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... All the time I design programs for nonexisting 

machines and add: "if we now had a machine comprising 

the primiti ves here assumed, then the job is done" . 

.. . In actual practice, of course, this ideal 

machine will turn out not to exist, so our next task--

structurally similar to the original one- - is to pro-

gram the simulation of the "upper" machine . ... But this 

bunch of programs is written for a machine that in all 

probability will not exist, so our next job will be to 

simulate it in terms of programs for a next lower level 

machine, etc., until finally we have a program that can 

be executed by our hardware. 

---E. W. Dijkstra l 

lNotes on Structured Programming, in .Structured Programming, 

edited by O.J. Dah l and C. A. R. Hoare (Academic Press, New York, 

1972), pp. 1-81. 
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ABSTRACT 

A proof Q!ocedure verifies relative consequence relations 

1= c 
t 

(1) 

in first-order logic with equality by generati ng a refutation (or proof 

of contradi cti on) for some cl ause-representati on e of e u { ... C}, 

using the axioms and inferences of some sound and effective ca l culus 

for I-c . Performance of the procedure depends upon two forms of 

heuristic knowledge about 1= e which it may embody: 

(S) Structural knowledge i s formalized by a refinement (or 

decidable subset) of the deductions admitted by the proce

dure's calculus which acts as a "search-space filter": 

only those deductions from C· contained in the refinement 

a re gene ra ted. 

(P) Procedural knowledge is formalized by a search strategy 

(or enqueuing function) : it determines which of the ad-

missible inferences will be generated next on the basis of 

the current deduction. 

This investigation develops a general hierarchical method for the 

design of refinements embodying structural forms of heuristic knowledge 

characteristic of expert human problem solvers in an axiomatized problem 

domain. 



-v-

Initially we design a refinement 11 fort; -resolution deduc-

tions, whose inferences have the form 

{B l V.9..1,· .. ,Bn v.9n} I- C (2) 

where (B l - ql)6 v ... v (Bn- qn)6 ~ C ~ (B16 -q16) v .. • v (Bn 6 - qn 6) 

and 6 is a substitution (of terms for variables) which makes 

{q18 " .. ,qnEH contradi ctory i n ~ . The unit-clause set {q l "" ,qn} 

is called a latent C-contradiction. 

~ -resolution .:!2. not .i!!- general effective: each inference (2) 

must be real ized by finding a "lower level" refutation for 

t u {ql,···,qn} and extracting 6 from it. For this sub- problem we 

design an e'-resolution refinement 11' where t:;) t' . The normal 

composition 11 ' 11' consists of deductions in 11 wherein each infer-

ence (2) is "realized" by a refutation in 11'; 11'11' is actually an 

e'-resolution refinement. 

Iterating the above (with C' for ~ ), we obtain 

refinement 11M 

refinement and 

= (.·.{11·11 )·· ·11 ) n n-l 0 

t = e :::> ... "Jt = n 0 

where 11k is an 

unit clauses of e 

an ~o-resolut i on 

ek-resolution 

An e -o 

resolution inference is realized by refuting a latent Cl-contradiction 

{p,q} where a is a set of equations including eo v{[x=xJ} . For 

this sub-problem we design an ([0-) resolution micro-refinement I1w 

for the set of deductions composed of factoring, binary resolution, and 

paramodulation inferences. 

Normal refinements 11M' I1w combine the composite structural know

ledge embodied in 11M with the effectiveness, efficiency, and most

general inference properties of 11 
W 
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Hyper-L-resolution (HR{ t. >-, s)) exempl ifies e -resolution 

refinements. It relativizes to t. a previous l y investigated refine

ment known as hyper-E-resolution with literal-ordering (~) and 

renami ng (s). 

Theorem A. Suppose that I1k=HR(tk.~.sk) where each clause of 

C
k 

contains at most one "positive" literal under the renaming r k 

(k=O, .. "n), Then 6M is refutation compl ete. 

e -normal deduction (NO{ e , >-)) exempl ifies 6]1. · r is an 

"invariant complexity ordering" which well-orders constant terms. For 

each resolution inference {A v£.. BvgJ 1- {AvB)8 or paramodulation 

inference {Av[s=t], Bvg[.!:J) 1- (AvBvq[t]) 8 in a member of 

NO{C' ,r) , underlined literals must have been reduced to a "least 

complex" normal form by a chain of >- -ordered replacement operations 

based on equations of C and current derived equations; moreover , te 

cannot be "more complex" than 58. "Functional reflexivity" equations 

[fxl ,· . xn = fx l · .. xn], being subsumed by [x=x] , are exc l uded from 

_c -normal deductions by strong subsumption-deletion constraints. 

Theorem B. NO{ c ,>-) is refutation complete on unit-clause sets. 

Corollary. If C and 6
JvJ 

are as in Theorem A and no non-unit 

clause of t contains a (positive) equation then . 6M' NO{ eo '>-) is 

refutation complete on clause-sets whose non-unit clauses each contain 

at most one equation . 

Normal refinements are illustrated in the so l utions of several 

refutation problems in Group Theory and Integer Arithmetic, where use

ful normal forms and complexity orderings are employed. 
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1. THE DESIGN PROBLEM FOR REFINEMENTS 

We are only just beginning, it seems to me, to 
get a feel for these growth processes based on re~olu
tion or-Tndeed on any other analogous logical prin
ciples. I believe that there is still much to be 
discovered in the way of controll ing the rate and 
direction of growth intelligently ~ automatically, 
without disturbing the basic completeness property . 
I believe that there is nothing inherently conflict
ing in the two leading concepts--heuristic control of 
the process and systematic, combinatorial control of 
the process, and I have tried to illustrate how these 
two concepts overl ap and merge into each other. 

-- J. A. Robinson (1965)1 

The first section of this chapter describes and motivates the 

problem of designing good refinements for proof procedures. Proof 

procedures are viewed as well-defined components of deductive problem 

solving systems, which provide the basis for measuring their perform-

ance. 

It is shown in §1.1.3 that much of the structural knowledge 

available to the human specialist in an axiomatized problem domain can 

be formally represented by refinements. In §1.1.4, the design method 

outlined in the Abstract is viewed as a contribution to the structured 

programming of specialized proof procedures. 

Subsequent sections (§1.2 and §1.3) lay the foundations for a 

solution to the refinement design problem in Chapter 2; these are in

tended more for reference purposes than for detailed reading. Terms 

'Heuristic and complete processes in the mechanization of 
theorem proving. In Systems and Computer Science, edited by John F. 

Hart and Satoru Takasu (University of Toronto Press, Canada, 1967), 

pp. 116-124. 
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defi ned therei n are cross-referenced in the text: § i means "Cha pter i" 

and ~ means "Secti on j in Chapter i". 

The method of solution is summarized in the overview (§2.0) for 

Chapter 2. Chapter 3 summarizes the main results, relegating the more 

technical proofs to an appendix (§A). For illustrative purposes, it 

may be helpful to examine §C and §D at severa l points in the reading of 

this report. 

Related research--especially that which has contributed to or 

motivated the research described herei n--is briefly reviewed i n Chapter 4. 

A highly readable and more comprehens i ve overview of deductive 

problem solving in relation to Art i f icial Intel ligence (research and 

applications) is availab l e in Nilsson ' s recent overview [55]. 

1.1 Introduction 

1.1.1 Deductive Problem-Solving Systems 

Proof procedures. In this investigation, the term proof procedure 

is given a somewhat specific meaning (§1.3 .5 ). A proof procedure is 

essentially a (partial) computable function IT , defined on sets of 

clauses, such that IT(C) is a deduction (§1.3.3) from C based on 

the axioms and inference rules of some effective calcu l us over clauses 

(§1.3.2). Normally this calcu l us is sound relative to some set f. of 

clauses, and we speak of a specialized proof procedure for e (or 

~ , § 1 .2.7). The usual functi on of such a procedure is to deri ve. if 

possible, a refutation (or proof of contradiction) from C using this 
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calculus; in this case we speak of it as a refutation procedure. 

A system (whether human, mechanical, or hybrid) which periodical ly 

invokes one or more special ized proof procedures as a part of some larger 

problem-solving process will be referred to as a deductive problem-

solving system. Automated and "on-line" theorem provers, computer 

program verifiers and generators, and plan-generators for robot i c systems 

are typical examples of deductive problem-solving systems currently bei ng 

developed and used [55]. 

Problem domains. In theory we can se lect a specia l ized proof 

procedure for C in a given deductive problem-sol ving system an d con

sider the set 'Ut of clause-sets to wh i ch th i s procedu re would be 

applied by the host system under appropr i ate conditions: Ut> is the 

problem domain of the proof procedu re. 

Application Envi ronments . The long-term behavior of the proof

procedure's host system determines a probability measure w on Z<e ' 
where ]1(U) reflects the expectation that the host system wi ll appl y 

the proof procedure to some clause-set in tl. An appl ication 

environment (1{t ,w) provides a realistic basis for performance analysis 

and comparison of alternative proof procedures (§B). 

1.1.2 Performance and Behavior Parameters of Proof Procedures 

Given an application envi ronment, we can forma l ize various meas

ures of (expected) performance of a proof procedure i n that environment. 

Domain of completeness, cost, efficiency, and "expected" or "average" 

versions of these performance measures are defined on this basis in §8 . 

The major obstacle to the use of proof procedures in realistic 

application environments, amply documented i n [55] and elsewhere, has 
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been the poor performance of proof procedures on at least one of several 

performance measures. Generally speaking, refutation completeness and 

reasonable (at least f i nite) expected relevancy (or efficiency ratios) 

have been difficult or impossible to achieve simultaneously. 

Behavior of a proof procedure of the sort described in §1.3.6 

can be analyzed in terms of two parameters which determine the computa

tion it performs when appl ied to a set e of premises: 

(.i) A search space {',(C) of deductions (from e) which the 

procedure could generate, where {', is a refinement of the 

set of deductions based on the procedure's calculus; and 

(ii) A search stra~, represented by an enqueuing function 

which determines the order in which initial or der i ved 

clauses will be i nserted in the procedure's current 

deduction and used in the generation of new admissible in

ferences. 

In effect, the search strategy determi nes which of the deductions in 

{', (e) the proof procedure wi 11 generate, but does not prevent the com

putation of a complete deduction in {',(~) (§1.3.4) by forever excluding 

an initial or derived clause from incorporat i on into the deduction. 

(See §1.3.5, "fair schedulers".) Both (i) and (ii) can significantly 

affect the proof procedure's expected-performance measures. 

Search-strategy design, for a gi ven search space {',( e), is 

fairly well understood (although not at all trivial in practice). 

Basically, one combines a "cost function" on deductions with a heuristic 

"cost of completion" predictor in order to determine which clause to 

select from the current clause queue in order to minimize overall cost 
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of completing the deduction [40J. There is no real reason why this 

heuristic prediction function cannot utilize "advice" attached to the 

clauses by some other component (e.g., the human) in the proof proce-

dure's envi ronment . 

The des i gn of refinements, however, appears to be a potentially 

more fruitful area for ini ti al i nvestigation. It is diffi cult to 

design and effic i ent ly implement a good search strategy for a large 

unstructured search space. The exponential growth rate of search-cost 

as a function of si mplest- refutation complexity has been a notor ious 

obstacle to the successful use of proof procedures. Only by drastic 

ally refining the search space wi ll we enable t he computer's forte, 

high-speed search, to be of any real assistance in deductive probl em-

solving applications. 

Moreover, refinements are the proper place to investiqate refuta-

tion completeness, which has been diffi cult to analyze in specialized 

proof procedures with "ad hoc" refi nements [29J. 

The scope of this investigation, consequently, has been limited 

to the des i gn of refinements ~r specialized proof procedures. Before 

asking wh i ch refinements to design or how to design them, it is appro

priate to ask what kinds of structura l heuristic knowledge are available 

to an expert human problem solver in an axiomatized problem domain. 

Then we may consider the problem of facilitating the formalization of 

hi s knowl edge ~ means of refi nements. 

1.1.3 What Does the Human Specialist Know? 

The design of refutation procedures for I~ 
t 

will ultimately be 

done in cooperation with human specialists in the theory of ~ A 
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good design method should facilitate the design of refinements which 

incorporate the proof-structuring modes exhibited by human specialists . 

The following proof-structuring modes figure prominently in 

many problem doma i ns: 

(i) normal form representations; 

(ii) semanti cal abstraction; 

(iii) subcase analysis; and 

(iv) restricted use of axioms and theorems. 

Normal form representat i ons allow us to work wi th one (or a 

small number of) representatives of each t-equivalence class of 

formulas or terms. In addition to the cl ause-representat i on of 

formulas. t may admit a useful representa ti on of terms for a given 

domain Ue . For example. suppose t- contains the "Commutati ve Ri ng 

Theory" fragment D = {Dl,· .. , D4} : 

D1. [(x+y)+z x + (y+z)J (+ is associ ative); 

D2. [(x·y) z = x·(y· z)] ( . is associative); 

D3. [(x+y)· z = x·z + y·z] (right distribution); 

. D4. [z· (x+y) x·z + y·z] (left distribution and ·commuta-
tivity) 

By treating each of these equations as a "reduction rule" we obtain a 

D-normal form NF(D, >"D) for te rms (§1.2.9, §C) wherein each term is in 

"right-associative, fully distributed" form. It is shown in §C that 

in fact NF(D, >D) is a D-canonical form: any two D-congruent terms 

"reduce" to a unique term in NF(D, >"D)' 
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The human specialist eliminates much reduridancy and recognizes 

many useful equality relations (mod ~) by keeping terms and formulas 

in an appropriate ~ -normal form while searching for a proof. 

Semantical abstraction refers to the strategy of initially out-

lining a proof based on high-level. semantically defined inferences 

(or lemmas). typically of the same form ( 131 C C) as the ori ginal 

problem statement. Having completed an outline. the specia l ist may 

then verify any questionable constituent inference by means of lower

level proofs. 

Subcase analysis involves postponing logical disjunctions in 

order to cons truct a "case by case" refutati on of C -i ncons i stent sets 

of unit clauses. In the contex{ of (i) and (ii). subcase analysis 

yields · e-resolution inferences of the form 

(3) 

where {qle ..... q e} . . n is an t -contradictory (§1.2.6) unit-clause set. 

It follows that 

(4) 

Recognizing a latent c-contradi ction {ql.··· ,qn} and "solving" for 

e is often a task at which the human specialist excels; he may even 

have developed efficient algorithms for this task. For example. e 
may axiomatize Integer Arithmetic (§D) or Ordered Fields. and the 

specialist may have developed fast algorithms for solving linear systems 

of equations and inequalities [8.37 ] or proving "limit-theorems" in

volving continuity [7 J. 
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Restricted use of axioms and theorems is exhibited by the above 

specialized procedures for the unit-clause sets {ql,···,qn}' as well 

as by constraints on which clauses may appear in the premises of ( 3) 

and which designated literals (qi) shall be selected from these clauses 

for the subcase analysis. For example, we may require that Bi v ~i not 

be (subsumed by) a clause of C"(i=l, .. ·.n) where e'!: E. leaving 

most of C to be represented algorithmically (by linear solvers. 

algebraic simplifiers, etc.) instead of axiomatically. 

Example. Suppose e 2 D< = D v {D5} : 

D5, [x t y] v [y t z] v [x < z] (Trans it i vity) 

Let the vocabulary V contain only {<.+,·,O,l} as extra-logical con

stants. Now D< has a feature common to many subsystems of interest: 

D< is a Horn system. It follows that each smallest latent D<

contradiction has the form {Pl'···.Pn-l'q} where Pi is positive and 

q is negative: p. must either be an equation [so = t.] or an ine-
1 1 1 

quality [si < tiJ· There is a very natural refinement ~D for 
< 

"basic" deductions (§2.2) which has the following features: 

(a) Each refutation in ~D has a decomposition into basic 
< 

deductions realizing D<-resolution inferences (3) where 

no axiom of D< occurs among the premises. 

(b) Each unit-clause set {ql,·.·,qn} has the above form 

{Pl···· ,Pn-l ,q} 

(c) In essence, D5 is used only implicitly in the transitivity 

rule: 
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{Av[s < t], Bv[u tv]} I-A8vB8 v[u t S] 8 

where 8 is a simplest unifier ( §2.2.l) for {t.v} , and 

s, t,u,v are in the above O-canonical form NF(O, :;p.o)' 

(d) Paramodulation is used only in the very res tricted form 

Rp(O, ~O) (§2.3.7). Generally speaking, only three kinds 

of replacement-inferences are allowed (stated in the unit 

clause case, for simplicity): 

(i) {[t=s],[x=x]} 1- [s=t] 

(ii) {[s=t],q[r]} 1- q[t8] 

where t to s 

where r = s 8 >0 t 8 

and [r] is a "left-most" occurrence of a "reducible" 

term r in the current set of squations (in 0 v 

{ql, .. ·,qn})· 

(iii) {[s=t],q[r]} f- q[t] where 8 is a simple s t unifier 

of {r,s} , t 8 to s , and each subterm of [ s=t] or 

q[r] is in NF(O, >0)' Moreover, each equation of 0 

is strictly or dered by >0' 

It follows by Theorem B (Corollary) in the Abstract that 60 contains 
< 

a refutation for each O<-inconsistent clause-set e wherein no clause 

contains more than one positive equation. (Thus, if C contains the 

"integer domain axi om" 

10. ([x·y f 0] v [x=O] v [y=O]) 

and C - IIDI i s D,. -consistent. then AD rnilfht conceivahl .y fllt.pr 
,,' 

out all refutations of e v 0< This is an open question.) 
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The present point, however, i s not the completeness of some 

systematically designed refinement for the problem-domai n of D< 

The point is t hat ~D is a natural refinement, ful l y representative 
< 

of at least one human ' s "expertise " at solving problems in this very 

simple domain. The fol l owing observation may facilitate an intuitive 

grasp of the kind of "effi c i ency" achi eved by thi s refi nement on its 

domain : 

Proposition. Let ([3 be a smallest set of constant c l auses i n 

the 

~D 
< 

vocabulary of D< ' none of wh i ch contains an equation, such t ha t 

contains a realization olJ(C) for a ~-reso l ution inference 

(1'31- C) . Then C and 

(J]. 

jY(C) are uniquely determined by ~D 
< 

rndi cati on of proof. ~D is actually a normal compos it i on 
< 

HR(D<'?'D's) • ~D5' ND(D'>D) (§2.4) where HR(D<''''''D's) defines a D<-

and 

resolution refinement, ~D5 restricts the use of D5 as in (c), and 

ND(D,>'D) restricts the use of equations in D 

Suppose that ~D conta i ns a realization ~JC) fo r ( d3 1- C), 
< 

with premi ses in d3 v D<v [ x=xJ and concl us i on C Then HR(D<.~, s ) 

requi res that d3 {Bl v Po"" , Bn_l v Pn-l' Bn v Pn} where 

{po'''·,Pn-l'Pn} is a D<-contradict i on, Pi is a maximal atom of 

Bi vPi (with respect to >D)' and s(BnvPn ) = Pn . Thus, the conclu-

sion C = (13 v ... vB ) 
o n is un i quely determined by the premises. 

Now it suffices to show that {P p -p} v D has a 
0"'" n-l' n < 

unique refutation 11 I in ND(D<,>'D) (because ~(C) is obtained by 

"embedding" such a refutation in CR v D ). 
< 
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Case 1: Pn is an equation [u=vJ. Then fIT [u;vJ, because 
< 

none of {Po"",Pn-l} is an equation (by assumption) and 

{Po"",Pn-l'Pn} is a minimal O<-contradi ction (by minimality of e ). 
Therefore n = 0 and 18 = {Bo v [u t vJ}. By definition of 

NO(D<,>o) and §C.5 it follows that ND(O<?o) contains a unique lL -
nonnal reduction from [u 1- vJ to an inequality [v' 1- v']; this is then 

refuted in it' by a Cut-inference ({[x=x],[v' 1- v']} /- 0). 

Case 2: P is an inequal i ty [u I v] . 
n 

It follows by minimal-

ity of 11 that J:J' contai ns n+ 1 unique 0 -normal reductions from . =< 

members of · {po"",Pn-l'Pn} to members of a set {[to<tl],· .. ,[tm_l < 

t m], [to f. tmJ}. (Thus, [u f. v] is reduced to [to f. t m] by replacement 

inferences based on equat i ons of O. As in Case 1, t. 
. 1 

is i rreduc-

ible with respect to the equations of 0 (i=O, ... ,m).) The completi on 

of the refutation has the form 

where ({[tk_l < t k], [to f. t k]} ~ [to f. t k_l ]) is realized by two 

(binary) Cut inferences, 
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[t 1 t k] ([x 1 y] v [y 1 z] v [x < z]) 
o~ 

[tk_l ~ y] v [y 1 t k] 

[to {. t k_l ] 

Uniqueness of t his completi on follows by 

( i) · minimality of ID (and hence {p p p-})' '0 o.···.n-l.n • 

(ii) the rule-like restriction (c) imposed on the use of 05 

by 6 D5 in 6D and 
. < 

(iii) the requirement (actually imposed by ND(O'~D)) that the 

premises of each Cut inference be irreducible with res-

pect to D. 

Thus. 1L' and hence (j) (C) are uniquely determined by 6D and 
< 

~. 

Remarks. 

1. There are at least (£!) alternative refutations of the set 

{ql'··· . qn} in Case 2, where £ is the total number of Replacement 

or Transitivity inferences contained in the unique refutation in AD 
< 

For we may think of this refutation abstractly as a "transitivity 

argument" (invol ving both < and =) which "extends" £ given rel ations 

(vo ~ vl,···,v£_l~v£ ) so as to "connect" Vo to v£ There are 

£ ways of choosing a pair {(vi _
l 
~ Vi)' (vi ~ vi +l )} so as to obtain 

(v i _l ~ vi +l ) and "eliminate Vi from consideration". The conclusion 

follows by induction on £ . A "uni form" refutation procedure us i ng no 
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refinement and a pure "breadth-first" search strategy could generate 

each of these (2!) deductions before finding the first complete refuta

tion. 

2. The "unique realization" property for O<-resolution infer

ences on constant clauses is "essentially" preserved at the general 

level. For example, given a system {[to < tlJ,· .• ,[tn_l < tnJ}v 

[x ~ x] where tn = to ' there would be at l east n disti nct refuta-

tions in b.O < 
one for each initia l transitivi ty inference 

1.1.4 How Can Heuristic Knowledge be Formalized? 

By heuristic knowledge about an axiom system e (or about 

~ ), I refer to that knowledge or skill which aids a deductive problem

solving system (human, mechanical, or hybrid) in the solution of 

"relative consequence problems" t8 It C • 

In the context of a basic schema for proof procedures (§1.3.5) 

I have isolated two logically independent parameters, a refinement and 

a search strategy «S) and (P) in Abstract), and have advocated the 

concept of an application environment (§l.l.l) as a basis for evalua

tion and comparison of refinements in terms of proof-procedure per-

formance (§B). 

The review of "structural" heuristic knowledge possessed by 

human specialists (§1.1.3) suggests a basic approach to the formalfza

tion of this knowledge in refinements. This approach should be hfer-

archical for several reasons: 
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(a) Structural heuristic knowledge about ~ is available at 

the non-effective. semantically defined level of c-
resolution inferences. whereas the refutation procedure 

operates at the (generally much lower) level of uniformly 

effective inferences with at most two premises. 

(b) The natural sub-problem of finding refutations for C
inconsistent unit-clause sets {ql.···.qn} ;s normally 

too complex to be structural ly refined by the human spec-

ialist in a single step. 

(c) If an effect i ve refinement can be expressed as a compos;-

tion (11 •...• 6 ). 6 of increasingly lower l eve l n O)l 

refinements obtained by a hierarchical design process. 

then it becomes feasib le to obtain strong resu l ts on per-

formance characteristics of (6 ..... 6 ). 6 (domain of 
n O)l 

completeness, expected effi ciency (§B). etc.) by a simpler 

analysis of 

(i) correspondi ng characteristics of the constituent re-

finements; and 

(ii) preservation of these characteristics under the "com

position" operation (.). 

These reasons correspond closely to several of D;jkstra's arguments in 

support of structured programming [18J. 

Structured programming. as evidenced by the quotation from 

Dijkstra (p. 33). is a hierarchical method for the specification of 

algorithms and the data structures upon which they operate [32J. The 

striking parallelism between the design-process for refinements 
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(Abstract) and the iterative process outlined by Dijkstra can be ex-

plained by viewing the refinement-design process as the data str ucture 

design component of a structured method fo r the specification of proof 

procedures. It seems appropriate to conclude this introducti on by 

outl i ning this larger process of which refinement-design is a part. 

The highest level in the structured programming of specialized 

proof procedures is exemplified by the refutation procedure ~~t 

specified in §1.3 .6. In essence , Ref has two free parameters or var i 

ables (in addition to its bound variable e ): 
~ , a refi nement of the set of deductions generated by a 

ca l culus r ; and 

~, representing a search strategy (actually a "fair en

queuing funct ion") for deciding which admis s ible in fe r-

ences to generate next in the current deduct i on from 

eve i n ~ . 

r'lerely by stipulating two ax i omat i c properties (finitary and fair) for 

~ and ~,we obtain a clean conceptual and functi onal separation of 

the structural knowledge ( ~ ) and the procedura l knowledge (Enq) com-

ponents of proof procedures. Th i s separation i s the bas i s of a simple 

compl et eness result for _R~t (P roposition 6) which tells us something 

useful about closure prope r tie s we should consider incorporating into 

the design of our refinement s (Propos i tion 5) . 

Now consider a normal re finement 6M' ~~ where 6M = 

("'( ~n ' ~n-l)' .... ~o) and ~ k is an tk-resolution refinement as 

in the Abstract. Recall that ~k is designed for the subproblem of 
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refuting systems {ql,···,qn} v (ek+l - Ck) where {ql,···,qn} is 

a latent ek+l-contradiction (k=n-l,···,O). Now it seems most natural 

to design a search strategy Ek for the purpose of "deciding which 

r: k-resolution inferences to generate next" in finding such a refuta

tion; similarly, for ~~ with a search strategy E~ (Ek and E~ 

being enqueuing functions). 

Using a composition operation (0) for search strategies outlined 

in §2.4, we obtain a "composite" search strategy EM for use with ~r1 

and a "normal" search strategy E • E 
M ~ 

for use wi th 

Thus the structured programming (or design) of a refutation pro

cedure begins with a procedure TI~ = Ref[~M/~' En/Enq] which computes 

deductions based on en-resolution. 

Suppose we have designed TIk+l = Ref[~k+l ,Ek+l ] • a refutation 

procedure based on ek+l-resolution inferences, where ~k+l = ~n if 

k+l = n and ~k+l = ("'(~n° ~n-l)'" ~k+l) otherwise. We realize 

TIk+l by a "more effective" procedure TIk based on ek-resolution 

inferences as follows: TIk = Rtl(~k+l 0 ~k' Ek+l 0 Ek). If k = 0 then 

we set TIM =df TI~ . 

Finally, we realize TIM by an effective refutation procedure 

TI' based on factoring, binary resolution and paramodulation in the ob
~ 

vious manner using ~~ and E 
~ 

In Dijkstra's words. 

We have described the program in terms of 
levels and each level contained "refinements" of 
entities that were assumed available in higher 
levels. These refinements were either dynamic 
refinements (algorithms) or static refinements 
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(data structures) to be understood by an 
. t h· 1 approprla e mac lne . 

The major data structures of a proof procedure are the deductions which 

it is allowed to compute (i.e., its "refinement") . The major algorithm 

is its enqueuing function. 

The structured programming of specialized proof procedures 'by 

the methods described above has not heretofore been described or in-

vestigated. The present investigation may be regarded as a contribu

tion to the largef task of designing useful proof procedures by struc

tured programming methods. 

1.2 Predicate Logic with Equality 

, A predicate logic is a certain kind of formal language with a 

semantics consisting of interpretations of the language into rela-

tional structures. These interpretations assign Boolean truth-values 

to each formula in the language. 

For concreteness, in the remainder of this report we shall be 

concerned with a first-order predicate logic having equality as a 

built-in logical concept. The following paragraphs summarize aspects 

of this logic which are relevant to the subsequent discussion of re-

finements. ['lore detailed treatments may be found in [19] and in 

lNotes on Structured Programming [1 8]. 
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1.2.1 First-order Vocabularies 

A first-order vocabulary is a set V having the following 

decomposition: 

VI - an infinite set of variables; 

V~ the set of operation constants of degree n V~ is the 
set of individual constants; 

V~ the set of relation constants of degree n 
set of propositional constants. 

VO is the R 

VL - {O,l ,<\"v,I\,3, 'v' ,=} representing falsity, truth, negation, 
disjunction, conjunction, existential quantification, 
universal quantification, and equality, respectively. 

Let VF = u{v~:n E: N} and VR = U{V~:n E: N} , where N 

is the set of natural numbers. Let VE = VF v VR . VE is the set of 

extra-logical constants. 

Metavariables will be used as follows: ~,~,y,~ for variables; 

~"",f for operation constants; f.,Q.,R,i for relation constants and =; 

and h for extra-logical constants and = • 

1.2.2 Terms 

The set ;j V of terms over V is the domain of a (totally) free 

algebra with generating set VI and operations indexed by VF . This 

free algebra is uniquely determined by an application 
n where f E: VF 

function which 

and t . .. t E: 1 ' , n assigns to each n+l-list f,tl,···,tn 

~V ' a unique object (ftl···tn) in Thus, ;t V is the srnall-

est set of objects such that 
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(i) VI vV~ ~ :tV 

(i 1) If f E V~ , n > 0 ,and t 1 , ... ,tn E :J V then 

(ft
1 

••• t
n

) E {/ V 

Notation. Metavariab1es ~,~,!,~,~ will vary over terms. 

(ft l ·· .tn) and f(t1 ,'" ,tn) will also denote ft1·· .tn . Moreover, 

if f E V~ then we may denote f by a commonly used infix operator 

(e.g., ..:) and denote ft1t2 by, e.g., (t1·t2) 

1.2.3 Formulas 

The application operation used for terms is assumed to be ex-

tended to .V R vV L in the manner described below, yielding a (totally) 

free partial algebra with domain ~V ' the formulas over V 

Atoms. The set aV of atomic formul as or atoms is the smallest 

set of objects such that 

(i) V~ sClV ; (Notice that the truth values 0 and 1 are 

not in Vo ) R • 

(ii) If PEv~,n70,and tl,···,tn E ;/v,then 

(Pt1···tn)E Qv 

(iii) [s=t] EfJ.:V for all s,t E;!V 

Infix notation may be used when P E V~ Thus, [s < t] denotes the 

inequality of sand t ,where < is a relation constant in V~. 

The set ~V of formulas is constructed from llv and VL in 

the familiar manner of [ 71 ]; free and bound variables are defined, 
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and the sentences ( ~v) are defined to be the formulas having no free 

variables. The definitions 

[A -+ B] =df ['UA vB] 

[A ++ B] =df [(A-+ B) ,,(B -+ A)] 

are assumed for convenience. The operation \;I of universal closure 

sendi ng .j V onto -'v is defi ned by 

V(B) =df \;Ix l ··· VXn B where xl'··· ,xn are the free variables 

of B in standard order; 

Metavariables iZ,j[,~,)1,(P will range over sets of formulas. 

For the purposes of this report we need only give a precise treatment 

of those formulas known in the literature as literals (tv) and 

clauses (eV) • 

The set ~v of literals consists of atoms and their comple

ments. The complement of an atom P is the formula 'Up. Metavari

ables p,ql, and sometimes r,s,t,u,v will vary over 'tv . 
Metavariables J,K,L,M will vary over subsets of tv If P is a 

binary relation constant (or ..:=...) then we define [s P t] by 

[s P t] = df 'U[s P t] 

Complementation is defined on ~v by 

if q E: aV ; 

if q = 'Up where p E: aV 



-21 -

A clause is either 0 (the empty clause), a literal (a unit 

clause), or a disjuncti on (ql v ... v qm) of m distinct literals. 

contains the literals q ,'" ,q 1 m (and no others), and 

q contains itsel f. Where context permits, A, B, C, and D may be 

restricted to range over eV without explicit mention. 

Convention. Except where otherwise indicated, the order of 

literals in clauses is ignored, and we treat (ql v··· v qn) as denoti ng 

the logically equivalent disjunction of ql ,'" ,qn in some standard 

order. The first literal of a clause A is called the designated 

literal of A. A v £ is the clause whose literals are those of A 

and p , and whose designated literal is p. This convention is essen

tial for the representation of occurrences in clauses (§1.2.4). 

[AvBJ =df the clause whose literals are those of A and those 
of B. 

Thus, [0 v AJ = A = [A v OJ and [P v PJ = P . 

[A - BJ df the cl ause whose 1 i tera 1 s are those of A 1 ess those 
of B 

A ~B =df every literal of A is a literal of B. 

A nonempty clause is positive if it contains only positive 

literals, and negative if it contains only negative literals. A non

positive clause is either empty or contains at least one negative 

1 iteral. 

Clauses A and Bare separated provided that the variables 

occurr ing in A are disjoint from those occurring in B (i.e., A 

and B share no va r iables). 
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A constant term, literal, or clause is one which contains no 

variables. 

1.2.4 Occurrences in Terms and Clauses 

An occurrence in a term or atom u is represented by a pair 

(u,a) where a is a position in u. Positions are lists of natural 

numbers. Metavariables ~,~,Y,i vary over positions, and denotes 

the concatenation operation. The empty list is denoted by * The 

occurrence of a term t at position a in u is defined formally by 

(t occurs in u at a) =df 

(u=t and a=*) ; or 

u = (hul···un), a = i"S, and 
t occurs in u. at S . 

. 1 

If a is a position in u, in the sense that some term t 

(or atom) occurs in u at a , then we denote t by ua . Formally, 

ua is defined by 

if a = * 

if u= (fu l ·· -un) and 
a = i"S 

The set of positions in a term or atom u constitutes a 

(finite) tree domain 0, characterized by the property that if 

a" JED then a E 0 and a "i E 0 (i =0 , ... ,j -1) . 
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An occurrence of u in a literal '" p at position a is 

represented by ("'p,a) where u occurs at a in the atom (p) of 

'" p. An occurrence of u inA v 9. at pos iti on a is repre-

sented by (A v 9.,a) where u occurs at a in q Thus, 

(A v 9.,*) represents the occurrence of the atom of the designated 

1 iteral q 

Notation. It is often convenient to implicitly designate an 

occurrence of a term or atom t by [tJ ,where [tJ has been used 

in a nearby expression denoting a term or clause. Thus, u[tJ is 

a term or literal with a designated occurrence [uJ at some unspeci

fied position; similarly, A v q[tJ is a clause with a designated 

occurrence [t] in its designated literal q[t]. 

1.2.5 Substitutions 

The instantiation of variables xl ,'" ,xn in a term of formula 

u by corresponding terms tl,···,tn is the result of simultaneously 

replacing each free occurrence of xi in u by ti' and is denoted 

u[tl/xl ,'" ,tn/xn]. The mapping 0: :Jvv Jv + J v \J.q, which carries 

out this instantiation operation is also denoted by [tl/xl ,··· ,tn/xn], 

and is called a substitution . 

Thus, the substitution 0 such that xio =: ti (i=l ,'" ,n) and 

yo = y for y ~ {Xl"" ,xn} is denoted by [tl/x l ,··· ,tn/xn] or, more 

succinctly, by [ti/xi : 1 ~ i .:s. n]. 0 is extended to terms, clauses, 

and clause-sets in the obvious manner: 

(i ) co = c , for 
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(iii) (Ptl···tn)a =df P(tla)···(tna), P E v~, n ~ 0 

(iv) ('Vp)a =df 'V(pa) 

(v) [q 1 v '" v qnJa = df [q 1 a v ... v qn a J 

(vi) d3a=df {Ba: BEtf3} 

Metavariables ~,~, ~ , ~ will vary over LV ' the set of 

substitutions on ;tV' The identity substitution is denoted by ~. 

(aoT) denotes the composition of a and T , defined by 

u(aoT) = (ua)T 

The substitution a such that x.a = t. (i=l , ... ,n) 
1 1 

and 

ya = y for y ¢ {xl'··· ,xn} is denoted by [tl/xl '···, tn/xn] , or 

[ti/xi : 1 ~ i ~ n] . 

A substitution n is invertible provided noe = E for some e. 

Each invertible substitution (other than E) is of the form 

[Xi/Xl'''' 'Xim/XmJ where (il'··· ,im) is a permutation of (1, ... ,m). 

Variants. Formulas Band Care variants provided Be = C 

for some invertible substitution e Similarly, substitutions a and 

Tare variants provided that ae = T for some invertible substitu

ti on e . 

(3'V =df {C: C is a variant of a member oflJ} 

Subsumption. A clause B subsumes a clause C provided that 

Ba ~ C for some substitution a; if C is not a variant of B 

then B properly subsumes C More generally, a formula B subsumes 

a formula C provided that Ba = C for some substitution a 
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Closure of a set a1 of formul as under instantiation is denoted 

by ~ : 

d3 * = df {B0: B E d3 (and o E L:V)} 

The constant closure of d] is denoted by lB+ 

(fJ + =df {B E @ * = B is a constant formula} 

1.2.6 Interpretations 

Given a nonempty set U , we extend V to a vocabulary V[U] 

by adjoining members of U as individual constants; V[U] is just 

like V in §l except for the facts that V[U]~ = 

is not necessarily disjoint from VI' The sets 

L:V[U] , etc., are defined by substituting V[U] 

definitions of :JV ,:tv' L:V ,etc .. 

V~vU and V[U]~ 

~V[U]' ;kV[U] , 

for V in the 

An interpretation for V (with domain U) is a mapping ¢ 

from V[U]E to elements of U , operations on U , and relations on 

U such that 

(a) ¢(u) E U if 0 
U E VI\.) VF 

(b) ¢(a) = a if a E U 

(c) ¢(P) E {O, l} ,if P 0 
E VR 

(d) ¢(h) = an operation or relation of degree n on U , 

if h E Vn 
E (n > 0) 

<p has a standard .extension to .1V[U] v.1V[U] defined as follows: 
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, otherwi se 

if <p (s) = <p (t) 

, otherwi se 

(h) cp (O) = 0 <p (l) = ; cp ('VA) = 1 - <p (A) ; cp (A" B) 

min( <p (A), <p (~)); <p (Av B) = max( <p (A), <p (B)) 

( : if <p (B[ c/ y J) = 1 
(i) <p ( 3y B) = 

, otherwise 

for some c E U 

{ : if <p (B[c/x]) = 1 
(j) <P( 'V xB) = 

, otherwi se 

for all c E U 

The set U is called the domain or the universe of individuals of <p , 

and is uniquely determined by <p 

A formula B is satisfied by <p (or true under cp ) provided 

that <p (B) = 1 ; otherwise B is falsified by <p . B is val i d under 

<p provided that <p (B8 ) = 1 for all 8 E LV[UJ ; otherwi se B is 

invalid under <p Notice that B is valid under <p iff 

<P(Vxl · .. VXnB) = , where xl'··· ,xn are the free vari ab 1 es of B. 

A formu l a B is satisfiable provided B is true under some 

inte r pretation; otherwi se B is unsatisfiable. B is valid provided 

that B is valid under every interpretation. B is consistent pro-

vided that B is valid under some interpretation; otherwise B is 

i ncons is tent. 

Examples. [x =xJ is valid. [x =yJ is valid under <p only 

if the domain of <p has a s ingle element. ([x t- yJ ,,[y = zJ) is 

satisfiable even though it is i nconsistent. 
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The preceding concepts extend naturally to sets of formulas. 

d3 i s satisfied by <p (and hence 13 is satisfiable) provided that 

<p satisfies each formula in 11 ; otherwise tS is falsified by <p 

~ i s valid under <p provided that each member of a9 is valid under 

<p ; otherwise ~ is invalid under <p. ~ is consistent provided that 

t1] is valid under some interpretation; otherwise (3 is inconsistent. 

Notice that consistency implies satisfiability, but not conversely. 

t, - i nterpretati ons are those i ntepreta ti ons under whi ch tis 

valid. 

Conventions. The preceding concepts are relativized to the 

class of C -interpretations by prefixing them with C -. Thus, til is 

C -satisfiable iff t8 is satisfied by an [-interpretation, and d3 is 

C -inconsistent iff (] is invalid under every e -interpretation. 

Subsequent concepts are defined relative to (normally consistent) 

sets When C is the empty set, the prefix is 

deleted. 

