
Emerging Paradigms in Quantum Error Correction and Quantum

Cryptography

Thesis by

Prabha Mandayam Doddamane

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2011

(Defended April 8, 2011)



c© 2011

Prabha Mandayam Doddamane

All Rights Reserved

ii



To

Amma and Appa

iii



Acknowledgements

As I get ready to submit my doctoral thesis, it is a pleasure to finally acknowledge and thank

everyone who has been a part of this incredible journey.

First and foremost, thanks to my adviser Prof. John Preskill for his help and advice these

past six years. Being his student and interacting with him has been a rare privilege and a great

learning experience for me. Apart from having learnt some of the fundamental concepts of quantum

information processing from him, I have also learnt a lot from his approach to scientific research,

in particular, the importance of motivating and communicating the physical intuition behind one’s

research. But most of all, thank you John, for your patience and understanding during my initial

blundering forays into research. And thanks also, for letting me be a part of the great institution

that IQI is. With its array of post-docs working in diverse areas, and a continuous stream of

visitors, I couldn’t have asked for a better place in which to start my research career in quantum

information.

A huge thanks to my collaborators David Poulin, Hui Khoon Ng and Stephanie Wehner. David

was instrumental in getting me started on my first research problem, in the area of approximate

quantum error correction (AQEC). I am greatly indebted to him for guiding me during that initial

phase and for investing all that time during his busy post-doc days. In fact, the intuition behind

the AQEC result presented in this thesis, are largely the outcome of discussions with David. Hui

Khoon, who was a graduate student IQI, has been a great friend and colleague. What started out

as a coffee-time discussion between students with similar interests, eventually led to my first paper

on AQEC. Thanks Hui, for all the times we shared, chatting about work and life and everything

else in between! Stephanie joined IQI during the final years of my graduate studies, leading to a

very enjoyable and productive collaboration. I have of course benefitted immensely from her rich

knowledge and experience. I have also learnt a lot from her single-minded approach to research,

and her focus and dedication in solving a problem. Thanks Stephanie, for being the great friend

iv



and mentor that you are. And thanks also, for introducing me to the wonderful world of quantum

cryptography! A special word of thanks to Niranjan Balachandran whose expertise in combinatorics

and graph theory helped us formalize some of the proofs in Chapter 3.

Thanks to Profs. Alexei Kitaev, Oskar Painter and Gil Refael for serving on my thesis commit-

tee. Thanks also to Kovid, Panos, Graeme, Greg, Ersen, Issac, Jeongwan, Robert, Robin, Liang

and other colleagues at IQI.

I would also like to acknowledge here, some of the teachers who played a motivational role during

my student days in India, especially Prof. Arul Lakshminarayanan and Prof. M.V.Satyanarayana.

Arul, with whom I worked on my Masters’ thesis, has been a great friend and guide. MVS, whose

fierce passion for physics has inspired many a student, has been an honest critique and a constant

well-wisher.

This thesis is dedicated to my parents, for it was with them that this journey really began.

Back in high school, it was through my mother Vijayalakshmi that I discovered the joy of doing

mathematics. And it was from my father Srinivas, who has been an academic all his life, that

I developed an interest in research and teaching. Indeed, my fascination for quantum mechanics

dates back to many simulating discussions with my father during my undergraduate days—he is

among the best teachers of the subject I have seen to date! I am grateful to my parents, not only

for shaping my approach to science, but for the larger lessons that I have had a chance to learn

from them, through the values they exude in their everyday lives.

To my sister Nitya, my oldest friend and confidante, thanks for sharing in all the ups and

downs of these PhD years. To Uday, Shweta, Sushree, JK, Mansi, Setu, Mayank, Shankar, Varun,

Shriharsh, Naresh, Chithra, Arundhati, Sameer, Pinkesh, Vikram, Tejaswi and all my other friends

at Caltech, thank you for making this place a home away from home for me. Thank you for all the

music, food, concerts, plays and above all, the companionship, which truly enriched my graduate

school experience. Thanks also to my friends from India—Jeevisha, Ashok, Devi and Roshni—who

have stood by me through thick and thin. I am thankful to my husband’s parents for their keen

interest in my progress and their support and encouragement.

To my husband Krishna, who has been an inexhaustible source of strength these last six years,

I present this thesis as a culmination of our combined efforts and aspirations. I am grateful for

everything we share, and look forward to the many milestones we will cross together in the future.

v



Abstract

We study two novel paradigms in quantum error correction and quantum cryptography—approximate quan-

tum error correction and noisy-storage cryptography—which explore alternate approaches for dealing with

quantum noise. Approximate quantum error correction seeks to relax the constraint of perfect error correc-

tion and construct codes that might be better adapted to correct for specific noise models. Noisy-storage

cryptography relies on the power of quantum noise to execute two-party cryptographic tasks securely.

Motivated by examples of approximately correcting codes, which make use of fewer physical resources

than perfect codes and still obtain comparable levels of fidelity, we study the problem of finding and char-

acterizing such codes in general. We construct for the first time a universal, near-optimal recovery map

for approximate quantum error correction (AQEC), with optimality defined in terms of worst-case fidelity.

Using the analytical form of this recovery, we also obtain easily verifiable conditions for AQEC. This in turn

leads to a simple algorithm for identifying good approximate codes, without having to perform a difficult

optimization over all recovery maps for every possible encoding.

Noisy-storage cryptography envisions a setting where two-party cryptographic protocols can be securely

implemented based solely on the assumption that the quantum storage device possessed by either party is

noisy and bounded. Here, we construct two-party protocols (using higher-dimensional states) that are secure

even when a dishonest player can store all but a small fraction of the information transmitted during the

protocol, in his noiseless quantum memory. We also show that when his memory is noisy, security can be

extended to a larger class of noisy quantum memories. Our result demonstrates that the physical limits of

the quantum noisy-storage model are indeed achievable, albeit asymptotically.

We also describe our investigations on obtaining strong entropic uncertainty relations using symmetric

complementary bases. Uncertainty relations are an important and useful resource in analyzing the security

of quantum cryptographic protocols, in addition to being of interest from a foundational standpoint. We

present a novel construction of sets of symmetric, complementary bases in dimension d = 2n, which are

cyclically permuted under the action of a unitary transformation. We also obtain new lower bounds for

uncertainty relations in terms of the min-entropy, which are tight for specific instances of our construction.
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Chapter 1

Introduction

It has been over two decades since the idea of quantum information processing has captured the

imagination of physicists, computer scientists, and information theorists alike. Two important

discoveries that provided critical impetus for the growth of the field in its nascent stages have been

quantum error correction and quantum cryptography. The discovery of quantum error correcting

codes in the mid-nineties [22,120,123] demonstrated that it is indeed possible to perform quantum

information processing reliably in the presence of noise. The early quantum cryptographic protocols

discovered in the pervious decade [11, 13, 42] demonstrated the usefulness of quantum systems in

performing fundamentally unbreakable cryptographic tasks.

Näıvely, the problem of quantum error correction appears daunting in the face of several con-

ceptual challenges. The no-cloning theorem [133] rules out the possibility of constructing quantum

repetition codes analogous to classical repetition codes. Also, since quantum errors are continuous,

it is difficult to measure and identify the errors with precision. Furthermore, since the measurement

process actually destroys or modifies quantum information, we cannot directly employ the standard

classical technique of observing the output of the channel and selecting the decoding procedure on

that basis. However, discovery of necessary and sufficient conditions for quantum error correction

in general noise models [15, 43, 70] demonstrated how quantum codes can be constructed in spite

of these challenges. On the other hand, for cryptographic protocols, these very properties prove to

be useful in achieving security against an eavesdropper.

Taking off from these early results, there have been several important developments in both

these areas. Significant milestones in quantum error correction include the discovery of topological

codes [65, 66], the stabilizer formalism to describe quantum error correcting codes [51], the fault
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tolerance threshold theorem [2,39,71,121], and more recent ideas of dynamical decoupling [63,126]

and subsystem or operator quantum error correction [82]. We refer the reader to [102, 103] for a

detailed overview of some of these important developments.

Quantum cryptography has also come a long way since the first quantum key distribution (QKD)

protocol. Known as the BB84 protocol in honor of its creators [11], this became a prototype for later

quantum cryptographic protocols. Starting from experimental implementations over a distance of

32.5 cm in 1989 [12], today we have experimental setups that have successfully demonstrated QKD

over distances of hundreds of kilometers [59, 116]. An alternate view of QKD based on quantum

entanglement [42] motivated newer ideas like quantum privacy amplification [35] and made the task

of proving the security of QKD protocols much easier. Since then, several security proofs have been

constructed [87, 95, 107, 122] leading to stronger QKD protocols that are unconditionally secure

against general attacks. However, moving beyond key distribution has proved to be a big challenge

in the quantum setting.

Early results showed that unconditional security was not possible for non-QKD protocols such

as quantum bit commitment [33, 96] and quantum oblivious transfer [86]. Bit commitment and

oblivious transfer are protocols that help to realize practical two-party functions such as online

auctions or secure identification, where the participating parties do not trust each other. We will

describe oblivious transfer in Section 4.4 and refer to [127] for a complete introduction to these and

other two-party cryptographic tasks. In fact, it was shown in [86] that it is impossible to implement

any such two-party quantum cryptographic protocol securely, without imposing some restrictions

on the dishonest party.

Quantum cryptography also admits phenomena which do not have a classical analog, like the

phenomenon of information locking [38]. The development of quantum cryptography has also

spurred tremendous interest in the study of quantum information measures, in particular the prop-

erties of Rényi entropies and extensions thereof [74,109], which lie at the heart of most cryptographic

security proofs today.

In this thesis, we focus our attention on two new paradigms that have emerged in the recent

past. First is the concept of approximate quantum error correction which was first introduced in the

work of Leung et al. [85], who showed via an example, that approximate codes might sometimes

perform better than the perfect codes arising from standard constructions. Second is the idea
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of noisy storage cryptography [76, 115] which envisions a setting where two-party cryptographic

protocols can be securely implemented based solely on the assumption that the quantum storage

device possessed by the adversary is noisy and bounded. In what follows, we introduce and motivate

these two ideas in greater detail.

1.1 Adapting to Quantum Noise: Approximate Quantum Error

Correction

We have already referred to some of the important theoretical advances in the theory of quantum

error correction (QEC). While the standard paradigm of QEC is well-understood and rests on a solid

mathematical foundation, the discovery of approximate codes [46,85] has shown that this standard

framework might be somewhat restrictive. Approximate quantum error correction (AQEC) relaxes

the constraint of perfect recovery and instead seeks codes that recover the input state with high

enough fidelity. A typical quantum error correcting code is designed to perfectly correct only some

subset of the errors that constitute the noise channel, in particular the ones that occur with a

higher probability. Every perfect code is thus an approximate code for the least probable errors

of the channel. These standard codes are, however, designed based on conditions that demand

perfect correction of the complete noise channel. The theory of perfect quantum error correction

is discussed in some detail in Section 2.1.2.

In practice, experimental setups for creating and storing qubits are usually characterized by a

certain dominant noise process. For example, in many setups based on quantum optics, amplitude

damping noise [26,49] is most dominant. More recently, it was observed that in some superconduct-

ing qubit systems, dephasing noise is stronger than other noise processes by a factor of 103 [1, 3].

Standard code constructions however, do not take advantage of this specific knowledge. Rather,

standard error correction proceeds by first discretizing errors in terms of the Pauli operators and

then constructing codes to correct these Pauli errors perfectly. Approximate error correction, on

the other hand, incorporates our knowledge of the noise model and allows us to find codes optimized

for specific noise models. Thus, while the shortest perfect quantum code requires at least five qubits

to encode a single qubit [84], approximate codes constructed for specific noise channels [47,85] use

only four qubits to achieve comparable fidelity. This illustrates a key advantage of relaxing the
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requirement for perfect QEC—one might be able to encode the same amount of information into

fewer qubits while retaining a nearly identical level of protection from the noise.

These observations indicate the importance of developing a general theory of approximate quan-

tum error correction. There are two possible approaches to characterize approximate codes. The

Leung et al. approximate code was constructed as a simple perturbation of a perfect code, raising

the possibility that perturbing the perfect error correction conditions might yield conditions for

approximate correction [90]. Alternately, approximate quantum error correction can be formulated

as an optimization problem [46,135]. Given a noise channel and the information we need to encode,

AQEC is the problem of finding the optimal encoding and recovery maps, with optimality defined

in terms of a chosen measure of accuracy of recovery.

In our work presented in Chapter 2, we combine both these aspects of approximate error cor-

rection via a universal recovery map, namely the transpose channel. On the one hand, by defining

optimality in terms of the worst-case fidelity, we demonstrate that the transpose channel is a

near-optimal recovery map for any noise channel. We also show that the perfect error correcting

conditions can be rewritten in terms of the transpose channel. Combining this with our fidelity

bound, we are able to write down simple conditions for approximate quantum error correction,

which are indeed obtained as perturbations of the perfect QEC conditions. Earlier studies [8] had

in fact shown that the transpose channel is a near-optimal recovery for an average fidelity mea-

sure based on the entanglement fidelity. Indeed, while the problem of finding optimal codes for

the entanglement fidelity has been studied in the recent past [17, 45, 124], we present for the first

time an analytical description of a recovery map that is close to optimal for the worst-case fidelity.

The worst-case fidelity involves minimizing the fidelity between the input and output states over

all input states in contrast to the average fidelity which is simply an average over input states.

Optimizing for the worst-case measure thus provides a stronger assurance that all the information

in the input space is well protected.

Our conditions for AQEC also lead to an easily implementable algorithm to identify approximate

codes, for a given noise channel and fidelity threshold. Using this, we obtain good four-qubit

codes for the amplitude damping channel. We thus formulate a simple, analytical approach to

characterizing and finding approximate quantum codes. This is of course a first step toward a

complete theory of approximate quantum error correction, with potential applications in designing
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a fault tolerant quantum computing architecture.

1.2 Using the Power of Quantum Noise: Noisy-Storage Crypto-

graphy

As mentioned above, one of the early negative results in quantum cryptography was the discovery

that secure two-party quantum cryptography is not possible without additional assumptions [86]. In

the classical setting, the usual assumptions that go into realizing secure two-party protocols involve

mathematical hardness results and a restriction on the computing power of a cheating party. An

interesting physical assumption that also leads to security in the classical setting is to assume a

restriction on the amount of classical storage a cheating party can use [21, 94]. However, in this

classical bounded-storage model, the cheating party requires only quadratically more storage than

the honest party to break the security. Furthermore, a tight bound on classical storage is not easily

enforceable in today’s context. Since storing quantum states for any significant length of time still

remains a hard problem, the quantum analog of the classical bounded-storage model might be a

more realistic prospect.

In this setting of bounded quantum storage, protocols for secure implementation of quantum

bit commitment and oblivious transfer were demonstrated under the assumption that a cheating

party cannot store any quantum information at all [14, 29]. Recently, this bound was improved,

showing that quantum oblivious transfer can be securely implemented if the cheating party can

store no more than a fourth of the qubits transmitted during the protocol [30, 31]. An alternate

physical situation to consider is of course the case where the cheating party’s quantum storage is

noisy, while allowing for a larger storage size. In this quantum noisy-storage setting, a protocol for

secure oblivious transfer was constructed [115,128] with the additional constraint that the cheating

party could only perform product measurements on the qubits received during the protocol.

It turns out that both these models can be realized as special cases of a generalized quantum

noisy-storage model introduced by König et al. [76], which incorporates both the amount of storage

and noise. A formal description of this model is provided in Section 4.1.2. In this more general

setting, protocols for secure bit commitment and oblivious transfer were constructed, which were

shown to be secure for reasonable values of the noise parameter (characterizing the noisy storage)
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and the storage rate of the cheating party. When specialized to the case of bounded quantum

storage (when the storage is noiseless) these protocols were shown to be secure so long as the

cheating party cannot store more than half the qubits transmitted. This is quite an improvement

over the earlier bound obtained for the bounded-storage model.

In the bounded storage model, it is intuitively clear that if a cheating party were able to store

all of the information transmitted during a protocol, security cannot be achieved. This is equivalent

to saying that the storage rate must be less than one, if a protocol is to be secure. Conversely, one

can ask the question as to whether it is always possible to achieve security if the storage rate is

strictly less than unity. The protocols constructed so far do not answer this question conclusively.

While the best protocol achieves security so long as the storage rate is less than a half in the

bounded-storage model, the question as to whether the physical limit of one is achievable remained

unresolved. We address this question in our work presented in Chapter 4, and demonstrate that it

is indeed possible to achieve security if the cheating party’s storage rate is strictly less than one.

To achieve this physical limit, it turns out that we have to look beyond qubits and implement our

protocols using higher-dimensional quantum states, that is, qudits.

In the setting of the general noisy-storage model [76], we demonstrate a protocol for quantum

oblivious transfer using qudits, where again security depends on the noise parameter and the storage

rate. Since oblivious transfer is known to be universal for two-party cryptography [64], this implies

that our protocol can in principle be used to realize any two-party cryptographic task securely. In

the noisy-storage setting, our protocol improves the results of [76] by extending security to a much

larger class of noise channels. Most importantly, when the cheating party has a noiseless memory,

our protocols are secure so long as he can store all but an arbitrarily small fraction of the qudits

transmitted during the protocol. Even though our result is an asymptotic one—in the sense that

we achieve security for storage rates close to one only for very large values of dimension d—it is

an important demonstration of the concept that the physical limit of the bounded-storage model

is indeed achievable. We hope that the techniques used in achieving our bounds might provide

some insight into proving similar bounds even for smaller systems or qubits encoded into higher

dimensions.
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1.3 A Mathematical Interlude: Uncertainty Relations for Comple-

mentary Aspects

An important technique that is employed in our security proof, and in fact in a vast majority of

the existing security proofs in quantum cryptography, is the use of entropic uncertainty relations

to bound the information held by a cheating party [130]. Before describing our work on the noisy-

storage model, we take a brief detour in Chapter 3 to present our results on obtaining strong

entropic uncertainty relations by making use of mutually unbiased bases.

Entropic uncertainty relations and mutually unbiased bases are formally defined in Sections 3.2.1

and 3.2.2 respectively. Entropic uncertainty relations (EURs) provide lower bounds on the average

entropy of probability distributions corresponding to the outcomes of different measurements. They

thus provide a natural way to quantify incompatibility among multiple measurements [34]. For two

observables, it is well known that this incompatibility is maximum when the measurement bases

are complementary or mutually unbiased [89]. For more than two measurement settings, while

being mutually unbiased is a necessary condition to obtain strong uncertainty relations, it was

recently shown that there do exist small sets of mutually unbiased bases (MUBs) that satisfy

trivial uncertainty relations [6]. It remains an important open question to identify and construct

sets of complementary bases satisfying strong uncertainty relations. We refer to [130] for a survey

of the entropic uncertainty relations in different measurement scenarios and to [40] for a review

of the known results on the existence and constructions of mutually unbiased bases in different

dimensions.

In our work, we investigate the possibility of constructing symmetric sets of MUBs using the

generators of the Clifford algebra in dimension d = 2n. The symmetry of interest here is the

existence of a unitary transformation that cyclically permutes the different basis sets. It has

been shown that the maximal set of d + 1 bases in d dimensions (when d is a prime power) has

such a symmetry structure, and that minimum uncertainty states in the Hilbert space are in fact

invariant under the corresponding unitary transformation [132]. In Chapter 3, we present an explicit

construction of sets of up to 2n+1 MUBs in dimension d = 2n which are indeed cyclically permuted

under the action of unitary transformation. This unitary can be understood as a generalization

of the Fourier transform (which exchanges two MUBs) to multiple complementary aspects. We

then apply our transformation to the study of uncertainty relations in terms of the min-entropy,
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which also gives a lower bound on the Shannon entropy. We prove a lower bound for min-entropic

uncertainty relations for any set of MUBs, and show that symmetry plays a central role in obtaining

tight bounds. In fact, we obtain for the first time a tight bound for four MUBs in dimension d = 4,

which is attained by an eigenstate of the permuting unitary transformation.

As mentioned earlier, the security of protocols in recent cryptographic models like the bounded-

storage and noisy-storage models is directly related to entropic uncertainty relations. EURs also

figure prominently in the security analysis of quantum key distribution [72, 106] and information

locking protocols [38]. A better understanding of the interplay between complementarity and

uncertainty relations is thus of interest not only from a foundational standpoint, but has practical

implications for analyzing and improving existing cryptographic protocols.

1.4 Thesis Organization

We have presented here a brief overview of the problems investigated in this thesis. The rest of

the thesis is organized as follows. Chapter 2 briefly introduces the standard paradigm of quantum

error correction and describes our approach to approximate quantum error correction based on the

transpose channel. It also discusses an algorithm to search for approximate codes and presents

numerical results based on this algorithm. For the practically relevant case of qubit codes, a

further simplification of our algorithm is presented in Appendix A. Chapter 3 describes our novel

construction of symmetric mutually unbiased bases, as well as the new lower bounds we obtain for

min-entropic uncertainty relations. For better readability, we only describe the basic idea behind

our construction in the chapter, and relegate the technical details of the construction and related

proofs to Appendix B. Chapter 4 describes our work on the noisy-storage model, after providing

a brief introduction to some of the basic techniques used in two-party quantum cryptography.

Chapters 2 and 3 are self contained and can be read independently. Chapter 4 refers to both these

chapters for some preliminary concepts—in particular, it refers to Sec. 2.1.1 in Chapter 2 for the

mathematical formalism of quantum noise operations, and to Secs. 3.1 and 3.2.1 in Chapter 3 for

a description of entropic measures and uncertainty relations respectively.

8



Chapter 2

Approximate Quantum Error
Correction Using the Transpose
Channel

Quantum error correction (QEC) is one of the cornerstones of quantum information and quantum

computing. Since quantum effects are extremely fragile and susceptible to damage by environmental

noise, QEC plays an important role in making the theoretical idea of quantum information process-

ing a physically realizable prospect. Many tasks in quantum communication or computation would

indeed become impossible without the use of error-correcting techniques to protect the information

from noise. The idea behind QEC is a very simple one—information is stored in a particular part

of the system Hilbert space, cleverly chosen depending on the noise process affecting the system,

such that a recovery operation can be applied to retrieve the information.

A vast majority of existing work on error correction focuses on the standard paradigm of perfect

error correction, where the recovery operation either perfectly corrects the full noise channel, or

perfectly corrects the errors conditioned on the fact that fewer than some t errors occurred. Re-

cently, examples of approximately correcting quantum codes have been constructed, that recover

the information with fidelity comparable to that of perfect QEC codes, suggesting that the require-

ment for perfect recovery may be too stringent for certain tasks. While the smallest known perfect

quantum code requires at least five qubits to encode a single qubit [15, 84], approximate codes

constructed for specific noise channels [47, 85] use only four qubits to achieve comparable fidelity.

This illustrates a key advantage of relaxing the requirement for perfect QEC—one might be able to

encode the same amount of information into fewer qubits while retaining a nearly identical level of
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protection from the noise. While examples of good approximate QEC (AQEC) codes are known,

characterizing these approximately correctable codes has remained an open problem.

In this chapter,1 we formulate a simple approach to characterizing and finding AQEC codes.

We demonstrate for the first time that there exists a universal, near-optimal recovery map for

AQEC codes—the transpose channel—where optimality is defined in terms of the worst-case

fidelity. Using the transpose channel, which is constructed as a generalization of the recovery

channel defined in [8], we obtain a set of conditions for AQEC, which forms the basis of a simple

algorithm for finding AQEC codes. Our analytical approach is a departure from earlier work which

relies on exhaustive numerical search for the optimal recovery map, with optimality defined in

terms of average or entanglement fidelity rather than the worst-case fidelity. Furthermore, for the

practically useful case of codes encoding a single qubit of information, our algorithm is particularly

easy to implement.

The rest of the chapter is organized as follows. In Section 2.1 we briefly review the standard

paradigm of quantum error correction. In Section 2.2 we introduce the notion of approximate error

correction with an example, and formulate the problem of finding AQEC codes as an optimization

problem. In Section 2.3, we define the transpose channel, examine its role in standard QEC theory,

and prove that it is nearly optimal for AQEC codes. An alternative form of the perfect QEC

conditions based on the transpose channel is described in Section 2.4, a perturbation of which leads

to a set of AQEC conditions. The algorithm for finding AQEC codes is described in Section 2.5.

In Section 2.6, we consider the example of amplitude damping noise and use it to compare our

procedure with earlier work on approximate codes. Section 2.7 contains our conclusions and some

open problems.

2.1 Quantum Error Correction

The basic idea of quantum error correction is to encode the information that we wish to protect

into a larger quantum system. Specifically, information is stored in quantum states, which are

represented by density operators ρ ∈ B(H), in a finite-dimensional Hilbert space H. The operator

ρ is a positive semi-definite, trace-1, linear operator in H. If the state of the system is exactly

1The work described in this chapter has been done in collaboration with Hui Khoon Ng. The original results
presented here have been published in [97]. We would like to thank David Poulin for introducing us to the problem
of approximate quantum error correction, and for many insightful discussions.
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known, it is described by a pure state |ψ〉 ∈ H, where |ψ〉 is a unit vector in H. Density operators

corresponding to such pure states are given by ρ = |ψ〉〈ψ|. Finally, if a system is known to be

in state |ψi〉 with probability pi, where {|ψi〉, i = 1, . . . , N} is a set of N pure states, it is said

to be in a mixed state and the density operator describing the state of the system is given by

ρ =
∑

i pi|ψi〉〈ψi|.

Input 

space H0

R °  (!)

 CNoisy Channel

 :B (C )       B (H0
 n) Noisy

output

 !")
Detecting and 

correcting “errors”

Decoded 

output  H0

R : B (H!n) B (C )" C

Codespace

C " (H0)
 n

Encoding Decoding

Figure 2.1: Schematic representation of quantum error correction.

Given the system Hilbert spaceH, we seek to encode a qudit of information—information carried

by a d-dimensional Hilbert space H0—where d is no greater than the dimension of H. Often the

system Hilbert space H is simply an n-fold tensor product of the system we seek to encode, that is,

H = (H0)
⊗n. The qudit is encoded into a d-dimensional subspace C of H. When d = 2, this reduces

to the problem of encoding a single qubit of information, which is of utmost practical relevance

today. We refer to C as a subspace code, as opposed to subsystem codes [82] or more general codes in

the sense of [19]. Since we are only concerned with subspace codes in this chapter, we will often use

“code” to denote the subspace C. Formally, the information is encoded into C via an encoding map

W : H0 → C, whose action on any orthonormal basis {|φ(0)i 〉} for H0 is W : |φ(0)i 〉 7→ |φi〉 ∈ C such

that 〈φi|φj〉 = δij ∀i, j. One can extend this encoding map on the vector space H0 to a completely

positive (CP), trace-preserving (TP) map on operators, also denoted by W.

After encoding the information into C using W, we consider the action of noise. This noise is

also described by a CPTP map E : B(H) → B(H). E can describe, for example, the Markovian
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noise acting on the system over some timestep, or the effect of a single use of a noisy channel

for communication. After the action of E , we perform a CPTP recovery map R : B(H) → B(C)
to undo the effects of the noise, and then decode using W−1. Note that, when a single qudit

(qubit) is encoded into n qudits (qubits), the corresponding noise channel is also an n-fold tensor

product space of a single qudit (qubit) noise channel E , denoted as E⊗n. The key steps in the error

correction process described here are summarized schematically in Fig. 2.1. We will now proceed

to describe the quantum noise model in greater detail with examples of some physically motivated

noise processes.

