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Abstract

The ever-growing need for data transmission over networks calls for optimal design

of systems and efficient use of coding schemes over networks. However, despite the

attention given to the analysis of networks and their optimum performance, many

issues remain unsolved. An important subject of study in any network is its capac-

ity region, which is defined through the limits of the set of data rates at which the

sources can reliably communicate with their corresponding destinations. Although

the capacity of a single user communication channel is completely known, the ca-

pacity region of many multiuser information theory problems are still open. A main

hurdle in obtaining the capacity of multiuser networks is that the problem is usually

nonconvex and it involves limiting expressions in terms of the number of channel uses

(data transmissions). This thesis takes a step toward a general framework for solving

network information theory problems by studying the capacity region of networks

through the entropy region. An entropy vector of n random variables with a fixed

probability distribution is the vector of all their joint entropies. The entropy region

of n random variables accordingly is the space of all entropy vectors that can arise

from different probability distributions of those random variables.

In the first part, it is shown that the capacity of a large class of acyclic memoryless

multiuser information theory problems can be formulated as convex optimization over

the region of entropy vectors of the network random variables. The advantage of

this characterization over the previous approaches, beside its universality, is that the

capacity optimization need not be performed over the limit of an infinite number of
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channel uses. This formulation on the other hand reveals the fundamental role of the

entropy region in determining the capacity of network information theory problems.

With this viewpoint, the rest of the thesis is dedicated to the study of the entropy

region and its consequences for networks. A full characterization of the entropy

region has proven to be a very challenging problem and so we have mostly examined

the space of entropy vectors through inner bound constructions. For discrete random

variables our approaches include the characterization of entropy vectors with a lattice-

derived probability distribution, the entropy region of binary random variables, and

the linear representable region roughly defined as the entropy region of linearly related

random variables over a finite field. Our lattice-based construction can in principle be

generalized to any number of random variables and we have explicitly computed its

resulting entropy region for up to 5 random variables. The entropy region of binary

random variables and the linear representable vectors are mostly considered in the

context of the linear coding capacity of networks. In particular, we formulate the

binary scalar linear coding capacity of networks and give the necessary and sufficient

conditions for its set of solutions. Moreover, we also obtain similar necessary and

sufficient conditions in the case of linearly coded arbitrary alphabet-size scalar random

variables of a network with 2 sources and determine the optimality of linear codes

among all scalar codes for such a network.

For continuous random variables we have studied the entropy region of jointly

Gaussian random variables and have determined that the convex cone of the cor-

responding region of 3 Gaussian random variables obtains the entropy region of 3

continuous random variables in general. For more than 3 random variables we point

out the set of minimal necessary and sufficient conditions for a vector to be an entropy

vector of jointly Gaussian random variables.

Finally in the absence of a full analytical characterization of the entropy region,

it is desirable to be able to perform numerical optimization over this space. In this
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regard, a certain Monte Carlo method is proposed that enables one to numerically

optimize the achievable rates in an arbitrary wired network under linear or nonlinear

network coding schemes. This method can be adjusted for decentralized operation

of networks and can also be used for optimization of any function of entropies of

discrete random variables. The promise of this technique is shown through various

simulations of several interesting network problems.
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Chapter 1

Introduction

The growing interest in information transmission over networks in recent years has

encouraged optimal design of communication networks. Although since its birth in

the late 1940s, information theory has had a significant role in the development and

improvement of point-to-point communication systems, it is fair to say that it has

had far less impact on the design of most of the networks currently in use, and

especially on the Internet. The importance of an interaction between networking and

information theory has become more apparent as the current networking tools have

been recognized to be inadequate for addressing the challenges of, e.g., the mobile

ad hoc wireless networks, and as network coding has proven to be advantageous over

traditional routing [ACLY00].

One of the main difficulties of incorporating information theory in the design of

networks is that when it comes to multi-user information theory, the capacity re-

gion (the rate region for a reliable information transfer) of even some of the simplest

networks, such as the relay channel, remain unsolved. In fact characterizing the ca-

pacity region of most network information theory problems requires one to solve an

infinite-letter nonconvex optimization problem which is an almost impossible task to

do [vdM77, Sha61]. Hence most multi-user problems have been tackled individually

through some network-specific subtle techniques. This is in contrast to traditional

networking, where the multi-commodity flow viewpoint allows one to obtain the op-
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timal rates in an arbitrary setting by solving a linear program over the network. The

lack of such an optimization-based approach within the information theory framework

that can compute and realize the achievable rates can be considered a major reason

for the minimal interaction between networking and information theory. Developing

such methods, has been the main motivation for the current thesis.

An “entropy vector” of n random variables with a specific joint distribution is de-

fined as the vector of all their 2n−1 joint entropies. Accordingly, the “entropy region”

is identified as the space of all such entropy vectors and is denoted by Γ∗n [YLCZ06].

As a step toward solving network information theory problems via a general frame-

work, we have developed a new optimization formulation for obtaining the achievable

rates in an arbitrary network. We show that by using the notion of entropy region

the optimal rates can be computed through a convex optimization problem. This

formulation of the capacity region, not only does away with the infinite-letter and

nonconvexity of previous characterizations, but also reveals the fundamental role of

the entropy region in determining the capacity region of network information theory

problems. Notably, for wired networks due to the separation of channel and network

coding [KEM09], to determine the rate region one only needs to characterize the

(unconstrained) entropy region. For wireless networks on the other hand, due to the

broadcast and interference nature of these channels, study of the network-constrained

entropy region is required. Study of the information inequalities which involve sums

of random variables such as the entropy-power inequality is particularly important.

The full characterization of the entropy region has proven to be a formidable task.

Therefore with an eye toward solving the obtained network optimization problem, this

thesis studies new inner bound constructions of the entropy region and the relevant

consequences for network coding. Numerical optimization over the entropy region as

an alternative is investigated as well.
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1.1 Capacity Region in Multiuser Information

Theory

Multi-user information theory involves the study of the limits of information trans-

fer among many users. However in contrast to the point-to-point communication

(single-user) case, where the problem is well understood, many multiuser problems

are still open. This is mainly due to the fact that a general approach to evaluate the

capacity region of multi-user problems requires one to optimize a linear combination

of mutual information terms over all possible joint distributions of source variables of

the network and all feasible network operations while letting the number of channel

uses go to infinity. In this formulation the objective function is usually nonconvex in

the joint probability distribution of sources and also the network operations. More-

over considering infinite number of channel uses means that one should consider a

sequence of random variables or equivalently vector-valued random variables whose

lengths are growing unboundedly. This is referred to as “infinite-letter”. Altogether,

one has to solve an infinite-letter nonconvex optimization problem.

This method is extremely difficult and although it can theoretically express the

capacity region it has rarely been used for the computation of the achievable rates

[CV93]. A few networks whose capacity regions are known are the cases for which an

equivalent single-letter characterization has been found. In particular the capacity of

the memoryless point-to-point communication channel can be expressed via a single-

letter convex optimization and is therefore completely solved.

In traditional networking, a.k.a, the multi-commodity viewpoint, on the other

hand, considering the information as flows allows one to obtain optimal rates via

solving a linear program, subject to the conservation of flows at each node and that

the total flow on each edge of the network not exceed the capacity of that edge.

Therefore one might wonder if there exists a similar framework for solving network
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Figure 1.1: Determining the rate region of a memoryless acyclic network involves an
infinite letter characterization.

information theory problems in general.

This issue is addressed in Chapter 2 where we have shown that the a large class of

acyclic memoryless networks can be formulated as convex optimization over the region

of entropy vectors. This formulation avoids the infinite-letter characterization and

reveals the fundamental region that needs to be characterized: The entropy region.

Moreover it suggests that similar to the traditional networking where distributively

solving the network problem made algorithms such as TCP-IP possible, distributive

solutions to our proposed convex optimization may also lead to effective protocols.

These issues are dealt with in subsequent chapters.
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1.2 Entropy Region Characterization

Characterizing the entropy region of any number of random variables has long been

an interesting open problem. In fact in addition to its central role in determining the

capacity of networks, it is closely related to many other issues in information theory

and statistics.

A linear combination of the joint entropies of n random variables which is positive

for all the entropy vectors in the Γ∗n is referred to as a linear information inequality

for the entropies. Linear information inequalities which follow from the positivity

of conditional mutual information are known as Shannon-type inequalities [ZY98].

Although for up to 3 random variables the entropy region is completely characterized

by a finite set of Shannon-type inequalities, the full characterization of the region for

4 or more number of random variables involves non-Shannon information inequalities

[ZY97, MMRV02, Zha03, DFZ06a] and remains a challenging problem. In fact it

is proven that no finite set of linear inequalities can completely characterize Γ∗n for

n ≥ 4 [Mat07a]. In other words the region is not a polytope for n ≥ 4, in spite of the

fact that the closure of the entropy region is known to be a convex cone for all n. In

summary for n ≥ 4, only partial characterization of the entropy region through inner

or outer bounds, exist. From the network problem perspective, inner bounds of the

entropy region are interesting in that they yield achievable rates. Yet, an approach

that can be easily extended to any number of random variables for obtaining an

inner bound is missing. This thesis takes a step in this direction by constructing an

achievable entropy region through different methods.

Discrete Random Variables

While the discovery of new families of non-Shannon-type inequalities has lead to

new outer bounds, the most well-known inner bound for the entropy region is the
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Figure 1.2: Entropy region, cone of Shannon inequalities, and the linear representable
region

so-called linear representable region [YLCZ06] which is the entropy region of a set

of random variables defined over a finite field that are obtained via a linear matrix

transformation from another set of uniformly distributed random variables over that

finite field. Although proven to be a strict subset of the entropy region, the general

characterization of this inner bound also remains an open problem.

In summary, there exists no general method for creating inner bounds for the

entropy region. This problem is addressed in Chapters 3 and 4 where in Chapter

3 a systematic inner bound construction of the entropy region is proposed and in

Chapter 4 characterizing the linear representable region under simplifying constraints

is investigated.

Continuous Random Variables

Although most of the research regarding the characterization of the entropy region

has been focused toward discrete random variables, it turns out that there is a close

connection between the entropy region of discrete and that of continuous random

variables such that one can be computed from the other [Cha03]. Nevertheless the

entropy region of continuous random variables or in particular the entropy region of
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a family of continuous probability distributions has not been studied independently.

This issue is dealt with in Chapter 5 where the entropy region of jointly Gaussian

random variables is studied. Gaussian random variables demonstrate some interesting

properties which make them a potentially good candidate for consideration. As an

example they easily violate the best known inner bound for the entropy region of 4

random variables.

1.3 Linear Coding and Linear Representability

Linear network codes, although known to be suboptimal for achieving capacity in

an arbitrary network, are appealing due to their simple structure. They turn out

to be intimately related to the linear representable entropy region which is the most

acclaimed inner bound of Γ∗n. Therefore from the linear network coding perspective

characterizing the region of linear representable entropy vectors is an important topic

of study. Moreover this problem has connections with the matroid representability

subject which makes it an interesting problem even on its own.

Despite some recent advances in this area [DFZ10, CGK10], the general charac-

terization of the linear representable region is very complex and remains an open

problem. As a result, full analysis of network problems even under the linear cod-

ing assumption seems to be far from reach. However it turns out that focusing on

networks with a fixed number of sources or assuming linear network codes over a

certain finite field makes the problem much more tractable [SJH09]. This subject is

addressed in Chapter 4 where linear codes for networks with two sources are studied.

In particular, we determine that among all scalar codes for networks with two sources,

linear codes are optimal. Furthermore, binary linear codes are also investigated for

general networks, and the method to obtain the capacity of networks under such

coding schemes is presented.



8

1.4 Numerical Optimization Over the Entropy

Region

The problem of characterizing the entropy region is very challenging and its analy-

sis will be a topic of research for years to come. In the absence of such an explicit

characterization, the next best thing is to present a method to numerically perform

optimization over this region. Nonetheless any deterministic numerical optimization

over this region would require some knowledge about the boundaries of the entropy

space. Therefore stochastic optimization techniques such as Markov Chain Monte

Carlo seem to be more suitable. For all that a Markov Chain Monte Carlo (MCMC)

method calls for sampling from Γ∗n. This issue is dealt with in Chapter 6 where an

MCMC approach is presented that allows numerical optimization of any desired accu-

racy over the entropy region by doing a random walk on quasi-uniform distributions.

These distributions, as defined by Chan in [Cha01], are a set of joint distributions of

n random variables which take on either zero or a constant value for all marginals

and they turn out to be sufficient for characterizing the entropy region.

1.5 Scope and Contributions of the Thesis

In this section we review the contents of each chapter and mention the main results.

Chapters may be read more or less independently.

In Chapter 2, we propose a convex formulation of the capacity region of a gen-

eral class of acyclic memoryless network information theory problems. This scheme is

advantageous over the previous characterizations in the sense that the infinite-letter

and nonconvexity dilemmas are no longer present. Our method is based on a slightly

different notion of entropy vectors, i.e., normalized entropy vectors—which we define

as the entropy vector normalized by the log of the alphabet size of the underlying dis-
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tribution. We denote the corresponding normalized entropy region by Ω∗n, as opposed

to the region of non-normalized entropy vectors, which is denoted by Γ∗n. We show

that this definition is more natural as the cost function in capacity characterization

of a multiuser information theory problem is a linear combination of joint entropies

divided by the number of channel uses and therefore proportional to the linear com-

bination of normalized entropies. Hence we show that the network capacity prob-

lem reduces to an optimization of a linear function of normalized entropies over the

network-constrained entropy region, which is essentially Ω∗n constrained by the network

conditions which either follow from the topology of the network or are imposed via

the channel constraints. By proving the convexity of the network-constrained entropy

region we prove the convexity of this optimization formulation. For wired networks

the formulation simplifies to a convex optimization over the unconstrained entropy

region, and as a result determining the capacity of wired networks only requires the

characterization Ω∗n. Moreover we show how using the optimization machinery in this

framework can bring forth interesting results. We obtain cutset outerbounds via a

duality argument as an example.

In Chapter 3, we study the entropy region of discrete random variables and

present an inner bound construction that is in principle generalizable to any number

of random variables. By using lattices as generator of points in the Euclidean space

R2n−1 we construct an inner region for Ω∗n. Our method hinges on defining a uniform

probability on lattice points inside a hypercube of R2n−1 and offers a systematic

method for constructing inner bounds for any number of random variables. Moreover

the obtained innerbound is a polytope which is specially desired from the network

information theory viewpoint, as such innerbounds render the network problem as

a simple linear program. We have explicitly calculated this region for up to n = 5

random variables, have shown its tightness for n ≤ 3 and have proved its equivalence

with the linear representable region for n = 4. In general we have established that due
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to the connection of our construction with Abelian groups, the lattice-derived inner

region will always satisfy the known Ingleton inequality; an inequality that is valid

for a strict subset of the entropy region points. We also study the entropy region

of binary quasi-uniform random variables and make comparisons with the lattice-

derived entropy region. Studying the entropy region of binary random variables is an

interesting problem which has been a subject of research in the community as well

[WW09].

In Chapter 4, we focus on the linear representable entropy region. In particular

we study the scalar linear representable region (i.e., the linear representable vectors

whose underlying random variables are scalar valued) in a systematic fashion and

explicitly compute the region for 4 random variables. We then turn our attention

to networks with 2 sources and show the optimality of linear codes among all scalar

codes for the network. We explicitly compute the entropy region of linearly encoded

random variables of a network with 2 sources and maximum number of variables of

6. We also study linear network codes over binary operations, which essentially is the

case where network random variables are binary and the nodes of the network either

route the packets they receive, or combine them using XORs, or timeshare between

these two operations. We then give the necessary and sufficient conditions for an

entropy vector to correspond to a solution of such network and accordingly formulate

the capacity region of networks under a binary linear coding assumption.

In Chapter 5 we determine the entropy region of 3 jointly Gaussian random

variables by finding the structure of the covariance matrices of the boundary points.

We show that the closure of the convex cone of this region generates the whole entropy

region of 3 continuous random variables. This result is very encouraging and to our

knowledge is the first result about the entropy region of any class of continuous

distributions. For 4 or more number of Gaussian random variables, the problem is

closely related to Cayley’s hyperdeterminant relation which is a generalization of the
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determinant to higher dimensions [HS07b]. We determine 2n − 1 − n(n+1)
2

nonlinear

constraints as the set of necessary and sufficient conditions for the entries of a given

2n − 1 dimensional vector to correspond to the entropy vector of n jointly Gaussian

random variables. These necessary and sufficient conditions lay the foundation for

determining the whole entropy region of Gaussian random variables for n ≥ 4 via

obtaining the convex cone of the realizable entropy vectors. Finally the entropy region

of continuous random variables in the context of the capacity of wireless networks is

considered in this chapter and the role of information inequalities such as the entropy

power are discussed.

In Chapter 6 we present a method for doing a random walk on quasi-uniform

distributions that allows one to numerically stake out the entropy region to any desired

accuracy. When coupled with Markov Chain Monte Carlo (MCMC) methods, one

may bias the random walk so as to maximize certain functions of the entropy vector

in a fashion similar to the Metropolis algorithm. Moreover this method can be used

in networks for optimizing a particular function of rates, where the random walk

will be over the input-output mappings at the network nodes. In cases where the

network is solvable, the obtained mappings yield a network code which could be

linear or nonlinear. Finally this approach can be performed in a decentralized fashion

in networks. We show the promise of this technique in finding solutions for arbitrary

networks and optimization of entropy functions by applying it to different examples.

As an instance we have employed this method to find entropy vectors that violate the

so-called Ingleton bound. This bound is identified by an inequality that does not hold

for all entropy vectors, yet only a handful of explicit examples of entropy vectors are

known to violate it. By using the MCMC method, we have interestingly discovered

entropy vectors that violate this bound meaningfully more than the previously known

examples. We have applied this technique to some networks as well. As an instance

we have considered a repair problem in a distributed storage system where there are
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source and storage nodes and the goal is to find network codes that in the case of

failure of a storage node will enable the rest of the network nodes to reliably recover

the lost data [CDH]. We have easily found a linear solution for storage problems with

2 and 3 sources and 4 and 5 storage nodes, correspondingly. Moreover we have found

nonlinear codes for some of the matroidal networks studied in the literature [DFZ07].

Finally in Chapter 7 we discuss some open problems in this field and possible

future directions.
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Chapter 2

Network Information Theory and
Convex Optimization

2.1 Introduction

Determining the capacity region of network information theory problems has long

been an interesting problem. Nonetheless, as opposed to the point-to-point com-

munication systems where the problem is well understood, the capacity region of

many multiuser problems remain open. A simple example is the 3-node relay channel

which one may consider to be the immediate extension of the point-to-point channel

in which the receiver not only receives information directly from the transmitter but

also through a relay. As simple as the setup may sound, the capacity region remains

unsolved. Thus far the approaches that have been taken toward solving multiuser

problems have been either in the regime of large number of users [GK00] or through

development of network-specific techniques. The handful of cases for which the ca-

pacity region has been completely determined are the cases where the obtained inner

or outer bounds for the capacity region have matched the cutset bounds. All in all,

a general theory of multiuser information theory is still lacking.

While, “in principle”, it is possible to write down a characterization for the ca-

pacity region of most network information theory problems, the difficulty is that this

characterization is infinite-letter and nonconvex. In other words, evaluating the capac-
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- -pX|S(x|s)
s x

Figure 2.1: A point-to-point communication problem

ity region requires solving an infinite succession of nonconvex optimization problems

over certain distributions whose number of variables goes to infinity. This is in stark

contrast with point-to-point (single-user) memoryless channels where the characteri-

zation is both single-letter and convex.

To make this more explicit, consider the point-to-point memoryless channel of

Fig. 2.1. The capacity is clearly

C = max
pS(·)

I(S;X) = max
pS(·)
{H(X)−H(X|S)} , (2.1)

where pS(·) is the input distribution and H(X) and H(X|S) = H(X,S)−H(S) are

the usual entropy and conditional entropies. Problem (2.1) is referred to as single

letter, since all entropies are over only a single channel use. The problem is one of

“convex optimization” since I(X;Y ) is a concave function of the input distribution

and so we are maximizing a concave function.

Consider now the network problem of Figure 2.2. Assume that the network is

acyclic and memoryless (in the sense that all channels internal to the network are

memoryless) and that there is no feedback from the destinations to the sources.

Assume that each source Si needs to transmit to its corresponding destination Xi

-

-

-

-

-

-

S1

S2

Sm

X1

X2

Xm

Network

Figure 2.2: A communication problem over an acyclic memoryless network
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at some rate Ri, i = 1, . . . ,m. Note that this assumption can allow for general setups;

if a source is desired by many destinations, then we may repeat that source as many

times as desired, and if a destination requires many sources, then we may repeat that

destination as many times as necessary.

Now in this case it is not too hard to show that the rate region, defined as the set of

rates {Ri}mi=1 which can be reliably exchanged between the sources and destinations,

is given by (see, e.g., [Sha61, vdM77, Kra03]):

R = cl

{
Ri, i = 1, . . . ,m | Ri <

1

T

(
H(XT

i )−H(XT
i |STi )

)}
as T →∞ (2.2)

where cl{·} refers to the closure of the set. Here STi and XT
i are random variables

obtained from concatenating the corresponding source and destination random vari-

ables over T channel uses. Of course, the characterization of the rate region R as in

(2.2) is not surprising—in some sense it can be considered almost as the definition of

the rate region. Computing it, however, is another matter.

An equivalent way of representing the rate region is through its tangent hyper-

planes. These can be obtained via solving the following optimization problem

lim
T→∞

sup
pSTi (·) and

network operations

m∑
i=1

αi
1

T

(
H(XT

i )−H(XT
i |STi )

)
(2.3)

where {αi}mi=1 represents the normal vector to the tangent hyperplane, and where

“network operations” represents all permissible internal operations of the network.

The problem (2.3) is notoriously difficult since it is infinite-letter (i.e., it involves

optimization over joint distributions whose number of variables goes to infinity) and

nonconvex (the cost function
∑m

i=1 αi
1
T

(
H(XT

i )−H(XT
i |STi )

)
is highly nonconvex in

the pSTi (·) and “network operations”). For this reason, the characterization of (2.3)
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has very rarely been explicitly used.1

Our goal in this chapter is to suggest an alternative representation and study

of the aforementioned network information theory problem. The main idea is to

define the space of (suitably normalized) entropic vectors and to show that a very

wide range of network information theory problems reduce to the optimization of

a linear cost over the convex set of (constrained) entropic vectors. This viewpoint

has several advantages: first, it does away with the complications of infinite-letter

characterizations (in fact, the infinite limit simplifies the representation considerably),

second, it renders the problem convex and, third, it shows how through duality one

may obtain classical results such as cutset bounds. While by no means solving the

network information theory problem in itself, it does point to what the heart of the

problem is: characterizing the space of (channel constrained) entropic vectors.

The next section defines the notion of entropic vectors and shows that the resulting

space is convex. This is then used to formulate network information theory problems

as convex optimizations.

In Section 2.3.3 cutset bounds, as well as a separation between network coding

and channel coding, are studied as some special instances of this formulation.

2.2 Entropy Vectors and Network Information

Theory

The notion of entropy has been around for a long time. It is a measure of information

and hence it is what the theory of information is based on [Sha48]. Hence there has

been a lot of research about its properties and extensions [Fuj78, Han81, CT91]. In

particular, for a given set of random variables X1, . . . , Xn, it has been interesting

1The only work that we are aware of that uses the infinite-letter characterization (2.2) is [CV93],
which shows that it can be reduced to a single-letter characterization for memoryless multiple-access
channels.
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to find out the relations between different joint entropies of those random variables

[Han75, Yeu91]. In 1997 Yeung [Yeu97] formalized the following definition:

Definition 2.2.1 (Entropy Vector) [Yeu97] Let X1, . . . , Xn be a collection of n

jointly distributed discrete random variables with alphabet size N each.1 For any set

α ⊆ {1, . . . , n}, let hα = h(Xi, i ∈ α) denote the joint entropy of the random variables

indexed by the subset α. There are 2n − 1 such subsets and thus the collection of all

hα forms a 2n−1 dimensional vector which is called an “entropy vector”. Conversely

any 2n− 1 dimensional vector that can be regarded as the entropy vector of n discrete

random variables X1, . . . , Xn is called “entropic”. The region of all entropic vectors

of n random variables is denoted by Γ∗n.

Now recall that the objective (2.3) is just a linear function of entropies:

m∑
i=1

αi
1

T

(
H(XT

i ) +H(STi )−H(XT
i , S

T
i )
)
. (2.4)

This motivates the following definition:

Definition 2.2.2 (Normalized Entropy) Let h be the entropy vector of n discrete

random variables X1, . . . , Xn with alphabet size N . We define h = 1
logN

h as the

“normalized entropy vector”. Conversely any 2n − 1 dimensional vector that can be

considered as the entropy vector of n random variables for some value of alphabet

size N is called normalized entropic. We denote the space of all normalized entropic

vectors of n random variables by Ω∗n.

We remark that the motivation for the definition of the normalized entropy is the

fact that what appears in (2.4), i.e., 1
T
H(XT

i ), 1
T
H(STi ), and 1

T
H(XT

i , S
T
i ) are essen-

tially normalized entropies, since the alphabet-sizes of STi and XT
i are exponential

1There is no loss of generality in this assumption. If the random variables have different alphabet-
sizes, we can always takeN to be the largest alphabet-size and to make the probability mass functions
zero wherever appropriate.
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in T . Therefore our definition [HS07a] of entropic vectors is slightly different from

the non-normalized version that is conventionally used in the literature (see, e.g.,

[Yeu02]). We believe our definition to be more natural. One indication is the more

direct connection to (2.3) and (2.4). The other is the fact that the set Γ∗n is known to

be quite complicated: it has an irregular boundary [Mat07a] and many “holes”. Its

closure, Γ̄∗n, is therefore more often studied, which can be shown to be a convex cone

[Yeu02, ZY97]. The set Ω∗n is, however, much simpler. It is clearly bounded, since,

hα ≤ |α| , ∀α ⊆ {1, . . . , n} (2.5)

where |α| is the cardinality of the set α. Furthermore, it is straightforward to show

that the closure of Ω∗n is a convex set.

Theorem 2.2.3 (Convexity of Ω̄∗
n) The closure of the set of normalized entropic

vectors, Ω̄∗n is convex.

We will present two proofs, since both are instructive.

Proof 1: (Time sharing) Suppose hx ∈ Ω̄∗n, corresponding to random variablesX1, . . . , Xn

with alphabet-size Nx and hy ∈ Ω̄∗n corresponding to random variables Y1, . . . , Yn with

alphabet-size Ny. Make nx independent copies of the first set and ny independent

copies of the second so that together the new concatenated random variables have

alphabet-size Nnx
x N

ny
y . The resulting entropy vector is clearly

nx logNx

nx logNx + ny logNy

hx +
ny logNy

nx logNx + ny logNy

hy,

which, since nx and ny are arbitrary, implies that one can get arbitrarily close to any

point on the convex hull of hx and hy. This implies the convexity of the closure of

Ω∗n. �



19

Now let us form the convex combination of the distribution of two sets of random

variables Xi and Yi, i = 1, . . . , n, with fixed alphabet size N . For this matter define

the random variables,

Zi =


Xi when θ = 0

Yi when θ = 1

(2.6)

where θ is a random variable that is 0 with probability pθ and 1 with probability

1− pθ. Then the probability distribution of Zi is,

pZ1,...,Zn(z1, . . . , zn) = pθpX1,...,Xn(z1, . . . , zn) + (1− pθ)pY1,...,Yn(z1, . . . , zn). (2.7)

If we denote the entropy vectors of the set of random variables Xi, Yi, and Zi by hX ,

hY , and hZ , respectively, then clearly it is not true that,

hZ = pθhX + (1− pθ)hY . (2.8)

However, the next proof shows that this is true in the limit!

Proof 2: (Convex combination of distributions) Make T independent copies of each

of the sets of random variables Xi and Yi and consider the distribution

pθ

T∏
t=1

pX1,...,Xn(zt1, . . . , z
t
n) + (1− pθ)

T∏
t=1

pY1,...,Yn(zt1, . . . , z
t
n). (2.9)

Now for any α ⊆ {1, . . . , n}, we have

H(ZT
α |θ)︸ ︷︷ ︸

pθH(XT
α )+(1−pθ)H(Y Tα )

≤ H(ZT
α ) ≤ H(ZT

α , θ)︸ ︷︷ ︸
=H(ZTα |θ)+H(pθ)

. (2.10)
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Denote ZT
i by Z̃i whose alphabet size is NT and its corresponding normalized entropy

vector by hz̃. Then normalizing (2.10) by logNT yields,

pθhX+(1−pθ)hY ≤ hZ̃ ≤ pθhX+(1−pθ)hY +
−pθ log pθ− (1−pθ) log(1−pθ)

T logN
(2.11)

which shows the convexity of the closure as T →∞. �

We remark that, for any fixed N , the set of entropic vectors is highly nonconvex.

It is the fact that N is arbitrary (and can grow unbounded) that yields convexity.

We end this section by emphasizing that our choice of normalized entropy vec-

tors, and letting N be arbitrary, retains all the information needed to solve network

information theory problems, yet “smooths out” all the irregularities in Γ∗n. In fact,

the relationship between the two sets is as follows:

Theorem 2.2.4 (Ω∗
n and Γ∗

n) Define the ray of a set S as

ray(S) = {αX|α > 0, X ∈ S} . (2.12)

Then we have

ray(Ω̄∗n) = Γ̄∗n, (2.13)

i.e., the ray of Ω̄∗n is the closure of Γ∗n.

Proof: Let V ∈ Γ̄∗n. This means that for any ε > 0 and α ⊂ {1, . . . , n} there exists

random variables X1, . . . , Xn of some alphabet size N such that |H(Xα) − Vα| ≤ ε.

Therefore 1
logN

V ∈ Ω̄∗n and so V ∈ ray(Ω̄∗n).

Conversely suppose V ∈ ray(Ω̄∗n); then by definition there exists a β such that 1
β
V ∈

Ω̄∗n, from which it follows that for any ε ≥ 0 there exist random variables X1, . . . , Xn

with alphabet size N for which |h(Xα)− 1
β
Vα| ≤ ε. Thus, logN

β
V is a non-normalized

entropic vector. Since Γ̄∗n is a convex cone [Yeu02], this implies that V ∈ Γ̄∗n. �
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2.3 Network Capacity as a Convex Optimization

2.3.1 Objective and Constraints

Let us now return to the network problem (2.3) and study the consequences of what

we have considered so far. Consider all the random variables in the network and

designate them by Xi, i = 1, . . . , n (the Xi will thus include both the sources, the

destinations, as well as any random variables internal to the network). Now due to the

normalization 1
T

in (2.3), we can simply write the objective as a linear combination of

entropic vectors constructed from the Xi. Furthermore, since we consider the closure

of the set of entropic vectors, the limT→∞ does not pose any problems. Finally, since

the set of entropic vectors is dense in its closure, replacing optimization over Ω∗n by

optimization over Ω̄∗n does not cause a problem.

The upshot of all these arguments is that (2.3) can be rewritten as

supαth, (2.14)

where α is the vector of coefficients and ·t refers to transpose. The optimization (2.14)

should be performed subject to h ∈ Ω̄∗n and subject to the constraints imposed by the

network. These are of two kinds.

2.3.1.1 Topological Constraints

x
@
@
@
@
@R

XXXXXXXz

��
��

��*
�
�
�
�
�3

��
���

�:

Q
Q
Q
Q
QQs

Xi1

Xi2

Xik

Xj1

Xj2

Xjl

Figure 2.3: Topological constraints at any non-source node



22

Topological constraints have to do with the information flow in the network. Thus,

consider a “non-source” node in the network with incoming messages {Xip}kp=1 and

outgoing messages {Xjq}lq=1 (see Fig. 2.3). Then clearly, we have the following linear

constraints on the entropy

h
(
Xjq |Xi1 , . . . , Xik

)
= 0 (2.15)

or, equivalently:

h
(
Xjq , Xi1 , . . . , Xik

)
− h (Xi1 , . . . , Xik) = 0 (2.16)

for all q = 1, . . . l. Alternatively, at source nodes we have h(Si, Sj)−h(Si)−h(Sj) = 0,

if source nodes i and j are independent or h(Si, Sj) = h(Si) = h(Sj), if source nodes

i and j are identical.

The conclusion is that topological constraints simply introduce linear constraints

on the entries of the entropy vector.

2.3.1.2 Channel Constraints

Channel constraints do not translate directly to entropies. What they do is constrain

the joint distribution of all random variables in the network (which then determines

the admissible entropy vectors). Thus, referring to Fig. 2.4, let a certain discrete

memoryless channel relate the messages Xi and Xj. Therefore,

p(Xi, Xj) = p(Xj|Xi)p(Xi), (2.17)

- -p(Xj|Xi)
Xi Xj

Figure 2.4: A channel internal to the network
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or, equivalently,

∫ ∏
k 6=i,j

dXk p(X1, . . . , Xn) = p(Xj|Xi)

∫ ∏
k 6=i

dXk p(X1, . . . , Xn) (2.18)

which is simply a linear constraint on the joint distribution. Now the fact that the

underlying distribution satisfies linear constraints has no effect on the validity of the

two proofs we gave for Theorem 2.2.3: time-sharing two sets of random variables

will satisfy the linear channel constraints if the original ones do and similarly convex

combination of any two distributions also satisfies the same linear channel constraints

that the initial ones do.

Therefore the presence of channels inside the network does not affect the convexity

of the space of admissible entropy vectors. We formalize this result in the following

theorem.

Theorem 2.3.1 (Channel-constrained entropic vectors) Let Ω∗n,c denote the space

of entropic vectors that are constrained by the discrete memoryless channels in the

network. Then the closure of this set, i.e., Ω̄∗n,c, is convex.

2.3.2 Capacity Formulation as Convex Optimization

From the above discussions we can conclude that the problem (2.3) is equivalent to,

max
h∈Ω̄∗n,c,Ah=0

αth, (2.19)

where Ω̄∗n,c denotes the convex space of channel-constrained entropic vectors, and A

is a matrix multiplying the entropy vector h such that the Ah = 0 represents the

topological constraints (which, as was stated earlier, enforce linear equalities on the

joint entropies). Note that, since the constraint set is closed, we can use max, rather

than sup.
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Remarks: The formulation (2.19) is significant for at least two reasons:

1. By going to the space of normalized entropy vectors, we have circumvented the

problem of “infinite-letter characterization”.

2. We have also circumvented the “nonconvexity”. (2.19) is a convex optimization

problem. In fact, the infinite-letter characterization is what yields convexity

(the space of entropic vectors is not convex for any finite T ).

2.3.3 Some Applications

2.3.3.1 Duality and Cutset Bounds

As a first attempt, a simple use of some basic machinery from convex optimization

yields some interesting results. In network flow problems, the duality between max-

flow and min-cut is well known [EFS56, FF56]. In information theory cutset outer-

bounds are also well known (see, e.g., [CT91]); however, to the best of our knowledge,

these have been obtained by relaxing the network problem to a point-to-point prob-

lem (assuming certain nodes can fully cooperate with the sources and others can fully

cooperate with the destinations), rather than through any duality argument.

Note that in (2.19) we can enforce the linear constraints through a Lagrange

multiplier λ to obtain,

max
h∈Ω̄∗n,c,Ah=0

αth = max
h∈Ω̄∗n,c

min
λ

(
αth+ λtAh

)
. (2.20)

Using the duality of convex optimization we can interchange the max and min to

obtain

max
h∈Ω̄∗n,c,Ah=0

αth = min
λ

max
h∈Ω̄∗n,c

(
αth+ λtAh

)
. (2.21)
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In particular, for any λ, we have the upper bound

max
h∈Ω̄∗n,c,Ah=0

αth ≤ max
h∈Ω̄∗n,c

(
αth+ λtAh

)
. (2.22)

Consider now an arbitrary cut through the network, such that all the source nodes

reside on one side of the cut and all the destination nodes on the other side of the

cut. Set to zero all components of the Lagrange multiplier λ that correspond to edges

that do not cross the cut. Now all nodes on either side of the cut can fully cooperate

and so the problem becomes a point-to-point problem whose value is simply the cut

capacity. Therefore the upper bound in (2.22), after minimizing over the remaining

components of λ, is simply the cutset upper bound corresponding to this cut. We have

therefore obtained an interpretation of cutset bounds through duality and Lagrange

multipliers. More clever choices of the Lagrange multiplier can lead to improved

upper bounds over the cutset bound.

2.3.3.2 Wired Networks

In the current framework, solving network information theory problems requires char-

acterizing the set Ω̄∗n,c. This seems formidable (to say the least). However, as we shall

presently see, for wired networks things simplify considerably. Wired networks are

defined through three main characteristics:

1. Each link represents a (discrete memoryless) channel.

2. The signals transmitted on outgoing edges of a node (Xi, Xj in Fig. 2.5) can be

distinct.

3. The signals impinging on a node (Xk, Xl in Fig. 2.5) are received without in-

terference.
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Figure 2.5: A wired network

Due to these properties the network capacity problem can be greatly simplified.

In fact for wired networks the separation of channel and network coding [SYC06,

KEM09, JE10], implies that any noisy link with information theoretic capacity C

can be replaced with a lossless bit pipe of the same capacity. In such scenario it is

shown that a set of rates are achievable in a noisy network if they are achievable

in an equivalent network whose links are replaced with noiseless links of the same

capacity. Therefore instead of studying the noisy network where for each link there is

a transmitted signal at the input and a received signal at its output, we may obtain the

rate region of the equivalent noiseless network by assigning a single random variable

Xe to every noiseless bit pipe e with the constraint that hXe ≤ Ce where Ce is

the capacity of the noiseless link e. Hence if we assume that the total number of

random variables (sources and all Xe) in the noiseless network is k, then the channel

constrained entropy region simplifies to

Ω̄∗k ∩
{
h | hXe ≤ Ce

}
. (2.23)

From the above argument we can easily conclude the following theorem.

Theorem 2.3.2 (Wired Networks Capacity) Consider a wired network that is

acyclic and memoryless and has a total of k edges and sources. Moreover assume that

there is no feedback from the destinations to sources. Then any network information
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theory problem reduces to a problem of the form,

max
h∈Ω̄∗k, ∀e,hXe≤Ce, Ah=0

αTh, (2.24)

where Ah = 0 represents the topological constraints of the network and Ce is the

capacity of edge e.

Therefore for wired networks determining the rate region solely requires the charac-

terization of the unconstrained entropy region Ω̄∗k of k variables.

2.4 Conclusions

In this chapter, we introduced the notion of normalized entropic vectors—slightly

different from the standard definition in the literature in that we normalize entropy

by the logarithm of the alphabet size. We argued that this definition is more natural

for determining the capacity region of networks and, in particular, that it smooths

out the irregularities of the space of non-normalized entropy vectors and renders the

closure of the resulting space convex (and compact). Furthermore, the closure of the

space remains convex even under constraints imposed by memoryless channels inter-

nal to the network. It therefore followed that, for a large class of acyclic memoryless

networks, the capacity region for an arbitrary set of sources and destinations can be

found by maximization of a linear function over the convex set of channel-constrained

normalized entropic vectors and some linear constraints. This formulation circum-

vents the “infinite-letter characterization” issue, as well as the nonconvexity of earlier

formulations, and exposes the core of the problem: characterization of the entropy

region. We showed that the approach allows one to obtain the classical cutset bounds

via a duality argument. Furthermore, for wired networks where the separation of

channel and network coding holds the channel constrained entropy region simplifies

considerably where one only needs to characterize the unconstrained entropy region
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to determine the rate region of such networks.
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Chapter 3

Lattice-Based Entropy
Construction

3.1 Introduction

LetX1, . . . , Xn be a collection of n jointly distributed finite-alphabet random variables

and consider the 2n − 1 dimensional vector whose entries are the joint entropies of

each non-empty subset of these n random variables. Any 2n − 1 dimensional vector

that can be constructed from the entropies of n such random variables is referred to

as entropic. The region of all entropic vectors for n random variables is referred to

as Γ∗n.

Characterizing the region of entropic vectors has long been an interesting open

problem. Many issues in information theory and probabilistic reasoning, such as

optimizing information quantities or characterizing the compatibility of conditional

independence relations, involve or are closely related to this problem. Moreover, as it

has been proved that the closure of Γ∗n is a convex cone for any n, characterizing this

region is fundamental in the sense that many network information theory problems

can be formulated as convex optimization problems over this region. Thus, deter-

mining this region can lead to the solution of a whole host of information-theoretic

problems. On the other hand many proofs of the converse of coding theorems in-

volve information inequalities, the complete set of which can be found as a result of
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characterizing this region.

The work of Han, Fujishige, Zhang, and Yeung, [Fuj78, Han81, ZY98, ZY97,

Yeu97] has resulted in the complete characterization of Γ∗n for n = 2, 3 and their

relation to polymatroids and submodular functions. In particular, if we let N =

{1, ..., n}, α, β ⊆ N , Xα = {Xi : i ∈ α} and Xβ = {Xi : i ∈ β}, it is clear that the

entropy H(Xα) = H(α) (for simplicity) satisfies the properties

1. H(∅) = 0

2. For α ⊆ β: H(α) ≤ H(β)

3. For any α, β: H(α ∪ β) +H(α ∩ β) ≤ H(α) +H(β)

the last of which is referred to as the submodularity property. The above inequalities

are referred to as the basic inequalities of Shannon information measures (and are

derived from the positivity of conditional mutual information). Any inequalities that

are obtained as positive linear combinations of these are simply referred to as Shannon

inequalities [ZY98]. The space of all vectors of 2n − 1 dimensions whose components

satisfy all such Shannon inequalities is denoted by Γn. It is known that all valid

information inequalities for up to 3 random variables are “Shannon type inequalities”.

Therefore Γ∗2 = Γ2 and Γ̄∗3 = Γ3, where Γ̄∗3 is the closure of Γ∗3 [ZY97].

For 4 or more number of random variables however, it was discovered [ZY97]

that there are information inequalities which do not follow from the positivity of

conditional mutual information and hence they are “non-Shannon type information

inequalities”. From the discovery of these inequalities it followed that Γ∗4 is strictly

smaller than Γ4. The non-Shannon inequalities have also proven useful in deriving var-

ious outer bounds for different network information theory problems [DFZ07, YZ99].

Although various outer bounds have been found for the entropy region of 4 or

more number of random variables by discovering new non-Shannon type information

inequalities [ZY97, DFZ06a, MMRV02, Zha03, Mat07b], its complete characterization
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remains an open problem. Moreover there has been much less focus on determining

inner bounds on Γ∗n [ZY98, MS95]. These would be of great interest since they would

yield achievable rate regions for many network information theory problems. The

most well known inner bound for the entropy region is the so-called “linear repre-

sentable entropy region” [YLCZ06].

Definition 3.1.1 (Linear representable entropy) An entropy vector h of n ran-

dom variables is called linear representable if there are subspaces v1, . . . , vn over GF(q)

such that for any α ⊆ {1, . . . , n}, we have hα = rank (⊕i∈αvi) where ⊕ denotes the

space spanned by {vi, i ∈ α}. Denote the linear representable entropy region of n

random variables by Γrn.

Clearly, Γrn ⊆ Γ∗n ⊆ Γn. In fact it is known that all representable entropy vectors,

satisfy an inequality called the “Ingleton bound” which does not hold for all entropies

in general.

Definition 3.1.2 (Ingleton inequality) For a subset of at least 4 random variables

i, j, k, l, the Ingleton bound is as follows [Ing71],

hi + hj + hijk + hijl + hkl ≤ hij + hik + hil + hjk + hjl. (3.1)

Although the linear representable entropy regions of 4 [HRSV00] and very recently

5 [DFZ10] random variables have been determined, the general characterization of

Γrn remains an open problem. In essence there exists no generalizable approach for

obtaining inner bounds of the entropy region for any number of random variables.

Creating such inner bounds is the main goal of this chapter. In fact we present a

method that obtains polytope inner bounds for the entropy region and that can be

generalized to any number of random variables. Polytope inner bounds are specially

useful since they allow one to solve network problems via a linear program.

