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Abstract

In this thesis, network error correction is considered from both theoretical and practical

viewpoints. Theoretical parameters such as network structure and type of connection (mul-

ticast vs. nonmulticast) have a profound effect on network error correction capability. This

work is also dictated by the practical network issues that arise in wireless ad-hoc net-

works, networks with limited computational power (e.g., sensor networks) and real-time

data streaming systems (e.g., video/audio conferencing or media streaming).

Firstly, multicast network scenarios with probabilistic error and erasure occurrence are

considered. In particular, it is shown that in networks with both random packet era-

sures and errors, increasing the relative occurrence of erasures compared to errors favors

network coding over forwarding at network nodes, and vice versa. Also, fountain-like error-

correcting codes, for which redundancy is incrementally added until decoding succeeds, are

constructed. These codes are appropriate for use in scenarios where the upper bound on

the number of errors is unknown a priori.

Secondly, network error correction in multisource multicast and nonmulticast network

scenarios is discussed. Capacity regions for multisource multicast network error correction

with both known and unknown topologies (coherent and noncoherent network coding) are

derived. Several approaches to lower- and upper-bounding error-correction capacity regions

of general nonmulticast networks are given. For 3-layer two-sink and nested-demand non-

multicast network topologies some of the given lower and upper bounds match. For these

network topologies, code constructions that employ only intrasession coding are designed.

These designs can be applied to streaming erasure correction code constructions.
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Chapter 1

Introduction

1.1 Network coding for error correction

In today’s practical communication networks such as the Internet and wireless networks,

reliable data delivery is an important question to address. Traditional approaches to net-

working generally assume forwarding in the network, with robustness to packet loss achieved

by retransmissions of lost packets and/or end-to-end forward error correction. The recent

introduction of network coding, where network packets are mixed at internal nodes, offers

significant benefits in performance and erasure robustness [1, 2].

It is known that mixing, or coding packets at internal network nodes, is required to

maximize the network throughput in multicast transmission scenarios, where all source

information is demanded by all receivers [1]. For these scenarios, it was shown in [3] that

propagating linear combinations of incoming packets (i.e., linear network coding) suffices

to achieve the maximum flow capacity from the source to each receiving node. Further, the

linear combinations employed at network nodes can be randomly selected in a distributed

manner; if the coding field size is sufficiently large the maximum flow capacity can be

achieved with high probability by mixing network packets at internal nodes randomly [4].

Another important benefit of network coding is its robustness to packet losses [2, 5].

Creating linear combinations of packets at intermediate network nodes naturally acts as an

erasure code, as it introduces redundancy to the coded packets so that information at the

destination can be recovered even if only a subset of the coded packets is received.

However, network coding is vulnerable to malicious attacks from rogue users. Due to

the mixing operations at internal nodes, the presence of even a small number of adversarial

nodes can contaminate the majority of packets in a network, preventing sinks from decod-
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ing. In particular, an error on even a single link might propagate to multiple downstream

destinations via network coding, which might lead to the extreme case in which all incoming

links at all sinks appear erroneous. As a result, the vulnerability of communication systems

that employ network coding to adversarial attacks is an important topic for research.

In networks that employ network coding, one error occurrence can result in many corre-

lated errors in the network as the corrupted data is mixed with uncorrupted data streams.

Classic forward error correction, which assumes independent errors, would fail to recognize

that all erroneous packets originated from a single error occurrence. Therefore, the use

of network coding demands that we redefine the notion of error correction [6, 7, 8]. The

concept of network error correction, shows how to exploit the fact that the errors at the

sinks are correlated and, thus, distill source information as if only one error has occurred.

While studying network error correction, there are two groups of questions to ask. What

is the maximum number of packets that can be securely communicated when an adversary

is present? How to communicate and efficiently reconstruct packets at the sinks? In this

thesis, we provide partial answers to these questions under a variety on constraints on the

network topology, type and level of adversarial attack, heterogeneity and nature of node

capabilities.

1.2 Background and related work

In this thesis, we discuss error correction in packet networks where network coding is em-

ployed at internal nodes. We define network error as an adversarial link or packet whose

value and location in the network are unknown. We consider network error correction in

the context of multicast vs. nonmulticast network connections. In a multicast connection,

all source packets need to be transmitted to all sinks. In a nonmulticast connection, each

of the sinks demands a subset of the source packets. Finally, we define error-correction

capacity region as the set of all information rate vectors corresponding to connections that

can be established successfully under a given error model.

Network coding was first introduced by Ahlswede et al. in 2000 [1]. The famous

example of the butterfly network (see Figure 1.1) highlights the use of network coding to

achieve the maximum flow (or minimum cut) capacity in multicast networks. This seminal

work opened a new field of research of the utility of network coding and its applications to
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network management, robustness and security.
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Figure 1.1: The butterfly network with source s and sinks t1 and t2 is an example of a
network that requires coding to transmit messages x1 and x2 to both sinks. The presence
of the bottleneck link that originates from node d makes network coding necessary to achieve
the multicast rate 2.

Network coding in error-free multicast networks, where all sink nodes demand informa-

tion from all sources, has been extensively studied. It was shown in [3] that linear network

coding is sufficient to achieve the maximum flow capacity from the source to each receiving

node in multicast transmission scenarios. An algebraic framework for linear network coding

was presented in [9]. A decentralized approach to achieve the multicast capacity – random

linear network coding – was proposed in [4], which showed that if the coding field size is

sufficiently large, creating random linear combinations of the incoming packets at internal

network nodes succeeds in transmitting at multicast network capacity with high probabil-

ity. The recent work of [10] proposes universal and robust distributed network codes for

multicast scenarios, such that coding field size does not need to be known a priori.

The information-theoretic network error correction problem, where an adversary arbi-

trarily corrupts transmissions on an unknown set of z links, was introduced by Cai and

Yeung [6, 7, 8]. For a single-source, single-sink network, the capacity of the network with

minimum cut m under arbitrary errors on up to z links is given by the cutset (i.e., minimum

cut) bound

r ≤ m− 2z (1.1)
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and can be achieved by a classical end-to-end error correction code over the multiple disjoint

paths from the source to the sink. The single-source multicast network scenario has the

same capacity region with m being the smallest minimum cut over all sinks, however,

unlike the single-source, single-sink case, network coding is required in order for (1.1) to

be achievable [7, 8]. An alternative approach to network error correction is to equip each

network packet with a cryptographic signature (e.g. [11, 12]). Then, if each network node

checks all packets and all nodes perform network coding, for any errors on up to z network

links the information rate m − z can be achieved in multicast networks without the need

for further information-theoretic network error correction. However, this approach to error

correction is more computationally expensive and may be infeasible at computationally

limited nodes.

Two types of information-theoretic multicast network error correction problem are com-

monly considered. In the coherent case, there is a centralized knowledge of the network

topology and the network code. Network error and erasure correction for this case has

been addressed in [7] by generalizing classical coding theory to the network setting. In the

non-coherent case, the network topology and/or network code are not known a priori. In

this setting, [13] provided network error-correcting codes with a design and implementation

complexity that is only polynomial in the size of network parameters. An elegant approach

was introduced in [14], where information transmission occurs via the space spanned by the

received packets/vectors, hence any generating set for the same space is equivalent to the

sink [14]. Error correction techniques for the noncoherent case were also proposed in [15]

in the form of rank metric codes, where the codewords are defined as subspaces of some

ambient space. These code constructions primarily focus on the single-source multicast case

and yield practical codes that have low computational complexity and are distributed and

asymptotically rate-optimal.

For the noncoherent multisource multicast scenario without errors, the scheme of [4]

achieves any point inside the rate region. An extension of subspace codes to multiple sources,

for a noncoherent multiple-access channel model without errors, was provided in [16], which

gave practical achievable (but not rate-optimal) algebraic code constructions, and in [17],

which derived the capacity region and gave a rate-optimal scheme for two sources. For the

multisource case with errors, [18] provided an efficient code construction achieving a strict

subregion of the capacity region. In this thesis, we derive the error-correction capacity
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region for multisource multicast network scenarios in both coherent and noncoherent cases.

For nonmulticast networks, finding the capacity region of a general network even in the

error-free case is an open problem. The capacity regions of certain nonmulticast network

topologies, such as single-source two-sink networks [19, 20, 21] and single-source disjoint-

or nested-demand networks [9] with any number of sinks, are known to be described by

the cutset bounds in the error-free case. However, cutset bounds are not tight in general

nonmulticast scenarios. Simple examples of nonmulticast networks whose error-free capacity

regions are not described by the cutset bounds or are not polyhedral appear in [22, 23].

In this thesis, we derive upper and lower bounds on the error-correction capacity regions of

general nonmulticast networks. We then consider error correction in two-sink and nested-

demand network topologies, for which some of these bounds match.

The above-described results on multicast network error correction consider upper bounds

and code constructions for the worst-case error model, in which the maximum number of

erroneous network links z must be known in advance. Hence, the existing constructions rely

on the inclusion of a fixed number of redundant bits in each packet. This approach can result

in a very conservative upper bound in a probabilistic setting, for instance, when network

errors occur randomly or some of the errors are corrected by cryptographic means. Our

work gives a fountain-like error-correction code construction suitable for scenarios where an

upper bound on the number of errors is not known a priori. We also look at noncoherent

error and erasure correction under probabilistic error and erasure attack models, and show

that there can be trade-offs between solutions for probabilistic attacks, where the optimal

coding strategy for one increases vulnerability to the other.

1.3 Thesis outline and contributions

The thesis outline and contributions are as follows. In Chapter 2, we describe the basic

network model and definitions that we use throughout this thesis.

In Chapter 3, we look at noncoherent correction of network errors and erasures with

random locations in single-source multicast scenarios. Unlike existing results [7, 13], which

consider performance limits for the worst-case location of a given numbers of errors and era-

sures, we consider the performance of fixed (not necessarily optimal) coding and forwarding

strategies for given (not necessarily worst-case) models of error and erasure locations. In
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this case, random linear code at every node is not always optimal since it improves erasure

resilience at the expense of error propagation. Our approach characterizes decoding success

in terms of the rank of certain matrices corresponding to useful and erroneous information

received at the sink nodes. We use this approach to analyze random coding and forwarding

strategies on a family of simple networks with random error and erasure locations and argue

that there can be trade-offs between solutions designed for error and erasure attacks, where

the optimal solution for one increases vulnerability to the other. Simulation experiments

on randomly generated hypergraphs representing wireless ad-hoc networks support these

observations.

Chapter 4 discusses the combined use of cryptographic-based security and information-

theoretic network error correction and proposes a fountain-like network error correction

code construction suitable for network scenarios with computationally limited nodes. Un-

like previous constructions that are oriented to worst-case error models and include a fixed

number of redundant bits in each packet [13], we incrementally add redundancy until de-

coding succeeds. As a result, our code can be applied in networks where the upper bound

on the number of errors is not known a priori. Our numerical investigations of example

networks, where we optimize the proportion of packets undergoing cryptographic verifica-

tion and/or coding subject to a computational budget constraint, suggest that appropriate

hybrid use of both network error correction and cryptographic verification can outperform

either approach separately.

In Chapter 5, we derive the capacity regions for coherent and noncoherent multisource

multicast network error correction. In both cases, we provide outer bounds on the achievable

rate region for communication and give corresponding communication schemes that operate

at rates matching any point satisfying the outer bounds. Our codes are based on random

subspace code design [14] and are ”end-to-end,” that is all nodes except the sources and

the sinks are oblivious to the adversary present in the network and may simply implement

predesigned linear network codes (random or otherwise). The codes are also fully distributed

– different sources require no knowledge of the data transmitted by their peers.

In Chapters 6 and 7, we derive lower and upper bounds on the error correction capacity

regions of general nonmulticast networks. In Chapter 6, we consider error correction in

general nonmulticast networks. We give the achievability construction in the presence of

errors based on the linear achievable region in the error-free case. We also refine the cutset
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upper bounds on the error correction capacity regions of non-multicast networks based on

the topological structure of network cuts.

In Chapter 7, we specifically look at two-sink and nested-demand nonmulticast network

topologies whose capacity regions are known to be given by the cutset bounds in the error-

free case and show that it is not the case in networks with errors. We make a connection

between erasure correction in real-time streaming data systems and nonmulticast erasure

correction problems in 3-layer networks with nested sink demands. We further develop a set

of tools that can be applied to construct cutset-refining upper bounds for nested-demand

network topologies and use them to demonstrate how to design streaming systems tolerant

to erasures so that no intersession coding is required between packets at different streaming

checkpoints. In particular, we show that intrasession coding is sufficient to achieve the

error and erasure correction capacity in 3-layer networks with nested demands in the case

of one network erasure for any number of checkpoints. We also use the established proof

techniques to show that our achievability construction in Chapter 6 is capacity-achieving

for a family of two-sink 3-layer networks, and use this to derive tighter outer bounds for

error- and erasure-correction capacity regions of arbitrary two-sink networks beyond those

given in Chapter 6.

Parts of this work have appeared in [24], where we showed that in networks with both

random packet erasures and errors, increasing the proportion of erasures compared to errors

favors network coding over forwarding at network nodes, and vice versa; in [25], where we

looked at hybrid approaches for computationally restricted scenarios and designed error-

correcting code that allowed the combination of limited verification of cryptographic signa-

tures with network coding error correction; in [26, 27], where we derived capacity regions

for network error correction with both known and unknown topologies (coherent and non-

coherent network coding) under a multisource multicast transmission scenario; and in [28],

where we investigated the lower and upper bounds on the capacity regions of general non-

multicast networks and gave a family of 3-layer two-sink networks for which these bounds

are tight.
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Chapter 2

Basic model and definitions

This chapter defines our basic network model, which is essentially based on that of [9, 29].

Throughout this thesis we represent a communication network by a directed acyclic graph

G. We denote the set of source nodes of G by S = {s1, s2, . . . , s|S|} and the set of sink nodes

of G by T = {t1, t2, . . . , t|T |}. We assume that each link of G has unit capacity and there

can be multiple parallel edges connecting a pair of nodes.

For each i = {1, . . . , |S|}, independent discrete random processes Xi
1,X

i
2, . . . ,X

i
ri

are

observed at the source nodes. Each source process Xi
j is a stream of independent random

bits of rate one bit per unit time. Then ri is called the rate of source si. Each bitstream

that corresponds to a source process Xi
j is divided into vectors of K bits. We call such a

vector a packet.

There are a number of network connections that we may wish to establish. In a multicast

connection, all source packets need to be transmitted to each of the sink nodes. In a

nonmulticast connection each of the sink nodes demands a subset of the source packets

from one or more source nodes. The set of all information rate vectors (r1, . . . , r|S|) that

can be communicated to the sink nodes in G so that all desired connections are established

successfully is called the capacity region of G.

Network coding can be defined as an arbitrary causal mapping from network nodes’

inputs to outputs [1]. In this thesis, we primarily discuss linear network coding, where

nodes create linear combinations of the incoming packets and transmit them on their out-

going links. Linear network coding is known to be capacity-achieving in multicast network

scenarios [3]. Random linear network coding , where the coefficients employed in linear com-

binations of the incoming packets are chosen uniformly at random from a finite field. This

provides a decentralized solution to the information dissemination problem and multicast
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capacity-achieving with high probability when the field size is sufficiently large [30, 4].

In intrasession coding, coding is restricted to packets belonging to the same connection.

In intersession coding, coding is allowed among packets belonging to different connections.

When there exists a centralized knowledge of network topology and network code, we con-

sider a coherent network coding scenario. When network topology and/or network code are

not known a priori (for instance, when random linear coding is performed), we consider a

noncoherent network coding scenario.

In this thesis, we examine network error correction problems defined on G, where sinks

need to reconstruct messages transmitted by sources in the presence of a computationally

unbounded adversary, who can observe all network transmissions and inject his own packets

on network links that may be chosen as a function of his knowledge of the network, the

message, or the communication scheme. By network error we mean a corrupted packet

whose value and location in the network are unknown. Network erasures are defined as

network errors with a known location and unknown value. The set of all information

rate vectors that can be communicated to the sink nodes in G so that all connections are

established successfully when an adversary is present in the network is called the error-

correction capacity region of G.
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Chapter 3

Noncoherent correction of errors

and erasures with random locations

3.1 Introduction

Most existing results on multicast network error correction apply to worst-case error and

erasure locations (see [13, 31]), for which random linear network coding achieves capacity.

In this chapter, we investigate the performance of linear coding and routing strategies in

non-worst-case scenarios where links may fail randomly, or an adversary may only succeed

probabilistically in attempts to compromise network nodes. In this case, random linear

coding at every node is not always optimal, since it improves erasure resilience at the

expense of error propagation.

In this chapter we consider decentralized strategies, which we analyze by bringing topol-

ogy considerations into the noncoherent subspace coding framework of [14]. We show that

for a given realization of error and erasure locations, successful decoding can be charac-

terized in terms of the rank of certain matrices that correspond to useful and erroneous

information received at the sink node [24]. We analytically derive the probability of suc-

cessful decoding for random coding and routing strategies on a family of simple network

subgraphs consisting of multiple multihop paths with random error and erasure locations,

and show how the relative performance of these strategies depends on the information rate,

minimum cut capacity, and error and erasure probabilities. Simulation results on randomly

generated hypergraphs representing wireless networks support the observations from the

analysis.
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3.2 Model

We consider single-source multicast over an acyclic network G with source S and a set of

sink nodes T . A network link l may be subject to an erasure, in which case no packet is

received on l, or an error, in which case a packet of arbitrary value is received on l.

Following [14], we consider constant-dimension noncoherent network coding, defined as

follows. Let V be the vector space of length-K vectors over the finite field Fq, representing

the set of all possible values of packets transmitted and received in the network. Let P(V )

denote the set of all subspaces of V . A code C consists of a nonempty subset of P(V ), where

each codeword U ∈ C is a subspace of constant dimension R. To transmit codeword U ∈ C,

the source transmits a set of packets whose corresponding vectors span U . The sink receives

the subspace U ′ = Hk(U) ⊕ E, where Hk projects U onto a k-dimensional subspace of U ,

and E is the subspace spanned by the error packets. Let t = dim(E), and let ρ = (R− k)+.

In [14], t and ρ are referred to as the number of errors and erasures respectively. The

concept of subspace errors and erasures is distinct from that of network errors and erasures.

As will be seen later, the network topology and coding strategy determine what subspace

errors and erasures result from given network errors and erasures. Thus, to avoid confusion,

we refer to t as the number of additions, and ρ as the number of deletions. The distance

between two spaces U1, U2 is defined as

d(U1, U2)
.
= dim(U1 + U2) − dim(U1 ∩ U2). (3.1)

It is shown in [14] that d is a metric for P(V ). Subspace minimum distance decoding is

successful if and only if there is no codeword Ũ 6= U in C for which d(Ũ , U ′) ≤ d(U,U ′).

3.3 Main results

3.3.1 Noncoherent coding for errors and erasures

Let ∆
.
= min

U1,U2∈C:U1 6=U2

d(U1, U2) be the minimum distance of C. In [14] the following result

is shown:

Theorem 1. The transmitted subspace U ∈ C can be successfully recovered from the received
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subspace U ′ if

2(t+ ρ) < ∆. (3.2)

Let r denote the code rate of C. Theorem 2 gives a converse to this result for r >

(R−∆/2)/R and any Hk. Concurrent independent work [32] gives a converse pertaining to

the case where Hk is adversarially chosen subject to a minimum rank constraint. However,

in our problem Hk depends on the coding/routing strategy employed.

Lemma 1. Let C have minimum distance ∆. If 2t ≥ ∆, then decoding is unsuccessful for

some value of the transmitted subspace and the error packets.

Proof. See Section 3.4.3.

Note that for constant dimension codes, ∆ is even and that for a given R and ∆, we

have r ≤ (R − ∆/2 + 1)/R.

Theorem 2. Let C have dimension R, minimum distance ∆, and code rate r > (R −
∆/2)/R. If 2(t + ρ) ≥ ∆, then decoding is unsuccessful for some value of the transmitted

subspace and the error packets.

Proof. See Section 3.4.3.

Lemma 2. For any given set of adversarial links and any given network code, putting a lin-

early independent adversarial error on each adversarial link results in the lowest probability

of successful decoding.

Proof. See Section 3.4.3.

Lemma 2 implies that we can henceforth consider the case where each adversarial link

is associated with a linearly independent error.

Let Fm×n
q denote the set of allm×nmatrices over finite field Fq. Let C be a subspace code

with codeword dimension R, minimum distance ∆, and code rate greater than (R−∆/2)/R.

Let matrix W ∈ FR×K
q represent the transmitted codeword. Let ν be the number of

incoming links of a sink t ∈ T . Let Q ∈ Fν×R
q be the network transfer matrix from the

source packets to the packets received at t [9].
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Let L denote the number of links in G. An error on a link is modeled as addition of

an arbitrary error packet to the packet being transmitted at that link. Let Z ∈ FL×K
q

denote the error matrix whose ith row corresponds to the error packet that is injected on

the ith link of G. Let B ∈ Fν×L
q be the transfer matrix from the error packets to the packets

received at t.

Let Y ∈ Fν×K
q be the matrix whose rows correspond to the packets received at t. Then

Y = QW +BZ (3.3)

and the decodability condition given in Theorems 1 and 2 can be translated to our setting

as follows:

Theorem 3. For a given C, let y = ∆
2 . Let the transmitted matrix W and the error matrix

Z have linearly independent rows. Then decoding at t ∈ T is guaranteed to succeed iff

R− rank(QW +BZ) + 2rank(BZ) < y. (3.4)

Proof. See Section 3.4.3.

3.3.2 Single path subgraph

We next apply the results from Section 3.3.1 to study error and erasure performance of

coding and routing strategies on networks with randomly located errors and erasures. We

analyze the probability that the error and erasure locations are such that not all error values

can be corrected.

We first consider a simple building block network consisting of a simple multihop path

with source S and sink T (see Fig. 3.1(a)). Let the network consist of M hops. Let R, C, ∆,

y, W , L, and Z be defined as in the previous section. Let C be the number of parallel links

on each hop of GM . Let S ∈ FC×R
q be the source coding matrix and let A ∈ FC×C

q be the

transfer matrix from all links in the network to the packets received at T . Let B ∈ FC×L
q

be the transfer matrix from error packets to the packets received at T . According to (3.3),

we can write

Y = ASW +BZ. (3.5)
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Enumerate all nodes of GM with node 0 corresponding to S and node M corresponding

to T . Assume that the jth hop refers to the transmission from the (j − 1)th to the jth

node.

Consider the jth hop of the single path multihop network. In our model, three mutually

exclusive events can occur at the jth hop for any j: an erasure can occur on exactly one

of the C links with probability p; an error can occur on exactly one of the C links with

probability s; no errors and erasures occur at the jth hop with probability (1−p−s). When

an error or erasure occurs, any one of the C links has probability 1
C

of being the affected

link.

To solve the problem we are going to adopt the algebraic coding model given in (3.3).

Choosing different network coding strategies at the non-source nodes corresponds to modi-

fying A (and, consequently, B) in (3.3). We compare performance of random linear coding

at the source paired with two different strategies at non-source nodes:

1. Forwarding with random replication (FRR)

• Each node forwards all received packets to the outgoing links.

• In case of a link erasure, the node replaces the erased packet with a copy of any

one of the successfully received packets.

2. Random linear coding (RLC)

• Each node creates random linear combinations of all received packets and sends

them to the outgoing links.

• In case of a link erasure, the node replaces the erased packet by creating a random

linear combination of the successfully received packets.

Let I be the C × C identity matrix. Define Aj ∈ FC×C
q for RLC as a random matrix with

entries from Fq, and for FRR as Aj
.
= I. If no erasure occurs, define Ej ∈ FC×C

q as Ej
.
= I.

If an erasure occurs on link i, define Ej ∈ FC×C
q as I with the ith row equal to the unit

vector with 1 in the kth position if link k was replicated for FRR, and I with the ith row

equal to the zero vector for RLC. If no error occurs, define Dj ∈ FC×C
q as Dj

.
= I. If an

error occurs on the ith link, define Dj ∈ FC×C
q as I with the ith row equal to the zero

vector. Define D∗
j ∈ FC×C

q as D∗
j
.
= I −Dj .
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Figure 3.1: Schematic depiction of: (a) single path subgraph; (b) multiple path subgraph

Define

Fj =






Dj if an error occurs at the jth hop,

Ej if an erasure occurs at the jth hop,

I if neither error, nor erasure occur at the jth hop.

Therefore, for both coding strategies we rewrite A and B in (3.5) as

A = FMAMFM−1AM−1 . . . F2A2F1A1

B =
(
FMAM ..F2A2D

∗
1 FMAM ..F3A3D

∗
2 .. D∗

M

)

3.3.2.1 Random linear coding

Let P denote the probability of successful decoding. Let A and D be the random variables

representing the number of dimension additions/deletions to/from rowspace(W ) in GM

respectively. Then according to Theorems 1 and 2, P can be computed as

P = Prob (A + D ≤ y − 1) . (3.6)



22

Let Y j denote the subspace spanned by received packets at the jth node of GM . Let

aj and dj be the number of dimension additions/deletions to/from rowspace(W ) present

in Y j respectively. Let us say that the jth node of GM is in state i if, after random linear

coding is performed at the jth node, we have aj + dj = i. Let P j
i,k denote the probability

that given that the (j − 1)th node of GM is in state i, the jth node of GM will be in state

k after the data transmission from the (j − 1)th to the jth hop.

Lemma 3. When RLC is performed at every node of GM , for every node j = 1, . . . ,M we

have:

if 0 ≤ i < C −R

P j
i,i = 1 − s, P j

i,i+1 = s, P j
i,k = 0 for k 6= i, i+ 1

if i = C −R+ 2m,m = 0, . . . , R− 1

P j
i,i = 1 − p− s, P j

i,i+1 = p, P j
i,i+2 = s, P j

i,k = 0 for k 6= i, i + 1, i + 2

if i = C −R+ 2m+ 1,m = 0, . . . , R− 1

P j
i,i = 1 − s, P j

i,i+1 = s, P j
i,k = 0 for k 6= i, i+ 1

if i = C +R

P j
i,i−1 = p, P j

i,i = 1 − p, P j
i,k = 0 for k 6= i− 1, i

Proof. See Section 3.4.3.

