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Abstract

Over the past ten years it has become increasingly clear that most, if not all, galaxies have super-

massive black holes lurking in their cores. The implications for this are large as they not only have

significant effects on the host galaxies, far beyond what would have been näıvely expected, but would

provide several significant gravitational wave sources to the Laser Interferometer Space Antenna

(LISA). This thesis is primarily concerned with these gravitational wave sources and the possible

electromagnetic counterparts. In particular, when two galaxies merge, it leads to the ultimate

merger of their individual SMBHs. If gas is present near the time of merger a circumbinary disk

forms around the binary. By assuming the disk is pressureless, and looking at the limits of this

approximation, in Chapter 2 we develop an analytic theory of the reaction of such a gaseous disk to

the gravitational wave mass loss and recoil kicks which occur during a SMBH merger. However, to

understand the effects of finite pressure, in Chapter 3 we develop a one-dimensional hydrodynamic

code. The efficiency of the code and the power of the analytic solution allow us to explain the

entirety of possible reactions. These results are also favorably compared with far more complicated

3D relativistic magneto-hydrodynamics simulations. LISA will not see only the mergers of two

SMBHs, it would also see the inspirals of stellar-mass objects into a SMBH. In Chapter 4 we discuss

a new channel of formation of these extreme mass ratio inspirals (EMRIs). This new channel of

EMRI formation is rich physically and, in particular, almost always requiring either the Kozai

mechanism or an as-of-yet unnoticed phenomenon which we dub the reverse Kozai mechanism. We

find that this channel of EMRI formation produces modest numbers of EMRIs when compared to

the primary channel of EMRI formation, which, under optimistic detection scenarios for the most

recent LISA design, results in the plausible detection of several. Finally, an unrelated project that

considers solving the self-similar Type-II strong-shock problem in slightly asymmetric media is given

in Chapter 5. We show that the results can even be applied to explosions along weak discontinuities

in the density.
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Chapter 1

Introduction

1.1 The Excitement

Gravitational waves (GWs) are one of the last frontiers of known fundamental physics. Their

discovery will be not only a discovery of new, never-before-seen (heard) objects, but will be a

detection of a theorized, but still only indirectly confirmed, consequence of general relativity (GR).

Indeed, there is probably no other known field of physics where an expected, but still elusive, feature

of the theory could provide such an incredible wealth of information about the “invisible” world on

scales from kilometers to the size of the observable universe. Gravitational wave physics is not just

a new field of physics, and it is not just a new type of telescope, it is a doorway to see parts of the

universe which are impossible to probe with any other form of known physics.

1.2 Gravitational Wave Detectors and Sources

1.2.1 Gravitational Wave Experiments

Ground-Based: What we can learn from GWs depends on how we try to detect them. At present

there are two primary types of detectors: bars and interferometers. However, bars are slowly be-

ing phased out for a variety of reasons and the primary emphasis in today’s GW community is on

interferometric GW detectors, though there are currently two spherical resonant-mass detectors in

operation: MiniGrail and Mario Schenberg (named after the Brazilian physicist also known as Mario

Schönberg). Five large-scale interferometric experiments have run, and are currently being upgraded

to improved sensitivities (3 LIGO interferometers, 1 VIRGO interferometer, and the GEO600 inter-

ferometer), and several are planned for the future (AIGO in Australia, LCGT in Japan, and ET in

Europe, among others). The current experiments’ sensitivity ranges are all roughly the same, with

a ∼ 10Hz wall on the low end of the frequency range due to seismic and gravity gradient noise and

a gradual high frequency rise beyond ∼ 200Hz.

http://www.aigo.org.au/
http://gw.icrr.u-tokyo.ac.jp/lcgt/
http://www.et-gw.eu/
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These first (bars) and second (interferometers) generation of gravitational wave detectors have

been designed with the primary goal of just detecting gravitational waves, though interferometers

can say a significant amount about the sources. However, most sources lie in lower frequencies than

observable by these Earth-based gravitational wave detectors.

Space-Based: To reach the majority of plentiful and strong GW sources it is necessary to go

to space to escape the seismic and gravity gradient wall. The current leading design plan for a

space-based detector is the Laser Interferometer Space Antenna (LISA). Interestingly it is the first

GW experiment to be designed with the intent of doing astrophysics, and the only one which also

has known sources it can detect. Currently LISA is undergoing redesign due to budget constraints,

which may or may not lead to significant changes. The design of LISA adopted in this thesis is that

of prior to the March 2011 exit of NASA from the joint NASA-ESA LISA project.

As LISA is the GW detector relevant to the physics presented in this thesis, its sensitivity curve

is plotted (solid black) in Fig. 1.1 along with several of the key LISA sources: the final year of the

merger of two equal mass black holes is plotted for four different cases (labeled in plot). We will

discuss these sources in Sec. 1.2.2.

It should also be noted that there are other proposed, but more futuristic, space-based detectors,

called the Big Bang Observer and DECIGO. These detectors would have even greater sensitivities

at the 0.1–10Hz range, reach even lower frequencies, and would have the capacity to see GW

fluctuations direct from the inflationary beginnings of the universe, when the universe was completely

opaque to light and particles.

1.2.2 Gravitational Wave Sources

There are several key characteristics of most GW sources: a characteristic mass, with a characteristic

separation, a characteristic frequency of rotation, and the distance to the source. For the majority of

sources relevant to this thesis, the paradigm is even simpler since the characteristic separation and

characteristic frequency are related, and because the sources are made up of what can be assumed to

be two massive point particles. That is, we are concerned primarily with the merger of two compact

objects. Compact objects are a class of objects which include black holes, neutron stars (NSs), and

white dwarf (WDs).

To understand the dependencies let’s compare the strength of the GWs from a circular binary

to the LISA noise curve. The strength of the gravitational wave is measured by its strain h(t) which

is defined to be the maximum fluctuation of some length divided by the length:

h(t) ≡ (∆L)max

L
. (1.1)

However, the LISA sensitivity is a function of frequency f , not time, so to compute the signal-to-noise
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Figure 1.1: We plot the sensitivity curve for LISA with several sources relevant to this thesis (and
several which aren’t). The ordinate is the strain in units of Hz−1/2, and the abscissa is frequency in
Hz. The average white dwarf binary background is plotted (dashed blue curve) along with a high
estimate (dotted blue) [1]. Also shown are the Galactic binaries known to be in the LISA band [2].
One of the primary sources considered in this thesis are the mergers of SMBHs. We plot the signals
from the final year of inspiral for equal mass mergers with 105 M⊙ and 106 M⊙ SMBHs at a redshift
of 1 (solid blue curves). (Code to produce the figure was graciously provided by Michele Vallisneri.)

ratio (SNR) of the two it is easiest to use the Fourier transform of h, h̃:

(SNR)2 =

�
fh̃2(f)

Sn(f)
d ln f . (1.2)

The integrand is then the SNR2 in a logarithmic band of f , so that

SNR =
h̃
√
∆f�

Sn(f)
. (1.3)

Thus, to compare signal from a source to the sensitivity (or, more pejoratively, noise) of LISA we

plot the
�

Sn(f) curve in plots such as Fig. 1.1 (plotted in solid black) along with the signal strength

from the given source h̃
√
f . On a log-log plot, the difference between these two curves is then the

SNR.
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[3] calculated h̃ for circular binaries

h̃(f)
�
f ∝ c

DL(z)

�
GM
c3

�5/6

f−7/6
�
f =

c

DL(z)

�
GM
c3

�5/6

f−2/3 , (1.4)

where DL(z) is the luminosity distance to the source and M is the redshifted chirp mass given by

M = (1 + z)ν3/5(M1 +M2) , (1.5)

with z being the redshift of the source, M1,2 being the masses of the compact objects, and ν =

M1M2/(M1 +M2)2 being the symmetric mass ratio.

Thus we see that the signal is proportional to the mass to 5/6 power, the frequency to the −2/3

power, and the inverse distance to the source, as long as the orbits in the binary are circular. That

is, the signal S(f) obeys

S(f) ∝ ν1/2
(M1 +M2)5/6

DL(z)f2/3
(1 + z)5/6 , (1.6)

where ν ranges from q ≡ M2/M1 ≤ 1 in the extreme mass ratio limit to 1/4 in the equal mass limit.

In general, in the Newtonian limit the orbital frequency at some separation d is given by

Ω =

�
G(M1 +M2)

d3
. (1.7)

Using this to approximate the gravitational wave frequency from the merger of a binary of compact

objects at the final stage of the circular inspiral we write

ffinal =
2Ω

2π
=

1

π

�
G(M1 +M2)

d3final
, (1.8)

where the extra factor of 2 is due to the fact that the gravitational wave frequency is twice the

orbital frequency.

SMBH-SMBH Mergers – Cosmological Sources: Super-massive black holes (SMBHs) are

defined as black holes with masses larger than ∼ 105 M⊙ and lie at the centers of most galaxies.

Observational evidence and other specific details for these large but compact objects will be discussed

in more detail in Sec. 1.3. These are the objects of the greatest relevance to this work.

An object inspiraling on a quasi-circular orbit to a black hole can remain circular only until the

innermost stable circular orbit (ISCO), which in the case of Schwarzschild black holes is given by

6GM/c2. Thus, the final frequency for the merger of two black holes would be given by approxi-

mately

fSMBH
final ≈ 1

π63/2
1

G(M1 +M2)/c3
≈ 2× 10−2

�
Mtot

2× 105M⊙

�−1

Hz . (1.9)

Given that the documented locations of SMBHs are the centers of galaxies, the one sure way to
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have a SMBH merger is following a merger of galaxies. Such mergers occur primarily at cosmological

distances and so we use as our fiducial value z = 1 (DL ≈ 6.6 Gpc). In Fig. 1.1 we plot Eqn. 1.4

for an equal mass merger of two 106 M⊙ and two 105 M⊙ SMBHs (solid blue). The final frequency

of the circular inspiral (just prior to merger) of the 105 M⊙ merger is close to the peak sensitivity

of LISA. In this case, with the 1/r scaling of the signal (Eqn. 1.6) these mergers can be detected by

LISA virtually anywhere in the observable universe where such a merger would be expected to be.

EMRI Mergers – Marginally Cosmological Sources: Looking at the signal for a 105 M⊙

equal mass merger in Fig. 1.1 and examining Eqn. 1.6 it is clear that the merger is still detectable

even if we decrease the mass of one of the SMBHs. Indeed, at a redshift of z = 1, the secondary

black hole could still be easily detected if it were as small as 1M⊙, as long as the secondary is on

a circular orbit. In fact, in this case the secondary need not be a black hole, but could also be a

neutron star or white dwarf, since both of these compact objects also have masses of order 1M⊙

(discussed below). In general, a merger where the ratio of the secondary to the primary is � 10−3

is referred to as an an extreme mass ratio inspiral (EMRI).

Unfortunately, most mechanisms of EMRI formation produce EMRIs which initially do not have

circular orbits but instead highly eccentric orbits (see Sec. 4.1 for a brief discussion and the rest

of that chapter for an in-depth discussion of one example). This provides several key challenges in

that the signal is significantly more complicated than that of a circular orbit. On the other hand,

more information can be extracted from their signals. It is currently believed that SBH-SMBH

mergers can be seen by LISA to a redshift of z ≈ 1 (assuming a 10M⊙ SBH), while WD-SMBH

mergers should be detectable to z ≈ 0.2 (assuming a 0.6M⊙ WD) and NS-SMBH mergers to a

similar distance [4].

It is also interesting to note that EMRIs have final frequencies which are larger than those for

equal mass SMBH mergers by only a factor of 2 (Eqn. 1.9), so the EMRI signal still lies in the LISA

band.

SBH-SBH Mergers - Local Extra-Galactic Sources: Stellar mass black holes are the final

remnant of only the most massive stars, though their formation mechanisms and masses are not

yet well understood [5]. Their final masses are expected to be approximately 8M⊙ but can vary

between ≈ 3–30M⊙ [6]. Though their masses tend to be greater than most stellar objects and

stellar remnants, their number densities are far lower, though not necessarily much different than

NSs. Along with the less probable occurrence that two SBHs are born in a binary tight enough to

merge in 1010 yr, this makes their mergers far less probable, and pushes their rates into a region where

it is unlikely that we would have a SBH-SBH merger in the Milky Way over a decade of observing.

The most likely detection would come from the nearby Virgo cluster, which sits at approximately

14Mpc from the Milky Way.
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However, taking 8M⊙ as the fiducial mass of a SBH, the final frequency before merger is Eqn. 1.9

fSBH
final ≈ 2× 102 Hz . (1.10)

This actually places these sources outside of the LISA band (and actually in the LIGO band).

SBH-NS-WD Mergers – Galactic Sources: Of course, there is no requirement that such a

merger of stellar mass compact remnants contains only SBHs. They may also contain neutron stars

and white dwarfs. Both neutron stars and white dwarfs are expected to have masses of approximately

1M⊙ [7].

White dwarfs are by far the most numerous of the compact remnants. So numerous in fact that

WD-WD binaries should actually be a source of confusion noise for LISA at certain frequencies and

strains (shown in Fig. 1.1).

However, there are several known “verification” binaries which have either WDs or NSs which

should be detectable to LISA and therefore provide an almost guaranteed detection of gravitational

waves. These are shown in Fig. 1.1.

1.3 Super-Massive Black Holes

1.3.1 SMBH Existence

There is a growing body of evidence that large SMBHs lurk at the center of most galaxies. The

most compelling case is Sgr A* at the center of our own Galaxy. Measurements of the orbits of the

“S-stars”, main sequence B-stars with mass ∼ 10M⊙ and lifetimes few × 107 yr in the central 0.5”

(≈ 1 pc at 8 kpc), show that they are orbiting an object coincident with the radio source Sgr A*

which has mass (4.1± 0.6)× 106 M⊙ [10]. In addition, the eccentric orbit of the star S2 at periapsis

constrains the size to be less than 45 a.u. or 600 Schwarzschild radii of a 4× 106 M⊙ black hole [11].

The remarkable orbit orbit of S2 about Sgr A* is shown in Fig. 1.2.

However, the first evidence of the existence of SMBHs goes back to the discovery of active galactic

nuclei (AGN). These were the extremely luminous galaxy cores, which outshone even the host galaxy,

that were visible to very high redshift. Even today it is hard to explain these extreme luminosities

for such long durations without invoking the existence of SMBHs [12].

1.3.2 Active Galactic Nuclei

The best explanation for these ultra-luminous galaxy cores was gas accreting onto central SMBHs.

The unified model of AGN (see Fig. 1.3) states that the many different types of AGN that have

been observed are all very similar objects with the primary distinction being the direction. Fig. 1.3

crudely outlines the basic principles of the theory.
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Figure 1.2: Convincing evidence for the existence of SMBHs: The star S2 is tracked over time using
adaptive optics. The orbit of S2 passes within 600 Schwarzschild radii of a 4 × 106 M⊙ SMBH. S2
has also been tracked separately by [8] and the two results agree well [9]. (Released by ESO website
under Creative Commons Attribution.)

http://www.eso.org/public/news/eso0226/
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Figure 1.3: AGN unification theory: The principle of the AGN unification theory is that many of
the objects AGN which were thought to be different because of their very different features are all gas
being accreted onto a SMBH with the differences coming from the viewing angle and whether there
exists a jet in the system. The presence of the jet distinguishes between whether the AGN is radio
loud or radio quiet. As gas accretes onto the SMBH it heats up and radiates at a significant fraction
of the Eddington luminosity. Gas close to the SMBH, but not in the accretion disk, is traveling
at high velocities, and when illuminated by this bright accretion disk absorbs and reradiates this
energy in doppler shifted lines. Farther out clumps of gas are traveling more slowly and thus re-emit
the energy sourced from the accretion disk in more narrow lines than the faster moving gas closer
to the SMBH. In some cases, the accretion produces strong relativistic jets in one or two directions,
while in others this does not happen. In this picture the final distinguishing characteristic between
different types of AGN is the viewing angle.
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As gas accretes onto the SMBH it heats up and radiates. This radiation then exerts a pressure on

the material in the disk falling inwards, and thus slows it down. Given this basic feedback mechanism

there is a maximum steady-state rate at which gas can fall into the SMBH which is calculated by

equating the radiation force on the gas to the gravitational force on the gas [there are a multitude

of sources for similar discussions, but we follow 13]. In the case of spherical optically thick accretion

the radiation force per unit volume is just given by

frad = σTne

�
Lν

4πcr2
dν =

σTneL

4πcr2
, (1.11)

where σT is the Thompson scattering cross section, ne is the electron number density, and L is the

bolometric luminosity. On the other hand the gravitational force per unit volume acting on the gas

is

fgrav =
GM•µene

r2
, (1.12)

whereM• is the mass of the SMBH, and µe is the mean mass per electron. Equating the gravitational

force to the radiation pressure force and solving for L gives:

LEdd =
4πcGM•µe

σT
= 1.5× 1043

M•
105M⊙

erg s−1 . (1.13)

This is the maximum luminosity which can be radiated in spherical steady state accretion, modulo

radiation bubbles. Note that for a modest 105 M⊙ SMBH this is a whopping 1043 erg s−1, a lumi-

nosity comparable to that of a large galaxy with 1010 stars. For a 4× 106 M⊙ SMBH like Sag A* at

even a fraction of the Eddington luminosity it would outshine the Milky Way. It is this reason that

explains the super-bright AGN.

It is interesting to note that the Eddington luminosity also corresponds to a maximum accretion

rate for steady state spherical accretion. If we assume that mass falling in to the SMBH is converted

to radiation with an efficiency η, then

ṀEdd =
LEdd

ηc2
. (1.14)

In reality, the flow will not likely be accreting at the Eddington rate, but instead will have some

lower luminosity but with a similar η:

Ṁ =
L

ηc2
=

4πGµe

ησTc

L

LEdd
M . (1.15)

That is, if L/LEdd remains constant over time we have exponential growth with characteristic time

(Salpeter time)

tgrowth =
ησTc

4πGµe

LEdd

L
= 3.7× 108η

LEdd

L
yr . (1.16)



10

Thus, assuming maximal accretion and the fiducial value of η = 0.1, a SMBH will double its mass

every 3× 107 yr. However, more realistic luminosities would be less.

1.4 SMBH Characteristics

There are several surprising relationships between the SMBHs in galaxy centers and large scale

characteristics of the galaxy. These are surprising because, although the black holes have seemingly

large masses, their sphere of gravitational influence given by

rinf =
GM•
σ2

(1.17)

is typically 1− 10 pc and contains only 2M• of the bulge mass which is on average ∼ 1000M•[14].

Probably the most important relationship is that between the SMBH mass and the velocity

dispersion of the bulge of the galaxy. Dubbed the M–σ relation, it says that the velocity dispersion

σ and the SMBH mass follow [15]

M•
108M⊙

= (1.32± 0.27)
� σ

200km s−1

�4.24±0.41
. (1.18)

The Faber-Jackson relation relates the bulge luminosities and velocity dispersions, thus giving

a relation between the SMBH mass and the bulge luminosity referred to as the M•–L relation.

This is quite fortunate because dispersions are hard to measure, while bulge luminosities are quite

straightforward. [15] provide the most recent values for the relation:

M•
108M⊙

= (8.91± 2.57)

�
LV

1011L⊙,V

�1.11±0.18

. (1.19)

Because there is a relationship between the SMBH mass and the bulge luminosity, and also a

relationship between the bulge luminosity and its mass, one may relate the mass of the SMBH to

the mass of the bulge.

Of these relations the M–σ relation has the lowest scatter, and so is likely the fundamental

relation [14].

1.5 SMBH Densities

The M•–L relation is particularly useful, since the luminosities of elliptical galaxies are easy to mea-

sure. This allows for the possibility of measuring the SMBH densities as a function of redshift using

mechanized galaxy surveys. [16] do a similar process where they determine the velocity dispersion

for a large sample of galaxies by using Hubble-type specific luminosity functions to relate the local
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luminosity to the velocity dispersion. Using this method they find that the density of SMBHs is

given by

ρ• = (2.4± 0.8)h2
71 × 105M⊙ Mpc−3 , (1.20)

where h71 = H0/71 km s−1 Mpc−1 and H0 is the Hubble constant [17].

This density is fundamental in determining the rates of GW sources from SMBHs detectable for

LISA and has been used in [18] and in Chapter 5 of this text.

1.6 SMBHs and This Work

One of the primary sources for LISA are SMBH-SMBH mergers. The luminosities of these mergers in

gravitational waves can well exceed the total electro-magnetic luminosity of the observable universe

for a brief period of time. This makes them observable, virtually anywhere in the universe they can

form.

However, LISA will not be able to localize the host galaxy of the event to much better than a

square degree [19]. Having an electromagnetic counterpart significantly increases the astrophysical

usefulness of the system. Relationships between the host galaxy and the galaxy merger which carried

in the second SMBH could be better discerned. And, cosmologically, electromagnetic counterparts

would allow for accurate determination of the redshift. This together with the luminosity distance

measured by LISA from the gravitational wave signal, would give a physically clean and well un-

derstood independent method for determining the luminosity distance-redshift relation, and hence

cosmological models and parameters.

To have an electromagnetic counterpart to a SMBH merger, there must be gas present in the

system. And if there is a significant amount of gas present it is likely to be in the form of an accretion

disk. However, unlike in the case of AGN, as discussed in Sec. 1.3.2, in the case of the equal mass

binary accretion is expected to be minimal [20]. In the case of corotating disks coplanar with the

SMBH binary, the binary exerts torque on the disk at the outer Lindblad resonances counteracting

viscous losses in the disk which otherwise would drive mass inwards to ultimate accretion. This

effectively clears a region directly surrounding the SMBHs and would significantly decrease the

luminosity of the system.

In the case of two 105 M⊙ SMBHs it has been found numerically [21] and analytically [22] that the

binary clears a region equal to approximately twice the binary separation and causes a concomitant

over-density in the inner disk of approximately an order of magnitude [22].

During the final period of the inspiral when the time to merger becomes comparable to the

viscous time increasingly rapid gravitational wave shrinking will decouple the binary from the disk,

and the disk will begin viscously-driven free fall. This viscous motion is slow compared to the merger

time and the disk will effectively stall during the rest of the merger (see Sec. 2.2 for more details).
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When the time to merger is of the order of the dynamical time of the inner disk, any change

to the potential will be seen as impulsive (Sec. 2.3.1). There are two major effects: mass-energy

loss due to gravitational wave radiation (Sec. 2.3.2) and recoil kicks given to the final SMBH due

to asymmetric gravitational wave radiation (Sec. 2.3.3). One can compare the relative importance

of these two effects on the inner disk by comparing the maximum radial velocities they induce. For

all regions of the probed parameter space mass loss was dominant, though kicks became marginally

important in certain regions (Secs. 2.3.2 and 2.3.3). Farther out in the disk, however, kicks always

are the most relevant.

Thus, if one wishes to consider rapid emissions from the inner regions of the disk, one may largely

neglect the effect of kicks. In this case the problem becomes axisymmetric. By doing the canonical

vertical averaging of the disk, the problem can be reduced to a one-dimensional one.

In this case, it is straightforward to solve for the reaction of the surface density of the disk

to the mass-energy loss in the limit of a pressureless disk (Sec. 2.4). The problem can be easily

generalized to the case with kicks, if one is interested in effects farther out in the disk (Sec. 2.4.2).

The analytic solution is surprisingly simple, and provides significant insight into the problem. In

particular, one can derive the approximate time that a real gaseous flow (with pressure) will deviate

from this analytic solution, which is also where in the disk the first shocks will form (Sec. 2.5). The

strength of the shocks can be well approximated, offering an order of magnitude tracer for the jumps

in temperature across the shock (Sec. 2.5).

The disk reactions can also be computed numerically, a necessary complication since a fully

analytic treatment of disks with finite pressure and temperature is not possible. A finite differencing

Lagrangian leap-frog scheme was used to evolve the fluid equations in 1D (Sec. 3.2). Because of the

numerical efficiency of a 1D code, the entirety of parameter space can easily be probed (Sec. 3.4) and

analyzed (Sec. 3.3.2). Over the past several years many groups have simulated circumbinary disks

to varying degrees of accuracy (see Sec. 3.1 for a discussion of these many simulations). The 1D

theory and simulations can be compared to the particular simulations of [23] (which consider 2.5–3

dimensions, general relativity, and in some simulations magneto-hydrodynamics), showing excellent

agreement in the regions of parameter space simulated by [23].

Even after more than 30 years of observation of AGN, and theoretical effort to understand

those observations, there still remain significant discrepancies. As such, there is still not universal

agreement on initial conditions of the circumbinary accretion disk. Hence, there is great power in

analytic (Chapter 2) and ‘simple’ numerical simulations (Chapter 3) that elucidate the key physical

ingredients and physics in a well understood manner.

However, as noted in Sec. 1.2.2 there are many other types of inspirals to SMBHs, such as those

by compact objects (COs) such as SBHs, NSs, and WDs. These extreme mass ratio inspirals would

be challenging for LISA to see, but would provide a significant amount of information. There are
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several known formation channels for EMRIs, including COs scattered by other stars leading to a

slow random walk of their angular momentum until some become highly eccentric, and gravitational

radiation emitted as they pass close to the SMBH leads to their inspiral and ultimate merger with

the SMBH. Other less common channels are discussed briefly in Sec. 4.1.

In this thesis we describe a new channel of EMRI formation: perturbation by a secondary SMBH

(Chapter 5). When two galaxies merge, the SMBH of the smaller galaxy, likely hosting a less massive

SMBH (which we refer to as the secondary SMBH, or just secondary) inspirals due to dynamical

friction until the stellar mass interior to it becomes of order its own mass. At this point the inspiral

stalls.

But just as the secondary approaches its stalling radius it is entering the densest and most relaxed

regions of the galaxy, and is scattering stars near the primary SMBH at an unprecedented rate (see

Sec. 4.2 for a more detailed description of the process). Some of these have strong interactions with

the primary and can inspiral to merger. However, most do not. Indeed, the most likely method

of formation is through the secular effect of the Kozai mechanism (Sec. 4.3). We found that a

previously unnoticed secular effect occurs when the relativistic precession rate of the Lenz vector

becomes high (Sec. 4.4). This creates a new channel for formation of EMRIs. Ultimately, although

we find the rate of EMRIs during this phase could be significantly enhanced, the short duration of

this phase results in a total event rate approximately 10−3 times less common than EMRIs formed

through the standard star-star scattering picture (Sec. 4.7).
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Chapter 2

Time Evolution of Circumbinary
Disks Following Super-Massive
Black Hole Mergers

N.B.: This work will be published with the following authors: Sterl Phinney and Nate Bode in this

order.

Abstract

This is the first chapter of a two-chapter series discussing the time evolution, of

circumbinary disks following the merger of a super-massive black hole (SMBH) binary

in the limit of a thin disk. Here, in Chapter 2, in the limit of a noninteracting disk, we

provide an analytic solution to the circumbinary disk’s evolution taking into account both

mass-energy loss during the final inspiral and the recoil of resulting SMBH. We also show

that given black hole spins aligned or anti-aligned with the orbital angular momentum,

mass-energy loss is the dominant effect on the disk. Finally, we describe where the

noninteracting assumption breaks down, approximate the strength of the shocks which

inevitably form on this boundary, and describe the final density distribution, thus fully

characterizing the dynamics of the disk relevant to observability. In Chapter 3 we use

simulations to both demonstrate the relevance of the solutions given here, but also to

survey the entirety of the relevant parameter space. These results are especially useful

in the context of electromagnetic counterparts to SMBH mergers in the context of the

Laser Interferometer Space Antenna (LISA).

2.1 Introduction

Over the past several years there has been a growing interest in understanding electromagnetic (EM)

counterparts to gravitational wave (GW) signals. The reason is simple: they extend the scientific
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reach of current (LIGO, VIRGO) and upcoming (LISA, DECIGO, Einstein Telescope) gravitational

wave detectors. Because GW detectors have relatively poor angular resolution they cannot pinpoint

their sources, making the primary importance of the EM counterpart to locate the host galaxy. Once

the host galaxy is known, it may be followed with many different telescopes to watch for relationships

between the host’s EM signatures and the GW signal.

In this two-chapter series, we consider EM counterparts to GW signals from merging super-

massive black holes (SMBHs), a signal relevant to LISA. The importance of EM counterparts in the

LISA context has been well documented for Astro2010 [24–26]. There are many possible mechanisms

[27–35], but we concern ourselves with a thin circumbinary disk reacting to the sudden reduction in

the SMBH’s gravitational mass due to mass-energy carried away by gravitational radiation (hereafter

referred to in shorthand as “mass-energy loss”), and to the recoil kick due to asymmetric emission

of GWs (hereafter referred to as “kick”). There has already been a great deal of work on such disks

[21, 23, 36–39], but only a modest amount of analytic treatment [22, 40, 41].

These disks are a possible outcome of the SMBH binary formation process. Following the merger

of two galaxies, the SMBHs, which are harbored in the cores of most galaxies [42, 43], will inspiral

due to dynamical friction until GW radiation dominates, takes over, and propels the binary to its

final merger [44–46]. The merger of galaxies is also expected to cause gas to migrate towards the

galactic center [47]. When this happens a circumbinary disk should form, while quadrupolar torques

from the binary and viscous torques within the disk will act to align the orbital angular momenta

of the disk and binary [48]. The inner regions of the disk become evacuated as the binary exerts

torques on co-rotating disks at Linblad resonances [21]. While the viscous time of the inner disk is

shorter than the inspiral time of the binary, the disk will follow the binary inwards, while afterwards

the binary will inspiral quickly, leaving the circumbinary disk in a pseudo-stationary state.

Here, in Chapter 2, we present an analytic solution to the evolution of a circumbinary disk

with time, breaking the disk into three regions: a pre-shock non-interacting region, the shock(s)

region, and the final post-shock region. We provide an analytic result for the surface density as a

function of time in the regions preceding and following the shocks and give both the approximate

locations of the shocks and a strong lower bound to their strength. In Chapter 3, we follow with

an illustration of the solution presented here, in the case of pure mass-energy loss, using a 1D

hydrodynamical simulation. The entirety of the relevant parameter space is explored and described,

and a straightforward method is provided for using the solution given here to determine the type of

flow produced given the merger and disk parameters.

Our chapter is presented as follows: (a) we first describe the circumbinary disk and the relevant

distance and time scales in Sec. 2.2. (b) In Sec. 2.3 we describe why one can consider the mass-

energy loss during merger in the impulse approximation (Sec. 2.3.1), and summarize the predictions

of numerical relativity for mass-energy loss (Sec. 2.3.2) and recoil kicks, and show that recoils are at
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most marginally relevant to the inner disk for fiducial disk parameters (Sec. 2.3.3). (c) The analytic

solution to the non-interacting region preceding the shocks is then presented in the special case of

the axisymmetric mass-energy loss (Sec. 2.4.1), and then in the general case of mass-energy loss

with kicks (Sec. 2.4.2). (d) The solutions for the case of pure mass-energy loss form a two-parameter

family, defined by the fractional mass-energy loss δM/Mi and the disk aspect ratio h/r. However, it

is more insightful to consider the parameter space defined by h/r and a new parameter, the epicyclic

Mach number, Me. We define Me (Sec. 2.5.2) and relate it and the h/r to the time it takes for the

flow to deviate from the preshock solution (Sec. 2.5.3). (e) Finally, we provide a strong lower bound

for the Mach number of the shock (Sec. 2.5.5), give an analytic expression for the final post-shock

quasi-steady-state surface density (Sec. 2.5.7), and generalize Secs. 2.5.2–2.5.7 to disks with kicks

(Sec. 2.5.8).

For the reader in a hurry, the primary results of this chapter are summarized as follows: Figs. 2.5

and 2.6 outline the relative importance of mass-energy loss and kicks in the case of non-spinning

SMBH and SMBHs with spins aligned and anti-aligned with their orbital angular momentum. The

relevant preshock equations are Eqns. 2.30–2.31 for negligible kicks and Eqns. 2.62–2.63 when kicks

are imparted, which give the time evolution of the circumbinary disk in Lagrangian coordinates.

In Eqns. 2.104 and 2.120 the deviation/shock-formation time is again given for the cases of pure

mass-energy loss and both mass-energy loss and kicks, while for the same two cases the shock Mach

numbers are given in Eqns. 2.109 and 2.121. For reference, a table of notation in the chapter is given

in the conclusion.

2.2 The Circumbinary Disk

The circumbinary disk is substantially different from a standard accretion disk, since the binary

exerts torques on the disk at the Lindblad resonances. While these torques inject angular momentum

into the disk and effectively excrete material from the region of the binary (thus their alternative

name: excretion disks), the disk is also undergoing viscous losses due to viscous torques. Together

these effects produce a region of possibly significantly enhanced density at a radius rinner inside of

which the disk is effectively evacuated. For an equal mass binary [21] found rinner ≈ 2rbin where

rbin is the binary separation.

However, the disk is not in steady state, since the binary is inspiraling. Instead the disk has

several dynamically distinct regions:

The first is an inner region with viscous timescale less than the merger time which is in steady

state and following the binary inwards. The radial position where the viscous timescale equals the

time to merger, denoted rsteady, separates this region from outer regions. The viscous timescale is
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given by

tvisc =
2

3

r2

ν(r)
=

1

α

1

(h/r)2
tdyn , (2.1)

where ν(r) is the kinematic viscosity and we have assumed a standard α-accretion disk prescription

[49] in the final equality. On the other hand, for a quasi-circular inspiral, the time to merger is given

by

tmerger =
5

256

M

M2

�
r4bin − r4ISCO

�
, (2.2)

where t is in units of GM/c3, rbin is in units of GM/c2, M = M1 + M2, M2 ≤ M1, and rISCO is

the position of the innermost stable orbit. Solving Eqn. 2.1 equal to Eqn. 2.2 for r gives rsteady.

However, rsteady depends strongly on the viscosity parameterization and disk parameters.
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Figure 2.1: Left: This cartoon of the circumbinary disk illustrates the important regions of the disk:
for r < rinner the density is approximately 0 and gas has little effect on any dynamics of the disk,
for rinner < r < rsteady the disk follows the binary adiabatically and retains essentially the same
shape as in the steady state solution, for r > rsteady the disk has decoupled from the binary and
will begin a process of changing its structure to that of a standard accretion disk over a timescale
comparable to tvisc, and for r > rimp all changes to the potential will be essentially impulsive. Right:
In this sketch we give an example of how a disk would evolve, due to the dependence of rbin, rinner,
rsteady, and rimp on tmerger. On the abscissa we plot time to merger (currently in wrong units) while
the ordinate is distance in units of the rinner at decoupling. The vertical dotted line represents a
possible time when the cartoon on the left would be appropriate. At later times the steady state
region no longer exists, and when tmerger equals tdyn of the inner disk, the entirety of the disk is in
the impulsive region and all subsequent changes in the potential will be perceived as instantaneous
by the disk.

The second dynamical region is that where all subsequent changes in the potential are seen as
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impulsive and is defined to be when tdyn > tmerger. Since

tdyn =
1

Ω(r)
=

�
r3

GM
, (2.3)

we can use to Eqn. 2.2 to find rimp, the inner boundary of the impulsive region in units of GM/c2:

rimp ∼
�

5

256

M

M2

�2/3 �
r4bin − r4ISCO

�2/3
. (2.4)

Some values of rimp and qtmerger are tabulated for specific values of rbin in units of GMi/c2 and

GMi/c3 in Table 2.2.

The final intermediate region where material lies between rsteady and rimp, and is neither in

steady state nor effectively “unmoving”. Depending on how one parameterizes the scale height of

the disk there may exist times when this region does not exist, because rsteady > rimp.

