
Applying Formal Methods to Distributed Algorithms

Using Local-Global Relations

Thesis by

Jerome White

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2011

(Defended December 6, 2010)

c© 2011

Jerome White

All Rights Reserved

ii

To Grandaddy.

iii

Contents

Acknowledgements vii

Abstract viii

1 Introduction 1

1.1 Motivation . 1

1.2 A Detailed Example . 5

1.3 Local-Global Algorithms . 9

1.4 Contribution and Scope . 20

1.5 Related Work . 21

1.6 Organization of the Thesis . 22

2 Model and Assumptions 24

2.1 System Model . 24

2.2 Local-Global Relations . 29

2.3 Correctness . 33

2.4 Related Work . 35

3 Consensus Using Monoids 38

3.1 Theorems about Monoids . 39

3.2 System Correctness . 42

3.3 Instantiations of Monoids . 46

3.4 Message Passing . 49

iv

4 Distributed Path Computations using Semirings 50

4.1 Central Idea . 51

4.2 Semirings . 53

4.3 System Specification . 54

4.4 System Correctness . 58

4.5 Examples . 60

4.6 Related Work . 62

5 Sorting 64

5.1 System Specification . 64

5.2 System Correctness . 68

6 Average Consensus 71

6.1 Background and Motivation . 71

6.2 System Specification . 75

6.3 System Correctness . 77

7 External Inputs 82

7.1 Model . 87

7.2 Theory . 88

8 Framework Extensions 91

8.1 Error Bounds with Changing Inputs . 91

8.2 Termination Detection . 92

8.3 Limits of the Local-Global Framework . 94

8.4 Bounds on Information Exchange . 97

9 Tools of Formal Methods 99

9.1 Theorem Prover . 100

9.2 Model Checker . 108

9.3 Implementation . 120

v

10 Conclusion and Future Work 130

10.1 Future Work . 130

10.2 The Applicability of Local-Global Relations 132

A Auxiliary Proofs 134

A.1 Reverse Induction . 134

A.2 Monoids . 138

A.3 Mean Square Error . 150

A.4 Permutations . 153

Bibliography 156

vi

Acknowledgements

I would first like to thank Mani, who inspired this work and allowed me the freedom to

develop it. More significantly, however, there were times during the pursuit of this degree

when I was unsure that I could obtain it. He always managed to convince me otherwise—

something for which I am truly grateful.

This thesis would not have been possible without the help of my Infospheres labmates,

especially Sayan and Concetta. Sayan introduced me to PVS, while Concetta helped to

shape much of the work overall. Good scientific discoveries usually require the exploration

of several bad ideas. This thesis was no exception. Concetta patiently sat through just about

all of my bad ideas, time and again helping me see the error in my ways. Her insight amazes

me just as much as her patience.

I would also like to thank and remember Brian, who had a significant impact on this

project during its early stages. He was an incredible student and a wonderful person. I wish

he could have seen the culmination of this work.

The department as a whole has been like an extended family; the faculty and staff have

created a wonderful environment in which to learn as a student and to grow as a person.

Maria and Mathieu, in particular, were both constant sources of encouragement, helping to

make my life overall more enjoyable. Every graduate student should have people like them

in their corner.

Finally, special thanks go to my parents. They instilled in me the importance of educa-

tion, of attention to detail, and of giving my best. This degree is one of the many results of

those values.

vii

Abstract

This thesis deals with the design and analysis of distributed systems in which homogeneous,

autonomous agents collaborate to achieve a common goal. The class of problems studied

includes consensus algorithms in which all agents eventually come to an agreement about a

specific action. The thesis proposes a framework, called local-global, for analyzing these sys-

tems. A local interaction is an interaction among subsets of agents, while a global interaction

is one among all agents in the system. Global interactions, in practice, are rare, yet they

are the basis by which correctness of a system is measured. For example, if the problem is

to compute the average of a measurement made separately by each agent, and all the agents

in the system could exchange values in a single action, then the solution is straightforward:

each agent gets the values of all others and computes the average independently. However, if

the system consists of a large number of agents with unreliable communication, this scenario

is highly unlikely. Thus, the design challenge is to ensure that sequences of local interactions

lead, or converge, to the same state as a global interaction.

The local-global framework addresses this challenge by describing each local interaction

as if were a global one, encompassing all agents within the system. This thesis outlines the

concept in detail, using it to design algorithms, prove their correctness, and ultimately de-

velop executable implementations that are reliable. To this end, the tools of formal methods

are employed: algorithms are modeled, and mechanically checked, within the PVS theorem

prover; programs are also verified using the Spin model checker; and interface specification

languages are used to ensure local-global properties are still maintained within Java and C#

implementations. The thesis presents example applications of the framework and discusses

a class of problems to which the framework can be applied.

viii

Chapter 1

Introduction

1.1 Motivation

1.1.1 Multi-Agent Systems Operating in Unreliable Environments

Errors in systems can have disastrous consequences. This thesis deals with designs of reliable

systems in which multiple agents, operating in unreliable or hostile environments, collabo-

rate to achieve a common goal. The design of such reliable systems is challenging because

designers have no control over the environments in which agents operate. A system in which

mobile agents communicate with each other over unreliable, wireless channels is an example

of such a system. Agents communicate with others when they are in communication range

of each other and they cease communication when they move out of range. The external

environment determines whether and when agents can communicate. For example, enemies

may jam communication among agents or the wireless environment may be noisy.

This thesis studies multi-agent systems in which designers cannot schedule interactions

among agents. Designers cannot assume that an agent X will be able to interact with an

agent Y some time in the future. Agents cannot control the environment which determines

when agents can communicate and interact. This thesis explores undependable environments

to understand the conditions under which multi-agent algorithms can operate correctly.

Many systems described in the literature assume that the environment is reliable. Reliable

distributed systems are often modeled as static graphs in which each vertex represents an

1

agent and each edge represents an interaction mechanism between a pair of agents; for

example, neighboring agents in the graph can operate on shared variables in atomic actions.

This thesis departs from this type of earlier work in two ways. First, agent interactions

cannot be scheduled. In terms of the traditional graph representation, we consider systems

in which graph edges are changed dynamically by an external mechanism over which agents

have no control. Second, in cases of applications based on messages, communication may be

unreliable: messages may be lost or delivered out of order.

The environment is modeled as a nondeterministic mechanism. In carrying out worst-case

analysis it is helpful to treat the environment as an adversary whose intent is to thwart the

agents from reaching their goals. The adversary determines which agents can interact and

which messages are lost. An all-powerful adversary is uninteresting because it could prevent

any agent from interacting with any other and thus stop all computations. Therefore, we

consider powerful adversaries, but not all-powerful ones.

We constrain the adversarial mechanism to obey certain weak “fairness” criteria. Our

goal is to understand the maximum power that the adversarial environment can have—or

equivalently, the weakest fairness criteria—that still ensures that the multiagent system oper-

ates correctly. For example, if a system is partitioned into two nonempty non-communicating

subsets, then an agent in one subset cannot compute functions over the states of agents in

the other subset. Therefore we explore algorithms in which a fairness criterion is that the

system is never permanently partitioned into non-communicating subsets of agents. This

thesis explores the boundaries between environments in which multi-agent computations

can work and environments in which they cannot work.

An agent cannot control when it will interact with other agents, nor can it determine the

identities of the agents with which it will interact; therefore, when a set of agents interacts, it

must carry out its computation opportunistically without knowing about what may happen

in the future. Each set of interacting agents carries out a computation independent of the

number and identities of agents in the set. Thus, in our algorithms, every subset of agents

carries out the same computation as the global set of all agents in the system. Therefore, we

study algorithms in which a local computation is the same as the global computation. We

2

illustrate the ideas by using a simple example.

Example 1 (System semantics) Each agent j has a local constant y[j] and a local vari-

able x[j] of some type T . Let H be the multiset, or bag, of values y[j]. The goal is for each

agent j to set its local variable x[j] to a common value f(H) where f is a given function

that maps multisets of elements of type T to type T . For example, the local constant y[j]

could be a real number and each agent j is required to set its local value x[j] to the average

of the y values. We next look at algorithms for systems with different connectivity between

agents.

First consider systems that can be modeled by static graphs in which vertices represent

agents and directed edges represent communication channels along which messages can be

passed. To begin with consider an ideal graph in which there is a directed edge (j, k) from

every agent j To every agent k. A simple algorithm is one in which each agent j broadcasts

its local constant y[j] to every other agent. Thus each agent receives the local constant y[j] of

every agent j, then determines the multiset H, and finally sets its local variable x[j] to f(H).

An alternative algorithm is one in which agents first elect a single agent as a “leader.” All

agents send their local constants to the leader. The leader determines H, computes f(H),

and broadcasts f(H) to all agents. All agents then set their local variables to the result.

Next consider systems in which the environment determines which agents can interact

and when. The environment picks a subset K of agents and allows communication among

agents in K; agents outside K cannot communicate. Agents have no control on how K

is chosen. We can model this system by a dynamic graph in which edges are created and

deleted by the environment. The environment connects all agents in a subset of agents K.

That subset remains connected until either all the agents complete a step of a computation

or perform the empty step in which they do not carry out an operation. The environment

may then delete these edges and create edges connecting another subset of agents.

Designers do not know whether a subset of interacting agents is the entire global set or is

a proper subset. Therefore we consider algorithms in which every subset of interacting agents

carries out the same computation independent of the size and constituents of the subset. In

3

particular, if the system consists of a single agent j, then the algorithm is required to set the

agent’s local variable x[j] to the given constant y[j]. Therefore, we consider algorithms of

the following form: Initially each agent j sets x[j] to y[j]. When a set K of agents interacts,

each agent j in K sets its local variable x[j] to f(H ′) where H ′ is the multiset of the local

variables x[j] of agents j in K. In the case of computing the average, each agent j in a set

of interacting agents sets its local value x[j] to the average of the x-values of agents in the

set. 2

This simple example illustrates some of the issues explored in the thesis:

• We study fairness constraints on agent interactions that enable algorithms to reach

the desired result. We show that certain computations operate correctly even in unde-

pendable environments.

• In some cases, the computation may converge to the desired result in the limit as time

becomes arbitrarily large. The computation may never reach the desired result though

it may get arbitrarily close. Much of the earlier work deals with formal methods to

prove termination of computation. We use formal methods to prove convergence as

well as termination.

• A computation can terminate only after all agents participate in the computation; if

an agent never participates in a computation then that agent’s initial values cannot

influence the final result. If agents do not have information about the total number

of agents in the system, or some other global information, then agents cannot detect

termination of a computation because the computation cannot determine whether all

agents have participated in it. If agents do have information about the global state

of the system, such as the numbers and id’s of agents, then they can employ more

efficient algorithms, and we present such algorithms.

• Many papers deal with distributed algorithms in which the input to the algorithm

is fixed. Earlier we discussed the example: compute the average over all agents j of

y[j] where y[j] is a given input that remains constant. In this thesis we also consider

4

systems in which the input changes with time. Since inputs may change with time, the

result computed by the multi-agent algorithm at each instant may be different from

the result for the case where inputs are constant; we define the instantaneous error

as the difference between the result computed by the algorithm and the true result.

Our goal is to determine a bound on the error if such a bound exists. Consider the

problem of computing the averages where the values y[j] change with time, and the

agents estimate the instantaneous average of y[j] over all j; we wish to determine if

the error between the estimated average and the true average is bounded.

• We use temporal logic and mechanical theorem proving systems to prove the correctness

of multi-agent systems. In some cases we prove termination, and in other cases we prove

convergence, and in yet other cases we prove bounds on the error.

Proving the correctness of systems of agents operating in hostile or unreliable environments is

difficult. This thesis explores repeated use of a small number of formally proved algorithms to

develop a large number of programs. We show how reasoning about systems using abstract

algebraic concepts, such as monoids, helps in developing algorithms that are correct and

implementations that are reliable. The benefit of program reuse has been demonstrated

by object-oriented and compositional programming systems in which abstract components

are used to create concrete programs. In these cases, development time is greatly improved

by leveraging pre-built objects that are known to be correct. We consider the same idea

applied to formal proofs: the cost of proving the correctness of an algorithm is amortized

over multiple instances of programs that re-use that proof.

1.2 A Detailed Example

The following example presents the idea of repeated use of an algorithm and its proof. It is

meant to be illustrative and is therefore described informally. A more formal treatment can

be found in Chapter 3.

Consider a distributed system consisting of a fixed set of agents. Each agent contains a

5

unique identifier that is static, and a value from a given type that is mutable. The problem

is to develop a distributed algorithm by which eventually all agents reach a consensus state,

where consensus is a function of the initial states of the agents. Examples of such a function

include

min The state of an agent state is a number.1 The consensus state is the minimum value

in the initial states of the agents.

gcd The state of an agent is a positive integer. The consensus state is the greatest common

divisor of the initial states of agents.

convex hull The state of an agent is a set of points in a two-dimensional Cartesian plane.

The consensus state is the convex hull of the initial sets of points of all agents.

Agents exchange values by sending messages to a communication medium, which, in turn,

determines the set of agents that will receive that message. The communication medium is

faulty in the sense that messages destined for a particular set of agents can be lost, duplicated,

or delivered out-of-order. Moreover, if a message is not lost, its delivery can be delayed for an

arbitrary, but finite time. That is, if a message m sent at time t is not lost, it will be delivered

at some time t + ∆, where ∆ is an unknown non-negative bound. That ∆ is bounded is

more important than its value: this ensures that the amount of message overtaking is finite.

Initially the communication medium contains no messages and messages are not corrupted

by the communication medium.2 Therefore, every message delivered to an agent was sent

by some agent.

Some papers represent distributed systems as directed graphs where the vertices are

agents and the edges represent message-passing channels. In our case, the graph is dynamic

in that edges are added and deleted by a mechanism outside of the programs control. Note

that consensus across all the agents in the system cannot be reached if there exists a subset

of agents that are permanently partitioned from the global set. Therefore, we assume that

1More generally an element of a total order.
2We consider a relaxation to this assumption in Chapter 7.

6

for any non-empty proper subset of agents, messages from agents outside the subset are

received by agents within the subset infinitely often.

Our goal is to write a program in an executable programming language, such as C or

Java, for each agent. Consider the problem of computing the minimum of the initial values

of agents. Let St(k) be the state of agent k at a point t in the computation; further, assume

that the state of an agent is an integer. The desired consensus value is x where:

x = min
k
S0(k).

Agents repeatedly send a message containing their current state to subsets of agents within

the system. When a message m is received in state S, the new state of the system S ′ follows

S ′ = min(S,m).

1.2.1 Correctness

In this thesis, program correctness is first demonstrated for algorithms written in a logic

notation and then in a conventional programming notation, such as Java.

1.2.1.1 Algorithm Correctness

One can reason, somewhat informally, about the correctness of the program in the follow-

ing way. Let M be the set of messages in the communication medium at a point in the

computation. An invariant of the system is:

(x = min
k
S(k)) ∧ (x ≤ min({M})) (1.1)

where min(M) is the minimum of all values in M . The argument for proving the invariant is

that it holds initially, and that every action—sending or receiving a message, and updating

state—maintains Equation 1.1.

Likewise, an informal proof of progress uses a variant function: the number of agents

7

whose state is different from x. Let D be the set of agents whose value is different from x,

and let D̄ be its complement. We need to show that if D is not empty then its cardinality

will decrease eventually. Our fairness assumption implies that eventually an agent in D will

receive a message from an agent in D̄. Once this occurs, the receiving agent will change its

state to x and become a member of D̄, thus reducing the variant function.

1.2.1.2 Program Correctness

To establish that a program implements a given specification, we employ a theorem prover, a

model checker, and code specification languages. Algorithms are first encoded in the notation

of the theorem proving system—PVS [1] in our case. Unlike “conventional” programming

languages, such as C or Java, This notation uses higher-order logic, making it easier to reason

about algorithm correctness. Our use of PVS can be broken into two parts: a representation

phase, and a proof phase. In the representation phase, our challenge is to represent the

distributed system in the logic of PVS. The proof phase consists of proving safety and

progress properties of the system. It is carried out in the steps we start with, proving

distributed systems that use abstract data types such as monoids. Later, we prove that

concrete implementations, such as min, satisfy the axioms of the abstract types. Such proofs

consist of showing algebraic properties over system operators, such as

∀a ∈ A : min(a, a) = a

where A is a totally ordered set. We use a theorem prover proofs that we develop by hand.

We also evaluated the use of a model checker [2] within the development cycle. Using Spin

involves encoding the algorithm in Promela, which is closer to a conventional programming

language than PVS. Model checkers are easier to use because they offer more automation

than mechanically verifying proofs using a theorem prover.

After the algorithm is determined to be correct, we perform manual translations from

PVS to conventional languages such as C#. Mechanical translations are the subject of a wide

body of work [3, 4, 5, 6], but are not covered in this thesis. Our abstractions and stepwise

8

refinement from PVS to C# are simpler than developing and proving a program in C# from

scratch. For example, in this final translation step the verification requirement is to prove

that an action z = max(x, y) in Java implements the action z = max(x, y) in PVS. Therefore,

ensuring that the translation is correct is easier than deriving a correct concurrent program.

For added program verification, we employ the Java Modeling Language (JML) [7], along

with our own invariant assertion classes. We also provide an implementation in C#, which

is similar to Java, and in Erlang [8], which demonstrates the applicability of our abstractions

to other programming notations.

1.3 Local-Global Algorithms

The thesis focuses on algorithms in which the actions taken by agents in a distributed system

are identical to the actions that would be taken by a single process in a non-distributed

system. For example, an algorithm to compute the minimum of a set of numbers in a single

process scans the numbers in the set and updates the minimum value seen so far to the

smaller of its current value and the number scanned. The distributed algorithm is identical:

when a subset of agents interact they compute the minimum of values in the subset.

We call these algorithms local-global because the local actions taken by subsets of agents

are identical to the global actions of a single, central, process. The association between such

local actions and the global state of the system is known as a local-global relation. Many

distributed algorithms are not local-global: the distributed implementation is different from

an implementation on a single central process. Our goal in studying local-global algorithms

and relations is to understand the simplest class of distributed algorithms that are obtained

by replicating a single-process centralized algorithm for subsets of agents. We identify local-

global relations to generate the aforementioned algorithmic abstractions.

1.3.1 The Local-Global Concept in Algorithm Development

To help describe the idea of local-global algorithms, we present a few examples.

9

Figure 1.1: An example of distributed consensus, which fits a local-global relation. See
Section 3.1 for details.

10

Figure 1.2: An example of distributed path analysis, which fits a local-global relation. See
Chapter 4 for details.

11

Figure 1.3: An example of distributed sorting, which fits a local-global relation. See Chap-
ter 5 for details.

12

Figure 1.4: An example of distributed average consensus, which fits a local-global relation.
See Chapter 6 for details.

13

Example 2 (Minimum array value) Consider a data structure that agents may only

have partial access to. That is, they can read or modify subsections of the data, but not the

entire structure. In the case of computing the minimum of an array, the problem is specified

in terms of the array: an agent may only be able to access a subset of elements. If the agent

could operate on the entire array, then the problem is quickly solved by setting all elements

of the array to the minimum value. The action carried out by the agent on the subproblem

is identical to the action that an agent would carry out if it could modify the entire array:

set all elements of the subarray to the minimum value of the subarray.

This is shown in Figure 1.1 where the initial state is

[3, 2, 9, 7, 5, 8, 3]

indexed j where 0 ≤ j < 0. The first action is executed by an agent that can only read and

modify elements 2 and 3 of the array. Therefore, it operates on the subarray to get a new

state for the subarray as shown in the figure. The values of other parts of the data structure

remain unchanged, giving the next global state shown in the diagram. 2

Example 3 (Shortest paths) Consider the problem of computing the lengths of the short-

est paths from a vertex root to all vertices in a directed graph. If an agent can read the entire

graph it solves the entire problem; that is, it computes the shortest distances to all vertices.

The algorithm by which the problem is solved is irrelevant to the local-global concept.

Now consider the case where an agent can see only a part of the graph. Assume that

associated with each vertex is the length of a path to that vertex; this length may not

necessarily be the shortest one. An agent that can see only a part of the graph solves the

shortest path problem for the subgraph that it can see. This is shown in Figure 1.2. 2

Example 4 (Sorting) Figure 1.3 shows the local-global idea applied to sorting. An agent

sorts the part of the array that it can see. 2

Example 5 (Average consensus) Figure 1.4 shows the idea applied to computing the

average of a collection of values. Each element of an array is to be set to the average value

14

of the array. If an agent can only modify a part of the array, then it sets the values that it

can modify to the average of their values. 2

Some problems cannot be solved using the local-global approach. For example, consider

the problem in which all elements of an array are to be set to its second-smallest value.

Applying the local-global idea we would design an algorithm in which an agent that could

operate on only a part of the array sets all the elements that it could modify to the second-

smallest of their values. But this algorithm is incorrect. A local-global algorithm to compute

the two smallest, or in general the k smallest, values works correctly. This thesis does not

provide necessary and sufficient conditions on problem specification for the problem to be

amenable to the local-global approach.

1.3.2 Local-Global Consistency in Proofs

We usually demonstrate the correctness of a centralized single-agent algorithm by providing

a safety property—typically an invariant—and a progress property. We need to show that

the proof for the single-agent algorithm, in which the agent has access to the entire data

structure, is not violated by an algorithm in which an agent operates on only the part of the

data structure that it sees.

Safety We need to prove that if a local operation on part of the data structure is safe, that

it satisfies an invariant, then the local operation also keeps the global data structure

safe as well.

Progress Likewise, we need to show that if a local operation on part of the data structure

moves that part closer to the goal—the desired end state for that part—then that local

operation also moves the global data structure closer to the global goal. Further, we

need to show that a local operation that moves a local part of the data structure will

be executed eventually; we do so using specialized fairness arguments.

We present a generic approach for proving that if local operations satisfy safety and progress

properties for the parts of data structures then these operations also satisfy safety and

15

Figure 1.5: Consider again the example presented in Figure 1.1. The local-global relation
implies that the global minimum is conserved.

16

Figure 1.6: Consider again the example presented in Figure 1.2. The local-global relation
implies that edge traversal improves global path estimation.

17

Figure 1.7: Consider again the example presented in Figure 1.3. The local-global relation
implies that a permutation of the array is maintained.

18

Figure 1.8: Consider again the example presented in Figure 1.4. The local-global relation
implies that the average is maintained.

19

progress properties of the entire data structure. Then we use this generic approach repeatedly

for all the problems considered in the thesis.

1.4 Contribution and Scope

1.4.1 Reducing the Cost of Verification

Although formal methods are recognized as being beneficial in preventing software errors,

that recognition comes largely from within the research community. Part of this disparity

stems from the fact that formal methods can be difficult for non-experts to use. Formal

proofs that are mechanically verified provide high confidence in a programs correctness, but

require an understanding of predicate calculus and an expertise in a problems domain. Model

checking works by systematically checking program paths and analyzing program state in

search of various error conditions. This approach can provide detailed insight into why a

particular error might occur, but might not find such errors when a programs state space is

large [9]. Using specification languages can be difficult for large programs. Targeting where

specifications should be placed and the proper level of discourse they should display can be

difficult for developers [10].

This thesis attempts to mitigate the challenges that these tools present by developing

algorithm abstractions that are reusable, which can be done using local-global relations.

Specifically, our specification of a distributed system is independent of the algorithm run

on that system. Further, the algorithm specification is independent of the operation it is

performing. For example, consensus to a minimum value can be seen as consensus using

a monoid where the operator within the monoid is min. With respect to theorem proving,

we develop a library of theorems based on distributed algorithms using this abstraction

methodology. This can be thought of as the mathematical library that most theorem provers

provide, but with an emphasis on distributed algorithms. We are also able to focus the efforts

of model checking and code specification.

20

1.4.2 Limits to Local-Global Computations

Systems in which agents can orchestrate interactions perfectly will have better performance

than systems in which agent interactions are determined by an external mechanism. Likewise,

systems in which agents can send messages to any other agent without message loss will have

better performance than systems in which messages get lost. An issue we explore is how much

performance is lost by multi-agent systems operating in uncertain and hostile environments

compared to performance in ideal environments. This analysis evaluates the total time,

the total number of messages, and the total volume of information exchanged, in the ideal

environment and a hostile environment. If we only make fairness assumptions about agent

interactions, then the ratio between the best and worst cases can be unbounded. Therefore,

we also carry out analysis with tighter constraints on mechanisms for agent interaction.

We study algorithms for termination detection for systems in which agent interactions

are determined by external agencies. Many of the termination detection algorithms in the

literature assume that agent interactions are specified by static graphs in which vertices

represent agents and edges represent shared variables or message-passing channels. The

termination-detection algorithms studied here have to operate in an environment in which

algorithm designers do not know which interactions can occur and when.

1.5 Related Work

Frameworks for proof classification and reuse have been considered before. Lynch, for exam-

ple, has built hierarchical correctness proofs using i/o automata [11], and has applied her

idea to various distributed algorithms [12]; Jonsson champions a similar technique for i/o

systems [13]. Both define the refinement of one automata to another based, amongst other

things, on execution output traces. Unlike our work, many of the algorithms are concerned

with communication protocols. Because they start with specifications of a given system,

even their highest level of abstraction is more focused than what we consider. Moreover,

their motivation for refinement is primarily to ease the requirements of correctness proofs.

21

Figure 1.9: Thesis outline. Each box represents a chapter—its main points listed therein.

While we share in this goal, we are also trying to build a library of reusable proofs.

Simplifying formal methods for program development has been studied by Möller [14].

He approaches the problem from a very theoretical level, first defining, then applying, an

algebra of formal languages that is reusable across problem domains. As is the case in

our formalization, he identifies key properties necessary for concrete operators to posses—

associativity and commutativity, for example. He applies his formalization to sorting and

graph problems, which our formalization maps to as well (Sections 4 and 5, respectively).

1.6 Organization of the Thesis

Figure 1.9 presents a visual outline of this thesis: Chapter 2 details our system model,

including system fairness and correctness. It also introduces local-global relations, a recurring

concept throughout the thesis. Chapter 3 applies these relations to monoids within consensus

problems; Chapter 4 continues this abstraction by applying semirings to graph problems.

Chapter 5 looks at local-global relations with respect to sorting; Chapter 6 within averaging.

Chapter 7 extends Chapter 6 to study systems with external inputs. Termination detection,

error bounds for systems with changing inputs, and limits to the local-global approach are

22

discusses in Chapter 8. We conclude with Chapter 10.

23

Chapter 2

Model and Assumptions

The first section of this chapter reviews widely-used models for distributed systems. The

material is presented here for completeness. Section 2.2 introduces the basic idea of local-

global relations and algorithms that were introduced in Chapter 1.

2.1 System Model

Next, we present a brief review of labeled transition systems.

Definition 1 (Labeled Transition System) A labeled transition system is an ordered

quadruple, (S,Λ,L,_), where: S is a set of states, Λ ⊆ S a set of start states, L a set of

labels, and _⊆ S × L× S a ternary relation defining transitions between states. 2

The set of labels are associated with “actions” of agents in a distributed system; for example,

an action may be to send a message containing the current state of the agent. A state

transition is represented by

S
l

_ S ′

where S is the state before the transition, S ′ is the state after the transition, and l is the

label or the action that caused the transition. The execution of an action l when the system

is in state S may result in one of many possible next states. For example, let S, S ′ and S ′′

be states of the system; then both S
l

_ S ′ and S
l

_ S ′′ may be valid state transitions. An

example of a nondeterministic action that will be used later in the thesis occurs in distributed

24

Figure 2.1: A graphical representation of a labeled transitions system. Darkened agents
denote possible start states.

computation of averages: the action modifies the values of real variables in a set of agents

so that the average of the values remains unchanged and the sum of squares is reduced by

at least p percent. This action does not specify the precise amount by which the sum of

squares should be reduced; this action can take the system from a given state to different

next states depending on how much the sum of squares is reduced.

