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Abstract

Since 2004, the field of compressed sensing has grown quickly and seen tremendous interest because

it provides a theoretically sound and computationally tractable method to stably recover signals by

sampling at the information rate. This thesis presents in detail the design of one of the world’s first

compressed sensing hardware devices, the random modulation pre-integrator (RMPI). The RMPI

is an analog-to-digital converter (ADC) that bypasses a current limitation in ADC technology and

achieves an unprecedented 8 effective number of bits over a bandwidth of 2.5 GHz. Subtle but

important design considerations are discussed, and state-of-the-art reconstruction techniques are

presented.

Inspired by the need for a fast method to solve reconstruction problems for the RMPI, we develop

two efficient large-scale optimization methods, NESTA and TFOCS, that are applicable to a wide

range of other problems, such as image denoising and deblurring, MRI reconstruction, and matrix

completion (including the famous Netflix problem). While many algorithms solve unconstrained

`1 problems, NESTA and TFOCS can solve the constrained form of `1 minimization, and allow

weighted norms. In addition to `1 minimization problems such as the LASSO, both NESTA and

TFOCS solve total-variation minimization problem. TFOCS also solves the Dantzig selector and

most variants of the nuclear norm minimization problem. A common theme in both NESTA and

TFOCS is the use of smoothing techniques, which make the problem tractable, and the use of

optimal first-order methods that have an accelerated convergence rate yet have the same cost per

iteration as gradient descent. The conic dual methodology is introduced in TFOCS and proves to be

extremely flexible, covering such generic problems as linear programming, quadratic programming,

and semi-definite programming. A novel continuation scheme is presented, and it is shown that the

Dantzig selector benefits from an exact-penalty property. Both NESTA and TFOCS are released as

software packages available freely for academic use.
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Chapter 1

Introduction

“I’m disappointed in Wired, and perhaps in the good professor as well, for not display-

ing the self-control to decline publication of what reads as a classic red herring. Where

are discussion and references to support this claim of getting something for nothing?”

“Can you believe that someone would have such a fundamental misunderstanding of

basic mathemetics [sic] and information theory that they would base a medical diagnosis

on features produced by data interpolation? I hope it’s not my doctor doing it. Prettying

up pictures is great. Looking for tumors, etc. is insane. By definition, you’re looking for

an aberration, which, by definition, this algorithm would not produce.”

“Would you be willing to gamble your life on interpolated data where the shortcoming

would be missing clinical pathology? A MRI image contains many subtle shades of gray

in abstract shapes. For an artistic image clear, sharp edges and vivid colors may enhance,

but to render a line on a diagnostic image that appears to abruptly end and restart may

draw a complete artery where there is really an occlusion or to smooth out faint variations

representing a brain tumor can be deadly.”

“Sounds great, but extraordinary claims demand extraordinary proof to distinguish

them from hype.”

“You can’t make something from nothing. You can create something by inference,

but there’s no certainty what you’re making is right.”

“You won’t be able, anyway, to save the data nobody ever entered... .”

The above quotes are from readers’ comments on the online version of a 2010 Wired Magazine

article [Ell10] about compressed sensing (CS). To sheltered academics in certain fields, compressed

sensing is just another buzzword; these quotes serve to remind that there really has been great

progress. This thesis can be viewed as an answer to these skeptical readers. The power of compressed
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sensing techniques is highlighted, while maintaining that the theory really is intuitive (with the

benefit of hindsight), since the basic tenet is that it is necessary to sample at the information rate.

To the several thousand academics just mentioned, the results of this thesis can be read and

digested without causing much commotion. The same content, but in the year 2000, would have

been met with astonishment; in the year 1985, incredulity. To be sure, beginning in the late 1980s,

a small group of researchers had premonitions of what was possible, but the main notions behind

compressed sensing were not widespread. What has changed since the 80s? Not just one major

advance, but advances in many fields of science, math, and engineering. Namely:

• Signal processing and statistical advances, mainly in the ability to exploit sparsity. The re-

sults of compressed sensing in 2004 were fundamental [CRT06, Don06], although maybe not

a complete surprise to a handful of statisticians since around 1988. The real significance of

compressed sensing was a change in the very manner of thinking of many engineers and mathe-

maticians. Instead of viewing `1 minimization as a post-processing technique to achieve better

signals, CS has inspired devices, such as the RMPI system described in this thesis, that acquire

signals in a fundamentally novel fashion, regardless of whether `1 minimization is involved.

• Computing power advances. For believers in Moore’s law, this is no surprise, but nonetheless

it is still impressive. The experiments in this thesis all require massive computation; so much,

in fact, that before the development of the algorithms presented in Chapters 3 and 4, the

simulations were performed on the massive Caltech SHC cluster.

• Circuits advances (also relating to the computing power). The design of the integrated circuit

(IC) discussed in this thesis began in 2008, and the IC has now been fabricated in 90 nm CMOS

technology; in 2011, there are even 32 nm technologies. Beyond just fabrication improvements,

the design knowledge and design toolkits (such as powerful SPICE simulators) have increased.

This allowed precise design of the IC. We note that we are still on the border of the feasible,

since a full SPICE calibration of the system would take roughly a month of computational

time on a multi-core workstation.

• Algorithmic advances. By 1997, with the publications of [Wri97,NN94], interior point methods

(IPM) were a mature technology, and the powerful models of semi-definite programming [VB96]

were being increasingly used. However, this recent decade has seen tremendous growth in data

collection; as just one example, the Compact Muon Solenoid detector at the LHC at CERN

produces 40 terabytes per second [The08]. Thus problems that were once “solved” have now

been re-opened because these modern scientific problems are of such large scale. On the

extreme side are tools like MapReduce and algorithms like Google’s PageRank. For large—but

not gigantic—datasets, a new theme is first-order methods. And, as always, parallel methods
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Figure 1.1: Diagram of the version 1 RMPI chip

are still crucial, with increasing attention on the GPGPU and on minimal-communication

distributed computing.

This thesis brings together all of these advances and presents a state-of-the art system that

bypasses a current barrier in ADC technology. The actual physical system is a receiver/ADC called

the “Random Modulator Pre-Integrator” (RMPI); Figure 1.1 shows a layout of the actual integrated

circuit. The general concept of the RMPI is not original to this thesis (see [SOS+05, KLW+06,

LKD+07,TLD+10]), but it is one of the world’s first working hardware devices to be built based on

the compressed sensing paradigm. In designing the system, numerous engineering and mathematical

problems were overcome, and we hope that the results presented in this thesis will be of use to others

in the field.

The second component of the system is the signal-processing back-end, which involves many

steps, but the heart of the recovery is solving an optimization program. This key computation is

“just” a linear program (LP), or a second-order cone program (SOCP) for fancier variants, but we

will show why existing algorithms are inadequate to deal with the large quantities of data, and how

our proposed algorithms make the computation tractable.

Chapter 2 discusses the design of the RMPI receiver which was part of a larger “analog-to-

information” (A2I) project. We take a basic CS idea, the RMPI, and from a high-level block

diagram, turn it into a working radar receiver integrated circuit that has now been fabricated in

90 nm CMOS. The chapter explores both hardware decisions as well as signal processing tricks, but
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Figure 1.2: Democracy/incoherence in measurements. Pictoral representation of linear measurements Ax = b.
Historically, good operators A were square and assumed to be easily invertible, such as the identity I or Fourier
matrix F . For undersampling, choosing A to be a partial identity matrix is bad, and recovery depends on luck. For
sparse signals, it turns out that we can recover all of them if measurements are sufficiently global and incoherent.
We informally refer to this idea as “democracy”: each measurement provides the same amount of information as
every other measurement, so there is no one special measurement without which reconstruction is impossible.

without treating the optimization problems in detail.

Chapter 3 presents an optimization algorithm “NESTA” that efficiently solves the signal-processing

optimization problem for the RMPI. Chapter 4 presents an alternative optimization algorithm

“TFOCS” that has some additional attractive features and is applicable to diverse problems.

The emphasis of this thesis is on the RMPI section, since this has not yet been published. The

solvers (NESTA and TFOCS) have been previously described in publications [BBC11, BCG10a].

Chapters 3 and 4 are based on these publications, but contain some new material (see the chapter

introductions for an overview of what is new). These chapters were written with co-authors, named

in the chapter introductions.

The rest of this introduction presents some background material. The theory of compressed

sensing is not discussed in much detail since there are already several excellent review articles and

monographs [Can06, CW08, Bar07, FR11]; see also the resources at [RU]. Instead, we exploit the

unconstrained nature of this thesis to elaborate a little on the history of some ideas that contributed

to our current understanding of `1 processing, since it is rare that current literature has the luxury

of going into background.

What compressed sensing is. A brief overview of the theoretical results is reserved for §1.2.4; we

first mention the main ideas in an intuitive style. Compressed sensing (CS) addresses the situation

in which there is an unknown mathematical object of interest that lies in a large ambient space,

but because of prior information, the information content of the signal is less than the dimension of

the space. The prior information need not be interpreted in the Bayesian sense; a more appropriate

interpretation is that the signal is “compressible”.

An implication of the premise that the signal is compressible is that sampling can be performed

at the “information rate”, or only marginally faster. This generally means that under-sampling is

possible. As always, more samples improve the performance in the presence of noise.

The other key aspect of compressed sensing is the idea of incoherent measurements. Each mea-
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surement of a signal should give some global information; see Figure 1.2 for a depiction. This comes

at a price: when all the measurements are combined, the reconstruction algorithm is non-linear. In

fact, CS theory says that the most efficient measurements look like a random sum, regardless of the

reconstruction algorithm or specific signal. Think of the Voyager 1 spacecraft taking compressed

measurements and sending them back to Earth; such measurements would allow modern techniques

to extract as much information as possible, even using techniques such as wavelet analysis which did

not exist at the time of Voyager’s launch.

The Wired Magazine article failed to convey to its readers the importance of incoherence, hence

the skepticism. To the readers, it seems as though subsampling drops information. But with

incoherent measurements, every measurement gives a little bit of information, so the aberration

tumor is measured, just not directly. However, compressed sensing does not give “something for

nothing”. In the case of noisy measurements, it is always helpful to take more measurements since

this reduces the effect of the noise, and so under-sampling will always perform worse than exact- or

over-sampling (assuming the same post-processing techniques).

What compressed sensing is not. Because compressed sensing deals with sparsity and com-

pressibility, it is related to many other fields, such as sparse approximation, classic problems in image

and signal processing such as denoising and deconvolution, dictionary learning, computational har-

monic analysis, etc. In brief, these fields are related to the first ingredients of compressed sensing:

sparsity and compressibility. But since they do not fundamentally involve incoherent measurements,

they are distinct fields.

The architecture proposed in Chapter 2 is a pure compressed sensing architecture, because funda-

mental to its operation is the fact that measurements are incoherent. The optimization algorithms

proposed in Chapters 3 and 4 are not limited to compressed sensing; they solve a wide class of

problems which include CS problems, but also include problems from sparse approximation, ma-

chine learning, etc. In particular, they solve so-called `1 minimization problems, which have a broad

applicability.

Perhaps one of the biggest impacts of CS is that it has spurred research in related fields, with

the idea of exploiting prior knowledge. Yet the impact on hardware devices is much more limited:

even though compressed sensing theory is about 7 years old and is quite well understood, there are

very few pure compressed sensing applications. A few novel schemes are discussed in §1.1.

1.1 Applications

Before describing compressed sensing in detail, we motivate it with a few applications. Of course

this thesis presents one such application, but the techniques of this thesis extend beyond this specific
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case. As mentioned earlier, only true CS devices are mentioned, and thus we consider only hardware

that takes incoherent measurements.

• Optical and near-optical imaging. The iconic “single pixel camera” developed at Rice

University [WLD+06] is the best known compressed sensing device; it was singled out in 2007

as one of the top 10 emerging technologies by MIT Technology Review [Mag07]. The idea

behind the camera is to trade spatial resolution for temporal resolution; for frequencies such

as infrared, where each pixel is extremely expensive, this is a smart trade off. The camera

uses a single pixel, but it takes many measurements over time. Each measurement needs to

be different and also encode the entire scene; this is achieved by placing a micro-mirror array

in front of a conventional optical lens system. The array is a grid of pixel-like mirrors called

a digital micro-mirror device (DMD); each micro-mirror can be oriented so as to reflect light

toward the single receiving pixel, or in some other direction. The effect is that of a binary

mask.

This is similar to the ideas used in coded aperture imaging in astronomy since the 1960s,

except that due to sub-sampling, direct inversion is no longer possible. Coded aperture imaging

uses a mask that is spatially moved in order to acquire a full set of data. Similar to radio

interferometry, coded aperture is used as a means to increase spatial resolution, since radio

telescopes’ antenna have limited spatial resolution.

Overall, these CS-based optical devices seem promising, and InViewCorp has recently mobi-

lized to commercialize such a system. Similar ideas can also be applied to microscopy [WCW+09],

where again DMDs are used to reduce the number of raster scans needed in confocal imaging.

However, the subject is not yet closed, for there remain a few key difficulties. The first challenge

is calibration. If the system can be modeled sufficiently accurately, then calibration is not an

issue, but for high dynamic range acquisition, it is likely that the system will need to be

characterized. Calibration at optical frequencies is challenging, since the phase is not as easy

to control as in radio frequency (RF) systems.

Another difficulty is related to the binary sensing matrix and the type of noise. The receiver

sees a superposition of light from many sources for every measurement, and the photon count

is greater than it would be in a multi-pixel setting. The DMD acts as a mask, and is equivalent

to a matrix of zeros and ones. Because there are no negative numbers, the average of each

row is necessarily greater than zero. It is this effect that causes the problem. Photons arrive

according to a Poisson process, so there is “shot” noise. The distinguishing feature of this

Poissonian shot noise is that the variance is equal to the mean. Because the single-pixel sensor

sees many pixels worth of light, it consequently sees greater fluctuations about its mean. This

appears to be a fundamental problem with no clever workaround. Bright point-like sources
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can be resolved, but sources that have an even intensity are completely lost in the shot-noise

and impossible to recover. This is currently the limiting factor in these systems.

• Medical Resonance Imaging (MRI). One of the “hot-topic” CS applications is MRI, which has

seen much research, and it is also one of the first, with conference proceedings of the authors

in [LDP07] going back to 2005. The work of Lustig [LDP07] has even been incorporated

into the Stanford research hospital [Ell10], and current MRI manufactures are paying close

attention to the field; the Siemens Corporate Research office has stayed active in the field of

compressed sensing. MRI works by acquiring points in 2D or 3D k-space (i.e., Fourier space),

and conventional MRI acquires specific grids of points so that the image may be reconstructed

by the inverse Radon transform. Using sparse-approximation ideas, it is possible to sub-sample

this grid and solve a linear inverse problem to recover the signal. CS applies to MRI by allowing

k-space samples that are not on standard grids, and fewer samples than conventionally needed.

Fewer samples leads to faster scans, which is significant since scans are performed on living,

moving, people. However, the true potential of CS for MRI is that it might allow for non-

standard types of measurements or certain types of systematic errors, such as non-linearities in

the magnetic field, or weaker magnetic fields. To our knowledge, these types of breakthroughs

have not yet happened.

• Microarray sequencing. Microarrays are used commonly in biology to identify specimens, using

fluorescent tags to identify where samples bind; most samples have only a few active parts,

thus using ideas from CS and group testing suggest that it is possible to take many fewer

measurements and still accurately infer which specimens are present. Recent work in industry

has suggested that this approach is useful in practice [MSS+10].

• Seismic imaging. Because the Earth is made of discrete layers and so separated by sparse

boundaries, seismic imaging has benefited from sparse recovery techniques since the 1970s.

However, a true compressed-sensing-based seismic imaging system goes further and acquires

images in a different fashion; for example, by changing the type of excitation signal sent by a

ship or controlled explosion. Another method to apply compressed sensing is by controlling

the rate and location of samples, much like the non-uniform sampler (NUS) introduced in

§1.4.1. Undersampling is a fact of life for many seismic imaging systems; the system in [HH08]

proposes that undersampling should be nearly at random, like the NUS, in order to turn

coherent aliases into incoherent noise. They also suggest that the undersampling should not

be completely at random; instead, the maximum separation between measurements should be

controlled.

• Hyperspectral imaging. Hyperspectral imaging is the practice of acquiring images at many

wavelengths (though usually not a continuum of wavelengths). It can be useful because it may
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Figure 1.3: Preview: beating Nyquist with the RMPI. Reconstructing two pulses from 2.5 GHz of bandwidth using
only 400 MHz sampling rate in a realistic simulation with noise and non-idealities.

ease identification; for example, it may aid a satellite imaging the ground, trying to determine

the type of foliage on the surface. Images are typically compressible, and hyperspectral images

even more so. See the work in [WGB07] for a proposed hyperspectral imaging system that

uses a binary aperture mask (similar to the single pixel camera) with a multi-pixel array.

• Radar. Much like seismic imaging, it is possible to design special radar pulses to exploit

CS; for example, [HS09] proposes sending a type of chirp called an Alltop sequence to probe

targets, and shows that when there are only a few targets, this allows greater resolution than

traditional radar. This is distinct from the radar problems discussed in this thesis. Typical

CS radar applications design an emitter and a receiver; in this thesis, we are concerned with

learning pulse characteristics from a foreign object’s radar emitter, so not only is there no

control over the emitted pulses, but the pulse parameters are unknown a priori.

• CS has much potential for astronomy by extending what is possible with various types of coded

aperture and, recently, DMD arrays. The benefits and problems are similar to those already

discussed in the optical imaging section. It does not appear that a true CS-based astronomy

device exists, but a CS-based coding scheme has been applied in astronomy [BSO08]. The

Herschel satellite, launched on May 14, 2009, takes images with a photometer and needs to

compress the images by a factor of 16 (in real-time) because of the limited rate of the downlink

to Earth. Using lossless entropy coding, the data can be compressed by a factor of 2.5, but

this is still insufficient. Because of the unique situation (low-powered sensor, but unlimited

time and power for the receiver), [BSO08] proposed using a particular rectangular pseudo-
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random matrix (a noiselet transform [CGM01]) to multiply groups of 6 images; importantly,

this operation is easy to carry out in the satellite. The compressed data is sent to Earth and

decompressed using `1 techniques or similar. The Herschel satellite adopted this scheme, so it

is one of the first compressed sensing hardware devices, even if the image acquisition is still

conventional. For more details of CS in astronomy, see [SB10].

• Quantum physics. In quantum computing and related fields, quantum states are prepared for

specific purposes, and it is important to verify that an experiment has produced the expected

state. The process of verifying a quantum state is known as quantum tomography. In an

n qubit system, there are n particles but the spin of the system cannot be represented by a

n-dimensional state vector due to entanglement. Instead, the system can be represented by a

n×n Hermitian matrix. In a generic high entropy system, this matrix is rank n, but in specially

prepared states, the matrix has low rank, or even rank 1. In a collaboration with quantum

information physicists, this author worked on the problem of estimating the quantum state

via subsampled measurements [GLF+10]. Measurements are taken in an incoherent fashion;

unfortunately, the best type of measurements are difficult to enact experimentally. Feasible

measurements that are slightly less optimal are also proposed. The situation is interesting

for several reasons. The first reason is that there is much experimental control over which

measurements are taken, and no calibration is needed. It even allows the possibility of adaptive

measurements. Secondly, measurements are inherently noisy because they are samples of a

quantum wave function. Each measurement is really a Bernoulli random variable, so repeated

measurements are binomial random variables. Thus the noise can be made arbitrarily small

at the expense of requiring more time. Furthermore, in the experimental setup, there is a

time penalty for switching to a new measurement, so it is advantageous to take repeated

measurements of the same quantity. These tradeoffs make for interesting future study.

• ADC (Analog-to-Digital Converters). A compressed sensing ADC device is presented in Chap-

ter 2 and also in §1.4, where history and background will be presented in detail, so we defer

discussion. Figure 1.3 shows the recovery of two radar pulses from a realistic simulation that

included non-idealities of the circuit.

Applications of sparse recovery. As pointed out, the above applications are true compressed

sensing devices. The algorithms developed in Chapters 3 and 4 are designed for compressed sensing,

but also for generic sparse recovery problems. Sparse recovery problems include topics mentioned in

the CS applications section, as well as image and signal processing applications (interpolation, de-

convolution, denoising, etc.; see Figures 1.5 and 1.6), and various applications in dictionary learning,

blind source separation and morphological separation, and blind deconvolution. They also have ap-
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Figure 1.4: Preview: distance completion. In general, this is an NP-hard problem, but sometimes the convex
relaxation is exact. The algorithm proposed in Chapter 4 can solve these minimization problems that involve
matrix variables. This problem is like filling in the unknown “?” entries in the sample mileage chart on the right.
The plot on the left shows a set of points for which about 29% of the pairwise distances are known (line segments
represent known distances); from this, their true positions are recovered.

plications in many communications and network problems, and can be used to solve general statistics

estimation problems. Thus our algorithms apply to almost all fields in the sciences. The algorithms

can also solve certain matrix-variable problems in low-rank (and/or sparse) recovery. Such problems

include matrix completion [CR09, Gro11] and various variants of robust PCA [CLMW09, MT10]

(Figure 1.4). TFOCS can solve general semi-definite programs (SDP) [VB96]. Over the past 15

years, an increasing number of problems from engineering and control theory, as well as the fields

mentioned above, have been cast in this framework. SDP relaxations of difficult problems such as

MAX-CUT and matrix completion are also of high interest.

image 2D DCT coefficients reconstructed image

Figure 1.5: Compression. The image on the right is reconstructed from less than half the DCT coefficients of the
original image on the left. It is an empirical fact that real images are usually compressible in the 2D frequency
domain. JPEG uses an 8× 8 2D DCT (in HSV color space) and quantizes coefficients, and has revolutionized the
internet. The algorithms in Chapters 3 and 4 can be used for much more advanced image processing problems; see
Figures 1.6 and 4.8.

1.1.1 Problems of interest

This section covers the formulation of some linear inverse problems. The meaning of the variables

may change slightly in subsequent sections, but we aim for consistency of notation. In a linear
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Figure 1.6: Preview: image denoising with TFOCS. For full details, see Figure 4.8. The image on the right is a
denoised version of the noisy image on the left.

inverse problem, we seek an estimate x̂ of a true signal x0 given (possibly noisy) measurements of

the formulation

b = Ax0 + z, x ∈ Rn, b ∈ Rm, A ∈ Rm×n (1.1.1)

where z is a noise vector (usually stochastic). On occasion we allow complex numbers, and this

will be explicitly stated. The model b = A(x + z̃) also arises, which is equivalent to (1.1.1) if we

set z = Az̃. The linearity of the problem means that A is a linear operator, and since this thesis

only considers finite dimensional problems, A is a matrix. Estimates for x̂ are not necessarily linear

functions of A and b.

This thesis is concerned with the under-determined case, m < n, but the algorithms are also

useful in the ill-conditioned case where m = n but A is either singular or has large condition number.

The focus is not on the m = n case, and it is assumed that A has full column rank unless otherwise

stated. Recovering an arbitrary vector x from a given A and b is then ill-posed because there are

infinitely many solutions to this under-determined equation.

Consider temporarily a problem in which m > n, so the situation is over-determined. A standard

approach (if z is Gaussian, this is the maximum likelihood estimator) is to set x̂ = argminx ‖Ax−b‖22,

which is the famous “least-squares” estimator made popular by Gauss. This can be written in closed

form as x̂ = A†b where A† = (ATA)−1A is the Moore-Penrose pseudo-inverse of A. In the case that A

is ill-conditioned, a classical technique is to regularize the problem (known as Tikhonov regularization

or ridge regression):

x̂γ = argmin
x
‖Ax+ b‖22 + γ‖x‖22 = (ATA+ γ2I)−1AT b. (1.1.2)

The second equality holds when γ is large enough that ATA+γ2I is invertible. The answer depends
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on the choice of γ. If it is assumed that the signal x0 comes from a normal distribution with mean 0

and variance σ2I (which we will write as x0 ∼ N (0, σ2I)) and z ∼ N (0, I), then this is the maximum

a posteriori (MAP) estimator if we choose γ = σ. In some contexts it may be possible to choose γ

via cross-validation.

The `2 norm used in (1.1.2) is part of the class of `p norms, defined on a vector x as ‖x‖p =

(
∑
i |xi|p)1/p; so ‖x‖1 =

∑
i |x| is just the sum of the absolute values. The `0 quasi-norm is not a

norm: it just measures the number of non-zero entries of a vector.

We use Tikhonov regularization to motivate our first problem of interest, called the LASSO [Tib96]

(Least Absolute Shrinkage and Selection Operator):

x̂ = argmin
x

1

2
‖Ax− b‖22 + λ‖x‖1. (1.1.3)

This is quite similar in form to Tikhonov regularization. From a Bayesian perspective, (1.1.3) is the

MAP estimator if x has a Laplacian prior and z is i.i.d. Gaussian. At the solution x̂, the first-order

stationary condition [BV04] gives

AT (b−Ax) ∈ λ∂‖x‖1

where ∂f is the sub-differential of f [Roc70] (that is, the set of all sub-gradients). In particular,

the absolute value of every entry of ∂‖x‖1 is bounded by 1. If the original signal x0 were to be a

solution, then this gives the necessary condition that ‖AT z‖∞ ≤ λ. When z is a general stochastic

vector, it is not expected that x̂ is exactly x0, but it turns out that λ ≈ ‖AT z‖∞ is a reasonable

value for the parameter. If z ∼ N (0, σ2I), then with high probability ‖AT z‖∞ ≤ 2
√

log(n).

The key difference between the LASSO and Tikhonov regularization is that the `1 norm has a

sharp discontinuity at 0; see Figure 1.7.

A closely related problem is the following:

minimize
x

‖Ax− b‖22 such that ‖x‖1 ≤ τ. (1.1.4)

Confusingly, this is the version suggested by Tibshirani in his original LASSO paper [Tib96] so it

also goes by the name “LASSO”. To keep the variants clear, we will stick with the λ or τ parameters,

and refer to the first problem as the “unconstrained LASSO”. The unconstrained LASSO has seen

much more attention in the literature than the `1 constrained LASSO.

Another variant is known as basis pursuit (BP) [CDS98], which is the linear program (LP):

minimize
x

‖x‖1 such that Ax = b (1.1.5)
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Figure 1.7: The `1 norm promotes sparsity because of the kink at 0. Any function which is quadratic near zero
(e.g., least-squares norm, or the Huber function [Hub64]) does not promote sparsity because of the “diminishing
returns” in pushing a coefficient to zero. The dual-smoothed version keeps this feature. Unfortunately, the non-
smoothness of `1 also makes it difficult to work with; only the Huber function has a continuous derivative. See also
Figure 4.1

which always has the same value as its dual problem

maximize
ν

bT ν such that ‖AT ν‖∞ ≤ 1.

This is mainly used when z = 0. For noisy cases, we turn to basis pursuit denoising (denoted BPDN

or BPε), which is a second-order cone program (SOCP) [BV04]:

minimize
x

‖x‖1 such that ‖Ax− b‖2 ≤ ε (1.1.6)

and its dual

minimize
ν

‖ν‖2 − bT ν such that ‖AT ν‖∞ ≤ ε.

This dual problem has the same value as the primal problem when A has full row-rank and ε > 0

(see the Slater conditions [BV04]). BPDN is sometimes referred to as the LASSO as well.

BPDN will be the focus of the optimization algorithms introduced in later chapters. A basic

result of convex optimization [Roc70, BNO03] is that unconstrained LASSO, the `1 constrained

LASSO, and BPDN are all equivalent for some values of ε, τ , and λ (as long as these are all non-zero

and finite). That is, given ε, there is some λ(ε) such that the unconstrained LASSO estimator is the

same as the BPDN estimator. In general, calculating λ(ε) is not easy, and requires at least as much

computation as solving the estimation problem; for example, to calculate ε(λ), we set ε = ‖Ax̂λ−b‖2
which requires knowing x̂λ.
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The value of ε is typically chosen by ε ' E ‖z‖2. If the entries of z are independent and have a

finite second moment (and zero first-moment), this is just the square root of the sum of the variances.

Methods for estimating variances, using the sample variance or a robust statistic like the median

absolute deviation, are well-understood, so it is quite reasonable to assume that a reasonable value

of ε is known. In practice, some researchers may prefer to estimate ε rather than λ; this was the

motivation behind NESTA’s development.

The final canonical problem we discuss is the Dantzig selector [CT07a], which motivated the

development of the TFOCS algorithm. The Dantzig selector is the solution to

minimize
x

‖x‖1 such that ‖AT (Ax− b)‖∞ ≤ δ. (1.1.7)

The parameter δ should be about the same as the parameter λ from the unconstrained LASSO.

The Dantzig selector is used for the same types of problems as BPDN, and enjoys similar theoretical

properties. Indeed, the differences between the two was the subject of much discussion in the Annals

of Statistics (see [EHT07,CT07b] and related papers in the same issue).

Lastly, we present two variants of BPDN that are useful when a signal x0 is compressible in

some basis or dictionary Ψ; these variants can also be applied to the LASSO and Dantzig formu-

lations. Suppose x0 = Ψα0 (this is useful when α0 is sparse or has decaying coefficients), and take

measurements b = Φx0 + z = ΦΨα0 + z. There are two ways to use BPDN. The first is known as

“synthesis”:

minimize
α

‖α‖1 such that ‖Aα− b‖2 ≤ ε, A , ΦΨ (1.1.8)

and the second is “analysis”:

minimize
x

‖ΨTx‖1 such that ‖Φx− b‖2 ≤ ε. (1.1.9)

Since we are often interested in solving the analysis problem, it is convenient to allow BPDN

(and the other variants) to use weighted `1 norms; we often write W for the weighting matrix,

e.g., W = ΨT . The differences between synthesis and analysis are discussed in §2.7.2.1, §3.6.1, and

§4.7.5.

1.2 Historical development

Here, we present a selective history of some key developments leading to compressed sensing, as well

as some classic signal processing results.
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1.2.1 Classical signal processing

We start with the following fundamental theorem.

Theorem 1.2.1 (Shannon-Nyquist-Whittaker, this form modified from [Mal08]). Let x(t) be a

band-limited signal with frequencies inside the band [−B,B] (in Hz). Then

x(t) =

∞∑
n=−∞

x(n∆T )φs(t− n∆T )

where fs , 2B is the “Nyquist rate” or “Nyquist frequency”, ∆T , 1/fs, and φs = sin(2πfst)
2πfs

is a

scaled sinc function.

The theorem is obvious using the machinery of the inverse Fourier transform and convolutions,

and noting that the Fourier transform of a sinc is a boxcar function; this may explain why it was

discovered independently by several people in the first half of the 20th century. In [ME09a], it is

referred to as the WKS theorem, where the K stands for Kotelńikov.

In plain language, Theorem 1.2.1 states that if a signal has bandwidth B, then it is completely

specified by sampling at rate fs = 2B. For an arbitrary bandlimited signal, this sampling rate is also

necessary, otherwise aliasing occurs and the original signal cannot be reconstructed from the samples.

Sampling theorems such as these are important since most algorithms manipulate digitized signals,

and digitizing an analog signal requires sampling. The bandlimited assumption is quite natural since

most receivers and emitters have finite bandwidths (or more accurately, nearly finite bandwidths:

at very high frequencies, signals are attenuated so much that they can be neglected).

Suppose now that a bandlimited signal only has small spectral occupancy. If these are in a few

continuous regions, and are known, then down-conversion tricks (see §1.3) show that the sampling

rate only needs to be at twice the amount of occupied bandwidth. A more precise, general and

robust result is due to Landau [Lan67] from the 1960s. In the following, F denotes the Fourier

transform.

Theorem 1.2.2 (Landau sampling theorem; this form modified from [ME09a]). Define

BΩ = {x(t) ∈ L2(R) | supp(Fx(f)) ⊂ Ω}.

A set of time samples R = {rn} is a sampling set for BΩ if the sequence of samples xR[n] = x(rn)

is stable; stability means ∃α > 0, β <∞ such that

α‖x− y‖2 ≤ ‖xR − yR‖2 ≤ β‖x− y‖2 ∀x, y ∈ BΩ.
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Then a necessary condition for R to be a sampling set for BΩ is

D−(R) , lim
t→∞

inf
y∈R
|R ∩ [y, y + t]|

t
> |Ω|

where | · | is the Lebesgue measure. The term D− is known as the lower Beurling density.

For example, if R takes uniform samples with spacing ∆T , then D− = 1/∆T which is the average

sampling density. If in addition Ω = [−B,B], then the theorem requires 1/∆T > 2B, which is just

the Shannon-Nyquist theorem.

Note an interesting consequence of the theorem: if x(t) = sin(2πft) is a pure tone, then |Ω| = 0

so the theorem does not provide a minimal necessary sampling rate to recover this signal. In fact,

any periodic signal has a zero measure frequency support, and hence the theorem provides no bound.

For practical recovery from such a model, and sampling at the minimal rate, it is necessary to

know Ω. An example of a related compressed sensing result is due to [ME09a], which, to paraphrase,

says that if the frequency support Ω of X is unknown but |Ω| is bounded and it is known that

Ω ⊂ [−B,B], then a necessary condition for a sampling set that stably recovers all signals in this

model is that its lower Beurling density must be twice the value it would have been had Ω been a

fixed, known set.

1.2.2 Estimation and the rise of alternatives to least-squares

Least-squares is the quintessential linear estimation technique; the ordinary least-squares (OLS)

solution to an overdetermined system minx ‖Ax − b‖2 is x̂OLS = A†b which is linear in b. Starting

with at least Gauss, the nice properties of least-squares estimation (smoothness, convexity, closed-

form expressions) have been much touted.

Particularly because of the rise of computers in the 20th century, there have been an increas-

ing number of alternatives to linear methods. These alternatives have accumulated gradually but

steadily: Dantzig’s simplex algorithm in the ’40s, message passing and belief propagation used for

decoding (Viterbi’s algorithm in the ’60s), and graphical models used for inference in the past two

decades, to name just a few. Linear estimation is certainly still a cornerstone technique and has

produced successes like the Kalman filter. Below is a brief and partial history of some ideas that

form a foundation for modern compressed sensing. Most of these are related to processing sparse

signals and using `1 techniques; the idea of using incoherent measurements has much less precedent,

with perhaps the exception of coded aperture receivers.

In 1965, Logan’s dissertation [Log65] proved a result now known as “Logan’s phenomenon”: if

a continuous-time band-limited signal x(t) is corrupted by noise z and the noise has bounded L1

norm and has a very sparse time support (but the support is unknown), then finding the minimal L1

norm projection of the corrupted data can perfectly recover the original signal x. This is remarkable,
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because it is independent of the magnitude of the error.

The discrete version of this result, using the `1 norm, was empirically demonstrated by Santosa

and Symes [SS86] in 1986, and proved in [DS89]. The work of [SS86] proved that recovery of a

k-sparse vector from just m Fourier measurements was possible if m ≥ (1 − 1/(2k))n, using the

unconstrained LASSO formulation (they also note the pessimistic nature of this bound). Even by

1986, the fact that “it is possible to construct a sparse spike train from part of its spectrum using

the minimum `1 criterion” was “well-known (and believed)” [SS86].

The 1989 article by Donoho and Stark [DS89] extended Santosa and Symes’ results by proving

a more general new type of uncertainty principle (see also [DL92]). The classical time-frequency

uncertainty principle says that a signal cannot have small support in both time and frequency.

The [DS89] result extended this result by relaxing the restriction that a signal’s support be on

intervals. To be concrete, let x be a discrete signal of length n with discrete Fourier transform X.

Donoho and Stark prove

‖x‖0‖X‖0 ≥ n
(

and hence, ‖x‖0 + ‖X‖0 ≥ 2
√
n
)
. (1.2.1)

Intuitively, the result says that there are not many discrete signals that are sparse in both time and

frequency. Thus, if a signal happens to be sparse in both time and frequency, it has no “neighboring”

signals, and for this reason it is easy to recover. The multiplicative inequality is sharp, because if

n = d2, then a Dirac comb of spacing d has ‖x‖0 = ‖X‖0 = d; this example is also sharp for

the additive identity (the additive identity follows from the multiplicative one by the arithmetic-

geometric mean inequality). Another example is when x is a single Fourier element, in which case

‖x‖0 = n and ‖X‖0 = 1, so the multiplicative inequality is sharp but the additive inequality is not.

It turns out the additive inequality is only sharp in cases such as n = d2; the situation when n is

prime is quite different [Tao05].

[DS89] also reports numerical experiments suggesting that much stronger results are possible if

the sparsity is “scattered” in a random way, so it is clear that the authors had some insight into

what was achievable; their official bound on measurements was the same as Santosa and Symes. It is

worth mentioning that their numerical experiments went only as large as n = 256, and it is not easy

to distinguish O(n), O(
√
n), and O(log n) growth from experiments with just n = {64, 128, 256}.

This theory in the late 1980s built on empirical work from the previous 15 years, as different

scientific communities were using `1 minimization and/or sparsity. The work in [CM73] in 1973

argues that the geophysics community should consider `1 regularized problems for the sake of ro-

bustness to outliers, using the mean and median estimators as examples. They also argue that `1

generates sparsity, but only to the extent that there is always a vertex solution to a linear program

(so sparsity of a solution can be chosen less than m). In addition to sparsity in space, they give
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examples of using sparsity in first- and second-differences; this was further explored in the highly

influential total-variation (TV) minimization paper in 1992 [ROF92].

Similar works in geophysics, such as [TBM79], cite `1 studies going back to 1964. Incremental

results continued in geophysics, exemplified by [OSK94] in 1994 which cites numerous `1 results

from the 1980s (but appears to be unaware of [SS86,DS89]). Many of these works proposed special

algorithms to avoid recasting the problem as a linear program (LP).

In radio astronomy, the CLEAN algorithm [Hög74], introduced around 1971, exploits sparsity of

radio sources and is similar to a matching pursuit algorithm [MZ93] as shown by [WJP+09], though

it is not equivalent to `1 minimization (indeed, the first analysis of CLEAN [Sch78] compares it to

`2 minimization). Its idea of exploiting sparsity and post-processing has been extremely useful in

astronomy; to quote from [Cor09], “The impact of CLEAN on radio astronomy has been immense.

First, there is the accumulated science from the telescopes that have used CLEAN—GBI, MERLIN,

WSRT, VLA, VLBI, etc. ... Second, by showing what could be achieved with some postprocessing,

CLEAN has encouraged a wave of innovation in synthesis processing that continues to this day.”

The article [PC79] introduces the authors’ algorithms from 1975 to the application of estimating

the transfer function of an unknown medium using ultrasound pulses, and exploits sparsity in the

number of layers in most mediums. The algorithm they propose is similar to alternating projections

between the time domain (which is sparse; this set is not convex) and the frequency domain (where

it is assumed that reliable data exists in some band). The 1982 article [ME82] discusses an applica-

tion of `1 minimization for improving diffraction-limited images, and also suggests its use in video

compression.

A noticeable similarity in all these works is that they almost exclusively work with deconvolution,

and hence operate in the Fourier and time/spatial domains.

1.2.3 Leading up to compressed sensing

Another key milestone in the work preceding compressed sensing was a paper by Donoho and Huo

in 1999 [DH01], and was followed by several papers in the next five years, including [DE03, EB02,

GN03,Tro04,DET06,Tro06]. These results concern sparse approximation: suppose a signal x ∈ Cn

can be represented as x = Ψα where Ψ = (I,F) contains “spikes and sines” (F is the DFT). Since

Ψ is rectangular, there are infinitely many α which satisfy this. The result of [DH01] is that if there

is some ‖α0‖0 < 1
2

√
n and x = Φα0, then `1 minimization

min
α
‖α‖1 such that x = Φα

will return α0. Similar results hold for solving by Orthogonal Matching Pursuit (OMP; see §1.5) [Tro04].

These results were generalized to other bases using a convenient tool called the coherence (1.2.2).
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The result means that a signal α ∈ C2n of length N = 2n which is k sparse, with k < 1
2

√
n, can

be recovered from m = n entries. In terms of the dimension N and measurements m, the sparsity

must obey k < 1√
2
m√
N

. This
√
N sparsity may not seem very sparse to readers with knowledge of

recent results, who might expect that sparsity can grow with rate k ' m
logN , which only weakly

depends on N . But as proved in [DH01], these results are sharp. Other than special cases (such as

n prime; see [Tao05]), there are counter examples showing that better bounds cannot be obtained,

such as with the Dirac comb. So how does compressed sensing improve these bounds? The key

difference is that compressed sensing bounds typically do not hold for all measurement matrices,

but rather hold with overwhelming probability1 or with high probability2.

1.2.4 Compressed Sensing

This section gives a brief review of basic CS theory; for more details, the short review article [CW08]

is recommended.

Let a signal x(t) =
∑n
i=1 αiψi(t) where Ψ is the matrix with columns ψi. We deal mainly with

discrete, finite-length samples, so x ∈ Rn, and Ψ is a n×n matrix, typically chosen to be orthogonal.

For example, the signal x might just be a sparse vector, so then Ψ can be the identity matrix I.

Let Φ be another orthogonal n×n matrix; we will eventually subsample this to create the m×n
“sampling matrix”; outside of the introduction, it is always assumed that Φ is m × n with m < n,

and except for the NESTA algorithm in Chapter 3, the rows of Φ will not need to be orthogonal.

Since Φ and Ψ are both orthogonal, and therefore invertible (and well-conditioned), it is possible to

recover x (or equivalently, α) from samples

b = Φx = ΦΨα, or b = Aα,A , ΦΨ.

So far, this is not remarkable, and there is no benefit to doing so (even in the noisy case, since

Gaussian white noise is unchanged under orthogonal transformations).

The remarkable results from compressed sensing say that if α is sparse (we typically use k to

denote the sparsity, and say that α is “k-sparse”) and Φ and Ψ are incoherent, then it suffices to

only take a little more than k rows of the Φ matrix in order to stably reconstruct x.

Define the coherence of Ψ and Φ to be

1 ≤ µ(Φ,Ψ) ,
√
n max

1≤k,j≤n
|〈ψk, φj〉| ≤

√
n. (1.2.2)

The two ortho-bases are “incoherent” when µ ' 1 or has a weak-dependence on the dimension n.

1Used here, this is a technical term (see [Tao11]); if a statement or event En depends on n, then En holds with
overwhelming probability if ∀α > 0 we have ∀n,P(En) ≥ 1 − cαn−α where cα is a constant independent of n; in
compressed sensing, n is the dimension of the signal.

2Similarly, we say En holds with high probability if ∃α > 0 such that P(En) ≥ 1− cn−α.
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Complete coherence, µ =
√
n, is obtained if, for example, Ψ = Φ. Maximal incoherence, µ = 1, is

obtained for Ψ = F , the Fourier basis, and Φ = I, the identity. One remarkable fact is that for any

fixed basis Ψ, if Φ is chosen from the general orthogonal ensemble (GOE), the coherence of Φ and Ψ is
√

2 log n with high probability. Thus random matrices Φ are universally good measurement matrices.

Intuitively, we want low coherence so that each row of Φ takes an equal amount of information about

the signal. If Φ and Ψ are very coherent, then each row of Φ only tells us how much of one particular

basis element ψi is present in the signal, and thus we would need all n measurements, since leaving

out the ith measurements is taking the very risky gamble that αi = 0. See Figure 1.2 on page 4 for

a graphical depiction.

An early result [CR07a] is that if

m ≥ Cµ2(Φ,Ψ)k log n

then if α is k-sparse and Φm is Φ restricted to m rows chosen uniformly at random, then with

overwhelming probability, the measurements b = Φmx are sufficient to tractably recover x. The

recovery is tractable because it can be done by solving basis pursuit (1.1.5), which can be solved in

polynomial time. Here, C is a constant that is independent of k and n.

Very recent results [CP10a] have extended this, which we briefly paraphrase. For simplicity, let

A incorporate both Φ and Ψ, A = ΦΨ. Write the rows of A as aTi , and assume each row is drawn

iid from some probability distribution P , and that each row has zero mean and identity covariance

matrix (so in particular, all the entries ai,j of A are uncorrelated, and furthermore entries from

different rows are independent). Define the self-coherence to be the smallest number µs such that

for all rows ai,
3

max
1≤j≤n

|ai(j)|2 ≤ µs. (1.2.3)

If P is a sub-Gaussian distribution, then µ = c log n for some c independent of n, and if P is

sub-exponential, µ = c log2 n.

From now on we’ll assume x is the sparse object, e.g., x = α. The following theorem differs from

other compressed sensing results in that we assume x is a fixed k-sparse vector. This is a stronger

assumption than before because for any given realization of a sampling matrix A, we can no longer

pick an adversarial signal (and one might argue that since adversarial signals rarely arise in practice,

this stronger assumption is palatable).

Theorem 1.2.3 (due to [CP10a]). Let x be a fixed k-sparse vector, and take m measurements

b = Ax. If m ≥ (1 + β)Cµsk log n then with probability 1 − 5/n − e−β, basis pursuit (1.1.5) will

recover x.

3This need not hold deterministically; see [CP10a] for details.
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This can be extended to cover compressible signals and noisy measurements. Let xk denote the

best k-term approximation to x; in loose terms, we say x is compressible if there is a small k such

that ‖x−xk‖2 is small. In particular, if x is k-sparse, then x = xk. We present a simplified theorem

below:

Theorem 1.2.4 (due to [CP10a]). Let x ∈ Rn be arbitrary; in particular, it need not be sparse. Let

y = Ax+ z where z ∼ N (0, σ2), and define λ = 10σ
√

log n. Then if

m ≥ (1 + β)Cµsk log n

then with probability at least 1−6/n−6e−β, the LASSO (1.1.3) will recover an estimate x̂ satisfying

‖x̂− x‖2 ≤ C̃(1 + log2 n)

(
‖x− xk‖1√

k
+ σ

√
k log n

m

)
.

Identical results hold for the Dantzig selector (1.1.7).

To make these results meaningful, we compare to an “oracle”. Similarly to how an unbiased

estimator’s performance can be compared to the optimal performance given by the Cramér–Rao

bound, comparing with an oracle gives an idea of how close this performance is to the optimal

performance. Consider recovery of a k-sparse vector x given noisy observations y = x+ σz, where z

is any noise vector with independent entries and unit variances. Suppose an oracle whispers in your

ear that the nonzero entries of x are precisely the first k. Then a quite reasonable strategy (though

not optimal in terms of mean-square error, as Willard James and Charles Stein famously showed) is

to take x̂i = yi for i ≤ k and x̂i = 0 otherwise; in fact, with this information, we only need to take

k measurements. The expected error is E ‖x̂− x‖2 = kσ2, and this is referred to as the oracle error.

The oracle takes k measurements and the error is kσ2. The above theorem says that without the

benefit of knowing a priori which entries are nonzero, then if we take slightly more measurements

(by a factor of about log n), we can do almost as well, with an error that is worse by a factor of about

log5 n. Theorem 1.2.6 will improve this to a constant factor, and in Chapter 2 we show empirically

that this factor is about 3.

For completeness, we cover what is now the de facto “standard model” of compressed sensing,

which relies on a tool called the RIP:

Definition 1.2.5 (RIP (Restricted Isometry Property)). The restricted isometry constant δk of

order k for a matrix A is the smallest number such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22

holds for all k-sparse vectors x.
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For example, if A is an orthogonal matrix, then A is an isometry, and δk = 0 for any k, which is

the best possible constant. If A is m × n, then it has a non-trivial nullspace, so δk ≥ 1 for k ≥ m,

but it is still possible for δk < 1 for k < m. In general, adding rows to a matrix A will improve

(i.e., decrease) its RIP constant. The literature often refers informally to a “matrix having the RIP”

whenever that class of matrices satisfies δγk � 1 with high probability whenever m ' k log(n) ,

where γ is typically 2 or 3. There are many variations of results using the RIP, but we show one of

the most compact results.

Theorem 1.2.6 (due to [Can08]). Let δ2k <
√

2−1 and b = Ax+z for any (possibly deterministic)

z, with ‖z‖2 ≤ ε. Then basis pursuit denoising (1.1.6) with this ε gives an estimator x̂ satisfying

‖x̂− x‖ ≤ C0
‖x− xk‖1√

k
+ C1ε

for some constants C0 and C1 (which are not unreasonably large).

The theorem is deterministic, but unfortunately, there are few deterministic matrices which

have small RIP constants. For a fixed number of rows m, random matrices have the best known

RIP constants (although these bounds are not deterministic, and hence there is a nonzero chance of

failure). The bound δ2k <
√

2−1 can be slightly improved, but this has little qualitative significance

to our study here.

There are different bounds for random matrices, but we present here a paraphrase of an elegant

result that sums up the general idea:

Theorem 1.2.7 (due to [BDDW08]). Let the entries of the m×n matrix A be drawn i.i.d. according

to either a zero-mean Gaussian or {+1,−1} Bernoulli distribution, and scaled so the expected value

of each column is 1. For any k and δ, with overwhelming probability (which depends on δ) the matrix

A will satisfy δk(A) ≤ δ as long as

m ≥ Ck log(n/k)

for some constant C independent of n (but dependent on δ).

Note that there is a qualitative difference between the {+1,−1} Bernoulli matrices (also known

as signed Bernoulli, or Rademacher) and the {0, 1} Bernoulli matrices in their compressed sensing

performance; the simple shift makes a big difference. In fact, {0, 1} matrices do not obey the RIP

unless m scales with either k2 or n (as opposed to k log n) [Cha08]. This does not mean that

the matrices are useless for CS, rather just that RIP-based techniques fail; for example, types of

expander graphs [JXHC09] fail the RIP but still have probable recovery results. However, in some

applications, non-negative measurement matrices induce problems; for example, the micro-mirror

optical systems that work in either on- or off-states are affected by this non-negativity due to an

increase in noise; see the discussion in §1.1.
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Figure 1.8: Group testing. Suppose N soldiers are tested for a disease using a sensitive but expensive blood test;
if blood from different soldiers is grouped together, the test is sensitive enough to declare a “positive” if any of the
contributed blood samples were positive. If k soldiers are infected, how many measurements M are necessary? If
k is large, then M = N is the best we can do. If k = 1 (and k is known a priori), then M = log2(N) is possible
(with or without adaptive measurements). The key idea is to take global measurements and then use reasoning.
In this pictorial example, soldier # 45 tests positive, and 45 is 101101 in binary, so using the binary tests depicted
by the gray shading, and assuming k = 1, we can deduce that this is the infected soldier. Each row represents one
test, which involves the columns that are gray. See [GS06a] for more info. This was first proposed in the 1940s by
two economists helping the military screen draftees for syphilis; their proposal was to group together the blood of
five men and apply the test. Since few men were likely to have syphilis, this saves tests on average. The test was
never put into practice, in part because the test was barely sensitive enough to detect a positive hit from diluted
blood. The subject was revived again in the late 1950s.

Another useful result of CS is that random rows of a discrete Fourier matrix also work well for

sampling when the signal is sparse. This is significant since the fast Fourier transform allows one to

compute measurements faster than simply taking a matrix-vector product. The number of required

measurements is similar to that of the Gaussian ensemble case, except the log(n) factor is log5(n);

this bound may be lowered in the future, so it is not necessarily indicative that Fourier matrices are

inferior to Gaussian matrices in practice.

To summarize the intuition behind compressed sensing: if a signal has a sparse representation,

then typically only O(k log n) measurements are necessary (this is an intuitive number: for each of

the k nonzeros, we need some constant number of measurements to encode the amplitude, and log n

number of measurements to encode the location of the entry).

The other intuition is that for a noisy signal, the undersampling hurts us, but only by an amount

proportional to m/n. This is a fundamental limitation: to accurately estimate a quantity given noisy

measurements (say, estimate the population mean given the sample mean), it is always beneficial to

take more measurements.

Our final remark is that because random sensing matrices have good properties, CS tells us

they are universal encoders. Furthermore, the measurements are not adaptive. Clearly, well-chosen

adaptive measurements are not detrimental, but perhaps they are not as beneficial as one might

expect. For example, consider the case of group testing [GS06a,DH93] depicted in Figure 1.8, with

n samples and k samples that test “positive”. We wish to find the k positives. If k = 1 and

k is known, then one obvious solution is an adaptive binary tree scheme (aka bisection method)

which will take log2 n measurements. But a non-adaptive scheme that groups the measurements

according to their binary representation also takes log2 n measurements, so there is no advantage to

the adaptive scheme. If k is larger and unknown, then the adaptive scheme is better, but not by too

much.

23



Alternatives to RIP. The RIP is a convenient tool, but so far it has not proven to be the perfect

tool to analyze deterministic matrices. Most undesirably, it is generally NP-hard to check if the RIP

holds for a specific matrix. Furthermore, the RIP is not a necessary condition. It is clearly a useful

tool, but because of the importance of CS, there has been work on alternatives. We mention just a

few of these alternatives here, in addition to the coherence property which was already discussed.

The work in [BGI+08] introduces a simple extension of the RIP to the so-called RIP-p, and in

particular the RIP-1. The RIP-p is stated as the RIP is, except using `p norms instead of the `2 norm;

thus RIP-2 is the standard RIP. The RIP-1 is particularly useful for expander graphs [JXHC09] and

other sparse encoding matrices. Another extension of the RIP is model-based RIP [BCDH10] which

concerns all x restricted to a specific model; if the model is the set of k-sparse signals, then this is

just the usual RIP. A variant on this is the restricted-amplification property [BCDH10].

Another approach is that taken by Donoho in his original paper [Don06]; see [DT10] for an

overview. Results are proven using combinatorial geometry, and using results on Gel’fand n-widths.

The approach in [XH11] is a simple nullspace condition that is both necessary and sufficient, and

uses Grassmannian angles to prove that matrices satisfy the condition. A complicated hierarchy of

conditions, some of them implying others, is collected and discussed at Terence Tao’s website [Tao]

for those seeking further information.

1.3 The need for the RMPI

The random modulation pre-integrator (RMPI) is an analog-to-digital converter (ADC). Technically,

the RMPI also combines a RF front-end so it is also a receiver, but its novelty resides in its approach

to ADC. The RMPI is part of a new class of so-called “analog-to-information converters” (which is

abbreviated variously as A2I or AIC). The purpose of an ADC is to digitize analog information so

that it may analyzed and/or stored on a computer. For example, when recording music, an ADC is

used to sample the input of a microphone and convert to a digital bit-stream. This is actually an

example of an application that could benefit from CS, since CD-quality recordings require sampling

at 44.1 kHz in order to capture frequencies up to about 20 kHz. The bit rate is 1411.2 kbit/s (e.g., two

stereo 16-bit channels), yet on a computer, this is typically encoded by MP3 (or improvements, such

as AAC) to 128 kbit/s, throwing away data.

Sampling audio-frequency sounds in the kHz range is not difficult, but sampling wide-band radio

in the GHz range is. As a rule, ADC performance degrades as a function of the sampling speed. The

most fundamental measure of an ADC performance is the number of bits B̃ of its output, meaning

that the digitized output takes on 2B̃ possible values.

To describe both the bits and distortion, the effective number of bits (ENOB) term is used. This

comes from the error (peak SNR) that an ideal B̃-bit ADC incurs due to quantization. Let the
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desired sampling rate be fs (i.e., the Nyquist rate), and suppose the ADC samples at γfs, where

γ ≥ 1. The peak SNR of the ideal ADC is SNRp = 3
222B̃γ for a sinusoidal signal. Converting this

to dB gives 1.76 + 6.02B̃ + 10 log10(γ) [GSS02].

For a non-ideal ADC, the SNR (signal-to-noise-ratio) or SINAD (signal-to-noise-and-distortion)

may be different. The ENOB is thus an expression of the equivalent number of bits in an ideal ADC

that would achieve the same SNR. In the following, we use SNDR (signal-to-noise-and-distortion-

ratio) that accounts for all noise and distortion. Hence for γ = 1

B , ENOB =
SNDRdB − 1.76

6.02
. (1.3.1)

This is convenient because it incorporates distortion and the number of bits.

In the 2005 review [LRRB05], which supersedes the widely cited but now outdated review by

Walden [Wal99], two useful figures-of-merit are discussed:

P = 2Bfs and F =
2Bfs
Pdiss

(1.3.2)

where Pdiss is the power dissipation of the ADC. Walden suggested that the F improves over time

due to more efficient power management, but that P is rather flat. Reviewing newer technology,

[LRRB05] finds that P is not flat, but has slightly improved when fs is slow.

There are many types of ADC: sigma-delta, folding, half-flashed, pipelined, SAR, and flash. The

fastest ADC are of flash type, and reach about 1 GHz sampling rate, with about 7 ENOB; they are

limited to a maximum of about 8 ENOB due to non-linearities. The ENOB for an ADC of 1 MHz

is much better, going up to about 15 or 16. Fast ADC with high ENOB and accuracy are greatly

desired. The cell phone revolution has spurred receivers to routinely deal with 100 dB dynamic

range, and hence they need high accuracy, while the growing trend toward spread-spectrum RF

systems also requires systems with high bandwidth.

Among current applications of high-rate ADC is the sensing of wide-band signals, such as several

GHz of radio frequency bandwidth. This is of particular interest to the military, who seek to monitor

these frequencies for signals of interest; this is referred to as SIGINT (signal intelligence) in military

lingo. One application is detection of foreign radar pulses. This is quite different than usual radar,

since it involves detecting radar pulses from other emitters, so the characteristics of the signal are not

known. To prevent jamming, radar pulses may “frequency hop”, meaning that the carrier frequency

is changed over time. The pattern of carrier frequencies is known to the foreign radar emitter, but

unknown to our third-party receiver.

Basics of heterodyne receivers. One of the most fundamental tools for designing a receiver

is the principle of heterodyning. In heterodyning, a low-bandwidth signal (e.g., human voice, or
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a radar pulse envelope) is mixed (i.e., multiplied in the time domain) with a carrier sinusoid for

the purposes of transmission. The receiver then mixes with the same carrier and filters in order to

recover the low-bandwidth signal.

To see how this works mathematically, let a(t) be the low-bandwidth signal, and ωc be the

frequency of the high-rate carrier. Then the transmitted signal is

x(t) = a(t) sin(ωct).

For simplicity, let a(t) = sin(ωst) where ωs � ωc is a slow frequency. Using trigonometric identities,

we express x(t) as

x(t) = sin(ωst) sin(ωct) =
1

2
(cos((ωs − ωc)t− cos((ωs + ωc)t)).

To recover a, one multiplies the received signal x(t) by another carrier of sin(ωct). Then using the

same trigonometric identities,

sin(ωct)x(t) =
1

4
(sin((ωc − (ωs − ωc))t) + sin((ωc + (ωs − ωc))t) +

− sin((ωc − (ωs + ωc))t)− sin((ωc + (ωs + ωc))t)

= −1

2
sin(ωst) +

1

2
sin(ωst) cos(ωct).

When this new signal is low-pass filtered to frequencies below ωc − ωs, all that remains is −1
2 a(t)

because ωc � ωs and so only a(t) is in the passband of the filter.

This means that if a signal has a known carrier frequency fc = 2πωc, then it can be “down-

coverted” by mixing with sin(ωct) at the receiver. Thus the bandwidth constraint depends only on

a(t).

For SIGINT applications, fc is not known in advance, which complicates the system. The receiver

needs to cover the entire range of possible carrier frequencies. As mentioned earlier, ADCs can only

go up to one GHz, and do so at considerable expense of ENOB, but a frequency hopping signal

might easily range over two or three GHz. The conventional approach is to channelize the receiver:

a received signal is split into different paths or channels, then each channel k mixes the signal with a

carrier frequency ωk and then low-pass filters the result. The effect is that each channel views a small

section of the spectrum. The clear downside of this approach is that it requires many channels, which

requires more power and complexity. Consider a system to monitor about 2.5 GHz of bandwidth.

Typical hardware uses 50 MHz channels, so it requires 50 channels! Since each channel is 50 MHz,

the ADCs must sample at 100 MHz; a typical high ENOB 100 MHz ADC optimistically requires

about 1 Watt of power, so the whole receiver requires about 50 Watts. In contrast, the design we
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propose in Chapter 2 consumes about 1 Watt and covers the same bandwidth.

Because of the huge power requirements of current high-bandwidth receivers, in 2007 the DARPA

called for proposals of innovative ADC designs [Hea07]. A joint Caltech and Northrop Grumman

Corporation (NG, or NGC) team answered this proposal and in 2008 began the “A2I” project

after completing a preliminary “Phase 0” proof-of-concept study. The on-site Caltech team consists

of Professors Emmanuel Candès and Azita Emami, and graduate student Juhwan Yoo and this

author. Further signal processing help is provided by the extended Caltech team, consisting of Dr.

Michael Grant, and Professors Michael Wakin and Justin Romberg and their graduate students.

The Nothrop Grumman team is based at the Northrop Grumman Space Technologies division, and

led by Dr. Emilio Sovero, with chief designer Dr. Eric Nakamura.

The A2I project consists of three devices:

1. Caltech Random Modulator Pre-Integrator (RMPI). This is an eight channel RMPI device built

in complementary metal–oxide–semiconductor (CMOS) by the Caltech team. It is designed to

capture radar pulses over a 2.5 GHz bandwidth.

2. NG RMPI. This is a four channel RMPI device built in indium-phosphide (InP) by the

Northrop Grumman team, and designed as a backup to the Caltech design. The design goals

are the same as the Caltech design.

3. NG Non-Uniform Sampler (NUS). This is built by Northrop Grumman, and is a specialized

ADC that samples at irregular time intervals. It is designed to capture signals that are longer

in duration than radar pulses, and specifically, the GSM cell phone band. It has a 1.2 GHz

bandwidth.

Signal processing techniques are shared between the Caltech and NG teams, as are some hardware

plans.

At various stages, the team met with DARPA and the program manager (first, Professor Dennis

Healy, and later, Dr. Daniel Purdy) to review progress. Several other teams, such as a joint Rice

University and Applied Signal Technology team headed by Richard Baraniuk, answered the same

proposal and are working on similar projects. Other groups include a team at HRL led by Peter

Petre, a team at L-3 lead by Jerry Fudge, and a team at Texas A&M led by Sebastian Hoyos. Most

of these projects focus on frequency sparsity, whereas the RMPI attempts to exploit time-frequency

sparsity, which is more complicated.

The review meetings allowed teams to interact, and consequently some ideas have spread through-

out all the teams. For example, the Hoyos team has a planned design that is quite similar to the

RMPI presented here: 8 channels, seeking to cover 1.5 GHz of bandwidth.
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Figure 1.9: Pictoral representations of NUS (left) and RMPI (right). In the NUS, the large circles represent time-
domain samples. The NUS samples at irregularly spaced intervals, though always in multiples of ∆T . In the RMPI,
each channel mixes with a unique pseudo-random bit sequence (PRBS), and then integrates and samples.

1.4 Principles of the RMPI

In this section, the high-level operating principles of the RMPI are discussed. First, we introduce

the NUS, which is conceptually simpler, and also simpler to build.

1.4.1 The NUS

The non-uniform sampler (NUS) acts as an ADC that samples at irregularly spaced time intervals.

If the Nyquist rate is fs, then a traditional ADC samples a signal x(t) at regularly spaced time

intervals t1, t2, . . . where ti+1 − ti = ∆T = 1/fs. Limiting our discussion to a finite time window T ,

there are then N = T/∆T Nyquist samples. Let x be the vector of samples x[k] = x(k∆T ), so the

vector of conventional measurements can be written

bconventional = Ix+ z

where z is a noise vector and I is the N ×N identity matrix. See the upper left of Figure 1.9 for a

cartoon representation.

The NUS takes only a subset of these samples. Let Ω be a subset of {1, . . . , N}, and let the

cardinality of Ω be written as M ; sometimes we may abuse notation and also refer to Ω when we

really mean the time samples indexed by Ω. Write S for the matrix formed by keeping only the rows

of I that have an index in Ω, so S is a M ×N matrix. Then

bNUS = Sx+ z.

For example, if Ω = {2, 4, 6, 8, . . .}, then the NUS would be sampling at 2∆T . This is not a
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desirable choice for Ω, because there is no way to distinguish between a tone at frequency f and

a tone at frequency f + fs/4: both tones look identical if sampled on Ω. This can be remedied

by replacing the 2 entry in Ω with either a 1 or 3. However, this change does not guarantee that

arbitrary signals can be reconstructed, it merely addresses this particular ambiguity.

One of the first compressed sensing results [CRT06] is that the Fourier and time domains are

usually extremely incoherent. Even though there are some bad sampling schemes (such as sampling

at 2∆T ), random sampling in one domain means that coherence is likely small. If the signal x is

sparse in frequency, then the time samples Ω should be chosen randomly. Hence the NUS chooses

Ω via a pseudo-random number generator (note that Ω obviously must be known when trying to

reconstruct the signal). The authors in [HH08] nicely state the intuition: “random undersampling

renders coherent aliases into harmless incoherent random noise, effectively turning the interpolation

problem into a much simpler denoising problem.”

This is almost the entire story: the final complication is that hardware limitations impose some

restrictions on Ω so it cannot be chosen completely randomly. Note also that the samples are

not chosen uniformly over the time period [0, T ], but chosen uniformly from the discrete time grid

t1, t2, . . . , tN . This is because it is more practical for hardware implementation and calibration,

and because the theory is well understood (in terms of coherence between the Fourier and impulse

discrete bases). Continuous-time compressed sensing theory has been developed to a limited extent

but is certainly not as mature as discrete-space (finite dimensional) CS. See Figure 1.9 (left) for a

depiction of the NUS.

What is the advantage of a design like NUS over a conventional ADC? The NUS might take

samples spaced only ∆T apart, so at its fastest, it still needs to sample at fs. However, the average

sampling rate is M/N . For applications of interest, the spectrum is typically sparse, so it is possible

to severely undersample with M < N . By using hardware tricks (beyond the scope of this thesis)

it is possible to exploit this lower average sampling rate. This has the net effect of obtaining higher

resolution samples than would be possible using an ADC sampling directly at fs.

1.4.2 The RMPI

The RMPI system is designed to capture radar pulses; see Figure 1.9 (right) for a block diagram. A

radar pulse consists of a pulse envelope, which is nearly trapezoidal except smoothed at the corners,

which is modulated by a high-frequency carrier signal. The relevant features of a radar pulse is that it

is sparse in frequency, since the bandwidth of the pulse envelope is typically not great (e.g., 10 MHz),

and it is also sparse in time, since the pulse window is of finite duration. Radar signals typically

repeat (on the order of 10 kHz), but the gaps between the pulses is greater (typically much greater)

than the length of the pulses themselves, so the sparsity assumption is still valid.
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Figure 1.10: Sample measurement matrix. The green entries are zero or nearly zero. This particular matrix has
rows ordered such that the measurements from each channel are grouped together.

Why not use NUS? The NUS operates on the principle that sparsity in the time domain and

sparsity in the frequency domain are mutually exclusive. It takes non-uniform time samples, which

are almost always incoherent with pure tones. On the other hand, the RMPI is designed to detect

pulses that are also sparse in the time domain. If a short-duration pulse is sampled non-uniformly in

time, it will only appear in some of the measurements, which is clearly inefficient. Viewed another

way, the pulses are sparse in a Gabor time-frequency dictionary (see §2.7.2.2) which is not maximally

incoherent with the impulse domain.

Operating principles of the RMPI. What is incoherent with the Gabor time-frequency dic-

tionary? Another early result of CS [CT06] is that an instance of a random sensing matrix with iid

entries from a Gaussian or signed Bernoulli distribution is overwhelmingly likely to be incoherent

with a sparse signal in any fixed basis. The Gabor dictionary is not a basis, so these results do

not directly apply; for example, the theory in [TLD+10] assumes sparsity in the Fourier domain,

though recent work [CENR11] may help extend this to work with the Gabor dictionary. However,

the intuition is that a Gaussian or Bernoulli matrix is a good sensing matrix. We note that these

are not the only random matrices with good properties, but as they are particularly simple we focus

on them.

The goal of the RMPI design is to approximate a random signed Bernoulli matrix as closely

as possible. Due to practical considerations, the RMPI ends up approximating a block Bernoulli

matrix. We motivate the RMPI with this approach for now, though in Chapter 2 it will also be

motivated in a frequency-domain viewpoint.