Latent e -contradictions. An £ -unsatisfiable set e is also 

referred to as an t -contradiction . A set e is a latent 

e -contradiction provided that lB a is an t:. -contradiction for some 

a E l.V 

Example. The set 13 = ([f(gx) t- xJ , [g(fx) = xJ} is incon

sistent because, if d3 were valid under some interpretation <p then 

[f(g(fx)) t- fx] would be true, whence [fx = fx] must be true, 

which is impossible. Since d3a is satisfiable for all a E l.V ' ag 
is not a latent contradiction. However, the pair ~ = {[f(gx) t- x], 

[g(fy) = y]} ~ a latent contradiction. 
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1.2.7 Logical and Relative Consequence 

The relation of logical consequence holds between sets of 

formulas and formulas: 

((3 F C) df Cis true under every interpretation whi ch 

satisfies d3 

(d3 1= [ 
C) =df C is true under every t- -interpretation 

which satisfies . a3 

(A 1= t B) = df {A} 1= r B 

1= t 
B =df { } ~ B 

((J 11 L df 03ft C for each C E: C 

It is easily verified that ifV(B) F C then 'V(({3) 1= V'(C). 

The following notation for 

be useful: 

g - eguiva1ence will occasionally 

(A f[1 B) =df A Fc Band B ~ A . 

Notice that if A H B thenV(Al H'(B) (That the converse is not 

true can be seen by taking A = (P(fx) v Py) , B = P(fx) .) 

An egua1 ity theory is a set C such that e = {B: ~ B} 

i.e., C is closed under logical consequence relative to itself. 

is axiomatizab1e provided that e = {B: { } ~ B} for some decidable 

set ~ , in which case we refer to ~ as an axiom system (for e. ) . 
Notice that for every equality theory e ,either e is valid 

under some i nterpretati on or e = ~v . 
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Completeness. A set 11 s;;tv is C -complete for a set e 5.;tV 

provided that either (j ~ C or e Ie '" C for each C E: e If 

c = Jv ' then (3 is simply C -complete. 

Remark. The usage of complete is compatible with, but more 

general than, traditional usages. In the present context, it is con

venient to be able to say that K is complete for it V (or e V) 

provi ded that ei ther K F p or K F "'P for every p E: .tv' 
Notice, incidentally, that no satisfiable set K ~ elv can be com

plete for {Vx(Px)} 

1.2.8 Models and Congruence Relations 

In this report, an t -model is an arbitrary t -satisfiable set 

of literals (either in JfV or in ~V[U]). 
A congruence relation on j V is an equivalence relation - on 

~V such that r == s implies u[r] == u[s] (u[w] E: d V)' It is 

easily verified that the intersection of an arbitrary set of congru

ence relations on ~V is also a congruence relation on ~V . 

Consequently, every set K S tv detenni nes a unique congruence 

relation =K defined by 

=K =df the smallest congruence relation == on ;;IV 

such that [s=tJ E: K implies s == t . 

=K is extended to ~v by 
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A K-derivation (from u to v) is a list u = uo•··· .un = v 

such that uk = vk[sk] and uk+l = vk[tk] where either [s k= tkJ E K 

or [tk= skJ E K (k=O.···.n-l) 

Congruence compactness lemma. u =K v iff there exists a 

K-derivati on from u to v Consequently. u =K v iff u =K' v 

for some finite set K' of equations in K. 

Proof. It is easily verified that the relation ~ . defined 

on .:J V by 

(u ~ v) =df there exists a K-derivation from u to v 

is a congruence relation with the property that [s=t] E Kimplies 

s ~ t 

Converse ly. let - be any congruence relation on ;tv such 

that [s=tJ E K implies s - t • and suppose u ~ v on the basis of 

the K-deri vati on u = u •... u = v (above) . Then u = vk[sk J o • n k 
= vk[tk] (k=O. · ·· .n-1) and hence u = v by transitivity. Thus. · 

~ = =K by minimality of =K· 

Model Characterization Lemma. M is satisfiable iff 

(ct ) u =M v implies [u t- v] t M and 

(8) p =M q and p E M implies q ¢ M . 

Proof Suppose cp sati sfies M. Define ~cp on :Jv by 

(u ~cp v) =df cp (u) = cp (v) 
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Then ~¢ is a congruen~e relation on ~V such that [s=tJ E M 

implies s ~¢ t ,whence ~M ~ ~¢' Now (a) holds because u =M v 

implies ¢(u) = ¢(v) ,whence [u t vJ ¢ M , and (6) holds similarly. 

where 

Conversely, (a) and (6) imply that M is satisfied by <PM ' 

(a) uM =df the first term v such that u =M v , according 

to some standard well ordering; 

P E ''1 

, P t M 

. {l , 
(d) ¢M(P)(ul ,'" ,un) = 

M M 0, 

(P E V~) ; 

if (Pv ···V ) E M 
1 m 

otherwise (PEV~). 

where ui =M vi 
( i = 1 , ... ,m) 

¢M is evidently an interpretation of V with domain ~M = {uM: 

UE.JV}· 

Model compactness lemma. Suppose K is unsatisfiable. Then 

some f inite subset of K is unsatisfiable. 

Proof. By the Model Characterization Lemma, one of the follow

ing cases must hold: 

Case 1: K contains an inequation [u t vJ such that 

u ~K v Then (by the Congruence Compactness Lemma) u =K' v for some 

finite subset K' of K , whence K' v {[u t vJ} is a finite unsat;s-

fiable subset of K . 
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Case 2: K contains p,q where p =K q. Then p =K' q for 

some finite subset K' of K, whence K' v {p,q} is a finite unsat-

isfiable subset of K. I 

An equality relation (on ~V) is a congruence relation = on 

:J V which is invariant under substitutions in the sense that u = v 

implies ue = ve (e € ~V) The relation =[' defined on ~V by 

(u =e v) =df ( ~ [u = v]) 

is easily seen to be an equality relation . 

Example. Let K = {[(x,y),z = x.(y.z)]} Then =K is the 

characteristic equality relation (associativity) for semigroups with 

operator· , whereas =K is a much smaller congruence relation on 

;J V in wh i ch, e. g ., (y • x) • Z FK y. (x· Z ) 

eral an equality relation. 

Thus, =K is not in gen~ 

Remark. It is easily shown that if K is a model then 
K 

1.2.9 Nonna 1 Fonns and Cl ause Representa ti ons 

An e -nonnal fonn for a set f-l of tenns and fonnul as is a de

cidable set c.nr;;flsuch that 

(i) if u € 'fI then there exists V € ~ such that u = v; 
C 

(i i) if A € 'II then there exists B € 'fl such that F( [A -- BJ 

If f! = ~v v~ then 11 is simply an C-nonnal fonn (for V). If 

u un i quely detennines v in (i) and A uniquely detennines B in 

(ii) then 'fl is an ('-canonical fonn for 'fI . 
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An ~-normal mapping is a computable partial function 

v' ~ V v.7v -.1y v YV such that 

( i) v (v (u )) = v (u ) fo r all u E Doma in (v) 

(i i) 

(; i i ) 

(; v) 

If v(A) 'I v(B) 

if A E Domain(v) then A 1-1 v(A) 
e 

if u E Domain{v) then u = e v (u ) 

Range (v ) is decidable, and i s therefore an 

form for Domain{v) 

implies v(A) 1:===::1 v(B) and v(u) 'I v{v) 
t 

u 'Ie v ,then v is an ~-canonical mapping . 

C -norma 1 

implies 

~ -normal forms and mappings are relevant to the design of re

finements for a problem-domain t(~ because it is desirable that only 

a small number of representat i ves of an ~-equivalence cl ass of formulas 

should be deri vable from given premises within the refinement. 

One application of these concepts is that every finite set C 
of formul as can be represented by a fi nHe set C of cl auses such that 

C* ~ e* ,where t«:) is a set of Skolem axioms of the form 
(((,) 

(2) 

where B is a formula containing only those extra-logical constants 

in C ve(r) and having free variables xl ,'" ,xn ,and f 3 

is a corresponding operation constant of degree n which does not 

occur in C It is easi ly shown that e is consistent iff 

lSee [71J for details of a si milar treatment of quantifier elim

ination. 
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It follows from (e * 1==1 C*) 
. etc) 

that 

~ is consistent iff ~ is consistent. The clause-representation 

mapping from e to e is a simple t( e)-normal mapping; it is 

clearly described in [54] . Since the calculi and refinements inves-

tigated in this report operate exclusively on clauses, it is unneces-

sary to define the mapping here. Clause representations for several 

famil i ar axiom systems are given in the appendices. 

1.3 Calculi, Refinements, and Proof Procedures 

1.3.1 Inferences 

An inference consists of a finite set of formulas called premises 

and another formula, the conclusion. We may think of an inference as 

an ordered pair (8,c) or as an asserted relation ((] f-- C). d3 v {C} 

is normally a set of clauses. 

An inference ( d3 f- C) is t -sound provi ded that V (d3) It C. 

An allegedly L -sound inference (~t- C) may be represented by the 

re 1 at i on ('if (Q.3) Il C) . 

Example. ({[x=y],Pa,'\,Pb} f- 0) is a sound inference because 

{\fxVy[x=y],Pa,'\,Pb} f= 0 . 

1.3.2 Calcul i 

A calculus is a set r of formulas and inferences. Normally the 

formulas are clauses and the inferences consists of clauses, and we say 

that r is a calculus over clauses. 

A r-axiom is a variant of a clause in r 
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The result of extending r to include members of 6L as 

axioms is denoted rEa]: 

r[ a] = df r va 

A r-inference is a "variant" of an inference in r 

U13 ~ e) = df (<1i'n ,en) E: r for some invertible n in f.V 

A r-theorem is either a r-axiom or the conclusion of a r-

infe rence whose premises are all r-theorems: 

Th(r) =df (){T: Ax(r) f T and, if d3 <;; T and ~lr e then 

e E: T } . ((B I r* e) = d f e t::Th (r [d3 J) . 

Soundness, completeness, and effectiveness are three basic 

characteristics of calculi. The following definitions are appropriate 

for clause-based refutation-oriented systems where universal quanti-

fication of free variables is implicit. 

hold: 

r is t-sound, or sound for I=~, provided that (i) and (ii) 

(i) If B E: Ax(r) then Ie \i (B) 

(i1) If (fj If e then 'v'(B) It e 
r . is C-complete, or refutation complete for It' ' provided 

tnat (iii) holds: 

(iii) If 'tf(C') '£0 then ~~*o 

r is e-adequate, or adequate for IZ' provided that r is 

e -sound and t -comp 1 ete. 

r is effective provided that the axioms and inferences of r 

constitute a decidable set. 
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1.3.3 Deductions 

. A deduction is a partially ordered clause-set J) = (lJ ,-<); 

J} is normally finite. 

if) is a refutation provided that 0 E JJ . 

The inferences in J1 are the pairs ({j,C) where e is the 

set of immediate predecessors of C in ~ . . 

o . 

( QJ fJ3 C) = df (((3 ,C) is an inference in j) 

The base of 12_ is the set of minimal clauses or premises of 

l3aseeJ2J = df {B E JJ: A :5 B impl ies A = B (A E JJ )} 

The conclusions of .J.[ are the maximal clauses of ~ 

Jj is a f-deduction (from <B ) provided that 

(i) Base(~) ~ qJ v Ax(r) ; and 

(ii) If (JJ' ~ C' then (fJ' If C' -.-i.e., each inference in 

= 
1) is a f-inference. 

A f-refutation of a1 is a f-deduction from ct? which contains 

A f-realization of an inference (t13 1- C) is a r-deduction J) 

fro m (J3 such that C is a conclusion of jJ . 

The ancestors of C in P- are the set J)(C) defined by 

J:J (C) = df {A ED : A:5 C}. 

The deduction iJ (C) = (~(C) ,-<) is an initial subdeduction of J) . 

If j) =~(C) then !J may be referred to as a proof tree; observe 

that Th(f) = {C: there exists a r-deduction ~ (C) from Ax(r)} . 
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More generally, a subdeducti on of .n = (oB ,c:) is a deducti on 

.13' = (:1:1',-<.') satisfying (i)-(iii): 

(i) Jj' f $!I; • 

(i i) If tB ~ C then 

(i i i ) If £8f=c and A c: C where A,C E iJ' then a~C 
£J rIiJ' 

A decomeosition of iJ is a collection { ~i (C i ) 
= i .::. n} of sub-

deductions of if 
= satisfying (i )-(iii): 

(i) tf = V{lr i(C i ): .::.. n} 

(i i ) Base (~ j (C j )) ~ Base (el' ) v {Ci : i < j} . 

( iii) If i < j then JJ. (C . ) f"I tS. (C .) c {C.} • 
1 1 J J - 1 

Thus, a decomposition of ~ breaks ~ up into a set of essentially 

disjoint subtrees. 

1.3.4 Refinements 

Let r be a calculus (over clauses). A (r-)refinement is a set 

6 of (finite r-deductions such that 

(i) 6 is decidable in rl ; and 

(ii) If .1}_ E 6 and £1_' is a subdeduction of if such that 

Base (11 ') t;; Base (j)) then .iJ' E 6 . 

6 may be complete relative to ~,a calculus, or another re

finement, each in an intuitively natural sense. Let 6 be a r-refine-

ment and let 6' be a r'-refinement. 

lOecidable ~ (or relative to) a set means (effectively)decid
able on the basis of the characteristic function of the set. 
r (e.g., c-resolution) need not be a decidable set of inferences. 
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~ is r -complete provided that if then 

~(ellCv [x=x]) contains a refutation, where 

~ ( d]) = df {~ E ~: Base C~ ) s ~ "'} 

~ is f-complete provided that if elr *O then ~(evAx(f» 

contains a refutation . 

~ . is (weakly) ~ '-complete provided that if ~ '(e) contains a 

refutation then so does Me) . 

~ is strongly ~'-complete provided that if 6 '(~) contains a 

refutation then so does ~ (8) I' ~ '(d3). 

~ and ~' are compatible provided that ~ is strongly ~' 

complete and ~' is strongly ~-comp l ete: 

Proposition 1. If ~ and ~ ' are compatible and either ~ 

or ~ , . is t - complete , then ~ ,, ~l is also t -complete . 

r-Closure completeness . There is another completeness concept 

for refinements which turns out to be quite useful in their formal 

analysis. Given a f - refinement ~ ,define ~- , the closure of ~ by 

~ df {J': £) i s a (possibly infinite) deduction such that 

for each fi ni te subdeducti on .lJ' of £5 where 

Base (.t:5 ') 5 Base (,v) , [J' E ~ } 

A deduction Jj is complete in ~-(d3) provided that either 0 E J1 or 

d9 i s a maximal member of ~-(d1) (with respect to the subdeduction 

relation) . 

Definition 2. A f-refinement ~ is f-closure complete provided 

that if d9 is f-refutable then each complete deduction in 
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Ll-(a] v Ax(r)) contains 0(([3 Sev)' 

Proposition 3. Suppose that r is t~adequate and Ll is 

r-closure complete. Then (3 is C-consistent iff some complete deduc

tion in Ll-((8 v Ax(r)) fails to contain 0 . 

The proof is straightforward. 

1.3.5 Refutation Procedures 

Intuitively, we think of a refutation procedure rr for ~ 

r-refinement Ll as a procedure which, when given a (finite) clause-set 

13 , iteratively computes a sequence (.t1'k: kEN) of finite deductions 

in Ll(t/3 vAx(r)) such that 

(i) iJk is a subdeduction of ~k+l (k EN); 

( ii) if Pf'+ l =J5. then JJ'+k = fJ. (kEN) and ~J J J J 

(iii) if 0 E.t:J. then 5) '+1 = S .. 
J J J 

If Jrj +l = ~j for some j then we say that rr( e) terminates, and 

we set rrC C ) = l:J j where _.1) j+ 1 = J) j . Otherwi se, we defi ne n (C ) 

to be the limit of (JJ;= iEN), which is the deduction II = (ciJ,"") 

in Ll-(6 Vflx(r)) (§l.3.4) defined by 

Jj df v{.B i : i EN} and 

-< = df V { -< i: i EN} 

The following definition is motivated by this intuitive concept: 

Definition 4. A refutation procedure for (r,Ll) is a total 

function r from finite clause-sets to r-deductions in Ll such that 

(i) II ( e) E Ll - ((IJ v Ax (r)) ; 
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(i i) if 0 E II ( t3) then II (d3) is fi n ite ; 

(ii i) {(qJ ,II(<B)): II(d)) E lI } is computable. 

II is complete (for (r,lI)) provided that, in addition to (i)-(iii), 

(iv) II(I8) is a complete deduction in I:c. -(d] v Ax(r)). 

II is e-complete provided that, in addition to (i)-(iii), 

(v) If C8 is e-inconsistent then 0 E II(B). 

Proposition 5. Suppose that II is a complete refutation pro

cedure for (r ,I:c.), where r is an e -adequate cal cul us and I:c. is 

r-closure complete. Then 0 E II(d3) iff \I(~) It 0 ,and II may be 

viewed as a partial decision procedure for CO-inconsistency on the 

basis of the following classification of II (~): 

Decided: I1(B) is finite, whence 8 is e-inconsistent iff 

OEII(d3). 

Undecided: II(dS) is infinite, whence d3 is e-consistent. 

Proof. Suppose 0 E II( d3 ). Then \f(~) ~ 0 by ('-soundness 

of r and the fact that II(l8) is a r-deduction from 6 "" , and 11(6) 

is finite by definition of II . 

Now suppose 0 t II (6 ) . Then tf] is not r-refutab 1 e, because 

J.l(dJ) isa complete deduction in lI -(dg vAx(r)). Thus, dJ is t-con-

sistent by ~-completeness of r If II((j) is finite thenc-consis-

tency of . t1 has been veri fi ed "effecti ve 1 y" rather than "i n the 1 imit" .. 

Remark. Suppose that r is 8-adequate and IT is a refutation 

procedure for (r, lI ). Then in the absence of further conditions on II 
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and ~ , we can only use IT as a partial verification procedure for 

e -inconsistency: if 0 E IT(tB) then IT(~) is finite and IE is t'

inconsistent ; otherwise tB mayor may not be t'-inconsistent. 

1.3.6 A Complete Refutation Procedure 

Consider the intuitive model of a refutation procedure in (r,~ ) 

used to motivate Definition 4 in §1.3.5. Evidently, the behavior of II 

in computing (tJ i: i EN) is a function of three more or less independent 

parameters (in addition to the set of premises): 

(a. ) a set r of axioms (e= Ax(r)); 

(S) a r-refinement ~ ; 

(y) a search strategy, which selects the inferences to be gen

. erated next in obtaining jJ k+1 from ~k . 

The proof procedure _Ref below represents (S) by a "reso 1 vi ng 
• 

function" and (y ) by an "enqueuing function". 

A resolving function for ( r , ~ ) (or for ~ ) is a function Res 

which, given a clause A and a deduction l1 in ~ , computes a set 

Res (A,~) where 

Res(A,.El)'" = {C: dS v iA} fr C where ~ ~5J ,and the deduction 

:u I , obtained by adding (dS v {A} If' C) to _J) , 

is in ~ } . 

Notation. Res~ will denote the (essentially unique) resolving 

function for ~ . (r is used only to simp1 ify the description of Res 

above: Res~ is essentially determined by ~ .) 

~ is finitary provided that Res(A,~) is finite C~ E 6, 

A E Cv). 
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Engueuing Functions. A gueue over ev is a pair (Q,Enq) where 

Q is a (finite or infinite) sequence in ev and Enq is an "enqueuing 

function" (over ev)' Let Seq( Cv) be the class of all sequences 

(finite or infinite) of clauses (Cv)' and let Set( tv) . be the class 

of all finite sets of clauses. An enqueuing function is a computable 

functional Enq: Seq( e
V

) x Set( e
V

) ,.. Seq( C'v) satisfying (i) and (i i) 

for each pair (Q,T) in Seq( eV) x Set( ~): 

(i) {Enq (Q, T) (k): k E Doma in (Enq (Q, T))} = {Q (k): k E Doma in (Q)} v T . 

(i i ) If Q (k) t C (k£ Doma in (Q)) and Enq (Q, T) (i) = Enq (Q, T) (j ) 

then i=j 

We say that Enq is fair, or that Enq implements fair scheduling, 

provided that in addition to (i) and (ii), 

(iii) For any sequence Q in Seq( fJ V)' any clause C in Q , and 

any class {Ti: i E N} .= Set( CV)' C is the first clause of 

some sequence Qi in {Qk: kEN} , where Qo = Q and Qk+l 

is defined from Qk by 

where Qk is the result of deleting the first element 

(Qk(O)) from Qk . 

Remark. If Enq is fair then rio element will "remain in the 

queue (Q) forever" during a computational process which alternately re

moves the next (fi rs t) element of the queue and "enqueues a fi nite set 

of (new) elements" by means of Enq . 
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Bound parameters of Ref consist of e, a constant parameter of 

type Set ( e V) . e is the set of premi ses from wh i ch Ref a ttempts to 

derive a f-refutation. 

Free parameters of Ref. consist of ~, 6., and ~ 

e: a set of axioms ; 

6.: a finitary (f- )refinement (where Ax(r) = ~). 

Eng: · a fair enqueuing function over clauses. 

State variables of Ref consist of ~, E, ~, 1: 

.Q.: a variable over Seq( ev) 
R: (R'<R)' a variable over (finite) deductions in 6. 

A: a variable over e V ; and 

T a variable over Set( e V) . 

liow Ref is defi ned on Set ( ~v) by 

.Ref(C) =df[Q: = Enq(Enq(Nil,e),C) 

R = (0 0) . 
= ' , 

Result: If Q = 1m 

then R 

else [Next(A,Q) 

Subsume(A,E) ; 

If A = 0 

then E 

else [Res6.(A,E,T) 

Q: = Enq(Q,T) 

Result JJJ 
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Notes on operation. Evaluation of Ref(C) detennines a com

putation sequence · ((Qi ,11i): i E: N) as follows: 

1. Qo = a bijective sequence onto 

2. 1<"0 (0,0), the empty deduction. 

3. If Ok = Nil then l~k+Q, = Qk and ~+Q, = ~ (Q, E: ii); other

wise Qk+l and Rk+1 are defined in steps 4-9 below. 

4. ~ext (A,Q) sets ~ = Qk(O), the first element of Qk ' and 

sets Q = (Qk (i+ 1): i E: i~). 

o. Subsume(A,R) normally inserts A in .B., thereby defining 

Rk+1 = Rk v {A}. However, this operation may delete A from .B. if 

A is subsumed by a member of Rk- {A} , and it may delete clauses of 

Rk - {A} subsumed by A. 

6. If A = 0 then a refutati on has been found: 1 et QkH Qk, 

~+Q, = (Rk+1 '<k) (Q,E N). Otherwise continue with steps 7-9. 

7. Res~(~,1i,I) sets I = Res~(A,1i) (as in the definition of 

resolving function) and extends <k to '""k+1 in order to include mem

Ders of T - Rk+l ' which will subsequently be selected from ~. 

8. Q: = Eng(Q,T) inserts the clauses of T into ~, defining 

9. The recursive conditional expression labeled Result is now 

t:!val uated wi th (!l,B) = (Qk+ 1 ,lik+ 1) , as descri bed inSteps 3-8. 

Proposition 0. Suppose Subsume(A,B) simply inserts A into R. 

Tnen li,~f is a complete refutation procedure for (r , ~ ). 

Proof. Suppose the contrary: Ref(C) is not a complete deduc

tion in ~-(e v Ax(r)). Then it is easily verified that 0 ¢ Ref(C) 
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and Ref(e) is infinite. Let ill be a member of t,-( C vAx(r)) 

such that Ref( e) is a proper subdeducti on of [) I = (:J I, 0( I ) , 

whence l:J I - Ref(t') 1 0 It follows that lJl - Ref(e) contains a 

clause C which is minimal with respect to ~I C is not in 

(e v Ax(r))"" due to the initialization of Q and the assumption that 

Enq is fair. Therefore 

c . Let tfJ = {A.} v f8 I 

J 

tlJ 1- C , where II £ Ref(e) by minimality of 
'/:)1 

where Aj is the last clause of tf) to be 

transferred from .Q. into R. We claim that C E Qj+l --i.e., that 

C Res(Aj,Rj) (where the transfer of Aj to .Q. occurs when .Q. = Qk)' 

Indeed, (Rj v {C}' <.1) is a finite subdeduction of /)1 and is there

fore in t,(e v Ax(r)) by the definitions of t, and refinement. It 

follows (by the assumption on Enq) that C E Ref( e), a contradiction. 

Discussion. The procedure Ref shows how easily the proof

structuring aspects (t,) of a refutation procedure can be separated from 

the proof-search aspects (Enq). The fairness constraint on Enq is the 

mildest constraint one could reasonably expect; it merely excludes the 

pitfalls of pure depth-first search. It is easily shown that Ref is 

also irredundant in the sense that it generates each proof-tree in 

t,( eve) only once. The el irnination of redundancy due to subsurnption 

relations among clauses in £ is easily handled by letting Subsume 

delete certain subsumed clauses of R v {A} ; this is illustrated by a 

closure-computation procedure for reduction systems in §3. A refuta-

tion search illustration in §D is based on a simulation of R,eJ( e) 

with appropriate choices of Enq, A , .~ubsume, and e In genera 1 , 

it can be said that .~t is an appropriate refutation procedure for 

use with f-closure complete refinements (Proposition 5). 
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1.3.7 Analysis of Resolution-Based Deductions 

A resolution-based deduction is one which is generated by a 

resolution-based calculus (for e ), whose inferences are all required 

to be generalized t:-resolution inferences (below). Each calculus in-

vestigated in §2 is resolution-based. 

There is a small class of basic relations and transformations on 

resolution-based deductions which is so frequently useful in the design 

or analysis of refinements that it deserves to be treated as a part of 

the basic theory of proof procedures rather than as a part of the solu-

tion to some particular design problem. Some of these relations and 

transformations are described below so as to avoid duplication of effort 

in §2. 

A generalized t-resolution inference has the form 

where 

(i) C· cB· (i=O ... n-l)· ,-, " , ' 

(ii) {Ci e: i < n} 1= cne ; 

(iii) e·e = e ; and 

(i v) if x does not occur in {c.: i< n} 
1 -

then xe = x 

{Ci : i < n} is the kernel of (3), Cn the residual of (3), and e the 

induced substitution of (3). 

Convention. While the kernel, residual, and induced substitution 

of (3) are not in general uniquely determined by (3), an appropriate 

choice function will often be tacitly employed to select a unique kernel, 

residual, and induced substitution for each generalized l-resolution 



-47-

inference. 

Remarks 

1 . Each inference (3) is e -sound; for suppose <p is an t:
interpretati on wherein Bi is valid (i=O, · ··,n-l). Then <p (B i8) = 1 

(i=O, · · · ,n-l). Suppose 4> «Bi - Ci )8 ) = ° (i=O, . . . ,n-l). Then 

<P (Cj 8) = 1 (i=O, ... ,n-l), whence <p (Cn8) = due to (ii). and the con-

clusion of (3) is true under <p . 

2. Generalized (-resolution inferences relativize to e the 

generalized resolution principle of Robinson [67J. 

3. Condit i ons (iii) and (iv) can be imposed without loss of gen-

erality provided that 8 is a m.g.s . u. of some collection of sets of 

terms occurring in {Ci : i ~ n} , which is normally the case. 

Descendants. For each r-deduction ~, the relation of descen

dants is the smallest refl exive and transitive relation on occurrences 

of atoms in clauses of tJ such that for each inference (3) in II 

each occurrence where 

(C v ~,*) in the conclusion. 

q E B. - C· 
1 1 

Ancestor is the converse of descendant. 

has a descendant 

The transformations on f -deductions described below do not always 

yield r-deductions. However, most of them do provided that r satis

fies the following: 

Assumption 1. r is a resolution-based calculus for Fe such 

that Fe Ax(r) and, for each r-inference ( <B ~ C) with kernel {C i : i < n}, 

residual Cn ' and induced substitution 8 , conditions (v)-(viii) hold: 
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(v) ell 'r Cll for each invertible substitution 11 , and this 

inference has kernel {Cill: i < n} , residual Cnll, and 

induced substitution 11- 1 • e'll . 

(vi) {Ci : i < n} fr Cne, and this inference has kernel {C i : i < n}, 

residual Cn ' and induced substitution e 

(vi i ) {A. v C
1
·: i < n} ~ {A v·.·vA) 8 v C 8 

1 ron n 

(viii) If 8 divides T then {CiT: i < n} fr CnT 

Remark. If r satisfies Assumption 1 then r is generated from 

the set of "kernel" r-i nferences (vi). Each reso 1 uti on-based ca 1 cul us 

defined in §2 is representable as a refinement of a calculus satisfying 

Assumption 1. In future .developments it may be useful to incorporate 

this assumption into the definition of resolution-based so as to avoid 

overlapping functions of calculi and refinements in research on proof 

procedures. 

A unit deduction is a deduction .fJ such that J) s tv. The 

embedding transformation defined below is useful for defining refinements 

in terms of classes of unit r-deductions. 

Embeddings. The embedding of ({Bi : i < n} fr C) (satisfying (1)-

(iv)) in 

((Ao v 13
0

) 

{Ai v Bi : i < n} is the (c -sound) inference 

- Co) e v··· v ({An 1 v 13 1) - C 1) e v C 8 . - n- n- n 

({A.vB.: i < n} f-
1 1 

Whether or not this 

is a r-i nference depends upon the choi ce of Ao'··· ,A
n

_l . (In any case, 

the embedding of the "kernel inference" (vi) in {B i : i < n} is the r

inference {{ Bi : i < n} ry C). Let /)~ ' be a r-deducti on from {B( i < n} , 

and let t8 = {Ai v Bi : i < n}. The embedding of iI' in d3 is defined 
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on the basis of the r-inference embedding by induction on the number of 

inferences in tll_ o. If JJ 0 conta i ns no inferences then the embeddi ng 

is just (18,0). Suppose 51 0 contains an initial inference (61 If cpo 
Let (8 1 1- Cl ) be the embedding of (6i fr Cp in tB (or in 

{Ai vB;: B'E~~}) 1 1 
, and 1 et JJo 

~l be the result of deleting ( 6 1 If C1) 
from jJ 0 (so that Ci e:Base (~ p ) . Let (f 1 = $ v {Cl} , and com-

plete the embedding $1 of JJo 
~l · 

in (Jl Let lJ be the result of 

prefi xing the embedded inference (@l 1- Cl ) to 111 fJ is the 

embeddi ng of ;Jf 0 in (J . Aga in, whether or not jJ is a r -deducti on 

depends upon the choice of (Ai: i < n). 

Ground deductions. A ground r-inference is one whose induced 

substitution is E , the identity substitution. A ground r-deduction 

is one whose constituent r -inferences are all ground r-inferences. If 

£) (C) is a ground r-deduction based on d3 , then I1J 1£ C . 

General deductions. A r-deduction if is general provided that 

it satisfies (i) and (ii): 

(i) If Band C are two clauses of J} which share a vari

able, then either B E J7(C) or C E .,E)(B) . (Thus, if 

(i i) 

~ 1- C then e is separated.) 
Jf 

If (~. 1--- C.) has induced substitution 8
1
·(i=1,2 ) and 

1 tJ 1 

Cl t C2 then either X8 1 = x or x82 = x (x E VI)' 

Composite substitutions. Let.fj be a general r-deduction. and 

let (8 i: i <n) be a list of all the induced substitutions ordered so 

that if 8i 

tBJ· ~ C. 
iJ J 

is induced by (~. 1- C.) and 8
J
· is induced by 

1 JJ 1 

where Ci EJ)(Cj ) then - i 5. j. The composite substitution 
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Proposition 7. 0J1 is well defined, and 8k divides 0l' 

(k =0 , •.. , n - 1 ) . = 

The proof is based on the simple observation that if i; j then 

either x8· = x or 
1 

x8 · = x 
J 

(because l1 is general) . 

Instantiation of f-deductions . Let JJ be-a ground or -general 

f-deduction (17,~), and suppose that the induced substitution for each 

inference in ~ di vi des o . Then 120 , the i nstant i ati on of .f} by 

o , is the deduction (J1o ,~) where Ao~o Bo iff A < Band 

Ao ; Bo . The following property of instantiation is easily verified: 

Proposition 8. If £) is a general f -deduction where f sat-

isfies Assumption 1, then l1 cr is a ground f -deduction. 
== eJ 

1.3.8 Liftable Calculi and Refinements 

The branches in a deduction J) = (J1,~) are the maximal chains 

in « f\ (~xS)). A branch mapping (for iJ , or for (cfJ, a)) is a 

mapping TI from the branches of ~ into a clause-set Cl such that 

(i) TI (d3) subsumes the initial (-<-minimal) element of f8 ; and 

(ii) if TI(~ 1) shares any variables with TI ( qJ 2) then 

C8 l = rg2 

Tnus, the image of TI in a is a separated set of clauses. 

Let f be a resolution-based calculus for C r is liftable 

provi ded that if {B! : 
1 

i < n} ~ C' and {B i : i < n} is a separated 

clause-set such that Bi subsumes B! 
1 

(i=O, ... ,n-l), either B· 
J 

sub-

sumes C' where j < n , or {B;= i < n} 1-f C where C subsumes C' 
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r-liftings. Let r be a liftable calculus, and let ~, be a 

r -deducti on. Let IT be a branch mappi ng for f['. A r-l ifti ng if 

of Jj' is obtained from CZ' ,IT) by induction on the number of infer

ences in !J ' , as fo 11 ows . 

Suppose _~_ , contains no inferences. Then the trivial deduc

tion ({IT{B'}: 8' EBase(ot1'),<) is a r - lifting of if' 
= 

Suppose a' ~, C' where 0-' = {A!: i < n} 
1 

result of deleting this inference inference. Let 

Let .8'.1 be the 

U3;: i < Q,} be 

the set of branches in if' which contain C', and let {JT(6 i ): i < n} 

= {Ai : i < n} where Ai subsumes Ai and IT ( 6 j ) = Ai for some j 

such that Ai E (lj v Base(~') (i=O,···,n- l ). 

Case 1: 

branches of ~-1 

A. 
J 

by 

subsumes C' where j < n 

if C' E ({i 

, otherwi se. 

Define lT l 

Let ~l be a r-lifting of t1Ji (us i ng lTl)' and let £f = 05:1 . 

on the 

Case 2: Ai does not subsume C' (i=O,···,n - l). It follows 

oyliftabilityof r that {Ai: i < n} IrC where C subsumes C'. 

Suppose without loss of generality that C shares no variables with 

other clauses of a, and let Q l = av {C}. Define lTl on 

branches of ~. 1 by 

if C' E tB 
, otherwi se . 
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Let .8'1 be a TIl-lifting of .Bi (using induction), and let IL 
be the result of prefixing ({Ai: i < n} lye) to B. 

Remark. While the induced substitutions in the inferences of 

Jlare not mentioned explicitly, we may assume without loss of gen

era 1 ity (on the bas is of § 1. 3.7) that It _ is genera 1. (Property (i i) 

of 7Tjustifies this assumption.) Thus, we have the following : 

Proposition 9. Suppose that r is liftable and ~_ ' is a 

r-deduction. let 7T be a branch-mapping for C~"ct). Then each 

r-lifting J) of if, obtained from cE!', 7T ) is a general r-deduc

tion iJ such that Base(cVJ.£ a and each conclusion of iJ' is 

subsumed by a conclusion of il . 

let ~ be a r-refinement where r is liftable. ~ is 

liftable provided that for each ground refutation l1_' in ~ and each 

branch-mappi ng 7T for ~' , some r-l i fti ng of JJ' based on (If', 7T) 

also i n ~; ~ is strongly liftable provided that ~ contains each 

r-l ifting of ~, based on (iJ' ,rr). 

Liftability results for calculi and refinements can be very 

useful in the derivation of completeness results (§3). 
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2. PROBLEM SOLUTION 

The purpose of this chapter is to define a class of normal 

refinements which can be designed hierarchically, and to show how this 

design process relates to the structured programming of specialized 

proof procedures. 

In addition to r-refinement (§1.3.4), two related concepts will 

be useful in the overview which follows. A r-macro-refinement is a 

r-refinement AM such that for some "higher level" calculus rl~' each 

refutation in AM has a decomposition into real izations of r N-infer

ences. A r-micro-refinement is a rj.1-refinement Aj.1 wherein each 

refutation has a decomposition into realizations of r-inferences. (ru 
is a "lower level" calculus than r .) 

Thus, if e ¢. tv then a norma 1 refi nement AM' Aj.1 for Cis 

a composition (§2.4.1) of a resolution macro-refinement AM with a 

resolution micro-refinement Au . Resolution is the calculus which ad

* mits '-resolution inferences (Abstract, or §2.l.l) where e S[x=xJ. 

~-resolution refinements are the topic of §2.1. Hyper-£

resolution is the higher-level calculus for an e -resolution macro

refinement HR(C ,r,s) (§2.l.2). A useful lifting transformation on 

t -resolution deductions is described in §1.3.8 This transformation 

takes a ground (c-resolution) deduction ~' , and a clause-set (/J 

such that each member of Basel~_ ') is subsumed by a corresponding 

member of tB ,and produces a general deduction ,f) such that each 

conclusion of 11_' is subsumed by a conclusion of J) 
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The investigation of resolution micro-refinements begins in §2.2 

with the definition of a basic calcu l us f S based on the following 

axiom and rules : 

(i) Simple reflexivity: [x=x] ; 

(ii) Simple factoring (SF), a restri cted form of factoring 

(iii) Replacement (Rp), a restricted form of paramodulation 

(iv) Cut, a restricted form of binary (or pairwise) resolution. 

A normal deduction is a basic deduction J1 wherein SF is not 

applied to conclusions of Rp-inferences; if C is a conclusion of a 

binary resolution inference in I:L then .iJ(C) is uniquely decompos-

able into realizations of resolution inferences. Each normal refinement 

(below) is a subset of the normal deductions. 

The .sole function of a resolution micro-refinement 6~ is to 

speci fy, for each resolution inference ( 1 ), a set of admissible f -
~ 

realizations. In the case of normal refinements, fp = fS and 6~ is 

defined from the unit fS-deductions in 6~ by means of a normal embed

ding transformation (§2.2 . 3) . 

The class ND( t ,>-) of ~-normal deductions (§2.3.8) exemplifies 

the above remarks on 6 
]l 

Each unit ~-normal deduction has a decom-

position into _~_-normal reductions and highly restricted Rp or Cut 

inferences. An t -normal reduction reduces a literal p to a literal 

q by a chain of (ground) Rp- inferences based on equations (s a = t a ) 

in e* such that s6 ~ t 6 The restrictions on Rp and Cut are essen-

tially that the (unit) premises must be irreducible with respect to 

( t ,>-). 
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Subsequent completeness results (§3.2) requi re that ;>- be an 

t'-complexity ordering for some set C' of equations in c --i.e.,~ 
is a decidable monotone (§2.3.2) partial order on ~ V which is pre

served under certain " e'-normal" substitutions and which well-orders 

constant terms. 

Normal compositions of refinements are defined in §2.4.1. Given 

an e -reso 1 uti on refi nement 6 and an l" -resol uti on ref i nement 6' 

where rt V 1- t::;) t, , 6· 6' is an e' -reso 1 uti on refi nement wherei n 

each refutation has a decomposition {~i(C i ): i < n}such that P,i (C i ) 

realizes an t -resolution inference (a5 i f- Ci ) (i .s.. n) , 

. {d3 i /- Ci : i .s.. n} defines a r efutation in 6 , and lJi(C i ) is obtained 

by embedding (§1.3 . 7) a unit t'-resolution refutation which is in 6' 

(i .s.. n). If 6M is a resolution refinement (§2.1.l) and 6]1 is a 

normal resolution micro-refinement, then 6M· 6]1 is defined similarly. 

A normal refinement (for t) is an t'-resolution micro-refinement 

6M · 6]1 where 6M is a resolution refinement and 6]1 is a reso l ution 

micro-refinement. Normally 6M = ( • • • (6n · 6n_l)··· 6
0

) where 6k is an 

e k-resol uti on refinement, e 2 tn => • •• J to and to c; tv· 
A normal refutation procedure (for f:f ) is one whose search space 

is a normal refinement (for e ). The clause representation and Level 

function in §2.4.2, based on an analysis of ancestors of atoms occurring 

in members of ll.M· 6 , makes it clear that 6 · 6 can be efficiently . ]1 M ]l 

incorporated into the design of a normal refutation procedure for ~ 

Moreover, an intuit i ve description of a search strategy for use with 

6M· 6]1 is given in terms of search strategies En ,···,E
O

,E]1 , under the 

assumption that Ek is characterized by a cost function on deductions 

and a heuristic "cost of completion" estimator. 
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2.1 ~-resolution Refinements 

2.1.1 · t -resolution 

An (-resolution inference is a generalized t'-resolution infer-

ence 

where 

(v) q . E C· c: B· v q. ( i =0 , ... , n - 1) ; 
1 1 - 1 1 

(vi) Ci 6 = {qi6} (i=O,···,n-l) ; and 

(vii) {qi6: i<n} is C-contradictory. 