A labeled transition system with a finite number of states can be represented by a labeled

directed graph in which the vertices represent states and the labeled directed edges represent

transitions between states. There may be many outgoing edges with the same label from

the same vertex. In some models, actions are deterministic—for each label and each vertex

there is at most one outgoing edge with that label. In some models, such as unity [15],

actions are deterministic and any action can be executed in any state (though the action

may be a skip which does not change the state); in the corresponding graph model, for each

label and each vertex, there is exactly one outgoing edge with that label.

An execution of a transition system is a sequence of state transitions, starting from an

initial state, where the end-state of each transition is the start-state of the next transition.

{
(S, l, S ′)i | S

l
_ S ′

}

25

where i ∈ N0, l ∈ L, and S, S ′ ∈ S. In terms of the graph, an execution is a path in the

graph starting at an initial state represented by a root vertex (Figure 2.1). It is sometimes

convenient to denote the execution in a sequential, rather than set-builder, notation:

S0
l0_ S1

l1_ . . .
li_ Si

li+1

_ . . . ,

where S0 ∈ Λ and ∀i ∈ N0 : (Si, li, Si+1) ∈_. We make the assumption made in unity

that for each label l and each state S there is at least one transition from S, which may

be a “skip” from S back to itself. This assumption simplifies the model when we discuss

fairness. Because of this assumption, for each state S there exists an infinite execution from

S, though that execution may remain in the same state forever.

2.1.1 Distributed Systems

A distributed system is a fixed finite set A of agents and a labeled transition system that

has the following properties. Let N be the number of agents. Associated with each agent v

is a set Tv of agent states and a subset of these states called the initial states of v. In most

of the applications studied in this thesis all agents have the same sets of agent states; so, we

drop the subscript v and refer to the set of agent states as T . The properties we require of

a distributed system are:

1. A state in the transition system is an N -tuple of agent states, where N ∈ N0. We refer

to a state of the transition system as a global state or system state, and to the state

of an agent as a local state or an agent state.

2. Each transition leaves the states of some subset of agents unchanged and may change

the states of agents that are not in the set. We use the label l ∈ L for any transition

that may change the states of a set l of agents while leaving the states of agents not

in l unchanged.

3. The initial global state is a tuple of initial agent states.

26

Channels and message communication media are modeled as agents. For example, the mes-

sage communication medium described in the previous chapter is modeled as a set of messages

in transit. The state transition corresponding to delivering a message from this set to an

agent v may change the state of the communication medium and agent v but leave the states

of all other agents unchanged.

We use S(k) to denote the state of an agent k when the global state is S. A global state

is represented either as an N -tuple or as a set {(k, S(k)) | k ∈ A ∧ S ∈ S} of pairs. We

denote the restriction of S to a subset of agents K ⊆ A by S|K .

S|K = {(k, S(k)) | k ∈ K} .

2.1.2 Fair Executions

An execution in which agents in one subset K never interact with agents in the complemen-

tary set cannot reach a global consensus or reach other global goals because agents in K never

have information about agents that are not in K. Therefore we restrict infinite executions

to have certain fairness properties.

Many models have fairness criteria that all actions are executed infinitely often in an

infinite execution. Thus, in these models, for each point t in an infinite fair computation, for

each action l, there is a later point t′ at which action l is executed. Most of the programs

discussed in this thesis rely on a weaker model: We only require that the set of agents are

not permanently partitioned into subsets K and K̄ where no action is executed that includes

agents in both K and K̄ (see Figure 2.2). The fairness criterion in this case is that for every

non-empty proper subset K of agents: actions that are executed jointly by agents in both K

and K̄ are executed infinitely often in an infinite fair execution.

Consider a system with agents indexed k = 0, 1, 2, 3. For any non-empty proper subset,

such as K = {0, 1}, actions that span both K and its complement are, for example, actions

that include agents in the sets {0, 2}, or {0, 3}, or {1, 2}, or {1, 3}, or {0, 2, 3}, and so

forth, through the full set {0, 1, 2, 3}. The fairness criteria is that at each point t in the

27

Figure 2.2: In a fair execution, agents will never be permanently partitioned. During an exe-
cution, agents communicate within groups; K and J above, for example. However, infinitely
often, eventually agents will communicate across these partitions, such as the darkened
agents above.

computation there is a later point t′ at which one of these actions is executed in an infinite

fair computation. Let FK be the set of actions that include an agent from K and an agent

from K̄; then the fairness requirement is that each point t in an infinite fair computation

there is a later point t′ at which one of the actions in FK is executed.

A different set of agents, say J = {0, 2}, also has a fairness requirement to ensure that

agents in J can interact with agents outside J . This reasoning gives us the following fairness

requirement:

Definition 2 (Fair Execution) A fairness condition F for a set of transitions is a finite

collection {Fi}ni=1, where each Fi is a non-empty subset of L. An infinite sequence of actions

l1, l2, . . . is fair if and only if

∀F ∈ F , ∀n ∈ N0, ∃m ∈ N0 : m > n ∧ lm ∈ F.
2

Definition 2 requires that infinitely often a spanning tree of the communication graph is

formed, regardless of which spanning tree that is. This specification is a weaker model

of fairness than traditional weak fairness assumptions [16]. By reducing all FK ∈ F to

particular singleton subsets, a model of traditional weak fairness can be formed.

28

Figure 2.3: A local-global relation. Consider the transition S
K
_ S ′, denoted above. The

“local” minimum value—the minimum value of the subset of agents K—in S is equal to the
local minimum value in S ′. Likewise, when the minimum value over the global state of the
system is calculated, that value is also equal in both S and S ′ as well.

2.2 Local-Global Relations

As we discussed in the previous chapter, we study a class of algorithms in which the compu-

tational steps taken by any subset of agents that participate in an action are the same as the

steps taken if all the agents in the system participate in an action. In other words, the steps

taken by any subset of agents in an action are the same as those taken by a single, central

process with access to all the data. We used the simple example of computing the minimum

of a set of values: if all the agents in a system can participate in an atomic interaction then

each agent sets its value to the minimum of the values of all the agents. Likewise, when all

the agents in any subsystem participate in an interaction, each agent sets its value to the

minimum of the values of all agents in the subset.

Many problems cannot be solved by algorithms in this manner; that is, in which local

actions of agents in a distributed system are identical to the actions of a single central

process. Some interesting problems, however, can be solved in this way. Here we explore

some properties of problems that allow for the development of such algorithms.

We motivate the definition by continuing use of the simple example of computing the

29

minimum. Let the global state of the system, with agents indexed 0, 1, 2, be

{(0, 5) , (1, 7) , (2, 4)} ,

where a pair (k, S(k)) identifies an agent k and its state S(k). When any set K of agents

participates in an interaction, each agent in K sets its value to the minimum of the values of

all agents in K. For example, if agents 0 and 1 participate in an interaction then the global

state after the interaction is

{(0, 5) , (1, 5) , (2, 4)} .

The minimum of the values of the agents in K—the value 5—is not changed by the action.

Moreover, the minimum of the values of all the agents in the system—the value 4—is not

changed by the action either. This property is an example of a conservation law: if a property

is conserved locally then it is also conserved globally. We capture this notion by the following

definition of a local-global relation between states. The form of the conservation law for the

minimum example is:

(min({S(k) | k ∈ K}) = min({S ′(k) | k ∈ K}))
∧

(∀j /∈ K : S(j) = S ′(j))

=⇒

min({S(k) | k ∈ A}) = min({S ′(k) | k ∈ A}).

We generalize this idea to local-global relations between states of sets of agents.

Definition 3 (Local-Global Relation) Let � be a transitive binary relation between

system-states. A local-global relation follows

∀K ⊆ A, j /∈ K :
(
S|K � S ′|K

∧
S(j) = S ′(j)

)
=⇒ S|A � S ′|A.

2

An example of a relationship that is not local-global is for a collection of agents to compute

their second minimum value, denoted min2. That is, rather than taking the smallest value

of a set after an interaction, agents take the second smallest value. Again, let the global

30

state of the system be

{(0, 5) , (1, 7) , (2, 4)} .

The second smallest value in the system is 4, which the agents should agree upon at some

point during the execution. However, consider the case where agents 1 and 2 interact; the

global state of the system is updated as follows

{(0, 5) , (1, 7) , (2, 7)} .

In this post-interaction state, the correct consensus value is lost and the local-global relation

is violated:

min2({7, 4}) = min2({7, 7}) ; min2({5, 7, 4}) = min2({5, 7, 7}).

The equality relation holds in the antecedent, 7 = 7, but not in the consequent, where 5 6= 7.

Theorem 1 (Reduced Local-Global Relation) Let � be a transitive binary relation be-

tween system-states. If

∀K ⊆ A, j /∈ K :
(
S|K � S ′|K

∧
S(j) = S ′(j)

)
=⇒ S|K ∪{j} � S ′|K ∪{j}

holds where K is not empty, then � is a local-global relation. 2

Proof The proof is by reverse induction on K: We first prove the theorem for the full set of

agents. We then assume its correctness for a general set of agents, and use this assumption

to show correctness for a smaller set. This scheme is formally outlined in Section A.1.

Base Case Let K be the full set of agents A:

∀S, S ′ ∈ A : S|A � S ′|A ∧ ∀j /∈ A : S(j) = S ′(j) =⇒ S|A � S ′|A.

This holds trivially since there are no agents not in A.

31

Inductive Step For all S, S ′ ∈ A,

S|K ∪{k} � S ′|K ∪{k} ∧ ∀j /∈ (K ∪ {k}) : S(j) = S ′(j) =⇒ S|A � S ′|A
∧

(2.1)

S|K � S ′|K ∧ ∀j /∈ K : S(j) = S ′(j) (2.2)

=⇒

S|A � S ′|A, (2.3)

where k /∈ K. Equation 2.3 follows directly from the consequent in Equation 2.1;

however, to use that consequent we must discharge its antecedent—a two-step process

because of the conjunction. Assuming Equation 2.2,

1. S|K � S ′|K =⇒ S|K ∪{k} � S ′|K ∪{k}, which follows by assumption.

2. ∀j /∈ K : S(j) = S ′(j) =⇒ ∀j /∈ (K ∪ {k}) : S(j) = S ′(j), which holds since

(A \ (K ∪ {k})) ((A \K). �

The local-global theory is very general: it talks about neither the nature of the commu-

nication nor the computation, that takes place between agents. Thus, assuming that the

computation is done locally, the local group size determines the amount of time required to

solve a given problem. In the worst case, a set of agents performs only pairwise calculations;

while the best case is one in which all agents form a single group after system initialization.

Another method for use the local-global framework is for agents to only exchange infor-

mation about their initial state, and perform the computation “offline” once they have a

complete understanding of the global state. In theory, such a methodology is acceptable as

long as the implicit assumptions about our framework are obeyed:

1. commutativity of the operation is preserved. If agents are to perform the computation

over the global state of the system, the order in which they process individual agent

values should not matter;

2. agents must exchange the aggregate state of all agents they have encountered. If they

only exchange their local-state, a stronger fairness assumption than they one relied on

32

in this thesis is required;

3. and, a protocol for determining when all states of all agents have been exchanged must

be put in place. Without such knowledge, agents will never perform the underlying

computation. Although the local-global framework as we have presented it does not

mention termination, as we will see in Section 2.3.2, the system still makes incremental

progress during execution.

In practice, performing delayed global computation is not always practical; for instance,

when a large number of agents are in the system. In this case, an implementation may fail

or perform poorly due to memory and computational constraints. By performing solving the

problem locally, our framework deals with such issues in-place.

2.3 Correctness

2.3.1 Invariants

An action l is said to satisfy a local-global relation � if and only if any transition from state

S to any state S ′ due to execution of action l satisfies S|K � S ′|K . Formally,

∀l ∈ L, K ⊆ A : K = l ∧ S
l

_ S ′ =⇒ S|K � S ′|K . (2.4)

Theorem 2 (Maintaining Local-Global Relations) If all actions of a transition system

satisfy a local-global relation, then the system has the following invariant:

Invariant : S0|A � St|A.
2

Proof of Theorem 2 follows from transitivity on �.

Corollary 1 (Conservation) Let f be a function from states of sets of agents to some

33

type. Consider � defined as

∀K ⊆ A : S|K � S ′|K ≡ f(S|K) = f(S ′|K).

If all actions of a transition system satisfy �, then an invariant of the system is

Invariant : f(S0) = f(S).
2

Corollary 2 (Non-increasing) Let f be a monotone function from states of sets of agents

to some totally ordered set. Consider � defined as

∀K ⊆ A : S|K � S ′|K ≡ f(S|K) ≥ f(S ′|K).

If all actions of a transition system satisfy �, then an invariant of the system is

Invariant : f(S0) ≥ f(S).
2

2.3.2 Progress

Let d be a function from states to a partially ordered set P that has a unique lower bound,

G be an invariant of the system, and Q be a predicate on global states of the system. We

are interested in sufficient conditions for proving that eventually Q holds. This section lays

the ground work for that proof by showing that there are only two possible outcomes for a

given fair execution: either Q holds, or d strictly decreases. The following theorem is taken

from the literature [17]; we state it here without proof.

Theorem 3 (System Progress) [17] If the following hold

D1. ∀k ∈ A, K ⊆ A : G(S) ∧ S K
_ S ′ =⇒ d(S) ≥ d(S ′)

D2. ∃FK ∈ F ,∀K ∈ FK : G(S) ∧ ¬Q(S) ∧ S K
_ S ′ =⇒ d(S) > d(S ′),

34

then, for all executions, either

E1. for all p ∈ P , if d(S) = p at any point in an execution, then there is an infinite suffix

of the execution where d(S) < p for all states in the suffix:

∀p ∈ P : 2 (d(S) = p =⇒ 32 d(S) < p) ,

or

E2. every execution has a suffix where Q holds at every point in the suffix:

32 Q(S ′).
2

Theorem 4 (Local-Global System Progress) If the following hold

H1. ∀K ⊆ A : G(S) ∧ S K
_ S ′ =⇒ d(S|K) ≥ d(S ′|K)

H2. ∃F ∈ F ,∀K ∈ F : G(S) ∧ ¬Q(S) ∧ S K
_ S ′ =⇒ d(S|K) > d(S ′|K), and

H3. d is a local-global relation with respect to > and ≥,

then, for all complete executions, either E1 or E2 holds. 2

Proof Since d is a local-global relation, the following implications hold by definition:

d(S|K) ≥ d(S ′|K) =⇒ d(S) ≥ d(S ′)
∧

d(S|K) > d(S ′|K) =⇒ d(S) > d(S ′).
�

2.4 Related Work

The impact that local interactions can have on the global state of a system has been studied

before to different extents and within different contexts. At a very abstract level, biologists

35

have considered such dynamics when studying living systems, such as molecular develop-

ment [18, 19] and swarm intelligence [20, 21]. Understanding the nature of such biological

systems well enough to mimic their behavior in computing systems is a focus of the amor-

phous computing [22, 23] and self-assembly communities. Although they have different ap-

proaches, both areas study how autonomous processes can build structures or create patterns.

Instead of having a blueprint for the final product, these processes possess only instructions

on how to interact. The challenge for scientists is to formally describe these instructions.

To this end, graph grammars have been considered [24, 25] and new languages developed—

growing point language (GPL) [26], origami shape language (OSL) [27], and Proto [28], for

example. These efforts take more of an engineering stance toward the process, concentrating

on the primitives for solving specific problems, rather than on understanding the advantages

and limitations of local interactions.

Recent work by Daniel Yamins has been an attempt to bridge this gap. He too is explicitly

interested in formally explaining global structures built from local rules. To characterize

local interactions, Yamins defines a function intended to be run over some set of agents, and

a means of composing that function—similar to our transition semantics. In early work,

his primary applications is to the one-dimensional equigrouping problem [29, 30]. Later

work applies this model to other formation problems, and offers deeper insight into its

implications [31, 32, 33]. While Yamins is also interested identifying local interactions in

much the same way we do, he does not consider it for proof reuse. Interesting future work

would be for us to apply our model to his examples.

While local-global relations are meant to ensure global system behavior from local prop-

erties, other work, such as Law Governed Interaction (LGI) [34, 35], looks to ensure it at run

time. LGI is a framework for the specification and enforcement of local interaction policies;

the idea being that global system behavior is a product of correct local interactions. When

implemented, LGI is a middleware that mediates agent communication to ensure that a set

of predefined laws are being obeyed. Such laws are defined by a system architect and, like

our formalization, can inherit from one another [36, 37]. The framework has been applied to

various problems, such as spam detection [38] and electronic commerce [39], making it a very

36

generic solution. Indeed, LGI could enforce that agent interactions fit our local-global model.

Moreover, we make the assumption that all agents within the system are homogeneous with

respect to their state update—LGI could be utilized to verify this assumption at run time.

Locally stable predicates are another means of identifying global system properties based

on local, per-agent, information. A predicate is defined to be locally stable if it holds

eventually-always for a subset of agents [40, 41]. Work in this area has focused mostly

on termination and deadlock detection: algorithms analyze subsets of global snapshots to

make a decision about the global state of the system. The analysis can be reduced to Boolean

algebra, which is an example of a local-global relation as we have defined them. Thus, locally

stable predicates can be described using our framework.

Local-global relations are an implicit part of distributed computing. As discussed, there is

a wide body of research on understanding, and controlling, their role in problem development;

especially given the complexity of contemporary computing systems [42]. Our contribution

is to make them an explicit part of algorithm design and analysis.

37

Chapter 3

Consensus Using Monoids

Given a set of agents, the goal of a distributed consensus algorithm is for all agents to come

to a consensus value. In this chapter we consider distributed consensus problems specified

as follows. Let S0 be the initial state of the system with S0(k) the initial value of the agent

indexed k. Desired consensus states are specified as a function f from global states S to

local states, T :

f : S → T .

In the case of the example of computing the minimum, the desired consensus agent state is

the minimum of the values of the initial agent states.

A consensus global state S? is one in which all agents k0, k1, . . . , kn−1 are in the consensus

agent state f(S0),

S? = {(k0, f(S0)) , (k1, f(S0)) , . . . , (kn−1, f(S0))} .

In this chapter we consider problems that require the system to enter, and remain thereafter,

in the consensus state S?. That is, in any infinite fair computation, if S0 is the initial state

then eventually the computation enters a point after which the state is always S?; in the

notation of temporal logic:

S0 =⇒ 32 S?.

In later chapters we will consider problems that require the system to converge to a consensus

38

state in the limit.

This chapter restricts attention to functions f which is a folding [43, 44] of the initial

values of the agents with an operator ⊕; for example, if the agents are indexed k = 0, . . . , n−

1, then

f(S) = S(0)⊕ S(1)⊕ . . .⊕ S(n− 1). (3.1)

In the case of computing the minimum, ⊕ is the min operator. We restrict attention to

operators ⊕ that are associative and commutative and have an identity element. Thus, the

agent states and the operator form a commutative monoid [45]. For completeness we review

the definition of monoids.

Definition 4 (Monoid) A monoid consists of the pair, 〈T,⊕〉, where T is a set of elements,

and ⊕ is a binary operation on those elements. The operator ⊕ is associative and closed

over T , and there exists an identity element in T :

∃a ∈ T,∀b ∈ T : a⊕ b = b⊕ a = b.
2

A monoid is said to be commutative if ⊕ is also commutative with respect to T . For

the remainder of this chapter, we restrict attention to commutative monoids where the

operator ⊕ is idempotent:

∀a ∈ T : a⊕ a = a.

We first give lemmas without assuming idempotence, and later give lemmas that assume it.

3.1 Theorems about Monoids

The previous chapter introduced local-global relations and their applicability to distributed

algorithms. This chapter illustrates the central goals outlined in the previous chapter; the

illustration uses monoid structures. Later chapters use other algebraic structures. Next we

give and prove theorems about monoids. The proofs that are mechanically verified in the

theorem-proving system, PVS, are given in the appendix (Section A.2).

39

Figure 3.1: An example of monoid composition. Consider a system transition, S
K
_ S ′,

where the K is the set of blue agents. The monoid applied during a transition is 〈N0,min〉,
with an identity element of ∞. The sequence of min applications (pictured between states)
is an example of how an agent within K uses composition (Definition 6) to update its state.

Definition 5 (Monotonic) Let ≥ be an ordering relation over elements in T , where ∀a ∈

T : a ≥ a. A binary operation, ⊕ : T → T , is monotonic when

∀a, b, c ∈ T : a ≥ b =⇒ a⊕ c ≥ b⊕ c.
2

Let ⊕ be the min operator. An example of Definition 5 follows

a ≥ b =⇒ min(a, c) ≥ min(b, c).

Definition 6 (Monoid Composition) Let 〈T ,⊕〉 be a commutative monoid with identity

element 0̄, where ⊕ is also monotonic. Recall that T is the type of the agent state. Let

K ⊆ A. The
⊕

operation is defined to be the following composition function over the

monoid:

⊕
k∈K

S(k) =


0̄ if K = ∅,

∀j ∈ K : S(j)⊕
⊕

i∈K\{j}

S(i) otherwise.
(3.2)

2

Figure 3.1 provides a visual example of Definition 6 where the operation is min. From here,

it is left to show that this interaction is local-global. We outline a series of lemmas building

to this proof.

40

Lemma 1

⊕
k∈K ∪{j}

S(k) =
⊕
k∈K

S(k)⊕

0̄ if j ∈ K,

S(j) otherwise.
2

Proof There are two cases to consider: where j is a member of K, and where it is not. In

the former, the lemma holds since 0̄ is the identity element:

j ∈ K =⇒
⊕
K ∪{j}

S =
⊕
K

S ⊕ 0̄

=⇒
⊕
K

S =
⊕
K

S ⊕ 0̄

=⇒
⊕
K

S =
⊕
K

S.

The second case holds by definition

k ∈ K ∪ {k} =⇒
⊕

K ∪{k}

S = S(k)⊕
⊕

K ∪{k}\{k}

S
∧

(3.3)

k /∈ K ∪ {k}

=⇒⊕
K ∪{k}

S = S(k)⊕
⊕
K

S, (3.4)

where 3.3 is the definition of fold with K = K ∪ {k}. We can safely assume the antecedent

in 3.3, since k ∈ K ∪ {k} is a tautology. Further, K ∪ {k} \ {k} = K. Such rewrites

render 3.3 equal to 3.4, and the theorem follows. �

41

3.2 System Correctness

Theorem 5 (Monoid Composition is Local-Global) Let ≥ be a transitive relation on

elements in T .

⊕
k∈K

S(k) ≥
⊕
k∈K

S ′(k) ∧ S|{j} = S ′|{j} =⇒
⊕

k∈K ∪{j}

S(k) ≥
⊕

k∈K ∪{j}

S ′(k),

where j /∈ K. Note, that when the relation is equality:

⊕
k∈K

S(k) =
⊕
k∈K

S ′(k) ∧ S|{j} = S ′|{j} =⇒
⊕

k∈K ∪{j}

S(k) =
⊕

k∈K ∪{j}

S ′(k).

2

Proof Follows from Lemma 1 and assumed monotonicity of ⊕ with respect to ≥. �

Definition 7 (Consensus Transition) A transition, S
K
_ S ′ is ≥-preserving if and only if

S
K
_ S ′ =⇒

⊕
k∈K

S(k) ≥
⊕
k∈K

S ′(k).

2

Corollary 3 (Local-Global Invariant Property) If all state transitions preserve ≥, then

Invariant :
⊕
k∈A

S0(k) ≥
⊕
k∈A

S(k).

If all state transitions preserve =, then

Invariant :
⊕
k∈A

S0(k) =
⊕
k∈A

S(k).

2

Proof Follows from Theorem 5 and Theorem 2. �

We have shown that the general monoid structure fits our local-global framework. What

remains to be shown are that concrete instantiations of the monoid fit the assumed algebraic

42

properties outlined in its definition (Definition 4). Others have used recursive operators to

simplify inductive proofs [43, 44] for sequential algorithms but not for distributed systems.

Progress

We use Theorem 3 to prove progress. Recall that the theorem requires an invariant of the

system G, along with a predicate Q and distance function d on the state space. We introduce

a mapping g : S ×A → 2A to facilitate the definition of these elements. An invariant of the

system is that for all agents k the state S(k) is the ⊕ operator applied to all elements of

some set K of agents; let g(S, k) be the largest such set. Initially,

∀k ∈ A : g(S0, k) = {k} .

When agents interact, the mapping is updated:

S
K
_ S ′ =⇒ g(S ′, k) =

g(S, k) ∪
⋃
j∈K g(S, j) if k ∈ K,

g(S, k) otherwise.

Definition 8 (Progress Variables) The predicates G and Q on the state space of the

system are

G(S) ≡ ∀k ∈ A : S(k) =
⊕

j∈g(S,k)

S0(j)

Q(S) ≡ ∀k ∈ A : g(S, k) = A.

The variant, or Lyapunov, function d is

d(S) = n−
∑
k∈A

|g(S, k)|

where n is the number of agents in the system, n = |A|. 2

43

Figure 3.2: Evolution of the variant function g during an execution. Darkened nodes repre-
sent the range of g when applied to agent b in a given state; agent interactions are under-
scored. For example, in state S2, agents c and d interact, while g(S2(b) = {a, b}. Note that
the transition from S3 to S4 completes the communication graph for agent b even though b
has only participated in two transitions.

The predicate G holds in state S if the state of each agent is equal to ⊕-composition of

the start state, restricted to agents in g; see Figure 3.2 for a visual interpretation. The

predicate Q holds in S if the set defined by g holds all agents in the system. Finally, the

distance function d is a measure of partitioned agents in a given state.

Lemma 2 The predicate G is an invariant of the system. 2

Proof The proof is by induction on S:

Base Case Consider the start state, G(S0):

S0(k) =
⊕

j∈g(S0,k)

S0(j)

=
⊕
j∈{k}

S0(j)

= S0(k).

44

Inductive Step Assume G(St) and St
K
_ St+1. Let J =

⋃
j∈K g(S, j). It follows that,

St+1(k) =
⊕

j∈g(St+1,k)

S0(j)

=
⊕

j∈g(St,k)∪ J

S0(j).

Because J ⊆ A the equation holds from properties on the monoid. �

Theorem 6

∀k ∈ A, K ⊆ A : G(S) ∧ S K
_ S ′ =⇒ d(S) ≥ d(S ′)

2

Proof From the definition of actions,

S
K
_ S ′ =⇒ g(S, k) ⊆ g(S ′, k)

=⇒ |A \ g(S, k)| ≥ |A \ g(S ′, k)|

=⇒ d(Sk) ≥ d(S ′k)

=⇒ d(S) ≥ d(S ′). �

Theorem 7

∃FK ∈ F ,∀K ∈ FK : G(S) ∧ ¬Q(S) ∧ S K
_ S ′ =⇒ d(S) > d(S ′)

2

Proof By definition,

¬Q(S) =⇒ ∃k ∈ A : g(S, k) 6= A.

Using this to choose our instance of FK ∈ F :

FK = {(j, k) | k ∈ g(S, k) ∧ j /∈ g(S, k)} .

45

A similar argument to the proof of Theorem 6 follows1

S
(j,k)
_ S ′ =⇒ g(S, k) (g(S ′, k)

=⇒ d(S) > d(S ′). �

3.3 Instantiations of Monoids

Thus far, our theory has been presented in terms of the generic operator ⊕. The advantage

of our abstract theory is that when applying it to concrete examples, proofs of system

correctness are reduced to algebraic proofs on monoid instances.

Example 6 (Min/Max) We briefly discussed a system built around the minimum operator

earlier in this section. To review, the objective of the system is for each agent to contain

the lowest value in the system. The dual of this algorithm is for agents to end up with the

maximum value. We consider both cases.

Proof Obligation

For a total order Z, 〈Z,min〉, with identity element +∞, forms a commutative

monoid that is idempotent. The local-global relation is equality.

• ∀a ∈ Z : min(a,+∞) = a

• ∀a, b ∈ Z : min(a, b) ∈ Z

• ∀a, b ∈ Z : min(a, b) = min(b, a)

• ∀a, b, c ∈ Z : min(a,min(b, c)) = min(min(a, b), c)

A similar set of obligations exist for max.

1Where ≥ is replaced by >.

