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ABSTRACT

The far zone radiation from two types of asymmetrically excited 

systems is considered. The first is a finite cylinder excited by an 

electric dipole in the radial direction near the cylinder. The

second is a prolate spheroid excited by a narrow belt of electric

field around the surface of the spheroid. In both cases the body

considered is perfectly conducting and the excitation is not neces­

sarily centered at the midplane of the body. In the case of the

finite cylinder excited by a radial dipole, an approximate method is 

used in which the current on the finite cylinder is taken to be iden- 

tical with the current which would exist on an infinite cylinder

under the same excitation. This approximation is shown to be valid

analytically and experimentally if the cylinder is not short. The 

analytic and experimental results are compared for two cylinder 

lengths. The turnstile antenna mounted on a finite cylinder is con­

sidered analytically and the modification of the radiation by the

cylinder is exhibited. In the case of the prolate spheroid excited

by a narrow belt of electric field, experimental results are compared

to analytic expressions. The differences between the experimental

and analytic results are considered. The considerations in obtaining

accurate experimental results in both asymmetrically excited systems

are discussed.
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The two radiating systems to be examined here have three

properties in common; the asymmetrical position of the excitation,

the rotational symmetry of the excited body about an axis and the 

finite length of the excited body in the axial direction. The

systems considered here are the cylinder of finite length excited 

by a radial dipole and the prolate spheroidal antenna excited by

an electric field impressed across a belt on the surface of the

spheroid. The asymmetry of the first case is due to the fact that 

the exciting dipole is not necessarily situated in the plane equi- 

distant from the two ends of the finite cylinder, and in the second 

case because the exciting belt is not necessarily in the equatorial 

plane of the prolate spheroid.

Asymmetrically excited antennas exhibit certain properties not

found in the corresponding symmetrically excited counterparts. Per-

haps the most important is the asymmetry of the radiation patterns.

In the cases treated here the radiation pattern is not symmetrical

about the midplane of the system, whereas the symmetrically excited

case must necessarily produce a symmetrical pattern. Thus the gain

of an asymmetrically excited antenna may be greater than the sym­

metrical case since a radiation lobe on one side of the midplane may 

be greater than a lobe on the opposite side, whereas they must be 

identical for the symmetrical case. The asymmetrical case may also 

possess more desirable impedance properties (1).

The radiating systems considered here are of interest theo-

retically and also have practical application. Perhaps the most

1. INTRODUCTION



important practical use is in communication with space vehicles. In 

order to obtain meaningful information via electromagnetic waves from 

space vehicles, it is often necessary to know the radiation pattern 

and polarization in the far zone. However, the radiation of the 

antennas on the vehicle may be greatly modified by the presence of

the vehicle itself. Commonly used antennas on satellites and missiles

are slots or radial linear antennas which are similar to the gap and 

radial dipole treated here. Also, the body of the satellite or missile

usually can be approximated by the finite cylinder or spheroid. Thus

the results given here can be used to predict the modification of the

antenna radiation pattern by the space vehicle on which it is mounted.

The problem of the finite cylinder excited by a radial dipole is 

quite similar to the problem of a prolate spheroid excited by a radial 

dipole if the eccentricity is near unity. The radiation from either 

configuration is expected to be quite similar. Thus one might expect 

that the spheroidal problem should be attacked because a constant value 

of one coordinate defines the spheroid, whereas the finite cylinder is 

specified by a constant value of the radial coordinate over one region 

and a constant value of the axial coordinate over two regions leading

to mathematical difficulties when the boundary conditions are to be

satisfied. However, the spheroidal approach leads to considerable

mathematical difficulties. The spheroidal coordinate system possesses 

the unfortunate property that expressions for the electromagnetic field

cannot be found in spheroidal coordinates in the manner utilized in 

simpler coordinate systems.

The problem is to find solutions to the vector Helmholtz equation 
▽2F+ k2F = 0 and difficulty arises from the fact that the vector
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Helmholtz equation is not separable in spheroidal coordinates. In

the vector case separability is defined in a different manner than 

in the scalar case (2). Separability of the vector Helmholtz equa- 

tion in a particular coordinate system is defined as the process of 

breaking the vector solution into three components which are defined

in a particular manner and are derived from the scalar Helmholtz

equation. In other words, separability of the vector Helmholtz equa- 

tion is possible if solutions can be found by applying certain vector 

operators to the solution of the scalar Helmholtz equation in that 

coordinate system. It can be shown (2) that of the eleven coordi- 

nate systems which allow separation of the scalar Helmholtz equation,

only six allow separation of the vector Helmholtz equation. These 

are: rectangular, circular cylindrical, elliptic cylindrical, 

parabolic cylindrical, spherical, and conical coordinates. It can

be shown that it is still possible to form general solutions in

spheroidal coordinates using the rectangular solutions of the scalar 

Helmholtz equation. However, when this is done, the matching of 

boundary conditions becomes so complicated as to be almost impossible.

It is for these reasons that the finite cylinder was chosen 

rather than the spheroid with dipole excitation, since at least 

relatively simple solutions to the vector Helmholtz equation are 

known, although the difficulty of the boundary conditions remains.

This is overcome by using an approximation described in Chap. 2 .

There is one special case where the vector Helmholtz equation 

can be solved in spheroidal coordinates in a manner such that boun-

dary conditions can be easily satisfied. This is the case where the



solution is independent of 0̸, the angle of rotation about the axis 

of symmetry. For this reason a spheroid was chosen as the asym­

metrically driven body rather than a cylinder when the excitation

is an axially symmetric belt field since the solution must be inde- 

pendent of 0.̸

The problem of the radial dipole near an infinite conducting 

cylinder has received the attention of various authors. Carter (3) 

derived expressions for the far zone radiation from dipoles of

various orientations near an infinite conducting cylinder using the 

principle of reciprocity. In a later paper, Lucke (4) obtained 

essentially the same results using the Green's function method.

Moullin (5) has related results in his book and LePage, Harrington 

and Schlecht (6), (7) and Walsh (8) consider similar problems.

The 0̸-independent prolate spheroidal antenna has been consi- 

dered by numerous authors. Forced oscillation of a prolate spheroid 

was first considered by Page and Adams (9) who treated the case of a 

thin spheroid driven by a plane wave whose electric field was parallel 

to the major axis. Chu and Stratton (10) attacked the case of the 

center-fed prolate spheroidal antenna by different methods and ob-

tained curves of input impedance. A detailed analysis of the aspects 

of the same problem was carried out by Ryder (11) who based his 

treatment in part upon earlier work of Page and Adams (9). In later 

papers, Page (12) treated the more general vector wave equation and 

extended his previous results. Flammer (13) considered the problem 

of a spheroidal monopole antenna which is formed when the inner con-

ductor of a coaxial line is extended into free space in the form of 

half a prolate spheroid, while the outer conductor is spread out into
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a conducting plane. The radiation from an electric dipole located

at the tip of a prolate spheroid has been computed by Hatcher and 

Leitner (14). Recently Myers (15) computed the radiation from an 

asymmetrically fed prolate spheroidal antenna excited by a belt of

impressed field. The theoretical results of Myers are compared

here to experimental results in Chap. 5.

It is the purpose of the present work to investigate the two

asymmetrically excited systems described above. The case of the 

cylinder excited by a radial dipole is treated analytically and 

experimentally. The case of the asymmetrically excited spheroid 

is treated largely from an experimental aspect.
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The effect of a finite perfectly conducting cylinder on the 

far zone radiation of a radial electric dipole is considered in this

chapter. The boundary conditions at the ends of the cylinder intro­

duce serious mathematical difficulties but through the use of the

solution for an infinite cylinder, it is shown that an approximate

solution can be obtained if the cylinder is not very short.

2. FINITE CYLINDER EXCITED BY A RADIAL ELECTRIC DIPOLE: THEORY

2.1 The Infinite Cylinder Excited by a Radial Dipole

Since the current distribution and far zone field expressions

for the infinite cylinder excited by a radial dipole will be used

later, these expressions will be derived in this section. The far 

zone field has been given by Carter (3) who made use of the prin- 

ciple of reciprocity and by Lucke (4) who used the Green's function 

method. The Green's function approach will be used here and in 

addition to the far zone field, the current distribution on the

cylinder will be derived.

The infinite cylinder of radius a and excited by a radial 

dipole at radius b is shown in Fig. 2.1. The Green's function

method leads to expressions' for the fields within a region in terms

of the currents and charges in the region and the fields on the 

bounding surface of the region. The necessary relations are given 

by Stratton (16), p. 466. The kernel in the equations given by 

Stratton is the free space Green's function but it may be shown that

they are also valid with the kernel equal to any Green's function. 

With this modification the equations for the electric and magnetic 

fields within a region V bounded by a surface S are (time
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Figure 2.1. Infinite Cylinder with Radial 
Electric Dipole

Figure 2.3. Contour of Integration 
in α Plane

Figure 2.2. Coordinate System
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(2.1)

in which J(r') is the current density, ρ(r') is the charge den- 

sity, ε and μ are the permittivity and permeability, n is the 

outward normal unit vector, ▽' is the gradient with respect to the 

primed coordinates and G(r,r') satisfies

(2.3)

δ(r-r') is the three-dimensional Dirac delta function and

. The properties of G(r,r') and δ(r-r') are discus-

sed by Borgnis and Papas (17). In order to simplify equations 2.1 

and 2.2, one is free to assign arbitrary boundary conditions to 

G(r,r'). If the boundary conditions G1(r,r') = 0 when ρ' = a 

and ∂G2(r,r')∕∂ρ' = 0 when ρ' = a are used in equations 2.1 and 

2.2 respectively where the coordinate system is shown in Fig. 2.2,

dependence e-iωt)

(2.2)
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equations 2.1 and 2.2 become

(2.4)

(2.5)

where use has been made of the fact that n x E(r') = 0 at the per­

fectly conducting cylinder.

