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Chapter 3  

MIP Flow and Structure Behavior 

3.1  Model Verification 

Please see appendix 1. 

3.2  Model Validation 

We perform the same computation for different mesh and time step refinements keeping 

constant the product NtC s *=  where st  is the time step and N the total number of 

elements. We perform the mesh and time step independence tests for the model excited at 

one of the highest excitation frequency (f=11 Hz) so that the accuracy of the simulation 

for lower frequencies will be ensured. Our model has a total of 10,500 elements (6,000 

fluid elements and 4,500 solid elements) and we use 1,000 time step per each excitation 

period (C=0.9545). We compare our model to 4 other cases (see table 2), and each 

computation runs until periodicity in the flow is achieved. 

We define the instantaneous error in mesh refinement to be the mean error in axial 

velocity relative to the finest mesh at a specific point ),( oo zy  (14). 
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The time average of the error calculated for the point belonging to the axis of 

symmetry at the exit of the pump decreases with mesh refinement and our model has an 

average relative difference with the finest mesh possible ( )LError ,0  of about 3%.   

 
Table 2. Mesh and time steps refinements test cases and associated error with respect 

to the finest mesh. 

Case # Number of elements Time steps per period Mean Error 

1 13,650 1,300 0 

2 12,600 1,200 0.0069 

3 10,500 1,000 0.0315 

4 8,400 800 0.0565 

5 5,200 500 0.0583 

 

3.3  Identification of the natural frequencies of the 

system 

 A free vibration test is performed. The model is impulsively actuated and the pincher is 

held to resting position until every motion in the fluid and solid domains disappears. The 

triangular impulse duration is 1.66 e-2 s, corresponding to 200 time steps of 8.3 e-5 s 

each. The time step length st =8.3 e-5 s corresponds to the smallest time step duration 

used throughout the computations (f=12 Hz).  

Because the model is fairly complex, the spectral analysis of the impulse response is 

carried on for different parameters extracted from the flow (pressure, axial velocity) and 
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the structure (radial displacement), and at different points throughout the model. Each of 

these observables {point, parameter} has an associated Power Spectrum Density (PSD) 

that exhibits several frequencies.  

 

 

Figure 8. (Top) Impulse response: exit flow rate variation in time under triangular 

impulse excitation. (Bottom) The associated Power Spectrum Density (PSD). The Fourier 

transform was calculated using 4,096 points, and a time resolution of 4 e-4 s. 
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However, throughout the model the different observables’ PSD contains the same 

frequencies, but expressed at different strengths (amplitude of the PSD). We chose to 

present the exit flow rate variation in time and its associated PSD (figure 8) because in 

addition to exhibiting all the natural frequencies present in the system, it is a relevant 

observable for the system pump. We identify nf =11 Hz as a natural frequency and 

f =22 Hz, f =33 Hz, f =44 Hz, f =55 Hz as harmonics. Additional natural frequencies 

are f =41 Hz, f =49 Hz and f =59 Hz. df =33 Hz is the dominant frequency of the 

spectrum. We choose to study the system around the natural frequency nf =11 Hz 

because the dominant frequency is its harmonic.  

3.4  Pulse velocity 

The pressure wave speed was calculated using a single pressure step at one extremity of 

the tube of magnitude. The pressure is modeled as a normal traction force of magnitude 

1e+4 dyn/cm2. The time step resolution for the computation is st =9.0909 e-5 s. The 

pressure wave speed is estimated to 172.7 cm.s-1, based on the time needed for the 

pressure step to propagate along the model ( L =15.2 cm) at rest. This velocity is closed to 

the value 6.1550 =c  cm.s-1 found using the Moens-Korteweg formula49 (15) (derived for 

inviscid flow in a thin walled elastic tube that possesses some material compressibility):  

( )20 12 νρ −
=

a
Ehc , (15) 
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where E is the stiffness of the gelatin layer ( gelE =5e+4 dyn/cm2),  h the thickness of the 

gelatin layer ( gelh =0.405 cm), ρ  the density of the gelatin layer ( fρ =1 g/cm3) and a the 

fluid domain radius ( fR =0.55 cm) and ν  the Poisson’s ratio of the gelatin ( gelν =0.3). 

3.5  Flow rate variation in time 

Instantaneous flow rate ),( oztQ at a cross section located at ozz = of the tube is, by 

convention, positive when flow is exiting the pump (flow in Z direction), and is 

expressed as: 

),(),()),,((),(
)(

oo

tR

oozo ztdyztyzztyvztQ
f

∫=
0

2π , (16)

where zv  is the axial velocity, y is the radial position, fR is the fluid domain radius and 

oz  the longitudinal position of the considered cross-section and t the time. For each 

excitation frequency, we compute the cross sectional flow at the pump extremity distant 

to the actuator ),( LtQ . Exit flow history plots show a transient phase where the flow is 

building up before reaching a steady state of periodic oscillations and constant mean 

value (figure 9).  