Consider a Bernoulli matrix Φ that has rch rows and Nint columns. For example, if rch = 3 and
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Nint = 8, it might look like

Φ =

(
1 −1 −1 −1 1 −1 −1 −1

−1 1 1 1 −1 −1 1 −1

−1 1 1 −1 −1 1 −1 1

)
.

Suppose x(t), t ∈ [0, Tint], is represented by a vector x ∈ RNint . For now, let this representation

be obtained by averaging:

x[n] =
1

∆T

∫ n∆T

(n−1)∆T

x(t)dt.

In future sections, digital representations are usually point samples x[n] = x(n∆T ). For low-

frequency samples, there is not much difference in the two representations.

With this representation, the action of the first row of Φ applied to x is just

b1 =

Nint∑
n=1

pnx[n] =

Nint∑
n=1

pn
1

∆T

∫ n∆T

(n−1)∆T

x(t)dt = Tint

∫ Tint

0

xp(t)

where pn is the nth column of the first row of Φ, and xp is the signal x after mixing with p:

t ∈ [(n− 1)∆T, n∆T ) =⇒ xp(t) = pnx(t).

The two key components of the RMPI are thus mixing with a sequence pn, followed by integration.

The different rows of the Φ matrix correspond to different channels. Each channel is identical except

that it uses a different sequence pn so that it collects unique information.

The integrator must be sampled at some point in time Tint. Each channel sends its sample to

an ADC which operates at frequency fADC = 1/Tint; the benefit of the RMPI is that fADC � fs so

the ADCs do not need to be high-rate, and therefore they can be very accurate (e.g., 15 ENOB).

To describe the system behavior after a long time T , multiple Φ matrices are concatenated. For

example, if T = 2Tint,

Φ =
(

Φ1 0

0 Φ2

)
=


1 −1 −1 −1 1 1 −1 1 0 0 0 0 0 0 0 0

1 1 −1 −1 −1 1 −1 −1 0 0 0 0 0 0 0 0

1 −1 −1 −1 1 −1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 1 −1 −1 1 1 1

0 0 0 0 0 0 0 0 1 −1 −1 −1 1 1 1 −1

0 0 0 0 0 0 0 0 1 1 −1 −1 −1 1 −1 1

 .

Note that Φ1 and Φ2 do not need to be the same.

For a given time period T , assuming Tint divides T evenly, the number of rows of Φ is M = rch
T
Tint

.

Since each row is a measurement, the number of measurements can be increased by either sampling

more often (decreasing Tint, which means increasing sampling rate fADC), or increasing the number

of channels rch. For a given number of measurements per time M/T (i.e., the information rate), a

decrease in channels can be compensated for by an increase in sampling rate.
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For example, the Caltech design uses 8 channels and a sampling rate of fADC = 50 MHz. The

Northrop Grumman design uses 4 channels and a sampling rate of fADC = 100 MHz.

For long periods of time T � Tint, the Φ matrix is not Bernoulli, but rather block Bernoulli. For

a fixed information rate, the number of channels can be increased and Tint increased, so that the

matrix is exactly a Bernoulli. This is expected to have better performance, but it is impractical to

have arbitrarily many channels, so in practice we deal with a finite value of rch. This trade off is

explored in Chapter 2. The other extreme is a single channel operating with a short Tint; this case is

dangerously close to a sub-sampled identity matrix, which it is coherent with signals that are sparse

in the time domain, so it is not a useful CS matrix.

In a real system, the matrix is only an approximation of a block diagonal Bernoulli matrix. For

reasonable perturbations, this does not affect the recovery, as long as the recovery algorithm knows

Φ. Estimating the true value of Φ is the subject of the calibration section in Chapter 2. The effect

of perturbations will also be discussed.

Finally, we note that because the RMPI is designed to mimic a Bernoulli matrix, is is nearly

optimal for any kind of compressible signal, not just time-frequency sparse radar signals! In this

sense, it is much more general than NUS. The tradeoff is extra complexity in the design and recovery.

1.5 Optimization background

The main post-processing step for recovering a signal from compressed measurements is solving one

of the optimization problems described in §1.1.1. The optimization chapters of this thesis will cover

state-of-the-art optimization algorithms, but do not discuss in depth the alternatives to optimization-

based approaches. Below is a brief survey of the various methods researchers use to attack linear

inverse problems; for a readable recent review, see [TW10]. We eschew specifics here; some state-of-

the-art `1 solvers, as of 2009, are compared in Chapter 3. See also the masters thesis [Pop09] and

the paper [Lor09] which both review `1 solvers as of 2009.

Below is a list of categories of algorithms that are used for recovering signals from undersampled or

ill-posed data; these categories are not necessarily mutually exclusive. For example, soft-thresholding

algorithms fit into several of these categories, and some greedy algorithms can be viewed as convex

optimization algorithms on dual problems.

• Convex relaxation methods. These are true `1 solvers.

— Interior-point methods (IPM). These are second-order methods that require solving a

linear system at every iteration; in return for this expense, they typically need few itera-

tions (20 to 50) to converge. The theory behind them is well understood [NN94]. General

purpose solvers are SeDuMi, SDPT3, and CVXOPT. Specialized solvers are l1ls [KKB07]
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and l1Magic [CR07b]. The downside of IPM is the poor scaling with dimension, and re-

cent years has seen trends away from IPM when solving very large problems. For medium

sized problems, IPM are the gold standard. We also note the useful modeling framework

CVX [GB10], which uses IPM solvers.

— First-order methods. These rely only on gradient calculations. Each iteration is cheaper

than those in an IPM method, but typically more iterations are required to reach conver-

gence. However, this trade off may be worth it. The algorithms presented in Chapters 3

and 4 are of this type.

— Splitting methods. Some splitting methods, such as the forward-backward method (used

in [HYZ07]), can be motivated also as gradient methods. Others, such as the Douglas-

Rachford, are distinct from gradient-based approaches, and may work quite well in prac-

tice. For an example, see Figure 4.15. These methods were originally inspired by PDE

splitting methods. Convergence of the Douglas-Rachford splitting is proved in [Com04].

— Homotopy/pivoting methods. For a problem like the unconstrained LASSO with pa-

rameter λ0, these methods find all solutions for values of λ between [λ0,∞]. This is

useful for model selection when λ is unknown. Unfortunately, these methods are typ-

ically too slow for signal processing applications. Examples of homotopy methods are

LARS [EHJT04] and HOMOTOPY [OPT00] which solve the LASSO (see also [DT08]),

and DASSO [JRL09] which solves the Dantzig selector.

— Coordinate descent. If done properly, this can exploit prior computation and be quite

efficient. By itself, it is an extremely old optimization method; see [FHT10] for recent

versions. It is related to greedy methods.

— Variants. Noiseless basis pursuit (BP) is a linear program, and so can be solved via

the simplex method. The other variants, such as BPDN, are not linear programs, but

can be solved by various standard optimization techniques such as sequential quadratic

programming (SQP), augmented Lagrangian methods, subgradient methods, etc. These

are really classes of techniques, not specific algorithms.

In terms of compressed sensing, two algorithms deserve special mention. The first is

non-linear conjugate gradient; whenever this can be used, it is likely to be fast. It is used

to solve the non-convex rank minimization problem in [BM03] and recently in [MT10].

The other algorithm is the alternating direction method of multipliers (ADMM), aka

alternating direction augmented Lagrangian. This method “splits” a variable into two

distinct copies of itself, and then imposes a penalty function that encourages the two

copies to be equal. The two copies of the variable are updated in an alternating fashion

(much like the Jacobi method). Very recent theoretical work has extended the ADMM
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method to updates in a Gauss-Seidel-like fashion, which crucially allows for the first

ever convergence rate estimates [GM10] and proves convergence for the case when a

variable has been split into more than two copies (this had been used in practice but

not analyzed). An extension by the same authors proposes an accelerated variant, using

Nesterov-style ideas, which converges more rapidly [GMS10]. One reason for the recent

interest in ADMM is that the subproblems are tractable for nuclear-norm minimization

problems, and especially one type of robust PCA problem [CLMW09]. Another interest

in ADMM is that multiple splittings potentially allow for very low-communication parallel

algorithms [BPC+10].

• Thresholding. Soft-thresholding can be cast in other frameworks (e.g., gradient-based, split-

ting). Hard thresholding is sometimes possible to cast as a solution to a convex functional

using a Landweber iteration. The iterative hard thresholding algorithm itself can be analyzed

on its own, and recent work in [BD09] has established noiseless recovery guarantees similar to

`1 minimization under the assumption of the RIP; the main issue seems to be dealing with

noisy signals.

• Iterative `1 algorithms. The canonical example is reweighted `1 [CWB08], which is a more

advanced version of the adaptive LASSO [Zou06]. Other variants include iterative-support de-

tection (ISD) [WY10] and active-set methods, such as FPC-AS [WYGZ10]. The ISD method is

quite similar in principle to CoSaMP, a greedy algorithm, but can also be viewed as a reweight-

ing algorithm that allows weights with zero value. These methods solve convex sub-problems,

but the overall method itself need not be convex. Reweighting is one of the techniques used

extensively in Chapter 2. So far, there is no theoretical result showing that reweighted `1

converges to a global minimum. Other algorithms, such as ISD, are shown to converge (lo-

cally) in the noiseless case. The algorithms considered in [Zou06,KXAH10] are both two-step

methods, so convergence is not an issue; both also offer quantitative theoretical performance

improvements over the LASSO. Another two-step method in [Chr09] appears to work as well.

See further discussion in the reweighting §2.7.2.3 and debiasing §2.7.2.4 sections in Chapter 2.

• Greedy pursuits. These methods seek to update the signal with the best possible update,

without taking into account global structure. Early methods (OMP) update one entry at a

time, while more recent methods update many entries at once (CoSaMP). In statistics, this

is a type of forward stepwise regression; in signal processing these are often called “pursuits”

(such as matching pursuit [MZ93]); and in approximation theory and optimization they are

called “greedy methods”. These do not exist independently of other optimization techniques,

and are closely related to variants of coordinate descent.

The prototypical greedy pursuit is orthogonal matching pursuit (OMP) [TG07] which im-
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proves on matching pursuit. OMP has recovery guarantees almost as good as `1 recov-

ery [TG07, DW10] for the case of Gaussian matrices, and was one of the first methods to

be analyzed [Tro04] after the seminal work [DH01] in the early 2000s. OMP is important and

simple enough that we describe it briefly. If b are the observations and Φ is the measurement

matrix, start with x = 0 and the residual r(x) = Φx − b. Every step consists of two parts.

First, select the atom φi that is most correlated with the residual r(x); second, update x by

solving the least-squares problem using only the atoms that have been previously selected.

Improvements on OMP are stagewise OMP (StOMP) [DTDS06] and regularized OMP (ROMP)

[NV10,NV09]. So far, the best results are from the CoSaMP method, which adds up to k en-

tries at every step, solves the least-squares problem, and then prunes the support set; it is

not unlike the iterative support detection algorithm in [WY10]. In [NT09], it is proved that

the RIP implies CoSaMP has the same recovery guarantees as `1 minimization. Furthermore,

the running time is fast: it has linear convergence. One downside is that you must specify

the desired sparsity level (though this is not to say that the algorithm fails on compressible

signals; in that case, it returns an estimate close to the best k-term approximation, just as `1

recovery does).

• Bayesian framework. This puts a prior on the signal x and attempts to solve for the maximum

a posteriori (MAP) estimate [WR04]. The functional may not be known in closed form,

which makes rigorous results difficult. The recent work on correcting for jitter (discussed in

Chapter 2) [WG11] is of this type.

• Nonconvex optimization. This set of problems seeks to minimize a `p norm for 0 < p < 1,

which is non-smooth and non-convex. Other than special non-convex problems such as rank-

minimization for low-rank problems [BM05], there are no known results on efficiently finding

global minima (of course, non-convex techniques such as simulated annealing can be used, but

these are much slower). Work by Chartrand has shown that the global solution of `p problems

does enjoy recovery guarantees [Cha07].

We also note the very interesting work [WXT10]. It shows that for strong recovery (which

is what we have discussed in earlier theorems), `p recovery outperforms `1 recovery. Yet for

a type of fixed-design case, called “weak recovery,” which considers recovery for a fixed sign

pattern of the signal, it is shown that `1 minimization is actually superior to `p minimization.

They also demonstrate that `p solutions can be denser than `1 solutions.

• Brute force. The field of subset selection [Mil02] has long been concerned with minimizing the

`0 quasi-norm, since common information criteria such as AIC and BIC are based in terms of `0.

For small problems, brute force combinatorial search is possible, and dynamic programming
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techniques may be of some use. In general, this approach is completely infeasible for large

signal recovery problems.

• Belief-propagation and message-passing. These methods are well-known in coding theory and

graphical modeling, and can be remarkably quick, but often depend upon special properties

of the measurement matrix. The work of [BSB10] proposes a belief propagation algorithm

for a class of low-density parity check (LDPC) matrices specialized for compressed sensing;

similarly, the work in [SBB06] presents a fast algorithm, but relies on specialized measurement

matrices. In [DMM09], an approximate message-passing algorithm is explored, but it lacks

the theory of `1 minimization.

Other ideas related to coding theory are discussed in [XH07,JXHC09] where types of expander

graphs are used to encode signals. Decoding is similar to belief propagation of LDPC codes,

and the running time of the algorithm is O(n log(n/k)) which is extremely fast. Futhermore,

[JXHC09] has shown that only k log(n/k) measurements are necessary to recover a k-sparse

signal, which is the same order as found for `1 minimization. The main disadvantage is that the

encoding matrix must be chosen to have special properties. It is possible to deterministically

construct such matrices, but, for the case of RMPI, it is not yet apparent how to construct

the physical realization of an arbitrary matrix. This topic is worth pursuing, and is especially

tantalizing because it may allow on-chip real-time recovery without the need for a computer

backend.

• Combinatorial algorithms. Similar to the coding-theory based ideas, these use special decoding

algorithms that are similar to group testing, and rely on highly structured encoding matrices.

So far, they have been shown to recover sparse signals but with more measurements than for `1

minimization. Examples include heavy hitters on steroids (HHS) [GSTV07], which improves

on the related earlier algorithm [GSTV06] by the same authors. A similar algorithm is the

Fourier sampling algorithm [GST08].

Discussion. Of the categories discussed, the two most commonly used are the convex optimization

methods (perhaps with tweaks), and the greedy methods. Most other methods are too specialized,

or not yet thoroughly understood.

One of the benefits of greedy methods is that they can be modified to work with models other

than sparsity; for example, [BCDH10] has modified CoSaMP to enforce tree-based structure. See

the discussion in §2.7.2.3. However, new works show that optimization-based methods may be able

to solve model-based problems, using variants of reweighting techniques (as suggested in this thesis,

and by [DWB08]), and also since the proximity operators may be computable [JMOB10].
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Figure 1.11: Using noiseless basis pursuit (1.1.5) with m = n/2 measurements and a sparse solution with k = m/5
nonzeros. The TFOCS solver used µ = .1 (see equation (4.1.14)) which was selected on the first try and not
“tweaked”. In order to be fair to IPM, this example used a dense measurement matrix A. If A is a partial DCT
or FFT, then TFOCS can solve problems with 220 variables in about a minute; see Figure 1.12.

The conventional wisdom is that `1 minimization methods are the best, but at the expense of

being slower. Like most conventional wisdom, there is truth behind this yet it is not the whole story.

We focus on `1 minimization methods in this thesis, but remain open to other methods in the future.

As research progresses, the disadvantages of each method will be either exposed or fixed, so it is

possible that variants of greedy methods will come to be considered as robust as `1 minimization,

and that `1 minimization will be as fast as greedy methods. In short, the disparate methods may

start looking more and more alike.

Further discussion of IPM. The initial approach we took to solve reconstructions for the RMPI

was via interior-point methods. A version of l1Magic [CR07b] was modified to allow for analysis

(1.1.9); another variant using a null-space formulation was also used, but only covered the noiseless

case. The l1Magic software is specially designed to solve the Newton step via iterative methods. In

the noiseless synthesis formulation (1.1.8), with A = ΦΨ, the update step requires solving

Dx At

A 0

 ·
∆x

∆ν

 =

w1

w2

 (1.5.1)

where Dx is a positive diagonal matrix that changes every iteration. From here, we could solve this

“saddle-point” system (e.g., with MINRES, since the system is symmetric and non-singular, but not

positive definite unless A is), especially if we have a preconditioner. Or, the standard technique is

to reduce further, and get

AD−1
x At · (∆ν) = w̃ = AD−1

x w1 − w2. (1.5.2)
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Figure 1.12: Using noiseless basis pursuit (1.1.5) as in Figure 1.11, but now with a DCT measurement matrix.
Using m = .7n measurements and a sparse solution with k = n/16 nonzeros. Solved on a modern laptop with a
quadcore Intel i7 processor.

In this case, since Dx is a positive-definite diagonal matrix, the matrix AD−1
x At is positive definite.

Recall A = ΦΨ. The matrix Φ is of reasonable size, but Ψ is an overcomplete Gabor dictionary which

is quite large. The key benefit of the Gabor dictionary is that it exploits the FFT to make matrix-

vectors multiplies in O(n log n) time. Thus l1Magic solves (1.5.2) using the Conjugate Gradient

(CG) method; any direct factorization method is impractical. Unfortunately, a well known issue

with IPM is that Dx splits into widely different scales near the solution, and hence ADxA
T has

widely separated eigenvalues. This causes CG to take many iterations.

To overcome this, the author and Emmanuel Candès tried preconditioning the saddle-point

system. One possible preconditioner for the saddle-point system, motivated by [RG07,GS06b], is

P =

D−1
x + γ−1AtA 0

0 γI

 .

The saddle-point system (1.5.1), which is not positive definite, is solved via MINRES, and the

preconditioner P is inverted via CG. Hence the overall algorithm requires three levels of iteration: the

primal-dual iterations, the MINRES iterations, and CG iterations. This was implemented using both

the l1Magic [CR07b] and CVXOPT [DV10] packages. Unfortunately, the three levels of iterations

proved to be too slow. After trying other first-order methods, the authors developed the algorithms

presented in Chapters 3 and 4. These significantly improve over IPM in terms of running time, and

do not suffer in accuracy. See Figure 1.11.

One of the issues with IPM is that the most effective methods are predictor-corrector methods

that take two steps every iteration. The equation (1.5.2) is solved via a Cholesky factorization, and

this factorization can be re-used for the second step, so the “correction” step is very cheap. When
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the Newton step is solved with an iterative method like CG, this is no longer as attractive since the

two steps are both full cost. The ill-conditioning issue is another problem. But a basic fundamental

problem is that for extremely large numbers of variables, any type of method that solves a linear

system of equations at every step is going to be too slow.

There is work on improving the use of warm-starts for IPM [GG03, BS07, YW02], which may

lead to better performance. Special versions of conjugate gradient that exploit information from

previous solves could also make IPM more attractive. Finally, we mention randomized linear algebra

(see [HMT11] and the references therein) which may lead to efficient methods to approximately solve

the Newton step.

1.6 Reading guide

Different readers may find certain parts of the thesis more interesting than others. The PDF version

of the thesis is equipped with internal links to facilitate quick jumps from section to section.

RMPI design. The reader interested in the RMPI will find Chapter 2 contains the details, and

Chapters 3 and 4 may be skipped. The conclusion in Chapter 5 is also relevant to the RMPI.

Signal processing and optimization. Chapters 3 and 4 discuss the NESTA and TFOCS op-

timization algorithm. From the RMPI chapter, the section on calibration §2.3.4, phase-blind cali-

bration §2.3.5, and recovery §2.7 discuss signal processing techniques. The concluding chapter also

contains some discussion.

Novelty. All of Chapter 2 is new and has not appeared in print before. Most of Chapters 3 and

4 are verbatim from published or submitted work, and so may be skipped if the reader is already

familiar with the work. However, these chapters contain a few new sections which we mention here.

For NESTA, the new section §3.7 discusses an extension to deal with the case when ΦΦ∗ 6= I.

In TFOCS, the new section §4.6 recasts the original derivation of TFOCS in a dual function

framework, as opposed to the dual conic framework. A section on convergence §4.6.4 has been added,

and the appendix §4.12 on test problems has been rewritten slightly and comments on new literature

that appeared in March 2011. The section §4.8 discusses applying TFOCS to conic programs in

standard form (e.g., LP, SOCP, SDP) and specialized algorithms for this case; it also discusses some

results regarding the special problem of matrix completion and using splitting algorithms such as

Douglas-Rachford, as well as a novel automatic restart scheme. Future directions are discussed in

the concluding chapter.
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Chapter 2

RMPI

This chapter introduces the Random Modulation Pre-Integrator (RMPI) and details the status of

an integrated circuit implementing the architecture. To our knowledge, this is the first full-speed

hardware RMPI in existence. The goal of this chapter is to describe some key parameters of the

RMPI that are essential to its performance. This is not a hardware chapter and does not go into detail

of the designs; the reader does not need any knowledge of Op-amps, though standard mathematical

and signal processing background is helpful. The idea behind the parameter selection is that of trade

offs. We presuppose that a competent engineer is able to make several designs, and the task is to

decide which design is better.

This introduction describes the setting of the RMPI and its basic principles, and tries to make

clear the intuition behind the receiver, as well as outline when the RMPI is an appropriate archi-

tecture and when it is not. Further sections of the chapter describe the system in more detail, and

report a some of the many results from 3 years of study and simulation.

The hardware implementation of the RMPI has been returned from the manufacturer, and is

in the process of being calibrated, which has required significant work (to be discussed in §2.3.4),

but results are encouraging. An earlier chip, which we refer to as “version 1,” was manufactured

and some reconstructed pulses obtained, but otherwise all plots in this chapter are from simulated

data. The simulations took place at various levels of realism, which will are described in §2.3. Most

computational work was performed in Matlab and/or Simulink.

The RMPI is due to the work of a large number of people, but we especially want to mention

the efforts of Juhwan Yoo. He has done most of the hardware design, collaborated on the system

design, and contributed figures and occasional text to this chapter. Funding for work was graciously

provided by DARPA grant FA8650-08-C-7853.
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2.1 Introduction

2.1.1 Signal class
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Figure 2.1: The problem of spectral leakage. Shown are FFT values. The FFT is a bad way to do spectral
estimation [Tho82].

The data acquisition of the RMPI works well for several signal models, but each signal model

has certain issues, so we restrict ourselves to a specific model. The goal of this RMPI is recovery

of radar pulses, so our signal model is tailored to this. Let x(t) be a continuous time signal, and

x[n] = x(n∆T ) be a sampled version, where ∆T , 1/fs is the Nyquist time; samples are not actually

acquired at this resolution, but this Nyquist rate version of x[n] is used in the digital post-processing.

See Table 2.1 for a reference of the notation that is used.

The first assumption is that if the signal x(t) can be characterized if we limit time to an interval

[0, T ]. This is true if x(t) is periodic with period T , or if x(t) is zero outside a narrow time window, as

it is for a short radar pulse. An implicit requirement is that T is not too great. The postprocessing

stage can handle up to about N = 8192 = 213 length vectors in the case of radar signals, and up to

perhaps 262144 = 218 for pure tones; the radar pulses are limited because of the size of the Gabor

dictionary used in analysis, while pure tones use a simpler over-sampled FFT dictionary. Typical

simulations in this chapter work with N = 1024 to N = 8192, so the corresponding time periods are

204.8 ns to 1.638 µs.

The next assumption is actually at odds with the the first: it is assumed that x(t) is bandlimited

to the range [−fs/2, fs/2]. This appears to rule out radar pulses, since it is impossible for signal

to have compact support in both time and frequency. However, we simply consider the periodic

extension of a radar pulse. By forcing the signal to be periodic, it means the spectrum is discrete
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and given by the discrete Fourier transform (DFT).
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Figure 2.2: Radar pulses. Top row: on the left and middle, two sample pulse windows. On the right, a radar pulse
in the time domain. Bottom row: sample pulse window on left, and on right, same pulse, modulated at 500 MHz,
in the time-frequency plane

The pragmatic definition of the signal class is any signal that is well-approximated by N of its

Nyquist-rate samples. One type of signal which does not belong to this class is the pure tone that

has frequencies which are not on the periodic grid that has been imposed by the finite number of

samples. Such a tone is called “off-grid,” and Figure 2.1 shows the DFT of such tones. The frequency

grid runs from 0 to fs/2 in spacings of ∆f = 1/T , which makes it clear that as T →∞, the spacing

approaches 0 and the signal class approaches all band-limited signals. Viewed another way, the

sampling from [0, T ] is like windowing a signal with the boxcar filter, so the spectrum is convolved

with the Fourier transform of the boxcar filter, which is the sinc function. The sinc function has

slow decay, so the off-grid tones cannot be well-approximated by just N Nyquist-rate samples. In

§2.7.2.6 we discuss the problem further and propose solutions using windows. For now, these signals

are not part of the signal model and do not concern us.

Signals that do fit this category are radar pulses, as shown in Figure 2.2. A radar pulse consists of

an envelope, modulated by a carrier frequency. This modulation is just time-domain multiplication.

The carrier is in the RF band between [0, fs/2], and is necessary for transmission. Other than the

carrier frequency, the information content of a pulse is its time-of-arrival and duration, since these

are used in radar systems to estimate range, angle, and speed. In order for time-of-arrival estimation
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to be consistent, it is desirable for a pulse to have a well-defined leading edge that rises sharply, and

hence pulses are approximately just trapezoids or even rectangles. However, a trapezoid is similar

to the boxcar function, and so it has high spectral content due to the sharp corners. Radar emitters

have only so much frequency bandwidth, so the radar pulse envelope is bandpass filtered either

intentionally or unintentionally. This is beneficial for the RMPI system, since it makes the pulse

sparser in frequency. This fact has been taken into account in pulse simulations. Another deviation

from the trapezoidal model is that receivers often see multiple reflections of a signal, which means

that the trailing edge of the pulse is generally degraded. This is not accounted for in our simulations,

but it is not expected to significantly affect performance.

Looking at Figure 2.2, it is apparent that the radar signals are slightly sparse in time, and

slightly sparse in frequency, but very sparse in the time-frequency plane. Using a time-frequency

dictionary is essential to recovery, and is discussed in §2.7.2.2. The pulses considered in the model

have duration varying between 100 and 1000 ns, and typically 200 ns.

Having stated the signal model, what is the goal of the system? The goal is an ambitious one: full

reconstruction of the signal up to the accuracy permitted by the finite model. This means not just

frequency domain estimation, but also time-domain estimation. Of all the works discussed in the

related literature §2.2.3, none of them attempt time-domain reconstruction. We don’t preclude the

possibility of recovering multiple pulses simultaneously. Simulation results indicate that recovering

two pulses of the same size, even if they overlap in time, is not much different than recovering a

single pulse. The biggest challenge lies with recovering two pulses of extremely disparate size; this

is discussed in §2.8.

In addition to this primary goal, a secondary goal is more practical: we wish to estimate the

pulse parameters, termed “pulse descriptor words” (PDW), which are significant for radar processing.

These include carrier frequency, phase, time-of-arrival, duration, and pulse repetition rate. For this

kind of estimation, we propose a “compressive matched filter” (see [ERW11] for very recent results),

discussed further in §2.7.1.

When is the RMPI a useful system?

• For high bandwidth designs, requiring 1 GHz bandwidth or more.

• When the input is sparse in the time-frequency plane; for example, it might consist of a few

narrowband communication channels and a few radar pulses.

• For applications that need high precision, due to high dynamic range. For example, one might

be interested in recovering very faint radar pulses that occur concurrently with some very large

signals from a cell phone tower or airport.

• For applications that have power restrictions, so that massive filter banks are not an option.

An example would be an airborne systems with a tight power budgets.

43



• For systems that transmit signal information to a central processing location. With the RMPI,

the compressed measurements, or even the PDW, are transmitted, so less channel capacity is

needed. The Herschel satellite telescope is an example: it has limited capability for processing,

and a low-rate down-link channel to the Earth, so it sends compressed measurements and

processing is done on the ground.

• For identifying unconventional signals, such as ultra-wideband spread spectrum. A channelized

receiver is limited to analyzing 50 MHz (or similar) of spectrum at a time, while the RMPI

analyzes the entire bandwidth simultaneously, and can make use of prior knowledge about the

signal.

• For noisy environments that contain signals with relatively low-information content (such as so-

called “finite rate of innovation” signals). The RMPI recovery process applies digital denoising,

so for some signals, the RMPI reconstruction is much more accurate than even high ENOB

Nyquist-rate measurements, since a conventional receiver does not denoise.

• Similarly, spectral estimation [Tho82] with the RMPI can be more accurate then conventional

spectral estimation, since compressed spectral estimation [DB10] is done in digital and takes

into account all the measurements at once.

• Other estimation, such as angle-of-incidence, can be done in the compressed framework, and

like spectral estimation, they may benefit from using all measurements at once.

The RMPI is not appropriate for all applications. One of the current drawbacks is that it

requires a computer for the recovery and does not yet process data in real-time (meaning that it

takes the computer longer than time T to process the data generated from T worth of samples).

These limitations are not fundamental but rather just a limit due to the current state of technology.

The compressive matched filter is a promising technique for accelerating computation, and it is

conceivable that this could be performed in real-time in hardware or via an FPGA.

Representation of the system. Characterizing the system will be the subject of §2.3.4, but one

aspect of this is conceptually very important, so we mention it now. Because of the sampling, our

system is not time-invariant, so we cannot analyze it in a pure linear-time-invariant (LTI) framework.

However, it is linear (or at least approximately so; this is discussed in §2.7.2.5). This is fundamental

for many reasons. First, it gives us a way to calibrate our system and determine how it is really

functioning. It also allows us to write down the measurements in the linear inverse framework

described in the introduction:

b = Φx, or, in the noisy case, b = Φ(x+ σ1z1) + σ2z2.
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Notation Typical values Fixed or variable Description

fs 5 GHz fixed Nyquist rate

∆T , 1/fs 200 ps fixed Nyquist period
N 1024, 4096 variable length of digital signal xn
T , N∆T 204 ns, 820 ns variable period of digital signal
c(t) NA NA chipping sequence with PRBS {cn}
Nchip 128 variable periodicity of chipping sequence {cn}
Tchip , Nchip∆T 25.6 ns variable period of c(t), assuming fchip = fs
1/Tchip 39 MHz variable frequency of repetition of c(t)
fchip fs mainly fixed rate of modulation with cn
Nint 100 mainly fixed length of integration in units of ∆T

fADC , fs/Nint 50 MHz mainly fixed sampling rate of ADCs

TADC , 1/fADC 20 ns mainly fixed period of ADC samples

Tint , TADC 20 ns mainly fixed synonym for TADC

rch 8 mainly fixed number of channels

Table 2.1: Notation used with the RMPI. We will use i =
√
−1 (rather than j). “Fixed or variable” refers to

whether we often change the value of the parameter. For example, determining an appropriate value of rch is the
topic of §2.4.3, but is usually fixed at rch = 8 in the rest of the sections.

Variant Time Frequency

Fourier Transform, x̂ = Fx x(t) =
∫∞
−∞ x̂(f)ei2πftdf x̂(f) =

∫∞
−∞ x(t)e−i2πftdt

Fourier Series xT (t) =
∑∞
k=−∞ x̂[k]ei2πkt/T x̂[k] = 1

T

∫ T
0
xT (t)e−i2πkt/T dt

DFT, x̂ = Fx xn = 1
N

∑N−1
k=0 x̂ke

i2πkn/N x̂k =
∑N−1
n=0 xne

−i2πkn/N

Unitary DFT, x̂ = Fux xn = 1√
N

∑N−1
k=0 x̂ke

i2πkn/N x̂k = 1√
N

∑N−1
n=0 xne

−i2πkn/N

Table 2.2: Variants of the Fourier transform. Listed to show normalization and notation conventions. The notation
xT means x is periodic with period T . Frequency variables written as f are in Hz, and written as ω are angular
frequencies in radian/s. The notation x̂ is used for both Fx, and occasionally to denote an estimate of x; context
should distinguish the two uses. DFT stands for discrete Fourier transform, and is synonymous with the fast
Fourier transform (FFT).
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The system itself is represented by the Φ matrix, and we make much use of this fact. The linearity

is also important since all our reconstruction algorithms assume linear measurements.

We also make use of many symbols, which have been collected in Table 2.1, and also speak of

various types of Fourier transforms. Table 2.2 shows the normalization conventions used.

2.2 The design

2.2.1 Basic design

The design of the RMPI can be motivated by considering our goals, and then reasoning about what

is necessary. At first, we need only consider a single channel, since extra channels simply give more

information of the same type.

Overall, we aim to digitally sample a wideband signal at a low-rate. The incoming bandwidth

to the system is fs/2 = 2.5 GHz, and the ADC samples at 50 MHz, which is 100× slower than the

Nyquist rate fs. We allow a few channels, but 100 channels is impractical, since this would have

the same giant power consumption as traditional channelized receivers, so a filter bank approach is

not valid, and thus it is fair to assume that the input to a single channel has the full bandwidth of

2.5 GHz. Sampling this at 50 MHz causes aliasing, so that an input of frequency fin and an input

of fin + 25 MHz are indistinguishable.

In order to make these inputs distinguishable, the signals must be modified at some point before

the ADC. A reasonable strategy is to mix the signals with another known signal; this is equivalent

to multiplication in the time domain (note that adding another signal would be no use, since the

ADC sampling is linear). Let this known signal be called the “chipping sequence,” to borrow the

term from spread-spectrum design [PSM82], and denote it by c(t). Given two distinct signals x

and x′, we desire that x(t)c(t) and x′(t)c(t) are distinguishable even after being aliased by 50 MHz

sampling.

Unfortunately, this is not possible just via mixing. Suppose the signals x and x′ are distinct, but

become identical after aliasing, which means x(kTint) = x′(kTint) for any k. Then clearly multiplying

x and x′ by the same signal c will not resolve the situation. In order to distinguish the two signals,

the samples must involve information from in between (k− 1)Tint and kTint. Let the samples of our

function be y = y(x) and y′ = y(x′). Linear samples yk can be represented by convolving with some

kernel h known as the transfer function:

yk =

∫ kTint

(k−1)Tint

c(t)x(t)h(Tint − t)dt.
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Figure 2.3: Principles of the RMPI. Each horizontal section represents a channel, and each channel has a unique
PRBS sequence of ±1’s. After integration, each channel is sampled at 50 MHz.

For now, let h = 1 and consider

yk − y′k =

∫ kTint

(k−1)Tint

(x(t)− x′(t))c(t)dt = 〈(x− x′), c〉

as a linear operator 〈(x−x′), ·〉. Thus yk = y′k if c is in the null space of this operator. If x 6= x′ (by

which we mean they differ on a set of nonzero measure), then this is not the zero operator, so there

is a non-trivial complement of the null space (assume x, x′ ∈ L2[(k − 1)Tint, kTint]). Though we do

not make the notion precise, a “random” function c(t) drawn from L2 is almost surely not entirely

in the null space of this operator, and so yk 6= y′k.

The RMPI is born from this idea of making all signals have a unique signature after the mixing

and integration. It is also motivated by the approximation of a signed Bernoulli matrix, as was

mentioned in the introduction. Before going into further details of the system, we pause to codify

the two guiding principles of the RMPI, which will be essential to bear in mind as we depart from

the idealized RMPI to make a realistic system.

Principle 2.2.1 (Uniqueness). All distinct signals in the signal class should produce distinct mea-

surements.

Restriction to the signal class is required, since for undersampling, it is not possible to produce

distinct measurements for all signals.

The next principle means that noise will effect all measurements about the same.

Principle 2.2.2 (Democracy). All equi-energy inputs should produce measurements of similar en-

ergy.

These ideas can be interpreted as the RMPI analog of the “minimum distance” concept used in

coding theory [McE02].
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Practical version. The first design question for the RMPI is choosing a suitable chipping sequence

c(t). Since c must be known to the reconstruction algorithm, it must be predictable, and furthermore,

it must be implementable. A reasonable choice is choosing c to be a pseudo-random bit sequence

(PRBS), which flips pseudo-randomly between +1 and −1. The flips always occur at a multiple of

the Nyquist grid ∆T , so that they may be controlled by a digital clock running at fs. Technology

for generating a chip sequence is available since this is the same principle behind spread-spectrum

systems [PSM82]. In fact, the RMPI may be thought of as a spread spectrum device, using spreading

in order to increase robustness to jamming and interference from foreign signals. Figure 2.4 shows

a frequency domain representation of what this mixing looks like. The PRBS is discussed in detail

in §2.5. Since our PRBS operates at the rate fs, the RMPI system is a high-rate system, and it

may appear to have just shifted the burden from high-rate sampling to high-rate mixing. This is

true, but high-rate mixing is actually much easier than high-rate sampling, so the trade is worth it.

The clock jitter introduced in the mixing problem is an issue, so our design is careful to keep the

standard deviation of jitter to less than 0.5 ps; see §2.7.2.7.
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Figure 2.4: Frequency domain picture of one channel of the RMPI system. Red represents a signal, blue represents
band-limited noise. The inputs are shown in the upper left, and are then convolved with the spectrum of the
PRBS (shown below in black). Continuing to the right, the plots represent the signal after this mixing, then after
integration (which attenuates high frequencies; the y-axis scale is shifted here), and then after the low-rate sampling
which aliases high frequencies down to low frequencies. The x-axis of every plot is in MHz.

The next stage of the device is integration. This relies on capacitors, which actually charge and

discharge at exponential rates. If this rate is too fast, then the integration becomes similar to a

point sample, and as we argued above, point samples do not distinguish between pulses that have

carrier frequencies separated by multiples of fADC. Another reason point samples are bad is that

our signals include pulses, so they are sparse in time, and any sparse sampling mechanism will be

coherent with these signals. For example, a pulse with duration less than TADC could possibly be
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missed altogether if it was directly sampled (even after the mixing stage). To think about this in

the Fourier domain, an ideal integrator has transfer function

Hint(s) =
1

s

which means it attenuates high frequencies. A capacitor is similar to single pole filter

H(s) =
1

s+ a

for a pole frequency a. At high frequencies, this has little effect, but at low frequencies f � a, it

means the response is nearly flat, like a band-pass filter. This can cause problems: in the extreme

case, if the response is flat in the whole band, it means that h(t) is a dirac, and this is just point

sampling, which performs poorly. The location of this pole is a major factor of determining the

performance of the system, and is described in detail in §2.6.

We briefly mention one more component of a practical RMPI, the low-noise amplifier (LNA).

This amplifies the input signal from an antenna to make it suitable for processing. Though not part

of the actual compressed sensing of the chip, it is still a crucial component in a useful hardware

device, and it is what makes the RMPI a true receiver and not just an ADC.

2.2.2 Theoretical performance

The results from compressed sensing theory give an idea of what performance to expect from the

RMPI. This analysis assumes the signal is perfectly sparse in the Fourier dictionary, which is not

true, but the assumption simplifies the error estimates and gives meaningful qualitative relationships.

Let Φ be the measurement matrix of the system, and suppose measurements are of the forming

b = Φx+ σRMPIz

where z ∼ N (0, 1). Assume x ∈ Rn has exactly k/2 on-grid pure tones, each of rms amplitude

Vrms = A/
√

2, and we observe for time T . The frequencies and phases are unknown, so there are K

degrees-of-freedom. In this section, x̂ refers to an estimate, not the Fourier transform.

Then if k is small enough, the `1 recovery gives an estimator x̂RMPI such that

MSE(x̂RMPI) ≤ c
k

nrch

σ2
RMPI (2.2.1)

for some constant c ' 1, where we define MSE(x̂) = E‖x̂− x‖22/n. Later sections of the chapter will

define MSE in a different normalized sense, but we stick with the above definition in this subsection.

This bound (2.2.1) can be found in [CT07a] for the case of using the Dantzig selector for recovery,
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or using [CP07a] (which gives a bound on ‖Φ(x− x̂RMPI)‖2) in conjunction with assuming the RIP on

Φ. We show below a heuristic argument that derives this bound, based on the canonical compressed

sensing results.

Let Ai ∈ Rmi×n be a Bernoulli ±1 matrix scaled to have unit-normed columns, and let bi =

Aix+ σzi with zi ∼ N (0, 1) and x is k-sparse. Then

Theorem 2.2.3 ( [Can08] plus [BDDW08]). If mi ≥ c̄k log(n/k), then with high probability

MSE(x̂i) ≡ ‖x− x̂i‖22/n ≤ c‖zi‖22/n = c
mi

n
σ2.

Suppose we really have a matrix Φ = [A1;A2; · · · ;AL] ∈ Rm×n with dimensions m = Lm1 where

m1 = m2 = . . . = mL = c̄k log(n/k), and b = [b1; · · · ; bL] where b = Φx + σz. If we form an

estimator x̂ by averaging the x̂i, then we improve the MSE by 1/L ≤ 1 since we are averaging the

errors zi:

MSE(x̂) ≤ cm1

nL
σ2.

Now, we wish to allow arbitrary scalings of Φ. For RMPI, the average of the squared column

norms in ΦRMPI is rch (this is just ‖ΦRMPI‖2F /n = trace(ΦTRMPIΦRMPI)/n ).

The average of the squared columns norms of the Φ constructed above is L. Thus by change-of-

variables, using a scaling of
√
L/rch for the noise z, we recover (2.2.1):

MSE(x̂RMPI) ≤ c
m1

nrch

σ2 = c̃
k log(n/k)

nrch

σ2 ' c̃ k

nrch

σ2. (2.2.2)

Note that Φ gains the signal in power by rch, which improves the MSE.

According to numerical simulations (see Figure 2.5), the constant c̃ for the 8 channel RMPI is

about .39.

MSE(x̂) ' .389
k

n
σ2

RMPI =
3.11

rchn
kσ2

RMPI (2.2.3)

2.2.2.1 Input noise and channelized receivers

In a well-designed system, error should be dominated by input noise:

b = Φ(x+ σinputz), z ∼ N (0, 1).

This is the same as modeling y = Φx+ z̃ for a modified noise vector z̃ where z̃ ∼ N (0, σ2
inputΦΦT ).

Then

σ2
RMPI ≡ E‖z̃‖22/m = σ2

input

n

m
rch.
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Figure 2.5: Simulations to find an estimate of the constant in (2.2.1). Shown are averages over 10 trials of non-
catastrophic recoveries, using k pure tones (on-grid, but random phase), n = 1000, and m = 100 measurements.
Matrix Φ modeled with ±1 matrix. Used re-weighted `1 using [GB10].

Let ρ ≡ m
n = 1

12.5 be the under-sampling ratio. Thus the error of the RMPI in terms of input noise

is

MSE(x̂RMPI) = 3.11
k

ρn
σ2

input. (2.2.4)

Is this error good? We compare it to three other systems: a Nyquist-rate system with infinite pre-

cision ADCs and no post-processing; the same Nyquist-rate system but in a so-called “channelized”

architecture; and a smart “oracle” system that does post-processing.

Nyquist-rate ADC. Neglecting quantization error, if we could make a high-bit ADC at this rate

fs (which is not possible), then with no post-processing, the error is

MSE(x̂ADC) = σ2
input =

ρn

3.11k
MSE(x̂RMPI)

which is terrible compared to the RMPI, since this grows with n

Channelized receiver. Channelized receivers are the current state-of-the-art for high bandwidth

systems; see Figure 2.6 for a frequency domain depiction. The input signal x is split into many

channels, and each channel processes a small portion of the spectrum after downconverting to base-

band via the heterodyne principle discussed in the introduction. For concreteness, let a channelized

receiver split the 2.5 GHz of bandwidth into 50 chunks of 50 MHz each. There are two advantages to

this: first, each channel processes only 50 MHz of bandwidth, so it can use a 100 MHz ADC which

is lower power and more accurate than a higher rate ADC; second, each channel sees only 50 MHz
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Figure 2.6: Left: two pulses with noise in 2.5 GHz of bandwidth. Right: channelizing the input into channels
of width 50 MHz. Only channels with power above a threshold are recovered. The out-of-band noise around the
pulses is removed, which helps the SNR.

of noise. Assuming the noise is white, the noise power is directly proportional to the bandwidth B:

σ2
input = Bσ2

0 .

If there is only one input tone, then only the channel that contains this tone is used to collect data,

so the noise power is proportional to the 50 MHz bandwidth. In contrast, the RMPI is inherently

wideband and sees the entire B = fs/2 band, so it has 50 times more noise-power, and hence 17 dB

(=10 log10 50) less SNR. The MSE for a 50 channel ADC, where σinput is defined over the entire

bandwidth fs/2, is

MSE(x̂ADC) = σ2
input/50 =

ρn

50 · 3.11k
MSE(x̂RMPI)

which still grows with n compared to the RMPI MSE.

In practice, the bands should overlap slightly, which requires extra channels. Since each channel

requires an ADC, and there are 50 or more channels, this design is extremely power hungry, and

uses 50 to 200 watts, depending on the specifics of the ADCs. For comparison, the RMPI uses on

the order of 1 to 4 watts.

Oracle. Consider the (un-channelized) infinite precision Nyquist rate samples again. If we knew

in advance which tones were non-zero (such information is called oracle information), then with

post-processing denoising techniques, the error is

MSE(x̂ideal) =
k

n
σ2

input.

This does not change if the input is from a channelized receiver, since the denoising process

reduces out-of-band noise already.

Comparison. Comparing the RMPI to the non-post-processing techniques is tricky. The RMPI

error is a function of the information content in the signal. For a fixed information content, the
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RMPI error improves as more samples are collected. With the Nyquist-rate receiver, there is no

estimation occurring, and more samples do not improve the estimate.

The RMPI penalty compared to an oracle pays only a penalty of 3.11ρ−1 ' 15.9 dB. This is

quite reasonable, since the oracle result requires knowing the frequency of the signals and having an

ADC that samples at fs with very high ENOB. This comparison is only valid when k is sufficiently

small.

2.2.3 Related literature

Since 2006, there have been several analog-to-information (AIC or A2I) systems discussed in the

literature. A few such systems are reviewed below. Many of these papers contain major ideas but

offer few details. All prior work has assumed exact spectral sparsity, and used the Fourier basis for

reconstructions; this assumption is relaxed in this thesis. Systems that have been implemented in

hardware will be specifically mentioned. Our RMPI design has been influenced by conversations

with many people, but among published papers, [TLD+10] was most influential.

2.2.3.1 Other RMPI systems

The RMPI was proposed in 2005 [SOS+05], and has been discussed in the literature by a team at Rice

University [KLW+06] in 2006, and further discussed by the same group in [LKD+07,KRL+06]. The

first main theoretical work was the “Beyond Nyquist” paper [TLD+10] discussed below. Another

DARPA group led by Hoyos has also proposed multi-channel RMPI designs [YHS08,CYH+11].

The initial work [KLW+06] proposed the basic RMPI design, including the concepts of a PRBS

(and declared the rate must be at fs or higher), mixing, integration, and sampling. The signal model

assumes that signals are on-grid sinusoids or sparse in some ortho-basis. Notably, they propose a

high-level calibration scheme. The design was further expanded in [LKD+07], which assumes the

same on-grid signal model, although it also discusses the Gabor dictionary. The authors implement

a transistor level SPICE simulation of the basic system, though without any front-end amplifier,

and only at schematic level since there was no layout. The implementation includes non-idealities

at a few stages, although their estimates of the limiting non-idealities differ than what we consider

the most important; according to their design, the non-linearity of the mixer is the most significant

non-ideality, since they do not model the LNA. The integrator is allowed to be a single pole, though

the pole is set to 100 Hz which may be quite optimistic. It is not clear if thermal noise is included.

Using the end-to-end simulation, a superposition of on-grid tones is reconstructed and the spectrum

of the reconstruction looks reasonably accurate.

The work [KRL+06] was a precursor to [LKD+07] and had simulation results from SPICE, and

built simpler non-SPICE behavioral models to mimic the effects of non-idealities. They tested the

effect of a nonzero pole in the integrator, and found that performance degraded as the pole moved

53



farther from DC, although this may have been using a non-calibrated model, in which case this is

due to model mismatch and not any intrinsic effect of the pole. Their dominant non-ideality was

the non-linearity in the mixer, which was more significant than clock jitter in the mixer. Our RMPI

has been designed carefully to keep the mixer very linear, and we find that the LNA non-linearity is

just as significant. The work of [KLW+06,KRL+06,LKD+07] is due to a Rice University team. Rice

University has a contract with the same DARPA BAA as the Caltech team, and they are actively

working to implement a type of compressed sensing system in hardware, though their device has

very different bandwidth and recovery goals than the RMPI [RLN+08].

The first published work on a multi-channel design appears in a report by a team at Texas

A & M University [YHS08]; this application is tailored for spectrum sensing in cognitive radio.

These authors also have a contract with the DARPA BAA, so it is not surprising that their design,

the Rice University design, and the Caltech design are all related. Their methodology is called the

“Parallel Segmented Compressed Sensing” (PSCS) structure, and at a high level, it is identical to

the RMPI. They cite worries over the “10th order” integrating filter in [LKD+07] (though this may

be due to a misinterpretation), and suggest that the single-channel design’s samples are redundant,

which can be fixed with the multi-channel design. Regarding the number of channels, they suggest

that an upper limit is necessary, due to practical implementation issues. Notably, they introduce

a stagger to the channels, suspecting that samples would have higher fidelity in the interior of a

sampling period and thus the edges of the channels should not align. Using orthogonal matching

pursuit (OMP), they demonstrate basic feasibility with Matlab simulations using on-grid tones and

a signed Bernoulli matrix.

The same team recently published [CYH+11], detailing a 90 nm CMOS chip they plan to fabri-

cate. The layout was fully simulated in Cadence Spectre. The chip consumes 120 mW per channel,

which includes specs for ADCs, although they assume that a LNA is off-chip and that clock distri-

bution, which typically accounts for 30% or so of power, is also off-chip. Their signal model assumes

on-grid tones, of which 4% are occupied. They predict a 44 dB SNR. The effective bandwidth is

1.5 GHz, using 8 channels, each sampling at 110 MHz. This is very similar to the Caltech design,

though less ambitious in terms of the undersampling ratio (they undersample by ×.587, our design

undersamples by ×.08). Similar to what we will find in this chapter, they conclude that mixing jitter

is a limiting non-ideality, and assume their jitter will have 0.5 ps rms (same as our design). Non-DC

poles in the integrator are not discussed, but they mention using a dual-integrator design which

samples on one branch while resetting the other branch, then swapping, so that railing/clipping of

the integrator is not an issue. They briefly discuss calibration. Like in the earlier paper, signal

recovery is done straightforwardly via OMP and a Fourier dictionary, since off-grid tones are not

considered. A thorough analysis of noise at different blocks is presented. Due to the similarities

with the Caltech RMPI, it will be interesting to see the results once their chip is fabricated, since
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both teams face similar problems.

We note recent work by [TV11] that considers parallel branches of mixers and integrators, which

is similar to already proposed designs except for an extra step at the sampling which introduces

extra samples; the extra samples are correlated to earlier samples, but they claim it gives processing

gains. Another new A2I device has been mentioned in the dissertation of Michael Trakimas at Tufts,

but we are unaware of any papers on the subject and so do not know the details. The recent work

of [MPAL11] also proposes a RMPI design, and they have constructed a prototype in 500 nm CMOS

with 200 MHz of bandwidth, and appear to be planning construction of a 130 nm device. They

demonstrate on-grid recovery with Matlab simulated data.

Beyond Nyquist. The paper [TLD+10] called “Beyond Nyquist” is probably the most influential

A2I paper, so we give it an extended discussion. Though authors of the paper are associated with

both the Rice and Caltech hardware projects, the paper itself is mainly theoretical. Their setup

is identical to the model considered in this chapter, except they only consider a single channel,

and with different assumptions on non-idealities and practical considerations. Using a particular

signal model, they prove the first rigorous theorems, which state, in effect, that the RMPI mixing

operations are not much worse than using a standard compressed sensing matrix like a random

signed Bernoulli matrix. This signal model is not overly realistic, but it is important because the

result suggests that the operations of the system adhere to the compressed sensing principle, and

follow a phase-transition similar to the Donoho-Tanner phase transition for Gaussian matrices.

Specifically, assume x is a periodic signal with K on-grid tones. For example, amplitude-

modulation of on-grid signals falls into this class, while frequency-modulation does not. Their

model uses a single channel which undersamples the Nyquist rate by the amount M/N . Empirically,

they suggest that recovery happens when

M = 1.7K log(N/K + 1).

This is complemented by two theoretical results, which we state here. Fix a time T and let N =

T/∆T . Write X for the unitary DFT of the discrete signal x.

Theorem 2.2.4 (Noiseless recovery of a random on-grid random signals, [TLD+10]). Suppose x

has K on-grid frequencies chosen uniformly at random, so X has up to 2K non-zeros, including the

negative frequencies. Let the non-zero entries of X have arbitrary amplitudes, and random complex

phases. Pick a PRBS sequence at random. Then a single-channel ideal RMPI with M measurements

(and assume M divides N)

M ≥ C
(
K log(N) + log3(N)

)
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will exactly recover the signal from the noiseless measurements

b = Φx, Φ ∈ RM×N

by solving basis pursuit (1.1.5), except with probability O(N−1). The constant C is independent of

N and K.

This theorem might be interpreted as saying that most PRBS sequences will work to reconstruct

most inputs, as long as M is large enough. However, since the PRBS sequence is typically fixed and

not changed, we might wonder if there is a big risk of choosing a “bad” PRBS. It turns out as long as

the PRBS is initially selected at random, then most likely, recovery will still happen. Furthermore,

this is robust to additive noise, and adapts to compressible signals. To be specific:

Theorem 2.2.5 (Noisy recovery of arbitrary signals, [TLD+10]). Fix any PRBS sequence. Let

M ≥ CK log6(N)

and assume M divides N . Take measurements

b = Φx+ η

and estimate x̂ be the solution to the basis pursuit denoising problem (1.1.6) with parameter ε = ‖η‖2.

Then except with probability O(N−1),

‖x̂− x‖2 ≤ C max

{
ε,

1√
K
‖X −XK‖1

}

where XK is any K-sparse vector in CN , i.e., the best approximation of X.

Another improvement of this theorem is that it doesn’t require x to be exactly K sparse in

frequency; good reconstruction occurs as long as its DFT is compressible. However, a major issue

still happens for off-grid tones. These tones are not periodic, so instead of the DFT, it is appropriate

to analyze their continuous Fourier transform. Because only a finite time sample T is observed, this

has the effect of a boxcar filter in the time domain, which means the Fourier transform of the time-

limited function will show a sinc decay away from the active tone. Since the sinc function decays

like 1/f in frequency, it is not well-approximated by a sparse DFT.

This is a common problem in signal processing, and the usual solution is windowing, as will be

discussed in detail in §2.7.2.6. The “Beyond Nyquist” paper proposes implementing a window in

hardware via a time-varying amplifier; furthermore, because two shifted windows are needed, the

number of channels must double. Whether such a scheme is practical remains to be seen.
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Though calibration is not discussed in detail, the paper suggests that non-ideal integrators should

be acceptable as long as they can be characterized well, which agrees with the findings presented in

this chapter. Some Matlab simulations are presented using IRLS.

2.2.3.2 Related systems

NUS. The non-uniform sampler (NUS) was described in the introduction. It is ideal for sensing

signals composed of only a few frequencies or frequency bands, such as in typical narrowband mod-

ulation schemes. In [ME10], a multi-co-set sampling strategy is discussed, which is effectively the

same as NUS except with periodicity of the samples made more explicit, and uses a bank of ADCs

(each sampling at the same rate, but offset from each other in time). It is suggested that a drawback

of the system is that it needs specialized implementation, since even though the ADCs only need to

sample at a low-rate, they still sample a high-bandwidth signal. Since ADCs are designed to sample

signals that have already been low-pass filtered to the ADC sampling rate, this would introduce

errors due to parasitic response in the ADC. The Northrop-Grumman NUS overcomes this by a

specialized implementation which includes their own sample-and-hold block.

Random convolution. The random convolution has been proposed in 2006 by [TWD+06] and

analyzed in detail in [Rom09]. In spirit, it is quite similar to the RMPI: the idea is that a signal is

convoluted with a random complex point-spread function that changes the phase of the spectrum

while keeping magnitudes the same. Following this, two schemes are analyzed: either sampling the

output directly, or sampling a Rademacher sum (similar to the RMPI). The latter technique is shown

to be a universally good system, meaning that the input can be sparse in any fixed ortho-basis.

The random convolution and the random sums make the system more complicated than the

RMPI, and it has not yet been implemented. Applications are suggested in radar sensing (as

opposed to passive radar observation like the RMPI), and Fourier optics. In the latter setting, it is

assumed the receiver can detect the phase of the light, which may make it less enticing in practice.

Multiband sampling theory. The “Xampling” methodology [ME10, MEE09, Eld09, MEDS11],

which follows in the steps of the authors’ blind multiband sampling theorem [ME09a], is similar

to the RMPI in many respects. Unlike most other proposals, a prototype has been developed in

the lab [MEDS11]. The signal model is that x has only N bands of frequency, and each band

has size at most B, so the overall bandwidth is NB, and it is assumed NB � fs. The approach

is implemented in a “modulated wide-band converter” (MWC) which splits a signal into channels,

mixes each channel with a unique periodic sequence, then low-pass filters the output before sampling

at a low rate. The periodicity of the mixing sequence, the rate of the sampling, and the number

of channels are discussed in detail in [ME10]. The design works for both known and unknown
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(a.k.a. “blind”) bands.

If the band locations are unknown, then after collecting a reasonable number of samples (for

example, 1 to 10 µs worth), an `1 block sparsity problem is solved to find locations of non-zero

blocks of spectrum; this is referred to as the “continuous-to-finite” (CTF) block. The computational

problem may be reasonably sized, though perhaps not possible for real-time implementation. This

processing is cheapest when the bands are large; if there are many bands that are very small and

evenly spread out, the computational problem may be expensive. In the follow-up paper [MEE09],

the authors describe a digital processing step that recovers the base-band versions of the occupied

frequency bands.

The methodology behind Xampling is motivated by working directly with analog signals, and

doing all processing at base-band, rather than Nyquist rate. The work seems promising, though it

may be best adapted for spectrum sensing, such as in cognitive radio, rather than full recovery; or

suited for recovering signals with known types of modulation (such as QPSK). Another key feature

of the model is that the system is relatively simple to implement and does not rely on delicate

hardware; to this extent, they seem to have achieved the goal admirably.

The hardware of both the MWC and the RMPI are not too dissimilar, the main difference being

the chipping sequence rate, which is much higher for the RMPI case. The essential difference of

the system is the processing. The RMPI makes full digital processing, while the MWC uses digital

processing only to identify the support, and then works with base-band digital processing. Our view

is that this methodology is exciting and worth further investigation. However, below we detail a few

minor criticisms of the MWC and address some comments from [MEE09] about the RMPI.

We first note the difference in signal models, which is simply a matter of application. Both

the MWC and RMPI do poorly when analyzed using the wrong signal model. The MWC assumes

a static spectral occupancy. Whenever the spectrum changes significantly, the CTF block must

recompute the spectral support. Furthermore, this spectral estimation requires many time samples,

and would give inaccurate estimates for time-dependent inputs like a radar pulse. Similarly, the

RMPI adds unnecessary complexity and processing if applied to the problem of finding signals with

infinite support. It doesn’t exploit continuity in the spectrum from one reconstruction window to

the next, and it does not automatically offer full analog resolution since it works with finite discrete

samples.

It is mentioned that RMPI systems have a high computational load, and this is true. Real-

time processing of the RMPI is not yet achievable, though as this thesis shows, the processing

time is reasonable. The standard RMPI reconstruction works at the Nyquist rate, although the

compressive matched filter doesn’t rely on this, so is closer to the baseband processing suggested in

Xampling. Other valid criticisms are the lack of flexibility for changing the bandwidth fs on-the-fly,

and sensitivity to windowing issues. In particular, the on-grid tone model is viewed as too academic.

58



For the radar signals studied in this thesis, windowing and on-grid frequencies are not a major issue

since the radar envelope is itself a window with finite bandwidth. More about windowing is discussed

in §2.7.2.6. It is true that if our RMPI were restricted to measuring on-grid pure tones, it would

perform much better, but we find adequate performance without this assumption.

It is suggested that in the RMPI, any deviation of the integrator filter from being a true integrator

will introduce signal-dependent errors, and the system really must be calibrated continuously ! This

is quite misleading. The RMPI system certainly needs to be calibrated, but this can be done once.

In particular, the post-processing does not rely in any way on the ideal integrator model. The

calibration will not be exact, and the error due to this will be signal dependent, but this is not

necessarily dangerous, and is inherent in many hardware devices, including the MWC. For example,

the system may be mis-calibrated because of an absolute timing shift, but this is harmless because

the reconstruction will just be a time-shifted version of the input.

Cognitive radio. Cognitive radio systems are designed to sense a broad range of RF spectrum

to detect unoccupied channels, and as such, this technique is not tied to a particular hardware

implementation. For example, both the MWC and the RMPI can be used for this. Many papers on

this area have appeared recently; see [ME10] for a discussion.

Nyquist Folding Receiver (NYFR). Proposed in [FBC+08] and also part of the same DARPA

project as the RMPI, this design samples at a time-varying rate. For example, the sampling rate

averages favg = 2 GHz, but varies sinuisoidally in time between 1950 and 2050 MHz. For input tones

of high frequency, say fin = 10 GHz, this induces aliasing. The aliased signal will change frequency

over time since the sampling rate is changing over time. The amount this aliased signal changes over

time is determined by what “Nyquist zone” the carrier signal was in. The Nyquist zone L is the

smallest integer such that favgL > fin. Thus even from aliased signals, it is possible to determine

what the original absolute frequency was, since the time dependence introduces a splitting.

This design is examined in [FBC+08] for a few narrowband tones, and it is shown experimentally

that their original frequencies can be successfully recovered; this is compared to a standard time-

independent sampler, which cannot recover the original frequency. However, the implications are

not clear, since many applications are not actually concerned with recovery of absolute frequency

information and only need the narrowband content. It has not been shown that this design is robust

to recovering arbitrary sparse tones, e.g., tones that are close in frequency, or tones with significant

bandwidth that overlap two Nyquist zones. The method is claimed not to rely on digital Nyquist-rate

`1 recovery, though the actually recovery algorithm is not discussed.
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2.3 Modeling the system

This section describes how to simulate the system numerically. The process of describing the model-

ing should also make it clear what the RMPI does. The results in this chapter present many different

types of simulations and models. Some models were improved over time, so preliminary simulations

were necessarily not as accurate. The best models, that of the Simulink and SPICE simulations, are

orders of magnitude slower than the simplest models, so in some cases we had to choose between a

single accurate simulation and many less accurate ones. We discuss the modeling inaccuracies and

when we think they may affect results.

There are two purposes behind modeling the system. The first is to generate realistic measure-

ments for testing purposes. The second purpose is to create a model matrix Φ that the reconstruction

solvers will use. In a single computational experiment, we may use two different models: for example,

a highly accurate model incorporating non-idealities is used for the measurements, and a simpler

model is used to generate Φ.

This section concludes with a discussion of calibrating the hardware device. This is extremely

important, so some time is spent discussing the issues and various strategies.

First, we review the mathematical representation of the system. Unless otherwise specified, we

will work with only a single channel, since including the representation from other channels is trivial

(except perhaps for alignment issues during hardware calibration). Let x(t) be in the input to

the integrator, and y(t) be the output. Then if h(t) is the system’s impulse response (or “Green’s

function” in PDE terminology), we have y(t) = h(t) ∗ x(t) where “∗” is the convolution operator:

y(t) =

∫ ∞
−∞

h(τ)x(t− τ)dτ.

Our interest is in causal systems, which means h(t) = 0 for t < 0, so the convolution integral can be

taken from [0,∞]. Let L be the Laplace transform operator (in the subsequent chapters, this symbol

will be used instead for the Lagrangian), defined by L(x)(s) =
∫∞
−∞ x(t)e−stdt. The transfer function

H(s) of a system is defined as H(s) = Y (s)/X(s), or equivalently as H = L(h). If the output is an

integral, y(t) =
∫ t
−∞ x(τ)dτ , and if x(t) has finite support, then using integration-by-parts gives

h(t) = u(t) =

1 t ≥ 0

0 else

, H(s) = 1/s.

Another important system is the single-pole system:

h(t) =

e
−at t ≥ 0

0 else

, H(s) = L(h) =
1

s+ a
.
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The frequency response of the system to a frequency f is H(if), since this is just the Fourier

transform of h. A fundamental fact of linear time-invariant (LTI) systems is that they can be

represented exactly by an impulse response. The RMPI system is linear but not time-invariant since

it is periodically sampled. Restricted to within a sampling period, the system is LTI. When using

the H(s) terminology, we are implicitly restricting our attention to a single sampling period and

assuming that the input signal is 0 before the period of interest.

Let c(t) be the continuous time version of the chipping sequence (a.k.a. pseudo-random bit

sequence PRBS). For now, H and h may be arbitrary, but are still called the “integrating” filter

since the system should be similar to an integrator. Then the 1st output is

y1 =

∫ Tint

0

c(t)x(t)h(Tint − t)dt =

Nint−1∑
n=0

cn

∫ (n+1)∆T

n∆T

x(t)h(Tint − t)dt (2.3.1)

and the mth output is defined similarly, with integration limits [(m− 1)Tint,mTint] and the discrete

chip sequence shifted appropriately. In particular, h will be the same regardless of m; for this reason,

the RMPI system is not an LTI system on large timescales, but for the period [(m − 1)Tint,mTint]

it is.
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Figure 2.7: Showing samples for one channel of various models (showing every other sample for visual clarity),
all with the same chip sequence. The Fourier-based models are not guaranteed to be causal. The entries of the
single-pole model are not the same as windowing the Bernoulli model by e−at.
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2.3.1 Simple models

The simplest model of the system is as a block-diagonal matrix with ±1 entries on the nonzero

portions. Recall that the discrete vector x represents x(tn) for tn = n∆T , and n = 0, . . . , N − 1;

we may occasionally change between 0-based and 1-based representation when one representation is

cleaner. Thus multiplication with a row c of this matrix is

b =

Nint−1∑
i=0

cnxn

which can be thought of as a quadrature approximation of the integral
∫ TADC

0
c(t)x(t)dt. For high

frequencies, this is quite inaccurate. If instead we decide that xn represents
∫ (n+1)∆T

n∆T
x(t), then now

this is an exact representation of the integral. However, this discrete representation is problematic,

since it is not clear how to extract frequency information, and this representation does not represent

the system if h 6= 1.

With the discrete representation of x, it is very easy to consider the discrete Fourier transform

coefficients x̂ = Fx since this is fast to compute and involves no loss of information. Using the

conventions of Table 2.2 on page 45,

xn =
1

N

N−1∑
k=0

x̂ke
i2πkn/N . (2.3.2)

Note that we can equivalently write

xn =
1

N
x̂N/2 cos(2π(N/2)(n/N)) +

1

N

N/2−1∑
k=−(N/2−1)

x̂ke
i2πkn/N (2.3.3)

using the convention that x̂−k = x̂N−k. For convenience, we have chosen N to be even. Since x is

real, x̂ is conjugate-symmetric: x̂k = ¯̂x−k.

To approximate the integral in (2.3.1), the plan is to approximate x(t) using x̂. Recall that our

pragmatic definition of the signal class was any signal that can be well approximated by its DFT,

so now we put this assumption to use. If x(t) is evaluated at an arbitrary point in time, rather

than a grid point, the two inversion formulas (2.3.2) and (2.3.3) are not equivalent. Both of them

interpolate x at the nodes tn, but are different in between. One benefit of using the second formula

(2.3.3) is that by the conjugate symmetry of x̂, this guarantees that x(t) ∈ R; using (2.3.2), there is

no reason to expect x(t) to be real-valued. The approximation is

x(t) =
1

N
x̂N/2 cos(πtN/T ) +

1

N

N/2−1∑
k=−(N/2−1)

x̂ke
i2πkt/T (2.3.4)
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Figure 2.8: Time domain representation of integration. h(TADC − t) for the integrator. Left: single-pole system.
Right: double-pole system, showing the effects of each pole, and their combined effect (light blue)

for T = N∆T .