Note that because tmerger is constantly changing, and because tdyn and tvisc scale differently with

r, the regions are in constant flux. For a schematic of the disk structure and evolution see Fig. 2.1.

For the purposes of many figures and illustrative calculations we use a binary mass ratio q = 1,

which has been shown to decouple from the binary at a binary separation of rbin = 100GM/c2,

for a fiducial disk [36]. Based on fluid simulations [21] have found that inner radius of the disk

is rinner ≈ 2. We scale most distances to be in units of the length scale of the disk, rinner, and,

whenever it is necessary to perform a calculation, we assume the fiducial value of

rinner = 200
GM

c2
. (2.5)

The relevant dynamical time to the disk is then just 1/Ωinner, where Ωinner is the orbital frequency

at rinner. Thus, we use

Ωinner =
�

GM/r3inner = 23/2103
GM

c3
, (2.6)

when calculations are needed.

2.3 Changes in the Potential

The evacuated central region of the disk suggests a natural timescale for the disk: the dynamical

timescale at rinner. Any change in the potential which occurs on timescales shorter than this the

disk will perceive as impulsive. In the case of SMBH binaries there are two such changes: the mass-

energy loss due to gravitational wave emission and the final recoil given to the subsequent SMBH

due to asymmetric GW radiation. Here, in the following subsections, we first clarify why the impulse

approximation is valid for mass-energy loss. We then give a brief survey of the possible mass-energy
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Figure 2.2: Solid curve: amplitude δr of radial epicyclic motion induced in previously circular orbits
of orbital frequency Ω and radius r, by mass-energy loss δM on a timescale t̃M . When the mass-
energy loss occurs on a timescale short compared to the orbital time (Ωt̃M � 1), δr/r = δM/M .
When the mass-energy loss occurs on a long timescale compared to the orbital time (Ωt̃M � 1), the
amplitude is given by the asymptotic result δr/r → (δM/M)(1/Ωt̃M ) shown by the dashed line.

loss, taking into account both the inspiral and the final several orbits. And finally we discuss kicks

and their importance to these systems.

2.3.1 The Impulse Approximation

To understand how the mass-energy loss affects a particle in the circumbinary disk we present a

simple toy model. Consider a particle in the disk on a circular orbit located a distance r from the

binary’s center of mass. When the timescale for mass-energy loss in gravitational radiation, t̃M ,

is large compared to the dynamical timescale of the gas, 1/Ω(r), then the orbits of the gas will

preserve adiabatic invariants: the orbits remain circular while they slowly expand as r ∝ 1/M(t)

[50]. However, if the mass-energy loss timescale is small, Ωt̃M � 1, then an eccentricity (epicyclic

motion) will be induced, with radial semi-amplitude of δr/r = δM/M .

We demonstrate this with a toy model M = Mi − δM{1 − exp(−t/t̃M )} with δM < 0. This
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toy form of mass-energy loss is initially linear in time, a case which can be treated analytically

[51]. In Fig. 2.2 we plot the ratio of the semi-amplitude of the induced epicyclic motion to δM/Mi

when t → ∞ as a function of t̃MΩ, where Ω is the Keplerian orbital frequency for some particle

of interest. The limiting cases are easy to understand. When t̃MΩ � 1 the mass-energy loss is

essentially instantaneous and the impulse approximation is relevant and gives that

δr

r
∼ δM

M
≡ �m , (2.7)

as shown in Sec. 2.4.1 and given in Eqn. 2.29. When t̃MΩ � 1 the limiting behavior becomes

transparent if we notice that the epicyclic motion will be induced for the maximum mass-energy

loss, ∆MΩ, which occurs on a timescale comparable to 1/Ω:

δr

r
=

∆MΩ

M
∼ 1

M

ṀΩ

Ω
≈ δM

M

1

t̃MΩ
, (2.8)

where ṀΩ is the maximum rate of mass-energy loss on a timescale 1/Ω. The first equality follows

since ∆MΩ is the largest mass such that Eqn. 2.7 loosely holds. In the second relation we use

that ∆MΩ ∼ ṀΩ/Ω, while in the last relation we merely solve for ṀΩ by differentiating M(t) with

respect to time.

This can also be shown in a real world problem similar to the one considered here, a particle

reacting to the mass-energy being radiated during an extreme mass ratio inspiral (EMRI). In this

case there is an analytic solution to the mass radiated during inspiral [52, 53]. Using Eqn. 4.18 of

[53] we integrate the path of a particle originally orbiting the primary SMBH on a circular orbit with

semimajor axis r0 = 200GM/c2 as the secondary inspirals and ultimately merges. The resulting

evolution is plotted in Fig. 2.3. If one considers only the mass lost on timescales shorter than

1/Ω(r0), denoted ∆Meffective, then the resulting low eccentricity orbit is well described by epicyclic

motion with radial semi-amplitude given by δr/r0 ≈ ∆Meffective/Mi.

2.3.2 Mass-Energy Loss

A significant fraction of a SMBH binary’s total initial mass-energy is lost in GWs throughout the

process of merger. Calculating the mass-energy loss naturally breaks up into two parts: the inspiral

phase which is accessible analytically using post-Newtonian theory for quasi-circular orbits, and the

merger phase where simulations must be used to solve the highly nonlinear last few orbits and final

plunge:
δM

Mi
=

Einspiral

Mi
+

Emerger

Mi
(2.9)

where Mi is the initial total mass, Emerger is the mass energy radiated during the final several

orbits, the merger, and the subsequent ringdown, and Einspiral is the mass-energy radiated prior to
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tΩ(r0)
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Figure 2.3: Solid (black) curve: We plot the radial position of a particle initially on a circular orbit
reacting to mass-energy loss during the inspiral of a secondary SMBH with mass ratio q = 0.03. The
particle begins at r0 = 200GM/c2 and is plotted in units scaled by that orbit. Dashed (red) curve:
The fractional mass-energy radiated during inspiral is plotted as a function of time. Discussion: while
the mass radiated occurs on timescales long compared to the dynamical timescale of the particle,
the particle’s orbit will preserve adiabatic invariants and remain circular while slowly expanding
as r ∝ 1/M(t). When the mass radiated occurs on timescales short compared to the dynamical
time of the particle, epicyclic motion is induced with radial semi-amplitude δr/r = δM/M . Here
we mark one dynamical time prior to merger with a vertical dotted (black) line. Mass radiated
after this point, denoted ∆Meffective will be seen as impulsive by the particle. From the simulation
∆Meffective/Mi ≈ 3.7× 10−4, while δr/r0 ≈ 3.7× 10−4, as expected.
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the final several orbits. Several of the published simulations with both black holes of comparable

masses do not provide the initial MADM, from which can easily be derived the binding energy. So,

to approximate Einspiral we must rely on using post-Newtonian analysis to determine Einspiral prior

to reaching the ISCO, a value only well defined for when the mass ratio q ≡ M2/M1 < 1 is small.

For the merger of equal mass non-rotating black holes, [54] have done the highest precision

simulation with the most (16) orbits to date. They also include both inspiral and merger in their

calculation of the total mass lost and find the total mass radiated during inspiral to be

δM(q = 1,�a = 0)

Mi
= 0.05 . (2.10)

These results are consistent with earlier numerical simulations finding Emerger = 0.04, [55–59],

when combined with the 3PN result (ωstatic = 0) of [60] for the binding energy

Einspiral

Mi
= −η

2
x

�
1 +

�
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12

�
x+

�
−27

8
+

19

8
η − η2

24

�
x2 +

�
−675

64
+

�
34445

576
− 205

96
π2

�
η −

155

96
η2 − 35

5184
η3
�
x3

�
. (2.11)

Here x = (MiΩISCO)2/3 and η = q/(1 + q)2 is the symmetric mass ratio (note 0 < η < 0.25).

Plugging in η = 0.25 and MiΩISCO = 0.129 [from Table XI of 59] one finds Einspiral = 0.01Mi.

For non-spinning mergers of unequal mass black holes, with mass ratio q = M2/M1 < 1, the en-

ergy radiated in the final plunge after the black hole orbits come within the effective innermost stable

circular orbit is well fitted to the numerical simulations by Emerger/Mi = 0.0363(4η)2 [Eqn. 3.13 of

59]. We used a least squares linear fit to the 3PN MiΩISCO values from Table XI of [59], and using

Eqn. 2.11 find that the radiated energy in the inspiral is well fitted by Einspiral = 0.061η(1 + η)Mi.

Therefore the total radiated energy from the merger of Schwarzschild BHs is approximately

δM(η)

Mi

����
�a=0

= 0.06η(1 + 10.7η) , (2.12)

where �a is the dimensionless spin parameter. Note that this produces mass perturbations approxi-

mately 10% larger than those predicted by [54] for a symmetric mass ratio of η = 0.25.

Simulations of mergers of equal mass rotating black holes with a1 = a2 = 0.75 and a1 = a2 =

−0.75 show that the fractional mass-energy radiated in the final orbit is larger than for non-spinning

black holes (0.07 vs. 0.04) when both spins are aligned with the orbital angular momentum, and
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smaller (0.02) when both are anti-aligned to the orbit [61]. To these should again be added the

intial binding energies: MiΩ = 0.05. For Kerr BHs with spins aligned or anti-aligned to the orbital

angular momentum, and with s ≡ (S1 + S2)/M2
i , the binding energy to 2PN is given by [62]

Einspiral

Mi
= −η

2
x

�
1− 37

48
x+

7

6
sx3/2 −

�
1069

384
+

1

4
s2
�
x2

�
, (2.13)

and gives 0.016Mi and 0.013Mi for Einspiral in the aligned and anti-aligned cases, respectively. This

results in estimates for the total radiated energy of an equal-mass equal-spin BH binary

δM(a=0.757)

Mi

����
q=1

= 0.08 (2.14)

and
δM(a=− 0.757)

Mi

����
q=1

= 0.03 , (2.15)

where a = a1 = a2.

To understand mergers of varying spin magnitude, [63] runs four simulations of equal-mass

equal-and-opposite-spin mergers. For their four cases a = 0.2, 0.4, 0.6, 0.8 (aligned and anti-

aligned with the orbital angular momentum) they give Einspiral = 0.016, 0.015, 0.015, 0.015 and

Emerger = 0.032, 0.033, 0.033, 0.033. It is interesting that this yields the same total mass-energy

loss for equal-mass equal-and-opposite-spin mergers in all four simulations:

δM(a1=− a2)

Mi

����
q=1

= 0.05 . (2.16)

A series of simulations by [64] consider equal mass Kerr binaries with the spin of one BH aligned

with the orbital angular momentum, a2 = 0.584, and the spin of the other BH varying from a1 =

0.584 to a1 = −0.584. They present both Einspiral and Emerger and we summarize these results in

Table 2.1. The total mass-energy loss can be fit well linearly:

δM(a1/a2)

Mi

����
q=1

= 0.011
a1
a2

+ 0.0576 . (2.17)

This is consistent with the results of [63], summarized in Eqn. 2.16.

For mergers of Kerr BHs with mass ratio q � 1 the mass-energy loss can be dealt with analyti-

cally. [65] show Einspiral = fbM2 = fbqMi, where fb is a function of the dimensionless spin parameter

a1. In Fig. 2.4 we plot fb as a function of a1 for prograde and retrograde orbits along with fb aver-

aged over all orbit inclinations for randomly-oriented quasi-circular orbits using the fitting formula

of Eqn. 9 of [65]. In the limit of non-rotating black holes fb = 0.057, while for a maximally spinning
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Table 2.1: Total Mass-Energy Loss for [64]

a/M Einspiral/Mi Emerger/Mi δM/Mi

-0.5840 -0.0144 -0.0325 -0.0469

-0.4380 -0.0145 -0.0353 -0.0498

-0.2920 -0.0144 -0.0380 -0.0524

-0.1460 -0.0143 -0.0402 -0.0545

-0.0000 -0.0141 -0.0426 -0.0567

0.1460 -0.0138 -0.0456 -0.0594

0.2920 -0.0136 -0.0495 -0.0631

0.4380 -0.0133 -0.0530 -0.0663

0.5840 -0.0128 -0.0564 -0.0692

Table 2.2: Inspiral into Schwarzschild Black Hole.

r
M

(Eb(r)−Eb(6M))
µ

a µ
M

tinsp
M

b
� µ
M

�2/3
rad c

6 0 0 0

10 0.0134 9.2× 101 20

15 0.0261 7.3× 102 81

20 0.0334 2.6× 103 190

25 0.0379 6.7× 103 360

30 0.0410 1.4× 104 590

60 0.0490 2.4× 105 3,900

100 0.0522 1.9× 106 15,000
a Mass radiated as gravitational waves in inspiral from r to the last stable orbit at r = 6M is the tabulated value
times µ, the mass of the smaller black hole, assumed � M , the mass of the larger black hole.

b Time to inspiral from radius r is the tabulated entry times M/µ, in GM/c
3 units.

c Radius rad at which orbital angular frequency Ω(R) equals the inspiral time from radius r is the tabulated
entry times (M/µ)2/3, in GM/c

2 units. At R � Rad, disk particles respond adiabatically to mass-energy loss
from inspiral. At R � Rad, the mass-energy loss from inspiral is effectively impulsive, and epicyclic oscillations
are excited. See text.

black hole fb = 0.42, and fb = 0.038 for prograde and retrograde inspirals, respectively. In contrast

to the equal mass case, the energy radiated during the final plunge, merger, and ringdown is neg-

ligible: only a fraction ∼ q2 of the total mass. Therefore, with these values of fb we have to first

order in q
δM(a1)

Mi

����
q�1

= q · fb(a1) . (2.18)

Event rates for SMBH mergers are strongly dependent on the chosen model’s prescription for

seed population, and can vary by orders of magnitude [66–68].
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Figure 2.4: Total mass-energy, as a fraction fb of M2 radiated in gravitational radiation in the inspi-
ral and merger of a mass M2 with a black hole of mass M1 � M2 and dimensionless spin parameter
a1. Upper curve is for a prograde quasi-circular equatorial orbit, lower curve for retrograde, and the
middle curve is the average over all orbit inclinations for randomly-oriented quasi-circular orbits.
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2.3.3 Mergers with Kicks

Asymmetric GW radiation during the merger of two black holes imparts an impulsive kick to the

final black hole whose magnitude is a function of q and vectorial spin, �a. In systems with significant

quantities of gas, accretion acts to align the spins of Kerr black holes with the orbital angular

momentum [69]. In this orientation, with the spins orthogonal to the orbital plane (or with the

spins 0), symmetry about the orbital plane dictates that mergers give kicks in the orbital plane.

This makes the problem at most two-dimensional.

We now consider the case of Kerr mergers with spins orthogonal to the orbital plane and

Schwarzschild mergers. Our analysis collects the recoil velocities of the simulations discussed in

Sec. 2.3.2 to determine the relevance of mass-energy loss and kicks to the dynamics of a circumbi-

nary disk.

In the case of the simulations of equal-mass non-spinning mergers [55–59] there is no kick because

of symmetry. Therefore the 6% mass-energy loss described in Sec. 2.3.2 is the sole perturber of the

post-merger disk.

Recently, numerical simulations of Schwarzschild black hole mergers [70–72] have extended early

analytic work [73, 74] considering kick magnitudes for high-mass-ratio non-spinning BH mergers, to

equal mass binaries. These simulations have produced a modified Fitchett fitting formula:

|vkick| = Aη2
1− q

1 + q
(1 +Bη) km/ sec , (2.19)

where η(q) is the symmetric mass ratio and A and B are free parameters to be fit from simulations.

[70] systematically performed 31 simulations of black hole mergers for q ranging from 0.25 to 1.0

and, using a least-squares fit, found A = 1.2 × 104 and B = −0.93. Using these values for this

range of q we plot Eqn. 2.19 in Fig. 2.5 (solid blue) and plot its continuation to include q = 0 (black

dash-dot). To compare the effects between the mass-energy loss discussed in Sec. 2.3.2 and black

hole recoil discussed in this section, we also plot in solid black the maximum radial velocity, vepicycle,

of a particle located at rinner = 200Mi:

vepicycle = vφ0�m , (2.20)

as given by differentiating Eqn. 2.29 with respect to time and using Eqn. 2.12 to determine �m.

Here vφ0 refers to the initial angular velocity at some radius. In red (dashed) we plot the ratio

of the epicyclic velocity to the kick velocity, which, as described in Sec. 2.4.2, is the appropriate

quantity to determine which effect dominates. When q = 0.14 this ratio approaches its minimum

of 3.2, indicating that kicks are moderately important to the dynamics of the disk. As the binary

approaches being equal mass BHs the plot shows that kicks become irrelevant (since vkick goes to
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Figure 2.5: We plot figure 2 of [70] showing the kick velocity for non-spinning black holes as
a function of mass ratio (solid blue). Also plotted is the maximum radial epicyclic velocity at
rinner = 200Mi due to mass-energy loss as a function of mass ratio (thick solid) and the ratio of the
maximum radial epicyclic motion due to mass-energy loss to the SMBH kick velocity (dashed red
plotted with ordinate on right). The latter is a measure of the relative importance of mass-energy
loss when compared to kicks as is most clearly seen in Eqn. 2.63. The minimum is marked by an
“X” and a 2D density plot of the density distribution for this point is shown in Fig. 2.11. Because

vepicycle ∼ r̃−1/2
0 the importance of kicks will grow as r̃1/20 .
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0) and the one-dimensional analysis of Sec. 2.4.1 is sufficient to understand the disk’s outcome. In

interpreting Fig. 2.5 it is important to remember that vepicycle ∼ r̃−1/2 meaning that farther out

that 200Mi the effect of kicks will be scaled by a factor of r̃1/2. For instance, at 2000Mi kicks and

mass-energy loss will have comparable contributions to the reaction of the inner disk.

[63] considers an equal mass inspiral with BHs of equal and opposite spin parallel to the orbital

angular momentum and changes the spin magnitude between simulations. As initial conditions they

modify the initial position, linear momentum, and puncture masses, so as to keep the initial total

angular momentum the same for all of their simulations. They find that the kicks are well fit by

|vkick| = 475 km s−1a , (2.21)

where a is the dimensionless spin parameter which ranges, in their simulations, from 0.2 to 0.8. We

plot vepicycle(rinner)/|vkick| as a function of a in Fig. 2.6 where vepicycle = δM
Mi

v0 is the maximum

radial velocity, calculable from Eqn. 2.29, and δM
Mi

is given by Eqn. 2.16. For low spins the merger is

dominated by mass-energy loss, since as the the spin goes to 0 so does the kick magnitude while the

mass-energy loss remains finite. However, as the black holes become maximally spinning the effects

of the spin on kicks are being maximized where for mass-energy loss they are being minimized.

In Fig. 2.6 we also plot vepicycle(rinner)|vkick| for the simulations of [64] described in Sec. 2.3.2.

For |vkick| we use their fitting formula for the resultant kicks:

|vkick| = |a2|×�
109.3− 132.5

�
a1
a2

�
+ 23.1

�
a1
a2

�2
�
km/ s . (2.22)

2.4 Analytic Solutions of Collisionless Disk Following Merger

Just following merger a fluid particle in the disk will initially follow a collisionless path; the path of a

non-interacting particle. It is only when pressure gradients significantly differ from the steady state

pressure gradients that the fluid particle will deviate from this non-interacting path. We solve for

the surface density as a function of time in the region where the flow is still non-interacting under

the assumption that the gas is initially on circular orbits and that the changes to the potential are

instantaneous (an assumption validated in Sec. 2.3.1). A discussion of what occurs on the boundary

of this non-interacting region and the final density profile is given in Sec. 2.5.

For clarity we first consider the axially symmetric problem of a merger which undergoes only

mass-energy loss in Sec. 2.4.1, and then generalize this solution to mergers with recoils in Sec. 2.3.3.
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Figure 2.6: The ratio of the maximum radial velocity at rinner = 200Mi due to mass-energy loss
to the kick velocity is plotted for an equal mass merger with equal-and-opposite spins parallel to
the orbital angular momentum as given by [63] (solid black plotted with bottom axis). The same
ratio is plotted for an equal mass merger with one spin a2 = 0.584 and the other spin ranging
from a1 = −0.584 to a1 = 0.584 based on simulations by [64] (dashed red plotted with upper axis).
Because of the radial dependence of the epicyclic velocity these curves are modified by a factor

of r̃−1/2
0 when considering other regions of the disk. Where the ratio is of order 1 the kicks are

important to the dynamics of the inner circumbinary disk, while in regions where it greatly exceeds
1 the dynamics of the inner disk are dominated by the mass-energy loss and the problem reduces to
the self-similar one-dimensional solution of Sec. 2.4.1.
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2.4.1 Axisymmetric Case — Mass-Energy Loss

Consider a particle in the collisionless disk. Just before the merger it was in a circular orbit at radius

r0 about a central mass Mi, with tangential velocity v0 =
�
GMi/r0 and zero radial velocity. Just

after the merger, it is still at r0, but now orbiting a central mass Mf = Mi − δM ≡ Mi(1 − �m),

where

�m ≡ δM

Mi
. (2.23)

Its velocity v0 is too large for a circular orbit at r0, so it is at the pericenter of a new slightly eccentric

orbit. This new orbit is most simply described as retrograde epicyclic motion of amplitude X about

a guiding center located a distance X beyond r0, as shown in Fig. 2.7. The equation for a Keplerian

orbit is

r = a− ae cosφt +O(e2) , (2.24)

where e is the orbital eccentricity, a is the semi-major axis, and φt is the mean anomaly. Thus

X = ae. Immediately after the mass-energy loss, the vis-viva equation gives v2 = GMi/r0 =

GMf (2/r0 − 1/a), and hence a = r0(1− �m)/(1− 2�m). Since at this moment, the particle is at its

new pericenter, r0 = a(1− e), we may read off, to first order in e (or �m),

e = �m , (2.25)

a = r0(1 + �m) , (2.26)

X = ae = r0�m . (2.27)

To the same order the mean anomaly is given by

φ(r0, t) =

�
GMf

a3
t = (1− 2�m)Ω0t ≡ φt , (2.28)

where Ω0 ≡
�
GMi/r03 is the particle’s angular frequency prior to merger. Combining Eqn. 2.24

and Eqns. 2.25–2.27, the particle’s radial motion after merger is then given by

r(r0, t) = r0 + r0�m {1− cosφt}+O (�m)
2 . (2.29)

Immediately after the merger, particles at all radii are moving outwards. However, because the

epicyclic frequency, given by Eqn. 2.28, is higher at smaller radii, as time progresses particles with

small radial separations become out of phase, creating rarefactions, compressions, and ultimately

caustics. In Fig. 2.8 this is demonstrated by evolving evenly spaced particles in a space-time diagram.

Patterns form and move outwards rapidly and at late times orbit crossings occur (caustics). The

surface density at the location of a given particle oscillates in time with increasing amplitude as the
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X
Mi − δM

r0

r0 +X

v0

Figure 2.7: After the central binary black holes’ mass-energy loss due to gravitational radiation,
a disk particle’s pre-merger circular velocity v0 is now too fast for a circular orbit about the newly
lowered central mass. So the disk particle begins epicyclic motion with radial amplitude X = r0�m
about a guiding center at r = r0 +X in uniform rotation about the merged black hole.

particle becomes more out of phase with neighboring particles.

If the surface density of a fluid element immediately before the merger is Σ0(r0), where r0 is the

fluid element’s initial position, the surface density at the fluid element’s location, r(r0), at times

after the merger is

Σ(r) =
�

r0:r(r0)=r

Σ0(r0)
r
r0

��� ∂r
∂r0

���
≡

�

r0:r(r0)=r

Σ0(r0)

S(r0, t)
, (2.30)

where the summation is being taken over all particles at position r(t). Using Eqn. 2.30 and differ-

entiating Eqn. 2.29 with respect to r0, we compute the denominator of Eqn. 2.30, keeping terms to

first order in �m:

S(r0, t) =
r

r0

����
∂r

∂r0

����

=

����1 + 2�m {1− cosφt}−
3

2
�mΩ0t sinφt

���� , (2.31)

where the mean anomaly, φt, is given in Eqn. 2.28.
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Figure 2.8: A space-time diagram of particles initially evenly spaced at time t = 0, but evolving
according to Eqn. 2.29 due to a 2% mass perturbation. Patterns form and move outwards through the
disk quickly, and near the time t = 30 the orbits of adjacent particles in the inner disk cross, forming
the first caustic. We solve for the surface density of a particle (i.e., in Lagrangian coordinates) as a
function of time in Eqn. 2.30.

The summation in Eqn. 2.30 deserves clarification. It is only relevant where orbit crossings

(caustics) have occurred and multiple particles occupy the same spatial point. The relationship

between orbit crossings and caustics is demonstrated in Fig. 2.9, where the surface density is plotted

in Eulerian coordinates (assuming Σ0 = 1) along with the initial positions of particles as a function

of their final positions for a mass perturbation of �m = 0.08 and at a time t = 10Ω(1). There

are multiple methods to produce such a figure. In one dimension it is most straightforward to

first split your domain into a grid of initial positions of particles, propagate them forward to the

desired time using Eqn. 2.29, find which neighboring pairs bound the position, r̄, where you are

finding the surface density, and then use one of the points from each pair as an initial guess to find

the roots of r(r0) = r̄. However, this is not entirely necessary for practical application. Because a

particle never differs from its original position by more than �mr0, considering the flow in Lagrangian

coordinates does not incur significant errors, remains analytically tractable, and therefore provides

greater insight. For this reason (and for clarity), the approximations presented in this chapter are

done using Lagrangian coordinates as a function of the particles’ initial positions.
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Figure 2.9: We plot the disk response, Σ/Σ0, at time t̃ = 10Ω(1) due to an instantaneous mass
perturbation of �m = 0.08 using the left ordinate. Overlaid in red using the right ordinate is the disk’s
initial position, r̃0 ≡ r/rinner, as a function of its final position, r̃. Where this curve becomes steep
an initially constant density disk now has overdensities. Where the curve is multivalued several
initially distinct particles have arrived at the same position, producing caustics. Each caustic is
marked by a characteristic double peak where the surface density becomes infinite. Inside these
peaks it is necessary to sum over the surface densities for each particle which occupies the point
in space. This is analogous to caustic formation in geometric optics where initially separate rays
converge to the same point or line (caustic) and the total intensity is the sum of the intensity from
the distinct paths. Just as in this case, the caustic formation is an indication that the relevant
approximations break down and the analysis fails. In our case, as particles approach the caustic and
the density increases, the non-interacting approximation is no longer valid. Therefore the solution
can only be relevant prior to the first caustic. Note that because the solution is self-similar there is
no dependence on the value of rinner.
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As an aside, it is interesting to note that since the mass-energy loss is axisymmetric and there

are no special length scales relevant to the physics, Eqn. 2.31 is self-similar in the similarity variable

Ω0t.

However, it is more transparent to work with the natural dimensionless variables

r̃ ≡ r/rinner t̃ ≡ Ωinnert , (2.32)

which we will prefer.

Using Eqn. 2.31 we see that the extrema of S are defined by

Ω0t ≈
(n− 1/2)π

1− 2�m
≈ (n− 1/2)π ≡ Cn , (2.33)

where n is an integer. Therefore at a time t̃ the particles located at the extrema were originally

located at

r̃extr0n =
�
t̃/Cn

�2/3
(2.34)

and so travel at a rate

˙̃rextr0n =
2

3
C−2/3

n t̃−1/3 =
2

3

vK
Cn

, (2.35)

where the time derivative is with respect to t̃. It is interesting that though amplitude of the density

perturbations go to 0 with the mass perturbation, the mass perturbation has only a weak effect

on the speed of the overdensities. This is because the overdensity speeds are determined by the

relative phases of the orbital frequencies of neighboring particles, something which is nonzero and

only perturbed by the mass-energy loss.

Because S is a function of r̃0, the initial position, Eqns. 2.33–2.35 refer to the initial positions,

r̃0 (or Ω0t), of the particle which at time t̃ will lie at the n-th extrema. To find the final position of

these particles at time t̃, and therefore the true positions of the extrema, one must use Eqn. 2.29.

However, as 0th order approximations to the true locations of the extrema, Eqns. 2.33–2.35 are

useful to gain a quick insight into the motion of the flow.

The minima (maxima) of S occur at odd (even) n and, at later times, lie approximately on the

line

Smax
min

= 1 + 2�m ± 3

2
�mt̃r̃

−3/2 ≈ 1± 3

2
�mt̃r̃

−3/2 . (2.36)

Caustics (orbit-crossings, where the disk surface density goes to infinity) occur where S(r0, t) = 0.

Therefore, the first caustic crosses the path of a particle initially at a radius r0 near the time tc1

given by

Ω0tc1 =
2

3

1

�m
+

4

3
≈ 2

3

1

�m
. (2.37)

It is useful to use Eqn. 2.36 and Eqn. 2.37 to find the curves on which the peaks and troughs of
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Σ/Σ0 lie: �
Σ

Σ0

�

max
min

≈ 1

1∓ t̃/t̃c1
. (2.38)

Interestingly, the maxima and minima of the density distribution are constants as a function of

time. This is readily seen by plugging Eqn. 2.33 into Eqn. 2.36 to find

�
Σ

Σ0

�

(extr)

≈






1
1− 3

2 �mπ(2p−3/2)
for pth peak

1
1+ 3

2 �mπ(2m−1/2)
for mth minima

. (2.39)

Using Eqn. 2.33 along with Eqn. 2.37 one can show that the caustic is pc1-th peak in the density

distribution, where

pc1 =

�
Ω0tc1
2π

+
3

4

�
. (2.40)

Here, Ω0tc1 is a constant given by Eqn. 2.37 and �x� is the least integer greater than x (ceiling of x).

In the extreme case of a 10% perturbation only a single density peak will precede the first caustic.

To determine the position of the first caustic, r̃c1, one may solve Eqn. 2.37 for the position as a

function of the time:

r̃c1(t̃) ≈
�

t̃
2

3�m
+ 4/3

�2/3

. (2.41)

However, one may determine a more accurate approximation for r̃c1 by plugging 2pc1 − 1 (given in

Eqn. 2.40) in for n in Eqn. 2.34. This yields

r̃c1(t̃) ≈
�

t̃

(2pc1 − 3/2)π

�2/3

. (2.42)

Again, r̃c1 is the original position of the particle (which is within �mr̃c1 of the final location). To

find the final position one must merely apply Eqn. 2.29 to r̃c1.

As an example, in Fig. 2.10 we consider a circumbinary disk with a merger releasing 2% of the

initial mass energy and plot the ratio of the surface density to the original surface density as a

function of r̃ for four different times t̃ = 25, 35, 45, 55. The approximate position of the first caustic

as given by Eqn. 2.37 is shown by the short thick red vertical line segment. Caustics can be easily

distinguished from finite overdensities by their characteristic split peak as is most clearly visible for

the final two caustics of the t̃ = 55 plot. Note that the split peak of the first caustic is not visible

due to the narrowness of the caustic and the size of the domain. As given by Eqn. 2.40 there are 5

finite peaks preceding the first caustic.
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Figure 2.10: For a non-interacting disk and a perturbation of δM
Mi

= 0.02, Σ/Σ0 is plotted as a

function of r̃ for four values of t̃. The thin horizontal black line demarcates the initial condition
Σ/Σ0 = 1 and the approximate position of the first caustic, given by Eqn. 2.37, is marked by the
short thick red vertical line segment. Indeed, the peak above this short vertical line segment is the
first caustic, though the characteristic double peak exhibited in the following caustics is not visible
within the given domain.

2.4.2 2D Disk Evolution — SMBH Recoil

We now generalize the solution of Sec. 2.4.1 and consider the mergers of SMBHs with spins aligned

or anti-aligned with the orbital angular momentum. In this case the kicks are in the plane of the

disk, and the problem is two-dimensional.

We repeat the same process as in the axisymmetric case (Sec. 2.4.1), but now with a two scale

expansion in the mass perturbation, �m ≡ δM/Mi (as in the axisymmetric case), and the kick

perturbation,

�v ≡ vkick/v0(r0) =
vkick
vinner

�
r̃0 , (2.43)

where r̃0 ≡ r0/rinner. As will become clear shortly, the spatial dependence of �v has the added

characteristic of breaking the self-similarity present in the axisymmetric solution for pure mass-

energy loss, since it introduces a characteristic length scale when �v = 1 (and the perturbative

solution being discussed is no longer relevant).

We begin by considering the particles’ motions from the frame of the moving black hole which
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has a kick in the θ = π direction in cylindrical coordinates and assume the disk co-rotates with the

binary in the positive θ direction. The vis-viva equation then becomes

GMi

r0

�
1− 2�v sin θ0 + �v

2
�
= v2 = GMf

�
2

r0
− 1

a

�
, (2.44)

where Mi is the initial mass of the SMBH binary, Mf is the mass of the final SMBH, r0 is the initial

radial position of the particle, and θ0 is the initial angular position measured in a counter-clockwise

fashion. Solving for a we have

a = r0
1− �m

1− 2�m + 2�v sin θ0 − �v2
(2.45)

= r0 (1 + �m − 2�v sin θ0) +O(�m, �v)
2 (2.46)

= r0(1− �) +O(�m, �v)
2 , (2.47)

where the final equality defines the parameter �.

In the case of no kick (only mass-energy loss) the particle was located at periapsis at the moment

of merger. However in this case the kick breaks the symmetry and requires the eccentricity and

mean anomaly to both have angular dependence and therefore depend on both r0 and θ0. The

mean anomaly, φ, is the sum of a time-dependent term given by the angular frequency at a, plus a

constant term φ0 which indicates where in the epicycle the particle begins:

φ(r0, θ0, t) =

�
GMf

a3
t+ φ0(r0, θ0) ≡ φt + φ0 . (2.48)

After using Eqn. 2.47 and expanding to first order in �m and �v, we may write

φt =
(1− 2�m + 2�v sin θ0 − �v2)3/2

1− �m
Ω0t (2.49)

= (1− 2�m + 3�v sin θ0)Ω0t . (2.50)

To remove e and φ0 from the evolution equations we solve the initial position and radial velocity

equations for a particle:

r0 = a(1− e cosφ0) (2.51)

vkick cos θ0 = ṙ = aΩ(a)e sinφ0 , (2.52)

to get

e sinφ0 =
vkick cos θ0
aΩ(a)

≈ �v cos θ0 , (2.53)

e cosφ0 = 1− r0/a ≈ −� . (2.54)
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When �v = 0 we have the correct limit that φ0 = 0.

Expanding cosφ and applying approximations 2.53 and 2.54 we can rewrite r = a(1− e cosφ) as

r(r0, θ0, t) = r0(1− �(1− cosφt) + �v cos θ0 sinφt) , (2.55)

to first order.

We can find θ(r0, θ0, t) via a similar process. The theory of epicycles gives that the magnitude

of the angular epicyclic oscillation is

δθe = 2e sin(φ) (2.56)

= 2e(sinφt cosφ0 + sinφ0 cosφt) (2.57)

= −2� sinφt + 2�v cos θ0 cosφt . (2.58)

Then the angular position is given by the sum of the position of the guiding center plus the angular

epicyclic oscillations:

θ(r0, θ0, t) = θGC0 + θGC + δθe , (2.59)

where θGC = φt is the angular distance traveled by the guiding center and θGC0 = θ0 − 2�v cos θ0 is

given by the initial conditions. Together, this gives us,

θ(r0, θ0, t) = (2.60)

θ0 − 2�v cos θ0 + φt − 2� sinφt + 2�v cos θ0 cosφt

to first order in �m and �v.