Thus, the kernel of (1 ) is {C i : i < n} , and the residual of (1 ) is 0 

(§L3 . 7). Equivalently, we can define an c-resolution inference to be 

an inference 

{Bi v qi: i < n} 1- C (2 ) 

where (Bo- qo)6 v··· v (Bn- l - qn_l)6 2 C~· (Bo6-qo6)V ... v(Bn_16-

qn-16) , {qi6: i <n} is € -contradictory, and 6 satisfies (iii) and 

(iv) in §L3.7 with Ci = C()(B i - qi) 6 (i=O,···,n-l). The conclusion 

C is an e-resolvent of any set which includes the premises. 

An t -resolution inference (2) is t -pure provided that it satis

fies (i)- (iv): 

(i) oBi v qi is not subsumed by any clause in dJ v[x=xJ. 

(ii) Bi vqi shares no variaoles with Bj v qj (O.s. i < j < n). 
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(iii) If (Bi V.9.;) subsumes (B j V.9.j) then (B; V.9.i)11 and (B j v qj) 

are variants (; .e., (B; v Sli)11 = Bj v Slj where 11 is in

vertible) CO 2. i < j < n). 

(iv) C is not a tautology and is not subsumed by any clause in 

{B i v qi: i < n} u [x=x]. 

t-resolution refers either to the calculus which consists of all 

t-resolution inferences (no axioms), or else to the class of all t;

reso 1 uti on deducti ons. Thus, an S -reso 1 uti on refi nement is defi ned as 

in §1.3. (See Remark 2 below, and Footnote 1. in §1.3). 

* Convention. If C 5:" [x=x] then we drop the prefix t - . 

Remarks. 

1 . ~-resolution is not in general decidable. (If C axiomatizes . 

Group Theory and ~ is infinite, then cS-resolution is undecidable by 

the undecidability of the general word problem for finite extensions of 

the group theory axioms (§C,[7l]). 

2. t -reso 1 uti on inferences real i zed by proof procedures wi 11 

nonna lly (or idea lly) be C -pure. However, it seems most appropri ate 

to let the refinement detennine which of {i )-(iv) are to be satisfied. 

2.1.2 Hyper- t -resolution 

A renaming is a mapping r: (}v -r tv such that 

(i) rep) E {p,p} ; 

(ii) r([s=tJ) = [s=tJ and 

(iii) repel = r(p) e 

r is extended to clauses by 

(iv) r('Vp) =df'Vr(p) and 
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If r(C) is a positive (negative) clause then C is r-positive 

(r-negative) . 

A (negati ve 1 iteral) selection function (for a renaming r) is 

a mapping s: c. y -+Cy such that 

I 
0 , if C is r-positive or empty 

s(C) = 
some r-negative literal q in C otherwise. 

Evidently, r i s definable as a function of s · · 

P ifs(p)=O 

p ifs(p)=p 

Let t = (r ,>-,s) where ~ is a sUbstitutive partial ordering 

on elV wherein equations precede all other atoms and s is a selec

tion function. 

A hyper-t -resol ution inference is an inference 

(3) 

satisfying (i)-(vii): 

( i ) C = (B 08 - Po 8 ) v . .. V (Bm- l 8 - Pm_1 8 ) v (Bm 8 - {qo 8 , . . . , qn _ 18}) . 

(ii) {po8 ,·· · ,Pm_1 8 , (<lo8 v··· vQn _18 )} is an t-contradiction. 

(iii) Bi v Q.i is rs-positive and rs(p) is a maximal atom in 

rs(Bi v Pi) with respect to :> (i=O,· · · ,m-l). 

(iv) 8m is rs-positive or empty and qi is rs-positive (i=O,···, 

n-l ) . 
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(v) B. v p. 
1 1 

is not subsumed by a member of ~ v [x=xJ (i=O.···. 

m-l) . 

(vi) If B v q v··· v q 1 m 0 n- is subsumed by a member of t v [x=xJ 

then Bm= 0 and(qo v··· Vqn_l) E C'.* . 
(v; i ) If (Bi V.9.;) subsumes (Bj v.9.j) then (B i v qi) and(Bj v qj) are 

variants. 

From (ii) and (iii) it follows that the conclusion C (a hyper~~

resolvent of the premises) is Is-positive or empty. The major premise 

- -of (3) is Bm vqo v· .. vqn_l; Bi vPi is a minor premise of (3) . 

Hyper-~_-resolution refers either to the calculus which consists 

of all hyper-e-resolution inferences (no axioms). or else to the class 

of all hyper- e -resol uti on deductions. 

* Convention. If e ~ [x=x]. >- is the trivial ordering. and r s 

is the identity renaming then the infix "_'£';" is replaced by "_E_". 

Thus. a hyper-E-resolution inference has the form 

where Bi vPi is positive (i=O.··· .m-l). Bm_l . is positive or empty. 

(qov ... vqn_l) is negative. and {Po8.· · ·.Pm_1 8 .qj 8} is a contradic

tion (j=O • . ..• n-l) . 

An ~e~-resolution inference is an E -resolution inference 

( 4) 
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satisfying (i)-(vi): 

(i ) C= (B e - q e) v '" v (Be o 0 m-l - q e) m-l 

( i i ) {poe, ... ,Pm_l,e, qm e} is an ~ -contradi cti on. 

(i i i ) B. vp· 
1 1 

is rs-positive and r s (Pi) is a maximal atom in 

rs(Biv.P..i) with respect to ;:.. (i =0 , ... , m- 1 ) . 

(iv) · qm is rs-positive. 

(v) B. vn . is not subsumed by a member of E: v [x=xJ (i=O,···, 1 1:.1 

01-1) . 

(vi) If Bm vin is subsumed by a member of t v [x=x] then 

Bmvin is rs-negative and (BmVqm) E C* . 

The major premise of (4) is Bm vin; Bi v.P..i is a minor premise. 

e-resolution refers either to the calculus which consists of all 

_L..-resolution inferences (no axioms), or else to the class of all .t_
resolution deductions. 

Proposition 1. Let ~ (C) be an ~ -resolution deduction 

where C is rs-positive or empty. Then ~(C) has a unique decomposi

tion {~i(Ci): i ~ t } such that J1j (C j ) realizes a hyper-g-resolution 

inference ej 1- Cj (j=O,···, t ). 

Remark. This proposition is easily proved by induction on the 

number K of rs-positive or empty clauses in J'(C). The following 

"converse" to Proposition 1 is also easily verified: 

Proposition 2. Each hyper-JL-resolution inference (2) has a 

unique "E-resolution realization. 

Thus, the lIIaximal .E..-resolution refinement IIR( e ,r,s), where 

HR(t" ,r,s) =df {_D: ~ is an ~(-resolution deduction} , is 
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also a hyper~~-resolution micro-refinement (§2.0). 

2.2 A Basic Calculus 

TM following subsections define a basic calculus rS over Cv 
rS has one axiom, [x=x] (the Simple reflexivity axiom) and three basic 

inference .rules: Simple Factoring (SF), Replacement (Rp), and Cut. 

Cut is the binary (or pairwise) restriction of Resolution. 

A basic deduction is a rS-deduction. 

2.2.1 Unification and Simplest Unifiers 

The conclus ion of each uasic inference is constructed by instan

tiating certain constituents of the premises. In order to ensure that 

the conclusion is as general as possible,the concept of a simplest or 

most general unifier is used to define the instantiating substitution. 

Given a property P of substitutions, we say that a is a simplest 

(or most general) substitution such that P(a ) provided that 

(i) P(a ) ; and 

(ii) if P(T) then a divides T , in the sense that a . 8 =T 

for some 8 

Now a is .said to unify a finite nonempty set U of terms or formulas 

provided that ua = va (u,v E U). Robinson [63] verifies a unification 

algorithm which computes a most-general unifier mgu(U) of U , pro

vided that U is unifiable, and otherwise returns nil. 
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It is easily verified that if a is any most general unifier for U 

then 

(i) 0·0 = a (i.e .• a is idempotent); and 

(ii) mgu(U)e = a for some invertible substitution e 

A substitution a simultaneously unifies a collection -U of 

subsets of dv u tv provided that Z unifies each member of U. It 

is shown in [69] (and elsewhere) that there exists a total computable 

function mgsu from finite collections of finite subsets of :iv v tlv to 

LV v{nil} such that 

{

a most general simultaneous unifier (mgsu) for 
provided that 'U., is simultaneously unifiable; 

mgsu (t{)= . 
nil • otherwi se . 

u. 

It is easily verified that if a is any most general simultaneous uni

fi er for u.. then 

(i) 0·0 = a ; and 

(ii) mgsu(tL)e = a for some invertible substitution e. 

Notation. Given a predicate ~ which holds for only a finite 

subset {xl •.•.• xn} of VI • we define the sUbstitution 

Thus the quotient of a by 1 • [0/1] is defined by 

[1/0] =df [Xl/X:XO = x and Xl ~ x] . 
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Lemma 3. Suppose 000 = 0 and 0 divides T. Then OO[T/O] 

= 'T • 

Proof. Suppose ooe = T. If xo = x then clearly XO[T/O] = 

XT. Suppose xo ~ x. If y occurs in xo then yo = y because 

XOO = Xo , whence ye = (yo)e = yT = Y[T/O] 

xo ~ x then (xo)[T/o] = (xo)e = XT . I 

It follows that if 

The following lemma shows that mgsu(U) can be computed by apply

ing mgu (in any order) to members of U 

Lemma 4. If 01 = mgsu ('Ul ) and 02 = mgsu(U201) then 01 002 is 

a mgsu of 'Ul oJ U
2 

• 

Proof. Clearly 01
002 simultaneously unifies Ul v ~. Sup-

pose T simultaneously unifies "U l v'U 2 Then 0lo[T/ol ] =T 

because T simultaneously unifies 'U l . Therefore [T/ol] simultane

ously unifies 'U201 ' whence 02 o[[T/01]/02] = [T/01]by definition of 

O2 . Since (01002)0[[T/ol ]/02] = T , it follows that 01
002 is a 

mgsu of Ul v 'lJ.2 .1 

2.2.2 Basic Inferences 

Basic inferences consist of SF, Rp, and Cut inferences. 

A Simple Factorins (SF) inference has the form 

{A v p} 1- Ae v ~ (5) 

where e is a m.g.u. of a set {Pl , ... ,Pn} of literals in A which 

contains p. Ae v ~ is said to be a simple factor of A v p on p. 
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Remark. Notice that the designated literal of the premise in (5) 

is irrelevant, and that pa , the designated literal of the conclusion, 

is the "image" of {Pl'··· ,Pn} under a In cases where a = E , so 

that Aa v ~ = A v £ , it may be useful in the definition of a refine

ment to distinguish A v p and A v £ if A v p has a different 

designated literal than p. (See §1.2.3, Convention) . 

where 

A replacement (Rp) inference has the form 

{A v [s=t], B v 9l!:l} 1- C v g[t]a . 

(i) C = (A - [s=t])a v (B - q[r])a and 

(ii) a is a m.g.u. of {r,s} . 

(6) is general provided that A v [s=t] shares no variables with 

(6) 

B v g[rl . The major premise of (6) is B v q[r]; A v [s=tJ is the 

mi nor premi se . 

Remark. I~otice that the kernel {[s=t], q[r]} of (6) (§1.3.7) 

is defined by the designated literals in the premises, and that the 

residual q[tJa is also the designated literal of the conclusion in (6). 

Thus, Rp is a restriction of paramodulation [62]. 

A Cut inference has the form 

{A v £, B v .9J I- (A - p)a v (B - q)a (7) 

where a is a m.g.u. of {p,q} , (7) is general provided that A v .p. 

shares no variables with B v ~ . 

Remark. Again, note the requirement that the kernel {p,q} of 

(7) be the set of designated literals of premises. The residual of (7) 

is 0 . 
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2.2.3 Normal Embedding Transformations 

Each basic inference is evidently a generalized resolution in

ference. Thus, the analysis of resolution-based deductions in §1.3.7 

applies to the class of basic deductions. The following extension of 

the embedding transformation for resolution-based deductions will be 

quite useful in subsequent developments. 

Let o~-' be a basic unit deduction from {Pi: i <m} . A normal 

embedding of IL' in {B k v .9.J<: k <n} is an embedding of 12' in 

{Ai v Q.i : i <m} (§1.3.7) where Ai v Q.i is a simple factor of some 

clause Bk v.9.J< on qk (i=O,···,n-l), prefixed by all SF-inferences 

({Bk v qk} f- Ai v Q.i) used in obtai ni ng {Ai v Q.i: i < m} from 

{Bkvqk : k <n} . 

Thus, if J) is a normal embedding of .11' in {Bk v.9.J<: k < n} 

then Base(.t») C {B i vqi: i < n} v {[x=xJ}'V 

literal of Bi vqi is irrelevant. 

Note that the designated 

Remark. A normal deduction from {Bi v qi: i < n} is a fS-

deducti on from {Bi v qi: i < n} and may therefore contai n any number 

of variants of [x=xJ in its base (§1.3.3). 

2.2.4 Analysis of Normal Deductions 

A normal deduction is a basic deduction 17 wherein 

(i) the premise of each SF-inference is either an initial (base) 

clause or the conclusion of a Cut inference and 

(ii) each Rp or Cut inference is general. 

Proposition 5 . For each normal deduction · ;J' there exists a 

general normal deduction rtr such that I:lase(~) £ Base (1{,' ) 'V 
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Indication of Proof. Let TI be a branch mapping (§1.3.B) for 

(/J',a) where as Base(.o-'). While rS is not liftable, we 

neverthe 1 ess obtai na r S-l ifti ng Jj of rfJ' based on (TI, a), for the 

reason that each basic inference in iJ' is general and therefore 

"1 ifts" to an inference whose induced substitution is a variant of the 

induced substitution of the inference being lifted. There is, in 

fact, a mapping from induced substitutions in inferences of lL onto 

variant induced substitutions at corresponding positions in ~' 

That .if is general and Base(D) ~ Base( lJ')'V follows by Proposition 

7 in §1.3.B. Clearly ff is normal. 

A normal realization of a resolution inference 

{Bi v q( i < n} f- C (B) 

where (Bo v··· vBn_l )6 a' C ?(B
0

6 - q
0

6) v··· v (Bn_16 qn-16) is a 

normal embedding P (C) of a unit refutation J:J' (0) in {Bi v 9..i: i < n}. 

Thus, Base(~'(O» = {p,.: i <m} where p. = q.6. for some j < n and , J J 

some m.g.u. 6j of a set of literals in Bjv qj which contains qj . 

Proposition 6. If iJ(C) is a normal realization of (B) then 

~(C) is normal and is a rS-realization for (B). 

The proof is trivial. 

Proposition 7. Each normal refutation 8(0) has a unique 

decomposition {~i(Ci): i <n} into normal realizations of resolution 

inferences. 

Indication of proof. Use induction on the number n of Cut 

inferences in ,c/J.(O). 
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Remark. Propositions 6 and 7 justify the analysis of normal 

deductions in terms of still simpler unit deductions, such as the 

class of ~ -derivations which follows. 

A derivation is a basic unit deduction consisting entirely of 

Rp-inferences. 

An e -derivation is a basic unit deduction 

where [si=ti ] £: e'" , qi+l[ri+l] = qi[ti 8i ] • and 8 i is a simplest 

substitution such that r·= s·8· (i=O,···,n-l). 
1 1 1 

Remarks. 

1. ({[si=ti],q;[ri]) 1- qi[t i8 i ]} is an Rp-inference because 

is a m.g.u. of {r,.,s,.} such that q.[t.]8. = q.[t.8.] . , " ", 
2. For each t-derivation (9 ) there is a corresponding .9.£!!.-

eral t-derivation 

(10 ) 
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is an invertible substitution such that [s.=t·Jn· 
1 1 J 

no variables with qo[ro] or with {[si=ti]fJi: i < j} . 

Recall the definition of o~ in §1.3.7. 

shares 

Proposition 8 (Induced Substitutions). Suppose . ~ is a gen-

eral basic deduction. Then 0l) is a m.g.s.u. of the set 

{{p,q}: _~ contains a factoring inference B f- Be , {p,q} ~ B, 

and pe = qe} 

v {{p,q}: ~ contains a Cut-inference 

{A v .P.., B v .9) 1- (Ae v Be ) J 

v{{r,s}: J6 . contains an Rp-inference {Av[s=t], Bvg[d} f

C v .9ltle} . 

Moreover, eo is a ground basic deduction with the same conclusion(s) = {1 -

as Jj , and a~ is a simplest substitution 0 such that Jro has 
= 

this property. 

The derivation of this lemma from the results of §2.1.1 (by 

induction on the number of inferences in ~) is straightforward. 

2.3 Resolution Micro-Refinements 

2.3.1 Positional Order of Replacements in Derivations 

Given a derivation from p to q based on a set e of equations, 

there are typically many alternative derivations from p to q based on 

t A good refinement should filter out all but one of these, so that 

proof procedures based upon it will not waste resources by generating 

many or all equivalent derivations "in parallel" while searching for the 
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first refutation. 

Example. Let t = {[ai=biJ: 1 ~ i ~ rt , and let p = (Qal···an) 

The "prefix" derivation 

is just one of n! equivalent derivations from p to (Qbl···bn) based 

on e . Even if subsumpti on were used, a proof procedure using a 

"complexity-order" search strategy would derive all of the 2n atoms 

(Qul· · ·un) where ui s {ai,bi } (i=l , ... ,n) in the process of generat

ing the first derivation from p to (Qbl ·· ·bn), unless some refinement 

were used to impose an ordering constraint on positions of occurrences 

replaced in "independent" Rp inferences (of which there are n above). 

Such an ordering constraint is used in the definition of normal 

derivations and reductions (§2.3.5). The following total ordering on 

posit i ons of occurrences in terms and literals is useful in this defi

nition. (It formalizes the "left-to-right, bottom-to-top" order of 

positions in a familiar prefix-tree representation of terms). 

End-order of positions (and occurrences at those positions) is 

defined (following Knuth [38]) by 

(i) a' S precedes ain end-order if S f *. (Thus, * is 

preceded by every other position, in end-order.) 

(ii) a·i·S precedes a·j·y in end-order provided i < j 

We say that an occurrence (u,a) precedes an occurrence (v,S) 

(in end-order) provided that a precedes S 
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A position u dominates S provided that u·y S for some 

position y ; if y t * then u properly dominates S 

Two positions are independent provided that neither dominates 

the other. 

It is sometimes useful to extend the relation of domination 

from positions to occurrences : 

(u,u ) dominates (v,S) =df u dominates S . 

The relation of independence is extended similarly. 

2.3.2 Invariant Relations on Terms and Clauses 

Subsequent developments make use of various ordering relations 

on terms and occasionally on clauses. Let R be a binary relation on 

':J V. The followi ng attributes and transformations of R wi 11 be 

particularly useful. 

Reflexive: (t R t) 

Anti-reflexive: (t \l t) 

Transitive: If rRs and sRt then rRt 

Symmetric: If sRt then tRs. 

Anti -symmetri c: If sRt and tRs then s=t 

Monotone: If sRt then u[s] Ru[t]. 

Substitutive: If sRt then se Rte (e e; LV)' 

Invariant: Monotone and substitutive. 

Quasi-Ordering:Reflexive and transitive. 

Partial-Ordering: Anti-symmetric and transitive l 

lThis definition of "partial ordering" leaves open the question 
of whether or not R is reflexive. (See Notational conventions below). 
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Total ordering: Partial ordering wherein either (sRt), (tRs), 

or (s=t) (s,t E dV). 

Well ordering: Total ordering wherein each subset of ::IV 

has a first element. 

A descending chain in R is a set {ti : i EN} such that 

tiRti+l or ti = ti+l (i EN). 

Descending Chain Condition (O.C.C.): Every descending chain 

in R is fi nite. 

Equivalence, congruence, and equality relations (§1.2.8) are 

easily defined in terms of the above concepts. 

Notational conventions. Quasi-orderings will normally be 

denoted by =9 or -+* ; -+* denotes the smallest reflexive and tran

sitive extension of a generating relation -+. Partial orderings will 

normally be denoted by ~ or > , and it is normally assumed that 

t ~ t. ~ denotes the smallest reflexive extension of ~ ,and is 

also a partial ordering. < generally denotes either the converse of 

> or a well-ordering unrelated to > . 

Standard extensions to clauses. Frequently it is useful to 

tacitly extend a relation from :IV to :IV v Cv without distin

guishing the extension notationally. To this end we define two 

standard extensions of a re l ation from J V to :IV v Cv The 

monotone extension applies to all quasi-orderings. It has the property 

that if ~ preserves an equal ity relation =£ on:JV then ~~ 

preserves ~~ on ev 
are well-ordering of V 

{=} v V
R 

• 

The lexical extension is based on a stand-

(precedes) where = is the first member of 
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The monotone extens i on of a quasi -orderi ng ~ on::lv is the 

smallest extension of =i> from ~V to a guasi-ordering (='» on 

::J V v eV satisfying (i )-(v): 

(i ) If s =>t then u[sJ =;> u[tJ 

(i i ) If s1 =<> t1 and s =i> 2 t2 then [sl=tlJ ~ [s2=t2J -
(i i i ) If s- ~ 

1 ti ( i = 1 , - - - ,n) then (Ps l - - -sn) =;> (Pt l - - -tn ) 

(P E V~)_ 

(i v) -If P ~ q then P =;> q 

(v) If Pi =t> qi (i=l, - - - ,n) then (Pl v- - - v Pn) ~ 

(ql v- - -Vqn) 

The lexical extension of an anti-symmetric relation 7 (nor

malJy not a quasi-ordering) on :tV is the smallest extension of >

from -:Iv, to a relation (>-) on :JV
v tv which satisfies (a)-(d): 

(a) (Qul' - -urn) > (Pvl- --vn ) iff either 

(b) 

(i) P precedes Q in the well-ordering of VR v {=} ; or 

( ii) Q = P and u > v j j 

- -If q >- P then q >- P . 

(c) If qi ~ Pi (i=l,· - - ,n) then 

(ql v·· - vqn) ~ (Pl v··· vPn)· 

(d) If m < n then (ql v ... v qn) 7 (Pl v ... v Pm) 

It is easily verified that if > is a partial ordering on ~v then 

its lexical extension is a partial ordering on ::IV ve v 
2.3.3 Reducibility Relations and Determinative Systems 

An ~-reducibi1ity relation is a quasi-ordering ~ . such that 

(u ·.;. v) implies (u =t v) (u,v E (IV) ; 4 is tacitly extended to ~V 
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by the standard monotone extension transformation (§ 2.3.2), whence 

(A~ B) implies (A l=i
t 

B). 

Determinative systems 1. A clause-set e is determinative pro

vided that for each clause A v [s=tJ in t, ,each variable which 

occurs in A v [s=tJ also occurs in s. A clause B is determinative 

provided that {B} is determinative. Thus, an equation [s=tJ is 

determinative provided that each variable in t is also in s 

Determinative equations can naturally be interpreted as defini-

tions. Two concepts of "definitional reduction" are formalized by the 

t-reducibility relations +~ and~; ,respectively, generated by 

the relation +t of t-contraction and its restriction ~ ,called 

normal e-contraction : 

(u +£ v) =df (u= u'[r] and v = u'[t8] where e contains a 

determinative equation [s=tJ such that r = s8). 

(u ="'S v) =df (u=u'[rJ and v=u'[t8] where [rJ is the first 

occurrence of a term r such that t contains a 

determinative equation [s=tJ and r = s8). 

Observe that +E isan invariant E-reducibility relation, 

whereas ="'i is normally neither monotone nor substitutive. 

One useful property of determinative systems is revealed by the 

following characterization of =e 

t. is eguationa1 provided that each clause of ~ is an equation. 

lCf. the notion of determinative rule in Curry [15J. 
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Proposition 9. Suppose £ is determinative and equational. 

Then· u =e v iff there exists a list (uo'···'un ) such that uo= u, 

un= v, and either uk +£ uk+l or uk+l +~ uk (k=l,··· ,n). 

Proof. Let t be the relation whereby u "'t v iff there 

exists such a list (uo '··· ,un). Clearly (u'V£ v) implies (u =e v). 

Conversely, ~ is an invariant equivalence relation such that 

s 'V~ t for each equation [s=t] in e ; since =E is the smallest 

such relation, (u =t v) implies (u'Vt v) . 

Remark. If e is not determinative then 'Vc need not be in

variant. For suppose ~ = {[s=t]} where y occurs in t but not 

in s. Then s 'Vi t, but s[u/y] 1 t[u!y] for u r y. Thus 

'Vt is monotone but not substitutive. 

2.3.4 Reduction Systems and Ordered Normal Forms 

A reduction system is a pair (~, 'r) where t is a (normally 

finite) set of clauses and .,.. is a monotone quasi-ordering on .:J V 

Conventions. 

1. As in §2.l.3, e may denote either a reduction system 

(e,.,.) or a triple (£,,,",s) where (t,.,.) is a reduction system. 

Norma lly we assume S = (e, >-) • 

2. If >- is an ~-reducibility relation (e.g., +e) then we 

assume ? to have been extended to ~V by the standard monotone 

extension; otherwise we assume the (stronger) standard lexical exten-

sion (§2.3.2). 

An e-reducibility relation is an e-reducibility relation ~ * 

such that (u =>* v) implies (u (!t v). If u =;,* v where v r u then 
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u is reducible in =9* : otherwise u is irreducible in =9* 

The following development parallels and extends §2.3.3, beginning 

with an JL-contraction relation (+e ) and a more restrictive normal 

E -contraction relation (~~): 
= 

(u +1:, v) =df (u=ul[r] and v = ul[ta] where E. contains a 

determinati ve equati on [s=t] such that r = sa ,.. ta) 

(u - £.. v) =df (u=ul[r] and v = ul[ta] where [r] is the 

first occurrence of a term r such that ~ contains 

a determinati ve equati on [s=t] and r = sa ~ ta) . 

Observe that u is irreducible in - * iff u is irreducible in e 

. I~F( € ,» =df {u £ ;tv v Cv: u is irreducible in 

An e-normal form (for :JV v eV) is a decidable set 

i1s.7v v Cv satisfying (i) and (ii): 

(i) For each term * t for some term t in s , s +E 
= 

(i i) For each clause A A +* , e B for some clause B 

= 

11. 
in 12 

If t and B are uniquely determined by s and A in (i) and (ii) 

respectively, then '1l is an L-canonical form. 

Thus, NF( e ,» mayor may not be an ~~ -normal form. The follow

ing development is useful in investigations of such matters. We define 

pertinent attributes of a reduction system o~-- = (t ,» as follows: 

Equational: f is a set of equations. 

Determinative: l is determinative. 

Finite: e is finite. 
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Fi n ita ry : Finite, and >- is a partial ordering which satisfies 

D.C.C. 

Total: s ~t for each equation [s=t] in S 
Complete: If r =~ s then r +*j! t and s +* t for some 

c; (;. €. 
term t . 

Normally Complete: If r =c s then * and s =':> E t 

Norma 1 : 

Canonical: 

for some term t 

NF(I!,r) is an e-normal form. 

NF(t ,'7') is an e-canonical form. 

=--= 

Observe that if ~ is finitary then C is normal, and that ~ can be 

(normally) complete without being normal. 

Propos iti on 10. Suppose e is fi ni ta ry. Then g is compl ete 

iff e is canoni ca 1. 

Proof. If ~_ is canonical then clearly _~ is complete. 

Suppose JE_ is complete. It suffices to show that for each term 

s there exists a unique term t in NF( t ,~) such 

Suppose s - * tl and s ='> * t where t l , t2 eo: t. ~ 2 

that s '=l> 1; t . 

NF (£' ,~). Then 

tl =( t2 ' whence ti =':>; t(i=1,2) for some t (by completeness). 
= 

Therefore tl = t = t2 by definition of NF(e ,~) . I 

This development is continued in §C.3 with an effective partial 

characterization of canonical reduction systems. (Completeness is not 

an effectively decidable attribute of reduction systems.) 

Notice that (-+E) = (+"( _) and (='>t ) = (-_~_) wheree_ = 

( e ,+~ ). In thi s sense, i and ~e are speci al cases of the 

above concepts defined for reduction systems. 
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Convention. Whenever a concept is defined with a reduction

system parameter E , substitution of e in the definition is equi

valent to substitution of the reduction-system parameter (E ,+"£ ). 
Thus, the concepts total, normal, canonical, finitary, and 

complete apply to sets of clauses as well as to reduction systems; 

moreover, NF (t.) is defi ned: 

NF(e) =df NF(C,+;) 

Similarly, following the useful definition 

the substitution set L( is also defined. 

Observe that e is total because +E orders each equation 

of e 
2.3.5 Complexity Orderings and Weighting Functions 

An e-complexity ordering is a decidable monotone partial 

ordering > on :tV satisfying (i )-(i v): 

(i) > well-orders the constant terms of :IV . 

(i 1) u[tJ ~ t 

(i i 1) If s ~ t then sa ,.. ta (a e: L[ ) 

(i v) NF(E) contains at least one constant term. 

Notation. If t. = 0 then the prefix ~- is omitted. 

Remark. If > is a complexity ordering then Lo = LV and 

>- is invariant, whence >- satisfies D.C.C. by (i) and (iii). More 

generally, if s ~t then sa ;>-ta where xa is a constant term in 

i~F( e) (using (iv)). It follows that every t-complexity ordering 
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satisfies D.C.C. Thus. by Proposition 9 we have 

. Proposition 11. If .£... is finite and detenninative, and ;> is 

an e'-complexity ordering. then NF(E.H is an 1:,-nonna1 fonn. 

Remark. Subsequent completeness resul ts for ND( e .r) presup

pose that >- is an e'-complexity ordering where ~' 5 C 
I 

A weighting function for V is a mapping . w: VF ->- N such that 

(i) w(c) > 0 (c £ V~) and 

(ii) w(f) > 0 for all f in V~ except for the last member 

of VF • if any. in the standard well-ordering 

of V . 

Weighting functions can be used to define complexity orderings for jv 

in several ways. The bas ic method follows. App 1 i cati ons and exten

sions of this method are investigated in §C and §D 

Let w be a weighting function for V and let Wo =df 

min{w(c): c £ V~} Extend w to ;tv by 

w( u) 

Let n(x.u) be the number of occurrences of x in u • and let the 

first symbol of u be u provided that u £ VI v V~ and f , provided 
n f E: V F . and n > 0 : 

op(u) =df the first symbol of u. 

Now >w is defined from wand the standard well-ordering of 

V (precedes) wherein operation constants precede variabies: 
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(u >w v) =df [If n(x,u) ~ n(x,v) (x E VI) 

then if W(u) > w(v) 

then true ----
else if w(u) = w(v) 

then if v E V I 

then (u f v) 

else if op(v) precedes op(u) 

then true 

else if u=ful···un 

f v = fv, ... vn 

and u· > v· 
- J w J 

where j = min{k: uk" vk} 

then true ----
else false 

else false -----

else falseJ 

It is easily verified t hat > is a complexity ordering on w 

(See Knuth and Bendix [39J for proof.) 

2.3.6 e -normal Reductions 

Let _t be a reduction system (§2.3.4). 

An _e~normal reduction is an E -derivation 

[so=t~[roJ 

[Sn _'=~_l[r n-1 J 

qn[rnJ (10) 
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(i) t E NF( ~ ,>-) for each tenn t which occurs in _ qi [ri ] 

before [ri ] (end-order); 

(ii) 

(i i i ) 

r. = s.e. >- t·e. ; and 
1 1 1 1 1 

if r·=r· then [s.=t.] is a variant of [SJ.=tJ.]. 
1 J 1 1 

(10) is complete provided that, in addition, 

(iv) qn[rn]E N(E ,~). 

Remarks 

1. If ;> satisfies D.C.C. then every ~-normal reduction has 

an extension to a complete e -nonnal reduction, because qi[r i ] ~ 

by monotonicity of >- . 

If (10) is an e-normal reduction then qo[ro] =>~ qn[rn]. 

2.3.7 C -normal Inferences 

c -normal inferences are effective inferences defined in terms 

of a reduction system ~ = (e,~). Their definition facilitates the 

definition of {-normal deductions in §2.3.8. Two sorts of e-normal 

inferences are described below: 

(i) Basic _c-normal inferences consist of SF, RPJt' and Cut
lt

. 
(ii) Composite L-normal inferences are realized by basic -

c-nonnal inferences, and are the inferences most naturally 

produced by refutation procedures "based on" ND( e , .... ) 
(§3.2.3). 

~E: {A v [s=tJ, B v q[r]} f- Ae v Be v q[t]e where 
= 

(i) A v [s=tJ shares no variables with B v ~ ; 
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(ii) 8 is a m.g.u. of {r,s} ; 
'V 

(iii) [s=t] £ NF( e - [s=t] ,>,,) 

(iv) if [s=t] is properly subsumed by an equation [u=v] in 

~ then r-s8>t8 and q[r]8=q[s8], 

(v) if q[r] ¢ NF(e ,r) then r = s8 > t8 , q[r]8 = q[s8], 

and each term which occurs in q[rJ before [rJ is in 

NF(E ,>-); 

(vi) if q[rJ £ NF(t,~) - [x=x]* then r ¢ VI and t8 :fosEl; 

and 

(vii) if q[r] £ [x=xJ'" then B = 0, [s=t] e: NF(t,», and 

r8=s:i--t 

Cut {A v Q., B v .9.} f-A8 v B8 
~ 

(i) A v Q. shares no variables with B v .9. ; 
(ii) El is a m.g.u. of {p,q} 

(iii) p,q e: NF(C' ,>-); and 

(iv) if either p or q is ~n equation, then {p,q} = {[y=y], 

[u t v]} and 8 is a m.g.u. of {u,v}. 

Compos i te t!. -norma 1 inferences a re of the fo rms SF, CRp e ' 
CCut C : 

CRp : {A v p, B v q} 1- AEl v BEl v g' [t]El 
~-

(i) either p = [s=t] and q ~t q'[t]; or 

p "~* [s=t] 
L 

p =,>-:r- [t=s] 
C 

and q = q'[r] or p; 

and q = q'[r] ; and 

or 
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(ii) ({A v [s=t], B v q[r]} I- AS v Be v g'[t]e ) 

is an Rp~ _-inference. 

ccut __ ~ {A v p, B v q} I- Ae v Be 

(i ) 

(i i ) 

p =<> * pi E NF(£' ,:» ; and 
_E._ _ 

({A v pi, B v q} 1- AS v Be) is a Cut,,~-inference. 

2. 3.8 e -nonnal Deductions 

An lL-normal deduction is a normal deduction whose constituent 

nonnal resolution inference realizations (§2.2.3) are embeddings of 

unit 5 -normal deductions. Thus, the class ND( e ,» of _~_-nonnal 

deductions is a resolution micro-definement defined in terms of unit 

_e _-normal deductions. 

Define S(p) by 

S(p) =df 

p* if p is not an equation; 

{[u-v] E [s=t]*: either some variable of v is not in 
u or else v· tTl where Tl is the 
simplest substitution such that 
u=STl} ,if p is an equation [s=tJ. 

S(p) is the set of literals q such that p subsumes q and p can 

be used in any normal inference where p can be used. Observe that 

if p = [fx=gy] and fx ~gx then [fx=gxJ i S(p) because [fx=gxJ 

can be used in an ~ -normal reduction whereas [fx=gy] cannot. 

A (basic) derivation l' is _~_-normal provided that lr has a 

decomposition tt7i (qi): i <n} satisfying (i)-(iii): 
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(i) Base~k(qk)) ~ Base~) v{q{ j<k} (k=O,···,n-1). 

(i i ) If qk is not a conc 1 us i on of J:J then 5:) k (qk) 

realizes a unit CRPC -inference ({p,q} 1- qk) where 
~k e k is defined by C k =df C v Base,(l2.) v {qj: j < k} 

(k=O, ... ,n). 

(i i i ) If ~ k (qk) does not realize a unit CRpe -inference 

(i v) 

(v) 

(vi) 

=k 
then ~-k(qk) is an ~k-normal reduction. 

If p,q E: Base(JJ) and p subsumes q then p and q 

are vari ants. 

If qk E: S(p) where p E: ek then qk is a conclusion 

of }t. 

and qk ¢ S(p) then p ¢ Base(J)j(qj)) 

(j=k+l , ... ,n-1). 

If p E: S( qk) 

A unit refutation . ~ is .~-normal provided that J3 has a 

decomposition {#:1 i (qi): i < n} v {~(O)} where 

(vi i) The subdeducti on 12_' composed of 

an S-normal derivation; and 

{.,f).(q.): i<n} is 
. 1 1 

(viii) ~(O) is a CCut C -inference realization. 
~ 

An _~-normal realization of a resolution inference (8) is a 

normal embedding .jL(C) of an g-normal refutation P' (0) in 

{Bi v .9.i: i < n} . 

A normal deduction IJ.. is . ~_-normal provided thattJ has a 

decomposit"ion {D.(c.) i < n} satisfying (i)-(vi): 
'··~1 1 

(i) llase(t2.k(Ck) S l3ase(~) v {C j : j < k} (k=O,··· ,n-l). 

(ii) If Ck is not a conclusion of!J then ~k(Ck) is an 
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e k-normal realization of a resolution inference with 

premises in Base(~) v {Cj : j < k} ,where ~=df 

E, v Base(.o) V{Cj : j < k}. 

(iii) If ~«(Ck) is not an ~-normal realization of a resolu

tion inference then ~«(Ck) is a normal embedding of an 

~-normal derivation in Base(~(Ck)); moreover, l'-j(Cj ) 

is not an e j-normal real ization of a resolution inference 

(j-k+l ,'" ,n-l). 

(iv) If A,B E Base(lf) and A subsumes B then A and B 

are variants. 

(v) If lL k(Ck) is an 4-normal realization of a resolution 

inference and Ck is subsumed by Bin tk then either 

Ck is a conclusion of Jj or Ck and B are equations 

such that Ck t S(B). 

(vi) If irk(Ck) is an ~-normal realization of a resolution in

ference and Ck subsumes B then either B t Base(~j(Cj)) 

(j=k+l,.·· ,n-1) or Ck and B are equations such that 

B t S (Ck) • 

The class of normal e_-deductions is defined by 

NO(£' ,>-) =df {.!:l_: ft is _e-normal} 

Composite !-norma1 deductions are defined essentially as above 
= 

(with SF restricted to initial clauses and conclusions of CCut -

inferences), but on the basis of the composite c-norma1 inference rules · 

(,2.3.7) instead of the basic ones. 

CI~O(l' ,)0) =df (~: Jt is a composite . e .-normal deduction}. 



-85-

Remarks. 

1. CND(~ ,>-) is a non-basic l'-resolution micro-refinement; 

however, a member CND( (,~) can be effec;:tively "interpolated" so as to 

obtain a corresponding member -of ND(t",~). 

2. Unit subsumption-deletion constraints are imposed within 

resolution-inference realizations in NO( e;~) by (iv)-(vi) in the 

definition of .C-normal derivations and unit refutations. -

3. A similar set of subsumption-deletion constraints is im

posed by (iv)-(vi) in the definition of _~-normal deduction. 

2.4 Normal Refinements and Their Proof Procedures 

2 .4.1 Normal Compositions 

Recall that a generalized e-resolution refinement is a class 

I::, of deductions composed of generalized e-resolution inferences (§1.3.7): 

{B-: i < n} 1- (B - C )8 v ... v (8 1 v C 1) 8 v C 8 
1 0 0 n- n- n 

where Ci S Bi (i;O, .. . ,n-1} and {Ci 8: i < n} Ie Cn8 . The kernel 

inference of (11) is the generalized e-resolution inference 

(11 ) 

Given a generalized [-resolution refinement I::, and a general

ized c'-resolution refinement 1::, ' where e 2 c' , a normal composi

tion of I::, and 1::,' is a generalized e'-resolution refinement 1::, . 1::, ' 

wherein each deduction l'_ has a decomposition 

satisfying (i)-(iv): 

{.B . (e . ): i < n} 
::::t::=;l 1 
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(i ) Base(~j(Cj)) S Base(~) V {Ci : i" j } (j-O, ... ,n-1) 

(i i ) If Ci is not a conc lusion of D then /1.(C.) 
~ l 1 

real i zes 

( iii) 

(iv) 

a genera 1 i zed C -resolution inference 

{B~: k < n} f- Ci 

with kernel inference 

{C~ : k < nil f- ci 
n1 

{ ({ B~: k < ni } f- Ci ): Ci is not a conclusion of ~J 
defi nes (the set of inferences in) a deduction in /). 

If Ci is not a conclusion of t:J then (13) is 

rea 1 i zed by embeddi n9 i n {B~: k < ni } u t v a 

generalized e'-reso1ution deduction ,v!(Ci ) realizing 
1 n· 

(14), where j) !(Ci ) is in /::,' and Base(j2:!(Ci )) ~ 
~l n. -=1 n. 

i 'V 1 1 
{Ck: k<ni}vt . 