3.6  Mean exit flow rate and frequency 

For the various frequencies of excitation, the mean exit flow rate (Q ) is calculated by 

averaging at steady state conditions, the instantaneous exit flow rate ),( LtQ  over one 

excitation period.  
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Figure 9. Typical exit flow rate history plot. Excitation frequency is f=11.5 Hz. 

Periodicity is achieved after 15 pinching cycles and mean flow at steady state is 45.7 cc/s. 

The solid line is a filtered curve of the flow rate using a moving average window of one 

cycle. 

The mean exit flow rate is nonlinearly dependent on frequency as expected for an IP. 

In addition, it exhibits a zone of negative flow for frequencies below 9 Hz (figure 10). 

Maximum positive flow reaches 86.87 cc/s when the pump is excited at 10.1 Hz. 

Therefore, for the system pump resf =10.1 Hz will be referred it as the resonant frequency 

of the system. Flow resonance has been also observed in single layer impedance 

pumps.5,29,42 
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Figure 10. Mean exit flow rate (Q ) as a function of the excitation frequency (f). 

3.7  Reynolds number and Womersley number 

The Reynolds number in a steady flow is defined as the 

ν
duRe = , (17) 

where u  is a characteristic velocity, d is a characteristic length, and ν  the kinematic 

viscosity of the fluid. For the fluid-filled elastic tube problem u is defined as the mean 

axial velocity zv  , d as the fluid domain radius fR , and ν  as the ratio of the dynamic 

viscosity of water over the density of water 
f

f

ρ
μ

. The Reynolds number can be expressed 

as a function of the mean exit flow: 
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νπd
QRe

4
= . (18) 

 

For the different frequencies of excitation, the mean exit flow ranges from -78cc/s to 

+86cc/s leading to mean Reynolds number up to =mean
eR 9,959. The instantaneous 

Reynolds number based on the maximum axial velocity for each frequencies of excitation 

ranges between 2,000 and 20,000. 

The Womersley number (α ) is defined as the ratio of the inertial forces to the 

viscous forces for pulsatile flows and can be seen as the equivalent of the Reynolds 

number but for pulsatile flow. It is expressed as:50 

ν
ωα fR= ,                                          fπω 2= , (19) 

where fR is the fluid domain radius, ω  is a characteristic frequency in radians per second 

of the oscillatory motion, and ν  the kinematic viscosity of the fluid. For the fluid-filled 

elastic tube problem ω  is expressed in terms of the frequency of excitation of the system 

f, and ν  is the ratio of the dynamic viscosity of water over the density of water
f

f

ρ
μ

. For 

the frequency range 7.2Hz to 12.2Hz studied, the Womersley number spans 36.9 to 48.1. 

 

3.8  Wall motion 

Each layer of the tube has a distinct thickness and distinct material properties which 

influences the speed, damping and amplitude of the traveling elastic waves. The thickness 

and softness of the gelatin layer are used to amplify wave motion, while the stiffness of 
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the external layer is used to limit outward radial motion. The concept of multilayer 

pumping relies on large amplitude wave motion at the fluid-gelatin interface combined 

with a very limited motion of the external surface of the pump. The maximum wall 

deflection in the stiffer layer outer surface is found to range from 0.37% to 6.10% from 

resting position, while the gelatin inner surface deflects from 24% to 32% from resting 

position, depending on the frequency of excitation. At resonance resf =10.1 Hz, gelatin 

stretch is particularly important (figure 11) and plays a role in the pumping performance. 

 

Figure 11. Gelatin maximum positive radial strain in time and space as a function of the 

frequency of excitation (f). 

3.9  Wave interaction in a multilayer impedance pump 

Upon compression elastic waves are created in both layers of the tube. They travel along 

the length of the tube and reflect at the tube extremities. The constructive wave 

mechanism occurring in the tube’s walls of a MIP (mainly in the gelatin layer) is similar 

to the one described by Avrahami and Gharib5 for a SLIP. When the pump is excited at 

resonance a strong wave interaction occurs toward the pump extremity distant from the 
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pincher. This interaction creates a suction zone where fluid fills quickly the newly created 

cavity. As this cavity travel downstream toward the tube’s extremity a strong pressure 

gradient is created between the cavity and the extremity of the tube. A net exiting flow is 

created by inertia. More specifically, the wave mechanism over a period of time T is as 

follows (figure 12 and appendix 2). 

The cycle begins with the elastic tube at resting state (t=0*T). Upon compression 

(t=0.16*T), two primary positive elastic waves are created on each side of the pincher. 

