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Abstract

This thesis presents two new results concerning the limiting behavior of families of automorphic
forms. The work is presented in a sequence of chapters. The first, “Mass equidistribution
of Hilbert modular eigenforms,” has been accepted for publication in the Ramanujan Journal
(Springer), while the second, “Equidistribution of cusp forms in the level aspect,”! has been
accepted for publication in the Duke Mathematical Journal (Duke University Press). Some
minor differences exist between these chapters and the papers they represent. The abstracts of

the accepted versions of these papers follow.

1. Let F be a totally real number field, and let f traverse a sequence of nondihedral holo-
morphic eigencuspforms on GLy /F of weight (kq,. .., kr.q)), trivial central character, and
full level. We show that the mass of f equidistributes on the Hilbert modular variety as

max(kl, N k[]F:Q]) — 0Q.

Our result answers affirmatively a natural analogue of a conjecture of Rudnick and Sarnak
(1994). Our proof generalizes the argument of Holowinsky-Soundararajan (2008) who
established the case F = Q. The essential difficulty in doing so is to adapt Holowinsky’s
bounds for the Weyl periods of the equidistribution problem in terms of manageable shifted

convolution sums of Fourier coefficients to the case of a number field with nontrivial unit

group.

2. Let f traverse a sequence of classical holomorphic newforms of fixed weight and increasing
squarefree level ¢ — co. We prove that the pushforward of the mass of f to the modular

curve of level 1 equidistributes with respect to the Poincaré measure.

Our result answers affirmatively the squarefree level case of a conjecture spelled out in
2002 by Kowalski, Michel, and VanderKam [36] in the spirit of a conjecture of Rudnick
and Sarnak [52] made in 1994.

! Duke Mathematical Journal, forthcoming in vol. 160, issue 3. Copyright 2011, Duke Uni-

versity Press. Reprinted by permission of the publisher.



vi
Our proof follows the strategy of Holowinsky and Soundararajan [25] who showed in 2008
that newforms of level 1 and large weight have equidistributed mass. The new ingredients
required to treat forms of fixed weight and large level are an adaptation of Holowinsky’s
reduction of the problem to one of bounding shifted sums of Fourier coefficients, a refine-
ment of his bounds for shifted sums, an evaluation of the p-adic integral needed to extend
Watson’s formula to the case of three newforms where the level of one divides but need not
equal the common squarefree level of the other two, and some additional technical work

in the problematic case that the level has many small prime factors.
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Chapter 1

Introduction

The basic problem addressed in this work is the study of the limiting behavior of families of
automorphic forms and special values of L-functions. Automorphic forms and their L-functions,
which generalize the classical zeta function of Riemann, are fundamental in modern number
theory.

Let f : H — C be a classical holomorphic newform of weight k& and level q. The mass of f is
the finite measure dvy = |f(2)[>y* "2 dz dy (2 = = +iy) on the modular curve Yy(q) = 'o(g)\H.
Our starting point is the recent proof by Holowinsky and Soundararajan [25] that newforms of
large weight k and fixed level ¢ = 1 have equidistributed mass with respect to the hyperbolic area
measure, answering affirmatively a natural variant!' of the quantum unique ergodicity conjecture

of Rudnick and Sarnak [52].

Theorem 1.0.1 (Mass equidistribution for SL(2,Z) in the weight aspect). Let f traverse a
sequence of newforms of increasing weight k — oo and fized level ¢ = 1. Then the mass vy
equidistributes® with respect to the Poincaré measure du = y~2dxdy on the modular curve
Yo(q).

las spelled out by Luo and Sarnak [42]; we refer to Sarnak [53, 54] and the references in [25]

for further discussion.

ZWe say that a sequence of finite Radon measures p; on a locally compact Hausdorff space X
equidistributes with respect to some fixed finite Radon measure p if for each function ¢ € C.(X)
we have p;(4)/p;(1) = p(¢)/p(1) as j — oo, here and always identifying a measure p with the
corresponding linear functional ¢ — (¢) := [, ¢ dp on the space C.(X) and writing 1 for the

constant function.
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We prove two new variants of the Holowinsky-Soundararajan result by suitably adapting
their method and tackling some new subtleties that arise. Before stating our main results,
let us highlight two perspectives from which the study of limiting behavior of the masses of
automorphic forms is natural and interesting. First, it is analogous to a fundamental problem in
quantum chaos, which concerns more generally the limiting behavior as A — oo of eigenfunctions

¢
(A+N)¢=0 (1.1)

of the Laplacian A on a compact Riemannian manifold M for which the geodesic flow is chaotic
(see [53]). Here the geodesic flow on M is regarded as the Hamiltonian flow of a chaotic classical
mechanical system, the Laplacian A ¢ L?(M) as the Hamiltonian operator for the correspond-
ing quantized system, and the eigenfunction ¢ (normalized so that [[¢|? = 1) as the wave
function for a quantum particle on M of energy A whose position is described in the Copen-
hagen interpretation of quantum mechanics by the probability density |¢|?. In suitable units
the Schrodinger equation for stationary states reads (A2A + \)¢ = 0, so studying ¢ in (1.1) as
A — oo is akin to considering the semiclassical limit i — 0 of the quantization of the geodesic
flow.

Among several questions that one can ask we single out that of the behavior of the densities
|¢|? for particles of high energy A — oo. A fundamental result in this direction is the quantum
ergodicity theorem of Schnirelman, Colin de Verdiére, and Zelditch [56, 6, 73], which asserts that
if the geodesic flow on the unit cotangent bundle of M is ergodic, then for any sequence (¢,,) with
An — 00 there exists a full-density subsequence (¢,,, ) such that the |¢,, |? equidistribute.® In the
particular case that M is negatively curved, the quantum unique ergodicity (QUE) conjecture
of Rudnick and Sarnak [52] predicts that the full sequence of |¢,|? equidistributes with respect
to the volume measure on M as A — oo.

The QUE conjecture is considered difficult and there has been little progress for general M,
but for certain special M that arise from arithmetic considerations (such as the modular curve or
the Hilbert modular varieties) there has been significant progress on QUE and related questions
[54, 41, 40, 65, 63, 25]. Such arithmetic manifolds arise as quotients of symmetric spaces by
arithmetic groups and are characterized by the presence of additional symmetry in the form of
a large commuting family T of correspondences that commute with the algebra D of invariant
differential operators, thereby providing a powerful tool for the study of common eigenfunctions

of T and D. One may hope that such arithmetic instances of QUE provide tractable and yet

3in a more precise sense than we describe here; see the introduction to [52]
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representative model cases for the more general problem (see [53]).

A second motivation for our considerations arises from their connection to central problems
in the analytic theory of L-functions. Watson [70] showed that for M = SL(2,Z)\H (as well as
other “arithmetic surfaces” T'\H), the Weyl periods for the equidistribution problem posed by
QUE are essentially products of central values L(%) of automorphic L-functions L(s) of degree
at most 6; a similar relation holds over totally real fields (see §2.3.2) and for newforms of varying
level (see remark 15). The generalized Riemann hypothesis (GRH) for such L(s), which asserts
that the nontrivial zeros of L(s) lie on the line Re(s) = %, would imply sufficiently strong bounds
on L(%) to establish the QUE conjecture for M. But the bounds on L(3) demanded by QUE
are considerably more tractable than those implied by the GRH (let alone the GRH itself), and
so provide accessible problems on which to develop new techniques.

We now give somewhat informal statements of our main results. In chapter 2, we generalize
theorem 1.0.1 to an arbitrary totally real number field F, where the main technical challenge for
[F: Q] > 1 is presented by the infinite unit group. This result specializes to theorem 1.0.1 in
the case F = Q.

Theorem 1.0.2 (Mass equidistribution for Hilbert modular eigenforms in the max-weight as-
pect). Let F be a totally real number field, and let f traverse a sequence of full-level nondihedral
holomorphic eigencuspforms on PGL(2)/F with any weight component of f tending to co. Then
the mass of [ equidistributess with respect to the invariant measure on the appropriate adelic

quotient of PGL(2)/F.

Kowalski, Michel, and VanderKam [36, Conj 1.5] formulated an analogue of theorem 1.0.1
in which the roles of the parameters k and g are reversed: they conjectured that the masses of
newforms of fixed weight and large level ¢ are equidistributed amongst the fibers of the canonical

projection 7, : Yp(g) — Yo(1) in the following sense.

Conjecture 1.0.3 (Mass equidistribution for SL(2,Z) in the level aspect). Let f traverse a
sequence of newforms of fized weight and increasing level ¢ — co. Then the pushforward under

mq of the mass of f equidistributes with respect to the Poincaré measure on Yp(1).
In chapter , we prove the squarefree level case of Conjecture 1.0.3.

Theorem 1.0.4 (Mass equidistribution for SL(2,Z) in the squarefree level aspect). Let f tra-
verse a sequence of newforms of fixred weight and increasing squarefree level ¢ — oco. Then the
pushforward under wy of the mass of f to Yy(1) equidistributes with respect to the Poincaré

measure on Yy(1).

The main technical difficulties here are to find a suitable generalization of Holowinsky’s un-

folding method for forms of increasing level, to improve his bounds for shifted convolution sums
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in their dependence on the size of the shift with respect to the size of the summation interval,
and to generalize Watson’s formula relating the integral of the product of three newforms of the
same squarefree to the central L-value of their triple product L-function to the case of triples of
newforms of possibly varying squarefree level.

Having stated informally our main results, we now survey the ideas involved in their proofs.
In chapter 2, we consider nondihedral holomorphic Hilbert modular eigencuspforms f on PGLg /F
of weight (k1,...,krq)) and full level, the equidistribution of whose mass we seek on the (in
general, non-connected) Hilbert modular variety Y. The basic strategy, as in many equidistri-
bution problems, is to study the “Weyl periods” [ |f |2 as ¢ traverses a convenient spanning
set of functions on Y, analogous to how one uses the exponentials R/Z > x + €2™"% to prove
the equidistribution of the fractional parts of ak (k € N) for a« € R — Q.

Indeed, theorem 2.1.1 follows as soon as one can establish (2.1) for each element ¢ of a set
the uniform closure of whose span contains C.(Y). Such a spanning set is furnished by the
Maass eigencuspforms and the incomplete Eisenstein series, as defined in §2.2.8. To highlight
the essential difficulties let us suppose in this section that ¢ is a Maass eigencuspform. Then

J ¢ =0, so to establish (2.1) we must show that

J oIf1”
JIfP

—0 as max(ki,...,kpq)) — oo, (1.2)

where the rate of convergence is allowed to depend upon ¢.

Take F = Q and f of weight k for now. Holowinsky and Soundararajan established (1.2)
by a remarkable synthesis of their independent efforts [24, 66], which we now recall briefly,
saving a more detailed discussion for §2.3 and referring to the lucid expositions of [25, 54, 64]
for further motivation and details. Watson’s formula [70] and work of Gelbart-Jacquet [14] and

Hoffstein-Lockhart-Goldfeld-Lieman [22] imply (see [25, Lem 2]) that

Y
[olf? IL(¢><adfa§)\”eXp 725@2) 7 (1.3)

JIfE e K1/ p

p<k

where L(-) denotes the finite part of the L-function indicated above, ~, denotes equality up
to multiplication by a bounded power of loglog(k) times a constant depending upon ¢, and
A(n) is the nth Fourier coefficient of f normalized so that the Deligne bound reads |A(p)| < 2.
Soundararajan proves a “weak subconvexity” bound for the central values of quite general L-

9y

functions satisfying a “weak Ramanujan hypothesis,” specializing in the present circumstances



5

to |L(¢ x ad f, 1)| < k/log(k)'~¢ for any & > 0, which implies (1.2) provided that

I(p?
M > —1/2+ 0+ 0p>00(l)  for some fixed § > 0. (1.4)
P

Zpgk

By considering Fourier expansions at the cusps of the modular curve and bounding the sums
(described below in more detail) that arise, Holowinsky proves (following the reformulation of

Iwaniec [30])

lf|? c 1
f|f|2 g, log(k)“exp | — Z =([A()| = 1)2 ) (1.5)
p<k
which implies (1.2) provided that
L(IAp)| — 1)
Zpzk s (pz| ) >0+ 0p—oo(l)  for some fixed § > 0. (1.6)
2 <k P

In summary, Soundararajan succeeds unless typically A\(p?) < —1/2, while Holowinsky succeeds
unless typically |[A(p)| & 1 (in the harmonically weighted sense taken over p < k); the identity
A(p)? = A(p?) + 1 shows that

Ap*) £ -1/2 = NI V12 and M) ~1 = Ap*) =0,

so in all cases at least one of their approaches succeeds.

The basic ideas underlying our proof when F is totally real are the same as those just
described in the case F = Q; the generalization is a nontrivial and yet purely technical matter,
requiring no fundamental reworking of the overall strategy. As we shall explain in §2.3, the only
part of the F = Q argument that does not generalize transparently is Holowinsky’s proof of

(1.5). His argument amounts to

1. bounding [ ¢|f|?/ [ |f|* from above in terms of the “shifted sums”

smooth

X7 M)A+, (1.7)

n€ZN[1,X]
where [ # 0 is a small integer and X = k, and

2. bounding the shifted sums (1.7); a reformulation [30] of the bound that Holowinsky obtains
is

X1 Z IA(n)A(n +1)| < 7(1) log(k)® H (1 + 2(|>\(12|_1)) , (1.8)

n,n+lEZN[1,X] p<k

which is roughly the square of the bound one would expect for X =13 |\(n)| and so
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may be understood as asserting the independence of the random variables n — |A(n)],
n — |[A(n+1)| owing to the independence of the prime factorizations of n and n+1 and the
multiplicativity of A. The novelty in his argument is that he does not exploit cancellation
in the sums (1.7) that one would expect to arise from the independent variation in sign
of A(n) and A(n + 1) for varying n and fixed | # 0; his motivation for doing so came
from the expectation that the A(p) follow the Sato-Tate distribution, which suggests that
X757 A (n)] < log(X)~? for some small § > 0. See [42, 25, 54, 64] and especially [23]

for further discussion.

Now let [F : Q] = d and take f of weight (ki,...,ks). The most naive higher-dimensional
generalization of Holowinsky’s method that we found requires one to replace X and Z N [1, X]
in (1.7) by X =~ k1 ---kq and 0 N'R, where o is the ring of integers in F and R is the region in
the totally positive quadrant of F ®p R =2 R? bounded by the hyperbola {z;---z4 = X} and
the hyperplanes {z; = ¢} for some small constant ¢ > 0. Unfortunately, the volume of R is
roughly X log(X)9~1, so even the most optimistic bounds along the lines of (1.8) fail to produce
an estimate of the quality (1.5) because of the unaffordable factor log(X)4~! when d > 1.

To circumvent this difficulty, we refine Holowinsky’s upper bound for f #|f|? by a method

that when F = Q leads (see remark 1) to the precise asymptotic expansion

o| |2 Yk)-1 Ao (1 k—1 m
ff|f||2 ~ L((ad)f,l) 2.2 (ﬁ(ll)Af(m)Af(n)ﬁ‘;s’c’o <47r lognD’ (19)

m=n-+I
max(m,n)=<Yk

where Y > 1 tends slowly to infinity with k, Ay, and Ay are the normalized Fourier coefficients
of ¢ and f respectively, kg o (y) = 2y'/2K;.(27y) for y > 0 if i + 72 is the Laplace eigenvalue
of ¢, and the sum is taken over triples (I,m,n) € Z3 for which 0 # |I| < Y™, m > 0,n > 0,
m —n = | and max(m,n) < Yk (with the last condition imposed by a normalized smooth
truncation).

We exploit (in Lemma 2.4.3 and Corollary 2.4.4; see also remark 2) what amounts to the
overwhelming decay of the Bessel factor kg oo(---) in the higher-dimensional generalization of
(1.9) when m,n lie in the outskirts of the region R; the simple proof that we give amounts to
some amusing inequalities satisfied by the hypergeometric function and ratios of pairs of Gamma
functions (see §2.8). In this way we reduce to bounding shifted sums of the form (1.7) taken
over 0 MR/ with R’ the much smaller region bounded by the hyperbola {z; - - -4 = X} and the
hyperplanes {z; = k;Y''/¢/U} with X =k ---kqY and U = exp(log(X)?). The volume of R’ is
merely ~ X log(U)4! = X log(X)¢" with & = (d — 1)e, and this arbitrarily small logarithmic
power log(X)< is negligible in seeking estimates of type (1.8) and (1.5) which already contain

such a factor. The rest of our argument proceeds essentially as it did for Holowinsky upon
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replacing his Mellin transforms on R by Mellin transforms on certain quotients of the idele class
group of F, although some new features do arise (e.g., when IF has general class number we must
consider Hilbert modular varieties having multiple connected components and exclude certain
dihedral forms from our analysis). We elaborate on these last few paragraphs in successively
greater detail in §2.3 and §2.4.

In chapter , where we consider the limiting behavior of mass of classical newforms of large
level, the synthetic part of the Holowinsky-Soundararajan argument works just as well as in
the weight aspect, so we highlight here four of the more substantial difficulties encountered in
adapting the independent arguments of Holowinsky and Soundararajan to the level aspect.

First, it is not a priori clear how best to extend Holowinsky’s unfolding trick in the presence
of multiple (possibly unboundedly many) cusps, nor what should take the place of his asymp-
totic analysis of archimedean integrals in studying the fixed weight, large level limit; several
fundamentally different approaches are possible, one of which we shall present in §3.3.1. When

q is squarefree, the problem then becomes to bound sums roughly of the form*

>3 A(m)Ap(n + d), (1.10)

dlqg n<dk

where again [ # 0 is essentially bounded. As we now explain, the sums (1.10) differ from the

sums

D As(m)As(n + 1), (1.11)

n<k
studied by Holowinsky in two important ways.

For one, the shifts di are now nearly as large as the length of the interval =~ dk over which
we are summing.” Much of the existing work on bounds for such sums (see remark 13) ap-
plies only when the shift is substantially smaller than the summation interval. Holowinsky’s
treatment of (1.11) does allow shifts as large as the summation interval, but gives a bound for
Y neqr A (M)Ar(n + gl) that involves an extraneous factor of 7(gl), which is prohibitively large
(e.g., > log(q)” for any A) if ¢ has many small prime factors. In theorem 3.3.10, we refine
Holowinsky’s method to allows shifts as large as the summation interval with full uniformity

in the size of the shift, e.g., without the factor 7(¢ql). This refinement may be of independent

4Here one should think of a divisor d of ¢ as indexing the unique cusp of I'g(q) of width d,

where as usual the width of a cusp is its ramification index over the cusp oo for T'g(1).

SThis difficulty corresponds the fact that cusps for I'g(q) may have large width.
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Now let w(g) denote the number of prime divisors of the squarefree integer g. Then the
number of shifted sums in (1.10) is 2¢(@) which can be quite large.® In the crucial case” that
|Af(p)| is typically small for primes p < gk, our refinement of Holowinsky’s method saves nearly
two logarithmic powers of dk over the trivial bound < dk for the shifted sum in (1.10) of length
~ dk. Thus we save very little over the trivial bound if d is a small divisor of ¢, and it is not
immediately clear whether such savings are sufficient to produce a sufficient saving in the sum
over all d. One needs here an inequality of the shape

dk gk

log 1 € 1.12

dZ log(dk)T—= < Tog(gh)z— °81°8("0) (112)
q

which one can interpret as saying that the divisors of any squarefree integer are well distributed
in a certain sense. Indeed, if hypothetically g were to have “too many” large divisors, then the
LHS of (1.12) might be large enough to swamp the small logarithmic savings, while if ¢ were to
have “too many” small divisors, then the savings for each term on the LHS might be too small
to produce an overall savings. A convexity argument and a (weak form of the) prime number
theorem are sufficient to establish (1.12); see Lemma 3.3.13.

Finally, the identity relating 17(¢) to L(¢ x f x f, 3) that Soundararajan’s method takes as
input is given by Watson [70] when f and ¢ are newforms of the same (squarefree) level. In the
level aspect, the relevant Weyl periods are those for which f has large level and ¢ has fixed level,
so Watson’s formula does not apply. We extend Watson’s result in theorem 3.4.1 by computing

(Lemma 3.4.3) a p-adic integral arising in Ichino’s general formula [26], specifically

(9 69 09) (9 - Iy o) (9 S Iy)
d .
/QGPGLQ(QP) (py bp)  (for o) (o [ 9s (1.13)

where ¢, (resp. f,) is the newvector at p for the adelization of ¢ (resp. f) and (,) denotes a
PGL(2,Q,)-invariant Hermitian pairing on the appropriate representation space. The crucial
case for us is when p divides the squarefree level g of the newform f, so that ¢, lives in a spherical
representation of PGL2(Q,) and f, in a special representation. As we discuss in remark 15, our
evaluation of (1.13) leads to a precise formula relating [ 111293 to L(%, 1 X g X 1h3) for any

three newforms of squarefree level (and trivial central character); such an identity should be of

6This difficulty corresponds to the fact that T'g(g) may have many cusps.

“Soundarajan’s argument succeeds unless this is so.
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general use in future work that exploits the connection between periods and L-values.
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Chapter 2

Mass Equidistribution of Hilbert
Modular Eigenforms

2.1 Introduction

2.1.1 Statement of Main Result

Let F be a totally real number field and f a holomorphic Hilbert modular eigencuspform on
PGL; /F of weight k = (k1, ..., kpr.q)) and full level. The mass |f|* descends to a finite measure
on the Hilbert modular variety; our aim in this chapter is to prove that the measures so obtained
equidistribute with respect to the uniform measure as the weight k of f tends to co. Motivation
for this problem, as discussed in §1, comes from its connection to quantum chaos by analogy
with the gquantum unique ergodicity conjecture of Rudnick and Sarnak [52] as well as from its
connection to central problems in the analytic theory of L-functions, specifically those such as
the subconvexity problem that concern the rate of growth of central L-values. Our result and
its method of proof directly generalize recent work of Holowinsky and Soundararajan [25] in the
case F = Q, but the generalization is not immediate.

To state our principal result, let A be the adele ring of F and K a maximal compact subgroup
of the group PGLy(A). The space Y = PGLy(F)\ PGL2(A)/K is a disjoint union (indexed by
a quotient of the narrow class group of F) of finite-volume non-compact complex manifolds of
dimension [F : Q]. Let u be the quotient measure on Y induced by a fixed Haar measure on

PGLy(A)/K.