The Green's functions as given by Lucke (4) are for ρ' < ρ

where primes indicate differentiation with respect to the argument, 

Hm(x) is the Hankel function of the first kind of argument x,

and the contour of integration C is shown in Fig. 2.3.

To determine the far zone fields the far zone approximations for G1

and G2 are used. These are evaluated from a result given by Papas

(l8) and upon substitution of these expressions into equations 2.4 and

2.5 and integrating, the far zone expressions for Ez and Hz for a 

dipole at ρ' = b, 0̸'= 0, z' =0 are obtained as follows.

(2.6)

(2.7)
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(2.8)

(2.9)

In these equations M is the dipole moment of the electric dipole, 

b is its distance from the axis, a is the radius of the cylinder, 

and εm = 1 when m = 0 and 2 when m ≠ 0. The far zone field 

is completely determined by equations 2.8 and 2.9. For the case of 

the dipole at the surface of the cylinder, b = a and using the 

Wronskian relation

(2.10)

one obtains

(2.11)

(2.12)

The two components of electric field in the far zone are determined 

from the relations



-11-

It is of interest to consider the radiation pattern for the case 

ka = .6317 since a finite cylinder of this radius is discussed 

later. The patterns of Eθ and E0 ̸in the half plane 0 ̸= π∕2 

are shown in Figs. 2.4 and 2.5. It is seen that Eθ actually 

becomes infinite if θ = 0. Since the cylinder is infinite,

however, θ can never take on the value θ = 0 . The limiting 

value of θ is that defined by sin θ = a/r since for this value 

the point of observation is on the surface of the cylinder. It 

appears from equation 2.14 that E0 ̸approaches the value 

-Mk2eikrsin 0̸/2πεr as θ approaches zero. This, of course, 

cannot be true, since E^ is tangential to the cylinder as θ 

approaches zero and therefore must vanish. Actually, it does vanish

on the cylinder and the trouble arises from the fact that the limit 

of equation 2.14 as θ approaches zero is not equal to the value 

of E0 ̸at θ = 0. It is easy to show that E0 ̸is actually zero 

at ρ = a by using equation A3.10 and equations 2.17 and 2.18. Thus 

equation 2.14 can be used at any point in the far zone except at the

(2.13)

(2.14)



Figure 2.4.
Eθ for Infinite 
Cylinder. 
ka = kb = .6317

0 ̸= 90º

-12-



Figure 2.5 
E0 ̸for In­
finite 
Cylinder 
ka = kb = .6317
0 ̸= 90º
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surface of the cylinder where its value is zero. This peculiar 

type of behavior is encountered in other places such as in the 

expression for the field about an infinitely thin wire where the 

expressions appear to yield a finite value for the tangential field 

at the wire. This is discussed by Schelkunoff (21), and it is 

shown that the field actually is zero at the wire, the discrepancy 

arising from the fact that the limit of the function as the wire 

is approached is not equal to the function at the wire. Precisely 

this behavior is also exhibited by E0 ̸of the infinite cylinder

at p = a .

If the radiation from a very long but finite cylinder is

desired, the expressions for the infinite cylinder can furnish

some information. However, these expressions must be used with

care. The expression for Eθ obviously cannot be used in the 

region near θ = 0 because of the singularity there. In the 

region not near θ = 0, the results are still of questionable 

validity because the limits of θ within which the infinite cylin­

der expression can be used with accuracy are not known. The radia-

tion from a finite cylinder will be derived later and the lobes 

which become evident in the pattern for Eθ are not evident at 

all in the pattern for the infinite cylinder. The expression for 

E0 ̸of the infinite cylinder approximates the corresponding ex­

pression for the long finite cylinder more closely than in the case 

of Eθ if the discontinuous behavior discussed above is not in- 

cluded. This is Justified, since the discontinuous nature is due



to the infinite extent of the cylinder. The agreement between the 

infinite and finite cylinder expressions for E0̸ may be observed

in Figs. 2.5 and 2.11. The closer agreement in the case of E0 ̸is 

due to the manner in which the currents on the cylinder decrease 

with z. Eθ has the surface current Kz as its source on the cylin- 

der, while E0 ̸has K0 ̸as its source and it is shown later that 

K0 ̸decreases faster with z than Kz. Thus E0 ̸is due more to 

currents near the origin than Eθ and thus its pattern is less 

dependent on the length of the cylinder.

The current distribution on the cylinder is calculated in a

similar manner except that far zone approximations cannot be used.

First Ez and Hz at the cylinder are determined and the current 

on the cylinder is derived from these components of the field. The

proper Green's functions needed are those valid for ρ < ρ'. These

are obtained from equations 2.6 and 2.7 by interchanging ρ and ρ'. 

Thus for ρ < ρ'

(2.15)

(2.16)
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Substituting this expression for G1 into equation 2.4 and integrating 

over the dipole, one obtains

(2.17)

Using equations 2.16 and 2.5 one obtains

(2.18)

(2.19)

where

(2.20)

Thus from equation 2.19, one finds that H0 ̸at the cylinder ρ = a is 

given by

As shown in Appendix 3, H0 ̸is determined from Ez and Hz through 

the relation

and are the Fourier transforms of Ez and Hz.

From equations 2.17 and 2.18, and are given by

(2.21)

(2.22)
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From equation 2.18, Hz at ρ = a is

(2.23)

The surface current densities on the cylinder are then

(2.24)

and the currents on the cylinder are completely determined.

2.2 The Finite Cylinder Excited by a Radial Dipole; The Method of
Approximation

The determination of the far zone field of a finite cylinder, i.e., 

a cylinder not of infinite extent in the ±z direction, when excited by 

a radial electric dipole presents greater difficulty than the case of 

the infinite cylinder. The case of the finite cylinder involves com­

plicated boundary conditions in that the tangential electric field

must vanish over parts of two different coordinate surfaces. As shown

in Fig. 2.6, the tangential field must vanish at ρ = a for

-ℓ1 < z < ℓ2 and also at z = ℓ2, -ℓ1 for ρ < a. These boundary con-

ditions introduce considerable complications and usually the solutions

to problems of this sort involve some method of approximation.

In order to carry out an approximate solution to this problem the

current distribution on the finite cylinder will be taken identical to

the distribution on the infinite cylinder. In other words, the current

distribution on the infinite cylinder is determined. Then as shown in
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Figure 2.6. Finite Cylinder with Radial Electric 
Dipole
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Fig. 2.7, the portions of the infinite cylinder above z = ℓ2 and 

below z = -ℓ1 are removed and the current on the remaining portion 

of the cylinder is assumed unchanged. The far zone field of this 

unchanged portion of the current between -ℓ1 and ℓ2 is then com- 

puted and added to the field of the dipole to obtain an expression 

for the total far zone field of the configuration.

Actually, of course, the current distribution on the remaining 

portion of the cylinder is changed when the upper and lower portions 

of the infinite cylinder are removed. However, it will now be shown 

that this modification of the current will be small if ℓ1 and ℓ2

are not short compared to a wavelength.

It is evident that the regions where the greatest perturbation 

of the current distribution from the infinite cylinder distribution 

exists are regions II and III of Fig. 2.7 which are the regions 

near the ends. In these regions the physical conditions have changed

greatly since an abrupt discontinuity now exists where a smooth sur-

face existed previously. The current in region I will not be

affected as greatly because it is determined largely by the dipole

field which is very strong in this region. However, the large change

of the currents in regions II and III will not have a large effect on

the far zone field if these currents are small relative to the currents

in region I. The region II and III currents will, in fact, be small if 

the current distribution on the infinite cylinder has decreased by a

large factor at z = ℓ2 and -ℓ1 from the value near z = 0 where

the dipole is located since the region I and II currents on the finite 

cylinder are of the same order of magnitude as the region I and II
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Figure 2.7. Finite Cylinder Divided into Regions for Approximate 
Analysis.
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(2.25)

(2.26)

so that the argument of H'm in equation 2.25 is small. Using the

small argument approximation for the Hankel functions it is found that

for m > 0

(2.27)

(2.28)

currents on the infinite cylinder. It is relatively simple to show 

that the current does decrease rapidly with z as one moves away 

from the dipole. Only the case of the dipole at the surface of the 

cylinder, i.e., b = a, will be considered. It is necessary to 

examine the current distribution for large z, for under this condi- 

tion a simple expression may be obtained and the rapidly decreasing 

behavior is exhibited. Instead of examining equations 2.22 and 2.23 

for large z it is simpler to use equations 2.11 and 2.12, since 

the condition of large z is already contained in them. The 0 ̸

component of surface current can be derived from the expression for 

H at the cylinder. From equation 2.12 H in the far zone is

At a large distance from the origin at the surface of the cylinder

Using equations 2.27, 2.26 and noting that r ≈ z, the expression 

for Hz at the cylinder for large z is
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where only the large leading term of the series has been retained.