Lemma 3 implies that when RLC is performed, the system can be modeled as a Markov

chain that has a probability transition matrix with entries P j
ik for i, k = 0 . . . C +R. More-

over, P can be computed using the distribution of this Markov chain after M transitions.

3.3.2.2 Forwarding with random replication

Lemma 4. In case of FRR with RLC performed at S we have

rank(BZ) = rank(FM . . . F2D
∗
1Z1) + . . .+ rank(D∗

MZM ) (3.7)

rank(ASW +BZ) = rank(ASW ) + rank(BZ) (3.8)

rank(ASW ) = min(R, rank(A)) (3.9)

Proof. See Section 3.4.3.
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Using Theorem 3 and Lemma 4, P can be computed as:

P = Prob (R− rank(ASW +BZ) + 2rank(BZ) ≤ y − 1) (3.10)

=
∑

f,l,z∈I

Prob (rank(ASW ) = l − z, rank(BZ) = z, rank(A) = f)

=
∑

f,l,z∈I

Prob (rank(BZ) = z|rank(A) = f) Prob (rank(A) = f)

I = {f, z, l : 0 ≤ f ≤ C, 0 ≤ z ≤ y − 1, R + 2z − (y − 1) ≤ l ≤ C}.

Lemmas 5, 6 and 7 provide auxiliary results that our further derivation relies on.

Lemma 5. If D1 is the identity matrix with a randomly chosen row substituted by a zero

row, then

Prob (rank(Fj . . . F2D1) = f |rank(Fj . . . F2) = f + 1) =
f + 1

C
.

Proof. See Section 3.4.3.

Lemma 6. If D1 is the identity matrix with a randomly chosen row substituted by a zero

row, then

rank(Fj . . . F2) = f, rank(Fj . . . F2D1) = f ⇒ rank(Fj . . . F2D
∗
1) = 0

rank(Fj . . . F2) = f + 1, rank(Fj . . . F2D1) = f ⇒ rank(Fj . . . F2D
∗
1) = 1

Proof. See Section 3.4.3.

Lemma 7. If E1 is the identity matrix with a randomly chosen row substituted by a zero

row, then

Prob (rank(Fj . . . F2E1) = f | rank(Fj . . . F2) = f + 1) =
f(f + 1)

C(C − 1)
.

Proof. See Section 3.4.3.

Now we can compute (3.10) by deriving explicit expressions for probability distributions

Prob (rank(A) = f) and Prob (rank(BZ) = z|rank(A) = f). Detailed derivations of these

results are given in Sections 3.4.1 and 3.4.2 respectively.
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3.3.3 Multiple path subgraph

Consider a multiple path subgraph Gn (see Fig. 3.1(b)) with source S and sink T . Let

P = {P1, P2 . . . Pn} be the set of edge-disjoint paths from S to T . Let Mi be the number

of hops on each path Pi. Let Ci be the number of parallel links on each hop of Pi. Let

C =
∑n

i=1
Ci. For the case of multiple path subgraph, assume that R ≥ max

1≤i≤n
Ci. Let

Ri ≤ Ci be the rank of information packets that are transmitted on each Pi. We assume

that

n∑

i=1

Ri ≥ R.

Let Ai ∈ FCi×Ci
q and Bi ∈ FCi×CiMi

q be the linear transformations applied by the network

on each Pi to information and error packets respectively. For the multiple path network

model that we defined, matrices A and B have the block-diagonal structure with Ai and Bi

on the main diagonal.

Lemma 8. For any given set of error and erasure locations and any given network code,

the probability of successful decoding for Gn is maximized when Ri is chosen to be equal to

Ci on each Pi.

Proof. See Section 3.4.3.

By Lemma 8 it is sufficient to consider Ri = Ci for each Pi since it results in the highest

probability of successful decoding.

3.3.3.1 Random linear coding

Let A and D be random variables representing the number of dimension additions/deletions

to/from rowspace(W ) in Gn respectively. Let Ai and Di be random variables, that stand for

the number of dimension additions/deletions to/from rowspace(W ) on each Pi respectively.

Let a, d, ai and di be the values that A, D, Ai and Di can take.

Lemma 9. If RLC is performed on all paths of Gn and Ri = Ci ∀i, we have:

a =
n∑

i=1

ai (3.11)

d = max(

n∑

i=1

di − (C −R), 0) (3.12)

Proof. See Section 3.4.3.
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Now we can rewrite (3.6) as:

P = Prob (A + D ≤ y − 1)

=
∑

ai, di :
∑

ai + max(
∑

di − (C − R), 0) ≤ y − 1,

di = ai or di = ai + 1

n∏

j=1

Prob (Pj in state aj + dj after Mj hops) ,

where the last equality follows from Lemmas 3, 9 and the independence between Ai,Di and

Aj,Dj for i 6= j. We can then use the derivation for a single path subgraph to evaluate

Prob (Pi in state ai + di after Mi hops) for each Pi.

3.3.3.2 Forwarding with random replication

Using the fact that the quantities rank(Ai) and rank(BiZi) associated with each Pi are

independent of the corresponding quantities for Pj for i 6= j, we can write P as:

P =
∑

fi,zi∈I

n∏

j=1

Prob
(
rank(BjZj) = zj , rank(Aj) = fj

)
,

where I = {fi, zi : 0 ≤ fi ≤ Ci,
∑
fi = f ; 0 ≤ zi ≤ y − 1,

∑
zi = z;R+ 2z− (y− 1) ≤ min(f,R) + z ≤ C}. We then apply the derivation for a single

path case by setting A = Ai, B = Bi, Z = Zi, i = 1 . . . n.

3.3.4 Experimental results

Figure 3.2 shows the probabilities of successful decoding computed analytically for both

strategies. Figure 3.3 depicts average probability of successful decoding curves obtained

by running 500 experiments over 20 randomly generated one-source one-sink hypergraphs

with 20 nodes. In our experiment, we assumed that each non-source node could become

adversarial with probability s and each hyperarc could fail with probability p. In both

Figure 3.2 and Figure 3.3, all curves are sketched against p for a fixed s when RLC is done

at the source. Note that both analytical and experimental results suggest that RLC is more

beneficial than FRR when information is transmitted at a higher rate.
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Figure 3.2: n = 4, M = 3, Ri = Ci = 5, i = 1 . . . 4, s = 0.05.
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3.4 Detailed derivations and proofs

3.4.1 Derivation of Prob (rank(A) = f)

For FRR Ai = I, therefore, Prob (rank(A) = f) = Prob (rank(FMFM−1 . . . F2F1) = f).

For notational convenience denote Prob (rank(FjFj−1 . . . F2F1) = f) by φj(f). Denote the

number of error/erasure occurrences out of j hops by Nj . Compute φj(f) by conditioning

on Nj , then

φj(f) =

j∑

l=C−f

Prob (rank(FjFj−1 . . . F2F1) = f |Nj = l)Prob (Nj = l)

If Nj = l suppose that all errors and/or erasures occurred on i1, i2 . . . ilth hops. Then

we have:

φj(f) =

j∑

l=C−f

Prob
(
rank(Fil

Fil−1
. . . Fi2Fi1) = f

)
Prob (Nj = l)

=

j∑

l=C−f

Prob
(
rank(Fil

Fil−1
. . . Fi2Fi1) = f

) ∑

k erasures,

m errors:

k +m = l

j!

k!m!(j − l)!
pksm(1 − p− s)j−l

=

j∑

l=C−f

Prob
(
rank(Fil

Fil−1
. . . Fi2Fi1) = f, erasures on l hops

) j!

l!(j − l)!
pl(1 − p− s)j−l

+

j∑

l=C−f

l∑

m=1

Prob
(
rank(Fil

Fil−1
. . . Fi2Fi1 ) = f, errors on m hops

) j!

(l −m)!m!(j − l)!
pl−msm(1 − p− s)j−l,

where the first term corresponds to the case when only erasures occurred on all hops ig,

g = 1 . . . l and the second term corresponds to the case when both errors and erasures

occurred on all hops ig, g = 1 . . . l.

Therefore,

φj(f) =

j∑

l=C−f

Prob
(
rank(Eil

Eil−1
. . . Ei2Ei1 ) = f

) j!

l!(j − l)!
pl(1 − p− s)j−l

+

j∑

l=C−f

l∑

m=1

Prob
(
rank(Fil

Fil−1
. . . Fi2Fi1 ) = f, errors on m hops

) j!

(l −m)!m!(j − l)!
pl−msm(1 − p− s)j−l
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1. Prob (rank(Eil . . . Ei2Ei1) = f)

Denote Prob (rank(Eil . . . Ei2Ei1) = f) by fl(f). We can compute fl(f) by condition-

ing on rank(Eil . . . Ei2) and Lemma 7.

For l ≥ 2:

fl(f) = Prob (rank(Eil
. . . Ei2Ei1 ) = f | rank(Eil

. . . Ei2 ) = f)Prob (rank(Eil
. . . Ei2) = f)

+ Prob (rank(Eil
. . . Ei2Ei1 ) = f | rank(Eil

. . . Ei2 ) = f + 1)Prob (rank(Eil
. . . Ei2) = f + 1)

=

(
1 − f(f − 1)

C(C − 1)

)
fl−1(f) +

f(f + 1)

C(C − 1)
fl−1(f + 1)

with the base case

f1(f) =





1, f = C − 1;

0, otherwise.

2. Prob
(
rank(FilFil−1

. . . Fi2Fi1) = f, errors on m hops
)

Denote Prob
(
rank(FilFil−1

. . . Fi2Fi1) = f, errors on m hops
)

by gl(f,m). We can

compute gl(f,m) by conditioning on Fi1 , rank(FilFil−1
. . . Fi2) and Lemmas 5 and 7.
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gl(f,m) = Prob
(
rank(FilFil−1

. . . Fi2Fi1) = f |Fi1 = Di1

)
Prob (Fi1 = Di1)

+ Prob
(
rank(FilFil−1

. . . Fi2Fi1) = f |Fi1 = Ei1

)
Prob (Fi1 = Ei1)

=
(
Prob

(
rank(FilFil−1

. . . Fi2Fi1) = f | rank(FilFil−1
. . . Fi2) = f, Fi1 = Di1

))
.

× Prob
(
rank(FilFil−1

. . . Fi2) = f |Fi1 = Di1

)

+ Prob
(
rank(FilFil−1

. . . Fi2Fi1) = f | rank(FilFil−1
. . . Fi2) = f + 1, Fi1 = Di1

)

× Prob
(
rank(FilFil−1

. . . Fi2) = f + 1|Fi1 = Di1

))
Prob (Fi1 = Di1)

+
(
Prob

(
rank(FilFil−1

. . . Fi2Fi1) = f | rank(FilFil−1
. . . Fi2) = f, Fi1 = Ei1

)

× Prob
(
rank(FilFil−1

. . . Fi2) = f |Fi1 = Ei1

)

+ Prob
(
rank(FilFil−1

. . . Fi2Fi1) = f | rank(FilFil−1
. . . Fi2) = f + 1, Fi1 = Ei1

)

× Prob
(
rank(FilFil−1

. . . Fi2) = f + 1|Fi1 = Ei1

))
Prob (Fi1 = Ei1) .

Then for m ≥ 2

gl(f,m) =

(
C − f

C
gl−1(f,m− 1) +

f + 1

C
gl−1(f + 1,m− 1)

)
m

l

+

(
(1 − f(f − 1)

C(C − 1)
)gl−1(f,m) +

f(f + 1)

C(C − 1)
gl−1(f + 1,m)

)
l −m

l

and for m = 1

gl(f,m) =

(
C − f

C
fl−1(f) +

f + 1

C
fl−1(f + 1)

)
1

l

+

(
(1 − f(f − 1)

C(C − 1)
)gl−1(f, 1) +

f(f + 1)

C(C − 1)
gl−1(f + 1, 1)

)
l − 1

l

with the base case

g1(f, 1) =





1, f = C − 1;

0, otherwise.
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3.4.2 Derivation of Prob (rank(BZ) = z| rank(A) = f)

Recall that by Lemma 4 we have

rank(BZ) = rank(FM . . . F2D
∗
1Z1) + . . . + rank(FMD∗

M−1ZM−1) + rank(D∗
MZM ).

Denote FM . . . FM−j+2D
∗
M−j+1ZM−j+1 + . . . + FMD∗

M−1ZM−1 + D∗
MZM by BjZj and

FM . . . FM−j+2FM−j+1 by Aj . Let ψj(f, z) = Prob
(
rank(BjZj) = z| rank(Aj) = f

)
. Note

that

ψM (f, z) = Prob (rank(BZ) = z| rank(A) = f). We can compute ψj(f, z) by conditioning

on FM−j+1, rank(FM . . . FM−j+2) and using Lemmas 5 and 7.

ψj(f, z) = Prob
(
rank(BjZj) = z| rank(Aj) = f

)

= Prob(rank(BjZj) = z|FM−j+1 = DM−j+1, rank(A
j) = f)Prob(FM−j+1 = DM−j+1| rank(Aj) = f)

+ Prob(rank(BjZj) = z|FM−j+1 = EM−j+1, rank(A
j) = f)Prob(FM−j+1 = EM−j+1| rank(Aj) = f)

+ Prob(rank(BjZj) = z|FM−j+1 = I, rank(Aj) = f)Prob(FM−j+1 = I| rank(Aj) = f)

with the base case

ψ1(C, z) =





1, z = 0;

0, otherwise;

ψ1(C − 1, z) =






p
p+s

, z = 0;

s
p+s

, z = 1;

0, otherwise;

ψ1(f, z) = 0 for any f ≤ C − 2.
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1. Prob(rank(BjZj) = z|FM−j+1 = DM−j+1, rank(A
j) = f)

Prob(rank(BjZj) = z|FM−j+1 = DM−j+1, rank(A
j) = f)

= Prob(rank(BjZj) = z| rank(Aj+1DM−j+1) = f)

= Prob
(
rank(BjZj) = z| rank(Aj+1) = f, rank(Aj+1DM−j+1) = f

)

× Prob
(
rank(Aj+1) = f | rank(Aj+1DM−j+1) = f

)

+ Prob
(
rank(BjZj) = z| rank(Aj+1) = f + 1, rank(Aj+1DM−j+1) = f

)

× Prob
(
rank(Aj+1) = f + 1| rank(Aj+1DM−j+1) = f

)

Prob
(
rank(BjZj) = z| rank(Aj+1) = f, rank(Aj+1DM−j+1) = f

)
= ψj−1(f, z) since

by Lemma 6





rank(Aj+1) = f

rank(Aj+1DM−j+1) = f
⇒ rank(Aj+1D∗

M−j+1) = 0

Prob
(
rank(BjZj) = z| rank(Aj+1) = f + 1, rank(Aj+1DM−j+1) = f

)
= ψj−1(f, z −

1) since by Lemma 6





rank(Aj+1) = f + 1

rank(Aj+1DM−j+1) = f
⇒ rank(Aj+1D∗

M−j+1) = 1

Then

Prob(rank(BjZj) = z|FM−j+1 = DM−j+1, rank(A
j) = f) = ψj−1(f, z)b1 + ψj−1(f + 1, z − 1)b2,

where b1 and b2 can be evaluated by Bayes formula as

b1 = Prob
(
rank(Aj+1) = f | rank(Aj+1DM−j+1) = f

)

=
C−f

C
φj−1(f)

C−f
C
φj−1(f) + f+1

C
φj−1(f + 1)

b2 = Prob
(
rank(Aj+1) = f + 1| rank(Aj+1DM−j+1) = f

)

=
f+1
C
φj−1(f + 1)

C−f
C
φj−1(f) + f+1

C
φj−1(f + 1)
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2. Prob(FM−j+1 = DM−j+1| rank(Aj) = f)

Prob(FM−j+1 = DM−j+1| rank(Aj) = f) can be computed by Bayes formula and

conditioning on rank(Aj+1):

Prob(FM−j+1 = DM−j+1| rank(Aj) = f)

=
q Prob(rank(Aj) = f |FM−j+1 = DM−j+1)

Prob(rank(Aj) = f)

=
q
(

f+1
C
φj−1(f + 1) + f

C
φj−1(f)

)

φj(f)

3. Prob(rank(BjZj) = z|FM−j+1 = EM−j+1, rank(A
j) = f)

If FM−j+1 = EM−j+1, D
∗
M−j+1 = 0, therefore,

rank(Aj+1D∗
M−j+1ZM−j+1) + . . .+ rank(FMD∗

M−1ZM−1) + rank(D∗
MZM )

= rank(Aj+2D∗
M−j+2ZM−j+2) + . . .+ rank(FMD∗

M−1ZM−1) + rank(D∗
MZM )

Then

Prob(rank(BjZj) = z|FM−j+1 = EM−j+1, rank(A
j) = f)

= Prob
(
rank(BjZj) = z| rank(Aj+1) = f, rank(Aj+1EM−j+1) = f

)

× Prob
(
rank(Aj+1) = f | rank(Aj+1EM−j+1) = f

)

+ Prob
(
rank(BjZj) = z| rank(Aj+1) = f + 1, rank(Aj+1EM−j+1) = f

)

× Prob
(
rank(Aj+1) = f + 1| rank(Aj+1EM−j+1) = f

)

= ψj−1(f, z)b
′
1 + ψj−1(f + 1, z)b′2,
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where b′1 and b′2 can be evaluated by Bayes formula as

b′1 = Prob
(
rank(Aj+1) = f | rank(Aj+1EM−j+1) = f

)

=

(
1 − f(f−1)

C(C−1)

)
φj−1(f)

(
1 − f(f−1)

C(C−1)

)
φj−1(f) + f(f+1)

C(C−1)φj−1(f + 1)

b′2 = Prob
(
rank(Aj+1) = f + 1| rank(Aj+1) = f

)

=

f(f+1)
C(C−1)φj−1(f + 1)

(
1 − f(f−1)

C(C−1)

)
φj−1(f) + f(f+1)

C(C−1)φj−1(f + 1)

4. Prob(FM−j+1 = EM−j+1| rank(Aj) = f)

Prob(FM−j+1 = EM−j+1| rank(Aj) = f) can be computed by Bayes formula and

conditioning on rank(Aj+1):

Prob(FM−j+1 = EM−j+1| rank(Aj) = f)

=
pProb(rank(Aj) = f |FM−j+1 = EM−j+1)

Prob(rank(Aj) = f)

=
p
(

f(f+1)
C(C−1)φj−1(f + 1) +

(
1 − f(f−1)

C(C−1)

)
φj−1(f)

)

φj(f)

5. Prob(rank(BjZj) = z|FM−j+1 = I, rank(Aj) = f)

Prob(rank(BjZj) = z|FM−j+1 = I, rank(Aj) = f) = ψj−1(f, z)

6. Prob(FM−j+1 = I| rank(Aj) = f)

Prob(FM−j+1 = I| rank(Aj) = f)

=
(1 − p− q)Prob(rank(Aj) = f |FM−j+1 = I)

Prob(rank(Aj) = f)

=
(1 − p− q)φj−1(f)

φj(f)
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3.4.3 Proofs

Proof of Lemma 1. Consider U, Ũ ∈ C such that d(U, Ũ ) = ∆. If U is sent and E is chosen

as a subspace of Ũ ∩ U c, then d(Ũ , U ′) ≤ d(U,U ′) for received subspace U ′ = U ⊕ E.

Proof of Theorem 2. We only need to consider the case of 2(t+ ρ) = ∆ by the information

processing inequality. The sink receives the subspace Hk(U) ⊕ E with t = dim(E) and

ρ = (R− k)+ such that 2(t+ ρ) = ∆. Suppose that instead of adding E, we subject Hk(U)

to a further t deletions resulting in the subspace Hk′(Hk(U)), where k′ = k− t. Since there

are altogether ∆/2 deletions and r > (R−∆/2)/R, the mincut bound is violated [5], so for

some U ∈ C there exists some Ũ 6= U in C such that d(Ũ ,Hk′(Hk(U))) ≤ d(U,Hk′(Hk(U))),

which implies Hk′(Hk(U)) is also a subspace of Ũ . Then Ũ +Hk(U) has dimension at most

R+ t. If E is chosen as a subspace of Ũ ∩ U c, then

d(Ũ ,Hk(U) ⊕ E)

= dim(Ũ + (Hk(U) ⊕ E)) − dim(Ũ ∩ (Hk(U) ⊕ E))

≤ dim(Ũ + Hk(U)) − dim(Hk′(Hk(U)) ⊕ E)

≤ R+ t− (k′ + t) = R− k′;

d(U,Hk(U) ⊕ E)

= dim(U + (Hk(U) ⊕ E)) − dim(U ∩ (Hk(U) ⊕ E))

= dim(U ⊕ E) − dim(Hk(U)) = R+ t− k = R− k′.

Thus, decoding is unsuccessful.

Proof of Lemma 2. Note that we can arrange rows of Z so that

Z =



 Z1

Z2



 =



 Z1

0



+



 0

Z2



 ,

where the rows of W and Z2 are linearly independent, and the rows of W and Z1 are not.

Then we have

Y = QW +BZ = QW +B1



 Z1

0



+B2



 0

Z2



 (3.13)

= QW +Q1W +B2Z
∗ = (Q+Q1)W +B2Z

∗ (3.14)
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for some adversarial matrices Q1 ∈ Fν×R
q , B2 ∈ Fν×L

q and Z∗ =



 0

Z2



, where the term

Q1W corresponds to adversarial erasures and B2Z
∗ corresponds to adversarial errors.

Consider link i of the network. According to (3.13), when the link i is error and erasure

free we can write the received subspace as

Y = rowspan(TW +BZ∗)

for some network transform T ∈ Fν×R
q and network error transform B ∈ Fν×L

q . Let F ∈
FL×L

q be the matrix of local coding coefficients of the labeled line graph of G. Then as

discussed in [9], T = A(I − F )−1C, where A ∈ Fν×L
q , C ∈ FL×R

q and I is an L× L identity

matrix. For the adjacency matrix F , let F−i be the matrix F with the ith row substituted

by a zero row. For any network transfer matrix T define T−i
.
= A(I − F−i)

−1C.

Consider three network scenarios of transmitting the row space of W (call them sce-

nario 1 and scenario 2), that differ only at link i. Let Q be the network transform

that the packet content of link i has undergone. Suppose that an adversarial packet

z1 ∈ rowspan(T−iW + B−iZ
∗) was injected into the link i in scenario 1 and an adver-

sarial packet z2 /∈ rowspan(T−iW + B−iZ
∗) was injected into the link i in scenario 2. Let

Y 1 and Y 2 be the received subspaces in scenarios 1 and 2 respectively. Then we can write

Y 1 = rowspan(T−iW +B−iZ
∗ + Pz1);

Y 2 = rowspan(T−iW +B−iZ
∗ + Pz2).

Note that since z2 is chosen to be linearly independent of rowspan(T−iW+B−iZ
∗), z1 ∈ Y 2.

Let aj and dj be the number of additions and deletions respectively that the row space

of W has suffered in scenario j. To match the decodability condition given in Theorems 1

and 2, define the decodability function as

fdec(Y
j)

.
= aj + dj ,

where aj is the number of additions and dj is the number of deletions from the received

subspace Y j.
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Case 1. Suppose P = 0, then we have

fdec(Y
1) = fdec(Y

2) = fdec(Y
3).

Case 2. Let P 6= 0. Suppose z1 ∈ Y 1. Since z1 ∈ Y 2, we have

Y 2 = span(Y 1
⋃

{z2}).

Therefore,

a2 = a1 + 1

d2 = d1

and

fdec(Y
1) ≤ fdec(Y

2).

Now suppose z1 /∈ Y 1. Since z1 ∈ Y 2, we have

Y 2 = span(Y 1
⋃

{z1, z2}).

Therefore,

a2 =





a1 + 1, if z1 ∈W ;

a2 + 2, if z1 /∈W

d2 =





d1 − 1, if z1 ∈W ;

d1, if z1 /∈W

and

fdec(Y
1) ≤ fdec(Y

2).

Thus, in both cases decodability in scenario 2 implies decodability in scenario 1.

We showed that for any link i the probability of successful decoding is minimized when

the adversary injects an erroneous packet linearly independent from the packets currently
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present in G. Hence, the statement of the lemma follows for any given set of adversarial

links.

Proof of Theorem 3. The received space spanned by the rows of Y has dimension rank(QW+

BZ) including rank(BZ) linearly independent errors with a total of

R− (rank(QW +BZ) − rank(BZ))

deletions and rank(BZ) additions, thus, the result follows from Theorems 1 and 2.

Proof of Lemma 3. Let w1, w2 . . . wR be the basis of rowspan(W ).

• For any j = 1 . . .M , suppose that the node (j − 1) is in state 0 ≤ i < C −R, that is,

aj−1+dj−1 = i. Note that aj−1 ≤ i < C−R, therefore, dim(Y j−1) < R+(C−R) = C.

Suppose that an error z, such that z is linearly independent of span(Y j−1), occurs

on the jth hop of GM . Then since dim(Y j−1) < C and RLC with high probability

preserves the data rank [4], we have

Y j = rowspan(Y j−1
⋃

{z})

and

aj = aj−1 + 1

dj = dj−1

with aj + dj = i+ 1.

Now suppose that an erasure occurs on the jth hop of GM . Since dim(Y j−1) < C,

the remaining links span Y j−1. Therefore, after RLC is performed

dim(Y j−1) = dim(Y j)

with

aj + dj = i.
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Therefore,

P j
i,i = p+ (1 − p− s) = 1 − s

P j
i,i+1 = s

P j
i,k = 0 for k 6= i, i + 1

• For any j = 1 . . .M , suppose that the node (j − 1) is in state i = C −R and that all

nodes f for f = 0 . . . j− 2 are in state if < C −R. We have just shown that it is only

possible as a result of C−R additions and 0 deletions. Then w1 . . . wR, z1 . . . zC−R be

can be chosen as a basis of Y j−1, where zl denotes the erroneous packets. Note that

dim(Y j−1) = C, and that after RLC is performed at node (j−1), w1 . . . wR, z1 . . . zC−R

remains the basis of the subspace contained at node (j − 1).

