = x-y) into

[z+f(z,x,y) = xy] . This would have complicated the proof of (7) in

§D.5 only slightly.

To conclude this ad hoc formalization process, we note that
(IA) is to be augmented by (6), (8), and the following clause-
representation for the negation of (7):
PNa ;
Dwb v ADwe v [w=1] ; ‘
[ascsc = b-b] . ' (9)

let €& = df (IAv(6) v (8)). £ is allegedly consistent, and
E\J(Q) is allegedly inconsistent. Our next task is to define a good
normal refinement for €

D3. A Normal Refinement for Extended Integer Arithmetic

Thus far we have defined an extension & = (IAv(6)wv(8)) for
IA. Next we define a complexity order >ﬂ) for use in a resolution
micro-refinement ND(E ,>b). The vocabulary V of & s (9) contains
nine operation constants, to which we assign the following weights in

accordance with §2.3.5:
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Constant Degree Weight

0 0 1
1 0 1
a 0 1
b 0 1
c 0 1
: 2 0

2 0
+ 2 0
- 1 0

Fig. 2. A weighting function

Let w be the weighting function defined by Figure 2, and let < be
the well-ordering of cqnstants wherein 0 <1 <a<b<c <l+ < o <+ <
- . Define the complexity ordering > on 7, as in §2.3.5,

Remark. Observe that - is assumed to be the last element of
Ve » and hence that w(-) can be equated to 0 .

Now consider the clauses of (IA). Equations I1-I6 are reductions
according to > , in the sense that the left-hand side is more complex

W

than the right-hand side. However, for I7 we have (z-x) +(z-y) e o

(xty).z because w((z-x) + (z.y)) = 4 and w((xty).z) = 3 . Having

a strong intuitive feeling that any good complexity ordering for &

should treat I1-I8 as reductions, I looked for a "natural modification"
of >@ wherein I1-18 would all be reductions. The resulting relation
b (§C.5) is defined first on a D-canonical form é7b for =7§ and

then extended to </, 5 > agrees with > on '§75 . It follows by

Proposition 8 in §C.5 that D is a D-complexity ordering.
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Now Tet & = (I1-I11) v (113-115) v (6) v (9), and Tet & =
(I1-I11) v {PNo, “PN1, PNa, [a-(c+c) = bb]} . Let & = HR(E,>},s)
«ND( Eo’>b) where Y is the identity renaming and, if C is non-
positive Zhd non-hu]], then s(C) 1is a negative literal whose atom is
maximal among atoms of negative literals in C (with respect to >—D).

The refutation which follows (Figure 3) is a complete refutation

A(IA v (6) v (8) v (9))".

D.4 A Complete Refutation

The integer domain axiom I11 is clearly necessary for the proofs

of many basic theorems of Integer Arithmetic. Unfortunately, the two
positive‘equations in this clause render the presently available com-
pleteness results on normal refineﬁents inapplicable to thesé problems
which depend upon it. As usual, formally verified knowledge lags be-
hind intuitively justified beliefs. Perhaps, after seeing numerous
machine-generated refutations based on normal refinements not guaranteed
to be complete by presént results, we will begin to see how to extend
these results.

The formats for the refutations which follow are the same as the
format of Figure 1 in §C.2. Figure 2 is the proof tree used to guide
the order of selection of clauses from the queue (Q) in Figure 3.

- While a normal proof procedure wou1d not typically have access to thjs_
“ideal" search strategy, Figure 3 is nevertheless informative insofar
as it shows how sparse the search space can be when A (§D.3) is used

to find a refutation tree containing 49 clauses.
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The Square Root of a Prime Number is Irrational

(Proof Tree Only)

In  Clause : Source

*0, [1 # 0] Ax (Not used)

