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Abstract

This thesis presents two new results concerning the limiting behavior of families of automorphic

forms. The work is presented in a sequence of chapters. The first, “Mass equidistribution

of Hilbert modular eigenforms,” has been accepted for publication in the Ramanujan Journal

(Springer), while the second, “Equidistribution of cusp forms in the level aspect,”1 has been

accepted for publication in the Duke Mathematical Journal (Duke University Press). Some

minor differences exist between these chapters and the papers they represent. The abstracts of

the accepted versions of these papers follow.

1. Let F be a totally real number field, and let f traverse a sequence of nondihedral holo-

morphic eigencuspforms on GL2 /F of weight (k1, . . . , k[F:Q]), trivial central character, and

full level. We show that the mass of f equidistributes on the Hilbert modular variety as

max(k1, . . . , k[F:Q])→∞.

Our result answers affirmatively a natural analogue of a conjecture of Rudnick and Sarnak

(1994). Our proof generalizes the argument of Holowinsky-Soundararajan (2008) who

established the case F = Q. The essential difficulty in doing so is to adapt Holowinsky’s

bounds for the Weyl periods of the equidistribution problem in terms of manageable shifted

convolution sums of Fourier coefficients to the case of a number field with nontrivial unit

group.

2. Let f traverse a sequence of classical holomorphic newforms of fixed weight and increasing

squarefree level q →∞. We prove that the pushforward of the mass of f to the modular

curve of level 1 equidistributes with respect to the Poincaré measure.

Our result answers affirmatively the squarefree level case of a conjecture spelled out in

2002 by Kowalski, Michel, and VanderKam [36] in the spirit of a conjecture of Rudnick

and Sarnak [52] made in 1994.

1Duke Mathematical Journal, forthcoming in vol. 160, issue 3. Copyright 2011, Duke Uni-

versity Press. Reprinted by permission of the publisher.
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Our proof follows the strategy of Holowinsky and Soundararajan [25] who showed in 2008

that newforms of level 1 and large weight have equidistributed mass. The new ingredients

required to treat forms of fixed weight and large level are an adaptation of Holowinsky’s

reduction of the problem to one of bounding shifted sums of Fourier coefficients, a refine-

ment of his bounds for shifted sums, an evaluation of the p-adic integral needed to extend

Watson’s formula to the case of three newforms where the level of one divides but need not

equal the common squarefree level of the other two, and some additional technical work

in the problematic case that the level has many small prime factors.
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Chapter 1

Introduction

The basic problem addressed in this work is the study of the limiting behavior of families of

automorphic forms and special values of L-functions. Automorphic forms and their L-functions,

which generalize the classical zeta function of Riemann, are fundamental in modern number

theory.

Let f : H→ C be a classical holomorphic newform of weight k and level q. The mass of f is

the finite measure dνf = |f(z)|2yk−2 dx dy (z = x+ iy) on the modular curve Y0(q) = Γ0(q)\H.

Our starting point is the recent proof by Holowinsky and Soundararajan [25] that newforms of

large weight k and fixed level q = 1 have equidistributed mass with respect to the hyperbolic area

measure, answering affirmatively a natural variant1 of the quantum unique ergodicity conjecture

of Rudnick and Sarnak [52].

Theorem 1.0.1 (Mass equidistribution for SL(2,Z) in the weight aspect). Let f traverse a

sequence of newforms of increasing weight k → ∞ and fixed level q = 1. Then the mass νf

equidistributes2 with respect to the Poincaré measure dµ = y−2 dx dy on the modular curve

Y0(q).

1as spelled out by Luo and Sarnak [42]; we refer to Sarnak [53, 54] and the references in [25]

for further discussion.

2We say that a sequence of finite Radon measures µj on a locally compact Hausdorff space X

equidistributes with respect to some fixed finite Radon measure µ if for each function φ ∈ Cc(X)

we have µj(φ)/µj(1)→ µ(φ)/µ(1) as j →∞, here and always identifying a measure µ with the

corresponding linear functional φ 7→ µ(φ) :=
∫
X
φdµ on the space Cc(X) and writing 1 for the

constant function.
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We prove two new variants of the Holowinsky-Soundararajan result by suitably adapting

their method and tackling some new subtleties that arise. Before stating our main results,

let us highlight two perspectives from which the study of limiting behavior of the masses of

automorphic forms is natural and interesting. First, it is analogous to a fundamental problem in

quantum chaos, which concerns more generally the limiting behavior as λ→∞ of eigenfunctions

φ

(∆ + λ)φ = 0 (1.1)

of the Laplacian ∆ on a compact Riemannian manifold M for which the geodesic flow is chaotic

(see [53]). Here the geodesic flow on M is regarded as the Hamiltonian flow of a chaotic classical

mechanical system, the Laplacian ∆ � L2(M) as the Hamiltonian operator for the correspond-

ing quantized system, and the eigenfunction φ (normalized so that
∫
|φ|2 = 1) as the wave

function for a quantum particle on M of energy λ whose position is described in the Copen-

hagen interpretation of quantum mechanics by the probability density |φ|2. In suitable units

the Schrödinger equation for stationary states reads (~2∆ + λ)φ = 0, so studying φ in (1.1) as

λ → ∞ is akin to considering the semiclassical limit ~ → 0 of the quantization of the geodesic

flow.

Among several questions that one can ask we single out that of the behavior of the densities

|φ|2 for particles of high energy λ→∞. A fundamental result in this direction is the quantum

ergodicity theorem of Schnirelman, Colin de Verdière, and Zelditch [56, 6, 73], which asserts that

if the geodesic flow on the unit cotangent bundle of M is ergodic, then for any sequence (φn) with

λn →∞ there exists a full-density subsequence (φnk) such that the |φnk |2 equidistribute.3 In the

particular case that M is negatively curved, the quantum unique ergodicity (QUE) conjecture

of Rudnick and Sarnak [52] predicts that the full sequence of |φn|2 equidistributes with respect

to the volume measure on M as λ→∞.

The QUE conjecture is considered difficult and there has been little progress for general M ,

but for certain special M that arise from arithmetic considerations (such as the modular curve or

the Hilbert modular varieties) there has been significant progress on QUE and related questions

[54, 41, 40, 65, 63, 25]. Such arithmetic manifolds arise as quotients of symmetric spaces by

arithmetic groups and are characterized by the presence of additional symmetry in the form of

a large commuting family T of correspondences that commute with the algebra D of invariant

differential operators, thereby providing a powerful tool for the study of common eigenfunctions

of T and D. One may hope that such arithmetic instances of QUE provide tractable and yet

3in a more precise sense than we describe here; see the introduction to [52]
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representative model cases for the more general problem (see [53]).

A second motivation for our considerations arises from their connection to central problems

in the analytic theory of L-functions. Watson [70] showed that for M = SL(2,Z)\H (as well as

other “arithmetic surfaces” Γ\H), the Weyl periods for the equidistribution problem posed by

QUE are essentially products of central values L( 1
2 ) of automorphic L-functions L(s) of degree

at most 6; a similar relation holds over totally real fields (see §2.3.2) and for newforms of varying

level (see remark 15). The generalized Riemann hypothesis (GRH) for such L(s), which asserts

that the nontrivial zeros of L(s) lie on the line Re(s) = 1
2 , would imply sufficiently strong bounds

on L( 1
2 ) to establish the QUE conjecture for M . But the bounds on L( 1

2 ) demanded by QUE

are considerably more tractable than those implied by the GRH (let alone the GRH itself), and

so provide accessible problems on which to develop new techniques.

We now give somewhat informal statements of our main results. In chapter 2, we generalize

theorem 1.0.1 to an arbitrary totally real number field F, where the main technical challenge for

[F : Q] > 1 is presented by the infinite unit group. This result specializes to theorem 1.0.1 in

the case F = Q.

Theorem 1.0.2 (Mass equidistribution for Hilbert modular eigenforms in the max-weight as-

pect). Let F be a totally real number field, and let f traverse a sequence of full-level nondihedral

holomorphic eigencuspforms on PGL(2)/F with any weight component of f tending to ∞. Then

the mass of f equidistributess with respect to the invariant measure on the appropriate adelic

quotient of PGL(2)/F.

Kowalski, Michel, and VanderKam [36, Conj 1.5] formulated an analogue of theorem 1.0.1

in which the roles of the parameters k and q are reversed: they conjectured that the masses of

newforms of fixed weight and large level q are equidistributed amongst the fibers of the canonical

projection πq : Y0(q)→ Y0(1) in the following sense.

Conjecture 1.0.3 (Mass equidistribution for SL(2,Z) in the level aspect). Let f traverse a

sequence of newforms of fixed weight and increasing level q →∞. Then the pushforward under

πq of the mass of f equidistributes with respect to the Poincaré measure on Y0(1).

In chapter , we prove the squarefree level case of Conjecture 1.0.3.

Theorem 1.0.4 (Mass equidistribution for SL(2,Z) in the squarefree level aspect). Let f tra-

verse a sequence of newforms of fixed weight and increasing squarefree level q → ∞. Then the

pushforward under πq of the mass of f to Y0(1) equidistributes with respect to the Poincaré

measure on Y0(1).

The main technical difficulties here are to find a suitable generalization of Holowinsky’s un-

folding method for forms of increasing level, to improve his bounds for shifted convolution sums
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in their dependence on the size of the shift with respect to the size of the summation interval,

and to generalize Watson’s formula relating the integral of the product of three newforms of the

same squarefree to the central L-value of their triple product L-function to the case of triples of

newforms of possibly varying squarefree level.

Having stated informally our main results, we now survey the ideas involved in their proofs.

In chapter 2, we consider nondihedral holomorphic Hilbert modular eigencuspforms f on PGL2 /F

of weight (k1, . . . , k[F:Q]) and full level, the equidistribution of whose mass we seek on the (in

general, non-connected) Hilbert modular variety Y . The basic strategy, as in many equidistri-

bution problems, is to study the “Weyl periods”
∫
φ|f |2 as φ traverses a convenient spanning

set of functions on Y , analogous to how one uses the exponentials R/Z 3 x 7→ e2πinx to prove

the equidistribution of the fractional parts of αk (k ∈ N) for α ∈ R−Q.

Indeed, theorem 2.1.1 follows as soon as one can establish (2.1) for each element φ of a set

the uniform closure of whose span contains Cc(Y ). Such a spanning set is furnished by the

Maass eigencuspforms and the incomplete Eisenstein series, as defined in §2.2.8. To highlight

the essential difficulties let us suppose in this section that φ is a Maass eigencuspform. Then∫
φ = 0, so to establish (2.1) we must show that

∫
φ|f |2∫
|f |2

→ 0 as max(k1, . . . , k[F:Q])→∞, (1.2)

where the rate of convergence is allowed to depend upon φ.

Take F = Q and f of weight k for now. Holowinsky and Soundararajan established (1.2)

by a remarkable synthesis of their independent efforts [24, 66], which we now recall briefly,

saving a more detailed discussion for §2.3 and referring to the lucid expositions of [25, 54, 64]

for further motivation and details. Watson’s formula [70] and work of Gelbart-Jacquet [14] and

Hoffstein-Lockhart-Goldfeld-Lieman [22] imply (see [25, Lem 2]) that

∫
φ|f |2∫
|f |2

≈φ
|L(φ× ad f, 1

2 )|1/2

k1/2
exp

−∑
p≤k

1

p
λ(p2)

 , (1.3)

where L(·) denotes the finite part of the L-function indicated above, ≈φ denotes equality up

to multiplication by a bounded power of log log(k) times a constant depending upon φ, and

λ(n) is the nth Fourier coefficient of f normalized so that the Deligne bound reads |λ(p)| ≤ 2.

Soundararajan proves a “weak subconvexity” bound for the central values of quite general L-

functions satisfying a “weak Ramanujan hypothesis,” specializing in the present circumstances



5

to |L(φ× ad f, 1
2 )| � k/ log(k)1−ε for any ε > 0, which implies (1.2) provided that

∑
p≤k

1
pλ(p2)∑

p≤k
1
p

≥ −1/2 + δ + ok→∞(1) for some fixed δ > 0. (1.4)

By considering Fourier expansions at the cusps of the modular curve and bounding the sums

(described below in more detail) that arise, Holowinsky proves (following the reformulation of

Iwaniec [30]) ∫
φ|f |2

|f |2
�φ,ε log(k)ε exp

−∑
p≤k

1

p
(|λ(p)| − 1)2

 , (1.5)

which implies (1.2) provided that

∑
p≤k

1
p (|λ(p)| − 1)2∑
p≤k

1
p

≥ δ + ok→∞(1) for some fixed δ > 0. (1.6)

In summary, Soundararajan succeeds unless typically λ(p2) / −1/2, while Holowinsky succeeds

unless typically |λ(p)| ≈ 1 (in the harmonically weighted sense taken over p ≤ k); the identity

λ(p)2 = λ(p2) + 1 shows that

λ(p2) / −1/2 =⇒ |λ(p)| /
√

1/2 and |λ(p)| ≈ 1 =⇒ λ(p2) ≈ 0,

so in all cases at least one of their approaches succeeds.

The basic ideas underlying our proof when F is totally real are the same as those just

described in the case F = Q; the generalization is a nontrivial and yet purely technical matter,

requiring no fundamental reworking of the overall strategy. As we shall explain in §2.3, the only

part of the F = Q argument that does not generalize transparently is Holowinsky’s proof of

(1.5). His argument amounts to

1. bounding
∫
φ|f |2/

∫
|f |2 from above in terms of the “shifted sums”

X−1
smooth∑

n∈Z∩[1,X]

λ(n)λ(n+ l), (1.7)

where l 6= 0 is a small integer and X ≈ k, and

2. bounding the shifted sums (1.7); a reformulation [30] of the bound that Holowinsky obtains

is

X−1
∑

n,n+l∈Z∩[1,X]

|λ(n)λ(n+ l)| � τ(l) log(k)ε
∏
p≤k

(
1 +

2(|λ(p)| − 1)

p

)
, (1.8)

which is roughly the square of the bound one would expect for X−1
∑
|λ(n)| and so
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may be understood as asserting the independence of the random variables n 7→ |λ(n)|,

n 7→ |λ(n+ l)| owing to the independence of the prime factorizations of n and n+ l and the

multiplicativity of λ. The novelty in his argument is that he does not exploit cancellation

in the sums (1.7) that one would expect to arise from the independent variation in sign

of λ(n) and λ(n + l) for varying n and fixed l 6= 0; his motivation for doing so came

from the expectation that the λ(p) follow the Sato-Tate distribution, which suggests that

X−1
∑
|λ(n)| � log(X)−δ for some small δ > 0. See [42, 25, 54, 64] and especially [23]

for further discussion.

Now let [F : Q] = d and take f of weight (k1, . . . , kd). The most näıve higher-dimensional

generalization of Holowinsky’s method that we found requires one to replace X and Z ∩ [1, X]

in (1.7) by X ≈ k1 · · · kd and o ∩ R, where o is the ring of integers in F and R is the region in

the totally positive quadrant of F ⊗Q R ∼= Rd bounded by the hyperbola {x1 · · ·xd = X} and

the hyperplanes {xi = c} for some small constant c > 0. Unfortunately, the volume of R is

roughly X log(X)d−1, so even the most optimistic bounds along the lines of (1.8) fail to produce

an estimate of the quality (1.5) because of the unaffordable factor log(X)d−1 when d > 1.

To circumvent this difficulty, we refine Holowinsky’s upper bound for
∫
φ|f |2 by a method

that when F = Q leads (see remark 1) to the precise asymptotic expansion∫
φ|f |2∫
|f |2

∼ (Y k)−1

L(ad f, 1)

∑∑
m=n+l

max(m,n)�Y k

λφ(l)√
|l|
λf (m)λf (n)κφ,∞

(
k − 1

4π

∣∣∣log
m

n

∣∣∣) , (1.9)

where Y ≥ 1 tends slowly to infinity with k, λφ, and λf are the normalized Fourier coefficients

of φ and f respectively, κφ,∞(y) = 2y1/2Kir(2πy) for y > 0 if 1
4 + r2 is the Laplace eigenvalue

of φ, and the sum is taken over triples (l,m, n) ∈ Z3 for which 0 6= |l| < Y 1+ε, m > 0, n > 0,

m − n = l and max(m,n) � Y k (with the last condition imposed by a normalized smooth

truncation).

We exploit (in Lemma 2.4.3 and Corollary 2.4.4; see also remark 2) what amounts to the

overwhelming decay of the Bessel factor κφ,∞(· · · ) in the higher-dimensional generalization of

(1.9) when m,n lie in the outskirts of the region R; the simple proof that we give amounts to

some amusing inequalities satisfied by the hypergeometric function and ratios of pairs of Gamma

functions (see §2.8). In this way we reduce to bounding shifted sums of the form (1.7) taken

over o∩R′ with R′ the much smaller region bounded by the hyperbola {x1 · · ·xd = X} and the

hyperplanes {xi = kiY
1/d/U} with X = k1 · · · kdY and U = exp(log(X)ε). The volume of R′ is

merely ≈ X log(U)d−1 = X log(X)ε
′

with ε′ = (d − 1)ε, and this arbitrarily small logarithmic

power log(X)ε
′

is negligible in seeking estimates of type (1.8) and (1.5) which already contain

such a factor. The rest of our argument proceeds essentially as it did for Holowinsky upon
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replacing his Mellin transforms on R∗+ by Mellin transforms on certain quotients of the idele class

group of F, although some new features do arise (e.g., when F has general class number we must

consider Hilbert modular varieties having multiple connected components and exclude certain

dihedral forms from our analysis). We elaborate on these last few paragraphs in successively

greater detail in §2.3 and §2.4.

In chapter , where we consider the limiting behavior of mass of classical newforms of large

level, the synthetic part of the Holowinsky-Soundararajan argument works just as well as in

the weight aspect, so we highlight here four of the more substantial difficulties encountered in

adapting the independent arguments of Holowinsky and Soundararajan to the level aspect.

First, it is not a priori clear how best to extend Holowinsky’s unfolding trick in the presence

of multiple (possibly unboundedly many) cusps, nor what should take the place of his asymp-

totic analysis of archimedean integrals in studying the fixed weight, large level limit; several

fundamentally different approaches are possible, one of which we shall present in §3.3.1. When

q is squarefree, the problem then becomes to bound sums roughly of the form4

∑
d|q

∑
n�dk

λf (n)λf (n+ dl), (1.10)

where again l 6= 0 is essentially bounded. As we now explain, the sums (1.10) differ from the

sums ∑
n�k

λf (n)λf (n+ l), (1.11)

studied by Holowinsky in two important ways.

For one, the shifts dl are now nearly as large as the length of the interval ≈ dk over which

we are summing.5 Much of the existing work on bounds for such sums (see remark 13) ap-

plies only when the shift is substantially smaller than the summation interval. Holowinsky’s

treatment of (1.11) does allow shifts as large as the summation interval, but gives a bound for∑
n�qk λf (n)λf (n+ ql) that involves an extraneous factor of τ(ql), which is prohibitively large

(e.g., � log(q)A for any A) if q has many small prime factors. In theorem 3.3.10, we refine

Holowinsky’s method to allows shifts as large as the summation interval with full uniformity

in the size of the shift, e.g., without the factor τ(ql). This refinement may be of independent

4Here one should think of a divisor d of q as indexing the unique cusp of Γ0(q) of width d,

where as usual the width of a cusp is its ramification index over the cusp ∞ for Γ0(1).

5This difficulty corresponds the fact that cusps for Γ0(q) may have large width.
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interest.

Now let ω(q) denote the number of prime divisors of the squarefree integer q. Then the

number of shifted sums in (1.10) is 2ω(q), which can be quite large.6 In the crucial case7 that

|λf (p)| is typically small for primes p� qk, our refinement of Holowinsky’s method saves nearly

two logarithmic powers of dk over the trivial bound� dk for the shifted sum in (1.10) of length

≈ dk. Thus we save very little over the trivial bound if d is a small divisor of q, and it is not

immediately clear whether such savings are sufficient to produce a sufficient saving in the sum

over all d. One needs here an inequality of the shape

∑
d|q

dk

log(dk)2−ε �
qk

log(qk)2−ε log log(eeq), (1.12)

which one can interpret as saying that the divisors of any squarefree integer are well distributed

in a certain sense. Indeed, if hypothetically q were to have “too many” large divisors, then the

LHS of (1.12) might be large enough to swamp the small logarithmic savings, while if q were to

have “too many” small divisors, then the savings for each term on the LHS might be too small

to produce an overall savings. A convexity argument and a (weak form of the) prime number

theorem are sufficient to establish (1.12); see Lemma 3.3.13.

Finally, the identity relating µf (φ) to L(φ× f × f, 1
2 ) that Soundararajan’s method takes as

input is given by Watson [70] when f and φ are newforms of the same (squarefree) level. In the

level aspect, the relevant Weyl periods are those for which f has large level and φ has fixed level,

so Watson’s formula does not apply. We extend Watson’s result in theorem 3.4.1 by computing

(Lemma 3.4.3) a p-adic integral arising in Ichino’s general formula [26], specifically

∫
g∈PGL2(Qp)

〈g · φp, φp〉
〈φp, φp〉

〈g · fp, fp〉
〈fp, fp〉

〈g · fp, fp〉
〈fp, fp〉

dg, (1.13)

where φp (resp. fp) is the newvector at p for the adelization of φ (resp. f) and 〈, 〉 denotes a

PGL(2,Qp)-invariant Hermitian pairing on the appropriate representation space. The crucial

case for us is when p divides the squarefree level q of the newform f , so that φp lives in a spherical

representation of PGL2(Qp) and fp in a special representation. As we discuss in remark 15, our

evaluation of (1.13) leads to a precise formula relating
∫
ψ1ψ2ψ3 to L( 1

2 , ψ1 × ψ2 × ψ3) for any

three newforms of squarefree level (and trivial central character); such an identity should be of

6This difficulty corresponds to the fact that Γ0(q) may have many cusps.

7Soundarajan’s argument succeeds unless this is so.
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general use in future work that exploits the connection between periods and L-values.
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Chapter 2

Mass Equidistribution of Hilbert
Modular Eigenforms

2.1 Introduction

2.1.1 Statement of Main Result

Let F be a totally real number field and f a holomorphic Hilbert modular eigencuspform on

PGL2 /F of weight k = (k1, . . . , k[F:Q]) and full level. The mass |f |2 descends to a finite measure

on the Hilbert modular variety; our aim in this chapter is to prove that the measures so obtained

equidistribute with respect to the uniform measure as the weight k of f tends to∞. Motivation

for this problem, as discussed in §1, comes from its connection to quantum chaos by analogy

with the quantum unique ergodicity conjecture of Rudnick and Sarnak [52] as well as from its

connection to central problems in the analytic theory of L-functions, specifically those such as

the subconvexity problem that concern the rate of growth of central L-values. Our result and

its method of proof directly generalize recent work of Holowinsky and Soundararajan [25] in the

case F = Q, but the generalization is not immediate.

To state our principal result, let A be the adele ring of F and K a maximal compact subgroup

of the group PGL2(A). The space Y = PGL2(F)\PGL2(A)/K is a disjoint union (indexed by

a quotient of the narrow class group of F) of finite-volume non-compact complex manifolds of

dimension [F : Q]. Let µ be the quotient measure on Y induced by a fixed Haar measure on

PGL2(A)/K.

Theorem 2.1.1. Let f : PGL2(A)→ C traverse a sequence of nondihedral holomorphic eigen-

cuspforms of weight (k1, . . . , k[F:Q]) as above, so that |f |2 dµ traverses a sequence of measures on

Y . Fix a compactly supported function φ ∈ Cc(Y ). Then∫
φ|f |2 dµ∫
|f |2 dµ

→
∫
φdµ∫
dµ

as max(k1, . . . , k[F:Q])→∞. (2.1)
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In words, the measures |f |2 dµ equidistribute as any one of the weight components ki tend to

∞. We could normalize dµ and |f |2 dµ to be probability measures, in which case theorem 2.1.1

asserts that |f |2 dµ converges weakly to dµ. Theorem 2.1.1 is false for certain1 dihedral forms

f that vanish identically on half of the connected components of Y ; in that case, the analogous

assertion that |f |2 equidistributes as max(k1, . . . , k[F:Q]) → ∞ on the union of the remaining

connected components of Y remains true, but to simplify the exposition we shall consider only

nondihedral forms in this work.

The case F = Q of theorem 2.1.1 is the celebrated theorem of Holowinsky-Soundararajan

[25], who established a quantitative rate of convergence in the limit (2.1) for a “spanning set”

of functions φ (see §2.3). Marshall [43] proved a generalization of their result to cohomological

forms over general number fields F that satisfy the Ramanujan conjecture, under the mild tech-

nical assumptions that F have narrow class number one and that the weights ki (or the analogous

archimedean parameters for fields F with complex places) all tend to infinity together with suffi-

cient uniformity, precisely that min(k1, . . . , k[F:Q])→∞ with min(k1, . . . , k[F:Q]) ≥ (k1 · · · k[F:Q])
η

for some fixed η > 0. Since cohomological forms over totally real and imaginary quadratic num-

ber fields are known to satisfy the Ramanujan conjectures, his results are unconditional in many

cases and overlap2 with ours when F is totally real of narrow class number one and the weights

grow uniformly in the sense just described. The essential difference between our approaches is

explained in remark 4.

An important ingredient in Holowinsky’s contribution to proof of theorem 2.1.1 when F = Q

is his bound ∑
n≤x

λ(n)λ(n+ l)�ε τ(l)x log(x)ε
∏
p≤x

(
1 +

λ(p)− 1

p

)2

(2.2)

for any multiplicative function λ : N → R≥0 satisfying λ(n) ≤ τm(n) for some positive integer

m and any “shift” l satisfying 0 6= |l| ≤ x (see §2.3.1). A generalization of (2.2) to number fields

features in Marshall’s work mentioned above. We independently generalize (2.2) to number fields

1those induced from idele class characters on unramified totally imaginary quadratic exten-

sions of F; see §2.2.8.1

2We proved a slightly weaker form of theorem 2.1.1 in September 2009 and learned soon

thereafter from Sarnak’s lecture notes [54] that the overlapping results just described had been

obtained earlier that year in the 2009/2010 Princeton PhD thesis of his student S. Marshall [43].