Using Eqns. 2.55 and 2.60 and performing the differentiation, noting that �v has an implicit r01/2

dependence, we can write down

Σ(�r�) =
�

�r0:�r(r0,θ0)=�r�

Σ0(r0, θ0)
r
r0

��� ∂(r,θ)
∂(r0,θ0)

���
(2.61)

≡
�

r0:r(r0)=r

Σ0(r0)

S(r0, t)
, (2.62)

where vectors denote coordinate pairs (r, θ), and S is given by

S ≡ r

r0

����
∂(r, θ)

∂(r0, θ0)

���� (2.63)

= 1 + �m

�
2− 2 cosφt −

3

2
φt sinφt

�
− 3

4
�v
�
4 sin θ0 −

2φt cos(φt − θ0) + 3 sin(φt − θ0)− sin(φt + θ0)
�
.
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So, the surface density at a point (r�, θ�) at a time t is equal to the sum of the surface densities of

all of the particles who end up at this point at that time.

At later times, Eqn. 2.60 becomes an increasingly poor approximation: while the total error is

small compared to the total angular distance traveled, it can grow to become large compared to

a single orbit, i.e., ∼ 2π. With negligible additional computational cost this can be accounted for

to much greater accuracy by using the exact angular velocity φt at the approximate radius of the

guiding center, a0, as given by Eqn. 2.49.

Not all terms in Eqn. 2.63 are of equal importance: terms linear in φt grow linearly with time

and �v has a
√
r0 dependence that makes it increasingly more important farther out in the disk.

The same is the case for the second-order terms (unlisted). For this reason, when

φt ∼
1

�v
+

1

�m
(2.64)

the second-order terms proportional to φt can become first order. Writing this out explicitly tells

us that Eqn. 2.63 is accurate until

t̃ ∼ r̃0

�
vinner
vkick

+
�
r̃0

1

δM/Mi

�
. (2.65)

To keep the first-order accuracy of Eqn. 2.63 at later times one should add to it the second-order

terms proportional to φt:

(terms ∝ �v
2φt) =

3

8
�v

2φt

�
14 sin(φt) + 3 sin(2φt)−

29 sin(2θ0) + 3 sin(2θ0 + φt) +

5 sin(2θ0 − φt) + sin{2(θ0 − φ)}
�

(2.66)

(terms ∝ �m�vφt) = −9

2
�m�vφt

�
cos θ0(cosφt − 3) +

sin θ0 sinφt(1 + cosφt)
�

(2.67)

(terms ∝ �m
2φt) =

3

2
�m

2φt(1 + cosφt) sinφt . (2.68)

At late times Eqn. 2.63 becomes

S = 1 +
3

2
φt {−�m sinφt + �v cos(φt − θ0)} . (2.69)

At late times S reaches its extremal values earliest along the curve of particles initially located at

θ0 = 3π/2. For these particles at late times

S = 1− 3

2
φt sinφt {�m + �v} . (2.70)
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Therefore, for a given r̃0,

Smax
min

= 1± 3

2
φt {�m + �v} , (2.71)

where the mth maximum occurs when

φt = (2m− 1/2)π , (2.72)

and the mth minimum occurs when

φt = (2m+ 1/2)π . (2.73)

To solve for the positions of the extrema we find

Ω0

�
θ0 =

3π

2

�
t ≈ (n− 1/2)π

1− 2�m − 3�v
≈ (n− 1/2)π ≡ Cn , (2.74)

which is approximately the same position as in the axisymmetric case of pure mass-energy loss (see

Eqn. 2.33), except for the r̃ dependence of �v. Before �v ceases to be just a small perturbation (as it

is in the inner disk), this will cause the density peaks to slowly move off of an axisymmetric solution.

However, for simple calculations, and within the relevance of our approximations, the positions of

the extrema with kicks and without kicks are approximately the same. Therefore,

r̃extr,kick0n =
�
t̃/Cn

�2/3
, (2.75)

and the speeds of the peaks are given by

˙̃rextr,kick0n =
2

3
C−2/3

n t̃−1/3 =
2

3

1

Cn

�
r̃extr,kick0n

�1/2
. (2.76)

It is important to understand that a line of particles initially all at the same θ0 will quickly wind

up around the center, as particles closer in have significantly quicker orbital periods (∝ r̃3/2). The

maxima on the line of θ0 = 3π/2 represent points where a spiral arm of the surface density intersects

this line, and is also where this spiral arm reaches its maximum values. Thus, we expect to see in

a solution a spiral arm which oscillates in its maximum value. This can be seen in Fig. 2.11 where

we plot Σ(r̃, θ, t̃=90)/Σ0 for a perturbation �v = 0.0043
√
r̃ and �m = 0.013 in units of G = Mi = 1.

This is approximately the case where the kick imparted during the merger of two Schwarzschild

black holes has its maximum effect (see Fig. 2.5), which occurs for a mass ratio of roughly 0.14.

While the inner disk approaches the one-dimensional solution discussed in Sec. 2.4.1, the outer disk

clearly shows the asymmetry introduced by the kick as a spiral structure.
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From Eqn. 2.71 it’s seen that the first caustic passes a radius r̃ near the time

t̃(kick)c1 =
2

3

1

�m + �v
r̃3/2 . (2.77)

Using this to rewrite Eqn. 2.71 we have

Smax
min

= 1± t̃/t̃(kick)c1 . (2.78)

And, therefore, it is also true for disks with kicks that the extrema lie on the curves

�
Σ

Σ0

�

max
min

≈ 1

1∓ t̃/t̃(kick)c1

. (2.79)

It should be noted that t̃(kick)c1 is less than the constraint given by Eqn. 2.64, indicating that along

the curve of θ0 = π/2 Eqns. 2.66–2.68 offer little extra accuracy. However, for other θ0 the first

caustic will not arrive until later and it is in these cases that the extra terms provide extra accuracy.

2.5 Gaseous Disks

All particles in a disk will initially follow a non-interacting trajectory and only when pressure forces

become significant will they deviate from this course. It is in this region prior to the pressure forces

becoming relevant that the analytic solution of Sec. 2.4 is applicable. We now turn to understanding

where the boundary of significant pressure forces is and what occurs beyond it.

We first discuss the simple disk model used. Then after introducing the epicyclic Mach number

which characterizes the flow, we find the approximate time the flow deviates from the non-interacting

solution. Shocks invariably form on this boundary and we give a strong lower bound for the strength

of these shocks. Finally we solve for the surface density of the circularized regions of the disk following

the shocks.

For clarity we first consider the axisymmetric case of pure mass-energy loss and then generalize

the results to the complete problem including both mass-energy loss and in-plane kicks.

2.5.1 Disk Model

We assume a thin disk, initially in steady state, satisfying initial vertical hydrodynamic equilibrium.

Then, the vertically integrated pressure is:

P (r) =
GMi

r

�
h(r)

r

�2

Σ(r) , (2.80)
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Figure 2.11: In units of G = Mi = 1 we plot Σ(t̃ = 90)/Σ0 for the merger of two Schwarzschild
SMBHs chosen such that the kick is oriented to the left and the kick has maximal effect, as given
by [70] (see Sec. 2.3.2). This point is marked on the dashed line of Fig. 2.5. In this case �m ≈ 0.013
and �v ≈ 0.0043

√
r̃. In the outer disk the perturbations become clearly two-dimensional while in

the inner disk the perturbations approach an axisymmetric solution.

where h(r) and Σ(r) are the disk scale height and surface density at radius r, and the sound speed

is given by

c2s = v2K(h/r)
2 , (2.81)

implying that cs ∝ h/r3/2.
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2.5.2 Epicyclic Mach Number

To understand the dynamics of the flow we begin with the radial Euler equation which governs the

radial flow:
∂vr
∂t

+ vr
∂vr
∂r

= − 1

Σ

∂P

∂r
− ∂Φ

∂r
+

v2φ
r

, (2.82)

where Σ is the surface density, Φ is the gravitational potential, P is given by Eqn. 2.80, and vr and

vφ are the radial and azimuthal velocities, respectively. We define the epicyclic Mach number as the

order of magnitude ratio of the kinetic term with the pressure term (analogous to the Mach number

but specific to radial flow):

Me ≡
vepicycle

cs
∼ vorbital�m

vorbital
h
r

�
Σ
Σ0

� γ−1
2

≈ �m
h/r

, (2.83)

where cs is given by Eqn. 2.81, vepicycle is the maximum radial velocity and given by Eqn. 2.25

and Eqn. 2.29, and (Σ/Σ0)
(γ−1)/2 ∼ 1. When Me � 1 the sound speed is small compared to the

radial velocity of the fluid. In this limit the kinetic term in the radial Euler equation dominates the

pressure term and the flow is, therefore, indistinguishable from the non-interacting case described

in Sec. 2.4 until near the passing of the first caustic.

On the other hand, whenMe � 1 the pressure term dominates the kinetic term and perturbations

should evolve acoustically. It is important to remember that the non-interacting motions that

initially gave rise to the perturbation continue to act and ensure that any perturbation continues

traveling at the pattern speed, and that a rarefaction follows. It is only when Me ∼ 1 that shocks will

form quickly (compared to t̃c1) from perturbations, since the kinetic and pressure terms in Euler’s

equations are comparable and maximize the nonlinear effects which turn acoustic waves into shocks.

2.5.3 Deviation Time

The time frame for the flow to deviate from the pressureless solution is merely the timeframe for a

fluid particle to deviate from its epicyclic motion. To see when this occurs it is clearest to consider

the radial Euler equation (Eqn. 2.82) in Lagrangian coordinates:

D

Dt
vr = − (1− �m)

GMi

r2
− ∇P

Σ
+

v2φ
r

. (2.84)

Here, the convective derivative is denoted D
Dt and is the time derivative moving with a fluid particle.

Initially, when the disk is in steady state this equation gives

0 = −GMi

r20
+

v2φ0

r0
− ∇P0

Σ0
. (2.85)
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Perturbing all quantities of Eqn. 2.84 except for the pressure and applying Eqn. 2.85 we get to

first order in δr/r0, δvφ/vφ0 , and �m:

D

Dt
vr =

GMi

r20

�
�m + 2

δr

r0

�
+

v2φ0

r0

�
2
δvφ
vφ0

− δr

r0

�

−
�
∇P

Σ
− ∇P0

Σ0

�
. (2.86)

We cannot perturb the pressure because there is no reason why the pressure force itself remains

small; it is only that the difference between the steady state pressure and the perturbed pressure

must remain small. The final term on the right-hand side reflects this point, while the first two

terms on the right-hand side determine the pressureless motion. When the pressure term is of order

the pressureless term the flow will cease to follow the pressureless evolution.

To make this comparison we can employ the analytic solution found in Sec. 2.4.1:

D

Dt
vr = r0Ω

2
0�m cosφt , (2.87)

δr

r0
= �m(1− cosφt) . (2.88)

Conservation of angular momentum relates initial angular velocity to later values: rvφ = r0vφ0 .

Therefore,
δvφ
vφ0

= −�m(1− cosφt) . (2.89)

Plugging Eqns. 2.87–2.89 into Eqn. 2.86 and simplifying yields:

0 = �m
v2φ0

r0

�
1− GMi/r0

v2φ0

�
(3− 2 cosφt) +

�
∇P

Σ
− ∇P0

Σ0

�
. (2.90)

There is a subtlety in this equation due to the fact that, as implied by Eqn. 2.85, when particles

interact the circular velocity does not equal the Keplerian circular velocity and the first term on

the right-hand side would be proportional to ∇P0/Σ0. However, we do not want to compare the

pressure term to the “non-interacting” terms traveling on orbits modified by pressure, we want

to compare the pressure term to the non-interacting terms following the non-interacting motion.

Therefore the circular velocity is the Keplerian circular velocity and the first term on the right-hand

side of Eqn. 2.90 is 0 to first order. What does it mean to be 0 to first order? It means that the

value of the term is smaller than the first-order terms. Therefore, deviation from the non-interacting

solution occurs when

O(1) > b =
r0

�mv2K

�
∇P

Σ
− ∇P0

Σ0

�
, (2.91)
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where b is some constant smaller than unity and vK is the Keplerian circular velocity. It is expected

that an arbitrary constant appears here, since there is an arbitrariness to how one determines when

one flow has deviated from another.

By noting that the vertically integrated pressure is such that ∇P = ∇
��

π/γPc(r)h(r)
�
, where

Pc is the central pressure, we find

∇P =

�
π

γ
{h(r)∇Pc(r) + Pc(r)∇h(r)} , (2.92)

∼
�

π

γ

�
h(r)

Pcp − Pct

�g
+

Pp

r

�
, (2.93)

=
Pp − Pt

�g
+

Pp

r
(2.94)

=
Pp

r

�
λ

�
1− Pt

Pp

�
+ 1

�
(2.95)

=
Pp

r

�
λ

�
1−

�
1− t̃/t̃c1
1 + t̃/t̃c1

�γ
�

+ 1

�
(2.96)

where the p and t subscripts denote whether a value is taken at the peak of a density perturbation

or at the trough which precedes it, �g is the length scale relevant to the gradient (half the reduced

wavelength is given approximately by the distance between peak and trough, divided by π) and

λ ≡ r/�g. In the final equality we used the adiabatic equation of state, P ∝ Σγ where γ is the

adiabatic index, and Eqn. 2.38 to evaluate Pp and Pt. Using Eqn. 2.38 is equivalent to assuming

a continuum of density peaks, an assumption which necessarily fails at early times when peaks are

well separated. The effects of this are discussed in Fig. 2.12 and surrounding text.

Using the final equality above along with ∇P0 ∼ P0/r we have

b =
P0/Σ0

�mv2K
·

�
P

P0

Σ0

Σ

�
λ

�
1−

�
1− t̃/t̃c1
1 + t̃/t̃c1

�γ
�

+ 1

�
− 1

�
(2.97)

=
v2K(h/r)

2

�mv2K
·

��
Σ

Σ0

�γ−1
�
λ

�
1−

�
1− t̃/t̃c1
1 + t̃/t̃c1

�γ
�

+ 1

�
− 1

�
(2.98)

=
(h/r)2

�m
·
��

1

1− t̃/t̃c1

�γ−1

·
�
λ

�
1−

�
1− t̃/t̃c1
1 + t̃/t̃c1

�γ
�

+ 1

�
− 1

�
. (2.99)
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In the limit of small t̃/t̃c1 this reduces to

b =
(h/r)2

�m

�
2λ

t̃

t̃c1
+

γ − 1

γ

t̃

t̃c1

�
. (2.100)

Using Eqn. 2.34 one can find �g by solving for the separation between the mth trough and the

following peak. Then, making the approximation that 4m � 1 (accurate to 5% for m = 1) one finds

that

λ ≈ t̃/t̃c1
�m

. (2.101)

Plugging this into Eqn. 2.100 we get

b =
(h/r)2

�m

�
2

�m

�
t̃

t̃c1

�2

+
γ − 1

γ

t̃

t̃c1

�
. (2.102)

When t̃/t̃c1 > �m the first term in the brackets dominates, while when t̃/t̃c1 < �m the second term

dominates. However, the earliest we would expect the flow to deviate is when the first peak crosses

a given fluid element. But the first peak crosses a given position at time t̃p1 = 5
2πr̃

3/2
p1 (Eqn. 2.34),

while the first caustic passes the same position at time t̃c1 = 2
3

1
�m

(Eqn. 2.37). Then the earliest

time to expect deviation is t̃/t̃c1 ≈ 2π�m. Therefore we can neglect the second term of Eqn. 2.102

and solve for t̃/t̃c1:

t̃dev
t̃c1

≈
�

b

2
Me . (2.103)

Solving for t̃dev:

t̃(cont)dev =

�
b

2
Met̃c1 =

�
b

2

2

3

Me

�m
r̃3/2 ≡

�
2b

9

r̃3/2

h/r
, (2.104)

where the “cont” indicates that we are in the continuous peak limit. For the remainder of the chapter

we assume that b = 1/2, a value consistent with simulations.

When Me < 1, Eqn. 2.104 implies that the speed with which a flow deviates from the non-

interacting solution depends solely on the scale height. When h/r ∼ 0.1 we expect either the first

or second density peak to deviate from the non-interacting solution and when h/r � 0.1 we expect

several density peaks following the non-interacting solution prior to deviation.

As mentioned earlier, the continuous peak limit used in Eqn. 2.96 to derive Eqn. 2.104 fails when

the deviation time is smaller than or around the time for the third peak to arrive (t̃dev ∼< 5π
2 r̃3/2),

since until then the peaks are well separated (see Fig. 2.12 for an example). In this case a better
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Figure 2.12: The disk response, Σ/Σ0, in Eulerian coordinates for three example flows with small
Me all plotted at time t̃ = 20. In each window the analytic solution given by Eqn. 2.30 is plotted
in solid red and a 1D hydrodynamic simulation (discussed in Chapter 3) is plotted in dotted black.
The parameters used for each window, from top to bottom, are {�m = 0.001, h/r = 0.001}, {�m =
0.01, h/r = 0.01}, and {�m = 0.001, h/r = 0.01}. The top two plots have the same t̃dev/t̃c1 (see
Eqn. 2.103), while the bottom two plots have the same t̃dev (see Eqn. 2.104). For the values of t̃dev/t̃c1
and t̃dev labeled in each window we have assumed b = 1/2. It is important to note that there is
an implicit spatial dependence in t̃dev/t̃c1 since t̃c1 depends on position (Eqn. 2.37). Considering
the lower window, if we evaluate the deviation time at position r̃ = 2.5 (approximately where the
flow is deviating from the non-interacting solution) using Eqn. 2.104 we find t̃dev ≈ 13. However,
if we consider the discrete character of the peaks we find that the deviation time lies in the range:
t̃dev ∈ [19, 31], which is correct.
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approximation to the deviation time is that it lies in the range:

πr̃3/2
�
2p− 5

2

�
∼< t̃dev ∼< πr̃3/2

�
2p− 3

2

�
, (2.105)

where

p =

�
1

3h/r

1

2π
+

3

4

�
. (2.106)

Physically p is such that the pth peak of the non-interacting solution is the next to pass r̃ after time

t̃(cont)dev . The upper (lower) bounds of Eqn. 2.105 are then just the times of the passing of the pth

peak (the (p− 1)th trough) over position r̃.

2.5.4 Physical Limitation of 1D Assumption

The 1D assumption will cease to be relevant when the density peak separations become comparable

to the scale height, since the timescale for the disk to adapt in the vertical direction becomes

comparable to the timescale for one peak to thermally interact with neighboring ones. Therefore

the 1D approximation is only valid when

1 >
h

�g
=

h

r
λ =

h/r

�m

t̃

t̃c1
, (2.107)

where we have applied the definition of λ in the first equality and Eqn. 2.101 in the second equality.

This produces a limit just slightly weaker than the deviation time given by Eqn. 2.103:

t̃1D
t̃c1

< Me , (2.108)

where t̃1D is the range of times when the 1D approximation should be correct.

2.5.5 Shock Mach Number

Shocks form on the non-interacting overdensities as pressure forces become relevant, which occurs

at approximately the time t̃dev(r̃) given in Sec. 2.5.3. One might expect that once a shock forms it

could evolve independently of the peak on which it first formed, but this is not entirely true. The

reason is that the flow preceding it continues to evolve as though the shock weren’t there, meaning

that the contraction which initially produced the shock will begin to form again if the the shock

begins to recede. This effectively injects energy into the shock and ensures that the shock goes no

slower than the non-interacting peak on which it formed. However, there is no reason the shock

cannot move faster than the peak. Therefore we can put a clear lower bound on the shock speed.

And, because in many cases the speed of the non-interacting peaks greatly exceeds the sound speed

(Eqn. 2.35), this is a strong lower bound. Using Eqn. 2.35 and Eqn. 2.81, this allows us to determine
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a lower bound for the Mach number of a shock having formed on the pth peak:

Mshock ∼>
ṙ

cs
=

2

3C2p−1

vK
vKh/r

=
2

3C2p−1

1

h/r
. (2.109)

If t̃dev/t̃c1 � 1 then one may use p as given by Eqn. 2.106. Otherwise, since t̃dev ∼ t̃c1, the best

lower bound for the shock strength would be to choose the number of the peak of the first caustic,

given by pc1 (see Eqn. 2.40). In either case, it is clear that thin disks with strong mass perturbations

will produce the strongest shocks.

2.5.6 Local Response Time

To determine the profiles at later times it is necessary to know whether the epicyclic patterns will

affect an area of the disk before shocks will, if shocks have formed. Since shocks travel at Mshockc,

where Mshock is the shock’s Mach number, when shocks form in the inner disk they will arrive at an

outer radius r after a time

tshock ∼ r

Mshockc0
. (2.110)

The time, tod1, for the peak of the first overdensity to reach a given radius r is attained from

Eqn. 2.33:

tod1 =
πr

2 vφ(r)
=

π

2
Ω(r)−1 .

If the shocks formed quickly then the ratio of the speeds gives the ratio of times that it will take

for each to affect a given radius in the disk.

To understand whether the first overdensity will affect some region of the outer disk before shocks

which have formed in the inner regions of the disk do, we define the dimensionless local response

time as

Lr ≡ tod1
tshock

∼ r/vφ
r/Mshockc0

= Mshock
h

r

�
Σ

Σ0

� γ−1
2

∼ h

r
Mshock . (2.111)

When t̃dev � t̃c1 then Lr = 2
3C2pc1+1

, where pc1 is given by Eqn. 2.40. Because np cannot

realistically be less than 1, then in the case of quick forming shocks Lr ∼< 1/20, since one would not

expect Eqn. 2.109 to be low by more than a factor of 2.

It should be noted that Me and Lr have radial dependence which can allow the dynamics to

change as the perturbations move outwards through the disk.
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2.5.7 Final Surface Density

Let us first consider a fluid element whose center is located at r0 directly following a merger. Initially

its sides will attempt to follow the non-interacting path defined by Eqn. 2.29, but due to pressure

forces will be damped and will eventually fall onto a circular orbit with its new orbital radius dictated

by conservation of angular momentum: r0/(1−�m). Because the fluid element is now slightly farther

out than it was originally, the final volume it encompasses, and therefore the final density, is also

perturbed.

If ra0 and rb0 are the initial positions of the sides of the fluid element, conservation of angular

momentum also ensures that they circularize to the final positions of ra0/ (1− �m) and rb0/ (1− �m),

respectively. Then the final surface density will be

Σfinal =
mass

2πr∆r
=

mab

2π (ra0+rb0)
2 (ra0 − rb0)

1
(1−�m)2

(2.112)

= Σ0 (1− �m)
2 (2.113)

= Σ0 (1− 2�m) +O(�m)
2 (2.114)

where mab is the mass of the fluid element. So, a perturbation in the central mass causes, following

circularization, a perturbative decrease in the surface density of the disk of twice the magnitude of

the mass perturbation.

2.5.8 Disks with Kicks

When considering the general case including kicks, the analysis of Lr remains unchanged, since to

first order the motion of the overdensities is a function only of the original orbital frequency. The

derivation for Me is analogous to that of Sec. 2.5.2: find the maximum radial velocity at some r̃

determined by Eqn. 2.55, vφ(r̃0)(�m + �v). The sound speed is still given by Eqn. 2.81. This gives

the generalization of Eqn. 2.83 for Me in the case of kicks in the plane of the disk:

Me =
�m + �v
h/r

. (2.115)

It is important to note that because this is the maximum radial velocity at a given r̃ (located at

θ0 = 3π/2), it is also the maximum Me at that radius.

The analysis to determine the time before the flow deviates at a given radius is identical up until

Eqn. 2.86. From that point we may still proceed similarly and use the non-interacting solution with

kicks (Eqn. 2.55 and Eqn. 2.60) to show that the non-interacting terms cancel out, leaving us with

the equation:

O(1) > b(kick) =
r0

(�m + 2�v)v2K

�
∇P

Σ
− ∇P0

Σ0

�
. (2.116)
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Because Eqn. 2.78 is of exactly the same form as Eqn. 2.38, ∇P is still given by Eqn. 2.96, except

with t̃(kick)c1 instead of t̃c1. In the limit of t̃/t̃(kick)c1 � 1 this yields the analogue of Eqn. 2.100:

b(kick) =
(h/r)2

�m + 2�v

�
2λ(kick) t̃

t̃(kick)c1

+
γ − 1

γ

t̃

t̃(kick)c1

�
. (2.117)

At θ0 = 3π/2 the peaks and troughs of the density distribution are located at the same r̃ as in the

axisymmetric case of pure mass-energy loss, so taking into account that t̃(kick)c1 has �m + �v instead

of just �m, as in the case of pure mass-energy loss, we find

λ(kick) ≈ t̃/t̃(kick)c1

�m + �v
. (2.118)

From there the calculation is straightforward and we find

t̃(kick)dev

t̃(kick)c1

≈

�
b(kick)

2

�m + 2�v
�m + �v

Me . (2.119)

This is not quite the same equation as for the case of pure mass-energy loss (Eqn. 2.103), though

it differs by no more than a factor
√
2. The reason for this difference is the introduction of the

prefactor of 2 for �v in Eqn. 2.116. Solving Eqn. 2.119 for t̃(kick)dev gives

t̃(kick)dev ≈

�
2b(kick)

9

�m + 2�v
�m + �v

r̃3/2

h/r
. (2.120)

This is approximately the time when shocks will form at a position r̃. Just as in the axisymmetric

case of pure mass-energy loss, these shocks should “ride” the face of the non-interacting peak from

from which they formed. Thus, an approximate Mach number of these shocks can be calculated by

taking the ratio of the velocity of the non-interacting peak crossing a position r̃ just following the

time t̃(kick)dev :

Mshock ∼>
ṙ

cs
=

2
3

vK
C2p−1

vKh/r
=

2

3C2p−1

1

h/r
. (2.121)

This is only true when t̃(kick)dev � t̃(kick)c1 . Just as was the case with shocks resulting from pure mass-

energy loss, if t̃(kick)dev ∼ t̃(kick)c1 the Mach number can be bounded by using pc1 given by Eqn. 2.40,

but with t̃c1 replaced by t̃(kick)c1 . Again, in both of these cases, thin disks with strong perturbations

(and, therefore, quickly forming caustics) will produce the strongest shocks.
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Table 2.3: Notation: Equations and Descriptions of Parameters and Variables Listed in Alphabetical
Order

Parameter Description Eqn. #

G gravitational constant n/a
M , Mi initial total mass-energy of SMBHs Eqn. 2.9
Me epicyclic Mach number Sec. 2.5.2, Eqn. 2.83
Mf final total mass-energy of SMBHs text preceding Eqn. 2.23
r radial position of particle in disk at some time following

merger
Eqn. 2.24

r̃ r/rinner Eqn. 2.32
r0 initial radial position of particle in disk text preceding Eqn. 2.23

rsteady radius inside of which disk follows binary text preceding Eqn. 2.1
rbin binary separation text preceding Eqn. 2.5
rimp radius outside of which all subsequent changes to the

potential are seen as instantaneous
Eqn. 2.4

rinner radius of inner disk (200GM/c2 for calculations) Eqn. 2.5
rISCO innermost stable circular orbit Eqn. 2.2

t̃ tΩinner Eqn. 2.32
tmerger time to merger Eqn. 2.2
tvisc viscous timescale Eqn. 2.1

vepicycle maximum radial velocity during epicyclic orbit: �mvK Eqn. 2.20
vφ0 angular velocity Eqn. 2.20
vK Keplerian circular velocity:

�
GMi/r Eqn. 2.91

vkick recoil kick velocity received at merger Sec. 2.3.3
vr radial velocity Eqn. 2.82
�m (Mi −Mf )/Mi Eqn. 2.23
�v vkick/vφ0 Eqn. 2.43
η 1/(1 + q)2 Eqn. 2.11
φt mean anomaly Eqn. 2.28

Ωinner orbital frequency at rinner Eqn. 2.6
θ0 initial angular position of particle in disk Eqn. 2.44
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2.6 Conclusion

Circumbinary disks are one of the likely candidates for a prompt electromagnetic counterpart to

a gravitational wave (GW) signal from super-massive black hole (SMBH) mergers. These electro-

magnetic events will allow for LISA to be used to independently determine the cosmological dark

energy parameters, but also be astrophysically interesting events in themselves, offering, among

other things, insights to circumbinary disks and their structure which have yet to be observed. We

provide an analytic solution to the evolution of the surface density of these disks following merger in

the limit of no pressure (Eqns. 2.30 and 2.62). Our solution provides not only an intuitive approach

to understanding the evolution of a thin circumbinary disk, but it also provides an attractive test

for simulations.

The two primary sources of dynamics in the post-merger disk are mass-energy loss due to GW

radiation and recoil kicks due to asymmetric GW radiation during merger. In all cases the mass-

energy loss is constrained to be ∼< 10%. When gas is present during the inspiral of two SMBHs it is

possible that interactions with the gas act to align the spins of the SMBHs with their orbital angular

momentum. In this aligned-spin configuration the kicks are in the plane and are constrained to have

effects on the inner disk which are at most modest when compared to the effects of mass-energy loss

(Figs. 2.5 and 2.6). The preshock flow for disks reacting to pure mass-energy loss is self-similar (brief

discussion surrounding Eqn. 2.32), while the introduction of a relevant length scale in the general

solution removes this special characteristic (Eqn. 2.43 and surrounding text).

To understand when the analytic solution breaks down and shocks begin to form we introduce the

deviation time (Sec. 2.5.3). This time measures at what point the first density peak which will turn

into a shock will pass a given position. In the limit that it is much smaller than the caustic formation

time the caustic formation time is inversely proportional to h/r (mass-energy loss: Eqn. 2.104; with

mass-energy loss and kicks: Eqn. 2.120). There is a strong lower bound for the strength of the

shocks which invariably form as the flow deviates from the non-interacting solution, and it too goes

as the inverse of h/r (mass-energy loss: Eqn. 2.109; with mass-energy loss and kicks: Eqn. 2.121).

After the shocks pass the flow returns to a quasi-steady state. In the case of pure mass-energy loss,

the surface density in this final disk returns to a value dependent only on the initial density and the

mass perturbation (Eqn. 2.114). In this way the distinct regions of circumbinary disks reacting to

the merger of SMBHs can be well explained.

In conclusion, we provide 1) an analytic solution in the limit of a pressureless disk to the evolution

of the surface density of a circumbinary disk following the merger of super-massive black holes with

their spins aligned or anti-aligned with the orbital angular momentum, 2) an expression for the

shock formation time relevant throughout a significant fraction of parameter space, 3) a strong

lower bound for the strength of these shocks, and 4) the final density profile after the disk returns to
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a quasi-steady state. In general, the solution presented offers a method to predict and understand

the evolution of all regions of circumbinary disks.



55

Chapter 3

1-D Simulations of Circumbinary
Disks Following Massive Black
Hole Mergers

N.B.: This work will be published with the following authors: Nate Bode and Sterl Phinney in this

order.

Abstract

When two galaxies merge, the supermassive black holes (SMBHs) they may harbor at

their centers inspiral, driven initially by interactions with stars and gas. If these interac-

tions bring the SMBHs close enough, the radiation of energy and angular momentum in

gravitational waves can complete the inspiral, ending with their ultimate merger. Dur-

ing this inspiral and final plunge, a significant fraction of the mass-energy of the binary

system is released in the form of gravitational waves on timescales short compared to

the dynamical timescales in the disk, leading to an impulsive reduction in the total black

hole mass and a recoil “kick”. In Chapter 2 we provided an analytic solution to the

reaction of a non-interacting disk of particles, considering both the mass loss and kicks

in the plane of the disk. We also showed that over a significant region of parameter

space, mass loss dominates the reaction of the inner disk. Here we consider only the

mass decrement. We use a 1-D hydrodynamic code to explore the full parameter space

of gaseous (hydrodynamic) disks, and expose the diversity of possible responses to the

dominant effect of mass loss due to gravitational waves. We show how the qualitative

and quantitative features of these responses can be understood from the analytic solution

from Chapter 2. Finally, this simple analysis is shown to reproduce well the majority of

results of the 3D hydrodynamic code and 2.5D magnetohydrodynamic code of [23].
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3.1 Introduction

Interest in electromagnetic counterparts (EMCs) to gravitational wave (GW) signals is increasing as

we learn more about the number of ways they can be used to constrain cosmological and astrophysical

parameters. EMCs corresponding to GW signals from supermassive black hole (SMBH) mergers

would allow one to determine the DL−z relation with comparable accuracy to current and proposed

Type Ia supernovae studies. This would be an independent and physics-based determination of the

DL − z relation [75]. Though [75] found that the accuracy of using the EMC with GW signals is

limited by weak lensing, [76] demonstrated that the error in the luminosity distance can be decreased

by a factor of 2–3 using the non-Gaussianity of the magnification distribution.

In Chapter 2 we showed that in the case of a SMBH merger orbited by a gaseous disk, it should

be possible to use the dynamics inferred from the EMC evolution to determine the disk thickness and

sound speed as a function of radius in the disk, something which as of yet has eluded astronomers

trying to study the structure and dynamics of SMBH accretion disks.

There have been several studies of circumbinary disks in the context of SMBH mergers: [36]

discussed the turn-on of an AGN after viscosity refilled the circumbinary “hole” and gas finally

reached the recently merged SMBH. [37] considered a non-interacting disk and showed that the kick

of the final SMBH will produce spiral caustic structures in the disk. In Chapter 2 we extended their

work by providing an analytic solution to the problem of a non-interacting disk reacting to both GW

recoil kicks in the plane and GW mass decrement. We provided a way to relate this non-interacting

solution to gaseous disks and to qualitatively and quantitatively understand what should happen

with the gaseous flows. [38] simulated the reactions of a thick disk to both mass decrement and

kicks. They included radiation transfer so as to have a more realistic understanding of the luminosity

as a function of time. [41] presented a partially analytic study with simulations, considering both

kicks and mass decrement. Though they concluded that mass decrement is of negligible importance

to the dynamics of the disk, they did not take into account that the mass decrement and kicks are

coupled: Schwarzschild black holes will only have modest kicks in the plane of the disk and will

therefore be dominated by mass decrement (see Chapter 2), while when the SMBHs are spinning,

the spins tend to align, significantly reducing the recoil velocities [77]. When the coupling between

mass decrement and kicks is considered, throughout almost all parameter space where kicks remain

in the plane of the disk, the mass decrement is found to be the dominant source of perturbations

(Chapter 2). The work most comparable to that presented here, is that of [23], which considered a

thin disk reacting to mass decrement. They ran two different types of code, one a 3D hydrodynamic

code and the other a “2.5”D magnetohydrodynamic (MHD) code, with the central SMBH losing

10%, 5%, and 1% of its mass during merger. Of particular interest, they found that the MHD code

and hydrodynamic code resulted in essentially the same flow, indicating that MHD effects were not
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significant. Moreover, they noted that the most significant change in the luminosity was an initial

drop as material moved outwards. This is largely corroborated by our results (Sec. 3.4.2).

Our primary focus in this chapter is to demonstrate the ease and accuracy with which the

analytic non-interacting solution of Chapter 2 can be applied to understand almost the entire range

of parameters for thin hydrodynamic disks reacting to a merger dominated by GW mass decrement.

Because GW mass decrement is axisymmetric, and we are working in the thin disk approximation

we can use a 1D code to elucidate the theory. After discussing the necessary assumptions and the

code itself (Sec. 3.2), we present a survey of simulations spanning three orders of magnitude in both

percentage mass decrement and disk thickness (Sec. 3.4). For each of the simulations we explain why

we should expect what we see, given the tools presented in Chapter 2. This has the dual purpose of

demonstrating both the wide variety of types of flows which can occur, and the utility of the analytic

solution for understanding these vastly differing flows. One of the primary limitations of a 1D code

is that it cannot account for turbulence or expansion in the vertical direction. For this reason we

also use the analytic solution to describe and predict a variety of phenomena, including the shock

speeds and luminosities, manifest in the simulations of [23] (Sec. 3.4.2). This demonstrates that

the analytic solution gives insight into the behavior of a wide variety of disks, even those that are

subject to non-axisymmetric perturbations and have entirely different density distributions. Sec. 3.5

gives our conclusions.

