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- ABSTRACT

»

Ths Poisson summation formmla, which gives, under auit;&bla

conditions on f(x), an expresgsion for sums of the form
Ty

5> £n) 1=n,<m g
n=n1

can be derived from the functicnal equation for the Riemann zota=function
¢(as)e In this thesis a class of Dirichlet series 1s dsfined whose
- msmbers havs properties analogous te these of S (8)3 in particular,
each ssries in the class,written in the form
= 3
Bz} = 2 aln} A
i &
n=1
defines a meromcrphic function g(s) which satisfiss a relation analogous

to the functional eguation of S (8). Frox this relstion an identity for

gsuz of the form

Z al(n) (x -)n)q
<x
;\n'-
is derived. This identity in turn leuads, in a quite simplse fashion, to
sunmation formulas which glve expressions for sums of the form
2 ,
2. al) £, - 1 2n5m,
n=n 2 =
1
The suumetion formulas thus derived include the Poisson and othser well=-
known sunnsation formulas as speclal cases and in addition eunbruce many
expressions that are newe The formulas are not only of interesi in them-
selves, but also provide & tool for Savestiguting many problems that arise

in analytic nunber theory.
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§ {. Introduction.
In 1904, at ths beginning of s long iemoir, Voronol 111*
made the following conjectures

Iet T(n) be a function of the positive integer n

=
e

1st f£(x) bve continuous and have ut wsost a Iinite nuuber of maxina
and minima in an interval O < a € x-% be Then there are analytice

functions S (x) und a(x), depending only on T (n/, such that

n<ph nsh

= T@) )+t Y T 2(a)
n2a * nZa

Mo

S

b _ o b .

= j £x}) §(x) dx + Z T{n) £ alnx) dxe
6 n=g 4

For T(n) =1, we huve §(x) =1, a(x) = & cos 2ax, and

(1+1) reduces to & case of the well=known Polsson summation foraula.

Yoronoi succeeded in proving (1.1 for T{(n; = d{nj, t2e vwiter of

"divisors of ny accordingly, ihe formula

. ngb 1<t b
i TR ,
= Z i(n} £(n) + = l ., d(n} £n) = J £x) (log x + 2 ¥ Jdx
 n>a 4 n>a “a
(1.2)
o b {2 1
* 328 -/ { =% ) - 4w Jnx)’ b £(x) dx
N é;] dn; -}:z & O(Lat,, j 'j{c(_,uv;hf‘.}; £x) ax

is known as Voronoi's swmation foruula. In (1.2} ¥ is Eulor's

constant, while ¥ and X represent, as usual, the Bessel f
of the second kind and nodifled Bessel ifuncition of the second kind,

respeciivelv.

*
Numbers in brackets refer to the bibliography.
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Since the ap;earance of Voronoi's paper, soms other spscial
cagses of (1.1) h;ve been established. In addition, a good deal of
effort has been directed toﬁard the estublishument of (1.1} for fairly
general classes of functions tj(n}. In pnrticular; Fbrfar [21, [3]
and Guinand [4), [5), [6), [7] have made notable contributions in this
direction.

All such efforts have this smuch in common: the numbers
T(n), or a(n) as they will be referred to henceforth, appear as

coafficients in a Dirichlet seriss
oD .s
Z a{njn ",
i :

or, more gsnerally,

é;;i aln) )\;8

with sufficiently 'nice' properties. The form of the functions _S ()
and a(x) is intimately connected with the snalytical behavior of
this Dirichlet series in the s-pl&he.

In this thesis, a suumation formuila is associated with each
member of a very extensive class of Dirichlet series. This class
includes a substantial proportion of the Dirichlet series that arise
in analytie nuaber theory. The swmation forwula itself is of a more
generai form than that in (1;1} and it includes as special cases the
formulas of Poisson and Voronoi, as well as those‘devaloped by Ferrar
and Guinand. The achievement of this mwasure of generality is due

to a method of approach by which the associution of & summation formila
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with a Dirichlet series is obtained in & particularly simple and
natural manner. '

In section 2, the class of Dirichlet series to be co;sidered
is defined. PFunctions corresponding to § (x) and a(x) are defined
in section 3. In section 4, an identity (equation 4.1) Involving
the coefficients of the series of section 2 is derived. Special cases
of this identity have been intensively studied, and their rplevanco
to summation formulas has long been recognized. In section 5 the
bagic identity is linked with a simple method of construeting a
sufficiently well=bshaved function out of & more=-or-less arbitrary
function. The linking leads to the swmation formulas themselves,
which appeur as equations (5.3), (5.6), and (5.9). 3ection 6 includes
some important specisl cases. In section 7, we consider various
applications, some of which arg believed to be novel.

Certain conventions will be used throughout this thesis:

The letter s will always denote a éomplex variable with real part o
and imaginary part t. A bare summation sign means summation on n
from 1 to o« , A gymbol such us

mﬁé%i}ﬁﬁ
where f{n) is some function of n, means a summation over thoss values
pf n for which f(n) lies in the indicated range. Where no lower
bound on the ﬁalue of n i3 indicated, 1t is understood that a

sunmation begins at n = 1, The symbol

Z '
fn)<



is an abbreviation for

e i

2 szein 2 £(1)s8(n)ge

el D

Similarly, the syabols

L AR

f(n)pn  umgf(n)<H

are abbreviationa for

e D

£nj>n 2 g (n)2m

J

r)

e

n<f (n j<H s (n )<M

=
22 ot

2O jeb

respectively. The syubol

vhere r is & real number, is an abbreviation for

r+ic

.Zm't. L

Unless expl:{citly stated otherwise, au integral sign denotes a proper
integral, not a Cauchy principal value. ’
Finelly it should be noted that a symbol once defined’ is
used with the saue meaning t:":‘zroughout the thesls and is not necessarily
redefined at every use. An index of synmbols is provided at the end

of the thesis.
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8 2, The (Class of Z-=functions.

We shall be concerned with Dirichlst series of the forms

Sa@ AZ ., Semul®

where the coefficients a(n), b(n) are couplex, while the ﬁwabers

>‘n’ M are all positive and increase (strictly ) without bound

for increasing ne. Murther, we confine ocurselves to series that have
finite abscissas of sbsolute convergence: i.e., we assune the existence
of a real rumber a such that the serles with coefficients al(n)
converges absolutely for 7 > a and does not converge absolutely for
7 < a, Similarly, we assume the existence of & corresponding reel

nunber b for the series with coefficients b(n)e. The cyuations

i

(2.1)  B(s) 'Za(n))\;s

i

(2.2) #)= 2 b@m>®

then define @(s) and ,6* (s) as analytic functions of s for 7 > a
and O > b respectively.
We now proceed to set up a class of functions, which we

shall ecall the class of 2Z-functions,

Definition 2,1: & function @(s) of the complex variable s is a
Z-function if the following five conditions holds

(1) For o> a, f(s) is yziven by (2.1)

(1) #(s} can be continusd into the half-plane o~ < a and

. is a meromorphic function in the entire s=plune.
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(2.3)

(iv)

(2.4)

{v)

(2.5)

-6-
g(s) iz of finite order in every vertical strip of finite
width, This neuns that for every finite real interval

there 1s a constunt 4 (depending on the interval) such that

the relation
#(s) = o(]t]?)

holds for sufficiently large |t|, uniformly for O in the
interval, ,
There is a real constant Xk, such that the funetion H(s),
defined for - >t by

() = Lk =8l

g(s) e 3 :

where ﬂ*(s} is glven by (2.2}, i3 a meromorphic function

in the entire s=-plane. équution (264 ) consequently furnishes
the analytic continuvution of ﬁ*(s) into the half-plane

o< b and shows that it toé is a meromorphic function

in the entire s=-plane,

There 1s & constant a > O such that the relation

H(s) = o(]+]227 %))

holds, for sufficiently large }t}, uniforsly for T in any

finite interval.

