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Abstract

An action of a group T' on a manifold M is a homomorphism p from I' to
Diff(M). po is locally rigid if the nearby homomorphism p, p(y) = ho po(y) o B~}
for some h €Diff(M) and for all v € I'. In other words, pg is isolated from other
actions up to a smooth conjugation.

In this thesis we studied some standard group actions on a broader class of
manifolds, the free, k-step nilmanifolds N(n,k); we obtained that the standard

SL(n,Z) action on N(n,2) is locally rigid for n = 3, and n > &.

We recall that N(n,1) = T™. Hence, our results are the generalization to the
local rigidity result for the standard action on torus 7.
We observed also, for the first time, that for discrete subgroups Aut(n,2) of a

Lie group, which is not even reductive, the action on N(n,2) is deformation-rigid

for n = 3, and n > 5.

We also investigated the dynamics of Anosov R™ actions and obtained a num-
ber of results parallel to those of Anosov diffeomorphisms and flows. E.g., the
strong stable (unstable) manifold for a regular element is dense iff the action is
weakly mixing (for a volumé—preserving action); an Anosov action with no dense,
strong stable (unstable) manifold can always be reduced to suspension of the action

mentioned above; there are two compatible measures to the Anosov actions.
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PART I: Rigidity Phenomena of Group Actions

on a Class of Nilmanifolds

1.Introduction

As observed by R. Zimmer, A. Katok, S. Hurder, R. Spatzier, J. Lewis and
other authors, large groups often act on manifolds in a rigid way.

Let G be a connected semisimple Lie group with finite center and without com-
pact factors, I' C G a lattice. I is said to be irreducible in G if I projects densely
into G/N for every non-central, normal subgroup N. Also, if G = K AN is the Iwa-
sawa decomposition for G, then we define the real rank of G, R-rank(G)=dim(A);
we say G has higher rank if R-rank(G)> 2. The celebrated Margulis superrigidity
theorem (see [M1],[Z2]) reflects the rigidity of I' in G when I is a higher-rank
lattice in G.

If T is any finitely generated discrete group and G is any topological group,
we denote R(I',G) the set of all homomorphisms from I' to G with the com-
pact/open topology. The topology can also be described as follows (see [Ral).
Fix generators 71,...,7k for I’ and identify R(T',G) with a closed subset of G*
via p — (p(71),.-.,p(7%)); then the topology on R(T',G) is simply the subspace
topology inherited from G¥. Note that G acts naturally on R(T',G) by conjuga-
tion. A homomorphism pg in R(T', G) is said to be locally rigid if its orbit under
the action of conjugation in R(I',G) is open. In other words, pg is locally rigid if
it is isolated up to a conjugation. So for locally rigid action pp and any nearby
homomorphism p € R(T', G), there exists a g € G such that p(y) = gpo(7y)g~! for
every y € I.

There are a number of classical local rigidity results for homomorphisms of T’

to G in case that G is a finite-dimensional Lie group. A. Weil [W] observed that
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if p € R(T,G) such that H (T, Adg o p) = 0, then p is locally rigid. Margulis’
result (see [M1]), that H'(T, p) = 0 for every homomorphism p of ' to GL(N,R),
where T is irreducible in a higher-rank, connected, semisimple algebraic R-group
without compact factors, gives a practical criterion of the local rigidity.

Suppose the group G is Diff(M) for a compact manifold M; then we call a
homomorphism p € R(T',Diff(M)) an action of I on manifold M.

R. Zimmer [Z1] initiated a program of understanding the action of I" on compact
manifolds. The guiding philosophy is that the finite-dimensional, local rigidity
phenomena should be reflected in the context of actions on manifolds. Zimmer
raised the question of local rigidity for the action of SL(n,Z) on torus T", n > 3,
during the 1984 M.S.R.I. workshop on ergodic theory, Lie group, and geometry,
and again in his 1986 address to the I.C.M. [Z1]. Several recent results have been

obtained by Hurder, Katok-Lewis, Hurder-Katok-Lewis-Zimmer as follows.

THEOREM (HURDER[HU2]) 1.1. Let I' = SL(n,Z) or any subgroup of finite
index, n > 3. Let p; € R(T,Diff(T™)) be a continuous path based at py = the stan-
dard action by automorphisms. Then there exists a continuous path g, € Diff{T™)

such that pi(v) = gipo(7)g; " for all smallt and y € T. O

THEOREM (KATOK-LEWIS[K-L2]) 1.2. Let I' = SL(n,Z) (Sp(n,Z)) or any

subgroup of finite index, n > 4 (n > 3). Then the standard action of I' on T™
(T?") is locally rigid. O

THEOREM (HURDER-KATOK-LEWIS-ZIMMER[H-K-L-Z]) 1.3. Let
I' = SL(n,Z) or any subgroup of finite index, n > 3. Then the standard ac-
tion of ' on T" is locally rigid. O

In his paper [Z1], R. Zimmer also posted the question of whether every action

of a higher-rank lattice of a semisimple Lie group on a compact manifold, which
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preserves a smooth volume form, comes from algebra in origin; in other words,
whether or not the following examples with simple algebraic constructions exhaust
all the possibilities:
(1) Isometric actions
(2) T acts on M = H/A via p, where ' C G and A C H are lattices, with A
co-compact, and p : G — H is a homomorphism.
(3) T acts on M = H/A, where A is a (necessarily co-compact) lattice in a
nilpotent Lie group N, and T is a lattice of G, where G is a semisimple

group of automorphisms of N, such that I" preserves A.

This is the “global rigidity problem.” This question has been answered affirma-
tively in recent papers by Katok-Lewis [K-L1}, and by [H-K-L-Z] for some special

classes of lattice actions on high-dimensional tori.

THEOREM (KATOK-LEWIS [K-L1]) 1.4. Let I' be a subgroup of finite index
in SL(n,Z),n > 4, M = T", and p € R(I',Diff M)) such that
(1) there exists a fixed point; i.e., there exists zog € M such that p(vy)zo = zo
for every v € T,

(2) there exists a direct-sum decomposition of Q™ as a vector space over Q,
QC=VoWh i2Q, haQ, k+ti=n, ki1>2,

and an element \g € A = {yv € T|vV; = Vi, ¢« = 1,2} such that the

diffeomorphism p(Ag) is Anosov.

Let p, : T' — GL(n,Z) denote the homomorphism corresponding to the action on
H'(M,Z) = Z™. Then p is smoothly equivalent to the linear action corresponding
to pu; i.e., there exists a diffeomorphism h of M, homotopic to the identity, such

that p(y) = hp«(y)h™! foreveryy €. O
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THEOREM (HURDER-KATOK-LEWIS-ZIMMER [H-K-L-Z]) 1.5. Cartan actions
of higher-rank lattice T' on T™ (n > 3) are globally rigid if the invariant 1-
dimensional foliations for a suitable Abelian subgroup A C T’ are the intersections

of stable foliations for some Anosov elements. O

In [K-L1], a remarkable example has been constructed that shows that non-
algebraic lattice actions exist for lattice actions. This example serves as a coun-
terexample to the conjecture that every action of a higher-rank lattice of a semisim-
ple Lie group on a compact manifold, which preserving a smooth volume form,
should come from algebra in origin.

We remark that all the rigidity results mentioned above deal with the actions
on high-dimensional tori. Hurder, Katok, Zimmer and other authors conjectured
that the rigidity phenomena should also appear for actions on other classes of
manifolds.

Our work confirm the conjecture for a class of algebraic actions on some nilman-
ifolds, as we call them N(n,2). The nilmanifolds considered are a factor space of
2-step, free nilpotent groups associated with n-dimensional vector spaces. The re-
striction of freeness is not essential. We consider this class of nilmanifolds mainly
because we want the groups of automorphisms to be “big” groups in the sense
that they contain higher-rank lattices, as well as Anosov elements. We can con-
struct other nilmanifolds of step 2 and the same argument may produce rigidity
phenomena there.

Our main results are the following two theorems.

THEOREM A. Let I' = SL(n,Z) or any subgroup of finite index. Then the
standard diagonal-block action of T on N(n,2), n > 3, n # 4 is locally rigid. O

Our approach to the problem combines the structure theory for the lattices

in higher-rank groups, especially a theorem by Prasad and Raghunathan [Pr-R]



5

about the relation of Cartan subgroups and lattices in semisimple groups; Katok-
Lewis’s non-stationary Sternberg linearization [K-L2]; a theory of Holder contin-
uous linearization developed by Hurder-Katok-Lewis-Zimmer [H-K-L-Z]; and the
property that there exists an Abelian subgroup in I' generated by Anosov ele-
ments, which has enough 1-dimensional foliations. As a corollary of our approach,
we constructed a new class of examples of locally rigid group actions on tori. The
construction is based on some simple facts in multilinear algebras.

We also mention that we have “topological deformation rigidity” (in the sense
of Hurder, see Theorem 1, with g; being a continuous family of homeomorphisms)
of the standard action of higher-rank lattice I' on N(n, k) foralln >3, k <n —1.
Some of them are smoothly rigid. We hope we can prove the “smooth deformation
rigidity” and then local rigidity for all cases in the future.

In literature, the only deformation-rigidity phenomena are observed for higher-
rank lattices in semisimple Lie groups. We obtain the first example of the defor-

mation-rigid action of a discrete group in a Lie group, which is not even reductive.

THEOREM B. Aut(n,2) action on N(n,2) is deformation-rigid for n > 3, n #

4. 0O

The proof of this fact is based on a criterion of topological deformation rigidity
of an action by Hurder [Hu3], which reduces the question to the calculation of the
first cohomology group for the action together with the deformed action. We first
show that Aut(n,2) is generated by several copies of SL(n,Z). Then we prove
that a cocycle for the whole group action has to be a coboundary because this
cocycle, restricted to each copy of SL(n,Z), is a coboundary.

We remark that local rigidity for the rigidity of Aut(n,2) action on N(n,2)
should also be true, as conjectured by Katok. We hope to solve this problem soon.

We would like to mention that not all nilmanifolds support Anosov diffeomor-
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phisms. For example, Heisenberg nilmanifolds do not have Anosov diffeomor-
phisms. Yet, it is conjectured by Katok that some natural, higher-rank lattice

actions on such nilmanifolds should also be rigid.
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2. A Class of Nilmanifolds and Their Automorphisms

2.1 Nilmanifolds N(n,k). Let N be a Lie group and let A be a discrete
subgroup such that A'/A has a finite Haar measure. We call such a discrete
subgroup a lattice. In the case that A'/A is compact, we call the lattice uniform.

Let A : N — N be an automorphism of N/ whose restriction to A is an auto-
morphism of A. Then the automorphism A induces a map on N'//A. We call the
induced map an autormorphism of N'/A.

In previous work by Hurder [Hu2],[Hu3] and Katok, Lewis [K-L1],[K-L2], it
is clear that the existence of hyperbolicity, especially the existence of plenty of
Anosov elements plays an important role in the rigidity phenomena. We recall a
conjecture that the only compact manifolds supporting Anosov diffeomorphisms
are tori, some nilmanifolds, and some infranilmanifolds [F]. Therefore, it is natural
to ask whether the rigidity phenomena can be observed for nilmanifolds.

A connected, simply connected nilpotent Lie group may be identified with its
Lie algebra via the exponential map. The group operation is then given in terms
of the operation in the Lie algebra by the Baker-Campbell-Hausdorff formula, and
the exponential map is the identity map. We recall the Baker-Campbell-Hausdorff
formula as follows (see [V]).

Let G be a Lie algebra, let X,Y € G. We define

oo

C(X:Y)= Z en(X 1Y),

n=1
where

alX:Y)=X+Y

(X 1Y) = —;—[X,Y]

1

alE o' 7Y = -115[[)(, Y],Y] - (X, ¥], X]
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ea(X ¥) = = ¥, [ 1, Y] - g, 1% (X, Y

(n+1Dep1(X :Y) = %[X —Y,en(X : )]+

+ Y Ky Y [en(X Y[ fer,, (X Y), X + Y],

p>1,2p<n ki,...,k2p>0
ki+--+k2p=n

where K3, are some rational numbers. It is clear that when one calculates the
cn(X : Y) by the recursion formula, one finds that each c,(X : Y) is a lin-
ear combination of the commutators of the form [Z1,[Z2,]. .. [Zn-1,Zx]...]]] with
Z; € {X,Y}. Therefore, for nilpotent Lie algebra, the right-hand side of Baker-

Campbell-Hausdorff formula is a finite sum. For example, for Abelian Lie algebra
CX:Y)=X+Y;
for 2-step nilpotent Lie algebra
1
CX:Y)=X+Y + —2-[X,Y];
for 3-step nilpotent Lie algebra
1 1 1
for 4-step nilpotent Lie algebra

CX:Y)=X +Y + 3[X, Y]+ (X, ¥],Y]-
1 . 1. 1 i
- ﬁ [X,} ]’X] - ED»[X? [Xv Y]]] - 4_8.[X, [Y’ [‘X’Y]]]'

We also remark that after identification of the connected, simply connected

nilpotent Lie group with its Lie algebra, the automorphism of the Lie group and

the automorphism of the Lie algebra are the same. (see [A-S])
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Now we want to construct a nilpotent Lie algebra with the property that the
group of its automorphisms is sufficiently large.
Let V be an n-dimensional vector space over R . Let {z1,232,...2»} be a basis.

We define Ni(V) to be the k-step, free nilpotent Lie algebra associated with V
(see [A-S]). We let

Co := {[{[[zi, ;], zx], ..], 2]}

k—1brackets

and let C:= Z-span of Cy. We may also view Ni(V) as a simply connected,

connected nilpotent group. We recall an easy result.

PROPOSITION (SEE [A-S]) 2.1.1. There exists an integer m € Z such that mC

is a uniform lattice for nilpotent group N(V).

We point out that for £ = 1,2, 3,4, we may take m = 1,2,12,48, respectively.
We will denote the lattice exp(mC') by A , denote the factor space Ni(V)/A by
N(n, k), and denote the group of automorphisms of N(n, k) by Aut(n, k).

Our main objective is to investigate the group actions on N(n, k).

2.2 Automorphisms of N(n,k). Recall that A : N(n,k) — N(n,k) is an
automorphism if A induces a Lie algebra automorphism A : Ni(V) — Ni(V)
preserving the lattice group A. Namely, A is a linear-space automorphism pre-
serving the bracket operation and A(A) = A. The following proposition gives a

full description of what an automorphism of N(n, k) should look like.

PROPOSITION 2.2.1.

([ AP 0o 0o ... 0 1
A a4 o0 ... 0
Aut(n, k) ={ | A AP 4® o 3

(0) (1) & (k=
\ Ak—-l Ak—2 Ak—s Af, .

/
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where AS” € SL(n,2),A® € Mn; x n,Z), (ni = dimV® =
dim L[[[V, ol ]Vl) can be any matrices, and Agl) is determined by AS-O) for

i brackets

J <t by the formula Alv,w] = [Av, Aw]. When AEI) = 0 for 1 > 1, the automor-

phism is said to be in diagonal block.

PROOF. Take A € Aut(n,k); A is lower block-triangular because VD@ V(i+l g
... ® V(=1 is invariant under A. A straightforward computation shows that AEI)

is determined by Ag-o), i€ O

We next establish the fact that all “rational points” are actually periodic points

for the automorphisms.

LEMMA 2.2.2. Let A € Aut(n,k), ¢ € Ni(n) be a rational point with respect
to a basis chosen from Cy; i.e., under that basis, © = (1;—1, ;’—:, ceny qu%) Let the least
common multiple of ¢;s be q. Let m be the constant that appeared in Theofem
2.1.1. Then there exists a positive integer t, such that A'(z) = z 4+ gm?z, 2z =

(21,...,2n) € Z". In other words, the point x considered as a point on N(n,k) is

a periodic point for A.