Note that in the case when neither errors nor erasures occur on the jth hop of GM ,

we have dim(Y j) = C and

Y j = span(w1 . . . wR, z1 . . . zC−R) (3.15)

or

Y j = span(pj
1, . . . , p

j
C). (3.16)

Suppose that an error z, such that z is linearly independent of span(Y j−1), occurs

on the jth hop at the mth link of GM . Since pj
m is replaced by z in (3.16), z

also has to replace wf for some f = 1 . . . R in (3.15) and the basis of Y j becomes

w1 . . . , wf−1, wf+1, . . . , wR, z1 . . . zC−R, z. Thus,

aj = C −R+ 1

dj = 1

with aj + dj = i+ 2.

If an erasure occurs on the jth hop at the mth link of GM , pj
m is eliminated from (3.16),

and, correspondingly, for some f = 1 . . . R wf has to be eliminated from (3.15). Then
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the basis of Y j becomes w1 . . . , wf−1, wf+1, . . . , wR, z1 . . . zC−R. Hence,

aj = C −R

dj = 1

with aj + dj = i+ 1.

Therefore,

P j
i,i = 1 − p− s

P j
i,i+1 = p

P j
i,i+2 = s

P j
i,k = 0 for k 6= i, i + 1, i+ 2

• For any j = 1 . . .M , suppose that the node (j − 1) is in state i = C − R + 1 and

that all nodes f for f = 0 . . . j − 2 are in state if < C − R+ 1. We have just shown

that it is only possible as a result of C −R additions and 1 deletion. Without of loss

of generality w1 . . . wR−1, z1 . . . zC−R be can be chosen as a basis of Y j−1, where zl

denotes the erroneous packets. Note that dim(Y j−1) = C − 1 < C. Thus, the above

described reasoning for the case when i < C−Rcan be applied to prove the statement

of the lemma.

Similarly, by incrementing m from 1 to R− 1, we can observe that for any node j − 1

in a state i = C − R + 2m, such that all nodes f for f = 0 . . . j − 2 are in state

if < C −R+ 2m, the state C −R+ 2m can only be reached as a result of C −R+m

additions and m deletions and that dim(Y j−1) = C. Therefore, the reasoning for the

case when i = C −R can be used. For any node j − 1 in a state i = C −R+ 2m+ 1,

such that all nodes f for f = 0 . . . j − 2 are in state if < C − R + 2m + 1, note that

the state C −R+ 2m+ 1 can only be reached as a result of C −R+m additions and

m+ 1 deletions and that dim(Y j−1) = C − 1. Hence, the reasoning for the case when

i = C −R+ 1 can be used.

• At last, suppose that for any j = 1 . . .M the node (j−1) is in state i = C+R, that is,

GM has suffered C additions and R deletions. Hence, the basis of Y j−1 can be chosen
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as z1, z2 . . . zC , where all zl are erroneous packets. Observe that dim(Y j−1) = C, and

that as a result of RLC performed at node (j − 1), z1, z2 . . . zC remains the basis of

the subspace contained at node (j − 1).

Note that Y j−1
⋂
W = ∅ and that by the mincut restriction we require that aj ≤ C.

Therefore, if a new error occurs at the jth hop, the state of node j will remain the

same, i.e., aj + dj = aj−1 + dj−1 = C +R.

Note that in the case when neither errors nor erasures occur on the jth hop of GM ,

we have dim(Y j) = C and

Y j = span(z1 . . . zC) = span(pj
1, . . . , p

j
C). (3.17)

Hence, if pj
m is erased at the jth hop, for some f = 1 . . . C zf is eliminated from the

basis of Y j . Therefore,

aj = aj−1 − 1 = C − 1

dj = dj−1 +R

and aj + dj = C +R− 1.

In summary, when i = C +R,

P j
i,i−1 = p

P j
i,i = 1 − p

P j
i,k = 0 for k 6= i− 1, i

Proof of Lemma 4. From (3.6)

BZ = FM . . . F2D
∗
1Z1 + . . . + FMD

∗
M−1ZM−1 +D∗

MZM . (3.18)

In order to prove (3.7), we will show that the indices of the nonzero rows of

FM . . . F2D
∗
1Z1, . . . , FMD∗

M−1ZM−1 and D∗
MZM are mutually disjoint, hence, the statement

follows. Take any i, j = 1 . . .M such that i < j and both D∗
i Zi and D∗

jZj are nonzero
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matrices. Consider

FM . . . Fj+1D
∗
jZj = FM . . . Fj+1(I −Dj)Zj

and

FM . . . Fj+1DjFj−1 . . . Fi+1D
∗
iZi = FM . . . Fj+1DjFj−1 . . . Fi+1(I −Di)Zi.

By definition, matrix (I −Dj)Zj has one nonzero row (let it be mth row). FM . . . Fj+1 is

a matrix whose rows can be unit and zero vectors. If the kth row of FM . . . Fj+1 has 1 in

the mth column, after right multiplication by any matrix X, the mth row of X will become

the kth row of FM . . . Fj+1X. Therefore, if no row of FM . . . Fj+1 has 1 in the mth column,

FM . . . Fj+1D
∗
jZj is a zero matrix and the statement follows trivially. If rows k1 . . . kl of

FM . . . Fj+1 have 1 in the mth column, then the rows k1 . . . kl of FM . . . Fj+1D
∗
jZj are the

only rows that are nonzero. On the other hand, the nonzero rows of (I −Dj)Zj correspond

to zero rows of DjX for any matrix X. Hence, the mth row of DjFj−1 . . . Fi+1(I −Di)Zi

is a zero row and rows k1 . . . kl of FM . . . Fj+1DjFj−1 . . . Fi+1(I − Di)Zi are zero rows.

Therefore, the nonzero rows of FM . . . Fj+1D
∗
jZj and FM . . . Fj+1DjFj−1 . . . Fi+1D

∗
iZi are

mutually disjoint and the statement of the lemma follows.

Recall the expansion of BZ into (3.18). To prove (3.8), we will show that the indices of

the nonzero rows of ASW , FM . . . F2D
∗
1Z1, . . . , FMD∗

M−1ZM−1 and D∗
MZM are mutually

disjoint, hence, the statement follows. Take any i = 1 . . .M such that D∗
iZi is a nonzero

matrices. Consider

FM . . . Fi+1D
∗
iZi = FM . . . Fi+1(I −Di)Zi.

Rewrite ASW as:

ASW = FM . . . Fi+1DiFi . . . F1.

Now use the reasoning of the proof of (3.7) to see that all nonzero rows of ASW and
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FM . . . Fi+1D
∗
iZi are mutually disjoint. Since it holds for any i, we have:

rank(ASW +BZ) = rank(ASW + FM . . . F2D
∗
1Z1 + . . .+ FMD

∗
M−1ZM−1 +D∗

MZM )

= rank(ASW ) + rank(FM . . . F2D
∗
1Z1 + . . .+ FMD

∗
M−1ZM−1 +D∗

MZM )

= rank(ASW ) + rank(BZ).

Since S is a random linear coding matrix, any R rows of SW are with high probability

linearly independent. (3.9) follows from combining this with the fact that for FRR A is a

matrix whose rows can only be zero and unit vectors.

Proof of Lemma 5. Fj . . . F2 is a matrix whose rows can be unit and zero vectors. Suppose

that the kth row of D1 is a zero row. If the ith row of Fj . . . F2 has 1 in the kth column,

after multiplication with D1, the kth row of D1 will become the ith row of Fj . . . F2D1.

rank(Fj . . . F2) = f + 1 means that Fj . . . F2 has f + 1 distinct unit rows; therefore,

rank(Fj . . . F2D1) = f only if one of the f + 1 distinct unit rows of Fj . . . F2 has 1 in

the kth column. Thus,

Prob (rank(Fj . . . F2D1) = f | rank(Fj . . . F2) = f + 1) =

f+1∑

i=1

1

C
=
f + 1

C

Proof of Lemma 6. According to the proof of Lemma 5, if rank(Fj . . . F2) = f + 1 and the

kth row of D1 is a zero row, rank(Fj . . . F2D1) = f only if one of the f + 1 distinct unit

rows of Fj . . . F2 has 1 in the kth column. Thus, Fj . . . F2D
∗
1 will have one non-zero row.

Similarly, if rank(Fj . . . F2) = f and the kth row ofD1 is a zero row, rank(Fj . . . F2D1) =

f only if none of the f distinct unit rows of Fj . . . F2 have 1 in the kth column. Thus,

Fj . . . F2D
∗
1 will have only zero rows.

Proof of Lemma 7. Fj . . . F2 is a matrix whose rows can be unit and zero vectors. If the ith

row of Fj . . . F2 has 1 in the kth column, after multiplication the kth row of E1 will become

the ith row of Fj . . . F2E1. rank(Fj . . . F2) = f + 1 means that Fj . . . F2 has f + 1 distinct

unit rows. Suppose the two replicas of the only non-unique unit row of E1 are located in

rows r1 and r2. rank(Fj . . . F2E1) = f only if one of the f +1 distinct unit rows of Fj . . . F2
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has 1 in r1th column and another one has 1 in r2th column. Thus,

Prob (rank(Fj . . . F2E1) = f | rank(Fj . . . F2) = f + 1) =

f+1∑

i=1

1

C

f∑

k=1

1

C − 1
=

f(f + 1)

C(C − 1)
.

Proof of Lemma 8. Consider two network scenarios for Gn with the same error and erasure

patterns (call than scenario 1 and scenario 2). Let R1
i be the rank of information packets

transmitted on Pi in scenario 1 and let R2
i be the rank of information packets transmitted

on Pi in scenario 2. Suppose R1
i = Ci and R2

i < Ci. Let Pj denote the probability of

successful decoding in scenario j, j = 1, 2. Our goal is to show that

P2 ≤ P1. (3.19)

According to Theorem 3

Pj = Prob(R− rank(ASjW +BZ) + 2 rank(BZ) ≤ y − 1),

where Sj =





H1
jG

1
j

H2
jG

2
j

. . .

Hn
j G

n
j




is the source coding matrix for scenario j. Note that by assumption

for each i, rank(H i
1G

i
1W ) = Ci and rank(H i

2G
i
2W ) < Ci.

For fixed A, B and Z, (3.19) holds iff

rank(AS2W +BZ) ≤ rank(AS1W +BZ). (3.20)

Note also that

rank(ASjW ) = min(

n∑

i=1

rank(AiH i
jG

i
jW ), R). (3.21)

In case of RLC, each Ai, i = 1 . . . n, is with high probability a square matrix of full

rank; hence, for any matrix X, rank(AiX) = rank(X) . Therefore, since for each i,

rank(H i
2G

i
2W ) ≤ rank(H i

1G
i
1W ), we have rank(AiH i

2G
i
2W ) ≤ rank(AiH i

1G
i
1W ); hence by
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(3.21) rank(AS2W ) ≤ rank(AS1W ). Let r1 = rowspace(AS1W ) and r2 = rowspace(AS2W )

with r1 ≤ r2. Since RLC is performed at S and each non-source node of Gn, every row of

AS1W is a random linear combination of r1 rows of W and every row of AS2W is a random

linear combination of r2 rows of W . Using this along with the fact that the rows of W and

Z are mutually linearly independent, we have

rowspace(AS2W ) ⊆ rowspace(AS1W )

and

rowspace(AS2W +BZ) ⊆ rowspace(AS1W +BZ).

In case of FRR, by Lemma 4 we have rank(ASjW +BZ) = rank(ASjW ) + rank(BZ).

Therefore, in order to show (3.20) we need to show that rank(AS2W ) ≤ rank(AS1W ).

Since for each i, rank(H i
2G

i
2W ) ≤ rank(H i

1G
i
1W ) and for FRR Ai is the matrix whose

rows can only be zero and unit vectors and RLC is performed at the source, we have

rank(AiH i
2G

i
2W ) ≤ rank(AiH i

1G
i
1W ); hence by (3.21) rank(AS2W ) ≤ rank(AS1W ).

Therefore, (3.19) holds.

Proof of Lemma 9. (3.11) is a direct consequence of the fact that rank(BZ) =

n∑

i=1

rank(BiZi)

and the assumption that all error packets are linearly independent.

By assumption of the model on each Pi, i = 1 . . . n , we have Ri = Ci. Define ri
.
=

Ri − di = Ci − di to be the rank of information packets received on each Pi. Then the total

rank of information packets received at T is equal to:

min(

n∑

i=1

ri, R) = min(C −
n∑

i=1

di, R).

Hence,

d =






0, if R ≤ C −
n∑

i=1

di ;

n∑

i=1

di − (C −R), if R > C −
n∑

i=1

di.
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Chapter 4

Combining information-theoretic

and cryptographic network error

correction in a probabilistic setting

4.1 Introduction

In this chapter we consider the problem of adversarial errors in single-source multicast

networks with limited computational power (e.g., wireless or sensor networks). Most existing

results on information theoretic multicast network error correction assume a given bound

on the number of adversarial errors (see [13, 31]), for which random linear network coding

achieves capacity [7]. If z is the upper bound on the number of errors that can occur in the

network, noncoherent network coding is used at all nodes and m is the minimum cut of the

network, the error correcting code that achieves information rate m−2z can be constructed

[13].

An alternative approach to network error correction is equipping each network packet

with a cryptographic signature (see [11, 12]). Then, if each network node checks all packets

and all nodes perform network coding, for any number of network errors za the information

rate m − za can be achieved in multicast network scenarios without the need for further

information-theoretic error correction. However, performing signature checks at all network

nodes may limit throughput in a network with limited computational resources, since such

cryptographic operations are typically more expensive than network coding operations.

Therefore, we are interested in combining the benefits of both approaches. We consider

probabilistic verification of a subset of packets in conjunction with information-theoretic
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redundancy so as to achieve intermediate information rates r with

m− 2z ≤ r ≤ m− za

subject to computational budget constraints at each node.

In order to solve this problem, we need to develop a framework to use network error

correction in a probabilistic setting. In existing network error correcting algorithms, the

deterministic bound on the number of erroneous packets needs to be known in advance for

code construction [13]. This can result in a very conservative upper bound when packets are

checked probabilistically. In this chapter we propose a fountain-like network error correcting

code construction that can be used in networks where the upper bound on the number of

errors is unknown a priori [25]. Instead of including a fixed number of redundant bits in

each packet, we incrementally add redundancy until decoding succeeds.

4.2 Model

Let G be an acyclic multicast network with source S and sink T . Let m be the minimum

cut of G. The nodes of G are limited in computational power and outgoing capacity. Let n

be the number of nodes in G. Errors can occur on some links of G.

Let N i
in be the number of packets incoming to node i, and let N i

out be the number of

packets outgoing from node i. Let Ai be the computational budget available at node i.

Given Ai, we assume that in addition to forwarding all outgoing packets, each node i has

the capacity to check a fraction ρi of incoming packets and to form a fraction γi of outgoing

packets by creating random linear combinations of packets incoming to node i, so that

ρiN
i
in + γiN

i
out ≤ Ai.

Let −→ρ = (ρ1, ρ2, . . . , ρn) be the vector that defines the checking strategy at nodes of G. Let

−→γ = (γ1, γ2, . . . , γn) be the vector that defines the network coding strategy at nodes of G.

Let
−→
A = (A1, A2, . . . , An) be the vector of computational budgets available at nodes of G.

Let

Σ = {−→ρ ,−→γ | −→ρ ,−→γ are feasible for a given
−→
A}
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be the set of all strategies feasible at nodes of G for a given budget constraint
−→
A . Let rσ(

−→
A )

be the information rate that can be achieved for a given σ ∈ Σ and
−→
A .

In this chapter, we focus on how to construct the error correcting code that achieves

rσ(
−→
A ) for a given σ ∈ Σ. For each σ ∈ Σ the number of erroneous packets available at

the sink is unknown in advance; therefore, we want to construct a code that can adapt to

the actual number of errors present at the sink. Moreover, if an erroneous packet injected

to link l remains unchecked due to computational budget constraints and random linear

coding is performed, any subsequent signature check will identify packets contained on

links downstream of l as erroneous and will eliminate them. Therefore, we require that

the code that we construct be applicable in any network with an unknown, time-varying

minimum cut and number of errors.

4.3 Main result

Throughout this section, we use the following notation. For any matrix A, let rows(A)

denote the set of vectors that form rows of A. Let Ia denote an a×a identity matrix. Also,

let ia denote an a2×1 vector that is obtained by stacking columns of Ia one after the other.

Let Fq be the finite field over which coding occurs. Each source packet contains K symbols

from Fq.

4.3.1 Encoder

In each block S transmits BK independent information symbols from Fq to T . Let W be a

B×K matrix whose elements are the information symbols. The source transmits rows(X0),

where X0 =
(
W IB

)
. Suppose that while transmitting rows(X0) by means of random

linear network coding, the network has incurred z0 > 0 errors. Then since there are z0

additions and d0 = B− z0 deletions to/from rowspace(X0), T would not be able to recover

X0.

By [5], if there are d0 = B − z0 deletions and no additions from rowspace(X0), sending

δ = d0 additional linear combinations of rows(X0) ensures successful decoding. Similarly,

by [13], in case of z0 additions and no deletions, sending σK > z0K redundant bits helps to

decode. By making use of the two above-mentioned ideas, we propose an iterative algorithm

that resembles a ”digital error fountain” by incrementally adding redundancy, that ensures
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decoding of the source packets in finite number of iterations.

An end to end error detection scheme is needed so that the sink can determine when

decoding is successful. For instance, the source can include a cryptographic signature, e.g.

[12], in each packet. Upon failing to decode X0 successfully from the initial transmission,

S sends an additional batch of σ1 linearly independent redundant packets and δ1 linearly

dependent redundant packets, and T attempts to decode using both the initial and the

redundancy batch. Additional batches of redundant symbols are transmitted until decoding

succeeds, whereupon the sink sends feedback telling the source to move onto the next batch.

The ith stage of the reencoding algorithm can be generalized as follows (see Fig. 4.1):

B

K

2/2s
I

Linearly independent redundancy

B
I

2/1s
I

00

0

2
d

1
d

2
s

1
s

Linearly dependent redundancy

Linearly independent redundancy

Linearly dependent redundancy

Figure 4.1: Code construction.

• For some M > 0, let σi = M/2. The encoder arranges the matrix of information

symbols W in an BK × 1 vector w. Let Si be a σiK ×BK random matrix known to

everyone. Define a vector of redundant symbols yi as

yi = Siw or, equivalently,

(
Si −IσiK

)


 w

yi



 = 0. (4.1)

After computing yi, the encoder arranges it into a σi × (K + (i + 1)M) matrix Yi

column by column. Set

A1
i =

(
Y 1

i 0 Iσi

)
, (4.2)

where 0 is a σi × (B + (i− 1)M) matrix with zero entries.
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• Let δi = M/2. Let Di be a δi ×



B +

i∑

j=1

σj



 matrix with random entries from Fq.

Define a δi × (K + (B + iM)) matrix A2
i as

A2
i = Di





X0 0 0 . . . 0

A1
1 0 . . . 0

A1
2 . . . 0

. . .

A1
i





. (4.3)

• At the ith stage, the source transmits Xi =



 A1
i

A2
i



 .

4.3.2 Decoder

Let zi be the number of errors, i.e., the number of packets corrupted by the adversary,

at the ith stage. Let Zi be the matrix whose rows are the error packets injected to the

network at the ith stage that are linearly independent of the Xi packets, i.e., rowspace(Xi)∩
rowspace(Zi) = 0. Let

Yi = TiXi +QiZi (4.4)

be the matrix, such that rows(Yi) are the packets received at T at the ith stage, where Ti is

the transfer matrix from all links in G to the packets received at T , and Qi is the transfer

matrix from error packets to the packets received at T at the ith stage. For notational

convenience, define
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Y i =





Y0

Y1

. . .

Yi




T i =





T0 0 . . . 0

0 T1 . . . 0

. . . . . . . . . . . .

0 0 . . . Ti





Qi =





Q0 0 . . . 0

0 Q1 . . . 0

. . . . . . . . . . . .

0 0 . . . Qi





X i =





X0 0 0 . . . 0

X1 0 . . . 0

X2 . . . 0

. . .

Xi





Zi =





Z0 0 0 . . . 0

Z1 0 . . . 0

Z2 . . . 0

. . .

Zi





Note that for any i we can write

Y i = T iXi +QiZi.

The source transmits at the minimum cut rate m. Thus, X0 is transmitted in NB = B
m

time units and each Xi, i = 1, 2, . . . is transmitted in NM = M
m

time units. For each

j = 1, 2, . . . , B denote the part of X0 transmitted at the jth time unit by Xj
0 . Similarly,

for each j = 1, 2, . . . ,M , i = 1, 2, . . . denote the part of Xi by transmitted at the jth

time unit by Xj
i . For each i, j, define Ej

i to be a random variable that corresponds to

the number of errors that occurred in G while transmitting Xj
i . Define E0 =

NB∑

j=1

Ej
i and

Ei =

NM∑

j=1

Ej
i , i = 1, 2, . . .. Recall that σi = δi = M

2 .
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Lemma 10. Suppose that for each i, j, there exists εji > 0 such that

E[Ej
i ] <

m

2
− εji . (4.5)

Then for some finite N , we will have

N∑

i=0

zi <

N∑

i=1

δi (4.6)

N∑

i=0

zi <
N∑

i=1

σi (4.7)

Proof. See Section 4.4.2.

Lemma 11. If

N∑

i=0

zi ≤
N∑

i=1

δi, (4.8)

then with high probability columns of TN and QN span disjoint vector spaces.

Proof. See Section 4.4.2.

Let N be such that conditions (4.6)-(4.7) are satisfied. Then in order to decode, we

need to solve the following system of linear equations:

Y N = TNXN +QNZN (4.9)




S1 −IMK
2

. . . 0

S2 0 . . . 0

. . .

SN 0 . . . −IMK
2









w

y1

. . .

yN




= 0 (4.10)

Theorem 4. Let N be such that equations (4.6) and (4.7) are satisfied. Then with prob-

ability greater than 1 − q−εK , the system of linear equations (4.9)-(4.10) can be solved for

x.

Proof. See Section 4.4.2.

Theorem 5. For each i, j, let Ej
i be random variables with the same mean such that (4.5)

is satisfied. Let N be such that equations (4.6)-(4.7) are satisfied. Then the above-described
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code construction achieves the information rate

r ≤MA − 2E[E1
0 ] − ε, (4.11)

where MA is the average throughput of linearly independent packets, and ε decreases with

increasing B.

Proof. See Section 4.4.2.

4.4 Examples and proofs

4.4.1 Example: wireless butterfly network

D

source

1
sink

2
sink

(a) Wireless butterfly network topology
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40
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Figure 4.2: Example: wireless butterfly network example
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To illustrate our ideas, we consider a wireless butterfly network where a computationally

limited network coding node D receives z adversarial packets (see Figure 4.2(a)). For a

varying computational budget constraint, we compare three strategies: when network error

correction is performed without cryptographic checking, when cryptographic checking is

performed without network error correction, and when both cryptographic checking and

network error correction are performed. We derived analytical expressions for the expected

information rate for all three strategies, which are plotted in Figure 4.2(b). Note that

using our code construction the expected information rate can be approached. Our hybrid

strategy outperforms both pure ones, since the decision node favors coding over checking

for small budget constraints, and checking over coding for larger computational budgets.

4.4.2 Proofs

Proof of Lemma 4.5. Let ε = min
i,j

εji . Note that

E[E0] =

NB∑

j=1

E[Ej
0] <

B

2
− εNB <

B

2

E[Ei] =

NM∑

j=1

E[Ej
i ] <

M

2
− εNM , i = 1, 2, . . .

Then for L∗ > B
2εNM

L∗∑

i=0

E[Ei] < E[E0] +
ML∗

2
− L∗εNM

<
B

2
+
ML∗

2
− L∗εNM <

ML∗

2
.

Therefore, for some finite N > L∗, we will have

N∑

i=0

zi ≤
N∑

i=0

E[Ei] <
MN

2
, (4.12)

hence, we have
N∑

i=0

zi <
N∑

i=1

δi and
N∑

i=0

zi <
N∑

i=1

σi.

Proof of Lemma 11. Note that

N∑

i=1

δi +

N∑

i=1

σi +B = NM +B. Then by adding

N∑

i=1

σi +B
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to both sides of (4.8), we get

N∑

i=0

zi +

N∑

i=1

σi +B ≤ NM +B,

or

rank(XN ) + rank(ZN ) ≤ Nm+B.

Therefore, if the error packets were replaced by additional source packets, the total number

of source packets would be at most NM +B. By [4], with high probability, random linear

network coding allows T to decode all source packets. This corresponds to
(
TN QN

)

having full column rank, hence, column spaces of TN and QN being disjoint except in the

zero vector.

Proof of Theorem 4. The proof of this theorem is constructive and is similar to [13]. Note

that

XN =





X0 0 0 . . . 0

X1 0 . . . 0

X2 . . . 0

. . .

XN





=





X0 0 0 . . . 0

A1
1 0 . . . 0

A2
1 0 . . . 0

A1
2 . . . 0

A2
2 . . . 0

. . .

A1
N

A2
N





.

Define

X =





X0 0 0 . . . 0

A1
1 0 . . . 0

A1
2 . . . 0

. . .

A1
N





=





W IB 0 . . . 0

Y1 0 IM/2 . . . 0

. . .

YN 0 0 . . . IM/2




(4.13)
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Let 0a,b denote a zero matrix with a rows and b columns. Note that by (4.3)XN = DNX,

where

DN =





IB 0B,M/2 0B,M/2 . . . 0B,M/2

0M/2,B IM/2 0M/2,M/2 . . . 0M/2,M/2

D1 0M/2,M/2 . . . 0M/2,M/2

0M/2,B IM/2 0M/2,M/2 . . . 0M/2,M/2

D2 . . . 0M/2,M/2

. . . . . . . . . . . . . . .

0M/2,B 0M/2,M/2 0M/2,M/2 . . . IM/2

DN





Let T = TNDN . Then (4.9) is equivalent to

Y = TX +QZ, (4.14)

where Y = Y N , Q = QN and Z = ZN .

