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Abstract

Achieving agile autonomous �ight by an insect-sized micro aerial vehicle (MAV) will require

improved technology that is radically smaller, lighter, and more power-e�cient. One animal

that has solved the problem is the �y, a virtuoso among insect �yers whose nervous system

can perform sophisticated aerial maneuvers under severe computational constraints. This

thesis is concerned with understanding and emulating the dynamics of the �y's feedback

control system. Because vision is noisy and information rich, processing time may a problem

for a fast-moving MAV or �y. By tracking the fruit �y Drosophila melanogaster in free �ight

in gusts of wind, I found that they incorporate feedback from wind-sensing antennae in a fast

feedback loop that dampens the forward-�ight dynamics. The slower dynamics are easier to

control for long-delay visual feedback, making the �y more robust to the limitations of its

visual system. Using the �y as inspiration, I designed a minimal, visual autocorrelation based

controller that used a small array of visual sensors to stabilize a fan-actuated hovercraft robot

in a narrow corridor. Using a model for correlators developed for the robot, I showed that a

uniform array of visual correlators was su�cient to explain the free-�ight velocity regulation

behavior of �ies, rather than a di�erent model. In addition to illustrating the bene�ts of

concurrent scienti�c analysis and engineering synthesis, the results give new insight into how

to control small biological and man-made �ying vehicles using limited, noisy sensors.
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Chapter 1

Introduction

Man has always aspired to �y. But only very recently in history has he begun to do so,

starting with the Wright Brother's �rst faltering �ight in an airplane. Man-made craft have

since left the atmosphere and even brought humans to the moon and rovers to Mars. But

while the past century of �ight innovation can be marked by milestones of bigger and faster,

from the advent of jet power to supersonic �ight to rocketry, today the focus of innovation

has changed. New milestones are being measured by smallness, autonomy, and complexity

[1]. Small-scale autonomous �ight of a vehicle on the scale of an insect is an unsolved

current research question. The di�culties are manifold: as sensors are reduced in size, their

capability and precision must diminish as components are removed. Simultaneously, the

available onboard computation power must use less power, limiting the choice of algorithm

[2, 3].

One approach to building a small �ying vehicle is to improve technology iteratively,

building successively more sophisticated and smaller robots with each new generation by

adapting existing technologies for reduced size and weight. In open spaces, small �ying

airplanes such as the Aerovironment Wasp use the global positioning system (GPS) to

navigate between waypoints for military surveillance [1]. But in more con�ned and cluttered

spaces, the problem becomes more di�cult. GPS cannot indicate the position of obstacles,

and even if the vehicle were equipped with a perfect onboard map of them, both the accuracy

and bandwitdth of GPS become insu�cient to avoid collisions below a certain scale [3].

Indoors, GPS is denied entirely, and other methods must be employed. Shen [4] reports

an autonomous quadrotor helicopter that operates indoors without GPS by using a laser

range�nder and an inertial measurement unit to build a map. As impressive this technical

feat, the robot is large, on the order of a meter across, so that it can carry the sensor suite



2

and powerful processor required. It also moves slowly. As vehicles get smaller, and greater

maneuverability is desired, powerful sensors like laser range�nders and computers must be

done without because of their weight [2]. While vision can give precise estimates of self-

motion, existing algorithms such as the one in use on the Mars rovers are slow computation

heavy, requiring minutes for each step on Mars [5]. A new approach is needed [6].

Biology, which excels in the domain of smallness and sophistication, may suggest possible

solutions. Hundreds of millions of years of evolution has lead to �ies, butter�ies, humming-

birds, all of which are able to perform admirably without fast serial computers or lasers

[7]. Their �ight capabilities exceed current human-engineered solutions [8], often exploiting

unsteady �uid �ow dynamics in their �apping �ight [9, 7]. Insects are of particular interest

because of their relatively simple nervous systems. Because their neurons are typically spec-

i�ed individually with characteristics that are conserved across individuals and even species

[10, 11, 12, 13], it seems that an understanding of how their neurons operate to generate

behavior is closer at hand [14, 15] than in vertebrates.

Engineers often take inspiration from biology. The original inspiration for feedback con-

trol lay in the term �cybernetics,� coined by Norbert Wiener to refer to feedback control in

biology [16]. An e�ort to emulate the brains of insects lead to an in�uential body of work by

Brooks that challenged the foundations of robotic intelligence [17]. Instead a traditional ap-

proach to robot control, which modularized sensing, modelling, planning, and execution, he

proposed tying sensors directly to actuators [18]. Higher level competence at behaviors like

foraging were implemented by adding layers that modulated the lower-level locomotive be-

havior, mirroring the evolution of the brain [17]. Though these controllers were implemented

on ambulatory and wheeled robots, they were never applied to aerial robots.

Findings about �ying insects have been the inspiration for many robotic micro-�yers in

other groups. Biological inspiration may be particularly valuable in �ight, where realtime

behavior, minimal computation, and sophisticated motion control are specialties of biological

organisms [7]. The �nding that bees center their �ight in a corridor led to robots that balance

lateral optic �ow [19, 20, 21, 22]. Later, it was found that the lobula plate tangential

cells integrate visual �ow over wide-�eld patterns corresponding to states of self motion

[11, 23, 24] and seem to be required for important insect motor control tasks [11]. This

inspired the idea of decomposing visual �ow into �matched �lters� for self motion [25, 20, 26],

including sinusoid harmonics, from which the state vector of the vehicle can be observed and
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controlled [27, 2]. A small airplane inspired by the expansion-avoidance behavior observed

in �ies [28] was able to �y autonomously in a small room by making body-saccades away

from walls [29]. A robot that regulates its attitude using ventral optic �ow used a simple,

insect-inspired controller that reproduces observations that that insects may descend in a

headwind and ascend in a tailwind [30], though recent work has called into question whether

that mode of �ight control is active in �ies [31]. Using Hebbian updates to learn and perform

visual servoing demonstrates how correlators could arrive spontaneously during learning or

evolution [32, 33]. For a review of bio-inspired engineering, particuarly in the domain of

visual �ight control, see [22].

Insight the other direction, from engineering into biology, often follows an e�ort in en-

gineering synthesis of a biological system. Only then can we perceive the subtleties that

invariably arise when a concept is reduced to practice. Braitenburg [34] showed how sim-

ple wheeled robots could show life-like behavior and even the illusion of free will by simple

interconnections between sensors and motors. But understanding the principles required

mentally constructing and running these little robots. Ijspeert [35] showed how regulation

of central pattern generators could lead to transitions between swimming and walking gates

on a robotic salamander. Biology's strongest trait is perhaps its ability to �nd practical and

robust solutions. For example, [36] found by implementing a small �apping �yer that an

automotive-like di�erential could compensate for wing damage by using a mechanical pivot

to automatically �ap the other wing farther. Only by constructing the device could he dis-

cover that a mechanical linkage could produce robustness that might ordinarily be presumed

to arise from neurally-modulated mechanosensory feedback. This may inform future studies

on the insect wing motor hinge [37].

It is the opinion of the author that understanding how to autonomously �y small vehicles

and understanding how �ight is performed by insects is best approached by performing

engineering and biology simultaneously. In doing so, the bene�ts of both approaches will

inspire bigger ideas.

This thesis considers the dynamic �ight control of the �y from a control-theoretic perspec-

tive, an approach that has been lacking in the biological literature [38]. The �y's feedback

controller is represented as a block diagram, with boxes representing components segregated

by function or mechanism (Figure 1.1). I report contributions to the understanding of insect

�ight control by both studying fruit �ies and building a robot that takes inspiration from



4

Figure 1.1: Feedback and control block diagram of the �y. This thesis is concerned with
understanding characteristics of the �controller� and �sensory systems� blocks.

the �y's control system. Fruit �ies make a compelling choice for study because of the ease of

raising them, the short generation time (9 days), and most importantly, as a genetic model

organism, genetic �ndings can be leveraged in behavioral studies and vice-versa [14]. In the

study of the �y, I placed particular emphasis on studying sensory feedback systems that

have potential application to robot �yers.

The thesis is organized as a series of self-contained chapters, each beginning with an

abstract that summarizes the main results and an introduction that reviews the relevant

background. chapters 2 and 3 detail how by studying dynamics of forward �ight in �ies, I

uncovered a control challenge encountered by the �y that had not previously been addressed

in detail: feedback from vision is relatively slow. By subjecting �ies to sudden gusts of wind,

I made the surprising �nding that the antennae act as fast, proportional sensors that act to

damp out and thus slow the �y's dynamics. The slowed dynamics mitigate the di�culty of

long visual delays and give the �y robustness to variations in parameters ranging from �y-

to-�y variability to environment geometry to non-idealities in visual correlators. And they

may be applicable to autonomous �ight control, in which computation-heavy vision is likely

to be a slow sense as well. Next, I considered �ight control from a synthesis perspective in

chapter 4. Using a bio-inspired control algorithm with minimal computational requirements,

I designed a controller that stabilized the motion a dynamic hovercraft robot using visual
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�ow estimates arriving from a small array of luminance sensors and correlators. In chapter

5, I found that the analysis of chapter 4 suggested a new study on free-�ight behavior in

�ies to show that basic correlator behavior may be su�cient to explain the �y's forward

speed regulation, rather than necessitating some more complicated model. In addition to

illustrating the bene�ts of cross-disciplinary study, the results shed new light onto the �ight

control of small �ying vehicles, biological or man-made.
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Chapter 2

Responses of Free-�ight Flies to

Gusts of Wind

2.1 Abstract

In order to navigate through a complex and changing world, animals must rapidly combine

information from sensory channels with di�erent response bandwidths and modulate motor

output accordingly. For example, to regulate their �ight speed, insects are thought to

employ both rapid mechanosensory signals and slower visual cues, although the means by

which they combine information from these two modalities is unknown. To study this

process of sensory-motor integration, we subjected free-�ying fruit �ies to impulsive gusts,

visual gusts, and attenuated mechanosensory feedback by removing the aristae on their

antennae. By observing the �y's velocity response to wind perturbations, we found that,

surprisingly, the fast, antenna-mediated response acted in the same direction as the wind

input, in e�ect augmenting the e�ect of drag on the wings. Aristae-ablated �ies showed much

higher variability and oscillations in �ight speed, suggesting that the wind sense might not

be for wind disturbance rejection but for �damping out� these �ight velocity oscilations.

2.2 Introduction

Flies, among the most adept of insect �iers, display a sophisticated suite of aerial behaviors

that require rapid sensorimotor processing. They can recover from tumbling surprise take-

o�s in tens of wingbeats [39] and can perform inverted landings on the ceilings with ease.

But even the practical matter of navigating from one place to another in �ight is a chal-

lenging task requiring sensorymotor specializations. Not only must they negotiate cluttered
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environments abounding with obstacles such as trees and plants, but they must do so in

wind, which may change direction and magnitude. How this is achieved has not yet been

explained, although many clues have been found from studies on �ies and other insects.

Flies are visual animals, devoting perhaps two-thirds of the neurons in their brain to

visual processing [40]. They have two faceted eyes that sample nearly the entire visual

sphere, with varying visual accuity and number of ommatidia depending on species [41, 42]

(Figure 2.1). Insects' �ight control relies heavily on visual �ow, that is, the pattern of visual

motion across the retina. Bees center their �ight in a corridor, balancing lateral visual �ow,

and slow when the corridor narrows [43]. Both of these behaviors are consistent with a

regulator that measures the angular velocity of visual �ow across the retina (for a review,

see [22]). Neurons that average visual motion across the retina have been found in the �y

brain and homologs of such cells that may underly this behavior [11, 23]. A modeling e�ort

suggests visual motion patterns could be used to orient upwind [44]. Flies also use preferences

for simple horizontal or vertical features to structure their �ight. They control altitude by

keeping level with horizontal features [31] and are attracted to vertical features, using that

attraction to �y straight and overcome the normally-aversive frontal visual expansion that

accompanies forward �ight [45]. Flies spend much of their time �ying forward and straight.

They organize their trajectories into linear segments of roughly constant velocity, punctuated

by sudden turns known as body-saccades [46] that are often induced by visual expansion

[28]. Their visual forward �ight-speed regulator can be modelled as a delay followed by a

second-order velocity controller [47]. A rich literature exists concerning the mechanism of

visual motion detection, but evidence suggests that in forward �ight, �ies' response behavior

acts proportionally to the di�erence between the �y's velocity and the velocity of background

visual motion across a range of spatial frequencies [48].

Less well understood is the role played by the antennae (for a review, see [38]). For many

�ying insects, knowledge about the wind is vital for survival: to �nd food sources by smell,

a fruit �y moves laterally to the wind to search for odor plumes and then turns upwind

when one is found [51]. Perhaps the only example of known interaction between vision and

wind sensing is that tethered but freely-rotating �ies turn into a headwind and then use

that percept to overcome the normally-aversive forward visual expansion [52]. Once facing

upwind, �ies use vision to maintain a constant groundspeed, independent of the speed of

wind in a wind tunnel [53, 54].
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Figure 2.1: Multimodal sensory input to the �y. An electron micrograph of a fruit �y's
head (top) shows the faceted eyes (red) and the antennae. The eyes take a low-resolution
omnidirectional sample of the visual world, which would look something like this computer-
generated rendition (below, from [49]). The aristae (top) are branched appendages of the
antennae that protrude from the head and de�ect in wind. Sensors at the base of the
antenna, the Johnston's Organ, sense the wind-induced de�ection [50]. In this and the next
chapter, we present a quantitave analysis of the input-output behavior of these two senses
simultaneously.
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Flies detect wind using sensitive motion sensors in their antennae [55]. The antennae

have also been shown to sense sound [56], the direction of gravity [57, 58], and may be

directly involved in sensing and controlling wing kinematics [59]. The basic mechanism is

that the arista, a branching fourth antennal sement, protrudes into the wind and is subject to

a torque roughly proportional to airspeed [50]. The arista, together with the third antennal

segment to which it is rigidly attached, can rotate passively around a joint with a roughly

vertical axis coincident with the long axis of the third segment. The motion of this joint

is sensed by the Johnston's organ, an array of chordotonal mechanosensory organs residing

in the second antennal segment. An active antenna-positioning reaction carried out by the

�rst antennal segment may increase the dynamic range of the wind sense [50].

Evidence suggests that �ies can use their antennae to measure absolute airspeed, rather

than, for example, its rate of change. In tethered �ies, the steady-state wing beat amplitude

varies with the steady-state airspeed [50]. Similar observations have been made for locusts

[60] and dragon�ies [61]. More recently, using a calcium-sensitive reporter gene, Johnston's

Organ neurons were found to project to di�erent portions of the brain depending on whether

they responded to either absolute antenna de�ection or its rate of change [62].

Whereas wing kinematics changes in response to antenna wind stimulation in the the

steady-state on tethered animals has been explored, little is known about about how this

reaction translates into changes in behavior in free-�ight. Because of the range of di�erent

kinematic motions available to �apping insects, it is in general impossible to map changes in

wing beat amplitude directly to forces and torques [63, 64]. In addition, tethered kinematics

di�er signi�cantly from free-�ight kinematics, perhaps because normal feedback signals are

disrupted [64]. Hence, it remains unanswered how the documented wing kinematic changes

a�ect �ies' free-�ight motions�do they give rise to thrust, lift, or torques, and in what

directions? In addition, steady-state analyses do not examine dynamic behavior, which may

be key to explaining how these organs a�ect the dynamic stability of the aloft �y.

To investigate the �y's sensor dynamics in straight segments of forward �ight, we sub-

jected them to wind and visual stimuli as they �ew along a corridor while their position was

tracked by cameras.

We found that the antenna-mediated wind response is much faster than the visually

mediated response. But rather than acting to reject the gust of wind as might be expected,

the antenna response does just the opposite: the velocity of �ies with intact antennae is
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more perturbed that for arista-ablated �ies. Flies without their aristae showed signi�cant

variance in their forward velocities, nearly twice that of control �ies. The variability appears

to be sinusoidal, as if the �ies are using a along-delay visual feedback loop that is at the

edge of stability without the antennae. The antennae re�ex function may be to act as an

active damper, applying force as necessary to dampen these oscillations.

