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Appendix 1 

Model Validation 

In order to validate the numerical code, 3 computations for which the analytic solution is 

well known were performed. Using a rigid tube, we test first, the Poiseuille solution for a 

constant pressure gradient and second, for an oscillatory pressure gradient. Thirdly, we 

use the same oscillatory pressure in an elastic tube and compare the numerical results 

with the Wormesley solution. 

Constant pressure in a rigid tube 

Model 

 
 

Figure. Schematic of the Poiseuille flow model. Flow in the rigid tube is driven by a 

pressure gradient. 
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Table. Characteristics of the constant pressure in a rigid tube model. 
 

 

  

 

 

 

 

The first test case was the modelisation of a Poiseuille flow, being a constant pressure 

gradient in a rigid tube. The pressure gradient  

consisted in a constant normal traction applied at one extremity of the tube ( )( 0=zP ) 

and a zero pressure boundary condition at the other extremity of the tube ( )( LzP =  ).  

The tube was filled with water, and was of enough length so that flow is fully developed 

at the end of the tube.  

                                                 

b The Reynolds number for the Poiseuille flow is defined as: 
f

fzf Dv
Re μ

ρ max

= where fD  the tube’s 

diameter ( ff RD *2= ) 
c The entry length for the Poiseuille flow is defined as fe DRel 040.=  

Physical parameter Symbol Value 

Length of the pump L  40 cm 

Fluid domain radius fR  0.5 cm 

Fluid viscosity fμ  0.01 g/cm s 

Fluid density fρ  1 g/cm3 

Pressure drop along the tube PΔ  10 dyn/cm2 

Maximum axial velocity max
zv  1.563 cm/s 

Reynolds numberb eR  156.3 

Entry lengthc el  6.254 cm 

)()( 0=−==Δ zPLzPP , 
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The numerical model consisted in 12,000 4-noded axisymmetric elements, and the 

time step was set to 0.005 s. 

 

Comparison 

We compared the axial velocity profile at mid length of the tube where flow is fully 

developed. The Poiseuille solution for the axial velocity is dependent on the pressure 

gradient, the fluid viscosity and the tube geometry: 

)),((),,( 22

4 fo
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oz Rzty
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Δ
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μ

. 

 

The error between the numerical and the analytical solutions is defined to be absolute 

error in axial velocity relative to the analytical solution for each point y along a specific 

cross section located at ozz =  and at time ot  where flow is steady. 
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 We found a very good agreement of the numerical solution with the analytical 

solution, and an error of about 0.09%. 
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Figure. (Left) Velocity profile at a cross section located at mid-length of the tube. 

Analytical solution (thin line) and numerical solution (for positive Y only) (thick line and 

dots). (Right) Error in axial velocity between the numerical and the analytical solution 

along a cross section. 

Pulsatile pressure in a rigid tube 

 
Figure. Schematic of the Poiseuille flow model with pulsatile inlet pressure. 

 
The second test case consisted in the exact same rigid tube as the one from the previsous 

section with a pulsatile pressure inlet boundary condition. 

)sin()( tPtP ω=Δ , 
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with P = )( 0=zP =10 dyn/cm2 and ω =0.36 rad.s-1. 
 

The exact same numerical mesh and time step as the one from the previous section 

was used.  

 
Comparison 

The analytical solution is obtained by decomposing the flow into a steady and an 

oscillatory part. After separation of variables in the governing equation for the oscillatory 

part, the spatial component is found by solving a Bessel equation, and the axial velocity 

is expressed as: 61 
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where 0J is the Bessel function of order zero, and Ω a non dimensional parameter 

function of the material properties of the fluid, the fluid radius and the frequency of the 

imposed pulsatile pressure gradient:   

f
f

f R
μ
ωρ

=Ω ,  

and  

2
1 Ω−

=Λ
)(i .  

The error between the numerical and the analytical solutions is computed using 

equation (*) at discrete times ot  during a period once periodic state in flow is reached. 
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Figure. (Left) Velocity profile at a cross section located at mid-length of the tube. 

Analytical solution (solid line) and numerical solution (for positive Y only) (dashed line). 

(Right) Error in axial velocity between the numerical and the analytical solution along a 

cross section for different instants of a period of time.  