We can substitute this expression in (2.3.1) and then exchange the order of summation and

integration. Thus

y1 =

N−1∑
k=0

x̂kqk (2.3.5)

for some q which depends only on the discrete sequence c and the impulse response h. This is the

form of an inner product, so we can build a representation of the system by stacking and shifting

the q vectors for different time periods. This builds a matrix ΦFFT which operates on x̂, and hence

a time-domain matrix representation of the system is Φ = ΦFFTF where F is the DFT matrix.

The computation is easy to perform since ΦFFTF = (F ∗Φ∗FFT)∗, and applying F ∗ is equivalent to

applying the inverse FFT (and scaling by N).

The computation of q, which needs only be done once, requires evaluating definite integrals of

the form
∫
ei2πkt/Th(Tint − t). If h represents an ideal integrator, then h = 1 and the integral can

be done in closed form; this is the system analyzed in [TLD+10]. If the poles and zeros of H are

known, then h can be written concisely in terms of exponentials, and this can also be integrated

easily.
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Figure 2.9: The left and center matrices show the magnitude and phase of the complex entries of ΦFFT, which is
designed to act on Fourier coefficients x̂. The time-domain version Φ is shown on the right, and is generated by
taking the inverse FFT of ΦFFT.
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Figure 2.10: Showing the same matrix as Figure 2.9, but now only showing a single channel

The advantage of the previous model is that it easily extends to other versions of h and H. As

we discuss in the section on integration §2.6, it is not possible to implement H(s) = 1/s, but rather

we consider the single-pole model H(s) = 1
s+a for a pole frequency a. The corresponding impulse

response is h(t) = e−at (where a is in Hz); this is sometimes characterized by the time constant,

which is the time it takes h to decay to e−1, so clearly the time constant is 1/a. See Figure 2.8

There is a bizarre effect of using the frequency domain representation. In the simple Bernoulli

model, a row of Φ consists of Nint nonzero entries. For example, the first row has nonzero entries in

locations 1, . . . , Nint, and zero entries from Nint + 1, . . . , N . This makes sense, because the system

is causal, and the measurement y1 taken at time TADC should only depend on x(t), t ≤ TADC.

However, when Φ = ΦFFTF , there is no guarantee that the entries Nint + 1, . . . , N in the first row

are zero. Typically, these entries are small but nonzero. This seems to violate causality. Really,

there is no paradox, because the discrete vector x is no longer the time samples of x(t) but rather

just the inverse DFT of x̂. Or, viewed differently, we know that the continuous signal x(t) can be

represented exactly by its DFT only if x is band-limited and periodic with period T , and if x is

periodic there is no violation of causality. The matrix should not be “cleaned” by removing the

non-causal portions, as this reduces the modeling power. An example of this effect can be seen by

closely examining the gaps between samples in the top row of Figure 2.7.

A related phenomenon is shown in Figures 2.9 and 2.10. The last sample is incomplete, since

it goes from n = 1001 to 1100, but N = 1024. Using the frequency approach, it appears as if the

sample is still there, but has wrapped back to n = 1, . . . , 76. This sample is inaccurate and we

remove these rows from the matrix.

2.3.2 SPICE

The schematics and layout of the chip were done with the Cadence design suite. Cadence includes

a number of circuit and transient simulators which allow high-accuracy simulations. In particular,
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verilog-ams was used for behavioral models, and spectre-RF was used for AC analysis and transient

simulations. These simulators include various forms of SPICE (Simulation Program with Integrated

Circuit Emphasis), and rely on the device models from BSIM4 [BSI09]. For simplicity, we refer to

these tools collectively under the generic label “SPICE”.

Because a single license for Cadence is extremely expensive, these simulations cannot be run on

a cluster and instead are run on a single high-performance server. Simulations with these models

take on the order of a few minutes up to a few hours, depending on how many blocks are being

simulated and which effects are included (e.g., just schematics, or considering the physical layout as

well). Simulations can be used to determine parameters such as the frequency response of a specific

block, or they can perform and end-to-end simulation of an arbitrary input.

2.3.3 Simulink

Because the SPICE simulation is slow, it is complemented with a behavioral model created in

Simulink. The Simulink model also had the advantage of interfacing easily with Matlab, which is

the language used for most of the experiments. The Simulink model consists of the following key

blocks:

1. A low-noise amplifier (LNA) to gain the signal and remove out-of-band noise. After this point,

the signal is split into 8 channels, and so there are 8 copies of each of the next components.

2. A transconductor (Gm) to convert the voltage signal into a current signal.

3. A mixer to multiply the signal with the chip sequence.

4. A common gate (CG) amplifier to provide current gain, which improves the noise figure.

5. An integrator.

6. A sample-and-hold block, and samplers.

Schematics of the entire system are shown in Figure 2.11, which includes various input sources, the

LNA, the clock, channel blocks, and sampling. The schematics of a single channel block, which

includes the mixing, CG, and integrator, are shown in Figure 2.12. The parameters for each com-

ponent, such as the poles and zeros of the filters, were extracted from simulations with the SPICE

model.

Additionally, the model included non-idealities, which could be turned on or off. White noise was

injected into the LNA (this was the input referred noise, and takes into account the noise sources

from the whole block), using an estimated value from SPICE. We also tested adding in noise directly

to the individual components. The LNA, Gm, and CG were distorted by polynomials, with the non-

linearity fitted by extrapolating to IIP2/IIP3 values taken from SPICE. Similarly, the frequency

response of the LNA, Gm, CG,
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Figure 2.11: Simulink model. This was constantly updated as the chip design was updated.

Figure 2.12: Details of a single channel in the Simulink model. The various sources of non-idealities are present,
and were able to be switched on and off.

To solve the system, we set Simulink to use Matlab’s ode3 solver, with a fixed time step that we

varied from 0.1 to 0.5 ps (recall the Nyquist time ∆T is 200 ps). Depending on the total period T

and the size of the fixed time step, simulations took between 10 seconds and a few minutes, if the

model was pre-compiled into binaries (compilation takes several minutes).

The Simulink model was used for two purposes:

1. With various non-idealities turned on, it generated test samples, which were fed into the

reconstruction algorithms to test performance of the system.

2. With non-idealities turned off, it was used to generate a frequency domain model ΦFFT, which

in turn generates Φ. This process is referred to as “calibration” and is described in the next

section.

The purpose of the first mode of use was to generate noisy samples. Specifically, this goes beyond

the additive white Gaussian noise (AWGN) model, and includes non-linear effects such as the jitter

66



noise and non-linearities. The Simulink model is only an approximation, but it is useful as long as

its noisy measurements test the robustness of the measurement and recovery process.

2.3.4 Calibration

The Simulink model, despite its flaws, is much more accurate than modeling the entire system as

mixing followed by a single- or double-pole filter, as considered in in the simple models. To get

the Simulink model to provide a matrix representation of the system Φ, we build up an “impulse

response” by sending in a series of known inputs. Let S represent the system as a “black-box”,

which can be probed indirectly by sending in signals and recording the output. Furthermore, S is

linear and approximately finite-dimensional, so we seek to represent it with a matrix Φ. If Φ is a

M ×N matrix and S(x) = Φx, then sending in any set of N linearly independent vectors into S and

recording the output is sufficient to characterize Φ. This was initially tried with the unit impulse

functions ei, in order to provide the traditional impulse response. This approach does not work well

since ei have sharp rise and fall times, and thus slowly decaying Fourier coefficients, so they are not

in the signal class. A much better approach is via the Fourier domain. Using the representation

(2.3.4), we see that we need only the response of S to sines and cosines on the frequency grid. Thus

we build a frequency-domain impulse response to ΦFFT, and then invert via the IFFT to get Φ.

The basis functions are ei2πkt/T for k = −N/2 + 1, . . . , N/2. To measure S(ei2πkt/T ) we expand the

complex exponential and use linearity to get S(ei2πkt/T ) = S(cos 2πkt/T ) + iS(sin 2πkt/T ). Thus a

single basis function requires two measurements, but since the negative frequencies can be inferred

from the positive frequencies only N overall measurements are needed.

This procedure defines the calibration of the system. The response of the system is measured for

each input from a set of N/2 cosines and N/2− 1 sines (and also a DC signal); see Figure 2.13 for a

diagram. A Simulink model represents the RMPI system, since for N = 1024, a SPICE simulation

would take about a month of computation time. This approach is more accurate than the simpler

single pole models, and has the added benefit that it does not require estimation of the location

of poles or other parameters. Because this only requires a black-box system, it can use the actual

hardware system to generate measurements; this is useful when the noise in the hardware is small

and has less effect than the modeling errors in the simulators. Since the inputs can have arbitrary

amplitude, they are chosen in the “sweet-spot” amplitudes which is small enough that non-linearities

can be ignored yet large enough that thermal noise plays a small role.

To validate the calibration approach, there are two considerations.

1. Given a known input x, do the actual measurements S(x) agree with the predicted measure-

ments Φx?

2. Given a known input x with measurements b = S(x), does the reconstruction x̃ (a function of
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Figure 2.13: Cartoon of the calibration procedure. The arbitrary waveform generator (AWG) generates basis
functions x(t) = ei2πkt/T , the RMPI chip generates measurements which are recorded on the Stratix 3 FPGA,
which then uploads to a computer. The computer controls the AWG and tells it which grid frequency k to use.

Φ and b) closely match x?

Note that the first item is more strict than the second item. If the second condition holds, and

x̃ ' x, this implies that Φx̃ ' S(x) but does not imply that Φx ' S(x). For example, suppose Φ

is an incorrect model of S because it uses a chip sequence which is shifted forward or backward in

time by an amount n∆T . This has a strong effect on the measurements of any particular signal, and

Φ(x) 6= S(x). However, this is not actually significant, since the recovery algorithm will just recover

the estimate x̃(t) = x(t+ n∆T ), which is a systematic error that is of little consequence.

Validation of the first type is considered in Figure 2.14, which plots the values of S(x) and Φx for

a signal x of medium (left) and small (right) amplitudes. The measurements S are performed with

the Simulink model, and include a constant level of noise z. Also shown is Φ(x+z), which should be

a better match to the Simulink model than just Φx; it does provide a better match, but not a perfect

match, since white noise is not band-limited and is not well represented in the finite-dimensional

signal model. Without the effect of noise, the agreement between S(x) and Φx is excellent, but this
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Figure 2.14: Testing if S(x) = Φx. Left: medium amplitude input. Right: small amplitude input, so noise has a
significant effect. A large amplitude input is not shown because agreement is nearly perfect.

is because Φ was calibrated using the same Simulink model. In real hardware calibration, we would

not expect such agreement.
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Figure 2.15: Reconstruction error for different types of calibration, as a function of frequency. Calibration is highly
beneficial.

Figure 2.15 shows results from validation of the second type, plotting RMSE of the recovered

signal, as a function of carrier frequency. Noisy samples S(x) are generated with a Simulink model

using non-idealities. Reconstructions are performed using three models of Φ: the simple ±1 signed

Bernoulli model, the single-pole model, and the calibrated model. As expected, the calibrated model

performs much better. Also note that the single-pole model performs better than the Bernoulli model

at high frequencies, which is reasonable since the Bernoulli model (which is equivalent to quadrature

evaluation of an integral) is most accurate at low frequencies.

The value of N has so far been considered arbitrary. As N increases, the DFT approximation

of the signal x(t) becomes increasingly accurate, but typically a value N = 1024 provides sufficient

approximation to the band-limited signal and it is not necessary to go larger.

However, there is a value Nmin = LCM(Nint, Nchip) (LCM is the least common multiple) which is

the smallest N that is needed to fully characterize the system. Both the chipping sequence and the
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Figure 2.16: Phase blind calibration, using Simulink to generate “real” data, and using a simple Bernoulli model for
Φcrude. The Bernoulli model is inaccurate and does not capture phase response of the system, but it is sufficiently
accurate to allow estimation of the phase of input signals since this is a massively overdetermined problem. From
this phase estimate, a linear model Φ is created. The plot on the left shows how well Φx predicts measurements
S(x) from a test pulse; and the right plot shows reconstruction of this test pulse using. In both plots, the errors
appear to be systematic in a harmless manner, affecting mainly the amplitude.

ADC samples are periodic, but the actual rows of the Φ matrix will not repeat until both periodic

sequences line up. For Nint = 100 and Nchip = 128, this is Nmin = 3200. The system is fully

characterized by a Φmin matrix with 3200 columns. To simulate a larger system, a new Φ matrix

can be created by using copies of Φmin on the diagonals.

2.3.5 Phase blind calibration

The calibration procedure builds up the N rows of the frequency-domain matrix using

ΦFFT(:, k) = S(ei2πkt/T ) = S(cos 2πkt/T ) + iS(sin 2πkt/T )

where the last equation follows from linearity of S and Euler’s formula. The signals sin and cos

are said to be “in quadrature” because they have 90◦ phase difference. This is convenient but not

necessary: the measurement S(ei2πkt/T ) can be determined by measuring any two pure tones of

frequency kt/T as long as they have distinct phases modulo 180◦, since then the two input tones

are linearly independent. The calibration is more robust if the phases are close to quadrature.

For the moment, we will consider the problem of just measuring a single-tone cos(2πkt/T + θ).

For calibration using hardware, an arbitrary waveform generator (AWG) can very accurately produce

a sinusoid at the frequency kt/T ; see Figure 2.13 for a diagram of the experimental setup. The issue

with this procedure is that the phase θ of the incoming signal is unknown. The AWG cannot control

phase, nor is it possible to accurately estimate the phase delay during travel from the AWG to the

chip.

We propose the following method to estimate the phase. This requires a previous estimate of the
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system, Φcrude. This can be created from any of the methods described above, such as a Bernoulli

model, or a Simulink calibrated model. The better this estimate is, the more accurate the phase

estimation will be. Let b = S(cos 2πkt/T + θ) be the measurements. Then we solve

θ̂ = ] argmin
A∈C

‖b− ΦcrudeAe
i2πkt/T ‖2 (2.3.6)

where t is a Nyquist time grid. This estimation is a 2-dimensional least squares problem which can

be efficiently solved, similar to the method mentioned in §2.4.2.

It is likely that the crude estimate Φcrude has different alignment than the true hardware, so the

estimate θ̂ will be off. The biggest source of error is a shift in the bit sequence. Thus the above

procedure can be repeated for a shifted version of Φcrude. For every shift, we generate a new estimate

of the phase; using this phase estimate, we compute the sample error, and pick the shift that has the

least error; see Figure 2.17. If Φcrude is a Bernoulli matrix, then shifting it is trivial. For a Simulink

calibrated matrix of size Nmin, exactly Nmin/Nchip of the possible Nint shifts can be easily generated

by shifting the matrix. If Nchip and Nint are relatively prime, this is all of the shifts. In our system,

Nchip = 128 and Nint = 100, so only 32 of the possible 128 shifts are generated by shifting the rows

and columns of Φcrude. To generate the other shifts, we need to build up the impulse response of 3

other Φcrude matrices, each with a shift from a different co-set.

The estimation problem is parametric, with θ being determined by 2 parameters (or 1 complex

parameter), and the shifts being determined by Nint parameters. If T is short, then b only has a few

entries, so this problem is ill-posed. However, hardware measurements can easily generate long T

samples. Furthermore, the shift of the chipping sequence is fixed regardless of the signal measured,

so all the data can be combined to estimate the best shift of the chipping sequence. Hence the

problem is estimating about 256 parameters from a dataset of size on the order of 104 to 106, and

hence should be extremely accurate. The shift of the PRBS is estimated separately for each channel

since each channel may see slightly different delays, but the shifts are expected to be similar, so this

helps the estimation.

The crude model Φcrude may not account for some complicated properties of the system, such as

the phase response of the various filters, and this will lead to systematic errors in the phase estimation

which are frequency dependent. However, preliminary tests (using Simulink as the “real” device,

and a Bernoulli Φcrude) suggest that the error is a smooth function of phase and also concentrated

at low frequency. Thus it may be possible to correct for this; even if it is not corrected, the effect

on reconstruction may be small; see Figure 2.16.

We now return to the issue of finding the response of the system to two signals of the same

frequency but of different phase. Let θ1 and θ2 be the phases of the two input tones, each of grid

frequency kt/T for some integer |k| ≤ N . One possibility is to separately estimate θ1 and θ2 in
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Figure 2.17: Phase blind calibration. Showing preliminary results from late March, 2011, using a single frequency
input. This is real hardware data, using a Bernoulli Φcrude. Left: the estimated phase for different data sets (single
channel shown). Right: since there is no absolute time reference, the PRBS sequence needs to be aligned. The
estimated shift of the sequence is the location of the minimum. Each channel shows a similar minimum, which
indicates the method works. This is calculated from a single data set; by including more data sets, the data will
improve.

the manner just described. A more accurate method is to record 2Nmin measurements of a single

input tone; let Tmin = Nmin∆T . Recall that T = N∆T . If the input is x(t) = cos(2πkt/T + θ1),

then we consider x1 = x(t) as the first signal, and x2 = x(t + Tmin) as the second signal. This is

equivalent to x2 = x(2πkt/T + θ2) where θ2 = θ1 + 2πkTmin/T . Thus x2 is linearly dependent on

x1 whenever kTmin/(2T ) = 2kNmin/(N) ∈ Z. If N > Nmin, then there are some frequencies k for

which this is not an integer, and hence we simply use the second set of measurements to complete

the characterization of this frequency (and θ1 and θ2 are now jointly estimated). If the quantity is

not an integer but lies close to an integer, then we can improve robustness by skipping ahead by a

few more blocks of Nmin.

For frequencies k where this is an integer (if N = Nmin, this is all frequencies) then θ2 =

θ1 mod 180 so the samples are linearly dependent. In this situation, we generate several sets of

measurements from the AWG, and most likely each waveform will have a different phase. These

phases are estimated separately and then combined. Note that if N is prime, then this situation

will never occur, though it may not be robust. A large prime value of N , with N � Nmin, will be a

more robust choice, though it will require more measurements.

When N > Nmin, then the Φ and ΦFFT matrices have unnecessary columns. If necessary, the

time-domain version Φ can just remove the extra columns after being created by an inverse DFT of

the larger ΦFFT. This will induce a few errors (since the time vectors should really be thought of as

the inverse DFT of the frequency vectors, not as a inherently meaningful themselves), but should

not be significant.

This calibration system is in the process of being implemented on the RMPI chip. A com-

puter controls the entire process, but it is far from trivial since several thousand sets of precise

measurements must be taken. Preliminary results are shown in Figure 2.17 which indicate the
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method consistently estimates phase and shift parameters. These results show the the phase and

shift estimates of a 1 GHz signal collected from hardware measurements, and using Φcrude for the

estimation.

We note that changing the ADC rate fADC, and hence Tint, is one of the easiest system parameters

to modify. Changing Tint from 100 to 96 makes a big change, since now Nmin = LCM(Nchip, Nint)

is 384 instead of 3200, so it would be possible to build a calibration model using a smaller N since

the only requirement is that N ≥ 384.

An alternative to the phase blind calibration is to use the accurate SPICE model for calibration,

since then the input signal is known exactly. However, since the Cadence software is run on a single

computer, it would take about a month of computational time to record N = 1024 signals, so we

favor the hardware-based approach.

2.4 General design considerations

This section and the following two sections consider some important design choices. Below are some

of the major questions we aim to answer.

• At what rate does the chipping sequence need to operate?

• What periodicity does the chipping sequence need?

• What characteristics should the PRBS have?

• Given a fixed information rate (400 MHz), how many channels are necessary?

• How closely must the integrating filter approximate an integrator?

• What bandwidth does the integrating filter need need?

• Which blocks of the system must be highly linear?

• Which blocks of the system are affected by clock jitter?

We are also concerned about whether the system is robust to non-idealities, such as thermal

noise, over which we have little control. This section discusses a few of the design decisions and

rational behind them. The chipping sequence and integrator are discussed in detail in sections §2.5

and §2.6, respectively. By necessity, components are introduced one-at-a-time, but of course it is

impossible to simulate changing one part of the system without first having a model for the entire

system, so occasionally we reference a system block out of order.

The design parameters are coupled to each other. For example, a PRBS with short repetition

rate can be partially compensated for by using a nearly ideal integrator, so these two systems
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Figure 2.18: (Left) A radar pulse consists of a pulse envelope and a carrier frequency. (Right) For initial tests
beginning in 2008, four types of pulses were used in “corner” sims. The four test pulses cover low frequency (57
MHz) to high frequency (2.2 GHz), and narrow (20 ns) to wide (100 ns), all with smooth pulse envelopes.

cannot be considered in isolation. Unfortunately, due to time limitations, it is not practical to

optimize all the parameters at once, and instead we perform one round of “coordinate-descent”: fix

all parameters but one, and then find the best value for this parameter; then repeat for the other

parameters. Furthermore, as our simulation model gains complexity over time, certain previous

design decisions become fixed, so it is not simple to revisit old choices. Another complication is that

recovery, discussed in §2.7, involves many parameters as well, so the overall parameter space is high

dimensional. However, results indicate that the approach has worked remarkably well.

2.4.1 Test signals

The performance of the system was primarily evaluated on its accuracy for reconstructing single

pulses, although multiple pulses were tested on occasion. To capture various types of behavior,

it is important that the system tests a wide range of carrier frequencies and pulse widths. The

simulations consisted of either “corner simulations” using extreme types of pulses (see Figure 2.18)

or a combination of systematic parameters, such as pulse length, and random parameters, such as

phase and frequency of the carrier.

The window of the pulse was occasionally changed, since this affects the spectral sparsity of

reconstruction. Window functions varied from smooth windows, like a Gaussian pulse, to trapezoidal

windows. Most of the recent simulations used filtered trapezoidal windows. For the compressive

matched filter recovery described in §2.7.1, the pulse window has little effect, since spectral leakage

is not an issue. In fact, a matched filter works best when the window is a pure box-car with infinitely

fast initial rise time.

Simulations were careful to either use frequencies chosen uniformly at random in [0, fs/2], or
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fixed frequencies that are off-grid. The system can perform much better with on-grid signals, but

this is an unrealistic assumption.

Testing dynamic range was done in two manners. The first test was with a single signal, and

varying the amplitude. This gives an absolute limit to the dynamic range. The other test was with

two signals, and varying the relative amplitudes. This limit is always less than the single-pulse

dynamic range since the large pulse introduces extra difficulties for the small pulse, such as creating

extra error due to jitter, as well as creating non-linear effects.

2.4.2 Error metrics

For synthetic simulations, the true signal x0 is known, so this can be used as a reference. The most

common metric is the root-mean-squared error (RMSE), which we define as

RMSE(x) ,
‖x− x0‖2
‖x0‖2

. (2.4.1)

This metric is perhaps more correctly referred to as relative RMSE. On occasion, we reference

MSE, which is just the square of this quantity. One benefit of RMSE and MSE is that they are

the same regardless of whether we consider time-domain samples or frequency components. Other

reconstruction-based metrics we consider are ‖x−x0‖∞ and ‖x̂− x̂0‖∞, where x̂ is the (non-unitary)

DFT of x.

For pulses, the parameters of interest are the pulse descriptor words (PDW), such as time-of-

arrival, so these can be the basis of error metrics, though we do not use them much. The envelope

of the function itself is also of much interest, so the error can be cast in terms of this. To find the

envelope of a pulse x, aka demodulation, we perform the following, which requires an estimate of

the carrier frequency f (found via the Welch method or similar):

1. Using f , estimate the phase φ of the carrier. This is done by matched filter in the following

manner:

(a, b)← argmin
a,b

‖x− a sin(2πtf)− b cos(2πtf)‖

where t is a time grid. This is a 2D least-squares problem that can be solved efficiently.

The phase is estimated φ = tan−1(b/a). The operation is similar to phase estimation of the

calibration scheme, although in this case the measurements are from full Nyquist-rate samples.

2. The signal is mixed with sin(2πtf + φ) and then digitally low-pass filtered by truncating its

DFT coefficients.

Another demodulation method is taking the absolute value of the Hilbert transform of a signal, since

the Hilbert transform puts the phase information into the complex phase of the analytic signal.
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Number of channels, rch 1 2 4 8 16 32

fADC (in MHz) 400 200 100 50 25 12.5

TADC (in ns) 2.5 5 10 20 40 80

Nint 12.5 25 50 100 200 400

Table 2.3: Various system values as a function of rch, using a fixed overall sampling rate of 400 MHz. The current
RMPI uses 8 channels.

However, this approach works poorly when there are several signals present. Our demodulation

method works well in multi-signal environments, since the filtering discards the background signals.

The main disadvantage is that it requires an accurate estimate of the frequency, but it is not overly

sensitive to this, so we find that it works well in practice.

For some of the tests on hardware, the original signal x0 is unknown, or only approximately

known, in which case “recovery” is more subjective, and usually based on visual inspection of time

and frequency plots.

Some reconstruction methods, such as the matched filter, are more appropriately analyzed only

in the frequency domain. Error is then recorded as a function of how far the estimated frequency

is from the true frequency, |f − f0|. Often this type of error is thresholded and the reconstruction

is declared a “success” if |f − f0| < fcutoff, and a “failure” otherwise, with fcutoff typically 1 MHz.

These reconstructions can be aggregated into a sample recovery percentage statistic.

2.4.3 Number of channels

For a fixed ADC sampling rate, increasing the number of channels will always improve performance.

However, each channel requires extra power; in the extreme case, we could have 100 channels each

sampling at fADC = 50 MHz, but this is just a conventional channelized receiver. But on the other

hand, a single channel receiver at fADC = 50 MHz would undersample too much.

In order to analyze the appropriate number of channels, consider a fixed information rate system

that undersamples the Nyquist rate by 12.5×. This means samples are taken at an average rate

of 400 MHz, since fs = 5 GHz. The final Caltech RMPI design uses 8 channels at 50 MHz each,

whereas the Northrop Grumman design uses 4 channels at 100 MHz each. This section discusses

this trade off.

From a theoretical point-of-view, more channels are better. The matrix representation Φ of such

a system closely approximates a signed Bernoulli matrix, which is known to be incoherent with any

basis. In contrast, a single channel operating at a fast rate becomes closer to a simple underclocked

regular ADC, which is not a good measurement system.

However, multi-channel systems cause quite a few problems. Consider the situation of recovering

a large pulse and a small pulse. If these pulses are separated in time, then we don’t expect the
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large pulse to have any effect on the recoverability of the small pulse. If the pulses overlap in time,

then because clock jitter induces error proportional to the amplitude of the largest signal, the small

pulse will see a relatively large amount of additive noise which will make recovery difficult. If the

RMPI has many channels, then each channel only takes measurements every TADC, where TADC can

be quite large. This means that even if a big pulse and small pulse do not overlap in time but are

within TADC of each other, then they will affect each other. As the number of channels increases,

TADC increases, so this is more likely to occur.

The longer integration window means that more noise is added to each measurement. By itself,

this does not affect the signal-to-noise ratio, since more signal is included in each measurement, but

it also means that the noise included is more correlated (i.e., covariance matrix ΦΦT ), so it is more

important to account for this correlation in recovery algorithms. A longer TADC also increases the

chance of clipping the signal by reaching the maximum amplitude; see §2.8.1.5.

Another effect is caused by the non-ideal integration. Consider a single-pole integrator, and

assume the time constant (which is the inverse of the pole location) is constant, regardless of the

number of channels. The time constant measures how long it takes an equivalent capacitor to

discharge or charge e−1 of its max capacity. For the initial RMPI design, the time constant was

22 ns (this has been subsequently improved). In a 32 channel system, TADC = 80 ns, which means

that samples arriving early in the time interval will be attenuated by about e−4 ≈ 0.018. The

measurements are heavily weighted toward the end of the interval. To a crude approximation, we

are only taking about 20 ns worth of information, so this may cause problems when sampling very

short pulses. Decreasing TADC helps the problem.

For reconstruction, having many channels causes more difficult calibration and more difficult

reconstructions. To see how reconstructions are affected, consider taking m measurements per

channel, so the system matrix Φ has M = mrch rows. It is convenient to choose the number of

columns, N , to be a multiple of m. However, this is not always possible for two reasons: the first is

that analysis with the Gabor dictionary is much more efficient when N is a power of 2, and in fact

the code only handles this case. The second reason is that we would like to consider the possibility

of staggering each channel (to be discussed in §2.6), which means that the ADC samples of each

successive channel are offset by a small amount ∆m from the previous channel. Thus we want

all of N,N + ∆m, . . . , N + (rch − 1)∆m to all be divisible by m, and the offset is most naturally

∆m = Nint/rch. This is impossible to satisfy in general. Whenever there is mismatch, it leads

to zeros in the Φ matrix, since we cannot make use of a partial sample. For a small number of

channels, this is not an issue, but with a larger number of channels, it happens with increasing

frequency. For example, with 8 channels, Nint is 100, and if N = 1024 and no stagger is used, this

leaves 24 columns of zeros in the Φ matrix and each channel takes bN/Nintc = 10 measurements.

Now consider staggering each channel by an offset of about 12.5 Nyquist samples on average, so
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that channel two is shifted by 25 Nyquist samples. The last sample of channel two runs from 926 to

1025, which exceeds the length of N , so this sample is discarded, and this channel only keeps 9/10

of its data. For a fixed length of N , this loss of data is exacerbated as the Nint increases, so it gets

worse for a many-channel system.
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Figure 2.19: Matched filter simulations. Top row plots the error of frequency estimation, bottom row uses a
1 MHz frequency estimation cutoff to determine “successes” and “failures”, and plots the success rate (using 200
independent trials). Plots either show results as a function of noise standard deviation σ, and each line represents
a fixed rch; or plots as a function of rch, and each line represents a fixed σ. The title of the plot is “centered” or
“offset”, which refers to the location of the pulse. Offset pulses are near the boundary, and are more affected by
missing measurements whenever Nint does not exactly divide N . In all plots, the dashed black line represents the
resolution of an FFT of length N .

10
0

10
1

10
2

10
−2

Number of Channels

R
oo

t
M

ea
n

S
q
u
ar

ed
E
rr

or

 

 

10
0

10
1

10
2

0.316228

  1

se
lf

co
h
er

en
ce

µ
(Φ

)

10
0

10
1

10
2

0.398107

0.630957

  1

se
lf

co
h
er

en
ce

µ
(Φ

)

10
0

10
1

10
2

0.398107

0.630957

  1

se
lf

co
h
er

en
ce

µ
(Φ

)

f
in

 = 701.35 MHz

f
in

 = 1204.23 MHz

f
in

 = 1809.46 MHz

Self Coherence Φ

Figure 2.20: The RMSE error as a function of the number of channels (but fixed overall data rate at 400 MHz) for
a signal with SNR = 0 dB, using Φ from the Bernoulli model

To study the effect of these considerations, simulations were run using Φ matrices representing

systems of various channels. Since we do not have a working Simulink model of an arbitrary channel

system, the Φ matrices were chosen with signed Bernoulli entries, but in an otherwise realistic

fashion (the PRBS repeated, only whole measurements were kept, and stagger used for some tests).
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Figure 2.19 shows the median results of 200 random simulations per parameter. In order to collect

statistics, we used the ideal matched filter reconstruction because it is extremely fast and has no

parameters. The signal was a pulse of length 100 ns and the phase and frequency were chosen

uniformly at random, with N = 1024. The matched filter must calculate normalizing factors for

every Φ matrix, which is relatively slow, so for every parameter, two Φ matrices were generated and

then 100 random signals were used with every Φ matrix. This version of the matched filter searches

only over frequency, phase, and amplitude, and used a priori knowledge of the location and size of

the pulse. Noise was added to the measurements after the measurement operation: b = Φx+ z.

The results are shown in Figure 2.19. We consider several levels of noise to get a full picture

of how the system performs. We tested both centered pulses and pulses offset to the side of the

interval, since our hypothesis is that zero columns in the Φ matrix, which always occur at the edges,

will affect these offset pulses. Indeed, this is what we observe. Consider the four plots on the right.

The 40 channel system is amazingly robust to noise when we measure a centered pulse, since for a

success rate of 50%, it can withstand noise up to σ = 20, whereas the 8 channel receiver can only

withstand up to σ = 10. Yet on the offset pulse, the 8 channel receiver outperforms the 40 channel

receiver since the 40 channel Φ matrix has more incomplete measurements that must be discarded.

Looking at the left four plots shows that, depending slightly on the noise level, the best design is

16 or 20 channels. The plots are not monotonic, which may seem surprising, but this is an artifact

due to using any fixed N , since some large numbers divide into this with smaller remainder than

do smaller numbers. For N = 2048 or N = 4096, the maximum would be in a slightly different

location. As computing power increases and it is easier to perform reconstructions with extremely

large N , it would become increasingly beneficial to use large channels system.

Figure 2.20 show results using a similar Bernoulli matrix and using full `1 reconstruction (with

reweighting), so this is a more realistic scenario. Due to the increased computational complexity,

only three signals (low, medium, and high frequency) are used, and only one trial is performed per

channel number. Because of the full reconstruction, we are able to examine the root-mean-squared

error (RMSE). Also plotted is the self-coherence µ(Φ) (that is, the maximum absolute value of a

non-diagonal entry of ΦTΦ), which decreases as the number of channels increases. A small self-

coherence is a sign of a useful compressed sensing matrix, so this corroborates the intuition that a

large number of channels is good for theoretical purpose. From these limited trials, which did not

test an offset pulse like in the earlier figure, we only see benefits of an increased number of channels

when the channels approach 100, which is impractical.

From a system design point-of-view, more channels are more difficult to design, since it becomes

important to isolate each channel to prevent cross-talk, and it also requires considerable power for

the clock distribution system.

Because of this hardware complexity, 8 or 12 channels is a practical limit. The simulations
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suggest that increasing channels up to a point, probably around 20, may significantly improve the

performance of the system. However, we choose 8 channels for the final design because of prohibitive

design complexity for 12 or more channels. The Northrop Grumman design uses 4 channels, and

the simulations suggest it will be more sensitive to noise than the Caltech version, but it will benefit

from simpler design.

2.5 Chip sequence

Perhaps the most important design choice is the chip sequence, which we refer to synonymously as

the PRBS (pseudo-random bit sequence). The RMPI chip sequence is periodic, but for the sake of

analysis, we will consider both periodic and infinite chip sequences. We may abuse notation and

write c(t) for the time domain chip sequence, but also use {cn} = {c0, c1, . . . , cNchip−1}, cn ∈ {−1, 1}
to be the pseudo-random bit sequence (PRBS) that defines c(t). Specifically,

c(t) =

∞∑
n=−∞

cng(t− n∆T ) (2.5.1)

where g is the rectangular window that is 1 inside [−∆T/2,∆T/2] and 0 elsewhere. WhenNchip <∞,

we implicitly use cn = cm whenever n ≡ m mod Nchip. There are two time periods associated with

the chip sequence: ∆T is the Nyquist period, and is the duration of the bit. The RMPI operates

at 5 GHz and so ∆T is 200 ps. Throughout this thesis, this rate if fixed. The other time period

is Tchip , ∆TNchip, which is the periodicity of the chip sequence. In the final RMPI design,

Nchip = 128, but in this chapter will will consider varying this. For a summary of notation, see

Table 2.1.

In the Caltech RMPI, the chipping bits {ck} are loaded into a memory unit, and thus can

be arbitrarily chosen. We will assume they are randomly and independently chosen, with equal

probability of +1 and −1. The Northrop Grumman RMPI does not allow arbitrary chip sequences

and instead uses a Gold code, which is a mixture of simple linear feedback shift registers (LFSR).

For the rectangular window g, an elementary calculation gives

Fg(f) , G(f) =
sinπf∆T

πf
= ∆T sinc(f∆T ) (2.5.2)

where sinc(x) , sin(πx)/(πx) at x 6= 0 and sinc(0) = 1. It would be interesting to consider

alternatives, such as smoother windows, so that the spectrum is more concentrated in the [−fs, fs]
band, but this may be difficult to implement in hardware and was not considered in our studies.
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2.5.1 Spectral properties of the chip sequence

2.5.1.1 Infinite period

We wish to find the power-spectral density of a random chip sequence of infinite length. A chip

sequence is not a stationary process, since if times t1 and t2 both lie inside the same ∆T interval,

then the correlation is exactly 1, and if they live in different ∆T intervals, the correlation is 0, and

hence there is some absolute time dependence. Signals with this discrete structure are a type of

cyclostationary process.

The autocorrelation function of a random signal is defined

rtt(t, τ) = Ex(t)x̄(t− τ) (2.5.3)

and if the signal is wide-sense stationary, then so is the autocorrelation and we have rtt(t, τ) = rtt(τ).

In this case, the Wiener-Khinchin theorem shows how to calculate the power spectral density (PSD)

Ψ:

Ψ(f) = Frtt(τ). (2.5.4)

The theorem is useful because stationary signals are not necessary square-integrable, and so care

must be taken when using the Fourier transform. When x is square-integrable, then the direct

formula for the PSD is:

Ψ(f) = lim
T→∞

E |x̂(f)|2
T

(2.5.5)

where x̂ is understood to be the Fourier transform of x restricted to the domain [−T/2, T/2].

Let g be a boxcar signal; that is, it is zero everywhere except it is 1 on the interval [0,∆T ].

Then a chip sequence c(t) with infinite period can be viewed as a superposition of shifted versions of

±g. Neither the shifting nor the ±1 affects |G(f)|, so intuitively the PSD of an infinite-period chip

sequence is just |G(f)|2/T using (2.5.5). It turns out this is correct, and we can make it rigorous as

follows, using a subtle trick (see, e.g., [BM90]) to make c(t) stationary. This is also known as the

time-average autocorrelation function [Pro01].

The autocorrelation of c(t) is

rtt(t, τ) = E c(t)c(t+ τ) =

∞∑
j=−∞

∞∑
k=−∞

E(cjck)g(t− k∆T )g(t+ τ − j∆T ) (2.5.6)

=

∞∑
k=−∞

g(t− k∆T )g(t+ τ − k∆T ) (2.5.7)

due to the independence of ck and cj . This is not stationary because it depends on τ and t.

The insight is that a time shift of c(t) will have the same PSD (since it only changes the phase

of the Fourier transform), so we’ll consider a random shift of the chip sequence by an amount
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Figure 2.21: PSD Ψ of a chip sequence with infinite repetition rate; see (2.5.9). This plot was generated by
averaging many sample realizations of very long chip sequences. The chip sequence is modulated at fs = 5 GHz.

φ ∼ U [0,∆T ]. The expectation is now taken over ci and over φ.

Taking the expectation over φ is just the integral from [0,∆T ] divided by ∆T . Each term k in

the sum is an integral from [k∆T, (k + 1)∆T ], and thus the t dependence integrates out:

rtt(t, τ) = rtt(τ) =
1

∆T

∫ ∞
−∞

g(t)g(t+ τ)dt.

We are now in position to use the Wiener-Khinchin theorem (2.5.4), and take the Fourier trans-

form with respect to τ (we can change the order of integration using Fubini’s theorem since the

integrands are well-behaved). Using Fg(t+ τ)(f) = ei2πftG(f), we have

Ψ(f) =
1

∆T

∫ ∞
−∞

g(t)ei2πftG(f)dt

=
G(f)

∆T

∫ ∞
−∞

g(t)ei2πftdt

=
G(f)

∆T
Ḡ(f) = |G(f)|2/∆T (2.5.8)

which agrees with the intuition. In our system, g is a rectangular window, so using (2.5.2),

Ψ(f) =
1

fs

(
sinπf/fs
πf/fs

)2

. (2.5.9)

See Figure 2.21 for a plot. Most of the power falls inside the first lobe from [−fs,+fs].

2.5.1.2 Finite period

The actual RMPI design repeats the PRBS chip sequence every Nchip. Since c(t) is then periodic,

it has a Fourier series representation, which we now derive.
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Figure 2.23: Spectrum of finite length PRBS. The longer the periodicity in the PRBS, the finer the grid spacing,
which in general is advantageous. Each row is generated by a different Nchip. Contrast this to the smooth spectrum
of a chip sequence of infinite length in Figure 2.21.

Let Nchip be the repetition length of the chipping sequence (Tchip = Nchip∆T ; see Table 2.1 on

page 45). Then the Fourier series is

ĉ[k] ,
1

Tchip

∫ Tchip

0

c(t)e−i2πkt/T dt

=
1

T

Nchip−1∑
n=0

∫ (n+1)∆T

n∆T

cne
−i2πkt/T dt

=
1

T

Nchip−1∑
n=0

cn
T

−i2πk
(
e−i2πk(n+1)/Nchip − e−i2πk(n)/Nchip

)

=
sin(πk/Nchip)

πk

Nchip−1∑
n=0

cne
−i2πk(n+ 1

2 )/Nchip .

With the convention that sin(0)/0 = 1, this holds for any integer k. Note that this would be periodic
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in Nchip if it were not for the sinc term. For nonzero k,

ĉ[k + τNchip] =
sin(πk/Nchip + πτ)

π(k + τN)

Nchip−1∑
n=0

cne
−i2πk(n+ 1

2 )/Nchip(−1)τ =
k

k + τNchip
ĉ[k] (2.5.10)

and for zero k, ĉ[τNchip] = 0 if τ 6= 0.

To get the Fourier transform from the Fourier series, we haven

ĉ(f) =

∞∑
k=−∞

ĉ[k]δ(f − k

Tchip
) (2.5.11)

which has discrete spacing Tchip. It is almost periodic in Nchip/Tchip = fs, except for the decay of

k/(k + τNchip) from equation (2.5.10).

To find the power-spectral density of a finite-length sequence, we revisit (2.5.6). The double sum

no longer collapses to j = k but rather j = k + j′Nchip for any integer j′. Otherwise, the same

reasoning holds, and the equivalent of (2.5.8) is

Ψ(f) =
|G(f)|2

∆T

∞∑
j′=∞

e−i2πfj
′Tchip

=
|G(f)|2

∆T

1

Tchip

∞∑
k=−∞

δ(f − k

Tchip
) =

1

Nchip

(
sinπf/fs
πf/fs

)2 ∞∑
k=−∞

δ(f − k

Tchip
) (2.5.12)

where we used the Poisson summation formula [Mal08]:

∞∑
k=−∞

e−i2πkt/T = T

∞∑
k′=−∞

δ(t− k′T ).

If the PRBS is generated via a linear-feedback shift register (LFSR), the statistics change slightly,

due to the extra correlation. In particular, outputs cn of a maximal LFSR with r taps, where

L = Nchip = 2r − 1, have exactly (L+ 1)/2 values of +1 and (L− 1)/2 values of −1. Furthermore,

half the runs of consecutive +1 or −1 are of length one, one-fourth are of length two, one-eighth

are of length three, etc. [PSM82]. The effect of this is seen in Figure 2.22; in contrast to a random

sequence, the autocorrelation is not 0 when τ > ∆T . The properties of LFSR are relevant since the

Northrop Grumman design uses Gold codes, which are based on LFSR output. Properties of LFSR

sequences have been much studied since they are used in spread spectrum communication and can

also be converted into 2D masks for use in coded aperture interferometry. For reference we give the

one-sided PSD of a LFSR sequence with length Nchip [PSM82]:

Ψ(f) =
Nchip + 1

Nchip
2

( sinπf/fs
πf/fs

)2 ∞∑
k=−∞

δ(f − k

Tchip
), f > 0 (2.5.13)
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and Ψ(0) = 1
Nchip

2 δ(0). This is quite similar to (2.5.12).

2.5.2 Chip design considerations

For this section, we will suppose that the PRBS coefficients are chosen randomly from ±1, and that

we use a square window g. A recent paper [HBC11] suggests using run-length-limited codes as an

alternative to random coefficients, but this is beyond the scope of our work. Given our decisions,

there are two major questions left unresolved:

1. At what rate should the chipping sequence be modulated? Until now, we have implicitly

assumed that the width of the window g was ∆T , 1/fs, since this is what the final design

uses. In this section, we will use the variable fchip to represent the rate of the chipping

sequence, so that g has width 1/fchip.

2. How often can the PRBS repeat? That is, how small can the periodicity Nchip be?

Recalling the guiding principle of the RMPI design, we want all signals in the model to generate

measurements of approximately the same energy. For a probabilistic analysis, we might look for a

uniform bound over all input tones using the chip Fourier series, similar to the analysis in [ERW11]

for the NUS. A simpler approach is to consider just the chip PSD, which gives an idea of “average

case” behavior.

Regarding the finite-period chip sequence PSD (2.5.12), there are two salient issues. The first is

the sinc window, and this will be the subject of §2.5.2.1 which discusses fchip. The second feature

is the discrete spacing, which is caused by Nchip <∞, and this is the subject of §2.5.2.2.

Both sections will consider the power output when faced with an input signal of the form x(t) =

Ae2πifint. If Hsys(f) is the transfer function of the system (discussed in §2.6), then the output power

is

Pout =

∫ ∞
−∞
|A|2|Hsys(f)|2Ψ(f − fin)df.

If η0 is the noise output power (also a function of H), then a reasonable prerequisite for the signal

post-processing to recover x is that

Pout ≥ η0SNRmin

for some value of SNRmin.

Before discussing fchip and Nchip in detail, we note a few complications which arise. First, the

power output depends on both Ψ and Hsys, so the chip sequence and the integrator cannot be

considered independently. In future work we hope to make a combined analysis, but for now we

treat them independently. The second issue is that the length of Nchip is not the only consideration,

but that the relation of Nchip to Nint is significant. For example, if Nchip and Nint are relatively

prime, the system matrix Φ needs Nmin = NchipNint columns to characterize it, which means the
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Figure 2.24: Effect of chipping rate. See also the companion Figure 2.25. Note that chipping at an infinite
frequency is not actually desirable.

calibration procedure is much longer. In general, Φ has Nmin = LCM(Nchip, Nint) columns. If

Nint = 100, there is a very significant difference between Nchip = 1000 and Nchip = 1001. For the

calibration reason, it is convenient to keep LCM(Nchip, Nint) . 4000. But as we will see below, it

can also be quite bad for reconstruction behavior if Nchip is a low multiple of Nint or vice-versa.

2.5.2.1 Chip sequence rate

The PSD Ψ of the chip sequence is proportional to
sin(πf/fchip)
πf/fchip

, which is zero when f = fchip. If an

input has frequency fin, the signal, after mixing with the PRBS, is just a convolution of the sinc

with fin and −fin. Because the integration step will act as a low-pass filter, this means the output

power is determined by the integral of Ψ in the regions around −fin and fin. Thus, if fin = fchip,

the output power will be very small.

Figure 2.24 shows this effect. Each column shows a different PRBS: the left column uses a

PRBS that operates at such an extremely high frequency fchip � fs that it has a flat spectrum,

the middle column shows fchip = fs, and the right column shows fchip = fs/2. The red line in the

top row represents an input tone at frequency fin ∼ fs/2. The second row shows the result after
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mixing with the PRBS (the blue and green lines show the convolution of the PRBS with fin and −fin,

respectively). The third and fourth lines show the system after integration, which attenuates the high

frequencies, and sampling, which folds everything into [−fADC/2, fADC/2] (using fADC = 50 MHz).

By examination of the bottom row (which has the same y-axis scale for all columns), it’s clear that

the power in the fchip = fs variant is much greater than in the other cases.

Figure 2.25 shows the output power as a function of the input tone frequency fin, averaging

over many random trials. For fchip = fs, low frequency tones have only slightly higher energy than

high frequency tones. For fchip = fs/2, the output power vanishes as fin approaches fs/2 since fin

falls into a zero of the sinc function. With the infinite frequency PRBS, the power is constant as

a function of fin. However, the absolute value of power is lower than in the fchip = fs case, since

the energy of the PRBS was spread out among all frequencies, whereas for fchip = fs the energy is

concentrated in the first lobe of the sinc function. Thus fchip � fs is actually not desirable. The

ideal PRBS would have a PSD that is flat inside [−fs,+fs] and 0 elsewhere.

If we restrict ourselves to using a pseudo-random ±1 sequence, then fchip = fs is close to the

optimal rate. If fchip � fs, then a low-frequency signal will generate large measurements and a

high-frequency signal will generate tiny measurements, thus failing the principle of democracy. If

fchip � fs, then too much PRBS power is out-of-band and wasted, and measurements of all signals

will be too small and thus affected greatly by noise.

2.5.2.2 Chip sequence period

For hardware calibration and practical design reasons, the chip sequence repeats every Nchip terms,

which is Tchip seconds where Tchip = Nchip/fchip (and from henceforth, we will fix fchip = fs). The

PSD of the chip sequence has a discrete spectrum that is only nonzero at multiples of 1/Tchip. The

considerations here are exactly the same as in the previous section. If an input signal has carrier

frequency fin, then because the integration acts as a low-pass filter, the dominant contribution to the
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Figure 2.25: Using the same setup as Figure 2.24, and plotting power as a function of fin
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output comes from integrating Ψ in the regions near −fin and +fin. If fin is a multiple of 1/Tchip,

then Ψ(fin) is nonzero. If fin is not a multiple, then the attenuation effect of the the integrator H

will be more significant.
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Figure 2.26: Depiction of problem associated with short chip periods Nchip. Using N = 2048. Shown are two
possible inputs, one in red and one in blue. The left column shows an infinite-period chip sequence, while the
middle and right columns show finite length chip sequences. The chip sequence with length Nchip = 8 works very
well for signals (like the blue signal) with carrier frequencies that are lucky enough to be near one of its harmonics
(harmonics spaced every 1/Tchip = 625 MHz). For signals that are not near the carrier frequency, like the red
signal, the power of the output is much less. For the left column, the energy of the ADC samples in the blue tone
were .69 that of the red tone. For the rightmost column, the blue samples were 2.8 times larger in energy than the
red samples. The center column shows the real disaster: the energy of the samples of the blue tone are 91 times
larger that of the red tone. See Figure 2.29 for validation that this hurts reconstruction.

Figure 2.26 demonstrates this problem. Shown are three versions of the PRBS, with Nchip =

{∞, 8, 16}. In practice, we will consider Nchip ' 100, but we use small values of Nchip in the plot since

they demonstrate the effect more clearly. The red and blue lines represent two input frequencies fin

and f ′in, chosen so that both of them lie on the 1/Tchip grid when Nchip = 16, but so that only f ′in lies

on the 1/Tchip grid when Nchip = 8. After mixing, the power of both signals is the same. However,

the integration severely reduces the power of the red signal, since its components are farther from

DC.

This problem cannot be eliminated by changing the frequency response of the integrator, because

we argued previously that we need the integrator to show decay: if it has a flat response, then it

is really just sampling from a single point in time (i.e., h(t) = δ(t)). However, the exact shape

of H determines the how bad the problem is. The design of the integrator is considered in §2.6

independently of Nchip, but we hope to simultaneously analyze the two parameters in future work.
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Recall that when choosing fchip, we argued that fchip = ∞ is not actually desirable (nor is it

implementable). However, Nchip = ∞ is desirable from a theoretical perspective, as Figure 2.26

suggests. Unfortunately this would make calibration impossible, so we do not consider this option.

The Caltech design uses a shift register which consumes power proportional to Nchip. The Northrop

Grumman design is based on LFSR which generates Nchip = 2r − 1 where r is the number of taps,

and consumes power approximately proportional to r. Thus the LFSR variant might be better for

future work since it allows large Nchip, although this would require more work for calibration.

Figure 2.27: Initial codelength Nchip tests from 2008. We chose 128 to be safe.

Other than just the length of Nchip, the relation of Nchip to the integration period Nint is

important. This does not affect the power, but rather the identifiability. If Nchip is a multiple

of Nint, then after sampling, the result will be a discrete spectrum, and it may be possible for two

distinct signals with carrier frequencies fin and f ′in = fin +fADC to generate the same measurements.

In general, if Nchip and Nint have a large GCD, then the outputs of the RMPI are more similar to

each other, so the system is less robust.

To verify all of the above reasoning, we present results from several numerical tests. Figure 2.27

shows initial tests from August 2008 that were used to inform the initial version 1 design. This test

and all other tests were using Nint = 100 (i.e., fADC = 50 MHz) unless otherwise specified. The
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results from this first test suggested that performance was catastrophically bad if Nchip < 40, and

inspired the choice Nchip = 128 in order to be a safe margin away from this failure point.

Figure 2.28 shows the spectrum of a single multi-tone input, and how it aligns with the PRBS

grid. Using a realistic model of the system and full `1 reconstruction, we found that the tones near

1/Tchip gridpoints were recoverable, while those far from the gridpoints were not recoverable.
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Figure 2.28: The PSD of chipping sequences (blue) and pure tone inputs (green). For a fixed integrator bandwidth
B, with PRBS of length Nchip = 32 (top plot), the tones at 700, 1200, and 1800 MHz did not reconstruct successfully
because they have large frequency separation from the nearest PRBS frequency 1/Tchip = 156.25 MHz. Tones at
800 and 1750 MHz, close to a PRBS frequency, were recoverable. In the bottom plot with a 128 bit sequence, the
maximum frequency separation was far less (1/Tchip = 39.06 MHz), and reconstruction was successful for all tones.

Next, we present evidence from some matched filter reconstructions, using a similar testing

procedure as that described in the chip rate section. Because of the speed of reconstruction, we are

able to generate meaningful statistics, and also have the benefit that the matched filter reconstruction

relies on no parameters. The data were collected using an ideal Bernoulli matrix Φ, so integration

was approximated by a discrete sum; for the sake of PRBS length, this approximation is most likely

not significant.

Figure 2.29 shows the error of the frequency estimate as a function of (fin−1/Tchip) mod 1/Tchip.

A value of 0 on the x-axis indicates that the input frequency fin was exactly on a grid point. The

different plots show various values of Nchip. Each point represents the result of one independent test.

Noise was included in the measurements; these data are a subset of the same data plotted differently

in Figure 2.30. In Figure 2.29, we see a clear dependence between low error and fin ' 1/Tchip

mod 1/Tchip, which confirms the reasoning above.

Figure 2.30 plots frequency error (and empirical frequency recovery “success” rates) as a function

of of Nchip for various amounts of additive noise. As expected, recovery is more likely for large Nchip,

but the effect is small after about Nchip = 100, so the choice of Nchip = 128 is about optimal. We also

include results of the same simulations but using a matrix with staggered rows, and this improves

recovery, especially for small Nchip. The simulations show periods Nchip of various lengths, including
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Figure 2.29: Explains why we want long Nchip. Error increases the farther we are from a harmonic. See Figure 2.26
for a cartoon depiction. See also Figure 2.30.

some chosen to be very close to each other but with different properties related to Nint = 100; for

example, we included Nchip = {99, 100, 101}. The plots show very clearly that the behavior is

different for even these small changes, but this behavior is not consistent over all noise levels and

we find the results inconclusive and in need of further study.
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Figure 2.30: Tested PRBS sequences of period Nchip = {8, 16, 50, 64, 67, 99, 100, 101, 127, 128, 256, 512,∞} (∞ refers
to length N , which was N = 1024 for this test). Other simulations parameters were the same as in Figure 2.19.
Dashed lines for a matrix with staggered channels; this typically improves results, but not by too much. The
seemingly bizarre choices of PRBS lengths were chosen because it is not only relevant what their length is, but also
the least common multiple of the PRBS length Nchip and the ADC rate Nint. The ADC samples every Nchip = 100
Nyquist samples.
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2.5.2.3 Case study: test of NG chip sequence

In the Caltech RMPI, the PRBS for each channel is loaded from a 128-bit shift register, so this can

be programmed to an arbitrary sequence. However, this adds significant power cost to the design.

Since this is the first working RMPI chip, it was considered worth the sacrifice in order to allow the

extra flexibility: for example, it is possible to implement the run-length-limited ideas.

The Northrop Grumman chip saves power by avoiding shift registers, and instead generates

the PRBS sequence from a LFSR. Initially, the direct outputs of a LFSRs were used, but after

this author’s analysis in January 2009, it was identified that this caused significant performance

degradation, partially due to the occasional very long runs of +1 or −1. For a system with many

channels, this is not an issue, but the NG chip only has 4 channels. In addition, the sequences

sent to each channel were correlated, which added to the problems. Offsetting (aka staggering) the

channels helps the situation, but not enough to match the performance of the Caltech RMPI.

Following the analysis, the PRBS was modified so that it was generated by a Gold code, which

can be created by mixing the outputs of LFSR, so the additional hardware complication was minimal.

The output of each Gold code repeated every 63 periods, but only the first 52 periods were used.

Thus each of the four channels used a PRBS with length Nchip = 52. Because the NG design uses

four channels, the ADC rate is greater than in the Caltech design, and operates just below 100 MHz,

so that Nint = 52. Thus Nchip = Nint.

This design underperformed, so we analyzed the system. An empirical test was conducted as

follows, which consisted of 100 independent trials. For each trial, a carrier frequency was picked

uniformly at random from between 300 MHz and 2.5 GHz, which was modulated by a simple

trapezoidal pulse that spanned almost all the signal; the Nyquist length was N = 1024 so this was

about 200 ns. To be realistic, synthetic noise was added both to the signal and to the measurements,

calculated to give 60 dB SNR separately.

Reconstruction was done via two methods. The first method used the over-complete Gabor

dictionary with about 8 reweightings using the NESTA algorithm. The second method was more

complicated, and consisted of first reconstructing the signal with a DCT orthobasis and reweighting

a few times, followed by using the over-complete Gabor dictionary with reweightings. The second

method almost always worked better. These techniques will be discussed in §2.7.

Reconstructions were declared either a success or a failure. To fail, two criteria had to be met (in

practice, criterion 1 was almost never met without criterion 2 also being met). Both criteria were

based on the frequency only, using Welch’s method to estimate the PSD. The criteria were

1. Failure Criterion 1: the peak of the spectrum was not close to the actual carrier frequency.

The allowable tolerance was set to the the width of the main lobe at -20 dB from the peak.

2. Failure Criterion 2: the side-lobes were too large. Side-lobes were required to be 20 dB lower
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Failure rates per 100 tests
Design Method 1 Method 2

Nchip = 52, stagger 1 46 33
Nchip = 52, stagger 2 44 31
Nchip = 52, stagger 10 48 35

Nchip = 52, seed 1 57 43
Nchip = 52, seed 2 54 39
Nchip = 52, seed 3 50 35

Nchip = 51, seed 1 25 13

Nchip = 104, seed 1 13 7
Nchip = 104, seed 2 20 7
Nchip = 104, seed 3 20 9

Nchip = 3276 0 0

Nchip = 312, random signed Bernoulli 0 0
Entire channel a Gaussian matrix 0 0
Caltech design, Nchip = 128 0 0

Figure 2.31: June 2009 tests of the Northrop Grumman chipping sequence. The first half of the table show various
NG designs; Nint = 52. When Nchip = Nint or Nchip is short, the performance suffers. The NG design was
modified to use Nchip = 3276 which results in much better performance. The second half of the table show some
other models for comparison; the Caltech design seems to work well.

than the main peak.

By inspection, most signals that passed these frequency criteria also looked good in the time

domain. The results are presented in Table 2.31. The LFSR depends on an initial state, referred to

as a “seed,” and the test was run using various seeds in order to determine if the poor performance

was due to an unlucky choice of the seed.

This alignment of Nchip = Nint proved to be disastrous, and shifting the channels relative to

one-another did nothing to improve the results, nor did changing the seeds of the Gold codes. These

results are reported in the first 6 rows of the table.

Initially attempts tried two fixes that yielded only modest improvement. The first fix is to take

51 samples of the Gold code to use for the periodic PRBS, with the idea that the mis-alignment

Nchip 6= Nint will improve recovery. This appears to have helped (see Table 2.31). A similar

modification is to take 104 samples from the Gold code (which means the last 41 sample are duplicates

of the first 41), and this also helps. However, neither modification matches the performance of the

Caltech design or other baseline tests shown at the bottom of the table.

In light of these results that show poor performance compared to the Caltech Φ matrix, the NG

team found a way to devise a PRBS of length Nchip = 52× 63 = 3276 by adjusting the LFSR inputs

to the Gold code. According to the above criteria, this adjustment is extremely beneficial and results

in no errors per 100 tests.

Note that in order to fully characterize the system, Φ must have 3276 rows. For the Caltech

system, Nchip = 128 and Nint = 100, so their LCM is 3200; thus Φ has 3200 rows, so calibration of

the Caltech and NG systems are of about the same difficulty.
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2.6 Integration

Integration can be thought of in the time domain, or as a filter in the frequency domain, with a

H(s) = 1/s transfer function. If we think of integration as a filter, then we quickly realize that

H(s) = 1/s is not realizable, and so we will use approximate-integrators. The common approxima-

tions are that the integrator is either a single-pole system or a double-pole system. For any of these

cases, we can write down the exact formula that represents (non-ideal) integration, as described in

the modeling section. This section concerns the constraints on the poles of the integrator.

Figure 2.32: A more detailed diagram of the blocks in a single channel (after the LNA). See also Figures 2.11
and 2.12.

At low frequencies, the system is dominated by the smallest pole, also called the “inner pole”.

The transfer function of a single-pole system, with pole a, is H(s) = 1/(s + a), and the impulse

response is h(t) = e−at. If the pole is large, then h decays quickly in time. See Figure 2.33 for a

visualization.

2.6.1 General constraints

The ideal RMPI uses an exact integrator, so H(s) = 1/s. A first-order low-pass filter has attenuation

of 20 dB per decade, which means exactly that the attenuation at high frequencies obeys 1/s, so an

integrator is quite similar to a low-pass filter at high frequencies. In papers such as [TLD+10], it is

mentioned that an exact integrator is not necessary, and any similar low-pass filter works: “It suffices

to perform low-pass filtering before the samples are taken.” The actual story is a bit complicated,

since the performance depends heavily on the bandwidth of the low-pass filter. We present results

from a preliminary Northrop Grumman design that tried to approximate a band-pass filter (see

Figure 2.34), and see that it has bad performance. Typical results are shown in Figure 2.35.

Consider an ideal band-pass filter with large bandwidth, such as from [−fs/2, fs/2]. That is,

H(s) = 1, |s| ≤ fs/2 (or any constant) and H(s) = 0 otherwise. We can show how this system will

perform badly. Consider two inputs x1 and x2 with frequencies f1 and f2. After mixing with the

chip sequence c(t), the spectrum of the signal is just a convolution of ĉ(f) with f1 or f2. Since H

has a flat response, the Fourier transform of the first signal F(x1c) and the second signal F(x2c)
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Figure 2.33: Plot (a) a block diagram of a realistic integrator, showing the parasitic resistance. It is impossible to
make an integrator without a pole a. Plot (b) shows h(Tint − t) where h is the impulse response h(t) = et/τ and
τ = 1/a is the time constant. If the time constant is too small, then the correlation with the signal only occurs for
the time right before the sampling, which is bad for sampling radar pulses. See also Figure 2.8. The right plot (c)
shows the rows of a Φ matrix from the single pole model, with τ = 10 ns (left) and τ = 50 ns (right). The version
1 RMPI design has τ = 22 ns, and the version 2 RMPI design has τ = 3333 ns.

only differ in the region [fs/2 − ∆f, fs/2 + ∆f ] (and the negative frequency counterpart) where

∆f = |f1− f2|. If f1 ' f2, then the difference in the measurements of the system are determined by

integrating the integral of the chip sequence Fourier transform over [fs/2−∆f, fs/2 + ∆f ]. So for

similar frequencies, the measurements will not be significantly distinct, and therefore reconstruction

by any method is not stable.

This agrees with the time-domain intuition. The larger the flat response of the filter H(s), the

more similar the system is to being a delta function in time. As we’ve argued, a delta function in

time is not good for compressed measurements since it is reasonably coherent with radar pulses.

2.6.1.1 Northrop Grumman integrator design

To summarize the above argument, if H(s) = 1, then H(if1) and H(if2) are indistinguishable.

If H(s) is a bandpass filter with large band, then H(if1) and H(if2) are distinguishable, but not

robustly so. A much better frequency response is H(s) = 1/s since then H(if1) and H(if2) are

distinct for even small shifts |f2 − f1|.

Shifting. If the integrator has a large pole, then h(t) is narrowly concentrated in time. See

Figure 2.33 for a depiction. The first measurement from the system is
∫ Tint

0
x(t)c(t)h(Tint − t)dt,

so this heavily weights x(Tint) and earlier, and ignores x(0). Subsequent measurements will weight

regions just before x(nTint). Thus parts of the signal x are almost completely ignored by the

measurements. An obvious fix is to shift/stagger each channel by a unique amount. For example,
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Figure 2.34: Bode plots of preliminary NG integrator designs (solid lines), proposed modification (50 MHz single
pole), and the Caltech ver. 2 final design (302 KHz pole; see Table 2.4). The integration filter should have its first
pole as close to DC as possible so there is a “memory” effect. These NG designs performed poorly (see Figure 2.35)
because they are too similar to an ideal low-pass filter.

channel one integrates from [0, Tint], channel two integrates from [Tint/8, 9/8Tint], etc.

Consider the preliminary Northrop Grumman designs shown in Figure 2.34. We also include a

slightly improved version with its lowest pole at 50 MHz pole. The top of Figure 2.35 shows that even

for the improved 50 MHz version, we fail to reconstruct a pulse; using a Bernoulli matrix, or using

the Caltech design, the same pulse was reconstructed, so this is an indication that the integrator is

underperforming. The bottom of the plot shows the reconstruction when using the same design but

with shifted channels. Performance is much better. To systematically test the effect of shifting, we

use the single-pole model, and vary the time constant τ = 1/a and vary the amount of shifting. We

use Nint = 100, and consider offsetting each channel from one another by 0, 12, 25, or 50. Since there

are 8 channels, the offset of 12 per channel makes the most sense, since then no two channels align.

Figure 2.37 shows the results. For large time constants, the error is small regardless of shifting. For

a time constant of 12.5∆T , the error is very large (relative error is about 1) without using shifts.

Using any of the nonzero shifts, the relative error for this time constant goes down to between .02

and .1. Interestingly, the exact amount of shift does not seem to make a big difference. Because of

these results, we highly recommend staggering the channels. The only reason not to stagger channels

is for ease of calibration. The current version 2 design can be programmed to shift by an arbitrary

amount.
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Figure 2.35: Simulation using a preliminary Northrop Grumman design, using first-order filter 50 MHz pole and
4 channel at 100 MHz each (see Figure 2.34). Some of the initial NG designs were too similar to band-pass
filters, rather than integrators, and lacked the memory necessary to encode pulses. This was the best model tested
(February 2009). The top row is with all 4 channels aligned; the bottom row has shifted/offset each channel by a
quarter of the integration period. This shifting is extremely helpful.

2.6.1.2 Multipole systems

From a circuit design point-of-view, creating a single-pole integrator with a very small pole a is

difficult. In version 1 of the RMPI chip, the lowest achievable pole was about 44 MHz. If we allow a

multi-pole system, then it is much easier to push the first pole closer to 0. By doing this, the version

2 RMPI chip has its first pole at 302 kHz, and a second pole at about 300 MHz. With such a small

first pole, the impulse response h(t) is very flat over the integration time [0, Tint]. Figure 2.38 shows

matched filter tests of an exact 300 kHz integrator, and compares recovery to that of a Bernoulli ±1

matrix. The results are averaged over 400 samples, and the matched filter requires no parameters,

so this test is quite reliable. The single-pole model without stagger suffers slightly at high noise

level, but not by a significant amount, since the time constant 1/(300 kHz) is very long. This test

adds noise of the form Φ(x)+z, instead of Φ(x+z), since for the latter model there is no discernible

difference in performance. The variance of z was adjusted to account for the gain of the system.

With the former noise model, the additive noise z will make it slightly more difficult to recover x at

the beginning of time periods. We conclude that the 300 kHz pole has little effect on the system,

and is much better than the 44 MHz pole in the version 1 design.

But does the second pole near 300 MHz have an effect? Figure 2.39 shows several tests on different

types of integrators. The left column shows a version of Φ generated from a Simulink model that

incorporated a realistic version of the integrator, with several zeros and poles. It performs similarly
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Figure 2.36: Figure (a) shows copies of h(nTint − t) for n = 1, . . . , 9 overlaid, for h(t) = e−at where a is large. The
top data (in red) are for channel one, and the bottom data (in blue) are for channel two. We see that without
shifts, these align. For times t = [0, 20∆T ], x(t) is barely measured. This can be fixed by staggering the channels.
Figures (b) shows the matrix Φ of a staggered system.