2.3 Methods and apparatus

2.3.1 Realtime �y tracker

We used a custom built multi-camera real-time �y tracker [65] (Figures 2.2 and 2.3) to

record the three-dimensional positions of �ies in free-�ight. It consisted of �ve digital �rewire

videocameras (Basler A602f) taking images at 100 frames per second, �ve dedicated desktop

computers performing image analysis to locate �ies in each camera's view, and a central

computer triangulating that information into (x, y, z) positions. Dimensions of the arena

were 150 cm × 30 cm × 30 cm. Latency was approximately 50 ms. Tracking was performed

with infrared backlight and infrared �lters on each camera so that moving visual stimuli

were not detected by the cameras.

2.3.2 Wind gusting

We constructed two di�erent devices to generate sudden changes of wind velocity in the

�ight arena. The �rst was a set of motor-actuated wind-vanes that could open suddenly

to allow air pulled by the fan to �ow through the tunnel, giving a �step input� to the �y.

Because the arena was in a wind tunnel designed for only uni-directional �ow, the fan, and

hence the vanes, could produce wind stimuli in only one direction. The second was an air

piston that could move the mass of air in the tunnel in either direction very quickly. Though

the apparatus was situated behind the �y during the trial (Figure 2.2), atmospheric pressure

in front of the �y provided plenty of pressure to generate headwind gusts. To verify that

the timing of the gust was the same along the length of the arena, two wind-measurement

probes (described below) were placed 1 m apart at either end and simultaneously measured

the gust. The two gust velocity traces were nearly identical with timing di�erence of 3±1 ms,

approximately the speed of sound (≈350 m/s). Thus the gust was approximately the same

along the length of the tunnel during a single 10 ms frame of the tracking cameras. Both
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Figure 2.2: Diagram of experimental apparatus. An array of cameras and a cluster of
computers processing video images triangulated the position of �ies in real-time (a). Wind
stimuli (b) were generated either by a fan and wind vanes opening or closing (top) or by an
air piston spanning the cross section of the wind tunnel actuated by a linear motor (bottom).
Because the wind tunnel is designed to provide unidirectional laminar �ow, the fan could
only pull air in one direction. Back-projected visual stimuli were generated by a high-speed
monochrome projector re�ected o� of mirrors (c). A diagram of the wind tunnel seen from
above (d) shows the locations of the gust apparatus and visual stimuli relative to the �y.
In the inertial lab frame, stimuli to the �y are wind velocity vw and projector velocity vp.
The �y's ground speed vg is measured by the tracker as the output. A trial starts when
a �y passes through the imaginary plane shown as a dotted line transverse to the axis of
the wind tunnel. A drawing of an accepted trajectory in which the �y �ew primarily along
the axis of the tunnel is shown as a solid line; a rejected trajectory is shown as a dotted
line. All velocities in the tunnel frame have the convention that positive is toward the right,
according to (e).
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Figure 2.3: Photographs of the free-�ight tracking (top) and wind gusting apparatuses
(bottom). The free-�ight arena is shown in light (top left) and under the experimental
conditions of darnkess (top right). The pink glow on the right is the infrared backlighting
used by the infrared-only tracking cameras, not visible to either human �y eyes, but detected
by the CCD sensor in the digital camera used to take the picture.

gusting devices were actuated by a high-speed brushless linear motor (LinMot, Elkhorn,

Wisconsin), and could perform short motions in as little as 35 ms or with a distance up to

125 mm. Because the motor servo controller could be programmed with only one trajectory

at a time, a given population of �ies in the tunnel was subjected to only one type of wind

gust for the 24 hour period. The mechanism was commanded to gust by a single voltage

pulse from a computer based on the real-time position estimate. The two devices are shown

in Figures 2.2 and 2.3.

To minimize visual impact of piston or vanes motion, they were constructed from clear

plexiglass and placed so that they were behind the �y during each trial. To test whether

their motion could induce a visual response, a sham piston with holes spanning most of its

cross section that did not generate any measurable wind disturbance when it moved was

substituted for the real piston. When tested with �ies, there was no discernible behavioral

di�erence between trials in which the piston was moved and when it was not. This was

expected because the physical motion of the gusting apparatus lay entirely in the rearward

section of the visual sphere not sampled by the �y's eyes [66].
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Using a hotwire anemometer (MiniCTA with p55 probe, Dantec Dynamics, Holtsville,

NY), the time-course of the gust was measured at 1 kHz. Gusts were repeatable to within

0.02 m/s. The thickness of the boundary layer in the air�ow in continuous-wind experiments

was found to be less than 2 cm, so any trajectories passing within that distance of the walls

were eliminated from consideration.

2.3.3 Visual stimulus

Visual stimuli were generated using the Vision Egg software on a PC running Ubuntu Linux

with an nVidia Geforce 8500 GT graphics card [67]. A Lightspeed Designs DepthQ projector

with color �lter wheel removed was used to back-project the patterns (120 Hz update rate),

and the mean luminance of the arena walls and �oor when the projector displayed midgray

was 50 cd/m2. The visual stimuli were sinusoid gratings on both walls with a spatial

wavelength of 12 cm, moving in the x-direction. The 12 cm wavelength exhibited a strong

response that was found to be roughly proportinal to forward velocity (Figure 5.6). This

computer received 3-D coordinate estimates for all �ies from the tracking computer over

ethernet and orchestrated the automated experiment protocol. Because the visual frame

rate of 120 Hz di�ered from the tracking frame rate of 100 Hz, the position of the visual

stimulus was linearly interpolated to the time stamps of the camera frames.

2.3.4 Flies

Flies were 2�3 day old female Drosophila melanogaster Meigen descended from 200 wild-

caught female specimens. Flies were manipulated on a cold stage under a dissection micro-

scope. For aristae-ablated experiments, the aristae were removed using sharpened tweezers.

Flies were kept on a 12h:12h light:dark cycle and experiments were started 5�9 hours before

the end of their subjective day, continuing for 24 hours with 10 to 12 �ies in the arena at

a time. They were starved with water for 4-8 hours prior to each experiment to increase

exploratory behavior. Yield was approximately 30 acceptable trajectories/day for control

�ies, and 15/day for arista-ablated �ies. The mass of �ies averaged 1.1 mg at the start of

trials. After a 24 hour trial period, �ies were recovered from the tunnel using a vacuum and

were found to have lost approximately 20% of their mass, so the average �y mass m was

estimated at 1.0 mg.
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2.3.5 Trial protocol

A visual con�nement protocol similar to that described in [48] was used to bring �ies to the

trigger plane at relatively high frequency, increasing experimental throughput. However, it

was not possible to include a plume of odor because the air piston covered the entire cross

section of the tunnel, blocking continuous �ow. Because of �ies' tendency to only �y in the

presence of a headwind, it was necessary to have them �ying forward in the quiescent air at

the start of each trial (rather than be stationary but �ying into continuous wind, as in [48]).

The protocol used to bring �ies to the trigger plane was executed as follows: (1) The walls

were animated with velocity in the negative-x direction to induce any �ying �ies to move in

that direction as well. (2) Once the chosen �y (the �y with the longest current trajectory)

passed a threshold 5 cm away from the trigger plane, the animation direction was reversed

again. (3) With animation now in the forward direction, the �y was brought forward until it

passed the trigger plane. If either of the previous steps did not complete within 2.5 seconds,

the protocol returned to step 1. Otherwise, once the �y passed the trigger plane, 4) a 1.2-

second trial was initiated, consisting of a gust, a visual gust, or a combination of the two,

in random order. At the end of this period, the state of execution was returned to step 1.

Because the linear motor interface was written in closed-source software, it could not

be programmed and only one piston stroke type was available per population of �ies and

24-hour period.

We eliminated trajectories in which �ies performed sudden body-saccades, selecting only

trajectories in which the �y �ew essentially along the axis of the tunnel. Trajectories with

non-axial velocity magnitudes that exceeded 0.25 m/s (after being �ltered by a 10-sample

box �lter to eliminate transients) were eliminated from consideration. To insure uniform

visual stimulus, trajectories not starting in the middle 1/3 (width-wise) of the tunnel were

eliminated. Traverse measurements taken with the hotwire anemometer indicated that wind

tunnel air �ow was uniform farther than 2cm from the walls. Accordingly, trajectories in the

upper 2/3 of the arena were accepted, with the exception of trajectories that came within 2

cm of the arena ceiling.

The �y tracker records trajectories and performs data association using a nonlinear

extended Kalman �lter that estimates velocities as well as positions. In parallel, it also

estimates positions directly each time step using a least-squares estimate based on projection
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onto the rays cast into each camera currently imaging the �y [65]. We used this noisier,

un�ltered format because it provided the highest time-resolution, a necessity because of the

high-speed dynamics in this study.

Registering the timing of all devices was of key importance. To collect the exact time

that each frame from the cameras was taken, the tracking computer used feedback from

the camera trigger device to create a model of o�set and skew of pulses relative to time

information collected over internet from NPT to collect timestamp of each frame. For the

timing of the gust, the voltage pulse that induced the gust was recorded along with the wind

velocity of the gust so that the timing of the gust relative to the pulse was recorded. The

pulse was generated by the same usb trigger device that triggered each frame of the cameras.

The device returned an acknowledgement of the command, and the middle of the roundtrip

time (almost aways around 3 ms, and if longer, the trajectory was elimininated) was taken

as when gust was started. To time the projector latency, we used a Texas Instruments

opt101 light sensor sensor aimed at the projector and the camera trigger hardware to send a

voltage pulse so that both could be observed on an oscilloscope simultaneously to �nd that

the projector had a consistent 20 ms latency. Adjustments for these delays were made in

the data post facto.

2.4 Results

2.4.1 The groundspeed of �ies without aristae is highly variable

In comparison to control �ies with intact antennae, �ies with their aristae removed exhibited

more variable trajectories and velocities. The variance of groundspeed within-trajectory

was greater (4.6 cm/s vs 7.5 cm/s), as was the variance in mean velocities (7.1 cm/s vs

9.9 cm/s) (Figure 2.4). The velocity variability appears to be a result of greater degree of

oscillations: �ies without their aristae appear to be continually accelerating and decelerating

in a sinusoidal pattern.
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(a)

(b)

(c)

Figure 2.4: Flies �ying without their aristae are unstable, possibly because of a long delay

in visual feedback. Compared to the trajectories of contol �ies with their antennae intact (a,

left in black), a random sample of ten trajectories from �ies with their aristae removed show

(right, in grey) more variability. Trajectories were rendered as seen from above with (0, 0)

being the �y's position at the start of the trial. Arista-ablated �ies exhibit more variable

groundspeeds (b) that appear to be sinusoid-like. The variability (measured by standard

deviation) of velocities of arista-ablated is higher within each trajectory, as the variability in

mean velocities, compared to control �ies (b, far right). When subjected to a visual stimulus

provided by a change in projector speed at the start of the trial, shown in blue (c), �ies

respond by accelerating, but with a ≈ 100 ms delay. The visual delay could account for the

velocity oscillations. Assuming feedback from the antennae is faster than that of the eyes,

a parsimonious explanation is that the �ies approach instability when forced to rely solely

on longer-delay visual feedback alone.
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2.4.2 A long time delay in the visual response could explain the variability

When subjected to a visual stimulus provided by a change in projector speed, �ies respond

by accelerating in a way that eliminated the visual slip, but with a delay of ≈ 100 ms. The

visual delay could account for the velocity oscillations. If the feedback system had to only

rely on slower-response visual feedback, it could be operating closer to the edge of stability,

which would predict larger oscillations arising from the feedback, as can be observed in

traces in Figure 2.4 (b).

2.4.3 The antennae response is much faster, suggesting a stabilization

mechanism

We measured the groundspeeds of �ies in a series of trials with di�erent headwind gusts

(Figure 2.5). In slow, step-like changes in wind velocity generated by suddenly opening

the wind vanes, �ies �rst decelerated and then recovered their initial velocity after 400-500

ms, consistent with the steady-state behavior �rst documented by [54] that �ies maintain

groundspeed independent of wind velocity. Further, we veri�ed that this behavior was

mediated by vision by animating the walls at the same time as the onset of the gust in such

a way that the mean visual stimulus during the trial was near zero. Under this condition, �ies

decelerated to a new velocity and therafter maintained that velocity. A signi�cant di�erence

in responses between control and visually-abolished step gust responses only appeared after

200 ms, reinforcing the �nding that vision operates with a relatively slow response.

In a fast impulsive gust, unlike in a step gust, an animal moving purely passively with no

feedback (with a �xed amount of forward thrust to counteract the e�ect of aerodynamic drag

on the wings) would recover its initial velocity after a short time because the wind velocity

itself also returns to zero. However, in fast impulsive gusts generated by the air piston (15

mm gusts in 35 ms), we found a signi�cant di�erence in velocity between �ies with and

without their aristae at 75 ms (Mann-Whitney U-test, p < .001). The divergence appears

very fast, within 20 ms. These result suggest that �ies sense rapid changes in airspeed with

their antennae and respond by actively accelerating in the same direction as the gust. In

the gentle, step gusts, the e�ect is so subtle it is hard to detect.
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Figure 2.5: Flies' antenna-mediated response to wind gusts is much faster than their visual
response. Fly groundspeeds vg (mean +/- 95% con�dence interval of mean) in gentle, step
gusts (a, left) and strong, impulsive gusts (a, right) are compared against the groundspeeds
of �ies with their aristae removed (gray). In gentle step gusts (left), �ies eventually recovered
their initial velocity in spite of the increased headwind (upper left), This behavior is most
likely mediated by vision. During a headwind gust, the �y's velocity drops, inducing visual
slip in the negative direction, shown by the blue arrows on either side of a cartoon of the �y's
head. To eliminate the visual slip normally associated with the headwind gust, the walls
were animated at roughly equal velocity to the �y's mean velocity (collected from an earlier
set of trials) (lower row). With visual animation, groundspeed recovery in the step gusts was
abolished (lower left). In strong gusts there is a signi�cant behavioral di�erence between
�ies with and without their aristae that arises soon after the gust (b, top right). But visual
responses take much longer to occur (b, bottom right), supporting the hypothesis that there
is a long visual delay. The antenna play and active role in forward velocity regulation and
rather than acting to reject the gust, the response seems to abet the e�ect of the gust.
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Figure 2.6: A hypothesis for how antennae could act to reduce oscillations. The time it takes
for a �y to sense that its velocity is di�erent from its desired forward velocity and exert a
thrust force response fc to eliminate the error (green) is much faster if the �y's antennae
are intact (top). If instead there is only visual feedback (bottom), the response is so delayed
that it leads to a continuation of the oscillations.

What use could there be to actively augmenting the disturbance caused by a gust of

wind? The direction of the response from the antennae is in the same direction as would be

required to abolish the ground speed oscillations observed in aristae-less �ies in Figure 2.4.

A representative diagram is provided in Figure 2.6.

2.5 Conclusion

In this chapter, we presented an apparatus to provide wind and visual stimuli to the fruit

�y as it �ew and its position in space was tracked. We found that the antenna-mediated

wind sense is much faster than the visual sense. The direction of the response, however,

was unexpected: rather than sensing the wind so that its in�uence could be �rejected,� the

antennae appear to be augmenting the passive drag force on the wings with active changes

in wing motions. We hypothesized that the function could be to counteract, and thus damp

out the oscillations observed in arista-less �ies. These �ies may be oscillating because they

are forced to rely only on long-delay visual information and thus are operating at the edge

of stability.

In the following chapter, we describe how a quantitative system identi�cation procedure

was applied to �nd a model for the �y's input-output behavior. We used the model to

explain how the antennae function as airspeed dampers, and how this could be used to
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provide robustness to parameter variability.



21

Chapter 3

System Identi�cation of the Fly's

Visual and Mechanosensory Feedback

Controller

3.1 Abstract

This chapter concerns a system identi�cation of the �y's free-�ight behavior in response to

wind and visual stimuli. A linear model �t to the �ies' behavior suggests that the antennae

act as a fast, proportional feedback regulator whereas vision provides longer-delay integral

feedback, and that the two senses sum. The feedback from the antennae acts to augment

the passive air drag of the wings, e�ectively doubling it, providing a velocity-proportional

damper that slows the �y's dynamics and makes them easier to control for long-delay visual

feedback. Flies without aristae exhibit oscillations in �ight velocity that typify a feedback

regulator at the edge of stability, as predicted by the model. The additional information

provided by airspeed measurement may aid the �y in con�ned visual environments where the

e�ective visual gain depends on the angular rate of motion across the retina which varies

greatly depending on the distance to obstacles. Our results provide new insight into the

functional architecture of �ight control systems in insects.

