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Appendix 1

Model Validation

In order to validate the numerical code, 3 computations for which the analytic solution is
well known were performed. Using a rigid tube, we test first, the Poiseuille solution for a
constant pressure gradient and second, for an oscillatory pressure gradient. Thirdly, we
use the same oscillatory pressure in an elastic tube and compare the numerical results

with the Wormesley solution.

Constant pressure in a rigid tube
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Figure. Schematic of the Poiseuille flow model. Flow in the rigid tube is driven by a

pressure gradient.
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Table. Characteristics of the constant pressure in a rigid tube model.

Physical parameter Symbol Value
Length of the pump L 40 cm
Fluid domain radius Ry 0.5cm
Fluid viscosity Hy 0.01 g/cm s
Fluid density Ps 1 g/em’

Pressure drop along the tube AP 10 dyn/cm?

Maximum axial velocity V; 1.563 cm/s
Reynolds number” Re 156.3
Entry length® le 6.254 cm

The first test case was the modelisation of a Poiseuille flow, being a constant pressure

gradient in a rigid tube. The pressure gradient

AP=P(z=L)-P(z=0),
consisted in a constant normal traction applied at one extremity of the tube (P(z =0))
and a zero pressure boundary condition at the other extremity of the tube (P(z =L) ).

The tube was filled with water, and was of enough length so that flow is fully developed

at the end of the tube.

p Vmax D
® The Reynolds number for the Poiseuille flow is defined as: Ry = 22 7T here D; the tube’s
Hy

diameter (D; =2*R;)
¢ The entry length for the Poiseuille flow is defined as 1 = 0.04R,D;
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The numerical model consisted in 12,000 4-noded axisymmetric elements, and the

time step was set to 0.005 s.

Comparison

We compared the axial velocity profile at mid length of the tube where flow is fully
developed. The Poiseuille solution for the axial velocity is dependent on the pressure

gradient, the fluid viscosity and the tube geometry:

AP

t,z.)> —R.%).
4lqu(Y( o) i)

Vz(tayazo):_

The error between the numerical and the analytical solutions is defined to be absolute
error in axial velocity relative to the analytical solution for each point y along a specific
cross section located at z =z, and at time t, where flow is steady.

num

v, (to’y9 Zo)_vina(tw Y, Zo)
V;ma (tO’ y’ ZO)

Error =

‘- (*)

We found a very good agreement of the numerical solution with the analytical

solution, and an error of about 0.09%.
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Figure. (Left) Velocity profile at a cross section located at mid-length of the tube.
Analytical solution (thin line) and numerical solution (for positive Y only) (thick line and
dots). (Right) Error in axial velocity between the numerical and the analytical solution

along a cross section.

Pulsatile pressure in a rigid tube
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Figure. Schematic of the Poiseuille flow model with pulsatile inlet pressure.

The second test case consisted in the exact same rigid tube as the one from the previsous
section with a pulsatile pressure inlet boundary condition.

AP(1) = Psin(wt),
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with |P| =P(z=0)=10 dyn/cm” and ®=0.36 rad.s™.

The exact same numerical mesh and time step as the one from the previous section
was used.

Comparison

The analytical solution is obtained by decomposing the flow into a steady and an
oscillatory part. After separation of variables in the governing equation for the oscillatory
part, the spatial component is found by solving a Bessel equation, and the axial velocity

. 1
is expressed as: ®

Uz(t,y,ZO):Im [

where Jis the Bessel function of order zero, and Qa non dimensional parameter
function of the material properties of the fluid, the fluid radius and the frequency of the

imposed pulsatile pressure gradient:

Pi@
Hi

Q=

R,

and

(i-DQ

N

The error between the numerical and the analytical solutions is computed using

A=

equation (*) at discrete times t, during a period once periodic state in flow is reached.
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Figure. (Left) Velocity profile at a cross section located at mid-length of the tube.
Analytical solution (solid line) and numerical solution (for positive Y only) (dashed line).
(Right) Error in axial velocity between the numerical and the analytical solution along a

cross section for different instants of a period of time.

Pulsatile pressure in an elastic tube
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Figure. Schematic of the pulsatile pressure in an elastic tube model.