3.2 Simulation

3.2.1 Assumptions

Axisymmetric: As yet, there is no firm observational evidence for a circumbinary disk around a

SMBH binary. Though certain aspects of the formation of these disks have been studied, a detailed

understanding of their formation is currently beyond current numerical abilities. It is thus generally

supposed that when gas is present, a gaseous disk will form based on roughly the same physics that

would yield a standard accretion disk in the case of a single SMBH. In a binary, however, torques

are exerted on the inner regions of the disk by the binary. [20], [36], [21], [22], and various other

authors, have shown that when such a disk is co-rotating with the binary these torques inject angular

momentum into the disk at resonant radii and effectively “push” material outwards. This process

evacuates a region surrounding the binary whose size depends on the mass ratio of the binary. In

the case of equal mass mergers [21] used simulations to model these circumbinary disks and showed

that the inner radius of the disk, rinner, is about twice the binary separation. This was also recently

shown analytically by [22]. When merger timescale of the binary becomes shorter than the viscous

timescale of the disk, the disk effectively decouples from the binary, and diffuses inwards on a viscous

timescale.
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Following decoupling, the disk will evolve viscously in what will effectively be an axisymmetric

gravitational potential. Then, by the time of merger, viscosity will have smoothed the disk to a

state which is, to reasonable approximation, axially symmetric.

rinner = 100 rS: Though we assume rinner = 100 rS in our simulations, as discussed in Chapter 2,

the analytic solution is self similar and scales, along with all of the relevant positions and times in

the flow, with wherever the peak of the density distribution is located. Thus, should the true inner

radius of the disk be farther in or out, one need only scale our results be the appropriate factor such

that the two inner radii match.

This point is made abundantly clear in Sec. 3.4.2 where our simulations using these dimen-

sionless variables compare favorably, after scaling, with the 3D relativistic magneto-hydrodynamic

simulations run by [23] with rinner = 10 rS.

Our choice of rinner = 100 rS is appropriate for an equal-mass ratio merger [22, 36, 78]. However,

as the mass ratio q ≤ 1 decreases, rinner will also decrease, until gas can eventually accrete onto

the SMBHs [22]. For example, [22] find that, for 108 M⊙ black hole, a gap will form in the disk for

mass ratios greater than q = 3 × 10−3. In this case the binary decouples from the disk at binary

separation rbin ≈ 15. They consider several mass ratios, and find that the radius of decoupling

changes smoothly with q: decoupling occurs at rbin ≈ 24 for q = 10−2 and rbin ≈ 56 for q = 10−1.

Even in these extreme cases, the response of the disk exterior to the binary will undergo a response

to what we describe here.

Note that as the mass ratio becomes more extremal, the mass decrement occurring in less than

a dynamical time of the inner disk decreases for two reasons: The first is that as rinner decreases,

the dynamical time of the disk decreases (∝ r3/2inner), so that only a smaller fraction of the mass loss

occurs in less than a dynamical time. Moreover, as the mass ratio becomes more extremal the total

mass-energy radiated during inspiral, merger and ring down also decreases. In fact, in the limit of

q � 1 both of these points are accentuated, because, in contrast to comparable-mass mergers, only

a negligible amount of the mass-energy ∝ q2 is radiated during the final plunge, merger, and ring

down.

Newtonian: We do not consider relativistic effects in our simulations. According to [22], as long

as q ≥ 10−2 this leaves rinner ≥ 12rS. Note that although these values are calculated for a SMBH

primary mass of 108 M⊙, [36] showed that rinner has only a weak dependence on the primary’s mass.

Thus, general relativistic effects are negligible.

Thin Disk: In most circumstances, the disk is predicted [36] to be cool enough to be described

using the well-developed theory of geometrically thin disks, where the scale height h, is less than

the radial distance r.

We consider a disk in the central potential of a mass M0, and model the disk as geometrically

thin and vertically isothermal, with a scale height measured from the mid-plane (half-height) and
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parameterized by

h̃(r) ≡ h

rinner
= H

�
r

rinner

�N

≡ Hr̃N , (3.1)

where h̃ and r̃ are, respectively, the scale height h and the radius r in units of rinner, and H and N

are dimensionless positive constants.

Because the dependence on N is relatively weak, to simplify the analysis in this chapter we have

chosen N = 1 for all of our simulations. This makes the effects of the varied parameters clearer.

Moreover, it is then also the case that
h

r
=

h̃

r̃
= H . (3.2)

One-Dimensional: Because we are assuming an axially symmetric disk (see first assumption

above), which is geometrically thin (previous assumption) the problem is reduced to one dimension.

We ignore turbulence and MHD effects. In 1D, the waves and shocks in the disk necessarily propagate

purely radially, with no vertical variation or refraction. This is unlikely to be accurate over many

dynamical times, but as is corroborated in Sec. 3.4.2, it should be reasonable on the short timescales

of interest to us.

Non-Self-Gravitating: We assume that the mass of the inner regions of the disk is significantly

less than the mass of the SMBHs. This assumption is consistent with the results of [22] which find

disk masses with masses around 103 M⊙.

Impulsive: The disk responds adiabatically to mass-energy loss of the central binary over timescales

longer than the dynamical time, slowly expanding but remaining circular to accommodate the change

(see Chapter 2 for a more in-depth discussion of this). However, the mass-energy lost on timescales

shorter than the dynamical time is perceived by the disk to be an impulsive change to the central

potential and leads to the effects discussed in this chapter. Thus, we changed the central mass instan-

taneously at the beginning of every simulation with initial conditions appropriate for a steady-state

disk orbiting the original mass.

Adiabatic: For simplicity, our simulations do not account for radiative losses, and thus strictly

apply only to disks whose cooling time is longer than the timescales considered.

3.2.2 Code

We solve the 1-D problem using a standard Lagrangian finite-differencing leapfrog method with von

Neumann-Richtmyer artificial viscosity [79]. Our code evolves the fluid-dynamical equations written

in cylindrical coordinates (r, φ, and z), but simplified to 1-D using the assumptions discussed above

(Sec. 3.2.1). This produces a geometric term in the radial Euler equation equal to u2
φ/r where uφ is

the angular velocity.

Lagrangian codes are ideal for 1-D hydrodynamics because they naturally accommodate a flow
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by populating denser regions with more grid points (and less dense regions with fewer points), also

making them better than standard Eulerian finite-differencing methods in capturing shocks.

In a Lagrangian code it is beneficial to rewrite the derivatives in terms of m(r), the mass inside

the radius r, and the surface density Σ(r). The derivatives with respect to r in the standard

hydrodynamic equations are modified with the prescription:

∂r = 2πrΣ∂m . (3.3)

Using this method we first compute, at the first half-time step, the radial velocity using the radial

Euler equation:
D

Dt
ur = −(1− �m)

GM0

r2
− 2πr∂m(P +Q) +

uφ
2

r
. (3.4)

Here ur and uφ are the radial and angular velocities of a fluid element, �m ≡ |δM/M0| is the

fractional mass decrement of the initial SMBHs radiated “impulsively” in GWs during merger, and

D/Dt is the convective derivative. The vertically integrated pressure is given by P , and Q is the

von Neumann-Richtmyer effective viscous pressure described in more detail below (Eqn. 3.11).

The new radial position, a full time step ahead and at the same spatial position (in Lagrangian

coordinates), is then determined using the definition of velocity:

D

Dt
r ≡ ur . (3.5)

Because we have assumed that the disk is thin (no variation in the z direction) and axially

symmetric (no variation in the φ direction), and because the fluid is effectively inviscid because

we are considering timescales much shorter than the viscous timescale, the angular Euler equation

reduces to conservation of the azimuthal angular momentum:

D

Dt
(ruφ) = 0 . (3.6)

This allows us to find uφ at the same position and time as the radial position.

At the same time step at which r and uφ are calculated, but a half-spatial step aside, we then

calculate the thermodynamic quantities: the surface density Σ, pressure P , internal energy e, and

temperature T . The surface density is calculated using Eqn. 3.3:

Σ(r) =
∂rm

2πr
. (3.7)

It would be simple to compute the pressure and temperature using an adiabatic equation of state,

but practically this introduces problems for two reasons. First, in shocks an adiabatic equation of

state is not appropriate since shocks generate entropy. Artificial viscosity is a fairly effective kludge
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used to deal with this. The second problem is that in our flows the temperatures transition between

regimes where radiation pressure dominates and gas pressure dominates; e.g., in the case of strong

shocks, the temperature may rise significantly across a shock, possibly converting a gas-pressure-

dominated region into a radiation-pressure-dominated one. This we dealt with by using an iterative

scheme to determine the pressure, energy, and temperature as follows.

The total integrated pressure is calculated as the vertically integrated sum of the gas and radiation

pressures assuming temperature is independent of z:

P =
k

µmp
ΣT +

2

3
aRh(r)T

4 , (3.8)

where k is Boltzmann’s constant, µ is the mean molecular weight, mp is the proton mass, and aR is

the radiation constant. The specific internal energy in a fluid cell is then given by

e =
3

2

k

µmp
T + 2aRh(r)

T 4

Σ
, (3.9)

where we have approximated the density as Σ/h(r). It should be noted that the units of Eqns. 3.8

and 3.9 are removed by converting to code units (G = M = rinner = 1).

The temperature is then solved for iteratively using a form of Newton’s method to solve for the

roots of the conservation of energy equation

D

Dt
e+ (P +Q)

D

Dt

1

Σ
= 0 , (3.10)

solving for P and e at each step using Eqns. 3.8 and 3.9. When ∆T
T < 10−14 the process is terminated.

The final step is to calculate the artificial viscosity. We use an effective viscous pressure [79]

(assuming a von Neumann-Richtmyer artificial viscosity) in cylindrical coordinates:

Q =






4
3Σ�

2
�
∂ur
∂r

�2
if ∂Σ

∂t > 0

0 else

. (3.11)

Here � is some small multiple of the particle separation and is usually written � = k∆r, where k is

of order unity and ∆r is the initial radial size of the fluid elements (thus � is a constant).

3.2.3 Test Cases and Checks

There are three different types of flows which must be tested to ensure that the code works correctly

in all the limits of interest: acoustic flows, flows with shocks, and non-interacting flows.
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Acoustic Limit: To test the acoustic regime we considered a disk of constant surface density and

sound speed (N = 3/2 where N is defined by Eqn. 3.1) and the inner boundary was oscillated to

excite low amplitude acoustic waves (see Fig. 3.1). The waves followed the sound speed given by

Eqn. 3.15 with accuracy limited by the determination of the peak position (the size of the fluid

element).

Non-interacting Limit: In the non-interacting limit, the simulations provided in Sec. 3.4 are the

best check available, since we have an analytic solution available to compare against. Though it is

not strictly in the non-interacting limit, the late formation of the first caustic makes simulation 9,

shown in Fig. 3.15, the best example of the code following the non-interacting solution for an

extended period of time. The simulation is shown in solid (red) while the analytic solution to the

non-interacting disk is shown in dashed (black). The two curves are almost indistinguishable, only

becoming distinct at later times when the flow begins to interact with itself.

Shocks: Testing shocks is quite a bit more complicated since no exact analytic solutions exist for

cylindrical coordinates. Therefore, the first test case considered was the SOD shock tube in Cartesian

coordinates. We modify our code for cartesian coordinates following [79] and fix the adiabatic index

to γ = 5/3.

For this test we follow [80] and use code units. The fluid velocity is initially set to 0 everywhere

and the density and pressure are both set to 1 from x = 0 to x = 0.5, and to 1/8 elsewhere. We

compare the density and pressure from the simulation to the analytic solution at time t = 0.2 in

Figs. 3.2 and 3.3. There is excellent agreement. For instance, the magnitude of the density in

each region is accurate to approximately 0.6%, except along the faces of the shock and contact

discontinuity, where their finite width necessarily produces significant errors when compared to the

discontinuous exact solution. We can see that the shock is traveling at the correct speed, because

the discontinuity of the exact solution lies in the face of the shock as can be seen by the positive and

negative error spikes at the shock face. Though this test case does not directly test the cylindrical

equations it tests the fundamental ability of the algorithm to capture shocks and propagate them.

A final important check for the code discussed in Chapter 2, is that because of angular momentum

conservation, any given fluid element located some distance from the inner boundary will eventually

circularize to a new radius located at: r0(1 + �m), where �m ≡
���∆M
M0

���, which we take to be positive.

The slight motion outwards causes a geometric decrease in the surface density of the fluid element

so that the final surface density can be easily determined (Eqn. 3.30). For each of our simulations

we check this by averaging the value of Σfinal/Σ0 for 100th to 200th points in the simulation when

this is possible (i.e., when the flow has completely circularized over this range). For simulations 6

and 9, this was not possible and we averaged over the 10th to 60th points in the domain. We do

not start the averaging close to the inner boundary because of spurious variations due to a weak

instability, discussed in more depth in Sec. 3.4.1. These values of Σfinal/Σ0 are shown in Table 3.2.
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Figure 3.1: We test the ability of the code to deal with acoustic waves (Σ/Σ0 shown in solid red)
by oscillating the inner boundary to form low amplitude acoustic waves which propagate outwards
through the disk. Parameters are chosen such that the sound speed is constant as a function of
radius: We set N = 3/2 so that the sound speed has no explicit dependence on radius and the
adiabatic index was forced to be 5/3 so that the implicit radial dependence of the sound speed is
also removed. In the far field the amplitude of cylindrical acoustic waves is expected to decrease
as r̃−1/2 (shown in dotted black). Also shown in dashed blue are lines with slope appropriate for
the sound speed as given by Eqn. 3.15. Peaks follow the sound speed to within relative errors of
fractions of a percent, and limited by the determination of the location of the density peak.
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Figure 3.2: Sod shock tube results in code units. For t = 0 initial conditions specified in the text,
at time 0.2 we compare the density of the analytic solution (solid black) to that of the simulation
(dotted grey) as a function of position. There is excellent agreement in magnitude: excluding regions
immediately surrounding the shock and contact discontinuity the analytic solution and simulation
are in agreement to within half a percent. The errors are discussed more in Fig. 3.3.

3.2.4 Parameters and Initial Conditions

From here forward we specify radii in dimensionless units of the inner disk radius

r̃ ≡ r/rinner , (3.12)

where for rinner we use the approximate radius of the peak of the initial density distribution (not the

ill-defined inner edge of the initial disk; see Eqn. 3.16).

As described before (Eqn. 3.1), we parameterize the dimensionless scale height (in units of rinner)

as a power law in r̃: h(r̃) = Hr̃N . In our simulations we keep N constant with a value of N = 1,

and vary H from 10−3 to 10−1. Due to the choice of N , H = h/r.
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Figure 3.3: The fractional error of our simulation in the Sod shock tube case described in the
text is plotted as a function of position (arbitrary units). Excepting regions close to the shock and
contact discontinuity, the simulation produces a solution in excellent agreement with the analytic
solution. The shock and contact discontinuity are traveling at the correct speed, to an accuracy
limited by finite depth of the shock in our simulation. This can be seen by noting that the fractional
error is both positive and negative across the faces of the shock and contact discontinuity; the face
of the shock (and contact discontinuity) is spread across several cells, a necessary characteristic of
finite differencing schemes. This makes the error spikes a necessary feature of any accurate finite
differencing scheme, since the exact solution changes discontinuously.
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In general, this produces a vertically integrated pressure:

P =

∞�

−∞

p(z)dz = −
∞�

−∞

z
∂p

∂z
dz = Ω2

K

∞�

−∞

z2ρdz (3.13)

≡ v2K

�
h

r

�2

Σ . (3.14)

Here ΩK and vK are the orbital frequency and angular velocity for a circular Keplerian orbit,

respectively, and h, as before, is the standard Gaussian scale factor (therefore, measured from the

mid-plane).

Then, the local sound speed is given by:

cs =
√
γvK

h

r
, (3.15)

where vK(r̃) is the Keplerian circular velocity at radius r̃ and γ is the adiabatic index.

For all our simulations we take the initial density structure to be a flow similar to the final

steady-state time-averaged surface density of the simulation done by [21] and parameterize it with

a piecewise-defined function:

Σ0(r̃) =






σ0

�
r̃
r̃m

�−3
exp

�
−
�

r̃
r̃m

�−2
�

for r̃ < r̃p

σ0
A exp(−Br̃C)

(1+F exp(−D(r̃−E))) for r̃ > r̃p

(3.16)

Here, exterior to the peak of the distribution, r̃p, the variables A–F are chosen (see below) to both

approximate a digitized version of the final time-averaged profile of [21] and to match the inner region

at r̃p. The inner region is not chosen to be the exponential drop off seen in the profile of [21], but

instead a slightly more modest power law which does not drop off quite as quickly since, in reality,

by the time of merger the inner regions of the density profile will have diffused inwards and no longer

be as steep as those of [21]. The fitted values are: A ≈ 0.730, B ≈ 0.501, C ≈ 0.714, D ≈ 13.254,

E ≈ 0.797, F ≈ 2.520, r̃m ≈ 1.397, and r̃p ≈ 1.140. The disk is truncated approximately at r̃ = 0.25.

Besides the density, the other variables solved for by the simulation are the radial velocity (ur),

the angular velocity (uφ), pressure (P ), the temperature (T ), and the internal energy (e). To ensure

particles are initially on circular orbits we initially set ur = 0 and solve Eqn. 3.4 for uφ. This is

done by relating the vertically integrated pressure, P , to the surface density using Eqn. 3.14. The

temperature is then just found by solving Eqn. 3.8 for T , while the internal energy is found using

Eqn. 3.9, just as is the case at any other time step.

In summary, h/r and �m are the input parameters to the simulation. The initial surface density

is the same for all of the simulations and given by Eqn. 3.16, and P is then given by Eqn. 3.14.
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Eqn. 3.8 then provides the initial T , which then gives e using Eqn. 3.8. Because the gas particles are

assumed to be initially on circular orbits, ur = 0 initially and then uφ is found by solving Eqn. 3.4.

3.2.5 Boundary Conditions

The surface density at the inner boundary is 11 orders of magnitude smaller than the peak surface

density, at r̃p, and about 9 orders of magnitude smaller than anywhere in the main regions of the flow.

This means that the gas at the inner boundary is so diffuse that as long as the simulation remains

stable at or near the boundary it has no physical effect on the rest of the simulation. Therefore we

can choose the inner boundary condition to ensure stability and not necessarily for strict physical

realism. Finding a stable boundary condition proved to be particularly difficult because of the

rapidly declining density distribution. Ultimately, a nonreflecting boundary condition consistently

provided good results and is the chosen inner boundary condition for the simulations shown here.

The nonreflecting boundary condition is described by

∂ur

∂t
= −cs

∂ur

∂r̃
= −2πr̃Σcs

∂ur

∂m
, (3.17)

where cs is the local sound speed and given by Eqn. 3.15.

The outer boundary is dealt with using a linear extrapolation scheme. To check that these

boundary conditions do not introduce significant errors, the energy flux through the boundary is

monitored during the simulation. The total energy lost/gained through the boundaries always

remains orders of magnitude smaller than the total energy in the flow.

3.3 Summary of Theory

3.3.1 Non-interacting Equations

For reference, we recapitulate the key points of Chapter 2 which we will use in this chapter. All flows

will begin as though they are non-interacting and only when pressure forces are significant will they

deviate from that motion. In Chapter 2 we presented the analytic solution for the non-interacting

case. In particular, we showed that the surface density of a fluid element in Lagrangian coordinates

as a function of time and initial position is:

Σ(r̃0, t)

Σ0(r̃0)
=

1

S(r̃0, t̃)
, (3.18)

where t̃ ≡ Ωinnert, r̃0 ≡ r0/rinner, and

S(r̃0, t̃) =

����1 + 2�m {1− cosφt}−
3

2
�mt̃r̃

−3/2 sinφt

���� , (3.19)
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�m = ∆M/M0 and φt is the first-order approximation to the mean anomaly:

φt(r̃0, t̃) =
(1− 2�m)

3/2

1− �m
t̃r̃−3/2

0 = (1− 2�m)t̃r̃
−3/2
0 +O(�m

2) . (3.20)

Returning to the fluid equations, we showed where the non-interacting solution ceases to be valid.

Because the non-interacting solution breaks down exactly when pressure forces become relevant to

the flow, in the absence of dissipation this is also the region where shocks form. In fact, shocks

invariably form at this boundary first (see Sec. 3.4.1), though they may not form until the outer

regions of the disk (i.e., at r̃ � 1).

Moreover, the analytic solution can be used to provide a strong lower bound on how strong

the shock(s) can be and what occurs following the shocks. In general, the solution provides both

quantitative and qualitative insights into the different regions of the flow.

To understand the different types of flows it was necessary to introduce the epicyclic Mach

number:

Me ≡
δM/M

h/r
≡ �m

h/r
. (3.21)

The physical importance of the epicyclic Mach number can be summarized as follows: when Me � 1

the flow is in an “acoustic” regime where pressure forces dominate the flow and when Me � 1 the

flow is initially in a “pressureless” regime.

In terms of Me we showed in Chapter 2 that the time it takes for the flow to deviate from the

non-interacting solution is approximately:

t̃dev ∼






1
3
r̃3/2

h/r Me ≤ 1

t̃c1 Me ∼> 3

. (3.22)

Here t̃c1, a function of r̃, is the caustic formation time at position r̃. Even a very cold flow (Me �
1) will deviate from a pressureless one at t̃c1, since hydrodynamically forbidden intersecting flows

occur in the non-interacting solution after the first caustic forms: so even in the cold hydrodynamic

flows a shock will form at t̃c1. Hotter flows (Me ∼< 1) will deviate from the collisionless flow earlier

than t̃c1 due to the effect of pressure forces in the perturbation (acoustic waves). t̃c1 is given by:

t̃c1 ≈ 2

3

1

�m
r̃3/2 . (3.23)

The caustic formation time plays a central role in the application of the analytic solution. This is
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readily seen by solving Eqns. 3.18 and 3.19 for the curve on which the local extrema lie:

�
Σ

Σ0

�

max
min

≈ 1

1∓ t̃/t̃c1
. (3.24)

The surface density diverges as t̃ approaches t̃c1. Somewhere prior to the divergence, pressure forces

will become relevant and the non-interacting solution will cease to be accurate (see Eqn. 3.22).

Interestingly, the maxima and minima of the normalized density distribution are constants as a

function of time. This is readily seen by noting that the maxima of the surface density occur when

Ω0t ≈
(n− 1/2)π

1− 2�m
≈ (n− 1/2)π ≡ Cn . (3.25)

Plugging Eqn. 3.25 into Eqns. 3.18 and 3.19 one finds

�
Σ

Σ0

�

(extr)

≈






1
1− 3

2 �mπ(2p−3/2)
for pth peak

1
1+ 3

2 �mπ(2m−1/2)
for mth minimum

. (3.26)

One can also invert Eqn. 3.23 to find the location of the first caustic as a function of time:

r̃c1 ≈
�
3

2
�mt̃

�2/3

. (3.27)

Similarly, one can find the deviation location, i.e., the location where the flow deviates from the

non-interacting solution at some given time, by inverting Eqn. 3.22:

r̃dev ∼






�
3h
r t̃
�2/3

Me ≤ 1

�
3
2�mt̃

�2/3
Me ∼> 3

. (3.28)

At time t, the pressure forces begin to dominate the flow inside radius r̃dev, and it is at about

r̃dev that shocks will first start to form. The time it takes for a perturbation to evolve into a shock

is flow dependent: in hot disks where pressure forces dominate the flow quickly (acoustic limit with

Me ∼< 1) shocks form slowly and a perturbation does not form a shock until r̃ � 1, while in cold

disks (non-interacting limit with Me � 1), where pressure forces are negligible until approximately

the formation of the first caustic, shocks form quickly in the inner regions of the disk (r̃ ∼< 1). In

both cases, the shock Mach numbers can be approximately determined analytically and are given
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by

Mshock ∼






2 Me ≤ 1

Me Me ∼> 3

. (3.29)

Any given particle re-circularizes its orbit on a timescale comparable to its deviation time. As

discussed in Sec. 3.2.3 (in the context of test cases for the code), because tvisc � t̃dev, the angular

momentum of the particle is approximately conserved, and the final surface density can be easily

determined:
Σfinal

Σ0
= (1− �m)

2 . (3.30)

In this way the analytic solution of Chapter 2 describes the regions preceding the shocks (Eqns. 3.18

and 3.19), where the flow will deviate from this solution and shocks will eventually form (Eqn. 3.22),

how strong the shocks will be (Eqn. 3.29), and ultimately what surface density settles to after the

shocks have passed (Eqn. 3.30).

3.3.2 Understanding Parameter Space

The plausible range of parameters covers a wide variety of disk response behaviors. And though there

is some dependence on the rate at which h(r) varies with r (the parameter N), over the relatively

small inner region of the circumbinary disk that we consider, this dependence is weak. Thus, the

variety of possible flows is almost entirely determined by the two other physical parameters in our

model, h/r and �m. As discussed in Chapter 2 and reviewed in Sec. 3.3.1, the epicyclic Mach

number Me (Eqn. 3.21) separated parameter space into two regions: an “acoustic” region and a

“non-interacting” region.

To better understand the range of disk responses we provide a “map” of parameter space in

Fig. 3.4. The independent variables, �m and h/r, are the x and y axes, respectively, while lines of

constant Me are dotted blue. Regions with h/r > 0.3 are marked in gray cross hatch and are not

well described by our thin disk solution. Also, numerical relativity simulations of the final stages of

merger, combined with post-Newtonian approximations of mass-energy loss during the early inspiral

currently indicate an upper limit on �m of about 10% the total initial mass. Regions outside the area

of this limit are also marked by gray cross hatch. The epicyclic Mach number Me splits parameter

space into two regions: an “acoustic” region with Me ∼< 1 (shaded light blue) and a “non-interacting”

region with Me � 1 (varying shades of red). Analytic approximations to lines of constant deviation

time (Eqn. 3.22) in the acoustic limit (dashed green) and the non-interacting limit (dashed red)

are shown and connected to each other (dashed black). In general, we expect weak shocks with

Mshock ∼ 2 in the acoustic region and strong shocks with Mshock ∼ Me in the non-interacting region

(see Eqn. 3.29).
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Figure 3.4: The parameter space of disk response as a function of the fractional SMBH mass decre-
ment to gravitational waves, |�m| ≡ |δM/M0|, and the local disk half scale height h (measured from
the mid-plane) in units of the local disk radius r. Also shown are lines of constant Me (defined in
Eqn. 3.21). When Me ∼< 1 the flows lie in the weak shock region (blue), while when Me � 1 the
flows lie in the strong shock region (red) where the shock Mach numbers are of order the epicyclic
Mach number. Gaseous flows deviate from the non-interacting solution around the deviation time,
t̃dev (Eqn. 3.22). Lines of constant deviation time, in units of the local dynamical time, are shown in
dashed lines, though the curved (black) segments are connections between the two limits in which the
deviation time is known (Eqn. 3.22). For reference we include the locations of the simulations pre-
sented in Sec. 3.4 numbered by their simulation number given in Table 3.1 (S#), and give snapshots
of these simulations in Fig. 3.5.
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Table 3.1: Simulations, Their Parameters, and the Analytic Predictions

# �ma H = h/rb N c k d rnum e tnum f Me
g t̃c1(r̃ = 1)h t̃dev(r̃ = 1)i r̃dev(t̃ = 30)j

1 0.1 0.1 1.0 1.25 5000 105 1 7 3 2.9
2 0.1 0.01 1.0 3.25 3000 105 10 7 7 2.4
3 0.1 0.001 1.0 1.25 3000 106 100 7 7 2.4
4 0.01 0.1 1.0 3.25 5000 105 0.1 70 3 2.9
5 0.01 0.01 1.0 1.25 5000 105 1 70 30 0.9
6 0.01 0.001 1.0 1.25 5000 105 10 70 70 0.6
7 0.001 0.1 1.0 8.25 5000 105 0.01 700 3 2.9
8 0.001 0.01 1.0 1.25 5000 105 0.1 700 30 0.9
9 0.001 0.001 1.0 1.25 10000 105 1 700 300 0.2

aThe total mass decrement due to GW radiation occuring on timescales less than the dynamical time at rinner.
bBecause h = H(r/rinner)N , and N = 1 for all simulations, H = h/r.
cDimensionless parameter characterizing flaring of disk: h = H(r/rinner)N
dDimensionless parameter characterizing strength of artificial viscosity (see Eqn. 3.11)
eNumber of fluid cells used
fNumber of time steps used
gThe epicyclic Mach number (see Eqn. 3.21)
hThe approximate time when the first caustic forms at r̃ = 1 (see Eqn. 3.23)
iThe approximate time that the flow deviates from the analytic solution at r̃ = 1. (see Eqn. 3.22)
jThe approximate radius where the gaseous flow will deviate from the analytic solution at time t̃ = 30 (see

Eqn. 3.28)

The nine simulations discussed in Sec. 3.4.1, which are the primary results of this chapter, are

marked by their simulation number as given by Table 3.1 in the format S#. For context and reference

a snapshot of each of these simulations at time t̃ = 30 is given in Fig. 3.5. The detailed results of

these simulations are discussed in Sec. 3.4, but these snapshots are provided in Fig. 3.5 to illustrate

the disk responses in the theoretically defined regions of Fig. 3.4, and are therefore laid out in the

same form as Fig. 3.4. In each plot the simulation is shown in solid red and the analytic solution

(Eqns. 3.18 and 3.19) is shown in dotted black. The analytic solution is truncated either where the

first caustic forms (marked by a short thick vertical black line) or where it begins to obscure the

results of the simulation. In each plot the theoretical deviation position (Eqn. 3.28) is given and

when a shock is present the leading (largest) shock’s Mach number in the simulation, Mshock, is also

given.

In Fig. 3.5 and in the figures of the simulations (Figs. 3.7–3.15) we plot regions of the disk

dominated by gas pressure in green and regions dominated by radiation pressure in red. As expected

from the non-interacting solution, morphologically there is little dependence of the surface density

on the internal characteristics of the gas (e.g., radiation- or gas-pressure-dominated). However,

whether the gas is gas-pressure-dominated or not has an important impact on the observability of

these disks reacting to the merger of the SMBHs.

To gain a sense of the observability one must consider not only whether the flow is radiation- or

gas-pressure dominated, but also the strength of the shocks, and where they form.
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If strong shocks form in a flow which is gas-pressure-dominated both up and downstream of the

shock, then the ratio of temperatures of the post-shock gas to the pre-shock gas is proportional to

the shock’s Mach number squared,

Tpost-shock

Tpre-shock
=

2γ(γ − 1)

(γ + 1)2
M2

shock ∼ M2
shock , (3.31)

However, even if the gas upstream of the shock is gas-pressure dominated, a sufficiently strong

shock will cause the post-shock gas to be radiation-pressure-dominated (e.g., simulation 3 shown

in Fig. 3.9 with gas-pressure-dominated regions shown in green and radiation-pressure dominated

regions shown in red), meaning that the temperature jump will be lower than in Eqn. 3.31. For a

radiation dominated flow down-stream of the shock, but arbitrary gas up-stream, the temperature

jump across a shock is given by

Tpost-shock

Tpre-shock
∼

�
1 +

Pgas,0

Prad,0

�1/4

M1/2
shock (3.32)

where Pgas,0 and Prad,0 are the gas and radiation pressures just preceding the shock, respectively.

One may compute Eqns. 3.31 and 3.32 by using Eqns. 3.8 and 3.14 along with Eqn. 3.29 to

determine which of these equations is appropriate, and determine the value of Mshock along with, if

needed, Pgas,0 and Prad,0.

If the shock does not form until after the perturbation leaves the hot inner regions of the disk,

the bolometric luminosity may not change significantly. This can happen deep in the acoustic

region (upper left of Fig. 3.4). By contrast, deep in the pressureless region (lower right of Fig. 3.4),

strong shocks form quickly at small radii, and a large prompt change in the bolometric luminosity

is expected.

Normally dissipation mechanisms keep weak perturbations from turning over into shocks, but

as our simulations have no form of dissipation perturbations invariably turn into shocks. However,

depending on the forms of dissipation in real disks when h/r ∼> 0.1 and �m � 1 the weakest and

slowest forming shocks may never actually form: For h/r ∼> 0.1 single weak shocks result. These

weak shocks form by steepening of acoustic waves; and the more ”acoustic” the flow is (the smaller

Me is and therefore the smaller �m is), the slower the perturbations evolve into shocks. This is

readily visible from comparing figures 3.7 (S1), 3.10 (S4), and 3.13 (S7).

3.4 Results

In Chapter 2 the different types of possible flows are outlined. Here we choose a comprehensive set of

initial conditions which exemplify the various types of flows. Table 3.1 gives the various parameters

used for the different runs.
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Figure 3.5: We plot the normalized surface density, Σ/Σ0, at a time t̃ = 30 as a function of the
Lagrangian radial coordinate r̃0 for the nine simulations discussed in Sec. 3.4, parameterized and
labeled in Table 3.1, and shown in relation to parameter space in Fig. 3.4. The two parameters
varied between the simulations are the mass decrement, �m, and disk aspect ratio, h/r = H (see text
following Eqn. 3.1). In each plot the simulation is plotted in solid red where the gas is radiation-
pressure-dominated and in green where it is gas-pressure-dominated. The analytic solution discussed
in Chapter 2 is plotted in dotted black from large radii down to the radius at which the first caustic
forms or the analytic solution begins to obscure either itself or the simulation, whichever occurs
farther out. Where shocks have formed the leading (largest) shock’s Mach number is labeled. The
theoretical deviation position (Eqn. 3.28) is also listed in each plot and the theoretical location of
the first caustic is marked by a thick vertical line at the base of each plot region. A more in-depth
discussion is given in the text. Also, compare with Fig. 3.4.
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3.4.1 Simulations

We provide descriptions of the nine simulations outlined in Table 3.1. In all of the figures the

simulation is plotted in solid (red), the non-interacting analytic solution (Eqn. 3.18) is plotted in

dotted (black), and, where shown, the theoretical final value for Σ/Σ0 (Sec. 3.2.3) is plotted in

dash-dot (black). It might seem natural to plot Σ(r̃(E), t)/Σ0(r̃(E)) in Eulerian coordinates, where

both Σ and Σ0 are calculated at a fixed position, r̃(E), in space. However, we have found that such

plots are much harder to understand than plots of Σ(r̃0, t)/Σ0(r̃0) in Lagrangian coordinates, where

both surface densities are calculated for a single fluid element as a function of its initial position r̃0.

This is because, as described in Sec. 2.5.7 of Chapter 2, Lagrangian coordinates offer the ad-

vantage, and useful code test, of making the final position of the gas a known function of purely

the mass perturbation and the initial position, whereas in Eulerian coordinates, the surface density

ratio depends strongly on the (rather arbitrary) initial density profile. This is seen in simulation

1, shown in Fig. 3.7 using Lagrangian coordinates. Simulation 1 considers a mass perturbation

�m = 0.1 and a disk thickness h/r = 0.1 (other relevant parameters are listed in Table 3.1). For this

mass decrement, the theoretical final value of Σfinal/Σ0 = 0.81 (Eqn. 3.30 and listed in Table 3.2) as

shown in dash-dot. There is an instability on the inner boundary at times t̃ = 21 and t̃ = 28 which

will be discussed in the following paragraph. We re-plot simulation 1 in Fig. 3.6, using Eulerian

coordinates. Note the final value of Σ(r̃(E))/Σ0(r̃(E)) provides no insight to the dynamics of the flow

or the reliability of the simulation, instead retaining a shape dependent largely on the initial density

profile chosen. For this reason we find Lagrangian coordinates more illuminating and choose them

over Eulerian coordinates for the plots of our simulations.