1. 0+x=x Ax

2. =x+tx =20 Ax

-3, (xty)+z =:x+ (ytz) Ax

4., 0-x=0 Ax

5. 1ER =N Ax (Not used)
+6. (x*y)+*z = x-(y-z) - Ax

+7. we(xty) = wextwey Ax

8. xty = ytx - Ax

3. Xy = yx Ax
+10. x*y # 0] v [x=0] v [y=0] Ax
+11.  Dx(x-y) Pr
+12,  Dxy v [x+(y +x) =y] Pr
+13.  PNx v vDx(y-z) v Dxy v Dxz Pr
+14. ~PNo Pr
+15.  ~PNI Pr
+16. PhNa NC:
+17. [a*(cec) = beb] NC
+18. Dzb v wzc v [z=1] NC
+19. Da(b+b) : Rp(]?,]])
+20. ~Da(y-z) v Day v Daz Cut(16,13)
+21. Dab Cut(19,20)
+22. a+(b:a) =:b Cut(21,12)
+23, bez = a*((b+a)-z) ~ Rp(22,6)
24, a<((b:a)-z) = bez Rp(CNR(23),[x=x])
+25. [zex+z.y # 0] v[z=0] v [x+y =0] Rp(7,10)

+26. [a-x+b-z # 0Jv[a=0] v[x+ (b:a) z=0] Rp(24,25)
+27. [beb+bez # 0] v[cec+ (b=+a)-z=0]x[a=0] Rp(17,26)
+28. x+(-x) =0 Rp(8,2)




In

+29,
+30.
*31,
+32.
+33.
+34,
+35.
+36.
+37.
+38.
+39,
+40.,
+41.
+42.
+43.
+44
+45,
+46.

+47

+48.
49,
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Clause

W0 = wex+ w-(-x)

wex+we(-x) = 0

[0 # 0] v [a=0] v[c*c+(b=a)-(-b)=0]
[cec+(bza)e(-b)=0] v [a=0]
[0+z=cec+ ((b+a)-(-b) +2] v [a=0]
[cec+ ((bxa)-(~b)+2z) = z] v[a=0]
we(-x) twex =0

[(cec+0) = (b+a)+b] v[a=0]
[(b+a)*b = cec]v[a=0]

Dw(xe-w)

Dw(x+(y-w))

Dw(xe(w-y))

Da(x=b)

Da(c-c) v [a=0]

Dac v [a=0]

“Dac v [a=1]

[a=0] v [a=1]

PN1 v [a=0]

[a=0]

PNo

0

n

Source
‘Rp(28,7)

Rp(CNR(29) ,[x=x])
Rp(30,27)

- Cut([x=x],31)

Rp(32,3)
Rp(CNR(33),[x=x]) -
Rp(8,30)
Rp(35,34)
Rp(CNR(36),[x=x])
Rp(9,11)
Rp(6,38)
Rp(9,39)
Rp(22,40)

" Rp(37,41)

Cut(42,20)
Cut(21,18)
Cut(43,44)
Rp(45,16)

Cut(46,15)
Rp(47,16)

Cut(48,14)
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(Proof using search strategy described in 5A.2)

In  Clause Source Out Disposition
1. O*x = x Ax 1 '
2., -x+x =10 Ax 2
+3. (xty)+z = x+ (y+z) Ax 3
+4., 0-x =0 Ax 4
5. 1=K = ¥ Ax b
+6. (x=y)+z = x+(y-z) Ax 6
+7. wWe(xty) = wex+wey Ax 7
+8. xty = ytx Ax 8
+9, Xey = yeox Ax 9

+10. [x-y # 0] v[x=0] v [y=0] Ax 20

+11.  Dx(x-y) Pr 11

+12. ~Dxy v [x+(y+x)=y] Pr 16

+13.  ~wPNx vaDx(y-z) vDxy vDxz Pr 13

+14  ~PNo Pr 46

+15. PN Pr 43

+16. PiNa NC 41

+17 a*(c-c) = b+b NC 10

+18. v Dzb vaDzc v [z=1] NC 39
19. y+z =0+ (y+z) Rp(1,3) 19 CNR(x)
20. 0+z = x+ (x+z) Rp(2,3) 20 CNR(+)
21. (w+ (x+y))+z = (wix) + (y+z) Rp(3,3) 21 CNR(*)
22. 0+z = 0+ (y-z) | Rp(4,6) 22 CNR(*)
23. yez =1+ (y-z) Rp(5,6) 23 CNR(*)
24. (we(xey))ez = (wex) » (y=z) Rp(6,6) 24 CNR(*)
25, wey = we0 + wey Rp(1,7) . 25 CNR(*)
26. We0 = we(=x) + wex Rp(2,7) 26 CNR(*)
27. we(x+ (ytz)) = wex +we(y+z) Rp(3,7) 27 Sub(7)
28. 0 = 0+x + O°y Rp(4,7) 28 CNR(*)

29. (xty) = 1ex + 1y Rp(5,7) 29 CNR(%)



+i¢
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .
45,
46.
47.
48.
+49.
+50,
+51.
52.
53.
54.
55.

