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ABSTRACT 

The proclivity of silica for ferric hydroxide sorption sites allows for an Archean 

iron cycle involving iron-silica co-precipitation and deposition of banded iron formations 

(BIF). Considering the tendency of viruses to also sorb iron, here we investigate the 

possibility that viruses were involved in the iron cycle and potentially deposited in BIFs. A 

known concentration of Syn33a cyanophages was introduced into each media and the viral 

particles remaining in solution after a short centrifugation were enumerated using 

epifluorescence microscopy. The number of particles sequestered on the siliceous ferric 

oxide precipitate was estimated by difference. Similar to previous experiments, we 

observed a strong affinity of viral particles for iron oxides in the absence of silica. 

However, we also observe competitive inhibition of viral adsorption by silica, though only 

when silica is raised to concentrations of 670 µM. Ultimately, our data reveal that 

interactions between iron, silica, and viruses would have affected virus dynamics and 

corresponding biogeochemistry in the Archean ocean. Similar dynamics are predicted to 

occur in iron-rich environments today. 
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1.  Introduction 

Today, viruses play an important role in the microbial ecology of seawater. Present 

at high concentrations, they are major vectors of horizontal gene transfer and influence both 

community structure as well as ocean-scale biogeochemistry through the effects of lysis. 

Studies of viruses in modern marine environments shape our understanding of how these 

dynamics are generated today. A major outstanding question remains: to what degree is this 

understanding exportable to times past? There are good reasons to hypothesize that phage 

dynamics were different in ancient seawater – not solely due to evolution, but also 

changing environmental conditions. Chief among these are a shortage of oxygen and a 

dramatically different composition of seawater, in particular, far higher concentrations of 

iron. We offer the first experimental and theoretical attempt to understand viral dynamics 

under conditions that represent the Late Archean ocean and similar modern environments. 

Despite their small size, viruses are extraordinarily abundant. At concentrations of 

approximately 108 viruses ml-1 in seawater, there are an estimated 1031 infections every 

second in the ocean and 1-10 virus-like particles per prokaryote (Weinbauer, 2004; Suttle, 

2007). Viruses are also polyvalent: viral-like particles from seawater and hot springs have 

been found that can transfer between all three domains of life (Chiura, 1997; Chiura, 2002) 

and several marine phage sequences have been found to span multiple ecosystems 

(Breitbart et al., 2004; Short & Suttle, 2005). 

The abundance and versatility of viruses allow them to play an important role in the 

promotion of diversity, global scale processes such as nutrient and carbon cycling, and the 

regulation of microbial communities. Viruses exert considerable influence on community 



 

 
2 
 

structure through both lysogenic and lytic lifestyles. An estimated 1025 to 1028 bp of DNA 

are transferred every year by marine phages alone (Jiang & Paul, 1998; Waldor et al., 

2005). This highlights the potential significance of viral dynamics for microbial evolution 

and diversity. Viral horizontal gene transfer is known to alter ecological niches and support 

essential processes such as photosynthesis (Sullivan et al., 2005; Coleman et al., 2006; 

Rohwer & Thurber, 2009). In addition to transduction, viruses enhance microbial diversity 

by preventing dominance of the fastest growing, most abundant organisms and supporting 

the coexistence of organisms with similar niches (Fuhrman, 1999; Thingstad, 2000). 

Viruses can also control phytoplankton blooms and influence changes in community 

structure after bloom collapse (Peduzzi & Weinbauer, 1993; van Hannen et al., 1999; 

Suttle, 2007). Their role in regulating the bloom-and-bust cycles of coccolithophores 

potentially affects global temperatures and ocean circulation, including El Niño (Wilhelm 

& Suttle, 1999). Furthermore, viral lysis is thought to be an important driver of dimethyl 

sulfoxide release through phytoplankton mortality (Hill et al., 1998; Fuhrman, 1999). 

As important as grazing for a source of microbial mortality, viral lysis in surface 

water removes 20-40% of prokaryotes per day (Suttle, 2007). It has been demonstrated that 

phage alone, without any other predators, can control bacterial populations (Wilcox & 

Fuhrman, 1994). Because the predatorial pressure from viruses naturally gives rise to a 

dynamic system of host and virus strategies, viruses are a natural driving force for 

evolution (Bidle et al., 2007; Frada et al., 2008; Rohwer & Thurber, 2009). Viral lysis also 

plays an important role in biogeochemical cycles by short-circuiting the microbial loop, 

enhancing carbon and nutrient recycling (Gobler et al., 1997; Wilhelm & Suttle, 1999; 
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Poorvin et al., 2004; Suttle, 2005; Brussaard et al., 2008). An estimated quarter of primary 

production in the ocean is shunted this way, and the viral shunt is thought to sequester three 

gigatonnes of carbon annually, increasing the efficiency of the biological pump (Suttle, 

2007).  