The instability on the inner boundary manifest in Fig. 3.7 is due to the rapidly changing surface

density in the inner region. The surface density changes by about five orders of magnitude over a

fraction of r0. It is computationally challenging to populate this region with enough grid points that

the assumption of small changes in the density between neighboring cells becomes valid. However,

in these regions the surface density is orders of magnitudes smaller than everywhere else in the disk,

and therefore carries only a minuscule fraction of the energy of a standard cell in the main regions of

the flow. Therefore, there is little possibility for the instability to influence the main regions of the

flow. To ensure that this is indeed the case, all simulations are monitored for significant deviations

to the total energy in the flow; no such deviations were detected. Because this region has no physical

relevance, in Figs. 3.8–3.15 we suppress the parts of the flow which have a surface density smaller

than 10−5Σmax.

For the sake of clarity we have chosen, as much as possible, to keep the parameters other than

h/r and �m constant (see Table 3.1). As is visible in Table 3.1 two exceptions to this are the

number of spatial points, rnum, and the number of time steps, tnum. For most simulations we chose

rnum = 5000 and tnum = 105. This is far in excess of what was necessary to do the majority of
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Figure 3.6: Simulation 1 (Eulerian coordinates): The same simulation as that shown in Fig. 3.7,
except plotted in Eulerian coordinates, r̃(E). In Eulerian coordinates the region following the shock
(left of the shock) does not have the simple analytic value it does in Lagrangian coordinates (see
Fig. 3.7), and it depends strongly on the initial density profile. However, when plotted in Lagrangian
coordinates as in Fig. 3.7, post-shock matter reaches a surface density which depends only on �m,
and is entirely independent of the disk’s initial density profile.

the simulations well, but close to what was necessary for the more challenging simulations. The

number of spatial points was chosen with a balance between good capturing of the shocks and

reasonable computational time. Similarly, the time step was chosen to ensure stability, and varies

from simulation to simulation. Also, all simulations were run with multiple grid spacings to ensure

convergence.

The k parameter, which controls the strength of the artificial viscosity (text surrounding Eqn. 3.11),

is usually kept at a constant value of k = 1.25, though in several cases it was raised (see Table 3.1

for exact values) as a way to reduce the growth of the instability in the inner diffuse regions of the

disk (see above discussion).

In the case of theN parameter, which is the exponent of the spatial dependence of h(r) (Eqn. 3.1),

we keep it at a constant value of N = 1.0 across all simulations. This produces a sound speed which

changes as r̃−1/2 (see Eqn. 3.15). Changing N does affect both shock velocity and shock formation

speed, though only mildly inside the domain we consider. We have chosen to keep N constant to

make clearer the dependencies of the flows on the primary parameters, h/r and �m.

The nine simulations which are presented come in three sets: the first presented is made up

of simulations with a strong mass perturbation of �m = 0.1 (S1,S2,S3), the second set consists of

simulations with a moderate mass perturbation of �m = 0.01 (S4,S5,S6), and the final set is made
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Figure 3.7: Simulation 1: Σ/Σ0 is plotted as
a function of Lagrangian radius r̃0, for a mass
decrement of �m = 0.1 and a disk of thick-
ness h/r = 0.1. The simulation is plotted
in red where the flow is dominated by radia-
tion pressure and in green where dominated
by gas pressure. Here the flow is entirely
radiation-pressure-dominated. Σfinal/Σ0 is
given in dash-dot (black), and the analytic
solution for a non-interacting disk is plotted
in dotted black at radii where no caustic has
yet formed. Here Me = 1: the simulation is
in the acoustic region of Fig. 3.4. In this case
a weak shock with Mach number Mshock ∼ 2
is expected (Eqn. 3.29) to form at time at
r̃ = 1 at time tdev ≈ 4 (Eqn. 3.22). The sim-
ulation produces a shock with Mach number
Mshock ∼ 1.6, when calculated from the pre-
shock and post-shock densities (Eqn. 3.39).
As expected (Eqn. 3.30) the surface den-
sity following the shock is Σfinal/Σ0 = 0.81.
Moreover, the analytic solution predicts that
a fluid element initially at position r̃ = 1
will deviate around the time t̃dev ≈ 4, while
the simulation finds the particle deviates at
t̃dev = 5.

Figure 3.8: Simulation 2: Σ/Σ0 is plotted
as a function of Lagrangian radius r̃0, for a
mass decrement of �m = 0.1 and a disk of
thickness h/r = 0.01. Lines are defined the
same as in Fig. 3.7. Because Me = 10 the
flow should closely follow the non-interacting
solution until close to the formation of the
first caustic, since this indicates the flow is
close to the pressureless limit. Therefore the
flow should form its first shock on the face
of the first caustic (as seen), and this shock
should have Mach number Mshock ∼> Me =
10. In fact, the simulation finds the shock to
have Mshock = 14. Following the shocks, the
flow circularizes to the final surface density
Σfinal/Σ0 = 0.80, which is only marginally
different from the expected value of 0.81.

Figure 3.9: Simulation 3: Σ/Σ0 is plotted
as a function of Lagrangian radius r̃0, for a
mass decrement of �m = 0.1 and a disk of
thickness h/r = 0.001. Lines are defined the
same as in Fig. 3.7. In this case Me = 100
and we see from Fig. 3.4 that this is merely an
even more extreme case of simulation 2 (see
Fig. 3.8). Therefore, we expect an almost
identical flow, but with shocks that are an or-
der of magnitude stronger. In line with these
expectations, this flow deviates at the same
time as simulation 2, the resulting Mach
number of the first shock in the simulation
is Mshock = 150, and the final surface den-
sity is the expected value Σfinal/Σ0 = 0.81.
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Figure 3.10: Simulation 4: Σ/Σ0 is plot-
ted as a function of Lagrangian radius r̃0,
for a mass decrement of �m = 0.01 and
a disk of thickness h/r = 0.1. The sim-
ulation is plotted in red where the flow
is dominated by radiation pressure and in
green where dominated by gas pressure.
Here the flow is entirely radiation-pressure-
dominated. Σfinal/Σ0 is given in dash-dot
(black), and the analytic solution for a non-
interacting disk is plotted in dotted black at
radii where no caustic has yet formed. Here
Me = 0.1, so we are in the acoustic regime,
with an expected deviation time t̃dev < 7,
shock strength Mshock ∼ 2, and final sur-
face density Σfinal/Σ0 = 0.98. Indeed, from
the simulation shown we find that at r̃ = 1
the flow is expected to deviate at a time
t̃dev = 3.3, while the simulation finds that
t̃dev(1) = 5.

Figure 3.11: Simulation 5: Σ/Σ0 is plot-
ted as a function of Lagrangian radius r̃0,
for a mass decrement of �m = 0.01 and a
disk aspect ratio h/r = 0.01. Lines are de-
fined the same as in Fig. 3.10. Here Me = 1
placing it on the boundary of the acoustic
region (Fig. 3.4). In this simulation a parti-
cle initially at r̃ = 1 deviates from the non-
interacting flow in a time t̃dev = 33, which is
also the expected theoretical deviation time
(Eqn. 3.22). The Mach number of the first
shock produced (located at approximately
r̃ = 1.1 at time t̃ = 28) is 1.5 which is close
to the expected Mach number 2 (Eqn. 3.29).
Once the flow has circularized, it settles to
the expected final value Σfinal/Σ0 = 0.98.

Figure 3.12: Simulation 6: Σ/Σ0 is plot-
ted as a function of Lagrangian radius r̃0,
for a mass decrement of �m = 0.01 and a
disk of thickness h/r = 0.001. Lines are de-
fined the same as in Fig. 3.10. This flow is
in the non-interacting limit with Me = 10:
the flow closely follows the analytic solu-
tion (Eqns. 3.18 and 3.19) prior to the first
shock, which should form close to the loca-
tion of the first caustic and have a Mach num-
ber roughly given by Mshock = Me = 10.
The location of the first caustic is given by
(3�m/2)

2/3 = 0.6, which is also the location
of the first shock in the simulation as ex-
pected. This first shock has Mach number
Mshock ≈ 14 ∼ Me in accordance with ex-
pectations. The final surface density in the
simulation, after the flow has reached a new
steady state, is Σfinal/Σ0 = 0.98, as Eqn. 3.30
predicts.
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Figure 3.13: Simulation 7: Σ/Σ0 is plotted
as a function of Lagrangian radius r̃0, for a
mass decrement of �m = 0.001 and a disk of
thickness h/r = 0.1. The simulation is plot-
ted in red where the flow is dominated by
radiation pressure and in green where dom-
inated by gas pressure. Σfinal/Σ0 is given
in dash-dot (black), and the analytic solu-
tion for a non-interacting disk is plotted in
dotted black at radii where no caustic has
yet formed. Because Me = 0.01 this pertur-
bation is evolving in the acoustic limit (see
Fig. 3.4). A particle initially located at r̃ = 1
should deviate from the non-interacting flow
at a time t̃dev = 3.3, while in the simula-
tion the particle deviates approximately at
the time t̃dev = 5. Indeed, the rarefaction fol-
lowing the primary perturbation will evolve
into a second shock, producing the “N” wave
standard in cylindrical flows [81]. See text
for a comparison between this figure and
Figs. 3.7 and 3.10.

Figure 3.14: Simulation 8: Σ/Σ0 is plotted
as a function of Lagrangian radius r̃0, for a
mass decrement of �m = 0.001 and a disk
of thickness h/r = 0.01. Lines are defined
the same as in Fig. 3.13. The epicyclic Mach
number for this flow is Me = 0.1 placing the
flow in the acoustic limit (Fig. 3.4). At time
t̃ = 28 the flow should deviate from the non-
interacting solution around position r̃ = 0.9
(Eqn. 3.22), which is approximately what is
seen in the simulation.

Figure 3.15: Simulation 9: Σ/Σ0 is plotted
as a function of Lagrangian radius r̃0, for a
mass decrement of �m = 0.001 and a disk of
thickness h/r = 0.001. Lines are defined the
same as in Fig. 3.13. Because Me = 1, at
a time t̃ = 28 we expect the flow to deviate
from the analytic solution at approximately
r̃ = 0.2 (Eqn. 3.22), approximately a factor
of 2 off of the deviation position as given by
the simulation.
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Table 3.2: Expected Outcomes and Simulation Outcomes

# �ma h/rb Me
c t̃devd t̃deve Mshock

f Mshock
g Σfinal/Σ0

h Σfinal/Σ0
i

pred simul pred simul pred simul

1 0.1 0.1 1 4 5 ∼ 2 1.6 0.810 0.816
2 0.1 0.01 10 7 8 ∼ 10 14 0.810 0.817
3 0.1 0.001 100 7 8 ∼ 100 150 0.810 0.819
4 0.01 0.1 0.1 3 5 ∼ 2 1.3 0.9801 0.9807
5 0.01 0.01 1 30 33 ∼ 2 1.5 0.9801 0.9801
6 0.01 0.001 10 70 50 ∼ 10 14 0.9801 0.9802
7 0.001 0.1 0.01 3 5–6 ∼ 2 n/a 0.998001 0.998007
8 0.001 0.01 0.1 30 46 ∼ 2 n/a 0.998001 0.998000
9 0.001 0.001 1 300 220 ∼ 2 n/a 0.998001 0.998002

aThe total mass decrement due to GW radiation occuring on timescales less than the dynamical time at rinner.
bSince h = H(r/rinner)N , and N = 1 for all simulations, h/r = H.
cThe epicyclic Mach number (Eqn. 3.21), which indicates the type of flow (Fig. 3.4), when (t̃dev) and where shocks

form (Eqns. 3.22 and 3.28, respectively), and the strength of the shocks once they form (Mshock, given by Eqn. 3.29).
d
t̃dev pred is the theoretical time a flow will deviate from the non-interacting solution at r̃ = 1. It is given by

Eqn. 3.22.
e
t̃dev sim is the deviation time at r̃ = 1 calculated in the simulation.
f
Mshock pred is the theoretical strength of the first (strongest) shock in the flow, once it has formed. It is given

by Eqn. 3.29.
g
Mshock sim is the shock Mach number of the first (strongest) shock in the flow, if a shock has formed. It is the

average of the shock Mach numbers calculated using Eqns. 3.39 and 3.40.
hΣfinal pred is the theoretical value of the surface density of a fluid element after it has re-circularized (i.e., reached

a new steady state). It is given by Eqn. 3.30.
iΣfinal sim is the final value of the surface density averaged over the 100th-200th cells (measured from the cell

with smallest r̃) when these cells have circularized. In other cases (simulations 6 and 9) the average was done over
the 10th-60th cells.

up of simulations with a weak mass perturbation of �m = 0.001 (S7,S8,S9). Each set consists of

three simulations of varying disk thickness: a thick disk with H = 0.1, a moderately thin disk with

H = 0.01, and then a very thin disk with H = 0.001.

Note that the non-interacting solution (plotted in dotted black) is a function of only the mass

decrement and, in particular, has no dependence on the disk model. Therefore the location of the

first caustic is the same for simulations in the same set (Eqn. 3.23).

On the other hand the deviation time depends on the epicyclic Mach number (Eqn. 3.22), which

in turn is a function of both the mass perturbation and the disk thickness. So, in each set we expect

all of the flows to initially be the same and merely deviate from the same non-interacting solution

(Eqns. 3.18 and 3.19) at increasingly later times with increasingly thinner disks.

Once shocks have formed the flow will reach steady state when particles have circularized due

to interactions. The speed with which this occurs can again be qualitatively understood using

Me: when Me ∼< 1 pressure forces quickly circularize particles following the first shock, while when

Me � 1 interactions only occur close to the locations of caustics in the non-interacting solution and it

takes multiple contractions to completely circularize a flow. In general, the process of circularization

occurs on a timescale comparable to the deviation time.

We present many of the key results for each of the simulations in Table 3.2. So, instead of
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discussing each simulation in detail we will discuss only unusual features in each simulation. To

give a clear understanding of where all of the values in Table 3.2 come from we will discuss one of

the more feature rich simulations (Simulation 3) in detail, though in-depth discussions of the other

simulations will be suppressed in favor of shorter discussions of characteristics unique to each.

Fig. 3.8 shows a simulation (simulation 2) of a moderately thin disk with h/r = 0.01 reacting

to a strong mass perturbation of �m = 0.1. What is interesting is that multiple shocks form.

Unlike the case of simulation 1 where the first shock completely extracted all radial motion of

the particles’ orbits, here the particles’ radial motions are still significant following the first shock.

Because the shock only decreases the amplitude of the epicyclic oscillation, but not the frequency,

neighboring particles again come together with an attempted orbit crossing at the location of the

second caustic in the non-interacting solution. Thus, a second shock forms at the location of the

analytic solution’s second caustic. Similarly, a third and even forth shock forms in the location of

each subsequent caustic of the non-interacting solution, until the radial motion of the particles is

completely extracted.

Again, simulation 3, shown in Fig. 3.9, considers a significant mass decrement of �m = 0.1,

but affecting a very thin disk with h/r = 0.001. Simulation 3 is merely a more extreme case of

simulation 2 and manifests the exact same structure, only with shocks of different strengths. In this

case the epicyclic Mach number is Me = 100 and we are placed deep into the non-interacting region

of parameter space (see Fig. 3.4). We expect the shock to have a Mach number of order the epicyclic

Mach number (Eqn. 3.29). Indeed, using the change in density and adiabatic index across the shock

face we can solve for the shock Mach number. This calculation gives that in the case of the primary

shock Mshock ≈ 150 ∼ Me. Moreover, because we are well into the non-interacting region we also

expect that the first shock will form on the face of the first caustic. Here, the analytic solution is

truncated after the first caustic, and we see that, as expected, the primary shock of the numerical

solution rides the caustic’s face. That the numerical flow circularizes to the expected final value of

Σfinal/Σ0 = 0.81 indicates the accuracy to which the code obeys conservation of angular momentum

(Eqn. 3.6).

The second set of simulations considers moderate mass perturbations of �m = 0.01. Again, the

three simulations considered here all share the same non-interacting solution and, therefore, the

same caustic formation time which is an order of magnitude longer than in the case of the strong

mass perturbations of the first set of simulations. This allows for essentially two types of flows

depending on the epicyclic Mach number: either a single slow-forming weak shock or a series of

“non-interacting” density peaks followed by a series of shocks.

We consider a moderate mass perturbation of �m = 0.01 in simulation 4, shown in Fig. 3.10,

acting on a thicker radiation-pressure-dominated disk with h/r = 0.1. One of the clear distinctions
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between this simulation and simulations 1–3 is that the shock forms slowly. This reflects the acoustic

nature of this flow, which has an epicyclic Mach number Me = 0.1. The pressure term of the radial

Euler equation dominates the kinetic term and, in the absence of strong dissipation, nonlinear

forces slowly turn the perturbation into a shock. This is in contrast to simulations 2 and 3 where

neighboring particles are being rapidly forced into one another upon the passing of the first caustic.

Of observational interest, these slow forming shocks are unlikely to be detected promptly, because

they form outside the hot inner ring of the disk which dominates the local disk luminosity. So, even

if the shock were to significantly heat the disk, it forms far enough outside of the hot inner ring that

it would only have a marginal effect. In this case however the shock is very weak with a shock Mach

number Mshock ≈ 1.2 at time t̃ = 28.

Simulation 5, shown in Fig. 3.11, considers a small mass perturbation of �m = 0.01 acting on a

thin disk with h/r = 0.01. This is the first example of a flow which has density peaks prior to the

first shock. This is because in this case Me = 1 and our deviation location is a factor of 102/3 closer

to the SMBH than in simulation 4, placing it after several of the non-interacting density peaks. See

Chapter 2 for a description for why this is the case. Having a higher epicyclic Mach number has the

added benefit of having the shock form faster and ultimately heat the inner hot regions of the disk,

unlike in the case of simulation 4.

Also with a mass perturbation of �m = 0.01 simulation 6, shown in Fig. 3.12, demonstrates the

reaction of a very thin disk with h/r = 0.001. Upon first inspection one might find this simulation

to be largely similar to simulation 5, but this is only true morphologically. In fact, this simulation

is a good example of a flow in the non-interacting region of parameter space (see Fig. 3.4 and

accompanying text) with a late-forming caustic. The flow only deviates from the analytic non-

interacting solution close to when the first caustic passes. This is most readily apparent at time

t̃ = 21 when the first caustic lies at r̃ = 0.5, while the primary shock lies at r̃ = 0.6. In particular,

as a flow which approaches the non-interacting limit the primary shock has a shock Mach number

Mshock ≈ 14, which stands in stark contrast to the shock Mach number Mshock ≈ 1.5 of the primary

shock in simulation 5. As mentioned in Chapter 2 the minimum shock speed is ultimately determined

by �m, so this change in the shock Mach number between simulation 5 and simulation 6 is actually

due, almost entirely, to the order of magnitude change in the sound speed.

Although mass perturbations of �m = 0.001 are likely not observable we consider them in the

third set of simulations to demonstrate the theory. In this case the first caustic forms so late in

the non-interacting solution (∼ 100 orbital periods) that the gaseous flow will deviate from the

non-interacting flow well before the passing of the first caustic.

In simulation 7 we consider a small perturbation with a thicker disk of h/r = 0.1. As is visible in

Fig. 3.13 this flow is very similar to simulation 4, except that the shock is forming so slowly that it has

not yet formed by t̃ = 28, the final time plotted. Indeed, the same arguments describing simulation 4
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are relevant here, except that now we are even farther into the acoustic regime with Me = 0.01. In

reality this perturbation is so small that in a real disk one would expect non-axisymmetric features

of the disk to quickly destroy this structure.

A moderately thin disk with h/r = 0.01 reacting to a small mass change of �m = 0.001 (simula-

tion 8) is considered in Fig. 3.14. Keeping in mind that the black dotted line is identical between

this simulation in Fig. 3.14 and that of simulation 7 (Fig. 3.13), we see that this flow is identical

to simulation 7 except that any given fluid particle will deviate from the non-interacting solution

at a later time (Eqn. 3.22). Again, the perturbations which are deviating from the non-interacting

solution will only slowly evolve into shocks, because we are again in the acoustic limit (Me = 0.1).

Simulation 9, the final simulation presented and shown in Fig. 3.15, considers a very small mass

perturbation of �m = 0.001 with a very thin disk with h/r = 0.001. Because Me = 1, the deviation

time still only depends on h/r which is now an order of magnitude smaller than in the case of

simulation 8 and two orders of magnitude smaller than in the case of simulation 7. Therefore,

because the non-interacting solution is the same as with both of these simulations, we expect an

identical flow to both of these cases only with the deviation location even farther in in the disk.

Noting that this is the only simulation with a different ξ0 scale, this is easily seen in the figure.

3.4.2 Other Simulations

Several papers discussing electromagnetic counterparts due to mass decrement and kicks have been

published recently, but the closest to our configuration is the paper by [23]. They simulated a disk

which extends to approximately 10GM/c2 with h/r = 0.05, a constant. They use two different

types of codes: a 3D hydrodynamical code on disks reacting to a mass decrement of �m = 0.1,

0.05, and 0.01, and a “2.5”D (r and z) magnetohydrodynamic (MHD) simulation for a disk reacting

to mass decrements of �m = 0.1 and 0.01. For the rest of this section we scale the positions by

rinner = 10GM/c2 and the times by the orbital frequency at this radius.

To compare their simulation of a mass decrement of �m = 0.01 with ours, it is best to first consult

a comparison diagram (see Fig. 3.16). We plot P/P0 obtained in three different ways: we show the

results of [23] taken digitally from their Fig. 1 (solid black), the results from our 1D simulation

described in this chapter (dashed red), and the analytic solution for the normalized surface density

discussed in Chapter 2 in Eulerian coordinates (dotted brown).

The plotting of the analytic surface density deserves a more detailed discussion. The analytic

solution finds the surface density of a fluid particle as a function of time t̃, its initial position r̃0, and

the initial surface density at the particle Σ0(r̃0). However, we wish to plot Σ(r̃, t̃)/Σ0(r̃) (i.e., without

the dependence on r̃0). To plot this at a specified time we divvy up our domain into small intervals

and follow a large number of particles to determine which interval they fall into. We then sum up the

surface densities of all of the particles, whose initial positions r̃0 we have been keeping track of, which
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Figure 3.16: Comparison of the results of our code with the results from [23] for the case of a mass
perturbation of �m = 0.01 affecting a moderately thick disk with a constant disk aspect ratio of
h/r = 0.05. We plot the normalized pressure, P/P0, as a function of r. Our 1D simulation is plotted
in dashed red, while their 3D simulation is plotted in solid black. It should be noted that each group
considers a fundamentally different initial density distribution. The similarities are significant, but
three major differences are clear: the presence of turbulence in the O’Neill simulation, the presence
of a shock-like structure (O’Neill) instead of a density perturbation, and the lack of the second
density perturbation in the O’Neill simulation. The difference in turbulence is expected, as it can
not be dealt with in a 1D code. The rapid formation of the shock is not well understood, but may
be a reflection of the different density gradients used by each group, while the lack of the second
density peak may very well be an outcome of the rapid formation of the shock.
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have fallen into a given interval using Eqn. 3.18 and using the initial surface density distribution

of our simulation for Σ0(r̃0). This process is repeated for all intervals, ultimately producing the

desired function Σ(r̃, t̃). We then use an adiabatic equation of state to find the normalized pressure:

P/P0 = (Σ(r̃, t̃)/Σ0(r̃))γ where γ = 5/3 is the adiabatic index used by [23].

By design our simulation implicitly determines the pressure, energy, and temperature indepen-

dence of γ, effectively allowing γ to vary both in time and space if the thermodynamics requires this.

For the purposes of comparison we remove this ability by setting the radiation constant aR = 0.

In all three examples in Fig. 3.16 the same trend is observed, where the flow initially has a

small over-density (on the right), followed by a larger under-density, then followed by an even larger

over-density. What follows this final over density is inconsequential in all of the examples, since the

flow is expected to deviate at about this peak (r̃dev = 1.5).

There are a couple obvious differences between these curves: the presence of both turbulence

and a shock-like structure in the [23] simulation which are absent in our simulation. The turbulence

is an expected difference, since our 1D code clearly cannot take it into account, while the shock has

merely formed faster in their simulation than in ours. This is likely due to differences in the initial

conditions. It should be noted that in our simulation a shock is in the process of forming, as can be

seen by our peak steepening and moving off of the non-interacting peak.

It is also important to note the power of the analytic solution. Prior to the shock the non-

interacting solution loosely approximates the [23] simulation and expects a weak shock to form or

have been formed at radius r̃ = 1.5, approximately at the position of the shock (which is weak).

As one would expect from inspection of Fig. 3.16, the analytic treatment can also reasonably well

approximate the light curve of the O’Neill simulation.

To understand the fluctuations in the luminosity as plotted in [23] we must know the extrema

of the analytic solution. These could be computed fairly easily using Eqns. 3.18 and 3.19, but

a more straightforward method would be to just use Eqn. 3.26 instead. This is not only simple

computationally, but it also highlights that for the nth extremum (Σ/Σ0)
(n)
max,min is a constant.

Doing this in the case of �m = 0.01 gives

�
Σ

Σ0

�(1)

max

≈ 1.004 ,

�
Σ

Σ0

�(1)

min

≈ 0.92 ,

�
Σ

Σ0

�(2)

max

≈ 1.11 , (3.33)

where the subscript indicates whether the value is for a minimum or maximum and the superscript

indicates the number of the maximum/minimum.

[23] uses bremsstrahlung emission as an upper limit to the emissions from the disk. For the sake

of comparison we too compute it. If we consider just the region in some narrow annulus of the disk,
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the relative bremsstrahlung emission can be approximated as

L = Lbrem ∼ ρ2T 1/2V , (3.34)

so that

L/L0 =

�
Σ

Σ0

�3/2+γ/2 V

V0
(3.35)

=

�
Σ

Σ0

� 3+γ
2

(1 + (N + 2)�m) . (3.36)

In this we have assumed an adiabatic equation of state, which should be accurate prior to the passing

of the first caustic or shock. Taking γ = 5/3 as done in [23] we find that the first density peak would

produce a variation in the luminosity such that

�
L

L0

�(1)

max

= 1.01 ,

�
L

L0

�(1)

min

= 0.81 ,

�
L

L0

�(2)

max

= 1.28 . (3.37)

To relate this to the [23] it is best to compare with their Fig. 5 where they consider the luminosity

of a small annulus of the disk restricted to the range of radii between 20 and 25GM/c2. There they

have �
L

L0

�(1)

max

= 1.03 ,

�
L

L0

�(1)

min

= 0.78 ,

�
L

L0

�(2)

max

= 1.28 . (3.38)

Here there is remarkable agreement, especially considering that the luminosity is determined from

the 1D non-interacting solution which takes into account no parameters of their 3D disk.

We now consider their simulations with a mass decrement of �m = 0.05 and begin by comparing

the non-interacting solution (brown dotted), our 1D simulation (red dashed), and the 3D simulation

of [23] (solid black) in Fig. 3.18. Again, there are several clear similarities. There is an initial

over-density followed by a rarefaction which is then followed by a shock or, in the case of the non-

interacting flow, a large density peak. The differences are also clear. In this case our 1D simulation

produces a stronger shock than in O’Neill’s 3D case, something which is expected both because we

have an order of magnitude higher resolution and because we don’t account for non-axisymmetric

phenomena such as turbulence.

Just as in the case of the 1% mass perturbation, it is remarkable how well the non-interacting flow

approximates both the 1D and 3D simulations. Here, just like before, the epicyclic Mach number

is in the weak shock limit (Me ∼< 1), and, because h/r is the same as in the 1% case, we have the

same deviation position, r̃dev = 1.5 (Eqn. 3.28). Prior to this position (farther out in the disk) the

flow should be well approximated by the non-interacting solution, while at this position we expect

a weak shock with a shock Mach number of order 2. In line with this prediction, our simulation
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produces a shock approximately at r̃ = 1.5 with shock Mach number Mshock = 2.2, while the shock

found in O’Neill’s simulation is weaker with Mshock ≈ 1.8 and located at approximately the same

position.

Here the shock Mach numbers have been computed using relationships between the pre- and

post-shock densities, pressures, and Mach numbers. In particular,

ρ2
ρ1

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

(3.39)

and
P2

P1
=

2γM2
1 − (γ − 1)

γ + 1
. (3.40)

To determine the shock Mach numbers for our simulations we use both of the these equations to

ensure consistency. However, because we only have the pressures from [23] we rely on the latter

equation for an approximate Mach number. When computed in this way the shock Mach number

is the ratio of the shock velocity relative to the gas just preceding it to the sound speed of that gas.

Because the fluid preceding the shock may actually be moving quickly relative to the coordinate

system the apparent shock velocity in that frame is not necessarily readily related to the Mach

number.

The analytic expectations of the emissions can be found by proceeding as before. We first find

the extrema of the surface density:

�
Σ

Σ0

�(1)

max

≈ 1.03 ,

�
Σ

Σ0

�(1)

min

≈ 0.72 . (3.41)

This would produce the bremsstrahlung luminosities:

�
L

L0

�(1)

max

= 1.08 ,

�
L

L0

�(1)

min

= 0.39 . (3.42)

There would then be a final rise which would likely be due to a weak shock yielding only a modest

rise above the initial luminosity. [23] show in Fig. 5 the luminosities

�
L

L0

�(1)

max

= 1.04 ,

�
L

L0

�(1)

min

= 0.28 ,

�
L

L0

�(2)

max

= 1.37 . (3.43)

For the simulations with �m = 0.1 we plot the non-interacting solution (dotted brown), our

1D simulation (dashed red), and O’Neill’s 3D simulation (solid black) in Fig. 3.18. The flows are

qualitatively the same as before: a small peak followed by a low-density region, then followed

by a shock or, in the case of the non-interacting solution, a strong peak. The first peak in the [23]

simulation is somewhat different than the 1D versions, a discrepancy likely due to similar oscillations
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Figure 3.17: We plot the normalized pressure, P/P0, for the analytic solution (dotted brown), our
1D simulation (dashed red), and the 3D simulations of [23] (solid black and taken digitally from
their Fig. 1), all simulating the response of a disk with h/r = 0.05, a constant, reacting to a 5%
mass perturbation. A description of the process undertaken to plot the analytic solution in Eulerian
coordinates (which requires taking into account the correct initial density distribution) is described
in the text. The analytic theory of Chapter 2 predicts a single shock located at approximately
r̃dev = 1.5 (Eqn. 3.28) with Mshock ≈ 2, and that the gas preceding this shock can be approximated
by the non-interacting solution. Indeed, both simulations produce a shock approximately located at
r̃ = 1.5; our 1D shock has Mshock = 2.2, while the 3D shock has Mshock = 1.8. Preceding the shock
there is pretty good agreement. That the 3D simulation is more diffuse in the regions preceding the
shock is likely due to oscillations out of the plane of the disk. Despite this marginal discrepancy,
the 1D simulation and the analytic theory well capture the 3D vertically and azimuthally averaged
flow.
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Figure 3.18: We plot the normalized pressure, P/P0, for the analytic solution (dotted brown), our
1D simulation (dashed red), and the 3D simulations of [23] (solid black and taken digitally from
their Fig. 1), all simulating the response of a disk with h/r = 0.05, a constant, reacting to a 10%
mass perturbation. A description of the process undertaken to plot the analytic solution in Eulerian
coordinates (which requires taking into account the correct initial density distribution) is described
in the text. Upon examination of Fig. 3.4 we see that this flow should have approximately the same
deviation location as for �m = 0.05 and �m = 0.01: r̃dev = 1.5 (also see Eqn. 3.28). In general, the
analytic theory predicts a shock located at approximately r̃dev (Eqn. 3.28), and given Me = 2 we
expect the shock to be mildly stronger than in the weak shock limit with Mshock ∼> 2. Indeed, both
simulations produce a shock approximately located at r̃ = 1.5; our 1D shock has Mshock = 3.8, while
the 3D shock has Mshock = 2.5. As can be seen in the figure, and as is expected in the analytic
theory, the gas preceding this shock can be reasonably approximated by the non-interacting solution.
That the 3D simulation is somewhat more diffuse in the regions preceding the shock is likely due to
oscillations out of the plane of the disk. Despite this marginal discrepancy, the 1D simulation and
the analytic theory well capture the primary features, both in time and space, of 3D vertically and
azimuthally averaged flow.

in the vertical direction (out of the plane of the disk). A discussion of this vertical motion is available

in [23].

The non-interacting solution again provides insight into almost every region of the flow. In this

case, Me = 2, which is loosely between the weak shock region and the non-interacting limit. But

examination of lines of constant deviation time (and position) in Fig. 3.4 tells us that the deviation

time (and position) should be the same as in the other simulations given in [23], t̃dev = 1.5. Thus

we expect a shock at this position. Preceding this shock the flow is largely dictated by a purely
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non-interacting disk, while following the shock we expect the flow to quickly circularize. The shock

Mach number is expected to be of order 2, while in our 1D simulation we find Mshock = 3.8 and in

O’Neill’s 3D simulation Mshock ≈ 2.5.

Following the same method as above, we can again examine the ability of the non-interacting

solution to explain the emission pattern. The normalized surface density extrema are given by

�
Σ

Σ0

�(1)

max

≈ 1.10 ,

�
Σ

Σ0

�(1)

min

≈ 0.48 (3.44)

which would yield bremsstrahlung luminosities

�
L

L0

�(1)

max

= 1.39 ,

�
L

L0

�(1)

min

= 0.20 . (3.45)

Their final luminosities are

�
L

L0

�(1)

max

= 1.19 ,

�
L

L0

�(1)

min

= 0.05 . (3.46)

The analytically predicted changes in the luminosities (∆L/L0) are systematically higher than

those produced with the simulations by [23], but still within a factor of several and sometimes much

better. This is indeed quite remarkable considering that within the analytic model we assume only

that the disk is thin and use no other information. The differences are likely due to the inclusion

of the z direction in their simulations, something which would certainly affect the flow on these

timescales and possibly to these amounts.

3.5 Conclusion

We have used a Lagrangian 1D code to model the axisymmetric response of a thin disk to the

merger of a super-massive black hole binary with mass ratio 1/3 ∼< q ≤ 1. In particular, we compare

our results to the analytic model presented in Chapter 2 and compare both the theory and our

simulations to the results of [23] and show strong agreement in all cases.

In particular, we present a series of nine simulations which present the full range of possible flows,

as a function of the disk scale height ratio (h/r) and the merger’s gravitational mass decrement

(�m = δM/M0). Various aspects of these simulations are compared to the analytic solution of

Chapter 2, including the regions preceding shocks, the shock formation region, the strength of the

shocks, and the final steady-state surface density. Ultimately, the predictions of the theory are borne

out by our simulations.

The 2.5D and 3D simulations by [23] have also been compared to both our simulation and the

analytic solution. Our simulations approximate their results well, and, using the analytic machinery
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of Chapter 2, the bremsstrahlung luminosity resulting from their simulations can be reasonably well

described. It is notable that the analytic theory, which assumed one dimension, no particular disk

model, and only that the disk was thin, could — with modest accuracy — model the output of their

much more complicated simulations with a different disk structure.

In summary, it has been demonstrated that the reaction of a geometrically thin circumbinary

disk to GW mass decrement can be largely understood using the analytic machinery of Chapter 2,

and, where more accurate results are necessary, 1D codes can capture the majority of the physics.

Together, the analytic and numerical work provide a comprehensive physical understanding of the

range of possible disk responses to the merger of a binary black hole.
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Chapter 4

Production of EMRIs in
Super-Massive Black Hole Binaries

N.B.: This work will be published with the following authors: Nate Bode and Chris Wegg in this

order.

