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ABSTRACT

We have developed the iterative Schwinger variational
method to study electron-molecule scattering problems within
the Hartree-Fock approximation. The method is based on the
iterative use of the Schwinger variational principle and can
obtain exact static-exchange scattering solutions. This approach
has been implemented using standard single-center expansion
techniques, We present results using the Schwinger variational
expression for e-He and e-He' collisions and find very rapid
convergence of the phase shifts with increasing basis set size.
We then discuss the iterative use of the Schwinger variational

expression and give results for e-H, and e—H; scattering which

2
show very rapid convergence of the iterative method. We have

applied this method to low energy e-CO, scattering and obtained

2
differential and integral elastic scattering cross sections.

We determined that the ZHu shape resonance in this

system occurs at an energy of 5.39 eV with a width of 0.64 eV

in contrast to previously published static-exchange results.
We have also used the iterative Schwinger variational

method to study the valence shell photoionization of NZ and

CO, as well as the K-shell photoionization of CO These

2 2"
results agree well with available experimental data. The

vibrational branching ratios for photoionization of ch level

of N, were found to agree quantitatively with experimental

2
measurements when an adequate number of internuclear spacings

were considered. Tle effects of vibrational averaging on 4cg
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photoionization of CO2 were also studied. A detailed
comparison of the results obtained using the Schwinger method
and other theoretical methods for studying photoionization
has been made.

The iterative Schwinger variational method has proven to
be an accurate and efficient method for obtaining Hartree-Fock
level scattering solutions, and it has allowed us to study

electron-molecule continuum processes in more detail and for

larger systems than previously possible.
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Development of the Iterative Schwinger Variational Method
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INTRODUCTION

Much theoretical research in recent years has been devoted
to the understanding of molecular systems which contain

(1)

continuum electrons. There are many such physical processes,
including electron-molecule scattering, which can be either
elastic or rotationally, vibrationally, or electronically
inelastic, dissociative attachment, dissociative recombination,
photoionization, and photodetachment. These processes are
important in understanding such physical systems as plasmas,

the ionosphere of planets, gas 1a5ers, and interstellar media.
This thesis describes the development of the iterative Schwinger
variational method which is a new theoretical approach for
accurately describing the continuum electron problem for
molecular systems. As presently applied this approach solves
the continuum problem within the static-exchange and adibatic-
nuclei approximations for linear molecules. We have applied

the iterative Schwinger variational method to photoionization

of N, and CO

and to electron-CO, scattering.

2 2
The basic mathematical problem in molecular quantum
mechanics, where one electron is in the continuum, is the

solution of the time-independent Schrodinger equation
H(r,rc,R)W(r,rc,R) = E?(r,rC,R) Wil

where r. represents the coordinates of the N+lst continuum
clzztron, r represents the coordinates of the other N electrons

and R represents the nuclear motion with the center of mass
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motion removed. The total molecular Hamiltonian can be

written as

H = TR + TrC + Tr ® VED,R) = Vc(rc,r,R) (2}

with T being a kinetic energy operator,. V being the potential
energy of interaction without the N+lst particle present and
Vc representing the additional interactions due to the N+lst
particle. For problems where one electron is in the continuum
(the N+1st particle as written here), the wave function ¥ is
usually described using a target eigenfunction expansion.(z)

Thus the total molecular wave function is written as

¥ (x,T,R) = T A ¢, (x)v; (r,R), (3)
where y; are eigenfunctions of the target Hamiltonian,

{Tp + T, + V(r,R) } ¥, (r,R) = E.v. (r,R), (4)

A is the usual antisymmeterizer, and ¢i(rc) is the wave function
of the N+1 particle. For open channels where E > Ei’ ¢i will

be an oscillatory function at Wy 98 Wy while for closed channels,
where Ei * By ¢i will be exponentially decaying at W " By
Usually Eq. (2) is in turn expanded in adiabatic electronic

eigenfunctions

I

Y(r,TuR) = 2 A 65 (r U5 (T3 RIX4 4 (R) (5)

where

{1+ V(r,kj}w?N(r;k) = E?N(R)wﬁN(r;k) (6)
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and wi which satisfies Eq. (4) is given by
F
0 (r,X) = T pE N (rsKx 4 (K. (7)
j J J

Eq. (5) is known as the laboratory-frame expansion of the wave

function. If the target wave functions w?N

and in were known,
then solution of Eq. (1) could be obtained by solving the set
of coupled differential equations which result from substituting
Eq. (5) into Eq. (1) and then multiplying on the left by target
wave functions and integrating out the target coordinates r

and R. However, for regions of configuration space where the
continuum electron is close to the nuclei, the motion of the
nuclei and that of the continuum electron are strongly corre-
lated. For such regions the laboratory-frame expansion is
slowly convergent, and a different approach is needed, An
alternative wave function expansion, known as the body-frame
expansion is of the form

¥ rng ) = 3 ug (T, RS (23K (8)

Chang and Fano(s) suggested that a body-frame expansion be

used for expanding the wave function when the continuum electron
is close to the nuclei and then at some boundary, e.g., at

r. = Tp, the wave function should be transformed to the
laboratory frame. This is known as the frame transformation
procedure,

The function u in Eq. (8) can be expanded in fixed-nucleil

continuum eigenfunctions



~ 2. P
Uj - i‘tkj (rcsR)Xk(R) (9)

where
£Ty # TrC + V(r,R) + Vc(rc,r,Rj} ? Al

¢§?(rc;R)¢§N(r;R)] = iy ? A[¢£?(rc;R)w§N(r;R)]' =

Then the molecular wave function is given by
_ FN,_ .o~ FN,_ . .
VTR = B AT (s RIYST (R (R) (11)

Thus Eq. (11) can also be used as a basis for solving Eq. (1).
However, once the fixed-nuclei electronic wave functions are
obtained and the problem has been reduced to just solving for
xi, the resulting equations are a continuum of coupled
differential equations. This situation is worse than what we
had with the laboratory-frame expansion given in Eq. (5).
Fortunately, though, we can employ the Born-Oppenheimer
approximation. If we restrict the use of the Born-Oppenheimer
approximation to scattering energies not too close to threshold
and only to describe the scattering close to the nuclei, then
the usual arguments about the relative time scales hold, i.e.,

the characteristic time for molecular rotation is 3-10-12 sec,

for molecular vibration it is 10-14 sec, and for electronic

motion it is 10-16 sec, thus the electronic wave functions
vary adiabatically with nuclear motion. Using the Born-
Oppenheimer approximation, the molecular wave function can

than be written as



Yo (5T R = T ALeLS (r RIDS (3R IX”

J

SR, (12)

The adiabatic nuclei approximation, given in Eq. (12), can in
some cases satisfactorily describe the entire scattering
process and in these situations one does not need to employ

the frame transformation procedure. One case where the
adiabatic-nuclei approximation is adequate is when the collision
occurs rapidly enough so that the molecule is essentially fixed
in space during the duration of the interaction. This is
generally the case for non-resonant collisions above threshold
where the anisotropic electron-molecule interactions are not

of too long a range. One example where this is not true is

in electron-dipolar molecule collisions where the integrated
cross section is infinite in the adibatic-nuclei approximation.
A second case where the adibatic-nuclei approximation is useful
in scattering theory is in the case of resonant scattering,
where one can define a new potential surface on which the
nuclei move, due to the N+1 particle resonant state. Such a
potential surface is complex due to the finite lifetime of the
resonant state,.

For the systems we have considered in this thesis, the
adiabatic-nuclei representation is adequate. We must then
solve the purely electronic Schrodinger's equation given in
Eq. (10). As a first approximation, we have solved the fixed-
nuclei Schrodinger's equation using the Hartree—Fock approxima-
tion. Thus we have neglected all electron correlation effects,

and we represent the total electronic wave function by a single
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Slater determinant. The equation for determining the molecular
continuum wave function is then reduced to a single-particle
three-dimensional potential scattering problem where the
interaction potential is non-spherical and non-local. The
wave equation for such a system may be written as (in atomic
units)

2

-1/m? - o = A

T VLT I (r™) (13)

where V represents the effective scattering potential. This
integro-differential equation can be rewritten as an integral

equation by using the Green's function defined by

o) o w2« &% 2 109" (14)

Eq. (13) then becomes the Lippmann-Schwinger equation
v ) = 0 @) ¢ 183 adr 6™ e
- o, + -
U, @) (15)

where I is the free particle scattering solution (i.e., the
solution in the absence of V) and U = 2V,

The basic approach to take here in solving Eq. (15) is
to approximate the kernel by a separable form. Thus we
approximate the kernel with

AP, S .
A6 IV sT) = BE (e, (r7)s (16)

F1l
Using this approximation, the Lippmann-Schwinger equation

becomes
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#] - (+)
wk (X3 = ¢E(I) ® ?fi(¥)<gilwk > R
Multiplying on the left by gi(g) and integrating over I we

obtain

<g;lui > = <glo + zeg g v (18)
X ¥ * 2 }

then it follows that

1 <gs 1oy (19)

(+ _ -
v ) = e )+ ZE WA g0

J

where
£, (20)

We have tried two different approaches for approximating
the kernel; these methods are known as the T-matrix and
Schwinger variational methods. Both of these approaches
approximate the potential V by a separable form and treat the
Green's function exactly. This has the advantage that the
resulting solutions have the correct analytic form and that
these methods are not troubled by spurious singularities which
occur when the Green's function is not treated exactly.(4)

First, we tried the approach of Rescigno et al.(s) where
the potential is represented by

. B
U [par) =5 2 <7 Iai><ui|Uiaj><aj[x>’ (21)

ui;mjeR

and where the set of functions R is taken to be a set of L2

functions. This approximation of the potential yields a

scattering solution of the form



@) = 4 ) + 2 <r|6" ) fa;>
= = ai,uj,ufaR
{(1-3)'1]ij<ajlU]a1><al|¢k> {22)
with
- ]
Bij = §E§R<aiIU1an><aan ]uj>. (23)
n

The second method we examined was the Schwinger variational

method where the separable potential is taken to be of the form

% (z,57) = & <x|Ufa;> U7 <0 Ulp 7. (24)

ui,ujaR

The wave function in this case is given by

%@ = e @) + 2 <x}6Myla,>
2 = 0.,0.eR
273
-1
[C7 ;4% Ul6)> (25)
with
Lgs ™ <0‘ilU'UG(ﬂUImj>- (26)

In Section B of this chapter, we show that the T-matrix
separable potential does not give as satisfactory a representa-
tion of the potential as does the Schwinger form. The superior
results obtained from the Schwinger separable form can be
attributed to the connection this form has with the Schwinger

(6)

variational expression. The Schwinger variational

expression for the T-matrix is
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T;fk-‘ = <¢)]}[Ulwktjtr> + <wg(—)tr]ul¢l<‘> -
<Lt gy Dy |y (D75 (27)

tr = : . i =
where wk is a trial wave function. One can show this 1s
a variational expression by considering a trial wave function

X

which differs from the exact wave function ¥°F by a small

amount

tr ex

poho= T o+ oyt ' (28)

Then it follows that the errors in the variational T-matrix
are second order in &y, thus

r
-
» K

e 2
T kak,+ 0(89)“. (29)

ot ot

Now if we expand wtr in the basis set used in Eq. (25),

() ex - )
‘I’k ) = Eie'RCk’iai(I)’ (30)

and require that the T-matrix elements be stationary with

respect to variations in the linear expansion parameters, i.e.,

require

tr
BTy g
k,k

we— . (31)
BC(i)
k,i

then the resulting trial wave function is



W) = 2 a; (1) (€71 5%, U] 0y, (32)

s ]
ai,ajER

and the variational T-matrix is given by

-1]ij<aj{Ul¢k‘>' (33)

Thus, the solutions of the Schwinger separable form given in
Eq. (25) are related to the trial function of Eq. (32) by

(+)s
vy

+)tr>

() = ¢, (@) + <x|Gu]yf (34)

Also, the asymptotic form of the solution obtained by this

method is given by
172
(*#)s - I s .
wk (x) P ¢B(I) [ E‘} Tk?yk EXE!IRT! , (35)
; 2

and thus ¢° is asymptotically variationally stable.

The use of the Schwinger variational method for molecular
systems was first suggested by Watson and McKoy.(7) The
original method proposed by Watson and McKoy computed the matrix
element, <ai|UGU[uj>, using an analytic approximation. As
discussed in Sections A and B of this chapter, we developed a
single-center expansion method to exactly evaluate these
difficult matrix elements. In Section A we present the first
exact application of the Schwinger variational expression to
an atomic or molecular scattering system where exchange
interactions have been accurately treated. In that section
we present e-He scattering phase shifts in the static-exchange

approximation, We find that for this simple system, the
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scattering phase shifts are well converged using only five
basis functions. In Section B we present details of the
numerical procedures used to evaluate <ui[UGU|aj> and give
the appropriate modifications needed to consider electron-
molecular ion collisions. In Section B we also give results
for e-He' scattering and He photoionization. Again we find
rapid convergence of the Schwinger results with increasing
basis set size.

In an application of the Schwinger variational method to

(8)

e-H2 scattering, we found that for certain channels it was
useful to include continuum functions in the basis set for

each scattering energy considered. This was in part due to

the long range nature of electron-molecule potentials, which
for HZ’ falls off asymptotically as l/r3 due to the quadrapole
moment of HZ' These early attempts to include continuum
functions lead to the development of the iterative Schwinger
variational method which is described in detail in Section C.
It is known that if the exact continuum solutions were included
in the basis set R of Eq. (25), then v would be exact.(g)

The iterative method thus proceeds by starting with an L2
basis which yields scattering solutions $50 using Eq. (25).
Then the continuum solutions are used to augment the L2 basis
set to produce a new set of solutions 51, The procedure
then continues by replacing wSO by $°1 in the basis set to
produce ¥52, 1In Section C we discuss why this procedure

should converge and show that when it does converge the

resulting wave functions are exact solutions of Eq. (15).
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Results of this procedure are given for e-H, scattering.

2
We found that when the basis was adequate, the iterative

method converged in one or two iterations. In Section D we

-+

2
ionization of HZ‘ We find similarly good convergence in

give results obtained for e-H, scattering and for the photo-

these cases.
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1. Introduction

The Schwinger variational principle is clearly a powerful formulation
of the scatiering problem and has several distinct advantages over
other variational methods (Taylor 1972). For example, in the
Schwinger method the trial scattering wavefunction need not satisfy

any specific asymptotic boundary conditions. This feature makes the
method particularly attractive for molecular applications since dis=
crete basis functions, which do not satisfy the scattering boundary con-
ditions, can be used in the solution of molecular collision problems.
The Schwinger method is also not troubled by the spurious singularities
that can arise in the Kohn variational method.

The main drawback to the application of the Schwinger variational
principle is the occurence of the term (‘l';.) 1 VG,V ] i;:;) ) in the
expression. Recently Watson and McKoy '(1979) proposez an approxi-
mate, but analytical, procedure for applying the Schwinger principle to
eleciron-molecule collisions. This scheme depends on the use of
Cartesian Gaussian basis functions in both the expansion of the scatter-
ing function and the insertion of a completeness relationship in the
evaluation of the matrix elements of VG,V. We have now developed
an efficient numerical procedure for the correct evaluation of the
Schwinger variational expression (Lucchese and McKoy 1978).

In this paper we present static-exchange K matrices for e-He
scattering, obtained from the Schwinger variational expression. To
oLr knowledge, these results represent the first exact use of the

Schwinger variational principle in electron scattering with inclusion
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of the exchange potential. For the expansion functions we choose
Cartesian Gaussian functions. The results are very encouraging and
indicate that the Schwinger variational method provides accurate solu-
tions of the scattering problem and does not require expansions in

large basis sets.

2. Theory

The Schwinger variational principle for the K-matrix can be written as

| u Py P oK)

(k|K|K'D = - (1)

o
2 P u-vel® u|eld) )

where \Iff{P) is the scattering wavefunction with the standing-wave
bounda.ryﬂcondition, GD(P) the corresponding free-particle Green's
function, and U = 2V with V the scattering potential. This expression
for the K-matrix is stationary with respect to small variations of the
exact state vector 'Iffcp ) about its correct value. Expanding 'Ifl((P)

in the set of basis functions |a )

|47 =2 a | @) (2)

~

and requiring that equation (1) be stationary with respect to variation
of the coefficients, aa(l_g), leads to the Schwinger variational expres-

sion for the K-matrix
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ﬁ:-ggz Ula) [D™ ]y, (B|U (3)

B

with

Da5=<a|U-UG°(P)UlB> (4)

This expression can also be obtained by assuming a separable

expansion of the potential of the form

Uer)=Z <z|ule)[d? ]z ¢B|UlL) (5)
where

dog = (e |U|B) (6)

Inserting this separable approximation to U into the Lippmann~

Schwinger equation for K

K=-2 U+ ue Pk )

yields equation (3) for K.
For the expansion functions we choose Cartesian Gaussian func-

tions of the form

(zle) = N (x-A) (y-a) " (z- 4, P e 1221 (g)
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where Nimn is a normalization constant. Also, in actual calculations

we use the partial wave K-matrix elements which are given by
[D™ lap <B|U|igr (ar) Ypr, (F) ) (9)

for linear molecules. For electron-molecule scattering, the matrix
elements (ji(kr) Yﬂm(f) ] U | a ) and (a ‘ UG(DP) U | B ) are
evaluated numerically. These numerical integration schemes are
efficient and rapid. A more detailed explanation of these procedures

is given elsewhere (Lucchese and McKoy 1979, Fliflet and McKoy 1978).

3. Results

We have used the Schwinger variational principle to obtain s-and p-wave
K-matrices for e-He scattering in the static-exchange approximation.
The SCF wavefunction was obtained with Huzinaga's 10s basis set for
helium (Huzinaga 1965). With this basis the SCF energy is
-2.86167a,u. In table 1 we list the exponents of the Cartesian
Gaussian functions in which the scattering function is expanded. The
same sets of exponents are used in both the s- and p-wave calculations.
The s- and p-wave K-matrices of this Schwinger variational cal-
culation are shown in tables 2 and 3 respectively. The K-matrix ele-

ments agree very well with those of the Kohn variational calculations
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of Sinfailam and Nesbet (1972). Even the results with the 3s scatter-
ing basis are close to those of Sinfailam and Nesbet (1972), indicat-
ing that the Schwinger variational j)ﬁnciple can provide accurate

results with small discrete basis sets.

4. Conclusions

We have presented the results of the first rigorous application of the
Schwinger variational principle to electron scattering with the inclusion
of exchange (Altshuler 1953), The results of this application to
e-He scattering show that the Schwinger variational principle is a
powerful method for the accurate solution of the scattering problem
with small discrete basis sets. This feature makes the Schwinger
method particularly attractive for applications to electron-molecule
collisions. Applications of the Schwinger method to electron-molecule

scattering, including its multichannel extensions, are under way .
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Table 1. Exponents of the Cartesian Gaussian functions used

in the Schwinger variational calculations.

3s and 3p set 5s and 5p set
20. 20.
1.41 4.417
0.1 1.0
0. 224

0. 05
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Table 2. s-wave K-matrix elements for e~ He scattering.

Sinfailam
Momentum _ 5 and Nesbet
k K (3s) K (5s) K (SN)

0.01 -0. 0151 -0. 0148 -

0.1 -0. 152 -0. 149 -0. 149
0.2 -0. 309 -0. 303 -0. 303
0.3 -0.476 -0. 467 -0.468
0.4 -0. 660 -0. 647 -0, 6417
0.5 -0. 870 -0. 853 -0. 858
1.0 -3. 081 -3. 031 -3.026
2.0 3. 103 3. 321 -

2 Sinfailam and Nesbet (1972) . ° . :
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Table 3. p-wave K-matrix elements for e - He scattering

Sinfailam -
Momentum and Nesbet
K K (3p) K (5p) K (SN)

0. 01 0.407(-6)°  0.422(-6) -
0.1 0. 404(-3) 0.419(-3) 0. 6(-3)°
0. 2 0. 316(-2) 0. 326(~2) 0. 35(-2)
0.3 0. 0103 0. 0106 0. 0108
0.4 0. 0231 0. 0236 0. 0239
0.5 0. 0420 0. 0425 0. 0426
1.0 0. 184 0.185 0. 187
2.0 0. 320 0.337 --

?Sinfailam and Nesbet (1972)
b0, 407(-6) = 0. 407 x 10™°

cprivate communication, R. K. Nesbet
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SECTION B

Application of the Schwinger Variational Principle to

Electron-Ion Scattering in the Static-Exchange Approximation
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1. INTRODUCTION

In recent years several methods which employ discrete basis
sets have been successfully developed to study electron-molecule
scattering and photoionization processes in molecules. These methods
include the R-matrix method used by Schneider for e"-H,, N, and
Fz1-3

4,5 . - 6-9
McCurdy and McKoy, ’" and appliedtoe -H,, N, and CO, and

scattering, the T-matrix method introduced by Rescigno,

the Stieltjes imaging technique developed by Langhoffm’ 11 and applied
to photoionization cross sections of molecules including N,, CO, H,O
and H,CO. 1A

In the present work, we compute static-exchange electron-ion
scattering phase shifts by direct evaluation of the Schwinger variational
expression for the K matrix. The Schwinger principle has several
distinct advantages over other variational method. In the Schwinger
method the trial function is not required to satisfy any specific
asymptotic boundary condition. . The method is also not troubled
by the spurious singularities that can arise in the Kohn variational
method. In the form used here, a trial wave function is constructed
from a linear combination of Cartesian Gaussian functions.

The Schwinger variational expression also yields an approximate

wave function expressed as a linear combination of discrete basis

functions. With little additional computational effort, an improved
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numerical wavefunction can be generated using the Lippman-Schwinger
equation in an iterative fashion as suggested by Blatt and Jackson. o
Thus the present application of the Schwinger principle also yields
numerical wavefunctions with asymptotic forms corresponding to the
variationally determined K matrix.

This method is well suited to electron-molecular ion scattering.
The expressions presented in this paper are general for symmetric
linear molecules. As a specific test case we have studied e”-Het
scattering. In addition to calculating s and p wave phase shifts, the

scattering solutions have been used to calculate photoionization cross

sections of the 1'S, 2!S and 2°S states of helium.

II. THEORY

A Electron-Ion Scattering

The Schrodinger equation for potential scattering from a mole-

cular ion of net charge Z is of the form (in atomic units)

(=V*-2Z 4 uS(x) - K" ) g (x) = O. (1)

The potential US(£ ) is an optical potential representing the short-
range interactions between the target and the scattered electron.
Instead of solving the Schriodinger equation directly, the
Lippmann-Schwinger equation for the wavefunction is used. For
electron-ion scattering considered here, the Lippmann~Schwinger

equation is

wﬁ:) r. t,/?{(i) + C_c(i) 'US;J/(;) ’ (2)
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where the Coulomb Green's function is

GC®) - ( V2+ 2 iyx%xie)? (3)

and US(;\') = ZVS(};). The wavefunction q/c (*), is the pure Coulomb

scattering wavefunction which has the part1a1 wave expansion given by

) . ; _ﬂ(?”k )
wO@ = D et Ly ey, e, @
where Fl(-y;kr) is the regular Coulomb function and

y=-2/k and o, =arg[T(£ +1 +iy)].

— 17
The partial wave expansion of the Coulomb Green's function Gc(i) " is
cx " ¥ g
G()(r,r)—---_Z)Yﬂn(r)Y; () r
X Fy (v;kro) [G, (rskry) # iF (r;kry)] . 6)

The asymptotic form of the scattering solution is then

v ) ~ 9§ () + Py L Smliilr-ylnZp)]
= = = (2m)®

where
1) = 202 (u°F) |05y . ()
~ tkr ~
We can define the T matrix due to the short-range component of the
potential, U°, by

rSE) - S 4 vS gt 8 &) (8)
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It then follows that

T®) | 4S@®)) - v® 4§y, ©)
and hence
1) @) = -2 ey IT5® |y i), (10)

In actual calculations the principal value function, defined by

(P)_ 4e(P), c(P)Usw(P) 1)

/\

Vi

is used. We define the partial wave expansion of the principal value

Coulomb function, ‘Pc(P)

W2 A DR e O Y6 . a2

This definition for the principal value wavefunction is chosen so that
c(P).

Vi (

is Smular to that given for a‘pc(t) in Eq. (4), except that the partial

£ig
wave radial functions have been made real, i.e., the factor e 3

is normalizad to 6(k-k'). The expansion of ;pc(P) in Eq. (12)

has been dropped.
Defining the K> matrix by

B m o GC(PKs (13)

with the partial wave K® matrix elements given by

Fy: (y:kr)
Ko = 2 = YOI R, ) )
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and the partial wave expansion of \V(:: )(g) defined as

we have for the asymptotic form of the partial wave functions

w(P) ~ Fytr;kr) 6, + Gply;kr) Ky (16)

The T matrix is related to the K matrix by defining the partial

wave expansion of the on-shell T matrix as

W | T = £ B e TR Y .
1)
Then Tf St) is given by

Ts(i) _ E%{_eii(%f'i'oﬂ) (Fﬂr(')’;kl‘) Yﬂ,m(f)[TS(i)]

2 fm LS kr

F, (v;kr)
kr

Vi 5 - (18)

Now the T matrix can be obtained from the K matrix using

Ts(i) _ -ieii(0£r+01)

S-1
o = % 1"[(1¢1K 1y gy Krgmy (19)

The relation between apg{P)and wg{*) is then given by

+io
Vitm®) = e 2R (CE R PO, W& ). (20)
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The approach taken here to solve the Lippmann-Schwinger equa-

tion for the K-matrix is to assume a separable potential of the form

e - EBUSIM[d"]aB(BIUS, (1)

where daB ={a ] v® lﬁ). We chose the expansion functions to be

Cartesian Gaussian functions of the form

- gl B
¢%(r) =(zle) =N, &-a)t@- AN z-A)"e alz-Al
(22)
where é locates the basis function center and N Fron is a normalization

factor. Substitution of this expression into the Lippmann-Schwinger

equation yields

~8 - -1
RS- - L B 0Pla) ] 4 6107 @3)

where faB ={a|U°|B) - (a|U® GCCP)USIB) . Adhikari and Sloan!®

have shown that a separable potential of this form in the Lippman-
Schwinger equation yields an expression for the K matrix which is
equivalent to the Schwinger variational expression with trial wave-

functions expanded in the same bases, e.g., wtk({P): ? a &) [a) .

B. Static-Exchange Potential for e -Ion Scattering

The potential, U(r), used in the present work is just the static-
exchange potential. For a two-electron system the electronic wave-

function is of the form

w(1,2)= u' (@) @)+ v Q) u(@), (24)
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where the upper (lower) sign gives the singlet (triplet) solution. The
one-electron orbital u’ is taken to be a continuum orbital, and u° is
fixed as the bound orbital of the isolated one-electron ion. The

electronic Hamiltonian for this two-particle system, where the ion is

an atomic, homonuclear diatomic, or symmetric linear triatomic

system is
H(1,2) =h(1) + h(2) + — , 25)
Ty
N . 1v2 ZC 1 1
where H() = eg V] = apm = ZA( -+ )} and where
i Ir. -A | [r. +A |
Zc and ZA are the nuclear charges at the origin and at A and -A,
respectively.
With the orbital u® fixed, the solution of the Schrodinger
equation
Hy = Ey (26)
. , 19-21
reduces to the one-electron equation for u’,
0 0 0 0 0
bz QY F P +J% 2K ) v = (1 £P" )u’, 27)

where the various operators are defined by
[+
Q" (r)u' (r) =u’(r) [ dr' u®*(x")h{r)v (1)
+h(r)u’(x) [ &r'u*(x') v ()

PY (r) v (1) =0 () [ @ ¥ () v (x) 28)
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0%, 71y 0, 1
(
Juo(,{) v (r)=v'(x) [dr FEWE

Ir' -r|

uo* (,{')u’ {E')

KY (r) ' (1) =v’(x) [ &1’
|z’ -]

-~

and where
€= [ d'r u¥(r)h(x) v’ (r) (29)
and €, =FE - ¢,.
When v’ is an eigenfunction of h, Eq. 27 reduces to
(hieoPuo+JuO:kKu°)u'= €, (1+ PV )’ . (30)

In the triplet case Eq. (30) is equivalent to the simpler equation

0 1]

(h+Ju -Ku)ufzelu’s (31)

since the solutions to Eq. (30) are just an arbitrary linear combination

of v’ and the solutions to Eq. (31).19’22

Thus the solutions to Eq. (3)
are constrained to be orthogonal to the occupied bound orbital, u°,
where the solutions of Eq. (30) have no such orthogonality constraint
imposed on them.

The potential in the static-exchange approximation is then
A 0 0 0 0
US(r) =2{N~(r) +J% £ K" + Q") 7 (e, + 1KHP" ]}  (32)

where

S ! 33
r—““ZA(""‘ & A). (33)
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Note that this potential is momentum dependent, although all of the
individual operators are independent of momentum. The corresponding

potential in the case where u’ is an eigenfunction of h is

.US(;:)=2'{¢(;_:) +J“01K“°¢ (eo-—;-kz)P“o}. (34)

In the triplet case the potential for the solution which is constrained

to be orthogonal to the bound orbital is given by

US(;:) =2{Né(£)+J“°-K“°} . (35)

m. MPLEMENTATION

A, Matrix Eleménts

’fhere are three types of matrix elements needed to evaluate the

: 'pa-rtial wave K matrix elements by the Schwinger variational principle:

- F, {v;kr) -
K, o = -kg?ﬁ(—kr Yy o 05 @) [£7] 5
F,(rkr)
gl
x (BlU° |——¥,, (), (36)

where [f7'] op 1S obtained by inverting the matrix with elements
0 = (@l V%)) - a|US P v%|p). 67

The elements of the type {a |U®|B) are available from standard bound

state molecular integral programs. The other two types oi matrix ele-
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F,(v;kr)
ments (aIUSI ‘f{: er(f)) and (aIUSGc(P)Uslﬁ) are evaluated

directly by numerical integration.
The initial step in the numerical procedure is to compute
7y r)=(r |US|a). This is done by first partial-wave expanding the

Cartesian Gaussian functions with

(38)

23

These expansions are analytically known. Then we define the partial

wave expansion of the potential by
Ui @)
W) = 2) S0

z Y, () . (39)

In turn each operator which contributes to U® can be similarly
expanded.
For the case where the occupied orbital, u’, is of sigma (m = 0)

symmetry, it has the partial wave expansion

uy ()

u’(x) = 2 Vo) - (40)

Then the expansions of the operators J, K, N are23

v, o < 122+1 - | o
3242 = 27 (22 00/ £70) (2 xmO| £'m) ¢yr (r)V. (r
o @ = S e o ¢ [£'0)(0amo| 'm) ¢pr OV, (@)

(41)

where
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ao

v, (r) = 2

5,8'=0

i
2

(2s +1)(2s’ +1 g 2
Lo J2e 12 (e’ 00/20)

r
1 p, OF 5 ot A
X {;ﬁ-‘[s{ dr’ ug (r') ug; "'

g rli!' dr’ ue:;(r;) u;’ (1") r:—l-l} (42)
and
u’, o f} g
K,' (r)= A° (2,0 ,m;s,8’,2)
£m £'=0 8,8, A=0 . ’
0 1k ¥ r W OF a o tA
X ugr (r) T [ oar’ u @) Sy @I
0
& Pk :cvd v 0¥, o L T | 43
J ar’ ug )y ¢ (@) (43)
r
and
z
4
A° £, 2, m:s,8,3) = 2s + 1)(2s"+ 1)
22 + 1)(2¢'+ 1)
X (s200] £/0)(s’x00]| £ 0)(sx0m | £'m) (s"20m | #m) (44)
and

A, o = s
N (@) = Y J24+1 % 0500|20)(eam0| £'m)
.0_':0 22'4-1 l=0

r} Z2.~2 ] a
% “2ZA(P§+I Yo~ 5,0 ¢ )}mem =
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with
A
4 A p
Il">t I‘A+1
(=), = ‘ 46)

r§+ A 1'-k .

p| A>r

A)L

and A = Az . The quantities (j, j,m, m, ljsms) are Clebsch-Gordan

coefficients. The expansions for the operators Q and P are

P‘E;’ ) =’ |a) u;m (r) 4mn

and

QUn® () = (@lhla) ug_@)

A
0 1 d L e+l) o
+ {u fa) {-1 o + - ZZA(_TI.§+ )A (48)

Z
Cc 0
'6£,0 —?—}uim(r).