3.2 Introduction

This chapter succeeds chapter 2 by �nding a quantitative model of the �y's behavior so that

statements can be made about its design and performance. We proposed a number of simple

candidate linear models and �t them to the �y's response to a number of di�erent wind and
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visual gusts and selected the best model.

We found that the antennae functioned as fast active sensors with a feedback response

proportional to airspeed. Since the visual response has a longer delay and hence is slower,

the damping of the antennae slows the dynamics and makes forward motion of the �y easier

to control with visual feedback. This has two interrelated consequences. First, there is

less overshoot by �ies with intact antennae, and thus velocity oscillation in �ies with intact

antennae, as shown in Figure 2.4 of the previous chapter. Second, the antenna e�ect increases

robustness to changes in gain or time delay. It takes a much smaller increase in time delay

(such as from cold weather or the e�ects of ethanol) or increase in gain to make a �y without

aristae unstable with respect to forward velocity control. A number of e�ects can increase

visual gain: odor [68], visual brightness or contrast [69, 70], state of excitation, �y-to-�y

variability, or most importantly, in con�ned spaces the visual response will be higher for a

given speed because of higher angular rate of visual motion across retina [71]. The antennae

give the �y robustness to limitations in its visual system.

3.3 Methods

Since all inputs and outputs are received in the moving frame of the �y, we considered

the feedback mechanism from that perspective. Thus neither were the �y's inputs directly

observed nor its outputs directly measured, but inferred using both information about the

�y's velocity and tunnel-frame inputs.

As the �y moves, it experiences visual motion on its eyes, which we will call vv for visual

velocity. It is necessary as well to de�ne a direction convention, and so we de�ned positive

to be the direction experienced by the �y when it is moving forward, known in the literature

as �progressive� visual motion. We likewise de�ned positive airspeed va to be in the same

direction (Figure 3.1).
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Figure 3.1: A diagram of how tunnel-frame inputs and outputs are transformed into �y-

frame inputs and outputs. The two inputs, visual velocity vv and airspeed va, and one

control force output fc are de�ned as positive along the direction of the arrows (a). A

block diagram (b) indicates how tunnel-frame disturbances (right) are transformed into the

moving frame of the �y, with example traces showing how a wind disturbance would be

propagated. The goal is to �nd an abstract model of the box labeled ��y controller.� Color

conventions introduced for di�erent quantities in this �gure are used throughout the paper.

In the �xed geometry of the arena, we de�ned the visual velocity vv as a linear term, but

the �y probably measures angular rate across the retina [43], averaged over portions of the

visual sphere. The mechanism for visual motion detection is likely a correlator [72] combined

with spatial averaging by tangential cells [73, 23]. More detail is given in the introduction to

Chapter 5. That the �y is likely measuring angular visual rates has implications for feedback

control in varying geometries, to which we will return in the Discussion.

Because the dynamics of the �y can not be approximated as primarily viscous in nature

at the timescale considered here, we performed modeling in the domain of forces. Previous

studies on free-�ight forward �ight [48, 47] have modeled �y visual �ight speed response in

velocity domain only. But in this work, because the response from the antennae is much
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faster, it is necessary to model the dynamics in the force domain. Equating forces and

accelerations along the x-axis, the force-balance equation for the �y is

fc + fd = mv̇g, (3.1)

where fc is the active control force generated by the �y in response to sensory stimuli and

fd is the passive drag force arising from baseline wing kinematics . The �y changes its

wing kinematics from baseline motions to alter the active force fc, but we do not address

the speci�c changes that occur in this work. Results from [74] indicate that passive wing

damping drag force fd is roughly proportional with airspeed va, as do our results and a

simulation on an aerodynamic �apping-wing fruit �y model based on data taken from a

dynamically-scaled model in a tow-tank [49] (and see Figure 3.2). A dynamic element with

force proportional to velocity is known in control engineering as a �dashpot� or �viscous

damper.� Call this coe�cient of proportionality b, so that fd = −bva. If inertial forces

dominate (short timescales), the force balance equation (Equation 3.1) reduces to fc = mv̇g,

and if viscous forces dominate (longer timescales), then it reduces to fc = bva. The time

constant of exponential relaxation to asymptote velocity in response to a steady force in the

full force balance equation is equal to m
b ≈ .13 s. Considering delay from vision reported

in [48] is 0.081 - 0.1 s, the slower velocity-domain viscous dynamics may be su�cient for

the purposes of purely visual modeling. But the faster antenna response we consider in this

work necessitates inertial dynamics so the slower viscous domain dynamics approximation

cannot hold.

Moving to the domain of active sensory feedback, we seek a model for both drag and

active control forces. But rather than perform an exhaustive search among all possible

nonlinear models, we considered a set of simple, plausible linear models. If a satisfactory

one could be found, no further analysis would be necessary. And in general if they do not

have strong nonlinearities, nonlinear systems can be approximated by linear ones in a large-

enough neighborhood around equilibrium. Thus complicated nonlinear spiking ensembles

of neurons performing computations in the nervous system of the �y may be abstracted as

linear. Because the drag was roughly linear, this was considered as further evidence that

linear models could be su�cient. The �tting approach was to perform least-squares �ts on

each candidate model. For clarity, the results are segregated by functionality into delay and
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gain boxes, but most likely both operations are being performed by a single sensory-motor

transduction cascade.

To estimate velocities and accelerations from position information, we �ltered using

causal linear �lters and a �rst-order hold input model (linear interpolation between input

data points). All �ltering and �tting computations were performed using the python-control

package version 0.3 (http://python-control.sourceforge.net/) and SciPy (http://www.scipy.org).

Accelerations were calculated from position using a �lter of the form s2

(τs+1)2
, whereas ve-

locities were estimated using the �lter s
(τs+1)2

. When the information was already in �nal

form, such as wind velocity measurements from the hotwire anemometer, it too was �ltered,

but with the �lter 1
(τs+1)2

so that any phase lags induced by the �ltering were replicated in

all data. The time constant τ used in the �lters was 3 ms.

3.4 Wing damping

It was �rst necessary to �nd a relation for the passive drag forces acting on the �y. To

eliminate antenna feedback, the aristae of �ies were removed, and to eliminate visual feed-

back, we considered only data coming from the early, pre-visual period of the gust. Based

on experiments on tethered Drosophila performed by [74], as well on a quasi-steady model

of �apping Drosophila wings based on data from a dynamically-scaled tow tank [49], we

expected the drag force to be roughly proportional to the airspeed, or fd = −bva. While

airspeed drag at the scale of the �y would be expected to be primarily inertial, and thus

proportional to airspeed squared, this does not take into account the e�ect of �apping

wings. Consider this approximation: suppose wing angle trajectory can be aproximated

as a sawtooth (rather than a more realistic sinusoid [9]), with va the free-stream airspeed

and w the mean velocity of the wings relative to the �y, with w � va. Then drag on

the downstroke (into the wind) is fd = −α(va + w)2 according to the relation for intertial

�ow drag, where α incorporates coe�cients of surface area, coe�cient of drag, and air vis-

cosity. On the upstroke, the drag reverses direction because the wings are moving much

faster than the free-stream, and the drag force is fd = α(w − va)
2. Since upstroke and

downstroke take equal time, the stroke-averaged force is just the average of these two, or

fd = 1
2α(−v2

a − 2vaw − w2 + v2
a − 2vaw + w2) = −2αvaw. Thus the drag on the �apping

wings is proportional to va assuming w is constant (assuming negligible e�ects from the
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body [49]).

To perform a least-squares �t, we assumed the �y was in steady-state at the start of

the trial with constant forward groundspeed. That is, drag and thrust forces were exactly

balanced out. Then, during the gust, any change in drag force was detectable by a corre-

sponding acceleration, or ∆fd = mv̇g, with the mass m of the �y known beforehand. Since

both the groundspeed and windspeed are known, then va = vg − vw and a �t can be per-

formed for the data −bva = mv̇g. We found that this model �t the data reasonably well, as

well as predicting a zero active force during the various gusts (Figure 3.2).

3.5 Antennae model

A model for antenna feedback was found by subjecting �ies with intact antennae to dif-

ferent wind stimuli and only considering data during the early, pre-visual period of each

trial so that visual feedback was eliminated. We proposed three di�erent linear feedback

models: derivative with delay, lag (low-pass), and proportional with delay. Because most

mechanosensory input is fast-adapting (derivative-like), an integral feedback response, which

would require the �y's nervous system to take two integrals of a derivative-like input, seemed

unlikely and was not considered.

The three strengths of wind gusts were chosen so that their peak was approximately 0.5

m/s and ranged from the shortest time impulse the air piston could generate (a 15 mm gust

in ~40 ms) up to a gust with the maximum throw of the piston, 125 mm.

For each candidate controller the goal was to �nd the best-�tting gain Ka and delay/lag

Ta mapping the input airspeedva to the outupt control force fc under all of the conditions.

The frequency-domain transfer functions for the derivative, lag, and proportional controllers

were e−sTasKa,
1

Tas+1Ka, and e
−sTaKa, respectively, where the exponential e

−sT represents

a time delay of T sec. For each trajectory, the input was a vector of va values sampled at

the frame rate of the camera and the output was a vector of fc values at the same sampling

rate. To �nd the best-�t Ka for a given Ta and candidate controller Ca, the following steps

were performed:

1. For each trajectory, recenter initial inputs and outputs to zero by subtracting initial

conditions va0 and fc0, assuming that at the start of trial the �y was at steady-state.

This gives a recentered input vector ṽa and output vector f̃c.
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(a)

(b)

Figure 3.2: Aerodynamic wing drag is roughly proportional to airspeed. To estimate the
drag coe�cient b of fd = −bva where fd is drag force and va is airspeed, the accelerations
of �ies were �t to their airspeeds as they were perturbed by gusts of wind (a). The �t is
in remarkable agreement with a prediction from a quasi-steady aerodynamic model of the
�y (dashed line). To eliminate feedback, the aristae were removed and only data collected
during the early, pre-visual phase of the gust were considered. Tunnel-frae wind inputs vw
(red) and corresponding per-�y airspeed inputs va (magenta) are shown in the �rst row of
(b), with the mean shown with a thicker line. The second row shows total force measured
from �y accelerations f = mv̇g, with the mean in a thicker line. Only data in the unshaded
time periods were used, when the windspeed vw > 0.1 m/s and before the visual response.
The resultant calculated drag force fd = −bva is shown in the third row. The corresponding
active force fc = f − fd (bottom row) is essentially unchanged during the di�erent gusts,
suggesting the �t is good.
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2. Calcuate the response of the candidate controller to the input ṽa without the gain factor

Ka. For delays, shift the input vector to the nearest whole-number frame, and for the

lag controller, calcuate the unity-gain controller response using the lsim command

in python-control (equivalent to the command of the same name in MATLAB). This

gives C ′a(ṽa), response of the delay or lag component of the controller (but not the

gain).

3. Find the value Ka that minimizes the squared residual error E = (f̃c−KaC
′
a(ṽa))

2 by

taking the pseudoinverse.

4. With an estimated Ka for each trajectory in a given condition, take the median Ka

from the sample distribution as the estimate to minimize the e�ect of outliers. This

was necessary because of the tendency of �ies to occasionally accelerate or accelerate,

likely an adaptive behavior so that their paths cannot be easily predicted by predators.

5. Take the mean Ka for all conditions so that each condition is weighted equally, so that

conditions with more data are not weighted more heavily. Because weaker stimuli had

a low signal-to-noise ratio, only a subset of the conditions, conditions 2, 3, 6, and 7

(counting from the left in Figure 3.3), were used in the �t, but others are shown for

validation purposes.

The preceeding calculates the gain for a given delay. To calculate the best delay, the following

procedure was used

1. Calculate a gain Ka as described above for each of a range of di�erent delays/lags Ta.

2. Choose the delay (and corresponding gain) with the least residual error for conditions 2

and 5 (the only ones with signi�cant timing information during the pre-visual period).

To then choose the best candidate controller, take the simplest one whose best �t had the

lowest overall residual error.
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Figure 3.3: System identi�cation supports a proportional controller with a 20 ms delay as

the antennae feedback controller. The e�ect of visual stimuli was eliminated by considering

only responses during the early, pre-visual period (unshaded portion of plots). A range

of tunnel-frame wind stimuli conditions vw (a) (top row, red) and corresponding �y-frame

airspeed stimuli va (magenta) were presented to �ies. Their force responses fc, recentered

to zero, are shown in the second row. We proposed three controller models, derivative, lag,

and proportional, and �t them to the �ies' input-output behavior. To �t the delay or lag

time, we performed the �t for a range of delays (left column) and chose the delay or lag

(dashed vertical line) with the lowest residual error. We simulated each controller with the

mean va as input (thick green line, lower three rows) and compared the response to �ies'

mean force respones (thin green line). The model and the data diverge after 0.1 s because

of the e�ect of the visual response. The residual error for all trajectories and conditions for

each controller is shown in (b), compared with the standard deviation for condition 1 (grey

line), which had no input. The simplest controller that can explain the observed controller

with delay, shown it in block diagram form (c).

The simplest controller that could explain observed behavior with reasonable error was
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the proportional controller with a short delay, shown in block diagram form in Figure3.3. The

gain for the chosen proportional controller is 7.8 × 10−6, similar to damping the damping

coe�cient of the wings at 8 × 10−6, so the e�ect of the active antennae response is to

essentially double wing damping.

We remark that the model for the airspeed feedback exhibits the behavior observed in

the previous chapter, that the feedback response in e�ect augments the gust. The e�ect

is observed in about equal measure in both directions. The �y appears to be regulating

around a desired airspeed, decelerating or accelerating if it is not matched. If subject to a

headwind gust, a �y with intact aristae would be expected to quickly decelerate to match

the airspeed, as in shown Figure 2.5.

We emphasize that a derivative controller cannot account for the observed behavior. A

derivative controller would exhibit a very weak force response in gentle gusts (as shown

in the derivative controller's response to gentle gusts in Figure 3.3) because of the small

airspeed derivative, but this is not observed.

3.6 Visual model

Next we found a model for visual feedback by subjecting arista-ablated �ies to visual stimuli

so that their feedback response was due only to vision. We assumed feedback from the

antennae became steady-state after arista removal because of the slow adaptation observed

in all mechanosensory systems.

We proposed three simple linear models, proportional, integral, and proportional + inte-

gral controllers, with corresponding frequency-domain representations e−sTvKvp, e
−sTv 1

sKvi,

e−sTv(1
sKvi+Kvp). A derivative model was eliminated out of hand because it would require

an extremely long associated delay (taking a derivative adds phase lead�the opposite of

a delay). Visual velocity timecourses were chosen by �nding �ies' mean velocity responses

to the wind stimuli chosen in the previous section. The �t procedure was performed as

described in the previous section, except with visual velocity vv as the input and the fol-

lowing changes: (1) Fits were performed over 0.5 s rather than just the 60 ms pre-visual

period. Longer �t periods did not yield reasonable �ts (�t gains too small), possibly because

of visual motion adaptation in the vision system [75, 76]. (2) We used conditions 2, 3, 5,

and 6 (from the left) of Figure 3.4 to perform the �t. The other conditions had a much
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lower signal-to-noise ratio. (3) Condition 2 was used for �nding time delays. For the pro-

portional+integral controller, the least-squares was extended to �t to �t both gains at once,

and the median of each gain vector was taken.

The visual feedback model includes a vd input, which was included to be consistent with

the �nding that �ies maintain a steady-state groundspeed independent of airspeed [54], a

behavior likely dependent on vision.