Theorem 2.1.1. Let f: PGL2(A) — C traverse a sequence of nondihedral holomorphic eigen-
cuspforms of weight (ky,. .., k.q)) as above, so that |f|1? dp traverses a sequence of measures on

Y. Fizx a compactly supported function ¢ € C.(Y). Then

[ ol du | [ by
SIf1Pdp [ du

as max(ki, ..., kgq)) — oo. (2.1)
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In words, the measures |f|? du equidistribute as any one of the weight components k; tend to
0o. We could normalize dy and | f|? du to be probability measures, in which case theorem 2.1.1
asserts that |f|? du converges weakly to du. Theorem 2.1.1 is false for certain® dihedral forms
f that vanish identically on half of the connected components of Y; in that case, the analogous
assertion that |f|* equidistributes as max(ki,...,k.q]) — oo on the union of the remaining
connected components of Y remains true, but to simplify the exposition we shall consider only
nondihedral forms in this work.

The case F = Q of theorem 2.1.1 is the celebrated theorem of Holowinsky-Soundararajan
[25], who established a quantitative rate of convergence in the limit (2.1) for a “spanning set”
of functions ¢ (see §2.3). Marshall [43] proved a generalization of their result to cohomological
forms over general number fields F that satisfy the Ramanujan conjecture, under the mild tech-
nical assumptions that F have narrow class number one and that the weights k; (or the analogous
archimedean parameters for fields F with complex places) all tend to infinity together with suffi-
cient uniformity, precisely that min(ky, ..., k.q)) — oo with min(ky, ..., kr.q)) > (k1 - krg)”
for some fixed 17 > 0. Since cohomological forms over totally real and imaginary quadratic num-
ber fields are known to satisfy the Ramanujan conjectures, his results are unconditional in many
cases and overlap? with ours when F is totally real of narrow class number one and the weights
grow uniformly in the sense just described. The essential difference between our approaches is
explained in remark 4.

An important ingredient in Holowinsky’s contribution to proof of theorem 2.1.1 when F = Q
is his bound

S A +1) < r(Dzlog(x)* [ ] <1 + W) (2.2)

n<x p<zx
for any multiplicative function A : N — R satisfying A(n) < 7,(n) for some positive integer
m and any “shift” [ satisfying 0 # |I| < x (see §2.3.1). A generalization of (2.2) to number fields

features in Marshall’s work mentioned above. We independently generalize (2.2) to number fields

'those induced from idele class characters on unramified totally imaginary quadratic exten-

sions of F; see §2.2.8.1

2We proved a slightly weaker form of theorem 2.1.1 in September 2009 and learned soon
thereafter from Sarnak’s lecture notes [54] that the overlapping results just described had been
obtained earlier that year in the 2009/2010 Princeton PhD thesis of his student S. Marshall [43].

We hope that our own arguments differ sufficiently to be of interest.
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that are totally real, although this restriction is not essential. The bounds that we obtain are
stronger than those obtained by Holowinsky and Marshall in that we have removed the factor
7(1) appearing on the RHS of (2.2) and its generalizations (see theorem 2.4.8 and theorem 2.6.2).
Although doing so is not necessary for our present purposes, this refinement has applications to

the study of the distribution of mass of holomorphic forms of large level [47].

2.1.2 Plan for the Chapter

In §2.2 we introduce notation that will allow us to speak meaningfully about automorphic forms
over totally real fields. In §2.3 we review the work of Holowinsky and Soundararajan over F = Q
and reduce the proof of our main result theorem 2.1.1 to that of a generalization (theorem 2.3.1)
of Holowinsky’s bound (1.5). The heart of our work is §2.4, in which we prove theorem 2.3.1

assuming some independent technical results that we relegate to §2.5, §2.6, §2.7 and §2.8.

2.1.3 Acknowledgements

We thank Dinakar Ramakrishnan for suggesting this problem and for his very helpful feedback
and comments on earlier drafts of this chapter. We thank Fokko van de Bult for a conversation
that led to a strengthening and simplification of the proof of Lemma 2.8.1. We thank Roman
Holowinsky, Philippe Michel, Peter Sarnak, and K. Soundararajan for their encouragement. We

thank the referee for the careful reading and comments that have helped improve our exposition.

2.2 Preliminaries

2.2.1 Number Fields

Let F be a totally real number field, A its adele ring, Ay C A the subring of finite adeles, Ir the
group of fractional ideals in F, Foo = F ®g R, 0 # ep € Hom(A/F, S') the standard nontrivial
additive character (i.e., normalized so that its restriction ep_ t0 Foo = Foo X {0} C Foo x Ay = A
is given by ep_ (z) = 2™ Tr(®)), I, the connected component of the identity in F%,, o the ring

of integers in F, 6* = [] o

v<oo 0y < A} the maximal compact subgroup of the finite ideles, and

0} = 0" NFL,, the group of totally positive units of o, which is free abelian of rank [F:Q]—1.
Let Cp = F*\A* denote the idele class group of F and C} < CF the (compact) kernel of the
adelic absolute value.

Let diva € Ip denote the fractional ideal generated by an idele & € A* and N(a) the
(absolute) norm of a fractional ideal a. Let d be the different of F, so that 2! is the dual of
o with respect to the bilinear form F x F 5 (z,y) — ep(zy) and Ay = N(9) is the discriminant

of . Let h(IF) be the (finite) narrow class number of I and 31,...,3,(r) a set of representatives
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for the group of narrow ideal classes. Choose finite ideles dp, 21, 22, ..., 2[r.q] € A’J'Z such that
divdr =0 and divz; = 3; for j = 1,..., h(FF). Then we have natural identifications

A =Ry, x 2715%), FA\A* /6 = Ul ((IE";O+/01) x z;l) . (2.3)

Jj=1

We let p denote a typical prime ideal of 0 and v a typical place of F.

2.2.2 Asymptotic Notation

We use the asymptotic notation <, =, O() in the strong sense that certain inequalities should
hold for all values of the parameters under consideration and not merely eventually with respect
to some limit. For instance, we write f(z,y,2) <z, 9(z,y,2) to indicate that there exists a
positive real C(x,y), possibly depending upon z and y but not upon z, such that |f(z,y,z)| <
C(z,y)|g(z,y, )| for all z,y, and z under consideration; here C(z,y) is called an implied con-
stant. We write f(z,y, 2) = Oy 4(9(2,y, 2)) synonymously for f(z,y, z) <z, 9(z,y, z) and write
flz,y,2) Xay 9(x,y, z) synonymously for f(z,y, 2) <y 9(x,y, 2) Kz, f(2,y,2). On the other
hand, the notation f(x) = o(g(z)) only makes sense in the context of a limit, and we give it the
standard meaning f(z)/g(x) — 0.

We regard the number field F as fixed, so that any implied constants may depend on it
without mention. We similarly regard the choice of narrow ideal class representatives 31, ..., 3 ()
as fixed. We let € € (0,0.01) denote a sufficiently small parameter and A > 100 a sufficiently
large parameter, which we allow to assume finitely many distinct values throughout our analysis.

We allow our implied constants to depend on € and A without mention.

2.2.3 Real Embeddings

Set d = [F : Q] for now. An ordering on the real embeddings coq,...,004 of F determines
a linear inclusion F < R? (the Minkowski embedding), which we fix. For x € R? write z;
for its ith component, so that z; = 2> when € F. For z,y € R? and a € R‘io we define

max(z,y), min(z,y), |r| € R? and 2* € R by

max(m7 y) = (ma’X(mlv yl); v 7max(;vd, yd))a
min(x, y) = (min(xlv yl)a s 7min(xd7 yd))a
|lz| = (|1l - - - |zal),

a o aq
¥ =zt
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These definitions apply in particular when z,y € F < R%. We write simply

so that #! = z1---x4 for x € R?. We extend the Gamma function multiplicatively to T' :
(C — Z<p)? — C by the formula T'(z) = I'(21) - T'\(2q) for z € (C — Z<)? As an example of

our notation, for k = (ki,...,kq) € (2Z>1)? we have

(4r1)k—1 (4r)kr—1 . (47r)ka—1

Tk—1) T(i—1) T(ke—1)

We extend the relations R € {<,<,>, >} componentwise to partial orders on RY, writing = Ry
to denote that x; Ry; for all ¢ € {1,...,d}; in particular, x > O signifies that z; > 0 for all i,

i.e., that x is totally positive.

2.2.4 Groups

Let G = GL(2)/Q with the usual subgroups

B={("} N={('D} A={C.} Z={(C.)}
and the accompanying notation
n(z) = (7)€ N(A), aly)=(",)€ AA)

for v € A and y € A*. Put X = Z(A)G(F)\G(A).
Let Ko, = SO(2)"@ be the standard maximal compact (connected) subgroup of G(F), let

Kan= [ {(¢}) € GEF,) :a,d €0, b0 c€0,}),
<0
and let K = K. X Kgay,. Then K is the conjugate by a(l x dﬂ?l) of the standard maximal
compact subgroup of G(A). Our choice of Kg, follows Shimura [62] and is convenient because
the restriction to G(F) of a right-Kap-invariant automorphic form on G(A) has a Fourier
expansion indexed by the ring of integers o rather than by the inverse different 0~1.

By the Iwasawa decompositon G(A) = N(A)A(A)K, we may define a function on G(A) by
prescribing the values it takes on elements of the form g = n(z)a(y)kz with z € A, y € A*,
k € K, and z € Z(A), provided that these values do not depend upon the choice of z,y, k, z in
expressing g = n(z)a(y)kz.
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2.2.5 Measures

We normalize Haar measures on the locally compact groups A, A*, and K by requiring that
vol(A/F) = vol((1, ) x 6*) = vol(K) = 1.

We give A/F and Cp = A*/F* the quotient measures defined with respect to the counting
measures on the discrete subgroups F, F*; more generally we give discrete groups such as
N(F), B(F), A(F), and G(F) the counting measure and normalize accordingly the Haar mea-

sures on quotients thereof. We normalize the Haar measure on Z(A)\G(A) by requiring that

X

/ o= | ] st@awmdeLar (2.0
Z(A)B(Q)G(A) zE€F\A JyeF \A* JEEK yla

for all compactly supported continuous functions ¢ on Z(A)B(Q)\G(A). This choice defines a

quotient measure p on X = Z(A)G(F)\G(A). Finally, we choose a Haar measure on C{ so that

the corresponding quotient measure on Cy/Cy =2 R? is the standard Haar measure d*t = t=1dt.

2.2.6 Characters

We introduce some notation related to the Fourier transform on the idele class group Cp =
F*\A*, and in particular its “unramified” quotient Cr/0*.

Let X(H) denote the group of (quasi-)characters on a topological abelian group H, thus
X(H) is the group of continuous homomorphisms x : H — C*; a character having image in the
circle group S will be called a unitary character. For a quotient group H” = H/H' with H’
closed in H, identify X(H") with the subgroup of X(H) consisting of those characters having
trivial restriction to H'.

Let the group X(Cr) of idele class characters on F carry the structure of a complex manifold
whose connected components are the cosets of the subgroup X(Cr/Cg) = {|.|* : s € C} on
which the complex structure is given by s; here |.| = |.|a is the adelic absolute value Cy >
(#y)o = [I|7o]o € R with ||, the standard absolute value on the completion F, of F, so that
multiplication by z, scales the Haar measure on F, by |z,],.

Since C} is compact, for each x € X(Cr) we have |x| = |.|? for some o € R, which we call the
real part of x and denote by o = Re(x). Let X(CF)(c) denote the set of idele class characters
having real part c.

Let

X(Cr)[2] == {xo0 € X(Cr) : x§ = 1}

denote the group of quadratic idele class characters. This is not to be confused with the set
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X(Cr)(2) of idele class characters x having real part Re(x) = 2.
Let xoo € X(F%,) denote the restriction of an idele class character x € X(Cy) to Fi . Then

Xoo 18 of the form

[F:Q)
yer [ sen(u)=lyl™ ify=(n,... ypq) € RED) =Fr (2.5)
i=1
for some e; € {0,1} and r; € C; the character x is unitary if and only if each r; € R. For a place
v of F, let x, be the restriction of x to F} < A*; in particular, xoo, = [y; — sgn(y;)% |y;|"7] is
the restriction of s as above to the jth factor of (R[F:@)*,

The group X(Cr/0*) of unramified idele class characters x is a subgroup of the group X(Cf) of
all idele class characters; here and elsewhere unramified means “unramified at all finite places.”
Set X(Cr/6*)(c) :== X(Cf/6*)NX(Cr)(c) for any ¢ € R and X(Cr/6*)[2] := X(Cr/0*)NX(CF)[2].

Let

& X(Cg/0%) = PH(C)

be the (completed) Dedekind zeta function, defined for unramified idele class characters of
real part Re(x) > 1 by the Euler product & (x) = [[, (v(x») and in general by meromorphic
continuation, where (,(v) = (1 — xp(w@y)) " for @, a generator of p C Fy and (oo, (Xoo,) =
Tr(ir; +&;) if Xoo is given by (2.5); here Tr(s) = 77%/2T'(s/2). For s € C let &(s) == & (].|*),
which agrees with the usual definition. Hecke proved that &p is holomorphic away from its simple
pole at y = |.| and satisfies a functional equation relating its values at x and |.|x 1.

Let U € C°(Cr/6*) be a test function. For each character x € X(Cy/0*) let ¥"(x) be the

Fourier-Mellin transform of ¥ at x normalized so that the inversion formula

_ A ax
v = [ ) o (2.6

holds, where fx Ce/5)(c) denotes the contour integral over unramified idele class characters y

having real part ¢ > 1 taken in the usual vertical sense, precisely

dx ds
V)W) o = / W Oxol- )Xo W)yl 5
/3€(CF/6*)(C) 2mi Z 0 0 AG

X(Cg/5%)(0)
X0€ X (Crrety

where f(c) denotes the vertical contour integral taken over Re(s) = ¢ from ¢ —ioco to ¢+ ioo, and
as representatives for the quotient X(Cr/0*)/X(Cr/Cg) one may take the image of the discrete

group X(C¢/6*) under pullback by a section of the inclusion C} < Cy. By our normalization
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of measures (see §2.2.5), the forward transform is given explicitly by

U (x) = ml(lqé)/a\lf(y)xl(y) d*y. (2.7)

The analytic conductor [32] of an unramified idele class character x € X(Cg/6*) having

archimedean component (2.5) is defined to be

[F:Q]
Co) = [T 6+ (2:8)
i=1
the number 3 is unimportant and present only so that log C(x) is never too small. Repeated
“partial integration” shows that W\ (y) <y a C(x)~# for any test function ¥ € C(Cy/6*)
and any positive integer A, uniformly for Re() in any bounded set. Concretely, we have natural
short exact sequences

1 —Fi /oh — Cr/o* — Clf — 1,

and

1
1= FL Jo} = Fi, Joy T2 Ry — 1,

where Clj = Cy/(F% . x 6*) is the (finite) narrow class group of F and FL | is the subgroup

{(z;) : [Tzs = 1} of F_ . Thus Cr/0* is an extension of a finite group by an extension of R* by

a compact torus, so the assertion U (y) <y, 4 C(x)~* reduces to the familiar decay properties

of the Fourier transform of a test function on a finite product of Euclidean lines and circles.

2.2.7 Fourier Expansions

Suppose that ¢ : X — C is continuous and right- K-invariant. By the Iwasawa decomposition, ¢
is determined by the values ¢(n(z)a(y)) for x € A,y € A*. If ¢ is assumed merely to be right-
Kgp-invariant but transforms under a unitary character of K., then |¢|? is still determined by

the values ¢(n(x)a(y)). In either case, the left- B(IF)-invariance of ¢ implies a Fourier expansion

¢(n(z)a(y)) = ¢o(y) + Y ry(ny)es(nz) (2.9)
nelf*
for some functions ¢¢ on Cr/6* = F*\A*/6* and kg on A*/0* (see [T1]).
We say that the Fourier expansion (2.9) of ¢ is factorizable if for each y x z € F}_ x A} = A7

we have
Ag(div z)

N(div 2)1/2’ (2.10)

Ko (Y X 2) = Kgo00(Y)

where Ay : Ir — C is a weakly multiplicative function supported on the monoid of integral ideals
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and Kg oo (y) = HEF:(ID] Kg,00; (y5) for some functions kg o, : R* — C.

2.2.8 Automorphic Forms

We shall consider various kinds of automorphic forms throughout this chapter. In this section

we give them convenient names and state their relevant properties.

2.2.8.1 Holomorphic eigencuspforms

By a holomorphic eigencuspform f : X — C of weight k = (ki,...,kjp.q)) (here and always
each k; is a positive even integer, for simplicity) we mean an arithmetically normalized cuspidal
holomorphic Hilbert modular form of weight &, full level, and trivial central character, that is
furthermore an eigenfunction of the algebra of Hecke operators. Precise definitions in both the
classical and adelic languages appear in Shimura’s paper [62]; for our purposes, it is necessary
to know only that f is right Kg,-invariant, transforms under a (specific) unitary character of

K, and has a factorizable Fourier expansion (2.9) with fo =0 and

yki/2e=2mv  for y > 0,
Koo, (Y) = (2.11)
0 fory <0

for each infinite place co; of F. The “Ramanujan bound” for f [2] asserts® that |Af(a)| < 7(a) for
each integral ideal a, where 7 is the divisor function (multiplicative, p* + k + 1); this improves
an earlier result of Brylinski-Labesse, which asserts that [A;(p)| < 2 for a full density set of
primes p.

To f and an unramified idele class character x € X(Cg/6*) of sufficiently large real part we

associate the finite part of the adjoint L-function
L(ad f,x) = [ [ Lo(ad £, x)
p

and its completion A(ad f, x) = Loo(ad f, x)L(ad f, x) =[], Lv(ad f, x), where the local factors
are as in [70, §3.1.1]. It is known [61, 13] that x — L(ad f, x) continues meromorphically to a
function on X(CFf/0*) whose only possible poles are simple and at x = xol.| for xo € X(Cr/6*)[2]
a quadratic character. Call f nondihedral if L(ad f,-) : X(Cg/6*) — PL(C) is entire; this

is known to be the case precisely when f is not induced from an idele class character of a

3the parity conditions on the weight of f are satisfied because f has trivial central character,

hence the k; are all even
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quadratic extension of F [13, 39]. Note that unlike when F = Q or A(F) = 1, in general (e.g.,
for F = Q(v/3)) there may exist dihedral cusp forms of full level and trivial central character,

which we shall exclude from our analysis.

2.2.8.2 Maass eigencuspforms

By a Maass eigencuspform ¢ : X — C of Laplace eigenvalue (% +ri.. i + Tﬁb‘:@]) € R[fg@]
and parity (e1,...,€rq) € {0, 1}l we mean an arithmetically normalized Hilbert-Maass cusp
form on X of given Laplace eigenvalues and parity, full level and trivial central character, that
is furthermore an eigenfunction of the algebra of Hecke operators. For our purposes this means

that ¢ is right- K-invariant and has a factorizable Fourier expansion (2.9) with ¢y = 0 and

Koo, () = 2y 2 K, (27|y]) sgn(y) (2.12)

for each infinite place oo; and all y € R*; here Kj,; is the modified Bessel function of the second
kind. The trivial “Hecke bound” asserts that A4(a) < 7(a)N(a)!/2. The “Rankin-Selberg

bound,” also known as the “Ramanujan bound on average,” asserts that

> Pe@)f <4 (213)
N(a)<z
and follows as in [29, §8.2] from the analytic properties of the Rankin-Selberg L-series attached
to ¢ x ¢ [33].

2.2.8.3 Eisenstein series

Let x € X(Cr/6*) be an unramified idele class character. Writing y(g) = y for g = n(x)a(y)kz,
the map B(F)\G(A) 3 g — x(y(g)) is well-defined. The Eisenstein series

E(x.9)= Y. xw(9) (2.14)

YEBIENG(F)

converges normally in g and uniformly in y for Re(x) > 1+ 6 > 0, and continues meromor-

phically to the union of half-planes on which Re(x) > %, where x — E(x,-) is holomorphic
with the exception of simple poles at x = |.|xo of locally constant residue proportional to
g — xo(det(g)) for each unramified quadratic idele class character xo € X(Cr/06*)[2] (see [14]).
The functions E(x, ") : g — E(x,g) descend to X = Z(A)G(F)\G(A) and are right- K-invariant
by construction.

The scaled Eisenstein series ¢ = Ag'x(dr) 2 (X?)E(x,-) admits a factorizable Fourier
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expansion (2.9) with

do(y) = A x(dr) 26 ()X (Y) + A & 031X W)yl (2.15)

)\ —1/2 (leZ)
B (I 1=2/2)
Koy X z) = H(xw”z)w(y)W

as in §2.2.7, where for x € X(Cy/6*) with y. given by (2.5), we set

b () = 2ly"? Ky, 2yl sgn(y)™, A (p") = Zx(v)ix’l(p)’“’i; (2.16)

J

for a convenient tabulation of such Fourier expansions of Eisenstein series see [3].
If x|.|~*/% is a unitary character (equivalently, Re(x) = 1, i.e., x € X(Cy/6%)(3)), call E(x, g)

)
a unitary Eisenstein series; in that case [\, -1/2(a)] < 7(a).