In general u’(r) is also a linear combination of Cartesian Gaussian
functions. Thus the integrals (u®|a) and (v’|h|a) as well as the

expansions u‘in(r) are evaluated analytically. The expanded potenfial
is then given by

U2 () = 2 {ND ) + I )+ K ") + Qg (0]

i(e,,+%k2)1>‘fr;f‘ ®}. (19)
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The hybrid integrals are evaluated using

Fﬂ('}’, )

(@l V| £, ) = = [ arFrkn) UF(n) . (50)

Finally the matrix element {a|U® ceP)ys |8) in the denominator of

of Eq. (36) is given by

(a|U® GC(P)US(B> = - _kl— E‘Ix {mdr Ufm(r)

r
x{Gﬂ(y;kr) f dr’ Uﬁlm(r) ('y,kr)

+ Fy (7;kr) ! dr’ Ufm(r’)Gﬂ(y;kr')} ; (51)

B. Electron-Icn Scattering Wavefunctions

Numerical wavefunctions are generated from the K matrix using

the method of Fliflet and McKoy. 8 The identity

k

-~

vy = - Zx8[ye® 52)

combined with Eq. (1), yields

_ & aesl) 27 (P) () -
(dr2+ - 2 k)wﬂm(r)

. ) Fon (¥;Kr)
+ 2y, @ IKSI—HE——— Yo E)) (53)
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In the present formulation the right hand side of Eq. (53) is
approximated by

mie s Epon (¥ ET)
2k fm
L Wy ) |&%| iy S

" Fpp, (73 K1)
& - kEBU;ﬁm(r) [t ]QB(B[USIM-EH-E———- Y, (B) . (59)

These uncoupled ordinary differential equations are easily solved

using the Numerov method subject to ¢the boundary cconcliti:ons8

1i
§§ 5~ 0 vP) @) = (552)

lim (P) ~e
iil) r — o u/Mm(r) = E('y kr) ot Kﬂrﬂm Gﬁ(y;kr). (55b)

This prescription for generating numerical wavefunctions is

equivalent to the iterative use of the Lippmann-Schwinger equation

16

suggested by Blatt and Jackson. For a given trial wavefunction,

:,l/‘;f—P), they suggested that it could be improved by using

Ll

P Ll P P
”Dk( ) “l"l:c( ), g¢€ )Us t( ). (56)
Thus the solution of Egs. (53) and (54) is identical to the solution of
Eq. (66) with the trial function, U/E{( ) being given by

(57

>

‘Pt(P) az; d)a(r)[f'l B(ﬁlUSIIPC(P)



40

which is the trial wavefunction implied by the Schwinger variational

expression given in Eq. (36).18

C. Photoionization Cross Sections

In the present work, the electron-ion scattering solutions are
glso used to calculate photoionization eross sections. Photoionization
from three initial states of helium are considered. The states are the
ground state, 1'S, and two metastable states 2'S and 23%S.

The initial states in these calculations are of the functional

form

1

Y. (1,2) = ———
¥ Y2(1£5)

(¢ @@ @) 26, (1) & ,(2) (58)
where S = (n.s’_[ 18) . In the 1S calculation, ¢ and ¢ o are the same
and are equal to the Hariree-Fock orbital of the ground state of helium
in the basis set used. For the two metastable states, ¢ . is con-
strained to be the same as in the ground state. The ¢ns' functions are
then eigenfunctions of the one-electron equation given in Eq. (27).

The final states used in the photoionization calculation are con-
structed from the solution of the electron-ion scattering problem where
the bound orbital is fixed as the ¢ . of the ground state. Hence the
final orbital is thé fi‘é)lze.n céré af the ta-rget..r We measure aiI energies
relative to the experimental ionization potentials and in this way com-

pensate for some errors in the frozen core model. Thus the final states
are of the form

V02 = Euogo:goe.ol. (59)

The differential dipole oscillator strength is then computed in either

the length or velocity form as
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df 2 _ 2
(= L:§ sAE [ acl<ylr Ly )l (60)
or
df _ 2 1 - 2
gl = b fdg!(%lvulwf,gl (61)

where AE =ik +I1.P. and

F(xziy)/V2 for p=%1
. { (62)
K z - for u=0
and
(2 +12)/V2 for p==1
vu_ ox ay (63)
o for p= 0.
0z

If P, stands for either r,or Vu , then since all bound orbitals are of

gerade symmetry,

Wale, lug 0 = 2 [560,0 10, 1990 = (@t o, [} 00

The bound orbital ¢ (either ¢ _ or qbnsf) has the partial wave expansion

$(r)= 2 P @ , (65)

then
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=i0
- 2 1 ! -~ _Q -
@lo iy = Vo Ztyy e T 200+ 07y,
¢£” B wél;)
m m
X ﬂf,zﬂ,,,m,,( = (r) Ygmo» (ﬂlpu‘T(r)YE' (r)) (66)

The integral on the right-hand side of Eq. (66) in the length form is

( -‘!rm () Ypup, ,,(r)[r i—if—m(r) Yprn ()

e
n o prm ” P
= C(ﬂ ,_ﬂ ,m ,m,.u)x f dr¢'zumn(r) rl}/&:‘)ﬁrnm(r) i (67)
1]

where

1
" 2
C‘(E",!"’,m",m,,u) ___(22_0. +i)2x (111"00'1”0)
2" +

x (l‘ﬂﬂl #m | .ﬂ"m" ) i (68)

In the velocity form the integral in Eq. (66) is given by24
(P),  (r)

o rr(r) =
(B S @19, B e )

r

tm (!"’-!-1) - ﬂ"(_ﬁ”-l—l)}

)
” ” L d
= C'(ﬂ ,f ;M sm,“)x f dr¢2”m”(r)[dr ¥ 2r
[}

5 A5 e T (69)
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IV. RESULTS

A. e - He' Phase Shifts

The first application of the method presented here is to e”-He*
scattering. The He™ target 1s orbital is constructed from the Huzinaga
hydrogen 10s basis set25 with the exponents scaled up by a factor of 2.
This basis set gives an energy of -1. 999985 a.u. for He*.

We perform the scattering calculation using three different
methods. Besides the exact Schwinger method, we also computed an
approximate form of the Schwinger expression as proposed by Watson

26

and McKoy,”~ where the denominator faB is approximated

11, -l w¥]8) - Z alv®nela®®s) <ol us|p) . ()
¥s b

A test of the accuracy of the approximation in Eq, (70) is important
since this procedure is particularly attractive for molecular applica-

tions. The Schwinger K matrix with this approximation is then given by

~ e I"'
KI(SL';—.:% vS| a)[(th lap (B | u®. (1)

In these calculations the basis set inserted in Uch(P)US is the same
set as is used in the rest of the scattering calculation, The third
method is the uncorrected T-matrix method originally proposed by

4,5

Rescigno, McCurdy and McKoy. In this method the K matrix is

calculated using

T . : =l : !
K (S)z-g%ﬁ]a)(a[tﬂm[(f‘) Jgy CYIUS[0) (o). (12)
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The basis sets used in the exact Schwinger method and the
approximate Schwinger method with insertion are given in Table I.
The basis sets used in the T matrix calculations with Eq. (72) are
given in Table II.

Results for ®S scattering, where the scattering solution is con-
strained to be orthogonal to the bound orbital, are presented in
Table II. Tt is well knownl® 19 that for triplet scattering this yields
the same phase shift as the solution in which orthogonality is not
imposed. The bs Schwinger results are in excellent agreement with
the numerical results of Slorﬂtn.zr"’28 The 3s Schwinger phase shifts
are within 3% of the correct values. The 3s phase shifts also smoothly
approach the accurate phase shifts at higher momentum. The approxi-
mate Schwinger calculations with insertion in the denominator give
very good results at low momentum but at higher momentum show
discrepancies of up to 7% . Naturally the results of the Schwinger
method in which the USGC(P )Usterm is evaluated approximately, i.e.,
with insertion, can be improved by using a larger basis set around
GC(P). Uncorrected results using the T matrix equation [Eq. (72)]
are presented for two basis sets’. The 5s set which was also used in
the two Schwinger calculations yields generally poor uncorrected
T matrix results except for energies around k = 0.6, as can be seen
in Figure 1, The 10s basis set gives much better T matrix phase
shifts, which differ from the exact values by less than 2%,

The results for the °S e™-Hé scattering calculations in which the

scattering function is not constrained to be orthogonal to the bound
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orbital, are given in Table IV. It can be seen that the 5s Schwinger
phase shifts are again in good agreement with the numerical values,
and they are almost identical to the phase shifts obtained from the
constrained °S scattering solution. However, the uncorrected T matrix
10s results are dramatically worse than in the constirained calculation.
A larger 20s basis set does yield T matrix phase shifts which are
again in close agreement with the accurate results.

The results for 'S scattering are presented in Table V. In this
case, the Schwinger 5s and 10s T matrix calculations both agree well
with Sloan's results.27’28

Phase shifts for 'P scattering are given in Table VI. In this
symmetry the exact Schwinger and the approximate Schwinger (with
insertion) expressions both give results in close agreement with the
static-exchange phase shifts given by McGreevy and Stewart, 29

Results for °P scattering are given in Table VII. Again the Schwinger

5p and uncorrected 10p T matrix phase shifts are in close agreement,

B. Photoionization Cross Sections

The initial state used in the ground-state photoionization calcula-
tion of helium is constructed from the 10s Gaussian set of Huzinaga25
(also listed in Table VIII), which has a Hartree-Fock energy

E =-2.861669 a.u. For the two metastable states the 10s basis set is
augmented by seven diffuse basis functions given in Table VIII. The
orbital eigenvalues of the ¢_., orbitals, with the ¢ _ orbital taken as
the Hartree-Fock orbital, are -0.141509 a.u. for the 2'S state and

-0.189942 a,u. for the 2% state, The more diffuse functions included
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in this extended basis set are important in describing the Rydberg-like
metastable states.

Results of photoionization cross section calculations for the IIS
state are presented in Table IX. Cross sections computed using all
three methods employed in the scattering calculations are given. The

30 The

IP was taken to be 0. 9035 a. u. (24. 59 eV) for the ground state.
exact Schwinger results and approximate Schwinger results, with
insertion in the denominator,are virtually identical. These results
show that the total cross section is fairly insensitive to the variations
in the accuracy of the continuum wavefunction generated by these
various methods. This point is exemplified by the exact Schwinger Ip
cross sections presented in Table X. The difference between the 1p
and 5p Schwinger cross sections is less than 1. This result is put
into perspective by comparing it to the cross section obtained by using
a pure Coulomb wave as the continuum functions in the final state.
The 1p results can be seen to be an improvement over the pure Coulomb
result which contains no short-range scattering information.

In Figure 2 the cross sections obtained from an exact Schwinger
variational calculation with the 5p basis given in Table I, are compared

30 The difference between the

with experimental data given by Samson.
two forms of the dipole cross section, the length and velocity forms,
can be used as an estimate of correlation effects.31 In the photo-
ionization of the ground state of helium, the static-exchange velocity
form yields cross sections closer to the experimental results than

does the length form.
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The photoionization cross sections of the two metastable states
of He, the 2'S and 2° states, are shown in Figures 3 and 4, respectively.
The IP's of these states are taken to be 0.14595 a.u. (3.97 eV) for
the 2'S state and 017524 a.u. (4.77 eV) for the 2°S state.>> The static-
exchange cross sections are compared to the calculated values of
Norcross. o The calculations by Norcross used close-coupling final-
state wavefunctions with three states included in the expansion. The
initial states used by Norcrca:ss33 were slightly different from ours,
in that he used a He' 1s hydrogenic function for the frozen ®15
orbital. The dipole length cross section gives better agreement
with Norcross results than does the velocity form. In general neither

the dipole length nor dipole velocity forms seem to give more re-

liable static-exchange results.

V. CONCLUSIONS

We have presented a method for calculating static-exchange
electron-molecular ion scattering wavefunctions. The method should
be directly applicable to molecular systems. Ine” -He' scattering,
the numerical evaluation of the exact Schwinger variational expression
gives extremely accurate phase shifts with small basis sets. In
molecular systems, the numerical integration of the matrix elements,
(a| i GC(P) i [ B ) may become extremely length. In this case, the

approximate Schwinger expression with a large basis set inserted

c(P)

around G may be a more economical procedure. As presented

here, the approximate Schwinger method yields a single center
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expansion of the scattering amplitude. This allows analytic averaging
over target orientation. Both the exact Schwinger method and the
approximate Schwinger method, with insertion in the denominator, can
be used to compute accurate numerical scattering wavefunctions.
These wavefunctions correspond to K-matrices which are variationally
stable.

Accurate static-exchange wavefunctions can be utilized in various
distorted-wave approximations. In the example presented in this paper,
these wavefunctions can be used in the calculation of the photoionization
cross section of helium, even when the scattering basis set is of very
modest size. Another use for electron-ion scattering wavefunctions
is in the study of electron impact ionization.

The application of the Schwinger variational principle to molecu-

lar systems is in progress.
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TABLE I. Exponents for Cartesian Gaussian functions used in

Schwinger variational calculations.

5s and 5p 3s 1p
sets set set
100.0 100.0 0.500
21.1 4.47
4.47 0.200
0.946

0.200
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TABLE II. Exponents for Cartesian Gaussian functions used in

uncorrected T matrix calculations [Eq. (72)].

10s 10p 20s
400.0 200. 0 537.0 3, 86
172.0 92.8 328.0 2.36
73.9 43.1 200. 0 1.44
31.7 20.0 122.0 0. 879
13.6 9.28 4.6 0.537
5. 86 4.31 45.5 0.328
2.52 2. 00 27.8 0.200
1.08 0.928 17.0 0.122
0.465 0.431 10.4 0. 0746
0.200 0.200 6.32 0. 0455




TABLE III. Phase shifts for triplet s wave scattering of helium on.?

Approximated
Momentum Schwingerb Schwingerc Schwinger T matrix® T mr:xtri.:«:f Numerical®

K 3 (55) 5 (3s) 51 (55) 57 (58) 5T (10s) T
0.1 0.919 0.889 0.920 0.933 0.921  (k=0, 57=0, 920)
0.3 0.910 0.880 0.913 0.918 0.910 -
0.491 0.893 0. 865 0.903 0.894 0.893 0. 893
0.779 0. 855 0.828 0.883 0. 855 0.861 0. 855
1,076 0.802 0.780 0. 851 0. 827 0.816 0. 802
1,353 0.747 0.731 0.803 0.812 0.758 0. 748
1,897 0. 642 0.637 0.673 0.1759 0. 646 0. 645
2.198 0.591 0.590 0,603 0.703 0.611 0. 604

(fuotnotes, see next page)

SS
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Footnotes Table III.

a) Phase shifts are for scattering solutions which are constrained to
be orthogonal to the bound orbital, using the potential given by Eq. (35).
b) Exact Schwinger variational phase shifts [Eq. (23)], for 5s basis
set given in Table I.

¢) Exact Schwinger variational phase shifts for 3s basis set given in
Table 1.

d) Approximate Schwinger variational phase shifts, with insertion in
the denominator [Eq. (71)], for 5s basis set given in Table I.

e) Uncorrected T matrix phase shifts [Eq. (72)] for 5s basis set
given in Table I.

f) Uncorrected T matrix phase shifts for 10s basis set given in
Table II.

g) Phase shifts of numerical solution of Schridinger equation from

Ref. 28.
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TABLE IV. Phase shifts for triplet s wave scattering of helium jon?

Momentum Schwinger T matrix T netrix Numericalb

'S 5 (55) 5L 10s) &7 (20s) g

0.1 0.9018 0. 930 0.920 (k=0, 67=0.920)

0.3 0.909 0.911 0.916 -

0. 491 0. 893 0. 964 0. 907 0. 893

0. 779 0. 855 1.834 0. 854 0. 855

1,076 0. 802 1.332 0. 809 0, 802

1.353 0.747 0. 998 0.750 0.748

1.897 0. 641 0. 750 0.645 0. 645

2.198 0.590 0.910 0. 605 0.604

2phase shifts are for scattering solutions which are not con-
strained to be orthogonal to the bound orbital, using the potential
given by Eq. (32).

byumerical phase shifts from Ref. 28.
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TABLE V. Phase shifts for singlet s wave scattering of helium ion.

Momentum Schwinger T matrix Numerical?

k % (55) 5T (10s) sN

0.1 0. 386 0.400 (k =0, 67=0.387)

0.3 0.378 0.388 4

0.491 0.366 0. 361 0.366

0.779 0. 341 0. 341 0.341

1.076 0.317 0.325 0.318

1.353 0.302 0.314 0.302

1.897 0.290 0.289 0.290

2.198 0.290 0. 289 0.283

4Numerical phase shifts from Ref. 28.
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TABLE VI. Phase shifts for singlet p wave scattering of helium ion.

~ Approximate
Momentum Schwinger Schwinger T matrix T matrix Numerical®
i % 6p) 56p oG ol aop 8N
0.2 -0.0742 -0.0739 -0.0711 -0.0740 -0.0745
0.4 -0.0765 -0. 0761 -0.07556 -0.0759 -0.0765
0.6 -0.0788 -0.0783 -0.0782 -0.0742 -0.0788
0.8 -0.0797 -0.0792 -0.0761 -0.0701 -0.0796
1.0 -0.0780 -0.0777 -0.0700 -0.0685 -0.0778
1.2 -0.0733 -0. 0732 -0.0633 -0.0690 -0.0727
1.4 -0. 0656 -0.0658 -0.0579 -0.0646 -0.0646
1.6 -0. 0551 -0. 0555 ~-0.0524 -0.0508 -0.0540

4 Numerical phase shifts from Ref. 29,
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TABLE VII. Phase shifts for triplet p wave scattering of helium ion.

Momentum Schwinger T matrix
K 5 (5p) 5T (10p)
0.2 0.179 0.179
0.4 0.186 0.189
0.6 0.196 0.204
0.8 0.205 0.217
1.0 0.212 0.220
1.2 0.216 0.218
1.4 0.217 0.218
1.6 0.216 0.223
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TABLE VIII. Exponents for Cartesian Gaussian

functions used in initial state wavefunctions.

Additional
Huzinaga 10s diffuse functions
basis set? for metastable states®
3293.694 0. 0600
488. 8941 0.0333
108. 7723 0.0185
30.1799 0.0103
9.789053 0.00571
3.522261 0.00317
1,352436 0.00176
0.552610
0.240920
0.107951

%This is the basis set, from Ref. 25, used in the 1'S
(152) ground state of helium.

Prhe wavefunctions of the 2'S and 2°S (15 25) metastable
state of helium are constructed from the combined 17s

basis set.
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TABLE IX. Photoionization cross sections of the ground state of

helium, using the length form of the dipole operator in megabarns

(107" em?).
Approximate

Schwingera Schwingerb T matrix® T matrix
AEEV) T (p) 51 6p) oTep) o @op)
24,75 7.59 7.59 7.61 .54
26,6 6.98 6.98 7.07 7.01
30.6 5.76 5.76 5.901 5.83
34.6 4.74 4.75 4,85 4,76
38.6 3.93 3.93 3.95 3.89
42.6 3.26 3.26 3.238 3.22
46.6 2.73 2.73 2.66 2.71

2The exact Schwinger photoionization cross section is computed
using Eqgs. (60), (64), (66), and (67), with the partial wave scattering
solution, .,pg)m(r), obtained from Egs. (53) and (54) as described in
the text. The bp basis set given in Table I is used.
Prhe approximate Schwinger cross sections are obtained as in (a)
except that K® in Eq. (53) is approximated by ﬁl(s) given in Eq. (71).

CThe uncorrected T-matrix cross sections are obtained as in ()
egcept that K° in Eq. (53) is approximated by KT(S) given in Eq. (72).

d5ame calculation as in (c) except the 10p set given in Table II is

used.



TABLE X. Photoionization cross sections of the ground state of

helium using the length form of the dipole operator, in megabarns.

Comparison of 5p and 1p exact Schwinger cross sections with

Coulomb wave results.

Schwinger Schwinger Coulomb wave?
AE(eV) o (5p) o (1p) o€
24,75 7.59 7.60 7.73
26.6 6.98 7.00 6.91
30.6 5.76 5.79 5.44
34.6 4.74 4.77 4.34
38.6 3.93 3.9 3.53
42.6 3.26 3.27 2,90
46.6 2,173 2.72 2.41

(P)

2The Coulomb wave cross section is obtained by using Yy ﬂzm(r) =

51.2!

F, (v;kr)in Eqs.(60), (64), (66) and (87).
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Figure Captions

Figure 1. Comparison of °s phase shifts of helium ion, where the
scattering solution is constrained to be orthogonal to the bound
orbital: ———— exactSchwinger variational phase shifts with 5s
basis set given in Table I; ----- , exact Schwinger variational phase

shifts with 3s basis set given in Table I; - -, uncorrected

T matrix phase shifts with 5s basis set given in Table I; 0, numerical

phase shifts given by Sloan. £B

Figure 2. Photoionization cross sections of 1'S He, in megabarns

(Mb): L, static exchange dipole length; V, static exchange dipole

velocity; ‘o, selected experimental cross sections from Samson. 20

Figure 3. Photoionization cross sections of 2'S He, in Mb: L, static

exchange dipole length; V, static exchange dipole velocity; o,
numerical results of Norcross.33

Figure 4. Photoionization cross sections of 2°S He, in Mb: L, static

exchange dipole length; V, static exchange dipole velocity; O,

numerical results of 1\Torcross.33
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SECTION C

Iterative Approach to the Schwinger Variational Principle

for Electron-Molecule Collisions
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I. INTRODUCTION

The Schwinger variational principle for the T matrix has been
found to be very useful in obtaining accurate solutions for electron-
molecule scattering. This method was introduced as a discrete basis
function approach to 15cattering1 and has evolved as a general numeri-
cal technique. ° The Schwinger variational principle has been success-
fully applied to the scattering of low-energy electrons by He, He*, H.,
H2+, N;' , and LiH. - In the present paper we apply an iterative ap-
proach to the Schwinger variational principles-m to obtain scattering
solutions to the electron-molecule collision problem. The method
uses trial scattering wave functions which contain both discrete basis
functions and numerical wave functions which explicitly satisfy the
scattering boundary conditions. The discrete basis functions effec-
tively describe the scattering wave function in the region near the
nuclei where electron-exchange and partial-wave coupling are strong.
The numerical wave functions are obtained from the Lippmann-
Schwinger equation using a procedure which does not require solving
coupled integro-differential equations. This is a powerful method for
electron-molecule scattering combining the advantages of using dis-
crete basis functions with an iterative procedure which allows conver-
gence to an exact solution for the potential chosen to describe the
interaction.

We apply the iterative Schwinger method to electron-H, scatter-
ing in the static-exchange approximation. The results of these appli-
cations show that the method is very effective and converges rapidly.

Although the formal theory is given in terms of the T matrix and wave
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functions which satisfy outgoing wave boundary conditions, for numeri-

cal convenience we actually perform all calculations using the K matrix

and wave functions which satisfy standing wave boundary conditions.

II. THEORY

The iterative Schwinger method starts with the solution of the

Lippmann-Schwinger equation for the T matrix

(+)
T=U+UG, T (1)

using a separable approximation to the exact potential. The form of

the separable potential used here is

S
(r|lu’|h =2 (r|Ulep(uT]y Cesfulr) (@)

where R is an initial set of expansion functions and U = 2V. With this
separable potential the solution of the Lippmann-Schwinger equation,

Eq. (1), is given by

5
(r|T DII'> =2 (_{IUlai)[(DH))d]ij (aj lulz"> (3)
ai,o:je-:R
where
+) +) :

11-13
As has been pointed out by several authors, this form of the T matrix
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is equivalent to that obtained irom the Schwinger variational expression

t -t
T = 48 |T| ¢ y = (¢k£m‘ulwk£'_m> Viem |ul Ppe'm’
£8'm = kfm k&fm’ © ot ) ¢t
Wypm |U=UGo Ulyppr )

(5)

where the partial wave trial functions are linear combinations of the

expansion functions

ot )
Y r) =2 C s a.(r) . (6)
klm(«- aic—.R kfm,i 1(~

The form of the T matrix given in Eq. (3) or equivalently Eq. (5),
has been used by the present authors to obtain scattering results in
several systems. *™® The errors that exist in this Schwinger varia-
tional T matrix are due to the difference between the exact potential
U and the approximate separable potential Usngiven in Eq.(2). Itis
pessible to eliminate these errors due to the difference potential by an
iterative procedure.

Our iterative procedure begin.s by constructing the scattering
wave functions which correspond to the Schwinger T matrix given in
Eq. (3). There are no coupled equations to solve to obtain these wave-
functions since the corresponding T matrix is exactly known. The

scattering solutions are computed using the partial wave expansion of

the wave function

+) D) g &
v @ =J; En‘ Ve @) Yy &) ('_”
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. +)
For a linear target molecule, I‘Dkﬂm may in turn be expanded in a

partial wave series by

(+) {+)
lpkﬂm (r) = % wﬂﬂ'm (k,r) Yﬂ'm (r) . (8)

The Lippmann-Schwinger eguation for the wave function is

+) 8,

(+) So (+)8,
Vitm @ = S @ + x|Ge U |

el ) (9)

where qbklm(;_') are the free particle solutions
Grom @ = ig &r) Yy, (7). (10)

By using the identity

(+) Sg

S Sg
U ¥ = T [ bppp » (11)

we obtain an expression for the wave function in ternis of the T matrix

+)5S ) 5
Vi (D) = 6100 (@) + (x| Go T | Sypm) - (12)

() s
This equation for u’kﬁmo is now uncoupled, and the partial-wave

functions are given by
(+3 S +)

5, ajeR

x IU’ai”(DH))-l]ij<aj|U|jﬁ(kr)Yp_mG‘)) ) (13)
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The asymptotic form of the partial wave solutions are then

B, - - +)
Voo (1) ~ g 0er) Oy - K (G| T ° | e By ()

(14)

(+)
The radial function, ¥ ,r ., is readily obtained from Eq. (13) by

numerical integration.
The iterative procedure proceeds by augmenting the expansion
_ 8, 5,
sestoR of Eq. (2) by the set of functions §, = {wulm, V) fmee e
”l/kﬂ m} which consists of the scattering solutions corresponding to
p
the T matrix given in Eq. (3). Using this augmented set of functions,

the first iteration is completed by calculating a new T matrix given by

e] T =2 G ulxp Lo 1 (xgluley . (19)
XjsX;€ RUS, b

J
Note that the expansion functions contained in the set RUS, include
both the initial set of expansion functions R = {a;} and the continuum
solutions given by Eq. (12).
A second iteration is begun by constructing the set of solutions

S, = {wsl V7 °1 } which are associated with the matrix T®
1= kﬂlm"“’ ki m

given by Eq. (15). The set S, combined with the initial trial function
' B 5
set R yields anew T matrix T52, In general, T T, wklim and the

set of functions Sn are given by

s
x|ty =T e ulx [0y (xylut (16)

X;»X;€RUS, 4
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and
) 5
n n ,
So = ¥k v Yk ) (17)
where
(+) 5p (+) B
Vigm @ = Pgm@) + (21Go T %[O ) - (18)

This iterative scheme is repeated until the wave functions converge.

If the wave functions do converge such that

(+) Sn+1 +) Sn

Yiom @ = ¥%gym @ (19)

and if we have

+) Sn (+) 8n
“‘Dkﬂ |u- UGD I“D = (¢k£iml |wk£m ) (20)
for 1sisp and 1<j=< p, and
(=) Sp +)
(-.Wkﬂim|U-UGo Ulaj> = <¢k£imlUlaj> (21)

g (+) 8
for 1<i<p and @;€ R, then it follows that the functions Wit

satisfy the Lippmann-Schwinger equation for the exact potential U.

This can be demonstrated by substituting Eq. (16) into Eq. (18) to yield
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(+) Bn-&-l

¥ r)+ 2 (les ulx,)
kfm = %um I.XERUS z|G, le

x [(Dm)"]ij G U g’ - (22)

Then using the relationships given in Eq. (20) and Eq. (21), Eq. (22)

reduces to
+) Spy1 + (+) s
Vigm @ = G + (2160 U ¥ty (23)

Thus if Eq. (19) is also satisfied, Eq. (23) reduces to

!P‘-H Sn +) (+) Sn
kim (1) = b0+ <(r[G U |y, (24)

which is just the Lippmann-Schwinger equation for the exact potential
U.

It is of interest to note that Eq. (20) and Eq. {(21) are identically
satisfied if "L’lfflllm is the exact solution. This suggests that the degree
of convergence of an approximate wave function can be judged by how
well the relations given in Eq. (20) and Eq. (21) are satisfied. Also
note that each side of Eq. (20) is a nonvariational approximation to the
partial wave T matrix where w:gn is an approximate trial function.
Thus the convergence of the wave function can also be judged by how
well the two sides of Eq. (20) compare with the variationally stable

partial wave T matrix given by



T

8 s
7.0 e fp B )= 2 Lo, U] x:»
£2£'m ¢k£m |¢’k1m Xi’XjERUSn-l kim l i

x [0 )y Cxy 1 U] Gpry - (25)

One of our original motivations for using the approximate solu-
tions wiim in 2 new separable expansion, as a way of calculating an
improved wave function, was an observation of Ernst et al. N They
noted that if one had the exact solution to the Lippmann-Schwinger
equation, then the potential given by a one<{erm separable approxima-
tion of the form in Eq. (2), where instead of the set R one uses the
exact solutions, would give the exact on-shell and half off-shell T
matrix. Thus it can be expected that the use of an approximate wave
function satisfying the scattering boundary conditions in the separable
expansion of Eq. (2) would give improved estimates of the T matrix
from which an improved trial wave function could be calculated.