We should mention that in this chapter, we shall focus on normalized entropy
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vectors. Recall from Chapter 2, Definition 2.2.2, that the normalized entropy vector

of n discrete random variables of alphabet size N is defined as the 2n−1 dimensional

vector of all normalized joint entropies hα,

h(α) =
1

logN
h(Xα), ∀α ⊆ {1, . . . , n} (3.2)

and the region of all such normalized entropy vectors by Ω∗n. As it was discussed in

Chapter 2, there are several reasons for considering this normalized version: it is often

the normalized version that comes up in capacity calculations (where the normaliza-

tion represents the number of channel uses) and it makes the entropy region finite

[HS07a]. Moreover it can be shown that Ω̄∗n is convex and the notion of normalized

entropy makes this proof trivial.

The difficulty in characterizing the entropy region is that one should consider

all possible distributions of n random variables over any alphabet size N . However

it turns out that there is a set of probability distributions that are sufficient for

characterizing Γ∗n and therefore these are the distributions we will focus on in this

chapter.

The remainder of the chapter is organized as follows. The next section studies

quasi-uniform distributions, which will be the building blocks for our construction.

Section 3.3 contains the main results of our method, especially the construction of

entropic vectors using lattice-generated probability distributions. Section 3.4 makes

the construction explicit for 2,3,4, and 5 random variables and shows the tightness of

our construction for n = 2, 3. Finally, in Section 3.5, quasi-uniform distributions of

alphabet size 2 are studied.
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3.2 Quasi-Uniform Distributions

One way of characterizing Γ∗n is through determining its kissing hyperplanes:

atH =
∑
α⊆N

aαHα ≥ γ, (3.3)

for a ∈ R2n−1 and for all H ∈ Γ∗n. To determine the value of γ, one needs to perform

the optimization,

γ = min
H∈Γ∗n

∑
α⊆N

aαHα. (3.4)

One of the difficulties in performing this optimization is that the alphabet size of the

underlying distribution is arbitrary. Nonetheless, if we restrict the alphabet size of

each Xi to N and attempt to optimize over the unknown joint distribution pXN (xN )

then we can use the Lagrange multipliers to write the following unconstrained opti-

mization problem,

min
pXN

max
λ≥0,µ

∑
aαH(xα) + µ

(∑
pN (xN )− 1

)
−
∑

λ(xN )pXN (xN ). (3.5)

Enforcing the KKT conditions by taking the derivative with respect to pXN (xN ) gives,

∑
α⊆N

aα log
1

pXα(xα)
= c if pXN (xN ) 6= 0, (3.6)

for some constant c. The KKT conditions imply that, rather than searching over

all possible distributions pXN (xN ), we need only search over those distributions that

satisfy (3.6).

Of course, there can be many solutions to (3.6). However, a rather obvious

solution—and one that does not depend on a, the normal vector of the hyperplane—is
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the following. For any α ⊆ N :

pXα(xα) = cα or 0 (3.7)

for some constant cα, independent of the point xα ∈ {1, . . . , N}|α|. In other words,

these are distributions that take on zero or a constant value for all possible marginals,

pXα(·). Such distributions are referred to as quasi-uniform [Cha01].

Definition 3.2.1 (Quasi-uniform distribution) A joint distribution of n discrete

random variables pXN (xN ) N = {1, . . . , n} is called “quasi-uniform” [Cha01] if the

distribution itself and all its marginals take on a zero or constant value, i.e., ∀xα, α ⊆

N : pXα(xα) = cα or 0 where cα is a constant depending on α. The space of all quasi-

uniform distributions of n random variables is denoted by Λn.

Computing the entropy for quasi-uniform distributions is, of course, straightfor-

ward:

H(α) = log
1

cα
. (3.8)

It also turns out that one can generate quasi-uniform distribution by appealing to

the concept of groups as stated in the following.

Theorem 3.2.2 (Quasi-uniforms and groups) [Cha01, CY02] If G is a finite

group whose subgroups are G1, . . . , Gn, then for any element of g ∈ G let X =

(X1, . . . , Xn) be an n dimensional vector whose ith element is the index of coset of

Gi to which g belongs. Assigning a constant probability to each X encountered in

this fashion yields a quasi-uniform probability for X1, . . . , Xn where the joint entropy

of a collection of random variables indexed by α is obtained from hα = log |G|
|∩i∈αGi| .

The entropy vector such obtained is called “group-derived”. The region of all 2n − 1

dimensional group-derived entropy vectors is denoted by Υn.

Then the remarkable result of [CY02, Cha01] is that the set of all group-derived
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and hence quasi-uniform distributions is sufficient for characterizing the entropy re-

gion.

Theorem 3.2.3 (Quasi-Uniform Distribution) con(Υn) = con(Λn) = Γ̄∗n, i.e.,

the convex closure of Λn and Υn is the closure of Γ∗n.

We provide the sketch of the proof, as it is instructive.

Proof: Note that we clearly have con(Υn) ⊆ con(Λn) ⊆ Γ̄∗n. Therefore all we need

is to prove that Γ̄∗n ⊆ con(Υn). The idea is to show that every 2n − 1 dimensional

entropy vector H is asymptotically characterizable with groups. To provide a sketch

of the proof we only show this for H1. First note that,

H1 =
∑
i

pi log
1

pi
= log

∏
i

(
1

pi

)pi
(3.9)

where p is the corresponding marginal distribution. Without loss of generality assume

that pi = Mi

Q
where Mi and Q are integers and

∑
iMi = Q. Then using Stirling’s

approximation we have,

H =
1

Q
log
∏
i

(
Q

Mi

)Mi

=
1

Q
log

(
Q

e

)Q∏
i

1(
Mi

e

)Mi
≈ 1

Q
log

Q!∏
iMi!

. (3.10)

This suggests to define a group G as a permutation group on Q elements. Furthermore

partition the set of Q elements into subsets of size Mi and let the subgroup G1 be

the permutation group that permutes within M1, · · · ,Mk. �

Since considering quasi-uniform distributions is sufficient for characterizing Γ̄∗n,

in this chapter we will focus on the generation of quasi-uniform distributions by

considering lattice structures.



36

3.3 Distributions from Lattices

3.3.1 Principles and Preliminaries of Construction

Determining all quasi-uniform distributions appears to be a hopelessly complicated

combinatorial problem. Since we are looking for a construction that can be generalized

to any n, it seems reasonable to impose some structure. Some circumspection suggests

the use of a lattice structure.

Definition 3.3.1 (Lattice Structure) In general the points of a lattice in the n

dimensional Euclidean space can be represented as follows:

x = Mz, (3.11)

where x ∈ Rn are points in the lattice, M ∈ Rn×n is the so-called lattice-generating

matrix, and z ∈ Zn is an integer vector. Since the points we are interested in belong to

{0, . . . , N − 1}n, we require that x have integer entries. We will therefore henceforth

assume that M has non-negative integer entries, so that M ∈ (Z+)n×n. We will refer

to the lattice generated by the matrix M as L(M).

We can assign a probability distribution to a lattice structure.

Definition 3.3.2 (Lattice-Generated Distribution) A probability distribution

over n random variables with alphabet size N each, will be called lattice-generated, if

for some lattice L(M), we have,

pXN (xN ) =


c xN ∈ {0, . . . , N − 1}n ∩ L(M)

0 otherwise

. (3.12)

Example 3.3.3 (A two-dimensional lattice) Fig. 3.1 shows a two-dimensional

lattice generated by the matrix,

[
2 0
1 2

]
, when the alphabet-size is N = 4. Note that
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(

x1

x2

)

=

(

2 0

1 2

) (

z1

z2

)

N = 4

Figure 3.1: An example of a lattice

the probability distributions are as follows,

pX1(0) = pX1(2) =
1

2
, pX1(1) = pX1(3) = 0

pX2(0) = pX2(1) = pX2(2) = pX2(3) =
1

4

pX1,X2(x1, x2) =


1
4

(x1, x2) ∈ {(0, 0), (2, 1), (0, 2), (2, 3)}

0 otherwise

.

Having this distribution, we can easily compute the corresponding entropies and hence

the entropy vector.

We now need a few lemmas.

Lemma 3.3.4 (Bezout Identity) The following equality holds for 2-by-2 lattices.

L


 M11 M12

M21 M22


 = L


 gcd(M11,M12) 0

M21x+M22y
M11M22−M21M12

gcd(M11,M22)


 , (3.13)

where x, y are integers found from the Bezout identity M11x+M12y = gcd(M11,M12).

Proof: Follows from post-multiplication by

[
x −M12/gcd(M11,M12)
y M11/gcd(M11,M12)

]
, which is a

unimodular matrix. �
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Lemma 3.3.5 (Lower Triangularization) Any lattice-generating matrix with non-

negative integer entries can be lower triangularized without changing the resulting

lattice.

Proof: Follows from repeated use of Lemma 3.3.4 in a fashion akin to QR factorization.

�

Hence, we will assume that the lattice-generating matrix M is lower triangular.

Consider a lattice generated by the matrix,

 N 0

1 N

 . (3.14)

The resulting lattice is shown in Figure 3.2. Note that if we want to calculate the

entropies of X1 and X2 based on the possible values that X1 and X2 take in the

(0, 1, . . . , N−1) range (which in turn defines their probability distribution), we end up

counting the values for X2 that fall in this range which are outside of the (0, 1, . . . , N−

1)× (0, 1, . . . , N − 1) box and we will obtain the normalized entropy h2 = 1. On the

other hand if we only focus on the (0, 1, . . . , N − 1) × (0, 1, . . . , N − 1) box we get

h2 = 0. To avoid this problem of counting the points that do not belong to the

(0, 1, . . . , N − 1)× (0, 1, . . . , N − 1) square, we need the lattice to be periodic with a

period that divides N .

Lemma 3.3.6 (Lattice-Generated Quasi-Uniforms) A lattice-generated distri-

bution is quasi-uniform if the lattice has a period that divides N . The latter is true

if, and only if, the matrix M−1N has integer entries.

Proof: Assume the lattice M has a period that divides N . This is true if, and only

if, for every x ∈ L(M) the point x + Nei belongs to L(M) for all i = 1, . . . , n,

where ei is the i-th unit vector with one in the i-th position and zeros elsewhere.

In other words, if there exists an integer vector z such that Mz = x, there should
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2N N N-1     3N 0 
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N-1 

4N X1 

X2 

Figure 3.2: A lattice whose period does not divide N

also exist an integer vector z(i) such that Mz(i) = x + Nei. Therefore we obtain

M(z(i) − z) = Nei. Letting i = 1 and assuming that M is lower triangular based

on Lemma 3.3.5, we immediately obtain M11 6= 0. Continuing this process for all

i ≤ n we deduce that ∀i, Mii 6= 0 which for a lower triangular matrix implies that

detM 6= 0 and therefore M−1 exists. As a result we can rewrite the above relation

as z(i) = M−1x + M−1Nei = z + M−1Nei, which means that M−1Nei should have

integer entries for all i and establishes the second claim of the lemma.

We now need to show that the resulting distribution is quasi-uniform. To this

end, note that

pXα(xα) =
∑
xN−α

pXN (xN ) = c
∑

xN−α,pXN (xα,xN−α)6=0

1,

which implies that a distribution taking on only the values 0 and c is quasi-uniform

if, and only if, for every value xα for which pXα(xα) is nonzero, the number of xN−α

for which pXN (xα, xN−α) is nonzero should be constant. Now partitioning the lattice-

generating matrix according to α and αc = N − α and lower-triangularizing using
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Lemma 3.3.5 yields

 xα

xαc

 =

 Mα,α 0

Mαc,α Mαc,αc


 zα

zαc

 . (3.15)

Any value of xα that yields a nonzero pXα(xα) is one for which zα = M−1
α,αxα is an

integer vector. Therefore so is the vector Mαc,αM
−1
α,αxα. Thus, the number of xαc

for which pXN (xα, xαc) is nonzero is given by the number of xαc in {0, . . . , N − 1}|αc|

for which Mαc,αcnαc = xαc −Mαc,αM
−1
α,αxα has an integer solution in nαc . However,

since the lattice is periodic with period dividing N , this number is independent of

the integer shift Mαc,αM
−1
α,αxα. �

Lemma 3.3.6 tells us that we should focus on lattice-generating matrices such that

M−1N has integer entries. The next lemma of this section shows us how to extract

the entropies from the lattice-generating matrix M .

Lemma 3.3.7 (Entropy Extraction) Consider a lattice-generated distribution

with period dividing N . Then the normalized entropy of any collection of random

variables Xα is given by,

h(α) = |α| − log | detMα,α|
logN

, (3.16)

where Mα,α is found from the lower triangularization of the lattice-generating matrix

in (3.15).

Proof: The distribution is quasi-uniform and so the entropy h(α) is simply the log of

the number of nonzero points in the distribution pXα(xα). The total number of points

is N |α| and the volume of the basic volume element in the lattice corresponding to the

variables xα is well known to be | detMα,α|. This gives the total number of nonzero

points in the distribution as N |α|/| detMα,α|, which when normalized by logN yields

the desired result. �
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It turns out that we can further simplify the entropy extraction formula of (3.16).

Lemma 3.3.8 (Entropy simplification) The normalized entropy of a collection of

random variables Xα of alphabet size N , with a lattice-generated distribution whose

period divides N can be obtained from

h(α) = |α| − log | gcd( all |α| × |α| minors of Mα)|
logN

, (3.17)

where M is the lattice-generating matrix and Mα is the submatrix obtained by selecting

those rows of M which are indexed by α.

Proof: In a more general setting, (3.15) can be written as follows:

 xα

xαc

 =

 Mα

Mαc


 zα

zαc

 (3.18)

where Mα is |α| × n and low-rank. We can write the equivalent Smith normal forms

[Smi84] of Mα and Mαc as,

Mα = U1D1V1 (3.19)

Mαc = U2D2V2 (3.20)

where Ui and Vi are unimodular matrices, and Di are of the form

Di =


di1 0 . . . 0

. . .
...

. . .
...

di|α| 0 . . . 0

 ,
[

(D̂i)(|α|×|α|) 0(|α|×(n−|α|))

]
(3.21)

with the property that dij = ∆i(j)
∆i(j−1)

where ∆i(j) is the gcd of the j × j minors of the

corresponding matrix Mα or Mαc and ∆i(0) , 1. Therefore (3.18) can be written as
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follows,

 xα

xαc

 =

 U1D1

U2D2V2V
−1

1

V1

 nα

nαc

 . (3.22)

However,

L


 U1D1

U2D2V2V
−1

1

V1

 = L


 U1D1

U2D2V2V
−1

1


 . (3.23)

Noting that U1D1 =

[
(U1D̂1)(|α|×|α|) 0(|α|×(n−|α|))

]
and using Lemma 3.3.7 we ob-

tain,

h(α) = |α| − log | det D̂1|
logN

, (3.24)

or equivalently,

h(α) = |α| − log | gcd( all |α| × |α| minors of Mα)|
logN

, (3.25)

which is often easier to compute. �

3.3.2 Actual Construction

In this section, we show how we can indeed simplify and calculate the lattice-derived

entropies. Note that from Lemmas 3.3.5 and 3.3.6, we are assuming that the lattice-

generating matrix is a lower triangular matrix whose diagonal entries are nonzero. As

a matter of fact we can further assume that all the off-diagonal entries are nonzero

as well. The reason is that if any of the off-diagonal entries are 0, since the whole

generator matrix is full rank, we can replace M with another full rank lower-triangular

generator matrix which does not have any zero entries and generates the same lattice.

To be more exact, if Mij = 0, then column j of M can be easily replaced by a linear
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combination of columns j and i such that the ij entry will no longer be zero. In

summary and recalling the conditions of Definition 3.3.1, we are making the following

assumptions about the entries of M ,

• ∀i, j : Mij ∈ Z and Mij > 0.

Now we should remark that for any integers Mij it is always possible to find a

large enough integer N and positive rational numbers γij such that Mij = Nγij .

Furthermore, for large enough N it follows that gcd(Nγij , Nγkl) = Nmin(γij ,γkl)

which considerably simplifies the gcd calculation as it appears in entropy extraction

formula (3.17). Since we are studying normalized entropies, increasing N comes at

no cost and so we will assume all of the above.

Describing the entries of the matrix M in terms of the rational numbers γij will

eventually result in the description of the lattice region in terms of γij’s. However

before attempting to derive the joint entropies, note that the quasi-uniformity re-

quirement of Lemma 3.3.6 also translates into a set of conditions for γij’s.

Theorem 3.3.9 (γ constraints) Enforcing quasi-uniformity on the lattice distri-

bution, results in the following constraints on γij’s,

ρ(i1, . . . , ik) = γi1i1 + . . .+ γikik − γikik−1
− . . .− γi2i1 ≤ 1

∀{i1, . . . , ik} ⊆ {1, . . . , n}, i1 < i2 < . . . < ik. (3.26)

Proof: Note that by Lemma 3.3.6 a lattice-generated distribution is quasi-uniform

if NM−1 has integer entries. Let the lower-triangular matrix M̃p = [m̃jl]1≤l≤j≤p be

the inverse of the p× p lower-triangular matrix Mp = [Nγjl ]. Let r denote the index

of the set {i1, . . . , ik−1} in the power set of {1, . . . , ik − 1}. Then we equivalently

denote ρ(i1, . . . , ik) by ρik(r). We show that: I) the entries of the inverse matrix,

m̃jl l ≤ j are of the form m̃jl =
∑2j−1

r=1 a
(jl)
r N−ρj(r) where a

(jl)
r ∈ {−1, 0, 1}, and II) for

any 1 ≤ j ≤ p and 1 ≤ r ≤ 2j−1,∃ l such that a
(jl)
r 6= 0. Note that from I it follows
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that to have integer entries for NM−1 we need the terms N1−ρj(r) to be integers which

is possible for large enough N if the exponents are positive. This in turn gives the

inequalities ρj(r) ≤ 1 or equivalently (3.26). Moreover II states that we will need all

such inequalities, i.e., ∀1 ≤ j ≤ p, 1 ≤ r ≤ 2j−1.

We proceed by induction. For n = 1, M = Nγ11 , and therefore NM−1 is simply

equal to N1−γ11 and I and II are immediately true (note that γ11 = ρ1(1)). The

corresponding inequality in this case is the somewhat trivial inequality γ11 ≤ 1 which

follows from the positivity of 1−γ11. Next we assume that I and II are true for n = p

and prove them for n = p+ 1. Consider M̃p+1 which is essentially of the form,

M̃p+1 =

 M̃p
. . . 0

m̃p+1,1 . . . m̃p+1,p+1

 . (3.27)

Requiring Mp+1M̃p+1 to be an identity, gives,

 Mp
. . . 0

Nγp+1,1 . . . Nγp+1,p+1

×
 M̃p

. . . 0

m̃p+1,1 . . . m̃p+1,p+1

 = Ip+1 (3.28)

where Ip+1 is the p + 1 by p + 1 dimensional identity matrix. Since MpM̃p = Ip we

only require,

p+1∑
j=l

Nγp+1,jm̃jl=0 l = 1, . . . , p (3.29)

Nγp+1,p+1m̃p+1,p+1=1. (3.30)

From (3.29) it follows that,

m̃p+1,l = −
p∑
j=l

N−(γp+1,p+1−γp+1,j)m̃j,l l = 1, . . . , p. (3.31)
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Replacing for m̃jl from the induction assumption gives,

m̃p+1,l = −
p∑
j=l

2j−1∑
r=1

a(jl)
r N−(γp+1,p+1−γp+1,j+ρj(r)), l = 1, . . . , p. (3.32)

However,

γp+1,p+1 − γp+1,j + ρj(r) = ρp+1(s)

for some s as an index of the elements in the power set of {1, . . . , p}. Therefore,

m̃p+1,l =
2p∑
s=1

b(p+1,l)
s N−ρp+1(s), l = 1, . . . , p. (3.33)

Note that ρp+1(1) = γp+1,p+1, which does not appear in the summation (3.32) and

therefore we should have b
(p+1,l)
1 = 0 in (3.33). On the other hand, for any 2 ≤ s ≤ 2p,

there exist unique j0 ≤ p and 1 ≤ r0 ≤ 2j−1 such that ρp+1(s) = γp+1,p+1 − γp+1,j0 +

ρj0(r0). Denoting j0 and r0 as functions of s by js and rs, respectively, we can write

b
(p+1,l)
s in terms of a

(jl)
r ,

b(p+1,l)
s =


a

(js,l)
rs js ≥ l

0 js < l or s = 1.

(3.34)

Now for any s 6= 1, let l̃ be any column index that is less than js, i.e., let l̃ ∈ {1, . . . , js}.

Therefore for any l̃ we have, b
(p+1,l̃)
s = a

(js,l̃)
rs . By induction assumption for any js and

rs, ∃ l∗ ≤ js such that a
(js,l∗)
rs 6= 0. Let l̃ = l∗ and we obtain b

(p+1,l∗)
s 6= 0. Finally for

s = 1, from (3.30) we obtain that m̃p+1,p+1 = N−γp+1,p+1 = N−ρp+1(1) which concludes

the proof. �

Remark: Note that (3.26) implies γii ≤ 1. However, this need not be true for

γij, i 6= j. Although by periodicity of M with period that divides N , one could
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argue that the lattice may be generated with another matrix M ′ whose entries are

all bounded by N (equivalently γij ≤ 1), however M ′ will not necessarily be lower-

triangular anymore.

Recall that the normalized joint entropy hα of a lattice-based distribution can be

obtained via the gcd of all the corresponding |α|× |α| minors as stated in (3.17). The

equivalent γij characterization of the entropies can be obtained via the replacement

of Mij = Nγij and using a couple of lemmas.

Lemma 3.3.10 Let d and ei, i = 1, . . . ,m be fixed positive (nonzero) rational num-

bers. Moreover let N be an integer that can be made arbitrarily large. Then Nd and

(
∑m

i=1 N
ei ± 1) are coprime integers.

Proof: Without loss of generality, let d = r
t
≤ 1 and ei = si

t
≤ 1 for some r, si, t ∈ Z

and assume that e1 = min{ei, i = 1, . . . ,m}. N can be made large enough so that

N
1
t is an integer. It follows immediately that N

r
t , N

si
t , and N

si−s1
t , i = 2, . . . ,m are

all integers and therefore we can write
∑m

i=1 N
ei ± 1 = N e1(1 +

∑m
i=2N

ei−e1) ± 1 =

(1 + ω)N e1 ± 1 where ω =
∑m

i=2N
ei−e1 is an integer. Therefore we want to show

that Nd and (1 + ω)N e1 ± 1 are coprime. In the following we prove the lemma for

(1 + ω)N e1 − 1, the proof for (1 + ω)N e1 + 1 case is similar. Two cases may be

considered,

1. d ≤ e1: In this case, N
s1−r
t is an integer and therefore Nd divides N e1 and

henceforth (1 + ω)N e1 . As a result, and since consecutive integers are coprime,

we obtain that Nd and (1 + ω)N e1 − 1 are coprime.

2. d > e1: As in the last case, by making N
1
t an integer we can make Nd, N e1 ,

and Nd−e1 all integers as well,

Nd = c ·N e1 c , Nd−e1 . (3.35)
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Now assume by contradiction that Nd and (1 + ω)N e − 1 are not coprime.

Therefore there exist integers k > 1, a and b such that,

Nd = k · a (3.36)

(1 + ω)N e1 − 1 = k · b. (3.37)

From equations (3.35)–(3.37) one can easily obtain that,

c = k · ((1 + ω)a− cb). (3.38)

In other words k also divides Nd−e1 and therefore Nd−e1 and (1 + ω)N e1 − 1

are not coprime either. Now the process can be repeated for Nd′ = Nd−e1 and

(1 + ω)N e1 − 1. If d− e1 ≤ e1, by reasoning of case 1 we conclude that Nd′ and

(1 + ω)N e1 − 1 are coprime, which is a contradiction. Otherwise by repeating

(3.35)–(3.37) we obtain that Nd−2e1 and (1 + ω)N e1 − 1 are not coprime. This

can be repeated l steps to obtain Nd−le1 and (1 + ω)N e1 − 1 are not coprime.

When d− le1 becomes less than e1 contradiction is reached based on case 1,

establishing the result of the lemma.

�

Corollary 3.3.11 If in Lemma 3.3.10 some of the ei are zero (without loss of gen-

erality, e.g., em′+1, . . . , em = 0 for m′ < m) such that
∑m

i=1N
ei ± 1 =

∑m′

i=1N
ei ± ψ

where ψ is a nonzero integer, then there is a class of unbounded N ’s for which Nd

and
∑m′

i=1N
ei ± ψ are coprime.

Proof: The proof hinges on the fact that we can choose N such that for any rational

number κ = u
t
, Nκ, and ψ are coprime. Since for an integer c, ψ and cψ + 1 are

coprime, one trivial choice for N is (cψ + 1)tι where ι is an arbitrary integer that

allows N to be arbitrary large. Therefore, assuming d = r
t

and ei = si
t
, we have
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Nd = (cψ+ 1)rι and
∑m′

i=1 N
ei ±ψ =

∑m′

i=1(cψ + 1)siι ± ψ, which can also be written

as,
∑m′

i=1 N
ei ± ψ = (cψ + 1)b ± ψ, where b is the integer obtained by factoring out

(cψ+ 1). Let a be the integer equal to rι letting us denote Nd = (cψ+ 1)a. Now it is

easy to show that (cψ+ 1)a and (cψ+ 1)b±ψ are coprime. If by contradiction, there

is a common divisor λ, we can write

(cψ + 1)a = λ · φ (3.39)

(cψ + 1)b± ψ = λ · δ (3.40)

for some integers φ and δ. Multiplying (3.40) by (cψ + 1)a−1, and replacing from

(3.39) we obtain

(cψ + 1)a−1ψ = ±λ
(
δ(cψ + 1)a−1 − φb

)
. (3.41)

In other words, λ|(cψ + 1)a−1ψ. However, based on (3.39), λ divides (cψ + 1)a,

and hence, λ and ψ should be coprime.1 From this it follows that λ should divide

(cψ+1)a−1. Now, by replacing a with a−1 in (3.39), and repeating this argument, we

obtain that λ should also divide (cψ+1)a−2. Continuing in this manner, we ultimately

obtain that λ should be a common divisor of (cψ + 1) as well, i.e., cψ + 1 = λ · η.

Replacing this in (3.40), immediately gives that, λ divides ψ, which is a contradiction.

Therefore, (cψ + 1)a and (cψ + 1)b ± ψ are coprime, which means that there is an

infinite set of choices for N that makes Nd, and
∑m′

i=1 N
ei ± ψ coprime. �

Corollary 3.3.12 Assume Nυ|(
∑

kN
σk −

∑
lN

τl) where σk and τl are positive ra-

tional numbers such that σk 6= τl ∀k, l (i.e., no cancelation occurs). Then Nυ|Nσk

and Nυ|N τl , ∀k, l.

Proof: We can equivalently write (
∑

kN
σk −

∑
lN

τl) =
∑

i(−1)αiN fi where no two

terms cancel in the latter summation and αi are either 0 or 1. Assuming with-

1To see this, assume the prime factorization cψ + 1 =
∏
pqii . Considering that λ|(cψ + 1)a, we

obtain λ =
∏
p
q′i
i , where q′i ≤ aqi. However, since ψ and cψ + 1 are coprime, prime factorization of

ψ should be of the form
∏
uvii , where {ui} ∩ {pi} = ∅. Therefore, clearly, λ and ψ are also coprime.
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out loss of generality that f1 = min{fi}, we can further write this summation as(∑
i 6=1(−1)αiN fi−f1 ± 1

)
N f1 where ± account for (−1)α1 . Note that if some of

fi, i 6= 1 are equal to f1 so that the corresponding exponent (fi − f1) becomes zero,

those terms ought to have same sign as N f1 (since there are no canceling terms). In

other words if we denote ξ = {i|fi = f1}, then ∀i ∈ ξ, αi = α1. Therefore we can

further write
(∑

i 6=1(−1)αiN fi−f1 ± 1
)
N f1 =

(∑
i/∈ξ(−1)αiN fi−f1 ± |ξ|

)
N f1 . Similar

to Corollary 3.3.11, it can be shown that the terms
(∑

i/∈ξ(−1)αiN fi−f1 ± |ξ|
)

and

Nυ are coprime. Thus if Nυ|
(∑

i/∈ξ(−1)αiN fi−f1 ± |ξ|
)
N f1 , we can conclude that

Nυ should divide N f1 . However since f1 = min fi we obtain that Nυ|N fi ∀i. �

Having Corollary 3.3.12, we can now go back to the formula of (3.17) for entropy

calculation. First we need a definition,

Definition 3.3.13 Let A and B be two subsets of {1, . . . , n} s.t. |A| = |B|. Define,

δA/B =

|A|=|B|∑
i=1

γA(i)B(i). (3.42)

For example, for A = {2, 3} and B = {1, 2} we have, δ23/12 = γ21 + γ32.

Lemma 3.3.14 For α, β ⊆ {1, . . . , n} and |α| = |β|, let mα(β) denote the minor of

Mα whose row and columns are indexed by α and β, respectively. Then mα(β) can be

expressed as,

mα(β) =
∑

β′∈βe,α

N δα/β′ −
∑

β′′∈βo,α

N δα/β′′ (3.43)

where βe,α = {πe(β) | (πe(β))i ≤ αi} and βo,α = {πo(β) | (πo(β))i ≤ αi} in which

πe(β) and πo(β) represent the even and odd permutations of β, respectively, and (.)i

denotes the i-th element of that set.
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Proof: Using the Leibniz formula for determinants, a minor can be expressed as a

polynomial of the form,

mα(β) =
∑

π:π(β)i<αi

sgn(π)N
∑|α|
i=1 γαi,π(β)i (3.44)

where αi and π(β)i denote the ith element of the sets α and π(β), respectively, and π

is any possible permutation on the set of column indices of the |α| × |α| minor. Note

that only those permutations π are included for which π(β)i < αi. This is due to the

fact that we have assumed that the matrix is lower triangular. Since sgn(π) is +1 for

even permutations and −1 for odd ones, we can further write (3.44) as,

mα(β) =
∑

πe:πe(β)i<αi

N
∑
i γαi,πe(β)i −

∑
πo:πo(β)i<αi

N
∑
i γαi,πo(β)i (3.45)

where πe and πo correspond to odd and even permutations, respectively. Using Defi-

nition 3.3.13 in (3.45) concludes the proof. �

Example: Let n = 4, α = {2, 3, 4}, and β = {123} and assume we want to compute

m234(123) that will be the following determinant,

m234(123) =

∣∣∣∣∣∣∣∣∣∣
Nγ21 Nγ22 0

Nγ31 Nγ32 Nγ33

Nγ41 Nγ42 Nγ43

∣∣∣∣∣∣∣∣∣∣
. (3.46)

Note that βe,α = {(1, 2, 3), (2, 3, 1)} and βo,α = {(1, 3, 2), (2, 1, 3)}. Therefore we will

have

m234(123) = N δ234/123 +N δ234/231 −N δ234/132 −N δ234/213 . (3.47)

This can be easily verified by direct calculation as well.
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Based on formula (3.17) to find the normalized joint entropy we have to calculate,

h(α) = |α| − log gcd( mα(β) : β ⊆ {1, . . . , n}, |β| = |α| )

logN
(3.48)

which by Lemma 3.3.14, will be equal to,

h(α) = |α| −
log gcd(

∑
β′∈βe,α N

δα/β′ −
∑

β′′∈βo,α N
δα/β′′ , ∀β : |β| = |α| )

logN
. (3.49)

We may compute this using Corollary 3.3.12, however, as was also mentioned in that

corollary, first we need to make sure that the terms will not cancel each other. In

other words if it happens that for some mα(β) and its respective βe,α, βo,α, we have

δα/β′i = δα/β′′j for some β′i ∈ βe,α, β′′j ∈ βo,α then those terms will cancel out in that

mα(β) and should not be included in the gcd calculation. When the number of terms

gets large, deciding which terms will cancel and which will remain can become tricky.

Therefore we need a mechanism that will allow us to simplify mα(β) in those cases.

Lemma 3.3.15 Consider the minor mα(β) =
∑

iN
δα/β′

i −
∑

j N
δα/β′′

j , where we

have β′i ∈ βe,α, β′′j ∈ βo,e. Let δα/β′i and δα/β′′j be

µ(δα/β′i) = {δα/β′′j |δα/β′i = δα/β′′j } (3.50)

ν(δα/β′′j ) = {δα/β′i |δα/β′′j = δα/β′i} (3.51)

and define,

Pβe,α,βo,α(δα/β′′j ) ,



∞ if |ν(δα/β′′j )| 6= 0 & |ν(δα/β′′j )| ≥ |µ(ν(δα/β′′j ))|

∞ if |ν(δα/β′′j )| < |µ(ν(δα/β′′j ))|
& δα/β′′j ∈ µ(ν(δα/β′′j ))1:|ν(δα/β′′

j
)|

0 otherwise

. (3.52)
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Also define Pβe,α,βo,α(δα/β′i) similarly by exchanging µ and ν in (3.52). Let t be an

exponent, i.e., t = δα/β′i or δα/β′′j . Then the term N t does not cancel with any other

terms in mα(β) if Pβe,α,βo,α(t) = 0.

Proof: Let εij = 1 if δα/β′i = δα/β′′j and 0 otherwise. Consider the bipartite graph with

the left node set of {Ai} assigned to δα/β′i and the right node set of {Bj} assigned

to δα/β′′j (Fig 3.3) such that Ai and Bj are connected if and only if δα/β′i = δα/β′′j

(i.e., εij = 1). Therefore we can use (3.50) and (3.51) in a similar fashion, i.e.,

µ(Ai) = {Bj|Ai = Bj}, ν(Bj) = {Ai|Bj = Ai} to denote the neighbors of Ai and Bj,

respectively. Similarly if S is a set, define µ(AS) = ∪i∈Sµ(Ai) and ν(BS) = ∪j∈Sν(Bj).

Since equality is a transitive property, we can readily see that, if µ(Ai) ∩ µ(Aj) 6= ∅

then µ(Ai) = µ(Aj) (the same property holds for ν(Bj) as well). This tells us that

a valid set for εij are the ones that partition the bipartite graph into bicliques. To

simplify mα(β), we can decide for each term N
δα/β′

i (or N
δα/β′′

j ) if it will cancel with

one of the N
δα/β′′

j (or N
δα/β′

i ). On the bipartite graph this is equivalent to finding a

matching where the matching nodes are the ones whose corresponding terms cancel

out in mα(β). Here is a simple method to find such matching.

Assume we want to find out if Bj gets matched with any of the Ai’s (the argument

for Ai would be similar). Let C be the biclique within the bipartite graph to which

Bj belongs. By definition the number of left nodes of C is |ν(Bj)| and the number of

right nodes of C is |µ(ν(Bj))|. The following can be deduced,

1. |ν(Bj)| = ∅ : This means that Bj does not match with any of the Ai’s.

2. |ν(Bj)| 6= ∅ and |ν(Bj)| ≥ |µ(ν(Bj))| : In this case, since the number of Ai’s

that match with Bj is more than the number of right nodes of S, we can be

sure that Bj will get paired with one of the Ai’s on the left of C and as a result

we can discard Bj.

3. |ν(Bj)| < |µ(ν(Bj))| : In this case not all the right nodes of C will pair with its
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Aଵ

Aଶ

Aଷ

Aସ

Aହ

Bଵ

Bଶ

Bଷ

Bସ

Figure 3.3: Example of a graph representing equality relations between δα/β′i and
δα/β′′j . Note that Ai, and Bj represent δα/β′i , and δα/β′′j , respectively.

left nodes Ai and therefore we choose to pair Bj (discard) with a node on the

left of C, only if it is among the first |ν(Bj)| nodes on the right-hand side of C

(first |ν(Bj)| of µ(ν(Bj))).

Therefore we can define a parameter P as,

P{Ai′},{Bj′}(Bj) ,


∞ if |ν(Bj)| 6= 0 & |ν(Bj)| ≥ |µ(ν(Bj))|

∞ if |ν(Bj)| < |µ(ν(Bj))| & Bj ∈ µ(ν(Bj))1:|ν(Bj)|

0 otherwise

(3.53)

which is 0 only when the node is not matched with another node or equivalently its

corresponding term does not cancel in mα(β). Note that for P (Ai) the role of µ and ν

should be exchanged in the above. Replacing Ai, Bj with their equivalent δα/β′i , δα/β′′j

gives (3.52). �

Example: An example of such a bipartite graph can be seen in Fig. 3.3. Note

that, e.g., µ(A1) = {B1, B2, B3}, ν(B3) = {A1, A2} and µ(ν(B3)) = {B1, B2, B3}.

Based on (3.52) we obtain that P{Ai},{Bj}(A1) = P{Ai},{Bj}(A2) = P{Ai},{Bj}(A3) =∞
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and P{Ai},{Bj}(A4) = P{Ai},{Bj}(A5) = 0. Also P{Ai},{Bj}(B1) = P{Ai},{Bj}(B2) =

P{Ai},{Bj}(B4) =∞ and P{Ai},{Bj}(B3) = 0.

Theorem 3.3.16 (Entropy in terms of γij’s) Let α ⊆ {1, . . . , n}. The lattice-

derived normalized joint entropy hα is expressed as,

h(α) = |α| −min
(
δα/β̃ + Pβe,α,βo,α(δα/β̃), ∀β̃ ∈ (βe,α ∪ βo,α), ∀β : |β| = |α|

)
(3.54)

where δα/β̃ is as defined in (3.42) and Pβe,α,βo,α(δα/β̃) as defined in (3.52).

Proof: Based on formula (3.17) the normalized joint entropy can be written as,

h(α) = |α| − log gcd( mα(β), |β| = |α|)
logN

. (3.55)

Using Lemma 3.3.14, this can further be written as,

h = |α| −
log gcd(

∑
iN

δα/β′
i −
∑

j N
δα/β′′

j , β′i ∈ βe,α, β′′j ∈ βo,α ∀β : |β| = |α|)
logN

.

(3.56)

By using Corollary 3.3.12 and Lemma 3.3.15, this can be written as,

h = |α| −
log gcd(N δα/β̃ , β̃ ∈ (βe,α ∪ βo,α), Pβe,α,βo,α(δα/β̃) = 0)

logN
. (3.57)

Assuming gcd{N δα/β̃} = Nmin(δα/β̃), and noting from (3.52) that when P is not 0 it is

infinity we obtain the result of the theorem. �

Let ∆n denote the space obtained from equations (3.26) and (3.54), i.e., the

space of entropy vectors of n random variables obtained from lattice-generated quasi-

uniform distributions. Clearly ∆n is a nonconvex space obtained from the union of

some polytopic regions. In fact each fixed ordering of σk and τl’s (and therefore γij’s)

with respect to each other, defines a possibly new set of linear equations for hα in

terms of γij and therefore results in a polytope. We denote the closure of the convex
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hull of all these polytopic regions by con(∆n).

3.3.3 Characterizing the Lattice-Based Entropy Region

Theorem 3.3.17 (An Inner Region for Entropic Vectors) con(∆n) ⊆ Ω̄∗n where

con(·) represents the convex closure.

Proof: Follows straightforwardly from the convexity of Ω̄∗n. �

This inner region is a polytope,

Theorem 3.3.18 The region con(∆n) is a polytope for all n.

Proof: Each ordering of γij’s (e.g. γ11 ≤ γ21 ≤ γ22, γ21 + γ32 ≤ γ22 + γ31, etc.) defines

a polytope region for the set of entropy vectors. ∆n is the convex hull of all these

polytopes and therefore a polytope itself. �

As the number of random variables grows, the number of polytopic regions of

∆n can grow very large and therefore computing the innerbound for Ω∗n based on

Theorem 3.3.17 becomes tricky. The following theorem gives a computable method

for obtaining an inner region of con(∆n) and therefore Ω̄∗n.

Theorem 3.3.19 Consider the hypercube of 0 ≤ γij ≤ 1, ∀1 ≤ j ≤ i ≤ n whose faces

are chopped off by γij constraints in (3.26). Each corner point of this chopped hy-

percube is a valid γ point and its corresponding entropy vector can be easily calcu-

lated from (3.54). Let Rn denote the convex hull of all these entropy vectors. Then

Rn ⊆ con(∆n) ⊆ Ω̄∗n.

Proof: While the statement may seem rather obvious, in the following we explain the

rationale for choosing the corner points for calculating the innerbound R. Note that

each polytopic region of ∆n is obtained from the corresponding entropies of the γ

region defined by (3.26) and a specific order relation for γij’s. If we add the γij ≤ 1

for i 6= j to the constraints in (3.26), then we obtain the mentioned chopped off
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unit hypercube. Each order relation for γij’s, shown by O(γ) defines a homogenous

inequality and therefore a cone in the γ space which intersects the unit-chopped off

hypercube in a set of points say, B(O(γ)) on its boundary. Since for the specific O(γ),

the entropies are determined linearly from γij’s, the corresponding polytopic entropy

region of ∆n will be obtained from the convex hull of the corresponding entropy

vectors of B(O(γ)). It follows that each polytopic region of ∆n is obtained from

the convex hull of a collection of boundary points on the chopped off unit hypercube

and therefore the convex hull of all the entropy vectors corresponding to all boundary

points of the chopped off hypercube in γ region will give a fair innerbound for con(∆n).

Since it is impossible to compute the entropies for all the boundary points of the

chopped off γ region, we will only consider the corner points of the chopped off cube

and compute the corresponding entropy vectors. The convex hull of these entropies

is Rn and is an inner bound for con(∆n) and Ω̄∗n. �

Remark: Note that in obtaining Rn in Theorem 3.3.19, a couple of compromises

have been made. First we have assumed that γij ≤ 1 which is not necessarily true for

i 6= j. Moreover we have replaced the convex hull of the entropy vectors corresponding

to all the boundary points of γ region by just the corner points. And last but not least,

one should be aware that in some cases O(γ) may involve some strict inequalities in

terms of γ’s and therefore its corresponding entropy region say h(O(γ)) will not be

closed either. To obtain an accurate convex closure of the lattice entropy region, this

fact should also be considered, whereas in computing Rn in Theorem 3.3.19 this is

ignored.

In Section 3.4 we perform the explicit constructions of the lattice region and obtain

Rn (and con(∆n) where possible) for n = 2, 3, 4, and 5 random variables.
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3.3.4 Vectorized Lattices

The entropy region inner bound generated by lattice-derived distributions can be

expanded by considering generalized vector lattices,

Definition 3.3.20 Let M be a block matrix where each block is a q×q square matrix

and M is of size nq × nq. Moreover assume that M satisfies the quasi-uniformity

condition in Lemma 3.3.6 that NM−1 has integer entries. We call M a vectorized

lattice-generating matrix whose corresponding entropies following (3.17) will be cal-

culated as,

hα = |α| −
log gcd( all q|α| × q|α| minors of M[α])

q logN
(3.58)

where M[α] denotes the |α|q × nq submatrix of M whose block rows are indexed by

α.

When q = 1, as in the previous sections, the lattice is scalar and each column

of generating matrix is a generating vector of the lattice in n dimensions. Although

we will not delve into the space of vector lattices here, we will show later in Section

3.4 that some entropy vectors which do not fall in the entropy region obtained from

scalar lattices can be obtained from vector lattices.

3.3.5 Connection to Groups and Linear Representable

Region

As discussed previously, the entropy region of n random variables can be obtained

from the region of group-derived entropies [CY02]. Here we show that our lattice

construction can in fact be viewed as a quasi-uniform construction corresponding to

an Abelian group.

Theorem 3.3.21 Lattice construction is the quasi-uniform distribution obtained from
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an Abelian group.