Figure 2.37: The results of four independent reconstructions using a single-pole model. The four plots show four
different values of the channel stagger. In the 0 offset model, all channels aligned; in the 12 offset model, none of
the channels aligned; in the 25 and 50 offset models, 2 and 4 channels aligned, respectively. For small values of the
time constant, shifting by any amount is helpful.
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Figure 2.38: The ±1 model compared to the single-pole model (with 300 KHz pole). This compares performance,
not modeling error. The single-pole model suffers a bit, due to the decay of the time domain transfer function h(t).
Shifting the channels helps this. N = 2048, and simulations used 2 realizations of each Φ matrix and then 200
sample noise vectors and carrier frequencies; x was a smooth pulse of length 100 ns. The dashed horizontal line
shows the frequency resolution of the grid search.

to the other Φ models, so it seems that it has little effect.

Let the second pole be at location a2. The transfer function of a two-pole system is

H(s) =
1

(s+ a)(s+ a2)

so that H(s) decays like 1/s2 for frequencies much larger than a2. To reason about the effects of

the second pole, we simplify and consider

H(s) =


1

a2(s+a) s < a2

0 s ≥ a2

.

If a2 is in the range 100 MHz to 1 GHz, this is quite similar to the scaled single-pole integrator

H(s) = 1
a2(s+a) . The main limit is that if the PRBS has a short repetition period Tchip, then we

must have a2 � 1/Tchip, otherwise signals with frequency that is far from a harmonic of 1/Tchip

will generate very small measurements. For the current chip design, Tchip = 128∆T , so 1/Tchip =

39 MHz, and hence a practical lower-limit of a2 is about 100 MHz, since otherwise all but one or two

of the spikes in the spectrum of x(t)c(t) will extremely attenuated. With only one or two of Fourier

series of c in the passband, it is much more likely for two inputs to generate similar measurements,

and hence the system is less robust. The small bandwidth would also exacerbate the power difference

between inputs that are exact harmonics of 1/Tchip and those that aren’t.

To summarize the findings, we can view the integrator as a low-pass filter in the sense that we

do not need frequencies above about 100 MHz, but the passband behavior of the filter must not be
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Model Zero First pole Second pole Third pole

NG InP NA 12 MHz NA NA
Caltech ver. 1 NA 44 MHz NA NA
Caltech ver. 2 360 MHz 302 KHz 361 MHz 1.696 GHz

Table 2.4: Poles and zeros of the integrating filter for various design. Poles are calculated at 3 dB cutoff from
magnitude response. See also Figure 2.40.

flat! The exact poles and zeros of the RMPI are shown in Table 2.4, and the extracted frequency

response of the integrator, taken from SPICE simulations, is shown in Figure 2.40.
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Figure 2.39: Does the new integrator suffer compared to, say, a Gaussian matrix? Not much. This test used a
pessimistic noise level, and then ran three different amplitudes. For each test, 4 types of Φ matrix were used: a
realistic version from the calibration, a single-pole model, a matrix with iid N (0, 1) entries, and a Nyquist sampled
version (Φ = I). There is no significant difference. Only the two smallest signals are shown, since the large
amplitude signal had visually perfect reconstruction.
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Figure 2.40: Top: integrator frequency response. Bottom: LNA frequency response. Blue curves are gain (scale on
right axis), red curves are frequency response (scale on left axis). Results are from SPICE-extracted simulations.
See Table 2.4 for values of poles and zeros. Other major blocks were modeled as well, and the resulting design
parameters used to inform the Simulink model.
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2.7 Recovery

This section covers the reconstruction of a pulse from its samples, assuming that a linear model Φ

of the system is available. One of the key computations is solving an `1 minimization problem. This

was originally solved using a version of l1Magic [CR07b] modified to allow the analysis formulation.

Subsequently, we developed the algorithm NESTA (see Chapter 3) which is much faster. Detailed

considerations of `1 solvers are discussed in Chapter 3 and 4. This discussions below assumes the

existence of a `1 solver.

To give an idea of the computational time involved, a very high accuracy solve for N = 1024

with NESTA as the `1 solver, using several reweighting steps, takes 39 seconds on an i7 quad-core

computer at 1.6 GHz. For lower accuracy computations, recovery time is closer to 10 seconds. Of the

39 seconds, roughly 65% of the time is spent computing the Gabor frame code. This code spends

about half its time with O(N) re-arrangements, and the other half with O(N logN) FFT calls.

Most of this code is multi-threaded, and a reasonable estimate is that it would take 150 seconds

to run the entire recovery on a single core (when desiring extremely high accuracy). This same i7

machine reaches about 1.8 Gflop/s per core on the FFT using the LINPACK Benchmark [DBMS84],

so the computation requires roughly 270 Gflop. A medium-precision reconstruction requires about

100 Gflop. As of 2011, good GPU cards run about 500 to 1000 Gflop/s, so even with a special GPU

implementation, and assuming no major overhead losses, the computation takes .1 to .2 seconds.

Since N = 1024 represents T = 204 ns, this is a factor of at least 5 ·105 away from real-time recovery.

More work is needed to bring this down to a reasonable level. Matched filtering will likely be key.

One might imagine a hybrid system that uses crude methods for pulse detection and high-accuracy

`1 solves only when a pulse is detected.

Practical aspects of signal recovery for RMPI have not been discussed in a single paper, but

the ideas presented here draw upon many sources. Some ideas were discovered independently of

known results. For the matched filter, see related ideas in [DDW+07, DB10], as well as the recent

paper [ERW11]. There is also recent unpublished work by Michael Wakin on using a notched filter

to project out interfering signals; this relies on a result from [DW10].

2.7.1 Matched filter

An alternative to `1 minimization is the compressive matched filter, which is discussed in this section.

If there is much prior knowledge about the signal—for example, the exact shape of the pulse envelope

is known—then the matched filter is a very powerful technique, for in this case it is robust, fast,

and optimal. In general, the pulse envelope is not known well, and in this case `1-based recovery

methods are preferred. For the purposes of testing the system, the matched filter is used since it

represents the best recovery possible, and so exposes the limits of the system. Because it is fast, it
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allows hundreds of simulations in a short amount of time.

Consider our discrete model b = Φx0 + z. Assume x belongs to some parameterized set X ; for

example, X could be the set of Fourier modes on a grid of length N . We will actually allow the

set {ax : x ∈ X , a ∈ C} where c contains amplitude and phase information. Both x and c may be

complex, but we assume all other variables are real.
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Figure 2.41: Matched filter estimation of an off-grid pure tone. The periodogram estimates (top row) are biased,
even after accounting for the norms of the FFT of Φ.

Theorem 2.7.1 (Matched filter in “compressed domain”). If z ∼ N (0,Σ) and a0x0 ∈ X , then the

maximum likelihood estimator xMLE is given by the matched filter estimate

xMF = argmin
x∈X ,a∈C

‖b− Φ(ax)‖2Σ−1 .

Proof. Trivial, since the log-likelihood function is

`(x̂) ≡ logP(b|x = x̂) = logP(z = b− Φx̂) = const− 〈b− Φx̂,Σ−1(b− Φx̂)〉.

We’ll specialize this to the following parametric model. Let x be a real-valued tone which we

observe for T = N/fs seconds, with arbitrary phase and frequency (the frequency can be off-grid, but

still within [0, fs/2]), and windowed by a known window w (withW = diag(w)). Let fγ(n) = eiωγn/fs

be a complex exponential and Fγ = [fγ , f̄γ ] be a N × 2 matrix. For the moment, let γ be fixed. The

reason we use fγ and its conjugate (i.e., the negative frequency) f̄γ is that the measurements b are

real valued. This approach is equivalent to minimizing ‖b− Re(ΦWafγ)‖ over a ∈ C.

We can solve for the coefficient a ∈ C2 easily (c has two entries, but it will turn out to be
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conjugate symmetric, so it only has one complex-valued degree-of-freedom):

aγ ≡ argmin
a∈C2

‖b− ΦWFγa‖2Σ−1 = (F ∗γWΦTΣ−1ΦWFγ)−1F ∗γWΦTΣ−1b, (2.7.1)

min
a∈C2

‖b− ΦWFγa‖2Σ−1 = ‖b‖2Σ−1 − c∗(F ∗γWΦTΣ−1b). (2.7.2)

In practice, we choose fγ so that ωγ is on a (possibly over-sampled) grid. To minimize over all γ on

this grid, we compute b̃ = WΦTΣ−1b once, and then compute F ∗γ b̃ for all frequencies simultaneously

using a (possibly over-sampled) FFT. For every γ, the 2 × 2 matrix (F ∗γWΦTΣ−1ΦWFγ)−1 must

be computed, but this is independent of b, so it can be computed once and stored. So amortizing

this cost, we can find the best frequency ωγ up to a fixed frequency resolution ε by computing

over-sampled FFTs with complexity proportional to O((N2−ε) log(N)/ε). Σ−1 is computed via a

pseudo-inverse or regularized inverse, in order to make the process more robust.

For even higher accuracy in the frequency, a one-dimensional optimization using Matlab’s fminbnd

is performed in the region near the peak frequency found by the FFT method. This function does

not use the FFT, but is efficient since it typically only requires a handful of calls; it is also possible

to use the Goertzel algorithm, but this would probably not offer an advantage. See Figure 2.41 for a

plot of the minimal values of the functional in a region near a minima. In special cases, this function

is convex [ERW11] within small regions near the minimum. For our case, empirical results suggest

that it is also convex in a reasonably wide interval around its minimum. For very noisy signals, the

high accuracy search is not performed, since this level of precision is generally beyond the accuracy

level of the estimation.

Note that with the matched filter, there is less difference between input signals x that are “on-

grid” and “off-grid”. The spectral leakage which hurts `1-based recovery is no longer an issue, but

the sacrifice is the simpler signal model.
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Figure 2.42: Rate of successful recovery via matched filter as function of M and N . “Success” is defined as frequency
error less than .1 KHz. Input is tone of random phase and frequency. Matrix Φ is chosen iid signed Bernoulli ±1.
Recovery shows a strong dependence on M , and a weak dependence on N , as expected.

Figure 2.42 shows recovery of a randomly chosen sinusoid from M noiseless compressed mea-

surements, using a M × N matrix Φ with each entry iid signed Bernoulli. The signal has three
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parameters: amplitude, frequency, and phase, so typically M ≥ 3 measurements are needed to have

100% recovery. Note that recovery rates are lower when N is large, since this enlarges the size of the

ambient vector space. Because the frequency is chosen uniformly at random from [0, fs/2], this is

an infinite-dimensional problem and more closely resembles Logan’s phenomena [Log65,DS89] than

compressed sensing. To see how we can recover from so few measurements, consider the case when

the amplitude is known and we have two time samples, one at t1 and one at t1 +∆T , so M = N = 2.

Let the signal be sin(ωt+θ), and the measurements are b1 = sin(ωt1+θ) and b2 = sin(ωt1+ω∆T+θ).

Then ω and θ can be determined by solving a 2× 2 system of equations using the data sin−1 b1 and

sin−1 b2; this is not always solvable since | sin−1 b1 − sin−1 b2| < π, but if the signal is band-limited

then ω∆T < π and there is a unique solution.

For the special case when Φ is a subset of the identity, and the frequency is on-grid, then we

can be more specific. This is now a finite-dimensional problem. If N is prime, then Theorem 1.1

in [CRT06] guarantees that the the matched filter will recover all signals composed of K ≤ M/4

“on-grid” tones (the extra factor of 2 is because in the change-of-variables from time to frequency,

a signal with K tones has 2K nonzeros in the Fourier transform; think of this as the price to pay

for unknown phase). Furthermore, if K > M/4, then one can construct an un-recoverable signal.

In general, now let N be arbitrary, and again let the signal x have K “on-grid” tones so that it

is exactly 2K sparse in the Fourier basis F , x = Fα with ‖α‖0 = 2K. If Φ is a M ×N matrix with

iid Gaussian entries, then `0 recovery will successfully recover x whenever all M × 4K submatrices

of ΦF have only trivial nullspace. Thus typically M ≥ 4K is a necessary condition to guarantee

recovery. The results in Figure 2.43, which have K = 1, show that recovery with M < 4 is very rare.

When K = 1, the matched filter recovery is equivalent to `0 minimization.

Figure 2.43 shows the results of some matched filter experiments which give an idea of the limits

of recovery. The matrix is Φ ∈ RM×N with N = 1024, and the results are a function of M ; we

do not yet impose a block structure on Φ or use a windowed signal. For comparison, the RMPI

has M = 80 when N = 1024, it is well-above the threshold of recovery. The input signal is a pure

sinusoid with random phase and (off-grid) frequency, and no noise. The matched filter is extremely

computationally efficient when multiple trials use the same Φ matrix, so for each setting, 5 different

Φ matrices were generated, and for each matrix 100 trials were carried out.
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(a) Rate of successful recovery, N fixed. “Success”
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(c) Residual of matched filter

0 0.5 1 1.5 2 2.5

x 10
6

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Carrier frequency (Hz), modulo dF

F
re

qu
en

cy
 e

rr
or

 (
M

H
z)

 

 

5
16

(d) Effect of off-grid frequencies

Figure 2.43: (a) uses data from three different Φ ensembles: either each entry Φi,j is chosen from {+1,−1}
uniformly, or from {0, 1} uniformly, or from (−∞,+∞) with a normal distribution. In all subsequent subfigures,
we only show data from the {+1,−1} model since the results are not significantly different among the ensembles.
In (a), we confirm our intuition that more samples (larger M) improves the chance of recovery. In (b), a histogram
of the type of frequency errors is shown for each value of M . For large M , most errors are small, while for small
M (e.g., M = 5), errors are either small or catastrophic. Subfigure (c) shows the relationship of the matched filter
residual (2.7.2) to the frequency error. For large M , there is a clear relationship, likely due to how well the convex
optimization solver worked. For M = 2, the error was always catastrophic, but the residuals were small since the
matched filter is an exactly-determined problem. For M = 4, only the non-catastrophic errors show a relationship
between error and residual. Subfigure (d) plots the error as a function of how far the carrier signal frequency is
from a “grid” frequency dF = fs/Nchip = 4.88/2 MHz (Nchip = N in this example; that is, the PRBS did not
repeat). There is no discernible relationship for large M , which suggests that the matched filter recovery works
equally well for tones that are on- and off-grid. For small M , there is a non-linear correlation: if the frequency was
close to a grid-frequency, then a disaster was less likely to happen. But conditioned on whether a disaster occurs
or not, the nearness to a grid frequency does not affect accuracy.

The matched filter can be used on real data as well, but in this case the exact pulse window

is not known. The pulse window may be approximated by a rectangle, but a parametric search

over the start and end of the rectangle must be performed; for speed considerations, this search

may be done by a power analysis in the compressed domain. If more than one pulse is present, the

matched filter proceeds in a greedy fashion by identifying the dominant pulse, then subtracting off
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the pulse and repeating the process. This subtraction may not be accurate if the pulse window is

not exactly rectangular, so we expect l1 recovery to perform better than matched filtering in this

case. In general, if the window is unknown, matched filtering does not return an accurate estimate

of the signal, but it can often return accurate pulse descriptor words (PDW) such as the frequency,

phase, and time-of-arrival.

2.7.2 `1 recovery

Once data b have been taken, there are many options to recover an estimate x̂ of the original signal

x0. This section reviews the basic techniques, plus many tricks that are essential in practice.

2.7.2.1 Analysis versus synthesis

Let D∗ be the transform that induces sparsity in x, which is discussed in the subsequent section.

For now, assume it is fixed. The two variants of `1 minimization are synthesis:

minimize
α

‖α‖1 such that ‖ΦDα− b‖2 ≤ ε, (2.7.3)

and analysis:

minimize
x

‖D∗x‖1 such that ‖Φx− b‖2 ≤ ε. (2.7.4)

The dictionary D is assumed to be a tight frame, so that DD∗x = x. If D is a basis, then the two

programs are equivalent by a change-of-variables, since D∗Dα = α. In general, D is an overcomplete

dictionary, and the two programs are not equivalent. That is, if x = Dα, it is not necessarily true

that α = D∗x. The differences will be further explored in §3.6.1 and §4.7.5. Since D is overcomplete

(say, N × D and N < D), x is N -dimensional and α is D-dimensional. The analysis problem has

fewer variables, but the same number of constraints, so it is effectively more constrained.

As a simple example of the differences, let D = (I, I), and x = e1 where e1 is the first unit vector.

By analyzing x, we have D∗x = [e1; e1] (in Matlab notation) which is 2-sparse. Via synthesis, we

have x = Dα1 = Dα2 for α1 = [e1; 0] and α2 = [0; e1], and even x = D(tα1 + (1 − t)α2) for any t.

The synthesis coefficients can be sparser, but not they are unique and less stable

Some preliminary results about the differences appear in Chapter 5 of a recent PhD thesis [Ran09],

where it is suggested that analysis often recovers signals more effectively. The Phase 0 report on the

DARPA project reaches the same conclusion. The work in [EMR07] reports that analysis performs

better than synthesis when using standard test images, and [CWB08] reports similar results on

pulse signals. That work also notes that when reweighting, the differences are exacerbated. More

experiments appear in [SED04,SED05]. Recent theoretical work [CENR11] has shown that analysis

enjoys similar theoretical properties as the synthesis formulation does.

108



We propose an additional explanation, based on the observation that reweighting exacerbates

the difference between synthesis and analysis. Consider the case of a dictionary that is heavily

redundant. To simplify, we take this to the extreme, and assume that there are two atoms φ1 and

φ2 which are identical; write α1 and α2 for their respective coefficients.

In synthesis, since α is the object of interest, it is intended to be sparse, so even if there is energy

in the φ1 component, it is likely that either α1 is zero or α2 is zero. Without loss of generality,

let α1 > 0 and α2 = 0. If `1 minimization were performed on a slightly perturbed dataset b̃ ' b,

perhaps α̃1 = 0 and α̃2 > 0. But once reweighting is applied, the symmetry is broken. If α1 > 0 and

α2 = 0, then the weights obey w1 < w2, so at all future reweighting steps, it is nearly guaranteed to

keep α1 > 0 and α2 = 0. In a sense, the support has been locked-in. In a realistic case, φ1 and φ2

are not identical, so their coefficients are not interchangeable. If α1 and α2 are incorrectly identified

after the first round, then reweighting will not fix this, and α becomes trapped in a local minimum.

The opposite problem might happen too: reweighting is used to force some coefficients to zero, but

if there are nearly interchangeable coefficients, forcing one coefficient to zero will just cause another

similar coefficient to grow larger.

In contrast, analysis is much more uniform. If φ1 ' φ2, then α1 is guaranteed to be close to

α2. Analysis can better exploit the reweighting technique. The downside of analysis is that extreme

sparsity is not as possible, but this may be worth it for the trade offs.

To determine which formulation to use for the RMPI recovery, realistic numerical simulations

were performed. A few of the results are shown in Figure 2.44. The results were overwhelmingly

in favor of analysis, so all subsequent experiments have used analysis. However, these simulations

were in the early phase of the project, and it would be useful to re-run the comparison tests using

the better calibrated Φ matrices.
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Figure 2.44: Performance of analysis formulation and synthesis formulation. Original tests from 2008 using l1Magic.
Repeated over independent runs (noise varied) and 4 signal models: narrow and wide pulses, and low and high
frequencies.
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2.7.2.2 Dictionary choice

A general purpose reference for this section is [Mal08], but we don’t cite specifics since most of this

material is well known. Gabor frames go back to at least Gabor in the 1940s, who was inspired by

musical scores. This type of harmonic analysis has been well-studied in many communities due to

its widespread usefulness and the interest in wavelets beginning in the 1980s.

Dictionaries. A dictionary D ∈ RN×D of D unit-norm atoms φd is chosen to represent the radar

signal x: x = Dα =
∑D
d=1 αdφd for some coefficients α. It is also possible to consider complex-valued

dictionaries, but since x is real-valued, it is always possible to convert a length D complex coefficient

vector α to a length 2D real-valued vector, so we assume wlog that α is real. The “analysis”

operation is D∗x, and the “synthesis” operation is Dα. The statements below are tailored to finite

dimensions, but we remark that most of these hold in any separable Hilbert space. In Hilbert space,

a dictionary must have a dense span; in finite dimensional spaces, all we require is that D has full

row-rank. If it doesn’t have full column-rank, we say D is redundant or over-complete.

We are typically interested in over-complete dictionaries, so D > N , and thus it is not possible

for D∗D = ID, although it is possible for DD∗ = IN . The dictionary is a frame if DD∗ is non-

singular, and a tight frame if DD∗ is a scaled identity aIN , where we call a the frame bound. Thus

a frame has a pseudo-inverse D† = D∗(DD∗)−1, and for a tight frame, the pseudo-inverse is just a

scaled version of the adjoint. The dual analysis operation is D†x, and the dual synthesis operation

is (D†)∗α. For tight frames, the analysis and dual analysis, and synthesis and dual synthesis, are

the same, up to constants.

If D1 and D2 are both tight frames, then via block matrix multiplication, it is clear that D =

[D1,D2] is also a tight frame.

There are three considerations when choosing a dictionary D:

1. D should approximate the signal well, meaning that for every signal x, it can be represented

x = Dα for some α that only has a few large coefficients.

2. The atoms φi of D should be as incoherent as possible; in other words, D should not be

unnecessarily large.

3. All analysis and synthesis operations should be computationally efficient.

The signal model is that x is a radar pulse, which means it is localized in both time and fre-

quency, so we seek a dictionary that approximates these signals well. For this reason, the Fourier

basis is a poor choice, since all elements have full time support. However, due to the computation

requirements, most realistic choices of dictionaries are based on the Fourier basis so that they can

take advantage of FFT routines. Another class of dictionaries is based on wavelets, since there is a

fast wavelet transform.

110



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−7

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time (sec.)

Sample elements from the "Gabor" dictionary

Sample radar signal

time (ns)

fr
eq

u
en

cy
(G

H
z)

200 400 600 800

0

0.5

1

1.5

2

2.5

Level 2 of Gabor Transform

time (ns)

fr
eq

u
en

cy
(G

H
z)

200 400 600 800

0

0.5

1

1.5

2

2.5

Level 4 of Gabor Transform

time (ns)

fr
eq

u
en

cy
(G

H
z)

200 400 600 800

0

0.5

1

1.5

2

2.5

Level 6 of Gabor Transform

time (ns)

fr
eq

u
en

cy
(G

H
z)

200 400 600 800

0

0.5

1

1.5

2

2.5

Figure 2.45: Sample elements from a multiscale Gabor frame. Left: time domain. Right: time-frequency plane

Gabor Frames. We consider Fourier-based dictionaries. Two major classes are the Gabor dic-

tionaries and the lapped Fourier/DCT dictionaries (such as the modified discrete cosine transform

used in MP3 compression). The two classes share similarities, and while we choose to present the

dictionary in a Gabor framework, we have not lost much generality.

Let F be the N ×N finite Fourier basis, with N columns fd, where

fd(n) = ei2πdn/N .

Let g be a window function (e.g., Gaussian, sine), and write G = diag(g). Define gm[n] = g[n−mM ]

to be a shifted version for some constant M , and similarly for Gm. Then a Gabor dictionary is

D = [(FG0), (FG1), (FG2), . . . , (FGN/M−1)]

where we assume M |N .

The most useful Gabor dictionaries are those that are tight frames. To be a tight frame, we need

IN = DD∗ = F ∗(G2
1 + . . . G2

L)F.

In other words, g2 must be a partition of unity when shifted by M . We consider only windows g

such that g2 is periodic in N .

The dictionary used for the RMPI relies on an iterated sine window:

g(x) = sin(π/4(1 + cos(πx))), x ∈ (−1, 1]
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(implicitly, define g(x) = 0 outside (−1, 1]), and the discrete version is

g[n] = g(−1 + 2n/N), n = 1, . . . , N.

Using simple properties of sine and cosines, we see that g(x)2 + g(x + 1)2 = 1, so this is a tight

frame.

The trivial window gF ≡ 1 is valid (M = N), as is the window gT which is only nonzero for a

single discrete point. These can be viewed in the time-frequency plane as extreme types of tiling.

Viewing the time-frequency (T-F) plane with time on the horizontal access and frequency on the

vertical access (as in Figure 2.45), where as gT corresponds to atoms that are very skinny (and also

short). We would like a Gabor frame that tiles the T-F plane with atoms of compact support (so

they approximate radar pulses well) and minimal overlap (to minimize coherence among the atoms).

What can we expect? In the best case, we want exactly no overlap, which means that D is not only

a dictionary but also a basis.

Unfortunately, the uncertainty principle prevents this, as quantified in Balian-Low theorem which

states that no windowed Fourier basis exists if the window g is smooth and of compact support

(clearly, if we allow gF, then the D = F which is a basis). If we want well-localized T-F atoms, we

must accept overlap, which is why D is usually over-complete.

We note that Mallat (§12.3.3 [Mal08]) describes a Gabor dictionary based on a discrete Gaussian

window which is nearly a tight frame; the advantage of that particular construction is that it is

translation-invariant and multi-scale. It may merit further consideration for the RMPI, but so far

we stick to tight frames.

Multiscale Gabor Frames. Exploiting the property that concatenating two tight frames D =

[D1D2] gives a new tight frame, it is easy to build up a multi-scale Gabor frame.

Consider the window function g described previously, where g(x)2 +g(x+1)2 = 1 for x ∈ (−1, 0].

Let g(2)(x) , g(2x mod (−1, 1]), then g(2)(x)2 + g(2)(x+ 1/4)2 + g(2)(x+ 1/2) + g(2)(x+ 3/4) = 1,

so the dictionary defined with F and G(2) is also a tight Gabor frame. We can add this to the Gabor

frame that used the original window, and the result is a new tight Gabor frame that has window

functions at two levels. Clearly this can be repeated, so that windows of various widths are included

in the dictionary.

A final twist on the windows is to introduce shifted versions. Since g(x)2 + g(x+ 1)2 = 1 and g2

is periodic with period 2; it is also true that g(x−1/2)2 +g(x+1/2)2 = 1. So in addition to windows

G of different widths, we can also include windows that are shifted. In practice, we typically include

about 2 levels of narrow windows, and one shifted variant of each narrow window.
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Frequency scalings. Previously, attention was restricted to the N × N Fourier basis F , which

was windowed by some diagonal window matrix G, where the Fourier atoms are fd(n) = ei2πdn/N for

d = 1, N . It’s also possible to use a zero-padded or sub-sampled Fourier frame. The 2× zero-padded

Fourier frame consists of atoms

fd(n) = ei2πdn/(2N) for d = 1, . . . , 2N

so it has half the spacing in frequency. Likewise, a 2× sub-sampled Fourier set consists of

fd(n) = ei2π2dn/N for d = 1, . . . , N/2

which, by itself, does not span the space.

The multiscale Gabor frame that we use in practice will adjust F to be oversampled when using

a wide scaling of the window, and a sub-sampled Fourier set when using a narrow scaling of the

window. A basic theorem by Daubechies (see [Mal08]) shows that the frame bounds (of a single-scale

Gabor frame), and hence the redundancy, are directly related to the product of the frequency scaling

and the time scaling.

In general, the parameters of the Gabor frame are picked via trial-and-error by testing which

frames give the best reconstruction results. This also depends on the length N used. Because test

signals are generated with a known window, it would be easy to overfit the parameters of the Gabor

frame to work very well for certain test signals, and hence we do not try to fine tune the parameters.

Real radar signals are generally “supposed” to be trapezoidal, but they are generated by waveform

generators with limited bandwidth, which has the effect of smoothing the trapezoidal window. This

is beneficial to recovery since the signal will have fewer sharp edges and hence a sparser frequency

representation.

For a typical reconstruction, the Gabor frame is between 8× and 64× overcomplete, and usually

between 12× and 20× overcomplete. The signal length N is between 210 and 214 depending on what

calibration matrix is available and how much computational time can be spent. Hence for N = 214,

the dimension D can be as large as 220 ≈ 106. This was one of the main motivating factors for

developing the rapid algorithms described in subsequent chapters. For example, NESTA solves a

problem with size N = 212 in about 1 minute.

Given a dictionary D, we solve either the `1 analysis problem which uses weighted norm ‖D∗x‖1
and measurement matrix A = Φ, or the `1 synthesis problem with norm ‖α‖1 and measurement

matrix A = ΦD. The conclusion of this thesis discusses possible improvements over using a Gabor

frame by itself; model-based ideas will probably be useful in future versions.
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Figure 2.46: The `0 quasi-norm and various approximations to it. There are two features we wish to capture: a
sharp cusp at 0, which will force small values to exactly 0, and a slow growth at infinity, so that large values are
not excessively penalized. The `1 function is in some senses the best possible convex choice.

2.7.2.3 Reweighting

Consider the generic `1 synthesis problem

min
x
‖x‖1 such that ‖Ax− b‖2 ≤ ε.

The following discussion will also apply to `1 analysis, but we use the synthesis form for simplicity

of exposition. In both cases, the reweighting vector will apply to an object in the coefficient domain

(e.g. of size D) and not in the signal domain, but we use x to represent the object to be general.

The assumption is that x is sparse, and thus what we really would like is the solution to the

problem

min
x
‖x‖0 such that ‖Ax− b‖2 ≤ ε

where ‖x‖0 is the quasi-norm which is the number of nonzero entries in x.

The reweighting approach is to solve a series of weighted `1 problems

min
x
‖Wx‖1 such that ‖Ax− b‖2 ≤ ε

where W = diag(w) for a weight vector

wi =
1

|xold
i |+ δ

(2.7.5)

and xold is a guess of the solution which is updated after every `1 solve. If xold = x?0 where x?0 is the

solution to the `0 problem, then clearly in the neighborhood of x?0 the weighted norm approaches

the value of the `0 quasi-norm as δ → 0. This scaled problem can always be solved by existing `1
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algorithms since even if the algorithm doesn’t explicitly handle scalings, a change of variables can

be made.

The idea of reweighting is to better approximate the ‖x‖0 norm. We follow the approach

of [CWB08], which motivates this approach using a log-based approximation mentioned in Fazel’s

thesis in 2002 [Faz02] if not earlier. The idea is also very similar to the idea of iteratively re-weighted

least-squares (IRLS); see [DDFG10] for a modern perspective on this old algorithm. Indeed, IRLS

has moved beyond its original use as just a robust replacement to least-squares, and is now used to

approximate `1 norms or even `p (p < 1) norms.

There are variants of this idea in the literature; see [CWB08] and [Cev09] for further references.

We briefly note FOCUSS [GGB95] which is a special form of IRLS, and the work of Chartrand and

collaborators on both algorithms and theoretical signal recovery guarantees for `p minimization for

p < 1 (see, e.g., [Cha07, CY08]). In general, the weight vectors can be chosen in many ways and

regularization parameters δ can be chose in many fashions; e.g.,

wi =
1

|xold
i |2 + δ2

and the reweighted problems can be of `1 or of `2 type. It is our opinion that the differences among

these schemes is probably not very great, and so we have restricted attention to weights of the form

(2.7.5). Other variants, such as iterative-support detection [WY10], set the weights of all nonzero

coefficients to zero. This approach would be interesting to try in future work.
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Figure 2.47: Early reweighting results from 2008, using l1-Magic [CR07b]. Shown are 10 independent runs (each
color is an independent run). Signal is a pulse with 2.21 GHz carrier frequency. Reweighting is clearly beneficial.

Log approximation. The approach we take to motivate the weights is to approximate the ‖x‖0
by log(|x|+δ) for some small δ. See Figure 2.46 for the graph of this log function, and the comparison
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Figure 2.48: Example of a reconstruction that used two rounds of reweighting, which were very beneficial. In the
frequency domain, the input noise is shown in black (but not shown in the time domain picture, for clarity). The
recovered solution is less noisy than equivalent Nyquist-rate samples.

to the standard `1 norm (in this 1D graph, just the absolute value function). The log function is not

convex, and in fact it is concave if restricted to the positive orthant. The reweighted `1 approach is

a gradient descent algorithm to minimize this concave function; so far, there are no known results

about the convergence (to a global minimizer) of this algorithm. However, [Nee09] has basically

shown that in terms of recovering sparse vectors, the reweighting procedure will not hurt.

Consider f(u) = log(u+ δ) for u > 0 (for example, introduce the extra variable u and constraint

|x| ≤ u). This is concave, and hence it is below its tangent; we say that the tangent line “majorizes”

f . Thus taking a gradient descent step will result in a new point with smaller value f . This is part

of the MM framework [HL04] (which in this case, stands for “majorize minimize”). The gradient of

f a point u0 is ∇f = 1/(u0 + δ), so the linearization at u0 is

f(u0) + u/(u0 + δ)

and minimizing this (ignoring the constant terms) is equivalent to solving a reweighted `1 problem

with weights w = 1/(u0 + δ) with the constraints |x| ≤ u.

Because this is non-convex, the starting point is very crucial, and we have observed in practice

(see §2.5.2.3) that using a DCT basis, prior to using a Gabor frame, to get a suitable starting value

generally works better. Furthermore, unlike the log model above, we adaptively choose δ every

round instead of fixing it. This works better in practice but makes convergence results even trickier.

The regularization parameter δ > 0 is necessary since otherwise the weights become infinite for

any zero coefficients. If δ ≈ 0, then the weights might be huge for nearly zero coefficients, and the

method will be less stable and take a long time to converge. As δ becomes larger, fewer iterations

are needed. If c is the smallest magnitude of the true solution’s nonzero entries, then the idea is to
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pick δ ≈ c, though of course c is unknown.

The RMPI experiments have used two rules for picking δ; both rely on a new percentage param-

eter ρ which is typically set to .95 or in the range [.8, .99]. Let u = |x| be the current estimate of

|x| from the previous iteration, and assume wlog that u is sorted from large to small. Let D be the

dimension of x. The rules are

1. Let K be the nearest integer to ρD. Pick δ such that uK ≤ δ < uK+1. The idea is that we

want a sparse approximation, and we use ρD so that this scales automatically if the size of

the dictionary is changed.

2. For any δ, let Tδ be the set of entries of u that have magnitude greater than δ. Pick δ to be

the smallest number such that ∑
i∈Tδ
|xi|2 ≥ ρ

D∑
i=1

|xi|2.

The idea is that we choose the threshold so that ρ percent of the signal’s energy is explained

by coefficients of this size or greater. This is computationally efficient to carry out by using a

cumulative sum of sorted coefficients.

Both rules depend on ρ, and both perform about the same. Recent experiments have been using

rule 2. There are some signals that are well recovered only when ρ is tweaked, but this value of ρ is

signal dependent, so we keep ρ relatively constant to avoid overfitting to specific signals.

The reweighting steps are performed for a fixed number of iterations (usually between 2 and 5)

or until the new iterates are sufficiently close to previous iterates.

Improvements. The basic premise of recent model-based CS theory [BCDH10] is that realistic

signals have much more structure than just sparsity in a basis. For example, the coefficients of

a multi-level transform of a signal will not be independent. If energy is present in a small scale

coefficient, then some energy is likely present in a “parent” coefficient.

The works of [BCDH10, Cev09, JMOB10] have proposed using special thresholding or proximal

method algorithms to enforce special structure. The structure is usually of a hierarchical form. For

example, in a multi-scale transform, a tree can be drawn of parent-child windows. The structure

assumption is that if a child coefficient is nonzero, then so is the parent node. Adding this additional

assumption usually improves recovery, since it is restricting the feasible set to be smaller. The RIP

bound can be changed to an RIP over the model set, which should produce better RIP constants.

To stay within the `1 framework, we suggest using a tree structure of multi-level transforms and

then choosing weights to reflect this. For example, instead of reweighting each entry by

wi =
1

ui + δ
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we reweight by

wi =
1

ũi + δ
, ũi , max

(j is a child of i)
uj

(with the convention that a node is a child of itself). A similar idea has been independently sug-

gested in [DWB08]. Unfortunately we have not yet tested these ideas, since it adds an extra layer

of complexity and parameter choice on top of the already numerous parameters for selecting a

dictionary.

Even if not using a tree structure to determine weights, the multiscale nature of the Gabor

dictionary should be taken into account. For example, the coefficients at each level of the transform

should have a specific regularization parameter δlevel. This has not been implemented yet and is

expected to help. In general, we note that there is much existing knowledge about denoising via

wavelet thresholding, and it is our opinion that reweighting techniques can benefit. For example,

cycle spinning (averaging over various shifts to make the transform translation invariant) and group

thresholding (using local neighborhood information to inform thresholding/reweighting) are well-

known in the denoising literature (e.g., [DJ94, Nas08]), and it seems likely that these techniques

would improve reweighting performance.

2.7.2.4 Debiasing

Solving an `1 minimization with inequality constraints problem generally introduces bias into the

solution. Consider the generic problem

min
x
‖x‖1 such that ‖Ax− b‖2 ≤ ε.

By duality, if A has full row-rank, there is some scalar λ > 0 such that this is equivalent to solving

min
x

λ‖x‖1 +
1

2
‖Ax− b‖2.

To analyze this, take a very easy case: A = I. Let x0 be the true signal we wish to estimate, and

b = x0 + z be the measurements where z is any zero-mean random variable. Since A is the identity,

the solution is known in closed-form (this is just the proximity operator of `1, discussed in detail in

Chapter 4):

x̂ = sgn(b) · [ |b| − λ]+

where [·]+ means the positive part. For the positive entries i ∈ T̂+ of x̂, this is

x̂i = bi − λ = (x0 + z)i − λ.

Regardless of the dimensions of the problem, these entries are biased by the amount λ.
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For general matrices A, the estimates are biased as well. For a sparse recovered vector x̂, the

fix is quite simple. Set T̂ to be the support of x̂, and then solve the over-determined least-squares

problem

min
x:x|T̂ c=0

‖Ax− b‖2

to find the best vector, with support fixed to T̂ , that explains the data. If the support T̂ is equal

to (or an unbiased estimator of) the true support T of the original signal x0, then since the least

squares problem is unbiased, this procedure removes the bias from the solution.

Unfortunately, when x0 is not exactly sparse but rather just compressible, the support T̂ is

generally large, and even if it is smaller than N so that the least-squares problem has a unique

solution, the debiased version fails to estimate the original signal well. For recovering radar pulses

in the Gabor frame, debiasing was tried many times, but it never helped, and thus it is not used. As

suggested by the A = I example, coefficients are biased by an amount unrelated to their magnitude,

so that small coefficients have more bias relative to their size, yet clearly small coefficients are very

sensitive to errors in determining T̂ . We leave this issue for further study.

Fortunately, empirical evidence is that reweighted techniques remove bias, and since reweighting

is used heavily in the reconstructions, we do not worry much about bias. One simple reweighting

technique, called the adaptive LASSO [Zou06] in the statistics community, has been analyzed. In

particular, [Zou06] proved a conjecture from 2001 that the LASSO can be inconsistent, and proved

a celebrated result that the adaptive LASSO is consistent. The adaptive LASSO is basically one

step of reweighted `1 minimization. The weights are chosen inversely proportional to some power of

the absolute value of coefficients of any consistent estimator (such as the least-squares estimator); it

is closely related to the non-negative garotte introduced in 1995 [Bre95], as well as more recent two-

step procedures such as [KXAH10]. Intuitively, reweighted `1 should perform even better. The fact

that the adaptive LASSO is consistent does not prove it is unbiased, but suggests that reweighting

is useful.

2.7.2.5 Non-linearity correction

Although there is current work such as [Blu11] aimed at extending compressed sensing to work

with non-linear observations, the theory and algorithms for directly handling non-linearities is in its

infancy. In this section we review an indirect method of partially compensating for non-linearities

in the data collection.

So far, the working assumption has been that data are collected

b = Φx
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Figure 2.49: Using a non-linear Simulink model, trying to compensate for known non-linearity with a polynomial
model by adjusting the predictions from just Φx to Φp(x); note that we should not expect perfect agreement since
p(x) is calculated on the Nyquist grid, whereas non-linearities will induce harmonics outside this band. Input was
700 MHz tone. Also shown are errors due to jitter and noise (and the ideal case), for comparison. The higher terms
of the polynomial only affect large amplitudes, as expected.

which we call the linear model (for conciseness, we don’t write down the noise term). In reality, the

circuit is non-linear, so a more appropriate model is

b = b0 + Φ1x+ Φ2x
2 + . . . .

For example, the non-linearities in the mixer and integrator will make such a model. This model

is difficult to deal with since the matrices Φi are unknown and would be difficult to measure via

calibration.

Fortunately, the dominant non-linearity is in the LNA front-end; since this occurs before the

mixing, the LNA portion of the system is approximately separable over time in the incoming signal,

like a diagonal matrix. This leads to the following model:

b = Φp(x), p(x) = a0 + a1x+ a2x
2 + a2x

3 . . . (2.7.6)

which is much more tractable since the polynomial now has scalar coefficients. Like many RF

designs, the dominant terms in the polynomial are a1 and a3. For small amplitudes, p(x) ≈ a1x so

the effects of higher-order terms are not significant. But the growth of x3 outpaces that of x so at

some point the third-order term takes effect, and this is the effective upper limit on the system. The

point at which this happens can be measured via several standard conventions, such as IIP3. See

120



0 0.5 1 1.5 2 2.5
−190

−180

−170

−160

−150

−140

−130

−120

−110

Frequency (GHz)

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

Frequency domain.  Single pulse at 701.2 MHz carrier
Amplitude: 4.6e−02 (0.0 dB dynamic range)

N=2048 (T=410 ns), jitter rms = 0.5 ps
Estimate pulse to have frequency 701.0 MHz (true value 701.2 MHz)

 

 

original

recovered

0 40 80 120 160 200 240 280 320 360 400

−0.04

−0.02

0

0.02

0.04

0.06

time (ns)

Time domain., MSE=2.3⋅10−2

Rel. l
2
 error: 1.5⋅10−1; rel. l∞ error: 2.6⋅10−1; rel. l∞ freq error: 1.3⋅10−1

MSE on pulse envelope: 2.2⋅10−2

 

 

TOA estimate:  20.8 ns, Actual:  21.5 ns, Error: 0.7 ns     
Duration estimate: 120.0 ns, Actual: 117.0 ns, Error: 3.0 ns

demodulation of exact signal
demodulation of recovered signal
error

0 0.5 1 1.5 2 2.5
−190

−180

−170

−160

−150

−140

−130

−120

−110

Frequency (GHz)

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

Frequency domain.  Single pulse at 701.2 MHz carrier
Amplitude: 4.6e−02 (0.0 dB dynamic range)

N=2048 (T=410 ns), jitter rms = 0.5 ps
Estimate pulse to have frequency 701.0 MHz (true value 701.2 MHz)

 

 original

recovered

0 40 80 120 160 200 240 280 320 360 400

−0.04

−0.02

0

0.02

0.04

0.06

time (ns)

Time domain., MSE=3.8⋅10−3

Rel. l
2
 error: 6.2⋅10−2; rel. l∞ error: 1.9⋅10−1; rel. l∞ freq error: 3.4⋅10−2

MSE on pulse envelope: 2.9⋅10−3

 

 

TOA estimate:  21.2 ns, Actual:  21.5 ns, Error: 0.3 ns     
Duration estimate: 119.2 ns, Actual: 117.0 ns, Error: 2.2 ns

demodulation of exact signal
demodulation of recovered signal
error

Figure 2.50: (Left) Before non-linearity correction. Notice the gain compression. (Right) After non-linearity
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Figure 2.51: Error of reconstruction as a function of input amplitude A, with and without non-linearity correction.
Input was a single signal. At very large amplitudes, no post-processing technique can help.

Figure 2.49 for effects of various terms of the polynomial as a function of amplitude.

For now, assume p is known (that is, its coefficients and degree). Is it possible to correct for this

effect in post-processing? The answer is yes; see Figure 2.50. However, the technique we present

works poorly on high frequency signals. We hypothesize that this is due to the discrete representation

of the signal in post-processing. Dealing with a vector x of length n (where Φ has n columns)

implicitly assumes that x is band-limited to maximum frequency fs/2. However, non-linearities

introduce harmonics, so a high frequency signal with large amplitude will have a component past

fs/2. When working with the discrete representation, this is aliased into lower frequencies, and is

harder to correct for. It is possible that this problem can be fixed by allowing longer discrete vectors,

so that frequencies can go up to fs or even higher.

We introduce the basic technique. This is a classic example of what applied mathematicians and

physicists do best: linearization.

Start with the assumption that b = Φx and solve the standard `1 minimization problem to find
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a guess x1. Now, linearize p about x1:

p(x1 + h) = p(x1) + p′(x1)h+O(h2)

and update the model to be

b = Φp(x) + (Φp′(x))h, i.e. b̃ = b− Φp(x), Φ̃ = Φp′(x).

This model is linear in h, so the `1 minimization with b̃ and Φ̃ is solved for h. Then the variable is

updated

x2 ← x1 + h

and the process is repeated by linearizing p around x2, etc.

This technique was tested on synthetic data from Simulink simulations, where we know exactly

the non-linearity that Simulink uses (these values taken from SPICE simulations), and it works well

on low and medium frequencies. The entire polynomial, up to 9th order, is known; to test robustness,

the correction was tried using different number of terms. In reality, it would only be reasonable to

correct for the 2nd- and 3rd-order terms, since high order terms would be impossible to estimate

reliably. Reconstructions used either 3 or 6 terms in the polynomial. These Simulink tests do show

some robustness, since even though the 9th-order polynomial is fully known, the measurements are

not exactly in the form of (2.7.6) since the transconductor and common-gate polynomials are applied

after mixing, so the polynomial is not separable.

A final note: if the harmonics fall out-of-band and are caught by a low-pass filter, this appears to

solve the non-linearity problem. However, the effect of the non-linearity is still there, and it is now

more appropriate to look at the intermodulation effect: when two tones are passed in the receiver,

the non-linearity causes harmonics at the sum and difference of the two frequencies. Furthermore, in

addition to distortions of large signals, non-linearities cause “desensitization” and blocking of small

input signals that are concurrent. If there is significant noise after this point, there is not much that

post-processing can do to recover the small signal. Hence, ultimately non-linearities remain a circuit

design issue, and can only be partially corrected in software.

Unknown coefficients. The case when p is not known is difficult, and was not tested numerically.

The SPICE model can help give estimates of p, but these will never match the true values of the

circuit. We did not yet test the robustness of the non-linearity correction to inaccurately estimated

coefficients.

It may be possible to use the EM or MM algorithm [DLR77, HL04] and iterate between non-

linearity correction for a fixed p, and then updating the estimate of p. This would be similar to the
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dictionary learning techniques that have been used quite successfully in image processing. We leave

this issue for further study. Another variation left for further study is the possibility of allowing for

a polynomial with matrix coefficients Φi, since this would model non-linearities other than just the

LNA non-linearities, but would require a novel calibration scheme.

2.7.2.6 Windowing

0 0.5 1 1.5 2 2.5

x 10
9

10
−15

10
−10

10
−5

10
0

10
5

Window size N = 1024

Frequency (Hz)

 

 

True signal
Rectangular window
KB−derived window

0 0.5 1 1.5 2 2.5

x 10
9

10
−15

10
−10

10
−5

10
0

10
5

Window size N = 2048

Frequency (Hz)

 

 

True signal
Rectangular window
KB−derived window

0 0.5 1 1.5 2 2.5

x 10
9

10
−15

10
−10

10
−5

10
0

10
5

Window size N = 4096

Frequency (Hz)

 

 

True signal
Rectangular window
KB−derived window

0 0.5 1 1.5 2 2.5

x 10
9

10
−15

10
−10

10
−5

10
0

10
5

Window size N = 8192

Frequency (Hz)

 

 

True signal
Rectangular window
KB−derived window

Figure 2.52: The importance of windowing. For an arbitrary off-grid tone, a finite set of samples will experience
spectral spreading; this is due to the Fourier transform of the boxcar function, which has very slow decay due to the
sharp corners. Using a smooth window introduces some loss of time resolution but offers much greater frequency
resolution, and is usually worth the loss of time resolution. For any type of window, the larger the number of
samples N , the less spectral spreading; this is a reason why fast methods for large-scale optimization, such as
those developed in Chapters 3 and 4, are essential in signal processing. This figure shows the same signal but with
different lengths N chosen for processing, with small N in the upper left and large N in the lower right.

The simulations and analysis in this chapter assume that a pulse x is located in the middle of

a known time interval, so boundary effects are not significant. In a deployed system, obviously this

assumption is invalid. The simplest solution is to increase the chunk of time under analysis. This

increases the chances that a signal is in the middle of the interval, and it also reduces the frequency

spreading that would be induced by windowing a pure tone by a rectangular window. However, due

to processing limitations (since reconstruction algorithms are so far more than linear complexity),

there is an upper limit on the size N of the discrete signal. We also would like to seamlessly combine

signal estimates from different blocks.

The standard solution to this problem is to introduce a smooth window, and then overlap adjacent

chunks of size N , e.g., a 50% overlap. There are many choices of windows, each with a unique time-

frequency resolution trade off, and this has been well-studied for many years. It is also convenient to

choose windows that form a partition-of-unity (also known as the Princen-Bradley condition), such
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Figure 2.53: Overlapping windows which form a partition of unity, for blocks of length N. Using a Kaiser-Bessel
derived window, with parameter α = 8

as the windows previously mentioned in the Gabor dictionary section; see Figure 2.53. This is the

technique of a modified discrete cosine transform (MDCT) used for MP3 compression, to give just

one example. For a compressed sensing device that takes non-uniform time-samples, like the NUS,

windowing can be applied “retroactively”. For NUS, samples are taken

b = Sx

where S is a M ×N matrix that is effectively diagonal, since it is just a N ×N identity matrix with

N −M of the rows removed. Suppose w is a window and let W = diag(w) be the matrix version.

We desire

b̃ = SWx.

Because S is so simple and SST = IM , it effectively commutes with W ; specifically,

b̃ = (SWST )Sx = W̃ b, W̃ = (SWST )

so it can be recovered ex post facto.

The case of RMPI is unfortunately more difficult, since the measurements Φ have a much more

complicated structure than that of S. Again, we seek

b̃ = ΦWx.

This time, it is not possible to write b̃ in terms of b = Φx.

One possibility to overcome this is an iterative scheme, which we suggest here and may be novel.

Start with an estimate x1 of x, obtained via `1 minimization without windowing. Then update the

observations

b1 ← b− Φ((W − I)x1).

If the estimate x1 is very accurate, then b1 ' b̃. Form a new estimate x2 by re-solving the `1
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minimization using b1. This process is then repeated until convergence. For best results, each stage

would use many consecutive windows to produce estimates of x in a particular (probably overlapped)

time block, and then combine them to make a global estimate of x before proceeding with the next

iteration. This idea has not yet been tested numerically.

The authors of [TLD+10] suggest adding a time-varying channel and doubling the number of

channels in order to window the signal in hardware, before the integration step. This is a serious

design change, and reflects the difficulty of the windowing problem. It seems likely that a software

solution can obviate such a step; as shown by matched filter, it does not appear to be a fundamental

problem with the manner in which the data were collected.

It is also possible that when restricted to radar pulse, and hence using the Gabor dictionary,

that windowing of overlapping blocks is not necessary, due to the the localized time support of the

Gabor atoms themselves. More study is clearly needed.

2.7.2.7 Further improvements

These improvements have not yet been tried due to time constraints, but we expect that some of

them may have beneficial effect.

Modeling noise. The experiments presented have always used the constraints

‖Φx− b‖2 ≤ ε.

However, most thermal noise is injected before measurements. A complete noise model (ignoring

jitter) is

b = Φ(x+ z1) + z2

where z1 likely dominates z2, and both are iid. This can be modeled using a single z2 term which

incorporates Φz1. If both z1 and z2 are i.i.d. Gaussian with variances σ2
1 and σ2

2 , respectively, then

modeling both together is equivalent to a new z2 term with covariance matrix

Σ = σ2
1ΦΦT + σ2

2I. (2.7.7)

With no other priors on the signal, the maximum likelihood estimate of x is

x̂ = argmin
x
〈Φx− b,Σ−1(Φx− b)〉.

This inner product can be concisely written as ‖Φx− b‖2Σ−1 .

Of course we have a priori knowledge that the signal x is sparse, so we use `1 minimization. It

is then only natural to solve the `1 problem with a weighted `2 norm for the constraints. For the
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analysis problem, this is

minimize
x

‖D∗x‖1 such that ‖Φx− b‖Σ−1 ≤ ε.

This can be solved by existing `1 algorithms without modification by updating Φ← Σ−1/2Φ and

b← Σ−1/2b. The estimate of Σ−1 should be performed by pseudo-inverse, or σ2 should be artificially

enlarged, in order to keep it stable.

A final remark is that the parameter ε is an issue. In theory, it can be estimated from the chip

during a calibration phase when it is known that there is no input. The variance of iid white noise can

be estimated with the sample variance; if it is suspected that other factors are involved, then a more

robust measure is mean-absolute-deviation. To estimate the covariance matrix of correlated white

noise, the situation is more involved, but there are existing techniques. The maximum likelihood

estimate is just the sample covariance, but this could be improved by imposing structure on the

covariance matrix, e.g., of the form (2.7.7). This can be solved with software such as TFOCS,

discussed in Chapter 4. In the simulations in this thesis, ε was either estimated manually or based

off of ‖b‖∞. Performance does depend on ε but it is not overly sensitive. The only time an accurate

value of ε is crucial is when one is trying to recover two concurrent tones that are widely different

in dynamic range.

Jitter. Jitter has been treated like additive white noise, but this is not true at all since it is signal

dependent. Preliminary work by Jerry Fudge’s team at L-3 attempts to take this into account, but

details are not public and it may not be applicable to our design.

Here, we mention another recent technique. Since jitter is part of the sampling, it has a non-linear

effect on the measurements. For this reason, the likelihood function is not known in closed form.

The authors in [WG11] propose numerical evaluation of the likelihood function via quadrature rules,

and then use the EM algorithm ( [DLR77]; see also [HL04]) to maximize the likelihood function, and

report improvements. Their technique deals with sampling jitter. As mentioned earlier, sampling

jitter is not a major concern for the system, but the mixer jitter is, and perhaps a similar EM

algorithm could improve the system with respect to the mixer jitter.

Block norms. The reconstruction algorithm processes one chunk of length N (or time T ) at a

time. If the input signal x possesses structure that lasts longer than T , then this should be exploited.

For example, if x is a pure tone, it will look nearly identical in every window, and hence the multiple

observations should be combined in order to improve its estimate. Radar pulses typically repeat

many times a second, so they also posses this structure. Of course there is a limit to how much

batch processing can be done (imposed by computational resources; and by perhaps requiring a

finite time-lag for real-time processing, where future observations are not available).
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A simple way to take advantage of this structure is to use a block norm. We write ‖X‖(1,p) to

denote the sum of the p-norms of the rows of a N × L matrix:

‖X‖(1,p) ,
∑

rows i=1,...,N

( ∑
columns j=1,...,L

|Xi,j |p
)1/p

. (2.7.8)

This is in contrast to the norm ‖A‖q→p , supz 6=0 ‖Az‖p/‖z‖q. The ‖ · ‖(1,2) norm is also know

as the row-norm of a matrix.

Instead of minimizing the `1 norm of a vector x from time period 1, we minimize the ‖ · ‖(1,2)

or ‖ · ‖(1,∞) norm of the matrix X where each column of X is from a different time period; this

technique could also be combined with the windowing technique suggested earlier, in which case the

columns of X actually come from time periods that might overlap. This is sometimes referred to

as “multi-channel” processing (“channels” here are not the same notion as channels of the RMPI).

Modern software such as TFOCS (Chapter 4) can handle these norms. This is discussed in the

literature; for example, in [BKR09], which refers to the signal model as a “fusion frame”.

2.8 Results

Using the Simulink model with non-idealities, it is possible to get an accurate idea of the limits of

the system. This section discusses the robustness of the system to non-idealities, and the expected

performance in the presence of a realistic level of the non-idealities.

To measure error against a known input x0, we use the (relative) RMSE criteria already men-

tioned in (2.4.1)

RMSE(x) ,
‖x− x0‖2
‖x0‖2

and the signal-to-noise-and-distortion ratio SNDR (often referred to as just SNR)

SNDRdB = 10−20 RMSE(x) (2.8.1)

as well as the effective number of bits

ENOB =
SNDRdB − 1.76

6.02
. (2.8.2)

The maximum allowed input amplitude of the RMPI is 0.1 V, and this is referred to as “full-

scale”. The terminology dBFS reflects size relative to full-scale. For example, if a pulse is −20 dBFS,

this means the amplitude is .01 V.
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2.8.1 Non-idealities

The RMPI is affected by many non-idealities. A non-ideality is anything that our model does not

account for. We do not discuss errors in creating the model, since those have been discussed in the

calibration section. The non-idealities we consider are

• Thermal noise.

• Clock jitter at the mixers and ADCs.

• Quantization.

• Cross-talk between signal paths.

• Clipping.

• Non-linearities. (This was also previously discussed in §2.7.2.5.)

Of these, the thermal noise, jitter, and non-linearities have the biggest effect. Quantization,

cross-talk, and clipping are generally not a dominant source of error. The section concludes with

§2.8.1.6, which discusses all the non-idealities together.

2.8.1.1 Noise
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Figure 2.54: Error of reconstruction as a function of input-referred noise power ηin, shown for various input
amplitudes A (circles, plus, and diamonds) and carrier frequencies fin

Thermal noise is a major issue. Because it has a constant value regardless of the input, it affects

small inputs and limits the lower range of signals that the system can reliably distinguish. In the

Simulink model, three of the blocks have thermal noise, but by far the dominant source is at the

LNA. For the LNA block, we treat input referred noise, which takes into account noise from different
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stages of the block. In Simulink, this is modeled as iid Gaussian noise using an appropriately fine

time-scale.

Figure 2.54 shows the results of different levels of LNA noise. Noise power ηin is measured in

dBm (dB per relative to milliwatts), for 1 Hz bandwidth. The total noise power across a different

bandwidth B is ηin + 10 log10(B).

The figure plots signals for 3 levels of amplitude and 3 frequencies (low, medium, and high). The

frequency dependence is quite small. As a function of noise power, the trend in RMSE is linear. A

pessimistic estimate of the noise in the CMOS chip is −164 dBm. At this level, we have just barely

acceptable performance for a single input (RMSE' 0.4) at A = 10−4 V; the max amplitude possible

is about 10−1 V. For an exact RMSE cutoff of .33, the single-pulse dynamic range of the system is

55 dB or equivalently 9 ENOB.

2.8.1.2 Jitter
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Figure 2.55: Error of reconstruction as a function of rms jitter σ. The diamonds (dashed lines) show error for
sampling jitter at the ADC, while the circles and pluses show error for jitter at the mixer.

The RMPI runs off a clock which operates at fs, and this clock determines the output of the

shift registers that define the PRBS. The actual rise and fall time of the clock signal do not exactly

lie on the fs grid but are jittered slightly forward or backward in time. Let en be the error in time

between n∆T (when the clock should change) and when the clock actually changes. Similarly to

thermal noise, this can be viewed as a stochastic quantity. The most commonly used figure-of-merit

is “rms jitter” σ which is the standard deviation of en, since typically E en = 0. In simulation, en is

treated as an iid Gaussian variable.
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The distinguishing feature of jitter is that it induces an error proportional to both the amplitude

and frequency of the signal. If an input is x(t) = A sin(ωt), then the difference between the ideal

sample at x(t) and a jittered sample at x(t+ e) is roughly Aωe. Hence jitter is a non-linear effect,

and is more significant at high frequencies.

Jitter also plays a role in the sampling of the ADCs. This sampling jitter is less important because

it is after the integration and the signal is dominated by low frequency components; in contrast,

mixing jitter is more significant because (a) it affects the PRBS which is very high frequency, so a

small time error corresponds to a larger amplitude error, and (b) due to the high rate, the jitter

affects every Nyquist sample, whereas sampling jitter only affects every Nint = 100 Nyquist samples.

In the version 2 design, the CMOS mixer has 0.5 ps mixing jitter. The 12-bit ADC samplers have

2 ps sampling jitter but their bandwidth is only 300 MHz.

Figure 2.55 plots the RMSE of the reconstruction for pulses of low, medium, and high frequencies,

as a function of σ. The ADC sampling jitter only has an effect for σ > 20 ps, so the this is not

expected to be a limiting factor. For any σ > .1 ps, the mixing jitter has a negative effect on the

reconstruction. Because of this, the RMPI design was thoroughly engineered to keep jitter as minimal

as possible, and the rms jitter of 0.5 ps is state-of-the-art. At this value, jitter has a negative effect,

but thermal noise and non-linearities have a larger negative effect, as will be discussed in §2.8.1.6.

2.8.1.3 Quantization
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Figure 2.56: Error of reconstruction versus number of bits of quantization for amplitude A = 0.001V (−40 dBFS)

The ADC samplers have finite resolution and quantize the output to only B bits. An ADC can

be configured to an expected range of input which should closely match the maximum output of

the system. Having set the scale of the ADC to match the largest expected values of our system,

Figure 2.56 shows the effect of this quantization on a small signal input. For B ≥ 12 bits, there is

no appreciable effect of the quantization. For even smaller signals, it may be necessary to use 14

bits, assuming that thermal noise doesn’t dominate the signal.

If the system is upgraded to handle even more dynamic range, than 16 or more bits may be
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necessary, which should not be an issue since there are commercial 50 MHz ADC with large ENOB.

An alternative would be to implement a dynamic system that changes the scaling to the ADC, but

this may be difficult. The version 2 RMPI uses 12 bit ADCs, but these are off-chip and so could be

upgraded easily.

2.8.1.4 Cross-talk
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Figure 2.57: Results of the cross-talk simulations. Solid line is a 700 MHz input; dashed line is a 2.1 GHz input.
Both inputs were pulses 100 ns long and amplitude .01 V (-20 dBFS).

Cross-talk is the interference caused by signals when electronic components are in close proximity.

The dominant sources of cross talk are shown in Figure 2.58. To minimize cross-talk, the chip was

designed with several safeguards: each channel’s analog and digital supplies are not connected to one

another on chip; clock distribution supplies and references are completely independent; the analog

and digital grounds are isolated from one another; extensive use is made of guard rings around

all blocks, subblocks, and channels; and each block is triple-welled. The worst-case coupling levels

reported in the literature for mixers of this class is 10−2 [CMA09]. According to the simulations in

Figure 2.57, this is right at the borderline level for inducing failure due to PRBS-to-input cross-talk.

However, this worst-case result was in a design that didn’t use triple wells or substantial guard ring

structures, and we expect our coupling levels to be smaller. Since this was a worst-case value, it is

not expected that cross-talk is a significant limitation in the design.

2.8.1.5 Clipping

Large amplitude signals run the risk of railing the integrator, since the integration is only designed

for a limited voltage range, ±vmax. To analyze how likely clipping is to occur, we assume Φ is the

Bernoulli ±1 model, and work in discrete space. What is the worst-type of input signal? It is a signal

xn that exactly mimics the discrete chipping sequence cn ⊂ {−1, 1}N . However this is extremely
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Figure 2.58: The types of cross-talk mechanisms considered in the testing show in Figure 2.57. The H(s) block
represents the unwanted cross-talk that might occur.

unlikely. If the chipping sequence cn is random, then a “typical worst-case” input is actually any

arbitrary signal with amplitude Amax and a reasonably slow frequency(f . 1 GHz, so that the

signal is approximately constant over a Nyquist sample), so without loss of generality we assume xn

is a DC signal with amplitude Amax. Let Sk =
∑k
n=1 cn. Thus the question of clipping is: over a

fixed interval T = N∆T , what is the probability that at some (possibly intermediate) time k ≤ N ,

|Sk| ≥ vmaxfs
Amax

≡ v ? We’ll break this question into three parts.

First, consider the sum at the end (k = N) of the time in question, p ≡ P(SN ≥ v). The sum

SN is just a shifted and scaled sum of Bernoulli random variables, so SN is a shifted and scaled

binomial random variable, which has a known CDF. For large N , this is excellently approximated

by the CDF of a Gaussian variable with µ = N/2 and σ =
√
N/4.

At first glance, finding P(Sk ≥ v, k ≤ N) appears difficult. Fortunately there is a well-known

clever trick (thanks to Yaniv Plan for pointing this out). Consider an intermediate sum Sk = v,

and look at the set of all possible random walks of length N − k that start at this point. Then the

expected value at time N of these extensions is still v since a random walk has mean 0. In fact, it

has median 0 as well, and half of the extensions will end up with value greater than v, and half will

end up with value less than v (note: this reasoning requires that N − k is odd, so that none of the

extensions can end up with value exactly v).

Thus if we record the number of sums SN which exceed v, this accounts for half of the sums
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which had reached v at an earlier time. Thus P(Sk ≥ v, k ≤ N) = 2p. This reasoning is a little

imprecise since it actually depends on whether v (assumed to be an integer for the moment) has the

same parity as N , but for large N and values of v that are not too close to n, the error is small. See

Figure 2.59 for experimental evidence.

As the final step we account for negative amplitudes, so pclip = P(|Sk| ≥ v, k ≤ n) = 4p.
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Figure 2.59: Simulation to verify the chance of a random walk clipping. The solid lines are the predictions from
using the inverse CDF of a normal distribution, and the circles are the empirical values from 10,000 Monte Carlo
simulations, which show excellent agreement, thus validation the 2p argument. Furthermore, the lines are bounded
between 2

√
n and 3

√
n, which provides a useful heuristic. To use the chart: suppose vclip = 70 and we want to be

99% sure that a maximum amplitude signal will not clip. Then we must reset the integrator every n = 600 Nyquist
units. (Note: for a practical calculation, vclip needs to be properly scaled; see (2.8.3).)

Let us calculate the scaling for the version 2 RMPI chip. Suppose the input is a low-frequency

sine wave x(t) of amplitude A. If the mixing sequence c is random then almost all inputs look the

same, and what really matters is the absolute integral
∫
|x(t)|, so this sine wave input can be modeled

as a DC input with amplitude 2A/π. The max acceptable amplitude input is 0.1 Vpp, and the LNA

gain is 18 dB (this is actually variable; it can be set from 12 to 18 dB), so the input voltage is

vin = 1018/200.1× 2/π ' .8× (2/π) V. A transconductor of 20 mS (mS = 10−3 Amps/volt) converts

the voltage signal into a current signal. The current is attenuated by a factor of 2 in the mixing

stage, and the path is differential so we (temporarily) attenuate by another factor of 2 to account

for this. Thus the input current to the integrator is Iin = (2/π)(.8 V)(20 · 10−3 Amps/V)/4 =

(2/π)4 · 10−3 Amps. To find the output voltage of the integrator (which is approximately just a

capacitor), we use the capacitor equation:

vout(τ) =
1

C

∫ τ

0

Iin(t)dt
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where the capacitance is C = 40 pF. For a DC input and discrete chipping sequence, the integral

becomes a sum, with time step ∆T = 1
5 GHz . The clipping voltage is vclip = 4vout because we now

combine the two differential paths and also consider peak-to-peak voltage. The supply voltage to

the chip is 1.5 V, so the peak-to-peak clipping limit is vclip = 3 V. Combining all these scalings, we

can write down an equation:

3V = vclip = 4vout =
4

C

n−1∑
k=0

ckIin∆T

=

(
n−1∑
k=0

ck

)
4

40 · 10−12

1

5 · 109
(2/π)4 · 10−3

=

(
n−1∑
k=0

ck

)
4

25π
(2.8.3)

which means the system will clip with ∣∣∣∣∣
n−1∑
k=0

ck

∣∣∣∣∣ =
75π

4
= 58.9. (2.8.4)

The integration period TADC is 100 Nyquist samples, so n = 100 per sample, and thus it is possible

to clip in a single integration period, which is catastrophic. However, it is extremely unlikely to clip

in a single sample (if the assumptions hold; to be more rigorous, we would need to impose a prior

on the input signals). Using Figure 2.59, then there’s a 99% chance the signal will not clip until

n & 420, and a 90% chance the signal will not clip until n & 850. Thus with a max amplitude

signal, and the highest gain setting of the LNA, clipping should not be an issue if we restrict to 4

to 9 integration windows TADC. If a signal has half the max amplitude, then we need the random

walk to reach 118, which is extremely unlikely to occur if n ≤ 1000.