It is important to note that (2.3) and (2.5) imply that @(s)

and H(s) each have at most a finite number of poles in any vertical

strip of finite width. In addition, these relations put = restriction

on the possible values of k and b. We state this restriction as

a lemma,



Leuna 2.,1: We have

(2.6) 26 -k >0
Proof: We use the function M (Tef) defined for a function 1 by

(2.7) M0 of) = inf $A; £(0 +it) = o(ltl“")}

The general theory of Dirichlet series (see Hardy and Riesz [8),

Chabter III, section 5) implies that

A

M (o) 2 0

for all @ , and that

(2.8) (o8 =0

for ¢ > be By (2.5) we have

(2.9) ’,UM(G\QH) S_ 3(2 T - k)

for all @ , and by (2.4) we have

(210) ;=0 g) = p(aH) +u(Tof ) o

Taking ¢ < k/2, we have 2 (0",H) < O, Since (0 ;8) is non=-negative
we must have /A(O’,ﬂ*) >0, But m (G’“.ié%) = 0 for ¢ > b, consequently
we must have 0 < b, So any ¢ less than k/2 is also less than b,

which 1s possible if and only if k/2 < b. This proves the lemma.

In addition to (Z45), H(s)} way also saiisfy a relation of

the form

, ‘ # ;
(2.11) 1/u(s) = o(jt]® & s )



for sons o > 0. In this case # (s) s also a Z=-function and

consequently we have

('2.12) 23 - It z Oo

Combining (2.6) and (2.12) we obtain
(2013) a+b-k30-
s i
It is convenient to define two numbers ¢ and ¢ by

(214) . e=-k, ¢ =2m-ks

Formulas (2.6), (2.12), and (2.13) then appéar, respectively, as
e >0, c*g 0y 1/2(c + ¢ > 0.

Formula (2411) and conseguently (2.13), will hold in all the
speclal cases considered luter on. Indeed, we know of no exuwiple of a -
Z-function for which (2.13) does not hold, and with gtrict inequality
at thate If (2.1.3 ) holds with strict inequality, then there is a strip
k =b< ¢ <a in which nelther the series fgr P(2) nor that for

W
P (s) is absolutely convergent. This strip is called the critical strip

of the function @(s).

The class of Z—mnctiona includes a large proportion of the |
Dirichlet series of interest in analytic nunber theory. The Riemann
zeta=function is a Z=function, as are all prinitive Dirichlet Leseries,
all Hecke-series (see Hecke [9], Apostol and Sklar [10]), and all series
of the form  (8) ¢ (s -r) or ',s_‘p(s,' for real r and poaitive
integral pe. The very general class of functions conasidered by

Landau in comnnection with the summatory functions of their coefficients
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([11], Hauptsatz)} is included in. the class of Z-functions, as is the |
class of functions for which HeS.de Potter has proved mean-value
theorens (_[12] s Thecren 3). The outstanding example of a function that
is not o Z=-function is the function 1/5£(s)e This obvioﬁsly has too
many singularities in the étrip 0< o<1, QOther, more recondite,
sxanples are:s (i) the function . p;:s. where p denotes the n D
prime, which has the izs-.uginary axis as a natural boundary; and .
(11) the function | (1 =n"° }-1, where the product hms over all

‘positive integers, which has a branche-point at 0 =1,
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8 3, The Functions Rq(x) and Lq(x}.

In this section we consider two functions corresponding
to the § (%) and a(x) of section 1. These functions are defined
immediately belows after the definitions come two theorems giving

properties of the functions that are useful for our purposes.

finition 341t Let @(s) be a Z=function. ILet ¢ be a complex
number and x a complex nuiber with positive réal ;warﬁ. Then for
- * S 4
k=b Smax (Oya) =a (a weaker form of (2.13)), Rq(x} is defined

to be the sum of the residuss of the function

8 ‘ S
< 8e) FTT

* *
in the strip k=t < ¢c £a . For k=-b >a we define Rq(x) to

be. identically zero for sll x and qe
y

tion 3.2t let H(s) and ¢ be as defined in Dof. 2.1. Then

for re x > 0 and for complex qy L (x) is defined by

A -8 y I‘(k "AE) &
e1) Ly e j(bﬂ:) x" o) Fa i q ) 90
for re g > ae and by analytic continuation in the g=plane for other
values of qe In (3.1), € > 0O is chosen so that no singularities of

the integrand lie in the strip b < ¢ b + ¢,

Ihgorgn 3,13 For each fixed x in the half-plane re x > 0, Rq (=)
is an entire function of . For auch fived complex g, Rq(x) is
an analytic function of x in the half-plane re x» > Q. Furthermore,

for re x > 0 and any fMixed complex g, we have
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) & -rea D, 2

(3.2) a {x Rq(x)_} * Rq_t(x)_.

while for x > U, wse have

. x ' 3
G.3) . R x)= F(E.}—ﬂ fo v R (V) (x - T3P gy,

Formula (3.3) is valid in any region of the (p,qj-space in which the
integral on the right is uniforaly convergent. Another way of stating
(3.3) is that Rq (x} is the Riemann-Iiouville fraetional integral,

of order q = p, of Rp(x).

; w* \ .
Proof: Ve need only consider the cuse k = b < a , the theorem holding
vacuously otherwise. Since @(s) and I’(s) have at most a finite

. and

number of voles in & vertical strip of finite width, while x
/(s +g+ 1) are éntire functions, Rq(x) is the sum of a finite

nurber of terms. Each tern is an entire function of g for ﬁmd x
and an analytic function of =x for fixed q, so Rq(x) has the same
property. The remaining propertlies will ke obtained from an identity
for Rq(x} (formula (3.4) below)e To derive this identity, we begin

by using Cauchy's theorem %o write R 5 (x} in the form

3 ____1___ S 5 I‘(gl s
Ry&) = 3 %t Ble) se+qFiT %

Here C 1s the contour consisting of the 4 segnents

¢, = ('+S = 1Ty a + § +1T)

(84 5§ + 4T, k = b = ¢ + iT)

0
]

=(k=be=c+iTh k=b=c=1iT)

94=(k-b-a-iT.'a*+S‘-iT)



where § >0, £> 0y T >0 are chosen. so that no singularities of the
integrand lie in the strips a < & <a +8§ yk=b=£< T <k =D,
or in the helf-strips k -b £ T < a*; lti > T. HNow we again uge

the function /4 (T o) defined by (2.7). The general thsory of
Dirichlet series implles that M (0" ,8) 1= a non=increasin: function

of 0 . Jiccordingly, for 0 2k = b = € ve have m ("":ﬂ) < /M(k-b-c,ﬁ,.