(13) 

(14 ) 

Remark . It is not appropriate to define a unigue normal com

position /::"/::" for the following reasons: 

(a) If we take /). . /::, ' to be the set of all subdeductions of 

refutations in /::,./::" then /::,./::,' is not necessarily de

cidable in the class of all c'-reso1ution inferences--

i.e., /::,./::,' is not necessarily a refinement. 

(b) If we take /::"/::, ' to be the class of all e'-reso1ution 

deductions 11 satisfying (vi )-(ix), then we may be ad-

mitting many deductions which, due to specific 

'-, 
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information we have about 6 obviously cannot be ex

tended to complete deductions in (6'6')-. 

It is also ' unnecessary to define a unique normal composition at the 

present level of formal analysis. 

For the purposes of this report it is necessary to understand 

normal composition in two basic cases: 

Case 1: 6 is an e-reso1ution refinement HR(t ,:--,s) and 6 ' 

is an c'-reso1ution refinement HR(/!',;;.!,s'). Then is an r -s 

positive literal for k=O, ... ,n· -2, 
1 

and C~.= O. (In the similar case 
1 

an rs-negative clause.) 

C~._l is an rs-negative literal, 
1 

of hyper-C-reso1ution, Ci is n . -1 
1 

Case 2: 6 is an e -reso 1 uti on refi nement where e. s tv ' 
and 6' is an C -resolution micro-refinement, such as ND(C' ,>-) or 

CND( t ,:>0), wherein each deduction is normal in the sense that (simple) 

factoring applies only to initial clauses and conclusions of Cut 

inferences. Then againc1k'e i s a literal and Ci = O. In this case, n. 
. 1 

.l2j(O) is simply a normal refutation of {C~: k < ni } v C . 

2.4 . 2 Normal Refinements 

A normal refinement is a normal composition 6 M'61J where 6 M 

is an e -resolution refinement, 61J is an ~ -resolution micro-refine

ment, and c: is a fi ni te subset of ;tv ' 
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Convention. If fi~ is a basic refinement then it is also a 

resolution micro-refinement, and fiM is easily formulated as a 

reso 1 uti on refi nement instead of an e -reso 1 uti on refi nement. Thus, 

there is no loss of generality in supposing that 6M is a resolution 

refinement and fi~ is a basic resolution micro-refinement. 

2.4.3 Normal Refutation Procedures 

A normal refutation procedure is a refutation procedure II for 

a pai r (r,fi) where fi is a normal refinement 6M'6~ (§2.4.2). The 

structured programming of normal refutation procedures based on'the 

schema Ref is outlined in §1.1.4. Thus, we assume below that 

II = ,Ret[E/Enq] where E = ElfE~ , the enqueuing function obtained by 

"composing" enqueuing functions EM for fil~ and E~ for fi~. Re

call that Ref uses fi = 6N'fi~ where 6r~ = (6n ..... fio) , fi k is an 

eo k-resolution refinement, and t = t n::> ... :> eo where Co £ e r.(f,v· 

The purpose of this subsection is to suggest computationally 

efficient representations for 6 and for E Being presently con-

cerned with the design of refinements, I shall make only a few 

plausible assumptions and remarks about E . 

A representation for fi. Recall that Bef uses Resfi' a 

procedural representation for 6. The real problem before us is the 

design of a computationally efficient realization for Res ' on the fi 

basis of fi ... fi and fi n' '0' lJ 
The solution outlined below is based 

upon an analysis of the ancestors of each literal in a clause of B, ' 

toe "current deduction" of Ref(C) (§2.2.3). This analySiS of ances

tors relies on the following definition: 
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>-
t: k =df eo k - {B: B ~6 for some eo k-resolution 

inference (11 1- C) occurri ng in 

a member of /::. k} . 
A 

Thus, if /::.k = HR( Ek, 'k,sk) then e k = {B E Ek: B is non-negative 

under the remaining rs} . 

Note. In the following definition, the residual q[t]8 in an 

Rp-inference {A v [s=tJ, B v q[rJ} I- A v B v~ is considered to be 

a descendant of q[r]; otherwise descendant is extended reflexively 

and transitively as in §1.3.7. 

Levels of cl auses. The followi ng description of Res/::. can be 

cl arified by represent i ng each clause C of a deduction ~ in /::. in 

the form 

C = (C
n 

v ... v Cg,l 

where, relative to the proof-tree ~(C), 

(12 ) 

(i) Cn is the set of descendants of literals l from initia l 

clauses in e'" - e~ (§2.2.3); 

(ii) Ck is the set of additional descendants of literals from 

initial clauses in C~+l- g"k (k=n-l, .. ·,g,); and 

(iii) Cg,"f 0 . 

The current level of C is g, 

Level.o (e) =df g, where e satisfies (12) (i-iii). 

1 That' e 1S, n is the set of literals whose atoms are descendants 
of atoms occurring in 
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j~otice that j;' k implies Cj 1'\ C
k 

= 0 due to (ii). Moreover the 

designated literal of C must be in CR, ' because if R, < n then any 

€R,+l-resolution inference realization of which C is a constituent 

must be completed as a subdeduction of any tk-resolution inference 

realization of which C is a constituent (k=R,+2, ... ,n). 

Ck-resolution premises . If .J:) is a refutation in /:, then 

~ has a decomposition into realizations of ek-resolution inferences, 

the premises and designated literals of these inferences being "deter

mined by /:'n' .. . • /:'k (k=O, '" ,n) . Thus, for any clause C in JJ , 

we may select the nearest set of ancestors ofC in ~ which are in 

the set of premises of the Sk-resolution inference realization which 

contains C. These are called the ~-resolution premises of C in 

I.'J 

Now suppose ~ E/:'. Using the Level function, it is not dif

ficult to define for each clause C in i) a set (] k of ancestors of 

C wnich will be the t k-resolution premises of C in any extension 

of J3 to a refutation in /:'. e k is the set of £'k -reso 1 uti on 

premises of C in 11. It turns out that Level.e(B)~ k for each 

member of til k' Indeed, t/lk is the set of neares t ancestors B of 

C in ~ such that Level (B)t12k and B is (a simple factor of) a 

member of Base (.f1) or a concl u~ i on of a Cut-i nference . 
= 

Given clauses A,B in ,f) such that ({A,B} 1- C) is an admis

sible Rp- or Cut-inference based on _~ according to /:,~ , we can use 

/:'k (in(/:'n' ... ' /:'k)) to detennine whether the union of the ek-resolu

tion premises of A and the Ek-resolution premises of B in ~ 

could possibly be included in the premises of some ek-resolution 
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inference realized by some extension of ~ in 11 (k=n, ... ,min{LeveltQ(A), 

Level (B)) . If the answer is no for any of these choices of k , 
~ 

then the inference ({A,B} I- C) should be rejected by Res l1 . 

Factors. Constraints on SF-inferences in 11 are equally easy 

to obtain from 1l0,···, l1n . Basically, the premise of each SF-in.ference 

{A v B} ~ A8 v B8 ina member l' of 11 must either be in Base(~) 

or be the conclusion of a Cut-inference. The choice of key literal is 

determi ned 

sati s fyi ng 

by I1LevelB(A v B)' and B 5 C,e, where A vB'; (Cn v ... v C,e, ) 

(i ) - (i i i) 1'011 owi ng (12). 

Composition of enqueuing functions. The basic fact to remember 

is that (ideally) En was designed by an "expert"so as to quickly lead 

to refutations of e-inconsistent sets, and that Ek was designed by an 

"expert" at refuting ek-inconsistent sets {ql,···,qm} v (e~+l -ep. 
Thus, once En has "deci ded" that a cl ause A of 1 eve 1 n shoul d be 

selected from Q as a premise for a "useful" en-resolution inference, 

En_l should be used to decide what other clauses of Q , if any, should 

be brought in to efficiently complete a realizat,ion for the En

resolution inference by cn_l-resolution inferences. En_l will in 

turn relinquish control to En_2 , etc., until finally all of the lower 

level search strategies have been hierarchically invoked in "deciding" 

how best to realize a good e-resolution inference based on the current 

deduction. 

Enqueuing functions and merit orderings. For present purposes 

it is assumed that Enq is a procedure which defines an enqueuing 

function (§1.3.6). Thus Enq(Q,T) may use other parameters of ,'3,tl, 
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such as R (the current deducti on), ~ (the input premi ses) and e 
(the axioms), in computing the sequence Enq(Q,T). Specifically, it 

is assumed that Enq(Q,T) is ordered in decreasing order of merit, as 

defined by a completion cost estimation function f: C V-(Non-negative 

Reals ~ {=}). Intuitively the merit of B is inversely proportional 

to its completion cost (relative to Q,,8., and t,(C vev(x=x])), 

which is the minimal cost of a complete "extension" .Jj_ of !i (in 

t,-(e v e v (x=x])) which contains B . Thus the merit of 0 should be 

maximal, and the merit of a clause which cannot contribute to a refuta-

tion should be less than the merit of one which can. 

Completion cost estimators. On the basis of previous research 

(58,74,40], it is reasonable to assume that f is defined on clauses 

of Q. by 

where 9 defines the "cost" of the proof-tree for Band h(Q,,8.,B) 

estimates the (additional) minimal cost of a complete deduction ~ in 

t, - (e v e v (x=x]), conta i ni ng B, wh i ch mi ght be computed from the 

current state (Q,,8.). (Whether or not ,8. is actually a subdeduction of 

~ depends upon another parametric procedure, Subsume, in Ret.) 

The definition of E from E , ... E,E now reduces to the 
n ' 0 )J 

defi nition of f from {h,···,h,h ,g} where Ek is essentially n O)J)J 

defined by a cost-function gk and an "additional completion cost 

estimator" hk . It suffices to set 9 = gp. The design of h should 

insofar as possible implement the "hierarchical control structure" 
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hinted at i.n Compos iti ons of Engueui n9 Functi ons so as to util i ze each 

search strategy Ek or E~ to an appropriate degree in its intended 

application environment . 

Remark. It should be clear that the above is a heuristic design 

strategy for defining E from E , ... ,E ,E 
n 0 ~ 

rather than an outline of 

some alleged formal definition. The claim that one .can design better 

search strategies by this hierarchical approach rather than by design-

ing E "from scratch" on the basis of I'> ' 1'> . is at present an unsub-. M ~ 

stantiated intuition. Thus, the use of an explicit composition 

(EM'E~ ) notation is (at the present time) somewhat misleading . 

The representation of deductions within a normal refutation 

procedure based on Ref should optimize retrieval of most-frequently 

needed i nformation in the operation of Res l'> and Enq while suppress

ing i rrelevant details. Suppose that I'>M = I'>n ····· 1'>0 ' I'>~ = NO( 1::
0

,>-) 

and fJ is in t, . t,lft,~. Then for each clause C in lJ the com

ponent C~, in (12) and Level~ _(C) should probably be "immediately 

available", as should the designated literal within C~ . The com-

posite restrictions of 

resolution premises of 

t,N wi 11 requi re effi ci ent access to the Ck-

C (k=n,.·.,Levelo-(C)), and t, will require 
fIJ ~ . 
= 

efficient access to the equations among the designated literals of 

eo-resolution ancestors of C , in addition to the derived equations 

in /jvco' 

The representation of terms and atoms in Fef can also be 

optimized for the given initial normal form NF( Eo '>-) used by I'>~ 
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assuming that ND( Eo ''>-) will be used frequently enough to justify 

"specializing" a proof procedure at this basic level. Normally this 

is accomplished by incorporating into ~ specialized algorithms and 

data structures for processing associative or associative and commuta

tive operators; these facilities are invoked for each operator 

declared to have the pertinent axiomatic properties. Hardware

representations for "integers" or "reals" and hardware-evaluation of 

constant terms (and atoms) both illustrate this form of proof-procedure 

specialization [22] . 



-95-

3. COMPLETENESS RESULTS 

This chapter derives completeness results for (generalized) 

e-resolutionrefinements and their normal compositions. The basic 

resul t s (including those in the Abstract) are summarized by Theorems 

1-10 and their corollaries. Lemmas used in the proofs of these 

theorems are proved in §A. 

In §3.1 it is shown that HR(£' ,:>-,s) is C -complete, and that 

hyper-L-resolution has a "strong liftability" property whereby ground 

deductions from a clause-set C' can be generalized ·to general deduc

tions from a cl ause-set e where each clause of e' is subsumed by a 

clause of e 
The completeness of ND(! ,;.-) on sets of unit clauses is derived 

in §3.2, where it is shown that if e: i s "closed" under certain opera

tions then = * + is a complete reducibility relation on constant terms. 
. L 

A deri vation procedure Cl (~), simi lar to the proof procedure Ref( e), 

is shown to deri ve a closed reduction from ( ~ ,r) provi ded that r is 

an g'-complexity ordering where t' ~ E (Theorem 6). 

Preservation of strong liftability and completeness under normal 

compositions is investigated in §3.3. Theorem 9 describes sufficient 

conditions for a resolution micro-refinement ~ to yield a complete 
)J 

normal refinement ~M·~ when composed with a strongly liftable resolu~ 

tion refinement ~M Theorem 10 (Corollary of Theorem B in Abstract) 

describes a partial completeness property of normal refinements 
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Convention. In order to ensure that t+ (the set of constant 

o 
instances of members of e) is not empty below, we assume that VF t- O. 

The following well known result is used in several of the com

pleteness proofs below: 

(Relative) Compactness Theorem. Suppose e is e-contradictory. 

Then so is some finite subset of e 
Corollary. Suppose e is e-inconsistent. Then so is some 

finite subset of e 
Remark. One simple way to derive the theorem is to construct an 

(exhaustive) finitely branching e-model tree ~ where each vertex M 

is an e -model whose successors Ml ... M are finite extensions of , , v 
m 

such that M ~ Cl v ... v C , 
C vm 

where Cj is the conjunction of liter-

M 

a 1 sin M·-M (The initial vertex of 'ffl is the empty set of literals.) 
J 

It follows by Konig's Lemma that each branch in '!Ii passes through some 

failure vertex which falsifies e , and the set of such vertices is 

finite. Since the set of clauses constructable from literals in failure 

vertices is also finite, some finite subset of e is t-contradictory. 

The Corollary follows from the fact that if e is e-inconsistent, then 

C+ is €-contradictory. Similar model-tree constructions are used by 

Robi nson [65] and others. 

3.1 Completeness of e -Reso 1 ution Refi nements 

It is assumed below that _~ = (e , >-,s) where 

(i) e is a consistent set of clauses; 

(ii) ~ is a substitutive partial ordering on aV wherein 

equations precede other atoms; and 

(iii) s is a (negative literal) selection function. 
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Similar assumptions hold for £i = (ei.>;,si)· 

3.1 . 1 Horn Systems and Hyper-Jt~Resolution 

e is a Horn sys tem with renami ng r provi ded that no cl ause of 

e contains more than one r-positive literal . If r is the identity 

renami ng then e is a Horn system . 

Horn systems occur in many axiomatizations of mathematical systems. 

The following result indicates that HR(£ ,>,s) is an appropriate re

fi nement to use when e is a Horn system with renami ng r s : 

Theorem 1. Suppose that e is a Horn system with renaming rs 

and e is e-inconsistent. Then HR( e ,>,s) contains a general refuta

tion of eve 
The proof of this theorem, based on Lemmas 1-4, is completed i n 

§3.1.3. i~otice that a general refutation of eve in HR( ~ ,r,s) has 

a decomposition into hyper-eo-resolution inference realizations, and 

that these hyper- e -resolution inferences constitute a general hyper-.. t'

resolution refutation (by Proposition 1 in §2). 

3. 1.2 A Ground Completeness Proof Schema 

I~any completeness results for l iftable c-resolution refinements 

6 will be based on the following : 

Propos iti on S. If Cis a fi nite c -contradi ctory set of 

constant clauses then 6 contains a refutation of eve 
Such a propos i ti on can often be proved by induction on K ( e), the 

excess literal parameter of e , defined by 

K( C) = df (number of occurrences of atoms in ~ ) 
- (number of clauses in e ). 
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Thus, if e is a set of unit clauses then K(e) = o. The method of 

argument is given by the following: 

Proof schema (by induction on k = K( e» [4]. 

Base: Suppose k = o . [Prove Proposition S for case wheree 

is a set of constant literals.] 

Induction step: Suppose k > 0 and Proposition 2 holds for all 

~ such that K( ~) < k. Select a clause A v B in e where 

AI'IB = 0 and A,B r o. Let e' = e- {AvB} and CA = C:'v{A} 

Then eA is (-contradictory and K( (;A) < k. It follows by induction 

that /', contains a refutation cD,a.(o) of eA . 

Let ~AVB(B') be the embedding of ~A(O) in e . Then 

B' ~ B. If B' = 0 then let !J = .§"AVB(O). Otherwise let eB, = 

C' v{B'} , and observe that eB, is e-contradictoryand K(C'B') < k, 

whence /', contains a refutation ~, (0) of eB, . Let rf) be the 

result of prefixing l},a.VB(B') to ~B'(O) 

Now JJ is a refutati on of ~ vt; , and is in/', provi ded that 

A v B and A have been chosen "appropriately" for the given refinement 

/', . I 

This proof schema is exemplified by the proofs of Lemma 1 and 

Lemma 2 in §A. l. 

Lemma 1. Suppose that t S tv and e is a finite e -contradic

tory set of constant clauses . Then there exists a hyper-~-resolution 

refutation of I: v S 

The fo 11 owi ng coroll ary, useful in the proof of Lemma 2, provi des 

a clear semantical motivation for the use of hyper-.. t_-resolution or 
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HR( E • ~.s) when e is a Horn system: 

Corollary. Suppose that e is a Hom system and {Pi : i < m} is 

a mi nima 1 ~ -contradi ctory set of constant 1 itera 1 s. Then {Pi: i < m} 

contains at most one negative literal. and if each literal of 

{Pi : ; < m} is positive then e.+ contains a negative clause 

- -q v··· v q o n-l such that {Pi:; < m} 17 qj (j=O.··· .n-l). 

Proof. It follows by the Compactness Theorem (Corollary) that 

some minimal (hence finite) subset e of e+ v {p;: ; < m} is contra-

dictory. It follows by Lemma 1 

refutation .J} (0) of e . and 

of {p;: i < m} • 

that there exists a hyper-E-resolution 

{p. : i < m} ~ Base~(O» by minimaTity 
1 -

Suppose ({Bi v qi: i < m} v { p . } f- C) 
. J 

;s a hyper-E-resolution in-

ference where Pj is negative. Then Bi v qi is positive. whence 

B. = a because e is a Horn system (i=O. · ... n-1). Therefore C = a • 
1 

whence ~(O) contains at most one such inference and Pj is the only 

negative 1 iteral in {Pi: i < m} . 

Suppose Pi pos iti ve (i =0 ..... m-l) and 1 et 

{(q v· .. vq l)} f- 0) be the final inference in 
, 0 n-

({q~: i < m'} 
1 

V (0). Clearly. 

{P( i < m} f£ {qj: i<m'} 

(j=O.· ... m'-l).1 

and { q~:i < m' } v{q.} 
. 1 · J 

is e-contradictory 

Lemma 2. Suppose that e is a Horn system with renaming rs • 

and C is a finite e-contradictory set of constant clauses. Then 

there exists a hyper-.t'-resolution refutation of e v t: . 
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3.1.3 Strong Liftability of Hyper- e -Resolution 

In view of the fact that the hyper-jL-resolution refinement is 

the class of all deductions composed of hyper-_E.-resolution inferences. 

strong liftability (§1.3.8) of the hyper-e-resolution refinement 

amounts to the following: 

Lemma 3. Suppose that 

({B~ v p~ •...• B~_l v P~-l' B~ v q~ v·· · v q~-l} f- C' 

is a hyper-_~_ -reso 1 ution inference where 

C' = (B'9' - p'9') v· · · v (B' 9 ' - p' 9 ')v B' 9 ' o 0 m-l m-l m 

ated set of clauses such that Bmn S B~ • qi n = q!n(i=O. · ·· .n-l) • 
1 

Bin ~ Bj • and 

n-9' such that 

p. n S p! (i =0 •...• n-1 ) . 
1 1 

Let 9 be any divisor of 

(3) 

(i) {P09. · ··.Pm_19. ('ioe v qn-19) } is an eo-contradiction; 

. and 

(i 1) if P £ Bi and pn9 ' = p· n9 ' 
1 

then p9 = Pi 9 (i =0 •...• m- 1 ). 

Then the inference 

where C = (B09 - P09)v .. , v (Bm_19 - Pm_1 9 )vBm9 is a hyper-J'

resolution inference. and C[n- 9 '/e] ~ C' . 

(4) 
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Corollary . Suppose that C is a Horn system with renaming rs 

and B is an e -inconsistent set of clauses. Then there exists a 

general hyper-£-resolution refutation of tfJ ve . 
Proof. t8 + is r -contradictory. By Relative Compactness 

there exists a finite £-contradictory subset ~ of 13 + By Lerrrna 2 

there exists a hyper--.t-resolution refutation iJ' (0) of eve . Let 

~(O) be a hyper-c-resolution lifting of lL'(O) based on some branch 

mapping TI (§1.3.8). It follows by Lemma 3 that i'(0) is a general 

hyper-~-resolution refutation, and BaseCe(O)) S (eve)'" .1 

HR(e ,>-.s) is not in general strongly liftable; s may select 

negative literals from (B n vq n v '" v q In ) in an entirely. di fferent m 0 n-

order than that .in which it selects negative literals from Bmvqov ... 

v qn-l . However, the fo l lowing lemma shows that if· we include a suf

ficient number of variants among the premises of a hyper- c-resolution 

inference (4), then (4) can be realized by an c-resolution deduction 

containing n inferences: 

Lemma 4. Suppose that (4) is a hyper-c-resolution inference with 

separated premises 41 = Ii v •.. v{j 1 v{B vq v··· vq l} where o n- m 0 n-

( ,• ) ID {Bi i . k } C {B "} (" 0 1 ) 'Oi = kVPk" < mi - jVP{ J < m ,= ,"',n- ; 

(ii) {p~e : k < mi } v {<li e} is an e~contrad i ction (i=O, ... ,n-l); 

and 

(iii) if i ~ j then $" fI fB " = 0 (i,j < n). , J 

Then (4) is realized by an ~-resolution deduction ~(C): 



-102-

(5) 

where 

(i v) and {q~, ... ,qO} = 
. Vo 

{q ,'" ,q 1 } o n-

(v) 

(vi) 

where j = Ili ' 

e i = [xe Ix: x occurs in OJ v {qj}] ; and 

(vii) 
i+1 i+1 i i . 

{q ,"',q } = {q e., ···,q 1e .} - {qv'. e,.) o v i +1 0 , v i - 1 1 

Corollary. For each genera l hyper- c-reso1ution deducti on JJ' 

HR( t , '>,s) contains a general deduction Jj such that BaseCb) ~ 

Base~')~ and J1 has the same conclusions as d)' 

Indication of proof. Let !2. be the deduction in HR(e ,>,s) 

having decomposition { i).(C . ): i < n} where i).(C.) 
~ll ~ll 

is a rea1 i za-

tion of a hyper-e-reso1ution inference (Qii 1- Ci ) (obtained asin 

Lerrvna 4) and {8 j f-- C
i

: i < n} is the set of inferences inl}_' 

Proof of Theorem 1. By Lemma 3 (Corollary) there exists a gen

eral hyper-e -resolution refutation Jl.' (0) of f8 1.1 t . It follows by 

Lerrvna 4 (Corollary) that HR( c ,~,s) contains general refutation £)(0) " 
1\ 

/ ' 
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of lj .... [ .1 

3.2 Completeness of Resolution Micro-Refinements 

It is assumed below that ~ is a reduction system (E ,~) where 

t is a set of clauses. 

3.2.1 Unit Completeness of i~D( e ,>-) 

A refi nement t; is unit e -comp1 ete provi ded that if e is an 

e-inconsistent set of unit clauses (literals) then t; contains a refu

tation of t3 v e v [x=x]. 

Theorem 2. Suppose >- is an E'-comp1 exi ty orderi ng where 

(' ~ e . Then ND(e ,r) is unit e-comp1ete. 

This result is a trivial corollary of Theorem 3, which also des-

cri bes a restri cted "1 ifting property" of ND (e ,>-). 

t in J V by 

Define [t] for 
(; 

Theorem 3. Suppose that p shares no variables with q and 

p6 I=l
t 

qe where x6 i s the fi rst constant term in [xeJe (with 

respec t to >-) for each variable x occurring in p or q Then 

I~D( e ,>-) contains a general refutation tJ(O) of {p,q} such that 

[x_~(o/x: x occurs in p or q] divides e . 

This result follows from Theorem 5, Lemma 9 (Corollary 2), and Theorem 

6 (§3.2.3) . Lefllna 9 covers the case where , _~ is a closed reduction 

system (§3. 2 . 2). Theorem 6 shows that given !!.!:l1. reduction system (t: ,>-) 

where >- is an e' complexity order and g' SO e ,ND( € ,>-f contains 
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a general deducti on of a set cl( E: ) from e such that (Cl( e ). >-) is 

closed. 

Corollary. Suppose Avp shares no variables with Bvq and 

pe He qe where xe is the first constant term in [xe]E: for each 

variable x occurring in (A v p) or (B v q) ' . Then NO( & .>-) con

tains a general realization J' for an t-resolution inference 

where [xa ",.I x: x occurs in A v p or B v q] divides e • 
= 

Proof. Obta i n !L(C) by embeddi ng a general refutation iQ'(O) 

for (e: v [x=x])'V v {p.ii} in (t v [x=x])'V v {A v£.. B v g} • where 

.t)' (0) E NO(e .>-) • 

Remark. The corollary is essentially a "lifting lemma" for 

constant deductions real izing resol ution inferences 

a.' v {(A v p)e. (B v q)e} f- (AS - pel v (Be - qe) (6) 

where P. q. and e are as above. {p' E Avp: p' a,er = pa",,} 
= = 

= {p' E Avp: p'e = pel • and {p' E Bvii: p'a!L= qa.t)} ={p' E Bvq: 

p' e = Cia",}. 

3.2.2 Completeness Properties of Closed Reduction Systems 

Unit C-completeness of NO( t: ;r) intuitively involves the com

pleteness of some reduction system ( e'.~) where e' is derived from 

c: if pe =e qe then pe ~> !: q' and qe =-> l: q' •. Under cer

tain circumstances. it follows that p -+~ p' and q ~~' p' where 

p' subsumes q' . The following theorem is useful in the analysis of 
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a specific refinement ND(e,>o) in §C and §D: 

Then 

Theorem 4 •. Suppose that §..' satisfies (i )-(v): 

(i) e' is a finite set of equations [s=t] where each variable 

in tis a 1 so ins. 

(ii) ~ is an invariant partial ordering on :IV' 

(iii) Every descending chain in l!:: is finite. 

(iv) s~ t for each equation [s=t] in c' . 
(v) For each separated pair {[s=t],[u[r] = v]} ~ c,"v such 

that r ¢ VI and mgu{r,s} = a £ LV ' there exists a term 

v' such that u[t]a +,( v' and va +~ v' 

~' is normally complete and canonical. That is, for each pair 

of terms r, s such that r =e' s , NF( e' ,>-) contains a unique term 

t such that r ~1t t and s ~1t t . 

This result is derived in §C.4. In cases where we cannot derive 

a system ~' satisfying (i)-(v) from ~ • we can nevertheless obtain 

somewhat weaker completeness properties (expressed in terms of ,,~,) 

by requiring that c' be closed under certain operations such as 

normal replacement inferences and reductions of equations to normal 

form with respect to all other equations. 

Closed reduction systems. Specifically, we say that ~ is 

closed provided that it satisfies (i)-(iii) for each equation [u=v] in 

c: 
(i) If u;f v and [u=v] £ NF(e ,>-) then [v=u] £ c*. 

(ii) If [u=v] ¢ S[s=t] for all [s=t] in "v e - [u·v] and 

[u=v] i [x=x]* then [u=v] +* [u'=v'] £ NF( e ,>-) where 
l.. 
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(E: v [x=x])* contains [u'=v']or [v'=u']. 

(iii) Suppose e contains [s=t] such that ({[s=t]n. [u'[r] = v]) 

I- [U'[tn]=v]e) is an RP,,--inference where u= u'[r] and 

n is a simplest substitution such that [S=t]n shares no 

variables with [u=v] . Then [u' [tn] = v]e ... * [u"=v"] where 
£ 

(/:: v [x=x])* contains either [u"=v"] or [v"=u"] . 

In order to make up for the fact that (iv) in Theorem 4 does . not 

hold in general. we work with c+ • the set of constant equations in 

C * instead of t 
Theorem 5. Suppose 1L is a closed reduction system. Then 

for each constant term u. u ~~+ v where v 

term of [u]e (according to ;». 

is the first constant 

The proof of this theorem is based on Lemmas 5-8 below. 

Lemma 5. Suppose u and v are constant terms such that 

v. Then 
A 

u =t+ v 

Defi ne e by 

e = df {[s '=t'] e: t If {" contains [s=t] such that s '=sn 

for some simpl est n then t' ';f- tn) 

Lemma 6. For each term u there exists a unique term ~. 

such tha t u e: NF(E ."'). 

il =df the unique term in NF( t. ,>-) such that u 9~ 
!. 

A 

U 

U = df a minimal term in [u]t: with respect to >- • 

Let .:J = {s : a< v} v a • an enumeration of the constant terms 

in ::IV such that if fl > a then s fl > sa' (Recall that ;> well

orders constant terms.) Define t fl for each ordinal number fl < v by 
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(!, = {[S=t']e:C+:SS>-"SN .... t '} s df a ~ 

Lemma 7. Suppose u = ~ v where · 5 = t for each equati on 
A A S 

Then u = v • 

Corollary. Suppose 5 = t for each equation [s=t] in £+ . 

Then u = u (u e: :f) . 
Proof. Suppose u e: ~v' Then u = c u for some S < v • 

A s 
It fo 11 ows by Lemma 7 that u=u=u.1 

Lemma 8. 
A A 

S upp 0 se .£.- i s c los e."d'-'-._T'-'h"'e"-'n-----'s~= -"t_ f"o,-,-r---'Ce a",c",h'---'Oe",q u ... a ... t,-,i~o,-,-n ~ ___ _ 

[s=t] in c+ 
Theorem 5 follows from Lemma 8 and the preceding corollary. 

Lemma 9. Suppose that 1L is a closed reduction system. ua 

is a cons tant term. and a e: L,[, . 

derivation 53 from e v {Pu} to 

Then there exists an e-normal 
~ 

~ 
(Pv) where (Pv) subsumes (Pu a ) 

and [xo / x: x occurs in u] divides a 
J!J 
= 

Corollary 1. Suppose that .!, is closed. t: consists entirel y 

of equations. pa is a constant literal. and a e: L~ • 

exists a general K-normal derivation II from c v {p} 

Then there 

to q where q 

subsumes pa . the first constant literal of {q': q' He pa} ; 

moreover. [x0,l3'/x: x occurs in p] divides e 

Proof. It suffi ces. to prove thi s coroll ary for the case where 

Qul" , un • an atom . Then pe = (Q(ul e ) ". (una)). It follows by the 

lemma that there exists a general JL-normal derivation 12, from 

c'" v (Qu"'u ) , n 
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Q(U
1

9)(U29) ••• (U
n

6) where a l = aJ) and [xa~ Ix: x occurs in p] divides 
-1 ~l 

9 • Proceeding by induction, we eventually derive (Qvl · •• vn) sub-

suming (Qu16"'Un6) by means of an Jt-normal deri vati on ~ where 

in p] divides 9.1 [xa~/x : x occurs 

Corollary 2. Suppose that e is closed, t consists entirely 
= 

of equations, p and q share no variables, 9 £ 'Ee ,and pe,q e are 

-constant literals such that p6 1=1£ q6 ' Then ND(c,>-) contains a 

general refutation !1 of c'" v {p,q} ,and [xa~x: x occurs in 

p or in q] divides e 

Proof. Observe that p6 = qe . Corollary 1 implies the exis~ 

tence of general C -nornial derivations ~l from p to p' subsuming 

pe , and ~ from q to q' subsuming qe , such that lLl and 

~2 share no variables and a ' div i des 6, where 

a ' =df [xa .e ·a5J Ix: x occurs in p or in q] 
=1 ~ 

It follows that p'[e/ a' ] = q[ el a '] 

of suffixing the Cut( t' ,>-) - inference 

Let 17 be theresul t 
= 

to ~l(P') and iJ2(q ' ). Clearly [xa,e/x : x occurs in p or in q] 
= 

divides 6 , and 5j is in ND( t ,>-) . 1 

3.2.3 Convergence of an e-normal Derivation Procedure 

The procedure II below is a modification of Ref (§1.3.6) 

which, given a set t: of equations, defines a composite !,.-normal 

deduction Cl ( t ), where c = (t ,>-) for some e' -compl exi ty order-= = 

ing >- such that e' £ ~ • We show below that ll, appl ied to C , 
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"converges" to a set cl( e) such that (cl( e .) ,~) is a closed reduc-

tion system. 

Oefi ne Par( t ,)0) by 

Par( t ,)0) = df (£ v {[u[tn] = v]e: t contains [u[r] = v] , 

[s=t] such that v 1"u[r] , 

[u[r] = v] E NF( E - [u[l'] = v]"'.» and 

({[s=t]n,[u[r] = v]} ~ [u[tn] = v]e) 

is an Rp(e,r)-inference, where n is a standard 

simplest substitution such that [s=t]n shares no 

variableswith [u[r] = v] and e = mgu{r,sn}}. 

-Le-t -<r; be the partial ordering of Par( ~ .)0) such that [s=tl i: 
[ u[tn] = v]e and [u(r) = v] ~ [u[tnJ= v]e for each Rp ~-inference 

({[s=t]n, [u[r] = v]) ~ [u[tn] = v]e) used in generating an equation 

in Par(C.»-Et 

Define + on equations by 

0 • if u=v ; 

-+ {[u=v]}. if u '> v 
[u=v] = df {[ v=u]}. if v ~ u and 

{[u=v],[v=u]} , otherwi se. 

Oefine ll( e) by 
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cl( e) = [Q: df 
= Enq(nil,Par( E ,)0)) 

,R: = (t., -<c) ; 

Result: If Q = nil 

then ,R . 

else [Next(A,Q) 

Subsume (A,,B) 

Res 11 (A,B" T) ; 

Q: = Enq(Q,T) 

Resul tJ]. 

Notes on Operati on 

1. The operation of cl( c) is basically 1 ike the operation of 

!ki( E) (§1 . 3.6) except for differences in Next, Subsume, and Res l1 

noted below. 

2. On the kth iteration of Result (starting with k = 0), 

Next(A,Q) deletes Pk = Qk(O) from Q and sets A = qk where 

Pk ~ ;, qk e; NF(Rk,) and Rk = Rk - Pk 
- k .. 

3. Subsume(A,B,) sets ~ = Rk+l = Rk v qk For formal analysis 

purposes we do not actually delete subsumed equations; we merelyre

strict their role in subsequent inferences, in accordance with NO( c ,>-). 

4. On the kth iteration, Resl\(A,B"T) sets 1= (Uk"Vk) 

Uk = {[u[tn]e = ve]: Rk+l 2 {[s=t],[u[r] = v]} 

where (qk- R~) r.{[s=t],[u[r]=v]} f 0, 

v :t u[r], and ({[s=t]n,[u[r] = v]) f- [u[tn] = v]e 

is an RPR -inference, where n is a standard simplest 
~ 

substitution such that [ s=t] shares no variables with . 
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[u[r] = v] and a =' mgu{r.sn} 

Vk = {[u=v] ~ Rk A NF(Rk'~): [u=v] t S([s=t]) for all 

[s=t] in (Rk- [u=v]~) • and qk contains [s=t] such 

that r = sa >-ta where r occurs in [u=v] and 

8 is a simplest substitution such that r = s8 } • 
.;-

Uk is the set of ~ normal Rp inferences based on a member of qk 

and Vk is the set of equations in Rk which have become reducible as 

a result of including qk in Rk+l • Res~(A.E.T) also extends ~E • 

recording the new inference with conclusions in T - Rk • 

The following result completes the proof of Theorem 3. 

Theorem 6. Suppose >- is an e'-complexity ordering where 

(.' s: e . Then !!,l,(e) is a composite i.-normal deduction (Cl (c ).>-) 

such that (Cl(£ ).::.-) is closed and c S Cl(C) • 

Proof. If Qt+l = nil for some first tEO N then set 

Pt+k = Pt and qt+k = qt (k EN) • Then Cl(~) = t. v V {qk: k EN} and 

Rk = E. v V{qi: i < k} • Let 14. be the composite ~-nonnal deduction 

with inferences all of the fonn {Pk,q} f- q' where q E Rk . Each 

such inference is a CRPR -inference. It is easily verified that 
, ~ 

ll( t.), with decomposition {,c\: k EO N} (finite or infinite) is a com-

posite L-normal derivation. It suffices to prove that Cl (S) satis

fies conditions (i)-(iii) in the definition of closed with Cl(e) for 

.£.. Let [u=v] be an equation in Cl(c) 

(i) Suppose u:lov and [u=v] E NF(Cl(C').>-). In view of 

the facts that e ~ Range(Qo) and Enq is a fair en

queuing function, it follows that [u=v] EO qk for some 
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k > O. Therefore [v=u) eo qk S Cl ( t.) al so. 

(iil Suppose [u=v] t NF(Cl (e).) and [u=v) t S[s=t] for 

all [s=t) in cl( ~) - [u=v)"'. Due to the fact that 

;;:. satisfies D.C.C., there exists a maximal increasing 

sequence (jk: k < n) such that p . = [u=v) and q . f"\ ~ 
- J o Jk Jk+l 

r O. Let ek be a simplest substitution such that 

q. r\ p. ek'f 0 (k=O ... ·.n-l). It follows that 
Jk J k+ 1 

[u=v) -rflU:) [u'=v'] eo NF(Cl(£ ).;.-) • where either 

[u'=v'] or [v'=u'] is qJ' e l· .. ··e • Thus, Cl(c)* n- 0 , n 
contains [u'=v'] or [v'=u']. 

(i i i) Suppose Cl(e) contains [s=t] such that ({[s=t]n. 

[u'[r]= v]} ~ [u'[tnl= v] e) is an RPg,(e) inference 

where u=u'[r] and n is a simplest substitution such 

that [s=t]n shares no variables with [u=v]. 

Case 1: Neither [s=t] nor [u=v] is in V{qi: i E N} . Then 

[s=t] and [u=v] are both in e . whence [u'[tnJ=v]e is in 

Qo = Enq(nil,Par( E.»). Therefore Pk = [u ' [t ] = v] e for some 

kE N (by fairness of Enq). whence[u ' [tn]=v]e -r~l(S) [u"=v"] E 

NF(Cl( c) .>-), where either [u"=v"] E Cl( c)* or [v"=u"] eo Cl (c )* 

(using (iil). 

Case 2: One of [s=t]. [u=v] is in {qi: i E N} . Then there 

exists a number k such that Rk+l 2 {[s=t].[u'[r] = v]} and (qk-R~) 

n ([s=t],[u'[r) = v]} 'f 0 • whence [u'[tn]= v) e E Uk by Note 4 above. 

The conc'l us i on fa 11 ows as inCase 1. I 
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Remark. It can be shown that (C1 (~ ) ,>-) remains a closed 

reduction system even if we delete subsumed and reducible equations 

from Rk+1 at each step of the computation ' (by means of a modified 

Subsume(A,R) operation). While this is a useful thing to know (or to 

verify) where computational efficiency is important, the incorporation 

of deletion operations based on ND(e ,>-) into Subsume(A,,R) makes the 

proof of Theorem 6 appreci ably more di ffi cu1 t. 

3.3 Properties Preserved under Normal Composition 

Gi ven a general i zed e -reso 1 uti on refi nement [:, and a genera 1-

i zed e:' -reso 1 uti on refi nement [:, , where c' s C , we may fi nd it 

useful to derive formal properties or expected performance estimates 

of the normal composition [:, . [:, ' as a function of formal properties or 

expected performance estimates of [:,.[:,' The results stated below 

pertain to 1iftabi1ity and completeness properties necessary for the 

proofs of Theorem A and of Theorem B (Corollary) in the Abstract. 

Strong 1iftabi1 i ty is a useful property in the results stated 

below. Since HR(e' ,:>-,5) is not strongly liftable, as noted in §3.1.3, 

we define HR( E ."".5) by 

HR(£,,?-.s) =df {~: Each inference in i2 is an (£.:>-.5')

resolution inference. for some selection 

function 5' such that rs' = rsl 

The following lemma is easily unified on the basis of Lemma 4. 