If the overall experiment is significantly longer than 1000∆T (which it usually is, even though we

typically analyze chunks of size 1024 or so), then for a pure tone input, the system will eventually rail

(in fact, if we run the system forever, this occurs with probability 1), so we would periodically reset

the integrators; furthermore, the fact that the PRBS sequence c is in periodic would be significant.

Such considerations are beyond the scope of this work. For inputs that are pulses at some repetition

rate, the system will periodically have no input, and the natural discharge of the capacitors will

prevent railing.

The system can be told to reset at will, but this involves the loss (or at least corruption) of a

sample. Since we do not expect railing to be a problem for short signals, we have not simulated

the effects of resetting when running worst-case simulations, but this issue would be important for

future chips that operate robustly. Possible alternative designs may be beneficial, such as having

two samplers that alternate, so each capacitor can be reset every integration period. The Northrop
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Grumman InP chip uses a system like this. The downside of this design is slightly more complexity

and power consumption.

2.8.1.6 Combining non-idealities
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Figure 2.60: Various non-idealities. The four plots show the same data but in different ways: the top row shows
error in absolute terms, while the bottom row shows error in relative term. The right column is a zoom of the
left column. The ”ideal” model uses a Φ matrix generated from a (noiseless) Simulink calibration. The other
measurements are from the Simulink model with various non-idealities turned on. This shows at what amplitudes
each non-linearity has an effect. The thermal noise has an absolute effect (constant on the top row), while jitter
has a constant relative effect (constant on bottom row) since it induces error proportional to the amplitude of the
input. See also Figure 2.61.

The major non-idealities affect the system in different ways.

• Thermal noise is constant, so it affects small signals.

• Jitter error is proportional to the amplitude of a signal, so it affects all signals equally.

• Non-linear effects are only an issue when the amplitude is large.

Jitter and non-linearities make two-signal recovery difficult. If one signal is much smaller than the

other signal, the smaller signal still sees the large jitter errors induced by the large signal. The small

signal is also desensitized or even blocked due to the non-linear effects of the large signal [Raz97].

For this reason, low-jitter and a high linearity range are extremely crucial for good performance.

For the simpler case of just one signal recovery, which of these non-idealities is limiting? To

test this, we calibrate an accurate model Φ using Simulink to provide the black-box system S. The
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Figure 2.61: “Sweetspot test.” The amplitude 10−2 (−20 dBFS) has the least measurement error when we include
the non-linearities. See also Figure 2.60.

agreement ‖Φx− S(x)‖2/‖S(x)‖2 is very good, typically on the order of 10−7 (see the brown line in

Figure 2.60). It is not exactly 0 because S is based on ODE solvers, whereas Φx assumes that x is

band-limited and is computed as a finite-precision matrix-vector multiply, so both methods have a

small amount of error. We now consider Snon-ideal, which is the Simulink model using a non-ideality.

Figure 2.60 plots

‖Φx− Snon-ideal(x)‖2 (top plots), and ‖Φx− Snon-ideal(x)‖2/‖S(x)‖2 (bottom plots).

The Snon-ideal model used exactly one type of non-ideality for each line shown in the figure, which

gives an idea of the relative importance of each non-ideality.

The top row shows the absolute error, as a function of input amplitude (recall that 0.1 is full-scale

input). Thermal noise is independent of amplitude, so it shows up as a flat line on this plot. The

thermal noise at the LNA and transconductor (Gm) are about equal; the noise at the common gate

filter is not significant. Non-linear effects from the LNA and Gm play a role at inputs of −20 dBFS

and higher.

The bottom row shows relative error, and hence the error due to jitter is a flat line. Jitter was

tested at several RMS values, and we only show the σ = 0.5 ps. For larger values of RMS jitter, the

jitter will become a dominant source of error, but at this value it is not a limiting factor (though

with non-linearity correction, it becomes a slightly limiting factor for a small range of amplitudes).

However, since jitter affects two-pulse recovery, there is no “safe” value of σ. The value σ = 0.5 ps

is chosen because it is the lowest practical value that we can design.
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If we allow Snon-ideal to use all non-idealities at once, then we get the plot in Figure 2.61. The

figure shows relative measurement agreement. Two different signals are shown, one at low frequency

and one at high frequency, since jitter affects the high frequency signal more. The plot shows that

the amplitude 0.01 (which is −20 dBFS) has the least error, since this is large enough to ignore

thermal noise but also small enough not to have significant non-linearity problems. We refer to this

amplitude as the “sweet spot” of the system. This also indicates that the system has a maximum

dynamic range of about 60 dB, since for signals greater than 0 dBFS or smaller than −60 dBFS the

measurements have almost 100% relative error, and thus it is unreasonable to expect any recovery

algorithm to recover the input. This is not an exact rule, since the reconstruction is non-linear and

can denoise in some cases, but it is a reasonable rule-of-thumb.

2.8.2 Simulation results
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Figure 2.62: Reconstruction using data from SPICE simulation for version 1 design. The matrix Φ was modeled
as an ideal single-pole integrator with the pole at 44.05 MHz. Agreement is crude, but not bad considering the
non-calibrated Φ matrix. Error in carrier frequency estimation is 0.1 MHz.

The results here are mainly from detailed Simulink simulations, using accurate levels of non-

idealities. Less systematic results show that we can recover from SPICE simulations as well.

Figure 2.62 shows a reconstruction from SPICE data from the version 1 model in December 2008.

The Φ matrix uses ±1 entries and is not calibrated, so the performance is quite remarkable given
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the lack of calibration. Figure 2.63 shows results from the version 2 model. The Φ matrix is from a

calibrated Simulink model. Results would be even better if Φ were calibrated from a SPICE model,

but this is time-prohibitive.
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Figure 2.64: An input test signal and its reconstruction. Carrier frequency is fin = 1907.2 MHz. Simulation (via
Simulink) includes all non-idealities, e.g., jitter (rms .5 ps), noise, non-linearities. Amplitude is 10−2 (-20 dBFS),
and observation time is T = 205 ns (N = 1024). The recovered signal estimates the correct frequency to within
0.1 MHz. The relative error ‖x̂− x‖2/‖x‖2 is 3.1 · 10−2. The time-of-arrival estimate (defined as when the signal
first reaches 10% of its max amplitude) was accurate to 1.2 ns, and the duration estimate was accurate to 2.6 ns.

Figure 2.64 shows a typical recovery from noisy Simulink data, using a calibrated Φ. Because of

the calibration, the recovery is excellent.

2.8.2.1 Single pulse

To test the recovery of a single pulse, there are three dominant parameters: the amplitude, the

frequency, and the pulse duration.

Frequency. The effective instantaneous band-width (EIBW) of the system is a measure of the

range of frequencies that can be accurately recovered. Figure 2.65 shows the ENOB of recovery on

a 200 ns pulse, as a function of carrier frequency. The EIBW is almost the full 2.5 GHz, though not

quite since the pulse window induces spectral spreading, so carriers at 2.45 GHz will cause much of

the narrowband content to appear at greater than 2.5 GHz. The hardware is not designed for more

then 2.5 GHz, and the recovery algorithms use a Nyquist grid so the post-processing is not suitable

for signals past 2.5 GHz either.

The hardware version 2 RMPI has been designed with less bandwidth than in the simulated
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versions. In particular, the frequency response is very small below 300 MHz, and a more accurate

estimate of the EIBW is 2 to 2.2 GHz.
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Figure 2.65: ENOB as a function of frequency for 200 ns pulses. For all frequencies, the amplitude is at the
sweet-spot amplitude.

Single-pulse dynamic range. To consider the limits of the system, we test the largest and

smallest signals it can handle. Recovery is better if the pulses are longer. Figures 2.66 and 2.67

show relative MSE as a function of amplitude and pulse duration, at carrier frequencies 700 MHz

and 2100 MHz, respectively. The pulse has a 25 ns rise and fall time, and measurements are taken

from a Simulink model with realistic values for all the non-idealities. The recovery software was

set to assume a bandwidth from 500 MHz to 2500 MHz (this slightly helps recovery; the restriction

to this bandwidth is imposed by adding extra rows to Φ that correspond to entries from the DFT

matrix, and adding corresponding 0 samples).

For durations of less than 100 ns, recovery is poor since only a few samples are taken of the

system. We focus on 200 ns pulses since this is the shortest reasonable radar pulse our system is

designed to recover. At 700 MHz, Figure 2.66 shows that the MSE is less than 10% for amplitudes

between 0 and −55 dBFS. Thus using MSE < 0.1 as the cutoff, the dynamic range is 55 dB.

Converting from dB to ENOB, this is 8.8 ENOB. For 100 ns pulses, the dynamic range is 50 dB, or

about 8.0 ENOB.

At higher frequencies, such as shown in Figure 2.67, results are slightly worse and ENOB is only

8.0 for 200 ns pulses. The frequency- and duration-dependent results may depend slightly on the

parameters used for reconstruction, e.g., the parameters of the Gabor dictionary.

Fixing the duration at 200 ns, Figure 2.68 shows the effect of frequency. For each frequency

point, the actual frequency is chosen randomly in a small interval, so that on-grid effects are not
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Figure 2.67: Same plot as Figure 2.66 except with 2105.1 MHz carrier instead of 700 MHz carrier (chosen so that it
is not on-grid), and showing the median results over 10 independent runs. Results are slightly poorer at this high
frequency.
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Figure 2.68: From realistic Simulink simulations in spring 2010. Error in relative MSE as a function of frequency.
Recovery as a function of frequency and amplitude, for a 200 ns pulse.

significant. Phase is random as well, and pulse rise and fall time are 25 ns. Recovery is generally

better at lower frequencies, which is not surprising since the PRBS spectrum is slightly larger at

lower frequencies, so low frequency signals are affected less by noise; furthermore, clock jitter at the

mixer is more significant for high frequency tones.

2.8.2.2 Two pulses

We consider two types of two-pulse tests: keeping both pulses at the same amplitude, or fixing one

amplitude and varying the other pulse amplitude. For both types of tests, the pulses overlap 80%

or more.

Equal amplitude. For both pulses with equal amplitudes, the results are quite similar to single-

pulse tests. With 200 ns pulses, the relative MSE is less than 10% for amplitudes in the range

−6 dBFS to −54 dBFS. The upper limit is slightly worse than the single-pulse case since there is

more energy in two pulses, so non-linearity is a larger effect. Using non-linearity correction, the

upper limit can be pushed to −3 dBFS, so there is 51 dB dynamic range.

The basic conclusion is that two pulses of the same amplitude are not more difficult to recover

than a single pulse. In this case, sparsity is not a limiting factor, rather non-idealities are.

The Figure 2.69 shows a typical recovery. This is an extreme case using two very short pulses.

The amplitude of both is −20 dBFS which is optimal according to the “sweet spot” calculations in

Figure 2.61
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Figure 2.69: Two pulses in realistic simulation, each 80 ns long with 80% overlap. Note that the pulse codewords
(carrier frequency, time of arrival, and duration) are estimated very accurately.

Different amplitudes. If two signals overlap in time and have very different amplitudes, recovery

of the small tone is quite difficult. Using noisy Simulink simulations, we estimate that the system

can recovery long pulses with up to 30 dB difference in amplitude. Figure 2.70 shows an example

reconstruction of two pulses with 10 dB difference in amplitude. Clearly, one limiting factor is that

large pulses induce much jitter error, which will swamp small signals.

Figure 2.71 shows two concurrent 200 ns pulses that have been recovered from noiseless mea-

surements, using a model of the 300 kHz single-pole integrator. The pulses are 40 dB different in

amplitude; any greater difference and the small pulse is not recoverable (for this particular instance;

with a different input, recovery beyond 40 dB is sometimes possible). Because this is noiseless, it

suggest a limit on the recovery procedures of the system. It is possible that better choices of a

dictionary or new recovery techniques may improve the dynamic range considerably; for example,

slight changes in the Gabor dictionary increase the maximum dynamic range from 30 to 40 dB, so

it is reasonable that further improvements may push this to 50 or 60 db. The dynamic range is

also affected by variables such as how close the carrier frequency of the two signals are and the chip

repetition rate Nchip.

Hopefully future results will improve this pulse-on-pulse dynamic range. We note that this prob-

lem is quite difficult, and modern radar systems generally ignore any pulses that arrive concurrently.

Other issues, such as jitter caused by large signals, are applicable to any ADC system that views

two pulses.
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Figure 2.70: Like Figure 2.69 but with pulses of different amplitudes, which is much more difficult
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Figure 2.71: Two overlapping 200 ns pulses with 40 dB difference in magnitude. Noiseless setting. With any more
dynamic range, recovery is poor. The range is better if we consider longer pulses.

2.8.2.3 Comparison

The single pulse ENOB for the RMPI varies between 8 and 8.8 ENOB. The version in simulation

has 2.5 GHz EIBW, and consumes p = 3.6 watts including the ADCs (but not including the FPGA

or computer). Using Walden’s figure-of-merit (FOM) [Wal99], and with 8 ENOB,

F =
2ENOBEIBW

p
= 1.76 · 1011.

The best ADCs with 1 GHz EIBW have only 7 ENOB and consume about 3 watts, according to

[LRRB05]. Thus the RMPI has improved bandwidth, improved ENOB, and about the same power

consumption. Many aspects of the RMPI are not optimized for maximizing the FOM, since we placed

extra value on reconfigurability. For example, the shift-registers for the PRBS are programmable,

but require high amounts of power. In short, the RMPI is not a tweaked system but rather a

prototype, and therefore the fact that it already exceeds the state-of-the-art is encouraging.

A channelized conventional receiver can have a higher FOM than the RMPI, but the FOM is
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Figure 2.72: Layouts of the version 1 (left) and version 2 (right) Caltech CMOS RMPI chips

not the only meaningful measure. For example, a channelized receiver covering 2.5 GHz EIBW will

consume 50 to 200 watts, in contrast to the RMPI which consumes 3.6 watts for the same EIBW.

For a low-power environment, if computations can be done off-line, then the RMPI system is quite

advantageous.

2.8.3 Hardware

2.8.3.1 NG InP version

The Northrop Grumman indium-phosphide chip has been returned from fabrication and, as of March

2011, is in the process of being tested and calibrated. This design uses 4 channels, each sampling at

100 MHz, as opposed to the 8 channel 50 MHz design of the Caltech CMOS design. The chief designer

was Dr. Eric Nakamura from Northrop Grumman Space Technologies. The Caltech team served to

consult on their design, and shared hardware ideas as well as higher-level ideas. In particular, we ran

an analysis of their initial integrator filters and made improvements. We also found that their LFSR

PRBS sequences were under-performing, which motivated using Gold codes to get better statistical

properties in the PRBS. Another test (see §2.5.2.3) found that the Gold codes needed to be of a

minimal length in order to guarantee good reconstructions.
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Figure 2.73: Die photo of the NG InP 4-channel RMPI

2.8.3.2 Version 1

The Caltech MICS lab, run by Professor Azita Emami and with head designer Juhwan Yoo, designed

the Caltech CMOS chip. From 2008 to 2009, a “version 1” chip was designed and fabricated (see

Figures 2.72 and 1.1), arriving back for testing in Spring 2009. Unfortunately, the IBM design toolkit

failed to catch a short circuit in the bypass capacitors, and the chip was manufactured with a short.

To get around this, each chip was manually cut to stop the short, but this prevented the circuit from

working exactly as intended (the bias points were affected) and required large amounts of power to

run the circuit (5 watts); overheating was a major issue, and this changed the chips’ performance

significantly.

This issue prevented detailed performance analysis (although some components, like the LNA

and the digital logic system, were verified as working correctly). Without the shorts, the expected

power draw was 700 mW, the dynamic range of the chip itself was 45 to 50 dB, operating from 0.1

to 3 GHz. The die area of the chip was 2 mm × 2 mm. Signals were successfully run through the

analog signal path, but at low gain, and no reconstructions were made.

Nonetheless, the chip was still useful. The data acquisition hardware was built, including the

chip’s PC board and the data-acquisition FPGA. The design and failures of the chip informed the

design of the “version 2” chip. Furthermore, using a detailed SPICE simulation, it was demonstrated

that the version 1 chip correctly recovers a pulse; see Figure 2.62.

2.8.3.3 Version 2

The second chip (see Figure 2.72) was designed in 2009 and 2010, and arrived back from fabrication

in fall 2010. All major components were upgraded. One of the biggest changes was the design of the

integrating filter. Simulations predicted that a second-order filter would work, as long as the second

pole was not too close to the first, allowing a few hundred MHz of first-order behavior. Allowing this

second pole means that the first pole can be situated much closer to DC, and this has an enormous
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beneficial effect. The version 1 integrator’s first pole was at 44 MHz, while the version 2 integrator’s

first pole is 300 KHz; see Table 2.4.

Like version 1, the chip was fabricated in IBM’s 90 nm CMOS9SF 06_02_00_LB process. It

consumes 830 mW of power (see Table 2.5 for a breakdown), and has a bandwidth of 2.5 GHz. It

has a full integrated RF and baseband signal path, so it functions as both a receiver and an ADC.

All controls are fully digitally programmable, so the chip sequence can be controlled by the FPGA,

which is in turn controlled by a standard computer. Each channel’s supply domain is completely

isolated. An extra ninth “test” channel was built into the chip, with internal nodes routed out

to pads to allow testing. All block biases included programmable power up and down circuitry,

allowing for considerable testing capabilities including aggressor/victim cross-talk tests. The test

channel also incorporated a replica clock distribution, and digital shift register nodes routed out to

pads; this allows characterization of noise and jitter.

The version 2 hardware is currently being calibrated, so the RMPI has not yet been used to

recover real pulses, but this is only a few days or weeks away, and will be reported in upcoming

papers.

Below we describe some specific details. This section was written primarily by Juhwan Yoo and

Azita Emami. Dynamic range is described as a function of the measurements, and is not the same as

the dynamic range achieved via reconstruction. Detailed power consumption figures are in Table 2.5.

Due to the large bandwidth requirement of the RMPI receiver, the noise floor is relatively high,

and this effect cannot be mitigated due to the fundamental nature of its source, thus limiting receiver

sensitivity. With respect to non-linearity, the RMPI is similarly constrained by the required speed

of operation due to the fact that the process technology that is required to achieve the necessary

broadband operation places a hard constraint on the supply voltages which can be used to power the

receiver. Thus, as in the case of the version 1 design, when using a voltage-mode signal propagation

methodology, nonlinearity plays a significant role due to an analog design’s fundamental reliance

on operating receivers around linearized operating points. These two constraints limited the A2I

version 1 design to approximately 40–45 dB of dynamic range when operating the signal path with

1.8 V and 2.5 V supplies.

In the version 2 design, in order to mitigate the effects of non-linearity induced by large voltage

amplitude operation, a current domain approach is used. Most of the RF signal processing path

is designed to handle very high currents while maintaining extremely low-impedance at each node,

thus limiting the voltage swing at each node. The current is then converted back to a voltage

signal in the integrating stage using transimpedance amplifier-based integrators with very high-

loop-gain feedback. The high-loop gain, along with the use of current-mode propagation of the RF

signal, mitigated the effects of non-linearity. This allowed the achievement of dynamic range of

approximately 55 dB.
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Component Power consumption per units Quantity Total Power

LNA/Balun 24 mW 1 24 mW
Transconductor (Gm) 18 mW 8 144 mW
Common Gate TIA 3 mW 8 24 mW
Integrator 12 mW 8 96 mW
Mixer 0.3 mW 8 2.4 mW
Output buffers 30 mW 8 240 mW
Shift registers 30 mW 8 240 mW
Clock distribution NA NA 60 mW
ADC (12 bit AD9235) 350 mW (worst-case conditions) 8 2.8 W

Total w/o ADCs 830 mW
Total w/ ADCs 3.63 W

Table 2.5: Power consumption at 1.5 V

The clock distribution is a vital part of the RMPI system. This is due to the fact that it is used

to clock the high-speed shift registers which store the PRBS sequence with which the input signal is

mixed. The Simulink simulations conducted indicate that the system dynamic range is particularly

sensitive to the jitter performance of the system clock. Thus the clock distribution uses a low

amplitude sinusoid as opposed to an inverter-based clock-tree, and then performs a CML-to-CMOS

level conversion locally at each channel thus achieving very minimal duty-cycle distortion as well as

low jitter. The analog distribution is designed to utilize current-mode open drain transmitters and

transimpedance amplifier-based receivers with 50 Ω matched transmission lines. Several repeaters

are inserted to maintain signal integrity and a H-tree type symmetric clock distribution is used.

2.9 Recommendations

We summarize the important findings; for future directions, see Chapter 5.

Integrator. The integrator should have a very low first pole, at least under 50 MHz, but preferably

under 1 MHz, as we have done with the version 2 design. The outer poles are less important, and

we set ours at 300 MHz, but it may be possible to bring this down even lower to about 100 MHz.

Channels. We have found that more channels, and using stagger, is beneficial. But too many

channels complicates the design and reconstruction (more lost samples due to boundary effects).

The NG design uses 4, and the Caltech design uses 8. We recommend between 8 and 12 channels

as a good trade off.

Chip sequence. This is quite important. Many errors can be traced to chip sequences with

short repetition times Nchip. It appears that periods greater than about 60 work, and ours is set
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at length 128 to be conservative. However, it may be wise to move this even higher, e.g., 256 or

512. One issue which is not fully determined is how Nchip and the integrator period Nint should

be related; specifically, should they be co-prime? It seems that co-prime numbers will give the best

reconstruction problems. The difficulty with this is that the Φ matrix is not fully characterized

until it has Nmin = NchipNint columns, since there are no repetitions; hence, calibration is much

slower. For the current design, Nchip = 128 and Nint = 100 so the system is fully characterized by

N = 3200 columns, which is reasonable. We strongly advise against setting one of Nchip or Nint to

be a multiple of the other.

Reset. Reset is not too much of an issue according to the analysis. However, a design that

alternates between integrators and allows a reset every period may be worth the power, especially

for a robust real-time system. In our academic setting, this appears to be unnecessary.

Mixer. Mixer jitter is significant. It took much redesign to get the design to have less than 0.5 ps

rms jitter. We advise other systems to also reduce rms jitter to under 1 ps, since otherwise it will

kill dynamic range when a large and small signal are both present.

ADC. If the ADCs have more than about 12 bits, there is no noticeable effect for even small signals,

assuming that the ADCs are calibrated to have full range with large signals. The RMPI uses 12-bit

ADC but these can be switched out for 14-bit ADCs if necessary. We recommend implementing a

sample-and-hold block (on-chip) before the ADC (off-chip) so that the ADC does not need a highly

accurate clock.

Recovery. The matched filter techniques are quite promising, since they are fast and only attempt

to estimate a few parameters. For recovery of single tones, they are recommended. For complex

signal environments, we recommend using reweighted `1 analysis with a very redundant Gabor

dictionary.
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Chapter 3

NESTA

This chapter, with the exception of §3.7, was jointly written with Jérôme Bobin and Emmanuel J.

Candès, and is published in “NESTA: A Fast and Accurate First-Order Method for Sparse Recovery”,

SIAM Journal on Imaging Sciences, 4, 1, January 2011 [BBC11].

This chapter applies a smoothing technique and an accelerated first-order algorithm, both from

Nesterov [Nes05], and demonstrates that this approach is ideally suited for solving large-scale com-

pressed sensing reconstruction problems as 1) it is computationally efficient, 2) it is accurate and

returns solutions with several correct digits, 3) it is flexible and amenable to many kinds of recon-

struction problems, and 4) it is robust in the sense that its excellent performance across a wide

range of problems does not depend on the fine tuning of several parameters. Comprehensive nu-

merical experiments on realistic signals exhibiting a large dynamic range show that this algorithm

compares favorably with recently proposed state-of-the-art methods. We also apply the algorithm

to solve other problems for which there are fewer alternatives, such as total-variation minimization,

and convex programs seeking to minimize the `1 norm of Wx under constraints, in which W is not

diagonal. The code is available online as a free package in the MATLAB language.

3.1 Introduction

Compressed sensing (CS) [CRT06, CT06, Don06] is a novel sampling theory, which is based on

the discovery that one can exploit sparsity or compressibility when acquiring signals of general

interest. In a nutshell, compressed sensing designs nonadaptive sampling techniques that condense

the information in a compressible signal into a small amount of data. There are some indications

that because of the significant reduction in the number of measurements needed to recover a signal

accurately, engineers are changing the way they think about signal acquisition in areas ranging from

analog-to-digital conversion [Hea07], digital optics, magnetic resonance imaging [LDP07], seismics

[LH07], and astronomy [BSO08].
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In this field, a signal x0 ∈ Rn is acquired by collecting data of the form

b = Ax0 + z,

where x0 is the signal of interest (or its coefficient sequence in a representation where it is assumed

to be fairly sparse), A is a known m × n “sampling” matrix, and z is a noise term. In compressed

sensing and elsewhere, a standard approach attempts to reconstruct x0 by solving

minimize f(x)

subject to ‖b−Ax‖`2 ≤ ε,
(3.1.1)

where ε2 is an estimated upper bound on the noise power. The choice of the regularizing function

f depends on prior assumptions about the signal x0 of interest: if x0 is (approximately) sparse, an

appropriate convex function is the `1 norm (as advocated by the CS theory); if x0 is a piecewise

constant object, the total-variation norm provides accurate recovery results, and so on.

Solving large-scale problems such as (3.1.1) (think of x0 as having millions of entries, as in mega-

pixel images) is challenging. Although one cannot review the vast literature on this subject, the

majority of the algorithms that have been proposed are unable to solve these problems accurately

with low computational complexity. On the one hand, standard second-order methods such as

interior-point methods [CR07b,KKB07,SK02] are accurate but problematic, for they need to solve

large systems of linear equations to compute the Newton steps. On the other hand, inspired by

iterative thresholding ideas [DDM04, FN03, CW05], we have now available a great number of first-

order methods, see [WNF09,COS09,HYZ07,HYZ08] and the many earlier references therein, which

may be faster but not necessarily accurate. Indeed, these methods are shown to converge slowly,

and typically need a very large number of iterations when high accuracy is required.

We would like to pause on the demand for high accuracy since this is the main motivation of the

present chapter. While in some applications, one may be content with one or two digits of accuracy,

there are situations in which this is simply unacceptable. Imagine that the matrix A models a

device giving information about the signal x0, such as an analog-to-digital converter, for example.

Here, the ability to detect and recover low-power signals that are barely above the noise floor, and

possibly further obscured by large interferers, is critical to many applications. In mathematical

terms, one could have a superposition of high power signals corresponding to components x0[i]

of x0 with magnitude of order 1, and low power signals with amplitudes as far as 100 dB down,

corresponding to components with magnitude about 10−5. In this regime of high-dynamic range,

very high accuracy is required. In the example above, one would need at least five digits of precision

as otherwise, the low power signals would go undetected.

Another motivation is solving (3.1.1) accurately when the signal x0 is not exactly sparse, but

150



rather approximately sparse, as in the case of real-world compressible signals. Since exactly sparse

signals are rarely found in applications—while compressible signals are ubiquitous—it is important

to have an accurate first-order method to handle realistic signals.

3.1.1 Contributions

A few years ago, Nesterov [Nes05] published a seminal paper which couples smoothing techniques

with an improved gradient method to derive first-order methods1 which achieve a convergence rate

he had proved to be optimal [Nes83] two decades earlier. As a consequence of this breakthrough, a

few recent works have followed up with improved techniques in signal or image processing: in [BT09]

a fast iterative thresholding algorithm was introduced to solve a class of composite functions that

include (QPλ), and [DHJJ10,WBFA09,Auj09] focused on total-variation minimization problems. In

truth, these novel algorithms demonstrate great promise; they are fast, accurate, and robust in the

sense that their performance does not depend on the fine tuning of various controlling parameters.

This chapter also focuses on applying some of Nesterov’s works [Nes05] discussed just above,

and proposes an algorithm—or, better said, a class of algorithms—for solving recovery problems

from incomplete measurements. We refer to this algorithm as NESTA—a shorthand for Nesterov’s

algorithm—to acknowledge the fact that it is based on his method. The main purpose and the

contribution of this chapter consist in showing that NESTA obeys the following desirable properties:

1. Speed: we will emphasize the case where A∗A is an orthogonal projector. Though being a

special case, it is widespread in compressed sensing applications. In that case, NESTA is an it-

erative algorithm where each iteration is decomposed into three steps, each involving only a few

matrix-vector operations. This, together with the accelerated convergence rate of Nesterov’s

algorithm [Nes05, BT09], makes NESTA a method of choice for solving large-scale problems.

Furthermore, NESTA’s convergence is mainly driven by a heuristically chosen single smoothing

parameter µ introduced in Section 3.2.1. One can use continuation techniques [HYZ07,HYZ08]

to dynamically update this parameter to substantially accelerate this algorithm.

2. Accuracy: NESTA depends on a few parameters that can be set in a very natural fashion.

In fact, there is a clear relationship between the value of these parameters and the desired

accuracy. Furthermore, our numerical experiments demonstrate that NESTA can find up to

the first 4 or 5 significant digits of the optimal solution to (3.1.1), where f(x) is the `1 norm

or the total-variation norm of x, in a few hundred iterations. This makes NESTA amenable to

solve recovery problems involving signals of very large sizes that also exhibit a great dynamic

range.

1By “first-order”, we mean methods which assume only that the local gradient information is available from a
black-box oracle, but that once queried, the information persists; this is in contrast to a “pure” first-order method
that only uses information about the current gradient.
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3. Flexibility: NESTA can be adapted to solve many problems beyond `1 minimization with the

same efficiency, such as total-variation (TV) minimization problems. In this chapter, we will

also discuss applications in which f in (3.1.1) is given by f(x) = ‖Wx‖`1 , where one may

think of W as a short-time Fourier transform also known as the Gabor transform, a curvelet

transform, an undecimated wavelet transform, and so on, or a combination of these, or a general

arbitrary dictionary of waveforms (note that this class of recovery problems also includes

weighted `1 methods [CWB08]). This is particularly interesting because recent work [EMR07]

suggests the potential advantage of this analysis-based approach over the classical basis pursuit

in solving important inverse problems [EMR07].

A consequence of these properties is that NESTA, and more generally Nesterov’s method, may

be of interest to researchers working in the broad area of signal recovery from indirect and/or

undersampled data.

Another contribution of this chapter is that it also features a fairly wide range of numerical

experiments comparing various methods against problems involving realistic and challenging data.

By challenging, we mean problems of very large scale where the unknown solution exhibits a large

dynamic range; that is, problems for which classical second-order methods are too slow, and for

which standard first-order methods do not provide sufficient accuracy. More specifically, Section 3.5

presents a comprehensive series of numerical experiments which illustrate the behavior of several

state-of-the-art methods including interior point methods [KKB07], projected gradient techniques

[HYZ07,vdBF08,FNW07], fixed point continuation, and iterative thresholding algorithms [HYZ07,

YOGD08, BT09]. Most of these methods have either been perfected after several years of research

[KKB07,FNW07], or are very recent state-of-the-art methods building on insight from the past few

years. For example, the fixed point continuation method with active set [HYZ08], which represents

a notable improvement over existing ideas, was released while we were working on the paper (and

[ABDF11] was released while we were revising the paper).

3.1.2 Organization of the chapter and notations

As emphasized earlier, NESTA is based on Nesterov’s ideas and Section 3.2.1 gives a brief but

essential description of Nesterov’s algorithmic framework. The proposed algorithm is introduced in

Section 3.3. Inspired by continuation-like schemes, an accelerated version of NESTA is described

in Section 3.3.6. We report on extensive and comparative numerical experiments in Section 3.5.

Section 3.6 covers extensions of NESTA to minimize the `1 norm of Wx under data constraints

(Section 3.6.1), and includes realistic simulations in the field of radar pulse detection and estimation.

Section 3.6.3 extends NESTA to solve total-variation problems and presents numerical experiments

which also demonstrate its remarkable efficiency there as well. Finally, we conclude with Section 3.8
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discussing further extensions, which would address an even wider range of linear inverse problems.

Notations. Before we begin, it is best to provide a brief summary of the notations used throughout

the chapter. As usual, vectors are written in small letters and matrices in capital letters. The ith

entry of a vector x is denoted x[i] and the (i, j)th entry of the matrix A is A[i, j].

It is convenient to introduce some common optimization problems that will be discussed through-

out. Solving sparse reconstruction problems can be approached via several different equivalent for-

mulations. In this chapter, we particularly emphasize the quadratically constrained `1-minimization

problem

(BPε) minimize ‖x‖`1
subject to ‖b−Ax‖`2 ≤ ε,

(3.1.2)

where ε quantifies the uncertainty about the measurements b as in the situation where the mea-

surements are noisy. This formulation is often preferred because a reasonable estimate of ε may be

known. A second frequently discussed approach considers solving this problem in Lagrangian form,

i.e.,

(QPλ) minimize λ‖x‖`1 +
1

2
‖b−Ax‖2`2 , (3.1.3)

and is also known as the basis pursuit denoising problem (BPDN) [CDS98]. This problem is popular

in signal and image processing [DDM04, FN03]; it is often interpreted as a maximum a posteriori

estimate in a Bayesian setting or, simply, as a regularized least-squares problem. In statistics, the

same problem is more well-known as the LASSO [Tib96]

(LSτ ) minimize ‖b−Ax‖`2
subject to ‖x‖`1 ≤ τ.

(3.1.4)

Standard optimization theory [Roc70] asserts that these three problems are of course equivalent

provided that ε, λ, τ obey some special relationships. With the exception of the case where the

matrix A is orthogonal, this functional dependence is hard to compute [vdBF08]. Because it is

usually more natural to determine an appropriate ε rather than an appropriate λ or τ , the fact that

NESTA solves (BPε) is a significant advantage. Further, note that theoretical equivalence of course

does not mean that all three problems are just as easy (or just as hard) to solve. For instance, the

constrained problem (BPε) may be harder to solve than (QPλ). Hence, the fact that NESTA turns

out to be competitive with algorithms that only solve (QPλ) is quite remarkable.
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3.2 NESTA

3.2.1 Nesterov’s method to minimize smooth convex functions

In [Nes04, Nes83], Nesterov introduces a subtle algorithm to minimize any smooth convex function

f on the convex set Qp,
min
x∈Qp

f(x). (3.2.1)

We will refer to Qp as the primal feasible set. The function f is assumed to be differentiable and its

gradient ∇f(x) is Lipschitz and obeys

∀x, y ∈ dom(f), ||∇f(x)−∇f(y)||`2 ≤ L‖x− y‖`2 ; (3.2.2)

where dom(f) ≡ Rn and L is an upper bound on the Lipschitz constant. With these assumptions,

Nesterov’s algorithm minimizes f over Qp by iteratively estimating three sequences {xk}, {yk}, and

{zk} while smoothing the feasible set Qp. The algorithm depends on two scalar sequences {αk} and

{τk}, discussed below, and takes the following form (this specific form is based on [Nes05]):

Initialize x0. For k ≥ 0,

1. Compute ∇f(xk).

2. Compute yk:

yk=argminx∈Qp
L
2 ‖x− xk‖2`2 + 〈∇f(xk), x− xk〉.

3. Compute zk:

zk=argminx∈Qp Lpp(x) +
∑k
i=0 αi〈∇f(xi), x− xi〉.

4. Update xk:

xk+1 =τkzk + (1− τk)yk.

Stop when a given criterion is valid.
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At step k, yk is the current guess of the optimal solution. If we only performed the second

step of the algorithm with yk−1 instead of xk, we would obtain a standard first-order technique

with convergence rate O(1/k). This second step can be seen as minimizing an approximate Taylor

expansion of f about xk, by taking an upper bound on the Hessian.

The novelty is that the sequence zk “keeps in mind” the previous iterations since Step 3 involves a

weighted sum of already computed gradients2. Another aspect of this step is that—borrowing ideas

from smoothing techniques in optimization —it makes use of a prox-function pp(x) for the primal

feasible set Qp. This function is strongly convex with parameter σp. Without loss of generality, we

will set σp = 1. Assuming that pp(x) vanishes at the prox-center xcp = argminx pp(x), this gives

pp(x) ≥ 1

2
‖x− xcp‖2`2 .

The prox-function is usually chosen so that xcp ∈ Qp, thus discouraging zk from moving too far away

from the center xcp.

The point xk, at which the gradient of f is evaluated, is a weighted average between zk and yk.

This is motivated by a theoretical analysis [Nes05, Tse08], which shows that if 3 αk = 1/2(k + 1)

and τk = 2/(k + 3), then the sequence {f(yk)} (yk is feasible) converges to f(x?) where x? =

argminx∈Qp f(x), with the convergence rate (see [Nes05, Theorem 2])

f(yk)− f(x?) ≤ 4Lpp(x
?)

(k + 1)2
. (3.2.3)

This decay is far better than what is achievable via standard gradient-based optimization techniques

since we have an approximation scaling like L/k2 instead of L/k.

3.3 Application to compressed sensing

We now apply Nesterov’s algorithm to solve compressed sensing recovery problems, and refer to this

extension as NESTA. For now, we shall be concerned with solving the quadratically constrained

`1-minimization problem (3.1.2).

3.3.1 NESTA

We wish to solve (3.1.2), i.e., minimize ‖x‖`1 subject to ‖b−Ax‖`2 ≤ ε, where A ∈ Rm×n is singular

(m < n).

2Using the sequence {∇f(xi)}1≤i≤k to update the current estimate xk is not new. For instance, in algorithms
such as SESOP [EMZ07], the search direction is optimally evaluated at each iteration in the subspace spanned by
previous gradients; this requires storing a set of previous values, which may not be practical for large-scale problems.

3Other choices for αk and τk are possible [Nes05].
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In this chapter, with the exception of §3.7, we assume that A∗A is an orthogonal projector,

i.e., the rows of A are orthonormal. This is often the case in compressed sensing applications where

it is common to take A as a submatrix of a unitary transformation which admits a fast algorithm

for matrix-vector products; special instances include the discrete Fourier transform, the discrete

cosine transform, the Hadamard transform, the noiselet transform, and so on. Basically, collecting

incomplete structured orthogonal measurements is the prime method for efficient data acquisition

in compressed sensing. Section 3.8 discusses different approaches for relaxing this assumption.

From non-smooth to smooth functions

The algorithm described in the previous paragraph has been introduced to minimize a smooth

function f ; it cannot be applied directly to solve (BPε) as the function f(x) = ‖x‖`1 is not smooth.

In an innovative paper [Nes05], Nesterov recently extended this framework to deal with a certain

class of non-smooth convex functions. Suppose that the function f to be minimized has the form

f(x) = max
u∈Qd

〈u,Wx〉, (3.3.1)

where x ∈ Rn, u ∈ Rp, and W ∈ Rp×n. W is assumed to have full column rank. We will refer to

Qd as the dual feasible set, and assume it is convex. In [Nes05], Nesterov proposed substituting f

by the smooth approximation

fµ(x) = max
u∈Qd

〈u,Wx〉 − µ pd(u), (3.3.2)

where pd(u) is a prox-function for Qd; that is, pd(u) is continuous and strongly convex on Qd,
with convexity parameter σd which we will take to be 1. Nesterov proved that fµ is continuously

differentiable, and that its gradient obeys

∇fµ(x) = W ∗uµ(x), (3.3.3)

where uµ(x) is the optimal solution of (3.3.2). Furthermore, ∇fµ is shown to be Lipschitz with

constant

L =
1

µσd
‖W‖2 (3.3.4)

(‖W‖ is the operator norm of W ). It is now possible to apply Nesterov’s accelerated method [Nes05]

to the smoothed function fµ. This produces a feasible sequence of points that will weakly converge

to the minimizer of the smoothed problem at rate O(k−2), and empirically, the minimizers of the

smoothed problem and the unsmoothed problem can be made arbitrarily close by taking µ→ 0.
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The particular case f(x) = ‖x‖`1

In this setting, the `1 norm can be formulated as in (3.3.1) since

‖x‖`1 = max
u∈Qd

〈u, x〉,

where the dual feasible set Qd is the `∞ ball Qd = {u : ‖u‖∞ ≤ 1}. Therefore, a natural smooth

approximation to the `1 norm is

fµ(x) = max
u∈Qd

〈u, x〉 − µ pd(u),

where pd(u) is our dual prox-function. For pd(u), we would like a strongly convex function, which

is known analytically and takes its minimum value (equal to zero) at some ucd ∈ Qd. It is also usual

to have pd(u) separable. Taking these criteria into account, a convenient choice is pd(u) = 1
2‖u‖2`2

whose strong convexity parameter is equal to 1. With this prox-function, fµ is the well-known Huber

function4 and ∇fµ is Lipschitz with constant 1/µ. In particular, ∇fµ(x) is given by

∇fµ(x)[i] =

µ
−1 x[i], if |x[i]| < µ,

sgn(x[i]), otherwise.

(3.3.5)

As proposed in [Nes05], Nesterov’s algorithm can then be applied to solve

min
x∈Qp

fµ(x), (3.3.6)

where Qp = {x : ‖b−Ax‖`2 ≤ ε}. Let us note that this problem is an approximation to (BPε) with

0 ≤ f(x) − fµ(x) ≤ nµ/2 for all x ∈ Rn; this bound is overly pessimistic if x is s-sparse, since

f(0) = fµ(0), so the expected approximation error is closer to sµ/2 for these signals.

The only remaining details of the algorithm are about the auxiliary updates of yk and zk in Steps

2 and 3. In the next section, we show that these steps are computationally very cheap when A∗A is

assumed to be an orthogonal projector.5

3.3.2 Updating yk

To compute yk, we need to solve a problem of the form

yk = argmin
x∈Qp

L

2
‖d− x‖2`2 + 〈c, x− xk〉, (3.3.7)

4The smoothed version of the total-variation norm is not known to have a specific name.
5Taking x0 = A∗b which is feasible and observing that f(x?) ≤ f(A∗b) for any minimizer x? implies the bounded-

ness of x? and, hence, that of pp(x?) in (3.2.3). This follows from f(x) ≤ ‖x‖`1 ≤ f(x) + µn/2 valid for all x, giving
‖x?‖`1 ≤ f(A∗b) + µn/2.
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where xk is from the previous iterate and L is given by (3.3.4), d = xk and c = ∇fµ(xk). The

Lagrangian for this problem is

L(x, λ) =
L

2
‖d− x‖2`2 +

λ

2

(
‖b−Ax‖2`2 − ε2

)
+ 〈c, x− xk〉, (3.3.8)

and at the primal-dual solution (yk, λε), the Karush-Kuhn-Tucker (KKT) conditions [Roc70] read

‖b−Ayk‖`2 ≤ ε,

λε ≥ 0,

λε
(
‖b−Ayk‖2`2 − ε2

)
= 0,

L(yk − d) + λεA
∗(Ayk − b) + c = 0.

From the stationarity condition, yk is the solution to the linear system

(
I +

λε
L
A∗A

)
yk =

λε
L
A∗b+ d− 1

L
c. (3.3.9)

As discussed earlier, our assumption is that A∗A is an orthogonal projector so that

yk =

(
I − λε

λε + L
A∗A

)(
λε
L
A∗b+ d− 1

L
c

)
. (3.3.10)

In this case, computing yk is cheap since no matrix inversion is required—only a few matrix-vector

products are necessary. Moreover, from the KKT conditions, the value of the optimal Lagrange

multiplier is obtained explicitly, and equals

λε = max(0, Lε−1‖b−Aq‖`2 − L), q = d− L−1c (3.3.11)

where c = ∇fµ(xk) and d = xk. Observe that this can be computed beforehand since it only depends

on xk and ∇fµ(xk).

3.3.3 Updating zk

To compute zk, we need to solve

zk = argmin
x∈Qp

Lpp(x) + 〈
∑
i≤k

αi∇fµ(xi), x− xk〉, (3.3.12)

where pp(x) is the primal prox-function. The point zk differs from yk since it is computed from a

weighted cumulative gradient
∑
i≤k αi∇fµ(xi), making it less prone to zig-zagging, which typically

occurs when we have highly elliptical level sets. This step keeps a memory from the previous steps
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and forces zk to stay near the prox-center. A good primal prox-function is a smooth and strongly

convex function that is likely to have some positive effect near the solution. In the setting of (3.1.1),

a suitable smoothing prox-function may be

pp(x) =
1

2
‖x− x0‖2`2 (3.3.13)

for some x0 ∈ Rn, e.g., an initial guess of the solution. Other choices of primal feasible set Qp may

lead to other choices of prox-functions. For instance, when Qp is the standard simplex, choosing

an entropy distance for pp(x) is smarter and more efficient, see [Nes05]. In this chapter, the primal

feasible set is quadratic, which makes the Euclidean distance a reasonable choice. What is more

important, however, is that this choice allows very efficient computations of zk, while other choices

may considerably slow down each Nesterov iteration. Finally, notice that the bound on the error

at iteration k in (3.2.3) is proportional to pp(x
?); choosing x0 wisely (a good first guess) can make

pp(x
?) small. When nothing is known about the solution, a natural choice may be x0 = A∗b; this

idea will be developed in Section 3.3.6.

With (3.3.13), the strong convexity parameter of pp(x) is equal to 1, and to compute zk we need

to solve a quadratically constrained quadratic program that has exactly the same formulation as

(3.3.7), where d = x0 and c =
∑
i≤k αi∇fµ(xi). Updating zk is then just as cheap as updating yk.

Furthermore, many of the matrix-vector multiplications from the yk update can be reused.

3.3.4 Computational complexity

The computational complexity of each of NESTA’s steps is clear. In large-scale problems, most of

the work is in the application of A and A∗. Define CA to be the complexity of applying A or A∗. The

first step, namely, computing ∇fµ, only requires vector operations whose complexity is O(n). Steps

2 and 3 require the application of A or A∗ three times each (we only need to compute A∗b once).

Hence, the total complexity of a single NESTA iteration is 6 CA +O(n) where CA is dominant.

The calculations above are in some sense overly pessimistic. In compressed sensing applications,

it is common to choose A as a submatrix of a unitary transformation U , which admits a fast algorithm

for matrix-vector products. In the sequel, it might be useful to think of A as a subsampled DFT. In

this case, letting R be the m × n matrix extracting the observed measurements, we have A = RU .

The trick then is to compute in the U -domain directly. Making the change of variables x← Ux, our

problem is

minimize f̂µ(x)

subject to ‖b−Rx‖`2 ≤ ε,
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where f̂µ = fµ ◦ U∗. The gradient of f̂µ is then

∇f̂µ(x) = U ∇fµ(U∗x).

With this change of variables, Steps 2 and 3 do not require applying U or U∗ since

yk =

(
I − λ

λ+ L
R∗R

)(
λ

L
R∗b+ xk −

1

L
∇f̂µ(xk)

)
,

where R∗R is the diagonal matrix with 0/1 diagonal entries depending on whether a coordinate is

sampled or not. As before, λε = max(0, ‖b−Rq‖`2 −L) with q = xk−L−1∇f̂µ(xk). The complexity

of Step 2 is now O(n) and the same applies to Step 3.

Put CU for the complexity of applying U and U∗. The complexity of Step 1 is now 2 CU , so

that this simple change of variables reduces the cost of each NESTA iteration to 2 CU +O(n). For

example, in the case of a subsampled DFT (or something similar), the cost of each iteration is

essentially that of two FFTs. Hence, each iteration is extremely fast.

3.3.5 Parameter selection

NESTA involves the selection of a single smoothing parameter µ and of a suitable stopping criterion.

For the latter, our experience indicates that a robust and fairly natural stopping criterion is to

terminate the algorithm when the relative variation of fµ is small. Define ∆fµ as

∆fµ :=
|fµ(xk)− f̄µ(xk)|

f̄µ(xk)
, f̄µ(xk) :=

1

min{10, k}

min{10,k}∑
l=1

fµ(xk−l). (3.3.14)

Then convergence is claimed when

∆fµ < δ

for some δ > 0. In our experiments, δ ∈ {10−5, 10−6, 10−7, 10−8} depending upon the desired

accuracy. These values might depend on the problem type and should be optimized accordingly.

Clearly, δ should be small when µ is small, since this is the high accuracy situation; when µ is larger,

δ may be taken to be larger as well.

The choice of µ is based on a tradeoff between the accuracy of the smoothed approximation fµ

(basically, limµ→0 fµ(x) = ‖x‖`1) and the speed of convergence (the convergence rate is proportional

to µ). With noiseless data, µ is directly linked to the desired accuracy. To illustrate this, we have

observed in [BC09] that when the true signal x0 is exactly sparse and is actually the minimum

solution under the equality constraints Ax0 = b, the `∞ error on the nonzero entries is on the order

of µ. The link between µ and accuracy will be further discussed in Section 3.4.3.
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3.3.6 Accelerating NESTA with continuation

Inspired by homotopy techniques which find the solution to the LASSO problem (3.1.4) for values

of τ ranging in an interval [0, τmax], [HYZ07] and [DFL08] independently introduced a fixed point

continuation technique which solves `1-penalized least-square problems (3.1.3),

(QPλ) minimize λ‖x‖`1 +
1

2
‖b−Ax‖2`2 ,

for values of λ obeying 0 < λ < ‖A∗b‖`∞ . The continuation solution approximately follows the path

of solutions to the problem (QPλ) and, hence, the solutions to (3.1.1) and (3.1.4) may be found by

solving a sequence of `1 penalized least-squares problems.

The point of this is that it has been noticed (see [HYZ07, OPT00, DT08, WNF09]) that solving

(3.1.3) (resp. the LASSO (3.1.4)) is faster when λ is large (resp. τ is low). This observation greatly

motivates the use of continuation for solving (3.1.3) for a fixed λf . The idea is simple: propose

a sequence of problems with decreasing values of the parameter λ, λ0 > · · · > λf , and use the

intermediate solution as a warm start for the next problem. This technique has been used with

success in [FNW07,vdBF08]. Continuation has been shown to be a very successful tool to increase

the speed of convergence, in particular when dealing with large-scale problems and high dynamic

range signals.

Likewise, our proposed algorithm can greatly benefit from a continuation approach. Recall that

to compute yk, we need to solve

yk = argmin
x∈Qp

L

2
‖x− xk‖2`2 + 〈c, x〉

= argmin
x∈Qp

‖x− (xk − L−1c)‖2`2

for some vector c. Thus with PQp the projector ontoQp, yk = PQp(xk−L−1c). Now two observations

are in order.

1. Computing yk is similar to a projected gradient step as the Lipschitz constant L−1 plays the

role of the step size. Since L is proportional to µ−1, the larger µ, the larger the step-size, and

the faster the convergence. This also applies to the sequence {zk}.

2. For a fixed value of µ, the convergence rate of the algorithm obeys

fµ(yk)− fµ(x?µ) ≤ 2L‖x?µ − x0‖2`2
k2

,

where x?µ is the optimal solution to min fµ over Qp. On the one hand, the convergence rate is

proportional to µ−1, so a large value of µ is beneficial. On the other hand, choosing a good

161



guess x0 close to x?µ provides a low value of pp(x
?
µ) = 1

2‖x?µ − x0‖2`2 , also improving the rate of

convergence. Warm-starting with x0 from a previous solve not only changes the starting point

of the algorithm, but it beneficially changes pp as well.

These two observations motivate the following continuation-like algorithm:

Initialize µ0, x0 and the number of continuation steps T . For t = 1, · · · , T ,

1. Apply Nesterov’s algorithm with µ = µ(t) and x0 = xµ(t−1) .

2. Decrease the value of µ: µ(t+1) = γµ(t) with γ < 1.

Stop when the desired value of µf is reached.

This algorithm iteratively finds the solutions to a succession of problems with decreasing smooth-

ing parameters µ0 > · · · > µf = γTµ0 producing a sequence of—hopefully—finer estimates of

x?µf
6; these intermediate solutions are cheap to compute and provide a string of convenient first

guesses for the next problem. In practice, they are solved with less accuracy, making them even

cheaper to compute. This kind of continuation is different from standard continuation techniques

[HYZ07,OPT00,DT08,WNF09]. Indeed, while standard continuation solves a sequence of problems

(QPλ) with different values of the Lagrange multiplier λ (so that intermediate solutions may have

a meaningful interpretation if λ is not decreased too quickly), the proposed continuation technique

acts internally by changing the smoothing parameter µ while keeping ε and, therefore, the feasible

set, fixed. While intermediate solutions may have a less meaningful interpretation, the continua-

tion may actually be more effective than traditional continuation, since not only is the new step

warm-started, but the primal prox-function is improved.

The value of µf is based on a desired accuracy as explained in Section 3.3.5. As for an initial

value µ0, (3.3.5) makes clear that the smoothing parameter plays a role similar to a threshold. A

first choice may then be µ0 = 0.9‖A∗b‖`∞ .

We illustrate the good behavior of the continuation-inspired algorithm by applying NESTA with

continuation to solve a sparse reconstruction problem from partial frequency data. In this series

of experiments, we assess the performance of NESTA while the dynamic range of the signals to be

recovered increases.

The signals x are s-sparse signals—that is, have exactly s nonzero components—of size n = 4096

and s = m/40. Put Λ for the indices of the nonzero entries of x; the amplitude of each nonzero

entry is distributed uniformly on a logarithmic scale with a fixed dynamic range. Specifically, each

6The parameter γ does not define a new parameter; it depends upon µf , µ0, and T via γ = (µf/µ0)1/T .
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Figure 3.1: Value of fµf (xk) as a function of iteration k. Solid line: without continuation. Dashed line: with
continuation. Here, the test signal has 100 dB of dynamic range.

nonzero entry is generated as follows:

x[i] = η1[i]10αη2[i], (3.3.15)

where η1[i] = ±1 with probability 1/2 (a random sign) and η2[i] is uniformly distributed in [0, 1].

The parameter α quantifies the dynamic range. Unless specified otherwise, a dynamic range of d dB

means that α = d/20 (since for large signals α is approximately the logarithm base 10 of the ratio

between the largest and the lowest magnitudes). For instance, 80 dB signals are generated according

to (3.3.15) with α = 4.

The measurements Ax consist of m = n/8 random discrete cosine measurements so that A∗A is

diagonalized by the DCT. Finally, b is obtained by adding a white Gaussian noise term with standard

deviation σ = 0.1. The initial value of the smoothing parameter is µ0 = ‖A∗b‖`∞ and the terminal

value is µf = 2σ. The algorithm terminates when the relative variation of fµ is lower than δ = 10−5.

NESTA with continuation is applied to 10 random trials for varying number of continuation steps T

and various values of the dynamic range. Figure 3.1 graphs the value of fµf while applying NESTA

with and without continuation as a function of the iteration count. The number of continuation

steps is set to T = 4.

One can observe that computing the solution to min fµf (solid line) takes a while when computed

with the final value µf ; notice that NESTA seems to be slow at the beginning (number of iterations

lower than 15). In the meantime NESTA with continuation rapidly estimates a sequence of coarse

intermediate solutions that converges to the solution to min fµf In this case, continuation clearly

enhances the global speed of convergence with a factor 10. Figure 3.2 provides deeper insights into
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Figure 3.2: Total number of iterations required for convergence with a varying number of continuation steps and
for different values of the dynamic range

the behavior of continuation with NESTA and shows the number of iterations required to reach

convergence for varying values of the continuation steps T for different values of the dynamic range.

When the ratio µ0/µf is low or when the required accuracy is low, continuation is not as beneficial:

intermediate continuation steps require a number of iterations which may not speed up overall

convergence. The step-size which is about L−1
µf

works well in this regime. When the dynamic range

increases and we require more accuracy, however, the ratio µ0/µf is large, since µ0 = .9‖A∗b‖`∞ ≈
‖x‖`∞ � σ, and continuation provides considerable improvements. In this case, the step size L−1

µf
is

too conservative and it takes a while to find the large entries of x. Empirically, when the dynamic

range is 100 dB, continuation improves the speed of convergence by a factor of 8. As this factor

is likely to increase exponentially with the dynamic range (when expressed in dB), NESTA with

continuation seems to be a better candidate for solving sparse reconstruction problems with high

accuracy.

Interestingly, the behavior of NESTA with continuation seems to be quite stable: increasing the

number of continuation steps does not increase dramatically the number of iterations. In practice,

although the ideal T is certainly signal dependent, we have observed in our problem settings that

choosing T ∈ {4, 5, 6} leads to reasonable results. The value of T should certainly be optimized for

particular problem types.

3.3.7 Some theoretical considerations

The convergence of NESTA with and without continuation is straightforward. The following theorem

states that at each continuation step with µ = µ(t), the sequence fµ(yk) converges to fµ(x?µ). Global
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convergence is proved by applying this theorem to t = T .

Theorem 3.3.1. At each continuation step t, limk→∞ fµ(t)(yk) = fµ(t)(x?µ(t)), and

fµ(t)(yk)− fµ(t)(x?µ(t)) ≤
2Lµ(t)‖x?µ(t) − xµ(t−1)‖2`2

k2
.

Proof. Immediate by using [Nes05, Theorem 2].

As mentioned earlier, continuation may be valuable for improving the speed of convergence. Let

each continuation step t stop after N (t) iterations with

N (t) =

√
2Lµ(t)

γtδ0
‖x?µ(t) − x?µ(t−1)‖`2

so that we have

fµ(t)(yk)− fµ(t)(x?µ(t)) ≤ γtδ0,

where the accuracy γtδ0 becomes tighter as t increases. Then summing up the contribution of all

the continuation steps gives

Nc =

√
2

µ0δ0

T∑
t=1

γ−t‖x?µ(t) − x?µ(t−1)‖`2 .

When NESTA is applied without continuation, the number of iterations required to reach con-

vergence is

N =

√
2

µ0δ0
γ−T ‖x?µf − x0‖`2 .

Now the ratio Nc/N is given by

Nc
N =

T∑
t=1

γT−t
‖x?

µ(t) − x?µ(t−1)‖`2
‖x?µf − x0‖`2

. (3.3.16)

Continuation is definitely worthwhile when the right-hand side is smaller than 1. Interestingly, this

quantity is directly linked to the path followed by the sequence x0 → xµ(1) → · · · → xµf . More

precisely, it is related to the smoothness of this path; for instance, if all the intermediate points xµ(t)

belong to the segment [x0, xµf ] in an ordered fashion, then
∑
t ‖x?µ(t) − xµ(t−1)‖`2 = ‖x?µf − x0‖`2 .

Hence, NcN < 1 and continuation improves the convergence rate.

Figure 3.3 illustrates two typical solution paths with continuation. When the sequence of so-

lutions obeys ‖x0‖`1 ≥ . . . ‖x?
µ(t)‖`1 . . . ≥ ‖x?µf ‖`1 (this is the case when x0 = A∗b and µ1 ≥

. . . µ(t) . . . ≥ µf ), the solution path is likely to be “smooth”; that is, the solutions obey ‖x?
µ(t) −

x?µf ‖`2 ≥ ‖x?µ(t+1) − x?µf ‖`2 as on the left of Figure 3.3. The “non-smooth” case on the right of
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Figure 3.3: Typical solution paths. Left: smooth solution path. Right: non-smooth solution path

Figure 3.3 arises when the sequence of smoothing parameters does not provide estimates of x?µf that

are all better than x0. Here, computing some of the intermediate points {x?
µ(t)} is wasteful and

continuation fails to be faster.

3.4 Accurate optimization

A significant fraction of the numerical part of this chapter focuses on comparing different sparse

recovery algorithms in terms of speed and accuracy. In this section, we first demonstrate that

NESTA can easily recover the exact solution to (BPε) with a precision of 5 to 6 digits. Speaking of

precision, we shall essentially use two criteria to evaluate accuracy.

1. The first is the (relative) error on the objective functional

‖x‖`1 − ‖x?‖`1
‖x?‖`1

, (3.4.1)

where x? is the optimal solution to (BPε) .

2. The second is the accuracy of the optimal solution itself and is measured via

‖x− x?‖`∞ , (3.4.2)

which gives a precise value of the accuracy per entry.

3.4.1 Is NESTA accurate?

For general problem instances, the exact solution to (BPε) (or equivalently (QPλ)) cannot be com-

puted analytically. Under some conditions, however, a simple formula is available when the optimal
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Table 3.1: Assessing FISTA’s and NESTA’s accuracy when the optimal solution is known. The relative error on
the optimal value is given by (3.4.1) and the `∞ error on the optimal solution by (3.4.2). NA is the number of
calls to A or A∗ to compute the solution.

Method `1-norm Rel. error `1-norm `∞ error NA
x? 3.33601e+6
FISTA 3.33610e+6 2.7e-5 0.31 40000
NESTA µ = 0.02 3.33647e+6 1.4e-4 0.08 513

solution has exactly the same support and the same sign as the unknown (sparse) x0 (recall the

model b = Ax0 + z). Denote by I the support of x0, I := {i : |x0[i]| > 0}. Then if x0 is sufficiently

sparse and if the nonzero entries of x0 are sufficiently large, the solution x? to (QPλ) is given by

x?[I] = (A[I]∗A[I])−1(A[I]∗b− λ sgn(x0[I])), (3.4.3)

x?[Ic] = 0, (3.4.4)

see [CP07a] for example. In this expression, x[I] is the vector with indices in I and A[I] is the

submatrix with columns indices in I.

To evaluate NESTA’s accuracy, we set n = 262,144, m = n/8, and s = m/100 (this is the number

of nonzero coordinates of x0). The absolute values of the nonzero entries of x0 are distributed between

1 and 105 so that we have about 100 dB of dynamic range. The measurements Ax0 are discrete cosine

coefficients selected uniformly at random. We add Gaussian white noise with standard deviation

σ = 0.01. We then compute the solution (3.4.3), and make sure it obeys the KKT optimality

conditions for (QPλ) so that the optimal solution is known.

We run NESTA with continuation with the value of ε := ‖b−Ax?‖. We use µ = 0.02, δ = 10−7

and the number of continuation steps is set to 5. Table 3.1 reports on numerical results. First, the

value of the objective functional is accurate up to 4 digits. Second, the computed solution is very

accurate since we observe an `∞ error of 0.08. Now recall that the nonzero components of x? vary

from about 1 to 105 so that we have high accuracy over a huge dynamic range. This can also be

gleaned from Figure 3.4 which plots NESTA’s solution versus the optimal solution, and confirms the

excellent precision of our algorithm.

3.4.2 Setting up a reference algorithm for accuracy tests

In general situations, a formula for the optimal solution is of course unavailable, and evaluating

the accuracy of solutions requires defining a method of reference. In this chapter, we will use

FISTA [BT09] as such a reference since it is an efficient algorithm that also turns out to be extremely

easy to use; in particular, no parameter has to be tweaked, except for the standard stopping criterion

(maximum number of iterations and tolerance on the relative variation of the objective function).
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Figure 3.4: Entries of the computed solutions versus the optimal solution. The absolute values of the entries on
the support of the optimal solution are plotted.

We run FISTA with 20,000 iterations on the same problem as above, and report its accuracy in

Table 3.1. The `1-norm is exact up to 4 digits. Furthermore, Figure 3.4 shows the entries of FISTA’s

solution versus those of the optimal solution, and one observes a very good fit (near perfect when

the magnitude of a component of x? is higher than 3). The `∞ error between FISTA’s solution and

the optimal solution x? is equal to 0.31; that is, the entries are exact up to ±0.31. Because this

occurs over an enormous dynamic range, we conclude that FISTA also gives very accurate solutions

provided that sufficiently many iterations are taken. We have observed that running FISTA with

a high number of iterations—typically greater than 20,000—provides accurate solutions to (QPλ),

and this is why we will use it as our method of reference in the forthcoming comparisons from this

section and the next.

3.4.3 The smoothing parameter µ and NESTA’s accuracy

By definition, µ fixes the accuracy of the approximation fµ to the `1 norm and, therefore, NESTA’s

accuracy directly depends on this parameter. We now propose to assess the accuracy of NESTA for

different values of µ. The problem sizes are as before, namely, n = 262,144 and m = n/8, except

that now the unknown x0 is far less sparse with s = m/5. The standard deviation of the additive

Gaussian white noise is also higher, and we set σ = 0.1.

Because of the larger value of s and σ, it is no longer possible to have an analytic solution from

(3.4.3). Instead, we use FISTA to compute a reference solution xF , using 20,000 iterations and with
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Figure 3.5: Entries of the computed solutions versus the optimal solution. We plot the absolute values of the entries
on the set where the magnitude of the optimal solution exceeds 1.

λ = 0.0685, which gives ‖b − AxF ‖2`2 ' (m + 2
√

2m)σ2. To be sure that FISTA’s solution is very

close to the optimal solution, we check that the KKT stationarity condition is nearly verified. If I?

is the support of the optimal solution x?, this condition reads

A[I?]
∗(b−Ax?) = λ sgn(x?[I?]),

‖A[Ic?]∗(b−Ax?)‖`∞ ≤ λ.

Now define I to be the support of xF . Then, here, xF obeys

‖A[I]∗(b−AxF )− λ sgn(xF [I])‖`∞ = 2.6610−10λ,

‖A[Ic]∗(b−AxF )‖`∞ ≤ 0.99λ.

This shows that xF is extremely close to the optimal solution.

NESTA is run with T = 5 continuation steps for three different values of µ ∈ {0.2, 0.02, 0.002}
(the tolerance δ is set to 10−6, 10−7, and 10−8 respectively). Figure 3.5 plots the solutions given

by NESTA versus the “optimal solution” xF . Clearly, when µ decreases, the accuracy of NESTA

increases just as expected. More precisely, notice in Table 3.2 that for this particular experiment,

decreasing µ by a factor of 10 gives about 1 additional digit of accuracy on the optimal value.

According to this table, µ = 0.02 seems a reasonable choice for this particular signal to guarantee

an accurate solution, since one has between 4 and 5 digits of accuracy on the optimal value, and
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Table 3.2: NESTA’s accuracy. The errors and number of function calls NA have the same meaning as in Table 3.1.

Method `1-norm Rel. error `1-norm `∞ error NA
FISTA 5.71539e+7

NESTA µ = 0.2 5.71614e+7 1.3e-4 3.8 659
NESTA µ = 0.02 5.71547e+7 1.4e-5 0.96 1055
NESTA µ = 0.002 5.71540e+7 1.6e-6 0.64 1537

since the `∞ error is lower than 1. Observe in Figure 3.5 that this value separates the nonzero

entries from the noise floor (when σ = 0.01). In the extensive numerical experiments of Section 3.5,

we shall set µ = 0.02 and δ = 10−7 as default values.

3.5 Numerical comparisons

This section presents numerical experiments comparing several state-of-the-art optimization tech-

niques designed to solve (3.1.2) or (3.1.3). To be as fair as possible, we propose comparisons with

methods for which software is publicly available online.

Some extensive numerical results have been reported in [vdBF08, WNF09, Lor09, LBDM+09],

but to the best of our knowledge, extensive tests comparing algorithms for solving (QPλ) and (BPε)

are currently unavailable, and one novelty of our experimental study is that it uses fair stopping

criteria introduced in Section 3.5.3. Moreover, whereas publications sometimes test algorithms on

relatively easy and academic problems, we will subject optimization methods to hard but realistic

`1 reconstruction problems.

In our view, a challenging problem involves some or all of the characteristics below.

1. High dynamic range. As mentioned earlier, most optimization techniques are able to find

(more or less rapidly) the most significant entries (those with a large amplitude) of the signal

x. Recovering the entries of x that have low magnitudes accurately is more challenging.

Methods that can accurately recover high-dynamic range signals is of crucial importance in

some real-world applications, see Section 3.6.1.

2. Approximate sparsity. Realistic signals are seldom exactly sparse and, therefore, coping with

approximately sparse signals is of paramount importance. In signal or image processing for

example, wavelet coefficients of natural images contain lots of low level entries that are worth

retrieving.

3. Large scale. Some standard optimization techniques, such as interior point methods, are

known to provide accurate solutions. However, these techniques are not applicable to large-

scale problems due to the large cost of solving linear systems. Further, many existing software
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packages fail to take advantage of fast-algorithms for applying A. We will focus on large-scale

problems in which the number of unknowns n is over a quarter of a million, i.e., n = 262,144.