A more precise understanding of the nature of the convergence of
the iterative procedure outlined above is obtained by dividing Eq. (16)

15
into two parts giving

s
(r|T ®|&) = (x| TS|+ 5 (r|(@+T°G, )aU]
1<ip

1<j<p

+) S5pn-1 +) _ (-) Sp-1 _ '
x ’#kﬂim >[(E ) 1]ij (wkﬁjm IAU(GQ T o+1)|£ y (26)

where
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+) (=) 8.1 , +) +) 8.1
Byy = (Wigm |AU-AUG, AU Vigm (27)
and with
Sq
AU =U-U g (28)

Eq. (26) clearly shows the different contributions from the two sets of
functions R and S Rk The Green's function GH-) in Eq. (27) is the
Green's function for the separable potential U and satisfies the
Lippmann-Schwinger equation

+) +) +) _ Sp _(+)
Gy =G, +G, U "Gg . (29)

+
Thus G " is given by

-+
) = <xlee ¢ + Z . (rle, Ulag)
1’

(+)

(i g i
x [(D ) ]ij(aj|UGo Pl (30)

The expression for the partial wave T matrix elements obtained from

Eq. (26} is then

Sn So (=) 8, (+) Sp- 1
Toe'm = Top'm + 122 (¥iim |a lwkﬂ m
=f=p
159

-+ . ) Sp..1 (+) 8
x [@ )71y WUHf | AU | Yy ) (31)
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Thus,after the first iteration, first and second order errors in the

8
difference potential 4U have been eliminated from Tuifm since with
s
n=1, Eq. (31) should give at least as good a correction to Tﬂ_zfm
16
as a distorted-wave second Born approximation would. Further

iterations will give still higher order corrections.

II. RESULTS

We have used the iterative method described above to study
electron-H, scattering in the static-exchange approximation. The tar-
get SCF wave function is constructed from a (5s2z) Cartesian Gaussian
basis set as given by Watson et al. * The Hartree-Fock energy for H,
in this basis set is -1. 1330 au and the quadrupole moment is 0. 452 au.

The results of a study of the convergence behavior of the itera-
tive Schwinger method are given in Tables I-IV. The results presented
in Tables I and II are obtained by starting the iterative procedure with
W:Zm just equal ;o the free particle states ¢y ¢, - This starting point
corresponds to U ° = 0. It can be seen in Table I that the variational
Schwinger K matrix converges to three places in four iterations. How-
ever, Table II shows that the nonvariational estimates of the partial
wave K matrices from the left- and right-hand sides of Eq. (20) con-
verge more slowly. In this calculation, these nonvariational K-
matrices require another four iterations before they converge to three
places. Table III gives the variational Schwinger K matrix for an
jterative calculation where U®° is a one term separable approximation
to U, cohstructed using a single s Cartesian Gaussian of exponent 0. 5

centered on the nuclei. With this starting point, the iterative procedure
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converges in two iterations. Also note that the nonvariationally stable

matrix elements given in Table IV, which are associated with Eq. (20)
and Eq. (21), are well converged by the second iteration also.

In Tables V and VI we present K matrix elements at several
energies for both 22 and 211 symmetries. We also compare the pres-
ent results with those of Collins et :a_lZTThe separable potentials, Uso,
used in these calculations are four term approximations. The poten-
tials are constructed from Cartesian Gaussian functions centered at
the nuclei. The Cartesian Gaussian fuhctions have exponents of 0. 3
and 1, 0 and are of s and z types for the > symmetries and X and Xz
types for the 2I'I symmetries. All variational K matrices converge to
three places by the first iteration. This extremely rapid convergence
is expected since the difference potential AT should be small.

All integrals were calculated using single center expansions as
is described elsewhere. S The integrations are performed on a grid
extending to 40au, except as noted in Tables V and VI where a grid
extending to 125 au is used to accurately compute some integrals at low
energy.

As can be seen, the K matrix elements are in good agreement

17
with those of Colling etal. The small discrepancies which exist are

probably due to differences in the potentials used.

IV. CONCLUSIONS

The iterative Schwinger variational method presented here is a
powerful method for computing electron-molecule scattering solutions.
With a sufficient number of iterations, this method gives accurate

scattering results which are independent of the initial discrete basis
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set used. However, it is important to note that even though the
variationally stable T matrix may converge in a particular calcu-
lation, it is necessary to check that the conditions given in Egs. (19),
(20), and (21) are satisfied to be assured that the T matrix has con-
verged to the correct solution

Th;e Schwinger method does not require the solution of integro-
differential equations. All equations are decoupled integral equa-
tions which are solved by straight forward integration procedures.
With a reasonable choice of the initial separable potential Uso,
this iteration method converges in only a few iterations. Applica-

tions to larger molecular systems are under way.
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TABLE 1. Convergence of the Schwinger variational K matrix

starting from plane waves for *s symmetry in H, withk = 0. 5 au

g
Sp
Kgpto
(£,2') n=0 1 2 3 4
(0,00 0.  -2.931 -1.701 -1.552 -1. 548
(0, 2) 0. 0.128(-1)  0.133(-1) 0.134(-1) 0. 134(-1)

(2, 2) 0. 0.163(-1)  0.163(-1) 0.163(-1) 0. 163(-1)




TARLE II. Convergence of nonvariational approximations to the K matrix starting from plane

waves for ’zg symmetry in H, withk = 0. 5 au,

Sn
(Preg0l Ul ¥eprp

,2) n=0 1 - 3 4

(0, 0) 3, 055 -2. 931 <1, 431 -1, 603 -1, 515

(0, 2) 0. 521(-1) 0. 128(-1) 0. 180(-1) 0. 127(-1) 0. 139(-1)
(2, 0) 0. 521(-1) 0. 128(-1) 0. 135(-1) 0. 135(-1) 0. 134(-1)
(2,2) 0. 165(-1) 0. 163(-1) 0. 163(-1) 0. 163(-1) 0. 163(-1)

Sn (P) Sn

2,2") n=0 1 2 3 4

(0, 0) -2, 921 -5, 045 -1, 139 -1. 659 -1.483

(0, 2) 0. 129(-1) 0. 120(-1) 0. 180(-1) 0. 128(-1) 0. 138(-1)
(2,2) 0. 163(-1) 0. 162(-1) 0. 163(-1) 0. 163(-1) 0. 163(-1)

S8
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TABLE III. Convergence of the Schwinger variational K matrix
starting from one discrete scattering function for 22 g symmetry

in H, withk = 0. 5 au.

Sp

Keero
2 n=0 1 2
(0, 0) -2. 045 -1. 552 -1. 548
©, 2) -0. 276(-1) 0. 133(-1) 0. 134(-1)

(2, 2) -0. 372(-3) 0. 163(-1) 0. 163(-1)
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TABLE IV. Convergence of nonvariational approximations to
the K matrix and of matrix elements involving the discrete

function starting from one discrete scattering function for >
symmetry in H, withk = 0. 5 au.

Sn
CPraol Ul ¥ipro?

(£,2") n=0 1 2
(0, 0) -1. 602 -1. 567 -1. 549
(0, 2) 0.179(-1) 0.131(-1) 0. 134(-1)
(2, 0) -0.107(-1) 0.136(-1) 0. 135(-1)
(2,2 0.161(-1) 0.163(-1) 0.163(-1)
Sn (P Sn
(W00 U-UG, U|¥pprg)
(ﬂ,ﬂ’) 1'1=O 1 2
(0, 0) -1, 642 -1. 586 -1. 550
(0, 2) 0. 667(-2) 0. 132(-1) 0. 135(-1)
(2, 2) 0. 155(-1) 0.162(-1) 0. 163(-1)
a
(bpeplUl @)

¢

0 6. 180

2 0. 834(-1)

Sp & o) a

(V00| U-UG, Ul @)

¢ n=0 1 2
0 6. 190 6. 224 6. 180
2 0. 170 0. 824(-1) 0. 830(-1)

2 See Eq. (21).
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P> symmetry in H,.
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Iterated Schwinger variational K matrix elements for

2+
Zo
s CRM
k Kooo Kooo
0.1 =0, 217 -0, 2172
0.3 -0. 722 -0. 722
0.5 -1.55 -1. 55
1.0 8. 04 8. 05
s CRM
KD 20 KOZO
0.1 0.406(-2) 0. 39(-2)
0.3 0.978(-2) 0.11(-1)
0.5 0.134(-1) 0. 15(-1)
1.0 D122 0. 11
s CRM
K220 220
0.1 0.165(-2) 0.21(-2)
0.3 0.687(-2) 0.74(-2)
0.5 0.163(-1) 0. 18(-1)
1.0 0.914(-1) 0.93(-1)

22.:;
s CRM
Kllo Kuo
0.123(-1)°  0.127(-1)2
0. 113 0,119
0. 411 0. 421
1. 34 1.34
s CRM
K.l30 130
0.105(-2)° 0. 15(-2)
0.335(-2) 0. 34(-2)
0.703(-2) 0. 71(-2) -
0.304(-1) 0. 29(-1)
s CRM
KSSO 330
0.971(-3)° 0. 73(-3)
0.290(-2) 0. 31(-2)
0. 520(-2) 0. 56(-2)
0.190(-1) 0. 20(-1)

i All numbers in this column are from Ref. 17.

b

A grid extending to 125 au is used to obtain this K matrix element.
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TABLE V1. Iterated Schwinger variational K matrix eiements for

It symmetry in H,.

2 2
I ,

k K?ll KEIRM K;l KEZIRM
0.1 -0.296(-2) -0.306(-2%  0.106(-2)° 0. 103(-2)?
0.3 0.195(-1) 0. 218(-1) 0.368(-2)  0.400(-2)
0.5 0.102 0. 108 0.103(-1) 0. 114(-1)
1.0 0. 334 0.335 0.602(-1)  0.713(-1)

s CRM s CRM

K131 131 Kﬂdl 1
0.1 0.110(-2) 0. 12(-2) 0.493(-3® 0. 63(-3)
0.3 0.267(-2) 0. 28(-2) 0.148(-2) 0. 15(-2)
0.5 0.483(-2) 0. 50(-2) 0.235(-2) 0. 24(-2)
1.0 0.142(-1) 0. 14(-1) 0.564(-2)  0.58(-2)
Kans K s e
0.1 0.286(-3) 0. 55(-3) 0.465(-3° 0. 18(-3)
0.3 0.217(-2) 0. 23(-2) 0.139(-2) 0. 15(-2)
0.5 0.392(-2)  0.42(-2) 0.245(-2) 0. 26(-2)
1.0 0.157(-1) 0. 17(-1) 0.611(-2) 0. 67(-2)

B All numbers in this column are from Ref. 17.

b

A grid extending to 125 au is used to obtain this K matrix element.
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SECTION D

Iterative Approach to the Schwinger Variational Principle

Applied to Electron-Molecular-Ion Collisions



g1
I. INTRODUCTION

Considerable effort has been devoted to the development of effi-
cient and accurate methods for solving the electron-molecule collision
problem. ! The main difficulties encountered in solving this problem
are the non-spherical nature of the potential and the accurate treatment
of the non-iocal exchange potential. Our approach to the solution of the
electron-molecule collision problem is to use the Schwinger variational
principle. The first application of the Schwinger variational principle
to this problem was an approximate discrete basis function approach ?
We then implemented the Schwinger variztional prineiple exactly using

s 4

numerical techniques, . This method has been successfully applied to

: + +
the scattering of low-energy electrons by He, He', H,, H, , N,*, and

2 s
LiH. 3_9 In the present paper we give results for the e'-H;' system7using
a recently developed iterative technique based upon the Schwinger varia-
tional principle. ¢

In this study of the e”-H," scattering system we make several
standard simplyfying assumptions. First we work  within the fixed-
nuclei approximation. We also assume that the interaction between the
continuum electron and the molecular ion is described by the static-
exchange potential, and hence we neglect electron correlation.

The iterative method used here6 for solving the resulting scatter-
ingz equations begins by exactly solving the equations for a separable
approximation to the static-exchange potential. The separable approx-
imation used in this study is constructed Irom a set of Cartesian

Gaussian functions. The iterative method then proceeds by using the

exact solutions to the approximate separable potential in a distorted
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wave Schwinger variational ealculation on the difference potential
(L e., the difference between the exac! static-exchange potential and
the approximate separable potential). Further iterations proceed to
give higher order corrections.

We present converged results for both elastic e"—H,"’ scattering
and photoionization cross sections of H,. We found that our Hterative
method converged rapidiy in all calculations presented bere. We bave
studied e-H: scatiering as the first test case for applying the iterative
Bchwinger method to electron molecular-for scatiering. We have chosen
this sysiem Bince standard single-center expansion methods should work
well and thus provide us with accurate results to compare with. We have
compared our results with the accurate static-exchange results of Collins
and Robb,“ which were obtained using such 2 single center expansion
method. There have been other studies of e”~H;' systems, B put the
study of Ceollins and Robbm is the most accurate to date. For all channels
and epergies considered here, the resulis of the {lerative Schwinger varia-
tional method are in good agreement with those of Collins and Robb. o

II. THEORY

The Schrbdinger equation for electron-molecular jon scattering
in the static-exchange approximation is (in atomic units)

(-%v’-%+vu-%)i:’¢)go, ¢)

where Z is the net charge on the {solated fon and V (r) is the residual
short-range potential This Schrddinger equation is equivalent to the
Lippmann-Schwinger equation

“+) C) ci4) ),

lrt =¥ +G Ui‘k " (2)
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where

U() = 2V(r) (3)

and the Coulomb Green's function is defined by

c&E) -
R % T @)

ct)
The function \I'k is the pure Coulomb scattering function and is given

in terms of its partial-wave expansion as

C() 12 . c) -
B = /?mlﬁ Prim @ Yym ® (3

’

c)
where ¢k£m is the partial-wave Coulomb function defined by

k) @rioc, Fy(¥;kr) -
Sam @ =€t —‘i—l—{;— Yy () - (6)

The function Fﬂ (y;kr) is the regular Coulomb function with y = -Z/k
and 0, is the Coulomb phase shift defined as 0y = arg [[(£+ 1+ iv)].

+) . .
The wave function \I'k , Which has incoming waves with momentum

k ,can be expanded in the partial-wave series

v (@ - 2y z i Yy (0 Yo, (0. (7)

Computing the wave function in the partial-wave form allows the depend-

ence of the scattering solution on the iarget orientation to be treated
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analytically. The Lippmann-Schwinger equation for the partial-wave

states is then

) C( {4)
“’Jm(! ‘f’k;m(!)ﬂrlG U| ,;m : (8)

Instead of solving for the scattering solutions directly, one can equiva-

lently solve for the T matrix due to only the short-range component of

the potential which satisfies the Lippmann-Schwinger equation

c+)
= U+ UG T . (9)

Then using the identity

C(+) (+)

T| bxom’ = Ul ¥igm ) (16}
and Eq. (8), the partial-wave solutions are obtained from
+) C+) c(+)
Vigm @ = (z|1+G | b1om (11)

We solve the Lippmann-Schwinger equation, Eq. (8), with an
iterative procedure based upon the Schwinger variational principle. °
The iterative method begins by approximating the short-range potential

by a separable potential of the form

s
(rlo’|z) =2 (rlufe MNu™l; (alUIr) (12)
cxi,ajCR
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where R is some initial set of expansion functions. For this approxi-

mate separable potential, the solution of the Lippmann-Schwinger

equation for the T matrix (Eq. (9)) is given by

= +) _
(xlT71r) =2 «(rluleplo ) <elu) (3
| a.,a.CR ]
o |
where
(+) C(+)
Dy; = (a;|U-UG U|aj> g (14)

As has been pointed out by several authors, ¥ this form of the )
matrix is equivalent to that obtained from finding stationary values of

the Schwinger variational expression

C(-) )t (=it c)
w0 . g% o) | CNPIR L IRV | o] K NPYRD
20'm ~ ¢k£mlTl¢’k£'m - (=)t C+) )t
(Wi |U-UG Ul e )
(15)

by varying the partial-wave trial functions which are linear combina-
tions of the expansion functions,

tt » &) (16)
Yeem @) = & g Ciim,i % @) -
i
(+)8, ) i
The scattering solutions wkﬂm corresponding to the approximate

s
separable potential U ° are obtained using Eq. (11) giving

(+) 8,

c(+) c) S c+)
Viom @ = $pom@ + (zlG T | (17)

k£m>‘
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The iterative procedure is continued by augmenting the expansion set
R,of Eq. (12),by the set of functions
By B, B,
B, = {wk;_;m.wuzm.---.#fupm} ’ (18)
which are the scatiering solutions given by Eq. (17). Using this aug-

mented set of functions, the first iteration 18 completed by ecalculating

a new T matrix given by

5, “+)
(rlT "Iy = 2 (rlulx)[t H?
* I |£ XianCRUSD = I <4 [( ) ]ij

x (xglolr). (19)

Note that the variational basis set RUS, used in Eq. (19) contains both
the initial expansion set R = {ai} and the continuum solutions given by
“+)
Eq. (17). Thus, for example, the Dij matrix will contain matrix ele-
8 + & +)
ments of the form (!Pkfm]U-UGc v | ay ) and (i#k;m! v-vG" U |
> ’ ;
‘pk;'m ) as well as the type given in Eq. (14).
A second fteration is begun by constructing the set of solutions
5 -3 8
8 ={¥pm,..., .pk;pm} which is associated with the matrix T =
given by Eq. (18). The set B,,combined with the initial trial functions
8 B
set R, yields a new T matrix,T . Ingeneral, T © and the set of

functions Sn are given by

B +)
(z|lT®H=Z (r|lv|xp @ )
I I Xy XjCRUSn_l | i 4

x (x,|U];’) (20)

and

8p Bp
Sn x { ka_‘m“ - \(’upm} » (21)
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where

+)sp Gty e By, O
Viem @) = e m @ + (rlc” T ¢k‘im> : (22)

This iterative procedure is continued until the wave functions converge.
When the wave functions do converge, it can be shown that they are
solutions of the Lippmann-Schwinger equation for the exact potential
U_ 6

In the fixed-nuclei approximation, the differential cross section

(DCS) averaged over molecular orientation is given by12

2

do Y 53 1
K S AN A. P, (cosf) + ———
dg 4K sin’(-d) T L sin® (4)
X % B, (6) Py (cos 8) , (23)

where

: 1
2141 ( 2€0+1 ) 2

_ *
A = ar g qem e ) 1o

‘QQQ'!A’A"! m, ’J'
X (LL0O[A0)(LL00|X0)(LL p-mm|Ap) (L p-mm|Xp),
(24)

and
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oy 1 _ ; . w® By 5
BL(G) alini 2 > 41r(2£+1))‘éRe{exP [iy£n(sin -2-) 2i0, ] x aLLm} "

(25)

and where (j,j,m,m, |jm) is a Clebsch-Gordan coefficient. The fixed-

nuclei dynamical coefficients a, s are defined by -

it e )2 1y, (26)

2Ym <

In the present study, the partial-wave T matrix elements are approxi-

Sn
mated at the n'th iteration by Tl Pow which is given by

Sn C(=) N C(+4)
ot % 53 g (01X LD, j$x;lul o
££'m Xi;XjGHJSn kfm i kﬂm

(27)

From Eq. (23) it is clearly seen that the DCS is the sum of the pure
Coulomb scattering DCS plus the DCS due to the short-range potential
plus an interference term.

We have only considered the interaction between the scattered
electron and the target in the static-exchange approximation. The static-

exchange potential due to a one-electron target is of the form,‘l

U() = 2{N" @)+ 3% % &K+ Q")F (e, +2K) P}, (28)

where uo(g_-) is the orbital of the bound electron, and where the upper
(lower) sign is for singlet (triplet) scattering. In Eq. (28), N~ is

the nuclear attraction term minus the long-range -Z/r term in Eq. (1).
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1] o
The operators 2% and K" are the standard Coulomb and exchange
o 0
operators of the orbital u°, The Q" and P" operators are included
to allow for possible non-orthogonality between the bound orbital and

the continuum omital. These operators are defined by

(rle™ x> = (rlu®)<u®|nlx)+ C(rlh|e®)Cu®[x) (29)

and
0
(rlP" [x) = (rju®<u®|x), (30)
where
1 e é z
hi) = -2V + N (@) -2 . (31)
1

The one electron energy €, of the orbital v’ is thus given by
0 0
€= (u’ |h|u®). (32)

II. RESULTS FOR e - H} SCATTERING

In the present study of e”- H.' elastic scattering, we used a tar-

get molecular orbital constructed from the 8s4z Cartesian Gaussian
basis set which is given in Table L. This basis set is the 6s Gaussian
fit to the hydrogen 1s function given by Huzanag:za.,rr augmented by four
z functions and two diffuse s functions. The internuclear separation for
Hz+ was R =2 0Oau, The target energy in this basis was E = - 1. 102292 au
and the quadrupole moment was -1.533au
The initial scattering basis set, set R, is given in Table II. For

the present study, R consisted of a set of nuclear and bond mid-point '
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centered Cartesian Gaussian functions. For all symmetries con-

sidered, the scattering basis set consisted of only five functions. We
found that inclusion of bond mid-point centered functions in the initial
scattering set yielded more rapidly converging wave functions than
those obtained starting from basis sets not containing such functions.
We believe that this is due to the way the short-range potential U as
given in Eq. (28) is constructed. The short-range potential U is ob-
tained from the full staticeexchange potential by the addition of the term
Z/r. This just cancels the long-range tail of the full potential, but
this method thus makes U strongly repulsive near the origin. It seems
that in order to describe the scattering due to this repulsive potential
it is important to have functions centered at the origin.

In Tables III and IV we present our converged results for Z
and II symmetries and compare them with those of Collins and Robb.m
Our results generally agree very well with those of Collins and Robb.
Any discrepancies are probably due to the different target orbitals
used. Collins and Robb use a target orbital constructed from Slater -
type functions which probably gives a more accurate orbital than that
constructed from our Cartesian Gaussian functions. It is interesting
to note that in an earlier study, ! we used a target constructed from a
smaller 5s2z Cartesian Gaussian basis set. Using the iterative
Schwinger method with this target, we found that in the lzu channel
there were discrepancies of ~ 0. 05 radians in the converged eigenphase
sums compared with the results of Collins and Robb. This large dif-
ference had not been evident in any of the other channels considered.
We then performed a scattering calculation in which no exchange inter-

action was considered. This calculation with the direct potential only
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yielded excellent agreement with the equivalent calculation performed
by Collins and Robb. This somewhat anomzlous behavior in the l.".:u
channe] prompted us to try the more accurate 8s4z targei which then
gave very good agreement in this channel. It is believed that this
strong dependence on the target orbital is indicative of resonnani-like
scattering in the lzu channel.

The iterative procedure used in the present study was found to
converge very rapidly. In Table V we present a representative calcu-
lation showing how the eigenphases converged. The higher partial-wave
eigenphases were not accurately obtained using only the discrete basis
set in the zero'th iteration result. However, these eigenphases are
quickly corrected in the first iteration since they are Born-dominated

All integrals were computed using numerical quadrature as is

,lﬁ

described elsewhere. . The integrals were evaluated on a grid of
780 points extending out to 66. 2 au. All basis functions and the target
orbital were expanded up to £=13. The exchange and direct integrals

were then computed exactly with no further truncations in £ , We have
computed partial wave solutions up to Ib = 7. This truncation of

the sum in ip in general gives eigenphase sums converged to better

than 1%. Cutting off the Ep
to the total wave function¥, , however each individual partial wave

sum does represent an approximation

function "Dklm which is included in the calculation will still be ob-
tained exactly within the static-exchange approximation if the itera-
tive solution converges.

In Fig. 1 we present the spin-averaged DCS obtained at the three
energies considered here. These curves clearly show the dominance
of Coulomb scattering at low angle and the effects of scattering due to
the short-range potential at large angles.

IV. RESULTS FOR PHOTOIONIZATION OF H,

We use the electron-molecular ion scattering wave functions ob-
tained bere to study the photojonization of H, in its ground state. We have
used the method outlined in our earlier paper‘ to obtain the photoionization
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- cross section. The fixed-nuclei photoionization cross section is ob-

tained in both the dipole-length and dipole-velocity a_pprp_zimations.

The initial state wave function ¥, (r;, r,) used in these calcula-

tions is a Hartree- Fock wave function. The initial state is thus of the

form

¥ (1,1 = g @) by0 () [ZLER '1/‘8 el , (33)
2 i

The one electron orbital qbla was constructed from a 5s2z Cartesian
Gaussian basis given by Watson et al ° The Hartree-Fock energy for
H, in this basis set is -1. 1330 au. The final state wave function is

taken to be the electron-ion scattering wave function where the target

orbital is fixed as the ¢, orbital of H,. Thus the final states are of

the form

\I’f,,ls (x1, L2) = (%‘)%[¢lg (€,) ‘I';S-)(Ez) *

a(1)£(2) - BN a(2) | (34)
oY

)
‘Ifl..s (,.{'1) ¢10(,1_'2)]
The differential dipole oscillator strengths are then computed in either
the length or velocity form using
df b5 2 y s o
ay =T LE\daz|(¥|r, |¥, 7 ] (35)
(dE)L p 3 ki*7iip T4k
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or

v ¥, )

A (36)

)

f,

where the photon energy is E = 3k + IP. The photoionization cross

section is then given by

‘ 2
o(E) = %E- (%} (37)
The initial scattering basis set in these calculations was the same
basis set we used for e - H2+ scattering and is given in Table II. The
rate of convergence in these photoionization calculations was similar to
that obtained in e”-H," scattering. In Table VI we give an example
which shows the rate of convergence for a selected energy in the lzu
symmetry. Both the eigenphase sums and the cross sections were con-
verged to three decimal places by the second iteration for all energies
considered in this study. In Fig. 2 we present the converged photoioni-
zation cross sections for H, in both the length and velocity forms. We
also compare the present calculated cross section with some experi-
mental results. - Since we have not treated the vibrational motion in
the H, - H; system, we have only compared our calculated results with
experimental results which correspond to photon energies for which the
sum of all Franck-Condon factors for the open vibrational channels of
H2+ is close to unity. For the H, - H; system this corresponds to pho-
ton energies greater than ~ 18 eV. oAt The equivalence of the dipole

length and dipole velocity forms of the photoionization cross section is
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a necessary but not a sufficient condition for the exact solution = Thus,
we may use this difference to estimate the minimum possible error in
the calculation. For the photoionization of H,, as shown in Fig. 2, the
length and velocity forms bracket the experimental results except at
the lowest energy. Thus in this case the difference between the length
and velocity forms gives a good estimate to the true error in the

calculation.

V. CONCLUSION

In this study we have extended the iterative Schwinger variational
method to include electron-molecular ion collisions. For the e'-H2+
system we found rapid convergence of the iterative scheme. The
resulting eigenphases are in close agreement with the accurate static-
exchange results of Collins and Robb. =

We have also shown that the photoionization cross sections ob-
tained using the method presented here agree well with the observed
cross sections, The application of the iterative Schwinger method to

the photoionization of N, and CQ,is in progress.
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TABLE 1. Target wave function for H;’.a

b

Type of function Exponent Coefficient
8 68. 1600 ‘0. 00205
s 10. 2465 0. 01596
s 2. 34648 0. 07150
s 0. 673320 0. 25547
s 0. 224660 0. 27003
s 0. 082217 0. 00953
5 0. 04 0. 00988
s 0. 02 ~0. 00342
z 1.35 -0. 01710
z 0.45 -0. 04320
Z 0.15 -0. 01389
z. 0.05 -0. 00095

- AThe first six s type functions are from Ref. 17.
ID'I‘he basis functions are symmetry adapted functions

constructed from Cartesian Gaussian functions of the given

type.
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TABLE II. Scattering basis set, 8

Type of function for
the scattering symmetry

z g Eﬂ I g Il a Function Center Exponent
s s x ‘X nuclei 1.0
s s X X nuclei 0.3
z Z X2 xz nuclei 1.0
z 2 %z Xz nuclei 0.3
s z Xz X bond mid-point 1.0

4These basis sets correspond to the set R of Eq. (12).

b

See footnote (b) of Table 1.
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TABLE III. Converged eigenphase sums for Z symmetries

in e”-H," scattering.

Momentum
Symmetry k=0.2 k=005 k=10
,  LM? -0. 366 -0.377 -0. 352
b
€ CrP -0. 363 -0. 384 ~0. 350
s LM 0. 235 0. 238 0. 243
b
g
CR 0. 230 0. 233 -
, LM 0. 349 0. 401 0.519
5
u
CR 0. 359 0.412 -
., LM 1. 408 1. 296 1. 074
Zy
CR 1. 400 1. 287 --

AResults of the present study.

b

Results from Ref.

10.
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TABLE IV. Converged eigenphase sums for II symmetries in

e -H," scattering.

Momentum
Symmetry k=02 k=0.5 k=10
1 LM? 0. 042 0. 042 0. 049
I1
€ b
CR 0. 045 0. 045 0. 054
5 LM 0. 004 0.122 0. 183
II
£
CR 0. 097 0. 128 0.194
LM -0. 344 -0. 330 -0. 281
IHu
CR -0, 347 -0. 331 -0. 273
LM 0. 141 0. 137 0. 107
3Hu
CR 0. 154 0. 150 0.119
a

Results of the present study.

bResults from Ref. 10,



TiZ
TABLE V. Convergence of eigenphases using the iterative

Schwinger variational method. B

Iteration Eigenphaseb
Number 0 9 i 6 Sum
0 -0. 497 0. 055 -0. 000 0. 000 -0. 443
i | -0.488 0. 083 0. 019 0. 006 -0. 379
2 -0.487 0. 084 0. 019 0. 006 -0. 377
CR® -0.497 0. 088 0. 019 0. 006 -0. 384

4The results given are for IEg scattering in e"-H," at k = 0. 5 au.

bThese values of £ correspond to the principal component of the

given eigenphase.