46

Definition 9 (Min and Max) The minimum and maximum values over a set of natural

numbers S is defined:

min: i, j → if i < j then i else j

max: i, j → if i < j then j else i. 2

When calculating the minimum consensus, the monoid is 〈N0,min〉; when finding the maxi-

mum consensus, the monoid is 〈N0,max〉. Proofs that these structures fit a monoid can be

found in Section A.2.2. In either case, the relations ≥, in the case of min, and ≤, in the case

of max, could be substituted for equality. We consider this relation in Chapter 4. 2

Example 7 (GCD/LCM) The objective of the system is to agree on the greatest com-

mon divisor (gcd) or least common multiple (lcm) of the agents. Before discussing their

applicability to monoids and local-global relations, we provide a definition.

Proof Obligation

For a total order N1, 〈N1, lcm〉, with identity element 1, forms a commutative

monoid that is idempotent.

• ∀a ∈ N1 : lcm(a, 1) = a

• ∀a, b ∈ N1 : lcm(a, b) ∈ N1

• ∀a, b ∈ N1 : lcm(a, b) = lcm(b, a)

• ∀a, b, c ∈ N1 : lcm(a, lcm(b, c)) = lcm(lcm(a, b), c)

A similar set of obligations exist for gcd.

Definition 10 (Divisibility)

divides : i, j → ∃x : j = i× x
2

47

Definition 11 (LCM and GCD)

gcd: i, j → max
(
{k | divides(k, i) ∧ divides(k, j)}

)
lcm: i, j → min

(
{k | divides(i, k) ∧ divides(j, k)}

)
where i, j, and k are all positive natural numbers.2 2

For lcm consensus, the proper monoid is 〈N1, lcm〉; for gcd the monoid is 〈N0, gcd〉. In both

cases, the local-global relation is equality. Formal proofs can be found in Section A.2.2. 2

Example 8 (Convex Hull) The convex hull of a given set of points is the minimum set

of points in which all other points are contained. Agent state consists of a set of coordinates

on a plane. They maintain their current position, as well as set of points that represent the

convex hull. Denote by Ch : P → P the convex hull of a set of points that produces another

set of points. When agents interact, they exchange coordinate information and apply Ch to

update their current knowledge about the convex hull. The objective of the system is for

all agents to agree on what the convex hull is. The monoid that describes this algorithm

is 〈R, Ch〉, where equality is the local-global relation.

2In the case of lcm, it is imperative that neither i nor j be zero. For gcd, however, this condition can
be relaxed: either variable can be zero, but not both. In the case of our proof sketch, we assume the
lcm conditions for both operators; in our formal setting, however, gcd’s possible zero value is taken into
consideration.

48

Proof Obligation

For a total order T , 〈T , Ch〉, with identity element ∅, forms a commutative monoid

that is idempotent.

• ∀a ∈ T : Ch(a,) = a

• ∀a, b ∈ T : Ch(a, b) ∈ T

• ∀a, b ∈ T : Ch(a, b) = Ch(b, a)

• ∀a, b, c ∈ T : Ch(a, Ch(b, c)) = Ch(Ch(a, b), c)

Proofs of such can be found in Section A.2.2. 2

3.4 Message Passing

Consider a lossy message-passing medium discussed earlier where messages may be lost,

duplicated an delivered out of order. The fairness requirement is that for any set K of

agents, a message from some agents in K̄, the complement of K, reaches some agent in K

infinitely often.

We treat the communication medium as an agent with a different state space. Let M

be the state of the communication medium; then M is a bag, or multiset, of messages in

transit. Proof of the invariant

Invariant :

(⊕
k∈A

S0(k) =
⊕
k∈A

S(k)

) ∧ (⊕
k∈A

S0(k) =
⊕
k∈A

S(k)⊕
⊕
m∈M

S(m)

)

follows from the properties of monoids. Proof of the progress property is identical to the

case where agents interact directly without messages since the monoid is assumed to be

idempotent.

49

Chapter 4

Distributed Path Computations using
Semirings

Consider a distributed computation of shortest paths in a directed graph in which there is

an agent at each vertex. An agent’s state includes information about the weights of edges

incident on that agent’s vertex. We assume that the graph is strongly connected and that

there are no negative-weight cycles in the graph. All agents compute the length of the

shortest path to them from a special agent called the “source.” The problem of computing

the path from the source to all agents, is called the single-source problem; it can be extended

in a straightforward way to the all-points shortest path problem in which all agents compute

the lengths of the shortest paths to all other agents.

This problem occurs in Internet protocols in which each router determines the minimum-

congestion paths to other routers. Distributed algebraic computations are abstractions of

distributed shortest-path computations in which distances, possibly real numbers, and the

operations of minimum and addition are replaced by operations in a semiring. The goal, as

described in the first chapter, is to reuse abstract theorems that are verified by a mechanical

theorem proving system for multiple concrete implementations. The same goal and method

were used in the previous chapter; in this chapter we use semirings whereas we used monoids

in the previous chapter.

50

4.1 Central Idea

We describe the idea starting with the shortest path algorithm. Assume that vertices are

indexed k = 0, 1, . . . , N − 1, for N > 0. Let W [j, k] be the weight of the edge from vertex j

to vertex k if the directed edge (j, k) exists. The problem is to compute the shortest path

from a vertex, called the “source,” to all other vertices. Let us assume that the source is

vertex 0. If there is no path from the source to a vertex k, then the length of the shortest

path to vertex k is infinity. Let D[k] be the length of the shortest path from vertex 0 to

vertex k. Since no cycles of negative length exist, D[0] = 0.

Each vertex is associated with an agent. The state of agent k includes the values of the

edge weights W [j, k] for all j, and the set of vertices to which there there is an outgoing edge

from k.

A distributed version of the well-known sequential algorithm is as follows. Associated

with each agent k is a local variable w[k] which eventually becomes D[k], the shortest

distance from the source to vertex k. Also, each agent k has a local variable parent[k] which

eventually becomes the prefinal vertex on the shortest path from the source to k; in other

words a shortest path from the source to vertex k goes from the source to vertex parent[k]

and then traverses the edge from parent[k] to k.

Initial Condition The initial condition of the algorithm is:

w[source] = 0

∀k 6= source : w[k] =∞

∀k : parent[k] = source.

Rules of the Algorithm The algorithm is given by a set of rules, with one rule for each

ordered pair, (j, k):

if w[k] > w[j] +W [j, k] then

w[k]← w[j] +W [j, k]

parent[k]← j

51

end if.

We refer to the inequality condition as the triangle property.

Rules are selected non-deterministically. The fairness criterion is that every rule is

executed infinitely often.

Invariant An invariant of the algorithm is that for all k, w[k] is either infinity or it is the

length of a path from the source to k that goes from the source to parent[k] and then

along the edge from parent[k] to k. We give a proof of this invariant for the general

case of semirings later.

Progress We prove progress using a variant function in the usual way: we show that (i) for

all actions, execution of the action does not increase the value of the variant function,

and (ii) if the desired predicate is not reached then there exists an action that is

executed infinitely often that decreases the variant function.

A variant function for this problem is as follows. For each vertex k, rank order all the

cycle-free paths from the source to a vertex k in increasing order of distance and index

the paths with 0, 1, 2, . . . in the sequence, with the shortest path having index 0 and a

fictitious path of infinite length having the largest index. There are a bounded number

of such cycle-free paths in a finite graph. In each state, the value of w[k] corresponds

to a path from the source to vertex k and therefore corresponds to an index in this

sequence; let us call this index r[k]. The variant function f is the sum of the indexes

of all agents.

f =
∑
k∈A

r[k]

We first show that the variant function does not increase in value as computation

proceeds. For any agent k, the execution of any action decreases w[k] or leaves it

unchanged; therefore the execution of any action does not increase r[k].

We next show that if the desired predicate (for all k, w[k] = D[k]) does not hold then

there exists some action, which is executed infinitely often, and which decreases the

52

variant function. To do so we show that if the desired predicate does not hold then

there exists some edge (j, k) such that the triangle property does not hold:

w[k] 6> w[j] +W [j, k].

Discussion Consider another path problem, such as computing reachability of vertexes

from a source vertex. We could carry out a similar argument as for the shortest path

problem. The use of abstract algebra reduces the amount of work required to prove

the correctness of distributed algorithms for similar sorts of problems.

The arguments for correctness of the algorithm given above cannot be verified by a

mechanical proof checker. This is because the arguments use natural, English-like,

language to talk about concepts in graphs. A great deal of effort is required to develop

proofs that can be verified by a program; this effort is amortized over several problems

by presenting and proving an algorithm using data structures from abstract algebra.

4.2 Semirings

We extend the monoid introduced in Section 3.1 and applied in Chapter 3, to semirings.

Definition 12 (Semiring) A semiring consists of the quintuple, 〈T ,⊕,⊗, 0̄, 1̄〉, such that

• 〈T ,⊕〉 is a commutative monoid with identity element 0̄,

• 〈T ,⊗〉 is a monoid with identity element 1̄,

• ⊗ distributes over ⊕, and

• 0̄ is an annihilator1 when used with ⊗. 2

Definition 13 (Idempotent Semiring) An idempotent semiring is a semiring where

1∀a ∈ T : a⊗ 0̄ = 0̄

53

• ⊕ is idempotent, and

• 1̄ is an annihilator for ⊕. 2

Theorem 8 (Semiring Partial Order) Given an idempotent semiring, � defines a par-

tial order over T such that ∀a, b ∈ T : b � a ⇐⇒ a⊕ b = a. 2

Proof Reflexivity follows directly from the definition and idempotence. Anti-symmetry:

a = a ⊕ b = (a ⊕ b) ⊕ b = (b ⊕ a) ⊕ b = b ⊕ b = b. Transitivity: a = a ⊕ b = a ⊕ (b ⊕ c) =

(a⊕ b)⊕ c = a⊕ c. �

Theorem 9 (Bounded Semiring) Given an idempotent semiring,

∀t ∈ T : 0̄ � t � 1̄.
2

Proof From Definition 12, t⊕ 0̄ = t; by Theorem 8, t⊕ 0̄ = t =⇒ 0̄ � t. Likewise, from

Definition 13, t⊕ 1̄ = 1̄; by Theorem 8, t⊕ 1̄ = 1̄ =⇒ t � 1̄.2 �

As an addendum to Definition 13, we assume that ⊕ is monotonic with respect to �.

4.3 System Specification

System state is a mapping from agents to pairs:

S : A →
(
o : A → T , i : (A, T)

)
where

o is an agent’s set of neighbors and the cost associated with contacting them. Unless an

agent is fully connected, this function is partial. Moreover, the range defines the set

2Note that in some texts, Theorem 8 is presented as a � b ⇐⇒ a ⊕ b = b. In this case the bounded
ordering is reversed: 1̄ � t � 0̄. The proof is symmetric.

54

Figure 4.1: Components of agent state as it relates to an arbitrary graph.

of neighbors an agent is able to communicate with. In problems we consider, both the

range and domain of o are static throughout an execution.

i is the parent of a given agent and value of the edge connecting them. Unlike o, this value

is not a set and is mutable over an execution. We use subscript notation to denote the

extraction of an element from i: Si,1 : A → A, and Si,2 : A → T .

In this way, the state of the system is a distributed representation of a directed, weighted,

graph: the function o is an agent’s set of outgoing vertices, and i its incoming edges (see

Figure 4.1). Given an agent j containing a directed edge to agent k, the weight of the edge

from j to k is denoted So(j)(k). For convenience, we express elements of the agent state

with W : A×A → T and w : S ×A → T . For all agents j, k ∈ A:

W (j, k) ≡ So(j)(k)

wS(k) ≡ Si,2(k).

Finally, since o is a partial, we use the predicate E to denote the domain of definition: E(j, k)

holds if W (j, k) exists.

Definition 14 (Path) A path is a set of agent pairs, P = {(i, j) | E(i, j)}. 2

There are two ways of specifying paths amongst a set of agents.

55

(a) A forward path, defined by fwd, is the set of all
paths from j to k.

(b) A reverse path, defined by rev, is a single path
from j to k. This path is the optimal path
between the two agents, denoted here with the
edges of value 1̄. Recall that ∀a ∈ T : a ∈ [1̄, 0̄].

Figure 4.2: Defined incoming and outgoing path functions.

Definition 15 (Forward Path) A forward path is the set of paths from one agent to

another (Figure 4.2(a)). It is specified using fwd: A×A → 2P . Let P = fwd(j, k),

(
∀ (u, v) ∈ P : u 6= v

) ∧ (
∃ (u, v) ∈ P : u = j

) ∧ (
∃ (u, v) ∈ P : v = k

)
.

2

Definition 16 (Reverse Path) A reverse path is a single path between agents (Figure 4.2(b)),

rev : S ×A×A → P , where

∀ (u, v) ∈ P : (u, v) ∈ rev(S, (j, k)) =⇒ Si,1(v) = u

for all P ∈ P and (j, k) ∈ P . 2

Definition 17 (Path Traversal) Path traversal is a function, δ : P → T such that

δ(P) =
⊗

(j,k)∈P

W (j, k).

2

56

We consider algebraic path problems that are single-source, meaning that we find the

optimal path from a single agent, the root, to all other agents within the system; the root

agent is denoted r̂. In the initial state, S0 ∈ Λ,

∀k ∈ A : wS0(k) = 0̄ ∧ S0i,1(k) = k. (4.1)

The goal of the system is reach a state in which

∀k ∈ A : wS?(k) =
⊕

P∈fwd(r̂,k)

δ(P).

From the root the cost of the paths to each agent using incoming path information is the

same as the lowest cost route using the outgoing path information. Recall that, for each

agent, the incoming weight is a single value that is dynamic over an execution while outgoing

information is static—optimal routes using this information are invariant.

Definition 18 (Algebraic Path Transition) State transitions are the result of pairwise

interactions between neighboring agents. Assuming W (j, k) is defined, an interaction be-

tween j and k follows

S
{j,k}
_ S ′ =⇒ S ′i(k) =

(j, wS(j)⊗W (j, k)) if wS(k) � wS(j)⊗W (j, k),

(k, wS(k)) otherwise.

Agents other than j and k remain unchanged. 2

Recall that in the description of i, the second element of an agent state, the value was

mutable—the state transition is where this mutation occurs. Moreover, this mutation is

based on the “optimal” incoming edge. Thus, not only is Si(k) the best parent of agent k in

state S, but, by construction, any incoming path to k is also optimal.

Typically in the literature, local state transitions are expressed using both operations of

the semiring. The following lemma shows that our transition semantics are general enough

to encompass this case.

57

Lemma 3 S
{j,k}
_ S ′ =⇒ wS′(k) = w(k)⊕

(
wS(j)⊗W (j, k)

)
2

Proof Start with the case in which wS(k) � wS(j)⊗W (j, k): From Theorem 8,

wS(k) � wS(j)⊗W (j, k) =⇒ w(k)⊕
(
wS(j)⊗W (j, k)

)
= wS(j)⊗W (j, k)

= wS′(k).

The proof for the second case, in which wS(k) � wS(j)⊗W (j, k), is symmetric. �

The advantage of expressing the system transition as we have in Definition 18, as opposed to

the traditional way (Lemma 3), is that there is a cleaner separation of the updated optimal

node and the path value to that node.

System transitions maintain a local-global relation with respect to �. Within the do-

main of algebraic path problems, local-global relations revolve around paths. Thus, to fit

Definition 3, consider j to be a single path, and K a collection of paths.

Lemma 4 (Algebraic Path Local-Global Relation) Let (j, k) be a valid reverse path

in S and S ′, and u be an agent in the system.

δ(rev(S, (j, k))) � δ(rev(S ′, (j, k))) =⇒ δ(rev(S, (j, k)) ∪ {u}) � δ(rev(S ′, (j, k)) ∪ {u})

where the union operation maintains the path. 2

Proof The codomain of rev is defined by the transition, which, from Lemma 3, is derived

using a commutative monoid. Since, � is transitive by definition, the lemma follows from

Theorem 5. �

4.4 System Correctness

Recall that the theorem on progress requires an invariant of the system G, along with a

predicate Q, and distance function d, on the state space. We introduce external functions

that aid in their definition and subsequent correctness proofs.

58

Let p : N0×A → T be an indexed path from the root to k; denoted pi(k) for some agent k.

The index, known as the p-index, denotes a path’s ordering with respect the optimal path.

That is,

p0(k) =
⊕

P∈fwd(r̂,k)

δ(P).

As i increases, so to does the corresponding path weight:

∀i, j ∈ N0 : j > i =⇒ pj(k) � pi(k).

We restrict attention to non-cyclic paths and the initial path; thus, p’s index ranges from 0

to |fwd(r̂, k)|+ 1.

Let g : S ×A → N0 return the p-index within a given state:

g(S, k) = i where pi(k) = rev(S, (r̂, k)).

Definition 19 (Progress Variables) The predicates G and Q on the state space of the

system are

G(S) ≡ ∀k ∈ A : wS0(k) � wS(k)

Q(S) ≡ wS(k) =
⊕

P∈fwd(r̂,k)

δ(P).

The variant function d is

d(S) =
∑
k∈A

g(S, k).

2

The predicate G holds if the path maintained by all agents to the root in state S is “better-

than” the optimal path in the start state. The predicate Q holds if the path maintained by

all agents to the root in state S is globally optimal. The variant function d is a measure of

the number of optimal paths remaining to be discovered.

Theorem 10 The predicate G is an invariant of the system. 2

59

Proof Follows since � is a local-global relation with respect to the monoid ⊕ (Lemma 4

and Corollary 3). �

Theorem 11

∀k ∈ A, K ⊆ A : G(S) ∧ S K
_ S ′ =⇒ d(S) ≥ d(S ′)

2

Proof Follows directory from the predicate G: if the optimal path during an execution

does not increase, neither will its p-index. �

Theorem 12

∃FK ∈ F ,∀K ∈ FK : G(S) ∧ ¬Q(S) ∧ S K
_ S ′ =⇒ d(S) > d(S ′)

2

Proof By definition,

¬Q(S) =⇒ ∃k ∈ A : wS(k) 6=
⊕

P∈fwd(r̂,k)

δ(P)

=⇒ ∃k, j ∈ A :
(
wS(k) � wS(j)⊗W (j, k)

) ∧ (
wS(k) 6= wS(j)⊗W (j, k)

)
. (4.2)

Let FK be the family of edge sets such that the agents in each edge are valid instantiations

of k and j in Equation 4.2. Let u and v be such agents, respectively; by construction,

S
{u,v}
_ S ′ =⇒ wS′(v) � wS(v)

=⇒ g(S, k) > g(S ′, k)

=⇒ d(S) > d(S ′) �

4.5 Examples

We restrict attention to the application of semirings to vertex reachability and shortest path

calculations. Because shortest path calculations require the notion of a graph path, they

60

are a natural refinement to the reachability problem. We define the semiring used in each

algorithm, and prove that the elements of the semiring meet the requirements assumed in

the Section 4.2.

Example 9 (Reachability) The objective of the graph reachability problem is to deter-

mine what vertices have a path from a given root vertex. It can be solved using the Boolean

semiring.

Proof Obligation

〈{0, 1},∨,∧, 0, 1〉 is an idempotent semiring.

Graph transitions take the form

wS′(k) = w(k) ∨
(
wS(j) ∧W (j, k)

)
.

2

Example 10 (Shortest Path) We have used the shortest path as an ongoing example

throughout the chapter. We state it again here, formally.

Proof Obligation

〈<+ ∪ {+∞},min,+,+∞, 0〉 is an idempotent semiring.

The range of W and f , T , are known as weights. Because of our range-subset restric-

tion, (0,+∞), we only consider graphs with positive weights. Shortest path transitions

follow

wS′(k) = min
(
wS(k), wS(j) +W (j, k)

)
.

2

Example 11 (Minimum Spanning Tree) As was the case in the previous example, we

only consider graphs with positive weights.

61

Proof Obligation

〈<+ ∪ {+∞},min,max,+∞, 0〉 is an idempotent semiring.

Transitions consist of

wS′(k) = min
(
wS(k),max (wS(j),W (j, k))

)
.

2

Example 12 (Viterbi Algorithm) The Viterbi Algorithm [46] can determine the likeli-

hood of unknown events by analyzing those that are known. Within a graph, events are

represented as vertices. The edges between them not only describe their occurrence in time,

but their ordering; thus, edge weights are probabilities of event sequence. In this way, the

problem is an algebraic path one, and a semiring can be used to find a solution [47].

Proof Obligation

〈[0, 1],max,×, 0, 1〉 is an idempotent semiring.

The corresponding transition is

wS′(k) = max
(
wS(k), wS(j)×W (j, k)

)
.

2

4.6 Related Work

A large body of work has been dedicated to applying semirings to this formalization, where

solutions to path problems are repeated applications of operators within the structure [48, 49,

50, 51]. Such theoretic work has found several practical applications, especially with respect

to systolic arrays. Systolic arrays are multi-processor networks notable for their efficiency at

performing matrix multiplication. Several methodologies for implementing semiring-based

62

solutions to path problems have been offered [52, 53, 54, 55, 56]. A comprehensive survey of

this area was reported by Fink [57].

Several more path-based contributions have been made, each with slightly different for-

malisms and varying degrees of generality. Lehmann, for example, showed that many pre-

viously considered problems, such as matrix inversion and proofs about regular languages,

were just instances of transitive closure. This was known prior to this work, but not cor-

rectly formalized. He went on to show how they could be solved using using semirings [58].

Lehmann’s foundation was later extended and applied to new domains [59, 50, 47]. Of par-

ticular note is the especially generic and encompassing framework presented by Mohri [60].

The solution he offers relaxes both semiring and underlying system assumptions used by

researchers prior.

The derivations presented in this chapter are similar to the formalizations presented by

previous authors. Our model most closely resembles that of Mohri, however our system setup

and semiring assumptions are more appropriate for a distributed setting. Where our work

differs most is in our use of local-global relations as a vehicle for correctness. This not only

simplifies correctness proofs, but absolves us from a rigid path traversal order for showing

convergence. Such an order was implicit in some previous models, but it is something that

we are able to make explicit thanks to our framework.

63

Chapter 5

Sorting

This chapter studies a problem that exhibits local-global in which the abstract data structure

is a total order. Modeling the system and proving correctness, is similar to the process

followed in Chapters 3 and 4. Actions are executed by subgroups of agents; an action by

a subgroup may change the states of agents in the subgroup, leaving the states of agents

outside the subgroup unchanged.

Sorting a group of elements is a well-studied problem within computer science, even

within the distributed system community [61]. At an abstract level, sorting is an ordering

of elements within a permutation [62]. This section models the abstraction as a local-global

relation within a distributed system.

5.1 System Specification

As is case throughout this thesis, the system consists of a non-empty finite set of agents.

The state of an agent k in S consists of an arbitrary value from the set T . The concrete

family of T is not important, only that the set is ordered.

We assume that there exists a strict ordering over agents and agent values: for all j, k ∈ A,

either j < k or k < j; likewise for members of T . We also assume that within a state, agent

values are distinct:

∀j, k ∈ A, S ∈ S : j 6= k =⇒ S(j) 6= S(k).

64

In this way, states are bijective mappings and can be inverted to return corresponding agents:

t = S(k) =⇒ S−1(t) = k.

Because values in A and T are unique and ordered, we consider collections of each to be

finite sequences, rather than sets. Let K ⊆ A, elements within K are referred to using their

relative index value, and obey

∀i, j ∈ N0 : (i < |K| =⇒ ki ∈ K) ∧ (i < j =⇒ ki < kj) .

That is, based on the global ordering of agents, we assume that when the state is restricted

to a subset, an ordering can be created over that subset as well. Moreover, that subset

ordering is continuous in {K}.

The specification of the system is that the system eventually enters a state at and after

which the following predicate holds:

∀j, k ∈ A : j < k =⇒ S(j) < S(k).

Definition 20 (Permutation) Let ρ be a binary predicate between states, ρ : S × S → B

that holds if the states are permutations of one another. That is, there exists a bijective

function that is also a mapping between agents in distinct states;

ρ (S, S ′) =⇒ ∃(h : A → A) : ∀j, k ∈ A : h(j) = h(k) =⇒ j = k
∧

(5.1)

∀j ∈ A : ∃k ∈ A : h(k) = j
∧

(5.2)

∀k ∈ A : S(k) = S ′(h(k)). (5.3)

2

Equation 5.1 and 5.2 make up the bijection, defining h to be an injection and surjection,

respectively. Equation 5.3 uses h to map agents between permuted states.

65

Lemma 5 (Permutations Are Transitive)

ρ (S, S ′) ∧ ρ (S ′, S ′′) =⇒ ρ (S, S ′′)
2

Proof From the antecedent, we can assume there exist two functions, (f1, f2) : A → A,

such that both are bijections and

∀k ∈ A : S(k) = S ′(f1(k)) ∧ S ′(k) = S ′′(f2(k)).

We use the composition of these functions, f2 ◦ f1, to instantiate h in the consequent. See

Section A.4 for details that this composition is a permutation. �

Definition 21 (Transposition) Let (k, j) be a pair of agents in A, ⊗ exchanges the values

of k and j depending on their order with respect to A and on the total order of their values.

Formally, ⊗ : S × (A,A)→ 2A, where

⊗(S, (k, j)) =

{(k, S(j)) , (j, S(k))} if min(k, j) = k
∧
S(max(k, j)) < S(min(k, j)),

{(k, S(k)) , (j, S(j))} otherwise.
2

We use the following notation to represent the extraction of elements from the the range

of ⊗ in particular, and a pair of agents in general. Let S ′ = ⊗(S, (k, j)); the element k in S ′

can be referenced as

{(j, S ′(j))} =
[
⊗ (S, (k, j))

]
k

S ′(j) = ⊗(S, (k, j))(j).

Lemma 6 (Transposition Permutes) Transposition produces a permutation of its input:

∀i, j ∈ A : ρ
(
S|{i,j},⊗(S, (i, j))

)
,

66

where S ∈ S and S|{i,j} is the restriction of S to elements i and j. 2

Proof We must show that there exists a mapping from agents onto themselves that is

bijective. Formally,

∃(h : A → A) : B(h) ∧ ∀k ∈ A : S(k) = ⊗(S, (i, j))(h(k)),

whereB is a predicate overA → A that holds if the mapping is bijective. Let Ŝ = ⊗(S, (i, j)).

We define h to be the composition of Ŝ’s inverse and S:

B(Ŝ−1 ◦ S)
∧

(5.4)

∀k ∈ A : S(k) = Ŝ(Ŝ−1(S(k))). (5.5)

In 5.4, S is bijective by definition and Ŝ by construction—composition of two bijective

functions is also bijective. Equation 5.5 holds trivially. �

As previously mentioned, composition transposes groups of agents. It does so by recursively

operating on “neighboring” agents in a given set.

Definition 22 (Composition) Composition applies a transposition to a sequence of agents.

Formally,
⊕

: S × 2A → 2A, such that

⊕
(k0,k1)∈K

S =

{(k0, S(k0))} if |K| = 1,[
⊗ (S, (k0, k1))

]
k0
∪
⊕

K′ S otherwise,

where K is a non-empty sequence of agents, and K ′ =
[
⊗ (S, (k0, k1))

]
k1
∪ (K \ {k0, k1}).2

System transitions are the result of compositions amongst groups of agents.

Definition 23 (Sorting Transition) Let K ⊆ A. Sorting transitions follow

S
K
_ S ′ =⇒ ∀k ∈ K : S ′(k) =

(⊕
K

S

)
(k)

67

where agents not in K remain unchanged. 2

Because the result of a composition is a permutation, system transitions are local-global

relations.

Theorem 13 (Permutations Are Local-Global)

S
K
_ S ′ =⇒

(
ρ (S|K , S ′|K) =⇒ ρ

(
S|K ∪{j}, S ′|K ∪{j}

))
,

where S(j) = S ′(j). 2

Proof The proof is by induction on K:

Base Case The cardinality of K is 1. In this case, h in Definition 20 is the identity function.

Inductive Step We induct again on K.

Base Case The cardinality of K is 2. Proof follows from Lemma 6.