PROOF. In fact, the orbit of %7 under A" with n > 1 is finite (mod zZ™). So
there exist t; > t2 > 1 such that A‘l(-é-'%;) = At2(713%7) mod(ZY). But A as well as
A~ preserves Z", so Atl‘tz(#) = i3 mod(Z"). Therefore, our first assertion
follows.

To prove that the point z considered as a point on N(n, k) is a periodic point

for A, we notice that C(z + gm?z,—z) = Yo" | cn(x + gm?2z, —2), and also that
ci(z + gm?z, —z) = gm*z € m(Z-span of Cy);

1
er( + gm’z, —2) = 5[z + qm’z, —2] = Tmlz, —ga] € m(Z-span of Co),

so for 2-step nilmanifold the assertion is true.
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For higher-step nilmanifolds, we can prove this assertion by proving that c,(x +

gm?z,—z) € m(Z-span of Cy), using induction on n. O
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3. Anosov Elements Generate Diagonal-block

SL(n,Z) Actions and Aut(n, k) Actions

In view of Katok-Lewis [K-L1] [K-L2] (see Theorem 1.4), the existence of Anosov
elements is important to get a global rigidity result. Also, various known ap-
proaches to obtain the rigidity results use heavily the hyperbolicity of certain
elements in the groups. For a general nilmanifold, one cannot expect the existence
of an Anosov element in the group automorphisms. For example, we can prove
that any nilmanifold with dimension < 5 does not have Anosov automorphism.
Some nilmanifolds of dimension > 5, do not have an Anosov element either.

We summarize some easy facts below.

PRrROPOSITION 3.1. The following nilmanifolds do not support Anosov

Diffeomophisms:

(1) Nilmanifolds with dimension < 5 that are not tori;
(2) N(n,k) withn < k;

(3) The example constructed in [D], which has dimension 9.

PROOF. (1) is a straightforward computation because the corresponding Lie
algebras do not support Anosov diffeomorphisms that preserves a lattice.

(2) is true because any automorphisms of the nilmanifolds have eigenvalue 1.

(3) the nilpotent Lie group considered o [D] is a nine-dimensional simply con-
nected, connected group having a unipotent group as its automorphism group. It
is easy to see that it has a uniform lattice. Hence, there exists no Anosov dif-

feomorphism for any nilmanifolds obtained from the group as a factor space by a

uniform lattice. O

Nevertheless, we can prove that for our diagonal-block action, there are plenty

of Anosov elements for n > k. Actually, the diagonal-block action is a Cartan
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action when k£ = 2.

First of all, we give a definition.

DEFINITION (CARTAN ACTION) 3.2. Let A be a free Abelian group with a
given set of generators A = {v1,...,7n}. (¢,A) is a Cartan CT-action on the
manifold M if

(a) : AX M — M is a C"-action on M;

(b) each v; € A is ¢-hyperbolic and ¢(+;) has a 1-dimensional, strongest stable
foliation F°°;

(c) the tangential distributions Ef* = TF** are pairwise-transversal with their
internal direct sum E{* @ --- @ E)* 2 TM.

Let ¢ : I' x M — M be a C"-action. We say ¢ is a Cartan action if there exists
a subset of commuting elements A = {v1,...,72} C T, which generate an Abelian
subgroup A, such that the restriction of ¢ to A is a Cartan C"-action on M. We
call (¢|A,A) a Cartan subaction for ¢.

THEOREM 3.3. Diagonal-block SL(n,Z) Action on N(n,2) is a Cartan action,

ifn > 3.
PROOF. The proof of this theorem is a consequence of Theorem 5.1.5. O

It is unfortunate, however, that for any & > 2, the diagonal-block SL(n,Z)
action on N(n,k) is never a Cartan action.

Although the actions are generally not Cartan actions, they have plenty of
Anosov automorphisms. The following theorem asserts that the diagonal-block

group is actually generated by Anosov automorphisms for k < n — 1.

THEOREM 3.4. Consider SL(n,Z) as an action on N(n,k). Then SL(n,Z) is

generated by Anosov automorphisms, if n > k + 1.

This theorem is a generalization of a result in [K-L2], which states that SL(n,Z)
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as an action on T™ is generated by Anosov automorphisms. The proof, though
different from that in [K-L2], is inspired by the argument there.

We will first prove the following Lemma.

LEMMA 3.5. SL(n,Z) as a matrix group has generators A, ..., Ap, such that
each A; is hyperbolic with one eigenvalue > 1 and other eigenvalues having abso-

lute values < 1.

PROOF. We first recall that there exists a matrix A = (aij) € SL(n,Z) such
that all eigenvalues of A are positive, real numbers with only one eigenvalue A; > 1.
The remaining eigenvalues are Az, ..., A, < 1 [K-L2].

It is clear then that A' (I > 1) has one big eigenvalue A} and n — 1 small

eigenvalues. Since E;; are generators of SL(n,Z), and
E,’j — (E,’jA—lEi;l)(EijAl)7

it is clear that if we can prove that E;;A' is hyperbolic with one eigenvalue > 1
and that the rest of the eigenvalues have absolute value < 1, we are done.

We rewrite

E;;A' = E;;B ' Diag{\,..., s} B

= B(BEy;B_1)Diag{\1, ..., \n}B;
it is clear that it has the same eigenvalues as those of
Cij :=(BE;jB_1)Diag{A1,-..;An},

so we have only to prove that C;; has one eigenvalue > 1 and that the rest of

eigenvalues have absolute value < 1.

Without loss of generality, we will prove C;, has the desired property.
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Let B = (b,‘j), Eio =1+ €19, Bl = (kij); then

BElgB—lDiag{)\l, ceay )‘n}
= B(I + e12)B™'Diag{)\1,...,An}

= -+ BelgB"lDiag{)\l, ceny )\n}

biikar biikaa ... birtkan
ba1ka1  barkaz ... Dbaikan

Diag{)\,...,AL}.
bnika1 bpikaz ... bniken

We may assume that b;1k2; > 0. (Otherwise we consider B(I — e32)B~! instead;

recall that (I +ej2)™! = I —e12.) Let

fll f12 fln.

BE..B-1 fa fa2 ... fon
12 = . = . .
for faz oo fom

then f1; > 1 and

012 = BElzB—lDiag{/\l, — ,/\n}

fudl fi2dh o fiadl
fadl fa2dd o fandl

Fady Fugdd s Fanhh
Consider
Fud -3 fuek ... fedl
det(C AI) = det fadi fadi =X .. fan Al
T = . . ) .
fnl)‘ll fn2/\12 “es fnn)\il -
fir = (A/A0) f26/N) Fra( A 7203
= (AL)™ det Jfa fa2(A2 /A1) = (A/A1) ... Fan(AL/XD)
=AM . ; . .

fur Fr8/A) o fan(AL/ALY = (A/AD)
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It is an easy exercise to prove that for sufficiently large [, one of the eigenvalues

satisfies
IM/AL = ful < fa/2
or
f11/2 < A/A] < 3f11/2;
the rest of the eigenvalues satisfy
|A/AT] < fa1/2.
Furthermore, it is a straightforward calculation that those eigenvalues with

[A/AT| < f11/2 actually satisfy |A| < 1. Indeed,

fudl =2 fi2)h Fiadl
- fa1 Al fa2db =X ... fanAL
€ : . . . =
fr1 /\{ fngx\g .. f,m)\i1 —

= (=1)"(A" = AL(fu + a1 (DA + A (e2(DA" 72 + -+ + X (1/A));
suppose that 1 < |A| < (f11/2)M; then
IA™ — AL(fir + 1A+ A (e2(D)A 2 + -+ A1 (1/AD))]
> A" = (fuADX] = M (DA™ + X (e N2 + -+ MA/M))]
> A = (fu DA = Afea(?) + Ae2(D) + -+ + /A"
> 0.
We get a contradiction. O
The theorem is then a corollary of this Lemma. We remark, however, that we

do not have the diagonalizability of those Anosov generators. It is conceivable
that we should have diagonalizable, hyperbolic generators. But we cannot prove
this fact in this paper.

Remark 3.6. It is easy to prove that Aut(n,k) is generated by Anosov ele-

ments, if n > k 4+ 1. We omit the proof.
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4. Local Rigidity for Diagonal-block SL(n,Z) Actions

To prove the local rigidity for SL(n.Z) (or any subgroup of it with a finite
index) diagonal-block action, we want to utilize a powerful machinery by [H-K-L-
Z), which gives that for every finitely indexed subgroup I C SL(n.Z), the Cartan
action can be measurably linearized up to a finite covering. Therefore, we could
use the result there to conclude the rigidity of SL(n.Z) (or any subgroup of it with
finite index) diagonal-block action. We summarize the result of [H-K-L-Z] in the

following theorem suitable for our purpose.

THEOREM (HURDER, KATOK, LEWIS, ZIMMER) 4.1. Let I' C SL(n,Z) be a
subgroup of finite index; let a be a Cartan action of I' on M. Then there exists
a normal subgroup I''C T of finite index, a finite Galois covering M' — M, a lift
Z' and measurable vector fields {wy,...,wx}, kK = dimM on M', such that the
cocycle Da with respect to the framing {w,...,w} is given almost everywhere

by a representation p: I — SL(k,Z). O

Combining this theorem with the theorem in the next section, we can prove the

following theorem.

THEOREM A. The standard block action of finite indexed subgroup

I' € SL(n,Z) on N(n,2) is locally rigid, if n > 3, n # 4.

PROOF. The action we consider is a Cartan action; a small perturbation will
also be Cartan. Use the fact that we have an Abelian subgroup A4; the restricted
action is smoothly conjugate to the original linear action (see the next section).
Thus we may assume that the perturbation of the action keeps A intact. Then
the argument of the proof of Lemma 8 in [H-K-L-Z] goes through without any
modification. We conclude that the action of ' on N(n,2) is smoothly conjugate

to a linear action. O
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5. Smooth, Local Rigidity of Abelian Group A Actions

In this section, we investigate the smoothness of topological conjugacy. We will
prove that for n > 3, n # 4, topological conjugacy of the diagonal-block actions
on N(n,2) are, in fact, smooth. This fact is actually proved by showing that for

a certain Abelian group, the action is locally smoothly rigid.

5.1 Density of Exponents. Let I' C SL(n,Z) be a subgroup of finite index.
Take an Abelian subgroup A C T such that A can be diagonalized over R. The
existence of such a group was established in [R-P]. We also may assume that there
exists a splitting Cartan subgroup H of SL(n,R) and A C H° N T such that
H°/A is compact. This result was utilized in [K-L2] to prove the smoothness of

topological conjugacy. We summarize this result as a theorem below.
THEOREM 5.1.1. There exists a splitting Cartan subgroup H C SL(n,R), a
subgroup A C H° NT, such that
(1) H°/A is compact;
(2) if we denote A;(h) to be the i-th eigenvalue of h € H® (for a fixed basis
such that all h € H® are diagonal), then

AG=A X A2 X ..o X Ap) t HY > Vi(i= {(z1,22,... ,2) € R+n|z1w2...xn =1})

is an isomorphism. (Consequently, In(.) : H® — In(V}) is an isomorphism. We will
sometimes abuse the notation to say these two isomorphisms are the same and

denote them by A : H® - R = {y; +yo +... + yn = 0}).

Next, we want to prove the existence of Anosov elements in any subgroup

I' C SL(n,Z) of finite index.

LEMMA 5.1.2. If A € SL(N,Z) is diagonalizable, i.e.

A ~ diag(A1, A2y. .. 5 M),
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then as an automorphism of N(n,k), A can be diagonalized as

A~ diag(Ai, \idj, ... A2 L AR with iy +i2+ ... +in < K.

PROOF:. Let vy,vs,... ,v, be different eigenvectors for A : R® — R"; then
[[[lvi, vj],v&],...],v] spans Ni(R™), which are also eigenvectors for the induced

automorphism of N(n, k), and our assertion then is clear. 0O

Remark 5.1.3. Some A ...\ may not be eigenvalues. For example, \? is
i j & i

not an eigenvalue. But all eigenvalues of the induced automorphisms have this
form. O

We will have the existence of Anosov elements in 4 considered as a subgroup
of the group of automorphisms in the next theorem. In what follows in this
section, we will denote by A the induced automorphism on N(n, k) from a matrix

A € SL(n,Z). We will always assume that k¥ <n — 1.

THEOREM 5.1.4. There exists an element A € A such that if A, A2,... , A\, are
n different eigenvalues of A as a matrix in SL(n,Z), then X;,Aj)\j,...,
)\i‘/\;’ co Al i+ ...+ 4, < k < n—1 are positive, different from 1, dif-

ferent from one another.

PROOF. Using notation in Theorem 5.1.1, we construct an open set in R"~! as

follows. Let m be a positive integer; define

Dy, = n {t1y1 +t2y2 + ... +inyn # 0}

i 4. A+ in|<m
11,12,...,2pare not all equal

it is the complement set of finite hyperplanes. Every connected component, say
Dy, have an arbitrarily large diameter. So Dg contains a fundamental domain for
Ain Hy (view A as a lattice of R*™!, H? as R*!). So AN D # ¢. Then any

element in the intersection can be taken as 4. O
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Fix an eigenvector v for A, A as in last Theorem; v is then a common eigenvector

for all B, B € A. Denote

E(v) := {eigenvelues for all B corresponding to the eigenvector v, B € A};

we hope the following is true:

E(v) =R.

Till this writing, we can obtain only this result for N(n, k) for certain n, k. We do

not know whether it is true in general.

THEOREM 5.1.5. Let n = dim(V),k < n — 1 be the step of our nilpotent
algebra. If n # 4,6,8,...,2(k + 1), then E(v) = R for all common eigenvectors of
A(AcA).

To prove this theorem, we need two preliminary results, which have their own

interest. We state them as two propositions.

PROPOSITION 5.1.6. Let A : T® — T" be an automorphism with different
eigenvalues. Let f(\) be the characteristic polynomial of A. Let p(\) be an
irreducible factor of f(\) (over Q). Then

(1) there exists a subtorus T* such that A(T¥) = T*, and the characteristic
polynomial of A|lpx = p(\);
(2) any automorphism B such that AB = BA, satisfies B(T*) = T*.

PROOF. (2) is clear from the fact that all the eigenvalues of A are different.

To prove (1), let
F(A) = p(AM)R(X)

be a decomposition of f over Q; then we may take p(\),h(\) € Z[\]. (See, for
example, T. Hungerford [H}: Algebra, p.163, Lemma 6.13). Since p()), k() do
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not have common zeros, we obtain
(B,h) = 1.
We choose p', h' € Z[)] such that
1=p'p+h'h

(See T. Hungerford [H], p.140, Theorem 3.11 (ii) for a proof of this fact.)
Therefore,

z = p'(4)p(A)(z) + K'(A)R(A)(z)

for all + € T*. Define

Ker(p(4)) = {z : p(A)z = 0},

Ker(h(A)) = {z : h(A)z = 0}.
They are closed A-invariant subgroups, and it is clear that

Ker(p(A)) + Ker(h(A)) = T".

Let y € Ker(p(A)) N Ker(h(A)); then
y = p(A)p(A)y + k' (A)h(A)y.

Hence, from the fact that p(A)y = 0 and h(A)y = 0, we have y = 0. In other
words, Ker(p(A)) N Ker(h(A)) = 0. Therefore,

T = Ker(p(4)) & Ker(h(A)).