Proof: Consider a particular lattice distribution with a relative n×n matrix generator

M . It is straightforward to see that the lattice-generated points inside the n dimen-

sional hypercube of length N together with the addition mod N operation form an

Abelian group G. For i = 1, . . . , n consider the Xi = 0 hyperplane (note that since

the origin is always a lattice point this hyperplane includes at least one lattice point

and is nonempty). It is easy to see that the set of lattice points on this hyperplane

forms a subgroup, say Gi of G. The cosets of Gi will be all nonempty hyperplanes

of the form Xi = cij, for some constant 1 ≤ cij ≤ N . It is then easy to see that

the lattice-generated distribution coincides with the quasi-uniform distribution derived

from group G and its subgroups G1, . . . , Gn. Hence for any α ⊆ {1, . . . , n} the joint

entropy of Xα = {Xi, i ∈ α} will simply be the log of the number of nonempty hyper-

planes Xα = cα,j. Each hyperplane Xα = cα,j is an intersection of cosets of Gi, i ∈ α

and therefore a coset of ∩i∈αGi. As a result the number of hyperplanes Xα = cα,j is

the number of cosets of ∩i∈αGi in G. Therefore hα = log |G|
|Gα| . �

In [Cha07a], it is shown that Abelian group-derived entropies all satisfy the Ingleton

inequality. We conclude that the region of lattice-derived entropies is an inner-region

of Γ∗n bounded by the Ingleton inequality.

On the other hand it is also known that linearly representable entropy vectors

satisfy the Ingleton inequality. To make a comparison to the lattice construction,

note that any linear representable vector is an entropy vector constructed as stated

in the following theorem,

Theorem 3.3.22 (Linear representables and entropy vectors) [YLCZ06] Let

g be a 2n − 1 dimensional representable vector and let the set of p dimensional vec-

tors {v1, . . . , vn} over GF(q) form a representation for it such that gα = rank(⊕i∈αvi),
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then log(q)g is an entropy vector of random variables X1, . . . , Xn where,


X1

...

Xn

 =

 v1−−−...
−−−
vn




a1

...

ap

 . (3.59)

Proof: For a particular X̃i, let Si
X̃i

denote the set of solutions (a’s) that yield X̃i. In

particular let Si0 denote the set of solutions that yield Xi = 0. If ã is a particular

solution, then clearly Si
X̃i

= ã + Si0. Now if we let G be the group of all points

in (GF(q))p together with the vector addition operation over GF (q), then clearly

Gi = Si0, i = 1, . . . , n form a set of n subgroups for G and Si
X̃i

will be the respective

cosets. Moreover for any α ⊆ {1, . . . , n}, we can write the above equation as,

 Xα

Xαc

 =

 Vα

Vαc


 a1

...
ap

 (3.60)

and likewise define Sα
X̃α

as the set of a’s that yield X̃α and in particular denote the

null space of Vα by Sα0 . Note that since Sα
X̃α

is a coset of Sα0 we have |Sα
X̃α
| = |Sα0 |

which is independent of Xα. It is then clear that X1, . . . , Xn will be in a one-one

correspondence with quasi-uniform distribution derived from the group G along with

its subgroups G1, . . . , Gn and hence X1, . . . , Xn will have a uniform distribution over

the range of
[
vT1 | . . . |vTn

]
. Therefore the joint entropy of a set of random variables

indexed by α ⊆ {1, . . . , n} is obtained from log |G|
|∩i∈αSi0|

. However ∩i∈αSi0 = Sα0 and

we have |Sα0 | = qnullity(Vα) = q(p−rank(Vα)). Noting that |G| = qp we obtain that

hα = rank(Vα) · log q. �

Due to the similarity of the lattice-generated distributions and the distribution

of representable vectors, one might suspect that the two regions are equal. However

comparison of the two regions becomes tricky for a number of reasons. First note
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that while in the linear representable case the field size q can be either a prime or a

power of a prime, in the lattice constructions, there is no such constraint. Moreover

as opposed to the linear representable case where for any fixed field size the entropy

(rank) can be calculated, in the entropy-derivation of the lattice construction we

have assumed that the alphabet size N is arbitrarily large. In fact if we fix N to

some known value then the set of γ’s that will be consistent with the derivations

will be restricted. Therefore if a vector is linearly representable over some finite

field q there can be no guarantee that the vector may be constructed via the lattice

over alphabet size q. An example is the entropy vector of 4 random variables s.t.

hi = 1, hij = hijk = h1234 = 2, which is linearly representable over a field with

odd characteristic, however is not constructible with the scalar lattice. This vector

can however be constructed by a vector lattice (see Subsection 3.4.3). The other

difficulty is that in the lattice construction, the operation is always addition module

N , whereas in the linear representable case when the field size is a power of a prime,

e.g., q = pr, operations are not simply module q. This however can be partly fixed

by replacing entries of the lattice generator matrix by r× r blocks with elements over

GF (p) representing the elements of the field and the elements of the coefficient vector

z (see (3.11)) by sub-vectors of size r and elements over GF (p) also representing

the elements of the field1. Nonetheless since we can not fix N to some prime p,

again we cannot simply argue that any linearly representable vector over q = pr can

be achieved via the lattice construction. Therefore the comparison of the regions is

somewhat difficult. What can be said for sure however, is that both regions are inner-

regions of Γ∗n and they satisfy the Ingleton inequality. For 4 random variables (as will

be discussed in Subsection 3.4.3) both regions turn out to be equal and defined by

1In other words, defining a vector and a matrix representation for each element of the field and
operations over GF (p) among them such that they respect the addition and multiplication of the

field, e.g., for Gf(4) such representation would be, 0 :

(
0
0

)
,

(
0 0
0 0

)
1 :

(
1
0

)
,

(
1 0
0 1

)
ω :(

0
1

)
,

(
0 1
1 1

)
ω + 1 :

(
1
1

)
,

(
1 1
1 0

)
.
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the Shannon and the Ingleton inequalities.

3.4 Explicit Constructions

Now that we have described the general construction, we will study the explicit results

for n = 2, 3, 4, and 5 random variables.

3.4.1 Two Random Variables

As described in Subsections 3.3.1 and 3.3.2, we can assume that the 2-by-2 lattice-

generating matrix is lower triangular of the following form,

M =

 M11 0

M21 M22

 =

 Nγ11 0

Nγ21 Nγ22

 . (3.61)

We first need to enforce the condition that the generated distribution be quasi-

uniform. From Lemma 3.3.6 this means that the matrix

NM−1 =

 N1−γ11 0

−N1−γ11−γ22+γ21 N1−γ22

 (3.62)

must have integer entries. Since N is large enough this implies the inequalities,

γ11 ≤ 1 , γ22 ≤ 1 , γ11 + γ22 ≤ 1 + γ21. (3.63)
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Note that these are the inequalities obtained from 3.26. Using Lemma 3.3.7 or equiv-

alently Theorem 3.3.16, the corresponding entropies are readily seen to be,

h1 = 1− γ11

h2 = 1−min(γ21, γ22) (3.64)

h12 = 2− γ11 − γ22.

Thus the space ∆2 is described by (3.64) along with the constraints (3.63). The region

∆2 may not be convex, due to the min(·) operator in h2. However, it is not hard to

show that the convex hull of (3.63–3.64) is,

 h1 = 1− γ11 , h2 = 1− γ21 , h12 = 2− γ11 − γ22

0 ≤ γ11, γ22 ≤ 1 , 0 ≤ γ21 ≤ γ22 , γ11 + γ22 ≤ 1 + γ21

(3.65)

Theorem 3.4.1 (Lattice entropy region for n = 2) con(∆2) = Ω̄∗2 where con is

the convex hull operation.

Proof: Any hij obtained from (3.65) is a normalized entropy vector by construction.

Conversely, for any entropy vector satisfying 0 ≤ h1, h2 ≤ 1 and h1, h2 ≤ h12 ≤ h1+h2,

a valid set of γijs from (3.65) can be found and therefore any entropy satisfying these

conditions will belong to the region of normalized entropies. Therefore con(∆2) = Ω̄∗2

and this region will be given by (3.65). �

Remark: Theorem 3.4.1 also proves that for 2 random variables, any 3-dimensional

entropy vector (h1, h2, h12) ∈ Γ̄∗n when normalized by max(h1, h2) will belong to Ω̄∗2.

For comparison we can also find R2 based on Theorem 3.3.19.

Theorem 3.4.2 R2 = Ω
∗
2

Proof: For n = 2 there are three γij namely γ11, γ21, and γ22. Therefore the hypercube

will be the 3-dimensional unit hypercube, 0 ≤ γ11 ≤ 1, 0 ≤ γ21 ≤ 1, 0 ≤ γ22 ≤ 1
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γ11 

γ22 

 γ21 

(0,1,0) (0,1,1) 

(1,1,0) (1,1,1) 

(1,0,0) 

(0,0,1) 

 

(0,0,0) 

Figure 3.4: γ corner points for n = 2

which will be chopped off by the constraints of (3.26) which are, γ11 ≤ 1, γ22 ≤

1, γ11 + γ22 − γ21 ≤ 1. The resulting region is a 3-dimensional object whose

corner points can be easily computed (Fig. 3.4). These points, along with their

corresponding entropy vectors are shown in Table 3.1. It can be shown that the

convex hull of these entropy points gives the following region,

0 ≤ hi ≤ 1 i = 1, 2

hi ≤ h12 ≤ h1 + h2 i = 1, 2 (3.66)

which is known to be equal to Ω
∗
2. It follows that R2 = Ω

∗
2. �

Table 3.1: Entropy region corner points for 2 random variables obtained through the
lattice construction (γ corner points and the corresponding h)

(γ11, γ21, γ22) (h1, h2, h12)
(1, 1, 1) (0, 0, 0)
(1, 0, 0)

(0, 1, 1)
(1, 1, 0)
(0, 1, 1) (1, 0, 1)
(0, 0, 0)

(1, 1, 2)
(0, 1, 0)
(0, 0, 1) (1, 1, 1)
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3.4.2 Three Random Variables

Again, without loss of generality we may assume

M =


Nγ11 0 0

Nγ21 Nγ22 0

Nγ31 Nγ32 Nγ33

 . (3.67)

Insisting on quasi-uniformity by forcing the elements of M−1N to be integers (Lemma

3.3.6) yields the linear constraints given by (3.26),

0 ≤ γij ≤ 1

γii + γjj − γij ≤ 1 i > j (3.68)

γ11 + γ22 + γ33 − γ21 − γ32 ≤ 1.

Using Theorem 3.3.16 all the joint entropies for 3 variables can be easily computed.

However in order to show how Theorem 3.3.16 follows from Lemma 3.3.7 or equiva-

lently (3.17), we explain the extraction of h23 in the following. By (3.17), we have,

h23 = 2− 1

logN
log gcd(Nγ21+γ32 −Nγ22+γ31 , Nγ21+γ33 , Nγ22+γ33). (3.69)

Let σ = γ21 + γ32, τ = γ22 + γ31, ω1 = γ33 + γ21, and ω2 = γ33 + γ22. We can rewrite

h23 as,

h23 = 2− 1

logN
log gcd(Nσ −N τ , Nω1 , Nω2).

In calculating gcd(Nσ −N τ , Nω1 , Nω2), two cases are possible,

1. If σ = τ , then gcd(Nσ − N τ , Nω1 , Nω2) = gcd(Nω1 , Nω2) = Nmin(ω1,ω2) where

the latter equality is justified for large N as explained before.
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2. If σ 6= τ , then there is a positive rational υ such that gcd(Nσ−N τ , Nω1 , Nω2) =

Nυ. Therefore, Nυ divides Nσ−N τ or if without loss of generality τ ≤ σ, then

Nυ|N τ (Nσ−τ − 1). However, based on Lemma 3.3.10, Nυ and Nσ−τ − 1 are

coprime and therefore we conclude that Nυ divides N τ . Moreover since τ ≤ σ,

by makingN large enough we can makeN τ divideNσ. As a resultNυ will divide

Nσ, N τ and also Nω1 and Nω2 . In other words, Nυ = gcd(Nσ, N τ , Nω1 , Nω2).

As before, for large enough N , we will have Nυ = Nmin(σ,τ,ω1,ω2).

Now we can write the expressions for all the normalized joint entropies:

h1 = 1− γ11

h2 = 1−min(γ21, γ22)

h3 = 1−min(γ31, γ32, γ33)

h12 = 2− γ11 − γ22 (3.70)

h13 = 2− γ11 −min(γ32, γ33)

h23 =


γ21 + γ32 6= γ22 + γ31 : 2−min(γ21 + γ32, γ22 + γ31, γ33 + min(γ21, γ22))

γ21 + γ32 = γ22 + γ31 : 2− γ33 −min(γ21, γ22)

h123 = 3− γ11 − γ22 − γ33.

The space ∆3 is defined by (3.68) and (3.70) which is clearly nonconvex. On the

other hand, each ordering of γij’s (e.g., γ21 ≤ γ22, γ21 + γ32 ≤ γ22 + γ31, etc.) results

in a polytope that is at most six-dimensional (since there are six γij parameters). For

n = 3, there are 30 regions, all of which are shown in Table 3.3 in the Appendix.

Obtaining the convex hull of all these regions seems rather hard. Therefore we

pursue the approach of Theorem 3.3.19 to find an inner bound. Using the software

package PORTA [POR], we obtain the corner points of the 6-dimensional hypercube

0 ≤ γij ≤ 1 intersected with the constraints of (3.68). Having these corner points

we can easily compute their corresponding entropy vectors from (3.70). There are 44
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such corner points all of which, along with their corresponding entropy vectors, are

shown in Table 3.4 in the Appendix. From the table, it can be seen that they result

in 16 different entropy vectors.

Theorem 3.4.3 R3 = Ω
∗
3

Proof: The convex hull of the 16 vectors of Table 3.4 yields R3 and is computed via

the package [POR]. The convex hull is obtained to be,

0 ≤ hi ≤ 1 i = 1, 2, 3

hij ≤ h123 i, j ∈ {1, 2, 3} (3.71)

hi + h123 ≤ hij + hik i, j, k ∈ {1, 2, 3}

which in fact implies that every normalized entropy vector that satisfies (3.71) is

achievable by lattice-derived entropies. It follows that the convex hull is 7-dimensional

and R3 = Ω
∗
3. �

Remark: Theorem 3.4.3 also proves that any entropy vector of 3 random variables

h ∈ Γ̄∗3 when normalized by max(h1, h2, h3) will belong to Ω̄∗3.

Theorem 3.4.4 con(∆3) = Ω
∗
3 where con refers to the convex hull.

Proof: It follows immediately from Theorems 3.3.19 and 3.4.3. Moreover note that

if we pick wisely among those γ’s that lead to the same entropy vector in Table 3.4,

then all 16 entropy vectors can be attributed solely to 5 of the 30 regions of Table

3.3, namely, regions 1, 2, 3, 4, and 23 in Table 3.3 1. This shows that the convex hull

of all the 30 regions of Table 3.3 also give Ω
∗
3 and again proves the statement. �

Corollary 3.4.5 Convex cone of ∆3 gives Γ̄∗3.

Proof: This readily follows from the fact that con(∆3) = Ω̄∗3 and that Γ̄∗3 = ray(Ω̄∗3)

(see Theorem 2.2.4). However this result can also be proved independently as follows.

1Instead of region 23 any of the regions 13, 14, or 18 could also work.
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We show that 8 of the 16 vectors of Table 3.4 are enough to show that the convex

cone of ∆3 generates Γ̄∗3. First note that since, by construction, all vectors in con(∆3)

are entropic, clearly con(∆3) ⊆ Ω̄∗3 and therefore convex cone of ∆3 is a subset of Γ̄∗3.

To prove the other direction consider the region defined by,



h1

h2

h3

h12

h23

h31

h123



=



1 0 0 1 0 1 1 1

0 1 0 1 1 0 1 1

0 0 1 0 1 1 1 1

1 1 0 1 1 1 1 2

0 1 1 1 1 1 1 2

1 0 1 1 1 1 1 2

1 1 1 1 1 1 1 2





k1

k2

k3

k4

k5

k6

k7

k8



, (3.72)

where ki ≥ 0. Each column vector in the matrix on the RHS can be seen to be

generated by a lattice-generated distribution as it belongs to Table 3.4. Therefore

the convex cone of these vectors must be a subset of con(∆3). If we write the above

matrix equation as

h =

[
A a

] k

k8

 = Ak + ak8,

then since the first seven columns of the matrix on the RHS is invertible, we can

further write, k = A−1h−A−1ak8 ≥ 0 where we are enforcing k ≥ 0 as we would like

to form the convex cone of the columns of the matrix. Computing A−1 and A−1ak8,
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yields 

0 0 0 0 −1 0 1

0 0 0 0 0 −1 1

0 0 0 −1 0 0 1

−1 0 0 1 0 1 −1

0 −1 0 1 1 0 −1

0 0 −1 0 1 1 −1

1 1 1 −1 −1 −1 1





h1

h2

h3

h12

h23

h31

h123



≥



0

0

0

k8

k8

k8

−k8



. (3.73)

The point is to show that for any entropic vector h ∈ Γ̄∗3, one can find a non-negative

k8 such that the inequality (3.73) will be satisfied. The inequality for the first 3 rows

is clearly satisfied. For the next three rows it is satisfied provided that,

k8 ≤ min
i,j,k

(−hi + hij + hki − hijk), (3.74)

and for the last row if,

k8 ≥ −
∑
i

hi +
∑
i,j

hij − hijk. (3.75)

It is straightforward to show that the upper bound on k8 exceeds the lower bound and

so the region for k8 is non-empty. Furthermore, by the submodularity of the entropy

function, the upper bound is non-negative, which implies that a non-negative k8 can

always be found. This concludes the proof. �

Remark: It is interesting to note that, had we not included the vector (1, 1, 1, 2, 2, 2, 2)

among the 8 vectors, the resulting region would have the property that I(X1;X2;X3) =∑
hi −

∑
hij + h123 ≥ 0, which is not necessarily true for 3 variables. Likewise ex-

clusion of (1, 1, 1, 1, 1, 1, 1) results in I(X1;X2;X3) ≤ 0 and therefore it is the combi-

nation of all 8 vectors that give the whole entropy region for 3 random variables.
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3.4.3 Four Random Variables

For four random variables, we assume

M =



Nγ11 0 0 0

Nγ21 Nγ22 0 0

Nγ31 Nγ32 Nγ33 0

Nγ41 Nγ42 Nγ43 Nγ44


. (3.76)

The conditions from Lemma 3.3.6 translate to:

0 ≤ γii ≤ 1,

γii + γjj − γij ≤ 1, i > j

γii + γjj + γkk − γij − γjk ≤ 1, i > j > k

γ11 + γ22 + γ33 + γ44 − γ21 − γ32 − γ43 ≤ 1. (3.77)

Extraction of the entropies can be done via Theorem 3.3.16. Here we state it

for the normalized joint entropy h234. The complete list of entropy expressions for 4

random variables obtained via using Theorem 3.3.16 are shown in Table 3.5.

Deriving h234 : Note that based on (3.17), we should obtain all 3× 3 minors of

the following sub-matrix,


Nγ21 Nγ22 0 0

Nγ31 Nγ32 Nγ33 0

Nγ41 Nγ42 Nγ43 Nγ44

 . (3.78)

Recalling that mα(β) denotes a minor whose rows and columns are indexed by α and

β, respectively (see Lemma 3.3.14), then one can obtain the following either via using



70

Lemma 3.3.14 or direct calculation,

m234(123) = Nγ21+γ32+γ43 +Nγ22+γ33+γ41 −Nγ21+γ33+γ42 −Nγ22+γ31+γ43

= N δ234/123 +N δ234/231 −N δ234/132 −N δ234/213 (3.79)

m234(124) = Nγ21+γ32+γ44 −Nγ22+γ31+γ44 = N δ234/124 −N δ234/214 (3.80)

m234(134) = Nγ21+γ33+γ44 = N δ234/134 (3.81)

m234(234) = Nγ22+γ33+γ44 = N δ234/234 . (3.82)

Based on (3.17), h234 can be written as,

h234 = 3− log gcd(m234(123),m234(124),m234(134),m234(234))

logN
. (3.83)

In order to simplify this expression, we need to examine the cases when some of the

terms in m234(123) or m234(124) may cancel. When no cancelation occurs,

h234 = 3−min(δ234/123, δ234/231, δ234/132, δ234/213, δ234/124, δ234/214, δ234/134, δ234/234).

(3.84)

However, some terms of m234(123) or m234(124) may cancel out with each other in

which case they should not be considered in the above minimization. To address this

issue consider m234(123). Four conditions are imaginable:

1. δ234/123 = δ234/132

2. δ234/123 = δ234/213

3. δ234/231 = δ234/132

4. δ234/231 = δ234/213.

m234(123) will be simplified if any of the above conditions hold. However some of these

conditions may happen concurrently and therefore we need a method to compute
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m234(123) in such cases. Considering this fact is the what lead to Lemma 3.3.15 and

then to Theorem 3.3.16. Following the same steps we can rewrite h234 as,

h234 = 3−min
(
δ234/134, δ234/234, δ234/123 + P(123,231)(132,213)(234/123),

δ234/231 + P(123,231)(132,213)(234/231), δ234/132 + P(123,231)(132,213)(234/132),

δ234/213 + P(123,231)(132,213)(234/213), δ234/124 + P(124)(214)(234/124),

δ234/214 + P(124)(214)(234/214)
)
. (3.85)

Note that blowing up of a P (δα/β̃) in the above is equivalent to discarding the corre-

sponding δα/β̃. Table 3.5 along with relations (3.77) give the whole set of equations

for 4 variables. The space obtained from Table 3.5 is clearly nonconvex and so, as in

the case with three random variables, we must focus on its convex hull, which from

Table 3.5 seems rather hard to obtain analytically. Therefore we use Theorem 3.3.19

to calculate the innerbound R4.

3.4.3.1 Calculating R4

Based on Theorem 3.3.19, we obtain the chopped-hypercube defined by

0 ≤ γij ≤ 1, ∀1 ≤ j ≤ i ≤ 4

I(i1, . . . , ik) = γi1i1 + . . .+ γikik − γikik−1
− . . .− γi2i1 ≤ 1

{i1, . . . , ik} ⊆ {1, . . . , 4}, i1 < i2 < . . . < ik. (3.86)

Using the software package PORTA [POR], we obtain 508 corner points of this 10-

dimensional object in the γij space. Calculating the corresponding entropies of these

corner points based on Table 3.5 gives 67 distinct entropy vectors all of which are

corner points. Some of these corner points are obtained from each other through a

permutation of the underlying random variables. Excluding these permutations, 16
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Table 3.2: Linear representable rays missing from the scalar lattice region of 4 random
variables

(h1, h2, h3, h4, h12, h13, h14, h23, h24, h34, h123, h124, h134, h234, h1234)

1 (1,1,1,1, 2,2,2,2,2,2, 2,2,2,2, 2)

2 (1,1,1,2, 2,2,2,2,2,2, 2,2,2,2, 2)

3 (1,1,2,1, 2,2,2,2,2,2, 2,2,2,2, 2)

4 (1,2,1,1, 2,2,2,2,2,2, 2,2,2,2, 2)

5 (2,1,1,1, 2,2,2,2,2,2, 2,2,2,2, 2)

6 (1,1,1,2, 2,2,3,2,3,3, 3,3,3,3, 3)

7 (1,1,2,1, 2,3,2,3,2,3, 3,3,3,3, 3)

8 (1,2,1,1, 3,2,2,3,3,2, 3,3,3,3, 3)

9 (2,1,1,1, 3,3,3,2,2,2, 3,3,3,3, 3)

entropy vectors remain, which are shown in Table 3.6 in the Appendix. Computing

the convex cone of the 67 points via a linear program, gives 26 of these vectors as the

rays of the region. These 26 vectors are listed in Table 3.7 in the Appendix.

3.4.3.2 Achieving Ingleton Inner Bound

In [HRSV00] it is shown that the linear representable region for 4 random variables is

completely determined by Shannon and the Ingleton inequalities and that the region

has 35 rays. Comparing those rays with the 26 rays of Table 3.7 we see that all 26

vectors are included in those 35 vectors. However the remaining 9 vectors (see Table

3.2) are missing in the rays of convex cone of lattice-derived entropies for 4 random

variables. However we show that the vector [1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] of Table

3.2 can be achieved asymptotically with a scalar lattice construction, and the other

ones in Table 3.2 can be obtained by a vector lattice.



73

Lemma 3.4.6 Entropy vector [1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] for 4 random vari-

ables can be asymptotically achieved with a scalar lattice construction.

Proof: Consider the following [γij] vector,

[γ11, γ21, γ22, γ31, γ32, γ33, γ41, γ42, γ43, γ44] = [0, 0, 0, ε, 0, 1, ε+, 0, 1, 1] (3.87)

where ε > 0 is an arbitrary small number and ε+ is any positive number greater

than ε. It is easy to show that the above [γij] vector yields the lattice-derived entropy

vector [1, 1, 1, 1, 2, 2, 2, 2, 2, 2− ε, 2, 2, 2, 2, 2]. Taking ε→ 0 we get the desired entropy

vector. �

Next we show that the vector [1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] of Table 3.2 can

be obtained via a vector lattice.

Lemma 3.4.7 The vector [1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] can be obtained via a

vector lattice.

Proof: It can be easily shown that the following lattice-generating matrix yields the

entropy vector 1
2
[1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],



1 0 | 0 0 | 0 0 | 0 0

0 0 | N 0 | 0 0 | 0 0
− − − − − − − − − − −
0 1 | 0 0 | 0 0 | 0 0

0 0 | 0 N | 0 0 | 0 0
− − − − − − − − − − −
1 1 | 0 0 | N 0 | 0 0

0 0 | 0 0 | 0 N | 0 0
− − − − − − − − − − −
1 1 | 0 0 | 0 0 | N 0

0 0 | 0 0 | 0 0 | 0 N



. (3.88)
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It can be easily checked (e.g., using Mathematica) that this matrix also satisfies

the quasi-uniformity condition and that N times its inverse has integer entries (see

Lemma 3.3.6). The desired entropy vector therefore falls in the convex cone of the

vectorized lattice-derived entropies. �

Next we show that the other vectors of Table 3.2 can also be obtained by a vector

lattice.

Lemma 3.4.8 The entropy vectors 2–9 of Table 3.2 can be obtained by a vector

lattice.

Proof: Consider the vector [1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]. It is easy to show that

this vector divided by 2, can be obtained by the vector lattice generated by the

following matrix generator which satisfies the quasi-uniformity condition as well,



1 0 | 0 0 | 0 0 | 0 0

0 0 | N 0 | 0 0 | 0 0
− − − − − − − − − − −
0 1 | 0 0 | N 0 | 0 0

0 0 | 0 0 | 0 0 | N 0
− − − − − − − − − − −
1 1 | 0 0 | 0 0 | 0 0

0 0 | 0 N | 0 0 | 0 0
− − − − − − − − − − −
1 0 | 0 0 | 0 N | 0 0

0 1 | 0 0 | 0 0 | 0 N



. (3.89)

Vectors 3, 4, and 5 of Table 3.2, scaled by a factor of 2, can be obtained by permuting

the block rows of the above matrix correspondingly. Therefore again these entropy

vectors of Table 3.2, fall in the convex cone of the vectorized lattice-derived entropies.

Finally consider the vector [1, 1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3]. This entropy vector

divided by 2 can be obtained from the following generator which satisfies the quasi-
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uniformity condition as well,



1 0 | 0 0 | 0 0 | 0 0

0 0 | 0 N | 0 0 | 0 0
− − − − − − − − − − −
0 1 | 0 0 | 0 0 | 0 0

0 0 | 0 0 | N 0 | 0 0
− − − − − − − − − − −
0 0 | 1 0 | 0 0 | 0 0

0 0 | 0 0 | 0 N | 0 0
− − − − − − − − − − −
1 1 | 0 0 | 0 0 | N 0

1 0 | 1 0 | 0 0 | 0 N



. (3.90)

Vectors 7, 8, and 9 of Table 3.2, scaled by a factor of 2, can likewise be obtained by

permuting the block rows of the above matrix, and therefore all the desired vectors

will lie in the convex cone of the vectorized lattice-derived entropy vectors. �

3.4.4 Five Random Variables

We obtain the entropy expressions for 5 random variables by using Theorem 3.3.16.

Since the expressions for the first 4 random variables were already reported in Table

3.5 we only give the expressions for the joint entropies which involve the 5th random

variable. These can be found in Table 3.8. Together with Table 3.5 they give the

whole set of normalized joint entropies for 5 lattice-derived random variables. As in

the case of 4 random variables, obtaining the analytical convex hull is very difficult

and we only compute the inner bound R5.
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3.4.4.1 Calculating R5

Similar to the case of 4 random variables, we consider the following 15-dimensional

polytope in the γij space,

0 ≤ γij ≤ 1, ∀1 ≤ j ≤ i ≤ 5

I(i1, . . . , ik) = γi1i1 + . . .+ γikik − γikik−1
− . . .− γi2i1 ≤ 1

{i1, . . . , ik} ⊆ {1, . . . , 5}, i1 < i2 < . . . < ik (3.91)

which using PORTA [POR], is found to have 10976 corner points. Computing the

corresponding entropies based on Tables 3.5 and 3.8, gives 380 distinct 31-dimensional

entropy vectors, all of which, are corner points of their convex hull. Their convex cone

has 133 rays (clearly, all-zero vector is not counted as a ray).

Due to the particular technique of the lattice construction, the set of lattice-

derived entropy vectors may not be closed under permutation of the random vari-

ables. In other words, if v is a 2n − 1 dimensional lattice-derived entropy vector of

random variables X1, . . . , Xn, then every permutation of X1, . . . , Xn results in a po-

tentially different entropy vector (in fact a specific permutation of v), which may not

be obtainable from the lattice construction. Therefore, in order to include these, we

add all the missing permutations of the entropy vectors to the set of the rays that we

found above. In this case, this addition results in 4 more entropy vectors, giving a

total of 137 rays which is now closed under permutations of the underlying random

variables. We find that these 137 rays are in fact, generated from the permutations

(of the underlying random variables) of only 14 of them. These 14 rays are given in

Table 3.9 in the Appendix.

On the other hand, the linear representable region of 5 random variables as ob-

tained by Dougherty et al. [DFZ10], excluding the permutations, has 162 rays, of

which only 18 have the property hXi ≤ 1, i = 1, . . . , 5. Noting that, we have consid-
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ered scalar lattice-derived entropies, for which hXi ≤ 1, i = 1, . . . , 5 as well, we make

a comparison between the lattice-derived rays and these 18 vectors, and determine

that all the 14 lattice-derived rays belong to the set of these 18 vectors. The 4 missing

rays are given in Table 3.10 in the Appendix.

3.5 Quasi-Uniforms of Alphabet Size 2

Among the quasi-uniform structures we have found that quasi-uniform distributions

of alphabet size 2 have some nice properties which we outline here. In particular

we have obtained the entropy region of these structures for 2, 3, and 4 variables.

Interestingly, this region is tight for 2 and 3 variables and gives an inner bound for 4

random variables.

Theorem 3.5.1 Let Q denote a quasi-uniform distribution of n random variables

X1, . . . , Xn over binary alphabet (i.e., Xi = 0, 1 ∀i). If Q is such that Q(x1 =

0, . . . , xn = 0) 6= 0, then Q is representable over a scalar lattice.

Proof: We prove the statement by induction. First note that the theorem is trivially

true for n = 1 random variable. To show that this structure is constructible by a

lattice, we need to show that if two points (x1, . . . , xn) and (x′1, . . . , x
′
n) belong to Q,

so does (x1 ⊕ x′1, . . . , xn ⊕ x′n) where ⊕ denotes addition mod 2. For n > 1 assume

the theorem is valid for all k < n. If all points in Q are such that x1 = x′1 then the

distribution can essentially be considered as an n− 1 dimensional quasi-uniform over

alphabet size 2, otherwise for c 6= 0 we can consider there are two points such that,

Q(0, a2, . . . , an) = c (3.92)

Q(1, a′2, . . . , a
′
n) = c. (3.93)
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Now if ∀i > 1, ai = a′i, we need to show that Q(1, a2 ⊕ a′2, . . . , an ⊕ a′n) = Q(x1 =

1, x2 = 0, . . . , xn = 0) = c. Since ∀i > 1 ai = a′i, that means the marginal Q(x2 =

a2, . . . , xn = an) = 2c and by quasi-uniformity of the distribution all such nonzero

marginals of x2, . . . , xn are equal to 2c and therefore Q(x2 = 0, . . . , xn = 0) = Q(x1 =

0, x2 = 0, . . . , xn = 0) + Q(x1 = 1, x2 = 0, . . . , xn) = 2c. Since Q(x1 = 0, . . . , xn =

0) = c by assumption, we conclude that Q(x1 = 1, x2 = 0, . . . , xn = 0) = c which

is what we needed. Therefore assume that ∃i, ai 6= a′i so that the projections (x2 =

a2, . . . , xn = an) and (x2 = a′2, . . . , xn = a′n) are distinct and therefore for c′ 6= 0 we

can assume,

Q(a2, . . . , an) = c′ (3.94)

Q(a′2, . . . , a
′
n) = c′. (3.95)

Since the projection of the distribution on the x2, . . . , xn plane is an n−1 dimensional

quasi-uniform structure by induction assumption, we have that Q(a2 ⊕ a′2, . . . , an ⊕

a′n) = c′. On the other hand,

Q(a2⊕ a′2, . . . , an⊕ a′n) = Q(1, a2⊕ a′2, . . . , an⊕ a′n) +Q(0, a2⊕ a′2, . . . , an⊕ a′n) = c′.

(3.96)

Note that c′ 6= 0 and each of the additive terms in (3.96) can be either 0 or c and

therefore c′ can assume values c or 2c. If c′ = 2c then both term are equal to c and

therefore Q(1, a2⊕ a′2, . . . , an⊕ a′n) = c. Otherwise if c′ = c one of the above terms is

zero. Assume by contradiction that Q(1, a2⊕a′2, . . . , an⊕a′n) = 0 which in turn means

that Q(0, a2 ⊕ a′2, . . . , an ⊕ a′n) = c. However by (3.92) we have, Q(0, a2, . . . , an) = c.

Since the cross section x1 = 0 is also an n − 1 dimensional quasi-uniform structure,

we conclude that,

Q(0, (a2 ⊕ a′2)⊕ a2, . . . , (an ⊕ a′n)⊕ an) = Q(0, a′2, . . . , a
′
n) = c. (3.97)
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Figure 3.5: An example of a quasi-uniform distribution of two random variables with
alphabet-size 2

However (3.93) and (3.97), give that,Q(a′2, . . . , a
′
n) = 2c and quasi-uniformity imposes

c′ = 2c which is a contradiction and therefore we should have Q(1, a2 ⊕ a′2, . . . , an ⊕

a′n) = c. �

Remark: Note that the assumption Q(x1 = 0, . . . , xn = 0) 6= 0 is critical in the above

theorem, since if a structure is a lattice over GF (2) then for any point (x1, . . . , xn),

the point Q(x1 ⊕ x1, . . . , xn ⊕ xn) 6= 0 should also belong to the lattice which means

that the lattice should include the origin.

Next we obtain the entropy region obtained from quasi-uniform structures on

alphabet size 2 for 2, 3, and 4 random variables. An example of a quasi-uniform

structure with alphabet size 2 is shown in Figure 3.5 where probability is uniformly

distributed among all dots.

Theorem 3.5.2 The entropy region of 2 random variables obtained from quasi-

uniform distribution of alphabet size 2 is equal to Γ∗2.

Proof: The set of all possible quasi-uniform distributions of 2 random variables of

alphabet size 2 along with their corresponding entropy vector is shown in Figure

3.5. Obtaining the convex hull of these entropy vectors either independently or by

comparison to Table 3.1 proves the theorem. �

80, 0, 0< 81, 0, 1< 80, 1, 1< 81, 1, 1< 81, 1, 2<

Figure 3.6: Quasi-uniform distributions of two random variables and their correspond-
ing entropy vectors
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Figure 3.7: Quasi-uniform distributions of three random variables with alphabet-size
2

Theorem 3.5.3 The entropy region of 3 random variables obtained from quasi-

uniform distribution of alphabet size 2 is equal to Γ̄∗3.

Proof: The set of all possible quasi-uniform structures on 3 random variables of

alphabet size 2 is shown in Figure 3.7. Computing their corresponding entropy vectors

and comparing them with the 16 entropy vectors of Table 3.4 or obtaining their convex

hull independently proves the result. �

Theorem 3.5.4 The entropy region of 4 quasi-uniform random variables over alpha-

bet size 2 gives a strict inner bound for Γ∗4 and the linear representable region of 4

random variables.

Proof: The investigation of 4 quasi-uniform random variables over alphabet size 2

gives 67 different entropy vectors corresponding to a 15-dimensional polytope with

94 facets. These 67 points match the entropy vectors obtained from the corner point

of the lattice inner bound R4 derived in Subsection 3.4.3, and listed in Table 3.6 in

the Appendix. As we saw, those 67 corner points provide a strict inner-region for the

scalar linear representable region, and hence for Γ∗4 as well. �

We should mention that there has been some nice work on identifying whether an

entropy vector can be constructed from random variables of alphabet size 2 [WW09].
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3.6 Conclusions

In this chapter we presented a new scheme for inner bound construction of entropy

region. This method was based on determining the entropy region of random variables

whose underlying joint probability distribution is uniformly spread over the points of a

lattice structure in the Euclidean space. These probability distributions were assured

to be quasi-uniform. We gave the principles of construction that can be generalized

for any number of random variables. As any other technique the complexity increases

rapidly with the number of random variables, nonetheless we obtained an explicit

inner bound characterization for up to 5 random variables, and determined that the

region is tight for up to 3 random variables and gives the linear representable region

of 4 random variables. However we also determined that the lattice-based entropy

region always satisfies the Ingleton inequality, which does not hold for all entropies

in general. At the end we made comparisons with the entropy region of binary quasi-

uniform random variables.
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3.7 Appendix

Table 3.3: Lattice-derived regions for 3 random variables in terms of γ entries

Conditions h23 h13 h3 h2

1 γ21 < γ22, γ31 ≤ γ32 ≤ γ33,
2− γ21 − γ32

2− γ11 − γ32 1− γ31 1− γ21

γ21 + γ32 < γ22 + γ31

2 γ21 ≤ γ22, γ31 < γ32 ≤ γ33,
2− γ22 − γ31

γ21 + γ32 > γ22 + γ31

3 γ21 < γ22, γ31 < γ32 ≤ γ33,

2− γ21 − γ33

γ21 + γ32 = γ22 + γ31

4 γ21 = γ22, γ31 = γ32 ≤ γ33,

γ21 + γ32 = γ22 + γ31

5 γ21 < γ22, γ31 ≤ γ33 ≤ γ32,

2− γ21 − γ33 2− γ11 − γ33 1− γ31 1− γ21

γ21 + γ32 = γ22 + γ31

6 γ21 < γ22, γ31 < γ33 < γ32

γ21 + γ32 > γ22 + γ31

γ22 + γ31 ≥ γ33 + γ21

7 γ21 < γ22, γ31 < γ33 ≤ γ32,

γ21 + γ32 = γ22 + γ31

8 γ21 < γ22, γ31 = γ33 < γ32,

γ21 + γ32 ≥ γ22 + γ31

9 γ21 < γ22, γ31 < γ33 < γ32,

2− γ22 − γ31
γ21 + γ32 > γ22 + γ31,

γ22 + γ31 ≤ γ33 + γ21

10 γ21 < γ22, γ31 < γ33 = γ32,

γ21 + γ32 > γ22 + γ31

11 γ21 = γ22, γ31 ≤ γ33 ≤ γ32 2− γ21 − γ31



83

Table 3.3: (Continued)

Conditions h23 h13 h3 h2

12 γ21 < γ22, γ32 ≤ γ31 ≤ γ33

2− γ21 − γ32

2− γ11 − γ32 1− γ32 1− γ21

13 γ21 = γ22, γ32 < γ31 ≤ γ33

14 γ21 ≤ γ22, γ32 ≤ γ33 ≤ γ31

15 γ21 = γ22, γ32 = γ31 ≤ γ33 2− γ21 − γ33

16 γ21 ≤ γ22, γ33 ≤ γ31 ≤ γ32

2− γ21 − γ33 2− γ11 − γ33 1− γ33 1− γ21

17 γ21 ≤ γ22, γ33 ≤ γ32 ≤ γ31

18 γ22 < γ21, γ31 ≤ γ32 ≤ γ33 2− γ22 − γ31 2− γ11 − γ32 1− γ31 1− γ22

19 γ22 < γ21, γ31 ≤ γ33 ≤ γ32 2− γ22 − γ31 2− γ11 − γ33 1− γ31 1− γ22

20 γ22 < γ21, γ32 < γ31 ≤ γ33,

2− γ21 − γ32

2− γ11 − γ32 1− γ32 1− γ22

γ21 + γ32 < γ22 + γ31

21 γ22 < γ21, γ32 < γ33 = γ31,

γ21 + γ32 < γ22 + γ31

22 γ22 < γ21, γ32 < γ33 < γ31,

γ21 + γ32 < γ22 + γ31

γ21 + γ32 < γ22 + γ33

23 γ22 < γ21, γ32 ≤ γ31 ≤ γ33, 2− γ22 − γ31

γ21 + γ32 > γ22 + γ31

24 γ22 < γ21, γ32 < γ31 ≤ γ33,

2− γ22 − γ33

γ21 + γ32 = γ22 + γ31

25 γ22 < γ21, γ32 < γ33 < γ31

γ22 + γ33 ≤ γ21 + γ32

γ21 + γ32 < γ22 + γ31

26 γ22 < γ21, γ32 < γ33 < γ31,

γ21 + γ32 ≥ γ22 + γ31

27 γ22 < γ21, γ32 < γ33 = γ31,
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Table 3.3: (Continued)

Conditions h23 h13 h3 h2

γ21 + γ32 ≥ γ22 + γ31

28 γ22 < γ21, γ32 = γ33 ≤ γ31

29 γ22 < γ21, γ33 ≤ γ31 ≤ γ32

2− γ22 − γ33 2− γ11 − γ33 1− γ33 1− γ22

30 γ22 < γ21, γ33 ≤ γ32 ≤ γ31
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Table 3.4: Entropy corner points for 3 random variables obtained through lattice
construction (corner points of R3, and the corresponding γ)

(γ11, γ21, γ22, γ31, γ32, γ33) (h1, h2, h3, h12, h13, h23, h123)

1 (1, 1, 1, 1, 1, 1) (0, 0, 0, 0, 0, 0, 0)

2 (1, 1, 1, 0, 0, 0)

(0, 0, 1, 0, 1, 1, 1)
(1, 1, 1, 0, 1, 0)

(1, 1, 1, 1, 0, 0)

(1, 1, 1, 1, 1, 0)

3 (1, 0, 0, 1, 1, 1)
(0, 1, 0, 1, 0, 1, 1)

(1, 1, 0, 1, 1, 1)

4 (1, 1, 0, 1, 0, 1) (0, 1, 1, 1, 1, 1, 1)

5 (1, 0, 0, 0, 0, 0)

(0, 1, 1, 1, 1, 2, 2)

(1, 0, 0, 0, 1, 0)

(1, 0, 0, 1, 0, 0)

(1, 1, 0, 0, 0, 0)

(1, 0, 0, 1, 1, 0)

(1, 1, 0, 0, 1, 0)

(1, 1, 0, 1, 0, 0)

(1, 1, 0, 1, 1, 0)

6 (0, 1, 1, 1, 1, 1) (1, 0, 0, 1, 1, 0, 1)

7 (0, 1, 1, 0, 1, 1) (1, 0, 1, 1, 1, 1, 1)

8 (0, 1, 1, 0, 0, 0)
(1, 0, 1, 1, 2, 1, 2)

(0, 1, 1, 0, 1, 0)

(0, 1, 1, 1, 0, 0)

(0, 1, 1, 1, 1, 0)

9 (0, 0, 1, 1, 1, 1) (1, 1, 0, 1, 1, 1, 1)

10 (0, 0, 0, 1, 1, 1) (1, 1, 0, 2, 1, 1, 2)
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Table 3.4: (Continued)

(γ11, γ21, γ22, γ31, γ32, γ33) (h1, h2, h3, h12, h13, h23, h123)

(0, 1, 0, 1, 1, 1)

11 (0, 0, 1, 0, 1, 1) (1, 1, 1, 1, 1, 1, 1)

12 (0, 0, 1, 0, 0, 0)

(1, 1, 1, 1, 2, 2, 2)
(0, 0, 1, 0, 1, 0)

(0, 0, 1, 1, 0, 0)

(0, 0, 1, 1, 1, 0)

