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Chapter 2  

The Multilayer Impedance Pump Model 

2.1  Physical model 

The MIP was a fluid-filled elastic tube with an excitation zone located asymmetrically 

with respect to the length of the pump. The pump had an aspect and a layered wall 

structure similar to the embryonic heart. The fluid domain accounts for only 35% of the 

total volume occupied by the pump. The layered walls of the elastic tube were made of a 

thick gelatin layer for about 80% of the elastic tube volume, and a thin stiffer layer for the 

remaining 20%, following the heart tube geometry (figure 5). Each layer constituting the 

tube walls was made of an isotropic linear elastic material. The material properties of 

each layer have been chosen so that a large enough stiffness ratio between the elastic 

layers enables the combined effect of wave amplification through the gelatin and the 

prevention of outward motion at the external layer. In addition, following the embryonic 

heart structure, the gelatin-like layer has been given some compressibility ( gelν =0.3), 

while the stiffer layer was relatively incompressible ( slν =0.49) (table 1).  

The periodic excitation consisted of imposed radial displacements ),( zty  on a section 

of the outer surface of the tube (1). The pump was actuated for 20% of the period time T . 

The tube’s external radius was maintained to original position during the remaining 80% 

of the period time. During actuation, the elastic tube was compressed following a 
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sinusoidal time function )(tg  that depended on the frequency of excitation f  (2). The 

amplitude A  of the compression was set to 10% of the pump external radius, so that to 

model the displacement resulting from the myocites’ contractions. The spatial repartition 

of the compression zone followed a quadratic spatial function s(z) to simulate a physical 

pincher (3): 

                                           )(*)(),( zstgzty = ,                   [ ] ],[*,0),( wll aaaTzt +∈ , (1)

)
5

(*)5sin(*)( tTHeavisidetfAtg −= π ,             [ ]Tt ,0)( ∈ , (2)
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s z z= − − ,                               ],[)( wll aaaz +∈ . (3)

The impedance mismatch was achieved by fixing the tube’s extremities, ensuring 

total reflection of the elastic waves. The fluid filling the tube was water. 

 

Figure 5. (Top) 3D view and (Bottom) 2D view in longitudinal cross section of the 

physical model of the MIP.
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Table 1. Physical parameters of the MIP. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Physical parameter Symbol Value 

Length of the pump L  15.2 cm 

External radius of the pump extR  1.03 cm 

Fluid domain radius fR  0.55 cm 

Gelatin thickness gelh  0.405cm 

Stiffer layer thickness slh  0.075 cm 

Actuator location with respect
 
to the tube’s nearest extremity

la  1.2 cm 

Actuator width wa  1.8 cm 

Gelatin stiffness gelE  5 e+ 4 dyn/cm2 

Stiffer layer stiffness slE  1 e+ 7 dyn/cm2 

Gelatin Poisson’s ratio gelν  0.3 

Stiffer layer Poisson’s ratio slν  0.49 

Gelatin density gelρ  1 g/cm3 

Stiffer layer density slρ  1 g/cm3 

Fluid viscosity fμ  0.01 g/cm s 

Fluid density fρ  1 g/cm3 

Excitation amplitude A 0.1 cm 

Frequency f 7 Hz to12.2 Hz 
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2.2  Mathematical model 

The fluid motion was derived by the conservative Navier-Stokes equations using the 

Arbitrary Lagrange Eulerian formulation: 

0=⋅∇ v , (4)

( ) 0=⋅∇+⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅−+
∂
∂

fτvvvv
gf t

ρ , 
(5)

where fτ  is the stress tensor, v  is the flow velocity vector and gv  is the local coordinate 

velocity vector, fρ  is the density of the fluid and t is the time. 

The fluid is Newtonian, incompressible and viscous, and its state of stress fτ  follows:  

)vv(Iτ f
T

fP ∇+∇+−= μ , (6)

where P  is the static pressure and fμ is the dynamic viscosity. 

The dynamics of each layer of the flexible wall were calculated using the balance of 

momentum equation in Lagrangian form (7) and the constitutive relation for a linear 

isotropic elastic material (8):  

ubτ f &&ρ=+∇ s , (7)

sss εI)ε(τ μλ 2+= Tr , (8)

where sτ  is the Cauchy stress tensor, sε  the strain tensor, fb the body forces vector per 

unit volume, u&&  the acceleration vector ρ  the density, and λ  and μ  the Lamé 

constants of the considered structural domain.  
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At the fluid-structure interface the fluid is fully coupled to the gelatin. The 

fundamental conditions applied to the fluid-structure interface are displacement 

compatibility and traction equilibrium between the two surfaces: 

ud = , (9)

sf τnτn ⋅=⋅ , (10)

where d and u are the fluid and solid displacement vectors respectively, and n  is the unit 

normal.  

To ensure total wave reflection, fixed ends in both layers are modeled by imposing 

zero displacements in all directions and at all time at the two tube extremities: 

             u =0                              at z=0 and z=L. (11)

The no-slip condition ( vnun ×=× & ) is applied at the fluid-structure interface, and 

the tube lies in a stress-free and pressure-free environment (figure 3): 

                                   0=⋅ sτn                        on the lateral surface of the tube, (12)

             P = 0                              at z = 0 and z = L. (13)

Initial conditions are resting state: zero pressure and zero velocity in the fluid, no 

stress or strain in the structure. 

 

Figure 6. 2D axisymmetric longitudinal outline of the MIP model with excitation and 

boundary conditions (the shaded region represents the fluid domain). 
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2.3  Numerical model 

The finite elements method was used to discretize both the fluid and structure domains, 

and the fully coupled problem was solved using the commercial package ADINA 

(ADINA R&D, MA). 

The fluid and the solid domain were meshed using 4-noded axisymetric elements. 

The solid mesh was refined at the pinching zone. A total of 10,500 elements were used, 

6,000 for the fluid and 4,500 for the solid (figure 7). An embedded actuation pincher was 

modeled by imposing radial displacements on a series of nodes corresponding to the 

pincher location, at the outer surface of the tube. The solid part is solved using the small 

strain, small deformation hypothesis, and the flow is assumed to be laminar. A constant 

number of 1,000 time steps per pinching cycle are used to march throughout the transient 

simulations.  

The time integration scheme is implicit Euler backward (α=1), which is first-order 

accurate in time. The equations of motion are integrated by using the implicit damped 

Newmark scheme (δ=0.5, α =0.25), and the full Newton Method was used for the non 

linear equations. The fluid and solid are 2-ways direct fully coupled, and the fluid mesh is 

updated at each time step using Arbitrary Lagrange Eulerian formulation. All 

computations are starting from resting state and are carried on until periodicity in the 

fluid motion is achieved (mean exit flow is constant within 1% for at least 5 periods). 

 

 

Figure 7. 2D axisymmetric longitudinal view of the mesh.  