56.

87,

128,

09
+60.
61.
62.
63.
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‘Clause

we (ze (xty)) = (wez)ex +(wez)ey

xt0 = x

x+(-x) =0

(ytx)+z = x + (y+z)
z+ (xty) = x+ (yt+z)
we (xty) = y+ (wtx)
we(y+x) = wex + wey
x+0 =:0

x*1 =:x

(y*x)=z = x=(y-z)
z{xey) = x={y*z)
we(xey) = y*{(w-x)
(x+y)*w = wex + wey
(b*b)=z = a<((c*c)+z)
(cec)+=a = beb

D00

Dly

D(wex)(w=(x-y))
Dw(w=x + w*y)
Dx(y+x)

Da(b+b)

wDa(y+z) v Day v Daz
~Da0 v Da0 v Daz

nDaz v Dal v Daz
Da(x+(y+z)) vDa(x-y) v Daz
vDa(wex +w-y) vDaw vDa(x+y)
~Da(z-y) vDay vDaz
~Da(b+b) vDaa vDa(c-c)

Dab

a-(b+a) =:b

bez = as((b+a)-z)
(b+a)+a = b

Dab

"“Dab v Daa v Da(b+ a)

Source

Out

Rp(6,7)
Rp(8,1
Rp(8,2)
Rp(8,3)
Rp(8,3)
Rp(3,8)
Rp(8,7)
Rp(9,4)
Rp(9,5)
Rp(9,6)

Rp(9,6)

Rp(6,9)
Rp(9,7)
Rp(17,6)
Rp(9,17)
Rp(4,11)
Rp(5,11)
Rp(6,11)
Rp(7,11)
Rp(9,11)
Rp(17,11)
Cut(16,13)
Rp(4,51)
Rp(5,51)
Rp(6,51)
Rp(9,51)
Rp(9,51)
Rp(17,51)
Cut(50,51)
Cut(58,12)
Rp(59,6)
Rp(9,59)
Rp(59,11)
Rp(59,51)

22

30
31

33

36

- B3

12

15
17
18

Disposition
CNR(+)

CNR(+)

CNR ()

CNR(+)

CNR(+)
CNR(+)
CNR(*)

CNR(*)

Sub(58)
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In Clause Source : Qut Disposition
+64. a-((b+a)-z) = bz ' Rp(60,[x=x]) 19

65. ((b+a)+z)-a = bez Rp(9,64) CNR(#)

66. a<(z-(b=+a)) = b-z Rp(9,64)

67. [0 # 0] v [0=0] v [y=0] Rp(4,10) Sub(x=x)
68. [y # 0! v [1=0] v [y=0] Rp(5,10) _ Tautology
69. (w=(xy) #0 v [wex =0] v [y=0] Rp(6,10) '

+70. [wex +wey # 0] v[w=0]v [xty =0] Rp(7,10) - 21

71. Ly-x # 0] v [x=0] v [y=0] Rp(9,10)

72. |b°b # 0[ v [a=0] v [c-c =0] Rp(17,10)
73. [b # 0] v[a=0]v[(b+a) = 0] Rp(59,10)
74. [bez # 0] v[a=0]v[(b+a)-z =0] Rp(64,10)