3.5.1 State-of-the-art methods

Most of the algorithms discussed in this section are considered to be state-of-art in the sense that

they are the most competitive among sparse reconstruction algorithms. Some of these methods have

been improved after some years of research [KKB07, FNW07]. Others make careful use of the fact

that `1 minimization produces sparse solutions, and activate special code when they estimate that

a fixed active set has been found [vdBF08, WYGZ10]. Finally, our focus is on rapid algorithms so

that we are interested in methods which can take advantage of fast algorithms for applying A to a

vector. This is why we have not tested other good methods, such as [FHT10], for example.

Most of the following algorithms solve (QPλ), and require gradient or sub-gradient information

at the current iterate. Because of the quadratic penalty, the gradient requires one application of A

and one of A∗, so the dominant cost per iteration is 2CA.

3.5.1.1 NESTA

Below, we applied NESTA with the following default parameters

x0 = A∗b, µ = 0.02, δ = 10−7

(recall that x0 is the initial guess). The maximal number of iterations is set to Imax = 10,000; if

convergence is not reached after Imax iterations, we record that the algorithm did not convergence

(DNC). Because NESTA requires 2 calls to either A or A∗ per iteration, this is equivalent to declaring

DNC after NA = 20,000 iterations where NA refers to the total number of calls to A or A∗; hence,

for the other methods, we declare DNC when NA > 20,000. When continuation is used, extra

parameters are set up as follows:

T = 4, µ0 = ‖x0‖`∞ , γ = (µ/µ0)1/T ,

and for t = 1, . . . , T ,

µt = γtµ0, δt = 0.1 · (δ/0.1)t/T ,

where δt fixes the stopping criterion in the t-th continuation step. Numerical results are reported

and discussed in Section 3.5.4.
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3.5.1.2 Gradient projections for sparse reconstruction (GPSR)

GPSR has been introduced in [FNW07] to solve the standard `1 minimization problem in Lagrangian

form (QPλ). GPSR uses a standard linear programming change-of-variables trick to recast the

variable x = v1− v2, with the requirement that v1, v2 ≥ 0. This is a different problem, but it clearly

has the same solution set. The advantage is that the `1 norm is replaced by a linear functional,

so that the objective is now smooth. Projecting v1 and v2 onto the non-negative orthant is trivial.

Different techniques for choosing the step-size αk (backtracking, Barzilai-Borwein [BB88], and so

on) are discussed in [FNW07]. The code is available at http://www.lx.it.pt/~mtf/GPSR/. In the

forthcoming experiments, the parameters are set to their default values.

GPSR also implements continuation, and we test this version as well. All parameters were set

to defaults except, per the recommendation of one of the GPSR authors to increase performance,

the number of continuation steps was set to 40, the ToleranceA variable was set to 10−3, and the

MiniterA variable was set to 1. In addition, the code itself was tweaked a bit; in particular, the

stopping criteria for continuation steps (other than the final step) was changed. Future releases of

GPSR will probably contain a similarly updated continuation stopping criteria.

3.5.1.3 Sparse reconstruction by separable approximation (SpaRSA)

SpaRSA [WNF09] is an algorithm to minimize composite functions φ(x) = f(x) + λc(x) composed

of a smooth term f and a separable non-smooth term c, e.g., (QPλ). At every step, a sub-problem

of the form

minimize ‖x− y‖2`2 +
λ

α
c(x)

with optimization variable x must be solved; this is the same as computing the proximity operator

corresponding to c. For (QPλ), the solution is given by shrinkage. In this sense, SpaRSA is an

iterative shrinkage/thresholding (IST) algorithm, much like FISTA (though without the accelerated

convergence) and FPC. Also like FPC, continuation is used to speed convergence. Code for SpaRSA

may be obtained at http://www.lx.it.pt/~mtf/SpaRSA/. Parameters were set to default except

the number of continuation steps was set to 40 and the MiniterA variable was set to 1 (instead

of the default 5), as per the recommendations of one of the SpaRSA authors—again, to increase

performance.

3.5.1.4 `1 regularized least-squares (l1 ls)

This method [KKB07] solves the standard unconstrained `1 minimization problem, and is an inte-

rior point method (with log-barrier) using preconditioned conjugate gradient (PCG) to accelerate

convergence and stabilize the algorithm. The preconditioner used in the PCG step is a linear com-

bination of the diagonal approximation of the Hessian of the quadratic term and of the Hessian of
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the log-barrier term. l1 ls is shown to be faster than usual interior point methods; nevertheless,

each step requires solving a linear system of the form H∆x = g. Even if PCG makes the method

more reliable, l1 ls is still problematic for large-scale problems. In the next comparisons, we provide

some typical values of its computational complexity compared to the other methods. The code is

available at http://www.stanford.edu/~boyd/l1_ls/.

3.5.1.5 Spectral projected gradient (SPGL1)

In 2008, van den Berg et al. [vdBF08] adapted the spectral projection gradient algorithm introduced

in [BMR00] to solve the LASSO (LSτ ). Interestingly, they introduced a clever root finding procedure

such that solving a few instances of (LSτ ) for different values of τ enables them to equivalently solve

(BPε). Furthermore, if the algorithm detects a nearly-sparse solution, it defines an active set and

solves an equation like (3.4.3) on this active set. In the next experiments, the parameters are set to

their default values. The code is available at http://www.cs.ubc.ca/labs/scl/SPGL11/.

3.5.1.6 Fixed point continuation method (FPC)

The fixed point continuation method [HYZ07, HYZ08] is a recent first-order algorithm for solving

(QPλ) and simple generalizations of (QPλ) . The main idea is based on a fixed point equation,

x = F (x), which holds at the solution (derived from the subgradient optimality condition, where F

is a composition of shrinkage and a gradient step). For appropriate parameters, F is a contraction,

and thus the algorithm xk+1 = F (xk) converges (q-linearly). The parameter λ in (QPλ) determines

the amount of shrinkage and, therefore, the speed of convergence; thus in practice, λ is decreased in

a continuation scheme. Code for FPC is available at http://www.caam.rice.edu/~optimization/

L1/fpc/. Also available is a state-of-the-art version of FPC from 2008 that uses Barzilai-Borwein

[BB88] steps to accelerate performance. In the numerical tests, the Barzilai-Borwein version (referred

to as FPC-BB) significantly outperforms standard FPC. All parameters were set to default values.

3.5.1.7 FPC active set (FPC-AS)

In 2009, inspired by both first-order algorithms, such as FPC, and greedy algorithms [DTDS06,

NT09], Wen et al. [WYGZ10] extended FPC into the two-part algorithm FPC active set to solve

(QPλ). In the first stage, FPC-AS calls an improved version of FPC that allows the step-size to be

updated dynamically, using a non-monotone exact line search to ensure r-linear convergence, and also

incorporating a Barzilai-Borwein [BB88] heuristic. After a given stopping criterion, the current value,

xk, is hard-thresholded to determine an active set. On the active set, ‖x‖`1 is replaced by c∗x, where

c = sgn(xk), with the constraints that x[i] · c[i] > 0 for all the indices i belonging to the active set.

This sub-problem has a smooth objective, so it can be solved using smooth optimization techniques.

This two-step process is then repeated for a smaller value of λ in a continuation scheme. We tested
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FPC-AS using both L-BFGS (the default) and CG (which we refer to as FPC-AS-CG) to solve the

sub-problem; both of these solvers do not actually enforce the x[i] · c[i] > 0 constraint on the active

set. Code for FPC-AS is available at http://www.caam.rice.edu/~optimization/L1/FPC_AS/.

For s-sparse signals, all parameters were set to defaults except for the stopping criteria (as dis-

cussed in Section 3.5.3). For approximately sparse signals, FPC-AS performed poorly (> 10, 000

iterations) with the default parameters. By changing a parameter that controls the estimated num-

ber of nonzeros from m/2 (default) to n, the performance improved dramatically, and this is the

performance reported in the tables. The maximum number of subspace iterations was also changed

from the default to 10, as recommended in the help file.

3.5.1.8 Bregman

The Bregman iterative algorithm, motivated by the Bregman distance, has been shown to be sur-

prisingly simple [YOGD08]. The first iteration solves (QPλ) for a specified value of λ; subsequent

iterations solve (QPλ) for the same value of λ, with an updated observation vector b. Typically,

only a few outer iterations are needed (e.g., 4), but each iteration requires a solve of (QPλ), which

is costly. The original Bregman algorithm calls FPC to solve these sub-problems; we test Bregman

using FPC and FPC-BB as sub-problem solvers.

A version of the Bregman algorithm, known as the linearized Bregman algorithm [OMDY10,

COS09], takes only one step of the inner iteration per outer iteration; consequently, many outer

iterations are taken, in contrast to the regular Bregman algorithm. It can be shown that lin-

earized Bregman is equivalent to gradient ascent on the dual problem. Linearized Bregman was

not included in the tests because no standardized public code is available. Code for the regular

Bregman algorithm may be obtained at http://www.caam.rice.edu/~optimization/L1/2006/10/

bregman-iterative-algorithms-for.html. There are quite a few parameters, since there are pa-

rameters for the outer iterations and for the inner (FPC) iterations; for all experiments, parameters

were set to defaults. In particular, we noted that using the default stopping criteria for the inner

solve, which limited FPC to 1,000 iterations, led to significantly better results than allowing the

sub-problem to run to 10,000 iterations.

3.5.1.9 Fast iterative soft-thresholding algorithm (FISTA)

FISTA [BT09] is based upon Nesterov’s work but departs from NESTA in two important ways:

1) FISTA solves the sparse unconstrained reconstruction problem (QPλ); 2) FISTA is a proximal

subgradient algorithm, which only uses two sequences of iterates. In some sense, FISTA is a simplified

version of the algorithm previously introduced by Nesterov to minimize composite functions [Nes07].

The theoretical rate of convergence of FISTA is O(1/k2).

For each test, FISTA is run twice: it is first run until the relative variation in the function value
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is less than 10−14, with no limit on function calls, and this solution is used as the reference solution.

The second time, it is run using the same stopping criteria as the other algorithms, as explained in

Section 3.5.3.

3.5.2 Constrained versus unconstrained minimization

We would like to briefly highlight the fact that these algorithms are not solving the same problem.

SPGL1 solves the constrained problem (BPε) and NESTA solves an approximate solution to (BPε),

while all other methods tested solve the unconstrained problem (QPλ). NESTA and SPGL1 can

also solve (QPλ). Solving a constrained problem may sometimes be more challenging than similar

unconstrained problems (witness the popularity of penalty functions and augmented Lagrangian

methods), and given the numerous algorithms to solve (QPλ) and the relatively few algorithms to

solve (BPε), it seems empirically that (BPε) is the harder problem.7 For example, it may be hard to

even find a feasible point for (BPε), since the pseudo-inverse of A, when A is not a projection, may be

difficult to compute. Thus, we emphasize that SPGL1 and NESTA are actually more general than the

other algorithms (and as Section 3.6 shows, NESTA is even more general because it handles a wide

variety of constrained problems); this is especially important because from a practical viewpoint, it

may be easier to estimate an appropriate ε than an appropriate value of λ. Furthermore, as will

be shown in Section 3.5.4, SPGL1 and NESTA with continuation are also the most robust methods

for arbitrary signals (i.e., they perform well even when the signal is not exactly sparse, and even

when it has high dynamic range). Combining these two facts, we feel that these two algorithms are

extremely useful for real-world applications.

3.5.3 Experimental protocol

In these experiments, we compare NESTA with other efficient methods. There are two main diffi-

culties with comparisons which might explain why broad comparisons have not been offered before.

The first problem is that some algorithms, such as NESTA, solve (BPε), whereas other algorithms

solve (QPλ). Given ε, it is difficult to compute λ(ε) that gives an equivalence between the problems;

in theory, the KKT conditions give λ, but we have observed in practice that because we have an

approximate solution (albeit a very accurate one), computing λ in this fashion is not stable.

Instead, we note that given λ and a solution xλ to (QPλ), it is easy to compute a very accurate

ε(λ) since ε = ‖Axλ − b‖`2 . Hence, we use a two-step procedure. In the first step, we choose a

value of ε0 =
√
m+ 2

√
2mσ based on the noise level σ (since a value of λ that corresponds to σ

is less clear), and use SPGL1 to solve (BPε). From the SPGL1 dual solution, we have an estimate

7Standard texts explain that (BPε) is equivalent to minimizing ‖x‖`1 + χQp (x) where Qp is the feasible set
{x : ‖Ax − b‖`2 ≤ ε}, and χQp (x) = 0 if x ∈ Qp and +∞ otherwise. Hence, the unconstrained problem has a
discontinuous objective functional.
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of λ = λ(ε0). As noted above, this equivalence may not be very accurate, so the second step is to

compute ε1 = ε(λ) via FISTA, using a very high accuracy of δ = 10−14. The pair (λ, ε1) now leads

to nearly equivalent solutions of (QPλ) and (BPε). The solution from FISTA will also be used to

judge the accuracy of the other algorithms.

The other main difficulty in comparisons is a fair stopping criterion. Each algorithm has its own

stopping criterion (or may offer a choice of stopping criteria), and these are not directly comparable.

To overcome this difficulty, we have modified the codes of the algorithms to allow for two new

stopping criterion that we feel are the only fair choices. The short story is that we use NESTA to

compute a solution xN and then ask the other algorithms to compute a solution that is at least as

accurate.

Specifically, given NESTA’s solution xN (using continuation), the other algorithms terminate at

iteration k when the solution x̂k satisfies

(Crit. 1) ‖x̂k‖`1 ≤ ‖xN‖`1 and ‖b−Ax̂k‖`2 ≤ 1.05 ‖b−AxN‖`2 , (3.5.1)

or

(Crit. 2) λ‖x̂k‖`1 +
1

2
‖Ax̂k − b‖2`2 ≤ λ‖xN‖`1 +

1

2
‖AxN − b‖2`2 . (3.5.2)

We run tests with both stopping criteria to reduce any potential bias from the fact that some

algorithms solve (QPλ), for which Crit. 2 is the most natural, while others solve (BPε), for which

Crit. 1 is the most natural. In practice, the results when applying Crit. 1 or Crit. 2 are not

significantly different.

3.5.4 Numerical results

3.5.4.1 The case of exactly sparse signals

This first series of experiments tests all the algorithms discussed above in the case where the unknown

signal is s-sparse with s = m/5, m = n/8, and n = 262,144. This situation is close to the limit

of perfect recovery from noiseless data. The s nonzero entries of the signals x0 are generated

as described in (3.3.15). Reconstruction is performed with several values of the dynamic range

d = 20, 40, 60, 80, 100 in dB. The measurement operator is a randomly subsampled discrete cosine

transform, as in Section 3.4.1 (with a different random set of measurements chosen for each trial).

The noise level is set to σ = 0.1. The results are reported in Tables 3.3 (Crit. 1) and 3.4 (Crit. 2);

each cell in these tables contains the mean value of NA (the number of calls of A or A∗) over 10

random trials, and, in smaller font, the minimum and maximum value ofNA over the 10 trials. When

convergence is not reached after NA = 20,000, we report DNC (did not converge). As expected, the

number of calls needed to reach convergence varies a lot from an algorithm to another.
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Table 3.3: Number of function calls NA averaged over 10 independent runs. The sparsity level s = m/5 and the
stopping rule is Crit. 1 (3.5.1).

Method 20 dB 40 dB 60 dB 80 dB 100 dB

NESTA 446 351/491 880 719/951 1701 1581/1777 4528 4031/4749 14647 7729/15991

NESTA + Ct 479 475/485 551 539/559 605 589/619 658 635/679 685 657/705

GPSR 56 44/62 733 680/788 5320 4818/5628 DNC DNC
GPSR + Ct 305 293/311 251 245/257 497 453/531 1816 1303/2069 9101 7221/10761

SpaRSA 345 327/373 455 435/469 542 511/579 601 563/629 708 667/819

SPGL1 54 37/61 128 102/142 209 190/216 354 297/561 465 380/562

FISTA 68 66/69 270 261/279 935 885/969 3410 2961/3594 13164 11961/13911

FPC AS 156 111/177 236 157/263 218 215/239 351 247/457 325 313/335

FPC AS (CG) 312 212/359 475 301/538 434 423/481 641 470/812 583 567/595

FPC 414 394/436 417 408/422 571 546/594 945 852/1038 3945 2018/4734

FPC-BB 148 140/152 166 158/168 219 208/250 264 252/282 520 320/800

Bregman-BB 211 203/225 270 257/295 364 355/393 470 429/501 572 521/657

Table 3.4: Number of function calls NA averaged over 10 independent runs. The sparsity level s = m/5 and the
stopping rule is Crit. 2 (3.5.2).

Method 20 dB 40 dB 60 dB 80 dB 100 dB

NESTA 446 351/491 880 719/951 1701 1581/1777 4528 4031/4749 14647 7729/15991

NESTA + Ct 479 475/485 551 539/559 605 589/619 658 635/679 685 657/705

GPSR 59 44/64 736 678/790 5316 4814/5630 DNC DNC
GPSR + Ct 305 293/311 251 245/257 511 467/543 1837 1323/2091 9127 7251/10789

SpaRSA 345 327/373 455 435/469 541 509/579 600 561/629 706 667/819

SPGL1 55 37/61 138 113/152 217 196/233 358 300/576 470 383/568

FISTA 65 63/66 288 279/297 932 882/966 3407 2961/3591 13160 11955/13908

FPC AS 176 169/183 236 157/263 218 215/239 344 247/459 330 319/339

FPC AS (CG) 357 343/371 475 301/538 434 423/481 622 435/814 588 573/599

FPC 416 398/438 435 418/446 577 558/600 899 788/962 3866 1938/4648

FPC-BB 149 140/154 172 164/174 217 208/254 262 248/286 512 308/790

Bregman-BB 211 203/225 270 257/295 364 355/393 470 429/501 572 521/657

The careful reader will notice that Tables 3.3 and 3.4 do not feature the results provided by l1 ls;

indeed, while it seems faster than other interior point methods, it is still far from being comparable

to the other algorithms reviewed here. In these experiments l1 ls typically needed 1500 calls to A or

A∗ for reconstructing a 20 dB signal with s = m/100 nonzero entries. For solving the same problem

with a dynamic range of 100 dB, it took 5 hours to converge on a dual core MacPro G5 clocked at

2.7GHz.

GPSR performs well in the case of low-dynamic range signals; its performance, however, decreases

dramatically as the dynamic range increases; Table 3.4 shows that it does not converge for 80 and

100 dB signals. GPSR with continuation does worse on the low dynamic range signals (which is not

surprising). It does much better than the regular GPSR version on the high dynamic range signals,

though it is slower than NESTA with continuation by more than a factor of 10. SpaRSA performs well

at low dynamic range, comparable to NESTA, and begins to outperform GSPR with continuation

as the dynamic range increases, although it begins to underperform NESTA with continuation in

this regime. SpaRSA takes over twice as many function calls on the 100 dB signal as on the 20 dB

signal.

SPGL1 shows good performance with very sparse signals and low dynamic range. Although it

has fewer iteration counts than NESTA, the performance decreases much more quickly than for
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NESTA as the dynamic range increases; SPGL1 requires about 9× more calls to A at 100 dB than

at 20 dB, whereas NESTA with continuation requires only about 1.5× more calls. FISTA is almost

as fast as SPGL1 on the low dynamic range signal, but degrades very quickly as the dynamic range

increases, taking about 200× more iterations at 100 dB than at 20 dB. One large contributing factor

to this poor performance at high dynamic range is the lack of a continuation scheme.

FPC performs well at low dynamic range, but is very slow on 100 dB signals. The Barzilai-

Borwein version was consistently faster than the regular version, but also degrades much faster

than NESTA with continuation as the dynamic range increases. Both FPC active set and the

Bregman algorithm perform well at all dynamic ranges, but again, degrade faster than NESTA with

continuation as the dynamic range increases. There is a slight difference between the two FPC active

set versions (using L-BFGS or CG), but the dependence on the dynamic range is roughly similar.

The performances of NESTA with continuation are reasonable when the dynamic range is low.

When the dynamic range increases, continuation becomes much more helpful. For some 100 dB

signals, using continuation reduces the number of calls by a factor of 20. In these experiments, the

tolerance δ is consistently equal to 10−7; while this choice is reasonable when the dynamic range

is high, it seems too conservative in the low dynamic range case. Setting a lower value of δ should

improve NESTA’s performance in this regime. In other words, NESTA with continuation might be

tweaked to run faster on the low dynamic range signals. However, this is not in the spirit of this

chapter and this is why we have not researched further refinements.

In summary, for exactly sparse signals exhibiting a significant dynamic range, 1) the performance

of NESTA with continuation—but otherwise applied out-of-the-box—is comparable to that of state-

of-the-art algorithms, and 2) most state-of-the-art algorithms are efficient on these types of signals.

3.5.4.2 Approximately sparse signals

We now turn our attention to approximately sparse signals. Such signals are generated via a permu-

tation of the Haar wavelet coefficients of a 512×512 natural image. The data b are m = n/8 = 32,768

discrete cosine measurements selected at random. White Gaussian noise with standard deviation

σ = 0.1 is then added. Each test is repeated 5 times, using a different random permutation every

time (as well as a new instance of the noise vector). Unlike in the exactly sparse case, the wavelet

coefficients of natural images mostly contain mid-range and low-level coefficients (see Figure 3.6)

which are challenging to recover.

The results are reported in Tables 3.5 (Crit. 1) and 3.6 (Crit. 2); the results from applying the

two stopping criteria are nearly identical. In these series of experiments, the performance of SPGL1

is quite good but seems to vary a lot from one trial to another (Table 3.6). Notice that the concept

of an active set is ill defined in the approximately sparse case; as a consequence, the active-set

version of FPC is not much of an improvement over the regular FPC version. FPC is very fast for
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Figure 3.6: Sorted wavelet coefficients of the natural image used in the experiments

s-sparse signals but lacks the robustness to deal with less ideal situations in which the unknown is

only approximately sparse.

FISTA and SpaRSA converge for these tests, but are not competitive with the best methods. It

is reasonable to assume that FISTA would also improve if implemented with continuation. SpaRSA

already uses continuation but does not match its excellent performance on exactly sparse signals.

Bregman, SPGL1, and NESTA with continuation all have excellent performances (continuation

really helps NESTA) in this series of experiments. NESTA with continuation seems very robust

when high accuracy is required. The main distinguishing feature of NESTA is that it is less sensitive

to dynamic range; this means that as the dynamic range increases, or as the noise level σ decreases,

NESTA becomes very competitive. For example, when the same test was repeated with more noise

(σ = 1), all the algorithms converged faster. In moving from σ = 1 to σ = 0.1, SPGL1 required

90% more iterations and Bregman required 20% more iterations, while NESTA with continuation

required only 5% more iterations.

One conclusion from these tests is that SPGL1, Bregman, and NESTA (with continuation) are

the only methods dealing with approximately sparse signals effectively. The other methods, most

of which did very well on exactly sparse signals, take over 10,000 function calls or even do not

converge in 20,000 function calls; by comparison, SPGL1, Bregman, and NESTA with continuation

converge in about 2,000 function calls. It is also worth noting that Bregman is only as good as the

sub-problem solver; though not reported here, using the regular FPC (instead of FPC-BB) with

Bregman leads to much worse performance.
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Table 3.5: Recovery results of an approximately sparse signal with Crit. 1 as a stopping rule

Method < NA > minNA maxNA
NESTA 18912 18773 19115
NESTA + Ct 2667 2603 2713
GPSR DNC DNC DNC
GPSR + Ct DNC DNC DNC
SpaRSA 10019 8369 12409
SPGL1 1776 1073 2464
FISTA 10765 10239 11019
FPC Active Set DNC DNC DNC
FPC Active Set (CG) DNC DNC DNC
FPC DNC DNC DNC
FPC-BB DNC DNC DNC
Bregman-BB 2045 2045 2045

Table 3.6: Recovery results of an approximately sparse signal with Crit. 2 as a stopping rule

Method < NA > minNA maxNA
NESTA 18912 18773 19115
NESTA + Ct 2667 2603 2713
GPSR DNC DNC DNC
GPSR + Ct DNC DNC DNC
SpaRSA 10021 8353 12439
SPGL1 1776 1073 2464
FISTA 10724 10197 10980
FPC Active Set DNC DNC DNC
FPC Active Set (CG) DNC DNC DNC
FPC DNC DNC DNC
FPC-BB DNC DNC DNC
Bregman-BB 2045 2045 2045

The algorithms which did converge all achieved a mean relative `1 error (using (3.4.1) and the

high accuracy FISTA solution as the reference) less than 2 · 10−4 and sometimes as low as 10−5,

except SPGL1, which had a mean relative error of 1.1 ·10−3. Of the algorithms that did not converge

in 20,000 function calls, FPC and FPC-BB had a mean `1 relative error about 5 · 10−3, GPSR with

continuation had errors about 5 · 10−2, and the rest had errors greater than 10−1.

3.6 An all-purpose algorithm

A distinguishing feature is that NESTA is able to cope with a wide range of standard regulariz-

ing functions. In this section, we present two examples: non-standard `1 minimization and total-

variation minimization.

3.6.1 Non-standard sparse reconstruction: `1 analysis

Suppose we have a signal x ∈ Rn, which is assumed to be approximately sparse in a transformed

domain such as the wavelet, the curvelet or the time-frequency domains. Let W be the corresponding
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synthesis operator whose columns are the waveforms we use to synthesize the signal x = Wα (real-

world signals do not admit an exactly sparse expansion); e.g., the columns may be wavelets, curvelets,

and so on, or both. We will refer to W ∗ as the analysis operator. As before, we have (possibly noisy)

measurements b = Ax0 + z. The synthesis approach attempts reconstruction by solving

minimize ‖α‖`1
subject to ‖b−AWα‖`2 ≤ ε,

(3.6.1)

while the analysis approach solves the related problem

minimize ‖W ∗x‖`1
subject to ‖b−Ax‖`2 ≤ ε.

(3.6.2)

If W is orthonormal, the two problems are equivalent, but in general, these give distinct solutions

and current theory explaining the differences is still in its infancy. The article [EMR07] suggests that

synthesis may be overly sensitive, and argues with geometric heuristics and numerical simulations

that analysis is sometimes preferable.

Solving `1-analysis problems with NESTA is straightforward as only Step 1 needs to be adapted.

We have

fµ(x) = max
u∈Qp

〈u,W ∗x〉 − µ

2
‖u‖2`2 ,

and the gradient at x is equal to

∇fµ(x) = Wuµ(x);

here, uµ(x) is given by

(uµ(x))[i] =

µ
−1(W ∗x)[i], if |(W ∗x)[i]| < µ,

sgn((W ∗x)[i]), otherwise.

Steps 2 and 3 remain unchanged. The computational complexity of the algorithm is then in-

creased by an extra term, namely 2 CW where CW is the cost of applying W or W ∗ to a vector.

In practical situations, there is often a fast algorithm for applying W and W ∗, e.g. a fast wavelet

transform [Mal08], a fast curvelet transform [CDDY06], a fast short-time Fourier transform [Mal08]

and so on, which makes this a low-cost extra step8.

8The ability to solve the analysis problem also means that NESTA can easily solve reweighted `1 problems [CWB08]
with no change to the code.
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3.6.2 Numerical results for non-standard `1 minimization

Because NESTA is one of very few algorithms that can solve both the analysis and synthesis problems

efficiently, we tested the performance of both analysis and synthesis on a simulated real-world signal

from the field of radar detection. The test input is a superposition of three signals. The first signal,

which is intended to make recovery more difficult for any smaller signals, is a plain sinusoid with

amplitude of 1000 and frequency near 835 MHz.

A second signal, similar to a Doppler pulse radar, is at a carrier frequency of 2.33 GHz with

maximum amplitude of 10, a pulse width of 1 µs and a pulse repetition interval of 10 µs; the pulse

envelope is trapezoidal, with a 10 ns rise time and 40 ns fall time. This signal is more than 40 dB

lower than the pure sinusoid, since the maximum amplitude is 100× smaller, and since the radar

is nonzero only 10% of the time. The Doppler pulse was chosen to be roughly similar to a realistic

weather Doppler radar. In practice, these systems operate at 5 cm or 10 cm wavelengths (i.e., 6 or

3 GHz) and send out short trapezoidal pulses to measure the radial velocity of water droplets in the

atmosphere using the Doppler effect.

The third signal, which is the signal of interest, is a frequency-hopping radar pulse with maximum

amplitude of 1 (so about 20 dB beneath the Doppler signal, and more than 60 dB below the sinusoid).

For each instance of the pulse, the frequency is chosen uniformly at random from the range 200 MHz

to 2.4 GHz. The pulse duration is 2 µs and the pulse repetition interval is 22 µs, which means that

some, but not all, pulses overlap with the Doppler radar pulses. The rise time and fall time of

the pulse envelope are comparable to the Doppler pulse. Frequency-hopping signals may arise in

applications because they can be more robust to interference and because they can be harder to

intercept. When the carrier frequencies are not known to the listener, the receiver must be designed

to cover the entire range of possible frequencies (2.2 GHz in our case). While some current analog-

to-digital converters (ADC) may be capable of operating at 2.2 GHz, they do so at the expense of

low precision. Hence this situation may be particularly amenable to a compressed sensing setup by

using several slower (but accurate) ADC to cover a large bandwidth.

We consider the exact signal to be the result of an infinite-precision ADC operating at 5 GHz,

which corresponds to the Nyquist rate for signals with 2.5 GHz of bandwidth. Measurements are

taken using an orthogonal Hadamard transform with randomly permuted columns, and these mea-

surements were subsequently sub-sampled by randomly choosing m = .3n rows of the transform (so

that we undersample Nyquist by 10/3). Samples are recorded for T = 209.7µs, which corresponds to

n = 220. White noise was added to the measurements to make a 60 dB signal-to-noise ratio (SNR)

(note that the effective SNR for the frequency-hopping pulse is much lower). The frequencies of the

sinusoid and the Doppler radar were chosen such that they were not integer multiples of the lowest

recoverable frequency fmin = 1/(2T ).

For reconstruction, the signal is analyzed with a tight frame of Gabor atoms that is approxi-
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mately 5.5× overcomplete. The particular parameters of the frame are chosen to give reasonable

reconstruction, but were not tweaked excessively. It is likely that differences in performance between

analysis and synthesis are heavily dependent on the particular dictionary.

To analyze performance, we restrict our attention to the frequency domain in order to simplify

comparisons. The top plot in Figure 3.7 shows the frequency components of the original, noiseless

signal. The frequency-hopping pulse barely shows up since the amplitude is 1000× smaller than the

sinusoid and since each frequency only occurs for 1 µs (of 210 µs total).

The bottom plots in Figure 3.7 show the spectrum of the recovered signal using analysis and

synthesis, respectively. For this test, analysis does a better job at finding the frequencies belonging

to the small pulse, while synthesis does a better job recreating the large pulse and the pure tone. The

two reconstructions used slightly different values of µ to account for the redundancy in the size of the

dictionary; otherwise, algorithm parameters were the same. In the analysis problem, NESTA took

231 calls to the analysis/synthesis operator (and 231 calls to the Hadamard transform); for synthesis,

NESTA took 1378 calls to the analysis/synthesis operator (and 1378 to the Hadamard transform).

With NESTA, synthesis is more computationally expensive than analysis since no change of variables

trick can be done; in the synthesis case, W and W ∗ are used in Step 2 and 3 while in the analysis

case, the same operators are used once in Step 1 (this is accomplished by the previously mentioned

change-of-variables for partial orthogonal measurements).

As emphasized in [EMR07], when W is overcomplete, the solution computed by solving the

analysis problems is likely to be denser than in the synthesis case. In plain English, the analysis

solution may seem “noisier” than the synthesis solution. But the compactness of the solution of the

synthesis problem may also be its weakness: an error on one entry of α may lead to a solution that

differs a lot. This may explain why the frequency-hopping radar pulse is harder to recover with the

synthesis prior.

Because all other known first-order methods solve only the synthesis problem, NESTA may prove

to be extremely useful for real-world applications. Indeed, this simple test suggests that analysis

may sometimes be much preferable to synthesis, and given a signal with 220 samples (too large for

interior point methods), we know of no other algorithm that can return the same results.

3.6.3 Total-variation minimization

Nesterov’s framework also makes total-variation minimization possible. The TV norm of a 2D digital

object x[i, j] is given by

‖x‖TV :=
∑
i,j

‖∇x[i, j]‖, ∇x[i, j] =

(D1x)[i, j]

(D2x)[i, j]

 ,
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Figure 3.7: Top: spectrum estimate of the exact signal, no noise. The pure tone at 60 dB and the Doppler
radar at 20 dB dominate the 0 dB frequency-hopping pulses. Middle: spectrum estimate of the recovered signal
using analysis prior, with 60 dB SNR. The spectrum appears noisy, but the frequency-hopping pulses stand out.
Bottom: spectrum estimate of the recovered signal using synthesis prior, with 60 dB SNR. The spectrum appears
cleaner, but the small 0 dB pulses do not appear.
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where D1 and D2 are the horizontal and vertical differences

(D1x)[i, j] = x[i+ 1, j]− x[i, j],

(D2x)[i, j] = x[i, j + 1]− x[i, j].

Now the TV norm can be expressed as follows:

‖x‖TV = max
u∈Qd

〈u,Dx〉, (3.6.3)

where u = [u1, u2]∗ ∈ Qd if and only for each (i, j), u2
1[i, j] + u2

2[i, j] ≤ 1, and D = [D1, D2]∗. The

key feature of Nesterov’s work is to smooth a well-structured non-smooth function as follows (notice

in (3.6.3) the similarity between the TV norm and the `1 norm):

max
u∈Qd

〈u,Dx〉 − µpd(u).

Choosing pd(u) = 1
2‖u‖2`2 provides a reasonable prox-function that eases the computation of ∇fµ.

Just as before, changing the regularizing function only modifies Step 1 of NESTA. Here,

fµ(x) = max
u∈Qd

〈u,Dx〉 − µ

2
‖u‖2`2 .

Then as usual,

∇fµ(x) = D∗u(µ)(x),

where u(µ)(x) is of the form [u
(µ)
1 , u

(µ)
2 ]∗ and for each a ∈ {1, 2},

u(µ)
a [i, j] =

µ
−1(Dax)[i, j], if ‖∇x[i, j]‖ < µ,

‖∇x[i, j]‖−1(Dax)[i, j], otherwise.

The application of D and D∗ leads to a negligible computational cost (sparse matrix-vector multi-

plications).

3.6.4 Numerical results for TV minimization

We are interested in solving

minimize ‖x‖TV
subject to ‖b−Ax‖`2 ≤ ε.

(3.6.4)

To be sure, a number of efficient TV-minimization algorithms have been proposed to solve (3.6.4) in

the special case A = I (denoising problem), see [Cha04,DS05,GO09,ZC08]. In comparison, only a few
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methods have been proposed to solve the more general problem (3.6.4) even when A is a projector.

Known methods include interior point methods (`1-magic) [CR07b], proximal-subgradient methods

[BDF07, CP08], Split-Bregman [GO09], and the very recently introduced RecPF9 [YZY10], which

operates in the special case of partial Fourier measurements. Applications of some of Nesterov’s

works have also been considered in different settings [WBFA09,DHJJ10,Auj09].

Again, we compare NESTA with algorithms with publicly available implementations. Therefore,

the two algorithms we tested are RecPF (the newest member of the family) and TwIST [BDF07].

(`1-magic is based on an interior point method, and is not yet applicable to this large-scale problem.)

Evaluations are made by comparing the performances of NESTA (with continuation), RecPF,

and TwIST on a set of images composed of random squares. As in Section 3.5, the dynamic range of

the signals (amplitude of the squares) varies in a range from 20 to 40 dB. The size of each image x

is 1024×1024; one of these images is displayed in the top panel of Figure 3.8. The data b are partial

Fourier measurements as in [CRT06]; the number of measurements m = n/10. White Gaussian noise

of standard deviation σ = 0.1 is added. The parameters of NESTA are set up as follows:

x0 = A∗b, µ = 0.2, δ = 10−5, T = 5,

and the initial value of µ is

µ0 = 0.9 max
ij
‖∇x0[i, j]‖.

The maximal number of iterations is set to Imax = 4,000. As it turns out, TV minimization from

partial Fourier measurements is of significant interest in the field of magnetic resonance imaging

(MRI) [LDP07].

As discussed above, RecPF has been designed to solve TV-minimization reconstruction problems

from partial Fourier measurements. We set the parameters of RecPF to their default values except

for the parameter tol rel inn that is set to 10−5. TwIST calls Chambolle’s algorithm [Cha04]

at each iteration to compute the proximity operator of TV; the maximum number of iterations in

Chambolle’s algorithm is set to 10. With these parameter selections, TwIST and RecPF converge

to a solution close enough to NESTA’s output—at least in our experiments. Figure 3.8 shows the

the solution computed by RecPF (top right), TwIST (bottom left), and NESTA (bottom left).

The curves in Figure 3.9 show the number of calls to A or A∗; mid-points are averages over 5

random trials, with error bars indicating the minimum and maximum number of calls. Here, RecPF

9Available at http://www.caam.rice.edu/~optimization/L1/RecPF/
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Figure 3.8: Top-Left: original image of size 1024× 1024 with a dynamic range of about 40 dB. Top-Right: RecPF
solution. Bottom-Left: TwIST solution. Bottom-Right: NESTA solution

is stopped when

‖xRecPF‖TV ≤ 1.05‖xN‖TV ,

‖b−AxRecPF‖`2 ≤ 1.05‖b−AxN‖`2 ,

where xN is the solution computed via NESTA. As before continuation is very efficient when the

dynamic range is high (typically higher than 40 dB). An interesting feature is that the numbers of

calls are very similar over all five trials. When the dynamic range increases, the computational costs

of both NESTA and RecPF naturally increase. Note that in the 60 and 80 dB experiments, RecPF

did not converge to the solution and this is the reason why the number of calls saturates. While

both methods have a similar computational cost in the low-dynamic range regime, NESTA has a

clear advantage in the higher-dynamic range regime. Moreover, the number of iterations needed to

reach convergence with NESTA with continuation is fairly low—300–400 calls to A and A∗—and so

this algorithm is well suited to large-scale problems.

Figure 3.9 suggests that TwIST performs well, in terms of function calls, on the problems with low

dynamic range, but deteriorates as the dynamic range increases. However, this hides a fundamental

complication of the TwIST algorithm: the function calls to A and A∗ are not always the dominant

computational cost. TwIST is one of many TV methods that is a proximal gradient algorithm,
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Figure 3.9: Number of calls to A and A∗ as a function of the dynamic range. Solid line: NESTA with continuation.
Dashed line: NESTA. Dotted line: RecPF. Dash-dotted: maximum number of iterations. In the 60 and 80 dB
experiments, RecPF did not converge to the solution and this is the reason why the number of calls saturates. For
TwIST, it is important not to take the number of function calls to A and A∗ as a proxy for the computational time
of the algorithm. Indeed, the dominant computational cost in TwIST is in evaluating the proximity operator, see
Table 3.7.
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Table 3.7: Comparison of computation times, mean value over 5 trials (in seconds)

Method 20dB 40dB 60dB 80dB

NESTA + Ct 750 704 553 542
RecPF 725 1918 DNC DNC
TwIST 203 553 1675 9510

meaning that at each step, it relies on the solution to a proximity operator:

ProxTV,γ(z) = argmin
x

γ‖x‖TV +
1

2
‖x− z‖2`2 ;

see [CW05] and references therein. Evaluating the proximity operator at z is equivalent to solving

a TV-denoising problem, which is far from trivial10. In [BDF07], the authors advocate the use of a

side algorithm (for instance Chambolle’s algorithm [Cha04]) to do this.

There are a few issues with this approach. The first is that side algorithms depend on various

parameters, which adds complexity. The second is that these denoising algorithms are computa-

tionally demanding, which makes them hard to apply to large-scale problems. To illustrate this

phenomenon, we compared the computation times of NESTA + Ct, RecPF, and TwIST on the

same kind of synthetic 1024×1024 images. The results are reported in Table 3.7. Each line displays

the computation time before convergence is reached. We observe that while TwIST needs fewer

calls to A or A∗ than NESTA when the dynamic range is low, the computational cost of each step

is higher (and increases as the problem size increases) because the dominant computational cost in

TwIST is in evaluating the proximity operator.

3.7 Handling non-projectors

Recall the derivation in §3.3.2, which assumed that AA∗ = I. This section relaxes that assumption.

The case ε = 0 is simpler, and we offer a few methods. If ε > 0, the only method seems to require

knowledge of the SVD decomposition of A: A = UΣV ∗. We also cover the AA∗ = I case in more

detail, since the author has received several inquiries about this.

10For `1 minimization, the equivalent proximity operator is given by by shrinkage, and can be solved in linear time.
In the case of the weighted `1 problem, using ‖Wx‖1 in the objective, the proximity operator is not known in closed
form unless W is diagonal. Since most first-order `1 algorithms rely on the proximity operator, this is the reason that
no other algorithms can solve the analysis problem, in contrast to NESTA.
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3.7.1 Revisiting the projector case

To compute yk, we need to solve a problem of the form (with q = d− L−1c)

(
I +

λε
L
A∗A

)
yk =

λε
L
A∗b+ q (3.7.1)

which has solution (3.3.10)

yk =

(
I − λε

λε + L
A∗A

)(
λε
L
A∗b+ qc

)
. (3.7.2)

To see this, it is possible to simply check that this solution works. For deriving it, one method is

using the binomial inverse theorem (equivalently, the Sherman-Morrison-Woodbury formula). For

matrices U, V ∗ ∈ Rp×q, with Ip and Iq the p× p and q× q identity matrices, respectively, the inverse

theorem states

(Ip + UV )−1 = Ip − U(Iq + V U)−1V.

Unless λε = 0, by complementary slackness it holds that ‖Ayk − b‖ = ε, so plugging in yk and

using AA∗ = I to simplify gives the correct value of λε to make this hold.

3.7.2 Non-projectors for ε = 0 case

Consider the problem in a more abstract setting. The desire is to project ontoQp, which is equivalent

to

yk = argmin
y:‖Ay−b‖2≤ε

1

2
‖y − q‖22 (3.7.3)

for q = d− L−1c.

When ε = 0, the constraint is simply Ay = b. There are only two KKT conditions (now, λ is a

vector, unlike λε):

0 = (y − q) +A∗λ (stationarity) (3.7.4)

b = Ay (primal feasibility) . (3.7.5)

Multiplying the first equation by A gives

0 = b−Aq +AA∗λ.

The key computation is inverting AA∗ to find λ, since once λ is found it is easy to get y.

In practice, this means the user must specify a method of calculating (AA∗)−1. If A is large and

has a fast multiply, then the conjugate-gradient algorithm is a natural choice. If A is small enough
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that it can be factored, then a Cholesky factorization RR∗ = AA∗ can be computed once at the

beginning of the algorithm, producing the triangular matrix R, and subsequently (AA∗)−1(b−Aq)
can be calculated by two back-substitution operations. The Cholesky factorization exists as long

as R has full row-rank so that AA∗ is positive definite. The one-time factorization cost is O(m3)

and the back-substitution cost is O(m2) which is even less than the cost of one dense matrix-vector

multiplication (O(mn)).

An entirely different method is to take the system of equations Ax = b and convert to the

equivalent system (assuming A has full row-rank) Ãx = b̃ where ÃÃ∗ = I. To see how this is

possible, take the QR factorization QR = A∗ to get an orthogonal matrix Q and a triangular matrix

R. Then Ã = Q∗ and b̃ = R−∗b satisfy Ãx = b̃. It is possible to do this with ε > 0 constraints as

well, but this will affect the properties of the residual, so caution must be used. The cost of the QR

decomposition is O(mn2) so there is not much advantage over using the SVD method described in

the next subsection.

3.7.3 Non-projectors for ε > 0 case

If there is a feasible primal vector, then Slater’s conditions tell us that there is a Lagrange multiplier

scalar λε such that (3.7.3) is equivalent to the following unconstrained minimization:

yk = argmin
y

1

2
‖y − q‖22 +

λε
2
‖Ay − b‖22. (3.7.6)

Let A = UΣV ∗ be the full singular value decomposition (SVD) of A, so that U and V are

orthogonal (or unitary in the complex-valued case) matrices. The `2 norm is unitary-invariant, so

‖Ay − b‖ = ‖U∗(Ay − b)‖. Make the change-of-variables x = V ∗(y − q) and b̃ = U∗(b−Ay), so the

problem is

min
x

1

2
‖x‖2 +

λε
2
‖Σx− b̃‖2.

Since Σ is a diagonal matrix (with diagonal (σ1, . . . , σr) where r = min(m,n)), this problem is

separable, and the solution is easy to compute since this amounts to solving a scalar quadratic

equation:

(xλε)i =
λεσib̃i

1 + λεσ2
i

, i = 1, . . . , n.

The issue is that the value of λε is unknown. It should be chosen so that

‖Ay − b‖2 = ‖Σxλε − b̃‖ = ε.
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For a given λ, define

h(λ) = ‖Σxλ − b̃‖2 − ε2 =

n∑
i=1

(
σi

λσibi
1 + λσ2

i

− bi
)2 − ε2 =

n∑
i=1

b2i
(1 + λσ2

i )2
− ε2.

Thus we search for a root λε of h. The derivative of h is smooth and easy to compute:

dh

dλ
(λ) = −2

n∑
i=1

(biσi)
2

(1 + λσ2
i )3

so the natural choice is Newton’s method. In a sense, this is a simplified version of the SPGL1

algorithm. The Newton’s method is well-posed in this case, since h is a non-increasing function of

λ so it can have at most one root.

In the NESTA code, we use a safe-guarded Newton method that does a brief check to keep

λ ≥ 0 at every inner iteration. It is possible that λε = 0 which signifies that q ∈ Qp already so

y = q is feasible. During the Newton’s method algorithm, all the computations are O(n) so it

is relatively fast. Furthermore, since A, b, and ε are constants, and q changes only slightly from

iteration to iteration, the value of λ from the previous iteration can be used to warm-start the new

Newton’s method search. Except for pathological test cases, this extra optimization problem adds

no significant running time to NESTA. Similar approaches that use Newton’s method to solve the

projection have been independently proposed in [DHJJ10] and [WBFA09]. These papers discuss the

TV minimization problem and, like NESTA, are based off [Nes05].

In practice, the full SVD is not needed; a “thin” or “skinny” SVD is sufficient. If A does not

have full row rank, then b need not be in the range of A. To deal with this, split b into two parts,

b = bR + bN where bR = UU∗b is in the range of A and thus bN = b− bR is in the null space of A∗.

Then the ε and b terms are updated

ε←
√
ε2 − ‖bN‖2, b← bR

and the algorithm is run as before.

These improvements have been included in the version “1.1” release of NESTA, and are used to

solve the RMPI problems discussed in Chapter 2. For the RMPI problem, W is an overcomplete

Gabor dictionary which is costly to compute; on the other-hand, the sensing matrix A (called Φ

in the RMPI chapter) is of modest size, such as 80 × 1024. The largest matrices tested in RMPI

have been 8192 columns, and even this is manageable (see Figure 3.10), since the FFT calls in the

Gabor dictionary will dominate. So the NESTA algorithm is extremely well suited to the largescale

analysis problems that arise in RMPI; indeed, this was a motivation for creating NESTA.
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Figure 3.10: The computation time for calculating the Cholesky decomposition and thin SVD decomposition
of a matrix, as a function of the columns n of the matrix. Computed in MATLAB on an Intel i7 laptop. This
computation needs only be done once per matrix A, so it can be amortized over all iterations or even all experiments,
which is the case if multiple problems use the same A matrix (with perhaps different b or ε parameters). Working
with a matrix of 10000 columns is quite reasonable, though obviously this method scales poorly if the dimensions
get really large since both SVD and Cholesky scale at O(m2n) and O(m3), respectively. For this plot, m = n/12.5
which is the same ratio used in the RMPI device of Chapter 2.

3.8 Discussion

In this chapter, we have proposed an algorithm for general sparse recovery problems, which is based

on Nesterov’s method. This algorithm is accurate and competitive with state-of-the-art alternatives.

In fact, in applications of greatest interest such as the recovery of approximately sparse signals, it

outperforms most of the existing methods we have used in our comparisons and is comparable to

the best. Further, what is interesting here, is that we have not attempted to optimize the algorithm

in any way. For instance, we have not optimized the parameters {αk} and {τk}, or the number of

continuation steps as a function of the desired accuracy δ, and so it is expected that finer tuning

would speed up the algorithm. Another advantage is that NESTA is extremely flexible in the sense

that minor adaptations lead to efficient algorithms for a host of optimization problems that are

crucial in the field of signal/image processing.

3.8.1 Extensions

This chapter focused on the situation in which A∗A is a projector (the rows of A are orthonormal).

This stems from the facts that 1) the most computationally friendly compressed sensing are of

this form, and 2) it allows fast computations of the two sequence of iterates {yk} and {zk}. It is

important, however, to extend NESTA as to be able to cope with a wider range of problem in which

A∗A is not a projection (or not diagonal).

193



In order to do this, observe that in Steps 2 and 3, we need to solve problems of the form

yk = argmin
x∈Qp

‖x− q‖2`2 ,

for some q, and we have seen that the solution is given by yk = PQp(q), where PQp is the projector

onto Qp := {x : ‖Ax− b‖`2 ≤ ε}. The solution is given by

yk = (I + λA∗A)−1(q + λA∗b) (3.8.1)

for some λ ≥ 0. When the eigenvalues of A∗A are well clustered, the right-hand side of (3.8.1) can

be computed very efficiently via a few conjugate gradients (CG) steps. Note that this is of direct

interest in compressed sensing applications in which A is a random matrix since in all the cases we

are familiar with, the eigenvalues of A∗A are tightly clustered. Hence, NESTA may be extended to

general problems while retaining its efficiency, with the proviso that a good rule for selecting λ in

(3.8.1) is available; i.e., such that ‖Ayk−b‖`2 = ε unless q ∈ Qp. Of course, one can always eliminate

the problem of finding such a λ by solving the unconstrained problem (QPλ) instead of (BPε). In

this case, each NESTA iteration is actually very cheap, no matter what A looks like.

It is worth noting that if A is relatively small, so that is computationally possible to perform

a one-time singular value decomposition of A (this may be the case if A is not too large, but the

analysis dictionary W is very overcomplete and the bottleneck for computation), then the inversion

just requires two matrix multiplies. The correct value of λ is given by a scalar equation that may

be solved efficiently by Newton’s method (see also [WBFA09] for a similar approach to selecting λ).

This has been discussed in detail in §3.7.

Finally, we also observe that Nesterov’s framework is likely to provide efficient algorithms for

related problems, which do not have the special `1 + `22 structure. One example might be the

Dantzig selector, which is a convenient and flexible estimator for recovering sparse signals from

noisy data [CT07a]:

minimize ‖x‖`1
subject to ‖A∗(b−Ax)‖`∞ ≤ δ.

(3.8.2)

This is of course equivalent to the unconstrained problem

minimize λ‖x‖`1 + ‖A∗(b−Ax)‖`∞

for some value of λ. Clearly, one could apply Nesterov’s smoothing techniques to smooth both terms

in the objective functional together with Nesterov’s accelerated gradient techniques, and derive a

novel and efficient algorithm for computing the solution to the Dantzig selector. This is an example

among many others. Another might be the minimization of a sum of two norms, e.g., an `1 and a

194



TV norm, under data constraints.

3.8.2 Software

In the spirit of reproducible research [DMR+09], a Matlab version of NESTA is available at: http:

//www.acm.caltech.edu/~nesta/.
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Chapter 4

TFOCS

Most of this chapter is part of a journal article submission “Templates for Convex Cone Problems

with Applications to Sparse Signal Recover” [BCG10a], and was jointly written with Emmanuel

Candès and Michael Grant. An accompanying software package called “Templates for First-Order

Conic Solvers” (TFOCS) is available for download [BCG10b].

Parts of this chapter are new and do not appear in the journal version. The section §4.6 re-

derives the dual problem in a dual function framework, as opposed to a dual cone framework. The

end algorithm is the same, but the new formulation has the benefit of making certain requirements

very clear. This also allows for certain new convergence results, which are presented in §4.6.4. The

appendix §4.12 has been rewritten and also incorporates work in the literature which very recently

appeared. A section on extensions, §4.8, considers a method for automatically determining the

restart parameter (§4.8.1), and includes discussion (§4.8.2) on the special problems of noiseless basis

pursuit, conic programs in standard form, and matrix completion.

This chapter develops a general framework for solving a variety of convex cone problems that

frequently arise in signal processing, machine learning, statistics, and other fields. The approach

works as follows: first, determine a conic formulation of the problem; second, determine its dual;

third, apply smoothing; and fourth, solve using an optimal first-order method. A merit of this

approach is its flexibility: for example, all compressed sensing problems can be solved via this

approach. These include models with objective functionals such as the total-variation norm, ‖Wx‖1
where W is arbitrary, or a combination thereof. In addition, the chapter introduces a number of

technical contributions such as a novel continuation scheme and a novel approach for controlling

the step size, and applies results showing that the smooth and unsmoothed problems are sometimes

formally equivalent. Combined with our framework, these lead to novel, stable, and computationally

efficient algorithms. For instance, our general implementation is competitive with state-of-the-art

methods for solving intensively studied problems such as the LASSO. Further, numerical experiments

show that one can solve the Dantzig selector problem, for which no efficient large-scale solvers exist,

in a few hundred iterations. Finally, the chapter is accompanied with a software release. This
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software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to

serve as building blocks for constructing complete algorithms.

4.1 Introduction

4.1.1 Motivation

This chapter establishes a general framework for constructing optimal first-order methods for solving

certain types of convex optimization programs that frequently arise in signal and image processing,

statistics, computer vision, and a variety of other fields.1 In particular, we wish to recover an

unknown vector x0 ∈ Rn from the data y ∈ Rm and the model

y = Ax0 + z; (4.1.1)

here, A is a knownm×n design matrix and z is a noise term. To fix ideas, suppose we find ourselves in

the increasingly common situation where there are fewer observations/measurements than unknowns,

i.e., m < n. While this may seem a priori hopeless, an impressive body of recent works has

shown that accurate estimation is often possible under reasonable sparsity constraints on x0. One

practically and theoretically effective estimator is the Dantzig selector introduced in [CT07a]. The

idea of this procedure is rather simple: find the estimate which is consistent with the observed data

and has minimum `1 norm (thus promoting sparsity). Formally, assuming that the columns of A

are normalized,2 the Dantzig selector is the solution to the convex program

minimize ‖x‖1
subject to ‖A∗(y −Ax)‖∞ ≤ δ,

(4.1.2)

where δ is a scalar. Clearly, the constraint is a data fitting term since it asks that the correlation

between the residual vector r = y − Ax and the columns of A is small. Typically, the scalar δ is

adjusted so that the true x0 is feasible, at least with high probability, when the noise term z is

stochastic; that is, δ obeys ‖A∗z‖∞ ≤ δ (with high probability). Another effective method, which

we refer to as the LASSO [Tib96] (also known as basis pursuit denoising, or BPDN), assumes a

different fidelity term and is the solution to

minimize ‖x‖1
subject to ‖y −Ax‖2 ≤ ε,

(4.1.3)

1The meaning of the word “optimal” shall be made precise later.
2There is a slight modification when the columns do not have the same norm, namely, ‖D−1A∗(y − Ax)‖∞ ≤ δ,

where D is diagonal and whose diagonal entries are the `2 norms of the columns of A.
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where ε is a scalar, which again may be selected so that the true vector is feasible. Both of these

estimators are generally able to accurately estimate nearly sparse vectors and it is, therefore, of

interest to develop effective algorithms for each that can deal with problems involving thousands or

even millions of variables and observations.

There are of course many techniques, which are perhaps more complicated than (4.1.2) and

(4.1.3), for recovering signals or images from possibly undersampled noisy data. Suppose for instance

that we have noisy data y (4.1.1) about an n×n image x0; that is, [x0]ij is an n2-array of real numbers.

Then to recover the image, one might want to solve a problem of this kind:

minimize ‖Wx‖1 + λ‖x‖TV

subject to ‖y −Ax‖2 ≤ ε,
(4.1.4)

where W is some (possibly non-orthogonal) transform such as an undecimated wavelet transform

enforcing sparsity of the image in this domain, and ‖ · ‖TV is the isotropic total-variation norm

introduced in [ROF92] defined as

‖x‖TV :=
∑
i,j

√
|x[i+ 1, j]− x[i, j]|2 + |x[i, j + 1]− x[i, j]|2.

The motivation for (4.1.4) is to look for a sparse object in a transformed domain while reducing

artifacts due to sparsity constraints alone, such as Gibbs oscillations, by means of the total-variation

norm [ROF92,CG02,CR05]. The proposal (4.1.4) appears computationally more involved than both

(4.1.2) and (4.1.3), and our goal is to develop effective algorithms for problems of this kind as well.

To continue our tour, another problem that has recently attracted a lot attention concerns the

recovery of a low-rank matrix X0 from undersampled data

y = A(X0) + z, (4.1.5)

where A : Rn1×n2 → Rm is a linear operator supplying information about X0. An important

example concerns the situation where only some of the entries of X0 are revealed, A(X0) = [X0]ij :

(i, j) ∈ E ⊂ [n1] × [n2], and the goal is to predict the values of all the missing entries. It has been

shown [CR09,CT10,Gro11] that an effective way of recovering the missing information from y and

the model (4.1.5) is via the convex program

minimize ‖X‖∗
subject to X ∈ C.

(4.1.6)

Here, ‖X‖∗ is the sum of the singular values of the matrix X, a quantity known as the nuclear

norm of X. (‖X‖∗ is also the dual of the standard operator norm ‖X‖, given by the largest singular
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value of X). Above, C is a data fitting set, and might be {X : A(X) = y} in the noiseless case,

or {X : ‖A∗(y − A(X))‖∞ ≤ δ} (Dantzig selector-type constraint), or {X : ‖y − A(X)‖2 ≤ ε}
(LASSO-type constraint) in the noisy setup. We are again interested in computational solutions to

problems of this type.

4.1.2 The literature

There is of course an immense literature for solving problems of the types described above. Consider

the LASSO, for example. Most of the works [HYZ08,WYGZ10,OMDY10,YOGD08,FNW07,WNF09,

BT09,FHT10] are concerned with the unconstrained problem

minimize 1
2‖Ax− b‖22 + λ‖x‖1, (4.1.7)

which differs from (4.1.3) in that the hard constraint ‖Ax − b‖2 ≤ ε is replaced with a quadratic

penalty 1
2λ
−1‖Ax − b‖22. There are far fewer methods specially adapted to (4.1.3); let us briefly

discuss some of them. SPGL1 [vdBF08] is a solver specifically designed for (4.1.3), and evidence

from [BBC11] suggests that it is both robust and efficient. The issue is that at the moment, it

cannot handle important variations such as

minimize ‖Wx‖1
subject to ‖y −Ax‖2 ≤ ε,

where W is an over-complete (i.e., more columns than rows) transform as in (4.1.4). The main

reason is that SPGL1—as with almost all first-order methods for that matter—relies on the fact

that the proximity operator associated with the `1 norm,

x(z; t) , argmin
x∈Rn

1
2 t
−1‖x− z‖22 + ‖x‖1, (4.1.8)

is efficiently computable via soft-thresholding. This is not the case, however, when ‖x‖1 is replaced

by a general term of the form ‖Wx‖1, except in the special cases when WW ∗ = I [CP07b], and

these special cases cannot occur if W is over-complete. NESTA [BBC11] can efficiently deal with an

objective functional of the form ‖Wx‖1—that is, it works for any W and the extra computational

cost is just one application of W and W ∗ per iteration—but it requires repeated projections onto

the feasible set; see also [ABDF11] for a related approach, and [WBFA09] for a similar approach

specialized for minimizing total variation. Hence, NESTA is efficient when AA∗ is a projector or,

more generally, when the eigenvalues of AA∗ are well clustered. Other types of algorithms such as

LARS [EHJT04] are based on homotopy methods, and compute the whole solution path; i.e., they

find the solution to (4.1.7) for all values of the regularization parameter λ and, in doing so, find the
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solution to the constrained problem (4.1.3). These methods do not scale well with problem size,

however, especially when the solution is not that sparse.

The approach taken in this chapter, described in §4.1.3, is based off duality and smoothing, and

these concepts have been widely studied in the literature. At the heart of the method is the fact

that solving the dual problem eliminates difficulties with affine operators A, and this observation

goes back to Uzawa’s method [Cia89]. More recently, [MZ09, CP10c, CDV10] discuss dual method

approaches to signal processing problems. In [MZ09], a non-negative version of (4.1.3) (which can

be extended to the regular version by splitting x into positive and negative parts) is solved using

inner and outer iterations. The outer iteration allows the inner problem to be smoothed, which

is similar to the continuation idea presented in §4.5.5. The outer iteration is proved to converge

rapidly, but depends on exactly solving the inner iteration. The work in [LST11] applies a similar

outer iteration, which they recognize as the proximal point algorithm, applied to nuclear norm

minimization. The method of [CP10c] applies a primal-dual method to unconstrained problems

such as (4.1.7), or simplified and unconstrained versions of (4.1.4). Notably, they prove that when

the objective function contains an appropriate strongly convex term, then the primal variable xk

converges with the bound ‖xk − x?‖22 ≤ O(1/k2). The approach of [CDV10] considers smoothing

(4.1.3) in a similar manner to that discussed in §4.2.4, but does not use continuation to diminish

the effect of the smoothing. The dual problem is solved via the forward-backward method, and this

allows the authors to prove that the primal variable converges, though without a known bound on

the rate.

Turning to the Dantzig selector, solution algorithms are scarce. The standard way of solving

(4.1.2) is via linear programming techniques [CR07b] since it is well known that it can be recast as

a linear program [CT07a]. Typical modern solvers rely on interior-point methods (IPM) which are

somewhat problematic for large-scale problems, since they do not scale well with size. Another way

of solving (4.1.2) is via the new works [JRL09, Rom08], which use homotopy methods inspired by

LARS to compute the whole solution path of the Dantzig selector. These methods, however, are also

unable to cope with large problems. As an example of the speed of these methods, the authors of

l1ls [KKB07], which is a log-barrier interior-point method using preconditioned conjugate-gradients

to solve the Newton step, report that on an instance of the (4.1.7) problem, their method is 20×
faster than the commercial IPM MOSEK [Mos02], 10× faster than the IPM PDCO [SK02], 78×
faster than IPM l1Magic [CR07b], and 1.6× faster than Homotopy [DT08]. Yet the first-order

method FPC [HYZ08] reports that FPC is typically 10 to 20× faster than l1ls, and sometimes even

1040× faster. These results are for (4.1.7) and not the Dantzig selector, but it is reasonable to

conclude that in general IPM and homotopy do not seem reasonable methods for extremely large

problems.

The accelerated first-order algorithm recently introduced in [Lu09] can handle large Dantzig
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selector problems, but with the same limitations as NESTA since it requires inverting AA∗. A

method based on operator splitting has been suggested in [FS09] but results have not yet been

reported. Another alternative is adapting SPGL1 to this setting, but this comes with the caveat

that it does not handle slight variations as discussed above.

Finally, as far as the mixed norm problem (4.1.4) is concerned, we are not aware of efficient

solution algorithms. One can always recast this problem as a second-order cone program (SOCP)

which one could then solve via an interior-point method; but again, this is problematic for large-scale

problems.

4.1.3 Our approach

In this chapter, we develop a template for solving a variety of problems such as those encountered

thus far. The template proceeds as follows: first, determine an equivalent conic formulation; second,

determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method.

4.1.3.1 Conic formulation

In reality, our approach can be applied to general models expressed in the following canonical form:

minimize f(x)

subject to A(x) + b ∈ K.
(4.1.9)

The optimization variable is a vector x ∈ Rn, and the objective function f is convex, possibly

extended-valued, and not necessarily smooth. The constraint is expressed in terms of a linear

operator A : Rn → Rm, a vector b ∈ Rm, and a closed, convex cone K ⊆ Rm. We shall call a model

of the form (4.1.9) that is equivalent to a given convex optimization model P a conic form for P.

The conic constraint A(x) + b ∈ K may seem specialized, but in fact any closed convex subset of

Rn may be represented in this fashion; and models involving complex variables, matrices, or other

vector spaces can be handled by defining appropriate isomorphisms. Of course, some constraints

are more readily transformed into conic form than others; included in this former group are linear

equations, linear inequalities, and convex inequalities involving norms of affine forms. Thus virtually

every convex compressed sensing model may be readily converted. Almost all models admit multiple

conic forms, and each results in a different final algorithm.

For example, the Dantzig selector (4.1.2) can be mapped to conic form as follows:

f(x)→ ‖x‖1, A(x)→ (A∗Ax, 0), b→ (−A∗y, δ), K → Ln∞, (4.1.10)

where Ln∞ is the epigraph of the `∞ norm: Ln∞ = {(y, t) ∈ Rn+1 : ‖y‖∞ ≤ t}.
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4.1.3.2 Dualization

The conic form (4.1.9) does not immediately lend itself to efficient solution using first-order methods

for two reasons: first, because f may not be smooth; and second, because projection onto the set

{x | A(x)+b ∈ K}, or even the determination of a single feasible point, can be expensive. We propose

to resolve these issues by solving either the dual problem, or a carefully chosen approximation of it.

Recall that the dual of our canonical form (4.1.9) is given by

maximize g(λ)

subject to λ ∈ K∗,
(4.1.11)

where g(λ) is the Lagrange dual function

g(λ) , inf
x
L(x, λ) = inf

x
f(x)− 〈λ,A(x) + b〉,

and K∗ is the dual cone defined via

K∗ = {λ ∈ Rm : 〈λ, x〉 ≥ 0 for all x ∈ K}.

The dual form has an immediate benefit that for the problems of interest, projections onto

the dual cone are usually tractable and computationally very efficient. For example, consider the

projection of a point onto the feasible set {x : ‖Ax − y‖2 ≤ ε} of the LASSO, an operation which

may be expensive. However, one can recast the constraint as A(x) + b ∈ K with

A(x)→ (Ax, 0), b→ (−y, ε) K → Lm2 , (4.1.12)

where Lm2 is the second-order cone Lm2 = {(y, t) ∈ Rm+1 : ‖y‖2 ≤ t}. This cone is self dual, i.e.,

(Lm2 )∗ = Lm2 , and projection onto Lm2 is trivial: indeed, it is given by

(y, t) 7→


(y, t), ‖y‖2 ≤ t,

c(y, ‖y‖2), −‖y‖2 ≤ t ≤ ‖y‖2,

(0, 0), t ≤ −‖y‖2,

c =
‖y‖2 + t

2‖y‖2
. (4.1.13)

And so we see that by eliminating the affine mapping, the projection computation has been greatly

simplified. Of course, not every cone projection admits as simple a solution as (4.1.13); but as we

will show, all of the cones of interest to us do indeed.
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4.1.3.3 Smoothing

Unfortunately, because of the nature of the problems under study, the dual function is usually not

differentiable either, and direct solution via subgradient methods would converge too slowly. Our

solution is inspired by the smoothing technique due to Nesterov [Nes05]. We shall see that if one

modifies the primal objective f(x) and instead solves

minimize fµ(x) , f(x) + µd(x)

subject to A(x) + b ∈ K,
(4.1.14)

where d(x) is a strongly convex function to be defined later and µ a positive scalar, then the dual

problem takes the form

maximize gµ(λ)

subject to λ ∈ K∗,
(4.1.15)

where gµ is a smooth approximation of g. This approximate model can now be solved using first-

order methods. As a general rule, higher values of µ improve the performance of the underlying

solver, but at the expense of accuracy. Techniques such as continuation can be used to recover the

accuracy lost, however, so the precise trade-off is not so simple.

In many cases, the smoothed dual can be reduced to an unconstrained problem of the form

maximize −gsmooth(z)− h(z), (4.1.16)

with optimization variable z ∈ Rm, where gsmooth is convex and smooth and h convex, non-smooth,

and possibly extended-valued. For instance, for the Dantzig selector (4.1.2), h(z) = δ‖z‖1. As

we shall see, this so-called composite form can also be solved efficiently using optimal first-order

methods. In fact, the reduction to composite form often simplifies some of the central computations

in the algorithms.