Lemma 10. mnt' ,'",s) is strongly liftable. 

The following lemma holds by a similar argument: 
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Lemma 11. For each general deduction ~' in HR(c.~.s). there 

exists a general deduction i:J in HR(E .>.s) such that Base(~) = 

Base(~' ) 

iJ' 

and J) has the same r -positive or empty conclusions as 
~ s 

Theorem 7. Suppose that to is a strongly liftable t '- resolu

tion refinement and ~' is a strongly liftable c'-resolution refine~ 

ment where C:a e' Then the normal composition ~.~' is a strongly 

liftable E'-resolution refinement. 

Theorem 7 (proved below) has the following simple corollaries: 

Corollary 1. Suppose ~ . c. c' as in Theorem 7. Then 

~ . HR( e' .>' ,s') is a strongly liftable e'-resolution refinement. 

Corollary 2. If en J .•. J Eo where en ("\ tv S Eo then 

HR"( E:n':--n,sn) •...• HR( Eo'>O,so) is a strongly liftable Eo-resolution 

refinement. 

Proof of Theorem 7. First we should verify that the t-resolu

tion calculus is liftable. Given an t-resolution inference 

{Bi:. i < n} f- C' with kernel {C i : i < n} and induced substitution a', 

and a separated set {B;: i < n} where B; subsumes B! 
1 

but not C', 

let 11 be a simplest substitution such that Bin S Bj (i < n). Let 

C. = {p E: B·: Pn E: C
1
!} . Then gi ven any di vi sor a of n- a ' such that 

1 1 

{Cia: i < n) is a set of unit clauses and {Cie: i <n} ~ 0 , we have 

an E-resolution inference UBi: i < n} f- C) where C = (Bo- co) a 

v··· v (Bn- l - Cn_l)e. This is a lifting of {Bj: i <n} f- C' be

cause C[n·a'/a] ~ C' . The t'-resolution calculus is similarly lift

able. 
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Each ground refutation in 6'6' has a decomposition {1Li(Ci): 

i <m} into e'-resolution realizations of t-resolution inferences 

(8i f- Ci) where 6i = Base~i(q))· By strong liftability of 6 

.it suffices to show that if 1)_' (C') i s a ground e'-realization of a 

(ground) e-resolution inference ({Bi: i < nJ f- C') with kernel 

{Ci : i < n} , /)' (C') is the embedding in {Bi': i < n} v e* of a 

refutation 15 "(0) of {Cj : i <n} v e* where fJ "(0) E: 6 ' , 71 is a 

branch mapping for (Lt ' (C ' ) ,8) where to S{Bk: k < m} ve'" , 
Bk11 ~ Bjk ' and Ck = {p E: Bk : P11 E: Ch} (k=O,···,m-l), then there exists 

an g'-resolution lifting .B(C) of .b'(C') based on (71,8) such 

that C subsumes C' ; moreover, l)(C) is the embedding in (] of a 

general C'-resolution refutation ~1(0) of {C k: k < m} v e , where 

.l}1(0) E:6 ' . 

Suppose that J:j ' (C'), 71 , d3 , 11 , {Ck : k<m} , and .B"(O) are 

as above. Let 711 be the branch mapping on .v"(0) such that 7Il(~i) 

= Ck where 1T«(Ji) = Bk and ra i 
in ~"(O) . 

is the branch of lY'(C') correspond-

i ng to the branch 13 ~ 
1 

Let ~1(0) be an e'-resolution 

lifting ofoD"(O) based on (7I l ,{C i : i < m}) . Then .0
1

(0) is in 6' 

by strong liftability of 6' Let l1(C) be the embedding of -~-1(0) 

in (J Then .8(c) has the desired properties provided that C sub-

s urnes C' = (B' - C') v ... v (B ' - C' ) . o 0 n-l n-l 

Clearly C S (Bo- Co) a~l(O) v··· v (Bm_l - cm-l)a.tll(O) , by 

definition of ,,li(C) and q] Defi ne a by 

a =df[xaZ>l(O';x: x occurs in Bkwhere k < mJ 

Then i t suffices to show that a divides 11 , which is plausible 
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because Bk~ ~ Bk £ Base(~'(C')) and ~_li'(C') = £ • 

Each inference (Qi f- Ai) in i)-1 (0) is the "1 ifting" of a 

co.rresponding inference a! f- A!) in l["(0); moreover, the induced 
1 1 

substitution ei of (Q i f- Ai) has the pro~erty that ni divides 

n , where 

is a premise in ai then CjT)i e: ;tV.) r~oreover, if (If Cj 

~~1(0) 
induced 

"e ..... e 1 where {e k: k < 9, } is the set of substitutions o 9,-

by inferences in ~1(0) , then ~ = T) •...• 11 
o 9,-1 

It follows 

from these relations that ~ divides n .1 
A refinement ~ is ground (-complete provided that ~ is 

e-complete on sets of constant clauses--i.e., if e is an t-contra

dictory set of constant clauses then ~ contains a refutation of 

eve v [x=x]. 

Theorem 8. Suppose that ~ is a ground C-complete c
reso 1 uti on refi nement and ~' is an e' -comp 1 ete general i zed /!'-

reso 1 uti on refi nement where € ~ E' Then ~.~' is a ground 

c -complete generalized E'-resolution refinement. 

Proof. It suffices to show that if ({B~vq~: i < n} f- C') 
1 1 

a ground c-resolution inference where C' = (B~ v··· v B~_l) then 

is 

~' contains a refutation .e.' (0) of {q;: i < n} v t: which is ob-

vious because {qj: i <n} v t is inconsistent and ~' is e'
complete (hence complete). I 

From Theorems 7 and 8 we easily obtain the following: 
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Corollary 1. Suppose that 6 is a strongly liftable and 

ground e-camplete [-resolution refinement and 6 ' is a strongly 

liftable and ground e'-complete e'-resolution refinement where 

c ;;? c' Then 6 -6' is a strongly liftable and e-complete c'-
resolution refinement. 

Coro 11 ary 2. If c ~ ... :Je 
n 0 

rs 
k 

where en" tv ~ t;, 
(k=O, ... , n) then ek is a Horn system with renaming 

HR(£:n'~n;sn) - ... - HR( co,'Q,so) is a ground tn-complete t -o 

resolution refinement. 

and 

Let .£ = (e ,~) where >- is an c'-complexity ordering for 

some c' £ C f"I aV • A refinement 6 is strongly .6'_-complete on a 

collection 'U of clause-sets provided that for each latent t -contra

diction OJ in U where (J 8 is t -contradictory and 8 EO r..L ' 
6 contains a general refutation .B of a finite set C 5:( d)v E' v 

[x=x] ) 'V 
such that oJ} divides w 8 for each invertible substitution 

An EO (J fo·r each clause A in n where * e - (C v [x=x]) . 

A clause-set {C i : i < n} is a latent unit-clause set provided 

that {Ci 8: i < n} is a unit-clause set for some substitution 8 

Theorem 9. Suppose that .~ = (t,:>-) where e. is a set of 

equations and >- is an c'-complexity ordering for some c' s t 

and suppose that liM is a strongly liftable ground e.-complete re

finement and 6~ is a generalized C-resolution refinement which is 

strongly C -complete on latent unit-clause sets. Then 6 -6 is M ~ 
(. - camp 1 ete. 
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Corollary. Suppose that c? t n ::> ••• :> Co where C f"\:t V 

S; Co and ck 

suppose that b~ 

is a Horn system with renaming rs 
k 

is a basic refinement (consisting 

(k=O,.·. ,n) , and 

of normal deduc-

tions) which is strongly ( to,'O)-complete on latent unit-clause sets, 

where >-0 is an e' -complexity ordering for some C' $ co' Then 

HR( Cn,>;"sn)· ...• HR( eo,>o,so)·b~ is a normal t-complete refine-

ment. 

Indication of proof. The refinement b = (fIR"( cn';>-n,sn) 

•...• HR( €o';>-o,So))·b~ is normal and e-complete, by Theorem 7 

(Corollary 2), Theorem 8 (Corollary 1), and Theorem 9. A corollary of 

Len~a 4 can be used to transform a member of 6 into a member of 

HR(E:n';>-n,sn)· .... HR( £o,:>o,So)· b~ 

Proof of Theorem 9. Let (/] be an t: -inconsistent clause-set. 

Then (f3'" includes a finite latent (-contradiction C where CT is 

an £ -contradiction and T e: 'i.
L

. bM contains a refutation J2' (0) 

of eT u t , by ground €-completeness. Suppose without loss of 

genera 1 ity that IT is a branch mappi ng for CoO' (0), eve"'). We 

"1 ift" .e' (0) to a general refutation jj "(0) in bM in such a way 

that each inference inJj "(0) can be realized by some embedding of a 

general refutation in b~ By "interpolating" these embeddings in 

oB"(O) we obtain a refutation J) (0) in b ·b M ~ 
Suppose tha t ({B! vq!: 

1 1 
i < n} I- C') is an inference in 

j)" (0) with kernel {qi: i < n} , and that {8 i : i < n} is a sepa rated 

clause-set, consisting of conclusions of "lifted" subdeductions 

,t}.(B.) 
= 1 1 

based on IT and tl"(B! V q!) , such that 
1 1 
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6 E L:L and Bi does not subsume C'; (B~ v ···v B~_l) (i;O,··· ,n-1). 

Let Ci ;{qEBi :q6;qj},sothat {Ci:i<n} isalatentc

contradiction and a .latent unit-clause set. It follows by strong 

e-completeness that 6~ contains a general refutation ~ j(O) of a 

finite set Cj £({C i : i< n} v e v[x;x])'" such that CJoElj(O) 

divides n·B where n is an invertible substituion such that 

An E {C i : i<n} for each clause A in Cj - (t'v[x;x])*. Let 

~j(Cj) be a general deduction obtained by embedding Dj(O) in a 

separated set flj £ ({Bi : i < n} v C v [x;x])'" and prefi xi ng 

"variants" of the deductions £)i(B i ) (i <n) where appropriate. 

Observe that [n'B/CJlDj(O)] E ~~ and Cj subsumes C' . These ob

servat ions complete the induction step in a systematic construction of 

tJ (0) from _.tl ' (0) . 

Theorem 9 and its corollary emphasize the crucial role of a 

generalized c-resoJution refinement 6 which is strongly e -complete 
~ 

on latent unit-clause sets. Unfortunately, ND(E' ,;.) is not strongly 

E -complete on latent unit-clause sets; Theorem 3 asserts a weaker 

property, which yields the following strengthening of the Corollary 

to Theorem B (Abstract). 

Theorem 10. Suppose that no non-unit clause of e contains a 

(posit i ve) equation, e: 2 tn'J .. · ) eo where t I') £v ~ to and tk 

is a Horn system with renaming rs (k;O,'" ,n) >' is an e'-
k 

complexity ordering where c' <: C , and 6M; HR( e ,~ ,s ) •...• 
- 0 n n n 

HR( co';'o,so)' Then (t,M' ND( to'~» ('\ ND( Eo';'-') contains a gen-

era 1 refutation of eve v [x;x] for each C -i ncons i stent cl ause-set 
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C! wherein each non-unit clause contains at most one (positive) equa-

tion. 

The proof is based on Lemma 12, which makes use of the set 

1: of "constant" substitutions: 
.~ 

1: =df {e E: LV: if xe " x then xe is the first constant 

L term in [xe]e accordi ng to >- (x E: V I)) 

Lerilma 12. Let > be a monotone partial ordering of v 
which well-orders constant terms , and suppose that { 6( i E: N} satis

fies (i)-(iii): 

(i) 6k E: l:~ where tk is a set of equations and 
~k 

. t' k = df ( C k ,:>-) • 

(ii) Ck+1 = ek v {[sk=tk]} 

(iii) X6k+1 x6k = £k+l 

Then en+k = en (k E: N) for some n ~ 0 

Proof of Theorem 10. Suppose that e is an t -l.·ncon s istent o 

clause-set wherein each non-unit clause contains at most one equation. 

Suppose without loss of generality that £0 contains all of the equations 
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It follows by ground co-completeness of lI~1 that LIM contains 

a refutation _~_ '(O) 

C~ s: (eove)'" 8
0 

+ of some fini te subset e~ of (eo v c) , where 

for some 8
0 

in l:-~. Let e
80 

= Co ' and let 

be the set of all equations which occur (positively) in clauses 

Due to the assumptions that Co contains all equations of 

eo v t v [x=x] and that no non-un it clause of Co v C conta; ns more 

than one equation, each (co-resolution) inference in ~'(O) has the form 

a: v {A' v p', B' v g'} f- A' vB' (7) 

.where a' is a set of constant equations derived by "previous" infer

ences in ~'(O) and p' Ha: v Eo q' . t1oreover, if p' is an 

equation, then A' = 0 because equations precede all other literals in 

each literal-ordering >Oi (i=O,··· ,n) . 

Case 1: 8_' (0) is ~-stable, in the sense that s = t 
~o 

for eacn co-resolution inference (~' f- [s=t]) in 12' (0). Then we 

define a general refutation ~"(O) for 120 \Ie in ND( eo'>!) induc-

tively as follows, assuming without loss of generality that a: = 0 in 

(7) . 

Suppose (7) is an initial inference in .1)' (0). Then choose A, 

B in ((;OVt)'" so that An SA' v p' and Bn ~ B' v q' , selecting 

A and B according to some branch mapping for ~'(O) so that all the ini

tial premises of ~'(O) will oe separated. 

Suppose that (7) is a non-initial inference of £!: (0) and we 

have defined .~"(A), j)"(B),1l so that All S; A' V p' and Bn S B' v g', 
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but neither A nor B subsumes A' v B' (Assume A,B separated.) 

Let e be a m. g.s.u. of {{PE: A: pn = p'} , {q E: B: qn = q'H. Let 

A8 vEiL be a simple factor of A on- p where Pn = p' and let 

B8 v '[8 De a simple factor of B on q where qn = q' 

It follows by Theorem 3 (Corollary) that NO( to'>') contains a 

general realization JJ --A,B for an So-resol ution inference 

{A,S} f- (AG iJ - pa.e ) v (Ela J) -qo~ ) 
-/\,8 A,B ~A,B ~-A,B 

where 8 di vi des ° jj and 
- A,B 

[x0,jj Ix: x occurs in (A v 8)] divides 
---A,8 

8 _ 
o 

Let Jt'."(C) be the result of prefixing l) "(A) and J) "(B) to 

(8) 

.[fA, 8 

in C 

It follows that C0J:} "(e) ~ e' Let xn = x0d}"(e) for x -
Having defined j) "(0) in NO( 10

0
,>-'), we can easily transform 

~'(o) into a refutation )2(0) in (liM' NO( eo' ») f"'\ NO( Co,)o!). In 

the first place, if _cP"(a) contains a simple factoring inference 

8 1- B8 v ~ (9 ) 

where q is rsk-negative and Level,o_"(O)(q) = k (§2.4.3), then the 

eo-resolution inference ({A,S} 1- e) realization of which (9) is a 

constituent must be replaced by a chain of similar realizations wherein 

SF is not applied to B and the conclusion subsumes e. In other words, 

a realization of {A,8} 1- e containing (9) where B = 8 vq v··· v q 1 o 0 n-

and 8 is a m.g.u. of {qo" ··"qn-l} is replaced by a subdeduction 
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containing nco-resolution inference realizations. As s uming that 

~"(O) has had all i .llegal SF-inferences removed in this manner, we 

obtain ~_(O) in (liM' NO( eo'~'))" NO( eo';!) by reordering 1:o-resolu

tion inference realizations common to a hyper-1:o-resolution inference 

(realization) as in Lenrna 4. 

Case 2: !1_' (0) . is not co-stable. Let i:J ' ([ s =t J 8 ) 
.- 0 0 0 

be a 

subdeduction of S(O) such that so' f t' and ~, (C') is 
eo 0 

eo-stable for each proper sulideduction of .f!j[so-toJ8
0

)' Then by 

essentially the same argument as in Case 3 there exists in ( 1I~1' NO( tol~)) 

,., ND( eo';.2 ) 

flo divides 8
0 

Let e l be the 

and let t e = Ce v [so=toJno . 
10 · 

It follows that ( Co vt)'" el includes an C e -cont radi ctory 
1 

subset C 1 S; ( Co v t ) + , whence 1I1~ contains a 

of ei 
refutation ~-1(0) 

Iterating the preceding case analysis with ei for C' 0 
, 

e l for eo , t e for e = to ' andj:li(O) for Jj , (0) , we find 
1 eo 

that "Case 1" is applicable at most a finite number of time s , for 

otherwise Lemma 12 is contradicted. Thus, the re exists a set 

, of equations derivable from (eo" e)'" by a deduction 

that (eo
v C vee )+ has 

£, 

an to-resolution refutation .Qi (0) which is e 8 -s tab 1 e, whence 
£, 
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~~i (0) can be "lifted and interpolated" by a general deduction o~=l (0) 

i n (~'ND(eo.'»)f\i'W(to'» basedon (eo"tvte,Q,}"' . Prefix-

ing variants of subdeductions in ~ where appropriate to support 

equations in c~ - c~ . we obtain a general refutation ~jO) of 

'" JI. (eove) in ( "'('i, ND(eo '>'» flND(t o '>') .1 
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4. RELATED RESEARCH 

This chapter briefly reviews research which has contributed to or 

motivated the present investigation. The lack of comprehensiveness is 

partially compensated by the initial review of readily available over

views and textbooks. 

The research most directly relevant to the technical results of 

this investigation is reviewed more carefully in s4.3. Relations to 

current research on calculi for enriched logical systems are described 

in §4 .4. 

Research on high-level programming languages with "deductive" 

capabilities, reviewed much more thoroughly in [9], is viewed briefly 

in ·§4.6 asa rapidly growing application area for specialized proof 

procedures. 

4. 1 Overviews and· Textbooks 

There are now severa l easily accessible overview articles and 

textbooks describing the research mentioned below and showing its rela

tion to other areas of Artificial Intelligence (AI) research. 

Nilsson's analysis of AI research [58] provides a lucid and com

prehensi ve overvi ew of resea rch on proof procedures in the context of 

several types of deductive problem-solving systems: automatic theorem 

proving, automatic programming, question answering, and robotic prob1em

sol ving systems. This survey clearly documents a growing trend toward 

recognition of the importance of secondary "heuristic advice" informa

tion along with the primary (descriptive or axiomatic) information in 

the data bases of deductive problem-solving systems. 



-126-

Resolution-based calculi and their applications in AI are 

thoroughly treated in two recent textbooks [54,12J. Luckham [47] 

provides a concise development of the basic results supporting the 

resolution principle of J. A. Robinson (essentially a combination of 

the Cut and Factoring rules (§2.2.2). 

In [67J, Robinson presents a more general version of his resolu

tion pri nci p 1 e whi ch admits reso 1 uti on inferences (§2. 1.1) but not 

t-resolution inferences in general. This article includes a useful 

overview of research in me chanical theorem proving, augmented by a com-

prehensiv'e bibliography. 

4.2 Formal Foundations and Background 

Completeness and undecidability. Well known studies in the 

foundations of mathematics have shown that the logical consequence rela-

tion r is semi-decidable but not decidable; similar conclu-

sions hold for ~ under the assumption (implicit throughout this 

report) that e is consistent. Godel (1930) and others presented ef

fective calculi for first-order logic and showed them to be complete. 

Resolution principle . Following the completeness results for 

first-order predicate calculi and the later advent of high-speed, pro

grammable digital computers, a number of investigators began to exper

iment with baSically complete proof-procedures for first-order 

predi cate logi c [66,ln. The resolution principle formulated by 

J. A. Robinson [63J grew directly out of efforts to systematically 

eliminate major and (practically speaking) combinatorially disastrous 
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sources of inefficiency in these procedures. This principle, embodied 

in the simple Factoring and Cut rules of inference (§2.2.2) is based on 

the concept of most general (simultaneous) unifier developed by Prawit~ 

[59] and refined by Robinson [67]. 

Heuristic methods. The latter part of [63] is devoted to several 

uniform (problem-independent) heuristics for eliminating redundant 

clauses and inferences. Heuri stics (both uniform and problem-dependent) 

for the control of refutation procedures based on the resolution prin

ciple have been the subject of intensive investigations for nearly a 

decade. Severa 1 refi nements of reso 1 uti on, whil e ori gi na llyconcei ved 

of as being heuristic in the sense of being "the sort of thing an in

telligent human problem-solver would do" [63,p. 118], were subsequently 

shown to preserve the refutation completeness property of resolution. · 

These developments are reviewed more extensively in Robinson's article 

[65]. 

Refinements . In [48], D. Luckham defined a general class of 

restrictions on binary (or "pairwise") resolution, which he called 

refinements, deriving completeness and compatability results for model 

partition and ancestry filtering refinements . The latter, al so known 

a~ linear resolution [ 4,43 ,45] was probably the first example of a 

refi nement which cannot be defined without reference to the proof-trees 

supporting the premises of admissible inferences. 

Model partition, or resolution relative to a model, is one of 

several generalizations of Pl-deduction or its "non-basic" form hyper

resolution, defined and shown to be complete by J. A. Robinson in 1965 

[54]. Slagle [73] and Kowalski [40] investigated certain literal-
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orderings and renamings (§2.1.2) in conjunction with these refinements. 

Refinements for eguality calculi were obtained from each of the 

above types of refinements by imposing restrictions on the use of para-

modu l ation [42,78]. Hyper-E-resolution [3] was an extension of 

hyper-resolution to equality theory, and renamable paramodulation [12] 

incorporated renamings and certain literal-orderings into this refine

ment . Kowalski [41] notes the equivalence of refinement-restricted 

uses of equality-axioms and special inference rules such as paramodula

tion . 

Special i nference rules for fragments of set theory and other 

theories of partial order are investigated by Slagle [75,76]. Com

pleteness and efficiency results for these rules are based on previous 

resu l ts for refinements and axiomatizations of set membership and par

tial orders. 

Special refi nements and search strategies for Horn systems 

(§3. l .1) are investigated by D. Kuehner in [45], where he shows the com

pleteness of a purely linear (or input) resolution strategy for Horn 

systems. Since the addition of equa l ity axioms to a Horn system yields 

a Horn system , it seems likely that these results can be extended to 

first-order logic with equality. 

Functional reflexivity axioms [fxl ···xn = fxl···xn] are re

quired to be present for each of the above completeness results per

tain i ng to resolution augmented by paramodulation. L. Wos and G. A. 

Robinson discuss possible ways of showing that only simple reflexivity 

([x=x]) is needed for completeness; however, their conjecture to this 
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effect [64] remains open. l 

Performance analyses, particularly by empirical measures of ef

ficiency ratio (§B.2) have been conducted by several of the above 

authors (e.g., [51] and [63J). The foundations for a theory of effi-

ciency for proof procedures are investigated by R. Kowalski in his doc-

toral thesis and discussed by B. Meltzer in [51]. The development in 

§B is based on essentially the same model of proof procedures used by 

Kowalski. 

4.3 Research on Equational Simplification Refinements 

4.3.1 Studies in Combinatory Logic 

r~uch of the research described below is motivated by the word 

prob l em for an equational system e 
Given terms u and v , decide whether or not 

It is well known that the word problem is unsolvable for many finite 

equational extensions of Semi group or Group Theory [71] . 

(1) 

However, basic research by Church [14], Rosser , and Curry 

[16] on lambda-calculi and their equational equivalents, the combinatory 

calculi [30], have established a paradigm for solutions to the word 

problem: they investigated several finite equational reduction systems 

(C, +* ) (as defined in §2.3.4) and showed them to be complete (§2 .3.4): 

lunit-completeness results for paramodulation with simple reflex

ivity have been derived independently by Richter [60] , and 

myself (§3 .2.1, Theorelll 3). It appears quite likely that partial com

pleteness results for the non-unit case (e.g .• Theorem B) will be ex
tended in the near future. 
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They describe a partial algorithm (essentially the one specified 

in §3.2.3 for deriving a complete system ( c', ;>Ow) from 

(e, '>w)' and they illustrate its applications to the word problem by 

means of numerous computer-generated "completions" of simple equational 

systems (e.g., the Group Theory example in §C.2). 

The completeness results for basi c refinements of the form ND( C ,>-) 

in §3.2 were motivated by, and constitute an extension of, the research 

of these two investigators. 

4.3.3 Refinements Based on Composition with e -Canonical Mappings 

Suppose that C is an equational system and v is an e -canonical 

mapping on :Iv v Cv ' whence (s =r t) iff (v (s) = v (t)). Given a cal

culus r over ev ' it is natural to ask how v may be used to "refine" 

r for greater effi ciency in proof procedures. 

Plotkin [57] describes his objectives as finding ~ complete 

calculus r such that the calculus r , defined by 
- ----- v -

( e fr C ') = df (d3 fr C whe re v (C) = C') 
v 

~ also complete l . Actually, there is a straightforward modification 

(1) 

* of j,D(e, +c) which appears to satisfy this objective, provided that 

u +e v(u) E NF( C '+E ) (u E .JV vCV)· However, Plotkin's development 

lPlotkin uses N for v , and states his objective thus: "We 

shall look for a complete set of rules rl,···,r
m 

such that rl oN, ... , 

r 0 I, is also a complete set. (If r is a rule, r oN is the rule 

which outputs i1(C) iff r outputs, with .the .same inputs, C)". 

[S7, p. 74]. (Underlining mine). 
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is quite different; parts of it are outlined in the following paragraphs, 

gi ven e and v as above. 

Instantiation2 and composition are defined as follows: 

u * a =df v(ua) 

where v(a ) =df [v(xa) / x: xa f x]. 

A substitution a t -unifies a set U provided that u * a = v * a 

for all u,v in U 

Example 1. 3 Let e = {[(xoy)oz = xo(yoz)]} , and let v(s) be 

. * 
the unique term in [s]( f'\ NF( c , -+t ) (whence v ( (wox)o (yoz)) = 

(wo(xo(yoz)))). Let U = {Wox, ao(boc)}. [aob/w,c/x] and 

[a/w,(boc)/x] are both C-unifiers of U . 

Definition. 4 a is a simplest t -unifier of U provided that 

(i) a c-unifies U; 

(ii) If T) * 6 = v(a) and T) [-unifies U then 6 is 

S-invertible: e * e' = E for some e' 

Definition. 4 
T) (-divides a provided that T) * e = v(a ) for 

some e . 

Observe that in Example 1, [aob/w,c/x] and [a/w,(boc)/x] are 

both simplest i-unifiers of U , and that neither t:-divides the other. 

2Plotkin refers to this operation on .::tV Xl.V as v-application. 

3All examples taken from [59]. 

4~ly own, to simpl ify exposition without altering content. (I am 

assuming only that n * e = v(n) * v (6) in this presentation. ) 
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Thus, no "E-unification algorithm" based on * could possibly return a 

single "simplest e-unifier" for each finite c~unifiab1e set . 

Definition. 0 and 0 ' are e -independent provided that neither 

o t: -divides 0 ' nor 0 ' e-divides o. 

Example 2. Let e,v be as in Example 1. The set of simplest 

e -unifiers of {g(x,x·a), g(y,a·y)} contains the infinite set of 

mutually t-independent substitutions {[an/x ,an/y]: n EO N} 

Observing that with problems such as these one must invent a spec-

ial unification algorithm for each equational system (p. 74), Plotkin 

defines the function of an "e-unification" procedure as the generation 

from U of a set containing exactly one representati ve of each" E -

variant" class of simplest e -unifiers of U. 

Finally Plotkin defines two inference rules for use with S,v : 

one corresponding to (factoring and resolution), the other correspond

ing to (factoring and paramodulation) . In the former case, inferences 

of the form 

{A v C , B v D} f- (A vB)· o (2 ) 

where 

(i) A v C shares no variables with B v D 

(ii) C f 0 , 0 to, and neither C nor D contains an equa

tion; and 

(iii) 0 is a simplest e-unifier of C v D , where D =df 

{q: qED} 

are admitted. In other words, given C,D whe re CuD i s e-unifi-

able, we generate each inference (2) where () is a simplest subs titu-

tion such that v(Co) uv(Do ) is a singleton. 
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Remark. In view of the stated objective (1), we might expect 

resolution inferences of the form 

{A v C, B v D} I- (A vB) * (J (3) 

where IT is a m.g.u. of CuD to be defined. Such inferences do not -- --
reguire the computation of simplest E-unifiers. Plotkin does not con

sider (3), even though i t corresponds to his stated objective and (2) 

does not. (3) is essentially the form of factoring-resolution incor

porated into IW(E,,+* ). 

In any case, Plotkin proves refutation completeness of his cal

culus on functionally reflexive e -inconsistent sets of clauses, 

assuming the existence of a complete generator for simplest e -unifiers. 

He argues that this calculus shou l d yield greater efficiencies than the 

resolution-paramodulation calculus which uses ordinary unification and 

gives no special treatment to equations of e . 
4.3.4 Demodulation and Simplification Strategies 

The idea of using the current set of derived equations as the 

basis for a "simplifi cation mapping" to be applied to other derived 

clauses has been investigated extensively by L. Wos et ~. [81], and 

by Luckham et~. [1 ] on the Interacti ve Theorem Prover. 

"Demodulation" with respect to a set e of equations is defined 

in [81] from the t-reducibility relation defined on terms by 

(u[r] +'[ u[t8]) =df e contains [s=t] where 8 is a m.g.u. of 

{r,s}, r=s8, and t 8 contains strictly fewer symbols 

than s8. 
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(+>; is the reflexive, transitive extension of +~ , §2.3.2.) 

Evidently, NF(e: ,+~* ) is an t-norma1 form for :Jv"ev As the 

authors note, it is not in general an ~-canonica1 form. 

Demodulation of a derived clause A consists of replacing A 

with C where A +>; C € NF ( t '+>e* ) . 

Noting the incompleteness of refinements wherein exhaustive de

modulation is used, Wos et~. define a finitary variant of binary 

resolution, called k-modulation, wherein some of the demodulation re-

placements can be "undone" before the reso1vents of two premises are 

generated . 

A similar simplification strategy, based on a user-specified 

list of equations, is a built-in strategy of the Interactive Theorem 

Prover. The conclusion of each inference is "simplified" (e.g., 

demodulated) with respect to this list before being added to the proof

procedure's current deduction. 

The utility of these strategies is amply documented .in [81] and 

in [52]. The data of Wos et ~. show that appropriate strategies based 

on demodulation and k-modu1ation can significantly reduce the cost of 

refuting typical inconsistent clause-sets corresponding to theorems 

such as "Boolean rings of characteristic 2 are commutative." Cost (in 

time) for PG5 with demodulation was typically one-tenth the cost for a 

similar program (PG4) without demodulation [8·1, Table 1]. 

. 4.4 Enriched Logics and Their Calculi 

First-order logics and their proof procedures are well suited for 

decision-making within states or world-models, but poorly suited for 

reasoning about actions or processes based on transitions between states 
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or world models. Temporal and other modal logics [11 ,44,50J are 

needed for robot design and automated programming applications, which 

can afford neither the inefficiency of a uniform embedding of space-time 

in a predicative framework [23 J nor the conceptual chaos likely to 

ensue from an ad hoc synthesis of deduction and simulation . The s imi

larity between certain modal logic systems [44J and the formal structure 

of experimental problem-solving systems such as STRIPS [20 J suggests the 

possible emergence of an appropriate interface, in which state

transformation operators are selected by deductively evaluating their 

applicability conditions in current and alternative world models . Such 

an interface would have the desirable property of making the dynamic or 

modal aspects of the environment more or less transparent to the "class

i cal" deductive component of the system. 

Independently of the modal dimension, there is a demand for in

creased richnes s in the predicate logics amenable to automated proof 

procedures. Both mathematicians and users of higher-level programming 

languages find it natural to work with type-structured languages instead 

of pure first-order languages with a single type of individual variable. 

The mathematician using a deductive problem-solving system will fre

quently be communicating and thinking in terms of a higher-order logic, 

quantifying and defining predicates over infinite sets of functions and 

relations as well as over individuals. Higher-level programming lang

uages have equally sophisticated type structures, allowing many indi

vidual types (sorts) as well as functional types, denoting classes of 

functions which take individuals and other functions as arguments . 
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Extensions of resolution to higher-order logic have been dis-

cussed [24 ], advocated [22]or proposed [70,5] by a number of in-

vestigators, although no really satisfactory extensions have been 

described. Andrews'. proposed extension, modeled on Henkin's theory 

of simple types [27 ], abandons the "most-general inference" property 

of first-order resolution systems, relying instead on a "truth-func

tional" cut rule and a separate instantiation rule. 

The doctoral dissertation of Gould [21 ] has occasionally been 

referred to as evidence for the non-existence or, at best , extreme 

complexity, of a unification algorithm for a calculus with abstraction 

(" A-expressions") and conversion rules. The dissertation itself, how

ever, is a brief, technically correct demonstration that Gould's 

particular concept of unification or matching, in A-calculus with types, 

is in fact a computationally untenable synthesis of unification (or 

instantiation) and simplification (A-conversion). Nothing is said of 

the (dubious) justification for Gould's definition of "matching" in 

higher-order logic as an analogue of the first-order unification algor

ithm, nor is the possibility of a more feasibl e approach di scussed. 

In essence, Gould's approach is the same as the approach inves

tigated by Plotkin (§4.3.3) for incorporating "algebraic simplification" 

or "evaluation" (relative to an equational system g ) into the unifi

cation process. In Gould's case , C corresponds to a set of "typed" 

versions of equations in (IKS) (§4.3.l). 

In view of the alternative approach noted in §4.3.3, it appears 

that the "di ffi culties" encountered in extending resol uti on proof pro

cedures to higher-order logics [33,5]] are purely formal difficulties 
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associated with one approach to the desired extension; these difficul

ties do not appear to be intrinsic to the extension itself. 

4.5 Theorem-Proving Systems 

The Interactive Theorem Prover of Allen and Luckham [lJ is 

basically a complete refutation procedure augmented by a flexible man

machine interface incorporating powerful facilities for the specifica

tion of refinements and search strategies. The system has been used to 

obtain proofs of new mathematical results announced without proof i n 

i~otices of the American ~1athematica1 Society. 

A much more specialized proof procedure for Integer Arithmetic 

was developed by Floyd and King [37 J as part of a computer program 

verification system. Incorporating powerful facilities for algebraic 

simplification and linear system solving on its intended domain, this 

refutation procedure efficiently decides a small but useful class of 

propositions1 and quickly gives up on the others. 

The on-line systems of Bledsoe et~. [ 7,8 J are being used to 

explain the potential of specialized theorem-proving systems in domains 

such as real analysis, set theory, and topology. Based on powerful 

sub-goaling facilities, these systems incorporate limited facilities 

for handling typed variables (e.g., interval types in real analysis). 

A linear system solver makes good use of these fC!cilities. 

The systems of Luckham and Bledsoe reflect and facilitate the 

important role of the human operator in many deductive problem-solving 

1Averaging about ten seconds each on an IBM 360 Model 67 [ 37J. 
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applications. Appreciation for this role in theorem-proving appli ca -

tions is reflected in the following remarks by Bledsoe [6 ]: 

There is a real difference between doing some mathe
matics and being a mathematician. The difference is 
principally one of judgement: in the selection of a problem 
(theorem to be proved); in determining its relevance; in 

.choosing reference theorems to help prove the given theorem; 
in selecting techniques for use in the proof; in knowing 
when to abandon one line of attack in favor of another, 
perhaps using as evidence information derived from the at
tempted proof; in knowing when to prove a convenient lemma; 
in knowing how to restructure the proof into a more lucid 
form once a proof has been found; in knowing how to balance 
the search for a proof with the search for a counterexample. 
It is precisely in these areas that machine provers have 
been so lacking. This kind of judgement has to be supplied 
by the user, and hence the system is in real ity a man
machine system. 

4.6 Deductive Problem-Solving Languages and Systems 

Une of the primary functions of Computer Science is to develop 

formal languages which facilitate computer usage in various applications 

areas. Language in this sense refers to syntax, semantics (as defined 

by interpreters and compilers), and various support facilities (e.g., 

on-line editing and date-base management facilities). Research in AI 

has stimulated the development of several new languages designed to 

facilitate construction of the complex deductive problem-solving systems 

needed for automatic theorem proving, automatic programming, and robot 

problem-solving applications. 
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There have been two distinct trends in language development. 

One, the "structured programming" trend, is characterized by a con

servative approach toward new built-in concepts and a strong emphasis 

on systematic program verification methods. Another, the "ad hoc 

programmi ng" trend, is characteri zed by 1 i bera 1 experimentati on with 

built-in concepts designed for "high-l evel" programming, where the 

level of a programming language reflects "the extent to which a pro

grammer may specify what he wants accomplished without specifying how 

it is to be done ... " [9] . 

The "s tructured programmi ng" trend i s represented by 1 anguages 

such as Pascal [31] and Concurrent Pa scal [10]. Axiomatic formaliza

tions of semantics and program verification systems are currently 

being developed for Pascal [31] 

The "ad hoc programming" trend is represented by languages such 

as Planner [29]: , Conniver [9], and QA4 [ 9 ]. Unlike the "struc-

tured programming" languages, these languages incorporate "deductive" 

facilities directly in the form of subproof generators, search strat

egies, and pattern-directed procedure invocation [9]. 

The terms "structured" and "ad hoc" are not intended to indicate 

any intrinsic distinction or dichotomy between the two classes of pro

gramming languages references above. Indeed, I believe that the basis 

for any such distinction will disappear within a few years. The "ad 

hOC programmers" developed their philosophy of language design at a 

time when no con vincing method for systematic or hierarchical construc

tion of specialized problem-solvers was available. The "structured 

programmers" are just beginning to develop promising approaches to 
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automatic program generation and verification [86], and it will be 

a while before these methods are fully integrated with languages such 

as Conniver and QA4. The synthesis of "structured" and "ad hoc" 

programming concepts will probably result in very high-level program

ming languages with built-in facilities for program generation and 

verification, based partially on powerful proof-procedures whose re

finements and search strategies will be developed along with the 

application-system being programmed. 
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5. CONCLUSIONS 

This chapter summarizes accomplishments (§5.1) and limitations 

(§5.2) of the research described in Chapters 1-3 and appendices. Ex

tensions and applications are outlined in §5.3. 

The principal limitations discussed in §5.2 are the lack of 

empirical performance measures for the normal refinements developed 

in this research and the limited domain of completeness for refine

ments of the form L'lM• ND( t ,>-). Ways of overcoming these 1 imitations 

are discussed in §5.3.l and §5.3.2. 

Extensions of normal refinements and proof procedures to en

riched logics (§4 . 4) are outlined in §5.3.4 and §5.3.5. While these 

sections are concerned more with the definition of the enriched logic 

than with the details of the extensions, the extensions do appear to 

be feasible. 

Extensions to type-structured logics based on the lambda

calculus syntax of Church are described in §5 .3.4. The unification 

algorithm for such extensions is a natural restriction of the first

order unification algorithm based on a compatability requirement for 

types of variables and terms. Maintenance of terms in normal form is 

ensured by the use of an extension of ND( eo ,r) in the proof procedures. 

A class of type-structured "procedural logics" is outlined in 

§5.3.5. These logics and their refutation procedures, if success

fully developed on the basis of normal refinements, will be well 

suited for reasoning about (or reasoning within) the computational 

procedures of deductive problem-solving systems. 
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5.1 Accomplishments 

5.1.1 Structured Design of Specialized Refinements 

A basic contribution of this research has been the introduction 

of structured programming methodology into the design and specifica

tion of specialized proof procedures. The procedure Ref (§l .3.6) 

exemplifies the sepa'ration of structural knowledge (1I) and procedural 

knowledge (Enq) in the specification of proof procedures. 

The concepts of r-c1osure completeness for refinements (§1.3.4) 

and fairness for search strategies (§1.3.5) formalize useful guide-

lines for the design of proof procedures, as shown by Propositions 5 

and 6 in §1.3. 

However, the feasibility of the structured programming method

ology in this context depends upon the availability of a rich class 

of generalized C-resolution refinements and a method of composing 

them 'which preserves their completeness and efficiency properties. 

The principal contribution of this research has been the definition 

and analysis of a class of such refinements. 

The concept of a generalized C-resolution inference re1ativizes 

the generalized resolution principle of Robinson [67] to an arbitrary 

relative consequence relation ~,enabling the proof-procedure 

designer to partition the design problem into two logically indepen

dent stages: the des i gn of a (generalized) t -resolution refinement 

(and corresponding search strategy), and the design of a refinement for 

the effective and efficient realization of (generalized) c-resolution 
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inferences by lower-level inferences. 