Combining (2.8), (9.9): and (2.10), we obtain
pmlk =1 ~eof) a2 -k +2€) < a2k -k +3¢) =ale +3e)

It follows that uniformly on €, and Cz. we have

¥

8 INGD) v alet+3e)

ﬁU

si
s +q + 1) )

a]

= O(Ta(e4-3€-j~:=a q-i)

Since € can be arbitarily small, we can make the guantity

afc + 3} = re g negative if we have re g > ace Letting T = w,

the integrals along C2 and € 4 vanishy while the ones along 01 und
03 are absolutely convergente. This proves the identity

(3.4) Ry (x) = ( 5 f ) =° B(s) N;E%L;'F ds

(a +§) (le=t=z)

for re g > ace (A similur wrgument shows that the identity (3.4)
also holdsy for re g > Oy in case k = b > a*. Since ac > O by
Def. 2Wv) and (2.6), it follows that (3.4) holds for re g > ae

in any case.)
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It is now easy t;o complete the proof of Theorswm 3.1. For
re q > a¢ + 1, we can multiply (3.1';}'17:‘«' 3 and differentiate under
: the integral signs. This yields (37.2 Jfor re g > ac+ 1 uand we
cén extend the range of (3.2) to all q by anal:,'rtic continuation. 48
for (3.3), we consider the standard Beta—function formula (cf. Frddlyi
{131, formula (6.2.31))

-valid for re q > re Ps re(a + p + 1) » 0, Using this, we have by (B.A)t'

R (x) = r-.-(-—-- (f - f ;f vs'ﬂ’(:h-f\r)qmp"1 g{'#i-} dv ds

(& +5) (k=b=g) ©

I‘Z f VP () 3P (f f | WoB(s)z s+p+; as dv
@+ §) “(k=b~c)

Mo z
T ya-p-1 )
T fo vP (se=v) Rp {v) dv.

The interchange of orders of in{;egration ig justified by absoclute con=
vergence for re p > ace This proves (3.3) for re p > max(ac,i+b=k,i=a).
Again vwe appeal to analytic continuation to extend the raunge of

validity of (3.3)s This complotes the proof of Theoram 3.1.

orem 3.,2: For each fiwed x  in the half-plans re x > O, Lé(x)

is an éntire funcition of g. For each {ixed conplex q, Lq (x) is an
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analytic function of x in the half-plane re x > 0. Furtherwore,

for re x> 0 and any fixed couplex q and positive /U s wWe have

@s3) £ {x““q Lq(/ux)} = 1t x,qqs,ux;;

while for x > O, we have

346) &g )& i jx S : a1
(3.0} X “q9‘* %) = Flamp] X v I.pSpw} (sc=v ) dve

Formula (3.6) is valid in any region‘ of the (pyqJ)=space in vhich the

inter,r.xl on the rigzht is uniformly convergent.

Proof: The proof of Thaorem 3.2 uses virtually the same arguments as
the proof of Theoren 3.1, the only essential difference being that a
special aryument is needed to es_t-:iblish the cbtztirmutién of Lq(x}
over the entire g-plane. This continuation can. bs obtulned as followss
Iet q be any complex number and W Lte such that re w 2 0, .

7 re(q+w) > ac. Then by (3.1) we cun write

Lq(x;?— f

(b+e)

- - Ik =8}
k_ H(S)F(k-s+q+w+1§ dts

By virtue of (2.5} we cun use Couchy's theorsm to shift the contour

any distance to the laft. Ve have, in particular,

L (x)'-'-y x’sﬁ(sj,' I = 8) dw + ¥ . (x)
L S (b*) T(k—s+,q+w+1} . qﬂ

where b  satisfies b < 1/2(k + re g/a). and ‘%’q_m(x} is the

£ 2 - o i o *
sun of the residues of the Integrand in the strip b < O < bte,
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The same argument as that used in the beginning of the proof of
Theorer 3.1 shows that ‘l’q P (x) is an entire function of w, while
the integral along the line T = b* is absolutely and wnifornly convergent

for re w > 0. Therefore we may set w = 0 ¢to obtain

Lq(x} = j %> H(s) : Dk - s) dw + ‘I!q(x}.
(b*} . P(k"ﬂ"'(!'l’?)
This provides the reguired continuation of Lq(x )} over the g=plane,
and the remainder of the proof is, as remarked, entirely analogous to

the proof of Theorem 3.1 and need not be repeated.



- 16 -

s A. A Basic Identityo
¥We are now in & position to establish the following theorsu:

Theoren 4.1t Let @(s) be a Z-function, as defined in Def. 2.1, wif.h
the associated numbers a(n), 7‘n. b(n)s M s @y by ky Ge For x
positive and q complex, let R (x) and L (x) bo as defined in

Defs. 3.1 and 3.2, respectively. Then we have

(4.1) m!-;—ﬂ Z é a{n)(x = )\n)q =.:cq Rq(x}«r xk+qZ b(n)Lq(/uAnx)

Ap
in any region of the g=plane in which the series onm the right is :
uniforuly convergent. In particular, (4.1) holds for re g > a(2b - k) =ac,

the series being absolutely convergent in this case.

Proofs By (3.4), we have for re g > ac,

: \ I'(s) - :

*
(@ +5)
where the integrals are absolutely convergent. Hers 'a* = uax(0& )y
and the numbers § > Cy £> 0 are chogsen so that no sinpularities of
the integrands lie in the stripes & < ¢ <a +§,k=b = &< T < k-b.
After expressing @(s) by (2.1}, absolute convergence enables us to

interchange integration and summation and obtain, for the integral on -

” Z a(n) ( (;‘«n/x)-s F(s—;té'%):‘n ds

(a+§ ) @+ §)

the left

' ' 5
g 'q1+ 7 X 200 =N/
. : n~



by formula (7.3.20) in [13], In the integral on the left, we use

(2+4) and then (2.2) to obtain

5 = S\ x* £ (k-s) H(k~s) G f:&‘é% 77 @8

(k=b=c ) X (k=b=c}

H

Z b(n)/ul ;k (/'un:{}s Ak = 8) (s +.q + 1

(ik=b=c }
= 2 b(a) j(bm (/unx)"f‘ H(s) m%k;:;%‘rrj ds

xk Z b{n) qulunX}

by (3.1). The interchange of integration and summation in the above
argument is justified by absolute convergence. This proves (4et)
for re g:> ac, and, as usuul, we Appeal to analytic continuation to
axt?nd the range of g. This is possible since, by Theoreus 3.1 and
32, Rq(x) and Lci(x) are entire functions of gq. The right-hand
aside of (4.-f ) is therefors an analytic function of q in any region
of the gq=plane in which the series Z b(n) Lq(/,( nx) is unifornly
convergentes This completes the proof of the theoren.

