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Abstract

In animal motor control and locomotion, neurons process information, muscles are the actuators,

and the body is the plant. Control theory is the standard mathematical language for describing

motor control and locomotion, but many phenomena in physiological control remain outside of the

scope of control theoretic reasoning. Unlike traditional engineering control systems, nearly all the

components of physiological control systems have complex dynamics. Instead of a fast centralized

computer, an animal implements controllers using a distributed network of slow, nonlinear, and

noisy neurons. Rather than having linear plants and actuators, the animal must control limbs with

nonlinear and hybrid dynamics.

This dissertation develops basic control theory motivated by physiological systems. Dynamical

phenomena that arise in physiology but remain outside the scope of mathematical methods are

isolated and studied in general control theoretic frameworks. In particular, three problems are

discussed: distributed linear quadratic Gaussian (LQG) control with communication delays, control

over communication channels modeled after spiking neurons, and Zeno stability of hybrid systems.

Motivated by the presence of delays in the human motor system, Chapter 2 explores the architec-

ture of distributed LQG controllers when communication between subsystems is limited by delays.

Sensory and motor command information is processed in several different regions throughout the

nervous system. Since processing speed in neurons is limited, information from different sensory and

motor regions can only be integrated after a time delay. In spite of this difficulty, humans make

efficient and reliable motions that are well-described by optimal feedback control. Optimal delay

compensation is studied in a distributed LQG framework. The structure that emerges as the result

of optimization resembles a management hierarchy, bearing similarities with the organization of the

motor system.

Networked control systems, in which communication between the controller and the plant occurs

over a special neuron-inspired channel, are analyzed in Chapter 3. In addition to being the basic

computing elements, neurons are the long-range communication channels of the body. Neurons

transmit information in the form of short-lived voltage spikes, called action potentials. Sufficient

conditions for stable control over the spiking channel are presented, along with bounds on tracking

error and data rates.



vii

The final technical chapter studies the connections between Zeno behavior and Lyapunov stabil-

ity. Zeno behavior occurs in a hybrid system when an infinite number of discrete transitions occurs

in a finite amount of time. While Zeno behavior results from modeling abstractions, it is com-

monly observed in models of mechanical systems undergoing impacts, including models important

for locomotion. Often, Zeno behavior is associated with dynamical mode transitions, such as knee

locking and the transition between bouncing and sliding. To reason about such transitions without

modifying the models, the chapter on hybrid systems gives Lyapunov-like sufficient conditions for

Zeno behavior. A technique for constructing the Lyapunov-like certificates is presented for a general

class of mechanical systems undergoing impacts.
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Chapter 1

Introduction

To make progress in any field, easy problems must be mastered first. Traditional control systems are

typically actuated with components such as motors and jet engines that have simple input-output

behavior. Likewise, vehicles such as cars and airplanes are designed to follow simple trajectories.

Including more complex components or requiring elaborate behavior increases the difficulty of de-

sign, construction, and testing. If the components and behavior of a system become too complex to

accurately characterize, undesirable behavior could result. If an airplane is designed to safely trans-

port people from city to city, emphasis should be placed on reliable, well-characterized behavior. In

this case, there is little reason to consider more complex components, such as flapping wings.

Just as the physical components of engineering control systems are typically designed for sim-

plicity and reliability, so are the computational and communication structures. While control theory

has roots that predate computers, digital implementations of control laws quickly became standard.

In the traditional application domains for control, such as the military and aerospace industries,

digital control confers many benefits. Computers can be easily programmed and reprogrammed,

eliminating the need to modify circuitry each time the control laws are changed. Digital computa-

tion is also more reliable than analog circuitry. Compared to the cost of keeping a jet in the air, the

computational energy required for implementing control laws is tiny. Thus, for many of the driv-

ing applications of control, there is little incentive to keep computational costs low, or to consider

computing architectures other than high-speed digital computers. Similarly, communication within

common control systems, like vehicles, occurs via high-speed, noise-resistant wiring. Again, because

of the comparatively low cost of good wires and the high cost of failure, there is little incentive to

explore low cost alternatives to wires that may be slower and less reliable.

In contrast, animal motor control and locomotion are characterized by numerous hardware con-

straints that are absent from traditional control applications. Despite hundreds of millions of years

of evolution, producing animals with wide variations in features and form, animals have not grown

wheels, propellers, or jet engines. To move about, animals walk on legs, swim with fins, and fly by

flapping wings. In contrast to wheels, legs have complex nonlinear and hybrid dynamics. Similarly,
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animals process information with brains composed of neurons, as opposed to digital computers. In

contrast to digital computers used for control, neurons are slow, noisy, and highly parallelized.

Industrial applications have been instrumental in the development of control theory. Without

simple application problems and cheap digital computation, it is unlikely that control theory would

be as sophisticated and successful as it is today. Unfortunately, many physiological phenomena are

too still complex for tractable control theoretic analysis.

1.1 Objective and Approach

This thesis develops results in basic control theory, motivated by physiological systems. Much more

research has been devoted to applying control theory to physiological systems than has been devoted

to developing new control theoretic results from physiological considerations (Figure 1.1). This sit-

uation fits with the view that scientific information flows linearly from more general fields to less

general (chemistry is applied physics, biology is applied chemistry, etc.). Of course, scientific devel-

opment is not so simple, and a theory is only as good as the examples it describes. As described

above, control theory developed in parallel with its engineering applications, which have been de-

signed to avoid many of the inherent difficulties of physiology. To increase the scope of control

theoretic reasoning, this dissertation advocates the development of basic control theory to explain

physiological phenomena that are typically overlooked in engineering. While physiologically inspired

control theory is not a new idea (see, for example [4, 5]), a large number of interesting problems

remain to be explored.

Each of the main chapters focuses on a single physiological phenomenon and studies its theoretical

implications in isolation. The phenomena are isolated for theoretical tractability, at the expense of

biological realism. It is hoped that understanding dynamic phenomena in isolation can lend insight

into the behavior of physiological systems.

1.2 Problems and Contributions

The results in this thesis are divided into three, essentially independent, technical chapters, which can

be read in any order. Chapters 2 and 3 study feedback control problems motivated by neuroscience.

Chapter 4 studies a hybrid system phenomenon, known as Zeno behavior, motivated by locomotion

problems.

1.2.1 Distributed Optimal Control and the Motor System

Imagine a baseball player running to catch a fly ball. Motor commands to the arms and legs must

be coordinated with visual data about the ball’s trajectory. Throughout the process, information
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Control Theory 
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Well 
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Focus of  
dissertation 

Figure 1.1: A great deal of work applies control theoretic methods to physiological problems. Con-
siderably less work has been done to derive new control theory to explain physiology. As a result,
physiological phenomena that do not resemble traditional control theoretic models are difficult to
analyze. This dissertation presents basic results in physiologically motivated control theory.

Motor Cortex 

Spinal Cord 

Sensory 
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Brain 
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Figure 1.2: The motor system is a hierarchical control system with three main levels, the spinal
cord, the brain stem, and the motor cortex. The cerebellum, basal ganglia, and thalmamus are
brain regions providing feedback between the levels. Sensory information is integrated with motor
commands at every level of the hierarchy.
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from stretch receptors in the muscles must be combined with data from the inner ear to keep the

player from falling. The information is processed by a hierarchical neural controller called the motor

system (Figure 1.21). All of the subsystems of the motor hierarchy, and all the connections between

them are composed of neurons. Neurons process and transmit information rather slowly, and thus

there are noticeable delays between the various subsystems of the motor system.

To gain a better understanding of how the motor system produces reliable and precise movements

in spite of delays, Chapter 2 examines the structure of optimal distributed controllers for systems

with communication delays. In the particular problem studied, a group of players works together to

solve a linear quadratic Gaussian (LQG) control problem. Each player can directly measure a part

of the state, but they can only communicate their state information with delays.

Contributions. While the problem studied in Chapter 2 has been solved by semidefinite pro-

gramming [6], the structure of the optimal controllers is not apparent from the solution. The main

contribution of Chapter 2 is the derivation of the explicit structures of the optimal distributed con-

trollers, through a novel dynamic programming argument. A graphical structure, reminiscent of

a management hierarchy, emerges from the optimization (Figure 1.3). At the lowest level, players

have immediate access to local state information. After a delay the state information of neighboring

workers is integrated at the next level up by a manager. At the top level, an executive integrates

all of the information from the managers, after another delay. For control, the executive applies

the standard linear quadratic regulator gain to the delayed state. The managers and workers then

apply corrections to the input based on their newer state information. A computationally efficient

algorithm to construct the hierarchical optimal controller is given for a broad class of systems with

delays.

Though more work is needed to strengthen the connection between distributed LQG and the

motor system, the structural results are promising. Indeed, there is already a basic resemblance

in the organization: a hierarchical control scheme with sensory data integrated at all levels, with

varying amounts of delay. In order to further the connection, observations from motor control

experiments and anatomical knowledge must be incorporated into the theory developed in Chapter

2.

1.2.2 Spiking Neurons in Feedback Loops

In addition to being the computing elements, neurons are also the long range communication channels

of the body. The main components of the neuron are sketched in Figure 1.42. Input currents at

1Reproduced with permission of The McGraw-Hill Companies from Kandel et al, Principles of Neural Science, 3rd
Edition c©1992, Elsevier [7].

2This picture was modified from http://commons.wikimedia.org/wiki/File:Neuron.svg, which is an image from the
Public Domain work “Anatomy and Physiology” by the US National Cancer Institute’s Surveillance, Epidemiology and
End Results (SEER) Program., redrawn by User Dhp1080. It is available under the Creative Commons Attribution-
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 Manager 
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Worker 

Worker 

Figure 1.3: Schematic interpretation of the optimal controllers from Chapter 2. At the leftmost
nodes of the graph, the workers have exact, up-to-date, knowledge of a portion of the state of the
system. They do not, however, have access to information known to the other workers. The workers
then communicate their states with a delay to the managers at the next level up. In this example,
each manager knows the states of two of workers, but its information is one time step old. Finally,
the managers give their knowledge of the state to the top-level executive. So, the executive knows
the state of the whole system is, at a delay of two time steps. The optimal control policy is such
that the executive applies a centralized control law to its old, global data, while the managers and
workers use the newer information to reduce errors caused by the delays.

the dendrites increase or decrease the voltage across the cell membrane. When the voltage across

the membrane reaches a threshold value, it rapidly increases, producing a spike, called an action

potential (Figure 1.5). The action potential travels across the axon, producing outputs at the axon

terminals.3 All of the information sent through a neuron is encoded in the rate and timing of the

spikes [7, 8].

Chapter 3 studies feedback control over communication channels modeled after spiking neurons.

Communication in control systems, such as the connections between the plant and the controller, is

typically assumed to occur instantaneously over wires. Even if a communication channel is explicitly

modeled in a control system, it is typically assumed that the channel transmits packets of numerical

data at periodically sampled time intervals. In contrast, neural communication employs no periodic

sampling, and the individual spikes carry no numerical information. The numerical information

must be encoded in spike rates and spike timing.

Contributions. The main contribution of Chapter 3 is the stability analysis for networked control

systems in which the plant and the controller communicate via a spiking mechanism. Bounds on

tracking error and spike rates are also derived.

Share Alike 3.0 Unported license.
3This description is highly simplified. See [7] for a more precise discussion.
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Figure 1.4: A basic neuron. The neuron takes inputs at the dendrites, sends signals down the axon,
and produces outputs at the axon terminals.
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Figure 1.5: A simulation of the membrane potential (the voltage across the cell membrane) in
response to current steps. Note that for small currents, no spikes occur. For sufficiently large
currents, spikes can occur. As the current increases the rate of spiking increases.

The relationship between networked control and neuroscience is natural, but largely unexplored.

Indeed, a great deal of neurons function as communication channels in feedback loops. The connec-

tion can be studied further by relating the coding strategies in neural control systems, such as the

motor system, to engineering approaches to networked control.

1.2.3 Zeno Behavior and Lyapunov Stability

Locomotion behaviors are best modeled by nonlinear hybrid systems. Human limbs move by rotating

bones around joints, resulting in inherently nonlinear dynamics. Furthermore, in locomotion, the

limbs undergo impacts and the body moves through several different dynamic modes (such as having

both feet down, or one foot down and the other swinging).

Motivated by problems in locomotion, bipedal walking, in particular, Chapter 4 studies a phe-
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Figure 1.6: A simple knee joint model is given by a double pendulum with a mechanical stop.
When the lower leg reaches the stop it rebounds based on Newtonian impact equations. Impacts
are denoted by an “x” on the figure. Zeno behavior is observed as the knee converges to a locked
position (on the right).

nomenon of hybrid systems known as Zeno behavior. Zeno behavior arises when an infinite number

of discrete transitions occur in a finite amount of time. Many models of mechanical systems under-

going impacts, such as the bouncing ball and simple knee joint models (Figure 1.64), display Zeno

behavior. While Zeno behavior is typically the result of modeling abstractions, and does not occur

in reality, it is often associated with transitions between dynamical modes in physical systems. For

instance, in bouncing ball models, Zeno behavior occurs at the transition between bouncing and slid-

ing, while in the knee joint model, Zeno behavior occurs as the knee converges to a locked position.

Perhaps less obviously, Zeno behavior is closely related to Lyapunov stability. In the one-dimensional

bouncing ball, all trajectories exhibit Zeno behavior as they converge to a resting position. More

interestingly, all trajectories starting sufficiently close to certain locked configurations of the knee

joint model of Figure 1.6 exhibit Zeno behavior and converge to nearby locked configurations.

Contributions. The main contribution of Chapter 4 is the development of the connection between

Zeno behavior and Lyapunov stability, and in particular, Lyapunov-like sufficient conditions for

Zeno behavior. A general method for constructing the Lyapunov-like certificates is given for a class

of models for mechanical systems undergoing impacts. That construction is then used to derive

algebraic sufficient conditions for Zeno behavior in the mechanical models.

The work in Chapter 4 restricts the class of hybrid systems studied in order to isolate the

mechanisms causing Zeno behavior. To extend the range of applicability of the work in Chapter 4,

these restrictions must be weakened or removed. Work to this end is already under way [9, 10], and

the results in Chapter 4 have since been applied in bipedal walking applications [11].

4Generated using code from Yizhar Or.



8

Chapter 2

Distributed LQG with
Applications to Management and
Human Motor Control

2.1 Introduction

Imagine a large event, such as a conference, is being planned. A group of people must move chairs

and tables, prepare and serve food, and set up audio-visual equipment. In addition, typically, there

are also people who do little or none of the physical work, but whose main function is coordination.

Someone oversees the food, while someone else might coordinate the audio-visual equipment. At

the top level, there is often an individual, or group, that manages the coordinators. Management

hierarchies, such as the one just described, are common, even though they are not actually necessary

to perform the actions needed for the event.

On the other hand, consider one of the most familiar motor coordination tasks: walking. Sensory

data from the eyes, inner ear, and muscles gets integrated with motor commands to produce robust,

efficient locomotion. Of course, all communication occurs over neurons, which are rather slow. Given

constraints on communication speed, what optimal strategy arises?

This chapter studies how hierarchical control structures can arise as optimal methods to deal with

communication delays. While the problem studied is a simple variant of distributed linear quadratic

Gaussian (LQG) control, the results have some intuitive similarities with the event planning and

walking examples discussed above. In the problems studied, a group of players works together

to minimize a quadratic cost. The players have access to local state information, but can only

communicate their state with a delay. This chapter shows that for such problems, a hierarchical

control structure emerges as the optimal strategy. In particular, the optimal controller can be

decomposed based on a hierarchical graph structure in which the lowest level nodes represent the

players (which do the physical work), while higher level nodes are used for coordination (Figure 1.3).
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2.1.1 Related Work

The focus of this chapter, LQG control with communication delays, is a basic problem in distributed

or decentralized control. Decentralized control has a long history, [12, 13, 14, 15, 16], but compu-

tationally tractable solutions to nontrivial problems have been rare, until recently. Notably, in the

past ten years, certain decentralized optimal control problems were shown to be convex [17, 18].

More recently, computationally efficient solutions to some of the convex problems have been found

[6, 19, 20, 21, 22]. Of the work cited, Rantzer’s paper on linear quadratic teams is the most closely

related [6]. In this paper, Rantzer solves the problem studied in this chapter using semidefinite

programming (SDP), but does not explore the structure of the solution. The solution techniques

used in this chapter are closely related to the dynamic programming methods used in [21]. Also

related are the works of [14, 15, 16], which give solutions to the problem of Section 2.3. The work

in Section 2.3 differs from these works, in that it naturally leads to generalizations.

2.1.2 Motivation

The main motivation for studying the present problem is neural motor control. Humans effortlessly

execute motor control tasks such as walking, tool manipulation, and speech. Other animals can fly,

run, and swim with greater efficiency, precision, and reliability than the best engineered systems.

Furthermore, the data processing is carried out by a massively distributed network of noisy, and

rather slow neurons. Motor control research aims at discovering the strategies employed by humans

and other animals to execute control tasks. While animals are not expected to be using the ex-

act control strategies from engineering, interpreting experimentally observed behavior in terms of

established control theory has been fruitful.

In the past few decades, ideas from optimal control [23, 24, 25, 26, 27, 28] and estimation

[29, 30, 31, 32] have influenced theories about neural motor control systems. Optimal control has

been proposed to explain why humans and animals execute the particular trajectories that are

observed. Ideas from estimation are used to describe how the brain integrates sensory data with

motor commands.

While the nervous system is a distributed system, aside from a few works such as [33, 34, 35],

most studies of feedback in motor control focus on centralized controllers. Luckily, the confluence

of theory and experiment have created a good environment to explore decentralized controllers in

neural systems. In the past decade, control theoretic ideas have been applied to motor control with

increasing sophistication. (See, for example [25, 27, 28, 30].) Centralized controllers provide good

explanations for much of the motor behavior observed in humans and animals, but in order to reason

about information processing across the motor control hierarchy (see Figure 1.2), decentralized

control must be used. As discussed in the previous subsection, recent theoretical advances show
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that optimal decentralized controllers can be efficiently computed for some nontrivial systems.

This chapter attempts to drive the theory of distributed and decentralized control towards motor

control applications. In particular, this chapter studies optimal control with communication delays,

with the hope that the resulting control structures might lend intuition to the structures used to

compensate for delays in neural control systems.

2.1.3 Contributions

Given the focus on intuition, the primary contribution of this chapter is the explicit structure of

the optimal controllers found. Even though a computationally efficient solution for the problem is

already known from [6], no hierarchical structure is evident from the corresponding SDPs. Using a

novel derivation, this chapter shows that by simply assuming that communication between players

is delayed, a control hierarchy arises as the optimal solution. The control structure has a simple

management interpretation, but also gives intuition about hierarchies in neuroscience. Furthermore,

a computationally efficient method for constructing the the hierarchical controller is provided for a

general class of delay structures.

While not emphasized in the chapter, the method for computing the optimal controllers from

this chapter appears to be more efficient than the method from [6]. The computational savings

arise from the fact that the only numerical optimization required is the solution of a single Riccati

equation that depends on the total state dimension but not the number of players. The method

from [6], on the other hand, relies on an SDP that grows both in state dimension and in the number

of players.

2.1.4 Overview

The chapter is structured as follows. Section 2.2 defines the general problem studied. Section 2.3

gives a full solution for a special case termed the two-player problem. This section develops basic

ideas on decoupling information into independent terms, and the associated dynamic programming

problem. Comparisons to centralized control and a numerical example of pole balancing are also

given in Section 2.3. Next, Section 2.4 presents a solution to the general problem of the chapter, based

on ideas from Section 2.3. To solve this problem, a systematic method for decoupling information

based on how it is shared by the players is introduced. Conclusions and future work are outlined in

Section 2.5. The basic results and definitions for partially nested systems are given in the appendix

to this chapter, Section 2.6. This section is included to justify the assumption that the controllers

of this chapter are linear.
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Figure 2.1: A delay structure graph with four nodes. Each edge corresponds to a single step delay.
So, one time-step is required for information to travel between nodes 1 and 2. Two time-steps are
needed for information to travel from node 1 to node 3, and so on. Associated to each node i is a
player which chooses an input ui.

2.2 Problem Statement

Notation. The expected value of a random variable, x, is denoted by E[x]. The conditional

expectation of x given y is denoted by E[x|y]. Let x(0 : t) denote the stacked sequence of vectors:

x(0 : t) =




x(0)

x(1)
...

x(t)



.

Consider a directed graph G = (V,E) with |V | = n, called a delay structure graph. Throughout

this section, the graph in Figure 2.1 will be used as an example. It is assumed that one time-step

is required for any piece of information to travel across an edge in the delay graph. Thus, if the

shortest path from node i to node j has length d, then d time-steps are required for information to

flow from node i to node j.

Associate a state vector xi ∈ Rki , an input vector ui ∈ Rpi , and a process noise vector wi ∈ Rki

to each node in i ∈ V . The state vector is updated according to the following discrete-time dynamic

equations:

xi(t+ 1) = Aiixi(t) +
∑

{j:(j,i)∈E}

Aijxj(t) +Biiui(t) + wi(t). (2.1)

In Equation (2.1), Aij and Bii are matrices of appropriate dimension.

For all (i, j) /∈ E, let Aij be the zero matrix of dimension ki × kj . Then define the matrices A

and B by

A =




A11 · · · A1n

...
. . .

...

An1 · · · Ann


 , B =




B11

. . .

Bnn


 .
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By stacking xi, ui, and wi into larger vectors,

x =




x1

...

xn


 , u =




u1

...

un


 , w =




w1

...

wn


 ,

Equation (2.1) can be written in the more compact form,

x(t+ 1) = Ax(t) +Bu(t) + w(t). (2.2)

For the graph in Figure 2.1, A has the structure

A =




A11 A12 0 0

A21 A22 0 A24

0 A32 A33 0

0 0 A43 A44



.

To see how information flows around the graph based on the structure of A, consider a vector w

with sparsity pattern given by

w =




0

0

∗
0



.

The ∗ is used to indicate that the particular value of w is not important.

w =




0

0

∗
0



, Aw =




0

0

∗
∗



, A2w =




0

∗
∗
∗



, A3w =




∗
∗
∗
∗



.

Returning to the general case, it will be assumed that x(0) = 0 and (A,B) is stabilizable. The

process noise is Gaussian white noise, with terms corresponding to different nodes assumed to be

uncorrelated: E[wiw
T
j ] = 0, when i 6= j. So the covariance of the noise, w, is given by

E[wwT ] =




W1

. . .

Wn


 .
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Assume that the graph G is strongly connected. Let dii = 0, and let dij be the length of the

shortest path from node i to node j. The control problem is to minimize

lim
t→∞

E
[
x(t)TQx(t) + u(t)TRu(t)

]
(2.3)

with inputs of the form

ui(t) = γi,t(x1(0 : t− d1i), . . . , xn(0 : t− dni)), (2.4)

where γi,t are Borel-measurable functions to be chosen in the optimization procedure.