CResults from Ref. 10.
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TABLE VI. Convergence of eigenphase sums and cross
sections using the iterative Schwinger variational method to com-

pute photoionization cross sections of H,. a

b
Iteration Eigenphase o (Mb)
Number Sum Length Velocity
0 0. 181 4,59 2. 62
o 0. 213 4. 62 2. 64
2 0. 213 4, 62 2. 64

2The results given are for 1Eu scattering at k = 0. 4287 or

E =18, 9eV.

bIn megabarns (107 cmz).
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Figure Captions

Fig. 1 Spin averaged elastic DCS for e'-—H;’ collisions.
Fig. 2 Total photoionization cross section of H, in mega-
barns: ___ static-exchange dipole length; -~~~

static-exchange dipole velocity; © experimental

points from Cook and Metzger (Ref. 19);
A experimental points from Samson and
Carins (Ref. 20). The ionization potential

for H2 was taken to be 16.4 eV.
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CHAPTER 11

Application of the Iterative Schwinger Variational Method

to Electron-Molecule Scattering
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INTRODUCTION

The efficiency of the iterative Schwinger method discussed
in Chapter I allows us to obtain accurate static-exchange
results for electron-molecule scattering using converged
single-center expansions. This chapter presents the results
of a study of e-CO2 scattering in the static-exchange approxima-
tion. Although these results are not expected to compare
exactly with experimental results due to neglect of correlation
effects, they provide the first accurate ab initio scattering
results for the e-C0, system. We have compared the present
results with those obtained using a model-exchange potential(l)
and with results obtained using an unconverged single-center

expansion method.(z)

One feature of interest in this system
is the zﬂu shape resonance. Both previous results placed this
feature at 8 eV and with a fairly broad width. The present
results show that in the static-exchange approximation the
resonance lies at 5.39 eV and has a width of 0.64 eV. This

indicates that the semi-empirical polarization potential of

Morrison et al.(l) also corrected for deficiencies in the

model-exchange potential as well as including some effects of
polarization. We feel that it is important to determine
the static-exchange result accurately before attempting to

include such polarization effects.
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SECTION A

A Study of Electron Scattering by Co, at the

Static-Exchange Level
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1. INTRODUCTION

Collisions of low-energy electrons with CO, molecules are of
significant experimental and theoretical interest. Morrison e_t;_x_&1
have studied the scattering of electrons by CO, in the energy range
0. 07-10. 0eV. In these studies, exchange and polarization effects in
the scattering potential were approximated by a local energy-dependent
potential and a semi-empirical polarization potential respectively. The
coupled radial equations resulting from the partial wave expansions of
the wave function of the scattered electron and the potential were num-
erically integrated. Dill c_aiilj have used the continuum multiple scat-
tering model to study the scattering of electrons by CO,. The emphasis
of these studies was the role of shape resonances in the enhancement of
vibrational excitation at intermediate energies in electron-molecule
scattering. Among several approximations for the scattering potential
the continuum multiple scattering model also uses a local exchange
approximation. Onda and Truhlar3 have also reported differential
and integral cross sections for electron-CQ, elastic scattering at 20eV.
These studies used a semi-empirical scattering potential.

In this paper we present the results of studies of the scattering of
low-energy electrons by CQO, in the static-exchange approximation.
These studies were done with the iterative Schwinger variational method
which we have recently developed for studying electron-molecule and
electron-molecular ion collisions. Although these studies neglect the
effects of polarization, we believe that it is important to determine the
converged scattering solutions for the e” - CO, system at the static-

exchange level. These stiatic-exchange results are not only useful in



122
several applications,such as in the calculation of vibrational excitation

cross sections at energies where polarization effects are not dominant,
and of electronic excitation cross sections, but they are also needed in
order to realistically assess approximate schemes such as the local
exchange approximation. It has also been shown that the static-exchange
approximation with an appropriately distorted charge density derived
from the negative ion wave function can provide reliable resonance
vibrational excitation cross sections. =

In the next section we give a very brief outline of the method used
in these studies. In Section III we present the 2Eg, 2%, 2Ilu, and 21'1g
eigenphases at incident momenta of 0.1, 0.3, 0.5, 0.7, 0. 8573, and
1. 0. All the required matrix elements were evaluated with the use of
single-center partial wave expansions. In these studies of e-CO,
scattering with its highly anisotropic interaction we have carried out
the single-center expansions to high £ values to assure that our re-
sults are converged. The eigenphase sums for the resonant 2IIu
channel are of particular importance in this regard. The parameters
for this zﬂu resonance extracted from our eigenphase sums are 0. 64 eV

for the width and 5. 39 eV for the position. We also compare our calcu-

lated cross sections with measured elastic scattering cross sections.

II. THEORY

In these studies we use the iterative Schwinger variational method
to solve the collision eugations for the e-CQO, system. Briefly, the
iterative Schwinger variational method’ is a method to solve the partial

wave Lippmann-Schwinger equation
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(+)

+)
“(ﬁ(lm - ¢k£m ¢ G‘H(E)Ulpkim (1)

+)
where ¢, ., - is a component of the incident plane wave, G the

Green's function with outgoing wave boundary conditions, and U = 2V
with V the effective interaction between the target and the scattered
electron. The partial wave component of the total scattering wave func-

tion is defined by

(+)

v, - (—)AZ Vg () Yoo @) (2)

The Schwinger variational expression for the partial wave elastic T
matrix elements can be written as7
~ <¢k£m‘Ulwk£'m> ('Pkﬂmtulqbkﬂ’m)

Teg'm = ~(=) ~ (+) 9)
(Frgo|U-UG Ul ¥ppr

where Ekﬁm is a trial scatfering function and we have assumed the
molecule to be linear. Expansion of the trial scatiering function in
basis functions and variation of the linear expansion coefficients give the

stationary result

So N ) oy -
ir %

where the a's are the expansion functions and

(+) +)
Dy; = (e;|U-UG Ulaj>. (5)
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As is well-known, the T-matrix of Eq. (4) is equivalent to solving

the Lippmann-Schwinger equation, Eq. (1), with a separable potential

of the form

B r) = 2 (x]u] e (U ¢eylul 1) (6)
oy

where the matrix of (U'l)i].

The corresponding approximate scattering solution of Eq. (1) is then

is the inverse of the potential matrix Uij'

S & "
"Lk;lm (x) = ppm (D) +Ea (rlG )U|ozi)(D 1)ij
i %
<aj‘U|¢kEm> N (M)

At this point we have obtained an approximate noniterative solution
to the scattering equations. We have developed a method to iteratively
improve the scattering function in Eq. (7). ° As noted by Ernst et gl.,a
if the expansion set used in Egs. (6) and (7) contained the exact solution,
then the solution given back by Eq. (7) would again be the exact solution.
Then our iterative method proceeds by augmenting the expansion set
used in Eq. (6) by including the approximate solutions wk;m(z).
Equation (7) will then yield a new and probably improved solution,
"bk;.m’ to Eq. (1). The next iteration proceeds in a similar fashion by
replacing the solutions "Lk;m in the expansion sets by those of the first
iteration, wkjﬁm' This new expansion set then yields a new set of

2
approximate solutions wkﬂm' This procedure can be continued until

convergence. Various criteria can be developed to establish when the
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exact solutions to the scattering equations have been obtained. °

III. RESULTS AND DISCUSSION

We have applied the Schwinger variational method in its iterative
form to study the scattering of low-energy electrons by CO,. For
the scattering potential we use the static-exchange approximation which
was obtained from an SCF calculation in a [3s2pld ] contracted
Cartesian Gaussian basis. : The SCF energy for CO, in this basis is
-187.674286 a.u. and the quadrupole moment is -4. 013 a. u. for a
C— O bond distance of 2. 1944 a. u.

We have carried out calculations for the 2Eg, zzu, 21'Iu, and 2Hg
eigenphases. The expansion functions used to construct the separable
approximation to the scattering potential, Eq. (6), in the initial step of
the iterative procedure are spherical Gaussian functions defined by

2
Pom ® = Nogle-al' T2y @ . ®)

-

The spherical Gaussians as defined in Eq. (8), can be expanded onto
a different center by taking linear combinations of expansions of the
appropriate Cartesian Gaussian functions. a However, for spherical
Gaussian functions with larger values of £, the required expressions
can be more easily obtained by noting that a spherical Gaussian is
the product of a simple s-type Gaussian function and a solution to
Laplace's equation, both of which have simple expressions for their
0’11

expansion about another center. 5 The basis sets for the different

symmetries are given in Table I.  The total number of basis functions
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for the 2Eg, 2Eu, 2Ilu, and zng symmetries are 30, 24, 19, and 19
respectively. All matrix elemlents were evaluated with the use of
single-center expansions and Simpson's rule quadrature for the radial
integrals. The grid for the quadrature contained 1000 points and ex-
tended out to 80 a,. In the static potential partial waves through £= 59
were retained while in the expansion of the occupied orbitals in the
exchange kernel we used enough partial waves so that each orbital was
normalized to better than 0. 99. For the lcrg 3 2crg, 3crg, and 4crg orbitals
this required £ values up to 38, 10, 24, and 16 respectively and £
values up to 39, 23, 15, 15, and 16 for the lcru, Zcru, 3cru, g
orbitals respectively in the exchange kernel. In the expansion of 1/r,

11ru, and 1m

we retained partial waves up to £= 108 in the direct potential and up to
40 in the exchange potential. The maximum partial wave retained in
the expansion of all other functions in the calculation, e.g., in zI,
V;,(:, and GVJ;, was £= 59.
In Tables O-V we s,-how the eigenphases and eigenphase sums at
2

k=0.1, 0.3, 0.5, 0.7, 0.8573 and 1. 0 for the zzg, B L

channels. These eigenphases were obtained from the second iteration

1 and T
uan

of our iterative procedure and are quite well converged. We have chosen
to show these results in tabular form since in this form they will be more
useful for comparison with results of other approaches to the solution of
the scattering equations or with the results of model calculations. To
our knowledge the only other published eigenphases for e-CO, scattering
in this energy range are those of the multiple scattering model by

Dill et _a_L2 We do not compare the present static-exchange eigenphase
sums with their results in any detail since their actual numerical values

2 -
are not given. However, several qualitative features of our results



agree with theirs. For exampllze? the increase in our Ug eigenphase
sum at around k = 1, 0 clearly also locates a high energy shape reso-
nance in this channel. The eigenphases of Table II show that the reso-
nance contains a strong mixture of s, d, and g waves. The resonant
behavior in the 21'[,.1 eigenphase sum is due to the well-known shape
resonance in the e- CO, system. A simple fit of the eigenphase sums

to a Breit-Wigner form including a background term gives a resonance
position of 5. 39eV and a width of 0. 64eV. Experimentally  this shape
resonance occurs at around 3. 8eV. This difference of about 1. 6eV
between the position of this resonance in the static-exchange model and
its actual location is obviously due to polarization effects. A difference
of this magnitude is quite consistent with the results of similar studies
of shape resonances in the e-N, and e-CO systems.wm14 The multiple
scattering mode12 predicts a resonance position of 3. 4 eV in this 2Hu
channel.

In Fig. 1 we compare our calculated total elastic scattering cross
sections with those calculated with a local model exchange potential by
Morrison et g_!_.l A comparison of these cross sections shows that with
this local exchange approximation the 2Hu shape resonance comes out
at about 8eV which is about 3 eV higher than our calculated position of
5.39eV. A semi-empirical polarization potential with a single adjust-
able parameter was then added to this local exchange potential so as to
move this shape resonance down to its experimental location of 3. 8eV.
The present results, in which the 2Hu resonance is seen to be at around
5.4 eV at the static-exchange level, show that polarization effects have

been overestimated in the semi-empirical potential as used by

Morrison et al.1 Figure 1 also shows that the magnitude and shape of
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the total elastic cross section obtained with the local exchange approxi-

manticm1 are quite different from the present calculated static-exchange
values. To obtain the total elastic cross sections shown in Fig. 1 we

added first-Born estimates for the *A_ and 2Au symmetries to the

4
2

actual static-exchange contributions for the 22 g’ Eu, 2I'Iu, and 21'Ig

channels. For comparison we also show in Fig. 1 measured values of
the total elastic cross sections. =

In Fig. 2 we show the elastic differential cross sections for the
scattering of 10eV electrons by CO,. These static-exchange cross

sections agree quite well with the recent measured values of Register

Recently Schneider and Cullins!'r reported some results from their
preliminary static-exchange calculations for electron scattering by
CO,. Specifically they report the zuu resonance at 8. 2 eV with a width
of 2eV. Theyﬂ also indicate that these results are converged to about
15%. These results differ significantly from our calculated position of
5. 39eV and a width of 0. 64eV. To try to understand these calculated
positions and widths for this resonance we have repeated our calcula-
tion with a reduced number of partial waves in the various expansions
in the evaluation of the matrix elements of Eq. (4). Specifically, the
maximum partial wave retained in the expansion of any function in
Eq. (4) was reduced from 59 to 27 while only partial waves up to 54
were retained in the expansion of 1%; in the direct potential. In the

expansion of the occupied orbitals in the exchange potential we retained

partial waves up to 4, 5, 5, and 6 for the 0_, 0 , n., and Ty orbitals

g u u
respectively. In the expansion of the continuum orbital in the exchange

potential we retained partial waves up to £= 4, With these reduced
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partial wave expansions we obtained eigenphase sums which give a

resonance position of 7. 33 eV and a width of 1. 47eV. This change of
about 2eV and 0. 83 eV in the position ‘and width of the resonance res-
pectively due to the reduction in the partial wave expansions suggest
that the results of Schneider and Collins“ may not be adequately con-
verged. We also note that éadeE et E}.'m found that with a value of 0. 31eV
for the width of this resonance at the ground state equilibrium geometry
in the boomerang rnode.i19 they could accurately describe the observed
resonant vibrational excitation cross sections at 4eV impact. A static-
exchange value of 0. 64 eV for the width of the resonance seems quite
consistent with their assumed value of 0. 31 eV since one expects polari-
zation effects to reduce the static-exchange width by about a factor of

2, e. g., in the e-N, system. ® Calculations which include such polari-

zation effects in e-CO, collisions are under way.
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TABLE I. Basis sets used in the initial step of the iterative procedure. A

A

’Eg symmetry zEu symmetry
Number Range Number Range
of b of of of
Functions™ Center £ m Exponent Functions Center £ m Exponent
6 0 0 0 8. 0-0. 25 6 0 0 0 8. 0-0.25
4 0 1 0 2.0-0.25 4 0 1 0 2,0-0.25
3 0 2 0 1.0-0. 25 1 0 2 0 0.5
2 0 3 0 1,0-0.5 5 C 1 0 8.0-0.5
1 0 4 0 0.5 4 C 3 o0 2.0-0.25
6 C 0 0 8.0-0. 25 3 C 5 0 2.0-0.5
4 C 2 0 2.0-0.25 1 C 7T 0 1.0
3 C 4 0 2.0-0.5
1 C 6 0 1.0
2llu symmetry 2[! g symmetry
5 (0] 1 1 4, 0-0. 25 5 (0] 1 1 4 0-0.25
4 0 2 1 2,0-0.25 4 0 2 1 2.0-0.25
5 C 1 1 4, 0-0. 25 5 C 2 1 4, 0-0.25
4 C 3 1 2.0-0,25 4 C 4 1 2.0-0.25
1 C 5 1 0.5 1 C 6 1 0.5
ASee Eq. (8).

b'I'otal number of basis functions on a given center with the same value of ¥ and m. The
exponents of the basis functions form a geometric series with a ratio of 2. 0.
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TABLE IIL 2Eg eigenphases and eigenphase sums for e-CO,

collisions.

k2 T N - N 5, 5, . O 5,0
0.1 -0.15 10 -0.14 -0.01

0.3 ~0.47 24 -0.40 -0.04 -0.01 -0.01

0.5 -0.76 38 -0.60 -0.10 -0.03 -0.01 -0.01

0.7 -1.08 52 -0.71 -0.29 -0.03 -0.02 -0.01 -0.01
0.8573 -1.18 58 -0.46 -0.67 0.02 -0.03 -0.01 -0. 01
1. 0% -0.88 58 -0.29 -0.82 0.31 -0.03 -0.01 -0.01

aIncident momentum in a. u.

bEigenphase sum.

cDimenL-;iona]Lity of the partial wave K-matrix used.

déﬂ is the eigenphase whose principal partial wave component is £.

eConvergence not complete. This eigenphase sum could be in error

by % 0. 01 radians.
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2
TABLE III. Eu eigenphases and eigenphase sums for e-CO,

collisions. 4

K cum tmax O O b, 6, 6, -
0.1 -0.088 9 -0.078 -0.009
0.3 -0.35 23 -0.30 -0.03 -0.01
0.5 -0.71 39 -0.63 -0.04 -0.02 -0.01
0.7 -1.08 53 -0.99 -0.04 -0.02 -0.01 -0.01
0.8573 -1.3¢ 59 -1.25 -0.04 -0.02 -0.01 -0.01
1.0 -1.55 59 -1.45 -0.02  -0.03 -0.02 -0.01 -0.01

A5ee footnotes for Table II.
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TABLE IV. znu eigenphases and eigenphase sums for e-CO,

collisions. 2
k - "max 0, o, B, B 6, 5y,
0.1 0.027 9 0.037 -0.009 -0.002 0.001
0.3 -0.036 23 0.020 -0.034 -0.011 -0.005 -0.003 -0.002
0.5 -0.20 39 -0.18 0.03 -0.02 -0.01 -0.01
0.5745 -0.13 45 -0,25 0.18 -0.02 -0.01 -0.01
0.6083 0.24 47 -0.28 0.58 -0.02 -0.01 -0.01
0.6403 1.59 49 -0.31 1.6 -0.02 -0.01 -0.01
0.6708 2.12 51 -0,33 2.50 -0.02 -0.01 -0.01
.9 2.22 53 -0.53 2.82 -0.02 -0.01 -0.01
0.8573 2.12 59 -0.62 2.82 -0.03 -0.01 -0.01 -0.01
1.8 1.92 59 -0.177 2.7 -0.03 -0.02 -0.01 -0.01

aSee footnotes for Table II.
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TABLE V. 211 eigenphases and eigenphase sums for e-CQO,

g
collisions. -
k Gsum lmax 6, 54 o, Og 5,0 612

0.1 -0. 014 i0 -0.012 -0.003 0.001

0.3 -0.065 24 -0.040 -0.012 -0.006 -0.003 -0.002 -0.001
0.5 -0.16 38 -0.11 -0.02 -0.01 -0.01

0.7 -0. 32 52 -0.25 -0.03 -0.01 -0.01 -0.01

0. 8573 -0.47 58 -0.39 -0.03 -0.01 -0.01 -0.01

1B -0. 59 58 -0.53 0.02 -0.03 -0.01 -0.01 -0.01

45ee footnotes for Table II.
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Fig. 1 Total elastic cross section for e-CO, scattering: —O—
exact static exchange results of present study; ---@---
static plus model exchange from Ref. 1; O experimental

data from Ref. 15; A experimental data from Ref. 16.

Fig. 2 Elastic differential cross section for scattering 10eV
electrons by CO,: ———— exact static exchange results
of present study; A experimental data from Ref. 16,

(4A) indicates an extrapolated value.
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CHAPTER I1II

Application of the Iterative Schwinger Variational Method

to Molecular Photoionization
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INTRODUCTION

In this chapter we give the results of the iterative
Schwinger variational method applied to molecular photoioni-
zation of N, and COZ' As in our discussion of electron-
molecule scattering in Chapter II, one of the interesting
features of molecular photoionization is the appearance of
shape resonances. Shape resonances appear prominently in the
and CO,. Such resonances can lead

2 2
to enhanced total photoionization cross sections as well as

photoionization of both N

non-Franck-Cordon vibrational effects and rapidly changing
photoelectron angular differential cross sections.

We make detailed comparisons of our computed total and
differential photoionization cross sections of Nz and CO2
with available experimental data and with the results of other
theoretical methods., In general we find that the Frozen-Core
Hartree-Fock (FCHF) model of photoionization used here
represents the valence shell photoionization cross sections

of N2 and CO, very well. We also have found that inclusion

2
of initial-state correlation effects can be important in
obtaining quantitative agreement with experimental results.

We have compared our cross sections to the theoretical results
given by the Continuum Multiple Scattering Method (CMSM) and
by the Stieltjes-Tchebycheff Moment Theory (STMT) approach

for molecular photoionization in the FCHF approximation.(l)

These two methods are the only other methods, besides the

Schwinger approach presented here, which have been used to obtain
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the photoionization cross sections of N2 and C02 for the
valence shell 1eve1.(2) We find that the CMSM cross sections
generally reproduced all of the qualitative features obtained
in the Schwinger results but the quantitative results of the
CMSM method were sometimes in error by more than a factor of 2.
The STMT method is found to give reasonable absolute values
for the photoionization cross sections but this method does
not reliably reproduce effects due to shape resonances. The
CMSM method obtains exact scattering solutions but of a highly
simplified model potential which is used to represent the
static-exchange interactions. The STMT method on the other
hand uses the exact static-exchange interactions but does not
explicitly solve the scattering equations,

The development of the iterative Schwinger method has
allowed us to directly solve the scattering equations using
the correct static-exchange potential, with a reasonable
computational effort. The cross sections given by the
iterative Schwinger method allow us to interpret reliably
experimental results using the FCHF model without uncertainty
concerning the accuracy of the computed cross sections.

In Section A of this chapter, we give results for the

valence photoionization of N, in the fixed-nuclei approximation.

2
Section B gives vibrational branching ratios for the resonant

2

photoionization channel of N, leading to the X Z; state of

2

N;. In Section C we give a detailed comparison of the results

of the STMT, CMSM and Schwinger methods for the photoionization

of CO2 leading to the CZZ; state of COE. In Section D we give
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the results for valence and K-shell photoionization cross

sections of €O, in the fixed-nbelel approximaticn. In Section E

2
we examine the effects of vibrational averaging on the photo-

ionization cross section (both total and differential) leading

to the sz; state of COE.
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SECTION A

Studies of Differential and Total Photoionization

Cross Sections of Molecular Nitrogen
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I. INTRODUCTION

The photoionization of molecular systems is a topic of much
current theoretical interest. As a prototypical system, the photoion-
ization of molecular nitrogen has been studied using several different
methods including the Continuum Multiple Scattering Method (CMSM)’
the Stieltjes-Tchebycheff Moment Theory approach (STMT), both in
the Hartree-Fock (HF) approximationa"1 and the Random~Phase
Approximation with Exchange'(RPAE)j and several numerical single-
center expansion methods‘.s The single-center expansion methods
applied to the photoionization of molecular nitrogen have treated the
interaction potential in several different ways. There have been static
and static-plus-orthogonalization calculations',' static-plus-model-
exchange calculationsi,l and exact static-exchange calculations? B
Most previous studies have attempted to obtain the continuum solution
for the final state using the Frozen-Core Hartree-Fock (FCHF) approxi-
mation. ? The present study is directed at obtaining accurate and con-
verged FCHF solutions for the final-state wave function, using the body-
fixed frame, fixed nuclei approach. ° We compare our resulis with
some of the other theoretical results mentioned above and with the ex-
perimental results of continuous source experiments by Plummer et al. -
and Marr gt‘g_l._lz using synchrotron radiation, and by Hamnett et gl.ls
and Wight et gl_.“ obtained using an (e, 2e) technique.

We have considered the photoionization leading to the X 22"’, A zﬂu,

and B 22; states of N:. Both total and partial photoionization cross



147

sections and angular distributions for these states are reported.
Following the suggestion of Wallace and Dilli5 we give both the
asymmetry parameter for the usual Integrated Target Angular
Distribution (ITAD), denoted here by B¢, and the Integrated Detector
Angular Distribution (IDAD), denoted by 8. In combination with
accurate FCHF final-state wave functions, we have considered

the effect of initial-state correlation by comparing the results obtained
using both HF and Configuration Interaction (CI) type initial-state
wave functions. The difference between the dipole length and dipole
‘velocity forms of the cross sections is used to estimate the remaining
fina: state correlation effects.

We solve the static-exchange continuum equations using the iterative
Schwinger methodfs’ - This method is essentially a single-center
expansion technique comparable to the methods used by Raseev et 'a_l?
and Robb and Coll:‘msf0 The iterative Schwinger method has been earlier
applied to the photoionization of H, and Cozta’ ' as well as to electron-
molecule collisions for the e-H,, e-LiH and e-CO, systems.” "%

We find in this study of the photoionization of N, that the iterative
Schwinger method converges rapidly.

The present results are compared with the results of other single -
center expansion methods. We find that, for the shape resonance in
the photoionization channel leading to the X' EE state of N;, the
previous results of Raseev _e:j:g_l_? and Rcbbb_rg_tgl_-l_f‘J are not well converged.

In particular, their peak cross section occurs at a photon energy of

31 eV which differs from the present result of 29 eV. In this regard,
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we have determined empirically that the energy of the peak cross
section in this shape resonance, for which the continuum function

is of % symmetry, converges as

2 © 1
Emax = Emax ¥ 1)

where £ is the maximum ¢ included in the partial wave expansion of the
continuum function. We also compare our accurate static-exchange
results with the results obtained using the CMSM and STMT methods.2 -
This comparison shows that the CMSM and STMT results are qualita-
tively similar to accurate static-exchange results but neither the CMSM
nor STMT is in quantitative (better than 10 %) agreement with the present
results. Finally, the comparison with experimental resultsn’m shows
that the FCHF final-state model reproduces the experimental cross
section well except in the energy regions where two-electron resonances,
such as autoionization, are important.

We find that the inclusion of initial-state correlation brings the dipole
length and velocity forms of the photoionization cross section into better
agreement with experimental results. This resuit for molecular systems is
similar to that found by Swanson and Armstrong for atomic systems?2
In the region of the shape resonance leading to the x Eg ‘state of N},
the combination of correlated initial-state wave function and FCHF

final-state wave function is 'found to be particularly effective.

II. METHOD

A. Tterative Schwinger Variational Method

We compute the final-state photoionization wave functions using the
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FCHF approximation ¢ This implies that the final state is described

by a single electronic configuration in which the ionic core orbitals

are constrained to be identical to the HF orbitals of the neutral mole-

cule.

The Schrodinger equation for the remaining continuum orbital is

then (in atomic units)

— P
(—%Vz-%—-i'V(r)'%)\I'Eo(r):O: @)

where V(?) is the short-range portion of the static-exchange potential

and k is the momentum of the continuum electron., By using the FCHF

approximation, the final-state photoionization problem is reduced to

solving a single-particle potential scattering problem.

The Schrddinger equation given in Eq. (2) is equivalent to the

Lippmann-Schwinger equation

(#) _ gc@) | qcld)q g
‘1'1?“;'1? + G U\IIE, (3)

where U(r) = 2V(r) and Gc(*) is the Coulomb Green's function

defined by

The

Gt® (v2+% + kz:tie)"l. (4)

function \I'E(i) is the pure Coulomb scattering function and is

given in terms of its partial-wave expansion as

Ye
- 9 ) *
\1';(*)(1‘) = (E) Eml ¢§$ﬁa(ﬂ Yem(0g)» e

where d)c(i) is the partial-wave Coulomb function defined by
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F,(y:kr)
4+ tio £
6By = Mt v, (), (8)

The function Fﬂ(-y;kr) is the regular Coulomb function withy = -1/k
and Oy is the Coulomb phase shift defined as 0, = arg [re+1+iy)].
The wave function ‘Ir(_',) , which represents the ejected electron -

- k
with momentum Kk, is then expanded in the partial-wave series

(-) = ( 3 )
¥~ (T) = i X ) . (M
) )Mm__ﬁ Mo @) Yo @2
where an infinite sum over £'s has been truncated at £ = [p. Computing
the wave function in the partial-wave form allows the dependence of

the scattering solution on the target orientation to be treated analytically.

The Lippmann-Schwinger equation for the partial-wave states is then

i @ = o) @+ @1 Oupl)y (®)

We solve Eq. (8) using an iterative procedure. ®* The iterative method
begins by approximating the short-range potential by a separable

potential of the form

— S —_ — —
FluelFy= 2 Flulap[u 1]ij ([U[FD,  (9)
a.,a R
]
where R is some initial set of expansion functions and [U™ ] is the
malrix inverse of Uij‘ Inserting this approximation to U in to Eq. (8)
allows the Lippmann-Schwinger equation to be solved since the kernel

of the integral equation is now separable. * The solution to Eq. (8)
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with the potential approximated by US0 is

( )So ¢ (r
+ B @16 ulay (D7) 6y Ul fi ) (10)
alcr]eR
where
= (a;|U - UGC(')U[aj) : (11)

The use of a separable potential of the form given in Eq. (9) to solve the
Lippmann-Schwinger equation is known to be identical to the use of the
Schwinger variational expression, %27 and hence we call this method
the iterative Schwinger variational method.

The iterative method is continued by augmenting the expansion set
R, of Eq. (9) by the set of functions

G = {d’kﬁlms ¢kﬂzms""¢k_2pm} ’ (12)

which are the scattering solutions given by Eq. (10), and where Rp is
the maximum £ included in the expansion of the scattering solution as
given in Eq. (7). Using this augmented set of functions, a second set of

scattering solutions

- {wkglm,---,zpk;pm}

is obtained using Eq. (10). In general, the set of scattering solutions

‘at the n'th iteration

Sn SI]
Sn = {Zpkilm’ o iy wklpm} (13)
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is obtained from the previous set of solutions Sn-; from
HamP @) = dpym (F) +

2 GIGC(—)U]XQ [D-I]i'

X xje RUSH.-, ]

(=)
X (31Ut - (14)

This iterative procedure is continued until the wave functions con-
verge. When the wave functions do converge, it can be shown that
they are solutions of the Lippmann-Schwinger equation for the exact

potential U. °

B. Frozen Core Hartree-Fock Static- Exchange Potential

In this section we will discuss the form of the static-exchange
potential, obtained from the FCHF approximation, which describes
the interaction of the ionized electron with the open-shell ionic core. =
First consider the HF wave function of a closed shell molecule such
as N,. The HF wave function is simply written as a single Slater

determinant

¥ = |pa¢.B.....000048 - (15)

The photoionization final-state wave function in the FCHF approximation,

where the ionized electron is removed from orbital ¢ , is writien as
) .
¥ = () {lgraprB. . ... ¢’nﬂ'¢EB|

+|pads.....o-appl} (16)
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assuming that ¢ is a nondegenerate orbital. Then the correct single-

particle equation for the continuum electron is obtained from
(6¥_.|H-E|¥.) = 0 (17)
k k
where
1,
= ()2 {|poeB.. ... ¢naﬁ¢-f(51
+ |pad,B.---. 5¢Ea¢nﬁl} (18)

and where Eq. (17) holds for all possible 6¢ .
k

The electronic Hamiltonian can be written as

N
H = 2 f(i) + Z) (19)
i=1 i<j Tij
with
Z
£i) = -2 12‘§F.1% (20)

where Za are the nuclear charges and N = 2n is the number of
electrons. The one-electron HF Hamiltonian can be written in this

form as

PULIPOND 2, - K , (21)

i=1 X
where f is the one-electron operator defined in Eq. (20) and J; and K|
are the usual Coulomb and exchange operators. = Thus the HF

orbitals satisfy

N (22)
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If we assume that the orbitals ¢’f{ and 5¢>E are not necessarily
orthogonal to each other nor to the orthonormal set of occupied HF

orbitals, then Eq. (17) can be expanded to give

0= ((P6¢E) |H - € + Jn + Knl P¢E>
" 2(5¢E|¢n)<¢n|ﬁ -e+ Iloy (dplen)

+ 2oe 69 (6 | H+ JnIquE)

+ A(Pog) [H+ 3y [¢y) (6 o) (23)
where
N n-1
H=f+E2Ji-Ki (24)
i=1
and
n
P=1- 1_21 lop) (o] - (25)

The energy of the continuum electron is

¢ - E - gcore (26)
where ES°T€ is the Koopman's theorem energy of the ionic core
gcore _ EHF _ En . (27)

That ¢_ is an eigenfunction of gHF [Eq. (22)] reduces Eq. (23) to*
0 = ((Pﬁq&_k_) [H - €+ Jn + Kanqu)

+2(€,- E)<5¢E‘¢n><¢n‘¢i<’> ; (28)
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which must hold for all §¢.. If we consider the case where 6¢. = ¢
k k
then it follows that if € = € _ then (¢~ |¢ ) = 0. Thus if ¢_ satisfies
k k

0= ((Péqp;.{.) -+ + Knlpcp;.;) (29)

for all 6¢. and with € = €

p then ¢ = P¢_ satisfies Eq. (28). So,
k k

solving Eq. (29) will give us the correct continuum wave function
in the FCHF approximation.