We hope that our own arguments differ sufficiently to be of interest.
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that are totally real, although this restriction is not essential. The bounds that we obtain are

stronger than those obtained by Holowinsky and Marshall in that we have removed the factor

τ(l) appearing on the RHS of (2.2) and its generalizations (see theorem 2.4.8 and theorem 2.6.2).

Although doing so is not necessary for our present purposes, this refinement has applications to

the study of the distribution of mass of holomorphic forms of large level [47].

2.1.2 Plan for the Chapter

In §2.2 we introduce notation that will allow us to speak meaningfully about automorphic forms

over totally real fields. In §2.3 we review the work of Holowinsky and Soundararajan over F = Q

and reduce the proof of our main result theorem 2.1.1 to that of a generalization (theorem 2.3.1)

of Holowinsky’s bound (1.5). The heart of our work is §2.4, in which we prove theorem 2.3.1

assuming some independent technical results that we relegate to §2.5, §2.6, §2.7 and §2.8.

2.1.3 Acknowledgements

We thank Dinakar Ramakrishnan for suggesting this problem and for his very helpful feedback

and comments on earlier drafts of this chapter. We thank Fokko van de Bult for a conversation

that led to a strengthening and simplification of the proof of Lemma 2.8.1. We thank Roman

Holowinsky, Philippe Michel, Peter Sarnak, and K. Soundararajan for their encouragement. We

thank the referee for the careful reading and comments that have helped improve our exposition.

2.2 Preliminaries

2.2.1 Number Fields

Let F be a totally real number field, A its adele ring, Af ⊂ A the subring of finite adeles, IF the

group of fractional ideals in F, F∞ = F ⊗Q R, 0 6= eF ∈ Hom(A/F, S1) the standard nontrivial

additive character (i.e., normalized so that its restriction eF∞ to F∞ = F∞×{0} ⊂ F∞×Af = A

is given by eF∞(x) = e2πiTr(x)), F∗∞+
the connected component of the identity in F∗∞, o the ring

of integers in F, ô∗ =
∏
v<∞ o∗v < A∗f the maximal compact subgroup of the finite ideles, and

o∗+ = o∗ ∩ F∗∞+
the group of totally positive units of o, which is free abelian of rank [F : Q]− 1.

Let CF = F∗\A∗ denote the idele class group of F and C1
F ≤ CF the (compact) kernel of the

adelic absolute value.

Let divα ∈ IF denote the fractional ideal generated by an idele α ∈ A∗ and N(a) the

(absolute) norm of a fractional ideal a. Let d be the different of F, so that d−1 is the dual of

o with respect to the bilinear form F× F 3 (x, y) 7→ eF(xy) and ∆F = N(d) is the discriminant

of F. Let h(F) be the (finite) narrow class number of F and z1, . . . , zh(F) a set of representatives



13

for the group of narrow ideal classes. Choose finite ideles dF, z1, z2, . . . , z[F:Q] ∈ A∗f such that

div dF = d and div zj = zj for j = 1, . . . , h(F). Then we have natural identifications

A∗ = th(F)
j=1 F

∗(F∗∞+ × z−1
j ô∗), F∗\A∗/ô∗ = th(F)

j=1

(
(F∗∞+

/o∗+)× z−1
j

)
. (2.3)

We let p denote a typical prime ideal of o and v a typical place of F.

2.2.2 Asymptotic Notation

We use the asymptotic notation �,�, O() in the strong sense that certain inequalities should

hold for all values of the parameters under consideration and not merely eventually with respect

to some limit. For instance, we write f(x, y, z) �x,y g(x, y, z) to indicate that there exists a

positive real C(x, y), possibly depending upon x and y but not upon z, such that |f(x, y, z)| ≤

C(x, y)|g(x, y, z)| for all x, y, and z under consideration; here C(x, y) is called an implied con-

stant. We write f(x, y, z) = Ox,y(g(x, y, z)) synonymously for f(x, y, z)�x,y g(x, y, z) and write

f(x, y, z) �x,y g(x, y, z) synonymously for f(x, y, z)�x,y g(x, y, z)�x,y f(x, y, z). On the other

hand, the notation f(x) = o(g(x)) only makes sense in the context of a limit, and we give it the

standard meaning f(x)/g(x)→ 0.

We regard the number field F as fixed, so that any implied constants may depend on it

without mention. We similarly regard the choice of narrow ideal class representatives z1, . . . , zh(F)

as fixed. We let ε ∈ (0, 0.01) denote a sufficiently small parameter and A ≥ 100 a sufficiently

large parameter, which we allow to assume finitely many distinct values throughout our analysis.

We allow our implied constants to depend on ε and A without mention.

2.2.3 Real Embeddings

Set d = [F : Q] for now. An ordering on the real embeddings ∞1, . . . ,∞d of F determines

a linear inclusion F ↪→ Rd (the Minkowski embedding), which we fix. For x ∈ Rd write xi

for its ith component, so that xi = x∞i when x ∈ F. For x, y ∈ Rd and α ∈ Rd>0 we define

max(x, y),min(x, y), |x| ∈ Rd and xα ∈ R by

max(x, y) = (max(x1, y1), . . . ,max(xd, yd)),

min(x, y) = (min(x1, y1), . . . ,min(xd, yd)),

|x| = (|x1|, . . . , |xd|),

xα = xα1
1 · · ·x

αd
d .
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These definitions apply in particular when x, y ∈ F ↪→ Rd. We write simply

1 = (1, . . . , 1), 0 = (0, . . . , 0),

so that x1 = x1 · · ·xd for x ∈ Rd. We extend the Gamma function multiplicatively to Γ :

(C − Z≤0)d → C by the formula Γ(z) = Γ(z1) · · ·Γ(zd) for z ∈ (C − Z≤0)d. As an example of

our notation, for k = (k1, . . . , kd) ∈ (2Z≥1)d we have

(4π1)k−1

Γ(k − 1)
=

(4π)k1−1

Γ(k1 − 1)
· · · (4π)kd−1

Γ(kd − 1)
.

We extend the relations R ∈ {<,≤,≥, >} componentwise to partial orders on Rd, writing xR y

to denote that xiRyi for all i ∈ {1, . . . , d}; in particular, x > 0 signifies that xi > 0 for all i,

i.e., that x is totally positive.

2.2.4 Groups

Let G = GL(2)/Q with the usual subgroups

B = {( ∗ ∗∗ )}, N = {( 1 ∗
1 )}, A = {( ∗ ∗ )}, Z = {( z z )}

and the accompanying notation

n(x) = ( 1 x
1 ) ∈ N(A), a(y) = ( y 1 ) ∈ A(A)

for x ∈ A and y ∈ A∗. Put X = Z(A)G(F)\G(A).

Let K∞ = SO(2)[F:Q] be the standard maximal compact (connected) subgroup of G(F∞), let

Kfin =
∏
v<∞

{(
a b
c d

)
∈ G(Fv) : a, d ∈ ov, b ∈ d−1

v , c ∈ dv
}

),

and let K = K∞ × Kfin. Then K is the conjugate by a(1 × d−1
F ) of the standard maximal

compact subgroup of G(A). Our choice of Kfin follows Shimura [62] and is convenient because

the restriction to G(F∞) of a right-Kfin-invariant automorphic form on G(A) has a Fourier

expansion indexed by the ring of integers o rather than by the inverse different d−1.

By the Iwasawa decompositon G(A) = N(A)A(A)K, we may define a function on G(A) by

prescribing the values it takes on elements of the form g = n(x)a(y)kz with x ∈ A, y ∈ A∗,

k ∈ K, and z ∈ Z(A), provided that these values do not depend upon the choice of x, y, k, z in

expressing g = n(x)a(y)kz.
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2.2.5 Measures

We normalize Haar measures on the locally compact groups A, A∗, and K by requiring that

vol(A/F) = vol((1, e)[F:Q] × ô∗) = vol(K) = 1.

We give A/F and CF = A∗/F∗ the quotient measures defined with respect to the counting

measures on the discrete subgroups F, F∗; more generally we give discrete groups such as

N(F), B(F), A(F), and G(F) the counting measure and normalize accordingly the Haar mea-

sures on quotients thereof. We normalize the Haar measure on Z(A)\G(A) by requiring that

∫
Z(A)B(Q)G(A)

φ =

∫
x∈F\A

∫
y∈F∗\A∗

∫
k∈K

φ(n(x)a(y)k) dx
d×y

|y|A
dk (2.4)

for all compactly supported continuous functions φ on Z(A)B(Q)\G(A). This choice defines a

quotient measure µ on X = Z(A)G(F)\G(A). Finally, we choose a Haar measure on C1
F so that

the corresponding quotient measure on CF/C
1
F
∼= R∗+ is the standard Haar measure d×t = t−1 dt.

2.2.6 Characters

We introduce some notation related to the Fourier transform on the idele class group CF =

F∗\A∗, and in particular its “unramified” quotient CF/ô
∗.

Let X(H) denote the group of (quasi-)characters on a topological abelian group H, thus

X(H) is the group of continuous homomorphisms χ : H → C∗; a character having image in the

circle group S1 will be called a unitary character. For a quotient group H ′′ = H/H ′ with H ′

closed in H, identify X(H ′′) with the subgroup of X(H) consisting of those characters having

trivial restriction to H ′.

Let the group X(CF) of idele class characters on F carry the structure of a complex manifold

whose connected components are the cosets of the subgroup X(CF/C
1
F) = {|.|s : s ∈ C} on

which the complex structure is given by s; here |.| = |.|A is the adelic absolute value CF 3

(xv)v 7→
∏
|xv|v ∈ R∗+ with |.|v the standard absolute value on the completion Fv of F, so that

multiplication by xv scales the Haar measure on Fv by |xv|v.

Since C1
F is compact, for each χ ∈ X(CF) we have |χ| = |.|σ for some σ ∈ R, which we call the

real part of χ and denote by σ = Re(χ). Let X(CF)(c) denote the set of idele class characters

having real part c.

Let

X(CF)[2] := {χ0 ∈ X(CF) : χ2
0 = 1}

denote the group of quadratic idele class characters. This is not to be confused with the set
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X(CF)(2) of idele class characters χ having real part Re(χ) = 2.

Let χ∞ ∈ X(F∗∞) denote the restriction of an idele class character χ ∈ X(CF) to F∗∞. Then

χ∞ is of the form

y 7→
[F:Q]∏
i=1

sgn(yj)
εj |yj |irj if y = (y1, . . . , y[F:Q]) ∈ (R[F:Q])∗ = F∗∞ (2.5)

for some εj ∈ {0, 1} and rj ∈ C; the character χ∞ is unitary if and only if each rj ∈ R. For a place

v of F, let χv be the restriction of χ to F∗v ↪→ A∗; in particular, χ∞j
= [yj 7→ sgn(yj)

εj |yj |irj ] is

the restriction of χ∞ as above to the jth factor of (R[F:Q])∗,

The group X(CF/ô
∗) of unramified idele class characters χ is a subgroup of the group X(CF) of

all idele class characters; here and elsewhere unramified means “unramified at all finite places.”

Set X(CF/ô
∗)(c) := X(CF/ô

∗)∩X(CF)(c) for any c ∈ R and X(CF/ô
∗)[2] := X(CF/ô

∗)∩X(CF)[2].

Let

ξF : X(CF/ô
∗)→ P1(C)

be the (completed) Dedekind zeta function, defined for unramified idele class characters of

real part Re(χ) > 1 by the Euler product ξF(χ) =
∏
v ζv(χv) and in general by meromorphic

continuation, where ζp(v) = (1 − χp($p))−1 for $p a generator of p ⊂ Fp and ζ∞j
(χ∞j

) =

ΓR(irj + εj) if χ∞ is given by (2.5); here ΓR(s) = π−s/2Γ(s/2). For s ∈ C let ξF(s) := ξF(|.|s),

which agrees with the usual definition. Hecke proved that ξF is holomorphic away from its simple

pole at χ = |.| and satisfies a functional equation relating its values at χ and |.|χ−1.

Let Ψ ∈ C∞c (CF/ô
∗) be a test function. For each character χ ∈ X(CF/ô

∗) let Ψ∧(χ) be the

Fourier-Mellin transform of Ψ at χ normalized so that the inversion formula

Ψ(y) =

∫
X(CF/ô∗)(c)

Ψ∧(χ)χ(y)
dχ

2πi
(2.6)

holds, where
∫
X(CF/ô∗)(c)

denotes the contour integral over unramified idele class characters χ

having real part c > 1 taken in the usual vertical sense, precisely

∫
X(CF/ô∗)(c)

Ψ∧(χ)χ(y)
dχ

2πi
:=

∑
χ0∈

X(CF/ô∗)(0)
X(CF/C1

F )

∫
(c)

Ψ∧(χ0|.|s)χ0(y)|y|sA
ds

2πi
,

where
∫

(c)
denotes the vertical contour integral taken over Re(s) = c from c− i∞ to c+ i∞, and

as representatives for the quotient X(CF/ô
∗)/X(CF/C

1
F) one may take the image of the discrete

group X(C1
F/ô
∗) under pullback by a section of the inclusion C1

F ↪→ CF. By our normalization
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of measures (see §2.2.5), the forward transform is given explicitly by

Ψ∧(χ) =
1

vol(C1
F)

∫
CF

Ψ(y)χ−1(y) d×y. (2.7)

The analytic conductor [32] of an unramified idele class character χ ∈ X(CF/ô
∗) having

archimedean component (2.5) is defined to be

C(χ) =

[F:Q]∏
i=1

(3 + |rj |); (2.8)

the number 3 is unimportant and present only so that logC(χ) is never too small. Repeated

“partial integration” shows that Ψ∧(χ) �Ψ,A C(χ)−A for any test function Ψ ∈ C∞c (CF/ô
∗)

and any positive integer A, uniformly for Re(χ) in any bounded set. Concretely, we have natural

short exact sequences

1→ F∗∞+/o
∗
+ → CF/ô

∗ → Cl+F → 1,

and

1→ F1
∞+/o

∗
+ → F∗∞+/o

∗
+

x7→x1

−−−−→ R∗+ → 1,

where Cl+F = CF/(F∗∞+ × ô∗) is the (finite) narrow class group of F and F1
∞+ is the subgroup

{(xi) :
∏
xi = 1} of F∗∞+. Thus CF/ô

∗ is an extension of a finite group by an extension of R∗+ by

a compact torus, so the assertion Ψ∧(χ)�Ψ,A C(χ)−A reduces to the familiar decay properties

of the Fourier transform of a test function on a finite product of Euclidean lines and circles.

2.2.7 Fourier Expansions

Suppose that φ : X→ C is continuous and right-K-invariant. By the Iwasawa decomposition, φ

is determined by the values φ(n(x)a(y)) for x ∈ A, y ∈ A∗. If φ is assumed merely to be right-

Kfin-invariant but transforms under a unitary character of K∞, then |φ|2 is still determined by

the values φ(n(x)a(y)). In either case, the left-B(F)-invariance of φ implies a Fourier expansion

φ(n(x)a(y)) = φ0(y) +
∑
n∈F∗

κφ(ny)eF(nx) (2.9)

for some functions φ0 on CF/ô
∗ = F∗\A∗/ô∗ and κφ on A∗/ô∗ (see [71]).

We say that the Fourier expansion (2.9) of φ is factorizable if for each y× z ∈ F∗∞×A∗f = A∗

we have

κφ(y × z) = κφ,∞(y)
λφ(div z)

N(div z)1/2
, (2.10)

where λφ : IF → C is a weakly multiplicative function supported on the monoid of integral ideals
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and κφ,∞(y) =
∏[F:Q]
j=1 κφ,∞j

(yj) for some functions κφ,∞j
: R∗ → C.

2.2.8 Automorphic Forms

We shall consider various kinds of automorphic forms throughout this chapter. In this section

we give them convenient names and state their relevant properties.

2.2.8.1 Holomorphic eigencuspforms

By a holomorphic eigencuspform f : X → C of weight k = (k1, . . . , k[F:Q]) (here and always

each kj is a positive even integer, for simplicity) we mean an arithmetically normalized cuspidal

holomorphic Hilbert modular form of weight k, full level, and trivial central character, that is

furthermore an eigenfunction of the algebra of Hecke operators. Precise definitions in both the

classical and adelic languages appear in Shimura’s paper [62]; for our purposes, it is necessary

to know only that f is right Kfin-invariant, transforms under a (specific) unitary character of

K∞, and has a factorizable Fourier expansion (2.9) with f0 ≡ 0 and

κf,∞j
(y) =

y
kj/2e−2πy for y > 0,

0 for y < 0

(2.11)

for each infinite place∞j of F. The “Ramanujan bound” for f [2] asserts3 that |λf (a)| ≤ τ(a) for

each integral ideal a, where τ is the divisor function (multiplicative, pk 7→ k + 1); this improves

an earlier result of Brylinski-Labesse, which asserts that |λf (p)| ≤ 2 for a full density set of

primes p.

To f and an unramified idele class character χ ∈ X(CF/ô
∗) of sufficiently large real part we

associate the finite part of the adjoint L-function

L(ad f, χ) =
∏
p

Lp(ad f, χ)

and its completion Λ(ad f, χ) = L∞(ad f, χ)L(ad f, χ) =
∏
v Lv(ad f, χ), where the local factors

are as in [70, §3.1.1]. It is known [61, 13] that χ 7→ L(ad f, χ) continues meromorphically to a

function on X(CF/ô
∗) whose only possible poles are simple and at χ = χ0|.| for χ0 ∈ X(CF/ô

∗)[2]

a quadratic character. Call f nondihedral if L(ad f, ·) : X(CF/ô
∗) → P1(C) is entire; this

is known to be the case precisely when f is not induced from an idele class character of a

3the parity conditions on the weight of f are satisfied because f has trivial central character,

hence the ki are all even
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quadratic extension of F [13, 39]. Note that unlike when F = Q or h(F) = 1, in general (e.g.,

for F = Q(
√

3)) there may exist dihedral cusp forms of full level and trivial central character,

which we shall exclude from our analysis.

2.2.8.2 Maass eigencuspforms

By a Maass eigencuspform φ : X → C of Laplace eigenvalue ( 1
4 + r2

1, . . . ,
1
4 + r2

[F:Q]) ∈ R[F:Q]
>0

and parity (ε1, . . . , ε[F:Q]) ∈ {0, 1}[F:Q] we mean an arithmetically normalized Hilbert-Maass cusp

form on X of given Laplace eigenvalues and parity, full level and trivial central character, that

is furthermore an eigenfunction of the algebra of Hecke operators. For our purposes this means

that φ is right-K-invariant and has a factorizable Fourier expansion (2.9) with φ0 ≡ 0 and

κφ,∞j
(y) = 2|y|1/2Kirj (2π|y|) sgn(y)εj (2.12)

for each infinite place∞j and all y ∈ R∗; here Kirj is the modified Bessel function of the second

kind. The trivial “Hecke bound” asserts that λφ(a) ≤ τ(a) N(a)1/2. The “Rankin-Selberg

bound,” also known as the “Ramanujan bound on average,” asserts that

∑
N(a)≤x

|λφ(a)|2 �φ x (2.13)

and follows as in [29, §8.2] from the analytic properties of the Rankin-Selberg L-series attached

to φ× φ [33].

2.2.8.3 Eisenstein series

Let χ ∈ X(CF/ô
∗) be an unramified idele class character. Writing y(g) = y for g = n(x)a(y)kz,

the map B(F)\G(A) 3 g 7→ χ(y(g)) is well-defined. The Eisenstein series

E(χ, g) =
∑

γ∈B(F)\G(F)

χ(y(γg)) (2.14)

converges normally in g and uniformly in χ for Re(χ) ≥ 1 + δ > 0, and continues meromor-

phically to the union of half-planes on which Re(χ) ≥ 1
2 , where χ 7→ E(χ, ·) is holomorphic

with the exception of simple poles at χ = |.|χ0 of locally constant residue proportional to

g 7→ χ0(det(g)) for each unramified quadratic idele class character χ0 ∈ X(CF/ô
∗)[2] (see [14]).

The functions E(χ, ·) : g 7→ E(χ, g) descend to X = Z(A)G(F)\G(A) and are right-K-invariant

by construction.

The scaled Eisenstein series φ = ∆−1
F χ(dF)−2ξF(χ2)E(χ, ·) admits a factorizable Fourier
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expansion (2.9) with

φ0(y) = ∆−1
F χ(dF)−2ξF(χ2)χ(y) + ∆

−1/2
F ξF(χ2|.|−1)χ−1(y)|y|, (2.15)

κφ(y × z) = κ(χ|.|−1/2)∞
(y)

λ(χ|.|−1/2)(div z)

N(div z)1/2

as in §2.2.7, where for χ ∈ X(CF/ô
∗) with χ∞ given by (2.5), we set

κχ∞j (y) = 2|y|1/2Kirj (2π|y|) sgn(y)εj , λχ(pk) =

k∑
i=0

χ(p)iχ−1(p)k−i; (2.16)

for a convenient tabulation of such Fourier expansions of Eisenstein series see [3].

If χ|.|−1/2 is a unitary character (equivalently, Re(χ) = 1
2 , i.e., χ ∈ X(CF/ô

∗)( 1
2 )), call E(χ, g)

a unitary Eisenstein series; in that case |λχ|.|−1/2(a)| ≤ τ(a).

2.2.8.4 Incomplete Eisenstein series

To a test function Ψ ∈ C∞c (CF/ô
∗) attach the incomplete Eisenstein series E(Ψ, ·) : X→ C by

the formula

E(Ψ, g) =
∑

γ∈B(F)\G(F)

Ψ(y(γg)) (2.17)

with y(γg) as in §2.2.8.3. Write φ = E(Ψ, ·). We have Ψ∧(|.|) ress=1E(|.|s, ·) = µ(φ)/µ(1) (see

§2.3.3), so by shifting the contour in the integral representation E(Ψ, ·) =
∫
X(CF/ô∗)(2)

Ψ∧(χ)E(χ, ·) dχ
2πi

to the union of lines Re(χ) = 1
2 (see [14] and [29, §7.3]), we obtain

E(Ψ, g) =
µ(φ)

µ(1)
+

∑
16=χ0∈X(CF/ô∗)[2]

cΨ(χ0)χ0(det g)

+

∫
X(CF/ô∗)(1/2)

Ψ∧(χ)E(χ, g)
dχ

2πi

(2.18)

for some constants cΨ(χ0) = µ(1)−1
∫
X
E(Ψ, ·)(χ0 ◦ det) whose precise values are not important

for our purposes. Taking the Fourier expansions of both sides gives

φ0(y) =
µ(φ)

µ(1)
+

∑
16=χ0∈X(CF/ô∗)[2]

cΨ(χ0)χ0(y) +Oφ(|y|1/2), (2.19)

κφ(y × z) =

∫
X(CF/ô∗)(0)

Ψ∧(|.|1/2χ)

ξF(|.|χ2)χ(dF)−2
κχ,∞(y)

λχ(div z)

N(div z)1/2

dχ

2πi
. (2.20)
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2.2.9 Masses

Recall the measure µ defined on the space X = Z(A)G(F)\G(A) in §2.2.5. For φ ∈ L1(X, µ)

let µ(φ) =
∫
X
φdµ. To our varying nondihedral holomorphic eigencuspform f we associate the

finite measure dµf = |f |2 dµ and write accordingly µf (φ) =
∫
X
φ|f |2 dµ. In particular, writing

1 for the constant function on X, we see that µ(1) is the volume of X and µf (1) the mass of f ,

i.e., its squared norm in L2(X, µ). With this notation, the conclusion of theorem 2.1.1 is that

for any compactly supported, continuous, right-K-invariant function φ on X, we have

µf (φ)

µf (1)
→ µ(φ)

µ(1)

as any of the weight components of f tend to ∞. It suffices to show this for φ a Maass

eigencuspform or incomplete Eisenstein series as in §2.2.8.2 and §2.2.8.4.

The special value L(ad f, 1) enters our analysis through the Rankin-type formula

µf (1) =
Γ(k)

c1(F)(4π1)k−1
L(ad f, 1), c1(F) :=

(4π2)[F:Q]

2∆
3/2
F

. (2.21)

We sketch the standard calculation. Recall the measure normalization (2.4) and the choice of

compact subgroup K (§2.2.4) on which we base our definition (§2.2.8.3) of E(s, ·). For Re(s) > 1

we find by unfolding that

µf (E(s, ·)) =

∫
Z(A)B(F)\G(A)

|y(g)|sA|f |2(g) dg

=

∫
x∈F\A

∫
y∈F∗\A∗

|y|s−1
A |f |2(n(x)a(y)) dx d×y

=
∏
v

∫
y∈Q∗v

|y|s−1
v |κf (y)|2 d×y

= Λ(ad f, s)
ξF(s)

ξF(2s)

[F:Q]∏
i=1

2−ki−1

by local calculations as conveniently tabulated in [70, §3.2.1]. Since the Fourier expansion (2.15)

implies

ress=1E(s, ·) = ∆
−3/2
F

ress=1 ξF(s)

2ξF(2)

and by definition [70, §3.1.1]

L∞(ad f, 1)

[F:Q]∏
i=1

2−ki−1 = (4π2)−[F:Q] Γ(k)

(4π1)k−1
,

we obtain the claimed formula (2.21).
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2.3 Brief Review of Holowinsky-Soundararajan

In this section we summarize the Holowinsky-Soundararajan [25] proof of theorem 2.1.1 when

F = Q and indicate which of their arguments require generalization when F is a general totally

real number field. Their proof combines

(1) the independent arguments of Holowinsky [24], and

(2) the independent arguments of Soundararajan [66],

(3) the joint Holowinsky-Soundararajan synthesis of (1) and (2).

As we shall see, Soundararajan’s independent arguments and the Holowinsky-Soundararajan

synthesis generalize painlessly, so the essential difficulty is to generalize Holowinsky’s arguments.

In this section, f is a holomorphic eigencuspform of weight k = (k1, . . . , k[F:Q]). Recall from §2.2.3

that k1 := k1 . . . k[F:Q], thus when F = Q we have k = (k1) and k1 = k1.

2.3.1 Holowinsky’s Independent Arguments

We begin by simultaneously recalling Holowinsky’s main result [24, Cor 3] and stating our

generalization thereof. Define for each holomorphic eigencuspform f and each real number

x ≥ 2 the quantities

Mf (x) =
log(x)−2

L(ad f, 1)

∏
N(p)≤x

(
1 +

2|λf (p)|
N(p)

)
, (2.22)

Rf (x) =
x−1/2

L(ad f, 1)

∑
χ0∈X(CF/ô∗)[2]

∫
(1/2)

∣∣∣∣L(ad f, χ0|.|s)
C(χ0|.|s)10

∣∣∣∣ |ds|. (2.23)

Here C(χ0|.|s) � |s|[F:Q] since χ0 is quadratic.