75. [0+0.y # 0] v[0=0] v [x+y =0] ~ Rp(4,70) Sub([x=x])
76. [0-x+0 # 0] v[0=0] v [x+y=0] Rp(5,70) Sub([x=x1)
77. [we(z*x)+ (w-z)*y # 0] v[w-z=0]

v [x+ty = 0] Rp(6,70) CNR(+)
78. [wez)*x + (w-(z-y)) # 0]

v [wez=0] v [x+ty=0] Rp(6,70) CNR(*)
79. [(W'x1+w-x2)+w'y # 0] v[w=0]

v Ty +Xp My = 0] Rp(7,70) CNR(+)
80. [wex+ (w-_y]+w1_y2) # 0] v [w=0]

v [x+y;+y,) =0] Rp(7,70) CNR(+)

81. [wey+wsx # 0]v [w=0]v [xty=0] Rp(8,70)
82. [x*wt+wey # 0] v [w=0]Jv[xty=0] Rp(9,70)
83. [wex+tyew #0] v [w=0]v[xty=0] Rp(9,70)
84. [b.b+a-y # 0] v [a=0] v[c+cty=0] Rp(17,70)
85. [a*x+beb # 0] v [a=0] v [x+c-c=0] Rp(17,70)
86. [bta-y # 0Jv[a=0]v[(b+a)+ty=0] Rp(59,70)
87. [a.x+b # 0]v[a=0]v[x+(b+:a)=0] Rp(59,70)
88. [bez+a y # 0]v[a=0]

v i(bsa)sz+y = 0] Rp(64,70)
+89. [a-x+b-z # 0]v [a=0] :
v [x+(b+a)-z = 0] Rp(64,70)
90. [bezta<x # 0]v[a=0]
v [x+(b+a)ez = 0] Rp(8,89)

91. [xra+b-z # 0]v[a=0]
v [x+(b +a)-z = 0] Rp(9,89)
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In Clause _ Source Qut Disposition

92, [asx+z<b # 0]v[a=0]v [x+(b=a)-z=0] Rp(9,89)
+93, [beb+b-z # 0] v[a=0]

v [c-c+ (b:a)-z=0] Rp(17,89) 25

94, [b+b-z # 0] v[a=0]

vi(bza)+(b+a)z=0] Rp(59,89)
95. [bew+b-z # 0] v [a=0]
vbra)w+t(bsa)z=0] Rp(64,89)
9. -0=20 Rp(1,32)
97. x+(y+(-(xty))) =0 Rp(3,32)
98, 0+z = x+ ((-x)+z) Rp(32,3) CNR(+)
499, w+0 = wex + we(-x) Rp(32,7) 23 CNR(*)
100. (-x) +x=0 Rp(8,32)
+101. wex + we(-x) = 0 Rp(NR(99),
[x=x]) 24

102, 0+z = wex+ (we(-x)+2) Rp(101,3) CNR(+)
103. 0+0+(-x) =0 Rp(4,101) CNR(*)
104. 0+x+0 = 0 Rp(4,101) CNR(*)
105, x+1+(-x) =0 Rp(5,101) CNR{*)
106. Tex+(=x) =0 Rp(5,101) CNR(*)
107, we(xey)+ (wex)+(-y) =0 Rp(6,101) CNR(+)
108. (wex)-y + we(x-(-y)) =0 Rp(6,101) CNR(*)
109. (w-x1+w-x2)4-w (-(x +x2)) 0 Rp(7,101) CNR(+)
+110. we(-x) + wex =0 Rp(8,101) 30

111, xw + we(-x) =0 Rp(9,101)

112, wex + (=x)w =0 Rp(9,101)

113. beb + a-(-(cec)) =: Rp(17,101)

114, b+a+(-(b+a)) =0 Rp(59,101)

115. bez + a-(-((b+a)+z)) Rp(64,101)

116. [beb+ (b-x +b-y) # 0] v [a=0]

v [cec+(b+a)(xty) = 0] Rp(7.93)
117. [bez+b<b # 0] v [a=0]
v [cec+ (bza)+z=0] Rp(8,93)

