Biological Activity of a Py-Im Polyamide Androgen Receptor Antagonist

Thesis by

John W. Phillips

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California 2011

(Defended May 31st, 2011)

© 2011

John W. Phillips All Rights Reserved

To Valerie.

For all those late nights and long weekends.

Acknowledgements.

I would like to thank Peter Dervan for providing a superlative training environment for my six years at Caltech. The mentorship and teaching philosophy you have demonstrated over the years have been invaluable. I would also like to thank the members of my committee, Dennis Dougherty, Bil Clemons, and Judy Campbell for their support and interest in my graduate work.

I have had the privilege of working with supremely talented colleagues in the Dervan lab, for which I am also grateful. I would particularly like to thank my intramural collaborators: Carey Hsu, Jim Puckett, Michelle Farkas, Christian Döse, Dave Chenoweth, Dan Harki, and Ben Li. Thanks also to Nick Nickols, a senior graduate student who gave me the best introduction to graduate-level research that I could have ever hoped for. Jevgenij Raskatov also deserves my gratitude for participating in our many scintillating scientific discussions.

I would also like to thank Kenneth Karanja, my collaborator and coauthor in the Campbell lab. His expertise, keen insight, and unexpected interest helped me close the final chapter of my graduate research, and just in the nick of time, too.

Caltech is home to a number of staff scientists whose fine work has contributed to this thesis. I would like to single out Shelley Diamond for her dedication and professionalism. Her expertise in flow cytometry was instrumental to my work on the mechanism of polyamide cytotoxicity. Her decades of experience and high standards for data quality helped me tremendously.

Abstract.

Py-Im polyamides are cell-permeable, programmable, sequence-specific, DNA minor groove-binding small molecules. When designed to bind a DNA sequence that matches the consensus DNA-binding sequence of a transcription factor, they can be used to block the binding of that transcription factor to its response element *in vitro* and in cell culture. We have used this approach to inhibit the genotropic activity of the endogenous transcription factors HIF1 α , glucocorticoid receptor (GR), and androgen receptor (AR). In this work, we report the completion of a library of hairpin Py-Im polyamides targeted to all possible 5'-WGNNNW-3' (W = A or T) sequences. These compounds bind their target DNA sequences with high affinity. One compound from this set targets the sequence 5'-WGWWCW-3', which matches the DNA binding consensus sequence of GR and AR and has been shown to inhibit the gene regulatory activity of these proteins in cell culture. Herein, we show that a cyclic derivative of this compound maintains its activity against AR-driven gene expression in hormone-sensitive LNCaP prostate cancer cells. As androgen receptor signaling is crucial to prostate cancer growth and metastasis even in its recurrent form, we next examine the activity of the AR/GR antagonist in a tissue culture model of castration-resistant prostate cancer. In this model, the polyamide retains its activity against AR-driven mRNA expression, but it fails to inhibit the binding of AR to its response element. The polyamide-mediated repression is also accompanied by significant cell stress and cytotoxicity, which are explored in the final two chapters of this thesis. The former investigates a role for polyamides as inhibitors of DNA Topoisomerase II. Despite in vitro evidence indicating polyamides prevent Topoisomerase II binding, no evidence for this is found in cell culture. The final chapter reveals that polyamide-mediated cytotoxicity is likely due to inhibition of DNA synthesis. This occurs at concentrations similar to those used for transcription factor inhibition, suggesting that S-phase disturbance accompanies efforts to regulate gene expression with polyamides.

Table of Contents

List of Figures and	Tables v	711
List of Figures and	1 1 d 0 1 c 5 v	11

Chapter 1:	Introduction	1
Chapter 2:	Completion of a Programmable DNA-Binding Small Molecule	
	Library	27
Chapter 3:	Cyclic Pyrrole-Imidazole Polyamides Targeted to the Androgen	
	Response Element	49
Chapter 4:	Characterization of Py-Im Polyamide Androgen Receptor	
	Antagonists in Hormone-Refractory Prostate Cancer Cells	72
Chapter 5:	Py-Im Polyamides Inhibit DNA Topoisomerase II Activity In	
	Vitro by Disrupting Enzyme Binding	92
Chapter 6:	Mechanism of Polyamide-Induced Cytotoxicity in Prostate Cancer	
	Cells	111

List of figures and tables.