Since the surface current density K0 ̸= -Hz (ρ = a) it is indeed true 

that this component of current decreases rapidly with z , i.e.,

K0 ̸∝ 1∕z2.

To obtain the corresponding expression for H0(̸ρ=a) use is 

made of the fact that in the far zone in free space

(2.29)

Thus using equation 2.11 for Ez, H0 ̸becomes for large z

(2.30)

Using equation 2.26 and the small argument approximation for the 

Hankel function one obtains for H0 ̸at the cylinder for large z

(2.31)

where again the leading term of the series is retained. In equation 

2.31, γ = 1.781072. Since Kz = H0(̸ρ=a), equation 2.31 shows that 

Kz decreases quite rapidly although not as fast as K0.̸ Thus it is 

shown that at least for large z the currents on the infinite cylinder 

attenuate rapidly so that the region II and III currents of Fig. 2.7 

are small compared to those near z = 0 as long as ℓ1 and ℓ2 are

large.

It remains to be shown that the currents in region I will not be
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greatly perturbed when the upper and lower sections of the infinite

cylinder are removed. The currents in the regions z > ℓ2 and

z < -ℓ1 impress a field on region I before their removal and when 

this field is removed the currents on the remaining portion of the 

cylinder must redistribute in order to maintain the proper boundary

conditions at the surface. This redistribution will be a small

effect only if the fields in region I due to the currents above 

z = ℓ2 and below z = -ℓ1 are small. The fact that the currents 

are small above ℓ2 and below -ℓ1 does not guarantee that the

field in region I due to these currents is small, because the field 

is an integrated effect. However, it will now be demonstrated that 

at least for large ℓ1 and ℓ2 the fields in region I due to cur- 

rents above z = ℓ2 and below z = -ℓ1 are small.

The magnitude of the fields near z = 0 due to currents above 

z = ℓ2 will be computed. For large ℓ2 the currents are given by 

equations 2.28 and 2.31. The field due to K0 ̸will be derived 

first. From equation 2.28

(2.32)

This current flows circumferentially around the cylinder and it is 

convenient in computing the radiation to consider this distribution 

as a distribution of current loops with radius a starting at 

z = ℓ2 and extending to infinity. It can be shown easily that the 

radiation field along the negative z axis of a loop of radius a , 

carrying a current Io sin 0 ̸located in the plane z = 0 is



-24-

(2.33)

Thus the field at z = 0 due to a section of the current of equation

2.32 of length dz at z is

(2.34)

(2.35)

(2.36)

Since ℓ2 is large Ci(2kℓ2) ≈ -sin(2kℓ2)∕(2kℓ2) and Si(2kℓ2) ≈ 

π/2 - cos(2kℓ2)∕(2kℓ2) so that

(2.37)

demonstrating that E0 ̸is small, of the order of 1∕ℓ22. The other 

component of current is from equation 2.31

(2.38)

This current flows in the axial direction and in order to compute the

The total field at z = 0 is then

Integrating, one obtains
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field, can be replaced by a distribution of dipoles parallel to the 

z-axis at ρ = a. It is known that both Eθ and H0 ̸vanish along

the axis of a dipole so that these components do not contribute in 

region I of the cylinder. However, there is an Er in the axial 

direction of a dipole which is given in the θ = π direction by

(2.39)

where m is the dipole moment. The equivalent dipole moment of a 

ring of current in the axial direction of axial length dz is

(2.40)

so that the field at z = 0 due to this ring of axial current is from

equation 2.39

(2.41)

Substituting for Kz from equation 2.38 and integrating to find the 

total field from the z component of current above z = ℓ2 one obtains

(2.42)

(2.43)

The magnitude of the integral in equation 2.42 is less than the magnitude 

of

because of the oscillatory nature of ei2kz. But
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(2.44)

Therefore

(2.45)

(2.46)

showing that |Ez| in region I due to currents above z = ℓ2 are

where . Since ℓ2 is large, an asymptotic 

expression for -Ei(-x) can be used to give

small, of the order of . The fields due to the cur- 

rents below z = -ℓ1 exhibit similar properties.

It should be noted that although the currents above z = ℓ2 and 

below z = -ℓ1 cause a small field in region I, the field in other

directions is not necessarily small. It was shown above that Eθ 

and H0 ̸due to Kz vanishes in region I but this is not true in 

other directions. Thus it would not be a good approximation to leave 

the currents above z = ℓ2 and below z = - ℓ1 in place even though the 

currents on these portions are small since their radiation fields are

appreciable in directions other than the axial direction.

To summarize, the reason· for using the current distribution of

the infinite cylinder for the problem of the finite cylinder is that
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the currents which contribute most to the radiation (region I) are 

modified very little while the currents which are perturbed to a 

larger extent (regions II and III) contribute little to the radiation 

field because of their small magnitude.

The preceding statements hold for ℓ1 and  ℓ2 large. Exact

lower limits for ℓ1 and  ℓ2 beyond which the approximation described

fails are difficult to determine because of the complexity of the func­

tions involved. However, experimental results are compared to 

theoretical results in Chap. 4 to give an idea of the error for certain 

values of  ℓ1 and  ℓ2.

2.3 The Finite Cylinder Excited by a Radial Dipole; The Approximate
Solution

The far zone radiation field of the radial dipole near a finite 

cylinder will now be derived using the approximation discussed in 

section 2.2. The physical configuration and coordinate systems are 

shown in Fig. 2.8. The field is to be calculated at an arbitrary 

point P . The field due to the current on the cylinder will first 

be derived and the dipole field will be added to give the total field. 

The far zone 0-̸component of electric field due to a current density 

J is (19)

(2.47)

where e0 ̸and er are unit vectors in the 0 ̸and r directions 

respectively, the integration is over the primed coordinates and 

includes the volume occupied by the source current. For a surface
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Figure 2.8. Finite Cylinder with Dipole and Coordinate 
Systems



-29-

current density K flowing over an area A, equation 2.47 becomes

(2.48)

For the cylinder of Fig. 2.8, dA' = ad0'̸dz' and

(2.49)

(2.50)

so that equation 2.48 becomes

(2.51)

Hz(ρ' = a) is obtained from equation 2.23. Observing that 

Hm(βb)∕H'm(βa) = H-m(βb)∕H'-m(βa), equation 2.23 may be written

(2.52)

(2.53)

Substituting equation 2.52 into equation 2.51, one obtains
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that the first integral in equation 2.53,

(2.54)

(2.55)

(2.56)

(2.57)

where the indentation at α = k is understood in the second integral. 

Interchanging the integral signs in equation 2.57 and carrying out the

It can be shown after considerable manipulation and use of the for­

mula (20)

Thus equation 2.53 becomes

Since the contour is as shown in Fig. 2.3 and since is

an even function of α one can write
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integral with respect to z', equation 2.57 becomes

To simplify this expression, let

Then after considerable manipulation equation 2.58 becomes

Letting α = kh, equation 2.60 becomes

(2.58)

(2.59)

(2.60)

(2.61)
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Letting the integral in 2.61 be represented by ψm (ka, kb, k∆, kℓ, cos θ) , 

the expression for E0 ̸becomes

(2.62)

The far zone E0 ̸of the dipole alone is

(2.63)

so that the total 0 ̸component of the far zone field is

The far zone θ-component of electric field due to a current den­

sity J is (19)

(2.65)

(2.64)

where eθ and er are unit vectors in the θ and r directions res­

pectively, the integration is over the primed coordinates and includes 

the volume occupied by the source current. For surface currents K,
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equation 2.65 becomes

(2.66)

For the cylinder of Fig. 2.8, dA' = ad0̸' dz' and

Using equations 2.49 and 2.67, equation 2.66 becomes

(2.67)

(2.68)

H0(̸ρ' = a) is obtained from equation 2.22. Since H'm(βb)∕Hm(βa) 

= H'-m(βb)∕H-m(βa), equation 2.22 can be written

(2.69)

(2.70)

It can be shown using equation 2.54 that the first integral in equa- 

tion 2.70,

Substituting equation 2.69 into equation 2.68 one obtains
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Thus equation 2.70 becomes

(2.72)

Because β is an even function of α the double integral in equation 

2.72 may be written

where the indentation in the contour at α = k is understood. Inter­

changing the integral signs, integrating with respect to z', defining 

ℓ and Δ as in equation 2.59, and letting α = kh, the expression 

for Eθ becomes

where

(2.71)

(2.73)

(2.74)
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(2.75)

The far zone Eθ of the dipole alone is

(2.76)

so that the total θ component of the far zone field is

(2.77)

Equations 2.64 and 2.77 completely determine the far zone field of a 

finite cylinder excited by a radial electric dipole.

It should be noted that in deriving equations 2.64 and 2.77, 

fields due to currents which flow on the end plates of the cylinder

have been neglected. This is a good approximation for long cylinders

because the currents which flow on the end plates are of the same

order of magnitude as the currents which flow near the ends of the

cylinder on the cylindrical surface itself. These currents were 

shown to be small in section 2.2 and should modify the radiation
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pattern noticeably only near the minima.

Because of the complexity of the expressions for 

ψm(ka, kb, k∆, kℓ, cos θ) and γm(ka, kb, k∆, kℓ, cos θ), they are most 

easily evaluated with the aid of an electronic computer.* The method 

of numerical evaluation is discussed in Appendix 2. It is possible 

to obtain values for ψm(ka, kb, kΔ, kℓ, cos θ) and γm(ka, kb, k∆, kℓ, cos θ) 

for a complete radiation pattern in a relatively short time by comput- 

ing both quantities on the same computing program.