118. [b+b+b-z # 0] v [a=0] ,
v [cec+ (bza)-z = 0] Rp(9,93) Sub(93)
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In Clause Source Out Disposition
119. [beb+2z*b # 0] v[a=0]
v [cec + (bra)-z = 0] Rp(9,93)
+120. [0 # 0] v[a=0]v [c*c + (b +a)+(-b)=0] Rp(101,93) 26
+121. [cec+ (b+a)-(-b) =:0] v [a=0] Cuf(£x=x],
120) 27
+122. [0+z = c-c +((b+a)-(-b)+2z)]v[a=0] Rp(121,3)
123. [(b+a)+(-b) +cec = 0]v [a=0] Rp(8,121)
124, [cec+(b+a)-(-b) = 0] v[a=0] Rp(9,121) Sub(121)
125. [cec+(-b)-(b+a) = 0] v[a=0] Rp(9,121)
+126. [cec+((bxa)-(-b)+2z) = z]v[a=0] Rp(CNR(122),
[x=x] 29
127. [((b+a)+(-b)+z]v [a=0] Rp(8,126) CNR(+)

128. [cec+(z+(b+a)+*(-b)) = z] v [a=0] Rp(8,126)
129. [cec+((bza)«(-b)+2z) = z]v [a=0] Rp(9,126)
130. [crc+((-b)+(b+a)+z = z] v [a=0] Rp(9,126)

131. [c=c+0 = (b=a)+(-(-b))] v[a=0] Rp(101,126) CNR(+)
132. [0+z = we(-x) + (wex+2)] Rp(110,3) CNR(+)
133. 0+ 0+x = 0 Rp(4,110) CNR(*)
134, 0<(-x) +0 =0 Rp(4,110) CNR(*)
135, -x+ 1x=20 Rp(5,110 CNR(*)
136. T1+(-x) + x =20 Rp(5,110) CNR(*)
137, we(y+(-x)) + (wey)'x =0 _ Rp(6,110) CNR(+)
138.  (wey)+(-x) + we(yx) =0 Rp(6,110) CNR(*)
139. we(-(y*tz)) + (wey + wez) =0 Rp(7,110)
140. wex + we(-x) = 0 Rp(8,110)
141, (-X)ew + wex = 0 Rp(9,110)
142. we(-X) + xew =0 Rp(9,110)
143, a«(-(cec))+b.b =10 Rp(17,110)
144. a.(-(b:a))+b =0 Rp(59,110)
145, a.(-((bs:a)ez))+bez =0 Rp(64,110)
146. [0 # 0] v [w=0]v[(-x)+x = 0] Rp(110,70)
*147  [c*c+0 = (b+ a)-b] v [a=0] Rp(110,126) 31
+148. [(b:a)+b = c-c]v [a=0] Rp(CNR(147),

[x=x]) 32



-223-

In Clause
149, [c+(c*z)=(b+a)+(b-z)]v [a=0]
150. [be(b+a) = c*c]v[a=0]
1561. [cec+(b=za)y #0]v[b+a=0]
v [b+y = 0] v [a=0]
152. [b:a).x+c-c # 0]Jv[b +a=0]
v [xtb = 0] v [a=0]
153. [cec+(b=+a)+(-b) =:0] v[a=0]
154. Dx0
155, Dxx
+156. Dx(y«(w+x))
157, D(y*+z)(x-y +x-2)
158. Dx{x-y)
159. " D(c-c)(b-b)
160. D(b+ a)b
161. D((b +a)+z)(b-2z)
162. Db(c-c) v [a=0]
163. Dx0
164. Dx(y-0)
165. Dx(w-x)
166. Dx(y+x)
167. Dx(x]-(y-(w-x)))
168. Dx(y-(w]-(w2°x)))
169. D(xty)(y*(w+x + wey))
170, Dx((wex)-y)
+171.  Dx(y=(x*w))
172. Dc(b-b)
173. D(c-c)(y-(b+b))
174. D(b za)(y+b)
175. D{((bza)+z)(y+(b-2))
176. Dz((b=:a)-z)
177. Db(y-(c-c)) v [a=0]

Source Out .