Inductive Step By definition, the additional element to the computation is unique.

Thus, since the union of an element to a permutation is still a permutation, the

global permutation remains. �

5.2 System Correctness

Conservation

Lemma 7 (Sorting Conservation) If all state transitions preserve a global permutation,

then

Invariant : ρ (S0, S) .
2

Proof Follows from Lemmas 5 and 13. �

68

Progress

Before going through the typical steps for showing system liveness, we define the concept of

an inversion.

Definition 24 (Inversion) An inversion is a set of agent pairs from a given state whose

values are out of order with respect to the pairs’ agent ordering;

inv(S) = {(j, k) | j < k ∧ S(k) < S(j)} .
2

The number of inversions in a finite set both finite and bounded below. As such, its codomain

forms a well-founded set that is appropriate for reasoning about an execution. We continue

with the standard definitions of the progress variables.

Definition 25 (Progress Variables) The predicates G and Q on the state space of the

system are

G(S) ≡ ρ (S0, S)

Q(S) ≡ ∀j, k ∈ A : j < k =⇒ S(j) < S(k).

The distance function d counts the number of inversions in a given set.

d(S) = |inv(S)| .
2

Lemma 8 The predicate G is an invariant of the system. 2

Proof Follows from Lemma 7. �

Theorem 14

∀k ∈ A, K ⊆ A : G(S) ∧ S K
_ S ′ =⇒ d(S) ≥ d(S ′)

2

69

Proof Follows from the definition of transposition (Definition 21) and that transitions are

repeated applications of transpositions. �

Theorem 15

∃FK ∈ F ,∀K ∈ FK : G(S) ∧ ¬Q(S) ∧ S K
_ S ′ =⇒ d(S) > d(S ′)

2

Proof The negation of Q provides a set of out-of-order agents:

¬Q(S) =⇒ ∃j, k ∈ A : j < k ∧ S(k) < S(j).

We use this statement to define the fair set of transitions

FK = {K | (∃j, k ∈ K : j < k ∧ S(k) < S(j))} .

From Theorem 14 we know that transitions will either reduce the number of inversions or

keep them the same. Since, by definition, agent values are distinct and the set K has at

least one inversion, we can rule out the latter. �

70

Chapter 6

Average Consensus

This chapter, like the last, examines a well known problem in the distributed systems com-

munity: distributed averaging. The results in this chapter extend the large amount of work

in the literature by reposing the problem with a focus on its inherent local-global relation.

As has been the case throughout this thesis, we are able to show algorithm correctness based

in part on this relation.

6.1 Background and Motivation

Distributed averaging calculates the average of a collection of data spread across several

autonomous processes. We define it in this setting as the algebraic mean:

Definition 26 (Algebraic Mean) The algebraic mean is a function, AM: S × A → R,

such that

AM(S,K) =
1

|K|
∑
k∈K

S(k),

where S ∈ S and K ⊆ A. 2

Performing this computation in a distributed setting lies at the heart of several practical

applications. Many peer-to-peer networks, for example, use distributed averaging to esti-

mate active network size [63]. Coordination problems, such as vehicle or pattern formation,

rely on the distributed averaging to determine the center of mass [64]. Sensor networks

that make physical measurements for things like data fusion or inference often compute a

71

distributed average [65, 66]. Networks of servers calculate distributed averages for proper

load balancing [67]. Given this wealth of applications, distributed averaging has received

quite a bit of attention within the research community, where several protocols, and im-

provements to protocols, have been offered. Schemes have become increasingly distributed,

asynchronous [68], and more robust—both with respect to network dynamics [69] and com-

munication variability [70, 71, 72]. Much of this work is focused on conditions, and rates, of

convergence.

We offer a method of describing and reasoning about the distributed average problem that

fits the local-global framework outlined in Section 2.2. We express the solution algebraically,

which has benefits when reasoning about the problem using a theorem prover. Our scheme

does not expect a static network topology, only that the communication graph is always

eventually connected.

Distributed averaging is in fact a consensus problem—the objective of each process is to

agree on the average of agents’ values within the system. However, unlike other consensus

problems considered in this thesis, there is not a generic algebraic framework to describe it.

In this way, we say that distributed average uses the local-global relations directly, rather

than using, for instance, a monoid proxy.

Before detailing the system specification and proofs of correctness, we provide an example.

This example not only outlines the problem solution, but offers intuition as why our approach

works.

Example 13 (Distributed Average with 3 Agents) Consider a system with 3 agents.

Suppose the initial state of the system is

S0 = {(k0, 10) , (k1, 11) , (k2, 15)} .

72

 12

 15

S0 S1 S2 S3

Agent 1
Agent 2
Agent 3

System average

(a) Agent states converge toward the average as the
execution proceeds.

S0 S1 S2 S3

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

(b) The average per-agent distance from the average
decreases.

Figure 6.1: An example execution fragment of the distributed average consensus algorithm.
As the execution proceeds, agents move closer to the global average, as seen both in their
state space (left) and in the overall system error measure.

The objective of the system is for each agent to contain AM(S0,A); in this context,

S? = {(k0,AM(S0, {k0, k1, k2})) , (k1,AM(S0, {k0, k1, k2})) , (k2,AM(S0, {k0, k1, k2}))}

= {(k0, 12) , (k1, 12) , (k2, 12)} .

A simple specification might be that when agents interact, they update their state with

the average of the group. This not only maintains the global average, but decreases, on

average, the distance each agent is from the goal. That distance, or error measure, could be

something like a mean square error; we denote such an error function—specifically the mean

square error—with the function d.

An example execution fragment that exhibits these properties is outlined in Figure 6.1,

where agent states are converging toward S?. A detailed account of the fragment is

73

State 0 As previously stated, in the initial state

S0 = {(k0, 10) , (k1, 11) , (k2, 15)} ,

AM(S0,A) = 12,

d ≈ 4.67.

Agents k0 and k2 interact: {(k0, 10) , (k2, 15)} −→ {(k0, 12.5) , (k2, 12.5)}.

State 1 The interaction of results in

S1 = {(k0, 12.5) , (k1, 11) , (k2, 12.5)} ,

AM(S0,A) = 12,

d = 0.50.

Agents k0 and k1 interact: {(k0, 12.5) , (k1, 11)} −→ {(k0, 11.75) , (k1, 11.75)}.

State 2 The interaction of results in

S2 = {(k0, 11.75) , (k1, 11.75) , (k2, 12.5)} ,

AM(S0,A) = 12,

d ≈ 0.13.

Agents k1 and k2 interact: {(k0, 11.75) , (k1, 12.5)} −→ {(k0, 12.125) , (k1, 12.125)}.

State 3 The interaction of results in

S3 = {(k0, 11.75) , (k1, 12.125) , (k2, 12.125)} ,

AM(S0,A) = 12,

d ≈ 0.03,

. . . and so on. 2

74

6.2 System Specification

The system consists of a non-empty finite set of agents. The state of an agent k in S consists

of a value from the set R. From Section 2.1, S(k) expresses the real value of agent k in

state S. The goal of the system is to reach a state in which all agents, individually, contain

the average value of the initial global state:

∀k ∈ A : S?(k) = AM(S0,A).

The transition function maintains the sum of the set, and does not increase the sum of its

squares.

Definition 27 (Average Transition) A system transition involves an agent a group K ⊆

A. It maintains the following relation

S
K
_ S ′ =⇒

(∑
k∈K

S(k) =
∑
k∈K

S ′(k)

) ∧ (∑
k∈K

S(k)2 ≥
∑
k∈K

S ′(k)2

)
.

The state of agents not in K are unchanged. 2

In this way, system transitions maintain a local-global relation.

Theorem 16 (Average Transitions Are Local-Global) For any K ⊆ A, the action K

is local-global:

S
K
_ S ′ =⇒

∑
k∈K

S(k) =
∑
k∈K

S ′(k) =⇒
∑

k∈K ∪{j}

S(k) =
∑

k∈K ∪{j}

S ′(k)

 ∧
(6.1)

∑
k∈K

S(k)2 ≥
∑
k∈K

S ′(k)2 =⇒
∑

k∈K ∪{j}

S(k)2 ≥
∑

k∈K ∪{j}

S ′(k)2

 (6.2)

where j /∈ K. 2

Proof Equation 6.1 follows from Theorem 5, since 〈R,+〉 is a commutative monoid. Equa-

tion 6.2 follows for the same reason, and because multiplication is monotonic with respect

75

to ≥. �

Example 14 (Interact) Consider a set of agents on a line, in one dimension, that start

in arbitrary positions, but eventually converge to a single point [17]. Interactions occur

between pairwise agents and “move” the agents towards one another, reducing their distance

by some amount r, where r ∈ [L, 1 − L] and L is a constant such that L ∈ (0, 0.5]. The

constant L is a lower bound on the overall improvement on the two agents. An interaction,

denoted ⊗(j, k, r), between agents j and k, follows

S ′(j) = S(j) + r(S(k)− S(j))

S ′(k) = S(k)− r(S(k)− S(j)).

It can be shown, by algebraic manipulation, that this action maintains the transition predi-

cate (Definition 27). 2

Fairness

We assume that the system cannot be permanently partitioned into non-communicating

subsets. This ensures that eventually an action between agents in any non-empty subsets K

and its complement K̄, is executed (see Figure 2.2). Formally, for all J ∈ 2A,

FK =
{
J | J ∩ K 6= ∅ ∧ J ∩ K̄ 6= ∅

}
. (6.3)

For the remainder of the chapter, we restrict attention to interactions that follow the seman-

tics of ⊗ (Example 14). The constant L is a unique solution to the equation x(1− x) = C,

where 0 < C ≤ 0.5. The fairness condition F is

F =
{
FJ | J ∈ 2A \ ∅

}
.

76

6.3 System Correctness

Conservation

Lemma 9 (AM Conservation) If all actions of a transition system are average transi-

tions, then the system has the following invariant:

Invariant :
∑
k∈A

S0(k) =
∑
k∈A

S(k)
∧ ∑

k∈A

S0(k)2 ≥
∑
k∈A

S(k)2.

2

Proof Follows from Theorem 16 and Corollary 1. �

Progress

Consider a new metric over system state: mean square error.

Definition 28 (Mean Square Error) The mean square error is a function, MSE: S ×

A → R, such that

MSE(S,K) =
1

|K|
∑
k∈K

(S(k)− AM(S,K))2 ,

where S ∈ S and K ⊆ A. 2

The mean square error plays an important role in our liveness analysis. It provides an

approximation on the distance an agent value is from the global average, a good metric for

system evolution.

Definition 29 (Progress Variables) The predicates G and Q on the state space of the

system are

G(S) ≡ AM(S,A) = AM(S0,A)

Q(S) ≡ ∀k ∈ A : S(k) = AM(S0,A).

77

The distance function d is the mean square error of S:

d(S) = MSE(S,A).
2

Theorem 17 The predicate G is an invariant of the system. 2

Proof From the transition, we can imply that the average is maintained:

S
K
_ S ′ =⇒

∑
k∈K

S(k) =
∑
k∈K

S ′(k)

=⇒ 1

|K|
∑
k∈K

S(k) =
1

|K|
∑
k∈K

S ′(k)

=⇒ AM(S,K) = AM(S ′, K).

Moreover, because 〈R,+〉 forms a commutative monoid, average is a local-global relation

with respect to equality. Thus, from Corollary 1 and Corollary 3 the theorem holds. �

Theorem 18

∀k ∈ A, K ⊆ A : G(S) ∧ S K
_ S ′ =⇒ d(S) ≥ d(S ′)

2

Proof From the transition, we can imply that the mean square error does not increase: By

assumption, both the sum and the average of the elements in S and S ′ are equal; thus

2 · AM(S,K) + AM(S,K)2 = 2 · AM(S ′, K) + AM(S ′, K)2.

78

By algebraic manipulation:

∑
k∈K

S(k)2 ≥
∑
k∈K

S ′(k)2

∑
k∈K

(
S(k)2 − 2 · AM(S,K) + AM(S,K)2

)
≥
∑
k∈K

(
S ′(k)2 − 2 · AM(S ′, K) + AM(S ′, K)2

)
∑
k∈K

(S(k)− AM(S,K))2 ≥
∑
k∈K

(S ′(k)− AM(S ′, K))
2

1

|K|
∑
k∈K

(S(k)− AM(S,K))2 ≥ 1

|K|
∑
k∈K

(S ′(k)− AM(S ′, K))
2

MSE(S,K) ≥ MSE(S ′, K).

Since the mean square error is a local-global relation with respect to ≥ (See Section A.3),

the the theorem holds by Corollary 2:

MSE(S,K) ≥ MSE(S ′, K) =⇒ MSE(S,A) ≥ MSE(S ′,A)

=⇒ d(S) ≥ d(S ′). �

Theorem 19

∃FK ∈ F ,∀K ∈ FK : G(S) ∧ ¬Q(S) ∧ S K
_ S ′ =⇒ d(S) > d(S ′)

2

Proof From the definition of Q(S) and MSE,

¬Q(S) =⇒ ∃k ∈ A : S(k) 6= AM(S0,A)

=⇒ ∃k ∈ A : (S(k)− AM(S,A))2 ≥ MSE(S,A). (6.4)

Without loss of generality, we restrict attention to an instance of k where

S(k)− AM(S0,A) < 0.

79

Proof of the other case is symmetric. From this assumption, Equation 6.4 becomes

−S(k) + AM(S,A) ≥ RMSE(S,A)

where RMSE(S,A) =
√

MSE(S,A).

Let a0, a1, . . . , an−1 denote an ordering over the agents such that S(ai) ≤ S(ai+1) and

n = |A|. Thus

S(a0) ≤ S(k) ∧ AM(S,A) ≤ S(an−1).

Further, define ∆ such that ∆(ai) = S(ai)− S(ai−1), for all i ∈ (0, n). We have

RMSE(S,A) ≤ S(an−1)− S(a0)

≤
n−1∑
i=1

∆ai.

Since, for all i, ∆(ai) ≥ 0,

∃i : ∆(ai) ≥
RMSE(S,A)

n− 1
. (6.5)

We use this i to choose our instance of FK .

FK = {(j, k) | S(j) ≥ S(ai) ∧ S(ai) > S(k)} .

It is left to show that interactions in FK strictly decrease the variant function. Recall that

we are restricting attention to pairwise agent interactions that follow interaction semantics

as defined in Example 14—when this action is executed,

S ′(j) = S(j) + r(S(k)− S(j))

S ′(k) = S(k)− r(S(k)− S(j)).

80

From Equation 6.5 we can conclude

S(j)− S(k) ≥ RMSE(S,A)

n− 1
.

Hence,

S ′(j)2 + S ′(k)2 = S(j)2 + S(k)2 − 2r(1− r)(S(j)− S(k))2

≤ S(j)2 + S(k)2 − 2r(1− r) · MSE(S,A)

(n− 1)2
.

The mean square error in the new state follows

MSE(S ′,A) ≤ MSE(S,A)− 2r(1− r) · MSE(S,A)

n(n− 1)2

= MSE(S,A) ·
(

1− 2r(1− r)
n(n− 1)2

)
.

Since L ≤ r ≤ 1− L, and r(1− r) ≥ L(1− L),

MSE(S ′,A) ≤ MSE(S,A) ·
(

1− 2L(1− L)

n(n− 1)2

)
︸ ︷︷ ︸

α

.

By definition 0 ≤ α < 1. Thus, an interaction strictly decreases the mean square error. �

Theorem 20 As an execution tends to infinity, the sequence α, α2, α3, . . . , αn is decreasing,

converging to zero. 2

Proof Follows directly from Theorem 19. �

81

Chapter 7

External Inputs

In the previous chapter we described a distributed system that computed the average of

initial values of agents using an algorithm in which a subset K of agents participating in an

action set their values to the average of the values of agents in K. In the previous chapter,

the desired final state, S? was a function of the initial state S0;

S?(k) = f(S0).

An example of the system described in the previous chapter is a system that computes

the average of sensor values, such as temperature, when these values do not change as

computation proceeds. In practice, however, sensor values may change with time. This

problem is an instance of the dynamic consensus problem. It is especially relevant to the

control systems community to study problems such as mobile tracking [73, 74].

In this chapter we consider the a generalization of the algorithm examined in the previous

chapter applied to dynamic systems in which values to be averaged change as computation

proceeds. Consider a system in which each agent k has a value C[k] where C[k] is changed by

an external environment to take on values C0[k], C1[k], C2[k], . . . , where the value at time t

is Ct[k]. Let Ŝt be the desired global state at time t; then in this chapter Ŝt is a function

of Ct

∀t : Ŝt = f(Ct).

Note that in the previous chapter the goal state did not change with t and was only a function

82

Figure 7.1: An execution fragment denoting the separation between external inputs and
system actions.

of the initial state.

In the previous chapter, the error at a point t in the computation was defined to be:

d(St) =‖ St − f(S0) ‖ .

We showed that d(St) does not increase with t, and if the error is positive then it decreases

eventually. In this chapter, the error at a point t in the computation is defined to be:

d(St) =‖ St − f(Ct) ‖ .

In this chapter d(St) may increase with t because the environment may change Ct. Here we

explore bounds on the error.

In the previous chapter we relied on a weak form of fairness: we required only that for

every non-empty subset of agents, an action that includes an agent in the subset and an

agent not in the subset is executed eventually. In this chapter, since the environment is

changing values at every time step, such a weak form of fairness is insufficient to obtain

error bounds. Now we need some notion of time because the environment changes values

continuously and the system must react in some bounded time to these changes if errors are

not to get arbitrarily large. The assumption about fairness in this chapter is much stronger

than the assumption used in the previous chapter because we replace “eventually” with

“within a given time τ .” We now require that at each point t in time, for every non-empty

subset of agents, an action that includes an agent in the subset and an agent not in the

subset is executed within the next τ units.

83

 8

 9

 10

 11

 12

 13

 14

 15

 16

S0 S1 S2 S3

Agent 1
Agent 2
Agent 3

System Avg.
System Err.

Figure 7.2: An execution fragment with no external input. The error of the system, defined
by the two-norm, is denoted as error bars along the average curve, which is constant. As
agents update their states, overall system error decreases.

Examples

Example 15 (Without External Input) Recall Example 13 from Chapter 6—given a

set of 3 agents, the example detailed three system transitions which maintained the global

average by maintaining the local average. We assume the same execution fragment herein,

however the error function of interest is the two-norm, rather than the mean square error.

Figure 7.2 is a reprint of Figure 6.1(a), with the two-norm overlayed as error bars. Note that

error is decreasing as the execution proceeds. 2

Example 16 (With External Input) Now consider an example of a system with external

input. The system trajectory consists of discrete steps. Each step t consists of (1) the

environment increments Ct by an amount It, and (2) the agents execute an action at. The

following example shows a possible system trajectory.

84

 3

 6

 9

 12

 15

 18

 21

 24

 27

S0 I1 S1 I2 S2

Agent 1
Agent 2
Agent 3

System Avg.
System Err.

Figure 7.3: System dynamics with external inputs. Agents continue to converge toward the
average between system transitions, but are interrupted by arbitrary alterations to their
state. Our objective in analysing systems like these is to understand how the external input
impacts the global error of the system.

State 0 The initial state of the system is

S0 = [10, 11, 15],

Ŝ0 = AM(S0, {0, 1, 2}) = [12, 12, 12],

d(S0) =‖ S0 − AM(S0, {0, 1, 2}) ‖ .

1. External Increment: The external environment adds increment I1 = [−1, 6,−2],

giving the following value of C,

C1 = S0 + I1

= [10, 11, 15] + [−1, 6,−2]

= [9, 17, 13].

85

The state of the system becomes

Ŝ1 = S0 + I1

= [10, 11, 15] + [−1, 6,−2]

= [9, 17, 13].

2. Action: Agents 0 and 2 interact: [9, 13] −→ [11, 11].

State 1 The interaction results in

S1 = [11, 17, 11],

Ŝ1 = AM(S0, {0, 1, 2}) = [13, 13, 13],

d(S1) =‖ S1 − AM(S1, {0, 1, 2}) ‖ .

1. External Increment: The external environment adds increment I1 = [−2, 5, 3],

giving the following value of C,

C2 = C1 + I2

= [9, 17, 13] + [−2, 5, 3]

= [7, 22, 16].

The state of the system becomes

Ŝ2 = S1 + I2

= [11, 17, 11] + [−2, 5, 3]

= [9, 22, 14].

2. Action: Agents 1 and 2 interact: [22, 14] −→ [18, 18].

86

State 2 The interaction results in

S1 = [9, 18, 18],

Ŝ2 = AM(S0, {0, 1, 2}) = [15, 15, 15],

d(S1) =‖ S1 − AM(S1, {0, 1, 2}) ‖ .

. . . and so on. 2

7.1 Model

Let Ct be an N -vector where N is the number of agents, and Ct[j] is the element of the

vector corresponding to the j-th agent. The goal state Ŝt is a vector whose elements are the

average of the values of Ct; therefore:

Ŝt = B · Ct

where B is an N×N array, all of whose elements are 1/N . Since Ct is specified as a sequence

of incremental changes at each instant in time:

Ct = S0 + I1 + I2 + . . .+ It

where S0 and Ik, 1 ≤ k ≤ t, are N -vectors. For convenience in notation, and without loss of

generality, we assume that S0 is the zero vector, 0. Thus,

∀t > 0 : Ct =
t∑

j=1

Ij.

We consider a system trajectory with discrete steps in which step t consists of two parts:

(i) the environment increments Ct−1 by It, and (ii) a subset of agents executes an action at.

An action at by a subset K of agents can be represented by an N × N array At with the

87

following properties. Let |K| denote the cardinality of K. Then

∀i, j ∈ K : At[i, j] =
1

|K|
∧

∀i, j /∈ K : (i 6= j =⇒ At[i, j] = 0) ∧ (At[i, i] = 1) .

In the t-th step, when the environment increments the state by It, the state becomes St−1+It.

When agents execute an action at the state of the system transits from Ŝt to St, where

Ŝt = St−1 + It and to St = At · Ŝt. Then A is At · (St−1 + It). Therefore,

St = At · (St−1 + It).

7.2 Theory

The goal state Ŝt is the vector in which elements are the average of Ct, and therefore

Ŝt = B · Ct

= B ·
t∑

j=1

Ij

=
t∑

j=1

B · Ij.

Let p(u, v) for v ≤ u be defined as:

p(u, v) = Au · Au−1 · . . . · Av.

Theorem 21

∀t > 0: St =

j=t∑
j=1

p(t, j) · Ij
2

88

Proof The proof follows by induction on j.

Base Case

S1 =
1∑
j=1

A1I1

= A1 · (S0 + I1) (7.1)

= A1I1.

Equation 7.1 holds since S0 is the identity.

Inductive Step Assume that the theorem holds for all t ∈ [1, . . . , T − 1] and we prove the

theorem for t = T . We have shown

ST = AT · (ST−1 + IT).

Substitute for ST−1 using the induction assumption:

ST−1 =
T−1∑
j=1

p(T − 1, j) · Ij.

Therefore,

ST = AT

(
T−1∑
j=1

p(T − 1, j) · Ij + It

)

=
T−1∑
j=1

p(T, j) · Ij + AtIT

=
T∑
j=1

p(T, j) · Ij. �

89

Theorem 22

∀t > 0: d(St) ≤
t∑

j=1

‖ p(t, j) · Ij −B · Ij ‖
2

Proof By definition

d(St) =‖ St − Ŝt ‖

=‖
t∑

j=1

p(t, j) · Ij −B · Ij ‖ .

The result follows from the triangle-inequality property of norms. �

Theorem 23 Let g(t) = bt/τc; thus g(t) is the number of consecutive intervals of length T

in t. Then,

∀t > 0: d(St) ≤
t∑

j=1

‖ Ij ‖ ·αg(t−j)

where α ∈ [0, 1). 2

Proof From Theorem 20, for any nonnegative integer k:

‖ p(j + kτ, j) · Ij −B · Ij ‖≤ αk· ‖ Ij ‖ .

The result follows. �

Corollary 4 Assume that the norms of the increments Ij, 1 ≤ j ≤ t, are bounded by a

value ∆. Then

d(St) ≤ ∆τ · 1− αg(t)+1

1− α
.

2

90

Chapter 8

Framework Extensions

8.1 Error Bounds with Changing Inputs

In this section we consider systems with changing inputs. Specifically, these are problems

in which, at time t, each agent j receives an input value yt[j]. An agent’s input changes in

a manner that is described later. Let Ht be the multiset of values yt[j] for all agents j. At

each instant t, each agent computes an estimate of f(Ht) where f is a given function from

multisets of agent values to some type. Let the estimate computed by agent j at time t be

zt[j]. Define the error of agent j’s estimate at time t to be dt[j] where:

dt[j] =‖ f(Ht)− zt[j] ‖ .

Define the system error Dt at time t to be the maximum error at time t over all agents:

Dt = max
j
dt[j].

We wish to determine a bound on Dt for all t.

Since the environment controls agent interactions, the error bound can become arbitrarily

large. For example, consider the case where f(H) is the minimum value in the multiset H,

and where the system has two agents indexed 0 and 1. Assume that for t > 0, yt[0] = 0 and

91

yt[1] = t. Then

f(Ht) = min {yt[0], yt[1]} = 0.

Suppose agent 1 never interacts with agent 0 in the interval [0, T], for some T . Then for

all t in the interval [0, T] the estimate zt[1] for agent 1 is yt[1], and thus zt[1] = t; therefore

Dt = t. Thus, by making T arbitrarily large the error can be made arbitrarily large. We can

bound the error by strengthening the fairness constraints by introducing time.

We use the concept of epochs introduced in chapter 7 to obtain a bound on the error Dt.

An epoch is an interval of time during which agent interactions satisfy the following fairness

constraint. If agent input values yt[k] are constant for all agents k, then within an epoch

the value xt[j] of agent j, for all j, is the minimum value. In other words, an epoch is long

enough to ensure that all agents obtain the desired value provided inputs do not change.

Now consider the case where agent input values yt[j] can change, but the maximum rate of

change, either increase or decrease, is ∆ per unit time. Then, in an epoch of length T , the

maximum change in the input value of any agent is ∆ · T . It follows that the system error

Dt at the end of an epoch is at most ∆ · T . This idea can be used to be bound the system

error at each time instant by having repeated epochs.

8.2 Termination Detection

The multi-agent systems considered in this thesis operate in unreliable or hostile environ-

ments. Algorithm designers do not know which agents will interact in a given computation.

Termination detection algorithms in the literature usually assume that agents and commu-

nication channels are represented by static graphs. For example, termination detection of

diffusing computations creates an overlay tree on a static graph. Since the graph in our case

changes in a manner determined by the environment, a termination detection algorithms

cannot create a tree overlaid on the underlying agent-interaction graph because the graph

may change. The traditional termination detection algorithms cannot be used for the sys-

tems we consider. Moreover, for some cases we prove that the algorithm converges, because

92

the algorithm does not terminate. For example, the algorithm for computing the average

does not terminate at the final solution but gets arbitrarily close to it.

Next we discuss a termination detection algorithm for the case where the ids of all agents

are known. Note that agent ids were not given in the algorithms discussed earlier in the

thesis. The idea is to start with a straightforward algorithm and then optimize it. The

straightforward algorithm is that each agent keeps track of all the agents with which it has

interacted directly or indirectly. We describe the algorithm in the context of computing the

minimum.

First consider the case of computing the minimum of y[j] over all j where y[j] is a constant

for all j. Each agent j keeps a local value x[j] and a set b[j] satisfying the invariant:

x[j] = min
k∈b[j]

y[k].

Initially, b[j] = {j}, and x[j] = y[j]. The messages agent j sends are pairs (x[j], b[j]). When

an agent j receives a message (u, v) it sets:

x[j] := min(x[j], u)

b[j] := b[j] ∪ v.

Agent j has the final value when b[j] is the set of all agents. The computation terminates

when each agent determines that all agents have obtained their final values.