2.4 Radiation Patterns for the Finite Cylinder

With the computed values of ψm(ka, kb, kΔ, kℓ, cos θ) and 

γm(ka, kb, k∆, kℓ, cos θ), the radiation at any point in the far zone can 

be computed by means of equations 2.64 and 2.77. The nature of the 

radiation patterns is exhibited in Fig. 2.9 for the case of

kb = ka = .6317, k∆ = 2.618, kℓ = 5π/2 which corresponds to a diameter 

of about λ∕5, a total cylinder length of 2.5λ and the dipole a dis- 

tance of about .4λ from the midplane of the cylinder. Fig. 2.9 

shows EθTOT in the half planes 0 ̸= 0º, 60º, 120º, and 180º. The 

direction of the longer portion of the cylinder is toward the top of 

the page. The general shape of the patterns is similar throughout the 

entire range from 0 ̸= 0º to 0 ̸= 180º although distinct quantitative 

differences occur. At 0 ̸= 0º the two large lobes are maximum. As 0 ̸

increases the large lobes decrease and gradually bend away from the

*The I.B.M. 709 computing facilities at the Western Data Processing 
Center and at Hughes Aircraft Company were used.
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Figure 2.9. EθTOT
for 0 ̸= 0, 60º, 120º, 

180º,
ka = kb = .6317, 
k∆ = 2.618, 
kℓ = 5π∕2



-38-

Figure 2.10. Relief of ΕθTOT in Region -180º ≤ 0 ̸≤ 0 for Cylinder 
at Origin with Axis in z direction and Dipole in x 
direction. ka = kb = .6317, k∆ = 2.618, kℓ = 5π∕2.
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Figure 2.11

E0T̸OT for

0̸ = 30º, 60º, 90º,
150º.

ka = kb= .6317, 
k∆ = 2.618, 
kℓ = 5π∕2
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axis of the cylinder. The small lobe near θ = 80º stays approxi­

mately constant in amplitude but the small lobe near θ = 110º 

increases as 0 ̸increases. The asymmetrical nature of the lobes 

should be noted; the pattern is not symmetrical about θ = 90º.

The direction of the largest main lobe is always nearest the direc- 

tion of the longer portion of the cylinder. A relief of the EθTOT 

pattern is shown in Fig. 2.10 for the region -180º ≤ 0 ̸≤ 0. The 

cylinder axis is in the z direction and the dipole points in the x 

direction. E0̸TOT in the half planes 0 ̸= 30º, 60º, 90º, 150º for

the same cylinder is shown in Fig. 2.11. E0̸TOT is zero for 0 ̸= 0º, 

180º and the radiation patterns are almost circular for other values 

of 0.̸ As 0 ̸increases from 0 ̸= 0º to 180º, E0̸TOT increases;

reaches a maximum at 0 ̸= 90º, and then decreases to zero at 180º. As 

in the case of E0̸TOT the patterns are qualitatively of similar shape

for different values of 0.̸ Because of this property, only patterns 

in the half plane 0 ̸= 90º will be considered in the following and 

the pattern for other values of 0 ̸should show behavior similar to 

that of Figs. 2.9 and 2.11, i.e., the major lobes of EθTOT decrease 

and bend and E0̸TOT increases from zero to a maximum at 90º and then

decreases to zero as 0 ̸increases from 0º to 180º. For larger 

cylinder radii than those discussed here this behavior probably does

not always occur since the greater number of terms in the series of 

equations 2.64 and 2.77 which must be used modify the patterns more as 

0 ̸increases. The pattern of EθTOT for 0 ̸= 90º for the cylinder of 

Figs. 2.9 and 2.11 is shown in Fig. 2.12. A pattern of EθTOT for the 

same cylinder but with the dipole closer to one end than the previous



Figure 2.12.

EθTOT for
0 ̸= 90º

ka = kb = .6317, 
k∆ = 2.618, 
kℓ = 5π∕2

-41-
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Figure 2.13

EθTOT for
0 ̸= 90º

ka = kb = .6317,
k∆ = 5.236,
kℓ = 5π∕2
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Figure 2.14

EθTOT for
0 ̸= 90º

ka = kb = 2.0,
k∆ = 2.618,
kℓ = 5π/2
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Figure 2.15
EθTOT for

0 ̸= 90º
ka = kb = .6317,
k∆ = 1.309,
kℓ = (5/4)π
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Figure 2.16
E0T̸OT for 0 ̸= 90º

ka = kb = .6317
k∆ = 1.309
kℓ = 5π/4
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Figure 2.17.

EθTOT for
0 ̸= 90º.

ka = kb = 2.0, 
k∆ = 1.309 
kℓ = 5π/4
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case is shown in Fig. 2.13. In this figure k∆ = 5.23δ which 

corresponds to the dipole located at a distance of about .4λ from 

the end of the cylinder. Locating the dipole nearer the end causes 

the largest lobe to move closer to the axis of the cylinder and 

also introduces a new lobe near θ = 90º. The asymmetry of the 

pattern is also increased. E0T̸OT, however, does not change appre­

ciably.

The effects of increasing the radius of the cylinder is ex- 

hibited in Fig. 2.14. This is the EθTOT pattern corresponding to a 

configuration of identical dimensions to the cylinder and dipole 1oca- 

tion of Fig. 2.12 except that the radius has been increased from

ka = .6317 to ka = 2.0 which corresponds to a diameter of about .6λ. 

The main effect is the broadening of the lobes and the filling of the 

deep minima which occur in the case of smaller cylinder diameter.

These changes are due largely to the increased magnitude of the higher 

order terms in the series of equation 2.77. The E0T̸OT pattern is not 

shown since it is not greatly modified.

EθTOT for a shorter cylinder is shown in Fig. 2.15 which is 

for kb = ka = .6317, kℓ = 3.927, k∆ = 1.309. This corresponds to a 

diameter of about λ∕5, a total cylinder length of 1.25λ and the 

dipole a distance of about .2λ from the midplane of the cylinder.

The small lobes of the pattern of the longer cylinder are not present.

E0̸TOT for this cylinder is shown in Fig. 2.16. EθTOT for a cylinder 

of larger radius but the same length and dipole location is shown in 

Fig. 2.17. The lobes are again broadened as in the previous case.
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2.5 The Turnstile Antenna

A very commonly used antenna consists of four radial dipoles 

placed at 0 ̸= 0, π∕2, π, and 3π/2 , being energized so that the 

phase of each dipole is π∕2 less than the preceding one as one 

proceeds from 0 ̸= 0 to 0 ̸= 2π. Thus in Fig. 2.18, dipole 1 has 

current Io cos ωt, dipole 2 has Io cos (ωt - π∕2), dipole 3 has 

Io cos(ωt - π), and dipole 4 has Io cos(ωt - 3π/2). This antenna 

has the property that it has an omnidirectional pattern of horizontal 

polarization in the plane θ = π/2 if the dipoles are at the origin. 

An antenna of this type is called a turnstile antenna. In practice

quarter wave antennas are used but since the far zone radiation of

a quarter wave antenna and a dipole differs only by a few percent, the 

two cases are quite similar.

In practice the four dipoles must always be supported by a suit- 

able structure and usually a cylindrical support is used as in Fig. 

2.19. If the cylindrical support is conducting, it may modify the 

radiation pattern considerably. It is, however, a relatively simple 

matter to calculate the radiation from the configuration of Fig. 2.19

from the expressions derived in section 2.3. It is necessary to add

the far zone radiation from the four dipoles with the proper phase 

relationship. From equation 2.64 the field due to the dipole at 

0 ̸= 0 and the cylinder is

(2.78)
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Figure 2.18. Turnstile Antenna

Figure 2.19. Turnstile Antenna with Cylinder
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where b has been placed equal to a since the dipole is at the 

surface of the cylinder. Also Am = J'm(ka sin θ) Ψm(ka, ka, k∆, kℓ, cos θ). 

Adding the fields due to each dipole with the proper spatial and phase 

relation, one obtains

(2.79)

(2.80)

(2.81)

After simplification, equation 2.79 becomes

Using equation 2.77 in a similar manner the expression for Eθ is
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where Bm = Jm(ka sin θ)γm(ka, ka, k∆, kℓ, cos θ). 

The plane θ = π/2 is of interest for turnstile antennas. If 

the dipoles are at the origin, E0 ̸is constant with 0̸, and Eθ is 

zero in this plane. However, if they are moved outward radially 

the pattern of E0 ̸is no longer omnidirectional and if a conducting 

cylinder is present, the pattern is further modified. This effect is 

shown in Fig. 2.20 for a rather short cylinder of small diameter. The

smaller pattern is of the dipoles alone at a distance a from the

origin. This pattern is approximately doubled by the currents on

the cylinder. There is also an Eθ present in this plane which is 

not present in the absence of the cylinder. In Fig. 2.21 is shown 

the pattern of E0 ̸for a cylinder of larger diameter but of the same 

length. In this case the deep minima of dipole pattern disappear

upon introduction of the cylinder.

2.6 The Long Cylinder of Small Radius

An interesting solution can be obtained in closed form for the

special case of a long finite cylinder of small radius. The method

of approximation discussed in section 2.2 is again used, but a dif-

ferent method is used in the derivation of the far zone field.