Theorem 2.3.1. Let f be a nondihedral holomorphic eigencuspform of weight k = (k1, . . . , k[F:Q]).

If φ is a Maass eigencuspform, then

µf (φ)

µf (1)
�φ,ε log(k1)εMf (k1)1/2.

If φ is an incomplete Eisenstein series, then

µf (φ)

µf (1)
− µ(φ)

µ(1)
�φ,ε log(k1)εMf (k1)1/2(1 +Rf (k1)).

We prove theorem 2.3.1 in §2.4 by combining the independent results of §2.5, §2.8 and §2.6;

doing so is our main task in this work. Holowinsky [24, Cor 3] established the case F = Q of

theorem 2.3.1, in which the “nondihedral” hypothesis is vacuously satisfied. We briefly recall
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his argument. Take F = Q and denote by k the weight of f . Suppose for simplicity that φ is a

Maass eigencuspform. Holowinsky defines for a fixed test function h ∈ C∞c (R∗+) the integral

Sl(Y ) =

∫
y∈R∗+

h(Y y)

∫
x∈R/Z

(φl|f |2)(x+ iy)
dx dy

y2
,

where φ(z) =
∑
l φl(z) with φl(z + ξ) = e2πilξφl(z) for ξ ∈ R, and establishes [24, Theorem 1]

for any Y ≥ 1 and ε > 0 the asymptotic formula∫
φ|f |2∫
|f |2

= cY −1
∑

0<|l|<Y 1+ε

Sl(Y ) +Oφ,ε(Y
−1/2) (2.24)

where c is an explicit nonzero constant depending only upon the test function h; he shows

moreover that

Sl(Y )

Y
�φ,ε

|φl(a(Y −1))|
L(ad f, 1)

 1

Y k

∑
n∈N

m:=n+l∈N

|λf (m)λf (n)|h

(
Y
(
k−1
4π

)
m+n

2

)
+

(Y k)ε

k

 . (2.25)

He then proves [24, Theorem 2] (in somewhat greater generality) that for each ε ∈ (0, 1), each

x�ε 1, and each l ∈ Z for which 0 6= |l| ≤ x, we have

∑
n≤x

|λf (m)λf (n)| � τ(l)
x

log(x)2−ε

∏
p≤X

(
1 +

2|λf (p)|
p

)
. (2.26)

From this he deduces the cuspidal case of theorem 2.3.1 for F = Q. We generalize and refine

(2.24), (2.25) and (2.26) in §2.5, §2.8 and §2.6, respectively; among other refinements, we show

that (a generalization to totally real number fields of) the bound (2.26) holds without the

factor τ(l). The main complication is the manner in which these ingredients fit together to

yield theorem 2.3.1 when F 6= Q; this is the crux of our argument, which we present in §2.4.

Specifically, recall that for a totally real number field F of degree d = [F : Q], our näıve

generalization of (2.24) and (2.25) leaves us with the task of showing that a sum of roughly

x log(x)d−1 terms is small relative to x (with x a bit larger than k1), which seems beyond the

limits of any method that does not exploit cancellation in the sum of λf (m)λf (n). By discarding

a large number of these terms trivially through a refinement of (2.25), we reduce to the more

tractable problem of showing that a sum of roughly x log(x)ε terms is small relative to x.
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2.3.2 Soundararajan’s Independent Arguments

Let φ be a Maass eigencuspform, and suppose that F = Q. Watson’s formula [70, Theorem 3]

asserts that ∣∣∣∣µf (φ)

µf (1)

∣∣∣∣2 = c(F, φ)
Λ(φ× f × f, 1

2 )

Λ(ad f, 1)2
(2.27)

where c(Q, φ) = µ(|φ|2)/8Λ(adφ, 1) is a nonzero constant unimportant for our purposes and

Λ(· · · , s) is the completed L-function for L(· · · , s) with local factors as in [70, §3.1.1]. The

identity (2.27) with c(F, φ) 6= 0 holds for totally real F by Ichino’s general triple product formula

[26] together with Watson’s calculations of the local zeta integrals of Harris-Kudla [19] at the

real places. When F = Q, Soundararajan [66, Ex 2] proves that

L(φ× f × f, 1
2 )�φ,ε

k1

log(k1)1−ε . (2.28)

His argument applies verbatim when F is totally real: it relies only upon the Ramanujan bound

for the local components of f and the Rankin-Selberg theory for φ×φ, noting that the analytic

conductor of φ× f × f is �φ (k1)4. By Stirling’s formula as in the F = Q case, we obtain

∫
φ|f |2∫
|f |2

�φ,ε
log(k1)−1/2+ε

L(ad f, 1)
. (2.29)

Now let φ = E(χ, ·) be the unitary Eisenstein series associated as in §2.2.8.3 to an unramified

idele class character χ ∈ X(CF/ô
∗)( 1

2 ) of real part 1
2 , and suppose that F = Q. (Since CQ/Ẑ∗ ∼=

R∗+, we have χ = |.|1/2+it for some t ∈ R.) Soundararajan [66, p7] shows by the unfolding

method, Stirling’s formula and his weak subconvex bounds for L(ad f, χ) [66, Ex 1], the last of

which makes use of the known Ramanujan bound for f , that

µf (φ)

µf (1)
�ε C(χ)2 log(k1)−1+ε

L(ad f, 1)
, (2.30)

and [66, p2]

|L(ad f, χ)| �ε
(k1)1/2C(χ)3/4

log(k1)1−ε . (2.31)

By the modularity of L(ad f, χ) as the L-function of an automorphic form on GL(3) [13], its

Rankin-Selberg theory, and the lower bound

L(ad f, 1)� log(k1)−1 (2.32)

due to Hoffstein-Lockhart-Goldfeld-Hoffstein-Lieman [22] (which is available for general F, see
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[3, §2.9]), Soundararajan deduces [25, Lem 1] in his joint paper with Holowinsky that

Rf (k1)�ε
log(k1)ε

log(k1)L(ad f, 1)
� log(k1)ε. (2.33)

The same argument establishes (2.30), (2.31), (2.33) for general totally real number fields F.

2.3.3 The Holowinsky-Soundararajan Synthesis

In their joint work [25], Holowinsky and Soundararajan show [24, Lem 3] for F = Q that

Mk(f)� log(k1)1/6 log log(k1)9/2L(ad f, 1)1/2, (2.34)

and their proof applies for general F. Subsituting the bound (2.34) into theorem 2.3.1 and

combining with Soundararajan’s estimate (2.29) yields for each Maass eigencuspform φ that

µf (φ)

µf (1)
�φ,ε min

(
log(k1)−1/2+ε

L(ad f, 1)
, log(k1)1/12+εL(ad f, 1)1/4

)
. (2.35)

It follows as in [25, Proof of Thm 1] that µf (φ)/µf (1)�φ,ε log(k1)−1/30+ε = o(1), and the same

argument applies in the totally real case as soon as one has established theorem 2.3.1.

Holowinsky and Soundararajan show [25, p10] that Soundararajan’s bound (2.30) for unitary

Eisenstein series also applies to incomplete Eisenstein series via the Mellin inversion formula.

Specifically, they show for F = Q and φ = E(Ψ, ·) that∣∣∣∣µf (φ)

µf (1)
− µ(φ)

µ(1)

∣∣∣∣�φ,ε
log(k1)−1+ε

L(ad f, 1)
. (2.36)

Their argument generalizes to the totally real case by replacing the Mellin inversion on R∗+ ∼=

CQ/Ẑ∗ with that on CF/ô
∗, as we now describe. Let Ψ ∈ C∞c (CF/ô

∗) and φ = E(Ψ, ·). By the

Mellin formula (see §2.2.6)

φ =

∫
X(CF/ô∗)(2)

Ψ∧(χ)E(χ, ·) dχ
2πi

and the meromorphic nature of E(χ, ·) (see §2.2.8.3 or [14]), we have

µf (φ) =
∑

χ0∈X(CF/ô∗)[2]

Ψ∧(χ0) ress=1 µf (E(χ0|.|s, ·))

+

∫
X(CF/ô∗)(1/2)

Ψ∧(χ)µf (E(χ, ·)) dχ
2πi

,

(2.37)

where the interchanges here and those that follow are justified by absolute convergence owing
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to the rapid decay of f and Ψ and the moderate growth of E(χ, ·). By the unfolding method

as in §2.2.9, the residue ress=1 µf (E(χ0|.|s, ·)) coincides with ress=1 Λ(ad f, χ0|.|s)ξF(χ0|.|s) up

to a nonzero scalar. Suppose now that f is nondihedral in the sense of §2.2.8.1, so that s 7→

Λ(ad f, χ0|.|s) is entire. Then since ξF is holomorphic away from its pole at χ = |.|, we see that

ress=1 µf (E(χ0|.|s, ·)) = 0 if χ0 6= 1. If χ0 = 1, then

Ψ∧(|.|) ress=1 µf (E(|.|s, ·)) = µf (1)Ψ∧(|.|) ress=1E(|.|s, ·).

We have Ψ∧(|.|) ress=1E(|.|s, ·) = µ(φ)/µ(1) because both sides are equal to the coefficient of

the constant function 1 in the spectral decomposition of φ ∈ L2(X, µ) [14, §4]. Thus for f

nondihedral, we obtain

µf (φ)

µf (1)
− µ(φ)

µ(1)
=

∫
X(CF/ô∗)(1/2)

Ψ∧(χ)
µf (E(χ, ·))
µf (1)

dχ

2πi
. (2.38)

Soundararajan’s bound (2.30) for unitary Eisenstein series shows that the right-hand side of

(2.38) is

�ε

∫
X(CF/ô∗)(1/2)

∣∣∣∣Ψ∧(χ)
C(χ)2 log(k1)−1+ε

L(ad f, 1)

∣∣∣∣ |dχ| �φ
log(k1)−1+ε

L(ad f, 1)
,

where in the final step we invoked the rapid decay of Ψ∧ (see §2.2.6). Thus we obtain the

estimate (2.36) for nondihedral forms over a totally real field.

By combining Holowinsky’s theorem 2.3.1 with Soundararajan’s (2.33) and (2.36), Holowin-

sky and Soundararajan obtain, for F = Q and φ = E(Ψ, ·), the bound∣∣∣∣µf (φ)

µf (1)
− µ(φ)

µ(1)

∣∣∣∣�φ,ε min

(
log(k1)−1+ε

L(ad f, 1)
, log(k1)1/12+εL(ad f, 1)1/4

)
, (2.39)

which is o(1) (or even � log(k1)−2/15+ε) by examination (see [25, Proof of Thm 1]). The same

estimate follows in the totally real case as soon as one has established theorem 2.3.1.

2.4 The Key Arguments in Our Generalization

We saw in §2.3 that our main result theorem 2.1.1 follows from the generalization of Holowinsky’s

work asserted by theorem 2.3.1. We now describe the key arguments that reduce our proof of

theorem 2.3.1 to several technical results that we shall prove in the remaining sections of this

chapter; those results are independent of one another and do not depend upon any work in this

section, so there is no circularity in our discussion.

Recall that theorem 2.3.1 claims to bound µf (φ)/µf (1) − µ(φ)/µ(1), for f a nondihedral

holomorphic eigencuspform of weight k and φ either a Maass eigencuspform or an incomplete
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Eisenstein series, in terms of certain quantities Mf (k1) and Rf (k1) (2.22)–(2.23).

Definition 2.4.1. Fix a nonnegative test function h ∈ C∞c (R∗+) with Mellin transform

h∧(s) =

∫ ∞
0

h(y)y−s d×y

normalized so that h∧(1) ress=1E(s, ·) = 1. Recall from §2.2.1 that we have fixed representatives

zj = div zj for the narrow class group of F; here j ∈ {1, . . . , h(F)} and zj ∈ A∗f . For each

unramified idele class character χ ∈ X(CF/ô
∗) and each x ≥ 2, define the shifted sums

Sχ(x) =

h(F)∑
j=1

∑
l∈o∗+\zj

06=|l1|<x1+ε

λχ(z−1
j l)

N(z−1
j l)1/2

Sχ∞(zj , l, x), (2.40)

where

Sχ∞(z, l, x) =
∑

n∈z∩F∗∞+

m:=n+l∈z∩F∗∞+

λf (z−1m)

N(z−1m)1/2

λf (z−1n)

N(z−1n)1/2

Iχ∞(l, n,N(z)x)

N(z)
, (2.41)

and (here m := n+ l as always)

Iχ∞(l, n, x) =
(4π1)k−1

Γ(k − 1)

∫
F∗∞+

h(xy1)κχ,∞(ly)κf,∞(my)κf,∞(ny)
d×y

y1
. (2.42)

If φ is a Maass eigencuspform of eigenvalue (1
4 + r2

1, . . . ,
1
4 + r2

[F:Q]) and parity (ε1, . . . , ε[F:Q]),

define analogously Sφ(x), Sφ∞(z, l, x) and Iφ∞(l, n, x) by replacing κχ,∞ and λχ with κφ,∞ and

λφ above; note then that Sφ∞(z, l, x) is the special case of Sχ∞(z, l, x) obtained by taking χ∞

to be the (conceivably non-unitary) character [y 7→
∏

sgn(yj)
εj |yj |irj ] ∈ X(F∗∞) as in (2.5).

Proposition 2.4.2. Let f be as in the statement of theorem 2.3.1 and let Y ≥ 1. If φ is a

Maass eigencuspform, then

µf (φ)

µf (1)
=

c1(F)

L(ad f, 1)

Sφ(Y )

(k − 1)1Y
+Oφ,ε(Y

−1/2).

If φ = E(Ψ, ·) is an incomplete Eisenstein series (recall that f is not dihedral), then

µf (φ)

µf (1)
− µ(φ)

µ(1)
=

c1(F)

L(ad f, 1)

∫
X(CF/ô∗)(0)

Ψ∧(|.|1/2χ)

ξF(|.|χ2)χ(dF)−2

Sχ(Y )

(k − 1)1Y

dχ

2πi

+Oφ,ε

(
1 +Rf (k1)

Y 1/2

)
.

The constant c1(F) is as in the formula (2.21).

Proof. See §2.5. The proof is a straightforward and näıve generalization of Holowinsky’s argu-
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ments in the F = Q case.

Proposition 2.4.2 shows that theorem 2.3.1 follows from sufficiently strong bounds for the

shifted sums Sφ(Y ) for φ a Maass eigencuspform and Sχ(Y ) for χ ∈ X(CF/ô
∗)(0) an unramified

unitary idele class character.

We bound the sums Sφ(Y ) and Sχ(Y ) by bounding their summands Sχ∞(z, l, x) for each

narrow ideal class representative z = zj (j ∈ {1, . . . ,F}), each nonzero shift l ∈ z ∩ F∗, and each

character χ∞ ∈ X(F∗∞); recall from Definition 2.4.1 that

Sφ∞(z, l, x) = Sχ∞(z, l, x) (2.43)

for a suitable character χ∞ ∈ X(F∗∞). For this reason it suffices to bound Sχ∞(l, n, x) when χ∞

is either unitary or of the form (2.5) for some Maass eigencuspform φ, so that in particular each

rj ∈ R ∪ i(− 1
2 ,

1
2 ); we assume henceforth that this is the case.

The sums Sχ∞(z, l, x) are weighted by an integral Iχ∞(l, n, x), which we treat as follows. By

the Mellin formula h(y) =
∫

(c)
h∧(s)ys ds

2πi with h∧(s) =
∫∞

0
h(y)y−s d×y and c ≥ 0, we may

factor Iχ∞(l, n, x) as a product of local integrals

Iχ∞(l, n, x) =

∫
(c)

h∧(s)xs

[F:Q]∏
j=1

Jirj (lj , nj , s)

 ds

2πi
, (2.44)

where

Jirj (lj , nj , s) :=
(4π)kj−1

Γ(kj − 1)

∫
R∗+
ys−1κχ,∞j

(ljy)κf,∞j
(mjy)κf,∞j

(njy) d×y.

The “trivial” bound for Jirj obtained by applying the inequality |κχ,∞j
(ljy)| ≤ 1 to the integrand

and evaluating the resulting gamma integral is

|Jirj (lj , nj , s)| ≤
Γ(kj − 1 + σ)

Γ(kj − 1)

√
mjnj(

4π
(
mj+nj

2

))σ
 √mjnj(

mj+nj
2

)
kj−1

, (2.45)

where s = σ + it. However, (2.45) would not suffice for our purposes, as we shall explain after

proving the following refinement.

Lemma 2.4.3. For irj ∈ iR∪ (− 1
2 ,

1
2 ), lj 6= 0, nj > 0, mj = nj + lj > 0, kj ≥ 2, and s = σ+ it

with σ ≥ − 1
2 , we have

|Jirj (lj , nj , s)| ≤
Γ(kj − 1 + σ)

Γ(kj − 1)

√
mjnj

(4πmax(mj , nj))
σ

(
min(mj , nj)

max(mj , nj)

) kj−1

2

. (2.46)

Proof. By the integral formula [16, 6.621.3] and the transformation formula [16, 9.131] in
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Gradshteyn-Ryzhik, we have explicitly

Jirj (lj , nj , s) = ±Γ(kj − 1 + s)

Γ(kj − 1)

√
mjnj

(4πmax(mj , nj))
s

(
min(mj , nj)

max(mj , nj)

) kj−1

2

·
Γ(kj + s− 1

2 + irj)Γ(kj + s− 1
2 − irj)

Γ(kj + s− 1)Γ(kj + s)

· 2F1

( 1
2 − irj ,

1
2 + irj

kj + s
;−min(mj , nj)

|mj − nj |

) (2.47)

where 2F1 is the Gauss hypergeometric function and the sign is given by
∏

sgn(lj)
εj . By the

technical lemmas proved in §2.8, the factors on the second and third lines of (2.47) are each

bounded in absolute value by 1, so the claim follows from the basic inequality |Γ(kj − 1 + s)| ≤

Γ(kj − 1 + σ).

Corollary 2.4.4. Let χ∞ ∈ X(F∗∞) be of the form (2.5) with each irj ∈ iR ∪ (− 1
2 ,

1
2 ). Then

Iχ∞(l, n, x)�A

√
m1n1

(
min(m,n)

max(m,n)

) k−1
2

min

(
1,

k1x

max(m,n)1

)A
. (2.48)

Proof. Substitute (2.46) into (2.44), taking c ∈ {0, A} and invoking the well known estimate

Γ(kj − 1 + σ)/Γ(kj − 1)�σ k
σ
j [72, Ch 7, Misc. Ex 44].

Remark 1. With more effort (e.g., by studying the asymptotics of the expression (2.47)) one can

show that if the components of the weight k increase in such a way that min(k1, . . . , k[F:Q]) �

(k1)δ0 for some δ0 > 0, then (setting log(x) = (log x1, . . . , log x[F:Q]) for x ∈ F∗∞+
∼= (R∗+)[F:Q])

Iχ∞(l, n, x) =
√
m1n1

[
κχ,∞

(
k − 1

4π

∣∣∣log
m

n

∣∣∣)h( x
(
k−1
4π

)1
max(m,n)1

)

+ Oχ∞

(
(k1)−δ0

(
k1x

max(m,n)1

)1+ε
)]

.

It follows with some work that for φ a Maass eigencuspform and Y ≥ 1, we have

µf (φ)

µf (1)
= Oφ(Y −1/2) +

c1(F)

k1Y L(ad f, 1)

h(F)∑
j=1

∑
l∈o∗+\zj

06=|l1|<Y 1+ε

λφ(z−1
j l)

N(z−1
j l)1/2

·
∑

n∈z∩F∗∞+

m:=n+l∈z∩F∗∞+

λf (z−1m)λf (z−1n)

· κφ,∞
(
k − 1

4π

∣∣∣log
m

n

∣∣∣) h

(
Y N(z)( k−1

4π )
1

max(m,n)1

)
N(z)

.
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This refinement is not necessary for our purposes, so we omit the proof; the simpler upper bound

given by Corollary 2.4.4 suffices because we do not exploit cancellation in the shifted sums, and

has the advantage of being completely uniform in χ∞.

Corollary 2.4.5. Let χ∞ ∈ X(F∗∞) satisfy the hypotheses of Corollary 2.4.4. Then the shifted

sums Sχ∞(z, l, Y ) are bounded up to a multiple depending only upon z and A by the quantity

∑
n∈z∩F∗∞+

m:=n+l∈z∩F∗∞+

∣∣λf (z−1m)λf (z−1n)
∣∣ (min(m,n)

max(m,n)

) k−1
2

min

(
1,

k1Y

max(m,n)1

)A
. (2.49)

Proof. Substitute Corollary 2.4.4 into Definition 2.4.1.

Remark 2. When F = Q, Holowinsky applies what amounts to the trivial bound (2.45), which

gives something like (2.49) upon replacing

(
min(m,n)

max(m,n)

) k−1
2

=

[F:Q]∏
j=1

(
min(mj , nj)

max(mj , nj)

) kj−1

2

by

[F:Q]∏
j=1

 √mjnj(
mj+nj

2

)
k−1

. (2.50)

He then bounds the factor on the RHS of (2.50) by 1. Now, bounding either of the factors in

(2.50) is harmless when F = Q: if f has weight k, then in the sum (2.49) we typically have

m,n � kY , so for |l| = O(1) both factors in (2.50) are typically � 1. On the other hand, when

d = [F : Q] > 1 it is costly to apply such bounds prematurely: the sum (2.49) then has roughly

x log(x)d−1 nonnegligible terms with x = k1Y , and this extra logarithmic factor “log(x)d−1”

turns out to be unaffordable in the application to mass equidistribution. One can show that

the savings obtained by treating nontrivially the factor on the RHS of (2.50) are negligible even

for d > 1. Thus the success of our method when F 6= Q depends crucially on the more careful

treatment afforded by Corollary 2.4.4. In fact, the key to our whole argument is that the factor

on the LHS of (2.50) is very small if any component of max(m,n) is not too large, as we quantify

in Lemma 2.4.7.

Definition 2.4.6. Given parameters T = (T1, . . . , Td) ∈ R[F:Q]
≥1 and U ∈ R≥1, let

RT,U =
{
x ∈ R[F:Q] : x1 ≤ T 1, x ≥ T/U

}
be the subregion of R[F:Q]

>0 bounded by the hyperbola {
∏
xi =

∏
Ti} and the hyperplanes {xi =

Ti/U}. For a multiplicative function λ : IF → C, an ideal z in F and an element l ∈ z, let

Σλ(z, l, T, U) :=
∑
n∈z

m:=n+l∈z
max(m,n)∈RT,U

|λ(z−1m)λ(z−1n)|. (2.51)
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Lemma 2.4.7. Let χ ∈ X(F∗∞+) satisfy the hypotheses of Corollary 2.4.4, let

d = [F : Q], T = (T1, . . . , Td) with Ti = kiY
1/d, X = T1 . . . Td = k1Y,

and let U = exp(log(X)ε). Suppose that 1 ≤ Y � log(X)O(1). Then for any ideal z, any nonzero

shift l ∈ z ∩ F∗, and any positive integer A, we have

Sχ∞(l, n, Y )�z,A X
−A +

∞∑
r=0

2−rdAΣλf (z, l, 2r+1T, 2r+1U). (2.52)

Proof. We work with the bound asserted by Corollary 2.4.5. Partition those m,n in (2.49) for

which max(m,n) ≥ T/U according to the least integer r ≥ 0 such that max(m,n)1 ≤ 2rX;

their contribution is bounded by the second term on the RHS of (2.52). It remains to consider

those m,n for which

max(mi, ni) ≤ Ti/U (2.53)

for some index i ∈ {1, . . . , d}. The elementary inequality 1 − x ≤ exp(−x) and the tautology

min(m,n) + |l| = max(m,n) show that

(
min(m,n)

max(m,n)

) k−1
2

≤ exp

− d∑
j=1

kj − 1

2

|lj |
max(mj , nj)

 ,

so the assumption (2.53) implies

(
min(m,n)

max(m,n)

) k−1
2

≤ exp

(
− |li|U

3Y 1/d

)
. (2.54)

Here we may and shall assume that the shift l is balanced in the sense that |li| �z |lj | for

all i, j ∈ {1, . . . ,F} since Sχ∞(ηl, n, Y ) = Sχ∞(l, n, Y ) for any totally positive unit η ∈ o∗+; in

particular, we may assume that there exists a positive number c, depending only upon the fixed

number field F and the fixed set of representatives {z1, . . . , zh(F)} for the narrow class group,

such that |li| ≥ c for each i. Since Y � log(X)O(1) by assumption, our choice U = exp(log(X)ε)

is (more than) large enough that for each positive real A the inequality

cU

3Y 1/d
≥ A log(X)

holds eventually (i.e., for max(k1, . . . , kd)� 1), so by (2.54) we obtain

(
min(m,n)

max(m,n)

) k−1
2

�A X
−A. (2.55)
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By the trivial “Hecke” bound λf (a) � N(a)1/2+ε, the contribution to (2.49) of n satisfying

(2.53) is

� X−A
′ ∑

n∈z∩F∗∞+

m:=n+l∈z∩F∗∞+

∣∣λf (z−1m)λf (z−1n)
∣∣min

(
1,

X

max(m,n)1

)A

� X−A
′ ∑

n∈z∩F∗∞+

m:=n+l∈z∩F∗∞+

(m1n1)1/2+ε min

(
1,

X

max(m,n)1

)A
(2.56)

for any A,A′ > 0. Since |l|i ≥ c, the number of n ∈ z ∩ F∗∞+ for which n + l ∈ z ∩ F∗∞+ and

max(m,n)1 ≤ 2rX (r ≥ 0) is � (2rX)d. Choosing A = 1 + 2ε + d + 1, summing dyadically,

and taking A′ to be sufficiently large, we see that (2.56) is�A′′ X
−A′′ for any positive constant

A′′, as desired.

The volume of RT,U is approximately X log(U)d−1 = X log(X)(d−1)ε. Since the number of

nonnegligible terms appearing in Sχ∞(l, n, Y ) is approximately X log(X)d−1, we see that Lemma

2.4.7 allows us to discard the vast majority of those terms. We treat the remaining ≈ X log(X)ε
′

terms by the following generalization of Holowinsky’s bound for shifted sums of multiplicative

functions [24, Thm 2].