But then it is easy to see that the closed subgroups Ker(p(A)) and Ker(h(A))

are subtori of T™ and that they intersect transversely, and the intersection is only

one point.
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Now consider Alger(pa)) : Ker(p(A)) — Ker(p(A)), an automorphism of
Ker(p(A)), so it has integer-matrix representation for some basis. Therefore, the
characteristic polynomial () belongs to Z[)]. Since p(A|ker(p(a))) = 0, it is clear
then that the minimal polynomial of A|ger(p(4)) divides p(A). But p(A)|f(}), so
there are no multiple roots for p(A). So the minimal polynomial of A|xer(pca)) is
exactly the characteristic polynomial of A|gker(p(4)); hence, p(A)|p(A). But p(}) is

irreducible over Q, so
B(A) = p(A).
O

To state the next proposition, we need some easy facts from multilinear algebra.
We give a brief summary here. See also [N].

Let f : M — N be a linear map between vector spaces M, N, let S(M), S(N)
be the symmetric tensor algebras of M, N. Then f has a unique extension to a
homomorphism S(f) = @®Sp(f) of graded algebra S(M) = ®S,(M) to S(N) =
®Sp(N). Moreover, if my,...,m, € M, then

S(F)(my ...mp) = f(ma)... f(my).

If g : K — M is another linear map between real vector spaces K, M, then
5(f) o S(g)=S(fog)

Sp(f)o Sp(9) = Sp(fog).

It is clear then that if M = N =K :=V and f:V — V is an isomorphism, then
S(f) as well as Sp(f) is an isomorphism.

In other words, any matrix subgroup of GL(n,R) acts on S(V) as well as S,(V)

in a “standard way.”
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Let V be an n-dimensional vector space; then we may consider S(V) (Sp(V')) as
a real vector space. Fix a basis {e1,...,en} of V; then {e;; (1 < i1 < n);e 6, (1 <
i1 L ip < n)j.aie .6, (1 <4 -+ <4, <n)}is a basis for S(V), and
{eiy ... ei, (1 <43 <+ <ip <n)}isa basis of Sp(V).

Let us take a lattice generated by the integer points with respect to the chosen
basis. Then any subgroup I' of SL(n,Z) induces an action preserving the lattice.
So it factors through a toral action.

It is clear that if A is a diagonalizable subgroup, then the S(A) is also diagonaliz-
able; if A is an element in A with n different eigenvalues (A as a matrix in SL(n,Z))
A1y A2y 5 An, then Ai, Aidj, oo L APAR L AP 1< i +ip+...+in S ki 20
are all eigenvalues for S(A). For some special A as in Theorem 5.1.4, they are

positive, different from 1, different from one another.

ProrosITION 5.1.7. Let {v;,...,v,} be common eigenvectors for A as a ma-
trix subgroup of SL(n,Z). Let v be a common eigenvector for A as a subgroup of

induced, nipotent algebra automorphisms. Let v be obtained by bracket operations

from {v1,...,vn}. Then E(v) =R, if n #4,6,8,...,2k.

PROOF. We actually prove more. We will prove that for any common eigen-
vector v of Sp(A), v = vP'...v5*, E(v) = R, if every irreducible factor of the
characteristic polynomial of S,(A) has a degree > 3.

Take A as in Theorem 5.1.4; let
el €ido €. ... €Ay

be the eigenvalues of A. Take a Q-irreducible factor p(\) of the characteristic
polynomial of Sp(A). Let the corresponding invariant space be V", which has

the dimension 7 =dim(p(\)). Also let the corresponding torus be TT.
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Let

O<ny <ny <---<np <l<nf<nf<--<nh

be eigenvalues of S,(A)|yir-. It is then clear that

N P i,
S VIV INBY:
Y- if < r (because V' has dimension r).

Go back to the notation of Theorem 5.1.2; we know that
D = (N;{D_ifwe > 0NN (N;{Dijwe < 0}) # ¢
t=1 t=1

and that D is an open set of R*~. A™ € D = D is unbounded. Take a connected
domain D(A) containing A; take an unbounded side L of D(A) that does not
intersect any other sides. It is in fact a part of a hyperplane (codimension 1, affine
subspace).

Claim : If L = {3, i;-ttyt = 0}, then for all s € L — {other sides}, there exists
a neighborhood U(s) of s, and s* € U(s), such that s* belongs to ), z'j'tyt > 0;
and s~ belongs to 3, i;y: < 0.

(This is a obvious.)

The consequence of this is that A contains at least two elements AT, A™, as

automorphisms of T7, the signs of the logarithm of the ordered eigenvelues of

which differ in the following fashion:

B shsammdl T o o 55 o e
(%)
E A P S P

We claim also that if A is taken as in Theorem 5.1.2, then every 1-dimensional

eigenspace of Sp(A)|yirr project densely to T". This is because p(A) is irreducible.
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Indeed, if it is not the case, then the closure of the projection of the 1-dimensional
eigenspace of V'™ would contain an A-invariant subtorus; the characteristic poly-
nomial of the restriction of Sp(A) to that smaller torus will then divide p(}).

Now we can prove the density of E(v) in R. Otherwise, E(v) N R¥ is a in-
finite cyclic subgroup of Rt. This implies that S,(A%)"(v) = Sp(47)"(v) for
some integers m,n. Because that every 1-dimensional eigenspace of Sp(A)|yirr
projects densely to T", we know that the above identity holds for all t € T"; i.e.,
Sp(AT)*(t) = Sp(A™)™(t). this will contradict the pattern in (*).

It is clear that when n # 4,6,8,...,2k, the characteristic polynomial of
Sp(A)ls,(v) cannot have factors with a degree < 3. (This is because the con-
stant term of the polynomial has to be 1, and any product of two eigenvalues

cannot be 1.) We thus finish our proof. O

5.2 Smoothness of topological conjugacy. In this section, we will abuse
the notation not to distinguish the elements of SL(n,Z) and the induced auto-
morphisms on N(n, k).

Using Katok-Lewis’s non-stationary Sternberg linearization theorem and a sim-

ilar argument in [K-L2], we may prove the following theorem.
THEOREM 5.2.1. A action on N(n,2) is locally rigid, if n # 4, n > 3.

COROLLARY 5.2.2. Topological conjugacies for small perturbations of group

actions I' on N(n,2) are smooth as long as I' contains a Cartan subgroup A as in

Theorem 5.1.2.

We are going to follow the idea in [K-L2] to prove the local rigidity of the A
action on N(n,2). First of all, we give a proposition that provides simultaneous
diagonalization of a small perturbation of the A action. The same result for the

action on torus is essentially given by [Pa-Y], which is utilized in [K-L2]; their result
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is a little bit stronger than ours, but for the purpose of proving local rigidity, the

result below is sufficient. We will modify their argument to fit our situation.

PROPOSITION 5.2.3. Let A be an Abelian subgroup of SL(n,Z) acting on
N(n,k) with n > k+ 1. Assume that there exists an Anosov element A in A. Let
p(A) be a small perturbation of the action such that there exists a conjugacy f
(close to identity) between A and p(A). If the perturbation is small enough, then

f is a conjugacy between all B € A and p(B).

PROOF. Since
Fo(A)f = 4,
we have :
7 p(A)p(B)f = Af~'p(B)f

for all B € A. Let us fix ng generators Aj, Az,...,A,, for A; fix a Remannian

metric d on N(n, k). Assume that the perturbation is so small that
d(A7 71 p(4i)f (), ) < co,
where ¢p is the expansive constant for A. From

Fo(Adp(Af = f7 p(A)f A,
we obtain
AAT T p(ANf = AT F p(Ad) FA.
Let C; := A7 f~'p(4;)f; then
d(Ci(z),z) < co

for all x € N(n,k — 1); hence

d(A™(Ci(2)), A™(z)) = d(Ci(A™(2)), A™ () < co
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for all x € N(n,k — 1) and m € Z. This forces

Cilz) == z.
So
ATV (AN = idN (e
hence,
Ai = [ p(Ai)f.
0

REMARK. Our argument here has the advantage that we actually can prove
more; i.e., we can prove that for any finitely generated, discrete Abelian group
action on a compact manifold with one expansive element, a small conjugacy of
this element is the conjugacy of the action.

Now we will apply Katok-Lewis’s Non-stationary Sternberg Lineariza;cion The-

orem [K-L2] to conclude that the conjugacy is actually smooth along the 1-

dimensional foliations.

THEOREM(KATOK-LEWIS’ NON-STATIONARY STERNBERG LINEARIZATION)
5.2.4. Let M be a compact manifold, L = M x R, the trivial. real line bundle over
M, and let

F:L - L, (z,t) — (f(z), F:(2)),
with F, a C* diffeomorphism of R for each v € M ; satisfy

(1) F3(0) = 0 for every « € M (F preserves the zero section);
(2) 0< F] <1 forevery z € M,t € R, and
(3) =z — F; is a continuous map M — C*®(R).

Then there exists a unique reparameterization

G:L— L, (z,y) = (z,G(1)),
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such that

(1) each G; is a C*° diffeomorphism of R;
(2) Gz(0) =0, G,(0) =1 for every z € M;
(3) ¢ — G, is a continuous map M — C*(R), and

(4) GFG™1(z,t) = (f(z), FL(0)t) for every z € M, t € R.

Fix an A € A, such that all the eigenvalues of A as an automorphism of N(n, k)
are different. Fix a 1-dimensional foliation F of N(n,2) corresponding to an
eigenvector v of A; hence v is a common eigenvector for 4. Hence the 1-dimensional
foliation F of N(n,2) is an invariant foliation for A. It will be proved in Lemma
5.2.5 that this 1-dimensional foliation is the intersection of several stable foliations
for some Anosov automorphisms. As an important corollary of this lemma, if we
take a small perturbation of the action A on N(n,2), then the foliation F persists,
and also the individual leaf of the perturbed foliation F' is C'* manifold. The
perturbed foliation F' is Holder foliation and varies continuously (because the
foliation is strong stable foliation for some Anosov element, then the results follow
from [B-P],[Sh]). The topological conjugacy f as in Proposition 5.2.3 carries the
leaves of F to those of F'.

LEMMA 5.2.5. The 1-dimensional foliation F of N(n,2) with n > 3 is the
intersection of several stable foliations for some Anosov automorphisms in A of

N(n,2). The action of A on N(n,2) is a Cartan action.

PROOF. It is clear that leaves of F are the images under 7 of lines in the univer-
sal covering RN of N(n, 2) parallel to vy, which is the eigenvector corresponding to
the eigenvalue A. Therefore, it is sufficient to prove that in the universal cover, or
in the Lie algebra considered as a linear vector space over R, every 1-dimensional,

common eigenspace space of A4 is the intersection of several stable vector spaces
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of Anosov elements in A.

Let the Lie algebra g be associated with n-dimensional vector space V. Let
A have n-different, common 1-dimensional eigenspaces. Take an ordered basis
{v1,...,vn}; each v; generates an eigenspace.

It is clear that all 1-dimensional, common eigenspaces of A are generated by
vt [yl ford, 5,k =2,...,8, ] & k.

We first show that v; is the intersection of several stable manifolds of Anosov
elements in Aut(n,2). Without loss of generality, we let ¢ = 1. Take A € A such
that as a matrix in SL(n,Z), it has one eigenvalue (corresponding to eigenvector
v1) A1 < 1, and other eigenvalues (corresponding to eigenvectors v;) A\; > 1. In

other words, A has ordered eigenvalues Ay, ..., Ay, satisfying
O< M <l< Ay t#1

Therefore, the stable vector space W*(A) for A as an automorphism on g is

spanned by v1;[v1,v2],...,[v1,vn]. Next, we take A’ € A such that as a matrix in

SL(n,Z), A’ has ordered eigenvalues A}, A}, ..., A, satisfying
O M MLl A, 14 1,2

The existence of such A’ is a corollary of Theorem 5.1.1. We may assume also
that AbA: > 1,M] AL < 1, 7 # 1,2, (For example, we may consider AP(A')? to be
our new A'.) Hence, the stable vector space W*(A') for A as an automorphism
on g is spanned by vi,v2;[v1,v2],...,[v1,vs]. Similarly, we may find B € A, such
that the stable vector space W*(B) for B as an automorphism on g is spanned
by v1,v2; [v2,v1), [v2,vs],. .., [v2,vn]. So W (A) N W?*(A") N W*(B) is spanned by
v1, [v1,v2]. The same argument may imply that the space spanned by vy, [vy,v3] is

the intersection of some stable vector spaces for some elements in .A. So the space
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spanned by v; is the intersection of some stable vector spaces for some elements
in A.

Neit, we will show that [v;,v;], ¢ # j is the intersection of several stable
manifolds of Anosov elements in Aut(n,2). Without loss of generality, we let
i =1,j = 2. We already know that the space spanned by v1; [v1,v2],. .., [v1,vn] is
the stable vector space W*(A) for some A € A. Similarly, the space spanned by
v2; [ve,v1], [v2,v3],. .., [v2,vs] is the stable vector space W*(C) for some C € A.
So the space spanned by [v1,v2] is the intersection of several stable vector spaces

of Anosov elements in Aut(n,2).

The other statement in the lemma is clear. O

The leaves of both F and F’ inherit natural Riemannian metrics as submanifolds
of N(n,2). Let vy be the vector in g that determines F. For each z € N(n,2),
let ¢, : R — F(z) denote the arc-length parameterization based at z, oriented
so that vy points in the positive direction; i.e., ¢,(0) = z, the distance along
F(z) between z and ¢,(t) € F(z) is ¢, and (vx, (¢z)«(d/dt)) > 0 (standard inner
product on T;(N(n,2)) = RY). Define ¢, : R — F(z) similarly, oriented so that
5}:(12) o fo ¢, :R— Ris an orientation-preserving homeomorphism.

Recall that a family {W,};em of k-dimensional C*° submanifolds of M is said
to vary continuously if for each x € M there exists a neighborhood U of z in M and
a continuous map ¢ : M — C*°(D¥, M) such that ¢, maps D* diffeomorphically
onto a neighborhood centered at z in W,, where D* denotes the unit disk in R¥. It
is well-known (see Shub [Sh]) that the strong, stable foliation varies continuously.

By construction, ¢; : R — F(z) and ax : R — F are diffeomorphisms for
every r € N(n,2). Let £ x R denote the trivial line bundle over N(n,2). It
follows easily from the continuous varying of the two foliations that ¢ : £ —

N(n,2),(z,t) — ¢.(t) and ¢ : L — N(n,2),(z,t) — ¢4(t) are continuous, and
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that & +— ¢,, & — @, are continuous maps N(n,2) — C=®(R, N(n,2)).
Let f = p(A) €Diff(N(n,2)). Extend f and h to transformations on £ in the

obvious way
F:L L, (z,t)— (f(z), F:(t))

and

H:L— L, (z,t) — (h(z), H(t)),

so that
(F(2,)) = f($(2,1)) and §(H(z,1)) = h(6(z,1)).
Then F and H are continuous, F; € C®(R) for each z € N(n,2), 0 < F (t) <1
for every z € N(n,2), t € R, and z — F} is a continuous map N(n,2) — C>®(R).
In fact, F,(t) is the length between f(z) and f(¢-(%)).
Next we will show that H, € C*°(R)and z — H, are continuous. The argument

is identical to that of [K-L2]. For the sake of completeness, we will repeat the

argument below. And also we remark that this is the only place that we need the

density of the exponents.