2.2.8.4 Incomplete Eisenstein series

To a test function ¥ € C°(Cr/6*) attach the incomplete Fisenstein series E(U,-): X — C by

the formula

E(W,g9)= > Uy(yg) (2.17)
YEBIF)\G(F)
with y(vg) as in §2.2.8.3. Write ¢ = E(¥,-). We have U"(].|) ress—1 E(\ %, w(@)/p(1) (see
§2.3.3), so by shifting the contour in the integral representation E (¥, fx (Co/5°)(2) U™ (x)E(x, ) %

to the union of lines Re(x) = % (see [14] and [29, §7.3]), we obtain

E(V,g) = o) + Z cw(Xo)Xo(det g)

10 €X(Cr/6%)[2] (2.18)

dx
+ / W 0B() 3
X(Cr/6%)(1/2) m

for some constants cg(xo) = fx )(x0 o det) whose precise values are not important

for our purposes. Taking the Fourier expansions of both sides gives

Po(y) = —= + > cw (x0)xo(y) + Os(ly['/?), (2.19)
1#x0€X(Cr/6%)[2]

A2 A(divz) dx

K X z) = — Ky o —_—a = 2.20
8y 2) /3€<cy/a*)<o> &) ()2 Y N (div ) 12 2 (2.20)
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2.2.9 Masses

Recall the measure p defined on the space X = Z(A)G(F)\G(A) in §2.2.5. For ¢ € L' (X, 1)
let p(¢) = [y ¢dp. To our varying nondihedral holomorphic eigencuspform f we associate the
finite measure duy = |f|? du and write accordingly pur(¢) = fx ®|f|? du. In particular, writing
1 for the constant function on X, we see that 1(1) is the volume of X and f¢(1) the mass of f,
i.e., its squared norm in L?(X, ). With this notation, the conclusion of theorem 2.1.1 is that

for any compactly supported, continuous, right- K-invariant function ¢ on X, we have

ni(9) . w9)

4) —_
pr(1)  p(1)
as any of the weight components of f tend to oco. It suffices to show this for ¢ a Maass
eigencuspform or incomplete Eisenstein series as in §2.2.8.2 and §2.2.8.4.

The special value L(ad f,1) enters our analysis through the Rankin-type formula

(k)

4772 IF:Q]
c1(F)(4m1)k—1 S

L(adf’ 1)7 Cl(]F) = ZAE/Q

np(1) = (2.21)
We sketch the standard calculation. Recall the measure normalization (2.4) and the choice of
compact subgroup K (§2.2.4) on which we base our definition (§2.2.8.3) of E(s,-). For Re(s) > 1
we find by unfolding that

pi(E(s,-) = y(9)lalfI*(9) dg

/Z(A)B (F\G(A)

[ e deay
cz€F\A JyecF*\A*

[/ Wt hwPay

v yeQy

€r(s) g
- A(adﬁs)@p(Zs) H 9—ki—1

i=1

by local calculations as conveniently tabulated in [70, §3.2.1]. Since the Fourier expansion (2.15)
implies

ress—y B(s,-) = A];?)/Qresgfﬁi(?)@)

and by definition [70, §3.1.1]
[F:Q]
ke _IF (k)
Loo(ad f,1) H 27 = (4r?) U

=1

we obtain the claimed formula (2.21).
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2.3 Brief Review of Holowinsky-Soundararajan

In this section we summarize the Holowinsky-Soundararajan [25] proof of theorem 2.1.1 when
F = Q and indicate which of their arguments require generalization when F is a general totally

real number field. Their proof combines
(1) the independent arguments of Holowinsky [24], and
(2) the independent arguments of Soundararajan [66],
(3) the joint Holowinsky-Soundararajan synthesis of (1) and (2).

As we shall see, Soundararajan’s independent arguments and the Holowinsky-Soundararajan
synthesis generalize painlessly, so the essential difficulty is to generalize Holowinsky’s arguments.
In this section, f is a holomorphic eigencuspform of weight & = (K1, ..., k.q)). Recall from §2.2.3
that k' := ki ... kg, thus when F = Q we have k = (k1) and k' = ;.

2.3.1 Holowinsky’s Independent Arguments

We begin by simultaneously recalling Holowinsky’s main result [24, Cor 3] and stating our
generalization thereof. Define for each holomorphic eigencuspform f and each real number

r > 2 the quantities

o) = S (1 20, 0.22)

~ e AL UG
_ P L(a‘dfm‘
Byle) = L(ad f,1) Z /(1/2) C(xol-[*)° sl (2.23)

X0€X(Cr/67)[2]

Here C(xo|.]*) < || since xq is quadratic.

Theorem 2.3.1. Let f be a nondihedral holomorphic eigencuspform of weight k = (k1, ..., kp.q))-

If ¢ is a Maass eigencuspform, then

Mf(¢) Lo log(kl)st(kl)l/z.

pr(1)

If ¢ is an incomplete Fisenstein series, then

(¢

pr(o)  p(e)
(1)

(1)

=

<o, log(kM)* My (k*)2(1 + Ry (K")).

=

We prove theorem 2.3.1 in §2.4 by combining the independent results of §2.5, §2.8 and §2.6;
doing so is our main task in this work. Holowinsky [24, Cor 3] established the case F = Q of

theorem 2.3.1, in which the “nondihedral” hypothesis is vacuously satisfied. We briefly recall
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his argument. Take F = Q and denote by k the weight of f. Suppose for simplicity that ¢ is a

Maass eigencuspform. Holowinsky defines for a fixed test function h € C°(R?) the integral

_ 9 . dxdy
Si(Y) = / e / Ll i) T

where ¢(z) = 3, ¢i(z) with ¢y(z + &) = e?™€¢;(2) for £ € R, and establishes [24, Theorem 1]

for any Y > 1 and € > 0 the asymptotic formula

Jolf1? —ey-! Z Si(Y) —|—O¢7€(Y_1/2) (2.24)

5 =
f ‘f| o<|l|<y1+te

where ¢ is an explicit nonzero constant depending only upon the test function h; he shows

moreover that

a(Y 1 e §
) g, BTN L5 Mmmmm(‘”% )>+(Y:) )

neN
m:=n+leN

He then proves [24, Theorem 2] (in somewhat greater generality) that for each € € (0, 1), each
x> 1, and each | € Z for which 0 # |I| < z, we have

v 2 (p)]
> elmrs )] < (D ] (1 n ;) . (2.26)

n<w p<X
From this he deduces the cuspidal case of theorem 2.3.1 for F = Q. We generalize and refine
(2.24), (2.25) and (2.26) in §2.5, §2.8 and §2.6, respectively; among other refinements, we show
that (a generalization to totally real number fields of) the bound (2.26) holds without the
factor 7(I). The main complication is the manner in which these ingredients fit together to
yield theorem 2.3.1 when F # Q; this is the crux of our argument, which we present in §2.4.
Specifically, recall that for a totally real number field F of degree d = [F : Q], our naive
generalization of (2.24) and (2.25) leaves us with the task of showing that a sum of roughly
xlog(x)?! terms is small relative to o (with = a bit larger than k'), which seems beyond the
limits of any method that does not exploit cancellation in the sum of Af(m)As(n). By discarding
a large number of these terms trivially through a refinement of (2.25), we reduce to the more

tractable problem of showing that a sum of roughly zlog(x)¢ terms is small relative to .
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2.3.2 Soundararajan’s Independent Arguments

Let ¢ be a Maass eigencuspform, and suppose that F = Q. Watson’s formula [70, Theorem 3]

asserts that )
B A x fx[,3)

ps(9)
R VPR RE

(1)

where ¢(Q, ¢) = u(|¢|?)/8A(ad ¢,1) is a nonzero constant unimportant for our purposes and

(2.27)

A(---,s) is the completed L-function for L(---,s) with local factors as in [70, §3.1.1]. The
identity (2.27) with ¢(F, ¢) # 0 holds for totally real F by Ichino’s general triple product formula
[26] together with Watson’s calculations of the local zeta integrals of Harris-Kudla [19] at the
real places. When F = Q, Soundararajan [66, Ex 2] proves that

kl

Lipx fxf1)<ge Tog(k1) <"

(2.28)

His argument applies verbatim when F is totally real: it relies only upon the Ramanujan bound
for the local components of f and the Rankin-Selberg theory for ¢ x ¢, noting that the analytic

conductor of ¢ x f x fis <, (k')*. By Stirling’s formula as in the F = Q case, we obtain

[ ol log(k1)~1/2+
TP 5% " L(ad f.1)

(2.29)

Now let ¢ = E(x, -) be the unitary Eisenstein series associated as in §2.2.8.3 to an unramified
idele class character x € X(Cr/6*)(1) of real part 1, and suppose that F = Q. (Since Cq/Z* =
R%, we have x = |.|'/2+% for some t € R.) Soundararajan [66, p7] shows by the unfolding
method, Stirling’s formula and his weak subconvex bounds for L(ad f, x) [66, Ex 1], the last of

which makes use of the known Ramanujan bound for f, that

pr(9) o log(k1) e

and [66, p2
. (12)!/2C(:0*
|L(ad £, x)| <- B OEE (2.31)

By the modularity of L(ad f,x) as the L-function of an automorphic form on GL(3) [13], its
Rankin-Selberg theory, and the lower bound

L(ad f, 1) > log(k*) ! (2.32)

due to Hoffstein-Lockhart-Goldfeld-Hoffstein-Lieman [22] (which is available for general F, see
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[3, §2.9]), Soundararajan deduces [25, Lem 1] in his joint paper with Holowinsky that

log(k)®

Ry (k') < Tog(F)L(ad f, 1)

< log(k')e. (2.33)

The same argument establishes (2.30), (2.31), (2.33) for general totally real number fields F.

2.3.3 The Holowinsky-Soundararajan Synthesis

In their joint work [25], Holowinsky and Soundararajan show [24, Lem 3] for F = Q that
My(f) < log(kY)'/6loglog(k*)*/2L(ad f,1)'/2, (2.34)

and their proof applies for general F. Subsituting the bound (2.34) into theorem 2.3.1 and
combining with Soundararajan’s estimate (2.29) yields for each Maass eigencuspform ¢ that

M < p,e Min <

(1)

1og(k1)71/2+5

L(ad f,1) Jog(K1)Y 12 Lad f, 1)””‘) : (2.35)

It follows as in [25, Proof of Thm 1] that 5 (¢)/us(1) <4 log(k*) /3042 = o(1), and the same

argument applies in the totally real case as soon as one has established theorem 2.3.1.
Holowinsky and Soundararajan show [25, p10] that Soundararajan’s bound (2.30) for unitary

Eisenstein series also applies to incomplete Eisenstein series via the Mellin inversion formula.

Specifically, they show for F = Q and ¢ = E(¥,-) that

1Og<k1)—1+5
L(ad f,1)

— <Lpe (2.36)
ol

~

Their argument generalizes to the totally real case by replacing the Mellin inversion on R*% =
Co/Z* with that on Cr/6*, as we now describe. Let U € C°(Cy/6*) and ¢ = E(¥,-). By the
Mellin formula (see §2.2.6)

dx
¢ = / VNX)E(X, ") 7=
X(Ce/5%)(2) 2mi

and the meromorphic nature of E(y,-) (see §2.2.8.3 or [14]), we have

pr(@) = > U (xo)rese—1 pp(E(xol %))
X0€EX(Cr/6*)[2]

(2.37)
o W (B
X(Cr/0%)(1/2)

dx
2mi’

where the interchanges here and those that follow are justified by absolute convergence owing
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to the rapid decay of f and ¥ and the moderate growth of E(x,-). By the unfolding method
as in §2.2.9, the residue ress—1 ps(E(xol.|,-)) coincides with res,—1 A(ad f, xo|.|*)&r(x0]-|*) up
to a nonzero scalar. Suppose now that f is nondihedral in the sense of §2.2.8.1, so that s —

A(ad f, xol-|?) is entire. Then since &g is holomorphic away from its pole at x = |.|, we see that

ress—1 tf(E(Xo0l-|%,-)) = 01if xo # 1. If xo = 1, then
WA (| ress=1 g (E(|]%, 7)) = pp (1) 8" (|.|) resey (||, ).

We have U"(].|)ress—1 E(|.|%,+) = n(¢)/u(1) because both sides are equal to the coefficient of
the constant function 1 in the spectral decomposition of ¢ € L?(X,pu) [14, §4]. Thus for f

nondihedral, we obtain

(¢)

(¢)

T (y) W %_ (2.38)

o I /
pr(l)  p(1) X(Cr/8%)(1/2)

Soundararajan’s bound (2.30) for unitary Fisenstein series shows that the right-hand side of

(2.38) is
C(x)* log(k*)~**
L(ad f,1)

log(kt)=1+e

" (x) Tedf1)

< / ldx| <4
X(Cx/6%)(1/2)

where in the final step we invoked the rapid decay of ¥” (see §2.2.6). Thus we obtain the
estimate (2.36) for nondihedral forms over a totally real field.
By combining Holowinsky’s theorem 2.3.1 with Soundararajan’s (2.33) and (2.36), Holowin-
sky and Soundararajan obtain, for F = Q and ¢ = E(¥,-), the bound
pp(9) _ pl(e)

PR um\ o mm(

1og(k1)71+5

L(ad f,1) Jlog(k*)/12 e L(ad f,1)1/4) : (2.39)

which is o(1) (or even < log(k')~2/15%¢) by examination (see [25, Proof of Thm 1]). The same

estimate follows in the totally real case as soon as one has established theorem 2.3.1.

2.4 The Key Arguments in Our Generalization

We saw in §2.3 that our main result theorem 2.1.1 follows from the generalization of Holowinsky’s
work asserted by theorem 2.3.1. We now describe the key arguments that reduce our proof of
theorem 2.3.1 to several technical results that we shall prove in the remaining sections of this
chapter; those results are independent of one another and do not depend upon any work in this
section, so there is no circularity in our discussion.

Recall that theorem 2.3.1 claims to bound fpif(¢)/pr(1) — pu(¢)/p(1), for f a nondihedral

holomorphic eigencuspform of weight k and ¢ either a Maass eigencuspform or an incomplete
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Eisenstein series, in terms of certain quantities M (k') and Ry(k') (2.22)-(2.23).

Definition 2.4.1. Fix a nonnegative test function h € CZ°(R?%) with Mellin transform
h"(s) = / h(y)y =" d*y
0

normalized so that A" (1) ress—; E(s,-) = 1. Recall from §2.2.1 that we have fixed representatives
3; = divz; for the narrow class group of F; here j € {1,...,h(F)} and 2; € A}. For each

unramified idele class character x € X(Cr/6*) and each x > 2, define the shifted sums

« R
Sy(z) = Z Z WSXOO(M,Z,%), (2.40)
J=1 leoi\s; J
0|1t | <t Te
where
A(37Mm) MGG n) Lo_(I,n,NG)z
b= Y MO AT L@ NG)

N(g_lm)l/Q N(z’—ln)l/Z N(a) ’

nezNF;, .
mi=n+l€3NFL |

and (here m :=n + 1 as always)

(47T1)k_1 ><y
L. (,nx)= TE-1) o R(2y") Ky 00 (1Y) f.00 (MY £.00 (nY) s (2.42)
If ¢ is a Maass eigencuspform of eigenvalue (3 +77,...,1 + rﬁF:Q]) and parity (e1,...,€rq]),

define analogously Sg(x), S¢.. (3,1,x) and Ip_ (I, n, ) by replacing xy oo and A, with k4 o and
Ay above; note then that S,_ (3,1, %) is the special case of Sy (3,!,x) obtained by taking xo
to be the (conceivably non-unitary) character [y — []sgn(y;)% |y;|"7] € X(F%,) as in (2.5).

Proposition 2.4.2. Let f be as in the statement of theorem 2.3.1 and let Y > 1. If ¢ is a

Maass eigencuspform, then

+ 04 (Y12,

pe(9) _ aF)  Su(Y)

ur(D) ~ L(ad [,1) (k- 1Y

If = E(¥,-) is an incomplete Eisenstein series (recall that f is not dihedral), then

(@) pe) _ e / UA) S (V) dy
w0 (D) LA £1) Jxicnsoo @UNEXEe) 2 (k- DY 2mi

1+ Rf(kl)
+ O¢>75 <Y1/2 .

The constant c1(F) is as in the formula (2.21).

Proof. See §2.5. The proof is a straightforward and naive generalization of Holowinsky’s argu-
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ments in the F = Q case. O]

Proposition 2.4.2 shows that theorem 2.3.1 follows from sufficiently strong bounds for the
shifted sums Sy (Y") for ¢ a Maass eigencuspform and S, (Y') for x € X(Cr/6%)(0) an unramified
unitary idele class character.

We bound the sums Sy(Y') and S, (Y) by bounding their summands Sy _(3,{,z) for each
narrow ideal class representative 3 = 3; (j € {1,...,F}), each nonzero shift | € 3 NF*, and each

character xoo € X(F%,); recall from Definition 2.4.1 that

S¢oc(37l7x) = Sxm(ﬁalvx) (243)

for a suitable character x € X(F%,). For this reason it suffices to bound S, __ (I, n, ) when xoo
is either unitary or of the form (2.5) for some Maass eigencuspform ¢, so that in particular each
r; € RUi(—3,3); we assume henceforth that this is the case.

The sums S, __ (3, {, ) are weighted by an integral I, __ (I, n, z), which we treat as follows. By
the Mellin formula h(y) = f(c) A (s)y® 42 with h"(s) = [~ h(y)y~*d*y and ¢ > 0, we may

factor I, (l,n,x) as a product of local integrals

F:a) o
I (lna) = /(C)hA(S)xs jl;[ljirj(zj,nj,s) - (2.44)

where
(47‘-)]%‘71 s—1 X
Ji’rj (lj7nj75) e Y Yy KJX,OO]' (l]y)ﬁjf,ooj (mjy)’(‘:f,ooj (n]y)d Y.
D(kj = 1) Jre
The “trivial” bound for .J;., obtained by applying the inequality |y, oo, (%) < 1 to the integrand

and evaluating the resulting gamma integral is

b for () \(52))

where s = o + it. However, (2.45) would not suffice for our purposes, as we shall explain after

|Ji7“j (ljvnjvs” <

(2.45)

proving the following refinement.

Lemma 2.4.3. Forir; € iRU(—3,3),1; #0,n; >0, mj =n;+1; >0, k; > 2, and s = o +it

with o > —%, we have

kjfl

I'(k; —1+0) m;n; min(m;, n;) 2
D(k; — 1) (4mmax(m;,n;))” \ max(m;, n;)

[ Jir; (1,5, 8)] < (2.46)

Proof. By the integral formula [16, 6.621.3] and the transformation formula [16, 9.131] in
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Gradshteyn-Ryzhik, we have explicitly

k=1
I'(k;j —1+s) m;n; min(m;,n;)\ °
i, (L, 8) = £ i
CHCR L(k; —1) (4rmax(mj,n;))° \ max(m;,n;)
F(k’J +s— % + iTj)F(kj + s — % - ’L"/’j) (247)

L(kj+s—1)T(k;+s)
R, <% —irj, & +ir; ; _min(mj,nj))
ki+s Im; — ]
where 5 F; is the Gauss hypergeometric function and the sign is given by [[sgn(l;)%. By the
technical lemmas proved in §2.8, the factors on the second and third lines of (2.47) are each
bounded in absolute value by 1, so the claim follows from the basic inequality |I'(k; — 1+ s)| <
I(k; —140). O

Corollary 2.4.4. Let Yoo € X(FZ,) be of the form (2.5) with each ir; € iRU (—3,3). Then

min(m,n x
I l gt | ——1 2~ mi 1, —— . 2.4
xoo (1,1, 7) L4 Vmin (max(m,n)) 1n< 7max(m,n)l) (248)

Proof. Substitute (2.46) into (2.44), taking ¢ € {0, A} and invoking the well known estimate
T(kj — 1+ 0)/T(k; — 1) <, k7 [72, Ch 7, Misc. Ex 44]. O

Remark 1. With more effort (e.g., by studying the asymptotics of the expression (2.47)) one can
show that if the components of the weight & increase in such a way that min(ki, ..., kr.q) >
(k*)% for some dy > 0, then (setting log(z) = (logz1,...,log zr.q)) for z € Fi , = (R} Q)

max(m,n)

+ 0, <(k1)50 <Irm>f(lnfn)1>l+>] |

It follows with some work that for ¢ a Maass eigencuspform and Y > 1, we have

E—1 k=1)1
I_(l,n,z) = Vminl l“xm <4 ‘long h (M)
7r n

h(F) -1
1y (9) —1/2 Ao(3; 1)
EOYNG gui L R Lo
H‘f 1) d’( ) k;1YL adf, Zl leoz\3 N(j;ll)l/Q
0|1t <Yt TE
Yo MGTmA G )
ne3;NF;, .

17"L::7l-‘,—lEgﬁ]F:o+
Z1n1
Y NG (A22) )

kE—1 1 m h( max(m,n)t
ooe (T [0

N(3)
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This refinement is not necessary for our purposes, so we omit the proof; the simpler upper bound
given by Corollary 2.4.4 suffices because we do not exploit cancellation in the shifted sums, and

has the advantage of being completely uniform in -

Corollary 2.4.5. Let xo € X(F%) satisfy the hypotheses of Corollary 2.4.4. Then the shifted
sums Sy (3,1,Y) are bounded up to a multiple depending only upon 3 and A by the quantity

> |M@M@M@%w<"m“m””)%lmm(l“Yﬂ){ (2.49)

i, max(m,n) " max(m,n

mi=n+l€3NFL |
Proof. Substitute Corollary 2.4.4 into Definition 2.4.1. O

Remark 2. When F = Q, Holowinsky applies what amounts to the trivial bound (2.45), which

gives something like (2.49) upon replacing

k-1

_ ) kj—1 )
(mmmmyf Mkmmmm»Q W?% VT (2.50)
j=1 2

()

He then bounds the factor on the RHS of (2.50) by 1. Now, bounding either of the factors in

max(m,n) B i max(m;,n;)

(2.50) is harmless when F = Q: if f has weight k, then in the sum (2.49) we typically have
m,n =< kY, so for |I| = O(1) both factors in (2.50) are typically < 1. On the other hand, when

d=[F:Q] > 1itis costly to apply such bounds prematurely: the sum (2.49) then has roughly

d—1 d—1»

xlog(x) nonnegligible terms with = k1Y, and this extra logarithmic factor “log(x)
turns out to be unaffordable in the application to mass equidistribution. One can show that
the savings obtained by treating nontrivially the factor on the RHS of (2.50) are negligible even
for d > 1. Thus the success of our method when F # Q depends crucially on the more careful
treatment afforded by Corollary 2.4.4. In fact, the key to our whole argument is that the factor

on the LHS of (2.50) is very small if any component of max(m,n) is not too large, as we quantify

in Lemma 2.4.7.