Theorem 2.4.8. Let T ∈ R[F:Q]
≥1 , U ∈ R≥1, z, l and λ : IF → C be as in Definition 2.4.6.

Suppose that l 6= 0 and that |λ(a)| ≤ τ(a) for all integral ideals a. Set X = T 1 and d = [F : Q].

Then

Σλ(z, l, T, U)�z,ε
log(eU)d−1X

log(eX)2−ε

∏
N(p)≤X

(
1 +

2|λ(p)|
N(p)

)
. (2.57)

Here the product is taken over prime ideals of norm at most X.

Proof. See §2.6.

Remark 3. Holowinsky [24, Thm 2] established a slightly weaker form of the case d = 1 of

theorem 2.4.8 by an application of the large sieve; in his inequality (2.2) an additional factor

of τ(l) appears on the RHS. We prove theorem 2.4.8 by adapting his approach, with the only

difficulty being that the regions RT,U are shaped quite differently when d > 1.

If one is willing to sacrifice uniformity in the shift l, then alternate proofs of the corresponding

weakening of Holowinsky’s [24, Thm 2] and (probably) our theorem 2.4.8 can be obtained by

the general estimates due to Nair [45] and Nair-Tenenbaum [46] for sums
∑
n λ(|P (n)|) with P a

(primitive, possibly multivariate) polynomial (for example, P (n) = n(n+ l)) and n traversing a

box; note that in all of the bounds asserted by Nair and Nair-Tenenbaum, the implied constants

depend in an unspecified manner upon the discriminant and degree of P . This seems insufficient
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in the application to QUE where the shift l must vary (particularly when φ is an incomplete

Eisenstein series, see [64]).

We refer to [47, Rmk 3.11] for a further discussion of variations on the d = 1 case of theorem

2.4.8 that may be derived from other works and particularly their applicability to QUE in the

level aspect.

Proof of theorem 2.3.1. Let Y ≥ 1 be a parameter (to be chosen at the end of the proof) that

satisfies Y � log(k1)O(1). Preserve the hypotheses and notation d = [F : Q], T = Y 1/dk,

X = T 1 = k1Y and U = exp(log(X)ε) from above. Lemma 2.4.7 and theorem 2.4.8 show that

Sχ∞(l, n, Y )�A,ε X
−A +

∞∑
r=0

2−rdA
log(2reU)d−12rdX

log(2rdX)2−ε

∏
N(p)≤2rX

(
1 +

2|λf (p)|
N(p)

)
. (2.58)

Taking A = 2 and using that

∞∑
r=0

2rd−rdA log(2reU)d−1
∏

X<N(p)≤2rX

(
1 +

4

N(p)

)
�ε log(X)(d−1)ε

gives

Sχ∞(l, n, Y )�ε
X

log(X)2−ε′
∏

N(p)≤X

(
1 +

2|λf (p)|
N(p)

)
,

where ε′ = dε. Thus

Sφ(Y )�φ,ε
k1Y 3/2+ε

log(k1)2−ε′
∏

N(p)≤k1

(
1 +

2|λf (p)|
N(p)

)
, (2.59)

since the sum over l in Definition 2.4.1 introduces the additional factor

∑
0 6=a⊂o

N(a)<Y 1+ε

|λφ(a)|
N(a)1/2

≤

 ∑
0 6=a⊂o

N(a)<Y 1+ε

|λφ(a)|2
∑

06=b⊂o
N(b)<Y 1+ε

1

N(b)


1/2

�φ Y
1/2+ε

by the Cauchy-Schwarz inequality and the Rankin-Selberg bound (2.13); similarly, using that

|λχ(a)| ≤ τ(a) for a unitary character χ ∈ X(CF/ô
∗)(0), we find that

Sχ(Y )�ε
k1Y 3/2+ε

log(k1)2−ε′
∏

N(p)≤k1

(
1 +

2|λf (p)|
N(p)

)
, (2.60)

where we emphasize that the implied constant does not depend upon χ. By Proposition 2.4.2

and the definitions (2.22)–(2.23) of Mf (x) and Rf (x), we deduce for φ a Maass eigencuspform
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that
µf (φ)

µf (1)
�φ,ε Y

1/2+ε log(k1)ε
′
Mf (k1) (2.61)

and for φ = E(Ψ, ·) an incomplete Eisenstein series that

µf (φ)

µf (1)
− µ(φ)

µ(1)
�φ,ε Y

1/2+ε log(k1)ε
′
Mf (k1)

∫
X(CF/ô∗)(0)

∣∣∣∣Ψ∧(|.|1/2χ)

ξF(|.|1χ2)

∣∣∣∣ |dχ|
+

1 +Rf (k1)

Y 1/2
.

(2.62)

The integral in (2.62) converges by the rapid decay of Ψ∧ (see §2.2.6). Choosing (as Holowinsky

does) Y = max(1,Mf (k1)−1) � log(k1)O(1) in (2.61) and (2.62), we conclude the proof of

theorem 2.3.1.

2.5 Reduction to Shifted Sums Weighted by an Integral

In this section we establish Proposition 2.4.2, which reduces our study of µf (φ) to that of the

shifted sums Sφ(Y ) and Sχ(Y ); here and throughout this section Y ≥ 1 is a (small) parameter,

f is a nondihedral holomorphic eigencuspform of weight k = (k1, . . . , k[F:Q]), φ is a Maass

eigencuspform or incomplete Eisenstein series, and h ∈ C∞c (R∗+) is a fixed test function with

Mellin transform h∧(s) =
∫∞

0
h(y)y−s d×y normalized as in Definition 2.4.1 so that

h∧(1) ress=1E(s, ·) = 1. (2.63)

Let hY be the function y 7→ h(Y y) and let

E(hY , ·) : G(A) 3 g 7→
∑

γ∈B(F)\G(F)

hY (|y(γg)|)

be the incomplete Eisenstein series attached by the recipe of §2.2.8.4 to the test function hY ◦|.| ∈

C∞c (CF/C
1
F) ↪→ C∞c (CF/ô

∗).

Lemma 2.5.1. We have the approximate formula

µf (φ)

µf (1)
=
µf (E(hY , ·)φ)

Y µf (1)
+Oφ(Y −1/2).

Proof. The starting point is the consequence

µf (E(hY , ·)φ) = Y µf (φ) +

∫
(1/2)

h∧Y (s)µf (E(s, ·)φ)
ds

2πi
, (2.64)

of Mellin inversion, Cauchy’s theorem and our normalization (2.63). We need a crude bound of



35

the form

E(s, g)φ(g)�φ |s|2[F:Q]+ε for Re(s) = 1
2 , g ∈ G(A), (2.65)

where the precise exponent is not important. To establish this, recall first that if c > 0 is chosen

small enough, then the Siegel set S consisting of those g = n(x)a(y)kz ∈ G(A) for which |y| ≥ c

satisfies G(A) = G(F)S. Since E(s, ·)φ is Z(A)-invariant and right K-invariant, it suffices to

establish (2.65) for g = n(x)a(y×z−1
j ) where x ∈ A, y ∈ F∗∞+ with y1 ≥ c and j ∈ {1, . . . , h(F)}.

For s = 1
2 + it the Fourier expansion of E(s, ·), given in §2.2.8.3, shows that

|E(s, n(x)a(y × z−1
j )))| � (y1)1/2 +

∑
n∈F∗∩zj

∣∣∣∣∣ κit,∞(ny)

ξF(1 + 2it)

λit(z
−1
j n)

N(z−1
j n)1/2

∣∣∣∣∣ , (2.66)

where for simplicity we write κit,∞ := κ|.|it,∞ and λit := λ|.|it . The straightforward analysis of

[67, §3.6] applied to ζF in place of ζQ shows that4

ξF(1 + 2it)−1 � (1 + |t|)ε

ΓR(1 + 2it)[F:Q]
,

and it is noted in [24, page 6] that the integral formula for Kit implies

Kit(y)

ΓR(1 + 2it)
�
(

1 + |t|
y

)A(
1 +

1 + |t|
y

)ε
for any A ∈ Z≥0, ε > 0,

thus (writing d = [F : Q], ε′ = (d+ 1)ε, and using that |n1|y1 � 1)∣∣∣∣∣ κit,∞(ny)

ξF(1 + 2it)

λit(z
−1
j n)

N(z−1
j n)1/2

∣∣∣∣∣� (y1)1/2(1 + |t|)2d+ε′ |n1|ε

(max(1, |n|y)1)A
.

Take A = 2. We have ∑
n∈F∗∩zj

|n1|ε

(max(1, |n|y)1)2
� (y1)−2 (2.67)

because the LHS of (2.67) is invariant under multiplying y by an element of o∗+, so we may assume

that y is balanced (yi � yj for all i, j) with each component bounded uniformly from below, in

which case (2.67) may be compared with a convergent integral. Thus |E(s, n(x)a(y × z−1
j ))| �

(y1)1/2 + |s|2d+ε′(y1)−3/2. Since φ satisfies5 φ(n(x)a(y× z−1
j ))�φ (y1)−A, we obtain the crude

4We believe that the stronger bound with (1 + |t|)ε replaced by log(1 + |t|) holds, but could

not quickly locate a reference.

5For a Maass eigencuspform, this is well known [34, Prop 10.7]; an incomplete Eisenstein

series vanishes off a compact subset of X.
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bound (2.65).

By the rapid decay of h∧ and the identity h∧Y (s) = Y sh∧(s), we deduce from (2.65) that the

error term in (2.64) satisfies

∫
(1/2)

h∧Y (s)µf (E(s, ·)φ)
ds

2πi
� Y 1/2µf (1).

The lemma follows upon dividing through by Y µf (1).

Fix now a nice fundamental domain [F∗∞+/o
∗
+] for the quotient F∗∞+/o

∗
+ with the property

that y ∈ [F∗∞+/o
∗
+] implies yi � yj for all i, j ∈ {1, . . . , [F : Q]}. Write the Fourier expansions of

φ and f in the form

φ =
∑
l∈F

φl, f =
∑
n∈F∗

fn, (2.68)

where φl : G(A)→ C satisfies φl(n(x)g) = eF(lx)φl(g) for all x ∈ A and fn satisfies the analogous

condition.

Lemma 2.5.2. We have µf (E(hY , ·)φ) = S0 + S1 + S2, where

S0 =

h(F)∑
j=1

∫
y∈[F∗∞+/o

∗
+]

hY (y1 N(zj))

N(zj)

∫
x∈F\A

(φ0|f |2)(n(x)a(y × z−1
j )) dx

d×y

y1
; (2.69)

for φ a Maass eigencuspform,

S1 =
Γ(k − 1)

(4π1)k−1
Sφ(Y );

for φ = E(Ψ, ·) an incomplete Eisenstein series,

S1 =
Γ(k − 1)

(4π1)k−1

∫
X(CF/ô∗)(0)

Ψ∧(|.|1/2χ)

ξF(|.|χ2)χ(dF)−2
Sχ(Y )

dχ

2πi
;

and

|S2| ≤ µf (E(hY , ·))
h(F)∑
j=1

sup
y∈[F∗∞+/o

∗
+]

hY (y1N(zj)) 6=0

∑
l∈zj

|l1|≥Y 1+ε

|φl(a(y × z−1
j ))|. (2.70)

The shifted sums Sφ(Y ) and Sχ(Y ) are as in Definition 2.4.1.

Proof. By the formula (2.4) for integration over Z(A)B(F)\G(A), we see that

µf (E(hY , ·)φ)

=

h(F)∑
j=1

∫
y∈F∗∞+/o

∗
+

hY (y1 N(zj))

N(zj)

∫
x∈F\A

(φ|f |2)(n(x)a(y × z−1
j )) dx

d×y

y1
.

(2.71)
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We now integrate in y over the fundamental domain [F∗∞+/o
∗
+] and substitute for φ its Fourier

series
∑
φl. Note that φl(n(x)a(y × z−1

j )) = 0 unless l ∈ zj . The contribution to (2.71) of

the constant term φ0 is precisely S0. Let S2 denote the contribution of those φl for which

|l1| ≥ Y 1+ε, so that the bound (2.70) follows from the formula for µf (E(hY , ·)) given by (2.71)

with φ = 1. Let S1 denote the remaining contribution of those l ∈ zj for which 0 6= |l1| < Y 1+ε.

Substituting the Fourier series f =
∑
fn (in which fn(y × z−1

j ) = 0 unless n ∈ zj ∩ F∗∞+) and

integrating in x, we obtain

S1 =

h(F)∑
j=1

∑∑
(l,n)∈(F∗∩zj)2

l1<Y 1+ε

n∈F∗∞+

m:=n+l∈F∗∞+

∫
y∈[F∗∞+/o

∗
+]

hY (y1 N(zj))

N(zj)
(φlfmfn)(a(y × z−1

j ))
d×y

y1
. (2.72)

If η ∈ o∗+, then (φηlfηmfηn)(a(y× z−1
j )) = (φlfmfn)(a(ηy× z−1

j )) (see §2.2.7), so we may break

the sum into orbits for (l, n) under the diagonal action of o∗+ and unfold the integral over y to

all of F∗∞+:

S1 =

h(F)∑
j=1

∑∑
(l,n)∈o∗+\(F

∗∩zj)2

l1<Y 1+ε

n∈F∗∞+

m:=n+l∈F∗∞+

∫
y∈F∗∞+

hY (y1 N(zj))

N(zj)
(φlfmfn)(a(y × z−1

j ))
d×y

y1
. (2.73)

Take as representatives for o∗+\(F∗∩zj)2 the pairs (l, n) with l traversing any set of representatives

for o∗+\(F∗ ∩ zj) and n traversing the set F∗ ∩ zj . Recalling the formulas for fn and φl given in

§2.2.8.1, §2.2.8.2 and §2.2.8.4 and the definitions of Sφ(Y ) and Sχ(Y ), we obtain the claimed

expressions for S1.

Lemma 2.5.3. We have

S0

Y µf (1)
=
µ(φ)

µ(1)
+Oφ

(
1 + δφRf (k1)

Y 1/2

)
,

where δφ = 0 or 1 according as φ is a Maass eigencuspform and or an incomplete Eisenstein

series.

Proof. If φ is cuspidal, then S0 = µ(φ) = 0, so there is nothing to show. Suppose that φ =

E(Ψ, ·). If y1 � Y −1, then it follows from (2.19) that

φ0(y × z−1
j ) =

µ(φ)

µ(1)
+

∑
16=χ0∈X(CF/ô∗)[2]

cΨ(χ0)χ0(y × z−1
j ) +Oφ(Y −1/2). (2.74)
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We have

h(F)∑
j=1

∫
y∈[F∗∞+/o

∗
+]

hY (y1 N(zj))

N(zj)

∫
x∈F\A

|f |2(n(x)a(y × z−1
j )) dx

d×y

y1

= µf (E(hY , ·)) =

∫
(2)

h∧Y (s)µf (E(s, ·)) ds

2πi
,

(2.75)

and similarly for 1 6= χ0 ∈ X(CF/ô
∗)[2],

h(F)∑
j=1

∫
y∈[F∗∞+/o

∗
+]

hY (y1 N(zj))

N(zj)
χ0(y × z−1

j )

∫
x∈F\A

|f |2(n(x)a(y × z−1
j )) dx

d×y

y1

=

∫
(2)

h∧Y (s)µf (E(|.|sχ0, ·))
ds

2πi
.

(2.76)

Substituting (2.74) into (2.69) and applying (2.75) and (2.76), we obtain

S0 =

(
µ(φ)

µ(1)
+Oφ(Y −1/2)

)∫
(2)

h∧Y (s)µf (E(s, ·)) ds

2πi

+
∑

16=χ0∈X(CF/ô∗)[2]

cΨ(χ0)

∫
(2)

h∧Y (s)µf (E(|.|sχ0, ·))
ds

2πi
.

(2.77)

Shift the contours in (2.77) to the line Re(s) = 1
2 ; for χ0 6= 1 we do not pick up a pole of

µf (E(|.|sχ0, ·)) because f is nondihedral. Thus

S0 = Y µf (1)

(
µ(φ)

µ(1)
+Oφ(Y −1/2)

)

+Oφ

 ∑
χ0∈X(CF/ô∗)[2]

∫
(1/2)

|h∧Y (s)µf (E(χ0|.|s, ·))| |ds|

 .

(2.78)

To simplify the error term, we apply the formula

µf (E(χ0|.|s, ·))
µf (1)

= c1(F)

∫
(1/2)

h∧(s)

(
Y

4π[F:Q]

)s
Γ(k + (s− 1)1)

Γ(k)

ζF(χ0|.|s)
ζF(2s)

L(ad f, χ0|.|s)
L(ad f, 1)

ds

2πi

(2.79)

which follows from the unfolding method and analytic continuation as in §2.2.9. By the standard

estimates |Γ(kj − 1
2 + it)| ≤ Γ(kj − 1

2 )� k
−1/2
j Γ(kj), ζF(χ0|.|s)� |s|[F:Q]/4 and |ζF(2s)| � |s|−ε

for Re(s) = 1
2 (see also Soundararajan’s arguments [66, p7] when F = Q), we deduce that the

error term in (2.78) satisfies

∑
χ0∈X(CF/ô∗)[2]

∫
(1/2)

|h∧Y (s)µf (E(χ0|.|s, ·))| |ds| � Y 1/2µf (1)Rf (k1), (2.80)
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with Rf given by (2.23). The lemma follows upon dividing through by Y µf (1).

Lemma 2.5.4. We have
|S2|

Y µf (1)
� Y −10.

Proof. Set d = [F : Q], and note that each l arising in the sum (2.70) satisfies

2r(Y 1+ε)1/d ≤ max(|l1|, . . . , |ld|) < 2r+1(Y 1+ε)1/d (2.81)

for some nonnegative integer r. More generally, there are � 2rdY 1+ε elements l ∈ zj for which

(2.81) holds. For each y ∈ [F∗∞+/o
∗
+] such that hY (y1N(zj)) 6= 0, we have y1 � Y −1 and yi � yj

for i, j ∈ {1, . . . , [F : Q]}, thus

yi � Y −1/d for each i. (2.82)

Suppose that φ is a Maass eigencuspform, so that

φl(a(y × z−1
j )) = κφ,∞(ly)

λφ(lz−1
j )

N(lz−1
j )1/2

.

We have λφ(a) ≤ τ(a) N(a)1/2 � N(a)1/2+ε and κφ,∞(ly) =
∏d
i=1 κφ,∞i

(liyi) with

κφ,∞i
(liyi) = ±2(|li|yi)1/2Kiri(2π|li|yi),

where |κφ,∞i(liyi)| ≤ 1 and

Kir(x)�
(

1 + |r|
x

)A′
uniformly for r ∈ R ∪ i(− 1

2 ,
1
2 ) and x ≥ δ > 0. (2.83)

Thus if l ∈ zj and y ∈ F∗∞+ satisfy (2.81)–(2.82), we obtain

|φl(a(y × z−1
j ))| � (1 + |r|1)O(1)(2rY ε/d)−A (2.84)

for any positive A. The dependence of the bound (2.84) on φ is polynomial in the archimedean

parameters ri, so (2.84) extends to the case that φ = E(Ψ, ·) is an incomplete Eisenstein series

by the integral formula (2.20) for its Fourier coefficients and the rapid decay of the test function

Ψ∧.

Taking A sufficiently large in (2.84) and summing over l ∈ zj that satisfy the condition (2.81)

for some r ∈ Z≥0, we deduce

|S2| � Y −12µf (E(hY , ·)). (2.85)
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The function h is bounded, so

E(hY , g) =
∑

γ∈B(F)\G(F)

h(Y |y(γg)|)� #{γ ∈ B(F)\G(F) : |y(γg)| � Y −1}. (2.86)

By [68, Lem 8.7], the cardinality on the RHS of (2.86) is � Y 1+ε, uniformly in g. Thus

E(hY , ·)� Y 1+ε and µf (E(hY , ·))� Y 1+εµf (1), so (2.85) gives |S2| � Y −10µf (1).

Proof of Proposition 2.4.2. Follows immediately from the sequence of lemmas proved in this

section together with the consequence

1

Y µf (1)

Γ(k − 1)

(4π1)k−1
=

c1(F)

L(ad f, 1)

1

(k − 1)1Y

of the formula (2.21).

Remark 4. Let us point out the essential difference between our method and that of Marshall

[43]. Recall that starting from Lemma 2.5.1, we have integrated φ|f |2 against the incomplete

Eisenstein series E(h, ·) attached to a test function h ∈ C∞c (CF/C
1
F) = C∞c (R∗+). Marshall

instead integrates against what he calls a “unipotent Eisenstein series,” which (reinterpreted

adelically) amounts to the incomplete Eisenstein series E(H, ·) attached to the test function

H ∈ C∞c (CF/ô
∗) given by H(y) =

∑
α∈F∗ h(αy) for some pure tensor h =

∏
hv ∈ C∞c (A∗/ô∗).

Suppose that φ is cuspidal; the case that φ = E(Ψ, ·) is an incomplete Eisenstein series proceeds

similarly after separating out the constant term and appealing to the formula (2.20). Then

µf (E(H, ·)φ) =

∫
Z(A)B(F)\G(A)

Hφ|f |2

=

∫
y∈F∗\A∗

(∑
α∈F∗

h(αy)

)∫
x∈F\A

(φ|f |2)(n(x)a(y)) dx
d×y

|y|

=

∫
y∈A∗

h(y)

∫
x∈F\A

(φ|f |2)(n(x)a(y)) dx
d×y

|y|

=
∑∑

(l,n)∈F∗×F∗
m:=n+l∈F∗

∫
y∈A∗

h(y)κφ(ly)κf (my)κf (ny)
d×y

|y|
.

The integral in the final expression factorizes over the places of F; taking each hp to be the

characteristic function of o∗p and h∞j (y) = h0(Y y) for some fixed h0 ∈ C∞c (R∗+) gives

µf (E(H, ·)φ) =
∑∑

(l,n)∈(F∗∩o)2

m:=n+l∈F∗∩o

λφ(l)λf (m)λf (n)√
|l1m1n1|

×
[F:Q]∏
j=1

∫
y∈R∗+

h0(Y y)κφ,∞j
(ljy)κf,∞j

(mjy)κf,∞j
(njy)

d×y

y
.

(2.87)
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The integrals here, which may be treated either by bounding κφ,∞j trivially as in (2.45) (which

is basically what Holowinsky and Marshall do) or by our sharp refinement given in Lemma 2.4.3,

essentially truncate the sum over l and n to a pair of boxes rather than regions bounded by a

hyperbola and hyperplanes as in our approach.

2.6 Bounds for Shifted Sums Under Hyperbolas

In this section we establish theorem 2.4.8, whose hypotheses we now recall. Let d = [F : Q] be

the degree of our totally real number field F, so that F∞ ∼= Rd (see §2.2.3). Let T ∈ Rd≥1 and

U ∈ R≥1 be parameters to which we associate the region

RT,U =
{
x ∈ Rd : x1 ≤ X, x ≥ T/U

}
, X := T 1.

Let z ⊂ F be a fractional ideal and l ∈ F∗ ∩ z a nonzero “shift.” Let λ : IF → C be a weakly

multiplicative function that satisfies |λ(a)| ≤ τ(a). We would like to bound certain sums

Σλ(z, l, T, U) :=
∑
n∈z

m:=n+l∈z
max(m,n)∈RT,U

|λ(z−1m)λ(z−1n)|. (2.88)

Our strategy for doing so generalizes Holowinsky’s. By the assumption |λ(a)| ≤ τ(a) we

reduce to quantifying the “independence” of the small prime factors of m and n, which in turn

reduces to a classical sieving problem (estimating how many lattice points in a region satisfy some

congruence conditions). By general machinery due to Linnik, Rényi, Bombieri and Davenport,

Montgomery and others in the case F = Q (see [7, §27], [31, p180] and [35]), such classical sieving

problems follow from additive large sieve inequalities (quantifying the approximate orthogonality

of a family of additive characters on a lattice when restricted to the intersection of that lattice

with a sufficiently smooth region), which in turn follow from bounds for sums over well-spaced

points in the support R∧T,U of the Fourier transform of a smooth majorizer for the region RT,U .

Some care is required when [F : Q] > 1 because thenR∧T,U will have long and thin regions that

(unfortunately) accomodate many well-spaced points. In our intended application the parameter

U is small enough that one can successfully analyze R∧T,U without using any properties of z

beyond that it is a lattice, but to simplify our treatment and allow arbitrary values of U we

instead exploit the symmetries of the fractional ideal z coming from the action of the units o∗+.

First, we cover RT,U by � log(eU)n−1 boxes of volume X = T 1:
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Lemma 2.6.1. There exists a finite collection (Rα)α∈A of boxes

Rα = [aα,1, bα,1]× · · · × [aα,d, bα,d] ⊂ Rd≥0, 0 ≤ aα,j < bα,j

whose union contains RT,U with #A� log(eU)d−1 such that vol(Rα) = X and bα,1 · · · bα,d � X

for each α ∈ A.

Proof. Let x ∈ RT,U , so that x1 · · ·xd ≤ T1 · · ·Td and xi ≥ Ti/U . By the pigeonhole principle,

we have
∏
j 6=i xj ≤

∏
j≤i Tj for some index i; to simplify notation, suppose that i = 1, so that

x2 · · ·xd ≤ T2 · · ·Td. Choose integers a2, . . . , ad so that

Ti
2ai
≤ xi ≤

Ti
2ai−1

.

Since 0 ≤ x1 ≤ T1T2 · · ·Td/x2 · · ·xd ≤ 2a2+···+adT1, we see that x is contained in the box

R =
[
0, 2a2+···+adT1

]
×
[
T2

2a2
,
T2

2a2−1
,

]
× · · · ×

[
Td
2ad

,
Td

2ad−1
,

]
,

which satisfies the desiderata of the lemma. Since x2 · · ·xd ≤ T2 · · ·Td implies

T2

2a2
· · · Td

2ad
≤ x2 · · ·xd ≤ T2 · · ·Td,

and because xi ≥ Ti/U , we deduce that

ai ≤ dlog2 Uc for i = 2, . . . , d and a2 + · · · ad ≥ 0. (2.89)

There are � log(eU)d−1 tuples (a2, . . . , ad) ∈ Zd−1 satisfying the conditions (2.89).