The same idea can be used for other problems. The core idea is for each agent j to

gather the values x[k] for every agent k and thus obtain the multiset H, and then compute

f(H). This is a brute-force solution because each agent merely obtains the states of all

other agents and then carries out a local computation. In effect, each agent carries out

a centralized algorithm. An alternative solution is for the agents to elect a leader which

executes the centralized algorithm and then disseminates the result. The thesis explores

multiagent systems that operate in hostile environments, and in such cases the goal is not

necessarily to detect termination but to reach a state close to the desired state.

93

8.3 Limits of the Local-Global Framework

This section explores the limitations of the local-global framework. We consider algorithms

that do not fit the framework, and show how to make them fit the framework, though doing

so requires more computational time and more data to be exchanged between agents.

8.3.1 Framework Violations

Recall that for a function to exhibit a local-global relation, the following implication must

hold (Theorem 1):

∀K ⊆ A, j /∈ K :
(
S|K � S ′|K

∧
S(j) = S ′(j)

)
=⇒ S|K ∪{j} � S ′|K ∪{j}.

Next we address the issue of what can be done to develop a distributed algorithm if the

condition does not hold. Consider the problem at the beginning of this chapter. Each

agent j has an input value y[j]. Consider the case where y[j] is not time varying. Let H

be the multiset of values y[j] for all agents j. The problem is for all agents to reach a

consensus f(H) where f is a given function from multisets of y-values to some type R. The

essential idea of a generic way of satisfying the local-global relation is given in the termination

detection section of this chapter. The state of each agent j includes a local value x[j] of type

R and a set b[j] of pairs (y[k], k) where h[j] is the multiset of y-values in b[j] and

x[j] = f(h[j]).

For each j, the cardinality of set b[j] never decreases, and eventually increases until it be-

comes N , the total number of agents. Initially

b[j] = {(y[j], j)} .

94

The message m that agent j sends at any point in the computation is b[j]. When an agent j

receives a message containing a set of pairs (y[k], k) it carries out the following step:

b[j] := b[j] ∪ {(y[k], k)}

h[j] := h[j] ∪ {y[k]}

x[j] = f(h[j]),

if (y[k], k) /∈ b[j]. Agent j has the final value when the cardinality of b[j] is the total number

of agents, in which case h[j] = H, and therefore x[j] = f(H). The computation terminates

when each agent determines that all agents have obtained their final values.

While this approach satisfies local-global it is inefficient. Each agent sends the y-values

of all agents that it has until every agent has the y-values of all agents in the system, and

then they compute the desired result. Properties of f such as idempotence, can be exploited

to obtain efficient algorithms. Next, we consider an example that shows how these properties

can be exploited.

8.3.2 k-th Smallest Value

These problems are consensus problems in which the objective is to agree on the k-th smallest

value in a set, where k is neither the minimum nor the maximum element.1 Calculating

the second smallest element, k = 2 for example, is an instance of this problem. Recall from

Section 1.3.1 that the function to compute the second smallest value of a set is denoted min2;

thus, min2({1, 2, 3}) = 2. The function was shown to not exhibit a local-global relation, as

the following example reiterates:

min2({2, 3, 4}) = min2({1, 3, 6}) ∧ 0 = 0 =⇒ min2({2, 3, 4} ∪ {0}) = min2({1, 3, 6} ∪ {0})

3 = 3 ∧ 0 = 0 =⇒ 2 = 1,

which is false.

1This corresponds to k = 1 or k = N respectively, where N is the number of agents in the system.

95

Consider the following scenario. A system has 3 agents with ids 1, 2, 3, and y[j] = j. In

this case, H = {1, 2, 3} and f(H) is the second-smallest element in the multiset: f(H) = 2.

Initially x[j] = y[j] = j. Each agent j sends its x[j] to agents that can receive the message.

When an agent j receives a message m it sets x[j] to the second smallest of the current value

of x[j] and m. Thus if agent 2 receives a message with value 3 from agent 3, then agent 2

sets x[2] to the second smallest of 2 and 3, which is 3. If agent 2 then sends x[2] to agent 1,

then agent 1 sets x[1] to the second smallest of 1 and 3, which is 3. Thus all agents have the

x-value of 3. Then the consensus second-smallest value will be 3, which is an error.

Consider the same scenario with the generic algorithm. If the first message is from agent 3

to agent 2, then the message is (y[3], 3) which is (3, 3) and then agent 2 sets:

b[2] := {(2, 2)} ∪ {(3, 3)}

h[2] := {2, 3}

x[2] := f({2, 3}) = 3.

Then if the next message is from agent 2 to agent 1, then the content of the message is

{(2, 2) , (3, 3)}, and agent 1 sets:

b[1] := {(1, 1)} ∪ {(2, 2) , (3, 3)}

h[1] := {1, 2, 3}

x[1] := f({1, 2, 3}) = 2.

Eventually, for all j:

b[j] := {(1, 1) , (2, 2) , (3, 3)}

h[j] := {1, 2, 3}

x[j] := f({1, 2, 3}) = 2.

We now make the algorithm more efficient. Agent j does not need to keep track of the entire

96

set b[j]; all it needs to keep track of is the two smallest values it has seen so far.

The problem can be converted into a local-global relation by saving information. Let the

state of an agent is an ordered pair, (i, j), where i, j ∈ T . Consider a set of agents K in

state S; {S|K}1 denotes the set of first-elements in S restricted to the agents K while S(k)1

denotes the first element of agent k’s state. To calculate the second smallest value, as well

as maintain that value throughout an execution, agents update their state as follows:

∀k ∈ K : S ′(k) = {(i, j) | i = min ({S|K}1) ∧ j = min2 ({S|K}2)} .

Initially both members of an agents ordered pair are equal.

8.4 Bounds on Information Exchange

Let information exchange be the number of messages sent within the system in order to

solve the given problem. Depending on the “hostility” of the environment the amount of

information exchanged within the system can vary. An ideal, low-hostility, environment

is one in which every agent can interact with every other agent at all times and without

error. In this setting one of the agents—such as the agent with the smallest id—is desig-

nated the leader. All agents subsequently send their information to this central leader, who

computes the problem solution and responds. As was mentioned in Section 2.2, this central-

ized approach solves a superset of problems solvable by the local-global framework alone.

Considering such an approach, however, is useful in studying the information exchange for

local-global problems. In a high-hostility environment designers know nothing about agent

interactions other than some weak fairness constraint; for example, that the network will not

be partitioned permanently into non-communicating subsets. In this case, agents collectively

solve the problem in an independent, localized fashion.

An advantage of the centralised approach is that the amount of information exchanged

is minimal. Each agent sends its value to the controller, and the controller sends back

the calculated value; thus, if there are n agents in the system, the number of messages sent

97

is 2n. The number of messages has to be of the order of the number of agents. For algorithms

operating in a hostile environment, agents exchange information opportunistically. This can

lead to much more information exchanged than in the benign environment in which all agents

can communicate with a leader agent. In the worst case the amount of data exchanged can

be unbounded.

Computing the Average The algorithm in which each agent in a group of interacting

agents sets its value to the average of the values of agents in the group, converges

to the correct value—the average of all the agents in the system—under very weak

fairness criteria. However, this algorithm may not terminate, and thus the number

of messages exchanged can grow without bound. In the benign centralized solution,

each agent sends its value to a leader which computes the average and sends the result

back. Thus the ratio of the algorithm in the hostile environment to the algorithm in

the benign environment can get arbitrarily large.

Computing the Minimum In the hostile environment, when an agent sends a message it

does not know which agents, if any, will receive the message. Therefore, it sends the

message repeatedly until it receives an acknowledgment. Thus, the hostile environment

can cause the number of messages sent to be arbitrarily large.

Designers trade off robustness and performance. If we want an algorithm to operate correctly

in extremely hostile environments then the algorithm can be much less efficient than an

algorithm operating in a benign environment with perfect connectivity.

98

Chapter 9

Tools of Formal Methods

This chapter develops reliable distributed software using the principles of local-global rela-

tions. In this way, the chapter presents a practical side of the local-global theory presented

thus far. Ultimately we implement many of the algorithms already considered, but do so

starting from the theory. To this end, we examine the application of local-global relations to

the tools of formal methods—theorem proving, model checking, and contract specification,

in particular. As a result, our implementations reap the benefits of the theory: modularity

and correctness.

We first consider a representation of local-global relations in a theorem prover. This not

only provides a mechanical verification of the theory developed to this point, but creates

a library of proofs around distributed systems. Our library is more than a collection of

theories, however, it is a reusable tool for software developers. Thus, part of the goal in

presenting the library is to provide an instruction manual on how to use it.

With respect to model checking, we examine the impact that local-global relations have

on state-based verification. Using statistics produced by the model checker, we are able to

compare various implementations of the same system; namely, models written with local-

global relations in mind, and models written without. Although such metrics are interesting,

the process that this section outlines is also beneficial.

We are able to specify implementation-level, meta-correctness through specification lan-

guages. This is code that lives alongside a traditional programming language, but is used to

specify and ensure correctness both at compile- and run-time. We find that this type of tool

99

provides a nice mapping between the theory and the implementation.

The chapter concludes by outlining implementations of the system in different languages.

The programs developed are not only based on the algorithms studied in previous chapters,

but are a product of our local-global-based formal method process.

9.1 Theorem Prover

Our theory was also verified mechanically using PVS [1]. This process not only allowed

us to gain confidence in our methodology, but to build a reusable library of theorems for

proving correctness of concurrent systems. We were concerned with representing our theory

mechanically, not necessarily automating its proofs. One of the benefits to this approach

is that our library is prover agnostic—implementing it in other theorem provers is more an

exercise in syntax rather than proof strategy.

Verifying theorems mechanically takes more work than proofs checked by hand, as noth-

ing can be assumed and small steps must be verified. For example, that gcd is commutative

requires lemmas about the definition of gcd, which includes properties about max and di-

visibility. A theorem prover that supports higher-order logic, as PVS does, has the added

obligation of showing type-correctness as well. One way to alleviate some of this burden is

to develop libraries of theorems. Most prover libraries deal with mathematics in general,

defining properties of sets, functions, and numbers. Our contribution is a library that not

only extends such traditional ones, but deals with concurrent composition and distributed

systems.

The organization of our library closely follows the organization of previous chapters: we

first consider local-global relations, then operations and system transitions that are local-

global. One of the advantages to using PVS for such a task is its support for theorem

modularity through inheritance. Inheritance in PVS is achieved through assumptions and

parametrized theories [75, 76], which is a means of defining abstract properties in one library

and making those properties concrete in another. Specifically, assumptions are lemmas

assumed to be true within a theory. These lemmas must be discharged once the theory is

100

1 local_global[
2 A: TYPE , % agents
3 T: TYPE , % type
4 f: FUNCTION [[[A -> T], finite_set[A]] -> T], % fold
5 >: (transitive ?[T]) % relation
6]: THEORY BEGIN
7 ASSUMING
8 pre , post: VAR [A -> T]
9 K: VAR nonempty_set[A]

10
11 lg_base: ASSUMPTION
12 FORALL (j: A | NOT member(j, K)):
13 relates ?(pre , post , K) AND pre(j) = post(j) IMPLIES
14 relates ?(pre , post , add(j, K))
15 ENDASSUMING
16
17 lg_relation: LEMMA
18 relates ?(pre , post , K) AND
19 unchanged ?(pre , post , complement(K)) IMPLIES
20 relates ?(pre , post , nonempty_fullset)
21 END local_global

Figure 9.1: Local-global theory represented in PVS.

imported elsewhere. For example, to prove properties of fold we assume that the operator is

commutative, associative, and monotonic—PVS assumptions are a way to force those that

inherit from fold to actually discharge these assumptions.

9.1.1 Local-Global

Local-global relations formed the basis of our theory on distributed systems and do the

same in our PVS library. Their PVS representation is outlined in Figure 9.1. The theory

is parametrized (lines 2–5) with elements of our distributed model: A and T are the agents

and their value type, respectively; the function f is a mapping from sets of agents to a value

type; and > is a transitive relation. Transitivity is enforced by the PVS prelude-defined

predicate transitive?. The predicates relates? and unchanged? represent the � and

equality components in the definition of local-global relations (Definition 3):

101

relates ?(pre , post: FUNCTION[A->T], K: nonempty_set[A]): bool =

f(pre , K) > f(post , K)

unchanged ?(pre , post: FUNCTION[A->T], K: set[A]): bool =

FORALL (j: A): member(j, K) IMPLIES pre(j) = post(j)

The local global library assumes that the parametrized function f is actually local-

global (lines 7–15). The local-global assumption, lg base, is actually a PVS representation

of the assumptions in Theorem 1. Just as we did in Section 2.2, we use this construct to

aid in proving local-global relations over entire state-spaces, where lg relation is a PVS

representation of Theorem 1.

9.1.2 Fold

The fold theory defines monoid composition, as described in Equation 3.2, and provides lem-

mas used to prove that it is local-global. Its representation in PVS is outlined in Figure 9.2.

As was the case in the local global theory, fold is parametrized with agents and their

type, A and T, respectively, along with a transitive binary relation, <. Whereas local global

expected a function over states, fold expects a monoid. The monoid is expressed in its parts

using a binary operator over T, denoted ◦, and an identity element zero. The assumptions in

this package represent those made in our theory: that ◦ and T form a commutative monoid

that is monotonic with respect to <. Again, these assumptions are taken as fact within fold,

and must be discharged by users of fold.

The fold function, lines 20–24, uses the theorem supplied operator, ◦, to compose agent

values. The predicate empty?, along with functions rest, and choose, are predefined in

the PVS prelude. Measure functions (line 24) are unique to recursive definitions. They are

required to provably decrease with each call to the function. In this way, PVS can ensure

that the recursive function is total, and will eventually terminate.

The final action of the fold theory is to import the local-global theory (line 26). In

general, importing brings lemmas and function definitions into a theories namespace. It

also, however, presents importers with lemmas to discharge in the form of type-correctness

claims (TCCs). In this case, the TCCs generated by importing local global require that

102

1 fold[
2 A: TYPE , % agents
3 T: TYPE , % monoid type
4 o: FUNCTION[T, T -> T], % monoid operator
5 zero: T, % identity element
6 >: (transitive ?[T]) % transitive relation
7]: THEORY BEGIN
8 ASSUMING
9 u, v, w: VAR T

10 SS: VAR set[T]
11
12 zero_identity: ASSUMPTION u o zero = u AND zero o u = u
13 o_commutative: ASSUMPTION u o v = v o u
14 o_associative: ASSUMPTION (u o v) o w = u o (v o w)
15 o_monotonic: ASSUMPTION u > v IMPLIES u o w > v o w
16 o_closed: ASSUMPTION member(u, SS) AND member(v, SS)
17 IMPLIES member(u o v, SS)
18 ENDASSUMING
19
20 fold(S: [A -> T], K: finite_set[A]): RECURSIVE T =
21 IF empty ?(K) THEN zero
22 ELSE fold(S, rest(K)) o S(choose(K))
23 ENDIF
24 MEASURE card(K)
25
26 IMPORTING local_global[A, T, fold , >]
27 END fold

Figure 9.2: Monoid composition in PVS.

fold and > are local-global:

IMP_local_global_TCC1: OBLIGATION

FORALL (K: nonempty_set[A], post , pre: state[A, T, fold , >],

j: A | NOT member[A](j, K)):

relates ?[A, T, fold , >](pre , post , K) AND

pre(j) = post(j) IMPLIES

relates ?[A, T, fold , >](pre , post , add[A](j, K));

Recall that this is the assumption made in the local-global theory (Section 9.1.1) instantiated

with fold.

103

1 S: VAR [A -> T]
2 K: VAR finite_set[A]
3 j: VAR A
4
5 fold_emptyset: LEMMA
6 fold(S, emptyset) = zero
7
8 fold_singleton: LEMMA
9 fold(S, singleton(j)) = S(j)

10
11 fold_x: LEMMA
12 member(j, K) IMPLIES fold(S, K) = S(j) o fold(S, remove(j, K))
13
14 fold_add: LEMMA
15 fold(S, add(j, K)) = fold(S, K) o
16 IF member(j, K) THEN zero ELSE S(j) ENDIF

Figure 9.3: Lemmas used to prove that fold is local-global.

9.1.3 Monoids

We now consider concrete instantiations of the abstract monoid fold relied upon. Recall

Chapter 3, where several operators for commutative monoids were considered. The process

of adding those monoids to our PVS library required defining the operator, using it to

instantiate fold, and discharging the algebraic assumptions imposed by fold. As was the case

when fold imported local global, these assumptions were presented in the form of TCCs

specialized with the instantiating operator.

Figure 9.4 shows several operators implemented in our PVS library. The four presented

in the figure were already defined in standard PVS libraries1; they are presented here for

completeness. In the definitions of min and max, there is a restriction on the return type

(lines 2 and 9, respectively) to aid in proving correctness of the implementation. The imple-

mentation of gcd avoids division by zero with its restricted parameter type (line 16). Finally,

both gcd and lcm take advantage of divides, which is defined in NASA’s extended libraries.

Consider the implementation of min (lines 1–6). The TCCs generated when it imports

1The PVS prelude defines min and max; the extended NASA libraries define gcd and lcm.

104

1 min: THEORY BEGIN
2 min(m, n: real): {p: real | p <= m AND p <= n} =
3 IF m > n THEN n ELSE m ENDIF
4
5 IMPORTING fold[posnat , real , min , posinf , >=]
6 END min
7
8 max: THEORY BEGIN
9 max(m, n: real): {p: real | p >= m AND p >= n} =

10 IF m < n THEN n ELSE m ENDIF
11
12 IMPORTING fold[posnat , real , min , neginf , <=]
13 END max
14
15 gcd: THEORY BEGIN
16 gcd(i:int , j: {jj:int| i = 0 IMPLIES jj /= 0}): posnat =
17 max({k: posnat | divides(k,i) AND divides(k,j)})
18
19 IMPORTING fold[posnat , int , gcd , 0, =]
20 END gcd
21
22 lcm: THEORY BEGIN
23 lcm(m1 ,m2: posnat): int =
24 min({k: posnat | divides(m1 ,k) AND divides(m2 ,k)})
25
26 IMPORTING fold[posnat , int , lcm , 1, =]
27 END lcm

Figure 9.4: Monoid implementations in PVS and their corresponding fold instantiations.

fold can be found in Figure 9.5; TCCs for other operators were analogous. While PVS

provided definitions of the operators, it did not discharge the required algebraic properties—

much of that work was our own. In the case of gcd, for example, PVS provided several

basic lemmas that were composed to prove the necessary properties. Unfortunately, it did

not provide the same infrastructure for lcm, so we were required to reproduce the gcd effort

ourselves.

Convex hull, a commutative monoid considered in Section 3.3, was also implemented.

What is interesting about convex hull is that it can be described as an abstract operation,

independent of an actual implementation. That is, there are several convex hull algorithms

105

1 IMP_fold_TCC1: OBLIGATION % identity
2 FORALL (u: real):
3 min(u, posinf[real]) = u AND min(posinf[real], u) = u;
4
5 IMP_fold_TCC2: OBLIGATION % associativity
6 FORALL (u, v, w: real): min(u, min(v, w)) = min(min(u, v), w);
7
8 IMP_fold_TCC3: OBLIGATION % commutativity
9 FORALL (u, v: real): min(u, v) = min(v, u);

10
11 IMP_fold_TCC4: OBLIGATION % closed
12 FORALL (S: set[real]): FORALL (u, v: real):
13 member(u, S) AND member(v, S) IMPLIES member(min(u, v), S);
14
15 IMP_fold_TCC5: OBLIGATION % monotonic
16 FORALL (u, v, w: real): u >= v IMPLIES min(u, w) >= min(v, w);

Figure 9.5: TCCs produced by importing fold. Each correspond to the monoid-related
assumptions of the fold library (Figure 9.2, lines 8–18). These TCCs are specialized for min,
using the parameters provided to the importing command.

that can be collectively described in a generic fashion: as a function over sets of points that

is super idempotent. We take this abstraction into account in our PVS implementation:

outlined in Figure 9.6, hull defines convex hull generically. The theory giftwrap, Figure 9.7,

defines the well-known gift wrapping algorithm and imports hull using it. Much of the code

presented in Figure 9.7 is based on functions defined within our geometric library. Briefly,

a plot is a finite set of points, where a point is any native type. A polygon is a plot

with at least 3 points; an important quality as it simplifies the implementation of the gift

wrapping algorithm. The function rightof returns a point to the “right of” a given point,

where orientation is towards the origin. Finally, min y returns the minimum point within a

polygon with respect to the set of y-coordinates.

9.1.4 Discussion

Although we were confident in our hand-proofs, checking our work in a theorem prover was

a valuable exercise. First, it forced us into a very particular kind of thought process. On

occasion, we had to rethink our proof based on an inability to show it in PVS. The result

106

1 hull[T: TYPE ,
2 f: FUNCTION[finite_set[T] -> finite_set[T]]
3]: THEORY BEGIN
4 ASSUMING
5 super_idempotent: ASSUMPTION
6 FORALL (a, b: finite_set[T]): f(union(a, b)) = f(union(a, f(b)))
7 ENDASSUMING
8
9 cvx_hull(a, b: finite_set[T]): finite_set[T] = f(union(a, b))

10
11 IMPORTING fold[posnat , finite_set[T], cvx_hull , emptyset , =]
12 END hull

Figure 9.6: Convex hull.

of such rethought was often a simplification in our approach. Complexity in our model

came from simple building blocks, which is the most efficient way of using a theorem prover.

The second advantage of working with a theorem prover was that it provided a tangible

representation of our verification process. Rather than having several ideas that were loosely

related, when implemented in PVS we had to think about the problem in a more structured

fashion—exactly how fold fit into the local-global idea had to be well defined. Such structure

ultimately improved our methodology and helped to bridge the gap between theory and

implementation.

9.1.5 Related Work

Nipkow and Paulson develop a similar library based on fold using Isabelle/HOL [77]. The

most significant difference in their implementation is that it does not rely on the axiom of

choice. Rather, they relate finite sets to natural numbers and extract elements based on set

cardinality. Axiom of choice was used in our implementation because of its native support in

PVS. The authors conclude that the two implementations require approximately the same

effort to prove properties about. Like us, they extend their library to other associative and

commutative operations. However, they are focused on defining such operations using fold

rather than applying them. For example, where K is a well-ordered set, Nipkow and Paulson

107

1 giftwrap: THEORY BEGIN
2 IMPORTING libext@geometry[real] % define plot and polygon
3
4 giftwrap_r(P: plot , Q: (polygon?), p0: (Q)): RECURSIVE plot =
5 LET p1 = rightof(Q, p0) IN
6 IF member(p1 , difference(Q, P)) THEN singleton(p0)
7 ELSE add(p0, giftwrap_r(remove(p1 , P), Q, p1))
8 ENDIF
9 MEASURE card(P)

10
11 giftwrap(P: plot): plot =
12 IF polygon ?(P) THEN giftwrap_r(remove(p, P), P, p)
13 WHERE p = min_y(P)
14 ELSE P
15 ENDIF
16
17 IMPORTING hull[point , giftwrap]
18 END giftwrap

Figure 9.7: Convex hull gift wrapping algorithm in PVS.

define the minimum value as

fold(K,min),

where min is the binary operation; in PVS, however, the definition follows:

min(K) = {k | K(k) ∧ (∀j : K(j) =⇒ k ≤ j)} .

Based on our use of fold, we obtained set operations in the spirit of Nipkow and Paulson

implicitly.

9.2 Model Checker

Model checking is a formal method that, given a specification, verifies that a given model

meets that specification. In this case, that model is an abstraction of a more concrete software

implementation. To verify that a given specification holds, model checkers consider various

execution paths of a system looking for violations of the specification; in some cases, this

108

means analyzing the entire state-space of a system. Such thorough consideration is especially

useful when verifying distributed applications, where process communication, interleaved

executions, and data-sharing can cause the system to deviate from expected behavior. Model

checkers perform this verification at a level of abstraction that is closer to actual system

implementation than is considered by other tools of formal methods, such as theorem provers.

However, practically searching the state space of a program can be challenging, as state-

spaces, even for relatively simple models, can be very large; this is commonly referred to as

the state explosion problem. With such state-spaces, exhaustive consideration of a systems

execution is infeasible for modern computer hardware. Work to address this issue includes

novel methods of state representation and storage optimization, as well extensions to multi-

core environments [78]. However, application of local-global methods to model generation

can also help to reduce the state-space, as is examined this chapter. Specifically, we consider

distributed consensus, outlined in Chapter 3, and analyze the difference in states required

for verification. Although the results and conclusions from this comparison are problem-

specific, our process of applying local-global relations to model checking can be applied to

other domains.

9.2.1 Overview

Using the Spin model checker [2], we studied distributed consensus as described in Chapter 3.

Specifically, we considered disjunctive consensus, using the monoid 〈∨, {0, 1}〉. This type of

consensus was chosen for the operators native support in Spin. Three models of the problem

were developed:

Global model Checked, on the global state of the system, that consensus was maintained

and eventually reached.

Local-global model Checked that a given relation was maintained locally between state

transitions. This model was useful for studying the effect that local-global relations

have on model checking complexity.

109

Hybrid model Checked that a given relation was maintained locally between state tran-

sitions. It also ensured that consensus was maintained globally. This model verified

that our theory was valid in practice.

We were not only interested in how local-global properties could be applied to model check-

ing, but also what it meant for the performance of the model checker overall. In particular,

that using local-global relations reduces verification complexity—modeling Boolean consen-

sus is a straightforward means of testing this hypothesis.

All models represented agents as separate processes that communicated via message

passing in a unidirectional ring. The number of agents in the system ranged from 1 to 5,

depending on the execution. Each communication channel had a buffer size of 1 that re-

mained constant throughout our analysis. The communication channel, wire was an array of

Boolean values, where each agent in the system had a unique index with which to send and

receive messages. Agents used channel assertions, xr and xs, to optimize Spin’s operation.

9.2.2 Global Model

The global model is outlined in Figure 9.8. Upon receiving a message, an agent updates

its state and determines whether or not global consensus has been achieved. Its state is

updated by applying the disjunctive monoid to its existing value and the value received from

its neighbor (line 24). This is an instance of the more general group transition described in

Section 3.2. To perform the global check of consensus (lines 25–36), the value of each agent is

compared to the value determined to be consensus during system initialization (lines 13–17).

A running tally of this comparison is kept; if any agent in the system does not match initial

consensus, global consensus is set to false.

Specifying Fairness

Correctness in the global model is a temporal property: eventually all values within the state

array will be equal to some constant value. Spin “never” claims are a mechanism commonly

used to express such properties about a system. When combined with program labels, they

110

1 bool consensus , initial , state[AGENTS]
2 chan wire[AGENTS] = [BUFFER] of { bool }
3
4 active [AGENTS] proctype agent() {
5 byte n;
6 bool msg;
7
8 chan out = wire[(_pid + 1) % AGENTS];
9 chan inp = wire[_pid];

10 xs out;
11 xr inp;
12
13 if
14 :: state = true;
15 initial = true
16 :: state = false
17 fi;
18
19 out!state[_pid];
20 end:
21 do
22 :: inp?msg ->
23 rcv:
24 state[_pid] = (state[_pid] || msg);
25 n = 0;
26 consensus = true;
27 do /* Check that consensus is maintained globally */
28 :: n < AGENTS ->
29 if
30 :: (state[n] != initial) ->
31 consensus = false;
32 break
33 :: else -> n++
34 fi
35 :: else -> break
36 od;
37 out!state[_pid];
38 od
39 }

Figure 9.8: Promela “global model.” Consensus is verified globally, across all agent states.
The number of agents in the system, agents, was set at compile time.