Definition 2.4.6. Given parameters T' = (11,...,Ty) € R[gzl@] and U € R>, let
Rru = {x eRFU . 21 <71 4 > T/U}

be the subregion of R[;FE)Q] bounded by the hyperbola {[[z; = [[T;} and the hyperplanes {z; =

T;/U}. For a multiplicative function A : Ir — C, an ideal 3 in F and an element [ € 3, let

A6 T,0) = > MG m)AG T )| (2.51)
m::nnejleg,
max(m,n)ER,U
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Lemma 2.4.7. Let x € X(F} ) satisfy the hypotheses of Corollary 2.4.4, let
d=[F:Q], T=(Ty,...,Ty) withT; = kY'Y X =T,...Ty=FkY,

and let U = exp(log(X)®). Suppose that 1 <Y < log(X)°W). Then for any ideal 3, any nonzero

shift l € 3 NF*, and any positive integer A, we have

S (L, Y) <5 a X4+ 27744y, (5,1,2701 T, 27 H). (2.52)

r=0
Proof. We work with the bound asserted by Corollary 2.4.5. Partition those m,n in (2.49) for
which max(m,n) > T/U according to the least integer 7 > 0 such that max(m,n)! < 2"X;
their contribution is bounded by the second term on the RHS of (2.52). It remains to consider

those m,n for which

max(m;,n;) < T; /U (2.53)

for some index ¢ € {1,...,d}. The elementary inequality 1 — 2 < exp(—=z) and the tautology

min(m,n) + |I| = max(m,n) show that

: b1 d
(mln(m,n)) 2 < oxp _ij—l 1]

max(m,n) = 2 max(m;,n,)

so the assumption (2.53) implies

k-1
min(m,n)\ % |L;|U
_— < — . .
(max(m,n)) =P ( 3y1/d (2:54)

Here we may and shall assume that the shift [ is balanced in the sense that |l;| =; |l;| for

all 4,5 € {1,...,F} since Sy__(nl,n,Y) = Sy_(I,n,Y) for any totally positive unit n € o%; in
particular, we may assume that there exists a positive number ¢, depending only upon the fixed
number field F and the fixed set of representatives {31,...,35() } for the narrow class group,
such that |I;| > ¢ for each i. Since Y < log(X)°™M by assumption, our choice U = exp(log(X)®)

is (more than) large enough that for each positive real A the inequality

cU
3yi/d > Alog(X)

holds eventually (i.e., for max(ky,...,kq) > 1), so by (2.54) we obtain

k—1

(mln(mn)))2 < XA (2.55)

max(m,n
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By the trivial “Hecke” bound As(a) < N(a)'/?*, the contribution to (2.49) of n satisfying
(2.53) is

’ X A
<xt Z |)‘f(571m))\f(571n)| min (1, n)l)

nese, max(m
mi=n+l€3NFL, |
A
, X
<X 4 > (mrn*)1/2+¢ min (17 1) (2.56)
e max(m,n)

m::n+l€3ﬁ]Ff;o+

for any A, A" > 0. Since [l|; > ¢, the number of n € 3NF} , for which n +1 € 3NF; , and
max(m,n)! < 27X (r > 0) is < (2"X)? Choosing A = 1 + 2¢ + d + 1, summing dyadically,
and taking A’ to be sufficiently large, we see that (2.56) is < 4~ X4 for any positive constant
A", as desired. O

(d—1)e

The volume of R is approximately X log(U)4~1 = X log(X) . Since the number of

41 we see that Lemma

nonnegligible terms appearing in S, __ (I, n,Y") is approximately X log(X)
2.4.7 allows us to discard the vast majority of those terms. We treat the remaining ~ X log(X)E/
terms by the following generalization of Holowinsky’s bound for shifted sums of multiplicative

functions [24, Thm 2].

Theorem 2.4.8. Let T € R[]ZF:IQ], U€Rsi, 3, Land A : Iy = C be as in Definition 2.4.6.
Suppose that | # 0 and that |A(a)| < 7(a) for all integral ideals a. Set X =T* and d = [F : Q.
Then

log(eU)?—1X 2|\
BT 0) e e T (14 58). 2.57)
N(p)<X

Here the product is taken over prime ideals of norm at most X.

Proof. See §2.6. O

Remark 3. Holowinsky [24, Thm 2] established a slightly weaker form of the case d = 1 of
theorem 2.4.8 by an application of the large sieve; in his inequality (2.2) an additional factor
of 7(1) appears on the RHS. We prove theorem 2.4.8 by adapting his approach, with the only
difficulty being that the regions Ry are shaped quite differently when d > 1.

If one is willing to sacrifice uniformity in the shift [, then alternate proofs of the corresponding
weakening of Holowinsky’s [24, Thm 2] and (probably) our theorem 2.4.8 can be obtained by
the general estimates due to Nair [45] and Nair-Tenenbaum [46] for sums ) A(|P(n)|) with P a
(primitive, possibly multivariate) polynomial (for example, P(n) = n(n+1)) and n traversing a
box; note that in all of the bounds asserted by Nair and Nair-Tenenbaum, the implied constants

depend in an unspecified manner upon the discriminant and degree of P. This seems insufficient
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in the application to QUE where the shift | must vary (particularly when ¢ is an incomplete
Eisenstein series, see [64]).

We refer to [47, Rmk 3.11] for a further discussion of variations on the d = 1 case of theorem
2.4.8 that may be derived from other works and particularly their applicability to QUE in the

level aspect.

Proof of theorem 2.3.1. Let Y > 1 be a parameter (to be chosen at the end of the proof) that
satisfies Y < log(k')?(). Preserve the hypotheses and notation d = [F : Q], T = Y/,
X =T' = k'Y and U = exp(log(X)?) from above. Lemma 2.4.7 and theorem 2.4.8 show that

Sx

oo

A A galog(2rel)d-tord X 2[As(p)]
Ln,Y) <ae X~A4+ Y 27rdd [ (1R ) @8
(I,n,Y) <y, + ZO log(2rdX)2—< N B + N(p) ( )
r p)<2"X

Taking A = 2 and using that

Z grd=rdAjge(2rely)d-1 H (1 + N?p)) <. log(X)(d=D=

r=0 X<N(p)<2"X

gives

X 2|A7(p)]
SXOO (l,n,Y) < W H (1 + NJEP) > )

N(p)<X

where ¢/ = de. Thus

k'YS/2te 2[As(p)l
S¢(Y) Lgpe W H <1 + N(]J)) , (2.59)
N(p)<k?

since the sum over ! in Definition 2.4.1 introduces the additional factor

1/2
Ao (a) 1
Z 1|\](¢;()1/|2 = Z |)‘¢(a)|2 Z N(b) <g yl/ote
0#aCo 0#aCo 0#bCo
N(a)<y?tte N(a)<Yy?*te N(b)<y?*te

by the Cauchy-Schwarz inequality and the Rankin-Selberg bound (2.13); similarly, using that
[Ax(a)] < 7(a) for a unitary character x € X(Cr/6*)(0), we find that

Sk 2/ (o)
50 < e T1 (12567 (260
N(p)<k?

where we emphasize that the implied constant does not depend upon x. By Proposition 2.4.2

and the definitions (2.22)—(2.23) of M;(z) and Ry(z), we deduce for ¢ a Maass eigencuspform
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that
1) Lge YV 10g(kY) My(KY) (2.61)
iy (1)

and for ¢ = E(¥,-) an incomplete Eisenstein series that

‘Ltf((b) _ M Y1/2+El kl E/M kl ‘IIA(||1/2X) ‘ d
0~y o VRGN [y | )
1 Jer(kl)
L4 R0

The integral in (2.62) converges by the rapid decay of ¥ (see §2.2.6). Choosing (as Holowinsky
does) Y = max(1, Ms(k')™1) < log(k*)°W in (2.61) and (2.62), we conclude the proof of
theorem 2.3.1. O

2.5 Reduction to Shifted Sums Weighted by an Integral

In this section we establish Proposition 2.4.2, which reduces our study of 115(¢) to that of the
shifted sums S4(Y) and S, (Y'); here and throughout this section ¥ > 1 is a (small) parameter,
[ is a nondihedral holomorphic eigencuspform of weight k = (ki,..., kp.q)), ¢ is a Maass
eigencuspform or incomplete Eisenstein series, and h € CZ°(R?% ) is a fixed test function with

Mellin transform h"(s) = [ h(y)y~* d*y normalized as in Definition 2.4.1 so that
R (1) ress—1 E(s,-) = 1. (2.63)
Let hy be the function y — h(Yy) and let

E(hy,):GA) 3 g~ Y hy(lylvg)))
~+EBF\G(F)

be the incomplete Eisenstein series attached by the recipe of §2.2.8.4 to the test function hy ol.| €
C(Cr/C) <> C(Cr/07).

Lemma 2.5.1. We have the approzimate formula

pp(@) _ pp(Elhy,-)¢)
(1) Ypp(1)

+ O¢(Y_1/2).
Proof. The starting point is the consequence

ww%¢m=wa+/ B () (B (s, )6) 2 (2.64)

(1/2) 2mi’

of Mellin inversion, Cauchy’s theorem and our normalization (2.63). We need a crude bound of
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the form

E(s,9)¢(9) <o |‘9|2[F:@]+‘E for Re(s) = %,g e G(A), (2.65)

where the precise exponent is not important. To establish this, recall first that if ¢ > 0 is chosen
small enough, then the Siegel set & consisting of those g = n(z)a(y)kz € G(A) for which |y| > ¢
satisfies G(A) = G(F)S. Since E(s,-)¢ is Z(A)-invariant and right K-invariant, it suffices to
establish (2.65) for g = n(x)a(y x 2 ") where z € A, y € F%_, withy! > cand j € {1,...,h(F)}.
For s = % + it the Fourier expansion of E(s,-), given in §2.2.8.3, shows that

Xit(3; ')
1/2 ﬂzt 00 ny it ]
|E(s,n(z)a(y x z; M < ( + HEFZ* 1+ 2it) N(Z iz’ (2.66)

where for simplicity we write Kt 0o = K| |it 0o and Ay := A||ie. The straightforward analysis of

[67, §3.6] applied to (r in place of (g shows that?

(L +[¢)*

142it) 7« ——— L0
O

and it is noted in [24, page 6] that the integral formula for K;; implies

Ku(y) 1+ ¢\ * 1+ ¢\ °
14+ — fi AcZ 0
FR(I n Qit) < ” + ” or any A € L>p, € > U,

thus (writing d = [F : Q], &’ = (d + 1)¢, and using that [nl|yl > 1)

Kit,oo(ny) it (5;1n)
&r(1+2it) N(3; 'n)1/2

1\1/2 2d+¢’ [n']®
< (y) (L + ]t

(max(1, [n[y)*)4

Take A = 2. We have

1|5

[n
2 (max(1, nfy)*)?

n€F*N3;

<(yhH~? (2.67)

because the LHS of (2.67) is invariant under multiplying y by an element of 0%, so we may assume
that y is balanced (y; < y; for all ¢, j) with each component bounded uniformly from below, in
which case (2.67) may be compared with a convergent integral. Thus |E(s,n(x)a(y x zj_l))| <
(y1)1/2 4 |24+ (y1)=3/2. Since ¢ satisfies® ¢(n(x)a(y x z; 1)) < (y*)~#, we obtain the crude

4We believe that the stronger bound with (1 4 |¢|)¢ replaced by log(1 + |t|) holds, but could

not quickly locate a reference.

°For a Maass eigencuspform, this is well known [34, Prop 10.7]; an incomplete Eisenstein

series vanishes off a compact subset of X.
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bound (2.65).
By the rapid decay of h"* and the identity h{(s) = Y*h"(s), we deduce from (2.65) that the

error term in (2.64) satisfies

ds

[ ensEs 05
(1/2)

— < YY20,(1).

The lemma follows upon dividing through by Yz /(1). O

Fix now a nice fundamental domain [F}_, /o%] for the quotient F}_, /0% with the property
that y € [F5, /o% ] implies y; < y; for all 4,5 € {1,...,[F: Q]}. Write the Fourier expansions of
¢ and f in the form

6=> ¢, f=_ fu (2.68)

LEF ner*
where ¢; : G(A) — C satisfies ¢;(n(z)g) = ep(lx)@;(g) for all z € A and f,, satisfies the analogous

condition.
Lemma 2.5.2. We have ps(E(hy,-)¢) = So + S1 + Sz, where

h(F)

hy (y* N(34 _ d*
s=> [ P S8 [l < a2
= Juelrz, /on) (35) sEF\A y
for ¢ a Maass eigencuspform,
_ D(k—-1) .
S = W%(Y),
for ¢ = E(V,-) an incomplete Fisenstein series,
L(k—1) A ([2x) dx
S1= Griy T SO 7 ) a
(471) x(Cx/6%)(0) §F([-1X?)x(dr) i
and
h(F)
|Sal < pp(E(hy,) Y sup > ailaly x 27 )l (2.70)
j=1 yE[FL 4 /0%] =y

hy (y N (35))70 |1 >y e

The shifted sums S4(Y) and Sy (Y) are as in Definition 2.4.1.

Proof. By the formula (2.4) for integration over Z(A)B(F)\G(A), we see that

p(E(hy,)o)
h(F)

_ / hy (y* N(35))
yeFr, , /o% NG;)

xy (2.71)

[ @lPm@aty ) e
z€F\A

yt

=1
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We now integrate in y over the fundamental domain [F}_, /0% ] and substitute for ¢ its Fourier
series »_ ¢;. Note that ¢;(n(z)a(y x z;l)) = 0 unless [ € 3;. The contribution to (2.71) of
the constant term ¢g is precisely Sp. Let So denote the contribution of those ¢; for which
|I*] > Y7 so that the bound (2.70) follows from the formula for pu¢(E(hy,-)) given by (2.71)
with ¢ = 1. Let S; denote the remaining contribution of those [ € 3; for which 0 # |I*| < Y!*=.
Substituting the Fourier series f = Y f, (in which f,(y x z;l) = 0 unless n € 3, NF; ) and

integrating in x, we obtain

h(F)
hy (y' N(;)) _1yy @Y
S = ————L (D1 fm [n : . 2.72
1 z(;z) /yemw K Oty x 570 5 (272)

t<ylte
nef’ |
m:=n+l€]F;O+

If n € 0%, then (¢ fom fon)(aly X z;l)) = (¢1fmfn)(alny x z;l)) (see §2.2.7), so we may break

the sum into orbits for (I,n) under the diagonal action of 0% and unfold the integral over y to

all of Foy:

h(F)

1 ) - X
S = Z ZZ W(@fmfn)(a(y X z;l)) dyly. (2.73)

J=1 (1m)co \(F* ;)2 TV ot
t<yltte
nE]F;:Jr
m::n-‘rlEFZoJr

Take as representatives for 0%\ (F*Nj;)? the pairs (I, n) with [ traversing any set of representatives
for 0% \(F* N3;) and n traversing the set F* N 3;. Recalling the formulas for f,, and ¢; given in
§2.2.8.1, §2.2.8.2 and §2.2.8.4 and the definitions of S4(Y) and S, (Y), we obtain the claimed

expressions for Sj. O

Lemma 2.5.3. We have

So () 0, (1 + 5¢Rf(k1)) ’

Yur() ~ p() Y12

where 6, = 0 or 1 according as ¢ is a Maass eigencuspform and or an incomplete Fisenstein

series.

Proof. If ¢ is cuspidal, then Sy = p(¢) = 0, so there is nothing to show. Suppose that ¢ =
E(¥,.). If y1 < Y~1 then it follows from (2.19) that

doy x z; 1) = O > cw(x0)Xo(y x 2 1) + Og (Y /2). (2.74)
1#x0€X(Ce/3%) 2
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We have
h(F) 1 . %
>/ RS [P aagaty x 2 1) e
= Jvetrs /01 3 z€F\A ) 4 (2.75)
- ) = A Y Pl
= (Bl ) = [ B Ens (B ) 3
and similarly for 1 # xo € X(Cp/6*)[2],
h(F)
hy (v N(3; B ) .
> / Wx x5 [ 1iPmlat <) de
= JuelFs, /03] j z€F\A (2.76)
= [, BB )
Substituting (2.74) into (2.69) and applying (2.75) and (2.76), we obtain
(o) —1/2 )/ A ds
So= | —=F+04(Y hy (s E(s,:)) —
o= (B + 0 [ (oo,
ds (2.77)

+ Z C\I/(XO) /(2) hg\/(S)Mf(E(Hng))%

1#x0€X(Cr/0%)[2]

Shift the contours in (2.77) to the line Re(s) = %; for xo # 1 we do not pick up a pole of
ws(E(]-I°x0,-)) because f is nondihedral. Thus

So = Yus(1) (‘:ﬁi n 0¢<Y1/2>)
(2.78)
+0¢( 3 / 11 (37 (B xol >>|ds|)
Xo€EX(Cr/0%)[2

To simplify the error term, we apply the formula

tg(E(xol *,-))
(1)

. i (Y ) D s~ D) Gl 1) Llad £ x0l ) ds
= (F) /(1/2)h ( <47T[F:Q]> (k) Cr(2s)  L(ad f,1) 2mi

(2.79)

which follows from the unfolding method and analytic continuation as in §2.2.9. By the standard
estimates [T (k; — § +it)| < T(k; — 3) < k; /*T(k;), Ge(xol-*) < [s|F9/% and [Ge(25)] > |5~
for Re(s) = % (see also Soundararajan’s arguments [66, p7] when F = Q), we deduce that the

error term in (2.78) satisfies

o PO i <V g R, (20
X0€3€(CF/0
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with Ry given by (2.23). The lemma follows upon dividing through by Y1 (1). O

Lemma 2.5.4. We have

‘S2| —10
— = Y
Yyg(1)

Proof. Set d = [F : Q], and note that each ! arising in the sum (2.70) satisfies
2N (Y)W < max(|ly],. .., |la]) < 2" HH(yHE)V/d (2.81)

for some nonnegative integer . More generally, there are < 2"4Y1+¢ elements [ € 3; for which
(2.81) holds. For each y € [F% /0% ] such that hy (y'N(3;)) # 0, we have y* <Y ' and y; < y;
fori,5 € {1,...,[F : Q]}, thus

y; < Y% for each i. (2.82)

Suppose that ¢ is a Maass eigencuspform, so that

Ap(lz; )
N(iz; 1)V/2

di(aly x z;71)) = ipoo(ly)
We have \y(a) < 7(a) N(a)'/2 < N(a)1/2+¢ and kg o (ly) = H?Zl K o00; (Liy;) with
R0 (liyi) = £2(|lilyi) " Kir, (2L yi),

where |Kg,o0; (liyi)] < 1 and

1+ |r|

A/
K (z) < ( ) uniformly for r e RUi(—%,1) and z > 6 > 0. (2.83)

Thus if I € 3; and y € F}_, satisfy (2.81)(2.82), we obtain
|fu(aly x z; ) < (L+[rH) 0D (@2ye/4) =4 (2.84)

for any positive A. The dependence of the bound (2.84) on ¢ is polynomial in the archimedean
parameters 7;, so (2.84) extends to the case that ¢ = E(¥,-) is an incomplete Eisenstein series
by the integral formula (2.20) for its Fourier coefficients and the rapid decay of the test function
LZAN

Taking A sufficiently large in (2.84) and summing over ! € 3; that satisfy the condition (2.81)
for some r € Z>g, we deduce

2] < Y20, (B(hy ). (2.85)
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The function A is bounded, so
E(hy,9)= >,  ©(Ylylyg))) < #{v € BE\G(F) : [y(vg)| = Y '}, (2.86)

YEBENG(F)

By [68, Lem 8.7], the cardinality on the RHS of (2.86) is < Y!™¢ uniformly in g. Thus
E(hy,) < Y and pup(E(hy, ) < Y eus(1), so (2.85) gives |Sa| < Y10, (1). O

Proof of Proposition 2.4.2. Follows immediately from the sequence of lemmas proved in this

section together with the consequence

1 T(k-
Yy (1) (A 1)F

1) o) 1
-1 L(ad f,1) (k — 1)1V

of the formula (2.21). O

Remark 4. Let us point out the essential difference between our method and that of Marshall
[43]. Recall that starting from Lemma 2.5.1, we have integrated ¢|f|? against the incomplete
Eisenstein series E(h,-) attached to a test function h € C2°(Cr/CE) = C°(R%). Marshall
instead integrates against what he calls a “unipotent Eisenstein series,” which (reinterpreted
adelically) amounts to the incomplete Eisenstein series E(H,-) attached to the test function
H € C*(Cg/0*) given by H(y) = >, cp- h(ay) for some pure tensor h = [[ h, € CZ°(A*/0*).
Suppose that ¢ is cuspidal; the case that ¢ = E(¥,-) is an incomplete Eisenstein series proceeds

similarly after separating out the constant term and appealing to the formula (2.20). Then

py(E(H,-)¢) = / Ho|f?
Z(A)B(F)\G(A)
- o N(n(x)a T d”y
- /yep*\A* <a§ h y)) LEF\A(¢f| )(n(z)a(y)) d m

2 dxy
/yeA* ) /mGIF\A(¢|f| )(n(z)a(y)) da ]

SX [ hmottns o)

(I,n)EF* xF*
m:=n+Il€F*

d*y
ly|

The integral in the final expression factorizes over the places of F; taking each h, to be the

characteristic function of 0} and heo, (y) = ho(Yy) for some fixed ho € CZ°(RY) gives

Ao (DA s (m)As(n)
ni(B(H,)g) = -5 ===k
(I,n)E(F*No)? |l men |

m:[;:L@—i]—lGF*ﬂo (287)

d*y
x H/ ho(Yy)kig,c0; (1Y) K f.00; (M5 Y) 1 00; (1Y) —
j=1 yeRj_ Yy
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The integrals here, which may be treated either by bounding ¢ o, trivially as in (2.45) (which
is basically what Holowinsky and Marshall do) or by our sharp refinement given in Lemma 2.4.3,
essentially truncate the sum over [ and n to a pair of boxes rather than regions bounded by a

hyperbola and hyperplanes as in our approach.

2.6 Bounds for Shifted Sums Under Hyperbolas

In this section we establish theorem 2.4.8, whose hypotheses we now recall. Let d = [F : Q] be
the degree of our totally real number field F, so that Fo, =2 R? (see §2.2.3). Let T € Rél and

U € R>; be parameters to which we associate the region
Rry={zeR*:2' <X, 2>T/U}, X:=T.