Next, because λ and z are invariant under o∗+, we see that for any (totally positive) unit

η ∈ o∗+ and any region R ⊂ Rd, we have

∑
n∈z

m:=n+l∈z
max(m,n)∈R

|λ(z−1m)λ(z−1n)| =
∑
n∈z

m:=n+η−1l∈z
max(m,n)∈ηR

|λ(z−1m)λ(z−1n)|

where ηR = {ηx : x ∈ R}. The o∗+-orbit of any box Rα as in Lemma 2.6.1 contains a repre-

sentative [a1, b1] × · · · × [ad, bd] for which |ai − bi| � |aj − bj | � X1/d for all i, j ∈ {1, . . . , d}.

Thus

Σλ(z, l, T, U)� log(eU)d−1 sup
R

sup
η∈o∗+

∑
n∈z

m:=n+η−1l∈z
max(m,n)∈R

|λ(z−1m)λ(z−1n)| (2.90)
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where the supremum is taken over all boxes R = [a1, b1] × · · · × [ad, bd] for which vol(R) = X,

|ai− bi| � X1/d, 0 ≤ ai < bi and max(b1, . . . , bd)� X1/d, with the implied constants depending

only upon the field F. Finally, if max(m,n) belongs to such a box R with m,n ∈ F∗∞+, then

both m and n belong to the box (0, b1] × · · · × (0, bd]. Therefore theorem 2.4.8 reduces to the

following result, which we shall establish in the remainder of this section.

Theorem 2.6.2. Let F be a totally real number field of degree d = [F : Q], let λ : IF → R≥0 be

a nonnegative-valued multiplicative function that satisfies λ(a) ≤ τ(a) for all a ∈ IF, let z be a

fractional ideal in F, let λ0 : z→ R≥0 be the function λ0(n) = λ(z−1n), let X ≥ 2, and let

RX,z = (0, (N(z)X)1/d]× · · · × (0, (N(z)X)1/d] ⊂ Rd. (2.91)

Then for l ∈ z ∩ F∗, we have

∑
n∈z∩RX,z

m:=n+l∈z∩RX,z

λ0(m)λ0(n)�F,ε
X

log(X)2−ε

∏
N(p)≤X

(
1 +

2λ(p)

N(p)

)
. (2.92)

Preserve the hypotheses and notation of theorem 2.6.2. Throughout this section the nonzero

shift l ∈ z∩F∗ is fixed, while m and n denote elements of z having difference m−n = l. To ease

the notation, we write |a| = N(a) for the norm of an integral ideal a. Theorem 2.6.2 is trivial

for bounded values of X; thus we may and shall assume for convenience that X is sufficiently

large, so that for instance log log(X)� 1.

For a real parameter

z = X1/s, s ∈ R>0, (2.93)

define the z-part of an element n ∈ z to be the greatest divisor of the integral ideal z−1n each of

whose prime factors has norm at most z, so that if z−1n factors as a product of prime powers∏
pkii , then the z-part of n is

∏
|pi|≤z p

ki
i . Define the z-datum of n to be the unique triple (a, b, c)

of integral ideals for which

• a and b are coprime,

• ac is the z-part of m := n+ l, and

• bc is the z-part of n.

Thus the size of c quantifies the overlap between small primes occurring in z−1m and z−1n. Let

Z denote the set of all z-data that arise in this way and za,b,c the set of all elements n ∈ z having

z-datum (a, b, c), so that we have a partition

z = t{za,b,c : (a, b, c) ∈ Z}. (2.94)
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Note that for all (a, b, c) ∈ Z we have c|z−1l, so that c−1z−1l is an integral ideal.

Now let

y = Xα, α ∈ R>0 (2.95)

be a real parameter and partition Z into subsets

Z≤y = {(a, b, c) ∈ Z : max(|ac|, |bc|) ≤ y},

Z>y = {(a, b, c) ∈ Z : max(|ac|, |bc|) > y}.

Thus the z-datum of n ∈ z belongs to Z≤y if both z−1m and z−1n have few small prime factors

and to Z>y if either z−1m or z−1n has many small prime factors, where y determines the

threshold separating “few” from “many.” The latter case occurs infrequently, as we now show

in Lemma 2.6.3; the former case will be addressed by Lemma 2.6.4.

Lemma 2.6.3. Suppose that 2 ≤ z ≤ y ≤ X with s and α as in (2.93), (2.95) such that

s � log log(X) and α � 1. Then

∑
(a,b,c)∈Z>y

∑
n∈za,b,c
m,n∈RX,z

λ0(m)λ0(n)� X log(X)−A. (2.96)

Proof. The LHS of (2.96) is the sum of λ0(m)λ0(n) taken over those m,n ∈ z ∩ RX,z with

m − n = l for which the z-part of either m or n has norm greater than y. Writing a and b for

the z-parts of m and n and invoking Cauchy-Schwarz twice, we see that the LHS of (2.96) is

≤

 ∑
y<|a|≤X

p|a =⇒ |p|≤z

#(az ∩RX,z)


1/4 ∑

m∈z∩RX,z

λ0(m)4

1/4 ∑
n∈z∩RX,z

λ0(n)2

1/2

+

 ∑
y<|b|≤X

p|b =⇒ |p|≤z

#(bz ∩RX,z)


1/4 ∑

m∈z∩RX,z

λ0(m)2

1/2 ∑
n∈z∩RX,z

λ0(n)4

1/4

.

We have
∑
m∈z∩RX,z λ

0(m)4 � X log(X)15 and
∑
m∈z∩RX,z λ

0(m)2 � X log(X)3 by the same

argument as when F = Q (see [31, §1.6]) and #(az ∩RX,z)� 1 + |a|−1X � |a|−1X, so that

∑
(a,b,c)∈Z>y

∑
n∈za,b,c
m,n∈RX,z

λ0(m)λ0(n)� X log(X)O(1)

 ∑
y<|a|≤X

p|a =⇒ |p|≤z

1

|a|


1/4

. (2.97)

Let Ψ(t, z) denote the number of integral ideals a ⊂ o of norm |a| ≤ t each of whose prime
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divisors p|a satisfy |p| ≤ z, so that by partial summation

∑
y<|a|≤X

p|a =⇒ |p|≤z

1

|a|
=

Ψ(X, z)

X
− Ψ(y, z)

y
+

∫ X

y

Ψ(t, z)

t2
dt. (2.98)

A theorem of Krause [38] (see also the survey [20]) asserts that

Ψ(t, z) = tρ(u)

(
1 +O

(
log(u+ 1)

log z

))
, u :=

log t

log z

uniformly for t ≥ 2 and 1 ≤ u ≤ (log z)3/5−ε for any ε > 0, where the Dickman function

ρ : R>0 → R>0 satisfies the asymptotics log ρ(u) = −(1 + o(1))u log u as u → +∞. For

y ≤ t ≤ X, our assumptions α � 1 and s � log log(X) imply that u � log log t. Thus

log z � log t/ log log t, so the condition for uniformity is satisfied and we obtain

Ψ(t, z)� t exp(−2C log log t log log log t) = t(log t)−2C log log log t �A t(log t)−A

for some C > 0 and every A > 0. It follows from (2.98) that

∑
y<|a|≤X

p|a =⇒ |p|≤z

1

|a|
�A log(X)−A. (2.99)

We deduce the required bound by substituting (2.99) into (2.97) and taking A sufficiently large.

On the other hand, if z−1m and z−1n have few small prime factors, then we shall show

by an application of the large sieve that they typically have few common small prime factors;

anticipating the bound given by Corollary 2.6.8, set

B(y, z) := sup
(a,b,c)∈Z≤y

#{n ∈ za,b,c : m,n ∈ RX}
|z−1l|

|c|2φ(abc−1z−1l)

, (2.100)

where φ denotes the Euler phi function (multiplicative, pk 7→ |p|k−1(|p| − 1)).

Lemma 2.6.4. For y, z as in (2.93), (2.95), we have

∑
(a,b,c)∈Z≤y

∑
n∈za,b,c

m,n∈z∩RX,z

λ0(m)λ0(n)� 4sB(y, z) log(X)ε
∏
|p|≤z

(
1 +

2λ(p)

|p|

)
. (2.101)

Proof. First, write z−1m = acm and factor m as a product of prime powers paii with |pi| > z;
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since |m| ≤ X, we have

∑
ai log(z) ≤

∑
ai log |pi| = log |m| ≤ log(X) = s log(z),

so that our assumption λ(paii ) ≤ ai + 1 ≤ 2ai implies λ(m) ≤ 2
∑
ai ≤ 2s. Writing z−1n = bcn,

we find similarly that λ(n) ≤ 2s. Since gcd(ac,m) = gcd(bc, n) = o, we obtain λ0(m)λ0(n) =

λ(ac)λ(bc)λ(m)λ(n) ≤ 4sλ(ac)λ(bc). By the definition of B(y, z) and the inequality φ(ab) ≥

φ(a)φ(b), the LHS of (2.101) is thus

≤ 4sB(y, z)
∑
c|z−1l

p|c =⇒ |p|≤z

|z−1l|
φ(c−1z−1l)|c|2

∑
|ac|≤y

∑
|bc|≤y

p|ab =⇒ |p|≤z

λ(ac)λ(bc)

φ(a)φ(b)
. (2.102)

For c as in (2.102), the multiplicativity of λ and φ implies that

∑
|ac|≤y

∑
|bc|≤y

p|ab =⇒ |p|≤z

λ(ac)λ(bc)

φ(a)φ(b)
≤

 ∏
|p|≤z

∑
k≥0

λ(pk+vp(c))

φ(pk)

2

, (2.103)

where vp(c) denotes the order to which p divides c. We rewrite

∑
k≥0

λ(pk)

φ(pk)
=

(
1 +

λ(p)

|p|

)1 +

λ(p)
φ(p) −

λ(p)
|p| +

∑
k≥2

λ(pk)
φ(pk)

1 + λ(p)
|p|

 . (2.104)

Using the inequalities λ(pk) ≤ k + 1 and |p| ≥ 2 and writing q = |p| for clarity, we compute

λ(p)

φ(p)
− λ(p)

|p|
+
∑
k≥2

λ(pk)

φ(pk)
≤ 2

q(q − 1)
+
∑
k≥2

k + 1

qk−1(q − 1)

= q−2
(
2(1− q−1)−1 + 2(1− q−1)−2 + (1− q−1)−3

)
≤ 20q−2,

so that (2.104) implies ∑
k≥0

λ(pk)

φ(pk)
≤
(

1 +
λ(p)

|p|

)(
1 +

20

|p|2

)
. (2.105)

If ν ≥ 1, then (writing q = |p|)

∑
k≥0

λ(pk+ν)

φ(pk)
≤ ν + 1 +

∑
k≥1

ν + k + 1

qk−1(q − 1)

= 1 + ν
(
1 + q−1(1− q−1)−2

)
+ q−1(1− q−1)−2

≤ 3ν + 3.
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Substituting these bounds into (2.102) and (2.103), the LHS of (2.101) is

� 4sB(y, z)ψ(z−1l)
∏
|p|≤z

(
1 +

2λ(p)

|p|

)
,

with ψ(a) := |a|
∑
c|a

∏
pν ||c(3ν + 3)2

φ(a/c)|c|2
.

(2.106)

The function ψ : IF → R≥0 is multiplicative. On a prime power pa with a ≥ 1 and |p| = q ≥ 2

it takes the value

ψ(pk) =
1

1− q−1
+

9

qa

(
(a+ 1)2 +

1

1− q−1

a−1∑
i=1

(i+ 1)2

qi

)
≤ 1 + 106q−1.

Since
∏

p|a(1 + |p|−1)� log log |a|, it follows that ψ(a)� log log(a)106

. If |z−1l| > X, then the

LHS of (2.101) is zero; if otherwise |z−1l| ≤ X, then ψ(z−1l) � log(X)ε. Thus (2.101) follows

from (2.106).

By Lemma 2.6.3 and Lemma 2.6.4, we see that theorem 2.4.8 follows from sufficiently strong

bounds for the quantity B(y, z) given by (2.100); the following lemma reduces such bounds to

a classical sieving problem.

Definition 2.6.5. For a region R ⊂ F∞ ∼= Rd, an ideal x ⊂ F, a finite set P of primes in o and

a collection (Ωp)p∈P of sets of residue classes Ωp ⊂ x/px, define the sifted set

S(R, x, (Ωp)) := {n ∈ x ∩R : n /∈ Ωp (px) for all p ∈ P}. (2.107)

Define also for any Q ≥ 1 the quantity

H((Ωp), Q) =
∑
|q|≤Q

p|q =⇒ p∈P

∏
p|q

#Ωp

|p| −#Ωp
. (2.108)

Lemma 2.6.6. Let (a, b, c) ∈ Z. Choose an element r ∈ cz so that r ≡ 0 (acz) and r = −l

(bcz), and define the region

Rr = {x− r|x ∈ RX,z}. (2.109)

Let x = abcz and let P denote the set of odd primes p in o of norm |p| ≤ z. Then there exists a

collection of sets of residue classes (Ωp)p∈P with Ωp ⊂ x/px such that

#Ωp :=

1 p|abc−1z−1l

2 otherwise

(2.110)
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and

#(za,b,c ∩RX,z) ≤ #S(Rr, x, (Ωp)). (2.111)

Proof. Indeed, let (a, b, c) ∈ Z, so that c|z−1l and gcd(a, b) = o. Let n ∈ z. Then n belongs to

za,b,c if and only if

(1) n ∈ acz,

(2) n+ l ∈ bcz,

(3) p - z−1n/ac for each prime p with norm |p| ≤ z, and

(4) p - z−1(n+ l)/bc for each prime p with norm |p| ≤ z.

If n ∈ za,b,c, then conditions (1)–(2) assert that n − r ∈ abcz, while conditions (3)–(4) assert

(slightly more than) that for each prime p with |p| ≤ z, the number n−r ∈ abcz does not belong

to a certain collection Ωp ⊂ abcz/pabcz of residue classes. Precisely, let ζ ∈ abcz and n = ζ + r.

• Suppose p|a, p - b. Let ζ1 := (abcz/pabcz
∼=−→ acz/pacz)−1(−r). Then (3) holds iff ζ + r /∈

pacz iff ζ − ζ1 /∈ pabcz, while (4) holds iff ζ + r + l /∈ pbcz iff (since ζ ∈ abcz ⊂ pbcz)

r + l /∈ pbcz iff pbz - r+l
c iff (since (p, b) = 1 and r + l ∈ bc) r + l /∈ pcz; we may take

Ωp = {ζ1}, #Ωp = 1.

• If p - a, p|b, then we may similarly take #Ωp = 1.

• The case p|a, p|b does not occur because (a, b) = 1.

• Suppose p - ab. Let ζ1 := (abcz/pabcz
∼=−→ acz/pacz)−1(−r), ζ2 := (abcz/pabcz

∼=−→

bcz/pbcz)−1(−r − l). Then (3) holds iff ζ + r /∈ pacz iff ζ − ζ1 /∈ pabcz, while (4) holds iff

ζ + r + l /∈ pbcz iff ζ − ζ2 /∈ pabcz. We may therefore take Ωp = {ζ1, ζ2}. We have ζ1 ≡ ζ2
(pabcz) iff l ∈ pcz, in which case #Ωp = 1; if l /∈ pcz, then #Ωp = 2.

Thus n 7→ n−r gives an inclusion za,b,c∩R ↪→ S(Rr, abcz, (Ωp)), and the #Ωp are as claimed.

The large sieve machinery alluded to above allows us to show the following, the proof of which

we postpone to a later subsection; the proof is independent of what follows in this subsection,

so there is no circularity in our arguments.

Proposition 2.6.7. Let x, P, and (Ωp)p∈P be as in Definition 2.6.5. Let R be the region RX,x
as in (2.91) or a translate thereof. There exists a positive constant c2(F) > 0 such that for

X > c2(F) and Q ≥ 1, we have

S(R, x, (Ωp))� X +Q2

H((Ωp), Q)
. (2.112)
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Proof. See §2.7.

As a consequence, we deduce the following bound for B(y, z).

Corollary 2.6.8. Let c2(F) > 0 be as in Proposition 2.6.7. Then for X > c2(F)y2, the quantity

B(y, z) given by (2.100) satisfies

B(y, z)� X + y2z2

log(z)2
.

Proof. Let (a, b, c) ∈ Z≤y and let the region Rr, the ideal x = abcz, the set of primes P and

the collection of sets of residue classes (Ωp) be as in Lemma 2.6.6, so that (2.111) holds. Then

|x| ≤ y2|z|, so that X > c2(F)y2 implies X ′ > c2(F) with X ′ := |x−1z|X; the hypothesis of

Proposition 2.6.7 are then satisfied (taking X ′ in place of X), and setting Q = z we obtain

#(za,b,c ∩RX,z)�
|x−1z|X + z2

H((Ωp), z)
.

Set m = abc−1z−1l (see (2.110)). The lower bound

H((Ωp), z)�F
φ(m)

|m|
log(z)2

is standard when F = Q and follows in general from the arguments of [17, pp55-59, Thm 2] upon

redefining “P (z)” to be the product of all prime ideals of norm up to z, replacing every sum

over integers (resp. primes) satisfying some inequalities by the analogous sum over ideals (resp.

prime ideals) with norms satisfying the analogous inequalities, and replacing the Riemann zeta

function ζ by the Dedekind zeta function ζF. Thus recalling the definition (2.100) of B(y, z), we

obtain

B(y, z)� |x|
−1X + z2

φ(m)
|m| log(z)2

|c|2φ(m)

|z−1l|
=
X + |abc|z2

log(z)2
.

Since |abc| ≤ y2, we deduce the claimed bound.

Proof of theorem 2.6.2. Let y, z be given by (2.93), (2.95) with α ∈ (0, 1
2 ) and s = α log log(X).

We eventually (i.e., as X →∞) have X > c2(F)y2 and 2 ≤ z ≤ y ≤ X. Thus the hypotheses of

Lemma 2.6.3, Lemma 2.6.4 and Corollary 2.6.8 are eventually satisfied, so we obtain

∑
n∈z∩RX,z

m:=n+l∈z∩RX,z

λ0(m)λ0(n)� 4s
X + y2z2

log(z)2
log(X)ε

∏
N(p)≤z

(
1 +

2λ(p)

N(p)

)
.

We have 4s = log(X)α log(4), log(z)�α log(X)2−ε and y2z2 �α X, so letting α→ 0 we deduce

the assertion of theorem 2.6.2.
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2.7 Appendix: Sieve Bounds

Inequalities of the shape (2.112) (with explicit constants) have appeared in papers of Schaal

[55, Thm 5] and Hinz [21, Satz 2], but only under additional assumptions such as Q �F 1,

X � Q2, and Ωp = ∅ for all p|z. Although it would possible to get around such assumptions

in our intended applications (at the cost of sacrificing the uniformity in z, which is ultimately

not needed), we prefer to establish a result in which such assumptions are not present. We

neglect here the issue of the leading coefficient of such bounds, which is important in some

of the applications of the authors just cited but not in ours; for this reason our analysis is

substantially simplified.

Our arguments in this short section are standard; we have been influenced by the books of

Davenport [7] and Kowalski [35], to which we refer the reader for a discussion of the history of

these ideas. Fix a fractional ideal x of F. Let q be an integral ideal in F and α : x/qx → C a

function on the group x/qx. Define L2(x/qx), ‖.‖2 with respect to the counting measure, and for

ψ in the Pontryagin dual (x/qx)∧, define α∧(ψ) =
∑

x/qx α(ζ)ψ(ζ); then the Fourier inversion

and Plancherel formulas read

α = |q|−1
∑

(x/qx)∧

α∧(ψ)ψ,
∑
x/qx

|α(ζ)|2 = ‖α‖22 = ‖α∧‖22 = |q|−1
∑

(x/qx)∧

|α∧(ψ)|2.

For a proper divisor q′ of q, the projection x/qx → x/q′x induces an inclusion L2(x/q′x) ↪→

L2(x/qx). Let L2
#(x/qx) denote the orthogonal complement of the span of the images of these

inclusions, write L2(x/qx) 3 α 7→ α# ∈ L2
#(x/qx) for the associated orthogonal projection, and

let (x/qx)∧# denote the set of characters ψ ∈ (x/qx)∧ that do not factor through any proper

projection x/qx→ x/q′x, so that

‖α#‖22 = |q|−1
∑

(x/qx)∧#

|α∧(ψ)|2.

For ψ ∈ (x/qx)∧# call q the conductor of ψ.

Let R be a region in F∞, P a finite set of primes, Q ≥ 1 a parameter, and Q the set of

squarefree ideals q composed of primes p ∈ P with |q| ≤ Q. Let V (R, x) be the Hilbert space

of complex-valued functions (an)n : x→ C supported on R∩ x, where for (an) ∈ V (R, x) we set

‖a‖22 :=
∑
n |an|2. For q ∈ Q define a[q] ∈ L2(x/qx) by the formula a[q](ζ) =

∑
n=ζ(qx) an. Let

E(·; x, Q) be the quadratic form on V (R, x) defined by

E((an); x, Q) =
∑
q∈Q
|q|‖a[q]#‖22 =

∑
q∈Q

∑
(x/qx)∧#

|a[q]∧(ψ)|2, (2.113)
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and D(R, x, Q) the squared norm of E(·; x, Q), i.e., the smallest non-negative real with the

property that |E((an); x, Q)| ≤ D(R, x, Q)‖a‖22 for all (an) ∈ V (R, x).

Suppose that α[p](ζ) = 0 for (at least) ω(p) values of ζ mod p for each p ∈ P, and set

h(q) =
∏

p|q
ω(p)
|p|−ω(p) for each q ∈ Q. An inequality due to Montgomery [44] in the (F, x) = (Q,Z)

case (refining earlier work of Linnik, Rényi, and Bombieri-Davenport), whose proof generalizes

painlessly to the present situation and has been formulated axiomatically by Kowalski [35,

Lem 2.7], shows that h(q)‖a[o]‖22 ≤ |q|‖a[q]#‖22, so recalling from (2.108) that H((Ωp), Q) =∑
q∈Q h(q) we obtain

‖a[o]‖22H((Ωp), Q) ≤ D(R, x, Q)‖a‖22.

In the special case that (an)n is the indicator function of S(R, x, (Ωp)) for some subsets

Ωp ⊂ x/px, let Z := #S(R, x, (Ωp)), so that

‖a‖22 =
∑
n

|an|2 = Z, ‖a[o]‖22 = |
∑
n

an|2 = Z2,

and an = 0 whenever n ∈ Ωp (p) for any p ∈ P. Thus

#S(R, x, (Ωp)) ≤ D(R, x, Q)

H((Ωp), Q)
. (2.114)

In this context, an additive large sieve inequality is by definition a bound for D(R, x, Q). The

homomorphism F∞/x−1d−1 3 ξ 7→ [x 3 n 7→ e(Tr ξn)] ∈ x∧ (e(x) = e2πix) induces for integral

ideals q′|q the compatible isomorphisms

q′−1x−1d−1/x−1d−1
∼=−−−−→ (x/q′x)∧y y

q−1x−1d−1/x−1d−1
∼=−−−−→ (x/qx)∧

by which we regard the family t{(x/qx)∧# : q ∈ Q} of primitive additive characters having

(squarefree) conductor up to Q (and supported on the primes of P) as a subset F := F(x, Q) ⊂

F/x−1d−1 ⊂ F∞/x−1d−1 of the family of all (finite order) additive characters on x, thus

E((an); x, Q) =
∑

ξ∈F(x,Q)

∣∣∣∣∣∑
n

ane(Tr ξn)

∣∣∣∣∣
2

. (2.115)

Write D(R, x,F) synonymously for D(R, x, Q). The group o∗+ acts on F∞ and F∞/x−1d−1 by

multiplication, stabilizing x and F . The `∞ metric on F∞ given by dF∞(ξ, η) = maxi |ξi − ηi|

induces on F∞/x−1d−1 by the formula d(ξ, η) := minn∈x−1d−1 dF∞(ξ, η + n) a metric d with
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respect to which we call

δ := δ(F(x, Q)) := min
ξ 6=η∈F(x,Q)

d(ξ, η)

the smallest spacing for the family F(x, Q) and say that F(x, Q) is δ(F(x, Q))-spaced.

Lemma 2.7.1. δ(F(x, Q)) ≥ (|x|∆FQ
2)−1/[F:Q] (here ∆F = |d| is the discriminant of F).

Proof. Suppose that q1, q2 ∈ Q, ξ ∈ q−1
1 x−1d−1, and η ∈ q−1

2 x−1d−1 with ξ − η /∈ x−1d−1. We

must show, for any n ∈ x−1d−1, that ζ := ξ − η − n satisfies maxi |ζi| ≥ (|x|∆FQ
2)−1/[F:Q].

Indeed, we have 0 6= ζ ∈ q−1
1 q−1

2 x−1d−1, so that

∏
|ξi − ηi| = |ξ − η|1 ≥ |q−1

1 q−1
2 x−1d−1| ≥ ∆−1

F |x|
−1Q−2.

Thus for some index i we have |ζi| ≥ (|x|∆FQ
2)−1/[F:Q], hence the claim.

The duality principle for bilinear forms, which asserts that a form and its transpose have the

same norm, implies that D(R, x,F) is the smallest non-negative real such that

∑
n∈x∩R

∣∣∣∣∣∣
∑
ξ∈F

bξe(Tr ξn)

∣∣∣∣∣∣
2

≤ D(R, x,F)‖b‖22 (2.116)

for all (bξ)ξ : F → C, where ‖b‖22 =
∑
|bξ|2. Call a nonnegative-valued Schwarz function

f ∈ S(F∞ → R≥0) R-admissible if it satisfies f |R ≥ 1, and let f be R-admissible. Opening the

square in (2.116) and invoking the elementary inequality |bξbη| ≤ 1
2 (|bξ|2 + |bη|2), we find that

∑
n∈x∩R

∣∣∣∣∣∣
∑
ξ∈F

bξe(Tr ξn)

∣∣∣∣∣∣
2

≤
∑
n∈x

f(n)

∣∣∣∣∣∣
∑
ξ∈F

bξe(Tr ξn)

∣∣∣∣∣∣
2

≤ sup
ξ∈F

∑
η∈F

∣∣∣∣∣∑
n∈x

f(n)e(Trn(ξ − η))

∣∣∣∣∣ ‖b‖22.
Applying the Poisson summation formula, which asserts in this context that

∑
n∈x

f(n)e(Trn(ξ − η)) = vol(F∞/x)−1
∑

µ∈x−1d−1

f̂(µ− ξ + η),

with f̂(y) :=

∫
F∞

f(x)e(−x · y) dy,
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we obtain

D(R, x,F) ≤ vol(F∞/o)−1|x|−1F (f ; x,F),

with F (f ; x,F) := sup
ξ∈F

∑
η∈F

∣∣∣∣∣∣
∑

µ∈x−1d−1

f̂(µ− ξ + η)

∣∣∣∣∣∣ .
(2.117)

Lemma 2.7.2. There exists a positive constant c2(F) > 0 with the following property. For any

rectangle R =
∏

[ai, bi] = [a1, b1] × · · · × [ad, bd] whose volume vol(R) =
∏
|ai − bi| satisfies

vol(R) > c2(F)|x|, there exists an R-admissible function f such that

F (f, x,F)�F vol(R) + δ−d. (2.118)

Proof. For a unit η ∈ o∗+ and an R-admissible function f , define the ηR-admissible function ηf

by the formula ηf(ηx) = f(x). Since x and F are o∗+-stable, we have F (ηf ; x,F) = F (f ; x,F).