Disposition

Rp(148,6)
Rp(9,148)

Rp(148,70)

Rp(148,70)
Rp(148,101)
Rp(4,49)
Rp(5,49)
Rp(6,49) 34
Rp(7,49)
Rp(9,49)
Rp(17,49)
Rp(59,49)
Rp(64,49)
Rp(148,49)
Rp(4,156)
Rp(4,156)
Rp(5,156)
Rp(5,156)
Rp(6,156)
Rp(6,156)
Rp(7,156)
Rp(9,156)
Rp(9,156) 35
Rp(17,156)
Rp(17,156)
Rp(59,156)
Rp(64,156)
Rp(64,156)
Rp(148,156)

Sub(11)

Sub(154)
 CNR(%)

Sub(165)

CNR(+)
CNR(x)

Sub(165)
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In Clause
178. Dx0
179. Dx(y-0)
180. DI1(y-w)
181. Dx(x-w)
182, Dx(yq+(y,-(x-w)))
183. D(x]-xz)(y-(x1-(x2-w)) ‘
184, Dx(y-(x-w1+ x-wz))
185. Dx((xew)-y)
186. Dx(ye+(w+x))
187. Dc(b+b)
188. Da(y<(b+b))
+189. Da(y+b)
190. D(b=+a)(b-z)
191. Da(y+(b-z))
192. Da0
193. Dab
194, Da(x-(y-b))
195. Da(b-y)
+196. Da(ce.c) v [a=0]
197. Da(c-c) v [a=0]
198. [a-((c+c) +a) = c-c]v[a=0]
199. Dac v [a=0]
+200. ~Dac v[a=1]v [a=0]
+201. [a=1] v [a=0]
+202. PN1 v [a=0]
203. [1+(cec) =:b+b] v [a=0]
204, D1(b-b) v [a=0]
205. D1(y-z) v Day v Daz v [a=0]
206. Db v [a=0]
207. [1+(b=:a) =:b] v [a=0]
208.

[a-(bs 1) =:b] v [a=0]

Source

OQut Disposition

Rp(4,171)
Rp(4,171)
Rp(5,171)
Rp(5,171)
Rp(6,171)
Rp(6,171)
Rp(7,171)
Rp(9,171)
Rp(9,171)
Rp(17,171)
Rp(17,171)
Rp(59,171) 36
Rp(64,171)
Rp(64,171)
Rp(4,189)
Rp(5,189)
Rp(6,189)
Rp(9,189)
Rp(148,189) 37
Rp(9,196)
Cut(196,12)
Cut(196,51) 38
Cut(58,18) 40
+Cut(199,200) 42
Rp(201,16) 44
Rp(201,17)
Rp(201,50)
Rp(201,51)
Rp(201,58)
Rp(201,59)
Rp(201,59)

Sub(154)
CNR(*)
Sub(46)
Sub(11)

CNR(+)
CNR(*)
Sub(156)
Sub(172)
Sub(191)

Sub(154)
Sub(21)

CNR(+)
Sub(46)

Sub(46)
CNR(+)
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In Clause

209. 1+((b+a)+=z) = bz v [a=0]
210. a-((b=1)+z) = bez v [a=0]
211. [1-x+b-z # 0] v [a=0]

v x+t(b+a)ez = 0]

212. [cec + (b +1)+(-b) =:0] v [a=0]
213, [cec+((bs1)+(-b)+z)=2]v [a=0]
214. [(b+1)+b = cec] v [a=0]
215. D1(y+b) v [a=0]

216. D1(c+c) v [a=0]

217. Dlc v [a=0]

218. ~Dic v [a=1] v [a=0]
+219. [a=0]
+220. PNO

221. [0-(cec) = beb]

222. DO(b-b)

223. ~DO(y-z) v Day v Daz

224, DOb

225. 0+(bta) =b

226. a-(b:0) =0

227. 0<((b=+a)+z) =:bez

228, a-((b+0)+z) =:be-z

229. 0

Out Disposition

Source

Rp(201,64)
Rp(201,64)

Rp(201,89)

Rp(201,121)
Rp(201,126)
Rp(201,148)
Rp(201,189)
Rp(201,196)
Rp(201,199)
Rp(201,200)

Cut(202,15) .

Rp(219,16)
Rp(219,17)
Rp(219,50)
Rp(219,51)
Rp(219,58)
Rp(219,59)
Rp(219,59)
Rp(219,64)
Rp(219,64)
Cut(220,14)

CNR(+)

CNR{+)

Sub(46)
Sub(46)
Sub(46)

45
47

CNR(+)

CNR(+)
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