Pulsatile pressure in an elastic tube 

 

 
Figure. Schematic of the pulsatile pressure in an elastic tube model. 

The third test case consisted in the modeling of a pulsatile flow in an elastic tube by 

imposing a pulsatile pressure at one extremity of the tube, the other extremity being 

constrained to a constant pressure of zero value. The elastic tube was modeled using a 
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purely linear elastic material ( sE , sν ), and the thickness of the tube (h) was small 

compared to the fluid radius. 

 

Table. Characteristics of the pulsatile flow in an elastic tube model. 
 

 

 

 

 

 

 

 

 

In order to avoid any wave reflection in the elastic tube, an absorbing boundary 

condition was used at the end of the tube (z=L). The absorbing boundary condition 

consisted on a very long elastic tube (160 cm) made out of the exact same elastic tube. At 

the entrance of the tube, motion of the tube in the longitudinal direction was constrained, 

but radial motion was allowed. 

 

 

Physical parameter Symbol Value 

Length of the pump L  40 cm 

Fluid domain radius fR  0.5 cm 

Elastic tube thickness h 0.05 cm 

Elastic tube stiffness sE  1 e+5 dyn/cm2 

Elastic tube Poisson’s ratio sν  0.3 

Elastic tube density sρ  1 g/cm3 

Fluid viscosity fμ  0.01 g/cm s 

Fluid density fρ  1 g/cm3 

Pressure drop along the tube PΔ 10 dyn/cm2 
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Comparison 

Similarly to the case of pulsatile flow in a rigid tube, the analytical solution is obtained 

by decomposing the flow into a steady and an oscillatory part and coupling the Navier 

Stokes equations with the equations of the wall motion. The velocity in the elastic tube 

has an axial and a longitudinal component. After separation of variables in the governing 

equation for the oscillatory part, the spatial component is found by solving a Bessel 

equation, and the axial velocity is expressed as: 61 
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where c is the wave speed found by solving a quadratic equation in z where 
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G is an elasticity factor given by:  
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The error between the numerical and the analytical solutions is computed using 

equation * at discrete times ot  during a period once periodic state in flow is reached. 

 

 
 

Figure. (Left) Velocity profile at a cross section located at mid-length of the tube. 

Analytical solution (solid line) and numerical solution (for positive Y only) (dashed line). 

(Right) Error in axial velocity between the numerical and the analytical solution along a 

cross section for different instants of a period of time.  
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Appendix 2 

Wave dynamics 
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Figure (a) 
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Figure (b) 
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Figure (c) 
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Figure. Illustration of the propagating waves in the multilayer impedance pump. 

Example for f=10.1 Hz. (a) Selected frames of the model outline over one period of time 

at periodic conditions. The time t of each selected frame is expressed as a fraction of the 

period T. (b) Corresponding snapshots of the axial velocity fluid field for each of the 

selected times (c) Axial pressure longitudinal distribution for each of the selected times. 
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Appendix 3 

MIP with a viscoelastic material 

A model of MIP using a viscoelastic gelatin that is time dependant and temperature 

independent has been implemented. The MIP model is identical to the one described in 

section 2.1.  

The stiffness, Poisson’s ratio and density of the gelatin, are the same as in section 2.1 

(see table). The gelatin being treated as a viscoelastic material, the state of stress in the 

gelatin follows: 
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where t is the time, 

kkijijijs σδσ
3
1

+= ,  

is the deviatoric stress, ijδ is the Kronecker delta, ijσ  is the stress, 

kkijijije εδε
3
1

−= ,  

is the deviatoric strain, ijε  is the strain, )(tGgel  is the shear modulus and )(tK gel is the 

bulk modulus defined by: 
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( )gel

gel
gel

tE
tK

ν213 −
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In the viscoelastic formulation, the shear and bulk moduli are expressed in terms of a 

Prony-Dirichlet series where variation of temperature is neglected. 

td
ogelgel eGGtG 10 −+= )()( ,  

td
ogelgel eKKtK 20 −+= )()( ,  

where )(0gelG  is the final shear modulus, )(0gelK  the final bulk modulus, oG  and oK  

are constant coefficients, and 1d  and 2d are the relaxations parameters for the shear and 

bulk modulus respectively. 