Chapter 1

Figure 1.1.	Chart depicting the genome size and number of protein-coding	
	genes of several eukaryotes	2
Figure 1.2.	Signal transduction converges on transcription factors	3
Figure 1.3.	Structural diversity of DNA-binding proteins	4
Figure 1.4.	Composite model of cooperative assembly of transcription	
	factors mediated by allosteric interactions on the Interferon- β	
	enhancer	6
Figure 1.5.	AR signaling in prostate cancer	8
Figure 1.6.	Two different strategies for the inhibition of the transcription	
	factor HIF1a	9
Figure 1.7.	Engineered zinc finger proteins for control of transcription	.10
Figure 1.8.	Structure of B-form DNA	.12
Figure 1.9.	Hydrogen-bonding pattern of the four Watson-Crick base pairs	
	in the major and minor groove	.13
Figure 1.10.	Sequence-specific, minor groove-binding natural products and	
	their target sequences	.14
Figure 1.11.	Schematic of an 8-ring hairpin polyamide designed to distinguish al	1
	four Watson-Crick base pairs	.15
Figure 1.12.	Cell permeability and nuclear localization of polyamides in live	
	MCF7 breast cancer cells	.16
Figure 1.13.	Structural basis for allosteric inhibition of major groove-	
	binding transcription factors by minor groove-binding polyamides	.17
Figure 1.14.	Py-Im polyamide inhibitors of HIF1 α and nuclear hormone	
	receptor signaling	.19

	Figure 2.1.	Model for the complex formed between hairpin polyamide 24	
		and its match DNA sequence	31
	Figure 2.2.	Plasmid design for pCFH2, pCFH3, pCFH4, pCFH5, pPh2,	
		and pMFST	33
	Figure 2.3.	Quantitative DNase I footprint titration experiments	34
	Table 2.1. K _a	(M ⁻¹) values reported are the mean values from at least three	
		DNase I footprint titration experiments	35
	Table 2.2.	Equilibrium association constants K _a (M ⁻¹)	37
	Table 2.3.	Equilibrium association constants K _a (M ⁻¹)	39
	Figure 2.4.	Quantitative DNase I footprint titration experiments	41
Cha	apter 3		
	Figure 3.1.	Chemical structures for cyclic and hairpin polyamides	52
	Scheme 3.1.	Preparation of 10 and 11	53
	Scheme 3.2.	Preparation of 1, 2, and 3	54
	Table 3.1.	T _m values for polyamides 1-5	55
	Figure 3.2.	Targeting the ARE with DNA-binding polyamides	56
Cha	apter 4		
	Figure 4.1.	Disrupting the AR/ARE interface in HRPC	75
	Table 4.1.	IC ₅₀ values for inhibition of PSA mRNA expression	77
	Figure 4.2.	A Py-Im polyamide antagonist of AR-ARE binding inhibits	
		expression of AR-target gene PSA	78
	Figure 4.3.	Inhibition of AR occupancy at the FKBP5 intronic enhancer	79
	Figure 4.4.	Inhibition of prostate cancer cell growth and induction of	
		cytotoxic response following treatment with ARE-targeted	
		polyamide 1	80
	Table 4.2.	Cytotoxicity IC50 values in LNCaP and LN-AR cells in	

	ix	
	response to treatment with 1	81
Figure 4.5.	Caspase 3/7 activation accompanies PSA downregulation in	
	unstimulated LN-AR cells	81
Figure 4.6.	Stabilitzation of p53 in response to polyamide treatment	82
Chapter 5		
Figure 5.1.	Chemical structure and binding preferences of the Py-Im	
	polyamides used in this study	96
Figure 5.2.	In vitro DNA relaxation assay demonstrating polyamide-mediated	l,
	dose-dependent inhibition of Top 2α -p170 catalytic activity	
	without cleavage complex formation	97
Figure 5.3.	Polyamides 1 and 2 inhibit Top 2α -p170 binding <i>in vitro</i>	98
Figure 5.4.	Dose-dependent induction of cytotoxicity by polyamides 1 and	
	2 in DU145 (wt) and Top2 knockdown cell lines	100
Table 5.1.	Cytotoxicity IC_{50} values (μM) of compounds 1 and 2 in DU145 at	nd
	DU145-shTop2 cell lines.	100
Figure 5.5.	Polyamide treatment causes S-phase arrest in DU145 and	
	DU145-shTop2α cells	101
Chapter 6		
Figure 6.1.	Chemical structure and DNA binding preferences of the	
	Py-Im polyamides used in this study	113
Table 6.1.	Summary of cytotoxicity IC ₅₀ values of 5'-WGWWCW-3'	
	(W = A or T) polyamides in AR-expressing, AR-overexpressing,	
	and AR-negative prostate cancer cell lines	116
Figure 6.2.	Polyamide treatment induces apoptosis in DU145 cells	117
Figure 6.3.	Polyamide treatment causes S-phase arrest	119
Figure 6.4.	Polyamide treatment does not induce DNA damage or activate the	e
	DNA-damage induced S-phase checkpoint	120