The third test case consisted in the modeling of a pulsatile flow in an elastic tube by
imposing a pulsatile pressure at one extremity of the tube, the other extremity being

constrained to a constant pressure of zero value. The elastic tube was modeled using a
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purely linear elastic material (E,,v,), and the thickness of the tube (h) was small

compared to the fluid radius.

Table. Characteristics of the pulsatile flow in an elastic tube model.

Physical parameter Symbol Value
Length of the pump L 40 cm
Fluid domain radius Ry 0.5 cm
Elastic tube thickness h 0.05 cm
Elastic tube stiffness E, 1 e+5 dyn/cm’
Elastic tube Poisson’s ratio Vs 0.3
Elastic tube density Ps 1 g/em’
Fluid viscosity M 0.01 g/cm s
Fluid density P 1 g/lem’
Pressure drop along the tube AP 10 dyn/cm’

In order to avoid any wave reflection in the elastic tube, an absorbing boundary
condition was used at the end of the tube (z=L). The absorbing boundary condition
consisted on a very long elastic tube (160 cm) made out of the exact same elastic tube. At
the entrance of the tube, motion of the tube in the longitudinal direction was constrained,

but radial motion was allowed.
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Comparison

Similarly to the case of pulsatile flow in a rigid tube, the analytical solution is obtained
by decomposing the flow into a steady and an oscillatory part and coupling the Navier
Stokes equations with the equations of the wall motion. The velocity in the elastic tube
has an axial and a longitudinal component. After separation of variables in the governing
equation for the oscillatory part, the spatial component is found by solving a Bessel

equation, and the axial velocity is expressed as: '

t,2
[ ) e
Lll-e———" ‘e ¢

peLQY ‘Jo(A)

u,(t,y,z)=Im| i

where C is the wave speed found by solving a quadratic equation in z where

E.h
(1—1/52),0f R,C”

G is an elasticity factor given by:

G- 2+¢5Q2v,-1)

g(zvs - g)
where
E.h
g: 2 2 2
(1 _Vs )pstC
and
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The error between the numerical and the analytical solutions is computed using

equation * at discrete times t, during a period once periodic state in flow is reached.
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Figure. (Left) Velocity profile at a cross section located at mid-length of the tube.
Analytical solution (solid line) and numerical solution (for positive Y only) (dashed line).
(Right) Error in axial velocity between the numerical and the analytical solution along a

cross section for different instants of a period of time.
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Wave dynamics
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Figure. Illustration of the propagating waves in the multilayer impedance pump.
Example for =10.1 Hz. (a) Selected frames of the model outline over one period of time
at periodic conditions. The time t of each selected frame is expressed as a fraction of the

period T. (b) Corresponding snapshots of the axial velocity fluid field for each of the

selected times (c) Axial pressure longitudinal distribution for each of the selected times.
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Appendix 3

MIP with a viscoelastic material

A model of MIP using a viscoelastic gelatin that is time dependant and temperature
independent has been implemented. The MIP model is identical to the one described in
section 2.1.

The stiffness, Poisson’s ratio and density of the gelatin, are the same as in section 2.1
(see table). The gelatin being treated as a viscoelastic material, the state of stress in the

gelatin follows:

Sij (t) = 2C;gel (O)eij (t) + 2J. eij (t - T) ngeI (T) d T,
0 T
0y (1) = 3K 30 (08 (1) +3[ £, (t - 7) dK§e| ). |
0 T

where t is the time,

1
Sij = 03 +§5ijo-kk >

1s the deviatoric stress, 5” 1s the Kronecker delta, opt is the stress,

1
€ij =& _§5ij5kk 5

is the deviatoric strain, ¢&; is the strain, G (t) is the shear modulus and K (t)is the

bulk modulus defined by:

Egel (t)

G ()= ,
() m



In the viscoelastic formulation, the shear and bulk moduli are expressed in terms of a

Prony-Dirichlet series where variation of temperature is neglected.

Ggel (t) = Ggel (O) + (Bc)e_dlt >

K g (1) = K (0)+ K e ™,

where G, (0) is the final shear modulus, K (0) the final bulk modulus, G, and K,

are constant coefficients, and d, and d, are the relaxations parameters for the shear and

bulk modulus respectively.