Let b = B+
N∑

i=1

σi = B+
MN

2
. The identity matrix of dimension b sent by S undergoes

the same transformation as the rest of the batch. Hence, T̂ = TIb +QL, where T̂ and L are

the columns that correspond to the location of the identity matrix in Y and Z respectively.

Then we can write

Y = T̂X +Q(Z − LX) = T̂X +E,

with E = Q(Z − LX).

Assume that Y full row rank, otherwise, discard linearly dependent rows of Y . Define

z = rank(QZ). By Lemma 11 z = rank(Y ) − b and TN and Q span disjoint vector spaces.

Since columns of T = TNDN are linear combinations of columns of TN , T and Q also

span disjoint vector spaces. Because the decoder cannot directly estimate the basis for the

column space of E, it instead chooses a proxy error matrix T ′′ whose columns act as a proxy

error basis for the columns of E. T ′′ is chosen as the matrix that corresponds to the first z

columns of Y . As in [13], we then have



56

Y =
(
T ′′ T̂

)


 Iz FZ 0

0 FX Ib



 . (4.15)

Let X =
(
J1 J2 J3

)
, where J1 corresponds to the first z columns of X, J3 corresponds

to the last b columns of X, and J2 corresponds to the remaining columns of X. Then by

Lemma 4 in [13], (4.15) is equivalent to the matrix equation

T̂ J2 = T̂ (FX + J1F
Z). (4.16)

Now, in order to decode, we need to solve the system formed by the linear equations (4.10)

and (4.16).

For i = 1, 2 denote by ji the vector obtained by stacking the columns of Ji one on top

of the other. Note that by (4.13),



 j1

j2



 = P





w

y1

. . .

yN




,

where P is a permutation matrix.

Denote by fX the vector formed by stacking columns of the matrix FX one on top of

another, and by fi,j the (i, j)th entry of the matrix FZ . Let α = K − z. The system of

linear equations given by (4.10) and (4.16) can be written in matrix form as

A



 j1

j2



 =





T̂ fX

0

. . .

0




,
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where A is given by

A =





−f1,1T̂ −f2,1T̂ . . . −fz,1T̂ T̂ 0 . . . 0

−f1,2T̂ −f2,2T̂ . . . −fz,2T̂ 0 T̂ . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

−f1,αT̂ −f2,αT̂ . . . −fz,αT̂ 0 0 . . . T̂

SP





with SP =





S1 −IMK
2

0 . . . 0

S2 0 −IMK
2

. . . 0

. . . . . . . . . . . . . . .

SN 0 0 . . . −IMK
2




P−1.

In order to show that we can decode, we need to prove that A has full column rank. By

Lemma 11, T̂ is a (b + z) × b matrix of full column rank. Therefore, the last αb columns

of A have full column rank. Denote the first z block-columns of A by {u1, u2, . . . , uz},
and the last α block-columns of A by {v1, v2, . . . , vα}. For each i, let ui =

(
u1

i u2
i

)T

,

where u1
i are the first α(b + z) rows and u2

i are the remaining rows of ui. Similarly, let

vi =
(
v1
i v2

i

)T

, where v1
i are the first α(b + z) rows and v2

i are the remaining rows of

vi. Note that for each i = 1 . . . z, u1
i +

∑

j

fi,jv
1
i = 0. Define wi = u2

i +
∑

j

fi,jv
2
i . Let

Ã be the resulting matrix after Gaussian elimination is performed on the upper left-hand

side of A. A has full rank iff the lower submatrix of Ã formed by wi and v2
i has full rank.

Note that since P is a permutation matrix, P−1 is also a permutation matrix. Therefore,

SP is a permutation of columns of the random matrix S =





S1

S2

. . .

SN




and the identity

matrix; hence, u2
i and v2

i are the columns of S and the identity matrix. Since entries of S

are independently and uniformly distributed in Fq, so are wi for fixed values of fi,j. The

probability that A does not have full column rank is 1 −
bz∏

l=1

(
1 − 1

q
∑

σiK−l+1

)
, which is

upper-bounded by qbz−
∑

σiK . By the union bound over all qαz possible values of variables

fi,j, we have qbz−
∑

σiK+αz ≤ qK(z−
∑

σi). Therefore, decoding succeeds with probability at

least q−Kε if
∑
σi > z + ε, which follows from equation (4.7).
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Proof of Theorem 5. Define ε1 = MN
2 −

N∑

i=0

E[Ei]. By (4.12) ε1 > 0. Since for each i,j, the

actual minimum cut of the network varies depending on the strategy used, define M j
i to be

the throughput of linearly independent packets while transmitting Xj
i . Then the achievable

rate is given by:

r ≤

NB∑

j=1

M j
0 +

N∑

i=1

NM∑

j=1

M j
i −

N∑

i=1

(σi + δi)

NB +NNM

= MA − 2

NB∑

j=1

E[Ej
0] +

N∑

i=1

NM∑

j=1

E[Ej
i ]

NB +NNM
− 2ε1
NB +NNM

= MA − 2
E[E1

0 ](NB +NNM )

NB +NNM
− 2ε1m

B +MN

with ε = 2ε1m
B+MN

.
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Chapter 5

Capacity regions for multisource

multicast network error correction

5.1 Introduction

For a single-source, single-sink network with mincut m, the capacity of the network under

arbitrary errors on up to z links is given by

r ≤ m− 2z (5.1)

and can be achieved by a classical end-to-end error correction code over multiple disjoint

paths from source to the sink. This result is a direct extension of the Singleton bound

[33]. Since the Singleton bound can be achieved by a maximum distance separable code, as

for example a Reed-Solomon code, such a code also suffices to achieve the capacity in the

single-source, single-sink case.

In the network multicast scenario, the situation is more complicated. For the single-

source multicast the capacity region was shown [6, 7, 8] to be the same as (5.1), with m

now representing the minimum of the mincuts [7]. However, unlike single-source single-

sink networks, in the case of single-source multicast, network error correction is required:

network coding is required in general for multicast even in the error-free case [1], and with

the use of network coding errors in the sink observations become dependent and cannot be

corrected by end-to-end codes.

In this chapter we address the error correction capacity region and the corresponding

code design in both coherent and noncoherent multiple-source multicast scenarios [26, 27].

We prove the upper bound on the capacity region as well as give capacity-achieving com-



60

s1
s2

t

N1 N2

Figure 5.1: An example to show that in the multisource case network coding is required to
achieve the network error correction capacity.

munication scheme in both coherent and noncoherent cases. Our achievable scheme for

the noncoherent scenario is based on the random subspace code design of complexity that

grows exponentially. Subsequent work of [34, 27] gives a polynomial-time capacity-achieving

construction that uses a multiple-field extension technique.

5.2 Motivating example

The issues which arise in multisource network error correction problem are best explained

with a simple example for a single sink, which is shown in Figure 5.1. Suppose that the

sources s1 and s2 encode their information independently from each other. We can allocate

one part of the network to carry only information from s1, and another part to carry only

information from s2. In this case only one source is able to communicate reliably under

one link error. However, if coding at the middle nodes N1 and N2 is employed, the two

sources are able to share network capacity to send redundant information, and each source

is able to communicate reliably at capacity 1 under a single link error. This shows that in

contrast to the single source case, coding across multiple sources is required, so that sources

can simultaneously use shared network capacity to send redundant information, even for a

single sink.

We show that for the example network in Figure 5.1, the z-error correction capacity
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region is given by

r1 ≤ ms1 − 2z

r2 ≤ ms2 − 2z (5.2)

r1 + r2 ≤ ms1,s2 − 2z,

where for i = 1, 2, rate ri is the information rate of si, msi
is the minimum cut capacity

between si and sink t, ms1,s2 is the minimum cut capacity between s1, s2 and t and z is

the known upper bound on the number of link errors. Hence, similarly to single-source

multicast, the capacity region of a multisource multicast network is described by the cutset

bounds. From that perspective, one may draw a parallel with point-to-point error correction.

However, for multisource multicast networks point-to-point error-correcting codes do not

suffice and a careful network code design is required. For instance, the work of [18], which

applies single-source network error-correcting codes for this problem, achieves a rate region

that is strictly smaller than the capacity region (5.2) when ms1 +ms2 6= ms1,s2.

5.3 Model

Consider a multicast network error correction problem on a directed acyclic graph G with

n source nodes S = {s1, s2, . . . , sn} and a set of sink nodes T . Each link has unit capacity,

and there can be multiple parallel edges connecting a pair of nodes. Let ri be the multicast

transmission rate from si to each sink. For any non-empty subset S ′ ⊆ S, let I(S ′) be

the indices of the source nodes that belong to S ′. Let mS′ be the minimum cut capacity

between any sink and S ′. For each i, i = 1, . . . , n, let Ci be the code used by source i. Let

CS′ be the Cartesian product of the individual codes of the sources in S ′.

Let V be the vector space of length-K vectors over the finite field Fq, representing the

set of all possible values of packets transmitted and received in the network [14]. Let P(V )

denote the set of all subspaces of V . A code C consists of a nonempty subset of P(V ), where

each codeword U ∈ C is a subspace of constant dimension.

Subspace errors are defined as additions of vectors to the transmitted subspace and

subspace erasures are defined as deletions of vectors from the transmitted subspace [14].

Note that depending on the network code rate and network topology, network errors and
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erasures translate differently to subspace errors and erasures. For instance, subject to

the position of adversary in the network, one network error can result in both dimension

addition and deletion (i.e.,, both subspace error and subspace erasure in our terminology).

Let ρ be the number of subspace erasures and let t be the number of subspace errors caused

by z network errors.

The subspace metric [14] between two vector spaces U1, U2 ∈ P(V ) is defined as

dS(U1, U2)
.
= dim(U1 + U2) − dim(U1 ∩ U2)

= dim(U1) + dim(U2) − 2 dim(U1 ∩ U2).

In [14] it shown that the minimum subspace distance decoder can successfully recover the

transmitted subspace from the received subspace if

2(ρ+ t) < Dmin
S ,

where Dmin
S is the minimum subspace distance of the code. Note that dS treats insertions

and deletions of subspaces symmetrically. In [24] the converse of this statement for the case

when information is transmitted at the maximum rate was shown.

In [32] a different metric on V , namely, the injection metric, was introduced and shown

to improve upon the subspace distance metric for decoding of non-constant-dimension codes.

The injection metric between two vector spaces U1, U2 ∈ P(V ) is defined as

dI(U1, U2)
.
= max(dim(U1),dim(U2)) − dim(U1 ∩ U2)

= dim(U1 + U2) − min(dim(U1),dim(U2)).

dI can be interpreted as the number of error packets that an adversary needs to inject

in order to transform input space U1 into an output space U2. The minimum injection

distance decoder is designed to decode the received subspace as with as few error injections

as possible. Note that for constant-dimensional codes dS and dI are related by

dI(U1, U2) =
1

2
dS(U1, U2).
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5.4 Main results

5.4.1 Coherent multisource multicast

Theorem 6 characterizes the network error correction capacity of centralized network coding

over a known network G in a multiple-source multicast scenario.

Theorem 6. Consider a multiple-source multicast network error correction problem on

network G with known topology. For any arbitrary errors on up to z links, the capacity

region is given by:

∑

i∈I(S′)

ri ≤ mS′ − 2z ∀S ′ ⊆ S. (5.3)

Proof. See Section 5.5.

5.4.2 Noncoherent multisource multicast

Theorem 7 gives the noncoherent capacity region. In the proof of Theorem 7 we show

how to design noncoherent network codes that achieve upper bounds given by (5.4) when a

minimum (or bounded) injection distance decoder is used at the sink nodes. Our code con-

struction uses random linear network coding at intermediate nodes, single-source network

error correction capacity-achieving codes at each source, and an overall global coding vector.

Our choice of decoder relies on the observation that subspace erasures are not arbitrarily

chosen by the adversary, but also depend on the network code. Since, as we show below,

with high probability in a random linear network code, subspace erasures do not cause con-

fusion between transmitted codewords, the decoder focuses on the discrepancy between the

sent and the received codewords caused by subspace errors. The error analysis shows that

injection distance decoding succeeds with high probability over the random network code.

On the other hand, the subspace minimum distance of the code is insufficient to account

for the total number of subspace errors and erasures that can occur. This is in contrast to

constant dimension single-source codes, where subspace distance decoding is equivalent to

injection distance decoding [32].

Theorem 7. Consider a multiple-source multicast network error correction problem on

network G whose topology may be unknown. For any errors on up to z links, when random
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linear network coding in a sufficiently large finite field is performed, the capacity region is

given by:

∑

i∈I(S′)

ri ≤ mS′ − 2z ∀S ′ ⊆ S. (5.4)

Proof. See Section 5.5.

Note that the capacity regions of coherent and non-coherent network coding given by

Theorems 6 and 7 for the same multisource multicast network are the same. However, a

noncoherent scheme includes an overhead of incorporating a global coding vector. Therefore,

it achieves the outer bounds given by (5.4) only asymptotically in packet length. In contrast,

in the coherent case, the full capacity region can be achieved exactly with packets of finite

length. Hence, any non-coherent coding scheme can also be applied in the coherent setting

when the network is known.

5.5 Proofs

Proof of Theorem 6. Converse. Let li,j , j = 1, . . . , ni, be the outgoing links of each source

si, i = 1, . . . , n. Take any S ′ ⊆ S. We construct the graph GS′ from G by adding a virtual

super source node wS′ , and ni links l′i,j, j = 1, . . . , ni, from wS′ to source si for each i ∈ I(S ′).

Note that the minimum cut capacity between wS′ and any sink is at least mS′ . Any network

code that multicasts rate ri from each source si, i ∈ I(S ′) over G corresponds to a network

code that multicasts rate
∑

i∈I(S′)

ri from wS′ to all sinks over GS′ ; the symbol on each link

l′i,j is the same as that on link li,j, and the coding operations at all other nodes are identical

for G and GS′ . The converse follows from applying the network Singleton bound [7] to wS′

for each S ′ ⊆ S.

Achievability. Suppose any 2z links on G suffer erasures. Construct the graph GS′ from

G by adding 2z extra sources in place of erasure links. Since the maxflow-mincut bound

holds for GS′ , there exists a random linear network code C′ such that all n+ 2z sources can

be reconstructed at the sink [5].

Now construct the graph GS for the set of all source nodes S as in the proof of the

converse. Then the code C′ on GS′ corresponds to a single-source network code CS on GS

where the symbol on each link l′i,j is the same as that on link li,j , and the coding operations
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at all other nodes are identical for GS′ and GS .

For the single-source coherent case, the following are equivalent [35]:

1. a linear network code has network minimum distance at least 2z + 1

2. the code corrects any error of weight at most z

3. the code corrects any erasure of weight at most 2z.

This implies that CS has network minimum distance at least 2z + 1, and so it can correct

any z errors.

Note that a general single-source network code on GS would not correspond to a valid

n-source network code on GS , since for independent sources the set of source codewords in

CS must be the Cartesian product of a set of codewords from s1, s2, . . . , sn.

Proof of Theorem 7. Converse. Follows from Theorem 6, since the noncoherent region is

no larger than the coherent region.

Achievability. 1) Code construction: Consider any rate vector (r1, . . . , r|S|) such that

∑

i∈I(S′)

ri < mS′ − 2z ∀S ′ ⊆ S. (5.5)

Let each Ci, i = 1, . . . , |S| be a code consisting of codewords that are ki−dimensional linear

subspaces. The codeword transmitted by source Si is spanned by the packets transmitted

by Si. From the single source case, for each source i = 1, . . . , |S| we can construct a code

Ci where

ki > ri + z (5.6)

that corrects any z additions [13]. This implies that by [24], Ci has minimum subspace

distance greater than 2z, i.e., for any pair of distinct codewords Vi, V
′
i ∈ Ci

dS(Vi, V
′
i ) = dim(Vi) + dim(V ′

i ) − 2 dim(Vi ∩ V ′
i ) > 2z.

Hence,

dim(Vi ∩ V ′
i ) < ki − z ∀ Vi, V

′
i ∈ Ci. (5.7)
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By (5.6), we have:

∑

i∈I(S′)

ki >
∑

i∈I(S′)

ri + |S ′|z.

Therefore, by combining it with (5.5) and scaling all source rates and link capacities by a

sufficiently large integer if necessary, we can assume without loss of generality that we can

choose ki satisfying

∑

i∈I(S′)

ki ≤ mS′ + (|S ′| − 2)z ∀S ′ ⊆ S. (5.8)

We can make vectors from one source linearly independent of vectors from all other

sources by prepending a length–(
∑

i∈I(S)

ki) global encoding vector, where the jth global

encoding vector, j = 1, 2, . . . ,
∑

i∈I(S) ki, is the unit vector with a single nonzero entry in

the jth position. This adds an overhead that becomes asymptotically negligible as packet

length grows. This ensures that

dim(Vi ∩ Vj) = 0 ∀i 6= j, Vi ∈ Ci, Vj ∈ Cj. (5.9)

2) Error analysis. Let X ∈ CS be the sent codeword, and let R be the subspace received

at a sink. Consider any S ′ ⊆ S. Let S ′ = S \ S ′. Let X = V ⊕W , where V ∈ CS′ ,W ∈ C
S
′

and V is spanned by the codeword Vi from each code Ci, i ∈ I(S ′). We will show that

with high probability over the random network code, there does not exist another codeword

Y = V ′ ⊕W , such that V ′ is spanned by a codeword V ′
i 6= Vi from each code Ci, i ∈ I(S ′),

which could also have produced R under arbitrary errors on up to z links in the network.

Fix any sink t. Let R be the set of packets (vectors) received by t, i.e., R is the subspace

spanned by R. Each of the packets in R is a linear combination of vectors from V and W

and error vectors, and can be expressed as p = up + wp, where wp is in W and the global

encoding vector of up has zero entries in the positions corresponding to sources in set I(S ′).

The key idea behind our error analysis is to show that with high probability subspace

deletions do not cause confusion, and that more than z additions are needed for X be
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decoded wrongly at the sink, i.e we will show that

dI(R,V
′ ⊕W ) = dim(R) − dim(R ∩ (V ′ ⊕W )) > z.

Let P = span{up : p ∈ R}. Let M be the matrix whose rows are the vectors p ∈ R,

where the jth row of M corresponds to the jth vector p ∈ R. Similarly, let Mu be the

matrix whose jth row is the vector up corresponding to the jth vector p ∈ R, and let Mw be

the matrix whose jth row is the vector wp corresponding to the jth vector p ∈ R. Consider

matrices A,B such that the rows of AMu form a basis for P ∩ V ′ and, together with the

rows of BMu, form a basis for P . The linear independence of the rows of



 AMu

BMu



 implies

that the rows of



 AM

BM



 are also linearly independent, since otherwise there would be a

nonzero matrix D such that

D



 AM

BM



 = 0 ⇒ D



 AMw

BMw



 = 0

⇒ D



 AMu

BMu



 = 0,

a contradiction. For wp in W , up +wp is in V ′⊕W only if up is in V ′, because the former

implies up = up + wp − wp is in V ′ ⊕W and since up has zero entries in the positions of

the global encoding vector corresponding to I(S ′) it must be in V ′. Thus, since any vector

in the row space of BMu is not in V ′, any vector in the row space of BM is not in V ′ ⊕W .

Since the row space of BM is a subspace of R, it follows that the number of rows of B is

equal to dim(P ) − dim(P ∩ V ′) and is less than or equal to dim(R) − dim(R ∩ (V ′ ⊕W )).

Therefore,

dI(R,V
′ ⊕W ) = dim(R) − dim(R ∩ (V ′ ⊕W )) (5.10)

≥ dim(P ) − dim(P ∩ V ′).

We next show that for random linear coding in a sufficiently large field, with high
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probability

dim(P ) − dim(P ∩ V ′) > z (5.11)

for all V ′ spanned by a codeword V ′
i 6= Vi from each code Ci, i ∈ I(S ′).

Consider first the network with each source i in S ′ transmitting ki linearly independent

packets from Vi, sources in S ′ silent, and no errors. From the maxflow-mincut bound, any

rate vector (h1, . . . , h|S′|), such that

∑

i∈S′′

hi ≤ mS′′ ∀S ′′ ⊆ S ′

can be achieved. Combining this with (5.8), we can see that in the error-free case, each

si ∈ S ′ can transmit information to the sink at rate ki − (|S′|−2)z
|S′| for a total rate of

∑

i∈I(S′)

ki − (|S ′| − 2)z. (5.12)

With sources in S ′ still silent, consider the addition of z unit-rate sources corresponding to

the error links. The space spanned by the received packets corresponds to P . Consider any

V ′ spanned by a codeword V ′
i 6= Vi from each code Ci, i ∈ I(S ′).

Let Z be the space spanned by the error packets, and let z′ ≤ z be the minimum cut

between the error sources and the sink. Let P = PV ⊕ PZ , where PZ = P ∩ Z and PV is

a subspace of V . There exists a routing solution, which we distinguish by adding tildes in

our notation, such that dim P̃Z = z′ and, from (5.12), dim P̃ ≥
∑

i∈I(S′)

ki − (|S ′| − 2)z, so

dim(P̃V ) ≥
∑

i∈I(S′)

ki − (|S ′| − 2)z − z′. (5.13)

Note that, by (5.9), a packet from Vi is not in any V ′
j ∈ Cj , j 6= i, and hence is in V ′ if and

only if it is in V ′
i . Therefore, by (5.7)

dim(P̃V ∩ V ′) ≤
∑

i∈I(S′)

dim(Vi ∩ V ′
i ) <

∑

i∈I(S′)

ki − |S ′|z.
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Therefore, using (5.13) we have

dim(P̃V ∪ V ′) = dim(P̃V ) + dim(V ′) − dim(P̃V ∩ V ′)

> dim(P̃V ) + dim(V ′) + |S ′|z −
∑

i∈I(S′)

ki

≥
∑

i∈I(S′)

ki − (|S ′| − 2)z − z′ + |S ′|z

=
∑

i∈I(S′)

ki + 2z − z′ ≥
∑

i∈I(S′)

ki + z.

Then

dim(P̃ ∪ V ′) >
∑

i∈I(S′)

ki + z.

For random linear coding in a sufficiently large field, with high probability by its generic

nature

dim(P ∪ V ′) ≥ dim(P̃ ∪ V ′) >
∑

i∈I(S′)

ki + z,

and this also holds for any z or fewer errors, all sinks, and all V ′ spanned by a codeword

V ′
i 6= Vi from each code Ci, i ∈ I(S ′). Then, (5.11) follows by

dim(P ) − dim(P ∩ V ′) = dim(P ∪ V ′) − dim(V ′).

Hence, using (5.11) and (5.10),

dI(R,V
′ ⊕W ) = dim(R) − dim(R ∩ (V ′ ⊕W ))

≥ dim(P ) − dim(P ∩ V ′) > z.

Thus, more than z additions are needed to produce R from Y = V ′ ⊕W . By the generic

nature of random linear coding, with high probability this holds for any S ′. Therefore, at

every sink the minimum injection distance decoding succeeds with high probability over the

random network code.

Decoding complexity. Take any achievable rate vector (r1, r2, . . . , r|S|). For each i =
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1, . . . , |S|, si can transmit at most qriK independent symbols. Decoding can be done by

exhaustive search, where the decoder checks each possible set of codewords to find the one

with minimum distance from the observed set of packets, therefore, the decoding complexity

of the minimum injection distance decoder is upper bounded by O(qK
∑|S|

i=1 ri).
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Chapter 6

Network error correction in

nonmulticast networks

6.1 Introduction

In this chapter we consider the problem of adversarial error correction in nonmulticast

networks. Previous work on network error correction largely assumes multicast network

scenarios. For single- and multiple-source multicast network scenarios, it has been proven

that the cutset bounds are tight, and that linear network error-correcting codes are suffi-

cient [7, 26].

For nonmulticast networks, however, finding the capacity region of a general network

even in the error-free case is an open problem. In some network topologies, such as single-

source two-sink networks as well as single-source disjoint- or nested-demand networks, the

error-free capacity region is known to be described by the cutset bounds [19, 20, 21, 9]. In

this chapter we show that this is generally not the case for erroneous networks. We propose

an achievable scheme of for the multiple-source nonmulticast scenario in the presence of

errors from a given error-free linear network code [26]. We also provide upper bounds on

the error correction capacity regions of nonmulticast networks based on the topological

structure of network cuts [28].

6.2 Model

Consider a network error correction problem on a directed acyclic graph G with n source

nodes S = {s1, s2, . . . , sn} and m sink nodes T = {t1, t2, . . . , tm}, where each source si is

demanded by a given set of sink nodes Ti, and arbitrary coding across sessions is permitted.



72

Each link has unit capacity, and there can be multiple parallel edges connecting a pair of

nodes.

For each i, i ∈ {1, . . . , n}, let ri be the error-free information rate of si. For any non-

empty subset S ′ ⊆ S, let I(S ′) be the indices of the source nodes that belong to S ′.

Similarly, for any non-empty subset of T ′ ∈ T , let I(T ′) be the indices of the sink nodes

that belong to T ′. Define mS′,T ′ to be the minimum cut capacity between S ′ and T ′.

Let C = C1 × C2 × . . . × Cm be the code used by S. A network code is z-error link-

correcting if it can correct any t adversarial link errors for t ≤ z. For each i, i ∈ {1, . . . , n},
let ui be the information rate of si in case of any z network link errors.

Definition 1. The set of all rate vectors (u1, u2, . . . , un) that can be achieved on G under

any z network link errors is called z-error correction capacity region.

Define φl(x) as the error-free output of link l when the network input is x ∈ C. If an

error vector z occurs, its components are added to the link inputs according to the coding

order. Then the output of a link l is a function of both the network input w and the error

vector z and it is denoted by ψl(w, z) [7].

Throughout this chapter, we assume the coherent network coding scenario, in which

there is centralized knowledge of the network topology and network code.

6.3 Main results

6.3.1 Lower bound

Consider any linear network code C. If the given linear network code C is a vector linear

network code with vector length y, we can consider a modified network problem where each

source is replaced with y co-located sources and each link with y parallel links joining the

same nodes. The source rates and the number of errors are also scaled by y. Therefore, we

may view the vector linear code C as a scalar linear code on the new network.