2.1.1 Quantum Channels

Formally, any quantum operation on a system can be described by a completely positive, trace

preserving (CPTP) map on density operators in the system Hilbert space. A map E acting on

density operators ρ ∈ B(HA) is said to completely positive if and only if, (a) E(ρ) > 0, ∀ ρ > 0 ∈
B(HA), and (b) E ⊗ IB is a positive map on B(HA ⊗HB), for any possible extension HA ⊗HB of

the system Hilbert space HA, where IB is the identity map on HB. Condition (a) is the simple

statement that if ρ ∈ HA is a valid density operator, then so is E(ρ) (up to normalization). The

additional requirement of complete positivity in condition (b) is the physical requirement that

(E ⊗ IB)(ρAB) also be a valid density operator for any joint state ρAB ∈ B(HA⊗HB), where E acts

only on the subsystem HA.

Since tr[E(ρ)] is the probability that the process represented by E occurred, given the initial

state ρ, conservation of probability requires that tr[E(ρ)] = 1 for all ρ. When E describes processes

where some extra information is obtained by a measurement, then E could be non-trace-preserving,

that is, tr[E(ρ)] ≤ 1. But since we deal with deterministic noise processes here, the corresponding

maps are indeed trace-preserving.

It turns out that these physically motivated requirements lead to an elegant mathematical

description of quantum operations. The celebrated result due to Choi and Kraus [25,79,80] states

that a map E : B(H) → B(H) is completely positive if and only if there exists a set of operators

{Ei}Ni=1—referred to as a Kraus representation of E—such that the action of E on ρ ∈ B(H) is

given by E(ρ) =∑N
i=1EiρE

†
i . Henceforth, we will denote E with a particular Kraus representation

as E ∼ {Ei}Ni=1, and refer to set of operators {Ei} as a set of Kraus operators corresponding
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to the map E . Further, the Kraus representation of a CP map is not unique—any two Kraus

representations {Ei}Ni and {Fk}Ni such that Fk =
∑

ik uikEi, for some N ×N unitary matrix (uij),

describe the same map [98, Theorem 8.2]. Finally, the fact that E is trace-preserving implies that

the Kraus operators of E satisfy
∑

i

E†
iEi = I,

where I is the identity operator for the domain of E .
To summarize, quantum noise processes or quantum channels are modeled as CPTP maps on

the system Hilbert space, with the individual errors given by the Kraus operators in the operator-

sum representation described above. We conclude this section with some concrete examples of

single qubit quantum channels.

(i) Bit flip channel: The simplest quantum channel we can construct is one that simply flips the

state of a qubit from |0〉 to |1〉 with probability 1−p. This is a straightforward generalization

of the corresponding classical channel which flips the value of a bit with probability 1− p, to

the quantum setting. In the {|0〉, |1〉} basis, the Kraus operators of this channel are given by

Figure 2.2: The quantum bit flip channel.

E0 =
√
p I =

√
p




1 0

0 1



 ; E1 =
√

1− p X =
√

1− p




0 1

1 0



 .

The quantum bit flip channel thus describes the physical process when the system is either

affected by a Pauli X operation with probability 1− p, or left unaffected with probability p.

(ii) Depolarizing channel: This describes the scenario where a single qubit is replaced by the

maximally mixed (depolarized) state with probability p. Formally, the action of the channel
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on any state ρ can be described in terms of the Pauli operators as

EDep(ρ) = (1− 3p

4
)ρ+

p

4
(XρX + Y ρY + ZρZ) . (2.1)

The Kraus operators corresponding to this channel are therefore given by

EDep(ρ) ∼ {
√

1− 3p/4I,
√
pX/2,

√
pY/2,

√
pZ/2}.

(iii) Amplitude damping channel: This is an important quantum channel that describes energy

dissipation and characterizes the effects due to loss of energy from a quantum system. The

single qubit amplitude damping channel EAD has Kraus operators

EAD
0 =




1 0

0
√
1− γ



 , and EAD
1 =




0

√
γ

0 0



 , (2.2)

written in some qubit basis {|0〉, |1〉}. EAD can be thought of as describing energy dissipation

in a two-level system, where |0〉 is the ground state and |1〉 is some excited state. γ is then

the probability of a transition from the excited state to the ground state. In the Pauli basis,

EAD
0 =

1

2
[(1 +

√

1− γ) I+ (1−
√

1− γ) Z] , EAD
1 =

√
γ

2
[X + iY ] ,

showing that no linear combination of E0 and E1 can give an operation element proportional

to the identity operator. The fact that the operator elements of the amplitude damping

channel cannot be realized as scaled Pauli operators makes it different from the other two

channels described here.

2.1.2 Perfect QEC Conditions

The problem of quantum error correction is to pick the right encoding and recovery operation for a

given noise channel E , such that the recovery operation either perfectly corrects the full CPTP noise

channel, or perfectly corrects the errors conditioned on the fact that fewer than t errors occurred.

We will henceforth refer to this standard paradigm of error correction as perfect QEC. As depicted

in Fig. 2.1, it is common to fix the encoding Hilbert space as the n-fold tensor product space of

the system Hilbert space, so that the problem of perfect QEC reduces to the problem of choosing

the right pair (C,R) of codespace and recovery map such that the action of the map E followed by
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R leaves states in the codespace C unaffected. Formally, the action of a channel E is said to be

perfectly correctible on a codespace C if and only if there exists a quantum channel R such that

R ◦ E(ρ) = ρ ∀ ρ ∈ C.

An important characterization of perfect QEC codes is given by the perfect QEC conditions [15,

43,70], which we briefly review here. For a given code C, let P be the projector onto C. The QEC

conditions can then be stated as follows.

Theorem 2.1.1 (Perfect QEC conditions [15,43,70]). A CPTP recovery map R that perfectly

corrects the action of a noise channel E ∼ {Ei}Ni=1 on a subspace code C exists, if and only if

∀i, j, PE†
iEjP = αijP, (2.3)

for some complex matrix α.

Note that this is simply a condition on the existence of a perfect QEC code for a given E , and
stipulates no knowledge of the recovery map R.

It is more insightful to rewrite (2.3) in a “diagonal” form. From (2.3), it is clear that α must be a

Hermitian matrix. Therefore, there exists a unitary u and a diagonal matrix d such that α = udu†.

The set of operators defined by Fk ≡∑i uikEi constitutes an alternate Kraus representation for E ,
so that E ∼ {Fk}. With this choice of Kraus representation, the perfect QEC condition takes the

following form:

∀k, l, PF †
kFlP = δkldkkP, (2.4)

where dkk are the diagonal entries of d, or equivalently, the eigenvalues of α. Notice that dkk ≥ 0, ∀k,
since the left-hand side of (2.4) is positive semi-definite when k = l. α is hence a positive semi-

definite matrix (α ≥ 0).

The diagonal form of the perfect QEC condition makes it easier to appreciate the intuition

behind Theorem 2.1.1. Using polar decomposition, we can express the Fk’s as FkP =
√
dkkUkP ,

for unitary Uk. The effect of the Kraus operators on a perfect code is therefore unitary, in the sense

that the operator Fk simply rotates the codespace C into the subspace defined by the projector

Pk ≡ UkPU
†
k . Equation (2.4) further guarantees that these projectors are orthogonal, that is,

PkPl = UkPU
†
kUlPU

†
l =

UkPF
†
kFlPU

†
l

dkkdll
= 0, ∀ k 6= l,

15



thus implying that the individual errors due to the action of the channel can be reliably distinguished

by a projective measurement. The individual error operators of a noise channel thus map a perfectly

correctible codespace to mutually orthogonal subspaces of the encoding Hilbert space, as shown in

Fig. 2.3.

Figure 2.3: Action of noise on perfectly correctible code.

The recovery map for correcting the errors when (2.3) is satisfied, is now easy to construct. Let

us denote this recovery as Rperf. To write down Rperf, we use the polar decomposition to obtain

the unitaries Uk such that FkP =
√
dkkUkP . Then, Rperf : B(PE) → B(C) is given by

Rperf ∼ {PU †
k}.

One can check that Rperf is TP on its domain B(PE), and that it perfectly corrects the code in the

sense that for any ρ ∈ B(C),
(Rperf ◦ E)(ρ) =

(∑

k

dkk

)

ρ. (2.5)

∑

k dkk is just the trace of E(ρ) for any ρ ∈ C. This sum is independent of ρ because of the QEC

conditions (2.4), and is exactly equal to 1 if and only if E is TP on C. Equation (2.5) thus implies

that Rperf recovers the original code state, up to any reduction in trace due to the possible non-TP

nature of E .
The perfect QEC condition can be used to identify good error-correcting codes since it is easily
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checkable for a given codespace C. Furthermore, (2.3) is linear. If E ∼ {Ei} is correctible on

codespace C, then any channel whose operator elements are linear combinations of {Ei} is also

correctible. Since the Pauli matrices form a basis for 2× 2 matrices, this linearity property has the

important consequence that for correcting single qubit errors, it suffices to check that a given code

satisfies the condition for the “Pauli errors,” namely the operators (I,X, Y, Z).

It turns out that the smallest code capable of perfectly correcting an arbitrary error on any

single qubit of the system, requires five qubits. This can be shown to follow from the linearity of

the error-correcting condition (2.3) and the assumption that errors act independently on different

qubits. We refer to [98, Section 10.3.4] for detailed proofs that any general quantum code that

seeks to correct single qubit errors perfectly, must encode into atleast 5 qubits. The five-qubit

code [15,84] is thus the shortest known perfect QEC code. We will henceforth refer to this as the

as the [[5, 1, 3]] code, where the first entry in the brackets corresponds to the number of qubits in

the system, and the second entry is the number of qubits of information encoded in the system.

The third entry is the distance of the code, defined as d = 2t+ 1 where t is the maximum number

of qubits that the code can perfectly correct. Since the five-qubit code is capable of correcting any

error on a qubit, its distance parameter is equal to 3. This code satisfies the perfect QEC conditions

for any noise channel E⊗5, but with terms corresponding to more than a single-qubit (Pauli) error

discarded.

2.2 Approximate Quantum Error Correction

The vast majority of existing work on error correction focuses on perfect QEC described above.

However, the example of a code designed for correcting errors affected by weak amplitude damping

noise presented in [85] suggests that the requirement for perfect recovery may be too stringent

for certain tasks. While perfect QEC requires at least five qubits to encode a single qubit, the

code in [85] uses only four qubits to achieve comparable fidelity. This illustrates a key advantage

of relaxing the requirement for perfect QEC—one might be able to encode the same amount of

information into fewer qubits while retaining a nearly identical level of protection from the noise

process. The four-qubit code is also specially designed for the channel in question, a departure from

standard QEC codes that seek to perfectly correct up to some t arbitrary errors on the system. This

adaptation of the code to the noise channel, an idea emphasized later in [45], is a crucial factor
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behind the success of their code. Such approximate QEC (AQEC) codes reveal the possibility

of designing codes that are better tailored to the particular information processing task at hand.

Before proceeding to analyze the problem of characterizing such approximately correcting codes, it

will help to gain some intuition into the working of this four-qubit code.

2.2.1 The Approximate [4,1] Code

The four-qubit code constructed by Leung et al. [85] protects a single qubit of information against

amplitude damping noise by encoding into four physical qubits. Assuming that the noise acts

independently on the qubits, the four-qubit noise channel is just four copies of EAD, that is, E⊗4
AD.

The four-qubit subspace code constructed in [85] is the span of the following two states:

|0L〉 ≡
1√
2
(|0000〉 + |1111〉) , and |1L〉 ≡

1√
2
(|0011〉 + |1100〉) . (2.6)

|0L〉 and |1L〉 respectively represent the |0〉 and |1〉 states of the single qubit of information we

want to encode in the four-qubit Hilbert space. We denote this as the [4, 1] code, where as before,

the first entry in the brackets corresponds to the number of qubits in the system, and the second

entry is the number of qubits of information encoded in the system. It was shown in [85] that

this code satisfies the perfect QEC conditions for E⊗4
AD, except for small corrections of order γ2. If

PL = |0L〉〈0L| + |1L〉〈1L| denotes the projector onto the codespace, the Kraus operators {EAD
i }

corresponding to the four-qubit channel E⊗4
AD satisfy

PL(E
AD
i )†EAD

j PL = 0 , i 6= j;PL(E
AD
i )†EAD

i PL = PLDiPL, (2.7)

where

Di =

(

d
(1)
i

0

0 d
(2)
i

)

, |d(1)i − d
(2)
i | ≤ O(γ2).

Comparing (2.7) with the perfect QEC condition (2.3), we see that here, while the Kraus operators

map the codespace (defined in (2.6)) to mutually orthogonal subspaces, these subspaces are not

unitary transformations of the codespace. This is schematically represented in Fig. 2.4.

As in the case of perfect QEC, a recovery operation similar to Rperf can be constructed to

approximately correct for single qubit errors in the [4, 1] code. Polar decomposition of the Kraus

operators EAD
k PL = ULk

√
PLDkPL yields the unitaries {ULk }. The Leung recovery map is then
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Figure 2.4: Action of EAD⊗4 on the [4, 1] code.

given by RL ≡ {PL(ULk )†}. We compare the performance of the [4, 1] code with that of the perfect

[[5, 1, 3]] code and other approximate codes in Section 2.6.

2.2.2 AQEC as an Optimization Problem

While the analysis in [85] is based on investigating small perturbations of the perfect QEC condi-

tions, recent work has focused on solving AQEC as an optimization problem. Indeed the challenge

of AQEC is to find the optimal encoding and recovery maps, given a noise channel and the infor-

mation we want to encode (qubit or higher-dimensional object), with optimality defined in terms

of a chosen measure of faithfulness between the input state and the recovered state.

The fidelity between the input qudit state and the decoded state after noise and recovery

quantifies how well the information is protected from the noise. The fidelity between any two

states ρ and σ is given by

F (ρ, σ) ≡ tr

√

ρ1/2σρ1/2,

which for a pure state ρ ≡ |ψ〉〈ψ|, can be written as

F (|ψ〉, σ) ≡ F (|ψ〉〈ψ|, σ) =
√

〈ψ|σ|ψ〉.

19



For any ρ and σ, F (ρ, σ) takes value between 0 and 1. F = 0 if and only if ρ and σ have orthogonal

support, and F = 1 if and only if ρ = σ. The fidelity hence gives a measure of how close two states

are.

We say that a code C, together with its encoding and recovery maps, is effective at protecting

the information from the noise E if the worst-case fidelity

min
ρ∈S(H0)

F
[
ρ,
(
W−1 ◦ R ◦ E ◦W

) (
ρ
)]

(2.8)

is close to 1. Here, S(H0) denotes the set of all states, pure or mixed, of the qudit. In practice, it

suffices to minimize over pure states in S(H0) only, since the fidelity measure is jointly concave in

its arguments. Concavity implies that for any probability distribution pi and density operators ρi

and σi,

F
(∑

i

piρi,
∑

i

piσi

)

≥
∑

i

piF (ρi, σi) , (2.9)

where
∑

i pi = 1. Suppose ρi = |ψi〉〈ψi| for some set of pure states |ψi〉 ∈ H0, and define ρ ≡
∑

i pi|ψi〉〈ψi|. Then, for any CPTP map Φ, (2.9) implies

F [ρ,Φ(ρ)] ≥
∑

i

piF [|ψi〉,Φ (|ψi〉〈ψi|)]

≥
(∑

i

pi

)

min
|ψ〉∈H0

F [|ψ〉,Φ(|ψ〉〈ψ|)]

= min
|ψ〉∈H0

F [|ψ〉,Φ(|ψ〉〈ψ|)] .

Since this is true for all states ρ ∈ S(H0), the minimum fidelity is clearly attained on a pure state.

Setting Φ ≡ W−1 ◦ R ◦ E ◦ W, we see that the minimization in (2.8) needs to be performed only

over pure states.

Equation (2.8) defines the worst-case fidelity for a given encoding map (or equivalently a given

code C ⊂ H) and a given recovery map. In reality, one wants to maximize the error correction

capability by choosing W and R such that the worst-case fidelity is as close to 1 as possible. The

problem of AQEC can thus be phrased as the following triple optimization problem:

max
W

max
R

min
|ψ〉∈H0

F
[
|ψ〉,

(
W−1 ◦ R ◦ E ◦W

)
(|ψ〉〈ψ|)

]
. (2.10)
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If the quantity in (2.10) attains the maximum possible value of 1, that is, if there exist W and R
such that the worst-case fidelity is 1, then we have perfect QEC. In reality, one should also allow

H to vary, and choose the smallest possible H that can accommodate a code with good fidelity

performance. For example, in the case of a system consisting of n quantum registers, one would like

to minimize n to reduce resource requirements. Choosing a Hilbert space that is too small might

however reduce the worst-case fidelity of possible codes, so one would need to seek an optimal

balance between having a small n and having high fidelity.

A simple approach to estimate (2.10) is to fix either the encoding or the recovery map, and then

perform the optimization over the remaining two variables—the recovery or the encoding map, and

the input state. Past work on finding optimal AQEC codes [46,48,77,78,105] has for the most part

focused on the simpler problem of optimizing for measures based on entanglement fidelity [117],

which characterize the performance of the code averaged over some input ensemble (including the

case of a trivial ensemble comprising a single state). This eliminates the minimization over all input

states required for the worst-case fidelity measure. The task of finding the optimal encoding or

recovery map is then tractable via convex-optimization methods, but the resulting recovery is now

optimal for an averaged measure of fidelity. Recovery maps which are near-optimal for the average

entanglement fidelity have been constructed analytically [8, 124]. Conditions for AQEC based on

the worst-case entanglement fidelity have also been formulated recently [17].

For many communication or computational tasks, however, one would prefer an assurance that

all the information stored in the code is wellprotected. In such cases, the worst-case fidelity defined

above (2.8) is the appropriate measure for determining the optimality of encoding and recovery

maps. The resulting double-optimization problem for a given encoding map was examined using

semi-definite programming in [135]. This method however requires a relaxation of one of the

constraints in the problem, so the recovery map found is typically suboptimal. Furthermore, the

numerically computed recovery map is difficult to describe and understand analytically.

In what follows, we will assume that a system of fixed size is available for encoding the informa-

tion, and we search for good codes within the Hilbert space of that system. The simplest approach

for finding the best code involves an exhaustive search over all possible encodings, which amounts

to randomly choosing a d-dimensional subspace C in H. For each C, we still need to optimize over

R and |ψ〉 ∈ H0 to obtain the largest worst-case fidelity. From the form of W, it is evident that,
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given W and R, the worst-case fidelity can as well be computed over states in C instead of H0.

Therefore, the relevant optimization problem is

max
R

min
|ψ〉∈C

F [|ψ〉, (R ◦ E) (|ψ〉〈ψ|)] . (2.11)

Estimating (2.11) for a given code space C is a difficult problem since it involves a double optimiza-

tion. In our work, we approach the problem stated in (2.11) using a universal recovery map that

is analytically very simple to write down, and provably near-optimal, with optimality defined with

respect to the worst-case fidelity.

Before proceeding further, let us define some useful terminology. We will often make use of the

square of the fidelity, which we denote as F 2(·, ·) ≡ [F (·, ·)]2. Whenever it is unambiguous, we will

also refer to F 2 as the fidelity. It is also convenient to define the fidelity loss ηR, for a given code

C and a recovery map R, as the deviation of the square of the worst-case fidelity from 1, that is,

ηR ≡ 1− min
|ψ〉∈C

F 2 [|ψ〉, (R ◦ E)(|ψ〉〈ψ|)] . (2.12)

The fidelity loss for the optimal recovery map Rop is denoted by ηop, and is given by ηop = minR ηR

for a given C (which is just a restatement of (2.11)). We refer to ηop as the optimal fidelity loss.

A code C for E is said to be ε-correctable if it has ηop ≤ ε for some ε ∈ [0, 1]. ε-correctable

codes with ε � 1 are said to be approximately correctable, and have states with fidelity at least
√
1− ε ' 1− ε/2 after the action of the noise and recovery.

2.3 The Transpose Channel

Using the worst-case fidelity measure to define optimality, and assuming a fixed encoding, we now

demonstrate a universal recovery map—the transpose channel—which gives a worst-case fidelity

that can be suboptimal, but cannot be too far from that of the optimal recovery. First, we establish

that this transpose channel is exactly the standard recovery map for perfect QEC codes character-

ized by the QEC condition (2.3). Then, we show that the transpose channel is nearly optimal even

in the case of AQEC codes.

We begin this section with a description of the transpose channel. For a given code C, let P
be the projector onto C (a subspace). Let PE ≡ supp[E(P )], and PE denote the projector onto PE .
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Let {Ei}Ni=1 be a Kraus representation for E . The transpose channel RP : B(PE) → B(C) for the

given C is defined as the following CPTP map:

RP (·) ≡
N∑

i=1

PE†
i E(P )−1/2 (·) E(P )−1/2EiP,

i.e., RP ∼ {PE†
i E(P )−1/2}Ni=1. The inverse of E(P ) is taken on its support PE . RP has this

universal form for any channel E and any code C, and depends on C only through P . RP is a

special case of a recovery map introduced in [8] for reversing the effects of a quantum channel on

a given initial state. In fact the RP is exactly the recovery map for the initial state P/d, where

d is the dimension of C. In [19], RP was shown to be useful for correcting information carried by

codes preserved according to an operationally motivated notion. The term transpose channel owes

its origin to [99], where this channel was first defined in an information-theoretic context. It was

shown [101] that the transpose channel has the property of being the unique noise channel that

saturates Uhlmanns theorem on the monotonicity of relative entropy – a fact that was later used

to characterize states that saturate the strong subadditivity of quantum entropy [55].

Observe that the Kraus operators of RP satisfy

∑

i

(PE†
i E(P )−1/2)†(PE†

i E(P )−1/2) = PE ,

so RP is TP on its domain, B(PE). Note that we can always add an additional projector (I− PE )

– corresponding to doing nothing on the complement of PE—to the Kraus operators of RP , thus

rendering it TP on the full H and making it a valid physical operation on the system. However,

since we assume that the information is encoded completely within the code space, the action of

RP outside PE is irrelevant, so we can ignore this extension outside PE .

We can understand the transpose channel as being composed of three CP maps: RP =

P ◦ E† ◦ N , where P is the projection P (·)P onto C, and N is the normalization map N (·) =

E(P )−1/2(·)E(P )−1/2. In this form, RP is manifestly independent of the choice of Kraus repre-

sentation for E . Without the map N , RP is just the adjoint map E† ∼ {E†
i } with an additional

projection to ensure that we end up in B(C). However, P ◦ E† is not TP, and N is added precisely

to remedy that.

While we will mainly use RP to discuss AQEC codes, understanding the relevance of RP to
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perfect QEC codes provides the intuition behind the AQEC conditions presented later.

2.3.1 The Transpose Channel for Perfect QEC

A natural question to ask here is how the transpose channel RP relates to the recovery Rperf for

a given E and C that satisfy the QEC conditions. Here, we show that they are exactly the same

map, as previously noted in [8].

Lemma 2.3.1 ( [8]). Given a channel E ∼ {E†
i } on codespace C satisfying the perfect QEC condi-

tions (2.3), RP = Rperf.

Proof. First, recall that the Kraus operators of RP are given by PF †
kE(P )−1/2. Observe that

E(P ) =∑k(FkP )(PF
†
k ) =

∑

k dkkUkPPU
†
k =

∑

k dkkPk, where Pk ≡ UkPU
†
k . Equation (2.4) tells

us that PU †
kUlP = δklP , implying that the Pk’s are orthogonal projectors satisfying PkPl = δklPk.

Hence, E(P )−1/2 =
∑

k Pk/
√
dkk, where the inverse is taken on the support PE =

∑

k Pk. Then, we

can write

PF †
kE(P )−1/2 = PF †

k

∑

l

Pl√
dll

=
∑

l

√

dkk
dll

PU †
kUlPU

†
l = PU †

k , (2.13)

which are exactly the Kraus operators of Rperf. Thus, we see that when the perfect QEC conditions

are satisfied, RP is exactly the optimal recovery map that perfectly corrects E on C. �

Note that Theorem 2.1.1 and Lemma 2.3.1 remain true even for an E that is not TP. Tradition-

ally, perfect QEC is discussed for a noise channel E that is CP but not necessarily TP. The non-TP

case is particularly relevant when we deal with a system of n quantum registers, with each register

independently affected by some noise E1. Then, instead of requiring the code to correct the entire

noise channel E⊗n
1 , one often looks for codes that perfectly correct the noise up to some maximum

number t of quantum registers with errors. In this case, we take E as the channel describing noise

where at most t registers have errors, instead of the full noise channel E⊗n
1 . Such an E is not TP,

since we have discarded the part of E⊗n
1 that corresponds to having errors in more than t registers.

This gives rise to the notion of the distance of a code, inherited from the theory of classical codes,

which is given by 2t+ 1 for a code that corrects a maximum of t errors.
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Actually, a perfectly correctable code for such a non-TP noise channel can be viewed as an

approximately correctable code for the original n-register noise channel E⊗n
1 , which is TP. In our

AQEC discussion, the code we look for is approximately correctable on the channel anyway, so E
is always assumed to be TP, which is the physically relevant scenario. Note that the analysis in

the remainder of the paper does apply for a special type of non-TP maps—E ∼ {Ei} satisfying
∑

i PE
†
iEiP = aP , where P is the projector onto the code space and 0 ≤ a ≤ 1. Our analysis applies

in this case, except that one would have to add the proportionality factor a to our expressions.

2.3.2 Near-Optimality of the Transpose Channel

For AQEC codes, while the transpose channel RP need not be the optimal recovery map Rop, we

show that RP does nearly as well as Rop. This is our central result and forms the basis of much of

the discussion that follows.

Theorem 2.3.2. Given a subspace code C of dimension d and optimal fidelity loss ηop, for any

|ψ〉 ∈ C,

F 2 [|ψ〉, (Rop ◦ E)(|ψ〉〈ψ|)]

≤
√

1 + (d− 1)ηop F [|ψ〉, (RP ◦ E)(|ψ〉〈ψ|)] . (2.14)

Proof. Let {Rj} be the Kraus operators of Rop : B(PE) → B(C). For any |ψ〉 ∈ C, following [8], we

have,

F 2 [|ψ〉, (Rop ◦ E)(|ψ〉〈ψ|)] ≤
√
[∑

i

|〈E†
i E(P )−1/2Ei〉|2

][∑

j

|〈R†
jE(P )1/2R

†
j〉|2
]
, (2.15)

where 〈.〉 denotes the expectation value with respect to the state |ψ〉. Since Rop is TP, we have

that
∑

j |〈R
†
jE(P )1/2R

†
j〉|2 ≤ 〈∑j R

†
jE(P )Rj〉 = 〈(Rop ◦ E)(P )〉.