Because the length of the cylinder is assumed to be very long in this

section, the analytic expressions for the currents which flow on the

portions of the infinite cylinder above ℓ2 and below -ℓ1 which

are not to be included in the calculation for the field of the finite

cylinder, have a very simple form. They are just the currents de-

rived in section 2.2 which are valid for large z. Thus, to derive 

an expression for the fields of a very long finite cylinder, the
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Figure 2.20. E0 ̸for θ = 90º for Turnstile Antenna with 
and without Cylinder. ka = .6317, k∆ = 1.309,

kℓ = 5π∕4
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Figure 2.21. E0 ̸for θ = 90º for Turnstile Antenna
with and without Cylinder. ka = 2, k∆ = 1.309,

kℓ = 5π/4
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partial field due to the analytically simple currents above

and below -on the infinite cylinder is calculated and then

subtracted from the complete field of the infinite cylinder. In

this way the definite integrals, ψm and γm, described in section 

2.3, are avoided since the fields are calculated in an indirect 

manner without explicitly considering the currents on the cylinder 

near the origin.

The field of an infinite cylinder with dipole excitation at 

b = a is given in equations 2.13 and 2.14. For small ka, the 

leading term in the series is retained and the small argument ap- 

proximations for the Hankel functions are used to yield in free space

(2.82)

(2.84)

ka is assumed small enough so that ℓn(kz) can be neglected with

(2.83)

where γ = 1.781072. For very small ka, E0 ̸becomes negligible com­

pared to Eθ and therefore only Eθ will be considered in the

following.

The current on the infinite cylinder for large z is, from

equation 2.31
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(2.85)

which shows that the current is sinusoidal for small ka. This cur-

rent flows above ℓ2 and below -ℓ1 and it is now necessary to

obtain the field produced by it. Schelkunoff (21) gives a solution 

originally discovered by Manneback, which is the correct one in this

case. The solution is valid for a semi-infinite thin wire and in

spherical coordinates it is

(2.86)

(2.87)

respect to in the denominator of equation 2.84. For 

this condition equation 2.84 becomes

I(t) is the current at the end of the wire at the origin and the

wire extends from the origin along the radius, θ = 0, to infinity.

For the case of the wire beginning at z = ℓ2 instead of at the

origin carrying the current given in equation 2.85, equation 2.86 

becomes

Equation 2.87 holds if the distance to the point of observation, r , 

is large compared to ℓ2. Similarly, the field due to the currents 

below -ℓ1 is given by
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(2.88)

The solution for the finite cylinder of length ℓ1 + ℓ2  is then 

given by

(2.89)

where the field due to the currents above ℓ2 and below -ℓ1 has

been subtracted from the field of the infinite cylinder. The sin­

gularity which occurs along the axis in the' case of the infinite 

cylinder (section 2.1) is now eliminated in equation 2.89 since at 

the surface of the infinite cylinder, sin θ ≈ a∕z, cos θ ≈ 1 and 

r ≈ z, so that equation 2.89 becomes

(2.90)

(2.91)

A similar result is found at θ = π so that the singularity has been

Since it was assumed previously that ℓn kz can be neglected with

respect to , equation 2.90 can be written
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removed at the axis. Thus equation 2.89 is a simple expression for 

the far zone field of a long finite cylinder of small radius and is

valid anywhere in the far zone.
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3. THE ASYMMETRICALLY FED PROLATE SPHEROIDAL ANTENNA; THEORY

Another basic type of asymmetrically excited radiating system is

the usual asymmetrically excited antenna. This consists of a cylinder, 

prolate spheroid, or any elongated body of revolution excited by a tan-

gential belt of electric field which is not necessarily centered at

the midplane of the body. The prolate spheroid is treated here for 

the following reasons. No experimental study of asymmetrically excited

prolate spheroids had been done in the past, and since the facilities

of the antenna range described in Appendix 1 are well suited to mea­

surement of isolated antennas, i.e., with no external connecting

transmission line, this study could be advantageously pursued. Also

since an exact analytical solution is possible for the prolate spheroid,

at least for the case when the form of the impressed belt field is known,

any discrepancy between measured and theoretical radiation patterns

evidently stems from an incorrect assumption for the mathematical form

of the impressed field. Thus the measured radiation pattern yields

information about this assumption. This is considered further in

Chap. 5. From a practical standpoint, the asymmetrically fed cylindri­

cal antenna is more important. However, even if the solution for the

finite cylinder were desired rather than the solution of the prolate 

spheroid, the approximation involved in replacing the cylinder by the 

spheroid is probably better than the approximations one must use in 

solving the integral equation for the finite cylinder (11). Actually, 

the asymmetrically fed spheroid has practical importance in its own 

right because it is a good approximation to a commonly used satellite

antenna.
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It should be noted that the prolate spheroid was not treated for 

the configuration of Chap. 2 because as discussed in Chap. 1, extreme 

mathematical difficulties arise due to the 0-̸dependence of the problem.

3.1 The Mathematical Solution for the Asymmetrically Fed Prolate
Spheroidal Antenna

The analytic solution of the asymmetrically fed prolate spheroid 

will now be presented. The analysis follows that of Schelkunoff (21) 

and Myers (15).

The prolate spheroidal coordinate system is shown in Fig. 3.1.

The radial variable is u and the two angular variables are v and 

0.̸ A particular value of u, v, and 0 ̸determines a particular 

point in space by means of the equations

2L is the interfocal distance.

The intersection of the spheroid defined by equation 3.1 and the hyper- 

boloid defined by equation 3.2 and the half-plane defined by equation

3.3 locates a point in the coordinate system.

For a field which is circularly symmetric about the z axis, Max- 

well's equations become with exp(-iωt) time dependence

(3.4)

(3∙1)

(3.2)

(3.3)
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Figure 3.1. Prolate Spheroidal Coordinate System
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(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

where

(3.10)

It will be noticed that the first three Maxwell equations involve Eu.

Ev and H0 ̸while the last three involve Hu, Hv and E0.̸ For the 

case to be considered here as shown in Fig. 3.2, the excitation is an 

applied tangential electric field Ev across a narrow belt, and it is 

clear that only Eu, Ev and H0 ̸will be present. Thus the only equa- 

tions needed are equations 3.4, 3.5, and 3.6. Letting

(3.11)

the fields are
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Figure 3.2. Prolate Spheroidal Antenna 
Showing Applied Field
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(3.12)

(3.13)

(3.14)

(3.15)

Upon substituting A = U(u) V(v) one obtains

(3.16)

(3.17)

where d is the separation constant. Because there is no line current 

along the axis, H0̸ must vanish there or V(±1) = 0. This condition 

determines d, the eigenvalue of equation 3.17. At large distances 

it is necessary that

(3.18)

Thus one picks the solution of equation 3.17 satisfying the condition 

V(±1) = 0 and the solution of equation 3.16 satisfying equation 3.18 

and sums over all the eigenfunctions to obtain the general solution

for A

where and . Substitution of equation 3.11 

into equation 3.6 yields the differential equation for A
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(3.19)

Substituting into equation 3.13 one obtains

The boundary condition at the surface of the spheroid is that the 

tangential electric field vanish

(3.21)

where uo is the defining coordinate of the antenna and Eav(uo, v) is 

the applied field. Therefore,

It can be shown (21) that the V functions are orthogonal.

(3.23)

Using equation 3.23 one finds

(3.24)

If one assumes an infinitesimal width for the applied field belt while 

allowing the applied field to become infinite in a way such that the 

applied voltage remains finite, one finds

(3.20)

(3.22)
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(3.25)

where Va is the applied voltage and vo is the position of the belt.

Once the U and V functions and the eigenvalues have been computed,

equation 3.20 is used together with equation 3.25 to obtain the field.

Myers (9) has computed radiation patterns for the far zone for various

values of uo, vo and kL.

3.2 The Thin Spheroidal Antenna

It can be shown that for the limit of an infinitely thin conductor 

the current distribution is sinusoidal (22). Thus the current on a 

prolate spheroid of eccentricity near unity is expected to be approxi­

mately sinusoidal. This can be seen very clearly from the expression 

for the current on the spheroid in certain important cases. These 

cases correspond to spheroid lengths of kL = n(π∕2) where n is an 

integer. For these special cases it can be shown that certain 

spheroidal functions can be expressed in closed form. Except for a 

normalizing factor, the functions that may be expressed in closed form 

for the particular values of kL = n(π∕2) are

(3.26)

(3.27)
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Thus if kL = π∕2, the interfocal· distance is λ∕2 and since the 

total current on the spheroid is

(3.28)

one obtains using equation 3.25

(3.29)

However, v is directly proportional to the distance along the axis

of the spheroid

(3.30)

(3.31)

Thus the current is sinusoidal insofar as the quantity under the sum­

mation sign in equation 3.31 can be neglected. When the spheroid is

very thin this is a good approximation because the derivative of the 

radial function U'(uo) becomes larger as uo approaches unity and

and since kL = π∕2, uo ≈ 1, v = 2kz∕π,



the ratio Un(uo)∕Un(uo) becomes smaller causing the quantity under 

the summation sign to decrease. Similar arguments apply to the other 

cases of kL = n(π∕2) .