Therefore we may assume that R is chosen so that |ai − bi| � |aj − bj | for all i, j ∈ {1, . . . , d},

where the implied constant depends only upon F. Now the formula

f(x) =

(
π2

8

)d d∏
i=1

sinc2

(
xi − ai+bi

2

2|ai − bi|

)
, sinc(x) =

sin(πx)

πx

defines an R-admissible function f whose Fourier transform is supported in the dual rectangle

R̂ =
∏

[ci, di], |ci − di| = |ai − bi|−1, ci = −di < 0 < di

and satisfies ‖f̂‖∞ ≤ (π2/4)d
∏
|ai−bi|. Since |ai−bi| � |aj−bj | for all i, j, there exists a constant

c2(F) > 0, depending only upon F, such that vol(R) > c2(F)|x| implies that |ai−bi| > 1
2∆

1/d
F |x|1/d

for each i. If we assume now (as we may) that the latter assertion holds, then any translate of

the dual rectangle R̂ contains at most one element of the dual lattice x−1d−1, so that each sum

over µ in (2.117) contains at most one nonzero term, thus

∑
η∈F

∣∣∣∣∣∣
∑

µ∈x−1d−1

f̂(µ− ξ + η)

∣∣∣∣∣∣ ≤ ‖f̂‖∞ ·#
{
η ∈ F : µ− ξ + η ∈ R̂+ x−1d−1

}
.

The above set is a δ-spaced subset of R̂ (mod x−1d−1); a cube-packing argument shows that

any such set has cardinality at most
∏

(1 + bδ−1|ci − di|c), so that

F (f, x,F) ≤
(
π2

4

)d d∏
i=1

|ai − bi|(1 + bδ−1|ci − di|c)�
d∏
i=1

(|ai − bi|+ δ−1). (2.119)
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Since |ai − bi| � |aj − bj |, we obtain F (f, x,F)� vol(R) + δ−d, as desired.

Proof of Proposition 2.6.7. Take c2(F) as in Lemma 2.7.2, and suppose that X > c2(F) and

Q ≥ 1. Then vol(RX,z) > c2(F)|z|, so the hypotheses of Lemma 2.7.2 are satisfied. The claimed

bound (2.112) follows immediately from (2.114), Lemma 2.7.1, equation (2.117) and Lemma

2.7.2.

2.8 Appendix: Bounds for Special Functions

In this self-contained section we establish the technical lemmas that were needed in the proof of

Lemma 2.4.3. First, recall [72] that the Gauss hypergeometric function F = 2F1 is defined for

Re(c) > Re(b) > 0 and | arg(1− z)| < π by the integral

F

(
a, b

c
; z

)
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− zt)a

where arg(1− zt) = 0 for z ∈ R<0, and for |z| < 1 and arbitrary a, b, c by the series

F

(
a, b

c
; z

)
=

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (a)n := a(a+ 1)(a+ 2) · · · (a+ n− 1),

which implies F
(
a,b
c ; 0

)
= 1. It satisfies the differential equation

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0, y(x) := 2F1

(
a, b

c
;x

)

for x /∈ {1,∞}.

Lemma 2.8.1. Let x ∈ R≥0, ν ∈ iR ∪ (−1/2, 1/2) and s ∈ C with Re(s) ≥ 1/2. Then

∣∣∣∣2F1

( 1
2 + ν, 1

2 − ν
s

;−x
)∣∣∣∣ ≤ 1.

Proof. Fix ν and s as above, and let

Fs(x) = 2F1

( 1
2 − ν,

1
2 + ν

s
;−x

)

for x ∈ R≥0. Then Fs satisfies the differential equation

x(1 + x)F ′′s (x) + (s+ 2x)F ′s(x) + λFs(x) = 0 with λ = 1
4 + r2 > 0. (2.120)

Note that since { 1
2 + ir, 1

2 − ir} = { 1
2 + ir, 1

2 − ir}, we have Fs = Fs̄ and Fs
′

= F ′s̄. Let f be a
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smooth function on R and H = |Fs|2 + f |F ′s|2, so that

H ′ = F ′sFs̄ + FsF
′
s̄ + f ′|Fs|2 + f(F ′′s F

′
s̄ + F ′sF

′′
s̄ ). (2.121)

By the differential equation (2.120), we have

H ′ = (F ′sFs̄ + FsF
′
s̄)

(
1− f λ

x(1 + x)

)
+ |F ′s|2

(
f ′ − f s+ s̄+ 4x

x(1 + x)

)
.

Taking f(x) = x(1 + x)/λ gives

H ′(x) =
1− 2Re(s)− 2x

λ
|F ′s|2(x),

so that H ′(x) ≤ 0 for Re(s) ≥ 1/2 and x ≥ 0. Since f(0) = 0 and f(x) ≥ 0 for x ≥ 0, we obtain

|Fs|2(x) ≤ H(x) ≤ H(0) = |Fs|2(0) = 1,

as desired.

Lemma 2.8.2. Let ν ∈ iR ∪ (− 1
2 ,

1
2 ) and s ∈ C with Re(s) ≥ 1. Then∣∣∣∣ Γ(s+ ν)Γ(s− ν)

Γ(s+ 1
2 )Γ(s− 1

2 )

∣∣∣∣ ≤ 1.

Proof. Recall that Kummer’s first formula asserts

Γ(s+ ν)Γ(s− ν)

Γ(s+ 1
2 )Γ(s− 1

2 )
= lim
x→1−

Fν,s(x), Fν,s(x) := F

(
ν + 1

2 , ν −
1
2

s+ ν
;x

)
. (2.122)

Write σ = Re(s) and u = Re(ν). Take H = |Fν,s|2 + f |F ′ν,s|2 for a smooth function f . The

differential equation

x(1− x)F ′′ν,s(x) + (s+ ν − (2ν + 1)x)F ′ν,s(x) + λFν,s(x) = 0,

with λ = 1
4 − ν

2 > 0, implies that

H ′ =
(
F ′ν,sFν̄,s̄ + Fν,sF

′
ν̄,s̄

)(
1− f λ

x(1− x)

)
+ |F ′ν,s|2

(
f ′ − f 2σ + 2u− 2(2u+ 1)x

x(1− x)

)
.
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Taking f(x) = x(1− x)/λ gives

H ′(x) =
1− 2σ − 2u(1− x) + 2ux

λ
|F ′s,ν |2(x),

so that our hypotheses u ∈ (− 1
2 ,

1
2 ), Re(s) ≥ 1 imply H ′(x) ≤ 0 for 0 ≤ x < 1. Since f(0) = 0

and f(x) ≥ 0 for 0 ≤ x ≤ 1, we obtain |Fs,ν |2(x) ≤ H(x) ≤ H(0) = |Fs,ν |2(0) = 1 for x ∈ (0, 1),

and the lemma follows from (2.122).

Remark 5. The proof of Lemma 2.8.2 shows that the hypothesis Re(s) ≥ 1 can be relaxed to

Re(s) ≥ 1
2 + Re(ν); we believe that Lemma 2.8.2 holds in the larger range Re(s) ≥ 1

2 , ν ∈

iR ∪ (− 1
2 ,

1
2 ), but have not proven this. Such refinements are not necessary for our applications

in the proof of Lemma 2.4.3.

Remark 6. The bounds asserted by Lemmas 2.8.1 and 2.8.2 are sharp for several extremal cases

of the parameters.
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Chapter 3

Equidistribution of Cusp Forms
In The Level Aspect

3.1 Introduction

3.1.1 Statement of Result

A basic problem in modern number theory and the analytic theory of modular forms is to

understand the limiting behavior of modular forms in families. Let f : H → C be a classical

holomorphic newform of weight k and level q. The mass of f is the finite measure dνf =

|f(z)|2yk−2 dx dy (z = x+ iy) on the modular curve Y0(q) = Γ0(q)\H. In a recent breakthrough,

Holowinsky and Soundararajan [25] proved that newforms of large weight k and fixed level

q = 1 have equidistributed mass, answering affirmatively a natural variant1 of the quantum

unique ergodicity conjecture of Rudnick and Sarnak [52].

Theorem 3.1.1 (Mass equidistribution for SL(2,Z) in the weight aspect). Let f traverse a

sequence of newforms of increasing weight k → ∞ and fixed level q = 1. Then the mass νf

equidistributes2 with respect to the Poincaré measure dµ = y−2 dx dy on the modular curve

Y0(q).

1as spelled out by Luo and Sarnak [42]; we refer to Sarnak [53, 54] and the references in [25]

for further discussion.

2We say that a sequence of finite Radon measures µj on a locally compact Hausdorff space X

equidistributes with respect to some fixed finite Radon measure µ if for each function φ ∈ Cc(X)

we have µj(φ)/µj(1)→ µ(φ)/µ(1) as j →∞, here and always identifying a measure µ with the

corresponding linear functional φ 7→ µ(φ) :=
∫
X
φdµ on the space Cc(X) and writing 1 for the

constant function.
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Kowalski, Michel, and VanderKam [36, Conj 1.5] formulated an analogue of the Rudnick-

Sarnak conjecture in which the roles of the parameters k and q are reversed: they conjectured

that the masses of newforms of fixed weight and large level q are equidistributed amongst the

fibers of the canonical projection πq : Y0(q)→ Y0(1) in the following sense.

Conjecture 3.1.2 (Mass equidistribution for SL(2,Z) in the level aspect). Let f traverse a

sequence of newforms of fixed weight and increasing level q →∞. Then the pushforward µf :=

πq∗(νf ) of the mass of f to Y0(1) equidistributes with respect to µ.

Kowalski, Michel and VanderKam remark that Conjecture 3.1.2 follows in the special case of

dihedral forms from their subconvex bounds for Rankin-Selberg L-functions modulo an unestab-

lished extension of Watson’s formula [70], which is now known by theorem 3.4.1 of this chapter.

Recently Koyama [37], following the method of Luo and Sarnak [41], proved the analogue of

Conjecture 3.1.2 for unitary Eisenstein series of increasing prime level by reducing the problem

to known subconvex bounds for automorphic L-functions of degree two.

Our aim in this chapter is to establish the squarefree level case of Conjecture 3.1.2. Our

result is the first of its kind for nondihedral cusp forms.

Theorem 3.1.3 (Mass equidistribution for SL(2,Z) in the squarefree level aspect). Let f tra-

verse a sequence of newforms of fixed weight and increasing squarefree level q → ∞. Then µf

equidistributes with respect to µ.

Remark 7. Our extension (theorem 3.4.1) of Watson’s formula [70] shows that theorem 3.1.3

would follow from subconvex bounds L(f × f × φ, 1/2) �φ q1−δ (δ > 0) for the central L-

values of the triple product L-functions attached to f as above and each Maass cusp form or

unitary Eisenstein series φ on Y0(1). Such bounds are known to follow from the generalized

Lindelöf hypothesis, which itself follows from the generalized Riemann hypothesis, so one can

view theorem 3.1.3 as an unconditionally proven consequence of a central unresolved conjecture.

Remark 8. One cannot relax entirely the restriction of theorem 3.1.3 to newforms, since for

instance a cusp form of level 1 may be regarded as an oldform of arbitrary level q > 1.

Remark 9. Rudnick [51] showed that theorem 3.1.1 implies that the zeros of newforms of level 1

and weight k →∞ equidistribute on Y0(1). At the 2010 Arizona Winter School, Soundararajan

asked whether there is an analogue of Rudnick’s result for newforms of large level. We do not

know whether such an analogue exists and highlight here one of the difficulties in adapting

Rudnick’s method. Let f be a newform of weight k and level q, let Z be the left Γ0(q)-multiset

of zeros of f in H and let Z1 be the left Γ-multiset (Γ = PSL(2,Z)) obtained by summing the

images of Z under coset representatives for Γ(1)/Γ0(q). We ask: does Γ\Z1 equidistribute on
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Y0(1) as q → ∞? Following Rudnick, one may show for φ ∈ C∞c (H) and Φ(z) =
∑
γ∈Γ φ(γz)

that
12

kψ(q)

∑
z∈Γ\Z1

Φ(z)

# StabΓ(z)
=

∫
Γ\H

Φ dV +

∫
Γ\H

πq∗(log νf )

kψ(q)
∆Φ dV, (3.1)

where ψ(q) = [Γ(1) : Γ0(q)], ∆ = y2(∂2
x + ∂2

y) is the hyperbolic Laplacian, and dV is the hyper-

bolic probability measure on Γ\H; the formula (3.1) follows by some elementary manipulations

of the identity
∫
H log |z − z0|∆φ(z)y−2 dx dy = 2πφ(z0), which holds for any z0 ∈ H and follows

from Green’s identities. Since the total number of inequivalent zeros is #Γ\Z1 = #Γ0(q)\Z ∼

kψ(q)/12 [60, §2], the first term on the right-hand side of (3.1) may be regarded as a main term,

the second as an error term that one would like to show tends to 0. An important step toward

adapting Rudnick’s method would be to rule out the possibility that πq∗(log νf )/kψ(q) tends to

−∞ uniformly on compact subsets as q → ∞. The difficulty in doing so is that theorem 3.1.3

does not seem to preclude the masses νf from being very small somewhere within each fiber of

the projection Y0(q) → Y0(1); stated another way, the sum of the values taken by yk|f |2 in a

fiber of Y0(q)→ Y0(1) are controlled (in an average sense as the fiber varies) by theorem 3.1.3,

but their product could still conceivably be quite small. There are further difficulties in adapting

Rudnick’s method that we shall not mention here.

Remark 10. Lindenstrauss [40] and Soundararajan [65] proved that Maass eigencuspforms of

fixed level q and large Laplace eigenvalue λ→∞ have equidistributed mass. We ask: do Maass

newforms of large level q → ∞ (with λ taken to lie in a fixed subinterval of [1/4,+∞], say)

satisfy the natural analogue of Conjecture 3.1.2? An affirmative answer to this question would

follow from the generalized Riemann hypothesis (at least for q squarefree, as in remark 7), but

appears beyond the reach of our methods because the Ramanujan conjecture is not known for

Maass forms (compare with [25, p.2]).

Remark 11. We shall actually establish the following stronger hybrid equidistribution result: for

a newform f of (possibly varying) weight k and squarefree level q, the measures µf = πq∗(νf )

equidistribute as qk →∞. The novelty in our argument concerns only the variation of q, so we

encourage the reader to regard k as fixed.

Remark 12. With minor modifications our arguments should extend to the general case of not

necessarily squarefree levels q as soon as an appropriate extension of Watson’s formula is worked

out. However, we shall invoke the assumption that the level q is squarefree whenever doing so

simplifies the exposition. The parts of our argument that require modification to treat the

general case are Lemmas 3.3.4, 3.3.13, and 3.4.3. One should be able to generalize Lemmas

3.3.4 and 3.3.13 using that for any level q the cusps of Γ0(q) fall into classes indexed by the

divisors d of q consisting of φ(gcd(d, q/d)) cusps of width d/ gcd(d, q/d). To generalize 3.4.3, one
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must compute (or sharply bound) a p-adic integral involving matrix coefficients of supercuspidal

representations of GL(2,Qp). We plan to consider this generalization in future work.

3.1.2 Plan for the Chapter

Our chapter is organized as follows. In §3.2 we recall some standard properties of our basic

objects of study: holomorphic newforms, Maass eigencuspforms, unitary Eisenstein series and

incomplete Eisenstein series. In §3.3 we prove the level aspect analogue of Holowinsky’s main

result [24, Corollary 3], as described above; we emphasize the aspects of his argument that do

not immediately generalize to the level aspect and refer to his paper for the details of arguments

that do. In §3.4 we extend Watson’s formula to cover the additional case that we need. In §3.5

we complete the proof of theorem 3.1.3 using the main results of §3.3 and §3.4. Sections 3.3

and 3.4 are independent of each other, but both depend upon the definitions, notation and facts

recalled in §3.2.

3.1.3 Notation and Conventions

Recall the standard notation for the upper half-plane H = {z ∈ C : Im(z) > 0}, the modular

group Γ = SL(2,Z) � H acting by fractional linear transformations, its congruence subgroup

Γ0(q) consisting of those elements with lower-left entry divisible by q, the modular curve Y0(q) =

Γ0(q)\H, the natural projection πq : Y0(q) → Y0(1), the Poincaré measure dµ = y−2 dx dy, and

the stabilizer Γ∞ = {± ( 1 n
1 ) : n ∈ Z} in Γ of ∞ ∈ P1(R). We denote a typical element of H as

z = x+ iy with x, y ∈ R.

There is a natural inclusion Cc(Y0(1)) ↪→ Cc(Y0(q)) obtained by pulling back under the

projection πq; here Cc denotes the space of compactly supported continuous functions. For a

newform f of weight k on Γ0(q) the pushforward measure dµf := πq∗(|f |2yk dµ) on the modular

curve Y0(1) corresponds, by definition, to the linear functional

µf (φ) =

∫
Γ0(q)\H

φ(z)|f |2(z)yk
dx dy

y2
for φ ∈ Cc(Y0(1)) ↪→ Cc(Y0(q)).

We let µ denote the standard measure on Y0(1), so that

µ(φ) =

∫
Γ\H

φ(z)
dx dy

y2
for φ ∈ Cc(Y0(1)).

Since µ and µf are finite, they extend to the space of bounded continuous functions on Y0(1),

where we shall denote also by µ and µf their extensions. In particular, µ(1) denotes the volume

of Y0(1) and µf (1) the Petersson norm of f .

As is customary, we let ε > 0 denote a sufficiently small positive number whose precise
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value may change from line to line. We use the asymptotic notation f(x, y, z)�x,y g(x, y, z) to

indicate that there exists a positive real C(x, y), possibly depending upon x and y but not upon

z, such that |f(x, y, z)| ≤ C(x, y)|g(x, y, z)| for all x, y, and z under consideration. We write

f(x, y, z) = Ox,y(g(x, y, z)) synonymously for f(x, y, z) �x,y g(x, y, z) and write f(x, y, z) �x,y
g(x, y, z) synonymously for f(x, y, z)�x,y g(x, y, z)�x,y f(x, y, z).

3.1.4 Weyl’s Criterion

The following standard lemma provides essential motivation for what follows.

Lemma 3.1.4. Suppose that for each fixed Maass eigencuspform or incomplete Eisenstein series

φ, we have
µf (φ)

µf (1)
→ µ(φ)

µ(1)
as qk →∞

for q squarefree and f a holomorphic newform of weight k and level q; the convergence need not

be uniform in φ. Then theorem 3.1.3 is true.

Proof. The family of probability measures φ 7→ µf (φ)/µf (1) obtained as f varies is equicontinu-

ous for the supremum norm on Cc(Y0(1)), since |µf (φ1)/µf (1)− µf (φ2)/µf (1)| ≤ sup |φ1 − φ2|

for any bounded functions φ1, φ2 on Y0(1). Thus theorem 3.1.3 follows if we can show that

µf (φ)/µf (1) → µ(φ)/µ(1) as q → ∞ for a set of bounded functions φ the uniform closure of

whose span contains Cc(Y0(1)); such a set is furnished [29] by the Maass eigencuspforms and

incomplete Eisenstein series as defined in §3.2.

3.1.5 Acknowledgements

We thank Dinakar Ramakrishnan for suggesting this problem and for his very helpful feedback

and comments on earlier drafts of this chapter. We thank Abhishek Saha for his careful reading

of, and useful comments on, an earlier draft. The problem that we address was raised explicitly

by K. Soundararajan at the 2010 Arizona Winter School; we thank him as well as Roman

Holowinsky, Henryk Iwaniec, Philippe Michel, and Peter Sarnak for their encouragement. We

thank the referees for their numerous helpful suggestions and corrections.

3.2 Background on Automorphic Forms

We collect here some standard properties of classical automorphic forms. We refer to Serre [59],

Shimura [60], Iwaniec [28, 29] and Atkin-Lehner [1] for complete definitions and proofs.
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3.2.1 Holomorphic Newforms

Let k be a positive even integer, and let α be an element of GL(2,R) with positive determinant;

the element α acts on H by fractional linear transformations in the usual way. Given a function

f : H→ C, we denote by f |kα the function z 7→ det(α)k/2j(α, z)−kf(αz), where j
((

a b
c d

)
, z
)

=

cz + d.

A holomorphic cusp form on Γ0(q) of weight k is a holomorphic function f : H → C that

satisfies f |kγ = f for all γ ∈ Γ0(q) and vanishes at the cusps of Γ0(q). A holomorphic newform is

a cusp form that is an eigenform of the algebra of Hecke operators and orthogonal with respect

to the Petersson inner product to the oldforms.3 We say that a holomorphic newform f is a

normalized holomorphic newform if moreover λf (1) = 1 in the Fourier expansion

yk/2f(z) =
∑
n∈N

λf (n)√
n
κf (ny)e(nx), (3.2)

where κf (y) = yk/2e−2πy and e(x) = e2πix; in that case the Fourier coefficients λf (n) are

real, multiplicative, and satisfy [8, 9] the Deligne bound |λf (n)| ≤ τ(n), where τ(n) de-

notes the number of positive divisors of n. If γ ∈ Γ0(q) and z′ = γz = x′ + iy′, then

y′k/2f(z′) = (j(γ, z)/|j(γ, z)|)kyk/2f(z), so that in particular z 7→ yk|f(z)|2 is Γ0(q)-invariant

and our definition of µf given in Section 3.1.3 makes sense.

To a newform f one attaches the finite part of the adjoint L-function L(ad f, s) =
∏
p Lp(ad f, s)

and its completion Λ(ad f, s) = L∞(ad f, s)L(ad f, s) =
∏
v Lv(ad f, s), where p traverses the

set of primes and v the set of places of Q; the local factors Lv(ad f, s) are as in [70, §3.1.1]. The

Rankin-Selberg method [50, 57] and a standard calculation [70, §3.2.1] show that

µf (1) :=

∫
Γ0(q)\H

|f |2(z)yk
dx dy

y2
= q

Γ(k − 1)

(4π)k−1

k − 1

2π2
L(ad f, 1). (3.3)

As in the analogous weight aspect [25, p.7], the work of Gelbart-Jacquet [13] (following Shimura

[61]) and the theorem of Hoffstein-Lockhart [22, Theorem 0.1] (with appendix by Goldfeld-

Hoffstein-Lieman) imply that

L(ad f, 1)−1 � log(qk). (3.4)

Let σ traverse a set of representatives for the double coset space Γ∞\Γ/Γ0(q). Then the

points aσ := σ−1∞ ∈ P1(Q) traverse a set of inequivalent cusps of Γ0(q). The integer dσ :=

3The terms we leave undefined are standard and their precise definitions, which may be found

in the references mentioned above, are not necessary for our purposes.
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[Γ∞ : Γ∞ ∩ σΓ0(q)σ−1] is the width of the cusp aσ, while

wσ := σ−1

dσ
1


is the scaling matrix for aσ, which means that z 7→ zσ := wσz is a proper isometry of H under

which zσ 7→ zσ + 1 corresponds to the action on z by a generator for the Γ0(q)-stabilizer of aσ.

If the bottom row of σ−1 is (c, d), then dσ = q/(q, c2); moreover, as σ varies, the multiset of

widths {dσ} is the set {d : d|q} of positive divisors of q [29, §2.4]. In particular, c and dσ are

coprime, so we may and shall assume (after multiplying σ on the left by an element of Γ∞ if

necessary) that dσ divides d. Since q is squarefree, the numbers dσ and q/dσ are coprime, so

that wσ is an Atkin-Lehner operator “WQ” in the sense of [1, p.138]. Thus by applying [1, Thm

3] to the newform f , we obtain

f |kwσ = ±f. (3.5)

Since f is Γ0(q)-invariant, the property (3.5) does not depend upon the choice of coset repre-

sentative σ.

3.2.2 Maass Eigencuspforms

A Maass cusp form (of level 1) is a Γ-invariant eigenfunction of the hyperbolic Laplacian ∆ :=

y−2(∂2
x + ∂2

y) on H that decays rapidly at the cusp of Γ. By Selberg’s “λ1 ≥ 1/4” theorem [58]

there exists a real number r ∈ R such that (∆ + 1/4 + r2)φ = 0; our arguments use only that

r ∈ R ∪ i(−1/2, 1/2), and so apply verbatim in contexts where “λ1 ≥ 1/4” is not known.

A Maass eigencuspform is a Maass cusp form that is an eigenfunction of the (non-archimedean)

Hecke operators and the involution T−1 : φ 7→ [z 7→ φ(−z̄)], which commute one another as well

as with ∆. A Maass eigencuspform φ has a Fourier expansion

φ(z) =
∑
n∈Z6=0

λφ(n)√
|n|

κir(ny)e(nx) (3.6)

where κir(y) = 2|y|1/2Kir(2π|y|) sgn(y)
1+δ
2 with Kir the standard K-Bessel function, sgn(y) = 1

or −1 according as y is positive or negative, and δ ∈ {±1} the T−1-eigenvalue of φ. We have

|κs(y)| ≤ 1 for all s ∈ iR ∪ (−1/2, 1/2) and all y ∈ R∗+. A normalized Maass eigencuspform

further satisfies λφ(1) = 1; in that case the coefficients λφ(n) are real, multiplicative, and satisfy,

for each x ≥ 1, the Rankin-Selberg bound [29, Theorem 3.2]

∑
n≤x

|λφ(n)|2 �φ x. (3.7)
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Because f(−z̄) = f(z) for any normalized holomorphic newform f , we have µf (φ) = 0

whenever T−1φ = δφ with δ = −1. Thus we shall assume throughout this chapter that δ = 1,

i.e., that φ is an even Maass form.