13 (0, 0, 0, 0, 1, 1)
(1, 1, 1, 2, 1, 2, 2)

(0, 1, 0, 0, 1, 1)

14 (0, 0, 0, 0, 0, 1)
(1, 1, 1, 2, 2, 1, 2)

(0, 1, 0, 1, 0, 1)

15 (0, 0, 0, 1, 0, 1)
(1, 1, 1, 2, 2, 2, 2)

(0, 1, 0, 0, 0, 1)

16 (0, 0, 0, 0, 0, 0)

(1, 1, 1, 2, 2, 2, 3)

(0, 0, 0, 0, 1, 0)

(0, 0, 0, 1, 0, 0)

(0, 1, 0, 0, 0, 0)

(0, 0, 0, 1, 1, 0)

(0, 1, 0, 0, 1, 0)

(0, 1, 0, 1, 0, 0)

(0, 1, 0, 1, 1, 0)
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Table 3.5: Entropy descriptions of 4 scalar lattice-derived random variables

Entropy Description

h1 1− γ11

h2 1−min(γ21, γ22)

h3 1−min(γ31, γ32, γ33)

h4 1−min(γ41, γ42, γ43, γ44)

h12 2− γ11 − γ22

h13 2− γ11 −min(γ32, γ33)

h14 2− γ11 −min(γ42, γ43, γ44)

h23 2−min(δ23/12 + P(12)(21)(23/12), δ23/21 + P(12)(21)(23/21), δ23/13, δ23/23)

h24 2−min(δ24/13, δ24/23, δ24/14, δ24/24, δ24/12 + P(12)(21)(24/12),

δ24/21 + P(12)(21)(24/21))

h34

2−min(δ34/12 + P(12)(21)(34/12), δ34/21 + P(12)(21)(34/21),

δ34/13 + P(13)(31)(34/13), δ34/31 + P(13)(31)(34/31),

δ34/23 + P(23)(32)(34/23), δ34/32 + P(23)(32)(34/32), δ34/14, δ34/24, δ34/34)

h123 3− γ11 − γ22 − γ33

h124 3− γ11 − γ22 −min(γ43, γ44)

h134 3− γ11 −min(δ34/23 + P(23)(32)(34/23), δ34/32 + P(23)(32)(34/32),

δ34/24, δ34/34)

h234

3−min(δ234/123 + P(123,231)(132,213)(234/123), δ234/134, δ234/234,

δ234/231 + P(123,231)(132,213)(234/231), δ234/132 + P(123,231)(132,213)(234/132),

δ234/213 + P(123,231)(132,213)(234/213), δ234/124 + P(124)(214)(234/124),

δ234/214 + P(124)(214)(234/214))

h1234 4− γ11 − γ22 − γ33 − γ44
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Table 3.6: Corner points of the scalar lattice-derived region for 4 random variables,
excluding the permutations

(h1 h2 h3 h4, h12 h13 h14 h23 h24 h34, h123 h124 h134 h234, h1234)

1 (0 0 0 0, 0 0 0 0 0 0, 0 0 0 0, 0)

2 (0 0 0 1, 0 0 1 0 1 1, 0 1 1 1, 1)

3 (0 0 1 1, 0 1 1 1 1 1, 1 1 1 1, 1)

4 (0 0 1 1, 0 1 1 1 1 2, 1 1 2 2, 2)

5 (0 1 1 1, 1 1 1 1 1 1, 1 1 1 1, 1)

6 (0 1 1 1, 1 1 1 1 2 2, 1 2 2 2, 2)

7 (0 1 1 1, 1 1 1 2 2 2, 2 2 2 2, 2)

8 (0 1 1 1, 1 1 1 2 2 2, 2 2 2 3, 3)

9 (1 1 1 1, 1 1 1 1 1 1, 1 1 1 1, 1)

10 (1 1 1 1, 1 1 2 1 2 2, 1 2 2 2, 2)

11 (1 1 1 1, 1 2 2 2 2 1, 2 2 2 2, 2)

12 (1 1 1 1, 1 2 2 2 2 2, 2 2 2 2, 2)

13 (1 1 1 1, 1 2 2 2 2 2, 2 2 3 3, 3)

14 (1 1 1 1, 2 2 2 2 2 2, 2 3 3 3, 3)

15 (1 1 1 1, 2 2 2 2 2 2, 3 3 3 3, 3)

16 (1 1 1 1, 2 2 2 2 2 2, 3 3 3 3, 4)

Including permutations of these 16 vectors (obtained from permutations of the un-

derlying random variables), yields a total of 67 vectors for the corner points.
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Table 3.7: Rays of the scalar lattice-derived region for 4 random variables

(h1 h2 h3 h4, h12 h13 h14 h23 h24 h34, h123 h124 h134 h234, h1234)

1 (0 0 0 1, 0 0 1 0 1 1, 0 1 1 1, 1)

2 (0 0 1 0, 0 1 0 1 0 1, 1 0 1 1, 1)

3 (0 1 0 0, 1 0 0 1 1 0, 1 1 0 1, 1)

4 (1 0 0 0, 1 1 1 0 0 0, 1 1 1 0, 1)

5 (0 0 1 1, 0 1 1 1 1 1, 1 1 1 1, 1)

6 (0 1 0 1, 1 0 1 1 1 1, 1 1 1 1, 1)

7 (1 0 0 1, 1 1 1 0 1 1, 1 1 1 1, 1)

8 (0 1 1 0, 1 1 0 1 1 1, 1 1 1 1, 1)

9 (1 0 1 0, 1 1 1 1 0 1, 1 1 1 1, 1)

10 (1 1 0 0, 1 1 1 1 1 0, 1 1 1 1, 1)

11 (0 1 1 1, 1 1 1 1 1 1, 1 1 1 1, 1)

12 (1 0 1 1, 1 1 1 1 1 1, 1 1 1 1, 1)

13 (1 1 0 1, 1 1 1 1 1 1, 1 1 1 1, 1)

14 (1 1 1 0, 1 1 1 1 1 1, 1 1 1 1, 1)

15 (0 1 1 1, 1 1 1 2 2 2, 2 2 2 2, 2)

16 (1 0 1 1, 1 2 2 1 1 2, 2 2 2 2, 2)

17 (1 1 0 1, 2 1 2 1 2 1, 2 2 2 2, 2)

18 (1 1 1 0, 2 2 1 2 1 1, 2 2 2 2, 2)

19 (1 1 1 1, 1 1 1 1 1 1, 1 1 1 1, 1)

20 (1 1 1 1, 1 2 2 2 2 2, 2 2 2 2, 2)

21 (1 1 1 1, 2 1 2 2 2 2, 2 2 2 2, 2)

22 (1 1 1 1, 2 2 1 2 2 2, 2 2 2 2, 2)

23 (1 1 1 1, 2 2 2 1 2 2, 2 2 2 2, 2)

24 (1 1 1 1, 2 2 2 2 1 2, 2 2 2 2, 2)
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Table 3.7: (Continued)

(h1 h2 h3 h4, h12 h13 h14 h23 h24 h34, h123 h124 h134 h234, h1234)

25 (1 1 1 1, 2 2 2 2 2 1, 2 2 2 2, 2)

26 (1 1 1 1, 2 2 2 2 2 2, 3 3 3 3, 3)
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Table 3.8: Joint entropy descriptions of 5 scalar lattice-derived random variables
involving the 5th variable

Entropy Description

h5 1−min(γ51, γ52, γ53, γ54, γ55)

h15 2− γ11 −min(γ52, γ53, γ54, γ55)

h25

2−min(δ25/12 + P(12)(21)(25/12), δ25/21 + P(12)(21)(25/21), δ25/13, δ25/14,

δ25/15, δ25/23, δ25/24, δ25/25)

h35

2−min(δ35/12 + P(12)(21)(35/12), δ35/21 + P(12)(21)(35/21),

δ35/13 + P(13)(31)(35/13), δ35/31 + P(13)(31)(35/31),

δ35/23 + P(23)(32)(35/23), δ35/32 + P(23)(32)(35/32),

δ35/14, δ35/15, δ35/24, δ35/25, δ35/34, δ35/35)

h45

2−min(δ45/12 + P(12)(21)(45/12), δ45/21 + P(12)(21)(45/21),

δ45/13 + P(13)(31)(45/13), δ45/31 + P(13)(31)(45/31), δ45/14 + P(14)(41)(45/14),

δ45/41 + P(14)(41)(45/41), δ45/23 + P(23)(32)(45/23), δ45/32 + P(23)(32)(45/32),

δ45/24 + P(24)(42)(45/24), δ45/42 + P(24)(42)(45/42), δ45/34 + P(34)(43)(45/34),

δ45/43 + P(34)(43)(45/43), δ45/15, δ45/25, δ45/35, δ45/45)

h125 3− γ11 − γ22 −min(γ53, γ54, γ55)

h135

3− γ11 −min(δ35/23 + P(23)(32)(35/23), δ35/32 + P(23)(32)(35/32),

δ35/24, δ35/25, δ35/34, δ35/35)

h145

3− γ11 −min(δ45/23 + P(23)(32)(45/23), δ45/32 + P(23)(32)(45/32),

δ45/24 + P(24)(42)(45/24), δ45/42 + P(24)(42)(45/42), δ45/34 + P(34)(43)(45/34),

δ45/43 + P(34)(43)(45/43), δ45/25, δ45/35, δ45/45)

h235

3−min(δ235/123 + P(123,231)(132,213)(235/123),

δ235/231 + P(123,231)(132,213)(235/231), δ235/132 + P(123,231)(132,213)(235/132),

δ235/213 + P(123,231)(132,213)(235/213), δ235/124 + P(12)(21)(23/12),

δ235/214 + P(12)(21)(23/21), δ235/125 + P(12)(21)(23/12),

δ235/215 + P(12)(21)(23/21), δ235/134, δ235/135, δ235/234, δ235/235)
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Table 3.8: (Continued)

Entropy Description

h245

3−min(δ245/123 + P(123,231)(132,213)(245/123),

δ245/231 + P(123,231)(132,213)(245/231), δ245/132 + P(123,231)(132,213)(245/132),

δ245/213 + P(123,231)(132,213)(245/213), δ245/124 + P(124,241)(142,214)(245/124),

δ245/241 + P(124,241)(142,214)(245/241), δ245/142 + P(124,241)(142,214)(245/142),

δ245/214 + P(124,241)(142,214)(245/214), δ245/125 + P(12)(21)(24/12),

δ245/215 + P(12)(21)(245/215), δ245/134 + P(34)(43)(45/34),

δ245/143 + P(34)(43)(45/43), δ245/234 + P(34)(43)(45/34),

δ245/243 + P(34)(43)(45/43), δ245/135, δ245/145, δ245/235, δ245/245)

h345 3−min(δ345/123 + P(123,231,312)(132,213,321)(345/123),

δ345/231 + P(123,231,312)(132,213,321)(345/231),

δ345/312 + P(123,231,312)(132,213,321)(345/312),

δ345/132 + P(123,231,312)(132,213,321)(345/132),

δ345/213 + P(123,231,312)(132,213,321)(345/213),

δ345/321 + P(123,231,312)(132,213,321)(345/321),

δ345/124 + P(124,241)(214,142)(345/124), δ345/241 + P(124,241)(214,142)(345/241),

δ345/214 + P(124,241)(214,142)(345/214), δ345/142 + P(124,241)(214,142)(345/142),

δ345/125 + P(12)(21)(34/12), δ345/215 + P(12)(21)(34/21),

δ345/134 + P(134,341)(314,143)(345/134), δ345/341 + P(134,341)(314,143)(345/341),

δ345/314 + P(134,341)(314,143)(345/314), δ345/143 + P(134,341)(314,143)(345/143),

δ345/135 + P(13)(31)(34/13), δ345/315 + P(13)(31)(34/31),

δ345/234 + P(234,342)(324,243)(345/234), δ345/342 + P(234,342)(324,243)(345/342),

δ345/324 + P(234,342)(324,243)(345/324), δ345/243 + P(234,342)(324,243)(345/243),

δ345/235 + P(23)(32)(34/23), δ345/325 + P(23)(32)(34/32),

δ345/145, δ345/245, δ345/345)
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Table 3.8: (Continued)

Entropy Description

h1235 4−min(δ1235/1234, δ1235/1235)

h1245 4− γ11 − γ22 −min(δ45/34 + P(34)(43)(45/34), δ45/43 + P(34)(43)(45/43),

δ45/35, δ45/45)

h1345 4−min(δ1345/1234 + P(1234,1342)(1243,1324)(1345/1234), δ1345/1342+

+P(1234,1342)(1243,1324)(1345/1342), δ1345/1243+

+P(1234,1342)(1243,1324)(1345/1243), δ1345/1324+

+P(1234,1342)(1243,1324)(1345/1324), δ1345/1235 + P(23)(32)(34/23),

δ1345/1325 + P(23)(32)(34/32), δ1345/1245, δ1345/1345)

h2345

4−min(δ2345/1234 + P(1234,1342,2143,2314)(1243,1324,2134,2341)(2345/1234),

δ2345/1342 + P(1234,1342,2143,2314)(1243,1324,2134,2341)(2345/1342),

δ2345/2143 + P(1234,1342,2143,2314)(1243,1324,2134,2341)(2345/2143),

δ2345/2314 + P(1234,1342,2143,2314)(1243,1324,2134,2341)(2345/2314),

δ2345/1243 + P(1234,1342,2143,2314)(1243,1324,2134,2341)(2345/1243),

δ2345/1324 + P(1234,1342,2143,2314)(1243,1324,2134,2341)(2345/1324),

δ2345/2134 + P(1234,1342,2143,2314)(1243,1324,2134,2341)(2345/2134),

δ2345/2341 + P(1234,1342,2143,2314)(1243,1324,2134,2341)(2345/2341),

δ2345/1235 + P(1235,2315)(1325,2135)(2345/1235),

δ2345/2315 + P(1235,2315)(1325,2135)(2345/2315),

δ2345/1325 + P(1235,2315)(1325,2135)(2345/1325),

δ2345/2135 + P(1235,2315)(1325,2135)(2345/2135),

δ2345/1245 + P(12)(21)(23/12), δ2345/2145 + P(12)(21)(23/21),

δ2345/1345, δ2345/2345)

h12345 5− γ11 − γ22 − γ33 − γ44 − γ55
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Table 3.9: Rays of scalar lattice-derived region of 5 random variables (R5), excluding
the permutations

h

1 (0 0 0 0 1, 0 0 0 1 0 0 1 0 1 1, 0 0 1 0 1 1 0 1 1 1, 0 1 1 1 1, 1)

2 (0 0 0 1 1, 0 0 1 1 0 1 1 1 1 1, 0 1 1 1 1 1 1 1 1 1, 1 1 1 1 1, 1)

3 (0 0 1 1 1, 0 1 1 1 1 1 1 1 1 1, 1 1 1 1 1 1 1 1 1 1, 1 1 1 1 1, 1)

4 (0 0 1 1 1, 0 1 1 1 1 1 1 2 2 2, 1 1 1 2 2 2 2 2 2 2, 2 2 2 2 2, 2)

5 (0 1 1 1 1, 1 1 1 1 1 1 1 1 1 1, 1 1 1 1 1 1 1 1 1 1, 1 1 1 1 1, 1)

6 (0 1 1 1 1, 1 1 1 1 2 2 2 2 2 1, 2 2 2 2 2 1 2 2 2 2, 2 2 2 2 2, 2)

7 (0 1 1 1 1, 1 1 1 1 2 2 2 2 2 2, 2 2 2 2 2 2 3 3 3 3, 3 3 3 3 3, 3)

8 (1 1 1 1 1, 1 1 1 1 1 1 1 1 1 1, 1 1 1 1 1 1 1 1 1 1, 1 1 1 1 1, 1)

9 (1 1 1 1 1, 1 2 2 2 2 2 2 2 2 2, 2 2 2 3 3 3 3 3 3 3, 3 3 3 3 3, 3)

10 (1 1 1 1 1, 2 2 2 2 2 2 1 1 2 2, 2 2 2 2 2 2 2 2 2 2, 2 2 2 2 2, 2)

11 (1 1 1 1 1, 2 2 2 2 2 2 2 1 1 1, 2 2 2 2 2 2 2 2 2 1, 2 2 2 2 2, 2)

12 (1 1 1 1 1, 2 2 2 2 2 2 2 2 2 2, 3 3 3 3 3 2 3 2 3 3, 3 3 3 3 3, 3)

13 (1 1 1 1 1, 2 2 2 2 2 2 2 2 2 2, 3 3 3 3 3 3 3 3 3 2, 3 3 3 3 3, 3)

14 (1 1 1 1 1, 2 2 2 2 2 2 2 2 2 2, 3 3 3 3 3 3 3 3 3 3, 4 4 4 4 4, 4)

The entries of the entropy vector h are ordered as follows:

h = (h1 h2 h3 h4 h5, h12 h13 h14 h15 h23 h24 h25 h34 h35 h45, h123 h124 h125

h134 h135 h145 h234 h235 h245 h345, h1234 h1235 h1245 h1345 h2345, h12345).
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Table 3.10: Rays of the linear representable region of 5 random variables (having
hXi ≤ 1), missing from the lattice-derived region

h

1 (0 1 1 1 1, 1 1 1 1 2 2 2 2 2 2, 2 2 2 2 2 2 2 2 2 2, 2 2 2 2 2, 2)

2 (1 1 1 1 1, 2 2 2 2 2 2 2 2 2 1, 2 2 2 2 2 2 2 2 2 2, 2 2 2 2 2, 2)

3 (1 1 1 1 1, 2 2 2 2 2 2 2 2 2 2, 2 2 2 2 2 2 2 2 2 2, 2 2 2 2 2, 2)

4 (1 1 1 1 1, 2 2 2 2 2 2 2 2 2 2, 3 3 3 3 3 3 3 3 3 3, 3 3 3 3 3, 3)

The entries of the entropy vector h are ordered as follows:

h = (h1 h2 h3 h4 h5, h12 h13 h14 h15 h23 h24 h25 h34 h35 h45, h123 h124 h125

h134 h135 h145 h234 h235 h245 h345, h1234 h1235 h1245 h1345 h2345, h12345).
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Chapter 4

Linear Representable Entropy
Vectors

4.1 Introduction

There recently has been a great deal of effort to determine the information-theoretic

capacity of networks. However, for a long time, the basis of the main technique for

sending information over networks was to consider information as a fluid which could

only be routed (or replicated). Network coding, first introduced in [ACLY00], showed

that for networks with two destinations or more, routing is not optimal and coding at

the nodes of the network can in general increase the throughput and save bandwidth.

Nonetheless the optimal coding strategy remains as a topic of research.

In the multicast scenario, where all the destinations desire the same set of source

messages, linear network coding is proven to achieve the cut-set bound. For the

general multi-source multi-sink networks where sinks can have arbitrary demands, the

capacity region is expressed in terms of the space of entropy vectors Γ∗n which for the

case of networks is the entropy region of random variables associated with the network

[YYZ07][HS07a]. This characterization yields the best rates possible, independent of

the coding used to achieve them (see Chapter 2). Since the characterization of Γ∗n

is an open problem for more than 3 variables, explicit computation of the capacity

region remains unsolved. However one might be interested in obtaining the capacity
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region of the network when using a specific group of codes.

Linear codes in particular are very interesting. In fact, although they are proven

to be suboptimal in general [DFZ05], they are appealing due to their simple structure.

However determining the linear coding capacity of an arbitrary network also remains

an open problem. As a matter of fact just as the coding capacity of networks is deeply

connected to the characterization of the entropy region, the linear coding capacity

can be shown to be related the characterization of a subset of the entropy region

known as the “linear representable region”. Lack of a full characterization for the

linear representable region indeed accounts for the absence of a complete solution to

the determination of the linear coding capacity of arbitrary networks.

In this chapter, we will focus on characterizing the scalar linear representable

region (a subset of the linear representable region) and give a complete solution

for the case of 4 random variables. Moreover we study linear network coding under

different assumptions, such as restricting the number of sources to 2 or linear network

coding over binary alphabet size.

The rest of this chapter is organized as follows. First we will state some known

results about how the scalar linear coding capacity is related to the region of scalar lin-

ear representable entropy vectors. Next we give an algorithm and explicitly compute

the scalar linear representable entropy region for 4 random variables. The method

is in principle extendable to greater number of random variables as well. We then

turn our attention to networks with 2 sources and show the optimality of linear codes

among all scalar codes for the network. Finally we study binary capacity of networks

by appealing to the linear representability results for small finite fields in the matroid

theory.
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4.2 Preliminaries

In this section we review some definitions and important theorems about linear codes

and linear representability of vectors.

Definition 4.2.1 (Linear Code) Let G = (V,E) denote a network graph with the

node set V and the edge set E. A subset of V at which source messages are generated

is called the source nodes and those nodes of V which demand some of the sources are

called sinks. Moreover it is assumed that each edge of the network carries a message.

Denote the random variable associated with the j-th source generated at node i by

XS
i(j) and the random variable on the edge e of the network by Xe. Furthermore

assume that the source and edge variables are vector valued random variables of size

ms and mv over some finite field F . Let X i
in(j) and X i

out(j) be the jth input and

output variables for node i, respectively. If there is a set of matrices F v
jk and F s

jk over

F such that,

1. every output of node i is obtained by a linear transformation from its inputs

and possible source messages generated at i, i.e., X i
out(k) =

∑
j F

v
kjXin

i(j) +∑
j F

s
kjX

i
s(j)

2. and moreover every sink node l whose j-th demand is denoted by X l
d(j) can

reconstruct its demands from a linear combination of its inputs, i.e., there exists

a set of matrices Gv
kj and Gs

kj over F such that, X l
d(k) =

∑
j G

v
kjXin

l(j) +∑
j G

s
kjX

l
s(j)

then we say that the set of F v
jk, F

s
jk, G

v
kj, and Gs

kj constitute a linear code for the

network.

Remark: In Definition 4.2.1 when ms = mv the network is called solvable. Further-

more if ms = mv = 1 then the linear code is called scalar linear and the network is

therefore scalar linear solvable [DFZ05].
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It is shown that every solvable multicast network has a scalar linear solution over a

sufficiently large alphabet size [LYC03, KM03]. Although later it was proved that for

the case of non-multicast networks even vector linear coding is sub-optimal [DFZ05],

linear codes are of particular interest due to their simplicity.

Recall from Chapter 2 that determining the capacity of an acyclic memoryless

wired network can be reduced to a convex optimization problem as follows:

maxαTh (4.1)

s.t. h ∈ Ω̄∗n

hXe ≤ Ce for any edge e

h(XS1 , . . . , XSs) =
s∑
i=1

h(XSi)

h(X i
in, X

i
out(j)) = h(X i

in) j = 1, . . . , X i
out(j) for each nonsource node i

h(X l
in, X

l
d(j)) = h(X l

d(j)) l is a sink node

where s is the total number of sources in the network, X i
in represent all the inputs of

node i, and Ce is the link capacity for edge e.

If one is interested in finding the linear coding capacity of a network then all

entropies of network random variables in the optimization formulation (4.1), can be

replaced by rank of the matrices that relate the relevant variables to the sources. In

such cases the following definition turns out to be useful [Cha07b, YLCZ06].

Definition 4.2.2 (Linear representable vectors) A 2n − 1 dimensional vector g

whose entries are indexed by subsets of N = {1, . . . , n} is called a linear representable

vector (also a linear rank vector1) if there exist n matrices {v1, · · · , vn}, each of

1We use the term “linear rank vector” as to avoid confusion with the matroid rank functions
which will be discussed later in this chapter. We may drop the word “linear” when the meaning is
clear from the context.
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dimension σ × τ over a finite field GF (q) such that for any α ⊆ N ,

gα = rank(⊕i∈αvi) (4.2)

where ⊕i∈αvi denotes the space spanned by rows of {vi, i ∈ α}2. If in particular σ = 1,

then g is called “scalar-representable” while if σ > 1 it is called “vector-representable”

or “multilinear representable”. We denote the space of all linear representable vectors

of dimension 2n − 1 by Γrn and the region of all scalar-representable rank vectors by

Γsrn . Moreover we call 1
σ
g a normalized representable vector and denote the corre-

sponding space of all normalized representable vectors by Ωr
n.

It turns out that every linear representable vector is a multiple of an entropy

vector. The following theorem whose proof we explained in Chapter 3 states this

fact.

Theorem 4.2.3 (Linear representables and entropy vectors) [YLCZ06] De-

fine g to be a 2n − 1 dimensional rank vector and let the set of σ × τ matrices

{v1, . . . , vn} over GF(q) form a representation for it such that gα = rank(⊕i∈αvi),

then log(q)g is an entropy vector of random variables X1, . . . , Xn where,


X1

...

Xn

 =

 v1−−−...
−−−
vn




a1

...

ap

 . (4.3)

The random variables X1, . . . , Xn constructed as such are called “GF(q) linearly-

related” random variables.

Noting that Γ̄∗n is a convex cone, it immediately follows from Theorem 4.2.3 that

Γrn ⊆ con(Γrn) ⊆ Γ̄∗n where con(.) denotes the convex hull.

2Sometimes a “linear representable vector” is defined as a vector g whose entries are
gα = log q · rank(⊕i∈αvi) [Cha07b]. However here we will stick to (4.2).
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Remark: Note that a normalized representable vector is in fact an entropy vector

normalized by the log of the alphabet size since the alphabet size of each random

variable in (4.3) is qσ. In the context of network coding capacity and parallel to the

arguments of Chapter 2, the entropy of a vector-valued network random variable X

that is linearly related to the s-dimensional vector of sources XS through a σ × s

matrix A, i.e., X = AXS over T channel uses, will be log q · T · rank(A), which when

normalized by log(qσT ) gives 1
σ
rank(A) as the normalized entropy.

As stated in Section 4.1, the linear coding capacity of a network is connected to

the region of linear representable vectors. This connection can be seen collectively

from Definition 4.2.1, optimization formulations (4.1), Definition 4.2.2, and Theorem

4.2.3. The following theorem formalizes this fact:

Theorem 4.2.4 (Linear coding capacity) Let X1, · · · , Xn denote the variables of

a wired network. The maximum weighted sum rate achieved by linear codes can be

obtained from the following optimization over the convex hull of normalized repre-

sentable region:

maxαTh (4.4)

s.t. h ∈ con(Ωr
n)

hXe ≤ Ce for any edge e

h(XS1 , . . . , XSs) =
s∑
i=1

h(XSi)

h(X i
in, X

i
out(j)) = h(X i

in) j = 1, . . . , X i
out(j) for each nonsource node i

h(X l
in, X

l
d(j)) = h(X l

d(j)) l is a sink node

where con(.) represents the convex hull, and as in formulation (4.1), s is the total

number of sources in the network, X i
in represent all the inputs of node i, and Ce is

the link capacity for edge e. In particular if one is interested in the best scalar linear

codes, then con(Ωr
n) should be replaced with con(Γsrn ) in (4.4).
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It is known that the linear representable entropies satisfy an inequality called the

Ingleton inequality [Ing71] which does not hold for all entropy vectors and hence it

proves that the region of all linear representable entropies is a strict subset of Γ∗n.

This justifies the sub-optimality of linear codes.

Recently there has been some progress in determining the convex cone of linear

representable vectors. It has been shown in [HRSV00] that not only the set of Shannon

and Ingleton inequalities are necessary conditions for a vector to be a rank vector of

4 random variables but they are also sufficient conditions. In other words the convex

cone of rank region (linear representable region) of 4 random variables is completely

characterized by the set of Ingleton and Shannon-type inequalities. The approach

of [HRSV00] is based on finding all the extreme rays of the set defined by Ingleton

and Shannon-type inequalities and finding a linear representation for all those points.

Although this approach finds the whole linear representable region for 4 variables

it is not extendable to more than 4. Moreover it does not find the region of scalar

representable entropies. In more recent works however [DFZ10, CGK10, Kin09], it has

been shown that for more than 4 random variables, rank vectors satisfy inequalities

other than Shannon and Ingleton. In particular [DFZ10] has determined the convex

cone of rank region for 5 random variables by discovering new inequalities for 31-

dimensional rank vectors and showing the representability of all the rays of such

region. For more than 5 random variables the full characterization of (scalar or

vector) linear representable entropies remains open.

In an attempt to find the capacity region of wired networks based on Theorem

4.2.4, we will study the scalar linear representable region under different assumptions.



103

4.3 Scalar Linear Representable Region

In this section we will study the scalar linear representable region and characterize it

explicitly for 4 random variables. The method we present for determining this region

is in principle extendable to a larger number of random variables. In the next section

we will show that the same framework can be used to obtain the entropy region of

all feasible entropy vectors in networks with two sources.

4.3.1 General Technique

Based on Theorem 4.2.3 one can obtain the set of all linear representable vectors g for

n random variables by finding all the possible rank vectors of the matrix M =

 v1
...
vn

.

Theorem 4.3.1 (Scalar linear representable entropies) Γsrn can be obtained

from all the rank vectors of an n × n matrix M with entries over an arbitrary finite

field GF (q).

Proof: Follows trivially from Theorem 4.2.3. �

Therefore in order to compute Γsr4 for example, we need to find all rank vectors

obtained from a 4×4 matrix M for which we need to consider all relative dependencies

between rows of M . In what follows this will be explained in detail.

4.3.2 Scalar Linear Representable Region of 4 Random

Variables

In this section we consider characterizing the scalar linear representable region for

4 random variables. Note that based on Theorem 4.3.1 we need to obtain all rank

vectors from a 4× 4 matrix.
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4.3.2.1 Deriving All Rank Vectors of a 4× 4 Matrix

To obtain the rank vectors based on Theorem 4.3.1, we need to determine the possible

dependency relations among the rows of a 4 × 4 matrix. The general idea for such

approach is to first determine the possible pairwise dependencies of the rows of the

matrix and for each such obtained structure, further determine the triple dependen-

cies, etc. In what follows we will explain this method in detail,

Theorem 4.3.2 (Scalar linear representable vectors of 4 random variables)

There are a total of 68 different scalar linear representable vectors for 4 random vari-

ables.

Proof: [Obtaining rank vectors from a 4× 4 matrix] Let the rows of the 4× 4 matrix

be denoted by v1, v2, v3, and v4. We examine the dependency relations in different

scenarios based on the number of zero rows and we assume that the underlying field

size is arbitrary. First assume that there are no zero rows.

Scenario 1: No zero rows

We begin by determining the pairwise dependencies. Note that for a 4 × 4 matrix

whose rows are v1, v2, v3, and v4, five cases are possible. By denoting the pairwise

dependent rows inside parenthesis, we obtain the following cases,

1. (v1)(v2)(v3)(v4): no two rows are pairwise dependent (i.e., no two rows are

aligned).

2. (vi, vj)(vk)(vl): vi and vj are aligned and the other two rows vk and vl are

independent.

3. (vi, vj)(vk, vl): rows vi, vj are aligned and the other two rows vk, vl are also

aligned.

4. (vi, vj, vk)(vl): rows vi, vj, vk are aligned to each other and independent from vl.
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5. (v1, v2, v3, v4): all four rows are aligned.

Note that these 5 cases correspond to different partitions of v1, v2, v3, v4. Now we will

examine each case separately,

1. (v1)(v2)(v3)(v4): Since all pairs of rows are independent, we have rij = 2, ∀i, j,

and we can consider the following possibilities for the triple dependencies:

(a) there is no set of dependent triplets, i.e., rijk = 3, ∀i, j, k, then the whole

set of rows can be either dependent or independent,

i. the four rows are independent and therefore r1234 = 4. In this case the

corresponding rank vector will be (1 1 1 1, 2 2 2 2 2 2, 3 3 3 3, 4).

ii. the four rows are linearly dependent and therefore r1234 = 3. Hence,

the corresponding rank vector will be (1 1 1 1, 2 2 2 2 2 2, 3 3 3 3, 3).

(b) there is one triple set that is linearly dependent and independent of the

4-th row. Without loss of generality assume that that linear dependent

triplet is v1, v2, v3. Therefore we obtain that r123 = 2. However rank of the

other triplets will be still 3. Clearly we also have r1234 = 3. Therefore the

resulting rank vector in this case will be, (1 1 1 1, 2 2 2 2 2 2, 2 3 3 3, 3).

Note that considering the permutations of this vector, this case results in

4 vectors in total.

(c) more than one triple set is linearly dependent. This essentially means that

all triples are dependent and therefore rijk = 2, ∀i, j, k. Moreover this also

gives r1234 = 2. In other words the rank vector corresponding to this case

is obtained to be (1 1 1 1, 2 2 2 2 2 2, 2 2 2 2, 2).

2. (vi, vj)(vk)(vl): Without loss of generality assume that we have (v1, v2)(v3)(v4)

which immediately gives r12 = 1 and ∀(i, j) 6= (1, 2), rij = 2. Since v1 and v2

are aligned, we can represent them by a unit vector v′1 in their direction. For



106

the matter of determining triplet dependencies, therefore, we need to examine

the dependencies of v′1, v3, v4. Two cases are feasible,

(a) there is no set of dependent triplets in v′1, v3, v4. Therefore we have r123 =

r124 = 2 and r134 = r234 = 3. Clearly r1234 = 3 and we obtain the rank

vector (1 1 1 1, 1 2 2 2 2 2, 2 2 3 3, 3). Considering permutations of this

vector this case yields 6 vectors in total.

(b) the triplet v′1, v3, v4 is linearly dependent. In this case we have rijk =

2, ∀i, j, k and r1234 = 2 giving the rank (1 1 1 1, 1 2 2 2 2 2, 2 2 2 2, 2).

Considering the permutations, we obtain a total of 6 vectors from this

case as well.

3. (vi, vj)(vk, vl): Without loss of generality assume we have (v1, v2)(v3, v4). This

assumption alone determines all the rank vector entries. In particular r12 =

r34 = 1, r13 = r14 = r23 = r24 = 2. Moreover rijk = 2, ∀i, j, k and r1,2,3,4 = 2,

yielding the rank vector (1 1 1 1, 1 2 2 2 2 1, 2 2 2 2, 2). Three permutations

for i, j, k are possible in total, i.e.—the structures (v1, v2)(v3, v4), (v1, v3)(v2, v4),

and (v1, v4)(v2, v3)—and therefore this case gives 3 rank vectors in total.

4. (vi, vj, vk)(vl): Without loss of generality assume that we have (v1, v2, v3)(v4).

This implies that r12 = r13 = r23 = 1 and r14 = r24 = r34 = 2. Moreover

r123 = 1, r124 = r134 = r234 = 2, and r1234 = 2. Therefore we get the rank vector

(1 1 1 1, 1 1 2 1 2 2, 1 2 2 2, 2). Considering the permutations, this case results

in a total of 4 rank vectors.

5. (v1, v2, v3, v4): In this case all the rows are aligned and the rank vector can be

easily obtained to be (1 1 1 1, 1 1 1 1 1 1, 1 1 1 1, 1).

Scenario 2: One zero row

Assume without loss of generality that the first row is the all zero vector, i.e., v1 = 0.

This immediately gives r1 = 0. For v2, v3, and v4 the following cases are possible:
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1. (v2)(v3)(v4): none of the other three rows are aligned. Therefore we have r12 =

r13 = r14 = 1 and r23 = r24 = r34 = 2. In this case these three rows can either

be linearly dependent or independent,

(a) v2, v3, v4 are linearly independent. Therefore we have r123 = r124 = r134 = 2

and r234 = r1234 = 3. The rank vector is (0 1 1 1, 1 1 1 2 2 2, 2 2 2 3, 3).

Taking into account the possible permutations we obtain 4 vectors in total.

(b) v2, v3, v4 are linearly dependent. The difference with the case where v2, v3, v4

are independent will be that r234 = r1234 = 2. Therefore the resulting rank

vector is (0 1 1 1, 1 1 1 2 2 2, 2 2 2 2, 2). Considering the possible permu-

tations again gives 4 vectors.

2. (vj, vk)(vl), j, k, l 6= 1: In this case two of the nonzero rows are aligned and

independent from the last nonzero row. Without loss of generality assume

(v2, v3)(v4). The rank vector is obtained to be (0 1 1 1, 1 1 1 1 2 2, 1 2 2 2, 2).

Note that the zero row could be any of the four rows, and for any chosen zero

row, one can consider any two of the three remaining nonzero rows aligned.

Therefore there are a total of 12 vectors resulting from this case (counting the

permutations).

3. (v2, v3, v4): The rank vector in this case will be (0 1 1 1, 1 1 1 1 1 1, 1 1 1 1, 1).

Taking into account the feasible permutations we obtain a total of 4 vectors

from this case.

Scenario 3: Two zero rows

Assume without loss of generality that v1 = v2 = 0. Therefore r1 = r2 = 0. Now the

remaining two rows can be either aligned or independent,

1. (v3)(v4): In this case the other two rows are independent. Therefore the result-

ing rank vector will be (0 0 1 1, 0 1 1 1 1 2, 1 1 2 2, 2). Note that the two zero



108

rows can be chosen in six different ways and hence there are a total of 6 vectors

in this case.

2. (v3, v4): In this case the two nonzero rows are aligned. Therefore we can easily

obtain the rank vector for this case as (0 0 1 1, 0 1 1 1 1 1, 1 1 1 1, 1). Again

considering permutations we obtain a total of 6 vectors from this case.

Scenario 4: Three zero rows

Without loss of generality assume the nonzero row is v4. The obtained rank vector

in this case will be (0 0 0 1, 0 0 1 0 1 1, 0 1 1 1, 1) and considering permutations we

get a total of 4 rank vectors from this case (the assumption of three zero rows).

Scenario 5: All rows are zero

This will be the trivial all-zero rank vector.

Putting together all the rank vectors obtained in Scenarios 1–5, we obtain 68 rank

vectors. �

Remark: An alternative approach for determining the rank vectors resulting from a

4× 4 matrix M is to first lower triangularize M , i.e.,1

M =

 x

x x

x x x

x x x x

 (4.5)

and then consider all the relations between rows. In particular we can define pi

to denote the largest column index for which row i has a nonzero entry, therefore

0 ≤ pi ≤ i. Then, e.g., pi = 0 would imply that row i is totally zero. Moreover if

pi 6= pj we can immediately conclude that rows i and j are independent. However if

two or more pi’s are equal then the relations could be more complicated and all of

them should be considered. For example, consider p1 = 0, p2 = p3 = p4 = 2. That

1The matrix M can be assumed to be lower triangular without loss of generality due to repeated
use of the Bezout identity.
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would be the following structure,

M =

 0
x x

x x

x x

 . (4.6)

Now note that for the rank of singletons we have r1 = 0 and rj = 1, j 6= 1. For pairs

that include row 1, r1j = 1, j 6= 1. However to determine the rest of the pairwise

ranks we should consider the different feasible dependencies among rows 2, 3, and

4. Denoting row i by vi as previously stated, three different cases can be considered

for v2, v3, and v4, i.e., (v2)(v3)(v4),(vj, vk)(vl) j, k, l 6= 1, and (v2, v3, v4). Each of

these cases results in a different rank vector. In particular note that we always have

r1234 = r234 ≤ 2 because there are only two nonzero columns. There are a total

of 5! combinations for values that p1, . . . , p4 can take and for each combination all

dependencies should be taken into account.

4.3.2.2 Characterizing Γsr4

Based on the rank vectors that we obtained in the last part, we can now characterize

the region of scalar linear representable vectors for 4 random variables.

Theorem 4.3.3 (Scalar rank region of 4 random variables) The region of

scalar representable entropies of 4 random variables is obtained from the convex hull

of 68 rank vectors. The convex cone of this region has 27 rays which can be seen in

Table 4.1.

Proof: The scalar linear representable region is characterized from the convex hull of

all the 68 rank vectors found in Theorem 4.3.2. Using the software package PORTA

[POR] which uses a Fourier-Motzkin elimination, we compute the convex hull of these

68 vectors to obtain the region of 15-dimensional scalar representable entropy vectors.

All these 68 vectors correspond to corner points and their convex hull is represented
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Table 4.1: Rays of the scalar linearly representable region of 4 random variables

(h1, h2, h3, h4, h12, h13, h14, h23, h24, h34, h123, h124, h134, h234, h1234)
(1) (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3)
(2) (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)
(3) (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)
(4) (1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2)
(5) (1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2)
(6) (1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2)
(7) (1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2)
(8) (1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2)
(9) (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1)
(10) (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1)
(11) (0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2)
(12) (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1)
(13) (1, 0, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2)
(14) (1, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2)
(15) (1, 1, 1, 0, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2)
(16) (1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1)
(17) (0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
(18) (0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1)
(19) (0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1)
(20) (1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1)
(21) (1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1)
(22) (1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1)
(23) (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
(24) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
(25) (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
(26) (1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
(27) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

by 86 inequalities or, equivalently, hyperplanes. Among the hyperplanes, 50 of them

pass through the origin and are used for computing the rays of the convex cone of

the rank vectors. Moreover computing their convex cone results in 27 rays which are

depicted in Table 4.1. �

Comparisons:

• Recall that in Section 3.5, we obtained the corner points of 4 quasi-uniform

random variables of alphabet size 2 [FSH08]. In that case there are 67 corner

points (listed in Table 3.6) and, interestingly, the only differing vector between
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those 67, and the corner points of the scalar representable region is the vector

(1 1 1 1, 2 2 2 2 2 2, 2 2 2 2, 2), which is not representable over binary alphabet

size. In matroid theory, this vector corresponds to the rank of U2,4 matroid.

Therefore all the other corner points of scalar ranks correspond to the entropies

of quasi-uniform random variables with binary alphabet size.

• Another comparison with the results of [HRSV00] that has obtained the rays

of the linear representable region (either scalar or vector), shows that the rays

of the scalar rank region are exactly the scalar representable rays of the vector

rank region (i.e., there are not any extra rays for the scalar linear representable

region). In fact [HRSV00] finds 35 rays for the set defined by Shannon-type

and Ingleton inequalities and shows that they are all representable. However

only 27 of those are scalar representable, which exactly correspond to the rays

of the convex cone region that we have found.

4.4 Scalar Linear Codes for Networks with Two

Sources

As stated in Theorem 4.2.4, the region of linearly representable entropy vectors is

important in finding the capacity region of a given network. In the last section

we found the scalar region for 4 random variables. However most networks involve

more than 4 variables and finding the linear representable entropy region becomes

computationally hard when the number of random variables grows. Therefore in an

attempt to find linear solutions for a general network, one may simplify the problem

by limiting the number of sources to some number s. This in effect upperbounds the

values of the joint entropies of the random variables to s. In this section by letting

s = 2, we consider networks with 2 sources.

Now we can state the following theorem about the region of such scalar repre-
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sentable vectors,

Theorem 4.4.1 The region of scalar representable vectors whose entries are bounded

by 2, is obtained from all rank vectors of an n× 2 matrix.

Proof: In general from Theorem 4.2.3 any scalar linear representable vector can be

obtained from the rank vector of an n× n matrix. Since the entries of the vector in

this case are bounded by 2 by assumption, that means that the n× n matrix is rank

2 and therefore the scalar representable vector in this case can be considered to be

the rank vector of an n× 2 matrix. �

Denote the space of scalar rank vectors obtained from an n× 2 matrix by Γsrn×2.

Theorem 4.4.2 Given a network with two sources, a scalar linear solution for it can

be found by solving a convex optimization over the convex hull of Γsrn×2.

Proof: Follows from Theorems 4.4.1 and replacing con(Ωr
n) by con(Γsrn×2) in 4.2.4. �

Henceforth we will try to find the rank vectors of an n× 2 matrix.

4.4.1 Rank Vectors of an n× 2 Matrix

The underlying principle for finding all rank vectors of an n × 2 matrix is the same

as that of a 4 × 4 matrix which was discussed in the last section. In fact similar to

the case of 4× 4 matrix, in considering different structures for the n× 2 matrix, we

first need to consider whether each row is zero or not zero and for the nonzero rows

consider the pairwise dependencies first. The following shows an example of such a

structure,

M =



x x

x x

0 0

x x


. (4.7)
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However since the matrix is n×2 versus the n×n general matrix of the last section, we

can obtain nice results and simplify things considerably in this case. As an instance

an immediate consequence of having a rank 2 matrix is that knowing the nonzero

rows and their pairwise ranks we can determine the whole rank vector.