The overall residual error for the three di�erent controllers showed comparable perfor-

mance (Figure 3.4). The proportional controller was discarded because it could not explain

the �nding by [54] and reproduced in this lab (data not shown) that �ies' groundspeeds are

independent of wind velocity, which necessitates a high gain at low frequencies, or a more

complicated wind-speed estimator (see Discussion) to eliminate steady-state error. The pro-

portional+integral controller was slightly better, but is more complicated. For the sake of

simplicity, and because it required a more neurologically plausible shorter delay (60 ms vs

150 ms), we prefer the integral controller.
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Figure 3.4: A good �t for the visual controller is an integral controller with a 60 ms time

delay. The e�ect of antenna feedback was eliminated by removing the aristae. A range

of tunnel-frame visual stimuli conditions vp (a) (top row, dark blue) and corresponding

�y-frame visual stimuli vv (turquoise) were presented to �ies. Their force responses fc,

recentered to zero, are shown in the second row. We proposed three controller models,

proportional, integral, and proportional+integral, and �t them to the �ies' input-output

behavior. To �nd the correct delay, we performed the �t for a range of delays (left column)

and chose the delay (dashed vertical line) with the lowest residual error. For validation we

simulated each controller with the mean vv as input (thick green line, lower three rows) and

compared the response to �ies' mean force respones (thin green line). The residual error

for all trajectories and conditions for each controller is shown in (b), compared with the

standard deviation for condition 1 (grey line), which had no input. Based on this data, the

simplest controller that can explain observed behavior is an the integral controller, shown

it in block diagram form (c).
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3.7 Sensory Fusion

With models for the �y's response to pure visual and pure antennae, the next question was

how these two senses interacted. Does one supersede the other during a strong gust or do

they sum?

We addressed this issue by subjecting intact �ies to di�erent gusts with di�erent visual

stimuli. Under conditions of an impulsive gust of wind, a �y is normally subject to both an

airspeed stimulus as well as a visual stimulus as its groundspeed changes due to drag forces

arising from the gust. We subjected the �y to either only the visual stimulus associated

with the gust, or only the airspeed stimulus associated with the gust by animating the

walls in lockstep to the average velocity response of the �ies, thereby reducing the visual

slip normally associated with the gust. In an attempt to further eliminate visual stimulus

during the gust, we implemented a virtual open loop to move the walls with the �y's actual

motion in realtime so that it experienced no visual slip, but because of the ≈ 50 ms tracking

latency it was impossible to keep up with the fast dynamics of the antennae response during

the faster gust transients, so this approach was abandoned.

When the responses in the two cases were compared to the response of �ies subject

to a normal gust, that is, with both the visual and antennae stimuli, we found that the

behavior of the latter is close to the sum of the two former (Figure 3.5). That is, under the

conditions tested, the responses of the two senses simply add. Strengthening this conclusion,

we performed an experiment in which we reversed the direction of visual stimulus during the

gust, doubling the normal gust visual stimulus. Under these conditions, the �y's behavior

is is equivalent to the sum of the regular gust and the pure visual gust responses (Figure 3.5

(e)).

In Figure 3.5 we compare the response of a model that takes sum of the responses

of the two individual senses to the data. For the most part, they match, except for after

heavy positive accelerations (denoted by grey marks at the bottom of the �gures). A possible

explanation is that the �ies may be decelerating in response to visual looming of the darkened

end of the wind tunnel as it approaches them from the front. Dark looming stimuli induce

takeo� in walking fruit �ies [39] and a landing response in tethered �ies [77], even in the

absence of a wind stimulus, so it seems reasonable they should elicit some e�ect on �ying

�ies. The e�ect is observed about 100 ms after the acceleration, a delay that is approximately
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equal to the visual delay. An avoidance behavior would not be expected (and is not observed)

in headwind gusts, which induce negative acceleration, because any visual looming would

occur in the rearward portion of the visual �eld is not sampled by the �y's eyes. To verify

that there was not a directionality associated with the apparatus or the room, the direction

of the experiment was reversed so that the �y was �ying toward the air piston rather than

away when the gust happened, and the looming response was observed only in tailwind gusts

in that direction as well (data not shown).
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Figure 3.5: Vision and antennae response forces combine by summing. Force responses

were measured for �ies subjected to either visual gusts with little airspeed input (a) or pure

wind gusts in which visual stimulus was substantially removed (b), or regular gusts with no

change in vp during the trial (the naturalistic scenario). In (d), the sum of (a) and (b) is

compared to (c), showing a remarkably close correspondence. Strengthening this conclusion,

�ies' response to doubling the visual input (e) is roughly equal to the sum of a regular gust

(c) and a visual gust (a). A block diagram showing this model is shown in (f). Simulating

the responses to mean visual and antennal inputs and then summing (thick green line, third

row) compares favorably to �ies' measured responses (thin line, third row). Where the two

diverge seems to be ≈100 ms after tailwind-induced accelerations (denoted by grey marks

at the bottom of the �gures), consistent with a looming avoidance response.
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3.8 Predictions of the model

The �ndings are collected in block diagram form in Figure 3.6. It was impossible vary vd

experimentally, so we could not know exactly where it entered into the �y's feedback system.

Given the ambiguity, we fed vd into the antenna feedback loop as well, which is equivalent

to an e�erent copy from the central nervous system [78]. This arrangement would speed up

the �y' response to changes in vd by recruiting the faster antenna feedback system.
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Figure 3.6: The antennae wind sense increases robustness but increases susceptibility to

wind gusts at intermediate frequencies. The complete model is shown in (a). A frequency

response magnitude-phase Bode plot (b) of the open-loop transfer functions (breaking the

loop at the visual controller) shows how the antennae increase both gain and phase margin,

reducing overshoot and enhancing robustness. Across a range of possible visual delays, the

gain margin of �ies with antennae is higher (c), with the × denoting onset of instability. The

dashed line shows experimentally-derived time delay. A time-domain simulation on a quasi-

steady �apping-wing aerodynamic model [49] subject to a sudden force disturbance (d),

shows how the antennae reduce overshoot. Simulation of the closed-loop feedback system to

wind disturbances at di�erent frequencies (e) shows that �ies with intact aristae show greater

relative error between desired and actual groundspeed in gust disturbances from about 0.5

to 0.9 Hz, but acceptable performance elsewhere. The dashed line indicates performance

of a hypothetical �y without visual feedback but with antenna feedback, showing that the

e�ect of vision is to reject wind disturbances at low frequencies. The e�ect of the antennae

reduces performance somewhat, by a factor of approximately 2. But this is a negligible

e�ect at low frequencies, where vision-mediated disturbance rejection is the dominant e�ect

with a factor much greater than 2.
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Because of the mathematical nature of the model, there are a number of equivalent

interpretations. One is that the antenna mediated behavior has a damping e�ect, counter-

acting the oscillatory behavior observed in �ies with ablated aristae that have to rely only

on long-delay visual feedback (Figure 2.4). Equivalently, the antennae increase gain and

phase margin of the control loop, raising the gain margin from 2.8 to 5.9 and raising the

phase margin from 39◦ to 70◦. Increased margins are equivalent to being farther from the

onset of instability, enhancing robustness to variations in these parameters. A controller at

the edge of stability is expected to show greater overshoot. The model predicts just that,

showing much less overshoot after an impulse force disturbance for �ies with intact antennae

(Figure 3.6).

For validation, we have plotted the predictions of the model compared to the mean �ight

velocities of �ies in the velocity domain for all conditions tested (Figure 3.7). The model

predicts a step response similar to that found in previous work [47] (Figure 3.8). In that

�gure we show that if the visual gain is increased for �ies without their aristae, the feedback

system can go unstable.

3.9 Discussion

Earlier work suggested �ies could sense wind with their antennae, but exactly what the

antennae measured and how it was used to control �ight was not known. By tracking the

�ight behavior of �ies in gusts of wind and measuring their acceleration rates to estimate

force outputs, and �tting that to a linear model, we conclude the following about how

antennae augment vision in forward �ight:

1. The antennae response to airspeed changes is much faster than visual response.

2. The antenna-mediated force response is linearly proportional to airspeed. This is

functionally equivalent to a �dashpot� or �viscous damper� terms used in control en-

gineering, and doubles the airspeed-proportional damping drag from aerodynamic on

the wings alone.

3. The force responses of the two senses simply add. This allows the visual response to

override the counteracting force of the antennae if there is a headwind.
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Figure 3.7: Comparison of response of model compared to data in the velocity domain.
Thicker translucent lines are model. Initial mean velocity of �ies was was added to model
response in each condition for easier comparison to data. Light blue lines correspond to
visual stimuli given to aristae-less �ies. The light blue lines are di�erent because goal was
to eliminate visual stimulus during gust, and the gust responses of the aristae-less �ies are
di�erent in the fast gusts.



39

Figure 3.8: Step response of the velocity-domain model reported in [47] to our model. Also
shown is a step response with a 3× higher visual gain. This could occur if the sun was
brighter or visual environment was smaller, both of which could result in a higher e�ective
gain. But if the gain is increased on �ies with no aristae, the controller goes unstable.
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4. The e�ect of the antenna response is to damp out, and thus to slow, the forward

�ight dynamics so it is easier to control by long-delay visual feedback, giving the �y

robustness to parameter variability.

An equivalent damping e�ect could be achieved by adding a physical damper to the �y, such

as large bristles or a tail. With the added drag, however, the �y would have to expend more

energy to move upwind. With an active, controllable antennae response, on the other hand,

the �y accrues the dynamic bene�ts of damping but need only override their e�ects inside

the brain, a much more e�cient proposition.

3.9.1 The gust response paradox

A paradox arises out of this analysis. The �y's antennae response seems to augment the

force of the wind, rather than diminishing it. We remark that this may be indirect evidence

against a fast, proprioceptive acceleration sense in �y, because if present it would likely act

to counteract the observed gust-force augmentation by the antennae. Flies can sense the

direction of gravity in the dark [57], but it may be a slow response, or may not function

during the vibration-heavy motion of �ight.

One possible explanation lies with the character of air �ow encountered by the �y. The

spectrum of wind turbulence tends to follow a power law with decreasing strength with

increasing frequency (for example, the Kolmogorov spectrum, which goes as f−5/3). It may

be that the magnitude of turbulence disturbances at high frequencies, where the antenna

response is signi�cant, is small enough not to be of concern for the �y. Whereas the larger,

low-frequency disturbances can be adequately compensated for by vision and its high gain

at low frequencies (Figure 3.8(e)). At low frequencies below about 0.5 Hz, the increase in

error due to the antennae remains a constant factor of only 2, which is greatly overridden

by the visual sense.

3.9.2 Remarks on feedback architecture

The antenna provide some of the same bene�ts as the derivative term in a standard proportional-

integral-derivative (PID) controller: less phase delay at the gain crossover frequency. We

did not expect the antenna feedback behavior to match a proportional regulator, however.

A derivative response would have provided more phase lead and would have been in keeping
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with usual phasic, derivative-like behavior of mechanosensors [50, 79]. A potential bene�t of

measuring the absolute airspeed, however, rather than its derivative, is that the information

could be used in combination with a visually-derived estimate of groundspeed to estimate

wind direction and magnitude for the purpose of odor localization and �ight control.

Among the three proposed visual controllers, all had nearly the same performance on

the test data, including the controller with proportional feedback. While compelling for its

simplicity, we do not think the proportional controller is a reasonable possibility. Unlike the

controllers with integral terms, which have high gain at low frequency to eliminate steady-

state error arising from headwind drag, the proportional controller has no such e�ect. In

a steady headwind, a �y with a basic proportional visual controller would show signi�cant

error, failing entirely to maintain a forward groundspeed if the wind was too strong. But

fruit �ies are able to maintain their groundspeed independent of the strength of the wind

up to 1 m/s [54] and reproduced in our lab (data not shown). This feat could nonethe-

less still be achieved with a proportional visual controller, but would require a number of

elaborations. The �y would need an internal model of the value of b, the drag coe�cient

on the wings, and would require computing a delayed version of the antenna feedback to

compare with visual feedback to avoid compromising performance. This seems complicated,

but not impossible. The best-�t proportional controller also has a long, neurophysiologi-

cally unlikely 150 ms delay, whereas visual response delays reported elsewhere are on the

order of 30 - 100 ms [80, 45, 47]. The integral controller, on the other hand, has a delay

of only 60 ms because the integration inherently adds some phase lag. For simplicity and

neurophysiological plausibility, we prefer the integral controller.

We have proposed a model in which feedback from vision and the antennae operate

in parallel feedback loops, each of which produces a force output. Another possible ar-

rangement would be an inner-loop/outer-loop topology. The typical application is for two

interdependent dynamic systems that have signi�cantly di�erent response times. For the

purposes of designing the outer loop, the response of the inner loop is assumed to be nearly

instantaneous. An example is a helicopter using its pitch angle to regulate forward veloc-

ity: the helicopter pitches forward to accelerate. The inner loop controls pitch angle, and

an outer loop gives a desired pitch to the inner pitch angle controller to regulate forward

velocity. An example of this principle applied to the �y in a simulator is given in [81].

It is a matter of block diagram algebra to rearrange the feedback loop structure reported
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here in Figure 5.7 to be inner-outer loop, but with indistinguishable behavior. The output

from the visual system could feed into the antennae system by adding to its vd term as a

correction factor δvd compensating for wind disturbances. If there had been evidence of of

similar poles or gains appearing in the feedback dynamics in multiple places, this could be

evidence that they were in fact outputs of the same block. For instance, in the PI visual

model, the proportional gain �t is 5e-6, not far from the antennae proportional gain of 7.8e-6,

so it is possible they could pass through the same gain.

3.9.3 Relation to previous work

Previous work in bio-inspired feedback control has considered the role of vision, but the

rami�cations of using visual feedback with a signi�cant delay�and compensation with a

second sense�have not previously been addressed. Neumann [82] created a simulated heli-

copter that maintained its attitude relative to the world using horizon detection and could

traverse terrain using an omnidirectional visual sensor and correlators. In that work, there

was no dynamic feedback for forward velocity regulation: forward velocity was regulated by

simply applying a forward force and letting the modeled robot accelerate until the force was

counteracted by an equal amount of drag. Thus, the matter of visual time delay in forward

�ight control is avoided by dispensing with velocity control altogether. Optimistic open-loop

feedforward �ight control of this form is unlikely to be used by the �y for the reason that

disturbances, such as wind or wing damage, cannot be compensated for. And �apping wing

�ight is a fast, almost violent and complicated mechanical motion that can generate strong

aerodynamic forces. It seems unlikely that such a complicated mechanism can produce an

arbitrary desired thrust without some feedback.

In [83] a robot controller was considered that used an array of hair sensors to augment

vision. But while in that work it is remarked in passing that the di�erent senses may have

di�erent bandwidths, no e�ort is made to address the question and the feedback controller

implemented in simulation does not have any visual delay.

Compared to the work of [47], our visuo-mechanosensory model exhibits roughly similar

step response behavior, including a similar visual delay (Figure 3.8), despite the di�erent

forms of the two controllers. The slower performance of our �ies may be attributable to

the fact that they were not exposed to an odor plume during the experiments (for why, see

Section 2.3.5). To illustrate the instability that could arise with higher visual gain (such
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as from closer obstacles) without antennae, included is the step response for a higher-gain

visual controller with and without antenna feedback (Figure 3.8).

We remark that feedback control in the presence of proportional airspeed drag has par-

allels with the study rotational motion. As in linear �ight control models [47], early rotation

�ight control models assumed that the dynamics were essentially viscous [84, 70]. However,

rotation rates of body saccades in free-�ight are fast enough that their dynamics were found

to be primarily inertial, necessitating an active counter-torque to slow and stop rotation

at the end of the saccade [85], presumably mediated by the halteres [86]. Other studies,

however, argued instead that passive drag is su�cient to account for the dynamics of sac-

cade completion [87, 88]. The matter has been resolved in the case of drosophila using a

dynamically-scaled �apping model in a tow tank of oil. The result, as is often the case, was

that both sides were partially correct: passive and active forces act in roughly equal propor-

tion during the completion of a saccade [63]. It is interesting to note that the same holds in

forward �ight: active and passive force components act in roughly equal proportion during

a gust of wind. We are left to wonder, could there be an underlying biological feedback

principle underlying both, or is it just coincidence?

3.9.4 Mechanisms

We emphasize that the antennae response seems to be proportional to airspeed input, down

to the 1 Hz half-sinusoid impulse signals we tested. This is unlike most mechanosensory

input, which is usually fast-adapting, or phasic. While [50] found only phasic, derivative-

like electrophysiological results from moving the antennae, it is possible a smaller tonic signal

was not detected. Yorozu [62], however, using genetic expression of a calcium-sensitive dye,

found locations in the brain innervated by projections from the Johnston's Organ that

responded to the magnitude of the wind, rather than its derivative, supporting the �nding

that the antennae are somehow able to measure absolute airspeed.

We remark that the visual controller has the form of an integral. An integral controller

could use the same neural hardware as visual odometry, that is, by taking the integral

of velocity, which is position. Visual odometry exists elsewhere among insects: is a vital

mechanism for bees [43, 22].