It should be noted that if we have x equal to -one of t.hé
1n'a, say 7\“, and a(l) is not zero, then the left-hand side of
(401) is discontinuous in g at g = 0. Consequently the series
Z b(n) Lq( nx} cannot be uniformly convergent in any region of the

Os .This by iteslf has no bearing

g=plane contalning the point g

on the validity of {4.1) for q = 0 except to show that it will usually

require a speclal argument to establish such vaiidity. :



Very many speclal cases of (4¢1) are to be found in the
literature. Leaving aside the case a(n) = 1, ln = n, which 1s a
well=known Fourier series expansion, the first proef of an instance of
(4¢1) appears in Voronoi's paper [1]. The case ccmsidex"ed there is
#(s) = Zd(n) n °, q & non-negative integer, where d(n) is the
mumber of divisors of n. Wigert [14] treated the cuse )
#(s) = E 4 (n) n®, where O‘r(n) is the sun of the r® powers of the
divisors of n, for q & positive integer. Landsu [11] established
(4+1) for a large subeclass of the clase of Z-functions, for the
particular value .of q corresponding to q = [ac] + 2, where [x]
denotes the greatest integer function. The case a(n) =r, (n), where
T, (n) denotes the number of representations of n as a sun of p
squares, was considered by Hardy, in [15] for q =0 eand in [16]
for ‘q equal to & non-negat;iva integer. Wilton [17] proved (4.1)
for a(pn)= T (n), where T(n) is Ramanﬁjan's funetion, g > 0, and
Bardy [18] extended this cuse to q = 0., Oppenheim [19] treats the
cases a(n) = ¢r(n) and a (n} = rp(n) for real r und p 2 2,

for q=0 and 1. He discusses swmabillty as well as convergence
of the infinite serles. Wilton [20] effectively disposes of the

case a(n) = G r(n), treating it for general coaplex r and ¢ and
discussing the absolute conver.sé;énce » ordinary convergence, sunmability
(by Riesz means) and nonesummability of the infinite series. Apostol
[21] establishes (4.1) for Hecke series for integral « satiafying
q>c - % . Other cases are to be found in Cramdr [22], Walfise [23],
(241, [25] and Guinana [71.
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8 5. The Sumnation Formula.
" The main object of this section is the masoclation of a
suamation formuls with every Z-function. Before this association can

be achieved, some prelininary definitions ars necessary.

Definition 5.1: For eéery real=-valued function £(x) of the real’
varisble  =x amd every positive intezer p, we define a function

f(p)(x) by the following recursions

(1) Ue azet f(j}(x) equel to f£'(x; wherever f'(x) exists,
If £ does not exist at x but does exist in a deleted

neighborhood of . x, we define
'=l i ! 4+ -
£(q))=}ita St e) + £ (x = e)}

provided this 1limit exists. In all other cases we set

f(1)(x) squal 10 zero.

’

(1) £yt = {£, Fay e

Definitidn 5.2: For every complex=valued function - £{x) of the real
: P : ;

variable x, and svery positive integor p, f(p}(x} 18 defined by
) = } ) +13 in £ )e
f(p)(X} {re £ j— (p) (XI +1{i } (p} (X)

It should be noted that on any interval in which the

th

(real=or complex=valued) function f has a p° derivative we have

= o(p)
_f(p} o
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Definition 5,33 Let p be & non-npegative integer and let £f(x) be
a function such that f(p+1) is integrable on [my,M], m S W < w .,

We define fM(x) by the eguation

1P+ 5 ‘
I‘:d-l;—rj j (v = x) t(pﬂ)(v} dv n<x<H

0 x > M.

(5.1) . i‘M(x) =

In other words, fu(x) is (=1 )p+1 times the incomplete Weyl integral,
of order })‘5’1’ of f(p+1)(3§)o If the co};prl&:g weyl int%u’?dl axistag,

we denote it by (=1 )pﬂ i“%(xh- ieey we define

- : # . (=1 P+l @ P e
{5.2) £ (x)= %Eﬁm fx (v = x} f(p+1)("} dv, |

provided the integral exists.
| Some immediute cdnsequences of Def. 5.3 are embodied in the

following lemnas
)

Lonma 5413 fM(x) is of ci]jﬁss & on (.m,cs), and if:‘{(x) and itas first
P derivatives vanish for x > M. fﬁ‘(}:} has a (p+l )St derivative on
(M) n.?.;nosf. everywhere equal to f(p + )(x). f*(x) has corresponding
pr/opert.ies. '
Thus we have constructed out of f(x) a function fﬁ(x)

(axl £ (x)) which is very welle=beshaved., It is this function, rather
than £(x; 4itself, which will appear’in the sumnmabion formula.s £ and
fM may be quite different in appearancey but if £ i; i‘aamlf'
sufficiently m';ll-béhavec’x. then there i3 a simple relationship between

f and £



P

Leuma 5423 If £(x) is of class P # ocn an open interval (:fc1 ,xz)
contained in {m,4), then on (x1 X, )} the difference £(x) - fy(x)
iz & polynomial of degreas not gx"eu‘ber than pe If in addition there is

a point x  in the closed interval i:}a, »X.,] such that

1lim f(j‘?(x} = 1lin i‘,{j)(x}

;
P T
o 5

for each J = Oy 1y eee s Pp then f£(x) = f@i{x) on (:<1,x2}.

The proof of the first stotement of the lemma consists simpiy
in the observation that the (p+1)°® derivative of the difference
£(x) - fﬁ(x) venishes identically on (:»c1 ¥s, Jo Ths seconc} sentence
of the lemma follows directlyfrom the first and the fact that a
polynomial of degree not greater than p, with a (p+1)=fold ruot
must vanish identically.

We come now to the summation formula itself, which we
state in 2 forms, corresponding respeciively to m > 0 end w =0 in

Defe 5e3e

r\}

Theorem 5,13 Let #(s) be a Z=function, ae defined in Def. 2.1, with
the associated mumbers af(n), b(n), )\n. e @s by, ky g Lot Rd(x)
and Lq(x) be as defined in Definitions 3.1 and 3.2, and let =n

and M be constants satisfying O<m <M< w, Lot p be a non=

: negative integer such that (4.1) holds for g = p, and assume that

the series > b(n) Lp(/.n.mx} is boundedly convergent for x in
[myM]e  (In particular this will always hold for p > a(2b=k) = ac.)

‘Then for any function f£(x) such thet £,.(x) exists on {myM] we have
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2" am) £,02,) = Qlpsmett) + (-1 » 5 vp ot -1(v) f(p)(ﬂ av
mg A < i

(5¢3) + {=1 )pr(n)f ety (/u_nv) fép),(v) dv
vhers
(5.4) QlpsmyM L-(lgfi a(n) f v =2 )PV 2Py dv.
. d 7 7\Il_<_m i - ¥
K

for p'> 0, and Q(O3myk) = O

Theorem 5,23 If the hypotheses of Theorem 5.1 hold for all m > 0O
and in addition the following conditions hold,

(1) v R {v) f(?ﬂ )‘(v)’ is integrable on (0pi),
(i1) vk"‘p : A S/u v) ,.(pﬂ)(v) is integreble on (0,M) for a.ll/v( =

(1i1) z b(n) j v L (/qnv) i‘{pﬂ)(v} dv converges,
(iv) li"z Zb(n) f kp L (u v; I(P"’”(V} av = Oy

then we have

. - ; i ;
1_Z« a(n) (X ) = (=1 )P j ® @) £ ) e
it o &3
n—

(545) + (=12 via) ( (uv) f‘p*”(w dve
Z o I'b/ula

If (5.5) holds and in addition the following linmits exist,



lim "Igp)(v‘ &= "(p)({ﬁ-)
w0+

lim vP Rp(v) = R; :

v=0+

14n v*"x,(-,,;-1, L
e

then we have

% - ., i - ‘ -' ‘7 -1 )
2 ata) £, Ag) = (1) Ry ff’((m + (=1 )p j R @)t (v)av

(5.6) | +(F) L(n,{,n ~kp 1 ) o4)

T ktn=1 (p) }
! jc i LGV Gy "(v) av f o

Pr ;I" Qi m'aﬁnzﬁyv. 5 I: By (5.1) we .’41&“!6

Fal !