Now, we choose a basis {|ψi〉}di=1 for C such that |ψ1〉 ≡ |ψ〉. Let ρi ≡ (Rop ◦ E)(|ψi〉〈ψi|) =
∑

kl α
(i)
kl |ψk〉〈ψl|, where the coefficients α

(i)
kl satisfy the normalization condition

∑

k α
(i)
kk = 1 and

α
(i)
kk ≥ 0, ∀ k. From the definition of the optimal fidelity loss ηop (2.12), we know that α

(i)
ii =

〈ψi|ρi|ψi〉 = F 2 [|ψi〉, (Rop ◦ E)(|ψi〉〈ψi|)] ≥ 1−ηop. This, together with the normalization condition,

implies that
∑

k 6=i α
(i)
kk ≤ ηop, which in turn tells us that α

(i)
kk ≤ ηop, ∀ k 6= i. Since |ψ〉 = |ψ1〉 by
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construction, we get

〈ψ|(Rop ◦ E)(P )|ψ〉 = 〈ψ1|
d∑

i=1

ρi|ψ1〉

= α
(1)
11 +

d∑

i=2

α
(i)
11 ≤ 1 + (d− 1)ηop.

Putting this back into (2.15), and noting that
[
∑

i |〈E
†
i E(P )−1/2Ei〉|2

]1/2
≤ F (|ψ〉,RP ◦ E) gives

F 2 [|ψ〉, (Rop ◦ E)(|ψ〉〈ψ|] ≤
√

1 + (d− 1)ηopF [|ψ〉, (RP ◦ E)(|ψ〉〈ψ|)] , (2.16)

which proves the theorem. �

Let ηP denote the fidelity loss for code C with the transpose channel RP as the recovery map.

Then, Theorem 2.3.2 implies the following corollary.

Corollary 2.3.3. ηP satisfies ηop ≤ ηP ≤ ηopf(ηop; d), where f(η; d) is the function

f(η; d) ≡ (d+ 1)− η

1 + (d− 1)η
= (d+ 1) +O(η). (2.17)

Proof. That ηP ≥ ηop is true by the definition of ηop. To show that ηP ≤ ηopf(ηop; d), define for

any |ψ〉 ∈ C, ηP,ψ such that F 2 [|ψ〉, (RP ◦ E)(|ψ〉〈ψ|)] ≡ 1− ηP,ψ. ηP is then just ηP ≡ maxψ ηP,ψ.

From Theorem 2.3.2, we see that

1− ηop ≤ F 2 [|ψ〉, (Rop ◦ E) (|ψ〉〈ψ|)]

≤
√

1 + (d− 1)ηop F [|ψ〉, (RP ◦ E)(|ψ〉〈ψ|)]

=
√

[1 + (d− 1)ηop] (1− ηP,ψ).

Rearranging gives ηP,ψ ≤ ηopf(ηop; d). Since this holds for all ηP,ψ, it also holds for ηP . �

The inequality ηP ≤ ηopf(ηop; d) makes precise our statement that RP is near-optimal. The

recovery RP works nearly as well as the optimal recovery, since its fidelity loss picks up at most

an additional factor of (d + 1) (ignoring the O(η) corrections). For the most practically relevant

case of a code encoding a single qubit, this is a factor of 3 which is not too large. Observe also
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that when ηop = 0, the inequality in Corollary 2.3.3 reduces to ηP = ηop, reaffirming that RP is

the optimal recovery in the case of perfect QEC.

We do not know if the upper bound on ηP in Corollary 2.3.3 is tight. However, the appearance

of the dimension d of the code in the bound is unavoidable, as can be seen from the following

example. Consider a noise channel E ∼ {Ei} such that the action of E on a code C can be described

by the set of Kraus operators {EiP} = {√1− p P,
√
p |0〉〈0|,√p |0〉〈1|, . . . ,√p |0〉〈d − 1|}, for

0 ≤ p � 1. As usual, P is the projector onto C and d is the dimension of C. E mostly acts like

the identity channel on C, but has a small component that maps a small part of every code state

onto the state |0〉. For d ≥ 3, one can show that the worst-case fidelity, when using the transpose

channel as the recovery, occurs for the state |0〉. The corresponding fidelity loss is

ηP =
(d− 1)p

1 + (d− 1)p
. (2.18)

On the other hand, since E is nearly the identity channel, we can perhaps not do any recovery, i.e.,

make the identity channel the recovery map. In this case, we find that the fidelity loss is η0 ≡ p

which is always smaller than ηP for small p. Since the optimal fidelity loss ηop must always be

smaller than η0, we have that ηP /ηop ≥ ηP/η0 = (d−1)/[1+(d−1)p], which grows as d increases, for

fixed p. Therefore, we see that there is an increasing separation between ηP and ηop as d increases.

In the next section, we will see that this approach to AQEC using the transpose channel can be

viewed as a perturbation from the perfect QEC case. The factor of d appearing in our bounds can

perhaps be understood as quantifying the number of degrees of freedom in which the approximate

case can deviate from the perfect case. Note, however, that as d gets large, f(η; d) approaches 1/η.

In this case, the inequality in Corollary 2.3.3 simply becomes the trivial statement ηop ≤ ηP ≤ 1.

While we will often only be interested in codes with small values of d, this demonstrates the

weakness in the bounds derived here for large values of d.

Finally, note that Corollary 2.3.3 provides a necessary and sufficient condition for C to be ap-

proximately correctable—C is approximately correctable if and only if ηP is small. In the next

section, we will use this corollary to derive a set of AQEC conditions, much like those in Theo-

rem 2.1.1 for perfect QEC.
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2.4 The Transpose channel and QEC Conditions

One of the key tools in perfect QEC are the QEC conditions stated in Theorem 2.1.1. Similar

conditions characterizing AQEC codes would be very useful. A natural approach to getting a set

of AQEC conditions is to perturb the perfect QEC conditions to allow for small deviations. For

example, the four-qubit code for the amplitude damping channel described in Section 2.2.1 was

shown to obey a set of perturbed QEC conditions. More recent studies [90] have looked at small

perturbations of the perfect QEC conditions for general CPTP channels. However, the analysis

in [90] is complicated, and one wonders if there is a simpler approach using the transpose channel.

In this section, we prove a simple set of AQEC conditions based on Corollary 2.3.3. Drawing

from our earlier observation that the transpose channel is the optimal recovery map for perfect

QEC codes in Lemma 2.3.1, we rewrite the condition (2.3) for perfect QEC in such a way that

the role of the transpose channel is apparent. From this, we derive a necessary and a sufficient

condition for AQEC founded upon the transpose channel, as a natural generalization of the perfect

QEC conditions. While AQEC conditions have been derived in the past from information-theoretic

perspectives [16,20,69,118], our conditions are algebraic, and lead to a simple and universal algo-

rithm to find AQEC codes that does not require optimizing over all recovery maps for each encoding

map.

2.4.1 Alternative Form of the Perfect QEC Conditions

The role of the transpose channel in perfect QEC becomes a lot more transparent once we realize

that the QEC conditions in Theorem 2.1.1 can be written as follows.

Theorem 2.4.1 (Alternative perfect QEC conditions). A code C satisfies the perfect QEC

conditions of Theorem 2.1.1 if and only if it satisfies

∀i, j, PE†
i E(P )−1/2EjP = βijP, (2.19)

where β ≡ √
α, for α from Theorem 2.1.1.

Proof. For a code C that satisfies the perfect QEC conditions, using (2.13) and PU †
kUlP = δklP ,

we have

PF †
kE(P )−1/2FlP =

√

dllPU
†
kUlP = δkl

√

dkkP. (2.20)

28



This diagonal form can be rotated to any other Kraus representation by using the appropriate

unitary u, such that Fk =
∑

i uikEi and α = udu†. Then, defining β ≡ √
α, we get (2.19), thus

showing that a code C satisfying the perfect QEC conditions, also satisfies (2.19).

Conversely, suppose we start with the “diagonal” form of (2.19) as in (2.20), which can be

accomplished by choosing a unitary u so that β is diagonal with entries
√
dkk. Since E is CP,

E(P ) ≥ 0 and hence E(P )−1/2 ≥ 0. Therefore, we can take square root of (2.20) and write

E(P )−1/4FkP = (dkk)
1/4 VkP , for some unitary Vk, which implies that

FkP = (dkk)
1/4 E(P )1/4VkP. (2.21)

Note that the inverse of E(P ) is taken on its support, so that E(P )1/4E(P )−1/4 = PE . Putting (2.21)

back into (2.20) then gives PV †
k VlP = δklP . Furthermore,

E(P ) =
∑

k

(FkP )(PF
†
k ) = E(P )1/4

(∑

k

√

dkkVkPV
†
k

)

E(P )1/4,

which implies E(P )1/2 =
∑

k

√
dkkVkPV

†
k . A simple calculation now shows PF †

kFlP = δkldkkP ,

which is exactly the diagonal form of the perfect QEC conditions (2.4). Applying an appropriate

u to rotate to the desired Kraus representation gives (2.3). �

It may be observed that the left-hand side of (2.19) is simply a Kraus operator of the mapRP ◦E .
In other words, the QEC conditions given in Theorem 2.4.1, as also the original version given in

Theorem 2.1.1, simply express the fact that C is perfectly correctable if and only if RP ◦ E ∝ P̂ ,

where P̂ is the projection P (·)P , which acts trivially on the code C. The proportionality factor is
∑

ij β
2
ij =

∑

ij αij =
∑

k dkk.

2.4.2 AQEC Conditions

We now obtain conditions for AQEC by perturbing the alternative form (2.19) of the perfect QEC

conditions. The perturbation is added as a small operator on the right-hand side of (2.19) for each

i, j, but in order to make a precise statement, we also need to relate the size of these perturbations

to how well the given code can be corrected. This is not difficult since we have already characterized

the performance of the transpose channel as a recovery map in Theorem 2.3.2, or equivalently in
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Corollary 2.3.3.

Theorem 2.4.2 (AQEC conditions). Suppose we have a CPTP channel E ∼ {Ei}, and a d-

dimensional subspace code C with projector P . Let ∆ij ∈ B(C) be traceless operators such that

PE†
i E(P )−1/2EjP = βijP +∆ij, (2.22)

where βij ∈ C. Then, for ε ∈ [0, 1], there exists η ∈ [0, 1] such that

(i) C is ε-correctable if η ≤ ε;

(ii) C is ε-correctable only if η ≤ εf(ε; d), where f is the function

f(ε; d) ≡ (d+ 1)− ε

1 + (d− 1)ε
= (d+ 1) +O(ε). (2.23)

Proof. The left-hand side of (2.22) are Kraus operators of RP ◦ E . This, along with the fact that

RP ◦ E is trace-preserving, implies that for a noise channel E satisfying (2.22), the fidelity under

the transpose channel recovery is given by

F 2 [|ψ〉, (RP ◦ E)(|ψ〉〈ψ|)] = 1−
∑

ij

[

〈ψ|∆†
ij∆ij|ψ〉 − |〈ψ|∆ij |ψ〉|2

]

. (2.24)

Recalling the definition of the fidelity loss ηP , for the transpose channel, we get

ηP = max
|ψ〉∈C

∑

ij

[

〈ψ|∆†
ij∆ij|ψ〉 − |〈ψ|∆ij |ψ〉|2

]

. (2.25)

Setting η = ηP , conditions (i) and (ii) follow directly from Corollary 2.3.3. �

It is clear that the expression for ηP is a non-negative quantity, since the fidelity in (2.24) is

bounded by 1. Furthermore, (2.25) elucidates how the fidelity loss arises from the presence of the

∆ij operators. If ∆ij = 0 ∀i, j, we have perfect QEC.

The AQEC conditions, like the perfect QEC conditions, provide a way to check if a code is

approximately correctable, without requiring knowledge of the optimal recovery. More precisely,

given a maximum tolerable fidelity loss ε for some information processing task at hand, one can

check if a code C is ε-correctable, as follows. We first compute ηP , which can be done once C and

30



E are known. If ηP ≤ ε, then C is a good code. If however, ηP violates the inequality in Condition

(ii), we know that C is not good enough for our purposes. Of course, there is a gap—for ηP taking

values ε ≤ ηP ≤ εf(ε; d), we cannot use these conditions to determine whether C is within our

tolerable fidelity loss, but this gap is small for small d. We do not know if the gap can be shrunk

by replacing ηP with the fidelity loss for a recovery map other than the transpose channel, but we

believe it is unlikely to vanish completely.

For a general C, the fidelity loss ηP may be difficult to compute as it requires a maximization

over all states in the code space. However, there is a quick way to check for sufficiency by relaxing

condition (i) of Theorem 2.4.2 slightly.

Corollary 2.4.3. C is ε-correctable for some ε ∈ [0, 1] if

‖∆sum ‖ ≤ ε, (2.26)

where ∆sum ≡∑ij∆
†
ij∆ij and ‖ · ‖ denotes the operator norm.

Proof. Observe that
∑

ij[〈ψ|∆
†
ij∆ij|ψ〉 − |〈ψ|∆†

ij |ψ〉|2] ≤
∑

ij〈ψ|∆
†
ij∆ij|ψ〉 = 〈ψ|∆sum|ψ〉. From

the definition of the operator norm, it is easy to see that max|ψ〉∈C〈ψ|∆sum|ψ〉 = ‖∆sum‖. Hence,

ηP ≤ ‖∆sum‖, and the condition ηP ≤ ε in statement (i) of the AQEC conditions (Corollary 2.3.2)

is certainly satisfied if ‖∆sum‖ ≤ ε. �

This sufficiency condition (2.26) and the AQEC conditions of Theorem 2.4.2 form the basis

of a simple algorithm to find good AQEC codes, presented in the next section. Since ∆sum is

a positive semi-definite operator, its operator norm is given by its maximum eigenvalue, which

is easily computable. In fact, for codes encoding a single qubit, we show in Appendix A that

‖∆sum‖ = 1−∑ij |βij |2. Note that for a given code C and noise channel E , βij is easily computed,

since βij = (1/d) tr[PE†
i E(P )−1/2EjP ]. Furthermore, we also show in Appendix A that for the

case of qubit codes, ηP can be computed easily with simple eigenanalysis. In fact our method of

computing the worst-case fidelity for a CPTP qubit map described in Section A.2 might be useful

in contexts beyond our present discussion.
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2.5 Finding AQEC Codes

Consider the practical problem of finding a d-dimensional code, given some maximum tolerable

fidelity loss ε, such that, every code state must have fidelity F ≥
√
1− ε, after passing through the

noise channel and recovery map. The following algorithm provides a simple procedure to search

for such ε-correctable codes, for a given noise channel and system Hilbert space.

Algorithm

Step 1. Pick a d-dimensional subspace C ⊆ H. This can be done, for example, by randomly picking

d linearly independent vectors from H and defining C as their linear span.

Step 2. Compute ∀ i, j,

∆ij ≡ PE†
i E(P )−1/2EjP − βijP, (2.27a)

βij ≡
1

d
tr(PE†

i E(P )−1/2EjP ). (2.27b)

Find the maximum eigenvalue λmax of ∆sum ≡∑ij ∆
†
ij∆ij . If λmax ≤ ε, then we are done,

since C is an ε-correctable code.

Step 3. If not, compute the fidelity loss ηP for the recovery map RP , as given in (2.25). If ηP ≤ ε,

then again C is an ε-correctable code.

Step 4. If not, check if ηP > εf(ε; d). If true, C is not ε-correctable. We return to Step 1 and try

again with a different C.

Step 5. If ε < ηP ≤ εf(ε; d), we do not know if C is ε-correctable, but we can still choose to discard

this C and return to Step 1 to try again with a different C.

If this algorithm finds a code that works well enough, one can then try to optimize performance

by looking for the optimal recovery map. While looking for this optimal recovery can be a difficult

process that requires exhaustive search, with our algorithm we only need to do this possibly expen-

sive computation once, for the code generated by our algorithm is guaranteed to be ε-correctable.

Otherwise, one can always use the transpose channel itself as a good recovery.
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There is of course the possibility that the algorithm yields no code within our fidelity loss

requirements. This does not immediately imply that H does not contain an ε-correctable code,

because of the presence of the gap stated in Step 5. However, figuring out whether any of the codes

that fall in this gap is a good enough code is the same as finding the optimal recovery map for that

code, a problem which we currently do not know how to solve efficiently.

2.6 Example: Amplitude Damping Channel

In this section we compare the performance of the transpose channel with that of other AQEC

schemes, for the case of amplitude damping noise. The single-qubit amplitude damping channel

EAD is the CPTP channel described in (2.2), parameterized by the damping parameter γ. Recall

that γ corresponds to the probability of a transition from the excited state to the ground state. In

Fig. 2.5 we plot the worst-case fidelity for different AQEC codes as function of γ.

Clearly, in the absence of any encoding or recovery, the worst-case fidelity for a single qubit

undergoing EAD decreases as 1− γ (see Fig. 2.5, line labeled “no error correction”). The [4, 1] code

due to Leung et al described in Section 2.2.1, in combination with the Leung recovery, increases the

fidelity significantly as compared to the no error correction case. In the same figure, we have also

plotted the worst-case fidelity using the transpose channel RP as the recovery operation instead of

the Leung recovery, for the same [4,1] code. From the plot, we can see that using the transpose

channel as the recovery map gives a higher fidelity than the original Leung recovery.

For comparison, we have also looked at a recovery map for the [4, 1] code constructed by Fletcher

et al. in [47]. Their recovery, which we refer to as the Fletcher recovery, was originally optimized

for an averaged measure of fidelity. We have instead computed the worst-case fidelity for this

recovery, 2 and this is plotted in Fig. 2.5. For small values of γ, the Fletcher recovery gives the

best performance compared to the other recovery maps, despite being optimized for an averaged

measure of fidelity. However, it is only marginally better than the transpose channel recovery.

We have also compared the performance of the [4, 1] approximate code under these different

recovery maps with that of the smallest known perfect code, namely the [[5, 1, 3]] code [15, 84].

2The recovery map we use here is from Table I of [47]. Their recovery map actually depends on two parameters
α and β which can be numerically optimized, for each value of γ, for the best recovery map. For simplicity, we set
α = β = 1/

√
2 in our plot, which corresponds to the “code-projected recovery” in [47] with comparable performance

as the fully optimized recovery.
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Using the corresponding Rperf as the recovery for the [[5,1,3]] code, we have computed the worst-

case fidelity for different values of γ. As the plot in Fig. 2.5 shows, the [[5,1,3]] code performs

better than the [4,1] code with Leung recovery, but the [4,1] code uses one fewer qubit to encode

the same amount of information. The [4,1] code with the transpose channel as recovery has nearly

identical worst-case fidelity as the [[5,1,3]] code, while the one with Fletcher recovery does slightly

better than the [[5,1,3]] code for small values of γ.

These observations clearly demonstrate the benefit of going beyond the codes described by the

perfect QEC conditions. Furthermore, while the [[5,1,3]] code is capable of perfectly correcting any

single qubit error on a system subjected to any noise channel, the comparison with the [4,1] code

with its various recovery maps clearly show the gain that one might achieve by adapting the codes

and recovery to the noise channel in question.

Finally, we have also randomly generated codes that encode a single qubit into four physical

qubits, for the amplitude damping channel. We computed the worst-case fidelity for each code using

the transpose channel as the recovery map. We tried about 500 randomly selected codes, taking

less than half an hour on a typical laptop computer. The worst-case fidelity for the best code we

found is given in Fig. 2.5 (line marked “random 4-qubit code, RP recovery”). For small values of γ,

this random code does not do as well as the other codes discussed so far for the amplitude damping

channel, but it still does significantly better than the case without error correction. Furthermore, for

γ & 0.35, our randomly generated code actually outperforms all the other codes. For comparison,

we have also plotted the worst-case fidelity for this randomly generated code in the absence of

the transpose channel recovery, i.e., with the identity channel as the recovery map (line marked

“random 4-qubit code, Id recovery”). In all this, one should keep in mind the ease with which

the performance of the randomly generated code was achieved, due to the fact that the transpose

channel is a near-optimal recovery map for any code.

One can even consider the possibility of looking for two- and three-qubit codes. We randomly

generated codes encoding a single qubit of information into two and three physical qubits for the

amplitude damping channel. Because the transpose channel is near-optimal for any code, it can

be used a good recovery map for the codes we generate, thus eliminating the need to search for

a good recovery for every randomly selected code. The worst-case fidelity for the best codes we

found are plotted in Fig. 2.6. For comparison, we have also plotted the worst-case fidelities for the
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Figure 2.5: Codes for the amplitude damping channel, for 0 ≤ γ ≤ 0.5.
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randomly generated four-qubit code mentioned in the previous paragraph. From the figure, we see

that while the worst-case fidelity decreases as the number of physical qubits decreases, the two- and

three-qubit codes in fact do not perform too badly compared to the four-qubit code or the [[5,1,3]]

code. Such codes may be of relevance whenever the desire to lower resource requirements trumps

the need for the best possible worst-case fidelity.

2.7 Conclusions and Open Problems

In this chapter, we have demonstrated the crucial role the transpose channel plays in perfect QEC

and used it to formulate a simple approach to characterize and find AQEC codes. Compared

to previous work based on numerically generated recovery maps specific to the noise channel in

question, the universal and analytically simple form of the transpose channel makes it particularly

useful for developing a better understanding of AQEC. Further, the near-optimality of the transpose

channel leads to a simple algorithm for identifying codes that satisfy some maximum fidelity loss

requirements, without having to perform a difficult optimization over all recovery maps for every

possible encoding. Our approach, founded upon the worst-case fidelity rather than an averaged

measure of fidelity, also ensures that the code found is able to protect all information that can be

stored in the code with some minimum fidelity.

There are many interesting open problems. An immediate question is whether the gap present

in our AQEC conditions between the necessary and sufficient conditions (arising from the inequality

in Corollary 2.3.3) can be reduced, either by improving the bound in Theorem 2.3.2, or by using a

different recovery map that might perform better than the transpose channel. It would also be very

interesting to find a similarly simple and universal recovery map, such that the dimension of the

code does not appear in the worst-case fidelity. It might also be of interest to extend our efficient

method of computing the worst-case fidelity to higher-dimensional codes and more general channels.

Furthermore, we expect that the transpose channel can also be used to study approximate codes

more general than subspace codes, for example, OQEC codes which also admit a description based

on conditions like the QEC conditions [82].

Another important problem is to figure out whether the transpose channel can be easily im-

plemented using measurements and gates. In the case of perfect QEC, the transpose channel (or

equivalently Rperf) can be implemented simply using syndrome measurements and conditional gates
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(see for example, [98, Section 10.3]). In order for AQEC codes to be useful for computational or

communication tasks, it must be possible to implement the recovery operation using physical op-

erations that are not overly complicated or demanding in resources. That this is possible in the

perfect QEC case could offer some clues to implementing the transpose channel for AQEC codes.

AQEC provides a new and mostly unexplored arena of possibilities for the design of codes to

protect information from noise in quantum information processing tasks. Our work provides an

analytical characterization of AQEC and further analytical understanding will undoubtedly prove

invaluable toward unlocking the full potential of AQEC.
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Chapter 3

Symmetric Complementary Aspects
and Entropic Uncertainty Relations

Entropic uncertainty relations provide a natural way to quantify incompatibility between multiple

measurements, by lower bounding the average entropy of the probability distributions correspond-

ing to the outcomes of different measurements. For two observables, it is well known that this

incompatibility is maximizum when the measurement bases are complementary or mutually unbi-

ased. For more than two measurement settings, being mutually unbiased is a necessary condition

to obtain strong uncertainty relations, but not sufficient. It remains an important open question

to identify and construct sets of complementary bases satisfying strong uncertainty relations.

Uncertainty relations figure prominently in the analysis of quantum cryptographic protocols

such as quantum key distribution [72, 106], the phenomenon of information locking [38], and in

characterizing entanglement and separability [53]. In particular, the security of recent crypto-

graphic models like the bounded-storage and noisy-storage models [30,31,76,115,128] is derived on

the basis of an entropic uncertainty relation. A better understanding of the interplay between com-

plementarity and uncertainty relations is thus of interest not only from a foundational standpoint;

it has practical implications for analyzing and improving existing cryptographic protocols.

Here,1 we construct special sets of up to 2n+ 1 mutually unbiased bases (MUBs) in dimension

d = 2n which have particularly nice symmetry properties derived from the Clifford algebra. More

precisely, we show that there exists a unitary transformation that cyclically permutes such bases.

1The work described in this chapter was done in collaboration with Stephanie Wehner. The original results
presented here have been published in [92]. The proofs presented in Appendix B are based on several useful discussions
with Niranjan Balachandran. We are grateful to David Gross for pointing us to the relevant literature for the discrete
phase space construction. We also thank Lukasz Fidkowski and John Preskill for interesting discussions.
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This unitary can be understood as a generalization of the Fourier transform, which exchanges

two MUBs, to multiple complementary aspects. We then obtain a lower bound for min-entropic

uncertainty relations for any set of MUBs, and show that symmetry plays a central role in obtaining

tight bounds. For example, we obtain for the first time a tight bound for four MUBs in dimension

d = 4, which is attained by an eigenstate of our complementarity transform. Finally, we discuss our

work in relation to other symmetries obtained by transformations in discrete phase space, and note

that the extrema of discrete Wigner functions [50] are directly related to min-entropic uncertainty

relations for MUBs.

This chapter is organized as follows. We begin with a formal introduction to the different

measures of entropy used in this chapter, in Section 3.1.1. In Section 3.1.2 we summarize some of

the properties of Clifford algebras which are used in our construction of MUBs. Section 3.2 contains

an overview of entropic uncertainty relations (EURs) and mutually unbiased bases (MUBs). In

Section 3.3 we focus on the problem of obtaining uncertainty relations for the min-entropy, and also

discuss the related problem of finding the extrema of the discrete Wigner function (Section 3.3.2).

In Section 3.4 we describe our new lower bound for the min-entropy of any set of MUBs. Section 3.5

describes our construction of symmetric MUBs in dimension d = 2n using the generators of the

Clifford algebra. Finally, in Section 3.6 we discuss the role of symmetry in obtaining tight lower

bounds, with examples in dimensions d = 4 and d = 8.

3.1 Preliminaries

3.1.1 Measures of Entropy

We first provide a short introduction to the entropic measures used in this chapter. Let M =

{ M b |M b ∈ B(H) }db=1 be a measurement in the d-dimensional Hilbert space H, with a finite

set of outcomes labeled by b, where M b > 0, and
∑

bM
b = I. For any quantum state ρ, the

measurement Mj induces a probability distribution Pj over the outcomes Pj(b) = tr(M b
j ρ). The

Rényi entropy [110] of order α (α > 0, α 6= 1), of the probability distribution obtained by measuring
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M on a state ρ ∈ S(H), denoted by Hα(Mj |ρ), is given by

Hα(M|ρ) = 1

1− α
log





(
d∑

b=1

(tr[M bρ])α

) 1
α−1



 . (3.1)

The Shannon entropy [119] forms a special case of the Rényi entropy, which is obtained by taking

the limit α→ 1, that is,

H1(M|ρ) = lim
α→1

Hα(M|ρ) = −
d∑

b=1

tr[M bρ] log tr[M bρ]. (3.2)

The Shannon entropy is usually written as H(·), omitting the subscript. Other special cases of

importance are

(a) the min-entropy, when α→ ∞

H∞(M|ρ) = − log

(

max
b

tr[M bρ]

)

, (3.3)

and

(b) the collision entropy, when α = 2

H2(M|ρ) = − log

d∑

b=1

(tr[M bρ])2 .