By Theorem 5.2.4, there exists a unique continuous linearization
G:L— L, (z,t) — (z,G(t))

such that
(1) Gy € C=(R) with G%(0) = 1 for every = € N(n,2);
(2) N(n,2) = C*(R), x — G, is continuous;
(3) GFG~Y(z,t) = (f(z), FL(0)t) for every z € N(n,2) and t € R.
LEMMA 5.2.6. Suppose that p € N(n,2) is rational (hence a periodic point for

the standard action of every element the BSL(n,Z)). Then Gp(,y0 Hp|g+ : RT —

R* has the form Ghr(p) © Hy(t) = cpt”? for some cp, v, > 0.
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PROOF. Since A is Abelian, it follows from the uniqueness of G that G simulta-
neously linearizes the transformations on £ corresponding to p(A) for each A € A.
From the fact that the eigenvalue set E(v) is dense in R, we can find B,C € A
such that Ay (B) = 3,A,(C) = v with 8,7 > 1, such that (3,7 generate a dense
subgroup in R*. By replacing B and C with appropriate powers, we may assume

that p is a fixed point for the action of both B and C.

Let r = p(B),s = p(C), and define corresponding R, S : L — L as before, so
that gR — r$ and 55 = 35. Then

GRG™(z,t) = (r(z), Bz t), GSG ™ (z,t) = (s(z), Fst),
where 8, = R.(0), ¥, = S.(0). In particular, since h(p) is fixed by r and s,
Ghp) © Ra(p) = BGh(p) and Gip) © Ship) = TC(p)»
with B = Bh(p),¥ = Tn(p)- Also, since h intertwines p and the standard action,
Ri(p) 0 Hp(t) = Hy(Bt) and Sp(py 0 Hy(t) = Hy(7t).

Let

= Gh(p) 0 Hpla+ : RT —» RT.
Then we have shown that for every t € R,
$(Bt) = B(t) and (7t) = Fo(2).

By construction, ¥ is an orientation-preserving homeomorphism.

Let ¢ = 9(1). Then ¥(8*y') = ¢3*F! for every k,! € Z. Hence,

(857" |k,1 € Z} = {B*F'|k, 1 € Z}, B*4' — B*¥!
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is an order-preserving, continuous map between these two subsets of RT. If we

denote ,Bv = B and ¥ = 4“2, then it is easy to see that a; = ap := v. Hence
P(t) = ct” for every t € {B*~'}.

But this set is dense in Rt and 1 is continuous; hence () = ct” for every 8 € R.

O

Now for each € N(n,2), set ¢ = Gp(y)0 Hz|r : I — R*, I =[0,1]. Since I is
compact and GoH | n(n,2)x1 is continuous, it follows that N(n,2) — C°(I), z +— 2,
is continuous with respect to the uniform topology on C°(I). But ¢,(t) = cpt, for
a dense set of p € N(n,2), and v, = Eﬁ-%:-, which is continuous in p on a dense
subset, so p — ¢,, and p — v, must extend to continuous functions N(n,2) — R¥
such that ¥;(t) = cyt*= for every ¢ € N(n,2). An entirely analogous argument
works with —I = [—1,0] in place of I and R~ in place of R*. Also, we can replace

I with any compact interval [0, 7.

Thus, we have proved the following;:

LEMMA 5.2.7. There exist continuous functions c*,v* : N(n,2) — Rt such

that for every z € N(n,2), Gp(y) 0 H; : R — R has the form
vt
Ghiay 0 Ha(t) = { c_zctmy; ig

Now for each z € N(n,2), Gp(z)0 H; is smooth away from 0, and Gp(;) is a C*®
diffeomorphism; hence H, is smooth away from 0. But ¢ maps N(n,2)x (R —{0})
onto N(n,2), so this implies that h is C* along each leaf of F; more precisely,
hlx(z) : F(z) — F(h(z)) is C* for every z € N(n,2). Thus, Gj(z) o H; must be
smooth at 0. So ¢} = ¢, and v} = v, =1 for every z € N(n,2). We have shown

that  — Gj(;)0H; defines a continuous map N(n,2) — C°°(R). The same is true

for z — Gp(z), and each Gy ;) is a diffeomorphism. Since the diffeomorphisms of
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R form a topological group with respect to the subspace topology inherited from
C*=(R), we conclude that N(n,2) —» C®°(R), z — H,; = G;(lz) o (Gp(z) 0 Hs) is
continuous.

Now we get the result that the conjugacy h is smooth along all the 1-dimensional
foliations that are invariant foliations for the action of the group A. Recall that
the foliations are strong, stable foliations for some Anosov elements, so they are
Holder foliations (see, for example, [B-P]).

An application of Journé’s theorem [J] (see also [K-L2]), which is again an

identical argument as in [K-L2], implies that the conjugacy h is smooth.
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6. Deformation Rigidity of Group Actions

6.1 Topological and Smooth Deformation Rigidity of Diagonal-block
SL(n,Z) Action. We will first mention that SL(n,Z) action on N(n,k) for n >
3, k < n—1 is topologically deformation-rigid. This follows from a general result
in [Hu3]. This, together with a general philosophy that a topological conjugacy for
a large group should be a smooth conjugacy, support the conjecture that SL(n,Z)
action on N(n, k) is smoothly deformation-rigid. In this writing, we cannot confirm
it for £ > 3. The smooth deformation rigidity for k = 2,n > 3,n # 4 is a corollary
of Theorem A.

First let us give some definitions that first appeared in [Hu3]. Let I' be a
finitely generated group, X a compact Riemannian manifold without boundary
and ¢ : I' x X — X a smooth action. A deformation of action ¢ is a continuous

1-parameter family of smooth actions
{#¢:+: Tx X - X|0<t <1},

so that ¢¢ = ¢.
Fix a set of generators {61,...,6a4} of I'. For € > 0, an e-perturbation of ¢ is an
action ¢; : I' x X — X such that for each generator §;, the diffeomorphism ¢,(6;)

of X is e-close to ¢(6;). So for a fixed deformation of ¢ and sufficiently small ¢ > 0,

¢+ gives an e-perturbation of ¢.

DEFINITION 6.1.1. An action ¢ is topologically deformation-rigid if for any
deformation {¢;} of the action @, there exists an ¢ > 0, and a continuous I-

parameter family of homeomorphisms H, : X — X, such that

H' o ¢u(v) 0 Hy = ¢(7)

Hy = Idx
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for any v € T and 0 < t < ¢. In case that H, are diffeomorphisms, we say the

action ¢ is smoothly deformation-rigid or simply deformation-rigid.

The approach to attack the deformation rigidity utilizes the theory of Stowe [St],
where a criterion is given for the persistence of a fixed point of a group action.

Let T act on a manifold M (denote the action by «), and p € M be a fixed
point for the action. Let ag be the induced linear action on T, M, the tangent
space to M at p. We denote by H'(T', T, M) the ordinary group cohomology with

coefficients in this representation.

PROPOSITION 6.1.2. If H}(T',T, M) = 0, then p is stable under perturbation
of a; i.e., given any neighborhood U of p € M, there exists a neighborhood V' of
a € R(T,Diff'(M)), such that each 8 € V has a fixed point in U.

In light of this result, and also given that our SL(n,Z) action has dense periodic
points, if the dense set of periodic points persists, then the topological conjugacy
is defined by sending periodic points to the perturbed periodic points. To carry

out this idea, we need several definitions [Hu3], and also a cohomology-vanishing

theorem of Margulis [M1].

DEFINITION 6.1.3. Let E be a finite dimensional, real vector space, Ta finitely

generated group.
A representation p : I s GL(E) is infinitesimally rigid if

(1) the linear action of p(I') on E has 0 as the unique fixed point;

(2) the first cohomology group of T' with coefficients in the I-module E is
trivial; i.e., HY(T, E,) = 0.

A representation p: T' — GL(E) is strongly infinitesimally rigid if

(1) the linear action of p(f) on E is hyperbolic for some v € T;
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(2) for all e-perturbation p of action p, the first cohomology group of T with

coefficients in the I'-module E is trivial; i.e., H? (f, Ez) =0.

The strong infinitesimally rigid action is clearly stable under small perturbation

and the perturbed action is also infinitesimally rigid.

DEFINITION 6.1.4. An action ¢ of I’ on X is (strongly) infinitesimally rigid at

a periodic point ¢ € A if the isotropy representation
pr =Dy¢:T; - GL(T, X)

is (strongly) infinitesimally rigid.

The following theorem of Hurder gives a criterion for the topological rigidity of
a group action.

THEOREM (HURDER [HU3]) 6.1.5. Let ¢ be an Anosov action such that

(1) the periodic points A are dense in X;

(2) ¢ is strongly infinitesimally rigid at each periodic point z € A.
Then ¢ is topologically deformation-rigid.

From this theorem, the proof of the topological rigidity of our SL(n,Z) action
reduces to the proof of the density of periodic points and the strongly infinites-
imally rigid at each periodic point z € A. The first is the consequence that all

rational points are periodic points (see Lemma 2.2.2), and the second is the con-

sequence of a powerful theorem of Margulis [M1], see also [Hu3].

THEOREM (MARGULIS) 6.1.6. Let I' C G be an irreducible lattice in a con-
nected, semisimple algebraic R-group of higher rank, G, and assume that G}
has no compact factors. Then H! (P,]RQ’ ) = 0 for every representation p : I' —

GL(N,R),N > 1.

Combining the results above and those in Section 5, we obtain
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THEOREM 6.1.7. Let I' = SL(n,Z) or any subgroup of finite index. Then the
action of I' on N(n, k) is topologically deformation-rigid for k <n—1,n > 3. If

k = 2, the action is smoothly deformation-rigid for n = 3,and # 4.

6.2 Deformation Rigidity of Aut(n,2) Action. We now consider the whole
automorphism group action on N(n,2). Recall that a criterion of Hurder (Theorem
6.1.5) reduces the question to the calculation of the first group cohomology. We

therefore introduce some easy facts about the first group cohomology.

LEMMA 6.2.1. Let p : ' - GL(N,R) be a homomorphism, I'y be a finitely-
indexed subgroup of I', and H(T'y, p|r,) = 0. Let p(I') be generated by Anosov
automorphisms p(v11), ..., p(vk). Then H}(T, p) = 0.

PROOF. Let ¢ : ' — R™ be a cocycle; then f|r, is a coboundary by the

assumption; i.e., there exists an element v € R, such that for all v € T'y,

f(v) =v—=p(7)v.

Let 47 € I';. Since f is a cocycle, we have

FOP) = f(w) + p(vi) fF(2 )

= (I +p(w) + -+ p(VF N F ().

Because vf € 'y, we have

f()=v—p()
= (I = p(vi))I + p(3:) + -+ + p(? ™)),

and also since

det(I — p(7})) # O,
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we obtain
det(I + p(yi) + -+ p(77 7)) # 0.
Therefore,
f(ri) = v —p(ri)o.

Now for any v € T, v can be expressed as

st T

Since f is a cocycle, we obtain that

f(r) = v — p(7)v.
O

It is clear that this Lemma can be strengthened; e.g., we may assume that p(T")

is generated by I'y together with some matrices that do not have eigenvalues of

roots of unity. But we are satisfied with the weaker form of Lemma 6.2.1. We

define I'y, = {y € T : ¥ = I(mod m)} for any group I' C GL(N,R). We have the

following result.

LEMMA 6.2.2. Let T = Aut(n,2), BSL(n,Z) the diagonal copy of SL(n,Z).

Then 'y, = Ny BSL(n,Z)m, where N = {(]\IJ (;) : M is the integer matrix}.

PROOF. It is a straightforward calculation. [

COROLLARY 6.2.3. 'y, = Aut(n,2),, is generated by ( - 0) and
mE;; I
BSL(1, Z

PROOF. It is obvious. O
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LEMMA 6.2.4. Let I' = Aut(n,2). Then I',, is generated by Anosov elements.

PROOF. We first prove that BSL(n,Z), is generated by Anosov elements by

an argument similar to Theorem 3.4; then our result follows easily. O

In the next several Lemmas, we will prove that the first cohomology of
Aut(n,2),, is trivial for each m. The approach is simple. We first show that
the whole group Aut(n,2),, is generated (up to the finite index) by several sub-
groups with vanishing cohomologies; then we use these data to show that the first
cohomology of the group Aut(n,2),, itself vanishes.

For the sake of transparency, we first prove the statement for n = 3. We will

assume that I' = Aut(3,2) for Lemma 6.2.5-Lemma 6.2.9.

I 0\ ™! I 0
LEMMA 6.2.5. 'z C I m2) =< (mEn _r) BL{8s 2 )en <mE11 I) ’

Nt

I o\’ I
mE12 I) SL(3’Z)m(mE12

~

&
mE21 I

(
(
(ke
(
(

3
ng
[#+]
NGO ~NO NO ~NO ~NO

N N S N’

0
I
I 0 I
mE32 I SL(?), Z)m mE;ss ’
I o\ I
" I) SL(3,Z)m B >CIlnm
1 00
PROOF. Take A= | m 1 1 |;then the induced automorphism A’ on [V, V]
0 01

- o O

0
1
m

oo -

will be (

) . A straightforward calculation gives

I 0\ '/A o0 I 0\ _ I 0
mE12 I 0 AI mE12 I - —‘I’anll I)-
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Similarly, we may get ( € 0) in this way by changing A, and using suit-
~m*Ey I

able E = ( £ (}) that appeared in the formula:

mEst

To get (—ngIZ 9-), we use A = (((1; Tg ?1)), E = (méu ?>,

To get (——ng13 ?),weuseA: (é El; T(?),E: (mlIgss (}),

To get (ngm (I))’ we use A = (n(l)l ?1) g), E = (mém 2>,

To get (mZIEn g),we use A = (é :1; g), E = (ml{?zg g),

To get (-—ngzs ?), we use A = (é g T(;)L), E = (mém ?)»

To get (—m£E31 (I))’ we use A = (%z ((lj §) , E = (mé” ?),

To get (—mj;Ew (}), we use A = (é :1:1 §), H = (mé‘% ?),

To get (_ng% (}), we use A = ((1(; :1:1 %),E == (mlIa'sz (}) a

COROLLARY 6.2.6. If H}(T'(;;; m2),R®) = 0, then H'(T'rn,R®) = 0.

PROOF. Since 'z C I'(m,m2) C I'm, it is clear that I, ,»2) is a finitely indexed

subgroup of I'y,.

Recall that I',, is generated by Anosov elements; our result then follows. O

Next we want to prove that Hl(I‘(m,mz),RG) = 0. We need some facts about

the intersections of those copies of BSL(3,2), with BSL(3,2),, itself.
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LEMMA 6.2.7. If A = (

ae—bd af —de bf —ce
A'=|ah—-bg ai—cg bi—ch |.

dh—eg di— fg et— fh

Q@ af
> 0 o

c
f) , then the induced action on [R?® R®] is
2

PROOF. It is a straightforward calculation. [
LEMMA 6.2.8. For all integers b,c,d, f, g, h,

1 0 O I 0 - I 0
nz)d (1) rr;f E(mEH I) BSL(3,Z),,,(mE11 I)ﬂBS’L(3,Z)m;

1 mb mec -1
o 1 o |e( L %) Bsraz). -
0 1 mE12 I

I) NBSL(3,Z)m;

N BSL(3,2)m;

N BSL(3,Z)m;

N BSL(3,Z)m.

o 1)
) )

I )(mE )™ bsz(s, 2 (m L %) amsiazm
(b 7)

1 0 0 I 0
md (1) mf | € (mE33 I) BSL(3,Z)m
PROOF. Let us prove the first formula.