3.2.3 Eisenstein Series

Let s ∈ C and z ∈ H. The real-analytic Eisenstein series E(s, z) =
∑

Γ∞\Γ Im(γz)s converges

normally for Re(s) > 1 and continues meromorphically to the half-plane Re(s) ≥ 1/2 where the

map s 7→ E(s, z) is holomorphic with the exception of a unique simple pole at s = 1 of constant

residue ress=1E(s, z) = µ(1)−1. The Eisenstein series satisfies the invariance E(s, γz) = E(s, z)

for all γ ∈ Γ and admits the Fourier expansion

E(s, z) = ys +M(s)y1−s +
1

ξ(2s)

∑
n∈Z6=0

λs−1/2(n)√
|n|

κs−1/2(ny)e(nx), (3.8)

where λs(n) =
∑
ab=n(a/b)s, κs(y) = 2|y|1/2Ks(2π|y|), M(s) = ξ(2s − 1)/ξ(2s), ξ(s) =

ΓR(s)ζ(s), ΓR(s) = π−s/2Γ(s/2), and ζ(s) =
∑
n∈N n

−s (for Re(s) > 1) is the Riemann zeta

function. The identity |M(s)| = 1 for Re(s) = 1/2 follows from (for instance) the functional

equation for the zeta function and the prime number theorem. When Re(s) = 1/2 we call E(s, z)

a unitary Eisenstein series.

3.2.4 Incomplete Eisenstein Series

Let Ψ ∈ C∞c (R∗+) be a nonnegative-valued test function with Mellin transform Ψ∧(s) =
∫∞

0
Ψ(y)y−s−1 dy.

Repeated partial integration shows that |Ψ∧(s)| �Ψ,A (1+ |s|)A for each positive integer A, uni-

formly for s in vertical strips. The Mellin inversion formula asserts that Ψ(y) =
∫

(2)
Ψ∧(s)ys ds

2πi ,

where
∫

(σ)
denotes the integral taken over the vertical contour from σ− i∞ to σ+ i∞. To such

Ψ we attach the incomplete Eisenstein series

E(Ψ, z) =
∑

γ∈Γ∞\Γ

Ψ(Im(γz)). (3.9)

The sum has a uniformly bounded finite number of nonzero terms for z in a fixed compact subset

of H. By Mellin inversion, the rapid decay of Ψ∧ and Cauchy’s theorem, we have

E(Ψ, z) =

∫
(2)

Ψ∧(s)E(s, z)
ds

2πi
=

Ψ∧(1)

vol(Γ\H)
+

∫
(1/2)

Ψ∧(s)E(s, z)
ds

2πi
. (3.10)

Let φ = E(Ψ, ·) be an incomplete Eisenstein series. Note that µ(φ) = Ψ∧(1). By comparing

(3.10) and (3.8), we may express the Fourier coefficients φn(y) in the Fourier series φ(z) =
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n∈Z φn(y)e(nx) as

φn(y) =

∫
(1/2)

Ψ∧(s)

ξ(2s)

λs−1/2(n)√
|n|

κs−1/2(ny)
ds

2πi
(n 6= 0), (3.11)

φ0(y) =
µ(φ)

µ(1)
+

∫
(1/2)

Ψ∧(s)
(
ys +M(s)y1−s) ds

2πi
(n = 0). (3.12)

3.3 Main Estimates

We prove a level aspect analogue of Holowinsky’s main bound [24, Corollary 3]. To formulate

our result, define for each normalized holomorphic newform f and each real number x ≥ 1 the

quantities

Mf (x) =

∏
p≤x(1 + 2|λf (p)|/p)
log(ex)2L(ad f, 1)

, Rf (x) =
x−1/2

L(ad f, 1)

∫
R

∣∣∣∣L(ad f, 1
2 + it)

(1 + |t|)10

∣∣∣∣ dt. (3.13)

In §3.5 we shall refer only to the definitions (3.13) and the statement of the following theorem,

not its proof.

Theorem 3.3.1. Let f be a normalized holomorphic newform of weight k and squarefree level

q. If φ is a Maass eigencuspform, then

µf (φ)

µf (1)
�φ,ε log(qk)εMf (qk)1/2.

If φ is an incomplete Eisenstein series, then

µf (φ)

µf (1)
− µ(φ)

µ(1)
�φ,ε log(qk)εMf (qk)1/2 (1 +Rf (qk)) .

In this section k is a positive even integer, f is a normalized holomorphic newform of weight

k and squarefree level q, and φ is a Maass eigencuspform or incomplete Eisenstein series. In

§3.3.1 we reduce theorem 3.3.1 to a problem of estimating shifted sums (see Definition 3.3.2).

In §3.3.2 we apply a refinement of [24, Theorem 2] to bound such shifted sums. In §3.3.3 we

complete the proof of theorem 3.3.1.

3.3.1 Reduction to Shifted Sums

Fix once and for all an everywhere nonnegative test function h ∈ C∞c (R∗+) with Mellin transform

h∧(s) =
∫∞

0
h(y)y−s−1 dy such that h∧(1) = µ(1). In what follows, all implied constants may

depend upon h without mention.
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Definition 3.3.2. To the parameters s ∈ C, l ∈ Z6=0 and x ≥ 1 we associate the shifted sums

Ss(l, x) =
∑
n∈N

m:=n+l∈N

λf (m)√
m

λf (n)√
n
Is(l, n, x),

where Is(l, n, x) is an integral depending upon our fixed test function h:

Is(l, n, x) =

∫ ∞
0

h(xy)κs(ly)κf (my)κf (ny)y−1 dy

y
, m := n+ l.

Our aim in this section is to reduce theorem 3.3.1 to the problem of bounding such shifted

sums. We shall subsequently refer to the statement below of Proposition 3.3.3 but not the details

of its proof.

Proposition 3.3.3. Let Y ≥ 1. If φ is a Maass eigencuspform of eigenvalue 1/4 + r2, then

µf (φ)

µf (1)
=

1

Y µf (1)

∑
l∈Z 6=0

|l|<Y 1+ε

λφ(l)√
|l|

∑
d|q

Sir(dl, dY ) +Oφ,ε(Y
−1/2).

If φ = E(Ψ, ·) is an incomplete Eisenstein series, then

µf (φ)

µf (1)
− µ(φ)

µ(1)
=

1

Y µf (1)

∫
R

Ψ∧( 1
2 + it)

ξ(1 + 2it)

 ∑
l∈Z 6=0

|l|<Y 1+ε

λit(l)√
|l|

∑
d|q

Sit(dl, dY )

 dt

2π

+Oφ,ε

(
1 +Rf (qk)

Y 1/2

)
.

Our proof follows a sequence of lemmas. Let k, f, q, Y, φ, h be as above and let hY be the

function y 7→ h(Y y). To hY we attach the incomplete Eisenstein series E(hY , z) by the usual

recipe (3.9).

Lemma 3.3.4. We have the following approximate formula for the quantity µf (φ):

Y µf (φ) =
∑
d|q

∫ ∞
y=0

hY (dy)

∫ 1

x=0

φ(dy)|f |2(z)yk
dx dy

y2
+Oφ(Y 1/2µf (1)).

Proof. By Mellin inversion and Cauchy’s theorem as in (3.10), we have

Y µf (φ) = µf (E(hY , ·)φ)−
∫

(1/2)

h∧(s)Y sµf (E(s, ·)φ)
ds

2πi
.
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The argument of [24, Proof of Lemma 3.1a] shows without modification that

∫
(1/2)

h∧(s)Y sµf (E(s, ·)φ)
ds

2πi
�φ Y

1/2µf (1); (3.14)

since the proof is short, we sketch it here. By the Fourier expansion for E(s, z) and the

rapid decay of φ(z) as y → ∞, we have E(s, z)φ(z) �φ |s|O(1) for Re(s) = 1/2 and z in

the Siegel domain {z : x ∈ [0, 1], y > 1/2} for Γ\H. By the rapid decay of h∧ we have

h∧(s)Y sE(s, z)φ(z)�φ Y
1/2|s|−2 for s, z as above; the estimate (3.14) follows by integrating in

z against µf and then integrating in s.

Having established that Y µf (φ) = µf (E(hY , ·)φ) + Oφ(Y 1/2µf (1)), it remains now only to

evaluate µf (E(hY , ·)φ). Let Γ∞\Γ/Γ0(q) = {σ} be a set of double-coset representatives as in

§3.2.1, and set

dσ = [Γ∞ : Γ∞ ∩ σΓ0(q)σ−1].

By decomposing the transitive right Γ-set Γ∞\Γ into Γ0(q)-orbits

Γ∞\Γ = tΓ∞\Γ∞σΓ0(q) = tσ(σ−1Γ∞σ ∩ Γ0(q)\Γ0(q)),

we obtain

E(hY , z) =
∑∑

σ∈Γ∞\Γ/Γ0(q)

γ∈σ−1Γ∞σ∩Γ0(q)\Γ0(q)

hY (Im(σγz)).

By invoking the Γ0(q)-invariance of z 7→ φ(z)|f |2(z)yk dx dyy2 and unfolding the sum over γ ∈

σ−1Γ∞σ ∩ Γ0(q)\Γ0(q) with the integral over z ∈ Γ0(q)\H, we get

µf (E(hY , ·)φ) =
∑

σ∈Γ∞\Γ/Γ0(q)

∫
σ−1Γ∞σ∩Γ0(q)\H

hY (Im(σz))φ(z)|f |2(z)yk
dx dy

y2
.

The change of variables z 7→ σ−1z transforms the integral above into

∫
Γ∞∩σΓ0(q)σ−1\H

hY (y)φ(z)|f |2(σ−1z)Im(σ−1z)k
dx dy

y2
.

Integrating over a fundamental domain for Γ∞ ∩σΓ0(q)σ−1 = {±
(

1 dσn
1

)
: n ∈ Z} acting on H,

we get ∫ ∞
y=0

hY (y)

∫ dσ

x=0

φ(z)|f |2(σ−1z)Im(σ−1z)k
dx dy

y2
.

Applying now the change of variables z 7→ dσz gives

∫ ∞
y=0

hY (dσy)

∫ 1

x=0

φ(dσz)
∣∣f |kσ−1

(
dσ

1

)∣∣2 (z)yk
dx dy

y2
.
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Since f |kσ−1
(
dσ

1

)
= ±f by the consequence (3.5) of Atkin-Lehner theory (using here that q

is squarefree), we find that

µf (E(hY , ·)φ) =
∑

σ∈Γ∞\Γ/Γ0(q)

∫ ∞
y=0

hY (dσy)

∫ 1

x=0

φ(dσz)|f |2(z)yk
dx dy

y2
.

Since {dσ} = {d : d|q}, we obtain the claimed formula.

In the expression for Y µf (φ) given by Lemma 3.3.4, we expand φ in a Fourier series φ(z) =∑
l∈Z φl(y)e(lx) and consider separately the contributions from l in various ranges; specifically,

we set

S0 =
∑
d|q

∫ ∞
y=0

hY (dy)

∫ 1

x=0

φ0(dy)|f |2(z)yk
dx dy

y2
,

S(0,Y 1+ε) =
∑
d|q

∫ ∞
y=0

hY (dy)

∫ 1

x=0

∑
0<|l|<Y 1+ε

φl(dy)|f |2(z)yk
dx dy

y2
,

S≥Y 1+ε =
∑
d|q

∫ ∞
y=0

hY (dy)

∫ 1

x=0

∑
|l|≥Y 1+ε

φl(dy)|f |2(z)yk
dx dy

y2
,

so that ∑
d|q

∫ ∞
y=0

hY (dy)

∫ 1

x=0

φ(dz)|f |2(z)yk
dx dy

y2
= S0 + S(0,Y 1+ε) + S≥Y 1+ε . (3.15)

We treat these contributions in Lemmas 3.3.6, 3.3.7 and 3.3.8, respectively; in doing so we shall

repeatedly use the following technical result.

Lemma 3.3.5. The quantity µf (E(hY , ·)) satisfies the formulas and estimates

µf (E(hY , ·)) =
∑
d|q

∫ ∞
y=0

hY (dy)

∫ 1

x=0

|f |2(z)yk
dx dy

y2

= Y µf (1) (1 + Ef (qY ))

= Y µf (1)
(

1 +O
(
Y −1/2Rf (qk)

))
,

where

Ef (x) :=
2π2

x

∫
(1/2)

h∧(s)
( x

4π

)s Γ(s+ k − 1)

Γ(k)

ζ(s)

ζ(2s)

L(ad f, s)

L(ad f, 1)

ds

2πi
.

Moreover, µf (E(hY , ·))� Y µf (1).

Proof. The first equality follows from the same argument as in the proof of Lemma 3.3.4, the

second from the Mellin formula and the unfolding method by a direct computation, the third

from the bounds |Γ(k − 1/2 + it)| ≤ Γ(k − 1/2)| � k−1/2Γ(k), ζ(1/2 + it) � (1 + |t|)1/4

and |ζ(1 + 2it)| � 1/ log(1 + |t|) as in [66, p.7]. Finally, because the quantity µf (E(hY , ·)) is
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majorized by the integral of the Γ-invariant measure µf over the region on which the function

Γ∞\H 3 z 7→ hY (y) does not vanish and because that region intersects � Y fundamental

domains for Γ\H [29, Lemma 2.10], we have µf (E(hY , ·))� Y µf (1).

Lemma 3.3.6 (The main term S0). If φ is a Maass eigencuspform, then φ0(y) = 0 and S0 = 0.

If φ is an incomplete Eisenstein series, then

S0 = Y µf (1)

(
µ(φ)

µ(1)
+Oφ

(
1 +Rf (qk)

Y 1/2

))
.

Proof. If φ is a Maass eigencuspform then φ0(y) = 0 holds by definition, hence S0 = 0. Suppose

otherwise that φ is an incomplete Eisenstein series. It follows from (3.12) that for every y ∈ R∗+
such that hY (y) 6= 0, we have φ0(y) = µ(φ)/µ(1)+Oφ(Y −1/2). Thus two applications of Lemma

3.3.5 show that

S0 = µf (E(hY , ·))
(
µ(φ)

µ(1)
+Oφ(Y −1/2)

)
= Y µf (1)

(
1 +O

(
Rf (qk)

Y 1/2

))(
µ(φ)

µ(1)
+Oφ(Y −1/2)

)
= Y µf (1)

(
µ(φ)

µ(1)
+Oφ

(
1 +Rf (qk)

Y 1/2

))
.

Lemma 3.3.7 (The essential error term S(0,Y 1+ε)). If φ is a Maass eigencuspform, then

S(0,Y 1+ε) =
∑

0<|l|<Y 1+ε

λφ(l)√
|l|

∑
d|q

Sir(dl, dY ).

If φ is an incomplete Eisenstein series, then

S(0,Y 1+ε) =

∫
R

Ψ∧( 1
2 + it)

ξ(1 + 2it)

∑
0<|l|<Y 1+ε

λit(l)√
|l|

∑
d|q

Sit(dl, dY )
dt

2π
.

Proof. Follows by integrating the Fourier expansion (3.2) of a newform, the Fourier expansion

(3.6) of a Maass cusp form, and the formula (3.11) for the non-constant Fourier coefficients of

an Eisenstein series.

Lemma 3.3.8 (The trivial error term S≥Y 1+ε). We have S≥Y 1+ε �φ,ε Y
−10µf (1).

Proof. Lemma 3.3.8 follows from Lemma 3.3.5 and the following claim: for all y ∈ R∗+ such

that hY (y) 6= 0, we have
∑
|l|≥Y 1+ε |φl(y)| �φ,ε Y

−11. The claim is proved in [24, §3.2], as

follows. When φ is a cusp form of eigenvalue 1/4 + r2, so that φl(y) = y−1/2λφ(l)κir(ly), the

claim follows from the exponential decay of l 7→ κir(ly) for l ≥ Y 1+ε and y � Y −1 together with
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the polynomial growth of l 7→ λφ(l). When φ is an incomplete Eisenstein series, the integral

formula (3.11) and standard bounds for the K-Bessel function show that for each positive integer

A, we have φl(y) �φ,ε,A τ(l)Y A−1/2|l|−A(1 + Y/|l|)ε; the claim then follows by summing over

|l| ≥ Y 1+ε.

Proof of Proposition 3.3.3. By Lemma 3.3.4 and equation (3.15), we have

µf (φ)

µf (1)
=

1

Y µf (1)

(
S0 + S(0,Y 1+ε) + S≥Y 1+ε

)
+Oφ,ε(Y

−1/2).

Proposition 3.3.3 follows by combining the results of Lemma 3.3.6, Lemma 3.3.8 and Lemma

3.3.7.

3.3.2 Bounds for Individual Shifted Sums

We bound the individual shifted sums appearing in Definition 3.3.2; in subsequent sections we

shall need only our main result, Corollary 3.3.12. We first recall a special case of Holowinsky’s

bound [24, Theorem 2].

Theorem 3.3.9 (Holowinsky). Let ε ∈ (0, 1). Then for x ≥ 1 and l ∈ Z6=0, we have

∑
n∈N

m:=n+l∈N
max(m,n)≤x

|λf (m)λf (n)| �ε τ(l)
x
∏
p≤x(1 + 2|λf (p)|/p)

log(ex)2−ε .

Unfortunately, theorem 3.3.9 is insufficient for our purposes because τ(ql) can be quite large,

even larger asymptotically than every power of log(eq), when q has many small prime factors.

The following refinement will suffice.

Theorem 3.3.10. With conditions as in the statement of theorem 3.3.9, we have

∑
n∈N

m:=n+l∈N
max(m,n)≤x

|λf (m)λf (n)| �ε

x
∏
p≤x(1 + 2|λf (p)|/p)

log(ex)2−ε (3.16)

where all implied constants are absolute.

Proof. In [48, Thm 3.1], we generalized Holowinsky’s bound [24, Thm 2] to totally real number

fields F. Along the way we proved a pair of results [48, Thm 4.10] and [48, Thm 7.2] either of

which imply theorem 3.3.10. For completeness, we shall give the argument here in the special

case F = Q, which borrows heavily from that of Holowinsky; up to (3.20) we essentially recall
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his argument, and after that introduce our refinement. Let λ(n) = |λf (n)|, so that

λ is a nonnegative multiplicative function satisfying λ(n) ≤ τ(n). (3.17)

We may assume that 1 ≤ l ≤ x. Fix α ∈ (0, 1/2) (to be chosen sufficiently small at the end of

the proof) and set

y = xα, s = α log log(x), z = x1/s.

For x �α 1 we have 10 ≤ z ≤ y ≤ x, as we shall henceforth assume. For each n ∈ N, write

m = n+ l ∈ N. Define the z-part of a positive integer to be the greatest divisor of that integer

supported on primes p ≤ z. There exist unique positive integers a, b, c such that gcd(a, b) = 1

and ac (resp. bc) is the z-part of m (resp. n); such triples a, b, c satisfy

p|abc⇒ p ≤ z, c|l, and gcd(a, b) = 1. (3.18)

Write N = ta,b,cNabc for the fibers of n 7→ (a, b, c). The assumption (3.17) implies λ(m)λ(n) ≤

4sλ(ac)λ(bc), so that

∑
n∈N∩[1,x]

λ(m)λ(n) =
∑
a,b,c

∑
n∈Nabc∩[1,x]

λ(m)λ(n)

≤ 4s
∑
a,b,c

λ(ac)λ(bc) ·#(Nabc ∩ [1, x]).

Holowinsky asserts that Rankin’s trick implies that the contribution to the above from a, b, c

for which |ac| > y or |bc| > y is �α,A x log(x)−A for any A; we spell out an alternate proof

of this assertion in [48, Lemma 7.3]. Now, an integer belongs to Nabc only if it satisfies some

congruence conditions modulo each prime p ≤ z (see [24, p.14], or [48, Lemma 7.3] for a detailed

discussion); as in [24] or [48, Corollary 7.8], an application of the large sieve (or Selberg’s sieve)

shows that if |ac| ≤ y, |bc| ≤ y and x� y2, then4

#(Nabc ∩ [1, x])� x+ (yz)2

log(z)2

l

c2φ(abc−1l)
. (3.19)

Since (yz)2 �α x, log(z)2 �α log log(x)−2 log(x)2, 4s �ε log(x)ε (for α�ε 1), and φ(abc−1l) ≥
4This bound is slightly poorer than that obtained by Holowinsky because we have been

more precise in our calculation of the residue classes sieved out by prime divisors of c−1l; the

discrepancy here does not matter in the end.



72

φ(c−1l)φ(a)φ(b), we see that theorem 3.3.10 follows from the bound5

∑
c|l

p|c⇒p≤z

1

c

l/c

φ(l/c)

∑
|ac|≤y

∑
|bc|≤y

p|ab⇒p≤z

λ(ac)λ(bc)

φ(a)φ(b)
� log log(x)O(1)

∏
p≤z

(
1 +

2λ(p)

p

)
, (3.20)

which we now establish. Note first that

∑
|ac|≤y

∑
|bc|≤y

p|ab⇒p≤z

λ(ac)λ(bc)

φ(a)φ(b)
≤

∏
p≤z

∑
k≥0

λ(pk+vp(c))

φ(pk)

2

. (3.21)

Using that λ(pk) ≤ k + 1 and p ≥ 2 and summing some geometric series as in [48, Lemma 7.4]

gives ∑
k≥0

λ(pk+ν)

φ(pk)
≤ ν + 1 +

∑
k≥1

ν + k + 1

pk−1(p− 1)
≤ 3ν + 3

for each ν ≥ 1, while for ν = 0

∑
k≥0

λ(pk)

φ(pk)
=

(
1 +

λ(p)

p

)1 +
λ(p)

(
1

φ(p) −
1
p

)
+
∑
k≥2

λ(pk)
φ(pk)

1 + λ(p)
p


≤

(
1 +

λ(p)

p

)(
1 +

20

p

)
.

Thus the LHS of (3.20) is bounded by ζ(2)40ψ(l)
∏
p≤z(1 + λ(p)p−1)2, where ψ is the multi-

plicative function

ψ(l) =
∑
c|l

1

c

l/c

φ(l/c)

∏
pν ||c

(3ν + 3)2. (3.22)

By direct calculation and the inequality p ≥ 2, we have

ψ(pa) =
1

1− p−1
+

9

pa

(
(a+ 1)2 +

1

1− p−1

a−1∑
i=1

(i+ 1)2

pi

)
≤ 1 + Cp−1

for some constant C ≤ 106, so that ψ(l) ≤
∏
p|l(1 + Cp−1) � log log(x)C for 1 ≤ l ≤ x. This

estimate for ψ(l) establishes the claimed bound (3.20).

Remark 13. A bound of the form (3.16) but with an unspecified dependence on the parameter

l may be derived from the work of Nair [45]. We have attempted to quantify this dependence

5It is here that Holowinsky gives up the factor τ(l).
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by working through the details of Nair’s arguments, and have shown that they imply

∑
n∈N

m:=n+l∈N
max(m,n)≤x

|λf (m)λf (n)| �ε τm(l)
x
∏
p≤x(1 + 2|λf (p)|/p)

log(ex)2−ε (3.23)

for some m ≥ 2 (probably m = 2) and all 0 6= |l| ≤ x1/16−ε; in deducing this we have used the

Ramanujan bound |λf (p)| ≤ 2. This strength and uniformity falls far short of what is needed

in treating the level aspect of QUE.

A mild strengthening of (3.16) subject to the additional constraint 4l2 ≤ x appears in the

recent book of Iwaniec-Friendlander [10, Thm 15.6], which was released after we completed the

work of this chapter. The condition 4l2 ≤ x makes their result inapplicable in our treatment of

the level aspect of QUE, where l can be nearly as large as x. However, it seems to us that one

can remove this condition by a suitable modification of their arguments.

Recall from Definition 3.3.2 that the sums Ss(l, x) involve a certain integral Is(l, n, x).

Lemma 3.3.11. For each positive integer A, the integral Is(l, n, x) satisfies the upper bound

Is(l, n, x)�A
Γ(k − 1)

(4π)k−1

√
mn ·max

(
1,

max(m,n)

xk

)−A
uniformly for s ∈ iR ∪ (−1/2, 1/2), n ∈ N, l ∈ Z6=0, and x ≥ 1. Here m := n+ l, as usual.

Proof. Let s, l,m, n be as above, and let A ≥ 0. Then |κs(y)| ≤ 1, so that by the Mellin formula

we have

Is(l, n, x) ≤
∫ ∞

0

h(xy)κf (my)κf (ny)y−1 dy

y

=

∫
(A)

h∧(w)xw
∫
R∗+
yw−1κf (my)κf (ny)

dy

y

dw

2πi

=
(
√
mn)k(

4π
(
m+n

2

))k−1

∫
(A)

h∧(w)

(
x

4π
(
m+n

2

))w Γ(w + k − 1)
dw

2πi

�A
Γ(k − 1)

(4π)k−1

√
mn

(
max(m,n)

xk

)−A
.

Here we have used the arithmetic mean-geometric mean inequality, the well-known bound [72,

Ch 7, Misc. Ex 44]

Γ(w + k − 1)

Γ(k − 1)
�A (k − 1)A(1 + k−1(1 + |w|2))� kA(1 + |w|2)

for Re(w) = A, and the rapid decay of h∧. The case A = 0 gives Is(l, n, x) �k (4π)−k+1Γ(k −

1)
√
mn, which combined with the case that A is a positive integer yields the assertion of the
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lemma.

Remark 14. See [48, Lem 4.3] and [48, Cor 4.4] for a fairly sharp refinement of Lemma 3.3.11.

Corollary 3.3.12. The shifted sums Ss(l, x) satisfy the upper bound

Ss(l, x)�ε
Γ(k − 1)

(4π)k−1

xk

log(xk)2−ε

∏
p≤xk

(
1 +

2|λf (p)|
p

)
(3.24)

uniformly for s ∈ iR ∪ (−1/2, 1/2) and x ≥ 1.