The normal composition operation (§2.4.1) provides a natural 

method for compos i ng a general i zed e -reso 1 uti on refi nement with a 

generalized e. ' - resolution refinement where t '2 e', so as to obtain 

a generalized c'-resolution refinement which preserves useful fe a

tures of its constituents (§3.3). It is thi s preservation property 

which makes it feasible for the designer to reduce the (typically 

intractable) problem of designing a refinement for E by designing 

and then composing refinements for well understood subsets of C 

5.1.2 Completeness Results for Hyper- 8-Resolution 

Hyper-k-resolution and the "equivalent" E; -resolution refine

ment HR(f: ,;>0) ' provide a specific class of (generalized) t-resolution 

refinements with known completeness properties. These refinements are 

useful in the design of normal refinements , provided that e is a 

Horn system with the renaming specified by t 

The completeness result for HR( e ,~,s) (Theorem 1) ill ustrates 

several useful concepts in the design and analysis of ~ -resolution 

refi nements: independence of compl eteness and effecti veness, ground 

completeness and the excess literal parameter (Proposition S in 

§3.1.2), and strong liftability . 

~. 1.3 Design of Resolution Micro-Refinements 

The concept of a normal refinement and the associated conven

tion (§2.4.2) focuses attention on two major stages in the design of 

proof procedures: the non-unit s tage is concerned with the 
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specification of a refinement for g in terms of an ~o-resolution 

refinement AM where to r\ I..y S Co c;; tv ; the unit stage (till) is 

concerned with the efficient realization of Co-resolution inferences 

oy means of noma 1 bas i c deductions. 

Theorem 9 describes a property of till (strong ~-completeness 

on latent unit clause sets) which yields a general cOmpleteness re

sult under composition with a wide variety of eo-resolution refine

ments. 

The resolution micro-refinement NO( to'~)' while not strongly 

~ -complete, does have a more restri cti ve completeness property 

(Theorem 3) which yields a less general (but nevertheless useful) 

completeness result for certain nomal refinements (Theorem 10). 

NO( co '>-) eliminates many redundant and irrelevant infere-nces 

from unit refutations, as evidenced by the examples in §1.1 .3 and 

§U. 4. Theorems 9 and 10 together strongly suggest the desirability 

of extending I~O( £;0'>-') to a refinement A which behaves like 
11 

NlJ(to '>-') (on the known domain of completeness of ND(€o,r')) and 

is also strongly ~o-complete on latent unit clause sets. Thus, these 

limited results and observations provide useful guidelines for subse-

quent research on specialized refinements which preserve general 

completeness. 

5.2 Limitations 

Empirical Support. The conce.pt of an application environment 

('U
E 

,11) provides a precise and realistic formal framework for perform

ance evaluation and comparison of specialized proof procedures and, 
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indirectly, the refinements upon which they are based (§B). However, 

this framework has yet to be applied to the performance-evaluation of 

normal refinements (§5.3.1). The examples and performance estimates 

in §1.l.3, §C, and §D are at best indications that the normal refine-

ments and completeness results developed in this research may con-

stitute a significant contribution to the design of specialized proof 

procedures; such claims rely heavily upon the reader's experience and 

intuitions in the absence of a more thorough empirical investigation. 

Analytical support (other than completeness results) for the 

alleged usefulness of thi s research is also minimal. Many potential 

users of normal proof procedures would be more convinced by empirical 

"efficiency" results than by hypothetical-analytical arguments such 

as the following. 

Example . Suppose that t,~1 i s an e-reso1ution refinement and 

t,u , t,~ are c - reso1ution micro-refinements . Suppose t hat the expected 

"complexity" of a refutation of a member of Uc in t,M is!1.- t;-

resolution inferences. (UE ,u) and t,r~ define an application en-

vironment ('UM' ur~) whi ch reflects the class and distribution of 

refutab 1 e sets whi ch wi 11 be en countered by 

text of t,M· t,u (or t,~I· t, ') Suppose that 

alternative refutations of a member of 'U I~ in 

(0 r t, ') in the con
u 

expected number of 

is m , and that 

the expected number of alternative refutations of a membe r of 'liM in 

t, ' is m!2 
Jl 

Then, assuming tha t a "breadth first" search strategy 

is used, we should expect the expected efficiency ratio of a procedure 

based on to be close to where r' is the expected 

efficiency ratio of a s imilar procedure based on t,M· t,~ , because a 
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refutation in 6M with n inferences has (approximately) m alternative 

realizations in 6M · 6 ' and (m/2)n alternative realizations in 6M 6~. 

Domain of completeness. I doubt that general completeness 

results for normal refinements of the form 6M· ND{ eo '>-') can be 

extended significantly beyond the domain of clause-sets wherein each 

clause contains at most one equation (Theorem 10), even though I 

nave no specific example to support this doubt. The following intui

tive argument may suggest a specific example and a subsequent modifi

cation of ND{ E ,>0) which does have the strong _e. -completenes s 

property requi red for the [Toof of Theorem 9. 

Consider a refinement 6 = 6f4 • ND{ t ,r) where 6M is a strongly 

liftable ground e-comp1ete t-resolution refinement, e. is a set of 

equations, and >- is an c'-complexity ordering for some c' S e. . 
In order to prove general e -completeness of 6 by the argument used 

for Theorem 10, it suffices to verify the fol lowing: 

Proposition. Suppose that 8 is in Le' that x8 F x 

each variable x occurring in {Bi v qi: i < n} , and that 

for 

is an C -resolution inference where C' = (B
0

8 -q
0

8) v··· v (Bn_18 -qn_1 8 ). 

Let C = {qE: Bi vqi: qe =qi} (i=0,···,n-1). Then I~D{ ~,» contains a 

general refutation J:J to) of {C i : i < n} vt such that for each in

vertible substitution II where Cll E: {C i : i < n} (C E: Base{ir{O)) - e*), 

o_<!?_ (O) divides we 

Theorem 3 tells us that this proposition holds when ~ t qi 

for each equation qi in {q;= i < n} However, if qj is an equa-

tion and B. - C· 
J J 

F 0 then we cannot assume that qj E: c* because 
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to do so would require us to use qj (thereby introducing clauses of 

Bj - Cj ) in subsequent E-resolution inference realizations. (This 

remark should be comprehensible in the context of the proof of Theorem 

10.) The above proposition does not hold in general--not even when 

:> is an e :complexity ordering for some eO s;; to 

Other minor li mitations, while evident, need not be discussed 

in detail . Clearly, the relation between normal refinements and their 

realizations in normal proof procedures needs to be explored in greater 

detail. The "structured" specification of search strategies outlined 

in §2 .4.3 (Composition of engueuing functions) is particularly tenta

tive; however, a simple breadth-first search strategy would suffice 

for initial implementations of normal proof procedures. 

The limitation to first-order syntax with typeless variables is 

a matter of initial convenience and simplicity of presentation rather 

than of basic barr iers to extension; however, the basis for this 

assertion is only hinted at in §4.3 .3. 

5.3 Extensions and Applications 

5.3.1 Preliminary Empirical Investigations 

It is feasible and appropriate to begin an empirical investiga-

tion of normal proof procedures based on the performance evaluation 

framework of § ~. Such an investigation will be based on (i)-(iii): 

(i) A collection of benchmark· application environments, each 

effecti vely represented by a finite (or at least decidable) 

axiom system and a finite weighted sample of refutation 

problems based on this axiom system. 
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(ii) An implemented refutation procedure with facilities for 

the specification of various normal refinements and 

(optionally) various search strategies. 

(iii) Appropriate computational facilities and resources. 

In order to facilitate comparison with previous and ongoing 

research, the sample problems should include problems previously at

tempted by experimental refutation procedures. Numerous problems in 

group theory and other equational theories have been previously in

vestigated and would provide comparative information on the usefulness 

of ND( e ,>-). Problems in Integer Arithmetic have been undertaken by 

several proof procedures being used in program verification applica

tions. ~ledsoe et ~ have developed specialized proof procedures and 

applied them to problems in real analysis [7 J and in general topology 

[8 J. In view of my claim (§1.1.4) that many forms of structural 

heuristic knowledge can be formalized within normal refinements, it 

would also be useful to investigate application environments where a 

great deal of heuristic knowledge has been developed (e.g., sentence 

recognition in context-free languages), in order to see how much of 

this knowledge can be formalized without resorting to ad hoc methods. 

The Interactive Theorem Prover of Luckham et ~ [1 ] provides 

an appropriate basis for initia l implementations and investigations of 

normal proof procedures. This LISP-based system, based on pairwise 

resolution and paramodulation, includes numerous facilities for the 

specification of refinements by means of user-programmable pre-editing 

and post-editing strategies. Comparison with existing refinements 
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would be particularly simple, because many of these are built-in options 

of the Interactive Theorem Prover. This system is portable, and can be 

set up on most PDP-10 computer systems with sufficient storage capacity 

and a teletype or (preferably) graphic display terminal. 

5.3.2 Investigation of Generalized c- Resolution Refinements 

This research has shown the need for an extension of ND( e ,~) 
havng a property called strong ~-completeness (§3.3, Theorem 9). 

The extension eventually arrived at will probably realize an c-resolu-

ti on inference 

I B i v q i : i < n} 1- C 

by first finding a deduction i1(C') based on IBi v qi: i < n}ve 

in i~D(e ,7). If Bi = 0 for each eguation qi ,then C' = C 

Otherwise, C' is converted to C by an "inversely" E:_-normal 

derivation based on variants of clauses in {Bi vqi: i < n} 

This derivation will replace only certain occurrences of terms in C' 

which are obtained from (Bo- Co)v ... v( Bn_l - Cn_l ) by instantiation 

(where C' = «Bo- Co) v · ·· v (8n_l - Cn- l »C1£l (C' », and the ultimate 
= 

(derived) replacement for each such term must be in NF( t ,>-). The 

purpose of the derivation from C' to C i s simply to "undo" any 

local identifications of t e rms in C' whi ch may have been introduced 

by using equations qi from non-unit clauses in the refutation of 

{C i : i < n} v e from which l)(C') is obtained. 

In the realm of non-unit (generalized) c -resolution refine-

ments, there are numerous unexplored alternatives to HR(c ,r,s). 

For in:;tance, a linear (generalized) c-resolution deduction is a 

(generalized) c-resolution deduction :tf wherein each non-initial 
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clause C has a near parent (one of its premises) and a set of far 

parents; each far parent (also a premise) is either an initial (input) 

clause or an ancestor of C in lJ . The only class of linear 

generalized C -resolution deductions heretofore investigated is essen

tially that in which the only inferences allowed are pairwise 

resolution and paramodulation. Perhaps the linear resolution experts 

will find it possible to relativize some of their refinements to 

generalized E -resolution while retaining useful completeness and ef-

ficiency results such as those of Kowalski and Kuehner [43] ' 

5 .3.3 Formal Improvements 

The definitional hierarchy developed in the course of this re

search could be usefully altered in several respects. Much conceptual 

clarity would be gained by formally requiring that no premise of a 

(general ized) e -resolution inference be subsumed by a clause in e 
(Theorem A would then have to be restated: the negative clauses must 

be excluded from e . ) 
The concept of a refutation procedure for r could be usefully 

generaHzed to incorporate the following paradigm: 

(i) The procedure is activated with a set e of input 

clauses . 

(ii) A r-refinement 6 to be used for the refutation of 

e v Ax{r) is selected by the procedure. 

(iii) An enqueuing function (or search strategy) E is selected 

by the procedure for the search of 6 

(iv) A complete deduction in 6{= 6{~vAx{r» is generated 

as in _Ret [E/Enq] ( e ). 
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Step (ii) might involve an analysis of e v Ax(r) by a procedure with 

special knowledge of extensions ofAx(r) representing years of re

search by human specialists. The generalized concept differs from the 

present one in that 6 is selected after e (the particular problem) 

is known, and E is selected after the space to be searched (6) is 

known. The performance-evaluation measures for proof procedures de

veloped in B remain applicable. 

This strategy of transforming the search space (and search 

strategy) as a part of the problem-solving process has been anticipated 

and advocated by Simon [72] and Amarel [2]. 

5.3.4 Extensions to Type-Structured Logics 

The following paragraphs outline a family of extensions of 

resolution-based calculi and proof procedures to the applied logical 

systems mentioned in §4.4. The basic motivation for these extensions 

is simplicity and naturalness in the formalization of various meta

linguistic concepts such as application (of an operation or relation 

to an operand) and interpretation (of a constant or variable symbol). 

Applicative systems. Conceptual and computational simplicity 

will be enhanced by the adaptation of a uniform representation for 

terms and atomic formulas based on the binary operation ( ) known 

as application (§4.3.l). A vocabulary will consist of C_) plus a 

countably infinite set of atoms, which will be used as constants and 

variables denoting individuals, operations, and relations under vari

ous interpretations. Forms constitute the smallest class ~ of 

expressions which includes all atoms and all expressions (uv) where 

u and v are forms. The application of an "n-ary function" f to 
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arguments tl'···' tn may be represented ei ther by the n-fol d appl i

cation (ftl···tn) =df ( ... (ftl)···tn) or by an application 

(f <tl' ... ,tn» where <tl , ... ,tn> is a defined form which represents 

the n-tuple (t
l

,· .. ,tn) . f represents an n-ary relation provided 

that (ft
l

·· . t
n

) (or (f <t 1 , ... t n» ) denotes one of the designated 

truth values (0 for false, 1 for true) under the class of admissible 

interpretations. 

Applicative logics will be formulated on the basis of four 

additi ona 1 primi ti ve concepts: 

a) Equality, represented by an atomic constant ~ and appro

priate inference rules (essentially Rp) operating on 

Boolean forms (below): 

[u=v] =df ((=u)v) 

b) Extensionality, represented by an atomic constant # 

(the discriminator or choice functor) and the extension-

ality axiom (a Boolean form): 

(#) [[x( #xy) = y(#xy)] = [x=y]] 

Under each admissible interpretation wherein u tv, 

(#uv) is an object such that (u( #uv)) t (v(#uv)). Thus 

[x(#xy) = y(#xy)] is true iff [x=y] is true. 

c) Functional abstraction, represented either by the con-

stants I,K,S and corresponding axioms (§4.3.1), or by 

a primitive functional abstraction operation (A __ ) in addi

tion to ( ), wherein (Axu) is a A-form with bound 

variable x (an atom) and body u (a form or A-form). 
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The former representation (wherein (AXU) is a defined 

form constructed from I,K,S and subterms of u) is 

algebraically cleaner and is useful in establishing formal 

results such as comp1 eteness and consi stency. The 1 atter 

(well known to be equivalent) is definitely superior for 

computational purposes . In either case, ((AXU)t) denotes 

u[t/x] provided that the type of t is a subtype of the 

type of x (see below). 

d) Grammar, represented by a formal metalinguistic system 

which specifies 

(i) A class of grammatical (admissible) interpretations 

of the primitive operations ( ) and (optionally) 

(A __ ) and atoms; 

(ii) A class of grammatical forms, which have a denotation 

under each grammatical interpretation. 

(iii) A class of Boolean forms, which denote a truth value 

(normally 0 or l) under each granInatical interpreta

tion. A calculus r for such a logic is over the 

class of Boolean forms--i.e., Ax( r ) is a class of 

Boolean forms, and if .:8ft C then qj v {C} is a 

set of Boolean forms. 

On the basis of the above, it is possible to formulate all of 

the usual logical concepts of first-order logic and of the theory of 

finite simple types [26,27,70). The usual logical operators may be 

defi ned--e.9. , 

',Ix B = df [AxB = Axl) 
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or they may be introduced as additional primitives (depending upon 

whether the primary objective is conceptual simplicity or computa-

tiona1 efficiency). In either case, a normal-form representation 

(clause form) can be defined for Boolean forms much as in first-order 

logic . The principal difference here is the necessity of deciding 

how to treat embedded Boolean forms such as (Cond[x=O]l [x' fact (x-1 J) 

in the familiar Boolean form 

(fact(x) = (Cond[x=O] 1 [ x · fact(x-1 )])] 

(more commonly expressed as 

[fact(x) = If [x=O] then 1 else x . fact(x-1)] 

Normal form logics will be · based on the combinatory form of 

(c) (I,K, and S) and the normal form grammar, wherein the grammatical 

forms are essentially those wherein every subform has a strong normal 

form in the sense of combinatory logic [30]. Boolean forms in this 

logic consist essentially of those equations [u=vJ wherein each sub

term ofu or v has a strong normal form. The "Russell paradox" 

form (cc) where c represents AX«XX)=O) is not Boolean in this 

grammar because it has no strong normal form. Thus, the fact that 

(cc) =e [(cc) = OJ (where C = {(I),(K),(S),(#)}) does not render 

the logic inconsistent by identifying 0 and 1. (If we add [cc = 0] as 

an axiom then we derive [[cc=O]=O], [[0=0]=0], and [l=OJ --a 

contradiction. If we add [cc = 1] as an axiom then we derive 

[[cc=O]=lJ, [[1=0: 1J --also a contradiction. These derivations 

will be a~litted by any of the anticipated extensions of Cut, Rp , 

and NO( £ ,;:.) to the present app1 icative framework. 
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The extens i on of ND( e ,;.0) for theorem-proving app1 i cati ons in 

normal form logics is particularly appealing. Even though the set of 

grammatical forms in this logic is only semi-decidable, the bottom-to

top ~ -normal reductions performed by ND( C ,>-) efficiently incorporate 

grammatica1ity proofs into proofs of theorems; every literal must be 

reduced to strong normal form before it can be used in Rp or Cut in-

ferences involving other clauses. 

Type systems. The grammatica1ity concepts in (d) can be 

formalized by the concept of a ~ system L = (e ,~,VC) satisfying 

(a)-(c): 

(a) 

(b) 

(c) 

e is a decidable set of forms in :;IV . 

~ is a monotone quasi -ordering for :IV 

Vc is a decidable set of constant atoms in 

{=,#,Null,Nil,Boo1,Any} S Vc . 

V, and 

(d) Each member of C contains at most one free variable (in 

Additional constraints on £, ensure that e: defines a unique ~ 

structure T(E) = (T, ,Null,Any,Nil,Bool,Co,.) satisfying (e)-(h), 

wherein 

(" c: 8) =df (,, " 8 = "),, (" " S "f 13 ) 

(" s (3) =df (" C (3 ) v (" = 8), and 

VI = df V - V C . 

(e) T is a decidable set of objects called types. 

(f) '" is a computable binary operation on T such that 

(T, f),Null,Any) is a dual semi-lattice with zero-element 
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Null , unit element Any, and an atom Nil, where Null c 

Nil c Boo1. 

(g) Co: TxT ... T the codomain function, is a compu tab 1 e 

operation on T such that 

( i ) Co(Null,a) = Co(a,Null) = Null; 

(ii) If Null cal S; ex and Null C fl' Sfl , then 

Null C Co(a',fl') S Co(a,S); and 

(iii) For each type a in T, Co(a,Any) = Boo1. 

(h) T: ;t.V'" T is a computable function such that 

(i) T(U) f Null and T(U,V) S CO(T(u);r(v)) (u,v £ ~V); 

(ii) T(U) = Boo1, for each form u in £ ; 
( iii) C con ta i ns (T ( V ) V ) fo r ea ch a tom v in V; 

(iv) if e contains u where a variable x occurs free in 

u, then u = (T(X)X); 

(v) if T(t) $ T(X) then T((AXU)t) = T(U[t/X)); and 

(vi) if T(t) () T(X) = Null then T((AXU)t) = Ni1. 

Notation. Given a homomorphism l/J on ~ V = (:JV,CJ), let 

ul/J =df l/J(u) (u £ :;tV)' 

Let A be a mapping on Vc v {CJ,(A_-'} such that AnYA is 

a set and (--'A is a binary operation on AnYA' Let V[8,J = V v 
= 

AnYA' Extend A to constant forms (i.e., forms containing no free 
= 

variables) in :JV[8,J as follows: 

( ; ) a A = a (a £ Any A) 
= 

(ii) (uv)A = (uAvA)A; and 
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{

U[b/Xn, if (T(X)l)a = 1 

(iii) (( Axu)Ab)A = 
~ ~ 0, otherwise (b EO AnYA)_ 

~ 

For each type a in T, aA will normally be identified with the .set 

{a EO Any~: (a~a)~ = l} 

An e -structure i s a mapping A on Vc v {( __ ),( A __ )) satis

fying (a)-(f) : 

(a) (-- )A is a binary operation on AnYA such that 

if b EO (3~ and c £ Y~ then (bC)~ £ CO( S'Y)A (b,c £ AnYA) 

(b) [b=c]A = {

l , 

o , otherwi se 

if b = c 

(c) (b(#bc))A = (c(#bc))A ; 

(d) (a f\S)A s aA f\ SA (a,S £ T) 

(e) NullA = 0 ; and 

= , 

(f) uA = 1 , for each constant form (or axiom) in t. 

An assignment in ~ is a mapping 6:VI ..,. VI v AnYA such that 

(i) if x6 EO VI then x6 = x; and 

(ii) if x6 EO AnYA then x8 £ T(x)A _ 
~ 

If x· 6 = a · 
1 1 (i=O,---,n-l) and x6 = x(x ¢ {xi: i < n}) then 8 is 

denoted by [ai/xi: i <n] If x8 £ AnYA (x EO VI)' then 8 is a 

total ass i gnment in ~ 

An ,(-1nterpretat10n 1s a mapp1ng ojJ = A-O where A 1s an 

e -structure and 6 is a total interpretat10n in A. 
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Remarks. 

1. A consequence relation I e is defined in 

class of all e -interpretations, much-as in §1.2.7. 

terms of the 

2. Given an E: - i nterpretation q, in A and a Boolean form 

B , ( V x B)q, = 1 iff B[a/x]q, = 1 for all a in ,(x)A. (Clearly 

this holds if V'x B =df (AxB = Axl).) 

A unification al gorithm mgu for finite sets of e -grammati

cal forms is easily defined on the basis of a type structure l~ 

for e: given a finite set {u1,···,un} of e-grammatica1 forms, 

mgu{u1,··· ,Un} is either nil or a substitution e in Ie such 

that u1e = .. . = une , an _~-grammatica1 form. 

IL =df {e E L.V: ,(xe) c; ,(x) , 

=8 - - and 

#8 = #) 

Given variabl es x and y (variables of V being defined by e ), 
mgu{x,y} is nil if ,(x) ~ ,(y) = Null; otherwise mgu{x,y} = 

[z/x,z/y] where ,(z) = ,(x) ~ ,(y). If c is a constant atom and 

,(c) !Ii ,(x) then mgu{c,x} = nil; if ,(c).s ,(x) then mgu{c,x} = 

[c/x] . 

5.3.5 Type-Structured Procedural Logics 

Current research on operating systems, robotic systems, and 

automatic programming is leading to the development of high-level 

programming languages with facilities for specifying and reasoning 

about concurrent and continuous processes [10,26]. It is becoming 
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increasingly necessary to develop logics and proof procedures which 

are well suited to the verification and synthesis of such processes. 

PrOcedural logic is an extension of first-order (or type-structured) 

predicate logic wherein forms may contain certain state variables 

and a structure may contain mappings, called states, from the state 

variables to their values in the structure. Modal guantifiers, ex

pressing truth or falsity of Boolean forms under various states 

related to the current (or initial) state of the structure, may also 

be present. A procedural logic based on first-order logic is inves-

tigated by McCarthy and Hayes in [50]. 

For several programming languages currently under development 

[35,36,10] a ri ch concept of ~ structure such as that of § 5.3.4 

will clearly be a part of the language's procedural l ogic. The con

cept of a type-structured procedural logic outlined below is a 

syntactical and semantical extension of the type-structured logics 

described in §5.3.4 (as opposed to a mere axiomatization exercise 

within first-order or type-structured logic). The ultimate practical

ity of this approach depends upon the successful extension of normal 

refinements and proof procedures from first-order logics to the enriched 

logics. 

A modal ~ system has the form c = (e,7,VC'VS) where 

(i) (c,r,VC) is a type system (§5.3.4); 

(ii) VS' the set of state variables, is a finite subset of 

VI = V - Vc 

(iii) T contains a type E , the type of states, such that 

CotE ,a) = a(a £ l), where T(~) = (T ,",Null ,Any ,Nil ,Boo1 , 
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CO,,) as in §5.3. 4; and 

(iv) Vc contains a symbol °
0

, the initial or current state, 

such that ,(ao) = E • 

An f:-structure is a mappi ng A on Vc v {CJ ,P,_J} such 

(i) 

( i i ) 

(i i i ) 

(iv) 

(E ,r,VC'VS) is an E -structure as in 

Efi is a set of states [a/xi : i < n] 

Vs = h( i < n} and (, (xi)A ai)A = 1 

(au)A = [ua ]A 

uA = [uao ] 
- fifi 

= = 

(a £ EA); and -
(u £ .;1V[fi])' 

§5. 3.4; 

in fi ' where 

(i < n); 

Observe that T may contain numerous state types a ~ E and 

that VI may contain variab l es of type a a may be formally 

represented as· a defined type Aa (oB) where B is a Boolean form 

containing state variables and ,(a) = E: Aa (aB)A = {a £EA: [Ba]fi = l}. 

Thus we may formal ize the concept of an action as a form of 

type [a -;. Il ] where a : E, Il : E, and Co([a -;. Il ] .a) = Il €( is the 

precondition of the form, and (1 is the postcondition of the form . 

. Actions in higher-level programming languages are expressed by 

assignment .conditional actions, for-statements, while-statements, and 

blocks (grouped sequences of actions). 

Happings from states to other objects (value-blocks), mappings 

from objects to actions (procedures) and mappings from objects to 

value-blocks (operations) can be formalized similarly . 
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Synthesis and verification of these program objects will be 

facilitated by allowing a block 11 to contain, in addition to pre

conditions, other assertions such as the foll owi ng "modal quantifi er" 

assertions, which are relative to the computation sequence(s) defined 

by (11,A,ao): 

Invariant(B): (aB)A = 1 for each state a achievable from 

ao in this block; 

Achievable(B): (aB)A = 1 for some achievable state a; and 

Inevitable(B): There exists no complete computation sequence 

from (11,8,ao ) wherein B is false for each 

state. 

The latter operator should be usefu l for reasoning about termination 

properties of program enti ti es. 

Refutation procedures for a type-structured procedural logic 

such as the above must include state-space generation and search pro

cedures for evaluating modal formulas such as Invariant(B) or 

Achievable(B) , in addition to the usual facilities for reasoning 

within a state. For example, in order to prove Achievable(B) we 

would either construct an explicit derivation of a state a from ao 

by means of 11 (possibly a "nondeterministic" block with optional 

and concurrent actions) wherein (~B)a is inconsistent with other 

assertions which hold in a (a may be a symbolic expression com-

posed of actions applied to ao.) 
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5.3.6 Relevancy of Present Research 

The extension of normal refinements and proof procedures to the 

type-structured procedural logics outlined in §5.3.4-§5.3.5 is both 

complex and sketchy. Nevertheless, progress toward completing such an 

extension has been encouraging, and the advantages of extending the 

logic rather than axiomatizi ng the concepts of type and state in a 

standard first-order logic are becoming clearer. 

The present investigation of normal refinements is relevant to 

the proposed extension in at least two respects. I pointed out in §4.3 

that refinements of the form ND(t ,~) offer attractive alternatives 

to earlier (and I believe unfortunate) attempts to synthesize algebraic 

simplification and unification in theories containing many "reduction 

equations". Thus, much of the potential redundancy resulting from a 

"A-calculus" formalism can be eliminated by extensions of refutation 

procedures based on ND( e ,». 

Moreover, the structure of normal refinements and proof proce

dures is well matched to the structure of axiom systems which arise 

from programs expressed in languages having built-in procedural logics. 

Consider, for example, block Bl in the context 

B3: ~3 

B2: !;2 

Bl : [ el 

When Bl is entered, the assertions of tl are evaluated in the cur

rent state and appended to assertions obtained similarly from t3 and 
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t 2. It seems natural to require that B1 specify, either explicitly 

or by default, both a refinement /61 and a search strategy E1 to 

use when non-unit clauses of tl are involved. Thus, whenever the 

refutation procedure is invoked by the current processor of B3 

(whether for verification, compilation, or decision-making during 

execution), a normal refinement (63' 62'61'60}6~ with a well-matched 

search strategy based on (E 3,E2,E1) is automatically available. 

In conclusion, I see the structured design method developed in 

this report as a basic contribution to the development of powerful 

deductive problem-solving systems based on type-structured procedural 

logics for arbitrary axiomatizable problem domains. The present 

results, while only a small fragment of the extensions and applications 

outlined in §5.3, shed sufficient light on the remainder to support its 

feasibility and worthiness of further investigation. 
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APPENDICES 

A. PROOFS OF PRINCIPAL LEt1MAS 

This appendix contains the proofs of LelTlllas 1-12 as stated and 

used in §3. Definitions and results from §3 are mentioned without 

duplication below. 

A.l Proofs for c-resolution Completeness Lemmas 

Proof of Lemma 1 (by induction on n =K(e )). Suppose without 

loss of generality that every proper subset of e is S-satisfiable 

(whence C is finite by the Relative Compactness Theorem (§3.0)). 

Suppose n = O. Then ~ v e v [x=x] ? {p ,q} where r 5 (p) is 

positive, rs(q) is negative, and p6 =a q6 where Q= (e ve v 

[x=x]) f"\ o..v If pis an equati on then assume without loss of gen-

erality that p = [x=x]. It follows that ((Lv {p,q} 1- 0) is the 

unique inference in a hyper-jL-resolution refutation of e 
Suppose n > 0 and Lemma 1 holds for all e such that de) 

< n Suppose without loss of generality that each proper subset of 

e is t-satisfiable. 

Case 1: Each non-unit clause of e is rs-negative. Then e 
contains a unique non-unit clause ql v ... v C!n. Let e' = C-

{C!l v··· vC!n} , and let ei = C'v{C!i} . Then ei is c-contradic

tory and d ~i) = O. It follows by induction that there exists a 

hyper-e-resolution refutation ~i(O) of ei consisting of a single 

hyper- C -resol ution inference tBi v {qi} f-- 0 Therefore C is 

refuted by the single hyper-e-resolution inference 
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Case 2: .,(Case 1). Let L = (t,r,s) where ~ is the 

ordering of 0v wherein equations precede other atoms. Let 

Q= {q: e contains a non-unit clause Av q where q 

is rs-positive} . 

Let p be a literal of Q, such that rs(q) ~ rs(p) (q EO a), and 

let A v p be a non-unit clause of e where A t"\ {p} = 0 Let 

eo = e -{Avp}, e
A

= eOu{A} ,and e = eo u {p} 
p 

It fol-

lows by induction that eA has a hyper-c-resolution refutation ~A 

and 

the 

ep has a hyper-t-resolution refutation l!p 
result of embedding ~ in eve . iJp• v p 

Let _JJ p. v p be 

is a hyper- ~-

resolution refutation because p is rs-positive and rs(p) is mini

mal (hence, "last to be selected") in {rs(q): q EO a. } with respect 

to ~. Suppose ~A v p is not a refutation. Then .J2A v p = I1A v p(p). 

Prefixing tJ A to 1J ,we obtain a hyper- e-resolution refutation 
~ vp ",P 

of e .1 

Proof of Lemma 2 (by induction on n = K(C)). 

Suppose without loss of generality that every proper subset of C is 

e -satisfiable (whence e is finite). 

Suppose n = 0 It follows by Lemma 1 (Corollary) that e . 
contains at most one rs-negative literal, and if each clause (literal) 

of e is rs-positive then c+ contains an rs-negative clause 

(cio v··· vqn_l) such that ell' qj (j=O,···,n-l). 

Case 1: C contains q , an rs-negative literal. Then 

( e f-- 0) is the unique hyper-C -resolution in a hyper-c -resolution 

refutation of e ,by minimality of C . 
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Case 2: .. (Case 1). Then ~ contains an rs-negative clause 

B where Be = q v··· v q 1 o n- and C!leqi (i=0,· .. ,n-1). Therefore 

(e v {B} 1- 0) is the unique inference in a hyper- C -resolution 

refutati on of e 
Suppose that n > 0 and Lemma 2 holds for all e such that 

K( e) < n • 

Case 1: Each non-unit clause of e is rs-negative. Then e 
contains a non-unit rs-negative clause qo v··· v qn-1. The conclusion 

(of Lemma 2) follows by induction and the proof (Case 1) of Lemma 1. 

Case 2: -.(Case 1). Define a, p, A v p, e A' fp' ~.~, lZp, 
lJ from e,rs '>- as in the proof (Case 2) of Lemma 1. That gJ 

is a hyper-e-reso1ution refutation of e follows by the same argument .• 

Proof of Lemma 3. That (4) is a hyper-e-reso1ution inference 

follows by (i) and substitutivity of >- (If p; is >-maxima1 in 

Bj v pi then Pi must be >-maxima1 in Bi v Pi.) That C[n • e' Ie] G C' 

follows by (ii).f 

Proof of Lemma 4. It suffices to verify (using (i)-(vii)) 

( d3 1 
-k -k that - Ck v q v··· v q ) 

~k 0 v k 
is an {-resolution inference. This 

is straightforward. That (5) is general follows by the definition of 

([j = ~ov ....... lBn_1V{Bn v qo v··· v qn_1}·1 
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A.2 Proofs for Resolution Micro-Refinement Lemmas 

Proof of Lemma 5. It is easily verified (by §1.2.8) that 

s =e t iff there exists an e*-derivation from s to t. Given 

that u and v are constant terms, we can instantiate each free 

variable in an C*-derivation from u to v by a constant atom e 

in v~ obtaining an c+-derivation from u to v.1 

Proof of Lemma 6. Notice that the set ~ (e ) , as opposed to 

(e)+ , is referred to in Lemma 6. For each pair [s=tl ],[s=t2] of 

distinct equations in c+ , at most one may appear in e+ , because 

either tl >- t2 or t2 >- t l . In view of the definition 

it is clear that there exists at most one v E: NF( e ,» 

of ~ ...... + ' 
C 

such that 

u ~ ~+ v. However, there exists at least one by monotonicity of ~ 

and tne descending chain condition satisfied by >- .1 

Proof of Lemma 7. Let o(u,v) be the minimal length of an 

t~-derivation sequence from u to v 

because u = v 

If o(u,v) = 0 then 
A A 

U = V 

Suppose 6(u,v) = n > 0 and Lemma 7 holds for all u,v such 

that 6(u,v) < n Then u = u'[s] where ,ES contains [s=t] or 

[t=s] such that 6(u'[t],v) = n-l It follows by the induction 

hypothes is that ----- A u'[t]=v. Let 13' (PG) be a realization for 
= 

(u'[t]) ~ff+ v). 
= 
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* Obtain .t! (Pv) realizing (u ~ft v) from S'(Pv) as 
~ 

follows . Replace [t] by [s] in Pu'[t] and its descendants in 

~ '(Pv), until all occurrences preceding [s] ' in one of these descen

dants have ffien reduced to Jt-norma1 form. At this point we use the 

fact that 5 = t , reducing [s] to [t]. The containing literal 

PU"[t] is in ' .rJ2'(pv) . J2(Pv) is obtained by suffixing the ~-norma1 

reduction from PU"[t] to pv.l 

'Proof of Lemma 8. It suffices to prove that Ge = ~ for 

each equation [u=v] in e such that [u=v] t S[s=t] ([s=t] E C -

[u-v]"'), ue:> ve , and [ue = ve] E e + • 

Let ue = Ss ' and suppose for the induction hypothesis that 

we have proven 
.-... ,. 
uS = ve for all u,v, S such that [u-v] ¢ S[s=t] 

([s=t] E e - [u-v]"'), uS >- ve , and Cue = vS] e: . £ 8 . It follows 

that s = t for each equation [s=t] E e [3 

Case 1: Every proper subterm of ue is in NF( e+,"') , and 

{ [ ] L'+}. vS is the first member of v ' : uS = v' E v Then 

* uS ~(+ ve ~~ ve , whence uS = ve by Lemma 6. 

Case 2: Every proper subterm uS is in NF( e+,» and 

sS' = ue ;.-vS ::-te' where e'" contains [s=t], sharing no variables 

with [;u 2 v], such that [s=t] ¢ S[s'=t'] ([s'=t'] E C - [s=t]"'), 

either xe = x or xs ' = x (x E VI)' and t s ' is the first member 

of {v': [uS· v'] E c+} 

Suppose u E VI' It follows by normality of £ that e 
contains [ x=y] where x,y E VI ' whence E+ includes 
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{ue;e],[ve;e]e} (e being the first constant tenn). Consequently, 
---- ........ ue ; ve . 

Suppose u ¢ VI ' and let n; mgu{u,s}. Then n divides 

e·e', whence each proper subterm of un or of sn is in NF(e*,» 

(because ue·e'; ue ; se·e ' ). It follows by the definition of closed 

( (ii ) in §3.2.2) and mi nima 1 ity of te' that tn £ NF( c ,;.0). It 

follows by (iii) in §3.2 .2 that 

[tn ; V1'l] * ; v"] -> [u" 
~ 

(1) 

where * (e. v [x;x]) contai ns [u" ; v"] or [v"; u"]. 

Let J3' be a general realization for (1), and let a; [e·e'/n]. 

Evidently there exists a simplest substitution a' such that a 

divides a' and, for each inference 

in lJ " r ·a; r·a ' ; s. a ' ~ t.a' , , , , 
cause ue >- tna ~sia' ?= tia' . Moreover, either u"a' ; vila' or 

be-

t:S contains one of [u";v"]a ' , [v";u"]a', because ue >-te' ?= u" and 

ue ;.-ve ~ vila' Thus, J!j 'a ' shows that t e' e ; E:S v . 

It follows by Lemma 7 that te' ; vB Let J:) II be a realiza-

tion for ((Pte' ) ""'.!.+ (PvB)), and let rff be the result of prefixing L = 

{[se ' ;te'],(Pue)} f- (Pte') 

to iJ" 
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Case 3: u contains x where x8 ¢ NF( e* ,», and every 

proper subterm of u[x6 /x: xS ;. xJ is in NF( E*,>-). 

Let T = [x8 /x: xS ;. xJ . It follows that uS ~ UT , 

VS ~ VT , and e~ contains either [U=V]T or [v=uJ-r , whence 
A A A A 
UT = VT by the induction hypothesis. Thus u8 = v8 because 
A A 

and 
A 

VB (by induction hypothesis) . US = UT VT = 

Case 4: 8 E: l: e ' and some proper subterm of u8 is not in 

N F(t*,~). It follows that u· u'[rJ where r ¢ VI and f 8 E: 

NF( t ,» for every term t' which occurs in u'[rJ before the 

position of [r] . Moreover, c'V contains [s=tJ sharing no variables 

with ['[r] = v) such that r8 = 58 ' > t S' and t 8 ' is first in 

{[58 ' = t') : [58' = t') E: I: *} for some 8 ' such that x8 = x or 

x8' = x (x E: VI) Let n = mgu{r,s} . It follows by (iii) in 

§3.2.2 that 

[u'[t)n = vn ) -+"E [U"=V") 

* where (c v [ x=x)) contains [U"=V") or [v.,=u"). 

Let ~' be a general realization for (2), and define 0 ,0' 

from S, S ' , n , and j3 ' as inCase 2. 

It follows by essentially the same argument as in Case 2 that 

u ' [t]no =/:: 
i3 

a realization 

--V8 ,whence u' [t]no = v
A
8 by Lemma 7. Let 1'-" (PvAs ) be 

for (u'[t)no ~~ vAe ) 
~: 

By prefixing the inference 

{[S=t]8 ' , Pu'[r] e} 1- Pu'[t]no 

we obtain a realization for uS ~~ v'S ,whence uAa = va .• 
L 
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Proof of lerrma 9. If ua = ua then the trivial deduction 

({Pu},O) satisfies the conclus ion. Suppose for the induction hypothe

sis that uS >-ue and the leoma holds (with u' for u, a ' for a for all 

such that 

Case 1: 

u'S' E: [ua] 
~ 

u E: NF(e ,,..). 

an d uS >- u ' a ' 

let it' be the real i zation for 

(Pua .,., ~ + Pue) guaranteed by Theorem 5. let r' be the term in u6 
C . 

replace~ by the first inference in~' . r' does not occur in x6 

for any x in VI ' because r' ¢ NF( e+,>-) and xa E: NF( t+,,..) . 

Therefore the first inference of 11' has the form 

where 

({[s=t}r,Pu'[r]a} 1- Pu'[t·rJe ) 

(i) [s=t] E: t'" and [s=t] shares no variables with u 

(ii) T = EXT/X: x occurs in [s=t]] E: L~ 

(i i i ) r' = r6 = ST >- tT and 

(iv) u = u'[rJ where r r/. VI 

Observe that T· e = e · T because of (i) and (ii) . 