The positive elastic wave close to the short side of the tube reflects into a negative wave 

(t=0.26*T). At t=0.36*T the pinching action is over and the result is the creation of a 

pressure gradient associated with a reflected negative elastic wave (z=4.8 cm) and a 

primary positive elastic wave (z=7 cm) traveling toward the exit of the tube. While 

traveling, the positive wave (t=0.45*T, z=10 cm) steepens due to the influence of the 

nearby forward negative wave (t=0.45*T, z=7 cm). Small amplitude secondary waves 

(t=0.45*T, z=[0,3] cm) that have being created from the release action of the pincher and 

have reflected on the short side of the pincher, are now traveling toward the exit of the 

tube. The forward positive wave reaches the tube’s extremity (t=0.57*T), and reflects in a 

negative wave traveling now toward the pincher (t=0.67*T). At that instant, a strong 

wave interaction occurs between this reflected wave and the still-forward-traveling 

negative wave creating a large suction zone (t=0.67*T). Fluid fills quickly the newly 

created opening, and a strong pressure gradient is present between the cavity and the 

extremity of the tube as the cavity travels further downstream. Fluid is washed out by 

inertia and exits the pump (t=0.74*T). The suction zone reflects at the tube extremity 
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(t=0.8*T), squeezing the fluid out of the pump (t=0.9*T). Motion in the tube damps and a 

new cycle is about to begin (t=1*T). 
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Figure 12. Illustration of the propagating waves in the multilayer impedance pump. 

Example for f=10.1 Hz. Selected frames at time t as a fraction of the period time T. (Top) 

Outline of the model. Walls position against longitudinal axis. (Middle) Corresponding 

snapshots of the axial velocity fluid field. (Bottom) Axial pressure longitudinal 

distribution. 

3.10  Velocity profiles 

For the MIP excited at 10.1Hz, we select a specific time (t=8.77129 s) and plot the 

velocity profiles for discrete cross sections along the tube. 

 

Figure 13 (a) 
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Figure 13 (b) 
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Figure 13 (c) 

 

Figure 13. Velocity profiles. (a) Instantaneous axial velocity field and velocity profiles at 

11 cross sections along the tube. (b) Enlarged view of the different velocity profiles. (c) 

Velocity profile at the exit of the pump (#11) for selected times over a period of time. 

3.11  Wall position, axial velocity and axial pressure 

longitudinal distribution 

For each frequency in the positive flow domain, the wall displacement, axial pressure 

longitudinal distribution and axial velocity longitudinal distribution is plotted over a 

period of time once periodicity in the flow is achieved. 
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f Wall position Axial pressure Axial velocity 

9Hz 

9.2Hz 

9.5Hz 

9.7Hz 

10Hz 
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10.1Hz 

10.2Hz 

10.3Hz 

10.5Hz 

10.9Hz 
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11Hz 

11.2Hz 

11.5Hz 

11.7Hz 

12Hz 
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12.1Hz 

12.2Hz 

 
 
Figure 14. Wall displacement, axial pressure longitudinal distribution and axial velocity 

longitudinal distribution over a period of time once periodicity in the flow is achieved. 

3.12  Mechanical work done by the elastic tube 

An energy balance on the fluid domain inside the long portion of the elastic tube past the 

pincher allows us to compute the mechanical work of the elastic tube done on the fluid. 

Because the energy balance is made for the portion of the tube devoid of active 

compression (i.e. pincher), this calculation aims to focus on the energetic role of the 

elastic tube itself in pumping.  

We use a fixed control volume (CV) delimited by the “input” and “output” cross 

sections, the axis of symmetry and the fluid-structure interface. The “input” cross section 

is located downstream next to the pinching zone at z=4.56 cm, and the “output” upstream, 

just before the exit of the pump at z=13.68 cm, away from the exit enough to avoid the 
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results to be biased by the “too-close” compression zone and the zero pressure boundary 

condition, respectively (figure 15).   

In the absence of added heat, the conservation of energy principle applied to the 

system (fluid inside the control volume) states that the time rate of change of the system 

total energy (E) is balanced by the time rate of change of the work done to the system 

(W).60  

Dt
DW

Dt
DE

=  (20)

 

 

Figure 15. (Top) Input and Output cross sections defining the portion of the tube for 

which mechanical work is calculated. (Bottom) Control volume and fluid energy balance. 

A fixed control volume (solid line box) enclosing the wall (dashed line) is used in order 

to consider the wall motion as a shaft work. Pumping work defined as shaft work minus 
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the losses is balanced by the differential of energy between the output ( outE ) and input 

( inE ) of the system. 