The Rényi entropies are monotonically decreasing in α, that is,

H0(.) = log d ≥ H(·) ≥ H2(·) ≥ H∞(·) ≥ 0 .

A lower bound on Hα thus provides us with a bound on Hβ as well, whenever α ≥ β.

We have defined these entropic quantities here for a general measurement. In this chapter,

however, we are mainly interested in the case where M is a basis for H and the operators {M b}
are rank-1 projectors of the form M b = |b〉〈b|.
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3.1.2 Clifford Algebras

We now provide a brief introduction to Clifford algebras and their properties, which we make use

of in our construction of MUBs. For any integer n, the Clifford algebra of dimension d = 2n is

the real, associative algebra generated by operators Γ0, . . . ,Γ2n−1 satisfying the anticommutation

relations

{Γi,Γj} = 2δij , for i 6= j.

This Clifford algebra has a unique representation by Hermitian matrices on n qubits (up to unitary

equivalence) that can be obtained via the famous Jordan-Wigner transformation [62]:

Γ2j+1 = Y ⊗(j−1) ⊗ Z ⊗ I
⊗(n−j),

Γ2j = Y ⊗(j−1) ⊗X ⊗ I
⊗(n−j),

for j = 0, . . . , n− 1, where X, Y and Z to denote the Pauli matrices. Furthermore, we define

Γ2n := iΓ0 . . .Γ2n−1 .

Note that in dimension d = 2, these are just the familiar Pauli matrices, Γ0 = X, Γ1 = Z and

Γ2 = Y .

Of particular importance to us will be the fact that we can view the operators Γ0, . . . ,Γ2n−1,

as 2n orthogonal vectors forming a basis for R
2n. In particular, for any orthonormal trans-

formation T ∈ O(2n) which when applied to the vector v = (v(0), . . . , v(2n−1)) ∈ R
2n gives

ṽ = (ṽ(1), . . . , ṽ(2n−1)) = T (v), there exists a unitary U(T ) ∈ B(H) acting on the underlying

Hilbert space H of dimension d = 2n [88], such that,

U(T )




∑

j

vjΓj



U(T )† =
∑

j

ṽjΓj .

We refer to [127, Appendix C] for a description of how to obtain explicit constructions of U(T ).

The orthonormal transformation we are interested in is the one that cyclically permutes the

basis vectors. As described above we can find a corresponding unitary U = U(T ) which cyclically

permutes the basis vectors Γ0,Γ2, . . . ,ΓL−1. This transformation of the form U(T )ΓjU(T )† → Γk,
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is particularly simple to obtain. It can be built up from successive rotations in the plane spanned by

only two “vectors” Γj and Γk. We first construct a unitary that corresponds to a rotation around

an angle π/2 in the plane spanned by Γj and Γk, bringing Γj to Γk. This is simply a reflection

around the plane orthogonal to the midvector between Γj and Γk, followed by a reflection around

the plane orthogonal to Γk. Using the geometric properties of the Clifford algebra, this can be

shown to correspond to the unitary

Rj→k = Γk(Γj + Γk)/
√
2 .

To obtain the desired unitary, we now compose a number of such rotations. Let R̂j,k = Rj→k if

k is odd, and R̂j,k = Rk→j if k is even. Furthermore, define the operator F = I if L is odd, and

F = Γ2nΓL−1 if L is even. Note that Γ2nΓL−1 is the unitary that flips the sign of ΓL−1, but leaves

all Γj for j 6= 2n and j 6= (L− 1) invariant. We may then write

U(T ) = FR̂0,1R̂0,2 . . . R̂0,L−1 .

This unitary thus transforms Γ0 → Γ1 → . . . → ΓL−1 → Γ0, but leaves all other generators Γj for

j ≥ L invariant. A similar unitary can be found for any transformation T ∈ SO(2n + 1) [129], but

is more difficult to construct explicitly.

Finally, we will also make use of the property that the set of d2 operators, consisting of the

Clifford generators and their products,

S = {I,Γj , iΓiΓj ,ΓiΓjΓk, . . . , iΓ1 . . .Γ2n} , (3.4)

forms an orthogonal basis 2 for d× d Hermitian matrices in d = 2n [36].

3.2 EURs and MUBs: An Overview

The uncertainty relation, first proposed by Heisenberg [57] for two conjugate observables, is one of

the central principles of quantum mechanics. Indeed, it forms one of the most significant features

2Orthogonal with respect to the Hilbert-Schmidt inner product, which is given by tr[A†B], for a pair of operators
A and B.
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of quantum theory showing that the quantum world does differ fundamentally from the classical

world. Uncertainty relations today are probably best known in the form given by Robertson [111],

who extended Heisenberg’s result to two arbitrary observables A and B. Robertson’s relation states

that if we prepare many copies of the state |ψ〉, and measure each copy individually using either A

or B, we have

∆A∆B ≥ 1

2
|〈ψ|[A,B]|ψ〉|, (3.5)

where ∆X =
√

〈ψ|X2|ψ〉 − 〈ψ|X|ψ〉2 for X ∈ {A,B} is the standard deviation resulting from

measuring observable X on |ψ〉. The essence of (3.5) is that quantum mechanics does not allow us

to simultaneously specify definite outcomes for two non-commuting observables when measuring

the same state. The largest possible lower bound in Robertson’s inequality (3.5) is 1/2, which

happens if and only if A and B are related by a Fourier transform, that is, they are conjugate

observables.

However, nature typically allows us to perform more than two measurements on any given

system, leading to the question of how we can determine “incompatibility” between multiple mea-

surements. Clearly, due to its use of the commutator relation, the lower bound of (3.5) most

directly relates to the case of two measurements. Is there a natural way of quantifying uncertainty

for multiple measurements? And if so, what measurements might be most “incompatible”?

3.2.1 Entropic Uncertainty Relations

A natural measure that captures relations among probability distributions over the outcomes of

different measurements is the entropy of such distributions. The first entropic uncertainty relation

was proposed by Hirschmann [58] for position and momentum observables. This relation was later

improved by Beckner [10] and Bialynicki-Birula and Mycielski [18], where the latter show, for n

canonical pairs of position and momentum coordinates Xi and Pi,

H(X1 . . . Xn|ρ) +H(P1 . . . Pn|ρ) ≥ n log(eπ),

where H(Q1 . . . Qn|ρ) is the differential Shannon entropy of the joint distribution of the coordinates

Q1, . . . , Qn, when measured on the state ρ. They further show that Heisenberg’s uncertainty
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relation (3.5) is in fact implied by this entropic uncertainty relation, thereby showing that using

entropic quantities might provide a more general way of quantifying uncertainty.

In recent times, the study of entropic uncertainty relations has gained impetus from the work

of Deutsch [34], who argued that entropy is a more desirable measure to quantify “uncertainty”

than the standard deviation, for the following reason. The lower bound in (3.5) is trivial when |ψ〉
happens to give zero expectation on [A,B]. Hence, it would be useful to have a way of measuring

“incompatibility” which depends only on the measurements A and B and not on the state.

Definition 3.2.1 (Entropic Uncertainty Relations). For a set of L measurements {M0, . . . ,ML−1},
an entropic uncertainty relation is a lower bound of the form

1

L

L−1∑

j=0

Hα(Mj |ρ) ≥ cα,{Mj} , ∀ρ ∈ S(H), (3.6)

where cα,{Mj} is a constant that depends only on the choice of measurements {Mj} and choice of

the entropy function (α), but is independent of the choice of state ρ in H.

We call the state ρ that minimizes the average sum of entropies a maximally certain state.

When Hα is the Shannon entropy H, the largest bound we can hope to obtain for any choice of L

measurements in a d-dimensional Hilbert space is

c1,L =
L− 1

L
log d , (3.7)

which is attained when the state ρ is an eigenstate of one of the measurements. If (3.7) is indeed

a lower bound to (3.6), we will call the measurements maximally incompatible with respect to the

Shannon entropy.

Deutsch [34] himself showed that

1

2
(H∞(A||ψ〉) +H∞(B||ψ〉)) ≥ − log

(
1 + c(A,B)

2

)

, (3.8)

where c(A,B) := max{|〈a|b〉| | |a〉 ∈ A, |b〉 ∈ B}, and H∞(A||ψ〉) is the min-entropy arising from

measuring the pure state |ψ〉 using the basis A. If A and B are related by a Fourier transform,

then (3.8) becomes
1

2
(H∞(A||ψ〉) +H∞(B||ψ〉)) ≥ − log

(
1

2
+

1

2
√
d

)

, (3.9)
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and this minimum value is achieved by a state that is invariant under the Fourier transform. Since

the Shannon entropy obeys H(·) ≥ H∞(·), Deutsch’s bound also holds for the Shannon entropy.

Better lower bounds have since been obtained for the Shannon entropy by Maassen and Uffink [89]

following a conjecture of Kraus [81]. The Maassen-Uffink bound states that for any two orthonormal

bases A ≡ {|a1〉, . . . , |ad〉} and B ≡ {|b1〉, . . . , |bd〉}, in a d-dimensional space H,

1

2
(H(A||ψ〉) +H(B||ψ〉)) ≥ − log c(A,B), ∀|ψ〉 ∈ H, (3.10)

where c(A,B) := maxa,b |〈a|b〉|. The lower bound can at most take a value of 1
2 log d, which implies

1

2
(H(A||ψ〉) +H(B||ψ〉)) ≥ 1

2
log d. (3.11)

This lower bound is attained if for all basis vectors |a〉 of basis A and all vectors |b〉 of basis B,

|〈a|b〉|2 =
1

d
. (3.12)

Any two bases satisfying this property are called mutually unbiased bases, or complementary as-

pects, and the unitary that exchanges two mutually unbiased bases can be understood as a Fourier

transform. While the Maassen-Uffink bound is not tight for any two observables in general, it is

indeed tight for two mutually unbiased bases.

In the light of this and Robertson’s uncertainty relation (3.5), it seems that bases which are

related by the Fourier transform should play a special role in our understanding of quantum me-

chanics, in the sense that they are the measurements which are most “incompatible”.

3.2.2 Mutually Unbiased Bases

Let us now define the notion of MUBs more formally and state some of the known constructions

and existence results.

Definition 3.2.2 (Mutually Unbiased Bases). Let B1 = {|0(1)〉, . . . , |(d − 1)(1)〉} and B2 =

{|0(2)〉, . . . , |(d − 1)(2)〉} be two orthonormal bases in C
d. They are said to be mutually unbiased if

|〈a(1)|b(2)〉| = 1/
√
d, for all a, b ∈ {0, . . . , d − 1}. A set {B0, . . . ,BL−1} of orthonormal bases in C

d

is called a set of mutually unbiased bases if each pair of bases is mutually unbiased.
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For example, the eigenbases of the Pauli X and Z matrices in dimension d = 2 are mutually

unbiased. Similarly, in dimension d = 2n, the well-known computational and Hadamard bases are

mutually unbiased. These are simply the eigenbases of I⊗n andH⊗n, where I andH are respectively

the identity and Hadamard operations3 on C
2.

Let N(d) denote the maximal number of bases possible in a set of MUBs in dimension d. For

any dimension d, it is known that N(d) ≤ d+ 1 [7]. If d = pk is a prime power, it has been shown

that N(d) = d + 1 and explicit constructions are known [7, 134]. In square dimensions d = s2, it

has been shown [131] using a construction based on Latin squares that N(d) > MOLS(s), where

MOLS(s) is the number of mutually orthogonal s × s Latin squares. In general, it is known that

N(mn) ≥ min [N(n), N(m)], for all n,m ∈ N [68, 137]. Finally, an explicit construction is known

for 3 MUBs in any dimension d ≥ 2 [52]. However, there is not much else that is known. For

example, it is still an open problem as to whether there exists a set of 7 (or even 4!) MUBs in

dimension d = 6. We refer the reader to a recent review by Durt et al. [40] for a comprehensive

survey of the existing constructions of MUBs, their properties and applications.

To gain some insight into the construction of these bases, we briefly describe here the procedure

due to Bandyopadhyay et al. [7], of constructing d+ 1 MUBs when d = pk, a prime power. Define

the generalized Pauli operators Xp, Zp, which act on the computational basis {|0〉, |1〉, . . . , |p− 1〉}
as follows:

Xd|j〉 = |(j + 1)modp〉; Zd|j〉 = ωj|j〉, ∀j = 0, . . . , p− 1,

where ω = exp(2πi/p). Consider strings of Pauli operators of the form (Xp)
a1(Zp)

b1 ⊗ . . . ⊗
(Xp)

ak(Zp)
bk , where ai, bi ∈ {0, . . . , p − 1}. Then, the set of all d2 − 1 Pauli strings excluding the

identity, can be grouped into d + 1 classes C0, . . . , Cd such that |Ci| = d − 1, ∀i = 0, . . . , d, the

elements of each Ci commute and Ci∩Cj = {φ}, ∀i 6= j. If Bi denotes the common eigenbasis of the

operators in the set Ci, it can be shown that the d+ 1 bases B0,B1, . . . ,Bd are mutually unbiased.

The proof of this final statement follows from a general theorem proved in [7] for a basis of

unitary operators in the space of d× d complex matrices, denoted as Md(C). We state the theorem

and its proof here, since it forms the basis for our construction of MUBs. First, note that there exist

3The Hadamard transformation is the unitary operator given by H = 1
2

(

1 1
1 −1

)

in the computational basis

{|0〉, |1〉}.
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at most d pairwise orthogonal commuting unitary matrices in Md(C). Let U = {U0,U1, . . . ,Ud2−1}
be a basis of unitary matrices for Md(C). Then, without loss of generality we can assume U0 = I,

the identity operator on Md(C). The basis U is called a maximally commuting basis if there

exists partitioning of U into classes C0, C1, . . . , Cd such that

U = {I}
⋃

C0
⋃

C1 . . .
⋃

Cd (3.13)

where each class Ci contains exactly d− 1 commuting matrices from U. Note that {Id}
⋃ Ci is a set

of d commuting orthogonal unitary matrices, which as we know is maximal.

Theorem 3.2.3 (Unitary basis and MUBs [7]). If there exists a maximal commuting basis of

orthogonal unitary matrices in Md(C), then there exist a set of d + 1 mutually unbiased bases in

dimension d.

Proof. Let U be a maximally commuting basis of unitary matrices as defined above, with a parti-

tioning as described by (3.13). For any 0 < j < d, let

Cj = {U(j,0),U(j,1), . . . ,U(j,d−1)}

be a maximal set of orthogonal, commuting matrices, where U(j,0) = I. Thus for each 0 < j < d,

there exists an orthonormal basis,

Bj = {|ψ1
j 〉, |ψ2

j 〉, . . . , |ψdj 〉},

such that every U(j,t), 0 < t < d− 1 is diagonal in the basis Bj. That is,

U(j,t) =

d∑

m=1

λj,t,m|ψmj 〉〈ψmj |.

Consider any two classes Cj and Ck. The orthogonality condition on the unitaries implies that for
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0 ≤ s, t ≤ d− 1, tr[U†
(j,s)U(k,t)] = dδs,0δt,0. This in turn implies,

tr[U†
(j,s)U(k,t)] =

d∑

m,n=1

λ∗j,s,mλk,t,n|ψmj 〉〈ψmj |ψnk 〉〈ψnk |

=

d∑

m,n=1

λ∗j,s,mλk,t,n|〈ψmj |ψnk 〉|2

= dδs,0δt,0. (3.14)

Since we have set U(j,0) = I, ∀0 ≤ j ≤ d, we have, λj,0,n = 1, ∀0 ≤ j ≤ d, 1 ≤ n ≤ d. This along

with (3.14) immediately gives us, that for any pair of classes Cj, Ck, the corresponding eigenbases

Bj = {|ψmj 〉}m and Bk = {|ψmk 〉m} satisfy

|〈ψmj |ψnk 〉|2 =
1

d
, ∀1 ≤ m,n ≤ d. (3.15)

�

A special case of the construction described above are the three mutually unbiased bases in

dimension d = 2k given by the unitaries I
⊗k,H⊗k and K

⊗k applied to the computational basis,

where H is the Hadamard transform, and K = (I+ iσx)/
√
2. In particular, three mutually unbiased

bases in dimension d = 2 are given by the eigenvectors of the Pauli matrices X, Z, and Y . A

very interesting aspect of such MUBs is that there exists an ordering B1, . . . ,Bd+1 and a unitary

U that cyclically permutes all bases, that is, UBj = UBj+1 for all j, where UBd+1 = B1 [132]. As

we see in the following section, this symmetry property plays an important role in obtaining tight

uncertainty relations.

3.2.3 MUBs and Strong Uncertainty Relations

We have already noted that mutually unbiased bases lead to maximally strong uncertainty relations

(see (3.9) and (3.11)), when we consider only 2 measurement settings. It was further shown [61,112]

that strong uncertainty relations are obtained when the complete set of d+1 bases, {B0,B1, . . . ,Bd},
exists:

1

d+ 1

d∑

j=0

H(Bj |ρ) ≥ log(d+ 1)− 1. (3.16)
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It is interesting to note that this inequality in fact follows from a bound on the collision entropy:

1

d+ 1

d∑

j=0

H2(Bj |ρ) ≥ log(d+ 1)− 1. (3.17)

For more than 2 measurements in different bases, being mutually unbiased is indeed a necessary

condition to obtain strong uncertainty relations. To see this, consider two bases B1 and B2 which

are not mutually unbiased, so that there exist basis vectors |x〉 ∈ B1 and |y〉 ∈ B2 that have a

higher overlap |〈x|y〉|2 > 1/d. Then, choosing ρ = |x〉〈x| yields zero entropy when measured in

basis B1 and less than full entropy 4 when measured in the basis B2.

However, whereas being mutually unbiased is necessary, it was demonstrated recently that it

is not a sufficient condition to obtain maximally strong uncertainty relations for the Shannon

entropy. In particular, there do exist large sets of up to
√
d mutually unbiased bases in square

dimensions for which we do obtain very weak uncertainty relations [6]. Recently, Ambainis [4] has

shown that for any three bases from the “standard” mutually unbiased bases construction [7, 134]

in prime dimension, the lower bound cannot exceed
(
1
2 + o(1)

)
log d, for large dimensions. For

dimensions of the form 4k + 3 and 8k + 5 no further assumption is needed, but the proof assumes

the Generalized Riemann Hypothesis for dimensions of the form 8k + 1. Furthermore, for any

0 ≤ ε ≤ 1/2, there always exist k = dε of these bases such that the lower bound cannot be larger

than
(
1
2 + ε+ o(1)

)
log d. Only if we use the maximal set of d+1 mutually unbiased bases that can

be found for any given prime power dimension do we obtain strong uncertainty relations [61,112].

At present, we also know that there do exist arbitrarily large sets of two outcome measurements

that give us maximally strong uncertainty relations [129], and that in larger dimensions selecting

a sufficiently large number of bases (of order (log d)4) at random does lead to strong relations [56].

However, it remains an intriguing open question as to whether there even exist three measurements

with three outcomes in dimension d > 2 that are maximally incompatible with respect to the

Shannon entropy. We refer the reader to a recent survey by Wehner and Winter [130] for a more

detailed review of known results and open questions in the study of EURs.

Wootters and Sussman [132] made the interesting observation that for the maximal set of d+1

mutually unbiased bases in dimension d = 2n, the lower bound of the entropic uncertainty relation

4Note that the entropy of performing a measurement corresponding to an orthonormal basis in dimension d can
never exceed log d, where the maximum is attained when the distribution over the outcomes is uniform (1/d).
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in terms of the collision entropy given in (3.17) is tight, and the minimum is attained by a state that

is invariant under a unitary that cyclically permutes the set of all d+ 1 MUBs. A similar unitary

was noted to exist by Chau [24]. Wootters and Sussman derive their transformation from phase

space arguments. Their unitary can in fact easily be generalized to cyclically permute L bases,

whenever L divides d+1 (see Section 3.3.1). The results in [132] have recently been generalized by

Appleby [5], who shows that in prime power dimensions of the form d = 1 or 3 mod 4, there exists

a unitary operation that cyclically permutes the first and second halves of the full set of MUBs.

This raises the question of whether smaller sets of MUBs also exhibit such symmetries. And can

we exploit such symmetries to obtain tight uncertainty relations? In particular, is the minimizing

state always an invariant of such a transformation as observed for two bases in (3.8)?

3.3 Min-entropic Uncertainty Relations

Several entropic measures could be considered when it comes to quantifying uncertainty, as de-

scribed in Section 3.1.1, and each has its merits. Recall that the min-entropy H∞(X) is deter-

mined by the highest peak in the distribution PX(x) of the random variable X , so that 2−H∞(X) =

maxx∈X PX(x). The min-entropy is thus related to the probability of “guessing” the value of the

random variable x and is of particular interest in cryptography. Since H(·) ≥ H∞(·), min-entropic

uncertainty relations also provide us with bounds on uncertainty relations in terms of the Shannon

entropy.

To gain more intuition on why the min-entropy might be a more useful quantity in cryptography

than the Shannon entropy, we may consider the following example: Let X = {0, 1}n and let

x0 = 0, . . . , 0 be the all-zero string. Suppose that the distribution PX is such that PX(x0) =

1/2 + 1/(2n+1) and PX(x) = 1/(2n+1) for x 6= x0, that is, the string x0 is chosen with probability

1/2, and with probability 1/(2n+1) the other strings are chosen uniformly at random. Then, for

large n, H(X) ≈ n/2, whereas H∞(X) ≈ 1! If x were to correspond to an encryption key used

to encrypt an n bit message, we would certainly not talk about security if we can guess the key

with probability at least 1/2! Yet, the Shannon entropy is quite high, and is clearly not a suitable

measure of how secure an encryption key x would be. We refer the reader to [74] for a more detailed

discussion on the operational meaning of the min-entropy and its usefulness in cryptography.
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3.3.1 Symmetries

Apart from cryptographic applications, min-entropic uncertainty relations are also appealing since

the problem of determining tight uncertainty relations can be simplified considerably in the presence

of symmetries. First, note that Jensen’s inequality [28] implies that

1

L

L−1∑

j=0

H∞(Bj|ρ) (3.18)

≥ − log
1

L

L−1∑

j=0

max
b(j)

tr(ρ|b(j)〉〈b(j)|), (3.19)

where the inequality becomes equality if all terms tr(ρ|b(j)〉〈b(j)|) are the same. For

~b = (b(0), . . . , b(L−1)) ∈ {0, . . . , d− 1}×L, define

P~b :=
∑

b(j)

|b(j)〉〈b(j)| . (3.20)

Determining a tight lower bound in (3.19) is thus equivalent to determining

max
~b

max
ρ

tr(ρP~b) . (3.21)

Clearly, any ζ such that

P~b ≤ ζI for all ~b (3.22)

gives us a lower bound for (3.18). For any set of bases, this makes the problem of finding a bound

more approachable as it reduces the problem to finding the largest eigenvalue for the operator P~b.

In particular, it can be phrased as a semidefinite program to minimize ζ such that (3.22) holds for

all ~b.

It is now easy to see why symmetries simplify our goal of determining tight uncertainty relations

for the min-entropy. The following Lemma makes use of the above simplification to throw light

on the structure of the maximally certain states, for some sets of mutually unbiased bases. In

particular, we note that for L MUBs in dimension d = 2n, the state that minimizes the min-

entropic uncertainty relations is an invariant of a certain unitary, whenever L divides d+ 1.
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Lemma 3.3.1. Suppose that for every ~b ∈ {0, . . . , d − 1} there exists a unitary U~b such that

U~b|b(j)〉 = |b(j+1 mod L)〉. Then there exists a ~b′ such that the minimum in (3.18) is attained for a

state ρ that is invariant under U~b′ .

Proof. First of all, note that

1

L

L−1∑

j=0

(U j~b
)P~b(U

j
~b
)† = P~b , (3.23)

and hence for ρsym = (1/L)
∑

j(U
j
~b
)†ρ(U j~b

)

tr(ρsymP~b) = tr(ρP~b) . (3.24)

In particular, this holds for the state ρ = |ψ〉〈ψ| corresponding to the eigenvector |ψ〉 with the

largest eigenvalue of P~b′ . When looking for the minimizing state on the right hand side of (3.18)

we can thus restrict ourselves to states which are invariant under U j~b′
. Note that in this case, we

further have that

tr(ρsym|b(j)〉〈b(j)|) =
1

L
tr(ρP~b) , (3.25)

show that the inequality (3.18) is tight whenever we have such a symmetry. �

The question of course remains, as to whether such unitaries do exist in general. Wootters and

Sussman [134] have shown that there exists a unitary U that cyclically permutes the set of all d+1

MUBs for d = 2n by constructing a unitary that corresponds to a rotation around the origin in

phase space. Clearly, by considering the unitary Uk one can trivially adapt their construction to

obtain a unitary that cyclically permutes L MUBs whenever L · k = d+1. By first translating any

point in the phase space to the origin, then applying the transformation Uk and finally translating

the origin back to the original point, one can obtain the desired unitaries U~b that enable us to find

tight bounds for the min-entropic uncertainty relations. This is indeed the first time we have some

insight into the structure of the states that minimize (3.18).
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3.3.2 Discrete Wigner Function

The min-entropy is also related to the well studied extrema of the discrete Wigner function. To see

how finding a lower bound for min-entropic uncertainty relations for d+1 MUBs relates to finding

the extrema of the discrete Wigner function, let us first recall the properties of the discrete Wigner

function. The discrete phase space is a two-dimensional vector space over a finite field Fd, where

here we focus on the case of d = 2n. For every state ρ, we can associate a function Wα with every

point α in the discrete phase space, known as the discrete Wigner function. For completeness, we

provide a short summary on how to determine Wα; a detailed account can be found in [50].

First of all, note that the d2 points of the discrete phase space can be parititioned into d parallel

lines each of which contains d points. Any such partition is called a striation, and it is known that

d + 1 such striations can be found [50]. One may define the discrete Wigner function by relating

each striation to one of the d + 1 possible mutually unbiased bases [50]: Let λb,j denote the b-th

line in the striation j. With each such line, we associate a projector

Q(λb,j) = |b(j)〉〈b(j)| ,

onto the bth element of the basis Bj , in a specific order so as to satisfy certain symmetry con-

straints [50]. Defining the phase-space point operator

Aα :=
∑

λb,j
α⊂λb,j

Q(λb,j)− I ,

one can now define the discrete Wigner function as

Wα :=
1

d
tr(Aαρ) . (3.26)

The extrema of the discrete Wigner function at each phase-space point α are defined as the minimum

and maximum of (3.26) over quantum states ρ.

Note that when considering L = d + 1 mutually unbiased bases, each point α in the discrete

phase space can be contained in exactly one line from each basis, as all lines in a striation, i.e.,

one basis are parallel. Hence, there is a one-to-one correspondence between points α in discrete

phase space and vectors ~b ∈ {0, . . . , d − 1}×d+1. In terms of the phase space operator this means
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that Aα + I = P~b, where P~b is defined as in (3.20). Note that the maximum of the discrete Wigner

function,

Wmax
α = max

ρ

1

d
tr(Aαρ) , (3.27)

is simply the largest eigenvalue of Aα (or P~b − I) up to a factor of 1/d. We thus have that

ζ := d ·
[

max
α

Wmax
α + 1

]

satisfies P~b ≤ ζI and the maximum of the discrete Wigner function provides a lower bound to the

min-entropic uncertainty relations as follows:

1

d+ 1

d∑

j=0

H∞(Bj||ψ〉) ≥ − log
[

d ·
(

max
α

Wmax
α + 1

)]

. (3.28)

The extrema Wmax
α were evaluated numerically in [23] for small d. However, as noted in Sec-

tion 3.3.1, one may use symmetries to solve the problem of determining Wmax
α directly.