111

1 never { /* !(<>[] consensus) && ([]<>a1rcv) && ([]<>a2rcv) */
2 T0_init:
3 if
4 :: (! ((consensus)) && (a1rcv) && (a2rcv)) ->
5 goto accept_S570
6 :: (! ((consensus)) && (a1rcv)) -> goto T2_S570
7 :: (! ((consensus))) -> goto T1_S570
8 :: (1) -> goto T0_init
9 fi;

10 accept_S570:
11 if
12 :: (1) -> goto T0_init
13 fi;
14 T2_S570:
15 if
16 :: ((a2rcv)) -> goto accept_S570
17 :: (1) -> goto T2_S570
18 fi;
19 T1_S570:
20 if
21 :: ((a1rcv) && (a2rcv)) -> goto accept_S570
22 :: ((a1rcv)) -> goto T2_S570
23 :: (1) -> goto T1_S570
24 fi;
25 }

Figure 9.9: Spin never claim to ensure fairness and progress amongst two agents.

can also be used to define fairness for that system. We utilize both aspects of Spin never

claims to verify correctness of the naive model.

By default Spin provides fairness it at the process-level, ensuring that all processes

have a chance to run. This, in conjunction with agents communicating a ring, fulfills one

aspect of fairness as defined and assumed throughout this thesis: that agents will never be

permanently partitioned. However, we also have an implicit assumption that agents are

“active” participants toward the global goal. That is, agents are diligently managing and

communicating their internal state. This is realized in our model by annotating agents with

a rcv label (Figure 9.8, line 23), and informing Spin to only consider executions where

control flow goes through rcv with some frequency.

Correctness and fairness in the global model were both temporal properties; Spin never

112

claims are able to recognize and verify such properties by converting LTL statements into

automata. The Spin-accepted LTL statement for two agents corresponding to the aforemen-

tioned correctness and fairness requirements was as follows:

!(<>[] consensus) && ([]<>(agent [1] @rcv)) && ([]<>(agent [2] @rcv))

where consensus is the global variable defined in the model (Figure 9.8, line 1). The

agent[n]@rcv syntax specifies that control flow of the given agent, 1 and 2 in this case, is

at the specified label, rcv. Thus, the LTL statement instructs Spin to verify that consensus

eventually holds forever in executions where each agent always receives eventually. Again,

Spin can convert such a statement into a Promela-encoded automata that can in turn be

inserted into an existing model. For the complete code generated using this LTL statement,

see Figure 9.9.

9.2.3 Local-Global Model

The local-global model is outlined in Figure 9.10. Upon receiving a message, an agents

calculates its new value by applying the monoid to its existing value and the message received

from its neighbor; it subsequently verifies that the local relation is maintained (lines 19–23).

The premise behind this optimization is based on the theoretic analysis from Chapter 3,

where the general consensus problem was described as a local-global relation. Recall that it

was shown when subsets of agents update their states using a commutative monoid, consensus

amongst the global set would eventually be reached. Our implementation of the problem in

Promela is a subset of this model, as there is a single agent that updates its state during

each transition. Let k be the updated agent, and false in Boolean algebra be less-than true;

The local-global relation is as follows:

∨
j∈{k}

S(j) ≤
∨
j∈{k}

S ′(j)︸ ︷︷ ︸
local relation

∧
∀j ∈ A \ {k} : S(j) = S(j)︸ ︷︷ ︸

unchanged

=⇒
∨
j∈A

S(j) ≤
∨
j∈A

S ′(j)︸ ︷︷ ︸
global relation

, (9.1)

113

1 chan wire[AGENTS] = [BUFFER] of { bool }
2
3 active [AGENTS] proctype agent() {
4 bool msg , state , post;
5
6 chan out = wire[(_pid + 1) % AGENTS];
7 chan inp = wire[_pid];
8 xs out;
9 xr inp;

10
11 if
12 :: state = true
13 :: state = false
14 fi;
15
16 out!state;
17 end:
18 do
19 :: inp?msg ->
20 post = (state || msg);
21 assert(state <= post); /* Verify the local relation */
22 state = post;
23 out!state
24 od;
25 }

Figure 9.10: Promela “local-global model.” Consensus is verified locally, which results in a
check only for the updated agent.

which holds by Theorem 1. Where the global model ensured that the “global relation” in

Equation 9.1 was maintained, the local model ensured that “local relation” was maintained.

This can be seen in Figure 9.10, line 21.

Hybrid Model

The hybrid model, outlined in Figure 9.11, not only checks the local-global relation, but also

ensures that consensus is preserved. In this way, it is verifying that the local-global relation

in practice is consistent with the theory. System initialization, in this context, is similar to

the global model (Figure 9.11, lines 13–17), while agent-state updates are similar to the local

model (Figure 9.11, lines 23–25).

114

1 bool initial , state[AGENTS]
2 chan wire[AGENTS] = [BUFFER] of { bool }
3
4 active [AGENTS] proctype agent() {
5 byte n;
6 bool msg , preserved , post;
7
8 chan out = wire[(_pid + 1) % AGENTS];
9 chan inp = wire[_pid];

10 xs out;
11 xr inp;
12
13 if
14 :: state = true;
15 initial = true
16 :: state = false
17 fi;
18
19 out!state[_pid];
20 end:
21 do
22 :: inp?msg ->
23 post = (state[_pid] || msg);
24 assert(state[_pid] <= post);
25 state[_pid] = post;
26
27 n = 0;
28 preserved = false;
29 do
30 :: n < AGENTS ->
31 if
32 :: (state[n] == initial) ->
33 preserved = true;
34 break
35 :: else -> n++
36 fi
37 :: else -> break
38 od;
39 assert(preserved);
40
41 out!state[_pid]
42 od
43 }

Figure 9.11: Promela “hybrid model.” This model performs both a local and a global
verification that consensus is maintained after each step.

115

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 1 2 3 4 5

S
ta

te
s
 n

e
e
d
e
d
 f
o
r

v
e
ri
fi
c
a

ti
o
n

Agents

Global
Hybrid

Local-Global

Figure 9.12: Number of states required by Spin to verify each model as a function of agents
in the system.

Once the state is updated, the model verifies that consensus is preserved by checking that

the target value within the system has not changed; lines 27–39 detail this process. Recall,

initial was that target value—the model checks that at least one agents value is the target.

9.2.4 Experimentation

Methodology

Model performance was used to asses the impact that local-global relations have on model

checker performance; where performance was measured by the number of states Spin gener-

ated to verify each model, as well the amount of time it took to do so. Measurements, with

respect to each, were taken from Spin’s “Pan” output. Verification was run with a varying

number of agents—from 1 to 5—and with constant communication buffer size.

The process of verifying a model in Spin is to first write the model in Promela—the code

presented in this chapter corresponds to this step. The Promela file is then given to Spin to

116

generate a model checker in C, which is then compiled into a binary executable. This process

provides several places for customization of the model, depending what the implementer is

interested in verifying and how they want Spin to operate in doing so. For all models in

this section, when generating the model checker in C from Promela, Spin was passed the -a

option. The corresponding C files were then compiled with collapse defined. This option

enhances state compression so that system memory is optimized [79]. Along with this option,

the local-global models were also compiled with safety defined. At run-time, all models

were given a search depth of 107 states, which was found to be sufficient for Spin to perform

complete verifications given our physical hardware constraints.2 Finally, the global model

was also passed -a at run-time, informing the model checker that verification of a never

claim was required.

Results

The state space of each model is shown in Figure 9.12. These values were based on the

“states, stored” as reported by the final Pan output. Figure 9.13 shows the verification time

required for each model. As the number of agents in the system increase, the local model

shows a significant reduction in the amount of resources—both time and states—required

for verification.

The primary difference between local-global models and the global version, was the lack

of a never claim. Where the global version relied on temporal properties to verify consensus,

and thus required a never claim, the local-global models relied on the relation between

pre- and post-states of the system. Because system updates only involved a single agent,

this meant verifying that a single agents’ update maintained the relation. Removing the

temporal property had several implications for the model. First, the exclusion of the never

claim meant that Spin was not explicitly verifying that consensus eventually-always held, nor

was it focusing its exploration to fair executions. Instead, in the local-global models, Spin

considered all trajectories of the system, as it was only concerned with finding violations

2Dual quad-core Intel E5410 processors with approximately 16 GB of allotted system memory.

117

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5

T
im

e
 (

s
e
c
o
n
d
s
)

Agents

Global
Hybrid

Local-Global

Figure 9.13: Time required by Spin to verify each model.

of local global. Although it did consider paths that were not fair, it also considered

paths that were—it was verification of this subset that was of most concern, as they had

implications for correctness.

The number of global variables required for verification for each model also differed. Not

counting the channel, the global version used three, the hybrid model kept two, and the

local-global model required none. Moreover, in both the global and hybrid case, one of those

variables was an array that depended on the number agents. Not only is there a correlation

between the number of variables within a model and the amount of memory verifying that

model requires, but there is also a correlation between variables and the number of states

produced by Spin. This is largely due to the fact that Spin must consider all possible values

for given variable types and maintain those variables during model execution.

118

9.2.5 Discussion

The primary objective of this section was to showcase the benefits of trusting the local-

global theory when model checking, and to verify, using a model checker, that the theory

can be trusted. With respect to the former, in the local-global model, the model checker is

just verifying an invariant of the system: that once a Boolean value is true, no disjunctive

update can falsify it. In this case, it is that the programmer is trusting the overall theory that

was presented in the first portion of the thesis, and wants to ensure that the basic property

is maintained in the model. While in general one does not require a model checker to verify

such a property, the exercise of doing so for this problem puts the focus on the “states,

stored”; there is no ambiguity or confusion (for the reader) over the underlying model.

We also employed a model checker to verify the local-global theory using a particular

example; in this case Boolean consensus. To do this in general, one would have to verify

more than just the invariant—there would also have to be a liveness component as well. Our

global model includes this, but our local-global model does not. That the verification still

succeeds in both cases implies that local-global model is sound over the problem space. Our

third, hybrid model, which sat at the intersection of the two, substantiated this conclusion.

9.2.6 Related Work

Casadei and Viroli used a model checker to verify self-organizing systems [80, 81]. Their

motivation for the use of formal methods was similar to ours: that correctness of a distributed

algorithm is difficult to obtain at run-time. In this case, they were interested in the dynamics,

and convergence properties, of the collective sort problem [82, 83], whereby agents cluster

objects based on a well-defined similarity between those objects. The authors acknowledged

that the solution to this problem is dependent on local actions of agents; however, unlike

our work, they did not exploit this fact to simplify the verification process.

119

9.3 Implementation

Our algorithm analysis, along with its representation and verification in Spin and PVS,

provided a well-defined structure with which to create executable programs. This section

outlines those programs, and looks at methods for ensuring their correctness. Whereas the

concepts of local-global relations had an explicit impact on algorithm verification, they had

an implicit impact on system design and implementation.

We consider the consensus and algebraic path problems studied earlier. The code-base

deviates slightly from the theoretical presentation by including monoid and average consensus

within the same framework; however, the principles presented thus far remain. The library

was built using two different programming paradigms: object-oriented and functional, with

Java and C# being used for the former, and Erlang for the latter. Our presentation of the

code follows this organization, with algorithms sectioned by coding practice. Unlike more

automated efforts [84, 85, 86, 6], our transformations were done manually.

Java and C# are common languages; it is assumed that the reader is familiar with

them in particular, or with at least their representation of object-oriented programming in

general. Erlang, however, is not quite as popular and therefore deserves a brief overview [8]:

Erlang is an interpreted, functional, language that was originally developed by Ericsson to

build software for telephone exchange [87]. Software in this domain requires support for

large numbers of concurrent and distributed processes—providing that support was a major

design requirement for the language. To this end, Erlang has its own implementation of

processes, which are neither operating system processes nor user-level threads. The creation

and destruction of processes within Erlang require nominal system overhead as they are

very lightweight structures that do not share any data. When programming in Erlang,

the programmer is encouraged to think of their application as a set of such processes that

interact via asynchronous message passing [88]. Sending and receiving messages are native

operations within the language to facilitate such design. Thus, not only did Erlang provide

a second paradigm in which to study local-global relations, it was an appropriate tool for

our algorithms given its support for distributed systems.

120

9.3.1 Consensus

All three implementations were made up of three components: operators, agents, and in-

frastructure. Agents exchanged values, updating their state by applying those values to

operators. The infrastructure acted as a facilitator for such interactions by providing an

implementation of the transition system. Specifically, it composed groups of agents and

provided an atomic environment in which they could share and update their state. In this

way, the infrastructure had to satisfy the system assumptions from Section 2.1. We did

not formally verify that this was the case—we refer the reader to the wide body of litera-

ture which addresses this concern [89, 90, 91, 92, 93]. For example, we assumed that the

communication amongst agents was fair. This required the communication medium to be

reliable, but also had implications for group generation. Groups of agents were created using

a random number generator: given the entire set of agents within the system, agents were

selected at random and assigned to a given group (agents without a group assignment were

thought of as being in a group consisting of only themselves). We assumed that over the

course of an execution, random group assignment would never create a permanent partition

amongst the agent set.

Object Oriented Implementation

The aforementioned components—operators, agents, and infrastructure—were each abstract

objects in the object oriented design. The operator class was refined to obtain specific func-

tions of interest, such as max and gcd. It was analogous to the abstract representation of

operators in PVS that were instantiated by concrete theorems. As shown in Figure 9.14,

the correspondence between the PVS library structure and the actual object refinement was

one-to-one. The parent operator class defined an abstract method, operate, that all children

were required to implement. This method was a function from a collection of values to a

single value. There were two children of this class: one for monoid composition, and another

for average. The former defined operate as the fold method from PVS (Section 9.1.2). Tra-

ditional operators—min, gcd, convex hull—were children of this class. Recall that although

121

(a) Theory diagram (b) Object diagram.

Figure 9.14: Operator component diagram.

average is a local-global relation, it is not monoid-composable; thus, it required its own

branch in the object hierarchy.

The agent class, also abstract, represented a single agent in our system. To simulate

an actual system with multiple agents, several threads were spawned, each containing an

agent instantiation. Communication between agents took place via message passing. Each

agent stored an operator in its private data. Concrete implementations of the class defined

the post-state state-commit semantics of an agent. Depending on the operator, agents were

either free to request a new group after updating their state, or waited for all other agents to

also update their state before moving on. For example, in the case of min consensus, once an

agent updates its state with the lowest of the group’s values, that agent is free to move on to

another group, irrespective of its neighbors. If such an agent begins a transaction with new

neighbors while its previous neighbors have not, its update with new neighbor values will

not affect the ability for the system to converge. However, in the case of average consensus,

agents cannot move out of their group until all agents have updated their value; doing so

could change the overall average of the group. Thus, concrete agent representations within

our library had to implement a method expressing how an agent should handle post-state

commits.

122

Functional Implementation

In Erlang, all components of the system were independent processes that implemented a

particular component. Thus, unlike the object oriented implementation, agents did not

contain an operator; rather, there was a single operator process that they interacted with.

Agents were also separate, concurrent, processes. This was much like the object-oriented

approach in which they were separate threads. The underlying infrastructure management

layer was also similar, starting the operator and agent processes, and assigning agents to

groups. Erlang is a message-based language, so transitions commenced through message

passing: first between manager and agent, then between agents, then agents to the operator,

and finally agents back to managers. This cycle continued until consensus was reached.

9.3.2 Algebraic Path

Each implementation used graphs, agents, and semirings as their underlying, abstract com-

ponents. Graphs focused merely on traversal, applying agent values to semirings where

necessary, and making traversal decisions based on it. As was the case in the consensus

implementation, such separation in this case provided a natural design that was modular.

Object Oriented Implementation

Directed graph, graph traversal, edge value, and semiring were the four abstract classes

that implemented our graph theory. Given a semiring and directed graph, graph traversal

performed a depth first walk, applying the semiring to each vertex it encountered. The

traversal class relied on the semiring object to decide whether or not to continue down a

particular path. The semiring produced a new edge value, following Definition 18. If the

new value was not less-than the old value, traversal along the path was aborted.

Semirings operated over edge values, both were abstract, refined to perform specific types

of graph operations. For example, for reachability (Example 9) the edge value was refined

to Boolean types, while semiring addition and multiplication were refined to disjunction and

123

conjunction, respectively. Edge value was also responsible for defining compareTo3 so that

they could be compared by the traversal object.

Functional Implementation

Vertices of the graph were autonomous agent processes. Each agent maintained a list of

neighbors, which represented edges. Rather than a static traversal algorithm, as with the

object-oriented implementation, solutions to path problems were calculated using diffusion.

Specifically, traversal started started at a root node, with that node sending requests to each

of its neighbors. These neighbors, in parallel, did the same, continuing the request to each

of their neighbors. Once a request reached the end of a path, it traversed its way back to

the root node via the path from which it originated.

In this way, the algebraic path problem was actually a distributed protocol: agents

received a request packet with the current calculation result; they enlisted the semiring

agent to update the packet with their own state; and finally, sent a calculation request to

their neighbors that contained the new packet. The calculation request, and packet updates,

continued throughout the graph until they reached an agent that either had no neighbors,

or had already received the said request. At that point, the packet was sent back “up” the

path. Note that agents did not respond to the calculation request until they had heard from

all of their children.

Much like operator processes in the Erlang consensus implementation, semirings were

daemon processes that responded to semiring requests, such as times, plus, and zero. Ex-

tending our Erlang implementation, required creating a new daemon that answered to those

requests appropriately.

9.3.3 Contract Specification

Our Java implementation uses the Java Modeling Language (JML) [7] to enforce system

verifications. The purpose of JML, in general, is to specify the behavior of Java objects, and

3Derived from Comparable in Java and IComparable in C#/Spec#.

124

1 min: THEORY BEGIN

2 min(m, n: real): {p: real | p <= m AND p <= n} =

3 IF m > n THEN n ELSE m ENDIF

4 END min

(a) PVS min.

1 /*@

2 @ assert (\ result <= x && \result <= y &&

3 @ (\ result == x || \result == y));

4 @*/

5 double min(double m, double n) {

6 return Math.min(m, n);

7 }

(b) Java min augmented with JML.

Figure 9.15: Implementation of min in PVS and Java. The Java implementation is annotated
with JML.

to check during run-time that those specifications are upheld. The tool allows programmers

to prepend object methods with pre- and post-conditions, and to annotate arbitrary lines

of code with system invariants. An advantage of JML is that it supports abstract program-

ming concepts that are closer to mathematics than standard Java, such as set theory and

quantification.

The C# implementation was extended to Spec# [94], a programming language based on

C# that has native support for correctness specification. Spec# is much like JML in that

the programmer can specify pre- and post-conditions, and object invariants; however, it is

not a meta-language—code written in Spec# cannot be compiled by a C# compiler.

Consensus

There were two aspects of our implementation that were verified: that the operators per-

formed as expected, and that system state, specifically agent interactions, obeyed our theory.

Correctness of either condition can be derived from our theoretical analysis. However, as

this is an examination in the process of formal methods, we base such correctness on our

derivation of correctness from those methods. In the case of operator verification, this meant

125

1 public class LocalGlobal {
2 private boolean commence;
3 private Operator operator;
4
5 private Vector preState;
6 private Vector postState;
7
8 public LocalGlobal(Operator o) {
9 operator = o;

10 commence = false;
11 }
12
13 public void setPreState(Vector state) {
14 preState = new Vector(state);
15 }
16
17 public void setPostState(Vector state) {
18 postState = new Vector(state);
19 commence = true;
20 }
21
22 invariant(commence ==> operator.relates(preState , postState));
23 }

Figure 9.16: An object added to ensure a local-global relation was maintained between states.

that the implementations were equivalent to their PVS representation. Figure 9.15 outlines

this process for min: Figure 9.15(a) is the PVS representation of min (previously displayed

in Figure 9.4); Figure 9.15(b) is the Java representation of min (lines 5–7), annotated with

JML (lines 1–4). Based on the min implementation in PVS, a valid functional transform is

one that places a restriction on its return type (line 2), and whose value is equal to one of its

input parameters. Both are captured with the JML post-condition checks on lines 2 and 3,

respectively. These assertions alleviate the need to know how min is actually implemented,

making JML a crucial step in the transformation from PVS to correct software.

Verification of agent interactions ensured that the local-global relation was preserved

between transitions. In this case, we used the Spin model as example. Both JML and Spec#

allow the programmer to specify object invariants, which are verified each time the class is

modified. A new object was added to the system, LocalGlobal, where an invariant based

126

1 public class Infrastructure {
2 private LocalGlobal lg;
3
4 public void groupSubscribe(Agent agent) {
5 /* ... */
6 lg.setPreState(groupTransitionSet);
7 /* ... */
8 }
9

10 public void groupUnsubscribe(Agent agent) {
11 /* ... */
12 lg.setPreState(groupTransitionSet);
13 /* ... */
14 }
15 }

Figure 9.17: Maintenance of the LocalGlobal object. The pre-state was set prior to group
formation, while the post-state was set once all agents were finished with their transition.

on local-global relations was added (Figure 9.16). LocalGlobal maintained three variables:

an abstract operator, and two collections of agents corresponding to versions of the agent set

before and after a transition. The operator class presented in Section 9.3.2 was updated with

an abstract relates method. Concrete instances of the Operator implemented this method

with the corresponding local-global relation between states. In the case of min consensus, for

example, the returned value was a less-than relationship between states. The infrastructure,

responsible for group formation, passed snapshots of the agents to LocalGlobal before and

after a transition (Figure 9.17). Each time this value was set (lines 6 and 12), the invariant

in LocalGlobal (line 22) was evaluated.4 The variable commence ensured that the invariant

was fully evaluated only after the post-state was set.

We also monitored progress by comparing the result of variant functions applied to the

pre- and post-state. Progress was made when the variant function strictly decreased. A

terminal state was declared if the variant function in the post state was zero. If enough

system transitions were made without strict progress produced a system error was generated.

Specification languages were not employed for this check, as it was not an invariant; thus,

4The invariant keyword and implication operator ==> were defined in both JML and Spec#.

127

1 public class LocalGlobal {
2 private DirectedGraph preState;
3 private DirectedGraph postState;
4
5 public static boolean relation(DirectedGraph pre ,
6 DirectedGraph post) {
7
8 while (post.EdgeIterator (). hasNext ()) {
9 postEdgeValue = post.getEdgeValue(post.EdgeIterator ());

10 preEdgeValue = pre.getEdgeValue(post.EdgeIterator ());
11
12 if (postEdgeValue.compareTo(preEdgeValue) > 0) {
13 return false;
14 }
15 }
16
17 return true;
18 }
19
20 invariant(postState != null ==>
21 LocalGlobal.relation(preState , postState));
22 }

Figure 9.18: Psuedo-Java outlining local-global verification within the algebraic path imple-
mentation. Once postState is instantiated, the invariant is evaluated. This runs relation,
which ensures that all edges in the post-state are less-than or equal-to their corresponding
edges in the pre-state.

exceptions were thrown to indicate abnormal conditions.

Algebraic Path

Verification concepts within algebraic path were similar to those in consensus: ensure that

operators were algebraically sound, and enforce the transition semantic.

Transitions were again specified as object invariants. A LocalGlobal class was defined

that kept copies of pre- and post-transition graphs, and provided a means of checking that

the two graphs fit a local-global relation. Figure 9.18 outlines this process.5 The invariant is

only evaluated if the post-state has been set. When this is the case, the relation method

5The code is presented in psuedo-Java for space reasons, with variable declarations undefined and JML
descriptors removed, however, the idea should be clear. Moreover, it is generic enough that a conversion to
Spec# should be straightforward.

128

checks that, for each edge in the post-state, its value is less-than or equal-to the corresponding

edge value in the pre-state (line 12). An instance of LocalGlobal was kept, and maintained,

in the object responsible for graph traversal. Traversal was a recursive function where the

pre-state graph was set prior to the function body and post-state graph set prior to its

return.

9.3.4 Discussion

Our verification methodology produced several modular components whose correctness—

both in their assumptions and their execution guarantees—was well understood. Knowing

what these components were helped to direct the focus of our implementation, along with its

implementation. For example, when developing distributed consensus, local-global relations

dictated how agents and operators should behave locally, and what guarantees those actions

should provide on system transition globally. In algebraic path, we were able to separate

graph traversal from system agent interaction.

What to specify within a code-base is a known challenge in practice. It is sometimes

too difficult to distinguish when specifications are contributing to the soundness of an im-

plementation versus the correctness of the implemented algorithm. In a recent survey of

formal methods used in industry, respondents mentioned such [10]. Local-global relations

help alleviate this burden by focusing the specification effort to areas necessary for overall

correctness. While other specifications, such as catching null objects or other unexpected

value types, are necessary, local-global relations help to separate the domain of the two.

129

Chapter 10

Conclusion and Future Work

10.1 Future Work

10.1.1 Tools of Formal Methods

Local-global relations should be a native concept in the tools of formal methods. In par-

ticular, this would be applicable to tools such as JML and Boogie [95], where programmers

augment executable code to check for errors. In order to do this, calls would be inserted

at state transitions that specified the pre- and post-state to checked. Such calls would also

specify the relation that should be maintained. The tools, in turn, would statically check

that these relations were maintained, and further ensure that these relations were maintained

during system execution.

With respect to model checking, the concept of local-global relations should be extended

to other problems. It has been shown that knowledge of the framework can improve checking

performance in a specific case; how to do so in the general case is unclear. Based on the

domain-specific assumptions we made in Section 9.2, one might argue that applying local-

global relations within a model checker takes insight into the problem, and intuition into how

the framework can be applied. Thus, little can be used from the example provided in this

thesis when applying the framework to other problems. However, one cannot, at this point,

make such a statement definitively: further work—specifically applying the framework to

other problems—would determine such applicability.

130

10.1.2 Other Algebraic Structures and Problems

A natural extension of the framework is to other algebraic structures. Just as the monoid and

semiring allowed us to reason about a given class of problems, other structures can potentially

allow us to do the same. For example, lattices can be used to describe distributed resource

sharing. Let agents in a system be nodes in a lattice; the direction of their outgoing edge

determines their priority for a resource. Depending on how the problem is modeled, the agent

holding the resource would be at the infimum or supremum of the lattice. If there are several

resources in the system, this position would local. When the resource is exchanged, the edges

of the agent previously holding the resource would be swapped, effectively making putting it

at the other extreme of the lattice. The challenge is in defining the state transition in such

a way that agents waiting on a resource locally will receive that global resource eventually.

Local-global relations might also be applied to distributed image analysis. Mathematical

morphology [96] is an algebraic method of analysis and processing geometric structures. At

its basis are two primitive operations of erosion and dilation, which can be defined using

set intersection and union, respectively. Other work has applied the concept to analysing

images using associative processors [97]. At the surface morphology has the requirements—

an algebraic basis and is parallelizable—to be applicable to our framework.

10.1.3 Other Problem Domains

The problems considered in this thesis were homogeneous in nature: all agents within the

system performed the same operation to achieve a common global goal. There are several dis-

tributed systems, however, for which this is not the model. These systems are heterogeneous

in nature, comprised of a set of components that perform different tasks. An example of such

system are web services. Web services are a set of distributed components that interact to

provide a particular service, where that service is the result of a remote program execution.

A challenge in the field is ensuring that component interactions obey given properties such

that their cooperation achieves a given goal [98]. Algebra has been used to assist with such

reasoning [99]. Given the locally interactive nature of the problem, and this algebraic basis,

131

there is potential to utilize the local-global framework for reasoning about system evolution.

The extensions required to deal with such heterogeneous systems would add value to the

framework overall.

10.1.4 The Tradeoff Between Robustness and Efficiency

Systems that are robust operate correctly in a variety of environments; however, they may

operate suboptimally in each environment. The system is robust because even if the environ-

ment changes—for example if communication channels fail—the system continue to operate

correctly, though possibly with degraded efficiency. By contrast, a fragile system that op-

erates correctly in only one environment can be made extremely efficient for that specific

environment; however, if the environment changes the system crashes.

In this thesis we explored the relationship between robustness and efficiency by studying

multiagent systems that operate in extremely unreliable and possibly hostile environments.

An evaluation of the tradeoff between robustness and efficiency should explore a range of

designs from extremely fragile and extremely efficient at one extreme, to extremely robust

and possibly very inefficient at the other extreme. This thesis studies only one extreme—

robust systems operating in unreliable environments. The thesis briefly compares systems

at this extreme with systems at the other extreme—all agents can interact at all times

perfectly. A great deal of work remains to be done in exploring the robustness-efficiency

tradeoff across the spectrum of designs from fragile systems designed to operate efficiently

in a limited number of environments to robust systems that operate correctly even when an

adversary controls aspects of the system.

