MULTILAYER IMPEDANCE PUMP:

A Bio-inspired Valveless Pump with Medical Applications

A thesis by

Laurence Loumes

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Defended December 8, 2006)

© 2007

Laurence Loumes

All Rights Reserved

I dedicate this thesis to my parents who always valued education and taught me hard work, perseverance, humility, honesty and integrity.

Acknowledgements

I am very thankful to my advisor Prof. Mory Gharib for his insights and support throughout my PhD. At his contact, I learned how to think outside the box and not to be afraid of taking risks.

I would like to thank John and Idit for their mentoring throughout my PhD. Dr. Idit Avrahami who was a post-doctoral scholar in the Gharib group, was constantly by my side to guide me through all the different steps a PhD student encounters and provided me with an exceptional mentoring. She became a great friend. I learned a lot from her, scientifically and emotionally. Dr. John Dabiri, now professor at Caltech, has been a constant support and guidance, always available and keeping track with my progress. I got to know John since the start of my PhD when, at the time we were both enrolled in the aero program. At a time I was not sure I wanted to go for a PhD, John told me about that research group on campus that uses fluid mechanics in biological context...

Finally, I would like to acknowledge my family and friends who kept me sane and bared my crazy moments.

Abstract

This thesis introduces the concept of multilayer impedance pump, a novel pumping mechanism inspired from the embryonic heart structure.

The multilayer impedance pump is a composite two-layer fluid-filled elastic tube featuring a thick, gelatin-like internal layer similar in nature to the embryonic cardiac jelly, and that is used to amplify longitudinal elastic waves. Pumping is based on the impedance pumping mechanism. Elastic waves are generated upon small external periodic compressions of the elastic tube. They propagate along the tube's walls, reflect at the tube's extremities and drive the flow in a preferential direction. This fully coupled fluid-structure interaction problem is solved for the flow and the structure using the finite element method over a relevant range of frequencies of excitation. Results show that the two-layer configuration can be an efficient wave propagation combination, and that it allows the pump to produce significant flow for small excitations. The multilayer impedance pump is a complex system in which flow and structure exhibit a resonant behavior. At resonance, a constructive elastic wave interaction coupled with a most efficient energy transmission between the elastic walls and the fluid is responsible for the maximum exit flow. The pump efficiency reaches its highest at resonance, highlighting furthermore the concept of resonance pumping.

Using the proposed multilayer impedance pump model, we are able to bring an additional proof on the impedance nature of the embryonic heart by comparing a

peristaltic and an impedance multilayer pump both excited in similar fashion to the one observed in the embryonic heart.

The gelatin layer that models the embryonic cardiac jelly occupies most of the tube walls and is essential to the propagation of elastic waves. A comparison between the exact same impedance pump with and without the additional gelatin layer sheds light on the dynamic role of the cardiac jelly in the embryonic heart and on nature's optimized design.

Finally, several biomedical applications of multilayer impedance pumping are presented. A physiologically correct model of aorta is proposed to test the pump as an implantable cardiovascular assist device.

Table of Contents

Chapte	er 1 Introduction and Background	1
1.1	The embryonic heart	2
1.1	1.1 Formation and structure	2
1.1	1.2 The embryonic beating heart as a pump	3
1.2	Properties of an impedance pump	6
1.2	2.1 The concept of impedance	6
1.2	2.2 The impedance pump function	6
1.3	Concept of multilayer impedance pump	8
1.4	Overview	10
Chapte	er 2 The Multilayer Impedance Pump Model	12
2.1	Physical model	12
2.2	Mathematical model	
2.3	Numerical model	17
Chapte	er 3 MIP Flow and Structure Behavior	18
3.1	Model Verification	18
3.2	Model Validation	18
3.3	Identification of the natural frequencies of the system	19
3.4	Pulse velocity	21
3.5	Flow rate variation in time	22
3.6	Mean exit flow rate and frequency	22

	viii	
3.7	Reynolds number and Womersley number	24
3.8	Wall motion	25
3.9	Wave interaction in a multilayer impedance pump	26
3.10	Velocity profiles	31
3.11	Wall position, axial velocity and axial pressure longitudinal distribution	34
3.12	Mechanical work done by the elastic tube	38
3.13	Pumping efficiency	43
Chapte	r 4 Discussion	46
Chapte	r 5 Impedance Pumping in the Embryonic Heart	51
5.1	The different embryonic heart pumping models	52
5.1	.1 The peristaltic excitation	53
5.1	.2 The impedance excitation	55
5.2	Flow, pressure, and energy expenditure in the two models of embryonic	heart
pump	ing	55
5.2	.1 Flow and pressure in the peristaltic pump model	55
5.2	.2 Flow and pressure in the impedance pump model	56
5.2	.3 Energy expenditure	56
5.3	Discussion	58
Chapte	r 6 Dynamic Role of the Cardiac Jelly	61
6.1	Properties of the cardiac jelly	62
6.2	Numerical simulations	64
6.2	.1 Models	64
6.2	.2 Exit flow rate variation in time	64