Abstract

Extreme mass ratio inspirals (EMRIs) are one of the laser interferometer space an-

tenna’s (LISAs) sources of greatest astrophysical interest. The conventional source of

EMRIs are stellar-mass black holes scattered onto orbits passing close to a super-massive

black hole by multiple encounters with other stellar objects. However, scattering of a

stellar-mass black hole by any other perturber could potentially produce an EMRI. We

consider here compact objects in a relaxed stellar cusp with central super-massive black

hole (SMBH) reacting to a secondary SMBH inspiraling through the cusp to its stalling

radius. We find that: 1) this process produces approximately 10−3 yr−1Gpc3 EMRIs;

2) The formation of these EMRIs is largely due to a previously unnoticed mechanism.

Normally apsidal precession due to a stellar potential (SP) and/or general relativity

(GR) “detunes” the Kozai mechanism entirely. However, we find that sufficiently rapid

precession produces, in the precessing frame, a perceived motion of the secondary. This

induces a secular effect similar to the Kozai mechanism, though weaker and more chaotic,

and tends to reduce the time required to produce EMRIs; 3) The chaotic aspect of the

mechanism producing the EMRIs makes unreliable the simple secular approximations

for the rates of EMRI production due to a secondary SMBH.
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4.1 Introduction

One of the most interesting sources for the Laser Interferometer Space Antenna (LISA) is the capture

of stellar mass compact objects (COs) by a super-massive black hole (SMBH). COs are the final state

of stellar evolution and include stellar mass black holes, neutron stars, and white dwarfs. Due to the

significant mass difference between the SMBH and the inspiraling CO, these sources are referred to

as extreme mass-ratio inspirals (EMRIs).

Such sources for LISA enable many new and exciting physical measurements: 1) an accurate

measurement of the spin and mass of the SMBH [82] along with a moderate determination of its

location, 2) tests that the spin and mass are the only parameters characterizing the black hole’s

space-time [termed ‘bothrodesy’; 83, 84], 3) information about the presence of a secondary (less

massive) SMBH orbiting the primary (more massive) SMBH [85], 4) information about the presence

of a gaseous disk in the system [86, 87], and, if the source is a white dwarf, 5) a possible electromag-

netic counterpart to the LISA signal [88, 89]. Such an electromagnetic counterpart would provide

an accurate localization of the host, allowing astronomers to, among other things, determine the

luminosity distance-redshift relation to comparable accuracies as Type Ia supernova surveys, but

using an independent and physical rather than empirical [75].

There are several plausible methods to produce EMRIs, a process which amounts to either

forming or driving COs onto orbits whose gravitational wave (GW) inspiral time is shorter than the

timescale for other orbital perturbations. The standard method of EMRI production [90] is that the

transport of COs to the GW inspiral regime is via gravitational scattering with other stellar mass

objects. The timescale for such scatterings must be short enough to drive a CO to the GW inspiral

regime, but infrequent enough not to subsequently perturb the orbit either into the black hole, or

out of the inspiral regime before the GW driven merger occurs. This is a challenging constraint,

because as the CO’s orbit becomes more eccentric, and the rate of orbital energy loss to GW emission

increases, ever smaller kicks to its angular momentum may remove it from this orbit. The primary

process that meets these limitations is star-CO scatterings, and this has been the focus of most

previous work [see 4, for a good review].

Other possible EMRI formation mechanisms are that the COs may be formed in situ, via a

massive self-gravitating accretion disk [91] like that which is believed to have existed in the Milky

Way [92]. Alternatively, the CO can be carried to the SMBH in a stellar binary on a highly eccentric

orbit which interacts strongly with the SMBH and ejects the CO’s partner, while leaving the CO on

a low eccentricity orbit with small semi-major axis [93].

We consider a different scattering method; one where a secondary SMBH is present and entering

the final stage of its inspiral [44, 94] due to dynamical friction. In this scenario the scattering phase

is short-lived, but the number of stars scattered to highly eccentric orbits is significantly increased.
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Moreover, the secondary SMBH induces a secular effect on stars with semi-major axes smaller than

its own, in which the eccentricity and inclination oscillate, referred to as the Lidov-Kozai mechanism

(see Sec. 4.3.1 for a brief discussion of the mechanism). Because some of these “stars” are COs,

when these COs pass close enough to the primary SMBH they can radiate some fraction of their

orbital energy in gravitational waves. If the passage is close enough, and the orbit is sufficiently

stable in the presence of the secondary to have many orbits, the CO may form into an EMRI. This

is the process we consider here.

It is possible, using the standard Kozai formalism, to compute the shortest inspiral time of a

star undergoing the Kozai mechanism analytically (Appendix A). However, we find that the EMRI

production is not dominated by CO’s on these standard Kozai orbits, but instead by CO’s whose

apsidal precession periods are comparable or faster than the orbital period of the the secondary

SMBH. These exhibit much richer behavior, which we refer to as a ‘reverse Kozai’ mechanism

(Secs. 4.3.2–4.3.3 and Sec. 4.4).

Thus, we approach the problem of understanding the effects of the secondary SMBH on the EMRI

rates numerically and use a modified version of the simulation code used to study tidal disruptions

in [18] (see Sec. 4.5 for differences). There we were interested in the possibility of observing multiple

tidal disruptions from the same galaxy due to the presence of a secondary SMBH. The similarities

to the problem considered here make this code particularly appropriate. In both cases, here and in

[18], in our simulations we initially distribute stars isotropically according to an η-model [95] for a

single-mass stellar distribution around the primary SMBH. The secondary is then spiraled inwards

on a slightly eccentric orbit approximating the orbit of a SMBH evolving by dynamical friction and

stellar ejection, until it reaches the stalling radius [96] where we smoothly stop the inward motion [see

18, for a more thorough discussion of our method]. The evolution of each star is then followed until

the end of the simulation is reached, the star has entered the LISA band, or 1010 steps were taken.

The probability that the stellar object was a CO is then determined from its initial semi-major axis

using multi-mass distributions taking into account mass segregation [97].

This channel of EMRI formation is rich, manifesting several distinct physical effects. Almost all

captured objects have undergone some form of Kozai oscillations, while only a few are formed by

strong scatterings by the secondary. The results are presented in Sec. 4.6, rates are estimated in

Sec. 4.7 and summarized along with future work in Sec. 4.8 and Sec. 4.9.

4.2 The Paradigm

Throughout this paper, we consider a system made up of three objects: 1) a primary super-massive

black hole (SMBH) surrounded by 2) a stellar cusp of mass equal to twice the primaries mass and

orbited by 3) a secondary SMBH. Holding the stellar potential centered on the primary SMBH and
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not allowing it to evolve, we follow the paths of stars in the test particle limit. Their initial orbits

are drawn from the self-consistent isotropic distribution given by the Jeans equations for an η-model

potential-density pair, meaning that the initial stellar distribution is drawn from [95, with µ = 0.5]

ρ(r) =
η

2πr3c

M
�

r
rc

�3−η �
1 + r

rc

�1+η , (4.1)

where rc is the size of the cusp and M is the mass of the primary. The stellar mass interior to radius

r is therefore given by:

Mstellar,η(r) =
2Mrη

(rc + r)η
. (4.2)

The potential around the primary due to the stellar distribution is then

Ψ(r) =
2GM

η − 1

�
1− rη−1

(rc + r)η−1

�
, η �= 1 , (4.3)

= 2GM ln(1 + rc/r) , η = 1 .

Throughout this work we use η = 1.25 since this is the relaxed form of the distribution close to

the SMBH [98]. Multi-mass models manifest both mass segregation, and that close to the black hole

only the most massive objects have η = 1.25 [97]. We discuss the consequences of our assumption

of a universal η = 1.25 when calculating the rates in Sec. 4.7.2. In addition we use total stellar

mass twice the black hole’s mass [i.e. µ = 0.5 in 95]. This has the convenient property that when

matching the central density to a power law, the radius at which the mass enclosed by the power

law is 2M (the total stellar mass) is just rc. This allows easy comparison to measurements.

In general, we write quantities relevant to the primary SMBH without subscripts, those relevant

to the secondary SMBH with a subscripted large black “dot”, and those relevant to the stars we

write with a subscripted star symbol. In particular, the mass of the primary SMBH hole is written

M , while those of the stars and secondary are written m� and m•, respectively. Similarly the semi-

major axes of the star and the secondary are written a� and a• (though sometimes the � subscript

is suppressed when unambiguous). Quantities written with tildes (such as r̃) are written in units of

G = c = 1, where G is the gravitational constant and c is the speed of light. The mass ratio of the

two SMBHs is written q ≤ 1. The simulations presented here adopt M = 106 M⊙ and q = 0.3 or

0.1, and masses of the stars and COs (relevant for gravitational wave radiation) are either 1M⊙ or

10M⊙. In each context, q and m� will be labelled. Also, for succinctness, the primary and secondary

SMBHs will be referred to as simply the primary and secondary.

We choose to focus on M = 106 M⊙ since this will result in EMRIs with frequencies best suited

for detection by the current LISA design [4]. Throughout we use a fiducial cusp radius rc = 1.7 pc.

This is motivated by the fits from [100] to the inner regions of ACS Virgo Cluster galaxies [101].
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Figure 4.1: The standard EMRI picture with new addition: We plot the EMRI parameter space
(which assumes a single central SMBH): a(1− e) as a function of a. In the case of Keplerian orbits
a(1 − e) is merely the periapsis distance, while in the case of EMRIs which have highly eccentric
orbits and periapses well into the relativistic regions of the central SMBH a(1− e) is more precisely
a function of the angular momentum of the orbit (though it is still a crude approximation of the
periapsis distance). We define a and e using Eqns. 4.5 and 4.6, respectively. A compact remnant
(stellar-mass black hole, neutron star, white dwarf) inspirals due to GW radiation along paths shown
in solid red. The timescale for inspiral is approximately given by the times on the dashed blue curves.
However, if the initial a, a(1−e) pair lies above the solid gray line, the star is unlikely to complete its
inspiral before two-body stellar scatterings move the orbit to larger or smaller a(1−e). The unstable
circular orbit is plotted in thick solid black and represents the absolute minimum angular momentum
a star may have without plunging into the SMBH. We plot the initial conditions of the 106 simulated
stars whose initial orbital parameters lie in the plot region with smiley faces with green noses. In
dashed black, we use our simulation discussed in Sec. 4.5 to follow a compact object’s inspiral from
the edge of the plotted domain until its final moments, assuming [99] gravitational wave energy
losses. That the simulation follows the theoretical path (plotted in red) for such a long period is one
of the many basic tests the simulation has undergone. We also plot the path of the star discussed in
Figs. 4.4 and 4.5, which was simulated with the secondary SMBH and apsidal precession from both
general relativity and the stellar potential. This has a path similar to many seen in our simulations,
elucidating the new channel for a binary SMBH system to produce EMRIs.
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For power-law galaxies these give 1

rinf = 22 (M/108M⊙)
0.55 pc , (4.4)

where rinf is defined such that the stellar mass interior to rinf is 2M and M is the mass of the SMBH.

Matching this to the η-model such that the central densities are equal gives rc = rinf . Extrapolating

to Sgr A* which has a mass of ≈ 4 × 106 M⊙ [10] gives rinf = 3.8 pc which agrees well with the

observations of rinf ≈ 4 pc [102]. Using M = 106 M⊙ gives our fiducial rinf = rc = 1.7 pc.

The secondary is moved inwards from the edge of the stellar cusp following a path roughly

consistent with dynamical friction until it reaches its stalling radius, which we take from [96]. Details

of the calculation of the secondaries orbit are given in Wegg and Bode [18]. During this inspiral

the secondary SMBH strongly scatters significant numbers of stars, some of which come close to the

primary. In reality these stars could be any stellar object including main sequence stars (MSSs),

stellar mass black holes (SBHs), neutron stars (NSs), or white dwarfs (WDs), and accordingly we

use the word ‘star’ to refer to any of these objects.

Normally one would describe the stars’ orbits with Keplerian orbital elements, but here the

stellar potential, the secondary, and general relativity (during close passages) all cause these orbits

to be non-Keplerian. However, we use unambiguous analogous quantities to describe the orbits of

our stars. For example, we write the semi-major axis as a function of the star’s energy

a ≡ GM

2E
, (4.5)

and we define the eccentricity using the angular momentum and a:

e ≡
�
1− L2

GMa
, (4.6)

where L is the angular momentum of the star. These are the quantities shown in the figures unless

stated otherwise.

Since even in non-Keplerian potentials L and E are constant, then, provided the secondaries

orbital period is long compared to the star’s, on the star’s orbital timescale both a and e defined

as above are constant and well defined quantities. Practically, however, there are oscillations both

on the binary’s orbital timescale (shown in Fig. 4.3 and discussed in Sec. 4.3.2), and on the star’s

orbital timescale, due to numerical errors in the integration as discussed in Sec. 4.5.3.

The orbits which are interesting to us are those which approach the inner several Schwarzschild

1D. Merritt, personal communication. From fitting to Fig. 2 of Merritt et al. [100]
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radii, meaning that they are highly eccentric orbits. In this case,

L ≈
�

2GMa(1− e) ∝
�
a(1− e) . (4.7)

For a Keplerian orbit a(1 − e) would be the periapsis distance, however general relativistic effects

cause deviations from this relation. We use a(1 − e) as one of our fiducial parameters because of

its correspondence to both the angular momentum in these high eccentricity orbits, but also for its

correspondence to the periapsis distance in the Keplerian limit, which provides useful insights to the

problem (though we urge the reader not to assume equality with periapsis distance, especially close

to the primary where general relativity causes strong departures).

When the periapsis of the stars is small enough, gravitational wave emission can affect the orbit.

To first order in the periapsis distance r̃p ≈ a(1− e), the energy radiated per orbit is given by [99]

�
dE

dt

�
= −β

2

GMm�

a5(1− e2)7/2

�
1 +

73

24
e2 +

37

96
e4
�

, (4.8)

where

β =
64

5

G3Mm�(M +m�)

c5
,

and e is the eccentricity of the star.

Essentially all of this energy is radiated during the periapsis passage and, in general, this is what

we assume in our simulations (see Sec. 4.5.4). Radiating at this rate and assuming no interactions

an inspiral takes approximately [99]

T (a0, e0) =
12

19

c40
β

e0�

0

e29/19
�
1 + (121/304)e2

�1181/2299

(1− e2)3/2
de , (4.9)

where c0 is found using the initial condition that a(e0) = a0 and

a(e) =
c0e12/19

1− e2

�
1 +

121

304
e2
�870/2299

. (4.10)

As shown by the smiley faces in Fig. 4.1, an initial isotropic stellar distribution function puts very

few stars on EMRI orbits. But stars put onto sufficiently eccentric orbits will, through gravitational

radiation, find themselves on a one-way trip into the black hole. So what matters is the flux of

stars whose orbits are perturbed into this EMRI region. For an isolated black hole rare 2-body

interactions between stars in the cusp surrounding it are the primary perturbing force creating

EMRIs. However, during a SMBH binary phase the secondary black hole will, for a short period,

exact a much stronger perturbation, and these are our focus here. We must simultaneously consider

both strong and (weak) secular perturbations, and these are sensitive to GW energy and angular
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momentum loss, and to the relation between the secondary orbit and the apsidal precession due

to the cusp potential and relativistic effects. These combine to produce a rich and intricate set of

behaviors (see Sec. 4.4).

Many of these points are illustrated in Fig. 4.1 where we plot a(1 − e) as a function of a. A

star lying in this region of parameter space will inspiral due to GW radiation along curves like the

solid red lines, which are calculated using Eqn. 4.8 and would take approximately the period of time

labeled along the blue dashed lines to complete the inspiral (assuming no other interactions). A star

lying below the solid gray line would likely turn into an EMRI, while one above (even in the absence

of some strong perturber like a secondary SMBH) would likely undergo some stellar scattering event

which would increase its angular momentum (moving it upwards in the figure) and ultimately put

it on a new trajectory with an unrealistic inspiral time. For reference we place those stars from

our initial conditions of 106 stars drawn from the distribution of Eqn. 4.1 which lie in the plotted

region. These are the initial conditions for a set of stars from one of our simulations. In the standard

EMRI picture, weak stellar scatterings extract or add angular momentum from a star while keeping

its energy approximately constant. This moves the star up or down in the figure. When the star

scatters below the gray line, gravitational radiation can extract energy from the orbit faster than

it is perturbed and the star will begin to follow one of the red lines. In the case presented in this

paper, the picture is more complicated, but rich. Kozai oscillations with important effects from

apsidal precession (both precession due to the stellar potential and that due to general relativistic

effects) drive the stars on an orbital evolution which has the angular momentum rise and fall many

times before a close passage occurs and enough gravitational wave radiation can be emitted so as

to extract a significant fraction of the star’s orbital energy. The path of an example star which we

discuss in detail later in the paper (see Figs. 4.9 and 4.10) is shown in thin solid brown. This star’s

path manifests many of the important characteristics which affect this method of EMRI formation.

4.3 Kozai Mechanism

4.3.1 The Good — Historic Formalism

The Kozai mechanism is a secular effect on a body’s motion around a central potential due to some

periodic perturbation to the system. In our context, this is the situation of a star orbiting a primary

SMBH being perturbed over long timescales by a secondary SMBH, also orbiting the primary. The

original theory [103, 104] of the Kozai mechanism assumed (in the context of our problem) not only

that the semi-major axis of the star is less than half that of the secondary SMBH, but also that the

star is on what would otherwise be a Keplerian orbit in the absence of the secondary (i.e., general

relativistic effects along with effects due to the stellar potential are ignored). Within this problem

and these assumptions we initially discuss the Kozai mechanism.



100

Instead of giving a detailed description of the problem, something already done well by the

original papers [103, 104] and much subsequent work [105–108] in various different contexts, we aim

to provide in this section a brief description of the problem and give a conceptual but quantitative

outline of the rich variety of different phenomena the Kozai mechanism produces.

Here, and throughout the rest of this paper, we will use the following conventions: a is the

semi-major axis, e is the eccentricity, � ≡ 1 − e2, i is the inclination to the orbital plane of the

secondary SMBH, ω is the argument of periapsis, χ is the longitude of the ascending node, T• is

radial the period of the secondary, T� is the radial period of the star, q ≤ 1 is the ratio of masses of

the SMBHs, and

TKozai ≡
2

3πq

T•
T�

T• =
4

3q

�
a�
a•

�−3/2
�

a3•
GM

(4.11)

is the characteristic timescale on which the Kozai oscillations occur, which will be discussed shortly.

Starting from the exact equations of motion in the osculating elements, written with the true

anomaly as the independent variable, and averaging over both the orbits of the star and the secondary

SMBH, one may obtain an insightful set of differential equations governing the evolution of these

elements [103] (written in the form of [107] but with � = 1− e2):

TKozai
da

dt
= 0 (4.12)

TKozai
de

dt
= −5

2
e
√
� sin2 i sin 2ω (4.13)

TKozai
di

dt
= −5

4

e2 sin(2i) sin(2ω)√
�

(4.14)

TKozai
dω

dt
=

2�+ 5 sin2(ω)(cos2 i− �)√
�

(4.15)

TKozai
dχ

dt
= −cos i√

�

�
�+ 5(1− �) sin2 ω

�
. (4.16)

The primary characteristic of the Kozai mechanism is that, as these equations imply, the star’s

orbital elements undergo an oscillatory motion which has a period given approximately by TKozai,

and which can be of significant magnitude. There are several key outcomes from the above equations:

1. The energy of the star’s orbit remains constant (Eqn. 4.12).

2. The eccentricity (and inclination) reaches its extremal values only if ω = 0, ±π/2, or π (solving

Eqn. 4.13 equal to 0).

3. Setting ė = i̇ = ω̇ = 0 we find a stationary solution when ω = ±π/2. In this case e and i are

fixed and obey the relation

e2 =
5

3
sin2 i− 2

3
, (4.17)

while ω = ±π/2.
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The second point implies that there can be two categories of behavior: solutions which have e

and i extrema at ω = ±π/2 and different solutions which have e and i extrema at ω = 0 or π.

Indeed, one finds that there exist solutions which librate around ω = ±π/2 and have their extrema

of e and i at ω = ±π/2, and there exist solutions for which ω evolves monotonically with extrema

e and i at ω = 0,±π/2 and π. We refer to these two possible solutions as librating and rotating

solutions, respectively.

Besides a, equations 4.12-4.16 admit two further integrals of the motion [103, 104]:

Θ = (1− e2) cos2 i = � cos2 i (4.18)

Q = e2
�
5 sin2 i sin2 ω − 2

�
, (4.19)

which together tell us several things about the stars’ evolution:

1. The z component of the angular momentum is conserved since Lz =
√
GMaΘ (Eqn. 4.18).

2. All solutions have � ≥ Θ (Eqn. 4.18).

3. The eccentricity reaches its maximum (minimum) when the inclination reaches its minimum

(maximum) (Eqn. 4.18).

4. Librating solutions have

emax
min

=

�
5

3
sin2 imin

max
− 2

3
=

�
1− 5

3
cos2 imin

max
, (4.20)

by solving

Θ(emax, imin) = Θ(emin, imax) (4.21)

and (4.22)

Q(emax, imin) = Q(emin, imax) (4.23)

for emax(imin).

5. The stationary solution obeying Eqn. 4.17 has

� =

�
5

3
Θ

(joining the previous point with Eqn. 4.17).

Many of these points can be demonstrated graphically by plotting the possible orbital paths,

calculated numerically from Eqns. 4.13–4.16, through parameter space for a given value of Θ. We
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Figure 4.2: We plot the solutions to the Kozai differential Eqns. 4.12–4.16 for a series of orbits in a
parametric plot of 1− e2 and the argument of pericenter ω as a function of time. Throughout Kozai
oscillations a particle conserves the quantity Θ ≡ (1−e2) cos2 i. In the plot on the left all orbits have
Θ = 0.25, while all orbits in the figure on the right have Θ = 0.01. The maximal attainable value of
e for any orbit is

√
1−Θ. When Θ is large only modest changes in eccentricity can occur, while all

orbits with Θ close to 0 can be driven to modestly or extremely high eccentricities. There are two
types of orbits shown: librating and rotating. In librating orbits ω oscillates around ω = π/2 where
the eccentricities and inclinations reach their extrema (visible in the figures). In rotating orbits have
ω changes monotonically while the eccentricities reach their extrema at both ω = π/2 and π.

do this in Fig. 4.2. For two different values of Θ we plot different orbits as a function of time in a

parametric plot of ω and � = 1 − e2. As was described earlier, and obvious from the figure, there

are two different types of orbital evolution: the “rotating” solutions, whose argument of periapsis

evolves monotonically (blue dashed lines), and the “librating” solutions, whose argument of periapsis

oscillates around ω = ±π/2 (solid black lines). The region with ω ∈ [π, 2π] is just a reflection of the

region plotted, and so is suppressed.

Orbits with small Θ are driven to high eccentricity, with the rotating solutions being driven to

the highest eccentricities. Because Θ ∝ L2
z, this also means that the stars which we are interested

in, those which will become highly eccentric, must also have small Lz.

4.3.2 The Bad — Deviations from Standard Formalism

The picture which has been painted so far (Sec. 4.3.1) has been very clean: there has been no

discussion of deviations from this analytic solution on the binary orbital timescale (this section) and

there has been no discussion of the precession effects due to the stellar potential or GR (Sec. 4.3.3).

These are both very important to our discussion.
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Because the derivation of Eqns. 4.12–4.16 integrates over the orbit of the secondary SMBH,

oscillations on the binary’s orbital timescale are smoothed over. Throughout most of the orbit this

has little effect, but close to the peaks of the eccentricity the oscillations on the orbital timescale

can become significant. In the appendix of the paper by [107] it is shown that the magnitude of the

variations in the angular momentum are given by

∆L =
15

8
cos iminq

�
a�
a•

�2 �
GMa• . (4.24)

This produces a variation in 1− e given by

∆(1− e) =
15

8
cos iminq

�
a�
a•

�3/2

∼ q

�
a�
a•

�3/2

. (4.25)

Keeping in mind that for the cases of interest to us, 1 − e is frequently of order 10−4, and many

times even lower, it is clear that these variations can become very significant close to the peak in

eccentricity, as demonstrated in Fig. 4.3. There we plot 1 − e as a function of time for a 10M⊙

star evolved without precession due to the stellar potential (abbreviated SP precession) and without

general relativistic precession (abbreviated GR precession) using our simulation described in Sec. 4.5.

In red is the approximate path predicted by the orbit averaged Kozai formalism, Eqns. 4.12–4.16,

and in green is the predicted envelope (Eqn. 4.25). Each dot represents the calculated value of 1− e

at apoapsis by our simulator. In most situations these oscillations would not be important, but as

the Schwarzschild radius of the primary SMBH is approached small changes in the periapsis of the

orbit can lead to significantly different evolutions. See Sec. 4.3.3 for a discussion of GR precession

and Sec. 4.4 for a discussion of its dramatic effect on the orbital evolution of the star.

4.3.3 The Ugly — Other Forms of Precession

One can easily add precession to the Kozai equations (Eqns. 4.12–4.16) by adding a term with the

relevant precession to the dω/dt equation:

TKozai
dω

dt
=

2�+ 5 sin2(ω)(cos2 i− �)√
�

+ κg(e) , (4.26)

where κg(e) is the precession over a time TKozai due to some other mechanism (e.g., SP precession or

GR precession) and κ is independent of the eccentricity and g(e) is a function of only the eccentricity.

For instance, in the case of the stellar potential, κ is given by [107]

κsp = − 2

3π
K

�
Mst(a)

m�

�
, (4.27)
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Figure 4.3: We plot 1 − e as a function of time across the peak of the oscillation in eccentricity.
In red is the approximate value predicted by the standard Kozai formalism (averaged over the
secondary’s orbit, Eqns. 4.12–4.16), while in green is the expected magnitude of the modulations
in the eccentricity over the secondary’s orbit given by Eqn. 4.25. Each dot represents the value of
1 − e calculated by our simulation at apoapsis during the first maximum of the eccentricity in the
simulation shown in the first column of Fig. 4.4 (in which both the stellar potential and the relativistic
precession were turned off for clarity). The secondary’s orbital modulations of the eccentricity can
be significant in these regions, which also happen to be the regions of the Kozai oscillation where
maximal relativistic effects will occur. Because of the strong dependence on position for these
relativistic effects, it is not sufficient to use secular approximations to predict the outcome when the
maximum eccentricity is reached.
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Figure 4.4: Comparison of Kozai inspirals with different forms of precession: in the first column we
follow a key star without any form of precession (no SP or GR precession), in the second column
we “turn on” SP precession and in the third column we finally add GR precession and GW energy
loss. Describing the rows of the plot: In row 1 we plot in charcoal the semi-major axis of a 10M⊙
star (the mass is only relevant when GR effects are considered; final column) as a function of time
along with the position of the secondary plotted in red. In row 2 we plot a(1− e), an approximation
for the square of the angular momentum, in charcoal as a function of time. Also plotted are the
lines of constant a(1− e) = 8GM/c2 and 100GM/c2, the latter being the arbitrary radius where we
start calculating the energy loss for the orbit (see Sec. 4.5). In row 3 we plot 1− e in charcoal and
cos2 i in red as a function of time. The product of the two is L2

z which is a conserved quantity in the
standard Kozai formalism. In the final row we plot the argument of periapsis as a function of time.
From left to right there are clear changes in the star’s orbit as new forms of precession are added:
In the first column, with both stellar and relativistic precession turned off, the object undergoes
traditional Kozai oscillations as described in Sec. 4.3. In the second column (with SP potential)
three clear changes occur: the star begins retrograde precession (row 4), the Kozai period decreases
(rows 2 and 3), and the magnitude of the oscillations decrease (rows 2 and 3). In the final column
(with SP and GR precession) a very different phenomenon occurs: The relativistic precession is
prograde and so weakens the effect of the stellar precession, which then allows for larger amplitude
Kozai oscillations, which then drives the star to high enough eccentricities to reach a radius such
that relativistic precession becomes significant. At this point the reverse Kozai mechanism takes
over (Sec. 4.4) and an ostensibly chaotic orbit ensues. These regions where the relativistic precession
dominate the orbit are shown in greater detail in Fig. 4.5.
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where K is a factor depending on the stellar cusp (see [107]), and g(e) is given by

gsp(e) =
�
1− e2 . (4.28)

As κg(e) becomes significant the Kozai oscillations become “detuned”, causing a decrease in

both the amplitude and the Kozai period. This can be seen in Fig. 4.4 in the first two columns. In

the first column the stellar potential is ignored, as is GR precession. In this case we get the classic

orbital evolution of the star as predicted by the Kozai formalism, modulo the orbital oscillations

discussed in Sec. 4.3.2 and illustrated in Fig. 4.3 (a zoomed-in image of the first major dip in 1− e

in Fig. 4.4). In the second column SP precession is turned on, and the orbit evolves similarly to

the standard Kozai oscillation without the stellar potential, but with the amplitude and period of

the oscillations being smaller and shorter. In the third column GR precession is turned on along

with the SP precession. Because the GR precession (prograde) and the SP precession (retrograde)

are competing effects, the GR precession weakens the effect of the SP precession and allows the

Kozai oscillations to have larger amplitudes and longer periods. However, once the periapsis of the

star begins to approach the Schwarzschild radius of the primary SMBH, two important and related

changes occur: 1) GR precession becomes dominant and 2) because of the strong radial dependence

of the GR precession near the SMBH, the oscillations on the binary timescale discussed in Sec. 4.3.2

become important. Together these two phenomena cause the star to enter into a chaotic orbit which

we illustrate in Fig. 4.5 and introduce and describe in greater detail in Sec. 4.4.

4.4 Reverse Kozai Mechanism

It is widely known that if a body, which would otherwise undergo a Kozai oscillation, also undergoes

a rapid apsidal precession (compared to the Kozai apsidal precession), then the Kozai mechanism

will no longer drive large oscillations in eccentricity. This situation is typically referred to as the

Kozai mechanism being “de-tuned”. It is commonly assumed that such precession kills all secular

effects due to the presence of the secondary.

However, this is not quite the case. In fact, when the argument of periapsis precesses at a

rate which greatly exceeds the orbital frequency of the secondary SMBH, the secondary effectively

“sits still” while the orbit of the test particle executes a full 2π precession. In the frame of the

precessing orbit (i.e., rotating with the argument of periapsis), the secondary executes a circular

motion centered on and in a plane orthogonal to, the axis of the angular momentum. This perceived

motion of the secondary, which is quite similar to the motion of the secondary in the standard Kozai

geometry, again causes a secular effect which is analogous to the standard Kozai oscillation: The

energy of the orbit remains constant as the eccentricity and inclination oscillate, while conserving



107

the z-component of the angular momentum.

There are some important and significant differences, though. The most important are the

stability, speed, and strength of the effect. As one would expect, each of these depend on the source

of the precession.

For instance, SP precession is relatively weak, and so does not completely neutralize the Kozai

mechanism, but can instead cause the same stable oscillations with a significantly shorter Kozai

period. See Sec. 4.3.2 for a qualitative discussion of this.

On the other hand, relativistic precession is more intricate. In this case the precession has a

strong radial dependence which diverges as the periapsis of the particle approaches the radius of

the maximum in the effective potential which defines the unstable circular orbit [UCO, defined as

Eqns. 12-16 of 109, at 4M for e → 1 non-rotating blackholes]. Thus very small changes in the

periapsis, such as those due to weak non-secular effects of the secondary (Sec. 4.3.2), can produce

vastly different precession rates. In particular, the position of the secondary in it’s orbit can strongly

modify the periapsis distance, as shown in Fig. 4.3 where the minimum periapsis (dots) is about half

of the averaged Kozai value (red curve). This strong dependence of the periapsis on the phase of the

secondary in turn creates a strong dependance on the GR precession and hence the reverse-Kozai

period and amplitude. This gives rise to an apparently chaotic orbital evolution shown in the third

column of Fig. 4.4 and in greater detail in Fig. 4.5.

4.4.1 Relativistic Precession

The requirement that the argument of periapsis precess at a rate faster than the orbital frequency of

the secondary significantly constrains the region of parameter space where stars and compact objects

can undergo the reverse-Kozai oscillation. For highly eccentric orbits, such as those we consider in

this paper, and to first order in r̃p ≡ rp
GM/c2 , the relativistic precession per orbit is

∆φrel =
3π

r̃p
, (4.29)

so that the apparent orbital frequency of the secondary (if it were not moving) would be

Ωapp
• =

3

2
Ω�

1

r̃p
. (4.30)

This implies that

a�
a•

�
�
3

2

1

r̃p

�2/3

∼
�

1

r̃p

�2/3

. (4.31)

Because r̃p ≥ 4rS for these highly eccentric orbits, these reverse Kozai oscillations can only occur

due to relativistic precession when a� � a•/3.

This motion is almost identical to that of the Kozai mechanism, except that the secondary
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appears to orbit an object located out of the plane of the orbit of the particle (but on the axis of

the particle’s angular momentum). Therefore, we expect the reverse-Kozai time to obey a similar

relation to that of the Kozai mechanism, which is given by (see Eqn. 4.11)

TKozai =
2

3π

1

q

T•
T�

T• , (4.32)

where T• is the secondary’s orbital period, and T� is the star’s orbital period. Assuming the same

relationship for the reverse-Kozai mechanism we have

TRK =
2

3π

1

q

T app
•
T�

T app
• , (4.33)

where TRK is the reverse Kozai time, and T app
• is the apparent orbital period of the secondary. Noting

that Eqn. 4.30 implies that T app
• = 2

3 r̃pT�, we then have the expected reverse-Kozai timescale

TRK =
16

27

r̃2p
q

�
a3�
GM

. (4.34)

Taking the ratio of Eqn. 4.34 to Eqn. 4.11 we find the fractional rate at which relativistic pre-

cession can speed up the Kozai timescale:

TRK

TKozai
=

4

9
r̃2p

�
a�
a•

�3

� 1 , (4.35)

where we have used Eqn. 4.31 in the final relation. Thus, the reverse-Kozai period is much shorter

than the Kozai period for objects with the same energy, and can even be shorter than the binary

orbital timescale.

However, as noted by [110] and [108], in the case of the standard Kozai mechanism, as the rela-

tivistic precession rate becomes comparable to the Kozai precession rate, the oscillation is effectively

detuned and the magnitude of the oscillations is decreased. A similar phenomenon occurs in the

case of the reverse-Kozai mechanism, except that in this case this acts to speed the compact object

to merger, as described below.

The typical scenario of an EMRI formed via the reverse-Kozai mechanism (see Figs. 4.4–4.5 for a

multi-layered example) is that a star originally located at around r ≈ r•/10 undergoes the standard

Kozai oscillation, which drives the star to high eccentricity. As its periapsis approaches the unstable

circular orbit [Eqns. 12–16 of 109], and is changing rapidly on the timescale of a single orbit, it

has several close passages which produce a large apsidal precession. The standard Kozai oscillation

immediately “breaks” and the star now begins a new orbit which is highly eccentric and rapidly

precessing. Of course, for rapid EMRI formation it would be ideal if no change to the orbit were to

occur, since it is in this highly eccentric phase that the compact object will most rapidly radiate its
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Figure 4.5: We plot a(1 − e) as a function of time for the entire simulation of the star shown in
the right column of Fig. 4.4, but zoom in to show in more detail the regions where the relativistic
precession has driven the star into the reverse-Kozai state. The three different boxed regions of the
upper plot are shown in the lower plot in a separate column. In the first column is the first half of
the region where the star first enters into the reverse Kozai state, while the second column is the
second half of that region including where it exits the reverse Kozai state. The final column shows
the final orbits which cause sufficient energy loss to reduce the semi-major axis and ultimately create
an EMRI. Note that in regions where the oscillation in a(1−e) is short, precession is higher. Slightly
different initial conditions at the beginning of the first column produce qualitatively similar results
on the star’s orbital timescale, but diverge after just a few binary orbital periods. The complicated
relationship between the small effects from the secondary which are important at high eccentricity,
and the strong variations in the precession at high eccentricity is the likely source of the apparently
chaotic nature of this star.
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orbital energy in gravitational waves. Had the standard Kozai oscillation continued, the compact

object would have only been in this configuration several times per Kozai cycle (see Appendix A)

and the inspiral would be slow. In reality, the reverse Kozai mechanism begins and oscillations in

periapsis distance have significantly shorter period and smaller amplitude, thus keeping the orbit at

high eccentricity with small periapsis for longer (compare the left and right columns of Fig. 4.4).