: afn) £ () g = .LlL__ 2 H (n) (v= ) £ (v) av
s ?‘nﬁi'i D {p+l) ms ')n}_; e j A {(p+1}
p+1 n :
= "‘(p'ﬂ) J’} { Z ‘&(n)(v'ﬂ.n;p} f‘(IH_.”(v) av

ng ) <v

foe ‘ipﬂ ‘ &
n- :
p+i M " : ) 2
~ a - P
¥ ) LE {}lz;v a()v=2,) jf(pjf“(«) dv
n-

H]
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Tn the last tern we apply (4.1) and obtain

Z" atmig ) = 7l fm £ amiva PR £ g0 av

me A S
me A SM

VP 5 ba) I ey ) f 24,000 av

M

-13P ; 55
""'1-"\'((1',_1.%7 Z(; a(n) f (V"A P f(p+1)('v) dv

o
+ (=1)P¥ } P (Z blaiL, (u v}} £ ﬂ)(v} dv

In the last tern the asswepbtion of bounded convergonce enables us

to integrate the series torm=by=term. The result is

2" amigx,) = -%;;ﬁ 2" @) f (7= X, P £ 0q)00) Qv

mg ) i A
(.7) + (= 1)p+1( vp R (v) i'( H)(v; av
+ (=1)P* Zb(n) f kip Som oY) £, (v) av

The next step is to integrate by purts in all the integrals on the
‘right of (5.7)s By Lemua 5.1, terus containing f?__gp' (i) vanish, and

the result is



o

Z afn) £, Q) = )% Z a(n)(m- )p +Q(p;'n.lf)
11"'

mg A, 9

PP P R )+ P [ v 1(V)f(p)(v)dv
- i m ;

(5.8)
| + =P J v { P 1 (un) 2P @)

M

5 )vi ,yk*P =1 qu/( v) (P)(v) dv‘}

By hypothesis the series Z b(n) Lpg *"‘-ﬁm) converges, so the laat term
on ths right of (5.8) can be written as

4 (-1)p v(n) J kﬂ)ﬂ Lp-1$“nw f.(p')(v} dv

We now use (4.1) to obtain

1P Py J - a@)u=A )P + P R (a)

r‘ (p +1 ;”(H

mkab(n} Ib(/"*nhﬁj} = 0

Substitution of this into (5.8} yields (5.3) and completes the proof

of Theoren 5.1.

Procf of Theorem 5.2: Taking n < ;\ in (5.7) we have

RZ@I o £ (;\ Rl o 1)p+1 J vp R (vi f(]p+1 Aw) av
b 5 sd

+ (- 1)"”Zb(n)f VP, (;unn £ (o) (V) @ve



The hypotheses of Theoren 5.2 permit us to replace m by 0 every-
where in this cxpression. We may then replace f(p +1 }(v) by

fép“ ) (v) since, by Lemme 5.1, ths two functions can differ at most
on & set of measure zerc on the interval: (0,M). This ylelds (5.5/
Finally, (5.6, follows immediately from (5.5) on integx.'ation by parts.

For p = 0y (5.3) reduces to

H

>3 " a(n) f,_,l,()n)

ag A<

M
f R(v) fM,(v) av
» ety 1K xet ‘
(5.9) ' + Zb'(n) f v L(/unv) rM(v) dv

where R(v) = v-1 R_j (v) and L(v) = L (v) « . Formila (5._9) will |

alseo be wulid {for p > 0 in case we have

(5.10) fm.(m} = 1"3"5 m) = eee = f}(ip-”(m) = Qo

That this 13 so can be seen by Integrating by parts p tises in the
integrals on the right of (5.3). We state the resulis of this

paragraph as & theorems

Theorem 5.3t Sufficient conditions for the validity of (5.9) ares
the validity of the hypotheses of Theorss 5.1 for p = 0, or the
validity of the hypotheses of Theore: 5.1 for p > 0 and in addition
the validity of (5.10).

Buuation (5.9) should be compared with equation (1.1).
. *
If wo formally replace ¥ by e and f, by f in (5.3)

we cbbsain



¥
Z a(n) £ (A }‘Q(p.4+(-1)pf w1 (v)f(p)(v dv

}n?-m -r
5.11) 2 iy (ke *(p)
( + (=1} Zb(n) fm p 1/{ v) £ (v) dv
where
; % o~ ‘.p”1 T ! . o 3 = y
Rngz:; w
if p » Oy and Q*(O;m} = 0O silarly, bthe 1.01"’1111& corresponding to
(506;‘ is

ia £, = (PR € @) (o) + (4P f vp" 45PN av

(5.13) 7 + (-1 05?(‘1;;/4 “k-p L‘ i (p)(0+)

L0
o 4(@ ‘V)‘Hp-i LP" ,(/Anv; f*(p]("a?} av ,;? »

It would not be difficult to give sufficlent conditions for the velidity
. of (5.11) or (5.13)s 1In practice, however, it is usually simpler to
derive (5.11) or (5.13) direectly from (5.3) or (5.6) in any particular

Case.
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§ 6. Some Special Cases. -
a) The Riemunn Zeta=function.
For f(s)=r " f (8), where r ia positive and < (s)
is the Riemann seta=function, we have

afn) =b(n) =1 forall n

i

A, = rny fn = wn /v

0

a=b=k=c¢c=1
A=)
2
ré) .
H(s).—:l‘l & -._:f-zscos%? '{s)

R (x) = i x...1
Rylx) = £y {r(q+1} 2}

c
o
"
~
i
o

L_1 (X} =

ne=q-1 x "
: a3(2 Y = w)F . o
r"éx'{«(q"““"'ﬂ } jo cos ;/'W’i(,» v}t av for 16 q > =1,

In this case, (4L.1) appears in the form

ces &2x

]

(6.0) Lq(/qx)

{ ] .
g+1 q - x
y -3 = £ - & 5 j 4
(6.1, é . (xt=rn } = e i +5 Z go cos (2anv/r )} (x=v)? dv

valld for 9 =0 and for re g > 0. Accordingly, (5.3) is valid with
p =0 in the form #



" M M |
(6.2) Z: rM(rn) = % 5;1 fM(v} dv + % Zfa cos(2anv/r) fm(v} dv,

n/r<n<i/r
and if fw(o-f) exists, then (5.6) is valid with p =0 in ths forn

M

: 1

(6.3) Z £ (rn) == ¥ £ (0+) + = £ .(v) dv
ﬂs‘f"ﬂ{ » M 2 M : j\o M

]

3 E i §

S a {93 5
+ 8 2 L cos (2unv/r) fﬁ(v) ave

The equations corresponding to (5.11) and (5.13) are, respectively,

(6e4.) Z f*(rn) =% f wi‘*(v} dv + %Zf wcos(.?tmv/r) f*(v) dve.
n n

n>r

(6e5 ) Zf (rn) = = - f (0+) + f (w dv + & Zf cos(Zunv/r)f {vidv.