3.4 New Lower Bounds on the Average Min-entropy

In this section we state and prove our min-entropic uncertainty relation for an arbitrary set of L

mutually unbiased bases. As mentioned in Section 3.3, the problem of finding a lower bound for

the average min-entropy reduces to the problem of finding the maximum eigenvalue of the operator

P~b defined in (3.20). In Section 3.4.1, we use a result due to Schaffner [114] obtained using the

techniques of Kittaneh [67], to show that for any set of L mutually unbiased bases in dimension d,

the maximum eigenvalue of P~b is bounded by

P~b ≤
1

L

(

1 +
L− 1√

d

)

I, for all ~b. (3.29)

Using this, we obtain the following simple bound for the average min-entropy.
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Theorem 3.4.1. Let B0, . . . ,BL−1 be a set of mutually unbiased bases in dimension d.Then,

1

L

L−1∑

j=0

H∞(Bj ||ψ〉) ≥ − log

[
1

L

(

1 +
L− 1√

d

)]

. (3.30)

For the case of L = 2 MUBs in dimension d, our bound exactly matches the wellknown result

of Deutsch (see (3.8)). For L > 2, the only other known lower bound for the average min-entropy

is the one obtained in [114], where it is shown that for a set of L <
√
d MUBs in dimension d = 2n,

the average min-entropy satisfies

1

L

L−1∑

j=0

H∞(Bj ||ψ〉) ≥ − log

[
1

L

(

1 +
L− 1√

d
max

0≤i<j≤L−1

√

|Xi||Xj |
)]

, (3.31)

where Xi,Xj ⊂ {0, 1}n are subsets of n-bit strings. In the case of min-entropic uncertainty rela-

tions, these subsets contain only a single string, which corresponds to the peak of the probability

distribution induced on the state |ψ〉 by the corresponding bases Bi and Bj, so that

max
0≤i<j≤L−1

√

|Xi||Y j | = 1.

Thus, in dimension d = 2n, our bound in (3.30) is clearly the same as (3.31). The reason we obtain

a more general bound for L ≤ d + 1 MUBs in any dimension d is that we reduce the problem

directly to an eigenvalue problem without going through the representation in terms of bit strings

as in [114].

Using an alternate approach involving a Bloch sphere like representation of the basis vectors

|b(j)〉, we show that the maximum eigenvalue of P~b can be bound differently, as follows:

P~b ≤
1

d

(

1 +
d− 1√
L

)

I, for all ~b. (3.32)

As we show in Section 3.4.2, this implies the following.

Theorem 3.4.2. Let B0, . . . ,BL−1 be a set of mutually unbiased bases in dimension d.Then,

1

L

L−1∑

j=0

H∞(Bj||ψ〉) ≥ − log

[
1

d

(

1 +
d− 1√
L

)]

. (3.33)
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Notice that this alternate bound on the min-entropy is stronger than (3.30) when L > d. In

particular, for the complete set of d + 1 MUBs in dimension d, this alternate bound in (3.33)

is stronger than any of the previously known bounds. When L = d, the two bounds in (3.30)

and (3.33) that we derive are indeed equivalent.

3.4.1 Proof of Theorem 3.4.1

Recall that in Section 3.3.1, we had reduced the problem of lower bounding the average min-entropy

to an eigenvalue problem (3.21). It is easy to see that this maximum is always attained at a pure

state, so we can restrict the problem to an optimization over pure states. Thus, solving for ζ in

max
|ψ〉

tr[P~b|ψ〉〈ψ|] ≤ ζ , (3.34)

immediately leads to a min-entropic uncertainty relation of the form

1

L

L−1∑

j=0

H∞(Bj||ψ〉〈ψ|) ≥ − log ζ . (3.35)

Proof. To solve the eigenvalue problem in (3.34), we use the following result of Schaffner [114],

which was obtained using the methods of Kittaneh [67]. For a set of L orthogonal projectors

A0, A1, . . . , AL−1, the norm of the sum satisfies,

‖
L−1∑

j=0

Aj ‖≤ 1 + (L− 1)

(

max
0≤j<k≤L−1

‖ AjAk ‖
)

, (3.36)

where ‖ (.) ‖ denotes the operator norm, which here is simply the maximum eigenvalue for Hermi-

tian operators. Applying this result to sums of basis vectors |b(j)〉, we have

‖
L−1∑

j=0

|b(j)〉〈b(j)| ‖ ≤ 1 + (L− 1)

(

max
0≤j<k≤L−1

‖ (|b(j)〉〈b(j)|)(|b(k)〉〈b(k)|) ‖
)

,

which implies,

‖ P~b ‖ ≤ 1

L
+

(
L− 1

L

)(

max
0≤j<k≤L−1

‖ |b(j)〉(〈b(j)||b(k)〉)〈b(k)| ‖
)

.
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Recall, that for all mutually unbiased basis vectors |b(j)〉, |b(k)〉, where b(j), b(k) ∈ {0, . . . , d− 1},

〈b(j)|b(k)〉 = eiφ
1√
d
, for any j 6= k,

where φ is some phase factor. Further, since the vectors |b(j)〉 are normalized, the Cauchy-Schwarz

inequality gives

‖ |b(j)〉〈b(k)| ‖≤ 1, ∀ b(j), b(k) ∈ {0, . . . , d− 1}.

Combining these with (3.37) gives the following bound on the maximum eigenvalue of the operator

P~b :

ζ =
1

L

(

1 +
L− 1√

d

)

. (3.37)

By (3.35), this immediately proves our claim. �

3.4.2 Proof of Theorem 3.4.2

Here, we present an alternate approach to bound the maximum eigenvalue of P~b, using a Bloch-

vector-like representation of the MUB basis states. The bound that we obtain here, stated in

Theorem 3.4.2, is stronger than the last one when L > d. In particular, when we consider the

complete set (L = d+1) of MUBs in any dimension d, this approach yields the best known bound.

Proof. First, we switch to a basis of Hermitian operators, so that every state inH has a parametriza-

tion in terms of vectors in a real vector space. Any state ρ ∈ H can be written as

ρ =
1

d
I+

1

2

d2−1∑

i=1

α(i)Âi , (3.38)

where {Âi} are Hermitian, traceless operators that are orthogonal with respect to the Hilbert-

Schmidt norm. That is, tr[Â†
i Âj ] = 2 δij , and the scalars {α(i)} ∈ R. We can thus parameterize

any state in our d-dimensional Hilbert space with a vector ~α = (α(1), ..., α(d2−1)) ∈ R
d2−1. When

ρ is a pure state (tr[ρ2] = 1), the vector ~α corresponding to this pure state satisfies the following
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normalization condition:

tr








1

d
I+

1

2

d2−1∑

i=1

α(i)Âi





2

 = 1

⇒ 1

d
+

1

2

d2−1∑

i=1

|α(i)|2 = 1

⇒ |~α| =

√
√
√
√

d2−1∑

i=1

|α(i)|2 =

√

2(d− 1)

d
. (3.39)

Furthermore, in this representation, the vectors {~α(b,j)} corresponding to the MUB states

{|b(j)〉} satisfy the following special properties:

• (M1) Normalization: Tr[|b(j)〉〈b(j)||b(j)〉〈b(j)|] = 1 implies that |~α(b,j)| =

√
2(d−1)
d , ∀ b ∈

{0, ..., d − 1} , j ∈ {0, ..., L − 1}. (By an argument similar to the one that leads to (3.39).)

• (M2) Constant inner-product : |〈b(j)|b̂(k)〉|2 = 1
d implies that ~α(b,j).~α(b̂,k) = 0, ∀ j 6= k, ∀ b, b̂ ∈

{0, ..., d − 1}. This is easily seen, as follows:

tr[|b(j)〉〈b(j)||b(k)〉〈b(k)|] =
1

d
+

1

2

∑

i

α
(i)
(b,j)α

(i)

(b̂,k)
=

1

d

⇒ ~α(b,j).~α(b̂,k) = 0. (3.40)

Now, using this representation of MUB states and density operators, we can rewrite the maxi-

mization problem of (3.34) as

max
|ψ〉

tr[P~b|ψ〉〈ψ|] = max
|ψ〉

tr




1

L

∑

j

|b(j)〉〈b(j)||ψ〉〈ψ|





≤ max
~α

1

L

∑

j

Tr








I

d
+

∑

j α
j

(b(j) ,j)
Âj

2





(

I

d
+

∑

i α
(i)Âi
2

)



=
1

d
+max

~α

1

2L

∑

j

~α(b(j) ,j).~α.

Now we only need to find the real (d2−1)-dimensional vector ~α, that maximizes the sum
∑

j ~α(b(j),j).~α.
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We now define an “average” vector corresponding to each string ~b, as follows:

1

L

∑

j

~α(b(j),j) = ~α(avg).

Then, it becomes obvious that the maximum is attained when ~α is parallel to ~α(avg). Since it is a

vector corresponding to a pure state, its norm is given by (3.39), so that

~α(max) =

√

2(d− 1)

d

~α(avg)

|~α(avg)|
.

Note that this maximizing vector has a constant overlap with all vectors ~α(b(j) ,j), for a given string

~b. In other words, for each string ~b, the maximum is attained by the vector that makes equal angles

with all the vectors that constitute the “average” vector (~α(avg)) corresponding to that string. Note

however that this vector may not always correspond to a valid state.

Now that we know the maximizing vector, we can go ahead and compute the value of ζ in (3.34).

max
|ψ〉

tr[P~b|ψ〉〈ψ|] ≤ 1

d
+max

~α

1

2L

∑

j

~α(b(j),j).~α

=
1

d
+

1

2
max
~α

~α(avg).~α

=
1

d
+

1

2

~α(avg).~α(avg)

|~α(avg)|

√

2(d − 1)

d

=
1

d

(

1 +
d− 1√
L

)

,

where we have used the fact that the vector ~α(avg) has a constant norm which can be computed as

follows:

~α(avg).~α(avg) =
1

L2

∑

j,k

~α(b(k),k).~α(b(j),j)

=
1

L2

∑

j

~α(b(j),j).~α(b(j) ,j) (3.41)

=
1

L2
(L)

[
2(d − 1)

d

]

⇒ |~α(avg)| =
1√
L

√

2(d− 1)

d
, (3.42)
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thus proving our claim. Equation (3.41) follows from the fact that vectors corresponding to different

MUB states have zero inner product (see property (M2) above). �

The fact that the bases are mutually unbiased was crucial in giving rise to properties (M1) and

(M2), which in turn enabled us to identify the maximizing vector αmax. Indeed the maximizing

vector corresponding to a given string ~b might not always correspond to a valid state, in which

case the bound derived above cannot be achieved. However, there exist strings of basis elements

~b, for which we can explicitly construct a state that has equal trace overlap with the states that

constitute the corresponding operator P~b. These are in fact states of the form

P~b =
1

L

∑

j

|b(j)〉〈b(j)|, where ~b = {c, ..., c}, (3.43)

for any c ∈ {0, . . . , d− 1}. For the symmetric MUBs that we will construct in the following section

(see (3.45)), an eigenstate of the unitary U that cycles between the different MUBs has the same

trace overlap with each of the states {|b(j)〉, j = 0, . . . , L − 1}, for a fixed value of b. To see this,

suppose |φ〉 is an eigenvector of U with eigenvalue λ, then for all 0 ≤ j ≤ L− 1 and a given value

of b,

tr[|b(j)〉〈b(j)||φ〉〈φ|] = |〈b(j)|φ〉|2 = |〈b(1)|(U †)j−1|φ〉|2

= (|λ|2)|〈b(1)|φ〉|2

= |〈b(1)|φ〉|2.

This is indeed the case for L = 4 MUBs in d = 4 (3.47), where the lower bound derived here is

achieved by eigenstates of U .

3.5 Construction of Symmetric MUBs

We now state our main result on constructing symmetric sets of MUBs using the generators of the

Clifford algebra in dimension d = 2n.

Theorem 3.5.1. Suppose that 2 ≤ L ≤ 2n + 1 is prime, and either L divides n or L = 2n + 1.

Then in dimension d = 2n, there exist L mutually unbiased bases B0, . . . ,BL−1 for which there
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exists a unitary U that cyclically permutes them,

UBj = Bj+1 mod L . (3.44)

In other words, we provide an explicit construction of MUBs B0, . . . ,BL−1 with Bj = {|b(j)〉}
and a unitary U such that

U |b(j)〉〈b(j)|U † = |b(j+1) mod L〉〈b(j+1) mod L| (3.45)

for all |b(j)〉 ∈ Bj .

Furthermore, in dimension d = 4, we actually find such a unitary for any set of L MUBs, where

2 ≤ L ≤ 5. Our approach exploits properties of the Clifford algebra, and this might yield new

insights into the structure of these MUBs. It is entirely distinct from the phase space approach

which was used in [134] to construct such a unitary for the full set of d+ 1 MUBs. Note that our

construction gives at most O(log d) bases, but shows that there is indeed an additional symmetry

which has previously gone unnoticed. For L = 2 bases, U is simply the Fourier transform, and

it would be interesting to investigate general properties of our transformation and whether it has

applications in other areas.

Our construction of mutually unbiased bases makes essential use of the techniques developed

in [7], together with properties of the Clifford algebra. We follow the procedure outlined in [7],

described above in Section 3.2.2, but now applied to a subset of the operators in S \ {I}, where S
is the set of all the Clifford generators and their higher products:

S = {I,Γj , iΓiΓj,ΓiΓjΓk, . . . , iΓ1 . . .Γ2n}

We seek to group these operators into classes of commuting operators, i.e., sets {C0, C1, . . . , CL−1 |
Cj ⊂ S \ {I}} of size |Cj | = d− 1 such that

(i) the elements of Cj commute amongst themselves, for all 0 ≤ j ≤ L− 1,

(ii) Cj ∩ Ck = ∅ for all j 6= k.

As shown in Theorem 3.2.3, the common eigenbases of L such classes form a set of L mutually

unbiased bases.
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Note that no class can contain two generators Γj and Γk since they do not commute. When

forming the classes we hence ensure that each one contains exactly one generator Γj , which clearly

limits us to constructing at most 2n+1 such classes. The difficulty in obtaining a partitioning that

is suitable for our purpose is to ensure that the unitary U that cyclically permutes the generators

Γ0, . . . ,ΓL−1 also permutes the corresponding bases by transforming the products of the operators

appropriately. Further details of our general construction, including a formal proof of Theorem 3.5.1

can be found in Appendix B.

3.5.1 Examples

Let us consider two simple examples of such classes in dimension d = 4. These are not obtained

from our general construction, but nevertheless provide us with the necessary intuition. For L = 3

MUBs the classes are given by

C0 = {Γ0, iΓ1Γ4, iΓ3Γ2},

C1 = {Γ1, iΓ2Γ4, iΓ3Γ0},

C2 = {Γ2, iΓ0Γ4, iΓ3Γ1}. (3.46)

It is easy to see that the unitary U that achieves the transformation Γ0 → Γ1 → Γ2 → Γ0, leaving

Γ3 and Γ4 invariant, cyclically permutes the bases given above. We can show that an eigenstate of

the commuting operators Γ0, iΓ2Γ4, and iΓ3Γ1 minimizes the average collision entropy H2. In fact

this minimizing state achieves the lower bound stated earlier (3.17), showing that the uncertainty

relation is indeed tight for 3 MUBs in d = 4.

For L = 4 we obtain the classes

C0 = {Γ0, iΓ1Γ4, iΓ2Γ3},

C1 = {Γ1, iΓ2Γ4, iΓ3Γ0},

C2 = {Γ2, iΓ3Γ4, iΓ0Γ1},

C3 = {Γ3, iΓ0Γ4, iΓ1Γ2}. (3.47)

It is easy to see that the unitary U that achieves the transformation Γ0 → Γ1 → Γ2 → Γ3 → Γ0,
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leaving Γ4 invariant, cyclically permutes the bases given above. For L = 4 classes the minimum in

the entropic uncertainty relation for H∞ (3.30) is attained for a state that is invariant under the

transformation U . However, we also know that for L = 4 or L = 8 classes in dimension d = 8,

no partitioning of operators is possible that satisfies our requirements. The values of L and d for

which such a unitary can be found, indeed remains an interesting open question.

3.6 Tight Lower Bounds for Symmetric MUBs

Based on our construction, we now show that (3.30) is in fact tight for 4 MUBs in dimension

d = 4, where the minimum is attained for an invariant state of the transformation U that cyclically

permutes all 4 bases. Even though this is a somewhat restricted statement, it is the first time that

a tight entropic uncertainty relation has been obtained for this case. The minimizing state here

has an appealing symmetry property, just as for the case of 2 bases in (3.8), where the minimum

is attained by a state that is invariant under the Fourier transform.

Note that our construction only gives unitaries U~b for ~b = (c, . . . , c) for any c ∈ {0, . . . , d −
1}. This means that our complementarity transform U leads to tight bounds only if the largest

eigenvalue of any P~b occurs for a
~b of this form. This is for indeed the case for L = 4 in d = 4, where

we cannot obtain a unitary from the phase space approach of [134]. Here, the largest eigenvalue of

P~b occurs for a
~b of the form ~b = (c, . . . , c) for any c ∈ {0, . . . , 3}. The states that achieve the lower

bound are in fact eigenvectors of U , which can be expressed in terms of the MUB basis vectors as

follows,

|ψb〉 =
1

2

3∑

j=0

exp(iπj/4)|b(j)〉, b ∈ {0, . . . , 3}. (3.48)

For the set of 4 MUBs in dimension d = 4 constructed from the classes given in (3.47), it is easy

to check that our bound

1

4

3∑

j=0

H∞(Bj||ψ〉) ≥ − log

[
1

4

(

1 +
3

2

)]

≈ 0.678

is tight, and the minimum is indeed achieved by an invariant state, as defined in (3.48).

For the collision entropy H2, Wootters [132] has shown that the lower bound in (3.17) is attained

by an invariant state, while considering the full set of d+ 1 MUBs. Here, however, we are able to
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show that uncertainty relation for H2 is tight for 3 bases in d = 4, where our bases have an entirely

different structure and the minimum is not attained by an invariant state of our transformation.

Nevertheless, we have for the first time a tight entropic uncertainty relation for all possible MUBs

in a dimension larger than d = 2, where the Bloch sphere representation makes the problem easily

accessible. In d = 4, we have a tight relation for H∞ for L = 2, 4, and tight relations for H2 for

L = 3, 5.

Our results indicate that due to the different properties of the minimizing state for different

numbers of bases, the problem may be even more daunting than previously imagined. Yet, our

work shows that in each case the minimizing state is by no means arbitrary. It has a well defined,

albeit different structure in each of the cases.

In Figs. 3.1 and 3.2 we plot the bounds in (3.30) and (3.33) for the MUBs that we have

constructed in dimensions d = 4 and d = 8 respectively. We also compare our lower bounds to

the actual numerical minimum and the value attained by an invariant state, in each case. In both

figures, the crosses denote numerically computed minima of the average min-entropy for MUBs

obtained using our construction, and the circles denotes the average min-entropy for invariant

states constructed as in (3.48). The bound in (3.30) is clearly tight for both L = 3 and L = 4 in

dimension d = 4. For 4 MUBs in d = 4 the minimum of the average min-entropy is indeed attained

by states invariant under U . Similarly, in dimension d = 8, the bound in (3.30) is close to tight

for L = 3, and for L = 6 in d = 8, the minimum of the average min-entropy is nearly attained by

states invariant under U .

3.7 Conclusions and Open Questions

We have shown that there exist up to 2 ≤ L ≤ 2n+1 mutually unbiased bases in dimension d = 2n

for which we can find a unitary that cyclically permutes these bases, whenever L is prime and L

divides n or L = 2n + 1. This unitary is found by exploiting symmetry properties of the Clifford

algebra. Our approach is quite distinct from the phase space approaches that were previously used

to show that there exists such a unitary for the set of all d+1 MUBs [134], or for two halves of the

full sets of MUBs when d = 1 or 3( mod 4) [5]. Our unitary can be understood as a generalization

of the Fourier transform, and it would be interesting to see whether it has other applications in

quantum information.
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Figure 3.1: Average min-entropy for different sets of MUBs in dimension d = 4. The dashed line
represents the bound in (3.30), and the solid line represents the bound in (3.33). The circle denotes
the average min-entropy for the invariant states given in (3.48).
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Figure 3.2: Average min-entropy for different sets of MUBs in dimension d = 8. The circle denotes
the average min-entropy for invariant states constructed in dimension d = 8, similar to the states
described in (3.48).
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It is an interesting open question to generalize our result to other dimensions, or to a different

number of bases. In prime dimension, one could consider generalized Clifford algebras [27]. Even

though it does not have the full SO(2n+ 1) symmetry, it nevertheless exhibits enough symmetries

to allow an exchange of generators. This stems from the way the (generalized) Clifford algebra

is obtained [27, 83], which permits any transformation that preserves the p-norm for p ≥ 2 in

dimension p. Yet, this is only the first step of our construction. As for generalizing our result to

any L bases in dimension d = 2n, we note that it is indeed possible to find such classes even when

L is not prime, as our example for L = 4 in dimension d = 4 shows. However, we also know that

for L = 8 classes in dimension d = 16, no partitioning of operators can be found satisfying our

requirements. It is an interesting open question as to when such a partitioning can be found in

general.

We have also used our complementarity transform to obtain a tight uncertainty relation for the

min-entropy for L = 4 bases in dimension d = 4. No tight relations are known for this case before.

We also used a slight generalization of the unitary from [134] to show that when d = 2n and L

divides d + 1, the minimizing state is an invariant of a certain unitary. This is the first time that

significant insight has been obtained about the structure of the minimizing states for min-entropic

uncertainty relations for mutually unbiased bases. It is an exciting open question to obtain tight

relations in general, and understand the structure of the minimizing states.
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Chapter 4

Achieving the Physical Limits of the
Bounded-Storage Model

Two-party cryptography enables Alice and Bob to solve problems in cooperation even if they do

not trust each other. Important examples of such tasks include auctions and secure identification.

In the latter, Alice wants to identify herself to Bob (possibly a fraudulent ATM machine) without

revealing her password, as depicted in Fig. 4. More generally, Alice and Bob wish to solve problems

where Alice holds an input x (e.g.her password) and Bob holds an input y (e.g.the password an

honest Alice should possess), and they want to obtain the value of some function f(x, y) (e.g.“yes”

if x = y, and “no” otherwise). Known as Secure Function Evaluation, security in this case implies

that Alice should not learn anything about y and Bob should not learn anything about x, apart

from what can be inferred from f(x, y) [136].

Contrary to quantum key distribution where honest Alice and Bob can work together to detect

the presence of an outside eavesdropper [11, 42], two-party cryptography is made difficult by the

Figure 4.1: Secure Identification.
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fact that Alice and Bob do not trust each other and have to fend for themselves. Indeed, two-party

cryptography is impossible without making assumptions about the adversary, even when we allow

quantum communication [86]. The security of most cryptographic systems in use today is based on

the premise that certain computational problems are hard to solve for the adversary. Concretely,

the security relies on the assumption that the adversary’s computational resources are limited,

and the underlying problem is hard in some precise complexity-theoretic sense. While the former

assumption may be justified in practice, the latter statement is usually an unproven mathematical

conjecture.

It is thus a natural question as to whether other, more physical assumptions regarding the two

parties’ resources allow us to obtain security without relying on any additional unproven hardness

results. This is indeed known to be possible if we assume that the adversary’s classical [21,93,94] or

quantum storage is limited [30–32] or more generally if his memory is simply imperfect [76,115,128].

In the context of quantum cryptography, it has been shown that security can be achieved if the

adversary can store strictly less then half of the qubits transmitted during the protocol. This special

case is known as the bounded-storage model, and it has long been an open question as to whether

security can still be achieved if the adversary’s storage were any larger. Here,1 we answer this

question positively and demonstrate a two-party protocol which is secure as long as the adversary

cannot store even a small fraction of the transmitted pulses. We also show that in the more general

setting of the noisy-storage model, security can be extended to a larger class of noisy quantum

memories.

The rest of this chapter is organized as follows. In Section 4.1 we formally introduce the noisy-

storage model along with other concepts that are used in our security analysis. Next we describe the

primitive of weak string erasure in Section 4.2 along with our protocol to realize this primitive in the

noisy-storage model and the corresponding security proofs. Section 4.3 contains a brief description

of some of the standard cryptographic tools that we use in our protocol to realize oblivious transfer

from weak string erasure. Finally, Section 4.4 contains our protocol for oblivious transfer along

with the relevant security proofs.

1The work described in this chapter was done in collaboration with Stephanie Wehner and the results have been
published in [91]. We thank Robert König and Jürg Wullschleger for many interesting and useful discussions.

68



4.1 Preliminaries

We begin by briefly introducing some of the important concepts which will be used in this chapter.

First, in Section 4.1.1 we define some of the entropic measures used to quantify the information

gained by a dishonest party during a protocol. Next we describe the noisy-storage model in Sec-

tion 4.1.2, and introduce some of the parameters that describe how well information is transmitted

through the adversary’s noisy quantum memory, in Section 4.1.3. We conclude with a review of

earlier results that relate security to the storage rate and channel capacity in Section 4.1.4 and

briefly state our contributions in this context.

4.1.1 Quantifying Adversarial Information

Consider a classical random variable X distributed according to the distribution PX with elements

x ∈ X drawn from the set X . The probability distribution PX over X can be encoded into a state

ρx ∈ HX , where HX is the Hilbert space HX
∼= C

|X | with an orthonormal basis {|x〉, x ∈ X}, as
follows:

ρX =
∑

x∈X

PX(x)|x〉〈x| . (4.1)

Of particular interest is the uniform distribution over X, which gives rise to the completely mixed

state on HX denoted as

τX :=
1

|X |
∑

x∈X

|x〉〈x| . (4.2)

Information about the classical random variable X can also be encoded into a classical-quantum

state ρXQ ∈ HX ⊗HQ of the form

ρXQ =
∑

x∈X

PX(x) |x〉〈x|
︸ ︷︷ ︸

X

⊗ ρx
︸︷︷︸

Q

, (4.3)

where HQ is an additional Hilbert space. In other words, the state ρXQ encodes the ensemble

of states {PX(x), ρx}x∈X on the Hilbert space HQ, where ρx is the conditional state on Q given

X = x. In analyzing the security of our protocols, we will often be interested in quantifying the

adversary’s quantum information Q about a classical bit-string X. A natural measure of this is the

average success probability that a party holding Q has in guessing the value of X. For a cq-state
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of the form ρXQ defined above, this guessing probability is defined as

Pguess(X|Q)ρ := max
{Mx}

∑

x

PX(x) tr[Mxρx] , (4.4)

where the maximization is over all POVMs {Mx}x∈X on HQ. As mentioned in Section 3.3 this

directly relates to the conditional min-entropy, as follows:

H∞(X|Q)ρ := − logPguess(X|Q)ρ . (4.5)

We will also make use of the following general definition of the min-entropy [107] for any

arbitrary bipartite density operator ρAB ,

H∞(A|B)ρ = − log inf{tr[σB ]|σB ≥ 0 and ρAB ≤ IA ⊗ σB} . (4.6)

The advantage of this definition which is equivalent to (4.5) is that it allows us to maximize over a

neighborhood of our cq-state ρXQ, leading to the notion of smooth min-entropy, which is defined

as follows:

Hε∞(X|Q)ρ := sup
ρ̄XQ≥0

1
2
‖ρ̄XQ−ρXQ‖1≤tr(ρXQ)·ε

tr(ρ̄XQ)≤tr(ρXQ)

H∞(X|Q)ρ̄ . (4.7)

In other words, a state ρXQ which is ε-close to a state ( ¯ρXQ) with high min-entropy, will have high

smooth min-entropy.