For the graph in Figure 2.1, the constraints on the input are given by

u1(t) = γ1,t(x1(0 : t), x2(0 : t− 1), x3(0 : t− 3), x4(0 : t− 2))

u2(t) = γ2,t(x1(0 : t− 1), x2(0 : t), x3(0 : t− 2), x4(0 : t− 1))

u3(t) = γ3,t(x1(0 : t− 2), x2(0 : t− 1), x3(0 : t), x4(0 : t− 2))

u4(t) = γ4,t(x1(0 : t− 3), x2(0 : t− 2), x3(0 : t− 1), x4(0 : t)).

The weight matrices Q and R are assumed to be partitioned into blocks, Q = (Qij)i,j∈V and

R = (Rij)i,j∈V , conforming to the partitions of x and u, respectively. The matrix Q is positive

semidefinite, and R is positive definite. To guarantee a stabilizing solution to the corresponding

algebraic Riccati equation, (
√
Q,A) will be assumed to be detectable. Aside from that, no other

assumptions are made about Q and R.

In the deriving the optimal controller, the following finite-horizon variant of the control problem

is studied. Minimize

E

[
N−1∑

t=0

(
x(t)TQx(t) + u(t)TRu(t)

)
+ x(N)TΛx(N)

]
(2.5)

with inputs of the form of Equation (2.4). Here Λ is a positive semidefinite matrix of appropriate

dimensions, corresponding to a terminal cost. If Λ is positive definite, then as N →∞, the optimal

controller for this finite-horizon problem approaches the steady-state controller.

Note that the assumptions about the structure of input and the sparsity structures of A and B

guarantee that communication between the players choosing ui occurs as least as fast as information

travels through the plant. As explained in the appendix to this chapter (Section 2.6), this assumption

implies that the information structure (the set of input constraints) is partially nested, which in turn

implies that optimal inputs are linear in the associated information. In [6], the condition on the

communication delays is described by saying that there is no incentive to signal through the plant.
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Figure 2.2: Two-player graph

The assumption is also closely related to the quadratic invariance condition of [18].

2.3 Two-Player Problem

In order to demonstrate the main ideas of the problem solution without the notational details, this

section studies the simplest nontrivial instance, referred to as the two-player problem.

The two-player problem is the special case of the problem in this chapter defined by the graph

in Figure 2.2. For the two-player problem, the state matrices have sparsity structure

A =


A11 A12

A21 A22


 , B =


B11 0

0 B22


 ,

and inputs are restricted to the form

u1(t) = γ1,t(x1(0 : t), x2(0 : t− 1)) (2.6)

u2(t) = γ2,t(x1(0 : t− 1), x2(0 : t)).

These constraints on the inputs are often referred to in the literature as the “one-step delay infor-

mation pattern.”

The process noise w(t) is Gaussian white noise with covariance given by

E[wwT ] = E




w1

w2



[
wT1 wT2

]

 =


W1 0

0 W2


 .

Dynamic programming solutions for the two-player problem have been known since the 1970s

[14, 15, 16]. The approaches in the cited work are all rather direct and it is not immediately clear

how to generalize them to other delay structures. The method of this section is to decompose

the information into independent components, a priori, and use this decomposition to decouple the

dynamic programming problem into independent subproblems. Later, in Section 2.4, it will be shown

how this information decoupling method extends naturally to the general problem of this chapter.

The section is organized as follows. First the optimal controller is presented in Subsection

2.3.1. Subsection 2.3.2 derives the optimal solution to a finite-horizon version of the optimal control

problem. Next,the optimal controller is derived in Subsection 2.3.3 by applying a limiting argument.

To place the results of this section in the context of classical results, the properties of the two-player
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controller are compared with centralized controllers in Subsection 2.3.4. Finally, to recap the ideas

in a concrete setting, Subsection 2.3.5 applies results of this section to a pole balancing problem.

2.3.1 Two-Player Problem: Optimal Solution

This subsection presents the optimal solution to the steady state minimization for the two-player

problem.

In order to find a structure for the optimal controller, decompose x(t) into three independent

terms

x(t) =


ζ1(t)

ζ2(t)


+ x̂(t),

where x̂(t) = E[x(t)|x(0 : t− 1)]. Since the input u(t− 1) depends on x(0 : t− 1), it follows that

x̂(t) = Ax(t− 1) +Bu(t− 1)

ζ1(t) = w1(t− 1)

ζ2(t) = w2(t− 1).

Thus x̂(t), ζ1(t), and ζ2(t) are, indeed, pairwise independent. The term x̂(t) denotes the expected

value of x(t) given the information shared by both player 1 and player 2. The term ζ1(t) depends on

the information available only to player 1, and similarly ζ2(t) depends on the information available

only to player 2.

Furthermore, note that there are some matrices M1(t) and M2(t) such that x̂1(t) = M1(t)x(0 :

t − 1) and x̂2(t) = M2(t)x(0 : t − 1). It follows that there is an invertible linear mapping between

[ζ1(t)T , x(0 : t− 1)T ]T and [x1(t)T , x(0 : t− 1)T ]T :


 ζ1(t)

x(0 : t− 1)


 =


x1(t)− x̂1(t)

x(0 : t− 1)


 =


x1(t)−M1(t)x(0 : t− 1)

x(0 : t− 1)


 =


I −M1(t)

0 I




 x1(t)

x(0 : t− 1)




Similarly 
 ζ2(t)

x(0 : t− 1)


 =


I −M2(t)

0 I




 x2(t)

x(0 : t− 1)


 .

Therefore, if u1(t) can be shown to be a function of ζ1(t) and x(0 : t − 1) (or a function of ζ1(t)

and x̂(t) in particular), then it must satisfy the information constraint of Equation (2.6). Similarly

if u2(t) is a function of ζ2(t) and x(0 : t − 1) (or a function of ζ2(t) and x̂(t)), then it satisfies the

information constraint.

Theorem 1. There exist matrices K, H1, H2, X1, and X2, such that the optimal controller for the
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two-player problem is given by

u(t) = −


H1ζ1(t)

H2ζ2(t)


−Kx̂(t),

and the optimal cost is given by

Tr(W1X1) + Tr(W2X2).

Remark 1. The input −Kx̂(t) could be interpreted as a command sent by a “manager” based

information x(0 : t − 1). Player 1 then applies a correction term −H1ζ1(t), based on information

unavailable to the “manager.” Similarly, −H2ζ2(t) represents player 2’s correction term.

The gains, as well as the costs are specified by the stabilizing solution to the algebraic Riccati

equation, S:

S = Q+ATSA−ATSB(R+BTSB)−1BTSA.

For more compact notation, define the block columns of A and B as

[
A1 A2

]
=


 A11 A12

A21 A22


 ,

[
B1 B2

]
=


 B11 0

0 B22


 . (2.7)

The gains are then given by

K = (R+BTSB)−1BTSA

H1 = (R11 +BT1 SB1)−1BT1 SA1

H2 = (R22 +BT2 SB2)−1BT2 SA2,

and the cost matrices, X1 and X2, are given by

X1 = Q11 +AT1 SA1 −AT1 SB1(R11 +BT1 SB1)−1BT1 SA1

X2 = Q22 +AT2 SA2 −AT2 SB2(R22 +BT2 SB2)−1BT2 SA2.

The mapping from x to u can be rearranged to give a dynamic state-space controller in the

standard form:

x̂(t+ 1) = B




H1 0

0 H2


−K


 x̂(t) +


A−B


H1 0

0 H2




x(t)

u(t) =




H1 0

0 H2


−K


 x̂(t)−


H1 0

0 H2


x(t).
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Note that the direct feedthrough term is block diagonal, which is required since u1(t) cannot depend

on x2(t) and u2(t) cannot depend on x1(t).

2.3.2 Two-Player Problem: Finite-Horizon Derivation

In order to derive the optimal controller, the finite-horizon version, with cost given by Equation 2.5,

will be solved, and the infinite-horizon version follows by taking limits.

The following lemma shows how an input structure based on the distribution of information

between the players can be assumed.

Lemma 1. The optimal input can be decomposed as

u(t) =


ϕ1(t)

ϕ2(t)


+ û(t),

where ϕ1(t), ϕ2(t), and û(t) are independent random variables which are linear functions of ζ1(t),

ζ2(t), and x(0 : t− 1), respectively.

Proof. By Lemma 5 in the appendix to this chapter, the information structure given by u1(t) =

γ1,t(x1(0 : t), x2(0 : t − 1)) and u2(t) = γ2,t(x1(0 : t − 1), x2(0 : t)) is partially nested. Thus, by

Theorem 4 in the appendix to this chapter, the optimal inputs must be linear functions of relevant

information. Note that (x1(0 : t), x2(0 : t−1)) is just a rearrangement of terms in (x(0 : t−1), x1(t)).

Furthermore, it was shown above that there is an invertible linear transformation between (x(0 :

t− 1), x1(t)) and (x(0 : t− 1), ζ1(t)). Therefore, there is an invertible linear transformation between

(x1(0 : t), x2(0 : t − 1)) and (x(0 : t − 1), ζ1(t)). Likewise, there is an invertible transformation

between (x1(0 : t − 1), x2(0 : t)) and (x(0 : t − 1), ζ2(t)). It follows that there are matrices Γ1(t),

Γ2(t), χ1(t), and χ2(t), such that

u1(t) = Γ1(t)x(0 : t− 1) + χ1(t)ζ1(t)

u2(t) = Γ2(t)x(0 : t− 1) + χ2(t)ζ2(t).

The proof is completed by defining

û(t) =


Γ1(t)

Γ2(t)


x(0 : t− 1),

ϕ1(t) = χ1(t)ζ1(t), and ϕ2(t) = χ2(t)ζ2(t).

Independence of the terms follows from the pairwise independence of x(0 : t−1), ζ1(t), and ζ2(t).
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The lemma combined with the decomposition of the state in terms of x̂, ζ1, and ζ2 implies that

the summand of the cost function can be decomposed as

E
[
x(t)TQx(t) + u(t)TRu(t)

]
= E

[
x̂(t)TQx̂(t) + û(t)TRû(t)

]

+E
[
ζ1(t)TQ11ζ1(t) + ϕ1(t)TR11ϕ1(t)

]
(2.8)

+E
[
ζ2(t)TQ22ζ2(t) + ϕ2(t)TR22ϕ2(t)

]
.

The solution will proceed via a dynamic programming argument. Let E[J(x̂, ζ1, ζ2, t)] denote the

optimal expected cost-to-go function, when the state is decomposed as x̂, ζ1, and ζ2 at time t. By

independence, E[J(x̂, ζ1, ζ2, N)] can be decoupled as

E[J(x̂, ζ1, ζ2, N)] = E
[
x̂TΛx̂

]
+ E

[
ζT1 Λ11ζ1

]
+ E

[
ζT2 Λ22ζ2

]
.

Let S(N) = Λ, X1(N) = Λ11, and X2(N) = Λ22. For t ≤ N , it will be shown that J(x̂, ζ1, ζ2, t) has

the form

J(x̂, ζ1, ζ2, t) = x̂TS(t)x̂+ ζT1 X1(t)ζ1 + ζT2 X2(t)ζ2 +

N∑

j=t+1

(Tr(W1X(j)) + Tr(W2Y X2(j))) , (2.9)

for some matrices S(t), X1(t), and X2(t) to be specified.

Inductively assume that J(x̂, ζ1, ζ2, t+1) has the form given in Equation (2.9). Then E[J(x̂, ζ1, ζ2, t)]

is given by the Bellman equation:

E[J(x̂, ζ1, ζ2, t)] = min
û,ζ1,ζ2

E
[
xTQx+ uTRu+ J(Ax+Bu,w1, w2, t+ 1)

]
.

Note that J(Ax+Bu,w1, w2, t+ 1) can be expanded as

J(Ax+Bu,w1, w2, t+ 1) = (Ax+Bu)TS(t+ 1)(Ax+Bu) (2.10)

+wT1 X1(t+ 1)w1 + wT2 X2(t+ 1)w2 +

N∑

j=t+2

(Tr(W1X1(j)) + Tr(W2X2(j))).

The expected value of the second line in Equation (2.10) can be grouped as

N∑

j=t+1

(Tr(W1X1(j)) + Tr(W2X2(j))).

Recalling the expansion of x in terms of x̂, ζ1, and ζ2 and the expansion of u in terms of û,

ϕ1, and ϕ2, the expected value of the first term on the right-hand side of Equation (2.10) can be
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expanded further as follows:

E[(Ax+Bu)TS(t+ 1)(Ax+Bu)] = E[(Ax̂+Bû)TS(t+ 1)(Ax̂+Bû)] (2.11)

+E
[
(A1ζ1 +B1ϕ1)

T
S(t+ 1) (A1ζ1 +B1ϕ1)

]

+E
[
(A2ζ2 +B2ϕ2)

T
S(t+ 1) (A2ζ2 +B2ϕ2)

]
.

Here A1, A2, B1, and B2 are the block columns defined in Equation (2.7). Note that in the expansion,

independent cross terms are set to zero.

Combining Equations (2.8) and (2.11) shows that the right-hand side of the Bellman equation

can be decomposed into three independent minimizations, plus a constant term:

min
û,ζ1,ζ2

E
[
xTQx+ uTRu+ J(Ax+Bu,w1, w2, t+ 1)

]
=

min
û

E
[
x̂TQx̂+ ûTRû+ (Ax̂+Bû)TS(t+ 1)(Ax̂+Bû)

]
+

min
ϕ1

E
[
ζT1 Q11ζ1 + ϕT1 R11ϕ1 + (A1ζ1 +B1ϕ1)TS(t+ 1)(A1ζ1 +B1ϕ1)

]
+

min
ϕ2

E
[
ζT2 Q22ζ2 + ϕT2 R22ϕ2 + (A2ζ2 +B2ϕ2)TS(t+ 1)(A2ζ2 +B2ϕ2)

]
+

N∑

j=t+1

(Tr(W1X1(j)) + Tr(W2X2(j))).

Quadratic minimization shows that the optimal inputs are given by

û(t) = −K(t)x̂(t)

ϕ1(t) = −H1(t)ζ1(t)

ϕ2(t) = −H2(t)ζ2(t),

where the gains are given by

K(t) = (R+BTS(t+ 1)B)−1BTS(t+ 1)A

H1(t) = (R11 +BT1 S(t+ 1)B1)−1BT1 S(t+ 1)A1

H2(t) = (R22 +BT2 S(t+ 1)B2)−1BT2 S(t+ 1)A2.

Finally, the matrices S(t), X1(t), and X2(t) are computed recursively as follows:

S(t) = Q+ATS(t+ 1)A−ATS(t+ 1)B(R+BTS(t+ 1)B)−1BTS(t+ 1)A

X1(t) = Q11 +AT1 S(t+ 1)A1 −AT1 S(t+ 1)B1(R11 +BT1 S(t+ 1)B1)−1BT1 S(t+ 1)A1

X2(t) = Q22 +AT2 S(t+ 1)A2 −AT2 S(t+ 1)B2(R22 +BT2 S(t+ 1)B2)−1BT2 S(t+ 1)A2.
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By construction, J(x̂, ζ1, ζ2, t) satisfies the Bellman equation for all t ≤ N . Thus, since E[J(x̂, ζ1, ζ2, N)]

is the optimal expected cost-to-go at time N , it follows inductively that E[J(x̂, ζ1, ζt, t)] is the opti-

mal expected cost-to-go for all t ≤ N , and the optimal control has been found. Noting that x(0) = 0,

the optimal expected cost is given by

N∑

t=1

(Tr(W1X1(t)) + Tr(W2X2(t))) . (2.12)

2.3.3 Two-Player Problem: Steady State

To derive the steady state regulator from the finite-horizon regulator, assume that as N approaches

∞, S(t) approaches the stabilizing solution of the corresponding algebraic Riccati equation. Then

K(t), H1(t), H2(t), X1(t), and X2(t) will approach the values of K, H1, H2, X1, and X2 specified

by the theorem and the derivation of the controller is complete.

To compute the steady state cost, note that the average cost approaches the steady state cost as

N →∞:

lim
t→∞

E
[
x(t)TQx(t) + u(t)TRu(t)

]
=

limN→∞
1
NE

[∑N−1
t=0

(
x(t)TQx(t) + u(t)TRu(t)

)
+ x(N)TΛx(N)

]
.

Recall that for fixed N , the cost is given by
∑N
t=1 (Tr(W1X1(t)) + Tr(W2X2(t))). Thus, dividing by

N and taking a limit gives the steady state cost:

lim
N→∞

1

N

N∑

t=1

(Tr(W1X1(t)) + Tr(W2X2(t))) = Tr(W1X1) + Tr(W2X2).

2.3.4 Cost Comparisons

This subsection places the results of Theorem 1 in the context of more well known results. In par-

ticular, the controller for the two-player problem will be compared to controllers for two centralized

information structures: state feedback with and without delay. Expressions for the steady state

costs in the various scenarios will be compared.
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Consider the following three information structures:

1) Centralized





u1(t) = γ1,t(x1(0 : t), x2(0 : t))

u2(t) = γ2,t(x1(0 : t), x2(0 : t))

2) Two-Player





u1(t) = γ1,t(x1(0 : t), x2(0 : t− 1))

u2(t) = γ2,t(x1(0 : t− 1), x2(0 : t))

3) Delayed





u1(t) = γ1,t(x1(0 : t− 1), x2(0 : t− 1))

u2(t) = γ2,t(x2(0 : t− 1), x2(0 : t− 1)),

with optimal steady state costs, ccen, cdec, and cdel, respectively. Note that any delayed control law

can be implemented by a two-player controller, and any two-player controller can be implemented

by a centralized controller, and thus

ccen ≤ cdec ≤ cdel.

To get more explicit comparisons, ccen and cdel will be derived. The following argument is based

on a classical solutions for centralized LQG (see [36]).

Assume that x and u are in steady state, and define c by

c = E
[
xTQx+ uTRu

]
. (2.13)

By the steady state assumption, x and Ax+Bu+ w must have the same covariance, and thus

E
[
xTSx

]
= E

[
(Ax+Bu+ w)TS(Ax+Bu+ w)

]
(2.14)

= E
[
(Ax+Bu)TS(Ax+Bu)

]
+ Tr(WS).

Here S is solution to the LQR Riccati equation used in Subsection 2.3.1. Adding Equations (2.13)

and (2.14) gives

E
[
xTSx

]
+ c = E

[
xTQx+ uTRu+ (Ax+Bu)TS(Ax+Bu)

]
+ Tr(WS). (2.15)

Let K be the LQR gain, from Subsection 2.3.1, and let Ω = R+BTSB. Completing the square on

the first term on the right-hand side gives

xTQx+ uTRu+ (Ax+Bu)TS(Ax+Bu) = xTSx+ (Kx+ u)TΩ(Kx+ u).
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Therefore, Equation (2.15) can be rewritten as

E
[
xTSx

]
+ c = E

[
xTSx

]
+ E

[
(Kx+ u)TΩ(Kx+ u)

]
+ Tr(WS)

Subtracting the E
[
xTSx

]
term from both sides gives the general expression for the cost:

c = Tr(WS) + E
[
(Kx+ u)TΩ(Kx+ u)

]
. (2.16)

Aside from the steady state assumption, no other assumptions about the input u has been made.

In the case of centralized state-feedback, x is available to both players and u = −Kx is the optimal

control and the optimal cost is given by

ccen = Tr(WS).

In the delayed centralized case, let x̂(t) = E[x(t)|x(0 : t− 1)], as in Subsection 2.3.1. Recall that

x(t)− x̂(t) = w(t). Since the input u(t) can only depend on x(0 : t− 1), it follows that Kx(t) + u(t)

can be decomposed into two independent terms as

Kx(t) + u(t) = K(x(t)− x̂(t)) + (Kx̂(t) + u(t)) = Kw(t− 1) + (Kx̂(t) + u(t)).

Thus, for the case of delayed centralized feedback, the cost can be further decomposed as

c = Tr(WS) + +E
[
w(t− 1)TKTΩKw(t− 1)

]
+ E

[
(Kx̂(t) + û(t))TΩ(Kx̂(t) + û(t))

]

= Tr(WS) + Tr(WKTΩK) + E
[
(Kx̂(t) + u(t))TΩ(Kx̂(t) + u(t))

]
.

The optimal control is seen to be u(t) = −Kx̂(t) with optimal cost

cdel = Tr(WS) + Tr(WKTΩK).

The decomposition employed to derive cdel is a special case of the classical separation principle

in output feedback control. In particular if x̂(t) is viewed as the filter state, and P is the steady

state covariance of x(t)− x̂(t), then the cost becomes cout = Tr(WS) + Tr(PKTΩK). In the current

case, P = W .

Remark 2. Note that the optimal input in the delay case is given by u(t) = −Kx̂(t), while the
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optimal input for the two-player case is given by

u(t) = −


H1ζ1(t)

H2ζ2(t)


−Kx̂(t).

Thus, the terms −H1ζ1(t) and −H2ζ2(t) can be viewed as corrections, based on local information,

to the optimal delayed controller.

The relationships between the costs can be seen most readily after a few algebraic rearrangements.

First, ccen can be rewritten as

ccen = Tr(WS)

= Tr(W (Q+ATSA−ATSBΩ−1BTSA))

= Tr(W (Q+ATSA))− Tr(W1A
T
1 SBΩ−1BTSA1)− Tr(W2A

T
2 SBΩ−1BTSA2)

= Tr(W (Q+ATSA))− Tr(BTSA1W1A
T
1 SBΩ−1)− Tr(BTSA2W2A

T
2 SBΩ−1).

Next, the two-player cost can be rewritten:

cdec = Tr(W1X1) + Tr(W2X2)

= Tr(W1(Q11 +AT1 SA1 −AT1 SB1Ω−1
11 B

T
1 SA1)) +

Tr(W2(Q22 +AT2 SA2 −AT2 SB2Ω−1
22 B

T
2 SA2))

= Tr(W (Q+ATSA))− Tr


W1A

T
1 SB


Ω−1

11 0

0 0


BTSA1




−Tr


W2A

T
2 SB


0 0

0 Ω−1
22


BTSA2




= Tr(W (Q+ATSA))− Tr


BTSA1W1A

T
1 SB


Ω−1

11 0

0 0






−Tr


BTSA2W2A

T
2 SB


0 0

0 Ω−1
22






The third equality follows because

B1Ω−1
11 B

T
1 =


B11

0


Ω−1

11

[
BT11 0

]
=


B11 0

0 B22




Ω−1

11 0

0 0




B

T
11 0

0 BT22


 = B


Ω−1

11 0

0 0


BT
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and

B2Ω−1
22 B

T
2 =


 0

B22


Ω−1

22

[
0 BT22

]
=


B11 0

0 B22




0 0

0 Ω−1
22




B

T
11 0

0 BT22


 = B


0 0

0 Ω−1
22


BT .