All of these equations are, of course, forms of the well-known Poisson

suamation formula.

b) Generalized Hecke=saries.
By a "generalised Hecke-series" we nmean a Z-function for

which H(s) is given by

(6,6) H(s) =h %

where h 3is a constant. In this case (3.1) ylelds, by formmula

(7.3.23} of {13‘,’

- z(k-l-q) '
(6.7) Lq(x) = hx VJkI' (2 V=)



where J,- is the usual Beasel=function of order YV . From the

relation

Pofemt

JAx) =0z %)

o

for x > 0p 1t i3 arparent that the series

\

= v

= Z P = ;‘;(k"’q) :
% s o &~ : = i
Z bin) Lq(/,gnx) x h ‘ b\n)/.An Jk*‘q(Q \/S}Anx))
.4s absolutely and uniformly convergent for any set of values of x
and q for which x is in a compact interval of the positive resal
e, > Bageiunadld

23

e o

i ]

axis and g is in any half=plane re o
Aecordingly, (L.1) is valid for' re g > ¢ - %, and for any such g
the left side of (4.1) must be a c;ntinuous function of x for x
positive. But the left side of (4..1) ig a discontinuous function of
% for q = 0; therefore the point ¢ = ¢ cannot fall in the half-

plgne re g > ec - %. This means that the reliation

B foms

(6.2) c=2b=k2

must hold for any generalized Hecke=szeries.
L 3
Since the form of (6.6) guarantees that @ (s) is also a

generalized Hecke-series, we have the correaponding relation,

3 ®
(6.9) 6 =2a=k32

{3 b

Combining (6.8) and (6.9) yields

(6.10) a+b=k>

o=



Since & + b =k is the width of the critical strip, (6.10) can be
restuted in the form: every generalized Hecke—series has a critical
strip whose width is at least -}; e That equullty can hold in (6e8)s
(6.9) and (6.10) i3 shown by the example @(s) = § (23) where we have
N e e Y ;
a=b=g=¢g =k o : _ ;
The class of Hecke-series proper (see [9]) is distinguished
by the following characteristics in addition to (6.6):
bi{n) = a(nl,
2 2, 5 o
Rn = Dy M = /n"n/ A"y where A is a positive constant,

k; 0p h=1{ (2?:/2)1:, vhere ¥ =4+ 1,

and the requirement that (s~k) @(s) be an entire function, i.e.,
B(2) can have no singularities in the finite s—plune obher than

(at worat) a simple pole at 8 = k. For a Hecke-series, (2.4) takes
the form |

(5e11)  (A/20)° T(s) Bla) =¥ (A/20)5™ P(k=s) Bls)

This functional squation shows that @F(~p) = 0 for uny positive
integer p and that |

(6.12)  #(0) = - ¥ (A/2m)* r(x) P

where L is the (possibly zero) residue of f(s) at s =k, If P

is not zero, then we have b > k, and Rq(::} is given by

7 ol k) k, _B(0)
(6013 Rq(x) PI‘k+q+1} o +I‘(q+1) *

If P = 0, then Rq(x}f is identically zsro, so (6.13; holds in all cuses.
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Some examples .v o.f HBecke=series ure: +the Riemann zeta-functlon
in the form ¢ (28); Dirichlet Leseries whose coeificlents are
real primitive characters; zeta-—funct.j.ons of dmaglinary quadratic
fields; the function whose coefficients are Ramanmujan's function T (n}j
and the functions ¢ (s) ¢ (s-2p~1) where p is = positive integer.
Generalized Hecke=series thut u.re not Hecke-geries proper include
Dirichlet Leseries whose coefficients are non-real primitive c‘naracters..
and also the function § (8) S (s=1) whose cosfficients are U~ (n),
the sum of the divisors of n. This last :_"unction has two simple polese.
For a generaliszed Hecko=series, (5.3) assumes the form

z u‘(n‘} tm‘(ln}l - Q(p;m’;‘t‘{) + ("1 )p' f Vp-1 R -} (V} flgp}(‘?J dv
ng A <M - :..& P

(Ge14) &

+ (-l)pz b(nj/‘&n -

- l - M l -1 ] 3 j ;
3 (ictp ”_f . vz(k"" 1) Tyepq 2 \//(,unv)')figpl(v) dv
n

~and is valid for p = [c + %}, where [x] 4s the gresatest»integer
function. Formula (6.14) may of course be velid for smaller valuss of
Py depending on the range of velidity of (;1.1). Special cases of (6.14)
way be found in Landeu ([26), Sats. 559), Mordell [27], Koshliakov [2%%].
Olevsky [29], Guinana [7].

¢) Products of Two Zeta=functlons.
For the functions g(s) ={(s){(s=r), wvhere r is any real

number, we huve
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&
)
S

1

‘ h
: bin) = dhr (n), the sur of the ptB powers of the
divisors of =n
A = iig /A"X = “211.
a=b=max(l, 14v), %X =1 +r,

*®*
e

1+ Ir!,

o
]

0":1’

; r+1

It is customary to write d(n) for ﬂ‘o(n}, o (n) for (7"1-(:1). and
g-(a)/n for O -1 (n)e
The form of Rq(x ) depends on the value of re. For r > =1,

r # 0, we have

: v _ Dle+t S r+i ¢r+1
(o15) 5,60 = Bl o1 wflogh s - Tl

Por r = 0 we have

(6.16) R (x) = —-Gﬁ-n{lo x - 7’(4+»')+y%+ q+1

where J 43 Buler's constant and Y’ (x} M (x)/T(x)e For r = =1,
we have

e e . n’ﬁ ¥ log 2ux = yj(q-i-‘ll 1

(5.17) 'Rq(x) B 6[‘1(14-25 : 20 (g+1) = 240 (q)x

while for other r's the expression is more couplicated.
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The expression for Lq(x) is also complicated and 13 given

here only for integral ¢e. In that case we have

b ) == o)™ 2§ s B V)

(6e18)
| + cos %-1-'- { Y +q+1(‘*‘/") * (_”q g+l (‘,’"/_)]

r

where J, ¥y and X revresent, respectively, the Bessel functions of
the first and second kind, and the modified Bessel functions of the
second kind,. ‘

Opperhein [19] and Wilton [20] nave shown that (4.1) holds
for re q > max(0, |r| -%+c) fora’.ﬁy €> 0. For regq?> irl +%
(4e1) holds with absolute convergence. Accordingly, for r =0 we

may set p =0 in (5.3) and obtain

"

Z d(n) fi“,:.(r:} = f (log v +2¥) £,(v)dv

asnsH g i}

(6419)

+2n a(n) ‘( { K, (A.ir\/;x;) -3 (41:\/;1-*5)} fM(v) dve ;

This is Voronoi's swamation formula (ci‘. (1.2) )0

For r== wemay set p=1 In (5.3) and obtain
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» <
Z Sinl £,n) = -1, (M)Z ._.J.Q). ( (% v - W}fﬁ(v}dv‘
ns<ng = * nsm m

M
-2 f—&“fm J (4w /av) gy(v) av
f:«g(m){ a _ 1oz gum + ¥ Z (g) 2

n<n
M 2
A
,f,‘ (-5- 2v) fg{(v) dv

n

. +Z..%.(§l {Jo(z,n Vo ) i‘H(z;s)

i

(6.20)

+

_ ¥y (47 Vav) 5
- :an‘vfnj -—‘7—-‘—— £, (v) av iy
For r = 1, we may again take p =1 in (5.3) and obtuin

" H 2 ..
2 rmgme-n@2 ca-f &GP
B<nsH = i n

' kY
=V - -;Y; + -'31:) £,{v; dv
nS| . f s

¥
+ Z o (n}f

| - _.‘
& .}’2(;',1! vav) fé(v, dv

2 73 Lo | . .
= %;ﬁ.(:;z) { % :1‘5 - :§ 4 :jz - Z o~ (n)}
(6.21) :

M2
» ‘( (-6- l f}!(v) dv
-

&

@ () .
. -3 {M;»" (4w vin £,,(n)

[
+ 2u/n v I (4 vov) £ (v) dv
Vv ;
: m

- Formilas for ofher speeial values of r can naturally be obtained
without 44 Guinand [30] and Anferteva [31] give examples of

speeial values of re.

fficulty.