4.1.3.4 First-order methods

Optimal first-order methods are proper descendants of the classic projected gradient algorithm. For

the smoothed dual problem (4.1.15), a prototypical projected gradient algorithm begins with a point

λ0 ∈ K∗, and generates updates for k = 0, 1, 2, ... as follows:

λk+1 ← argmin
λ∈K∗

‖λk + tk∇gµ(λk)− λ‖2, (4.1.17)
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given step sizes {tk}. The method has also been extended to composite problems like (4.1.16)

[Wri07,Nes07,Tse08]; the corresponding iteration is

zk+1 ← argmin
y

gsmooth(zk) + 〈∇gsmooth(zk), z − zk〉+ 1
2tk
‖z − zk‖2 + h(z). (4.1.18)

Note the use of a general norm ‖ · ‖ and the inclusion of the non-smooth term h. We call the

minimization in (4.1.18) a generalized projection, because it reduces to a standard projection (4.1.17)

if the norm is Euclidean and h is an indicator function. This generalized form allows us to construct

efficient algorithms for a wider variety of models.

For the problems under study, the step sizes {tk} above can be chosen so that ε-optimality (that

is, supλ∈K∗ gµ(λ) − gµ(λk) ≤ ε) can be achieved in O(1/ε) iterations [Nes04]. In 1983, Nesterov

reduced this cost to O(1/
√
ε) using a slightly more complex iteration

λk+1 ← argmin
λ∈K∗

‖νk + tk∇gµ(νk)− λ‖2, νk+1 ← λk+1 + αk(λk+1 − λk), (4.1.19)

where ν0 = λ0 and the sequence {αk} is constructed according to a particular recurrence relation.

Previous work by Nemirosvski and Yudin had established O(1/
√
ε) complexity as the best that can

be achieved for this class of problems [NY83], so Nesterov’s modification is indeed optimal. Many

alternative first-order methods have since been developed [Nes88,Nes05,Nes07,Tse08,AT06,LLM09],

including methods that support generalized projections. We examine these methods in more detail

in §4.5.

We have not yet spoken about the complexity of computing gµ or gsmooth and their gradients.

For now, let us highlight the fact that ∇gµ(λ) = −A(x(λ))− b, where

x(λ) , argmin
x
Lµ(x, λ) = argmin

x
f(x) + µd(x)− 〈A(x) + b, λ〉, (4.1.20)

and d(x) is a selected proximity function. In the common case that d(x) = 1
2‖x−x0‖2, the structure

of (4.1.20) is identical to that of a generalized projection. Thus we see that the ability to efficiently

minimize the sum of a linear term, a proximity function, and a non-smooth function of interest is

the fundamental computational primitive involved in our method. Equation (4.1.20) also reveals

how to recover an approximate primal solution as λ approaches its optimal value.

4.1.4 Contributions

The formulation of compressed sensing models in conic form is not widely known. Yet the convex op-

timization modeling framework CVX [GB10] converts all models into conic form; and the compressed

sensing package `1-Magic [CR07b] converts problems into second-order cone programs (SOCPs).

Both systems utilize interior-point methods instead of first-order methods, however. As mentioned
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above, the smoothing step is inspired by [Nes05], and is similar in structure to traditional Lagrangian

augmentation. As we also noted, first-order methods have been a subject of considerable research.

Taken separately, then, none of the components in this approach is new. However their combi-

nation and application to solve compressed sensing problems leads to effective algorithms that have

not previously been considered. For instance, applying our methodology to the Dantzig selector

gives a novel and efficient algorithm (in fact, it gives several novel algorithms, depending on which

conic form is used). Numerical experiments presented later in the chapter show that one can solve

the Dantzig selector problem with a reasonable number of applications of A and its adjoint; the

exact number depends upon the desired level of accuracy. In the case of the LASSO, our approach

leads to novel algorithms which are competitive with state-of-the-art methods such as SPGL1.

Aside from good empirical performance, we believe that the primary merit of our framework lies

in its flexibility. To be sure, all the compressed sensing problems listed at the beginning of this

chapter, and of course many others, can be solved via this approach. These include total-variation

norm problems, `1-analysis problems involving objectives of the form ‖Wx‖1 where W is neither

orthogonal nor diagonal, and so on. In each case, our framework allows us to construct an effective

algorithm, thus providing a computational solution to almost every problem arising in sparse signal

or low-rank matrix recovery applications.

Furthermore, in the course of our investigation, we have developed a number of additional tech-

nical contributions. For example, we will show that certain models, including the Dantzig selector,

exhibit an exact penalty property: the exact solution to the original problem is recovered even when

some smoothing is applied. We have also developed a novel continuation scheme that allows us to

employ more aggressive smoothing to improve solver performance while still recovering the exact

solution to the unsmoothed problem. The flexibility of our template also provides opportunities to

employ novel approaches for controlling the step size.

4.1.5 Software

This chapter is accompanied with a software release [BCG10b], including a detailed user guide which

gives many additional implementation details not discussed in this chapter. Since most compressed

sensing problems can be easily cast into standard conic form, our software provides a powerful and

flexible computational tool for solving a large range of problems researchers might be interested in

experimenting with.

The software is not a single, monolithic solver; rather, it is a suite of programs and routines

designed to serve as building blocks for constructing complete algorithms. Roughly speaking, we

can divide the routines into three levels. On the first level is a suite of routines that implement a

variety of known first-order solvers, including the standard projected gradient algorithm and known

optimal variants by Nesterov and others. On the second level are wrappers designed to accept
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problems in conic standard form (4.1.9) and apply the first-order solvers to the smoothed dual

problem. Finally, the package includes a variety of routines to directly solve the specific models

described in this chapter and to reproduce our experiments.

We have worked to ensure that each of the solvers is as easy to use as possible, by providing

sensible defaults for line search, continuation, and other factors. At the same time, we have sought

to give the user flexibility to insert their own choices for these components. We also want to provide

the user with the opportunity to compare the performance of various first-order variants on their

particular application. We do have some general views about which algorithms perform best for

compressed sensing applications, however, and will share some of them in §4.7.

4.1.6 Organization of the chapter

In §4.2, we continue the discussion of conic formulations, including a derivation of the dual conic for-

mulation and details about the smoothing operation. Section 4.3 instantiates this general framework

to derive a new algorithm for the Dantzig selector problem. In §4.4, we provide further selected in-

stantiations of our framework including the LASSO, total-variation problems, `1-analysis problems,

and common nuclear-norm minimization problems. In §4.5, we review a variety of first-order meth-

ods and suggest improvements. Section 4.6 derives the dual formulation using the machinery of

dual functions instead of dual cones, and covers known convergence results. Section 4.7 presents

numerical results illustrating both the empirical effectiveness and the flexibility of our approach.

Some interesting special cases are discussed in 4.8, such as solving linear program in standard form.

Section 4.9 provides a short introduction to the software release accompanying this chapter. Finally,

the appendix gives a proof of the exact penalty property for general linear programs (which itself is

not a novel result), and thus for Dantzig selector and basis pursuit models, and describes a unique

approach we use to generate test models so that their exact solution is known in advance.

4.2 Conic formulations

4.2.1 Alternate forms

In the introduction, we presented our standard conic form (4.1.9) and a specific instance for the

Dantzig selector in (4.1.10). As we said then, conic forms are rarely unique; this is true even if one

disregards simple scalings of the cone constraint. For instance, we may express the Dantzig selector

constraint as an intersection of linear inequalities, −δ1 � A∗(y−Ax) � δ1, suggesting the following

alternative:

f(x)→ ‖x‖1, A(x)→

−A∗A
A∗A

x, b→

δ1 +A∗y

δ1−A∗y

 , K → R2n
+ . (4.2.1)
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We will return to this alternative later in §4.3.5. In many instances, a conic form may involve the

manipulation of the objective function as well. For instance, if we first transform (4.1.2) to

minimize t

subject to ‖x‖1 ≤ t
‖A∗(y −Ax)‖∞ ≤ δ,

then yet another conic form results:

f(x, t)→ t, A(x, t)→ (x, t, A∗Ax, 0), b→ (0, 0,−A∗y, δ), K → Ln1 × Ln∞, (4.2.2)

where Ln1 is the epigraph of the `1 norm, Ln1 = {(y, t) ∈ Rn+1 : ‖y‖1 ≤ t}.
Our experiments show that different conic formulations yield different levels of performance using

the same numerical algorithms. Some are simpler to implement than others as well. Therefore, it is

worthwhile to at least explore these alternatives to find the best choice for a given application.

4.2.2 The dual

To begin with, the conic Lagrangian associated with (4.1.9) is given by

L(x, λ) = f(x)− 〈λ,A(x) + b〉, (4.2.3)

where λ ∈ Rm is the Lagrange multiplier, constrained to lie in the dual cone K∗. The dual function

g : Rm → (R ∪ {−∞}) is, therefore,

g(λ) = inf
x
L(x, λ) = −f∗(A∗(λ))− 〈b, λ〉. (4.2.4)

Here, A∗ : Rm → Rn is the adjoint of the linear operator A and f∗ : Rn → (R∪{+∞}) is the convex

conjugate of f defined by

f∗(z) = sup
x
〈z, x〉 − f(x).

Thus the dual problem is given by

maximize −f∗(A∗(λ))− 〈b, λ〉
subject to λ ∈ K∗.

(4.2.5)

Given a feasible primal/dual pair (x, λ), the duality gap is the difference between their respective

objective values. The non-negativity of the duality gap is easily verified:

f(x)− g(λ) = f(x) + f∗(A∗(λ)) + 〈b, λ〉 ≥ 〈x,A∗(λ)〉+ 〈b, λ〉 = 〈A(x) + b, λ〉 ≥ 0. (4.2.6)
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The first inequality follows from the definition of conjugate functions, while the second follows from

the definition of the dual cone. If both the primal and dual are strictly feasible—as is the case for all

problems we are interested in here—then the minimum duality gap is exactly zero, and there exists

an optimal pair (x?, λ?) that achieves f(x?) = g(λ?) = L(x?, λ?). It is important to note that the

optimal points are not necessarily unique; more about this in §4.2.4. But any optimal primal/dual

pair will satisfy the KKT optimality conditions [BV04]

A(x?) + b ∈ K, λ? ∈ K∗, 〈A(x?) + b, λ?〉 = 0, A∗(λ?) ∈ ∂f(x?), (4.2.7)

where ∂f refers to the subgradient of f .

4.2.3 The differentiable case

The dual function is of course concave; and its derivative (when it exists) is given by

∇g(λ) = −A(x(λ))− b, x(λ) ∈ argmin
x
L(x, λ). (4.2.8)

It is possible that the minimizer x(λ) is not unique, so in order to be differentiable, all such minimizers

must yield the same value of −A(x(λ))− b [BNO03].

If g is finite and differentiable on the entirety of K∗, then it becomes trivial to locate an initial

dual point (e.g., λ = 0); and for many genuinely useful cones K∗, it becomes trivial to project an

arbitrary point λ ∈ Rm onto this feasible set. If the argmin calculation in (4.2.8) is computationally

practical, we may entertain the construction of a projected gradient method for solving the dual

problem (4.2.5) directly; i.e., without our proposed smoothing step. Once an optimal dual point

λ? is recovered, an optimal solution to the original problem (4.1.9) is recovered by solving x? ∈
argminx L(x, λ?) ∩ {x : Ax + b ∈ K}. If argminx L(x, λ?) is unique, which is the case when f is

strictly convex, then this minimizer is necessarily feasible and is the primal optimal solution.

Further suppose that f is strongly convex3 ; that is, it satisfies for some constant mf > 0,

f((1− α)x+ αx′) ≤ (1− α)f(x) + αf(x′)−mfα(1− α)‖x− x′‖22/2 (4.2.9)

for all x, x′ ∈ dom(f) = {x : f(x) < +∞} and 0 ≤ α ≤ 1. Then assuming the problem is feasible,

it admits a unique optimal solution. The Lagrangian minimizers x(λ) are unique for all λ ∈ Rn;

so g is differentiable everywhere. Furthermore, [Nes05] proves that the gradient of g is Lipschitz

continuous, obeying

‖∇g(λ′)−∇g(λ)‖2 ≤ m−1
f ‖A‖2‖λ′ − λ‖2, (4.2.10)

3 We use the Euclidean norm, but any norm works as long as ‖A‖ in (4.2.10) is appropriately defined; see [Nes05].
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where ‖A‖ = sup‖x‖2=1 ‖A(x)‖2 is the induced operator norm of A. So when f is strongly convex,

then provably convergent, accelerated gradient methods in the Nesterov style are possible.

4.2.4 Smoothing

Unfortunately, it is more likely that g is not differentiable (or even finite) on all of K∗. So we consider

a smoothing approach similar to that proposed in [Nes05] to solve an approximation of our problem.

Consider the following perturbation of (4.1.9):

minimize fµ(x) , f(x) + µd(x)

subject to A(x) + b ∈ K
(4.2.11)

for some fixed smoothing parameter µ > 0 and a strongly convex function d obeying

d(x) ≥ d(x0) + 1
2‖x− x0‖2 (4.2.12)

for some fixed point x0 ∈ Rn. Such a function is usually called a proximity function.

The new objective fµ is strongly convex with mf = µ, so the full benefits described in §4.2.3

now apply. The Lagrangian and dual functions become4

Lµ(x, λ) = f(x) + µd(x)− 〈λ,A(x) + b〉 (4.2.13)

gµ(λ) , inf
x
Lµ(x, λ) = −(f + µd)∗(A∗(λ))− 〈b, λ〉. (4.2.14)

One can verify that for the affine objective case f(x) , 〈c0, x〉 + d0, the dual and smoothed dual

function take the form

g(λ) = d0 − I`∞(A∗(λ)− c0)− 〈b, λ〉,

gµ(λ) = d0 − µd∗(µ−1(A∗(λ)− c0))− 〈b, λ〉,

where I`∞ is the indicator function of the `∞ norm ball; that is,

I`∞(y) ,

0, ‖y‖∞ ≤ 1,

+∞, ‖y‖∞ > 1.

The new optimality conditions are

A(xµ) + b ∈ K, λµ ∈ K∗, 〈A(xµ) + b, λµ〉 = 0, A∗(λµ)− µ∇d(xµ) ∈ ∂f(xµ). (4.2.15)

4One can also observe the identity gµ(λ) = supz −f∗(A∗(λ)− z)− µd∗(µ−1z)− 〈b, λ〉.
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Because the Lipschitz bound (4.2.10) holds, first-order methods may be employed to solve (4.2.11)

with provable performance. The iteration counts for these methods are proportional to the square

root of the Lipschitz constant, and therefore proportional to µ−1/2. There is a trade off between the

accuracy of the approximation and the performance of the algorithms that must be explored.5

For each µ > 0, the smoothed model obtains a single minimizer xµ; and the trajectory traced

by xµ as µ varies converges to an optimal solution x? , limµ→0+
xµ. Henceforth, when speaking

about the (possibly non-unique) optimal solution x? to the original model, we will be referring to

this uniquely determined value. Later we will show that for some models, including the Dantzig

selector, the approximate model is exact : that is, xµ = x? for sufficiently small but nonzero µ.

Roughly speaking, the smooth dual function gµ is what we would obtain if the Nesterov smoothing

method described in [Nes05] were applied to the dual function g. It is worthwhile to explore how

things would differ if the Nesterov approach were applied directly to the primal objective f(x).

Suppose that f(x) = ‖x‖1 and d(x) = 1
2‖x‖22. The Nesterov approach yields a smooth approximation

fN
µ whose elements can be described by the formula

[
fN
µ (x)

]
i

= sup
|z|≤1

zxi − 1
2µz

2 =


1
2µ
−1x2

i , |xi| ≤ µ,

|xi| − 1
2µ, |x| ≥ µ,

i = 1, 2, . . . , n. (4.2.16)

Readers may recognize this as the Huber penalty function with half-width µ; a graphical comparison

with fµ is provided in Figure 4.1. Its smoothness may seem to be an advantage over our choice

fµ(x) = ‖x‖1 + 1
2‖x‖22, but the difficulty of projecting onto the set {x | A(x) + b ∈ K} remains; so

we still prefer to solve the dual problem. Furthermore, the quadratic behavior of fN
µ around xi = 0

eliminates the tendency towards solutions with many zero values. In contrast, fµ(x) maintains the

sharp vertices from the `1 norm that are known to encourage sparse solutions.

4.2.5 Composite forms

In most of the cases under study, the dual variable can be partitioned as λ , (z, τ) ∈ Rm−m̄ × Rm̄

such that the smoothed dual gµ(z, τ) is linear in τ ; that is,

gµ(λ) = −gsmooth(z)− 〈vµ, τ〉 (4.2.17)

for some smooth convex function gsmooth and a constant vector vµ ∈ Rm̄. An examination of

the Lagrangian Lµ (4.2.13) reveals a precise condition under which this occurs: when the linear

operator A is of the form A(x) → (Ā(x),0m̄×1), as seen in the conic constraints for the Dantzig

selector (4.1.10) and LASSO (4.1.12). If we partition b = (b̄, bτ ) accordingly, then evidently vµ = bτ .

5In fact, even when the original objective is strongly convex, further adding a strongly convex term may be
worthwhile to improve performance.
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Figure 4.1: The original objective f(x) = |x| (blue), our modification (red), and Nesterov’s smoothing (green)

Under such conditions, it is more natural to work with Ā, b̄, and bτ directly, and exploit some

useful simplifications. Specifically, let us define the function

h : Rm−m̄ → (R ∪ {+∞}), h(z) , inf{〈bτ , τ〉 | (z, τ) ∈ K∗}. (4.2.18)

Then the dual problem reduces to a non-smooth unconstrained maximization

maximize ḡµ(z) , −gsmooth(z)− h(z).

The gradient of gsmooth is ∇gsmooth(z) = Ā(x(z)) + b̄, where x(z) is the minimizer of a reduced

Lagrangian

L̄µ(x, z) = f(x) + µd(x)− 〈z, Ā(x) + b̄〉. (4.2.19)

4.2.6 Projections

A standard gradient projection step for the smoothed dual problem is

λk+1 ← argmin
λ∈K∗

‖λ− λk − tk∇gµ(λk)‖2. (4.2.20)

For the composite version of the same problem, the corresponding generalized projection is

zk+1 ← argmin
z

gsmooth(zk) + 〈∇gsmooth(zk), z − zk〉+ 1
2tk
‖z − zk‖2 + h(z). (4.2.21)
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Integrating the definition of∇gsmooth(z) into (4.2.21) and simplifying yields a two-sequence recursion:

xk ← argmin
x

f(x) + µd(x)− 〈Ā∗(zk), x〉

zk+1 ← argmin
z

h(z) + 1
2tk
‖z − zk‖2 + 〈Ā(xk) + b̄, z〉.

(4.2.22)

Note the similarity in computational structure of the two formulae. This similarity is even more

evident in the common scenario where d(x) = 1
2‖x− x0‖2 for some fixed x0 ∈ Rn.

Let Σ be the matrix composed of the first m − m̄ rows of the m ×m identity matrix, so that

Σλ ≡ z for all λ = (z, τ). Then (4.2.21) can also be written in terms of K∗ and gµ:

zk+1 ← Σ · argmax
λ∈K∗

gµ(λk) + 〈∇gµ(λk), λ− λk〉 − 1
2tk
‖Σ(λ− λk)‖2, (4.2.23)

where λk , (zk, h(zk)). If m = 0 and the norm is Euclidean, then Σ = I and the standard projection

(4.2.20) is recovered. So (4.2.21) is indeed a true generalization, as claimed in §4.1.3.4.

The key feature of the composite approach, then, is the removal of the linear variables τ from

the proximity term. Given that they are linearly involved to begin with, this yields a more accurate

approximation of the dual function, so we might expect a composite approach to yield improved

performance. In fact, the theoretical predictions of the number of iterations required to achieve a

certain level of accuracy are identical; and in our experience, any differences in practice seem minimal

at best. The true advantage to the composite approach is that generalized projections more readily

admit analytic solutions and are less expensive to compute.

4.3 A novel algorithm for the Dantzig selector

We now weave together the ideas of the last two sections to develop a novel algorithm for the Dantzig

selector problem (4.1.2).

4.3.1 The conic form

We use the standard conic formulation (4.1.9) with the mapping (4.1.10) as discussed in the intro-

duction, which results in the model

minimize ‖x‖1
subject to (A∗(y −Ax), δ) ∈ Ln∞,

(4.3.1)
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where Lm∞ is the epigraph of the `∞ norm. The dual variable λ, therefore, will lie in the dual cone

(Ln∞)∗ = Ln1 , the epigraph of the `1 norm. Defining λ = (z, τ), the conic dual (4.2.5) is

maximize −I`∞(−A∗Az)− 〈A∗y, z〉 − δτ
subject to (z, τ) ∈ Ln1 ,

(4.3.2)

where f∗ = I`∞ is the indicator function of the `∞ norm ball as before. Clearly the optimal value

of τ must satisfy ‖z‖1 = τ ,6 so eliminating it yields

maximize −I`∞(−A∗Az)− 〈A∗y, z〉 − δ‖z‖1. (4.3.3)

Neither (4.3.2) nor (4.3.3) has a smooth objective, so the smoothing approach discussed in §4.2.4

will indeed be necessary.

4.3.2 Smooth approximation

We augment the objective with a strongly convex term

minimize ‖x‖1 + µd(x)

subject to (A∗(y −Ax), δ) ∈ K , Ln∞.
(4.3.4)

The Lagrangian of this new model is

Lµ(x; z, τ) = ‖x‖1 + µd(x)− 〈z,A∗(y −Ax)〉 − δτ.

Letting x(z) be the unique minimizer of Lµ(x; z, τ), the dual function becomes

gµ(z, τ) = ‖x(z)‖1 + µd(x(z))− 〈z,A∗(y −Ax(z))〉 − τδ.

Eliminating τ per §4.2.5 yields a composite form ḡµ(z) = −gsmooth(z)− h(z) with

gsmooth(z) = −‖x(z)‖1 − µd(x(z)) + 〈z,A∗(y −Ax(z))〉, h(z) = δ‖z‖1.

The gradient of gsmooth is ∇gsmooth(z) = A∗(y −Ax(z)).

The precise forms of x(z) and ∇gsmooth depend of course on our choice of proximity function

d(x). For our problem, the simple convex quadratic

d(x) = 1
2‖x− x0‖22,

6We assume δ > 0 here; if δ = 0, the form is slightly different.
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for a fixed center point x0 ∈ Rn, works well, and guarantees that the gradient is Lipschitz continuous

with a constant at most µ−1‖A∗A‖2. With this choice, x(z) can be expressed in terms of the soft-

thresholding operation which is a common fixture in algorithms for sparse recovery. For scalars x

and s ≥ 0, define

SoftThreshold(x, s) = sgn(x) ·max{|x| − s, 0} =


x+ s, x ≤ −s,

0, |x| ≤ s,

x− s, x ≥ s.

When the first input x is a vector, the soft-thresholding operation is to be applied componentwise.

Armed with this definition, the formula for x(z) becomes

x(z) = SoftThreshold(x0 − µ−1A∗Az, µ−1).

If we substitute x(z) into the formula for gsmooth(z) and simplify carefully, we find that

gsmooth(z) = − 1
2µ
−1‖ SoftThreshold(µx0 −A∗Az, 1)‖22 + 〈A∗y, z〉+ c,

where c is a term that depends only on constants µ and x0. In other words, to within an additive

constant, gsmooth(z) is a smooth approximation of the non-smooth term I`∞(−A∗Az)+〈A∗y, z〉 from

(4.3.2), and indeed it converges to that function as µ→ 0.

For the dual update, the generalized projection is

zk+1 ← argmin
z

gsmooth(zk) + 〈∇gsmooth(zk), z − zk〉+ 1
2tk
‖z − zk‖22 + δ‖z‖1. (4.3.5)

A solution to this minimization can also be expressed in terms of the soft thresholding operation:

zk+1 ← SoftThreshold(zk − tkA∗(y −Ax(zk)), tkδ).

4.3.3 Implementation

To solve the model presented in §4.3.2, we considered first-order projected gradient solvers. After

some experimentation, we concluded that the Auslender and Teboulle first-order variant [AT06,

Tse08] is a good choice for this model. We discuss this and other variants in more detail in §4.5, so

for now we will simply present the basic algorithm in Listing 1 below. Note that the dual update

used differs slightly from (4.3.5) above: the gradient ∇gsmooth is evaluated at yk, not zk, and the step

size in the generalized projection is multiplied by θ−1
k . Each iteration requires two applications of

both A and A∗, and is computationally inexpensive when a fast matrix-vector multiply is available.
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Listing 1 Algorithm for the smoothed Dantzig selector

Require: z0, x0 ∈ Rn, µ > 0, step sizes {tk}
1: θ0 ← 1, v0 ← z0

2: for k = 0, 1, 2, . . . do

3: yk ← (1− θk)vk + θkzk

4: xk ← SoftThreshold(x0 − µ−1A∗Ayk, µ−1).

5: zk+1 ← SoftThreshold(zk − θ−1
k tkA

∗(y −Axk), θ−1
k tkδ)

6: vk+1 ← (1− θk)vk + θkzk+1

7: θk+1 ← 2/(1 + (1 + 4/θ2
k)1/2)

It is known that for a fixed step size tk , t ≤ µ/‖A∗A‖22, the above algorithm converges in the

sense that ḡµ(z∗)−ḡµ(zk) = O(k−2). Performance can be improved through the use of a backtracking

line search for zk, as discussed in §4.5.3 (see also [BT09]). Further, fairly standard arguments in

convex analysis show that the sequence {xk} converges to the unique solution to (4.3.4).

4.3.4 Exact penalty

Theorem 3.1 in [CCS10] can be adapted to show that as µ→ 0, the solution to (4.3.4) converges to

a solution to (4.1.2). But an interesting feature of the Dantzig selector model in particular is that if

µ < µ0 for µ0 sufficiently small, the solutions to the Dantzig selector and to its perturbed variation

(4.3.4) coincide; that is, x? = x?µ. In fact, this phenomenon holds for any linear program (LP).

Theorem 4.3.1 (Exact penalty). Consider an arbitrary LP with objective 〈c, x〉 and having an

optimal solution (i.e., the optimal value is not −∞) and let Q be a positive semidefinite matrix.

Then there is a µ0 > 0 such that if 0 < µ ≤ µ0, any solution to the perturbed problem with objective

〈c, x〉 + 1
2µ〈x − x0, Q(x − x0)〉 is a solution to LP. Among all the solutions to LP, the solutions to

the perturbed problem are those minimizing the quadratic penalty. In particular, in the (usual) case

where the LP solution is unique, the solution to the perturbed problem is unique and they coincide.

The theorem is not difficult to prove, and first appeared in 1979 due to Mangasarian [MM79].

The special case of noiseless basis pursuit was recently analyzed in [Yin10] using different techniques.

More general results, allowing a range of penalty functions, were proved in [FT07]. Our theorem is a

special case of [FT07] and the earlier results, but we present the proof in Appendix 4.11 since it uses

a different technique than [FT07], is directly applicable to our method in this form, and provides

useful intuition. The result, when combined with our continuation techniques in §4.5.5, is also a new

look at known results about the finite termination of the proximal point algorithm when applied to

linear programs [PT74,Ber75].

As a consequence of the theorem, the Dantzig selector and noiseless basis pursuit, which are
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Figure 4.2: Demonstration of the exact penalty property for the Dantzig selector. For µ ≤ µ0 ≈ 0.025, the
solution to the smoothed model coincides with the original model to solver precision.

both linear programs, have the exact penalty property. To see why it holds for the Dantzig selector,

recast it as the LP

minimize 〈1, u〉
subject to −u ≤ x ≤ u

−δ1 ≤ A∗(y −Ax) ≤ δ1,

with optimization variables (x, u) ∈ R2n. Then the perturbation 1
2µ‖x − x0‖2 corresponds to a

quadratic perturbation with a diagonal Q � 0 obeying Qii = 1 for 1 ≤ i ≤ n and Qii = 0 for

n+ 1 ≤ i ≤ 2n.

An illustration of this phenomenon is provided in Figure 4.2. For this example, a Dantzig selector

model was constructed for a data set built from a DCT measurement matrix of size 512 × 4096.

The exact solution x? was constructed to have 60 dB of dynamic range and 129 nonzeros, using the

techniques of Appendix 4.12.7 The figure plots the smoothing error ‖x? − xµ‖2/‖x?‖2 as a function

of µ; below approximately µ ≈ 0.025, the error drops rapidly to solver precision.

Unfortunately, compressed sensing models that are not equivalent to linear programs do not in

general have the exact penalty property. For instance, it is possible to construct a counter-example

for LASSO where the constraint is of the form ‖y−Ax‖ ≤ ε. However, the result still suggests that

for small ε and µ, the LASSO and its smoothed version are similar.

7In this example, we verified that the optimal solution was unique by converting to a standard form linear program
and used a dual optimal point as a certificate to prove the primal optimal variable is always a vertex.
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4.3.5 Alternative models

As previously mentioned, different conic formulations result in different algorithms. To illustrate,

consider the first alternative (4.2.1) proposed in §4.2.1, which represents the Dantzig selector con-

straint via linear inequalities. The conic form is

minimize ‖x‖1

subject to

δ1 +A∗(y −Ax)

δ1−A∗(y −Ax)

 ∈ R2n
+ .

(4.3.6)

The dual variable λ , (λ1, λ2) must also lie in R2n
+ . The Lagrangian of the smoothed model is

Lµ(x;λ) = ‖x‖1 + 1
2µ‖x− x0‖22 − 〈λ1, δ1 +A∗(y −Ax)〉 − 〈λ2, δ1−A∗(y −Ax)〉

and its unique minimizer is given by the soft-thresholding operation

x(λ) = SoftThreshold(x0 − µ−1A∗A(λ1 − λ2), µ−1).

We cannot eliminate any variables by reducing to composite form, so we stay with the standard

smoothed dual function gµ(λ) = infx Lµ(x;λ), whose gradient is

∇gµ(λ) =

−δ1−A∗(y −Ax(λ))

−δ1 +A∗(y −Ax(λ))

 .
The dual update is a true projection

λk+1 = argmin
λ∈R2n

+

−gµ(λk)− 〈∇gµ(λk), λ− λk〉+ 1
2 t
−1
k ‖λ− λk‖22

= argmin
λ∈R2n

+

‖λ− λk − tk∇gµ(λk)‖2
(4.3.7)

whose solution is simply the non-negative portion of a standard gradient step:

λk+1 = Pos(λk + tk∇gµ(λk)), [Pos(z)]i ,

zi, zi > 0,

0, zi ≤ 0.
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In order to better reveal the similarities between the two models, let us define z̄ , λ1 − λ2 and

τ̄ , 1∗(λ1 + λ2). Then we have ‖z̄‖1 ≤ τ̄ , and the Lagrangian and its minimizer become

Lµ(x;λ) = ‖x‖1 + 1
2µ‖x− x0‖22 − 〈z̄, A∗(y −Ax)〉 − δτ̄ ,

x(λ) = SoftThreshold(x0 − µ−1A∗Az̄, µ−1),

which are actually identical to the original norm-based model. The difference lies in the dual update.

It is possible to show that the dual update for the original model is equivalent to

zk+1 = Σ · argmin
λ∈R2n

+

−gµ(λk)− 〈∇gµ(λk), λ− λk〉+ 1
2 t
−1
k ‖Σ(λ− λk)‖22 (4.3.8)

for Σ = [+I,−I]. In short, the dual function is linear in the directions of λ1 + λ2, so eliminating

them from the proximity term would yield true numerical equivalence to the original model.

4.4 Further instantiations

Now that we have seen the mechanism for instantiating a particular instance of a compressed sensing

problem, let us show how the same approach can be applied to several other types of models.

Instead of performing the full, separate derivation for each case, we first provide a template for our

standard form. Then, for each specific model, we show the necessary modifications to the template

to implement that particular case.

4.4.1 A generic algorithm

A careful examination of our derivations for the Dantzig selector, as well as the developments in

§4.2.6, provide a clear path to generalizing Listing 1 above. We require implementations of the linear

operators Ā and its adjoint Ā∗, and values of the constants b̄, bτ ; recall that these are the partitioned

versions of A and b as described in §4.2.5. We also need to be able to perform the two-sequence

recursion (4.2.22), modified to include the step size multiplier θk and an adjustable centerpoint x0

in the proximity function.

Armed with these computational primitives, we present in Listing 2 a generic equivalent of the

algorithm employed for the Dantzig selector in Listing 1. It is important to note that this particular

variant of the optimal first-order methods may not be the best choice for every model; nevertheless

each variant uses the same computational primitives.
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Listing 2 Generic algorithm for the conic standard form

Require: z0, x0 ∈ Rn, µ > 0, step sizes {tk}
1: θ0 ← 1, v0 ← z0

2: for k = 0, 1, 2, . . . do

3: yk ← (1− θk)vk + θkzk

4: xk ← argminx f(x) + µd(x− x0)− 〈Ā∗(yk), x〉
5: zk+1 ← argminz h(z) + θk

2tk
‖z − zk‖2 + 〈Ā(xk) + b̄, z〉

6: vk+1 ← (1− θk)vk + θkzk+1

7: θk+1 ← 2/(1 + (1 + 4/θ2
k)1/2)

In the next several sections, we show how to construct first-order methods for a variety of models.

We will do so by replacing lines 4–5 of Listing 2 with appropriate substitutions and simplified

expressions for each.

4.4.2 The LASSO

The conic form for the smoothed LASSO is

minimize ‖x‖1 + 1
2µ‖x− x0‖22

subject to (y −Ax, ε) ∈ Ln2 ,
(4.4.1)

where Ln2 is the epigraph of the Euclidean norm. The Lagrangian is

Lµ(x; z, τ) = ‖x‖1 + 1
2µ‖x− x0‖22 − 〈z, y −Ax〉 − ετ.

The dual variable λ = (z, τ) is constrained to lie in the dual cone, which is also Ln2 . Eliminating τ

(assuming ε > 0) yields the composite dual form

maximize infx ‖x‖1 + 1
2µ‖x− x0‖22 − 〈z, y −Ax〉 − ε‖z‖2.

The primal projection with f(x) = ‖x‖1 is the same soft-thresholding operation used for the Dantzig

selector. The dual projection involving h(z) = ε‖z‖2, on the other hand, is

zk+1 = argmin
z

ε‖z‖2 + θk
2tk
‖z − zk‖22 + 〈x̃, z〉 = Shrink(zk − θ−1

k tkx̃, θ
−1
k tkε),
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where x̃ , y −Axk and Shrink is an `2-shrinkage operation

Shrink(z, t) , max{1− t/‖z‖2, 0} · z =

0, ‖z‖2 ≤ t,

(1− t/‖z‖2) · z, ‖z‖2 > t.

The resulting algorithm excerpt is given in Listing 3.

Listing 3 Algorithm excerpt for LASSO

4: xk ← SoftThreshold(x0 − µ−1A∗yk, µ−1)

5: zk+1 ← Shrink(zk − θ−1
k tk(y −Axk), θ−1

k tkε)

4.4.3 Nuclear-norm minimization

Extending this approach to the nuclear-norm minimization problem

minimize ‖X‖∗
subject to ‖y −A(X)‖2 ≤ ε

(4.4.2)

is straightforward. The composite smoothed dual form is

maximize infX ‖X‖∗ + µd(X)− 〈z, y −A(X)〉 − ε‖z‖2,

and the dual projection corresponds very directly to the LASSO. Choosing d(X) = 1
2‖X − X0‖2F

leads to a primal projection given by the soft-thresholding of singular values:

Xk = SoftThresholdSingVal(X0 − µ−1A∗(yk), µ−1). (4.4.3)

The SoftThresholdSingVal operation obeys [CCS10]

SoftThresholdSingVal(X, t) = U · SoftThreshold(Σ, t) · V ∗,

where X = UΣV ∗ is any singular value decomposition of Z, and SoftThreshold(Σ) applies soft-

thresholding to the singular values (the diagonal elements of Σ). This results in the algorithm

excerpt presented in Listing 4.

Listing 4 Algorithm for nuclear-norm minimization (LASSO constraint)

4: Xk ← SoftThresholdSingVal(X0 − µ−1A∗(yk), µ−1)

5: zk+1 ← Shrink(zk − θ−1
k tk(y −A(Xk)), θ−1

k tkε)
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Another constraint of interest is of Dantzig-selector type [CP10b] so that one is interested in

minimize ‖X‖∗
subject to ‖A∗(A(X)− y)‖ ≤ δ.

(4.4.4)

The cone of interest is, therefore, K = {(X, t) : ‖X‖ ≤ t} and the dual cone is K∗ = {(X, t) : ‖X‖∗ ≤
t}. The derivation proceeds as before, and the composite dual problem becomes

maximize infX ‖X‖∗ + 1
2µ‖X −X0‖2F − 〈Z,A∗(y −A(X))〉 − δ‖Z‖∗.

The gradient of the smooth portion has a Lipschitz continuous gradient with constant at most

µ−1‖A∗A‖2, and singular value thresholding is now used to perform the dual projection. The

resulting excerpt is given in Listing 5.

Listing 5 Algorithm for nuclear-norm minimization (Dantzig-selector constraint)

4: Xk ← SoftThresholdSingVal(X0 − µ−1A∗(A(Yk)), µ−1)

5: Zk+1 ← SoftThresholdSingVal(Zk − θ−1
k tkA∗(y −A(Xk)), θ−1

k tkδ)

4.4.4 `1-analysis

We are now interested in

minimize ‖Wx‖1
subject to ‖y −Ax‖2 ≤ ε,

(4.4.5)

where the matrix W is arbitrary. This problem is frequently discussed in signal processing and

is sometimes referred to as the method of `1-analysis. As explained in the introduction, this is a

challenging problem as stated, because a generalized projection for f(x) = ‖Wx‖1 does not have an

analytical form.

Let us apply our techniques to an alternative conic formulation

minimize t

subject to ‖Wx‖1 ≤ t,
‖y −Ax‖2 ≤ ε,

where t is a new scalar variable. The dual variables are λ = (z(1), τ (1), z(2), τ (2)), where

‖z(1)‖∞ ≤ τ (1), ‖z(2)‖2 ≤ τ (2),
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and the Lagrangian is given by

L(x, t; z(1), τ (1), z(2), τ (2)) = t− 〈z(1),Wx〉 − τ (1)t− 〈z(2), y −Ax〉 − ετ (2).

The Lagrangian is unbounded unless τ (1) = 1; and we can eliminate τ (2) in our standard fashion as

well. These simplifications yield a dual problem

maximize 〈y, z(2)〉 − ε‖z(2)‖2
subject to A∗z(2) −W ∗z(1) = 0,

‖z(1)‖∞ ≤ 1.

To apply smoothing to this problem, we use a standard proximity function d(x) = 1
2‖x − x0‖2.

(Setting τ (1) = 1 causes t to be eliminated from the Lagrangian, so it need not appear in our

proximity term.) The dual function becomes

gµ(z(1), z(2)) = inf
x

1
2µ‖x− x0‖22 − 〈z(1),Wx〉 − 〈z(2), y −Ax〉 − ε‖z(2)‖

and the minimizer x(z) is simply

x(z) = x0 + µ−1(W ∗z(1) −A∗z(2)).

Now onto the dual projection

zk+1 = argmin
z: ‖z(2)‖∞≤1

ε‖z(2)‖2 + θk
2tk
‖z − zk‖2 + 〈x̃, z〉,

where x̃ = (Wx(z), y −Ax(z)). This will certainly converge if the step sizes tk are chosen properly.

However, if W and A have significantly different scaling, the performance of the algorithm may

suffer. Our idea is to apply different step sizes t
(i)
k to each dual variable

zk+1 = argmin
z: ‖z(2)‖∞≤1

ε‖z(2)‖2 + 〈x̃, z〉+ 1
2θk

2∑
i=1

(t
(i)
k )−1‖z(i) − z(i)

k ‖22

in a fashion that preserves the convergence properties of the method. The minimization problem

over z is separable, and the solution is given by

z
(1)
k = Trunc(y

(1)
k − θ−1

k t
(1)
k x̃(1), θ−1

k t
(1)
k ) (4.4.6a)

z
(2)
k = Shrink(y

(2)
k − θ−1

k t
(2)
k x̃(2), θ−1

k t
(2)
k ε), (4.4.6b)
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where the truncation operator is given element-wise by

Trunc(z, τ) = sgn(z) ·min{|z|, τ} =

z, |z| ≤ τ,

τ sgn(z), |z| ≥ τ.

In our current tests, we fix t
(2)
k = αt

(1)
k , where we choose α = ‖W‖2/‖A‖2, or some estimate thereof.

This is numerically equivalent to applying a single step size to a scaled version of the original problem,

so convergence guarantees remain. In future work, however, we intend to develop a practical method

for adapting each step size separately.

The algorithm excerpt is given in Listing 6.

Listing 6 Algorithm excerpt for `1-analysis

4: xk ← x0 + µ−1(Wy
(1)
k −A∗y

(2)
k )

5:
z

(1)
k+1 ← Trunc(y

(1)
k − θ−1

k t
(1)
k Wxk, θ

−1
k t

(1)
k )

z
(2)
k+1 ← Shrink(y

(2)
k − θ−1

k t
(2)
k (y −Axk), θ−1

k t
(2)
k ε)

4.4.5 Total-variation minimization

We now wish to solve

minimize ‖x‖TV

subject to ‖y −Ax‖2 ≤ ε
(4.4.7)

for some image array x ∈ Rn2

where ‖x‖TV is the total-variation introduced in §4.1.1. We can

actually cast this as a complex `1-analysis problem

minimize ‖Dx‖1
subject to ‖y −Ax‖2 ≤ ε

where D : Rn2 → C(n−1)2

is a matrix representing the linear operation that places horizontal and

vertical differences into the real and imaginary elements of the output, respectively:

[Dx]ij , (xi+1,j − xi,j) +
√
−1 · (xi,j+1 − xi,j), 1 ≤ i < n, 1 ≤ j < n.

Writing it in this way allows us to adapt our `1-analysis derivations directly. The smoothed dual

function becomes

gµ(z(1), z(2)) = inf
x

1
2µ‖x− x0‖22 − 〈z(1), Dx〉 − 〈z(2), y −Ax〉 − ε‖z(2)‖2,
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where z(2) ∈ Rm is identical to the previous problem, and z(1) ∈ C(n−1)2

satisfies ‖z(1)‖∞ ≤ 1.

Supporting a complex z(1) requires two modifications. First, we must be careful to use the real-

valued inner product

〈z(1), Dx〉 , <((z(1))HDx) = (<(DHz(1)))Tx.

Second, the projection requires a complex version of the truncation operation:

[CTrunc(z, τ)]k = min{1, τ/|zk|} · zk =

zk, |zk| ≤ τ,

τzk/|zk|, |zk| ≥ τ.

The algorithm excerpt is given in Listing 7.

Listing 7 Algorithm excerpt for TV minimization

4: xk ← x0 + µ−1(<(D∗y(1)
k )−A∗y(2)

k )

5:
z

(1)
k+1 ← CTrunc(y

(1)
k − θ−1

k t
(1)
k Dxk, θ

−1
k t

(1)
k )

z
(2)
k+1 ← Shrink(y

(2)
k − θ−1

k t
(2)
k (y −Axk), θ−1

k t
(2)
k ε)

4.4.6 Combining `1 analysis and total-variation minimization

We could multiply our examples indefinitely, and we close this section by explaining how one could

solve the problem (4.1.4), namely that of finding the minimum of the weighted combination ‖Wx‖1+

λ‖x‖TV subject to quadratic constraints. This problem can be recast as

minimize t+ λs

subject to ‖Wx‖1 ≤ t
‖Dx‖1 ≤ s
‖Ax− y‖2 ≤ ε

(4.4.8)

and the strategy is exactly the same as before. The only difference with §4.4.4 and §4.4.5 is that the

dual variable now belongs to a direct product of three cones instead of two. Otherwise, the strategy

is the same, and the path is so clear that we prefer leaving the details to the reader, who may also

want to consult the user guide which accompanies the software release [BCG10b].

4.5 Implementing first-order methods

So far we have demonstrated how to express compressed sensing problems in a specific conic form

that can be solved using optimal first-order methods. In this section, we discuss a number of

practical matters that arise in the implementation of optimal first-order methods. This work applies
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to a wider class of models than those presented in this chapter; therefore, we will set aside our conic

formulations and present the first-order algorithms in their more native form.

4.5.1 Introduction

The problems of interest in this chapter can be expressed in an unconstrained composite form

minimize φ(z) , g(z) + h(z), (4.5.1)

where g, h : Rn → (R∪+∞) are convex functions with g smooth and h non-smooth. (To be precise,

the dual functions in our models are concave, so we consider their convex negatives here.) Convex

constraints are readily supported by including their corresponding indicator functions into h.

First-order methods solve (4.5.1) with repeated calls to a generalized projection, such as

zk+1 ← argmin
z

g(zk) + 〈∇g(zk), z − zk〉+ 1
2tk
‖z − zk‖2 + h(z), (4.5.2)

where ‖ · ‖ is a chosen norm and tk is the step size control. Proofs of global convergence depend

upon the right-hand approximation satisfying an upper bound property

φ(zk+1) ≤ g(zk) + 〈∇g(zk), zk+1 − zk〉+ 1
2tk
‖zk+1 − zk‖2 + h(zk+1). (4.5.3)

This bound is certain to hold for sufficiently small tk; but to ensure global convergence, tk must be

bounded away from zero. This is typically accomplished by assuming that the gradient of g satisfies

a generalized Lipschitz criterion,

‖∇g(x)−∇g(y)‖∗ ≤ L‖x− y‖ ∀x, y ∈ domφ, (4.5.4)

where ‖ · ‖∗ is the dual norm; that is, ‖w‖∗ = sup{〈z, w〉 | ‖z‖ ≤ 1}. Then the bound (4.5.3) is

guaranteed to hold for any tk ≤ L−1. Under these conditions, convergence to ε accuracy—that

is, φ(zk) − infz φ(z) ≤ ε—is obtained in O(L/ε) iterations for a simple algorithm based on (4.5.2)

known variously as the forward-backward algorithm or proximal gradient descent, which dates to

at least [FM81]. This bound on the iterations improves to O(
√
L/ε) for the so-called optimal or

accelerated methods [Nes83,Nes88,Nes07,Tse08]. These optimal methods vary the calculation (4.5.2)

slightly, but the structure and complexity remain the same.

4.5.2 The variants

Optimal first-order methods have been a subject of much study in the last decade by many different

authors. In 2008, Tseng presented a nearly unified treatment of the most commonly cited methods,
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and provided simplified proofs of global convergence and complexity [Tse08]; this paper was both

an aid and an inspiration for the modular template framework we present.

We constructed implementations of five of the optimal first-order variants as well as a standard

projected gradient algorithm. To simplify discussion, we have given each variant a 2–3 character

label. Listing 8 depicts N07, a variation of the method described by Nesterov in [Nes04,Nes07].

Listing 8 Nesterov’s 2007 algorithm (N07)

Require: z0 ∈ domφ, Lipschitz estimate L

1: z̄0 ← z0, θ0 ← 1

2: for k = 0, 1, 2, . . . do

3: yk ← (1− θk)zk + θkz̄k

4: z̄k+1 ← argminz〈θ2
k

∑k
i=0 θ

−1
i ∇g(yi), z〉+ 1

2θ
2
kL‖z − z0‖2 + h(z)

5: zk+1 ← argminz〈∇g(yk), z〉+ 1
2L‖z − yk‖2 + h(z)

6: θk+1 ← 2/(1 + (1 + 4/θ2
k)1/2)

The other variants can be described described simply by replacing lines 4–5 as follows.

• TS: Tseng’s single-projection simplification of N07 [Tse08]

4: z̄k+1 ← argminz〈θ2
k

∑k
i=0 θ

−1
i ∇g(yi), z〉+ 1

2θ
2
kL‖z − z0‖2 + h(z)

5: zk+1 ← (1− θk)zk + θkz̄k+1

• LLM: Lan, Lu, and Monteiro’s modification of N07 [LLM09]

4: z̄k+1 ← argminz〈∇g(yk), z〉+ 1
2θkL‖z − z̄k‖2 + h(z)

5: zk+1 ← argminz〈∇g(yk), z〉+ 1
2L‖z − yk‖2 + h(z)

• AT: Auslender and Teboulle’s method from [AT06]

4: z̄k+1 ← argminz〈∇g(yk), z〉+ 1
2θkL‖z − z̄k‖2 + h(z)

5: zk+1 ← (1− θk)zk + θkz̄k+1

• N83: Nesterov’s 1983 method [Nes83,Nes05]; see also FISTA [BT09]

4: zk+1 ← argminz〈∇g(yk), z〉+ 1
2L‖z − yk‖2 + h(z)

5: Compute z̄k+1 to satisfy zk+1 = (1− θk)zk + θkz̄k+1.

• GRA: The classical projected gradient generalization

4: zk+1 ← argminz〈∇g(yk), z〉+ 1
2L‖z − yk‖2 + h(z)

5: z̄k+1 ← zk+1

Following Tseng’s lead, we have rearranged steps and renamed variables, compared to their original

sources, so that the similarities are more apparent. This does mean that simpler expressions of some
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of these algorithms are possible, specifically for TS, AT, N83, and GRA. Note in particular that

GRA does not use the parameter θk.

Given their similar structure, it should not be surprising that these algorithms, except GRA,

achieve nearly identical theoretical iteration performance. Indeed, it can be shown that if z? is an

optimal point for (4.5.1), then for any of the optimal variants,

φ(zk+1)− φ(z?) ≤ 1
2Lθ

2
k‖z0 − z?‖2 ≤ 2Lk−2‖z0 − z?‖2. (4.5.5)

Thus the number of iterations required to reach ε optimality is at most d
√

2L/ε‖z0 − z?‖2e (again,

except GRA). Tighter bounds can be constructed in some cases but the differences remain small.

Despite their obvious similarity, the algorithms do have some key differences worth noting. First

of all, the sequence of points yk generated by the N83 method may sometimes lie outside of domφ.

This is not an issue for our applications, but it might be for those where g(z) may not be differentiable

everywhere. Secondly, N07 and LLM require two projections per iteration, while the others require

only one. Two-projection methods would be preferred only if the added cost results in a comparable

reduction in the number of iterations required. Theory does not support this trade-off, but the

results in practice may differ; see §4.7.1 for a single comparison.

4.5.3 Step size adaptation

All of the algorithms involve the global Lipschitz constant L. Not only is this constant often difficult

or impractical to obtain, the step sizes it produces are often too conservative, since the global

Lipschitz bound (4.5.4) may not be tight in the neighborhood of the solution trajectory. Reducing L

artificially can improve performance, but reducing it too much can cause the algorithms to diverge.

Our experiments suggest that the transition between convergence and divergence is very sharp.

A common solution to such issues is backtracking: replace the global constant L with a per-

iteration estimate Lk that is increased as local behavior demands it. Examining the convergence

proofs of Tseng reveals that the following condition is sufficient to preserve convergence (see [Tse08],

Propositions 1, 2, and 3):

g(zk+1) ≤ g(yk) + 〈∇g(yk), zk+1 − yk〉+ 1
2Lk‖zk+1 − yk‖2. (4.5.6)

If we double the value of Lk every time a violation of (4.5.6) occurs, for instance, then Lk will satisfy

Lk ≥ L after no more than dlog2(L/L0)e backtracks, after which the condition must hold for all

subsequent iterations. Thus strict backtracking preserves global convergence. A simple improvement

to this approach is to update Lk with max{2Lk, L̂}, where L̂ is the smallest value of Lk that would

satisfy (4.5.6). To determine an initial estimate L0, we can select any two points z0, z1 and use the
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formula

L0 = ‖∇g(z0)−∇g(z1)‖∗/‖z0 − z1‖.

Unfortunately, our experiments reveal that (4.5.6) suffers from severe cancellation errors when

g(zk+1) ≈ g(yk), often preventing the algorithms from achieving high levels of accuracy. More

traditional Armijo-style line search tests also suffer from this issue. We propose an alternative test

that maintains fidelity at much higher levels of accuracy:

|〈yk − zk+1,∇g(zk+1)−∇g(yk)〉| ≤ 1
2Lk‖zk+1 − yk‖22. (4.5.7)

It is not difficult to show that (4.5.7) implies (4.5.6), so provable convergence is maintained. It is a

more conservative test, however, producing smaller step sizes. So for best performance we prefer a

hybrid approach: for instance, use (4.5.6) when g(yk) − g(zk+1) ≥ γg(zk+1) for some small γ > 0,

and use (4.5.7) otherwise to avoid the cancellation error issues.

A closer study suggests a further improvement. Because the error bound (4.5.5) is proportional

to Lkθ
2
k, simple backtracking will cause it to rise unnecessarily. This anomaly can be rectified by

modifying θk as well as Lk during a backtracking step. Such an approach was adopted by Nesterov

for N07 in [Nes07]; and with care it can be adapted to any of the variants. Convergence is preserved

if

Lk+1θ
2
k+1/(1− θk+1) ≥ Lkθ2

k (4.5.8)

(see [Tse08], Proposition 1), which implies that the θk update in Line 6 of Listing 8 should be

θk+1 ← 2/(1 + (1 + 4Lk+1/θ
2
kLk)1/2). (4.5.9)

With this update the monotonicity of the error bound (4.5.5) is restored. For N07 and TS, the

update for z̄k+1 must also be modified as follows:

z̄k+1 ← argmin
z
〈θ2
kLk

∑k
i=0(Liθi)

−1∇g(yi), z〉+ 1
2θ

2
kLk‖z − z0‖2 + h(z). (4.5.10)

Finally, to improve performance we may consider decreasing the local Lipschitz estimate Lk

when conditions permit. We have chosen a simple approach: attempt a slight decrease of Lk at each

iteration; that is, Lk = αLk−1 for some fixed α ∈ (0, 1]. Of course, doing so will guarantee that

occasional backtracks occur. With judicious choice of α, we can balance step size growth for limited

amounts of backtracking, minimizing the total number of function evaluations or projections. We

have found that α = 0.9 provides good performance in many applications.
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4.5.4 Linear operator structure

Let us briefly reconsider the special structure of our compressed sensing models. In these problems,

it is possible to express the smooth portion of our composite function in the form

g(z) = ḡ(A∗(z)) + 〈b, z〉,

where ḡ remains smooth, A is a linear operator, and b is a constant vector (see §4.2.5; we have

dropped some overbars here for convenience). Computing a value of g requires a single application

of A∗, and computing its gradient also requires an application of A. In many of our models, the

functions ḡ and h are quite simple to compute, so the linear operators account for the bulk of the

computational costs. It is to our benefit, then, to utilize them as efficiently as possible.

For the prototypical algorithms of Section 4.5.2, each iteration requires the computation of the

value and gradient of g at the single point yk, so all variants require a single application each of A
and A∗. The situation changes when backtracking is used, however. Specifically, the backtracking

test (4.5.6) requires the computation of g at a cost of one application of A∗; and the alternative test

(4.5.7) requires the gradient as well, at a cost of one application of A. Fortunately, with a careful

rearrangement of computations we can eliminate both of these additional costs for single-projection

methods TS, AT, N83, and GRA, and one of them for the two-projection methods N07 and LLM.

Listing 9 AT variant with improved backtracking

Require: z0 ∈ domφ, L̂ > 0, α ∈ (0, 1], β ∈ (0, 1)
1: z̄0 ← z0, zA0, z̄A0 ← Ā∗(z0), θ−1 = +∞, L−1 = L̂
2: for k = 0, 1, 2, . . . do
3: Lk ← αLk−1

4: loop
5: θk ← 2/(1 + (1 + 4Lk/θ

2
k−1Lk−1)1/2) (θ0 , 1)

6: yk ← (1− θk)zk + θkz̄k, yA,k ← (1− θk)zA,k + θkz̄A,k
7: ḡk ← ∇ḡ(yA,k), gk ← Aḡk + b
8: z̄k+1 ← argminz〈gk, z〉+ h(z) + θk

2tk
‖z − yk‖2, z̄A,k+1 ← A∗(zk+1)

9: zk+1 ← (1− θk)zk + θkz̄k+1, zA,k+1 ← (1− θk)zA,k + θkz̄A,k
10: L̂← 2 |〈yA,k − zA,k+1,∇ḡ(zA,k+1)− ḡk〉| /‖zk+1 − yk‖22
11: if Lk ≥ L̂ then break endif
12: Lk ← max{Lk/β, L̂}

Listing 9 depicts this more efficient use of linear operators, along with the step size adaptation

approach, using the AT variant. The savings come from two different additions. First, we maintain

additional sequences zA,k and z̄A,k to allow us to compute yA,k = A∗(yk) without a call to A∗.
Secondly, we take advantage of the fact that

〈yk − zk+1,∇g(zk+1)−∇g(yk)〉 = 〈yA,k − zA,k+1,∇ḡ(zA,k+1)−∇ḡ(yA,k)〉,
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which allows us to avoid having to compute the full gradient of g; instead we need to compute only

the significantly less expensive gradient of ḡ.

4.5.5 Accelerated continuation

Several recent algorithms, such as FPC and NESTA [HYZ08, BBC11], have empirically found that

continuation schemes greatly improve performance. The idea behind continuation is that we solve the

problem of interest by solving a sequence of similar but easier problems, using the results of each sub-

problem to initialize or warm start the next one. Listing 10 below depicts a standard continuation

loop for solving the generic conic problem in (4.1.14) with a proximity function d(x) = 1
2‖x− x0‖22.

We have used a capital X and loop count j to distinguish these iterates from the inner loop iterates

xk generated by a first-order method.

Listing 10 Standard continuation

Require: Y0, µ0 > 0, β < 1

1: for j = 0, 1, 2, . . . do

2: Xj+1 ← argminA(x)+b∈K f(x) +
µj
2 ‖x− Yj‖22

3: Yj+1 ← Xj+1 or Yj+1 ← Yj

4: µj+1 ← βµj

Note that Listing 10 allows for the updating of both the smoothing parameter µj and the prox-

imity center Yj at each iteration. In many implementations, Yj ≡ X0 and only µj is decreased, but

updating Yj as well will almost always be beneficial. When Yj is updated in this manner, the algo-

rithm is known as the proximal point method, which has been studied since at least [Roc76]. Indeed,

one of the accelerated variants [AT06] that is used in our solvers uses the proximal point framework

to analyze gradient-mapping type updates. It turns out we can do much better by applying the

same acceleration ideas already mentioned.

Let us suggestively write

h(Y ) = min
x∈C

f(x) +
µ

2
‖x− Y ‖22, (4.5.11)

where µ > 0 is fixed and C is a closed convex set. This is an infimal convolution, and h is known as

the Moreau-Yosida regularization of f [HUL93]. Define

XY = argmin
x∈C

f(x) +
µ

2
‖x− Y ‖22. (4.5.12)

The map Y 7→ XY is a proximity operator [Mor65].

We now state a very useful theorem.
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Theorem 4.5.1. The function h (4.5.11) is continuously differentiable with gradient

∇h(Y ) = µ(Y −XY ). (4.5.13)

The gradient is Lipschitz continuous with constant L = µ. Furthermore, minimizing h is equivalent

to minimizing f(x) subject to x ∈ C.

The proof is not difficult and can be found in Proposition I.2.2.4 and §XV.4.1 in [HUL93]; see

also exercises 2.13 and 2.14 in [BNO03], where h is referred to as the envelope function of f . The

Lipschitz constant is µ since XY is a proximity operator P , and I − P is non-expansive for any

proximity operator.

The proximal point method can be analyzed in this framework. Minimizing h using gradient

descent, with step size t = 1/L = 1/µ, gives

Yj+1 = Yj − t∇h(Yj) = Yj −
1

µ
µ(Yj −XYj ) = XYj ,

which is exactly the proximal point algorithm. But since h has a Lipschitz gradient, we can use the

accelerated first-order methods to achieve a convergence rate of O(j−2), versus O(j−1) for standard

continuation. In Listing 11, we offer such an approach using a fixed step size t = 1/L and the

accelerated algorithm from Algorithm 2 in [Tse08]. This accelerated version of the proximal point

algorithm has been analyzed in [G9̈2] where it was shown to be stable with respect to inexact solves.

Listing 11 Accelerated continuation

Require: Y0, µ0 > 0

1: X0 ← Y0

2: for j = 0, 1, 2, . . . do

3: Xj+1 ← argminA(x)+b∈K f(x) +
µj
2 ‖x− Yj‖22

4: Yj+1 ← Xj+1 + j
j+3 (Xj+1 −Xj)

5: (optional) increase or decrease µj

Figure 4.3 provides an example of the potential improvement offered by accelerated continuation.

In this case, we have constructed a LASSO model with a 80 × 200 i.i.d. Gaussian measurement

matrix. The horizontal axis gives the number of continuation steps taken, and the vertical axis

gives the error ‖Xj − x?‖2/‖x?‖2 between each continuation iterate and an optimal solution to

the unsmoothed model; empirically, the optimal solution appears to be unique. Both simple and

accelerated continuation have been employed, using a fixed smoothing parameter µj ≡ µ0.8 A clear

advantage is demonstrated for accelerated continuation in this case.

8If µ is fixed, this is not continuation per se, but we still use the term since it refers to an outer iteration.
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Figure 4.3: A comparison of simple continuation and accelerated continuation applied to a small-scale LASSO
model. The horizontal axis gives the number of continuation steps taken; the vertical axis gives the error between
the continuation solution and the original, unsmoothed model. The error is normalized to 1 at iteration 1.

For models that exhibit the exact penalty property, updating the proximity center Yj at each

iteration yields an interesting result. Examining the proof in Appendix 4.11, we see that the property

depends not on the size of µ but rather on the size of µ‖x?j − Yj‖, where x?j is projection of Yj on

the optimal set (e.g., if x? is unique, then x?j ≡ x?). Therefore, for any positive µ, the exact penalty

property will be obtained if Yj is sufficiently close to the optimal set. This has some obvious and

very useful consequences.

The use of accelerated continuation does require some care, however, particularly in the dual

conic framework. The issue is that we solve the dual problem, but continuation is with the primal

variable. When Y is updated in a complicated fashion, as in Listing 11, or if µ changes, we no longer

have a good estimate for a starting dual variable λj , so the subproblem will perhaps take many inner

iterations. In contrast, if Y is updated in a simple manner and µ is fixed, as in Listing 10, then

the old value of the dual variable is a good initial guess for the new iteration, and this warm start

results in fewer inner iterations. For this reason, it is sometimes advantageous to use Listing 10.

Figure 4.4 shows an example where accelerated continuation does not offer a clear benefit. The

model solved is the Dantzig selector, with a 64×256 partial DCT measurement matrix, and the exact

solution (see Appendix 4.12) has 50 nonzeros and a dynamic range of 77 dB which makes the test

quite challenging, for the minimum `1 solution is not the sparsest. The algorithm is tested without

continuation, using µ = {µ0/10, µ0, 10µ0} for µ0 = 10−2, and also with both types of continuation,

using µ = 50µ0. The horizontal axis gives the total number of inner iterations, and the vertical axis

gives the error ‖xk − x?‖2/‖x?‖2 between the current iterate and the solution to the (unsmoothed)
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Figure 4.4: Comparing fixed smoothing and continuation strategies for a Dantzig selector model. The horizontal
axis gives the number of inner iterations of each first-order method. For the two continuation strategies, the circles
depict the completion of each continuation step.

model. When no continuation is employed, the trade-off between solution accuracy (small µ) and

the number of iterations to converge (large µ) is evident. Continuation helps drastically, and high

levels of accuracy can be obtained quickly. In this example, both forms of continuation perform

similarly.

In our experience, accelerated continuation usually matches or outperforms regular continuation,

but the matter requires further study. In particular, performance is affected by the stopping criteria

of the inner iteration, and we plan to investigate this in future work. The experiments in Figure 4.4

decreased the tolerance by a factor of two every iteration, with the exception of the final iteration

which used a stricter tolerance.

4.5.6 Strong convexity

Suppose that our composite function φ is strongly convex; that is,

φ(z) ≥ φ(z0) + 1
2mφ‖z − z0‖22 ∀z ∈ domφ

for some fixed mφ > 0. It is well known that a standard gradient method will achieve linear

convergence in such a case. Unfortunately, without modification, none of the so-called optimal

methods will do so. Thus in the presence of strong convexity, standard gradient methods can

actually perform better than their so-called optimal counterparts.

If the strong convexity parameter mφ ≤ Lφ is known or can be bounded below, the N83 al-

gorithm can be modified to recover linear convergence [Nes05, Nes07], and will recover its superior
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Figure 4.5: First-order methods applied to a strongly convex problem: GRA, AT without restart, AT with restart,
and N83 tuned with knowledge of the strong convexity parameter. The y-axis is ‖xk − x?‖2/‖x?‖2.

performance compared to standard gradient methods. The challenge, of course, is that this param-

eter rarely is known. In [Nes07], Nesterov provides two approaches for dealing with the case of

unknown mφ, one of which is readily adapted to all of the first-order variants here. That approach is

a so-called restart method: the algorithm is restarted after a certain number of iterations, using the

current iterate as the starting point for the restart; or, equivalently, the acceleration parameter θk is

reset to θ0 = 1. In theory, the optimal number of iterations between restarts depends on mφ/Lφ, but

linear convergence can be recovered even for sub-optimal choices of this iteration count [GLW09].

To illustrate the impact of strong convexity on performance, we constructed a strongly quadratic

unconstrained function with mφ = 0.07 and Lφ = 59.1, and minimized it using the gradient method

(GRA), the AT first-order method with and without restart, and the N83 method tuned to the

exact values of (mφ, Lφ). Backtracking was employed in all cases; we have verified experimentally

that doing so consistently improves performance and does not compromise the exploitation of strong

convexity. As can be seen in Figure 4.5, while AT without restart initially performs much better than

GRA, the linear convergence obtained by GRA will eventually overtake it. The N83 method is clearly

superior to either of these, achieving linear convergence with a much steeper slope. When restart is

employed, AT recovers linear convergence, and achieves near parity with N83 when restarted every

100 iterations (the optimal value predicted by [GLW09] is every 112 iterations).

The benefits of exploiting strong convexity seem clearly established. In fact, while proofs of

linear convergence assume global strong convexity, our experiments in §4.7 show that applying
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these methods to models with local strong convexity can improve performance as well, sometimes

significantly. Unfortunately, the restart method requires manual tuning on a case-by-case basis to

achieve the best performance. This is certainly acceptable in many applications, but further research

is needed to develop approaches that are more automatic.

4.6 Dual-function formulation

Instead of a conic viewpoint, where the main requirement was the ability to project onto a cone

(often an epigraph cone), we may also view the problem in a dual function framework. The resulting

algorithm is identical; the new derivation is presented because it may be more natural for some

problems. A similar framework is presented in [CDV10], which uses proximal splitting methods

instead of gradient-based methods.

4.6.1 Background

In this section, convex functions are allowed to take values in (−∞,+∞]. The domain of a convex

function f is the set of points dom f = {x : f(x) < +∞} and the epigraph is epi f = {(x, η) : f(x) ≤
η}. A convex function is proper if it is not the constant function f = +∞, and it is called lower

semi-continuous (lsc) if epi f is closed. Let Γ0(Rn) be the set of proper, lsc, convex functions f on

Rn. As a shorthand, we write “f is convex” to mean f ∈ Γ0(Rn), since we will not discuss convex

functions that are not in Γ0. If the reader is not familiar with subgradients and standard convex

analysis, then [Roc70] is recommended as the classic reference, or [BC11] for a modern perspective.

The convex dual function (also known as the Fenchel or Fenchel-Legendre dual) of a convex

function f is given by:

f∗(z) = sup
x
〈z, x〉 − f(x).

The dual f∗ is also convex, and since f is lsc, f∗∗ = f .

We re-introduce the Moreau proximity operator [Mor62, Mor65] (first discussed in §4.5.5) using

slightly different notation. This Moreau proximity operator is also known as a proximity func-

tion, or a “proximation” in [Roc70], and the Moreau envelope is also known as the Moreau-Yosida

regularization.

Definition 4.6.1 (Moreau proximity operator). The Moreau envelope of a convex function f is

ef (z) = min
x

f(x) +
1

2
‖x− z‖22 (4.6.1)
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and the Moreau proximity operator

proxf (z) = argmin
x

f(x) +
1

2
‖x− z‖22. (4.6.2)

Define

ef,µ(z) = argmin
x

f(x) +
µ

2
‖x− z‖22

and define proxf,µ analogously.