There are several points to note about Eq. (29). First, Eq. (29)
constrains the solution P¢’__ to be orthogonal to the occupied orbitals.
Thus, this form of the scai{tering equation is entirely equivalent to the

standard undetermined Langrange multiplier form'®:*

n
(H =&+ % Kn)¢f£ = El.liqbi (30)

where A; are undetermined multipliers and ¢_. is subject to the
k

condition

(¢E|¢i>=o s FeL eyl s (31)

Secondly, the continuum solution must be constrained to be orthogonal
to the doubly occupied orbitals since, unlike in the electron-neutral
closed shell HF scattering case, the continuum orbital and the occupied
orbitals are not eigenfunctions of the same one-electron Hamiltonian.
Lastly, the general open-shell scattering problem would require the
solution of Eq. (23), but as we have seen, since we are using the FCHF
approximation, the scattering equations can be simplified to yield

Eq. (29).
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A scattering equation of the form of Eq. (2) can be obtained from
Eq. (29) giving

(‘%vz & Vorth _ E)(;bi{" =B ., (32)

The potential Vorth is a generalized Phillips-Kleinman pseudu:)];)otential32
p

vorth _ v _10- QL+ QLQ (33)

where L, Q, and V are defined by

L=-4v-e+V , (34)
n
Q = Z: l¢’1>(¢)1l ’ (35)
i=1
and
n-1 =
V=i¢:‘31 (23, - K) + I+ K_ 'f,\:?{; . (36)

Thus we use the pseudopotential Vor'th to treat both the static-
exchange interaction and the effects of constraining the continuum

solution to be orthogonal to the occupied bound orbitals.

C. Photoionization Cross Sections and Asxmmetrx Parameters

The photoionization cross section for going from an initial bound
state ¥, to the continuum state \Iff - due to linearly polarized light in
k
3
the dipole length and dipole velocity approximations is proportional to

the square of the dipole matrix elements

LI AR T (37)

K, A £,k

for the dipole length form and



1:57

A @, - aletl) (38)
K, i E 1 f,k
for the velocity form. In Egs. (37) and (38), E is the photon energy, fi
is the direction of polarization of the light, and k is the momentum of
the photoelectron. The factor of (k)%in Egs. (37) and (38) is required to
change the normalization of the continuum functions, \1:('), , from
momentum to energy normalized. The doubly differential photo-

ionization cross section in the body-fixed frame is then

ol V _ 4r’E L,V 2 (39)
qrEans = e 12 | -
k™ 'n k,n

If the wave functions used to calculate the photoionization cross section
were exact eigenfunctions of the electronic Hamiltonian, then the
dipole length and dipole velocity forms of the cross section would be
equivalent. Thus the equality of thése two forms is a necessary but not
sufficient condition that the computed cross sections are accurate. In
this sense, the difference between the length and velocity forms can be
viewed as an estimate of the minimum error in the calculation. i
To treat the angular dependence of the cross section on the target
orientation the dipole matrix elements are expanded in terms of
spherical harmonics
eV -
k, fi

’

v,
il LV vy eaY (@.) . 40)
T)mu o Yim@}) ¥y, 0 (

The partial-wave matrix elements are then given by
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(k)/zw |r“|‘11(-) ) (41)

Tomp = f,kfm

for the dipole length form, and

Y
v. _(E&)
13 (kE_ AL |‘1’1 kﬂm ) (42)
for the dipole velocity form, where
A
¥(x = iy)/2 for g == 1
i B (43)
z for p=0

and
q:(—-)2'31 )/2/2 forp==1
K (44)

8 for p = 0.
0z

The total photoionization cross section averaged over all

polarizations and photoelectron directions is then

(45)

where

- L,V 2
= DI i (46)
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Note that for linear molecules we have

Am = m(\Pi) - m(ion core) = p+ m (photoelectron). (47)

There are two other averaged photoionization cross sections of interest
as suggested by Wallace and Dill. .~ The first is the usual Integrated
Target Angular Distribution (ITAD). The ITAD corresponds to the
photoionization experiment where the target orientation is not resolved.
This is the form of the photoionization cross section measured in the
usual gas phase experiment. When the cross section in Eq. (39) is
averaged over all target orientations the ITAD is found to be of the
form

go LV L,V

L,V
. 1+ Bp Pylcos 6)]. (48)
dﬂ:g 47

The angle 6 is the angle between the direction of polarization of the
light and the momentum of the electron and P, (cos 6) is the Legendre

polynomial of degree 2. The asymmetry parameter BE is given byari

L,V 3 m-p’ L,V
B2’ = 2 (1/ZD,) 2 (1) I
k 5 M u Lmp £mp

L

X (1?’;"1, ¥ [(2z+1)(2£'_+1)]% (1100] 20)

X (££'00|20) (11-p 4 (21" ) (2L ~ma-m' |2-p") (49)
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where (j,j, m; m,|j; m;) is a Clebsch-Gordan coefficient. Note that
the asymmetry parameter Bg depends only on the photon energy and

t hat the subscript Kk implies only that BE describes the distribution
of the photoelectrons and not that B ¢ depends on their direction. The
second averaged photoionization cross section we will consider is the
Integrated Detector Angular Distribution (IDAD). The IDAD corres-
ponds to the experiment where the target orientation is fixed in the
laboratory frame of reference and the cross section is then integrated
over all possible directions of emission of the photoelectron. Wallace
and Dillls have suggested that the IDAD cross séction would be

useful in determining the orientation of a photoionized

target in the laboratory frame. When the cross section given Eq. (39)
is integrated over all photoelectron directions the IDAD is found to be

of the form

LV L,V
do o B 1+ 8L Vp,(cos 6) ] . (50)
dQﬁ 47 n

The angle 6 in this case is the angle between the direction of the polar-
ization of the light and the molecular z-axis. The asymmetry para-
meter Bﬁ is given by

85" = 120, - 0, +D, )1/ (ZD,). (51)
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III. RESULTS AND DISCUSSION
A. Final-State Wave Functions

The final-state wave functions used in this study of photoioniza-
tion are constructed using the FCHF approximation. The bound orbitals
in this approximation come from the HF wave function of the neutral
molecule. We have constructed a HF wave function for the neutral N,
molecule using a double-zeta plus d functions contracted Gaussian
basis of the form (9s5p2d/4s3p2d). e The d-function exponents
were 1. 5836 and 0.4691 which are the exponents appropriate to re-
presenting a Slater function with exponent £ = 2. 20. ** The bond
length was taken as 2. 068 au. The HF energy for this basis set is
E = -108. 973235 au. and the quadrupole moment for the neutral N,
molecule in the basis set is azz = -0.9923 au.

To compute the final-state continuum wave function we must evalu-
ate the various matrix elements given in Eq. (14). We have used a
single-center expansion approach to evaluate all such matrix ele-
ments ?, 07 The use of single-center techniques implies that all
functions (e. g., scattering functions, occupied orbitals, 1/r,,, Gc(—))
are expanded about a common origin (taken to be the bond center for N,)
as a sum of spherical harmonics times radial functions. The radial
integrals are computed by putting the radial functions on a grid and then
using Simpson's rule. The angular integrals can then be done analyti-
cally. Actual calculations use standing-wave boundary conditions thus

allowing radial wave functions'toc be represented by real-valued

functions.



162

There are several parameters which describe the maximum £
included in such spherical harmonic expansions. Using a notation
similar to that of Robb and Co.llins,Jlo e we define our expansion para-
meters as follows:

1) ﬂm = maximum £ included in the expansion of scattering

functions (xi's of Eq. (14)), of the Coulomb Green's function,

and of the projection orbitals (qbi of Eq. (35)),

2) ﬂesx = maximum £ included in the expansion of the scatter-

ing functions in the exchange terms,

3) ﬂfx = maximum £ included in the expansion of the occu-

pied orbitals in the exchange terms,

4) ﬁdiir = maximum { included in the expansion of the occu-

pied orbitals in the direct potential,

5) A f: = maximum £ included in the expansion of 1/r,, in

the exchange terms,

6) Afrilr = maximum £ included in the expansion of 1/r,, in

the direct potential (not including the nuclear terms).

Also note that we always include terms up to A = Zﬂm in the expansion
of the nuclear potential. We have expanded all radial integrands on a
grid of 800 points extending to r = 64. 0 au. The smallest step size

in this grid is 0. 01 au which is used out to r = 2. 0 au. . The largest
step size is 0. 16 au.

For the purposes of this study we have grouped the six parameters
listed above as follows |

. dir dir dir
1) £ o =fm 457 2y
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. €XCc _ ,ex 4 €ex
ii) Emax“ ES iy
For all calculations on N, considered here we have fixed £ ;ax to be

ex
L7 = 16(10’g), 10(20g), 10(30g), 15(1cru), 9(2cru), Q(ITru). These

values correspond to having normalized the expansions of the various
orbitals to better than 0. 99.

To study the general convergence in this system we have initially
considered four sets of parameters:

A) .qugx = 20, £5%¢ _ 20

dir exc
B) Emax = 30, ﬂmax = 20

dir _ exc _
C) ‘Qmax = 40, ’cma.x = 20

D) ﬂdir

max = 30, £02° = 30.

max
We have used these four sets of parameters to calculate the photoioni-
zation cross section in the 3crg——» ko ~channel of N,. This channel was
chosen since it contains a shape resonance which makes the computed
cross section more sensitive to the parameters of the potential than
in a nonresonant channel. The results for parameter sets A, B, and
C are shown in Fig. 1. On the scale shown in Fig. 1, the cross sec-
tion with parameter set D cannot be distinguished from that of set B.
The difference between sets B and C is less than 5% in the cross sec-~
tion. We consider the accuracy of set B to be adequate considering
the FCHF approximation within which we are computing these cross
sections. Thus, except where noted, we have used this set of para-

melers with nf;;x = 30 and £%C - 20 for all other calculations in
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in this study. A more detailed discussion of the convergence of the
energy of peak cross sections in the 3og—- kou channel is given in

Section I0. C of this paper.

The scattering basis sets, corresponding to the set R of Eq. (10),
which were used to obiain scattering solutions of the various possible
symmetries, are given in Table 1. The basis sets are constructed both

from Cartesian Gaussian functions which are of the form

q,!f,m,n,K

- - |2
6 () - NE-at (5-A)7 (z-4 0 e IT-AL (s2)

centered at the nuclei, and spherical Gaussians of the form

a,f,m,A ¢ al_. A_Iz
1' -— -— - r-
¢ (F) = N[r-Al" e Yym@=2) (53)

centered at the expansion origin. We have examined the rate of con-
vergence of the iterative Schwinger variational method with basis sets

of this size. In Fig. 2 we present the results of photoionization calcula-
tions in the 30g- kou channel using the 0 basis set given in Table 1.
The cross section without iteration (Eq. (10)) and from the first

iteration (Eq. (14) with n = 1) are both given in Fig. 2. The cross sec-
tion obtained from the second iteration is indistinguishable from that
given for the first iteration on the scale presented in Fig. 2. Thus, for
all other channels we have only presented cross sections from the results
of the first iferation. We have assured the adeqguacy of the basis sets

for the other scattering symmetries, given in Table I, by comparing
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the zero-iteration cross section to the one-iteration cross section.
In all the other channels considered here, this difference is small and

of the same order as that we have obtained in the 3og —'kcu channel.

B. Initial state wave function

Swanson and ﬂnrmstrong22 found that inclusion of correlation effects
in the initial-state wave function while using only the FCHF approxima-
tion for the final state significantly improved the computed cross section
when compared to using only a HF initial-state wave function. In this
study we have examined effects of initial-state correlation on the com-
puted photoionization cross sections of molecular nitrogen. As initial-
state wave functions we have used the HF wave function described in the
previous section and a CI wave function containing *'singles-plus-
doubles" excitations. -

In order to limit the size of the CI wave function, the virtual
orbital space was taken to be a restricted set of orbitals. The virtual
orbitals were obtained by performing a separated-pair type MC-SCF

calculation. 2ea0 The orbital occupation in the HF wave function is

(10,)° (20.)° (30,)° (10,)" (20,)" (7)) (54)

Note that we have performed the initial-state calculations in D2h
symmetry. In the separated-pair calculation the valence electron

pairs are expanded in orthogonal natural orbitals. The wave function

we used for N, may be represented as
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(16,)" (204, 5

2
Ug’ 50u) (30g, 40g, 30 _, 40, 37

2 2 2
Sng_x, Sngy) (lou) (Zcu, Bcg, 6qu) (111ux, 17 27 27 )

1 1 2 2
Amgys Mgy 27ygs 274y

2

¥ (55)

where the orbital listed within each pair of parentheses represents
the natural orbitals of a particular pair function. The energy of this
separated-pair wave function for N, is -109. 054 489 au. The orbitals
in each pair function which are doubly occupied in the HF approxima-
tion were not allowed to vary from their HF form. This constraint
made the evaluation of the photoionization cross sections simpler
since in matrix elements of the form of Egs. (41) and (42),

this restriction allows cnly the continuum orbital in the final state to
be nonorthogonal to the orbitals in the correlated initial-state wave
function. Having only one nonorthogonal orbital in the final state
causes the configurations in the initial-state wavefunction, differing
from the reference HF configuration by three or more spin-orbitals,
not to contribute to the photoionization cross section.

Hence we have - chosen a linear combination of configurations dif-
fering from the HF configuration by no more than two orbitals to
represent the correlated initial state wave function. The virtual
orbital space was taken to be the set of orbitals determined in the
separated-pair calculation. We have also restricted the calculation

by requiring the lcrg and lcu orbitals to remain doubly occupied in all
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configurations. The resulting wave function has 386 spatial configura-
tions in D2h symmetry, from which 570 spin-eigenfunctions are con-

structed. The energy of this CI wave function is -109. 173 549 au.

C. Photoionization leading to the X*x ; state of N,

—~

Photoionization leading to the X 22; state of N} is of primary
interest due to the appearance of a shape resonance in the cross sec-
tion. In the one-eleciron picture used here this channel corresponds
to photoionization from the SUg orbital into a continuum orbital of
either o or 7, Symmetry. The maximum £ included in the expan-
sion of the scattering solution (Eq. (7)) is Ep = 7 for the continuum solu-
tions of % symmetry and ﬂp = 5 for continuum solutions of Ry symmetry.
The ionization potential we used for this channel was IP = 15, 6eV.

There have been several studies of the shape resonance in this chan-
nel using the FCHF approximation. 3870 Among these studies there is
a disagreement of about 3 eV in the position of the peak photoionization
due to the resonance. For the 30g- ko  channel alone, Rescigno et a_l.3
obtained a peak cross section at a photon energy of ~28eV whereas
both Raseev et al. ® and Robb and Collirxsm obtained the peak cross sec-
tion at ~ 31eV. Figure 2 shows that the peak cross section in our cal-
culation is at ~ 29 eV.

The discrepancy between our peak cross section energy and those
of Raseev et al. and Robb and Collins could be due either to the differ-

ent targets used or the different expansion parameters used. To see

if the difference in the targets is important, we have performed a
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calculation in which we used similar expansion parameters to those
used by Raseev et al. ® For this calculation we have taken as our ex-
pansion parameters £ = 13,8 - 9, 8%~ 7 for all i, 191 . 50,

A:;f = B, Acrl;r = 14. Using these parameters we obtain the peak cross
section energy at 30. TeV. Thus the difference between using a target
wave function constructed from Gaussian functions as in the present
study or from Slater type functions as in the studies by Raseev et a_l.g
and Robb and Collinsm is seen to be small. Thus most of the difference
between the results of Raseev et a_l.s.and Robb and Collins B and our
present results must be due to the lack of convergence of the expansion
parameters in the earlier studies.

In order to examine the behavior of the peak cross section with
respect to the £ expansion used, we have performed an additional set
of calculations. The very small difference between the B and D calcu-
lations discussed in Sec. III. A indicates that the exchange potential is
converged with £ fr?acx = 30. Thus the only variations in { that we |
will consider here are those in (9T we have thus performed calcula-

max’

. . exc dir
tions with p‘max = 30 and Emax = 34, 38, 42, 46, 50. We have compu-

ted the photoionization cross section for the SUg — kau channel at three
photoelectron energies, 0.47, 0.50, and 0. 53 au,which correspond to

photon energies of 28. 4, 29. 2, and 30.0eV. Using these three energies
we then used polynomial interpolation to obtain the photon energy of the

peak cross section. We have plotted the resulting energies against

3
St ) in Fig. 3. As can be seen from Fig. 3, the peak energies

dir )3
max’ "
empirically determined the relationship given in Eq. (1), i.e.,

fall on a straight line when plotied against 1/(£ Thus we have



The extrapolated energy for the peak cross section is then 28. TeV.

We believe that this functional dependence of the resonance energy
dir
maXx
which satisfies the appropriate cusp condition at a nucleus, and the

on £ is due to the interaction of resonant function of 0 symmetry,
nuclear potential at that point. To test this conjecture we computed the
potential integral of a s-type Slater function of exponent ¢ = 2. 0, which
has the correct cusp condition at its origin, with a point charge at the
center of the Slater function. This integral was performed using a
single center expansion about an origin 1. 034 au away from the center
of the Slater fmnc:tion:11 Note that this distance is the same as the dis-
tance from the expansion center to the nuclei in nitrogen. The conver-
gence of this integral with ‘Qma.x was also found to obey the law given in
Eq. (1), suggesting that this 1/¢° convergence could be general for all
0 shape resonances, although we do not have a rigorous proof of this.
We have also observed this rate of convergence in the 4og—' ko11 photo-
ionization resonance in CO,. Bt Note that for resonances with m # 0
(7,0, etc.) the convergence behavior will be different and one would ex-
pect these resonance energies to converge faster with increasing £ than
does the 0 resonance discussed here.

In Fig. 4 we give the total cross section leading to the X :E;
state of N; We have plotted the computed dipole length and dipole
velocity cross sections, using both the HF and CI initial-state wave
functions, along with the experimental results of Plummer et a_l.n and

of Hamnettgt_ia_l_.” As in studies of atomic photoionization
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by Swanson and Armstrong, . the correlated initial-state wave
function brings the length and velocity forms of the cross section closer
together in better agreement with the experimental results.

The feature at 23 eV in the experimental cross section has been
attributed to.autoionization from Rydberg states leading to the C 22;'
state of N,". "% 1o obtain such autoionization features theoretically
one would have to include final state effects not present in the FCHF
model used here.

In Fig. 5 we present our computed ITAD and IDAD asymmetry
parameters. The effect of initial state correlation on the computed B's
is small. Thus for all the asymmetry parameters reported here, we
will only present our most reliable results obtained using the CI initial-
state wave function. The computed ITAD asymmetry parameters agree
well with the experimental results of Marr et al, N except for the values
around the feature at 23 eV and at lower energies where autoionization
features are important. We note that there are no dramatic changes in
the BE values in the resonance region, in contrast to the significant
B}? effects which have been predicted in the 40g — ko, photoioni-
zation resonance in CO,. s The results for the IDAD asymmetry
parameter show that above the resonance energy the contribution from
the kcu continuum channel drops off rapidly leaving only the contribu-
tion from the knu continuum.

2
D. Photoionization leading to the A I state of N
WWWMWW

The photoionization channel leading to the A “ g State of N,"
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corresponds in the one electron picture to ejecting an electron
from the lzru orbital into a continuum orbital having Gg, ﬂg, or 6g
symmetry. For the ionization potential of this channel we have used
IP=16. TeV. " The maximum £ included in the expansion of the
scattering solution (Eq. (7)) was Ep = 6 for continuum solutions of

cg, T and 6g symmetries.

There is a well-known difficulty associated with using the FCHF
approximation for the l’Tu — kﬂ"g channel, v If the straightforward
FCHF potential is used the photoionization cross section is unphysically
large as shown in Fig. 6a. The potential ured in this calculation was

the usual singlet-coupled potential for the ﬂ;kﬂ" configuration,

g

1
v, = %_) (20,-Ky) + 23, - +J 4 + K+ - K_-

4 n
+ 28" -8’ (56)

where J and K are the usual Coulomb and exchange operators and

S" and 8" are defined by

S;T ¢+(i.-l) s ”+(?1)Sd3?2 [11'—(?2)]* ¢ (T2) (57)
T2
and
~ - * —_
st ot (@)= 0”@ s L@ TE (58)
Ty

The origin of the unphysical result nresented in Fig. 6a is that the HF
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potential given in Eq. (56) places the strong valence 7 — s * transition
above the ionization threshold. This transition then appears as a large
feature in the photoionization profile. If the appropriate 0 — o* corre-
lations were included in the final-state wave functi(;n, then this transi-
tion would be brought below the ionization threshold in better agreement
with experiment. *  Instead of including final-state correlation in our
calculation, we have chosen to modify the HF potential so that the T—ar
oscillator strength is removed from the continuum.‘ We have tried three
different ways of removing this deficiency of the HF potential. The first
two methods are based on the observation that if an appropriate repres-
entation could be found for the 7* orbital, then the continuum solutions
could be obtained using the singlet potential given in Eq.(56), with the
additional condition that the continuum solution be orthogonal to the
valence #* orbital. * T‘he orthogonality condition is imposed by using
the appropriate Phillips-Kleinman potential. We have obtained the
valence m* orbital using two methods. The first method used was to
obtain eigenfunctions of the singlet potential using only a valence basis
set. For this calculation we used the same basis set as was used to
obtain the HF wave function. The eigenvalue of the n; orbital using
the singlet potential was 2.08eV. The second is to consiruct

eigenfunctions of the triplet potential

3 ”
vV, = )c_? (23,-K,) + 23 _+J  -K  -K _-87. (59

=+

The eigenvalue of the :rg orbital in our valence basis set for this poten-

tial was «10. 15eV. This eigenvalue corresponds to an excitation energy
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of 6.49 eV for the transition to the A "E¥ gtate N,.~ Using the triplet
n* orbital and projected singlet potential was the original solution to
this problem used by Rescigno et al’ An alternative to using the pro-
jected singlet potential is to use the triplet potential given in Eq. (59)
directly to obtain the continuum solutions. The use of the triplet poten-
tial to solve the m — 7™ problem has been used by Padial etal in
photoionization studies of C(.')z.'15 The photoionization cross sections
obtained using these three modifications to the FCHF approximation are
presented in Fig. 6b. We see that the triplet orbital with projected
singlet scattering potential gives results very similar to those obtained
from the triplet scattering potential. The singlet orbital with projected
singlet scattering potential does not seem to be as satisfactory as the
other two methods. This probably implies that the valence singlet n*
orbital has been contaminated by nonvalence contributions. The rest of
the results for this channel were obtained using the triplet scattering
potential, which seems to be the simplest approach to avoiding the

7 — 7 problem.

In Fig. 7we present the cross sections for photoionization leading
to the A zﬂu state. We give resulis obtained using the dipole length and
dipole velocity forms of the cross section using both HF and CI type
initial-state wave functions. We compare our results to the experimen-
tal data of Plummer et g.n and of I-Iarnma-ttg@glz13 In this channel
the effect of using a CI initial-state wave function is not very large. In-
clusion of initial-state correlation does bring the length and velocity
cross sections into slightly better agreement, however the effect is not

2
as large as we found in the channel leading to the X Eg ctate of N:.
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In the experimental cross section the feature at 23 eV is again due to

4+ 11742

autoionization from Rydberg states leading to the C 221‘: state of N,

The broad peaked shape of the cross section in this channel is
due to the lﬂu—‘ kﬁg channel. The enhancement of the cross section
in this channel is examined in more detail in Fig. 8 where the cross

section and eigenphase sums of the lﬂu — k6_ channel are compared

g
to those of the resonant 30g - kcru channel. As can be seen from Fig.8,

the peak of the lnu"—’ k6_ cross section is very broad when compared to

g
the 308—’ kcru cross section. Also, the eigenphase sums indicate that
the 111u ¥ kﬁg channel is not resonant. Thus the nonresonant energy
dependence of the dipole matrix elements must determine the shape of

the 17, — ko _ photoionization cross section of N, in much the same

manner as it fioes the shape of the 2p — kd photoionization cross
section of Ne, as discussed by Cooper.46

We present in Fig. 9 the asymmetry parameters for this channel.
Once again our computed 612 agrees well with the experimental results

12
of Marr et al. The computed Bﬁ , which is very near in value to -1,

reflects that the p = 0 contribution (1 P kwg) is very small.

E. Photoionization leading to the B 22&' state of N:

In the one-electron picture, the photoionization channel leading to

the B 22;' state of N2+ corresponds to ejecting an electron from the Zau
orbital into a continuum orbital of 0_ or 7_ symmetry. We used 18. 8eV

for the ionization potential of this state. " The maximum £ included
in the expansion of the scattering solution (Eq. (7)) was Ep = 6 for con-

tinuum solutions of both Ug and 7 g symmetry.
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In Fig. 10 we present the calculated cross sections for this
channel. In this case there seems to be little differential effect be-
tween length and velocity forms of the cross section on going from fhe
HF initial-state wave function to the CI wave function. We also see in
Fig. 10 that the present results are in fairly good agreement with the
experimental results of Plummer et a_l,n and with those of Hamnett
etal’”

In Fig. 11 we present the B's for this channel. The agreement
between the calculated BE and the experimental points of Marr _g_ig_gl_._lz
is not as satisfactory in this channel as it was in the other two channels
we have considered here. This difficulty is probably due to the inade-
quacy of the single particle hole state used in the FCHF approximation
for this higher energy ionic state. A more accurate treatment would
necessarily include a better representation of the final-state ionic wave
function. The computed Bﬁ reflects that at low energy the main con-
tribution to the cross section is from the 2Gu ~H kog channel, and that
at higher energy the 20u = kﬂg channel becomes more important.

F. Total photoionization cross section of N,
B e

We have summed the cross sections discussed above to obtain the
total photoionization cross section of N, leading to the X 22; , A 21'11";' ,
and B ZE; states of Nz"'. These results are presented in Fig. 12 along
with the total ionization cross sections obtained by Wight et g}_._u In
order to make an appropriate comparison with our total cross section-

we have corrected Wight's total cross section by multiplying by the sum
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of the branching ratios, obtained by Hamnett (ia_l.l,s for the three
channels we have considered.

We can see from Fig. 12 that the effect of initial state correlation
is to lower the length form and not to alter appreciably the velocity form
of the cross section. The length form is now in excellent agreement
with experimental results except for the 23eV feature which we mentioned
earlier. In particular, the shape of the shoulder in the cross section
due to the 30g — kGu resonance, as well as the high energy fall off of
the cross section are well reproduced using the FCHF model with initial-
state correlation included.

It seems that the total calculated cross section is in better agreement
with the experimental results than the individual partial channel cross
sections are. This is probably due to effects of interchannel coupling
which might redistribute the oscillator strength between different

channels but does not seem to greatly affect the total cross section.

G. Comparison with other theoretical methods

The partial cross sections for the three channels, which we have
considered here, have been studied previously using the CMSM2 and
STMTEM approaches to photoionization. In Fig. 13 we have compared
our FCHF results obtained in the dipole length approximation using a
HF initial-state wave function with results from the CMSM and STMT
methods. The three methods are in qualitative agreement. The STMT
results seem to be within 10-15% of our single-center results. The
CMSM resulis are generally in worse agreement with the single-center

results than are the STMT results.
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V. Conclusions
B T T T

We have obtained photoionization cross sections of N, using a
single-center expansion technique and examined in detail the effect
of the truncation of the single-center expansion on the energy of the
peak cross section in the 3crg — ko, channel. We found that the peak
energy for this resonance converged as 1 /13. This rate of convergence
was also found in single-center expanded nuclear potential integrals
where the orbitals involved were of ¢ symmetry. Thus the 1 /f
convergence may be a general feature of 6 symmetry shape
resonances.

The coupled integral equations resulting from the single-center
expansion of the Lippmann-Schwinger equation were solved using the
iterative Schwinger variational method. We found that, with an ade-
quate initial basis set, the iterative method converged to accurate
static-exchange results in only one iteration.

We have used a frozen-core Hartree-Fock final state with a
correlated initial state to compute molecular photoionization cross
sections. This combination gives a good representation of the photo-
ionization process except when two-electron resonances are important.
We feel that it is important to obtain these accurate HF level final-
state solutions before attempting to treat final-state correlation

effects.
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TABLE 1. Scattering basis sets used with the Schwinger
variational expression. A

Symmetry of Type of Gaussian
Continuum Solution Function Exponents
g Cartesian - s 16.0,8.0,4.0,2.0,1.0,0.5
-2z 1.0,0.5

Spherical - £=0 2.0,1,.0,0.5
-£=2 201.00.5

o Cartesian - 8 16.0,8.0,4.0,2.0,1.0,0.5
-z 1.0,0.5
Spherical - £=1 4,0,2.0,1.0,0.5
-£=3 4.0,2.0,1.0,0.5

-£4=5 1.0,0.5
Tu Cartesian - x 8.0,4.0,2.0,1.0,0.5
- XZ 0.5
Spherical - £=1 1.0
-£2=3 1.0
Tg Cartesian - x 8.0,4.0,2.0,1.0,0.5
- X2 0.5
Spherical - £=2 1,0
-£=4 1.0
6g Cartesian - xy 4.0,2.0,1.0,0.5,0.25
Spherical - £=2 1.0
-2=4 1,0

AThese basis sets correspond to the set R of Eq. (10).

bThe basis functions are symmeiry adapted functions constructed
from either Cartesian or spherical Gaussian functions, as defined in
the text, of the given type. Cariesian functions are cenlered at the
nuclei and spherical functions are ceniered at the bond mid-point.
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Figure Captions

Fig. 1 Convergence of the BUg — kou photoionization cross
section of N, with varying potential parameters:

dir _ ;
— — —— parameter set A (ﬁmax = 20);

dir _ .
—— ——— —parameter set B (£ ___ = 30);

dir _
parameter set C (£ k™ 40).

exc _
£ . 20. These are results of

noniterative calculations using the 0 basis set of

For all three sets

2

Table I in Eq. (10). One megabarn (Mb) is 107** em®.