As for thrust generation, a number of possible mechanisms can be imagined, from varying

the angle of attack between the upstroke and downstroke (fast) [49, 89], to pitching the nose
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downward like a helicopter to generate forward thrust (slower, because it involves rotating

the body) [90]. Do visual and antenna input lead to the same changes in wing kinematics?

Considerations of e�ciency suggest that they should, and that summation of the two senses

should take place in the brain, for example by excitatory synaptic input to a common

neuron, rather than by opposing but distinct perturbations in wing kinematics, which would

presumably require more energy expenditure. We leave this question for future work.

3.9.5 Robustness to variability

One of the most bene�cial e�ects of the antenna response, in control terms, is to give the

visual feedback loop more robustness to variation in gain and delay. The delay could increase

in lower temperatures or perhaps because of ingestion of ethanol. Variable visual gain could

arise from the presence of odor [91] (though free-�ight studies have indicated odor may not

a�ect the gain of velocity regulation [92]), brightness of visual scenery, �y-to-�y variability,

or distance to obstacles as described in the next section.

3.9.6 Robustness to environment geometry

Gain margin provided by the antennae may be particularly important when the �y is near

obstacles or in con�ned spaces. The closer the visual obstacle, the higher the gain in the

visual feedback loop. Bees [43] and �ies [54] seem to regulate around the angular rate of

visual motion across their retinas. Thus for a given thrust impulse, and thus a given change

in forward velocity, a �y near an obstacle would receive a much greater visual stimulus,

as shown in Figure 3.9. Because the response is proportional to the error, the stronger

response propagates feedback loop and is equivalent to a higher visual gain. The higher gain

is problematic because the combination of high visual gain and long visual delay can cause

the controller to go unstable. Extra information from the antennae could damp this out and

allow the �y to �y stably in a much larger range of visual geometries.

3.10 Appendix: Parameters used in simulations

Parameters used in simulations and curve �tting are given in Tables 3.1-3.3. To ease analysis

during �tting, we rearranged the blocks of the feedback model, as shown in Figure 3.10.

With this arrangement, closed-loop behavior could be more easily analyzed by using Black's
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far walls

Figure 3.9: How distance to obstacles can a�ect gain in the visual feedback loop. For a given
thrust impulse, and thus a given change in velocity, the �y in the narrow corridor receives
much greater visual feedback because the change in angular rate of visual motion �ow vv is
much higher. Because the response is proportional to the error, the stronger response passes
though the whole feedback loop and is equivalent to a higher gain.
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controller frequency-domain form gain Ka delay/lag Ta (ms)

derivative e−sTasKa 1.6× 10−7 40

lag 1
Tas+1Ka 2.5× 10−5 77

proportional e−sTaKa 7.8× 10−6 20

Table 3.1: Fit values for candidate antenna controllers

controller freq. domain form prop. gain Kvp integ. gain Kvi delay Tv (ms)

proportional e−sTvKvp 7.5× 10−6 150

integral e−sTv 1
sKvi 5.0× 10−5 60

prop. + integ. e−sTv(1
sKvi +Kvp) 5.0× 10−6 3.8× 10−5 125

Table 3.2: Fit values for candidate visual controllers

law for negative feedback loop closure. Black's law states that the transfer function of a

closed-loop system with forward transfer function G(s) and feedback transfer function H(s)

is equal to G/(1 +GH) [93].

parameter symbol value

�y mass m 1.0 mg

wing damping coe�cient b 8.0× 10−6 Ns/m

simulation time step dt 1 ms

Table 3.3: Parameters used in simulation
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Figure 3.10: Block diagram of feedback system, rearranged for ease of analysis. This diagram
shows the best models for antenna and visual feedback, but other models can be accomodated
by substituting the corresponding delay and control blocks. Key: vg ground speed; vd desired
groundspeed; vw wind velocity; vpprojector speed; f total force; fd drag forcel; subscript
a denotes the antenna feedback system; subscript v denotes the visual feedback system; K
is a gain and T is a time delay. All velocities in this �gure are expressed in tunnel-frame
coordinates.
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Chapter 4

An Insect-inspired Autocorrelation

Model for Visual Flight Control in a

Corridor

4.1 Abstract

In this chapter we propose and demonstrate stable robot controllers that use a small om-

nidirectional array of visual sensors and a �y-like autocorrelation scheme for sensing visual

motion using minimal computation. Designing the controllers required deriving a model for

the response of an array of correlators observing the motion of a �at moving surface such

as the ground or a wall. The model operates in the frequency domain and incorporates the

e�ects of perspective, motion parallax, and spatial blurring. Using it, suitable parameters

for inter-sensor spacing and blur width were found that mitigated the e�ect of incorrect

estimates arising from aliasing. Controllers that decomposed the correlator response into

harmonics to observe and control the robot's state were implemented on a fan-actuated

hovercraft robot. They were able to stabilize it as it moved through a corridor, the �rst use

of correlators to control the motion of a �ight-like (non-kinematic) dynamic vehicle.

4.2 Introduction

Autonomous �ight by an insect-sized robot will require feats of miniaturization on multiple

fronts: actuation, system integration, power use, and even computation. On the actuation

side, it may be necessary to replace electric motors and ball bearings with piezo actuators

and �exure joints because of scaling considerations [94]. In this work we are concerned with
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Figure 4.1: The correlator. A pair of visual elements aimed at di�erent angles observes
luminance signal L moving across the retina with retinal velocity νr. The element τ is
a delay or time-lagging low-pass �lter and × is a multiplication or �correlation.� For a
sinusoid of a given spatial frequency, the correlator response R increases linearly with νr for
νr su�ciently small.

the sensors and feedback control of such a vehicle, aiming to insure it �ies stably and keeps

collisions to a minimum.

Miniaturization may require dispensing with traditional sensors and looking toward biol-

ogy for inspiration. Larger unmanned aerial vehicles (UAVs) use radar, lidar, and the global

positioning system (GPS) for self-localization. But for a tiny robot that may need to �y in

enclosed or cluttered environments, the GPS signal will be compromised. And emissive sen-

sors may use too much power or be too heavy. Nature has found a remarkable solution that

functions under these constraints: the �y. Flies are virtuosos among small �ying animals,

demonstrating superlative agility [38]. What lies behind their agility is a particularly capable

suite of sensors. Unlike four-winged bees and dragon�ies, �ies are dipterans, meaning �two

wings,� having repurposed their rear set to perform rotation rate sensing. Called halteres,

the rear vestigial stubs beat anti-phase to the wings over nearly 180◦ and can sense rotation

around all three axes by sensing strains arising from coriolis forces [95]. Flies carry large

omnidirectional eyes and corresponding large brain that both require a signi�cant metabolic

investment [96]. They also have wind sensors (antennae and bristles), and possibly use their

wings as the emitter of a sonar [38].

Thus the suite of sensors available to our robot may prove to be quite similar to the �y's.

There is an ongoing e�ort to reverse-engineer the �y both for biological understanding and

engineering insight [49, 81]. We remark that nature's solution does not compromise: �ies are

able land on inverted surfaces and right themselves within tens of wingbeats after tumbling

surprise take-o�s [39], and can navigate complicated enclosed spaces including forests and

kitchens with remarkable speed and agility.

In this work we report a controller that is able to use �y-like correlators to stabilize a
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Figure 4.2: A fan-actuated robot with hovercraft dynamics carries an omnidirectional array
of correlators and navigates a corridor. The goal is to move along the axis, avoiding the
walls. A representation of the projection of the visual environment onto the retina surrounds
the robot.

dynamic, force-actuated vehicle with �ight-like dynamics. It requires minimum computation,

eschewing serial, digital computation (for example, comparing lists of visual features [97])

in favor of simple operations like addition and multiplication that could be implemented

in parallel low-power analog on silicon or by neurons. Like the �y, our controller uses an

autocorrelation scheme to estimate visual motion using a relatively small number of visual

pixels arrayed omnidirectionally (Figures 4.1 and 4.2). This visual motion estimate is then

integrated over wide �elds of the visual sphere in a clever way, taking sums and di�erences,

to estimate vehicle state in a corridor.

In particular, we report a new model for the response of an array of correlators moving

relative to a large �at textured surface. The model is applicable to the common cases of

�ying over the ground or along walls. A state estimate derived from the �at-surface model

is coupled to a controller for a �y-like dynamic (non-kinematic) hovercraft robot that uses

fans for thrust and torque generation. This work di�ers from previous work in that it

uses an explicit model for correlators rather than a pure optic �ow formulation to control

self motion [27], [2]. Other work has reported controlling a kinematic wheeled robot [19]

using correlators, but here we tackle the more di�cult problem of controlling a dynamic,

force-actuated robot. We are concerned with motion in a corridor�particularly centering�

because it is an essential behavior required for navigating between obstacles in a cluttered

environment. Such a low-level, re�exive controller could operate in real-time, freeing a

high-level controller to pursue long range goals such as searching or path planning.
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4.3 Insect Flight Control

The �y has a small array of visual elements in its eye, numbering only approximately 1400

in the fruit �y Drosophila melanogaster [70]. They are arranged nearly omnidirectionally,

except for a small 20◦ slice in the rear. Evidence from a number of studies [98, 99, 70]

suggests these �ies use an autocorrelation scheme in which luminance readings between

nearest-neighbor visual elements are compared by delaying one and multiplying it by the

other (Figure 4.1) to estimate visual motion.

It is not yet well understood the underlying neural mechanism that performs the delay

and multiply operations in the correlator, recent clues have emerged [100, 15], and it is not

entirely certain why correlation is used rather than a di�erent method such as the gradient

method [101, 102]. It may be that autocorrelation-based control is easy to learn [32] or that

performing a division or matrix inversion as required by the gradient scheme is too neurally

expensive [101]. In any case, correlators are able to sense visual motion because their time-

mean response has the same sign and, below saturation, is proportional to the magnitude

of the visual motion νr. However, they have a number of non-idealities. Their response is

strongly dependent on both spatial frequency and contrast in the image [70]. For naturalistic

imagery, this leads to a low signal-to-noise ratio that requires averaging over space and time

to obtain a lower-noise estimate [69, 76, 102]. Nonetheless, their advantages may outweigh

their disadvantages, and in particular they may be su�cient to carry out the feedback

controls tasks required by the �y.

Downstream from the correlators, visual imagery is projected retinotopically into deeper

layers of neurons in the brain (that is, the topological arrangement image information is

preserved). A small number of larger cells, the lobula plate tangential cells (LPTCs) (ap-

proximately 30 in Drosophila) are found that sum the correlator respose over visual �elds

as large as a hemisphere [11] [23]. Sums and di�erences taken of their response may ex-

plain insects' tendency to center in a corridor and decelerate in con�ned environments [101].

Outputs from these cells project into motor centers which then orchestrate changes in wing

kinematics to perform �ight maneuvers.
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4.4 Frequency-Domain Analysis of Correlators

4.4.1 Correlator response to panoramic image motion

To analyze correlators, we �rst consider the case of luminance readings coming from panoramic

image motion as would be induced by self-rotation. Since by Fourier decomposition an arbi-

trary image can be represented by a sum of sinusoids of di�erent frequencies and amplitudes,

we start with an analysis of a single, arbitrary sinusoid.

A single correlator consists of two luminance sensors oriented at slightly di�erent body-

centric angles separated by an angle ∆φ (Figure 4.1). Suppose a sinusoid luminance signal

L with spatial frequency fs (cycles/rad) moves at νr rad/sec in front of the retina. Each

sensor reads

L(φ, t) = C0 cos(2πfsφ+ 2πfsνrt), (4.1)

where t is time. The correlator response is R = L2L1d−L1L2d where the subscript d indicates

a delayed or �ltered version of the luminance signal. If a pure delay is used, the correlator

response can oscillate between positive and negative with increasing νr. Accordingly, we

preferred using a low-pass �lter 1
τs+1 as the delay element because it never goes negative.

Assuming zero-mean input, it can be shown that this form of the correlator asymptotically

reaches a steady-state (constant in time) response [69]

R(t) =
1

2πτ
C2

0

ft
f2
t + 1/(2πτ)2

sin(2πfs∆φ), (4.2)

where

ft = fsνr (4.3)

is the temporal frequency of the sinusoid's oscillation as it moves. Initial transients die o�

with an exponential time constant τ .

4.4.2 Decomposing correlator response

The correlator response to a sinusoid (4.2) can be decomposed into a product of factors

R =
1

2πτ
C2TA, (4.4)
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where

C = C0 (4.5)

is a contrast factor that depends only on the amplitude of the luminance input L,

T =
ft

f2
t + 1/(2πτ)2

(4.6)

is a temporal factor that depends only on the temporal frequency ft of the sinusoid, and

A = sin 2πfs∆φ (4.7)

is an aliasing factor that depends only on the product of spatial frequency fs and angular

separation between the pair of luminance sensors ∆φ.

4.4.3 Incorporating the e�ect of spatial blurring

We model the luminance sensors as having a Gaussian sensitivity pro�le, blurring the image.

This is e�ectively a spatial-frequency-dependent attenuation of C. Each luminance sensor

has an angle-dependent blurring function

G(φ) =
1√

2πσ2
exp

(
− φ2

2σ2

)
,

where σ is proportional to the width of the blurring function. If the original luminance

signal sinusoid is L0(t) (Equation 4.1), then by convolving it with G we get the blurred

lumincance signal

L(t) = G(t) ◦ L0(t).

To �nd the resultant amplitude attenuation, we turn to the frequency domain. Because it

contains only one frequency, the Fourier transform L̂0 of L0 is a pair of delta functions at±fs.

Using the property that convolution in the spatial domain is equivalent to multiplication in

the frequency domain, we take the Fourier transform of G,

Ĝ(fs) = exp

(
−1

2
(2πfsσ)2

)
,

where fs is the spatial frequency, and thus L̂(fs) = L̂0(fs)Ĝ(fs). The two delta functions
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of L̂0 are scaled by Ĝ(fs). When the inverse transform is applied on L̂(fs), a sinusoid is

recovered, but in general with a change in amplitude and phase according to Ĝ(fs). Because

Ĝ is a real-valued function, the phase is unchanged and the e�ective amplitude of the blurred

image is thus

C(fs) = Ĝ(fs)C0, (4.8)

where C0 was the amplitude of the original luminance sinusoid (4.1). At low frequencies

where fs � 1/(2πσ), C ≈ C0, and at high frequencies C � C0.

4.4.4 Incorporating motion parallax and perspective

We would like to extend the equation for the response R(t) (Equation 4.2) to a moving

�at surface of in�nite extent. To do so, we need only consider how know the spatial and

temporal frequencies (fs and ft) project onto the retina and change as a function of angle φ

and state of the vehicle q. The vehicle is moving at a velocity v (m/sec) near the midpoint

between two walls pattered with sinusoids with spatial frequency Fs cycles/m (Figure 4.2).

The walls are separated by 2yd where yd is the desired distance the robot wants to keep

from the walls. The distance to the left and right walls are yl and yr respectively, with

yl + yr = 2yd. The �y's position ỹ is its distance from the centerline, giving yl = yd + ỹ and

yr = yd − ỹ.

The �rst matter is to �nd an expression for how the spatial frequency Fs on the walls is

projected onto the retina as a (spatially varying) spatial frequency fs. By multiplying the

e�ect of changing distance to the wall fs = y
sinφFs by the e�ect of changing the angle of the

wall fs = 1
sinφFs, the spatial frequency fs projected onto the retina is

fs(φ) =
Fsy

sin2 φ
, (4.9)

where y is the distance to the wall seen by that sensor and φ is the angle relative to the

axis of the corridor. (Or alternately, equate frequency ωs = 2πfs to rate of phase change

ωs = dϕ
dφ = dϕ

dx
dx
dφ where x = y tan(φ − π/2) is the linear distance along the wall from the

vehicle and dϕ
dx = 2πFs.)

Second, the retinal velocity or �optic �ow� νr in the corridor is [27]

νr = −θ̇ +
1

r
(v sinφ− ẏ cosφ) , (4.10)
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Figure 4.3: Simulated and analytic model correlator response R for di�erent visual sensor
blurring widths σ. As σ increases, the response diminishes and simpli�es, until it begins
to resemble the red line, a scaled version of the retinal velocity or �optic �ow� νr. Thick
lines are simulated at 5 kHz, black lines are from (4.11-4.13), and dashed lines are simulated
result at 60 Hz with a zero-order hold and are qualitatively the same. The vehicle is situated
1.5 m from the wall moving at v=0.25 m/s. The red line is scaled for easier comparison.

where r = y
sinφ is the distance to the wall at angle φ. θ is the angle of the �y in the

counter-clockwise direction relative to the axis of the corridor.