The above conditions define an RP~-inference 

(([s=t],Pu'[r]) f- Pu'[t]n) 

where n divi des e·T, [ e · T/n] e: L t ' and 

u'[r]e >u'[tT]e 

= u'[t] e·T 

= (u'[t]n) [ a ·T/n] 

It follows by the induction hypothesis that there exists an £-normal 
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derivation J!,l from Pu'[t]n to Pv where Pv subsumes PLI3, and 

[xalt Ix; x occurs in u'[t]n] divides [e"T/n]. 
-1 

Obtain JL from .91 by prefixing (4). Ii is an ~ -nonnal 

deri vati on from e v {Pu} to 

Case 1 is completed by 

Pv ,and a iJ ~ n-a C\ 
= d.ll 

showing that [xo~/x:=x occurs 

divides e. It follows from (5' ) that 

n'[xa~ Ix; x occurs in u'[t]n] divides e'T 
-A!...,l 

in u] 

(6 ) 

(In general, if a divides T then na divides nT (n £ LV).) Now 

Thus, 

n' [xo:> Ix ; x occurs in u'[t]n] 
= 1 

~ [xa~x; xn t x or x occurs in u'[t]n] 

~ [xalL1x ; x occurs in [s~t] or in u] . 

[xaiLIx; x occurs in [s~t] or in u] divides e'T 

Since [s~t] shares no variables with u'[r] and T acts only on 

vari ables of [s~t], it follows from (7) that 

[xa~x; x occurs in u] divide's e, 

Case 2: u i NF( e ,>-). 

(Pu l ) where ul E: NF(E ,>-). 

Let ~ be a realization for , (Pu) ' ~ e 
It follows that u >- ul ' whence 

ue >-ule. It follows by the induction hypothesis that there exists an 

~-nonnal derivation ~l from PUl to Pv where Pv subsumes pue 
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and [xo Ai/X: x occurs in u1] di vi des . e . Let jI be the result 

of prefixing 110 to £)1' so that oJ} = o f)' oj:) s1f. is clearly 
~ 1 

an L-norma 1 deri vati on. Observe that 

whence 

(i) xo l20 = x(x in u); 

(ii) {x: x occurs in u} 2 {x: x occurs in u1} and 

(iii) x0 f:! = x (x in u but x not in u1) ; 
1 

[XO~/ X: x occurs in u = [xO~l/X : x occurs in u1] (8) 

Thus, [xo~x: x occurs in u] divides e by the induction hypothesis.1 

A.3 Proofs for Normal Composit i on Lemmas 

Proof of Lemma 10. Let ~ = (e,>-,s), and consider an t-

resolution inference 

({B~ v q ~: i <n} f- (B' e ' - q' e ') v··· v(B' e' - q' e ')) 
1 1 0 0 n-1 n-1 

It suffices to observe that if (B1· v q . )1J~ B~ vq~, q ·n = q1! , 
1 I 1 1 1 

Bi vqi does not subsume (B~e ' - q~e' ) v ... v(B~_le' - q~_l e ') 

(i=O,··.,n-l), and e is a divisor of we' such that 

(i) {qie: i < n} is an t-contradiction; and 

(i i) 

then 

q ~ e' 
1 

(q EO Bi ) (i=O, .. . ,n-1); 
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is an ~'-resolution inference whose conclusion subsumes (B~ e ' - q~e ') 

v··· v (B~_l e ' q~_l e '), where~' = (tL>-,s ' ), r s '= rs ' and 

s'(Bn_l v qn-l) = qn-l (where S(B~_l v q~-l) = q~-l)' This follows 

by substitutivity of ~ and definition oflW(g,>-,s).I 

Proof of Lemma 11. It suffices to consider a general deduction 

in HR(C ,>-,s) of the form 

where 

- -vqv . .. vql o n-

~n-l 
. C 

n (9 ) 

(i) (B k v {Ck v qkOk v··· Vqn_10k} I-- Ck+l vqk+l ok+l v··· v 

qn-l ok+l) is a general (e ,>-,sk)-resolution inference 

with induced subs titution ek , where r = r (k=O ••• s s " k 
n-l ) ; 

( i i ) ° 0 = £ and 

(iii) Cn is rs-positive or empty. 

(Each rs-positive or empty clause of lJ' is either in Base(i)') or 

the conclusion of some such deduction . ) USing essentially the same 

argument as for LeITllla 4, we can construct a "permutation" of (9), 

having the same conclusion, which is in HR(e ,>-,s).I 

• 



fore 

has 

-176-

Proof of Le/TlTla 12. Observe that x8k ~ x8k+1 (k E: N). There-

x8 +k = x8 (k E: N) for some 
nx nx 

an infinite descending chain. Let 

nx > 0, because otherwise > 

n = max{n x: x8
0 

f x} . Then 

X8m = x8n (x £ VI) for all m > n .J 
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B; Util i tY-MeaSures for Refi nements 

The key question in the development of automatic 
proof procedures is efficiency. but it is rather surpris
ing how little serious discussion and analysis of it 
there has been .•.• In this field there has also been 
a great deal of discussion of the relative merits of 
'complete' or 'incomplete' or 'heuristic' procedures, 
often without too clear notions of what these are and 
certainly seldom with any serious consideration of how 
their different characteristics affect their effective
ness in finding proofs. 

1 --- B. Meltzer 

Util ity of a refi nement is a functi on of expected (or "average") 

performance of a proof procedure which uses it (in a given application 

environment (UE ,Il) (§1.1.1). This appendix provides a basis for 

evaluating refinements to be used by the refutation procedure ~ 

(§1.3.6). 

The behavior of Ref on C is essentially a function of 
= 

three parameters: 

(i) /::', a r-refinement defining the search-space of Ref(C); 

(ii) ~,an enqueuing function representing a search strategy 
for generating new inferences on the basis of the current 
deduction; and 

(iii) Subsume, a "deletion strategy" whereby certain theorems 
are deemed unnecessary for completion of the current de
duction. 