Table. Characteristics of viscoelastic gelatin.

Physical parameter Symbol Value
Stiffness E g 5 et+4 dyn/cm®
Poisson’s ratio Vel 0.49
Density Pl 1 g/em’
Shear modulus G 8.3 e+5 dyn/cm’
Bulk modulus K gel 1.67 e+4 dyn/cm’
Shear coefficient G, 83 et5
Bulk coefficient K 1.67 e+4
Shear relaxation parameter d, 1,000
Bulk relaxation parameter d, 1,000
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Figure. Exit flow rate time history for the MIP using a viscoelastic gelatin layer.

Frequency of excitation is 10.1 Hz. Mean exit flow reaches 90.6 cc/s.

This viscoelastic MIP model demonstrates that the MIP exhibits the same behavior
when a viscoelastic material is used to represent the gelatin. Results show that the
nonlinearities introduced by the viscoelastic material can be beneficent to the pumping if

appropriate material properties are chosen.
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Appendix 4

Error in linearization

Analytical

The error in solving for small strains can be estimated by calculating the error in strain
linearization for the maximum strain observed (30%):

uk,i 'uk,j
2

[N —
error

&ij =%(Ui,j FUj — Uy 'Uk,j):%(“i,j +uj,i)—

error = %* (0.3)’=0.045 < 5%

Numerical

In addition, we performed a comparison between two numerical simulations of the MIP,
one with the small strain assumption and one with the large strain assumption for the
pump excited at 11.5 Hz. We found a relative error in exit flow rate of 4.6104 e-4 (less

than 0.05%), which confirms the analytical results.

error = mean
telty ot +T]

Qsmall strain (t, Zo) _ Q large strain (t, Zo)
Q small strain (t, Zo)
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Appendix 5

High frequency results

The MIP defined in section 6.2.2 was excited at 5% of its external radius (instead of the

10% from the original MIP model) and frequencies ranging from 30 to 45 Hz.

Impulse response

The same impulse excitation as the one described in section 3.2 was applied to the MIP
model excited at 5% of its external radius. The spectrum of the exit flow rate is similar to
the one described in section 3.2, confirming the invariance of the model’s natural

frequencies with respect to pinching amplitudes.

Q [cefs]

2000t

pouy

] 0 20 4I0 6I0 80
sl flHz]

PSD[(dyn/cm?2)2/Hz]

(=]

Figure. Impulse response of the MIP model excited at 5% of its external radius.
(Left) Exit flow rate variation in time under triangular impulse excitation. (Right) The

associated Power Spectrum Density (PSD).
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Exit flow rate and frequency of excitation

The mean exit flow rate (Q ) is calculated for frequencies of excitation ranging from

30Hz to 45Hz. It is found positive and seem not to have a specific correlation with the
natural frequencies exhibited by the spectrum analysis. Although the excitation amplitude

is only 5% of the external radius, flow reaches up to 50 cc/s.

60

0 30 35 40 45

flHz]

Figure. Mean exit flow rate (6) as a function of the excitation frequency (f).

Wall displacement, axial pressure longitudinal distribution &
axial velocity longitudinal distribution
The wall displacement, axial pressure longitudinal distribution and axial velocity

longitudinal distribution is plotted over a period of time once periodicity in the flow is

achieved.
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Figure. Wall displacement, axial pressure longitudinal distribution and axial velocity

longitudinal distribution over a period of time once periodicity in the flow is achieved.
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Appendix 6

Viscous diffusion time

We estimate the diffusion time for the entire flow to be affected by the wall motion by
using the impulsively actuated oscillatory wall (2™ Stokes problem).
Considering an impulsively oscillatory wall in the Z direction of velocity U and of

frequency f, the velocity u in the fluid can be expressed using the self-similar variable 7 :

u=Ue"cos(2zft—7), n:y\/zt.
14

The fluid at the distance y=d away from the moving wall will have 0.99 of the wall

velocity (U) when :

7= _m(i] —d |- =0.0101.
U vt

The time t"to reach 99% of the wall velocity at the axis of symmetry of the pump model

(d=0.55cm) is then:

2
P ~2.6¢+5s ~ 74h .
v 0.0101