Yet it is still unclear how these viral dynamics played out in the past. Ancient 

viruses have proven to be elusive. Because of their size and composition, viruses have not 

been detected in the fossil record, although some indirect evidence from amber inclusions 

suggests that viruses were present up to 100 million years ago (Poinar & Poinar, 2005).  It 

is also possible to detect biosignatures of membrane lipids that survive diagenesis (Brocks 

et al., 1999; Brocks et al., 2003), but this may be difficult to trace specifically to viruses. 

Phylogenetic studies, however, point to ancient viral origins (Hendrix et al., 1999; Filee et 

al., 2002; Holmes, 2003; Benson et al., 2004; Rice et al., 2004). It is hypothesized that 

viruses arose around the same time as the first cells, which appear to have been present 

approximately three billion years ago. One particular time period in this range provides us a 

particularly interesting corollary for viral influences: the Late Archean.  

A number of studies have detailed the removal of viruses from solution using iron 

oxides, mostly for the purposes of water treatment (e.g., Chang et al., 1958; Manwaring et 

al., 1971; You et al., 2005; Zhu et al., 2005). Viruses appear to adsorb to iron oxide 

particles through electrostatic attractions (Murray et al., 1978; Ryan et al., 2002 ; Shen et 

al., 2010). The reactive sites are thought to be the carboxyl and amino functional groups on 

the viral capsid (Daughney et al., 2004), but TEM images have also implicated phage tails, 

which may affect infectivity (Kyle et al., 2008). This interaction is complicated by the high 
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surface area to volume ratio of iron and its numerous ligands – including phosphate and 

silica - which may compete with viruses for sorption sites (Daughney et al., 2004; 

Konhauser et al., 2007). The proclivity of viruses for hydrous iron oxide particles is 

particularly relevant to high-iron environments. Some have suggested the validity of the 

iron-virus interaction for environmental contexts (Gerba, 1984; Daughney et al., 2004; 

Kyle et al., 2008), but to our knowledge, ours is the first application to earth history. 

In Late Archean and early Paleoproterozoic ocean basins, the deposition of banded 

iron formations is thought to result from a microbial iron cycle and a strong affinity of 

silica for ferric hydroxide sorption sites (Fischer & Knoll, 2009), leading to iron-silica co-

precipitation and deposition in deep water sediments. Iron in surface waters is oxidized, 

attracts dissolved silica, and precipitates to depth, where iron respiration regenerates Fe2+ 

and releases silica before being recycled to the surface (Fischer & Knoll, 2009). This iron 

shuttle for silica has significant implications when we consider the proclivity of viruses to 

also sorb iron. Relatively anoxic conditions during this time allowed for high 

concentrations of dissolved iron (Holland, 1973). The exact amount of iron in Archean 

seawater is unknown but estimated at 0.05 mM (Holland, 1984) - a concentration 

comparable to the amounts used in laboratory techniques to flocculate viruses from 

seawater (John et al., 2011).  

Thus a suite of abiotic processes involving viral interaction with iron oxides and 

silica might be important for phage abundances and dynamics in iron-rich seawater. Recent 

studies have also pointed to important ramifications for a virus-mineral association, 

including loss of infectivity, shielding from UV inactivation, and impact on virus-host 
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correlations (Templeton et al., 2006; Kyle et al., 2008). Although the effect of high iron 

concentrations on dissolved phosphate in the Archean ocean has been investigated 

(Konhauser et al., 2007), the effect on viruses has not. 

Here we propose an experimental approach to quantify potential viral abundances 

in synthetic seawater solutions of varying iron and silica concentrations. Addition of silica 

complicates the simple iron-virus interaction described above by competing with viruses 

for sorption sites on the surface of hydrous iron oxide precipitates. This setup will also 

allow us to observe the behavior of silica and viruses in the absence of iron. 
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2.  Methods 

A known concentration of Syn33a cyanophages was introduced into each medium 

and the viral particles remaining in solution after a short centrifugation were enumerated 

using epifluorescence microscopy. This virus was chosen for its high relevance to ocean 

dynamics and previously sequenced genome (Sullivan et al., 2010). Metal-free Aquil was 

used as our synthetic seawater within pH 7-8 (Morel et al., 1979). The number of particles 

sequestered on the siliceous ferric oxide precipitate was estimated by difference, avoiding 

the need for resuspension. Our reductionist approach minimized potential complications, 

such as loss of virus while allowing for better efficiency. 