Prior to describing how to use C in order to construct a valid network code in the

presence of network errors, we first generalize the concept of network distance, introduced

in [35] for multicast, to nonmulticast as follows.

The Hamming weight of a vector z (the number of non-zero components of z) is denoted

by wH(z). As in [35], define a network erasure pattern ρ with Hamming weight |ρ| as a
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set of channels in which an error may have occurred, whose location is known to all sink

nodes. Abusing notation, we also use ρ to denote the set of vectors with nonzero entries

corresponding to the erasure pattern ρ.

For any non-empty subset S ′ ⊆ S, let AS′ denote the transfer matrix mapping the length-

rS′ vector xS′ of source symbols of sources in S ′ to the corresponding incident outgoing links

of the sources, where rS′ =
∑

i∈S′ ri. Let Ft be the transfer matrix from all links in the

network to the incoming links of sink t. Let Im(Ft) be the image of the map Ft. For any

t ∈ T , let St be the subset of sources demanded by sink node t, and St the subset of sources

not demanded by t. For any vector y ∈ Im(Ft) received at t, let

Υt(y) = {z : ∃xSt
∈ FrS′

q s.t. (xSt
ASt

+ z)Ft = y}

be the set of all error patterns that could result in y being observed at the sink. With this

definition, we can, analogously to the multicast case in [35], develop the following definitions

and results.

Definition 2. For any sink node t, the network Hamming weight of a received vector y ∈
Im(Ft) is defined as

W rec
t (y) = min

z∈Υt(y)
wH(z).

Definition 3. For any sink node t, the network Hamming weight of a message vector

xSt ∈ F
rSt
q is defined as

Wmsg
t (xSt) = W rec

t (xStAStFt).

Definition 4. For any sink node t, the network Hamming distance between two received

vectors y1,y2 ∈ Im(Ft) is defined by

Drec
t (y1,y2) = W rec

t (y1 − y2).

Definition 5. For any sink node t, the network Hamming distance between two message

vectors x1
St
,x2

St
∈ F

rSt
q , is defined by

Dmsg
t (x1

St
,x2

St
) = Wmsg

t (x1
St

− x2
St

).

Lemma 12. For any sink node t, let xSt,x
1
St

∈ F
rSt
q be message vectors, y,y1 ∈ Im(Ft) be
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received vectors. Then we have

Drec
t (y,y1) = Drec

t (y1,y) (6.1)

Dmsg
t (xSt ,x

1
St

) = Dmsg
t (x1

St
,xSt) (6.2)

Dmsg
t (xSt ,x

1
St

) = Drec
t (xStAStFt,x

1
St
AStFt) (6.3)

Proof. See Section 6.4.

Lemma 13 (Triangle inequality). For any sink node t, let xSt ,x
1
St
,x2

St
∈ F

rSt
q be message

vectors, y,y1,y2 ∈ Im(Ft) be received vectors. Then we have:

Drec
t (y1,y2) ≤ Drec

t (y1,y) +Drec
t (y,y2) (6.4)

Dmsg
t (x1

St
,x2

St
) ≤ Dmsg

t (x1
St
,xSt) +Dmsg

t (xSt ,x
2
St

) (6.5)

Proof. See Section 6.4.

Definition 6. For each sink node t, the minimum distance of a network code is defined by:

dmin,t = min{Dmsg
t (x1

St
,x2

St
) : x1

St
,x2

St
∈ F

rSt
q ,x1

St
6= x2

St
}

Definition 7. The minimum distance of a network code is defined by:

dmin = min
t∈T

dmin,t

Theorem 8. For a sink node t, the following properties of a linear network code are equiv-

alent:

1. the code has dmin,t ≥ 2z + 1;

2. any error z such that wH(z) ≤ z can be corrected at t;

3. any erasure pattern ρt such that |ρt| ≤ 2z can be corrected at t.

Proof. See Section 6.4.

Theorem 8 is useful for proving Theorem 9:
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Theorem 9. Given any linear network code C that achieves rate vector r = (r1, r2, . . . , rn)

in the error-free case, where ri is the information rate of source si, i = 1, . . . , n, we can

obtain a network code C̃ that achieves rate vector r̃ = (r1 − 2z, r2 − 2z, . . . , rn − 2z) under

arbitrary errors on up to z links in the network.

Proof. See Section 6.4.

Let C ⊆ Rn be an error-free region achievable in G by linear coding. Then Theorem 9

allows us to construct an achievable error correction region V based on C as follows:

• Take any achievable rate vector r = (r1, r2, . . . , rn) ∈ C

• Define

f(r) = (max(r1 − 2z, 0), . . . ,max(rn − 2z, 0)).

• By Theorem 9, f(r) ∈ V.

• By timesharing, for any 0 ≤ λ ≤ 1 and any v,w ∈ V, λv + (1 − λ)w ∈ V.

In accordance with the above described procedure, we define

A = {a ∈ Rn : ∃r ∈ C such that a = f(r)}

to be the set of rate vectors that have a preimage in C. Also define

T = {t ∈ Rn\A : ∃k1, k2, . . . , kn,

n∑

i=1

ki = n,

r1, r2, . . . , rn ∈ A such that t =

n∑

i=1

ki

n
ri}

to be the set of rate vectors that can be achieved under any z errors by timesharing of

elements in A. Note that by our construction V = A ∪ T.

Figure 6.1 illustrates the construction of V based on C for the two-source two-sink network,
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Figure 6.1: Example of the error correction achievability construction based on the known
error-free capacity region for the two-source two-sink network.

for which in the error-free case the cutset bounds

r1 ≤ ms1,t1 = 4

r2 ≤ ms2,t2 = 4

r1 + r2 ≤ ms1s2,t1t2 = 5

are achieved.

6.3.2 Upper bound

In this section we consider an acyclic network G = (V,E) with source set S and sink set

T = {t1, t2, . . . , tm}. Let X1,X2, . . . ,Xm be m independent source processes, such that

each Xi is demanded by exactly one ti (we require non-overlapping sink demands).

Define P = (VS , VT ) to be a partition of V such that all sources are in VS and all sinks

are in VT . Define

cut(P ) = {(a, b) ∈ E|a ∈ VS , b ∈ VT }.
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Further, for any non-empty subset T ′ ⊆ T define

LP
T ′ = {e ∈ cut(P ) : e is upstream of all t ∈ T ′

and e is not upstream of any t ∈ T \T ′}.

Note that for any T ′, T ′′ ⊆ T such that T ′ 6= T ′′, LP
T ′ ∩ LP

T ′′ = ∅, therefore,

|cut(P )| =
∑

T ′⊆T

|LP
T ′ | (6.6)

As in [36, 37], we use the following definition:

Definition 8. A subset of links Q ⊆ cut(P ) is said to satisfy the downstream condition

(DC) if none of the remaining links in cut(P ) are downstream of any link in Q.

Let U = {(u1, u2, . . . , um)} denote the z-error correction capacity region of G. In Theo-

rem 10, we derive an upper bound on U by considering an optimization that chooses subsets

SP
T ′ of each set LP

T ′ of links on cut(P ) such that the union of the chosen subsets satisfies

DC and at most 2z chosen links are upstream of each sink.

Theorem 10. For any (u1, u2, . . . , um) ∈ U

m∑

j=1

uj ≤ min
P=(VS ,VT )

(|cut(P )| − lP ),

where lP is a solution to

maximize lP =
∑

T ′⊆T

|SP
T ′ | (6.7)

subject to

∀ti ∈ T
∑

T ′⊆T :ti∈T ′

|SP
T ′ | ≤ 2z (6.8)

∀T ′ ⊆ T |SP
T ′ | ≤ |LP

T ′ | (6.9)
⋃

T ′⊆T :ti∈T ′

SP
T ′ satisfies DC. (6.10)

Proof. See Section 6.4.

In addition to an upper bound given by Theorem 10, in Chapter 7 we prove a tighter
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upper bound on the z-error correction capacity region of two-sink nonmulticast networks.

6.4 Proofs

Proof of Lemma 12. (6.1) and (6.2) follow from definitions of W rec
t (y), Wmsg

t (xSt) and

linearity of the code. To prove (6.3) note that:

Dmsg
t (xSt ,x

1
St

) = Wmsg
t (xSt − x1

St
)

= W rec
t ((xSt − x1

St
)AStFt)

= Drec
t (xStAStFt,x

1
St
AStFt).

Proof of Lemma 13. Consider z1 ∈ Υt(y
1−y) and z2 ∈ Υt(y−y2) such that Drec

t (y1,y) =

wH(z1) and Drec
t (y,y2) = wH(z2). By linearity of the code, z1 +z2 ∈ Υt(y

1−y2), therefore

Drec
t (y1,y2) = W rec

t (y1 − y2)

≤ wH(z1 + z2)

≤ wH(z1) + wH(z2)

≤ Drec
t (y1,y) +Drec

t (y,y2).

(6.5) follows from (6.4) and (6.3):

Dmsg
t (x1

St
,x2

St
)

= Drec
t (x1

St
AStFt,x

2
St
AStFt)

≤ Drec
t (x1

St
AStFt,xStAStFt) +Drec

t (xStAStFt,x
2
St
AStFt)

= Dmsg
t (x1

St
,xSt) +Dmsg

t (xSt ,x
2
St

).

Proof of Theorem 8. 1 ⇒ 2. For a message vector xSt ∈ F
rSt
q and an error vector z, the

received vector at t is given by

yt = xStAStFt + xSt
ASt

Ft + zFt
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for some xSt
∈ F

rSt
q . We will show that if dmin,t ≥ 2z + 1, the minimum distance decoding

algorithm will always decode correctly for any message vector xSt ∈ F
rSt
q and any error

vector z such that wH(z) ≤ z. By (6.4) for any x′
St

∈ F
rSt
q such that xSt 6= x′

St
we have

Drec
t (xStAStFt,x

′
St
AStFt)

≤ Drec
t (xStAStFt,yt) +Drec

t (x′
St
AStFt,yt). (6.11)

Note that

Drec
t (xStAStFt,x

′
St
AStFt)

= Dmsg
t (xSt ,x

′
St

) ≥ dmin,t ≥ 2z + 1 (6.12)

Drec
t (xStAStFt,yt) = W rec

t (xStAStFt − yt)

= W rec
t (xSt

ASt
Ft + zFt) ≤ wH(z) ≤ z. (6.13)

Now using (6.11)-(6.13), we get

Drec
t (x′

St
AStFt,yt)

≥ Drec
t (xStAStFt,x

′
St
AStFt) −Drec

t (xStAStFt,yt).

≥ z + 1 > Drec
t (xStAStFt,yt).

Hence, the decoder outputs x̂ = xSt and 1 ⇒ 2 follows.

2 ⇒ 1. We will prove this by contradiction. Assume that any error z with wH(z) ≤ z

can be corrected at t, but dmin,t ≤ 2z. Take any x1
St
,x2

St
∈ F

rSt
q ,x1

St
6= x2

St
such that

W rec
t ((x1

St
− x2

St
)AStFt) = Dmsg

t (x1
St
,x2

St
) ≤ 2z. Then by definition of W rec

t (.) there exist

error vectors z and xSt
∈ F

rSt
q such that

(x1
St

− x2
St

)AStFt = xSt
ASt

Ft + zFt (6.14)

with wH(z) ≤ 2z. Hence, we can find error vectors z1 and z2 such that z = z2 − z1,

wH(z1) ≤ z and wH(z2) ≤ z. Also, by linearity of the code, we can find x1
St
,x2

St
∈ F

rSt
q such

that xSt
= x2

St
−x1

St
. Therefore, if yt is received at t,by (6.14) we have two indistinguishable
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possibilities, a contradiction:

yt = x1
St
AStFt + x1

St
ASt

Ft + z1Ft

yt = x2
St
AStFt + x2

St
ASt

Ft + z2Ft.

1 ⇒ 3. Let dmin,t ≥ 2z + 1 and |ρ| ≤ 2z. In order to prove the implication, we need to

show that for any received vector yt, there is a unique message vector xSt ∈ F
rSt
q and some

xSt
∈ F

rSt
q and error z ∈ ρ, such that

yt = xStAStFt + xSt
ASt

Ft + zFt.

Call such (xSt ,xSt
, z) a solution of the decoding problem. Suppose the problem has two

distinct solutions (x1
St
,x1

St
, z1) and (x2

St
,x2

St
, z2). Then we have

Dmsg
t (x1

St
,x2

St
) = W rec

t ((x1
St

− x2
St

)AStFt)

= W rec
t ((x2

St
− x1

St
)ASt

Ft + (z2 − z1)Ft)

≤ wH(z2 − z1).

Since both z1, z2 ∈ ρ, we have Dmsg
t (x1

St
,x2

St
) ≤ wH(z2 − z1) ≤ 2z, which contradicts the

fact that dmin,t ≥ 2z + 1.

3 ⇒ 1. Assume that any erasure pattern ρ with |ρ| ≤ 2z can be corrected at t, but

dmin,t ≤ 2z. Take any x1
St
,x2

St
∈ F

rSt
q ,x1

St
6= x2

St
such that Wmsg

t ((x1
St

− x2
St

)AStFt) =

Dmsg
t (x1

St
,x2

St
) ≤ 2z. Therefore, by definition of Wmsg

t (.) there exist error vectors z and

xSt
∈ F

rSt
q such that

(x1
St

− x2
St

)AStFt = xSt
ASt

Ft + zFt (6.15)

with wH(z) ≤ 2z. Hence, we can choose error vectors z1, z2 ∈ ρ such that z = z2−z1. Also,

by linearity of the code, we can find x1
St
,x2

St
∈ F

rSt
q such that xSt

= x2
St

− x1
St

. Therefore,

if yt is received at t, by (6.15) we have two indistinguishable possibilities

yt = x1
St
AStFt + x1

St
ASt

Ft + z1Ft

yt = x2
St
AStFt + x2

St
ASt

Ft + z2Ft.
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Hence, 3 ⇒ 1 follows.

Proof of Theorem 9. The network code C̃ is obtained by applying a random linear pre-code

at each source Si. That is, the length-(ri − 2z) vector of source symbols x̃i is multiplied by

Ri, an (ri − 2z) × ri matrix with entries chosen uniformly at random from Fq, to form the

input

xi = x̃iRi (6.16)

to the original code. Let r̃S′ =
∑

i∈S′(ri − 2z) = rS′ − 2|S ′|z.
Consider any sink t. For any x ∈ Fr̃S

q , under the original code C, in the absence of any

errors or erasures, sink t receives

yt = xM, (6.17)

where M = ASFt, and applies a decoding matrix B to obtain its demanded source symbols

xMB = xSt .

Consider any network erasure pattern ρ with |ρ| = 2z, and any z ∈ ρ. Let s be the

length-2z vector of nonzero symbols in z, and let Q be the 2z×|Int| network transfer matrix

from the symbols in s to the symbols on the sink’s incoming links Int. The vector received

at t is

y′ = xM + sQ.

Sink t applies its original decoding matrix B to obtain

y′B = xMB + sQB = xSt + sQB. (6.18)

Let a ≤ 2z be the rank of QB, and let P be a submatrix of QB consisting of a linearly

independent rows. Then sQB can be represented by sGP , where G ∈ F2z×a
q . Hence, (6.18)

can be rewritten as

y′B =
(

x̃St s′
)


 R

P



 (6.19)
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where s′ is a length-a vector of unknowns, and from (6.16), R ∈ F
r̃St

×rSt
q is a block diagonal

matrix with blocks Ri, i ∈ St. Since each Ri has 2z fewer rows than columns and has all

entries chosen uniformly at random from Fq, the rows of R are linearly independent of the

a ≤ 2z rows of P . Thus,



 R

P



 has full row rank and (6.19) can be solved for x̃St.

Therefore, we can construct code C̃ that achieves rate vector r2z = (r1 − 2z, r2 −
2z, . . . , rn − 2z) under any network erasure pattern ρ with |ρ| ≤ 2z. Now Theorem 8

implies that C̃ has minimum distance dmin ≥ 2z+ 1 and that C̃ can correct arbitrary errors

on up to z links in the network.

Proof of Theorem 10. We prove the statement of this theorem by contradiction. Suppose

there exists (u∗1, u
∗
2, . . . , u

∗
m) ∈ U1,m such that for some P = (VS , VT )

m∑

i=j

u∗j > M − lP . (6.20)

For notational convenience let |cut(P )| = M and denote the links in cut(P ) by {a1, a2, . . . , am}
indexed in increasing topological order. By (6.20), for any M− lp links there exist two code-

words x = (x1,x2, . . . ,xm) and y = (y1,y2, . . . ,ym) in C, x 6= y, such that φaf
(x) = φaf

(y)

for M − lp indexes af . Note that by (6.6) and (6.7), the set cut(P )\




⋃

T ′⊆T

SP
T ′



 has size

M − lP =
∑

T ′⊆T

(
|LP

T ′ | − |SP
T ′ |
)
,

therefore, by (6.20) we can choose x and y so that

φaf
(x) = φaf

(y), af ∈ cut(P )\




⋃

T ′⊆T

SP
T ′



 (6.21)

Since x 6= y, there exists at least one index i ∈ {1, . . . ,m} such that xi 6= yi. We will now

demonstrate that if (6.20) holds, then there exists an adversarial error pattern such that ti

will not be able to distinguish between x and y. Define LI =
⋃

T ′⊆T :ti∈T ′

LP
T ′ to be the subset of

links of cut(P ) upstream of ti and let I = |LI |. By (6.21), x and y were chosen so that

φaf
(x) = φaf

(y) in at least J = I −
∑

T ′⊆T :ti∈T ′

|SP
T ′ | positions. By constraint (6.8), J ≥ I − 2z.
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Define the error-free output of the links in LI by

O(x) = {φf1(x), φf2(x), . . . , φfI
(x)},

where all links fl ∈ LI and φfl
(.) are indexed in the increasing coding order. Hence, by

(6.10) and (6.21) we can write

O(x) = {x1, x2, . . . , xJ , x
′
J+1, . . . , x

′
I}

O(y) = {x1, x2, . . . , xJ , x
′′
J+1, . . . , x

′′
I}.

Assume the network input is x. The adversary will inject z error symbols zx =

(zx1 , zx2 , . . . , zxz) on links afJ+1
, . . . , afJ+z

as follows. First it injects zx1 on link afJ+1

so that

ψafJ+1
(x, (zx1 , 0, 0, . . . , 0)) = x′′J+1.

Then the output of links afJ+2
, . . . , afI

is affected, but not of af1, . . . , afJ
. With this con-

sideration, next the adversary injects the symbols zx2 on link afJ+2
so that

ψafJ+2
(x, (zx1 , zx2 , 0 . . . , 0)) = x′′J+2.

The output of links afJ+3
, . . . , afI

is affected, but not of af1 , . . . , afJ+1
. The process con-

tinues until the adversary finishes injecting z errors at links aJ+1, . . . , aJ+z. Let E(x, z) =

{ψaf1
(x, z), . . . , ψafI

(x, z)}, then

E(x, zx) = {x1, . . . , xJ , x
′′
J+1, . . . , x

′′
J+z, x

′′′
J+z+1, . . . , x

′′′
I }.

Now suppose the network input is y. The adversary will inject z error symbols zy =

(zy1 , zy2 , . . . , zyz ) on links afJ+z+1
, . . . , afI

as follows. First it injects zy1 on link afJ+z+1
so

that

ψafJ+z+1
(x, (zy1 , 0, 0, . . . , 0)) = x′′′J+z+1.

Then the output of links afJ+z+2
, . . . , afI

is affected, but not of af1 , . . . , afJ+z
. With this
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consideration, next the adversary injects the symbols zy2 on link afJ+z+2
so that

ψafJ+z+2
(x, (zy1 , zy2 , 0 . . . , 0)) = x′′′J+2+1.

The output of links afJ+z+3
, . . . , afI

is affected, but not of af1 , . . . , afJ+z+1
. Similarly, the

process continues until the adversary finishes injecting at most z errors at links aJ+z+1, . . . , aI .

Then

E(x, zy) = {x1, . . . , xJ , x
′′
J+1, . . . , x

′′
J+z, x

′′′
J+z+1, . . . , x

′′′
I }.

Therefore, since ti is upstream of links only in LI , it can observe only E(x, zx) and E(y, zy),

hence, it would not be able to distinguish between x and y.

Thus, for any P = (VS , VT )

m∑

j=1

u∗j ≤ |cut(P )| − lP ,

therefore,

m∑

j=1

uj ≤ min
P=(VS ,VT )

(|cut(P )| − lP ).
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Chapter 7

Network error correction in

nested-demand and two-sink

network topologies

7.1 Introduction

In this chapter we continue to investigate error correction capacity regions of nonmulticast

networks. In particular, we consider nonmulticast network topologies with two sinks and

nested-demands, whose capacity regions are known to be given by the cutset bounds in the

error-free case [19, 20, 21, 9]. We show that cutset bounds are not tight in networks with

with errors. We also make a connection between erasure correction in real-time streaming

data systems and nonmulticast erasure correction problem in 3-layer networks with nested

sink demands.

In real-time streaming of data such as audio or video conferencing time performance is

critical, which severely constraints feasible erasure code constructions. In these scenarios,

it is critical that network communications are decodable in real-time, that is with bounded

delay, and that the code used is designed for the widest possible range of failure patterns that

can occur during packet transmission. The work of [38] proposes delay-optimal convolutional

codes that can be applied in streaming scenarios when erasures occur in bursts and are

separated by a certain number of unerased symbols. However, in practice larger sets of

erasure patterns need to be corrected. In this chapter, we propose a solution to the streaming

erasure problem from the viewpoint of worst-case and sliding-window erasure models, under

both of which the set of permissible erasure patterns is larger. We develop a set of tools

that can be applied to refine cutset upper bounds for nested-demand network topologies and
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use them to design streaming systems tolerant to erasures so that no intersession coding

is required between packets at different streaming checkpoints. Our code constructions

combat a wider range of permissible erasure patterns using only intrasession coding.

We further apply the upper-bounding techniques established for nested-demand net-

work topologies to construct an instance of multiple description codes that are designed

so that the sink decodes at various quality levels depending of the number of erasures

that occurred [39]. Another application of our cutset-refining upper bounds is to two-sink

networks, where we use them to show that our achievability construction in Chapter 6 is

capacity-achieving for a family of two-sink 3-layer networks, and employ them to derive

tighter outer bounds for error- and erasure-correction capacity regions of arbitrary two-sink

networks beyond those given in Chapter 6.

7.2 Model

7.2.1 3-layer networks

We consider a streaming system vulnerable to packet erasures, where the receiver needs

to decode the source information at multiple time instances {m1,m2,m3, . . .}, so that at

time m1 message M1 is decoded, at time m2 messages M1 and M2 are decoded, at time m3

messages M1, M2 andM3 are decoded, and so on. Furthermore, all messagesM1,M2,M3, . . .

are independent.

Definition 9. A 3-layer network is a multisource, nonmulticast network that consists of

the following elements:

• Four layers of nodes: the set of source nodes, the set of coding nodes, the set of relay

nodes and the set of sink nodes.

• Three layers of directed edges: the first layer that connects the source nodes to the

coding nodes, the second layer that connects the coding nodes to the relay nodes, and

the third layer that connects the relay nodes to the sink nodes.

A useful application of 3-layer networks is that one can view the above-described stream-

ing erasure network scenario with n checkpoints as an erasure correction problem on a 3-layer

network with n nested sink demands. That is, in the case of a streaming system with n
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checkpoints {m1,m2, . . . ,mn}, we need to consider a one-source n-sink 3-layer network Gs

with sinks {t1, t2, . . . , tn} constructed so that (see Figure 7.1 for example):

• There are mn links in the second layer.

• There is an outgoing link from the source to each link in the second layer.

• Each sink ti has mi incoming links from the links 1, . . . ,mi in the second layer.

source

t2t1 t3

M1, M2, M3M1, M2M1

m1

m2

m3

Figure 7.1: Example of Gs with three nested sink demands.

Hence, 3-layer networks are interesting as a tool for streaming code construction problems.

They also provide a useful framework for studying the capacity regions of general nonmulti-

cast networks. For instance, one may construct a 3-layer network that corresponds to every

cut that separates some collection of sources from some collection of sinks in the original

network by observing that all nodes on the source side of the cut can cooperate perfectly,

which gives each sink at least as much information as it receives in the original network.

Hence, the error-free and error capacity regions of a 3-layer network constructed in this

way provide upper bounds on the corresponding error-free and error capacity regions of the

original network. We explore this observation in greater detail in Section 7.3.4, where we

give an upper bound on the error-correction capacity region for general two-sink networks.
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7.2.2 Erasure model

The problem of streaming real-time data, such as in audio or video conferencing, or media

streaming, puts specific constraints on permissible code constructions. This problem is

especially challenging when erasures might happen in the course of normal transmission

- the encoder has to design codes without knowing a priori which of a possible set of

erasure patterns occurs. The assumption that any packet can fail with a certain probability

(i.e., Markov erasure model) would be the most realistic description of streaming erasure

systems, however, because of the large number of possible Markov states this problem is hard

to handle theoretically. Real-life streaming systems generally transmit a large number of

packets and have a large number of streaming checkpoints (i.e., nested sinks of Gs). Worst-

case erasure models, where at most z links of Gs can fail, are not realistic for such systems

because in reality the number of erasures is proportional to the number of transmitted

packets. Therefore, along with studying the worst-case erasure model, we adapt a more

practical sliding-window erasure model with the assumption that at most x out any y

consecutive links in the second layer of Gs can be erased. The work of [38] considers a similar

streaming erasure problem; however, their erasure model assumes that any burst of at most

x erasures is separated by at least y−x unerased packets. Our sliding window erasure model

removes this restriction, which leads to correction of a larger class of permissible erasure

patterns.

Definition 10. The set of all rate vectors U = (u1, u2, . . . , un) that can be achieved on Gs

under any z network link erasures is called z-erasure correction capacity region.

Definition 11. A set of consecutive links in the second layer of Gs is said to satisfy an x/y

sliding-window erasure condition if at most x out of any y consecutive links are erased.