To �nd the correlator response in the corridor, we need only substitute the corresponding

fs, ft = νrfs, and C(fs) into (4.5-4.7), to arrive at

C = C0 exp

(
−1

2

(
2πFsyσ

sin2 φ

)2
)

(4.11)

T =
Fs

(
v − θ̇y

sin2 φ
− ẏ cotφ

)
F 2
s

(
v − θ̇y

sin2 φ
− ẏ cotφ

)2
+ 1

(2πτ)2

(4.12)

A = sin

(
2πFsy∆φ

sin2 φ

)
(4.13)
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for the correlators facing the left wall of the corridor. For the right wall, substitute yr for

instead of yl and negate any appearance of v. In the rotated frame of the robot, substitute

φ′ − θ = φ.

The analytic form is faithful to the response under full simulation (Figure 4.3). One

limitation is that the model assumes both visual sensors of the correlator observe the same

local spatial frequency fs, but in fact fs is continually varying across the retina. This is not

a signi�cant problem because rapid changes in fs coincide with high fs, which are blurred

out.

4.5 A Controller That Uses Correlators to Approximate Reti-

nal Velocity

The control task is to provide thrust force commands to a pair of fans operating in unison

(thrust u1) or di�erentially (torque u2) on a hovercraft robotic testbed. To avoid impacting

the walls, the controller uses omnidirectional visual imagery to stabilize its motion along the

middle of the corridor (for details of the robotic implementation, see Section 4.6). The vehicle

rolls on uni-directional roller balls which allow motion in all directions like a hovercraft with

small linear b and rotational c damping coe�cients. The dynamics of the vehicle in the

moving coordinate frame of the vehicle are thus modelled as

mv̇ = −bv + u1 cos θ

mÿ = −bẏ + u1 sin θ

Jθ̈ = −cθ̇ + u2,

where m is mass and J is the rotational moment of inertia about the center of mass. The ve-

hicle is underactuated because it cannot generate lateral force directly, but lateral dynamics

are controllable because they are coupled to forward dynamics by the θ term.

This inertial (non-kinematic) control problem is similar to that encountered by the �y,

with its aerial dynamics and pair of independently-controlled wings. An approach for �ight

control proposed by Humbert et. al. [27] decomposes the retinal velocity function νr(φ),

also known as �optic �ow,� into sinusoid basis functions (Fourier harmonics), emulating the

lobula plate tangential cells (LPTCs) of insects. It can be shown that within a straight
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corridor, the �rst few harmonics correspond implicitly to the state variables of the vehicle,

{v, y, θ, θ̇}. Linearizing about an operating point of baseline motion along the center of the

corridor and using the �rst few harmonics as the outputs of the system, the vehicle's state

is both observable and controllable by the fan pair.

4.5.1 Tuning σ and ∆φ angles for the environment to approximate retinal

velocity νr

While correlators do not measure pure retinal velocity, their response rises monotonically

with it under certain conditions. Figure 4.3 shows that the correlator response have a com-

plicated shape for low σ, but as it is increased (increasing blurring), its response resembles a

Gaussian function and also the retinal velocity νr. It is possible tune the inter-sensor angle

∆φ and the width of the Gaussian blurring kernel σ together to insure that response appears

Gaussian and does not alias to a negative response.

There are two criteria to satisfy. The �rst is to insure the spatial aliasing term A does not

go negative in the operating regime. For this we require that A be positive for a correlator

facing laterally (φ = ±π/2) no matter where the robot is in the corridor 0 < y < 2yd

where yd is the desired distance to be maintained from each wall. This can be insured if the

argument to the sin function 2πFsy∆φ ≤ π. This puts an upper limit on ∆φ, and since R is

strongest for larger ∆φ (thereby minimizing the e�ects of noise) we choose the upper limit

∆φ =
1

4Fsyd
. (4.14)

The second criterion is to insure that attenuated contrast factor C2 falls o� su�ciently

fast with increasing y that when A does go negative at y > 2yd, the blurring e�ect in C has

attenuated the response to near zero. Under this condition, as the vehicle moves still further

from the wall the correlators' response will remain near zero because all of the scenery is

blurred away. This is preferable to having aliasing cause the response to go negative. Since

the contrast factor dies o� as e−(2πFsσy)2 , we set the blurring width σ such that at y = 2yd

the signal attenuation has diminished by three standard deviations, or

σ =
3

4
√

2πFsyd
. (4.15)
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Lastly, scale the correlator response so that it matches the retinal velocity at φ = π/2

by the factor

α =
νr
R

=
2πτ

(
F 2
s v

2
d + 1/(2πτ)2

)
C0Fsyd exp

(
−1

2 (2πFsydσ)2
)

sin 2πFs∆φ
,

where vd is the desired forward velocity operating point for the robot.

The foregoing insure that the correlator response will resemble the pure retinal velocity

across φ near the desired operating point of forward motion along the axis of the corridor,

enabling the use of the Humbert controller. Figure 4.3 shows the correlator response function

R(φ) for a few di�erent values of σ, showing that the model is faithful to a full correlator

simulation.

4.5.2 Implementation in simulation

A simulation environment was written in MATLAB to render the scene from the perspective

of the robot. Visual updates were received at 60 Hz, equal to the servo rate of the physical

robot's controller software. The visual environment consisted of 2880 visual rays, and each

of the 64 visual sensors was simulated with a local Gaussian pool across a 3-σ neighborhood

of the sensor's orientation, blurring the image. The discrete-time low-pass �lters in the

correlators were also updated at 60 Hz, and dynamics were integrated with a zero-order

hold. To replicate the actual robot, the following parameters were used: Fs = 1 cycle/m,

corridor width 2yd = 2.5 m and length 12 m, vd = .25 m/s, σ = .14 rad from (4.15), and

∆φ ≈ .2 rad from (4.14) (achieved by using second-nearest neighbors when constructing

correlators), m = 6 kg, b = 4.45 N-s/m, J = .06 kg-m2, and c = .06 N-m-s.

Because of the di�erence between correlators and pure retinal velocity, it was necessary to

select di�erent gains than those reported in [27]. Following the same naming convention, the

lateral gains of Ka0 = −0.1, Ka1 = 0.8, and Ka2 = 4 were found to give stable performance

as shown in Figure 4.4. However, because the di�culty of decomposing the response R

(4.11-4.13) into sinusoid harmonics analytically, it was impossible to provide a satisfactory

stability analysis. This led to the design of the more-tractable controller in Section 4.7.
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Figure 4.4: Simulation of robot using Humbert controller (sinusoid harmonics) and tuned

blur width σ and correlator distance ∆φ. On the left is the 360◦ visual environment used

for state estimation by the robot. The dark band in the middle corresponds to the end of

the corridor. The robot was stable with this controller, but not strongly.

4.6 Robotic Implementation

A robot was constructed with an infrared omnidirectional visual sensor that emulated the

eyes of the �y. The robot rolled on low-friction rollerballs and was actuated by fans [103].

Computation was performed by an onboard laptop running the RHexLib library on top of the

real-time QNX operating system. Fan forces were calibrated beforehand and interpolated

from a look-up table to achieve desired forces. An overhead vision system could track

position and pose of the robot for analysis afterward (Figure 4.5). The parameters of the

vehicle and dimensions of the arena were what were used in the simulation and are given in

Section 4.5.2.
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Figure 4.5: Diagram of the fan-actuated hovercraft robot in its environment.

Rather than use a camera, a custom �y-like eye with an array of 64 infrared light-sensitive

diodes was constructed so that the view was omnidirectional. Heat-shrink tubing was at-

tached to each sensor to narrow its �eld of view, giving a sensor blur width of σ ≈ .077 rad

or 4.4◦ (Figure 4.7). The array of light sensors were passed through analog multiplexors,

ampli�ed by operational ampli�er, and read into the 8-bit analog-to-digital converter of a

PIC microcontroller. The microcontroller read the entire array of luminance readings and

communicated the result to the host laptop at 60 Hz over its parallel port. A spatial discrete

Gaussian blurring was performed in software with σ = .11 using the property that the con-

volutions of two Gaussians with standard deviations σ1 and σ2 is a Gaussian with standard

deviation
√
σ2

1 + σ2
2 to arrive at the desired σ = .14 rad. Parallel walls were constructed

and illuminated by DC incandescent lights powered by a large power supply to minimize 60

Hz line interference. The infrared sensors could detect printed black vs. white on paper if

it was printed by laser, but not by other printing technologies such as ink-jet printing [104].

To normalize the luminance to zero, the mean was taken of all sensors at the beginning of

each trial and subtracted out. The robot and its environment are shown in Figure 4.6.
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Figure 4.6: Fan-actuated hovercraft robot with a 64-element circular omnidirectional array of

infrared light sensors (top). The view of each infrared sensor was constricted by a segment

of heat-shrink tubing to increase visual accuity and eliminate spurious sources of light.

Computation was performed by a subnotebook laptop at the base of the robot and forces

were generated by two ducted fans (black) powered by a NiMH battery (yellow). The �hat�

used by the overhead tracking system attached by velcro to the translucent piece of acrylic

at the top and was removed so that the visual sensor was visible. The vehicle is shown in

its environment, patterned walls lit by DC incandescent lighting and a low-friction �oor.
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Figure 4.7: The response pro�le of an individual infrared sensor was measured by moving a

point light source laterally across its view in small increments. The response (black) is �t

by a Gaussian by calculating the sample standard deviation (dashed grey) giving a width of

approximately 4.4◦

Representative trajectories captured by the overhead vision system are shown in Fig-

ure 4.8. The robot could navigate the corridor, but not always consistently. Clumps of

lint and cracks in the �oor were large disturbances that were hard to compensate for. A

signi�cant problem was that if it got too close to the walls it would turn into them rather

than away. This can be explained as follows. The �rst few sinusoid harmonics of the retinal

velocity νr give enough information to observe the vehicle state. But the zeroth cosine har-

monic (the mean νr) is a0 = −
√

2θ̇+ vd√
2y2d
y and is a function of two state variables. This is

not a problem using pure optic �ow because they can be separated using information from

the second cosine harmonic a2 = v0
2y2d
y also has information on y alone. However, using corre-

lators, the two states cannot be disambiguated because there is no response near φ = {π, 0}

because of blurring of the high spatial frequencies. Hence, being leftward of the centerline

of the corridor (stronger correlator response on left hemisphere) is indistinguishable from a

rightward rotation θ̇ < 0 (larger response on left hemisphere) (see Figure 4.9). These two

conditions require opposite torque responses to reach the desired y = yd, θ̇ = 0. As soon

as the robot turned away from the wall arising from a large detected error in y, its large

rotation rate θ̇ would immediately eliminate the perceived error and, overcompensating, the

robot would turn back into the wall.
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Figure 4.8: Trajectories (left to right) of the robot in the corridor captured by the overhead

vision system. Gaps in the trajectories coincide with areas where tracking was not available.

4.7 A Controller Designed for Correlators

The limitation with applying the Humbert controller to the correlator response is that

correlators do not behave like the retinal velocity. In areas of low visual contrast (such

as where it is blurred out at angles near the axis of the corridor) there is no correlator

response, leading to an ambiguity between θ̇ and y (Section 4.6). In addition, because of

the complexity of the correlator response R, taking sinusoid harmonics of this function is

analytically intractable, making a stability analysis impractical.

Our approach is to instead seek an approximation R′ of the correlator response that cap-

tures its salient characteristics. With the approximation, it becomes possible to analytically

take square harmonics which are also functionally equivalent to the wide-�eld integration

performed by the tangential cells in �ies [23], sidestepping the di�culty of taking inner

products with sinusoids. To disambiguate y and θ̇, an estimate
ˆ̇
θ must be made from a

non-visual source such as a gyroscope. With that information, as well as the centroid of the

correlator response to estimate θ, by taking �rst-order Taylor expansions of the sum and

di�erence of the harmonics, it is possible to explicitly estimate the state.

4.7.1 Approximations to correlator model

We start with an approximation to the correlator model, simplifying (4.11-4.13) by making

certain assumptions that hold for the conditions of the robot described in Section 4.6.
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4.7.1.1 Aliasing factor (Equation 4.13)

A attains an in�nite frequency in the vicinity of φ = {0, π}. However, the correlator response

is also heavily attenuated by Gaussian blurring C factor there, meaning that the correlator

response at these angles is nearly zero and can be ignored. In addition, the Gaussian blurring

�bump� around φ = ±π/2 in C is much narrower across φ than the corresponding �bump�

in A, so we may approximate A as being constant across φ.

4.7.1.2 Temporal factor (Equation 4.12)

T rises to a �saturated� maximum at ft = 1/2πτ and then drops o�, mimicking the temporal

frequency peak observed in studies on insect behavior. If, however, the temporal frequency

is far below saturation, ft � 1/2πτ , then the f2
t term in the denominator can be neglected.

We also assume assume ẏ is small and neglect it. Though it is ampli�ed by the large factor

cotφ near φ = {0, π}, temporal frequency saturation negates the e�ect of this term as cotφ

grows large, as does the Gaussian blurring. In simulation, it was found to have little e�ect

on the correlator response (Figure 4.9).

4.7.1.3 Perspective approximation

The quantity 1/ sin2(φ) appears repeatedly. To approximate it, substitute α = φ ± π
2 and

perform a Taylor expansion around α = 0 (the same approximation holds in both cases) to

�nd
1

sin2 φ

∣∣∣∣
φ=±π

2

=
1

sin2
(
α+ π

2

) =
1

cos2 α
≈ 1 + α2 +

3

2
α4 + . . .

Applying the approximations to equations (4.11-4.13) and truncating the Taylor expan-

sion to 2nd order terms, we arrive at the tractable approximation R′ whose factors are

C ′ = C0 exp
[
−1

2 (2πFsyσ)2 (1 + 2α2
)]
≈ C (4.16)

T ′ = (2πτ)2 Fs

(
v − θ̇y

(
1 + α2

))
≈ T (4.17)

A′ = sin(2πFsy∆φ) ≈ A. (4.18)

Full analytic and approximate responses under di�erent perturbations are shown in Fig-

ure 4.9, showing reasonable agreement across the perturbations of interest.
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Figure 4.9: Correlator response to state perturbations as a function of body-frame angle
φ′. The baseline response R(qd, φ

′) is shown in grey and perturbation responses are shown
as solid (R(q, φ′)) or dashed (approximation R′(q, φ′)) lines. Changes in θ̇ are essentially

indistinguishable from changes in y, necessitating an externally-derived estimate
ˆ̇
θ. Changes

in ẏ have essentially no e�ect on R. The perturbation magnitudes are ∆v = 0.05 m/s,
∆y = 0.2 m, ∆θ = .2 rad, ∆θ̇ = 0.08 rad/s, and ∆ẏ = 0.05 m/s.

4.7.2 Finding state variables by square harmonics

There is a �nite minimum number of correlator pairs at di�erent directions φ needed to make

the system observable. But we seek an explicit inverse relation between correlator response

and state variables with a signi�cant e�ect on the correlator response for ease of constructing

a controller. In analogy to the �y, suppose we have two lobula plate tangential cells, call

them LL and LR that take the mean response over the left or right hemisphere, respectively.

Because this integration range is much larger than the width of each R(φ) Gaussian, the

integration range may be extended out to in�nity without signi�cantly a�ecting the result,

assuming the sensor blur width σ � π/2. Thus,

LL =

∫ π

0
R(φ)dφ ≈

∫ ∞
−∞

R′(φ)dφ =

∫ ∞
−∞

R′(α)dα = L′L.
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By approximating this π-width square harmonic as an in�nite-domain integral, we need only

evaluate integrals of the form
∫
x2e−ax

2
dx and

∫
e−ax

2
for which closed-form limits exist.