Finally, cdel can be rewritten as

cdel = Tr(WS) + Tr(WKTΩK)

= Tr(W (S +ATSBΩ−1BTSA))

= Tr(W (Q+ATSA)).

Now the inequalities ccen ≤ cdec ≤ cdel can be written as

Tr(W (Q+ATSA))

−Tr(BTSA1W1A
T
1 SBΩ−1)

−Tr(BTSA2W2A
T
2 SBΩ−1)

≤

Tr(W (Q+ATSA))

−Tr


BTSA1W1A

T
1 SB


Ω−1

11 0

0 0






−Tr


BTSA2W2A

T
2 SB


0 0

0 Ω−1
22






≤ Tr(W (Q+ATSA)).

So the cost of the delayed controller appears in each term, with the subtracted terms of cdec and

ccen corresponding to benefits of extra information.

To see why ccen ≤ cdec, note that


Ω11 Ω12

Ω21 Ω22



−1

=


Ω−1

11 Ω12

−I


 (Ω22 − Ω21Ω−1

11 Ω12)−1
[
Ω21Ω−1

11 −I
]

+


Ω−1

11 0

0 0


 �


Ω−1

11 0

0 0


 .

A similar argument shows that


Ω11 Ω12

Ω21 Ω22



−1

�


0 0

0 Ω−1
22


 .

Remark 3. The comparisons of the various costs demonstrates the benefits of using all available

information. It is interesting to compare the result of the comparisons with intuition about mo-

tor learning. When faced with a new task, motor commands must be processed consciously in

“high-level” brain regions. If it is assumed that there is a large computational delay for conscious

processing, then this control policy may be analogous to the centralized delay case. Eventually,

gains and correction terms are learned in “lower” brain regions and the spinal cord. At this point,

the control strategy becomes decentralized, but performance increases. While the connection is
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c

θ

a

Figure 2.3: An arm balancing a pole sits on top of a moving cart. Two inputs are chosen, a force on
the arm and force on the cart. The player choosing the arm forces is assumed to have instantaneous
state information about the arm and the pendulum (through “vision” and “proprioception”). The
player choosing the cart forces is assumed to have instantaneous state information only about the
cart. Communication between the players occurs via a one-step delay.

speculative, it may lend insight into the function of low-level feedback loops in the motor system.

2.3.5 Pole Balancing Example

To see how the concepts of this section arise in physical systems, consider the setup in Figure 2.3.

Here a pole is balanced using an arm, which is mechanically coupled to a moving cart. The inputs

are forces applied to the arm and forces applied to the cart. The dynamics of the system are defined

by




mc 0 0

0 ma +mp mpl cos θ

0 mpl cos θ mpl
2







c̈

ä

θ̈


 =




−kc+ ka+ uc + wc

kc− ka+mplθ̇
2 sin θ + ua + wa

mpgl sin θ + wθ


 .

Here c and a are the positions of the arm and the cart, respectively. The variable θ is the angle of

the pendulum. The cart and arm input forces are given by uc and ua, respectively, while the noises

are given by wc, wa, and wθ. The masses of the cart, arm, and pendulum are given by mc, ma, and

mp, respectively. The length of the pendulum is given by l, the gravitational constant is given by g.

The spring constant, k, describes the coupling between the cart and the arm.

Linearizing the dynamics and writing the equations in first-order form gives:

ẋ = Acx+Bcu+Gcw,



26

where the variables are given by

x =




c

ċ

a

ȧ

θ

θ̇




, u =


uc
ua


 , w =




wc

wa

wθ




and the matrices are given by

Ac =




0 1 0 0 0 0

− k
mc

0 k
mc

0 0 0

0 0 0 1 0 0

k
ma

0 − k
ma

0 −mpgma
0

0 0 0 0 0 1

− k
mal

0 k
mal

0
(ma+mp)g

mal
0




, Bc =




0 0

1
mc

0

0 0

0 1
ma

0 0

0 − 1
mal




,

Gc =




0 0 0

1
mc

0 0

0 0 0

0 1
ma

− 1
mal

0 0 0

0 − 1
mal

(ma+mp)g
mal




.

Discretizing the dynamics by a first-order Euler approximation with time-step τ gives state

matrices

A = I + τAc, B = τBc, G = τGc.

Assume that the noise w (applied through G) has identity covariance. Then the discrete-time

dynamics can be equivalently written as

x(t+ 1) = Ax(t) +Bu(t) + w(t),

where w has covariance W = GGT .
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Grouping the state variables as

x1 =


c
ċ


 and x2 =




a

ȧ

θ

θ̇



,

and set u1 = uc and u2 = ua. It follows that B and W are block-diagonal with respect to this

partitioning of the state and input variables. Thus the discrete-time dynamics fit the sparsity

constraints for the two-player problem:

B =




0 0

τ
mc

0

0 0

0 τ
ma

0 0

0 − τ
mal




, W =


W1 0

0 W2


 ,

with

W1 =


 0

τ
mc



[
0 τ

mc

]
, W2 =




0 0

τ
ma

− τ
mal

0 0

− τ
mal

(ma+mp)g
mal





0 τ

ma
0 − τ

mal

0 − τ
mal

0
(ma+mp)g

mal


 .

To see how the different control constraints lead to different steady state costs, see Figure 2.4.

By increasing the spring constant k, the coupling between the cart and arm subsystems becomes

stronger and the system becomes harder to control. With the stronger coupling, the penalty for

delay increases. Thus the cost grows fastest for the delayed case. The cost of the two-player policy

grows with intermediate speed, and the cost of the centralized case grows the slowest.

2.4 General Case

This section extends the method from the two-player problem to derive optimal controllers for delay

structures specified by any strongly connected graph. The general method for solving the optimal

control problems follows the pattern from the two-player case:

• Decompose the information available to the players into independent components, based on

“who knows what.”



28

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

k

C
os

t

Centralized
Two−Player
Delayed

Figure 2.4: Steady state costs for different values of the spring constant, k. Note that as k increases,
the coupling between x1 and x2 gets stronger. The steady state cost grows in all cases, but it grows
fastest in the delay case and slowest in the centralized case. The other parameters are set to τ = 0.1,
mp = mc = ma = 1, g = 1, and l = 10. Both Q and R are set to identity matrices of appropriate
size.

• Use the information decomposition to decouple the input and the state into independent com-

ponents.

• Find update equations for the decoupled state components.

• Set up the dynamic programming problem.

• Use independence to decompose the dynamic programming problem into independent sub-

problems.

• Solve the independent subproblems to find the optimal control and optimal cost.

This section is organized as follows. The information, input, and state are decoupled in Subsection

2.4.1. In that subsection, the dynamics of the decoupled state variables are computed. Next, in

Subsection 2.4.2, the optimal solution to the general problem posed in this chapter is stated. In

Subsection 2.4.3, a finite-horizon version of the problem is solved via dynamic programming. Finally,

in Subsection 2.4.4, the steady state controller and optimal cost are derived by limiting arguments.

Notation. For a vector partitioned into blocks




z1

...

zn
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and v ⊂ {1, . . . , n}, let zv = (zi)i∈v. For instance, if n = 5 and v = {1, 3, 5}, then zv is given by

z{1,3,5} =




z1

z3

z5


 .

For a matrix partitioned into blocks

M =




M11 · · · M1n

...
. . .

...

Mn1 · · · Mnn




and s, v ⊂ {1, . . . , n}, let Ms,v = (Mi,j)i∈s,j∈v. For instance, if n = 3, s = {1, 2, 3}, and v = {1, 2},
then Ms,v is given by

M{1,2,3},{1,2} =




M11 M12

M21 M22

M31 M32


 .

2.4.1 Decoupled State Dynamics

This subsection describes a method for decoupling the information available to the players, based

on an auxiliary graph, termed the information hierarchy graph. Once the information has been

decoupled, the state and inputs are decomposed into independent terms. Finally, the dynamic

equations for updating the decoupled state terms are given.

LetG = (V,E) be the graph describing the delay structure, with V = {1, . . . , n}. The information

hierarchy graph I = (V ,E ) is a graph describing the flow of information through G as constructed

in Algorithm 1. See Figure 2.5 for a few examples of information hierarchy graphs constructed from

their delay structure graphs.

Some of the more useful properties information hierarchy graphs are now listed. All of the

properties are direct consequences of Algorithm 1.

• Each node has exactly one outgoing edge.

• Nodes {1}, . . . , {n} are the only nodes with no incoming edges.

• If there is a path of length k from node {i} to node v in I , then v is exactly the set of nodes

reachable from node i within k steps in graph G.

• Since G is strongly connected, V is always a node in V . Furthermore, the outgoing edge of V

is a self-loop: (V, V ) ∈ E .
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Algorithm 1 Information Hierarchy Graph Construction Algorithm

Start with G = (V,E) and assume that V = {1, . . . , n}.
Set V = {{1}, . . . , {n}}
Set E = ∅
while There is a vertex v ∈ V with no outgoing edge do

Pick v ∈ V with no outgoing edge
Set s = v
{Add to s all nodes reachable from nodes in v in one step}
for all i ∈ v do

for all j such that (i, j) ∈ E do
if j /∈ s then

Add j to s
end if

end for
end for
if s /∈ V then

Add s to V
end if
Add edge (v, s) to E

end while
return I = (V ,E )

{1}

{1, 2}

{2}
(a) Two-Player
Graph

{1} {2} {3}

{1, 2} {1, 2, 3} {2, 3}

(b) Three-Player Chain

{1} {2} {3} {4}

{1, 2}

{2, 3, 4}

{3, 4}

{1, 2, 3, 4}

{1, 2, 3} {2, 4}

(c) Four-Player Example

Figure 2.5: Each subfigure depicts a delay structure graphs on the top with the associated informa-
tion hierarchy graph on the bottom.
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• If (v, s) ∈ E and v 6= V , then v is a strict subset of s.

• If every node in G is reachable from every other node in at most d steps, then for i = 1, . . . , n

there is a path from {i} to V in I of length at most d.

• |V | = |E | ≤ n(d+ 1)

Algorithm 2 Information Hierarchy Graph Labeling

Label nodes {1}, . . . , {n} with L{1}(t) = w1(t− 1), . . . ,L{n}(t) = wn(t− 1), respectively.
while There is a node s ∈ V \ {V } that has not been labeled do

Pick s ∈ V \ {V } such that v is labeled for all v with (v, s) ∈ E
for all v such that (v, s) ∈ E do

if The label for s has not been created then
Set Ls(t) = Lv(t− 1)

else

Set Ls(t) =

[
Ls(t)

Lv(t− 1)

]

end if
end for

end while
for i = 1, . . . , n do

Find s and k such that (s, V ) ∈ E and wi(t− k) appears in Ls(t) {s and k will be unique}
Set di = k

end for

Set LV (t) =



x1(0 : t− d1)

...
xn(0 : t− dn)




The main reason for defining the information hierarchy graph is that it gives a graphical method

for decomposing the information available to the various players. In particular, Algorithm 2 shows

how to label each node v ∈ V with a vector of information Lv(t) that will be useful for decomposing

the state and input vectors. See Figure 2.6 for examples of labeled information hierarchy graphs.

Once the labels are defined, they can associated with the players. Let χi(t) = (Lv(t))v:i∈v be

the collection of labels corresponding to player i. For example, in the three-player chain (Figure
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{1, 2}

{1} {2}
w1(t − 1) w2(t − 1)

�
x1(0 : t − 1)
x2(0 : t − 1)

�

(a) Two-Player Problem

{1} {2} {3}

{1, 2, 3}

w1(t − 1) w2(t − 1) w3(t − 1)

w3(t − 2)

{1, 2}
w1(t − 2)




x1(0 : t − 2)
x2(0 : t − 1)
x3(0 : t − 2)


 {2, 3}

(b) Three-Player Chain

{1} {2} {3} {4}

{1, 2}

{2, 3, 4}

{3, 4}

{1, 2, 3, 4}

{1, 2, 3}
{2, 4}

w1(t − 1) w2(t − 1) w3(t − 1) w4(t − 1)

w1(t − 2)

�
w1(t − 3)
w2(t − 2)

�

w3(t − 2) w4(t − 2)

w3(t − 3)




x1(0 : t − 3)
x2(0 : t − 2)
x3(0 : t − 3)
x4(0 : t − 2)




(c) Four-Player Example

Figure 2.6: Labeled information hierarchy graphs from Figure 2.5. The labels are pairwise indepen-
dent and correspond to information available to all players in the corresponding node, but none of
the other players.
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2.6(b)), χ1(t), χ2(t), and χ3(t) are given by

χ1(t) =




L{1}(t)

L{1,2}(t)

L{1,2,3}(t)


 =




w1(t− 1)

w1(t− 2)

x1(0 : t− 2)

x2(0 : t− 1)

x3(0 : t− 2)




χ2(t) =




L{2}(t)

L{1,2}(t)

L{2,3}(t)

L{1,2,3}(t)




=




w2(t− 1)

w1(t− 2)

w3(t− 2)

x1(0 : t− 2)

x2(0 : t− 1)

x3(0 : t− 2)




χ3(t) =




L{3}(t)

L{2,3}(t)

L{1,2,3}(t)


 =




w3(t− 1)

w3(t− 2)

x1(0 : t− 2)

x2(0 : t− 1)

x3(0 : t− 2)




.

Define θi(t) to be the information available to player i at time t. In other words θi(t) = [x1(0 :

t−d1i)
T , . . . , xn(0 : t−dni)T ]T . The following lemma shows that the labels are pairwise independent

and that the groupings χi(t) can be used in place of the information vectors θi(t). The lemma assumes

that the input is linear. By partial nestedness, there is no loss of generality, since the optimal input

must be a linear function of the available information.

Lemma 2.

1. The labels Lv(t) are pairwise independent.

2. Assume that the each input ui(t) is a linear function of θi(t). For i = 1, . . . , n there is an

invertible linear mapping Πi(t) such that χi(t) = Πi(t)θi(t).

Proof. Item 1. The proof of Item 1 follows a few steps. First it is shown that for all i and k such

that 1 ≤ k ≤ di, there is a unique node v 6= V such that wi(t− k) is a component of Lv(t). Next it

is shown that for all v 6= V , the label Lv(t) is composed of noise terms wi(t − k) with 1 ≤ k ≤ di.

Once the steps above are shown, the proof of Item 1 will be complete since all such wi(t − k) are

pairwise independent and also independent of

LV (t) =




x1(0 : t− d1)
...

xn(0 : t− dn)




by construction.
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Take any i and k such that 1 ≤ k ≤ di. Let v ∈ V be the unique node such that there is a path

from {i} to v in I of length k−1. By construction wi(t−k) is a component of Lv(t). Furthermore,

the path from {i} to V has length di, so v 6= V . Uniqueness of the path implies that Lv(t) is the

unique label containing wi(t− k).

Now say that wi(t− k) is a component of Lv(t) with v 6= V . By construction k ≥ 1. Algorithm

2 implies that there must be a path from {i} to v of length k − 1. Now because the path from {i}
to V has length di, and v 6= V , it follows that k − 1 ≤ di − 1. In other words, 1 ≤ k ≤ di.

The proof of Item 1 is now completed by applying assumptions of independence.

Item 2. First note that LV (t) is a component of both χi(t) and θi(t) (by permuting entries).

Furthermore, note that the terms in θi(t) that are not in LV (t) are given by xj(t − k + 1) for all

k such that dji < k ≤ dj . Similarly, wj(t − k) is a component of χi(t) if and only if dji < k ≤ dj .

Indeed, note that wj(t− k) appears in χi(t) if and only if k ≤ dj and there is a path from j to i in

G of length at most k − 1. The shortest such path has length dji. Therefore dji ≤ k − 1 and the

equivalence holds.

To prove the existence of an invertible linear mapping Πi(t) such that χi(t) = Πi(t)θi(t), consider

the following sequence of equalities:

Γ1θi(t) = Γ1




x1(0 : t− d1i)
...

xn(0 : t− dni)


 =




w1(0 : t− d1i − 1)
...

wn(0 : t− dni − 1)




Γ2




w1(0 : t− d1i − 1)
...

wn(0 : t− dni − 1)


 =




w1(t− d1 : t− d1i − 1)
...

wn(t− dn : t− dni − 1)

w1(0 : t− d1 − 1)
...

wn(0 : t− dn − 1)




Γ3




w1(t− d1 : t− d1i − 1)
...

wn(t− dn : t− dni − 1)

w1(0 : t− d1 − 1)
...

wn(0 : t− dn − 1)




=




w1(t− d1 : t− d1i − 1)
...

wn(t− dn : t− dni − 1)

x1(0 : t− d1)
...

xn(0 : t− dn)




= χi(t).

Here Γ1, Γ2, and Γ3 are all invertible linear mappings. The mappings Γ1 and Γ3 are guaranteed

by partial nestedness and linearity of the inputs. Indeed partial nestedness implies that there are
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invertible linear transformations between the information available to player i and the corresponding

noise at all time steps. The matrix Γ2 is simply a permutation. The proof is completed by defining

Πi(t) = Γ3Γ2Γ1.

The following lemma demonstrates that the information decomposition from Lemma 2 can be

used to decouple the input into independent terms.

Lemma 3. The optimal input u(t) can be decomposed as a sum

u(t) =
∑

s∈V

IV,su ϕs(t), (2.17)

where Iu is the identity matrix partitioned into blocks conforming to the partition of u, and ϕs(t) is

a linear function of Ls(t) of appropriate size.

Before getting into the proof, an example of the notation will be given. Say that V = {1, . . . , 4}.
In this case

IV,{1,4}u ϕ{1,4}(t) =




I 0

0 0

0 0

0 I





ϕ{1,4}(t)1

ϕ{1,4}(t)2


 =




ϕ{1,4}(t)1

0

0

ϕ{1,4}(t)2



.

Proof. By Lemma 2, the information available to player i at time t can be decomposed into inde-

pendent vectors as χi(t) = (Ls(t))s:i∈s. By linearity of the optimal solution, there exist matrices

Hi,s(t) such that the optimal input is given by

ui(t) =
∑

s∈V :i∈s

Hi,s(t)Ls(t).

For each s let s = {i1, . . . , is}, with i1 < · · · < is. Define ϕs(t) by

ϕs(t) =




Hi1,s(t)
...

His,s(t)


Ls(t).
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The following chain of equalities completes the proof:

(∑

s∈V

IV,su ϕs(t)

){i}
=

∑

s∈V

I{i},su ϕs(t)

=
∑

s∈V :i∈s

I{i},su ϕs(t)

=
∑

s∈V :i∈s

Hi,s(t)Ls(t)

= ui(t).

Now that the input has been decomposed into independent terms, the state x(t) can be similarly

decomposed. Let ζr(t) be vectors, of the same dimension as xr(t), defined by the following dynamics:

ζr(t+ 1) =
∑
s:(s,r)∈E (Ar,sζs(t) +Br,sϕs(t)) for r ∈ V with |r| > 1

ζ{i}(t+ 1) = wi(t) for i = 1, . . . , n
(2.18)

with initial conditions ζs(0) = 0 for all s ∈ V .

Lemma 4. The state vector can be decomposed as a sum

x(t) =
∑

s∈V

IV,sx ζs(t), (2.19)

where Ix is the identity partitioned into blocks conforming to the partition of x, and ζs(t) is defined

by Equations (2.18) with initial condition ζs(0) = 0. Furthermore, ζs(t) is a linear function of Ls(t).

Proof. The lemma will be proved by induction. By the initial conditions, ζs(0) = 0 and x(0) = 0,

Equation (2.19) holds at t = 0. Furthermore, the property that ζs(0) is a linear function of Ls(0)

trivially holds.

Now, inductively assume that Equation (2.19) holds at time t and that ζs(t) is a linear function

of Ls(t). Plugging Equations (2.19), (2.17) and the update equations for ζ{i}, into the dynamic

equations shows that x(t+ 1) is updated as follows:

x(t+ 1) = Ax(t) +Bu(t) + w(t)

=
∑

s∈V

(AIV,sx ζs(t) +BIV,su ϕs(t)) +

n∑

i=1

IV,{i}x ζ{i}(t+ 1). (2.20)

Now it is claimed that AIV,sx = IV,rx Ar,s, where r ∈ V is the unique node such that (s, r) ∈ E .
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Assume that s = {j1, . . . , js} with j1 < · · · < js and r = {i1, . . . , ir} with i1 < · · · < ir. The product

AIV,sx is computed as

AIV,sx =




A11 · · · A1n

...
. . .

...

An1 · · · Ann



[
I
V,{j1}
x · · · I

V,{js}
x

]
=




A1j1 · · · A1js

...
. . .

...

Anj1 · · · Anjs .


 (2.21)

On the other hand, the product IV,rx Ar,s is computed as

IV,rx Ar,s =
[
IV,{i1} · · · IV,{ir}

]



Ai1j1 · · · Ai1js
...

. . .
...

Airj1 · · · Airjs


 . (2.22)

To see that Equations (2.21) and (2.22) give the same result, note that if i /∈ r, then Aij = 0 for all

j ∈ s. Indeed, if j ∈ s then j ∈ r and for all i such that (j, i) ∈ E, it must be that i ∈ r. Therefore,

if Aij 6= 0, then i ∈ r. By contrapositive, i /∈ r implies that Aij = 0.

A similar argument shows that BIV,su = IV,rx Br,s.

For all s ∈ V , define η(s) to be the unique node r such that (s, r) ∈ E . Plugging the identities

AIV,sx = I
V,η(s)
x Aη(s),s and BIV,su = IV,η(s)Bη(s),s into Equation (2.20) and applying Equation (2.18)

to update ζr shows that

x(t+ 1) =
∑

s∈V

(
IV,η(s)
x Aη(s),sζs(t) + IV,η(s)

x Bη(s),sϕs(t)
)

+

n∑

i=1

IV,{i}x ζ{i}(t+ 1)

=
∑

|r|>1

∑

s:(s,r)∈E

IV,rx (Ar,sζs(t) +Br,sϕs(t)) +

n∑

i=1

IV,{i}x ζ{i}(t+ 1)

=
∑

|r|>1

IV,rx ζr(t+ 1) +

n∑

i=1

IV,{i}x ζ{i}(t+ 1)

=
∑

s∈V

IV,sx ζs(t+ 1).