Let A € SL(3,Z); then (‘3 X,) € BSL(3,Z). So

I 0\ (4 0 I 0\ _ A 0
mEu I 0 A' mEu I - —-mEnA + mA'E11 A' ’

Therefore,

I o\ '[/4 o0 I 0
(mE11 I) (0 A') (mE11 I)EBSL(&Z)
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if and only if
—mE11 A+ mAIEu =),

a b ¢ ae—bd 0 O
0 0 0)J=|ah—-0bg 0 O}.
0 0 0 dh—eg 0 O

Then what is left is a straightforward calculation. O

This condition forces

Having had these Lemmas in hand, we are in a position to prove the vanishing

of the first cohomology of H!(I'(;n, m2), R®).
PROPOSITION 6.2.9. H'(T(1,m2), R%) = 0.

PROOF. Let f : I'(;n,m2) — R® be a cocycle. By a theorem of Margulis,

=
I 0 ] 0
fIBSL(3,Z) as well as f| (mEij I) BSL(3,Z) (mEi]‘ I) are cobound-

aries.

Let

FIBSL(3,Z)(v) = v — p(7)v,

Ak 3) Bz (5. %)@ =ws = sy

mE;;
We want to prove that
Vij =V

for all ¢, j.
For example, let us show that v,; = v.

In fact,

1 0 O
Yo, = | md 1 mf
0 0 1

I o\ I 0
e( I) BSL(s.,Z)m<mE11 I)nBSL(s,Z)m,

mE;
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hence, v — p(74,5)v = v11 — p(74,5)v11, oOr

v —v11 = p(7d,5 (v — v11).

This is to say that (v — v1;) is a common eigenvalue for all p(v4,5) with d, f € Z
corresponding to eigenvalue 1.
Let

v —vyy = (wgu),wgu),wgn), ﬁll),wgll),wén))t;

notice that

(1) NEEY
1 0 0 0 0 0 (“’(m\ ( (U)\
md 1 mf 0 0 O
0 0 1 0 0 0 (“) (”)
P8 s)v—vu)=| o 4 0 1 mf 0 (11) = (11) ;
0 0 0 O 1 o (11) (11)
0 0 0 0 md 1

o) \ufm)

(11) \ ( (11)\
mdwgll) + 5 (11) +mf (11) (11)
(11) (11)

(ll)+mf (11) - (11)

(11) (11)
\ mdw511) + w(n) J \ (11))

for all f,d € Z; it forces wgn) = wgn) = wgu) = 0,

we have that

Therefore,
v — o1 = (0,030,200, w{)t.

Similar consideration yields

12 (12)
v — vy = (w;%,0,0,w, 5 B0

(12) O)t
v —vg1 = (0,0, wgn) 0,w (21) ézl))t
U — U3 = (w§23), 0,0, wgzs), w523))t

v —v32 = (0,0, wgaz) wisz)’ w§,32),0)‘

v —v33 = (0, wgss)’ 0, w‘(fs), 0, wé33))‘.
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Let us then show that w;;j =0 for all 4,5,k = 1,2,3. For example, w}' = 0.

Consider

I o\ I 0
Gl'—(mEn I) BSL(3,Z)m<mEn I)

-1
I 0 I 0),
”(mEu .r) BSL(S,Z)m<mE12 I),

a straightforward calculation shows that

B 0
(——mElzB + mB'E12 BI> e Gl

with
1+ ma mb me
4¥ = md 1+me mf
0 0 1
and
1 (1+ma)(mf) — (md)(mc) (mb)(mf))
B =1|0 1+ ma mb .
0 md 14+ me

such that the following conditions are satisfied:

(1 + ma)(1 + me) — (mb)(md) =1
l1+ma—-—md=1

1+me—mc=1,

f=e,
1+mk —-mk ml
(For example, B = mk 1 —mk ml |). Given this fact, together with a
similar argument for the (:a,ssertionoof the 1possible forms of v — v;;, we conclude
that
v11 — v12 = (0,0, O,wi1 - wiz,O, 0)t,
and

e . . . S -
Wy =wg =w;° =wy” =0.
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To conclude that w}' = 0, we may consider
—q
I 0 I 0
0 e (mEn I) BSL(3,Z)m (mEn I)

I o\ I 0
n(mE21 I) BSL(3,Z)m(mE21 I)

and do the same analysis.
A similar argument can be used to prove that w;;j = 0 for other ¢, 7,k € Z.
This proves that when f is restricted to the specified copies of BSL(3,2), we
get f(v) = v — p(y)v. But our original group is generated by these copies; this

proves that f is a cocycle. O

To prove the vanishing for general n > 3 with the coefficient in the standard

representation pg, the argument we had goes through. So we have

PROPOSITION 6.2.10. H}(I';,,RY) = 0 for T = Aut(N(2,n)), dim(N(2,n)) =
N.

To prove that the action pg is strongly infinitesimally rigid, we need to prove
that the first cohomologies are also vanishing for the coefficient in the perturbed

representation.

PROPOSITION 6.2.11. HY(T(;n,m2),pt) = 0 hence H'(T'm,p:) = 0 for suffi-

ciently smallt and n > 3,n # 4.

PROOF. Recall that the diagonal-block action is locally rigid. Hence for suf-
ficiently small ¢, pt|BsL(n,z) = ht_lpoh, with h; smoothly close to identity. It is

clear that other copies of SL(n,Z) also act on the manifold in a locally rigid way,

so pt I 0\~* I 5% = hijt_lp()hijt with h;;, smoothly close
(mEij I) RRES (mEij I)

to identity.

We may go over the proof of Proposition 6.2.9 again with necessary modification,

which gives the proof of this proposition. O
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Now we are ready to prove the deformation rigidity for the Aut(n,2) action on

the nilmanifold.

THEOREM 6.2.12. Aut(n,2) actions on nilmanifold N(n,2) are smoothly

deformation-rigid if n =3, n =5,6,....

PROOF. The proof of this theorem uses a criterion of [Hu3]. See Theorem
6.1.5. The only thing needing proof is that Aut(n,2), (which is the subgroup of
the Aut(n,2) fixing point z € N(n,2)) contains Aut(n,2), for z, a rational point,

and for some integer m. But it is clear. O

Remark 6.2.13. It is easy to show that for any finitely indexed subgroup
T' C Aut(n,?2), the action of T on N(n,2) (with n > 3,n # 4) is also smoothly
deformation-rigid. We will sketch the argument below.

(1) TN BSL(n,Z) is a finitely indexed subgroup of BSL(n,Z). Indeed, for all
A € BSL(n,Z), A? € T for d =the index.

(2) The same reason implies that TN UN(UN := {(]\{I (I)) }) is a finitely

indexed subgroup of UN.
So we will have the following.

(3) There exists an m such that
BSL(n,Z)m CT.
(4) There exists an m' such that
UNpwr € L

Therefore, we have Aut(n,2)mm' C I'. The computation of cohomologies goes

through. So we will have smooth deformation rigidity. O
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7. New Examples of Cartan Actions and Other Anosov

Actions on Tori and Limitation of Our Method

In this section, we will give a complete list of linear SL(n,Z) actions on tori for
fixed n. Among them, Cartan actions and Anosov actions are specified; also, the
actions with “complete 1-dimensional splitting foliations” are singled out. Using
the local rigidity theorem for Cartan actions in [H-K-L-Z], we then have a number
of locally rigid SL(n,Z) actions on tori. These examples are new; the construction
is natural and simple. V. Nitica informed me of the classical results about Young

tableaux and a recent survey. I thank him for his generous help.

We remark that the examples of higher-rank actions on tori appearing in the
literature are SL(n,Z) actions on T™ (locally rigid if n > 3), Sp(n,Z) actions on
T?" (locally rigid if n > 2), and also Hurder’s examples using the trick of A. Weil,
i.e.,“restriction of scales.” The latter examples can be described as follows. Take
an algebraic number field k of degree d over Q; let O(k) be the ring of integers for
the field and let SL(n,O(k)) be the subgroup of SL(n,k) with the entries from

O(k). Then take any I' C SL(n,O(k)); there exists an analytic “standard ” action
of T on T4".

In our list, the Cartan actions are those obtained from exterior tensor product
representations; the Anosov actions are those obtained from decomposing the k-
fold tensor product representations into irreducible ones with k # 0(modn); the
actions with “complete 1-dimensional splitting foliations” are those obtained from

symmetric tensor representations.

Let us first look at some examples. Instead of considering the automorphisms on
free k-step nilpotent algebra (we remark that the construction of automorphisms
of the free, k-step, nilpotent Lie algebra also gives the automorphisms of vector-

space automorphisms and hence may factor through to toral automorphisms) we
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consider the automorphisms on the exterior algebra E(V') of a real vector space
V. We first quote some basic facts from the theory of exterior algebra. (See D. G.
Northcott: Multilinear Algebra [N] for a detailed treatment. For our purpose we
will assume all modules in [N] to be real vector spaces).

Let f : M — N be alinear map between vector spaces M, N, let E(M), E(N) be
the exterior algebras. Then f has a unique extension to a homomorphism E(f) =
®E,(f) of graded algebra E(M) = ®E,(M) to E(N) = @E,(N). Moreover, if

my,...,my € M, then

E(f)(mi A--- Amp) = f(m1) A=+ A f(mp).

If g: K — M is another linear map between real vector spaces Ii, M, then
E(f)o E(g)=E(fog)

Ep(f) o Ep(g) = Ep(f 0 9).

It is clear then that if M = N = K :=V and f: V — V is an isomorphism, then
E(f) as well as E,(f) is an isomorphisms.

In other words, any matrix subgroup of GL(n,R) acts on E(V') as well as E,(V).

Let V' be an n-dimensional vector space; then we may consider E(V) (Ey(V))
as a real vector space. Fix a basis {e1,...,en} of V; then {e;; (1 <3 < n)jei, A
ei, (1 <41 <ig<n)...;ei Ao ANei, (1 <41 <+ <ip <n)}isa basis for
E(V), and {e;, A---Aej, (1 <43 <...---<ip <n)}is a basis of E,(V).

Let us take a lattice generated by the integer points with respect to the chosen
basis. Then any subgroup I' of SL(n,Z) induces an action preserving the lattice.
So 1t factors through a torus action.

Example 7.1. Let I' C SL(n,Z) be a subgroup of finite index with n > 3;

then it acts on 'JI‘(':), 1 < p <n—1 through the action of I' on E,(V). The action

is a Cartan action and is locally rigid. O
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It is worth mentioning that the actions constructed above and also examples
7.5 are actually irreducible by an easy argument, using the well-known Schur’s
Lemma. On the other hand, we cannot say anything about the irreducibility of
the action constructed in the same manner, using automorphisms of free, k-step,

nipotent Lie algebra.

Example 7.2. We may group certain actions above together; in other words,
we may consider the actions I on the spaces of the form @®;esEi(V) factors a
lattice, where S C I = {1,2,...,n—1}. The actions then are Cartan actions. The

actions are alsorigid if n > 3. U

It looks as if the actions here are product actions, but they are not. They are

“diagonal actions” of some product actions.

For Examples 7.1 and 7.2, we have enough 1l-dimensional foliations for an
Abelian subgroup to trellis the tori, and each of the foliations is the intersec-
tion of the stable foliations of several Anosov elements, and these foliations are
also the strongest foliations for some Anosov elements in that Abelian subgroup.
We therefore can use the arguments in [H-K-L-Z] and prove that the actions are
locally rigid.

If we consider other tensor algebras, for example, tensor algebra T(V'), T, (V) or
symmetric tensor algebra S(V'), S,(V), the latter having been already introduced

in Section 5, we may construct other examples of actions on tori.

Example 7.3. Let I' C SL(n,Z) be a subgroup of finite index with n > 3;
then it acts on T™?, p # 0(modn), through the action of T' on T,(V). The actions
are Anosov actions and do not have enough 1—dimeﬁsional foliations for a suitable

Abelian subgroup in I'. O

Example 7.4. We may group certain actions above together; in other words,

we may consider the actions I' on the spaces of the form @®;esTi(V) factors a
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lattice, where S C I = {k € Z*;k # 0(modn)}. The actions then are Anosov

actions. O

Example 7.5. Let I' C SL(n,Z) be a subgroup of finite index with n > 3; then
it acts on T%P), p =£ 0(modn), d(p) = (“+£"1) through the action of I on Sp(V).
The actions are Anosov actions and do have enough 1-dimensional foliations for
a suitable Abelian subgroup in I' to trellis the tori, but some of the foliations
can never be realized as strong stable foliations for some Anosov elements in T'.
Nevertheless, the foliations are intersections of stable foliations for some Anosov

elements and therefore persist under small perturbation. O

Example 7.6. We may group certain actions above together; in other words,
we may consider the actions I on the spaces of the form @;esS5:(V) factors a
lattice, where S C I = {k € Z; k # 0(modn)}, k1 # ke (mod n) for all k1, ks € 9,
and S is finite. The actions then are Anosov actions if n > 3. The actions have
enough 1-dimensional foliations for a suitable Abelian subgroup in I' to trellis
the tori, and the foliations are intersections of stable foliations for some Anosov

elements, and therefore persist under small perturbation. O

We cannot use the Cartan action theory to attack the rigidity of the actions in
example 7.3-7.6. But it is clear that the possessing and persistence of enough 1-

dimensional foliations in example 7.5, 7.6 make it possible to generalize the Cartan

action theory to get the rigidity for these cases.

It is a classic result that all irreducible, rational representations of SL(n,Z)
on finite-dimensional vector spaces are polynomial representations, and they are
obtained by decomposing the representation in Example 7.3 into irreducible repre-
sentations. In fact, we have the following parameterization for polynomial repre-

sentations by Young tableaux [Sun]. We will omit the definitions of Young tableaux

and their properties.
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We denote by A a Young tableau; we let p be the irreducible polynomial
representation corresponding to it. We say that the length of A is p if px is
contained in SL(n,Z) x Tp(V) — Tp(V).

PROPOSITION 7.7. Fix a Young tableau A\; we have the following:

(1) px preserves integer points with respect to a “standard basis,” and hence
factors through a toral automorphism also denoted by py;

(2) the toral action py is Cartan iff py is one of the actions listed in Example
7.1;

(3) the toral action py is Anosov iff the length of X is not equal to 0(modn);

(4) the toral action py has 1-dimensional splitting foliations iff py is one of the

actions listed in Example 7.1 and in Example 7.3.

The proof of this proposition is easy. We omit the proof. Next we will give a

description of all the linear toral SL(n,Z) actions.

PROPOSITION 7.8. Any linear SL(n,Z) toral action on TV induces a homo-
morphism between SL(n,Z) and SL(N,Z). For n > 3, the homomorphism is a

polynomial homomorphism restricted to a subgroup of finite index.

This is proved in [Ste]. The two propositions above describe all the linear
SL(n,Z) toral actions in terms of Cartan action, Anosov action and action with
“complete 1-dimensional splitting foliations.”

Although we may have a number of other actions on tori, for example, we
consider V' with dimension 2n; we consider Sp(n,Z) on the factored tori; we
cannot get the rigidity results using the Cartan action theory. We hope we may
prove the rigidity result for this class of actions using another approach that is

well-developed in [K-L]. But we also have to exclude those actions with length

0(modn) of the Young tableau.



53

We would like to ask the following question. Fix an integer n > 3. What is
the torus of the biggest dimension on which SL(n,Z) could act locally rigidly? If,
by any chance, that action is algebraic, we have one of the above examples as an

answer. So it is clear that either the torus is obtained as in Example 7.2 or such

a torus does not exist.