In the absence of gravitational forces, the work done to the system, i.e. the work 

done to the fluid domain, is decomposed into the work done by the environment on the 

fluid (involving fluid pressure and viscous terms) and the mechanical power done on the 

fluid and due to wall motion or shaft work ( mechW ).  

viscouspressmech WWWW ++=  (21)

On the other hand, the fluid’s total energy per unit mass (e) is decomposed to its 

internal and kinetic energies since gravitational forces are omitted.  

kineticeee += internal  (22)

Internal energy depends on temperature only, and is part of the fluid losses by internal 

friction ( lossE& ). Using Reynolds transport theorem, the material derivative of the fluid’s 

total energy (E) becomes: 
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where dS is a surface differential element and dV a volume differential element of the 

CV.  

The volume integral represents the kinetic power of the fluid inside the CV. Because 

of steady state periodic conditions, its contribution to the energy balance will be zero 
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after integration over a time period. The surface integral represents the flux of kinetic 

energy at the CV boundaries, and comprises the input and output cross sections only 

since no fluid crosses the top part of the CV and 0=⋅nv  on the bottom part of the CV 

(axis of symmetry). 

On the other hand, the rate at which the environment does work on the fluid is 

decomposed into fluid pressure and viscous stress components. Integration along the 

surfaces of the CV is nonzero at the input and output cross sections only, and viscous 

stress or shear contribution on the two cross sections is small enough to be neglected. The 

pressure power becomes: 

dSPWpress nv ⋅= ∫∫ ∪21
& . (24)

Therefore the balance of rate of change of energy is as follow: 

dSPWdSE mechloss nvnvv
⋅+=⋅+ ∫∫∫∫ ∪∪ 21

2

21 2
&& ρ , (25)
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We define the pumping power ( pumpW& ) as the mechanical power done by the moving 

wall ( mechW& ) minus losses ( lossE& ): 

lossmechpump EWW &&& −= , (27)

Finally the pumping work is found by integrating equation (26) over a period of time 

T: 
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We found a nonlinear relationship of the pumping work and the frequency of 

excitation (figure 16), reaching maximum around the resonant frequency. Significant 

positive work occurs for frequencies ranging from 10Hz to 10.5Hz, meaning that the 

elastic tube does work on the fluid. It is of particular interest since the considered portion 

of the tube actually does not contain active components (such as pincher). This implies 

that the elastic tube does not act as a resistor, but contribute to pumping by transmitting 

energy to the fluid. At resonance is the transfer of energy from the elastic tube to the flow 

maximized. 

 

Figure 16. Pumping work of the elastic tube ( pumpW , 1 Erg=1e-7 J) and frequency of 

excitation (f). 
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3.13  Pumping efficiency  

The efficiency (ε ) of a pump is the ratio of the useable work over the work dispensed to 

actuate the pump. In the case of the MIP, it corresponds to the work produced by the 

pump ( pumpW ) over the work dispensed at the actuation zone ( actuaW ):  

actua

pump

W
W

=ε . (29) 

The work done by the actuation zone is the result of the work done by each of the 

nodes that undergoes the prescribed compressive displacement. Nodal work is calculated 

using the nodal reaction force integrated over the nodal radial displacement (motions in 

the other directions are constrained). The model being axisymmetric, the work for the 

whole pinching section is recovered by multiplying by π2 : 
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The work produced by the pump ( pumpW ) represents the increase of energy of the fluid 

between the entrance and exit of the pump (31). It is composed of pressure and kinematic 

terms. Because we imposed a zero pressure boundary condition at the two extremities of 

the tube (entrance z=0 and exit z=L), the pressure term in equation (31) is null, which 

would lead to a wrong estimation of the work produced by the pump.  

We propose to evaluate the pressure term using an equivalent model. The MIP can be 

seen as a tube producing a mean flow, and one can consider as an equivalent model a 
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similar Poiseuille tube driven by a pressure gradient (figure 17). The pressure at one 

extremity being zero, one can calculate, knowing the geometry and the mean flow, the 

pressure at the other extremity of the Poiseuille tube (32).61  

Q
R

LzP
f

4

80
π
μ

== )(  (32) 

The Poiseuille pressure represents the pressure that would be produced by the MIP for the 

same resulting mean flow Q . Consequently, the work produced by the pump is evaluated 

by plugging the Poiseuille pressure (32) into equation (31). 

The efficiency is computed for frequencies of excitation ranging from 9Hz to 12 Hz, 

where flow is exiting the pump in the positive direction (figure 18). We found that the 

efficiency ranges between 5% and 15%, except when excited at resonance, where the 

pump exhibits a clear peak at almost 35%. This confirms the role of resonance where the 

MIP reaches its maximum pumping efficiency. 

 

 

Figure 17. Equivalent model: Poiseuille flow driven by a pressure gradient. 
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Figure 18. Efficiency (ε ) of the MIP and frequency of excitation (f). 