Even though mathematical simplification results by using a sinus- 

oidaI distribution of current, caution must be exercised in replacing 

the actual distribution by a sinusoidal approximation. In Fig. 3.3 

are compared the radiation patterns for the actual and the sinusoidal 

current distribution for the case uo = 1.00001, L = 3λ∕2π with the 

exciting gap a distance .4L from the center of the antenna. The 

sinusoidal current for this case is shown in Fig. 3.4 and was con- 

structed using the condition that the current vanish at the ends and 

be continuous at the gap. However, even though the spheroid is ex- 

tremely thin, a length-thickness ratio of about 630, with the maximum 

diameter of the spheroid only about λ∕600, the rigorous and the 

approximate patterns differ appreciably. The sinusoidal current 

results in a symmetrical lobe structure about the plane θ = π∕2, 

while the rigorous pattern has considerable asymmetry about this

plane. The radiation pattern of a real linear distribution of current 

is always symmetrical about the plane θ = .π/2 since the expression 

for the far zone field of a current I(z) along the z axis of a 

spherical coordinate system is (23)

-67-

(3.32)

and replacing θ by (π - θ) changes Eθ to its complex conjugate

so that its magnitude remains the same. Thus the sinusoidal approxi­

mation can never be used if the asymmetry in the lobe structure is
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Figure 3.3. Radiation Patterns for Thin Spheroid 
(uo = 1.00001, L = 3λ∕2π) and Sinusoidal Current
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important. It can be used, however, if only the angular position

and not the relative magnitude of the lobes is important.
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4. FINITE CYLINDER EXCITED BY A RADIAL ELECTRIC DIPOLE; EXPERIMENT

The expressions for the radiation field of a radial dipole near a 

finite cylinder derived in Chap. 2 depend on the condition that the 

cylinder is not short and that the dipole is not close to an end of 

the cylinder. If these conditions are violated, ℓ1 and ℓ2 are

small and the assumed current on the cylinder is no longer a good 

approximation. However, the complexity of the functions involved 

prevents setting a limit on ℓ1 and ℓ2 below which the analytically

computed radiation pattern is in error by a given percentage. For

this reason, measurements were performed and these are described and

compared to the analytic results in this chapter.

The technique of measurement is described in Appendix 1. The 

radiation patterns of cylinders of two different lengths were measured

for the case of the radial dipole directly against the surface of the 

cylinder, i.e., b = a. With the dipole directly against the cylinder, 

the charge on the dipole nearest the cylinder causes currents on the

cylinder whose field can be thought of as due to an equal and opposite 

image charge directly on the surface of the cylinder as shown in Fig. 

4.1 at one instant of time. This image charge cancels the dipole 

charge so that the field is identical to that caused by the remaining 

charge alone and the original dipole current. I as in Fig. 4.2. 

Because of this, in the experimental model the exciting dipole was

an extension of the inner conductor of a coaxial line with the outer

conductor connected to the cylinder as in Fig. 4.3. The coaxial line

4.1 Some Measurement Considerations
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Figure 4.1

Figure 4.2

Figure 4.3



-73-

connects to the circuit described in Appendix 1. The configuration 

of Fig. 4.3 closely approximates that of Fig. 4.2 if the radius of 

the outer conductor of the coaxial line is small compared to a

wavelength. This condition was satisfied since the outer diameter 

was approximately λ/100. A small metal ball was put on the end of 

the extended inner conductor to allow a greater lumped charge to

collect at that end and make the current on the conductor more con­

stant along the short extended portion, thus approximating the ideal 

dipole more closely. The length of the extended conductor was about 

.12λ. The experimental model is shown in Fig. 4.4.

It can be seen from equation 2.77 that in the half plane

0 ̸= 90º, the contribution to EθTOT by the dipole itself is zero.

Thus the half plane 0 ̸= 90º is the most desirable one in which to

compare the theory to experiment since here EθTOT is due only to 

currents on the cylinder and has no component due to the known field 

of the dipole. Unfortunately, no such plane exists for E0̸TOT 

because the field due to the cylinder currents is zero in the only

plane where the dipole field is zero. However, it is expected that 

E0̸TOT as computed from the approximate analysis of section 2.3 will 

be very accurate if the cylinder dimensions are such that EθTOT is 

accurate. This is due to the more rapid decrease of the 0̸-component 

of the cylinder surface current with z , which is the source of 

E0̸TOT on the cylinder. The z component of surface current decreases 

more slowly, and since it is the source of EθTOT on the cylinder, it 

is expected that E0̸TOT will be more accurate than EθTOT for a given 

cylinder. This was also shown to be true in section 2.1.
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Figure 4.4. Experimental Model of Cylinder with Dipole
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4.2 Cylinder Measurements

The measurements were performed on two different cylinders.

They were made only in the half plane 0 ̸= 90º because of the con­

siderations of section 4.1.

The first measurement was made on a rather short cylinder in

order to determine how well the expressions for the fields hold for

short cylinders. The cylinder had kℓ = 5π/4, k∆ = 5π∕12, ka = .632.

Thus the total length of the cylinder was 2ℓ = 5λ∕4, the distance

of the dipole from the nearest end of the cylinder was ℓ1 = 5λ∕12

and a = .101λ. The experimental and theoretical patterns for this

case are shown in Figs. 4.5 and 4.6. In Fig. 4.5 showing EθTOT for 

0 ̸= 90º, the main lobe agrees quite well but the minor lobe in the 

theoretical case is split into two lobes experimentally. In Fig.

4.6, showing E0̸TOT for 0 ̸= 90º, the agreement is quite good and 

this component of field is seen to be roughly omnidirectional in 

this plane. Thus even though the cylinder is of the order of a wave- 

length, the predicted pattern agrees fairly well with experiment, the 

greatest error being in the minor lobes in the EθTOT pattern.

The second measurement was made on a longer cylinder which had 

kℓ = 5π∕2, k∆ = 5λ∕6, ka = .632. The total length of this cylinder 

was 2ℓ = 5λ∕2, the distance of the dipole from the nearest end of 

the cylinder was ℓ1 = 5λ∕6 and a = .101λ. The experimental and 

theoretical patterns are shown in Figs. 4.7 and 4.8. The shapes of 

the EθTOT patterns agree well. The major lobe and small minor lobes

correlate quite well while the lobe at about 140º is about 30% larger 

in the theoretical case. In Fig. 4.8, the patterns for E0̸ agree
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Figure 4.5.

EθTOT for
0 ̸= 90º

ka = kb = .632, 
k∆ = 5π∕12 
kℓ = 5π∕4



Figure 4.6.
E0̸TOT for 0 ̸= 90º

0̸TOT
ka = kb = .632 
k∆ = 5π/12 
kℓ = 5π∕4

-77-



-78-

Figure 4.7

EθTOT for 
0 ̸= 90º

ka = kb = .632 
k∆ = 5π∕6 
kℓ = 5π∕2
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Figure 4.8
E0̸TOT for 0 ̸= 90º 

ka = kb = .632 
k∆ = 5π∕6 
kℓ = 5π∕2
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within about 15%.

Thus in the case of a cylinder length of 5λ∕2, ℓ1 = 5λ∕6,

a = .101λ the agreement between theory and experiment is good.

The agreement should become better as ℓ and ℓ1 become larger.

It is difficult to obtain a quantitative idea of the behavior of

the pattern error as the cylinder radius becomes larger. However,

from equations 2.28 and 2.37, it is probably true that as a in-

creases with all other parameters held constant, the error in

E0̸TOT becomes larger since circumferential currents contribute to

this field component. From equations 2.31 and 2.46, it is probably

true that the error in EθTOT decreases as a increases, since axial 

currents contribute to EθTOT. However, radiation from the end 

plates of the cylinder was neglected in the theory of Chap. 2 and

this probably increases as a increases. The difference between

theoretical and experimental patterns is thus a complicated function 

but it is expected that it will be small if kℓ and k∆ are large 

and ka << k∆. Even if these conditions are not satisfied, useful 

qualitative results are obtained.
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In analyzing antennas mathematically it is usually necessary 

to replace a practical antenna structure by a structure capable of 

being analyzed mathematically. If an antenna does not have boun- 

daries that are mathematically convenient, they are replaced by 

approximate boundaries which are necessary for a rigorous solution. 

For instance in analyzing a rather simple case, the cylindrical 

antenna, one should include the transmission line which feeds energy

to the antenna in order to obtain an exact solution. However, from 

a mathematical point of view, the transmission line introduces great 

difficulties since the transmission line and antenna together cannot

be represented simply in a coordinate system in order to treat the

configuration as a boundary value problem. To obviate this diffi-

culty the transmission line is not considered in the mathematical 

formulation and the mathematical solution is carried out. However, 

to be of practical value it must be known how closely the abstract

configuration of mathematically convenient boundaries correlates

with its experimentally practical counterpart. This may be done

analytically, but this approach again leads to the same mathematical

difficulties, since essentially the unsimplified configuration must

be treated. Perhaps a better approach is to perform measurements on

the actual practical antenna and compare the experimental and theo-

retical results. It is this approach that is followed here and is

applied to the asymmetrically fed prolate spheroidal antenna.

5. THE ASYMMETRICALLY FED PROLATE SPHEROIDAL ANTENNA; 
EXPERIMENT



-82-

5.1 Comparison of the Mathematical and Experimental Models

The mathematical idealization employed in Chap. 3 in the

mathematical treatment of the spheroid is the method of excitation.