2.1 Experimental design and centrifugation conditions 

We simulated a total of 16 possible ocean conditions of varying iron and silica 

concentrations, spanning the range of likely Archean ocean amounts. This included [Si] = 

0, 5 80, 670 µM and [Fe] = 0, 20, 200, 2000 µM. Sixteen 50 ml polypropylene tubes 

containing 40 ml of approximately 106 viruses ml-1 and the corresponding iron and silica 

concentrations were prepared. After gentle shaking to allow the iron to precipitate, each 

tube was then centrifuged at 500g for 15 minutes. The supernatants were sampled, filtered, 

stained, and enumerated with SYBR Green (Figure 1). The precipitate was also sampled 

and stored in 1.5 ml tubes at -80°C. This experiment was run in triplicate.  

Despite the artificial complications, centrifugation was chosen over natural settling 

as the method for iron precipitation due to the inefficiency of settling reported in John et al. 

(2011). However, this required a control experiment to verify that our centrifugation 

conditions would only pellet those viruses adsorbed to iron particles. A test bottle of Fe  
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Figure 1 Flowchart of developed simulation protocol. Following addition of virus, silica, 
and iron to Aquil6, each trial is shaken gently for iron to precipitate, then centrifuged and 
sampled for enumeration by epifluorescence microscopy. 
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2000 µM seawater was centrifuged at varying conditions from speeds of 200-2000g 

and times 2-15 minutes. After each trial, the pellet was resuspended by gentle vortex and 

shaking. The pellet and supernatant were inspected for opacity and amount of iron pelleted 

to determine the ideal centrifugation condition that will pellet iron but not free-floating 

viruses. A potential candidate was 500g for 15 minutes, for which the supernatant was only 

very slightly opaque and similar to conditions involving 700g. There was no noticeable 

difference in opacity after 700g for 15 minutes. Using this information, the virus solution 

previously used for the wall-sticking control was centrifuged at 500g for 15 minutes. 

Samples were taken before and after centrifugation and counted. After testing these 

multiple centrifugation conditions, we established centrifugation at 500g for 15 minutes as 

our standard protocol. The discrepancy between virus concentration before (3.99x107 

viruses ml-1) and after centrifugation (4.03x107 viruses ml-1) was attributed to error from 

lower virus number per FOV. 

2.2 Wall effect determination 

  Wall-sticking effects from the vessel used for the experiment were investigated. A 50 ml 

polypropylene tube holding 40 ml of virus solution (approximately 107 viruses ml-1) was 

prepared. Using epifluorescence microscopy, we tracked the number of viruses remaining 

in 40 ml of solution over 2 hours, sampling at times 0 (time of mixing/ inversion), 15 

minutes, 30 minutes, 45 minutes, 1 hour, 1.5 hours, and 2 hours (Figure 2). Each time 

sample was diluted and fixed 1:50 in a 2 ml tube containing 0.02 µm-filtered seawater and 

2% formalin. We found up to a 29% decrease in virus concentration within one hour, 

ostensibly due to wall chemistry. Because the virus concentration remained within the same 
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order of magnitude (107 viruses ml-1), we concluded that wall-sticking would not 

significantly alter our results under the set conditions. 

 
Figure 2  Viruses remaining in solution over 2 hours using 40 mL of synthetic seawater in 
a 50 mL polypropylene tube. Virus concentration reliably decreased over time from 
8.8*107 to 6.4*107 viruses ml-1, with the exception of the 1 hour time point, which dipped 
unexpectedly to 6.2*107. This was attributed to observational error. 
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2.3 Silica and iron dissolution 

Hydrochloric acid was used to facilitate dissolution of silica (Na2SiO3●9H2O) in 

nanopure water. The maximum amount of hydrochloric acid in 40 ml of seawater media 

was calculated, assuming approximately 2 mmol L-1 of buffer. Stock solutions of silica 

were prepared in order for a 2 ml aliquot to yield 40 ml solutions of 0, 80, and 670 µM 

silica. The synthetic seawater used in the experiments was metal- and silica-free Aquil 

medium (pH 7.95), prepared by S. John. 

A concentrated iron stock of 10 g L-1 Fe was prepared by dissolving FeCl3●6H2O 

into nanopure water according to the recipe described in John et al. (2011). Varying 

amounts of this stock solution was then added to each trial to obtain the desired 

concentration. 