10.2 The Applicability of Local-Global Relations

Local-global relations are a framework for studying a class of distributed systems in which

agents are homogeneous in the actions they perform. They allow a developer to reason about

overall system dynamics by concentrating on interactions amongst subsets of processes. An

132

advantage of this methodology is a simpler means of showing system correctness, both in

theory, and in practice.

This thesis provided examples of the frameworks usability by applying it to established

algorithms within the field, such as consensus and graph problems. In such cases, local-global

relations were identified and then used to show invariant and liveness properties. Working

with such relations, rather than complete system models, reduced the proof obligations

required to show correctness.

The framework was also included in the software development cycle by applying it to

tools of formal methods. Local-global relations promoted an algebraic representation of

the system, which subsequently simplified their representation within a theorem prover.

By concentrating the verification effort on ensuring that process interactions were correct,

efficiency in the use of model checkers and specification languages was also improved. Finally,

in creating executable code, software components such as Java classes and PVS libraries were

developed that both met a specification, and were reusable.

Traditional approaches to studying algorithm and software correctness have a bias toward

global analysis by considering system dynamics and convergence as a whole. The approach

is natural, given that correctness is generally specified as a global system property. How-

ever, as the number of autonomous processes making up those systems increase, so too will

the complexity involved with studying correctness from that vantage. For system design

and analysis to meet future demands, alternative methods must be developed—local-global

relations are a contribution towards this effort.

133

Appendix A

Auxiliary Proofs

A.1 Reverse Induction

The objective of this section is to prove a generic reverse induction theorem over finite non-

empty sets. Throughout the thesis, we assumed the set of agents within a system was finite

and non-empty; thus, the theorems proved herein are valid for agent sets.

Consider a non-empty finite set K. Denote by K and by k a subset and an element

of K, respectively. Further, K̂ represents the full set of K. Finally, R is a predicate over

sets of agents. Superscript notation is used to differentiate instances of a given type from

generalizations. For example, if ∀K : K 6= ∅, then K1 would denote an instance of K that is

not empty.

Theorem 24

R(K̂) ∧
(
∀k,K : k /∈ K ∧R(K ∪ {k}) =⇒ R(K)

)
=⇒ ∀K : R(K) (A.1)

2

The strategy for proving Theorem 24 is to map the setK to natural numbers using cardinality

properties over finite sets. To do so, we first need to define a corresponding induction theorem

over natural numbers.

134

Theorem 25 (Reverse Induction) Let n ∈ N1 where n ≤
∣∣∣K̂∣∣∣

P (
∣∣∣K̂∣∣∣) ∧ (∀n : n > 1 ∧ P (n) =⇒ P (n− 1)

)
=⇒ ∀n : P (n) (A.2)

2

Lemma 10

R(K̂) ∧
(
∀k,K : R(K ∪ {k}) =⇒ R(K)

)
=⇒ ∀K : R(K) (A.3)

2

Proof Let n ∈ N1 where n ≤
∣∣∣K̂∣∣∣. Assume

∀n,K : |K| = n =⇒ R(K). (A.4)

There are three cases to consider:

1. That |K| meets the type restriction on n; that is, |K| ≥ 1. Because K is a non-empty

set, this is trivially true.

2. That A.4 holds: (∀n,K : |K| =⇒ R(K)) =⇒ R(K1). The implication holds when

K = K1 and n = |K1|.

3. That A.4 does not hold:

(∀k,K : R(K ∪ {k}) =⇒ R(K)) =⇒ (∀n,K : |K| = n =⇒ R(K)) .

This is shown using reverse induction on n (Theorem 25)

Base Case Show that the predicate R holds given that the size of K is equal to the

135

size of the full set.

∣∣K1
∣∣ =

∣∣∣K̂∣∣∣ ∧
(A.5)

R1(K̂)
∧

∀k,K : R1(K ∪ {k}) =⇒ R1(K)

=⇒

R1(K1). (A.6)

From A.5, K1 = K̂. Replacing K1 with K̂ in A.6, the implication holds.

Inductive Step Show that the predicate R holds irrespective of the cardinality of K.

∀K : |K| = n1 =⇒ R(K)
∧

(A.7)

∀k,K : R(K ∪ {k}) =⇒ R(K)
∧

(A.8)

n1 > 1
∧

(A.9)∣∣K1
∣∣ = n1 − 1 (A.10)

=⇒

R1(K1)

Based on the cardinality assumptions, the following can be inferred:

n1 > 1︸ ︷︷ ︸
A.9

∧
∣∣K1

∣∣ = n1 − 1︸ ︷︷ ︸
A.10

∧ n ≤
∣∣∣K̂∣∣∣︸ ︷︷ ︸

def.

=⇒
∣∣K1

∣∣ < ∣∣∣K̂∣∣∣
=⇒ ∃k : k /∈ K1.

Let k1 be the instance of k /∈ K1. Let K equal K1 in A.8 and K1 ∪ {k1} in A.7.

136

The theorem follows:

∣∣K1
∣∣ = n1 − 1 =⇒

∣∣K1 ∪
{
k1
}∣∣ = n1

=⇒ R1(K1 ∪
{
k1
}

)

=⇒ R1(K1). �

Using Lemma 10, we can prove Theorem 24.

Proof (Theorem 24)

R1(K̂) ∧
(
∀k,K : k /∈ K ∧R1(K ∪ {k}) =⇒ R1(K)

)
=⇒ R1(K1) (A.11)

Assuming Lemma 10, where R is R1,

(
∀k,K : R1(K ∪ {k}) =⇒ R1(K)

)
=⇒ ∀K : R1(K), (A.12)

there are two cases to discharge:

1. The consequent in A.12, along with the antecedent in A.11, implies R1(K1). This is

true since, even without the antecedents in A.11,

∀K : R1(K) =⇒ R1(K1)

when K = K1.

137

2. The assumptions in A.11 imply either the antecedent in A.12 or R1(K1). Formally,

R1(K̂)
∧

∀k,K : k /∈ K ∧R1(K ∪ {k}) =⇒ R1(K)

=⇒

∀k,K : R1(K ∪ {k}) =⇒ R1(K)
∨

R1(K1).

Skolemizing and simplifying, we have

R1(K2 ∪
{
k1
}

)
∧

∀k,K : k /∈ K ∧R1(K ∪ {k}) =⇒ R1(K) (A.13)

=⇒

R1(K2).

Let k = k1 and K = K2 in A.13. The theorem follows, since

R1(K2 ∪
{
k1
}

) ∧K2(k1) =⇒ R1(K2).
�

A.2 Monoids

A.2.1 Abstract Composition

In the definition of ⊕-composition (Equation 3.2), an agent is arbitrarily selected from the set

of agents K. That selection is assumed to be based on the axiom of choice [100]. Throughout

this subsection, we refer to the function defining such a choice with ε : 2A → A.

138

Lemma 11 Let k be an element of K,

⊕
k∈K

S(k) = S(k)⊕
⊕

j∈K\{k}

S(j).

2

Proof The proof is by induction on K:

Base Case When K = ∅:

k ∈ K ∧K = ∅ =⇒ 0̄ = S(k)⊕
⊕

j∈K\{k}

S(j).

Inductive Step Let an element raised to the n denote a bound, or skolemized, instance of

its respective type, where n ∈ N0. For example, K1 is an in instance of K ⊂ A and

S1 is an instance of S ∈ S. Elements without superscript notation are the opposite.

Assume K1 6= ∅, and S ∈ S, K ⊂ A, and k ∈ K,

|K| <
∣∣K1

∣∣ =⇒

k ∈ K =⇒
⊕
k∈K

S = S(k)⊕
⊕
K\{k}

S

 ∧
(A.14)

k1 ∈ K1 (A.15)

=⇒

S1(ε(K1))⊕
⊕

K1\{ε(K1)}

S1 = S1(k1)⊕
⊕

K1\{k1}

S1. (A.16)

First, we assume two instances of A.14. We must choose appropriate instantiations for

the free variables in each. In the first, let K = K1\{k1}, S = S1, and k = ε(K1); in the

second, K = K1 \ {ε(K1)}, S = S1, and k1. Choices for K are both valid assumptions

since |K1 \ {k1}| < |K1| and |K1 \ {ε(K1)}| < |K1|. Substituted into A.14, with

139

cardinality assumptions removed for brevity, we have

ε(K1) ∈ K1 \
{
k1
}

=⇒
⊕

K1\{k1}

S1 =

S1(ε(K1))⊕
⊕

K1\{k1}\{ε(K1)}

S1

 ∧
(A.17)

k1 ∈ K1 \
{
ε(K1)

}
=⇒

⊕
K1\{ε(K1)}

S1 =

S(k1)⊕
⊕

K1\{ε(K1)}\{k1}

S1

 . (A.18)

Before we can apply A.17 or A.18 to A.14, we must discharge their respective an-

tecedents.

1. From A.17,

ε(K1) /∈ K1 \
{
k1
}

=⇒ S1(ε(K1))⊕
⊕

K1\{ε(K1)}

S1 = S1(k1)⊕
⊕

K1\{k1}

S1,

which holds since, ε(K1) /∈ K1 \ {k1} =⇒ ε(K1) = k1.

2. From A.18,

k1 /∈ K1 \
{
ε(K1)

}
=⇒ S1(ε(K1))⊕

⊕
K1\{ε(K1)}

S1 = S1(k1)⊕
⊕

K1\{k1}

S1,

which holds since, k1 /∈ K1 \ {ε(K1)} =⇒ k1 = ε(K1).

⊕
K1\{k1}

S1 =

S1(ε(K1))⊕
⊕

K1\{k1}\{ε(K1)}

S1

 ∧
(A.19)

⊕
K1\{ε(K1)}

S1 =

S(k1)⊕
⊕

K1\{ε(K1)}\{k1}

S1

 ∧
(A.20)

k1 ∈ K1

=⇒

S1(ε(K1))⊕
⊕

K1\{ε(K1)}

S1 = S1(k1)⊕
⊕

K1\{k1}

S1 (A.21)

140

Since K1\{k1}\{ε(K1)} = K1\{ε(K1)}\{k1}, we can replace A.19 and A.20 in A.21:

S1(ε(K1))⊕ S(k1)⊕
⊕

K1\{ε(K1)}\{k1}

S1 = S1(k1)⊕ S1(ε(K1))⊕
⊕

K1\{ε(K1)}\{k1}

S1.

The equality holds from the commutativity of ⊕. �

A.2.2 Examples

Min/Max

Definition 30 The minimum and maximum values over a set of natural numbers S is

defined:

min: i, j → if i < j then i else j

max: i, j → if i < j then j else i. 2

Theorem 26 (Min is Idempotent)

∀i : min(i, i) = i
2

Proof This follows from the definition: i ≮ i, so the result will be i. �

Theorem 27 (Min is Commutative)

∀i, j : min(i, j) = min(j, i)
2

Proof From the definition, the theorem can be rewritten

(
if i < j then i else j

)
=
(

if j < i then j else i
)
,

which is equivalent. �

141

Theorem 28 (Min is Associative)

∀i, j, k : min(i,min(j, k)) = min(min(i, j), k)
2

Proof Using the definition of min, we have several if-then branches to consider. However,

as was the case in the proof of Theorem 27, exhaustive analysis shows their equivalence. �

Theorem 29 (Min is Closed)

∀i, j ∈ Z : min(i, j) ∈ Z
2

Proof Follows from the definition of min. �

Proofs for max are symmetric with respect to the ordering relation.

GCD/LCM

The greatest common divisor (gcd) and least common multiple (lcm) are two binary operators

that fit our operator specification. Inherent in their definition is the concept of divisibility:

we say that a number i “divides” another number j.

Definition 31 (Divisibility)

divides : i, j → ∃x : j = i× x
2

Definition 32 (Greatest Common Divisor)

gcd: i, j → max
(
{k | divides(k, i) ∧ divides(k, j)}

)
lcm: i, j → min

(
{k | divides(i, k) ∧ divides(j, k)}

)
where i, j, and k are all positive natural numbers.1 2

1In the case of lcm, it is imperative that neither i nor j be zero. For gcd, however, this condition can
be relaxed: either variable can be zero, but not both. In the case of our proof sketch, we assume the

142

Whereas proofs for max and min were completely symmetric, the same relationship between

gcd and lcm is not as straightforward; thus we give their proofs separate treatment. We

start with gcd, specifically, a supporting lemma for its idempotence.

Lemma 12

∀i : gcd(0, i) = i
2

Theorem 30 (GCD is Idempotent)

∀i : gcd(i, i) = i
2

Proof

gcd(i, i) = i

{From Lemma 12}

gcd(i, i) = gcd(0, i)

{From the definition of gcd}

max
(
{divides(k, i) ∧ divides(k, i)}

)
= max

(
{divides(0, i) ∧ divides(0, i)}

)
{Applying extensionality and simplifying}

divides(k, i) = divides(k, 0) ∧ divides(k, i)

{if and only if equivalence}

divides(k, i) ⇐⇒ divides(k, 0) ∧ divides(k, i)

lcm conditions for both operators; in our formal setting, however, gcd’s possible zero value is taken into
consideration.

143

The final line yields three subgoals

divides(k, i) =⇒ divides(k, 0) (A.22)

divides(k, i) =⇒ divides(k, i) (A.23)

divides(k, 0) ∧ divides(k, i) =⇒ divides(k, i). (A.24)

Equation A.22, even without the antecedent, is true the definition. Equation A.23 and

Equation A.24 hold trivially. �

Theorem 31 (GCD is Commutative)

∀i, j, k : gcd(i, j) = gcd(j, i)
2

Proof

gcd(i, j) = gcd(j, i)

{By definition}

max
(
{divides(k, i) ∧ divides(k, j)}

)
= max

(
{divides(k, j) ∧ divides(k, i)}

)
{Applying extensionality and simplifying}

divides(k, i) ∧ divides(k, j) = divides(k, j) ∧ divides(k, i)

{if and only if equivalence}

divides(k, i) ∧ divides(k, j) ⇐⇒ divides(k, j) ∧ divides(k, i)

{True by conjunctive commutativity} �

The following lemmas relate gcd and divides over three positive natural numbers. They

aid in the subsequent proof of gcd associativity.

Lemma 13

∀i, j, k : divides(i, gcd(j, k)) =⇒ divides(i, j) ∧ divides(i, k)
2

144

Lemma 14

∀i, j, k : divides(i, j) ∧ divides(i, k) =⇒ divides(i, gcd(j, k))
2

Theorem 32 (GCD is Associative)

∀i, j : gcd(i, gcd(j, k)) = gcd(gcd(i, j), k)
2

Proof

gcd(i, gcd(j, k)) = gcd(gcd(i, j), k)

{From the definition of gcd}

max
(
{divides(z, i) ∧ divides(z, gcd(j, k))}

)
= max

(
{divides(z, gcd(i, j)) ∧ divides(z, k)}

)
{Applying extensionality and simplifying}

divides(z, i) ∧ divides(z, gcd(j, k)) = divides(z, gcd(i, j)) ∧ divides(z, k)

{if and only if equivalence}

divides(z, i) ∧ divides(z, gcd(j, k)) ⇐⇒ divides(z, gcd(i, j)) ∧ divides(z, k)

The final line yields four subgoals

divides(z, i) ∧ divides(z, gcd(j, k)) =⇒ divides(z, gcd(i, j)) (A.25)

divides(z, i) ∧ divides(z, gcd(j, k)) =⇒ divides(z, k) (A.26)

divides(z, gcd(i, j)) ∧ divides(z, k) =⇒ divides(z, i) (A.27)

divides(z, gcd(i, j)) ∧ divides(z, k) =⇒ divides(z, gcd(j, k)). (A.28)

Equation A.25 and A.28 hold from Lemma 13 and Lemma 14; Equation A.27 and A.26 hold

directly from Lemma 13. �

145

We turn our attention to equivalent proofs with respect to the lcm. As mentioned earlier,

the subtle difference is significant enough to warrant separate treatment.

Lemma 15

∀i : lcm(1, i) = i
2

Theorem 33 (LCM is Idempotent)

∀i : lcm(i, i) = i
2

Proof

lcm(i, i) = i

{From Lemma 15}

lcm(i, i) = lcm(1, i)

{From the definition of lcm}

min
(
{divides(lcm(1, i), k) ∧ divides(lcm(1, i), k)}

)
= min

(
{divides(1, k) ∧ divides(i, k)}

)
{Applying extensionality and simplifying}

divides(lcm(1, i), k) = divides(1, k) ∧ divides(i, k)

{if and only if equivalence}

divides(lcm(1, i), k) ⇐⇒ divides(1, k) ∧ divides(i, k)

The final line yields three subgoals

divides(lcm(1, i), k) =⇒ divides(1, k) (A.29)

divides(lcm(1, i), k) =⇒ divides(i, k) (A.30)

divides(1, k) ∧ divides(i, k) =⇒ divides(lcm(1, i), k). (A.31)

146

Equation A.29 holds trivially. Equation A.30 and A.31 hold by Lemma 15. �

Theorem 34 (LCM is Commutative)

∀i, j : lcm(i, j) = lcm(j, i)
2

Proof

lcm(i, j) = lcm(j, i)

{From the definition of lcm}

max
(
{divides(i, k) ∧ divides(j, k)}

)
= max

(
{divides(j, k) ∧ divides(i, k)}

)
{Applying extensionality and simplifying}

divides(i, k) ∧ divides(j, k) = divides(j, k) ∧ divides(i, k)

{if and only if equivalence}

divides(i, k) ∧ divides(j, k) ⇐⇒ divides(j, k) ∧ divides(i, k)

{True by conjunctive commutativity} �

Lemma 16

∀i, j, k : divides(lcm(i, j), k) =⇒ divides(i, k) ∧ divides(j, k)
2

Lemma 17

∀i, j, k : divides(i, k) ∧ divides(j, k) =⇒ divides(lcm(i, j), k)
2

Theorem 35 (LCM is Associative)

∀i, j, k : lcm(i, lcm(j, k)) = lcm(lcm(i, j), k)
2

147

Proof

lcm(i, lcm(j, k)) = lcm(lcm(i, j), k)

{From the definition of lcm}

min
(
{divides(i, z) ∧ divides(lcm(j, k), z)}

)
= min

(
{divides(lcm(i, j), z) ∧ divides(k, z)}

)
{Applying extensionality and simplifying}

divides(i, z) ∧ divides(lcm(j, k), z) = divides(lcm(i, j), z) ∧ divides(k, z)

{if and only if equivalence}

divides(i, z) ∧ divides(lcm(j, k), z) ⇐⇒ divides(lcm(i, j), z) ∧ divides(k, z)

The final line yields four subgoals

divides(i, z) ∧ divides(lcm(j, k), z) =⇒ divides(lcm(i, j), z) (A.32)

divides(i, z) ∧ divides(lcm(j, k), z) =⇒ divides(k, z) (A.33)

divides(lcm(i, j), z) ∧ divides(k, z) =⇒ divides(i, z) (A.34)

divides(lcm(i, j), z) ∧ divides(k, z) =⇒ divides(lcm(j, k), z). (A.35)

Equations A.32 and A.35 hold from Lemmas 16 and 17; Equations A.34 and A.33 hold

directly from Lemma 16. �

Convex Hull

From Example 8, we denote by Ch : P → P the convex hull of a set of points that produces

another set of points.

Theorem 36 (Super Idempotent)

∀p, q ∈ P : Ch(p ∪ q) = Ch(p ∪ Ch(q))
2

Proofs are left to concrete definitions Ch.

148

Theorem 37 (Idempotent)

∀p : Ch(p) = Ch(Ch(p))
2

Proof Holds by substituting ∅ for p in Theorem 36

Ch(p ∪ ∅) = Ch(Ch(p ∪ ∅) ∪ ∅)

{From principles of logic: x ∪ ∅ = x}

Ch(p) = Ch(Ch(p)). �

Theorem 38 (Commutative)

∀p, q ∈ P : Ch(p ∪ q) = Ch(q ∪ p)
2

Proof Holds by union commutativity: p ∪ q = q ∪ p. �

Theorem 39 (Associative)

∀p, q, r ∈ P : Ch(Ch(p ∪ q) ∪ r) = Ch(p ∪ Ch(q ∪ r))
2

149

Proof

Ch(Ch(p ∪ q) ∪ r) = Ch(p ∪ Ch(q ∪ r))

{From Theorem 38}

Ch(r ∪ Ch(p ∪ q)) =

{From Theorem 36}

Ch(r ∪ p ∪ q) =

{From union commutativity}

Ch(p ∪ q ∪ r) =

{From Theorem 36}

Ch(p ∪ Ch(q ∪ r)) �

A.3 Mean Square Error

Lemma 18 For all K ⊂ A and j ∈ A \K, where S
K
_ S ′,

(MSE(S,K) ≥ MSE(S ′, K)) =⇒ (MSE(S,K ∪ {j}) ≥ MSE(S ′, K ∪ {j})) (A.36)

2

Proof We will add the unchanged agent to the antecedent through a series of rewrites.

MSE(S,K) ≥ MSE(S ′, K)

MSE(S,K)−MSE(S ′, K) ≥ 0

1

|K|
∑
k∈K

(S(k)− AM(S,K))2 − 1

|K|
∑
k∈K

(S ′(k)− AM(S ′, K))2 ≥

1

|K|

(∑
k∈K

(S(k)− AM(S,K))2 −
∑
k∈K

(S ′(k)− AM(S ′, K))2

)
≥ .

Since |K| > 0, 1
|K| can be removed. Further, since the transition is a local-global relation,

150

AM(S,K) = AM(S ′, K). Continuing,

∑
k∈K

(S(k)− AM(S,K))2 −
∑
k∈K

(S ′(k)− AM(S,K))2 ≥ 0

∑
k∈K

(
S(k)2 − 2 · S(k) · AM(S,K)− S ′(k)2 + 2 · S ′(k) · AM(S,K)

)
≥

∑
k∈K

(
S(k)2 − S ′(k)2

)
− 2 · AM(S,K)

∑
k∈K

S(k) + 2 · AM(S,K)
∑
k∈K

S ′(k) ≥ .

Note that,

∑
k∈K

S(k) = |K| · AM(S,K)
∧

∑
k∈K

S ′(k) = |K| · AM(S ′, K) = |K| · AM(S,K).

Hence,

∑
k∈K

(
S(k)2 − S ′(k)2

)
− 2 · AM(S,K) · |K| · AM(S,K) + 2 · AM(S,K) · |K| · AM(S,K) ≥ 0

∑
k∈K

(
S(k)2 − S ′(k)2

)
≥ .

We now add the agent j to build the consequent. Note that,

S(j) = S ′(j)
∧

AM(S,K ∪ {j}) = AM(S ′, K ∪ {j}),

151

hence (∑
k∈K

(
S(k)2 − S ′(k)2

)
+ S(j)2 − S ′(j)2+

(|K|+ 1) · AM(S,K ∪ {j})2 − (|K|+ 1) · AM(S ′, K ∪ {j})2−

2 · AM(S,K ∪ {j}) · (|K|+ 1) · AM(S,K ∪ {j})+

2 · AM(S ′, K ∪ {j}) · (|K|+ 1) · AM(S ′, K ∪ {j})

)
≥ 0.

Note that,

2 · AM(S,K ∪ {j}) · (|K|+ 1) · AM(S,K ∪ {j})

= 2 · AM(S, j ∪ {K}) ·
∑

k∈K ∪{j}

S(k).

Likewise for S ′.(∑
k∈K ∪{j}

S(k)2 − 2 AM(S,K ∪ {j})
∑

k∈K ∪{j}

S(k) + AM(S,K ∪ {j})2 (|K|+ 1)−

∑
k∈K ∪{j}

S ′(k)2 − 2 AM(S ′, K ∪ {j})
∑

k∈K ∪{j}

S ′(k) + AM(S ′, K ∪ {j})2 (|K|+ 1)

)
≥ 0.

Replacing the definition of MSE

(|K|+ 1) MSE(S,K ∪ {j})− (|K|+ 1) MSE(S ′, K ∪ {j}) ≥ 0

(|K|+ 1) (MSE(S,K ∪ {j})−MSE(S ′, K ∪ {j})) ≥

MSE(S,K ∪ {j})−MSE(S ′, K ∪ {j}) ≥

MSE(S,K ∪ {j}) ≥ MSE(S ′, K ∪ {j}). �

152

A.4 Permutations
Lemma 19 (Lemma 5)

ρ(S, S ′) ∧ ρ(S ′, S ′′) =⇒ ρ(S, S ′′)
2

Proof From the antecedent, we can assume there exist two functions, (f1, f2) : A → A,

such that both are bijections and

∀k ∈ A : S(k) = S ′(f1(k)) ∧ S ′(k) = S ′′(f2(k)).

We use the composition of these functions, f2 ◦ f1, to instantiate h in the consequent. Thus,

from Definition 20, we must show that this composition is injective, surjective, and permutes

elements of S and S ′′. Throughout, let x, x′, and x′′ be specific instances of agents in A.

Injective We are required to show

f2(f1(x)) = f2(f1(x
′)) =⇒ x = x′. (A.37)

From the antecedent, for all j, k in A, we know

f1(j) = f1(k) =⇒ j = k
∧

(A.38)

f2(j) = f2(k) =⇒ j = k. (A.39)

Let j and k be x and x′, respectively, in Equation A.38, and f1(x) and f1(x
′), respec-

tively, in A.39. Adding the antecedent from Equation A.37 to these assumptions, we

have the following:

f2(f1(x)) = f2(f1(x
′))

∧
f2(f1(x)) = f2(f1(x

′)) =⇒ f1(x) = f1(x
′)

∧
f1(x) = f1(x

′) =⇒ x = x′

153

which, by algebraic manipulation, implies that x = x′.

Surjective We are required to show that if f1 and f2 are surjective, then the composition

of f1 and f2 is surjective as well.

∀i ∈ A,∃j ∈ A : f1(j) = i
∧

(A.40)

∀i ∈ A,∃j ∈ A : f2(j) = i (A.41)

=⇒

∀i ∈ A,∃j ∈ A : f2(f1(j)) = i. (A.42)

Let x′′ be an instance of i in Equation A.42; use this value for i in Equation A.41. Let

x′ be an instance of j in Equation A.41; use this value for i in Equation A.40. Finally,

let x be an instance of j in Equation A.40; use this value for j in Equation A.42. The

implication follows:

f1(x) = x′ ∧ f2(x′) = x′′ =⇒ f2(f1(x)) = x′′

=⇒ f2(x
′) = x′′

=⇒ x′′ = x′′.

Permutes We are required to show

∀i ∈ A : S(i) = S ′(f1(i))
∧

(A.43)

∀i ∈ A : S ′(i) = S ′′(f2(i)) (A.44)

=⇒

∀i ∈ A : S(i) = S ′′(f2(f1(i))). (A.45)

Let x be the instantiation of i in Equation A.45. Use x for i in Equation A.43 and

154

f1(x) in Equation A.44. The implication follows:

S(x) = S ′(f1(x)) ∧ S ′(f1(x)) = S ′′(f2(f1(x))) =⇒ S(x) = S ′′(f2(f1(x)))

=⇒ S(x) = S ′(f1(x))

=⇒ S(x) = S(x). �

155

Bibliography

[1] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification system. In

Deepak Kapur, editor, International Conference on Automated Deduction, volume 607

of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, June 1992.

Springer-Verlag. 1.2.1.2, 9.1

[2] G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,

23(5):279–295, 1997. doi:10.1109/32.588521. 1.2.1.2, 9.2.1

[3] K. Sacha. Model-based implementation of real-time systems. In International Confer-

ence on Computer Safety, Reliability, and Security, pages 332–345, Berlin, Heidelberg,

2008. Springer-Verlag. doi:10.1007/978-3-540-87698-4_28. 1.2.1.2

[4] J. Blech and A. Poetzsch-Heffter. A certifying code generation phase. Electronic Notes

in Theoretical Computer Science, 190(4):65–82, 2007. doi:10.1016/j.entcs.2007.