4.5 The Simulation

To integrate the orbits of the test particles we utilize the symplectic integrator described in [111]

and used in [112, 113]. This integrator has two particularly desirable properties for this work.

1. Its symplectic nature causes energy to be conserved up to round-off error. This is desirable since

the spurious energy drifts found in many integrators would, over the many orbits simulated

here, directly change the semi-major axis, so energy losses could lead to spurious EMRIs, or

gains would destroy would-be EMRIs.

2. With an appropriate choice of step size (see Sec. 4.5.3) orbits in a Keplerian potential are

reproduced exactly with only a phase error which is O
�
N−2

�
.

In particular, we use the version of the integrator used by [18], except extended to take into

account both relativistic precession and the angular momentum and energy losses due to gravitational

wave radiation. The latter must be done carefully to ensure that the energy-conserving quality of

the symplectic integrator is preserved (Sec. 4.5.4).

For a detailed discussion of the integrator used in [18] see that work and its more detailed

counterpart [114], and the works on which it was based [111–113]. We discuss here only how the

integrator here differs from that of [18], focusing on how we deal with the effects of general relativity.

In particular, we discuss how to incorporate these changes while still maintaining the separability

of the Hamiltonian needed for the symplectic integrator. We introduce a new pseudo-Newtonian

potential used to accurately reproduce the GR precession (Sec. 4.5.2). We discuss how the energy

loss and angular momentum losses are taken into account to high accuracy using fitting functions to

the Teukolsky equation for parabolic orbits (Sec. 4.5.4), and how EMRIs, direct plunges, and tidal

disruptions (Sec. 4.5.5) are calculated in the simulation.

4.5.1 Determining GR Effects in Newtonian Code

One of the primary challenges is using our inherently Newtonian simulation to predict general

relativistic effects on an orbit. While having many desirable properties, our integrator also requires

that the Hamiltonian be separable, and therefore that the potential be a function of position only.

Our approach is to use a pseudo-Newtonian potential that reproduces the correct precession rate
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for the highly eccentric orbits from which EMRIs are produced. We discuss this potential below in

Sec. 4.5.2.

This results however in positions and velocities close to the black holes that deviate from those

which would be calculated from integration of the geodesic equation in a Schwarzschild space-time.

Therefore, instead of using position and velocity to calculate the instantaneous losses due to

emission of gravitational radiation, we use the conserved energy and angular momentum in our

pseudo-Newtonian potential to define an orbit. Then we calculate the orbit-averaged and energy

and angular momentum loss and remove these in a single time step at each periapsis (Sec. 4.5.4).

4.5.2 Pseudo-Newtonian potential

We evolve test particles in the center of mass frame of the pseudo-Newtonian potential,

U(r) = −GM

r1

�
1

1− 5
6
rs,1
r1

+
4

3

rs,1
r1

�

−Gm•
r2

�
1

1− 5
6
rs,2
r2

+
4

3

rs,2
r2

�
− V (r1) , (4.36)

where the numerical subscripts 1 and 2 are used to distinguish quantities measured with respect to

the primary and secondary, respectively, ri is the distance to the SMBH, rs,i is the Schwarzschild

radius of the SMBH, and V (r1) is the stellar potential given by Eqn. 4.3, which is assumed to follow

the primary throughout the simulation. This expression is appropriate for parabolic orbits, which

are the approximate orbits relevant to our method of EMRI formation and most studies of galactic

dynamics in cores interacting with their (non-gaseous) surroundings.

Eqn. 4.36 agrees with the GR precession of periapsis to within 20% at all radii (see Fig. 4.6)

for parabolic orbits, but is still conservative, and the resultant Hamiltonian is separable, allowing

the use of the symplectic integrator of Preto and Tremaine [111] discussed in [18] and [114]. It also

has the necessary feature of logarithmically diverging at the angular momentum appropriate for the

UCO. As an example, in Fig. 4.7 we plot the trajectory of a star on a high eccentricity orbit with

1− e = 10−4 for several orbits, along with the per-orbit apsidal precession compared to the proper

precession predicted by general relativity.

Moreover, Eqn. 4.36 has the advantage that it is extremely quick to evaluate while still being

accurate to better than 20% everywhere, and very accurate in the far field. While in principle one

could derive a potential that exactly reproduces the correct precession for parabolic orbits as a

function of angular momentum, the expression is unwieldy and involves elliptic functions, which in

turn would significantly slow down the code since the potential and its derivative must be calculated

at every step.

It is worthy to note that the commonly applied pseudo-Newtonian potential, the Paczynski-Wiita
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Figure 4.6: We plot the predicted apsidal precession as a function of the angular momentum close
to the angular momentum of the innermost bound orbit (the unstable circular orbit for parabolic
trajectories) for three pseudo-Newtonian potentials (intermittent lines) along with the apsidal pre-
cession for a test particle on a geodesic [115] in solid black. The commonly used Paczynski-Wiita
pseudo-Newtonian potential, shown in dotted black, produces an error in GR precession greater
than 30% at all radii. In dashed-orange is the far-field pseudo-Newtonian potential we introduce
in the text (Eqn. 4.38) for computationally intensive tasks with L ∼> 4GM/c. In dash-dot red is
the pseudo-Newtonian potential we use in our simulation (Eqn. 4.36) which produces the correct
precession to within 20% for all angular momenta and to much higher accuracy in the far field.
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Figure 4.7: Comparison of precession produced by code using the potential in Eqn. 4.36 with the
rate predicted by GR for a highly eccentric orbit of a test particle

potential, produces an apsidal precession with no less than 30% error at all radii and in particular

does not produce the correct precession rate in the far field limit (see Fig. 4.6). Because of the

importance of apsidal precession to the Kozai mechanism and to many analyses of galaxy cores,

correct precession is vital. See Secs. 4.3.2–4.3.3 and Sec. 4.4 for an in-depth discussion of these

points. Because it requires only moderately more computations and provides the correct precession,

it is best when working with highly eccentric orbits to use a potential like Eqn. 4.36.

A simpler potential accurate in the far field, but finite at the UCO, could also be used if one is

limited significantly by computation. For reference, it is given by

U(r) = −GM

r1

�
1 +

3rs,1
2r1

�
(4.37)

−Gm•
r2

�
1 +

3rs,2
2r2

�
− V (r1) , (4.38)

with parameters as in Eqn. 4.36, and is shown in Fig. 4.6.

For the stellar potential the self-consistent spherical η-models [116] with a central SMBH [95]

were used. This potential is given by Eqn. 4.3

4.5.3 Step Size

Preto and Tremaine [111] show that for a Keplerian potential U = µ/r then using a step size ∝ 1/r

reproduces Keplerian orbits exactly with only a phase error whose size is O
�
N−2

�
where N is the

number of steps per orbit. We therefore use a step size ∝ U . The method of choosing the step size

has not changed from [18], except that here we have chosen to have 20, 000 steps per orbit.
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To check that we are not sensitive to step size we re-ran a simulation with 10, 000 steps per orbit.

While individual stars evolved differently due to the chaotic nature of some orbits, the number of

EMRIs and plunges was largely unchanged. In addition we re-ran key sections of Fig. 4.5 with

100, 000 steps per orbit and the qualitative behavior remained unchanged.

Close to either black hole numerical errors in our integrator manifest themselves as errors in the

effective mass of the back hole [113]. Although these errors are small (typically the fractional error

is δM/M ≤ 10−5), close to periapsis of highly eccentric orbits these errors result in a fluctuation in

a. This is because the kinetic energy, 1
2v

2, and potential energy, ∼ GM/r, are both large and nearly

cancel in the calculation of E. This, together with oscillations on a binary timescale result in the

oscillations in a seen in Figs. 4.4 and 4.5.

4.5.4 Gravitational Wave Losses

When an object passes close to either SMBH, relativistic effects such as energy and angular mo-

mentum losses due to gravitational radiation become important. We incorporate these changes into

the orbit by stepping out of the symplectic integrator at periapsis and calculating a new velocity

vector using the energy and angular momentum loss due to gravitational radiation that were lost

instantaneously at periapsis.

The energy and angular momentum loss are calculated assuming the orbit is parabolic. The

assumption of a parabolic orbit is reasonable. For high eccentricity orbits the error is of order 1− e,

a number which is typically 10−4 or smaller for the orbits considered here.

Assuming a parabolic orbit, to calculate the energy and angular momentum loss we must first

measure the angular momentum of the orbit. However, interactions with the binary affect the angular

momentum far from the secondary, meaning that it is best to compute the angular momentum while

close to the SMBH. This could be done at some arbitrary but close distance to the SMBH (such as

100GM/c2), but, despite the position and velocity of the object being somewhat unphysical close

to the SMBH (see Sec. 4.5.1), the angular momentum will be conserved by the simulation (when

far enough from the secondary) allowing us to calculate the angular momentum anywhere close to

the SMBH. Then, for convenience, we calculate angular momentum at periapsis when we make the

changes to the energy and angular momentum of the orbit.

To relate the angular momentum in the orbit to the energy and angular momentum lost during

each periapsis pass we use the fitting functions from [117] in which they compute the fitting functions

to the energy and angular momentum loss using the Teukolsky equation on parabolic orbits. For

convenience we provide these fitting functions to the loss for parabolic orbits calculated from the



115

Table 4.1: Coefficients for Eqn. 4.39

n = 0 n = 1 n = 2

AE
n −0.318434 −5.08198 −185.48

BE
n 0.458227 1645.79 8755.59

CE
n 3.77465 −1293.27 −2453.55

AL
n −2.53212 −37.6027 −1268.49

BL
n 0.671436 1755.51 9349.29

CL
n 4.62465 −1351.44 −2899.02

Teukolsky equation here:

M

m
∆X = cosh−1

�
1 +BX

0

�
4

r̃p

�NX−1 1

r̃p − 4

�

×
N�

n=0

AX
n

�
1

r̃p
− 4

r̃2p

�n

+
r̃p − 4

r̃1+NX/2
p

N�

n=0

CX
n

�
r̃p − 4

r̃2p

�n

+
r̃p − 4

r̃2+NX/2
p

N−1�

n=0

BX
n+1

�
r̃p − 4

r̃2p

�n

, (4.39)

where X is either the specific energy E/c2 or the (scaled) specific angular momentum cL/(GM),

r̃p = rp/(GM/c2), NE = 7, NL = 4, and the AX
n , BX

n , and CX
n are coefficients given in Table 4.1.

[117] note that N = 2 is sufficient for better than 0.2% accuracy everywhere. This is the order used

in our code and the coefficients from [117] are given in Table 4.1. Here, r̃p is calculated based on the

periapsis an orbit would have if it were parabolic and had the measured angular momentum (i.e.,

r̃p is not calculated from the position of the object at its ostensible periapsis, since, as described in

Sec. 4.5.1, this position is not reliable).

We subtract the energy and angular momentum loss given by Eqn. 4.39 at the step closest to

periapsis. Introducing these changes at some other point other than periapsis introduces spurious

precession.

At periapsis we calculate a new velocity, �v�, using the new specific energy, E� = E + ∆E, and

angular momentum, L� = L+∆L. Since the position is unchanged, the potential energy is unchanged

and

v�2 = v2 + 2∆E . (4.40)

The orbital plane remains unchanged for a Schwarzschild black hole and therefore

�L� =
L+∆L

L
�L = �r × �v� . (4.41)
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Figure 4.8: Plot showing the errors in conservation of reduced angular momentum, L over many
orbital periods (torb), of a high eccentricity (e = 1 − 10−5) test particle. The red is without the
procedure for calculating the change in �v at periapsis, the black uses Eqn. 4.43 but with∆L = 0. The
secondary has zero mass for both curves. The errors are still at the level ∆L/L ∼ 10−12 indicating
that the process of stepping in and out of the symplectic integrator does not inherently introduce
significant errors.

Taking the dot product of this yields

�r.�v� =
�

L�2 − r2v�2 (4.42)

where we take the positive branch of �r.�v� since this corresponds to the outgoing, post-periapsis

solution. The cross-product �r × �L� yields

�v� =
1

r2

�
(�r.�v�)�r − �r × �L�

�
. (4.43)

Eqn. 4.43 together with 4.40, 4.41, and 4.42 are used to calculate the new velocity �v� following a

periapsis passage.

In Fig. 4.8 we show the numerical accuracy of this procedure by considering whether L remains

constant over many orbits. Despite the integrator no longer being truly symplectic due to the

stepping out of the leapfrog scheme at periapsis, the errors remain small over many orbits.

4.5.5 Plunges

At each < 100GM/c2 periapsis passage we check for plunges directly into the black hole. The

marginally bound orbit is the appropriate limit since the particles lie on highly eccentric orbits.

This has a reduced angular momentum around a Schwarzschild black hole of L = 4GM/c. On
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Table 4.2: Number of EMRIs and Their Probabilities in Simulations
Parameters EMRI stars

Sim # qa m�
M⊙

b N�
c Duration (Myr)d NK

e NRK
f NSS

g NEMRI
h PEMRI

i

1 0.3 10 106 1.5 14 13 0 18 1.8× 10−5

2 0.3 1 106 1.5 0 0 0 0 0
3 0.1 10 106 1.4 7 7 2 13 1.3× 10−5

4 0.1 1 106 1.4 1 1 0 2 0.2× 10−5

a
q = M•/M ≤ 1 is the ratio of the masses of the secondary SMBH and the primary.

bThe assumed mass of the stars during this simulation. The mass of the stars is only relevant when the star passes
within 100GM/c

2 of the one of the SMBHs.
c
N� is the total number of stars simulated during the run.

dThe duration of the simulation in megayears.
eThe number of EMRIs whose formation required the Kozai mechanism.
fThe number of EMRIs whose formation required the reverse-Kozai mechanism.
gThe number of EMRIs whose formation required strong scatterings by the secondary.
hThe total number of EMRIs formed during the simulation.
iThe predicted probability of a CO of mass m� becoming an EMRI.

periapsis passages, if L ≤ 4GM/c, a direct plunge is assumed to result and the integration is halted.

4.5.6 EMRIs

At each apoapsis following a < 100GM/c2 periapsis passage we additionally check whether the

particle has entered the LISA band. We do this by checking if the semi-major axis is small enough

that the test particle’s orbital period is below 104 s, i.e.,

E ≥ GM

2a
=

(GM)2/3

2

�
2π

104 s

�2/3

, (4.44)

where E is the orbital energy. We then follow up with these objects to ensure that they would not

have already been an EMRI had the secondary not been included, and to understand the different

ways in which the secondary produces EMRIs.

4.6 Simulation Results

All simulations executed include 106 stars reacting to a binary with a mass ratio which is either

q = 0.3 or q = 0.1. For each mass ratio two sets of simulations were run, one with m� = 10M⊙

and one with m� = 1M⊙. All runs have the same initial data, and are therefore not independent.

This is significantly quicker computationally because for simulations with the same q we only need

to reintegrate orbits that pass within 100GM/c2. Orbits that lie outside 100GM/c2 remain in the

test particle limit and their evolution is unaffected by their mass. Only for orbits passing inside

100GM/c2, where gravitational radiation losses are significant, does the mass of the star matter.
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Additionally it also provides a direct comparison between which stars from each simulation form

EMRIs.

Throughout the stars’ orbits their periapsis distances and semi-major axes were monitored. The

simulation of a given star was stopped if the star either entered the LISA band (see Sec. 4.5.6 for

definition), passed inside the unstable circular orbit (L ≤ 4GM/c for parabolic orbits), or if the

number of steps required to complete the simulation exceeded 1010 steps. Those stars which were

judged to be EMRIs were then re-examined more closely to judge the specific mechanisms which led

to the EMRI, classifying them into Kozai inspirals, reverse-Kozai inspirals (which first rely on the

Kozai mechanism), and strong scatterings where the secondary interacts strongly with the star and

sends it close enough to the primary to result in an EMRI.

We provide the resultant number of EMRIs from these simulations in Table 4.2. Thus the

numbers listed are appropriate if all of the stars being simulated were the appropriate species for

the given phenomenon (compact object for plunges and main sequence star for tidal disruption).

Though Table 4.2 is the key output of the simulation, we may still learn a lot about the processes

which deliver the stars to this region of parameter space. In Fig. 4.9 we plot the outcomes of all stars

with initial positions between 10−3 and 10−1 pc by coloring the stars based on their final state. Stars

are placed on the plot based on their initial angular momentum and initial position. Also plotted

is the Kozai wedge; lines of constant azimuthal angular momentum at |Lz| = 4,
√
200GM/c. Since

Lz is conserved in the Kozai mechanism, it is this region of low |Lz| which is expected to have the

highest probability of becoming EMRIs or directly merging (or being tidal disruptions in the case

of non-compact objects). The black-lined gold stars represent stars which have ultimately become

EMRIs, while the green dots demarcate stars which have ultimately merged via a plunge. Shades of

blue indicate the closest distance that each star has gotten to the primary SMBH (see figure caption

for more details). Most EMRI-forming stars originate from close to the Kozai wedge, with several

becoming EMRIs after strong interactions with the secondary. This is quantified in Table 4.2 where

NK, NRK, and NSS refer to the number of EMRIs out of the original 106 stars that were formed

using the Kozai mechanism, the reverse Kozai mechanism, and strong scattering, respectively. Note

that these are not necessarily mutually exclusive groups.

For clarity we also give Fig. 4.10, which is essentially a re-make of Fig. 4.9 except with a non-

normalized azimuthal angular momentum on the y-axis and the initial semi-major axis on the x-axis.

The color scheme and lines are the same as in Fig. 4.9. There is a clear “sweet spot” around rstall/10

(rstall being the secondary’s stalling radius) where stars originally becoming EMRIs, direct plunges,

or tidal disruptions originate.

To understand how many stars approach radii close to the primary SMBH we plot the normalized

number of stars to have reached a radius rp in a cumulative plot in Fig. 4.11. Also plotted is the

same curve but for the secondary SMBH (solid red) and the same curve but for the same initial
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Figure 4.9: We plot the initial Lz/Lc as a function of the initial radial position for the stars of
the four simulations done. The top and bottom rows are runs done with q = 0.3 and q = 0.1,
respectively, while the first and second columns are runs done assuming stars of mass 10M⊙ and
1M⊙, respectively. The mass is only relevant if the star passes within 100 GM/c2 of one of the
SMBHs (see Sec. 4.5.4 for details). For reference, the final stalling radius of the secondary is shown
as a vertical red line. By color we code how close the stars have come to the primary SMBH: gold
stars represent stars which have turned into EMRIs (reached the LISA band; Sec. 4.5.6), green
dots are stars which have by some method plunged into the primary SMBH (see Sec. 4.5.5 for
definitioni), and all other stars are colored in shades of blue with the lightest versions being those
which have never come close to the primary and the darker colors being those which have passed
very close (see legend for exact definitions). Also plotted in solid black is the Kozai “wedge”; lines
of |Lz| = 4,

√
200GM/c. Inside these lines the standard Kozai formalism predicts that it is possible

(but dependent on initial conditions) that a star reaches 4, 100 GM/c2, respectively. It is only
inside these wedges that the standard Kozai formalism would predict possible EMRI formation. For
a zoomed in plot of this region see Fig. 4.10. A significant number of stars out of the Kozai wedge
eventually merge with (or are tidally disrupted by) the primary SMBH. This is due to either strong
interactions with the secondary SMBH or the oscillations on the orbital timescale of the secondary
SMBH (see Sec. 4.3.2).
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Figure 4.10: We plot Lz in units of GM/c as a function of the stars’ initial semi-major axes for the
four runs executed, each with the same 106 stars. The color scheme and data sets are the same as in
Fig. 4.9. However, here we also plot the expected oscillations of Lz on the secondary’s timescale (see
Sec. 4.3.2 and Fig. 4.3). It is possible to see an asymmetry in these plots, indicating a preference for
driving stars with positive Lz to high eccentricity. This is an expected outcome of the reverse-Kozai
mechanism.
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Figure 4.11: We plot the normalized number of stars to have reached a minimum radius less than
rp. Here rp is calculated from the angular momentum of the star’s orbit which is assumed to be
parabolic. The ordering of the plots is the same as used previously: the upper and bottom rows
are for simulations with q = 0.3 and q = 0.1, respectively, and the first and second columns are
for simulations with M� = 10M⊙ and M� = 1M⊙, respectively. In solid black are the results for
when rp is calculated to be the distance to the primary, and in solid red when rp is the distance to
the secondary. In dashed black we plot the same as solid black, but have simulated the evolution
of the stars without the presence of the secondary. In each plot the tidal disruption radii for each
SMBH, rtd,1 and rtd,2, is demarcated and labelled, along with the stalling radius of the secondary.
The unstable circular orbit for parabolic orbits, rUCO = 4GM/c2, is labeled as 4M1.
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Figure 4.12: We plot the stellar mass interior to a given radius normalized to the total stellar mass,
Mstellar(< r)/M�tot. In black we plot the initial cumulative stellar mass (c.f. Eqn. 4.2), while in
blue we plot the cumulative stellar mass at the end of the simulation for the q = 0.1, M� = 10M⊙
run, and in red we plot the cumulative stellar mass at the end of the simulation for the q = 0.3,
M� = 10M⊙ run. Note that the initial conditions for all runs are the same. The only difference
between the outcomes of the runs with the same q but different stellar masses is due to those stars
which go within 100GM/c2, only a small fraction of all stars. Thus, the cumulative stellar mass for
the runs with M� = 1M⊙ are virtually the same as the 10M⊙ counterparts with the same q. The
hatched regions are stars that had not completed the full simulation within the preset limit of 1010

steps. For reference we also plot the stalling radii of the secondary as vertical lines.

stars evolving in the absence of a secondary SMBH. Labelled vertical lines mark the radius of the

unstable circular orbit for parabolic orbits rp = 4GM/c2 and the tidal disruption radii for the

primary and secondary. In our calculation of the number of tidal disruptions we assume that any

star reaching a radius inside the tidal disruption radius is tidally disrupted. This is obviously an

upper bound, though likely close to the correct number of tidal disruptions. Of some note, there

are a non-zero number of tidal disruptions around the secondary. Of course, the true number would

likely be significantly greater since the secondary will also carry with it a similar stellar cusp which

will be scattered by the primary. However, even in the equal mass case, this could not increase the

total number of tidal disruptions by greater than a factor of two.

One of the inconsistencies in our methodology is the assumption that the stellar potential does

not evolve with time, though the stars’ orbits do. This inconsistency is potentially significant. To

better understand the effect of such an assumption we plot the mass interior to a given radius as a

function of radius in Fig. 4.12. There the solid black line is the initial distribution given by Eqn. 4.2,

the red solid line is the curve for the q = 0.3 and m� = 10M⊙ simulation, and the blue solid curve

is for the q = 0.1 and m� = 10M⊙ simulation. The mass of the star has little to no effect on these

curves, so the other two simulations look almost identical and are suppressed. The filled region
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represents stars that required more than 1010 steps to complete the simulation and were therefore

terminated.

Noting in Figs. 4.9 and 4.10 that most EMRIs originate from ≈ 10−2 pc, and noting here that

the mass interior has not changed significantly at these radii, this assumption would not likely have

a significant impact on our findings.

4.7 EMRI Rates

We now turn to discussing the predicted rates of EMRI mergers per cubic Gpc. The calculation

is straightforward: Given a species X of CO or star (main sequence star, stellar mass black hole,

neutron star, or white dwarf) the simulation simulates N� test particles and outputs the number of

EMRIs NEMRI(X) assuming a mass MX . Then

PEMRI(X) ≡ NEMRI(X)/N� (4.45)

is the probability that a star of massMX eventually becomes an EMRI (Sec. 4.7.1). We then multiply

by the expected number of stars in our model cusp with massM� assuming some initial mass function

and some quantity of mass segregation (Sec. 4.7.2). This gives the approximate number of EMRI

mergers for a given galaxy during the period of time that a secondary SMBH is just settling into

its stalling radius. By determining the rate of the number density of galaxies undergoing a merger,

ṅmerger(M = 106 M⊙) (Sec. 4.7.3), we may produce the predicted EMRI rate density (Sec. 4.7.4).

That is,

REMRI(X) = PEMRI(X)NX ṅmerger(M = 106M⊙) . (4.46)

4.7.1 EMRI Merger Probability

Each of our simulations contains 106 stars, with stars of mass 10M⊙ or 1M⊙, where we use the

former to predict the rates of stellar mass black holes and the latter to predict the rates for both

neutron stars and white dwarfs. We calculate the probability that an object in a given simulation

will turn into an EMRI using Eqn. 4.45 (shown in Table 4.2) and will use the appropriate simulation

to determine the rates of the distinct species in Sec. 4.7.

4.7.2 Species Number Density

There are several major unknowns in the calculation of rates, two of which culminate in a fairly

significant uncertainty in the determination of the density of a given species of compact remnant in
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Table 4.3: Approximate Mass and Number Densities of Species Deep (< 0.05 pc) in Stellar Cusp
[97]

Species X MX
M⊙

a ρX

ρMSS

b nX
nMSS

c NX
d

Main Sequence Star 1 1 1 2× 105

Stellar-Mass Black Hole 10 ∼ 10 ∼ 1 2× 105

Neutron Star 1 ∼ 0.1 ∼ 0.1 2× 104

White Dwarf 1 ∼ 0.3 ∼ 0.3 6× 104

aThe mass of species X is solar masses.
bThe density of species X relative to the density of main-sequence stars in the region where EMRIs are sourced in

our simulations.
cThe number density of species X relative to the number density of main-sequence stars in the region where EMRIs

are sourced in our simulations.
dThe total number of species X in the entire stellar cusp, if the cusp were to have the same ratio of species X to

main-sequences stars as in the region where the EMRIs are sourced in our simulation. See text for explanation.

the region of influence of the primary SMBH; both the stellar cusp profile and the quantity of mass

segregation which has occurred directly effect the number density of each species of compact object.

In our simulations we use an η-model [95] of a spherical stellar cusp with a SMBH to establish

the stellar distribution (see Sec. 4.2). Two parameters, the SMBH mass and a parameter η, which

regulates the steepness of the stellar density, determine this self-consistent family of models of a stable

stellar cusp. The η-model does not depend on the mass of the stars, and thus, in principle, leaves

open the possibility of combining this model with a multi-mass model including mass segregation,

such as has been done by [97].

However, for simplicity we do not choose this path, but instead simulate NX stars of a char-

acteristic mass MX of a single species X. In line with the simplicity argument we then multiply

NEMRI(X)/NX by the total number of compact objects of type X expected in the region from where

most EMRIs are sourced.

Determining the number of compact objects of type X expected in some region is actually quite

difficult, due to limitations in observations and the complex physics involved. However, [97] found,

using multi-mass Monte-Carlo simulations of stellar remnants in galaxy cores, that mass segregation

led to a significant over-density of stellar-mass black holes and an under-density of white dwarfs and

neutron stars when compared to main sequence stars (see Table 4.3 for approximate values). We

use these as our fiducial values.

It may appear concerning that the number of predicted SBHs in Table 4.3 implies an unrealistic

number of SBHs in the cusp, but these numbers have been scaled to ensure the correct ratio of SBHs

in the inner cusp, from where the EMRIs are sourced, given the constraint of enclosed mass and the

[97] results. Thus, these numbers produce the correct number of SBHs in the relevant regions.

There are errors involved in using the [97] values which are appropriate for different values of

η, especially in their application to determining the rates for white dwarfs and neutron stars which
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are found to relax to a different value of η than we have considered here. However, those errors are

small since we have normalized to the appropriate densities at 0.01 pc where the EMRIs originate.

In our simulations the total stellar mass assumed to be in the cusp is 2M = 2× 106 M⊙, so that

the number of any given species is approximately given by

NX ≈ 2× 105
nX

nMSS
. (4.47)

4.7.3 Number Density of Mergers

An approximate form for the number density of mergers with SMBHs of mass 106 M⊙ and mass

ratios between 0.1 and 0.3 is merely to find the number density of SMBHs of mass 106 M⊙ and

assume one such merger per galaxy lifetime. In reality, the merger rate is far more complicated than

this and depends strongly on the physics and the model But, crudely speaking, we don’t expect

many more significant mergers than 1 per Hubble time, since otherwise large disk galaxies like the

Milky Way would not exist in the local universe, and we don’t expect many fewer, since otherwise

elliptical galaxies would not be plentiful today. Thus we use the naive order-of-magnitude estimate

of 1 merger per galaxy per Hubble time.

[16] find that there are approximately 4×106 Gpc−3 SMBHs of mass (105.5–106.5)M⊙ assuming

H0 = 71 km s−1Mpc−1. Thus

ṅmerger(M = 106M⊙) ∼ 3× 10−4 mergers

Gpc3 yr
. (4.48)

4.7.4 Final Rates

We can now calculate the rate of EMRI production per unit volume, REMRI, using Eqn. 4.46. We

use the probability that each star in our simulations becomes an EMRI, PEMRI, from Table 4.2, the

numbers of each species, NX , from Table 4.3, and the SMBH merger rate, ṅmerger, from Eqn. 4.48.

The rates for neutron stars (NSs) and white dwarfs (WDs) are uncertain since only 2 total EMRIs

were produced across the 2 × 106 simulated 1M⊙ objects. Regardless of this uncertainty the rates

from NSs and WDs from our production method are insignificant for the current LISA design.

However, the rates for stellar-mass black holes (SBHs) are higher and significant for the current

LISA design. The rates are given in Table 4.4.

4.8 Discussion

There are three key points to this paper: 1) SMBH binaries will likely produce EMRIs, 2) the

formation of these EMRIs is intricate and not conducive to analytic secular approximations, and 3)

to understand the formation phenomena which depend strongly on the GR precession, it is best to
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Table 4.4: Final Rates of EMRIs Due To SMBH Binaries

qa
REMRI (yr−1Gpc−3)b

SBH NS WD

0.3 1× 10−3 0 0
0.1 8× 10−4 ∼ 1× 10−5 ∼ 4× 10−5

aThe mass ratio of the secondary SMBH to the primary.
bRate of EMRIs due to SMBH binaries for the cases of stellar-mass black holes (SBHs), neutron stars (NSs), and

white dwarfs (WDs)

use a pseudo-Newtonian potential such as Eqn. 4.36, which reasonably well approximates the GR

precession at all radii (to within ≈ 20% at worst). We discuss each of these points in turn.

4.8.1 EMRI Rates

The EMRI rate densities predicted in Sec. 4.7.4 are high enough that, given optimistic numbers

and under the current design of LISA, then of order several such EMRIs could be detected. This is

particularly interesting in light of the recent work by [85, 87] noting that the EMRI waveforms carry

in them information both about the gas present in the system and whether there is a secondary

SMBH at distances appropriate for what we are discussing here. Because such a secondary would

likely disrupt the inspirals expected in the standard picture of EMRI formation, and because the

rates while the secondary is inspiraling are significantly higher than in the standard picture, EMRIs

detected with a signal of a secondary in the waveform will have likely been formed by a mechanism

described in this paper.

The numbers quoted in Sec. 4.7.4 have an important dependency: they will change linearly with

the number density of compact objects at about 1/10 the stalling radius. If mass segregation has

not yet had time to fully take place, the rates will decrease by an appropriate amount. If a different

stellar cusp model is used, the rates should go as the rates presented here (Sec. 4.7.4) times the ratio

of number densities at about 1/10 the stalling radius (and taking into account some model of mass

segregation). This is in contrast to the standard picture of EMRI formation where the rates should

change as the number density of COs times the number density of all objects.

Another interesting point is that in the standard picture of EMRI formation, stars must scatter

to a state with low overall L, while in the Kozai picture stars must only have a low Lz (see Figs. 4.9

and 4.10). Thus, once the secondary SMBH has stalled and the timescales for inspiral become longer,

star-star interactions become relevant and need only scatter stars to a state of low Lz to increase

the probability of turning into an EMRI.
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4.8.2 SMBH Binary EMRI Formation

Secular Predictions: EMRI formation in the presence of a secondary is surprisingly rich physically.

The gentle balance between the Kozai mechanism, SP precession, and GR precession required to

drive the stars to high eccentricity (Secs. 4.3 and 4.4) was unexpected, as was the importance of the

reverse-Kozai mechanism (Sec. 4.4).

These intricacies make secular predictions of the EMRI rate through the Kozai mechanism us-

ing calculations such as in Appendix A essentially irrelevant without a more advanced formalism

considering complications such as the reverse-Kozai mechanism.

Phase Errors: Our symplectic integrator is excellent for conserving energy along an orbit, and

properly reproducing the path of the orbit. However, these integrators produce errors in the phase

of the orbit [discussed in 18], possibly moving the star to an incorrect phase with respect to the

secondary over the many thousands of orbits we integrate over. The phase relative to the secondary

is particularly important to the maximum eccentricity reached during a Kozai cycle (see Sec. 4.3.2

and Fig. 4.3), which in turn has a significant impact on the reverse-Kozai mechanism (Sec. 4.4)

required for the formation of many EMRIs (Table 4.2). We check for this possibility by running one

of our runs with a factor of 2 smaller step size. That this change had no effect on the produced

rates, while producing different phase errors indicates that this is not an issue.

Stellar Interactions: We have also not included stellar interactions for simplicity. This is not

necessarily a good assumption since star-star relaxation occurs on similar timescales at 10−2pc. In

the near future we intend to address this issue by giving stars random weak kicks near apoapsis. It

is the weak kicks that dominate the relaxation process in these mass segregated regions [97].

One important assumption that is potentially quite poor as one enters the diffuse regions (star-

wise) near the primary SMBH, is that the stellar potential is spherical. When the number of stars

interior to some radius becomes small the potential becomes highly non-spherical and dominated by

discrete star-star potentials. We do not consider such complications due to lack of the appropriate

resources, and leave it to future work.

4.8.3 Pseudo-Newtonian Potential

The Paczynski-Wiita pseudo-Newtonian potential provides reasonable accuracy regarding GR pre-

cession, but has greater than 30% error at all radii. For high eccentricity orbits this limitation can

be important. For instance, that it under-produces far-field precession (see Fig. 4.6) may be seen as

unimportant, until close examination of Fig. 4.4, where the significant effect of the stellar potential

in the absence of GR precession is clear in the second column. However, even in the far-field, when

the correct GR precession is used (third column), the evolution of the star’s orbit is fundamentally

different and, in particular, more extreme.
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However, these inaccuracies are straightforward to overcome in the case of parabolic orbits with

the potential given by Eqn. 4.36, though even this can be bettered as will be done in the final version

of this paper.

4.8.4 Tidal Disruptions

In each of our simulations we found roughly 900 tidal disruptions, a number consistent with the

results from our previous study on tidal disruptions [18]. This large rate of tidal disruptions during

the inspiral [18, 118–120, and calculations herein] will likely mean that there is gas present in the

vicinity of the primary SMBH, something which may be detectable in the EMRI waveform [87]. It is

a nice feature of this system that it both predicts the existence of EMRIs and a gaseous environment,

and can possibly validate that prediction in the EMRI detection.