2.4 Phage preparation 

Phage strain Syn33a (a T4-like myovirus) grown on Synechococcus WH7803 

arrived in four 15 ml tubes, which were immediately covered in foil and placed in 8°C. The 

tubes were numbered one through four and assumed to be separate batches. Batch 1 was 

noted to be significantly contaminated with bacteria, leading to crowding effects for high 

concentrations. Overall enumeration indicated a concentration of 1.3x108 viruses ml-1, and 

a 1:500 dilution was considered to be ideal for counts. We note that more than the usual 10 

FOVs must be counted for accuracy. The three other virus batches were then enumerated 

using 1:500 dilutions. They were found to be relatively pure and not visibly contaminated 

with bacteria. Batch 2 was determined to have approximately 8.8x107 viruses ml-1, Batch 3 
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with 1.1x108, and Batch 4 with 1.0x108. These were deemed acceptable concentrations for 

approximating Archean seawater. 

2.5 Enumeration by epifluorescence microscopy  

Virus flocculation was gauged by sampling the number of viruses left in the 

supernatant after precipitation and centrifugation. Following an established protocol (Patel 

et al., 2007), dilutions were filtered and stained with SYBR Green I dsDNA/RNA dye, then 

enumerated using epifluorescence microscopy (Figure 1). All dilutions were made in a 2 ml 

centrifuge tube, inverted for mixing, and then very briefly spun down (4-6 seconds) in an 

Eppendorf centrifuge to minimize cap effects. For consistency, the same experimenter 

carried out each virus count. 
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3. Results 

In the absence of silica, iron significantly reduced the number of viruses remaining 

in solution (Figures 3 and 4). This occurred across all three replicates, with percent 

differences dropping at least 31% when iron concentration increased from 20 to 200 µM. 

Iron concentrations appeared to correlate with the amount of virus precipitated (Figure 3). 

For low iron conditions (0-20 µM), increasing silica concentrations past 5 µM somewhat 

inhibited virus flocculation, although exact counts differed between replicates. Conditions 

of high silica and low iron consistently retained the most viruses in solution within each 

replicate (Figure A1). However, for intermediate iron concentrations around 200 µM 

(Figures 3 and 5), high amounts of silica (670 µM) significantly rescued virus numbers to 

values seen in low iron conditions. This effect disappeared when the iron concentration was 

raised to 2000 µM of iron: high iron conditions (2000 µM) consistently precipitated the 

vast majority of viruses (percent differences of -97 to -100), even for the highest amounts 

of silica (Figures 3 and 4). These four trials also had the lowest standard deviations, 

ranging from 0 to 1.15 (Figure A2). We note that samples with low virus concentrations, 

especially those containing 2000 µM Fe, may have a higher degree of error because counts 

could not reach the recommended 200 viruses per slide for accuracy. 
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Figure 3  Colormap of averaged percent differences. For each trial, percent differences 
from starting concentrations were calculated and averaged across the triplicate. Standard 
deviations are listed in Figure A2. 
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Figure 4  Comparison of epifluorescence images with and without iron addition. 
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Figure 5  Trends in Fe 200 and 2000 uM. Comparison of averaged percent differences 
between two highest concentrations of iron with increasing silica. Silica concentrations not 
to scale. 
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4. Discussion 

4.1 Abiotic processes occurring in the Archean ocean 

The limited inhibition of virus flocculation by silica suggests the existence of an 

iron threshold or saturation point between 200 and 2000 µM, beyond which any addition of 

silica can no longer affect virus flocculation. This supports the idea that viruses and silica 

are competing for a limited number of iron sorption sites, a phenomenon that may well 

have happened in the Archean ocean. As stromatolites, what we know as accretionary 

structures of cyanobacteria, are the earliest known evidence of life and have been traced to 

around 3 Ga (Noffke et al., 2003; Schopf, 2006), the use of cyanophage for this experiment 

appears to be highly pertinent. However, the earliest stromatolites may have been 

anoxygenic and true cyanophages only present at 2.4 Ga (Schopf, 2011). In addition, the 

morphology of Syn33a, a T4-like bacteriophage, is relatively complex, and we hope to 

replicate these results with siphovirus and podovirus, among other viruses that may better 

represent evolutionarily ancient viruses. Since the majority of viruses we know of are 

polyvalent, heterophages may be a more realistic option. Different species of viruses vary 

in their surface chemistry and resulting interactions with iron (Gerba, 1984; Kyle et al., 

2008), and it would be interesting to investigate how virus morphology correlates with iron 

interaction. We plan to refine our silica and iron parameters to narrow in on the Fe 200-

2000 µM range. This will allow us to study virus dynamics close to the threshold of silica 

competition. Experiments using starting virus concentrations closer to the modern average 

for seawater (107-108 viruses ml-1) may also help more realistically characterize the 



 

 
17 
 

interactions between virus, silica, and iron. Future work will include modeling the effects 

of the iron-virus-silica interaction on biogeochemical cycles such as the biological pump. 

