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Abstract.

 Py-Im polyamides are cell-permeable, programmable, sequence-specific, DNA 

minor groove-binding small molecules.  When designed to bind a DNA sequence that 

matches the consensus DNA-binding sequence of a transcription factor, they can be used 

to block the binding of that transcription factor to its response element in vitro and in cell 

culture.  We have used this approach to inhibit the genotropic activity of the endogenous 

transcription factors HIF1α, glucocorticoid receptor (GR), and androgen receptor (AR).  

In this work, we report the completion of a library of hairpin Py-Im polyamides targeted 

to all possible 5’-WGNNNW-3’ (W = A or T) sequences.  These compounds bind their 

target DNA sequences with high affinity.  One compound from this set targets the sequence 

5’-WGWWCW-3’, which matches the DNA binding consensus sequence of GR and 

AR and has been shown to inhibit the gene regulatory activity of these proteins in cell 

culture.  Herein, we show that a cyclic derivative of this compound maintains its activity 

against AR-driven gene expression in hormone-sensitive LNCaP prostate cancer cells.  As 

androgen receptor signaling is crucial to prostate cancer growth and metastasis even in its 

recurrent form, we next examine the activity of the AR/GR antagonist in a tissue culture 

model of castration-resistant prostate cancer.  In this model, the polyamide retains its 

activity against AR-driven mRNA expression, but it fails to inhibit the binding of AR to its 

response element.  The polyamide-mediated repression is also accompanied by significant 

cell stress and cytotoxicity, which are explored in the final two chapters of this thesis.  The 

former investigates a role for polyamides as inhibitors of DNA Topoisomerase II.  Despite 

in vitro evidence indicating polyamides prevent Topoisomerase II binding, no evidence for 

this is found in cell culture.  The final chapter reveals that polyamide-mediated cytotoxicity 

is likely due to inhibition of DNA synthesis.  This occurs at concentrations similar to those 

used for transcription factor inhibition, suggesting that S-phase disturbance accompanies 

efforts to regulate gene expression with polyamides.
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