summation formulas connected with
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d) Powers of the Rlemann Zetu=function.
For fB(s) = fj(s') where J is a positive integer, we have
a{n) = b} = dj (n)

where d (n) is the nusber of ways the positive integer n can be

wrdtten as un ordered product of J positive integers;

o= s j»,-
?\n Fly . P TV
*
a=b=c=¢c =k=1,
= 1/2,

H(s) = { —-(-:‘-_2_-;} = -{21.3 cos %ﬂ I‘(a}? 3.
==} -~
2

The function Rq (x) has the fornm

Ra(z:} = x P(log x5 =1, q) + —-—LD-‘—'

2‘1 I‘(q+1)

where P(log x; j=1, a) 4s a polvnouisl of degree j=1 in log X

whose coeflficier s are functions of j and qe. The leading coefficient

of P is

1 5
(J=1)8 Tla+z) ™°

j The form of Lq(x} likewise depends on j and becomes more
complicated with inereasing j. Instead of deternining Lq(x ]
explicitly, we give formulas thut define - I.ql (x) recursively in J.
To emphasize the dependence qi“ I.q (x} on J, we shall write it as

Lq(Xl.‘U. The following lemmn relutes Lq(:cljﬂ) to Lq(x'.i):
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lomnz Oelt Ly (x|j+1) 48 the Fourier cosine transforn of

/v Lq(z/vlj}; f1eGey WO huve

(622 ) Lq(xlj-ﬂ} = ‘fmz L (?; | ;3) cos (xv) dv

BT
for all positive integral J, in any region of the q=plans in which

the integral is uniformly converggnt.

Proofs For re q > ac + 1, 0 < € <1, we have by (3.1),

- +1
. L | 1 _=s 8 o . usrj. I'{l=s
L, G=li#1) = 2 fm&) 27" x) 7 ] T(s) cos ¢ } T (q+2-a) 98

(6423)

()

] = . i+
= 23” j (23"'1 x)"8 g I'{s) cos %‘8-} I:‘é}g—% ds,y

where the shifting of the contowr can be justified by the usual

argusents. By formula (6.5.21) of [13], we have
-5 i “ =1
-2 1(s) cosf=f y cos &y dys
o
for 0< 0 <1, Integrating by parts, we obtain

o =
2% I'(s8) cos %ﬁ = %(l-s) f ys"‘é ain 2y dy,
: ' o

where the integral is ubsolutely convergent. Substitution of this

into (6.20) vields



| 5 « 3o
L (xl3+1) = 2! fm fo v*® ain 2y (29 { Tls) cos B} S qt2-g) Va8

i

n ' 1
J v gin 2 Joy=8 ¢ as ; b a ¢
2 J(& sin 2y (2°x) " { I'(s) cos 2 . Tl(ati-s ds dy
- -5 £
{o sin 2y 25 ‘[(c;‘ ¥ (29x) s{l"(s) cos %’-}j £ q+2-s ds dy
5 ) ,

The interchange of orders of integration is justified by absolute

i

convergence. Ancther integration by parts now yields

- e
Lq(xt;j-ﬂ} J(o 2 cos 2y Qj j vl 1(233{) S?\ I'(s) coz %%} I‘iq+2ias 4

fwz cos 2y y 1 L G‘-]s) dy
N q vl

it

"

i

f v éélj) cos (xv) év

upon making the substitution y = vx/2. UWe now extend the range of
'q' by analytic continuation. This completes the prpof of the lenma.
The recursion is completed by noting that Lq(xiﬂ ie
given by (6.0).
The summation formulas corresponding to f j(s) are cases
of Polsson's formula for § = 1 and cases of Voronci's formula
for J = 2. Swmsation formilas for larger values of ] secen to be

nonexistent in tho literature.
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8 7. Applications.
We consider first the case f£(x) = x s vhere ¢~ is greater

than a = max(a,0). A straightforward caleulation gives

5 M8 = x)d (x < M)

P 4
(7.1) f (xl = - 7 T T(i+

J=0

Accordingly, (5.3) assumes the form

gt i-&g‘-j 5- IV - j
é‘o ) 03+ m{; s a(n)@=A)
L{Eﬂ’l&— ( e ogep  _mBep:

j vp"‘ T 8P L M °P) gy

Lis A s {n | = ,p.‘.p-Ji =8P _,~8~p .
+ —I-stl 2 bla) fw v Lo W) 0 PP Jaw

&l

4

Z aln) );0

mg A <M

(7.2}

for p > 0y while for p = 0 we have

- ' M ‘
& a(n) A ;8 =M Z a(n) + g o R_4 (vi(v 3"2) av

a2 'AnﬁM n& A <M Y m
(7.3)

+ b f "y, (7 (v?® - 1) av.

From the general theory of Dirichlet series we know that

2 el = 0GR e

g A



for every € > 0, Tuking ¢ < ¢ = aft it follows thut we have

it

Vgt S 2 e i -x)d =00 T Z @)
g AM _ g AsM

*
o(® -G‘ﬂ:) =0(1) as M » w,

i

v ' : ) : »*
Since the series Z aln) )\;s is absolutely convergent for @ > a

we may let ¥ go to infinity in (7.2) and (7.3) and obtain,

. respectively,
Sy R e 3 =
n- : : n-
(74} X P..‘i?’.l 1im (f v_p-1 1(v)(v P T -S‘p) dv

Mepoo &

M

Z b(n)) I-p_,/u v)(v o P s-'p) dv 2
for p > 0, :—mc'i.

-t A
Z a(n)) =8 = 1ia1 -fj R (v) (v 22} av
A2 e U |

' ‘ £ :\-; ]
(7.5) +2 b(n) | v) @) av |
Z I -} . (/) (V v J

for p'== Ce

Since P(s) Za(n))t - for @ > a, we may put (7.4) and

(7.5) in the respective forns



-]

- ; ; ©o pel e
f1 = o 027 - By T e f T AN

(r6)  +Hpsl 1n Lj PR ) PP av

+ 2 bw) fm vkﬂ"" Lp‘"f (o0 TR dv}

3

l¢(8)= Z an) A ; i(f R (w(v -%&”S) dv

2,5

M
+ Z bn) f vk-1 I.‘_1 (‘;,nﬂv) (v® - ?)av _,?

We have tims obtained formulas for (s} that are valid in the half-
plane ¢ > &+ In many instances the right-hand sides of (7.5) and
(7.7) reduce to expressions thut are meaningful in a larger regiong
the formulas then furnish an é:{plicit analytic continuation of @(s)
into this larpger region.

For example, in the case of Hecke-functions (7.6) reducea to

B(s) = Z a(n) BT -

nn

[£e) i
p=1 _=8-p
) T n% a(n) f@ (ven) v dv

(7.8)

8 o= 54D, -
5 zs-k§ rZs;‘ T(cip) +mmrip) résni.m

¢ N }\ "1 3 y - i 2
+ ¥ G LR 3 o) hmw2 X

X fm v(k"p“?"ﬁ&”/m k+p 1(é" \/X;f.) dVo
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vhere P 5 ¥ 4 A are as given in 8 6, b). This identity, valid
for ¢ > %(k -n = %}. 18 equivalent to the identity ((3.2) 4n [10))
used by Aposteol and Bklar in deriving approxinsts functlonal eguutions

for Hecke-scrics,.