Definition 12. The set of all rate vectors V = (v1, v2, . . . , vn) that can be achieved on Gs

if any set of y consecutive links in the second layer of Gs satisfies the x/y sliding-window

erasure condition is called x/y-erasure correction capacity region.

Index the links in the second layer of Gs by 1, 2, . . . ,mn, so that links 1, . . . ,m1 are

upstream of t1, and links m1 + 1, . . . ,m2 are upstream of t2 and so on. Let I be the set of

links in the second layer of Gs. For every i = 1, . . . , n, we can represent mi as

mi = bmi

y
cy + xi, 0 ≤ xi ≤ y − 1, (7.1)
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where xi is the remainder of division of mi modulo y.

Let Ei be the maximum number of erasures that can occur upstream of ti under the

x/y sliding-window erasure model.

Definition 13. A set of consecutive links k, . . . , j ∈ I is said to satisfy an alternating x/y

sliding-window erasure condition if link i ∈ I is erased if and only if 1 ≤ (i− (k − 1)) mod y ≤
x.

Denote the random processes transmitted on links 1, . . . ,mn by X1,X2, . . . ,Xmn . For

anyK, define the set of random processes transmitted on links 1, . . . ,K byXK = {X1,X2, . . . ,XK}.

Definition 14. For any sink i = 1, . . . , n, define a set of random processes Y as a decoding

information set for message Mi under the worst-case erasure model if |Y | = mi − z and Y

is transmitted on links of the second layer of Gs upstream of sink ti. Define Di = |Y | to be

the size of any decoding information set for Mi under the worst-case erasure model.

Definition 15. For any sink i = 1, . . . , n, define a set of random processes Y as a decoding

information set for message Mi under the x/y sliding-window erasure model if |Y | = mi−Ei,

where Y is transmitted on links of the second layer of Gs upstream of sink ti and Xmi�Y

satisfies the x/y sliding-window erasure condition.

7.3 Main results

7.3.1 Nested-demand erasure correction capacity

Let Gs be a 3-layer network with nested sink demands as defined in Section 7.2.1. Prior

to deriving a family of upper bounds on the erasure correction capacity regions for the

worst-case erasure model, we prove several auxiliary statements that we subsequently use

in our construction.

Lemma 14. For any sink i = 1, . . . , n of Gs and any random process Z transmitted on links

1, . . . ,mn

I(Mi+1, . . . ,Mn;Z|M1, . . . ,Mi) = H(Z|M1, . . . ,Mi).

Proof. Proof given in Section 7.4.2.
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Lemma 15. For any sink i = 1, . . . , n of Gs and any random process Y , such that Y is a

decoding information set for message Mi

H(Y |M1, . . . ,Mi−1) = ui +H(Y |M1, . . . ,Mi).

Proof. Proof given in Section 7.4.2.

Lemma 15 implies that H(Y |M1, . . . ,Mi−1) can be interpreted as the residual capacity

of what is left for Mi, . . . ,Mn after M1, . . . ,Mi−1.

Consider any set of random processes Z = {X1,X2, . . . ,X|Z|} transmitted on the links

of the second layer of Gs. Let S be the set of all lexicographically ordered subsets of

{1, 2, . . . , |Z|}. For any σ ∈ S, let σ(k) be the kth element of σ. Let {Yσ1 , Yσ2 , . . . , YσF
} be

the set of all unordered subsets of Z of size D and let F =



 |Z|
D



.

Lemma 16. For a set of random processes Z defined as above:

|Z|
∑

σ∈S

H(Yσ) ≥ D



 |Z|
D



H(Z). (7.2)

Proof. Proof given in Section 7.4.2.

Lemma 17. For any set of random processes Y and a set of random processes Z defined

as above:

|Z|
∑

σ∈S

H(Y, Yσ) ≥ D



 |Z|
D



H(Y,Z). (7.3)

Proof. Proof given in Section 7.4.2.

For each i = 1, . . . , n, let Si be the set of all lexicographically ordered subsets of

{1, 2, . . . ,mi}. For any σ ∈ Si, let σ(k) be the kth element of σ. Also let {Y i
σ1
, Y i

σ2
, . . . , Y i

σFi
}

be the set of all decoding information sets for Mi under the worst-case erasure model, where

Fi =



 mi

Di



.

We know that for any σ ∈ S

H(Y 1
σ ) ≤ D1.
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Then by Lemma 15

H(Y 1
σ ) = u1 +H(Y 1

σ |M1) ≤ D1. (7.4)

Note that in the case where there is only one sink in Gs, H(Y 1
σ |M1) = 0 and

u1 ≤ D1. (7.5)

We describe the procedure to obtain higher-dimensional constraints from (7.4) by consid-

ering all possible types of decoding information sets for each message Mi.

• Step 1. Summing (7.4) over the



 m1

D1



 choices of Y 1
σ ⊆ Xm1 , we get



 m1

D1



u1 +
∑

σ∈S1

H(Y 1
σ |M1) ≤



 m1

D1



D1.

After multiplying by m1, Lemma 16 gives

m1



 m1

D1



u1 +D1



 m1

D1



H(Xm1 |M1) ≤



 m1

D1



D1m1,

or

m1

D1
u1 +H(Xm1 |M1) ≤ m1. (7.6)

Consider any Y 2
∆, ∆ ∈ S2 such that Xm1 ⊆ Y 2

∆, that is, Y 2
∆ = {Xm1 , Z2} for some set

of random processes Z2 such that H(Z2) ≤ m2 −m1 − z. Then

H(Y 2
∆|M1) ≤ H(Xm1 |M1) +H(Z2|M1) ≤ H(Xm1 |M1) +m2 −m1 − z. (7.7)

Therefore, after adding m2 −m1 − z to both sides of (7.6), we get:

m1

D1
u1 +H(Y 2

∆|M1) ≤ m2 − z = D2. (7.8)

Note that for every ∆ ∈ S2, Y
2
∆ is a decoding information set for M2, therefore, by
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Lemma 15,

H(Y 2
∆|M1) = u2 +H(Y 2

∆|M1,M2).

Then (7.8) can be rewritten as:

m1

D1
u1 + u2 +H(Y 2

∆|M1M2) ≤ D2. (7.9)

Note that in the case where there are two sinks in Gs, H(Y 2
∆|M1M2) = 0 and (7.9)

can be rewritten as

m1

D1
u1 + u2 ≤ D2. (7.10)

Otherwise, summing (7.9) over the



 m2 −m1

D2 −m1



 choices of Y 2
∆, ∆ ∈ S2, for which

Xm1 ⊆ Y 2
∆, gives:

m1

D1



 m2 −m1

D2 −m1



u1 +



 m2 −m1

D2 −m1



u2 +
∑

∆∈S2:Xm1⊆Y 2
∆

H(Y 2
∆|M1M2) ≤ D2



 m2 −m1

D2 −m1



 . (7.11)

Applying Lemma 17 to
∑

∆∈S2:Xm1⊆Y 2
∆

H(Y 2
∆|M1M2) and repeatingStep 1, extend the

resulting constraints to three dimensions.

• Step 2. Consider any Y 2
∆, ∆ ∈ S2 such that Xm1 * Y 2

∆, but Y 1
σ ⊆ Y 2

∆. Then

Y 2
∆ = {Y 1

σ , Z
2} for some set of random processes Z2 such that H(Z2) ≤ m2 − m1.

Then

H(Y 2
∆|M1) ≤ H(Y 1

σ |M1) +H(Z2|M1) ≤ H(Y 1
σ |M1) +m2 −m1.

Therefore, after adding m2 −m1 to both sides of (7.4), we get:

u1 +H(Y 2
∆|M1) ≤ D1 +m2 −m1 = D2. (7.12)

Note that for every ∆ ∈ S2, Y
2
∆ is a decoding information set for M2, therefore, by
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Lemma 15 H(Y 2
∆|M1) = u2 +H(Y 2

∆|M1,M2). Then (7.12) can be rewritten as:

u1 + u2 +H(Y 2
∆|M1M2) ≤ D2. (7.13)

Now sum over all Y 2
∆,∆ ∈ S2 using (7.9) and (7.13) (there are



 m2 −m1

D2 −m1



 choices

of Y 2
∆ such that Xm1 ⊆ Y 2

∆ and



 m2

D2



 −



 m2 −m1

D2 −m1



 choices of Y 2
∆ such that

Xm1 * Y 2
∆). Thus:

m1

D1



 m2 −m1

D2 −m1



 u1 +







 m2

D2



−



 m2 −m1

D2 −m1







u1 +



 m2

D2



 u2 +
∑

∆∈S2

H(Y 2
∆|M1M2) ≤ D2



 m2

D2



 .

Applying Lemma 16 to
∑

∆∈S2

H(Y 2
∆|M1M2) and proceeding as in Step 1 and Step 2,

extends the resulting constraints to three dimensions.

Note that the family of inequalities derived as explained above upper-bounds the z-erasure

correction capacity region of Gs. Each one of the upper-bounding inequalities is a cutset-

refining bound.

Theorem 11. The family of inequalities derived as explained above gives an upper bound

on the z-erasure correction capacity region of Gs.

Theorem 12. In a two-sink case network, explicit characterization of the z-erasure correc-

tion capacity region of Gs is given by

1. if m2 −m1 ≥ z

u1 ≤ D1

m1

D1
u1 + u2 ≤ D2

2. if m2 −m1 < z

u1

D1
+
u2

D2
≤ 1.

This region can be achieved by intrasession coding for any z(see Figure 7.2(a)- 7.2(b)).
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u1

u2

(D1,0)

(0,D2)

(D1,D2-m1)

(a) z-erasure correction capacity
region when m2 − m1 ≥ z and
n = 2.

u1

u2

(D1,0)

(0,D2)

(b) z-erasure correction capacity
region when m2 − m1 < z and
n = 2.

Figure 7.2: Explicit characterization of the z-erasure correction capacity region of a two-sink
nested-demand network Gs.

Proof. Proof given in Section 7.4.2.

We observe that the corner points in low-dimensional cases can be achieved by intrases-

sion coding. We want to show that no intersession coding is required even in larger cases.

This would prove that intrasession coding is sufficient to achieve the z-erasure correction ca-

pacity region of Gs. In order to prove this, we will show that if the rate vector (u1, u2, . . . , un)

cannot be achieved for a given intrasession procedure, then it cannot be achieved by any

other strategy.

The rate vector (u1, u2, . . . , un) satisfies the achievable intrasession solution if and only

if for every set of unerased links P ⊆ I under any z link erasures there exist yj
i ≥ 0 such

that

∀j = 1, . . . , n uj ≤
∑

i∈P∪{1,...,mi}

yj
i (7.14)

∀i = 1, . . . ,mn

n∑

j=1

yj
i ≤ 1. (7.15)

Note that yj
i = 0, i = mj + 1, . . . ,mn for all j = 1, . . . , n− 1. Choose yj

i so that

• y1
i = T1,1, i = 1, . . . ,m1

• y2
i = T2,1, i = 1, . . . ,m1 and y2

i = T2,2, i = m1 + 1, . . . ,m2
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• y3
i = T3,1, i = 1, . . . ,m1, y

3
i = T3,2, i = m1 + 1, . . . ,m2 and y3

i = T3,3, i = m2 +

1, . . . ,m3

• . . .

• yn
i = Tn,1, i = 1, . . . ,m1, y

n
i = Tn,2, i = m1 +1, . . . ,m2, y

n
i = Tn,3, i = m2 +1, . . . ,m3

. . . yn
i = Tn,n, i = mn−1, . . . ,mn

for some Ti,j ≥ 0. Let T be the lower triangular n× n matrix, whose (i, j)th entry is Ti,j .

We consider the case when for every i = 1, . . . , n− 1, mi+1 −mi > z. For each i = 1, . . . , n,

j = 1, . . . , i, assign Ti,j so that:

T1,1 =
u1

D1
(7.16)

∀i = 2, . . . , n Ti,1 = min(1 −
i−1∑

k=1

Tk,1,
ui

Di
) (7.17)

∀i = 2, . . . , n, j = 2, . . . n Ti,j = min(1 −
i−1∑

k=1

Tk,j,
ui −

∑j−1
k=1 Ti,k

Dj −mj−1
) (7.18)

In other words, Ti,j are assigned so that the rate to each sink is spread as uniformly as

possible subject to the capacity constraints from previous receivers.

For each k = 1, . . . , n, define

Pk = mk −
k∑

i=1

k∑

j=1

Ti,j(mj −mj−1), (7.19)

where m0 = 0.

Lemma 18. The assignment of Ti,j given by (7.16)-(7.18) is such that for every i = 1, . . . , n

and j = 1, . . . , n − 1

Ti,j ≤ Ti,j+1.

Proof. Proof given in Section 7.4.2.

Lemma 19. For each k = 1, . . . , n − 1, if H(Xmk |M1, . . . ,Mk) ≤ Pk and z = 1, then

H(Xmk+1 |M1, . . . ,Mk+1) ≤ Pk+1.
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Proof. Proof given in Section 7.4.2.

Theorem 13. The z−erasure correction capacity region of Gs can be achieved by intrases-

sion coding when z = 1.

Proof. Proof given in Section 7.4.2.

We conjecture (but do not prove) that the z-erasure correction capacity region of Gs can

be achieved by ”as uniform as possible” intrasession allocation procedure given by (7.16)-

(7.18) for any z. For an example of explicit construction of the family of upper-bounds

and corner points that achieve them in four dimensions, see Section 7.4.1. Also, a detailed

derivation of the n-dimensional z-erasure correction capacity region when m1 ≥ mn − z is

given in the proof of Theorem 17.

7.3.2 Asymptotic behavior

In this section we study the asymptotic behavior of infinite one-dimensional streaming

systems under the assumption that m2 −m1 = m3 −m2 = . . . = mn −mn−1 = . . . = d and

u1 = u2 = . . . = un = . . . = u. We want to examine the influence of the initial offset m1 on

the performance of capacity-achieving transmission strategies. This setting is motivated by

practical video streaming applications where video content starts playing after the initial

playout delay that allows for packet buffering.

Theorem 14. For any number of sinks n, an upper bound on the z-erasure correction

capacity region is given by

u ≤ d− z + zm1
d

− (d− z)
(

d−z
d

)n−1

1 + z
d

m1
m1−z

−
(

d−z
d

)n−1 . (7.20)

In particular,

u ≤ d− z + zm1
d

1 + z
d

m1
m1−z

. (7.21)

as n→ ∞.

Proof. See Section 7.4.2.
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Theorem 15. As n → ∞, the upper bound (7.21) can be achieved without intersession

coding when m1 ≤ 1
4(3d+ z) + 1

4

√
9d2 − 2dz + z2 for any z.

Proof. See Section 7.4.2.

Theorem 16. As n → ∞, an upper bound on the z-erasure correction capacity region is

given by

u ≤ d. (7.22)

Proof. See Section 7.4.2.

Our experimental results show that as the initial offset m1 grows, d can be achieved by

intrasession coding in the limit as m1 → ∞ (see Figure 7.3).
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Figure 7.3: Experimental results with d = 2, z = 1.

7.3.3 Multiple desciption code

Consider an erasure-free 3-layer network GM that is constructed so that:

• GM has Dn links in the second layer.

• There are



 Dn

D1



 sinks that are connected to all D1-element subsets in the second

layer and demand message M1.
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• There are



 Dn

D2



 sinks that are connected to all D2-element subsets in the second

layer and demand message M2.

• . . .

• There is one sink that is connected to all links in the second layer and demands

message Mn.

Let U = {u1, u2, . . . , un} be the erasure-free capacity region of GM . Studying U is important

as any code that achieves U can be interpreted as a multiple description code when a single

code is designed so that the sink can decode at various quality levels depending on the

number of erasures in a system that occurs during the course of packet transmission [39].

In Theorem 17, we use proof techniques that we developed in Section 7.3.1 to find U.

Theorem 17 (Multiple description code). The erasure-free capacity region U of GM is

given by

u1

D1
+
u2

D2
+ . . .+

un

Dn
≤ 1 (7.23)

and can be achieved by intrasession coding for any z.

Proof. Proof given in Section 7.4.2.

Note that Theorem 17 can be viewed as a special case of the z-erasure correction capacity

region of Gs when mn − z ≤ m1.

7.3.4 Two-sink networks

In this section we consider any acyclic network G2 = (V,E) with source set S and sink set

T = {t1, t2} that demand independent (nonoverlapping) source processes. Let sink t1 de-

mand message M1 and let sink t2 demand message M2. We use proof techniques established

in Section 7.3.1 to derive tighter upper bounds on the error and erasure correction capacity

regions of G2 than those given by Theorem 10 in Chapter 6.

Let P = (VS , VT ) be a partition of V such that all sources are in VS and all sinks are in

VT and cut(P ) contains no feedback links.
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Definition 16. A related 3-layer network G2(P ) is a one-source 2-sink 3-layer network that

is constructed as follows (see Figure 7.5(a) for example):

• For each link l ∈ cut(P ), we connect a source directly to the start node of l.

• For each sink t ∈ T , we connect the end node of l directly to sink t if t is downstream

of l in G.

Note that construction of the related 3-layer network G2(P ) for each source-sink partition

P of G2 essentially allows all nodes on the source side of the cut to cooperate perfectly and

gives each sink at least as much information as it receives in the original network G2.

Therefore, the error correction capacity region of G2(P ) is an upper bound on the error

correction capacity region of G2.

Let m1 be the number of links upstream of t1 but not t2 in G2(P ), m2 be the number of

links upstream of t2 but not t1 in G2(P ), and m12 be the number of links upstream of both

t1 and t2 (i.e., the total number of links in the second layer) in G2(P ). Denote the z-erasure

correction capacity region of G by U2(P ) = {u1, u2}.

Theorem 18. For every partition P = (VS , VT ), the z-erasure correction capacity region

U2(P ) of G2(P ) is given by

u1 ≤ m1 − z (7.24)

u2 ≤ m2 − z (7.25)

u1(m2 − z − max(m12 −m1 − z, 0)) + u2(m1 − z − max(m12 −m2 − z, 0)) (7.26)

≤ (m1 − z)(m2 − z) − max(m12 −m1 − z, 0)max(m12 −m2 − z, 0)

and can be achieved by intrasession coding for any z.

Proof. See Section 7.4.2.

Theorem 19. For every partition P = (VS , VT ), the z-error correction capacity region of

G2(P ) is given by the rate pairs (u1, u2) such that:

u1 ≤ m1 − 2z (7.27)

u2 ≤ m2 − 2z (7.28)

u1(m2 − 2z − max(m12 −m1 − 2z, 0)) + u2(m1 − 2z − max(m12 −m2 − 2z, 0))(7.29)

≤ (m1 − 2z)(m2 − 2z) − max(m12 −m1 − 2z, 0)max(m12 −m2 − 2z, 0)
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and can be achieved by intrasession coding for any z.

Proof. See Section 7.4.2.

Hence, by Theorems 18 and 19, the 2z-erasure correction capacity region U2(P ) of

G2(P ) is equal to the z-error correction capacity region of G2(P ).

Corollary 1. The upper-bound on the z-error correction capacity region of G2(P ) given

by Theorem 10 in Chapter 6 is tight, when m1 = m2 or both m12 − m1 − 2z ≥ 0 and

m12 −m1 − 2z ≥ 0.

Proof. See Section 7.4.2.

Theorem 20. An outer bound on the z-error correction capacity region (or a 2z-erasure

correction capacity region) U = {u1, u2} of any two-sink network G2 is given by

u1 ≤ mS,t1 − 2z

u2 ≤ mS,t2 − 2z

U ⊆
⋂

P = (VS , VT )

cut(P ) has no

feedback links

U2(P ).

Proof. See Section 7.4.2.

Figure 7.4(a) depicts a one-source, two-sink network topology with one feedback link

across the second layer. The capacity region of this network in the error-free case is given

by the cutset bounds [19, 20, 21] (see Figure 7.4(b)). In the presence of one error, the

cutset bound u1 + u2 ≤ 5 − 2 = 3 is not achieved (see Figure 7.4(c)). By comparing the

achievable region constructed using the procedure described in Chapter 6 and the upper-

bound u1 +u2 ≤ 2 given by Theorem 10, we see that in this case the upper-bound given by

Theorem 10 is tight.

Figure 7.5(a) shows a one-source two-sink 3-layer network topology, whose capacity region

in case of one network error given by the constraints u1 ≤ 4, u2 ≤ 2, 2u1 + 3u2 ≤ 8 (as

follows from Theorem 18, shaded area in Figure 7.5(c)). However, as one can observe from
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t1 t2

s

(a) One-source two sink net-
work with one backward link
across the cut.

4

1

41

r2

r1

(b) Error-free capacity region
given by r1 ≤ 4, r2 ≤ 4, r1 +
r2 ≤ 5.

2

2

u2

u1

(c) z-error cor-
rection capacity
region, which co-
incides with the
constructed achiev-
able region using
the procedure of
Chapter 6 and the
outer bound of
Theorem 10.

Figure 7.4: Example of the one-source two-sink network with backward link across the cut
whose error correction capacity region is given by the upper bound in Theorem 10 when
z = 1.

the unshaded area in Figure 7.5(c), for this network the upper bound u1 + u2 ≤ 4 given by

Theorem 10 is not tight when z = 1.

7.3.5 Applications to sliding-window erasure model

In this section we examine 3-layer networks with nested demands whose x/y-erasure cor-

rection capacity region is achieved without intersession coding. This family of networks is

particularly important in streaming scenarios as it allows the establishment of streaming

checkpoints so that packets designated for each one of the checkpoints are not mixed with

packets designated for other checkpoints.

Lemma 20. The maximum number of erasures on the set consecutive links k, . . . , j ∈ I
of Gs under the x/y sliding-window erasure model occurs when the set of consecutive links

k, . . . , j ∈ I satisfies an alternating x/y sliding window erasure condition.

Lemma 21. For i = 1, . . . , n, the maximum number of erasures upstream of sink ti under

the x/y sliding-window erasure model occurs when the set of all links upstream of ti satisfies
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t1 t2

m
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m
1
=6 m

2
=4

(a) One-source two-sink 3-layer network
with m1 = 6, m2 = 4 and m12 = 7.

4 

r2

3

r1

7

1

(b) Error-free capacity region de-
scribed by r1 ≤ 6, r2 ≤ 4, r1 + r2 ≤ 7.

u1

41

u2

2

2

(c) Error-correction
capacity region de-
scribed by u1 ≤ 4, u2 ≤

2, 2u1 + 3u3 ≤ 8 when
z = 1 (shaded area)
vs. the upper bound
u1 + u2 ≤ 4 given by
Theorem 10 (unshaded
area).

Figure 7.5: Example of the one-source two-sink 3-layer network for which the upper bound
given by Theorem 10 is not tight when z = 1.

an alternating x/y sliding window erasure condition and is given by

Ei = bmi

y
cx+ min(xi, x). (7.30)

Proof. Follows from Lemma 20.

Lemma 22 (Alternating pattern cutset bound). The x/y-erasure correction capacity region

of Gs is upper-bounded by

v1 ≤ m1 −E1 (7.31)

v1 + v2 ≤ m2 −E2 (7.32)

. . .

v1 + v2 + . . .+ vn ≤ mn − En (7.33)

Proof. Follows by Lemma 7.8.

Theorem 21 suggests how to set streaming checkpoints in order to achieve the n-

dimensional capacity region without intersession coding. The conditions of Theorem 21,
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provide the largest flexibility in checkpoint placement when x and y are comparable in size.

Theorem 21. If xi ≤ x for each i = 1, . . . , n − 1, then the x/y sliding-window erasure

correction capacity region of Gs is given by inequalities (7.31)-(7.33), and can be achieved

by intrasession coding.

Proof. See Section 7.4.2.

Theorem 22 gives a constant rate streaming code construction. The work of [38, 40] pro-

vides a delay-optimal solution to a similar streaming erasure correction problem, however,

their erasure model assumes that any burst of at most x erasures is separated by at least

y − x unerased packets. Our x/y sliding window erasure model removes this restriction,

which leads to correction of a larger class of permissible erasure patterns. Also, we give a

purely intrasession code construction, whereas, the burst-erasure correction codes of [38, 40]

are convolutional (i.e., intersession).

For example, consider a streaming system, in which the checkpoints are set at the

multiples of 5, i.e., m1 = 5, m2 = 10, m3 = 15 and so on. Assume that in this system at

most 2 out of any 5 consecutive packets can fail. Theorem 22 describes how to achieve rate

3
5 transmission at each of the checkpoints in this scenario. Our code has a decoding delay

of at most 4. However, the 3
5 code of [38, 40], which is proven to correct any burst of 2 out

of 5 erasures with an optimal delay of 3, fails under our 2/5 sliding window erasure model

(for instance, if every first and third packets in the system are erased).

Theorem 22. Let m1 = m2 −m1 = m3 −m2 = . . . = mn −mn−1 and v1 = v2 = . . . = vn.

Then the x/y sliding-window erasure correction capacity region of Gs is given by

vi ≤ m1 − E1

for each i = 1, . . . , n and can be achieved by intrasession coding.

Proof. See Section 7.4.2.

We next consider the case of so-called ”two-level” checkpoint code design (given by

Theorem 24) when we relax the conditions of Theorem 21. This enables the checkpoints to

be set at equal distances from each other, so that xi is arbitrary compared to x when i is

odd, and xi = 0 when i is even for every i = 1, . . . , n. This scenario can is useful in video
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streaming applications when two type of packets - the smaller and the larger ones - have

to be transmitted [41]. We also note that since the equispaced placement of checkpoints

”repeats itself,” the routing scheme that we propose is straightforward to implement in

practice for any number of checkpoints n.

First consider the case when n = 2. We are going to derive the x/y sliding-window

erasure-correction capacity region for Gs with two sinks by showing that the rate pairs

(A,B) and (C,D) as given below can be achieved by intrasession coding and define the

corner points of the x/y sliding-window erasure-correction capacity region (see Figure 7.6

for example of geometry of such rate region):

v1

v2

(A,B)=(3,6)

(C,D)=(5,3)

(5,0)

(0,9)

Figure 7.6: The x/y sliding-window erasure-correction capacity region of Gs with n = 2,
m1 = 9, m2 = 16, x = 2, y = 5, x1 = 4 given by v1 ≤ 5, v1 + v2 ≤ 9, 3v1 + 2v2 ≤ 21.