It is worth mentioning that our method of using the Cartan action theory to
prove rigidity is impossible to be carried out in the case of the nilmanifolds N(n, k)
of higher steps, i.e., £ > 3. The reason is simple: We do not have an Anosov
element at all for k£ > n, and also we do not have enough 1-dimensional foliations
for a suitable Abelian subgroup to trellis the space. This is the limitation of the
method we use. Some progress has been made by A. Katok that for certain cases
the density of the orbit of the abelian group in the higher-dimensional foliation is
enough to prove the rigidity. But this is not the case for our nilmanifolds N(n, k)
with & > 3, because the orbit is never dense.

We want to state a conjecture to finish the first part of our paper.

Conjecture. (1) The SL(n,Z) action on N(n,k) is locally rigidif n > 3, k£ <
n— 1,

(2) The group Aut(n,2) of automorphisms of N(n,2) is locally rigid.

We remark that our results in the paper support this conjecture.
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PART II: Anosov R™ Actions

1. Introduction

Hyperbolic behavior in dynamical systems has been investigated extensively,
especially for Anosov diffeomorphisms and Anosov flows. See, for example, [A]

[P1] and references there.

Anosov diffeomorphism on a compact manifold possesses nice structures and
properties. It foliates the manifold by stable foliation and unstable foliation. It
is structurally stable in the sense that any perturbation of the Anosov diffeomor-
phism is still an Anosov diffeomorphism, and they are topologically conjugate. It
is ergodic provided that it preserves a volume. And it has two naturally associated
measures, the SBR measure and the Margulis measure. For these two measures,
the diffeomorphism is just a Bounoulli shift and hence ergodic, weakly mixing and
strongly mixing,.

For the Anosov flow on a compact manifold, the development is parallel to the
Anosov diffeomorphism case. We have the same properties for the Anosov flows
as those for Anosov diffeomorphisms with minor modifications.

Two generalizations of the Anosov diffeomorphisms and flows have been made;
one is called normally hyperbolic dynamical systems; the other is called Anosov
group actions. We call a group action Anosov if the group contains at least one
Anosov element [P-S1]. In our work, we are interested in a special kind of Anosov
group actions, namely, the Anosov R™ actions.

We now give the definition and some examples of Anosov R” actions. Let M be
a compact manifold without boundary. Let ® : R® x M — M be a smooth map
such that ®; : M — M, z — ®(¢,z) is a diffeomorphism. We call & an R" action

if 7 : R® -Diff( M), t — ®, is a group homomorphism.
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In this work, we will assume that 7 is locally free; i.e., for any z € M, there
exists a neighborhood U of origin in R®, such that n(u)z # z for all u € U — {0}.

It is clear that the orbits of the locally free R™ action define a smooth foliation
R,

DEFINITION 1.1. The locally free R™ action ® is called an Anosov R™ action
if there exists an Anosov element; i.e., there exists an element r € R™ such that
f =@, : M — M is hyperbolic at R™, or in other words, Tf : M — M leaves
invariant a splitting

E*"oTR"® E*=TM,
contracting E° more sharply than TR", expanding E* more sharply than TR".

EXAMPLES 1.2. The following are a list of currently known examples of Anosov
R™ actions.

(1) The standard actions of R™ on T";

(2) Anosov flows;

(3) Suspensions of Z* Anosov actions (Z* Anosov actions are actions generated
by Anosov diffeomorphisms); i.e., let the action of Z* on N be anosov; let Z* be
embedded in R¥ as a lattice. Consider the action of Z*¥ on R* x N by 2(z,n) =

(z — z,2zn) and form the quotient
M = (R* x N)/zZ*.

Note that the action of R¥ on R* x N by r(z,n) = (r + z,n) commutes with the
Z*-action and therefore descends to an R¥-action on M.

(4) Weyl chamber flows; i.e., let G be a real connected seﬁlisimple Lie group of
the non-compact type, and I' be a cocompact lattice, A being a splitting Cartan

subgroup. Recall that the centralizer of A splits as a product M A, where M is
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a compact group. It is clear then that A acts on M\G/T from the left; it is an
Anosov action [IJ;

(5) Assume the notations of the last example. Let p : ' — SL(n,Z) be a
representation of I'. Suppose that I acts on a compact manifold N via p such that
A action on N via p is Anosov (e.g., see § 7 of the first part of my thesis). Then
I' acts on M\G x N via

v(z,t) = (z77", 1)

Let V := M\G xr N := (M\G x N)/T be the quotient of this action. As the
action of A on M\G x N given by a(z,t) = (az,t) commutes with the I'-action,
it induces an Anosov action of A on V.

(6) Suspension of the above R* actions; i.e., let & : RF x M — M be an Anosov
R* action on M, let Z =< g¢1,...,gn > act on M, such that g; commutes with
the R¥ action (in other words, ¢g;®; = ®.g; for all t € R™). Let Z™ be embedded
in R™ Let Z act on M x R" via

z(m,r) = (zm,z —r).

Let V = (M x R™)/Z" be the quotient space. Then the action of R® on M x R"
via,

(5,8)(m, ) = (sm,t +1)
commutes with Z™ action on M x R™ and hence descends to an R™** action. It

is clear that this action is an Anosov action.

(7) Any product actions of the above. O

The definition of Anosov actions first appeared in [P-S1] in a more general form
in 1972. In that paper, ergodicity of the action was considered. In [P-S2], they
also proved that for an ergodic group action, almost every element in the group is

ergodic.
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In my work, we will consider the individual elements of the group R™ and prove
that every Anosov element is ergodic. The unsolved interesting problem is whether
or not the Anosov elements form a dense set.

We remark that although there are plenty of examples of Anosov diffeomor-
phisms and Anosov flows (for the Anosov flows, even non-algebraic examples
have been constructed), there are relatively few examples for the higher-rank non-
product Anosov R"-actions. Conjecturally, there are “too many” structures inside
such actions that inhibit the non-trivial perturbations. On the based of this ob-
servation, A. Katok, R. Spartzier conjectured that such actions should be locally
rigid. This is confirmed in a recent paper [K-S| for Weyl chamber flows, suspen-
sions of Anosov Z*-actions on tori, and “twisted Weyl chamber flows” (Example
1.2(5) with N = T%).

This work is inspired by a talk of R. Spartzier at Penn State in March 1991. The
examples listed above are due to R. Spartzier and A. Katok. Our work is an at-
tempt to understand the dynamics of Anosov R™ actions, reveal the rich structures

of the actions, and it is hoped, to give additions to the rigidity investigation.
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2. Suspension Construction of Anosov R" Actions

Let R® x M 2 M be a volume-preserving Anosov action. We call an element
in R™ a regular element if it is an Anosov element. Similarly, any 1l-parameter
subgroup containing a regular element (hence every non-trivial element is regular)
is called regular. Fix a regular element r € R™ and let f = ®,. Let W;*, W2* be
strong stable and strong unstable manifolds at =, W2, W be stable and unstable

manifolds for f at z. We will later abuse the notation not to distingush r and @,.

LEMMA 2.1.

(1) Vg € R",
gWz* =Wg,,
gWe = W,

(2) If z,y are in the same R™ orbit, then
W = gWy,
Wor e gWy'“‘.

for some g € R™.

PROOF. (1) Since
W?={ye M: lim d(f"y, f"z) = 0},
n—oo
Wpe={ueM: lim d(f"u, f"gz) =0}

= {u = gup ; nli{%o d(gfue,gf"z) = 0}.

But g is a diffeomorphism, so the above is

g{uo : nllrr;od(f"uo,f"w) =0}



59
So (1) is true.

(2) is a corollary of (1). O

We will call z € M a periodic point if R™z is compact. We denote the set of all
the periodic points by €. Then Burns and Spatzier [B-S] proved that Q = M.

We recall a result that is called the “Product Neighborhood Theorem.” We
fix a metric d on M. Let dy,ds,dyu,dss be the induced metrics on the leaves of

foliations F*, F*, F**, F*°, respectively. We define for z € M, >0

B;(6) ={y € M :d(z,y) < 6}
B2(8) = {y € W2(6) : du(z,y) < 6}
B3(6) = {y € W2(8) : da(z,) < 6}

B2*(8) = {y € W2*(6) : duu(z,y) < 6}

B*(6) = {y € W}°(6) : dss(z,y) < 6}.
Then, there exists g > 0 independent of z € M such that for 6 < §p the maps
G: B}(6) x By*(6) - M

H : B(6) x B*(§) —» M

given by
G(y, z) = B;(26) N B,"(26)

H(y,z) = By(26) N BX(26)

are unambiguously defined and are homeomorphisms onto their respective images,
which are called product neighborhoods of . This result is proved by Hirsch,
Pugh and Shub for the flow case in [H-P-S] and is a straightforward generalization

for general Anosov actions. This result is used in [P-S1].
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LEMMA 2.2. W =M, W2 = M forall z € M.

PROOF. If we can prove that W# is open, then from the fact that M is con-

nected, we are done.

Let z € W2. Take a product neighborhood N of z. Take p € N, a periodic
point for the action. We may choose so that p is a periodic for a one-parameter
subgroup ¢, which is a regular one-parameter subgroup of R", and it has the same

stable, strong stable, unstable, strong unstable manifolds at any points * € M as

f has.

Let g¢,p = p for some to € R*. Now W,? intersects W at ¢ € W7, so it will
intersect W2 at ¢' € W2, so we have
im gntoq' = p, and gnt,p = p,
n—oo
but gntoq' € W;7 sope€ W::‘ O
THEOREM 2.3. If W2 # M for some z € M, then for ally € M, W2* # M.

PrOOF. We first prove that if W** # M for a periodic point ¢ € M. Then
Wyt # M Vy € M; secondly, we prove that if W2* = M for all periodic points,
then W2* = M Vy € M.

Let K = W2 for z a periodic point in compact orbit CO(z); then

U W;u = U ¢thTE o W;L?

y€CO(z) t€ some compact set of R”
the middle term here, is actually the image of a compact set under the continuous

map

P:R*"xM—> M,

so UyECO(:c) Wt is compact, but it contains a dense set W', so it is M.
Now take any y € M; let y € ¢4, K for some t; € R™; we claim Wj* C ¢, K.
Indeed, Lemma 2.1 implies that ¢;1Wy’“‘ C K So Wy* C ¢4, K, so Wy # M.
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In the next several lemmas, we will prove that if W2* = M for all periodic

points * € M, then it is also true for all z € M. O

LEMMA 2.4. Let Ty =R"/Z%},..., Ty = R"/Z} be n-tori, Z} = Z". Let R™ act
on Ty x:--x Ty by translation on each factor. Then for any 1-parameter subgroup
gt of R™, for any € > 0, and for a dense set of (p1,...,px) € T1 x -+ x Ty, there

exists a sequence {t;} with t; — oo, such that

Houpi;p5) <€, forall § = 1,2;...4 %

PROOF. Since every element of R™ acts on T x - - - X T by a volume-preservin
Yy Y p g

map, the result then follows from Poincaré’s recurrence theorem. 0O

LEMMA 2.5. Let Wp* = M for all periodic points p; then W¥* = M for all
yE M.

PROOF. Let * € M be any point in M, and B.(z) be a e-neighborhood of z.
We want to prove that any W* intersects this neighborhood for any y € M.

Take a finite.c/2-net, the center of which, p;,i = 1,2,...,k, are periodic points.
Let é be small enough such that if we take another €/2-net centering at ¢; with
d(gi,pi) < 6, it still covers M. Let p; € C;, which is the compact orbit containing
pi. Using the fact that R™ acts transitively on C; and that every orbit is an n-
dimensional manifold, we get that C; = T; = R"/Z? and the action is the usual
translation.

Now take a 1-parameter subgroup g; containing f. We claim that there exists a
to > 0, such that for a dense set of ¢; in a small neighborhood of p;, gto(W;t,"‘e /2) N
B./2(z) # ¢. Indeed, WIZ"_’,‘T N B, /2(z) # ¢ for sufficiently large T, so there exists a
small number ¢ > 0, such that if |t| < ¢, and ¢; sufficiently close to p; g:(W i) N

B.j2(z) # ¢. From Lemma 2.4, we know that for a dense set ¢; close to p; and
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to > T, such that d(gs,qi, ¢:) is very small and hence g;,(W."7)N B, /a2(z) # ¢. But
it is clear that W;::q;,T c gto(W;?s/z) if to is sufficiently large, so gto(W;“_’,‘s/z) N
B, 2(z) # ¢.

This claim tells us that we may find ¢ € Wj'* N g—¢,(Be/2(x)) such that ¢ €

gie 2 Now g_¢o (W) intersects with some B, /5(¢:) (this is because all B, 2(4i)
cover M); take ¢ € W2* N g—¢,(B./2(z)) (the non-emptiness is proved in the
above argument); let us assume that ¢ € W /2° Take r € g, (W) NW,. It
is clear from the fact that g—;,(W,;*) N B,/2(g:) # ¢, that we may assume that
d(g,r) < e/2, so

d(xagto (r)) < d(l‘, gtoq) '3 d(gto(Q)agto (T‘)) Se.
But g:,(r) € W,'*, so we are done. 0

DEFINITION 2.6. An Anosov R™ action is called irreducible if W** = M with
respect to some regular element (hence for all regular elements) for some = € M

(hence for all z € M). Otherwise, the action is called reducible. O

THEOREM 2.7. If W2* # M for some z € M, then there exists a compact set
K C M such that
(1) 3R* C R™ such that R*K = K;
(2) let R"* be a complement of R¥ C R™; then the action is the suspension
of (K,R¥) by n — k homeomorphisms in R"~¥;
(3) K is a C! submanifold of M. (Hence the homeomorphisms in (2) are
actually C' diffeomorphisms.)

PROOF. Since W2* # M, we may assume that for some periodic point p € M,
K :=Wg+ # M.
(1) Let G = {g e R": (Rg)K C K}. It is clear that G is a group and it has to

be R* for some k.
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(2) Let R** be a complement of R¥. Let R* ¥ =Re; G Re; & --- @ Ren—_}j; it

n—k copies

is easy to see that for each e;, 3t; such that tje; X = K, and if —t; <t < t;, te; K #
K.

Indeed, we denote te; by ggl); let s be the smallest, positive, real number such
that K N g,(,l)(K) # &. That such an s exists may be seen as follows. Suppose
there exists arbitrarily small positive ¢ € R such that K N ggl)(K ) # ©@. This
implies that K = gs,l)t(K ) for arbitarily small ¢t and all n € Z. This means that

{teR: K = ggl)(K)} is dense in R. Thus, K has to be invariant under ggl)

b

which is a contradiction.

Without loss of generality, let ;K = K, tK # K for 0 # |t| < 1. Then
our action is obviously the R¥ action on K suspended (see §1 Example 6) by
iy = o1 Egpites

We use a fact here that ¢,K, t € R" foliates the manifold M. We will prove

this fact in the appendix.

(3) The proof is basically the copy of Anosov’s argument. We will produce the

proof in the following Lemmas. O

We remark that this theorem actually asserts that any Anosov action can be
“decomposed” into the suspension of an irreducible C'! action.

Following Plante [Pl], we call a set S C M F-saturated for a foliation F if it
is a union of leaves of F. It is clear that that the closure and complement of an

F-saturated set are again F-saturated.

LEMMA 2.8. Let F*°, F** RF be the strong stable, strong unstable and R¥

orbit foliations with dimension m,l, k, respectively. Then

(1) K is R* saturated;

(2) K is F** saturated;
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(3) K is F*° saturated.

PRrooOF. (1) and (2) are clear.

Suppose that (3) is not true; let p € K and ¢ € W, ¢ ¢ K.