Theorem 4.5.1 shows ef,µ(z) is continuously differentiable with gradient

∇zef,µ(z) = µ(z − proxf,µ(z)). (4.6.3)

and Lipschitz constant µ.

The classical orthogonal projection theorem states that for any subspace V ⊂ Rn, then x ∈ Rn

can be decomposed x = x‖ + x⊥ where x‖ ∈ V and 〈x‖, x⊥〉 = 0. Using the Moreau proximity

operator, it is possible to prove a more general projection theorem which includes the classical

projection theorem as a subcase.

Lemma 4.6.2 (Moreau’s decomposition [CW05]). Let f be a convex function, x ∈ Rn, and µ > 0.

Then

x = x‖ + x⊥ where (4.6.4)

x‖ = µproxf,µ−1(x), x⊥ = proxf∗,µ(x/µ) (4.6.5)

and f(x‖) + f∗(x⊥/µ) = µ−1〈x‖, x⊥〉. (4.6.6)

If particular, if µ = 1, then

x‖ = proxf (x), x⊥ = proxf∗(x), f(x‖) + f∗(x⊥) = 〈x‖, x⊥〉.

4.6.2 Fenchel dual formulation

Consider the problem

min
x
f(x) +

µ

2
‖x− x0‖2 +

K∑
i=1

φi(Aix+ bi) (4.6.7)

where f and φi are convex functions. This allows the case when φi may be the indicator function ι

to a set C:

ιC(x) =

0 x ∈ C

+∞ x /∈ C
.
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The set C must be closed in order for f = ιC to be lsc. We apply the dual formulation to (4.6.7).

The first step is introducing slack variables yi = Aix+ bi, so that (4.6.7) is equivalent to

min
x,yi

f(x) +
µ

2
‖x− x0‖2 +

K∑
i=1

φi(yi) such that yi = Aix+ bi ∀i ≤ K. (4.6.8)

Let z(λ) = µ−1
∑
iA

T
i λi, where λi ∈ Rmi if Ai ∈ Rmi×n, and λ represents λ1, . . . , λK . The dual

function is

g(λ) = inf
x,yi

(
f(x) +

µ

2
‖x− x0‖2 +

∑
i

φi(y) + 〈λi, Aix+ bi − yi〉
)

=
∑
i

〈λi, bi〉+ inf
x

(
f(x) +

µ

2
‖x− x0‖2 + µ〈z(λ), x〉

)
+
∑
i

inf
yi

(φ(yi)− 〈λi, yi〉)

=
∑
i

〈λi, bi〉 −
µ

2
‖z(λ)‖2 + µ〈z(λ), x0〉+ inf

x

(
f(x) +

µ

2
‖x− (x0 − z(λ))‖2

)
−
∑
i

φ∗(λi)

=
∑
i

〈λi, bi〉 −
µ

2
‖z(λ)‖2 + µ〈z(λ), x0〉+ ef,µ(x0 − z(λ))︸ ︷︷ ︸

gsmooth(λ)

−
∑
i

φ∗(λi)︸ ︷︷ ︸
h(λ)

. (4.6.9)

The dual function is always concave. Using (4.6.3),

∇λigsmooth(λ) = bi +Aix(λ), x(λ) = proxf,µ(x0 − z(λ)).

Let A = [A1;A2; . . . ;AK ] and b = [b1; b2; . . . ; bK ] (both with
∑K
i=1mi rows), then the total deriva-

tive is

∇λgsmooth(λ) = b +Ax(λ).

Since x(λ) is computed via a proximity operator, it is a non-expansive function of its inputs x0−z(λ),

where z(λ) = µ−1ATλ, so ∇gsmooth is Lipschitz continuous with bound

L = µ−1‖AAT ‖ ≤ µ−1
K∑
i=1

‖ATi Ai‖.

If, say, ‖AT1 A1‖ is very large but ‖AT2 A2‖ is small, then the Lipschitz bound is large and the λ2

variable will converge slowly due to the presence of the variable λ1 with a very different scale. It is

best if all λi have the same scale. This can be enforced by introducing the scaling αi = ‖ATi Ai‖−1/2,

and modifying (4.6.8) as follows:

min
x,yi

f(x) +
µ

2
‖x− x0‖2 +

K∑
i=1

φ̄i(yi) such that yi = α−1
i (Aix+ bi) ∀i ≤ K
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and φ̄i(y) = φi(αiy). Computing the proximity operator of φ̄i is no more difficult than computing

the proximity operator of φi. From now on, we assume this scaling has already been performed.

The dual problem is

max
λi,i=1,...,K

gsmooth(λ)− h(λ) (4.6.10)

The dual function is an unconstrained problem (other than any implicit constraints in φ∗), and

it can be solved with the composite formulation previously discussed. The composite formulation

requires the gradient of gsmooth and the ability to solve the generalized projection with h; the

generalized projection can be rewritten in terms of the Moreau proximity function of h. Furthermore,

this is separable in λi. Thus (4.6.10) is easy to solve when

1. proxf is efficient to calculate, and

2. proxφ∗i is efficient to calculate for all i.

For many functions, such as norms, the proximity operator is O(n) to compute. For a list of functions

with known proximity operators, see [CW05].

There are three especially salient points:

1. φ∗i is the dual function of φi(x), and not the dual function of φ̃i(x) ≡ φi(Aix + b). The dual

function of φ̃i may be much more difficult to compute. This is the same observation made

earlier that it is easy to project onto the set {x : ‖x‖2 ≤ 1} but it can be difficult to project

onto the set {x : ‖Ax‖2 ≤ 1}. This observation has been made many times in the history of

optimization; see, for example, the discussion of Uzawa’s algorithm in [Cia89].

2. Using Moreau’s decomposition (4.6.4) and (4.6.5), it’s clear that computing proxf and proxf∗

are equally easy or difficult, since one can be computed via the other.

3. It is possible to define φK+1 ← f , AK+1 ← I, bK+1 ← 0, and f ← 0. That is, f can be

treated specially and kept in the primal, or we can introduce one more dual variable λK+1 and

think of f as another φi. The result algorithms are different, although they will solve the same

problem at convergence. The complexity per iteration stays nearly the same since proxf∗ has

the same cost as proxf , and the proximity operator of the zero function is trivial to compute.

We note that the convergence properties of the two methods need not be the same, but one

version may sometimes be used to bound the convergence of the other, as we show in §4.6.3.2.

This dual-function viewpoint is especially useful for problems considered in this chapter, since f

and φi are typically norms or indicator functions of norm balls. Define the dual norm of any norm

‖ · ‖ to be ‖ · ‖∗ where

‖y‖∗ , sup
‖x‖≤1

〈y, x〉.
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Then

h(y) = s‖y‖ ⇐⇒ h∗(z) = ι{z:‖z‖∗≤s}. (4.6.11)

If projection onto the dual-norm ball is efficient, then the dual smoothing algorithm has cheap per-

iteration cost. Many signal processing problems involve only the `1, `2, and `∞ norms, for which

projection onto the norm ball is O(n) or O(n log n), and hence any minimization problem with

convex combinations of these norms (with possibly affine scalings) is cheap to solve.

4.6.3 Convergence

Via the dual-function framework, it is possible to prove the convergence rate of the algorithm. There

are three major steps: first, we show in §4.6.3.1 that the iterates xk converge when solving a special

variant of (4.6.7). Secondly, §4.6.3.2 extends this to cover the generic case, and thirdly, in §4.6.4.1

we incorporate continuation and prove that the value of the outer function converges.

4.6.3.1 Convergence when f is smooth

The problem in (4.6.7) allows a number of functions φi, but for simplicity let us restrict to the case

of K = 1, so the problem of interest is

min
x
f(x) +

µ

2
‖x− x0‖2 + φ1(Ax+ b). (4.6.12)

As discussed above, it is possible to treat f as one of the φi, e.g.,

min
x

0 +
µ

2
‖x− x0‖2 + φ1(y1) + φ2(y2) such that y1 = Ax+ b, y2 = x (4.6.13)

where φ2(x) = f(x). In this case, gsmooth is a quadratic function, so it is both smooth and strongly

convex (with parameter µ). The dual function is

g(λ1, λ2) = gsmooth(λ1, λ2)− φ∗1(λ1)− φ∗2(λ2)

and x(λ) is a linear function of λ1 and λ2.

When solving the dual problem via an accelerated method, the dual objective converges at the

rate

g? − g(λ) ≤ Cµ−1

k2
.

While the objective value converges, the dual variable λ need not converge, and there may not be a

unique maximizer λ?.

Since we now think of f as φ2, which acts as a “constraint” in a generalized projected-gradient

algorithm, the primal objective function is just the smoothing term µ
2 ‖x − x0‖2, which is strongly
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convex. Hence it is not unreasonable to expect that the primal variable x does converge. Indeed,

this is the case. A recent result in [FP11], using a Bregman distance technique, gives

‖x(λk)− x?‖2 ≤ 2

µ
(g? − g(λk)). (4.6.14)

See Theorem 1 and Theorem 2 in [FP11]; it is also mentioned in [CP10c].

A broad class of models, such as solving the `1-analysis problem and TV-minimization, fall into

this category, so this result is useful in itself.

4.6.3.2 Convergence of inner iteration

Consider again (4.6.12). It seems unlikely that convergence is dependent on the “interpretation” of

f , so we are inclined to believe that the model

min
x
f(x) +

µ

2
‖x− x0‖2 + φ1(y1) such that y1 = Ax+ b (4.6.15)

should converge at the same rate. This intuition is correct, and we show how to obtain the bound.

Using the special case just discussed in (4.6.13) (refer to this as case “A”), the dual function

depends on λ1 and λ2. Write this dual function as gA:

gA(λ1, λ2) = inf
x
LA(λ1, λ2, x) = LA(λ1, λ2, xA(λ)) (4.6.16)

LA(λ1, λ2, x) = 〈λ1, b1〉+
(

0 +
µ

2
‖x− x0‖2 + 〈ATλ1 + λ2, x〉

)
− φ∗1(λ1)− f∗(λ2)

xA(λ) = argmin
x

µ

2
‖x− x0‖2 + 〈ATλ1 + λ2, x〉. (4.6.17)

Using the new case (4.6.15) (case “B”), we keep f in primal form, and the dual function, written

as gB to distinguish it from the other case, is only a function of λ1:

gB(λ1) = inf
x
LA(λ1, x) = LB(λ1, xB(λ)) (4.6.18)

LB(λ1, x) = 〈λ1, b1〉+
(
f(x) +

µ

2
‖x− x0‖2 + 〈ATλ1, x〉

)
− φ∗1(λ1)

xB(λ) = argmin
x

f(x) +
µ

2
‖x− x0‖2 + 〈ATλ1, x〉. (4.6.19)

Our strategy is as follows. Solve “B” and bound the objective g? − gB(λ1) ≤ C (using standard

convergence results on Nesterov’s method and variants) for some λ1 (really, this is λ
(k)
1 since it

depends on the iteration, but we drop the dependence on k for simplicity). Using λ1, we generate

λ2 so that xA(λ1, λ2) = xB(λ1) and gA(λ1, λ2) = gB(λ1). Thus we can apply existing results from

the previous section that give us the bound on xA, and hence xB , in terms of g? − gA(λ1, λ2) ≤ C.

We start with a known λ1 and xB calculated via method “B”. In the proximity calculation
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(4.6.19), we know that xB must satisfy the first-order condition

0 ∈ ∂f(xB) + µ(xB − x0) +ATλ1.

Define

λ2 = −µ(xB − x0)−ATλ1,

so λ2 ∈ ∂f(xB). By examining (4.6.17) with this value of λ2 (and the same value of λ1), it’s clear

that xA = xB , since (4.6.17) is the minimization of an unconstrained differentiable function and has

a unique minimizer characterized by

0 = λ2 + µ(xA − x0) +ATλ1

which is certainly also satisfied by xB .

The remaining question is whether LA(λ1, λ2, xB) = LB(λ1, xB). This is verified by an applica-

tion of Fenchel’s equality [Roc70]

LB(λ1, xB)− LA(λ1, λ2, xB) = f(xB)− 〈λ2, xB〉+ f∗(λ2)

= 0

since λ2 ∈ ∂f(xB). Hence any sequence generated by method “B” has the same bounds that method

“A” enjoys.

4.6.4 Convergence of outer iteration

Let F (x) = f(x) +
∑
i φi(Aix+ bi), so the primal problem is

min
x
F (x).

The accelerated continuation scheme solves this by solving a problem of the form

min
Y

min
x
F (x) +

µ

2
‖x− Y ‖2︸ ︷︷ ︸

ψ(Y )

(4.6.20)

by using the method in Listing 11. When the outer iteration uses an accelerated method, we call this

the accelerated proximal point algorithm; if the outer iteration is gradient descent with fixed step

size, this reduces to the proximal point algorithm. Let ψj = ψ(Yj) be the value of the outer iteration

at step j. If ψj is known exactly, then because accelerated continuation is an optimal method, the

value of ψ will converge to the optimal value ψ(Y ?) at rate O( µj2 ).
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The calculation of ψj is done with an inner iteration, and this will never be exact. The inner

iteration is solved in the dual smoothing framework, and so the dual function g(λk) converges to

g(λ?j ) = minF (x) + µ
2 ‖x − Yj‖2 at rate O(µ

−1

k2 ). There is a trade off in the value of µ, since a

small µ will speed up the outer iteration but slow down the inner iteration; it is also possible to

vary µ every outer-iteration. Is it possible to make precise this trade off, and thus suggest the best

value of µ to use? To what accuracy should the sub-problems be solved? On linear programs, does

this accelerated proximal-point algorithm converge in a finite number of iterations, as the regular

proximal-point algorithm does [PT74, Ber75]? Using very recent results, we begin to answer these

questions in §4.6.3 and §4.6.4.1; this work has not appeared in the preprint version of this chapter.

Below, we review existing results, and set the stage for the final convergence proof.

In 1992, Güler [G9̈2] analyzed an accelerated variant of the proximal point algorithm and provided

the first robust convergence analysis. Let X?
j = argminF (x) + µ/2‖x − Yj‖2. Güler proved that if

every inner iteration is solved to an iterate xk satisfying an inexact criteria, it can still be possible to

recovery accelerated convergence. In the case F is a Lipschitz function and finite, then his inexact

criteria simplifies to

‖xk −X?
j ‖2 ≤

C

j1.5
(4.6.21)

and still guarantees that the outer iteration converges in O(µ/j2). His variant of the accelerated

first-order method is not identical to the accelerated continuation scheme we present, but it is trivial

to adapt the accelerated continuation to use his version.

A recent paper by Combettes et al. [CDV10] considers a similar problem and proves convergence

of a similar scheme but using splitting methods instead of gradient-based methods, and does not

obtain any convergence rate bounds. Using the special form of a smoothed problem like ours,

[CDV10] shows that a bound on either ‖λk − λ?j‖, or ‖∇gsmooth(λk)−∇gsmooth(λju
?)‖ is sufficient

to bound ‖xk − X?
j ‖. The accelerated composite methods used to solve the dual will guarantee

that the generalized gradient mapping converges, but this does not imply that ∇gsmooth converges.

For unconstrained dual problems, such as noiseless basis pursuit and noiseless matrix completion,

the generalized gradient mapping is just the gradient, and hence we can bound the rate at which

xk → X?
j for these specific problems. This result covers some previously known special cases.

For example, [COS09] proves convergence of linear Bregman and provides a rate of convergence;

linear Bregman is the same as our dual smoothing approach applied to noiseless basis pursuit, with

x0 = 0 and using fixed step-size gradient descent. The work of [MZ09] considers a situation similar

to [CDV10] but does not prove convergence of the primal variables.

Another known case is when the dual problem is solved via proximal gradient descent. Beck

and Teboulle [BT10] prove the strong convergence of variables in proximal gradient descent, though

without a known rate. Using the Combettes result, this gives a bound on the rate of the convergence
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of the primal variable. Unfortunately, the strong convergence does not apply when using accelerated

proximal gradient descent methods.

An alternative approach is to avoid dealing with the primal variable and use either the function

value or gradient of the smoothed problem to provide a bound on the sub-optimality of the outer

step.

4.6.4.1 Overall analysis

It is possible to prove the convergence of the inner iteration; see §4.6.3, which is based on a theorem

of [FP11]. We assume that for a fixed j, the inner iteration converges

‖xk −X?
j ‖22 ≤

cj
µ2k2

.

To get this, combine (4.6.14) with the O(µ
−1

k2 ) convergence rate of the dual function. We also need

that the constants can be uniformly bounded

cj ≤ c ∀j.

The only iteration-dependent aspect of the constant cj is ‖x0 −X?
j ‖ (e.g., for FISTA; see [BT10]),

where x0 is the initialization of the jth step, and is naturally chosen to be the last iterate from

the j − 1 step. It is reasonable to expect that this bound does not grow with j, since otherwise

(X?
j ) is not a Cauchy sequence, but we leave the proof for future work and for now consider it an

assumption.

A full analysis for general F is not yet available, but below we present a basic analysis that holds

if F is Lipschitz continuous since then we use the condition (4.6.21) to imply Güler’s theorem. We

need the error at every outer iteration j to satisfy

‖xk −X?
j ‖2 ≤

c

j1.5

for some constant c. This can be ensured by taking

kj = cj1.5/µ

steps (for a new constant c—in this section, we allow the value of c to change, but it is always

independent of j and µ).

Via the accelerated continuation scheme, convergence of the outer objective function ψ is at rate

Cµ
j2 , so for any level of accuracy ε, it takes J = C

√
µ/ε outer iterations to reach an ε-solution—that
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is, a solution such that ψ(Yj)− ψ(Y ?) ≤ ε. Hence the total number of inner iterations is

J∑
j=1

kj =
c

µ

J∑
j=1

j1.5 ≤ c

µ

∫ J+1

0

j1.5dj =
c′

µ
(J + 1)2.5 . c′′

µ1/4

ε5/4
. (4.6.22)

This is only slightly worse than the O(1/ε) bound used in [Nes07] which relied on a very special

form of the primal function. The dependence on µ is weak, but it suggests that smaller values of µ

are preferred. However, these bounds are not necessarily tight, so taking a very small µ may improve

the bounds but will not necessarily improve the actual performance of the algorithm.

4.7 Numerical experiments

The templates we have introduced offer a flexible framework for solving many interesting but pre-

viously intractable problems; for example, to our knowledge, there are no first-order algorithms

that can deal with non-trivially constrained problems with complicated objectives like f(x) =

‖Wx‖1 + ‖x‖TV for an over-complete dictionary W . This section shows the templates in use to

solve such real-world problems. It also describes some of the details behind the numerical experi-

ments in previous sections.

4.7.1 Dantzig selector: comparing first-order variants

Other than Tseng’s paper [Tse08], there has been little focus on comparing the various accelerated

methods. Tseng’s paper itself presents few simulations that differentiate the algorithms. Since

our software uses interchangeable solvers with otherwise identical setups, it is easy to compare the

algorithms head-to-head applied to the same model.

For this comparison, we constructed a smoothed Dantzig selector model similar to the one em-

ployed in §4.3.4 above. The model used a partial DCT measurement matrix of size 512 × 2048, a

signal with 128 nonzero values, and an additive noise level of 30 dB SNR. The smoothing parameter

was chosen to be µ = 0.25, and we then employed the techniques of Appendix 4.12 to perturb the

model and obtain a known exact solution. This reference solution had 341 nonzeros, a minimum

magnitude of 0.002 and a maximum amplitude 8.9. The smoothed model was then solved using

the 6 first-order variants discussed here, using both a fixed step size of t = 1/L = µ/‖A‖2 and our

proposed backtracking strategy, as well as a variety of restart intervals.

The results of our tests are summarized by two plots in Figure 4.6. The cost of the linear operator

dominates, so the horizontal axes give the number of calls to either A or A∗ taken by the algorithm.

The vertical axes give the relative error ‖xk − x?µ‖/‖x?µ‖. Because this is a sparse recovery problem,

we are also interested in determining when the algorithms find the correct support; that is, when
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Figure 4.6: Comparing first-order methods applied to a smoothed Dantzig selector model. Left: comparing all
variants using a fixed step size (dashed lines) and backtracking line search (solid lines). Right: comparing various
restart strategies using the AT method

they correctly identify the locations of the 341 nonzero entries. Therefore, the lines in each plot are

thicker where the computed support is correct, and thinner when it is not.

The left-hand plot compares all variants using both fixed step sizes and backtracking line search,

but with no restart. Not surprisingly, the standard gradient method performs significantly worse

than all of the optimal first-order methods. In the fixed step case, AT performs the best by a

small margin; but the result is moot, as backtracking shows a significant performance advantage.

For example, using the AT variant with a fixed step size requires more than 3000 calls to A or

A∗ to reach an error of 10−4; with backtracking, it takes fewer than 2000. With backtracking, the

algorithms exhibit very similar performance, with AT and TS exhibiting far less oscillation than the

others. All of the methods except for GRA correctly identify the support (a difficult task due to the

high dynamic range) within 1000 linear operations.

The right-hand plot shows the performance of AT if we employ the restart method described in

§4.5.6 for several choices of the restart interval. We observe significant improvements in performance,

revealing evidence of local strong convexity. A restart interval of 200 iterations yields the best results;

in that case, a relative error of 10−4 is obtained after approximately 1000 linear operations, and the

correct support after only a few hundred operations. The other variants (except GRA, which is

unaffected by restart) show similar performance improvements when restart is applied, although the

two-projection methods (N07 and LLM) take about 50% longer than the one-projection methods.

Of course, care should be taken when applying these results to other contexts. For instance,

the cost of the projections here is negligible; when they are more costly (see, for instance, §4.7.4),

two-projection methods (N07 and LLM) will be expected to fare worse. But even among Dantzig

selector models, we found significant variations in performance, depending upon sparsity, noise level,

and smoothing. For some models, the two-projection methods perform well; and in others, such as
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Figure 4.7: Comparisons of the dual solver with SPGL1. The plot on the left involves a noiseless basis pursuit
model, while the plot on the right represents a noisy image model.

when we have local strong convexity, gradient descent performs well (when compared to the other

algorithms without restart). Overall, it seems there is no best algorithm, but we choose the AT

algorithm as our default, since in our experience it is consistently one of the best and only requires

one projection per iteration.

4.7.2 LASSO: comparison with SPGL1

As mentioned in the introduction, there are numerous algorithms for solving the LASSO. Yet the

algorithm produced by our dual conic approach is novel; and despite its apparent simplicity, it is

competitive with the state of the art. To show this, we compared the AT first-order variant with

SPGL1 [vdBF08], chosen because recent and extensive tests in [BBC11] suggest that it is one of the

best available methods.

The nature of the SPGL1 algorithm, which solves a sequence of related problems in a root-

finding-scheme, is such that it is fastest when the noise parameter ε is large, and slowest when ε = 0.

To compare performance in both regimes, we constructed two tests. The first is an “academic”

test with an s-sparse signal and no noise; however, we choose s large enough so that the LASSO

solution does not coincide with the sparse solution, since empirically this is more challenging for

solvers. Specifically, the measurement matrix A is a 213 × 214 partial DCT, while the optimal value

x? was constructed to have s = 212 nonzeros. The second test uses Haar wavelet coefficients from

the “cameraman” test image (Figure 4.8 (a)) which decay roughly according to a power law, and

adds noise with a signal-to-noise ratio of 30 dB. The measurement matrix is also a partial DCT, this

time of size 0.3 · 216 × 216.

Figure 4.7 shows the results from both tests, each plot depicting relative error ‖xk − x?‖/‖x?‖
versus the number of linear operations. We see that both methods achieve several digits of accuracy
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in just a few hundred applications of A and its adjoint. SPGL1 outperforms a regular AT solver

in the left-hand “academic” test; however, AT with accelerated continuation solves the problem

significantly faster than SPGL1. The noiseless case exploits our method’s strength since the exact

penalty property holds.

For the wavelet test, SPGL1 outperforms our method, even when we use continuation. Although

AT with continuation achieves high levels of accuracy in fewer than 1000 operations, other tests

confirmed that SPGL1 is often a little better than our method, especially for large ε. But the dual

conic approach is competitive in many cases, and can be applied to a wider class of problems9.

4.7.3 Wavelet analysis with total-variation

The benefit of our approach is highlighted by the fact that we can solve complicated composite

objective functions. Using the solver templates, it is easy to solve the `1-analysis and TV problem

from §4.4.6. We consider here a denoising problem with full observations; i.e., A = I. Figure 4.8 (a)

shows the original image x0, to which noise is added to give an image y = x0 + z with a signal-to-

noise ratio of 20 dB (see subplot (b)). In the figure, error is measured in peak-signal-to-noise ratio

(PSNR), which for an n1 × n2 image x with pixel values between in [0, 1] is defined as

PSNR(x) = 20 log10

( √
n1n2

‖x− x0‖F

)

where x0 is the noiseless image.

To denoise, we work with a 9/7 bi-orthogonal wavelet transformW (similar to that in JPEG-2000)

with periodic boundary conditions (the periodicity is not ideal to achieve the lowest distortion). A

simple denoising approach is to hard-threshold the wavelet coefficientsWx and then invert withW−1.

Figure 4.8 (c) shows the result, where the hard-threshold parameter was determined experimentally

to give the best PSNR. We refer to this as “oracle thresholding” since we used the knowledge of x0

to determine the threshold parameter. As is common with wavelet methods [SNM03], edges in the

figure induce artifacts.

Figures 4.8 (d), (e), and (f) are produced using the solvers in this chapter, solving

minimize α‖Wx‖1 + β‖x‖TV + µ
2 ‖x− y‖2F

subject to ‖Ax− y‖2 ≤ ε.
(4.7.1)

Figure 4.8 (d) employs wavelet analysis only (α = 1, β = 0), (e) just TV (α = 0, β = 1), and (f) both

(α = 1, β = 5). For the best performance, the matrix A was re-scaled so that all the dual variables

are of the same order; see [BCG10b] for further discussion of scaling.

9SPGL1 is also flexible in the choice of norm, but notably, it cannot solve the analysis problem due to difficulties
in the primal projection.
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(a) Original (b) Noisy version (25.6 dB PSNR)

(c) Wavelet thresholded (28.3 dB PSNR) (d) Wavelet `1-analysis (29.0 dB PSNR)

(e) TV minimization (30.9 dB PSNR) (f) Wavelet analysis + TV minimization (31.0 dB PSNR)
Figure 4.8: Denoising an n = 2562 image
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The Frobenius term in (4.7.1) is of course for smoothing purposes, and it is possible to minimize

its effect by choosing µ small or using the continuation techniques discussed. But for denoising, its

presence makes little difference; in fact, it may give more visually pleasing results to use a relatively

large µ. So to determine µ, we started with an estimate like

µ = max(α‖Wy‖1, β‖y‖TV )/c

with c ' 500 and then adjusted to give reasonable results. We ultimately employed µ = 1 for (d),

µ = 50 for (e), and µ = 160 for (f).

The wavelet analysis run took 26 iterations, and was complete in about 5 seconds. As shown in

image (d), it produced boundary effects that are noticeable to the eye, and similar to those produced

by thresholded image (c). The TV model (e) and TV with wavelets model (f) took 37 iterations (3

seconds) and 30 iterations (8 seconds), respectively. Both produced better reconstructions, both by

PSNR and by visual inspection. The additional wavelet analysis term in plot (f) offers only minimal

improvement over TV alone, but this may be due to our simple choice of wavelet transform. For

example, undecimated wavelets are common in denoising and may give better results, but our point

here is simplicity and to point out the flexibility of the framework.

4.7.4 Matrix completion: expensive projections

We consider the nuclear-norm minimization problem (4.4.2) of a matrix X ∈ Rn1×n2 in the conic

dual smoothing approach. For matrix completion, the linear operator A is the subsampling operator

revealing entries in some subset E ⊂ [n1] × [n2]. With equality constraints (ε = 0) and X0 = 0,

gradient ascent on the dual is equivalent to the SVT algorithm of [CCS10], a reference which also

considered non-equality constraints, e.g., of the form (4.4.2).

In addition to our own interest in this problem, one of the reasons we chose it for this article

is that it differs from the others in one key respect: its computational cost is dominated by one of

the projections, not by the linear operators. After all, the linear operator in this case is no more

than a set of memory accesses, while the primal projection requires the computation of at least the

largest singular values of a large matrix. As a result, the considerations we bring to the design of

an efficient solver are unique in comparison to the other examples presented.

There are a number of strategies we can employ to reduce the cost of this computation. The key

is to exploit the fact that a nuclear-norm matrix completion model is primarily of interest when its

optimal value X? is expected to have low rank [CR09]. Recall from §4.4.3 that the update of Xk

takes the form

Xk = SoftThresholdSingVal
(
X0 − µ−1A∗(λ), µ−1

)
.
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Figure 4.9: Noiseless matrix completion using various first-order methods

Our numerical experiments show that if µ is sufficiently small, the ranks rk = rank(Xk) will remain

within the neighborhood of r? = rank(X?). In fact, with µ sufficiently small and X0 = 0, the rank

grows monotonically.

There are a variety of ways we can exploit the low-rank structure of the iterates Xk. By storing

Xk = UkΣkVk in factored form, we can reduce the storage costs from O(n1n2) to O(rk(n1 + n2)).

The quantity A(Xk), used in the computation of the gradient of the dual function, can be computed

efficiently from this factored form as well. Finally, using a Lanczos method such as PROPACK

[Lar04], the cost of computing the necessary singular values will be roughly proportional to rk.

By combining these techniques, the overall result is that the cost of singular value thresholding is

roughly linear in the rank of its result. These techniques are discussed in more detail in [BCG10b].

Smaller values of µ, therefore, reduce the ranks of the iterates Xk, thereby reducing the com-

putational cost of each iteration. This leads to a unique trade off, however: as we already know,

smaller values of µ increase the number of iterations required for convergence. In practice, we have

found that it is indeed best to choose a small value of µ, and not to employ continuation.

For our numerical example, we constructed a rank-10 matrix of size n1 = n2 = 1000, and

randomly selected 10% of the entries for measurement—about 5 times the number of degrees of

freedom in the original matrix. We solved this problem using three variations of GRA and five

variations of AT, varying the step size choices and the restart parameter. The smoothing parameter

was chosen to be µ = 10−4, for which all of the methods yield a monotonic increase in the rank

of the primal variable. The pure gradient method took about 1.8 minutes to reach 10−4 relative

error, while the AT method without restart took twice the time; the error is in the Frobenius norm,

comparing against the true low-rank matrix, which is the solution to the unperturbed problem.

250



The results of our experiments are summarized in Figure 4.9. The horizontal axis now gives the

number of SoftThresholdSingVal operations, a more accurate measure of the cost in this case; the

cost of a SoftThresholdSingVal call is not fixed, but we observe that the rank of the iterates quickly

reaches 10 and most SoftThresholdSingVal calls have roughly the same cost. The salient feature of

this figure is that while AT initially outperforms GRA, the linear convergence exhibited by GRA

allows it to overtake AT at moderate levels of precision. Employing a restart method with AT

improves its performance significantly; and for a restart intervals of 50 iterations, its performance

approaches that of GRA, but it does not overtake it.

What accounts for this performance reversal? First, we observe that AT requires two projections

per iteration while GRA requires only one. This difference is inconsequential in our other examples,

but not for this one; and it is due to our use of the backtracking line search. Switching to a fixed

step size eliminated the extra projection, but the overall performance suffered significantly. We hope

to identify a new line search approach that avoids the added cost revealed here.

Second, the similarities of Figures 4.5 and 4.9 suggest the presence of strong convexity. Using

an estimate of the decay rate for gradient descent with step size t = 1/Lf , and comparing with

known decay rate estimates [Nes04] gives an estimate of mf = 0.0024. For this value of mf (and

with Lf = 1), the optimal restart number Kopt from [GLW09] is about 80, which is consistent with

the plot. It is easy to verify, however, that the smoothed dual function is not strongly convex.

The results suggest, then, that local strong convexity is present. The authors in [GLW09] argue

that for compressed sensing problems whose measurement matrices satisfy the restricted isometry

property, the primal objective is locally strongly convex when the primal variable is sufficiently

sparse. The same reasoning may apply to the matrix completion problem; the operator A∗A is

nearly isometric (up to a scaling) when restricted to the set of low-rank matrices. The effect may be

amplified by the fact that we have taken pains to ensure that the iterates remain low-rank. Overall,

this effect is not yet well understood, but will also be explored in later work.

We note that if the underlying matrix is not low-rank, then the local strong convexity effect is not

present, and gradient descent does not outperform the AT method. In this case, our experiments

also suggest that the restart method has little effect. Likewise, when inequality constraints are

added we observe that the unusually good performance of gradient descent vanishes. For both the

non-low-rank and noisy cases, then, it may be beneficial to employ an optimal first-order method

and to use continuation.

Figure 4.10 demonstrates these claims on a noisy matrix completion problem. We constructed

a 50 × 45 matrix of rank 20, sampled 67% of the entries, and added white noise to yield a 30 dB

SNR. By using this small problem size, we are able to use CVX [GB10] to compute a reference

solution; this took 5.4 minutes. The figure depicts three different approaches to solving the problem:

GRA and AT each with µ = 5 · 10−4 and no continuation; and AT with µ = 10−2 and accelerated
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Figure 4.10: Noisy matrix completion on a non-low-rank matrix, using various first-order methods

continuation. The restart approach no longer has a beneficial effect, so it is not shown. Each solver

was run for 500 iterations, taking between 2.5 and 4 seconds, and the plot depicts relative error

versus the number of singular value decompositions. As we can see, the advantage of GRA has

been lost, and continuation provides significant improvement: to achieve a relative error of 10−2,

the continuation method required only 100 partial SVDs.

4.7.5 `1-analysis

We present a brief example of solving the `1-analysis problem (4.4.5), which is used in sparse recovery

when the primal variable x is not sparse itself but rather sparse or compressible in some other domain.

The domain may be well-known, such as frequency space (W is a DFT) or a wavelet basis (W is a

wavelet transform), and for these cases W is invertible and even orthogonal and the problem may

be solved using a method like SPGL1. However, these bases are often chosen out of convenience

and not because they best represent the signal. More appropriate choices may be overcomplete

dictionaries W ∈ Rp×n with p � n, such as the undecimated wavelet transform, or the multilevel

Gabor dictionary. The experiment below uses the Gabor dictionary with p = 28n.

To solve the LASSO problem using a dictionary W , the two common approaches are analysis:

minimize ‖Wx‖1
subject to ‖y −Ax‖2 ≤ ε

(4.7.2)
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and synthesis:

minimize ‖α‖1
subject to ‖y −AW ∗α‖2 ≤ ε,

(4.7.3)

with decision variable α. Similarly, the Dantzig selector approach would have the same objectives

but constraints of the form ‖A∗(y −Ax)‖∞ ≤ δ (analysis) and ‖A∗(y −AW ∗α)‖∞ ≤ δ (synthesis).

When W is not orthogonal, the two approaches are generally different in non-trivial ways, and

furthermore, the solutions to synthesis may be overly sensitive to the data [EMR07].

The differences between analysis and synthesis are not very well understood at the moment for

two reasons. The first is that the analysis problem has not been studied theoretically. An exception

is the very recent paper [CENR11] which provides the first results for `1-analysis. The second is that

there are no existing efficient first-order algorithms to solve the analysis problem, with the exception

of the recent NESTA [BBC11] and C-SALSA [ABDF11] algorithms, which both work on the LASSO

version, and only when AA∗ = I.

With the dual conic approach, it is now possible to solve the smoothed analysis problem, and by

using continuation techniques, the effect of the smoothing is negligible. To illustrate, we constructed

a realistic test of the recovery of two radio-frequency radar pulses that overlap in time, as depicted

in Figure 4.11. The first pulse is large, while the second pulse has 60 dB smaller amplitude. Both

have carrier frequencies and phases that are chosen uniformly at random, and noise is added so that

the small pulse has a signal-to-noise ratio of 0.1 dB.

The signal is recovered at Nyquist rate resolution for 2.5 GHz bandwidth, and the time period

is a little over 1600 ns, so that n = 8,192. The sensing matrix A is modeled as a block-diagonal

matrix with ±1 entries on the blocks, representing a system that randomly mixes and integrates the

input signal, taking 8 measurements every 100 ns, which is 12.5× below the Nyquist rate. Thus A

is a 648 × 8,192 matrix and W is a 228,864 × 8,192 matrix. We applied both the Dantzig selector

and LASSO models to this problem.

To solve the problems, we employed the AT variant with accelerated continuation. At each

iteration, the stopping tolerance is decreased by a factor of 1.5, and the continuation loop is ended

when it no longer produces significantly different answers, which is usually between 2 and 8 iterations.

The value of µ is set to

µ = 0.1
‖WxLS‖2
1
2‖xLS‖2

, (4.7.4)

where xLS is the least-squares solution to Ax = y, which is easy to calculate since m � n (and

independent of p).

To enhance the results, we employed an outer reweighting loop [CWB08], in which we replace

the ‖Wx‖1 term with ‖RWx‖1 for some diagonal weight matrix R. Each reweighting involves a

full solve of either the Dantzig selector or the LASSO. This loop is run until convergence, which is
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Figure 4.11: Recovery of a small pulse 60 dB below a large pulse. The first plot employs a Dantzig selector, the
bottom employs LASSO.
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Dantzig selector LASSO

Reweighting step # cont. iter. time error # cont. iter. time error
0 7 821 89.2 s 2.7 · 10−3 6 569 54.8 s 2.2 · 10−3

1 8 1021 114.6 s 2.1 · 10−3 7 683 67.8 s 1.8 · 10−3

Table 4.1: Details on the simulation used in Figure 4.11. For both the Dantzig selector and LASSO versions, the
algorithm was run with continuation and reweighting. The “cont.” column is the number of continuation steps,
the “iter.” column is the number of iterations (over all the continuation steps), the “time” column is in seconds,
and the “error” column is the relative `2 error. Each row is one solve of the Dantzig selector or the LASSO.
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Figure 4.12: Plot (a) shows the Auslender-Teboulle method with and without restart, using various restart parame-
ters. Also shown is the “no regress” restart option, which requires no parameters, and the N83 method using oracle
knowledge of the strong convexity constant. Plot (b) shows the number of iterations to reach a given accuracy
level, as a function of the restart parameter (using the AT algorithm). The vertical line near 110 is the optimal
value of restart according to [GLW09]. A restart value of 0 corresponds to gradient descent, and a restart value of
∞ corresponds to the original AT method.

typically about 2 to 5 iterations. The results are plotted in the frequency domain in Figure 4.11. The

large pulse is the dominant spike at about 1.1 GHz, and it is easily recovered to very high precision

(the relative `2 error is less than 5 · 10−3). The small pulse is at about 2.2 GHz, and because it has

an SNR of 0.1 dB and the measurements are undersampled by a factor of 12, it is not possible to

recover it exactly, but we can still detect its presence and accurately estimate its carrier frequency.

Table 4.1 reports the computational results of the test, first solving either the Dantzig selector

or the LASSO, and then taking a single reweighting step and re-solving. Each call of the algorithm

takes about 100 iterations, and the Dantzig selector or the LASSO is solved in about 1 minute,

which is impressive since, due to the extremely large size of W , this problem is intractable using an

interior-point method.
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4.8 Extensions

4.8.1 Automatic restart

When a function is strongly convex, gradient descent converges linearly. If the strong convexity

constant mf is known, then accelerated methods such as N83 also converge linearly, and with a

better rate than for gradient descent. However, if mf is unknown, the accelerated methods do not

converge linearly. This is shown in Figure 4.12(a). Our proposed solution from §4.5.6 is to restart

the method every R iterations, which then guarantees linear convergence [Nes07]. The optimal rate

of convergence is obtained when R = R(mf ), which is unknown a priori, so R must be estimated.

Figure 4.12(b) shows that as long as R > R(mf ) (R(mf ) is shown as the vertical line), then the

method still converges quickly, and hence R is not an extremely sensitive parameter.

However, R may not be scale-invariant, and estimating R is still an issue. One solution is

an automatic restart, which requires no parameter. Whenever the objective shows non-monotonic

behavior, a restart is forced. Figure 4.12(a) shows this method, called “no regress”, compared

to the N83 method using “oracle” knowledge of mf . The automatic method performs extremely

well. We note that many restart ideas have been explored in the non-linear conjugate-gradient (CG)

literature since the late 1970s [Pow77]. The prevailing intuition for CG, according to [NW06], is that

restart should be performed once the iterate is in an approximately quadratic region surrounding

the minimum, since then the non-linear CG will perform similarly to linear CG, assuming the line

search is good, and convergence will be rapid.

4.8.2 Specialized solvers for certain problems

We consider some specific optimization problems for which there is special structure to exploit. One

of the advantages of TFOCS is that the solver is a module that can be swapped, so it is easy to

implement specialized algorithms.

4.8.2.1 Noiseless basis pursuit

The noiseless basis pursuit problem,

min
x
‖x‖1 such that Ax = b

has an unconstrained differentiable dual after smoothing is applied; it is also a linear program, so

it enjoys the exact-penalty property. Because the dual is unconstrained, it is easy to use a solver

like SESOP [EMZ07], BFGS or L-BFGS [BLN95], or a non-linear conjugate-gradient algorithm.

Figure 4.13 shows an experiment on a basis pursuit problem with N = 2048 variables and a partial

DCT measurement matrix A with 1024 rows. The original signal has 146 nonzeros. We compare
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Figure 4.13: Noiseless basis pursuit, comparing a non-linear CG method to an optimal first-order method.

gradient descent, Auslender-Teboulle’s (AT) algorithm, the AT algorithm with restart, and a modern

non-linear CG method called CG-851 [HZ06]. All of the AT methods are efficient, but the non-linear

CG method is even faster. This shows the flexibility of TFOCS and suggests that the long history of

work put into CG methods may be applicable to a few special inverse problems. The main difficulty

with CG is that standard CG algorithms do not handle constraints, and that the algorithms need

appropriate line search. The performance of CG is extremely sensitive to the type of line search;

we thank Michael McCoy for providing the line search code used in this experiment. It may also be

possible to use specific exact line search algorithms; for example, it is easy to derive an exact line

search when the objective contains a `1 norm and a quadratic term (see, e.g., [WYGZ10]).

We also note recent work on the performance of BFGS on non-smooth problems [LO09,YVGS10]

(that is, when the objective is differentiable but not second-order differentiable). This is the case

for noiseless basis pursuit (and also for noiseless matrix completion with the nuclear norm).

4.8.2.2 Conic problems in standard form

Consider the conic problem

minimize
x

〈c, x〉 such that x ≥K 0, Ax = b (4.8.1)

where x ≥K 0 means x ∈ K. If K = Rn+, then this reduces to x ≥ 0 component-wise, and the problem

is a linear program (LP). If K is the Lorentz cone, then the problem is a second-order cone program

(SOCP). If K is the positive semi-definite cone, in which case x and c are Hermitian matrices and

the inner product 〈c, x〉 = trace cx is the inner product which induces the Hilbert-Schmidt norm,

and then the problem is a semi-definite program (SDP).
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Figure 4.14: Comparison of AT method and L-BFGS-B on a standard form linear program. Both methods behave
similarly.

The dual problem is

max
ν,λ
−〈b, ν〉 such that λ ≥K 0, λ = c+A∗ν

which may not be easier to solve than the primal. It is possible to eliminate the variable λ, but we

prefer to keep it since it makes it clear that there is a coupling between the inequality and equality

constraints.

To apply the dual formulation, we smooth the objective by adding a term µ
2 ‖x−x0‖2 where ‖ · ‖

is the norm induced by the appropriate inner-product. This has the effect of uncoupling the dual

variables. The dual problem is now

max
ν,λ
−〈b, ν〉 − 1

2µ
‖c− λ+A∗ν‖2 + 〈c− λ+A∗ν, x0〉 such that λ ≥K 0.

The dual is quadratic with no equality constraints and a simple inequality constraint. For K =

Rn+, this is part of a box-constraint, and many algorithms take advantage of its simplicity. Figure 4.14

shows a comparison between TFOCS using the AT method (with restart and continuation) and the

L-BFGS-B method [BLN95,ZBLN97]. L-BFGS-B is a box constrained version of the limited memory

BFGS quasi-Newton method. The BFGS method is well-regarded as one of the fastest methods,

when it is applicable. In the figure, we see that L-BFGS-B performs about the same as the optimal

method, which is slightly discouraging. There may be tweaks or special considerations which can

make L-BFGS-B achieve the same performance as BFGS.

The technique of adding a quadratic term to a linear program has been used since at least

Mangasarian in the early 1980s [Man81].
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4.8.2.3 Matrix completion problems
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Figure 4.15: Comparison of various algorithms for noiseless matrix completion.

The noiseless matrix completion problem has many similarities with the noiseless basis pursuit

problem; in particular, the smoothed dual function is unconstrained. This opens the possibility

of using many algorithms, such as non-linear CG, SESOP, and BFGS. Figure 4.15 compares the

performance of 5 algorithms:

• Singular value thresholding (SVT) [CCS10], which is equivalent to TFOCS using gradient

descent and a fixed step size, and without continuation.

• SVT with the N83 Nesterov method, at a fixed step size and without continuation.

• SVT with limited memory BFGS (L-BFGS) [NW06] and fixed step size (no line search).

• The extra gradient algorithm [Kor76], which is a splitting method with an additional variable.

• The forward-backward splitting method, which is equivalent to the formulation in FPCA [MGC09].

259



• The Douglas-Rachford splitting method [Com04].

To be fair, the comparisons use fixed-step sizes for all algorithms; of course, most of the algorithms

benefit enormously from using line search, as we have shown in this chapter, so these results are not

necessarily “real-world” results.

The special consideration in the matrix completion problem is that the matrix shrinkage step

is expensive to compute; see the discussion in §4.7.4. One method, used in [MGC09], is to use

randomized linear algebra to compute an approximate SVD. Another method is using a Lanczos-

based method such as PROPACK [Lar04]. For a Lanczos-based method, only singular values above

a threshold size are needed; the number of iterations in the SVD computation is directly proportional

to the number of singular values above this threshold. Furthermore, the cost of each matrix-vector

multiply depends on the rank of the previous iterate, since the current iterate is a combination of a

sparse and low-rank matrix.

Figure 4.15 shows results using a dense SVD factorization, but also records the rank. All the

algorithms converge quickly, but Douglas-Rachford and SVT-with-L-BFGS are considerably faster

than the rest. The lower-right plot shows the ranks of the variables at every iteration. The benefit

of SVT-based methods is that the rank typically starts at 0 and increases slowly to a steady-state

value (this need not be true with line search variants). The Douglas-Rachford algorithm, on the

other hand, takes a very aggressive first few steps and the rank is very high, before coming lower. On

a large-scale problem, this means the first few iterations might be too expensive to even compute.

The extra-gradient method has even slower decay toward the true rank.

Despite the issues with rank, the Douglas-Rachford method is promising due to the rapid con-

vergence, so it may be possible to adjust it to keep the ranks smaller. Thanks to Jalal Fadili for

ideas and code regarding these splitting methods.

With matrix completion problems, there is tremendous room for improvement, since high-

accuracy SVDs are unnecessary in the initial steps of the algorithm. There has been some reported

success of using methods from [HMT11] with the matrix completion problem because these types of

approximate SVDs can take advantage of warm-starts. Another recent paper mentions improvements

using warm-started Lanczos methods [LW10].

4.9 Software: TFOCS

The work described in this paper has been incorporated into a software package, Templates for First-

Order Conic Solvers (TFOCS, pronounced tee-fox ), which is publicly available at http://tfocs.

stanford.edu. As its name implies, this package is a set of templates, or building blocks, that can

be used to construct efficient, customized solvers for a variety of models.

To illustrate the usage of the software, let us show how to construct a simple solver for the
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smoothed Dantzig selector model described in §4.3. We will begin by assuming that we are given

the problem data A, b, delta, and a fixed smoothing parameter mu. The basic solver templates

require two functions to complete their work. The first function computes the value and gradient of

gsmooth, the smooth component of the composite dual:

function [ val, grad, x ] = g_dantzig( A, y, x0, mu, z )

x = SoftThreshold( x0 - (1/mu) * A’ * ( A * z ), 1/mu );

grad = A’ * ( y - A * x );

val = z’ * grad - norm( x, 1 ) - 0.5 * mu * norm( x - x0 ) .^ 2;

The second function computes the generalized projection associated with the nonsmooth component

of the dual, which is in this case h(z) = δ‖z‖1.

h = prox_scale( tfocs_prox( @(z)norm(z,1), @SoftThreshold ), delta );

The tfocs prox function combines h and the proximity operator of h in a fashion that the software

understands, and prox scale adjusts h from ‖z‖1 to δ‖z‖1 and also updates the proximity operator.

The functions h and g depend on the soft-thresholding operator:

function y = SoftThreshold( x, t )

y = sign( x ) .* max( abs( x ) - t, 0 );

Armed with these functions, the following code solves the smoothed Dantzig selector, using the

Auslender/Teboulle first-order variant and the default choices for line search and stopping criteria.

function x = Dantzig_smoothed( A, y, delta, mu )

[m,n] = size(A);

x0 = zeros(n,1); z0 = zeros(n,1);

g_sm = @(z) g_dantzig( A, y, x0, mu, z );

affine = [];

z = tfocs_AT( g_sm_op, affine, h, z0 );

x = SoftThreshold( x0 - (1/mu) * A’ * ( A * z ), 1/mu );

The second-to-last line of code calls the AT solver.

This simple solver is likely to be unnecessarily inefficient if A exhibits any sort of fast operator

structure, but this can be remedied rather simply. Note that the solver itself needs to have no knowl-

edge of A or y above; its interaction with these quantities comes only through calls to g_dantzig.

Therefore, we are free to rewrite g_dantzig in a more numerically efficient manner: for instance,

if A is derived from a Fourier transform, we may substitute fast Fourier transform operations for

matrix-vector multiplications. This simple change will reduce the cost of each iteration from O(mn)
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to O(n log n), and the storage requirements from O(n2) to O(n). For large-scale problems these

savings can be quite significant.

A further improvement in performance is possible through careful management of the linear

operator calculations as described in §4.5.4. The TFOCS solver templates can perform this manage-

ment automatically. To take advantage of it, we replace g_dantzig with two functions: one which

implements the underlying linear operator, and one which implements the remainder of the smooth

function. The details of how to accomplish this are best left to the user guide [BCG10b].

Of course, as part of the complete package, we have supplied a solver for the Dantzig selector

that exploits each of these efficiencies, and others. Similar solvers have been created for the LASSO,

TV, and other models discussed here. But the flexibility of the lower-level templates will allow

these same efficiencies to be achieved for many models that we have not discussed here. In fact,

evidently the templates are not restricted to our specific conic form (4.1.9) or its dual, and we hope

the software finds application outside of the compressed sensing domain as well.

With the software release is a detailed user guide [BCG10b] that covers the usage, documents

the most popular problem formulations, and provides some examples. We refer the reader to the

user guide for further software details.

4.10 Discussion

We have developed a convenient framework for constructing first-order methods, which is flexible and

handles a variety of convex cone problems, including problems that did not have efficient algorithms

before. On the implementation side, we have introduced ideas which lead to novel, stable, and

efficient algorithms. When comparing our implementation on specific problems such as the LASSO,

which have been intensively studied, our techniques appear surprisingly competitive with the state

of the art.

The templates from this chapter are flexible in a manner that has not yet been seen in sparse

recovery software. Not only are the solvers interchangeable and hence easy to benchmark one

algorithm against another, but they work with a wide variety of formulations which we hope will

greatly enable other researches. It is also our goal that the software will be easy to use for non-

experts, and to this end our future research will be to improve the usability of the software and to

provide sensible default parameters. One major topic to pursue is choosing the smoothing parameter

µ. Further efforts will also be made to improve the line search to take advantage of strong convexity,

to better manage expensive projections, and to use scaled norms so that dual variables are all on

the same scale (this is an issue only for objectives with several additive terms, as in the TV with

analysis problem in §4.4.6 and §4.7.3).

A subsequent paper will cover these issues, as well as further investigating local strong convexity
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and how to take advantage of this in an optimal manner, and improving the accelerated continuation

scheme by taking into account the inexact solves. The software and user guide [BCG10b] will be

kept up-to-date and supported.

4.11 Appendix: exact penalty

The general approach proposed in this chapter is to add a strongly convex term to the primal

objective function in order to smooth the dual objective. We now draw a parallel with augmented

Lagrangian and penalty function methods that eliminate constraints by incorporating a penalty term

p into the objective, e.g., minx:Ax=b f(x) becomes minx f(x) + λp(Ax − b). For reasonable choices

of p, the two problems become equivalent as λ → ∞. Remarkably, for some special choices of p,

the two problems are equivalent for a large but finite value of λ. Usually, p is a non-differentiable

function, such as p = ‖·‖1 or p = ‖·‖2 (not p = ‖·‖22); see Bertsekas’ book [BNO03] for a discussion.

Our approach uses a different type of perturbation, since our goal is not to eliminate constraints

but rather to smooth the objective. But we use the term “exact penalty” because, for some problems,

we have a similar result: the smoothed and unsmoothed problems are (nearly) equivalent for some

µ > 0. The result below also departs from traditional exact penalty results because our perturbation

1
2‖x− x0‖22 is smooth.

Below we present the proof of Theorem 4.3.1, which exploits the polyhedral constraint set of

linear programs. This exact proof of the theorem may be original, but the theorem itself is not a

new result, as explained in the text.

Proof of Theorem 4.3.1. We consider the linear program

minimize 〈c, x〉
subject to x ∈ P,

(LP)

where P is a convex polyhedron, and its perturbed version

minimize 〈c, x〉+ 1
2µ〈x− x0, x− x0〉Q

subject to x ∈ P,
(QP)

where 〈x, y〉Q , 〈x,Qy〉 for some positive semidefinite Q. Let E? be the solution set of (LP) (E? is a

vertex or a face of the feasible polyhedron) and let x? be any point in E? such that 〈x−x0, x−x0〉Q
is minimum. (Note that when Q is the identity, x? is the usual projection onto the convex set E?.)

With fµ(x) , 〈c, x〉+ 1
2µ〈x−x0, x−x0〉Q, it is of course sufficient to show that x? is a local minimizer

of fµ to prove the theorem. Put differently, let x ∈ P and consider x? + t(x− x?) where 0 ≤ t ≤ 1.

263



Then it suffices to show that limt→0+ fµ(x? + t(x− x?)) ≥ fµ(x?). We now compute

fµ(x? + t(x− x?)) = 〈c, x? + t(x− x?)〉+ 1
2µ〈x? + t(x− x?)− x0, x

? + t(x− x?)− x0〉Q

= fµ(x?) + t〈c, x− x?〉+ µt〈x− x?, x? − x0〉Q + 1
2µt

2〈x− x?, x− x?〉Q.

Therefore, it suffices to establish that for all x ∈ P,

〈c, x− x?〉+ µ〈x− x?, x? − x0〉Q ≥ 0,

provided µ is sufficiently small. Now x ∈ P can be expressed as a convex combination of its extreme

points (vertices) plus a non-negative combination of its extreme directions (in case P is unbounded).

Thus, if {vi} and {dj} are the finite families of extreme points and directions, then

x =
∑
i

λivi +
∑
j

ρjdj ,

with λi ≥ 0,
∑
i λi = 1, ρj ≥ 0. The extreme directions—if they exist—obey 〈c, dj〉 ≥ 0 as otherwise,

the optimal value of our LP would be −∞. Let I denote those vertices which are not solutions to

(LP), i.e., such that 〈c, vi − x̂〉 > 0 for any x̂ ∈ E?. Likewise, let J be the set of extreme directions

obeying 〈c, dj〉 > 0. With this, we decompose x− x? as

x− x? =
(∑
i/∈I

λi(vi − x?) +
∑
j /∈J

ρjdj

)
+
(∑
i∈I

λi(vi − x?) +
∑
j∈J

ρjdj

)
.

It is not hard to see that this decomposition is of the form

x− x? = α(x̂− x?) +
(∑
i∈I

λi(vi − x?) +
∑
j∈J

ρjdj

)
,

where x̂ ∈ E? and α is a non-negative scalar. This gives

〈c, x− x?〉 =
∑
i∈I

λi〈c, vi − x?〉+
∑
j∈J

ρj〈c, dj〉.

Let αi ≥ 0 (resp. βj ≥ 0) be the cosine of the angle between c and vi − x? (resp. c and dj). Then

for i ∈ I and j ∈ J , we have αi > 0 and βj > 0. We can write

〈c, x− x?〉 =
∑
i∈I

λiαi‖c‖2‖vi − x?‖2 +
∑
j∈J

ρjβj‖c‖2‖dj‖2,
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which is strictly positive. Furthermore,

〈x− x?, x? − x0〉Q = α 〈x̂− x?, x? − x0〉Q +
〈∑
i∈I

λi(vi − x?) +
∑
j∈J

ρjdj , x
? − x0

〉
Q

≥
〈∑
i∈I

λi(vi − x?) +
∑
j∈J

ρjdj , x
? − x0

〉
Q

≥ −‖Q(x? − x0)‖2
(∑
i∈I

λi‖vi − x?‖2 +
∑
j∈J

ρj‖dj‖2
)
.

The second inequality holds because x? minimizes 〈x̂ − x0, x̂ − x0〉Q over E?, which implies 〈x̂ −
x?, x? − x0〉Q ≥ 0. The third is a consequence of the Cauchy-Schwartz inequality. In conclusion,

with µQ , µ‖Q(x? − x0)‖2, we have

〈c, x− x?〉+ µ〈x− x?, x? − x0〉Q ≥
∑
i∈I

(αi‖c‖2 − µQ)λi‖vi − x?‖2 +
∑
j∈J

(βj‖c‖2 − µQ)ρj‖dj‖2,

and it is clear that since mini αi > 0 and minj βj > 0, selecting µ small enough guarantees that the

right-hand side is non-negative.

4.12 Appendix: creating a synthetic test problem

It is desirable to use test problems that have a precisely known solution. In some cases, such as

compressed sensing problems in the absence of noise, the solution may be known, but in general this

is not true. A common practice is to solve problems with an interior-point method (IPM) solver,

since IPM software is mature and accurate. However, IPMs do not scale well with the problem

size, and cannot take advantage of fast algorithms to compute matrix-vector products. Another

disadvantage is that the output of an IPM is in the interior of the feasible set, which in most cases

means that it is not sparse.

Below, we outline procedures that show how to generate problems with known exact solutions (to

machine precision) for several common problems. The numerical experiments earlier in this chapter

used this method to generate the test problems. This is inspired by [Nes07], but we use a variation

that gives much more control over the properties of the problem and the solution.

Basis pursuit. Consider the basis pursuit problem and its dual

minimize ‖x‖1
subject to Ax = y,

maximize 〈y, λ〉
subject to ‖A∗λ‖∞ ≤ 1.
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At the optimal primal and dual solutions x? and λ?, the KKT conditions hold:

Ax? = y ‖A∗λ?‖∞ ≤ 1 (A∗λ?)T = sign(x?T ),

where T = supp(x?).

To generate the exact solution, the first step is to choose A and y. For example, after choosing

A, y may be chosen as y = Ax̃ for some x̃ that has interesting properties (e.g., x̃ is s-sparse or is

the wavelet coefficient sequence of an image). Then any primal dual solver is run to high accuracy

to generate x? and λ?. These solutions are usually accurate, but not quite accurate to machine

precision.

The idea is that x? and λ? are exact solutions to a slightly perturbed problem. Define T =

supp(x̂); in sparse recovery problems, or for any linear programming problem, we have |T | ≤ m where

m is the length of the data vector y. The matrix A is modified slightly by defining Ã← AD where D

is a diagonal matrix. D is calculated to ensure that ‖(DA∗λ?)T c‖∞ < 1 and (DA∗λ?)T = sign(x?).

If the original primal dual solver was run to high accuracy, D is very close to the identity. In practice,

we observe that the diagonal entries of D are usually within .01 of 1.

The primal variable x? is cleaned by solving ÃTx
?
T = y; this is unique, assuming AT has full

column rank. Alternatively, x? can be made arbitrary (e.g., hard thresholded, to give it a well-defined

support) and then y redefined as y = Ãx?. If the original problem was solved to high accuracy (in

which case D will have all positive entries), then the cleaning-up procedure does not affect the sign

of x?. The vectors x? and λ? are now optimal solutions to the basis pursuit problem using Ã and y.

The LASSO. The inequality constrained version of basis pursuit, called variously the LASSO or

basis pursuit denoising (BPDN), admits exact solutions in a similar fashion. The problem and its

dual are

minimize ‖x‖1
subject to ‖Ax− y‖2 ≤ ε,

maximize 〈y, λ〉 − ε‖λ‖2
subject to ‖A∗λ‖∞ ≤ 1.

(4.12.1)

Write z = y −Ax. At optimal solutions x?, λ?, z?, the KKT conditions hold:

‖z?‖2 ≤ ε, ATλ? ∈ ∂‖x?‖1, ‖ATλ?‖∞ ≤ 1, 〈λ?, z〉 = ε‖λ?‖2.

If the sub-gradient condition ATλ? ∈ ∂‖x?‖1 holds for some λ? and x?, then defining z = ε
‖λ?‖λ

?

will ensure that all the other KKT conditions hold. Modifying z is equivalent to modifying y.

In practice, given data A, y, and ε for which it is desired to have a known solution, a primal

dual solver runs to high (but not perfect) accuracy to generate λ? and x? so that ATλ? is almost

in ∂‖x?‖1. The primal variable x can be “cleaned-up” to a new version x? (e.g., hard-thresholded),

and then A is modified by a diagonal matrix Ã← AD so that now ATλ? ∈ ∂‖x?‖1 is exactly true.
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The variable z is set as above, implicitly defining ỹ.

Unconstrained variants. The unconstrained problem (4.1.7) (which is sometimes referred to as the

LASSO; to keep this distinct from (4.12.1), we call them the unconstrained LASSO and constrained

LASSO, respectively),

minimize 1
2‖Ax− y‖22 + λ‖x‖1, (4.12.2)

admits exact test problems in a fashion very similar to the BPDN formulation described above.

Here, λ is a fixed parameter, not a dual variable. We note that given an exact unconstrained LASSO

problem with data A, y, and λ, and known exact solution x?, you also have a BPDN problem with

known solution if the ε parameter in BPDN is set ελ = ‖Ax? − b‖2; the converse is also true,

i.e., given a BPDN problem with solution x?, the parameter of the unconstrained LASSO problem

is just ‖z‖∞.

We also remark on the very recent work [Lor11] which appeared a week before this thesis was

submitted. In that work, the author proposes a method for finding exact test problems for the

unconstrained LASSO. Given a desired solution x? and matrix A, the main burden is finding λ?

such that ATλ? ∈ ∂‖x?‖1, and several methods are proposed, such as solving a quadratic program.

One key benefit is that x? and A can be completely specified, but the downside is less control over

y.

One of the proposed methods in [Lor11] is finding a vector w such that ATλ = w and w ∈ ∂‖x?‖1.

Thus w is in the intersection of two convex sets: the range of AT and the subgradient set. The

projection onto convex sets (POCS) algorithm (i.e., alternating projection) method solves this,

provided the intersection is non-empty (which is not guaranteed if x? is chosen arbitrarily). A

suitable λw? can be recovered at the end by λ = A†w.

Using this POCS method, we propose a hybrid method to find a w in the two sets. The idea

is to use w = ATλ? as the initial guess. Thus instead of modifying the columns of A to make a

perturbed matrix, the dual solution λ? is perturbed to λw? . In practice, this works as well as the

initial perturbation idea, but without the drawback of perturbing A to Ã, and it works better than

using an arbitrary initial value for w since the residual Ax− b is changed less.

Other problems. For basis pursuit and the constrained LASSO, it is possible to obtain exact

solutions to the smoothed problem (with d(x) = 1
2‖x − x0‖22). For the Dantzig selector, an exact

solution for the smoothed problem can also be obtained in a similar fashion. To find an exact

solution to the unsmoothed problem, we take advantage of the exact penalty property from §4.3.4

and simply find the smoothed solution for a sequence of problems to get a good estimate of x0 and

then solve for a very small value of µ.
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Chapter 5

Conclusion

Since each chapter has its own conclusion, we conclude this thesis not with a summary, but with

possibilities for future work. Most of the issues raised by NESTA are addressed by the TFOCS

algorithm, so we do not discuss extensions of NESTA.

5.1 Future of A2I

The current chip is expected to be fully calibrated by Summer 2011, and this will give many new

insights into the design. The RMPI is necessarily a prototype chip and is programmable in many

ways, allowing us to modify it as necessary; future versions will be more streamlined and have better

performance. Since calibration is on-going, this is an active area of research, and new methods are

being tested weekly. The end-goal is not just an accurate calibration for academic purposes, but a

calibration scheme that is robust, easy, and fast.

The biggest advance in an A2I system would be a novel architecture that is specialized to receive

a specific signal class. For example, a pulse detection system that only needs to detect the presence

of a pulse, or perhaps only estimate a frequency, allows much more freedom than a system that tries

to reconstruct the input signal exactly. Putting a matched-filter system on-chip would be a major

step in this direction. Another ambitious target would be to implement special purpose coding

matrices, such as expander graphs, and decode on-chip in real-time. It may be possible to make an

adaptive system that uses a crude detection first-step in order to give information, in real-time, to

a second-stage system which “zooms” to the frequencies of interest.

Another hardware improvement would be to use different types of chipping signals. This is

governed by both theoretical considerations (a random sum of shifted sinc-like functions would

be nice) and by practical considerations, since the chipping signal should put as little strain on

the hardware as possible, and be as robust as possible to clock jitter. We note recent work on

improving the basic ±1 chipping signal [HBC11,ME09b], and the work of the modulated wide-band

converter [MEE09] which has many good ideas.
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For reconstruction, the NESTA and TFOCS algorithms have made large scale reconstructions

possible at an academic level, but real-time reconstruction is still far away. The best method to

achieve ultra-fast processing is with the compressive matched filter [ERW11], though the performance

degrades when the input signal is complicated, since the parameter space becomes large so the

algorithm slows down.

To improve the dynamic range of the system, it seems a tighter signal model is needed. Work on

model-based compressive sensing [BCDH10,Cev09] suggests tree-based models can improve recovery,

though the exact amount of improvement is likely to depend strongly on the specific signal class

involved. Using a reweighted scheme with weights picked in accordance with a hierarchical structure,

such as in [DWB08], is an obvious way to apply these models to `1 techniques without having to use

greedy methods. Other ways to improve the system performance is to exploit all prior knowledge of

the errors, such as estimating the covariance matrix of the noise, and using iterative algorithms to

reduce the effect of non-linearities and jitter [WG11].

Other work on recovery is to make the system capable of studying a continuous stream of data,

rather than a single window at a time. To this end, a windowing scheme will be essential, and the

exact details still need to be worked out.

5.2 Improvements to TFOCS

Our biggest goal for TFOCS is to develop a robust convergence theory of the accelerated continuation

scheme. This is not of just theoretical interest, but is also useful in practice since it may suggest

what value to set the smoothing parameter µ, and determine what the stopping tolerance of the

inner iterations should be. Ultimately, the user should not need to provide any parameters. The

specialized line search has already obviated the need for a step-size parameter, and we are close to

finding an automatic way to determine when to restart the algorithm.

Certain special problems, such as matrix completion, provide many avenues for future research.

The SVD computation in matrix completion only requires the singular vectors that correspond

to singular values above a given threshold, so the entire SVD is not needed. We predict that

randomized linear algebra will play a big role in speeding up computations. Due to non-negligible

errors, optimization algorithms need to gracefully accept approximate computation of gradients and

still guarantee convergence.

We plan to continue support of the software package and incorporate new solvers, such as BFGS

and Douglas-Rachford. “Splitting methods” such as Douglas-Rachford, though not well-known in

some communities, may be very efficient at certain problems. Other planned improvements include

automatic diagonal scaling to improve performance on “stiff” problems, and perhaps incorporating

the solvers into a modeling environment like CVX [GB10] or porting the software to a free language
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like R or Python.
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