This avoids taking analytically-intractable inner products with sinusoids. And because the

limits of integration are much wider than the width of these Gaussian-like functions, for

small θ the orientation of the robot may be ignored here. Integrating,

L′L = γe−σ
2
sy

2
l

(
v

σsyl
− θ̇

σs
− θ̇

4σ3
sy

2
l

)
sin(2πFsyl∆φ), (4.19)

where we have de�ned σs = 2πFsσ and the constant γ = 2πτC2
0Fs
√
π/2 for compactness.

For L′R, negate v and substitute yr for yl.

By taking the sum and di�erence of the two L's (compare to the zeroth cosine and �rst

sine harmonic),

Σ = LL + LR (4.20)

∆ = LL − LR (4.21)

as well as the centroid of the bumps, and using internal knowledge of θ̇ gathered from e.g.

gyroscopes, the full state can be extracted as follows.

For a chosen desired operating point qd = {yd, vd, θd = 0, θ̇d = 0} there is a corresponding

Σd and ∆d. Shifting the origin to the desired operating point, ṽ = v−vd, ỹ = yl−yd = yd−yr,

Σ̃ = Σ− Σd, ∆̃ = ∆−∆d, the shifted coordinates can be interpreted as error to be driven

to zero.

First,
ˆ̇
θ is estimated from gyroscopes, a reasonable proposition for both �ies and robots.

Then, θ̂ is found by taking the centroid of the two opposite-hemisphere �bumps� from the

perspective of the vehicle, that is, using φ′ instead of φ,

θ̂ =
〈R(φ′), |φ′| − π/2〉

R(φ′)
≈ 〈R̂(φ′), |φ′| − π/2〉

Σ′/2π
. (4.22)

where R is the true reading and R̂ is the response read in from sensors. The divisor Σ′

is known from the model and thus can be inverted beforehand to be a multiplicative scal-

ing factor, avoiding a division operation. This inner product is similar to the �rst cosine

harmonic, but has a larger domain.
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The other states are found by taking Taylor expansions of Σ̃ and ∆̃ about the origin.

For Σ,

Σ̃ =
∂Σ

∂ỹ

∣∣∣∣
ỹ=0

ỹ +
∂Σ

∂ṽ

∣∣∣∣
ṽ=0

ṽ +
∂Σ

∂θ̃

∣∣∣∣
θ̃=0

θ̃ +
∂Σ

∂
˜̇
θ

∣∣∣∣ ˜̇
θ=0

˜̇
θ + . . . (4.23)

where the ellipsis denotes higher-order terms. Using the approximation Σ′, an analytic form

can be found for each of the derivatives. Both ∂Σ′

∂ṽ = 0 because the v term changes sign

between LR and LL (4.19) and ∂Σ′

∂θ̃
= 0 because by construction Σ does not depend on θ.

Because we have an estimate
ˆ̇
θ from gyros, we can rearrange (4.23) to get the estimate

ˆ̃y =

(
ˆ̃Σ− ˆ̇

θ
∂Σ′

∂θ̇

)/
∂Σ′

∂y
, (4.24)

where ˆ̃Σ is read from the sensors. Both derivatives of Σ′ are evaluated at qd and can be

found from (4.19) and (4.20) and can be easily calculated with symbolic software such as

Sympy or Mathematica. As in (4.22), the divisor can be inverted beforehand. We can then

calculate

ˆ̃v =

(
ˆ̃∆− ˆ̃y

∂∆′

∂y
− ˆ̇
θ
∂∆′

∂θ̇

)/
∂∆′

∂v
. (4.25)

The controller was implemented by using an outer loop to set a desired orientation θd

according to the estimate of the lateral distance from the center, θd = 0.25 ˆ̃y to steer the

vehicle to the center. A slightly-damped inner loop regulated θ̂ with the torque command

τ = Kθ(s + 10)θ̂e where θ̂e = θd − θ̂ is the θ error and Kθ/J = 3. This controller was

implemented in simulation and was much more stable. Though we can o�er no proof of

stability in this report, we note that this controller (with 2× larger blur width) is able to

stabilize in a corridor patterned with a texture taken from a real photograph (Figure 4.10),

suggesting its ability to control motion under more real-world circumstances.

4.8 Conclusions and Future Work

This paper reports progress on the visual control of micro-aerial vehicles using a small

number of visual sensors. The controllers reported rely only on simple-to implement neuro-

logically plausible multiplies and adds. Using a model of the response of an array of visual

correlators to a moving sinusoid-striped wall of in�nite extent, we were able to derive rela-

tions to determine a blur width and inter-sensor spacing that eliminated the possibility of
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Figure 4.10: The controller introduced in this work, designed explicitly for the correlators,
has a larger basin of attraction, extending nearly to the walls of the corridor (too close and
it overcompensates) (top). It is also able to stabilize motion in a corridor patterned with
imagery taken from a real photograph (bottom).
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driving the response negative due to aliasing. Using these relations, we reported navigation

in a corridor using a controller that decomposed the correlator response array into sinusoids

or square harmonics. The controller is computationally e�cient, requiring less than 6n

multiply-accumulate operations per step, where n is the number of omnidirectional pixels.

The analysis is in the frequency domain so it may extend to naturalistic scenery with

known power spectra (for example, 1/f) following [69]. It may be extended to a 3-dimensional

hemisphere by incorporating a longitude-like lateral angle β between the poles of expansion

and contraction, substituting y/ cosβ for y. The sensitivity to frequency or contrast exhib-

ited by correlators may be mitigated by compressive nonlinearities [69] or by local contrast

estimation [32]. Another possible direction would be to �nd a relation for the number of

sensors needed to reach a desired variance in the state estimate.

This work is related to [32] and [33] in that both works aim to stabilize around �snapshot�

desired visual response, but di�ers in that this work seeks a desired correlator snapshot

corresponding to a continuous state of motion rather than a �xed pose. It may be possible

to combine with that work, which demonstrates learning an optimal bilinear state estimator

using only the delayed (Ld) and raw (Ld) luminance readings as inputs, to instead learn and

stabilize to a correlator response �snapshot.�
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Chapter 5

How Flies Use Correlators to Control

Forward Velocity

5.1 Introduction

Soon after evidence emerged that insects use visual motion to guide their behaviors, attention

turned to the mechanism by which they computed visual motion. Two primary competing

hypotheses were gradient-based and correlation based [70]. We provide a brief comparison

of the two here. Suppose the visual world is divided into picture elements, or pixels, each of

which is reading a single luminance value L. These may be thought of as each ommatidium

in an insect's eye (though neural superposition in higher insects like dipterous �ies makes the

picture a little more complicated, but the principle is the same). In the gradient method, the

time derivative dL
dt is divided by the spatial derivative dL

dφ with respect to the angle φ across

the retina (the one-dimensional gradient) to estimate the rate of motion of the image dφ
dt .

Generalizing to two-dimensional image motion requires an assumption of local luminance

constancy and requires a matrix inverse [105], but we need only consider one-dimensional

motion here. The correlation method, by contrast, multiplies these two derivatives rather

than dividing them [106]. In both cases, the spatial derivative could be approximated by

taking the di�erence between neigboring sensors, and the time derivative by subtracting the

current sensor reading from a delayed version. A schematic of an implementation of the

correlator is shown in Figure 4.1. Both methods rely on a nonlinearity to estimate image

motion [107].

Early studies on insect vision were constrained by the technology available at the time.

In an in�uential study, a beetle was tethered at the center of a drum rotating about a vertical
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axis. The beetle was made to repeatedly choose left or right as it walked around a small

ball it held with its feet. The direction chosen by the beetle indicated that it was applying

feedback to limit rotational visual �slip�. The strength of this �optomotor response,� however,

did not vary with with rotational velocity, but varied instead with the temporal frequency

of stripes painted on the inside of the drum [108, 106, 98]. Because it was impossible at

the time to measure internal activity of the brain, the insect's motor response was assumed

to be proportinal to the visual stimulus received by the insect. Based on this study, it was

concluded that the elementary motion detectors (EMD) of the beetle were of the correlation

type. A diagram of the correlator model is shown in Section 4.3 and with it is included a

mathematical analysis.

Later, electrophysiological studies began to illuminate the pathways in the �y brain. At

the periphery, it was found that visual motion detection was essentially monochromatic,

relying primarly on the blue-green sensitive R1-6 rhabdomeres in the �y's eye [109]. Recent

work has begun to uncover the neural mechanism by which the sum and di�erence operations

in the correlator are performed, but an explanation for the multiplication and delay stages

has not yet emerged [100, 15]. Downstream, a class of large and accessible cells, the lobula

plate tangential cells, were identi�ed that sum input over large �elds of the visual sphere

[11]. At least part of their function appears to be to encode self-motion of the insect: local

preferred directions (the direction of visual motion across the retina that elicits the strongest

response) patterns for di�erent cells correspond to rotation around di�erent axes (vertical

or VS cells) or linear motion (horizontal or H cells) [23, 24]. Suggesting that they received

input from correlators, their responses also exhibited the temporal frequency peak response

to image motion [11]. In addition, HS cells from the horizontal system exhibited the higher

harmonics expected to arise from the multiplication step of the correlators [99]. Further

emphasizing their role in motion control, if these tangential cells were ablated, the optomotor

response of �ies was diminished [11]. A review of results supporting the correlation method

over the gradient method as the correct hypothesis is given in [70].

The correlator model has a number of non-idealities that limit its ability to faithtfully

estimate visual motion, such as being both contrast-dependent and spatial-frequency de-

pendent [107, 69]. When it comes to natural images taken by a camera, however, insect

visual motion performance is much better [76, 110]. Elaborated correlator models have been

proposed that exhibit correlator-like responses to sinusoids but yet are still capable of giving
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accurate velocity estimates on varying natural imagery, even in spite of di�erent contrast

levels [69, 102], or to the control of a model �y in simulation [111]. Thus, while they ex-

hibit non-idealities when observing single-frequency input, it may be that their behavior

for natural imagery is what redeems correlators. Or it may be that computation is more

e�cient for neurons or less sensitive to noise. In this work we take the viewpoint that the

metric for performance should not ultimately be its �delity at reproducing the velocity of

image motion. Instead, it should be measured against its performance in feedback for motor

control of �ight.

While the peculiar behavior of correlators to rotatory sinusoid imagery is well-documented,

the picture appears more complicated for free-�ight control of forward velocity. Bees �ying

in corridors with vertically-striped walls do not signi�cantly change their forward velocity

when the spatial frequency on the walls is changed [43, 112, 113, 22], and neither do �ies

[54] [48]. Hypotheses have emerged to explain this phenomenon, from separate, individually-

tuned correlators [114], to the use of a gradient method, which is not dependent on spatial

frequency [70].

The study in [48] is perhaps the most detailed study undertaken so far. In that work,

the visual stimulus was sinusoid grating patterns back-projected onto the walls of a wind

tunnel by computer while fruit �ies' forward �ight was tracked by cameras. Instead of

just measuring their speed, however, the �ies were placed in �virtual open loop.� In this

experimental paradigm, the visual stimulus is moved by the computer in real-time in response

to the motion of the �y. In this way the visual stimulus can be closely controlled, combining

the advantages of tethered �ight with the more realistic stimuli of free-�ight. Flies were

presented a range of spatial and temporal frequencies and their accelerations were measured

as the output and plotted on a 2D response map. They found that over a certain range

of spatial frequencies, �ies' acceleration responses were relatively independent of spatial

frequency. This suggested that a di�erent visual pathway than the basic correlator was at

work estimating forward velocity.

In this chapter we consider whether it is necessary to invoke a di�erent or complicated

model than the basic correlator to explain the �ndings of [48] and [54]. In Chapter 4 I

demonstrated that it was possible in principle to control lateral and forward motion in a

corridor using correlators. Based on the model of correlators observing a �at moving wall

derived in that chapter (Equations 4.11-4.13), I observed that the sum of all wall-facing
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correlators (the value of ∆ from Equation 4.20), plotted across a spatio-temporal frequency

map as in [48], could have a similar appearance. In other words, the e�ects of perspective

and motion parallax on an array of correlators, which had not previously been modeled,

could be enough to account for observed behavior of the �y. It would not be necessary to

invoke a more complicated correlator model to account for independence of spatial frequency.

One of the features that characterizes correlators is their temporal frequency tuning peak.

That is, though the correlator responds di�erently to di�erent spatial frequencies, its peak

response is always at the same temporal frequency, which we will call fpt , the peak temporal

frequency. If �ies exhibited a temporal frequency tuning peak, this could be construed as

evidence that the correlator model was correct.

To probe the matter further, we performed experiments on �ies in an attempt to repro-

duce the results of [48], but with greater emphasis on whether a temporal frequency peak

could be detected. The results suggest that the �y's behavior matches predictions for a ar-

ray of identical correlators. The correlators exhibited a temporal frequency peak of 5-10 Hz

at all spatial frequencies tested in both the drum and tunnel conditions. This corresponds

to a time constant in the delay block of the correlator of 21 ms. The model and the �y's

behavior was also consistent with spatial frequency independence for the spatial frequencies

reported in [54, 48]. Because a visual motion pathway using correlators already exists for

the �y, the simplest possible explanation is that they are using a similar pathway in forward

�ight regulation.

5.2 Methods

5.2.1 Model

A derivation of a frequency-domain model of the correlator response is given in Section

4.4 that incorporates the e�ects of perspective and motion parallax. We brie�y review the

relevant results.
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5.2.2 Drum case

It has been shown in [69] that a correlator with a low-pass �lter as its delay element has the

steady-state response to a sinusoid of

R(t) =
C2

0

2πτ

ft
f2
t + 1/(2πτ)2

sin(2πfs∆φ), (5.1)

where C0 is the amplitude of the sinusoid luminance pattern,

ft = fsνr

is the temporal frequency (cycles/s) associated with rate of visual motion νr (rad/s) of the

sinusoid across the retina of the eye, τ is the time constant of the low-pass �lter, fs is the

spatial frequency of the sinusoid (in cycles/rad around the retina of the �y) and ∆φ is the

angular separation between the pair of luminance sensors observing the sinusoid. This model

predicts the behavior of insects in a rotating drum in which the spatial frequency is constant

across the visual �eld. The temporal factor (4.6) is

T =
ft

f2
t + 1/(2πτ)2

.

Because of the f2
t term in the denominator, T �rst rises and then falls with ft, exhibiting a

temporal frequency tuning peak at

fpt =
1

2πτ
. (5.2)

For an example plot, see Figure 5.7, left.

5.2.3 Tunnel case

For the special case of a correlator observing a �at moving wall with no lateral motion and

no rotation (ẏ = θ̇ = θ = 0), Equations (4.11-4.13) simplify to

R(t, φ) =
1

2πτ
C2

0 exp

(
−1

2

(
2πFsyσ

sin2 φ

)2
)

Fsvg
(Fsvg)2 + 1/(2πτ)2

sin

(
2πFsy

sin2 φ
∆φ

)
, (5.3)
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where vg is the forward velocity, Fs is the spatial frequency on the wall in cycles/m, y is the

distance to the wall, and σ is the standard deviation of the Gaussian blur. Some examples

for di�erent forward velocities and spatial frequencies are shown in Figure 5.2.5. Note that

the temporal factor in this case is simply

T =
Fsvg

(Fsvg)2 + 1/(2πτ)2

and is the only factor that depends on the forward velocity vg. The temporal frequency

ft = Fsvg (5.4)

does not depend on the distance to the wall. This can be understood by considering a

luminance sensor taking readings at a certain angle φ. This sensor will experience the same

temporal frequency regardless of the distance y to the wall or φ if the �y is moving straight

and parallel to the wall. Hence, an array of correlators observing a moving wall patterned

with a constant spatial frequency would all experience the same temporal frequency as in

the drum condition.

The model does not take into account second-nearest neighbors as reported in [115, 70],

but their e�ect could in principle be added in using the appropriate choice of ∆φ.

It is assumed that there is some neural computation in the �y that takes the sum of all

correlators on the left or right hemisphere to calculate the quantity around which it regulates

its forward velocity. This is likely performed by neurons of the horizontally-sensitive system

in the lobula plate [11, 23]. This quantity is ∆ (Equation 4.20), that is, the di�erence

between the sum of left-facing correlators and right-facing correlators, shown as the area

under the curves in Figure 5.2.5. (The di�erence is needed rather than the sum because left-

facing and right-facing correlators would have opposite sign when �ying forward as shown

in Figure 4.9.)