a Theory of Efficiency of Proof Procedures, in 
~~~~~~~~~~~~~~~~~~~ra~mm~· ~i~n~, ed. N. V. Findler 

0., Inc., New York, 1971). 
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Here as in §1.3.6, however, Subsume is assumed to be a fixed procedure 

such that Subsume(A,R) simply inserts A in R; most subsumption-

and tautology-deletion strategies can be incorporated into the 

r -refinements under investigation, in the sense that a subsumed or other-

wise de1etab1e clause is not used in subsequent inferences. 

In addition to providing a formal basis for investigating rela

tions between refinements and (expected) performance of refutation 

procedures which use them, §B.1 also provides a basis for investigating 

relations between search strategies and (expected) performance of refu

tation procedures which use them. 

B.1 A Framework for Performance Evaluation 

A performance-evaluation system for ~ 

lowing constituents: 

(a) a class {6i: i E N} of r-refinements; 

has the fol-

(b) a class {Ei : i EN} of fair enqueuing functions; 

(c) an application environment ('Ut ,\1) where e = Ax(r); and 

(d) a cost functional K: N x N x U~ -+ R: (= extended posi

tive rea1s) such that Kj{(~) <.0 iff [j(<::) is finite, 

where [j =df Ref[6i /6 , E/Enq]. 

Recall that \1 is a probabil ity measure on ZIt (§1.1 .1), and that 

\l(Z{) is intended to be the expectation that Ref will be applied to 

some clause-set e in U Kj (<:) is intended to represent the com-

putational effort (a function of time and storage space) required to 

compute IT~(C) using ITi .. 
~J =J 
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Expected values. A number of real-valued performance 

measures for llJ on Ue are defined below. Given f: Ut + R , 

the expected value of f on Us is given by J f d~. 
In the event that ~ is a "finite weighted sample" measure such that 

~ (U) = H W( C i dl ) whe re (I Wi) = 1 , f f dn is jus t the 
n i =1 

weighted average value (L f( e· )· w.) of f on the sample space 
i =1 1 1 

{e v ··' Cn} . 

. Remark . Questions of when f fd~ is defined are not dis

cussed below, partly because f f d~ is always defined when ~ is a 

finite weighted sample measure. In general there may well be 

interesting performance measures f, such as cost, for which f is 

measurable and J f d~ (expected cost) is 00 

Cost of deductions. Define K on v {IIi: i £ N} by 

K(l5) =df min{KJ(Base(l')): tJ is a subdeduction of 

rr~(Base(l))) and i,j £ N} 
=J . = 

K(Jj) is intended to represent the minimal cost of computing . iJ 

from Base(ll) v t: using Ref with some pair (lI i ,E j ). Given 

that { II: i £ N} contains each finite r-refinement, this intention 

is satisfied. 

Assumption 1. {II i: i £ N} contains each finite r-assignment . 

Completeness concepts defined below will be relative to 

completeness of the underlying calculus r. Consequently it is con

venient to assume that. {IIi: i £ N} contains the maximal r-refinement 

consisting of all r-deductions: 
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·Assumption 2. ~o is the maximal r-refinement 

B.2 · Local . Measures 

The concepts defined below are concerned primarily with at

tributes of specific refinements and search strategies as opposed to 

global measures which relate these attributes to other refinements 

and search strategies. Local measures can be effectively evaluated 

by a combination of analytical and empirical techniques . 

. . Refutabl e cl ause -sets (in 'itt ) for a refi nement ~i are 

defined by 

J(i) =df { e EO Uc: ~i contains a refutation of eVe} . 
Thus, J(O) = {(! EO Ue : e has a r-refutation} by Assumption 2. 

Completeness of a refinement ~ i may be defined probabilis

tically as the expectation that a r -refutable set e in U, has a 

r-refutation in ~ i : 

Comp 1 ( i) = df 11 ( J ( i) / ( 11 ( 1 (0) ) 

Notice that Compl(i) may be 1 even though ~i is not r-complete. 

Relevancy (also known as efficiency ratio [49]) is an attri

bute of refutation procedures which compares the cost of the first 

solution found with the total cost of the computation: 

{ K(l!j(C:~(O))/Kj(e) , if ~(e) 

K( C )/Kj (C) , otherwi se . 

is a refutati on; 
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If llj(e) 
If rr1( C:) 

is a refutation then rr~( e)(O) is the first solution found. - J . 

is riot a refutation then the "first solution" is to read 

~ into the output queue and halt. 

The expected relevancy J Rel; d~ depends upon both the 

"i rredundancy" of lli and the "goal di rectedness" of Ej . 

Power. Even if lli is a strong and complete r-refinement, it 

does not follow that the expected cost of rrj will be less than the 

expected cost of rr? , which uses the weakest r-refinement. The reason 
. J 

is that all the simplest refutations in llo(e· ) may be filtered out by 

ll i ' so that the refutation ll;«:) is quite costly to generate. Thus 

we defi ne Power( i) on J (i) by 

The expected power J Power(i) d~/~(~(i)) is a fair indication of 
. ~(j) 

how many "simple" refutations ll i filter out on its domain of com-

pleteness. 

Con ve rgen ce . Consider the problem-domain 'U~ defi ned by 
J 

u] =df { L E Ue: e has a f -refutation tJ such that 

K(ll) S KJ(C) } 

u~ is the collection of clause-sets C! having a r-refutation which 
J 

is no more costly than the deduction 

the latter is a refutation or not. 

is given by 

rr ~ ( e ), rega rdl ess of whether 
- J 

The convergence of rr] · on U~ 
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compares the expected completeness of rr~ with the expected 
J 

completeness of an "ideal" proof procedure under the constraint that the 

"ideal" procedure never exerts more effort than n} on .a given problem. 

Convergence is dependent upon (expected) completeness, rele

vancy, and power. A search strategy which satisfies "Kowalski's maxim" 

Search strategies should attempt to generate simpler 
before more complex proofs. 

would appear more likely to yield highly convergent proof procedures 

than one which does not . 

Suppose convJ = 1. It follows that for "almost all" clause

sets e £ Ue , . if 113 fa i 1 s to fi nd a refutation for C after a gi ven 

amount c of computational effort, then there exists no r-refutation 

of e wi th comp 1 exi ty 1 ess than c As c + 00 ,our conviction that 

~ is consistent approaches certainty! For this reason, convergence 

is a far more useful performance ·measure for proof-procedures than is 

completeness, which alone tells us little or nothing about the relation 

between computational effort and probability of eventually finding a 

refutati on. 

B;3 Global Measures 

A global performance measure compares the expected performance 

of a refutation procedure rr~ with the best expected performance of 
=J 
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any other procedure (in the space · {IT}: i,j EN}). Consequently, 

global performance measures can be quite difficult to investigate 

empirically. The following paragraphs define several global measures 

pertaining to "efficiency" of proof procedures. 

Search efficiency. Recall that 6' is complete relative to 

6 provided that if 6 contains a refutation for C then 6' 

also contains a (possibly different) refutation for e (C E Ue). 
Search efficiency of lij compares the costs of li~ with the costs 

i ' of other proof procedures lij ' where 6i is complete relative to 

6( 

SEj =df min{ I (K1:/K~)d~: 6i , is complete relative to 

6;, i' ,j' EN}} 

Convergence efficiency simply compares convergence of IT1 

with "best possible" convergence obtainable by relatively complete 

. refinements: 

CE1 =df (min{ conv1:: 6i , is complete relative to 

6i ,i ',j' E N}/conv}). 

Remark. Whil e the concept of "bes t poss i b 1 e" proof procedure 

for a domain UE. may be impossible to define empirically or even 

theoretically in general, there do exist restricted problem-domains 

such as sentence-recognition in context-free languages, for which 

near-optimal decision procedures have been developed. If ~t' is such 

a domain, then it will usually be possible to represent a known 
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near-optimal procedure in the form 

of efficiency for a proof-procedure 

II~ 
J 

II~ 
J 

for some 6i ,Ej . Estimates 

on possibly larger domains 

'Uc· (where 
iii IIj with IIj • 

c ' 'i I!. ) can then be obtained empirically by comparing 

on 'tJ. c' Some very interesting research along these 

lines has already been conducted. 
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C. THE DESIGN OF COMPLEXITY ORDERINGS 

This appendix describes and illustrates two related methods of 

defining e-complexity orderings ( §2 .3.5) for terms over a given 

vocabulary V. Each method has the same underlying motivation. We 

are given a finite axiom system t. wherein the order of terms in 

equations is assumed to have some "intuitive significance". 

cally; it is intended that specialized proof procedures for 

Specifi-

It 
will treat most or all of the equations [s=t] in l as reduction rules 

whereby Rp-i nferences 

{[s=t],8 v glt:JJ I- (8 vq[tJ) mgu{r,s} 

are admitted but their symmetrical counterparts 

{[s=t],8 vq[r]) I- (8 vq[sJ) mgu{r,t} 

are never admitted. Our objective is to approximate this "intuitive 

significance" while preserving completeness of our proof procedures. 

This objective may be accomplished by using ND(e,~) (§2.3.8) as 

the resolution micro-refinement (§2. 3.0) in a normal proof procedure 

for Ie (§2.4.2), where (e,~) is a reduction system (§2.3.4). In 

general, however, not all equations of e can be strictly ordered by 

;:.-. For example, if e contains a "commutativity" axiom [x·y = y·x] 

and x'y>-y'x , then y·x >- x·y by invariance of ;:.- under substitu

tions ([y/x,x/y]). Moreover, presently avail able completeness results 
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for ND( e ,:.-) (§3) require that >- be an ~'-complexity ordering for some 

e I S £ . 
C.l Introduction 

How does the choice of the ordering relation > affect the 

performance of a normal proof procedure based on ND( t ,:.-)? Two per-

formance-oriented features of >- might be described loosely as 

strength and direction. 

Strength. "'2 is stronger than >-1 provided that {(s,t): 

s ~ t or t~s} 5{(S,t): s 7z t or t>-2S} For exampl e , each 

"proper ex t ension" of >"1 is stronger than >-1 In view of the role 

of >- in restricting the class of Rp-inferences admitted by ND( e ,:.-) 
we should make >- as strong as feasible without significantly increas

ing the computational cost of evaluating relations (s :.-t) in a normal 

proof procedure. 

Direction. Let us say that a reduction system c= (E,.,) con

verges to (a subset of) an c -normal form n provi ded that if 

1::. = ND(e ,r) then NF(cd€ ),;.-) S 12 (for each fair enqueuing function 

Enq). If £:" converges to 'fl then a normal proof procedure based on 

ND(e,;.-) will eventually begin reducing terms to members of 'fl before 

unifying them in Rp and Cut i nferences . 'f1. may be thought of as a 

"direction" for ~ in a partially ordered s pace of normal form repre

sentati on. 

Efficient representations. Given reduction systems £ -1 = ( ~.>j) 

and k = (e,~), we can compare >; and ~ in terms of c -normal 

forms to whi ch ~i converges. Given that'£"i converges to >-i ,we 



-187 -

may be motivated to devise proof procedures for 'E which represent 

and process terms oft'li with optimal efficiency. Thus, we may 

prefer >-1 to >-2 on grounds that normal proof procedures for 1= e 
can be made to operate more efficiently on (the representation for 

terms in) 'fl1 than on 'tI2. . (See §O.O (Remark).) 

Two related approaches to the design of c-comp1exity orderings 

are investigated below. The first approach (§C.2) uses a weighting 

function w: VF ->- N to define a complexity order ~w (§2 .3.5) 

wherein the "complexity" of a constant term t is the sum of wei ghts 

of initial operators of subterms of t This approach is illustrated 

by an application to group theory described by Knuth and Bendix 39]. 

Beginning with a reduction system g ; (G,'W) where G consists of 

three standard axioms for group theory, we use a normal proof proce-

dure based on NO(G,:W) to derive a ten-axiom system R such that 

(R,>w) is canonical (§2.3.4) and closed (§3.2.3). 

The second approach (§C.3) defines an e-comp1exityordering 

>"1. by means of an e -norma 1 mappi ng v on .:Iv (§ 1 .2.9) and a 

function ¢: :;;tV ->- N· which measures the "cost" of computing v (u) 

from u Given terms u,v such that v (u) = v (v) , we say that 

u >-E v provided that either ¢(u) > ¢(v) or else ¢(u); ¢(v) 

and u:ow v , where >-w is some "weighting function" complexity 

ordering . If v(ue) 1- v(ve) for all e then we say that u >-4 v 

provided that v(u) >w v(v) • 

The second approach is illustrated (li C.5) by a D-cornp1exity 

ordering >-0 for cOlTlTlutative rings, integral domains. and fie1rls, 
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where 0 is the canonical system {Dl,02,03,04} 

01 : [(x+y)+z = x+(y+z)] 

02: [(x·y)·z = x·(y·z)] 

03: [( x+y)· Z = x·z + y· z] 

04: [z· (x+y) = x·z + y·z] 

It is easily verified that (0'>0) converges to Nr(O), and tha t 
= 

(O'>w) does not converge to. NF(D) for any "weighting function" com

plexityordering :> . (See §O.O, Remark.) 
.w 

The analysis of >-0 is facilitated by an effective character-

ization of completeness for total determinative reduction sys tems in 

§C.4 . 

C.2 Complexity Orderings Based on Weighting Functions 

Complexity orderings >-w based on a weighting function 

w: VF -+ N are defined in §2.3 . 5. These orderings yield very useful 

refinements (NO( e,>w)) for appli cations in group theory and other 

equational systems . The following application in group theory illus

trates how the procedure Ct ( §3.2.3) may be used as a proof procedure 

for equational systems. 

The vocabulary VE for group theory contains three ope ration 

constants (·,-,1); v = 0 R 

Axioms. G = {Gl,G2,G 3} 

Gl: [(x·y)·z = x·(y·z)] 

G2: [1· x z x] ; 

G3: [x-·x = 1] 

(Associativity) 

(Left identity) 

(Left inverse) 
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Complexity ordering. Define w by 

w(ll = 1 

w(-) = 0 

w( 0) = 0 

Then w is a weighting function for V , provided that - is taken to 

be the last element of VF in lexical order. Define the complexity 

ordering > for:::lV as in §2.3.5. Observe that each equation of . w 

.J/ is a reduction according to >w 
The following deduction from G is complete in ND(e ,~)

(§1.3.4). It contains 101 clauses. Of these, 91 are deleted either 

before or immediately after the last equation is generated, because 

they reduce to identities in the context of the remainder (R): 

RO: [1- = 1 ] 
Rl: [x -- x] = 
R2: [lox = x] 
R3: [xol = x] 
R4: [x - oX = 1] 
R5: [x oX - 1 ] = 
R6: [(xoy)- -oX-] = y 
R7: [x 0 (x -oz) = z] 
R8: [x -o(xoz) = z] 
R9: [(xoy)oz = xo(yoz)] 

Each of these is a reduction according to >-w ' and each is irreducible 

with respect to the others. Indeed, the reduction system (R,~) is 

closed, as noted (in effect) by Knuth and Bendix [39]. 
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Format of proof. Each line has the format 

(~ Clause Source Out Disposition) 

~ = order of entry of Cl ause in Q; 

Clause = Axiom or conclusion of an inference ; 

Source = Ax( i om) or inference rule used: 

Cut(m,n)-pairwise resolution (on clauses m,n), 

Rp(m,n)- replacement (from clause m into clause n), 

CNR( m)- complete normal reduction from clause m 
based on currently active equations; 

Out = order of exit from Q 

Disp(osition): if Clause is deleted, how (why?) 

CNR(*) - Clause reduces to true (e.g., an identity) in 

current equations; 

CNR (+) - Clause reduces to useful result ; and 

C Clause reduces to true following addition of 

last clause (97 below). 

When a clause is selected from Q , its entry number is prefi xed by 

"-" and its exit feature is assigned the next higher exit number. When 

this clause has been "resolved" with all clauses CUrrently prefixed by 

"+", its "-" is converted to "+". When a clause reduces to true, or is 

subsumed by the current output cl ause, its prefi xis converted to "*" 

Output clauses (R) are those prefixed by + or * . 
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Fig. 1. A Group Theory Derivation 

In C1 ause 

+l. l'x"x 
+2. x -. x " 1 

+3. (x·y)·z "x·(y·z) 

*4. Y'z" l·(y·z) 

*5. z = x-'(x'z) 

*6. (w·(x·y))·z = (w·x)·(y·z) 

+7. x-'(x'z) = z 

*8. 1- • z " z 

*9. x ·1 = x 

+10, (x·y)- (x·(y·z)) = z 

*11. y'Z = w-·((w·y)·z) 

*12. w'Z = w--·(l·z) 

*13. z ·z = 1 

*14. 1 = 1 

*15 . y·z = l-·(y·z) 

*16. W'Z" w ·z 

*17. w .z = w·z 

+18. w·w- = 1 

*19. (x·y)·z = x--'(y·z) 

+20. x'(x-'z) = z 

+21. x·1 = x 

*22.1=1 

+23. 1- = 1 

*24. (x·y) = x(y'l) 

*25 . x·z - x·(l·z) 

*26. x-,x = 1 

*27. 1- = 1 

+28. x = x 

*29. w = w·1 

*30. 1·1 = 1 

Out Disposition 

Ax 
Ax 
Ax 
Rp(1,3) 

Rp(2,3) 

Rp(3,3) 

.1 

2 

3 

4 

5 

6 

Rp(5,[x=x]) 5 

Rp(l,7) 8 

Rp(2,7) 7 

Rp(3,7) 15 

Rp(7,3) 

Rp(9,3) 

Rp(9,7) 

Rp(8,2) 

Rp(8,3) 

CNR(12) 

9 

Rp(16),[x=x])9 

Rp( 17,2) 13 

23 CNR(*) 

21 CNR(+) 

C 

9 CNR(+) 

28 CNR(*) 

o 
23 CNR(*) 

9 

28 CNRH 

Rp(17,3) 28 CNR(*) 

Rp(17,7) 14 

Rp (17,9) 10 

Rp(21,1) 22 CNR(*) 

Rp(21 ,2) 11 

Rp(21 ,3) 21 CNR(*) 

Rp(21 ,3) 1 CNR(*) 

Rp(21,7) 2 CNR(*) 

Rp(21,8) 

Rp(21,9) 12 

Rp(21 ,17) 

Rp(23,2) 
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In Clause Source Diseosition 

*3l. l·(l·z) = z Rp(23,7) CNR(*) 

*32. l-'z = l·z Rp(23,17) 23 CNR(*) 

*33. x·x - = 1 Rp(28,2) 18 CNR( *) 

*34. x·(x-·z) = z Rp(28,7) 20 CNR(*) 
*35 . 1- = 1 Rp (1 ,18) 23 CNR(*) 
*36. l·z = x·(x-·z) Rp(18,3) 20 CNR(*) 

37. x·(y·(x·yn = 1 Rp(3,18) C 

*38. x-·l = x- Rp(18,7) 21 CNR(*) 
*39. 1' 1 = 1 Rp(23,18) CNR(*) 
*40. x-,x = 1 Rp(28,18) CNR(*) 

*41. l-'z = z Rp(1,20) CNR(*) 
*42. x·l = x Rp(2,20) CNR(*) 
43. x·(y·((x·y)-·z)) = z Rp(3,20) C 

*44. x·l = x Rp(18,20) CNR(*) 
*45. X·X 

- = 1 Rp(21,20) CNR(*) 
*46 . l·(l·z)=z Rp(23,20) CNR(*) 
*47. x-(x· z) = z Rp(28,20) CNR(*) 
*48. y-·(1·(y·z)) = z Rp (1 ,10) CNR(*) 
*49. y-·(y·z)= z Rp(l,lO) CNR( *) 

*50. x-(x'z) = z Rp (1 ,10) CNRC*) 

*5l. l-·(x-·(x·z)) Rp(2,10) CNR(*) 
52. ((y·z)-·y) - ·l = z Rp(2 ,10) C 
53. (x.z-)-.(x.l) = z Rp(2,10) C 
54. (w·(x·y))-·(w·x)·(y·z)) = z Rp (3,10) C 
55. ((w·x)·y)-·(w·(x·(y·z)) = z Rp (3,10) C 
56. (x·(w·y))-·(x·(w·(y·z))) = z Rp(3,1O) C 
57. y-'(w-'((w'Y)'z)) = z Rp (7,10) CNR (*) 

*58. (x-'x) - ,z = z Rp (7,10) CNR(*) 
59 . (x'w-)-'(x' z) = w· z Rp (7,10) C 

*60. l-'(w~(w-'z)) = z Rp(18,10) CNRC*) 
6l. (x.y)-. (x·l) = z Rp(18,10) C 

*62. w-'(x'((x-'w)'z)) = z Rp(20,10) CNR(*) 



In Cl ause 

*63. (x·x-)-·z = z 
+64. (x·y)-·(x·z) = y- z 
*65. x-·(x·(l·z)) = z 
66. (x·y)-·(x·y) = 1 

*67. y-·(l·z) = y-.z 
*68. l-·(x-.z) = x-·z 
69. (x.(y·w))-.((x·y)·z) = w ·z 
70. ((x·w)·y)-·(x·(w·z)) = y-.z 
71. w-·(x-·z) = (x·w)-·z 
72. (x-·y)-·z = y-·(x·z) 
73. w = y-.(y.w) 
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74. w-.((x.y)-.z) = (x.(y.w))-·z 
75. ((x.y)-·w)-.z = w-.(x.(y.z)) 
76. (y-·w)-·((x·y)-·((x·w)·z) = z 
77. ((w·y)·w)-·(y-·z) = z 
78. (x.(w·y))-·(x·(y-·z)) = w·z 

*79. l-.(x·z) = x--·z 
+80. (x·y)-·l = y-.x-

81. y - • (w· z) = (w - • y) - • z . 

82. (x·y)-·z = y-·(x-·z-) 
83. x-·(x·z) = l-·z 
84. (x·y)-·x = y-·l 
85. y-·l = y ·1 
86. 1-·1 = x-·x--
87. (x·(y·z))-·l = z-·(x·y)-
88. (y-·x-)·z = (x·y)-·(l·z) 
89. z-·l = (x·z)-·x--
90. (x·y)-·(y-·x-) = 1 
91. (y-.xT·((x.y)-.(l.z)) = z 
92. (w·(x.y-))-.(w·((Y-·x-).l)) = 1 
93. z-·l = (x·(y·z)f·(x·y)--

Source 

Rp(20,10) 

Rp(20,10) 

Rp(21 ,10) 

Rp(21,10) 

Rp(l ,64) 

Rp(2,64) 

Rp(3,64) 

Rp(3,64) 

Rp(7,64) 

Rp(7,64) 

Rp(10,64) 

Rp(10,64) 

Rp(10,64) 

Rp (64,10) 

Rp(64,10) 

Rp (64,10) 

Rp(18,64) 

Rp (18,64 ) 

Rp(20,64) 

Rp(20,64) 

Rp(21,64) 

Rp(21 ,64) 

Rp(1,80) 

Rp(2.80) 

Rp(3,80) 

Rp(80,3) 

Rp(7,80) 

Rp (80,7) 

Rp (80,10) 

Rp (80,10) 

Rp(10,80) 

Disposition 

CNR(*) 
16 C 

CNR(*) 
C 

CNR (*) 

CNR (*) 
C 

C 

C 

CNR(*) 
CNR(*) 
C 

C 

C 

C 

C 

CNR( *) 
17 CNR(+) 

C 

C 

CNR(*) 
C 

CNR(*) 
CNR(*) 
C 

C 

C 

C 

C 

C 

C 
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In Clause Source 
94. 1-'1 -- - Rp(18,80) CNR(*) = x 'x 
95. (x'Y)'(Y-'x-) = 1 Rp(80,20) CNR(*) 
96. z -'1 = (x-'z)-'x- Rp(20,80) C 

-97 . (x·y)- = y-'x- Rp(21,80) 18 
98. x -·1 = l-'x- Rp(21,80) CNR(*) 
99. (Y~'z)-'l = (x'z)--'(x'Y)- Rp(64,80) c 

100. (Y-'x-)-'«x'Y)-'z) = l-'z Rp(80,64) C 
10l. «x'Y)-'Y)-'(Y-'x-) = y-·l Rp (80,64) C 
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C.3 e ~CCimplexityOrdetiligsBasedCin ali · e-Calioliical Mapping 

Let >w be a weighting-function complexity ordering as defined 

in §2.3 . 5, and suppose that c is finitary and complete--i.e., 

(i) e is fi nite; 

(ii) i 
(iii) if 

is a partial ordering which satisfies D.C.C; and 

u =e v then * . * u +e t and v ·'t' t for some term t. 

* It follows by Proposition 10 in §2.3.3 that NF( C, +() is an t:-

canonical form. Indeed, for each term u there exists a term 

v EO NF(e) such that u ="'>e v , because of (ii). Moreover, v is 

unigue (because of (iii): Choose vl ,v2 EO NF(e) such that 

Then v • 

Therefore vl = v = v2). 

v(u) =df (the unique term v EO NF( e) sue" that * U =»e v) . 

The purpose of this section is to define from (e ,)ow) a class 

of C -complexity orderings >'e wherein each equation of e is a 

"reduction" : 

(iv) if [s=tJ EO ~ then s ~ t 

It fo 11 ows tha t 

(v) u ~L v(u) (u EO .1v) and 

(vi) NF( e ,~) C;;; NF(e) 

~ L is actually defined so that 

(vii) v (s) >~ vet) iff v (s) >w v et) and 

(vi i i ) if s >' ~ t then v ( t) ~w v (s ) 
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In order to accomplish this purpose, let C = (c ,>w,¢;Q) where 

Defi ne 

(ix) ¢: :IV + N is computable (a "cost function" for v); and 

(x) Q: :Jv x Jv + {O,l} is computable. 

>-6' by 

(s ~~ t) =df elf v(s) = vet) 

then if ¢(s) = ¢(t) 

then (s >- t) -- w 
else (¢(s) >-¢(t)) 

else if. Q (s , t) = 0 

then v(s) >w vet) 

else false]. 

A straightforward attempt to verify that >-~ is an c~complexity 

ordering (below) generates the following set of sufficient conditions: 

(Cl) v(u[t]) ~ vet) . 

(C2) If v(s) >-w vet) 

then v(u[s]e) >w v(u[t]e) (e E LE ) . 

(C3) If [s=t] E e and ¢(s) 'I ¢(t) then ¢(s) = ¢(t) and 

s~w t . 

(C4) <p(u[t]) ~ ¢(t). 

(C5) If v(s) = vet) 

then (¢(u[s]e) > ¢(u[t]e)) = (¢(s) > itt)) (e E Le ). 

( C6) If Q (s , t) = 0 then v (s e) f v ( t e) (e E LC ) . 

(C7) If Q(s,t) = 0 then Q(u[s]e,u[t]e) = 0 (e E Le ). 
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(Ca) If v (s) >w v(t) or v(t) >-w v (s) then Q(s, t) = o. 

Proposition 1. Suppose £.- satisfies (Cl )-(Ca). Then >-~ 

is an e-complexity ordering sati ·sfying (iv)-(viii). 

Proof. We verify each condition in the definition of ~

complexity ordering in sequence (§2.3.5). 

>c~ decidable because each relation in the explicit defi

nition of ~ is decidable. (We are assuming Q to be computable, 

whence the relation (Q(s,t) = 0) is decidable.) 

>-e is monotone. This we demonstrate by a subcase analysis: 

S: s ~~ t (Premise). 

Sl v(s) = v(t), whence v(u[s]) = v(u[t]) by definition 

of v . 

S1.l: ¢(s) = ¢(t), whence s >w t, and u[s] >w u[t] by 

monotonicity of >w. Now [¢(u[s]) > ¢(u[t])] 

= [¢(s) > ¢(t))= false, and [¢(u[t]) > ¢(u[s]) ] 

= [¢(t) > ¢(s)] = false by (C5), whence ¢(u[s]) = 

¢(u[t]). 

It follows that u[s] >-e u[t]. 

S1.2: ¢(s) f ¢(t), whence ¢(s) >- ¢(t) by (S). Itfollows 

by (C5) that ¢(u[s]) > ¢(u[t] ), whence u[s] >-~_ u[t]. 

S2: v (s) f v(t), whence v(s) >w v(t) by (S). 

It follows by (C2) that v(u[s]) >-w v(u[t]), whence u[s] >~ 

u[t] by (ca). 

Thus, (S) I~ u[s] >-"L u[t]. 
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>-~ ~~ partial ordering. It is easily verified that,.~ 

is anti-symmetric (and anti-reflexive). It suffices to show that 

>-e is transitive by a subc~se analysis: 

5: s >-Jt t and t >-~ u (Premise) 

51: v(s) ~ v(t). 

51.1 : ¢(s) ~ ¢(t), whence s >-w t. 

51.1.1: v(t) ~ v(u). 

51.1.1.1: ¢(t) ~ ¢(u). Then s >-w u because >-w is tran

sitive, whence s >-Jt u . 

51.1.1.2: rJ;(t) t- ¢(u). Then ¢(t) > ¢(u), whence ¢(s) > rJ;(u) 

by (51.1). It follows that s ~~ u because 

v(s) ~ v(u) by (51.1.1), (51). 

51.1.2: v(t) t- v(u), whence Q(t,u) ~ 0 and v(t) >w v(u) 

by (t >-eo u). Therefore v(s) >"w v(u) by (51) and 

Q(s,u) ~ 0 by (C8). It follows that s 'L u 

51.2: rJ;(s) t- itt), whence ¢(s) > itt). 

51.2.1: v{t) ~ v{u), whence v{s) ~ v(u) by (51). 

51.2.1.1: ¢(t) ~ ¢(u), whence ¢(s) > ¢(u) by (5l.2). 

It follows that 5 >-~ u 

51.2.1.2: rJ;(t) t- ¢(u), whence itt) > ¢(u) (by (5)). 

Therefore its) > ¢(t) by (51.2), whence s >-~ u 

..----51.2.2: v(t) r v(u), whence Q(t,u) ~ 0 and v(t) >-w v(u). 

Therefore Q(s,u) ~ 0 and v(s) >w v(u) by (C8) and (51) 

whence 5 >t!._ u 
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52: v(s) f v(t), whence Q(s,t) = 0 and v(s) >w v(t) 

by (5). 

52.1: v(t) = v(u), whence v(s) >-w v(u) by (52) and 

Q(s,u) = 0 by (C8). Therefore s >-~ u. 

S2.2: v(t) f v(u), whence v(t) >w v(u) by (S) and 

v{s) >-w v{u) by (52). Therefore Q{s ,u) = 0 and 

s >-c u by (C8). 

(5) I (s ~L u). 

>"c well-orders constant terms of ~ It suffices to show 

that either (s >e t) or (t >-e s) for each pair s,t of constant tenns 

(trivial, by (C8) and definition of ~) and that ~~ satisfies D.C.C. 

(§2.3.2). Let [t]v =df {s: v{s) = v{t)}. Clearly >-L well-orders 

the constant tenns of [t]v' by the fact that >-w is a complexity 

ordering. It is equally clear from (C8) that >-~ well-orders the con

stant tenns of {v{t): t E ;tv}' D.C.C. follows from the observation 

that if v{s) >w v{t) where sand t are constant tenns, then 

u >-Jt v for all pairs (u,v) of constant terms in [s]v x [t]v . 

u[t] ~Jt. t . Again we consider subcases: 

51: v(u[t]) = v{t). 

51.1: ¢(u[t]) = ¢(t) . Then (u[t] ~~ t) = (u[t] ~ t) = true. 

51.2: ¢(u[t]) f ¢(t). Then ¢(u[t]) > ¢(t) by (C4), whence 

u[t] >-L t . 

52: v{u[t]) f v{t). Then v{u[t]) >-w v{t) by (Cl), whence 

Q{u[t],t) = 0 by (C8). 

I~ (u[t] ~E: t). 
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If s ?-e t then se ~ te (e E E t ) : 

S: s >-~ t and e E ES . 

Sl: v(s) = v(t), whence v(se) = v(te) by definition of v . 

Sl.l: ¢(s) = ¢(t), whence s>w t by (S), and se?-w te 

because ?-w is a complexity ordering. Therefore 

se >-e te by (Sl). 

Sl.2: ¢(s) f ¢(t), whence q;(s) > q;(t) by (S). 

Therefore ¢(se) > ¢(te) by (C5). It follows by (Sl) 

that se >-~ te . 

S2: v(s) f v(t), whence v(s) >w v(t) by (S), and v(se) >-w 

v(te) by (C2). It follows by (C8) that se >-s teo 

(S) I~ (se >-~ . te). 

It follows by (NF( e:) f 0) that ')-oS is an c-complexity ordering. 

Conditions (iv)-(viii) above are easily verified. ((iv) follows from 

(C3).)I 

C.4 Canonical RedUction Systems 

Suppose that ~ = ( C ,» where c and >- satisfy (i )-(iv): 

(i) c is a finite set of equations [s=tJ where each variable 

in t is also in s . 

(ii) ~ is an invariant partial ordering on ;tv 

(iii) Every descending chain in ~ is finite. 

(iv) s ~ t for each equation [s=tJ in e . 
In other words, let ~ be an equational, determinative, total, and 
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finitary reduction system (§2.3.4). 

For the case where ;:- is a complexity ordering >-w ' Knuth and 

Bendix prove the following [40, Theorem 5 (Corollary)]: 

in C 
Proposition 2 . Suppose that (1) hol ds for each equation [u=v] 

If e'" contains [s=t], sharing no variables with [,u=v], and 

u = u'[r] where r ¢ VI and mgu{r,s} = e EO LV ' then 

u[t]e +1 v' * and ve +L v· for some term v'. (1) 

Then e is finitary, complete, and canonical. 

Corollarl:. Suppose that (1) hol ds for each equation [u=v] in 

L Then C is norma lll: compl ete. 

* EO NF( c ,>-) * Proof. If u +c v then u~ v because c. is 

canonical. 

We show below that Proposition 2 holds for ~ reduction system 

c satisfying (i)-(iv) . 

An -'--realization (for (u =c v)) is a list (uo '·· .,un ) such that 

uo= u, un= v, and either uk +~ uk+l or uk+l +jL uk for k=O,·.·,n-l. 

Defi ne '" e and (, ~ on .:J V by 

(u "'~ v) =df (there exists an c -realization for (u =c v). 

{ 

min{n: there exists an c -realization (uo'···'un ) 

' ( ) for (u = .. v)} , if u "',= v,· u u,v = c df 
... , otherwise. 
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Lemma 3. u "'L v iff u = e v . 

Proof. Clearly (u "vlL v) implies that (u =£ v). Moreover, 

"'t isa monotone equivalence relation on :IV It follows by (i) 

and (ii) that "' t. is substutitive. Thus, "'~ is an equality rela-

tion on::lV Finally, (iv) implies that s "v lJ t for each equation 

[s=t] in E . Since =E is the smallest equality relation on :Iv 

such that s =e t for each equation [s=t] in E , it follows that 

(u =L v) implies (u 'V~ v) . , 

Now Propos iti on 3 in §2. 3.4 shows that if !.,. is complete 

then c. is canonical. Thus, it suffices to show that .I:. i s complete . -.. 
The following lemma generalizes Theorem 4 in [39] to redu ction systems 

e satisfying (i)-(iv) : 

Lemma 4. ..L is compl ete iff the following "lattice condition" 

is satisfied : 

If u -+~ u, 

v such that 

and u -+..L u2 then 
* -

ui -+€ v (i=1,2) 

there exists a term 

(2 ) 

Indication of proof. On the basis of Lemma 3, we use the proof 

of Theorem 4 in [40] (with 'V e for = ) for the proof of this lemma. 

In essence, we prove (3) from (2) by induction on o~(u,v): 

* If u "vL v , u -+ E u I E: NF( c ,>-), and 

v -+i v' E: NF(e.,~) ,then u' = v' , (3) 

For · the case where O~(u,v) = 0 (i.e., u = v), the argument goes as 

follows. Suppose (3) false. We may suppose by (iii) that u is a 
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minimal term in {u: u falsifies (3) with u for v} with respect 

to ;:::. Now u ¢ NF(c ,)-), because otherwise u' = u = v'. Therefore 

u r u', u r v', and there exist terms ul ,vl such that 

* * By the 1 atti ce u -+£ ul +L u' and u +1L vl +L v' condition 

there is a term such that * and * , and by (iii) t ul +E. t vl +L t 

there is a term t ' such that t +1 t' £ NF( e ,>-). However, (ii) and 

(iv) imply that u )-u l and u >- vl ' whence minimality of u implies 

that u' = t' = v', a contradiction. 

The induction step is straightforward.' 

Thus Proposition 2 reduces to the following: 

Lemma 5. Suppose that (1) holds for each equation [u=v] in C . 

Then t:. satisfies the "lattice condition" (2). 

Indication of proof. Suppose u +c ul and u +~ u2 . 

Case 1 : u = u ' [rl ,r2] where ul = U'[t181 ,r2], u2 = u'[rl ,t282] 

and e'V contains [si=ti ] where r i = si 8i (i=1,2). The conclusion 

follows with v = u'[t18l ,t282]. 

Case 2: u = u'[r,[r:2J] where ul = U'[t181], u2 = u'[r,[t282]], 

and e'V contains [sl=tl ] where r,[rz] = S181 ' [s2=t2] where rZ = 

s282 

The details of this case are spelled out in [40,§5], and need 

not be repeated here. In each of two subcases (one of which uses (1)), 

it is shown that the consequent of (2) holds.' 

C. S A D-Complexity Ordering 

Let V be any vocabulary where +, • 2 
£ VF, + precedes • and 

let e be any axiom system which includes 0 = {Dl.D2.D3,D4} : 
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D1. [(x+y) + z = x+(y+z)] 

D2. [(x·y)oz = xo(yoz)] 

[(x+y)oz 1 D3. = zox + zoy] 

D4. [zo( X+y) = zoX + zoy] 

Define +D' +; ,and NF(D) as in §2.3.2. (Briefly, u[s] +D 

u[tJ for all [s=tJ in D* * +D is the transitive, reflexive ex-

tension of +D to :IV v eV and NF(D) is the set of +~-irreducible 

terms and clauses.) 

We show below that NF(D) is a D-normal form for ~v (§1.2.9) 

The analysis of +~ which follows is assisted by two functions # and 

¢: ;; V + N: 

#(u) =df [If u = (ul +u2) 

then #(u l ) + #(u2) + 1 

else if u = (u.u2) 

then [#(ul )+lJo[#(u2)+lJ - 1 

else OJ 

lIn the usual axiomatizations for commutative rings, D3 is re
placed by D3: [x+y)oz = xoz + yozJ, which is equivalent to D3 in the 

* presence of [(xoy) = (yox)J. The "Church-Rosser Theorem" for +D 
below does not hold when D3 is replaced by D3 . 
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¢(U) = df [If u = (v1+v2) 

then ¢(v1) + ¢(v2) 

else if u = vl 'v2 
then ¢(v1) + ¢(v2) + #(u) 

• else if u £ Vr v V I 

then 0 

else L(¢(u i ): i ~ i ~ n} 

where u = fU 1·• .un] 

Remark. It can be shown by structural induction on u that 

u = Uo +0'" +0 um = (vo + . • • + 

n = #(u) and vk is not of the 

(v 1+ v)···) £ NF(O) where n- n 

form (s+t) (k=O •.••• n). and that 

¢(u) is the number of {03.04}-contractions (uk +0 uk+l ) in this 

sequence. (If #(u) = 0 then um = Vo above.) 

Let w be a weighting function for V wherein w(') = w(+). 

and let >w be as defined in §C.1. The following relations are 

easily verified: 

(r·s)·t >-w r·(s·t) 

(r+s)+t >w r+(s+t) ; 

t·r+t·s>- (r+s)·t w 

t'r t·s >-w t'(r+s) 

Lemma 6. Suppose u +D v. Then #(u) = #(v). and either 

¢(u) = ¢(v) + 1 or else ¢(u) = ¢(v) and u >w v • 

(4) 

Indication of proof. The relation (#(u) = #(v» is easily ver

ified for each equation [u-v]in D* by expanding the definitions of 
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#(u) and #(v). It foll ows by structural induction on u that #(u) = 

#(v) for all u,v such that u -+-D v . 

Similarly, we have (t( to( r+s )) = ¢«r+s)·t) = ¢(t'r + t·s) + 1, 

¢«r·s)·t) = ¢(r·(s·t)), and ¢«r+s)+t) = ¢(r+(s+t)). From these 

relations and (4), the conclusion follows by structural induction on u .1 

Corollary 1. * For each term u, u -+-0 v for some term v in 

NF(D). Thus, NF(D) is aD-normal form for ;tv 

* Corollary 2. -+-D is an invariant partial ordering which satis-

fies D.C.C .. Thus, 0 is finitary. 

* Lemma 7: D satisfies (1) (with D for e , (D'-+-D) for L ), 
whence D is canonical. 

Proof. Verification that 0 satisfies (1) is straightforward, 

and is omitted. It follows by Proposition 2 that D is canonical.' 

Oefi ne v on :1V by 

v(u) =df (the unique term v in NF(D) such that 

* u-+-Lv). 

Let Q: ~V x ~V -+- {O,l} · be any computable function satisfy

ing (C6)-(Ca). «C6) and (cl) are satisfied by the smallest relation 

Q satisfying (ca)). 

Now let Q = (D'>w,¢,Q). 

Proposition a. £ satisfies (Cl)-(Ca) with Q for ~. The 

proof (based on Proposition 2) is fairly straightforward, and is omitted. 

By Proposition 1 we have the following: 

Corollary. ~Q is a D-complexi~ ordering. 
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D. A NORMAL REFINEMENT FOR INTEGER ARITHMETIC 

Integer Arithmetic is the first-order theory of ordered integral 

domains satisfying each induction axiom 

IC: C[D/x] 1\ Vx (NNx 1\ C + C[(x+l)/x]) + Vx(NNx + C) . 

where C is a formula having extra-logical constants in {NN.O,l.-.+,· }. 

NN represents the set of non-negative integers or natural numbers. 

In practical theorem-proving applications we include only those 

induction axioms deemed necessary for the problem at hand. Thus, we 

work with finite extensions of an axiomatization IA for the theory of 

ordered integral domains havi ng no elements between ~ (0) and unity 

(1) • 

The existence of quotient and remainder operations (as shown by 

the classical Euclidean algorithm) can be derived from IAv {Ic: C E: ':;J. 
The clause-representation of the "Euclidean algorithm theorem" 

IIw Vx'v'y 'v'z(NNz 1\ NN(Iyl - z) 1\ w·y + z = x) 

introduces a Skolem operator (+) representing division. By the addition 

of this and other relevant theorems as lenmas. the basic axiomatization 

IA is extended so that increasingly advanced results in number theory 

can be stated and perhaps proved without further induction axioms. 

Ideally, each such extension is supplied with a corresponding macro

refinement which can be composed with a previously defined normal refine

ment for the theory being extended. 
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In this appendix, a normal refinement for a simple extension 

of IA is defined and used by a normal proof procedure to generate a 

refutation proof for the following classical result in number theory: 

The square root of ~ prime number is irrational. (1) 

The refutation itself contains 49 clauses. Even with an "optimal" 

search strategy, the normal proof procedure generates 230 clauses. Of 

these, 52 can be eliminated by simplification and subsumption opera-

ti ons as soon as they are generated. Thus, the "effi ci ency rati 0" of 

the proof procedure on this problem is better than 0.2 (49/230 or 

49/178; see §B). 

The normal refinement has the form 

where HR and NO are as defined in §2 '~O is a O-complexity order-

ing (§C.1), and 0 = {01,02,03,04} S IA 

01: [(x+y) + z = x + (y+z)] 

02: [(x·y)·z = x·(y·z)] ; 

03: [(x+y).z = z·x + z·y] and 

04: [z· (x+y) = z·x + z·y] 

The D-complexity ordering ~D is of independent interest, in 

that it makes each member of 0 a reduction (e.g., z·(x+y) >D 

Z·x + z·y); moreover, the refinement ND( C '>D) can be used with ~ 

axiomatization e where C 2 D. Define.7D by 
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:JO =df {u £ :JV: u contains no subtel'lll of the form 

(r+s) + t, (r·s)·t, (r+s)·t, or t'(r+s)} 

The restriction of )000 to .10 is essentially a "syntactical" com-

plexity ordering > as defined in §C . 2. w 

Remark. It may well be that >w and numerous other complex-

ity orderings yield refinements which perform just as well or better 

than /::, on the problem-domain FIA My preference for::-O is 

based on the existence of a useful lA-canonical fol'lll .:IC!:.7D for 

terms over the vocabulary V where VF = {+,·,O,l}. Each member 

of ;lc has the form (t l + ... + (tn_l + t n )···) where ti has the form 

(xl' ...• (xn_l ' xn)···) or -(xl' ...• (xn_l ' xn )···) and 

ti "f (-tj ) (i,j £ {l,···,n}) 

A normal proof procedure based on /::, computes increasingly 

stronger lA-normal fol'llls NF(': '::--0) where e ~ IA and hence 

::IC ~ NF(e '>-0) S NF(O). Thus, such a proof procedure "tends" to 

keep terms in a convenient lA-canonical fol'lll. (See §C.O (Efficient 

representations.)) 

0.1 Integer Arithmetic 

The clause-form axiomatizati'on IA(I1-I15 below) fOl'lllalizes 

the concept of an ordered integral domain 1 I = (I,J,+,·,-,O,l) having 

no elements between zero (0) and unity (1): 

iThe present tr~atment of Integer Arithmetic is based on "The 
Integers and Integral Oomai ns," Chapter 4 in Solomon Feferman' s The 
Number Systems (Addison-Wesley Publishing Co., Inc., Palo Alto, cal
ifornia, 1964). However, IA is not the axiom system used in Feferman's 
development. 



11: [O+x; x] 

12: [x+(-x); 0] ; 

13: [(x+y) + z ; x+ (y+z)] 

14: [Oox; 0] 

15: [lo x ; x] 

16: [(xoy)oz; xo(yoz)] 

17: [(x+y)oz; zox+zoy] 

18: [zo(x+y); zox+zoy] 

19: [x+y; y+x] 

110: [xoy ; y-x] 

111:[0'1-1]; 

112: [xoy 'I- 0] v [x;O] v [y;O] 

113: "'NNx v "'N Ny v NN (x+y) 

114: "'NNx v "'NNy v NN(xoy) 

Il5: "'NN-x v "'NNx v [x;O] ; 

116: NN( x + (-1 )) v NN(-x) 
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Commu ta t i ve 
Ring 
with 

Unity 
Integral 
Domain Ordered 

Integral 
Domain 
with 

Nothing 
between 
o and 1 

Clearly IA is valid when interpreted into the "standard" system of in

tegers defined in our metalanguage. On the other hand, IA is valid in 

many "nonstandard" structures wherein the integers can be isomorphi c

ally embedded2 . 

21t is well known that no decidable set of axioms can character
ize the integers up to isomorphism. For an example of a system 1 
which satisfies IA but not {IC : C E ~v } ,let I be the set of all 
"canonical form" polynomials in a single variable Z with integer co

efficients, stipulating that n < z ~ zn for each n > 0 . 
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0.2 A Formalization of the Irrational Prime Root Theorem 

Our first task is to express (1) in the language of Integer 

Arithmetic. Define the predicate PN (Prime Number) by 

PN(z) ++ [z t 0] ~ [z t 1] ~ [z t -1] 

\ixVy(3w[z ow:x oy]+ 3w([z ow: x] v [zow:y])) (2) 

The Irrational Prime Root Theorem (1) can now be expressed by 

Vz(PNz + 'v'x\;/y(z·yoy t- x'x)) 

To see this, observe that every rational number has the fonn [x/y] 

where x and yare integers, and that z: [x/y]·[x/y] iff 

(3) 

Unfortunately, (3) appears not to be a logical consequence of 

(IA) v (2), for the reason that instances of the induction schema Ie 

are needed to prove that if a c'c = bob then there exist relatively 

prime b' ,c' such that a·c'·c' = b'·b' This existence lemma is a 

sufficiently difficult sub-problem to make the automatic generation of 

a proof for (3) from (IA) v {I e} v (2) a vi rtua 11y impracti ca 1 task, 

even with the best currently available proof procedures. 

Remark. This direct but arduous approach ·would essentially in- . 

volve proving the "Euclidean algorithm theorem", 

\t'wV'x[NN(x+(-l)+ 3y3z([x.y+z=w]/\ NNz I\NNx+(-z»)] (4) 

Now the Skolem functions for y and z in the clause fonn of (4) are 

familiar arithmetical operators, + and mod: 
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'VNN(x + (-1) v [x-(w + x) + (w mod x) = w] 

'VNN(x + (-1) v NN(w mod x) 

'VNN(x + (-1) v NN(x + -(w mod x) + (-1) (5) 

(w + x) is the integer quotient of wand x ,and (w mod x) is the 

resi due of w modulo x --i .e_, the "remainder" of (w + x). 

Having sufficiently appreciated the conniving which frequently 

passes under the guise of "formalization" in a basically impractical 

"automatic theorem-proving" task, we extend IA with the concepts of 

quotient and, for brevity's sake, divides: 

'VDxy v [x.[y + x] = y] (6) 

Returning to the previously noted difficulty with (3), we avoid 

it Simply by "minimizing" x and y to relatively prime numbers in 

(3): 

Vx(PNz -+ \Ix Vy( Vw(Dwx 1\ Dwy -+ [w=l]) -+ z·y·y F x'x»)) (7) 

The new theorem to be proved is (7)_ It is not difficult to guess that 

(7) follows from IA augmented by (6) and the following clauses obtained 

from (2): 

'V(PNz) v ",(Dz(x'y» v (Dzx) v (Dzy) 

'V PNO; 

'V PNI . (8) 

Remark. 3w(z·w = x·y) in (2) is translated into Dz(x-y) in 

(8), and (6) will eventually translate a positive literal Duv into 
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[u·[v+ u] = v] during the proof of (7). We could have used the direct 

"clause-representation" translation on 3 w(z·w = x·y), introducing a 

new Skolem function f and translating 3w(z·w = x·y) into 

[z·f(z,x,y) = x·y]. This would have complicated the proof of (7) in 

§0.5 only slightly. 

To conclude this ad hoc formalization process, we note that 

(IA) is to be augmented by (6), (8), and the following c1ause

representation for the negation of (7): 

PNa ; 

~Dwb v ~Dwc v [w=l] 

[a·c·c = b·b] 

Let C =df (IAv(6) v (8)). C is allegedly consistent, and 

(9) 

C v (9) is allegedly inconsistent. Our next task is to define a good 

normal refinement for C 

03. A Normal Refinement for Extended Integer Arithmetic 

Thus far we have defined an extension C. = (IAv(6)v(8)) for 

IA. Next we define a complexity order >D for use in a resolution 

micro-refinement NO(e '>0). The vocabulary V of · C ...,(9) contains 

nine operation constants, to which we assign the following weights in 

accordance with §2.3.5: 
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Constant Degree Wei ght 

0 0 1 

1 0 1 

a 0 1 

b 0 1 

c 0 1 

+ 2 0 

2 0 

2 0 

1 0 

Fig. 2. A weighting function 

Let w be the weighting function defined by Figure 2, and let <: be 

the well-ordering of constants wherein 0 < 1 < a < b < c < + < 0 < 7 < 

Oefine the complexity ordering ~w on ;Iv as in §2.3.5. 

Remark. Observe that is assumed to be the last element of 

VF ' and hence that w(-) can be equated to o. 
Now consider the clauses of (IA). Equations 11-16 are reductions 

according to ~w ' in the sense that the left-hand side is more complex 

than the right-hand side. However, for 17 we have (zox) +(zoy) ~w 

(x+y)oz because w((zox) + (zoy)) = 4 and w((x+y)oz) = 3. Having 

a strong intuitive feeling that any good complexity ordering fort, 

should treat Il-18 as reductions, 1 looked for a "natural modification" 

of >- wherein 11-18 would all be. reducti ons. The resulting relation w 

>"0 (§C.5) is defi ned first on a O-canonical form .10 for :Iv and 

then extended to .1v ; ~O agrees wi th >- on .70 . It fo 11 ows by w 

Proposition 8 in §C.5 that Q is a O-complexity ordering . 
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Now let C1 = (I 1-111) v (113- I15) v (6) v (9), and let c = 
0 

(I1-Ill) v {'\.PNo, "'PN1, PNa, [a·(coc) = bob]} Let /::, = HR ( e 1 '>-0 ,s) 

·NO( Eo'~) where rs is the identity renami ng and, if C is non-

positive and non-null, then s(C) is a negative literal whose atom is 

maximal among atoms of negative literals in C (with respect to >-Q). 

The refutation which follows (Figure 3) is a complete refut&tion 

/::,(IA v (6) v (8) v (9W. 

D.4 A Complete Refutation 

The integer domain axiom III is clearly necessary for the proofs 

of many basic theorems of Integer Arithmetic. Unfortunately, the two 

positive equations in this clause render the presently available com

pleteness results on normal refinements inapplicable to these problems 

which depend upon it. As usual, formally verified knowledge lags be-

hind. intuitive ly justified beliefs. Perhaps, after seeing numerous 

machine-generated refutations based on normal refinements not guaranteed 

to be complete by present results, we will begin to see how to extend 

these results. 

The formats for the refutations which follow are the same as the 

format of Figure 1 in §C .2. Figure 2 is the proof tree used to guide 

the order of selection of clauses from the queue (0) in Figure 3. 

While a normal proof procedure would not typically have access to this 

"ideal" search strategy, Figure 3 is nevertheless informative insofar 

as it shows how sparse the search space can be when /::, (§0.3) is used 

to find a refutation tree containing 49 clauses. 
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The Square Root of a Prime Number is Irrational 

(Proof Tree Only) 

In Clause 

*0. [1 t- OJ 

1.0+x;x 

-2. -x+x; 0 

-3. (x+y)+z;:x+(y+z) 

4. O'X; 0 

*5.1·x;x 

+6. (x·y)·z; x·(y·z) 

+7. w·(x+y); w'x+w'y 

+8. x+y; y+x 

+9. X'y; y-x 

+10. [ x·y t- OJ v [x;OJ v [y;OJ 

+11. DX(x'Y) 

+12. "'Dxy v [x' (y -;- x) ; yJ 

+ 13. "'PNx v "'Dx (y. z) v Dxy vDxz 

+ 14. "'PNo 

+15. "'PN1 

+ 16. PNa 

+17. [a'(~'e); b·bJ 

+18. "'Dzb v "'Dze v [z=lJ 

+19. Da(b·b) 

+20. "'Da(y·z) v Day v Daz 

+21. Dab 

+22. a'(b -;- a) =:b 

+23. b·z;a·((b-;-a)·z) 

+24. a· ((b -;- a)·z) = b·z 

Source 

Ax (Not used) 

Ax 

Ax 

Ax 

Ax 

Ax (Not used) 

Ax 

Ax 

Ax 

Ax 

Ax 

Pr 

Pr 

Pr 

Pr 

Pr 

NC ' 

NC 

NC 

Kp(17,ll) 

Cut(16,13) 

Cut(19,20) 

Cut(21 ,12) 

Rp(22,6) 

Rp(CNR(23),[x=xJ) 

+25. [z·x+z.yt-OJv[z=OJv[x+y=OJ Rp(7,10) 

+26. [a·x+b·z t- OJv[a=OJv[x+(b-;-a)'z=OJ Rp(24,25) 

+27. [b·b+b·z t- OJv[e·e+(b -;- a)·z=OJx[a;0]Rp(17,26) 

+28. x+ (-x) ; 0 Rp(8,2) 
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In Clause SOurce 

+29. w·O = w·x + w·(-x) Rp(28,7) 

+30 . w·x +w·(-x ) = 0 Rp(CNR(29),[x=x]) 

+31. [0 t- 0] v [a=O] v{c·c + (b -!- a)·(-b) = 0] Rp(30 ,27) 

+32. [c·c+(b -!- a)·(-b)=O] v [a=O] Cut([x=x] ,31) 

+33 . [O+z = c·c+ «b -!- a)·(-b) +z] v [a=O] Rp(32,3) 

+34. [c·c+ «b -!- a)·(-b) + z) = z] v [a=O] Rp(CNR(33),[x=x]) 

+35. w·(-x)+w·x = 0 Rp(8,30) 

+36. [(c·c+O) = (b -!-a)·b] v [a=O] Rp(35 , 34) 

+R· [(b -!- a)·b = c·c] v [a=O] Rp(CNR(36),[ x=x]) 

+38 . Dw(x·w) Rp(9,1l) 

+39. Dw(x· (y·w)) Rp(6,38) 

+40. Dw(x· (w·y)) Rp(9,39) 

+41. Da(x·b) Rp(22,40) 

+42. Da(c·c) v [a=O] Rp(37 ,41) 

+43 . Dac v [a=O] Cut(42,20) 

+44. "'Dac v [a=l] Cut(21 ,18) 

+45. [a=O] v [a=l] Cut(43,44) 

+46. PN1 v [a=O] Rp(45,16) 

+47 [a=O] Cut(46,15) 

. +48 . PNo Rp(47 ,16) 

.49. 0 Cut(48,14) 
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(Proof using search strategy described in §A.2) 

In Clause Source Out Dis~osition 

+1. o +x = x Ax 1 
+2. -x+x =.0 Ax 2 
+3. (x+y)+z = x+(y+z) Ax 3 
+4. O·x = 0 Ax 4 
+5. l·x = x Ax 5 
+6. (x·y)·z = x·(y·z) Ax 6 
+7. w·(x+y) = w·x+w·y Ax 7 
+8. x+y = y+x Ax 8 
+9. x·y = y·x Ax 9 

+10. [x·y -; OJ v [x=OJ v [y=OJ Ax 20 
+11. Dx(x·y) Pr 11 

+12. 'VDxy v [x· (y 7 x) = yJ Pr 16 
+13. 'VPNx v'VDx(y·z) vDxy vDxz Pr 13 
+14 'VPNo Pr 46 
+15. 'VPN 1 Pr 43 
+16. PNa NC 41 
+17 a·(c·c) = b·b NC 10 
+ 18. 'V Dzb v'VDzc v [z=l] NC 39 
19. Y + z = D + (y+z) Rp(1,3) 19 CNR(*) 
20. O+z = x+(x+z) Rp(2,3) 20 CNR( +) 
21. (w + (x+y) ) + Z = (w+x) + (y+z) Rp(3,3) 21 CNR(*) 
22. O·z = O· (y·z) Rp(4,6) 22 CNR(*) 
23. y • z = 1 • (yo z ) Rp(5,6) 23 CNR(*) 
24. (w·(x·y))·z = (w·x) • (y·z) Rp(6,6) 24 CNR(*) 
25. w·y = w·O + w·y Rp(l,7) 25 CNR(*) 
26. w·O = w·(-x) + w·x Rp(2,7) 26 CNR(*) 
27. w· (x + (y+z)) = w· x + w· (y+z) Rp(3,7) 27 Sub (7) 
28. o = O·x + O·y Rp(4,7) 28 CNR(*) 
29. (x+y) = l·x + l·y Rp(5,7) 29 CNR(*) 
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In Clause Source Out DiS~osition 

30. w·(zo(x+y)) = (woz)ox + (woz)oy Rp(6,7) 30 CNR(+) 

31. x+O = x Rp (S, 1 31 

+32. x+(-x) = 0 Rp(S,2) 22 

33. (y+x )+z = x + (y+z) Rp(S,3) 33 CNR(+) 

34. z + (x+y) = X + (y+z) Rp( S,3) 

35. w + (x+y) = y + (w+x) Rp(3,8) 

36 . wo(y+x) = wox + woy Rp(S,7) 36 CNR(*) 

37. xoO =:0 Rp(9,4) 

3S. xol =:x Rp(9,5) 

39. (yox)oz = xo(yoz) Rp(9,6) CNR(+) 

40. zo(xoy) = xo(yoz) Rp(9,6) 

41. wo(xoy) = yo(wox) Rp(6 , 9) 

42. (x+y)ow = wox + woy Rp(9,7) CNR(+) 

43 . (uob)oz = ao«coc)oz) Rp(17,6) CNR(+) 

44. (coc)oa = bob Rp( 9 ,17) CNR(*) 

45. DOD Rp(4,11) 

46. Dly Rp(S,l1 ) 

47. D(Wox) (Wo (xoy)) Rp (6,11 ) 

4S. Dw(wox + woy) Rp(7,11) 

+49. Dx(yo x ) Rp(9,11 ) . 33 

+50. Da(bob) Rp(17,1l) 12 

+51. 'VDa(~oz) v Day v Daz Cut(16,13) 14 

52. 'VDaO v DaD v Daz Rp(4,51 ) 

53. 'VDaz v Dal v Daz Rp(5 ,Sl) 

54. 'VDa(xo(y-z)) v Da(xoy) v Daz Rp(6,5l) 

55. 'VDa (w o x + Wo y) v Daw v Da (x+y) Rp(9,Sl) 

56. 'VDa(zoy) v Day v Daz Rp(9 ,51 ) 

57. 'VDa(bob) v Daa v Da(coc) Rp(17,51) 

+SS. Dab Cut (SO ,S1) 15 

+59 . ao(b .;. a) =:b Cut(5S,12) 17 

+60. boz = ao«b .;. a)oz) Rp(S9,6) 18 CNR( *) 

61. (b .;. a)oa=b Rp(9,59) 

62. Dab Rp(59,1l ) Sub(5S) 

63. '"Dab v Daa v Da(b.;. a) Rp(59,51) 
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In Clause Source Out Di sEoS iti on 

+64. ao((b+a)oz) = boz Rp(60,[x=x]) 19 

65. ((b + a)oz)oa = boz Rp(9,64) CNR(+) 

66. ao(zo(b + a)) = boz Rp(9,64) 

67. [0 "I 0] v [0=0] v [y=O] Rp(4,10) Sub(x=x) 

68. [y "I 0] v [1=0] v [y=O] Rp(5,10) Tautology 

69. (wo(x y) "I 0 v [wox = 0] v [y=O] Rp(6,10) 

+70. [wox+woy "I 0] v [w=O] v [x+y=O] Rp(7, 1 0) 21 

71. [yox "I 0] v [x=O] v [y=O] Rp(9,10) 

72 . [bob "1 .0] v [a=O] v [coc =0] Rp(17,10) 

73. [b "I 0] v [a=O] v [(b + a) = 0] Rp(59,10) 

74. [boz"I 0] v[a=O]v[(b +a )oz = 0] Rp(64,10) 

75. [O+Ooy ., 0] v [0=0] v [x+y = 0] Rp(4,70) Sub( [x=x]) 

76 0 [Oox+O ., 0] v [0=0] v [ x+y = 0] Rp(5,70) Sub([x=x]) 

77. [w o(zox) + (woz)oy "I 0] v [woz = 0] 
v [x+y = 0] Rp(6,70) CNR( +) 

78. [w-z)ox + (wo(zoy)) r 0] 
v[w-z = 0] v [x+y = 0] Rp(6,70) CNR(*) 

79. [(w-x
1

+w ox
2

) + w-y r 0] v [w=O] 
v [(xl +x2 )+y = 0] Rp(7,70) CNR(+) 

80. [wox + (woYl+w1Y2) r 0] v [w=O] 
v [x +(Y1+Y2) =0] Rp(7,70) CNR( +) 

81. [w-y + wox r 0] v [w=O] v [x+y = 0] Rp(8,70) 

82. [Xow + w~y r 0] v [w=O] v [x+y = 0] Rp(9,70) 

83. [Wo x + yow r 0] v [w=O] v [x+y = 0] Rp(9,70) 

84. [bob + aoy r 0] v [a=O] v [coc+y=O] Rp(17,70) 

85. [aox +bob r 0] v [a=O] v [x+coc=O] Rp( 17,70) 

86. [b+a-y r 0] v [a=O] v [(b + a)+y = 0] Rp(59, 70) 

87. [aox + b r 0] v [a=O] v [ x+(b + a)=O] Rp(59,70) 

88. [boz+a y r 0] v [a=O] 
v [(b+a)oz+y = 0] Rp(64,70) 

+890 [ao x + boz r 0] v [a=O] 
v [x + (b + a)o z = 0] Rp(64,70) 

90. [b·z + a·x r 0] v [a=O] 
v [x+(b+a)oz = 0] Rp(8,89) 

91. [xoa + boz ., 0] v [a=O] 
v [ x+(b +a)oz = 0] Rp(9,89) 
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In Clause Source Out OisEosition 

92. [a'x+z'b 1 O]v[a;O]v[x+(b o- a)'z;O] Rp(9,89) 

+93. [b·b + b· Z 1 0] v [a;O] 
v [c· c + (bo-a) ,z;O] Rp(17,89) 25 

94. [b+b·z t- 0] v [a;O] 
v [(b o- a) + (b 0- a)·z ;0] Rp(59,89) 

95. [b·w + b·z 1 0] v [a;O] 
v [(bo-a)·w+(bo-a)·z;O] Rp(64,89) 

96. -0 ; 0 Rp(l,32) 

97. x +(y+ (-(x+y))) ; 0 Rp(3,32) 

98. O+z; x+ «-x)+z) Rp(32,3) CNR(+) 

+99. w'O ; W·X + w·(-x) Rp(32,7} 23 CNR( *) 

100 . (-x) + x ; 0 Rp(8 , 32) 

+101 . W' X + w·(-x) ; 0 Rp(NR(99) , 
[ x;x]) 24 

102. O+z ; W'x+ (w·(-x) + z) Rp(101,3) CNR(+) 

103. O+O'(-x) ; 0 Rp(4,lOl) CNR(*) 

104. O'X+O ; 0 Rp(4,lOl ) CNR( *) 

105. x+l·(-x) ; 0 Rp(5,101) CNR(*) 

106. l·x+ (-x) ; 0 Rp(5,10l) CNR(*) 

107. w·(x·y) + (w·xH-y) ; 0 Rp(6,lOl) CNR(+) 

108 . (w·x)·y + w·(x·(-y)) ; 0 Rp(6,101 ) CNR(*) 

109 . (w'x l +w'x2 ) +w'(-(x
l
+x

2
));0 Rp(7,lOl) CNR(+) 

+110. w·(-x) + W·X ; 0 Rp(8,lOl) 30 

111. X·W + w'(-x ) ; 0 Rp(9,lOl) 

112. W·X + (-x)·w ; 0 Rp(9,101) 

113. b·b + a·(-(c·c)) ;:0 Rp(17,101) 

114. b+a'(-(b o- a)); 0 Rp(59,lOl) 

115. b·z + a'(-«b o-a)·z)) Rp(64,lOl) 

116. [b·b + (b·x +b·y) t- 0] v [a;O] 
v [c· c + (b T a) • (x+y) ; 0] Rp(7,93) 

117. [b · z + b·b t- 0] v [a;O] 
v [c·c + (bTa)·z;O] Rp(8,93) 

118. [b·b +b·z F 0] v [a;O] 
v [c·c + (b Ta)·z; 0] Rp(9,93) Sub(93) 
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In Cl Ciuse Source Out Disposition 

119. [b'b + z'b f 0] v [a=O] 
v [c·c + (b + a)·z = 0] Rp(9,93) 

+120. [0 f 0] v [a=O] v [c'c + (b+a)'(-b)=O] Rp(101,93) 26 

+121. [c'c+ (b + a)·{-b) =:0] v [a=O] 

+122. [O+z = c·c+({b+a)·(-b)+z)]v[a=O] 

123. [(b + a)-{-b)+c·c = 0] v [a=O] 

124. [c·c+{b+a)·(-b) = 0] v [a=O] 

125. [c·c+{-b)·(b + a) = 0] v [a=O] 

+126. [c·c+«b + a)·{-b)+z) = z]v[a=O] 

127. [({b + a)-{-b) + z] v [a=O] 

128. [c'c+{z+(b+a)'{-b» = z]v[a=O] 

129. [c'c+«b+a)-(-b)+z) = z]v[a=O] 

130. [c· c + ( ( -b) • (b + a) + z = z] v [a=O] 

131. [c'c+O = (b+ a)-{-{-b»] v [a=O] 

132. [O+z = w·(-x) + (w'x+z)] 

133. o + O' x = 0 

134. O' (-x l + 0 = a 
135. -x + l · x = a 
136. l'(-x)+x=O 

137. w·(y·(-x» + (w·y)·x = 0 

138. (w·y)·(-x) + w·(y·x) = a 
139. w·(-(y+z» + (w·y + w·z) = 0 

140. w' x + w·(-x ) = a 
141. ( - x ). w + w. x = 0 

142. w.(-x) + x·w = a 
143. a.(-(c.c»+ b.b = a 
144. a.( - (b + a» +b = a 
145. a.(-«b + a).z» +b·z = a 
146. [0 f 0] v [w=O] v [( -x) + x = 0] 

*147 [c' c + a = (b + a). b] v [a =0] 

+148. [(b , a).b = c·c] v [a=O] 

Cut{[x=x], 
120) 

Rp(121,3) 

Rp(8,121 ) 

Rp{9,12l) 

Rp{9,121) 

Rp(CNR{122) , 
[x=x] 

Rp{8,126) 

Rp (8, 126) 

Rp(9,126) 

Rp(9,126) 

Rp(101,126) 

Rp(110,3) 

Rp(4,llO) 

Rp(4,110) 

Rp(5,110 

Rp(5,110) 

Rp(6,110) 

Rp{6,110) 

Rp(7,110) 

Rp(8,llO) 

Rp(9,llO) 

Rp(9,110) 

Rp(17,llO) 

Rp(59,110) 

Rp(64,110) 

Rp{llO, 70) 

Rp(1l0,126) 

Rp(CNR(147) , 
[x= x]) 

27 

29 

31 

32 

Sub(121) 

CNR( +) 

CNR(+) 

CNR(+) 

CNR(*) 

CNR(*) 

CNR(*) 

CNR(*) 

CNR(+) 

CNR(*) 
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In C1 ause 

149. [co(coz) = (b-o a)o(boz)] v [a=O] 

150. [b o (b -0 a) = coc] v [a=O] 

151. [coc + (b -0 a)oy t- 0] v [b -0 a =0] 
v [b+y = 0] v [a=O] 

152. ffb -0 a)ox +coc t- 0] v [b -o a = 0] 
v [x+b = 0] v [a=O] 

153. [coc + (b -0 a)-(-b) =:0] v [a=O] 

154. DxO 

155. Dxx 

+156. DX(yo(wox)) 

157. D(y+z)(xoy +xoz) 

158. Dx(xoy) 

159. D(coc)(bob) 

160. D(b-oa)b 

161. D((b -o a)oz)(boz) 

162. Db(coc) v [a=O] 

163. DxO 

164. Dx(yoO) 

165 . Dx(wox) 

166 • Dx (y 0 x) 

167 . Dx(x1°{Yo{w ox))) 

168. Dx{yo{w
1

o{w
2

ox))) 

169 . D(x+y)(yo(wox + \'loy)) 

1 70 . Dx { (w 0 x ) 0 y ) 

+171. Dx{yo(xow)) 

172. Dc{bob) 

173 . D{coc)(yo{bob)) 

174. D{b -oa){yob) 

175. D{{b -0 a)oz)(yo{boz)) 

176. Dz { (b -0 a) 0 z) 

177. Db{yo(coc)) v [a=O] 

Source Out . Disposition 

Rp(148,6) 

Rp(9,148) 

Rp{ 148,70) 

Rp(148,70) 

Rp{148,101) 

Rp{4,49) 

Rp(5,49) 

Rp{6,49) 34 

Rp{7,49) 

Rp{9,49) 

Rp{17,49) 

Rp(59,49) 

Rp{64,49) 

Rp{148,49) 

Rp (4, 156) 

Rp(4,156) 

Rp{5 , 156) 

Rp{ 5 ,156) 

Rp{6,156) 

Rp{6,156) 

Rp{7 , 156) 

Rp( 9 ,156) 

Rp{9,156) 

Rp (1 7,156) 

Rp{17,156) 

Rp{59,156) 

Rp{64,156) 

Rp{64, 156) 

Rp(148, 156) 

35 

Sub{ 11) 

Sub{154 ) 

CNR{*) 

Sub(165) 

CNR(+) 

CNR{ x) 

Sub(165) 
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In Clause Source Out Di seos iti on 

178. DxO Rp(4,171) Sub(154) 

179. Dx(yoO) Rp(4,171) CNR(*) 

180. Dl (yow) Rp(5,171 ) Sub(46) 

18l. Dx(xow) Rp(5 ,171) Sub(ll ) 

182. DX(Yl°(Y2°(X ow))) Rp(6,171) 

183. D(x
l

ox
2

) (yo (x
l

o (x2ow)) Rp(6 ,171) 

184. Dx(yo(x ow
l
+ Xow

2
)) Rp(7 ,171) CNR(+) 

185. DX«xow)oy) Rp(9,171 ) CNR( *) 

186. DX(yo (wox)) Rp(9, 171) Sub(156) 

187. De(bob) Rp (17,171) Sub(l72) 

188. Da(yo(bob)) Rp (1 7,171) Sub(191) 

+189. Da(y-b) Rp(59,171) 36 

190. D(b + a)(boz) Rp (64,171) 

19l. Da(yo (boz)) Rp (64,17]) 

192 • DaO Rp(4,189) Sub(154) 

193. Dab Rp (5,189) Sub(21) 

194. Da(xo (yob)) Rp (6,189) 

195. Da(b.y) Rp (9,189) 

+196. Da(eoe) v [a=O] Rp ( 148 , 189 ) 37 

197. Da(e-c) v [a=O] Rp (9,196) 

198. [a o «coe) + a) = eoe] v [a=O] Cut(196,12) 

199. Dae v [a=O] Cut(196,51 ) 38 

+200. "'Dac v [a=l] v [a=O] Cut(58,18) 40 

+201. [a~n v [a=O] +Cut(199,200) 42 

+202. PNl v [a=O] Rp(201,16) 44 

203. [lo(eoc) =:bob] v [a=O] Rp(201,l7) CNR(+) 

204. Dl(b ob) v [a=O] Rp (201 ,50) Sub(46) 

205. Dl(y oz) v Day v Daz v [a =O] Rp(201 ,51) 

206. Dlb v [a=O] Rp(201,58) Sub(46) 

207. [1 0 (b + a) =: b] v [a =0] Rp(201,59) CNR( +) 

208. [ao(b+ 1) =:b] v [a=O] Rp(201 ,59) 



-225-

In Clause Source Out Disj:!osition 

209. 1 0 ( (b 7 a) 0 z} = b 0 z v [a =0] Rp(201,64} CNR(+} 

210. a 0 ( (b 7 1 ) 0 z} = b 0 z v [a =0] Rp(201,64} 

211. [l ox+ boz 1- 0] v [a=O] 
v [x + ( b 7 a) 0 z = 0] Rp(201,89) CNR(+} 

212. [Coc + (b 71 lor-b) =:0] v [a=O] Rp(201 ,121) 

213. [c 0 c + ( (b 7 1) 0 ( -b) + z} = z] v [a=O] Rp (201 ,126) 

214. [(b7 l)·b = coc] v [a=O] Rp(201,148) 

215. Dl (yob) v [a=O] Rp (201 ,189) Sub(46} 

216. Dl(c oc) v [a=O] Rp(201,196} Sub(46} 

217. Dlc v [a=O] Rp(201,199} Sub(46} 

218 . ~Dlc v [a=l] v [a=O] Rp (201 ,200) 

+219. [a=O] Cut(202,15} 45 

+220. PNO Rp(2 19,16) 47 

22l. [Oo(coc} = bob] Rp(219,17} 

222. DO(bob) Rp(219,50} 

223. ~DO(yoz} v Day v Daz Rp(219,51} 

224. DOb Rp(219,58} 

225. Oo(b7a) = b Rp(219,59} CNR( +} 

226. a o(b70} = 0 Rp(219,59} 

227. Oo«b 7a)Oz} =:boz Rp(219,64} CNR(+) 

228. ao«b 70)OZ) =: boz Rp(219,64} 

229. 0 Cut(220,14} 
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