An interesting arplication of (5.2) is afforded by taking

#(s) to be a Hecks=series and letting f(v) be defined by

ik
. e A 2 4 A8
(7.9) fvi=w "k-bq(/’\ Vv )

where q 1is complex and x I1s positivs. In this case we have

_ k+g+j

vi = fly) - ?_ o 2 3 A1 2. i s J
(7.10)  f£.(v} = £(v) ka) Serats Vi) 5T ()

i

Substituting into (5.3), we obtain. i
- kig
. 1 d 2 511
2 a()n & )
<M EEAPY
- ktatd
:} 3 2 A“ ’ BE 3£ \j
}'_( Jx)¢ ¥ k-hq-h} ) V) e ﬂ n%‘ aln)(p=n)

‘i=o
!./

' M &m:g_l
P F k o (2‘11 \/-—\p+1 f v # k-(-q+p+1( f;;:) dv
(7.11) "

T Flp+) (%\E ‘/:”;)pﬂ fo v ® Terqip+t ('{t;% Jxv) av
. ptl k. _atl
+X%‘1xzza(n)n ‘2 5'? Z w‘/g‘;)‘,++pﬂ)\‘/’°)dv'

G
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Integration by purts in all the integrals on the right of (7.11),

followed by use of (4.1) yields

- £
Z_a(n) n 2 Jkkg(é% \/;n_)

ngM
- kgid
= Z & mlu 2, & r%{a(n)m—n)-’
TR~
* F Ry & ﬁ)pL A S

¢ B=ack 4
Qfm( \/')"S' v T B iR i

?_ " k 2“' M - ﬂgl \/__ ég_ ‘/__
+Yx" 2 aln) ‘ (o) I, avav
¥ x Za nin Afo v‘ -Pp-l n Eociy

The left~hand side of (7.12) is & partial sum of the series that
aypears on the right of (4.1)e Since the valus of q in (7.12} is
unrestricted, (7.12) cuﬁ be used to study the behavior of the series of
(4+1) outaide the region of absoluts convergence. In many cases it ia
possible in this way to establish the valid ity of (4e1) for certain
values of 'q outaide the hulf-plane re g > ¢ = % « Such uee of
(7.12) is & generalization of the methods used by Hardy and Landau
[32], (331, [26] (achter Tiel, Xap. 4,5) in proving the validity of
(4e1) for g =0 in the case @G(s) = Z rz(n) n° and by Hardy [18)
in the case @(s) = Z T(n) n°. Here rz(n) is the number of
representations of n as the sum of two squares, while T (n) is

Ramanujan's function. o
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The identity (7.12}).is complicated wnd it would be dssirable
te simplify it. We shall outline a method for accomplishing thise.
We begin by defining some convenlient functionss

Dofinition 7,1s Let x, xy und x, be real and X < %50 Iet €

be positive. Then g(x) and 24 (x} wre defined by

0 x £ %

AW“"O

F

£ £ E
- o ———— < x < Lo
) PP XKy X, . X -’x} % 2

(713} glx) = glxlxgex,ee) =

P—
[ ]
#

iv

st

e -,
f g(vljc1 .ngc} dv

7 o

f g(le1 .::2.5) dv
-0

(7e14) gy(x) = gy (xlxgrx o) =

Thus g(x) and 84 (i:} ars each infinitely di‘fﬁ‘erentiable, and all of
their derivatives vanish outside the open interval (x,s%,J)s The function
g£(x) itself also vanishes outside the open inter;ml (}:1 .?.2}, vhile
4 (x) vanishes for ch_ xq and has the ccnstant value 1 for x 2 %o
If we ‘repeat the derivation of (7.12), be;gim-xing; however with
the function ' _ktg
Tlv) = gy (vlv=8 piise) v . Jk"_q(% vxv) (§ < %)

in place of (7.9), we then have f}é(v) = T(v), and the analog of (7.11)

is
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- kg ! -
2 a@)n- ° J’kﬂ(“f \/;;) &4 @)

n<M
M
E p+i " ktp =(ptl)
= (=1) vl°rk+p+1)fo',+pf(p (v) av
p+1 4 +1)
* (1P s ( P TP () av
s o

v
i

. . - li_j,a ¥k
+ (=1 )p+1 X(%}pz a{n)n - f V—EE Jk"‘p(:& ,/.;1_*;) f(pﬂj(v} av
A 2 _

Integrating by parts p+l times in every integral on the right we obtain

b il !‘-ﬁﬂ' M
ng{ a(n)‘n Jkﬂ( = Jxn) 2 (n)
i g e ' k
= Pjo v Jkﬂ,(%? xv) gq4(v) av + §(0) (%11 J3)E
(7.15) -kl

: - % - Ot
+V£§Za(n}n_ “ ( v 2 Jk-f (é".; V,E)Jk‘l'q(% \/;:;} g1 (v) av
; 0

By taking é so small that no integer lies in the open interval
(Mimgy M)y the left~hand side of (7.15) becomes a partisl sum of the
series on the right of (4.1). Therefore (7.15) may be used in place
of (7.12) to investigate the behavior of the series in (4e1)e

" As & final application of our summation formules we consider

the function
£(x) = f‘?-:f(x) = g(x]m, 4, €)
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where g is defined by (7.13). Theorem 5.3 applies for this function,

80 we nay use (5.9) and obtain

N

~ M _
Z, afn) g(A ) = { R(v) g(v) dv

mﬁ,ﬁngﬁx n

*fZi b(n) 5:3 v ngAnv) g(v) av

48 an example of (7.16) we consider the case @B(s) = jﬁ(s),f (a=1)e
We can set m = 0 and obtain

w

}
Z g (n) gln) = (ﬁ- - v -'l')‘ {v) av
b & 3 Jo é 2 B\

(7.17)

_ » ;
- 2n Z féﬁl {o V7 3 e av) glv) ave

Allowing € +to approach zero in (7.17) yields

. 2 >
;E AU e SN i
cn)j=e=m i -=
< i2 2
- (7.18)

£-0

- 28 11’“{2%2')' fjﬁ;, (4n /v )g(v]0pitye) dv} -

+

This should be compared with

- 1

2 .

¢ e 4 g I 3

(7.19) £ o {a) = -;-'-2- 1 -12 + :,,1_2 - Z B2 g (4 /o)
n<H :
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given by Walfisz {231, where, however, the series on the right is not

convergent, but is summable (C,1) or (R, n, x > %). Since we have

1lim g(v|0y My €} = (0 < v < M),
&0 ; Sy

M
53 Vve 3 vav) av = 2 5 e /),
o :

equation (7.18) may be looked upon as providing a new method for

suming the series on the right of (7.19).
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Index of Symbols
Symbols appearing only in the introduction are not listed,
nor are symbols used only as real or complex variables, variable
integers, etc. The pages listed‘are those on which the corresponding

gynbols are first defined.

Symbol Page Symbol Page  Symbol Page
a b ' g(xia;1 .xz.e) 44, g2 6
a 10 g (x-b:1 ,xz.c) bby ¥ 1
a(n) 5 h 29 S (s) 28
b 5 H(s) 6 & 5
b(n) 5 T (x) 30 Moy 5
c 8 k 6 M (0 of) 7
¢ 8 K(x) 1 o (n) 33
d(n) 1 L{v) 26 ¢ (n) 18
d3 (n) 36 Lq(x_) 10 T (n) 18
o)) 19 - QpsmeM) 22 fls) 5
£,,(x) 20 *psm) 2 2 el s
£ (x) 20 r, (@) 18 ¥ (x) 33
F(v) i R(v) 26 v el S
g{x) ddy Rq(v) 10

gy (x) by ¥ (x) | 1
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