Fig. 2 Convergence of the 3crg—»k0u photoionization cross
section of N, using the iterative Schwinger method:
— — — —iteration zero using Eq. (10); ———— itera-

tion one using Eq. (14).

Fig. 3 Dependence of the energy of the peak photoionization
: dir -
cross sectionon £ - for the 30g ko ~channel of
N,.
Fig. 4 Photoionization cross section for the production of the

X zzg state of N;: HFL - in the dipole length approx-
imation using a Hartree-Fock initial-state wave func-
tion; HFV - in the dipole velocity approximation using
a Hartree-Fock initial-state wave function; CIL - in
the dipole length approximation using a configuration
interaction initial-state wave function; CIV - in the

dipole velocity approximation using a configuration



Fig. 5

Fig. 6
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initial-state wave function; ® - experimental results
of Plummer et al. (Ref. 11); B - experimental re-

sults of Hamnett et al. (Ref. 13).

Photoionization asymmetry parameters for the produc-
tion of the X 225 state of N;': (a) ITAD asymmetry
parameter BIE ; (b) IDAD asymmetry parameter Bﬁ;

dipole length approximation using a correla-
ted initial state; — — — —dipole velocity approxima-
tion using a correlated initial-state wave function;

® - experimental B of Marr et al (Ref. 12).

Photoionization cross sections in the 1 L A kng
channel of N, using various forms for the scattering
potential: (a) unmodified potential compared with
modified forms; (b) expanded scale showing modified
potentials; ————— the cross section obtained using
continuum solutions which are eigenfunctions of the
triplet Hartree-Fock potential; —— — —— — using
eigenfunctions of the singlet Hartree-Fock potential

constrained to be orthogonal to a valence wm_ eigen-

function of the triplet Hariree-Fock pqtentif.l;

— — ——using eigenfunctions of the singlet Hartree-
Fock potential constrained to be orthogonal to a
valence ng eigenfunction of the singlet Hariree-Fock
potential; ~~-~~=-- using eigenfunctions of the unmodi-

fied singlet Hartree-Fock potential.
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Fig. 7 Photoionization cross section for the production of
the A znu state of N;' (same designations as in

Fig. 4).

Fig. 8 Comparison of photoionization in the BGg—- ko,
channel with photoionization in the lrru — kbg channel
of N,: (a) comparison of photoionization cross sec-
tions; (b) comparison of eigenphase sums;

3cg-+ ko, channel; — - —— l-nu—. kég channel.

Fig. 9 Photoionization asymmetry parameters for the pro-
duction of the A 2Hu state of N2+ (same designations

as in Fig. 5).

Fig. 10 Photoionization cross section for production of the

B 22; state of N: (same designations as in Fig. 4).

Fig. 11 Photoionization asymmetry parameters for the pro-
2
duction of the B EJ state of NJ (same designations

as in Fig. 5).

Fig. 12 Total photoionization cross section for the produc-
tion of the X zzg, A zl'iu, and B 22; states of N;'
(same designations as in Fig. 4): & total experimen-
tal cross sections of Wight et al. (Ref. 14) corrected

to include only the contribution from these
three channels using the experimental branching
ratios of Hamnett et al. (Ref. 13),
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Comparison of different theoretical cross sections
for the production of the X 28;, A 2Hu’ and B 2.‘5_‘,;

states of N:: ———— present single center FCHF
results; —— — —— — FCHF results obtained using the
STMT approach (Refs. 3 and 4); — - — — CMSM

model potential results (Ref. 2).
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SECTION B

Accurate Hartree-Fock Vibrational Branching Ratios

in BOg Photoionization of N2
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The shape resonance occuring in the photoionization of molecular nit-

-
4

ficant non- Franck-Condon effects in the final vibrational state dis-

rogen leading to the X “s* state of the ion is known to produce signi-
tributions. These vibrational effects were first predicted by

Dehmer et al (1979) and subsequently have been observed experiment-
ally by West et al (1980). The original prediction by Dehmer et al
(1979) using the continuum multiple scattering method (CMSM) was
qualitatively correct but their computed vibrational branching ratio for
the v*= 1 vibrational state relative to the v = 0 vibrational state was
off by approximately a factor of two. Recently Raseev et al (1980)
have studied vibrational effects in this system using an accurate Hartree-
Fock single-center expansion method. The v'= 1/v“= 0 branching
ratio reported by Raseev et al (1980) is in much better agreement with
the experimentally measured value of West et al (1980) than is the
branching ratio obtained by Dehmer et al (1979). However, the results
of Raseev et al (1980) are still low by about 25%.

In the present study we have re-examined the calculations of
Raseev et al (1980) to determine whether the difference between the
computed and experimental branching ratio is due to a breakdown of
the adiabatic-nuclei frozen-core-Hartree-Fock model used in their
study or whether the results given by Raseev gt al (1980) were not fully
converged solutions for this model. We have found two deficiencies in
the calculation performed by Raseev et al (1980). The most important
shortcoming of their calculation is that Raseev et al (1980) only com-
puted the electronic transition matrix elements for three internuclear

separations and obtained the value of these matrix elements at all other
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points using a polynomial interpolation. We have found that it is im-
portant to compute the transition matrix elements at more internuclear
separations since they are fairly rapidly varying functions of the inter-
nuclear separation. Another deficiency of the study of Raseev et gl
(1980) is that their potential expansion parameters are not well con-
verged. We know from previous studies(Lucchese et al 1981) that
with more accurate potential parameters the peak photoionization cross
section in the fixed-nuclei approximation for the resonant 30g — kcfu
channel of N, is found to lie at a photon energy of 29 eV rather than at
31 eV as reported by Raseev et al (1980). When these two problems
are corrected we have found that the adiabatic-nuclei frozen-core-
Hartree-Fock v'= 1/v’= 0 ratios are in very good agreement with the
experimental values of West et al (1980).

We have repeated the calculations of Raseev et al (1980) correct-
ing the two problems mentioned above. The frozen-core-Hartree-Fock
approximation was used to describe the interaction between the photo-
electron and the ionic core. To obtain the appropriate continuum solu-
tions we have used the Schwinger variational method (Lucchese and
McKoy 1980). For the purposes of this study we have not employed the
iterative technique which has been applied to other systems (Lucchese
et al 1980, Lucchese and McKoy 1981), since in our previous studies
of the photoionization of N, we found that the exact iterative cross sec-
tion is in general very close to the initial noniterative result using only
L’ basis functions (Lucchese et al 1981).

The scattering basis sets we have used for the 30’g — kcru and

30g — km photoionization channels o1 N, are given in table 1. These
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basis sets consist of both Cartesian Gaussian functions defined by
¢ a,ﬂym;n’é (,I} - N (x"Ax)l(Y'Ay)m (Z-Az)n
2
. x T3] (1)
and spherical Gaussian functions defined by

¢C¥,f,m,é (2) = le-élﬂ e”alz-él Yﬂm(n}:'é)‘
(2)

The continuum solutions which are used to obtain the photoionization

cross section are given by

-1 al
x [D ]ij (aj|U| Prim ’ (3)
where [D_l]ij is the matrix inverse of

C(~-)
Dy = (ai[U-UG Ulaj> (4)

and where U is the static-exchange interaction potential minus the

(]
long range Coulomb potential of the ionic core, G is the Coulomb

Green's function and R is the appropriate scattering basis set given in
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table 1. All necessary integrals are computed by expanding all func-

tions in truncated partial wave expansions with the resulting radial
integrals put on a grid and computed using Simpson's rule. We have
also constructed our continuum solutions subject to the constraint that
they be orthogonal to the bound orbitals of the same symmetry. More
details of this method can be found in previous papers (Lucchese et al
1981, Lucchese et al 1980, Lucchese and McKoy 1980).

The Hartree-Fock (HF) target wave function was constructed
from a (9s5p2d/4s3p2d) contracted Cartesian Gaussian basis set
(Dunning 1970, Dunning 1971). The computed HF energy of N, for the
equilibrium nuclear separation of R = 2. 068 au was E = -108.973235 au,
and the quadrupole moment for the neutral N, molecule in this basis
was -0. 9923 au.

The parameters used to expand the static-exchange potential were
as follows:

1) ¢ i 30, maximum £ included in the expansion of the scatter-
ing functions and of the Coulomb Green's function,

2) ;z:" - 30, maximum £ included in the expansion of the scatter-
ing functions in the exchange terms,

3) £ =24 (10)), 12(20)), 12(30)), 24 (10, 12(20,), 12(17),
maximum £ included in the expansion of the occupied orbitals in the
exchange terms,

4) lc;ir = 30, maximum £ included in the expansion of the
occupied orbitals in the static potential,

5) & f: = 30, maximum £ included in the expansion of 1/r,, in

the exchange terms,
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6) A;‘;r = 60, maximum £ included in the expansion of 1/r,,
in the static potential
The grid used to compute all radial integrals consisted of 800 points
extending out to r = 64. 0 au. These potential expansion parameters

lead to substantially better convergence than those used by Raseev

et al (1980).

We have computed the photoionization transition matrix elements

both in the dipole length form
L % &)
Igmu®) = (k) (\I‘i(z;R)|rp|‘1'f,k£m(;;R)) (5)

and dipole velocity form

a® = S @R [ 9, 19 @R ©)

at five internuclear separations R = 2. 268, 2. 168, 2.068, 1. 968 and
1. 868 au. The cross section for going from the ground vibrational
state of N, to the n'th vibrational state of N,' is given by

L,V vZn

L,V 41]"2 V:O 2
UV=0, V’:n - 3c E E'ﬂ}il(xl II_QH“_L Xf >I (7)

where the x's are the appropriate initial and final state vibrational

wave functions, E is the photon energy and c is the speed of light. The

asymmeiry parameter BE is defined from the differential cross sec-

tion for the photoelectron by
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dar ¥ g Lo ¥ L,V
f] 4
v=0,v=n - v=0,v=n (14’31{’”_—0 "y Pz(cos 8) (8)
aq; 4n P

where 6 is the angle between the direction of the polarization of the
light and the momentum of the electron.

The vibrational wave functions were obtained from numerical
solution of the Schrédinger equation for the nuclear motion using RKR
potentials to describe the potential surfaces. For the X =7 state of

g
N, we used the RKR curve of Benesch et al (1965). For the X =*

state of N; we used the RKR curve of Singh and Rai (1966). The falues
of the potentials between the classical turning points were obtained
using six point polynomial interpolation. The potential curves at Re .

1. 09768A for N, and 1. 1164204 of N, (Huber and Herzberg 1979), were
also forced to have zero slope. The vibrational wave functions were
then obtained using the method of Cooley (1961). With this approach we
obtained the foliowing Franck-Condon factors (FCF): (v=0, v=0) =
0.917, (v=0, »’=1) = 0. 0786, (v=10, v'=2) = 0. 0043,

In figure 1 we present the cross section for photoionization lead-
ing to the first three vibrational levels of the X ZZE state of N:. We
have divided the computed cross section given by equation (7) by the
appropriate FCF given above to show the non- Franck-Condon nature of
the photoionization in this spectral region. In figure 2 we present the
computed asymmetry parameters and note that they also have a strong
dependence on the final vibrational level. In figure 3 our computed

v=1/v% 0 branching ratio is compared to the experimentally determined
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branching ratio of West et al (1980) and those of the CMSM model
(Dehmer et al (1979). From this figure we can clearly see that for
photon enérgies greater than 26eV the computed ratio is in very good
agreement with the measured value of West et al (1980). At lower
energies the differences are due to the autoionization features known to
be present in the cross section at these energies and which are not

included in the present study.

In conclusion we have shown that non-Franck-Condon vibrational
effects due to the one-electron (shape) resonance in the photoionization

of N, can be well represented in the adiabatic-nuclei frozen-core-HF
model used here. Thus inclusion of electron correlation effects should
change the computed branching ratios very little except in regions
where two-electron resonances (autoionization) are important. Thus
the poor quantitative agreement between the CMSM branching ratios
and the experimental values (West et al 1980) can be attributed solely
to an inaccurate representation of the R dependence of the scattering
potential in the CMSM model. Moreover, electron correlation effects
are probably much smaller than had been anticipated by West et al

(1980).
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Table 1. Scattering basis sets used with the Schwinger variational

expression. .

Photoionization Type of Gaussian Exponents
Symmetry Function

30g—- ko Cartesian - & 16,8,4,2,1,0.5
- 1,0.5

Spherical - £=1 4,2,1,0.5

-£=3 4,2,1,0.5

-£=5 1,0.5

30’g —~ k7, Cartesian - x 8,4,2,1,0.5
- X2 0.5

Spherical - £=1 1.0

-£=3 1.0

2 These basis sets correspond to the set R of equation (3) of the text.

b The basis functions are symmetry-adapted functions constructed

from either Cartesian or spherical Gaussian functions, as defined
in equations (1) and (2) of the text, of the type indicated. Cartesian
functions are cenlered at the nuclei and spherical functions are

centered at the bond mid-point.
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Figure Captions

Figure 1

Figure 2

Figure 3

Scaled photoionization cross sections of N, leading to the
v’ vibrational level of the X 22; state of N,

dipole length approximation; __ __ __ dipole velocity
approximation. The cross sections given here must be
multiplied by the Franck-Condon factors given in the

text to yield their absolute magnitudes.

Photoelectron asymmetry parameters for photoionization

i
£

state of’N;: ——— dipole length approximation:

of N, leading to the v’ vibrational level of the X ©
— — —dipole velocity approximation.

Branching ratios for the production of the v'=1/v’'=0
vibrational levels of the X 22; state of N,* by photo-
ionization of N,; —————— present results using the
frozen-core-HF dipole-length approximation; — — —
present results using the frozen-core-HF dipole-velocity

approximation; - — CMSM results from

Dehmer et al. (1979); ® experimental results of
West et al. (1980).



214

el

35

30

(AW)

@)
N

TR ELS

1 |
o 9

$S040) Pa|02S

45

40

35

30

25

20

15

10

Photon Energy (eV)

Figure 1



Asymmetry Parometer

2.0

1.0

05

215

10

A
25 30
Photon Energy (eV)

Figure 2

40

45



Branching Ratio (%)

40

216

35

30

25

20

10

1 b | 1

i |
10 15 20 25 30 35 40

Photon Energy (eV)

Figure 3

45



217

SECTION C

Comparative Studies of a Shape-Resonant Feature

in the Photeoionization of CO2



Introduction 218

Molecular photoionization has been the subject of many theoretical
and experimental investigations in recent years. To date many of these
studies of molecular photoionization cross sections have been carried
out by the Stieltjes-Tchebychef{f moment theory (STMT) approach
developed by Langhoff and coworkers1 and by the continuum multiple
scattering method (CMSMjas developed by Dill and Dehmer. ? In the
STMT approach one obtains spectral moments of the oscillator strength
distribution from the results of the diagonalization of the Hamiltonian
over discrete basis functions. The underlying photoionization cross
sections can then be extracted from the spectral moments. In most
applications the approximate spectral moments were derived from
pseudostates obtained from the diagonalization of the static-exchange
Hamiltonian of the appropriate ion.3 In the CMSM model the scattering
potential is partitioned into spherical regions and approximated in these
regions so that the resulting scattering equations can be readily solved.
Photoionization cross sections can also be obtained from the solution of
the scattering equation for the electron-molecular ion system provided
the relevant equations can be solved for the choice of scattering poten-
tial Methods for the accurate solution of these equations for diatomic
and linear polyatomic systems at the static-exchange level are now
available. e These methods are based on the single-center expansion
technique and hence are not easily extended to more general polyatomic
systems. They can, however, provide highly accurate differential and
total photoionization cross sections at the static-exchange level.

In the course of our studies of the photoionization cross section of

CO, by tise Schwinger variational rnethod5 we have found that our
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calculated partial photoionization cross section leading to the C2 Zg
state differs significantly from those previously obtained by both the

STMT approach’ and the CMSM model.” The C =7 state of CO;
corresponds to ionization out of the 40g orbital. The feature of

particular interest in this partial photoionization cross section is a
fairly narrow shape resonance at a photon energy of about 40eV. The
partial photoionization cross section for this state obtained by the
STMT approach7 does not show this narrow shape resonance but has a
broad peak at lower energy. In the CMSM model the fixed-nuclei
cross section as given by Swanson et al.B does exhibit a very pro-
nounced resonance in this region, but the peak height exceeds our
calculated value by a factor of almost three.

In this letter we compare the photoionization cross section for
the 40 level of CO, obtained from the solution of the e-CO; scatter-
ing equations with those obtained by the STMT approachT and the
CMSM model.B There are substantial differences between our calcu-
lated values and those obtained by these two other methods. We will
discuss why these differences suggest that it may be difficult for both
the STMT approach and CMSM model to provide detailed quantitative
information about such resonant features in molecular photoionization

cross sections.

Eeorg and Results

The rotationally unresolved, fixed-nuclei photoionization cross

section is given by

0, (R) = 4';“’(<wi(g,n)1£|w£(5,n)>|2 (1)
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where p is the dipole moment operator and w the photon frequency.

Ineq 1 \Ifi (r,R) is the initial state of the molecule and ¥, (r,R) the
final ionized state. For 'Ili (r,R) we use the ground state SCF wave-
function and for the (N - 1) bound orbitals of 'Iff(g, R) we use the ground
state SCF orbitals, i. e., the frozen core approximation. The con-

~ tinuum orbital in ‘Iff (r, R) for the ejected electron is a solution of a
one-particle Schrddinger equation with the static-exchange potential,

VN—l , of the ion. The continuum orbital satisfies the Schrbdinger

equation
1 o2 K’
("EV +VN__1(}_',R)'—2— )WE(_I_',R) =0 (2)
2
where —%{- is the kinetic energy of the ejected electron and :,L-E satis-

fies the appropriate boundary conditions. It is the solution of this
equation which is required to obtain the photoionization cross section
through eq 1.

To obtain the continuum orbital ’,DE it is convenient to work with
the integral form of eq 2. The partial wave component of WE g ll/kﬂm,
then satisfies the Lippmann-Schwinger equation

(=) -) (=)
Vieks = ¢k€m + Ge (E)U"bkﬂm (3)

2

(=)
where E = K. and GC (E) is the Coulomb Green's function with in-

2
coming-wave boundary conditions. ° Ineq 3 U=2V where V is the
potential of the molecular ion with the Coulomb component removed
and ¢k£m is the regular Coulomb function. We have recently developed

an iterative approach to the solution of the Lippmann-Schwinger equation
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which is based on the Schwinger variational principle?’ £ Applica-
tionsm i have shown that the method is a very effective approach to
electron-molecule collisions at energies where partial wave coupling
due to the nonspherical potentials and exchange effects are important.
Details have been discussed elsewherem and here we will discuss
only some essential features of the method. In this approach we first
solve the Lippmann-Schwinger eq 3, by assuming an approximate

separable form for the potential U

U )~ er) =2 (rlule) @™y Calulry @
1’aj
where the matrix (U_l)ij is the inverse of the matrix U = <ailulaj>.
At this stage the functions @; can be chosen to be entirely discrete
basis functions and in this study we take them to be spherical Gaussian
functions defined by
A -4l
= o § -air-
Om @ = Nyylz-4["e Yim(

P~

N (5)

S

The solutions of eq 3 for the approximate potential U" of eq 4 is then

simply
. X ) (D™
Vit () = Ppup () + 2 (x[Gp Ul oy ) (07
1’ )

(o|U]dppp, ) (6)

where the matrix (D"l)ij is the inverse of the matrix
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D;; = (0.1|U-UGCU|aj>. (7)

S
The solutions of eq 6, ”bk;m , can already provide useful estim-

ates of the photoionization cross sections through eq 1. However,
these scattering functions are only approximate solutions to the
Lippmann-Schwinger equation for the actual potential U. The accuracy
of these solutions depends on how well US approximates U in eq 4.
To obtain more accurate and, if necessary, converged solutions to this
static-exchange problem we have developed a method to iteratively
improve the scattering functions of eq 6. This iterative rnethodHJ is
based on the use of the Schwinger variational principle and the solutions
of eq 6 to obtain scattering functions which converge to the actual
solutions of eq 3. This procedure contains criteria which allow one to
determine when the exact solutions of the scattering problem have been
obtained.

We have used this procedure to study the photoionization cross

section of the 40, level of CO, in the static-exchange frozen-core

4
approximation. ; The SCF wavefunction for CO, was constructed from

a 3s2pld contracted Cartesian Gaussian basis set. ' The SCF energy
of CO, in this basis set is -187. 674286 a.u. Table I shows the scatter-
ing basis set used in the calculation for the continuum orbital of %
symmetry. In Table II the eigenphases and eigenphase sums for 12'1:
symmetry as well as the photoionization cross sections are given. The
results are obtained after one step in the iterative procedure. - The
resonant nature of the scattering process in this symmetry is clearly
evident although the eigénphase sum does not rise through a full »

radians. The eigenphase sums in Table II have been obtained from



223

a K matrix truncated at £ = 9. Thus these eigenphase sums may not
be totally converged with respect to this truncation; however,the photo-
ionization cross sections obtained from these solutions are well
converged.

We will first compare our results for the kau component of the
40g photoionization cross section with those obtained from the STMT
approach as presented by Padial et al. ! The knu component of this
cross section is nonresonant and will be given later. The STMT approach
is based on the fact that the exact moments of the cumulative oscillator
strength distribution can be obtained from a calculation employing dis-
crete basis (Lz) functions only. ! Once these moments have been com-
puted the problem can be inverted and the underlying spectrum can be
obtained. In practice the moments are computed by diagonalizing the
static-exchange Hamiltonian for the appropriate ion in an :L,2 basis. This
procedure gives the variational pseudospectrum {el, i’ i=1, N} where
the ei and fi are the discrete transition frequencies and oscillator

strengths respectively. From this spectrum, approximate moments can

be defined by

P~ N "~ g
S(-k) = & ei“k - (8)
=1

m )
The principal representation of order n, {€, , f; , i=1, n} is then

defined by

S(-k) = E(e kg, osk<2n-1, (9)

1
One can show that the Stieltjes densities defined by
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(n

dfs (n)
=0 0<e <g,

de
d:{(m

S 9 (n)
. = = (f,,1+ 1'. )/(€1+1 e;) €,<€<€; 1 (10)
d{(n)

B 5= D € <€
de

will converge to the correct oscillator strength densities in the limit of
large n if the exact moments S(-k) are used. However, when the
moments are obtained from a variational calculation, the principal
representation of order N is identical to the variational pseudospectrum.
Thus the Stieltjes densities in this case will converge to the Stieltjes
density of the variational pseudospectrum.

In Figure 1 we compare our calculated 4Ug - kGu cross sections
with those of the STMT method given by Padial et al. . We show both
the Stieltjes density of the variational pseudospectrum and the final
smoothed cross section of ref 7. A comparison of these results show
that the low order moment theory, i.e., n <N in eq 8 and 9, used by
Padial et al. 7 has smoothed away the resonant feature in this channel.
The Stieltjes densities do not begin to show this resonance-like feature
until one goes to order n= 15 where N = 24. Cross sections obtained
from such a high order moment analysis may not always be reliable.

We believe that this comparison shows that in order to obtain an
accurate representation of a fairly narrow shape resonance, in this

case of width 3 eV, one must have considerably more than the two
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pseudostates which are present in the resonance region in this calculation. !

Next we compare our 40g = kUu cross sections with those of the
CMSM model.. The CMSM method is a model potential approach which
is described in detail elsewhere. : One of the approximations employed
in the CMSM model is a local-exchange approximation. In Figure 2, we
show our calculated 40 . - kcr,‘J cross sections and those of the CMSM

8
mode] given by Swanson et al. Clearly the CMSM model does show a
very narrow resonance but the magnitude of the fixed-mclei photoioniza-
tion cross section given by the model exceeds our value by almost a
factor of three. It is unclear if the disagreement between our results
and those of the CMSM model is due to the local-exchange approximation
.':LloneM or whether it is due in part to the other approximations inherent:
in the CMSM model.

In Figure 2 we also show the 4Ug"-' ko ~photoionization cross
section obtained in the CMSM model by averaging the cross section for
each huclear configuration over the ground state vibrational wavefunction.
This R-averaging reduces the cross section considerably from the fixed-
nuclei values calculated at equilibrium geometry giving a result much
closer in magnitude to our fixed-nuclei cross sections. We believe that
this dramatic effect due to vibrational averaging in the region of the reso-
pance is unphysical and is an artifact of the CMSM model. One can hence
expect that the CMSM model would overestimate non-Franck-Condon
effects in the calculation of vibrational branching ratios in the region of
resonances. This feature of the CMSM model had already been noted for
vibrational branching ratios in the photoionization of the SUE level in
N,.

Finally, in Figure 3 we compare our calculated photoionization
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cross section for the C EE (40;) ion of CO, with the (e, 2e) measure-
ments of Brion and Tan. ' These experimental results do not indicate
any significant enhancement in the C2 Eg cross section around 40eV.
This discrepancy may be due to interchannel coupling or other effects
which could reduce its apparent magnitude to a level which would be
difficult to identify easily in current experiments. A more detailed
description of our calculations for the photoionization cross sections of
CO, including the energy dependence of the asymmetry parameters is

in preparation.
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TABLE I. Scattering Basis Set for 0 Symmetrya

b

£ m Center a's

0 0 O 16.0, 8.0, 4.0, 2.0, 1.0, 0.5
10 O 1.0, 0.5

10 4.0, 2.0,1.0, 0.5

3 0 c 4.0, 2.0, 1.0, 0.5

5 0 K 1.0, 0.5

= The 18 basis functions given are symmetry adapted
functions constructed from spherical Gaussian functions
of the given £ and m. See text for definition.

bThe O—C bond distance was taken to be 2, 1944 g, u.



TABLE II. Eigenphase Sums and Cross Sections for 4Ug —* ko, Photojonization Channel in CO,

Photon Energya Eigen Phase Eigen Phasesb Cross Section®
(ev) - Sum 1 3 5 U 9 (Mb)
19. 55 - L43 1,36 0. 06 0. 01 0. 00 0. 00 0. 57
23. 00 1.25 1.19 0. 03 0. 01 0. 01 0. 00 1.79
27. 00 1.06 1.14 -0.13 0. 4 0, 01 0. 00 2,15
31. 00 0.87 -0. 32 111 0. 06 0.01 0. 00 3.06
35. 00 0.71 -0.49  1.08 0.10 0. 02 0.01 3.28
38. 00 0. 69 -0. 57 1. 06 0.18 0. 02 0.01 3.89
39. 50 0.76 -0. 58 1,05 0. 27 0. 02 0. 01 4,61
41, 00 0.97 -0. 65 1,04 0. 45 0. 02 0.01 5.79
42, 50 1,47 0. 80 1.09 -0.45 0. 02 0. 01 5.79
44, 00 2,07 1.41 0.95 -0.33 0.03 0. 01 2.35
417. 00 2. 51 1. 70 0.94 -0.18 0. 03 0.01 0. 20
50. 00 2, 54 1. 70 0.91 -0.12 0. 04 0. 01 0.18

AThe vertical ionization potential to produce the .C REE ionic state was taken to be 19.4eV.

b'I‘he value of 1 given corresponds roughly to the principal component of the eigenphase.

®In megabarns (107 cmz).

0¢¢



Figure Captions

Fig. 1

Fig. 2

Fig. 3

Comparison of STMT and Schwinger photoionization
cross sections in 40g — ko, channel] of CO,:
Schwinger; . __ __STMT from ref. 7;

---------- Stieltjes density of variational pseudospectrum.

Comparison of CMSM and Schwinger photoionization cross
sections in 4Ug — ko, channel of CO,: — Schwinger;
- — —_fixed-puclei; CMSM from ref.8; — . ~~. —.

R-averaged CMSM from ref .8.

Comparison of Schwinger photoionization cross sections
with experimental results in 4cg — kou + krru channel of
CO,: — ——_ Schwinger; + experimental results of

Brion and Tan from ref. 15.
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SECTION D

Studies of Differential and Total Photoionization

Cross Sections of Carbon Dioxide
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I. INTRODUCTION

Several recent theoretical studies have investigated the partial-
channel photoionization cross sections and photoelectron angular dis-

tributions of carbon dioxide. They include the comprehensive work by

Padial et al. ! which employed the Stieltjes-Tchebycheff Moment
Theory (STMT) approach to obtain photoionization cross sections, and
the studies of Swanson et g_l.z,a which used the Continuum Multiple
Scattering Method (CMSM) to compute both cross sections and photo-
electron angular distributions. Both the CMSM and STMT approaches
obtained photoionization cross sections within a Hartree-Fock final-
state framework. The present study is directed at obtaining accurate
Hartree-Fock final-state continuum wave functions which are then
used to compute both differential and integral photoionization cross
sections. Comparison of the present results with available experi-
mental data and with the results of the STMT and CMSM methods allow
us to examine the accuracy of the Hartree-Fock final-state model and
the utility of the STMT and CMSM methods.

The theoretical approach used here is identical to the approach
used in an earlier study of the photoionization of N2.4 We have used
the fixed-nuclei approximation with the final-state photoionization
wave function computed using the Frozen-Core Hartree-Fock (FCHF)
approximation. To study initial-state correlation effects, we have
computed the photoionization cross section using both a Hartree-Fock
(HF) initial-state wave function and a Configuration Interaction (CI)

initial-state wave function. The FCHF final-staie wave functions were
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7
obtained using the iterative Schwinger variational method, e

which we found to be an effective approach for obtaining HF continuum
solutions in our study of the photoionization of N,. !
We have studied the photoionization of CO, from the valence

molecular orbitals (1r _, lnu, 30'u, and 4Ug) and from the K-shell

orbitals (1crg, 10’u, andg 2Gg). Of particular interest in this system
are the narrow shape resonances which occur for continuum solutions
of T symmetry. e B Such shape resonances can lead to an en-
hancement in the photoionization cross section, marked changes in
the photoelectron angular distribution and non-Franck-Condon vibra-
tional effects.

We compare our valence shell photoionization cross sections of
CO, to the (e, 2e) cross sections of Brion and Tan,11 to the synchro-
tron source cross sections of Gustafsson et a_:l_.,12 and to the fluores-
cence cross sections of Lee_ga__tng;s and Carlsongta_l.m The carbon
K-shell cross sections are compared to the eleciron energy loss data
of Wight and Brir::n15 and the oxygen K-shell cross sections to the
photoabsorption cross sections of Barrus g_t_g_l.m We also compare
our asymmetry parameters to the experimental data of Katsumata
etal,"” of Carlson et al.™®® and of Grimm et aL. ™" We find good
agreement between experimental data and the present theoretical re-
sults. There are, however, two noticeable disagreements. The first
major disagreement is the lack of experimental observation of the

computed resonant enhancement of the photoionization cross section

leading to the C 22; state of CC):. However, the experimentally



determined asymmetry parameters of Carlson gjt_a_l_.la do lend support
to the existence and to the predicted position of this shape resonance.
The second area of disagreement is that the experimental cross section
has a peak at a photon energy of 21 eV which is not obtained in the pre-
sent results. We have tentatively attributed this discrepancy to the
effects of autoionization which have not been included here.