 

Table. Characteristics of viscoelastic gelatin. 
 

 

 

 

 

 

 

 

 

Physical parameter Symbol Value 

Stiffness gelE  5 e+4 dyn/cm2 

Poisson’s ratio gelν  0.49 

Density gelρ  1 g/cm3 

Shear modulus gelG  8.3 e+5 dyn/cm2 

Bulk modulus gelK  1.67 e+4 dyn/cm2 

Shear coefficient oG  8.3 e+5 

Bulk coefficient oK  1.67 e+4 

Shear relaxation parameter 1d  1,000 

Bulk relaxation parameter 2d  1,000 
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Figure. Exit flow rate time history for the MIP using a viscoelastic gelatin layer. 

Frequency of excitation is 10.1 Hz. Mean exit flow reaches 90.6 cc/s. 

This viscoelastic MIP model demonstrates that the MIP exhibits the same behavior 

when a viscoelastic material is used to represent the gelatin. Results show that the 

nonlinearities introduced by the viscoelastic material can be beneficent to the pumping if 

appropriate material properties are chosen. 
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Appendix 4 

Error in linearization 

Analytical 

The error in solving for small strains can be estimated by calculating the error in strain 

linearization for the maximum strain observed (30%): 
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error = ½* (0.3)2=0.045 < 5% 

 

Numerical 

In addition, we performed a comparison between two numerical simulations of the MIP, 

one with the small strain assumption and one with the large strain assumption for the 

pump excited at 11.5 Hz. We found a relative error in exit flow rate of 4.6104 e-4 (less 

than 0.05%), which confirms the analytical results. 
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Appendix 5 

High frequency results 

The MIP defined in section 6.2.2 was excited at 5% of its external radius (instead of the 

10% from the original MIP model) and frequencies ranging from 30 to 45 Hz. 

 

Impulse response 

The same impulse excitation as the one described in section 3.2 was applied to the MIP 

model excited at 5% of its external radius. The spectrum of the exit flow rate is similar to 

the one described in section 3.2, confirming the invariance of the model’s natural 

frequencies with respect to pinching amplitudes. 

    

Figure. Impulse response of the MIP model excited at 5% of its external radius. 

(Left) Exit flow rate variation in time under triangular impulse excitation. (Right) The 

associated Power Spectrum Density (PSD). 
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Exit flow rate and frequency of excitation 

The mean exit flow rate (Q ) is calculated for frequencies of excitation ranging from 

30Hz to 45Hz. It is found positive and seem not to have a specific correlation with the 

natural frequencies exhibited by the spectrum analysis. Although the excitation amplitude 

is only 5% of the external radius, flow reaches up to 50 cc/s. 

 

Figure. Mean exit flow rate (Q ) as a function of the excitation frequency (f). 

Wall displacement, axial pressure longitudinal distribution & 

axial velocity longitudinal distribution 

The wall displacement, axial pressure longitudinal distribution and axial velocity 

longitudinal distribution is plotted over a period of time once periodicity in the flow is 

achieved. 
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f Wall position Axial pressure Axial velocity 

30Hz 

31Hz 

32Hz 

33Hz 
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34Hz 

 

35Hz 

 

36Hz 

37Hz 

 

38Hz 
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39Hz 

40Hz 

 

41Hz 

  

42Hz 

 

43Hz 
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44Hz 

 

Figure. Wall displacement, axial pressure longitudinal distribution and axial velocity 

longitudinal distribution over a period of time once periodicity in the flow is achieved. 
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Appendix 6 

Viscous diffusion time 

We estimate the diffusion time for the entire flow to be affected by the wall motion by 

using the impulsively actuated oscillatory wall (2nd Stokes problem). 

Considering an impulsively oscillatory wall in the Z direction of velocity U and of 

frequency f, the velocity u in the fluid can be expressed using the self-similar variable η : 

( )ηπη −= − tfeUu 2cos ,                         
t

y
ν
πη = .  

The fluid at the distance y=d away from the moving wall will have 0.99 of the wall 

velocity (U) when : 
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The time *t to reach 99% of the wall velocity at the axis of symmetry of the pump model 

(d=0.55cm) is then: 
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