4.9 Conclusion

We have used a symplectic integrator to integrate four sets of 106 stars orbiting a primary super-

massive black hole (SMBH) of mass 106 M⊙ with a secondary SMBH of varying masses inspiraling

by dynamical friction to its stalling radius. When the stars get closer than 100GM/c2 from either

SMBH, orbits which are locally nearly parabolic, we subtract the appropriate quantity of energy and

angular momentum (due to gravitational wave radiation) at periapsis (Sec. 4.5.4). The energy and

angular momentum loss is accurate for parabolic orbits to within a fraction of a percent. Moreover

we use a new pseudo-Newtonian potential which produces the correct quantity of GR precession (to

within 20% at the UCO and significantly more accurate farther away) all the way to the unstable

circular orbit (UCO) for parabolic orbits (Sec. 4.5.2). Two quantities are followed throughout each

star’s evolution: its innermost periapsis distance and its semi-major axis. If the star’s semi-major

axis evolves such that it would be in the laser interferometer space antenna’s (LISA’s) band, we

terminate the simulation and count the star as an extreme mass ratio inspiral (EMRI).

From this analysis there are several key conclusions which can be made

1. EMRIs can indeed be created by SMBH binaries and their rates are of order 103 times smaller

than the optimistic published LISA rates.

2. A previously unnoticed phenomenon we refer to as the reverse Kozai mechanism is vital to the

formation of a significant number of the EMRIs. This effect is due to rapid apsidal precession

which leaves the secondary SMBH effectively sitting still while the orbit of the star executes

full 2π precession. In the frame of the precessing orbit the secondary ostensibly executes a

reverse circular motion around the orbital axis of the star, which then induces oscillations

similar to those of the standard Kozai mechanism. These oscillations are much faster and
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weaker. Because this only occurs at high eccentricity when periapsis distances are small, the

weaker amplitude keeps the star at higher eccentricity and improves the rate at which the star

radiates its orbital energy.

3. We introduce a new pseudo-potential appropriate for parabolic curves which produces the

correct apsidal precession to high accuracy far from the SMBH and to within 20% as the UCO

is approached.

4. Due to the important relationships between the Kozai mechanism, phase, oscillations in the

eccentricity on the binary timescale, and GR precession, standard methods of determining the

rates of EMRIs, or other similar phenomena with black holes, will not be accurate and a new

formalism will need to be added or developed.

Because EMRI waveforms can be used to extract information about the secondary SMBH and

gaseous disks present [85, 87], and therefore plausibly validate the existence of the secondary and

the significant amounts of gas which should be present due to the highly increased rates of tidal

disruptions, it is even more interesting that reasonable numbers of EMRIs can be produced from

SMBH binary systems. This ability to produce EMRIs and then validate them along with their

implied environments may make these systems particularly astrophysically rich.
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Chapter 5

Slightly Two- or
Three-Dimensional Self-Similar
Solutions

N.B.: This work will be published with the following authors: Re’em Sari, unknown author, and

Nate Bode in approximately this order.

Abstract

Self similarity allows for analytic or semi-analytic solutions to many hydrodynamics

problems. Most of these solutions are one dimensional. Using linear perturbation theory,

expanded around such a one-dimensional solution, we find self-similar hydrodynamic

solutions that are two- or three-dimensional. Since the deviation from a one-dimensional

solution is small, we call these slightly two-dimensional and slightly three-dimensional

self-similar solutions, respectively. As an example, we treat strong spherical explosions

of the second type. A strong explosion propagates into an ideal gas with negligible

temperature and density profile of the form ρ(r, θ,φ) = r−ω[1 + σF (θ,φ)], with ω > 3,

σ � 1. Analytical solutions are obtained by expanding the arbitrary function F (θ,φ) in

spherical harmonics.

5.1 Introduction

Astrophysics supplies ample examples of hydrodynamic problems that admit self-similar solutions.

In supernovae explosions [121, 122] a shock wave is created by the release of an immense amount of

energy during a short time in the center of an exploding star. When the shock wave propagates into

the surrounding medium, the hydrodynamics is described by the the Sedov-Taylor solutions [123–

126]. Gamma ray bursts, provide a relativistic analog of that [127–130]. If the external medium is
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spherical, these are one-dimensional solutions. However, if the external density has angular depen-

dence, it will cause the shape of the shock, and the flow behind it, to deviate from sphericity.

An inherently two-dimensional version of this problem is the explosion in half space. Here, space

is assumed to be empty on one side of a plane, while the other side is filled with an ideal gas

with constant density. A large amount of energy is then released at a point on the surface. This

describes the propagation of shockwaves in the process of cratering caused by large impacts on a

planetary surface. Qualitatively, this problem and its self-similar nature was described by [131], but

a two-dimensional self-similar solution was not developed there.

Here, we obtain two-dimensional and three-dimensional self-similar solutions that deviate only

slightly from some known one-dimensional solution. We show that when treating such solutions

as perturbations, the analysis is analogous to the treatment of stability [132–136]. We call these

solutions slightly 2D or slightly 3D self-similar solutions. As a working example, we analyze deviation

from sphericity of the strong explosion problem with density falling as a power law of distance

ρ ∝ r−ω, ω > 3. These are known to be self-similar solutions of the second type [126].

In Sec. 5.2 we briefly review the main features of the one-dimensional solution which serves

as the unperturbed solution for our analysis. In Sec. 5.3, we discuss the perturbation formalism

for this problem that allows the finding of slightly two-dimensional and slightly three-dimensional

self-similar solutions.

5.2 The One-Dimensional Self-Similar Solution

Here we summarize the formalism leading to the one-dimensional self-similar solution [126]. The

discussion here is taken from [135]. Consider the Strong Explosion Problem in which a large amount

of energy is released at the center of a sphere of ideal gas with a density profile decreasing with the

distance from the origin according to ρ = Kr−ω, forming a strong outgoing shock wave.

This problem was first investigated by Sedov (1946), Von-Neumann (1947), and Taylor (1950),

who found the solutions for ω < 5, known as the Sedov-Taylor solutions. [126] showed that the Sedov-

Taylor solutions are valid only for ω < 3, where the solutions are known as self-similar solutions of

Type-I, and contain decelerating shock waves. New, Type-II, self-similar solutions for almost all the

range ω > 3 containing accelerating shock waves were constructed.

Here we briefly summarize the second type solutions for ω > 3. The hydrodynamic equations for
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an ideal gas with adiabatic index γ in spherical symmetry are given by:

(∂t + u∂r)ρ+ ρr−2∂r(r2u) = 0 ,

ρ(∂t + u∂r)u+ ∂r(ρc2/γ) = 0 ,

(∂t + u∂r)(c2ρ1−γ/γ) = 0 ,

(5.1)

where the dependent variables u, c, and ρ are the fluid velocity, sound velocity, and density, respec-

tively. We now seek a self-similar solution to the hydrodynamic Eqn. 5.1 of the form:

u(r, t) = ṘξU(ξ) , c(r, t) = ṘξC(ξ) ,

ρ(r, t) = BR�G(ξ) , p(r, t) = BR�Ṙ2P (ξ) ,

(5.2)

where ξ = r/R(t) is the dimensionless spatial coordinate, and the length scale R(t) (frequently

abbreviated as simply R) is the shock radius and satisfies [126, 131]

R̈R

Ṙ2
= δ ⇒ Ṙ ∝ Rδ . (5.3)

The quantities G, C, U, and P, which are defined by Eqns. 5.2, give the spatial dependence of the

hydrodynamic quantities. The diverging (exploding) solutions of Eqn. 5.3 are

R(t) =






A(t− t0)α, δ < 1

Aet/τ , δ = 1

A(t0 − t)α, δ > 1

(5.4)

where α = 1/(1− δ).

Solutions with δ < 1 diverge in infinite time, and t0 represents the time of the point explosion,

which is usually taken to be t0 = 0. For δ < 0 the shock wave decelerates and for 0 < δ < 1 it

accelerates. For δ > 1 the shock wave accelerates so fast that it diverges in a finite time. In this

case, t0 represents the time of divergence rather than the explosion time. The transition between

finite and infinite divergence occurs at δ = 1 where we have exponential time dependance [137].

Substituting Eqn. 5.2 into the hydrodynamic equations (Eqns. 5.1) and using Eqn. 5.3, one gets

regular differential equations for the similarity quantities U , C, and G (see for example Landau &



133

Lifshitz) with two free constants, the similarity parameters � and δ:

dU

d log ξ
=

∆1(U,C)

∆(U,C)
,

dC

d log ξ
=

∆2(U,C)

∆(U,C)
(5.5)

and an explicit expression for the density G:

C−2(1− U)λGγ−1+λξ3λ−2 = const . (5.6)

The functions ∆, ∆1, and ∆2 are given by:

∆ = C2 − (1− U)2 ,

∆1 = U(1− U)(1− U − δ)− 3UC2 − 3C2(�+ 2δ)/γ ,

∆2 = C(1− U)(1− U − δ)− (γ − 1)CU(1− U + δ/2)−

− C3 +
2δ − (γ − 1)�

2γ
C3

1− U ,

(5.7)

and the parameter λ is

λ =
2δ − (γ − 1)�

3 + �
. (5.8)

The similarity parameter � can be found from the boundary conditions at the strong shock, the

Hugoniot jump conditions [138]. From these relations applied to strong shock one gets � = −ω, and

also

U(1) =
2

γ + 1
, C(1) =

�
2γ(γ − 1)

γ + 1
, G(1) =

γ + 1

γ − 1
. (5.9)

The boundary conditions on the shock do not state any limits on the possible values of the similarity

parameter δ. In order to determine the value of this parameter one should distinguish two kinds of

similarity flows: Type-I and Type-II, defined first by Zel’dovich [131]. A solution of Type-I describes

the flow in all space and therefore conservation laws must be obeyed by the self-similar solution.

One can then deduce δ = (ω − 3)/2, which gives the well-known Sedov-Taylor solutions. However,

for ω > 3 it is easy to see that the solution obtained with this value of δ contains an infinite amount

of energy and therefore can not describe the flow over the whole space. Therefore, the flow must be

of Type-II.

In Type-II solutions, there is a region, whose scale relative to the flow characteristic length

R(t) goes to zero with time, in which the similarity solution does not describe the physical system.

Therefore, for this kind of solution the energy does not have to be conserved in the self-similar

solution since this solution does not describe the whole flow. In order that the region which is not

self-similar (located around the origin) does not influence the self-similar solution, the solution must
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pass through the singular point defined by [126, 131]:

U + C = 1 . (5.10)

From this singular point requirement, the dependence of δ upon the parameters ω and γ can be

found. It was found [126] that for ω > ωg(γ) > 3 there is a value of δ for which the solution passes

through a singular point, and therefore a second type self-similar solution exists.

A fully analytic solution to Eqns. 5.5–5.8 exists for the case where ω = ωa(γ) ≡ 2(4γ−1)/(γ+1):

C(ξ) =

�
2γ(γ − 1)
γ + 1 ξ3 , U(ξ) = 2

γ + 1 ,

G(ξ) = γ + 1
γ − 1ξ

−8 , P (ξ) = 2
γ + 1 .

(5.11)

For this analytical case the parameter δ is given by δ = (γ − 1)/(γ + 1).

5.3 Slightly Two- and Three-Dimensional Self-Similar Solu-

tions

We shall use here the Eulerian perturbation approach. We define the perturbed quantities as the

difference between the perturbed solution (i.e., the slightly two-dimensional self-similar solution) and

the unperturbed one-dimensional solution at the same spatial point. The derivation of the pertur-

bation equation is similar to the one given by [132], [134], and [135]. The perturbed hydrodynamic

quantities are defined as

δ�v(r, θ,φ, t) = �v(r, θ,φ, t)− v0(r, t)r̂ ,

δρ(r, θ,φ, t) = ρ(r, θ,φ, t)− ρ0(r, t) ,

δp(r, θ,φ, t) = p(r, θ,φ, t)− p0(r, t) ,

(5.12)

where �v, p, and ρ are the velocity, pressure, and density in the perturbed solution, while v0r̂, p0,

and ρ0 are the same quantities as in the unperturbed solution. We consider perturbations that can

be written in a separation of variables form [139]:

δ�v(r, θ,φ, t) = ξṘ [δUr(ξ)Ylm(θ,φ)r̂ + δUT (ξ)∇TYlm(θ,φ)] f ,

δρ(r, θ,φ, t) = BR�δG(ξ)Ylm(θ,φ)f ,

δp(r, θ,φ, t) = BR�Ṙ2δP (ξ)Ylm(θ,φ)f ,

(5.13)
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where

∇T ≡ θ̂
∂

∂θ
+ φ̂

1

sin θ

∂

∂φ
(5.14)

are the tangential components of the gradient and R(t) is the unperturbed shock radius which still

satisfies Eqn. 5.3. The perturbed shock radius, R(t, θ,φ), is given by

R(t, θ,φ)−R(t) ≡ δR(t, θ,φ) = Yl,m(θ,φ)R(t)f . (5.15)

Eqns. 5.13 and 5.15 define the quantities δUr, δUT , δP , δG, and f . The quantity f measures

the fractional amplitude of the perturbation to the shock wave radius. Here we deviate from the

standard treatment of stability. There, f is a function of time: if the function f increases with time

then the solution is unstable, while if f decreases with time then the solution is stable. However,

here, since we demand that the perturbed solution be self-similar, f has to be independent of time.

We linearize the hydrodynamic equation around the unperturbed self-similar solution to get a

linear set of equations:

MY � = NY (5.16)

where

Y =





δG

δUR

δUT

δP




,

M =





ξ(U–1) Gξ 0 0

0 (U–1)ξ2G 0 1

0 0 (U–1)ξ2G 0

–
γξ(U–1)

G 0 0
ξ(U–1)

P




,

N =





ω–3U–ξU � –ξG�–3G l(l + 1)G 0

P �G–1 (1–δ–2U–ξU �)Gξ 0 0

0 0 (1–δ–U)Gξ –ξ–1

−ξγ(U–1)G�

G2 −ξ
�
P �
P − γG

�
G

�
0 ξ(U–1) P

�

P 2




,

and G, U , and P are defined by Eqn. 5.2.

Unlike the perturbation equations for stability, the equations above do not contain an unknown

parameter. They are, in fact, a special case of the equations used in [135], but with the perturbation

growth rate set to q = 0. In that sense they are similar to the equations of [140] for discretely

self-similar solutions.
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On the shock front, the linearized Hugoniot jump conditions are expressed as:

δG(1) = γ + 1
γ − 1(d− ω)−G� , δUr(1) = −U �

δUT (1) = − 2
γ + 1 , δP (1) = 2

γ + 1 (2 + d− ω)− P � .

(5.17)

Comparing with the stability treatment, two differences occur here. First, the parameter q which

measures the perturbation growth rate in the stability analysis is set to zero. Instead, a new

parameter d appears. It is the ratio of the amplitude of the external density perturbation σ to the

amplitude of the perturbations in the shock: d ≡ σ/f .

For any value of the parameter d one can integrate Eqn. 5.16 beginning at the shock front using

the shock boundary conditions. However, the singular point of the unperturbed solution, ξc, where

C+U = 1, is also a singular point of the perturbed solution. Therefore, in general, such integration

will diverge at the ξc. Only for specific values of the parameter d, where an additional boundary

condition at the singular point is satisfied, is the solution regular. These are the physical values for

the parameter d.

Technically, solving these equations is easier than the equivalent perturbation case. The reason

is that the unknown parameter d appears only in the shock boundary condition, and is absent from

the differential equations. We can therefore solve these equations starting from the sonic point

outward, and find the three independent solutions that are nonsingular at ξc. Then we can find

a linear combination of these three solutions, and the value of d that can solve the four boundary

conditions at the shock.

5.4 Results

For convenience we investigate the case γ = 5/3, ω = 17/4, where the unperturbed solution is

analytic. For l = 1 we obtain d = −11.2. This means that the fractional amplitude of perturbations

in the shock wave position, f , are an order of magnitude smaller than the fractional amplitude of

perturbations in the external density σ. The negative sign implies that at angles where the external

density is higher, the shock wave position is retarded. This is expected intuitively. From the shock

boundary conditions, we infer that the pressure at these angles is also lower. For l = 2 we find

d = −11.6, and for l = 3 we find d = −12.1. A plot of d as function of l is given in Fig. 5.1.

5.5 Extension to Arbitrary Angular Dependence

The analysis above was limited to external density perturbations whose angular dependence was

a spherical harmonic. This was necessary in order to obtain separation between the angular and
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Figure 5.1: Dots show d as function of l as obtained by solving the differential equations for γ = 5/3
and ω = 17/4. For small l we have d ∼= −10., while for large l, i.e., short wavelength, we obtain a
linear relation: d = −

�
5/4l (thin continuous line).

radial dependencies. However, since we are dealing with linear perturbations, any arbitrary angular

dependence can be expanded into a sum of spherical harmonics, each of which could be solved in

the method described in the previous section. Then, the solutions can be summed, leading to the

perturbation solution for external density perturbations with arbitrary angular dependence.

As an example, we consider the following problem: A strong point-like explosion is launched into

a surrounding which has a density on one side of a plane slightly different from the density on the

other side of the plane. In our notation this is ρ ∝ r−17/4(1 + σH(θ)) where H(θ) = 1 for θ < π/2

and H(θ) = −1 for θ > π/2. The point explosion in half space could be thought of as an extreme

version of this density profile with σ = 1. However, our solution formalism applies only for slightly

two-dimensional cases where σ � 1.

Such a density profile could be expanded in spherical harmonics as

H(θ) =
∞�

n=0

π
√
4n+ 3

Γ(1/2− n)Γ(2 + n)
Y2n+1,0(θ, 0) . (5.18)
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Figure 5.2: The fractional deviation of the shock position as function of θ for the heavyside density
distribution. It is seen that the shock is composed of almost two hemispheres, connected smoothly
over a short angular scale of about 0.2 radians.

The shape of the shock, R+ δR(θ), deviates from its unperturbed value R by

δR(θ)

R
= σ

∞�

n=0

π
√
4n+ 3

d(2n+ 1)Γ(1/2− n)Γ(2 + n)
Y2n+1,0(θ, 0) . (5.19)

This shape is plotted in Fig. 5.2 where the sum was taken from n = 0 to n = 100.

5.6 Short Wavelength Limit

Because the flow does not vary in the short wavelength limit, we may treat the matrices M and N

as constants close to the shock front. By using the unperturbed values of the state variable at the

shock, we find the four independent modes of the problem:

λ = −8, 3,±
�

2γ

γ + 1
l . (5.20)

The first two are independent of l and indicate that the state functions, close to the shock, vary on

the scale R, regardless of the wavelength of the perturbation. However the other two are linear in l

meaning that close to the shock the state functions vary over small scales of order ±R/l. Therefore,
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for large l, the positive mode is growing inward very rapidly, and thus can not exist physically. For

this reason we demand that the perturbation has no component along this mode on the shock front

by requiring it to be written as a linear combination of the three eigenvectors associated with the

other modes. This provides the extra boundary condition at the shock that allows us to determine

d. Performing this calculation we find that for general ω and γ

d = −
�

2γ

γ + 1
l (5.21)

in the limit l � 1.

5.7 Discussion

We have considered the problem of a strong shock propagating into a slightly aspherical medium

made up of a density with a spherically symmetric radial power-law plus a perturbation of arbitrary

angular dependence, and solved for the Type-II self-similar solution. Such an external medium has a

density profile ρ(r, θ,φ) = r−ω[1 + σF (θ,φ)], where ω > 3, σ � 1, and F is an arbitrary function of

θ and φ. Because the perturbations are small the hydrodynamic equations can be linearized around

the unperturbed solution, which allows us to expand F as a series in spherical harmonics, and solve

the problem term by term. In this way the general problem is reduced to one which includes only

perturbations F (θ,φ) ∝ Ylm(θ,φ).

The linearized self-similar equations are presented for this simpler case, F (θ,φ) ∝ Ylm(θ,φ),

along with the appropriate boundary conditions. There is a unique solution to these equations

which depends on a single parameter d, which is determined by physical considerations only. That

the only dependence on d is in the boundary conditions makes these equations particularly easy to

solve.

We demonstrate this process on a specific example which deviates from spherical symmetry by a

weak step function in the outside density across a plane containing the initial explosion. As expected,

instead of the shock being spherical, it is composed of two hemispheres smoothly connected across

the plane of the discontinuity.
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Appendix A

Idealized Kozai Inspiral Time

We occupy ourselves with determining the inspiral time of a test particle orbiting the primary

SMBH, while undergoing Kozai oscillations due to a secondary SMBH orbiting farther out, under

the following assumptions:

1. We do not include SP precession.

2. We do not include GR precession.

3. We consider the Kozai formalism without consideration of the oscillations of the eccentricity

on the timescale of the secondary [107].

4. We assume a librating solution where we can analytically calculate the maximum eccentricity

in terms of the minimum inclination (Eqn. 4.20). Rotating Kozai orbits will always reach even

higher eccentricities (see Fig. 4.2).

Given these assumptions it is straightforward to calculate a polite lower bound for the speed

with which a CR undergoing the Kozai mechanism will inspiral to the SMBH. Ultimately, this is

compared to both an object on a circular orbit with the same energy (and no secondary present)

and an object on an eccentric Keplerian orbit (and no secondary present).

A.0.1 Analytic Calculation

There are three different phases and timescales to this inspiral: 1) orbital energy radiated away

on an orbital timescale, 2) changes in eccentricity (but with constant semi-major axis) on a Kozai

timescale that approaches e ∼< 1, and 3) the inspiral timescale which will be many Kozai timescales.

This allows us to calculate the inspiral time in a fairly straightforward fashion.

Orbital Timescale: During each orbit of the primary a CR radiates some of its orbital energy

and angular momentum in gravitational waves. On the timescale of an orbit the eccentricity and

semi-major axis of the orbit can vary only modestly if torbit � TKozai and if the periapsis of the CR
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is ∼> 5rS where rS is the Schwarzschild radius. To find the energy lost in gravitational waves per

orbit we use Eqn. 4.8 [99] which for simplicity we rewrite as

�
dE

dt

�
= −β

2
a−5f(e) . (A.1)

Here e is an implicit function of t, since e is slowly evolving with time, β is a constant and the same

as in Eqn. 4.8, and

f(e) =
1 + 73

24e
2 + 37

96e
4

(1− e2)7/2
. (A.2)

So, to find the total energy radiated during one Kozai period we would integrate Eqn. A.1 over time

for a full Kozai oscillation.

Kozai Timescale: The Kozai mechanism does not change the energy of the particle, and so during

a Kozai cycle the particle’s semi-major axis does not change. This allows us to write the integral as

(∆E)Kozai =

TKozai�

0

�
dE(e(t))

dt

�
dt . (A.3)

However, the energy radiated will be dominated by the orbits with highest eccentricity (see

Fig. A.1). Thus, it is imperitive to know the maximum eccentricity emax well. For inclinations

greater than imin = 39.2o the maximum eccentricity is given by Eqn. 4.20.

Knowing that we have an accurate expression for the maximum eccentricity, we now turn to

computing the integral of Eqn. A.3.

For the orbits we’re interested in (those with a small periapsis distance, but a large semi-major

axis) e ∼< 1. Moreover, because of the strong dependence in the numerator of f(e) on e, it is only

orbits with an eccentricity close to emax which will have an effect on the integral of Eqn. A.3.

So, we write e = 1− �̄ where �̄ � 1. Plugging this in to Eqn. A.1 and expanding to highest order

in 1/�̄ yields:

�
dE

dt

�

near max

= −β

2
a−5

�
425

96 · 27/2 �̄
−7/2

�
. (A.4)

The strong dependence on �̄ means that an orbit with ∆�̄ ≡ �̄− �̄min = �̄, the energy radiated is

already an order of magnitude smaller than the orbit with the maximum energy radiation.

By using an analytic approximation to e(t) we now find an approximation for �̄ near emax, which

in turn lets us solve the integral of interest.

The differential equation which dictates the path of the eccentricity is given by [107]

TKozaie
de

dt
= ±

����
3 + κ+Q− 5Λ2

�
e2 − (3 + κ)e4 −Q

�

×
�
Q+ (2− κ)e2

���1/2
, (A.5)
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Figure A.1: On the left axis we plot log[f(e)] as a function of t for emin = 0.5, imin = 1.56 (and
therefore an emax = 0.9999) for the numerical solution to Eqn. A.5 (solid black). The function f
peaks strongly when e approaches emax, meaning that to a good approximation we can expand the
approximate analytic solution to Eqn. A.5 (Eqn. A.7) in t̄ = t/TKozai before integrating (see text).
This approximate function of f(e) is plotted in dotted gray. On the right axis we plot the relative
error in this approximation (dashed red).

where

Λ =
�
1− e2 cos(i) and Q = e2

�
5 sin2(i) sin2(ω) + κ− 2

�
(A.6)

are constants of the motion, ω is the argument of pericenter, and κ is the apsidal precession over a

Kozai oscillation due to the stellar potential. For simplicity we set κ = 0.

For the inclinations we are considering the solution to this equation is reasonably well approxi-

mated by a cos (see Fig. A.2):

e(t̄) ≈ 1

2

�
(emax − emin) cos t̄+ (emax + emin)

�
, (A.7)

where t̄ ≡ t/T , emin is the minimum eccentricity,

T =
π

�
2
3

�5/2
log

��
3
5

4
emin

� , (A.8)

and we have assumed that e(0) = emax. Using this approximation near the peak we can expand in
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Figure A.2: We plot the eccentricity as a function of time in units of TKozai for both a numerical
solution (black solid) and the analytic solution (red dashed). The region of interest is that where
emax − e(t) = �̄ = 1− emax. See text.

t̄:

e(t̄) = emax −
emax − emin

4
t̄2 +O

�
t̄4
�
, (A.9)

so that

�̄(t̄) = 1− e(t̄) +O(t̄4) (A.10)

= �min +
emax − emin

4
t̄2 +O(t̄4) . (A.11)

Plugging this into Eqn. A.4, and that into Eqn. A.3, we find that the energy radiated per unit time

is approximately

Ė = −16

15

β

a5
1√

emax − emin�3min

(A.12)

= −16

15

β

a5
1√

emax − emin(1− emax)3
. (A.13)

Mathematically, this approximate solution to the integral of Eqn. A.3, produces only modest errors

of several percent, while elucidating the primary dependencies. However, this approximation also
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tacitly assumes that there are many orbits across the peak of the integrand of Eqn. A.3, in that

we are assuming that the maximum eccentricity is in fact reached while at periapsis. This is not

necessarily true and we discuss it further below.

Inspiral Timescale: Ė still retains a strong time dependence over the inspiral timescale, because

as the orbit radiates energy in GWs its semi-major axis decreases. However, if we suppose that the

minimum periapsis over each Kozai cycle, r̄p, roughly stays constant, then we may rewrite Ė as

Ė = −16

15

β

r̄3p

1√
emax − emin

1

a2
. (A.14)

In fact, both emax and emin must also evolve with time as the orbit circularizes, and as they approach

the same value, Ė will grow oppressively small. However, as examination of Fig. 4.1 elucidates, once

the CR has reached this point, gravitational wave radiation alone (without the Kozai mechanism

to pump the eccentricity) will drive the CR to coalescence on a much shorter timescale than that

required to deliver the CR to this orbit region. Thus, we may consider the factor containing emax

and emin as being roughly ∼ 1.

Finally, we may relate ȧ to Ė

ȧ =
2a2

GMm�
Ė (A.15)

= −32

15

β

GMm�r̄3p

1√
emax − emin

, (A.16)

which lets us ultimately determine the merger time:

tmerger =
15

32

GMm�r̄3p
β

√
emax − emina0 (A.17)

=
15

32

GMm�

β

√
emax − emin(1− emax)

3a40 (A.18)

=
45

211
c5

G3

a40
√
emax − emin

Mm�(M +m�)
(1− emax)

3 . (A.19)

The inspiral time for a quasicircular orbit is just

t(circ)merger =
5

256

c5

G3

a4

Mm�(M +m�)
. (A.20)

Thus we see that the Kozai mechanism increases the inspiral mechanism by up to

t(Koz)
merger

t(circ)merger

=
9

8

√
emax − emin(1− emax)

3 , (A.21)

when compared to a circular orbit of equal energy.

On the other hand, when compared to an eccentric Keplerian orbit whose eccentricity is the
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maximum eccentricity of the star undergoing the Kozai oscillation and which has the same energy,

the ratio of inspiral times is:

t(Koz)
merger

t(e=emax)
merger

=
tmerger

768
425 (1− e2max)

7/2t(circ)merger

(A.22)

=
1275

214
√
2

√
emax − emin√
1− emax

(A.23)

∼ 10−2

√
1− emax

. (A.24)

Thus, in line with expectations, this upper bound on the merger time due to Kozai oscillations can

be significantly slower than a Keplerian orbit of the same maximum eccentricity, while many times

faster than a circular orbit.

A.0.2 Caveats

There are several important caveats to the above calculation which we clarify.

Apsidal Precession: The first is that we have ignored the SP and GR in this calculation, both

of which cause the orbits of the CRs to not be Keplerian orbits. This is discussed in detail in

Secs. 4.3.2–4.3.3 and Sec. 4.4.

Eccentric Oscillations on Binary Timescale: As discussed in Sec. 4.3.2, there are oscillations in

the eccentricity on the timescale of the secondary’s orbital period on top of the standard Kozai oscil-

lation in the eccentricity. Though the magnitude in these oscillations is small, when the eccentricity

becomes large and 1− e becomes comparable, these errors are significant. This is terribly important

as one approaches 4GM/c2 and the energy lost per periapsis passage diverges, but far from rS where

the Peters equation (Eqn. 4.8) is most accurate, it will be important but not vital. This is also the

case for the GRP (see Sec. 4.4).

Is torbit � TKozai?: As mentioned in the calculation of tmerger via the Kozai mechanism there is

an implicit assumption that there are many orbits during the period of time that the orbit has an

eccentricity near emax. This is not always true: the ratio of the orbital period to the Kozai period

is roughly
1

norbits
= t̄orbit ≈

3πq

2

�
a�

a•

�3

∼ 5qā3 , (A.25)

where q ≤ 1 is the mass ratio of the SMBHs and ā ≡ a�/a• and t̄orbit = torbit/TKozai. The maximum

plausible value of a for the Kozai mechanism to work is a•/2. In this work we consider a mass ratio

of q = 0.1 so that there are at minimum some 16 orbits per Kozai period. However, norbits is a

strong function of ā, so that an orbit with ā = 8 has norbits ≈ 1028.

The width of the peak in units of TKozai can also be determined. Defining the peak of f(e) to be

the region within a factor of 10 of its peak value, and using Eqns. A.3 and A.11, we find that the
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width of the peak, in units of Kozai periods is:

t̄peak =
4√

emax − emin

√
�min ∼ √

�min . (A.26)

To find the number of orbits per peak we take the ratio of Eqns. A.25 and A.26:

Npeak =

√
�min

5qā3
. (A.27)

If we set the number of required orbits across the peak of f(e) to be the somewhat arbitrary, but

reasonable, value of 10, then we require

ā ≤ āmax ≡ �1/6min

50q
=

�
1− (5/3) cos2 imin

�1/6

50q
. (A.28)

For regions of the potential inspiral where the semi-major axes is greater than āmax one must reduce

Ė by a factor of order the ratio of the time spent near periapsis to the orbital period, a rough

estimate for the probability that the CR will reach periapsis when the eccentricity is in the required

bound. Roughly speaking this factor is

tperi
torbit

∼ 3rperi
c

√
GM

2πa3/2�

=
3

2
√
2π

(1− e)

�
rS
a�

�1/2

. (A.29)

We see that the rate of inspiral is substantially reduced by both a factor of 1 − e and a factor of
�
rS/a�.

While ā ≤ āmax, Ė is independent of TKozai. This is because the total number of orbits passing

by the minimum periapsis remains constant; as the Kozai period changes so does t̄peak, by an equal

amount, and therefore so does the number of orbits close to the minimum periapsis.

Lower Bound on a�: However, once the Kozai period, or tmerger, approaches the inspiral time of

the secondary SMBH (likely ∼< 109 yr) this EMRI formation mechanism clearly breaks. This puts a

polite lower bound on ā:

ā >

�
4

3q

�
a3•
GM

1

109 yr

�2/3

. (A.30)

For q = 0.1, a• = 0.01 pc, and M = 106M⊙, the values relevant to the simulations found in this

article, then

a� > 2× 10−4 pc . (A.31)
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[3] C. Cutler and É. E. Flanagan, Phys. Rev. D 49, 2658 (1994), URL http://adsabs.harvard.

edu/cgi-bin/nph-data_query?bibcode=1994PhRvD..49.2658C&link_type=ABSTRACT.

[4] P. Amaro-Seoane, J. R. Gair, M. Freitag, M. C. Miller, I. Mandel, C. J. Cutler, and S. Babak,

arXiv astro-ph (2007), URL http://arxiv.org/abs/astro-ph/0703495v2.

[5] E. O’Connor and C. D. Ott, ApJ 730, 70 (2011), http://arXiv.org/abs/1010.5550, URL

http://adsabs.harvard.edu/abs/2011ApJ...730...70O.

[6] W. Zhang, S. E. Woosley, and A. Heger, ApJ 679, 639 (2008), http://arXiv.org/abs/

astro-ph/0701083, URL http://adsabs.harvard.edu/abs/2008ApJ...679..639Z.

[7] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, 1973), URL http:

//adsabs.harvard.edu/abs/1973grav.book.....M.

[8] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, and T. Ott, ApJ

692, 1075 (2009), URL http://iopscience.iop.org/0004-637X/692/2/1075.

[9] S. Gillessen, F. Eisenhauer, T. K. Fritz, H. Bartko, K. Dodds-Eden, O. Pfuhl, T. Ott, and

R. Genzel, ApJL 707, L114 (2009), URL http://adsabs.harvard.edu/cgi-bin/nph-data_

query?bibcode=2009ApJ...707L.114G&link_type=ABSTRACT.

[10] A. M. Ghez, S. Salim, N. N. Weinberg, J. R. Lu, T. Do, J. K. Dunn, K. Matthews, M. R.

Morris, S. Yelda, E. E. Becklin, et al., ApJ 689, 1044 (2008), URL http://adsabs.harvard.

edu/cgi-bin/nph-data_query?bibcode=2008ApJ...689.1044G&link_type=ABSTRACT.

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004MNRAS.349..181N&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004MNRAS.349..181N&link_type=ABSTRACT
http://arXiv.org/abs/astro-ph/0605227
http://arXiv.org/abs/astro-ph/0605227
http://adsabs.harvard.edu/abs/2006CQGra..23S.809S
http://adsabs.harvard.edu/abs/2006CQGra..23S.809S
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1994PhRvD..49.2658C&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1994PhRvD..49.2658C&link_type=ABSTRACT
http://arxiv.org/abs/astro-ph/0703495v2
http://arXiv.org/abs/1010.5550
http://adsabs.harvard.edu/abs/2011ApJ...730...70O
http://arXiv.org/abs/astro-ph/0701083
http://arXiv.org/abs/astro-ph/0701083
http://adsabs.harvard.edu/abs/2008ApJ...679..639Z
http://adsabs.harvard.edu/abs/1973grav.book.....M
http://adsabs.harvard.edu/abs/1973grav.book.....M
http://iopscience.iop.org/0004-637X/692/2/1075
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009ApJ...707L.114G&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009ApJ...707L.114G&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008ApJ...689.1044G&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008ApJ...689.1044G&link_type=ABSTRACT


148

[11] A. M. Ghez, S. Salim, S. D. Hornstein, A. Tanner, J. R. Lu, M. Morris, E. E. Becklin, and
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