Let 3 C F be a fractional ideal and | € F* N 3 a nonzero “shift.” Let X : Ir — C be a weakly

multiplicative function that satisfies |A(a)| < 7(a). We would like to bound certain sums

SAGLTU) = Y PGTImAGT ). (2.88)
m::nnej»leg,
max(m,n)ERT U

Our strategy for doing so generalizes Holowinsky’s. By the assumption |[A(a)] < 7(a) we
reduce to quantifying the “independence” of the small prime factors of m and n, which in turn
reduces to a classical sieving problem (estimating how many lattice points in a region satisfy some
congruence conditions). By general machinery due to Linnik, Rényi, Bombieri and Davenport,
Montgomery and others in the case F = Q (see [7, §27], [31, p180] and [35]), such classical sieving
problems follow from additive large sieve inequalities (quantifying the approximate orthogonality
of a family of additive characters on a lattice when restricted to the intersection of that lattice
with a sufficiently smooth region), which in turn follow from bounds for sums over well-spaced
points in the support R:AF’U of the Fourier transform of a smooth majorizer for the region Rz y .

Some care is required when [F : Q] > 1 because then R/T\7 v will have long and thin regions that
(unfortunately) accomodate many well-spaced points. In our intended application the parameter
U is small enough that one can successfully analyze RQA«’U without using any properties of 3
beyond that it is a lattice, but to simplify our treatment and allow arbitrary values of U we
instead exploit the symmetries of the fractional ideal 3 coming from the action of the units o7

First, we cover Ry, by < log(eU)"~! boxes of volume X = T*:
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Lemma 2.6.1. There exists a finite collection (Ra)aca of bozes
Ra == [aa,l,ba,l] X X [aa,daba,d] - R%Oa 0 S aa,j < ba,j
whose union contains Ry, with #A < log(eU)?~1 such that vol(R4) = X and by 1 -+ bag < X

for each a € A.

Proof. Let x € Ry, so that x1---xq4 <Ty---Tq and x; > T;/U. By the pigeonhole principle,
we have Hj# z; < ngi T; for some index ¢; to simplify notation, suppose that ¢ = 1, so that
To--xqg < Ty---Ty. Choose integers asg,...,aq so that

T; T;
<xz; < .
2a; 2@1—1

Since 0 < z1 < TYTa -+ Ty/xg - xq < 2927 FT24T) we see that x is contained in the box

R = [0,2a2+"'+adT1] X {TQ L :| S X |:Td Ta ] ,

2(12’ 2(12—1’ Qad’ Qad—l’

which satisfies the desiderata of the lemma. Since x5 ---xg < 15 --- Ty implies

15 Ty
272...2Td§x2...xd§T2...Td,

and because x; > T; /U, we deduce that

a; <[logaU| fori=2,...,d and ags+---aq>0. (2.89)

There are < log(el)?~! tuples (ag,...,aq) € Z9~! satisfying the conditions (2.89). O

Next, because A and 3 are invariant under o, we see that for any (totally positive) unit

n € 0%} and any region R C R?, we have

STONGETMAGTI)I= > MG mAG )

nej nej
m:=n+Il€j} m:=n+n"tlc;
max(m,n)ER max(m,n)EnR

where "R = {nz : « € R}. The o’ -orbit of any box R, as in Lemma 2.6.1 contains a repre-

sentative [a1,b1] X -+ X [ag,bq] for which |a; — b;| < |a; — b;| < X'/ for all i,5 € {1,...,d}.
Thus
SAG LT, U) < log(el) P supsup > AGTm)AGT n)l (2.90)
R n€ol ne;

m:=n+n_tle;
max(m,n)eER



43

where the supremum is taken over all boxes R = [a1,b1] X - -+ X [ag, bg] for which vol(R) = X,
la; —bs] < XY/ 0 < a; < b; and max(by,...,bg) < X'/¢, with the implied constants depending
only upon the field F. Finally, if max(m,n) belongs to such a box R with m,n € F} ,, then
both m and n belong to the box (0,b1] x - -+ x (0, bg]. Therefore theorem 2.4.8 reduces to the

following result, which we shall establish in the remainder of this section.

Theorem 2.6.2. Let F be a totally real number field of degree d = [F : QJ, let A : Iy — R>¢ be
a nonnegative-valued multiplicative function that satisfies AM(a) < 7(a) for all a € Iy, let 3 be a
-1

fractional ideal in F, let A\ : 5 — R>q be the function \°(n) = A(37'n), let X > 2, and let

Rax,; = (0, (N(3) X)) 5 - (0, (N(3)X) "] € R™. (2.91)

Then forl € 3N F*, we have

Yo AmN(n) < log(X% HX (1 - N(p)) : (2.92)

ne3NRx,; N(p)<
m:=n+l€3;NRx ;

Preserve the hypotheses and notation of theorem 2.6.2. Throughout this section the nonzero
shift [ € 3NF* is fixed, while m and n denote elements of 3 having difference m —n = [. To ease
the notation, we write |a] = N(a) for the norm of an integral ideal a. Theorem 2.6.2 is trivial
for bounded values of X; thus we may and shall assume for convenience that X is sufficiently
large, so that for instance loglog(X) > 1.

For a real parameter

z=XY5 seRsy, (2.93)

1

define the z-part of an element n € 3 to be the greatest divisor of the integral ideal 37'n each of

whose prime factors has norm at most z, so that if 37!

n factors as a product of prime powers
11 pf"', then the z-part of n is Hlm\<z pf Define the z-datum of n to be the unique triple (a, b, ¢)

of integral ideals for which
e a and b are coprime,
e ac is the z-part of m :=n + 1, and

e bc is the z-part of n.

'm and 37 'n. Let

Thus the size of ¢ quantifies the overlap between small primes occurring in 3~
Z denote the set of all z-data that arise in this way and jq,p,c the set of all elements n € 3 having

z-datum (a, b, ¢), so that we have a partition

3= U{Za,b,c : (aa b? C) € Z} (294)
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Note that for all (a,b,¢) € Z we have ¢3!, so that ¢"1371/ is an integral ideal.
Now let
y=X* acRsg (2.95)

be a real parameter and partition Z into subsets

Z<y ={(a,b,¢) € Z : max(|ac|,|bc|) <y},

Zsy ={(a,b,¢) € Z : max(|ac|, |bc|) > y}.

1

Thus the z-datum of n € 3 belongs to Z<, if both 37'm and 37 'n have few small prime factors

Im or 37'n has many small prime factors, where y determines the

and to Z, if either 3~
threshold separating “few” from “many.” The latter case occurs infrequently, as we now show

in Lemma 2.6.3; the former case will be addressed by Lemma 2.6.4.

Lemma 2.6.3. Suppose that 2 < z < y < X with s and o as in (2.93), (2.95) such that
s < loglog(X) and a < 1. Then

> > Am)X(n) < X log(X) ™. (2.96)

(a,b,c)€Z>y NE€Ja,b,¢
m,n€ERx ;

Proof. The LHS of (2.96) is the sum of A\°(m)A°(n) taken over those m,n € 3 N Rx; with
m — n = [ for which the z-part of either m or n has norm greater than y. Writing a and b for

the z-parts of m and n and invoking Cauchy-Schwarz twice, we see that the LHS of (2.96) is

1/4
1/4 1/2
< > #(3NRx,) > Am)t > Mn)?
y<la|<X meZNRx,; nEZNRx,;
pla = |p|<z
1/4
1/2 1/4
+ > #(b3NRx,) > A(m)? > N
y<|b|<X meZNRx,; n€E;NRx,;

plb = [p|<z

We have > A(m)? < X log(X)'® and D omesnRx, A (m)? < X log(X)?3 by the same
argument as when F = Q (see [31, §1.6]) and #(a3 N Rx,;) < 1+ |a| ™' X < |a]7'X, so that

megﬁRst

1/4
1
> > Am)X(n) < X log(x)°M) Yo = . (2.97)
(a,b,c)EZ5, M€3a,b,c y<la|<X |U.‘
mnERx , pla = [p|<z

Let W(t,z) denote the number of integral ideals a C o of norm |a| < ¢ each of whose prime
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divisors p|a satisfy |p| < z, so that by partial summation
1 U(X 1 Xt
Yo lo (X.2) _ <y’z)+/ t2) g (2.98)
y

a X
y<la|<X ol y
pla = [p|<z

A theorem of Krause [38] (see also the survey [20]) asserts that

U(t,2) = tp(u) (1 +0 (log(u + 1))) . U= logt
log z log z

uniformly for + > 2 and 1 < u < (logz)®/°~¢ for any ¢ > 0, where the Dickman function
p : Ryg — Ry satisfies the asymptotics logp(u) = —(1 + o(1))ulogu as v — +oo. For
y <t < X, our assumptions o < 1 and s < loglog(X) imply that v =< loglogt. Thus

log z < logt/loglogt, so the condition for uniformity is satisfied and we obtain
U(t,2) < texp(—2Cloglogtlogloglogt) = t(logt)~2C1eloelost «  t(logt)~4

for some C' > 0 and every A > 0. It follows from (2.98) that

> 1<, log(X)~4. (2.99)

|a
y<la|<X
pla = |p|<=z

We deduce the required bound by substituting (2.99) into (2.97) and taking A sufficiently large.
O

On the other hand, if 37'm and 3 'n have few small prime factors, then we shall show
by an application of the large sieve that they typically have few common small prime factors;

anticipating the bound given by Corollary 2.6.8, set

: R
B(y,z) = sup #{n € Jab,c - M,N E X}

(a,b,0)€Z2<y |3_1l| ’
|c[*¢(abe=1371)

(2.100)

where ¢ denotes the Euler phi function (multiplicative, p¥ — |p|*~1(|p| — 1)).

Lemma 2.6.4. Fory,z as in (2.93), (2.95), we have

> > X(m)X°(n) < 4°B(y, 2)log(X)* [] <1+W>. (2.101)

(a,b,0)€Z<, M€3a,0,c [p|<z i
- m,nGgﬂRx,j

1

Proof. First, write 37'm = acm and factor m as a product of prime powers p;* with |p;| > z;
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since |m| < X, we have

Zaz log(z) < Zaz log |p;| = log |m| < log(X) = slog(z),

so that our assumption A(p;’) < a; + 1 < 2% implies A(m) < 230i < 25 Writing 3~ 'n = ben,
we find similarly that A(n) < 2°. Since ged(ac, m) = ged(be,n) = o0, we obtain A\°(m)\%(n) =
Alac)A(be)A(m)A(n) < 4°A(ac)A(bc). By the definition of B(y,z) and the inequality ¢(ab) >
¢(a)p(b), the LHS of (2.101) is thus

s Tty 1 Aac)A(b
<4°B(y,2) Z ( —13=1])[¢[2 Z Z ¢ )p(b (2.102)
|3 lac|<y |bc|<y
ple = [p|<z plab = [p|<z

For ¢ as in (2.102), the multiplicativity of A and ¢ implies that

> Y e (HZ ‘))7 (2103

Jac|<y |bc|<y Ip|<z k>0
plab = [p|<z

where v, (c) denotes the order to which p divides ¢. We rewrite

Ap) A Ap™)
ZMM:O+WUG+@)HZQMW)' (2.104)

Alp) ph) 2 k+1
5(p) |m+z¢k PR D Ty

k>2

=¢ 220 —g¢ ) +20-¢ )2+ (1 -q 7P

so that (2.104) implies

> sm = (50) () 109

If v > 1, then (writing ¢ = |p|)

A(pFtY) vtk+1 1
= ") = d e

=1+v(l+q¢'1-¢ ")) +qg'1-qgH?

<3v+3.
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Substituting these bounds into (2.102) and (2.103), the LHS of (2.101) is

<4 By, )06 [] <1 + QAP(?”)
Ipl<z
(2.106)
[T, (3v +3)?
with ¢(a) := |a |Z—p Ha/c FE

The function ¢ : Iy — R>¢ is multiplicative. On a prime power p* with ¢ > 1 and |p| = ¢ > 2

it takes the value

a—1 ,.
1 9 1 (i+1)2 _
k 2 6 1
= + — + 1) + E - <1410 .
Y(p ) gt P ((a ) 1_gt £ ¢ ) > q

Since [, 4(1 + [p|~") < loglog|al, it follows that 1(a) < loglog(a)t®’. If 37 1I| > X, then the
LHS of (2.101) is zero; if otherwise [371| < X, then ¥(37I) < log(X)c. Thus (2.101) follows
from (2.106). O

By Lemma 2.6.3 and Lemma 2.6.4, we see that theorem 2.4.8 follows from sufficiently strong
bounds for the quantity B(y, z) given by (2.100); the following lemma reduces such bounds to

a classical sieving problem.

Definition 2.6.5. For a region R C Fo, = R%, an ideal ¢ C F, a finite set P of primes in o and

a collection (2 )pep of sets of residue classes 2, C r/pr, define the sifted set
S(R,t, () ={nernNR:n¢Q, (pr)forallpeP} (2.107)

Define also for any @) > 1 the quantity

0
m@.0- ¥ gt (2.105)
lal<Q  pla P
plg = peP

Lemma 2.6.6. Let (a,b,¢) € Z. Choose an element r € ¢3 so that v = 0 (ac3) and r = —I
(bc3), and define the region
Ry ={z—rlz € Rx;} (2.109)

Let ¢t = abcz and let P denote the set of odd primes p in o of norm |p| < z. Then there exists a

collection of sets of residue classes (p)pep with Q, C t/pr such that

1 plabe=t371
#Q, = | (2.110)

2  otherwise
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and

#(3a,60,c NRx3) < H#S(Rro ¥, (Qp)). (2.111)

Proof. Indeed, let (a,b,c) € Z, so that ¢[37!/ and ged(a,b) = 0. Let n € 3. Then n belongs to

3a,6,c if and only if
(1) n € acs,
(2) n+1 € beg,
(3) pt3 'n/ac for each prime p with norm |p| < z, and
(4) pt3 L(n+1)/bc for each prime p with norm |p| < z.

If n € 3q,6,c, then conditions (1)—(2) assert that n — r € abcj, while conditions (3)—(4) assert
(slightly more than) that for each prime p with |p| < z, the number n—r € abcz does not belong

to a certain collection Q, C abcj/pabes of residue classes. Precisely, let ( € abeg and n =+ 7.

e Suppose pla, ptb. Let ¢; := (abcz/pabe; =N ac3/pacz) " (—r). Then (3) holds iff ¢ + 1 ¢
pacs iff ( — ¢4 ¢ pabes, while (4) holds iff ¢ + r + 1 ¢ pbej iff (since ¢ € abez C pbej)
r+1 ¢ pbe iff pb3 1 %H iff (since (p,b) = 1 and r+1 € be) r 4+ 1 ¢ pc; we may take
Qp ={G}, #Q =1

e If p{a, p|b, then we may similarly take #, = 1.

e The case pla, p|b does not occur because (a,b) = 1.

o

e Suppose p 1 ab. Let (i := (abcz/pabcz — acj/pac) " L(—r), (2 = (abci/pabe; =
bez/pbez) ~H(—r — ). Then (3) holds iff ¢ +r ¢ pacj iff ¢ — (1 ¢ pabes, while (4) holds iff
C+r+1¢pbeiff ( — (o ¢ pabez. We may therefore take Q, = {¢1,¢2}. We have (1 = (o
(pabe) iff I € pej, in which case #Q, = 1; if [ ¢ pcj, then #Q, = 2.

Thus n — n—r gives an inclusion 34,5, TR — S(R,, abces, (©2,)), and the #, are as claimed. [

The large sieve machinery alluded to above allows us to show the following, the proof of which
we postpone to a later subsection; the proof is independent of what follows in this subsection,

so there is no circularity in our arguments.

Proposition 2.6.7. Lety, P, and (2p)pep be as in Definition 2.6.5. Let R be the region Rx
as in (2.91) or a translate thereof. There exists a positive constant c2(F) > 0 such that for

X > c2(F) and Q > 1, we have

X + Q?

SR (8) < a0y, 0y

(2.112)
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Proof. See §2.7. O
As a consequence, we deduce the following bound for B(y, z).

Corollary 2.6.8. Let c2(F) > 0 be as in Proposition 2.6.7. Then for X > co(F)y?, the quantity
B(y, z) given by (2.100) satisfies

X+y222

Proof. Let (a,b,¢) € Z<, and let the region R,, the ideal r = abcj, the set of primes P and
the collection of sets of residue classes (€2,,) be as in Lemma 2.6.6, so that (2.111) holds. Then
lt] < y23], so that X > co(F)y? implies X’ > c2(F) with X’ := |r~!3|/X; the hypothesis of
Proposition 2.6.7 are then satisfied (taking X’ in place of X), and setting @ = z we obtain

113X + 22

nR _—.
#(551,[’7C X’ﬁ) < H((Qp),z)
Set m = abc~!371 (see (2.110)). The lower bound

¢(m)
jm|

H((p), 2) >F log(z)?

is standard when F = Q and follows in general from the arguments of [17, pp55-59, Thm 2] upon
redefining “P(z)” to be the product of all prime ideals of norm up to z, replacing every sum
over integers (resp. primes) satisfying some inequalities by the analogous sum over ideals (resp.
prime ideals) with norms satisfying the analogous inequalities, and replacing the Riemann zeta

function ¢ by the Dedekind zeta function (r. Thus recalling the definition (2.100) of B(y, z), we

obtain
“1X + 2% [c]?¢(m) X + |abc|z?
B(y,2) < Bf(‘m) = d ibl( ) | 2|Z
Gl log(2)2 157 log(2)
Since |abc| < y?, we deduce the claimed bound. O

Proof of theorem 2.6.2. Let y, z be given by (2.93), (2.95) with o € (0, 1) and s = aloglog(X).
We eventually (i.e., as X — 00) have X > ¢3(F)y? and 2 < z <y < X. Thus the hypotheses of

Lemma 2.6.3, Lemma 2.6.4 and Corollary 2.6.8 are eventually satisfied, so we obtain

> A (m)A0(n) < 48%1%@()5 11 (1 N 2/\(13)) .

N
ne;NRx,; N(p)<z (P)
m:=n+l€3NRx ;

We have 4° = log(X)*1°8(4) log(z) >, log(X)?> ¢ and 4?22 <4 X, so letting o — 0 we deduce
the assertion of theorem 2.6.2. O
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2.7 Appendix: Sieve Bounds

Inequalities of the shape (2.112) (with explicit constants) have appeared in papers of Schaal
[65, Thm 5] and Hinz [21, Satz 2], but only under additional assumptions such as Q > 1,
X > @? and Q, = 0 for all p[3. Although it would possible to get around such assumptions
in our intended applications (at the cost of sacrificing the uniformity in 3, which is ultimately
not needed), we prefer to establish a result in which such assumptions are not present. We
neglect here the issue of the leading coefficient of such bounds, which is important in some
of the applications of the authors just cited but not in ours; for this reason our analysis is
substantially simplified.

Our arguments in this short section are standard; we have been influenced by the books of
Davenport [7] and Kowalski [35], to which we refer the reader for a discussion of the history of
these ideas. Fix a fractional ideal ¢ of F. Let g be an integral ideal in F and « : t/qr — C a
function on the group r/qr. Define L?(x/qr), ||.||2 with respect to the counting measure, and for
¥ in the Pontryagin dual (r/qr)", define o (¢) = 3=, /.. a(¢)1(¢); then the Fourier inversion

and Plancherel formulas read

a=la7t Y @ @ Y la@QF =lali= a3 =la" Y " @)l

(x/qe)" r/qx (x/ax)™

For a proper divisor q’ of g, the projection r/qr — r/q’t induces an inclusion L?(x/q't) <
L2(x/qr). Let Li (x/qr) denote the orthogonal complement of the span of the images of these
inclusions, write L?(r/qr) o a — ay € Li (r/qr) for the associated orthogonal projection, and
let (r/ qp)f‘7£ denote the set of characters v € (r/qr)" that do not factor through any proper
projection r/qr — r/q't, so that

lagll3 = lal™" > o).

(x/ar)}

For v € (r/qr)} call q the conductor of 9.

Let R be a region in F,, P a finite set of primes, Q > 1 a parameter, and Q the set of
squarefree ideals q composed of primes p € P with |q] < Q. Let V(R,r) be the Hilbert space
of complex-valued functions (ay)n : t — C supported on R Ng, where for (a,) € V(R,r) we set
lall3 := 3", |an|?. For q € Q define a[q] € L?(x/qr) by the formula alq](¢) = 2 on=c(qp) On- Let
E(-;1,Q) be the quadratic form on V(R,¢) defined by

E((an);t,Q) = ) _lalllalalz3 =) > lala*(®)?, (2.113)

q€Q 9€Q (¢/aqx)},
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and D(R,r, @) the squared norm of E(-;1,Q), i.e., the smallest non-negative real with the
property that |E((an);t, Q)| < D(R,x, Q)lal}3 for all (a,) € V(R,p).

Suppose that «a[p](¢) = 0 for (at least) w(p) values of ¢ mod p for each p € P, and set
h(a) = 11,4 ‘p‘w_(% for each q € Q. An inequality due to Montgomery [44] in the (F,r) = (Q,Z)
case (refining earlier work of Linnik, Rényi, and Bombieri-Davenport), whose proof generalizes
painlessly to the present situation and has been formulated axiomatically by Kowalski [35,
Lem 2.7], shows that h(q)|a[0]||3 < |q||lalq]4||3, so recalling from (2.108) that H((Qy),Q) =
>_qeo M(a) we obtain

lalollBH (), @) < D(R,, Q) a3

In the special case that (a,), is the indicator function of S(R,r, (£2,)) for some subsets

Qp Cr/pr, let Z == #S(R,x, (2p)), so that
lall = lanl® = 2, lalo]3 = 3" aul? = 22,

and a,, = 0 whenever n € Q, (p) for any p € P. Thus

D(R,r,Q)

#S(R,x, () < H(), Q)

(2.114)

In this context, an additive large sieve inequality is by definition a bound for D(R,r, Q). The
homomorphism Fo, /r 107! 2 € £ 3 n s e(Trén)] € 1t (e(z) = ™) induces for integral

ideals q’|q the compatible isomorphisms

¢t (/g

! l

gttt —— (¢/qp)”

by which we regard the family L{(x/ qzc);; : q € Q} of primitive additive characters having
(squarefree) conductor up to @ (and supported on the primes of P) as a subset F := F(r, Q) C
F/r7 1071 C Foo /t 107! of the family of all (finite order) additive characters on g, thus

2

Zane(’]}fn)

n

B((an)in @) = > (2.115)

£eF(r,Q)

Write D(R,x, F) synonymously for D(R,r,Q). The group o7 acts on Fo, and Foo /r™ 107" by
multiplication, stabilizing ¢ and F. The £*° metric on Fo, given by dp_(£,7) = max; |& — ]
induces on Fo/r~ 07! by the formula d(¢,7n) := min,c;-15-1 dr_ (€, + n) a metric d with
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respect to which we call

0:=0F(r Q)= min  d&m)

the smallest spacing for the family F(r, Q) and say that F(r, Q) is §(F(r, @))-spaced.
Lemma 2.7.1. §(F(x,Q)) > (|t|]ArQ?) V"W (here Ag = 2| is the discriminant of F).