• (A,B) = (bm1
y
c(y − x),m2 − E2 − bm1

y
c(y − x))

• (C,D) = (m1−E1,m2−m1−E′), where E′ denotes the maximum number of erasures

that can occur on linksm1+1, . . . ,m2 under the x/y sliding-window erasure model (by

Lemma 20, E′ = bm2−m1
y

cx+ min(x′, x) if m2 −m1 = bm2−m1
y

cy+x′, 0 ≤ x′ ≤ y− 1).

Theorem 23. If x1 > x and n = 2, then the x/y sliding-window erasure correction capacity

region of Gs is given by (7.31), (7.32) and

(B −D)v1 + (C −A)v2 ≤ CB −AD. (7.34)

This region can be achieved by intrasession coding.

Proof. See Section 7.4.2.
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Theorem 24. Let m2 be the multiple of y. Also let m1 = m3 −m2 = m5 −m4 = . . . =

m2k−1 −m2(k−1), m2 = m4 −m2 = m6 −m4 = . . . = m2k −m2(k−1), v1 = v3 = . . . = v2k−1

and v2 = v4 = . . . = v2k for any even n = 2k. Then the x/y sliding-window erasure

correction capacity region of Gs is given by

v2i−1 ≤ m1 − E1 (7.35)

(B −D)v2i−1 + (C −A)v2i ≤ CB −AD (7.36)

v2i−1 + v2i ≤ m2 − E2 (7.37)

for each i = 1, . . . , k and can be achieved without intersession coding.

Proof. See Section 7.4.2.

7.4 Proofs and examples

7.4.1 Example of explicit derivation of the z-erasure correction capacity

region using techniques described in Section 7.4.1

Consider Gs with four checkpoints such that m1 = 3, m2 = 5, m3 = 7, and m4 = 10. We

compute the z-erasure correction capacity when at most z = 1 erasure can occur in Gs.

After following the procedure described in Section 7.3.1 (see Figure 7.7 for the schematic

illustration of this procedure) the upper bound on the z-erasure correction capacity region

of Gs is given by the following inequalities:

1. u1 ≤ 2

2. 3u1 + 2u2 ≤ 8

3. 3u1 + 2u2 + u3 ≤ 9

4. 6u1 + 5u2 + 4u3 ≤ 24

5. 6u1 + 4u2 + 2u3 + u4 ≤ 20

6. 9u1 + 6u2 + 4u3 + 3u4 ≤ 36

7. 6u1 + 5u2 + 4u3 + 2u4 ≤ 28
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8. 6u1 + 9
2u2 + 4u3 + 3u4 ≤ 30

9. 9u1 + 15
2 u2 + 7u3 + 6u4 ≤ 54

12

13

23

1245

1345

2345

1234
1235

124567

134567

234567

123467
123567

123456
123457

123456
123457 1234567

1234567

1234567

1234567

1234567

1

1

1

3

2

8

7

6

5

9

4

Figure 7.7: Schematic illustration of the derivation of the upper bound on the z-erasure
correction capacity region of Gs with m1 = 3, m2 = 5, m3 = 7, m4 = 10 and z = 1.

The corner points of the 4-dimensional polytope described by these inequalities are: (0, 0, 0, 0),

(0, 0, 0, 9), (0, 0, 6, 0), (0, 0, 6, 2), (0, 4, 0, 0), (0, 4, 0, 4), (0, 4, 1, 0), (0, 4, 1, 2), (2, 0, 0, 0), (2, 0, 0, 6),

(2, 0, 3, 0), (2, 0, 3, 2), (2, 1, 0, 0), (2, 1, 0, 4), (2, 1, 1, 0), (2, 1, 1, 2). All of the corner points

of this polytope can be achieved greedily without intersession coding. Hence, the z-erasure

correction capacity region of Gs is given by the derived polytope, which can be achieved

without intersession coding by timesharing of the corner points.

7.4.2 Proofs

Proof of Lemma 14. By the definition of mutual information,

I(Mi+1, . . . ,Mn;Z|M1, . . . ,Mi) = H(Z|M1, . . . ,Mi) −H(Z|M1, . . . ,Mn) = H(Z|M1, . . . ,Mi),

where the last equality follows by the fact that the random process Z is a function of

M1, . . . ,Mn.
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Proof of Lemma 15. By Lemma 14, H(Y |M1, . . . ,Mi−1) = I(Mi, . . . ,Mn;Y |M1, . . . ,Mi−1).

Therefore, by the chain rule for mutual information

H(Y |M1, . . . ,Mi−1) = I(Mi;Y |M1, . . . ,Mi−1) + I(Mi+1, . . . ,Mn;Y |M1, . . . ,Mi). (7.38)

Consider the first term in expansion (7.38):

I(Mi;Y |M1, . . . ,Mi−1) = H(Mi|M1, . . . ,Mi−1) −H(Mi|M1, . . . ,Mi−1, Y )

= H(Mi|M1, . . . ,Mi−1) = H(Mi) = ui,

which follows from the fact that Y is a decoding information set for Mi and independence

of M1, . . . ,Mi.

Consider the second term in expansion (7.38):

I(Mi+1, . . . ,Mn;Y |M1, . . . ,Mi) = H(Y |M1, . . . ,Mi) −H(Y |M1, . . . ,Mn) = H(Y |M1, . . . ,Mi),

since the random process Y is a function of M1, . . . ,Mn.

Therefore,

H(Y |M1, . . . ,Mi−1) = ui +H(Y |M1, . . . ,Mi).

Proof of Lemma 16. By expanding the left- and right-hand sides of (7.2) using the chain

rule, we get:

|Z|
∑

σ∈S

D∑

d=1

H(Xσ(d)|Xσ(1), . . . ,Xσ(d−1)) ≥ D



 |Z|
D




|Z|∑

d=1

H(Xkd
|Xk1 , . . . ,Xkd−1

).

Note that for a given index d, the number of terms of the form H(Xkd
| . . .) on the left- and

right-hand sides of the above inequality is equal to |Z|



 |Z| − 1

D − 1



 = D



 |Z|
D



. Also

note that the entropies on the left-hand side are conditioned on the same or fewer variables

than the entropies on the right-hand side, therefore, (7.2) holds.

Proof of Lemma 17. By expanding the left- and right-hand sides of (7.3) using the chain
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rule, we get:

|Z|
∑

σ∈S

(
H(Y,Xσ(1)) +

D∑

d=2

H(Xσ(d)|Y,Xσ(1), . . . ,Xσ(d−1))

)

≥ D



 |Z|
D







H(Y,Xk1) +

|Z|∑

d=2

H(Xkd
|Y,Xk1 , . . . ,Xkd−1

)



 .

Note that for a given index d, the number of terms of the form H(Y,Xkd
| . . .) or H(Xkd

| . . .)

on the left-hand sides of the above inequality is equal to |Z|



 |Z| − 1

D − 1



 = D



 |Z|
D



,

where the latter one is the number of terms of the form H(Xkd
| . . .) when d 6= 1 or

H(Y,Xk1 | . . .) when d = 1. Also note that the entropies on the left-hand side are con-

ditioned on the same or fewer variables than the entropies on the right-hand side and for

any d

H(Y,Xkd
| . . .) ≥ H(Xkd

| . . .),

therefore, (7.3) holds.

Proof of Theorem 12. Converse follows from (7.5), (7.10) and Theorem 17. Achievability

follows from the fact that the corner points formed by the upper bounds in both cases can

be achieved by intrasession coding.

Proof of Lemma 18. The statement of the lemma follows from (7.17) and (7.18).

Proof of Lemma 19. Suppose the assignment of Ti,j is such that for some f ≥ 0

Tk+1,k−f+1 = Tk+1,k−f+2 = . . . = Tk+1,k+1 (7.39)

and

Tk+1,k−f 6= Tk+1,k+1−f .
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Note that by the uniformity of assignment of Ti,j

k+1∑

i=1

k−f∑

j=1

Ti,j(mj −mj−1) =

k−f∑

j=1

(mj −mj−1)
k+1∑

i=1

Ti,j =

k−f∑

j=1

(mj −mj−1) = mk−f (7.40)

and that for all i such that k − f + 1 < i ≤ k + 1

Ti,k−f+1 = Ti,k−f+2 = . . . = (7.41)

Also, by Lemma 18

uk =
k−1∑

j=1

Tk,j(mj −mj−1) + Tk,k(Dk −mk−1). (7.42)

For every q = 0, . . . , f , take any Y k+1
σ ∈ Sk+1 such that Xmk−f+q ⊆ Y k+1

σ but Xmk−f+1+q *

Y k+1
σ , then similarly to (7.7):

H(Y k+1
σ |M1, . . . ,Mk−f+q) ≤ H(Xmk−f+q |M1, . . . ,Mk−f+q) +Dk+1 −mk−f+q

≤ Pk−f+q +Dk+1 −mk−f+q.

Note that Y k+1
σ is a decoding set forMk−f+q+1, . . . ,Mk+1, therefore, after applying Lemma 17

(f + 1 − q) times:

H(Y k+1
σ |M1, . . . ,Mk+1) ≤ Pk−f+q +Dk+1 −mk−f+q −

k+1∑

h=k−f+1+q

uh. (7.43)

For each q = 0, . . . , f , define Cq = Pk−f+q +Dk+1 −mk−f+q −
∑k+1

h=k−f+1+q uh.
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Using (7.42) and (7.39):

C0 = Pk−f +Dk+1 −mk−f −
k+1∑

h=k−f+1

uh

= Dk+1 −
k−f∑

i=1

k−f∑

j=1

Ti,j(mj −mj−1) −
k+1∑

h=k−f+1

h∑

j=1

Th,j(mj −mj−1) + z

k+1∑

h=k−f+1

Th,h

= Dk+1 −
k−f∑

i=1

k−f∑

j=1

Ti,j(mj −mj−1) −
k+1∑

i=k−f+1

k+1∑

j=1

Ti,j(mj −mj−1) + z
k+1∑

h=k−f+1

Th,h

= Dk+1 −
k+1∑

i=1

k+1∑

j=1

Ti,j(mj −mj−1) + z

k+1∑

h=k−f+1

Th,h

= Pk+1 − z + z

k+1∑

h=k−f+1

Th,h

Hence, for z = 1

C0 = Pk+1 − 1 +
k+1∑

h=k−f+1

Th,h. (7.44)
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Cq+1 − Cq

= Pk−f+q+1 +Dk+1 −mk−f+q+1 −
k+1∑

h=k−f+2+q

uh − Pk−f+q −Dk+1 +mk−f+q +

k+1∑

h=k−f+1+q

uh

= Pk−f+q+1 −mk−f+q+1 − (Pk−f+q −mk−f+q) + uk−f+q+1

=

k−f+q∑

i=1

k−f+q∑

j=1

Ti,j(mj −mj−1) −
k−f+q+1∑

i=1

k−f+q+1∑

j=1

Ti,j(mj −mj−1) + uk−f+q+1

=

k−f+q∑

i=1

k−f+q∑

j=1

Ti,j(mj −mj−1) −
k−f+q∑

i=1

k−f+q∑

j=1

Ti,j(mj −mj−1)

−
k−f+q∑

i=1

Ti,k−f+q+1(mk−f+q+1 −mk−f+q) −
k−f+q+1∑

j=1

Tk−f+q+1,j(mj −mj−1) + uk−f+q+1

= −
k−f+q∑

i=1

Ti,k−f+q+1(mk−f+q+1 −mk−f+q) −
k−f+q+1∑

j=1

Tk−f+q+1,j(mj −mj−1) + uk−f+q+1

= −
k−f+q∑

i=1

Ti,k−f+q+1(mk−f+q+1 −mk−f+q) − uk−f+q+1 − zTk−f+q+1,k−f+q+1 + uk−f+q+1

= −
k−f+q∑

i=1

Ti,k−f+q+1(mk−f+q+1 −mk−f+q) − zTk−f+q+1,k−f+q+1

= −zTk−f+q+1,k−f+q+1

Hence, for z = 1

Cq+1 − Cq = −Tk−f+q+1,k−f+q+1. (7.45)

For z = 1, there is a total of



 mk+1 −mk−f

Dk+1 −mk−f



 = mk+1−mk−f choices of Y k+1
σ ∈ Sk+1

such that Xmk−f ⊆ Y k+1
σ , out of which for each q = 0, . . . , f there are



 mk+1 −mk−f+q

Dk+1 −mk−f+q



−



 mk+1 −mk−f+q+1

Dk+1 −mk−f+q+1



 = mk−f+q+1 −mk−f+q

choices of Y k+1
σ ∈ Sk+1 such that Xmk−f+q ⊆ Y k+1

σ but Xmk−f+1+q * Y k+1
σ .

Sum all (7.43) over all Y k+1
σ ∈ Sk+1 such that Xmk−f ⊆ Y k+1

σ and apply (7.44) and
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(7.45) :

∑

Y k+1
σ ∈Sk+1:X

mk−f ⊆Y k+1
σ

H(Y k+1
σ |M1, . . . ,Mk+1)

≤
f∑

q=0

Cq







 mk+1 −mk−f+q

Dk+1 −mk−f+q



−



 mk+1 −mk−f+q+1

Dk+1 −mk−f+q+1









= C0



 mk+1 −mk−f

Dk+1 −mk−f



+

f−1∑

q=0

(Cq+1 − Cq)



 mk+1 −mk−f+q+1

Dk+1 −mk−f+q+1





= C0



 mk+1 −mk−f

Dk+1 −mk−f



−
f−1∑

q=0

Tk−f+q+1,k−f+q+1



 mk+1 −mk−f+q+1

Dk+1 −mk−f+q+1





≤ C0(mk+1 −mk−f ) −
k∑

h=k−f+1

Th,h(mk+1 −mh).

After applying Lemma 17:

H(Xmk+1|M1, . . . ,Mk+1)

=
C0(mk+1 −mk−f ) −∑k

h=k−f+1
Th,h(mk+1 −mh)

mk+1 −mk−f − 1

=

(Pk+1 − 1 +

k+1∑

h=k−f+1

Th,h)(mk+1 −mk−f ) −
k∑

h=k−f+1

Th,h(mk+1 −mh)

mk+1 −mk−f − 1

=

Pk+1(mk+1 −mk−f ) −



mk+1 −mk−f − (mk+1 −mk−f )
k+1∑

h=k−f+1

Th,h +
k∑

h=k−f+1

Th,h(mk+1 −mh)





mk+1 −mk−f − 1

=

Pk+1(mk+1 −mk−f ) −



mk+1 −mk−f +

k+1∑

h=k−f+1

Th,h(mk−f −mh)





mk+1 −mk−f − 1
(7.46)

=
Pk+1(mk+1 −mk−f ) − Pk+1

mk+1 −mk−f − 1

= Pk+1,

where (7.46) follows from (7.41), (7.19) and the fact that matrix T is lower triangular.

Proof of Theorem 13. Take any Y k+1
σ ∈ Sk+1 such that Xmk ⊆ Y k+1

σ . Then similarly to

(7.7):

H(Y k+1
σ |M1, . . . ,Mk) ≤ H(Xmk |M1, . . . ,Mk) +Dk+1 −mk.
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Apply Lemma 15:

uk+1 +H(Y k+1
σ |M1, . . . ,Mk+1) ≤ H(Xmk |M1, . . . ,Mk) +Dk+1 −mk,

H(Y k+1
σ |M1, . . . ,Mk+1) = 0 in a (k + 1)-sink network Gs, hence,

uk+1 ≤ H(Xmk |M1, . . . ,Mk) +Dk+1 −mk.

Therefore, in order to maximize uk+1, one need to maximize H(Xmk |M1, . . . ,Mk). By

Lemma 19,

H(Xmk |M1, . . . ,Mk) ≤ Pk.

Moreover, for the assignment of Ti,j given by (7.16)-(7.18),

H(Xmk |M1, . . . ,Mk) = Pk.

Thus, since the given choice of Ti,j satisfies the routing linear program (7.14)-(7.15), the

z-erasure correction capacity region of Gs can be achieved by intrasession coding.

Proof of Theorem 14. We going to prove the statement of this theorem by utilizing the

upper-bounding techniques described in Section 7.3.1. In this proof, we are also going to

use the notation introduced in Section 7.3.1.

By (7.9), for every Y 2
∆, ∆ ∈ S2 such that Xm1 ⊆ Y 2

∆:

m1

D1
u1 + u2 +H(Y 2

∆|M1M2) ≤ D2. (7.47)

Sum (7.47) over all Y 2
∆, ∆ ∈ S2 such thatXm1 ⊆ Y 2

∆ (there are



 m2 −m1

D2 −m1



 =



 d

d− z





choices of such Y 2
∆)

m1

D1



 d

d− z



u1 +



 d

d− z



u2 +
∑

∆∈S2:Xm1⊆Y 2
∆

H(Y 2
∆|M1M2) ≤ D2



 d

d− z



 .
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Multiply both sides by d:

d
m1

D1



 d

d− z



u1 + d



 d

d− z



u2 + d
∑

∆∈S2:Xm1⊆Y 2
∆

H(Y 2
∆|M1M2) ≤ dD2



 d

d− z



 .

Apply Lemma 17 to
∑

∆∈S2:Xm1⊆Y 2
∆

H(Y 2
∆|M1M2):

d
m1

D1



 d

d− z



u1 + d



 d

d− z



u2 + (d− z)



 d

d− z



H(Xm2 |M1M2) ≤ dD2



 d

d− z



 ,

or

d
m1

D1
u1 + du2 + (d− z)H(Xm2 |M1M2) ≤ dD2. (7.48)

Consider any Y 3
γ , γ ∈ S3 such that Xm2 ⊆ Y 3

γ (note that there are



 m3 −m2

D3 −m2



 =



 d

d− z



 choices of such Y 3
γ ), that is, Y 3

γ = {Xm2 , Z3} for some set of random processes

Z3 such that H(Z3) ≤ m3 −m2 − z = d− z. Then

H(Y 3
γ |M1M2) ≤ H(Xm2 |M1M2) +H(Z3|M1M2) ≤ H(Xm2 |M1M2) + d− z.

Therefore, after adding (d− z)2 to both sides of (7.48), we get:

d
m1

D1
u1 + du2 + (d− z)H(Y 3

γ |M1M2) ≤ dD2 + (d− z)2.

Note that for every γ ∈ S3, Y
3
γ is a decoding information set forM3, therefore, by Lemma 15:

d
m1

D1
u1 + du2 + (d− z)u3 + (d− z)H(Y 3

γ |M1M2M3) ≤ dD2 + (d− z)2.

Now sum over all Y 3
γ , γ ∈ S3 such that Xm2 ⊆ Y 3

γ (there are



 m3 −m2

D3 −m2



 =



 d

d− z




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choices of such Y 3
γ ):

d
m1

D1



 d

d− z



u1 + d



 d

d− z



u2 + (d− z)



 d

d− z



u3

+ (d− z)
∑

γ∈S3:Xm2⊆Y 3
γ

H(Y 3
γ |M1M2M3) ≤



 d

d− z



(dD2 + (d− z)2
)
.

Multiply by d:

d2m1

D1



 d

d− z



u1 + d2



 d

d− z



u2 + d(d− z)



 d

d− z



u3

+ (d− z)d
∑

γ∈S3:Xm2⊆Y 3
γ

H(Y 3
γ |M1M2M3) ≤ d



 d

d− z



(dD2 + (d− z)2
)
.

Apply Lemma 17:

d2m1

D1



 d

d− z



u1 + d2



 d

d− z



u2 + d(d− z)



 d

d− z



u3

+ (d− z)2



 d

d− z



H(Xm3 |M1M2M3) ≤ d



 d

d− z



(dD2 + (d− z)2
)
,

or

d2m1

D1
u1 + d2u2 + d(d − z)u3 + (d− z)2H(Xm3 |M1M2M3) ≤ d

(
dD2 + (d− z)2

)
.

Consider any Y 4
Θ, Θ ∈ S4 such that Xm3 ⊆ Y 4

Θ (note that there are



 m4 −m3

D4 −m3



 =



 d

d− z



 choices of such Y 4
Θ), that is, Y 4

Θ = {Xm3 , Z4} for some set of random processes

Z4 such that H(Z4) ≤ m4 −m3 − z = d− z. Then

H(Y 4
γ |M1M2M3) ≤ H(Xm3 |M1M2M3) +H(Z4|M1M2M3) ≤ H(Xm3 |M1M2M3) + d− z.
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Therefore, after adding (d− z)3 to both sides of (7.49), we get:

d2m1

D1
u1 + d2u2 + d(d− z)u3 + (d− z)2H(Y 4

Θ|M1M2M3)

≤ d
(
dD2 + (d− z)2

)
+ (d− z)3 = d2D2 + d(d − z)2 + (d− z)3.

Note that for every Θ ∈ S4, Y
4
Θ is a decoding information set forM4, therefore, by Lemma 15:

d2m1

D1
u1 + d2u2 + d(d− z)u3 + (d− z)2u4 + (d− z)2H(Y 4

Θ|M1M2M3M4)

≤ d2D2 + d(d− z)2 + (d− z)3.

Similarly, for any Y 5
ρ , ρ ∈ S5 such that Xm4 ⊆ Y 5

ρ :

d3m1

D1
u1 + d3u2 + d2(d− z)u3 + d(d − z)2u4 + (d− z)3u5 + (d− z)3H(Y 5

ρ |M1M2M3M4M5)

≤ d(d2D2 + d(d− z)2 + (d− z)3) + (d− z)4 = d3D2 + d2(d− z)2 + d(d− z)3 + (d− z)4

= d3D2 + (d− z)2
(
d2 + d(d− z) + (d− z)2

)
.

Proceeding similarly, if there are n sinks in Gs:

dn−2m1

D1
u1 +

n−2∑

k=0

dn−2−k(d− z)kuk+2 ≤ dn−2D2 + (d− z)2
n−3∑

k=0

dn−3−k(d− z)k.

Now if we set u1 = u2 = . . . = u:

(

dn−2m1

D1
+

n−2∑

k=0

dn−2−k(d− z)k

)

u ≤ dn−2D2 + (d− z)2
n−3∑

k=0

dn−3−k(d− z)k,

which can be written as:

(
dn−2m1

D1
+
dn−1 − (d− z)n−1

z

)
u ≤ dn−2D2 + (d− z)2

dn−2 − (d− z)n−2

z
,

or

(
zdn−2m1

D1
+ dn−1 − (d− z)n−1

)
u ≤ zdn−2D2 + (d− z)2(dn−2 − (d− z)n−2).
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Divide by dn−1:

(
z

d

m1

D1
+ 1 −

(
d− z

d

)n−1
)
u ≤ z

d
D2 +

(d− z)2

d
− (d− z)

(
d− z

d

)n−1

,

or

u ≤ d− z + zm1
d

− (d− z)
(

d−z
d

)n−1

1 + z
d

m1
m1−z

−
(

d−z
d

)n−1 .

Hence, (7.20) holds.

Proof of Theorem 15. We will now demonstrate that the upper bound (7.21) is tight and

can be achieved without intersession coding for any number of sinks n. Precisely, we will

show that

u∗ =
d− z + zm1

d

1 + z
d

m1
m1−z

,

maximizes u subject to

∀j = 1, . . . , n u ≤
mi∑

i∈P∪{1,...,mi}

yj
i (7.49)

∀i = 1, . . . ,mn

n∑

j=1

yj
i ≤ 1. (7.50)

for some yj
i ≥ 0, i = 1, . . . ,mn, j = 1, . . . , n and every set of unerased links P ⊆ I under

any z link erasures.

Note that yj
i = 0, i = mj + 1, . . . ,mn for all j = 1, . . . , n− 1. Choose yj

i so that

• y1
i = A, i = 1, . . . ,m1

• y2
i = B, i = 1, . . . ,m1 and y2

i = C, i = m1 + 1, . . . ,m2

• y3
i = 0, i = 1, . . . ,m1, y

3
i = D, i = m1 + 1, . . . ,m2 and y3

i = C, i = m2 + 1, . . . ,m3

• y4
i = 0, i = 1, . . . ,m2, y

4
i = D, i = m2 + 1, . . . ,m3 and y4

i = C, i = m3 + 1, . . . ,m4

• . . .
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When m ≤ 1
4 (3d + z) + 1

4

√
9d2 − 2dz + z2, this choice of yj

i satisfies (7.49) and (7.50). In

particular, there exists a solution to the linear system

u∗ = (m1 − z)A

u∗ = m1B + (d− z)C

u∗ = dD + (d− z)C

A+B = 1

C +D = 1

given by A = d2−dz+m1z
dm−dz+mz

, B = d(m−d)
dm−dz+mz

, C = 2dm−m2−dz+mz
dm−dz+mz

, D = m(m−d)
dm−dz+mz

with

0 ≤ A ≤ 1, 0 ≤ B ≤ 1, 0 ≤ C ≤ 1, 0 ≤ D ≤ 1.

Proof of Theorem 16. The upper bound follows from the fact that u1 + . . .+un ≤ mn−z =

m1 + d(n − 1) − z. Hence, u ≤ dn−1
n

+ m1
n

− z
n
.

Proof of Theorem 17. We proceed along the lines of the procedure described in Section 7.3.1

for general 3-layer erasure networks with nested demands.

By the cutset bound, we know that for any σ ∈ S1

H(Y 1
σ ) ≤ D1.

On the other hand, by Lemma 15

H(Y 1
σ ) = u1 +H(Y 1

σ |M1) ≤ D1.

Fix any Y 2
∆, ∆ ∈ S2. Sum over all σ ∈ S1 such that Y 1

σ ⊆ Y 2
∆ (note that for every Y 2

∆ there

are



 D2

D1



 choices of Y 1
σ ⊆ Y 2

∆), we get



 D2

D1



u1 +
∑

σ∈S1,Y 1
σ ⊆Y 2

∆

H(Y 1
σ |M1) ≤



 D2

D1



D1.
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Multiply by D2:



 D2

D1



D2u1 +D2

∑

σ∈S1,Y 1
σ ⊆Y 2

∆

H(Y 1
σ |M1) ≤



 D2

D1



D1D2.