Lemma 4.4.3 The entries of the rank vector of an n× 2 matrix that correspond to

ranks of a set of more than 2 rows, can be obtained from the pairwise ranks.

Proof: Follows trivially from the fact that M is rank 2. In fact if α is the set of indices

of a collection of rows, s.t. |α| ≥ 2 then rα = maxi,j∈α rij. �

The following lemma lays the foundation for characterizing all rank vectors of an

n× 2 matrix.

Lemma 4.4.4 Let K = {i1, · · · , ik} denote the set of indices of the nonzero rows of

an n× 2 matrix M . Then there is a bijection between all rank vectors of M and set

partitions of K.

Proof: Let P be the set of all partitions of K and R be the set of all rank vectors

obtained from M . We show that there is a bijective mapping Π : P → R.

First we show the existence of such mapping by showing that for any given partition

of K, e.g., p ∈ P we can construct an n× 2 matrix with {i1, . . . , ik} as the set of its

nonzero rows as follows: Let p = S1/S2/ . . . /St be a partition of K. Let {v1, . . . , vt}

be t pairwise independent 1 × 2 vectors. This is always possible by assuming that

the underlying finite field is sufficiently large 1. For l = 1, . . . , n if l ∈ Sj then set

Ml = vj where Ml represents the l-th row of M . Define Π(p) to be the rank vector of

the matrix M so constructed.

To complete the proof, we show that this mapping is one-to-one and onto. Assume

Π(p) = Π(p̂) and p 6= p̂. Therefore there exists i, j ∈ K such that i and j belong to

the same partition in p and to different partitions in p̂. If we let Π(p){i,j} denote the

1It can be easily shown that the total number of pairwise independent 1× 2 vectors over GF(q)
for a prime q is at least q + 1. Hence it is enough to choose q ≥ t− 1.



114

rank of rows i and j, it is easy to check that Π(p){i,j} = 1, and Π(p̂){i,j} = 2, which

contradicts the assumption. Therefore Π(.) is one-to-one. Next we show that Π(.) is

onto by constructing a partition p ∈ P for every r ∈ R s.t. Π(p) = r. From Lemma

4.4.3 it is enough to consider those entries of the rank vector r that correspond to the

pairwise ranks. In other words, r = Π(p) if there exists a p ∈ P s.t. Π(p){i,j} = rij

for all i, j ∈ K. Let i, j be in the same set in partition p if and only if rij = 1. The

partition p is well-defined if we can show the following relation:

rij = rjk = 1⇒ rik = 1,

which holds by the definition of the rank function. This concludes the proof. �

Although Lemma 4.4.4 gives a nice algorithm for determining all the rank vectors

of an n × 2 matrix by determining all the set partitions of the nonzero rows of the

corresponding matrix, one cannot easily determine if, for a given vector, there exists

a valid partitioning. In what follows we will try to answer that question. However we

first need to define the following binary relation.

Definition 4.4.5 Assume that r is a 2n−1 dimensional vector whose entries are in-

dexed by subsets of {1, · · · , n}. Let K be defined as, K = {i | ri = 1, i ∈ {1, . . . , n}}.

Then for i, j ∈ {1, . . . , n} we define the binary relation ∼ as follows:

i ∼ j ⇔ ∃ T ⊂ {1, 2, ..., n} : i, j ∈ T ∩K and rT = 1. (4.8)

Note that the binary relation of Definition 4.4.5 is both reflexive and symmetric.

Therefore it will be an equivalence relation if it is transitive as well. Note that we

have the following lemma,

Lemma 4.4.6 Let r be a 2n − 1 dimensional vector whose entries are indexed by

subsets of {1, . . . , n}. If entries of r satisfy the Shannon inequalities, then the binary

relation defined on r as in Definition 4.4.5 is an equivalence relation.
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Proof: We only need to show that under the assumption of Shannon inequality satis-

faction, the binary relation is transitive. Therefore assume that for i, j, k ∈ {1, . . . , n}

where ri = rj = rk = 1 we have i ∼ j and j ∼ k and we need to show that j ∼ k.

Since i ∼ j, based on definition, there is a set T1 ⊆ {1, . . . , n} such that i, j ∈ T1 and

rT1 = 1. Similarly for j and k there is a set T2 ⊆ {1, . . . , n} such that j, k ∈ T2 and

rT2 = 1. Note that T1 ∩ T2 at least includes j. Since the entries of r satisfy Shannon

inequalities we have,

1 = rT1 ≤ rT1∪T2 ≤ rT1 + rT2 − rT1∩T2 = 2− rT1∩T2 . (4.9)

Moreover for rT1∩T2 we obtain that,

1 = rj ≤ rT1∩T2 ≤ rT1 = 1 (4.10)

meaning that rT1∩T2 = 1 and therefore from (4.9) we get rT1∪T2 = 1. Since T1 ∪ T2

includes both i and k, based on Definition 4.4.5, i ∼ k. �

Corollary 4.4.7 Let r be a 2n − 1 dimensional vector and ∼ be the binary relation

defined on r based on Definition 4.4.5. Assume for some 1 ≤ i, j, k ≤ n, where

ri = rj = rk = 1, we have i ∼ j, i.e., ∃T, i, j ∈ T, rT = 1 and j ∼ k, which also

means ∃T ′, j, k ∈ T ′, rT ′ = 1. Then if the entries of r satisfy the Shannon inequalities,

1. For all subsets of T , i.e., T̃ ⊆ T such that i ∈ T̃ or j ∈ T̃ , we also have rT̃ = 1.

2. rT∪T ′ = 1.

Proof: Part 1 follows trivially from the Shannon inequalities and part 2 is a direct

consequence of Lemma 4.4.6. �

Now we can state the main theorem that allows one to determine if a given vector

is the rank vector of an n× 2 matrix.



116

Theorem 4.4.8 Let r ∈ {0, 1, 2}2n−1 be a vector whose entries are indexed by subsets

of {1, . . . , n}. Moreover assume that for i = 1, . . . , n, ri ∈ {0, 1}. Then r is a rank

vector of an n×2 matrix if and only if the entries of r satisfy the Shannon inequalities.

Proof: First note that if r is a rank vector of an n×2 matrix then it is an entropy vector

and its entries will satisfy the Shannon inequalities inevitably. Now assume that the

entries of r ∈ {0, 1, 2}2n−1 satisfy Shannon inequalities. We want to show that r will

be a rank vector. If the entries of r satisfy Shannon inequalities, then based on Lemma

4.4.6 the binary relation defined on r will be an equivalence relation and therefore

induces equivalence classes. Note that if an element of the set {1, . . . , n}, e.g., i, does

not belong to any of the induced equivalence classes then it essentially means that

ri = 0. This is due to the fact that ri can only be zero or one and if it is one, at

least we have i ∼ i and therefore i will belong to an equivalence class. Therefore the

equivalence classes induced by ∼ form a partition p for K = {i|ri = 1, i = 1, . . . , n}.

Based on Lemma 4.4.4, there is a valid rank vector r′ = Π(p) corresponding to this

partitioning. We prove that r = r′ by showing that for all T ⊆ N , rT = r′T .

1. T ⊆ N \ K: We show that for all T ⊆ N \ k we have rT = r′T = 0. Since

r satisfies the Shannon inequalities rT ≤
∑

i∈T ri, however since if i ∈ T it is

not in the set K, then ri = 0 and therefore rT = 0. Moreover by construction

of r′ = Π(p), r′ is also zero for such T . Now note that for all other subsets

T ⊆ N , T * (N \ K), rT 6= 0, and r′T 6= 0. The former due to Shannon

inequality and the latter by construction. Therefore for such T , rT and r′T are

either 1 or 2.

2. T ⊆ K: As stated in the last case, for T ⊆ N , rT and r′T can only take values

1 or 2. Therefore we prove the equality of rT and r′T for this class of subsets

by showing that for T ⊆ K, rT = 1 if and only if r′T = 1. First assume

that rT = 1. Then from the definition of ∼, T ∩ K = T ∈ C where C is an
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equivalence class under the relation ∼. From the construction of r′ = Π(p) in

Lemma 4.4.4, C is also a partition of K and hence r′T = 1. Conversely assume

that r′T = 1. Therefore again we have T ∩ K = T ∈ C. Since r satisfies the

Shannon inequalities for all equivalence classes we have rC = 1 and ∀T ⊆ C,

also rT = 1.

3. T = α ∪ β, α ⊆ K, β ⊆ N \ K: Note that since r satisfies Shannon we have,

rα ≤ rT ≤ rα+ rβ. However since β ⊆ N \K based on case 1, rβ = 0 and hence

rT = rα. Moreover since r′ is a rank vector based on construction, therefore it

satisfies Shannon and therefore by a similar argument r′T = r′α. However since

α ⊆ K based on case 2, rα = r′α.

�

Remark 1: We want to emphasize the need for Shannon conditions in the proof

of Theorem 4.4.8. In particular if r does not satisfy Shannon, entries of r could

be such that ∼ still be an equivalence relation on r. In such case however, one

does not necessarily have rC = 1 and ∀T ⊆ C, rT = 1. The 7-dimensional vectors

(1 1 1, 2 2 2, 1) and (1 1 1, 1 1 1, 2) which do not satisfy the Shannon inequalities are

two such examples, both having a single equivalence class {1, 2, 3} based on Definition

4.4.5.

Remark 2: Note that Theorem 4.4.8 suggests that, in order to compute the scalar

linear capacity of a network with 2 sources, we should include all the Shannon in-

equalities as constraints in the network optimization problem. However the number

of non-redundant Shannon inequalities is n +
(
n
2

)
2n−2 [Yeu02] which is exponential

in n. Nonetheless the number of joint entropies that appear in network constraints

(topology constraints of the network) are usually much less than the whole number of

joint entropies of the random variables of the network. Therefore the hope is that in

such cases one need not impose all the Shannon inequality constraints. Extension of

the approach that resulted in Theorem 4.4.8 can be useful in determining the region
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Figure 4.1: Geometric representation for a rank-2 matroid

of projection of rank vectors into particular subsets of its entries.

Remark 3: For those familiar with the matroid theory, an alternative way of expressing

the result of Theorem 4.4.8 is by establishing that rank-2 matroids are representable

(matroid representability is discussed in Section 4.5). In this context, a rank-2 matroid

can be represented as in Fig. 4.1, where every point shows a matroid element, and

pairwise dependent elements are shown by touching points grouped into a column.

Assume there are t columns of touching points in Fig. 4.1. One can easily show

that there are at least q + 1 pairwise independent 2-dimensional vectors over GF(q).

Hence, if we let q ≥ t − 1, we can find t pairwise independent 2-dimensional vectors

over GF(q). Assigning each of the t vectors to all the elements in a column of Fig.

4.1, yields a representation for the matroid.

Corollary 4.4.9 Among scalar codes for a network with 2 sources, linear codes are

optimal.

Proof: Recall that entropy vector of network random variables under any scalar net-

work coding assumption, satisfies the Shannon inequalities. Since based on Theorem

4.4.8, Shannon inequalities are also sufficient for characterizing Γsrn×2, the result follows

immediately from Theorem 4.4.2 and Theorem 4.4.8. �

Remark: We should mention that there has been some other works on networks with

two sources in the literature [WS10, EF09]. In fact, Corollary 4.4.9 has also been

recognized by Wang et al. through a graph-theoretic approach [WS10].
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4.4.2 Some Explicit Computations

Now we give the results of the explicit computation of the rank region of n×2 matrices

for three values of n,

1. 4×2 matrix: Computing all the ranks of a 4×2 matrix results in 52 vectors. The

convex hull of these vectors is represented by 156 inequalities and interestingly

all the 52 points are corner points of the convex hull. Out of 156 inequalities,

50 of them are homogenous, meaning that they define hyperplanes that pass

through the origin. However as opposed to the 4× 4 case there are only 26 rays

for the convex cone. The only missing vector compared to the 4 × 4 case is,

(1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3). This is somehow not surprising,

since this is the only ray in Table 4.1 that has rank entries greater than 2.

2. 5× 2 matrix: There are a total of 203 vectors, out of which 112 are rays of the

convex cone region.

3. 6× 2 matrix: There are 877 rank vectors for a 6× 2 matrix which are obviously

63 dimensional. Computing the convex cone of these vectors by means of a

linear program, gave 575 rays.

4.5 Binary Scalar Linear Network Coding

In the previous section, we saw how constraining the number of sources to 2 could

make the region of linear representable entropies more manageable. Another ap-

proach for making the problem of determining the linear solutions of a network more

tractable, is to focus on the linear solutions over some fixed alphabet size. This is

equivalent to determining the region of linear representable vectors over the given

alphabet-size, and thus it is what we will study in this section. We examine the

problem from the matroids perspective.
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4.5.1 Entropy, Polymatroid, and Matroid

Recall that entropy satisfies the submodularity conditions. Indeed entropy is a poly-

matroid.

Definition 4.5.1 (Polymatroid) A finite set E called the ground set along with a

function r called the rank function, which maps the elements of the power set of E to

non-negative real numbers, i.e., r : 2E → R+ is called a polymatroid if and only if for

all A,B ⊆ E, r satisfies the following:

1. r(∅) = 0.

2. If A ⊆ B then r(A) ≤ r(B).

3. r(A ∪B) + r(A ∩B) ≤ r(A) + r(B): submodularity.

where we have assumed that the entries of r are indexed by subsets of E.

A relevant though different with polymatroid concept is the matroid definition.

Definition 4.5.2 (Matroid) A finite set E called the ground set along with a func-

tion r called the rank function, that maps the elements of the power set of E to

non-negative integers, i.e., r : 2E → Z+ is called a matroid if and only if for all

A,B ⊆ E, r satisfies the following:

1. 0 ≤ r(A) ≤ |A|.

2. If A ⊆ B then r(A) ≤ r(B).

3. r(A ∪B) + r(A ∩B) ≤ r(A) + r(B): submodularity.

Therefore the main difference between polymatroids and matroids is the integer re-

quirement for the entries of the rank functions. The condition r(A) ≤ |A| in the
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Figure 4.2: Polymatroids, matroids, entropy, and the linear representable vectors

matroid is not too critical, as one can scale the polymatroids. Therefore it is easy to

see that any matroid is a polymatroid, however the converse is not true. Moreover,

as mentioned, any entropy vector is also a polymatroid, whereas not all polymatroids

are entropic. This is simply due to the fact that Γ∗n is a strict subset of the polytope

defined by Shannon inequalities. If we denote a matroid whose ground set elements

can be considered as random variables {X1, . . . , Xn} with entropy as its rank func-

tion by entropic, then comparing matroid rank functions and entropy vectors also

reveals that neither all entropy vectors are matroidal nor all matroid rank functions

are entropic. Not all entropy vectors are matroidal simply because there is no reason

why the entries of the entropy vector should be integers, and not all matroids are en-

tropic because there are some matroid rank vectors which are proven to violate some

non-Shannon type inequalities and therefore are not entropic [DFZ07]. An important

class of matroids are the “representable” matroids.

Definition 4.5.3 (Representable matroids) A matroid is called representable

if its rank function is a linear representable vector.
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Clearly due to Theorem 4.2.3 all representable matroids are entropic. Moreover one

can easily see that all scalar representable vectors are also matroids. Therefore, in

order to study the scalar linear representable region one can as well study the region

of linear representable matroids and use the available results in the matroid theory

[Oxl06]. Figure 4.2 shows all these connections.

4.5.2 Matroid Representability and Excluded Minors

The question of whether a matroid is representable or not has long been an open

problem. This problem is solved only if one is interested to know whether a matroid

is representable over GF (2), GF (3), or GF (4). Before stating those results however,

we need an alternative definition of the matroid.

Definition 4.5.4 (Matroid in terms of independent sets) Let E be a finite set

called the ground set and I be a set of subsets of E. Then the ordered pair (E, I) is

a matroid:

1. If ∅ ∈ I.

2. If A ⊆ B and B ∈ I then A ∈ I.

3. If A,B ⊆ I and |A| ≤ |B|, then there exists an element e of B − A such that

A ∪ e ∈ I.

The elements of the set I are called independent sets. Moreover any subset of E that

is not in I is called a dependent set.

It is easy to see that the Definitions 4.5.2 and 4.5.4 are equivalent. In fact if the

matroid rank vector is given, the independent sets of the matroid will be those subsets

A ⊆ E for which r(A) = |A|. Conversely if the independent sets of the matroid are
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given, then the rank of every subset A is the size of the largest independent set within

A.

There are two ways one can remove elements from a matroid such that the resulting

smaller object is still a matroid. These two operations are namely the “deletion” and

“contraction” of a matroid [Oxl04].

Definition 4.5.5 (Deletion) Let (E, I) be a matroid and e ∈ E be an element of

the ground set. Deletion of e from the matroid is the new matroid (E ′, I ′) with ground

set E ′ = E − {e} and the independent set I ′ = {I|I ∈ I, e /∈ I}

Definition 4.5.6 (Contraction) Let (E, I) be a matroid and e ∈ E be an element

of the ground set. The contraction of e from the matroid is the new matroid (E ′, I ′)

with ground set E ′ = E − {e} and the independent set I ′ = {I − {e}|I ∈ I, e ∈ I}.

From Definitions 4.5.5 and 4.5.6, one can easily see that deletion and contraction

can be considered as dual of each other: while the independent sets of the deletion

matroid are those independent sets of the original matroid that do not contain e, the

independent sets of contraction matroid are obtained by removing e from those inde-

pendent sets of the original matroid that did contain e. Note that while contraction

always reduces the rank of a matroid, deletion does not necessarily do so. Furthermore

we would like to mention that deletion and contraction commute within themselves

and with each other [Oxl04], therefore we do not need to specify order when per-

forming these operations. It turns out that deletion and contraction translate to nice

operations over the matroid rank function.

• Deletion corresponds to marginalization: Since in deletion a set of elements is

deleted from the ground set and the independent sets of the rest of the matroid

are kept as before, deletion of a set T from the matroid is just equivalent to

deleting those rank entries of the rank vector that contained any elements of T .

In other words, deletion is equivalent to marginalizing the rank vector.
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• Contraction corresponds to conditioning: It can be shown [Oxl06] that con-

tracting the set T from the matroid results in the new rank function r′(A) =

r(A∪T )− r(T ) for all A ⊆ E−T . Note that if r is an entropy vector then this

is just equivalent to r′(A) = r(A|T ).

Performing a series of deletions and contractions over a matroid results in a smaller

matroid known as “minor”. These objects were first introduced by Tutte in 1958.

Definition 4.5.7 (Minor) Let (E, I) be a matroid and assume that X, Y are two

disjoint subsets of E such that either of them could be empty. The matroid obtained

by deleting X and contracting Y is called a minor.

As previously mentioned, the problem of linear representability of matroids is only

solved over GF(2), GF(3), and GF(4). It turns out that in all these cases the minors

of the matroid play an important role.

To explain representability results over these fields first consider GF(2). A uniform

matroid denoted by Um,n is defined as the matroid with n elements in its ground set

such that its independent sets are all subsets of size at most m. In other words

the rank vector of uniform matroid is such that for all subsets A where |A| ≤ m

we have r(A) = |A| and for |A| > m, r(A) = m. For the case of U2,4 that would

mean that we have 4 elements where every two of them are independent. Since

there are only 3 pairwise independent vectors over GF(2) namely [1 0], [0 1], [1 1],

one can immediately see that U2,4 is not representable over GF(2), although it has

representation over any other field. As it turns out having a U24 as a minor is the

only reason for non-representability of a matroid over GF(2).

Theorem 4.5.8 (Tutte 1958) A matroid is binary representable if and only if it

does not have any U24 minors.

For representability over GF(3) and GF(4) there are similar results in terms of the

minors of the matroid.
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Theorem 4.5.9 (Reid 1971; Bixby 1979; Seymour 1979) A matroid is ternary

representable if and only if it has no minors isomorphic to either of the U25, U3,5, F7,

or F ∗7 .

Theorem 4.5.10 (Geelen, Gerards, Kapoor 2000) A matroid is quaternary if

and only if it does not have any minors isomorphic to either of the U26, U46, F−7 ,

(F−7 )∗, P6, P8, or P ′′8 .

In the above theorems, F7 and F ∗7 denote the Fano matroid and its dual, F−7 and

(F−7 )∗ are the non-Fano and its dual, and P ′′8 is a special relaxation of P8 matroid.

However we shall not further delve into these here.

The set of minors which forbid a matroid to be representable over a certain field

GF(q) are called the excluded minors for GF(q) representability. The representabil-

ity problem over any other field than those stated above is pretty much open. As

an instance it is not even known whether the set of excluded minors for GF(q) rep-

resentability q ≥ 5 is finite or not. Although Rota in 1970 conjectured that they

are finite. There are many more interesting questions related to representability of

matroids over finite fields and one may consult [Oxl06] or [Oxl04] for more details.

4.5.3 Binary Capacity of Networks and Binary

Representability

We will now focus on binary representable matroids to study scalar linear codes over

GF(2) in networks.

Theorem 4.5.11 (Binary representable vectors) A 2n−1 dimensional vector h

is scalar binary representable if and only if:

1. h is a rank function of a matroid on n elements as stated in Definition 4.5.2.
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2. For any four elements i, j, k, l ∈ {1, . . . , n} and any subset T ⊆ {1, . . . , n} −

{i, j, k, l} the 15-dimensional vector h′ whose entries are defined as h′(A) =

h(A ∪ T )− h(T ),∀A ⊆ {i, j, k, l} is not U24.

Proof: The first condition can be seen easily from the fact that a binary representable

vector is a binary matroid and vice versa. Moreover second statement is equivalent

to obtaining 4 element minors of the matroid on n elements by contracting the set

T ⊆ {1, . . . , n}−{i, j, k, l} and deleting S = {1, . . . , n}−{i, j, k, l}−T and enforcing

those minors not to be U24, which based on Theorem 4.5.8 is necessary and sufficient

for binary representability. �

Recall from Theorem 4.2.4 that to obtain the best scalar linear code in a network,

we need to perform the optimization over the convex hull of the linear representable

vectors. Therefore we need the following theorem:

Theorem 4.5.12 (Convex hull of binary entropic vectors) A 2n − 1 dimen-

sional vector h is in the convex hull of entropy region of n binary linearly-related

random variables if and only if:

1. h ∈ Γmat
n where Γmat

n is the convex hull of matroid rank functions over n ele-

ments.

2. For any four elements i, j, k, l ∈ {1, . . . , n} and any subset T ⊆ {1, . . . , n} −

{i, j, k, l} the 15-dimensional vector h′ whose entries are defined as h′(A) =

h(A ∪ T ) − h(T ),∀A ⊆ {i, j, k, l} is in the convex hull of the entropy region of

4 binary linearly-related random variables.

Proof: Follows readily from Theorem 4.5.11. �

Note that, as stated earlier, due to the integer constraint on the matroid rank

elements, the convex hull/cone of matroids is a subset of the convex hull/cone of

polymatroids. In particular for 4 elements, the convex cone of polymatroid cone has
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41 rays and the convex cone of matroids has 35 rays (these 35 rays are the same as

the ones given by Table 3.7, and Table 3.2 together).

We can now state the optimization formulation for determining the capacity of

networks over binary operations.

Theorem 4.5.13 (Binary capacity of networks) Let X1, . . . , Xn denote the ran-

dom variables of a acyclic memoryless wired network. The maximum weighted sum

rate achieved by scalar linearly-related binary random variables and binary operations

can be obtained from the following optimization problem:

maxαTh (4.11)

subject to h ∈ con(Γmat
n ) and,

1. hXe ≤ Ce for any edge e

2. h(XS1 , . . . , XSs) =
∑s

i=1 h(XSi)

3. h(X i
in, X

i
out(j)) = h(X i

in) j = 1, . . . , X i
out(j) for each nonsource node i

4. h(X l
in, X

l
d(j)) = h(X l

d(j)) l is a sink node

5. For any four elements i, j, k, l ∈ {1, . . . , n} and any subset T ⊆ {1, . . . , n} −

{i, j, k, l} the 15-dimensional vector h′ whose entries are defined as h′(A) =

h(A ∪ T ) − h(T ),∀A ⊆ {i, j, k, l} is in the convex hull of the entropy region of

4 binary linearly-related random variables.

Remark: Note that although Theorem 4.5.13 gives a linear programming approach

for optimizing the achievable rates in a network, its complexity could be exponential

in n the number of random variables of the network. In fact the last condition of the

Theorem 4.5.13 requires one to check all the 4 element minors. The number of these

minors alone is
(
n
4

)
2n−4. Moreover as we know that the number of inequalities that
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define the polymatroid cone is n+
(
n
2

)
2n−2, it is likely that the number of inequalities

that are required for characterizing the convex hull/cone of matroids is exponential

as well. However, some assumptions about the network may reduce the number of

conditions significantly. As an instance if know that there are r sources in the network

then all representable vectors corresponding to network solutions will be from rank

r matroids. The number of minors that need to be checked in a rank r matroid for

binary representability is simply
(
n
4

)(
n−4
r−2

)
= O(nr+2). This is due to the fact that

r− 2 contractions are needed to make the obtained minor rank 2 for the comparison

with the U24.

4.6 Vector Linear Codes

Thus far we only considered the scalar linear codes and hence the scalar linear rep-

resentable region. Note that a multilinear representable vector can still be seen as a

bigger scalar representable vector where we would only be interested in a subset of

its entries. Compared to scalar linear representability, vector linear representability

has not been studied as much. It turns out that there are matroids which are not

scalar representable but have a vector representation. U2,4 for instance has a vector

representation over GF(2). Here is one representation for it,



1 0 0 0 1 0 1 0

0 1 0 0 0 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 0


. (4.12)

Another example of a matroid that does not have scalar linear representation is

the non-Pappus matroid, which turns out to be vector representable over GF(3)

[SA98, Mat99].
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We will talk about numerical methods for obtaining scalar and vector represen-

tations of matroids in Chapter 6. In that chapter we will come back to the U24 and

non-Pappus matroids.

4.7 Conclusions

In this chapter we studied the linear representable entropy region along with its

connections to the linear networks codes. In particular for the most part we focused

on the scalar representable entropy region (entropy vectors with scalar underlying

random variables). First we presented a method for obtaining the linear representable

entropy region and we explicitly computed it for 4 random variables. Next we turned

our attention to networks with two sources and particularly showed the optimality of

linear codes among all scalar codes for such networks. Finally we studied the binary

capacity of networks, and by appealing to the subject of excluded minors of a matroid,

gave necessary and sufficient conditions for a vector to be binary representable.
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Chapter 5

Gaussian Entropy Region

5.1 Introduction

The effort to characterize the entropy region has mostly focused on discrete random

variables, ostensibly because the study of discrete random variables is simpler. How-

ever, continuous random variables are as important, where now for any collection of

random variables Xα, with joint probability density function fXα(xα), the differential

entropy is defined as

hα = −
∫
fXα(xα) log fXα(xα)dxα. (5.1)

Let
∑

α aαHα ≥ 0 be a valid discrete information inequality. This inequality is

called balanced if for all i ∈ N we have
∑

α:i∈α aα = 0. Using this notion Chan

[Cha03] has shown a correspondence between discrete and continuous information

inequalities, which allows us to compute the entropy region for one from the other.

Theorem 5.1.1 (Discrete/continuous information inequalities)

1. A linear continuous information inequality
∑

α aαhα ≥ 0 is valid if and only if

its discrete counterpart
∑

α aαHα ≥ 0 is balanced and valid.

2. A linear discrete information inequality
∑

α aαHα ≥ 0 is valid if and only if

it can be written as
∑

α βαhα +
∑n

i=1 ri(hi,ic − hic) for some ri ≥ 0, where
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α βαhα ≥ 0 is a valid continuous information inequality (ic denotes the com-

plement of i in N ).

The above theorem suggests that one can also study continuous random variables

to determine Γ∗n. Among all continuous random variables, the most natural ones to

study first (for many of the reasons further described below) are Gaussians. This will

be the main focus of this chapter.

Let X1, · · · , Xn ∈ RT be n jointly distributed zero-mean1 vector valued Gaussian

random variables with covariance matrix R ∈ RnT×nT . Clearly, R is symmetric,

positive semidefinite, and consists of block matrices of size T × T (corresponding to

each random variable). We will allow T to be arbitrary and will therefore consider

the normalized joint entropy of any subset α ⊆ N of these random variables

hα =
1

T
· 1

2
log
(

(2πe)T |α| detRα

)
, (5.2)

where |α| denotes the cardinality of the set α and Rα is the |α|T × |α|T matrix

obtained by keeping those block rows and block columns of R that are indexed by α.

Note that our normalization is by the dimensionality of the Xi, i.e., by T , and that

we have used h to denote normalized entropy.

Normalization has the following important consequence:

Theorem 5.1.2 (Convexity of the region for h) The closure of the region of nor-

malized Gaussian entropy vectors is convex.

Proof: Let hx and hy be two normalized Gaussian entropy vectors. This means that

the first corresponds to some collection of Gaussian random variables X1, . . . , Xn ∈

RTx with the covariance matrix Rx, for some Tx, and the second to some other col-

lection Y1, . . . , Yn ∈ RTy with the covariance matrix Ry, for some Ty. Now generate

1Since differential entropy is invariant to shifts there is no point in assuming nonzero means for
the Xi.
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Nx copies of jointly Gaussian random variables X1, . . . , Xn and Ny copies of Y1, . . . , Yn

and define the new set of random variables Zi = [(X1
i )t, . . . , (XNx

i )t, (Y 1
i )t, . . . , (Y

Ny
i )t]t

where (.)t denotes the transpose, by stacking Nx and Ny independent copies of each,

respectively, into a NxTx + NyTy dimensional vector. Clearly the Zi are jointly-

Gaussian. Due to the independencies of the Xk
i and Y l

i , k = 1, . . . Nx, l = 1, . . . , Ny,

the non-normalized entropy of the collection of random variables Zα is

hzα = NxTxh
x
α +NyTyh

y
α.

To obtain the normalized entropy we should divide by NxTx +NyTy

hzα =
NxTx

NxTx +NyTy
hxα +

NyTy
NxTx +NyTy

hyα,

which, since Nx and Ny are arbitrary, implies that every vector that is a convex

combination of hx and hy is entropic and generated by a Gaussian. �

Note that hα can also be written as follows:

hα =
1

2T
log detRα +

|α|
2

log 2πe. (5.3)

Therefore if we define

gα =
1

T
log detRα, (5.4)

it is obvious that gα can be obtained from hα and vice versa. All that is involved is a

scaling of the covariance matrix R. For balanced inequalities there is the additional

property,

Lemma 5.1.3 If
∑

α aαHα is balanced then
∑

α |α|aα = 0.
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Proof: We can simply write,

∑
α

|α|aα =
∑
α

∑
i∈α

aα =
∑
i

(∑
α:i∈α

aα

)
= 0. (5.5)

�

Therefore since inequalities for continuous entropies are balanced, any inequality sat-

isfied by h is also satisfied by g and vice versa. As a result the space for g and h

are the same. For simplicity, we will therefore use gα instead of hα throughout the

chapter and use the term entropy for both g and h interchangeably.

In this chapter we characterize the entropy region of 3 jointly Gaussian random

variables and study the minimal set of necessary and sufficient conditions for a 15-

dimensional vector to represent an entropy vector of 4 jointly Gaussian random vari-

ables. As equation (5.4) suggests, entropy of any subset of random variables from

a collection of Gaussian random variables is simply the “log” of the principal minor

of the covariance matrix corresponding to this subset. Therefore studying entropy

of Gaussian random variables involves studying the relations among principal mi-

nors of symmetric positive semi-definite matrices, i.e., the covariance matrices. It

has recently been noted that one of these relations is the so-called Cayley’s “hyper-

determinant” [HS07b]. Therefore along the study of entropy of 4 Gaussian random

variables we also examine the hyperdeterminant relation.

The remainder of this chapter is organized as follows: In the next section we re-

view background and some motivating results on the entropies of Gaussian random

variables. Section 5.3 states the main results on the characterization of the entropy

region of 3 jointly Gaussian random variables. In Section 5.4 we examine the hyperde-

terminant relation in connection to the entropy region of Gaussian random variables.

We give a determinant formula for calculating the special 2×2×2 hyperdeterminant.

Moreover we present new and transparent proof of the result of [HS07b] on why the



134

principal minors of a symmetric matrix satisfy the hyperdeterminant relation. In

Section 5.5 we study the minimal set of necessary and sufficient condition for a 2n−1

dimensional vector to be the entropy vector of n scalar jointly Gaussian random vari-

ables. For n = 4 there are 5 such equations and we explicitly state them. Finally we

turn our attention toward the entropy region in wireless networks where the entropy

power inequality plays an important role.

5.2 Some Known Results

From (5.4) it can be easily seen that any valid information inequality for entropies

can be immediately converted into an inequality for the (block) principal minors of a

symmetric, positive semi-definite matrix. This connection has been previously used

in the literature. In fact one can study determinant inequalities by studying the

corresponding entropy inequalities, see, e.g., [CT88].

Let g be the entropy vector corresponding to some vector-valued collection of

random variables with an nT × nT covariance matrix R. Further, let m denote the

vector of block principal minors of R. Then it is clear that m = egT , where the

exponential acts component-wise on the entries of g. Then the submodularity of

entropy translates to the following inequality for the principal minors:

mα∪β ·mα∩β ≤ mα ·mβ. (5.6)

In the context of determinant inequalities for a Hermitian positive semidefinite ma-

trix, this is known as the “Koteljanskii” inequality and is a generalization of the

“Hadamard-Fischer” inequalities [FJ00]. Dating back at least to Hadamard in 1893,

studying the determinant inequalities is an old subject which is of interest on its own

and has many applications in matrix analysis and probability theory.

Some of the interesting problems in the area of principal minor relations include
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characterizing the set of bounded ratios of principal minors for a given class of ma-

trices (e.g., the class of positive definite or the class of matrices for which all of their

principal minors are positive, i.e., the P matrices) [JB93, HJ], studying the Gaus-

sian conditional independence structure in the context of probabilistic representation

[LM07] and detecting P matrices, e.g., via computation of all principal minors of a

given matrix [GT06a].

Although determinant inequalities have been studied extensively on their own, and

also through the entropy inequalities, the reverse approach of determining Gaussian

entropies via exploration of the space of principal minors has been less considered

[LM07, Lne03]. As it turns out, this approach is deeply related to the “principal

minor assignment” problem, where a matrix with a set of fixed principal minors is

desired. Recently there has been progress towards this area for symmetric matrices

[HS07b, GT06b] and we will discuss this in more detail in Sections 5.4 and 5.5.

Apart from the result of [Lne03] which shows the tightness of the Zhang-Yeung

non-Shannon inequality [ZY98] for Gaussian random variables, one of the encourag-

ing results for studying the Gaussian random variables is that they can violate the

“Ingleton bound”. This bound is one of the best known inner bounds for Γ∗4 [ZY98].

Theorem 5.2.1 (Ingleton inequality) [Ing71] Let v1, · · · , vn be n vector subspaces

and let N = {1, · · · , n}. Further let α ⊆ N and rα be the rank function defined as

the dimension of the subspace ⊕i∈αvi. Then for any subsets α1, α2, α3, α4 ⊆ N , we

have

rα1 + rα2 + rα1∪α2∪α3 + rα1∪α2∪α4 + rα3∪α4

−rα1∪α2 − rα1∪α3 − rα1∪α4 − rα2∪α3 − rα2∪α4 ≤ 0. (5.7)

The Ingleton inequality was first obtained for the rank of vector spaces. However

it turns out that certain types of entropy functions, in particular all linear repre-

sentable (corresponding to linear codes over finite fields) and pseudo-abelian group
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characterizable entropy functions also satisfy this inequality and hence fall into this

inner bound [Cha07b, Cha07a]. However if we consider 4 jointly Gaussian random

variables, we find, interestingly, that they can violate the Ingleton bound. Consider

the following covariance matrix:



1 ε a a

ε 1 a a

a a 1 0

a a 0 1


. (5.8)

To violate the Ingleton inequality we need to have:

g1 + g2 + g123 + g124 + g34

−g12 − g13 − g14 − g23 − g24 ≥ 0. (5.9)

Substituting for values of g and simplifying we obtain:

1− ε
1 + ε

≥
(

1− 2a2 + a4

1− 2a2 + ε

)2

. (5.10)

Moreover imposing positivity conditions for this matrix to correspond to a true co-

variance matrix gives 0 ≤ a2 ≤ 0.5, 4a2 − 1 ≤ ε ≤ 1. Solving inequality (5.10) subject

to these constraints yields a region of permissible ε and a2 (Fig 5.1). In particular

the point ε = 0.25 a = 0.5 lies in this region. Interestingly enough, this example has

also been discovered in the context of determinantal inequalities in [JB93]. Taking

these results into account, we will study the Gaussian entropy region for 2,3 random

variables and give the minimal number of necessary and sufficient conditions for a

2n − 1 dimensional vector to correspond to the entropy of n scalar jointly Gaussian

random variables in the next sections.
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Figure 5.1: Feasible region of ε and a2 for the specific Ingleton violating example

5.3 Entropy Region of 2 and 3 Gaussian Random

Variables

The above results (violation of the Ingleton bound and tightness of the non-Shannon

inequality) lead one to speculate whether the entropy region for arbitrary continuous

random variables can be obtained from the entropy region of (vector-valued) Gaussian

ones. Although this is the case for n = 2 random variables, unfortunately, it is not

true in general (not for even n = 3).

5.3.1 n = 2

Entropy region of 2 jointly Gaussian random variables is trivially equal to the whole

region of 2 arbitrary distributed continuous random variables.

Theorem 5.3.1 Entropy region of 2 jointly Gaussian random variables is described

by the single inequality g12 ≤ g1 + g2 and is equal to the entropy region of 2 arbitrary

distributed continuous random variables.

Proof: Since it is known that the continuous entropy region is described by the single

balanced inequality h12 ≤ h1 + h2, to prove the theorem it is sufficient to show that
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any entropy vector [h1, h2, h12] satisfying this inequality may be described by 2 jointly

Gaussians and this is trivial to show. �

5.3.2 Main Results for n = 3

Although we consider vector-valued jointly Gaussian random variables, for n = 3, we

find that considering the convex hull of scalar jointly Gaussian random variables is

sufficient for characterizing the Gaussian entropy region,

Theorem 5.3.2 The entropy region of 3 vector-valued Gaussian random variables

can be obtained from the convex hull of scalar Gaussian random variables.

The characterization of the entropy region of 3 jointly Gaussian random variables

is formalized in the next theorem, which shows that in general the Gaussian entropy

region is a strict subset of the entropy region of arbitrary distributed continuous

random variables.

Theorem 5.3.3 (Entropy Region for n = 3 Gaussian RVs) Let the 7-dim-

ensional vector g = [g1, g2, g3, g12, g23, g31, g123]t be an entropy vector generated by 3

Gaussian random variables. Define xk = egij−gi−gj and ỹ =
∏
k xk

maxk xk
+ 2 maxk xk −∑

k xk. The closure of the Gaussian entropy region generated by such g vectors is

characterized by,

1. For ỹ ≤ 0:

gij ≤ gi + gj , g123 ≤ min
j

(gij + gjk − gj). (5.11)

2. For ỹ > 0:

gij ≤ gi + gj , g123 ≤
∑
k

gk + log

max

0,−2 +
∑
k

xk + 2

√∏
k

(1− xk)

 .(5.12)
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The entropy region for three random variables is simply given by the above inequal-

ities. Thus, when ỹ ≤ 0, the Gaussian entropy region coincides with the continuous

entropy region; however, when ỹ > 0 (and this can happen for some valid entropy

vectors), we have the tighter upper bound (5.12) on g123.

Theorem 5.3.3 implies that the Gaussian entropy region for n = 3 vector-valued

random variables is strictly smaller than the actual entropy region.

Nonetheless, not all hope is lost and the next theorem shows that one can indeed

construct the entropy region for n = 3 random variables from the entropy region

generated by vector-valued Gaussians.

Theorem 5.3.4 (General and Gaussian Entropy Regions) Let g ∈ R7 be a

continuous entropy vector. Then there exists a θ∗ > 0, such that for all θ ≥ θ∗,

the vector 1
θ
g can be generated by three vector-valued jointly Gaussian random vari-

ables.

In other words, the entropy region for n = 3 continuous random variables is the

(convex) cone generated by the entropy region of 3 Gaussian random variables. This

result gives us hope that the study of Gaussians may be fruitful for n ≥ 4.

5.3.3 Proof of Main Results for n = 3

In what follows we will outline the proofs of Theorems 5.3.3 and 5.3.4. The basic

idea is to determine the structure of the Gaussian random variables that generate

the boundary of the entropy region for Gaussians, and then to determine what the

boundary entropies are. We need a few lemmas:

Lemma 5.3.5 (Boundary of the Gaussian Entropy Region) The boundary of

the Gaussian entropy region is generated by the concatenation of a set of vector valued
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Gaussian random variables with covariance
α11IT̂ α12Φ12 α13Φ13

α12Φt
12 α22IT̂ α23Φ23

α13Φt
13 α23Φt

23 α33IT̂

 , (5.13)

where the Φij are orthogonal matrices, and another set of independent vector-valued

Gaussian random vectors with covariance
α11IT−T̂ 0 0

0 α22IT−T̂ 0

0 0 α33IT−T̂

 . (5.14)

Proof: To find the boundary region for 3 jointly Gaussian random variables, we should

solve the following maximization problem:

max
h

∑
s⊆{1,2,3}

γshs (5.15)

or equivalently,

max
R̃

∑
s⊆{1,2,3}

γs log det R̃s, (5.16)

where R̃ is the 3T × 3T block covariance matrix which for the moment we assume

that all its principal minors are nonzero. This optimization comes about when we fix

any 6 of the entropies and try to maximize the last one.

KKT conditions necessitate that the derivative of (5.16) with respect to R̃ be zero,

i.e., ∂
∂R̃

(∑
s⊆{1,2,3} γs log det R̃s

)
= 0. To compute the derivatives we note that for a

symmetric matrix X, we have ∂
∂X

log detX = 2X−1 − diag(X−1), where diag denotes
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the diagonal elements. If we adopt the following notation,

 S̃11 S̃12

S̃21 S̃22

 =

 R̃11 R̃12

R̃21 R̃22


−1

,

 T̃11 T̃13

T̃31 T̃33

 =

 R̃11 R̃13

R̃31 R̃33


−1

 Ũ22 Ũ23

Ũ32 Ũ33

 =

 R̃22 R̃23

R̃32 R̃33


−1

, Ṽij = (R̃−1)ij, (5.17)

then we obtain,

γ1


R̃−1

11 0 0

0 0 0

0 0 0

+ γ2


0 0 0

0 R̃−1
22 0

0 0 0

+ γ3


0 0 0

0 0 0

0 0 R̃−1
33



+2γ12


S̃11 S̃12 0

S̃21 S̃22 0

0 0 0

− γ12


diag(S̃11) 0 0

0 diag(S̃22) 0

0 0 0



+2γ13


T̃11 0 T̃13

0 0 0

T̃31 0 T̃33

− γ13


diag(T̃11) 0 0

0 0 0

0 0 diag(T̃33)



+2γ23


0 0 0

0 Ũ22 Ũ23

0 Ũ32 Ũ33

− γ23


0 0 0

0 diag(Ũ22) 0

0 0 diag(Ũ33)


+2γ123 R̃

−1 − γ123 diag(R̃−1) = 0. (5.18)
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Multiplying (5.18) by R̃ from right we obtain,


γ1I γ1R̃

−1
11 R̃12 γ1R̃

−1
11 R̃13

γ2R̃
−1
22 R̃21 γ2I γ2R̃

−1
22 R̃23

γ3R̃
−1
33 R̃31 γ3R̃

−1
33 R̃32 γ3I

+ 2γ12


I 0

0 I

 S̃11 S̃12

S̃21 S̃22


 R̃13

R̃23


0 0 0



+2γ13


I T̃11R̃12 + T̃13R̃32 0

0 0 0

0 T̃31R̃12 + T̃33R̃32 I

+ 2γ23


0 0 0 Ũ22 Ũ23

Ũ32 Ũ33


 R̃21

R̃31

 I 0

0 I



+2γ123 I − diag



γ12S̃11+γ13T̃11+

γ123Ṽ11 0 0

0
γ12S̃22+γ23Ũ22+

γ123Ṽ22 0

0 0
γ13T̃33+γ23Ũ33+

γ123Ṽ33

·R̃ = 0

(5.19)

Let,

D̃1 , diag(γ12S̃11 + γ13T̃11 + γ123Ṽ11) (5.20)

D̃2 , diag(γ12S̃22 + γ23Ũ22 + γ123Ṽ22) (5.21)

D̃3 , diag(γ13T̃33 + γ23Ũ33 + γ123Ṽ33). (5.22)

Then by equating the diagonal term of the left-hand side of (5.19) to zero we get,

(γi + 2
∑
j

γij + 2γ123)I = D̃iR̃ii (5.23)

where we have implicitly assumed that γij = γji. This gives,

R̃ii = (γi + 2
∑
j

γij + 2γ123)D̃−1
i . (5.24)
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In other words R̃ii should be diagonal. If we assume that det R̃ii = αTii, αii > 0, then

the following matrix has unit determinant,

L =


1√
α11
R̃

1/2
11 0 0

0 1√
α22
R̃

1/2
22 0

0 0 1√
α33
R̃

1/2
33

 (5.25)

and we can go back and multiply (5.18) from left and right by the above matrix L.