4.1.2 Noisy-Storage Model

The quantum noisy-storage model that we describe here is a generalization of the quantum bounded-

storage model [31] and an earlier version of the noisy-storage model [128]. Whereas the former

assumes that the adversary’s quantum storage is noiseless but bounded; the latter deals with the

case where the adversary’s quantum storage is noisy, but allows for a larger amount of storage.

The general model that we describe here due to König et al. [76], incorporates both the amount of

storage and noise. As explained below, the earlier settings are special cases of this model.

Formally, the adversary’s noisy quantum memory is here modeled as a device whose input states
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are bounded linear operators in some Hilbert space Hin. A state ρ in the device decoheres over time.

That is, the state in the memory after a time t is given by Ft(ρ), where Ft : B(Hin) → B(Hout) is a

completely positive trace preserving (CPTP) map (see Section 2.1.1) corresponding to the noise in

the memory. Since the amount of noise might depend on the storage time, the noisy memory is in

fact described by the family of maps {Ft}t>0. We assume that the noise is Markovian, so that F0 = I

and Ft1+t2 = Ft1 ◦ Ft2 . In other words, the noise in the storage only increases with time and the

adversary cannot gain any information by delaying the readout. This is the only restriction imposed

on the adversary, who may otherwise be all-powerful. All his other actions including computation,

communication, measurement, and state preparation are allowed to be instantaneous. Further, the

adversary has unlimited classical storage and computational resources, possibly quantum. In our

protocol, we will introduce certain time delays ∆t which force any adversary to use his storage device

for a waiting time of at least ∆t. The assumption of noisy-storage model entails that during such

waiting times ∆t in a protocol, the adversary has to measure/discard all his quantum information

except what he can encode (arbitrarily) into his quantum memory. The adversary’s noisy quantum

storage can thus be simply modeled as the CPTP map F ≡ F∆t, when analyzing security, rather

than the family {Ft}t>0.

In our work, we focus on the case where the input space is an n-fold tensor product Hin
∼=

(Cd)⊗νn, the protocols involve n-qudits of communication and the noise is of the form F ≡ N⊗νn

with N : B(Cd) → B(Cd). The constant ν > 0 is referred to as the storage rate as it captures the

fraction of the transmitted qudits that could could potentially be stored by the adversary.

To see how previously analyzed cases fit into this model, note that the bounded-storage model [31]

corresponds to the case where Hin is of limited input dimension, and F = I is the identity operator

on Hin. Concretely, protocols with n qubits of communication have been constructed for storage

devices described by Hin
∼= (C2)⊗νn, and security established [30,31] for storage rates ν < 1/4. In

the context of the noisy-storage model, protocols with n qubits of communication have been ana-

lyzed [128], where the noise F ≡ N⊗n is an n-fold tensor product of a noisy single-qubit channel

N : B(C2) → B(C2), that is, Hin
∼= (C2)n and ν = 1. The adversary was further restricted to

performing product measurements on the qubits received in the protocol. The more recent noisy-

storage model due to König et al. [76] deals with the case where Hin
∼= (C2)⊗νn, and the noise is

of the form F ≡ N⊗νn, without any restrictions on the kinds of measurements the adversary can

71



perform. It is easy to see that the model we analyze here, involving qudits instead of qubits, is a

direct generalization of this noisy-storage model.

4.1.3 Characterizing the Noisy Quantum Storage

While the security of the protocols constructed in the earlier bounded-storage model was shown to

depend only on the storage rate ν, in the noisy-storage model the security of protocols is related to

the problem of sending information through the noisy-storage channel. Specifically, it was shown

that the number of classical bits that can be sent through the noisy-storage channel being limited

is a sufficient condition for security. We will make this statement precise in this section.

For a fixed n, we denote by PF
succ(nR), the success probability of correctly transmitting a

randomly chosen nR-bit string x ∈ {0, 1}nR through the (storage) channel F . Then,

PF
succ(nR) = max

{Mx},{ρx}

1

2nR

∑

x∈{0,1}nR

tr (MxF(ρx)) , (4.8)

where the maximization is taken over encodings {ρx} on Hin and decoding POVMs {Mx} on Hout.

As in [76], we show that security can be obtained for channels with the property that this decoding

probability decays exponentially above a certain threshold, that is, there exist constants n0 > 0

and γ > 0 such that the decoding probability satisfies PF
succ(nR) ≤ 2−γn, for all n > n0 and

0 < R < 1/2. Recall that we are dealing with tensor product channels of the form F = N⊗νn,

where n is the number of qudits sent in the protocol and ν > 0 is the storage rate. Our proof thus

relates the security of protocols for such channels to the classical capacity CN of N . This provides

a quantitative expression to our intuition that noisy channels which are of little use for classical

information transmission in fact give rise to security in the noisy-storage model.

Clearly a necessary condition for an exponential decay as described above is that the classical

capacity CN of the channel be strictly smaller than the rate R at which we send information

through the channel. This however is not sufficient, since R > CN is not generally known to imply

such an exponential decay for F = N⊗n. We are therefore interested in channels N which satisfy

the following strong-converse property. The success probability (4.8) decays exponentially for

rates R above the capacity, that is,

PN⊗n

succ (nR) ≤ 2−nγ
N (R), where γN (R) > 0, forall R > CN . (4.9)
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It has been shown by König and Wehner [75] that property (4.9) does indeed hold for a large class

of channels including the depolarizing channel.

4.1.4 Security, Storage Rate, and Channel Capacity

Clearly, the storage rate ν plays a crucial role in deciding whether security can be obtained from

a particular storage device. For example, in the case of bounded storage where we have no noise

(N = I), we can never hope to obtain security if the adversary can store all quantum information

made available to him during the protocol, that is, if ν = 1 and the input space is Hin = (Cd)⊗n.

Apart from this trivial condition, however, no bounds were known that restrict our ability to obtain

security. In [30] it was shown that security can be achieved in a protocol based on qubits (d = 2) as

long as ν < 1/4. This was improved to ν < 1/2 in [76]. More generally, it was shown that security

in the noisy-storage model can be obtained [76] if

CN · ν < 1

2
, (4.10)

where CN is the classical capacity of the quantum channel N .

Here, we show that for the case of bounded storage, security can be obtained if the cheating

party can store all but a constant fraction of the transmitted pulses. That is, the trivial condition

ν < 1 stated above is in fact optimal! The honest players thereby need no quantum storage at

all in order to execute the protocol. This not only settles the question, but also highlights the

sharp contrast to the case of classical bounded storage, where it was shown that security can only

be obtained if the adversary’s classical storage is at most quadratic in the storage required by the

honest players [41]. Unlike the protocols in [30,31,76,128] which use BB84 encoded qubits, we make

use of states encoded in higher-dimensional mutually unbiased bases.2 Of course, we also scale the

storage size accordingly to Hin = (Cd)⊗νn when sending d dimensional states. More specifically,

we show that security in the setting of bounded storage is possible as long as

ν <
log(d+ 1)− 1

log d
, (4.11)

where the right hand side approaches 1 for large d. We stress that for large values of d, the resulting

2 Mutually unbiased bases are defined in Section 3.2.2.
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protocols will be much harder to implement experimentally, and even though the errors decrease

exponentially with n, they converge very slowly for large d. Note, however, that here we are merely

interested in exploring the fundamental physical limitations of this model.

For the general setting of noisy quantum storage we further show that security is possible

for devices F = N⊗νn, where the channel N : B(Cd) → B(Cd) satisfies the strong converse

property [75], whenever

CN · ν < log(d+ 1)− 1 , (4.12)

thus extending the range of storage devices for which security can be achieved [76]. Our proof

relies on an entropic uncertainty relation3 for mutually unbiased bases, but is completely general

in the sense that any other set of encodings satisfying such a relation could be used in our protocol

instead.

We would like to emphasize that that the setting considered here differs greatly from that of

quantum key distribution (QKD) [11, 42], where again, higher-dimensional states have been used

to some advantage. In QKD, Alice and Bob trust each other, but are trying to protect themselves

from an outside eavesdropper. An important advantage gained by Alice and Bob in this setting is

that they can work together to try and detect interference by such an eavesdropper. In contrast,

in the scenario we are considering there is no analogous way for Alice to check on any of Bob’s

actions, and vice versa. Hence, we require an entirely different proof of security from that used

in quantum key distribution, and whereas results from QKD may provide some clues, they merely

indicate that higher-dimensional states could be useful for our problem.

4.1.5 Techniques

We conclude this section with a brief overview of the steps involved in obtaining our result. The

constant 1/2 in the bound in (4.10) is a result of using BB84-states [11] in the protocol, and

stems from an uncertainty relation for measurements in these two bases [89]. It is thus natural to

consider a protocol that uses more than two mutually unbiased bases (MUBs) for which uncertainty

relations are known to exist [112]. Our first step is to obtain a modified protocol for the simple

two-party primitive weak string erasure described in Section 4.2. This modified protocol, which we

3See Sections 3.2.1 and 3.2.3 for an overview of entropic uncertainty relations.
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call nonuniform weak string erasure, is obtained using the full set of d+1 MUBs that are known to

exist in prime power dimensions [7,134]. Next, we show that there is still a secure protocol for the

cryptographic primitive of oblivious transfer using this variant of weak string erasure. This is done

by purely classical postprocessing of the output of the quantum primitive weak string erasure. Since

it is known that any two-party cryptographic problem can be solved using oblivious transfer [64],

our protocols can in principle be used to realize any two-party cryptographic task securely.

4.2 Weak String Erasure

The quantum primitive weak string erasure (WSE) was originally introduced in [76], where it was

used as a first step to realizing other primitives including oblivious transfer. Weak string erasure

provides Alice with a random bit-string Xn ∈ {0, 1}n, while Bob receives a randomly chosen

substring XI = (Xi1 , . . . ,Xir ), together with the index set I = {i1, . . . , ir} specifying the location

of the bits that he has information about. Security of weak string erasure roughly means that

even a dishonest Bob cannot gain much information about Alice’s entire string Xn, while security

against a dishonest Alice means that she does not learn anything about the index set I. A simple

quantum protocol that securely realizes WSE in the noisy-storage model was constructed in [76],

in which the honest parties do not require any quantum memory at all to execute the protocol.

4.2.1 Nonuniform Weak String Erasure

We now describe a variant of weak string erasure, which we may term nonuniform weak string

erasure. Intuitively, this primitive provides Alice with a string Xn = (X1, ...,Xn) ∈ {0, 1, . . . , d −
1}n, where each entry Xi takes on one of d possible values. Bob obtains a set of index locations

I = {i1, ..., i|I| | ij ∈ [n]}, where any index i ∈ {1, . . . , n} =: [n] is chosen to be in I with some

probability p. In addition, Bob receives the entries of the string Xn corresponding to the indices

I, which we denote by the substring XI = (Xi1 ,Xi2 , . . . ,Xi|I|
). Security here means that even if

Alice is dishonest, she cannot learn which entries are known to Bob, i.e., she cannot learn anything

about the index set I. Conversely, if Bob is dishonest, then his information about the entire string

Xn should still be limited in the sense that the probability that he can guess all of Xn given his
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information B′ is small. That is,

Pguess(X|B′) ≤ 2−λn , (4.13)

for some λ > 0. As explained in Section 4.1.1, this is equivalent to demanding that his min-entropy

is bounded by

H∞(Xn|B′)ρ = − log Pguess(X
n|B′) ≥ λn . (4.14)

In practice, we allow this condition to fail with error parameter ε, which is equivalent to demanding

that the smooth min-entropy (4.7) satisfies,

Hε∞(Xn|B′) ≥ λn . (4.15)

Our definition of nonuniform WSE closely follows that of WSE in [76], except that the string

Xn is now chosen from a larger alphabet and the indices in I ⊆ [n] are not chosen uniformly at

random. Instead, the probability p that honest Bob learns the value of Xi for i ∈ [n] is equal to the

probability that he chooses the same basis as Alice, that is, p = 1/(d+ 1). Clearly, the probability

that Bob learns a particular subset I satisfies

Pr(I) = p|I|(1− p)n−|I|. (4.16)

Note that we can write the subset I as a string (y1, . . . , yn) ∈ {0, 1}n where yi = 1 if and only if

i ∈ I, allowing us to identify |I〉 := |y1〉 ⊗ . . . ⊗ |yn〉. As in (4.1), the probability distribution over

subsets I ⊆ [n] can then be encoded into the state

Ψ(p) :=
∑

I⊆2[n]

p|I|(1− p)n−|I||I〉〈I| . (4.17)

Furthermore, we will follow the notation in (4.2) and denote the uniform distribution over a set S
as

τS :=
1

|S|
∑

s∈S

|s〉〈s| . (4.18)
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Definition 4.2.1 (Nonuniform WSE). An (n, λ, ε, p, d)–weak string erasure scheme is a protocol

between A and B satisfying the following properties:

Correctness: If both parties are honest, then there exists an ideal state σXnIXI is defined such

that

1. The joint distribution of the n-dit string Xn and subset I is given by

σXnI = τ{0,1,...,d−1}n ⊗Ψ(p) , (4.19)

2. The joint state ρAB created by the real protocol is equal to the ideal state: ρAB = σXnIXI

where we identify (A,B) with (Xn,IXI).

Security for Alice: If A is honest, then there exists an ideal state σXnB′ such that

1. The amount of information B′ gives Bob about Xn is limited:

1

n
H∞(Xn|B′)σ ≥ λ. (4.20)

2. The joint state ρAB′ created by the real protocol is ε-close to the ideal state, i.e., σXnB′ ≈ε ρAB′

where we identify (Xn, B′) with (A,B′).

Security for Bob: If B is honest, then there exists ideal state σA′X̂nI where X̂n ∈ {0, 1, ..., d−
1}n and I ⊆ [n] such that

1. The random variable I is independent of A′X̂n and distributed over 2[n] according to the

probability distribution given by (4.16):

σA′X̂nI = σA′X̂n ⊗Ψ(p) . (4.21)

2. The joint state ρA′B created by the real protocol is equal to the ideal state: ρA′B = σA′(IX̂I)
,

where we identify (A′, B) with (A′,IX̂I).

Next we outline a simple protocol that achieves the functionality described above. It is a

straightforward generalization of the original protocol in [76] to multiple encodings, the main dif-

ference being that the indices in I ⊆ [n] are no longer chosen uniformly at random. Instead, the
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probability p that honest Bob learns the value of Xi for i ∈ [n] is equal to the probability that he

chooses the same basis as Alice, that is, p = 1/(d + 1). Let 2[n] denote the set of all subsets of [n].

Protocol 1: Nonuniform WSE

Outputs: xn ∈ {0, 1, . . . , d− 1}n to Alice, (I, z|I|) ∈ 2[n] × {0, 1, . . . , d− 1}|I| to Bob.

1: Alice: Picks an n-dit string uniformly at random, xn ∈ {0, 1, ..., d − 1}n. She encodes

each dit into one of the d + 1 MUBs, Bθ1 , . . . ,Bθn , that is, she chooses a basis string θn =

(θ1, . . . , θn) ∈ {0, ..., d}n uniformly at random, so that the dit xj is encoded in basis Bθj , and
sends it to Bob.

2: Bob: Chooses a basis string θ̃n ∈ {0, 1, ..., d}n uniformly at random. When receiving the

ith qudit, he measures it in the basis Bθ̃i , to obtain outcome x̃i.

Both parties wait for a timeperiod ∆t.

3: Alice: Sends the basis information θn to Bob, and outputs xn.

4: Bob: Computes I := {i ∈ [n]|θi = θ̃i}, and outputs (I, x̃I).

We are now ready to state our result on the security of nonuniform weak string erasure. We

first state the general result for quantum memories, and then focus on the tensor-product channels

of the type F = N⊗νn.

Theorem 4.2.2. (i) Let δ ∈]0, 12 [ and let Bob’s storage be given by F : B(Hin) → B(Hout). Then

Protocol 1 is an (n, λ(δ, d), ε(δ, d), 1/(d +1), d)-weak string erasure protocol with min-entropy

rate

λ(δ, d) = − lim
n→∞

1

n
PF
succ ((log(d+ 1)− 1− δ) · n) ,

and error ε(δ, d) = 2 exp(−f(δ, d)n) with

f(δ, d) :=
(δ/4)2

32
(
log((d+ 1) · d) + log 4

δ

)2 > 0. (4.22)
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(ii) Suppose F = N⊗νn for a storage rate ν > 0, where N satisfies the strong-converse prop-

erty (4.9) and has capacity CN bounded by

CN · ν < log(d+ 1)− 1 . (4.23)

Let δ ∈]0, 12−CN ·ν[. Then Protocol 1 is an (n, λ̃(δ, d), ε(δ, d), 1/(d+1), d)-weak string erasure

protocol for sufficiently large n, where

λ̃(δ, d) = ν · γN
(
log(d+ 1)− 1− δ

ν

)

. (4.24)

Note that for the special case of bounded-storage, where N = Id, the classical capacity CN =

log d, so that the bound in (4.24) holds for a storage rate of

ν <
log(d+ 1)− 1

log d
≈ 1, for large d. (4.25)

Thus for the case of bounded storage, security can in principle be obtained for any storage rate

ν < 1, provided we choose a large enough system size d.

It is easy to see that the protocol is correct if both parties are honest: if Alice is honest, her

string Xn = xn is chosen uniformly at random from {0, 1, . . . , d − 1}n as desired, and if Bob is

honest, he clearly obtains x̃i = xi whenever i ∈ I for a random subset I ⊆ [n]. In the remainder of

this section, we demonstrate security when either party is dishonest.

4.2.2 Security against Dishonest Bob

We begin by modeling Bob’s attack as a CPTP map E : B((Cd)⊗n) → B(Hin ⊗ HK) so that for

any input state ρ ∈ (Cd)⊗n, provided by Alice before the waiting time, he obtains an output state

ζQinK = E(ρ). Here Qin is the quantum information he puts into his quantum storage, and K is

any additional classical information he retains. Hence, the joint state of Alice and Bob before his

storage noise is applied is of the form

ρXnΘnKQin
=

1

dn(d+ 1)n

∑

xn,θn,k

PK|Xn=xn,Θn=θn(k) |xn〉〈xn| ⊗ |θn〉〈θn|
︸ ︷︷ ︸

Alice

⊗ |k〉〈k| ⊗ ζxnθnk
︸ ︷︷ ︸

Bob

, (4.26)
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where ζxnθnk is the state on Hin depending on Alice’s choice of string xn, bases θn and Bob’s

classical information k. Bob’s storage then undergoes noise described by F : B(Hin) → B(Hout),

and the state evolves to ρXnΘnKF(Qin). After time ∆t, Bob also receives the basis info Θn = θn.

Then their joint state is

ρXnΘnKF(Qin) =
1

dn(d+ 1)n

∑

xn,θn,k

PK|Xn=xn,Θn=θn(k) |xn〉〈xn|
︸ ︷︷ ︸

Alice

⊗ |θn〉〈θn| ⊗ F(ζxnθnk)
︸ ︷︷ ︸

Bob B’

, (4.27)

where Bob now holds B′ = ΘnKF(Qin).

We next need to show that even when Bob is dishonest, he cannot learn much about the entire

string Xn. In other words, our goal is to show that there exists some λ > 0, such that (4.15) is

satisfied. Our proof now proceeds in three steps. First, we consider Bob’s information about the

string Xn given only his classical information K, and the basis information Θn that he receives.

This can be quantified using entropic uncertainty relations in terms of the Shannon entropy for

(d+ 1) MUBs in Cd (see Section 3.2.1). Recall that the set of (d+ 1) MUBs in Cd satisfies [112]

1

d+ 1

d+1∑

i=1

H(Bi|ρ) ≥ log(d+ 1)− 1, ∀ ρ ∈ Cd, (4.28)

where H(Bi|ρ) is the Shannon entropy of the probability distribution induced by measuring the

state ρ in the basis Bi. Using [114, Theorem 4.22] this uncertainty relation implies a bound on

Bob’s information in terms of the smooth min-entropy,

Hε/2
∞ (Xn|KΘn)ρ ≥

(

log(d+ 1)− 1− δ

2

)

n , (4.29)

for any 0 < δ < 1
2 with

ε = 2exp

(

− (δ/4)2n

32
(
log((d+ 1) · d) + log 4

δ

)2

)

. (4.30)

That is, the error decreases exponentially with n, as desired. Note that instead of mutually unbiased

bases, we could have used any other form of encoding, which obeys a strong uncertainty relation.

Next we consider Bob’s information when he is also given the output of his storage device F(Q).

We know from [76] that the uncertainty relation (4.29) determines the rate at which Bob needs
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to send information through his storage device. Using [76, Lemma 2.2] together with (4.29), we

obtain

Hε
∞(Xn|ΘnKF(Qin))ρ ≥ − log PF

succ

[
n
(
log(d+ 1)− 1− δ

2

)
− log 2

ε

]

≥ − logPF
succ

[
n(log(d+ 1)− 1)− n δ2

]
, (4.31)

where, PF
succ(nR) is the average probability of sending a randomly chosen string x ∈ {0, 1}nR

through the storage F , as defined in (4.8). The second inequality above follows from the mono-

tonicity of PF
succ and the fact that log 2

ε <
δ
2n for 0 < δ < 1

2 . By definition of the smooth min-entropy,

this implies that there exists an ideal state σXnB′ such that

1. σXnB′ ≈ε ρXnB′ ,

2. 1
nH∞(Xn|B′)σ ≥ − 1

n log P
F
succ

[
n log(d+ 1)− n− δ

2n
]
,

which proves part (i) of Theorem 4.2.2.

In the special case that F is the tensor product channel F = N⊗νn, the right hand side of (4.31)

is the success probability of sending νn bits at a rate R = (log(d+1)−1− δ/2)/ν. The final step is

to note that for channels N satisfying the strong converse property (4.9), this success probability

drops off exponentially with n according to the parameter γN (R/ν), whenever R > CN . Thus we

obtain that there exists an ideal state σXnB′ that is ε-close to ρXnB′ and has a min-entropy

1

n
H∞(Xn|B′)σ ≥ ν.γN

(

log(d+ 1)− 1− δ
2

ν

)

> 0 , (4.32)

whenever

CN · ν < log(d+ 1)− 1− δ

2
. (4.33)

This proves part (ii) of Theorem 4.2.2. As before, the error rate in (4.30) shows that exponential

security (in n) is possible for any constant δ > 0.
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4.2.3 Security against Dishonest Alice

When Alice is dishonest, it is intuitively obvious that she is unable to gain any information about

the index set I, since she never receives any information from Bob during our protocol. However,

a more careful security analysis is required if we want to use weak string erasure to build more

complicated primitives like oblivious transfer. The proof of security when Alice is dishonest is

essentially analogous to [76] (see Section 3.4 and Figures 7 and 8), where an imaginary “simulator”

with perfect quantum memory is introduced, to define the desired ideal state. Here, we merely

state how to adapt the proof of [76]: here we naturally obtain Ψ(p) in place of the uniform distri-

bution τ2[n] in our simulation. Similarly, the subset I is not chosen uniformly at random, but with

probability

Pr(I) :=
(

1

d+ 1

)|I|( d

d+ 1

)n−|I|

. (4.34)

We have already discussed in Section 4.1.3 how our bounds in (4.25) and (4.33) are an im-

provement over pervious security bounds. As a concrete example, we consider the case when

the noisy storage is in fact the depolarizing channel, that is, for any ρ ∈ B(Hin), we have N (ρ) =

rρ+(1−r)I/d. We compare the security regions obtained from previous bounds and those obtained

from our new bound, for WSE with depolarizing noise in Fig. 4.2.

4.3 Cryptographic Tools

In order to construct a protocol for oblivious transfer from weak string erasure, we will need a few

additional cryptographic tools, which we briefly describe here. For an integer n, we denote [n] :=

{1, . . . , n}. We use 2[n] := {S|S ⊆ [n]} to refer to the set of all possible subsets of [n], including

the empty set φ. For an n-bit string Xn = (X1, . . . ,Xn), we denote by XS = (Xi1 , . . . ,Xi`), the

substring corresponding to the subset S = {i1, . . . , i`} ∈ 2[n].

4.3.1 Privacy Amplification

Intuitively, privacy amplification [107, 108] allows us to turn a long string X, about which the

adversary holds some quantum information Q, into a shorter string Z = Ext(X,R) about which

he is almost entirely ignorant, using a 2-universal hash function Ext(X,R). A function Ext :
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Figure 4.2: Security regions (r, ν) for weak string erasure (WSE) with depolarizing noise N (ρ) =
rρ+ (1 − r)I/d , in dimensions d = 4, 5. Previously [76], security was shown in the regions below
the dotted black curve for d = 4 and the dot-dashed green curve for d = 5. Our analysis extends
the security region to the solid blue curve (d = 4) and the dashed red curve (d = 5) respectively.

{0, 1}n ⊗R → {0, 1}` is called 2-universal if for all x 6= x′ ∈ {0, 1}n and uniformly chosen r ∈R R,

we have, Pr[Ext(x, r) = Ext(x′, r)] ≤ 2−`. The following theorem quantifies how the length ` of this

new string is directly related to the min-entropy H∞(X|Q) defined in (4.5).

Theorem 4.3.1 (Privacy amplification [107,108]). Consider a set of 2-universal hash functions

Ext : {0, 1}n ⊗ R → {0, 1}`, and a cq-state ρXnQ, where X
n is an n-bit string. Define ρXnQR =

ρXnQ ⊗ τR, that is, R is a random variable uniformly distributed on R as defined in (4.2), and

independent of XnQ. Then

ρExt(Xn,R)RQ ≈ε′ τ{0,1}` ⊗ ρRQ for ε′ := 2−
1
2
(Hε

∞(Xn|Q)−`)−1 + 2ε for all ε > 0 .

It should be stressed here that the extracted string Ext(Xn, R) is secure even if the adversary

is given R in addition to Q.
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4.3.2 Min-entropy Sampling

The sampling property of min-entropy was first established by Vadhan [125] in the classical case,

and in [73] for the classical-quantum case. Given a cq-state ρXnQ, where X
n is an n-bit string, an

important property of smooth min-entropy is that the min-entropy rate Hε∞(Xn|Q)/n is approxi-

mately preserved when considering a randomly chosen substring XS of Xn. The min-entropy rate

can thus be thought of as the (average) min-entropy of an individual bit Xi given Q. The analogous

property in the quantum setting holds when each Xi is a block, that is, a β-bit string instead of a

single bit. The following lemma proved in [76] as a special case of earlier results [73], makes this

statements more precise.