4.2 Elemental ratios of cyanophage 

 We undertook a theoretical calculation of the carbon, nitrogen, and phosphorus 

content of our phage, loosely based on the calculation for Turnip Yellow Mosaic Virus 

(Symons et al., 1963; Kaper & Litjens, 1966). Our approach is based on the assumption 

that the phage is composed of three parts: capsid, DNA, and proteins/polyamines. 

Excluding polyamines and non-capsid proteins, the approximate C:N:P ratio was 

determined to be approximately 25.2 : 7.8 : 1. Syn33 data were used for the DNA 

calculation, but T4 phage data were used for the capsid proteins (Leiman et al., 2003; 

Sullivan et al., 2010). Our calculation demonstrated that the virus is enriched in phosphorus 

relative to the Redfield ratio of 106:16 :1, which is generally considered as a measure of 

ocean biology (Redfield, 1934; Redfield, 1958; Arrigo, 2005). The virus-iron interaction 

may therefore have had a significant influence on the biogeochemistry of the Archean 

ocean. This abiotic process may have been responsible for depositing phosphorus to 

sediment in the form of viruses and contributing to the phosphorus signals we see in BIFs 

today (Planavsky et al., 2010). 

4.3 Modern significance  

The interaction between virus, silica, and iron has the potential to substantially alter 

virus-host interactions in modern environments as well. Extensive virus mineralization by 

iron has been reported in the Rio Tinto, resulting in possible loss of infectivity (Kyle et al., 

2008). Hot springs depositing silica are predicted to silicify the capsids of T4 
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bacteriophages, which can compromise infectivity and lead to lowered microbial diversity 

(Laidler & Stedman, 2010). Laidler and Stedman (2010) also suggest that viruses located in 

such environments might adapt to evade silicification and subsequent inactivation. It 

remains to be seen whether silicification or mineralization can help preserve viruses in the 

rock record. 

We note that addition of silica to low concentrations of iron (0-20 µM) appears to 

have a slight inhibitory effect, constituting the least percent differences of all trials. The 

mechanism for inhibition is unknown but may involve a decrease in wall-sticking effects or 

the formation of virus-silica complexes. Addition of silica may prove to be a potentially 

useful technique for improving virus recovery under laboratory conditions. On a 

microscopic level, TEM on collected precipitates from the current experiment (Figure 1) 

may help visualize this association. 

Finally, the effect of iron on a mixed population of bacteria and virus should be 

investigated. Although studies have demonstrated the adsorption of iron to bacterial 

surfaces (e.g., Wightman & Fein, 2005), bacterial concentrations observed from the 

supernatant post-centrifugation were not noticeably affected by the addition of iron (Figure 

4). It is yet unclear whether iron selectively flocculates viruses from a heterogenous 

solution. 
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Conclusions 
 

We set out to examine the influence of abiotic interactions between virus and iron 

on the abundance and behavior of Archean viruses. To inform this problem, a set of simple 

competition experiments were implemented for iron and silica concentrations of interest. 

We confirm that greater amounts of iron lead to increased virus flocculation, and while 

sufficiently high concentrations of silica (670 µM) managed to inhibit precipitation of virus 

up to 200 µM Fe, this effect was undetectable for 2000 µM Fe. Our results suggest a 

concentration-dependent competition between virus and silica for iron sorption sites and 

present a novel concept of viral involvement in Archean iron cycles as well as modern iron-

rich environments. It remains to be seen how this interaction plays out for different phage 

morphologies as well as modern-day virus concentrations. 
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Appendix: Additional Figures 
 
Figure A1  Percent differences from starting concentrations for individual experiment 
replicates. Since we are estimating the amount of virus flocculated by difference, counts 
represented here have negative percent differences. 
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Figure A2  Standard deviations of percent differences across triplicate. The maximum 
deviation observed was 15.6, for the condition 80uM Si – 200 uM Fe. Deviations for 
2000 uM Fe and the 670 uM Si - 0 uM Fe trials were particularly low. The overall 
standard deviation (averaged) was approximately 7.3%. 
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