While it is impossible for a small �y to measure correlator response in the �y brain in a

�ying Drosophilia (though the feat has recently been accomplished on tethered Drosophila

[100]), the magnitude of acceleration is expected correspond to responses to changes in this

value, as described in Section 5.2.4.
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Figure 5.1: Photograph of corridor with short-wavelength gratings back-projected onto the
walls. Because of the sensitivity of the CMOS sensor used to take this picture to infrared,
the infrared backlights can be seen on the walls as well, but these would not be visible to
the �y.

5.2.4 Apparatus

The system for tracking �ies and providing visual stimulus is described in Section 2.2, but

for the results reported in this chapter the wind gust apparatus was removed. As in that

section, 12 female �ies were water but no food for 2-4 hour before the experiment and the

experiment continued for 24 hours.

The visual stimulus consisted of vertically-aligned sinusoid gratings. One alternate hy-

pothesis was that there could be some unknown peculiarity of drum-like stimulus that lead

to the correlator-like behavior that was not induced in a tunnel geometry. Thus, a �drum�

condition was introduced, rendered in OpenGL using VisionEgg [67] onto the walls of the

wind tunnel so that the �y was exposed to a stimulus with constant spatial frequency fs

across the retina. The tunnel case was simply a sinusoid grating of constant linear spatial

frequency on the walls Fs (a photograph is shown in Figure 5.1). Spatial frequencies can also

be represented by wavelengths, with λ = 1/fs expressed in radians or degrees. In contrast

to the work in Chapter 2, a range of di�erent spatial frequencies were presented, rather than

just one.

Both of these stimuli required updating in real-time with the motion of the �y in �virtual

open loop� [48]. For the drum case, the virtual drum moved so that its center coincided with

the �y. Trials were started when the �y passed through the plane transverse to the axis of

the tunnel at the middle of the length of the tunnel, in either direction, and continued for

1.0 seconds. A new trial could not start for a 3-second refractory period. The trial consisted
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of putting the �y in a visual clamp of a desired temporal frequency so that regardless of

its own motion it was subject to this constant stimulus. A �y's response was the mean

acceleration rate during a 100 ms period starting 200 ms after trial start. To calculate the

average response over all trials, the median was taken instead of the mean to insure that

strong outliers, which occur when the �y makes sudden body-saccades, did not in�uence the

results. While the visual motion is known to exhibit motion adaptation, that is, a gradually

diminishing response over time to a constant stimulus [76, 75], (thought to increase the

dynamic range of neurons), because responses were measured within 300 ms of the trial

start, it was assumed this e�ect would be negligible.

The result of Chapter 3 suggest that an integral or a proportional+integral controller

are accurate models for the �y's response to a given visual stimulus. But because of lin-

earity, regardless of the model, the rate of acceleration during that short period is su�cient

information to measure the relative strengths of the di�erent visual stimuli.

To subject the �y to a speci�c temporal frequency, we set the velocity of the stimulus

according to Equation 5.4 (tunnel case) or Equation 4.3 (drum case). The frame rate of the

projector, 120 Hz, limited the top temporal frequency to below 1/4 of this value to insure

unambiguous directionality to the stimulus. We veri�ed that all frames were being projected

correctly by taking a video of the stimulus with a high-speed 500 fps camera.

5.2.5 Simulation

I wrote a simulation to model correlators in python to verify the validity of the analytic

model of Equation 5.3. The sinusoid grating was simulated for 200 di�erent angles (rays)

and a smaller number of visual pixels arranged with angular separations roughly equal to the

fruit �y's average ommatidia spacing [115], each of which sampled a small area of the image

using a Gaussian blur (Figure 5.2). The simulation step time was 1 kHz. The simulation

and Equation 5.3 are closely matched, as shown in Figure 5.2.5.
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Figure 5.2: Visualization of correlator simulation. Rays are cast out to sample the sinusoidal

luminance pattern (left) and a local Gaussian blur is applied (middle). The correlator

response is computed (right) and shown with with white indicating a strong response and

black to a weak response. See also Figure 4.2.
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Figure 5.3: Simulated and analytic correlator responses for di�erent spatial frequencies

closely match. Because they are nearly coincident, the simulated (solid) and analytic

(dashed) are hard to distinguish, indicating the �delity of the model. The x-axis on each

plot is φ, the angle across the retina of the �y (see Figure 4.2), and ranges from 0◦ to 180◦.

The distance to the wall is y = 0.15 m, corresponding to a �y at the mid-line of our wind

tunnel arena. Fs is the spatial frequency (cycles/m) projected onto the wall; v is the ground

speed (m/s).

5.3 Results

5.3.1 Data

Flies accelerated in response to the visual stimulus. Responses to the two cases of drum and

tunnel stimuli are shown in Figures 5.4 and 5.5, respectively. The pattern of acceleration

response in both cases showed a temporal frequency peak of about 7 Hz for all spatial

frequencies tested.

In [48], the �nding that there is spatial frequency independence amounts to that in a

certain area of the 2D acceleration strength map, the contours are straight. In Figure 5.10
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(top), in the range Fs =4�16 cycles/m, the viewer can observe that though the contours

are not straight, they are nearly so. The di�erence is within the measurement noise of the

corresponding �gure in [48].

Figure 5.4: Drum ground speed trajectories. The shaded portion of the �gure denotes

where the acceleration of �ies was measured. Not all temporal frequency conditions are

shown because of space limitations.
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Figure 5.5: Tunnel ground speed trajectories. The shaded portion denotes where the accel-
eration of the �ies was measured. Not all temporal frequency conditions are shown because
of space limitations.
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Figure 5.6: Fly accelerations in response to visual stimuli exhibit a temporal frequency
tuning peak. Stimuli were presented in virtual open loop in both the drum and tunnel
cases. The shortest wavelength (blue) exhibits the weakest response likely because of its
amplitude is diminished by spatial blurring.
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Figure 5.7: Model correlator responses to drum and tunnel stimuli

name value

inter-ommatidia angle ∆φ 4.8◦

Gaussian blur width σ 4.7◦ ∆ρ 11◦

correlator time constant τ 21 ms

Table 5.1: Simulation parameters for model of �y's forward-velocity correlator-based velocity
controller. The term σ is the standard deviation of the Gaussian function. The term
∆ρ = 2

√
2 log 2σ measures the width at half-maximum of the Gaussian function and is

commonly reported in the biological literature.

5.3.2 Model �tting

Two free parameters were available in the model to �t the observed behavior in �ies (Figure

5.7). The temporal frequency peak was was set by adjusting time constant τ and the spatial

frequency peak was set by adjusting the Gaussian blur width σ. The value of ∆φ was taken

from [109] and re�ects the e�ective distance between neighboring ommatidia for horizontal

motion. Correlator parameters corresponding to good �ts are given in Table 5.1).

Figure 5.8 shows the relative strengths across spatial frequency of the peak temporal

frequency responses for simulation and data.
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Figure 5.8: By tuning the blur width in the correlator, it is possible to achieve an agree-
ment between the relative responses at di�erent spatial frequencies. The peak responses in
simulation (correlator response) and in data collected from �ies (normalized with error bars
showing median acceleration ±std. err.) have similar relative response characteristics.
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5.3.3 Velocity sensing

The preceding section showed how fruit �ies' forward acceleration behavior exhibits a tem-

poral frequency tuning peak. Suppose the results are instead plotted versus linear velocity

rather than temporal frequency. Can they still agree generally with the �ndings of [48]

that the response is roughly independent of spatial frequency over a certain range of spatial

frequencies?

Results are shown in Figure 5.9. For the tunnel condition, the velocity is vg = ft/Fs

from Equation 5.4 and for the drum case, the velocity is the retinal velocity νr = ft/fs from

Equation 4.3. The model response is shown in Figure 5.10, showing close agreement. For all

spatial frequencies but the highest tested, the correlator response is roughly proportional to

ground speed up to 1 m/s.

Figure 5.9: Fly acceleration response plotted as a function of velocity shows that its system

is a good estimator of forward velocity for most of the tested spatial frequencies in the

range of 0-1 m/s for the tunnel condition (right). The data for the drum condition is not

as interpretable, as expected. Data shown in this plot is the same as in Figure 5.6, but

replotted with the transformation vg = ft/Fs. Only the high-frequency blue trace appears

to provides an inaccurate estimate of forward velocity for the �y.
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Figure 5.10: The model predicts that correlators could perform good-enough velocity esti-

mation in the range of Fs = 4 to 16 cycles/m in a tunnel geometry. The response map (top)

shows the strength of the sum ∆ (4.20) of wall-facing correlators as a function of spatial and

temporal frequencies (red=strong; green=weak). The behavior of the model correlators ap-

pears roughly linear with forward velocity up to 1 m/s (below). Compare the data of Figure

5.9, right, which plots �y responses for slightly di�erent spatial frequencies. The response

map and velocity responses resemble the plots of Figure 4 of [48], indicating that correlators

could account for spatial frequency independence in the noise of the measurements of that

work.

5.4 Discussion

In this work we asked whether �ies' forward-�ight visual velocity regulation in response

to sinusoid gratings could be explained by a uniform array of correlators. We found that

�ies' acceleration responses have a temporal frequency tuning peak that is independent

of spatial frequency, consistent with a basic correlator. We found that a model for the

response of an array of correlators to a �at moving wall derived in Chapter 4 could account
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for both the temporal frequency peak and the spatial frequency independence. By setting

the time constant τ in the low-pass �lters of the correlator model, the temporal frequency

peak coincided with the measured value. And by setting the width of the blur σ of the

luminance sensors, we could adjust the location of the spatial frequency peak so that the

relative strengths of the responses at di�erent spatial frequencies matched the data. The �t

resembled measured data for both the drum and tunnel geometries simultaneously.

This model and the observed data both predicted a nearly spatial-frequency independent

velocity response for spatial frequencies previously reported. While not a perfect velocity

estimator, the response values were within the uncertainty envelope of previously-reported

data in [48]. Here we propose that, in essence, the reason for the observed spatial frequency

independence was that the tested spatial frequencies were all clustered around the peak

of a bell-shaped response curve (Figure 5.9). For [48], they ranged from 4-16 cycles/m

and for [54] they were ≈5 and 10 cycles/m after being scaled according to the width of

that apparatus. That correlators could exhibit this spatial frequency independence had not

previously been observed because an adequate model for correlators in conditions of tunnel-

like geometry had not been realized. Given the strong evidence for correlators in rotatory

optomotor response pathway [108, 98, 72, 70, 11, 99], then by parsimony, strong weight

should be given to any explanation in which they they are used in forward �ight control,

as we have done here. Hence, it may not be necessary to invoke a separate pathway with

a di�erent model, such as multiply-tuned correlators [114] or the gradient method [116] to

explain forward �ight behavior.

In [117, 109, 70, 41], estimates of the width of the blur kernel ∆ρ have ranged from 3◦

to 5.5◦, relatively distant from the 11◦ value reported here. However, a recent electrophysi-

ological study on Drosophila photoreceptors found a much closer value of 8◦ [42].

The width of the temporal frequency peaks was much wider in the data than in the

models. A number of factors could account for this. First, we selected for trajectories

starting in the middle third of the wind tunnel, but even with that restriction di�erent �ies

were subject to di�erent stimuli because of di�erent distances from the walls. The peak

broadened if trajectories closer to the walls were included. Second, if the �y was rotating at

all that could increase its visual stimulus. Hence, the the measured peak would be expected

to be wider than the ideal peak because of variable stimulus conditions for the �y.

Future work could attempt to repeat the analysis for bees. Papers indicating spatial
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frequency independence for bees have also only considered a small range of frequencies

varying by at most a factor of 4 [113, 43, 22].

While di�erent spatial frequencies exhibit small di�erences in velocity responses, this is

likely to have a small e�ect on the stability of the �y. Because of the e�ect of the antennae

described in Chapter 3, the �y should be robust to these variations.
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Chapter 6

Conclusion

This thesis is concerned with dynamic control of small �ying vehicles. The approach in-

cludes both scienti�c analysis of free-�ight fruit �y behavior and engineering synthesis of

�y-inspired control algorithms on a robot. The main results concern the dynamic control

of forward �ight motions. I found that �ies use their antennae as fast sensors in an active

feedback loop that damps out and thus slows their forward �ight dynamics, giving the �y

robustness. I demonstrated that it was possible to control the planar motion of �y-like

hovercraft dynamics in a corridor using minimal computation and viual autocorrelation by

controller synthesis. And I found that by invoking a model for correlators observing a �at

moving surface developed for the robot controller synthesis, I found that �ies' visual for-

ward �ight-speed regulation could be explained by correlators alone, rather than necessating

a second distinct pathway for forward-�ight visual motion detection.

The picture that emerges is an insect that uses visual correlators as a powerful sensor

to measure the �y's motion relative to its �xed surroundings. But correlator-based visual

feedback also comes with limitations: correlators can give variable results depending on

contrast and frequency (though they may perform better on naturalistic scenery with typical

power spectra [76]). Visual feedback performance is limited by a signi�cant delay [48]. And

because rate of visual �ow of an obstacle motion is proportional to the inverse distance to

the obstacle [43, 71, 118], the e�ective visual gain propagated through the feedback loop

is highly variable. The �y's �ight regulator must somehow function despite these sensor

limitations. Wind-sensing antenna provide a valuable secondary piece of information. By

using antenna feedback as a dynamic damper, the �y slows its dynamics so that visual

feedback control becomes more stable. The cost is lower performance in the form of greater

susceptibiliy to wind gusts at intermediate frequencies (0.1 to 0.9 Hz), but because of the
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nature of turbulent �ow, which follows a power spectrum with stronger components at lower

frequencies, the magnitude of disturbances at these intermediate frequencies may not be

of signi�cant concern to the �y. The integral visual controller, with its high gain at low

frequencies, can then act to override the damping e�ect of the antenna and reject strong,

low-frequency disturbances including steady wind.

The results illustrate the value of approaching the problem by simultaneously performing

scienti�c analysis and engineering synthesis. Engineering synthesis often leads to a problem-

solving approach that uncovers issues that could not be foreseen by scienti�c study alone.

The synthesis of the robot controller necessitated a more sophisticated model of correlators

observing geometry wall geometry that had not previously been proposed. This in turn

led to a new study on �ies and the �nding that their forward �ight could be explained

by correlators alone. On the biological side, by using quantitative tools of engineering, I

uncovered how �ies use antenna feedback to compensate for limitations in visual feedback.

Future work can be divided into analysis and synthesis. On the analysis side, the question

remains as to how the antennae are performing wind sensing, and how feedback is translated

into wing kinematic changes, including pitch angle changes. Circumstantial evidence from

a small number of videos we took (n=3) seems to suggest that �ies with intact antennae

pitch back much farther in headwind gusts than do arista-ablated �ies. What is the neuron

or neurons that perform the sensory summation? What role, if any, do the antennae play in

the control of unstable pitch dynamics [81, 49, 119]? What is the relationship between wind

sensing and haltere feedback and is it anything like the visual e�erents to halteres [120]?

Does the �y use antenna feedback in a similar way in lateral wind gusts?

On the the side of robotic application, correlator-based motion control has only been

demonstrated for two-dimensional robot motion, but could be extended to 6-degree-of-

freedom robot. In either case, inherent noisiness of correlators suggest that an optimal

Kalman �lter estimator might low-pass �lter their output before feeding into the controller,

adding phase lag to the system. Wind sensing might thus be faster than vision for the

robot as well, and provide a similar bene�t. A future correlator analysis could combine the

re�nements of [69] and [102] with the analysis of chapter 4. A navigation or search planner

[121] that could modulate the behavior of this re�exive controller as in [122] could be added

on top. The re�exive controller could avoid collisions, freeing the planner from the demands

of realtime responses while it worked in parallel.
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Longer term, once there is a quantitative 6 degree of freedom description of the re�exive

stability control in �ies, inspiration will continue to be taken from their higher-level behav-

iors. Airborne search for odor sources [51] is a valuable robotic capability for tasks such as

search and rescue, as is visual odometry and mapping performed by bees[22]. Ultimately, the

powerful genetic tools available for the fruit �y will make it a particularly valuable organism

for understanding complex mental processes (Figure 6.1), including the nature of mind.
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Figure 6.1: The �ight trajectories of the fruit �y as they explore in the �ight arena, as seen
from above. Each dot is scaled according to �ight speed, as if the animal was dribbling paint
as it was �ying. The stars indicate when the �ies were subjected to a rapid gust of wind.
Can we explain this complicated behavior?
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