Lemma 4.3.2 (Min-entropy sampling [73, 76]). Let ρZQ be a cq-state, where

Z = (Zi,α)(i,α)∈[m]×[β] ∈ Mm×β({0, 1}) is an m × β-matrix with entries in {0, 1}. Let Zi :=

(Zi,1, . . . Zi,β) ∈ {0, 1}β be the i-th row of Z, such that Zm = (Z1, . . . , Zm) ≡ Z. Let

Hε∞(Z|Q)

mβ
≥ λ

be a lower bound on the smooth min-entropy rate of Z given Q. Let ω ≥ 2 be a constant, and

assume s, β ∈ N are such that

s ≥ m/4, and β ≥ max

{

67,
256ω2

λ2

}

, (4.35)

and let PS be the uniform distributions over subsets of [m] of size s. Then,

Pr
S

[
Hε+4δ

∞ (ZS |Q)

sβ
≥
(
ω − 1

ω

)

λ

]

≥ 1− δ2, where δ = 2−mλ
2/(512ω2) .

Adversarial partitions: In Lemma 4.3.2, βm bits were partitioned into m blocks Z1, . . . , Zm

of β bits each, by arranging the bits in the matrix Z. It was shown in [76] that Lemma 4.3.2 can

in fact be generalized to deal with arbitrarily chosen partitions, even in an adversarial manner. To

formally state the corresponding generalization of Lemma 4.3.2, first observe that any partition of

βm bits into m blocks is described by a permutation π : [m] × [β] → [m] × [β] where π ∈ Smβ .

We are interested in the min-entropy of the sβ-bit substring π(Z)S = (π(Z)i1 , . . . , π(Z)is), where

S = i1, . . . , is ⊂ [m] and π(Z)i denotes the ith row of the matrix π(Z) obtained by the action of π
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on Z. Note that the permutation Π = π is a random variable which may in general depend on the

adversary’s quantum information Q. More precisely, we will assume that Π is the result of a CPTP

map applied to Q. Such a CPTP map takes the form E : B(HQ) → B(HQ′ ⊗ HΠ), and has the

property that Π is classical and a permutation in Sm·β for any input state. The following lemma

essentially follows from the easily verified fact that the min-entropy is invariant under reordering,

that is,

Hε∞(Z|Q) = Hε∞(π(Z)|Q) for all permutations π ∈ Sm·β . (4.36)

Lemma 4.3.3 ( [76]). Let ρZQ be a cq-state, where Z = (Zi,α)(i,α)∈[m]×[β] ∈ Mm×β({0, 1}) is a

m× β-matrix with entries in {0, 1}. Assume that

Hε∞(Z|Q)

mβ
≥ λ ,

and that λ and s, β ∈ N satisfy condition (4.35) of Lemma 4.3.2. Let E : B(HQ) → B(HQ′ ⊗HΠ)

be a permutation-computing CPTP map, as explained above, and let

ρZQ′Π = (IZ ⊗ E)ρZQ .

Finally, let PS be the uniform distribution over subsets of [m] of size s. Then for any constant

ω ≥ 2

Pr
S

[
Hε+4δ

∞ (Π(Z)S |Q′Π)

sβ
≥
(
ω − 1

ω

)

λ

]

≥ 1− δ2 where δ = 2−mλ
2/(512ω2) .

4.3.3 Interactive Hashing

A final tool we need is interactive hashing [37, 113] first introduced in [100]. This is a two-party

primitive where Bob inputs some string W t, and Alice has no input. The primitive then generates

two strings W t
0, W

t
1, with the property that one of the two equals W t. For a protocol implementing

this primitive, security is intuitively specified by the following conditions: Alice does not learn which

of the two strings is equal to W t, and Bob has very little control over the other string created by

the protocol. This is stated formally in the following Lemma, proved in [37,113].
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Lemma 4.3.4 (Interactive Hashing [37,113]). There exists a protocol called interactive hashing

between two players, Alice and Bob, such that Alice has no input, Bob has input W t ∈ {0, 1}t and
both players output (W t

0 ,W
t
1) ∈ {0, 1}t × {0, 1}t, satisfying the following:

Correctness: If both players are honest, then W t
0 6= W t

1 and there exists a D ∈ {0, 1} such that

(a) W t
D =W t, and (b) the distribution of W t

1−D is uniform on {0, 1}t\{W t}.

Security for Bob: If Bob is honest, then W t
0 6= W t

1 and there exists a D ∈ {0, 1} such that

W t
D = W t. If Bob chooses W t uniformly at random, then D is uniform and independent of

Alice’s view.

Security for Alice: If Alice is honest, then for every subset S ⊆ {0, 1}t,

Pr[W t
0 ∈ S and W t

1 ∈ S] ≤ 16 · |S|
2t

(4.37)

4.4 Oblivious Transfer

Oblivious transfer (OT), which was first introduced by Rabin [104], is a special case of the problem

of secure function evaluation described earlier. We will describe here a variant of this, known as

Fully Randomized Oblivious Transfer [30, 44]. This primitive outputs two strings S`0, S
`
1 ∈ {0, 1}`

to Alice, and a choice bit C ∈ {0, 1} and S`C to Bob. Security means that if Alice is dishonest,

she should not learn anything about C. If Bob is dishonest, we demand that there exists some

random variable C such that Bob is entirely ignorant about S`1−C . That is, he may learn at most

one of the two strings which are generated. It has been shown that fully randomized OT can

easily be converted into standard 1–2 oblivious transfer [9, 14]. Furthermore, since any two-party

cryptographic problem can be solved using OT [64], our final goal will be to demonstrate a secure

protocol for fully randomized OT in the noisy-storage model.

We begin, as before, with a formal definition of the primitive.

Definition 4.4.1. An (`, ε)–fully randomized oblivious transfer (FROT) scheme is a protocol be-

tween Alice and Bob satisfying the following:

Correctness: If both parties are honest, then the ideal state σS`
0S

`
1CS

`
C
is defined such that
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1. The distribution over S`0, S
`
1 and C is uniform:

σS`
0S

`
1C

= τ{0,1}` ⊗ τ{0,1}` ⊗ τ{0,1} .

2. The real state ρS`
0S

`
1CY

` created during the protocol is ε-close to the ideal state:

ρS`
0S

`
1CY

` ≈ε σS`
0S

`
1CS

`
C
, (4.38)

where we identify A = (S`0, S
`
1) and B = (C, Y `).

Security for Alice: If Alice is honest, then there exists an ideal state σS`
0S

`
1B

′C , where C is a

random variable on {0, 1}, such that

1. Bob is ignorant about S`1−C :

σS`
1−C

S`
C
B′C ≈ε τ{0,1}` ⊗ σS`

C
B′C .

2. The real state ρS`
0S

`
1B

′ created during the protocol is ε-close to the ideal state:

ρS`
0S

`
1B

′ ≈ε σS`
0S

`
1B

′ .

Security for Bob: If Bob is honest, then there exists an ideal state σA′S`
0S

`
1C

such that

1. Alice is ignorant about C:

σA′S`
0S

`
1C

= σA′S`
0S

`
1
⊗ τ{0,1} .

2. The real state ρA′CY ` created during the protocol is ε-close to the ideal state:

ρA′CY ` ≈ε σA′CS`
C
,

where we identify B = (C, Y `).

We first state a simplified version of the actual protocol which executes fully randomized obliv-

ious transfer from WSE, which contains all the essential ingredients for understanding the main
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steps of our security proof. This is a purely classical protocol, using the quantum primitive WSE.

The full protocol follows later. The main difference from the protocol presented in [76] is the fact

that I is no longer uniform, and honest Bob only learns about pn entries xj , whereas in the case

of uniform WSE he could learn roughly n/2. Here, we introduce a new parameter η = 2(d + 1) in

the protocol, such that with high probability Bob learns at least n/η of the indices.

Our protocol uses two ingredients, privacy amplification and the primitive interactive hashing,

both of which are described in Section 4.3 above. In our context, the interactive hashing protocol

is useful in the following way. It takes as inputs a subset Itr (encoded as a string w) from Bob, and

outputs two subsets I0,I1 ∈ [n] (encoded as strings w0, w1) to both Alice and Bob. The protocol

ensures that there exists a c ∈ {0, 1}, such that Ic = Itr, that is, one of the two subsets it outputs

is equal to Bob’s original input. Note that since Bob knows his input, he can of course compute c.

Nevertheless, interactive hashing ensures that Alice cannot learn which subset is the same as Bob’s

input, that is, Alice cannot learn c. And while Bob can choose one of these subsets (namely Ic),
the choice of the other subset is not under his control (4.37). In fact, I1−c is essentially chosen at

random.

Protocol 2: Oblivious Transfer: Naive Protocol

Outputs: (s`0, s
`
1) ∈ {0, 1}` × {0, 1}` to Alice, and (c, y`) ∈ {0, 1} × {0, 1}` to Bob

1: Alice and Bob: Execute WSE. Alice gets a string xn ∈ {0, 1, . . . , d − 1}n, Bob a set

I ⊂ [n] and a string s = xI . If |I| < n/η, Bob chooses uniformly at random a set Itr of

size |Itr| = n/η. Otherwise, he randomly truncates I to |Itr| of size n/η, and deletes the

corresponding values in s.

2: Alice and Bob:Execute interactive hashing with Bob’s input w equal to a description of Itr =
Enc(w). Interpret the outputs w0 and w1 as descriptions of subsets I0 and I1 of [n].

3: Alice:Chooses r0, r1 ∈R R and sends them to Bob.

4: Alice:Outputs (s`0, s
`
1) := (Ext(xI0 ,r0),Ext(xI1 ,r1)) using the 2-universal hash function known

from quantum key distribution (see Section 4.3.1) Ext : {0, . . . , d− 1}n/η ×R → {0, 1}`.

5: Bob: Computes c ∈ {0, 1} with I = Ic, and xI from s. He outputs (c, y`) := (c,Ext(s, rc)).
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Let us assume that the subset I1−c generated by the interactive hashing protocol is uniformly

distributed over subsets of size n/η not equal to I. The string xI1−c
is then obtained by sampling

from the string xn which, by the definition of nonuniform WSE, has high min-entropy. We therefore

expect the value s`1−c to be uniform and independent of Bob’s view. This should imply security for

Alice, whereas security for Bob immediately follows from the properties of interactive hashing.

In this intuitive argument, we have ignored the fact that the sampling result only applies to

blocks (Lemma 4.3.3) and not individual bits. To make use of the sampling results, we hence need

to make slight modification to the simple protocol given above. We partition xn (where n = βm)

into m blocks of β dits each. To use interactive hashing in conjunction with subsets, the actual

protocol requires an encoding of subsets as strings. Since our subsets will now be smaller than

in [76], we choose t such that 2t ≤
(
m
m/η

)
≤ 2 · 2t, and an injective encoding Enc : {0, 1}t → T ,

where T is the set of possible subsets of size m/η. Note that this again means that not all subsets

can be encoded but at least half of them will. We are now ready to state our complete protocol to

realize fully randomized oblivious transfer (FROT).

Protocol 2: WSE-to-FROT

Parameters: Set η := 2(d + 1). Integers n, β such that m := n/β is a multiple of η. Outputs:

(s`0, s
`
1) ∈ {0, 1}` × {0, 1}` to Alice, and (c, y`) ∈ {0, 1} × {0, 1}` to Bob.

1: Alice and Bob: Execute (n, λ, ε, 1/(d + 1), d)–WSE.

Alice gets a string xn ∈ {0, 1, . . . , d − 1}n, Bob a set I ⊂ [n] and a string s = xI . If

|I| < n/η, then Bob simply chooses Itr from all subsets of size |I| = n/η uniformly at random.

Otherwise, he randomly truncates I to Itr of size n/η, and deletes the corresponding values

in s.

We arrange xn into a matrix z ∈ Mm×β({0, 1, . . . , d − 1}), by zj,α := x(j−1)·β+α for (j, α) ∈
[m]× [β].

2: Bob:

1. Randomly chooses a string wt ∈R {0, 1}t corresponding to an encoding of a subset

Enc(wt) of [m] with m/η elements.
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2. Randomly partitions the n dits of xn into m blocks of β dits each: He randomly chooses

a permutation π : [m]× [β] → [m]× [β] of the entries of z such that he knows π(z)Enc(wt)

(that is, these dits are permutation of the dits of s). Formally, π is uniform over permu-

tations satisfying the following condition: for all (j, α) ∈ [m]× [β] and (j′, α′) := π(j, α),

we have (j − 1) · β + α ∈ I ⇔ j′ ∈ Enc(wt).

3. Bob sends π to Alice.

3: Alice and Bob: Execute interactive hashing with Bob’s input equal to wt. They obtain

wt0, w
t
1 ∈ {0, 1}t with wt ∈ {wt0, wt1}.

4: Alice: Chooses r0, r1 ∈R R and sends them to Bob.

5: Alice: Outputs (s`0, s
`
1) := (Ext(π(z)Enc(wt

0)
,r0),Ext(π(z)Enc(wt

1)
,r1)).

6: Bob: Computes c, where wt = wtc, and π(z)Enc(wt) from s. He outputs

(c, y`) := (c,Ext(π(z)Enc(wt),rc)).

Theorem 4.4.2 (Oblivious Transfer). For any ω ≥ (d + 1) and β ≥ max{67, 256ω2/λ2},
the protocol WSE-to-FROT implements an (`, 43 · 2−

λ2

512ω2β
n
+ 2ε)-FROT from one instance of of

(n, λ, ε, p, d)-nonuniform WSE, where ` :=
⌊((

ω−1
ω

)
λ

4(d+1) − λ2

512ω2β

)

n− 1
2

⌋

.

4.4.1 Security for Bob

To show that the protocol is secure against a cheating Alice, we have to show that there is no way

for her to learn which of the two strings is known to honest Bob. Formally, let ρ̃A′′CY ` denote the

joint state at the end of the protocol, where A′′ is the quantum output of a malicious Alice and

(C, Y `) is the classical output of an honest Bob. In what follows, we show that we can construct

an ideal state σ̃A′′S`
0S

`
1C

= σ̃A′′S`
0S

`
1
⊗ τ{0,1} that satisfies ρ̃A′′CY ` = σ̃A′′CS`

C
.

We analyze the actions of a malicious Alice in two parts. First, she executes the WSE protocol

with Bob, after which they share the state ρA′XII . Recall that the properties of weak string erasure

ensure that a dishonest Alice does not know which dits xI of xn are known to Bob, that is, she is

ignorant about the index set I. In other words, there exists an ideal state σA′X̂nIX̂I
such that the

reduced states satisfy ρA′XII = σA′X̂II
. Next Alice takes A′ as input and interacts with Bob in the
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rest of the protocol. To analyze the resulting joint output state ρ̃A′′CY ` , we can use the properties

of weak string erasure, starting from the state σA′X̂nI . Following the arguments in [76], it can be

easily shown that ρ̃A′′CY ` = σ̃A′′CS`
C
, where σ̃ denotes the ideal state at the end of the protocol.

It only remains to be shown that Alice does not learn anything about C, that is, σ̃A′′S`
0S

`
1C

=

σ̃A′′S`
0S

`
1
⊗τ{0,1}. From the properties of nonuniformWSE it follows that σA′X̂nI = σA′X̂n⊗Ψ(1/(d+

1)). Since Bob randomly truncates I to Itr such that |Itr| = n/η, the truncated set is independent of

A′. Furthermore, although I is not distributed uniformly over 2[n], we can show that the truncated

set Itr is indeed distributed uniformly over all subsets of size n/η. Intuitively this follows from the

fact that the distribution of the set I depends only on |I|, the number of elements in I.
Formally, let p(Ā) denote the probability that |I| ≥ n/η. Then, the probability of a given

truncated set Itr can be written in terms of the probability p(Ā) as follows,

p(Itr|Ā) =
∑

I⊆[n]
|I|≥n/η

p(I|Ā)
( |I|
n/η

) p(|I| ≥ n/η) =
1

p(Ā)

∑

I

p(I)
( |I|
n/η

) ,

independent of the choice of truncation. Here 1/
( |I|
n/η

)
is the probability that we pick a particular

Itr from the original I and p(I|Ā) is the conditional probability of a set I, given that Bob obtains a

sufficient number of indices. The last step is simply an application of the Bayes’ rule, p(Ā)p(I|Ā) =
p(Ā|I)p(I), where p(Ā|I) = 1 for the subsets I in the sum. Note that if |I| < n/η then Bob chooses

a subset of the desired size uniformly at random from all subsets of size |I| = n/η and hence Pr(Itr)
is always uniform. Hence, conditioned on any fixed St = st, the permutation Π is uniform and

independent of A′. It follows that the string St is also uniform and independent of A′ and Π.

From the properties of interactive hashing we are guaranteed that C is uniform and independent

of Alice’s view afterwards, and hence,

σ̃A′′S`
0S

`
1C

= σ̃A′′S`
0S

`
1
⊗ τ{0,1} .

Finally, the fact that Itr is uniform, together with the properties of interactive hashing (Lemma 4.3.4),

ensure that Alice cannot gain any information as to which of the two subsets I0 and I1 of bits are

known to Bob. Hence, she cannot learn C, as desired.
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4.4.2 Security for Alice

Again, it follows from weak string erasure that a dishonest Bob gains only a limited amount of

information about the string Xn. The properties of interactive hashing ensure that Bob has very

little control over the subset I1−c chosen by the interactive hashing. Therefore, by the results on

min-entropy sampling, Bob has only limited information about the dits in this subset. Privacy

amplification can then be used to turn this into almost complete ignorance. The security proof for

the case where Bob is dishonest is analogous to [76], and employs Lemma 4.3.3 with a subset size

of |S| = m/η.

4.4.3 Correctness

It remains to prove that if both parties are honest, then honest Bob can indeed learn the desired

SC . This requires us to show that for our choice of η, Bob can learn sufficiently many indices

i ∈ [n].

Lemma 4.4.3 (Correctness). Protocol WSE-to-FROT satisfies correctness with an error of

43 · 2−
λ2

512ω2β
n
. (4.39)

First, using the Hoeffding bound [60], we show that the probability that a subset of [n]—

each of whose entries is chosen with probability p = 1/(d + 1)—has less than n/η elements is at

most exp(−2n/η2). Consider a sequence of independent random variables {X1, . . . ,Xn}, which are

bounded as follows: Pr(Xi −E(Xi) ∈ [ai, bi]) = 1, ∀1 < i < n. Then, Hoeffding’s inequality states

that the sum S = X1 + . . .+Xn satisfies,

Pr(E(S)− S ≥ t) ≤ exp

(

− 2t2
∑n

i=1(bi − ai)2

)

. (4.40)

In our context, Xi is the binary variable which takes on the value 1 if the index i ∈ I, and
0 otherwise. The sum S is thus simply equal to |I|, the number of elements in the index set I,
which is a random subset of [n]. For the case of d + 1 encodings, Pr(Xi = 1) = 1/(d + 1) and
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Pr(Xi = 0) = d/(d+ 1), so that the expectation value satisfies

E(S) = E(|I|) = n

d+ 1
. (4.41)

Furthermore, we can take ai = 0 and bi = 1 for all i. Applying Hoeffding’s inequality to the sum

S = |I| gives

Pr(
n

d+ 1
− |I| ≥ n

d+ 1
− n

η
) ≤ exp

(

−2n

[
1

d+ 1
− 1

η

]2
)

. (4.42)

Rearranging terms, we obtain the probability that a random set I has less than n/η elements:

Pr(|I| ≤ n

η
) ≤ exp

(

−2n

[
1

d+ 1
− 1

η

]2
)

. (4.43)

Since our work is mainly a proof of achievability, we do not at this stage care about optimality or

efficiency. We simply pick a choice of η that will satisfy this condition, and set η = 2(d+1). Thus,

the probability that a random subset of [n] has less than n/η elements is at most exp(−2n/η2).

Let ξ := 2−n/η
2
. We have to show that the state ρ̃S`

0S
`
1CY

` at the end of the protocol is close to

the given ideal state σ̃S`
0S

`
1CS

`
C
. As shown above, the probability that a subset of [n] has less than

n/η elements is at most

exp(−2n/η2) ≤ ξ . (4.44)

Hence, the probability that Bob does not learn sufficiently many indices when both parties are

honest is at most ξ. Let A be the event that |I| ≥ n/η. It remains to show that the state

ρ̃S`
0S

`
1CY

`|A is close to the given ideal state σS`
0S

`
1CS

`
C
.

Note that the correctness condition of WSE ensures that the state created by WSE is equal

to ρXnIXI = σXnIXI , where σXnI = τ{0,1,...,d−1}n ⊗ Ψ(1/(d + 1)). Since I0 and I1 are chosen

independently of Xn, XI0 and XI1 have a min-entropy of n/η each. Since ` ≤ n/2η ≤ n/η −
2 log 1/ξ, it follows from privacy amplification that S`C is independent and ξ-close to uniform.

Since dishonest Bob is only more powerful than honest Bob, we can carry over from the proof

against dishonest Bob, that S`1−C is independent and uniform except with an error of at most

93



ε̂ = 41 · 2−
λ2

512ω2β
n
, where we used the fact that Bob is also honest during weak string erasure

(ε = 0). Finally, by the same arguments showing security for Bob, we have that C is uniform and

independent of S`0 and S`1. Hence,

ρS`
0S

`
1C|A ≈ξ+ε̂ σS`

0S
`
1C

.

Since the extra condition on the permutation Π implies that Bob can indeed calculate Π(Z)Enc(W )

from XI , we have that Y ` = S`C . Using Pr[A] ≥ 1− ξ, we get

ρS`
0S

`
1CY

` ≈2ξ+ε̂ σS`
0S

`
1CS

`
C
.

Finally, since λ ≤ 1, β > 1 and ω ≥ (d+ 1), we have 1/η2 = 1/(4(d + 1)2) > λ2/(512ω2β). Adding

up all errors and noting that

2 · 2−
1
η2
n ≤ 2 · 2−

λ2

512ω2β
n
,

we obtain the error bound in (4.39).

4.5 Conclusion

We have shown that any two-party cryptographic primitive can be implemented securely in the

setting of bounded quantum storage, even if the adversary can store all but a fraction of the

transmitted pulses. This is optimal, since we can never hope to achieve security if the cheating

party could store all quantum communication made available to him. Our result demonstrates

that there is no physical principle that prevents us from achieving security even with a very high

storage rate ν < 1. We have also shown in the noisy-storage setting that security is possible for a

much larger range of noisy quantum memories.

To achieve our result we use higher-dimensional states which are difficult to create in practice.

It is therefore an interesting open question whether the same result could be obtained using merely

BB84 encoded qubits. We may also note, that our approach merely relies on the existence of

entropic uncertainty relations for multiple encodings, and our protocols and proofs will carry over

if we were to use any other encodings for which strong uncertainty relations are known to exist. For

example, it is conceivable that uncertainty relations for multiple encodings can be based on top of
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BB84 encoded qubits [54], which would lead to a protocol that is easy to implement experimentally.
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Appendix A

The AQEC Algorithm for Qubit
Codes

For the most practically relevant case of codes encoding a single qubit, that is, when C is of

dimension d = 2, the algorithm given in Section 2.5 has considerable simplifications. In this

appendix, we show that the maximum eigenvalue λmax of ∆sum required in Step 2 can be easily

computed without requiring any diagonalization of ∆sum. In addition, we show that the fidelity

loss ηP needed in Step 3 is also simple to compute. In general, obtaining the value for ηP requires

an exhaustive optimization over all pure states in the code space. For a qubit code, however, we

will see that computing ηP requires no such exhaustive optimization, and can be done using only

eigenanalysis.

A.1 Computing the Maximum Eigenvalue of ∆sum

Given an orthonormal basis {|v1〉, |v2〉} for the qubit codespace, we can construct the Pauli basis

{σ0 ≡ I2, σx, σy, σz}:

σ0 = |v1〉〈v1|+ |v2〉〈v2| ≡ I2,

σx = |v1〉〈v2|+ |v2〉〈v1|,

σy = −i(|v1〉〈v2| − |v2〉〈v1|),

and σz = |v1〉〈v1| − |v2〉〈v2|. (A.1)
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The Pauli basis forms a basis for the qubit operator algebra. The AQEC conditions (2.22) can then

be written as

PE†
i E(P )−1/2EjP = βijI2 +

∑

a

γaijσa, (A.2)

where a = x, y, z, and γaij are some coefficients so that ∆ij ≡
∑

a γ
a
ijσa. The right-hand side of (A.2)

can be viewed as an expansion of the left-hand side in the Pauli basis.

The first simplification of the algorithm given in Section 2.5, for a qubit code, comes from the

following lemma.

Lemma A.1.1. For C encoding a single qubit,

∆sum =
(

1−
∑

ij

|βij |2
)

P. (A.3)

Proof. Using ∆ij =
∑

a γ
a
ij σa, we can write ∆sum as

∆sum =
∑

ij

∑

ab

γa∗ij γ
b
ijσaσb

= P
∑

ij

∑

a

∣
∣γaij
∣
∣2 +

∑

ij

∑

a6=b

γa∗ij γ
b
ijσaσb. (A.4)

Since γa∗ij = γaji, the second term on the right-hand side of (A.4) can be written as

1

2

(∑

ij

∑

a6=b

γajiγ
b
ijσaσb +

∑

ij

∑

a6=b

γajiγ
b
ijσaσb

)

=
1

2

(∑

ij

∑

a6=b

γajiγ
b
ijσaσb +

∑

ij

∑

a6=b

γbijγ
a
jiσbσa

)

=
1

2

∑

ij

∑

a6=b

γajiγ
b
ij (σaσb + σbσa) = 0.

In the first equality, we have interchanged the indices a↔ b and i↔ j in the second term. The last

equality comes from the fact that the Pauli matrices anticommute. We are thus left with only the

first term in (A.4). Now, the TP condition forRP ◦E acting on C gives
∑

ij |βij |2+
∑

ij

∑

a |γaij|2 = 1.

This means that we have ∆sum = P
∑

ij

∑

a |γaij |2 = (1−∑ij |βij |2)P , thus proving the lemma. �

Lemma A.1.1 tells us that ∆sum has a flat spectrum. Its maximum eigenvalue is thus simply
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given by

λmax = ‖∆sum‖ = 1−
∑

ij

|βij |2, (A.5)

with βij as in (2.27b). Observe that the proof of Lemma A.1.1 required detailed properties of the

Pauli matrices which, together with the identity operator I2, form a basis for the qubit operator

space. In general, this lemma does not hold for higher-dimensional codes.

A.2 Computing the Fidelity Loss for the Transpose Channel

In Step 3 of our algorithm in Section 2.5, we have to compute the fidelity loss ηP for the recovery RP ,

or equivalently, the worst-case fidelity for the map RP ◦E . For a qubit code, (RP ◦E) : B(C) → B(C)
is just a qubit map. Observe that RP ◦E is not only CPTP but is also unital (i.e., (RP ◦E)(P ) = P ).

Hence, we only need to consider a qubit map that is CPTP and unital. Here, we show that the

worst-case fidelity for a unital, CPTP qubit map is very easy to compute.