6.2.3	Compared performances	65
6.2.4	Validation with a second MIP model	67
6.3 N	Nature's design: Importance of the cardiac jelly	68
Chapter 7	Potential Cardiovascular Applications	70
7.1 N	Medical applications of the MIP	70
7.1.1	Intra-aortic pump	71
7.1.2	Gelatin-coated graft	72
7.2 P	Physiologically correct model of an aorta	75
7.2.1	Nature of the flow in the descending aorta	75
7.2.2	Aorta model with pulsatile boundary conditions	77
7.2.3	Results	79
7.2.4	Summary	81
Chapter 8	Conclusion	82
Appendix	1 Model Validation	84
Appendix	2 Wave dynamics	93
Appendix	3MIP with a viscoelastic material	93
Appendix	4 Error in linearization	101
Appendix	5 High frequency results	102
Appendix	6 Viscous diffusion time	108
References	s	111

List of Figures

Figure 1. (Left) Schematic of a peristaltic pump. (Right) Schematic of an impedance
pump
Figure 2. Ventral views of the embryonic heart tube formation in the chick
Figure 3. Cross section of the embryonic heart tube in the chick. 4
Figure 4. Illustration of the function of the Multilayer Impedance Pump (MIP)
Figure 5. (Top) 3D view and (Bottom) 2D view in longitudinal cross section of the
physical model of the MIP
Figure 6. 2D axisymmetric longitudinal outline of the MIP model with excitation and
boundary conditions16
Figure 7. 2D axisymmetric longitudinal view of the mesh. 17
Figure 8. (Top) Impulse response: exit flow rate variation in time under triangular
impulse excitation. (Bottom) The associated Power Spectrum Density (PSD)
Figure 9. Typical exit flow rate history plot.
Figure 10. Mean exit flow rate (\overline{Q}) as a function of the excitation frequency (f)
Figure 11. Gelatin maximum positive radial strain in time and space as a function of the
frequency of excitation (f)
Figure 12. Illustration of the propagating waves in the multilayer impedance pump.
(Top) Outline of the model. Walls position against longitudinal axis. (Middle)
Corresponding snapshots of the axial velocity fluid field. (Bottom) Axial pressure
longitudinal distribution

Figure 13. Velocity profiles. (a) Instantaneous axial velocity field and velocity profiles at
11 cross sections along the tube. (b) Enlarged view of the different velocity profiles. (c)
Velocity profile at the exit of the pump (#11) for selected times over a period of time 34
Figure 14. Wall displacement, axial pressure longitudinal distribution and axial velocity
longitudinal distribution over a period of time once periodicity in the flow is achieved. 38
Figure 15. (Top) Input and Output cross sections. (Bottom) Control volume and fluid
energy balance
Figure 16. Pumping work of the elastic tube (W_{pump}) as a function of frequency of
excitation (f).
Figure 17. Equivalent model: Poiseuille flow driven by a pressure gradient
Figure 18. Efficiency (ε) of the MIP as a function of the frequency of excitation (f) 45
Figure 19. Model peristaltic embryonic heart pump. 2D longitudinal cross-sectional view
of the multilayered tube with an imposed peristaltic displacement wave
Figure 20. Schematic and conventions of the imposed peristaltic wave motion. c is the
wave velocity. 54
Figure 21. Flow and pressure in the PerisEHM. (Left) Exit flow rate and time. (Right)
Axial pressure longitudinal distribution over 1 period
Figure 22. Flow and pressure in the ImpEHM. (Left) Exit flow rate and time. (Right)
Axial pressure longitudinal distribution over 1 period
Figure 23. Simplified model of embryonic heart tube. Cross sections in relaxed and
contracted states
Figure 24. Comparative 2D axisymmetric longitudinal views. (Top) Single layer IP.
(Bottom) Gelatin-coated multilayer IP

Figure 25. (Top) Exit flow rate history plot for the SLIP. (Bottom) Exit flow rate history
plot for the gelatin-coated MIP. 66
Figure 26. Exit flow rate history plot for the second test case of MIP with a modified
gelatin layer
Figure 27. Illustration of the MIP fitting the inside of the aorta
Figure 28. A schematic illustration of blood flow in the TCPC Fontan circulation 75
Figure 29. Schematic of the aorta model and the boundary conditions
Figure 30. Imposed inlet velocity waveform. Plot of the axial velocity v_z is normalized
by its peak value v_z^{max} over one period ($f=1\text{Hz}$).
Figure 31. Physiologically correct model of aorta. 2D cross sectional view. Geometry
and boundary conditions. 79
Figure 32. Resulting inlet axial pressure from the inlet imposed velocity profile 80
Figure 33. (Right) Axial velocity variation in time.(Left)axial pressure variation in time.
Plots are for the node located at mid length of the test domain on the axis of symmetry. 81

List of Tables

Table 1. Physical parameters of the MIP. 14
Table 2. The different test cases (mesh and time steps refinements) and the associated
error with respect to the finest mesh
Table 3. Comparison of the flow, typical pressure inside the pump, pumping work,
actuation work, and efficiency between the PerisEHM and the ImpEHM58
Table 4. Comparison of the flow, typical pressure inside the pump, pumping work,
actuation work, and efficiency between the SLIP and MIP for the same excitation
conditions