Proof. Suppose that qi,q2 € Q, € € q; 't '07 !, and € g5 't~ 0! with £ —n ¢ =071, We
must show, for any n € r~10~!, that ¢ := £ — n — n satisfies max; [¢;| > (|t]ApQ?) "V FQ,
Indeed, we have 0 # ¢ € q; 'q; 't =107, so that

TG —ml=1¢—n" > lartax e 07 = A e 7' Q2

Thus for some index i we have |¢;| > (|t|ArQ?)~V/FQ hence the claim. O

The duality principle for bilinear forms, which asserts that a form and its transpose have the

same norm, implies that D(R, ¢, F) is the smallest non-negative real such that

2
> |- bee(Trén)| < D(R.x, F)lbll3 (2.116)
nernR |EeF
for all (be)e : F — C, where [[b]|3 = > |be|>. Call a nonnegative-valued Schwarz function
f € S(Fo — Rxp) R-admissible if it satisfies flg > 1, and let f be R-admissible. Opening the
square in (2.116) and invoking the elementary inequality [beb,| < £ (|be|? + |by|?), we find that

2

Z Z bee(Trén)| < Zf(n) Z bee(Trén)

nerNR |E€F neyx EEF

< supz

EG]—'ne]_—

S Fme(Ten(e —n)| 15]3.

neyr

Applying the Poisson summation formula, which asserts in this context that

> fm)e(Trn(€ —n)) = vol(Foo /)" Y. flu—E&+m),

ner pEr—to—1

with f / f(x)e(—z-y)dy,
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we obtain

D(R. ¢, F) < vol(Foo /o)~ |t F(f;8, F),
) (2.117)
with F(fir, F):=sup > | Y flu—&+n)|.
56}-7]6]: per—1o-1
Lemma 2.7.2. There exists a positive constant co(F) > 0 with the following property. For any
rectangle R = [][ai, bi] = [a1,b1] X -+ X [ag, ba] whose volume vol(R) = []|a; — b;| satisfies
vol(R) > co(IF)|x|, there exists an R-admissible function f such that

F(f,x,F) <p vol(R) + 5% (2.118)

Proof. For a unit n € 0% and an R-admissible function f, define the nR-admissible function 7 f
by the formula nf(nxz) = f(x). Since r and F are o -stable, we have F(nf;x, F) = F(f;x, F).
Therefore we may assume that R is chosen so that |a; — b;| < |a; — b;| for all ¢,j € {1,...,d},

where the implied constant depends only upon F. Now the formula

2\ d d o aitb; :
f(z) = <7;) Hsincg (M) , sinc(z) = Sm;zx)

1=

defines an R-admissible function f whose Fourier transform is supported in the dual rectangle
R:H[Ci7di]7 \ci—di|:|ai—bi\_1, Ci:—di<0<di

and satisfies || f||oo < (72/4)? [ |ai—bi|. Since |a;—b;| = |a;j—b;]| for all i, j, there exists a constant
c2(F) > 0, depending only upon IF, such that vol(R) > co(F)|r| implies that |a; —b;| > %A;/dml/d
for each 4. If we assume now (as we may) that the latter assertion holds, then any translate of
the dual rectangle R contains at most one element of the dual lattice r 1971, so that each sum

over y in (2.117) contains at most one nonzero term, thus

SIS f(uféﬂi)Sllfllm#{nefiuf§+ne7€+fla*1}.

neF |per—1o-1

The above set is a d-spaced subset of R (mod r~1071); a cube-packing argument shows that

any such set has cardinality at most [[(1 + |6~ *|e; — d;i]]), so that

o\ d d

d
F(f,r,F) < (Z) [T a: = bil (1 + (67 e = dil)) < [ [ (Jlai = bil +67). (2.119)

=1 i=1
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Since |a; — b;| < |a; — b;|, we obtain F(f,r,F) < vol(R) + =%, as desired. O

Proof of Proposition 2.6.7. Take co(F) as in Lemma 2.7.2, and suppose that X > co(F) and
Q@ > 1. Then vol(Rx ;) > c2(F)|3], so the hypotheses of Lemma 2.7.2 are satisfied. The claimed
bound (2.112) follows immediately from (2.114), Lemma 2.7.1, equation (2.117) and Lemma
2.7.2. O

2.8 Appendix: Bounds for Special Functions

In this self-contained section we establish the technical lemmas that were needed in the proof of
Lemma 2.4.3. First, recall [72] that the Gauss hypergeometric function F' = 3F} is defined for
Re(c) > Re(b) > 0 and |arg(l — z)| < 7w by the integral

P () = rories [, e

where arg(1 — zt) = 0 for z € R, and for |z| < 1 and arbitrary a,b, ¢ by the series

Cc

a,b = a)n(b)n 2"
F( ;Z>Z()(C)(n)n!’ (a)n :=ala+1)(a+2)---(a+n—1),

n=0

which implies F (ac’b;()) = 1. It satisfies the differential equation

21— )y + (e (a+ b+ Da)y —aby =0, y(z) = F (“;f ; x)

for « ¢ {1,00}.

Lemma 2.8.1. Let z € R>g, v € iIRU(—1/2,1/2) and s € C with Re(s) > 1/2. Then

1 1 _
21’1(24_U72 U;—JU)‘SL
s

Proof. Fix v and s as above, and let

1,1
Fy(x) = o1 (2 2 —H/;—x)
S

for z € R>o. Then Fj satisfies the differential equation
(1 +2)F/(z) + (s + 22)F.(z) + AFs(z) =0 with A= 1 +7%>0. (2.120)

Note that since {3 +ir, 5 —ir} = {3 +ir, 3 — ir}, we have F, = F; and F = FL. Let f be a
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smooth function on R and H = |F,|? + f|F!|?, so that
H' = F!Fs + FyF. + f'|Fs|*> + f(F/'F. + F.FY). (2.121)

By the differential equation (2.120), we have

Taking f(z) = z(1+ x)/A gives
e )

so that H'(z) <0 for Re(s) > 1/2 and « > 0. Since f(0) =0 and f(z) > 0 for > 0, we obtain
|Fo?(2) < H(x) < H(0) = [Fs*(0) = 1,

as desired. O

Lemma 2.8.2. Let v € iRU (—3, %) and s € C with Re(s) > 1. Then

[(s+v)(s—v)
1 e
Proof. Recall that Kummer’s first formula asserts
r I'(s— 1,1
(S—i_T) (S l:) — lim Fys(x), Fljs(x) ::F<l/+ 27V 2’x>. (2.122)
F(S + §)F(S — 3 z—1— ’ ’ s+ v

Write 0 = Re(s) and u = Re(v). Take H = |F, > + f|F] ,|* for a smooth function f. The

differential equation
r(1—z)F) () + (s +v— 2v+1)x)F, (x) + AF, s(z) =0,

with A = i — 12 > 0, implies that

P , e A
H = (FV,SFV75+F’/7SF’7’§) <1 f:L’(]._x))

20 +2u —2(2u+ 1).’L‘>
z(1—x) '

LR (f' g
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Taking f(x) = x(1 — x)/\ gives

 1-20—2u(l — )+ 2ux

H'(2) : IFL P (),
so that our hypotheses u € (—3, 1), Re(s) > 1 imply H'(z) <0 for 0 < z < 1. Since f(0) =0
and f(z) >0 for 0 < z <1, we obtain |F; ,|*(z) < H(z) < H(0) = |F;,|*>(0) = 1 for z € (0, 1),
and the lemma follows from (2.122). O

Remark 5. The proof of Lemma 2.8.2 shows that the hypothesis Re(s) > 1 can be relaxed to
Re(s) > 1 + Re(v); we believe that Lemma 2.8.2 holds in the larger range Re(s) > 1, v €
iRU (—%, %), but have not proven this. Such refinements are not necessary for our applications
in the proof of Lemma 2.4.3.

Remark 6. The bounds asserted by Lemmas 2.8.1 and 2.8.2 are sharp for several extremal cases

of the parameters.
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Chapter 3

Equidistribution of Cusp Forms
In The Level Aspect

3.1 Introduction

3.1.1 Statement of Result

A basic problem in modern number theory and the analytic theory of modular forms is to
understand the limiting behavior of modular forms in families. Let f : H — C be a classical
holomorphic newform of weight k£ and level ¢. The mass of f is the finite measure dvy =
|f(2)|?y* 2 dx dy (2 = z+iy) on the modular curve Yy(q) = I'o(g)\H. In a recent breakthrough,
Holowinsky and Soundararajan [25] proved that newforms of large weight k and fixed level
g = 1 have equidistributed mass, answering affirmatively a natural variant' of the quantum

unique ergodicity conjecture of Rudnick and Sarnak [52].

Theorem 3.1.1 (Mass equidistribution for SL(2,7Z) in the weight aspect). Let f traverse a
sequence of newforms of increasing weight k — oo and fized level ¢ = 1. Then the mass vy
equidistributes® with respect to the Poincaré measure du = y~2dxdy on the modular curve
Yo(q)-

las spelled out by Luo and Sarnak [42]; we refer to Sarnak [53, 54] and the references in [25]

for further discussion.

2We say that a sequence of finite Radon measures 5 on a locally compact Hausdorff space X
equidistributes with respect to some fixed finite Radon measure p if for each function ¢ € C.(X)
we have p;(#)/u;(1) = pu(¢)/p(l) as j — oo, here and always identifying a measure p with the
corresponding linear functional ¢ — p(¢) := fX ¢ dp on the space C.(X) and writing 1 for the

constant function.
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Kowalski, Michel, and VanderKam [36, Conj 1.5] formulated an analogue of the Rudnick-
Sarnak conjecture in which the roles of the parameters k and ¢ are reversed: they conjectured
that the masses of newforms of fixed weight and large level ¢ are equidistributed amongst the

fibers of the canonical projection m, : Yy(¢) — Yo(1) in the following sense.

Conjecture 3.1.2 (Mass equidistribution for SL(2,Z) in the level aspect). Let f traverse a
sequence of newforms of fized weight and increasing level ¢ — co. Then the pushforward py :=

g« (Vy) of the mass of f to Yy(1) equidistributes with respect to fu.

Kowalski, Michel and VanderKam remark that Conjecture 3.1.2 follows in the special case of
dihedral forms from their subconvex bounds for Rankin-Selberg L-functions modulo an unestab-
lished extension of Watson’s formula [70], which is now known by theorem 3.4.1 of this chapter.
Recently Koyama [37], following the method of Luo and Sarnak [41], proved the analogue of
Conjecture 3.1.2 for unitary Eisenstein series of increasing prime level by reducing the problem
to known subconvex bounds for automorphic L-functions of degree two.

Our aim in this chapter is to establish the squarefree level case of Conjecture 3.1.2. Our

result is the first of its kind for nondihedral cusp forms.

Theorem 3.1.3 (Mass equidistribution for SL(2,Z) in the squarefree level aspect). Let f tra-
verse a sequence of newforms of fized weight and increasing squarefree level ¢ — oo. Then py

equidistributes with respect to .

Remark 7. Our extension (theorem 3.4.1) of Watson’s formula [70] shows that theorem 3.1.3
would follow from subconvex bounds L(f x f x ¢,1/2) <4 ¢*~° (§ > 0) for the central L-
values of the triple product L-functions attached to f as above and each Maass cusp form or
unitary Eisenstein series ¢ on Yy(1). Such bounds are known to follow from the generalized
Lindel6f hypothesis, which itself follows from the generalized Riemann hypothesis, so one can

view theorem 3.1.3 as an unconditionally proven consequence of a central unresolved conjecture.

Remark 8. One cannot relax entirely the restriction of theorem 3.1.3 to newforms, since for

instance a cusp form of level 1 may be regarded as an oldform of arbitrary level g > 1.

Remark 9. Rudnick [51] showed that theorem 3.1.1 implies that the zeros of newforms of level 1
and weight k& — oo equidistribute on Y;(1). At the 2010 Arizona Winter School, Soundararajan
asked whether there is an analogue of Rudnick’s result for newforms of large level. We do not
know whether such an analogue exists and highlight here one of the difficulties in adapting
Rudnick’s method. Let f be a newform of weight k and level ¢, let Z be the left T'g(g)-multiset
of zeros of f in H and let Z; be the left I'-multiset (I' = PSL(2,Z)) obtained by summing the
images of Z under coset representatives for I'(1)/Tg(q). We ask: does I'\ Z; equidistribute on
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Yo(1) as ¢ — 0o? Following Rudnick, one may show for ¢ € C2°(H) and ®(2) = >° . ¢(72)
that

12 D(z) g« (logvy)
—_— -_— = oAV —— =22 APV, 3.1
P _ 2=, #Sabr(s) ot | ’ 31

where ¢(q) = [[(1) : To(q)], A = y*(82 + 82) is the hyperbolic Laplacian, and dV is the hyper-
bolic probability measure on I'\H; the formula (3.1) follows by some elementary manipulations
of the identity [;;log|z — 20| Ad(z)y =2 dx dy = 2m¢(z), which holds for any z, € H and follows
from Green’s identities. Since the total number of inequivalent zeros is #I'\Z; = #o(¢)\Z ~
k(q)/12 [60, §2], the first term on the right-hand side of (3.1) may be regarded as a main term,
the second as an error term that one would like to show tends to 0. An important step toward
adapting Rudnick’s method would be to rule out the possibility that mq.(logvs)/ki(g) tends to
—oo uniformly on compact subsets as ¢ — oo. The difficulty in doing so is that theorem 3.1.3
does not seem to preclude the masses v¢ from being very small somewhere within each fiber of
the projection Yp(q) — Yo(1); stated another way, the sum of the values taken by y*|f|? in a
fiber of Yy(q) — Yo(1) are controlled (in an average sense as the fiber varies) by theorem 3.1.3,
but their product could still conceivably be quite small. There are further difficulties in adapting

Rudnick’s method that we shall not mention here.

Remark 10. Lindenstrauss [40] and Soundararajan [65] proved that Maass eigencuspforms of
fixed level ¢ and large Laplace eigenvalue A\ — oo have equidistributed mass. We ask: do Maass
newforms of large level ¢ — oo (with A taken to lie in a fixed subinterval of [1/4,+0c0], say)
satisfy the natural analogue of Conjecture 3.1.27 An affirmative answer to this question would
follow from the generalized Riemann hypothesis (at least for ¢ squarefree, as in remark 7), but
appears beyond the reach of our methods because the Ramanujan conjecture is not known for

Maass forms (compare with [25, p.2]).

Remark 11. We shall actually establish the following stronger hybrid equidistribution result: for
a newform f of (possibly varying) weight k and squarefree level g, the measures p1y = mg.(vy)
equidistribute as gk — oco. The novelty in our argument concerns only the variation of ¢, so we

encourage the reader to regard k as fixed.

Remark 12. With minor modifications our arguments should extend to the general case of not
necessarily squarefree levels ¢ as soon as an appropriate extension of Watson’s formula is worked
out. However, we shall invoke the assumption that the level ¢ is squarefree whenever doing so
simplifies the exposition. The parts of our argument that require modification to treat the
general case are Lemmas 3.3.4, 3.3.13, and 3.4.3. One should be able to generalize Lemmas
3.3.4 and 3.3.13 using that for any level ¢ the cusps of T'y(g) fall into classes indexed by the
divisors d of ¢ consisting of ¢(ged(d, g/d)) cusps of width d/ ged(d, ¢/d). To generalize 3.4.3, one
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must compute (or sharply bound) a p-adic integral involving matrix coefficients of supercuspidal

representations of GL(2,Q,). We plan to consider this generalization in future work.

3.1.2 Plan for the Chapter

Our chapter is organized as follows. In §3.2 we recall some standard properties of our basic
objects of study: holomorphic newforms, Maass eigencuspforms, unitary Eisenstein series and
incomplete Eisenstein series. In §3.3 we prove the level aspect analogue of Holowinsky’s main
result [24, Corollary 3], as described above; we emphasize the aspects of his argument that do
not immediately generalize to the level aspect and refer to his paper for the details of arguments
that do. In §3.4 we extend Watson’s formula to cover the additional case that we need. In §3.5
we complete the proof of theorem 3.1.3 using the main results of §3.3 and §3.4. Sections 3.3
and 3.4 are independent of each other, but both depend upon the definitions, notation and facts

recalled in §3.2.

3.1.3 Notation and Conventions

Recall the standard notation for the upper half-plane H = {z € C : Im(z) > 0}, the modular
group I' = SL(2,Z) © H acting by fractional linear transformations, its congruence subgroup
To(g) consisting of those elements with lower-left entry divisible by ¢, the modular curve Yy(q) =
I'o(g)\H, the natural projection 7, : Yo(q) — Yo(1), the Poincaré measure du = y~—2 dx dy, and
the stabilizer T'oo = {£ (1 %}):n € Z} in T of oo € P}(R). We denote a typical element of H as
z =+ iy with z,y € R.

There is a natural inclusion C.(Y5(1)) — C.(Yo(q)) obtained by pulling back under the
projection my; here C. denotes the space of compactly supported continuous functions. For a
newform f of weight k on I'y(q) the pushforward measure duy := mg. (| f|*y* du) on the modular
curve Yy(1) corresponds, by definition, to the linear functional

x dx dy
2

s (6) = / RCIO0 for ¢ € Cu(Yo(1)) = Ce(Y(a)).

We let p denote the standard measure on Yp(1), so that

dx d
5(6) = / L4 " for 6 € CuYa(D).

Since p and py are finite, they extend to the space of bounded continuous functions on Yy(1),
where we shall denote also by p and pif their extensions. In particular, (1) denotes the volume
of Y5(1) and (1) the Petersson norm of f.

As is customary, we let ¢ > 0 denote a sufficiently small positive number whose precise
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value may change from line to line. We use the asymptotic notation f(z,y,2) <44 9(,y, 2) to
indicate that there exists a positive real C(z,y), possibly depending upon z and y but not upon
z, such that |f(x,y,z2)| < C(x,y)|g(x,y,2)| for all z,y, and z under consideration. We write
flz,y,2) = Oy y(g(z,y, 2)) synonymously for f(z,y,z) <z, g(x,y, z) and write f(z,y,2) <z,
g(z,y, z) synonymously for f(x,y, 2) <zy 9(2,y,2) Lazy f(2,y, 2).

3.1.4 'Weyl’s Criterion

The following standard lemma provides essential motivation for what follows.

Lemma 3.1.4. Suppose that for each fized Maass eigencuspform or incomplete Eisenstein series

¢, we have

ns(@) ¢

[y
n@)  u

for q squarefree and f a holomorphic newform of weight k and level q; the convergence need not

=

as gk — oo

~—

be uniform in ¢. Then theorem 3.1.3 is true.

Proof. The family of probability measures ¢ — ps(¢)/ur(1) obtained as f varies is equicontinu-
ous for the supremum norm on C.(Yy(1)), since |pr(é1)/pr(1) — pp(d2)/ps(1)| < sup |p1 — @2
for any bounded functions ¢1,¢2 on Yy(1). Thus theorem 3.1.3 follows if we can show that
(@) /(1) = p(e)/u(l) as ¢ — oo for a set of bounded functions ¢ the uniform closure of
whose span contains C.(Yp(1)); such a set is furnished [29] by the Maass eigencuspforms and

incomplete Eisenstein series as defined in §3.2. O
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3.2 Background on Automorphic Forms

We collect here some standard properties of classical automorphic forms. We refer to Serre [59],

Shimura [60], Iwaniec [28, 29] and Atkin-Lehner [1] for complete definitions and proofs.
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3.2.1 Holomorphic Newforms

Let k be a positive even integer, and let « be an element of GL(2, R) with positive determinant;
the element « acts on H by fractional linear transformations in the usual way. Given a function
f:H — C, we denote by f|ya the function 2 — det(a)"/?j(c, )% f(az), where j ((¢4),2) =
cz +d.

A holomorphic cusp form on Ty(q) of weight k is a holomorphic function f : H — C that
satisfies f|gy = f for all v € T'g(q) and vanishes at the cusps of I'g(q). A holomorphic newform is
a cusp form that is an eigenform of the algebra of Hecke operators and orthogonal with respect
to the Petersson inner product to the oldforms.?> We say that a holomorphic newform f is a

normalized holomorphic newform if moreover Ay(1) =1 in the Fourier expansion

A
Y2 f(z) = % J:/(g) kf(ny)e(nz), (3.2)
where r;(y) = y*/2e72™ and e(z) = €*™; in that case the Fourier coefficients \;(n) are

real, multiplicative, and satisfy [8, 9] the Deligne bound |[A;(n)] < 7(n), where 7(n) de-
notes the number of positive divisors of n. If v € Ty(q) and 2’ = vz = z’ + iy, then
y*I2f(2) = (v, 2)/15(7, 2)|)*y*/% f(2), so that in particular z — y*|f(2)|? is T'o(g)-invariant
and our definition of uy given in Section 3.1.3 makes sense.

To anewform f one attaches the finite part of the adjoint L-function L(ad f, s) = [[, L,(ad f, s)
and its completion A(ad f,s) = Lo (ad f,s)L(ad f,s) = [[, Lv(ad f,s), where p traverses the
set of primes and v the set of places of Q; the local factors L,(ad f, s) are as in [70, §3.1.1]. The
Rankin-Selberg method [50, 57] and a standard calculation [70, §3.2.1] show that

ded k—1)k—
pg(1) :=/F ( )\HIfIQ(z)y’“ }y =q€iﬂ)k11) 2W21L(adf,1). (3.3)
olq

As in the analogous weight aspect [25, p.7], the work of Gelbart-Jacquet [13] (following Shimura
[61]) and the theorem of Hoffstein-Lockhart [22, Theorem 0.1] (with appendix by Goldfeld-
Hoffstein-Lieman) imply that

L(ad f,1)7! < log(qk). (3.4)

Let o traverse a set of representatives for the double coset space T'so\I'/T'o(¢q). Then the

points a, := 0 oo € P}(Q) traverse a set of inequivalent cusps of I'g(¢). The integer d, :=

3The terms we leave undefined are standard and their precise definitions, which may be found

in the references mentioned above, are not necessary for our purposes.
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[T : Too NoTo(q)o ] is the width of the cusp a,, while

is the scaling matrix for a,, which means that z — z, := w,z is a proper isometry of H under
which z, — z, + 1 corresponds to the action on z by a generator for the I'g(q)-stabilizer of a,.