The only part that remains to be shown is that ζs(t+ 1) is a linear function of Ls(t+ 1). Note

that ζ{i}(t+ 1) = wi(t) = L{i}(t+ 1) for i = 1, . . . , n. Consider a node r with |r| > 1, and assume

that ζs(t) and ϕs(t) are linear functions of Ls(t) for all s such that (s, r) ∈ E . Then by Equation

(2.18), ζr(t+1) must be a linear function of the Ls(t) terms. By construction, Lr(t+1) is composed

entirely of terms of the form Ls(t). Thus the result follows.
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2.4.2 General Case: Optimal Solution

The controller gains and steady state cost are defined by propagating the solution to a standard

Riccati equation through the information hierarchy graph. Let XV be the stabilizing solution to the

discrete-time algebraic Riccati equation:

XV = S = Q+ATSA−ATSB(R+BTSB)−1BTSA. (2.23)

Define the gain KV by the standard LQR gain:

KV = (R+BTXVB)−1BTXVA. (2.24)

For s 6= V , let η(s) be the unique node r such that (s, r) ∈ E . Assume that Xη(s) has already

been defined and define Xs by

Xs = Qs,s +Aη(s),sTXη(s)A
η(s),s (2.25)

−Aη(s),sTXη(s)B
η(s),s

(
Rs,s +Bη(s),sTXη(s)B

η(s),s
)−1

Bη(s),sTXη(s)A
η(s),s.

Define the gain Ks by

Ks =
(
Rs,s +Bη(s),sTXη(s)B

η(s),s
)−1

Bη(s),sTXη(s)A
η(s),s. (2.26)

Theorem 2. The optimal controller for the general problem defined in Section 2.2 is given by

u(t) = −
∑

s∈V

IV,su Ksζs(t),

and the steady state cost is given by
n∑

i=1

Tr(WiX{i}).

Here Ks and Xs are defined by Equations (2.23)–(2.26).

As with the two-player problem, the proof will consist of a finite-horizon derivation and a limiting

argument to prove the final result.

2.4.3 General Case: Finite-Horizon Derivation

Assume that the optimal expected cost-to-go function is of the form E[J(ζ, t)]. Recalling the finite-

horizon cost function and plugging in the state decomposition of Equation (2.19), E[J(ζ,N)] is given
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by

E[J(ζ,N)] = E
[
xTΛx

]

= E



(∑

s∈V

IV,sx ζs

)T
Λ

(∑

s∈V

IV,sx ζs

)


=
∑

s∈V

E
[
ζTs Λs,sζs

]
.

The last equality follows from the pairwise independence of ζs.

Set Xs(N) = Λs,s for all s ∈ V and define J(ζ,N) to be J(ζ,N) =
∑
s∈V ζTs Xs(N)ζs. Induc-

tively assume that for some t+ 1 ≤ N , J(ζ, t+ 1) is defined by

J(ζ, t+ 1) =
∑

s∈V

ζTs Xs(t+ 1)ζs +

N∑

k=t+2

n∑

i=1

Tr(WiX{i}(k)). (2.27)

The optimal expected cost-to-go function at time t is computed by solving the Bellman equation:

E[J(ζ, t)] = min
ϕ

E
[
xTQx+ uTRu+ J(ζ ′, t+ 1)

]
, (2.28)

where ζ ′s are the variables ζs, updated according to Equation (2.18).

Substituting the decompositions for x and u shows that the first two terms on the right-hand

side can be decoupled as follows:

E
[
xTQx+ uTRu

]
= E



(∑

s∈V

IV,sx ζs

)T
Q

(∑

s∈V

IV,sx ζs

)
+

(∑

s∈V

IV,su ϕs

)T
R

(∑

s∈V

IV,su ϕs

)


=
∑

s∈V

[
ζTs Q

s,sζs + ϕTs R
s,sϕs

]
(2.29)

Combining Equations (2.18) and (2.27) shows that E[J(ζ ′, t+ 1)] can be expanded as

E[J(ζ ′, t+ 1)] =
∑

|r|>1

E





 ∑

s:(s,r)∈E

(Ar,sζs +Br,sϕs)



T

Xr(t+ 1)


 ∑

s:(s,r)∈E

(Ar,sζs +Br,sϕs)







+

n∑

i=1

E
[
wTi X{i}(t+ 1)wi

]
+

N∑

k=t+2

n∑

i=1

Tr(WiX{i}(k))

=
∑

s∈V

E
[
(Aη(s),sζs +Bη(s),sϕs)

TXη(s)(t+ 1)(Aη(s),sζs +Bη(s),sϕs)
]

+

N∑

k=t+1

n∑

i=1

Tr(WiX{i}(k)) (2.30)

Combining Equations (2.29) and (2.30) shows that the right-hand side of the Bellman equation
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can be decomposed into a sum of independent terms, plus a constant term:

min
ϕ

E
[
xTQx+ uTRu+ J(ζ ′, t+ 1)

]
=

∑

s∈V

min
ϕs

E
[
ζTs Q

s,sζs + ϕTs R
s,sϕs + (Aη(s),sζs +Bη(s),sϕs)

TXη(s)(t+ 1)(Aη(s),sζs +Bη(s),sϕs)
]

+

N∑

k=t+1

n∑

i=1

Tr(WiX{i}(k)).

Standard quadratic minimization arguments show that the optimal inputs are given by

ϕs = −Ks(t)ζs

with gains Ks(t) computed as

Ks(t) =
(
Rs,s +Bη(s),sTXη(s)(t+ 1)Bη(s),s

)−1

Bη(s),sTXη(s)(t+ 1)Aη(s),s.

Plugging in the inputs ϕs = −Ks(t)ζs(t) shows that J(ζ, t) has the form

J(ζ, t) =
∑

s∈V

ζTs Xs(t)ζs +

N∑

k=t+1

n∑

i=1

Tr(WiX{i}(k))

where the matrices Xs(t) are computed as follows (denoting Xη(s)(t+ 1) by X ′η(s) to save space):

Xs(t) = Qs,s +Aη(s),sTX ′η(s)A
η(s),s

−Aη(s),sTX ′η(s)B
η(s),s

(
Rs,s +Bη(s),sTX ′η(s)B

η(s),s
)−1

Bη(s),sTX ′η(s)A
η(s),s.

Since E[J(ζ, t+ 1)] was the optimal expected cost-to-go at time t+ 1, it follows inductively that

E[J(ζ, t)] is the optimal expected cost-to-go at time t, and the form of J(ζ, t) is valid for all t ≤ N .

Finally, since x(0) = 0, the total cost is calculated to be

N∑

t=1

n∑

i=1

Tr(WiX{i}(t)).

2.4.4 General Case: Steady State

Since XV (t) is just the solution to the centralized LQR Riccati equation, as N → ∞, XV (t) →
XV = S, the stabilizing solution of the algebraic Riccati equation. Since all the other matrices,

KV (t), Xs(t), and Ks(t), are specified by XV (t), they respectively converge to the matrices KV ,

Xs, and Ks, as defined in Equations (2.24), (2.25), and (2.26), as XV (t)→ XV . Thus, the optimal

gains and Riccati solutions have been found.
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The steady state cost is calculated by noting that

lim
N→∞

1

N

N∑

t=1

n∑

i=1

Tr(WiX{i}(t)) =

n∑

i=1

Tr(WiX{i}).

2.5 Conclusion

This chapter presents Riccati-based solutions for a class of decentralized linear control problems

with communication delays. The structure of the controllers is dictated by a decomposition of the

information based on a specially constructed graph, referred to as the information hierarchy graph.

The controllers can be interpreted as simple management schemes. In these schemes, a top level

“executive” generates an input, based on delayed global information. The input is modified using

newer, more localized information as it gets passed down the chain of command.

In the case of the simple two-player architecture, the optimal control scheme is compared to

centralized controllers, both with and without delays. It is found that the performance is always at

least as good as centralized control with a single-step delay, but can never be better than centralized

control. Explicit comparisons of the costs are given.

This chapter is intended to serve as groundwork for studying the connections between motor

control and distributed control. Many theoretical and biological questions can be posed to follow

up.

On the biological end, it would be interesting to explore the use of feedforward signaling between

motor regions [37, 38, 39] in terms of partially nested systems. Lesion studies could lend insight into

the distributed architecture of the motor system. Finally, feedback and feedforward processing in

the spinal cord must be studied in greater depth.

A simple next step would be to utilize the algorithmic solution to the general problem of this

chapter to study biologically motivated control problems with complex delay structures. Using the

relatively straightforward construction of information hierarchy graph, the optimal control hierar-

chies can be extracted and compared to the existing control schemes.

The results in this chapter relied on state feedback, but the associated output feedback problem

must be solved. Biological sensors may be noisy, and measurements of all states may not be available.

Luckily, Rantzer’s method for this chapter’s problem extends naturally to output feedback [19]. As

in the state feedback case, the controller structure is not apparent from the current solution. The

challenge will be to see if a similar hierarchical structure emerges via a different derivation.

Recently, it has been shown that humans display risk-sensitive control policies [28]. Future work

will attempt to derive related distributed optimal control laws for risk-sensitive cost functions [40]

and other biologically motivated cost functions.

Finally, connections to social sciences should be explored. The mathematical work in this chapter
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originated in management science in the study of teams [41]. Explicit structures for nontrivial

decentralized optimal controllers, as described in this chapter and similar works [20, 22], have been

discovered only recently. The structures arising mathematically typically have simple management

interpretations. Thus, it would be interesting to see how well the theory predicts management

structures of real organization.

2.6 Appendix to Chapter 2

The control problem studied in this chapter, however, has constraints on the input from Equation

(2.4) that cannot be handled with centralized control methods. The only assumption about the

controllers made in the derivations is that they are linear. The objective of this appendix is to

justify the linearity assumption.

In the 1960s, Witsenhausen showed that some decentralized linear quadratic Gaussian control

problems have nonlinear optimal controllers [13]. Not long after, Ho and Chu defined a class of

decentralized control systems, termed partially nested systems, whose optimal controllers are linear

[12]. This chapter will give a brief introduction to the theory of partially nested systems. It will

be shown that the systems from this chapter are partially nested (Lemma 5) and thus admit linear

optimal controllers.

This appendix just presents the basic definitions and results required in the chapter. Ho and

Chu’s original paper gives a short and readable introduction to the theory of partially nested systems

[12].

2.6.1 General Form of Finite Horizon LQG Control

Let ξ ∈ Rm be a zero-mean Gaussian random variable ξ with covariance X. Let Q ∈ Rp×p be a

positive definite matrix and let S ∈ Rp×m. The basic optimization problem is to choose an input

u = [uT1 , . . . , u
T
n ]T ∈ Rp, with ui ∈ Rpi , to minimize the quadratic cost

E
[

1

2
uTQu+ uTSξ

]
, (2.31)

subject to the constraint that each input ui is a (Borel-measurable) function of its available mea-

surement:

zi = Hiξ +
∑

j

Dijuj ∈ Rqi . (2.32)
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More precisely, a control policy γ(z) is said to be admissible if

γ(z) =




γ1(z1)
...

γn(zn)


 , (2.33)

where each γi : Rqi → Rpi is a Borel-measurable function. Then the optimization problem is to find

measurable functions γ∗i : Rqi → Rpi such that

E
[

1

2
γ(z)TQγ(z) + γ(z)TSξ

]
≥ E

[
1

2
γ∗(z)TQγ∗(z) + γ∗(z)TSξ

]
for all admissible γ.

Definition 1. The form of the outputs, Equation (2.32), is called an information structure.

It will be assumed that each player knows all the problem data Hi, Dij , Q, and S. Furthermore,

when a control policy γ is chosen, it is assumed that all players know the functions γi.

Remark 4. Note that the finite horizon problem from Equations (2.2), (2.4), and (2.5) can be

reduced to the problem described above. The noise w(0 : N − 1) plays the role of ξ. By plugging in

the dynamics, the state can be computed as

x(t) =

t−1∑

k=0

At−1−kw(k) +

t−1∑

k=0

At−1−kBu(k).

Substituting the value of x(t) into Equation (2.5) and ignoring the terms that do not depend on u,

this problem can be put in the form of (2.31), (2.32), and (2.33).

2.6.2 Partially Nested Information Structures

This subsection describes a special class of information structures, known as partially nested infor-

mation structures. First, a few remarks on a simpler class of information structures, known as static

information structures are given. Problems with static information structures have linear optimal

controllers. The key idea of [12] is that problems with partially nested information structures can

be reduced to problems with static information structures.

Definition 2. If Dij = 0 for all i and j in Equation (2.32), then the information structure is called

static.

Theorem 3 ([42]). If a problem defined by Equations (2.31), (2.32), and (2.33) has a static infor-

mation structure, then it has a unique optimal solution which is linear. In other words, there are

matrices Ki such that ui = Kizi is optimal.

The main idea behind the definition of partially nested systems is that if player i could deduce
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uj whenever Dij 6= 0, then it could subtract off the effects of uj , leaving the measurement associated

with the static information structure:

z̃i = zi −
∑

j

Dijuj = Hiξ.

Then the optimization problem can be solved as though the information structure were static.

Now, the notion of what it means for player i to be able to deduce uj must be formalized. Note

how in Equation (2.32) input uj can affect the measurement zi if Dij 6= 0. Likewise, if Djk 6= 0,

then uk can affect measurement zj . Since uj depends on zj , which depends on uk, it follows that uk

can affect zi, as well. This flow of influence is captured by a graph called a precedence diagram.

Definition 3. The precedence diagram for the information structure defined by Equation (2.32) is

a directed graph with nodes {1, . . . , n} such that there is an edge (j, i) for each i and j such that

Dij 6= 0.

Note that uk can influence measurement zi if and only if there is a path from node k to node i

in the precedence diagram. It will be assumed that the precedence diagram is acyclic.

Let the random variable ξ ∈ Rn be defined on the probability space (Rn,F , P ). Here F is a

σ-algebra and P is a probability measure. If γ is an admissible controller then the assumption that

the precedence diagram is acyclic implies that the measurement

zi = Hiξ +
∑

j

Dijγj(zj) (2.34)

is a measurable function from Rm to Rqi . In other words, once γ is fixed, the measurement zi

becomes a function of ξ. Indeed, if i has no incoming edges in the precedence diagram (which

must hold for some node, since it is acyclic), then zi = Hiξ. Now, inductively assume that zj is a

measurable function of ξ for j such that Dij 6= 0. Then measurability of γj and Equation (2.34)

imply that zi is a measurable function of ξ.

The map, ξ 7→ zi, induces a subalgebra Zi ⊂ F . With the notions of the influence diagram and

the induced subalgebras, partial nestedness can finally be defined.

Definition 4. An information structure is partially nested if Zj ⊂ Zi for all admissible controllers

and all j and i such that there is a path from j to i in the precedence diagram.

The intuitive meaning of Definition 4 is that whenever input uj can influence measurement zi,

then zj can be deduced from zi. Then, since uj = γj(zj), and player i knows γj , player i can deduce

uj . In particular, if the information structure is partially nested and Dij 6= 0, then player i can

deduce zj and thus uj .
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The main theorem on partially nested systems and its application to the problem in this chapter

are now stated.

Theorem 4 ([12]). If the problem defined by Equations (2.31) and (2.32) has a partially nested

information structure, then the optimal controller is linear. In other words, there are matrices Ki

such that ui = Kizi is optimal.

Lemma 5. The information structure defined by Equation (2.4) is partially nested.

Proof. Recall that ui(t) = γi,t(x1(0 : t − d1i), . . . , xn(0 : t − dni)). Note that uj(t − dji − 1) is the

newest input from player j that can affect ui(t). It is claimed that at time t, player i has access to

all the information that player j had at time t−dji− 1. Indeed, note that uj(t−dji− 1) is given by

uj(t− dji − 1) = γj,t−dji−1(x1(0 : t− dji − 1− d1j), . . . , xn(0 : t− dji − 1− dnj)).

Now for any k, the information about xk available to player i at time t is xk(0 : t − dki) while the

information about xk available to player j at time t− dji − 1 is xk(0 : t− dji − 1− dkj). From the

definition of dji as the length of the shortest path from node j to node i, it follows that

dki ≤ dkj + dji < dkj + dji + 1.

Thus the claim follows, and the proof is complete.
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Chapter 3

Control Over Spiking Neuron
Channels

3.1 Introduction

This chapter continues the study of feedback in the nervous system, focusing on the most notable

aspect of the dynamics of individual neurons: action potentials. As discussed in the Chapter 1, an

action potential is a short-lived voltage spike that occurs as a response to an input current (Figure

1.5).

Similar to Chapter 2, this chapter aims to explore the connections between one research trend

in neuroscience and another in control theory. Whereas Chapter 2 focused on the use of optimal

feedback control in the motor system and distributed control, the goal of this chapter is to find

connections between the study of spiking neurons as communications channels and the study of

communication channels within feedback loops.

Neurons are the high-speed communication channels of the body. Not long after Shannon’s 1948

paper [43], physiologists began to study information theoretic properties of neurons [44]. Much later,

in the early 1990s, Bialek et al.’s seminal paper [1] set off a wave of research on the connections

between information theory and neuroscience [45, 46, 47, 48].

Meanwhile, networked control systems, control systems in which the plant and controller commu-

nicate over a network, began to gain attention in the late 1990s. Control theorists increasingly studied

the effects of control over noisy or data-limited communication channels [49, 50, 51, 52, 53, 54, 55, 56].

One of the primary goals in networked control research has been determining the amount of informa-

tion that must be sent across a communication channel in order to guarantee stability. Most of the

works mentioned deal with discrete-time systems, and thus they abstract away some of the difficulties

of sending data in real-time. Physical systems operate in continuous time, but when digital control

is used, control signals can only be applied at discrete time increments. To address communication-

limited control in continuous time, researchers also began to study the maximum amount of time
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between control inputs that systems could tolerate while maintaining stability [57, 58, 59, 60]. See

[61] and [62] for surveys.

While neurons are studied as communication channels, and communication channels are studied

within control loops, neurons are quite different from the channels typically studied in engineering.

A common assumption in engineering is that communication occurs at periodically sampled time

instants. In the case that communication and control signals are generated by a digital computer,

the periodic sampling assumption is reasonable. In neural control, there is no periodic sampling. A

neuron sends a spike signal when the voltage across the cell membrane reaches a certain threshold.

Thus the control scheme is event-triggered, as in [59, 60]. Traditional networked control methods

require that the information transmitted across the communication network be packets of (possibly

quantized) numerical data. In neural control, the basic unit of communication is the spike, which

conveys minimal numerical information. Instead, information is conveyed in the timing and the rate

of spiking of neurons [8].

This chapter studies continuous-time networked control in which signals to and from the plant

pass through a novel communication channel, termed the spike channel, that is modeled after spiking

neurons. In particular, the channel was designed based on methods for reconstructing the input

current to neurons by applying a linear filter to their spike sequences [1, 45, 63]. The spike channel

(Figure 3.1) operates through the following sequence of events. A continuous-time input is sent

through a low-pass filter. When the state of the filter reaches a threshold value (either positive

or negative) the state of the filter is set to zero, and a delta function of a fixed magnitude and

appropriate sign is sent to an identical low-pass filter. Then the output of the channel is the output

of the second filter. Surprisingly, even with this strong spiking nonlinearity, the spike channel behaves

like a low-pass filter, up to a bounded additive disturbance (Figures 3.5 and 3.6).

The main results of this chapter describe stability, tracking performance, and data rate for

feedback control of a continuous-time linear time invariant (LTI) single-input single-output (SISO)

plant by a continuous-time LTI SISO controller when signals to and from the plant pass through the

spike channel (Figures 3.2 and 3.3). In particular, if the nominal feedback loop is internally stable,

then spike channel parameters can be chosen so that internal stability is preserved. By appropriate

choice of parameters, tracking performance in the spike channel system can be made arbitrarily

close to that of the nominal system. The price of good tracking and stability properties manifests

in higher spike rates.

3.2 Preliminaries

This section defines the notation used throughout the chapter. Next, it describes the problem of

interest and gives a neurobiological motivation for the communication channel introduced. Finally
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Figure 3.1: The spike channel consists of a first-order low-pass filter, followed by a spiking nonlin-
earity, which is, in turn, followed by a low-pass filter identical to the first filter. The channel is
denoted by H.
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Figure 3.2: The nominal feedback loop. Here C is a continuous-time proper SISO transfer function
and P is a continuous-time strictly proper SISO transfer function.

H

H

C P
eu y

Figure 3.3: A standard linear feedback loop modified so that signals to and from the plant must
pass through a nonlinear communication channel H (Figure 3.1)
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the communication channel of interest is defined.

3.2.1 Notation

The real numbers are denoted by R. For a function, x : R→ R, the L1 and L∞ norms are denoted

by ‖x‖1 and ‖x‖∞, respectively. Let x(t−) = lims↑t x(s) and x(t+) = lims↓t x(s) if the limits exist.

The unit imaginary number is denoted by j =
√
−1.

3.2.2 Problem Formulation

This chapter studies a networked control system in which communications to and from the plant

occur via the spike channel. Consider the feedback loop depicted in Figure 3.2. As is standard

in classical control theory, P is a strictly proper continuous-time SISO transfer function, and C is

a proper continuous time SISO transfer function. As is common in networked control, the plant

is assumed to be separated from the controller, and thus all signals to and from the plant must

pass through communication channels (Figure 3.3). The particular communication channel used

is the spike channel, which is formally defined in Subsection 3.2.4. Results on stability, tracking

performance, and data rate of this networked control system are studied in Section 3.3.

3.2.3 Neurobiological Motivation

The channel studied in this chapter is motivated by research on neural decoding [45, 1, 63]. While

it is widely accepted that information is encoded in the spike rate of neurons (the number of spikes

over a given interval), it is less clear how much information is conveyed by a small number of spikes.

Bialek et al. provided evidence that neural decisions may result from only a few spikes [1]. They

studied a motion sensitive neuron in bowflies, called H1, which has a maximum spike rate between

100 and 200 spikes per second. However, given that bowflies can make course corrections to visual

stimuli in about 30 ms, in the time span of a course correction, H1 can only send between three and

six spikes. To examine how accurately input signals could be reconstructed from sequences of action

potentials, called spike trains, the authors proposed a linear filtering scheme which could reconstruct

input stimuli on the basis of only a few spikes.

A schematic of the reconstruction method from [1] is shown in Figure 3.4. (See also [45, 63].) On

the left is the input signal. The fly has two H1 neurons on either side of its head, sensitive to positive

and negative stimuli, respectively. This is depicted by two neurons with opposite sensitivities in the

center. The graph on the right shows the reconstruction (red) of the input signal (blue) based on

linear filtering of the two spike trains (below).

The work of Bialek et al. demonstrated that simple linear filtering techniques can give accurate

input reconstructions, even if spikes are sparsely distributed. The rest of this chapter theoretically
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Figure 3.4: A simulation of the experiment from [1]. An input is passed to opposing neurons,
with the top neuron sensitive to +I, and the bottom neuron sensitive to −I. The input signal is
reconstructed by a linear filter. Note that the reconstruction process captures transient behavior on
the basis of only one or two spikes. For a more realistic simulation in the figure, the neural model
from [2] is used in place of the leaky integrate-and-fire model studied in this chapter.

investigates the application of linear spike train reconstruction when a neuron-like channel is used

for communication.

To study the reconstruction process formally, a neuron model must be specified. A common

model for a single neuron, known as the leaky integrate-and-fire model, is given by the following

modified RC-circuit equations:

V̇ (t) = − 1
RCV (t) + 1

C I(t) if V (t) < Vth

V (t+) = 0 if V (t−) = Vth

Vout(t) =
∑
{t̃≤t:V (t̃−)=Vth} δ(t− t̃).