It is assumed that the surface of the conducting spheroid is con- 

tinuous, having no gap, and that by some unspecified means a belt

of tangential electric field is applied at a certain location on

the surface as shown in Fig. 3.2. Then in order to obtain a simple 

expression for the coefficients in the resulting series, the width 

of the belt is made infinitesimal, while allowing the applied field 

to become infinite in a way such that the applied voltage remains

finite, i.e., the applied field is a delta function. In this way a

relatively simple expression results for the field.

The experimental spheroidal antenna cannot be constructed in

this manner. The applied field would have to be supplied by a con­

tinuous distribution of generators around the surface of the spheroid

which is not possible from a practical standpoint. The practical 

configuration usually is a split conductor, the two portions being 

energized by a transmission line which impresses a field between the

two portions of the conductor. Since an external transmission line 

would cause the field to be 0̸-dependent, the excitation must be from 

within. A convenient method is to use a radial transmission line

and an internal generator as shown in Fig. 5.1 for a spheroid.

Some distinct differences between the mathematical and experi-

mental structure are clear. The experimental structure has a gap or

discontinuity in the conducting surface of the spheroid instead of
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Figure 5.1. Prolate Spheroidal Antenna Showing 
Method of Excitation



-84-

the continuous surface of the mathematical model. This gap is neces­

sarily of finite width as opposed to the infinitesimal gap of the 

mathematical model, since a very narrow gap permits a very small 

power flow which is a limiting factor in the practical case. The 

exact impressed field at the surface of the spheroid in the gap is 

not of a simple form because a discontinuity in the radial trans- 

mission line exists there and nonpropagating modes are excited near 

the discontinuity.

Because of these differences in the excitation of the spheroid 

one might well expect differences between the analytical and experi­

mental radiation patterns. However, it is usually found that the far 

zone field of an antenna is quite insensitive to small errors in the

source current. This is due to the fact that the far zone field is

the result of an integration over the source current and the integral 

does not depend critically upon the details of the source current.

The only regions where the effects of a somewhat incorrect current dis-

tribution become important are near the minima of the radiation

pattern, since here even a small field change is a large percentage

error.

5.2 Construction of the Asymmetrically Fed Spheroidal Antenna

To verify the preceding statements and also to give a quantita­

tive idea of the error between the analytic and experimental radiation

patterns, a spheroidal antenna was constructed on which measurements 

were performed. Since the measurement technique described in Appen- 

dix 1 is used, the spheroidal antenna is used as a receiver. A
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schematic diagram of the antenna which is not to scale, is shown 

in Fig. 5.2. The "gap" is a polystyrene ring through which the 

impinging radiation travels. Two circular metal plates form a 

radial transmission line to guide the received energy to coaxial

line, the inner conductor of the coaxial line being extended in

tapered form between the radial line for a better transition. The

signal is then fed into a circuit as described in Appendix 1. The

audio signal is extracted through high resistance leads from the

two terminals shown.

The spheroid was constructed so that the "gap" could be placed 

in three alternative locations. While the "gap" is in one location 

the other two locations are filled by metal rings so that the spheroid 

is electrically continuous everywhere except at the "gap". The "gap" 

is 3/4" wide or about λ∕30 at 500 Mc, the frequency of measurement. 

The metal and polystyrene rings are threaded to make them easily

removable.

The spheroid itself was constructed of wood and the outer sur-

face was sprayed with copper. The thickness of the copper greatly 

exceeds the skin depth at the frequencies used so that electrically 

the spheroid body is solid copper. Figs. 5∙3 and 5.4 show the 

spheroid and the internal components. One polystyrene and two metal 

rings are in place.

5.3 Radiation Patterns of Asymmetrically Fed Spheroidal Antenna

The spheroid tested had kL = 3 so that it is approximately a 

wavelength in length. The "gaps" were placed at v = .1, .4, .8 and
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Figure 5.3. Spheroidal Antenna

Figure 5.4. Exploded View of Spheroidal Antenna
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the radial coordinate defining the spheroid was 1.02. The theoretical

field patterns were taken from results furnished by Dr. Charles P. 

Weils of Michigan State University and are shown together with the 

experimental patterns in Figs. 5.5, 5.6 and 5.7 for the three posi- 

tions of the "gap". In these figures the spheroid axis is along the 

direction of θ = 0. The longer portion of the spheroid is always 

on the left. The patterns shown are plane sections of a figure of 

revolution around the spheroid axis.

It is seen in Figs. 5.5, 5.6 and 5.7 that the correlation

between the theoretical and experimental patterns is quite good. The

largest percentage error occurs near the minima of the patterns. In

Fig. 5.5, vo = .1, the minimum at about 55º is not as deep as the

corresponding minima in the next two cases because the gap is not

appreciably off center. The error near this minimum is about 7% in

the first case. In the second case, Fig. 5.6, vo = .4, and the per-

centage error at the minimum at about 85º is 10%. In the third case, 

Fig. 5.7, the error at the minimum at about 90º is 26%. In regions 

other than near the minima the agreement is very good. The experi­

mental error in these measurements is estimated to be less than 2%.

It is evident from Figs. 5.5, 5.6 and 5.7 that the details of 

the excitation are not an extremely important influence on the radia­

tion pattern. The theoretical and experimental structures result in

very similar radiation patterns even though the excitation is some- 

what different. The fact that the largest percentage error is near 

the minima is in agreement with the discussion of section 5.1. The
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Figure 5.5. Spheroid
Patterns for vo = .1,
uo = 1.02, kL = 3. 
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Figure 5.6. Spheroid Patterns for vo = .4, 
uo = 1.02, kL = 3



Figure 5.7. Spheroid Pattern for vo = .8,
uo = 1.02, kℓ = 3

-91-
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error is attributable to slightly different values for the constants, 

an, given in equation 3.25, giving rise to somewhat different ampli­

tudes for the modes of equation 3.20. The theoretical solution

should agree more closely if a delta function excitation is not 

assumed, using instead a finite field distributed over a finite gap 

width to agree more closely with the experimental model. However, 

in all regions except near the minima, the solution for the delta 

function excitation yields very close agreement to the experimental

results for the small finite gap.



G. SUMMARY AND CONCLUSIONS

The far zone electromagnetic radiation from two asymmetri­

cally excited systems is considered. In order to carry out an 

approximate solution to the problem of a finite cylinder excited 

by an asymmetrically located radial dipole, the analogous case of 

an infinite cylinder excited by a radial dipole is obtained. In 

addition to the far zone field, the current distribution on the 

infinite cylinder is derived.

It is shown that an approximate method can be used to calculate 

the radiation from a finite cylinder excited by a radial dipole. The 

method of approximation makes use of the fact that the currents on

the finite cylinder are not greatly modified from those present on 

the infinite cylinder in the region near the dipole where the currents 

are large and are the sources of the largest part of the radiation.

The approximation is better for the 0̸-component of the far zone 

electric field than for the θ-component because of the manner in 

which the currents decrease along the axis of the cylinder. In fact, 

a good approximation to the 0-̸component of the field can be obtained 

from the solution for the infinite cylinder. This approximation for 

the θ-component, however, can be in error by a large amount.

The far zone field of the finite cylinder excited by a radial 

dipole is derived using the approximation discussed above. The

solution is obtained in series form in which the coefficients are

certain definite integrals. The method of computing these integrals 

is discussed. Measurements on finite cylinders are compared to the
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approximate analytic results and it is shown that fairly good agree­

ment is obtained. The agreement improves as the cylinder length

increases.

The field of a turnstile antenna mounted on a finite cylinder 

is derived and the modification of the radiation by the cylinder is

exhibited.

The far zone radiation from an asymmetrically excited prolate 

spheroid is discussed and experiments on this antenna are compared 

to the theoretical results. Very good agreement except in the rather 

unimportant regions of the minima is obtained.

The radiating systems considered here have practical importance 

in the design of missile antennas because of the similarity between 

the exciting elements and the nearby conducting bodies to the missile

antennas and the missiles themselves.

The method of approximation used here in the case of the finite

cylinder is applicable to cylinders which are not very short. The

expressions appear to yield good results for cylinders greater than 

about a wavelength or two in the cases examined. For very long cylin- 

ders these approximate expressions should yield very accurate results. 

However, because the time of computation of the definite integrals,

Ψm and γm, increases as the cylinder length increases, a limitation 

is imposed. For long cylinders it is thought that the approach of

section 2.6 would prove fruitful. In this method the field of the

currents beyond z = -ℓ1, ℓ2 is computed and subtracted from the field

of the infinite cylinder to yield the approximate solution for the 

long finite cylinder. This is quite simple in the case of small ka
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(section 2.6) but without this restriction the computation becomes 

more involved. It is thought, however, that this method will yield

simpler expressions to compute than the method of section 2.3 in

the special case of a very long cylinder.
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APPENDIX 1. ANTENNA RANGE

In order to determine the radiation patterns of antennas ex­

perimentally, it is necessary to utilize a pattern range which 

consists, in the most simple case, of the antenna under study in a 

transmitting state and a pickup antenna which is movable about the 

transmitting antenna in order to sample the field at the desired 

points in space. However, for the antennas of interest here, this 

method must be modified. The reason is that the analytical formula­

tion was carried through for the radiating system in free space.