We also compare our results to the published results of the
STMT and CMSM  ° methods. Ina previous paper we discussed the
relationship between the results of the Schwinger method used here and
the results of the STMT and CMSM methods for photoionization leading
to the C 22; state of C02+. In the present paper we compare the results
of the Schwinger method with those of the STMT and CMSM method
leading to other states of CO,. As in the case of the C 22;,'; channel
discussed in the earlier paper, gwe find that the STMT method as
applied by Padial et _zg_.l does not reliably obtain the cross section in the
region of narrow shape resonances found in the photoionization of CO,.
Also due to limitations of the computer program used by Padial e_t_:a._l.1
the incorrect HF potentials were used in the calculations of the #— 0
partial channels contribution. This led  to somewhat different results
‘han those obtlained here using the correct HF potential We have also
compared our results with the CMSM results of Swanson et al. =~ As
indicated in Ref. 9 we find that the CMSM method does show the narrow
shape resonances found here, but the resonant CMSM cross sections
are too large by a factor of about 2 and the positions of the resonances

are at different energies than found here.
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II. METHQOD
A. Final-state wave functions

The final-state photoionization wave functions used in this study
were obtained using the FCHF approximation. In the FCHF model the
final-state wave function is described by a single electronic configura-
tion in which the ionic core orbitals are constrained to be identical to
the HF orbitals of the neutral molecule. The Lippmann-Schwinger equa-
tion for the remaining continuum electron is (in atomic units)

o C WS 6 g™ (1)

k Kk k

with U(r) = 2V (¥), where V() is the appropriate short-range poten-
c{x
tial describing the scattering process and G ) is the Coulomb

Green's function defined by

dﬂ=($+%+ﬁiurh (2)

mEq (1), ¥°

-

is a pure Coulomb scattering function. In the FCHF
approximation, V is a generalized Phillips-Kleinman pseudc-potential19
which constrains the continuum orbital to be orthogonal to the occupied
molecular orbitals. For photoionization from the n'th (nondegenerate)
orbital of a closed-shell molecule containing n doubly occupied molecu-
lar orbitals, the potential V is given by‘l

v-v" -19-QL+QLe+ L (3)
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where
SE
L=-32V-2+V , (4)
n

SE
and V is the static-exchange potential

E nl 7
N (23, -K) + I+ K -2 —. (6)
i=1 a tia

In Eq. (6), the functions d)i are the n molecular orbitals, Z , is the
nuclear charge of the a'th nucleus, and Ji and Ki are the usual
Coulomb and exchange operators. %

We solve the Lippmann-Schwinger equation using the iterative
Schwinger variational method which has been described in detail else-

%
where. Using this iterative method, the continuum solution at the

n'th iteration is expanded in a partial-wave series

£p +¢
¢80 = 2 V4 (-)Sp -
k (v} = () EE:O Ez-ﬂ "bkim (T) Yﬁn (QE) (7)

where an infinite sum over {'s has been truncated at £= £p. The set

of partial-wave scattering solutions at the n'th iteration
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Sh Sn
Sn - { "pkfim’ s “l'kipm} (8)

is obtained from the previous set of solutions, Sn-l’ using

(")Sn = C(') - = C(—) -1
= 2 (r |G D% 2 10 L
Yigm ) = Pppn ) + Xy €RUS, 3 T Ix;? [D77]y;
c(-)
X (leUl N (9)

where [D'l]ij is the matrix inverse of

c(
Dy; = (x;]U-vUG Ulx;) - (10)

2
The set of functions R in Eq. (9) is composed of L. functions, which,
in the present study, are taken to be spherical Gaussian functions de-

fined by

2

R

a"ﬁ; msA(*

) - Ny |5-A1* e2lFA

r-A Q ). (11)

X | Y. (R, .
afm fm* 77 7

The L2 basis sets, R, for the various scattering symmeitries are given
in Tables I and II. Note that in Eq. (9), the set of functions S_y is taken
to be the null set. When the wave functions given by this iterative
scheme do converge it can be shown that they are solutions of the

Lippmann-Schwinger equation given in Eq. (1). °
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These continuum solutions are then used to compute photoioni-
zation cross sections. The cross section for ionization of an initial
bound state \I‘i to the continuum state 'Iff T by linearly polarized

light is given in the dipole length approximation by

2 L 2 . (..)
do” 8By, |F.0|v ]|, (12)
dﬂﬁdﬂﬁ c i,k

and in the dipole velocity approximation by

2V . s ® g A=)
0F _ o« S5 glgu | Funje - |, (13)

dledQ'ﬁ cE

where E is the photon energy, n is the direction of the polarization of
the light, ¢ is the speed of light, and k is the asymptotic momentum

of the photoelectron. When these cross sections are averaged over all
possible orientations of the molecule in the laboratory frame the result-

ing differential cross section is of the form

L,V L,V L.V
e = 2 [1+8." " P,(cos 6) ] (14)
dsy, 47 k

&

where 6 is the angle between the direction of polarization of the light

and the momentum of the photoelectron. For all channels considered
L,V
in this study we have computed both the total cross section © " and
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the asymmetry parameters B}" ¥ .

To compute the final-stat}t(e contintum wave functions we must
evaluate the various matrix elements given in Eq. (9). We have used
a single-center expansion approach to evaluate all such matrix ele-
ments. In actual scattering calculations we use standing-wave bound-
ary conditions thus allowing radial wave functions to be represented by
real-valued functions. We define our partial-wave expansion para-
meters as follows:

1) £ = maximum £ included in the expansion of

scattering functions (xi's of Eq. (9)), of the Coulomb

Green's function and of the projection orbitals (qbi of Eq. (5)),

2) ESX = maximum £ included in the scattering functions

in the exchange terms,

3) ﬂ?x = maximum £ included in the expansion of the

occupied orbitals in the exchange terms,

4) !i(iiir = maximum £ included in the expansion of the

occupied orbitals in the direct potential,

5) }\fr’f = maximum £ included in the expansion of 1/r,,

in the exchange terms,

6) J\?nir = maximum £ included in the expansion of 1/r,,

in the direct potential.

As usual we have included nuclear potential termsupto A =2£ . We
have expanded all radial integrals on a grid of 1000 points extending

cut +2 r = 90 au. The smallest step size in the grid was 0. 005 au

which was used for points within 0. 1 au of the nuclei. A step size of
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0. 01 au was used for all other points out to r = 3. 0 au. The largest
step size in the remainder of the grid was 0. 16 au.
In studying the convergence of the single-center method we fixed

some of the expansion parameters. We have taken icilir =59,

EZX = ¢, and AT = 24 . We also fixed £5¥ to be

] fx = 38(1crg), 10(2ag), 24 (30 g), 16(40g), 39(10 ), 23(20),

15(3cru), 15(17ru), 16(11rg). These values for ﬂfx correspond

to having normalized the expansions of the various orbitals to

better than 0.99. The value for ﬂp of Eq.(7) was fixed at Ep =10.
Thus we have only retained two independent parameters,

¢ and A°¥ to define the single-center expansion. To study

the convergence of the static-exchange potential of CO,, we

have considered five combinations of values of Em and )L;X 2

A) £ =59, A\ F = 40
B) £ = 55 A% = 40
C) ¢, = 51, Ar‘flx = 40
D) £, =47, A 5¥ = 40
E) £ = 59, A5 = 30,

We have used these five sets of parameters to compute the energy

of the peak cross section of the resonant 40 _—~ ko photoionization

g
channel of CO,. The peak energy of such a shape resonance is
a sensitive test of the convergence of these parameters. The
peak energies were obtained from a zero iteration calculation
(n =0) using Eq.(9). The resulting peak photon energies were,

A B c
ES = 41.79eV, E_ . = 41.85ev, E_ . =41.92¢V,
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D _ E _ t of th
Eax = 42, 01eV and Emax = 41, 82eV. To test the effect of the
iterative procedure on these results, we performed one iteration using

Al

parameter set A and obtained a first iteration result ol B ™ 41.79eV.
Thus the peak energy was unchanged by one iteration, and the procedure
seems well converged by the first iteration. Al other results presen-
ted in this paper were obtained using the results of the first iteration

of Eq. (9) (i.e., using the 5, scattering functions). In an earlier

study we found empirically that the energy of the peak cross section in a ¢

symmetry shape resonance converges with partial wave expansion as

£ 2

m = 15
ET-E « /£ . . (15)
The results of parameter sets A-D satisfy this relationship well
with an extrapolated E = 41,57eV. Thus we see that parameter
set A is within 0. 3 eV of the fully converged result. Also, we
note that the A;x parameter seems to be at least as well

converged at J\gf = 40, Thus for all further calculations in CO,

we have used the parameter set A.

We have studied the effects of initial state correlation on the
photoionization cross section by calculating cross sections using

both a HF wave function and a CI wave function as the initial state.
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The HF basis set was a [3s2pld] contracted Cartesian Gaussian
basis set?ll With a R(C-0) bond length of 2. 2944 au, the HF

energy in this basis was E - 187. 674286 au.

The CI initial-state wave function contained " single-plus-double
exitation” type configurations. These are the only configurations

which have a non-zero contribution to the photoionization cross
section when the final state is computed using the FCHF approximationf
The virtual orbital space for the CI calculation was a restricted set of

molecular orbitals obtained from a separated-pair calculation. The
separated-pair wave function was of the form
2

50 g Sou)

2

40, 60,) (1o.)" (20,)° (o

2 2 2
(log) (2org) (30g) (40g, 60 -

g!
2 2
(hrux, 37 o0 ‘?mgx) (lﬂuy, 317uy, Zﬂgy) (lﬂgx, 31rgx, 2ﬂ'ux)

2
(lfrgy, 31Tgy, Znuy),

(16)
where the orbitals within each pair of parentheses represent

natural orbitals of a particular pair function. Also, the orbitals

in each pair function which are doubly occupied in the HF

approximation were not allowed to vary. The energy of this

separated-pair wave function for CO, was E = -187, 707766 au.

The CI wave function was then taken to be a linear combination
of configurations constructed from the orbitals determined in
the separated-pair calculation and differing from the HF
configuration by no more than two orbitals. We have also
restricted the calculation by requiring the log, 20g, and lou
orbitals to remain doubly occupied in all configurations. The
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resulting wave function had 505 spatial configurations in D2h

symmetry from which 797 spin eigenfunctions were constructed.

The energy of the CI wave function was E = -187. 943937 au.

III. Results and Discussion

A. Valence-Shell Photoionization
Of primary interest here is the photoionization from the

valence orbitals of CO,. These photoionization channels lead to

the four lowest states of CO; which are the (17 g)'l Xzﬂg state

obtained by ionizing an electron from the 17 g orbital with a

vertical ionization potential (IP) of 13.8eV, the (17711)'11&21'&l
state with an IP of 17. 7eV, the (30u)'1B2 El': state with an

IP of 18.2eV, and the (4Ug)-1(32 =7 state with an IP of 19.4ev.”

In Fig. 1 we present the cross sections leading to the lelg

and C° Eg states of COi. Both of these channels contain narrow
shape resonances in the partial channels where the continuum
orbital is of o, symmetry. In the computed photoionization
cross sections, these resonances are apparent. In the Xzﬂg
channel, the resonance produces a shoulder in the cross section
at a photon energy of 35eV and in the c EE channel the resonance
produces a prominent peak in the cross section at 42eV. In

Fig. 1 we present four different theoretical cross sections for
each channel. These four cross sections were obtained using
the HF initial-state wave function with the dipole length (HFL)

and dipole velocity (HFV) approximaticus, as well as using the
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correlated initial- state wave function, discussed in section II B,
in the dipole length (CIL) and dipole velocity (CIV) approximations.
As noted previously by Padial et alf , if the correct singlet

HF potential were used in obtaining the 17~ kn,, partial channel

cross section, then the cross section woulgd be spuriously enhanced
at low photon energy. This difficulty is due to a strong 17 g~ 27ru
(n —7*) transition which is incorrectly placed above the ionization
threshold in the HF approximation. Thus we have been forced to
use the triplet coupled potential to obtain the cross section in the

17 g~ kr | photoionization channel. This is the only channel where

we did not use the correct singlet HF potential.

The difference between the length and velocity forms of the

cross sections in Fig. 1 can be viewed as an estimate of the

231 24
minimum error in these calculations. In our previous

study of the photoionization of N, we found that in nonresonant

regions of the photoionization cross section, the inclusion of
initial- state correlation tended to reduce the cross section in
both the length and velocity approximations, whereas in the

region of the photoionization cross section dominated by a shape

resonance, the inclusion of initial- state correlation differentially

lowered the length form of the cross section relative to the

velocity form, bringing the two approximations into close

agreement‘f The same trends can be seen in the two channels
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given in Fig. 1. In the 02 EE channel, inclusion of initial-state
correlation brings the len.gfh form very close to the velocity form
in the region of the resonance. In the > g Hg channel, this effect is
not as noticeable since the cross at 35eV is not dominated by the
resonant 17 g~ ko , partial channel.

In Fig. 1 the cross sections leading to the ing and czz:g
states are compared to the experimental data of Gustafsson et a_x_iﬁz
and Brion and Tan. The experimental results for the X1 e channel
fall between the length and velocity estimates of the cross section,

although there is no reason for this to be generally true. There

also seems to be some evidence of a shoulder in the experimental
cross section at a photon energy of 35eV as was obtained in the
theoretical cross section. The CZZ; experimental cross sections
do not contain any such evidence of the resonance enhancement

seen theoretically. As has been noted by Swanson et _a£ , both

vibrational effects and final-state correlation would lower and
1
broaden the theoretical cross section. In an earlier study,0 we

have examined the effects on this cross section of averaging the

cross section over the symmetric stretch vibrational mode, and

found that the peak resonant cross section was lowered by about

15%. 1Inclusion of vibrational effects of other modes would also
be expected to lower the peak cross section. Thus the theoretical
cross section using the FCHF final-state model and including

averaging over all vibrational modes wouid probably not differ
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from the experimental cross section by more than a few megabarns

in the region of the 42eV resonance. However, there would still
seem to be a qualitative discrepancy in this channel which may be
attributed to the effects of final-state correlation.

In Fig. 2 we compare our fixed-nuclei HFL results for the
X'TI_ and C2 =" channels to the cross sections given by the STMT

g g
and CMSM methods also using the fixed-nuclei dipole length form

of the cross section. The STMT cross section of Padial et al.

for the Xz Hg channel agrees fairly well with the Schwinger cross

section at high energy although there is no evidence of a shoulder
in the STMT ecross section at 35eV. At lower photon energies there
is a larger disagreement between the STMT and Schwinger results.

Most of the discrepancy at low energy is due to differences in the

lng — ko, partial channel. The STMT cross sections were extracted

from the results of a diagonalization of the ¥CHF operator in a

large L basis set of Cartesian Gaussian basis functions. These

calculations were performed using standard bound state computer codes
which require that the inter-electronic interactions be expressible in
terms of the usuval J and K operators. R The singlet potential appro-
priate to the 7°6 case is not expressible in terms of J and K operators
when real valued molecular orbitals are used. Thus the STMT results
were instead obtained using a triplet-coupled potential which can be

expressed in terms of J and X operators, To show the effect of using

these different HF potentials, we present in Fig. 3 the resulis of
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noniterative Schwinger calculations where both the triplet and singlet
potentials have been used, and compare them to the STMT lng — kﬁu
results of Padial et a_l.1 Thus it can be seen that a large portion of the
discrepancy in the 111g —»k_éu channel is due to using the triplet poten-
tial in obtaining the STMT cross sections.

In Fig. 2a we also compare the Schwinger results for the

X2I1 channel to the fixed-nuclei CMSM cross section of Swanson

g
et _12 We can see that the CMSM cross sections are generally

too small and that the shape resonance in the 17 g~ ko A partial
channel is at a lower energy than that obtained using the Schwinger
method. The fixed-nuclei resonant feature in the CMSM cross

section is seen to be much more pronounced than the broad shoulder

obtained using the Schwinger method.
In Fig. 2b, we compare the various theoretical cross sections

for the szg channel. This comparison has been discussed in

detail in an earlier paperf Briefly, we can see that the STMT

results show no evidence of a resonant enhancement of the photo-

ionization cross section. In contrast, the results of the CMSM

method show an unrealistically large and narrow resonant cross
section, which differs from the Schwinger results in position by
about 5eV and in magnitude by over a factor of two.

In Fig. 4 we present the computed asymmetry parameters

for the X~ I, and CZE; channels. We have only presented the
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results which were obtained using the correlated initial- state

wave function. We found that initial- state correlation effects on
the asymmetry parameter were small, and thus we chose only
to present our most accurate results. We have compared the
present results with available experimental data and to the values
predicted by the CMSM method. -

The resonance in the ing channel at 35eV is barely visible
as a slight bump in the dipole length asymmetry parameters. The
CMSM asymmetry parameters of Swanson et g&a are seen to have a
larger resonance effect than do the Schwinger values. Both the CMSM
and Schwinger results are in reasonable accord with the two line source
measurements of Katsumata et al. ,17 and with the continuous source
measurements of Grimm et al B As can be seen in Fig. 4b, the reso-
nance in the C 22; channel leads to very dramatic effects in the asym-
metry parameters. The experimental results of Carlson et ggaa show

a fairly large dip in the B values around a photon energy of 40eV.

Both the Schwinger and CMSM fixed-nuclei results overestimate

the magnitude of the resonance effect. Inclusion of vibrational

effects is known to make this feature shallower?’10 Including just
1

the symmetric stretch vibrational mode, in an earlier paper .

we found that vibrational averaging of the cross section reduced

the dip in the asymmetry parameter by about 25%. Thus if

other vibrational degrees of freedom were considered in the
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averaging, it would seem that the theoretical 8 could be in fairly
good quantitative agreement with the experimental results using

just the FCHF final- state approximation.

The cross sections leading to the production of the Azlll1 and

BZZE states of COj are given in Fig. 5. We have compared our

cross sections to the experimental fluorescence cross sections of
Lee et al. for the ATl state, and to the fluorescence data of
Carlson et a_f for the BZE:; state. We have also presented cross
sections which were derived by taking the ratios of the cross
sections for the A and B states obtained from the photoelectron
spectra by Samson and Gardner = and multiplying them by the total
cross section for the A and B states given by Brion and Tarﬁl The

2
cross section for the B E; state is in reasonably good agreement

with results obtained from fluorescence measurements, whereas

the cross section for the Aleu state has a more serious
disagreement with the experimental fluorescence data in the

region of 21eV photon energy. The limited number of photoelectron
measurements available seem to indicate the reverse situation,

with agreement between theory and photoelectron experiments
being good in the A channel and a major disagreement in the 21eV

photon energy range in the B channel. The comparison of the
present theoretical results with the photoelectron results thus
seem to indicate that near the photon energy of 21eV, a large

2
contribution to the correct ecross section for the B Z; channel



254

must come from multi-electron effects in the final state. One
possible effect which would enhance the cross section would be
autoionization due to higher lying ionic states. The lowest
multi- electron ionic state, which has been identified, has an IP
of 23eV and has been characterized by Domcke et gfl as being
dominated by the (11rrg)'2 (21ru) configuration. This autoionization
enhancement would be analogous to the enhancement due to the
¢’ Z: state in the photoionization cross section of N, which is
characterized by the (l'nu)'I (30 g)'l(lzr g) configuration.

It is clear from Fig, 5 that the fluorescence cross section
disagrees strongly with the photoelectron cross section in the
region of the feature which we suggest is due to autoionization.

We can speculate that in this region there is a mechanism whereby

a large fraction of the molecules which are initially in the B state
cross over to the A state before the molecule fluoresces. Such
a cross over mechanism has been suggested by Samson and
Grardu'uez:';26 however, they assumed that the crossover rate would
be independent of the photon energy. As discussed by Gustafsson
gj_a_ltz, such a photon-energy-independent mechanism does not
agree with experimental evidence since, as can be seen in

Fig. 5, at 40.8eV the cross section derived from fluorescence
and photoelectron measurements are in much better agreement
thor ot 21, 2eV. This suggests that such a mechanism must
depend on the photon energy and in particular the presence of

autoionization in the cross section must strongly effect the
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crossover rate.
2
It is of interest also to note that both the Azl'J‘_l and B 2:1
channels exhibit rising eigenphase sums in the partial channels

where the continuum electron has org and '”g symmetry. In the

case of the 7 g continuum channels, these rising eigenphase sums

can be attributed to very broad shape resonances at about 22eV
above threshold.

The resonant rise in the eigenphase sums in the Oy channels

occurs at low energy and is due to a rising eigenphase which is
primarily s-wave. In Fig. 6 we give both the eigenphase sums
and cross sections for the Inu - kog and 3cu o kcrg channels.

The effects of the resonance-like features on the cross sections
in these two channels are markedly different, with the lnu - ko

g

channel showing a minimum and the 3cu = ko_ showing a maximum

g
in the region of interest. As can be seen in Fig. 5b, the effect

of initial state correlation on the maximum in the 3ou - kog

cross section is to increase the difference between length and

velocity forms of the cross section. This effect is different
from that found for cross sections dominated by shape resonances

discussed earlier, where length and velocity forms are brought

closer together by initial state correlations. Thus it seems that
these two Oy photoionization continuum channels are being

affected by a one-electron resonant process which is qualitatively

different from the usual shape resonance, which is characterized by a
rising eigenphase corresponding to a higher value of £, i.e., £> 0.
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In Fig. 7 we compare the present Schwinger results for
the Azll‘1 and }322:’1 channels with the cross sections obtained by
Padial et al. using the STMT method. The peak in the STMT
cross section in the Azﬂu channel is shifted to a lower energy
than that obtained using the Schwinger method. As was the case in
the X~ Hg channel, most of the cross section comes from the
m — 0 partial channel. The STMT results were again obtained
using the triplet potential in this channel, and this may account
for the shift of the péak cross section to lower energy. Inthe B 22;
channel both the 30u—+k0g and 30‘]_1 "’k”g features are at lower energy
in the STMT cross sections. The source of these discrepancies is

uncertain.

In Fig. 8 we present the computed asymmetry parameters
2
for the A"Il, and B’ ) channels. The present results are

compared with those of the CMSM method and to experimental
results. The agreement between the two theoretical calculations

is fairly good, and both theoretical results agree fairly well

with experimental results except for the 40.8eV measurement

of Katsumata et al. in the B'Z} channel.

In Fig. 9a we compare the sum of our Azﬂu and B’ 250
cross sections with the experimental results of G=ustafsson_<=.-_t_e_11_f2
al of Brion and Tan. Due to the small difference between the

IPs of these two states, neither of these two continuous source

photoelectron experiments resolved the individual branching
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ratios for these two channels. The Schwinger results are seen to
agree fairly well with the experimental data for photon energies
above 24eV. Below 24eV the computed cross section is too

small. This error must be due to final state correlation effects

as we discussed earlier.

The total valence shell cross sections are given in Fig. 9b.
Here we have summed the four theoretical cross sections leading
to the ing’ Azllu, BZE:;, and CZZ; states of CO'; given above and
compare them to the sum of the experimental cross sections leading

to these four states given by Brion and T:a.nf1 The feature at a

photon energy of 21eV is again apparent in the experimental cross
section and not in the theoretical cross section. The other major

discrepancy between theory and experiment is the shoulder at

42eV in the theoretical cross section due to the resonance in the
czz;‘é channel. As noted earlier, the magnitude of this feature
would be reduced somewhat by vibrational averaging.

B. K-shell Photoionization

As we have seen in the previous section, photoionization from

the outer valence shell of COQ, is fairly well represented by the use
of the FCHF final-state approximation. Photoionization from the
inner valence orbitals (30g, 2cru) should be strongly affected by
final state correlation. This breakdown of the single particle

picture for the inner valence ionic states has beern discussed

by Domcke et gl_?? However, the K-shell photoionization
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should be fairly well described by the simple hole states used in
the FCHF model.

We have computed the oxygen and carbon K-shell photoion-
ization cross sections of CO,. The K-shell IPs were taken to
be 297, 5eV for carbon and 541.1eV for cuv:ygenff!'3 Since the initial-
state correlated wave function discussed in section II B does not
include any correlation effects involving the K-shell electrons,
we have only computed the HFL and HFV forms of the photoioniza-
tion cross section.

In Fig. 10a we present the computed carbon K- shell
photoionization cross section of CO,. We have compared the

1
present theoretical results to those of Padial et al. obtained
using the STMT method and to the experimental energy loss cross
sections of Wight and Brionf5 We have arbitrarily normalized the

relative cross sections given in Ref. 15 to the Schwinger results

at a photon energy of 325eV. The Schwinger and STMT results

are in good mutual agreement with both cross sections showing a

pronounced peak due to a Zog = kcru shape resonance. Both of

‘the FCHF level theoretical results are seen to be in only rough
agreement with the experimental data which shows evidence of
strong final state correlation effects (e. g., shake-up states). In
Fig. 10b we give the computed photoelectron asymmetry parameters

which show a strong feature around a photon energy of 304eV due
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to the Zag - kcu shape resonance.

The photoionization cross section for the oxygen K-shell
is given in Fig. 11. The theoretical cross section we have presented
is the sum of the cross sections for photoionizing electrons out

at the nearly degenerate lo g and 10, molecular orbitals of CO,.

The effect of the narrow shape resonance in the lcg ~ ko channel
is evident at a photon energy of 560eV. We have compared our

cross sections to the experimental absorption measurements of

Barrus et al.  and to the STMT results of Padial et al. The broad
feature in the experimental cross section at a photon energy of

560eV seems to be due in part to the shape resonance in the

lcrg =~ ko, channel. However, the fixed-nuclei FCHF model gives
a much narrower width to this feature. Vibrational averaging
would tend to broaden this peak within the FCHF approximation.

The shoulder in the experimental cross section at 554eV is not
found using the FCHF approximation and is thus probably due

to final state correlation. The STMT results of

Padial et ail. do not show the narrow resonance which is present

in this system in the FCHF approximation. In the STMT cross
section, the oscillator strength from the resonance has been
smeared out over a large energy range in much the same manner
as the CZEE cross section was unphysically smoothed out by the
STMT method. The computed asymmetry parameters for this

chainel are given in Fig. 11b. The effects of the shape resonance
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are once again clearly evident.

IV. Conclusion

Accurate fixed-nuclei FCHF photoionization cross sections
of CO, have been presented. Comparison of the present results
with those of the STMT and CMSM” ° methods have shown that
both the STMT and CMSM methods provide useful qualitative
information about the cross sections but these methods can fail
to reproduce some important features in photoionization cross
sections. The present results have been found to be in reasonably
good agreement with experimental data. Comparison of experimental
and computed cross sections for the ALZI'Iu and Bzzz channels has
yielded indirect evidence of a possible autoionization feature at a
photon energy of 21eV. These results also provide direct
evidence of narrow shape resonances in those partial channels
where the continuum electron has 0, Symmetry. The effects of
these resonances on differential photoionization cross sections

has been computed to be substantial. Such shape resonances can

also be expected to exhibit strong non- Franck- Condon vibrational
effects. Both vibrational effects and autoionization ean be

studied using FCHF continuum wave functions such as those obtained

here and will be the subject of future research.
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TABLE 1. Bcattering basis sets of 0 symmetry used in the

Schwinger variational expression. o

lou " aau —_ kug

%ngei;n%f Center £ m Exponents®
7 O 0O ¢ 32, 0-0.5
5 (0] 1 0 B.0-0.5
3 (o} 2 0 2.0-0.5
7 &) 0 © 32.0-0.5
5 C 2 0 B.0-0.5
3 c 4§ 0 2.0-0.5

l‘ﬂu — kcrg

] 0 0 0 32.0-2.0,0. 5
4 0] 1 0 8.0-1.0
2 o) 2 0 2.0,1.0
1 (8] 3 0 1.0

2 (o) 4 0 1.0,0.5
1 O 5 0 1.0

6 C o 0 32.0-1.0
4 C 2 0 8 0-1.0
2 C 4 0 2.0,1.0
2 c 6 0 1.0,0.5
1 C 8 0 0.5

log, Zog, 4og, lgg—. ko,

7 0} 0O © 32.0-0.5
5 L8] 1 0 B. 0-0.5
3 (o] 2 0 2.0-0.5
7 C 1 0 32.0-0.5
5 C 3 0 8.0-0.5
3 C 5 0 2.0-0.5

B These basis sets are composed of spherical Gaussian functions as
defined in Eq. (11) and correspond to the set R of Eq. (B).

b’rhe notation 32. 0-0. 5 denote: a geometric series of exponents
starting with 32. ¢ and ending with 0. 5 with a ratio between succeed-
ing exponents of 2. 0.
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TABLE II. Bcattering basis sets of ¥ and & symmetry used in

the Schwinger variational expression. 5

lou, acrn, lwu- k7

4

};}Enﬂt‘:)t?;ncs'{ Center £ m Exponents
6 O 1 1 16. 0-0.5
5 (o] 2 1 8.0-0.5
5 C 2 1 B.0-0.5
3 C 4 1 2.0-0.5

log, ZUE, 4cg, lrrg—. kru
6 (8] 1 1 16, 0-0.5
5 O 2 1 B8.0-0.5
5 C 1 1 8.0-0.5 -
3 {2 3 1 2. 0-0.5
lnu — kbg
5 (o] 2 2 8.0-0.5
3 O 3 2 2.0-0.5
2 (9] 4 2 1.0,0.5
5 C 2 2 4.0-0.25
3 C 4 2 1. 0-0. 25
3 C 6 2 1. 0-0.25
lﬂ'g — kbu

5 (0) 2 2 8.0-0.5
3 (o) 3 2 2.0-0.5
4 C 3 2 4.0-0.5
2 C 5 2 1.0,0.5

3cee notes of TABLE 1. -
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Figure Captions

Figure 1 Photoionization cross section for the production of

2 2+ +
the X 11 g and C Z g states of CO,":

results using the dipole length approximation and the

present

CI initial-state wave function; — — —— — present
results using the dipole velocity approximation and

the CI initial-state wave function; — — — — present
results using the dipole length approximation and the
HF initial-state wave function; - — — — — present re-
sults using the dipole velocity approximation and the
HF initial-state wave function; O - experimental re-
sults of Brion and Tan (Ref. 11); O- experimental
results of Gustafsson et al. (Ref. 12). One mega-
barn (Mb) is 10™° em”,

Figure 2 Comparison of different theoretical cross sections
for the production of the X 2IIg and C 22; states of
C02+: ——— present single-center FCHF results;
— —— — FCHF results obtained using the STMT
approach (Ref. 1); — — — — fixed-nuclei CMSM

results (Ref. 2).
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Figure 3 Cross sections obtained using different scattering

potentials in the 1 L k0  photoionization channel of

CO,: ———— present results using correct singlet
potential; — — — — present results using triplet
potential; —— — —— — results of STMT method (Ref. 1)

using triplet potential.