Now by using Lemma 16

D2



 D2

D1



u1 +D1



 D2

D1



H(Y 2
∆|M1) ≤



 D2

D1



D1D2.

After canceling by



 D2

D1





D2u1 +D1H(Y 2
∆|M1) ≤ D1D2. (7.51)

Note that for every ∆ ∈ S2, Y
2
∆ is a decoding information set forM2, therefore, by Lemma 15

H(Y 2
∆|M1) = u2 +H(Y 2

∆|M1,M2). Then (7.51) can be rewritten as:

D2u1 +D1u2 +D1H(Y 2
∆|M1,M2) ≤ D1D2.

Fix any Y 3
γ , γ ∈ S3. Sum over all ∆ ∈ S2 such that Y 2

∆ ⊆ Y 3
γ (note that for every Y 3

γ

there are



 D3

D2



 choices of Y 2
∆ ⊆ Y 3

γ ), we get



 D3

D2



D2u1 +



 D3

D2



D1u2 +D1

∑

∆∈S2,Y 2
∆⊆Y 3

γ

H(Y 2
∆|M1M2) ≤



 D3

D2



D1D2.

Multiply by D3:



 D3

D2



D2D3u1 +



 D3

D2



D1D3u2 +D1D3

∑

∆∈S2,Y 2
∆⊆Y 3

γ

H(Y 2
∆|M1M2) ≤



 D3

D2



D1D2D3.

Now by using Lemma 16



 D3

D2



D2D3u1 +



 D3

D2



D1D3u2 +D1D2



 D3

D2



H(Y 3
γ |M1M2) ≤



 D3

D2



D1D2D3.
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After canceling by



 D3

D2





D2D3u1 +D1D3u2 +D1D2H(Y 3
γ |M1M2) ≤ D1D2D3. (7.52)

Note that for every γ ∈ S3, Y
3
γ is a decoding information set for M3, therefore, by Lemma 15

H(Y 3
γ |M1M2) = u3 +H(Y 3

γ |M1M2M3). Then (7.52) can be rewritten as:

D2D3u1 +D1D3u2 +D1D2u3 +D1D2H(Y 3
γ |M1M2M3) ≤ D1D2D3.

Proceeding similarly, after n steps we get:

n−1∑

k=1

D1 . . . Dk−1Dk+1 . . . Dnuk +D1 . . . Dn−1 (un +H(Y n
δ |M1,M2, . . . ,Mn)) ≤ D1 . . . Dn,

where Y n
δ is a decoding information set for Mn. Note that H(Y n

δ |M1,M2, . . . ,Mn) = 0

since Y n
δ is a function of M1,M2, . . . ,Mn.

Therefore,

n∑

k=1

D1 . . . Dk−1Dk+1 . . . Dnuk ≤ D1 . . . Dn, (7.53)

or

u1

D1
+
u2

D2
+ . . .+

un

Dn
≤ 1.

Now note that the rate vectors (D1, 0, 0, . . . , 0, 0), (0,D2, 0, . . . , 0, 0), (0, 0,D3, . . . , 0, 0), . . . ,

(0, 0, 0, . . . , 0,Dn) are all trivially achievable by intrasession coding and lie on the plane given

by (7.53). Now since there are n points on the n-dimensional plane that are achieved by

intrasession coding, (7.53) is also achievable by intrasession coding, and hence the statement

of the theorem holds.

Proof of Theorem 18. Converse. Consider any rate vecttor (u1, u2) ∈ U2(P ). By applying

the cutset bounds to each sink individually, (7.27) and (7.28) are satisfied for (u1, u2). Now

we show that for any (u1, u2) ∈ U2(P ), (7.29) is also satisfied.
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• Case 1.

m12 −m2 ≥ z (7.54)

m12 −m1 ≥ z. (7.55)

If (7.54) and (7.55) are satisfied, then (7.29) can be simplified as

u1 + u2 ≤ m12 − z. (7.56)

Note that (7.54) and (7.55) imply that using the notation of Theorem 10 in Chapter 6

|LP
t1
| ≥ z

|LP
t2
| ≥ z.

Then lP = 2z solves (6.7)-(6.10) with respect to partition P and by Theorem 10 in

Chapter 6.

u1 + u2 ≤ m12 − 2z,

which matches (7.56).

• Case 2.

m12 −m2 ≤ z (7.57)

m12 −m1 > z. (7.58)

If (7.57) and (7.58) are satisfied, then (7.29) can be simplified as

(m1 +m2 −m12)u1 + (m1 − z)u2 ≤ (m1 − z)(m2 − z). (7.59)

Inequalities (7.57) and (7.58) imply that

m1 ≤ m2

m1 − z ≤ m1 +m2 −m12.
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Note that m1 + m2 −m12 is the number of links upstream of both t1 and t2. Since

m1 − z is the size of decoding information set for M1, the z-erasure capacity region of

G2 is upper-bounded by that of a two-sink nested-demand 3-layer network constructed

so that there are m1 +m2 −m12 links in the second layer upstream of sink 1 and m2

links upstream of sink 2. Then using (7.10) in Section 7.3.1:

(m1 +m2 −m12)u1 + (m1 − z)u2 ≤ (m1 − z)(m2 − z),

which matches (7.59).

• Case 3.

m12 −m2 < z (7.60)

m12 −m1 < z. (7.61)

If (7.60) and (7.61) are satisfied, then (7.29) can be simplified as

(m2 − z)u1 + (m1 − z)u2 ≤ (m1 − z)(m2 − z) (7.62)

Suppose m1 ≤ m2. From (7.60) it follows that

m1 − z < m1 +m2 −m12

m2 − z < m1 +m2 −m12.

Note that m1 + m2 −m12 is the number of links upstream of both t1 and t2. Since

m1 − z is the size of decoding information set for M1, m2 − z is the size of decoding

information set forM2, the z-erasure capacity region of G2 is upper-bounded by that of

a two-sink nested-demand 3-layer network constructed so that there are m1+m2−m12

links in the second layer upstream of sink 1 and m2 links upstream of sink 2, which

corresponds to the multiresolution case described in Section 7.3.3 of Chapter 6. Then

using Theorem 17:

(m2 − z)u1 + (m1 − z)u2 ≤ (m1 − z)(m2 − z),
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which matches (7.62).

Achievability. Since G2(P ) is a one-source two-sink network with nonoverlapping demands,

its error-free capacity region is given by the cut set bounds [9] and achieved by time sharing

among the rate pairs (0, 0), (m1, 0), (m1,m12 −m1), (m12 −m2,m2) and (0,m2). Since the

erasure-free capacity region can be achieved by linear network coding, by the achievability

construction described in Chapter 6, the rate pairs (0, 0), (m1−z, 0), (m1−z,max(m12−m1−
z, 0)), (max(m12−m2−z, 0),m2−z) and (0,m2−z) are also achievable. Constraints (7.27)-

(7.29) correspond to the time-sharing of these rate pairs, hence, U2(P ) can be achieved by

intrasession coding.

Proof of Theorem 19. The converse can be proved using same technique as that of Theo-

rem 18. Also, similar to Theorem 18, the achievability is implied by construction that uses

the error-free linear code and is described in Chapter 6.

Proof of Corollary 1. When both m12 −m1 − 2z ≥ 0 and m12 − m2 − 2z ≥ 0, the proof

corresponds to Case 1 of the proof of Theorem 18. When m1 = m2, m12 −m1 − 2z < 0,

m12 − m2 − 2z < 0, then lP = |LP
2 | + z solves (6.7)-(6.10) in Chapter 6 with respect to

partition P and by Theorem 10 u1 + u2 ≤ m1 − 2z, which matches the achievable region

constructed from the erasure-free capacity region of G2(P ) using the procedure described in

Chapter 6.

Proof of Theorem 20. By construction of G2(P ), U is upper-bounded by U2(P ) for every

partition P such that cut(P ) does not contain feedback links. Hence, the statement of the

theorem follows by Theorem 19 for the z-error correction capacity region (or Theorem 18

for the 2z-erasure correction capacity region).

Proof of Theorem 21. Note that by assumption of the theorem xi ≤ x, i = 1, . . . , n − 1.
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Consider the rate vector (a1, a2, . . . , an), where

a1 = m1 − E1 = bm1

y
c(y − x)

a2 = m2 − E2 − a1 =

(
bm2

y
c − bm1

y
c
)

(y − x)

a3 = m3 − E3 − a1 − a2 =

(
bm3

y
c − bm2

y
c
)

(y − x)

. . .

an = mn − En − a1 − a2 − . . .− an−1 = mn − En − bmn−1

y
c(y − x).

We will demonstrate that the rate vector (a1, a2, . . . , an) can be achieved by the following

strategy:

• Perform random linear coding of the a1 symbols of source message M1 into bm1
y
cy

symbols and subsequently forward them on links 1, . . . , bm1
y
cy.

• Perform random linear coding of the a2 symbols of source messageM2 into
(
bm2

y
c − bm1

y
c
)
y

symbols and subsequently forward them on links bm1
y
cy + 1, . . . , bm2

y
cy.

• Perform random linear coding of the a3 symbols of source messageM3 into
(
bm3

y
c − bm2

y
c
)
y

symbols and subsequently forward them on links bm2
y
cy + 1, . . . , bm3

y
cy.

• . . .

• Perform random linear coding of the an symbols of source message Mn into mn −
bmn−1

y
cy symbols and subsequently forward them on links bmn−1

y
cy + 1, . . . ,mn.

If any x out of y consecutive links in the second layer are erased:

• At most bm1
y
cx erasures can occur on links 1, . . . , bm1

y
cy.

• At most
(
bm2

y
c − bm1

y
c
)
x erasures can occur on links bm1

y
cy + 1, . . . , bm2

y
cy.

• At most
(
bm3

y
c − bm2

y
c
)
x erasures can occur on links bm2

y
cy + 1, . . . , bm3

y
cy.

• . . .

• At most (bmn

y
c − bmn−1

y
c)x+ min(x, xn) = En − bmn−1

y
cx erasures can occur on links

bmn−1

y
cy + 1, . . . ,mn.
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Therefore, the rate vector (a1, a2, a3, . . . , an) is achievable by intrasession coding. By the

nested structure of Gs, the rate vectors (0, a1 + a2, a3, . . . , an), (0, 0, a1 + a2 + a3, . . . , an),

. . . , (0, 0, 0, . . . ,
∑n

k=1 ak) are also achievable by intrasession coding, and since
∑n

k=1 ak =

mn−En, these rate vectors lie on the plane (7.33). Hence, we identified n points that lie on

the n-dimensional plane, thus, the inequality (7.33) is achievable by intrasession coding. By

the similar argument, one can show that all of the constraints (7.31)-(7.33) are achievable by

intrasession coding. Finally, since the rate vector (a1, a2, a3, . . . , an) lies on the intersection

of the planes (7.31)-(7.33), (7.31)-(7.33) is the x/y-erasure correction capacity region of Gs

and can be achieved by intrasession coding.

Proof of Theorem 23. Converse. Consider the following erasure pattern E (see Figure 7.8):

• Link i ∈ I, i = 1, . . . , bm1
y
cy is erased if and only if

i mod y ∈ {1, . . . , x}

.

• Link i ∈ I, i = bm1
y
cy + 1, . . . ,m2 is erased if and only if

i mod y ∈ {y − x+ x2, . . . , y − 1, 0, 1, . . . , x2}.

x

y

m1

m2-m1

y
y

m1

 
!

 
"
#

"
1
x

 

y-x x1

E’

Figure 7.8: Erasure pattern E .

Define the subset Ex1 of E as follows (see Figure 7.8):

Ex1 = {i ∈ E : bm1

y
cy + 1 ≤ i ≤ m1}.
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Note that by construction of erasure pattern E (see Figure 7.8), |Ex1| ≤ x and E2 =

bm1
y
cx + E′ + |Ex1 |. Then using the definition of the rate pairs (A,B) and (C,D), we can

write B −D = x1 − |Ex1| and C −A = x1 − x; therefore, (7.34) can be rewritten as

(x1 − |Ex1 |)v1 + (x1 − x)v2 ≤ (m1 − E1)(x1 − |Ex1 |) +D(x1 − x). (7.63)

Define

F =



 x1 − |Ex1 |
x1 − x





Y = {i ∈ I : 1 ≤ i ≤ bm1

y
cy and i /∈ E}

Yx1 = {i ∈ I : bm1

y
cy + 1 ≤ i ≤ m1 and i /∈ Ex1}

Z = {i ∈ I : m1 + 1 ≤ i ≤ m2 and i /∈ E}.

Denote the set of random processes transmitted on Y by Y and the set of random processes

transmitted on Z by Z. Denote the random processes transmitted on each one of the

x1 − |Ex1 | links of Yx1 by by Y x1 = {X1,X2, . . . ,Xx1−|Ex1 |
}. Let Sx be the set of all

lexicographically ordered (x1 − x)-size subsets of {1, . . . , x1 − |Ex1 |}. For any σ ∈ Sx, let

σ(i) be the ith element of σ. Let {Yσ1 , Yσ2 , . . . , YσF
} be the set of all unordered subsets of

Y x1 of size (x1 − x).

Note that |Y | = bm1
y
c(y − x) and for every σ ∈ Sx, {Y, Yσ} is a decoding information

set for M1 under the x/y sliding-window erasure model. Also, {Y, Y x1 , Z} is a decoding

information set for M2 under the x/y sliding-window erasure model.

The rest of the proof of the converse parallels the upper-bound construction for 3-layer

networks with nested demands under the worst-case erasure model that we developed in

Section 7.3.1. By the cutset bound, for every σ ∈ Sx we have

H(Y, Yσ) ≤ m1 − E1.

On the other hand, because {Y, Yσ} is a decoding informations set for M1, by Lemma 15

H(Y, Yσ) = v1 +H(Y, Yσ|M1) ≤ m1 − E1.
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Sum over all σ ∈ Sx, we get

Fv1 +
∑

σ∈Sx

H(Y, Yσ |M1) ≤ F (m1 − E1).

Multiply by (x1 − |Ex1 |):

F (x1 − |Ex1 |)v1 + (x1 − |Ex1 |)
∑

σ∈Sx

H(Y, Yσ|M1) ≤ F (m1 −E1)(x1 − |Ex1 |).

Then by Lemma 17:

F (x1 − |Ex1 |)v1 + F (x1 − x)H(Y, Y x1|M1) ≤ F (m1 −E1)(x1 − |Ex1 |).

After canceling by F :

(x1 − |Ex1|)v1 + (x1 − x)H(Y, Y x1 |M1) ≤ (m1 − E1)(x1 − |Ex1|). (7.64)

Note that by definition H(Z) ≤ m2 −m1 − E′ = D

H(Y, Y x1 , Z|M1) ≤ H(Y, Y x1|M1) +H(Z|M1) ≤ H(Y, Y x1 |M1) +D.

Therefore, after adding D to both sides of (7.64):

(x1 − |Ex1 |)v1 + (x1 − x)H(Y, Y x1, Z|M1) ≤ (m1 − E1)(x1 − |Ex1 |) +D(x1 − x).

Now because {Y, Y x1 , Z} is a decoding informations set for M2, by Lemma 15

(x1 − |Ex1 |)v1 + (x1 − x)v2 + (x1 − x)H(Y, Y x1 , Z|M1,M2) ≤ (m1 − E1)(x1 − |Ex1|) +D(x1 − x),

which proves (7.63) since H(Y, Y x1 , Z|M1,M2) = 0.

Achievability. We first demonstrate that the rate pairs (A,B) and (C,D) can be achieved

without intersession coding.

The rate pair (A,B) can be achieved by the following strategy:

• Perform random linear coding of the A symbols of source message M1 into bm1
y
cy

symbols and subsequently forward them on links 1, . . . , bm1
y
cy.
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• Perform random linear coding of the B symbols of source message M2 into m2−bm1
y
cy

symbols and subsequently forward them on links bm1
y
cy + 1, . . . ,m2.

If any x out of y consecutive links in the second layer are erased, at most bm1
y
cx erasures

can occur on links 1, . . . , bm1
y
cy. Note that m2 = bm2

y
cy + x2, then m2 − bm1

y
cy = (bm2

y
c −

bm1
y
c)y + x2, where 0 ≤ x2 ≤ y − 1; hence, by Lemma 20 at most (bm2

y
c − bm1

y
c)x +

min(x, x2) = E2−bm1
y
cx erasures can occur on links bm1

y
cy+1, . . . ,m2. Therefore, the rate

pair (A,B) is achievable by intrasession coding.

The rate pair (C,D) can be achieved by the following strategy:

• Perform random linear coding of the C symbols of source message M1 into m1 symbols

and subsequently forward them on links 1, . . . ,m1.

• Perform random linear coding of the D symbols of source message M2 into m2 −m1

symbols and subsequently forward them on links m1 + 1, . . . ,m2.

If any x out of y consecutive links in the second layer are erased, at most E1 erasures can

occur on links 1, . . . ,m1 and at most E′ erasures can occur on links m1 + 1, . . . ,m2, hence,

the rate pair (C,D) is achievable by intrasession coding.

The rate vectors (C, 0) and (0,m2 − E2) are achieved trivially by transmitting only

randomly coded symbols for M1 on all links upstream of t1 and only randomly coded

symbols for M2 on all links upstream of t2 respectively. Now the achievability of the region

in the statement of the theorem follows by the fact that (0,m2 − E2), (A,B), (C,D) and

(C, 0) are the cornerpoints of the rate region given in the statement of the theorem.

Proof of Theorem 22. By (7.31), v1 ≤ m1 − E1. Since we impose the condition that all

vi are equal, for every i = 1, . . . , n vi ≤ m1 − E1 and the converse holds. Now because

m1 = bm1
y
cy + x1 and m1 = m2 −m1 = m3 −m2 = . . . = mn −mn−1, one can write

m1 = mi −mi−1 = bmi −mi−1

y
cy + xi = bm1

y
cy + x1

for some 0 ≤ xi ≤ y − 1, i = 2, . . . , n. Hence, xi = x1. Therefore, by Lemma 20

E1 = bm1

y
cx+ min(x1, x) = bmi −mi−1

y
cx+ min(xi, x)

is the maximum number of erasures under the x/y sliding window erasure model that can



129

occur upstream of ti, but not t1, . . . , ti−1 for each i = 1, . . . , n. Thus, (v1, v2, . . . , vn) =

(m1 −E1,m1 −E1, . . . ,m1 −E1) is achievable by random linear coding of m1 −E1 symbols

of source message Mi into mi −mi−1 symbols and subsequently forwarding them on links

mi−1 + 1, . . . ,m1 for each i = 1, . . . , n.

Proof of Theorem 24. By (7.31), v1 ≤ m1 − E1. Since we impose the condition that all

v2i−1 are equal, (7.35) holds for every i = 1, . . . , k. By Theorem 23,

(B −D)v1 + (C −A)v2 ≤ CB −AD,

therefore, since v1 = v3 = . . . = v2k−1 and v2 = v4 = . . . = v2k, all (B−D)v2i−1 +(C−A)v2i

are equal and (7.36) holds for every i = 1, . . . , k. Simialrly, all v2i−1 + v2i are equal and

(7.37) holds for every i = 1, . . . , k.

By Theorem 23, (7.35)-(7.37) can be achieved by intrasession coding when n = 2.

Moreover, by Theorem 22, (7.37) can be achieved by transmitting only coded symbols of

M2i−1 and M2i upstream of m2(i−1) + 1, . . . ,m2i for each i = 1, . . . , k. We will now show

that the cornerpoints of the rate region (7.35)-(7.37), namely, (v2i−1, v2i) = (0,m2 − E2),

(v2i−1, v2i) = (A,B), (v2i−1, v2i) = (C,D) and (v2i−1, v2i) = (C, 0) can be achieved without

intersession coding for every i = 1, . . . , k.

Note that if m2 is a multiple of y, all m2i are multiples of y for i = 1, . . . , k. Hence,

E2 = m2
y
x =

m2i−m2(i−1)

y
x for all i = 1, . . . , k. Therefore:

A = bm1

y
c(y − x) = bm2i−1 −m2(i−1)

y
c(y − x) = bm2i−1

y
cy −m2(i−1) − bm2i−1 −m2(i−1)

y
cx

B = m2 − E2 − bm1

y
c(y − x) = m2i −m2(i−1) − E2 − b

m2i−1 −m2(i−1)

y
c(y − x)

=
m2i

y
− bm2i−1

y
c −

(
m2i

y
− bm2i−1

y
c
)
x

C = m1 − E1 = m2i−1 −m2(i−1) − E1

D = m2 −m1 − E′ = m2i −m2i−1 − E′

For every i = 1, . . . , k, the rate pair (v2i−1, v2i) = (A,B) can be achieved by intrasession

coding using the following strategy:

• Perform random linear coding of theA symbols of source messageM2i−1 into bm2i−1

y
cy−

m2(i−1) symbols and subsequently forward them on links m2(i−1) + 1 . . . , bm2i−1

y
cy.
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• Perform random linear coding of the B symbols of source message M2i into m2i −
bm2i−1

y
cy symbols and subsequently forward them on links bm2i−1

y
cy + 1, . . . ,m2i.

If any x out of y consecutive links in the second layer are erased, at most bm2i−1−m2(i−1)

y
cx

erasures can occur on links m2(i−1) +1 . . . , bm2i−1

y
cy. Note that m2i−bm2i−1

y
cy is a multiple

of y. Therefore, by Lemma 20, at most
(

m2i

y
− bm2i−1

y
c
)
x erasures can occur upstream of

bm2i−1

y
cy + 1, . . . ,m2i. Hence, the rate pair (v2i−1, v2i) = (A,B) is achievable.

For every i = 1, . . . , k, the rate pair (v2i−1, v2i) = (C,D) can be achieved by intrasession

coding using the following strategy:

• Perform random linear coding of the C symbols of source message M2i−1 into m2i−1−
m2(i−1) symbols and subsequently forward them on links m2(i−1) + 1, . . . ,m2i−1.

• Perform random linear coding of theD symbols of source message M2i into m2i−m2i−1

symbols and subsequently forward them on links m2i−1 + 1, . . . ,m2i.

Note that

m1 = m2i−1 −m2(i−1) = bm1

y
cy + x1 = b

m2i−1 −m2(i−1)

y
cy + xi

for some 0 ≤ xi ≤ y − 1. Hence, xi = x1. Then, if any x out of y consecutive links in the

second layer are erased, by Lemma 20 at most

b
m2i−1 −m2(i−1)

y
cx+ min(xi, x) = bm1

y
cx+ min(x1, x) = E1

erasures can occur on links m2(i−1) + 1, . . . ,m2i−1.

Similarly,

m2 −m1 = m2i −m2i−1 = bm2 −m1

y
cy + x′ = bm2i −m2i−1

y
cy + xi

for some 0 ≤ xi ≤ y − 1. Hence, xi = x′. Then, if any x out of y consecutive links in the

second layer are erased, by Lemma 20 at most

bm2i −m2i−1

y
cx+ min(xi, x) = bm2 −m1

y
cx+ min(x′, x) = E′

erasures can occur on links m2i−1 + 1, . . . ,m2i, hence, the rate pair (v2i−1, v2i) = (C,D) is
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achievable. Similarly, the rate vector (v2i−1, v2i) = (C, 0) can be achieved by transmitting

only randomly coded symbols for M2i−1 on links m2(i−1) + 1, . . . ,m2i−1.

Also,

m2 = m2i −m2(i−1) = bm2

y
cy + x=b

m2i −m2(i−1)

y
cy + xi

for some 0 ≤ xi ≤ y − 1. Hence, xi = x2. Then, if any x out of y consecutive links in the

second layer are erased, by Lemma 20 at most

bm2i −m2(i−1)

y
cx+ min(xi, x) = bm2

y
cx+ min(x2, x) = E2

erasures can occur on links m2(i−1)+1, . . . ,m2i, hence, the rate vector (v2i−1, v2i) = (0,m2−
E2) can be achieved by transmitting only randomly coded symbols forM2i on linksm2(i−1)+

1, . . . ,m2i.
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Chapter 8

Summary

In this thesis we examined error correction problem in general networks. We discussed

noncoherent correction of network errors and erasures with random locations and showed

that the relative performance of coding and routing strategies under the probabilistic error

and erasure occurrence model depends on the erasure and error probabilities. Then we

considered the pollution attack in network coded systems where network nodes are compu-

tationally limited, and designed a fountain-like network error correction code that allows

us to combine benefits of cryptographic signature-based and information-theoretic security.

We also derived error correction capacity regions for coherent and noncoherent multisource

multicast network scenarios. We further gave some lower and upper bounds for general non-

multicast error correction problems, and then focused our discussion on nested-demand and

two-sink network topologies for which these bounds match. We concluded our discussion

by defining a class of 3-layer two-sink and nested-demand networks for which intrasession

coding is error- and erasure- correction capacity-achieving.

Finding the error-free capacity region of a general nonmulticast network remains an open

problem. Therefore, nonmulticast network scenarios pose a variety of research problems in

both error-free and erroneous cases. It is important to continue classification of nonmulti-

cast network topologies for which matching lower and upper bounds can be obtained. In

Chapter 7, we conjectured that the z-erasure correction capacity region of a general 3-layer

nested-demand network can be achieved by intrasession coding and proved this statement

for the case when z = 1. It would be interesting to prove or disprove this conjecture for any

z and to see whether it extends to the case of a sliding-window erasure model for streaming

systems with an arbitrary number of checkpoints.

Our work illustrates a variety of useful tools for analysis and code design in practical
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error-tolerant networks. For general networks, it seems intractable to find the globally

optimal coding strategy. The type and level of attack as well as the network topology play

an important role in choosing the best practical strategy. Also, it is common that the nodes

in real-world networks are heterogeneous in their capabilities. Therefore, it is critical to

characterize the types of networks and the parameters, such as network topology, degree

of node heterogeneity, level of attack, etc., that are useful for determining good hybrid

strategies that achieve the best performance for a given network scenario and constraints.
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