Considering the fact that R̃ii are diagonal, and denoting

L[1,2] =

 1√
α11
R̃

1/2
11 0

0 1√
α22
R̃

1/2
22

 , (5.26)

we note that

L


diag(S̃11) 0 0

0 diag(S̃22) 0

0 0 0

L =


diag


L−1

[1,2]

 R̃11 R̃12

R̃21 R̃22

L−1
[1,2]


−1 0

0

0 0 0

 .(5.27)

Therefore if we define,

R = L−1R̃L−1 (5.28)
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and S, T, U , and V also similar to (5.17),

 S11 S12

S21 S22

 =

 R11 R12

R21 R22


−1

,

 T11 T13

T31 T33

 =

 R11 R13

R31 R33


−1

 U22 U23

U32 U33

 =

 R22 R23

R32 R33


−1

, Vij = (R−1)ij (5.29)

it follows that (5.18) and (5.19) will be satisfied byR, S, T, U, V instead of R̃, S̃, T̃ , Ũ , Ṽ .

However note that now we have, Rii = αiiI. Next similar to (5.20), (5.21), and (5.22)

we can define D1, D2, and D3 for S, T, U, V . Then equating the diagonal terms of

(5.19) to zero when R is used instead of R̃ yields,

(γi + 2
∑
j

γij + 2γ123)I = αiiDi (5.30)

which immediately gives,

Di = δiI (5.31)

for some constant δi. Now considering elements (2,1), (3,1) together, (1,2), (3,2) with

each other, and (1,3), (2,3) simultaneously in (5.19) when R̃ is replaced by R and

using Rii = αiiI, we obtain for i, j, k ∈ {1, 2, 3},


 (δi + γi

αii
)I 0

0 (δj +
γj
αjj

)I

+ 2γij

 Rii Rij

Rji Rjj


−1

 Rik

Rjk

 = 0. (5.32)
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Therefore simplifying condition (5.32) by multiplying it by

 Rii Rij

Rji Rjj

, we obtain:

 (γi + 2γij + δiαii)I
γj+δjαjj

αjj
Rij

γi+δiαii
αii

Rji (γj + 2γij + δjαjj)I


 Rik

Rjk

 = 0. (5.33)

Now if the 2T × T matrix

[
Rt
ik Rt

jk

]t
were full rank, the rank of the left 2T × 2T

matrix would be T and therefore its Schur complement should be zero, i.e.:

(γj + 2γij + δjαjj)I −
(γi+δiαii

αii
)(
γj+δjαjj

αjj
)

γi + 2γij + δiαii
RjiRij = 0 (5.34)

in other words:

RjiRij = RijRji , βijI. (5.35)

Since R is symmetric, Rji = Rt
ij, this implies that off-diagonal blocks of R are mul-

tiples of an orthogonal matrix. However, in the general case

[
Rt
ik Rt

jk

]t
need not

be full rank. Therefore there is a T × T unitary matrix θij such that:

 Rik

Rjk

 θij =

 Rik 0

Rjk 0

 . (5.36)

Assume the column rank of

[
R
t

ik R
t

jk

]t
to be Tij. This suggests doing a similarity

transformation on R with the following unitary matrix without affecting the block

principal minors:

Θ =


θ23 0 0

0 θ31 0

0 0 θ12

 . (5.37)
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From which we obtain:

Θ∗RΘ =


α11I θ∗23R12θ31 θ∗23R13θ12

θ∗31R21θ23 α22I θ∗31R23θ12

θ∗12R31θ23 θ∗12R32θ31 α33I

 . (5.38)

Considering R21θ23 and θ∗31R21 simultaneously and using (5.36) we have,

R21Θ23 =

(
R21 0

)
(5.39)

Θ∗31R21 =

 R
∗
12

0

 . (5.40)

Therefore we can simply obtain the following structure for θ∗31R21θ23:

θ∗31R21θ23 =

 R̂21 0

0 0

 (5.41)

where the dimension of R̂21 is T31×T23. A similar argument for other elements yields

the following structure for Θ∗RΘ:



α11IT23 0 R̂12 0 R̂13 0

0 α11IT−T23 0 0 0 0

R̂21 0 α22IT31 0 R̂23 0

0 0 0 α22IT−T31 0 0

R̂31 0 R̂32 0 α33IT12 0

0 0 0 0 0 α33IT−T12


. (5.42)
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Now we go back to (5.33) and rewrite it as follows (we assume that Θij = Θji),

 Θ∗jk 0

0 Θ∗ik


 (γi + 2γij + δiαii)I

γj+δjαjj
αjj

Rij

γi+δiαii
αii

Rji (γj + 2γij + δjαjj)I


×

 Θjk 0

0 Θik


 Θ∗jk 0

0 Θ∗ik


 Rik

Rjk

Θij = 0 (5.43)

which essentially gives,

 (γi + 2γij + δiαii)I
γj+δjαjj

αjj
Θ∗jkRijΘik

γi+δiαii
αii

Θ∗ikRjiΘjk (γj + 2γij + δjαjj)I


 Θ∗jkRikΘij

Θ∗ikRjkΘij

 = 0. (5.44)

Using (5.42) and plugging the relevant entries back into (5.44) we obtain,

 (γi + 2γij + δiαii)ITjk
γj+δjαjj

αjj
R̂ij

γi+δiαii
αii

R̂ji (γj + 2γij + δjαjj)ITki


 R̂ik

R̂jk

 = 0. (5.45)

Note that the dimension of

[
R̂t
ik R̂t

jk

]t
is (Tjk + Tki) × Tij. If we let the rank of

the left matrix in (5.45) be r we will have:

r ≤ Tjk + Tki − Tij. (5.46)

On the other hand it is also obvious that:

r ≥ Tjk, Tki. (5.47)

From (5.46) and (5.47) it follows that:

Tij ≤ min(Tjk, Tki). (5.48)
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Since a similar argument can be used for Tjk and Tki we conclude that:

T12 = T23 = T31 , T̂ . (5.49)

Now note that (5.45) is similar to (5.33) with R̂ij instead of Rij. Therefore the same

argument leads to the conclusion that R̂ij is a multiple of an orthogonal matrix,

say Φij; in other words R̂ij = αijΦij. From which it follows that after a series of

permutations, Θ∗RΘ can be written as follows:



α11IT̂ α12Φ12 α13Φ13 0 0 0

α12Φt
12 α22IT̂ α23Φ23 0 0 0

α13Φt
13 α23Φt

23 α33IT̂ 0 0 0

0 0 0 α11IT−T̂ 0 0

0 0 0 0 α22IT−T̂ 0

0 0 0 0 0 α33IT−T̂


(5.50)

which if viewed as the timeshare of a set of Gaussian random variables with an

orthogonal covariance matrix and another set of independent random variables, it

has the same block principal minors as (5.42), and moreover this structure is also

consistent with the requirement (5.31). Note that (5.50) is an optimal solution for

optimization (5.16) only if it is a positive semi-definite matrix. Therefore αij’s and

Φij’s should be such that,

αiiαjj − α2
ij ≥ 0 (5.51)

det


α11IT α12Φ12 α13Φ13

α12Φt
12 α22IT α23Φ23

α13Φt
13 α23Φt

23 α33IT

 ≥ 0. (5.52)
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Finally since R was obtained from R̃ by a multiplication by a unit determinant matrix,

it has the same minors as R̃ and therefore R is the optimal solution of the main

optimization problem (5.15). �

Lemma 5.3.6 (Block Orthogonal, Block Diagonal Covariance) Consider the

covariance matrix

R =


α11IT α12Φ12 α13Φ13

α12Φt
12 α22IT α23Φ23

α13Φt
13 α23Φt

23 α33IT

 , (5.53)

where the Φij are orthogonal, αii > 0, and the 2 × 2 block principal minors mij =

pTij = (αiiαjj − α2
ij)

T are such that pij ≥ 0. Then

detR ≤
(
α11α22α33 − α11α

2
23 − α22α

2
13 − α33α

2
12 + 2|α12α13α23|

)T
(5.54)

with equality iff Φ + Φt = 2I where Φ = Φt
13Φ12Φ23.

Proof: We can easily write the following,

detR =
1

αT11

det


 α11α22IT α11α23Φ23

α11α23Φt
23 α11α33IT

−
 α12Φt

12

α13Φt
13

( α12Φ12 α13Φ13

)
=

1

αT11

det
(

(α11α22 − α2
12)(α11α33 − α2

13)IT

−(α11α23Φt
23 − α12α13Φt

13Φ12)(α11α23Φ23 − α12α13Φt
12Φ13)

)
= det

(
(α11α22α33 − α11α

2
23 − α22α

2
13 − α33α

2
12)IT

+α12α13α23(Φt
13Φ12Φ23 + Φt

23Φt
12Φ13)

)
. (5.55)

The result immediately follows from −2I ≤ Φ + Φt ≤ 2I. �



150

From Lemma 5.3.5 and Lemma 5.3.6, minors of the optimal points with covariance

matrix (5.50) can be obtained,

mi = αTii (5.56)

mij = (αiiαjj − α2
ij)

T̂ (αiiαjj)
T−T̂ (5.57)

max
Φ

m123 = (α11α22α33)T−T̂

×
(
α11α22α33 − α11α

2
23 − α22α

2
13 − α33α

2
12 + 2|α12α13α23|

)T̂
.(5.58)

However these values can also be obtained by a timeshare of 3 scalar random variables

with covariance matrix,


α11 α12 α13

α12 α22 α23

α13 α23 α33

 (5.59)

and 3 other independent scalar random variables. This suggests that the region of

3 vector-valued Gaussian random variables may be obtained from the convex hull

region of 3 scalar Gaussian random variables. In other words for n = 3, considering

vector-valued random variables will not give any entropy vector that is not obtainable

from scalar valued ones. This is essentially the statement of Theorem 5.3.2 and we

can now proceed to its proof.

Proof of Theorem 5.3.2: As in Lemma 5.3.5, we write the following optimization

problem,

max
R

∑
s⊆{1,2,3}

γs log detRs, (5.60)
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and follow the steps therein to obtain equation (5.45). From (5.45) and using T12 =

T23 = T31 = T̂ , we can write the following,

ρ23R̂21 = −τ3R̂23R̂31 (5.61)

ρ32R̂31 = −τ2R̂32R̂21 (5.62)

ρ31R̂32 = −τ1R̂31R̂12 (5.63)

where,

ρij = γi + 2γij + δiαii (5.64)

τk =
γk + δkαkk

αkk
. (5.65)

Now if the elements R̂21 and R̂31 have the following QR factorization,

R̂21 = Q̂21R21 (5.66)

R̂31 = Q̂31R31 (5.67)

We can plug these back into (5.61)–(5.63) to obtain,

ρ23R21 = −τ3(Q̂∗21R̂23Q̂31)R31 (5.68)

ρ32R31 = −τ2(Q̂∗31R̂32Q̂21)R21 (5.69)

ρ31(Q̂∗31R̂32Q̂21) = τ1R31R
∗
21. (5.70)

SinceR21 andR31 are upper-triangular, from (5.68) and (5.69) it follows that Q̂∗21R̂23Q̂31

and Q̂∗31R̂32Q̂21 should also be upper-triangular. However Q̂∗21R̂23Q̂31 = (Q̂∗31R̂32Q̂21)∗

and therefore Q̂∗21R̂23Q̂31 should be diagonal. Next from (5.63) it follows that R31R
∗
21

should be diagonal. However since R31 and R21 are both full rank and upper-

triangular, this can be satisfied only if they are both diagonal as well. Therefore
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if we define U as,

U =



IT̂ 0 0 0 0 0

0 IT−T̂ 0 0 0 0

0 0 Q̂21 0 0 0

0 0 0 IT−T̂ 0 0

0 0 0 0 Q̂31 0

0 0 0 0 0 IT−T̂


(5.71)

we can write the following,

R = U∗R̄U (5.72)

where,

R̄ =



α11IT̂ 0 R
∗
21 0 R

∗
31 0

0 α11IT−T̂ 0 0 0 0

R21 0 α22IT̂ 0 Q̂∗21R23Q̂31 0

0 0 0 α22IT−T̂ 0 0

R31 0 Q̂∗31R32Q̂21 0 α33IT̂ 0

0 0 0 0 0 α33IT−T̂


(5.73)

where R21 and R31 are diagonal. In fact, since all blocks of R̄ are diagonal, it can be

viewed as a timeshare of scalar random variables. Moreover, since R̄ is obtained from

R in such a way that it has the same minors as R, therefore R̄ is an optimal solution

of optimization (5.60) as well. �

In order to prove Theorem 5.3.3 we further need the following lemma:
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Lemma 5.3.7 Consider the function

f(θ) =

max

0,−2 +
3∑
l=1

x
1
θ
l + 2

√√√√ 3∏
l=1

(1− x
1
θ
l )

θ

, (5.74)

where 0 < xl ≤ 1, for l = 1, 2, 3. f has either a single maximum or supremum given

by:

max
θ
f(θ) =

∏
l xl

maxl(xl)
. (5.75)

Moreover, if we let ỹ =
∏
l xl

maxl xl
+ 2 maxl xl −

∑
l xl,

max
0≤θ≤1

f(θ) =


∏
l xl

maxl(xl)
If ỹ ≤ 0

f(1) If ỹ > 0

. (5.76)

Proof: We will first show that ∀i, j, f(θ) ≤ xixj. Let,

e(θ) = −2 +
3∑
l=1

x
1
θ
l + 2

√√√√ 3∏
l=1

(1− x
1
θ
l ). (5.77)

For distinct i, j, k ⊆ {1, 2, 3}, this can also be written as,

e(θ) = (xixj)
1
θ −

(
(1− x

1
θ
i )(1− x1

jθ) + (1− x
1
θ
k )− 2

√
(1− x

1
θ
i )(1− x

1
θ
j )(1− x

1
θ
k )

)
= (xixj)

1
θ −

(√
(1− x

1
θ
i )(1− x

1
θ
j )−

√
1− x

1
θ
k

)2

(5.78)

which shows e(θ) ≤ (xixj)
1
θ , and therefore for all θ ≥ 0, f(θ) ≤ xixj with equality, if

and only if, (1− x
1
θ
i )(1− x

1
θ
j ) = 1− x1θ

k , or equivalently,

(xixj)
1
θ + x

1
θ
k − x

1
θ
i − x

1
θ
j = 0. (5.79)
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Note that this is only possible when xixj = x1x2x3
maxl xl

. Without loss of generality, assume

x1 ≤ x2 ≤ x3 and define,

y(θ) = (x1x2)
1
θ + x

1
θ
3 − x

1
θ
1 − x

1
θ
2 . (5.80)

Clearly zeros of y(θ) determine the global maximums of f(θ). We analyze the behavior

of y(θ) in the following scenarios (based on initial assumption, x1 ≤ x2 ≤ x3):

• x1, x2, and x3 are distinct, and x1, x2, x3 6= 1

• x1 = x2 < x3 6= 1

• x1 < x2 = x3 6= 1

• x1 = x2 = x3 = x < 1

• x1 < x2 6= 1, and x3 = 1

• x1 = x2 = x < 1, and x3 = 1

• x1 ≤ x2 = x3 = 1

In all of the above cases, we find that y(θ) has at most one zero, say θ∗, which is

not at 0, or ∞. Moreover, y(0) may or may not be zero, and y(∞) is also always

(asymptotically) zero. Therefore, the global maximums of f(θ), may occur at 0, ∞,

or at the unique horizontal-axis crossing of y(θ) (if it exists). Analyzing the behavior

of f(θ) at these 3 points in the above cases, reveals that f(θ) has a unique global

maximum, or a supremum. Therefore, f(θ) always achieves x1x2x3
maxl xl

either at some

specific θ∗, at 0, or asymptotically. Next it can be shown that if for some θ′, y(θ′) > 0

then f(θ′) has not reached its global supremum for θ < θ′. Combining this with the

quasi-concavity property of f , yields the desired result. �

Now we can proceed to the proof of Theorem 5.3.3.
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Proof of Theorem 5.3.3: To find the boundary entropies of the region we use Lemma

(5.3.5) to time-share a set of independent random variables with covariance matrix

of block size T − T̂ and another set of random variables with orthogonal covariance

matrix of block size T̂ (5.50). Calculating the determinant of this matrix and using

Lemma (5.3.6) we obtain:

max
Φ

detR = (α11α22α33)T−T̂

×
(
α11α22α33 − α11α

2
23 − α22α

2
13 − α33α

2
12 + 2|α12α13α23|

)T̂
.(5.81)

Let m be the vector of block principal minors of the above matrix and let p = m
1
T

where the exponential acts componentwise. Then if we assume pi and pij are fixed,

it is easy to see that αii = pi ≥ 0 and αij = ±
√
pipj(1− (

pij
pipj

)
T
T̂ ). This imposes the

constraint:

pij ≤ pipj. (5.82)

Assuming θ = T̂
T

and substituting these in (5.81) results in:

max
Φ

p123 = p1p2p3

(
−2 +

(
p12

p1p2

) 1
θ

+

(
p13

p1p3

) 1
θ

+

(
p23

p2p3

) 1
θ

+2

√√√√(1−
(
p12

p1p2

) 1
θ

)(
1−
(
p13

p1p3

) 1
θ

)(
1−
(
p23

p2p3

) 1
θ

))θ

.(5.83)

Of course this corresponds to the determinant of a covariance matrix of some Gaussian

random variables only if the term inside the braces in (5.83) is positive. Therefore

assuming x1 = p12
p1p2

, x2 = p23
p2p3

, x3 = p13
p3p1

, and using (5.74) in Lemma 5.3.7:

sup
Φ, θ

p123 = p1p2p3 sup
0<θ≤1

f(θ). (5.84)
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Note that since we have fixed pi and pij, and that θ represents the timesharing of

2 sets of random variables, θ = 0 is not generally allowed (otherwise we enforce the

random variables to be independent). Therefore we have used sup instead of max in

(5.84). Now what remains, is to find sup f(θ) with respect to θ over 0 < θ ≤ 1. Using

Lemma 5.3.7 we obtain,

sup
Φ, θ

p123 =


minj

pijpjk
pj

If ỹ ≤ 0

p1p2p3 max

(
0, − 2 +

∑3
k=1 xk + 2

√∏3
k=1(1− xk)

)
If ỹ > 0

(5.85)

Replacing p with the corresponding entropies (p = eg) in (5.85) and also (5.82)

gives (5.11) and (5.12). Finally, since sup p123 is found, (5.85) characterizes the closure

of the region. �

Proof of Theorem 5.3.4: Let g be an arbitrary entropy vector for which ỹ > 0,

and therefore it does not fall in the Gaussian region. If maxk xk < 1, let θ∗ =

argmaxθf(θ). Now for any θ′ ≥ θ∗ define the normalized entropy vector g′ = 1
θ′
g, and

the corresponding x′k = eg
′
ij−g′i−g′j . Clearly x′k = x

1
θ′
k and y′(θ) = y(θθ′). Therefore

ỹ′ = y(θ′). From Lemma (5.3.7) it follows that when maxk xk < 1 and ỹ > 0, the

function y(θ) has a single zero which coincides with the maximizing point of f(θ),

namely θ∗. As a result for all θ′ ≥ θ∗, y(θ′) < 0 which immediately translates to

ỹ′ < 0, meaning that the maximum of the corresponding function f ′ will happen for

some 0 ≤ θ ≤ 1 and therefore by Theorem (5.3.3), g′ = 1
θ′
g can be generated by

Gaussians. On the other hand if maxk xk = 1, ∀θ, y(θ) ≥ 0 and limθ→∞ y(θ) = 0. In

terms of the function f we have, limθ→∞ f(θ) = mini,j xixj. Nonetheless since f(θ)

achieves its supremum in an asymptotic manner, it means that a small perturbation

of g′ will put it in the Gaussian region and hence g will be in the closure of the convex

cone of Gaussian entropy region. �
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5.4 Cayley’s Hyperdeterminant

Recall from (5.4) that the entropy of a collection of Gaussian random variables is

simply the “log-determinant” of their covariance matrix. Similarly, the entropy of

any subset of variables from a collection of Gaussian random variables is simply the

“log” of the principal minor of the covariance matrix corresponding to this subset.

Therefore one approach to characterizing the entropy region of Gaussians is to study

the determinantal relations of a symmetric positive semi-definite matrix.

For example, consider 3 Gaussian random variables. While the entropy vector of 3

random variables is a 7-dimensional object, there are only 6 free parameters in a sym-

metric positive semi-definite matrix. Therefore the minors should satisfy a relation

which is essentially implied by (5.53) when the matrix entries are expressed in terms

of the principal minors. It has very recently been shown that this relation is given by

the Cayley’s so-called 2× 2× 2 “hyperdeterminant” [HS07b]. The hyperdeterminant

is a generalization of the determinant concept for matrices to tensors and it was first

introduced by Cayley in 1845 [Cay45].

There are a couple of equivalent definitions for the hyperdeterminant among which

we choose the definition through the degeneracy of a multilinear form. Consider the

following multilinear form of the format (k1 +1)× (k2 +1)× . . .× (kn+1) in variables

X1, . . . , Xn where each variable Xj is a vector of length (kj + 1) with elements in C:

f(X1, X2, . . . , Xn) =
k1∑
i1=0

k2∑
i2=0

. . .
kn∑
in=0

ai1,i2,...,inx1,i1x2,i2 , . . . , xn,in . (5.86)

The multilinear form f is said to be degenerate if and only if there is a non-trivial solu-

tion (X1, X2, . . . , Xn) to the following system of partial derivative equations [GKZ94]:

∂f

∂xj, i
= 0 for all j = 1, . . . , n and i = 1, . . . , kj. (5.87)
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The unique (up to a scale) irreducible polynomial with integral coefficients in the

entries ai1,i2,...,in of a tensor A that vanishes when f is degenerate is called the hyper-

determinant.

Example (2 × 2 hyperdeterminant): For the 2 × 2 hyperdeterminant, consider

f(X1, X2) =
∑1

i,j=0 ai,jxiyj. The multilinear form f is degenerate if there is a non-

trivial solution for X1, X2,

∂f

∂x0

= a00y0 + a01y1 = 0 (5.88)

∂f

∂y0

= a00x0 + a10x1 = 0 (5.89)

∂f

∂x1

= a10y0 + a11y1 = 0 (5.90)

∂f

∂y1

= a01x0 + a11x1 = 0. (5.91)

Trying to solve this system of equations, we obtain that,

y0

y1

=
−a01

a00

=
−a11

a10

(5.92)

x0

x1

=
−a10

a00

=
−a11

a01

. (5.93)

We see that a non-trivial solution exists if and only if, a00a11 − a10a01 = 0, i.e., the

hyperdeterminant is simply the determinant in this case.

The hyperdeterminant of a 2×2×2 multilinear form was first computed by Cayley

[Cay45] and is as follows:

−a2
000a

2
111 − a2

100a
2
011 − a2

010a
2
101 − a2

001a
2
110

−4a000a110a101a011 − 4a100a010a001a111

+2a000a100a011a111 + 2a000a010a101a111

+2a000a001a110a111 + 2a100a010a101a011

+2a100a001a110a011 + 2a010a001a110a101 = 0. (5.94)
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In [HS07b] it is further shown that the principal minors of an n × n symmetric

matrix satisfy the 2× 2× . . .× 2︸ ︷︷ ︸
n times

hyperdeterminant. It is thus clear that determining

the entropy region of Gaussian random variables is intimately related to Cayley’s

hyperdeterminant.

It is with this viewpoint in mind that we study the hyperdeterminant in this

section. In the next 2 subsections, first we present a new determinant form for the

2× 2× 2 hyperdeterminant, which may be of interest since computing the hyperde-

terminant of higher formats is extremely difficult and our formula may suggest a way

of attacking more complicated hyperdeterminants. Next we give a novel proof of one

of the a main results of [HS07b], that the principal minors of any n × n symmetric

matrix satisfy the 2× 2× . . .× 2︸ ︷︷ ︸
n times

hyperdeterminant. Our proof hinges on identify-

ing a determinant formula for the multilinear form from which the hyperdeterminant

arises.

5.4.1 A Formula for the 2× 2× 2 Hyperdeterminant

Obtaining an explicit formula for the hyperdeterminant is not an easy task. The first

nontrivial hyperdeterminant which is the 2× 2× 2, was obtained by Cayley in 1845

[Cay45]. However, surprisingly, calculating the next hyperdeterminant which is the

2×2×2×2 proves to be very difficult. Until recently the only method for computing

the 2 × 2 × 2 × 2 was the nested formula of Schläfli, which he obtained in 1852

[Shl52, GKZ94] and although after 150 years Luque and Thibon [LT03] expressed

it in terms of the fundamental tensor invariants, the monomial expansion of this

hyperdeterminant remained as a challenge. It was finally solved recently in [HSYY08]

where they show that the 2× 2× 2× 2 hyperdeterminant consists of 2,894,276 terms.

It is interesting to mention that Cayley had a 340-term expression for the 2×2×2×2

hyperdeterminant which satisfies many invariance properties of the hyperdeterminant

and only fails to satisfy a few extra conditions [TW09]. Therefore, as mentioned
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previously, computing hyperdeterminants of different formats is generally non-trivial.

In fact even Schläfli’s method only works for some special hyperdeterminant formats.

Moreover according to [GKZ94] it is not easy to prove directly that (5.94) vanishes if

and only if (5.87) has a non-trivial solution. Here we propose a new formula for (and

a method to obtain) the 2× 2× 2 hyperdeterminant which shows this if and only if

connection directly. Moreover this method might be extendable to hyperdeterminants

of larger format.

Theorem 5.4.1 (Determinant formula for 2× 2× 2 hyperdeterminant) Define

B0 ,

 a000 a100

a001 a101

 , B1 ,

 a010 a110

a011 a111

 , J ,

 0 −1

1 0

 . (5.95)

Then the 2× 2× 2 hyperdeterminant is given by

det(B0JB
T
1 −B1JB

T
0 ). (5.96)

Proof: Let f be a multilinear form of the format 2× 2× 2,

f(X, Y, Z) =
1∑

i,j,k=0

aijkxiyjzk. (5.97)
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Then by the change of variables, w0 = x0y0 , w1 = x1y0 , w2 = x0y1 , w3 = x1y1, the

function f can be written as,

f(X, Y, Z) = ( z0 z1 )

 a000 a100 a010 a110

a001 a101 a011 a111




w0

w1

w2

w3


, ZT

(
B0 B1

)
W. (5.98)

To proceed, recall from (5.87) that the hyperdeterminant of the multilinear form

of the format 2× 2× 2, vanishes if and only if there is a non-trivial solution (X, Y, Z)

to the system of partial derivative equations:

∂f

∂xi
= 0

∂f

∂yj
= 0

∂f

∂zk
= 0 i, j, k = 0, 1. (5.99)

(a) First we show that if there is a non-trivial solution to the equations (5.99),

then (5.96) vanishes. By the chain rule ∂f
∂xi

=
∑

k
∂wk
∂xi

∂f
∂wk

, we can write ∂f
∂(X,Y )

=(
∂W

∂(X,Y )

)T
∂f
∂W

. Also from (5.98), ∂f
∂Z

= ( B0 B1 )W . Therefore the degeneracy con-

ditions equivalent with (5.99) become:

(
∂W

∂(X, Y )

)T
∂f

∂W
= 0 (5.100)

( B0 B1 )W = 0. (5.101)

Condition (5.100) implies that the vector ∂f
∂W

should belong to the null space of(
∂W

∂(X,Y )

)T
.

The following Lemma gives the structure of this null space.

Lemma 5.4.2 Null space of the matrix
(

∂W
∂(X,Y )

)T
is characterized by vectors of the

form, ( w3 −w2 −w1 w0 )T .
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Proof: Let V be a 4 × 1 vector. Noting that for j = {1, 2},
(

∂W
∂(X,Y )

)
ij

= ∂wi
∂xj−1

and

for j = {3, 4},
(

∂W
∂(X,Y )

)
ij

= ∂wi
∂yj−3

,

(
∂W

∂(X, Y )

)T
V =



y0 0 y1 0

0 y0 0 y1

x0 x1 0 0

0 0 x0 x1





v1

v2

v3

v4


= 0. (5.102)

Solving for V in the above, yields the equations:

v1

v3

=
v2

v4

= −y1

y0

(5.103)

v1

v2

=
v3

v4

= −x1

x0

. (5.104)

Letting v4 = x0y0 characterizes the vectors in the null space up to a scale:

V T = ( x1y1 −x0y1 −x1y0 x0y0 )T

=

(
w3 −w2 −w1 w0

)T
. (5.105)

Going back to the proof of Theorem 5.4.1, using Lemma 5.4.2 we conclude that

we should have ∂f
∂Z

= ( B0 B1 )W = 0, and for an arbitrary non-zero scalar α,

∂f
∂W

= ( B0 B1 )TZ = α

(
w3 −w2 −w1 w0

)T
. Putting these two equations
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into matrix form we can further write the following:


0 0 B0

T

0 0 B1
T

B0 B1 0


 W

Z

 = α



w3

−w2

−w1

w0

0

0


(5.106)

or in other form:



 0 0

0 0

 α

 0 −1

1 0

 B0
T

α

 0 1

−1 0


 0 0

0 0

 B1
T

B0 B1 0



 W

Z

 = 0. (5.107)

A non-trivial solution for X, Y, Z and hence for W,Z requires the matrix to be low

rank. Therefore using the fact that J−1 = −J we can write the following,

det

( B0 B1 )

 0 J

−J 0


 B0

T

B1
T


 = det(B0JB1

T −B1JB0
T ) = 0.(5.108)

Note that the explicit calculation of (5.108) gives,

det


2(a100a010 − a000a110) a100a011 + a101a010

−a000a111 − a001a110

a100a011 + a101a010

−a000a111 − a001a110

2(a101a011 − a001a111)

 = 0 (5.109)
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which when expanded gives the 2×2×2 hyperdeterminant formula stated in equation

(5.94), as expected.

(b) Conversely suppose that (5.108) vanishes and therefore there is a non-trivial

solution for W and Z in (5.107). To prove that there is also a non-trivial solution

to (5.99), we need to show that such X, Y , and Z exist so that (5.100) and (5.101)

hold. By definition of w0, . . . , w3, it is not hard to see that a valid x0, x1, y0, and y1

can be found from wi only if W = ( w0 w1 w2 w3 )T in (5.107) has the property,

w0

w2

=
w1

w3

. (5.110)

In the following we show that the solution of (5.107) in fact satisfies relation (5.110).

Let p =

(
w0 w1

)T
and q =

(
w2 w3

)T
. Then from (5.107) we obtain:

αJq + B0
TZ = 0 (5.111)

−αJp + B1
TZ = 0 (5.112)

B0p + B1q = 0. (5.113)

Multiplying the first equation by pT and the second one by qT and adding them

together we obtain,

α(pTJq − qTJp) + (pTB0
T + qTB1

T )Z = 0 (5.114)

which by the use of (5.113) simplifies to:

pTJq = qTJp. (5.115)
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Noting that pTJq = (pTJq)T = −qTJp gives,

pTJq = qTJp = 0 (5.116)

(5.110) then follows immediately from (5.116) by substituting for p and q.

5.4.2 Minors of a Symmetric Matrix Satisfy the

Hyperdeterminant

It has recently been shown in [HS07b] that the principal minors of a symmetric matrix

satisfy the hyperdeterminant relations. There this was found by either checking or

explicitly computing the determinant of a 3× 3 matrix in terms of the other minors

and noticing that it satisfied the 2× 2× 2 hyperdeterminant. In this section we give

an explanation of why this relation holds for the principal minors of a symmetric

matrix. The key ingredient is by identifying a simple determinant formula for the

multilinear form (5.86) when the coefficients ai1,i2,...,in are the minors of an n × n

symmetric matrix.

Lemma 5.4.3 Let the elements of the tensor A = [ai1,i2,...,in ], ik = {0, 1} be the

principal minors of an n × n matrix Ã such that ai1,i2,...,in , ik = {0, 1} denotes the

principal minor obtained by choosing the rows and columns of Ã indexed by the set

α = {k|ik = 1} (by convention when all indices are zero a00...0 = 1). Then the

following multilinear form of the format 2× 2× . . .× 2 (n times),

f(X1, X2, . . . , Xn) =
1∑

i1,i2,...,in=0

ai1,i2,...,inx1,i1x2,i2 . . . xn,in (5.117)

can be rewritten as the determinant of the matrix M , i.e., f(X1, X2, . . . , Xn) =
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det(M) where M is the following matrix:

M =



x1,0 0 . . . 0

0 x2,0 . . . 0

...
. . .

0 0 . . . xn,0


+



x1,1 0 . . . 0

0 x2,1 . . . 0

...
. . .

0 0 . . . xn,1


Ã , N1 +N2Ã. (5.118)

Proof: First note that determinant of M has the form,

det(M) =
1∑

i1,i2,...,in=0

bi1,i2,...,inx1,i1x2,i2 . . . xn,in (5.119)

for some Ã-dependent coefficients bi1,i2,...,in . To prove that det(M) is in fact equal

to (5.117), we need to show that bi1,i2,...,in = ai1,i2,...,in , ∀i1, . . . in, or in other words

bi1,i2,...,in are the corresponding minors of Ã.

Let (p1 . . . pn) be a realization of {0, 1}n. For j = 1, . . . , n, let the variables xj,pj = 1

and the rest of the variables be zero. This choice of values makes det(M) = bp1,p2,...,pn

and f(X1, X2, . . . , Xn) = ap1,p2,...,pn . Moreover it can be easily seen that in this case

det(M) in (5.118) will simply be equal to the minor of the matrix Ã obtained by

choosing the set of rows and columns α ⊆ {1, . . . , n} such that pj = 1 for all j ∈ α.

By assumption this is nothing but the coefficient ap1,p2,...,pn in (5.117) and therefore

the lemma is proved. Remark: Note that Lemma 5.4.3 does not require the matrix

Ã to be symmetric.

Lemma 5.4.4 (Partial derivatives of detM) Let α = {1, . . . , n} \ j. If Ã is

nonsingular, computing the partial derivatives of the detM gives

∂ detM

∂xj,0
= detMα,α (5.120)

∂ detM

∂xj,1
= det Ã detM ′

α,α (5.121)
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where M ′ = N1Ã
−1 +N2.

Proof: To prove (5.120) note that we can write,

∂ detM

∂xj,0
=
∑
k,l

∂ detM

∂Mkl

dMkl

dxj,0
= tr

(
d(detM)

dM

(
dM

dxj,0

)T)
. (5.122)

Since d(detM)
dM

= M−T detM and dM
dxj,0

= ej where ej is an n × n matrix whose jth

diagonal entry is 1 and all of its other entries are 0, we can further write,

∂ detM

∂xj,0
= detM ·

(
M−T )

jj
= detM ·

(
M−1

)
jj
. (5.123)

Inverse of M is calculated by, M−1 =
adjM
detM

and therefore M−1
jj = detMα,α

detM
and (5.120)

follows immediately. For (5.121) note that:

∂ detM

∂xj,1
=

∂

∂xj,1
det[(N1Ã

−1 +N2)Ã]

= det Ã
∂ detM ′

∂xj,1
. (5.124)

Using (5.120), and the above equation, (5.121) follows immediately. Now we can

write the condition for the minors of Ã to satisfy the hyperdeterminant:

Lemma 5.4.5 (rank of M) The minors of the non-singular matrix Ã satisfy the

hyperdeterminant equation if there exists a set of solutions xj,0 and xj,1 for which

rank of M in (5.118) is at most n− 2.

Proof: To satisfy the hyperdeterminant, we require (5.120) and (5.121) to be equal

to zero simultaneously for all j. If there is a non-trivial set of solutions xj,0 and xj,1

for which M has rank of at most n− 2, then clearly (5.120) vanishes. Moreover if we

assume that Ã is non-singular then rank M ′ = rank MÃ−1 = rank M , and (5.121)

vanishes as well. Therefore the multilinear form (5.117) becomes degenerate which
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means the coefficients ai1,i2,...,in , i.e., the principal minors of the matrix, will satisfy

the hyperdeterminant.

Theorem 5.4.6 (hyperdeterminant and the principal minors) The principal mi-

nors of an n × n symmetric matrix Ã satisfy the hyperdeterminants of the format

2× 2 . . .× 2 (k times) for all k ≤ n.

Proof: First we show that the minors satisfy the 2× 2 . . .× 2 (n times) hyperdetermi-

nant. Recall that for the tensor of coefficients ai1,i2,...,in in the multilinear form (5.86)

to satisfy the hyperdeterminant relation, there must exist a non-trivial solution to

make all the partial derivatives of f with respect to its variables zero. Lemma (5.4.5)

suggests that a set of non-trivial xj,0 and xj,1 for which rank of M is at most n − 2

would be sufficient. To use this lemma we first assume that Ã is non-singular. In the

following we will show that one can always find a solution to make rank M ≤ n− 2.

First we find a non-trivial solution in the case of 3 variables and then extend it to

the the case where there are n variables. For 3 variables, the matrix M which is of

the following form,

M =


x1,0 + x1,1a11 x1,1a12 x1,1a13

x2,1a12 x2,0 + x2,1a22 x2,1a23

x3,1a13 x3,1a23 x3,0 + x3,1a33

 (5.125)

should be rank 1, or equivalently all the columns be multiples of one another. En-

forcing this condition results in 3 equations for 6 unknowns. Therefore without loss

of generality we let xj,1 = 1. Making the columns of M proportional, gives:

x1,0 + a11

a12

=
a12

x2,0 + a22

=
a13

a23

(5.126)

x3,0 + a33

a23

=
a13

a12

. (5.127)
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If xj = (xj,0, xj,1), then the solution to the above equations is clearly as follows:

x1 = (
a12a13 − a11a23

a23

, 1)

x2 = (
a23a12 − a13a22

a13

, 1)

x3 = (
a13a23 − a12a33

a12

, 1). (5.128)

Now for the general case of n variables, let x1, x2, x3 be as (5.128) and for j > 3, xj =

(1, 0). It can be easily checked that this solution makes the matrix M of rank n−2 and

therefore the principal minors satisfy the 2× 2× . . .× 2 (n times) hyperdeterminant.

Note that these solutions also appear in [HS07b] in an alternative proof of principal

minors satisfying the hyperdeterminant relation. Now we can easily show that the

principal minors also satisfy all hyperdeterminants of format 2× 2× . . .× 2 (k times)

for all 3 ≤ k ≤ n. In order to consider the 2×2× . . .×2 (k times) hyperdeterminant,

let xj,0 = 1 and xj,1 = 0 for all k + 1 ≤ j ≤ n such that the multilinear form (5.117)

will be in terms of only k variables. In terms of the matrix M in (5.118) one can

only consider the first k rows and therefore the problem reduces to the existence

of a non-trivial solution to make M of rank k − 2, and, as previously shown, this

is always possible, and hence the principal minors satisfy any 2 × 2 × . . . × 2 (k

times) hyperdeterminant for 3 ≤ k ≤ n. Finally, note that any singular matrix Ã

can be considered as the limit of a sequence of non-singular matrices whose principal

minors satisfy the hyperdeterminant relations and therefore the principal minors of

the singular matrix will do so as well. Rewriting the hyperdeterminant relation (5.94)

in terms of the principal minors by adopting the notation of Lemma 5.4.3 for a 3× 3
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matrix gives,

A2
∅A

2
123 + A2

1A
2
23 + A2

2A
2
13 + A2

3A
2
12 + 4A∅A12A13A23 + 4A1A2A3A123

−2A∅A1A23A123 − 2A∅A2A13A123 − 2A∅A3A12A123

−2A1A2A13A23 − 2A1A3A12A23 − 2A2A3A12A13 = 0. (5.129)

Letting A∅ = 1 this can also be written as,

(A123 − A3A12 − A2A13 − A1A23 + 2A1A2A3)2 =

4(A1A2 − A12)(A1A3 − A3)(A2A3 − A23). (5.130)

5.5 Minimal Conditions for Realizing a Vector with

Gaussian Entropies

In order to determine whether a 2n − 1 dimensional vector g corresponds to the

entropy of n scalar jointly Gaussian random variables, one needs to check whether eg,

i.e., the supposed vector of principal minors, corresponds, to all the principal minors

of a symmetric positive semi-definite matrix. Define A , eg and let the elements of

the vector A ∈ R2n−1 be denoted by Aα, α ⊆ {1, . . . , n}. An interesting problem

is to find the minimal set of conditions under which the vector A can be considered

as the vector of all principal minors of a symmetric n × n matrix. This problem is

known as the “principal minor assignment” problem and has been addressed before

in [HS07b, GT06b]. In fact in a recent remarkable work, [HS07b] gives the set of

necessary and sufficient conditions for this problem. Nonetheless it does not point

out the minimal set of such necessary and sufficient equations. Instead [HS07b] is

mainly interested in the generators of the prime ideal of all homogenous polynomial

relations among the principal minors of an n×n symmetric matrix. Here we propose
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the minimal set of such conditions for n ≥ 4.

Roughly speaking there are 2n − 1 variables in the vector A and only n(n+1)
2

parameters in a symmetric n × n matrix. Therefore if the elements of A can be

considered as the minors of a n×n symmetric matrix, one suspects that there should

be 2n − 1 − n(n+1)
2

constraints on the elements of A. These constraints, which can

be translated to relations between the elements of the entropy vector arising from n

scalar Gaussian random variables, can be used as the starting point to determine the

entropy region of n ≥ 4 jointly Gaussian scalar random variables.

We start this section by studying the entropy region of 4 jointly Gaussian random

variables using the results of the hyperdeterminant already mentioned in the previous

section, and we shall explicitly state the sufficiency of 5 constraints among all the

constraints given in [HS07b] by using a similar proof to [HS07b]: that for a given

vectorA and under such constraints, one can construct the symmetric matrix Ã = [aij]

with the desired principle minors. Later in this section we state such minimal number

of conditions for a 2n − 1 dimensional vector for n ≥ 4.

Let

gijk = Aijk − AiAjk − AjAik − AkAij + 2AiAjAk. (5.131)

Theorem 5.5.1 The minimal set of necessary and sufficient conditions for the ele-

ments of the vector A to be the principal minors of a symmetric 4× 4 matrix consists

of three hyperdeterminant equations, one consistency of the signs of gijk, and the
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determinant identity of the 4× 4 matrix:

g2
123 = 4(A1A2 − A12)(A2A3 − A23)(A1A3 − A13) (5.132)

g2
124 = 4(A1A2 − A12)(A2A4 − A24)(A1A4 − A14) (5.133)

g2
134 = 4(A1A3 − A13)(A3A4 − A34)(A1A4 − A14) (5.134)

g123g124g134 = 4(A1A2 − A12)(A1A3 − A13)(A1A4 − A14)g234 (5.135)

A1234 = −1

2

∑
i′,j′∈{1,2,3}

k′,l′∈{1,2,3,4}\{i′,j′}

gi′j′k′gi′j′l′

A′iA
′
j − Ai′j′

+ A1g234 + A2g134 + A3g124

+A4g123 − 2A1A2A3A4 + A12A34 + A13A24 + A14A23. (5.136)

Proof: If elements of the vector A are the principal minors of a symmetric matrix

they satisfy the hyperdeterminant relations. In particular we will have,

g2
ijk = 4(AiAj − Aij)(AiAk − Aik)(AjAk − Ajk) (5.137)

and therefore the necessity of equations (5.132)–(5.136) is straightforward to show.