Let ¢ = ¢spo for po € K. Then K N ¢,K = ¢. Take to to be a regular element
close enough to f, such that ¢ K = K, ¢1,¢sK = ¢;K. Then ¢, K = I,
Prte@®s K = ¢sK. So limp—co d(hnt,q, dntop) = 0, so two compact sets K, ¢, K

have distance 0, so they intersect. We get a contradiction. O

LEMMA 2.9. Let wo € M and wy € W.. Consider H : p€ Wy — g € W,

by sliding p along W,° to hit W, at g. Then H maps RkWp” to RkW;S.

PROOF. Otherwise, if we choose w; close enough to wg, we know that there
exists a small neighborhood of 0 in R" ¥ such that there exists ¢; in it, and

¢+, K = K, which is a contradiction. 0O

The foliations RF F** F** are said to be jointly integrable if there exists a
C? foliation F such that dimF = m + [ 4+ k and any leaf of R¥, F** or F** is

entirely contained in the leaf of F.

LEMMA 2.10. The foliations R¥, F** and F*° are jointly integrable. So K is

a C! manifold.

PROOF. We now use Anosov’s argument. It is easy to see that K is C!. We

are not going to repeat the argument. We refer the reader to [A]. O

Appendix 2.11. We will give a proof that if for a periodic point pe M K =
Wat # M, then ¢,K form a partition of M. In other words, either K N ¢ I{ = ¢
or K = ¢ K.

Following Theorem 2.7, we let R¥ be the maximal subgroup in R™ such that

K is invariant under R¥. Choose n — k, regular 1-parameter subgroups ggi) from
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the complement of R¥ in R", which generate R" ¥, such that the stable, unstable,
strong stable and strong unstable foliations are the same as those of ¢, and p is a
periodic point of ggi) with period r;. It is clear that K cannot be invariant under

any ggi). Let Ko C Wr*(Ko # @) be a minimal set with respect to the following

conditions:

(1) Ky is closed in M;

(2) Ko is F**-saturated and invariant under R¥;

(3) ggf)(Ko) = Kp.

Such a set exists by Zorn’s Lemma. We claim that Ky, ¢:K, either disjoint
or coincide. Indeed, Ky N ¢; K satisfies (1),(2),(3), so our result follows. So it
is then clear that ¢,Ky, #:Ky either disjoint or coincide. Remember also that
Usern ¢+ Ko = M because the set contains an unstable manifold and is also com-
pact, so ¢: Ko = M,t € R" is a partition of M. Because W, is in ¢:K for some
t € R™, this forces K = K,. O
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3. Irreducible, Weakly Mixing and Continuous Spectrum

In [P-S1], the ergodicity of a general measure preserving Anosov actions is es-
tablished. Our effort here is to show that the structure of irreducible Anosov
R™ actions are richer than being ergodic. It is actually weakly mixing, which is
equivalent to the fact that the induced unitary representation does not have mea-
surable eigenfunctions except the constant eigenfunctions. Moreover, the action is
metrically transitive. The latter will be proved in the next section.

We first recall some definitions.

DEFINITION 3.1. A R™ action on M is ergodic iff it is measure-preserving and

all measurable, invariant functions are constant; it is weakly mixing iff

. 1 6 1 _ _
,E%m/mr) (TUtf,9) — (f,1)(g,1)|dt =0

for all integrable functions f, g; it has continuous spectrum iff it has no measurable

eigenfunctions other than the constants. [

In this section, we will prove the equivalence of the concepts of irreducibility,
weakly mixing and continuous spectrum.

THEOREM 3.2. The following statements are equivalent:

(1) Anosov R™ action is weakly mixing:

(2) the action is irreducible;

(3) the action has continuous spectrum.

O
We will first prove the equivalence of (1) and (3).

LEMMA 3.3. Let f be a bounded, measurable function. Then

: 1 _
o B S T T
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m(JNB,.)

By = 0 such that

iff there exists a subset J C R™, lim,—.

Illim | ()] = 0.
t|—oo
t¢J

Hence,

3 ST oy VO =0
iff

1 2 g —
rlingom - |f(2)|?dt = 0.

PROOF. The argument is standard. We first prove that sufficiency. For any

€ > 0, take ro > 0, such that if |t| > ro,t & J, |f(t)| < /3. Now

1
m(B() /Bw IF(®)ldt
1

1
= m B0 Jows O TEmw [ st

1
~ m(B(r)) B(ro)——Jlf(t)ldt * m(B(r)) JB(r)-B(re)—J

1
t /J |F(t)ldt
1

m(B(r)) JB(r)-B(ro)—J

|£(2)|dt

<e/3+ O e AL

If we take r sufficiently large, we get the last two terms < /3 + ¢/3. So we proved
that

5 BT oy PO =0

Next we prove the necessary part.

Let Jr = {t € R™, |f(t)| > 1}; then it is clear that J; C J, C --- C Jx C

Jk+1 C .... We also have

1

m(B(n)) Jp(m) =Y TEN)

(B( ) km(Jk N B(n)),
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50 limp, oo ﬂ"{(”ﬁg%@ = 0. So we may find a sequence

O<h<b< - <lh<lg1<:--— 00

such that EPE) < L for all n > I

Let J = U [Jk+1 N (B(lk+1) — B(lk))]; then if Iy < n < Il + 1, we will have
JN B(n)=(JNB(lx))U(JNB(n)— B(lx)) C (Jr 0N B(lx)) U (Jk41 N B(n)).

So

m(J 0 B(n))
m(B(n))
m(Jk n B(n)) m(Jk_H n B(n))
m(B(n)) m(B(n))
1 1

< Z4 -
Syt Er1

— 0.

Now we show that lim, , __ |f(t)| = 0. Indeed, we removed from B(l;) those t's
t¢J

such that |f(¢)| > 1; we removed from B(l;) — B(l;) those t's such that |f()| > 1;

we removed from B(lk+1)— B(lk) those t's such that | f(t)| > £37; hence it is clear

that if lx < [t| < lk+1, then |f()| < z37. This gives our result. O

LEMMA 3.4. Let o be a finite measure on R", let by = fm,, ei<9’t>da(9),t € R",

and let {6;}, i € Z be the atoms of 0. Then

1
lim

= b |2dt = E,’ 20‘2 9,‘ i
T—00 m(B,-) B(r)| t S ( )

PROOF. Since

b = b5 = [ <0 >ao(o) [ eirdo) =

s / ei<0,t>—i<A,t>da(9) % da(/\),
R™ xR»
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we have

__1__ 23 _ 1 i<O-A > : o B
m(B,) /s [[be]| it /m - (m(Br) . dt)d (8) x do(A)

Now m—(lB,_) ['s B, e!<0=At>dt is bounded, so we may use the Lebesgue Dominant

Convergence Theorem to conclude that

1 / i <O-A,t> ) 2
e t2dt ) do(6) x do(X) — Zicz(0;).
L. Gel (6) x do(3) — Ties 6)
O

Next we introduce some standard facts for the unitary representation for R"™.

For detailed treatment, see [Su].

PROPOSITION 3.5. (1) (Stone) If U is a unitary representation of R™ on a
separable Hilbert space, then there exists a spectral measure E in H on the set of

all Borel sets in R™ such that
Uy = / e'<H9>dE(0) for all t € R™.

(2) (Bochner) If ¢ is a positive definite function on R", then there exists a

unique positive Radon measure o with total measure o(R™) = ¢(0) such that
é(t) = / e'<%>ds(9) for all t € R™.
Rr

a

We remark that the above two theorems are equivalent in the sense that one
theorem can be easily proved, assuming that the other is true. We also remark

that if we fix f € H, then (U.f, f) is a positive definite function on R" for a

unutary representation U of R” on H. We let (U, f, f) = [3. €:<"%>dos(6).
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LEMMA 3.6. f € L*(M,m) is an eigenfunction for {U;} corresponding to the

eigenvalue e*<%:*> iff o is concentrated at the point 6y; i.e.,
a5 = [|f1I*6(8 — 6o).
PROOF. Since

(U, f) = <> (£, F) = I FII? /m <> d5(0 - 6o),

so from the uniqueness part of Proposition 3.5.(2) we obtain

af =186 — 6o).

Conversely,
(U:f, f) =/ e<O>do(9) = || f)|2ei<tt>,
Rn
so

(U, Al = I£17 = A,

so the Cauchy inequality becomes equality. Therefore,

Utf =cf

for some constant ¢;. But

(Tt F)y = P2,
so ¢; = ei<bo:it> O

LEMMA 3.7. Supose that the R™ Anosov action has a continuous spectrum.

Let f € L?*(M), with [ fdm = 0. Then o5 has no atom.

PROOF. Otherwise, o5(6p) > 0 for some 6, € R™. But §(8 — ) is absolutely

continuous with respect to o; we know that there exists a function h € L%(R",07)
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such that §(6 — 6y) = h(6)o(8). Recall a result in [Su], p.141, that we can find
a g €< f > (a subspace in L?(M) generated by f) such that o, = 6(6 — 6o)
(see for example [C-F-S], Appendix 2 for the csae of Anosov diffeomorphisms
and Anosov flows). Lemma 3.6 implies that g is a non-constant eigenfunction.

Contradiction. O
We are now able to prove the equivalence of (1) and (3) of Theorem 3.2.

PROPOSITION 3.8. An R™ action has a continuous spectrum iff

‘ 1 t —
Jim FREET dat) I(U*f,9) = (f,1)(g,1)|dt = 0.

PROOF. “ = 7: A standard polarization trick makes it sufficient to prove

1 o )
m(B,) /;3r (U f, f) = (f, 1)1, f)ldt = 0.

im
00
Moreover, we may assume that (f,1) = 0 by replacing f with f — (f,1). So it is

sufficient to show
1
lim————/ Uf, Hldt = 0.
P TS I(U* £, f)l

By Lemma 3.3, we know that it is sufficient to prove that

\ 1 t 2
—— dt =10,
Mm B /B ((U°f, )"t =0
But

U'f, f) = /ei(e’”d(E(e)f, f) =/6i<0’t>d0f(9)§
applying Lemma 3.4 to o5, and noticing that the above quantity is exactly b; in

Lemma 3.4, we conclude our result.

The other direction is trivial. O

We remark that we have actually proved that the equivalence of (1) and (3) is

true for general R™ actions, not necessarily Anosov. The proof here is essentially
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the same as the proof of the same results for diffecomorphisms and for flows, except
more complicated technicality.

Now we will prove the equivalence of (2) and (1) or (3). First of all we will
prove that an irreducible Anosov action cannot have non-constant, measurable
eigenfunctions. Recall that R™ Anosov action on M is ergodic [P-S1]. So by [P-
S2], almost all t € R™,¢ is an ergodic diffeomorphism. Take t1,...,t, € M ergodic,
regular with the same foliations as f has and spans R"®, so R® = @R¢;. Suppose
that H is an eigenfunction for induced, unitary representation. Using a well-
known result of Rohlin, we may assume that the following equality is true for all
(t1,...,tn) € R™ and for almost every z € M. Uy, H = ei<tirtn|Asdn> I

for some Ay,...,A, € R.
LEMMA 3.9. For a.e. z € M, H is constant on W}* a.e.

ProOF. The proof is a standard one. There are two approaches to this kind
of statement. One is originally used in [A]. We will use the other approach.
Since Uy, H = e''**1 H, without loss of generality we assume that A # 0. Then
U(zrt, /1) = H, so H is invariant under the regular element g = 2t; /l;. We define
Inv(g) to be the set of all integrable, g-invariant functions M — R. We are trying
to prove that every function in it is constant almost everywhere on almost every
unstable leaf.

We define a projection I, : L'(M) — Inv(g) by

. S -
Li¢(z) = lim 5——= > #g");

k=—n
then the limit exists almost everywhere and is integrable, and ¢ — I;¢ is a con-

tinuous linear map onto the Inv(g). Moreover, the limit

| | o
IFé(z) = lim T kzzo¢(gka:)
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exists almost everywhere and IF¢(z) = I,¢(z) for almost all z. That is, I =
I; = I, as maps L' (M) — Inv(g).
Since the continuous functions are dense in L!(M), their I,-images are dense

in Inv(g). We now prove that for the continuous function ¢, I;¢ is essentially

constant along F**, F*°.

For any z,y € W;'* and any continous ¢ : M — R, it is clear that either both
I (z),I; (y) are defined, or neither, and if defined they are equal. Since I ¢ is
defined almost everywhere, I ¢ is defined and constant on almost all 7** leaves.
Since F** is absolutely continuous [P-S1] and I ¢ = I;¢ almost everywhere, I;¢
is essentially constant on almost every F** leaf. Similarly, for F°°.

The density of the image of continuous functions implies that our function H

is essentially constant along F**, F°°. 0O
LEMMA 3.10. H is continuous on a.e. W', W},
PROOF. From Uy, i) H = ei<titnlddn>H it is clear. O
LEMMA 3.11. H is a constant function almost everywhere.

PRrOOF. We claim that H almost everywhere coincides with some continuous
function. The approach is exactly the same as [A] p169. (We do not copy the
argument from there; instead, we sketch the idea below. Since H “is” continuous
on “every” F* leaf and constant on “every” F*° leaf, hence H “is” continuous.)
Now let H' be that continuous function; then it is clear that H' is constant along

the leaves of foliation F**. Hence, H' is constant. O

Combining the above Lemmas, we proved that (2) implies (1) and (3). Next,

we will prove that the other direction is also true.

LEMMA 3.12. If Anosov R™ action has a continuous spectrum, then the action

is irreducible.
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PROOF. Otherwise, let p be a periodic point, K = W # M. Fix a 1-
parameter subgroup ¢g; € R™ that does not fix K for some t, and g A = K.
Choose n —1 other elements #;,...,t,—; in R™ such that p is a common fixed point
for them, and together with ¢ they span R™. It is clear that if we denote by R™*™?
the space spanned by t1,...,tp—1, then K' = R" 'K is compact and is a proper
subset of M. Let a function H be defined such that H|x» =1 H|,, g = e?™i(/t0),

Then H is a non-constant eigenfunction for U;. Contradiction. O
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4. Metric Transitivity

In this section, we will prove the metric transitivity of Anosov R™ actions, or
roughly speaking, for any regular element, the strong stable and strong unstable
foliations are measurably indecomposable. There are several consequences of this
result. The interesting one is that we obtain that ergodicity of regular individual
elements. Different from the result of [P-S1], where every element off countably
many hyperplanes is ergodic for Anosov actions, we can only have the ergodicity
for regular elements. It seems to be a difficult problem to prove that the regular
elements are dense even in R™. We remark that the problem raised by A. Katok fits
well into the investigation of rigidity of R™ actions and is one of the motivations

for me to study the dynamics of R™ actions.

Our method follows closely that of Anosov. Some results of Anosov can be used
directly without any change, while others may be proved using his idea. The only
difference is that we fit the R™ situation well into the original argument. First we

will give the precise definition of metric transitivity.

DEFINITION 4.1. A foliation F is called metrically transitive if for an arbitrary

measurable F-saturated set A C M, either m(A) =0or m(M — A)=0. O

The idea of the proof of metric transitivity is simple. We assume that we
have an intermediate saturated set A and prove that the union of all short orbits
starting from A is still an intermediate saturated set. Then we use a result that
when you iterate A “backwards” sufficiently far away, “all” stable leaves will be
contained in the iterated set. Hence, the iterated set has to “have” full measure.

But our action is a measure-preserving action; hence A itself “has” full measure.