Figure 4 Photoelectron asymmetry parameters for photoioniza-

tion leading to the X T g and C 22:; states of CO;':
present results using the dipole length approx-

mation and a CI initial-state wave function; — — — —
present results using the dipole velocity approximation
and a CI irﬁtial-state wave function; — — — — fixed-
nuclei CMSM results (Ref. 3); O- experimental data
of Grimm et al. (Ref. 18); U - experimental data of

Katsumata et al. (Ref. 17).

Figure 5 Photoionization cross section for the production of the
AT and B B} states of CO,’, for definitions of the
lines see Fig. 1: A- experimental fluorescence data
of Lee et al. (Ref. 13) for the A state and of Carlson
et al. (Ref. 14) for the B state; [0- experimental
photoelectron cross sections obtained by taking the
total A + B cross sections of Brion and Tan ( Ref. 11)
and using the A/B ratios of Samson and Gardner

(Ref. 26) to corapute individual A and B cross sections.
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Figure 7

Figure 8

Figure 9

Figure 10
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Eigenphase sums and cross sections for the l'nu —
kcrg and 30u-—. kqg photoionization channels of CO,:
1“11"'“’ kcg channel; — ~— — — 3ou—- kc:rg

channel

Comparison of different theoretical cross sections for
the production of the A ‘Il and B = states of CO;":
present single-center FCHF results;

—— ——— — FCHF results obtained using the STMT

approach (Ref. 1),

Photoelectron asymmetry parameters for photoioniza-
tion leading to the A TI_ and B 3 states of CO;,

see Fig. 4 for definitions of lines and symbols.

Total photoionization cross sections for the production

fthe A I Trand XTM_+AT_ +BZT

of the 'u+BuanXg+ " o b
2

C Eg states of CO,, see Fig. 1 for definitions of

lines and symbols.

Photoionization cross sections and photoelectron
asymmetry parameters for earbon K-shell photbioni-
zation in CO,: —--———— present results using the dipole
length approximation and the HF initial-state wave
function; — — — — present results using the dipole
velocity approximation and the HF initial-state wave

function; — - —— — results obtained using the STMT
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approach (Ref. 1): - — — — -~ — experimental results
of Wight and Brion (Ref. 15) normalized to the pres-

ent results at a photon energy of 325eV.

Figure 11 Photoionization cross sections and photoelectron
asymmetry parameters for oxygen K-shell photoioni-
zation in CO,, see Fig. 10 for definitions of the lines:
O - absolute photoabsorption cross sections of Barrus

etal (Ref. 16).
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SECTION E

Vibrational Effects in the Photoionization Shape

-+

Resonance Leading to the CZZE State of CO2
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1. INTRODUCTION

Recently,] we have compared the partial photoionization cross
section leading to the C 'z} [(40)™'] state of CO; as obtained by the
continuum multiple scattering mc-del2 with that given by the direct
solution of the scattering equations for the e-CO}: system. In these
studies1 we explicitly solved the scattering equations for the contin-
uum orbital of the ejected electron in the field of the static-exchange
potential of the molecular ion. The feature of particular interest in
this channel was the narrow shape resonance which was predicted
by the continuum multiple scattering model (CMSM) to have a peak
value of 18 Mb at a photon energy of about 37eV for the nuclei fixed
at the ground state equilibrium geometry. In contrast, the photoioni-
zation cross sections obtained from the solution of the e-COz"' static-
exchange collision equations show a somewhat broader resonance
feature with a peak value of about 7TMb at a photon energy of 42eV. :
Moreover, Swanson et al .2 found that vibrational averaging of the fixed-nuclei
CMSM cross sections resulted in a considerable reduction and broad-
ening of the resonant peak relative to the reé:ults obtained at the equil-
ibrium nuclear configuration. Specifically, vibrational averaging re-
duced the fixed-nuclei cross section from its peak value of 18 Mb at
the ground state equilibrium geometry to a value of 6 Mb. Although
photoionization cross sections near a shape resonance can be expected
to be sensitive to changes in internuclear separation, we suggested
that this drarﬁatic reduction of the cross section at the equilibrium ge-

ometry due to vibrational averaging in the region of the resonance
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was unphysical and an artifact of the CMSM. Since vibrational motion
can indeed lead to important effects in molecular photoionization, it
is necessary to quantitatively assess the actual magnitude of the
effect of vibrational averaging on molecular photoionization in the
region of shape resonances.

In this paper we present vibrationally averaged cross sections
and asymmetry parameters for photoionization of the 40g level of CO,
leading to the C 22;’ state of CO;. These results are obtained by
averaging the fixed-nuclei photoionization cross sections and asym-
metry parameters at five values of the internuclear coordinates over
the ground vibrational wave function of the symmetric stretch mode
of the molecule. At each internuclear geometry the cross sections
are obtained from the solution of the e-CO;" collisional equations with
the full static-exchange potential of the ion. These results show that
vibrational averaging, in fabt, reduces the peak intensity of the fixed-
nuclei resonant cross section at the ground state equilibrium geom-
etry by about 159%. These results are in strong contrast to those of
the CMSM where vibrational averaging reduced the intensity of the
resonance by 70% in this channel. . These results clearly suggest
that the CMSM does not provide a quantitatively realistic description
of this resonant photoionization cross section and the effects of vibra-
tional averaging on these cross sections.

In the next section we briefly outline our method of solution of
the e—-(1‘02+ scattering eguations. We then present both the fixed-

nuclei and vibrationally averaged cross sections and asymmetry
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parameters. We compare our results with those of the CMSM and

experimental results where available.

O. THEORY AND RESULTS

The fixed-nuclei photoionization cross section for going from an

initial bound state \I‘i to the continuum state ¥ _ due to linearly polar-
ik
ized light is given in the dipole length approxirﬁation by

z_ L 2 - a (=)
4o (R) _ AT EK | (g (m)|F-a| ¥ . (R)], (1)
dQ _ a2, c £,k
K n
and in the dipole velocity approximation by
2 V 2 - a (=)
do R) _ A7k (m)]| V-nl¥ @), (2)
aQ _do. cE ! f,k
K n

where E is the photon energy, n is the direction of the polarization of
the light, ¢ is the speed of light, and k is the asymptotic momentum of
the photoelectron. When these cross sections are averaged over all
possible molecular orientations in the laboratory frame, the resulting

differential cross section is of the form
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L,V L,V
do™ R - 2 ®) 14+ 8L V(R) B, (cos 6) ] (3)
(s 1998 47 k
k

where @ is the angle between the direction of the polarization of the
light and the momentum of the photoelectron.

The adiabatic-nuclei cross section can then be obtained from the
fixed-nuclei results by averaging over the vibrational degrees of free-
dom. If only the ground vibrational state is initially populated and we
sum over all final vibrational states then, by ignoring the dependence
of k on the vibrational energy levels, we obtain the following vibra-

3 " 3
tionally averaged cross sections

L,V L,V

%ave = $Xi |o (R) | Xs o (4)
and
L,V L,V
Ly SxleT ®BS TR X))
’ k

B = "~ (5)

Rave T 10D Vimy | xy0,

where X is the ground vibrational wave function. In this study we
assume that the vibrational motion of CO, is harmonic and we have only
considered the effects of averaging over the symmetric stretching mode.

We have computed the vibrational averages by performing a
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five point Gaussian quadrature where the square of the vibrational

wave function is the weight function. Thus with a symmetric stretch
vibrational frequency of 1388. 17cm™" for COZ,‘l we have computed the
fixed-nuclei cross sections at R(C-0) = 2. 0892, 2, 1445, 2.1944, 2. 2443,
and 2. 2996 au. The quadrature weights were then 0. 011257, 0. 222076,
0. 533333, 0. 222076, 0. 011257, respectively.

The initial state function (\I'i of Egs. (1) and (2)) was represented
by a SCF wave function which was constructed from a 3s2pld contracted
Cartesian Gaussian basis set. . The SCF energy of CO, in this basis set
is -187. 674286 au at the equilibrium R(C-0) = 2. 1944 au. The final
state wave functions (¥ _ of Egs. (1) and (2)) were obtained using the
Frozen-Core-Hartree—F(,)ck (FCHF) approximation. This implies that
all the bound orbitals were fixed as their initial state forms. The con-
tinuum orbital representing the photoelectron was then determined by
solving the appropriate static-exchange Lippmann-Schwinger equation

(=) (=)
l,b = q,‘) + GC (E) U ‘P... ’ (6)
k

k

where E = k2/2, G:”} (E) is the Coulomb Green's function, U is the
static-exchange potential with the 1/r component removed, and ¢_
is a Coulomb scattering function. We have solved Eq. (6) using thlé
Schwinger variational method. " We have not employed the iterative
technique which has been applied to other systems, = since in our pre-

vious studies of the photoionization of CO, we found that the exact itera-

tive cross section for photoionization leading to the C 22;* state of CO:
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. 2
was very close to the initial noniterative result obtained using the L
basis functions given in Table 1.9 Using the Schwinger variational ex-

pression the solutions of Eq. (6) are given bys’ .

b @ = ¢ @G+ T (T | G:)U|ai)[D'1]i.
k k ai,ajeR J

(aiIUM.E} (7)

where [D™ ] is the matrix inverse of

()
Dy = (ai|U-UGc Ula].). (8)
The sets of functions R used in Eq. (7) are composed of spherical

Gaussian functions defined by

Yo (2, ) (9)

In Table I we give the elements of these sets for the two scatiering
symmetries considered here. The necessary integrals are computed
by expanding all functions in truncated partial wave expansions with the
resulting radial integrals put on a grid and compuied using Simpson's
rule. We have used the same grid and expansion parameters as were

9
used in our earlier study of CO, photoionization. The grid contained
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1000 points extending out to r = 90 au. The smallest step size was

0. 005au and the largest step size was 0. 16 au, We have expanded the
static potential including terms up to Ainlr = 118. In the exchange
integrals, the occupied orbitals were expanded to a high enough £
such that the orbitals were normalized to better than 0. 99, and the
expansion of 1/r,, was truncated at Az{ = 40. All other partial-wave
expansions were truncated at ﬁ_m = DO,

In Fig. 1 we present the fixed-nuclei photionization cross sec-
tions of CO, leading to the C zEg state of CO," for the five internuclear
separations given above. We have taken the vertical ionization poten-
tial for the C 22; state of CO; to be 19, 4(5'\/‘.m We can see that the
photoionization cross sections depend fairly strongly on R in the
region of the shape resonance in this channel. The longer internuc-
lear separations produce a lower energy resonance, and the shorter
internuclear separations produce a higher energy resonance. In Fig. 2
we compare the present dipole length static-exchange level cross sec-
tions, both vibrationally-averaged and fixed-nuclei, with those ob-
tained using the CMSM approach,  and with the experimental results
of Brion and T:aLn.11 We can see that the effect of averaging on the
static-exchange cross section is to broaden the resonant feature and
to reduce the cross section. As can be seen in Fig. 2, the CMSM
fixed-nuclei and vibrationally averaged cross sections exhibit the same
qualitative trend. However, the CMSM cross sections show a much
larger drop in the peak cross section due to vibrational averaging.

Ti e experimental total cross section does not show any resonance
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feature in this channel.

In this study we have not included the effects of initial or final
state correlation. One way of estimating such correlation effects is
by computing the photoionization cross section in both dipole length and
velocity forms. In Fig. 3 we present the length and velocity forms of
the vibrationally averaged cross section leading to the C 22; state of
C02+ and compare them to the experimental results of Brion and ’I‘an.11
The difference between the length and velocity cross sections can be

12
viewed as an estimate of the minimum error due to correlation.

In actual applicationsa’ . 1Swe have found that the exact cross sections
tend to lie between the length and velocity forms, except where auto-
ionization is important. The lack of agreement between theory and
experiment shown in Fig. 3 indicates that correlation effects will have
to be explicitly included before quantitative agreement will be achieved.
In Fig. 4 we examine the effects of vibrational averaging on the
photoelectron asymmetry parameters in the C ZE; channel. We haire
compared the static-exchange results obtained here with the CMSM
results of Swanson He_t_gﬂl_.m and with experimental data of Katsumata
et al’”” and Carlson et al.© Unlike the experimental total photoioniza-
tion cross sections,11 the experimental asymmetry pararneters16
do show a resonant feature at a photon energy of 40eV, in reasonable
agreement with the present theoretical results, Once again the vibra-

ticnal averaging of the CMSM results produces a larger quantitative

change than does vibrational averaging of the static-exchange results,
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III. CONCLUSION

We have shown that the effect of vibrational averaging on the
static-exchange photoionization cross section of CO, leading to the
5 22; state of CO," is a 15% reduction in the peak resonant cross
section. A similar reduction in the feature in the computed photo-
electron asymmetry parameters was also obtained. This is in con-
trast to the larger effects predicted by the CMSM caleulations.”
It is also of interest to note that the resonant vibrational effects ob-
tained here for the photoionization of CO, are much larger than those
obtained by Raseev gﬁ_ai._n for the resonant photoionization of N,
leading to the X 22; state of N2+. This seems to follow directly from
the fact that the shape resonance in CO, is much narrower than that
in N.,.

The present theoretical results do ngt yet agree quantitatively
with experimental results. However, the experimental asymmetry
parameters of Carlson gt_il;m lend strong support to the theoretical

s . 2_ 4+
prediction of a shape resonance occurring in the C Zg channel near

a photon energy of 40eV.
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TABLE 1. Scattering basis sets used with the Schwinger

variational expression. -
40’g — kCl"J
Number o}g Range of
Functions Center £ m Exponents
7 O 0 0 32.0-0.5
5 O 10 8.0-0.5
3 O 2 0 2.0-0.5
7 C 1 0 32.0-0.5
5 3 0 8.0-0.5
3 C 5 0 2.0-0.5
40‘g — kﬂu
6 O 11 16.0-0.5
5 O 2 1 8. 0-0.5
5] C 11 8.0-0.5
S c 3 1 8.0-0.5

2These basis sets are composed of spherical Gaussian functions as
defined in Eq. (9) and correspond to the set R of Eq. (7).

bTotal number of basis functions on a given center with the same

value of £ and m. The exponents of the basis set form a geometric

series with a ratio of 2. Q.
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Fixed-nuclei photoionization cross sections of CO, lead-
ing to the C 22; state of CO,’. The five curves corres-
pond from left to right to R(C-0) = 2. 2996, 2. 2443,
2.1944, 2.1445, and 2. 0892 au. One megabarn (Mb)

, -18 2
is10 " em.

Comparison of the CMSM resulis from Ref. 2 and the
present static-exchange results for the photoionization
cross section of CO, leading to the C 22& state of CO;:
cross section averaged over the symmetric
stretch vibrational mode; — — — — equilibrium
fixed-nuclei cross section; @ - experimental results

of Brion and Tan from Ref. 11.

Vibrationally averaged photoionization cross section
leading to the C 22; state of CO,": ————— dipole
length static-exchange cross section; — — — —
dipole velocity static-exchange cross section; @ -

experimental results of Brion and Tan from Ref. 11.

Comparison of the CMSM results from Ref. 14 and the
present static-exchange results for the photoelectron
asymmetry parameter for photoionization leading to the
. 22; state of C():: ————— asymmetry parameter

averaged over the symmetric stretch vibrational mode;
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Figure Captions (continuation)

— —— — — equilibrium fixed-nuclei asymmetry para-
meter; ® - experimental data of Carlson et al. from

Ref. 16; M- experimental data of Katsumata et al.
from Ref. 15.
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ABSTRACTS OF PROPOSITIONS Robert Ross Lucchese
NEW METHOD FOR EFFICIENT COMPUTATION OF MCSCF WAVE FUNCTIONS.
It is proposed that the integral transformation method of
Beebe and Linderberg will allow the efficient determination of
MCSCF wave functions. In the Beebe and Linderberg method,
repeated integral transformations are performed with great
ease. Thus, this method should be ideally suited for use in
MCSCF procedures. Details are given on how this transformation
procedure would be applied to the SRMCASE method of Yarkony.
TREATMENT OF POLARIZATION EFFECTS USING A SCHWINGER VARIATIONAL
METHOD. It is proposed that the effects of polarization in
low-energy electron-molecule scattering can be treated using a
multichannel Schwinger formalism. Polarization pseudo-states
would be constructed which reflect the effects of the incoming
electron on the target electrons. These pseudo-states could be
included in the wave function using the target state expansion

"method. The final scattering wave function would then be ob-

tained from a Schwinger variational expression. Application of
this procedure to e~-H; scattering is discussed. 7+
MEASUREMENT OF THE POLARIZATION OF FLUORESCENCE OF THE B"Iy
STATE OF COE FOLLOWING PHOTOIONIZATION OF CO;. We propose tgat
the measurement of the polarization of fluorescence of the B*r’
state of CO; would provide a good comparison between experimen%
and theory. This experiment should also give strong evidence
for shage resonances in the photoionization of COp leading to
the B2r state of COE. We have computed the expected polariza-
tion using previous theoretical results.

COMPUTATION OF S_, OSCILLATOR STRENGTH SUM RULE FOR N; AND CO,
We propose to calculate the S-1 sum rule for N and CO using
standard bound state techniques. The needed matrix elements
are given and possible basis set effects are discussed.

A HYBRID ITERATIVE SCHWINGER VARIATIONAL METHOD FOR SCATTERING
SYSTEMS CONTAINING DIPOLAR POTENTIALS. In the spirit of the
R-matrix method, we propose to solve the scattering problem
with long-range potentials by dividing space into two regions.
In the inner region where the interaction potential contains
both local and non-local terms, we will use the iterative
Schwinger variational technique to solve the scattering
problem. In the outer region where the potential has only a
local component, we will use-the integral equations method to
obtain scattering solutions. The form of the integral
equations method is discussed along with possible applications.
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PROPOSITION I
NEW METHOD FOR EFFICIENT COMPUTATION

OF MCSCF WAVE FUNCTIONS

ABSTRACT

It is proposed that the integral transformation method
of Beebe and Linderberg will allow the efficient determination
of MCSCF wave functions. In the Beebe and Linderberg method,
repeated integral transformations are performed with great
ease. Thus, this method should be ideally suited for use in
MCSCF procedures. Details are given on how this transformation

procedure would be applied to the SRMCASE method of Yarkony.
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Computing electronic wave functions for molecules whose
symmetry corresponds to non-abelian point groups is in general
more compliecated than it is for molecules of lower symmetry.
In fact, for some open-shell systems the standard SCF procedures
(e.g., Goddard's GVB(l)) are not applicable, since they assume

a restricted energy expression of the form

E = 2Ef.h.. + Ela..J * bs.K

5 101d i3 1j 1) 1j71)

I s (1]
Yarkony has presented the Symmetry-Restricted Annihilation of
Singles (SRAS) method,(z) which allows for the variational
determination of such wave functions. Recently, he has general-
ized the method to compute optimized multiconfiguration wave

functions.(3’4)

The generalized method is called the Symmetry
Restricted Multiconfiguration Annihilation of Single Excitations
(SRMCASE) method. The most serious computational difficulty
in this method is the need for a full two-electron integral
transformation during each iteration. I propose to overcome this
computational difficulty by using the novel integral transforma-
tion method of Beebe and Linderberg.(s)

An MCSCF wave function is the wave function of a given

form which gives the lowest variational energy. Given the

expansion of the wave function in the form

¥(s,I%) = : t35¥(8,T%,1,3) (2)
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where w(S,Fu,i,j) is the jth symmetry—adapted configuration
arising from the ith electron occupancy, and tij are expansion
coefficients. The symmetry-adapted configurations are con-
structed from orbitals jra which are linear combinations of

L
symmetry-adapted orbitals, given by

Fd

- o
5Tg = zcj o (25 %) (3)

i J 3
where the subscript & denotes transformation according to the
2th column of the irreducible representation, and Am(a,k) is a
symmetry-adapted atomic orbital. The conditions that the

function W(S,Ta) is an energy minimum within the required

form are
St E=20 (4a)
ij
and
Gca E =0 {4b)
jm

for j occupied orbitals. The SRMCASE method generates the
optimal wave function using an iterative two-step procedure.
The first step is the optimization of the configuration
expansion coefficients tij with the orbital expansion coeffi-
cients C?m fixed., This is performed by standard Configuration
Interaction (CI) techniques.(ﬁ) The second step is the
optimization of the orbital expansion coefficients with the

t fixed. This orbital optimization is performed using a

ij
generalized form of Brillouin's theorem and the Iterative

Natural Orbital (INO) technique.(7) In the form of a generalized
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Brillouin's theorem, the second condition, in Eq. (4b), becomes

i(S,I%,y)|H|¥(5,T%)> = 0 (5)

Hspt
j

where TSEi(S,TQ,Y) is the result of an excitation operator

acting on W(S,Tu), which is defined by

YSES(S,1%,v) = I o LATIN )
J 2=1,m(T™)

A€{ao B} (6)

- (irzx)*(jrng'}w(s,r“).

I1f the tij coefficients were known, then the optimum orbitals
could be obtained by performing INO iterations. This involves
setting up a Hamiltonian matrix of all such matrix elements as
in Eq. (5), and diagonalizing it. Next, the one-electron
density matrix is constructed and diagonalized, yielding a new
set of orbitals. This procedure could be repeated until
convergence is achieved. In the present application, both the
tij and the orbital expansions must be optimized simultaneously.
It has been found(4) that successive alternations of optimiza-
tions of the tij and the orbitals produced the quickest
convergence.

The optimization of the wave functions, as described
above, requires the construction of many different matrix
elements of the Hamiltonian, These matrix elements are composed
oL sums of various one- and two-electron molecular integrals,

Thus every time the orbital basis se: is changed by an INO
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iteration, all of the two-electron integrals must be trans-
formed.
In actual implementation of any general MCSCF procedure,
the bulk of the computational efforts will be devoted to the
repeated two-electron integral transformations. The transfor-

(5)

mation method of Beebe and Linderberg would seem to be
ideally suited to such applications. I will describe how they
propose integral transformations should be performed. Then I
will describe how Beebe and Linderberg's procedure could be
utilized with the SRMCASE method described above.

In discussing the transformation scheme proposed by Beebe
and Linderberg, consider the one-electron orbitals to be

composed of functions ¢a(§) = <r|la>, then let the distribution

wk(g) be given by

b (X)) = 6, (205 (X (7)

If there are N basis functions ¢a, then there will be

M = N(N+1)/2 distributions wk. The potential due to the two-
electron operator V = l/r12 can be represented by

M

5 Vik>[d~
k,2=1

I

v 1

L}

1<tV (8)

for d,, = <k|V|&>. This reproduces all matrix elements of the

various distributions exactly, i.e.,

<k|vi{es = <k|v]es. (9)
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Beebe and Linderberg suggest that the distribution basis in
which d is diagonal provides a good representation of VI. Here

the projected potential is given by

1 M 1
VvV =& Vlk>a——<klv (10)
k=1 kk

The key point is that, when the eigenvalues of d become small
enough, the contribution from those small eigenvalues can be
neglected with no loss in the accuracy of the reproduced

integrals. Thus the expansion of the potential can be termi-

nated

I

v
V' o= i V1k>ai—<kiv (11)

1 kk
where v<M. With this truncation of the potential, any

two-electron integral is given by

1 v
<2V |m> Z Loylok (12a)
k=1
where
Loy = <RlV|k>//dkk " | (12b)

When integrals over a new basis set are required, the distribu-

tion tables are easily transformed using

N N
LA 2 s =5 X £ 5 Gl 13
(e ,B8" )k a=1p=1 & © BB (a,R)k (13)
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This integral transformation method seems ideally suited
for the needs of an MCSCF procedure. The efficiency of the
Beebe and Linderberg method is dependent upon the actual value
of v, compared to its maximum possible value N(N+1)/2. If
veN? then this procedure will probably not be faster than
traditional transformation methods. However, if v«=N, as Beebe
and Linderberg suggest as the most probable dependence, then
in the application to MCSCF methods, this procedure will have
greater efficiency. In this case, the transformation of the
distribution tables would require a computational effort

4

proportional to N', and each integral would then only take

N additional multiplications. Thus if all N* integrals are
needed, the transformation time would be proportional to NS. In
general, an MCSCF procedure would require less than the full
N4 integrals, It is for this reason that the Beebe and
Linderberg procedure is attractive, since only those integrals
explicitly required would be constructed.

As was suggested in Ref. 4, the most flexible approach
to implementing the SRMCASE method is probably using some form
of symbolic formula tape method. The formula tape method
consists of symbolic formulas for each Hamiltonian matrix
element., In the INO procedure described above, each matrix
element is a sum of contributions from various integrals with
coefficients which are functions of the tij coefficients.
These symbolic formulas can be computed once, then reused

during each iteration, and can also be used again at different

geometries which have the same symmetry. In standard CI
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procedures, the formula tape is combined with the transformed
integrals to produce the final Hamiltonian. In the present
use, the integrals are not formed ahead of time--instead, the
distribution tables are used. The most efficient Hamiltonian

(8)

construction procedure is that of Yoshimine. This procedure
would be modified in that, instead of having a certain set of
integrals held in the computer memory at one time, the appro-
priate distribution tables would be in the core. Then as the
formulas for each integral are processed, that particular
integral would be constructed from the distribution tables.

The formula tape would be organized so that each integral
would only be constructed once. By using the distribution
tables in this manner, integrals not required in the construc-
tion of the Hamiltonian would never be computed.

The use of the Beebe and Linderberg transformation method
would seem to be the best way to implement the SRMCASE method
of Yarkony. The chief uncertainty concerning the utility of
this method is the dependence of v on N, It would seem that
for basis sets which are of an extended nature v would likely
be of a lower order of dependence on N, since these high quality
basis sets are more nearly linearly dependent. That is, in
such basis sets each new function would be in some part redundant
as to the information it contains about the potential. However,
for large molecular systems where minimal basis sets must be
employed, I would suspect that v might be more nearly propor-

2

tional to N®, 1If the proposed scheme for implementing Yarkony's

SRMCASE method does prove to be efficient as is hoped, then it
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might also be competitive with other general MCSCF procedures

for molecules of low symmetry.
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PROPOSITION II
TREATMENT OF POLARIZATION EFFECTS

USING A SCHWINGER VARIATIONAL METHOD

ABSTRACT

It is proposed that the effects of polarization in low-
energy electron-molecule scattering can be treated using a
multichannel Schwinger formalism. Polarization pseudo-states
would be constructed which reflect the effects of the incoming
electron on the target electrons., These psendo-states ceuld
be included in the wave function using the target state
expansion method. The final scattering wave function would
then be obtained from a Schwinger variational expression.

Application of this procedure to e'-H2 scattering is discussed.
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One of the unusual features of electron-atom or electron-
molecule scattering is the very low energy behavior of the total

elastic cross sections of some systems. In heavy rare gas

(1)

and in some organic molecules

(2)

atoms, such as Ar, Kr, and Xe,
such as methane, ethane, and propane, sharp minima in the
elastic électron-molecule scattering cross sectlons are
observed with the incident electron having kinetic energy in
range of 0.1-0.2 eV, These minima are known as Ramsauer-
Townsend (RT) minima. In the theoretical study of e'—Ar,(S)
the feature is strongly dependent upon polarization effects.
Physically, polarization is the redistribution of the target
electrons due to the presence of the incident scattering
electron., At higher incident kinetic energy these polarization
effects become less important and approximations ignoring them,
such as the static-exchange approximation, are better able to
describe the scattering process. However, polarization must

be included to obtain the proper low energy dependence of

the elastic cross section.

I propose that a multichannel version of the Schwinger
variational method using polarization pseudo-states in a manner
similar to that used by Schneider,(4) should allow the accurate
determination of low energy polarization effects in electron-
molecule scattering. To demonstrate the proposed method, I

will consider e -H, scattering. In this system, the effects

2
of polarization can clearly be seen in the low energy elastic
cross section. At 3 eV the elastic cross section of eh-H2 has

a maximum and falls off towards zero as the kinetic energy of



316
(5)

the scattered electron approaches zero. This feature in

the elastic cross section is due to polarization, since in

the static-exchange approximation, the cross section rises

monotonically as the incident electron energy goes to zero.(6)
A standard procedure for dealing with multichannel

scattering is the target state expansion method.(7) In this

method, the total wave function is written as

¥ (X, Xepp) = I X, (X0 (X)) (1)

where {¢a} are eigenfunctibns of the target Hamiltonian and
{xa} are one-electron orbitals describing the incident electron.
If all target states are included in the expansion, then the
scattering solution will be exact. In actual applications

the expansion must be truncated. In most cases only a few
important terms are retained.

In principle, polarization effects could be treated by
including enough target states in the expansion of the wave
function given in Eg. (1). Unfortunately, the effects of
polarization are not rapidly convergent with increasing numbers
of target states included in the expansion. As discussed by
Burke and Mitchell,(g) for rare gas atoms, typically 50% of
the polarization effects come from continuum states of the
targets

A solution to the slow convergence of target states was
given by Damburg and Karule.(g] They suggested that inclusion

of states which reflected the effect of a static electric field

would be more effective in treating the polarization due to the
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incident electron. Burke et al.(loj showed that this procedure
substantially improved the results in e -H scattering.

The method I propose to use to calculate polarization
pseudo-states is the same as that used by Schneider.(4) This
method is an adptation of the scheme proposed by Mclean and
Yoshimine to calculate static polarizabilities of molecular

systems.(ll)

The first step is to calcnlate one-electron
polarized orbitals. This is done by calculating one-electron
orbitals which are eigenfunctions of an effective Hamiltonian,
This Hamiltonian has a potential that is the sum of the
potentials due to the other electrons in the target, which are
described by the orbitals of the unperturbed system plus a
potential due to an applied electric field. The electric
field is simulated by placing a point charge at a large distance
from the molecule. The point charge must be far enough away
from the target so that the target wave function does not

have an appreciable amplitude in the vicinity of the charge.
The one-electron orbital is obtained by diagonalizaing the
Hamiltonian in a finite basis set. For the application
considered here, the basis set used will be a set of Cartesian

Gaussian functions

R
S (z) = ngmcx“ﬂx)k(Y—Ay)z(z-Az)me ofz-Al -

where Nklmis a normalization constant and A is the center of
the Gaussian, which is usually either one of the nuclear
centers or the center of mass of the molecule. For each

different occupied target molecular orbital, a different
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polarization orbital can be constructed. The polarized orbitals
are then orthogonalized with réspect to each other and with
respect to the occupied:orbitals.

As Schneider suggested,(4) the target ground state and
polarization pseudo-states can then be obtained by diagonalizing
the N+1 electronic Hamiltonian in a space spanned by Slater
determinants constructed from the Hartree-Fock orbitals of
the ground state combined with the polarized orbitals. The
one-electron basis set could be even expanded further to
include more orbitals. This would produce a target wave
function of increasing 