By using a similar method to [HS07b] one can show the sufficiency of equations

(5.132)–(5.136). To make the chapter self-contained we explain the steps in more

detail. First note that all the elements of Ã can be determined up to a sign from the

Ai and Aij elements of the vector A.

aii = Ai (5.138)

a2
ij = aiiajj − Aij = AiAj − Aij (5.139)

It remains to choose the signs of all the off-diagonals in such a way that the 3 × 3

and 4 × 4 minors of Ã will correspond to Aijk and A1234. First let’s consider the

3× 3 minors. Assuming Ã to be the symmetric matrix with minors corresponding to

elements of A, a direct calculation of a 3× 3 principal minor with rows and columns
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indexed by {i, j, k} gives:

Aijk=aiiajjakk − aiia2
jk − ajja2

ik − akka2
ij + 2aijajkaik

=−2AiAjAk + AiAjk + AjAik + AkAij

±2
√

(AiAj − Aij)(AiAk − Aik)(AjAk − Ajk) (5.140)

which can be written as:

gijk=2aijajkaik

=±2
√

(AiAj − Aij)(AiAk − Aik)(AjAk − Ajk). (5.141)

Note that although the sign ambiguities of the 3 off-diagonal elements in a 3 × 3

minor imply 8 possible matrices, the determinant of a 3× 3 matrix depends only on

the sign of the product of the off-diagonal terms or in other words the parity of gijk.

Squaring both sides yields the hyperdeterminant relation (5.130). There are four such

hyperdeterminants for a 4× 4 matrix, each corresponding to a 3× 3 minor,

g2
ijk = 4aij

2aik
2ajk

2 i, j, k ∈ {1, 2, 3, 4}. (5.142)

(5.142) for all permutations of {i, j, k} assures that there is a sign choice for the four

gijk such that all the Aijk will correspond to the 3 × 3 minors of Ã. However what

we require next is the consistency of the signs. In other words there should exist at

least one sign assignment of the off-diagonal terms that results in the assumed signs
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of gijk. To be more specific we have,

g123 = 2a12a13a23 (5.143)

g124 = 2a12a14a24 (5.144)

g134 = 2a13a14a34 (5.145)

g234 = 2a23a24a34. (5.146)

Considering the first 3 equations, it is clear that one can freely choose any signs for

g123, g124, and g234 by assigning signs to aij. However once these signs are fixed, the

sign of g234 should comply with the rest. In fact multiplication of the three of gijk

gives:

gijkgijlgikl = 4a2
ija

2
ika

2
ilgjkl (5.147)

which means, once the signs of the three out of four gijk are determined, the last one

should be consistent with them through (5.147). Considering one of these equations,

i.e., a particular permutation of {i, j, k}, is sufficient for our purpose,

g123g124g134 = 4a2
12a

2
13a

2
14g234. (5.148)

It only remains to insist that the whole determinant of the constructed matrix

be equal to A1234. This is guaranteed through (5.136), which is obtained by direct

calculation of the 4× 4 determinant. In (5.136) note that since the gi′j′k′gi′j′l′ in the

numerator has A′iA
′
j − Ai′j′ in it, vanishing of A′iA

′
j − Ai′j′ in the denominator will

not cause any problems. Finally noting that, one hyperdeterminant equation, for

example,

g2
234 = 4(A2A3 − A23)(A3A4 − A34)(A2A4 − A24) (5.149)

can be obtained from the other three hyperdeterminants, i.e., (5.132), (5.133), and

(5.134), and the parity consistency condition (5.148) leaves 5 equations of (5.132) to
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(5.136) through which we can construct the matrix Ã.

Using a similar approach, which closely follows the proof methods of [HS07b], we

can write the set of minimal necessary and sufficient conditions for a 2n−1 dimensional

vector to be the principal minors of a symmetric matrix.

Theorem 5.5.2 The necessary and sufficient conditions for a 2n − 1 dimensional

vector to be the principal minors of a symmetric n×n matrix consists of 2n−1− n(n+1)
2

equations, and are as follows:

∀j, k ∈ {2, . . . , n}, g2
1jk=4(A1Aj − A1j)(A1Ak − A1k)(AjAk − Ajk) (5.150)

∀i, j, k ∈ {2, . . . , n}, g1ijg1ikg1jk=4(A1Ai−A1i)(A1Aj−A1j)(A1Ak−A1k)gijk.(5.151)

Also ∀β ⊆ {1, . . . , n}, |β| ≥ 4, choose one set of {i, j, k, l} ⊆ β, s.t., i < j < k < l,

and let α = β\{i, j, k, l},

Dα
ijkl = 0 (5.152)

where Dα
ijkl is obtained from the following by replacing every AS, S ⊆ {i, j, k, l} by

AS∪α
Aα

.

Dijkl = Aijkl +
1

2

∑
i′,j′∈{i,j,k}

k′,l′∈{i,j,k,l}\{i′,j′}

gi′j′k′gi′j′l′

A′iA
′
j − Ai′j′

− Aigjkl − Ajgikl − Akgijl

−Algijk + 2AiAjAkAl + AijAkl − AikAjl − AilAjk = 0 (5.153)

Proof: The proof is essentially the same as the proof technique of [HS07b], and is

a generalization of Theorem 5.5.1 for a 15-dimensional vector. However, we would

like to highlight why this set is the minimal set of necessary, and sufficient conditions

among all conditions given in [HS07b]. As mentioned in Theorem 5.5.1 one can obtain

all the off diagonal entries up to a sign. Moreover, by a similarity transformation by
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a diagonal ±1 matrix, one can make all the entries of the first row positive. Then

the signs of the rest of the off-diagonal entries can be fixed by using the fact that

g1jk = 2a1ja1kajk, provided that the conditions (5.150) are met. Now we need to

enforce that the hyperdeterminants gijk for which i, j, k 6= 1 also hold. However since

all the g1jk are already determined, gijk is also essentially determined and must obey

(5.151), which guarantees gijk = 2aijaikajk. Up to now all the minors of up to size 3

are considered. Note that Dijkl = 0 is simply obtained from the determinant of the

4×4 submatrix with rows and columns indexed by {i, j, k, l} (compare with (5.136)).

For any submatrix with rows and columns indexed by β, say Ãβ, we can write this

determinant formula for the Schur complement of the Ãα in Ãβ, which essentially

gives (5.152). Note that all we need is that the minors of size greater than or equal

to 4 be consistent with the already defined matrix entries, and (5.152) takes care of

this since all these minors appear linearly. Moreover, for each β only 1 equation of

type (5.152) is required. Finally, note that there are
(
n−1

2

)
number of equations of

type (5.150),
(
n−1

3

)
of type (5.151), and

∑n
m=4

(
n
m

)
of type (5.152), which sums up to

2n− 1− n(n+1)
2

. This is the number that we expect, noting that there are only n(n+1)
2

free parameters in a symmetric matrix while the given vector of principal minors is

of size 2n − 1. �

Note that if we insist that for all α ⊆ {1, . . . , n}, Aα ≥ 0 and substitute each

Aα by egα in (5.150)–(5.152), then (5.150)–(5.152) give the necessary and sufficient

conditions for a 2n − 1 dimensional vector to correspond to the entropies of n scalar

jointly Gaussian random variables. Nonetheless in order to characterize the entropy

region of scalar Gaussian random variables, what one really needs is the convex hull

of all such entropy vectors.

In an algebraic geometry language, one can define the “amoeba” of a polynomial f

where f(x1, . . . , xk) =
∑

i qix
p1i
1 . . . xpkik as the image of f = 0 in Rk under the mapping

that acts on (x1, . . . , xk) as (x1, . . . , xk) 7→ (log |x1|, . . . , log |xk|) [GKZ94]. It turns



177

out that many properties of amoebas can be deduced from the Newton polytope of

f , which is defined as the convex hull of the exponent vectors (p1i, . . . , pki) in Rk

(see, e.g., [PR04]). In terms of our problem of interest, the scalar Gaussian entropy

points are the intersection of the amoebas associated to polynomials (5.150)–(5.152)

and one should look for the convex hull of the locus of these intersection points. If

we allow the notion of amoeba to be defined as the log mapping for any function

(not just polynomials), then one could also formulate our problem of interest as the

convex hull of the amoeba of the algebraic variety obtained from the intersection of

(5.150)–(5.152).

Finally we mention that in general, to characterize the entropy region of Gaussian

random variables, one should consider vector-valued random variables, which are

probably more complex than the case of scalars. In Section 5.3 we showed that for

n = 3 the vector-valued random variables do not result in a bigger region than the

convex hull of scalar ones. However in general it is not known whether the entropy

region of n vector-valued jointly Gaussian random variables is greater than the convex

hull of the entropy region of scalar valued Gaussians.

5.6 Entropy Region and Wireless Networks

Studying the entropy region of continuous random variables is especially interesting

in the context of wireless networks. However as was explained in Chapter 2, due to

the broadcast and interference nature of wireless channels, one needs to determine

the channel-constrained entropic region. Since in the event of interference it is usu-

ally the sum of the incoming signals, possibly plus noise, that is received, studying

the information inequalities which involve sums of random variables is particularly

important.

As the simplest case in this section, we consider three continuous random variables
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x, y, and z = x + y, where x and y are independent. For such random variables it

is well known that the differential entropy of z is lower bounded in terms of the

entropies of x and y through the entropy-power inequality, a.k.a., EPI. There exist

several proofs of the EPI, e.g., based on the de Bruijn identity [Sta59, Bla65], or on

the Brunn-Minkowski theorem [DCT91, CC84, CT91], or via MMSE [VG06, GSV06].

To make all this more precise let x, y ∈ Rm be two independent vector-valued

continuous random variables and let z = x+ y. The entropy power inequality states

that the entropy of the sum, i.e., H(z) has a lower bound given by,

e
2
m
H(z) ≥ e

2
m
H(x) + e

2
m
H(y). (5.154)

However, based on arguments of Chapter 2, the quantities hx = 1
m
H(x), hy = 1

m
H(y),

and hz = 1
m
H(z) are simply the normalized entropies. Recalling from Chapter 2, that

the definition of normalized entropy is more natural for network information theory

(since it represents the entropy “per channel use”), it can be seen that the EPI is also

more naturally expressed in terms of normalized entropy, since we can simply write

e2hz ≥ e2hx + e2hy . (5.155)

The EPI has found many applications in information theory, e.g., channels with

non-Gaussian noise [Sha48], scalar broadcast channels [Ber74], MIMO broadcast

channles [WSS06], the Gaussian wiretap channel [LYCH78], and many others. The

EPI was originally stated in Shannon’s seminal 1948 paper and a variational “proof”,

based on minimizing H(x+ y), subject to fixed H(x) and H(y), was presented. How-

ever, Shannon’s proof was incomplete and only considered sufficiency.1 The first

1Shannon’s idea was to find the first order, i.e., KKT, conditions for the optimal distributions
minimizing the constrained optimization problem. He then showed that Gaussian distributions
satisfy the first-order condition. However, since the original problem of minimizing H(x+y), subject
to fixed H(x) and H(y), is nonconvex over the underlying distributions, Shannon would have further
needed to show that either the KKT conditions have no other solution, or that all other solutions
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complete proof was given by Stam in 1959 [Sta59] and used a different approach (de

Bruijn’s identity and Fisher information) [CT91]. In general, it is an interesting ques-

tion to determine the relations between the entropy-powers of sums of a collection of

independent random variables [MT10].

Now we consider the issue of determining the entropy region of three random

variables x, y, and z = x+ y, where x and y are independent.

In particular, we show that the seven-dimensional vector of normalized entropies

and joint entropies [hx hy hz hxy hyz hzx hxyz] satisfies

[
hx, hy, hz ≥ 1

2
log(e2hx + e2hy), hx + hy, hx + hy, hx + hy, −∞

]
. (5.156)

In other words, all entropies hx, hy, and hz, satisfying the EPI, are achievable.

5.6.1 The Entropy Region of x, y, and z = x+ y

Let x, y, z ∈ Rm be 3 vector valued continuously distributed random variables such

that x and y are independent and z = x + y. Furthermore let h represent their cor-

responding normalized differential entropy vector. An interesting question is to char-

acterize the entropy region of these 3 variables, i.e., to characterize all 7-dimensional

vectors that can arise as the entropy vector of such 3 variables.

Clearly h belongs to the entropy region of 3 arbitrary distributed continuous ran-

dom variables which assume we denote by Γc3. Thus, h ∈ Γc3, and therefore satisfies all

the Shannon inequalities. Moreover from the entropy-power inequality(EPI)[CT91],

we know that the EPI for normalized entropy is,

e2hz ≥ e2hx + e2hy . (5.157)

are not minimizers of the cost.
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Therefore if we denote the entropy region of x, y, and z by Ψ3, then,

Ψ3 ⊆ Γc3 ∩Υ ∩ Ξ (5.158)

where,

Υ = {h|hxy = hxz = hyz = hx + hy, hxyz = −∞}, (5.159)

Ξ = {h|hz ≥
1

2
log(e2hx + e2hy)}. (5.160)

An interesting observation is the following:

Lemma 5.6.1 (Convexity of the set defined by the EPI) The set of entropy

vectors Ξ = {h|hz ≥ 1
2

log(e2hx + e2hy)} is convex.

Proof: Convexity in hz is obvious. Convexity in hx and hy follows from the (readily-

verified) fact that the function log(e2hx + e2hy) is convex in these variables. �

In what follows we will show that Ψ3 can be completely characterized.

Theorem 5.6.2 (Entropy region of x, y, and x+ y) If x, y ∈ Rm are two in-

dependent, vector-valued continuous random variables and z = x+ y, the entropy re-

gion of x, y, and z, i.e., Ψ3, is

Ψ3 = Γc3 ∩Υ ∩ Ξ. (5.161)

Proof: From (5.158), we know that Γc3 ∩Υ∩ Ξ is an outer bound. Therefore in order

to prove the tightness of this outer bound we need to show that the points in the

right-hand side of (5.161) are all achievable. To do this, we shall show that, for any

fixed hx and hy, the value of hz can grow unbounded. Since the lower bound on the

EPI can be achieved by Gaussians with proportional covariance matrix, the convexity
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of Ξ (established in Lemma 5.6.1) implies that all points in the set defined by the

EPI are achievable.

We therefore focus on showing that for any fixed finite hx and hy, hz can grow

unbounded. Let x and y be two independent Gaussian random variables, N (0, εIm +

σ2
xUxU

T
x ) and N (0, εIm + σ2

yUyU
T
y ), respectively, where Ux, Uy are m ×m/2 unitary

matrices orthogonal to each other, i.e., UT
x Ux = UT

y Uy = Im/2 and UT
x Uy = 0.

Calculating the normalized entropy of a Gaussian gives,

hx =
1

2
log 2πe+

1

4
log ε(ε+ σ2

x), (5.162)

hy =
1

2
log 2πe+

1

4
log ε(ε+ σ2

y). (5.163)

On the other hand z is also a Gaussian, N (0, 2εIm + σ2
xUxU

T
x + σ2

yUyU
T
y ), for which

calculating the normalized entropy gives,

hz =
1

2
log 2πe+

1

4
log(2ε+ σ2

x)(2ε+ σ2
y). (5.164)

The orthogonality of Ux and Uy is critical in the above calculation.

Now note that if, in particular, we choose σ2
x = e4cx

(2πe)2ε
− ε and σ2

y = e4cy

(2πe)2ε
− ε for

some finite positive cx and cy and let ε→ 0, we obtain,

hx = cx, hy = cy, hz →∞. (5.165)

Therefore while x and y have finite entropy, the entropy of their sum can become

arbitrarily large. �

We should remark that while aligned covariances for x and y result in tightness of

the EPI, the above proof shows that the orthogonality structure of Ux and Uy helped

in making hz arbitrary big. This resonates with the Brunn-Minkowski viewpoint of

the EPI [CT91].



182

Figure 5.2: Interference channel

5.6.2 A Case Study: The Interference Channel

In this section, we show how by performing an optimization over the polymatroid

region, one can obtain outer bounds for certain networks. In particular, we consider

the Gaussian interference channel and obtain the outer bound of [ETW08] through a

duality argument.

Consider the Gaussian interference channel of Fig. 5.2, where we are interested

in optimizing the sum rate I(x1; y1) + I(x2; y2). The received signals y1 and y2 can

be described by the following equations:

y1 = c11x1 + c21x2 + z1 (5.166)

y2 = c12x1 + c22x2 + z2, (5.167)

where z1 and z2 are independent, zero-mean, complex Gaussian random variables

CN (0, N0) and x1 and x2 are power constrained by P1 and P2. To maximize the

sum rate, based on discussions of chapter 2, we should solve an optimization problem

over the entropy region of x1, x2, y1, y2, z1, z2. However, if we are interested in an

outer bound, we can perform the optimization over the polymatroid region (which

is known), and use some auxiliary random variables as well. Define the following
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auxiliary random variables

s1 = y2|x2 (5.168)

s2 = y1|x1, (5.169)

which are the parallels of the side-information defined in [ETW08]. Through these

definitions, and using the properties of z1 and z2, we can write the following con-

straints for joint entropies,

hs1,x1 − hx1 = hx1,x2,y2 − hx1,x2 = hz2 = log(πeN0) (5.170)

hs2,x2 − hx2 = hx1,x2,y1 − hx1,x2 = hz1 = log(πeN0) (5.171)

These conditions simplify to

hx1,x2,y2 − hx1,x2 − log(πeN0) = 0 (5.172)

hx1,x2,y1 − hx1,x2 − log(πeN0) = 0 (5.173)

Furthermore, for y1|(s1, x1), we have hy1|(s1,x1) = hy1|(z2,x1) = hy1|x1 . Therefore,

hy1|(s1,x1) =hy1,s1,x1−hs1,x1 =hx1,y1+hx1x2y1y2−hx1x2y1−hx1−hy2x1x2+hx1x2 =hx1y1−hx1

(5.174)

which also simplifies to

hx1x2y1y2 − hx1x2y1 − hy2x1x2 + hx1x2 = 0 (5.175)

Likewise for y2|(s2, x2) we can write

hx1x2y1y2 − hx1x2y2 − hy1x1x2 + hx1x2 = 0 (5.176)
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Now, for hy1|s1 , we have

hy1|s1 = hy1,s1 − hs1 = hx2y1y2 + hy1 + hx2 − hx2y1 − hx2y2 (5.177)

Assume u1 = (y1|s1), then

E [Var(u1)] = E|y1|2 −
E(y1s

∗
1)E(s1y

∗
1)

E|s1|2
= N0

(
1 +
|c21|2P2

N0

+
|c11|2P1/N0

1 + |c12|2P1/N0

)
(5.178)

If we let K1 , 1 + |c21|2P2

N0
+ |c11|2P1/N0

1+|c12|2P1/N0
, then

hy1|s1 = hx2y1y2 + hy1 + hx2 − hx2y1 − hx2y2 ≤ log(πeN0K1) (5.179)

Repeating the same process for y2|s2 and defining K2 , 1 + |c12|2P1

N0
+ |c22|2P2/N0

1+|c21|2P2/N0
, we

obtain

hy2|s2 = hx1y1y2 + hy2 + hx1 − hx1y2 − hx1y1 ≤ log(πeN0K2) (5.180)

Now we should optimize the following objective function:

max I(x1; y1) + I(x2; y2) (5.181)

subject to h ∈ Γ8, and the constraints (5.172)–(5.173), (5.175)–(5.176), and (5.179)–

(5.180), where h is the entropy vector of the random variables x1, x2, y1, y2, z1, z2, s1, s2,

and Γ8 is the polymatroid region of 8 variables.

Assume we denote the equality constraints of equations (5.172),(5.173),(5.175),

and (5.176) by g1 = 0, . . . , g4 = 0 respectively, and the inequality constraints (5.179)–

(5.180) by f1 ≤ 0 and f2 ≤ 0, correspondingly. If we denote the rate of transmitter i
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by Ri then we can use the duality argument of convex optimization to write

R1 +R2 ≤ max
h∈Γ8,fi≤0,gi=0

I(x1; y1) + I(x2; y2)

= max
h∈Γ8

min
λi≥0,µi

I(x1; y1) + I(x2; y2)−
∑
i

λifi +
∑
i

µigi

= min
λi≥0,µi

max
h∈Γ8

I(x1; y1) + I(x2; y2)−
∑
i

λifi +
∑
i

µigi

≤ max
h∈Γ8

I(x1; y1) + I(x2; y2)−
∑
i

λ̃ifi +
∑
i

µ̃igi (5.182)

where in the last inequality, λ̃i and µ̃i, denote a particular choice for λi ≥ 0 and µi.

In fact, if we choose λ̃1 = λ̃2 = 1, and µ̃i = 1, i = 1, . . . , 4, we obtain

R1 +R2 ≤ max
h∈Γ8

(logK1 + logK2 − (hx2y1y2 + hx1x2y1 − hx2y1 − hx1x2y1y2)

−(hx1y1y2 + hx1x2y2 − hx1y2 − hx1x2y1y2)) (5.183)

However,

hx2y1y2 + hx1x2y1 − hx2y1 − hx1x2y1y2 ≥ 0 (5.184)

hx1y1y2 + hx1x2y2 − hx1y2 − hx1x2y1y2 ≥ 0, (5.185)

as they are polymatroid inequalities. Hence,

R1 +R2 ≤ logK1 + logK2, (5.186)

which if we replace for K1 and K2 yields the upper bound of [ETW08].

5.7 Conclusions

In this chapter, we studied the entropy region of jointly Gaussian random variables as

an interesting subclass of continuous random variables. In particular we characterized
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the region for n ≤ 3, and for n ≥ 4 we explicitly stated the set of 2n − 1 − n(n+1)
2

constraints that an entropy vector (equivalently the vector of principal minors) should

satisfy in order to correspond to the entropy vector of n scalar jointly Gaussian ran-

dom variables. These relations are intimately related to the Cayley’s hyperdetermi-

nant formula. Therefore with this viewpoint we also examined the hyperdeterminant

relations. In particular, by giving a determinant formula for a multilinear form, we

gave a transparent proof that the hyperdeterminant relation is satisfied by the prin-

cipal minors of an n×n symmetric matrix. Moreover we also obtained a determinant

form for the 2 × 2 × 2 hyperdeterminant which might be extendible to higher-order

formats and is an interesting problem even on its own.

We also considered the entropy region of continuous random variables in the con-

text of wireless networks and argued that in such cases the information inequalities

involving sums of random variables, such as the well-known entropy power inequality

(EPI), are important. We then studied the entropy region of x, y, and z = x + y,

where x and y are independent, as the simplest case and showed that all the entropy

vectors of 3 random variables which satisfy EPI are achievable by such x, y, and z.

Finally, as a particular example of a wireless network, we considered the interference

channel, and obtained the capacity outer bound of [ETW08] through the entropy

optimization framework.
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Chapter 6

Entropy Optimization and
Nonlinear Network Coding via
MCMC

6.1 Introduction

Although determining the space of entropic vectors for n random variables, denoted

by Γ∗n, is crucial for solving a large class of network information theory problems,

there has been scant progress in explicitly characterizing Γ∗n for n ≥ 4. Since the goal

is most often to perform optimization over Γ̄∗n (to solve a network information theory

problem, say), in the absence of an explicit characterization of the entropy region, the

next best thing is to present a method to numerically perform optimization over this

region. Presenting such a numerical framework is the goal of the current chapter.

The approach we shall take is via a design of a random walk over probability dis-

tributions, and, in particular, over the class of quasi-uniform distributions. It is well

known that the class of quasi-uniform distributions is sufficient to approximate the

entropic region to any fidelity. The random walk over this characterization of distri-

butions, when coupled with a suitable Monte Carlo Markov Chain (MCMC) method,

allows for optimization of any function of the entropy vector. As an example, we

apply this method to maximize the Ingleton violation for entropy vectors where the

results are very encouraging. Furthermore, we show how the MCMC method can
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be used as a framework to design optimal nonlinear network codes in a distributed

fashion via performing a random walk over certain truth tables. Moreover we show

how this method may also be used to find linear representations for matroids. We

demonstrate the efficacy of the method by looking at many different examples: maxi-

mizing capacity of the Vamos, Fano, non-Fano, and M networks, and the exact repair

problem in (4,2) and (5,3) settings. We also apply the method to the non-Pappus and

the U24 matroids and show how (multi-)linear representations can be easily found for

them.

6.2 Entropy Vectors and Quasi-Uniform

Distributions

At first sight, the difficulty in characterizing Γ̄∗n appears to be that one must consider

all possible joint distributions of n random variables for all alphabet sizes. How-

ever, recall from Chapter 3 that the class of quasi-uniform distributions are sufficient

for characterizing the whole entropy region. A distribution is called quasi-uniform

[Cha01] if its probability mass function, as well as the probability mass function of all

its marginals, takes on a constant or zero value on all points in the sample space. An

example of a quasi-uniform distribution in two variables is given in Fig. 6.1, where

each “x” means that a constant nonzero probability of 1
24

is assigned to that point

in the sample space. As can be seen, one marginal is uniform with probability 1
8

and

the other is quasi-uniform with probabilities 0 and 1
6
.

Let Λn denote the space of entropy vectors generated by quasi-uniform distribu-

tions. We already saw the following result in Chapter 3, Theorem 3.2.3. Here we

state it again as it is relevant:

Theorem 6.2.1 (Quasi-Uniform Distributions) [Cha01] The closure of the cone

of Λn is the closure of Γ∗n.
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In Chapter 3 we saw a sketch of the proof of this theorem via the concept of finite

groups. However this result can also be motivated by recourse to the concept of

“strong typical sequences”. To this end, make T independent copies of each of our

random variables, to get vector-valued sequences of length T . As T → ∞, with

probability approaching one, we will only encounter typical sequences. If we assign a

constant probability to all typical sequences, and zero probability to non-typical ones,

it is straightforward to see that we end up with a quasi-uniform distribution with the

same entropy vector. The entropy is simply the log of the number of typical sequences

divided by T , thus for the joint entropy of a set of random variables (Xi, i ∈ α),

α ⊆ {1, . . . , n}, and alphabet size N , we have

hα '
1

T
log

T !∏
xα
Txα !

, Txα = T · p(Xα = xα),
∑
xα

Txα = T. (6.1)

In fact, this is essentially the statistical physics interpretation of entropy. However,

(6.1) can also be interpreted in terms of subgroups of the permutation group on T

elements. T ! is simply the size of the permutation group, whereas if we partition the

T elements into N |α| disjoint sets of sizes Txα , respectively, then
∏

xα
Txα ! is simply

the size of the subgroup of permutations that respects this partition. Therefore as was

seen in Chapter 3, Theorem 3.2.3, this again leads to a connection between entropy

and groups.

Although, based on Theorem 6.2.1, determining all the quasi-uniform distributions

Figure 6.1: An example of a quasi-uniform distribution
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is equivalent to characterizing Γ∗n, it appears that determining all quasi-uniforms is

a hard combinatorial problem. In the next section, we shall use (6.1) to characterize

all possible entropy vectors of quasi-uniform distributions and to propose a random

walk over them.

6.3 Entropy Optimization

6.3.1 A Characterization of Quasi-Uniform Distributions

As mentioned in the previous section, determining all quasi-uniform distributions

seems to be a hard combinatorial problem. An idea to tackle this problem is to be able

to sample from the space of such distributions by designing a random walk on them.

However in order to do so, we need a method that 1) determines how to move from

any quasi-uniform to any other such distribution, therefore defining an irreducible

Markov chain, and 2) exhausts all quasi-uniforms. Working with distribution tables,

like the one in Fig. 6.1, quickly reveals that devising a method to move from one quasi-

uniform distribution to another is highly non-trivial. On the other hand, given that

any entropy can be approximated by (6.1), one can characterize the entropies of quasi-

uniform distributions (by characterizing all possible partitions and joint partitions of

T elements), and then perform a random walk on the entropy vectors. The idea is as

follows:

Let n be the number of random variables. Choose values T and N and construct a

T×n table with entries drawn from the set {0, 1, . . . , N−1}. Each column of the table

corresponds to one of the random variables and induces a partition of T elements into

at most N disjoint sets, if we let the entries with the same value belong to the same

partition. The entropy of the corresponding random variable is simply computed

from (6.1) using this induced partition. Similarly for α ⊆ {1, . . . , n}, any |α|-tuple of

columns defines a partition of the T elements into at most N |α| disjoint sets (identical
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rows belong to the same partition). Again, the joint entropy of the corresponding

collection of random variables is computed from (6.1) using this induced partition

[CY02].

Example: Consider the following table of size T = 5 by n = 2 with N = 2:



0 1

1 0

1 0

1 1

0 1


.

The partitions for the first column will be T0 = |{0, 0}| = 2 and T1 = |{1, 1, 1}| = 3,

whose corresponding quasi-uniform entropy will be h1 = log2
5!

2!3!
= log2 10. For the

second column the partitions are similarly T0 = |{0, 0}| = 2 and T1 = |{1, 1, 1}| = 3,

giving h2 = log2
5!

2!3!
= log2 10. And finally for both columns the partitions are

T00 = |{(0, 1), (0, 1)}| = 2, T10 = |{(1, 0), (1, 0)}| = 2, and T11 = |{(1, 1)}| = 1, and

clearly T00 = 0, resulting in h12 = log2
5!

2!2!1!
= log2 30.

Lemma 6.3.1 Every such T × n table corresponds to a quasi-uniform distribution.

Furthermore, as T and N grow, we encounter the set of all quasi-uniform distributions

over n variables that are sufficient to characterize Γ∗n.

Proof: Assume that the given table corresponds to T independent copies of n random

variables Xi with alphabet size N . Then from the above definition of partition on

T elements and also (6.1), it is clear that we can assign a permutation group G

on T elements and define its subgroups Gi as the ones that permute within each

partition. It is then straightforward to generate quasi-uniform distributions from

groups. In fact for a group G and its subgroups G1, . . . , Gn, define new random

variables X̃i, i = 1, . . . .n with alphabet sizes |G|
|Gi| each, i.e., the number of cosets
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induced by each Gi. For each element g ∈ G, obtain an n-dimensional vector v

whose i-th component is the index of the coset induced by Gi that g belongs to.

Assign a constant probability to PX̃1,...,X̃n
(v) for every vector v in the sample space

encountered in this fashion, and assign zero probability to all other vectors in the

sample space. It is not too difficult to see that the resulting distribution on X̃i is

quasi-uniform, whose joint entropy hX̃α = h(X̃i, i ∈ α) for α ⊆ {1, . . . , n} is obtained

from log |G|
|∩i∈αGi| = log T !∏

xα
Txα !

. Therefore to every T ×n table, we can assign a quasi-

uniform distribution. Moreover as N and T grow, we allow for all alphabet sizes of

distributions and also make the approximation (6.1) more precise, which means that

we will asymptotically encounter the set of all the quasi-uniform distributions over n

random variables that are sufficient for characterizing Γ∗n. �

Remark: Note that an alternative way of obtaining entropy vectors from a gener-

ated T ×n table is to view it as the empirical distribution of the variables X1, . . . , Xn,

in which case we simply have hXα = −
∑

xα

Txα
T

log Txα
T

. Therefore from every table

we can obtain two entropy vectors; hX from the empirical distribution on Xi and hX̃

from the associated quasi-uniform distributions of X̃i. Note that in the limit when

T → ∞, approximation (6.1) becomes exact and, as described in Lemma 6.3.1, we

will have hX = 1
T
hX̃ .

For fixed N and T , the space of such obtained quasi-uniform or empirical distri-

butions is connected. In other words one can move from a quasi-uniform/empirical

distribution, corresponding to a table A, to another quasi-uniform/empirical distri-

bution, corresponding to a table B, by a chain of changes in the entries of the table

that transforms table A to table B. We can thus perform a random walk over the dis-

tributions by randomly choosing an entry of the T × n table and randomly changing

its value. In this manner we can numerically stake out the entropic region.

Of course, to numerically stake out the entropy region with higher and higher

fidelity requires one to increase the values of T and N . This results in an increase
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in the size of the search space and slows down the MCMC methods we describe

next. Thus, there is a trade-off between the quality of the results and the speed of

the optimization program. Choosing the right T and N may therefore be of critical

importance.

6.3.2 Entropy Optimization via Markov Chain Monte Carlo

Assume that we have the following optimization problem,

max
h∈Γ∗n

f(h), (6.2)

where f(·) is some function of the entropy vector. As mentioned earlier, an idea to

perform this optimization numerically is to use Monte Carlo methods to sample the

entropy region, or, equivalently, the space of distribution tables. Assuming each dis-

tribution table as a state S, this means that one needs to sample from this state space

according to some probability distribution π. Markov Chain Monte Carlo methods

are usually used for this purpose in which by designing a Markov Chain with a sta-

tionary distribution π on the system’s state space, and then simulating the Markov

Chain for a long time (such that the chain has converged), one can sample from

π. To design a Markov Chain one needs to define a local move in the state space

and the probability of moving (transition) from one state to another. Following the

arguments of the last section, we can easily define a local move on the distribution

tables (and hence on the entropy space) of n random variables for fixed T and N .

To do so, we first generate a T × n table1 either randomly, or by initializing it to

some desired value. Then the local move would simply consist of choosing an entry

of the table at random and changing its value to any other of the N − 1 possible

choices randomly. If we accept each new move with probability 1
2
, then this would

1In general we can assume that the random variables are vector valued of size l, in which case
we should replace n with nl everywhere.
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amount to a random walk on the space of distribution tables which is equivalent to

sampling from a uniform distribution π. However a pure random walk explores the

state space very slowly and is not an efficient method for performing the optimization

(6.2). Denoting the cost associated with entropy vector hS of the distribution table

S by cS, i.e., cS = f(hS), then a standard technique to do the optimization is to set

the target distribution π as,

π(S) =
eθcS∑
S′ e

θcS′
(6.3)

where θ is a parameter usually called the temperature. Note that by tuning θ one can

somewhat control the highs and lows of the distribution. In particular a distribution

with large θ would favor states with higher costs and a small θ would make the distri-

bution close to uniform. To sample from this distribution we choose a variant of the

Metropolis algorithm 1. One can consider different choices of transition probabilities.

Here we accept each move with probability,

a =
π(S ′)

π(S) + π(S ′)
=

eθcS′

eθcS + eθcS′
. (6.4)

Taking into account the probability of choosing an entry of the table as the result

of the local move yields the transition probability pS′S = 1
nT (N−1)

a. Note that the

choice of acceptance ratio (6.4) is not as common as min
(

1, π(S′)
π(S)

)
, which is the

usual acceptance ratio of a move in the Metropolis algorithm [JS98].2 However this

transition probability (likewise the traditional transition probability) also renders the

Markov chain irreducible and aperiodic; irreducible because simply there is a path

1Note that in the Metropolis algorithm there is usually a proposal distribution Qcc′ involved
[Mac03] which, at each step, is the distribution (different from the target distribution) that de-
termines how to make a local move from a current state S to the next S′. Of course accepting
the move is another matter. In this case our proposal distribution is nothing but the symmetric
QS′S = QSS′ = 1

nT (N−1) .
2Note that if the alphabet size N = 2, then (6.4) may be viewed as Prob(S′|S) and therefore this

method will be equivalent as well to the Gibbs sampler (a.k.a. heat bath or Glauber dynamics).
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between any two states, and aperiodic because the probability of returning to a state

in any number of steps is positive. Moreover note that the Markov chain will be

reversible, i.e., πSpS′S = πS′pSS′ , and hence π will be a stationary distribution for the

chain. Furthermore since the chain is irreducible and aperiodic, if we run the chain

for a long time it will converge to the stationary distribution (6.3).

Note that this method can be considered as a simulated annealing with fixed

temperature. While in simulated annealing the parameter θ is changed during the

simulation based on a cooling schedule, here we choose a fixed θ at the beginning.

However care should be given to the choice of θ. When θ is large, the stationary

distribution will have a large peak at the optimal cost and therefore the chances of

encountering it (once we are in steady state) is high. However, a large θ often means

that convergence to the steady-state distribution can be slow (we may frequently get

stuck in local maxima), as (6.4) heavily favors transitions to higher costs. On the

other hand, for small values of θ, convergence to the steady state is much faster (as

(6.4) is more amenable to escape from local maxima). However, the peak in (6.3) is

not very pronounced at the optimal cost and so it might take a very long time until

we encounter it. Therefore there is a trade-off between speed of convergence to the

stationary distribution and the probability of encountering the optimal cost once the

Markov chain has converged. And so choice of the correct value of θ is critical and

may require trial and error.

Henceforth we will refer to the method just described as the MCMC method for

simplicity. In the next section we show how using this algorithm yields interesting

new results for maximization of a function of an entropy vector.

6.3.3 Ingleton Violation via MCMC

As an application of the MCMC method just described, we consider maximizing the

violation of the Ingleton inequality. The Ingleton inequality holds for entropy vectors
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Figure 6.2: The violation index
∆ij

‖h‖ is proportional to cos(β).

of the random variables involved in a linear network code (and more generally entropy

vectors obtained from Abelian groups [Cha07b]) and is given by [Ing71],

∆ij , hi + hj + hijk + hijl + hkl − hij − hik − hil − hjk − hjl ≤ 0. (6.5)

However, the Ingleton inequality is not a bound on the entropy region, and there

exist entropy vectors that violate it. We define the “violation index” as
∆ij

‖h‖ . Note

that the normalization is critical as entropy is a cone. Furthermore, the violation

index is proportional to the cosine of the angle between the vector h and the vector

orthogonal to the Ingleton plane (see Fig. 6.2).

To maximize the violation index using the Monte Carlo method, first we have

generated a distribution table of size T ×4l, i.e., for 4 vector-valued random variables

of size l in general. As stated earlier, to each distribution table we can associate two

entropy vectors; one obtained by considering the table as the empirical distribution

of the random variables, and the other by recognizing the partitions induced on

the random variables through the table and computing the entropies based on the

quasi-uniform argument. We have computed violation indices through both methods

for each table. Interestingly, by using the MCMC method for this problem, with

parameters T = 1000, N = 2, l = 1, and θ = 6× 106, we have found violation indices

that are much bigger than the indices of the known Ingleton violating examples in the

literature. When computing the entropies based on quasi-uniforms, we have found
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Figure 6.3: A sample run of MCMC for Ingleton violation. Entropy computed based
on empirical distribution (frequency-based) and also partitions (group-based). Hori-
zontal lines show the violations of known examples in the literature.

a maximum violation of 0.02761, and when computing the entropies directly from

the distribution tables (empirical), we have found a maximum value of 0.02812. The

corresponding simulation is depicted in Fig. 6.3.

Let Xi i = 1, 2, 3, 4 be the 4 random variables that we are considering, and let

fα(xα), α ⊆ {1, 2, 3, 4} denote the frequency of appearance of {Xi = xi, i ∈ α} in the

T rows of the distribution table, and fα denote the vector of fα(xα) for all values of

xα. Then f1234 which is proportional to the joint distribution corresponding to the

optimized violation indices is as follows,

f1234(x1x2x3x4) =



334 (x1x2x3x4) = (0111)

351 (x1x2x3x4) = (1000)

158 (x1x2x3x4) = (1101)

157 (x1x2x3x4) = (1110)

0 otherwise

. (6.6)
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Note that to compute the entropy based on the empirical distribution of the random

variables, one can obtain joint entropy through hα = −
∑ fα(xα)

T
log fα(xα)

T
. On the

other hand if one wishes to compute the entropies based on partitions, then each value

of fα(xα) gives the size of one of the segments of the partition of Xα, and therefore

the group-derived entropy will be obtained via hα = 1
T

log T !∏
xα

fα(xα)!
.

Note that although it is well known that the entropies do not satisfy the Ingleton

inequality in general, there are only a handful of examples known that violate this

bound. Understanding which entropy vectors lie outside of the Ingleton bound or how

far one can go beyond this bound while staying in the entropy region are interesting

questions whose answers will help us in better understanding the entropy region.

For the sake of comparison, note that the violation index of the non-quasi-uniform

examples of [HRSV00] are 0.01974 and 0.00590. The violation index of the quasi-

uniform example of [ZY98] which is obtained by defining a certain distribution based

on projective planes is 0.0073, and the maximum violation index value of Ingleton

violating example PGL(2, p) of [MH09] is 0.0082, which occurs for p = 13. These

values are marked in Fig. 6.3.

6.4 Nonlinear Network Coding

The idea of a random walk over distributions in Section 6.3 can be extended to a biased

random walk (Markov Chain Monte Carlo) over all (possibly nonlinear) operations

in a network.

Assume that vector-valued signals of size l over alphabet size N are transmitted

across edges of the network.1 In such a setup, if the in-degree of a particular node

in the network is D, then the node must map each of its possible N l×D inputs to

its corresponding outputs. For each output, this mapping can be represented by a

truth table with D + 1 block columns of size l, the last block column representing

1In general, source variables and middle variables of the network can be of different vector sizes.
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the output, and N l×D rows (one for each input combination). There are a total of

N l×N l×D
possible truth tables, and thus a total of N l×N l×D

possible nonlinear network

operations for this particular output of the internal node. On the other hand, note

that, if we restrict ourselves to linear mappings, there will only be N l2×D possible

mappings (i.e., the coefficient matrix) for this output of the node. The total number

of nonlinear network operations is obtained from the conjunction of the possible

operations for each internal node and can be computed to be:

N
∑
j∈ν,j /∈Ssource∪Ssink

l×|Out(j)|N l×|In(j)|
, (6.7)

where |Out(j)| and |In(j)| are the out- and in-degree of the node j. On the other

hand for linear coding, the total number of possible codes are,

N
∑
j∈ν,j /∈Ssource∪Ssink

l2D|out(j)|. (6.8)

Considering truth tables in the case of nonlinear mappings, and coefficient matrices

in the case of linear codes, as the states of the system, we can define a Markov chain

on these state spaces similar to what we did in Section 6.3. However we can perform

the local moves in two manners. The first way is to choose an entry of the truth

table or the coefficient matrix uniformly and changing its value to any other N − 1

possible values. We call this method the “uniform flip” and this will be similar to

what we did in Section 6.3. Another way is to first choose an internal node randomly,

choose an output of this node at random, and then select one of the entries of its

truth table or the local coefficient matrix randomly, and then flip its value to any

other N − 1 possible values. We call this method the “node-wise flip”. Assuming

that we want to maximize some cost function of the network that can be written

in terms of entropy (such as the weighted sum rate), we can define the stationary

distribution and the transition probabilities as (6.3) and (6.4) in Section 6.3. Both
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the uniform and node-wise flip render the Markov chain aperiodic and irreducible,

and assuming (6.3) and (6.4) the chain will also be reversible. However the node-wise

flip will allow us to adjust the method for distributed operation over the networks,

as will be discussed in Section 6.6. To summarize, the same MCMC technique can

be applied on the network operations to bias them toward large costs.

In what follows we have applied this method to maximize the sum-rate of different

networks. In particular we show how solutions (linear or nonlinear) can emerge from

this technique.

Remark: In the networks that we analyze, we normalize the sum-rate such that

when all the sinks successfully recover their demands, normalized sum-rate becomes

equal to 1. In such cases the MCMC method gives a valid linear or nonlinear code

that solves the network. However, if the optimum sum-rate turns out to be less than

1, then it essentially means that one or more sinks do not fully reconstruct their

demands, in which case a coding is required to deliver the found optimum rate to

each sink.

6.4.1 Random Walk on Truth Tables

We have applied the MCMC method described in the last section to some networks

of interest, and in what follows we give the simulation results and their comparison

with the existing results.

6.4.1.1 Vamos Network

The Vamos network (Fig. 6.4b) is obtained from the well-known Vamos matroid

(Fig. 6.4a) and was first introduced in [DFZ06b], where the authors showed that

the network is not solvable and proved the insufficiency of Shannon-type informa-

tion inequalities for determining the capacity of general networks, reaffirming the

importance of the full characterization of Γ∗n. However using a non-Shannon type in-
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Figure 6.4: The Vamos matroid and network

formation inequality, they provided an upper bound of 10/11 for the network coding

capacity.