This presents a contradiction.
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LEMMA 4.2. Let A be an F*“-saturated Borel set. Let

mr(w) = m{t: |t| < 7, ®'w € A}

=
m(B(7))

Then it is measurable, constant on the leaves of F** and

lim [ |m,(w)—1|dw = 0.
™0 J 4

PROOF. Measurability follows from the Fubini theorem, since the set {¢ : |t| <
7,®'w € A} is an intersection of the pre-image of the Borel set A under the smooth
map

M x B(t) - M, (w,t) —» ®w,

with {w} x B(r). Since A is F""-saturated and since ®; permutes the leaves in
A, it is clear that m (w) is constant on the leaves of F**.

It is clear that
1

)= BT o

((I)tU))dt,

where x 4 is the characteristic function of the set A. We have

/Amr(w) = ———m(Bl(r)) /M (/B(T) XA(‘I’tw)XA(w)dt> dw

We show that lim¢—o [y, xa(®:w)xa(w)dw = m(A). Indeed, for any function
f € L*(M), we have lim;— ||®+f — f||z> = 0; hence,

lim /M xa(@ew)xa(w)dw = lim(xa, Pixa) = (x4, X4) = m(A4).

Hence,

hmAm4m=mm)

T—0
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But obviously 0 < m,(w) < 1, so our result follows. O

We remark that we may choose a smooth metric on M, such that the R™
action on an individual orbit is an isometric action. Indeed, pick n 1-dimensional
parameter subgroups of R™ that generate R"; these subgroups give n vector fields
on M. These vector fields are linearly independent at every point on M. We define
a metric on M such that these vector fields are pairwisely orthogonal and have

norm 1. It is then clear that R™ action on the individual orbit is isometric action.

LEMMA 4.3. Let w,w' € M such that w' = ®,w, s < 7. Define
Gr(w)={re M,z =dw,r e R",|r| <7}

Gr(w')={z € M,z =%®.w',r eR",|r| < 7}
Let Gr s = G- (w)NG(w') and T, s = {r e R™,|r| < 7,®,w € G, }. Then

. m(Tr,s)
}'IE)I}) m =g >0,

which is independent of w,w'.

PROOF. Using remark above we may assume that we are working on space
M = R™ with a flat metric, which is the orbit (up to covering) containing w,w’.
The action is the usual translation. Then everything is simple. We draw two
7-balls around w and w’, the intersection is Ty s, which contains T ». What is left

is an exercise for calculus.

LEMMA 4.4. If A is an F""-saturated, measurable set of M with an interme-
diate measure, i.e., 0 < m(A) < m(M), then there exists an F*""-saturated Borel

set B C A with an intermediate measure such that

U= U|t|gr‘1>’B
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is also an F**-saturated, measurable set with an intermediate measure for some

small T.

PROOF. First of all we may assume that A itself is a Borel set. In other words,
A contains a Borel subset of the same measure, such that the subset is also F**-

saturated. This fact is proved in [A].

Let D = M — A. We define m,(w) as in the last lemma and define n,(w) as

n-(w) = m{t: |t| < 7,®w € D}.

1
m(B(r))
Lemma 4.2 implies that for sufficiently small 7 > 0, and ¢ as in the last lemma,

the sets

B={w:we A m(w)>1—c/10},
E={w:weDn(w)>1-c/10}

have a positive measure and are F*"-saturated.

We show that E N C = ¢. Otherwise, there would exist a point w € M and
s € R™ such that

|s| <7, weB, w=%,€E.

But this is impossible. Indeed, let us calculate the measure of Tr , as defined in

the last lemma. Lemma 4.2 tells us that

m({t € Tr,.,®w € D}) < m({t € B(r),®,w € D}) < I%m(B(r)).
For the same reason we get

m({t € Tr,s, B’ € A}) < m({t € B(1),®w' € A}) < %m(B(‘r)).

But AUD = M, so for every t € Ty 5, ®sw = ®;_,P,w' is either in A or in D. So
the total measure of Tr, is less than 2:5m(B(7)) < em(B(7)), and contradicts

Lemma 4.3. So CNE = ¢.
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After possibly removing from B some set of measure zero, we may assume that
B is a Borel set. Then C is measurable because it is the image of the Borel set

B x B(7) under a smooth map. It is clear that C' is F"*-saturated, and has an

intermediate measure. [0
We quote a modified result of Anosov [A].

LEMMA 4.5. Fix a regular element f € R"; let g; be the 1-parameter subgroup
containing f with ¢g;, = f,to > 0. Let A be an arbitrary, measurable set. For any
r > 0, > 0 and sufficiently large t > 0, there exists a set M! such that m(M}) < €
and any two points w,w' € M — M}, which lie on the same leaf of the strong stable
foliation F*° at distance < r from each other; either both belong or both do not

belong to the set g_;A.

We remark that the proof in [A] uses only the exponential contraction property
of the foliation F*°. So all the proof goes through without any modification.
Moreover, the proof is clearly true if we replace the 1-parameter subgroup g; by a
small cone centering around g:. We require only that the cone be small enough to
have a uniform estimate for the exponential contraction.

We need one more technique lemma.

LEMMA 4.6. Let R™ Anosov action be irreducible. Fix measurable sets B, U,
...,UnN of positive measure and also fix a small cone around g¢; as in Lemma 4.5.
We call the half-cone containing f the positive half-cone, and denote it by T*.
Then there exists a sequence t; = (tgi),...,tg)) € Tt with |t;| = co anda é > 0

such that for all t,

m(CI)..tnB N U,) > 6

PROOF. From Proposition 3.8 it is easy to see that for each U; there exists a
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Ji C R™ of zero density such that lim ,_ __m(®,, NU;) = m(B)m(U;). We take

[t|—
tgJ;
J = J1U---UJp; then this set has zero density, and our result follows easily. [

THEOREM 4.7 (METRIC TRANSITIVITY). Weakly mixing Anosov R™ action is

metrically transitive.

PROOF. We wish to arrive at a contradiction on assuming the existence of the
sets B and C' and the number 7 of the Lemma 4.4. It is clear that under this
assumption there exists an r > 0 such that if w € B, then the r-neighborhood of
the point w on the leaf of the foliation F* passing through this point is entirely
contained in C. This r is dependent on 7, but not on B; hence for the sets ®;B
and ®,C, which obviously have the same properties as B and C, we can use this
same number r (since 7 is the same for these).

We consider a finite atlas {(U;, ¢;)},7 = 1,2,..., N, of the manifold M. Each
coordinate neighborhood U; = ¢ (X x Y) is sufficiently small such that an r-
neighborhood of any point w € U; on the leaf of the foliation F* passing through
it contains the connected component N2 of the intersection of this leaf with U;.
Note that if w has coordinates ¢i(w) = (z,y), then ¢(N%) = z x Y. The ¢; is
absolutely continuous. The existence of these kinds of product neighborhoods is
proved in [A] for any two foliations that have smooth individual leaves and that
are absolutely continuous, transversal to each other.

We apply Lemma 4.7 to the sets B,Uy,...,Un. This lemma and the absolute
continuity of ¢; guarantee the existence of a sequence t, — oo, t € T* and a
number A > 0 such that m(¢i(®-¢, BNU;)) > 6, « = 1,...,N. This and the

properties of the set C' imply that for some § > 0
m{z:z xY C ¢i(®_, CNU;)} >6,i=1,...,N.

We now use Lemma 4.5 and the remark after it, replacing A by C and assuming
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that the number r in this lemma exceeds the size of leaves of the foliation F°°*NU;.
For sufficiently large |t,| the measure of the “exceptional” set M!" of the Lemma
4.5 will be arbitrarily small. That means that the measure of the set ¢;(Mi NU;)
can also be considered arbitrarily small, significantly smaller than 6. Hence, for

each of these sets, if |t,| is sufficiently large, there exists an z, such that
Zp XY C@i(P—y, NU;)

and m(¢:(M!» NU;)N (z, X Y)) is small. Now if the point (z,y) lies outside the

set

$i(MI» NU)U{X x [¢:( M NU;) N (2 x Y]},
then it belongs or does not belong to ¢:(®-¢, NU;) simultaneously with the points
(zn,y), and the last one belongs to ¢;(®—_:, N U;). Therefore,
m[(X xXY) — ¢i(®_¢, NU;)] = 0 as n — oo,
and hence also m(U; — ®_;,C) — 0 as n — oo. Therefore,

m(M —C)=m(M - &_,,C) <Y m(U; —®_,,C) > 0.

But this contradicts the fact that the measure of C is intermediate. 0O

COROLLARY 4.8. Let the R™ action be irreducible. Then

(1) every regular elements are ergodic;

(2) every l-parameter regular subgroup g; is weakly mixing.

PROOF. (1) Let Uf = F or f(gr) = f(z) for a regular element and a.e z € M.
Consider f; = Re(f); it is clear that fi(gx) = fi(z) a.e. Then w, = {z :
f(z) > a} is ¢ invariant. But it is easy to see that f; is constant on a.e. F**-leaf,

SO Wq is F¥¥-saturated. So w, = M or ¢. This forces f; to be essentially constant.
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The same argument applies to the imaginary part of f. Finally, we get f as
essentially constant.

(2) f(gtx) = e f(z) implies that f(g92x/2%) = f(z), but gar/y is regular. Our
result follows from (1). O
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5. Measures Compatible with R™ Actions

There are two natural measures compatible with Anosov diffeomorphisms and
Anosov flows, which are called the Sinai-Bowen-Ruelle measure and the Bowen-
Margulis measure. These two measures are considered extensively by various au-
thors, and it is clear that they play an important role in the rigidity investigation.

They will be proved to exist for Anosov R™ actions as well.

THEOREM (THE EXISTENCE OF THE SBR MEASURE) 5.1. Let the R™ action
be irreducible, hence weakly mixing. Fix a regular element and then the corre-
sponding strong unstable foliation F**. Then there exists an invariant measure
p such that the conditional measure with respect to F** is absolutely continuous

with respect to the Lebesgue measure.

PROOF. Fix a regular element g € R™; then g expands the foliation F = F**,
the leaves of which are smooth. Fix a positive integer r.

Choose a covering of M by a finite number of charts D™~*% x D¥ such that the
leaves of F are of the form D™~* x {v}. Let a probability measure p on M have,

to each of these charts, a restriction of the form

p°(u, v)dup(dv),

where du is the Lebesgue measure on D"~* and u(dv) some positive measure on
DF. Assume that for p-almost all v, the function u — p°(u,v) is strictly positive,
and its logarithm has derivatives up to r which are Lipschitz, with Lipschitz con-
stant < [. Let K be the set of such measures p, with [ fixed, but p(dv) are allowed
to vary. Define

K+ = Uizo Nnxo ¢"K(1).

It is easy to verify that X4 does not depend on the choice of the charts used to
define K(1).
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Then we use the theorem in [R1], obtaining the following:

(a) K is vaguely compact; it is a Choquet simplex, and the conditional measure
p°(u,v)du of p € K4+ on a leaf of F is independent of p (up to normalization).

(b) K4+ is non-empty.

(c) Let K, be the set of g-invariant elements of K4 ; then K4 is a simplex.

It is also straightforward that the following statement is true.

Claim: (d) if p € K4, then fu € K for any ¢ € R™. (e) K4 is convex.

Indeed, in a coordinate chart, let

71 = (fi(w,v), f2(v));
then

[ Dufi(u,v)|| < @

for some a > 0. So the density of the conditional measure corresponding to fu on

D™k x {v} is
o' = Ko°(fi(u,v), f2(v))| det(Du f1(u,v))l,
and so
D, log o (u,v) = Dylog o°(f1(u,v), f2(v))Du f1(u,v) + Dy log | det(D fi(u,v))| <
< aDy logo®(fi(u,v), fa(v)) + C.
So for p-almost all v,
|Dulog o (fi(u,), f2(v))] < al +C.

Same calculations (as those in [R1]) conclude that there exists ' such that fu €

K. So fu e nfg™"K(l) = ng™(fK(1)) € Nng™(K(!")). So fu € K4. This proves
(d). (e) is clear.
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Because (a)—(e), we may use first use an average method in K4 to get that K,
is non-empty, and then to use the average method to get that in there exists an

R™-invariant measure in K,. (e) and (a) guarantee that they are in the right class

of measures. [

Margulis considered an invariant measure for anosov flows whose conditional
measure restricted to F**,F°° have uniform expansion (contraction) property.
Moreover, the coefficients are both topological entropy for the flow. There are also
several other constructions, e.g., Sinai [Si] for toral diffeomorphisms, Hasselblatt
[Ha] for Anosov flows, Hamenstadt [Ham)] for geodesic flows for negatively curved
manifolds, which are all interesting. In this paper we will give a similar fact about

this kind of measure, and we will call it Margulis measure.

DEFINITION 5.2. Fix a regular element f € R™. We call an invariant measure p
a Margulis measure if

(1) g*u** = A(g)u*", for all g € R™, some A(g).

(2) p** is honolomy-invariant.

The same formulas hold for p*®°.

THEOREM (THE EXISTENCE OF THE MARGULIS MEASURE) 5.3. For any irre-

ducible Anosov R"™ action, there exists at least one Margulis measure.

PROOF. A similar argument in [R2] establishes the existence of transversal
holonomy-invariant measure with uniform expansion in the F**-direction. For
completeness, we will reproduce the proof with necessary modification.

Let F = F**, with codim(F) = k. Let S denote the set of open submanifolds

of dimension k transversal to F. Let

J = {p: p is a signed transversal-invariant measure for f}.
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(A transversal-invariant measure is a collection (pg) of real measures on the set
¥ € S such that under the canonical isomorphisms they coincide.) We define

vague topology as the topology defined on J by the seminorms:

p — |ps(4),

where ¢ is a real, continuous function with compact supportin ¥ € §. Call p > 0
if pr > 0 for all ¥ € S. Let C be the cone of positive measures in J. Then we
have (see [R2])

(a) g =J,9C =C;

(b) there exists a A\g > 0, such that C(A\g,g9) = {p € C : gp = Aop} is a
non-empty, closed subset of C.

Let us take a 1-parameter subgroup g; in R™ with g; = g and show that the set
C(Xo,{g:}) = {p € C: gp = Ap for all ¢} is non-empty and g-invariant.

Indeed, C(Ao, g1/2) C C(Xo,9), and g-invariance is obvious. Then repeating the
argument again and again, we may prove that C(Xo, g1/2n+1) C C(Xo,g1/27) and is
also g-invariant. Local compactness of C implies that the intersection Cy of these
sets is non-empty and is g-invariant. Now the continuity of g;u in ¢t with p € Cy
implies our result. So we have that

(c) C(Xo,{g¢}) = {p € C : gp = Nip for all t} is a non-empty and g-invariant

set.

It is clear that Cy is a closed subcone of C, and for all f € R™ fCy = fC.
So using the argument of [R2], we can get that C(A1, f) = {p € Co : fp = Aip}
is a non-empty, closed subset of Cy for f sufficiently close to ¢ such that f is
regular and expands F. Then we may have a statement similar to (c¢). Continuing

to do this, we will obtain a measure that is a transversal holonomy-invariant

measure with uniform expansion property for all elements for R™. Using Margulis’
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construction of Margulis measure for Anosov flow, we will get a Margulis measure

for our Anosov R™ action. [

Remark 5.4. The argument for the two above theorems is almost the dupli-
cation of those in [R1] [R2]; we do not have uniqueness automatically from the
argument of Ruelle [R1] [R2]. Yet, we do have the uniqueness of the uniform
expansion coefficient for Margulis measure. This fact can be proved using either
Margulis’ original argument [M2] or Hasselblatt’s construction for the Margulis
measure [Ha], which we do not discuss here. We also remark that the uniqueness
of the Margulis measure might be important for the proof of the rigidity of R™

actions, because the Margulis measure is carried over by topological conjugacy.
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