If the bottom row of o~ is (¢, d), then d, = q/(q,c?); moreover, as o varies, the multiset of
widths {d,} is the set {d : d|q} of positive divisors of ¢ [29, §2.4]. In particular, ¢ and d, are
coprime, so we may and shall assume (after multiplying o on the left by an element of I' if
necessary) that d, divides d. Since ¢ is squarefree, the numbers d, and ¢/d, are coprime, so
that w, is an Atkin-Lehner operator “W¢” in the sense of [1, p.138]. Thus by applying [1, Thm

3] to the newform f, we obtain

f|kwa = j:f (35)

Since f is T'g(g)-invariant, the property (3.5) does not depend upon the choice of coset repre-

sentative o.

3.2.2 Maass Eigencuspforms

A Maass cusp form (of level 1) is a I'-invariant eigenfunction of the hyperbolic Laplacian A :=
y=2(02 + 85) on H that decays rapidly at the cusp of T'. By Selberg’s “A\; > 1/4” theorem [58]
there exists a real number r € R such that (A + 1/4 + r2)¢ = 0; our arguments use only that
r € RUi(—1/2,1/2), and so apply verbatim in contexts where “A; > 1/4” is not known.

A Maass eigencuspform is a Maass cusp form that is an eigenfunction of the (non-archimedean)
Hecke operators and the involution T_1 : ¢ — [z — ¢(—Z)], which commute one another as well

as with A. A Maass eigencuspform ¢ has a Fourier expansion

Ag(n)
3(2) = T bip (ny)e(nx) (3.6)

where ki (y) = 2|y|Y/2K;, (27]y|) sgn(y) = with K;, the standard K-Bessel function, sgn(y) = 1
or —1 according as y is positive or negative, and & € {£1} the T_;-eigenvalue of ¢. We have
|ks(y)] < 1 for all s € iIRU (—1/2,1/2) and all y € R%. A normalized Maass eigencuspform

further satisfies Ay(1) = 1; in that case the coefficients Ay (n) are real, multiplicative, and satisty,

for each x > 1, the Rankin-Selberg bound [29, Theorem 3.2]

S o(n)? <5 . (3.7)

n<z



64

Because f(—Z) = f(z) for any normalized holomorphic newform f, we have ps(¢) = 0
whenever T_1¢ = d¢ with § = —1. Thus we shall assume throughout this chapter that 6 = 1,

i.e., that ¢ is an even Maass form.

3.2.3 Eisenstein Series

Let s € C and 2 € H. The real-analytic Eisenstein series E(s,z) = 3 p_\pIm(yz)* converges
normally for Re(s) > 1 and continues meromorphically to the half-plane Re(s) > 1/2 where the
map s — E(s, z) is holomorphic with the exception of a unique simple pole at s = 1 of constant
residue ress—1 E(s, 2) = u(1)~!. The Eisenstein series satisfies the invariance E(s,vz) = E(s, 2)

for all v € I' and admits the Fourier expansion

E(s,2) = y* + M(s)y'~ S+— As1/2(n) Ke_1/2(ny)e(n), (3.8)

) nELx \/7

where As(n) = Y-, (a/b)°, ws(y) = 20y[V2E,(2rly]), M(s) = €(2s — 1)/€(2s), &(s) =
Tr(s)C(s), Tr(s) = 7%/?T'(s/2), and ¢(s) = 3,cyn~° (for Re(s) > 1) is the Riemann zeta
function. The identity |M(s)| = 1 for Re(s) = 1/2 follows from (for instance) the functional
equation for the zeta function and the prime number theorem. When Re(s) = 1/2 we call E(s, z)

a unitary Fisenstein series.

3.2.4 Incomplete Eisenstein Series

Let ¥ € C2°(R?% ) be a nonnegative-valued test function with Mellin transform ¥" (s fo y— 5 tdy.
Repeated partial integration shows that |[U"(s)| <y 4 (1+|s|)? for each positive integer A, uni-
formly for s in vertical strips. The Mellin inversion formula asserts that U(y) = [ @) U (s)y® Qd;l,
where f(g) denotes the integral taken over the vertical contour from ¢ — ico to o + ico. To such

U we attach the incomplete FEisenstein series
E(W,z)= ) ¥(Im(yz)). (3.9)
YET\T

The sum has a uniformly bounded finite number of nonzero terms for z in a fixed compact subset

of H. By Mellin inversion, the rapid decay of ¥” and Cauchy’s theorem, we have

BE(T,2) = /(2) M (s)E(s, 2) Qd; = V;I’I(AF(&) + /( » TN (s)E(s, 2) ;; (3.10)

Let ¢ = E(V,) be an incomplete Eisenstein series. Note that pu(¢) = ¥*(1). By comparing

(3.10) and (3.8), we may express the Fourier coefficients ¢, (y) in the Fourier series ¢(z) =
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Y nez Pn(y)e(nz) as

[ YO Apm) o ds i

o) = [ gy e 5 (n#0), (@1
_N(QS) A s s s 1-s ﬁ n =

o) =BG+ [ W@ ) 5 (n=0).  (12)

3.3 Main Estimates

We prove a level aspect analogue of Holowinsky’s main bound [24, Corollary 3]. To formulate
our result, define for each normalized holomorphic newform f and each real number x > 1 the

quantities

L(ad f, § + it)
(14 [#])10

< (1 +2|A 2—1/2
yiy(a) — Dossl1+ 2001/ /

og(er?L@df D) 00 = TadrD

’ dt. (3.13)

In §3.5 we shall refer only to the definitions (3.13) and the statement of the following theorem,

not its proof.

Theorem 3.3.1. Let f be a normalized holomorphic newform of weight k and squarefree level

q. If ¢ is a Maass eigencuspform, then

HEO) ! log(qk) M (gk)V/2.

pg(1)

If ¢ is an incomplete Fisenstein series, then

fr (@ 5 )
D) " (D) e 8@k My (ah)!/2 (1 + Ry (k).

=
&

In this section k is a positive even integer, f is a normalized holomorphic newform of weight
k and squarefree level ¢, and ¢ is a Maass eigencuspform or incomplete Eisenstein series. In
§3.3.1 we reduce theorem 3.3.1 to a problem of estimating shifted sums (see Definition 3.3.2).
In §3.3.2 we apply a refinement of [24, Theorem 2] to bound such shifted sums. In §3.3.3 we
complete the proof of theorem 3.3.1.

3.3.1 Reduction to Shifted Sums

Fix once and for all an everywhere nonnegative test function h € C°(R? ) with Mellin transform
W (s) = fooo h(y)y=*~!dy such that h"(1) = u(1). In what follows, all implied constants may

depend upon h without mention.
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Definition 3.3.2. To the parameters s € C, | € Z4o and x > 1 we associate the shifted sums

Sitay= S MM G

vm  /n

neN
m:=n+leN

where I;(I,n,z) is an integral depending upon our fixed test function h:

o0 . d
Is(l,n,x):/ haxy)ks(ly) kg (my) s (ny)y 1Ey, m:=n+1.
0

Our aim in this section is to reduce theorem 3.3.1 to the problem of bounding such shifted
sums. We shall subsequently refer to the statement below of Proposition 3.3.3 but not the details

of its proof.

Proposition 3.3.3. Let Y > 1. If ¢ is a Maass eigencuspform of eigenvalue 1/4 + 12, then

Mf(¢) —1/2
E g Sir(dl,dY) + Og (Y ).
pg(1) Y,Uf = \/ e
\l|<Y1‘*'E

If = E(¥,-) is an incomplete Eisenstein series, then

pr(@) w1 AL 4 it) "
pr(l)  p(1) N Y,uf(l)/lR (1 + 2it) le%o \F dzqszt (dl,dY) o
i<y t+e
1+ Rs(qk
+ O¢>,e (Y17;§Q)> .

Our proof follows a sequence of lemmas. Let k, f,q,Y, ¢, h be as above and let hy be the
function y — h(Yy). To hy we attach the incomplete Eisenstein series F(hy,z) by the usual

recipe (3.9).

Lemma 3.3.4. We have the following approzimate formula for the quantity ps(¢):

Yir(o) =3 / hy (dy) / o) ) T + 0 2 (1)

dlg

Proof. By Mellin inversion and Cauchy’s theorem as in (3.10), we have

Yip(6) = up(E(hy, ) — / o PO (B 00) 5

211
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The argument of [24, Proof of Lemma 3.1a] shows without modification that

ds

YY2,,(1); 3.14

[RACIENEERD
since the proof is short, we sketch it here. By the Fourier expansion for E(s,z) and the
rapid decay of ¢(z) as y — oo, we have F(s,2)¢(z) <4 |s|9() for Re(s) = 1/2 and z in
the Siegel domain {z : = € [0,1],y > 1/2} for T\H. By the rapid decay of h" we have
RN ()Y S E(s,2)p(2) <4 Y1/2|5|72 for s, z as above; the estimate (3.14) follows by integrating in
z against p1¢ and then integrating in s.

Having established that Y s (¢) = pus(E(hy,-)$) + Op(Y/2us(1)), it remains now only to
evaluate p¢(E(hy,-)¢). Let T'o\I'/T'o(q) = {0} be a set of double-coset representatives as in
§3.2.1, and set

dy = Too : Too NoTo(q)o ).

By decomposing the transitive right T'-set T'o\I" into T'g(g)-orbits
Loo\I' = T oo \T'so0To(q) = Uo (0 ' Tewo N To(g)\o(q)),

we obtain

E(hy,z) = S hy (Im(ovz)).
7E€T\I'/To(a)
Y€ T aeaNTo(g)\o(q)

By invoking the T'g(g)-invariance of z — &(2)|f|*(2)y* dz# and unfolding the sum over v €

o 1T wo NTo(q)\Io(g) with the integral over z € T'o(q)\H, we get

i dr dy
—-

pp(E(hy, o) = > hy (Im(02))8(2)| f1*(2)y

€T o \T/To(q) ¥ o~ ' ToooMTo(@)\H Y
The change of variables z — o1z transforms the integral above into

dx d
/ hy (9)8(2)| {2 (0 ) Im(o 1 2)F 2228,
I'wNoTo(q)o—1\H )

Integrating over a fundamental domain for I's, NoTo(q)o™t = {£ (1 dfi”) :n € Z} acting on H,

we get
p dr dy
—

e’} do
/y_o’“’(y) [E:O¢(z)|f\ (™ 2 m(r 12

Applying now the change of variables z — d,z gives

p drdy
v

/ " v (doy) / o(doz) | flio (% )2 (2)y
y=0 =0
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Since f|po~? (d" 1) = 4 f by the consequence (3.5) of Atkin-Lehner theory (using here that ¢

is squarefree), we find that

By ) = Y /OO y/ o(do2) | f12(2)y LY.

o €T \T/To(a) v
Since {d,} = {d : d|q}, we obtain the claimed formula. O

In the expression for Y u(¢) given by Lemma 3.3.4, we expand ¢ in a Fourier series ¢(z) =

> ez @1(y)e(lx) and consider separately the contributions from [ in various ranges; specifically,

we set
> ! dx d
S5=3 / hy (dy) / doldy)|f2 ()" T,
dlq 7v=0 =0 Yy
S h (dy) d kdxdy
(0,y1+¢) —Z v (dy) Z oi(dy)| 12 (2)y
dq Y =0 g<|ij<yi+e
d:cd
Soyite = Z/ hy dy/ > auldy)lfI( )’f Y
dlq =0 >y 1+e
so that
= ' 2 ) d dy
S| hvldy) [ é(d2)|fIP(2)y 7 = S0t Sy + Sayise (3.15)
dlq y=0 z=0

We treat these contributions in Lemmas 3.3.6, 3.3.7 and 3.3.8, respectively; in doing so we shall

repeatedly use the following technical result.

Lemma 3.3.5. The quantity ps(E(hy,-)) satisfies the formulas and estimates

1
wp(Elhy,)) = 2/ iy ( dy/ \f|<>kd9;§y

dlq
= Yur(1)(1+ Ef(qY))

= Vi) (140 (Y2 Rs(ah)))

where

272 x\sT(s+k—1) {(s) L(ad f,s) ds
) T'(k) ¢(2s) L(ad f,1) 2mi

E(z) = — h(s) [ —
s@ == e (5

Moreover, ps(E(hy,-)) < Ypus(1).

Proof. The first equality follows from the same argument as in the proof of Lemma 3.3.4, the
second from the Mellin formula and the unfolding method by a direct computation, the third
from the bounds |T'(k — 1/2 +it)] < T(k — 1/2)] < k~Y2T(k), ¢(1/2 +it) < (1 + |t))V/*

and |((1 4+ 2it)| > 1/log(1 + |t|) as in [66, p.7]. Finally, because the quantity ps(E(hy,-)) is
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majorized by the integral of the I'-invariant measure jiy over the region on which the function
P o\H 2 z — hy(y) does not vanish and because that region intersects < Y fundamental

domains for T\H [29, Lemma 2.10], we have ps(E(hy,-)) < Yur(1). O

Lemma 3.3.6 (The main term Sy). If ¢ is a Maass eigencuspform, then ¢o(y) =0 and Sp = 0.
If ¢ is an incomplete Eisenstein series, then

o v (M2 1, (LRG0

Proof. If ¢ is a Maass eigencuspform then ¢g(y) = 0 holds by definition, hence Sy = 0. Suppose
otherwise that ¢ is an incomplete Eisenstein series. It follows from (3.12) that for every y € R
such that hy (y) # 0, we have ¢o(y) = () /(1) +04(Y ~1/2). Thus two applications of Lemma
3.3.5 show that

S = pr(E(hy.) (jﬁ’;w 1/2>)

vt (140 (B480)) (49,
- (00 (242)

0uy 112

Lemma 3.3.7 (The essential error term Swo,y1+<))- If ¢ is a Maass eigencuspform, then

Ao (1
Soyite = Y ¢Sf§:éﬁAdeY)

0<|l|<y 1+ dlq

If ¢ is an incomplete Eisenstein series, then

UM (% +it)
%wmz/—i—f Sie(dl, dY) o
L 2 N dZIq

dt

Proof. Follows by integrating the Fourier expansion (3.2) of a newform, the Fourier expansion
(3.6) of a Maass cusp form, and the formula (3.11) for the non-constant Fourier coefficients of

an Eisenstein series. O
Lemma 3.3.8 (The trivial error term Ssyi+:). We have Ssy1+e <o Y 10ns(1).

Proof. Lemma 3.3.8 follows from Lemma 3.3.5 and the following claim: for all y € R% such
that hy (y) # 0, we have Z\ZIZY”E |41(y)| <pe Y. The claim is proved in [24, §3.2], as
follows. When ¢ is a cusp form of eigenvalue 1/4 + 2, so that ¢;(y) = y~/?Xy(1)kir(ly), the

claim follows from the exponential decay of [ +— ;- (ly) for [ > Y'*+¢ and y < Y ! together with
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the polynomial growth of [ — Ag(l). When ¢ is an incomplete Eisenstein series, the integral
formula (3.11) and standard bounds for the K-Bessel function show that for each positive integer
A, we have ¢;(y) <gea T(O)YATY2(|7A(1 + Y/|l|)%; the claim then follows by summing over
1] > Yite, O

Proof of Proposition 3.3.3. By Lemma 3.3.4 and equation (3.15), we have

ﬂf<¢) B 1 71/2
pr(l) — Yup(1) (So+ S(o,y1+e) + Soyiee) + 0p (V7).

Proposition 3.3.3 follows by combining the results of Lemma 3.3.6, Lemma 3.3.8 and Lemma

3.3.7. O

3.3.2 Bounds for Individual Shifted Sums

We bound the individual shifted sums appearing in Definition 3.3.2; in subsequent sections we
shall need only our main result, Corollary 3.3.12. We first recall a special case of Holowinsky’s

bound [24, Theorem 2].

Theorem 3.3.9 (Holowinsky). Let € € (0,1). Then for x > 1 and | € Zx,, we have

z[,<.(L+2[A¢(p)I/P)
log(ex)?—¢

> Pym)s(n)| < 7(D)
neN

m:=n+IlEN

max(m,n)<xz

Unfortunately, theorem 3.3.9 is insufficient for our purposes because 7(gl) can be quite large,
even larger asymptotically than every power of log(eq), when ¢ has many small prime factors.

The following refinement will suffice.

Theorem 3.3.10. With conditions as in the statement of theorem 3.3.9, we have

z[[,<.(1+2[Ar(p)I/p)
log(ex)?—¢

> rmrs(n)] <. (3.16)

neN
m:=n-+leN
max(m,n)<z

where all implied constants are absolute.

Proof. In [48, Thm 3.1], we generalized Holowinsky’s bound [24, Thm 2] to totally real number
fields F. Along the way we proved a pair of results [48, Thm 4.10] and [48, Thm 7.2] either of
which imply theorem 3.3.10. For completeness, we shall give the argument here in the special

case F = Q, which borrows heavily from that of Holowinsky; up to (3.20) we essentially recall
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his argument, and after that introduce our refinement. Let A(n) = |A¢(n)|, so that
A is a nonnegative multiplicative function satisfying A(n) < 7(n). (3.17)

We may assume that 1 <[ < z. Fix a € (0,1/2) (to be chosen sufficiently small at the end of
the proof) and set

(0%

y=a% s=aloglog(z), z=ua'".

For z >, 1 we have 10 < z < y < x, as we shall henceforth assume. For each n € N, write
m =n+ 1 € N. Define the z-part of a positive integer to be the greatest divisor of that integer
supported on primes p < z. There exist unique positive integers a, b, ¢ such that ged(a,b) = 1

and ac (resp. be) is the z-part of m (resp. n); such triples a, b, ¢ satisfy
plabc=p <z, ¢|l, and ged(a,b) =1. (3.18)

Write N = Uy p,cNgpe for the fibers of n — (a,b,¢). The assumption (3.17) implies A(m)A(n) <
45 X(ac)A(be), so that

SoAmam) = Y DT Am)An)

n€eNN[1,z] a,b,c n€NypN[1,z]

4° Z Aac)A(be) - #(Nape N [1, 2]).

a,b,c

IN

Holowinsky asserts that Rankin’s trick implies that the contribution to the above from a,b,c
for which |ac| > y or |be| > y is <44 wlog(z)~# for any A; we spell out an alternate proof
of this assertion in [48, Lemma 7.3]. Now, an integer belongs to N only if it satisfies some
congruence conditions modulo each prime p < z (see [24, p.14], or [48, Lemma 7.3] for a detailed
discussion); as in [24] or [48, Corollary 7.8], an application of the large sieve (or Selberg’s sieve)

shows that if |ac| <y, |bc| <y and z > 32, then*

z+ (yz)? l

#(Nabc N [1,:17]) < 10g(2’)2 CQ(Z)(abC_ll) ’

(3.19)

Since (y2)? <4 7, log(2)? <, loglog(z)~?log(x)?, 4° <. log(x)® (for a <. 1), and ¢(abc™ 1) >

4This bound is slightly poorer than that obtained by Holowinsky because we have been
more precise in our calculation of the residue classes sieved out by prime divisors of ¢~ !'I; the

discrepancy here does not matter in the end.
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(™) p(a)p(b), we see that theorem 3.3.10 follows from the bound®

1 1 YA(b 2A
> oy 3 A coioned [T (1422 o)
m co(l/ ‘ iz pla)e(b) P
c ac|<y |bc|<y p<z
ple=p<z plab=p<z

which we now establish. Note first that

2

)\ kJFUp(C)
> Y e < (I 321)
lac|<y |bc|<y p<z k>0
plab=p<z

Using that A(p¥) < k+ 1 and p > 2 and summing some geometric series as in [48, Lemma 7.4]

gives

k; 1
+1+Z V+ + LA
k,>1

>

k>0

o(p

for each v > 1, while for v =0

k
k )\(p) Lo 1) 4 Z /\(pk)
Z _ (1 N )\(p)) 1+ (¢(p) p> k>2 $(pF)

Alp)
o(p P 1+ =)

() (2 5)

Thus the LHS of (3.20) is bounded by ((2)*%¢(1) [[,<.(1+ A(p)p~1)?, where v is the multi-

k>0

IN

plicative function

1 1l/e 9
(1) = zl: E <b(l//c) pl:[lc(3u +3)% (3.22)

By direct calculation and the inequality p > 2, we have

a 1 9 z+1 _
Y(p*) = _1+pa<(a+1 1—p —12 ><1—|—Cp1

1-p

for some constant C' < 10° so that ¢ (1) < [],;(1+ Cp™") < loglog(x)“ for 1 <1 < z. This
estimate for (1) establishes the claimed bound (3.20). O

Remark 13. A bound of the form (3.16) but with an unspecified dependence on the parameter
I may be derived from the work of Nair [45]. We have attempted to quantify this dependence

°It is here that Holowinsky gives up the factor 7(I).
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by working through the details of Nair’s arguments, and have shown that they imply

2 [[,<.(1+2[As(p)|/p)

Do Pl < )=
m:=n—+lEN

max(m,n)<z

(3.23)

for some m > 2 (probably m = 2) and all 0 # |I| < 2'/16=¢; in deducing this we have used the
Ramanujan bound [Af(p)| < 2. This strength and uniformity falls far short of what is needed
in treating the level aspect of QUE.

A mild strengthening of (3.16) subject to the additional constraint 4/> < x appears in the
recent book of Iwaniec-Friendlander [10, Thm 15.6], which was released after we completed the
work of this chapter. The condition 4/? < 2 makes their result inapplicable in our treatment of
the level aspect of QUE, where [ can be nearly as large as x. However, it seems to us that one

can remove this condition by a suitable modification of their arguments.

Recall from Definition 3.3.2 that the sums Ss(I, z) involve a certain integral I(l,n,x).

