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Abstract

Since 2004, the field of compressed sensing has grown quickly and seen tremendous interest because
it provides a theoretically sound and computationally tractable method to stably recover signals by
sampling at the information rate. This thesis presents in detail the design of one of the world’s first
compressed sensing hardware devices, the random modulation pre-integrator (RMPI). The RMPI
is an analog-to-digital converter (ADC) that bypasses a current limitation in ADC technology and
achieves an unprecedented 8 effective number of bits over a bandwidth of 2.5 GHz. Subtle but
important design considerations are discussed, and state-of-the-art reconstruction techniques are
presented.

Inspired by the need for a fast method to solve reconstruction problems for the RMPI, we develop
two efficient large-scale optimization methods, NESTA and TFOCS, that are applicable to a wide
range of other problems, such as image denoising and deblurring, MRI reconstruction, and matrix
completion (including the famous Netflix problem). While many algorithms solve unconstrained
¢1 problems, NESTA and TFOCS can solve the constrained form of ¢; minimization, and allow
weighted norms. In addition to ¢; minimization problems such as the LASSO, both NESTA and
TFOCS solve total-variation minimization problem. TFOCS also solves the Dantzig selector and
most variants of the nuclear norm minimization problem. A common theme in both NESTA and
TFOCS is the use of smoothing techniques, which make the problem tractable, and the use of
optimal first-order methods that have an accelerated convergence rate yet have the same cost per
iteration as gradient descent. The conic dual methodology is introduced in TFOCS and proves to be
extremely flexible, covering such generic problems as linear programming, quadratic programming,
and semi-definite programming. A novel continuation scheme is presented, and it is shown that the
Dantzig selector benefits from an exact-penalty property. Both NESTA and TFOCS are released as

software packages available freely for academic use.
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