Even though our context here only requires a unital, CPTP qubit map, we begin with a general

CP map Φ ∼ {Ki} on a d-dimensional Hilbert subspace C. This will highlight why the qubit case

is particularly simple. It is convenient to use a matrix description for Φ by going to the Hilbert-

Schmidt space in which operators on C are represented as vectors and linear maps on operators

are represented as matrices. The Hilbert-Schmidt vector space is endowed with the inner product

〈A|B〉 ≡ tr(A†B) where |A〉 and |B〉 are the vectors corresponding to the operators A and B. To

go from the operator description to the Hilbert-Schmidt space, one picks any orthonormal basis

{Oi} for B(H). Then, the vector corresponding to any operator A ∈ B(H) has entries given by

tr{O†
iA}; the matrix corresponding to a linear map E on operators in B(H) has matrix elements

given by tr{O†
iE(Oj)}.

Let us make use of a Hermitian basis {O0, O1, . . . , Od2−1} for B(C) where

O0 ≡ I, O†
α = Oα ∀α, tr{O†

αOβ} = δαβd ∀ α, β.

The operators Oα for α = 1, . . . , d2 − 1 are clearly traceless. Such a basis exists for any d—for

example, one can use the standard generators of the SU(d) group, augmented with the identity

operator, as the basis elements. Then, the action of Φ can be represented as a matrix M acting on
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the Hilbert-Schmidt space with matrix elements

Mαβ ≡ 1

d
tr{OαΦ(Oβ)}. (A.6)

Since Φ is CP and Oi’s are Hermitian, we have that M∗
αβ = Mαβ, so M is a real matrix.

Now, the density operator corresponding to any pure state |ψ〉 in C can be expanded in terms

of the Hermitian basis as

|ψ〉〈ψ| = 1

d
(I+ s ·O) =

1

d
~s · ~O, (A.7)

where s is a real (d2 − 1)-element vector, ~s ≡ (1, s), O ≡ (O1, O2, . . . , Od2−1), and ~O ≡ (I,O). s is

not an arbitrary vector, but has to obey some constraints in order for it to correspond to a pure

state.

Using (A.6) and (A.7), we can compute the fidelity for a state |ψ〉 ∈ C under the map Φ as

F 2
[
|ψ〉,Φ(|ψ〉〈ψ|)

]
= tr{|ψ〉〈ψ|Φ(|ψ〉〈ψ|)}

=
1

d2

d2−1∑

α,β=0

sαsβ tr{OαΦ(Oβ)}

=
1

d

d2−1∑

α,β=0

sα Mαβ sβ

=
1

d
sTM s, (A.8)

where s is just ~s viewed as a column vector, and the superscript T denotes the transpose. A simple

way to understand this expression is to observe that the right-hand side of the first line of (A.8) is

the inner product between the vector in the Hilbert-Schmidt space corresponding to the operator

|ψ〉〈ψ| (which is just s up to some normalization factor), and the vector corresponding to Φ(|ψ〉〈ψ|)
(which is just Ms up to some normalization factor). The final expression in (A.8) is then just

this Hilbert-Schmidt inner product, with the factor of 1
d to take care of the normalization of the

operator basis.

We can rewrite the expression in (A.8) for the fidelity using Msym ≡ 1
2(M + MT ), the sym-

metrized version ofM. Observe that sTMsym s = 1
2 (s

TM s+(sTM s)T ) = sTM s. Equation (A.8)
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can hence be rewritten as

F 2
(
|ψ〉,Φ(|ψ〉〈ψ|

)
= sTMsym s. (A.9)

From this, we see that finding the worst-case fidelity is equivalent to the following minimization

problem for the real, symmetric matrix Msym:

minimize: sTMsym s, (A.10a)

constraint: s corresponds to a pure state. (A.10b)

For d > 2, the constraint (A.10b) is difficult to write down. This constrained minimization problem

is hence not simple for a general d.

For qubits (d = 2) however, the constraint equation is simple to write down. In this case, the

operator basis can be chosen to be the Pauli basis {σ0, σx, σy, σz}. Then, Eq. (A.7) corresponds

to the Bloch sphere representation of a pure state, with the Bloch vector s ≡ (sx, sy, sz) satisfying

‖s‖ = (s2x + s2y + s2z)
1/2 = 1. The constraint (A.10b) becomes

constraint: s = (1, s), with ‖s‖ = 1. (A.10b′)

The constrained minimization problem can then be solved using the Lagrange multiplier method.

For the case of a CPTP qubit map that is also unital, the minimization problem can be further

simplified. For any CPTP, unital Φ (arbitrary d), M takes the form

M =











1 0 . . . 0

0
... T
0











. (A.11)

The first row comes from the fact that Φ is TP, since we have set O0 = I, and all Oα’s for α > 0

are traceless. The first column comes from the fact that Φ is unital. T is a (d − 1) × (d − 1) real

matrix. Defining Tsym ≡ 1
2(T + T T ), (A.9) can be written as

F 2
(
|ψ〉,Φ(|ψ〉〈ψ|

)
=

1

d
(1 + sT Tsym s).

100



This means that we can equivalently minimize sTTsym s instead of the original sTMsym s in (A.10a).

Note that, for Φ with a Hermitian-closed Kraus set,1 T is symmetric so that Tsym = T . This is

indeed the case for Φ ≡ RP ◦ E ◦ P ∼ {PE†
i E(P )−1/2E†

jP}. For a qubit CPTP, unital Φ then,

the constrained minimization problem, with the operator basis {Oα} chosen as the Pauli basis,

becomes

minimize: sT Tsym s, (A.12a)

constraint: ‖s‖ =
√

s2x + s2y + s2z = 1. (A.12b)

The constraint simply tells us to minimize the expectation value of Tsym with respect to all real

unit vectors s.

Now, since Tsym is real and symmetric, it can be diagonalized with an orthogonal matrix

Q so that Tsym = QTTDQ, where TD is a real, diagonal matrix of eigenvalues of Tsym. Then

sTTsym s = (Qs)TTD(Qs). Q, being orthogonal, preserves the length of the vector it acts on. The

minimization problem (A.12) simply corresponds to minimizing the expectation value of TD over

all real unit vectors. As TD is real and diagonal, this minimum expectation value is exactly the

smallest eigenvalue of TD (and hence of Tsym), attained by the corresponding eigenvector normal-

ized to unit length. Therefore, we see that the fidelity loss for a CPTP, unital qubit map Φ is given

by

ηΦ = 1− min
|ψ〉∈C

F 2(|ψ〉,Φ(|ψ〉〈ψ|) = 1

2
(1− tmin),

where tmin is the smallest eigenvalue of Tsym corresponding to the map Φ. Setting Φ = RP ◦ E ◦ P
gives ηP .

1A set K ≡ {Ki} is Hermitian-closed if Ki ∈ K if and only if K†
i ∈ K.
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Appendix B

Constructing Maximally Commuting
Classes of Clifford Generators

In (3.46) and (3.47) we gave examples of constructing L = 3 and L = 4 MUBs in dimension d = 4,

such that they are cyclically permuted under the action of a unitary U that permutes the Clifford

generators in d = 4. Here, we show by a general construction that it is always possible to construct

L such classes in dimension d = 2n, whenever L|n and L is prime. We also outline a construction

for L = 2n + 1 classes, given a unitary U that cycles through all 2n + 1 Clifford generators, when

2n+ 1 is prime.

Given the 2n generators of the Clifford algebra in dimension d = 2n, we consider the set

S = {I,Γj , iΓjΓk,ΓjΓkΓl, ..., iΓ0Γ1..Γ2n−1 ≡ Γ2n}. (B.1)

To generate a set of L ≤ 2n + 1 MUBs, we seek to group the elements of S into L classes of

commuting operators, i.e., sets {C0, C1, . . . , CL−1 | Cj ⊂ S \ {I}} of cardinality |Cj | = d − 1, such

that,

(P1) The elements of Cj commute for all 0 ≤ j ≤ L− 1,

(P2) The classs are all mutually disjoint, that is,

Cj ∩ Ck = ∅ for all j 6= k, (B.2)

(P3) The unitary U that cyclically permutes the generators Γ0, . . . ,ΓL−1, also permutes the cor-

responding classes by permuting products of operators appropriately.
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To obtain such a set of classes, we first pick d − 1 elements for the class C0 and then generate the

rest of the classes by repeated application of U to the elements of C0. This automatically ensures

property (P3). To ensure (P1) and (P2), the d− 1 operators C0 ≡ {O1,O2, . . .Od−1} must satisfy

the following:

(i) For any pair Oi,Oj ∈ C0, [Oi,Oj ] = 0, and

(ii) The operators in C0 cycle through mutually disjoint sets of operators under the action of U .

To understand condition (ii) better, consider an operator Oi in C0. Then, by construction, Uk(Oi) ∈
Ck for 0 ≤ k ≤ L − 1, assuming that we construct a total of L classes. In addition, property (ii)

implies Uk(Oi) /∈ Cj, for any j 6= k. In other words, given any two operators Oi,Oj ∈ C0 that cycle

through the sets

Si = {Uk(Oi)|0 ≤ k ≤ L− 1}, and (B.3)

Sj = {Uk(Oj)|0 ≤ k ≤ L− 1} , (B.4)

respectively, under the action of U , property (ii) demands that Si ∩ Sj = ∅, for all i 6= j and

i, j = 1, 2, . . . , d− 1.

Finally, we note that no class can contain two generators Γj and Γk, since they do not commute.

When forming the classes we hence ensure that each one contains exactly one generator Γj, which

we refer to as the singleton Γ-operator of the class, as opposed to the rest of the elements which

will be products of Γ-operators. The fact that each class can contain at most one singleton operator

limits us to constructing a maximum of 2n + 1 such classes.

B.1 Mathematical Tools

Before proceeding to outline our construction, we establish some useful mathematical facts which

will help motivate our algorithm for the construction of mutually disjoint classes. For the rest of

the section, we will work with a set of p Γ-operators {Γ0,Γ2, . . . ,Γp−1} that are cycled under the

action of U , as follows,

U : Γ0 → Γ1 → . . .Γp−1 → Γ0, (B.5)

In other words, we are given a set of Γ-operators whose cycle-length is p.
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B.1.1 Length-2 Operators

First, we consider products of two Γ-operators of the form ΓiΓj, which we call length-2 operators.

It is convenient to characterize such pairs in terms of the spacing—(S)—between the operators

that constitute them. The spacing function S, for a given set of p operators, is simply defined as:

S(ΓiΓj) = (j − i)mod p. Then, the following holds:

Lemma B.1.1 (Unique spacings imply nonintersecting cycles). The action of U on any

length-2 operator ΓiΓj leaves its spacing function S(.) invariant. Thus, length-2 operators that

have unique spacings cycle through mutually disjoint sets of operators under the action of U .

Proof. Recall, U : Γi → Γ(i+1)modp. It clearly follows that

U : S(ΓiΓj) → S
(
Γ(i+1)modpΓ(j+1)modp

)

= (j − i)mod p = S(ΓiΓj).

�

B.1.2 Higher-Length Operators

Similar to the length-2 operators, we refer to any product of ` Γ-operators as a length-` operator.

For operators of length higher than 2, it becomes convenient to refer to them using their corre-

sponding index sets. For example, the operator Γi1Γi2 . . .Γi` will be simply denoted by the index

set (i1, i2, . . . i`). In the following lemma, we obtain a condition for any set of length-` operators to

cycle through mutually disjoint sets under the action of U .

Lemma B.1.2 (Mutually disjoint cycles for length `). Suppose the length-` operators (for

3 ≤ ` ≤ p− 1) that belong to the class C0 are such that they correspond to index sets (i1, i2, . . . , i`)

which sum to the same value

i1 + i2 + . . .+ i` = c`mod p, ∀ (i1, i2, . . . , i`) ∈ C0. (B.6)

Then, no given index set of length ` can belong to more than one class, for prime values of p.

Proof. Given the operators {Γi1Γi2 . . .Γi`} ∈ C0, such that the corresponding index sets (i1, i2, . . . , i`)
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sum to

i1 + i2 + . . .+ i` = c`mod p, ∀(i1, i2, . . . , i`) ∈ C0. (B.7)

Under the action of U , these index sets change to

(i1, i2, . . . , i`) → (i
(1)
1 , i

(1)
2 , . . . , i

(1)
` )

= (i1 + 1, i2 + 1, . . . , i` + 1)mod p .

For any index set (i
(1)
1 , i

(1)
2 , . . . , i

(1)
` ) ∈ C1, the sum of the indices corresponding to the new operators

{Γ
i
(1)
1

Γ
i
(1)
2

. . .Γ
i
(1)
`

} ∈ C1 becomes

i
(1)
1 + i

(1)
2 + . . .+ i

(1)
` = (c` + `)mod p.

Proceeding similarly, the corresponding operators in the class Ck have index sets (i
(k)
1 , i

(k)
2 , . . . , i

(k)
` )

that sum to

i
(k)
1 + i

(k)
2 + . . .+ i

(k)
` = (c` + k `)mod p, (B.8)

for all (i
(k)
1 , i

(k)
2 , . . . , i

(k)
` ) ∈ Ck. Thus, starting with a constraint on the length-` operators in C0, we

have obtained a constraint on the corresponding operators in a generic class Ck.
Now, to arrive at a contradiction, suppose that an index set (j1, j2, . . . , j`) whose indices {jm}m

take values from the set {0, 1, . . . , p− 1}, belongs to two different classes, Ck and C′
k (with k 6= k′).

The constraint imposed by (B.8) implies

(c` + k `)mod p = (c` + k′ `)mod p

⇒ (k − k′)`mod p = 0. (B.9)

Without loss of generality, let k > k′. Since we can form at most p classes, the difference (k − k′)

can be at most (p− 1). Finally, since ` ≤ p− 1, condition (B.9) cannot be satisfied for prime values

of p. �

Recall that to construct any p classes, we first construct the class C0, and then obtain the rest
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by successive application of U . Therefore, the fact that any index set of a certain length ` cannot

belong to more than one class implies that each length-` operator in C0 cycles through a unique

set of length-` operators under U . In other words, the length-` operators cycle through mutually

disjoint sets, as desired.

Lemma B.1.2 thus provides us with a sufficient condition for the set of length-` operators in

C0 to cycle through mutually disjoint sets under U , given a set of Γ-operators whose cyclelength is

primevalued. We only need to ensure that the length-` operators in the first class that we construct,

C0, correspond to index sets that all sum to the same value. This condition is of course subject to

the constraint that the maximum allowed length for the operators in C0 (and by extension, in any

class) is p− 1.

B.2 Constructing 2n+ 1 Prime Classes

To start with, we construct L = 2n + 1 classes in dimension d = 2n, when 2n + 1 is prime. This

case is particulary easy, and illustrates how the results of the previous sections are used in our

construction.

Theorem B.2.1 (2n+ 1 prime classes). Let G(full) = {Γ0, . . . ,Γ2n} denote the complete set of

(2n + 1) Γ-operators, and let U be the unitary that cycles through all of them, that is,

U : Γ0 → Γ1 . . .Γ2n−1 → Γ2n → Γ0 . (B.10)

If 2n+1 is prime, then there exist 2n+1 classes C0, C1, . . . , C2n satisfying properties (P1) through

(P3).

Proof. We prove the existence of 2n + 1 classes by construction. We first outline an algorithm to

pick d− 1 operators that constitute the class C0. The remaining classes are easily obtained by the

application of U to the elements of C0. Then, we make use of Lemmas B.1.1 and B.1.2 to prove

that the classes obtained through our construction do satisfy the desired properties.

Algorithm

1. Pick one of the elements of G(full), Γ0, as the singleton operator.
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2. Pair up the remaining operators in G(full) to form (n− 1) length-2 operators which commute

with Γ0, as follows,

L2 = {Γ1Γ2n, Γ2Γ2n−1, . . . ,Γn−2Γn+3, Γn−1Γn+2 },

where L2 denotes the set of length-2 operators in C1. Since we have left out the pair ΓnΓn+1

in the middle, we get, |L2| = n− 1.

3. Form higher-length operators that commute with L2∪{Γ0}, by combining Γ0 with appropriate

combinations of the length-2 operators. Any operator of even length ` = 2j is created by

combining i pairs in L2. And any operator of odd length ` = 2j + 1 is created by appending

Γ0 to a length-2j operator.

Denoting the sets of length-3 operators as L3, length-4 operators as L4, and in general, the

set of length-i operators as Li, we have,

|L3| = |L2| = n− 1,

|L4| =




n− 1

2



 , |L5| = |L4|,

|L6| =




n− 1

3



 , |L7| = |L6|,

...
...

|L2n−2| =




n− 1

n− 1



 = 1, |L2n−1| = |L2n−2|.

Putting together the operators from steps (1), (2), and (3) we get the desired cardinality for
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the class C0 as follows:

|C0| = 1 + (n− 1) +

2n∑

i=3

|Li|

= 1 + 2(n − 1) + 2




n− 1

2



+ 2




n− 1

3





+...+ 2




n− 1

n− 1





= 2

n−1∑

i=0




n− 1

i



− 1 = 2(2n−1)− 1

= 2n − 1 = d− 1. (B.11)

The rest of the classes are generated by successive applications of the unitary U to the elements

of C0, so that U : Ci → C(i+1) mod 2n+1.

It is easy to see that the elements of each class satisfy property (P1) above—the different length

operators have been chosen so as to ensure that they all commute with each other. Similarly, by

construction, they satisfy property (P3). It only remains to prove property (P2), that the classes

are all mutually disjoint.

The elements of L2 correspond to the following set of spacings,

S(L2) ≡ {2n − 1, 2n − 3, . . . , 5, 3},

which are all distinct. So by Lemma B.1.1, the elements of L2 cycle through mutually disjoint sets

of length-2 operators.

For higher-length operators, we first show that our construction meets the conditions of Lemma B.1.2.

For the class C0, the elements of L2 correspond to index sets that satisfy

L2(C0) = {(i1, i2)| i1 + i2 = 0mod (2n+ 1)}.
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The length-2 operators of a generic class Ck similarly satisfy

L2(Ck) = {(i1, i2)| i1 + i2 = 2kmod (2n+ 1)}. (B.12)

Since higher-length operators are essentially combinations of length-2 operators and the single-

ton operator, conditions similar to (B.12) hold for higher-length index sets as well. Since operators

of even length ` = 2j contain j pairs from L2, the corresponding index sets in C0 satisfy

i1 + i2 + . . . + i2j = 0mod (2n + 1),

∀ (i1, i2, . . . , i2j) ∈ C0.

Similarly, since the odd-length operators have Γ0 appended to the even-length operators, the

index sets of length ` = 2j + 1 in C0 satisfy,

i1 + i2 + . . . + i2j+1 = 0mod (2n + 1),

∀ (i1, i2, . . . , i2j+1) ∈ C0.

To sum up, for any 3 ≤ ` ≤ 2n, our construction ensures that index sets of length-` belonging to

C0 sum to the same value. The conditions of Lemma B.1.2 are therefore satisfied, with the quantity

c` in (B.6) taking the value c` = 0, for all ` = 3, . . . , 2n. Now, we can simply evoke Lemma B.1.2

to conclude that, when 2n + 1 is prime, the higher-length operators in C0 cycle through mutually

disjoint sets of operators. �

B.3 Constructing L|n Classes for Prime Values of L

Next, we show that it is possible to obtain an arrangement of operators into L classes in dimension

2n, when L is prime and L|n, such that the unitary U that cyclically permutes L of the Γ-operators

also permutes the corresponding classes.

Theorem B.3.1 (L|n classes for prime L). Suppose U is a unitary that cycles through sets of

L operators from the set G(full) \ {Γ2n} in dimension 2n, where L is prime and L|n. Then there

exist L classes C0, C1, . . . , CL−1 that satisfy properties (P1) through (P3).
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Proof: Note that since L|n we have n = rL for some positive integer r. The set of 2n Clifford

generators Γ0,Γ1, . . . ,Γ2n−1 can then be partitioned into 2r sets as follows.

G(0) = {Γ0,Γ1, . . . ,ΓL−1},

G(1) = {ΓL,ΓL+1, . . . ,Γ2L−1},
...

...

G(2r−1) = {Γ(2r−1)L,Γ(2r−1)L+1, . . . ,Γ2n−1}.

Without loss of generality, we can assume that the unitary U is so constructed that it cyclically

permutes the L operators within each set, as follows.

U : Γ0 → Γ1 → . . . → ΓL−1 → Γ0,

ΓL → . . .→ Γ2L−1 → ΓL,

...

Γ(2r−1)L → . . .→ Γ2n−1 → Γ(2r−1)L.

Once again, we begin with an algorithm for picking d− 1 elements for the class C0. The algo-

rithm closely follows the one outlined in the previous section, barring minor modifications.

Algorithm

1. The “middle” element from G(1), Γ(L−1)/2, is picked as the singleton element of C0.

2. The (n− 1) length-2 operators which commute with Γ(L−1)/2 are picked as follows.

(a) L−3
2 pairs are picked from G(0) \ {Γ(L−1)/2}

L(0)
2 = {Γ1ΓL−1, Γ2ΓL−2, . . . ,Γ(L−3)/2Γ(L+3)/2 },

leaving Γ0 and Γ(L+1)/2 unused.
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(b) L−1
2 pairs are picked from each of the sets G(1) through G(2r−1),

L(1)
2 = {ΓL+1Γ2L−1, ΓL+2Γ2L−2, . . . ,

. . . , ΓL+(L−1)/2ΓL+(L+1)/2 },
...

...

L(2r−1)
2 = {Γ(2r−1)L+1Γ2n−1, Γ(2r−1)L+2Γ2n−2, . . . ,

Γ(2r−1)L+(L−1)/2Γ(2r−1)L+(L+1)/2 },

leaving the first operator in each set unused.

(c) Finally, the unused Γ-operators from different sets are put together as specified below,

to get the remaining r length-2 operators:

L(2r)
2 = {Γ0ΓL, Γ2LΓ3L, . . . ,Γ(2r−2)LΓ(2r−1)L }.

The set of length-2 operators is then given by

L2 = L(0)
2 ∪ L(1)

2 . . . ∪ L(2r−1)
2 ∪ L(2r)

2 ,

which gives |L2| = L−3
2 + (2r − 1)

(
L−1
2

)
+ r = rL− 2r−2

2 + r = n− 1.

3. Higher-length operators that commute with Γ(L−1)/2 and L2 are then chosen by combining

Γ(L−1)/2 with appropriate combinations of the length-2 operators. As before, any even-length

operator of length ` = 2i is obtained by combining i length-2 operators from L2. Any operator

of odd-length ` = 2i+ 1, is created by appending Γ(L−1)/2 to a length-2i operator.

Putting together all the operators created in Steps [1]-[3], we get the desired cardinality for the

class (see (B.11)), that is, |C0| = 2n − 1.

Proof of properties (P1) through (P3): The different length operators have again been picked

in such a way as to ensure that they all commute with each other. Since the remaining L − 1

classes are generated by successive applications of the unitary U to the elements of C0, we have

U : Ci → C(i+1) mod L. Thus (P1) and (P3) are satisfied. It remains to prove that the classes
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constructed here also satisfy property (P2).

As in the earlier case of 2n+1 classes, the operators in each of the sets {L(0)
2 ,L(1)

2 , . . . ,L(2r−1)
2 }

correspond to unique values of the spacing function:

S(L(i)
2 ) ≡ {L− 2, L− 4, . . . , 1},∀i ∈ [0, 2r − 1].

This guarantees by Lemma B.1.1 that these operators cycle through mutually disjoint sets under

U . Since the operators in L(2r)
2 are formed by combining Γ-operators from different sets G(i), each

of them cycles through a different set of operators under U . Thus we see that all the length-2

operators in C0 cycle through mutually disjoint sets.

Before we proceed to discuss the higher-length operators, we make one further observation

about the length-2 operators. The operators in L2 correspond to index sets which satisfy

L2(C1) = {Γi1Γi2 | i1 + i2 = 0modL}. (B.13)

In particular, the length-2 operators in the set L(2r) have been picked carefully so as to ensure that

the above constraint is satisfied. In fact, this was the rationale behind leaving out the first operator

in each of the sets G(i) while choosing the corresponding length-2 elements in L(i)
2 .

The higher-length operators in C0 can be of two types:

(a) Products of Γ-operators from a single set G(i) alone, and,

(b) Products of Γ-operators from more than one set.

Since an operator of type (a) cannot cycle into one of type (b) under the action of U , these two

cases can be examined separately.

Operators of type (a): The maximum length that an operator of type (a) can have, as per our

construction, is L−1. We have ensured this by leaving at least one operator of each of the sets G(i)

unused in constructing the length-2 operators. Furthermore, the constraint in (B.13) implies that

the index sets corresponding to such higher length operators in C0, sum to the same value modulo

L. More precisely, any even-length index set of length ` = 2j, where the indices are all drawn from
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a given set G(i), satisfies

i1 + i2 + . . . + il = 0modL,

∀ (i1, i2, . . . , il) ∈ C0. (B.14)

And any index set of odd length ` = 2j + 1 satisfies

i1 + i2 + . . . + il =

(
L− 1

2

)

modL,

∀ (i1, i2, . . . , il) ∈ C0. (B.15)

Then, invoking Lemma B.1.2 with c` = 0 for even values of ` and c` = (L− 1)/2 for odd values of

`, we see that no operator of type (a) can belong to more than one class, for prime values of L.

Operators of type (b): An operator of type (b) is a product of operators from smaller sets

Kj ⊆ G(j). Consider a length-` operator, O which comprises `0 Γ-operators from G(0), `1 operators

from G(1), and in general, `i from the set G(i).

O = Γi1 . . .Γi`0
︸ ︷︷ ︸

K0⊆G(0)

Γj1 . . .Γj`1
︸ ︷︷ ︸

K1⊆G(1)

. . .Γk1 . . .Γk`2r−1
︸ ︷︷ ︸

K2r−1⊆G(2r−1)

Note that by our construction, the operator O exists in more than one class if and only if, for all

Kj the product of all operators in Kj also belongs to more than one class. In what follows, we

show that our construction ensures that this is not possible. In particular, given a set of length-

` operators in C0 which can be broken down into smaller sets as described above, we will show

that there exists at least one set Kj in every such length-` operator O, such that the products of

operators in Kj corresponding to different length-` operators cycle through mutually disjoint sets,

as defined earlier.

Note the following two facts about the subsets Kj . First, our construction ensures that any

subset Kj ⊆ G(j) of a given size `j , satisfies either (B.14) or (B.15) depending on `j being even

or odd. Second, note that the maximum size of these subsets is `j ≤ L. However, in order to

invoke Lemma B.1.2, we still require `j to be strictly less than L. We thus need to show that every
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length-` operator must have at least one subset Kj of size `j < L.

Suppose there exists a length-` operator such that every subset is of size L. Then, such an

operator has to be of length

` = `0 + `1 + . . . + `2r−1 = 2rL = 2n. (B.16)

However the maximum value of ` in our construction is 2n − 1, implying that at least one of the

2r subsets must be of a size strictly smaller than L. And, for such a subset of size less than L,

constraints (B.14) and (B.15) ensure that the same subset cannot be found in more than one class,

provided L is prime. �
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