Lemma 3.3.11. For each positive integer A, the integral I5(1,n,x) satisfies the upper bound

I'(k—1) max(m, n) -4
Is(l,n,z) <4 W\/mn - max (1, —r

uniformly for s € iIRU (=1/2,1/2), n € N, l € Z o, and & > 1. Here m :=n+1{, as usual.

Proof. Let s,1,m,n be as above, and let A > 0. Then |rs(y)| < 1, so that by the Mellin formula

we have

R A

- /(A) W (w)z® / ) Y kg (my)rg(ny)

+

ot a N dw
- (47T(m+n))k_1 /(A)h ( )<47r(m;")> Plw+k-1) 27ri

cu T o (it

dy dw
Yy 2

(4m)F1

Here we have used the arithmetic mean-geometric mean inequality, the well-known bound [72,

Ch 7, Misc. Ex 44]

I'w+k—1)

T = 1) <a (k=D + 71+ [w]?) < kA1 + w]?)

for Re(w) = A, and the rapid decay of h"". The case A = 0 gives I,(I,n,z) <}, (47) *H T (k —
1)4/mn, which combined with the case that A is a positive integer yields the assertion of the
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lemma. O
Remark 14. See [48, Lem 4.3] and [48, Cor 4.4] for a fairly sharp refinement of Lemma 3.3.11.

Corollary 3.3.12. The shifted sums Ss(l,x) satisfy the upper bound

. L(k—1)  zk 2[A¢(p)]
Sy(l,2) <. (A7) Tog(ah)Es pgk <1+ 5 ) (3.24)

uniformly for s € iRU (—1/2,1/2) and x > 1.

Proof. Let us set X = xk and temporarily denote by T (z,!,¢) the right-hand side of (3.24)
without the factor (47)"**1T'(k — 1). By Definition 3.3.2 and Lemma 3.3.11, we need only show

that 4
3 Ar(m)As(n)] - max <1, W) <. Ty(x,1,e) (3.25)
m::nrffleN

for some positive integer A. Take A = 2. We may assume that X = zk > 10. By theorem 3.3.10
and the Deligne bound |A;(p)| < 2, the left hand side of (3.25) is

n=0

) - log(X) 2—¢ 2|/\f(p)|
nAgn [ Yo\ -
<e Tf(x’l7€)22 2 <10g(2nX)) X<};[2nX 1+ p

S log(2"X)
(A-1)n
< Ty(x,le) E 2 exp <4log og(X) >

n=0

The inner sum converges and is bounded uniformly in X, so we obtain the desired estimate

(3.25). O

3.3.3 Bounds for Sums of Shifted Sums

We complete the proof of theorem 3.3.1 by bounding the sums of shifted sums that arose in

Proposition 3.3.3.

Lemma 3.3.13. For each € € (0,1) and each squarefree number q, we have

Z d < qloglog(e®q) q
P log(dk)2—¢ log(qk)?== log(qk)?—2"

Proof. Suppose that ¢ is the product of » > 1 primes ¢; < -+ < g,. Let p1 < --- < p, be the

2—¢. we have chosen

first r primes, so that p; < ¢; for i = 1,...,r. Define f(x) = z/log(ezk)
this particular definition so that 3 is increasing on R>; and f(z) < z/log(zk)?>~¢ for z € R>;.
The map

R>1 22— logf(e®) =2 — (2 —¢)log(2 + )



75

is convex, so that for each a = (ay,...,a,) € {0,1}" we have

Blgi" -+ qir)
Blqr---ar)

B(pi'ay® - qir)

B rytes” --qr) _ o Bert-ep)
B(p1g2---qr)

Bpipags---ar) — — Blpr---pr)

< <

(3.26)

The prime number theorem implies that log(p; - - - p,) = 7log(r)(1 + o(1)), where the notation
o(1) refers to the limit as r — oo; we may and shall assume that r is sufficiently large (and at
least 100) because the assertion of the lemma holds trivially when ¢ has a bounded number of

prime factors. Set ro = [r/10]. Observe that

Prorgt1-pr = exp(rlog(r) — (r —ro)log(r — ro) + o(rlog(r))) (3.27)
= exp (7“0 log(r) 4+ (r — o) log (r—rro> + o(r 10g(7“))>
= exp (rolog(r)(1 +o(1)))

< (pr--pr)'?,

and

log(p -+ pry) = rolog(ro) (1 + o(1)) = rlog(r)(1 + o(1)) = log(py - - - pr)- (3.28)

Let Qo denote the set of all a € {0,1}" for which a1 + -+ + a, < ro and Qp the set of all
a € {0,1}" for which a1 + -+ + a, > 19, so that {0,1}" = Qo UQ;. Then by (3.27) we have

Z /B pl ! 7")) S 27"5(1;"(—2)7‘10+1p)p7") < 2T(p1 ...pr)*7/8 S \8/5. (329)
a€fg r

If a € Qy, then (3.28) implies B(p* ---p&r)/B(p1---pr) < pi* - p2 =1 so that

Z el p1 << Z (14 0(1))e” loglog(p: - - - pr) < loglog(e®q). (3.30)
agl d|py - Pr

Since B(x) < z/log(ex)?¢ for x € R>1, it follows from (3.26), (3.29), and (3.30) that

Z 1og

d at ., 40r
dlg Z B( Z B(q} q") < loglog(e®q),
7 o (q) —~.. Blaa)
log(q k:) —e a€{0,1}
which establishes the lemma. O

Corollary 3.3.14. Let Y > 1 with Y < ¢y log(qk)®® for some c1,co > 1. Then our sum of
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shifted sums satisfies the estimate

T(k—1) qkY 2\
S Sy (dl, dY) Cerey e (E—1)  gky I1 (1+ |f(p)|>,

k—1 -
P (4m)*=t log(gk)*~= 20 P
uniformly for s € iRU (—1/2,1/2) and x > 1.
Proof. By Corollary 3.3.12, we have
T(k-1) |)\f
> S.(dl,dY) <. WY 1T <1 4222 Z ol dk (3.31)

dlgq p<qkY

By the Deligne bound |A¢(p)| < 2, the part of the product in (3.31) taken over gk < p < gkY is
< log(eY)? <, ¢, loglog(e®qk)*. The claim now follows from Lemma 3.3.13. O

Lemma 3.3.15. Lete >0, Y > 1. If ¢ is a normalized Maass eigencuspform, then

Z Ao (D] <o Y1/

o<|l|<y1+e

where (as indicated) the implied constant may depend upon ¢. On the other hand, if t € R, then

Z At (D] <. y1/2+2e
o<|l|<Y1+e |l|

where the implied constant does not depend upon t.

Proof. Follows from the Cauchy-Schwarz inequality, partial summation, the Rankin-Selberg

bound (3.7) for Ay and the uniform bound |X;(1)] < 7(I) for A. O

Proof of theorem 3.3.1. Suppose that ¢ is a normalized Maass eigencuspform of eigenvalue % +

r2. By Proposition 3.3.3, we have

pi(9) 1 M) o s
pr(1) ) S D Sin(dl,dY) + Og (Y712, (3.32)

Yuf(l) o<|l|<Yy1+e dlq

Recall from (3.3) that
I'k—1)
wp(l) < q7(47r)’f—1 L(ad f,1)
and recall the definition (3.13) of M(gk). We shall ultimately choose ¥ < log(gk)°™), so
Corollary 3.3.14 gives the bound

Y,Uf O ZS" dl,dY) <. log(qk)* M (qk). (3.33)
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By (3.33) and Lemma 3.3.15 applied to (3.32), we find that

Ao (l _
/’[/f( ) 0<‘l|<Y1+5 |l‘

Lpe YVE2Elog(qk)*My(gk) + Y12,

Choosing Y = max(1, My (gk)™") < log(gk)®™) gives the cuspidal case of the theorem.
Suppose now that ¢ = E(¥,-) is an incomplete Eisenstein series. Proposition 3.3.3, Corollary

3.3.14 and Lemma 3.3.15 show, as in the cuspidal case, that

pr(d)  w(e) 1/2+42¢ e / A (5 +it) 1+ Ry(qk)
—_ = Y 1 k) Mg (qk —t | dt+ ——
qu(l) /1*(1> Lope og(qk) f(q ) ]R 5(1 + 2it) y1/2
1+ Rs(gk)
<y YV log(qk) My(gh) + —75
The same choice of Y as above completes the proof. O

3.4 An Extension of Watson’s Formula

Watson [70], building on earlier work of Garrett [11], Piatetski-Shapiro and Rallis [49], Harris
and Kudla [19], and Gross and Kudla [18], proved a beautiful formula relating the integral
of the product of three modular forms to the central value of their triple product L-function.
Unfortunately, Watson’s formula applies only to triples of newforms having the same squarefree
level. In §3.5 we shall refer only to the statement of the following extension of Watson’s formula

to the case of interest, not the details of its proof.

Theorem 3.4.1. Let ¢ be a Maass eigencuspform of level 1 and f a holomorphic newform of

squarefree level q, as in §3.2. Then

2

ey O P ) 22 1 AGxfxAD)
2 .
o P 288 (P 2zta) S48 DAGL?

y2

The L-functions L(- - - ) = [, Lp(- - - ) and their completions A(--+) = Log(- -+ )L(--+) = [, Lo(--+)
are as in [70, §3].

Remark 15. For simplicity, we have stated theorem 3.4.1 only in the special case that we need
it, but our calculations (Lemma 3.4.3) lead to a more general formula. Let ¢; (j = 1,2,3) be
newforms of weight k; and level ¢;. We allow the possibility k; = 0, in which case we require that
1; be an even or odd Maass eigencuspform. If k1 + k2 + k3 # 0 or some prime p divides exactly

one of the ¢;, then it is straightforward to see that f Y1203 = 0. Otherwise k1 +ko+k3 = 0 and
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each prime divides the g; either 0,2 or 3 times, so one can read off from Watson [70, Theorem

3], Ichino [26] and Lemma 3.4.3 the identity

|fx¢1¢2¢3|2 CLA(F, %1 X g X ) HC
IT [y [v;? _8 [TA(1,adv;) v

(3.34)

where X = &_FO ¢)\H with vol(X) := vol(T'g(1)\H) = /3, ¢ is Qe € {0,1,2} from [70,
Theorem 3], ¢, = 1 if p divides none of the ¢;, ¢, = p~! if p divides exactly two of the ¢;, and
cp =p 11+ p (1 +¢p) if p divides all of the ¢; with —e, the product of the Atkin-Lehner
eigenvalues for the v; at p as in [70, Theorem 3].

Watson proved his formula only for three forms of the same squarefree level because Gross
and Kudla [18] evaluated the p-adic zeta integrals of Harris and Kudla [19] only when (the
factorizable automorphic representations generated by) the three forms are special at p; Harris
and Kudla had already considered the case that all three forms are spherical at p. Ichino [26]
showed that the local zeta integrals of Harris and Kudla are equal to simpler integrals over the
group PGL(2,Q,). Ichino and Ikeda [27, §7, §12] computed these simpler integrals when all
three forms are special at p. Since we are interested in the integral of ¢|f|?> when ¢ has level 1
and f has squarefree level ¢, we must consider the case that two representations are special and
one is spherical. We remark in passing that Bocherer and Schulze-Pillot [4] considered similar
problems for modular forms on definite rational quaternion algebras in the classical language,
but their results are not directly applicable here.

To state (a special case of) Ichino’s result, we introduce some notation. In what follows,
v denotes a place of Q and p a prime number. Let G = PGL(2)/Q, G, = G(Q,), Koo =

0(2)/{+1}, K, = G(Z,), and G, = G(A) = [[, Gy, where A =[], Q, is the adele ring of Q.
Regard ¢ and f as pure tensors ¢ = ®¢, and f = ®f, in (factorizable) cuspidal automorphic
representations my = @mg , and Ty = @7y, of Ga = H/G . Set f, = (_1 ) fyand f = ®f,.
Then f, = f, for all (finite) primes p. Although the vectors ¢, and f, are defined only up to a

nonzero scalar multiple, the matrix coefficients

<gv'¢va¢v> o <gv'fvafv> - <gv'fv7f'u>

Poel0) =g gy P = TGy S =T

are well-defined; here g, belongs to G, and (, ), denotes the (unique up to a scalar) G,-invariant
Hermitian pairings on the irreducible admissible self-contragredient representations 7y, and
7fv. Let dg, denote the Haar measure on the group G, with respect to which vol(X,) = 1.

Define the local integrals

I, = /G Do (9)P 1.0(9.)® 5.0 (90) g

v
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and the normalized local integrals
1

IN _ Cv(2)3 Lv<%,¢><f><f) - I
Y\ G(2) Ly(1,ad ¢)L,(1,ad f)2 o

(3.35)

Theorem 3.4.2 (Ichino). We have I, = 1 for all but finitely many places v, and

‘ 2

dx d

‘fFO(Q)\H oL 1*y* % 1 A0 x fx f) Hf
2 T Q v

dw da d 8 A(1,ad @)A(1,ad f)2

fF\H |¢|2 dey (ng(q)\H |f|2yk yZy) ( JA( f)

v

Proof. See [26, Theorem 1.1, Remark 1.3]. We have taken into account the relation between
classical modular forms and automorphic forms on the adele group G (see Gelbart [12]) and the
comparison (see for instance Vignéras [69, §II1.2]) between the Poincaré measure on the upper

half-plane and the Tamagawa measure on Gy . O

We know by work of Harris and Kudla [19], Gross and Kudla [18], Watson [70], Ichino [27],
and Ichino and Ikeda [27] that Io =1 and jzp =1 for all primes p that do not divide the level
q. We contribute the following computation, with which we deduce theorem 3.4.1 from theorem

3.4.2.
Lemma 3.4.3. Let p be a prime divisor of the squarefree level q. Then I}, =1/p.

Before embarking on the proof, let us introduce some notation and recall formulas for the
matrix coefficients ®4, and ®s,. Let G, = PGL2(Qy), let K, = PGL2(Z,), and let A, be
the subgroup of diagonal matrices in G,. Recall the Cartan decomposition G, = K,A,K,. For
y € Qy we write a(y) = (V) € A,.

The representation 74, is unramified principal series with Satake parameters aq(p) and
Bg(p); for clarity we write simply a = a4 (p) and 5 = By (p). The vector ¢, lies on the unique K-
fixed line in 7y ;. The matrix coefficient ®¢ , is bi- K, -invariant, so by the Cartan decomposition
we need only specify ®4 ,(a(p™)) for m > 0, which is given by the Macdonald formula [5,
Theorem 4.6.6]

1 1—p 18 1-p 1'%
pfm/Z a™ b 3 +Bm B

3.36
1+pt 1-8 1-% (3:36)

Py p(a(p™)) =

The representation 7y, is an unramified quadratic twist of the Steinberg representation of
Gp. The vector f, lies on the unique I,-fixed line in 7y ,, where I, is the Iwahori subgroup of
K, consisting of matrices that are upper-triangular mod p. Thus to determine ®y ,, we need
only specify the values it takes on representatives for the double coset space I,\G,/I,, whose

structure we now recall following [15, §7] (see also [27, §7] for a similar discussion). Define the
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elements

w1 = ) Wwo = 5 W =
1 P P

of Gp. Note that since G, = PGL2(Q,), we have w? = w3 = w? = 1. For w in the group
W, = (w1, ws) generated by w; and ws, let A(w) be the length of the shortest string expressing
w in the alphabet {w, w2}, so that A(w;) = AM(wz) = 1. Extend A to the group W = (wy, Wa, W),
which is the semidirect product of W, by the group of order 2 generated by w, via the formula
AMw'w) = M(w) when w € W,, so that in particular A(w) = 0. We have a Bruhat decomposition

Gp = Uy ey lpwlp; unwinding the definitions, this reads more concretely as

7

p p
Gp = unezlp Ip (] unezlpwl Ip s

1 1

but we shall not adopt this perspective. With our normalization of measures we have vol(l,wl,) =
(p+1)~*p %) Suppose temporarily that 7, is (the trivial twist of) the Steinberg representa-

tion. The matrix coefficient ®¢ , is bi-Ip-invariant and given by
B (i) = (-1 (—p )
for all j € {0,1} and w € W,. In particular
O p(ww)? = p~ ). (3.37)

In the general case that 7¢ ), is a possibly nontrivial unramified quadratic twist of Steinberg, the

formula (3.37) for the squared matrix coefficient still holds.

Proof of Lemma 3.4.3. Having recalled the formulas above, we see that

o= [ R0 dg = 3 vollTul, )y (3.38)
Gp weW
= (p+1)7" ) By p(w)p ™),
wew

where ®4 , is given by (3.36). The evaluation of the Poincaré series

> = o1t (3.39)

l—t
weWw

where t is an indeterminate, is asserted and used in [27, §7], but we need a finer result here. For

w e W let us write p(w) for the unique nonnegative integer with the property that Kywk, =
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Kpa(p“(“’))Kp. Then we claim that for indeterminates x,t we have the relation of formal power

series
5 g _ (2140 50
! 1—at
weW
Note that we recover (3.39) upon taking x = 1. To prove (3.40), observe that since ww;, = waw

and w? = 1, every element w of W is of the form ugp, = w®(wiwz)"wh or Vepn = W (wawy )" wh

for some a € {0,1}, b € {0,1}, and n € Z>o. Computing ugp, and vepy, explicitly to be

p" p"
Uoon = ,  Uolm = )
—n —n
p p
p" p"
U10n = 41 y,  Ulln = 41
n n
p p
p—n p—n—l
Voon = ) Voin = 41 )
n n
p p
pn pn+1
Vion = : y  Ulln = y
—n —-n
p p

we see that this parametrization of W is unique except that u.g9 = vao for each a € {0,1};
furthermore, we can read off that u(ugp,) = 2n + a, that p(vee,) = 2(n + b) — a, and that
Atabn) = MVapn) = 2n + b. Thus

Z ) A w) (1+2)+ Z Zt2n+b Z (x2n+a+x2(n+b)fa)

wew b=0,1n>0 a=0,1
2n+b>0
S YD YD g Y (glet g s
b=0,1n>0 a=0,1
2n+b>0
=(1+z)+1+a)? D tmam
m>0

from which (3.40) follows upon summing the geometric series. We now combine (3.36), (3.38)
and (3.40), noting that the series converge because |a| < p'/? and |3| < p'/?; the contributions
to the formula (3.38) for I, of the two terms in the formula (3.36) for ®4 ,,(a(p™)) are respectively

L-p '3 (L+p )1 +p7")
-1 —1\—1 e}
(p+ )" (A+p) " — 3 =T

9
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and a
LT3 428 +p7Y
1— 1—p=3/28 '

(p+1)'(1+ph) =
5

Summing these fractions by cross-multiplication and then simplifying, we obtain

(1+ap™/?)(1+ Bp~/?)
(1 —ap=3/2)(1 - pp=3/2)

L=p '(1-p7"
Recall the definition (3.35) of I,. The local L-factors are given by (see [70, §3.1])
Ly(1,ad )= Cp(2)7 Ly(1,ad ¢)=[1- an_l)(l - p_l)(l - ﬁQP_l)]_l,

Lp(g.6 % f x ) = [(1—ap™/?)(1 = Bp~/*)(1 — ap™®/%)(1 = gp~2/%) 7",
thus the normalized local integral I, is

P oy (= ep A= Bp T (A apT V(A 4 BpT V)
Ip =P (1717 ) (1_a2p_1)(1_p_1)(1_62p_1) =D

as asserted. O

3.5 Proof of Theorem 3.1.3

We combine theorem 3.3.1 and theorem 3.4.1 with Soundararajan’s weak subconvex bounds [66]
to complete the proof of theorem 3.1.3. Fix a positive even integer k. Let f be a newform of
weight k& and squarefree level ¢q. Fix a Maass eigencuspform or incomplete Eisenstein series ¢.

We will show that the “discrepancy”

=

_ k(@) ple
Di(@) =000~ wD

=

=

tends to 0 as gk — oo, thereby fulfilling the criterion of Lemma 3.1.4, by combining the com-

plementary estimates for D(¢) provided below by Proposition 3.5.2 and Proposition 3.5.3.

Lemma 3.5.1. The quantities My(x) and Ry(x) (3.13) appearing in the statement of theorem
3.3.1 satisfy the estimates

log(qk) "<

1/6+4¢ 1/2
My(gk) << log(ak)/*"“L{ad £, D'/%,  Rylgk) <c — 373

< log(gk)°.

Proof. The bound for My(qk) follows from the proof of [25, Lemma 3] with “k” replaced by
“gk,” noting that A\¢(p)? <1+ A¢(p?) for all primes p. The bound for Rs(gk) follows from the
arguments of [66, Example 1], [25, Lemma 1] with “k” replaced by “gk” and the lower bound
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(3.4) for L(ad f,1). O
Proposition 3.5.2. We have D(¢) <4 log(qk)'/1?*<L(ad f,1)1/4.
Proof. Follows immediately from theorem 3.3.1 and Lemma 3.5.1. O

Proposition 3.5.3.  We have D(¢) <4 log(qk)°+L(ad f, 1), where 6 = 1/2 if ¢ is a

Maass eigencuspform and § = 1 if ¢ is an incomplete Fisenstein series.

Proof. If ¢ is a Maass eigencuspform, then the analytic conductor of ¢ x f x f is < (qk)%, so
theorem 3.4.1 and the arguments of Soundararajan [66, Example 2] with “k” replaced by “gk”

show that
’ 1s(9)
pg(1)

If ¢ = E(¥,-) is an incomplete Eisenstein series, then the unfolding method as in Lemma 3.3.5

> Lexfxf3) 1
SO Gk L(ad £,1)° F log(qk) < L(ad £,1)°"

and the bound for R;(g) given by Lemma 3.5.1 show that

pe(e) o) _ 2n° WA (s <i>sr<s+k—1> ((s) L(adf,s) ds
pr)  p@) " q Jap 4 T(k)  ((25) L(ad f,1) 2mi
o —1+¢
<4 Ry(gk) <. lf((zm.

Proof of theorem 3.1.3. By Propositions 3.5.2 and 3.5.3, there exists § € {1/2,1} such that
Dy(¢) <¢,- min (log(qk)_5+5L(ad £, 1) log(qk)Y/Y* < L(ad f, 1)1/4> ;

it follows by the argument of [25, §3] with “k” replaced by “gk” that Ds(¢) — 0 as gk — co. O
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