09.008. 1.2.1.2

[5] E. Denney and B. Fischer. Extending source code generators for evidence-based soft-

ware certification. In International Symposium on Leveraging Applications of Formal

Methods, Verification and Validation, pages 138–145, Washington, DC, USA, 2006.

IEEE Computer Society. doi:10.1109/ISoLA.2006.76. 1.2.1.2

[6] K. Kennedy. Caps: concurrent automatic programming system. PhD thesis, Clemson

University, Clemson, SC, USA, 2008. 1.2.1.2, 9.3

[7] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K.R. Leino, and E. Poll.

An overview of JML tools and applications. International Journal on Software Tools for

156

http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1007/978-3-540-87698-4_28
http://dx.doi.org/10.1016/j.entcs.2007.09.008
http://dx.doi.org/10.1016/j.entcs.2007.09.008
http://dx.doi.org/10.1109/ISoLA.2006.76

Technology Transfer, 7(3):212–232, 2005. doi:10.1007/s10009-004-0167-4. 1.2.1.2,

9.3.3

[8] J. Armstrong. Programming Erlang—Software for a Concurrent World. Cambridge

University Press, New York, NY, USA, first edition, July 2007. doi:10.1017/

S0956796809007163. 1.2.1.2, 9.3

[9] S. Demri, F. Laroussinie, and P. Schnoebelen. A parametric analysis of the state-

explosion problem in model checking. Journal of Computer and System Sciences,

72(4):547–575, 2006. doi:10.1016/j.jcss.2005.11.003. 1.4.1

[10] J. Woodcock, P. Larsen, J. Bicarregui, and J. Fitzgerald. Formal methods: Practice

and experience. ACM Computing Surveys, 41(4):1–36, 2009. doi:10.1145/1592434.

1592436. 1.4.1, 9.3.4

[11] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms.

In Symposium on Principles of distributed computing, pages 137–151, New York, NY,

USA, 1987. ACM. doi:10.1145/41840.41852. 1.5

[12] I. Keidar, R. Khazan, N. Lynch, and A. Shvartsman. An inheritance-based technique

for building simulation proofs incrementally. Transactions on Software Engineering

and Methodology, 11(1):63–91, 2002. doi:10.1145/504087.504090. 1.5

[13] B. Jonsson. Compositional specification and verification of distributed systems.

Transactions on Programming Languages and Systems, 16(2):259–303, 1994. doi:

10.1145/174662.174665. 1.5

[14] B. Möller. Algebraic calculation of graph and sorting algorithms. In Dines Bjørner,

Manfred Broy, and Igor Pottosin, editors, Formal Methods in Programming and Their

Applications, volume 735 of Lecture Notes in Computer Science, pages 394–413.

Springer Berlin/Heidelberg, 1993. doi:10.1007/BFb0039722. 1.5

[15] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1988. 2.1

157

http://dx.doi.org/10.1007/s10009-004-0167-4
http://dx.doi.org/10.1017/S0956796809007163
http://dx.doi.org/10.1017/S0956796809007163
http://dx.doi.org/10.1016/j.jcss.2005.11.003
http://dx.doi.org/10.1145/1592434.1592436
http://dx.doi.org/10.1145/1592434.1592436
http://dx.doi.org/10.1145/41840.41852
http://dx.doi.org/10.1145/504087.504090
http://dx.doi.org/10.1145/174662.174665
http://dx.doi.org/10.1145/174662.174665
http://dx.doi.org/10.1007/BFb0039722

[16] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1996. 2.1.2

[17] K.M. Chandy, B. Go, S. Mitra, C. Pilotto, and J. White. Verification of distributed

systems with local-global predicates. Formal Aspects of Computing, pages 1–31, 2010.

doi:10.1007/s00165-010-0150-7. 2.3.2, 3, 14

[18] J. Bard. Morphogenesis : the cellular and molecular processes of developmental

anatomy, volume 23 of Developmental and cell biology series. Cambridge, 1990. 2.4

[19] L. Wolpert. Principles of development, volume 23. Oxford University Press, third

edition, 2007. 2.4

[20] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to

Artificial Systems. Oxford University Press, USA, 1999. 2.4

[21] J. Kennedy and R. Eberhart with Y. Shi. Swarm Intelligence. Morgan Kaufmann,

2001. 2.4

[22] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E. Rauch,

G. Sussman, and R. Weiss. Amorphous computing. Communications of the ACM,

43(5):74–82, 2000. doi:10.1145/332833.332842. 2.4

[23] A. Kondacs. Biologically-inspired self-assembly of two-dimensional shapes using global-

to-local compilation. In International Joint Conference on Artificial Intelligence, pages

633–638, San Francisco, CA, USA, 2003. Morgan Kaufmann Publishers, Inc. 2.4

[24] E. Klavins, R. Ghrist, and D. Lipsky. Graph grammars for self assembling robotic

systems. In International Conference on Robotics and Automation, volume 5, pages

5293–5300. IEEE, April 2004. doi:10.1109/ROBOT.2004.1302558. 2.4

[25] E. Klavins. Programmable self-assembly. Control Systems Magazine, IEEE, 27(4):43–

56, August 2007. doi:10.1109/MCS.2007.384126. 2.4

158

http://dx.doi.org/10.1007/s00165-010-0150-7
http://dx.doi.org/10.1145/332833.332842
http://dx.doi.org/10.1109/ROBOT.2004.1302558
http://dx.doi.org/10.1109/MCS.2007.384126

[26] D. Coore. The Growing Point Language. Lambert Academic Publishing, 2010. 2.4

[27] R. Nagpal. Programmable self-assembly: constructing global shape using biologically-

inspired local interactions and origami mathematics. PhD thesis, Massachusetts Insti-

tute of Technology, 2001. 2.4

[28] J. Beal and J. Bachrach. Infrastructure for engineered emergence on sensor/actuator

networks. Intelligent Systems, IEEE, 21(2):10–19, March 2006. doi:10.1109/MIS.

2006.29. 2.4

[29] D. Yamins, S. Waydo, and N. Khaneja. Group control and kernels: the 1-d equigroup-

ing problem. IEEE Conference on Decision and Control, 3:2460–2466, December 2004.

2.4

[30] D. Yamins. Towards a theory of ”local to global” in distributed multi-agent systems (I).

In International Joint Conference on Autonomous Agents and Multiagent Systems,

pages 183–190, New York, NY, USA, 2005. ACM. doi:10.1145/1082473.1082501.

2.4

[31] D. Yamins. Towards a theory of ”local to global” in distributed multi-agent sys-

tems (II). In International Joint Conference on Autonomous Agents and Multiagent

Systems, pages 191–198, New York, NY, USA, 2005. ACM. doi:10.1145/1082473.

1082502. 2.4

[32] D. Yamins. The emergence of global properties from local interactions: static proper-

ties and one-dimensional patterns. In International Joint Conference on Autonomous

Agents and Multiagent Systems, pages 1122–1124, New York, NY, USA, 2006. ACM.

doi:10.1145/1160633.1160837. 2.4

[33] D. Yamins. A theory of local-to-global algorithms for one-dimensional spatial multi-

agent systems. PhD thesis, Harvard University, Cambridge, MA, USA, 2008. 2.4

159

http://dx.doi.org/10.1109/MIS.2006.29
http://dx.doi.org/10.1109/MIS.2006.29
http://dx.doi.org/10.1145/1082473.1082501
http://dx.doi.org/10.1145/1082473.1082502
http://dx.doi.org/10.1145/1082473.1082502
http://dx.doi.org/10.1145/1160633.1160837

[34] N. Minsky. Regularity-based trust in cyberspace. In Paddy Nixon and Sotirios Terzis,

editors, Trust Management, volume 2692 of Lecture Notes in Computer Science, pages

1071–1072. Springer Berlin/Heidelberg, 2003. doi:10.1007/3-540-44875-6_2. 2.4

[35] W. Zhang, C. Serban, and N. Minsky. Establishing Global Properties of Multi-Agent

Systems Via Local Laws, volume 4389/2007 of Lecture Notes in Computer Science,

pages 170–183. Springer Berlin/Heidelberg, 2007. doi:10.1007/978-3-540-71103-2.

2.4

[36] X. Ao and N. Minsky. Flexible regulation of distributed coalitions. In Einar Snekkenes

and Dieter Gollmann, editors, European Symposium on Research in Computer Secu-

rity, volume 2808/2003 of Lecture Notes in Computer Science, pages 39–60. Springer

Berlin/Heidelberg, 2003. doi:10.1007/978-3-540-39650-5_3. 2.4

[37] C. Serban, W. Zhang, and N. Minsky. A decentralized mechanism for application

level monitoring of distributed systems. International Conference on Collaborative

Computing: Networking, Applications and Worksharing, pages 1–10, November 2009.

doi:10.4108/ICST.COLLABORATECOM2009.8336. 2.4

[38] N. Minsky. Reducing spam via trustworthy self regulation by email senders. In MIT

Span Conference, 2010. 2.4

[39] C. Serban, Y. Chen, W. Zhang, and N. Minsky. The concept of decentralized and

secure electronic marketplace. Electronic Commerce Research, 8:79–101, 2008. doi:

10.1007/s10660-008-9014-0. 2.4

[40] K. Marzullo and L. Sabel. Efficient detection of a class of stable properties. Distributed

Computing, 8(2):81–91, 1994. doi:10.1007/BF02280830. 2.4

[41] R. Atreya, N. Mittal, A. Kshemkalyani, V. Garg, and M. Singhal. Efficient detection of

a locally stable predicate in a distributed system. Journal of Parallel and Distributed

Computing, 67(4):369–385, 2007. doi:10.1016/j.jpdc.2006.12.004. 2.4

160

http://dx.doi.org/10.1007/3-540-44875-6_2
http://dx.doi.org/10.1007/978-3-540-71103-2
http://dx.doi.org/10.1007/978-3-540-39650-5_3
http://dx.doi.org/10.4108/ICST.COLLABORATECOM2009.8336
http://dx.doi.org/10.1007/s10660-008-9014-0
http://dx.doi.org/10.1007/s10660-008-9014-0
http://dx.doi.org/10.1007/BF02280830
http://dx.doi.org/10.1016/j.jpdc.2006.12.004

[42] P. Wegner, F. Arbab, D. Goldin, P. McBurney, M. Luck, and D. Robertson. The role

of agent interaction in models of computing: Panelist reviews. Electronic Notes in

Theoretical Computer Science, 141(5):181–198, 2005. Workshop on the Foundations of

Interactive Computation. doi:10.1016/j.entcs.2005.05.022. 2.4

[43] T. Nipkow and L. Paulson. Proof pearl: Defining functions over finite sets. In Joe Hurd

and Tom Melham, editors, Theorem Proving in Higher Order Logics, volume 3603 of

Lecture Notes in Computer Science, pages 385–396. Springer Berlin / Heidelberg, 2005.

doi:10.1007/11541868_25. 3, 3.2

[44] G. Hutton. A tutorial on the universality and expressiveness of fold. Journal of

Functional Programming, 9(4):355–372, 1999. doi:10.1017/S0956796899003500. 3,

3.2

[45] R. Dean. Elements of Abstract Algebra. Wiley, New York, second edition, 1966. 3

[46] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. Information Theory, IEEE Transactions on, 13(2):260–269, April

1967. 12

[47] L. Huang. Advanced dynamic programming in semiring and hypergraph frameworks.

In Advanced Dynamic Programming in Computational Linguistics: Theory, Algorithms

and Applications—Tutorial notes, pages 1–18, Manchester, UK, August 2008. Coling

2008 Organizing Committee. 12, 4.6

[48] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12, 1962.

doi:10.1145/321105.321107. 4.6

[49] M. Yoeli. A note on a generalization of boolean matrix theory. The American Mathe-

matical Monthly, 68(6):552–557, June–July 1961. 4.6

[50] G. Penn. Efficient transitive closure of sparse matrices over closed semirings. Theoret-

ical Computer Science, 354(1):72–81, 2006. doi:10.1016/j.tcs.2005.11.008. 4.6

161

http://dx.doi.org/10.1016/j.entcs.2005.05.022
http://dx.doi.org/10.1007/11541868_25
http://dx.doi.org/10.1017/S0956796899003500
http://dx.doi.org/10.1145/321105.321107
http://dx.doi.org/10.1016/j.tcs.2005.11.008

[51] M. Gondran and M. Minoux. Graphs, dioids and semirings, volume 41 of Operations

Research/Computer Science Interfaces Series. Springer, New York, 2008. New models

and algorithms. 4.6

[52] C. Huang and C. Lengauer. An incremental mechanical development of systolic

solutions to the algebraic path problem. Acta Informatica, 27(2):97–124, 1989.

doi:10.1007/BF00265150. 4.6

[53] G. Chen, B. Wang, and C. Lu. On the parallel computation of the algebraic path

problem. IEEE Transactions on Parallel and Distributed Systems, 3:251–256, 1992.

doi:10.1109/71.127265. 4.6

[54] G. Rote. A systolic array algorithm for the algebraic path problem (shortest paths;

matrix inversion). Computing, 34:191–219, 1985. doi:10.1007/BF02253318. 4.6

[55] C. Djamégni, P. Quinton, S. Rajopadhye, and T. Risset. Derivation of systolic algo-

rithms for the algebraic path problem by recurrence transformations. Parallel Com-

puting, 26(11):1429–1445, 2000. doi:10.1016/S0167-8191(00)00039-9. 4.6

[56] H. Tsai, S. Horng, S. Tsai, T. Kao, and S. Lee. Solving an algebraic path problem and

some related graph problems on a hyper-bus broadcast network. IEEE Transactions

on Parallel and Distributed Systems, 8(12):1226–1235, December 1997. doi:10.1109/

71.640014. 4.6

[57] E. Fink. A survey of sequential and systolic algorithms for the algebraic path problem.

Technical Report CS-92-37, University of Waterloo, 1992. 4.6

[58] D. Lehmann. Algebraic structures for transitive closure. Theoretical Computer Science,

4(1):59–76, 1977. doi:10.1016/0304-3975(77)90056-1. 4.6

[59] R. Tarjan. A unified approach to path problems. Journal of the ACM, 28(3):577–593,

1981. doi:10.1145/322261.322272. 4.6

162

http://dx.doi.org/10.1007/BF00265150
http://dx.doi.org/10.1109/71.127265
http://dx.doi.org/10.1007/BF02253318
http://dx.doi.org/10.1016/S0167-8191(00)00039-9
http://dx.doi.org/10.1109/71.640014
http://dx.doi.org/10.1109/71.640014
http://dx.doi.org/10.1016/0304-3975(77)90056-1
http://dx.doi.org/10.1145/322261.322272

[60] M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal

of Automata, Languages and Combinatorics, 7(3):321–350, 2002. 4.6

[61] H. Hofstee, A. Martin, and J. van de Snepscheut. Distributed sorting. Science of

Computer Programming, 15:119–133, December 1990. doi:10.1016/0167-6423(90)

90081-N. 5

[62] D. Knuth. The art of computer programming, volume 3: sorting and searching. Addison

Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, second edition, 1998.

5

[63] M. Mehyar. Distributed averaging and efficient file sharing on peer-to-peer networks.

PhD thesis, California Institute of Technology, 2007. 6.1

[64] J. Fax and R. Murray. Information flow and cooperative control of vehicle formations.

IEEE Transactions on Automatic Control, 49(9):1465–1476, September 2004. doi:

10.1109/TAC.2004.834433. 6.1

[65] R. Olfati-Saber and J. Shamma. Consensus filters for sensor networks and distributed

sensor fusion. In IEEE Conference on Decision and Control, pages 6698–6703, Decem-

ber 2005. doi:10.1109/CDC.2005.1583238. 6.1

[66] S. Kar, S. Aldosari, and J. Moura. Topology for distributed inference on graphs. IEEE

Transactions on Signal Processing, 56(6):2609–2613, June 2008. doi:10.1109/TSP.

2008.923536. 6.1

[67] C. Xu and F. Lau. Load Balancing in Parallel Computers: Theory and Practice.

Kluwer Academic Publishers, Norwell, MA, USA, 1997. 6.1

[68] M. Mehyar, D. Spanos, J. Pongsajapan, S. Low, and R. Murray. Asynchronous dis-

tributed averaging on communication networks. IEEE/ACM Transactions on Net-

working, 15(3):512–520, June 2007. doi:10.1109/TNET.2007.893226. 6.1

163

http://dx.doi.org/10.1016/0167-6423(90)90081-N
http://dx.doi.org/10.1016/0167-6423(90)90081-N
http://dx.doi.org/10.1109/TAC.2004.834433
http://dx.doi.org/10.1109/TAC.2004.834433
http://dx.doi.org/10.1109/CDC.2005.1583238
http://dx.doi.org/10.1109/TSP.2008.923536
http://dx.doi.org/10.1109/TSP.2008.923536
http://dx.doi.org/10.1109/TNET.2007.893226

[69] R. Olfati-Saber and R. Murray. Consensus problems in networks of agents with switch-

ing topology and time-delays. IEEE Transactions on Automatic Control, 49(9):1520–

1533, September 2004. doi:10.1109/TAC.2004.834113. 6.1

[70] S. Kar and J. Moura. Distributed consensus algorithms in sensor networks with im-

perfect communication: Link failures and channel noise. IEEE Transactions on Signal

Processing, 57(1):355 –369, January 2009. doi:10.1109/TSP.2008.2007111. 6.1

[71] L. Xiao, S. Boyd, and S. Kim. Distributed average consensus with least-mean-square

deviation. Journal of Parallel and Distributed Computing, 67(1):33–46, 2007. doi:

10.1016/j.jpdc.2006.08.010. 6.1

[72] C. Pilotto, K.M. Chandy, and J. White. Consensus on asynchronous communication

networks in presence of external input. In 49th IEEE Conference on Decision and

Control, pages 3838–3844, December 2010. doi:10.1109/CDC.2010.5717134. 6.1

[73] Z. Minghui and S. Martnez. Discrete-time dynamic average consensus. Automatica,

46(2):322 – 329, 2010. doi:10.1016/j.automatica.2009.10.021. 7

[74] D. Spanos, R. Olfati-Saber, and R. Murray. Dynamic consensus on mobile networks.

In World Congress of the International Federation of Automatic Control, 2005. 7

[75] S. Maharaj and J. Bicarregui. On the verification of vdm specification and refinement

with pvs. In International conference on Automated software engineering, page 280,

Washington, DC, USA, 1997. IEEE Computer Society. 9.1

[76] E. de Jong, J. van de Pol, and J. Hooman. Refinement in requirements specification and

analysis: A case study. In International Conference and Workshop on the Engineering

of Computer Based Systems, pages 290–298, Washington, DC, USA, April 2000. IEEE

Computer Society. doi:10.1109/ECBS.2000.839888. 9.1

[77] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL—A Proof Assistant for Higher-

Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002. 9.1.5

164

http://dx.doi.org/10.1109/TAC.2004.834113
http://dx.doi.org/10.1109/TSP.2008.2007111
http://dx.doi.org/10.1016/j.jpdc.2006.08.010
http://dx.doi.org/10.1016/j.jpdc.2006.08.010
http://dx.doi.org/10.1109/CDC.2010.5717134
http://dx.doi.org/10.1016/j.automatica.2009.10.021
http://dx.doi.org/10.1109/ECBS.2000.839888

[78] G. Holzmann, R. Joshi, and A. Groce. Swarm verification. In International Conference

on Automated Software Engineering, pages 1–6, Washington, DC, USA, 2008. IEEE

Computer Society. doi:10.1109/ASE.2008.9. 9.2

[79] G. Holzmann. State compression in SPIN: Recursive indexing and compression training

runs. In International SPIN Workshop, 1997. 9.2.4

[80] M. Casadei and M. Viroli. An experience on probabilistic model checking and

stochastic simulation to design self-organizing systems. In Congress on Evolution-

ary Computation, pages 1538–1545, Piscataway, NJ, USA, 2009. IEEE Press. doi:

10.1109/CEC.2009.4983125. 9.2.6

[81] M. Casadei and M. Viroli. Using probabilistic model checking and simulation for

designing self-organizing systems. In Symposium on Applied Computing, pages 2103–

2104, New York, NY, USA, 2009. ACM. doi:10.1145/1529282.1529747. 9.2.6

[82] M. Casadei, M. Viroli, and L. Gardelli. On the collective sort problem for distributed

tuple spaces. Science of Computer Programming, 74(9):702–722, 2009. doi:10.1016/

j.scico.2008.09.018. 9.2.6

[83] M. Casadei, L. Gardelli, and M. Viroli. Simulating emergent properties of coordination

in maude: the collective sort case. Electronic Notes in Theoretical Computer Science,

175(2):59–80, 2007. doi:10.1016/j.entcs.2007.05.022. 9.2.6

[84] J.O. Blech and A. Poetzsch-Heffter. A certifying code generation phase. Electronic

Notes in Theoretical Computer Science, 190(4):65–82, 2007. doi:10.1016/j.entcs.

2007.09.008. 9.3

[85] E. Denney and B. Fischer. Extending source code generators for evidence-based soft-

ware certification. In International Symposium on Leveraging Applications of Formal

Methods, Verification and Validation, pages 138–145, Washington, DC, USA, Novem-

ber 2006. IEEE Computer Society. doi:10.1109/ISoLA.2006.76. 9.3

165

http://dx.doi.org/10.1109/ASE.2008.9
http://dx.doi.org/10.1109/CEC.2009.4983125
http://dx.doi.org/10.1109/CEC.2009.4983125
http://dx.doi.org/10.1145/1529282.1529747
http://dx.doi.org/10.1016/j.scico.2008.09.018
http://dx.doi.org/10.1016/j.scico.2008.09.018
http://dx.doi.org/10.1016/j.entcs.2007.05.022
http://dx.doi.org/10.1016/j.entcs.2007.09.008
http://dx.doi.org/10.1016/j.entcs.2007.09.008
http://dx.doi.org/10.1109/ISoLA.2006.76

[86] K. Sacha. Model-based implementation of real-time systems. In International Confer-

ence on Computer Safety, Reliability, and Security, volume 5219 of Lecture Notes in

Computer Science, pages 332–345. Springer-Verlag, September 2008. doi:10.1007/

978-3-540-87698-4_28. 9.3

[87] J. Armstrong. A history of Erlang. In ACM SIGPLAN conference on History of

programming languages, pages 6–1–6–26, New York, NY, USA, 2007. ACM. doi:

10.1145/1238844.1238850. 9.3

[88] C. Hewitt. scriptJ(TM) extension of Java(R): discretionary, adaptive concur-

rency for privacy-friendly, client-cloud computing. Computing Research Repository,

abs/1008.2748, 2010. 9.3

[89] R. Khazan. Group membership: a novel approach and the first single-round algorithm.

In Symposium on Principles of Distributed Computing, pages 347–356, New York, NY,

USA, July 2004. ACM. doi:10.1145/1011767.1011819. 9.3.1

[90] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership algorithms for multicast

communication groups. In International Workshop on Distributed Algorithms, vol-

ume 647 of Lecture Notes in Computer Science, pages 292–312, Berlin, Heidelberg,

November 1992. Springer-Verlag. doi:10.1007/3-540-56188-9_20. 9.3.1

[91] M. Reiter. A secure group membership protocol. IEEE Transactions on Software

Engineering, 22(1):31–42, 1996. doi:10.1109/32.481515. 9.3.1

[92] Q. Huang, C. Julien, and G. Roman. Relying on safe distance to achieve strong

partitionable group membership in ad hoc networks. IEEE Transactions on Mobile

Computing, 3(2):192–205, 2004. doi:10.1109/TMC.2004.14. 9.3.1

[93] A. Jain and R. Shyamasundar. Failure detection and membership management in grid

environments. In International Workshop on Grid Computing, pages 44–52, Washing-

ton, DC, USA, November 2004. IEEE Computer Society. doi:10.1109/GRID.2004.30.

9.3.1

166

http://dx.doi.org/10.1007/978-3-540-87698-4_28
http://dx.doi.org/10.1007/978-3-540-87698-4_28
http://dx.doi.org/10.1145/1238844.1238850
http://dx.doi.org/10.1145/1238844.1238850
http://dx.doi.org/10.1145/1011767.1011819
http://dx.doi.org/10.1007/3-540-56188-9_20
http://dx.doi.org/10.1109/32.481515
http://dx.doi.org/10.1109/TMC.2004.14
http://dx.doi.org/10.1109/GRID.2004.30

[94] M. Barnett, K.R. Leino, and W. Schulte. The spec# programming system: An

overview. In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and

Traian Muntean, editors, Construction and Analysis of Safe, Secure, and Interopera-

ble Smart Devices, volume 3362 of Lecture Notes in Computer Science, pages 49–69.

Springer Berlin / Heidelberg, 2005. doi:10.1007/978-3-540-30569-9_3. 9.3.3

[95] M. Barnett, B. Chang, R. DeLine, B. Jacobs, and R.K. Leino. Boogie: A modu-

lar reusable verifier for object-oriented programs. In Frank de Boer, Marcello Bon-

sangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods for Com-

ponents and Objects, volume 4111 of Lecture Notes in Computer Science, pages 364–

387. Springer Berlin/Heidelberg, 2006. doi:10.1007/11804192_17. 10.1.1

[96] J. Serra. Image Analysis and Mathematical Morphology. Academic Press, Inc., Orlando,

FL, USA, 1983. 10.1.2

[97] A. Svolos, C. Konstantopoulos, and C. Kaklamanis. Efficient binary morphological

algorithms on a massively parallel processor. Parallel and Distributed Processing Sym-

posium, International, 0:281, 2000. doi:10.1109/IPDPS.2000.845997. 10.1.2

[98] M. Tarek, C. Boutrous-Saab, and S. Rampacek. Verifying correctness of web services

choreography. Web Services, European Conference on, 0:306–318, 2006. doi:10.1109/

ECOWS.2006.38. 10.1.3

[99] H. Zhu and B. Yu. Algebraic specification of web services. Quality Software, Interna-

tional Conference on, 0:457–464, 2010. doi:10.1109/QSIC.2010.47. 10.1.3

[100] H. Herrlich. Axiom of Choice, volume 1876 of Lecture Notes in Mathematics. Springer

Berlin / Heidelberg, 2006. doi:10.1007/11601562. A.2.1

167

http://dx.doi.org/10.1007/978-3-540-30569-9_3
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1109/IPDPS.2000.845997
http://dx.doi.org/10.1109/ECOWS.2006.38
http://dx.doi.org/10.1109/ECOWS.2006.38
http://dx.doi.org/10.1109/QSIC.2010.47
http://dx.doi.org/10.1007/11601562

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 A Detailed Example
	1.3 Local-Global Algorithms
	1.4 Contribution and Scope
	1.5 Related Work
	1.6 Organization of the Thesis

	2 Model and Assumptions
	2.1 System Model
	2.2 Local-Global Relations
	2.3 Correctness
	2.4 Related Work

	3 Consensus Using Monoids
	3.1 Theorems about Monoids
	3.2 System Correctness
	3.3 Instantiations of Monoids
	3.4 Message Passing

	4 Distributed Path Computations using Semirings
	4.1 Central Idea
	4.2 Semirings
	4.3 System Specification
	4.4 System Correctness
	4.5 Examples
	4.6 Related Work

	5 Sorting
	5.1 System Specification
	5.2 System Correctness

	6 Average Consensus
	6.1 Background and Motivation
	6.2 System Specification
	6.3 System Correctness

	7 External Inputs
	7.1 Model
	7.2 Theory

	8 Framework Extensions
	8.1 Error Bounds with Changing Inputs
	8.2 Termination Detection
	8.3 Limits of the Local-Global Framework
	8.4 Bounds on Information Exchange

	9 Tools of Formal Methods
	9.1 Theorem Prover
	9.2 Model Checker
	9.3 Implementation

	10 Conclusion and Future Work
	10.1 Future Work
	10.2 The Applicability of Local-Global Relations

	A Auxiliary Proofs
	A.1 Reverse Induction
	A.2 Monoids
	A.3 Mean Square Error
	A.4 Permutations

	Bibliography