(3.1)

The state variable V corresponds to the electrical potential across the cell membrane of the neuron,

and I is an input current. Thus, the neuron integrates the potential with a leak term proportional

to − 1
RCV . When the potential reaches some threshold, the electrical potential across the membrane

is set to zero and a spike (approximated as a delta function) is sent as an output.

The leaky integrate-and-fire model can be viewed as an input-output mapping MLIF that takes an

input current I and outputs a sequence of spikes Vout. Note that the operator MLIF only generates

outputs for positive currents. Just as the experiment of Bialek et al. [1] used opposing neurons

to sense positive and negative stimuli, information about positive and negative input current can

be obtained by examining opposing leaky integrate-and-fire neurons, MLIF(I) − MLIF(−I). The
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reconstruction technique of [1, 45] applies equally well to simulated neurons [63]. Thus, a linear

filter G can be constructed such that, for well behaved input signals, G(MLIF(I)−MLIF(−I)) ≈ I.

Remark 5. Many treatments of leaky integrate-and-fire neurons include an extra dynamical mode,

called a refractory period. If a spike occurs at time t, then V (t+) = 0, and in models with a

refractory period, V is held constant at 0 for the interval (t, t + τref ]. In the model above, which

has no refractory period, the membrane begins to integrate current immediately after time t. While

including a refractory period makes the neuron model more biologically realistic, this chapter neglects

refractory periods in the interest of analytical simplicity. See [8, 63, 64] for more on neuron models

with refractory periods.

3.2.4 The Spike Channel

The spike channel is defined is an input-output mapping H taking input w(t) to output z(t) based

on the following rules:

ẋ1(t) = − 1
τ x1(t) + 1

τw(t)

ẋ2(t) = − 1
τ x2(t)

if |x1(t)| < r (3.2)

x1(t+) = 0

x2(t+) = x2(t−) + x1(t−)
if |x1(t−)| = r (3.3)

z(t) = x2(t). (3.4)

So, the spike channel consists of two first-order low-pass filters with equal time constant τ , such

that when the magnitude of the state of the filter reaches the threshold, r, it is immediately set to

zero and a delta function (or “spike”) of magnitude rτ is applied to the second filter (Figure 3.1).

To understand the spike behavior more explicitly, assume that a spike occurs at time t. Then

the second line of equation (3.3) can be viewed as the application of a delta function as follows:

x2(t+) = x2(t−) +
1

τ

∫ t

−∞
e−(t−σ)/ττx1(t−)δ(σ − t)dσ.

Since |x1(t−)| = r, the spike has magnitude rτ , and it has the same sign as x1(t−).

The threshold r is analogous to Vth in the leaky integrate-and-fire model, Equation (3.1). The

time constant τ plays the role of RC. In actual neuron models, these parameters would be set based

on biological considerations. In the current chapter, they are merely viewed as channel parameters

that can affect the stability and performance of the corresponding feedback loop. The input w plays

the role of the input current I, and z can be thought of as the approximately reconstructed input.

The special form of the spike channel leads to a straightforward quantitative analysis showing that

H behaves like a low-pass filter, up to a bounded additive disturbance (Figures 3.5 and 3.6).
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Figure 3.5: Response of the spike channel to a randomly generated input. The parameters were set
to τ = 0.1 and r = 2. Top. The input is the dashed line and the output is the solid line. Bottom.
The signal x1
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Figure 3.6: Response of the spike channel to input from Figure 3.5 with parameters set to τ = 0.1
and r = 0.1. Note that with r smaller than in Figure 3.5, the output is smoother and tracks the
input more accurately at the expense of a higher spike rate. Top. The dashed line is the input while
the solid line is the output. Bottom. The signal x1
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3.3 Results

This section presents some key lemmas about the spike channel and uses them to derive the main

results about feedback control with communication between the controller and plant occurring over

spike channels.

3.3.1 Spike Channel Lemmas

This subsection presents two preliminary results about the spike channel that facilitate the analysis

of spike-channel-based feedback schemes. The first lemma gives a bound on the spike rate (the

number of spikes per unit time) based on the threshold r, the time constant τ , and the size of the

input to the channel. The second lemma (Lemma 7), the most important preliminary result for this

chapter, shows that the output of the spike channel differs from the output of a low-pass filter by

at most r.

Lemma 6. If ‖w‖∞ = m, then the spike rate is bounded above by

f(m) =





1
τ ln m

m−r
if m > r

0 if m ≤ r.

Furthermore, f(m) ≤ m
rτ for all m ≥ 0, and limm→∞

f(m)
m = 1

rτ .

Lemma 6 is proved in the appendix of this chapter (Section 3.5).

Lemma 7. If w is bounded and y(t) = 1
τ

∫ t
−∞ e−(t−σ)/τw(σ)dσ is the output of a first-order low-pass

filter with time constant τ , then

y(t) = x1(t) + x2(t).

In particular, |y(t)− z(t)| ≤ r, for all t ∈ R.

Proof. To find an expression for x1(t) +x2(t), it is useful to have expressions for each term, individ-

ually. Two cases arise: either an infinite or finite number of spikes have occurred up to time t. Only

the infinite spike case will be proven since the finite case is similar. Let . . . < t−2 < t−1 < t0 ≤ t be

the times at which spikes occurred, up prior to time t.

Since x1 is reset to 0 at time t0, x1(t) is calculated to be

x1(t) =
1

τ

∫ t

t0

e−(t−σ)/τw(σ)dσ. (3.5)
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On the other hand, from the spiking behavior defined in Equation (3.3), the input to the second

filter is

τ
∑

k≤0

x1(t−k )δ(t− tk).

Therefore, the output of the second filter is

x2(t) =
1

τ

∫ t

−∞
e−(t−σ)/ττ

∑

k≤0

x1(t−k )δ(σ − tk)dσ

=
∑

k≤0

e−(t−tk)/τx1(t−k ). (3.6)

To make the expression for x2(t) independent of x1(t−k ), the summand of equation (3.6) can be

expanded as

e−(t−tk)/τx1(t−k )

= e−(t−tk)/τ 1

τ

∫ tk

tk−1

e−(tk−σ)/τw(σ)dσ

=
1

τ

∫ tk

tk−1

e−(t−σ)/τw(σ)dσ. (3.7)

Finally, combining equations (3.5)–(3.7) gives

x1(t) + x2(t) =
1

τ

∫ t

t0

e−(t−σ)/τw(σ)dσ +

1

τ

∑

k≤0

∫ tk

tk−1

e−(t−σ)/τw(σ)dσ

=
1

τ

∫ t

−∞
e−(t−σ)/τw(σ)dσ.

The second equality follows from the fact that tk − tk−1 ≥ rτ
‖w‖∞ > 0 (by Lemma 6), and thus

limk→−∞ tk = −∞. Note that since spikes occur, it must be that ‖w‖∞ > 0.

3.3.2 Main Results

Lemma 7 implies that the spike channel can be conservatively approximated by a low-pass filter

followed by an additive disturbance which is bounded by r (Figure 3.7). By studying the feedback

loop depicted in Figure 3.7, results about the stability, tracking, and data rate (because it is bounded

by signal size) of feedback loop with spike channels can be inferred.

A feedback loop is said to be internally stable if whenever all the inputs (including disturbances)

are bounded, then all the signals in the loop are bounded. The first result states that for small

enough τ , the spike channel preserves internal stability of the feedback loop.
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Figure 3.7: The overapproximation of the feedback loop in Figure 3.3 obtained by replacing the spike
channel with a low-pass filter and additive disturbance. Note that the disturbances are bounded as
|di(t)| ≤ r for all t ∈ R.

Theorem 5. If the nominal feedback loop from Figure 3.2 is internally stable, then there exists

T > 0 such that for all τ ∈ (0, T ], the feedback loop with spike channels from Figure 3.3 is internally

stable.

Theorem 5 follows immediately from Lemma 7 and the following lemma (which is proved in the

appendix of this chapter, Section 3.5).

Lemma 8. If the nominal feedback loop from Figure 3.2 is internally stable, then there exists T > 0

such that the disturbance feedback loop from Figure 3.7 is internally stable for all τ such that 0 ≤
τ ≤ T .

The next result states that by choosing r and τ small enough, the tracking error does not

significantly degrade. Let Gτeu be the impulse response of the mapping from input u to tracking

error e for the system in Figure 3.7. Define Gτed1 and Gτed2 similarly. Let Gnom
eu be the nominal

mapping from input u to tracking error e.

Theorem 6. If enom is the nominal tracking error, e is the tracking error from the spike channel

feedback loop and τ is such that the disturbance loop from Figure 3.7 is internally stable, then

‖enom − e‖∞ ≤ ‖Gτeu −Gnom
eu ‖1‖u‖∞ + (‖Gτed1‖1 + ‖Gτed2‖1)r. (3.8)

Theorem 6 is an immediate consequence of Lemmas 7 and 8 combined with standard gain bounds

for the L∞ norm [65].

The final result gives an upper bound on the spike rate required for control in terms of the

channel parameters r and τ and the system gains. Define Gτw1u, Gτw1d1
, Gτw1d2

, Gτw2u, Gτw2d1
, and

Gτw2d2
to be the input-output mappings for the corresponding signals in Figure 3.7.



56

Theorem 7. If the nominal feedback is internally stable and τ is small enough that the disturbance

loop from Figure 3.7 is internally stable, then the total number of spikes per unit time from both

channels in Figure 3.3 is bounded above by

α(τ)

rτ
‖u‖∞ +

β(τ)

τ
,

where

α(τ) = ‖Gτw1u‖1 + ‖Gτw2u‖1

β(τ) = ‖Gτw1d1‖1 + ‖Gτw1d2‖1

+‖Gτw2d1‖1 + ‖Gτw2d2‖1.

Proof. By Lemma 6, the total spike rate is bounded by

f(‖w1‖∞) + f(‖w2‖∞) ≤ ‖w1‖∞ + ‖w2‖∞
rτ

.

Now applying Lemmas 7 and 8, and L∞ gain bounds gives the result.

Theorem 7 implies that if small τ and r are chosen in order to maintain internal stability and

good tracking, then the data rate could become large.

Note that large values of α(0) or β(0) correspond to large gains in the nominal system, whereas

rapid growth of α or β corresponds to sensitivity to the perturbation caused by inserting low-pass

filters into the loop. If α or β are large, then the data rates could be high, even when r and τ are

large. Precise bounds on how α and β vary with τ are beyond the scope of this chapter.

See Figure 3.8 for examples of the tracking response of the spike channel feedback loop. The

top plot depicts the response of a system with the unstable plant P = 1
s−1 and controller C = s+2

s+1 .

The bottom plot depicts the response of the integrator P = 1
s with unity controller C = 1. The

inputs are both the same, but the figures look different because of the larger tracking errors for the

unstable plant. Furthermore, the system with the unstable plant requires a much higher spike rate

(136.4 spikes per unit time) than the integrator system (21.3 spikes per unit time) to track the same

input. Since the channel parameters, r and τ , as well as the input were identical, the difference in

spike rate must be due to differences in loop gains.
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Figure 3.8: The tracking response for an unstable plant, and an integrator. In both cases r = 1 and
τ = 0.1 and the input was identical. The dashed line is the input, the dotted line is the output of
the nominal feedback loop, and the solid line is the output of the feedback loop with spike channels.
Top. P = 1

s−1 and C = s+2
s+1 . In this case the total spike rate (from both channels) was 136.4 spikes

per unit time. Bottom. P = 1
s and C = 1. Here the total spike rate was 21.3 spikes per unit time.

3.4 Conclusion

This chapter describes feedback control over a novel communication channel, termed the spike chan-

nel. The spike channel is patterned after a configuration of neurons that allows simple reconstruction

of the input current signal via linear filtering. It was shown that the spike channel can be conser-

vatively approximated by a low-pass filter plus a bounded additive disturbance. Using this approx-

imation, sufficient conditions for stability and good tracking performance were obtained. Data rate

bounds based on signal gains and channel parameters were also obtained. Because all of the analysis

in the chapter relied on approximations of the spike channel, it is unclear how conservative the

results might be.

The work in this chapter represents just one of many possible research directions in the study

of control over neuron-inspired communication channels. Future research will include varying the

neuron models used, studying more sophisticated neural communication networks, and strengthening

the connections to biology.

While the spike channel model admits a simple approximation analysis, precise bounds on the

spike rate required for stability are difficult to obtain. By considering different neuron models, it

may be possible to calculate tighter data rate bounds.

Another interesting variation on the channel would be to consider more realistic neuron models,

such as the model proposed by [2]. It seems likely that stability could be proved for systems with
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communication occurring over more realistic models through the use of Lyapunov arguments similar

to those used in event-triggered control [59, 60].

While the opposing neuron construction of [1, 45], which motivated the spike channel, has been

widely studied and admits theoretical analysis, it is unclear how widely such communication schemes

are used in biology. In particular, in vertebrates, motor commands are encoded by large populations

of neurons, instead of the single neurons studied in this chapter. It would be interesting to interpret

motor control coding strategies in terms of networked control.

Finally, simple experiments can be designed to test the data rates used in human motor control.

Studies such as [54] and [56] have exposed a general relationship between the the rate of information

processing and the magnitude of the unstable poles of the plant (in discrete time). In order to assess

information processing rates in humans, subjects could attempt to stabilize a plant (such as a flight

simulator) with unstable poles varied by the experimenter.

3.5 Appendix to Chapter 3

Proof of Lemma 6. The maximum spike rate is given by 1/Tmin, where Tmin is the minimum time

between spikes. If a spike ever occurred, without loss of generality, assume that a spike occurred at

t = 0. Then until the next spike, the magnitude of the first filter is bounded as

|x1(t)| =

∣∣∣∣
1

τ

∫ t

0

e−(t−σ)/τw(σ)dσ

∣∣∣∣

≤ m

τ

∫ t

0

e−(t−σ)/τdσ

= m
(

1− e−t/τ
)
.

If m ≤ r, then |x1(t)| < r for all t > 0, and thus no more spikes occur, so f(m) = 0. On the other

hand, if m > r, then by solving m
(
1− e−t/τ

)
= r for t, Tmin is calculated to be

Tmin = τ ln
m

m− r .

Thus the maximum spike rate is calculated to be

f(m) =





1
τ ln m

m−r
if m > r

0 if m ≤ r.

To calculate limm→∞
f(m)
m , let λ = 1

m−r . Then since limλ→0
ln(1+rλ)

λ = r, the limit of the
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denominator of f(m)
m can be simplified as follows:

lim
m→∞

m ln
m

m− r = lim
λ→0

1 + rλ

λ
ln(1 + rλ)

= lim
λ→0

ln(1 + rλ)

λ
+ lim
λ→0

r ln(1 + rλ)

= r.

Therefore limm→∞
f(m)
m is calculated to be

lim
m→∞

1

τm ln m
m−r

=
1

τr
.

To see that f(m) ≤ m
τr for all m > r, note that

f(m) ≤ m

τr
iff m ln

m

m− r ≥ r.

The calculations above show that limm→∞m ln m
m−r = r, and furthermore limm→rm ln m

m−r = ∞.

Thus, the proof can be completed by showing that m ln m
m−r is monotonically decreasing.

d

dm
m ln

m

m− r = ln
m

m− r +m

(
1

m
− 1

m− r

)

= ln
m

m− r −
r

m− r .

From the expression of the derivative, m ln m
m−r is monotonically decreasing if and only if (m −

r) ln m
m−r < r for all m > r. Applying the change of variables λ = 1

m−r gives

(m− r) ln
m

m− r =
ln(1 + rλ)

λ
< r,

where the inequality follows from the first order necessary conditions for concavity. Thus f(m) ≤ m
rτ

for all m ≥ 0 and the proof is complete.

Proof of Lemma 8. First note that the the closed loop poles of the disturbance loop are the zeros of

1 +
1

(sτ + 1)2
PC.

Note that the term 1
(sτ+1)2 does not introduce any unstable open loop poles or zeros into the feedback

loop. The idea of the proof is to show that for small enough τ , the Nyquist plots of 1
(sτ+1)2PC and

PC encircle −1 the same number of times, since that would prove that the number of unstable

closed loop poles remains unchanged.

Consider a Nyquist plot of PC. Since PC is strictly proper, there exists M > 0 such that
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|P (jω)C(jω)| ≤ 1
2 whenever |ω| ≥ M . Thus all the encirclements of −1 of the Nyquist plot occur

in the image of [−jM, jM ]. Furthermore, for all ω with |ω| ≥M ,

∣∣∣∣
1

(jωτ + 1)2
P (jω)C(jω)

∣∣∣∣

=
1

ω2τ2 + 1
|P (jω)C(jω)|

≤ |P (jω)C(jω)|

≤ 1

2
.

So, similarly, all encirclements of −1 in the Nyquist plot of 1
(sτ+1)2PC occur in the image of

[−jM, jM ].

By internal stability and continuity of a continuous function over a compact domain, there exists

γ > 0 such that |1 + P (jω)C(jω)| ≥ γ for all ω ∈ [−M,M ]. Furthermore, by continuity, T can be

chosen small enough such that for all τ ∈ [0, T ], and all ω ∈ [−M,M ],

∣∣∣∣1 +
1

(jωτ + 1)2
P (jω)C(jω)

∣∣∣∣ ≥
γ

2
.

Thus, for all τ ∈ [0, T ] the Nyquist plot of 1
(sτ+1)2PC does not pass through −1. Therefore the

Nyquist plots of PC and 1
(sτ+1)2PC must encircle −1 the same number of times.
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Chapter 4

Hybrid Systems and Local Zeno
Stability

4.1 Introduction

This final technical chapter discusses some of the intricacies arising from hybrid dynamics. A

hybrid system is a dynamical system that incorporates both continuous and discrete dynamics.

Discrete dynamics could include instantaneous jumps in a continuous state variable, as well switches

to completely different dynamical modes. The spiking neuron models from Chapter 3 are hybrid

systems because once the current reaches threshold, a spike is sent and the current is reset to its

resting value. In that chapter, the aim was to reduce the analysis of the hybrid system to the

analysis of classical control systems. In contrast, for some systems, hybrid phenomena may be too

pervasive to ignore, and in others, hybrid dynamics may actually be useful. For instance, it has been

suggested that the computing power and energy efficiency of the brain may be at least partially due

to a sophisticated interaction between low-power analog processing and discrete spikes [66, 67, 68].

On a more basic and obvious level, hybrid dynamics are important for locomotion in animals

and robots [69, 70, 71]. Walking, for instance, incorporates both mode switches and rapid variable

changes (Figure 4.1). During a stride, the left foot might start out on the ground while the right leg

swings. During the leg swing, the knee rotates until the joint limit is reached and the knee locks.

During each mode switch, some of the continuous variables change rapidly. For example, when the

knee locks, the knee rotation speed rapidly decreases to zero.

This chapter studies a hybrid phenomenon known as Zeno behavior, and relates it to Lyapunov

stability. Zeno behavior occurs in hybrid systems when an execution (or solution) undergoes infinitely

many discrete transitions in a finite amount of time. Zeno behavior often occurs in models of

mechanical systems undergoing impacts, including models important for locomotion. While Zeno

behavior can be attributed to insufficiently modeling the complex dynamics of a system, i.e., it can

be attributed to a “modeling pathology,” it is present even in elementary examples such as the
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Figure 4.1: Dynamical modes in walking. The figure starts with both feet on the ground. In the
next mode, the left foot is on the ground while the right leg swings with bent knee. After that, the
left foot remains on the ground but the right leg swings with a locked knee. Finally both feet touch
the ground again. The transition from a bent knee to a locked knee involves a rapid change in the
rotational speed of the knee joint, while the transition from a swinging leg to a fixed leg corresponds
to a rapid change in foot swing.

ubiquitous bouncing ball. Formally, it is important to understand Zeno behavior as it is indicative

of phenomena unique to hybrid systems due to the complex interaction between the discrete and

continuous (even if this is a result of the abstractions that yield hybrid models). From a practical

perspective, Zeno behavior can stall simulations and lead to unexpected behavior if a hybrid control

law admits Zeno behavior. In physical models, Zeno behavior occurs in mode switches, such as in

the transition from bouncing to sliding. In such systems, being able to reason about the simplified

models that exhibit Zeno behavior might be preferable to introducing extra terms to eliminate

the behavior. Finally, if Zeno behavior can be understood, this understanding can be used as a

preventative measure to eliminate the negative effects of this behavior a priori.

4.1.1 Simple Zeno Hybrid Systems

Since Zeno behavior may be unfamiliar to many readers, it will be illustrated in a few concrete

examples before proceeding further.

Example 1. Consider a ball bouncing with Newtonian impacts, defined as follows:

ẍ = −g for x ≥ 0

x+ = 0

ẋ+ = −eẋ



 for x = 0 and ẋ ≤ 0.

(4.1)

Here g > 0 denotes gravitational acceleration and e > 0 is the coefficient of restitution. Assume

that x(0) = 0 and ẋ(0) = γ > 0. Integration shows that

ẋ(t) = γ − gt

x(t) = γt− 1

2
gt2.
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To find the time of the first impact, the second equation is solved for x(t) = 0 and t > 0. Explicitly

x(t) = t

(
γ − 1

2
gt

)
= 0,

and thus, the first impact occurs at τ1 = 2γ/g. The velocity at the first impact is given by

ẋ(τ−1 ) = γ − g 2γ

g
= −γ.

Here τ−1 denotes the left limit. Similarly let τ+
1 denote the right limit. Applying the impact equation

from Equation (4.1) gives the new state

x(τ+
1 ) = 0, ẋ(τ+

1 ) = γe.

Let τ2 denote the time of the second impact. The argument above shows that τ2 − τ1 = 2γe/g and

after the second impact the state is

x(τ+
2 ) = 0, ẋ(τ+

2 ) = γe2.

Similarly, if τk denotes the time of the kth impact, then

τk − τk−1 =
2γ

g
ek, x(τ+

k ) = 0, ẋ(τk) = γek.

Note that both the time between impacts and also the velocity after impacts decrease geometrically.

The key thing to note is that an infinite number of impacts occur in a finite amount of time. Let

τ∞ = limk→∞ τk. Let τ0 = 0. It follows that

τ∞ = lim
k→∞

τk

=

∞∑

k=1

(τk − τk−1)

=

∞∑

k=0

2γ

g
ek

=
2γ

g

1

1− e .

It is also important to note that as t → τ∞, the state variables x(t) and ẋ(t) both converge to

the zero (Figure 4.2).

In the bouncing ball example, τ∞ is called the Zeno time. The property that all trajectories

approach the origin as t approaches the Zeno time is called Zeno stability. The origin is referred
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Figure 4.2: A plot of the trajectory of the bouncing ball. The time between impacts and the velocity
decrease geometrically in the number of impacts. As such, the Zeno behavior displayed appears to
be linked to stability.

to as a Zeno equilibrium. A Zeno equilibrium is a fixed point of the discrete dynamics, but not a

fixed point of the continuous dynamics. The importance of Zeno equilibria will be discussed later.