Proof. Let us set X = xk and temporarily denote by Tf (x, l, ε) the right-hand side of (3.24)

without the factor (4π)−k+1Γ(k−1). By Definition 3.3.2 and Lemma 3.3.11, we need only show

that ∑
n∈N

m:=n+l∈N

|λf (m)λf (n)| ·max

(
1,

max(m,n)

X

)−A
�ε Tf (x, l, ε) (3.25)

for some positive integer A. Take A = 2. We may assume that X = xk ≥ 10. By theorem 3.3.10

and the Deligne bound |λf (p)| ≤ 2, the left hand side of (3.25) is

�ε Tf (x, l, ε)

∞∑
n=0

2−nA2n
(

log(X)

log(2nX)

)2−ε ∏
X<p≤2nX

(
1 +

2|λf (p)|
p

)

� Tf (x, l, ε)

∞∑
n=0

2−(A−1)n exp

(
4 log

log(2nX)

log(X)

)
.

The inner sum converges and is bounded uniformly in X, so we obtain the desired estimate

(3.25).

3.3.3 Bounds for Sums of Shifted Sums

We complete the proof of theorem 3.3.1 by bounding the sums of shifted sums that arose in

Proposition 3.3.3.

Lemma 3.3.13. For each ε ∈ (0, 1) and each squarefree number q, we have

∑
d|q

d

log(dk)2−ε �
q log log(eeq)

log(qk)2−ε �ε
q

log(qk)2−2ε
.

Proof. Suppose that q is the product of r ≥ 1 primes q1 < · · · < qr. Let p1 < · · · < pr be the

first r primes, so that pi ≤ qi for i = 1, . . . , r. Define β(x) = x/ log(eexk)2−ε; we have chosen

this particular definition so that β is increasing on R≥1 and β(x) � x/ log(xk)2−ε for x ∈ R≥1.

The map

R≥1 3 x 7→ log β(ex) = x− (2− ε) log(2 + x)
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is convex, so that for each a = (a1, . . . , ar) ∈ {0, 1}r we have

β(qa11 · · · qarr )

β(q1 · · · qr)
≤ β(pa11 qa22 · · · qarr )

β(p1q2 · · · qr)
≤ β(pa11 pa22 qa33 · · · qarr )

β(p1p2q3 · · · qr)
≤ · · · ≤ β(pa11 · · · parr )

β(p1 · · · pr)
. (3.26)

The prime number theorem implies that log(p1 · · · pr) = r log(r)(1 + o(1)), where the notation

o(1) refers to the limit as r → ∞; we may and shall assume that r is sufficiently large (and at

least 100) because the assertion of the lemma holds trivially when q has a bounded number of

prime factors. Set r0 = br/10c. Observe that

pr−r0+1 · · · pr = exp
(
r log(r)− (r − r0) log(r − r0) + o(r log(r))

)
(3.27)

= exp

(
r0 log(r) + (r − r0) log

(
r

r − r0

)
+ o(r log(r))

)
= exp (r0 log(r)(1 + o(1)))

� (p1 · · · pr)1/9,

and

log(p1 · · · pr0) = r0 log(r0)(1 + o(1)) � r log(r)(1 + o(1)) = log(p1 · · · pr). (3.28)

Let Ω0 denote the set of all a ∈ {0, 1}r for which a1 + · · · + ar ≤ r0 and Ω1 the set of all

a ∈ {0, 1}r for which a1 + · · ·+ ar > r0, so that {0, 1}r = Ω0 t Ω1. Then by (3.27) we have

∑
a∈Ω0

β(pa11 · · · parr )

β(p1 · · · pr)
≤ 2r

β(pr−r0+1 · · · pr)
β(p1 · · · pr)

� 2r(p1 · · · pr)−7/8 ≤ 8
√

2. (3.29)

If a ∈ Ω1, then (3.28) implies β(pa11 · · · parr )/β(p1 · · · pr) � pa1−1
1 · · · par−1

r , so that

∑
a∈Ω1

β(pa11 · · · parr )

β(p1 · · · pr)
�

∑
d|p1···pr

1

d
≤ (1 + o(1))eγ log log(p1 · · · pr)� log log(eeq). (3.30)

Since β(x) � x/ log(ex)2−ε for x ∈ R≥1, it follows from (3.26), (3.29), and (3.30) that

∑
d|q

d

log(dk)2−ε

q

log(qk)2−ε

�
∑
d|q

β(d)

β(q)
=

∑
a∈{0,1}r

β(qa11 · · · qarr )

β(q1 · · · qr)
� log log(eeq),

which establishes the lemma.

Corollary 3.3.14. Let Y ≥ 1 with Y ≤ c1 log(qk)c2 for some c1, c2 ≥ 1. Then our sum of
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shifted sums satisfies the estimate

∑
d|q

Ss(dl, dY )�ε,c1,c2

Γ(k − 1)

(4π)k−1

qkY

log(qk)2−ε

∏
p≤qk

(
1 +

2|λf (p)|
p

)
,

uniformly for s ∈ iR ∪ (−1/2, 1/2) and x ≥ 1.

Proof. By Corollary 3.3.12, we have

∑
d|q

Ss(dl, dY )�ε
Γ(k − 1)

(4π)k−1
Y

 ∏
p≤qkY

(
1 + 2

|λf (p)|
p

)∑
d|q

dk

log(dk)2−ε . (3.31)

By the Deligne bound |λf (p)| ≤ 2, the part of the product in (3.31) taken over qk < p ≤ qkY is

� log(eY )4 �c1,c2 log log(eeqk)4. The claim now follows from Lemma 3.3.13.

Lemma 3.3.15. Let ε > 0, Y ≥ 1. If φ is a normalized Maass eigencuspform, then

∑
0<|l|<Y 1+ε

|λφ(l)|√
|l|
�φ,ε Y

1/2+2ε,

where (as indicated) the implied constant may depend upon φ. On the other hand, if t ∈ R, then

∑
0<|l|<Y 1+ε

|λit(l)|√
|l|
�ε Y

1/2+2ε,

where the implied constant does not depend upon t.

Proof. Follows from the Cauchy-Schwarz inequality, partial summation, the Rankin-Selberg

bound (3.7) for λφ and the uniform bound |λit(l)| ≤ τ(l) for λit.

Proof of theorem 3.3.1. Suppose that φ is a normalized Maass eigencuspform of eigenvalue 1
4 +

r2. By Proposition 3.3.3, we have

µf (φ)

µf (1)
=

1

Y µf (1)

∑
0<|l|<Y 1+ε

λφ(l)√
|l|

∑
d|q

Sir(dl, dY ) +Oφ,ε(Y
−1/2). (3.32)

Recall from (3.3) that

µf (1) � qΓ(k − 1)

(4π)k−1
L(ad f, 1)

and recall the definition (3.13) of Mf (qk). We shall ultimately choose Y � log(qk)O(1), so

Corollary 3.3.14 gives the bound

1

Y µf (1)

∑
d|q

Sir(dl, dY )�ε log(qk)εMf (qk). (3.33)
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By (3.33) and Lemma 3.3.15 applied to (3.32), we find that

µf (φ)

µf (1)
�φ,ε log(qk)εMf (qk)

∑
0<|l|<Y 1+ε

|λφ(l)|√
|l|

+ Y −1/2

�φ,ε Y 1/2+2ε log(qk)εMf (qk) + Y −1/2.

Choosing Y = max(1,Mf (qk)−1)� log(qk)O(1) gives the cuspidal case of the theorem.

Suppose now that φ = E(Ψ, ·) is an incomplete Eisenstein series. Proposition 3.3.3, Corollary

3.3.14 and Lemma 3.3.15 show, as in the cuspidal case, that

µf (φ)

µf (1)
− µ(φ)

µ(1)
�φ,ε Y 1/2+2ε log(qk)εMf (qk)

∫
R

∣∣∣∣Ψ∧( 1
2 + it)

ξ(1 + 2it)

∣∣∣∣ dt+
1 +Rf (qk)

Y 1/2

�φ Y 1/2+2ε log(qk)εMf (qk) +
1 +Rf (qk)

Y 1/2
.

The same choice of Y as above completes the proof.

3.4 An Extension of Watson’s Formula

Watson [70], building on earlier work of Garrett [11], Piatetski-Shapiro and Rallis [49], Harris

and Kudla [19], and Gross and Kudla [18], proved a beautiful formula relating the integral

of the product of three modular forms to the central value of their triple product L-function.

Unfortunately, Watson’s formula applies only to triples of newforms having the same squarefree

level. In §3.5 we shall refer only to the statement of the following extension of Watson’s formula

to the case of interest, not the details of its proof.

Theorem 3.4.1. Let φ be a Maass eigencuspform of level 1 and f a holomorphic newform of

squarefree level q, as in §3.2. Then

∣∣∣∫Γ0(q)\H φ(z)|f |2(z)yk dx dyy2

∣∣∣2∫
Γ\H |φ|2(z)yk dx dyy2

(∫
Γ0(q)\H |f |2(z)yk dx dyy2

)2 =
1

8q

Λ(φ× f × f, 1
2 )

Λ(adφ, 1)Λ(ad f, 1)2
.

The L-functions L(· · · ) =
∏
p Lp(· · · ) and their completions Λ(· · · ) = L∞(· · · )L(· · · ) =

∏
v Lv(· · · )

are as in [70, §3].

Remark 15. For simplicity, we have stated theorem 3.4.1 only in the special case that we need

it, but our calculations (Lemma 3.4.3) lead to a more general formula. Let ψj (j = 1, 2, 3) be

newforms of weight kj and level qj . We allow the possibility kj = 0, in which case we require that

ψj be an even or odd Maass eigencuspform. If k1 + k2 + k3 6= 0 or some prime p divides exactly

one of the qj , then it is straightforward to see that
∫
ψ1ψ2ψ3 = 0. Otherwise k1 +k2 +k3 = 0 and
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each prime divides the qj either 0, 2 or 3 times, so one can read off from Watson [70, Theorem

3], Ichino [26] and Lemma 3.4.3 the identity

∣∣∫
X
ψ1ψ2ψ3

∣∣2∏∫
X
|ψj |2

=
1

8

Λ( 1
2 , ψ1 × ψ2 × ψ3)∏

Λ(1, adψj)

∏
v

cv (3.34)

where X = lim←−Γ0(q)\H with vol(X) := vol(Γ0(1)\H) = π/3, c∞ is Q∞ ∈ {0, 1, 2} from [70,

Theorem 3], cp = 1 if p divides none of the qj , cp = p−1 if p divides exactly two of the qj , and

cp = p−1(1 + p−1)(1 + εp) if p divides all of the qj with −εp the product of the Atkin-Lehner

eigenvalues for the ψj at p as in [70, Theorem 3].

Watson proved his formula only for three forms of the same squarefree level because Gross

and Kudla [18] evaluated the p-adic zeta integrals of Harris and Kudla [19] only when (the

factorizable automorphic representations generated by) the three forms are special at p; Harris

and Kudla had already considered the case that all three forms are spherical at p. Ichino [26]

showed that the local zeta integrals of Harris and Kudla are equal to simpler integrals over the

group PGL(2,Qp). Ichino and Ikeda [27, §7, §12] computed these simpler integrals when all

three forms are special at p. Since we are interested in the integral of φ|f |2 when φ has level 1

and f has squarefree level q, we must consider the case that two representations are special and

one is spherical. We remark in passing that Böcherer and Schulze-Pillot [4] considered similar

problems for modular forms on definite rational quaternion algebras in the classical language,

but their results are not directly applicable here.

To state (a special case of) Ichino’s result, we introduce some notation. In what follows,

v denotes a place of Q and p a prime number. Let G = PGL(2)/Q, Gv = G(Qv), K∞ =

SO(2)/{±1}, Kp = G(Zp), and GA = G(A) =
∏′
v Gv, where A =

∏′
v Qv is the adele ring of Q.

Regard φ and f as pure tensors φ = ⊗φv and f = ⊗fv in (factorizable) cuspidal automorphic

representations πφ = ⊗πφ,v and πf = ⊗πf,v of GA =
∏′

Gv. Set f̄v =
(−1

1

)
· fv and f̄ = ⊗f̄v.

Then fp = f̄p for all (finite) primes p. Although the vectors φv and fv are defined only up to a

nonzero scalar multiple, the matrix coefficients

Φφ,v(gv) =
〈gv · φv, φv〉
〈φv, φv〉

, Φf,v(gv) =
〈gv · fv, fv〉
〈fv, fv〉

, Φf̄ ,v(gv) =
〈gv · f̄v, f̄v〉
〈f̄v, f̄v〉

are well-defined; here gv belongs to Gv and 〈, 〉v denotes the (unique up to a scalar) Gv-invariant

Hermitian pairings on the irreducible admissible self-contragredient representations πφ,v and

πf,v. Let dgv denote the Haar measure on the group Gv with respect to which vol(Kv) = 1.

Define the local integrals

Iv =

∫
Gv

Φφ,v(gv)Φf,v(gv)Φf̄ ,v(gv) dgv
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and the normalized local integrals

Ĩv =

(
ζv(2)3

ζv(2)

Lv(
1
2 , φ× f × f)

Lv(1, adφ)Lv(1, ad f)2

)−1

Iv. (3.35)

Theorem 3.4.2 (Ichino). We have Ĩv = 1 for all but finitely many places v, and

∣∣∣∫Γ0(q)\H φ|f |
2yk dx dyy2

∣∣∣2∫
Γ\H |φ|2

dx dy
y2

(∫
Γ0(q)\H |f |2yk

dx dy
y2

)2 =
1

8

Λ( 1
2 , φ× f × f)

Λ(1, adφ)Λ(1, ad f)2

∏
v

Ĩv.

Proof. See [26, Theorem 1.1, Remark 1.3]. We have taken into account the relation between

classical modular forms and automorphic forms on the adele group GA (see Gelbart [12]) and the

comparison (see for instance Vignéras [69, §III.2]) between the Poincaré measure on the upper

half-plane and the Tamagawa measure on GA.

We know by work of Harris and Kudla [19], Gross and Kudla [18], Watson [70], Ichino [27],

and Ichino and Ikeda [27] that Ĩ∞ = 1 and Ĩp = 1 for all primes p that do not divide the level

q. We contribute the following computation, with which we deduce theorem 3.4.1 from theorem

3.4.2.

Lemma 3.4.3. Let p be a prime divisor of the squarefree level q. Then Ĩp = 1/p.

Before embarking on the proof, let us introduce some notation and recall formulas for the

matrix coefficients Φφ,p and Φf,p. Let Gp = PGL2(Qp), let Kp = PGL2(Zp), and let Ap be

the subgroup of diagonal matrices in Gp. Recall the Cartan decomposition Gp = KpApKp. For

y ∈ Q∗p we write a(y) = ( y 1 ) ∈ Ap.

The representation πφ,p is unramified principal series with Satake parameters αφ(p) and

βφ(p); for clarity we write simply α = αφ(p) and β = βφ(p). The vector φp lies on the unique Kp-

fixed line in πφ,p. The matrix coefficient Φf,p is bi-Kp-invariant, so by the Cartan decomposition

we need only specify Φφ,p(a(pm)) for m ≥ 0, which is given by the Macdonald formula [5,

Theorem 4.6.6]

Φφ,p(a(pm)) =
1

1 + p−1
p−m/2

[
αm

1− p−1 β
α

1− β
α

+ βm
1− p−1 α

β

1− α
β

]
. (3.36)

The representation πf,p is an unramified quadratic twist of the Steinberg representation of

Gp. The vector fp lies on the unique Ip-fixed line in πf,p, where Ip is the Iwahori subgroup of

Kp consisting of matrices that are upper-triangular mod p. Thus to determine Φf,p, we need

only specify the values it takes on representatives for the double coset space Ip\Gp/Ip, whose

structure we now recall following [15, §7] (see also [27, §7] for a similar discussion). Define the
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elements

w1 =

 1

1

 , w2 =

 p−1

p

 , ω =

 1

p


of Gp. Note that since Gp = PGL2(Qp), we have w2

1 = w2
2 = ω2 = 1. For w in the group

Wa = 〈w1, w2〉 generated by w1 and w2, let λ(w) be the length of the shortest string expressing

w in the alphabet {w1, w2}, so that λ(w1) = λ(w2) = 1. Extend λ to the group W̃ = 〈w1, w2, ω〉,

which is the semidirect product of Wa by the group of order 2 generated by ω, via the formula

λ(ωiw) = λ(w) when w ∈Wa, so that in particular λ(ω) = 0. We have a Bruhat decomposition

Gp = tw∈W̃ IpwIp; unwinding the definitions, this reads more concretely as

Gp =

tn∈ZIp
pn

1

 Ip

 t
tn∈ZIpw1

pn
1

 Ip

 ,

but we shall not adopt this perspective. With our normalization of measures we have vol(IpwIp) =

(p+ 1)−1pλ(w). Suppose temporarily that πf,p is (the trivial twist of) the Steinberg representa-

tion. The matrix coefficient Φf,p is bi-Ip-invariant and given by

Φf,p(ω
jw) = (−1)j(−p−1)λ(w)

for all j ∈ {0, 1} and w ∈Wa. In particular

Φf,p(ω
jw)2 = p−2λ(w). (3.37)

In the general case that πf,p is a possibly nontrivial unramified quadratic twist of Steinberg, the

formula (3.37) for the squared matrix coefficient still holds.

Proof of Lemma 3.4.3. Having recalled the formulas above, we see that

Ip =

∫
Gp

Φφ,p(g)Φf,p(g)2 dg =
∑
w∈W̃

vol(IpwIp)Φφ,p(w)p−2λ(w) (3.38)

= (p+ 1)−1
∑
w∈W̃

Φφ,p(w)p−λ(w),

where Φφ,p is given by (3.36). The evaluation of the Poincaré series

∑
w∈W̃

tλ(w) = 2
1 + t

1− t
, (3.39)

where t is an indeterminate, is asserted and used in [27, §7], but we need a finer result here. For

w ∈ W̃ let us write µ(w) for the unique nonnegative integer with the property that KpwKp =
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Kpa(pµ(w))Kp. Then we claim that for indeterminates x, t we have the relation of formal power

series ∑
w∈W̃

xµ(w)tλ(w) =
(1 + x)(1 + t)

1− xt
. (3.40)

Note that we recover (3.39) upon taking x = 1. To prove (3.40), observe that since ωw1 = w2ω

and ω2 = 1, every element w of W̃ is of the form uabn = ωa(w1w2)nwb1 or vabn = ωa(w2w1)nwb2

for some a ∈ {0, 1}, b ∈ {0, 1}, and n ∈ Z≥0. Computing uabn and vabn explicitly to be

u00n =

pn
p−n

 , u01n =

 pn

p−n

 ,

u10n =

 p−n

pn+1

 , u11n =

p−n
pn+1

 ,

v00n =

p−n
pn

 , v01n =

 p−n−1

pn+1

 ,

v10n =

 pn

p1−n

 , v11n =

pn+1

p−n

 ,

we see that this parametrization of W̃ is unique except that ua00 = va00 for each a ∈ {0, 1};

furthermore, we can read off that µ(uabn) = 2n + a, that µ(vabn) = 2(n + b) − a, and that

λ(uabn) = λ(vabn) = 2n+ b. Thus

∑
w∈W̃

xµ(w)tλ(w) = (1 + x) +
∑
b=0,1

∑
n≥0

2n+b>0

t2n+b
∑
a=0,1

(
x2n+a + x2(n+b)−a

)

= (1 + x) +
∑
b=0,1

∑
n≥0

2n+b>0

t2n+bx2n+b−1
∑
a=0,1

(
x1+a−b + x1+b−a)

= (1 + x) + (1 + x)2
∑
m>0

tmxm−1,

from which (3.40) follows upon summing the geometric series. We now combine (3.36), (3.38)

and (3.40), noting that the series converge because |α| < p1/2 and |β| < p1/2; the contributions

to the formula (3.38) for Ip of the two terms in the formula (3.36) for Φφ,p(a(pm)) are respectively

(p+ 1)−1(1 + p−1)−1 1− p−1 β
α

1− β
α

(1 + p−1/2α)(1 + p−1)

1− p−3/2α
,
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and

(p+ 1)−1(1 + p−1)−1
1− p−1 α

β

1− α
β

(1 + p−1/2β)(1 + p−1)

1− p−3/2β
.

Summing these fractions by cross-multiplication and then simplifying, we obtain

Ip = p−1(1− p−1)
(1 + αp−1/2)(1 + βp−1/2)

(1− αp−3/2)(1− βp−3/2)
.

Recall the definition (3.35) of Ĩp. The local L-factors are given by (see [70, §3.1])

Lp(1, ad f) = ζp(2), Lp(1, adφ) = [(1− α2p−1)(1− p−1)(1− β2p−1)]−1,

Lp(
1
2 , φ× f × f) = [(1− αp−1/2)(1− βp−1/2)(1− αp−3/2)(1− βp−3/2)]−1,

thus the normalized local integral Ĩp is

Ĩp = p−1(1− p−1)
(1− αp−1/2)(1− βp−1/2)(1 + αp−1/2)(1 + βp−1/2)

(1− α2p−1)(1− p−1)(1− β2p−1)
= p−1,

as asserted.

3.5 Proof of Theorem 3.1.3

We combine theorem 3.3.1 and theorem 3.4.1 with Soundararajan’s weak subconvex bounds [66]

to complete the proof of theorem 3.1.3. Fix a positive even integer k. Let f be a newform of

weight k and squarefree level q. Fix a Maass eigencuspform or incomplete Eisenstein series φ.

We will show that the “discrepancy”

Df (φ) :=
µf (φ)

µf (1)
− µ(φ)

µ(1)

tends to 0 as qk → ∞, thereby fulfilling the criterion of Lemma 3.1.4, by combining the com-

plementary estimates for Df (φ) provided below by Proposition 3.5.2 and Proposition 3.5.3.

Lemma 3.5.1. The quantities Mf (x) and Rf (x) (3.13) appearing in the statement of theorem

3.3.1 satisfy the estimates

Mf (qk)�ε log(qk)1/6+εL(ad f, 1)1/2, Rf (qk)�ε
log(qk)−1+ε

L(ad f, 1)
� log(qk)ε.

Proof. The bound for Mf (qk) follows from the proof of [25, Lemma 3] with “k” replaced by

“qk,” noting that λf (p)2 ≤ 1 + λf (p2) for all primes p. The bound for Rf (qk) follows from the

arguments of [66, Example 1], [25, Lemma 1] with “k” replaced by “qk” and the lower bound
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(3.4) for L(ad f, 1).

Proposition 3.5.2. We have Df (φ)�φ,ε log(qk)1/12+εL(ad f, 1)1/4.

Proof. Follows immediately from theorem 3.3.1 and Lemma 3.5.1.

Proposition 3.5.3. We have Df (φ) �φ,ε log(qk)−δ+εL(ad f, 1)−1, where δ = 1/2 if φ is a

Maass eigencuspform and δ = 1 if φ is an incomplete Eisenstein series.

Proof. If φ is a Maass eigencuspform, then the analytic conductor of φ × f × f is � (qk)4, so

theorem 3.4.1 and the arguments of Soundararajan [66, Example 2] with “k” replaced by “qk”

show that ∣∣∣∣µf (φ)

µf (1)

∣∣∣∣2 �φ

L(φ× f × f, 1
2 )

qk · L(ad f, 1)2
�ε

1

log(qk)1−εL(ad f, 1)2
.

If φ = E(Ψ, ·) is an incomplete Eisenstein series, then the unfolding method as in Lemma 3.3.5

and the bound for Rf (q) given by Lemma 3.5.1 show that

µf (φ)

µf (1)
− µ(φ)

µ(1)
=

2π2

q

∫
(1/2)

Ψ∧(s)
( q

4π

)s Γ(s+ k − 1)

Γ(k)

ζ(s)

ζ(2s)

L(ad f, s)

L(ad f, 1)

ds

2πi

�φ Rf (qk)�ε
log(qk)−1+ε

L(ad f, 1)
.

Proof of theorem 3.1.3. By Propositions 3.5.2 and 3.5.3, there exists δ ∈ {1/2, 1} such that

Df (φ)�φ,ε min
(

log(qk)−δ+εL(ad f, 1)−1, log(qk)1/12+εL(ad f, 1)1/4
)

;

it follows by the argument of [25, §3] with “k” replaced by “qk” that Df (φ)→ 0 as qk →∞.
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Nombres Bordeaux 5 (1993), no. 2, 411–484. MR MR1265913 (95d:11116)

[21] Jürgen G. Hinz, Methoden des grossen Siebes in algebraischen Zahlkörpern, Manuscripta

Math. 57 (1987), no. 2, 181–194. MR 871630 (88d:11113)



86

[22] Jeffrey Hoffstein and Paul Lockhart, Coefficients of Maass forms and the Siegel zero, Ann.

of Math. (2) 140 (1994), no. 1, 161–181, With an appendix by Dorian Goldfeld, Hoffstein

and Daniel Lieman. MR MR1289494 (95m:11048)

[23] Roman Holowinsky, A sieve method for shifted convolution sums, Duke Math. J. 146 (2009),

no. 3, 401–448. MR 2484279 (2010b:11127)

[24] , Sieving for mass equidistribution, Ann. of Math. (2) 172 (2010), no. 2, 1499–1516.

MR 2680498

[25] Roman Holowinsky and Kannan Soundararajan, Mass equidistribution for Hecke eigen-

forms, Ann. of Math. (2) 172 (2010), no. 2, 1517–1528. MR 2680499

[26] Atsushi Ichino, Trilinear forms and the central values of triple product L-functions, Duke

Math. J. 145 (2008), no. 2, 281–307. MR MR2449948 (2009i:11066)

[27] Atsushi Ichino and Tamutsu Ikeda, On the periods of automorphic forms on special or-

thogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal. 19 (2010), no. 5,

1378–1425. MR MR2585578

[28] Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics,

vol. 17, American Mathematical Society, Providence, RI, 1997. MR MR1474964 (98e:11051)

[29] , Spectral methods of automorphic forms, second ed., Graduate Studies in Math-

ematics, vol. 53, American Mathematical Society, Providence, RI, 2002. MR MR1942691

(2003k:11085)

[30] Henryk Iwaniec, Notes on the quantum unique ergodicity for holomorphic cusp forms, 2010.

[31] Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical

Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI,

2004. MR MR2061214 (2005h:11005)

[32] Henryk Iwaniec and Peter Sarnak, Perspectives on the analytic theory of L-functions, Geom.

Funct. Anal. (2000), no. Special Volume, Part II, 705–741, GAFA 2000 (Tel Aviv, 1999).

MR MR1826269 (2002b:11117)
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