They also found the linear coding capacity of the Vamos network to be 5
6

over

every finite field and gave a (5, 6) vector-valued solution, i.e., a linear solution with

vector size of 5 for sources and vector size of 6 for the rest of the network variables.

In this network a, b, c, d are sources and x, y, z, w are internal messages. There are 5

sinks whose demands are shown below them in Fig. 6.4b.
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Figure 6.5: Monte Carlo simulation to optimize the sum rate of the Vamos network
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Table 6.1: Truth tables for the Vamos network yielding the normalized sum rate of 5
6

a b c d w
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

a b w x
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

b c x y
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

c d y z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

We consider the following normalized sum rate as the cost function,

1

6× l × log(N)

(
I(b; dz) + I(a; bcdz) + I(bc; adzw) + I(d; abcy) + I(c; awy)

)

where 6 is the total number of demands, l accounts for the vector length of source

random variables, and N is the alphabet size. To maximize this cost, we employ the

Monte Carlo method as stated in the previous section to do a random walk on the

truth tables of this network. Since there are 4 message variables in the network, there

will be a total of 4 truth tables—for x, y, z, and w, respectively.

Assuming the simplest case, we considered N = 2, i.e., binary alphabet-size, and

scalar valued random variables for all the source and message variables and searched

for nonlinear codes. A sample run of this Monte Carlo maximization can be seen in

Fig. 6.5a where the normalized sum rate has quickly reached the point 5
6

= 0.8333,

i.e., the linear coding capacity of the network. The truth tables that correspond

to this maximized sum rate can be seen in Table 6.1. Note that each run of the

network with similar parameters potentially finds new truth tables for the network,
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and the one that we state here is only one of the many potential solutions. A little

examination of the table reveals the following nonlinear coding found for the variables

of the network,

w = b+ c+ d, x = w, y = c+ x, z = dy + cd (6.9)

where all operations are over GF(2) and (.) refers to the NOT operation over binaries.

One can easily see that all the demands of the network can be fully recovered except

the demand of the second sink which wants a. This is clearly due to the fact that in

this coding message a is not carried into the network. Therefore the normalized sum

rate of the network for this code becomes 5
6
.

Although there is the 10
11

upper bound for this network, running the simulation

for many more iterations did not result in a better sum rate than 5
6
, raising the

possibility that this is the best achievable rate among all nonlinear scalar binary

codes. Nonetheless, we have simply found a rate 5
6

linear code over binaries for this

network—in which sources are vectors of size 5 and the rest of the variables are of size

6—that achieves the normalized sum rate of 1. Note that a (5, 6) linear solution for

this network has been previously reported in [DFZ07]. Here we want to emphasize

the ability of this method to find similar solutions. The corresponding simulation can

be seen in Fig. 6.5b, and the actual found solution with the encoding and decoding

mappings are stated in the appendix.

6.4.1.2 Fano and Non-Fano Networks

The Fano network is constructed from the Fano matroid (Fig. 6.6) and was first

introduced in [DFZ07]. The Fano network was shown in [DFZ06c] to be solvable if

and only if the alphabet size is a power of 2. In particular for the case of linear codes,

it was proved in [DFZ05] that this network has a scalar linear solution over any ring

with characteristic 2, and does not have any vector linear solution over a finite field
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Figure 6.6: Fano matroid and network

with odd characteristic, irrespective of the vector dimension.

This is similar to the property of the Fano matroid which is known to be repre-

sentable if and only if the field characteristic is 2. Note that since any scalar/multilinear

representation of the Fano matroid immediately induces a linear solution to the Fano

network, the fact that the Fano network does not admit any vector linear solution over

fields of odd characteristic implies that the Fano matroid does not have a multi-linear

representation over fields of odd characteristic either. The Monte Carlo method has

shown to be promising in this case as well. As can be seen from Fig. 6.8a, it has

quickly found scalar linear codes for the network over even characteristic fields GF(2)

and GF(4), and also a nonlinear code over alphabet size 2.

The non-Fano network is also similarly constructed from the non-Fano matroid

(Fig. 6.7) [DFZ07]. The non-Fano matroid (Fig. 6.7a) is very similar to the Fano

matroid except that, as opposed to the Fano where the elements {2, 4, 6} formed a

circuit, this set is now an independent set of the non-Fano matroid. Interestingly the

non-Fano network was shown in [DFZ06c] to be solvable if and only if the alphabet

size is odd. In other words this network is solvable only over alphabet sizes where the
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Fano network is not solvable. Moreover in [DFZ05] it is proved that while this network

admits a scalar linear solution over any ring in which 2 is an invertible element, it

does not have vector linear solution over any field with characteristic 2 for any vector

dimension. Again this is similar to the property of the non-Fano matroid, which is

known to be representable only over fields with characteristic other than 2. Moreover

from the property of the non-Fano network, we deduce that the non-Fano matroid
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Figure 6.9: M network and the corresponding MCMC simulation

does not have a multi-linear representation over fields with characteristic 2. Some

of the Monte Carlo simulations for the non-Fano matroid can be seen in Fig. 6.8b,

where it has successfully found scalar and vector linear solutions over GF(3) and

also a scalar nonlinear code over GF(3). The combination of the Fano and non-Fano

network was used in [DFZ05] to construct a network that is not linearly solvable.

6.4.1.3 M Network

This network was first introduced in [MEKH03] as an example of a network which

does not have any scalar linear solution, however it has a simple routing solution on

a vector space of dimension 2. Later [DFZ07] showed that this solution can be easily

extended to any vector linear solution of even dimension and in fact this network does

not admit any linear solution over vector spaces of odd dimensions. This network is

depicted in Fig. 6.9a, from which it can be seen that the network gets its name from

its shape. The Monte Carlo has successfully found a vector linear solution of length

2 over binaries, as expected (Fig. 6.9b).
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6.4.1.4 Repair Problem in a Storage System

In distributed storage systems where there is a possibility of failure for storing devices,

some form of redundancy needs to be introduced in order to maintain a reliable

system. While the simplest form of redundancy is replication, it has been proved

that coding is more advantageous than replication [DRWS11]. In general the data

that needs to be stored is assumed to be of sizeM and is encoded into n packets of the

same size. Each encoded piece is assumed to be stored at a “storage node”. Since the

ultimate goal is to recover the original data, one should be able to recover the source

messages by merely accessing the n encoded data packets. This can be achieved

using different coding schemes, such as the erasure codes. However if the storage

nodes themselves also fail or leave the network over the time, then the reliability of

the storage system will diminish. Therefore there should be a mechanism in place

that allows the network to repair itself, meaning that whenever a storage node fails,

the network can construct new data packets and store them at a new storage node,

such that the new data—along with the information of the surviving storage nodes—

again forms a desired code that allows the recovery of the original source data. The

network should construct data for the substitute storage node solely by accessing the

surviving (working) storage nodes. This is called the repair problem [DGYWR] and

is studied in three different scenarios which are recalled as the functional repair, exact

repair, and exact repair of systematic parts [DRWS11]. While the “functional repair”

requires that the newly constructed encoded packet for the substitute storage node

forms a desired code with the other surviving storage nodes such that the original

data can still be recovered, the “exact repair” requires that the newly constructed

data be exactly the same as the lost encoded data of the failed storage node. The

“exact repair of systematic parts” is a combination of the previous two methods,

where it is assumed that the code is systematic, meaning that an uncoded copy of the

source messages exists in the n encoded pieces and, when the systematic part of the
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encoded nodes fail, exact repair, and for the failure of the rest of the storage nodes,

functional repair is required. Since storage nodes may fail every once in a while, in

all these scenarios it is important to construct the new storage nodes by minimally

downloading data from the survivor nodes so as to prevent a large network traffic

due to repair. Determining the minimum required (download) bandwidth is a main

question in the repair problems.

The repair problem has been fully solved in some special cases; namely the func-

tional repair [DGYWR] and some regimes of the exact repair problem [DRWS11]. In

all those cases, it has happened that the cutset lower bound for optimal bandwidth

is tight.

As there has been an increasing interest in the repair problem, in this section we

consider two special cases of the “exact” repair problem and show that our MCMC

method is able to find explicit codes for these networks, even though these are larger

networks (i.e., involve greater number of random variables) compared to our previous

examples, and our MCMC search is performed over larger finite fields. Before getting

into details of the cases that we have considered, we explain the general setting for

the “exact” repair problem.

The graph model (Fig. 6.10) for this problem consists of a source and n storage

nodes which are directly connected to the source with infinite capacity [DGYWR].

Each storage node is formed from two sub-nodes and a directed edge between the

sub-nodes, which is assumed to carry the encoded data packet. The capacity of this

edge is the capacity of the storage node and is denoted by α. To ensure the recovery

of the original data one should be able to reconstruct the source from a subset of

the n storage nodes. Usually the symmetric case is considered where one assumes

that the source can be recovered from every subset of size k of the storage nodes.

Moreover to make the code “self-healing” in the exact repair sense, one needs to

guarantee the construction of each storage packet by accessing a subset of the rest of
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the other storage packets. Therefore considering symmetry, the assumption is that

every storage node can be recovered by accessing any d number of the remaining

storage nodes and downloading β bits of information from each of them. As a result,

the repair bandwidth will be equal to γ = dβ. By analyzing the cutset bound for this

graph, [DGYWR] has shown that there is a trade-off curve between optimal α and

γ, giving rise to two particular points of interest; the minimum bandwidth and the

minimum storage points. The codes that achieve these points are called minimum

bandwidth regenerating (MBR) codes and the minimum storage regenerating (MSR)

codes, respectively.

For a given original file size ofM, parameters d and k, the (α, γ) of the MSR point

is characterized in [DGYWR] by (αMSR, γMSR) =
(
M
k
, Md
k(d−k+1)

)
. Interestingly it is

observed in [DGYWR] that γMSR is a decreasing function of d, and therefore to achieve

the smallest repair bandwidth one should set d = n−1, i.e., once a storage node fails,

if all the remaining n− 1 nodes are employed for recovery of the lost encoded packet,

the total repair bandwidth can be reduced. Under the assumption of d = n − 1,

the (α, γ) of the MSR point becomes (αMSR, γ
min
MSR) =

(
M
k
, M(n−1)
k(n−k)

)
. Nonetheless,

note that since the MSR point corresponds to the optimal point obtained from the
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cutset bound, it may not be achievable for the exact repair problem (in contrast to

the functional repair for which the cutset bound is tight, as it can be reduced to a

multicast network coding scenario [DGYWR]). Assuming such point is achievable

one can make two assumptions about a storage network operating at the MSR point.

First, since the file is of size M and 1
k

of it is stored at each storage node, and

since every k of the storage nodes recovers the original file (similar to the property

of maximum distance separable (MDS) codes), one can assume that there are also

k sources each of size M
k

that are being encoded into n nodes. Furthermore, since

β = 1
n−k ·

M
k

, one can assume that each encoded packet is further split into n − k

sub-packets. Note that this is equivalent to considering vector codes of length n− k

for the repair problem at the MSR point. To summarize, this setting is equivalent to

a network coding problem where there are k sources with messages of length n − k,

n storage nodes with messages of also length n− k directly connected to the sources,

and two types of sinks (sinks that connect to any k subset of storage nodes with edges

of capacity n− k and demand the k sources, and sinks that connect to n− 1 of the n

storage nodes via edges of capacity 1 and demand the data of the nth storage node).

Note that if the MSR point is achievable for the exact repair, this network will be

solvable.

Here we consider two examples of the exact repair problem at the MSR point,

namely the (n, k) = (4, 2) and the (n, k) = (5, 3) cases. We denote the source variables

by a, b, etc., the encoded messages at the storage nodes by Xi, and the outgoing signal

of storage node i that is used for the recovery of storage packet j by Xij. As explained

previously, while source messages and also theXi variables are vectors of size n−k = 2,

Xij variables are scalar. These settings are partly shown in Fig. 6.11. Note that not

all the sinks are drawn. In both cases the cost that we intend to optimize via the
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MCMC method is the following normalized sum rate,

1

2m log(N)

 k∑
p=1

∑
α⊆{1,...,n}
|α|=k

I(Xps; {Xi i ∈ α}) +
n∑
i=1

I(Xi; {Xji, j 6= i})

 (6.10)

where Xps denotes the source messages (i.e., X1s = a, X2s = b, etc., division by

2 accounts for normalization by the length of the vectors n − k = 2, division by

m = k
(
n
k

)
+ n accounts for the number of terms in the parentheses, and division by

log(N) accounts for normalization by log of the alphabet-size).

Achievability of MSR for exact repair (n, k) = (4, 2):

This network is shown in Fig. 6.11a. To find codes over alphabet size N that

achieve the MSR point, we need to solve this network, which we will do by maximiz-

ing the cost (6.10) through a MCMC method. Linear codes that achieve the MSR

point have been previously reported [DRWS11]. Our Monte Carlo method has also

successfully found optimal cutset achieving code (corresponding to regenerating MSR

codes). Interestingly for the (4, 2) problem we have found both a linear and also a

non-linear solution. The simulations can be seen in Fig. 6.12.



212

0 50 100 150 200 250
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Normalized sum rate for (4,2) repair problem

iteration

no
rm

al
iz

ed
 s

um
 r

at
e

 

 

linear N = 3, θ = 500  

linear N = 2, θ = 220  

(a) Simulation for (4,2) repair problem
(linear codes)

0 500 1000 1500 2000 2500 3000 3500 4000
0.7

0.75

0.8

0.85

0.9

0.95

1
Normalized sum rate for (4,2) repair problem

iteration

no
rm

al
iz

ed
 s

um
 r

at
e

 

 

nonlinear N = 2, θ = 500  

(b) Simulation for (4,2) repair problem
(nonlinear code)

Figure 6.12: Simulations for the (4,2) exact repair

Achievability of MSR for exact repair (n, k) = (5, 3):

The structure of this network is shown in Fig. 6.11b. Similar to the (4, 2) case, we

have employed the Monte Carlo method to solve this network over different alphabet

sizes N by maximizing the normalized sum rate (6.10). We have studied the network

over linear operations. Simulation results show (Fig. 6.13) that the MCMC method

finds linear codes for the MSR point over alphabet sizes of 3, 4, and 7.

6.5 Matroid Representation Via Linear Network

Coding

In the previous section we saw how the MCMC method can be used to yield linear

or non-linear codes for a given network. In this section we use the same ideas to find

linear representations for matroids. One may review Chapter 4 for more details about

matroids and linear representability.

Definition 6.5.1 (Matroid Representability) Let M be a matroid with n ele-

ments and rank r. Moreover let A be an rk × nk matrix with entries over finite

field F . Partition the columns of A into n sets of equal size k and call each parti-
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Figure 6.13: Simulation for the (5,3) repair problem

tion a supercolumn. The matroid M is said to be representable if there is a bijection

between elements of M and supercolumns of such matrix A, such that a subset of

elements of M is an independent set in M if and only if the set of corresponding

supercolumns of A are linearly independent. In other words, if we normalize the rank

of A by k, then the rank of any subset of matroid elements is equal to the normalized

rank of the corresponding supercolumns. If k = 1 we say that M has a (scalar) linear

representation, while if k > 1 we say that M has a multilinear (or k-linear) represen-

tation. Finally matroid M is said to be representable if it is representable over some

finite field F .

As was discussed in Chapter 4, determining if a matroid is representable over

a particular finite field, or in general representable, is an interesting question, and

there has been a lot of research in this area. Most of the attention though, has been

towards scalar representability of matroids. Even in the scalar case, although the

representability problem over finite fields GF(2),GF(3),GF(4) is completely solved



214

[Oxl04], in general it remains an open problem.

As an application of the MCMC method, and using the ideas of the previous

section, one can potentially find scalar or multilinear representations for matroids.

The idea is to construct a network from the matroid of interest (using the method

of [DFZ07]) and try to find a scalar/vector linear code for the network. However in

order for the found solution of the network to be a valid representation of the matroid,

one needs to incorporate all the dependency and independencies of the matroid in

the network construction. In the rest of the section we consider the non-Pappus and

U24 matroids, and find multilinear representations for them. We show that in these

two cases one need not include all the dependency relations of the matroid in the

network construction to obtain a valid representation of the matroid through linear

solution of the network. Before explaining these two cases however, we briefly explain

the method of Dougherty et al. [DFZ07] for constructing networks from matroids to

describe constructions of non-Pappus and U24 networks.

6.5.1 Network Model of a Matroid

One can construct a network from a matroid by using the method of [DFZ07] such

that the dependency and independency relations of the matroid elements are reflected

in the network topology, demands, and independency of its sources. We summarize

the steps of this method as follows, where we assume that M is a given a matroid of

rank r:

1. (Creating source nodes) Choose a base of the matroid B = {x1, . . . , xr} and

create a source node containing a source message Si for each element xi of that

base.

2. (Creating the rest of the network nodes and messages) Find a circuit of the

matroid C = {x1, x2, . . . , xp} whose all elements except one (say xj) are assigned
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to a node in the network. Create a new node with input edges from all the nodes

of C \ xj and with a single output edge e. Then create a second node with a

single input from e and assign the element xj to this node. Moreover assign a

new message mj to the edge e. Repeat this step until it is no longer possible.

3. (Creating sinks and defining demands) Repeat this step as many times as de-

sired: Find a circuit of the matroid C = {x1, . . . , xp} such that the dependency

of at least one of its elements (say xk) on the other variables in the circuit is

not enforced in the network. Create a sink with input edges from C \ xk that

demands mk.

4. Repeat this step as many times as desired: Find a base B′ = {x′1, . . . , x′r} and

create a sink node with input edges from the corresponding nodes of x′1, . . . , x
′
r

which demands all the network messages S1, . . . , Sr.

In order to find a linear representation for the matroid, the constructed network

needs to adopt the matroid properties as much as possible. In particular, in the worst

case all dependency and independency conditions need to be enforced in the network

(i.e., repeating steps 3 and 4 until it is no longer possible to do so). Note that since

we want to have the option of enforcing all dependency conditions, we have tweaked

step 3 of the algorithm compared to the method of [DFZ07], where they only define

demands that correspond to source messages (i.e., xk corresponds to Sk). Although

it is more sensible to demand the recovery of sources at the sinks, for our purpose

it is important to be able to incorporate all the matroid relations in the network.

Depending on which steps are taken and how many times they are repeated in the

above construction, many different networks may be obtained from a single matroid.
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6.5.2 Multilinear Representation for Matroids

In this part we describe the network construction for the matroids non-Pappus and

U24, and show how using the biased MCMC results in multilinear representations of

these matroids. While scalar linear representability over fields has been extensively

studied, there has not been much research on multi-linear representability. In fact

there are networks which are not scalar representable over some field F , but admit

a multilinear representation over the same field. As an example, although the non-

Pappus matroid is not linear representable over any field [Oxl06], it has been shown

that it has a multilinear representation over GF (3) [SA98, Mat99]. Moreover as it is

well known that the uniform matroid on 4 elements (U24) is not representable over

binaries (and, in fact, it is a forbidden minor for linear representability over binaries

[Oxl06]), we show that it has a multi-linear representation over GF (2).

6.5.2.1 Non-Pappus Network

This network is constructed from the non-Pappus matroid [Oxl06] (see Fig. 6.14a).

Definition 6.5.2 (Non-Pappus Matroid) Let E = {1, . . . , 9} be a set of 9 ele-

ments and let S = {{1, 2, 3}, {1, 5, 7}, {1, 6, 8}, {2, 4, 7}, {2, 6, 9}, {3, 4, 8}, {3, 5, 9},

{4, 5, 6}}. Then define the function r : 2M → Z+ as,

r(α) =


min{|α|, 3} α /∈ S, α ⊆M

2 α ∈ S
. (6.11)

Then the non-Pappus matroid is the matroid M with ground set E and rank function

r.

As the rank function implies, the circuits (i.e., the minimal dependent sets) of size

3 of this matroid are given by the set S, and the bases (i.e., the maximal independent

sets of the matroid) consist of all the 3-element subsets of E which are not in S.
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Figure 6.14: Non-Pappus matroid and the constructed network

The non-Pappus matroid is interesting in that it has been proven that it is not

representable over any field [Oxl06]. Nonetheless [SA98] and [Mat99] have shown

that this matroid has a multi-linear representation over GF (3). Using the method

of [DFZ07], briefly described previously, many possible networks can be constructed

from the non-Pappus matroid. However if one wishes that the resulting network

inherits the properties of the matroid, one must incorporate the dependency and

independency relations of the matroid in the network construction as much as possible.

Our construction is as follows:

We start off with the base B = {1, 3, 5} of the matroid to create the sources, and

construct the rest of the network based on the steps mentioned before. The circuits
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and the relations that we have used are as follows:

circuit {1, 5, 7} : 1, 5→ 7, circuit {1, 2, 3} : 1, 3→ 2,

circuit {3, 5, 9} : 3, 5→ 9, circuit {2, 4, 7} : 2, 7→ 4,

circuit {2, 6, 9} : 2, 9→ 6, circuit {2, 4, 6, 8} : 2, 4, 6→ 8

circuit {3, 4, 8} : 4, 8→ 3 demand,

circuit {4, 5, 6} : 4, 6→ 5 demand,

circuit {1, 6, 8} : 6, 8→ 1 demand.

The core of the network is shown in Fig. 6.14b. Note that the numbers inside the

nodes show the corresponding matroid element assigned to that node. We further add

all the sinks that can be obtained via step 4 of the construction (i.e., for each of the

matroid bases we add a sink with input edges connected to the nodes corresponding to

the elements of that base, and which demands all the source messages a, b, c). There

are 76 such sinks.

Authors of [RSG] have a similar construction for the non-Pappus network in the

context of index coding. Note that while we have enforced all the independency

conditions through the extra 76 sinks in the network of Fig. 6.14, we have not imposed

all the dependency relations of the matroid on the network. Nonetheless, in the

following theorem we show that we do not need to impose any other relation, as this

network already reflects the matroid properties for the matter of linear representation.

A weaker version of this theorem is presented for an alternative construction of non-

Pappus network in [RSG].

Theorem 6.5.3 The constructed non-Pappus network admits a scalar/vector linear

solution over GF (N) if and only if the non-Pappus matroid has a linear/multilinear

representation over GF (N).
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Proof: First note that if the non-Pappus matroid has a linear (scalar or multilinear)

representation, then clearly that representation can be written in such a way that all

the elements of the matroid are obtained in terms of the elements of the base {1, 3, 5},

similar to Fig. 6.16. This representation immediately gives a linear solution for the

non-Pappus network. Conversely, assume that there is a vector linear solution of size

m for the non-Pappus network. This means that each variable of the network Xi can

be written as a linear combination of the source messages,

Xi = Ai


a

b

c

 (6.12)

where a, b, c and all variables of the network (i.e., Xi, ∀i) are m-dimensional. Thus

Ai is a m × 3m matrix. Assume that variable Xi corresponds to the matroid node

i. Since all the base independency conditions are enforced in the network, for any

i, j, k that represents a base we should have rank[ATi , A
T
j , A

T
k ] = 3m, which, when

normalized by the dimensionality, means rank(Xi, Xj, Xk) = 3. Moreover this implies

that any set of variables with less than 3 elements should also be independent (as for

any set with less than 3 elements in this matroid, there is an independent set which

contains it). On the other hand, since all the 3-element circuits of the matroid are also

enforced in the network, for any i, j, k that represents a circuit, one of the variables

can be written in terms of the other two (e.g., Xk = B1Xi + B2Xj, or equivalently

Ak = B1Ai + B2Aj). Therefore, rank[ATi , A
T
j , A

T
k ] = 2m (i.e., the normalized rank of

the variables gives rank(Xi, Xj, Xk) = 2). Furthermore, for any set of more than 3

elements {i1, . . . , in}, 4 ≤ n ≤ 9, we have rank[ATi1 , A
T
i2
, . . . , ATin ] ≤ 3m, however since

all the bases are ensured to have full rank, and since in this network every set with at

least 4 elements includes a base, inevitably it should satisfy rank[ATi1 , A
T
i2
, . . . , ATin ] =

3m. We conclude that if the set of Ai constitutes a linear code for the non-Pappus
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network, their normalized rank should satisfy,

rank[ATα ] =


min(|α|, 3) α is not a 3-element circuit

2 α is a 3-element circuit

. (6.13)

This coincides with the properties of the rank function of the non-Pappus matroid,

and therefore the set of Ai composes a multilinear representation for the non-Pappus

matroid. �

Therefore, based on Theorem 6.5.3, if we find a linear solution for the non-Pappus

network, it will immediately give us a linear representation for the non-Pappus ma-

troid. Note that since it is already known that the non-Pappus network is not scalar

representable over any field, the non-Pappus network will not admit a scalar linear

solution. However, it was found in [SA98, Mat99] that this matroid has a 2-linear

representation over GF(3). Their representation is as follows,



10 10 00 10 00 10 10 10 00

01 01 00 01 00 01 01 01 00

00 00 00 10 10 21 01 10 10

00 00 00 02 01 20 12 02 01

00 10 10 01 00 01 00 11 10

00 01 01 21 00 21 00 10 01


. (6.14)

Note that this is in fact a 6×18 matrix where every two columns that represent one

element of the matroid are clustered together forming a supercolumn as was stated in

Definition 6.5.2. Thus the ith supercolumn represents the ith element of the matroid.

Using the Monte Carlo method we have successfully found a vector linear solution

of size 2 over GF(3) for this network, which gives us an alternative 2-linear repre-
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Figure 6.15: Vector linear solution for the non-Pappus network

sentation for the non-Pappus matroid.1 The relevant simulation can be seen in Fig.

6.15. An example of a representation found for this matroid is stated in the following:



10 11 00 02 00 20 12 20 00

01 20 00 21 00 11 11 11 00

00 00 00 10 10 12 12 02 10

00 00 00 12 01 11 10 22 02

00 20 10 10 00 02 00 20 20

00 02 01 01 00 10 00 12 02


. (6.15)

If we denote the elements 1, 5, and 3 of the matroid (see Fig. 6.14) by
(
a1
a2

)
,(

b1
b2

)
, and

(
c1
c2

)
, correspondingly (since the vector solution is 2 dimensional), then

by using the nice way of depiction of [Mat99], the representations (6.14) and (6.15)

can be made more clear in Fig. 6.16.

1Note that here we want to emphasize the ability of this method to find linear representations,
and we do not consider the problem of obtaining a genuinely different representation for the non-
Pappus matroid. The issue of determining if two representations of a matroid are equivalent is
beyond the scope of our problem (see [Oxl06] in this regard).
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Figure 6.16: Multilinear representations for the non-Pappus matroid

6.5.2.2 U24 Network

This is also a matroidal network, constructed from the U24 matroid, which is the rank

2 uniform matroid on 4 elements. The geometric representation of the matroid is

shown in Fig. 6.17a.

Definition 6.5.4 (U24 matroid) Let E = {1, 2, 3, 4} be a set of 4 elements. Then

define the function r as,

r(α) = min(|α|, 2). (6.16)

Then the U24 matroid is the matroid M with ground set E and rank function r. Note

that the bases are all the 2-element sets.

Recall from Chapter 4 that the U24 matroid plays an important role about the

representability of the matroids. In fact it is known that U24 is representable over

every field except GF (2). Moreover it is the unique matroid that determines the

representability of a general matroid over binaries. The following theorem due to

Tutte (1958) states this fact [Oxl06]:
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Figure 6.17: U24 matroid, network, and the MCMC simulation

Theorem 6.5.5 A matroid is representable over binaries if and only if it has no U24

minor.

Interestingly, although U24 is not representable over binaries, we show that it has

a multilinear representation over GF (2). Although it is not too hard to come up with

such multilinear representation, we show how using MCMC can quickly give various

multilinear representations of this matroid over GF (2). Therefore, first we construct

a U24 network from this matroid by following the steps of the network construction

from a matroid which were previously stated. We have taken the set B = {1, 4} as

the base, and have used the rest of the circuits and bases of the matroid to build the

rest of the network. The resulting network is shown in Fig. 6.17a. Note that all the

circuits and bases are imposed in this construction.

Theorem 6.5.6 The U24 network has a scalar/vector linear solution over GF (N) if

and only if the U24 network has a linear/multilinear representation over GF (N).

Proof: Bases of the U24 matroid are {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}, and

the set of the circuits of the matroid are {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. Note
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that the demand of the sinks enforce all the base independency conditions. Moreover

all the circuit relations are also used in the network. If we denote by Xi the variable

corresponding to the matroid element i, and assume that there is linear code defined

via the set of Ai’s such that Xi = Ai

( a

b

)
, then for any α ⊆ {1, 2, 3, 4} where |α| ≤ 2,

we have rank(Xα) = 2. Moreover, for |α| > 2, we also get rank(Xα) = 2. Therefore

the set of Ai’s give a representation for the matroid. It is rather obvious that any

representation of the matroid immediately gives a linear solution for the network. �

Based on Theorem 6.5.6, any linear solution that we find for the U24 network yields

a linear representation for the matroid. Since it is already known that this matroid

is not representable over binaries, we have used the MCMC method for alphabet size

3 in the scalar case. More interesting though is the solution of this network over

binaries as a vector linear solution of size 2. The simulations can be seen in Fig.

6.17b. Here is a 2-linear representation for the U24 matroid



10 00 11 10

01 00 01 01

00 10 01 10

00 01 11 11


. (6.17)

6.6 Distributed MCMC over Networks

We have seen that Monte Carlo methods can be used for entropy optimizations, or

in networks to find the best sum rate under certain conditions, or even be used to

find linear representations for matroids. In practice, especially for large networks, one

would want to employ such methods in a distributed manner. In fact, this is easily

done, as described in this section.

Algorithm 1 (Distributed Training “Proto”-Algorithm) The network opera-

tions (truth table or local coefficient matrices) at each internal node are initially set
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to some fixed or random operations. Assume that there are q independent sources, the

random variables of the network are vectors of size l, and operations are over GF(N).

The algorithm consists of t training epochs. During each training epoch:

1. Each source transmits a packet of length N q×l, representing one column of a

q-input truth table. In conjunction, these N q×l channel uses per training epoch

represent all possible inputs to the network.

2. One (or more) internal nodes randomly choose themselves (a la Aloha). A cho-

sen internal node performs a random step on its local truth table (as explained

in Section 6.4) and implements the new truth table on the input signals it sees

during the training epoch.

3. At the end of the training epoch, the sink nodes can compute their recovery rates

by computing the mutual information between their received signals and their

desired inputs (because they know the transmitted sequences of length N q×l, and

have measured the corresponding outputs of the same size).

4. These recovery rates are fed back to the network so that every node can compute

the new weighted sum rate.

5. The chosen internal node(s) compare the new weighted sum rate with the old

one, and choose to keep their new truth table according to a “Metropolis” or

“simulated annealing” step.

During the training process all nodes store the largest weighted sum rate encountered,

and their respective truth tables corresponding to it. At the end of the t training

epochs, the internal nodes set their truth tables to these best-encountered ones. Data

transmission at the best rates found can now commence.

When the number of sources in the network is not too large, say q ≤ 8, and the

alphabet size is binary, the packet lengths are not too long, and it is conceivable
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that many thousand training epochs can be performed with ease. This will lead to

distributed discovery of a network operation with high weighted sum rate.

6.7 Conclusions

In this chapter we proposed a method for numerical optimization of entropy func-

tions over the entropy region. Such method is especially useful in the absence of

an explicit characterization of the entropy region, which in fact has proven to be an

extremely hard problem. By defining local moves on entropy functions (or rather on

their respective distributions) and using Markov Chain Monte Carlo methods (in par-

ticular a variant of the Metropolis algorithm), we showed how an optimization may

be performed for entropy functions or rate maximization in networks. Moreover we

showed how this technique can be employed to study the multilinear representability

of matroids as well, which is an interesting problem on its own. Last, but not least,

we showed how this numerical framework can be performed in a distributive manner

in networks; a scheme that is appealing for practical purposes.

Of course choice of parameters of the numerical algorithm and analysis of the

convergence rate, etc., remain unresolved. Nonetheless the method proves to be

promising, and we showed its capability through applying it to many different net-

works.

6.8 Appendix

The following gives a sample linear solution of rate 5/6 found for the Vamos network

through the Monte Carlo method (i.e., source variables are of size 5, and the rest

of the network variables are of size 6, and demands are fully reconstructed at the

sinks). We have used the notation
⊕

ai1,...,ik as a shorthand for ai1 + . . .+aik , and all

operations are over GF(2). The local and global encoding for each variables is given.
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w =



⊕
a1,2,3,4,5 +

⊕
b1,2 +

⊕
c3,4,5 +

⊕
d1,2,3,4,5

a5 +
⊕

b1,2,4 + c1 +
⊕

d1,5

a1 +
⊕

b3,5 +
⊕

c2,3 +
⊕

d1,2,3,4⊕
a1,4,5 +

⊕
b1,3,4 +

⊕
c3,5 +

⊕
d1,2,3⊕

a1,3,4 +
⊕

b1,2,3,5 +
⊕

d5⊕
a2,3,4,5 +

⊕
b4,5 + c5 +

⊕
d1,2,4


(6.18)

x =



⊕
a1,4,5 +

⊕
b1,3,4,5 +

⊕
w1,4,5,6⊕

a1,3,5 +
⊕

b1,3 +
⊕

w1,...,6⊕
a1,2,3,5 +

⊕
b2,3,5 +

⊕
w1,2,3,4,6⊕

a2,4 +
⊕

w1,2,5,6⊕
a2,4,5 +

⊕
b1,2 +

⊕
w1,2,4⊕

a2,3,4,5 +
⊕

b1,4,5 +
⊕

w1,6


(6.19)

=



⊕
a3,4 +

⊕
b3,4,5 +

⊕
c4,5 +

⊕
d1,2⊕

a1,5 +
⊕

b1,2,4,5 +
⊕

c1,2,3,4,5 + d1,3,4,5⊕
a2,3,4,5 +

⊕
b1,2,3,4,5 +

⊕
c1,2,3,4,5 +

⊕
d1,3,4⊕

a2,3,5 +
⊕

b1,2,3 +
⊕

c1,3,4 +
⊕

d1,3,5⊕
a3,4, +

⊕
b2,3 +

⊕
c1,4 +

⊕
d1,4⊕

a1,2,3,4,5 + b2 +
⊕

c3,4 +
⊕

d3,5


(6.20)
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y =



⊕
b2,3,4,5 +

⊕
c2,3,4,5 +

⊕
x4,6

b3 +
⊕

c4,5 +
⊕

x1,2,3⊕
b1,2,3,4,5 +

⊕
c1,3,4,5 + x1,3,4,6⊕

b2,3,4 +
⊕

c2,5 +
⊕

x1,6⊕
b1,2,3,4 +

⊕
c2,4 +

⊕
x1,2,5,6⊕

b1,2,3 +
⊕

c1,3 +
⊕

x1,4,5,6


(6.21)

=



⊕
a1,4 +

⊕
b1,2,4,5 +

⊕
c1,2,3,4,5 + d1⊕

a1,2 +
⊕

b3,4,5 +
⊕

d1,2,5⊕
a1,2,4,5 +

⊕
b1,4,5 +

⊕
c1,2,4,5 +

⊕
d1,2,3,4⊕

a1,2,5 + b5 +
⊕

c2,3 +
⊕

d1,2,3,5⊕
a2,3,4 +

⊕
b3,4 + c4 +

⊕
d1,2⊕

a1,4 +
⊕

b4,5 +
⊕

c1,3,5 +
⊕

d1,2,4


(6.22)

z =



⊕
c1,2 +

⊕
d1,2,4 +

⊕
y2,3,5⊕

c2,4 + d1 +
⊕

y1,2,3⊕
c2,3 +

⊕
d3,5 +

⊕
y1,2⊕

c2,5 +
⊕

d1,,3 +
⊕

y2,3,4,6⊕
c1,2 +

⊕
d2,3,4,5 +

⊕
y1,2,6⊕

c1,5, +
⊕

d1,3,4,5 +
⊕

y2,3,4,5


(6.23)

=



⊕
a2,3,5 +

⊕
b1,4 + c5 +

⊕
d3,5⊕

a1,5 +
⊕

b2,3,4,5 +
⊕

c2,3,4 +
⊕

d3,4,5⊕
a2,4 +

⊕
b1,2,3 +

⊕
c1,4,5 +

⊕
d2,3

a2 +
⊕

b1,3,4 +
⊕

c2,4,5 +
⊕

d1,2,3⊕
a1,2 +

⊕
b1,2,3,4,5 +

⊕
c1,4 +

⊕
d1,2,3⊕

a1,3 +
⊕

b1,4,5 + c3 +
⊕

d1,3,5


. (6.24)
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The decoding functions are stated in the following: To decode b from d, x, and z we

have

b =



⊕
d1,2,3,4 +

⊕
x1,3 +

⊕
z1,4,5,6⊕

d1,3,5 +
⊕

x1,3 +
⊕

z2,5

d5 +
⊕

x1,4,5,6 +
⊕

z1,2,3,4,5,6⊕
d1,2,5 +

⊕
x1,3,4,5 +

⊕
z3,4⊕

d2,5 +
⊕

x1,2,3,5,6 +
⊕

z2,4,5


. (6.25)

To decode a from b, c, d, and z we have

a =



⊕
b2,5 +

⊕
c1,2,5 +

⊕
z4,5⊕

b1,3,4 +
⊕

c2,4,5 +
⊕

d1,2,3 + z4

b4 +
⊕

c1,2,3,5 +
⊕

d1,2,3,4 +
⊕

z1,2,5⊕
b2,4 +

⊕
c1,2 + d1 +

⊕
z3,4⊕

b3,4 +
⊕

c1,3,4,5 +
⊕

d3,4,5 +
⊕

z2,4,5


. (6.26)

For the middle node to decode b and c from a, d, w, and z we get

b =



⊕
a1,3,4 +

⊕
d1,3,4 +

⊕
w1,2,5 +

⊕
z3,6⊕

a1,2,5 + d3 +
⊕

w1,3,4,5,6 +
⊕

z1,2⊕
a2,3,5 +

⊕
d1,2,4 +

⊕
w1,3,4 + z2⊕

a3,5 +
⊕

d2,5 +
⊕

w1,3,6 +
⊕

z2,6⊕
a1,3 +

⊕
d2,5 +

⊕
w1,2,5,6 +

⊕
z1,3,6


(6.27)
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c =



⊕
a2,4,5 +

⊕
d2,4 +

⊕
w1,4 +

⊕
z1,3⊕

a1,2,4 +
⊕

d2,3,4 +
⊕

w1,2,3,4,5,6 +
⊕

z3,6⊕
a1,4,5 +

⊕
d4,5 +

⊕
w1,3 +

⊕
z1,2⊕

a1,2,3,5 +
⊕

d1,3 +
⊕

w3,4,5 +
⊕

z1,2,6⊕
a1,2,3,4 +

⊕
d1,2,4 +

⊕
w2,3,5,6 +

⊕
z1,2,3


. (6.28)

To decode d from a, b, c, and y we have

d =



⊕
a1,4 +

⊕
b1,2,4,5 +

⊕
c1,2,3,4,5 + y1⊕

a1,2,3 +
⊕

b1,2,3,5 +
⊕

c1,2,3,5 +
⊕

y1,5

a5 +
⊕

b3,4 +
⊕

c2,3 +
⊕

y2,4⊕
a1,3 +

⊕
b1,4,5 +

⊕
c1,3,5 +

⊕
y2,3,4,5⊕

a1,3,4 + b5 + c4 +
⊕

y2,5


. (6.29)

And finally, to decode the demand of the last node (i.e., c from a, w, and y) we have

c =



⊕
a2,3 +

⊕
w2,4,6 +

⊕
y1,2,3⊕

a2,4 +
⊕

w3,4,6 +
⊕

y2,3,4,5,6⊕
a1,5 +

⊕
w2,4 +

⊕
y1,2,3,6⊕

a2,3,5 +
⊕

w1,3,4,5 +
⊕

y3,5,6⊕
a1,2,3,4 +

⊕
w3,6 +

⊕
y2,4


. (6.30)
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Chapter 7

Future Work

The field of network information theory still faces many challenges. The framework

we presented for obtaining the capacity of network information theory problems in

Chapter 2 is based on determining the entropy region. Although the complete char-

acterization of this region for any number of random variables seems to be very

ambitious, due to the central role of this region in multiuser information theory, even

partial results about this region can have significant consequences for networks. In

the following we discuss some of the questions that were raised throughout the re-

search undertaken in this thesis, and some of the problems that need to be addressed

in future investigations:

• Realizing Entropy Vectors: For the most part in this thesis we focused on

determining if a given vector would belong to the entropy region in different

scenarios. However an equally important question is how to realize an entropy

vector. In other words: If we are given an entropy vector, how can we identify

its underlying random variables and their joint probability distribution? While

characterizing the entropy region would answer if a certain rate tuple is achiev-

able in a network, realizing an entropy vector yields the coding scheme required

to achieve that desired point in the capacity region.

• Linear Network Coding and Matroid Representability: As was dis-

cussed in Chapter 4, linear network codes are inherently related to the linear
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representable entropy region, which is in turn equivalent to the matroid rep-

resentability. In Chapter 4 we only used matroid representability results over

binaries and rank-2 matroids. Leveraging matroid representability results for

small finite fields can open up new avenues of research in the area of linear

network codes. In particular, as was discussed in Chapter 4, the relevant and

important object to study in this regard is the convex cone of matroids (over

a certain finite field). Determining this convex cone allows for obtaining the

optimal linear network codes over the desired finite field.

• Region of a Subset of Entries of an Entropy Vector: The entropy vector

of n random variables is of dimension 2n − 1, and therefore the region grows

exponentially in the number of random variables. Moreover even for a linear

representable region, one probably needs exponential number of inequalities to

define the region (the number of Shannon inequalities alone is exponential in

the number of random variables). Therefore the complexity for all but small

networks seems inhibiting. However, appealing to the whole 2n− 1 dimensional

entropy region may not be necessary for solving a given network. In fact a

close look at the topology of most networks reveals that only a small subset

of the joint entropies of the network random variables appear in the capacity

optimization constraints. As a result the important object to characterize in

this case would be the projection of the entropy region onto those subsets of

joint entropies. This is equivalent to determining if a given set of values for

joint entropies can, in fact, be extended to an actual entropy vector.

• Entropy Region of Gaussian Random Variables: Further study of the

entropy region of jointly Gaussian random variables would be very interesting, as

we conjecture that they are sufficient for describing the whole entropy region of

continuous random variables. The demanding task, though, would be to obtain
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the convex cone of the minimal number of necessary and sufficient conditions

that were pointed out in Chapter 5.

• Analysis of Numerical Methods for Optimization Over Networks: The

Markov Chain Monte Carlo (MCMC) method that we presented in Chapter 6

seems to be very promising. However, as is the case with many other numer-

ical methods, some parameters of the algorithm should be found heuristically.

Moreover, in MCMC methods an important factor is knowing the rate of con-

vergence of the Markov chain. It would be very interesting to study these issues

for our algorithm analytically.

There are also some broader problems related to the research in this thesis that

are also worth exploring. The following are few instances:

• Group-Network Codes: As was discussed in Chapter 3, every entropy vec-

tor is asymptotically constructible by a finite group and a set of its subgroups.

This fact has been used in the literature to create network codes from groups

[Cha07b]. Deploying specific finite groups can potentially yield interesting re-

sults [MTH10]. In particular it is conceivable that non-Abelian groups are more

powerful than other types of groups, as any Abelian finite group is known to

satisfy the Ingleton inequality (a necessary inequality for linear representabil-

ity).

• Study of Different Performance Measures: There are many more perfor-

mance measures in networks other than achievable rates. For example delay,

fairness, and security are becoming more and more important for future sys-

tems, and an information theoretic approach toward these measures is still being

developed.

• Wireless Network Information Theory: As was discussed in Chapter 5,

some information inequalities, such as the entropy-power inequality, play an



234

important role in determining the capacity of wireless networks. Studying the

implications of these inequalities in constraining the corresponding entropy re-

gion of wireless networks would be very interesting, and can give rise to new

results for those networks.
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