Contrast these ideas with classical stability, in which the state approaches an equilibrium point as

t→∞.

Example 2. Another canonical example of Zeno behavior occurs in the water tank system, shown

in Figure 4.3. Two water tanks leak at rates v1 > 0 and v2 > 0, respectively. A pipe is used to fill

the tanks by pouring water at a rate w. The pipe, however, can only pour water into one tank at a

time. While x2 ≥ 0, the pipe pours water into tank 1. When the water level in tank 2 reaches zero,

the pipe switches from tank 1 to tank 2. Then, when tank 1 reaches zero, the pipe switches back to

tank 1. In other words, the dynamics are given by

Mode 1 :
ẋ1 = −v1

ẋ2 = w − v2



 while x1 ≥ 0

Mode 2 :
ẋ1 = w − v1

ẋ2 = −v2



 while x2 ≥ 0.

Note that if w > v1 and w > v2, then while the pipe is filling each tank, the level increases. The

fact that the draining rates v1 and v2 are positive guarantees that while one tank is filled, the other

eventually drains and the pipe must switch. Thus, an infinite number of switches must occur. Now

it will be shown how Zeno behavior can occur in the water tank system. Assume that x1(0) = γ > 0
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and x2(0) = 0 and the system starts in Mode 1. Tank 1 is empty when

x1(τ1) = γ − v1τ1 = 0,

in which case τ1 = γ/v1. At this point x2(τ1) is given by

x2(τ1) =
w − v2

v1
γ.

Now the pipe switches and tank 2 drains until it reaches zero at time τ2. A similar calculation to

the one just performed shows that

τ2 − τ1 =
x2(τ1)

v2
.

The state at τ2 is given by x2(τ2) = 0 and

x1(τ2) =
w − v1

v2
x2(τ1) =

w − v1

v2

w − v2

v1
γ = αγ.

Consider the case when α < 1. As in the bouncing ball example, let τk be the time of the kth mode

switch. When k = 2j, a straightforward calculation shows that x2(τ2j) = 0 and

x1(τ2j) = αjγ.

Thus, if 0 < α < 1, then the state size decreases geometrically.

Note that τ2 is the time required to return to Mode 1, and it is calculated as

τ2 = τ1 +
x2(τ1)

v2
=

(
1

v1
+
w − v2

v1

1

v2

)
γ.

It follows, similarly, that τ2j+2 − τ2j is given by

(
1

v1
+
w − v2

v1

1

v2

)
γαj .

Thus the time between mode switches also decreases geometrically. Similar to the bouncing ball, an

infinite number of transitions must occur in a finite amount of time.

The bouncing ball and water tank examples serve to illustrate what Zeno behavior is and why it

is associated with stability. In Zeno behavior, the time between discrete transitions must converge

to zero. Excluding pathological cases such as having infinitely many discrete modes or vector fields

that blow up, the temporal convergence implies that the state converges spatially.

The weakness of these examples lies in the fact that proofs of Zeno behavior and spatial conver-

gence both rely heavily on closed form solutions to the hybrid systems. Prior to the introduction of
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x1

x2

w

v1 v2

Figure 4.3: The water tank system, as adapted from [3]. Water drains from tank 1 at a rate v1 and
drains from tank 2 at a rate v2. The current level in each tank is given by x1 and x2. The goal
is to keep water in both tanks. Water flows into tank 1 at a rate w until the water level of tank 2
drops to zero. At that point, the pipe switches to fill tank 2 at rate w > 0. Similarly when tank 1
reaches zero, the pipe switches back to tank 1. This represents a switch from one dynamical mode
to another. If x1(0) > 0, x2(0) > 0 and max v1, v2 < w < v1 +v2 then an infinite number of switches
occurs in finite amount of time.
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Figure 4.4: This shows a solution for the water tank system. As in the bouncing ball system as
t approaches the Zeno time, the solution converges to a Zeno equilibrium. In this case the Zeno
equilibrium is the set containing the origin from mode 1 and the origin from mode 2.
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Lyapunov and local approximation methods (both of which will be touched in this chapter), Zeno

behavior was rarely proved in hybrid systems that did not admit closed form solutions. In order to

develop a theory of hybrid systems that handle complex dynamics for locomotion, understanding

Zeno behavior for systems without closed form solutions is useful.

4.1.2 Summary of Contributions

With some concrete examples in mind, the concepts of this chapter can be discussed in greater

depth. The main contributions of this chapter are: 1) a close connection between asymptotic Zeno

stability and the geometry of Zeno equilibria; 2) Lyapunov-like sufficient conditions for local Zeno

stability for hybrid systems over cycles; 3) easily verifiable sufficient conditions for Zeno stability of

Lagrangian hybrid systems, which model mechanical systems undergoing impacts.

The first main contribution relates to the Zeno stability of Zeno equilibria. A Zeno equilibrium is

a special type of invariant set unique to hybrid systems consisting of a set of points (with one point

in each discrete domain) that is invariant under the discrete dynamics of the hybrid system but not

the continuous dynamics. In the context of Zeno stability, it is shown that a Zeno equilibrium is

asymptotically Zeno stable if and only if it is isolated (each point in each domain is isolated). This

result highlights a major difference between classical Lyapunov stability and Zeno stability. It also

clarifies the limitations of the most recent results, [72, 73, 74, 75], which focus either on isolated

Zeno equilibria or asymptotic convergence.

The next main contribution is Lyapunov-like sufficient conditions for Zeno stability that apply

to both isolated and non-isolated Zeno equilibria. The classical Lyapunov theorem uses a Lyapunov

function to map solutions of a complex differential equation down to the solution of a simple one-

dimensional differential inclusion, and then uses the structure of the Lyapunov function to prove that

the original system inherits the stability properties of the one-dimensional system. The approach

to Zeno stability in this chapter is similarly inspired. Lyapunov-like functions map executions of a

complex hybrid system down to executions of simple two-dimensional differential inclusion hybrid

systems, and then the structure of the Lyapunov-like functions is used to prove that the original

system inherits some Zeno stability properties of the two-dimensional system. In contrast to existing

results, this theorem applies equally well to isolated and non-isolated Zeno equilibria and, as will be

seen, it thus applies to both asymptotic and non-asymptotic Zeno stability.

The final contribution applies the Lyapunov-like theorem to Lagrangian hybrid systems (which

model mechanical systems undergoing impacts). While the technical machinery of hybrid systems

is not needed to develop the theory of mechanical systems with impacts, the aim is to show how

the theory of this chapter covers this important special case. Zeno stability in Lagrangian hybrid

systems is proved by constructing a general form for a Lyapunov-like function that applies to any

Lagrangian hybrid system whose vector field satisfies simple algebraic conditions at a single point
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(based upon the unilateral constraint function defining the discrete component of the Lagrangian

hybrid system). The strength of the theorem lies in its applications, thus several examples will be

given. The result has been extended and refined in [76, 9, 10].

4.1.3 Relationship with Previous Results

Given the pathological nature of Zeno behavior, most early research on the existence of Zeno behavior

focused on ruling it out, i.e., focused on necessary conditions, but left numerous open questions.

Some results relied on strong structural assumptions about hybrid automata [3, 77], while others

were simply difficult to verify [78]. Later research gained traction by studying Zeno behavior in

restricted classes of hybrid systems. Linear complementarity systems researchers developed some of

the first verifiable conditions to rule out Zeno behavior in a nontrivial class of hybrid systems [79, 80].

Early papers on sufficient conditions for Zeno behavior relied heavily on closed-form solutions of the

associated vector fields [81, 82]. In particular, [81] provides a full characterization of Zeno behavior

in a class of simple hybrid systems.

Sufficient conditions for Zeno behavior reached a new level of maturity based upon local approx-

imations [72], [74], and connections with Zeno stability, which is conceptually the same as Lyapunov

stability, except that all executions are required to be Zeno, [73], [75], [83]. The paper [75] gives a full

characterization of asymptotic Zeno stability in a general class of systems. The papers mentioned

above, with exception of [75], study Zeno behavior around Zeno equilibria.

This chapter’s results on Zeno stability in mechanical system have been preceded by similar

results in the mechanics literature, some dating back to the early 1990s [84, 85]. It should also be

noted that simulation techniques for Lagrangian hybrid systems exist that seamlessly handle Zeno

behavior because they do not need to explicitly calculate impact events [86, 87]. Thus, in the special

case of mechanical systems, Zeno behavior causes fewer problems in simulation.

Despite recent advances, the state-of-the-art sufficient conditions cannot handle many simple and

important examples of hybrid systems that appear to have Zeno executions. While the bouncing

ball can be proved to be Zeno by integrating trajectories, balls bouncing on moving surfaces or

mechanical systems with even slightly more complex geometries cannot be handled by the results

mentioned above. Similarly, none of the previous sufficient conditions can explain Zeno behavior in

a double pendulum with a mechanical stop, which is used by roboticists as a simplified model of the

leg of a bipedal walker with a knee joint [88, 89]. Bouncing on irregular surfaces and the knee joint

problem will be treated in this chapter.
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4.2 Definitions and Geometric Results

This section introduces the basic terminology used throughout this chapter, such as hybrid sys-

tems, executions, and Zeno behavior. The terminology used in this chapter is different from other

chapters. This is largely an artifact of the history of hybrid systems. Early incarnations of hybrid

systems were finite automata augmented with simple continuous dynamics [90, 91, 92, 93]. To match

automata-theoretic terminology, solutions to the continuous and discrete dynamics are called execu-

tions. Similarly, automata are traditionally defined in terms of tuples consisting of a state space, a

transition function, etc. Since hybrid automata are extensions of finite automata, they are defined

by adding more terms to the tuple. The size and complication of tuple definitions and the associated

solution concepts for hybrid systems is, admittedly, unfortunate. More recent formulations of hybrid

systems have lead to more compact notation [94, 95], but this chapter will adhere to the notation

used in the original publication of this work [73, 96].

This chapter focuses on a restricted class of hybrid automata that strips away the nondeterminism

and complicated graph structures in order to focus on consequences of the continuous dynamics. For

more on the dynamic aspects of hybrid automata see [97].

Definition 5. A hybrid system on a cycle is a tuple:

H = (Γ, D,G,R, F ),

where

• Γ = (Q,E) is a directed cycle, with

Q = {q0, . . . , qk−1},

E = {e0 = (q0, q1), e1 = (q1, q2), . . . , ek−1 = (qk−1, q0)}.

We denote the source of an edge e ∈ E by source(e) and the target of an edge by target(e).

• D = {Dq}q∈Q is a set of continuous domains, where Dq is a smooth manifold.

• G = {Ge}e∈E is a set of guards, where Ge ⊆ Dsource(e) is an embedded submanifold of

Dsource(e).

• R = {Re}e∈E is a set of reset maps, where Re : Ge ⊆ Dsource(e) → Dtarget(e) is a smooth map.

• F = {fq}q∈Q, where fq : Dq → TDq is a Lipschitz vector field on Dq.
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Definition 6. An execution (or solution) of a hybrid system H = (Γ, D,G,R, F ) is a tuple:

χ = (Λ, I, ρ, C)

where

• Λ = {0, 1, 2, . . .} ⊆ N is a finite or infinite indexing set.

• I = {Ii}i∈Λ where for each i ∈ Λ, Ii is defined as follows: Ii = [τi, τi+1] if i, i + 1 ∈ Λ and

IN−1 = [τN−1, τN ] or [τN−1, τN ) or [τN−1,∞) if |Λ| = N , N finite. Here, for all i, i + 1 ∈ Λ,

τi ≤ τi+1 with τi, τi+1 ∈ R, and τN−1 ≤ τN with τN−1, τN ∈ R. We set τ0 = 0 for notational

simplicity.

• ρ : Λ → Q is a map such that for all i, i + 1 ∈ Λ, (ρ(i), ρ(i + 1)) ∈ E. This is the discrete

component of the execution.

• C = {ci}i∈Λ is a set of continuous trajectories, and they must satisfy ċi(t) = fρ(i)(ci(t)) for

t ∈ Ii.

We require that when i, i+ 1 ∈ Λ,

(i) ci(t) ∈ Dρ(i) ∀ t ∈ Ii
(ii) ci(τi+1) ∈ G(ρ(i),ρ(i+1))

(iii) R(ρ(i),ρ(i+1))(ci(τi+1)) = ci+1(τi+1).

(4.2)

When i = |Λ| − 1, we still require that (i) holds.

We call c0(0) ∈ Dρ(0) the continuous initial condition of χ. Likewise ρ(0) is the discrete initial

condition of χ.

This chapter studies Zeno executions, defined as follows:

Definition 7. An execution χ is Zeno if Λ = N and

lim
i→∞

τi =

∞∑

i=0

τi+1 − τi = τ∞ <∞.

Here τ∞ is called the Zeno time.

A hybrid system H is Zeno1 if there exists a Zeno execution χ such that τi+1 − τi 6= 0 for some

i ∈ N.

1This definition is motivated to exclude the possibility that a hybrid system is “trivially” Zeno, i.e., the only Zeno
executions are executions that begin at a Zeno equilibrium.
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Remark 6. Note that if a hybrid system over a finite graph displays Zeno behavior, the graph

must contain a cycle. Indeed, since an infinite number of transitions must occur in a finite graph,

the graph must have a cycle. (See [77] and [3] for similar structural conditions on Zeno behavior.)

Therefore, beginning with hybrid systems defined on cycles greatly simplifies the analysis, while

still capturing characteristic types of Zeno behavior. Future research will examine Zeno behavior in

hybrid systems with more complex graph structures.

Zeno behavior displays strong connections with Lyapunov stability [73, 75]. Just as classical

stability focuses on equilibria, much of the interesting Zeno behavior occurs near a special type of

invariant set, termed Zeno equilibria.

Definition 8. A Zeno equilibrium of a hybrid system H = (Γ, D,G,R, F ) is a set z = {zq}q∈Q
satisfying the following conditions for all q ∈ Q:

• For the unique edge e = (q, q′) ∈ E

– zq ∈ Ge,

– Re(zq) = zq′ ,

• fq(zq) 6= 0.

A Zeno equilibrium z = {zq}q∈Q is isolated if there is a collection of open sets {Wq}q∈Q such that

zq ∈Wq ⊂ Dq, and {Wq}q∈Q contains no Zeno equilibria other than z. Otherwise, z is non-isolated.

Note that, in particular, the conditions given in Definition 8 imply that for all i ∈ {0, . . . , k− 1},

Rei−1 ◦ · · · ◦Re0 ◦Rek−1
◦ · · · ◦Rei(zi) = zi.

That is, the element zi is a fixed point under the reset maps composed in a cyclic manner. Further-

more, any infinite execution with initial condition c0(0) ∈ z must be instantaneously Zeno (that is,

τi = 0 for all i ∈ N).

The condition that fq(zq) 6= 0 is made for technical reasons. Convergent, non-chattering Zeno

executions (those with τi < τi+1 for infinitely many i) must converge to a Zeno equilibrium unless

the domains have geometric pathologies, such as cusps, or the vector fields are not locally lipschitz.

See [78] Proposition 4.4 for a proof. See [75] and [78] for examples of Zeno hybrid systems defined

on cusps which do not have Zeno equilibria.

Finally, the following definitions connect Zeno behavior to Lyapunov stability.
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Definition 9. An execution χ = (Λ, I, ρ, C) is maximal if for all executions χ̂ = (Λ̂, Î, ρ̂, Ĉ) such

that

Λ ⊂ Λ̂,
⋃

j∈Λ

Ij ⊂
⋃

j∈Λ̂

Îj ,

and cj(t) = ĉj(t) for all j ∈ Λ and t ∈ Ij , it follows that χ̂ = χ.

Definition 10. A Zeno equilibrium z = {zq}q∈Q of a hybrid system H = (Γ, D,G,R, F ) is:

• bounded-time locally Zeno stable if for every collection of open sets {Uq}q∈Q with zq ∈ Uq ⊂ Dq

and every ε > 0, there is another collection of open sets {Wq}q∈Q with zq ∈Wq ⊂ Uq such that

if χ is a maximal execution with c0(0) ∈ Wρ(0), then χ is Zeno with τ∞ < ε and ci(t) ∈ Uρ(i)
for all i ∈ N and all t ∈ I.

• bounded-time asymptotically Zeno stable if it is bounded-time locally Zeno stable and there

is a collection of open sets {Wq}q∈Q such that zq ∈ Wq ⊂ Dq and every Zeno execution

χ = (Λ, I, ρ, C) with c0(0) ∈Wρ(0) converges to z as i→∞. More precisely, for any collection

of open sets {Uq}q∈Q with zq ∈ Uq ⊂ Dq, there is N ∈ N such that if i ≥ N , then ci(t) ∈ Uρ(i)
for all t ∈ Ii.

• bounded-time non-asymptotically Zeno stable if it is bounded-time locally Zeno stable but not

bounded-time asymptotically Zeno stable.

• bounded-time globally asymptotically Zeno stable if it is bounded-time asymptotically Zeno

stable and every maximal execution is Zeno and converges to z.

The following structural fact shows that isolatedness of a Zeno equilibrium dictates the type of

Zeno stability properties it can display. While the theorem is independent of the other main results

of the chapter, it clarifies the existing sufficient conditions for Zeno stability and adds context to the

current work.

Theorem 8. Let z = {zq}q∈Q be a bounded-time locally stable Zeno equilibrium. Then z is bounded-

time asymptotically Zeno stable if and only if z is isolated.

Note the sharp contrast between Theorem 8 and classical stability theory. The standard theory

of continuous dynamical systems focuses nearly exclusively on isolated equilibria without much

apparent conceptual loss. In Zeno hybrid systems, however, non-isolated Zeno equilibria must be

studied just to describe the non-asymptotic analog of Lyapunov stability.

The theorem shows that many of the recent sufficient conditions for Zeno stability have similar

limitations, but for different reasons. The work in [74] and [75] requires bounded-time asymptotic

Zeno stability (or the stronger global version), while [72] and [73] assume that the hybrid systems
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studied have isolated Zeno equilibria. None of the conditions in the papers listed above could apply

to the mechanical systems in this chapter, precisely because the more complex systems have no

bounded-time asymptotically Zeno stable Zeno equilibria. (This will be discussed in greater detail

in Section 4.5.2.)

Proof. Let z be an isolated Zeno equilibrium. By continuity, there is a collection of bounded neigh-

borhoods {Uq}q∈Q containing no Zeno equilibria other than z, such that for all q ∈ Q, zq ∈ Uq ⊂ Dq

and fq(x) 6= 0 for all x ∈ Uq. From bounded-time local Zeno stability, there is another collection

of neighborhoods {Wq}q∈Q such that all maximal executions with initial conditions in {Wq}q∈Q are

all Zeno and never leave {Uq}q∈Q. Let χ be any maximal execution such that c0(0) ∈ Wq for some

q ∈ Q. Since χ is Zeno and bounded, Proposition 4.3 of [78] implies that there is a collection of

points ẑ = {ẑq}q∈Q such that:

• ẑq ∈ G(q,q′) ∩ Uq for all (q, q′) ∈ E,

• R(q,q′)(ẑq) = ẑq′ for all (q, q′) ∈ E,

• ci(t)→ ẑρ(i) as i→∞.

Since ẑq ∈ Uq, it follows that fq(ẑq) 6= 0 for all q ∈ Q. Therefore ẑ is a Zeno equilibrium contained

in {Uq}q∈Q. The construction of Uq implies that ẑ = z, and thus χ converges to z. It follows that z

is bounded-time asymptotically Zeno stable.

Conversely, let z be a non-isolated Zeno equilibrium. Then for any collection of neighborhood

{Uq}q∈Q, there is a Zeno equilibrium ẑ with ẑ 6= z and ẑ ⊂ {Uq}q∈Q. Furthermore, any maximal

execution with c0(0) ∈ ẑ ⊂ {Uq}q∈Q is Zeno but does not converge to z. Therefore, z is not

bounded-time asymptotically Zeno stable.

Example 3 (Bouncing Ball on a Circle). The definitions and concepts above, as well as the theorems

to follow are illustrated by studying a ball bouncing on a circular surface (Figure 4.5).

Formally, bouncing ball on a circular surface is modeled by the hybrid system

HB = (Γ = ({q}, {(q, q)}, {DB}, {GB}, {RB}, {fB}),

where

DB = {(x, ẋ) ∈ R2 × R2 : ‖x‖ ≥ 1},

GB = {(x, ẋ) ∈ R2 × R2 : ‖x‖ = 1, and xT ẋ ≤ 0},
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Figure 4.5: A ball moving through the plane under gravitational acceleration that bounces on a
fixed circular surface. This simple system demonstrates most of the important phenomena discussed
in this chapter.

RB(x, ẋ) =


 x

ẋ− (1 + e)(xT ẋ)x


 , fB(x, ẋ) =




ẋ1

ẋ2

0

−g



.

Here the reset map, RB, is a Newtonian impact model, with a coefficient of restitution 0 ≤ e ≤ 1,

that describes an instantaneous jump in velocity when the ball impacts the circle. The vector field

fB models flight under gravitational acceleration.

Since fB(x, ẋ) 6= 0 on the entire continuous domain, the Zeno equilibria are exactly the fixed

points of the reset map:

ZB = {(x, ẋ) ∈ R2 × R2 : ‖x‖ = 1, and xT ẋ = 0}.

Note that ZB is an infinite, connected set. Therefore, HB has no isolated Zeno equilibria. From

Theorem 8, this bouncing ball system has no bounded-time asymptotically stable Zeno equilibria.

Turning to Zeno stability, the theory developed in this chapter predicts that whenever 0 < e < 1

and (x∗, ẋ∗) ∈ R2 × R2 satisfies the following algebraic conditions:

‖x∗‖ = 1, x∗T ẋ∗ = 0, ‖ẋ∗‖2 < gx∗2, (4.3)

the singleton set {(x∗, ẋ∗)} is a bounded-time non-asymptotically Zeno stable Zeno equilibrium.

Note how the conditions guarantee a noncompact continuum of bounded-time locally Zeno stable

sets along the entire open upper half circle, even at points with nearly vertical tangent spaces.

The ball on a circular surface also captures the fundamentally local nature of the conditions

in this chapter. Many executions will never hit the circle at all, and simply free fall for all time.
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Figure 4.6: Two simulations of the bouncing ball system with g = 1, e = 1/2 and initial conditions
slightly varied. 4.6(a) With initial condition c0(0) = (x1, x2, ẋ1, ẋ2)T = (0, 1.033, .5, 0)T , the execu-
tion bounces several times before free falling to infinity. 4.6(b) Shifting x2 down a small amount,
so that c0(0) = (x1, x2, ẋ1, ẋ2)T = (0, 1.032, .5, 0)T , the execution becomes Zeno. After the Zeno
behavior occurs, the green line depicts how the ball rolls along the surface before eventually falling
off.