Thus if the radiating system under study is to transmit energy, the 

energy must be supplied through a transmission line and the induced 

currents on the line would perturb the field making the measurements

inaccurate. Also, the structure which supports the antenna during

measurements introduces similar errors.

In order to reduce the errors due to induced currents on the

connecting transmission line, the following method was used. The 

antenna under test is operated in the receiving state. The receiving

radiation pattern is measured which is a measurement of the signal

received by the test antenna as it is rotated while it is immersed 

in the field of a transmitting antenna. However, the transmitting 

and receiving patterns of an antenna are identical (24) so that it 

is not necessary to distinguish between them. The advantage in using 

the test antenna in the receiving state arises from the method which 

can be used to guide the received signal from the antenna without dis­

turbing the fields. The transmitting signal is square-wave modulated 

at 1000 cps and a detector is mounted inside the test antenna to
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detect the received signal. A bolometer was used because of its 

reliable square law characteristics over a wide range of power.

As shown in Fig. A1.1 the bolometer is in series with a small

audio transformer and a 1.5 volt bias cell which are contained

inside the antenna. The received signal heats the bolometer and 

the change in resistance varies as the absorbed power. Since the 

signal is modulated at 1000 cps the current in the bolometer cir-

cuit varies at 1000 cps with an amplitude proportional to the 

received signal. In order to measure this 1000 cps audio signal, 

it is fed along two special high resistance leads to a tuned amp­

lifier and meter which are distant enough from the antenna to have 

negligible effect on the fields. The high resistance leads (about 

20,000 ohms per foot) disturb the field very little since any im- 

pressed field causes negligible current to flow on these leads.

To transmit the audio signal as efficiently as possible along

these leads, it is necessary to use the audio transformer shown in 

Fig. A1.1 to raise the impedance level to a high value to match the 

leads. 500 μμf feed-through capacitors were used to bring the lead 

terminals to the same r.f. potential as the test antenna body. At

the end of the leads nearest the tuned amplifier an identical audio

transformer was used to transform the impedance level back to a 

low value to match the input of the tuned amplifier. The output 

of the tuned amplifier is indicated by a meter and gives the amp­

litude of the received signal.
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Figure A1.1. Circuit Used Inside Antenna Models
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In order to eliminate the disturbance caused by the structure 

supporting the test antenna as much as possible, the supporting 

structure was a high tower constructed of polystyrene foam which 

has a relative dielectric constant of only 1.03. This value of 

dielectric constant is close enough to that of free space to make 

reflections from the support tower negligible. The polystyrene 

foam (styrofoam) construction yields more accurate measurements than 

the commercially available fiberglass construction because of de-

creased reflections.

During a pattern measurement the test antenna is placed on the

support tower. The base of the tower is fastened to a metal table

whose surface can be rotated by a system of gears. The transmitting

antenna radiates in the direction of the test antenna at the desired

frequency, while the turntable is rotated through the desired range 

of angle. The table is set at each intermediate angle at which a 

reading is desired and the signal from the test antenna is recorded.

In this way a 360º pattern can be obtained in any particular plane by 

supporting the test antenna such that the desired plane of measurement 

is horizontal. A schematic diagram of the range is shown in Fig. A1.2

To obtain an accurate pattern it is important to minimize reflec-

tions from nearby obstacles. For this reason it is desirable to make

the measurements in a relatively open location. Thus the range was 

erected on the roof of a three story building which had no higher 

buildings in close proximity. Also a large paraboloid with a direc- 

tional beam was utilized as a transmitting antenna so that the

radiated energy in directions other than that of the test antenna is 

greatly reduced. Thus the energy in the directions of any reflecting
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objects and simultaneously the reflected energy is reduced. By means 

of this method the only important reflection that remains is that

from the roof, since the angle to be considered in roof reflection

is within the region where the directional properties of the trans­

mitting paraboloid have not reduced the radiated energy sufficiently. 

However, this reflection was largely eliminated by adjusting the 

height of the paraboloid and test antenna as shown in Fig. A1.3.

Since the curvature of the transmitted wave is large at the roof, 

geometrical optics may be used, and the ray which would intersect 

the test antenna is shown. If the direction of this ray is made to 

coincide with a null of the paraboloid pattern, this source of error 

is greatly reduced. If θ is the angle of the null from the main 

beam, this requirement is satisfied if h = (R∕2)tan θ. At a repre­

sentative operating frequency, 500 Mc, h = 22' which is the height 

used for the spheroid measurements described in Chap. 5. For other 

frequencies the null shifts and the height must be shifted accordingly.

The transmitting antenna is shown in Fig. A1.4 and the styrofoam 

support tower mounted on the turntable is shown in Fig. A1.5. The 

spheroid is shown under test and the high resistance leads are 

visible. The tuned amplifier and transformer are beside the turn-

table .

The transmitting antenna was fed by a commercially available 

power oscillator whose output is about 20 watts.
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Figure A1.3. Adjustment for Minimum Reflection from Roof
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Figure A1.4. Transmitting Antenna

Figure A1.5. Support Τower
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(A2.1)

(A2.2)

APPENDIX 2. COMPUTATION OF ψm and γm 

The quantities ψm(ka, kb, kℓ, k∆, cos θ) and γm (ka, kb, kℓ, k∆, cos θ)

must be evaluated in order to obtain numerical results from equations 

2.64 and 2.77. Evaluation of these two definite integrals enables 

computation of E0̸TOT and EθTOT at any point in the far zone.

Because of the difficulty involved in obtaining analytic expressions 

for these quantities, they were evaluated on a digital computer.

Ψm(ka, kb, kℓ, k∆, cos θ) will be considered first. It was

evaluated only for the case of the dipole directly at the surface of

the cylinder, i.e., kb = ka. In the following ψm (ka, ka, kℓ, kΔ, cos θ) 

will be shortened simply to ψm. From equation 2.61

The integrand of equation A2.1 is finite at all points in the region 

of integration. For brevity define



Then equation A2.1 becomes

(A2.3)

(A2.4)

The second integral in equation A2.4 is already separated into real 

and imaginary parts, since Km(x) and K'm(x) are real functions of 

x. The first integral, however, must be separated by using the

relation

(A2.5)

The Wronskian relation

(A2.6)
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For h > 1, the argument of the Hankel functions becomes imaginary 

and modified Bessel functions of the second kind arise. Separating 

A2.3 into separate integrals over the regions 0 ≤ h ≤ 1 and h ≥ 1, 

equation A2.3 becomes
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has been used to simplify A2.5. Thus lotting

(A2.7)

where F1m(x) and F2m(x) are defined in equation A2.5, equation 

A2.4 becomes

(A2.8)

where the argument of F1m and F2m is and of Km and 

K'm is . These integrals were evaluated on a digital

computer for various values of ka, k∆ and . Simpson's rule was

used and ψm was evaluated for intervals of 7º in θ. The two in­

finite integrals in equation A2.8 were numerically integrated over 

the interval 1 ≤ h ≤ 10. For h > 10 the nature of the functions 

allows analytic integration. The range of values of θ necessary 

for a complete determination of the radiation pattern is 0 < θ < π. 

However, the values of ψm for π∕2 < θ < π are determined simply from 

the values in the range 0 < θ < λ∕2 because of the manner in which θ 

enters into equations A2.2 and A2.8. Replacing θ by π - θ in 

equation A2.2 leaves G1 unchanged but multiplies G2 by minus one. 

Thus if the components of equation A2.8 have been computed for a value 

of θ, it is necessary only to change the sign of the expressions
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involving G2 to obtain the value of ψm at π - θ. This reduces

the labor approximately in half.

γm(ka, kb, k∆, kℓ, cos θ) will now be considered and with kb = ka 

it will be denoted simply as γm. From equation 2.75 

Letting

(A2.11)

(A2.9)

(A2.10)

equation A2.9 becomes
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This is separated into real and imaginary parts with the final

result

(A2.12)

(A2.13)

and

(A2.14)

where

The argument of F3m and F4m in equation A2.12 is and

of Km+1, Km-1, Km and K'm is . Some of the integrands 

in equation A2.12 become infinite near h = 1 but the integral is 

finite. Near these points analytic integration is used. The range 

of γm is again 0 ≤ θ ≤ π/2 since only G3 changes sign upon the 

substitution π - θ for θ.

Numerical values for ψm and γm were computed on a single com­

puter program since many functions and combinations of functions are 

identical for each integral. In this way a complete set of values for 

ψm and γm can be run in a relatively short length of time.
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Because ψm always appears multiplied by mJ'm(ka sin θ), the  
quantity mJ'm(ka sin θ)ψm was computed. Similarly the quantity 

Jm(ka sin θ)γm was computed.
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APPENDIX 3. DERIVATION OF THE FIELD FROM Ez AND Hz 

It will be shown that all the field components can be determined 

from Ez and Hz and in particular, equation 2.19 for H0 ̸will be 

derived. The Fourier transforms with respect to z of Maxwell's 

two curl equations are

(A3.1)

(A3.2)

(A3.4)

dz and similarly for the other components.

These equations may easily be solved for any component of the field in

terms of

(A3.7)

Taking the inverse Fourier transform of equation A3.7

(A3.3)

(A3.5)

(A3.6)

where

and . For example, by combining equations A3.1 and

A3.5 the following equation for is obtained.



(A3.8)
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Letting , equation A3.8 becomes

(A3.9)

which is the desired relation for H0.̸ The expression for E0 ̸is

(A3.10)
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