Others will make a finite number of collisions before escaping to a free fall. Finally, some executions

can be Zeno. The theory developed in this chapter can be used to numerically distinguish between

executions that take several bounces before free fall, and Zeno executions (Figure 4.6).

4.3 First Quadrant Interval Hybrid Systems

This section gives conditions for Zeno stability in a simple class of hybrid systems termed first-

quadrant interval hybrid systems. These systems are easy to analyze, yet flexible enough to capture

important characteristics of nontrivial systems. Indeed, first-quadrant interval systems serve as

targets for Lyapunov-like reductions. First-quadrant interval hybrid systems are a variant on first-

quadrant hybrid systems studied in [82] and [72]. The term “interval” is used since both the vector

fields and reset maps are interval valued. See [98] and [99] for more on set valued functions and

differential inclusions.

Definition 11. A first-quadrant interval FQI hybrid system is a tuple

HFQI = (Γ, D,G,R, F )

where

• Γ = (Q,E) is a directed cycle as in Definition 5.



76

• D = {Dq}q∈Q where for all q ∈ Q,

Dq = R2
≥0 = {(x1, x2)T ∈ R2 : x1 ≥ 0, x2 ≥ 0}.

• G = {Ge}q∈Q where for all e ∈ E,

Ge = {(x1, x2)T ∈ R2
≥0 : x1 = 0, x2 ≥ 0}.

• R = {Re}e∈E where for all e ∈ E, Re is a set valued function defined by

Re(0, x2) = {(y1, y2)T ∈ Dq′ : y2 = 0, y1 ∈ [γlex2, γ
u
e x2]},

for γue ≥ γle > 0 and for all (0, x2)T ∈ Ge.

• F = {fq}q∈Q where for all q ∈ Q, fq is the (constant) set-valued function defined by

fq(x) = {(y1, y2)T ∈ R2 : y1 ∈ [αlq, α
u
q ], y2 ∈ [βlq, β

u
q ]}.

Definition 12. An execution of a first-quadrant interval system, HFQI is a tuple χFQI = (Λ, I, ρ, C)

where

• Λ, I and ρ are defined as in Definition 6.

• C = {ci}i∈Λ is a set of continuous trajectories that satisfy the differential inclusion ċi(t) ∈
fρ(i)(ci(t)) for t ∈ Ii.

When i, i+ 1 ∈ Λ, the conditions at the resets are given by

(i) ci(t) ∈ Dρ(i) ∀ t ∈ Ii
(ii) ci(τi+1) ∈ G(ρ(i),ρ(i+1))

(iii) ci+1(τi+1) ∈ R(ρ(i),ρ(i+1))(ci(τi+1)).

(4.4)

When i = |Λ| − 1, condition (i) must still hold.

Theorem 9. Let HFQI = (Γ, D,G,R, F ) be a first-quadrant interval hybrid system. If αuq < 0 < βlq

for all q ∈ Q, γle > 0 for all e ∈ E and

|Q|−1∏

i=0

∣∣∣∣γuei
βuqi
αuqi

∣∣∣∣ < 1
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then the origin {0q}q∈Q is bounded-time globally asymptotically Zeno stable.

From the definition of bounded-time global asymptotic stability, there is a function TZeno :

R → R such that the Zeno time of any maximal execution satisfies τ∞ ≤ TZeno(‖c0(0)‖) and

TZeno(‖c0(0)‖)→ 0 as ‖c0(0)‖ → 0.

Proof. Define 0 < ζ < 1 by

ζ :=

|Q|−1∏

i=0

∣∣∣∣γuei
βuqi
αuqi

∣∣∣∣ . (4.5)

Let χFQI be an execution of HFQI . Without loss of generality, assume that c0(0) ∈ Dq0 . Since

fq(x)2 ≥ βlq > 0, the continuous trajectories travel upwards, away from the x1-axis. Likewise,

fq(x)1 ≤ αuq < 0 implies that the continuous trajectories travel left, towards the x2-axis. Therefore,

by construction, events are always guaranteed, so Λ can be assumed to be N without loss of generality.

For simplicity, assume that c0(0)2 = 0. Dropping this assumption changes little, though the proofs

become messier.

The hypothesis αuρ(i) < 0 implies that ci(t)1 ≤ ci(τi)1 + αuρ(i)(t− τi), and therefore

τi+1 − τi ≤
∣∣∣∣∣
ci(τi)1

αuρ(i)

∣∣∣∣∣ , (4.6)

for all i ≥ 0. The continuous state at the first event must satisfy

c0(τ1)2 ≤ βu0 (τ1 − τ0) + c0(τ0)2 ≤ c0(τ0)1

∣∣∣∣
βu0
αu0

∣∣∣∣+ c0(τ0)2.

Thus, after the first event the continuous state satisfies

c1(τ1)1 ≤ γuρ(0,1)c0(0)1

∣∣∣∣
βu0
αu0

∣∣∣∣+ γuρ(0,1)c0(0)2. (4.7)

Furthermore, ci(τi)2 = 0 for all i ≥ 1. Stability, asymptotic convergence, and the bound on the Zeno

time all follow from bounds on ci(τi)1.

It is claimed that

ci(τi)1 ≤ c1(τ1)1

i−1∏

j=1

∣∣∣∣∣γ
u
(ρ(j),ρ(j+1))

βuρ(j)

αuρ(j)

∣∣∣∣∣ (4.8)

for all i ∈ N. Interpreting the product to be 1 when i = 1, Equation (4.8) holds for i = 1. Now

inductively assume that equation (4.8) holds for some i ≥ 1. Combining Equation (4.6) with the

form of fq gives an upper bound on ci(τi+1)2,

ci(τi+1)2 ≤ βuρ(i)(τi+1 − τi) ≤ ci(τi)1

∣∣∣∣∣
βuρ(i)

αuρ(i)

∣∣∣∣∣ . (4.9)
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Using the form of the reset maps, the claim follows:

ci+1(τi+1)1 ≤ ci(τi)1

∣∣∣∣∣γ
u
(ρ(i),ρ(i+1))

βuρ(i)

αuρ(i)

∣∣∣∣∣ ≤ c1(τ1)1

i∏

j=1

∣∣∣∣∣γ
u
(ρ(j),ρ(j+1))

βuρ(j)

αuρ(j)

∣∣∣∣∣ .

To prove stability and asymptotic convergence note that αuq < 0 < βlq implies that ci(t)1 ≤ ci(τi)1

and ci(t)2 ≤ ci(τi+1)2 for all t ∈ Ii. Combining Equations (4.7), (4.8), and (4.9) gives the bound

‖ci(t)‖ ≤ ci(τi)1 + ci(τi+1)2

≤
(

1 +

∣∣∣∣∣
βuρ(i)

αuρ(i)

∣∣∣∣∣

)
ci(τi)1

≤
(

1 +

∣∣∣∣∣
βuρ(i)

αuρ(i)

∣∣∣∣∣

)
c1(τ1)1

i−1∏

j=1

∣∣∣∣∣γ
u
(ρ(j),ρ(j+1))

βuρ(j)

αuρ(j)

∣∣∣∣∣

≤
(

1 +

∣∣∣∣∣
βuρ(i)

αuρ(i)

∣∣∣∣∣

)
γuρ(0,1)

(
c0(0)1

∣∣∣∣
βu0
αu0

∣∣∣∣+ c0(0)2

) i−1∏

j=1

∣∣∣∣∣γ
u
(ρ(j),ρ(j+1))

βuρ(j)

αuρ(j)

∣∣∣∣∣ .

Since the product in the last inequality converges to 0 as i→∞, executions with ‖c0(0)‖ small must

remain near the origin, and ci(t)→ 0ρ(i) as i→∞.

Combining Equations (4.5), (4.6), and (4.8) and proves that χ is Zeno:

∞∑

i=0

τi+1 − τi ≤ c0(0)1

∞∑

i=0

1

|αuρ(i)|
i−1∏

j=0

∣∣∣∣∣γ
u
(ρ(j),ρ(j+1))

βuρ(j)

αuρ(j)

∣∣∣∣∣

= c0(0)1



|Q|−1∑

j=0

1

|αuqj |

j−1∏

k=0

∣∣∣∣γuek
βuqk
αuqk

∣∣∣∣


 ·

( ∞∑

i=0

ζi

)

< ∞.

Furthermore, note that the bound on the Zeno time goes to zero as c1(0)1 → 0.

Theorem 9 can also be proved using Lyapunov methods from [75], but the close relationship

between spatial convergence and temporal convergence exploited in the proof above is used to prove

Theorem 10, particularly for Lemma 10.

4.4 Sufficient Conditions for Zeno Stability through Reduc-

tion to FQI Hybrid Systems

This section gives the second main result of this paper, sufficient conditions for bounded-time local

Zeno stability of hybrid systems via reduction to FQI hybrid systems. The theorem uses special

Lyapunov-like functions to map executions of complex hybrid systems down to executions of FQI
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hybrid systems, thus transferring some Zeno stability properties from Theorem 9.

In the theorem below, Lyapunov-like functions map neighborhoods around Zeno equilibria to the

first quadrant. The theorem applies to both isolated and non-isolated Zeno equilibria. Therefore, by

Theorem 8, the sufficient conditions below can imply bounded-time asymptotic or non-asymptotic

Zeno stability, depending on the type of Zeno equilibrium in question.

Assumption. In this section, assume that each Dq is a subset of Rnq with nq = dim(Dq) and

zq = 0. No generality is lost because the results are local, and coordinate charts charts can be used.

Reduction conditions. Let z = {zq}q∈Q be a Zeno equilibrium (not necessarily isolated) of a

hybrid system H = (Γ, D,G,R, F ), {Wq}q∈Q be a collection of sets with zq ∈ Wq ⊆ Dq and

{ψq}q∈Q be a collection of C1 maps; these are “Lyapunov-like” functions, with

ψq : Wq ⊆ Dq → R2
≥0.

Consider the following conditions:

R1: ψq(zq) = 0 for all q ∈ Q.

R2: If (q, q′) ∈ E, then ψq(x)1 = 0 if and only if x ∈ G(q,q′) ∩Wq.

R3: dψq(zq)1fq(zq) < 0 < dψq(zq)2fq(zq) for all q ∈ Q.

R4: ψq′(R(q,q′)(x))2 = 0 and there exist constants 0 < γle ≤ γue such that

ψq′(R(q,q′)(x))1 ∈
[
γl(q,q′)ψq(x)2, γ

u
(q,q′)ψq(x)2

]

for all x ∈ G(q,q′) ∩Wq and all (q, q′) ∈ E.

R5:
|Q|−1∏

i=0

∣∣∣∣γuei
dψqi(zqi)2fqi(zqi)

dψqi(zqi)1fqi(zqi)

∣∣∣∣ < 1.

R6: There exists K ≥ 0 such that

‖R(q,q′)(x)− zq′‖ ≤ ‖x− zq‖+Kψq(x)2

for all x ∈ G(q,q′) ∩Wq and all (q, q′) ∈ E.



80

Theorem 10. Let H be a hybrid system with a Zeno equilibria z = {zq}q∈Q. If there exists a

collection of sets {Wq}q∈Q with zq ∈ Wq ⊆ Dq and maps {ψq}q∈Q satisfying conditions R1-R6,

then z is bounded-time locally Zeno stable.

Before getting to the proof of the theorem, note that Theorems 8 and 10 immediately imply the

following corollary.

Corollary 1. Let H be a hybrid system with a Zeno equilibria z = {zq}q∈Q satisfying the conditions

of Theorem 10. If z is an isolated Zeno equilibrium, then z is bounded-time asymptotically Zeno

stable. Otherwise, if z is a non-isolated Zeno equilibrium, then z is bounded-time non-asymptotically

Zeno stable.

Theorem 10 is proved as follows:

1. Construct a Zeno first-quadrant interval system HFQI from the hybrid system H and map

executions of the hybrid system to executions of the FQI hybrid system (Lemma 9).

2. Prove that executions of H stay “close” to the Zeno equilibria for a bounded period of time

(Lemma 10).

3. Use 2) and 1) to show that H is Zeno because HFQI is Zeno due to conditions R1–R6.

Constructing a FQI hybrid system. A first-quadrant interval system HFQI can be defined

from a hybrid system H based on the reduction conditions. Assume that H is a hybrid system

satisfying R1–R5. Pick αlq, α
u
q , βlq, and βuq such that

αlq < dψq(0)1fq(0) < αuq < 0 < βlq < dψq(0)2fq(0) < βuq

for all q ∈ Q and
|Q|−1∏

i=0

∣∣∣∣γuei
βuqi
αuqi

∣∣∣∣ < 1,

where γuei is given by R4. The constants αlq, α
u
q , βlq, β

u
q , γl(q,q′), and γu(q,q′) (with γl(q,q′) also given

by R4) thus define a first-quadrant interval system HFQI , on the same graph as H , satisfying the

conditions of Theorem 9 due to conditions R3–R5. Thus all executions of HFQI extend to Zeno

executions.

The following lemma shows how an execution of H remaining near the Zeno equilibria gives rise

to an execution of HFQI .
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Lemma 9. Suppose H is a hybrid system satisfying the conditions of Theorem 10. Then there

exists µ > 0 such that if χ = (Λ, ρ, I, C) is an execution of H with ‖ci(t)‖ < µ for all t ∈ Ii and all

i ∈ Λ, then χFQI = (Λ, ρ, I,Ψ ◦ C), where Ψ ◦ C = {ψρ(i) ◦ ci}i∈Λ, is an execution of of HFQI .

Proof. By continuity, there exists µ > 0 such that for all q ∈ Q and for all x ∈Wq with ‖x‖ < µ,

αlq < dψq(x)1fq(x) < αuq < 0 < βlq < dψq(x)2fq(x) < βuq ,

wherein it follows that χFQI satisfies the conditions of HFQI by construction. Indeed, ψρ(i)(ci(t))

satisfies the differential inclusion:

d

dt
ψρ(i)(ci(t)) ∈ {(x1, x2)T ∈ R2 : x1 ∈ [αlρ(i), α

u
ρ(i)], x2 ∈ [βlρ(i), β

u
ρ(i)]}.

Condition R2 guarantees that an event of χFQI occurs if and only if an event occurs in χ. Condition

R4 guarantees that χFQI satisfies the first-quadrant interval system reset condition defined by γle

and γue . Therefore, χFQI is an execution of HFQI .

Lemma 10. Let H satisfy the conditions of Theorem 10. Then there exists a function Tescape :

R2 → R such that if µ > 0 is sufficiently small and η > 0 is sufficiently smaller than µ, then

Tescape(η, µ) > 0 and any execution χ of H with ‖c0(0)‖ < η satisfies ‖ci(t)‖ < µ for all t ∈ Ii with

t < Tescape(η, µ).

Furthermore, if η̂ ≤ η, then Tescape(η̂, µ) ≥ Tescape(η, µ).

Proof. Pick µ such that Bq(µ) ⊂Wq, where Bq(µ) is a ball of radius µ around the origin of dimension

dim(Dq).

Say χ is an execution with ‖c0(0)‖ < η such that ‖ci(t)‖ ≥ µ for some t ∈ Ii and i ∈ Λ. Define

τ and i∗ by

τ = inf{t : t ∈ Ii, i ∈ Λ, ‖ci(t)‖ ≥ µ}

i∗ = min{i ∈ Λ : τ ∈ Ii}.

Minimality of i∗ implies that either τi∗ < τ or τ = 0. Indeed, say τ = τi∗ , with i∗ > 0 (recall

that τ0 = 0). Then τ ∈ [τi∗−1, τi∗ ] = Ii∗−1, contradicting the minimality of i∗. First, consider the

case τi∗ < τ and examine the truncated execution χ̂ = (Λ̂, Î, ρ̂, Ĉ) defined by

• Λ̂ = {0, 1, . . . , i∗},
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• Î = {Îi}i∈Λ̂ with Îi = Ii for i < i∗ and Îi∗ = [τi∗ , τ),

• ρ̂ = ρ|Λ̂,

• Ĉ = {ĉi}i∈Λ̂ with ĉi = ci|Îi for all i ∈ Λ̂.

To simplify notation, identify χ with χ̂. By continuity of the vector fields fq, there exists M > 0

such that ‖fq(x)‖ ≤ M for all x ∈ Bq(µ) and all q ∈ Q. Moreover, integrating the vector fields fq

and applying the bound gives

‖ci∗(τ)‖ ≤ ‖ci∗(τi∗)‖+M(τ − τi∗)

‖ci(τi+1)‖ ≤ ‖ci(τi)‖+M(τi+1 − τi),

for i = 0, . . . , i∗ − 1.

A telescoping series argument combined with R6 gives

Mτ ≥ ‖ci∗(τ)‖ − ‖c0(0)‖ −
i∗−1∑

i=0

‖ci+1(τi+1)‖ − ‖ci(τi+1)‖

≥ ‖ci∗(τ)‖ − ‖c0(0)‖ −K
i∗−1∑

i=0

ψρ(i)(ci(τi+1))2. (4.10)

Now last sum will be bounded. Lemma 9 implies that χFQI = (Λ, ρ, I,Ψ ◦C) is an execution of

HFQI . Arguing as in the proof of Theorem 9, calculate an upper bound on ψρ(i)(ci(τi+1))2 as

ψρ(i)(ci(τi+1))2 ≤ ψρ(i)(ci(τi))1

∣∣∣∣∣
βuρ(i)

αuρ(i)

∣∣∣∣∣ ≤ ψρ(0)(c0(0))1

∣∣∣∣∣
βuρ(i)

αuρ(i)

∣∣∣∣∣
i−1∏

j=0

∣∣∣∣∣γ
u
(ρ(j),ρ(j+1))

βuρ(j)

αuρ(j)

∣∣∣∣∣ . (4.11)

Summing the terms from Equation (4.11) and recalling the definition of TZeno from the proof Theorem

9 gives the bound

i∗−1∑

i=0

ψρ(i)(ci(τi+1))2 ≤ TZeno

(
ψρ(0)(c0(0))1βmax

)
≤ TZeno(g(η)βmax), (4.12)

where βmax = maxq∈Q β
u
q and g(η) = max‖x‖≤η,q∈Q ‖ψq(x)‖.

Now, a lower bound the escape time is derived in terms of η and µ. Pick η small enough so that

max{η,KTZeno(g(η)βmax)} < µ/2. Combining Equations (4.10) and (4.12) gives the lower bound

τ ≥ 1

M
(‖ci∗(τ)‖ − ‖c0(0)‖ −KTZeno(g(η)βmax))

≥ µ− η − µ
2

M

=
µ
2 − η
M

.
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Define Tescape by Tescape(η, µ) :=
µ
2−η
M . Clearly Tescape increases as η decreases.

Finally, the possibility that τ = 0 must be ruled out. To this end, let i′ = min{i ∈ Λ : ‖ci(τ)‖ ≥
µ}. Note that i′ > i∗ = 0. A contradiciton follows by computing

‖ci′(τ)‖ ≤ ‖c0(τ)‖+K

i′−1∑

i=0

ψρ(i)(ci(τ))2

≤ ‖c0(τ)‖+KTZeno(g(η)βmax)

<
µ

2
+
µ

2
.

The respective inequalities follow from repeated application of R6, Equation (4.12), and the choice

of η.

Proof of Theorem 10. Because the vector fields fq, q ∈ Q, are Lipschitz, the continuous dynamics

are always well-defined on each domain. Furthermore, since Γ is a directed cycle the dynamics of

H are completely deterministic. Thus given x0 ∈ Dq, there exists a unique execution χ of H with

c0(0) = x0 such that either χ is defined for all t ≥ 0 or χ is Zeno.

Assume that zq = 0 for all q ∈ Q. Given ε > 0 and a collection of neighborhoods {U}q∈Q with

0 ∈ Uq ⊂ Dq, pick small constants η and µ such that

• {x ∈ Dq : ‖x‖ < µ} ⊂ Uq for all q ∈ Q.

• TZeno(g(η)) < ε, where g(η) = max‖x‖≤η,q∈Q ‖ψq(x)‖.

• TZeno(g(η)) < Tescape(η, µ).

First it is shown that all maximal executions starting near z are Zeno. Assume for the sake of

contradiction that there is an execution χ = (N, I, ρ, C) with ‖c0(0)‖ < η that is not Zeno. Let χ̂

be the execution χ restricted to t < Tescape(η, µ). To be more precise, define i∗ by

i∗ := min{i ∈ Λ : Tescape(η, µ) ∈ Ii}.

Define χ̂ = (λ̂, Î, ρ̂, Ĉ) by

• Λ̂ = {0, 1, . . . , i∗},

• Î = {Îi}i∈Λ̂ with Îi = Ii for i < i∗ and Îi∗ = [τi∗ , Tescape(η, µ)),

• ρ̂ = ρ|Λ̂,

• Ĉ = {ĉi}i∈Λ̂ with ĉi = ci|Îi for all i ∈ Λ̂.

If µ is sufficiently small, then Lemma 9 combined with Lemma 10 implies that χ̂ gives rise to

an execution χFQI of HFQI that is defined for all t ∈ [0, Tescape(η, µ)). Furthermore, the initial
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condition of χFQI satisfies ‖ψρ(0)(c0(0))‖ ≤ g(η). Now Theorem 9 implies that the Zeno time for

χFQI is at most TZeno(g(η)). But recalling that TZeno(g(η)) < Tescape(η, µ), we find that χFQI is

defined past its Zeno time, a contradiction.

Finally, by the choice of η and µ, if the initial condition of a maximal execution, χ, satisfies

‖c0(0)‖ < η, then ci(t) ∈ Uρ(i) for all i ∈ Λ and t ∈ Ii, and the Zeno time satisfies

τ∞ ≤ TZeno(g(η)) < ε.

Therefore z is bounded-time locally Zeno stable.

First-quadrant hybrid systems. Theorem 10 immediately generalizes the sufficient conditions

from [72] for Zeno behavior in hybrid systems defined on the first quadrant of R2.

Definition 13. A first-quadrant hybrid system is a tuple

HFQ = (Γ, D,G,R, F )

where

• Γ = (Q,E) is a directed cycle as in Definition 5.

• D = {Dq}q∈Q where for all q ∈ Q, Dq = R2
≥0 = {(x1, x2)T ∈ R2 : x1 ≥ 0, x2 ≥ 0}.

• G = {Ge}q∈Q where for all e ∈ E, Ge = {(x1, x2)T ∈ R2
≥0 : x1 = 0, x2 ≥ 0}.

• R = {Re}e∈E where for all e ∈ E, Re(0, x2) = (re(x2), 0) and re : R≥0 → R≥0.

• F = {fq}q∈Q where for all q ∈ Q, fq is a vector field on Dq = R2
≥0.

Corollary 2. Let H = (Γ, D,R, F ) be a first-quadrant hybrid system. If r′e(0) > 0 for all e ∈ E,

fq(0)1 < 0 < fq(0)2 for all q ∈ Q and

|Q|−1∏

i=0

∣∣∣∣r′ei(0)
fqi(0)2

fqi(0)1

∣∣∣∣ < 1,

then {0q}q∈Q bounded-time asymptotically Zeno stable, where 0q is the origin of Dq.

Proof. Let ψq be the identity for all q ∈ Q. Let γle and γue be such that 0 < γle < r′e(0) < γue and

|Q|−1∏

i=0

∣∣∣∣γuei
fqi(0)2

fqi(0)1

∣∣∣∣ < 1.
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Let K = maxe∈E γ
u
e . Routine calculations verify that the conditions of Theorem 10 hold on a

sufficiently small neighborhood of the origin. Since the origin is an isolated Zeno equilibrium,

Corollary 1 implies asymptotic convergence.

4.5 Application to Simple Hybrid Mechanical Systems

This section develops Zeno stability theory for a simple model of mechanical systems undergoing

impacts, known as Lagrangian hybrid systems. First, Lagrangian hybrid systems are defined. Then,

Theorem 10 is applied to give sufficient conditions for Zeno behavior in Lagrangian hybrid systems

based on the the value of the vector field at a single point. Finally, examples illustrate the theory.

For more on Lagrangian hybrid systems, see [9, 10, 84, 85, 86, 100, 101].

4.5.1 Lagrangian Hybrid Systems

Lagrangians. Consider a configuration space2 Θ and a Lagrangian L : TΘ → R given in

coordinates by:

L(θ, θ̇) =
1

2
θ̇TM(θ)θ̇ − U(θ) (4.13)

where M(θ) is positive definite and symmetric and U(θ) is the potential energy. For the sake of

simplicity, assume Θ ⊂ Rn since all the results can be proven in a coordinate chart. The equations

of motion are then given in coordinates by the Euler-Lagrange equations,

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0.

In the case of Lagrangians of the form given in (4.13), the Lagrangian vector field, fL, associated to

L takes the familiar form

ẋ = fL(x) =


 θ̇

M(θ)−1(−C(θ, θ̇)θ̇ −N(θ))


 , (4.14)

where x = (θT , θ̇T )T , C(θ, θ̇) is the Coriolis matrix and N(θ) = ∂U
∂θ (θ).

This process of associating a dynamical system to a Lagrangian will be mirrored in the setting

of hybrid systems. First, hybrid Lagrangians will be introduced.

Definition 14. A hybrid Lagrangian is a tuple,  L = (Θ, L, h), where

• Θ ⊂ Rn is the configuration space,

2Note that the configuration space is written as Θ rather than Q, due to the fact that Q denotes the vertices of
the graph of a hybrid system.
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Figure 4.7: The double pendulum with mechanical stop

• L : TΘ→ R is a Lagrangian of the form given in (4.13),

• h : Θ → R is a unilateral constraint function, where 0 is assumed to be a regular value of h

(to ensure that h−1({0}) is a smooth manifold).

To concretely illustrate the hybrid Lagrangian concepts of the rest of the paper, consider a double

pendulum with a mechanical stop (Figure 4.73).

Example 4 (Double Pendulum). The double pendulum consists of two rigid links of masses m1,m2,

lengths L1, L2, and uniform mass distribution, which are attached by passive joints, while a mechan-

ical stop dictates the range of motion of the second link. The example serves as a simplified model

of a leg with a passive knee and a mechanical stop, which is widely investigated in the robotics

literature in the context of passive dynamics of bipedal walkers (see [88] and [89]). In this case

P = (ΘP, LP, hP),

where ΘP = S1 × S1 = T2, q = (θ1, θ2), and

LP(θ, θ̇) =
1

2
θ̇TM(q)θ̇ +

(
1

2
m1L1 +m2L1

)
g cos θ1 +

1

2
m2L2g cos(θ1 + θ2),

with the 2×2 inertia matrix M(θ) given by

M(θ) =


m1L

2
1/3 +m2(L2

1 + L2
2/3 + L1L2 cos θ2) m2(3L1L2 cos θ2 + 2L2

2)/6

m2(3L1L2 cos θ2 + 2L2
2)/6 m2L

2
2/3


 . (4.15)

Finally, the constraint that represents the mechanical stop is given by hP(q) = θ2 ≥ 0. So, for this

example, there are nontrivial dynamics and a trivial unilateral constraint function.

3Figure by Yizhar Or
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Domains from constraints. Given a smooth (unilateral constraint) function h : Θ → R on a

configuration space Θ such that 0 is a regular value of h, a domain and a guard can be explicitly

constructed. Define the domain, Dh, as the manifold (with boundary):

Dh = {(θ, θ̇) ∈ TΘ : h(θ) ≥ 0}.

Similarly, there is an associated guard, Gh, defined as the following submanifold of Dh:

Gh = {(θ, θ̇) ∈ TΘ : h(θ) = 0 and dh(θ)θ̇ ≤ 0},

where dh(θ) =
(

∂h
∂θ1

(θ) · · · ∂h
∂θn

(θ)
)
. Note that 0 is a regular value of h if and only if dh(θ) 6= 0

whenever h(θ) = 0.

Lagrangian Hybrid Systems. Given a hybrid Lagrangian  L = (Θ, L, h), the Lagrangian hybrid

system associated to  L is the hybrid system

H L = (Γ = ({q}, {(q, q)}), D L, G L, R L, F L),

where D L = {Dh}, F L = {fL}, G L = {Gh}, and R L = {Rh}, with the reset map given by the

Newtonian impact equation Rh(θ, θ̇) = (θ, P (θ, θ̇)), with

P (θ, θ̇) = θ̇ − (1 + e)
dh(θ)θ̇

dh(θ)M(θ)−1dh(θ)T
M(θ)−1dh(θ)T . (4.16)

Here 0 ≤ e ≤ 1 is the coefficient of restitution.

Example 5 (Double Pendulum). From the hybrid Lagrangian, P = (ΘP, LP, hP), construct the

hybrid system

HP = (Γ = ({q}, {(q, q)}), DP, GP, RP, FP),

where

DhP
= {(θ, θ̇) ∈ T2 × R2 : θ2 ≥ 0},

GhP
= {(θ, θ̇) ∈ T2 × R2 : θ2 = 0 and θ̇2 ≤ 0},

and RhP
(θ, θ̇) = (θ, PhP

(θ, θ̇)) is computed on GhP
to be

PhP
(θ, θ̇) =


θ̇1 + ρθ̇2

−eθ̇2


 with ρ = (1 + e)

3m2L1L2 + 2m2L
2
2

2m1L2
1 + 6m2L2

1 + 2m2L2
2 + 6m2L1L2

.
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The vector field is computed as

fLP
(θ, θ̇) =




θ̇

M(θ)−1


αθ̇

2
2 sin θ2 − β sin(θ1 + θ2)− γ sin θ1

−αθ̇2
1 sin θ2 − β sin(θ1 + θ2)







where M(θ) is the mass matrix from Equation (4.15) and the constants α, β, and γ are defined by

α =
1

2
m2L1L2, β =

1

2
m2L2g, γ =

(
1

2
m1L1 +m2L1

)
g.

4.5.2 Sufficient Conditions for Zeno Behavior in Lagrangian Hybrid Sys-

tems

This subsection presents sufficient conditions for bounded-time local Zeno stability of Lagrangian

hybrid systems, based on an explicitly constructed Lyapunov-like function. The paper [84] proves a

special case of the main result in this section, Theorem 11, for a class of Lagrangian hybrid systems

with configuration manifolds of dimension two. If the potential energy is a convex function and the

domain specified by the unilateral constraint is a convex set, global Zeno stability results have been

proved in [85]. Of course, the convexity assumptions preclude the fundamentally local phenomena

occurring in the examples of this chapter.

First, however, the Zeno equilibria of Lagrangian hybrid systems are studied, observing that

isolated Zeno equilibria only occur in systems with one-dimensional configuration manifolds. Thus,

no Lagrangian hybrid system with configuration manifold of dimension greater than one can have

bounded-time asymptotically stable Zeno equilibria.

Zeno equilibria in Lagrangian hybrid systems. If H L is a Lagrangian hybrid system, then

applying the definition of Zeno equilibria and examining the special form of the reset maps shows

that z = {(θ∗, θ̇∗)} is a Zeno equilibrium if and only if

f L(θ∗, θ̇∗) 6= 0, h(θ∗) = 0, dh(θ∗)θ̇∗ ≤ 0, θ̇∗ = P (θ∗, θ̇∗).

Furthermore, the form of P implies that θ̇∗ = P (θ∗, θ̇∗) holds if and only if dh(θ∗)θ̇∗ = 0. Therefore

the set of all Zeno equilibria for a Lagrangian hybrid system is given by the surfaces in TΘ:

Zh = {(θ, θ̇) ∈ TΘ : f L(θ, θ̇) 6= 0, h(θ) = 0, dh(θ)θ̇ = 0}.

Note that if dim(Θ) > 1, the Lagrangian hybrid system has no isolated Zeno equilibria.
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Theorem 11. Let H L be a Lagrangian hybrid system and (θ∗, θ̇∗) ∈ Dh. If the coefficient of

restitution satisfies 0 < e < 1 and (θ∗, θ̇∗) satisfies

h(θ∗) = 0, ḣ(θ∗, θ̇∗) = 0, ḧ(θ∗, θ̇∗) < 0,

then {(θ∗, θ̇∗)} is a bounded-time locally stable Zeno equilibrium.

Here ḣ(θ∗, θ̇∗) = dh(θ∗)θ̇∗ and

ḧ(θ∗, θ̇∗) = (θ̇∗)TH(h(θ∗))θ̇∗ + dh(θ∗)M(θ∗)−1(−C(θ∗, θ̇∗)θ̇∗ −N(θ∗)),

where H(h(θ∗)) is the Hessian of h at θ∗.

Proof. First note that {(θ∗, θ̇∗)} is a Zeno equilibrium. Indeed, dḣ(θ∗, θ̇∗)f L(θ∗, θ̇∗) = ḧ(θ∗, θ̇∗) 6= 0

implies that f L(θ∗, θ̇∗) 6= 0. Then the conditions h(θ∗) = 0 and ḣ(θ∗, θ̇∗) = 0 imply that {(θ∗, θ̇∗)}
is a Zeno equilibrium.

Let V be a small neighborhood of (θ∗, θ̇∗) and assume (by passing to a coordinate chart) that

V ⊂ R2n with Euclidean norm. Let K satisfy

K >
1 + e

2

‖M(θ∗)−1dh(θ∗)T ‖
dh(θ∗)M(θ∗)−1dh(θ∗)T

.

The proof proceeds by verifying that the constants γuh = γlh = e, K and the function

ψh(θ, θ̇) =


 ḣ(θ, θ̇) +

√
ḣ(θ, θ̇)2 + 2h(θ)

−ḣ(θ, θ̇) +
√
ḣ(θ, θ̇)2 + 2h(θ)


 (4.17)

satisfy conditions R1–R6 on V .

R1: Since (θ∗, θ̇∗) is a Zeno equilibrium, h(θ∗) = 0 and ḣ(θ∗, θ̇∗) = dh(θ∗)θ̇∗ = 0. Thus

ψh(θ∗, θ̇∗) = 0.

R2: Since h(θ) ≥ 0, ψh(θ, θ̇)1 = 0 if and only if h(θ) = 0 and ḣ(θ, θ̇) ≤ 0. So ψh(θ, θ̇)1 = 0 if and

only if (θ, θ̇) ∈ Gh.

R3: The square root in the definition of ψh creates some differentiability problems at the Zeno

equilibrium.

Assume V is small enough that V contains no equilibria of f L. Then (Dh \Zh)∩V has the form

(Dh \ Zh) ∩ V = {(θ, θ̇) ∈ V : h(θ) > 0 or ḣ(θ, θ̇) 6= 0},
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and that ψh is continuously differentiable on (Dh \ Zh) ∩ V with Lie derivative given by

ψ̇h(θ, θ̇) =



ḧ(θ, θ̇) + ḣ(θ,θ̇)√

ḣ(θ,θ̇)2+2h(θ)

(
ḧ(θ, θ̇) + 1

)

−ḧ(θ, θ̇) + ḣ(θ,θ̇)√
ḣ(θ,θ̇)2+2h(θ)

(
ḧ(θ, θ̇) + 1

)


 . (4.18)

Recall that ḧ(θ∗, θ̇∗) < 0. It follows from the definitions that scaling h by a positive constant

does not change Dh, Gh, or Rh. Therefore it can be assumed that ḧ(θ∗, θ̇∗) = −1.

While the function ḣ(θ,θ̇)√
ḣ(θ,θ̇)2+2h(θ)

may not have a unique limit as (θ, θ̇) → (θ∗, θ̇∗) it remains

bounded on (Dh \ Zh) ∩ V :

|ḣ(θ, θ̇)|√
ḣ(θ, θ̇)2 + 2h(θ)

≤ 1.

Therefore, ψ̇h has the well-defined limit

lim
(θ,θ̇)∈(Dh\Zh)∩V, (θ,θ̇)→(θ∗,θ̇∗)

ψ̇h(θ, θ̇) =


−1

1


 . (4.19)

Since the differentiability problems only arise on the guard, and in particular only on the Zeno

equilibria, the limit in Equation (4.19) suffices for the evaluation in R3.

R4: Let (θ, θ̇) ∈ Gh. Then h(θ) = 0 and ḣ(θ, θ̇) ≤ 0. So, substitution into Equation (4.17) gives

ψh(θ, θ̇) = (0, 2|ḣ(θ, θ̇)|)T .

Multiplying both sides of Equation (4.16) on the left by dh(θ) and the definition of ḣ(θ, θ̇) gives

ḣ(Rh(θ, θ̇)) = −eḣ(θ, θ̇).

Therefore ψh(Rh(θ, θ̇)) = (2e|ḣ(θ, θ̇)|, 0)T . So if γlh = γuh = e, R4 holds with ψh(Rh(θ, θ̇))1 ∈
[eψh(θ, θ̇)2, eψh(θ, θ̇)2].

R5: ∣∣∣∣∣γ
u
h

dψh(θ∗, θ̇∗)2fL(θ∗, θ̇∗)

dψh(θ∗, θ̇∗)1fL(θ∗, θ̇∗)

∣∣∣∣∣ =

∣∣∣∣e
1

−1

∣∣∣∣ = e < 1.

R6: Take a point (θ, θ̇) ∈ Gh ∩ V (this is the only step that requires a norm, and hence the

coordinate chart on V ). The growth due to the reset map can be bounded as follows,

‖Rh(θ, θ̇)− (θ∗, θ̇∗)‖

=

∥∥∥∥∥(θ, θ̇)− (θ∗, θ̇∗)−
(

0, (1 + e)
dh(θ)θ̇

dh(θ)M(θ)−1dh(θ)T
M(θ)−1dh(θ)T

)∥∥∥∥∥

≤ ‖(θ, θ̇)− (θ∗, θ̇∗)‖+ (1 + e)
|dh(θ)θ̇|

dh(θ)M(θ)−1dh(θ)T
‖M(θ)−1dh(θ)T ‖.
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Figure 4.8: A simulation of an execution of the double pendulum with a mechanical stop that appears
to be Zeno. See Remark 7 for a discussion on numerical proofs Zeno behavior in simulations.

Recall that ψh(θ, θ̇)2 = 2|dh(θ)θ̇|. Plugging in the definition of K proves R6:

‖Rh(θ, θ̇)− (θ∗, θ̇∗)‖ ≤ ‖(θ, θ̇)− (θ∗, θ̇∗)‖+Kψh(θ, θ̇)2.

Since R1–R6 hold, Theorem 10 implies that there is a neighborhood W of (θ∗, θ̇∗) with W ⊂ V
such that there is a unique Zeno execution with c0(0) = x for all x ∈W .

Example 6 (Double Pendulum). Recall that the double pendulum system, HP has a trivial uni-

lateral constraint: hP(θ) = θ2 and ḣP = θ̇2. Whenever θ2 = 0 and θ̇2 = 0 the second derivative of

the unilateral constraint reduces to

ḧP(θ1, θ2, θ̇1, θ̇2) =
g sin θ1

L̃
< 0, where L̃ = (4m1+3m2)L1L2

3(m1(L1+2L2)m2L2) .

Thus, if (θ∗1 , θ
∗
2 , θ̇
∗
1 , θ̇
∗
2) satisfies θ∗2 = 0, θ̇∗2 = 0, and sin(θ∗1) < 0, then all executions with initial

conditions near (θ∗1 , θ
∗
2 , θ̇
∗
1 , θ̇
∗
2) are Zeno (Figure 4.8).

Example 7 (Ball on a Circle). With Zeno stability tools in hand, return to the ball bouncing on

a circle from Example 3. Basic calculations show that the bouncing ball hybrid system, HB, is the

Lagrangian hybrid system associated to the hybrid Lagrangian B = (R2, LB, hB), where

LB(x, ẋ) =
1

2
m‖ẋ‖2 −mgx2, hB(x) = ‖x‖2 − 1.

The conditions in Equation (4.3) for Zeno stability follow from Theorem 11.

Remark 7. Given the simple dynamics of the bouncing ball system, HB, conservative estimates

of Tescape and TZeno can be numerically computed to prove Zeno behavior in experiments. Indeed,

the execution from Figure 4.6(b) was proved to be Zeno, numerically, using tighter bounds on TZeno
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from [102].

The double pendulum, HP has complicated dynamics, and Zeno behavior in the execution de-

picted in Figure 4.8 was assumed to be Zeno, heuristically, based the value of ḣP at collisions.

4.6 Conclusion

In this chapter, it was observed that a bounded-time locally stable Zeno equilibrium displayed

asymptotic stability if and only if it was isolated. The tight link between non-asymptotic Zeno

stability and non-isolated Zeno equilibria highlighted the differences between classical Lyapunov

stability theory and Zeno stability theory. In particular, the theory of dynamical systems near

isolated equilibria usually provides enough traction that researchers and practitioners rarely need

to consider the complications of non-isolated equilibria. Contrast this to the situation that is found

in hybrid systems; to study non-asymptotic Zeno stability, there is no choice but to examine non-

isolated Zeno equilibria. Because most of the existing conditions for Zeno behavior required either

isolated Zeno equilibria or asymptotically stable Zeno equilibria, they all had similar limitations.

To reason about both asymptotic and non-asymptotic Zeno stability, Lyapunov-like sufficient

conditions for bounded-time local Zeno stability were presented that flexibly apply to isolated and

non-isolated Zeno equilibria. The proof methodology had two main components. First, a class

of hybrid systems with simple conditions for Zeno stability was defined. Then, special structured

(Lyapunov-like) functions were proposed to map executions of interesting hybrid systems to execu-

tions of the simple Zeno hybrid systems.

The main subtlety of the Lyapunov-like theorem arises from its local nature. In particular,

executions must remain “close enough” to the Zeno equilibrium in question, so that the reduction

conditions remain valid. The locality turns out to be crucial for examples, such as the bouncing ball

on a circular surface, in which Zeno and non-Zeno executions are separated by slight perturbations

in initial conditions.

Applications to Lagrangian hybrid systems showed that the sufficient conditions for local Zeno

stability can handle some nontrivial, high-dimensional hybrid systems. Furthermore, the Lyapunov-

like sufficient conditions specialize to algebraic constraints on the Zeno equilibria. In particular, in

Lagrangian hybrid systems, Zeno stability properties are inferred from the zero-order approximation

to the vector fields at the Zeno equilibria, similar to the local approximation results of [72] and [74].

The extensions of this work on Lagrangian hybrid systems, [9, 10], show that Zeno stability can be

used, in a practical sense, to study the transition from bouncing to sliding in mechanical systems. To

study more complex systems, such as bipedal walkers, rigid bodies, and other locomotion systems,

the results must be extended to cover more complex graph structures, and perhaps nonsmooth

unilateral constraints.
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Chapter 5

Conclusion

The areas of motor control, spiking neuron dynamics, and locomotion are ideal for control theorists.

Each of those areas employs sophisticated control theory but leaves many dynamical phenomena

unexplored. In many cases, as in this dissertation, the unexplored phenomena can be handled

with elementary techniques. The work in this dissertation represents just a few directions in which

progress can be made. Furthermore, all the results in this dissertation pave the way for related

research. Chapter 2 studies distributed LQG in order to understand how humans make efficient,

reliable movements, in spite of the fact that the underlying control architecture is a distributed

network of relatively slow subsystems. This chapter only solved the state feedback case. Output

feedback, as well as other cost functions should be studied to increase biological relevance. Chapter

3 explores the use of spike-based communication schemes for networked control. To improve on the

work of Chapter 3, the coding strategies of known feedback loops in the body should be studied.

Finally, Chapter 4 studies the relationship between Zeno behavior and Lyapunov stability in order

to understand mode transitions in mechanical systems. Explorations of the connections between the

work of Chapter 4 and bipedal walking are already underway, and should continue.

To make progress, the work in this thesis uses the approach of isolating phenomena and studying

them in an abstract setting, removed from the physiological motivations. As a consequence, the

physiological implications of the theory developed are not immediately obvious. Nonetheless, the

phenomena studied are inherent in the motivating problems. The problems studied in this thesis are

chosen as reasonable, and perhaps necessary, steps toward a deeper mathematical understanding of

motor control and locomotion.

One goal of this dissertation, which is far from being achieved, is to use physiologically inspired

control problems to increase the dialog between control theorists and biological experts who study

related problems. For instance, in neuroscience, it is taken for granted that control in the motor sys-

tem is distributed across several regions throughout the nervous system. It is also widely recognized

that feedback control theory is the natural framework for reasoning about human motor control. In

spite of these facts, little is known about how results from distributed control apply to the motor
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system. It is hoped that the work in Chapter 2 can serve as a starting point for conversations

between distributed control theorists and motor control experts. Much in the same way, the work in

Chapter 3 is intended to serve as a bridge between networked control theorists and spiking neuron

experts.

To improve the dialog between the locomotion and the hybrid systems communities, dynamical

phenomena from locomotion should be isolated and studied in a general hybrid systems framework.

Locomotion experts, both in biology and robotics, understand that their models are hybrid systems,

but the technical challenges of locomotion mainstream hybrid systems topics, such as formal verifi-

cation and switched linear systems, are quite different. Chapter 4 isolates the mechanisms producing

Zeno behavior in mechanical models and studies them in a hybrid systems framework. It is likely

that taking a similar approach to other locomotion phenomena, such as the exploitation of passive

dynamics in walking, would be fruitful for both communities.

Above all, this thesis demonstrates, through examples, the abundance of beautiful mathematical

structures resulting from physiological phenomena. In the coming years, insight into the nervous

system’s control strategies is bound to give rise to countless unimagined (and currently unimaginable)

mathematical structures within control theory. Perhaps more importantly, these insights may lead

to more precise and efficient control strategies in technological systems.
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